CPL
UTX/32" Release 2.1

Real-Time User's Guide

January 1988

== GOULD

Electronics

nlﬁnfulﬁumumt Hi i

Limited Rights

This manual is supplied without representation or warranty of any kind. Gould Inc.
therefore assumes no responsibility and shall have no liability of any kind arising from
the supply or use of this publication or any material contained herein.

Proprietary Information

The information contained herein is proprietary to Gould CSD and/or its vendors, and its
use, disclosure or duplication is subject to the restrictions stated in the Gould CSD
license agreement Form No. 620-06 or the appropriate third-party sublicense agreement.

Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in
subdivision (b) (3) (ii) of the rights in Technical Data and Computer Software Clause at
52.277.7013.

Gould Inc., Computer Systems Division
6901 West Sunrise Boulevard
Fort Lauderdale, Florida 33313

UTX/32, MPX-32, PowerNode, and SelBUS are trademarks of Gould, Inc.
CONCEPT/32 is a registered trademark of Gould, Inc.
UNIX is a registered trademark of AT&T Bell Laboratories.

Copyright © 1988 by Gould Inc.
All Rights Reserved
Printed in the U.S.A.

History

The UTX/32 Real-Time User’s Guide, Release 2.1, Publication Order Number
323-005550-000, was printed in January 1988.

This document contains the following pages:

Title page

Copyright page

History page, page iii/iv

Contents, pages v through ix

Figures, page x

Chapter 1, pages 1-1 through 1-4

Chapter 2, pages 2-1 through 2-8

Chapter 3, pages 3-1 through 3-4

Chapter 4, pages 4-1 through 4-6

Chapter 5, pages 5-1 through 5-2

Chapter 6, pages 6-1 through 6-3/6-4
Chapter 7, pages 7-1 through 7-3/7-4
Chapter 8, pages 8-1 through 8-8

Chapter 9, pages 9-1 through 9-2

Chapter 10, pages 10-1 through 10-6
Chapter 11, pages 11-1 through 11-4
Chapter 12, pages 12-1 through 12-5/12-6
Chapter 13, pages 13-1 through 13-3/13-4
Appendix A, pages A-1 through A-40
Appendix B, pages B-1 through B-21/B-22

UTX/32 Real-Time User’s Guide iii/iv

Contents

FIBIINES. . oo mismomssissnmisimias i i snesss A e o oo Sormmeserss ix

1 INErOAUCEIONoooiiiiiiiiii ettt e 1-1
1.1 Scope and Purpose of this Guideccoceoiiiiivreinneccieieees e, 1-1
1.2 Summary of CONENEScoeiiiieiieiieie ettt 1-1
1.3 Reader PrerequiSitesoooievceiivinnnesieeececee ettt 1-2
1.4 Related DOCUMENTALIONcuiiiiiieiiiee ettt st s 1-2
1.5 Typographic CONVENTIONScccceiiiiiniiiicniesieias et 1-3
2 The UTX/32 Real-Time Environmentcccccococoovviiiieniineeieen . 2-1
2.1 Real-Time-Enhanced UNIX ... 2-1
; The Standard UTX/32 ENVITONMENTocvvureeeuerieierererieieneres e eeeseneeseee s 2-2
221 The BSD and.System 'V EnVITONMEGNTS oo i somsmmenss somns 2-2
222 What UNIX Offers DeVeIOPETSccoeiieiiiiiiieiiieiiie ettt 2-2
23 The Real-Time Environmentccocoooeiiiiiiiiieieee e 2-3
2.3.1 OVEIVIEW .ottt et et es e ettt e 2-3
2.3.2 Process SCheUUling oo smsmsnitmmsionmmssmorassesrssmensorsnens 2-5
2.3.3 TIMET SEIVICES ..ottt ettt et e 2-5
234 Paging and SWAPPIME . icuesussensveesssasssnosssses sessersisiassisssins siasissnsentvonnsans sass ronesseos 2-6
2:3.5 Interprocess COMMUNICALIONociiiiiiiiiiiieiie et e et 2-6
2.3.6 PHe File SYSIeM uw st Sl abonet o e 2-6
2.3.7 [NPUL/OUIPUL ..o 2-6
238 Hardware CONOL voiiasiemsssomesissasisimsu i ioiomiomsssrnsmserserssomssassssssessosesssas 2-7
239 Application Models ... 2-7
2.4 Notes t0 FORTRAN ProfrafTiiiiers .o seamsmsinssiommmmmossssarmsesriesseseess 2-8
2.5 Special ConSIAETAtIONScoeivivieurieieiicieieie et ettt e 2-8
3 Real-Time Scheduling ..o 3-1
3.1 Aspects of Real-Time Schedulingccooviviieciiieine e 3-1
3.2 Real-Thne PrOtlny .cosumosmrmssssomismsmassi s a sy 3-1
3.2.1 OVEIVIEW .ttt ettt ettt bbbttt et et s et ae e 3-1
322 USET IMEITACE: iicissamuimsmsmsmisonsessinmi oo menstoanssssssnsnssss snnssnssavsssssostrnsnssesaonsses 3-1
33 Processor Targeting ...ttt e 3-2
331 OVETVIBW: svussvssnisssn s s s s mosss i s 5 a5 a8 Va5 atnariopmanarsbans nronsionaogess sae spavonss s sy ssdss 3-2
3.3.2 USer INMErfaCecovviiiiiiiiiiiiic it er e i 3-3

UTX/32 Real-Time User’s Guide v

34 Speetal Considetiions wvusoswssssmnssmmsos i st tn 3-3

34.1 Interactive Control of Real-Time Processescccocceivniiiniiicincincnccnnenns 3-3
342 FIFO Processing in @ Multiprocessor SYSIEM ...uussessssssssmosssassanmssnssassansasss 3-4
343 Shared MEIMOTYccccererimieriinneiiniiieiienitires s s st s s s een 3-4
344 Targeting Nonexistent PIOCCSSOIS .ussamsammmnunsusssamossnimmssssmsimis 34
34.5 INON-REA1-TIiME PIOCESSES .ecveervirueieiarerniieiestretisnetise e sesnssese s st ss s saens 34
4 Cyclic SCheduling ... 4-1
4.1 The Cyclic SChedUIErcccoivciiiiiiiiicr e 4-1
4.2 Cytles. Q10 TIAMIPEcesomansonsnsmisioos i sk 5560435558855 55 SR R NSRS 4-1
43 USET INTEITACE ...oiiviiie ettt e s e 4-3
4.3.1 SCHEAUNNE couviirsaninainsivainonisiivinnsanininniniadss ST S TEHAA RIS E AR ST BT RSR 4-3
432 SYNCHTOMIZAMION. sxivomessosssmissemisnasssnssussesanssnsssessssninassrssssansvssonenscvsvs stismanssstasiamsse 4-3
433 Delayed EXECULIONcuviiiiiiiiieiiiicisecie ettt 4-3
434 Signal Hadhng ..o msmusms o memmyssamsyson 4-3
43.5 LOGKAOWL -1 consunensmemsensummarsescnsmasnmssasssmssassansisansadad isasyiss 56555 o0t a8 Srosisssaamsnass 4-4
4.3.6 Rescheduling: and TefMination! .xosssssssssmssmssisssevsevarmmsmsssssommssnsmsesonssssanss 4-4
4.4 Special Considerationsc.coociiiiiiiiiinisiiinee ettt 4-4
44.1 Setting frames J00KDACK. s amnsmspasamsimsiisasiysssses 4-5
442 Monitoring Missed FIamescccciiiviiiiiiniiiin e 4-6
3 TIMET SEIVICES ...ovviiiieiiee ettt st bbb e 5-1

OVEIVIEWocvevieniiirictcriereresresensessseeeseses st s e st esesssrasse st onssnsssensssssssesssssssssssionssnssess 5-1
5.2 Dl DB ..oy sommms cxusiin s s e s RSP S 5-1
3.3 Special ConSIAETAIONSccviuirirerriiicreieiet et es 5-2
6 Prepage and LockdOWn ..., 6-1
6.1 DESCIIPHION ..eivviiriecereceiesisesetess s ssses bt sssa bbb bbb b s sb s es s 6-1
6.2 USCTTIOETACEnennoss s v susissssssss sossssimsis s o s yass s Ssy s ook SRR TN AN SR 438053 6-1
6.3 Special ConSidErationsocouireieireeer et st 6-2
6.3.1 Managing Physical MEMOTY ivusessesvnssumsss sunsonersassmassssesvisnssasns o sgsgsssssessanse 6-2
6.3.2 Unlocking and EXItINgcccooviiiininiiiic i it s i 6-3
6.3.3 Waiting 10 LOad ..cusmusssvsmvssmsmissssmsnsossnss smmmas ssomsemsmsss o s snsssamsdssassvussss 6-3
6.3.4 SHATEA TEXE .vvieuieiiieceeeie it eete et esteeeeerer e e sre et sabae sasesbaeeae b s s ae s e e s s aeeb b eanes 6-3
6.3.5 Shared MEIOLYcusoissssessisssnsvsssnsisess immsns csothsnasssss i msshsvisesssnesaassssesss 6-3
7 BRATCH NTCTIIONY ... iy ons o5 555350V w8 555054355083 KHASHET AT RS s0Y 7-1
7.1 DICEETIDHION. sttt i e 55835553 A S A 2 S P83 7-1
1.2 USET INTEITACE ...vvviviiciiecreeie ettt st e sttt sb bt 7-1
7.3 Special TONSIAETRIIONS .onvuorcocmncnnrmmmnmaninsisinis s mins 5550 44568 S 5638358358 SRS TEEIHER 33 7-2
131 CONIGUIAION: ovussusmmmmmmmsmmmsorssmsmsssseossssronssinsvas soesvsnsasias avsvavaessssasiasesns 7-2
1.3.2 SYNCHIOTIZATION .v.evorernnrrarssonnssuennmnnsisininiodssssis s iasss 6 HesesSFasR AR TSR S SEASHHRIRINES 7-2
1.3.3 Virtual Address Space INPLCAIONS. vivvvvsmmmissmmpemmoneymnsrcsssimssscsssncmsasn resvesas os 7-2

vi UTX/32 Real-Time User’s Guide

7.3.4
7.3.5

8.1

8.2

8.2.1
8:2:2
823
8.24

8.3

9.1
9.2
9.3

10
10.1
10.1.1

10.2
10.2.1
10.2.2

10.3
10.4

11

11.1

11.2
11.2.1
11.2.2

113

12.1
12.2
123
12.4

Paging and SWapping ..ot e 7-2
Shared TEXE: ... osvmasmssessissssssnsnvssvassesesinss 546 o855 554 4573 SaFa 8 saT TR SRR TR 34 7-3
DITBOE FINE SYBUBIRE ... comsusinsnsonsssummsmssssinssinns m55s omomsssisss S0 s i00wessmens MR35 55555 8-1
DVCBOTRMEIDI oo s 550 RN A R A A G e a5 8-1
USEr INETTACE ..ovoniiie ittt et st e e 8-2
File Systemm SIUCTUTE: ...icc. v tiesssinis i i5m.ss o i assn s 50 (85 assesaasaans sansss i 8-2
File CHATACIETISUICS wssvssivcsssssssmusssssossmumsssssssonsssnssvesbissuitons borsesssat adnesses s smssss 8-2
AEISEADY «.cnnnnnesmanoaninsmmnn snsiiisiin i aind' s sk ni 5 s Sninns sns SRS S AT A A AT AR s 8-3
File System AUTIDULES ooussmumssvssiissmmmenmemsmssmssssnssssissismsssipysssssmesmmies 8-3
Special Considerationsusesewmmossmosmssmssssosssnsmmmsoss ssssbncstssssies sisssmsssnsmaios 8-7
High-Speed Input/Qutput SUPPOrt ... 9-1
Aspects of High-Speed Input/Outputccocvvvviiiviiininiiiiciniiienins 9-1
Suppor for C1ass B T ...cuimmsansmussonnsomenmatsmessesssomssssoitsnssnssiss o 9-1
The Direct I/O FACIItY ..ooouioiiiiee ittt 9-1
Connected INterrupts ... 10-1
OVEIVIEW ..ottt ettt ettt bttt es et bttt b et et ettt et ea b eeeanen 10-1
CONFIGUIATION, .. vcvussmessumss svmasvimssieessmss s vy ssssmss s smss s s R amTseas s S TR 53 10-2
USer INTEITACE ..ooveeiiieiicieiic ettt sttt e e s e 10-2
Indirectly Connected Interrupt EXample .cuusasmsnissamsiissmssimnssmsmissives 10-2
Directly Connected Interrupt Example ... 10-3
Stack AABIESFES v wmmmmmmmmmumsmmmmsmssmme bt 10-6
Helpful Programs ..o 10-6
Suspend and ReSUME ... 11-1
OVETVIEW .ottt ettt ettt ettt e e b e e et es e e es s bbbt eb e ebeeb ekt ab e besbesb e enee s 11-1
LES o 61051 0 72T e T T 11-1
SUSPEIA ..ottt e e s 11-1
111 L 11-2
Special ConsSidErationsc.cceeeeeiiieiiiinieie e sese e 11-4
MEMOTY CLASSES ..ottt sttt st e 12-1
OVEIVIBW .ttt sttt st eae e bbbt ea et s be e st eb bbb s st sb bbb 12-1
ALY BRI ... e rencsssisssransnsmamsanmas s e s S SR i 12-2
Contiguous and Noncontiguous Memory EXtentscccccvnnivicnciiinnes 12-2
PEIMISSIONS ..ottt et e et st 12-3

UTX/32 Real-Time User’s Guide vii

12.5 Reflective MEIMOTY vicuussusssssassrssssassasssassassssssssvsssesis sssssssass sissesssnssnesssesesasasssssssy 12-3
12.6 Summary of Special Memory SUPPOItc.cccoeevviinniniiinicenececaesnens 124
12.6.1 CT@ATIONY v ssswussssnsannsssnsnsssesnsssssssssnoasassas o84 Hus RS HHPH a0 LSRN SN TSP R s SR RS SR UGS 124
12.6.2 ALLOCAHION ..veviiriiceeeie ettt et s s e b sas et r s st s b 12-4
12.6.3 DESHUCTION, suwsssssssnummansnsonnssnsmssssssoss sy suimmsssssss fevass SRS A v s basosws 124
12.6.4 INSPECHION ..ottt e e et 12-5
13 Instruction Execution Modes ... 13-1
13.1 OVEIVIEW vttt ettt et bbb s b st s st st s bbb a st ss b s st 13-1
13.2 Instructions Requiring Privileged Mode . cuuessnsmummsmmnssasasmsisos 13-1
13.3 Ways to Execute Privileged InStructions ..., 13-2
Appendix A General Examples. ... A-1
A.l Real-Time Scheduling ...t e A-2
All FORTRAN Real-Time Scheduling Examplecccccooivininiiiiniininnin A-2
Al1.2 C Real-Time Scheduling EXample ..o ssssgsnss A-4
A2 Cyclic SChedulingccoeercicinmernnaeniesesssssississssssinssiitssssnssssssesssssssensssseses A-6
A2l Summary of the Template EXAMPIE «.vooevsmsismmsmssmmsnsosossssossnssssvasess A-6
A22 Slave Process TemMPIAtecccovveriiiiiiiiiiiiii i s A-7
A3 TR O IR oo o R A S A SIS A-9
A3l FORTRANTESE PEOBTAILSteihoscunsissnsonsnnsindinis i 68655 555 issss Rt S vsms snnans A-9

EXample 1 siosiimmmessmmsssssssmnsispramsns i ossssesssssssyesssossssessmvessons brvasvamme A9

EXAMPLE 2. .ovose o snosmamnnianinasnnsamsbisn vme s Soinciie 50555 SHARESHAEHHES 680 SE0 TSROSO PR REn5 A-11
A3.2 C TeSt PROTEAINS unusmssvnssumsmusessssimsonmassisyassgmpasssss o spewessssopeisoss A-12

EXamPple T .o A-12

EXATIPLE 2 s oousssvws sunonensonsvs orsonssmm nons 1vsssoomms sss 5yss 60w 06 s e 584 000 S99 SSEON IR0 355508 A-13
A4 Shared MEIMOTY ...cocouiviieiieieiii ettt e s s s A-15
AS DIrect FIle SYSIEM ..ouooiiiieiiiiiieiiiict e A-21
A6 IDHEEEE T/ . coomccnmrnencanasmensanenmansnranss sonsnsmsamssmnsnasmsnd ans o 5SS ER ATt H IR S SR G R TS A-23
A6.1 DIO FORTRAN PIOSTAML coscsussvsssvssinsomussssnessmvanvessaspssssvessecsyoes sosvseasinsasnssens A-23
A.6.2 C Utilities for DIO FORTRAN Programcccoecviiiiiiiiiiiniinieiene e A-26
A7 Connected INEITUPLS ...o.oveviirieuciiiiiieieteieiee st st st s sbssase s ssebsasenen A-28
A1 Example Using Indirectly Connected INterruptccocoeeiniiinniiiniienenrieneen, A-28
A72 Example Using Directly ‘Connected INTEITUPL ueuveesssssmsossnssmmsssasssssvessnsnmussaes A-30
A8 Suspend and RESUME ... e A-33
A8.1 PIOGPONT sssswssmeummesssssmsessesssssesss wms s sa s nss s oS00 S s ST A-33
A8.2 OBHBT 11 gevecmeneomsorvmnmsosmmnsmnsos sasusensassms vavmsssass swesmsns sxsarasissomsns s B s i wis T rmans A-35
Appendix B Model Real-Time Applicationscccccoevviviiiiiiiiiiccs B-1
B.1 Header File for Model Program ..o B-2
viii UTX/32 Real-Time User’s Guide

B.2 High-Resolution Interval Timers Model .omunseammmesussammssmssssssss
B.3 High-Resolution Repeating Timers Model ..o
B.4 B e HERO0 T TR T 1T) RIS —————————

UTX/32 Real-Time User’s Guide

Figures

Figure Page
2-1 Standard UTX/32 and UTX/32 with Real-Time Extensionsc..cccceueeunene 24
4-1 A Cycle of 20 FIrames ...ttt 4-2
4-2 A Well-schediled CyClic PTOCESS wuvusssnsesssumsmssusmssmassssssssssvssssssssssimssssssssnsss 4-2
4-3 A Poorly Scheduled Cyclic PTOCESSccceviniiiiiiintiniiiiiineieee e 4-4
44 A Cyclic Process Using frames_lookback ... 4-5

X UTX/32 Real-Time User’s Guide

1 Introduction

This introductory chapter provides the following information about this

document:

« Its scope and purpose

« A summary of its contents

« Reader prerequisites

. Related documentation

. Typographic conventions

1.1 Scope and Purpose of this Guide

This guide is an introduction to the real-time features of the current release of

Gould UTX/32™,

which is a real-time-enhanced UNIX® system that can serve

as both a development and a target environment for real-time applications. It is
intended for users who will be developing, maintaining, or running real-time
application programs under this operating system.

1.2 Summary of Contents

This guide is divided into thirteen chapters and two appendixes. The first two

chapters acquaint

readers with resources available to them and provide a

conceptual overview of UTX/32 real-time features. The remaining chapters
describe specific functional extensions and real-time performance enhancements
to the UTX/32 operating system.

Chapter 1
Chapter 2
Chapter 3
Chapter 4

Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9

Provides general information about this document
Describes the real-time enhancements to standard UTX/32
Explains various aspects of real-time scheduling

Describes principles of cyclic scheduling and the cyclic
scheduler

Describes the real-time timer services

Describes the prepage and lockdown facility
Describes the System V shared memory interface
Discusses the direct file system facility

Describes the high-speed input/output support included in this
release

. UTX/32 Real-Time User’'s Guide 1-1

Chapter 10 Explains the connected interrupts functionality

Chapter 11 Describes how to use the suspend and resume system calls

Chapter 12 Describes memory classes that are used for special purposes

Chapter 13 Describes instruction execution modes, both privileged and
unprivileged

Appendix A Provides general examples of several real-time features

Appendix B Provides different versions of a model real-time application

1.3 Reader Prerequisites

Readers should already have a working knowledge of UNIX in general and,
ideally, of standard UTX/32 features. This document assumes that the audience
understands basic UNIX functionality and thus describes only real-time features
new to this release.

1.4 Related Documentation

The documentation for the real-time features of UTX/32 includes the following
guides and manuals:

UTX/32 Software Release Notes
This document describes the product release and should be read first.
Because the real-time environment is new to this release, the release notes
are of special interest to real-time users.

UTX/32 Documentation Guide
This document provides an overview of the entire documentation set, as
well as a comprehensive UTX/32 glossary.

UTX/32 Real-Time User’ s Guide
This document.

UTX/32 BSD User’s Reference Manual and UTX/32 BSD Programmer’s Reference Manual

These are collections of manual pages with introductions, consisting of BSD
manual pages, manual pages documenting System V functionality that has
been ported to the BSD environment, and real-time-specific manual pages,
which have section specifiers of the form (#RT), such as dfcreate(1RT). For
system calls and subroutines, the specifier is (nRT) for C-callable versions
and (nRF) for FORTRAN-allable versions. (To indicate both versions in
this guide, references will sometimes be made in the form of
dfdelete(3RT/RF), for example.)

These manual pages are all accessible on line by using the man command,
see the man(1) manual page.

1-2 UTX/32 Real-Time User’s Guide

UTX/32 Input/Output Subsystem Guide
This guide describes changes and additions to the UTX/32 input/output
subsystem. Of special interest to real-time users are extensions to the I/O
interface to support class E devices, the high-speed device (HSD) interface
driver and how to customize it, and the direct I/O facility.

1.5 Typographic Conventions

The typographic conventions for this document are described below.

Prompts
The following prompts are used in this document:
Superuser prompt
% C shell prompt

Nonprinting and control characters
Nonprinting characters obtained by striking special keys are displayed
within angle brackets. For example, indicates the delete key, <CR>
a carriage return.

In this guide, a <CR> is assumed at the end of every command line unless
otherwise stated. The <CR> is displayed only if nothing else is entered on
the line or if the sequence of keystrokes would otherwise be unclear.

Control characters are represented using the caret notation. For example, "D
indicates <CTRL>-d. In examples, control characters are shown as echoing
on the terminal screen. Whether they echo on your terminal depends on its
settings; see stry(1).

Boldface
Command and utility names, filenames, pathnames, and words from code
are printed in boldface.

Example:
The nroff command is used to format text.

Exception: When such a term is long and all uppercase, such as
PLOCK_FRACTION, it is not printed in boldface.

Lineprinter and lineprinter bold
Displays of code and user sessions are printed in lineprinter font. In
displays of interactive user sessions, text typed by the user is printed in
lineprinter bold.

UTX/32 Real-Time User’s Guide 1-3

%

Example:

$ ls
filel file2 file3

Italics
Variable expressions that must be replaced with a value are printed in
italics. Square brackets ([]) around an italicized variable expression signify
that specifying the value is optional.

Example:
% cd [directory]

Italics are also used to introduce new terms, for titles of documents or
manual pages, and occasionally for emphasis.

Examples:
UNIX manual pages are often referred to as manpages.

See mount(8) for further information.

Ellipses
Vertical or horizontal ellipses (...) indicate that information has been
omitted.
Example:
% rsh fang
% logout
Blank pages

Since each major section of the document begins on a right-hand (odd-
numbered) page, blank left-hand (even-numbered) pages occasionally
precede new sections. You can be assured that such a page is intended to be
blank if the preceding page has a double page number, such as 4-5/4-6.

1-4 UTX/32 Real-Time User’s Guide

2 The UTX/32 Real-Time Environment

2.1 Real-Time-Enhanced UNIX

This release of UTX/32, a UNIX-based operating system for virtual CONCEPT
Product Line (CPL) machines, is the first version of UTX/32 to support real-time
features. This chapter presents an overview of these real-time features and of the
standard UTX/32 UNIX environments.

A real-time operating system is one that meets the requirements of the real-time
software applications that run on it. In general terms, these requirements are for
determinism, control, and performance. Determinism means predictability of
program execution, such that each time a real-time application executes, its
computations and input/output are performed in the same relative order. Control
is the ability to regulate the use of resources. Performance for a real-time system
means fast response time during both computation and input/output, such that
neither is affected by the limitations of the other.

Unfortunately, many operating systems designed to meet these requirements
have serious disadvantages:

« They provide poor development environments and a limited range of
support software.

« They are proprietary systems. This makes applications less portable and
standardization more difficult.

. Standard tools are generally not portable to them. so developers must, in
most cases, build their own.

On the other hand, operating systems that offer good development environments
and higher levels of standardization tend to be the time-sharing systems, such as
UNIX. Designed to maximize throughput, these systems are unsuited for real-
time execution. A real-time application can, of course, be developed on a time-
sharing system, but it cannot be tested or used there. This makes development
more difficult, since testing concurrent with development is not possible.

UTX/32 solves these problems by providing a UNIX development environment
as well as an environment that can meet real-time execution requirements.

UTX/32 provides the following:
. Full BSD and System V UNIX functionality, which is development-oriented

. Enhancements that enable the operating system to meet the deterministic
execution requirements of a wide range of real-time applications

The following sections describe the UTX/32 time-sharing development
environment and the real-time execution environment.

UTX/32 Real-Time User’s Guide 2-1

2.2 The Standard UTX/32 Environment

The standard UTX/32 environment offers two UNIX operating system
environments, each of which offers benefits to the user.

2.2.1 The BSD and System V Environments

The two major UNIX systems are the Berkeley Standard Distribution (BSD) and
AT&T'’s System V. UTX/32 provides both a BSD environment and a System V
environment. Gould enhancements are also included in UTX/32. For a
discussion of this split environment, refer to the UTX/32 Operations Guide and
to the sv(1) UTX/32 manual page. For a discussion of how this split environment
affects the real-time user, see Section 2.3 of this guide, "The Real-Time
Environment."

2.2.2 What UNIX Offers Developers

2-2

UTX/32 is fully available to users as a single-user or a multi-user development
environment. The following list attempts to convey at least some of the
advantages of this environment:

The UNIX standard
UNIX is a well-known standard for operating systems. As a result, a wide
variety of third-party software is available for UNIX programmers, much of
it free.

Fairness and throughput
UNIX was developed as a time-sharing system for relatively slow machines.
The result is an emphasis on fairness and throughput that is beneficial to a
multiuser development environment.

Wide selection of tools
UNIX provides a wide selection of basic tools that can be combined.
Because the numerous UNIX tools assume a standard, byte-stream format
for their input and output, they can be combined in many ways using pipes
and [/O redirection.

Programmable shell
UNIX users are not limited to a single command interpreter. The most
commonly used command interpreters, the Bourne shell and the C shell, are
programmable, and many useful scripts can be written for them.

Choice of editors
A variety of line, view, stream, and more versatile editors, such as Emacs,
run under UNIX.

Networking
Networking software available on UNIX includes the Network File System
(NFS), support for local area networks, interfaces to high-performance
workstations, and access to world-wide networks such as Usenet (the UNIX
user community) and the ARPANET.

UTX/32 Real-Time User’s Guide

Information and communication management facilities
Electronic mail and other facilities make it easy to store and exchange
information on the system and between systems.

Online documentation
Basic documentation of UNIX utilities, system calls, and libraries is
available on the system.

Because UNIX is a commonly used standard operating system, many books
describe the UNIX development environment and how to use it. A few of them
are:

« Brian W. Kemnighan and Rob Pike. The UNIX Programming Environment.
Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1984.

« Henry McGilton and Rachel Morgan. Introducing the UNIX System. New
York: McGraw Hill, Inc., 1983.

« S. R. Bourne. The UNIX System. Reading, Massachusetts: Addison-
Wesley, 1983.

« M. G. Sobell. A Practical Guide to the UNIX System. Menlo Park,
California: Benjamin Cummings, 1984.

Also, many UNIX journals are published.

2.3 The Real-Time Environment

2.3.1 Overview

A real-time operating system must meet certain specific requirements in order to
provide the determinism, control, and performance needed to execute real-time
applications. Standard UTX/32 includes features that meet some of these real-
time requirements. In certain critical areas, however, the real-time environment
bypasses or extends standard UTX/32.

Figure 2-1 illustrates, in a very general way, how these new real-time features fit
into standard UTX/32. The drawing on the left represents the levels in standard
UTX/32, the processing paths between the levels, and examples of services
available at each level. The drawing on the right represents the levels in UTX/32
with its real-time enhancements. This drawing also contains arrows that indicate
direct paths between the process interface level and the internal services or
hardware interface levels. Real-time applications can use these direct paths to
bypass the overhead typically encountered in a timesharing environment.

The features of the UTX/32 real-time environment are available within the
UTX/32 BSD environment (see Section 2.2, "The Standard UTX/32
Environment.") Since some of these features are standard System V features,
UTX/32 makes them available in the BSD environment by including them in the
real-time library. For more information on the real-time library, refer to intro(2)
and intro(3) in the UTX/32 BSD Programmer’s Reference Manual (or type "man
2 intro" and "man 3 intro" on the system).

UTX/32 Real-Time User’s Guide 2-3

24

UTX/32

UTX/32 with

Real-Time Extensions

Process Interface

System calls

Process Interface

Direct files

H

v

3

v

Process Services

File system
I/O system
IPC

Process Services
Indirectly connected interrupts
Cyclic scheduler
High-resolution timers
Memory classes

Suspend/resume
A

Internal Services

Memory management
Scheduling
/O system

Internal Services

Real-time scheduler
Prepage & lockdown

I

I

Hardware Interface

Device drivers
Clocks

Hardware Interface

Directly connected interrupts
Hardware privileges

Direct /O

HSD support

Figure 2-1. Standard UTX/32 and UTX/32 with Real-Time Extensions

UTX/32 Real-Time User’s Guide

This chapter introduces the UTX/32 real-time environment by summarizing, for
each real-time-critical area of the operating system:

o The real-time requirements in that area
« The UTX/32 real-time features that meet each requirement

. If a feature is real-time specific, whether it bypasses or extends standard
(non-real-time) UTX/32 functionality

Typical real-time application models are then discussed.

Most of these features are described in Chapters 3 through 13 of this guide. The
specific system calls and library routines associated with these features are also
documented in the UTX/32 BSD Programmer’s Reference Manual. Special files
are in the UTX/32 Special Files Reference Manual, commands are in the UTX/32
User's Reference Manual or the UTX/32 System Administrator's Reference
Manual.

2.3.2 Process Scheduling
(1) Requirement: Determinism and control in process scheduling.

UTX/32 real-time feature: Real-time, priority-based preemptive scheduling. See
Chapter 3, "Real-Time Scheduling,” for more information.

Bypass or extension? Bypasses standard UTX/32 time-shared scheduling.

(2) Requirement: Frame-based, repetitive, process execution.

UTX/32 real-time feature: Cyclic scheduling. See Chapter 4, "Cyclic
Scheduling," for more information.

Bypass or extension? Extends standard UTX/32.

(3) Requirement. High-speed context switching.

UTX/32 real-time feature: Suspend and resume primitives. See Chapter 11,
"Suspend and Resume," for more information.

Bypass or extension? Extends standard UTX/32.

2.3.3 Timer Services

Requirement: High-resolution event scheduling and execution-time
measurement.

UTX/32 real-time feature: Enhanced timer services. These provide interval and

UTX/32 Real-Time User’s Guide 2-5

time-of-day measurements from a high-resolution clock. See Chapter 5, "Timer
Services," for more information.

Bypass or extension? Extends standard UTX/32 timer services.

2.3.4 Paging and Swapping
Requirement: Control over process paging and swapping.

UTX/32 real-time feature: Prepage and lockdown. This facility allows the user
to make all or part of a process resident in memory. See Chapter 6, "Prepage and
Lockdown," for more information. This feature is standard in the System V
environment and provided in the (BSD) real-time library.

2.3.5 Interprocess Communication

Requirement: Deterministic interprocess communication.

UTX/32 real-time features: Shared memory, semaphores, messages, and signals.
See Chapter 7, "Shared Memory," for more information about shared memory.
Signals are standard BSD. Shared memory, sempahores, and messages are
standard System V but are also provided in the (BSD) real-time library.

2.3.6 The File System

Requirement.: A file system that supports contiguous files, deterministic transfer
times, and asynchronous I/O capability.

UTX/32 real-time feature: Direct files. The direct file system provides
predictable disk I/O for files. See Chapter 8, "Direct File System,” for more
information.

Bypass or extension? Bypasses the UTX/32 file system.

2.3.7 Input/Output
(1) Requirement. Support for common real-time devices.

UTX/32 real-time feature: Support for class E devices. UTX/32 includes a
generic, user-extendible high-speed device (HSD) driver. See Chapter 9, "High-
Speed Input/Output Support,” for more information.

Bypass or extension? Extends the UTX/32 /O interface.

(2) Requirement: Direct access to I/O devices for processes, including
asynchronous I/O capability.

6 UTX/32 Real-Time User’s Guide

UTX/32 real-time fearure: Direct 1/O. See Chapter 8, "Direct File System," for
more details.

Bypass or extension? Bypasses standard UTX/32 I/O.

2.3.8 Hardware Control
(1) Requirement: Access to special-purpose memory.
UTX/32 feature: Memory classes. See Chapter 12, "Memory Classes."
Standard or new? New.

Bypass or extension? Extends standard UTX/32 functionality.

(2) Requirement: Minimal interrupt response time.

UTX/32 feature: Directly connected interrupts. See Chapter 10, "Connected
Interrupts.”

Standard or new? New.

Bypass or extension? Extends standard UTX/32 functionality.

(3) Requirement: Execution of privileged instructions by user processes.

UTX/32 feature: Privileged instruction execution mode. See Chapter 13,
"Instruction Execution Modes."

Standard or new? New.

Bypass or extension? Extends standard UTX/32 functionality.

2.3.9 Application Models

UTX/32 supports the execution of real-time applications on several models:
« Clock-driven control processes

« Clock-driven independent processes

« Cyclically scheduled processes (frame-based execution)

« Event-driven processes

The high-resolution clock and cyclic scheduler support the clock-driven and
cyclically scheduled models, respectively, which are highly sensitive to context-
switching time. Direct I/O and connected interrupts support the event-driven
model, where I/O response time is critical.

Appendix B provides two versions of a simple real-time application written in C.
The first version runs off the high-resolution clock, the second uses cyclic
scheduling.

UTX/32 Real-Time User’s Guide 2-7

2.4 Notes to FORTRAN Programmers

The FORTRAN programmer should be aware of the following:

Using the UTX/32 F77 compiler is not recommended. The Gould Common
FORTRAN compiler is strongly recommended instead, because it provides
a syntax that is common to MPX-32™, UTX/32 on CPL machines, and
UTX/32 on NPL machines.

This release of the operating system includes support for global commons
and datapools, but this functionality is only accessible by using Gould
Common FORTRAN, a product that is available separately.

It is often possible to use C subroutines to advantage in places where you
may be accustomed to using assembly language code. FORTRAN
programs can call C subroutines that define system calls. See Section A.6,
"Direct I/O," for an example.

2.5 Special Considerations

The following are warnings to heed when using the real-time features:

2-8

Do not log in and work at the console. UTX/32 console I/O is unavoidably
slow and resource consumptive in the real-time environment.

When compiling or linking any real-time program, you must load the real-
time library using the —Irt option to the compiler or linker.

% cc -0 -0 control control.c -lrt

If the program is in FORTRAN, you must also load the the real-time
FORTRAN library using —Irtf. Because FORTRAN library functions may
call functions from the C real-time library, —Irt must follow —Irtf.

% fort -O -o diotest.f -1lrtf -1lrt

UTX/32 Real-Time User’s Guide

3 Real-Time Scheduling

3.1 Aspects of Real-Time Scheduling

UTX/32 real-time scheduling has two components:
« Preemption based only on real-time priority
« Processor targeting

These topics will be addressed separately.

3.2 Real-Time Priority

3.2.1 Overview

The UTX/32 timesharing scheduling algorithm continuously adjusts the priority
of each process based on the recent resource use of the process. The adjustment
is intended to give each process a fair share of the system's resources. Since
real-time applications may need to give very unbalanced shares of resources to
specific processes. UTX/32 includes scheduling options allowing an application
to assign nonadjustable real-time priorities to processes. This results in stricter
control over process ordering.

Real-time processes have priority values in the range 0-63, with O being the
highest priority. The process with the highest priority executes continuously
until it voluntarily relinquishes the processor to await an event, which is known
as blocking, or until a process with a higher real-time priority becomes runnable.

Real-time priorities are logical process priorities; they do not affect interrupt
servicing. Real-time priorities do not change except as the result of a
setrealpriority or unixscheduling system call. See realpriority(2RT/RF).

3.2.2 User Interface

UTX/32 provides system calls to switch a process between real-time and
standard UTX/32 scheduling and to determine the real-time priority of a process.

1. To make a process run at a real-time priority, use the following code:
oldprio = setrealpriority(pid, newprio)

This sets oldprio to the old real-time priority of the process with the process
identification number of pid, or to NONRT if the process was formerly a
standard UTX/32 (non-real-time) process (NONRT is defined in
/usr/include/sys/types.h). It assigns newprio to be the current real-time
priority of the process.

UTX/32 Real-Time User’s Guide 3-1

2. To find out the real-time priority of a process, use the following code:
realprio = getrealpriority (pid)

This sets realprio to the real-time priority. If the process is a standard
UNIX process, realprio is set to —1 and errno is set to EINVAL.

3. To revert to standard UTX/32 scheduling, use the following code:
error = unixscheduling (pid)

This assignment works without comment, unless the process was already a
standard UTX/32 process, in which case error is set to —1 and errno is set
to EINVAL.

3.3 Processor Targeting

3.3.1 Overview

Virtual CPL processor architecture is asymmetrical; both a CPU and an IPU are
supported. To improve total throughput, the UTX/32 scheduler reviews how
processes use the processor services and restricts those processes that use CPU-
only services to running on the CPU. Such a process may have to wait for the
CPU to become free even though the [PU is idle. Since real-time applications
often do very explicit load balancing of their own, UTX/32 includes options
allowing a process to indicate which processor it should be run on; those options
override the targeting done automatically by the time-sharing scheduler.

Processor targeting permits the user to indicate that processes should run on
particular processors whenever possible. On virtual CPL machines, all processes
can run on the CPU, but processes doing I/O or system calls must run on the
CPU and cannot run on the IPU. Processor targeting lets the user specify that
important computations should run only on the [PU, where they are not subject to
external interrupts. Such a process will run on the CPU during execution of
system calls but will be moved back to the [PU immediately. instead of moving
back slowly under UTX/32’s adaptive load balancing algorithm.

If only invalid processors are specified when targeting processes,
settargetcpumask returns an error, setting errno to EINVAL. If valid as well as
invalid processors are specified, the valid processors are enabled and no error is
returned. In particular, an error will occur if a task is targeted only to the [PU on
a CPU-only CPL system. Applications using processor targeting should use
getactivecpumask to check the system configuration before trying to assign
tasks to particular processors. This consideration is especially important when
developing code on a CPU-only system if that code will eventually be run on a
CPU/IPU system.

UTX/32 Real-Time User’s Guide

3.3.2 User Interface

UTX/32 provides system calls to target a process to a set of processors, t0
determine the targeting of a process, and to determine what processors are
available. CPU targeting defines symbolic names for processors. It also defines
cpumask_t, an integer type to which logical operations can be applied.
cpunumber _t is the actual number of a processor. Numbers are converted to
masks by P_CPUMASKJ().

. Totarget a process to a set of processors, use the following code:
mask = settargetcpumask(pid, newmask)

This sets mask to the old CPU targeting of the process and assigns the
process to the processors specified by newmask. If any invalid processors
are specified by newmask, errno is set to EINVAL.

. To find out what processors a process is targeted to, use the following code:
mask = gettargetcpumask (pid)

This sets mask to the current processor targeting of the process.

. To find out what processors are on the system, use the following code:
mask = getactivecpumask ()

This sets mask to the set of processors available as targets.

For examples of real-time scheduling, refer to Section A.l, "Real-Time
Scheduling," and Section B.4, "Cyclic Scheduling Model."

3.4 Special Considerations

3.4.1 Interactive Control of Real-Time Processes

Running real-time processes from a shell session may lead to confusing problems
since real-time processes take priority over the normal shell. In order to keep
interactive control of real-time processes in development, the priority of the shell
may be boosted above that of the processes being tested. In a networked
environment, it may also be necessary to boost the priority of processes handling
user input, like telnetd. See csh(l), sh(1), and nice(1) for more information
about boosting the priority of shells and processes.

UTX/32 Real-Time User’s Guide 3-3

3.4.2 FIFO Processing in a Multiprocessor System

Even with real-time scheduling, it is difficult to guarantee first-in/first-out
(FIFO) processing of tasks on a multiprocessor such as the dual CPU/IPU
configuration. The real-time implementation ensures that event handling occurs
in a FIFO order, but not total execution. Differing interrupt loads and the
requirement that system calls be executed on the CPU may result in different
effective execution speeds on different processors. A process that started
executing on the IPU may be "passed” by a process at the same priority that starts
later but runs on the CPU, or vice versa. If the overall load is well understood,
processor targeting may help in serializing the execution of a particular set of
processes.

3.4.3 Shared Memory

The CPU/IPU implementation for virtual CPL machines does not guarantee
cache consistency between the two processors under all circumstances. Although
the inconsistency is rare, processes that share memory across processors must
implement their own synchronization and may be sensitive to the inconsistency.
To ensure that all users of a given segment will be in the same cache, processes
using shared memory are usually marked automatically so that they will not
execute on the [PU. Only non-targeted processes can be thus marked.

3.4.4 Targeting Nonexistent Processors

As previously mentioned, if all specified processors are invalid,
settargetcpumask returns an error. For more information, see Section 3.3.1,
"Overview."

3.4.5 Non-Real-Time Processes

34

For non-real-time UTX/32 processing, processor targeting is less strict, involving
biasing rather than targeting. An idle CPU may pick up [PU-targeted tasks.

UTX/32 Real-Time User’s Guide

N

4 Cyclic Scheduling

4.1 The Cyclic Scheduler

The cyclic scheduler provides an efficient, reliable, and easy-to-use way to
schedule processes periodically, according to the specifications supplied by each
process. One or more processes may be scheduled for the same time. These
processes subsequently run according to their real-time priority. The cyclic
scheduler can also synchronize processes so that they maintain a constant phase
relationship.

The cyclic scheduler divides each second into frames, based upon the line
frequency. For example, on a 60 Hz system, each frame will be 16.667
milliseconds long. Every cyclically scheduled process defines two variables in
setting up its cycle and its scheduling: cycle_length and cycle.

4.2° Cycles and Frames

cycle length is the number of frames in the process’s cycle. The number of
frames in a cycle is usually, but not always, equal to the line frequency or to a
fractional multiple of the line frequency. On a 60 Hz system, typical cycles
would have lengths of 60, 30, 20, 15, or even 10 frames. In the current
implementation, the number of frames cannot be greater than the line frequency,
but since line frequency standards vary, the cyclic scheduler can handle any line
frequency up to 256 Hz. Note, however, that the length of each individual frame
is determined by the line frequency, not the number of frames per cycle. Thus, in
the 60 Hz system example, the frame duration is 16.667 milliseconds, no matter
what the cycle_length might be.

cycle is an array of dimensions 1 by cycle_length that defines the process-
specific cycle. The maximum number of frames is equal to the line frequency.
Therefore, for any cycle with a cycle_length less than the line frequency, the
cyclic scheduler will ignore frames from cycle_length + 1 to the line frequency.
A cyclically scheduled process is scheduled to perform its work only in certain
frames, known as set frames, during its process-specified cycle. The process
defines those set frames in the array variable cycle. For example, on a 60 Hz
system, a typical process might have a cycle_length of 20 frames and a cycle
which sets every other frame. The 1st through the 20th frames define the
process’s cycle and can be set to run or left unset. The 21st through the 60th
frames will be ignored by the cyclic scheduler.

Set frames can come singly or in groups, and any pattern of set frames is
permitted—every second frame, every fifth frame, two set frames followed by an
open frame—whatever is desired. A cyclically scheduled process is expected to
finish its work before the next set frame; that is, each set frame should represent
one complete execution of a cyclically scheduled process. The process must

UTX/32 Real-Time User’s Guide 4-1

4-2

suspend itself when it is done with the task by invoking the cycsuspend system
call. The process then waits for its next set frame. A process that continues
running past a set frame will miss that frame and be scheduled for the next set
frame. Figures 4-1 and 4-2 demonstrate these basic concepts of cyclic
scheduling.

One cycle

LY N N N NN NNNN

Time &

Figure 4-1. A Cycle of 20 Frames

Figure 4-1 illustrates an isolated cycle with a length of 20 frames. (The ignored
frames are not pictured.) Thus, for a 60 Hz system, each frame lasts 16.667
milliseconds. Every odd frame in the cycle is set, indicated by the shading. This
cycle and framing would be appropriate for a process that needs to run 10 times
each cycle and requires less than 16.667 milliseconds to complete its work each
time it runs. Note that the process can actually run for 33.333 milliseconds,
because it has an unset frame separating each set frame.

Yy YT

v
7
7

;
}

'/
v
%
v
%
.

Time

Figure 4-2. A Well-scheduled Cyclic Process

Figure 4-2 illustrates a cycle segment showing a well-scheduled cyclic process.
The arrows beneath the frames represent process execution time. Notice that the
process initiates at the beginning of each set frame, and finishes and suspends
before the end of the set frame.

For examples of cyclic scheduling, refer to Section A.2, "Cyclic Scheduling,”
and Appendix B, "Model Real-Time Applications."

UTX/32 Real-Time User’s Guide

4.3 User Interface

4.3.1 ‘ﬁcheduling

+Processes request cyclic scheduling by calling the cycsetdata library routine and

passing three parameters: the cycle, the cycle’s length, and a variable called
frames_lookback, which helps cyclic processes stay on schedule. cycgetrate
returns the hardware-dependent line frequency, which can be used in setting the
cycle. See cycsetdara(3RT/RF) and cycgetrate(3RT/RF).

Once the process has called cycsetdata, cyclic scheduling begins at the next
clock tick, with frame number zero. The process will be scheduled for its first set
frame after the next clock tick. If more than one process is scheduled to begin at
the same time, real-time priority scheduling takes place. The process with the
highest priority will run first. If two processes having the same real-time priority
are scheduled for the same time, the order of their execution is undefined.

4.3.2 Synchronization

Cyclically scheduled processes often need to run synchronously. cycsync resets
the frame counters of all cyclically scheduled processes to zero. The processes
will be resynchronized at frame zero of the next clock tick. Processes do not
need to be cycsuspended at the time of a cyesync: however, any processing they
do will not be synchronized with other processes until a cycsuspend is issued.
See cycsync(3RT/RF) and cycsuspend(2RT/RF).

4.3.3 Delayed Execution

If a process must coordinate activities with several other processes, then it may
choose to delay execution until all of those processes have completed their
startup procedures. Processes request this delay by setting the wait_for_sync
flag in the cycsetdata routine. One of the processes will then call the cycsyne
library routine. Cyclic scheduling will commence at the next clock tick for all
cyclically scheduled processes. All frame counters are reset to zero. Those
processes that are scheduled to run in frame zero will be scheduled; the rest will
remain suspended until their first set frame.

4.3.4 Signal Handling

A cyclically scheduled process may receive signals while suspended or while
waiting for cyclic synchronization. If this happens, the process will field the
signal, execute the signal handle if one has been specified, return from the system
call with an error. and set errno to EINTR. If they do not want to service
interrupts, processes need to guard against the possibility by blocking or ignoring
signals.

UTX/32 Real-Time User’s Guide 4-3

Signals may be blocked or ignored during the system call. Ignored signals will
be thrown away, but blocked signals will remain.

4.3.5 Lockdown

It is strongly suggested that cyclically scheduled processes be locked into
memory using the plock system call, especially if they use real-time priorities.
This will avoid possible deadlock, since real-time priority processes run before
standard UTX/32 priority processes (including the swapper). See plock(2RT/RF)
and Chapter 6, "Prepage and Lockdown," of this document.

4.3.6 Rescheduling and Termination

Processes may change their cyclic scheduling parameters at any time by calling
cycsetdata again. The new parameters will take effect with the next clock tick.
If this is done, a cycsync must be issued to resynchronize all cyclically scheduled
processes. In C, cyclic scheduling may be terminated by calling cycsetdata with
a null pointer for the first parameter. FORTRAN users should supply a third
parameter of zero to terminate cyclic scheduling.

Processes can get their current cyclic scheduling parameters by calling the
cycgetdata library routine; see cycgerdata(3RT/RF).

4.4 Special Considerations

44

Although cyclically scheduled processes are expected to suspend before their
next set frame, this does not always happen. When a process suspends in a set
frame other than one in which it started or resumed, it is said to have overrun.
The cyclic scheduler does not schedule processes for frames into which an
overrunning process spills, and these become missed frames. Several set frames
may be missed at one time if a process severely overruns a set frame. Missing
frames can be hazardous to certain cyclic processes. The cyclic scheduler has
services that can help cyclic processes adjust to minor overruns. Figure 4-3
illustrates a poorly scheduled cyclic process.

Missed frames

Time &

Figure 4-3. A Poorly Scheduled Cyclic Process

The process consistently overruns, misses frames, and will not perform its work

UTX/32 Real-Time User’s Guide

as frequently as desired. Note that the amount of work can build up. causing the
process to miss more and more frames as time passes.

4.4.1 Setting frames_lookback

Some processes will not be harmed if they miss a frame. On the other hand,
processes sometimes overrun a frame through no fault of their own, and it may
be important that they not miss that frame. Cyclically scheduled processes can
request help adjusting to missed frames, depending on their needs. This is done
by an appropriate setting of frames lookback. This variable determines
scheduling when a cyclic process overruns, as follows:

frames_lookback=0
The cyclic scheduler will assume that the current frame has been missed,
whether or not it is set, and will schedule the process for the next set frame.
This is the usual setting for a well-scheduled cyclic process that will never
miss a frame, or will miss one so rarely that such a mishap does not matter.

frames_lookback>0

The cyclic scheduler will look at (frames_lookback — 1) frames prior to the
current frame. If any of those frames is set, then the process is scheduled
immediately, that is, it returns immediately from a cycsuspend system call.
This feature is intended to be used by well-scheduled cyclic processes that
occasionally miss a frame but still want to run. even though they run a bit
late; that is, the processes are expected to catch up by the next set frame.
Figure 4-4 illustrates such a process.

Potentially missed frame

v
\ \ \ \ \
\ \\ \ N &

7

—>

'\ 7
v
7

;
.

cycsuspend and
immediate return

Figure 4-4. A Cyclic Process Using frames_lookback

This process occasionally misses a frame and would benefit from a
judicious setting of frames_lookback. Given that this process usually runs
and completes within a single set frame, setting frames_lookback to 1 or 2
would force the process to run at its usual time. The process would then be
caught up.

UTX/32 Real-Time User’s Guide 4-5

Large Values of frames_lookback
Setting frames_lookback to (cycle_length — 1) or larger effectively turns
off cyclic scheduling, since the process will resume after every suspension.
This is rarely desired of cyclic processes.

Caution is needed in using the frames_lookback feature. It should not be used
to fix a poorly scheduled set of processes. If a process is continually missing
frames, then the amount of work it does must be cut, or the cycle must be
rearranged. Using large values for frames_lookback only delays this inevitable
rearrangement.

4.4.2 Monitoring Missed Frames

Processes can monitor the state of their missed frames in three ways:

cycsuspend
Returns the current frame number so the process knows what frame it is in
when it begins to run. Frame numbers begin with zero, not one; therefore,
the first frame in the cycle is frame 0, not frame 1.

cycgetframe
Returns the current frame at any time.

cycgetstatus
Returns the current status of any cyclically scheduled process. The status
information contains:

The number of missed frames since the process last resumed
The number of missed frames is the number of frames the process has
missed since it last resumed, whether the process is currently running
or not. A process has not missed a frame until the frame has
completely transpired.

The total number of missed frames
The number of missed frames does not count the current frame or the
frame in which the process resumed. The total number of missed
frames is the number of missed frames the process has missed since the
time it requested cyclic scheduling or the last cycsyne, whichever is the
more recent.

The current state of the process
The state of a cyclically scheduled process is either running or
suspended. See cycsuspend(3RT/RF), cycgetframe(3RT/RF),
cycgetstatus(3RT/RF), and cycsync(3RT/RF).

Status information is invalid in the following two cases:

1. The process is initializing. In this case, cycgetstatus will return an error.

2. The process has not suspended since the last cycsync. In this case, the
process has not had a chance to synchronize itself with other processes.
When the process next suspends, it will notice that a cycsync has occurred;
it will synchronize, and status information will again become valid.

UTX/32 Real-Time User’s Guide

5 Timer Services

5.1 Overview

UTX/32 real-time timer services allow the user to create alarms and to measure
intervals with greater resolution than has formerly been available on UTX/32.
These real-time services are based on a high-resolution clock distinct from the
UTX/32 system clock.

5.2 User Interface

UTX/32 timer services use the gethscvalue and sethsctimer system calls; see
gethscvalue(2RT/RF) and sethsctimer(2RT/RF). These calls respectively get the
current value of the timer and set an alarm for the process. The user interface is
almost exactly the same as that of the standard UTX/32 getitimer and setitimer
calls. gethscvalue returns the number of seconds and nanoseconds since the last
system boot. sethsctimer sets the high-resolution clock. Each process may have
only one outstanding alarm. Setting an alarm cancels any existing alarm. When
the timer expires, the process receives a SIGALRM signal. sethsctimer can be
used to set three kinds of alarms. An absolute alarm is sent at a time measured
from system boot time. A relative alarm is sent at a time measured from when it
was set. A relative alarm can also be repeating, in which case a SIGALRM
signal is sent periodically. The three types of alarms can be requested by giving
the appropriate mode value to sethsctimer. An additional mode allows the user
to cancel an outstanding alarm.

The mode values are defined in <sys/rt_time.h>. This file includes the
following defines:

#define HSC_MAX TICKS 2000000000 /* 20 min at 600 ns per tick */
#define HSC_RATE 600 /* nanosec per hsc tick */

It is recommended that the timer frequency be set to 600 nanoseconds per tick.
This will yield a maximum high speed clock interval of about 1288.24 seconds.
In addition to modifying the count rate, the interval timer hardware on the MFP
or IOP must be jumpered to count at the same rate. Consult your hardware
service representative to change the interval timer count rate.

For examples of using the timer services, refer to Section A.3, "Timer Services,"
Section A.4, "Shared Memory," Section B.2, "High-Resolution Interval Timers
Model," and Section B.3, "High-Resolution Repeating Timers Model."

UTX/32 Real-Time User’s Guide 5-1

5.3 Special Considerations

« It is possible for an alarm to be delivered while a cancel request for it is in
progress.

o Use of the repeating timer feature available through sethsctimer should be
reserved for applications requiring its high-resolution accuracy. For most
cases in which periodic scheduling is required, use of the UTX/32 cyclic
scheduler is recommended for its high reliability.

o The high-speed timer services, as distributed, use the interval timer on the
IOP. They expect the interval timer to be jumpered to 600 ns. It does not
come distributed that way. If the user notices that only a few million
"nanoseconds” are passing every second, this is the problem.

5-2 UTX/32 Real-Time User’s Guide

6 Prepage and Lockdown

6.1 Description

This facility permits a process to fix its virtual memory pages in physical
memory, resulting in (1) the avoidance of nondeterministic delays as paging
occurs, and (2) the ability to do I/O directly in user memory. For more
information, refer to plock(2RT/RF). For more information on direct I/O, see
Section 9.3, "The Direct I/O Facility."

6.2 User Interface
Prepage and lockdown are implemented by the plock system call. With this call,
you can do the following:
o Lock an entire process with plock(PROCLOCK)
« Lock the text segment of a process with plock(TXTLOCK)
o Lock the data and stack segments of a process with plock(DATLOCK)
. Remove all locks with plock(UNLOCK)
The following code is a simple instance of using the plock system call in C.
main ()
{
if (plock (PROCLOCK) != 0)
{
printf ("Can’t plock\n");
exit (1)

}
/* Use direct I/0 */

/* plock implicitly released on exit from process */

For further examples of plock in use, refer to Section A.2, "Cyclic Scheduling,”
Section A.5, "Direct File System," Section A.6, "Direct I/O," and Appendix B,
"Model Real-Time Applications."

UTX/32 Real-Time User’s Guide 6-1

6.3 Special Considerations

6.3.1 Managing Physical Memory

6-2

Because physical memory is a limited resource, plocked processes cannot
increase their stacks or data areas without limit. In the current UTX/32
implementation, the variable max_total_plocks in the kernel sets an upper limit
on the amount of plocked memory. By default, it is set at boot time to
PLOCK_FRACTION (75%) of the physical memory available to the user. The
actual amount of locked down memory is contained in the variable total_plocks.
All of these are defined in usr/include/sys/cmap.h. Their units are cmaps,
which are individual 8Kb pages of physical memory. Because of this
granularity, the limit on the amount of locked down memory should be
considered advisory only. The limit may be exceeded if multiple processes
perform plocks simultaneously.

If you wish to change the limit for plocked memory, proceed as follows:

1.In a source code system, change PLOCK_FRACTION and reboot the
system.

[39]

.In a binary system, patch the variable max_total plocks into the running
kernel using adb; see adb(1). This is shown in the following example. The
user first invokes adb, including the —k option to use kernel memory and
the —w option to enable write mode. Of course, someone doing this must
have permission to write /dev/kmem. Note that adb does not return a
prompt, and that it spaces out its responses. The user next examines the
current value of max_total_plocks (24a in this example) and is returned a
value. The user writes the new value for max_total plocks and finally
examines the variable to ensure that the new value is in place.

adb -k -w /unix /dev/kmem
sbr af7c8 slr afbc8
pObr 0 pOlr 0 plbr 0 pllr O
max total plocks/X

_max_total plocks: 24a

max total plocks/WIf£fffff

_max_total plocks: 24a = 3333334
max total plocks/X

_max_total plocks: TELEFEFE

Note that, in changing the limit, care must be taken to avoid situations in which
deadlock can occur involving other facilities that require locked-down memory.

UTX/32 Real-Time User’s Guide

6.3.2 Unlocking and Exiting

Memory must be locked down if direct I/O is being done into it and must remain
locked until the I/O is completed. plock provides a facility inside the kernel by
which the direct I/O driver or a directly connected interrupt can register a claim
against locked-down memory. Attempts to unlock memory while this claim is
outstanding are prevented, and facilities using locked-down memory must call
cleanup routines before plock can exit.

6.3.3 Waiting to Load

plock waits for virtual memory pages to be paged in when locking. This means
that plock may take a long time to return if very little physical memory is free.

6.3.4 Shared Text

In the current implementation, shared text that is plocked remains locked down,
even after the process that locked it exits, until all processes using that shared
text have exited.

'6.3.5 Shared Memory

plock is intended to lock only the principal data segment of a process; it does not
necessarily lock down shared memory segments. In the current implementation,
this distinction does not matter, because shared memory is always locked down,
but this locking should not be relied on in the future. It is possible to lock down
shared memory explicitly by using the shmctl system call. See shmct/(2RT) for
more information.

UTX/32 Real-Time User’s Guide 6-3/6-4

7 Shared Memory

7.1 Description

The current release of UTX/32 includes an AT&T System V shared memory
interface that allows two or more processes to share physical memory segments
for data storage. The interface is intended to be used with semaphores or a
simple message protocol to provide a high bandwidth interprocess
communication (IPC) facility. In light of this, the System V shared memory
interface uses standard IPC control and operation primitives and values in
common with System V messages and semaphores.

Shared memory segments are dynamically created. Each segment is assigned a
unique identifier by its creator and, like UTX/32 files, a set of access
permissions. Processes wishing to attach to the segment must use the same
identifier and have appropriate permissions.

Shared memory segments need not occupy the same virtual address space in each
sharing process. In normal usage, assignment of shared memory virtual
addresses is left to the operating system. A process can request that a segment be
attached at a specified address as long as that space is not already in the process
image.

NOTE: The FORTRAN interface to shared memory is through global commons
and datapool facilities provided by the Gould Common FORTRAN compiler.
The System V shared memory facilities will provide the underlying mechanism
for the implementation of these language facilities.

7.2 User Interface

Four functions are provided for manipulating shared memory segments:

shmget
Gets a shared memory segment; see shmget(2RT).

shmctl
Provides a variety of specifiable shared memory control operations; see
shmctl(2RT). These include

« Setting permissions on a shared memory segment
« Placing the contents of a shared data structure into a buffer
« Locking a shared memory segment into memory and unlocking it

« Removing a shared memory identifier from the system and destroying
the shared memory segment and data structure associated with that
identifier

UTX/32 Real-Time User’s Guide 7-1

shmat
Attaches the shared memory segment associated with the shared memory
identifier to the data segment of the calling process. Depending on the
address specifier and other factors, the segment may be attached at the first
available address selected by the system or at a specified address, and it may
be read-only or read-write. See shmop(2RT).

shmdt
Detaches the shared memory segment located at a specified address from
the calling process’s data segment; see shmop(2RT).

The following header files should be included in any program which uses any of
the C shared memory interface functions: <sys/types.h>, <sys/ipc.h>, and
<sys/shm.h>.

For an example of using shared memory, see Section A.4, "Shared Memory."

7.3 Special Considerations

. 7.3.1 Configuration

Several limits on the number and size of shared memory segments exist as
configuration parameters. See Chapter 7, "Reconfiguring the System," in the
UTX:32 Operations Guide.

7.3.2 Synchronization

On PN6080 and PN9080 (CPU/IPU) multiprocessor systems, processes must use
some method of explicit synchronization to ensure consistency of shared data.

7.3.3 Virtual Address Space Implications

A shared memory segment can be attached only at a virtual address greater than
the highest valid address in the current process image.

The address of the first (lowest) shared memory segment attached to a process
places an upper bound on the dynamic data region that can be allocated to a
process.

7.3.4 Paging and Swapping

T2

If a real-time process requires deterministic access to a shared memory segment,
it is recommended that the plock system call prepage and lock down the shared
segment. In the current implementation, shared memory is locked down, but this
locking should not be relied on in the future; see p/ock(2RT/RF).

UTX/32 Real-Time User’s Guide

7.3.5 Shared Text

The System V shared memory interface does not support text sharing. Shared
text is implemented in UTX/32 as a characteristic of the process specified at link
time. (Text sharing is the default mode of 1d.)

UTX/32 Real-Time User’s Guide 7-3/7-4

8 Direct File System

8.1 Description

The UTX/32 direct file system allows processes to perform disk I/O in a fast,
efficient manner. It is a collection of library routines that allow the user to
manipulate a disk volume using UTX/32 direct I/O capabilities. With this
facility, you can

« Define contiguous file structures

o Create preallocated files

o Perform priority I/O requests with asynchronous notification
o Achieve fast and predictable I/O times

o Perform I/O without buffering

o Access a disk volume from multiple processes

These features are useful for real-time processing and applications that require
high-speed, predictable disk data rates. Standard UTX/32 I/O does not support
contiguous files, static priority I/O, or asynchronous I/O completion notification.

The structure of the direct file system makes single-revolution opens, reads. and
writes possible for preexisting files. This implies that files can be created so that
the directory entry can be located on the first disk access, and read/writes can be
started without reading any disk information other than the data to be transferred.
Only situations resulting from disk contention with other processes can slow
down the direct file system.

The direct file system was implemented using the direct I/O interface, but if
necessary, the standard UTX/32 raw I/O interface can be specified when
mounting a direct file system. Note, however, that when using the UTX/32 I/O
interface, asynchronous capabilities are lost and access is not guaranteed to be
synchronous. See dio(7RT), ioi(7), and the UTX/32 Input/Output Subsystem
Guide for further information.

The user commands for the direct file system are: dfcreate, dfdelete, dfextend,
dfls, dfread, dfrename, and dfwrite. The system administrator commands are
dfmkfs, dffsck, dfmount, and dfumount. These commands, and the direct file
system library routines and system calls, are documented in the UTX/32 BSD
User’s Reference Manual, the UTX/32 BSD Programmer’s Reference Manual,
and the UTX/32 System Administrator’s Reference Manual. All relevant
manpages begin with df.

UTX/32 Real-Time User’s Guide 8-1

This is useful if the user wishes to have both a direct file system and a UNIX file
system on the same volume and use them simultaneously. The direct file system
demands exclusive access to a volume.

8.2 User Interface

8.2.1 File System Structure

Each direct file system resides on its own volume and must be mounted, using
the dfmount utility, on a disk device. The direct file system is not accessible by
the UTX/32 file system, but it is mounted and dismounted similarly.

Files are referenced by pathnames of the form /volume/name, where volume is
the name by which the volume is mounted and name is the name of the file on
the volume; see dfmount(8RT). Neither the volume name nor the filename can
be longer than 31 characters.

The dfmkfs utility formats the direct file disk; see dfmkfs(8RT). It formats an
empty directory on the disk and forms a free list of all the disk tracks that have
not been marked "bad" by the verification diagnostic. Each volume contains one
directory (i.e., a flat file system) that contains entries for all files on the volume.
To give better hashing performance, twice the number of entries requested are
created, but only the requested number of entries can be accessed.

Here is how the disk is organized:

« The first block contains a volume descriptor describing the disk geometry
and the volume formatting.

« The free list bit map occupies the next set of sequential blocks. Each bit in
the free list corresponds to a track on the disk. All tracks on the disk are
represented, including the free list itself. A set bit denotes that the track is
allocated. The number of blocks in the free list depends on the size of the
disk.

« The disk directory occupies the next set of sequential blocks. It extends to a
track boundary.

« All disk blocks following the directory are data blocks.

8.2.2 File Characteristics

Direct files have these characteristics:

Extents
Direct files are composed of groups of contiguous disk blocks called
extents. Files may be composed of 1 to 16 extents, with each extent a
multiple of disk tracks. The user controls the size of each extent and the
distance between the extents (see "Gaps,” below) at creation time. By
creating a file with an extent size the same as the file size, you can create an
entirely contiguous file.

UTX/32 Real-Time User’s Guide

Gaps
There will often be cases where bad blocks partition the disk so that large,
contiguous files cannot be created. For this reason, you can specify a
maximum gap size when you create a file. Maximum gap size is defined to
be the number of bytes that can separate two adjacent extents in a file.

Since the minimum disk allocation unit is one track, the minimum
allowable gap size is also one track. This implies that the start of the nth
extent is within some user-defined number of tracks from the last track of
the n-1th extent. Skipping a track or cylinder may be acceptable, but
seeking to the front of the disk may be unacceptable in certain applications.

Disk geometry
Disk geometry (bytes per block, blocks per track, etc.) can vary from disk to
disk. The direct file system can support any size the disk driver for the
UTX/32 disk processor can initialize, as long as the block size is greater
than the size of a single directory entry. Recommended sizes for transfers
are multiples of the disk block size.

‘8.2.3 dffstab

The file /etc/dffstab describes the file systems used by the direct file system. It
is read by dfmount to determine device address. This file must be created before
a direct file system can be mounted. See dffstab(4RT).

8.2.4 File System Attributes

The direct file system, using the direct I/O interface, has the following attributes:

No buffering
All I/O is done directly into the caller’s address space. Data is not buffered
or blocked.

Priority /O queuing by process
Each process has its I/O queued at the process’ real-time execution priority.
Within a process, I/O requests to a given device are queued in FIFO order.

Asynchronous I/O completion notification
When files are opened, the mechanism for I/O completion notification is
specified. I/O can be performed as wait, where the process is blocked from
execution until the I/O has completed, or no-wait, where the process
continues executing after the I/O request has been queued. In either mode,
the user supplies a pointer to a set of three event counters that are to be
incremented, respectively, as follows:

o When an /O request is received for that file

UTX/32 Real-Time User’s Guide 8-3

« When an I/O request has completed for that file
. When an I/O error occurs on that file

The user can poll the completion event counter to determine when I/O has
completed. Optionally in either mode, the user can supply the address of a
procedure to be called and executed when the I/O completes. The user-
supplied procedure is passed two parameters that contain the file descriptor
and a pointer to a structure that contains the IOCL, error status, and seek
data. Users can use this data for error recovery. Or, they can copy the
IOCL to perform their own direct I/O requests when the process has
returned from the signal. If the IOCL data is to be sent back as an I/O
request, it must be copied to a static structure before issuing the request.
Note that static structures do not always exist in FORTRAN, except in
commons.

In no-wait mode, calls to dfread, dfwrite, dfexcp, dffstat, dfvstat, or
dfseek are guaranteed not to block the process while I/O is occurring. In
wait mode, the process resumes execution only after the I/O has completed.

Certain operations cause the process to block, regardless of the wait/no-wait
mode of operation:

o All dfopen, dfcreate. dfrename, dfdelete, dfsetEOF, and dfextend
calls will cause the process to block until the call is completed.

. Calling dfwrite and autoextending a file will cause the process to
block while the file is extended.

« Calling dfclose may cause the process to be blocked while waiting for
access to shared memory.

Maximum transfer size
The maximum single transfer size is 26 tracks. (On a 300Mb disk, a
cylinder is 19 tracks.) The maximum number of bytes per transfer depends
on the number of bytes per track. Transfers larger than 26 tracks must be
separated into two or more I/O requests.

Random access within a file
Files can be accessed randomly by disk blocks, using dfseek. When each
read/write has completed, a file pointer is updated to the next unreferenced
disk block. You can change the pointer by calling the dfseek routine. Note
that the resolution of the pointer is a single disk block.

Logical EOF

Unless the file is truncated, the logical end of file denotes the largest block
number of the file ever written using dfwrite. This block number is kept
local to the process. It is not visible to other processes unless it is saved by
calling the dfsetEOF function each time it is to be updated. (NOTE: The
FORTRAN version of this function is called dfseteof.) When this function
is called, the logical EOF is set to be the larger of (1) the largest block
number written since the file was opened and (2) the previous logical end of
file.

UTX/32 Real-Time User’s Guide

There is one copy of the logical EOF for each file, regardless of how many
times the file is opened. It is updated whenever dfsetEOF is called. If the
file is opened and the TRUNCATE flag is set, the logical EOF is reset to the
start of the file. Each time dfsetEOF is called, the disk directory entry for
the file is updated. The process blocks while this update is made. When an
end of file is set via dfsetEQF, the date and time are saved in the directory.

Note that the logical EOF differs from the physical end of file, which
denotes the end of the file’s allocated space.

Extending files
Files may be extended manually or, when the user attempts to write past the
physical end of file, automatically. When opening a file, you can specify,
with the DF_AUTOEXT flag, that it can be extended automatically
(autoextended).

When a file is autoextended, an effort is made to meet user-specified
minimum extent size and the maximum gap size, if possible. If this is not
possible, the file will be extended with the largest extents available. Note
that, when autoextending, the process will be blocked from execution while
the directory is being updated.

When a file is extended manually, user specifications for minimum extent
size and maximum gap size are guaranteed, because if they cannot be met,
the call will fail.

Users can optionally disregard extent and gap sizes when explicitly
extending a file.

- Multiple process access to the same file system
Any number of processes may access a file system simultaneously, with
semaphores controlling directory access.

Files may be opened for exclusive or shared use. A user trying to open a
file that is in exclusive use will fail, but anyone can access a shared file. It
is the user’s responsibility to ensure that use of a shared file is coordinated
by using semaphores when necessary.

Error correction
Error correction is not performed on any disk errors encountered by the
direct file system, with the exception of seek errors. Seek errors are
recalibrated and retried once. All other errors are reported back to the user
in the I/O completion notification procedure.

Access controls
There are no UTX/32 access controls on the direct file system. This implies
that no owners or groups are associated with the files.

Reliability
The direct file system is reliable. The file structure will retain its integrity

when processes abort or the system crashes. If the system crashes in a
critical section, the only free space that can be lost is free space that can be

UTX/32 Real-Time User’s Guide 8-5

recovered by rebuilding the free list when the disk is next mounted. The
direct file system is not protected when users issue their own IOCLs.

Speed
The direct file system is capable of doing single-revolution opens. These
are file opens in which the directory entry for the file is accessed on the first
disk read of the directory. To achieve this, the file must be created as
DF_FASTOPEN.

Due to the hashing scheme used to access the directory, occasionally a
particular file name may not be creatable as DF_FASTOPEN. If this
happens, an error condition will be returned. The best thing to do is to try
again using a different file name.

Sizing information
All calls to the direct file system represent sizes in bytes by default. This

promotes compatibility with the UNIX philosophy and encourages code that
is less dependent on the physical characteristics of the disk medium.

User-definable limits
The following parameters are listed in /usr/include/dfconfig.h, and can be
adjusted when configuring the direct file system. Default values are shown
in brackets.

MAXFILES

Maximum number of concurrently open files per process [20]
MAXVOLUMES

Maximum number of concurrently mounted volumes [10]

MAXSYSFILES
Maximum number of concurrently open (different) files for all
processes [40]

MAXBSIZE
Maximum disk block size [1024 bytes]

MAXIOREQ
Maximum number of queued I/O requests per process [16]

MAXTRACKS
Maximum number of tracks per disk [15637 tracks]

For examples of using the direct file system facility, refer to Section A.5, "Direct
File System."

UTX/32 Real-Time User’s Guide

Here is an example user session that exercises some of the facility’s user and
system administrator commands:

cat /etc/dffstab
diskOa:/dev/rdk0a
diskOb:/dev/rdk0b
diskla:/dev/rdk4a

dfmount diskOa

dfcreate 200t /diskOa/file

dfextend -z 16b /diskOa/file
dfwrite /diskOa/file < /etc/dffstab
dfread -e /diskOa/file
diskOa:/dev/rdkOa

diskOb: /dev/rdk0b
diskla:/dev/rdkda

dfdelete /diskOa/file

dfumount diskOa

In this example, the direct file volume disk0a is mounted. A file named file is
created on this volume, with an initial size of 200 tracks. The file is extended by
16 bytes, and the extended portion of the file is zeroed after it is created. The
contents of /etc/dffstab, a standard UTX/32 file, are written to the new direct
file. The direct file is then opened for exclusive use, and its contents are read and
printed to standard output. Finally, the direct file is deleted and the direct file
volume is unmounted.

8.3 Special Considerations

The following restrictions apply to the direct file system:

Use of signals
When signals are used, be sure to observe the following guidelines:

Signal 29 (SIGDIRF) is reserved for use by the direct file system
library routines.

Signals must always return properly.

If a process receives a signal, requests from that process to the direct
file system may be rejected while the process is in the signal handler.
If the file system is interrupted by a signal while processing a request
and the signal handler calls a direct file system function, the direct file
system will reject the request and return EINTR as an error. To avoid
this, do not mix direct file requests from the normal process
environment with those from a signal handler.

The procedure called for I/O completion notification is called within a
signal handler. Therefore, all restrictions applying to signal handlers
also apply to this procedure.

UTX/32 Real-Time User’s Guide 8-7

8-8

Lockdown
While using the direct file system, the process must have all its pages locked
down.

Killing a process
If a process using the direct file system is killed, the file system may hang.
A reboot will be necessary.

Disk formatting
Before dfmkfs can create a direct file system, the disk must be formatted
using prep; see prep(8).

UTX/32 Real-Time User's Guide

9 High-Speed Input/Output Support

9.1 Aspects of High-Speed Input/Output
UTX/32 support for high-speed I/O consists primarily of

« Class E I/O support, which includes I/O interface (IOI) extensions and a
generic HSD device driver

o A direct I/O facility
Detailed information can be found in the UTX/32 Input/Output Subsystem Guide.

9.2 Support for Class E 1/0

Many real-time applications use devices connected through the Gould high-speed
device (HSD) interface. This interface is a SelBUS™ card that responds to class
E machine instructions. UTX/32 support for the HSD consists of a generic
device driver for a "typical” HSD-interfaced device and a set of modifications to
the 101 to support class E operations similar to those for class F devices.

The generic driver, ce, is a simple UTX/32 device driver that uses the class E
facilities of the IOI; see ce(7RT). Since the HSD supports a wide variety of
devices, most users will have to write their own device drivers to suit the needs
of their specific devices. The generic driver is intended to help in this process by
demonstrating the form of a UTX/32 device driver and the use of the IOI
facilities for low-level operations.

Refer to the UTX/32 Input/Output Subsystem Guide for a more extensive
discussion of the IOI extensions, the generic HSD driver, and the writing of
custom drivers.

9.3 The Direct I/O Facility

Many real-time tasks need faster access to devices and files than can be provided
using standard UTX/32 1/O, which is designed for time-sharing. UTX/32
therefore includes facilities allowing real-time applications to establish direct
attachments to devices and to perform I/O and control operations without going
through the normal UTX/32 [/O and file system facilities. While the
conveniences of standard UTX/32 I/O are lost, performance and control are
greatly increased.

The direct I/O facility and its use are described in detail in the UTX/32
Input/Output Subsystem Guide. The direct I/O device driver, on which the
facility is built, is described in detail in dio(7RT). The subroutines that support

UTX/32 Real-Time User’s Guide 9-1

the system are documented by those manual pages beginning with dio in Section
3, "Subroutines," in the UTX/32 BSD Programmer’s Reference Manual.

For examples of the use of direct I/O in code, refer to Section A.6, "Direct I/O,"
and Section B.1, "Header File for Model Program."

UTX/32 Real-Time User’s Guide

10 Connected Interrupts

10.1 Overview

Real-time applications must be able to respond quickly to interrupts, and
response time is quickest when an application program is connected to one or
more interrupt levels. Connected interrupts provide an easy and reliable way of
connecting an application process to an interrupt level. With connected
interrupts, an application may process device interrupts in user space or just
choose to be notified when interrupts occur.

When the term connected interrupt is used, it is never meant to imply that an
interrupt is connected to anything. Rather, it is a term commonly used to refer to
the situation in which a connection exists between an application process and an
interrupt level. In such situations, the connected process handles all interrupts
that occur at that level.

Connected interrupts come in two varieties: directly connected and indirectly
connected. Directly connected interrupts enable the user to process interrupts at
interrupt time in user space. The user will usually be privileged in order to do
this, since device control requires privileged instructions. Indirectly connected
interrupts use an event mechanism to notify a number of processes when an
interrupt occurs. Currently, signals are used as the events.

Connected interrupts have the following uses:
« Device control

« Performance evaluation

« Statistics gathering

« Scheduling

By using device control through connected interrupts, new device drivers can be
written and tested without recompiling the kernel and rebooting for each test.

Performance can be evaluated by a separate process that connects to an interrupt
from a Real-Time Option Module (RTOM) interval timer. A process can be
coded to send an interrupt to the RTOM periodically. The interrupt routine
would then increment a counter. Querying the counter at the beginning and at
the end of the evaluated code provides a means of timing. Statistics can be
gathered in much the same manner.

Although cyclic scheduling provides a better interface for process scheduling,
certain processes will require better performance than the cyclic scheduler can
provide and thus will use connected interrupts scheduling.

UTX/32 Real-Time User's Guide 10-1

A user process installs a connected interrupt by making two system calls: plant
and graft. The plant system call performs scratchpad initialization and saves
context for later use during an interrupt. The graft system call installs the
Interrupt Service Routine (ISR). The user supplies the ISR for directly connected
interrupts. The kernel supplies the ISR if the interrupt level is indirectly
connected. Several processes may indirectly connect to the same interrupt level
by calling graft with appropriate arguments, although the same process cannot
connect to the same interrupt level more than once. The same process must issue
both the plant and the graft system calls for directly connected interrupts. The
user process is responsible for enabling interrupts, whether it is directly or
indirectly connected. Library routines are provided to do this.

10.1.1 Configuration

Use of connected interrupts must be configured. This release of UTX/32 is
distributed with no connected interrupts. Attempts to use the connected
interrupts functionality will result in an ENORESOURCE error. See Chapter 7,
"Reconfiguring the System" in the UTX/32 Operations Guide for instructions on
configuring connected interrupts.

10.2 User Interface

10.2.1 Indirectly Connected Interrupt Example

10-2

Section A.7.1, "Example 1," presents a simple example of an indirectly
connected interrupt. The program connects to the IOP RTOM interrupt level
0x50 (80) at address 0x7f0d. The program sets up the connected interrupt by
calling the plant and the graft system calls. Two signal handlers are set up: one
tor killing the process, and one for receiving interrupts. The process then enables
the interrupt level and waits for interrupts. When an interrupt is received, the
signal handler sig_handler is called as a result of the process being signaled.
The process then enables the interrupt level and waits for interrupts.

Note that the indirectly connected process does not need to deactivate the
interrupt level in the signal handler. This has already been done by the operating
system. It is possible for multiple interrupts to occur before the process’ signal
handler runs. In this case, only one signal will be delivered, and the signal
handler will execute only once.

It is not required that an indirectly connected process be privileged. None of its
work requires the execution of privileged machine instructions. It is
recommended the process not be privileged for greater protection of the kernel.

The kernel tries to remove connections when a process exits, although for
indirectly connected interrupts, it cannot always do so. All programs that
indirectly connect should contain code to remove the connection to avoid such
failure. Since many processes can graft to one indirectly connected interrupt,
each should remove that connection when it terminates. However, the
connection created by plant will remain unless some process removes it. This

UTX/32 Real-Time User’s Guide

connection cannot be removed until all indirect grafts have been removed. For
this reason, there should be a governing process that waits for the indirectly
connected processes to exit and then removes the connection using uproot. If,
despite all caution, a connection remains, it may be removed by using the cis and
cirm programs.

10.2.2 Directly Connected Interrupt Example

Section A.7.2, "Example 2," presents a simple example of a directly connected
interrupt. The program connects to the IOP RTOM interrupt level 0x50 (80) at
address 0x7f0d. The process begins by locking itself into memory and targeting
itself to the CPU. A signal handler is set up so that the process will clean up
after itself and exit when it receives a SIGINT interrupt from the terminal. The
process initializes the connected interrupt using the plant and graft system calls.
Interrupts are enabled using the ei library routine and the process waits for an
interrupt. When an interrupt is received, the intr_handler routine is called.
Note that the intr_handler deactivates interrupts just before returning.

This is different from indirectly connected processes, which do not have to
deactivate the interrupt level. A directly connected process must deactivate the
interrupt level in the interrupt handler.

The process may make no system calls within the interrupt service routine,
including system calls from within library calls. For example, the user will not
be able to debug the interrupt service routine by inserting printf statements.
Debugging in this mode will be limited to console debugging (write stops,
instruction stops, etc.) and to setting global variables that can be read by some
other process or the same process at some later time. Attempts to make system
calls will result in a signal (SIGSYS) as well as a failed return from the system
call (ESYSUNAVAIL). The signal should terminate the process, although it
may take awhile if the process is running on the IPU when the interrupt is taken.
The signal will be noticed as soon as the process enters the kernel, either for a
scheduling change or to make a system call.

A process can be running in both processors simultaneously on PowerNode™
machines. The process can be running on the IPU and its interrupt service
routine can be running on the CPU. This will ordinarily not cause any problems,
except perhaps with cache coherency. If a simultaneous read and write occur to
the same doubleword of memory, then the processor that did the read will not get
the updated write until the cache is flushed. It is therefore strongly suggested
that users target to the CPU a process that is directly connected (see the
targercpu(2RT) manual page).

Even though system calls are traps, they are handled differently from other kinds
of traps. If a directly connected process traps while in the interrupt routine, the
process will trap in an ordinary way. However, the effect of the trap will not be
felt until the process enters the kernel. This effect may be delayed if the process
is mapped in the IPU and is doing computation-bound processing. It is also
possible for the process to be trapping from elsewhere in the process when an
interrupt is taken. In the rare instance that the interrupt is connected to the same

UTX/32 Real-Time User’s Guide 10-3

104

process that is already trapping, the kemnel will not proceed correctly. Behavior
at this point is undefined, but a panic or machine halt is likely to occur in the
near future.

The process must perform interrupt control. This means that the process must
enable the interrupt and deactivate it during the interrupt service routine. Note
that this has been done in the example program using the library routine
hwprivdai.

It is guaranteed that the user’s ISR will be entered with interrupts blocked. The
user may choose not to unblock interrupts, but this means that the ISR is
uninterruptible. If the ISR is a very long one, then the user may choose to
unblock interrupts. This can be accomplished with the hwprivuei library
routine. This allows interrupts at a higher priority level to interrupt the current
interrupt service routine. The higher priority ISR will complete and then
continue the interrupted ISR.

If interrupts are unblocked, then the current interrupt should not be deactivated
until interrupts are again blocked. This action disallows receiving an interrupt
from the same level that is currently being processed. If the user chooses to
leave interrupts blocked, then no action in the interrupt routine is necessary. If
the user chooses to unblock interrupts, then the interrupt routine should perform
the following steps:

1. Begin interrupt

(S0

. Unblock interrupts

3. Perform interrupt processing
4. Block interrupts

5. Deactivate interrupts

6

. Return from interrupt

The user must not use the same interrupt stack for different interrupt levels,
especially if interrupts are unblocked in the user’s ISR. Such a situation would
make it possible for one interrupt to interrupt the other and use the same stack,
thus destroying the integrity of the values stored on the stack by the first ISR.

A user may change the default settings in the Program Status Doubleword (PSD),
although this action is not expected. One possible setting change is that of the
block/unblock mode bit. The plant system call currently sets this bit to be
unblocked. That is, when the CPU accepts an interrupt, it blocks all interrupts at
lower priority levels. The user must deactivate the interrupt to restore interrupt
processing for that and lower priorities. Blocked mode automatically issues the
deactivate interrupt command, but it blocks all interrupts. In this case, the user
must be careful not to unblock interrupts, because another interrupt at the same
priority level might come in immediately and destroy the integrity of the stack.

UTX/32 Real-Time User’s Guide

The file /usr/include/sel/psd.h contains the definition of the PSD structure. The
plant system call sets the fields in an ICB’s new PSD as follows:

o The privileged bit is set.

« The condition codes are all reset.

« The extended addressing option bit is reset.
« The base register mode bit is set.

« The arithmetic exception trap is disabled.

« The program counter is the address of a known function within the kernel.
This function will later call the user’s function.

« The mapped environment bit is set.
« The retain current map bit is reset.
« The interrupt control flags are all zero.

o The current process index is obtained from the current PSD.

Debuggers such as adb and dbx will not work in a directly connected interrupt
routine. The user must use the console debugging commands such as IS
(instruction stop) and WS (write stop). Another possible mode of debugging is
to use shared memory by having the process write debugging information into
shared memory using a protocol that is understood by some other process. The
other process can then digest and print this information.

Some interrupt control is available through system calls, so some debugging can
be done using indirectly connected interrupts. When the program works using
indirectly connected interrupts, it will likely also work using directly connected
interrupts. Note that the interrupt control system calls are available only to the
superuser.

The kernel automatically removes direct connections when a process exits. This
is useful when a program terminates unexpectedly. The program should,
however, prune and uproot upon normal termination.

The process that uses directly connected interrupts will usually be privileged.
This allows the use of privileged instructions for interrupt control and [/O. Note
that this is a dangerous situation, because the user can now write and destroy
parts of the operating system. Once privileged, the user can do considerable
damage that might not be immediately apparent, and appropriate caution is
urged.

UTX/32 Real-Time User’s Guide 10-5

10.3 Stack Addresses

Stacks on CPL hardware grow downwards, toward decreasing addresses. The
address that is given to the graft system call should be the highest address of the
memory allocated for the stack.

If the stack were declared in C as
int Stack [500],
then the address given to graft should be
&Stack[499]
If the stack were declared in FORTRAN as
integer Stack(500),
then the address given to graft should be
Stack (500)

The graft system call will handle all requirements for alignment.

The user must provide a large enough stack. Stack overflow will generally not
be detected, especially if the user is privileged. Stack overtflow will result in
writing to data structures that are near the stack (usually declared before the stack
in the program). Many nested function calls and much storage for local variables
increase the memory required for stacks. Five hundred words should be
sufficient for most medium-sized interrupt routines. One hundred words is
probably sufficient for a minimal interrupt routine. An interrupt routine that just
calls hwprivdai and returns requires 16 words (24 words including enough for
file alignment). Because stacks must be file (32 byte) aligned, enough memory
must be reserved for the worst case alignment, that is, in the worst case, enough
memory must be reserved for the minimum requirement plus 32 bytes. If
memory is at a premium, then the user should determine exactly how much
memory the interrupt routine and all of its called functions need for stack, being
watchful of recursive routines.

10.4 Helpful Programs

10-6

The cis and cirm programs allow the user to get status on outstanding
connections and remove them if possible. cis prints the status of the requested
connections, including the interrupt level, the class and address of the device, and
the type of connection, if connected at all. Given this information, the user may
remove selected interrupt levels using cirm. Cis will display all connections that
have been made, including those interrupt levels in use by the kernel. This
information is useful when trying to determine what level to use for a given
program. The cistatus system call will also return this information. See
cis(1RT) and cirm(1RT) for more details.

UTX/32 Real-Time User’s Guide

11 Suspend and Resume

11.1 Overview

The suspend and resume system calls provide a fast, simple method for process
context switching. By invoking suspend, an active process relinquishes the CPU
without the overhead of sending and handling signals. By invoking resume, a
process causes one or more suspended processes to be immediately placed on the
run queue.

11.2 User Interface

11.2.1 suspend

A suspended process remains suspended until it is resumed or until it receives a
signal. If the suspended process is resumed, suspend returns a value of 0. If a
suspended process receives a signal, execution continues, suspend returns a
value of -1, and errno is set to equal EINTR. For more information, see
suspend(2RF/RT).

A suspended process has the same characteristics as a process that was stopped
by sending a SIGSTOP via signal.

The following examples show how to call suspend. (For more detailed examples
on how to use suspend. refer to Section A.8. "Suspend and Resume.”) In the
first example, a process suspends itself. If it receives a signal, the process
executes, but it immediately suspends itself again. Its execution continues
normally only after it is resumed by another process.

/* suspend repeatedly until resumed */
while ((ret = suspend() == -1) && (errno == EINTR))
{
/* NULL statement */
}

/* suspend failed or process was resumed */
if (ret != 0) /* if suspend failed */
{
printf ("unexpected return from suspend =%*d, errno = 4",
ret, errno);
exit (-1);
}

/* suspend and resume succeeded so continue with program */

UTX/32 Real-Time User’s Guide 11-1

In the following example, the process that called suspend will continue
executing, either when the process is resumed via resume or when it receives a

signal.

if ((ret = suspend() != 0) && (ret !'= -1) || (errno != EINTR)) {
printf ("unexpected return from suspend =%d, errno = %d",
ret, errno);
exit (-1);

}
/* process was resumed or received a signal so
* continue with program

*/

11.2.2 resume

The resume system call awakens one or more suspended processes and adds
them to the run queue. It optionally suspends the calling program after resuming
the specified processes.

If only one process is to be resumed, the calling program invokes resume with
two arguments. The first argument is a flags field. When the calling program
resumes only one process, none of the bits in this field need to be set. The
second argument is the process id of the process to be resumed. If resume fails
to resume the specified process, it returns a value of -1 and sets errno to indicate
the reason for the failure.

If more than one process is to be resumed, the calling program invokes resume
with four arguments. The first argument is a flags field in which the
SR_MULTIPLEPIDS bit must be set. The second argument is the address of an
array containing the process ids of the processes to be resumed, and the third
argument is the number of processes to be resumed. The fourth argument is the
address of an array into which resume copies the return status for the processes,
as each process may have a different return status.

Two examples of the use of resume are as follows:
resume (flags, pid)

resume (flags|SR_MULTIPLEPIDS, pidlist, numb_pids_to_resume, statuslist)

By default, resume resumes the specified processes and returns control to the
calling program. If the calling program sets the SR_SUSPEND bit in the first
argument, it is suspended after the specified processes are resumed. The resume
system call returns control to the calling program only when another program
awakens it by invoking resume with the calling program’s process id.

See resume(2RT/RF), and refer to Section A.8, "Suspend and Resume," for
detailed examples on the use of resume.

UTX/32 Real-Time User’s Guide

In the following example, the calling program resumes a suspended process.

/* set flags field to specify to continue with execution
* after resuming suspended process */
flags = 0;

/* pid is the process id of a suspended process and
* has been set somewhere else in the program

*/

if (resume (flags, pid) == -1) {
printf ("resume failed errno = %d",errno)
exit (-1)

}

In the following example, the calling program resumes a suspended process. then
immediately suspends itself.

/* set flags field to specify that caller should

* suspend itself after resuming the suspended prccess
*/’

flags = SR_SUSPEND;

/* pid is the process id =f a suspended process and
* has been set somewhere else in the program

*/
if (resume (flags, pid) == -1) {
printf ("resume failed errno = =d",errno);

exit (-1):

9

UTX/32 Real-Time User’s Guide 11-3

In the following example, the calling program resumes multiple processes.

/* declare space for pidlist and statuslist */

int pidlist[25];

int statuslist([25];
set pidlist([0] through pidlist[24] to
equal the process ids of 25 suspended
processes

/* set flags field to continue execution
* after resuming suspended process and to specify
* that multiple processes should be resumed
*/

flags = SR_MULTIPLEPIDS;

numb_pids = 25;

if (resume(flags, pidlist, numb_pids, statuslist) == -1) ({
printf ("resume failed errno = :d",errnoc)
for(counter = 0; counter <numb~pids; counter++)
printf ("statuslist[=d] = id\n",

counter, statuslist[counter]):;
exit (-1);
}

11.3 Special Considerations

« A process resumed via resume is not guaranteed to execute immediately.
Although such a process is immediately placed in the run queue. it will not
execute until it becomes the process with the highest priority.

« When a child process suspends itself. the parent process does not
automatically receive notification, via SIGCHILD, that the child has
changed state.

« A child of vfork cannot be suspended until it has done an exec, because
such a suspension may cause deadlock.

« Not all signals can be handled by a suspended process. For more
information, see signal(3).

114 UTX/32 Real-Time User’s Guide

12 Memory Classes

12.1 Overview

Memory classes provide the user with a mechanism for controlling physical
memory for special purposes.

The conventional model of memory use rests on two assumptions: that all
memory is alike and that a process does not depend on the particular physical
addresses of the memory it uses. Given those assumptions, the physical memory
attached to a machine can be treated as a single pool of indistinguishable pages.
When a process is given a page by the operating System—at process startup,
when expanding memory use at runtime, or because of paging—any physical
page may be chosen.

In real-time systems, the basic assumptions do not hold, for these reasons:

1. Not all physical memory is alike. For example, some physical memory may
be faster but more expensive than the rest. Real-time applications may
require that such memory be held in a separate pool so that it can be
allocated when needed.

[S9]

. Some memory may be shared among several machines. To allow processes
to communicate with their counterparts, each must be able to attach
precisely the memory that is shared. Hence, a process must be able to
request pages of memory at particular physical addresses.

The UTX/32 implementation of memory classes introduces two related ways to
group memory for special purposes, 1.e., to create special memory:

Memory extents
A memory extent describes a single, continuous range of memory that is set
aside from general use. Memory outside a memory extent is allocated to
processes in the usual ways; memory in an extent is set aside from general
use and must be specially allocated. Generally, an extent is made up
entirely of a particular kind of memory, such as shadow (fast) memory or
reflective (shared) memory.

Memory extents are never paged or swapped, and they cannot overlap.

Memory regions
A memory region is a subset of a memory extent. It may cover the entire
extent or be as small as a single page. The memory region is the unit of
allocation; processes request special memory by requesting particular
regions.

The UTX/32 implementation of memory classes is upwardly compatible with
System V shared memory. The System V implementation is based on shared
memory objects, which are sets of pages with some associated information. Two
processes share memory when both allocate the same shared memory object.

UTX/32 Real-Time User’s Guide 12-1

UTX/32 extends the System V implementation in two ways:

1

2

.In System V, shared memory objects are referred to by numeric keys. In
UTX/32, shared memory objects may also have string names; they may be
created with names, keys, or both.

. In System V, the creator of a shared memory object may specify precisely
which pages it contains by giving it pages from a memory extent. In
UTX/32, shared memory objects whose pages come from a memory extent
are called memory regions.

12.2 An Example

The FORTRAN language provides shared memory between processes through
global commons and datapools.

1

[89]

. A FORTRAN program F declares a global common X, which is a set of
data with a group name.

. When F begins execution, the global common is placed into the shared
memory object named X. If no such object exists, one is created in general
memory. If the shared memory object is a memory region, the global
common is placed in the special memory named by the region.

NOTE: In the current implementation, global commons and datapools
remain uninitialized on process startup.

. When another program, G, using global common X begins execution, it
shares memory with F.

.Program G may be moved to a completely new machine. If the two
machines are connected with shared memory. and if both have regions X
defined to be at the same offset within the shared memory, G will run
without recompilation.

12.3 Contiguous and Noncontiguous Memory Extents

12-2

When special memory is shared with another machine, a process must be able to
allocate a particular range of physical pages. But when special memory is simply
faster than general memory, any page of fast memory is as good as any other.
This distinction is captured by two types of memory extents: contiguous and
noncontiguous. They differ in the type of regions they contain.

Contiguous memory extents

A region within a contiguous extent is a set of pages that begins at a
specified offset from the start of the extent and extends without gaps for a
specified number of pages. Any process allocating that region will receive
the same set of pages.

UTX/32 Real-Time User’s Guide

Noncontiguous memory extents
Within a noncontiguous extent, there is typically only one region, called the
template region. This region contains all otherwise unused pages of the
extent. It is created when the memory extent is created and has the same
name as the memory extent. (It is, in actuality, simply the name by which
memory in the extent can be allocated.)

A process may allocate the template region, but instead of receiving all the
pages in the extent, it receives a set of pages of the requested size. These
pages are private to the process. The template region thus serves as a pool
of pages to be allocated in much the same way as general memory pages are
allocated by the sbrk system call (see shrk(2)).

Named regions (other than the template region) within a noncontiguous
memory extent are still necessary for sharing memory. For example, if two
processes want to share a global common in fast memory, they must make a
region within the memory extent. That region will be permanently allocated
pages the processes can share; these pages are not contained in the template
region.

12.4 Permissions

Shared memory objects obey the same rules for ownership and permission that
files do. See intro(2) tor details. In briet, shared memory objects have a
specified owner and group. They also have permission modes that specify
whether the owner, the group. or other users may read or write the pages in the
object. When a process attempts to attach to the shared memory object, it is
classified as being either the owner. in the owning group. or other. The requested
access type (read-only or read/write) 1s checked against the access permissions.

The ability to create and destroy regions is subject to the restrictions imposed by
the real-time access control mechanism. A noncontiguous memory extent's
template region is owned by the superuser (user ID 0) and group 0. A template
region’s mode is always 0666, which allows any process to allocate pages for
reading or writing.

12.5 Reflective Memory

Reflective memory is a form of shared memory between machines. Writes into
reflective memory on one machine may be ‘‘reflected’’ over a special bus to
reflective memory on other machines. All reads are from local memory.

The operating system may specify the range of reflective memory that is to
reflect writes and receive reflected writes. The retlected locations are referred to
as the window. UTX/32 supports this feature by providing a system call
mem_reflect (see mem_reflect(2RT)), which sets the reflective memory window
to a particular region.

UTX/32 Real-Time User’s Guide 12-3

12.6 Summary of Special Memory Support

12.6.1 Creation

Memory extents are created at system startup. They are defined in the system
configuration file. Instructions on editing the system configuration file to create
memory extents may be found in the UTX/32 Operations Guide.

Memory regions may be defined in the system configuration file. They can also
be created with the mkregion utility or within a program by the mkregion
system call. See mkregion(8RT), mkregion(2RT), or mkregion(3RF).

Shared memory objects that are not memory regions (that is, not within memory
extents) can be created with the shmget or shmgetbyname system calls. See
shmget(2RT) and shmgetbyname(2RT).

Shared memory objects may also be created by the execution of a FORTRAN
program containing a named global common or datapool. If no shared memory
segment or region with that name exists, a shared memory segment will be
created in general memory (never in special memory).

12.6.2 Allocation

Regions are allocated in two steps. In the first step. the region is allocated to the
process with shmget or shmgetbyname. In the sccond step. the region is
attached to the process’s virtual address space with the shmat system call (see
the shmop(2RT) manual page). The same sequence is used for shared memory
objects that are not regions.

Allocation of pages from a noncontiguous memory extent requires the same two
steps. shmget or shmgetbyname is used on the extent’s template region. The
result is a private shared memory object with the requested number of pages.
That private object is then attached using shmat.

The two steps take place automatically when a FORTRAN program naming a
shared global common or datapool is placed into execution.

12.6.3 Destruction

124

A shared memory object created during process startup is destroyed when the last
process using that object exits. For example, a global common created by a
FORTRAN program will be destroyed when the last program using it exits.

In no other case is a shared memory object or region automatically destroyed. In
particular, a private shared memory object created by shmget or shmgetbyname
will not be destroyed when the process exits, even though no other process may
attach to it.

UTX/32 Real-Time User’s Guide

Regions may be destroyed with the rmregion utility or with the rmregion
system call. See rmregion(8RT), rmregion(2RT), or rmregion(3RF).

Shared memory segments that are not regions may be destroyed with the ipcrm
utility or the shmctl system call. See ipcrm(1RT) or shmctl(2RT).

12.6.4 Inspection

The ipcs utility (see ipcs(1RT)) can be used from the shell to inspect shared
memory segments and regions. There is currently no defined way to inspect
regions from within a program.

UTX/32 Real-Time User’s Guide 12-5/12-6

13 Instruction Execution Modes

13.1 Overview

The Gould CONCEPT Product Line (CPL) architecture supports two modes of
instruction execution, privileged and unprivileged. These two modes are
necessary because certain instructions in the CPU instruction set can be executed
only by programs that have special privileges. On UNIX-based operating
systems such as UTX/32, machines typically execute in privileged mode only
within the kernel, and the existence of two distinct modes is transparent to user
programs. (Kernel mode thus mistakenly became synonymous with privileged
execution, although privileged mode is not really equivalent to kernel mode.)

However, with the introduction of connected interrupts (see Chapter 10,
"Connected Interrupts"), a user program must be able to execute privileged
instructions that affect an interrupt level to which it has established a connection.
Two new system calls, hwpriv and hwunpriv, allow a user program to run in
privileged instruction execution mode and unprivileged instruction execution
mode, respectively. Because these system calls regulate the execution of CPU
instructions, i.e., the execution of instructions at the hardware level, the two
modes are often referred to as hardware privileged mode and hardware
unprivileged mode. respectively, and hence the names of the system calls.

13.2 Instructions Requiring Privileged Mode

A process begins execution in hardware unprivileged mode. However. the
process must switch to hardware privileged mode before it can execute the
following kinds of instructions:

. Instructions related to interrupt processing, such as Enable Interrupt (EI) and
Disable Interrupt (DI)

« Instructions that can modify a machine’s memory mapping registers, such as
Load Program Status Doubleword and Change Maps (LPSDCM)

. Input/Output instructions, such as Start /O (SIO), Halt I/O (HIO), and
Command Device (CD)

. Instructions that can place the CPU in a state that requires an operator action
at the console, such as HALT

o Instructions that can change the state of the CPU, such as WAIT and Load
Program Status Doubleword (LPSD)

These instructions should be used with extreme caution because of the potential
for compromising the integrity of the system. (See adb(1) for a complete listing
of the CPU instruction set.) Their improper use can result in corruption of data
in main memory or secondary storage, or even a crash of the entire system.
When all privileged instructions have been executed, a process should usually
invoke hwunpriv to revert back to hardware unprivileged mode.

UTX/32 Real-Time User’s Guide 13-1

Processes executing in these two modes are differentiated by a bit in the Program
Status Doubleword (PSD). When the bit is set to one, the process is executing in
hardware privileged mode. Any attempt to execute a privileged instruction while
in hardware unprivileged mode causes an exception trap.

13.3 Ways to Execute Privileged Instructions

13-2

Once a process has executed the hwpriv system call, there are three ways to
execute a privileged instruction:

1. A C program may pass the privileged instruction as an argument to an asm
statement, causing the compiler to insert the instruction directly into its
assembly language output. This method carries the least overhead, but
because Gould Common C will not support asms, its use is discouraged for
portability reasons.

2. A C or FORTRAN program may invoke a library routine that executes the
privileged instruction. The real-time C library contains one routine for each
of the privileged instructions, as does the real-time FORTRAN library. The
library routines are named by adding the hwpriv prefix to the name of the
privileged instruction. For example, the hwprivei library routine executes
the EI instruction. For more details, see the following manpages:

. Iwpriv_intr_control(3RT)
. hwpriv_intr_control(3RF)
o hwpriv_io_control(3RT)

. hwpriv_io_control(3RF)

3. A privileged instruction may be embedded in an assembler routine, and a C
or FORTRAN program may make a call to that routine. This is the method
of choice only when a code segment is written in assembly language for
speed and efficiency considerations, and it is natural for the segment (o
contain a privileged instruction. If an assembler routine would contain
nothing but the privileged instruction, use a library routine instead.

Some of the privileged instructions may be executed by invoking a system call
while in unprivileged instruction execution mode. This mechanism is provided
for debugging purposes only, because system call overhead makes it undesirable
for regular use. A program may invoke the intctl system call directly, or it may
use the library routines that invoke the system call after generating its
instruction-specific arguments. Sce intctl(2RT), intct/(2RF), io_control(3RT),
io_control(3RF), interrupt_control(3RT), and interrupt_control(3RF) for more
information.

Use of the hwpriv and hwunpriv system calls is subject to the restrictions
imposed by the real-time access control mechanism.

UTX/32 Real-Time User’s Guide

See the Gould V6/V9 CPU Reference Manual that accompanies Gould CPL
hardware for more information about execution modes, and refer to Awpriv(2RT),
hwunpriv(2RT), hwpriv(2RF), and hwunpriv(2RF) for details about the use of the
system calls.

UTX/32 Real-Time User’s Guide 13-3/13-4

Appendix A
General Examples

This appendix contains simple examples written in C and in FORTRAN. These
examples illustrate how to use many of the UTX/32 real-time features.

UTX/32 Real-Time User’s Guide A-1

A.l1 Real-Time Scheduling
This section contains two examples of real-time scheduling, one in FORTRAN and one
in C.
A.1.1 FORTRAN Real-Time Scheduling Example

The following FORTRAN test program exercises the real-time FORTRAN library
routines that control real-time priority and processor targeting, such as setrealpriority
and settargetcpumask.

Cc
c Compile with: fort -o rtschedtest rtschedtest.f -1lrtf -lrt
C
program rtschedtest
integer cpumask
integer newprio
parameter (newprio = 5)
integer newmask,mask,prio,oldprio, ret
integer i
integer settargetcpumask, gettargetcpumask, getactivecpumask
integer unirscheduling, setrealpriority, getrealpriority
cpumask (n) = 2**n
€
€ Request real time priority 5
C
oldprioc = setrealpriority (0,newprio)
if (oldprio .1lt. 0) then
write (6,*) ’'setrealpriority failed ret=’, oldprio
call exit (-1)
endif
C
€ Get the current pricrity
C
prio = getrealpriority (0)
if (prio .1lt. 0) then
write (6,*) ’'getrealpriority failed ret=’, prio
call exit (-1)
endif
c .
(o] Did it really work?
C
if (prio .ne. newprio) then
write (6,%*) ’priority not correct: new=’, newprio,
+ ' returned=’,prio
call exit (-1)
endif
C
(o] Bias the process to the IPU
Cc

write (6,*) ’'biased to the ipu’
newmask = cpumask (1)

mask = settargetcpumask (0,newmask)
if (mask .lt. 0) then

A-2 UTX/32 Real-Time User’s Guide

(e}

aOa0ao0an

QA 6 Q (o]

(o]

10

20

write (6,%*) ’settargetcpumask failed ret=’, mask
call exit (-1)
endif

mask = gettargetcpumask (0)

if (mask .lt. 0) then
write (6,%*) ’gettargetcpumask failed ret=’, mask
call exit (-1)

endif

write (6,*) ’'mask=’,mask

Did it really work?

if (mask .ne. newmask) then
write (6,*) ’'mask not correct: new=’,6 newmask,

+ ! returned=’,mask

call exit (-1)
endif

Waste time. Real processing should go here if this were a real
program.

do 10 i=1,10000000
continue
continue

What are the active CPUs that can be used?

mask = getactivecpumask ()

if (mask .lt. 0) then
write (6,*) ’getactivecpumask failed re<=’, mask
call exit (-1)

endif

Return to normal priority

ret = unixscheduling (0)

if (ret .1lt. 0) then
write (6,*) ’‘unixscheduling failed ret=’, ret
call exit (-1)

endif

Waste some more time

do 20 i=1,10000000
continue

continue

write (6,*) ’test passes’

step
end

UTX/32 Real-Time User’s Guide

A-3

A.1.2 C Real-Time Scheduling Example

The following C program uses the real-time scheduling library routines. This program
gives the user a convenient way to control the real-time priority or processor-targeting of
a process.

/*
* Compile with: cc -o rtsched rtsched.c -1rt

x/

#include <stdio.h>
#include <sys/types.h>
#include <errno.h>

extern int errno;

main (argc, argv)
int argc;
char **argv;
{
int pid;
int tmp_rtprio, set_rtprio, old rtprio, flag rtprio;
int tmp_targetcpumask, set_targetcpumask, old cpumask, flag_targetcpumask;

if(arge <=1)
Usage (argv[0]) ;

else
for (; *++argv;) {
/*
* Get the Real Time priority
*/
if (sscanf(*argv,"-rtprio=5d", &tmp rtprio) == 1) {
set_rtprio = tmp_rtprio;
flag rtprio = 1;
}
/=
* Get the cpu mask
x/
else
if (sscanf (*argv, "-cpu=0x%x", étmp_targetcpumask) == 1) {
set_targetcpumask = tmp_targetcpumask;
flag_targetcpumask = 1;
}
/%
* Must be an argument. Do the requested operations on the process id.
*y
else
if(sscanf (*argv,"sd",&pid) == 1) {

if(flag_rtprio)
(
if((old_rtprio = setrealpriority(pid, set_rtprio)) < 0) {
fprintf (stderr, "Couldn’t set RT priority: pid=d ",
pid) ;
perror ("");
}
else {
printf("Pid 5d: Old prio=%d New prio=id\n",
pid, old rtprio, set_rtprio);
}
}
if(flag _targetcpumask) {

A4 UTX/32 Real-Time User’s Guide

b b ((old_cpumask =
fprintf (stderr, "Couldn’t set cpu masK: pid=xd ",
pid);
perror ("");
}

else {
printf ("Pid %d: Old cpu mask=%d New cpu mask=id\n",

pid, old_cpumask, set_targetcpumask);

}

else {
fprintf (stderr, "Unrecognized argument:

Usage (argv[0]);

’ %8’ \n", *argv);

}

Usage (name)
char *name;
{

fprintf(stderr,
"Usage: %s [-rtprio[=val]] [-cpu[=val]] [-active] pid...\n", name);

UTX/32 Real-Time User’s Guide

settargetcpumask(pid,set_targetcpumask)) < 0) {

A.2

Cyclic Scheduling

Many of the applications of the cyclic scheduler will be for sets of processes. The
example in this section is a template for a slave process that will be run by a master
process.

A.2.1 Summary of the Template Example

A-6

The template example begins on the next page.

The particular process in this example sets up a signal handler for the SIGINT signal,
which tells the process to restart from the beginning. The SIGINT signal can be used to
restart a set of processes by sending a signal to all of them.

After the signal handler is set up, the actual cyclic scheduling parameters are set up. The
process in the example specifies a cycle with 60 frames and sets every third frame. If the
process overruns a frame, it will continue with a clean start on the next set frame.

To ensure good response, the process is locked into memory and real priority of zero is
requested. The entire process (text and data) is locked. The restarting place is then set
with the setjmp call.

At this point, the initialization procedure is complete. The process requests cyclic
scheduling with the cycsetdata call and waits for the next cycsync, which the master
process is expected to issue. Some form of communication should exist between the
master process and its slaves. Shared memory might be a good vehicle for this; see
shmctl(2RT), shmget(2RT), and shmop(2RT) for a discussion of shared memory. When
the master process notices that all slaves have completed their initialization, it issues a
cyesync, and the slave starts cyclic execution.

The slave process will run in the first frame after the cyesync. When it is finished, it
suspends with the cycsuspend system call. The process must be careful to note the
return code from the system call. cycsuspend returns an error and sets errno to EINTR
if the system call is interrupted. This is not a fail-safe procedure since the system call
might return with EINTR in the frame in which the process should run. This problem
can be avoided by blocking or ignoring signals.

UTX/32 Real-Time User’s Guide

A.2.2 Slave Process Template

#$include <sys/cyclic.h>
#include <sys/lock.h>
$include <errno.h>
#include <setjmp.h>
4include <signal.h>
#include <stdio.h>
#$define FR_LEN 60 /* I want to be 60 frames long */
extern int errno;
void restart();
jmp_buf Restart; /* The restart environment */
/*
* MAIN
*f
main (arge, argv)
int argc;
char *argv([];
{
int dq
int ret;
Tcyclicdata ed;
int frame;
/*
* Set up the signal handler for SIGINT.
L
signal (SIGINT, restart);
/*
* Initialize the cyclic data structure. The cycle length is

* FR_LEN frames. The process expects to run every third frame.
* If the process is late in suspending, that’s too bad. Don’t
* look back on frames and try to reschedule immediately.
i
for (i=0; i<FR_LEN; i++)
cd.cycle [i] = !'(i % 3);
cd.cycle length = FR_LEN;
cd.frames_lookback = 0;

/*
* Lock the process into memory.
*/
if (plock (PROCLOCK) < 0)
{
printf ("plock failed, errno=xd\n", errno);
exit (1);

/*

* Set the real priority to the highest priority possible.
* This is an important process.

*f

if (setrealpriority (0, 0) < 0)

{

UTX/32 Real-Time User’s Guide A-7

printf ("setrealpriority failed, errno=%d\n", errno);
exit (1);

/*

* This is the place to return to when the process restarts.
*/

setjmp (Restart);

/*
* Set the cyclic scheduling parameters for the process.
* Wait for the next cyclic sync.

*/

if ((ret = cycsetdata (&cd, 1)) < 0)

{
printf ("setdata failed, errno=%d\n", errno);
exit (1),

for (;;)
{
/*
* This is where the useful work of the process gets done.
* Every time the process resumes, it will come here and
* execute whatever needs to be done.

*y

/ *
* Notice that the rsturn code is checked. If cycsuspend()
* returns with an error and errno is EINTR, then we have
* received a signal
g

while (((frame = cycsuspend ()) < 0) && (errno == EINTR))

{

printf ("interrupted\n");

/*
* This is the signal catcher for SIGINT.
* Just restart the process from the beginning.
*/
void
restart ()
{
longjmp (Restart, 1);

UTX/32 Real-Time User’s Guide

A.3 Timer Services

This section contains four examples in which the enhanced timer services are used. Two
are in FORTRAN, and two are in C. ‘

A.3.1 FORTRAN Test Programs

The first FORTRAN test program, hscbad, tests the sethsctimer system call for bad
input values. The second, hscreadtimer, reads from the high-speed clock and prints out
the information as fast as possible.

Example 1

(o]

Compile with: fort -o hscbad hscbad.f -lrtf -lrt
program hscbad

parameter (PROCLOCK=1)
parameter (EINVAL=22)
parameter (HSCCANCEL=0, HSCABSOLUTE=3, HSCCYCLE=2)

integer ret

integer failed

integer hvall(2), hval2(2)

integer hsclsecs, hsclns, hsc2secs, hsc2ns
integer sethsctimer

equivalence (hvall(l), hsclsecs)
equivalence (hvall(2), hsclns)
equivalence (hval2(1l), hsc2secs)
equivalence (hval2(2), hsc2ns)

failed = 0

ret = plock (PROCLOCK)

if (ret .ne. 0) then
write (6,*) ‘plock failed, ret ="', ret
call exit (1)

endif

ret = setrealpriority (0, 0)

if (ret .ne. 0) then
write (6,*) ’setrealpriority failed, ret ="', ret
call exit (1)

endif

O

Give sethsctimer a bad opcode.

ret = sethsctimer (HSCCANCEL-1, hvall, hval2)
if (ret .ne. -EINVAL) then
write (6,*) ’bad sethsctimer arg test 1 failed,’,
+ ' ret =', ret
failed = failed + 1
endif

ret = sethsctimer (HSCABSOLUTE+1l, hvall, hval2)
if (ret .ne. -EINVAL) then

UTX/32 Real-Time User’s Guide A-9

a6 aa

+ ’

write (6,*) ’'bad sethsctimer arg test 2 failed,’,
ret =/, ret

failed = failed + 1
endif

Give sethsctimer invalid data for the second argument.
All combinations.

hsclsecs = -1

hsclns = 0

ret = sethsctimer (HSCCYCLE, hvall, hval2)
if (ret .ne. -EINVAL) then

write (6,*) ’sethsctimer invalid data test 1 failed,’,
+ ¢ ret =/, ret
failed = failed + 1
endif
hsclsecs = 0
hsclns = -1 3

ret = sethsctimer (HSCCYCLE, hvall, hval2)
if (ret .ne. -EINVAL) then

write (6,*) ’‘sethsctimer invalid data test 2 failed,’,

+ X ret = 7, ret

failed = failed + 1
endif

hsclsecs = -1
hsclns = -1
rst = sethsctimer (HSCCYCLE, hvall, hval2)
if (ret .ne. -EINVAL) then
write (6,*) ’‘sethsctimer invalid data test 3 failed,’,

== ? ret = ', ret

failed = failed + 1
endif

ksclsecs = 2147483647

hsclns = 0

rat = sethsctimer (HSCCYCLE, hwvall, hval2)
if (ret .ne. -EINVAL) then

write (6,*) ’'sethsctimer invalid data test 4 failed,’,

+ ’ ret = ', ret

failed = failed + 1
endif

hsclsecs = 0
hsclns = 1000000001
ret = sethsctimer (HSCCYCLE, hvall, hval2)
if (ret .ne. -EINVAL) then
write (6,*) ’sethsctimer invalid data test 5 failed,’

+ ! ret = ', ret

failed = failed + 1
endif

if (failed .eq. 0) then

write (6,*) ’‘hscbad test passed’
else

write (6,*) ’hscbad test had’, failed, ’ errors’
endif

stop
end

UTX/32 Real-Time User’s Guide

Example 2

Q

program hscreadtimer
parameter (PROCLOCK=1)

integer ret

integer hval(2)
integer hscsecs, hscns
integer gethscvalue

equivalence (hval(l), hscsecs)
equivalence (hval(2), hscns)

ret = plock (PROCLOCK)

if (ret .ne. 0) then
write (6,*) ‘plock failed, ret ="',
call exit (1)

endif

ret = setrealpriority (0, 0)

if (ret .ne. 0) then
write (6,*) ’setrealpriority failed,
call exit (1)

endif

O

Forever loop

100 continue

ret = gethscvalue (hval)

if (ret .ne. 0) then
write (6,*) ’‘gethscvalue failed,’, '
call exit (1)

endif

write (6,%*) ’secs=’, hscsecs,

go to 100

’ nanosecs=’,

stop
end

UTX/32 Real-Time User’s Guide

Compile with: fort -o hscreadtimer hscreadtimer.f -lrtf -1lrt

A.3.2 C Test Programs

The first C example demonstrates how to measure the interval between two events. The
hscval_before structure contains the value of the timer before the event. hscval_after
contains the value of the timer after the event. The nanosecond value is guaranteed to be
smaller than 1,000,000,000.

The second example shows how to set a timer and wait for it to expire.
Example 1

/*
* Compile with: cc -o interval interval.c -1lrt

*

#include <sys/rt_time.h>
#include <sys/lock.h>
#include <errno.h>
#include <stdio.h>

extern int errno;

/%

* MAIN
xif

main ()

{

struct hscval hscval before; /* time before work */
struct hscval hscval _after; /* time after work */
/*

* Lock memory and set us up at real
* time priority 0 (highest).
*/
if (plock (PROCLOCK) < 0)
{
printf ("plock failed, errno=:d\n", errno);
exit (1)
}
if (setrealpriority (0, 0) < 0)
{
printf ("setrealpriority failed, errno=%d\n", errno);
exit (1),
}

gethscvalue (&hscval before);
/*
* Do some work that you want to measure.

*/

gethscvalue (&hscval_after);

A-12 UTX/32 Real-Time User’s Guide

Example 2

/*
* Compile with: cc -o timer timer.c -lrt
*/

f#include <sys/rt_time.h>
#include <sys/lock.h>
#include <errno.h>
#include <stdio.h>
#include <signal.h>

int alrm();

extern int errno;

int Timerexpired; /* If true, the timer has expired */
struct hscval hscval; /* Value to program timer */
/*
* MAIN
*/
main ()
{
/*
* Set up the signal handler for the timer signal.
*/
signal (SIGALRM, alrm);
/*
* plock memory and request real-time priority.
*/
if (plock (PROCLOCK) < 0)
{

printf ("plock failed, errno=:d\n", errno);
exit (1)

if (setrealpriority (0, 0) < 0)

printf ("setrealpriority failed, errno=%d\n", errno);
exit (1);

N

* X O A Xk

Set the timer to expire 8.325 milliseconds from now.
Note that the second argument to sethsctimer is 0.
We don’t care about the previous timer,
whether it was set or not.
%/
hscval . hsc_seconds = 0;
hscval . hsc_nanosecs = 8325000;
Timerexpired = 0;
if (sethsctimer (HSC_RELATIVE, &hscval, 0) < 0)
{
printf ("error: errno=%d\n", errno);
exit (1);

/*
* If timer has not already expired, then wait for it.
*/

if (!Timerexvpired)

UTX/32 Real-Time User’s Guide A-13

sigpause (0);

/*

* Signal handler for the SIGALRM signal. All we do is set
* the Timerexpired value to true so it can be checked when
* the timer was started.

*y
alrm ()

{

Timerexpired = 1;
}

UTX/32 Real-Time User’s Guide

A.4 Shared Memory

The following C program uses shared memory and timer services. This program tests
that multiple processes scheduled to run at the same absolute time will run in the proper
order.

/*

* Process Order Test

* This program tests the orderly execution of

* multiple processes scheduled to run at the same absolute time.

* When each process runs, it determines if it is running

* in sequence by looking in shared memory for the

* (test specific) process number of the last process to

* run. It then stores its own process number in shared memory

L and schedules itself to run on the next absclute time increment.
*

#include <signal.h>
#include <machine/cpu.h>

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

#include <setjmp.h>
#include <stdio.h>
#include <errno.h>
extern int errno;

#include <sys/rt_time.h>

#define MAXDEL 30

#define MAXNUMPROCS 10

#¢define TESTTIMEOUT (10*60)

ink TDelay = 3;

struct hscval hscval;

int ProcList [MAXNUMPROCS]; /* PIDs of child processes */

int NumProc = 5; /* Number of procs actually running */
int ProcNum; /* Process number in the set

* of child processes: a loop
* counter in main, different
* per-prccess in the children */

/* Shared memory for last ran process number */
struct IPCbuff
{
int LastProcNum; /* last process that ran (used
to check sequencing) */

*

};

int ProcShmid; /* Shared memory identifier */
struct IPCbuff *Procbuff; /* Shared memory address */

/* Shared memory for test information communicaticn */
struct GenericBuff

{

int failedtests;

int successfulpasses;
}:
int FTShmid; /* Generic Shared mem id */
struct GenericBuff *Generic; /* Generic Shared mem addr. */

UTX/32 Real-Time User’s Guide A-15

/* test functions */

void enditall () /* Kills all the child proc. */
void CheckProcessOrdering ();

void TestTimeout ();

void alarm handler ();

/* shared memory functions */

int shmget ();
char *shmat ();
void shmgetat ();

int Done = 0;

main (argc, argv)

int argc;
char **argv;
{
int ret; /* return code for sys calls */
int iz /* counter */

HandleArguments (argc, argv);

/* Ends test at 10 mins */
signal (SIGALRM, TestTimeout);
alarm (TESTTIMEOUT) ;

/* cleanup if signal to interrupt test */
signal (SIGTERM, enditall);

/)\-
* Attach to shared memory for Generic
* Note that shmgetat ccmbines shmget and shmat
*f
shmgetat (sizeof (*Generic), &FTShmid, &Generic);
Generic->failedtests = 0;
Generic->successfulpasses = J;

/* Attach to shared memory for Procbuff */
shmgetat (sizeof (*Procbuff), &ProcShmid, &Procbuff);
Procbuff->LastProcNum = NumProc - 1;

/* Get starting absolute time */

if ((ret = gethscvalue(&hscval)) == -1)

{
printf ("Gethscvalue failed errno=5d\n",errno) ;
Generic->failedtests++;
proccleanup() ;

*
* Create child processes
* Children inherit the data space of the parent process,
* so they get a copy of "hscval’ above
* They also inherit the shared memory segments, so
* the children do not need to do individual shmat’s.
*/
for (ProcNum = 0; ProcNum < NumProc; ProcNum++)
{
if ((ProcList[ProcNum] = fork ()) == 0)
{
Child ()
proccleanup() ;

A-16 UTX/32 Real-Time User’s Guide

/* Wait for completion of all children */
for (i = 0; i < NumProc; i++)
{

wait (0);

printf ("Parent exiting\n");

printf ("Errors so far: %d\n", Generic->failedtests);

printf ("Successful passes so far: %d\n", Generic->successfulpasses);
exit (0);

—

/*
* Child
] Child process code for test.
* Uses
* extern ProcNum (per-process) - process number in test set.
*
*/
Child ()
{
int i;
int ret;
struct hscval hscval2;
cpumask_t mask;
/*

* Child initialization code. Set up ordering

* amongst processes (eg. by using RT priority).
*/
signal (SIGALRM, alarm_handler);

* In this test, done by setting RT priority, everybody waking up
* at same time. RT priorities start at 1, not 0, so that we can
* regain control of machine.
*/
if ((ret = setrealpriority (0, ProcNum + 1)) < 0)
{
printf (" Setrealpriority failed, errno=%d\n", errno);
Generic->failedtests++;
proccleanup () ;
}
if ((mask = settargetcpumask(0, P_CPUMASK(0))) == -1)
{
printf("targetcpu failed, errno=%d\n",errno);
Generic->failedtests++;
proccleanup() ;

/* Set new absolute timer and pause until it evpires*/
for (i = 0; 1 < 100; i++)
{
hscval .hsc_seconds = hscval.hsc_seconds + TDelay;
if ((ret = sethsctimer (HSC_ABSOLUTE, &hscval, &hscvall2)) == -1)
{
Generic->failedtests++;
printf ("Sethsctimer failed, errno=%d\n",errno);
proccleanup();

UTX/32 Real-Time User’s Guide

}

pause ();

}
Done = 1;
proccleanup () ;

/*
* alarm_handler - timer has gone off
*/

void

alarm_handler ()

{

CheckProcessOrdering() ;

/*
* enditall
* cleanup routine
set LastProcNum to -1.
* Other processes will exit when they see this.
L
void
enditall ()
{
int i
Procbuff->LastProcNum = =-1;
/* remove shared memory (also detaches) */
shmectl (Procshmid, IPC_RMID, 0);
shmetl (FTshmid, IPC_RMID, 0);
exit (0);
}
/*
* CheckProcessCrdering
* Check that the test processes erecute in srder.
* Order is determined by the test, usually using RT prio in some form.
* Ordering is strictly linear-circular.
* Uses
® extern ProcNum (per process) - process number in test set
*Y
void

CheckProcessOrdering ()

{

int lastproc = Procbuff->LastProcNum;

if (lastproc == -1) /* parent says go away */
{
exit (2);
}
else /* normal case */
{
if (((lastproc + 1) % NumProc) !'= ProcNum)

{
Generic->failedtests++;
printf (" Illegal Process sequence\n");
printf (" LastProcNum = %d, ProcNum=%d, Successful=%d\n",
lastproc, ProcNum, Generic->successfulpasses);

UTX/32 Real-Time User’s Guide

proccleanup () ;
/* NOT REACHED */
}
Generic->successfulpasses++;
Procbuff->LastProcNum = ProcNum; /* indicate this proc ran */

/*
* Wrapper around combined calls to shmget and shmat,
* printing and exiting on error.

*/

void

shmgetat (size, idp, basep)

int size;
int *idp;
char **basep;
{
if ((*idp = shmget (IPC_PRIVATE, size, IPC_CREAT | 0660)) < 0)
{
printf ("shmget failed, errno=%d\n", errno);
proccleanup () ;
}
if ((*basep = shmat (*idp, 0, SHM LOCK)) < 0)
{
printf ("shmget failed, errno=%d\n", errno);
proccleanup () ;
}
/%
* HandleArguments -- Is where test specific argument
* handling code goes.
*
*/‘
HandleArguments (argc, argv)
int argc;
char *RATGY;
{
int arg;

for (; *++argv;)
{
/* Allows passing in number processes to create */
if (sscanf (*argv, "-np=3d", &arg) == 1)
{
if (1 <= arg && arg <= MAXNUMPROCS)
{
NumProc = arg;
} else
{
printf ("-np=<NumProc> must be within [1,5d]\n", MAXNUMPROCS) ;
proccleanup () ;

}

else

{
printf ("Unrecognized argument *s\n", *argv);
proccleanup () ;

UTX/32 Real-Time User’s Guide A-19

/*

* TestTimeout

* Stops execution after TESTTIMEOUT minutes
A

void

TestTimeout ()

{

printf ("Test timed out\n");

printf ("Errors so far: 35d\n", Generic->failedtests);

printf ("Successful passes so far: 3¥d\n", Generic->successfulpasses);
proccleanup() ;

/*
* proccleanup -- cleans up the child processes
*

*/
proccleanup()

{
tnt i7
/* Kill all child processes. A -1 in LastProcNum tells the other
* processes that they should just exit. */

Procbuff->LastProcNum = -1;

ezit (1) ;

A-20 UTX/32 Real-Time User's Guide

A.5 Direct File System

The following FORTRAN program uses the direct file system calls. This test program
simply exercises all direct file system calls in the real-time FORTRAN library.

Cc
c Compile with: fort -o direct direct.f -1rtf -1rt
C

program dftest

integer PROCLOCK, UNLOCK

parameter (PROCLOCK=1, UNLOCK=0)

integer plock,dfcreate,dfopen,dfwrite,dfclose, dfdelete,dfextend
integer ret, fd, error

integer eventctrs(3)

integer wbuff(100)

character*60 pathname

data pathname/’ /diskOa/file’/

error = 0

ret = plock (PROCLOCK)

if (ret .ne. 0) then
write (6,*) ’'plock failed, ret=’, ret
call exit (1)

endif

ret = dfcreate (pathname,1,1,-1,0)
if (ret .1lt. 0) then

write (5,*) ’'dfcreate failed, ret=’, ret
error = 1
goto 600

endif

ret = dfextend (pathname,1,0)

if (ret .1lt. 0) then
write (6,*) ’dfextend failed, ret=’, ret
error = 1
goto 500

endif

fd = dfopen (pathname, 0,eventctrs,0)

if (fd .1t. 0) then
write (6,*) ’'dfcpen failed, ret=’, ret
error = 1
goto 400

endif

ret = dfwrite (fd, wbuff, 30)

if (ret .1lt. 0) then
write (6,*) ’'dfwrite failed, ret=’, ret
error = 1
goto 400

endif

400 ret = dfclose (fd)
if (ret .lt. 0) then
write (6,*) ’'dfclose failed, ret=’, ret
error = 1
endif

500 ret = dfdelete (pathname)

UTX/32 Real-Time User’s Guide A-21

600

if (ret .1lt. 0) then
write (6,*) ’'dfdelete failed, ret=’, ret
error = 1
goto 600

endif

ret = plock (UNLOCK)

if (ret .ne. 0) then
write (6,*) ’'plock failed, ret=’, ret
error = 1

endif

if (error .eq. 0) then
write (6,*) ’'test passes’
endif

stop
end

UTX/32 Real-Time User's Guide

A.6 Direct I/O

The following FORTRAN program uses the direct I/O facility. This example is of
special interest because it involves calls to C code. The FORTRAN program is diotest.
The C utilities follow.

If you run this program, be sure that you run it on a disk that doesn’t contain important
data. This test will write the first 1024 words on the disk at address 0x800. Note that the
disk geometry given to the createiocds routine changes for various types of disk drives.

To compile the program, execute the following commands:

% ¢cc -c createIOCD.c
% fort -o diotest diotest.f createIOCD.o -1lrtf -1lrt

A.6.1 DIO FORTRAN Program

program diotest

integer PROCLOCK, UNLOCK

parameter (PROCLOCK=1, UNLOCK=0)

parameter (READCMD=0,WRITECMD=1)

parameter (NWORDS=1024)

integer plock,dioconnect,dicconvert,dionotify,dicrelease
integer dicreserve,diosiolog

integer notify(2),statbf(2),conID

integer ret,error

integer wbuff (NWCRDS*4) , rbuff (NWORDS*4)

integer wlogiocl(4),rlogiocl(4),wphysiocl(6), rphysiocl (6)
integer seekdata(l)

integer diskaddr

data diskaddr/x’ 800/

error = 0

ret = plock (PROCLCCK)

if (ret .ne. 0) then
write (6,*) ’‘plock failed, ret=’, ret
call exit (1)

endif

ret = dioreserve (diskaddr)

if (ret .lt. 0) then
write (6,*) ’‘dioreserve failed, ret=’, ret
error = 1
goto 600

endif

conID = dioconnect (diskaddr,0,4,notify)

if (conID .1lt. 0) then
write (6,*) ‘dioconnect failed, ret=’, conlID
error = 1
goto 500

endif

ret = dionotify (conID,29,0,0)

if (ret .1lt. 0) then
write (6,*) ’‘dionotify failed, ret=’, ret

UTX/32 Real-Time User’s Guide A-23

error = 1
goto 400
endif

call createiocds (WRITECMD, 0, NWORDS*4,16, 5, seekdata, wbuff,wlogiocl)

ret = dioconvert (conID,wlogiocl,16,wphysiocl,24)
if (ret .1t. 0) then
write (6,*) ’‘dioconvert failed, ret=’, ret
error = 1

goto 400
endif
C
c Fill up wbuff with a known test pattern.
(o]
do 100 i = 1,NWORDS
wbuff(i) = i
100 continue
Cc
c Write the pattern to the disk.
(o]
ret = diosiophys (conID,wphysiocl, statbf,0,10)
if (ret .1lt. 0) then
write (6,*) ’‘diosiophys failed, ret=’, ret
error = 1
goto 400
endif
call createiocds (READCMD, 0, NWORDS*4, 16, 5, seekdata, rbuff, rlogiocl)
c
c Read the pattern from the disk into rbuff.
C
ret = diosiolog (conlD, rlogiocl, 16, rphysiocl, 24, statbf, 0, 10)
if (ret .lt. 0) then
write (6,*) ’diosiclog failed, ret=’, ret
error = 1
goto 400
endif
Cc
lo] Buzz loop until the I/O completes. Instead of doing this, we
c could have requested wait I/0O in the dionotify.
c Note: no timeout, so if the I/O never completes, the program
(o] never leaves here.
Cc
150 if (notify(l) .ne. notify(2)) goto 150
c
c Test the pattern that was written with the pattern that was read.
(o-

do 200 i = 1,NWORDS
if (wbuff(i) .ne. rbuff(i)) then
write (6,*) ’‘bad read or write; buffer corrupted’
error = 1
goto 400
endif
200 continue

400 ret = diodisconnect (conID)

A-24 UTX/32 Real-Time User’s Guide

if (ret .1lt. 0) then
write (6,*) ’diodisconnect failed, ret=’, ret
error = 1

endif

500 ret = diorelease (diskaddr)
if (ret .lt. 0) then
write (6,*) ’"diorelease failed, ret=’, ret
error = 1
endif

600 ret = plock (UNLOCK)
if (ret .ne. 0) then
write (6,%*) ’'plock failed, ret=’, ret
error = 1
endif

if (error .eq. 0) then
write (6,*) ’test passes’

endif

stop
end

UTX/32 Real-Time User’s Guide A-25

A.6.2 C Utilities for DIO FORTRAN Program

/*

* dio test utility routines...
*/

#include "sys/ioctl.h"

#include "selio/iocmd.h"

#define READ CMD 0

#define WRITE_CMD 1

/* */
/* Function: */
/% This procedure creates an IOCD pair for the Gould Disk */
/* Processor to seek and read/write on the disk. The 2 IOCDs */
/* are command chained. The address fields in the IOCD are all */
[% logical addresses. The output of this procedure is suitable %/
/* to pass to the Direct I/O interface as a LOGICAL IOCL. This */
/* routine may be called outside the Direct Files environment, */
/* but is heavily dependent upon Gould CONCEPT/32 Class F hardware. */
/* */

createiocds_ (ReadWrite, Block, Size, Trksize, Cylsize, Seek, Addr, Dest)

int *ReadWrite; /* A flag indicating a read or a write cmd */

int *Block; /* The disk block number to start I/O at *x/

int *Size; /* The number of bytes to read/write x/

int *Trksize; /* # of blocks per track *x/

int *Cylsize; /* # of tracks per cylinder */

TSeekWord *Seek;

char *Addr; /* The logical address of where the data is
to be read/written to/frem *x/

TIOCD *Dest; /* A pointer to where the 2 IOCD structures
are to be stored *x/

{

register int rem; /* remainder after division x/
/* compute seek data word... */

Seek->s_SeekCyl = *Block / (*Cylsize * *Trksize);
rem = *Block % (*Cylsize * *Trksize);
Seek->s_SeekTrack = rem / *Trksize;
Seek->s_SeekSector = rem % *Trksize;

/* format seek ICCD... */

Dest->i_IOCmd = IO_SEEK;

Dest->i Address = (unsigned) Seek; /* put addr of seek word */

Dest->i_IOflags = IO_CMD_CHAIN;

Dest->i XferCount = 4; /* 4 bytes of seek data */

Dest++; /* increment to next IOCD */
/* format read or write IOCD... */

A-26 UTX/32 Real-Time User’s Guide

if (*ReadWrite == READ CMD)
{

Dest->i IOCmd = IO_READ; /* read data command */
}
else
{

Dest->i IOCmd = IO_WRITE; /* write data command */

Dest->i Address = (unsigned) Addr;
Dest->i IOflags = 0;
Dest->i XferCount = *Size;

return;

UTX/32 Real-Time User’s Guide A-27

A.7 Connected Interrupts

The following examples are explained in Section 10.2 of Chapter 10, "Connected
Interrupts.” The first example shows a simple indirectly connected interrupt. The second
example shows a simple directly connected interrupt.

A.7.1 Example Using Indirectly Connected Interrupt

/*
* Compile with: cc -o indircon indircon.c -1rt

*/

#include <stdio.h>
#include <signal.h>
#include <sys/rt_ci.h>
#include <sys/lock.h>
#include <sys/errno.h>
#include <sel/machparam.h>

extern int errno;

/*

* These define the device and interrupt level of the connection.
*/

#define CHAN 027f

#define SUBCHAN 0x0d4d
#define CLASS 0:203

#define PRI 050
int sig_handler ();

int cleanup (),

int Nsigs = 0; /* Number of signals received */
int Key; /* Identifying key for the connection */
/*

* main This program makes a direct connection to an interrupt
* level and counts the number of interrupts it receives.
*

* The program must be run as superuser.

*/

main(argc, argv)
int argc;

char **argv;

{

int ret; /* Return value of system calls */

/%
* Set up a signal handler so that the process will clean up and
* exit when it is signaled.
*x/
if (signal (SIGINT, cleanup) < 0)
{
fprintf (stderr, "signal (SIGINT) failed errno=%d\n", errno);
exit (1);

A-28 UTX/32 Real-Time User’s Guide

/*

* Set up the signal handler that will be called when an interrupt

* is received.

*/

if (signal (SIGUSR1l, sig_handler) < 0)

{
fprintf (stderr, "signal (SIGUSR1l) failed errno=%d\n", errno);
exit (1);

Nsigs = 0;

/*
* Install the indirectly connected interrupt handler.
*/
if ((ret = plant (&Key, CHAN, SUBCHAN, CLASS, PRI, CI_INDIRECT)) < 0)
{
fprintf (stderr, "plant failed errno=%d intr level=0x%1lx\n",
errno, PRI);
exit (1);
}
if ((ret = graft (Key, SIGUSR1, 0, CI_INDIRECT)) < 0)
{
uproot (Key);
fprintf (stderr, "graft failed errno=%d intr level=0x%1lx\n",
errno, Key);

exit (1),
}
/*
* Enable the interrupt level.
*/
el (Key):
/*

* Wait forever. The work of this program is done in the signal
* handler.

*/
for (;;)
pause ();
}
/*
* sig_handler - This function is the signal handler.
*/

sig_handler ()
{
Nsigs++;

/*
* The interrupt level for an indirectly connected interrupt
* is deactivated by the kernel.

*if
}
/"k
* cleanup - This function cleans up the process when terminated.
*/

cleanup ()

UTX/32 Real-Time User’s Guide A-29

prune (Key) ;
uproot (Key);
exit (0);

A.7.2 Example Using Directly Connected Interrupt

/* Interrupts run cn this stack */
/* Number of interrupts taken so far */
/* Key to identify connection */

This program makes a direct connection to an interrupt
level and counts the number of interrupts it receives.

/*
* Compile with: c¢c -o dircon dircon.c -lrt
*/
#include <stdio.h>
#include <signal.h>
#include <sys/rt_ci.h>
#include <sys/lock.h>
#include <sys/types.h>
extern int errno;
#define CHAN Ox7£
#define SUBCHAN 0:0d
#define CLASS 003
#define PRI 0250
int intr_handler ();
int cleanup ();
int Stack [500];
int Nints = 0;
int Key;
/*
* main
*
*
* The program must be run as superuser.
*/

main (argc,

argv)

int argc;
char **argv;

{

A-30

int ret;
/*
* Lock the process into memory.
]
if (plock (PROCLOCK) < 0)
{
fprintf (stderr,
exit (1),

/*
* Target the process to the CPU.
*l

"plock failed:

errno=%d\n", errno);

UTX/32 Real-Time User’s Guide

if (settargetcpumask (getpid (), P_CPUMASK (P_CPU)) < 0)

fprintf (stderr, "settargetcpumask failed: ");

fprintf (stderr, "errno=%d pid=0x%lx cpu mask=0x%1lx\n",
errno, getpid (), P_CPUMASK (P_CPU));

exit (1);

/*
* Set up a signal handler so that the process will clean up and
* exit when it is signaled.
*/
if (signal (SIGINT, cleanup) < 0)
{

fprintf (stderr, "signal failed: errno=%d\n", errno);

exit (1);
}
Nints = 0;
/*
* Install the directly connected interrupt handler.
*/

if ((ret = plant (&Key, CHAN, SUBCHAN, CLASS, PRI, CI_DIRECT)) < 0)
{
fprintf (stderr, "plant failed errno=5d intr level=0x31lx\n",
errno, PRI);
evit (1);
}
if ((ret = graft (Key, &Stack[499], intr_handler, CI_DIRECT)) < 0)
{
uproot (Key);
fprintf (stderr, "graft failed errno=sd Key=Cx%*lx\n",
errno, Key);

exit (1),
}
/*
* Enable the interrupt level.
*/
ei (PRI);
/*

* Wait forever. The work of this program is done in the interrupt
* routine.

*/
for (;;)
pause ();
}
/*
*
* intr_ handler - This function is the interrupt handler. It is called
& when an interrupt is received.
*
*/
intr_handler (level, status)
register int level;
register int status;

UTX/32 Real-Time User’s Guide A-31

Nints++;

/*
* Deactivate the interrupt.
*/

hwprivdai (level);

/*

*

* cleanup - This function cleans up when the process exits.
* It is evpected that the process will exit after
* receiving a SIGINT.

*

*/

cleanup ()

{
prune (Key);
uproct (Key):;
exit (0);

A-32 UTX/32 Real-Time User’s Guide

A.8 Suspend and Resume

A.8.1 Ping-Pong

In this example the parent process creates one child process. The child process
immediately suspends itself. The parent process then resumes the child and suspends
itself. Upon being resumed, the child process resumes the parent and suspends itself.
This causes a ping-pong effect between the two processes.

/

ping-pong - This program demonstrates how two processes can
suspend and resume each other in sequence (ping-pong
back and forth).

Compile with: cc -o pingpong pingpong.c -1lrt

* % % %k * F %

/

/* header files */
#include <errnoc.h>
#include <stdio.h>
#include <sys/rt_suspres.h>

/* externally declared variables */
extern int errno;

/* constant declaraticns */
#define ITERATIONS 5

/* Global Variables */

int childl; /* process list containing child pid */
int parent; /* process list containing parent pid */
main ()

{

/* create process list which contains parent pid */
parent = getpid();

/* fork off child process and create
* process list which contains child pid
*4
if ((childl = fork()) == 0)
{
/* suspend child process
in order to achieve proper sequencing
* do not care if suspend interrupted by signal
* if suspend fails test will fail

*/
if (suspend() == -1)
{
printf("suspend failed errno = #d\n",errno);
exit (-1);
}
Childl();

/* wait for a while to assure child process
* is suspended before starting ping pong effect

UTX/32 Real-Time User’s Guide A-33

* The 2 passed to sleep was chosen at random

xy
sleep(2);
Parent () ;
}
/*
* Childl -- resumes the parent process and immediately suspends
* itself. Repeats this for ITERATIONS times.
*/
Childl()
{
int i = 0; /* counter variable */
while (i++ < (ITERATIONS -1))
{
/* resume parent process and immediately suspend */
if (resume (SR_SUSPEND, parent) == -1)
{
printf("resume in Child 1 failed i=%d\n",i);
printf (" errno = %d\n",errno);
exit (-1);
}
printf("Child 1 loop = %d\n",1i);
}
/* resume last parent process but do not suspend
* because parent will never resume this process
L
if (resume(0,parent) == -1
{
printf("resume in Child 1 failed i=#d\n",i);
printf (" errno = %d\n",errno);
exit(-1);
}
printf ("exiting child 1\n");
exit (0);
}
/x
* Parent -- resumes child process and immediately suspends
* itself repeats this for ITERATIONS
*/
Parent ()

{

int i = 0; /* counter variable */

while (i++ < ITERATIONS)
{

/* resume child process and then suspend */
if (resume(SR_SUSPEND,childl) == -1)

{

printf("resume in Parent failed i=xd\n",i);
printf (" errno = 5d\n",errno);
exit (-1);
}
printf ("Parent loop = 3d\n",1i);
}
wait (0) ;
printf ("exiting Parent\n");
exit (0);

A-34 UTX/32 Real-Time User’s Guide

A.8.2 Order

In this example, the parent process creates several child processes. Each child process
sets its real-time priority to be one greater than the last child that was forked. Each child
process then suspends itself and waits to be resumed. After all of the child processes are
suspended, the parent process resumes the list of child processes. The child processes
should then execute according to their real-time priorities.

/

order -- This program sets up several child processes, assigns
them each a real-time priority, and then suspends them.
The parent process simply resumes all of the children.
Upon being resumed the child processes should execute
according to their real-time priorities.

* O F Ok X X A *

Compile with: cc -o order order.c -lrt

*
Sy

/* HERDERS */

#include <signal.h>
#include <machine/cpu.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <setjmp.h>
#include <stdio.h>

#include <errno.h>

#include <sys/rt_suspres.h>

extern int errno;
#define MAXNUMPROCS 10 /* Number of child procs to create */
#define TESTTIMEOUT (10*60)
int ProcList [MAXNUMPROCS]; /* PIDs cof child proczesses */
int return_status [MAXNUMPROCS]; /* return status of
child processes */
int NumProc = 5; /* Number of procs actually
* running */
int ProcNum; /* Process number in the set
* of child processes: a locp
* counter in main, different
* per-process in the
* children */
int Parent; /* pid of parent process */

/* Shared memory for checking process execution order */
struct IPCbuff
{
int LastProcNum; /* last process that ran (use
‘ * to check sequencing */
}i
int ProcShmid; /* Shared memory identifier */
struct IPCbuff *Procbuff; /* Shared memory address */

/* Shared memory for intercommunication between processes */
struct GenericBuff

{
int failedtests;
int successfulpasses;

UTX/32 Real-Time User’s Guide A-35

}:

int FTShmid; /*Generic Shared mem id */
struct GenericBuff *Generic; /*Generic Shared mem addr. */

/* process test ordering functions */

void enditall (); /* Kills all the child proc. */
void CheckProcessOrdering ();
void TestTimeout ();

/* declaration for shared memory functions */

int shmget ()
char *shmat () ;
void shmgetat ();

main (argc, argv)

int argc;
char k*xargv;
{
int ret; /* return code for sys calls */
int i; /* counter */
int 3 /* counter */

HandleArguments (argc, argv);

/* Ends test at 10 mins */
signal (SIGALRM, TestTimeout);
alarm (TESTTIMEOUT) ;

/* cleanup on signals */
signal (SIGTERM, enditall);

/* Attach to shared memory Generic */

shmgetat (sizeof (*Generic), &FTShmid, &Generic):
Seneric->failedtests = 0;
Generic->successfulpasses = 0;

/* Attach to shared memory Procbuff*/
shmgetat (sizeof (*Procbuff), &ProcsShmid, &Procbuff);
Procbuff->LastProcNum = NumProc - 1;

/* get pid of parent process */
Parent = getpid();

/* fork off child proccesses */
for (ProcNum = 0; ProcNum < NumProc; ProcNum++)
{
if ((ProcList [ProcNum] = fork ()) == 0)
{
child ();
exit (0);

/* if parent process */

if (Parent == getpid()) {
/* Wait for completion of all children
* 2 seconds is just a time chosen at random
*/
sleep(2);

A-36 UTX/32 Real-Time User’s Guide

/* resume child processes */
ProcList [ProcNum++] = 0;
if (resume (SR_MULTIPLEPIDS, ProcList, NumProc, return_status) == -1) ({
printf (" resume failed\n");
for (j=0;j<NumProc; j++)
printf("return_status([%d]= %d\n",j,return_status[j]);
Generic->failedtests = 0;

/* Wait for completion of all children
* 5 seconds is just a time chosen at random
*/
sleep(5);
printf ("Parent exiting\n");
printf ("Errors so far: %d\n", Generic->failedtests);
printf ("Successful passes so far: *d\n", Generic->successfulpasses);

exit (0);
}
}
/*
* Child
* Child process code for test.
* Uses
* extern ProcNum (per-process) - process number in test set.
*
*/
Child ()
{
int i;
int ret;

cpumask_t mask;

7 %
* In this test, done by setting RT priority, everybody waking up
* at same time. RT priorities start at 1, not 0, so that we can
* regain control of machine.
*/
if ((ret = setrealpriority (0, ProcNum + 1)) < 0)
{
printf (" Setrealpriority failed, errno=3d\n", errno);
Generic->failedtests++;
proccleanup () ;
¥
if ((mask = settargetcpumask (0, P_CPUMASK(0))) == -1)
{
printf ("targetcpu failed, errno=%d\n",errno);
Generic->failedtests++;
proccleanup() ;

/* suspend child process */

if (suspend() == -1) {
printf (" suspend failed in ProcNum = %d\n",ProcNum);
Generic->failedtests++;
proccleanup () ;

CheckProcessOrdering () ;

UTX/32 Real-Time User’s Guide A-37

/*

* TestTimeout

* Stops execution after TESTTIMEOUT minutes
*f
void
Test Timeout ()
{
printf ("Test timed out\n");
printf ("Errors so far: %d\n", Generic->failedtests);
printf ("Successful passes so far: %d\n", Generic->successfulpasses);
proccleanup () ;
}
/*
* enditall
% cleanup routine
% Kills child processes and removes shared memory.
*/
void
enditall ()
{
int i;
/* kill all child processes */
printf("enditall called\n");
Procbuff->LastProcNum = -1;
/* remove shared memory */
shmctl (ProcShmid, IPC_RMID, Q) ;
shmetl (FTshmid, IPC_RMID, 0);
exit (0);
}
/*
* CheckProcessOrdering
L Check that the test processes exascute in order.
* Order is determined by the test, usually using RT prio in some form.
X Ordering is strictly linear-circular.
* Uses
* extern ProcNum (per process) - process number in test set
*f
void
CheckProcessOrdering ()
{
int lastproc = Procbuff->LastProcNum;
if (lastproc == -1) /* parent says go away */
{
exit (2);
}
else /* normal case */

{

/* check execution order */

if (((lastproc + 1) % NumProc) != ProcNum)

{
Generic->failedtests++;
printf (" Illegal Process sequence\n");
printf (" LastProcNum = 34, ProcNum=td, Successful=%d\n",
lastproc, ProcNum, Generic->successfulpasses);
proccleanup();
/* NOT REACHED */

A-38 UTX/32 Real-Time User’s Guide

}
Generic->successfulpasses++;
Procbuff->LastProcNum = ProcNum; /* indicate this proc ran */

/*
* wrapper around combined calls to shmget and shmat,
* printing and exiting on error.

*/
void
shmgetat (size, idp, basep)
int size;
int *idp;
char **basep;
{
if ((*idp = shmget (IPC_PRIVATE, size, IPC_CREAT | 0660)) < 0)
{
printf ("shmget failed, errno=%d\n", errno);
proccleanup () ;
}
if ((*basep = shmat (*idp, 0, SHM LOCK)) < 0)
{
printf ("shmget failed, errno=xd\n", errno);
proccleanup() ;
}
}
/‘x
* HandleArguments -- Is where test specific argument handling code gces.
x1
HandleArguments (argc, argv)
int arge;
char x*argv;
{
int arg;
for (; *++argv;)
{
/* Allows passing in number processes to create */
if (sscanf (*argv, "-np=%d", &arg) == 1)
{
if (1 <= arg && arg <= MAXNUMPROCS)
{
NumProc = arg;
}
else
{
printf ("-np=<NumProc> must be within [1, ¥d]\n", MAXNUMPROCCS) ;
proccleanup() ;
}
}
else
{
printf ("Unrecognized argument 5s\n", *argv);
proccleanup () ;
}
}
}
/*

UTX/32 Real-Time User’s Guide A-39

* proccleanup -- cleans up the child processes
*

*f
proccleanup()

{

int 4i;

/* Kill all child processes. A -1 in LastProcNum tells the other
* processes that they should just exit. */
Procbuff->LastProcNum = -1;

exit (1);

A-40 UTX/32 Real-Time User’s Guide

Appendix B
Model Real-Time Applications

This appendix provides some simple examples of real-time programming under UTX/32.
One simple model application has been written in C in three versions. The programs
model a cyclic process that periodically writes information to a device. The three
different methods provide various degrees of accuracy. They are presented in increasing
order of accuracy.

The first version uses high-resolution interval timers. This version performs the work
and then sets a timer. When the timer expires, the work is repeated. There is no way to
determine how accurate this is, because the execution time between timers is unknown.
In addition, the time for the timer system call can vary somewhat and increase the
inaccuracy. This version is good for low resolution cyclic scheduling.

The second version uses high-resolution repeating timers. This is a more accurate
revision of the first model. The system takes care of sending the process a signal
periodically, so the user doesn’t have to take the time. This removes the system call
overhead. Even though this method is more accurate, it still cannot provide the greatest
accuracy. This is an inherent problem of the interval timer. Time can be skewed by small
amounts when programming the interval timer. The more the interval timer is used, the
more it can skew.

The final version uses cyclic scheduling. This is the most accurate, but also offers the
lowest resolution. The process requests cyclic scheduling and then suspends until it
needs to run. The cyclic scheduler completely removes the scheduling burden from the
process. All the process needs to do is suspend itself. The cyclic scheduler will wake it
up at the appropriate time and the process then executes.

This model application involves most of UTX/32's major real-time facilities, such as
timers or cyclic scheduling, real-time scheduling (including processor targeting),
lockdown, and direct I/O.

The files and their contents are:

model.h The header file for the model program

model.c The version using high-resolution interval timers
model2.c The version using high-resolution repeating timers

model3.c The version using cyclic scheduling

UTX/32 Real-Time User’s Guide B-1

B.1 Header File for Model Program

#define NO_OF PROCESSES 8 /* # of processes executing */
#define DEVICE ADDR 0x0800 /* device to use for Direct I/O0 */
$define MAXSVC 5 /* max # of SVCs per process */

/*

* SVC types (one for each different SVC made in the model not including
* SVCs made in initialization, direct I/Os, or the scheduling)...

L

enum SVCtypes { NoSVC, HiSpeedClock, ReadClock };

int Processor[NO_OF_PROCESSES] = {
6, o, 0, 0, 0, 0, 0, 0
}i
ing Priority[NO_OF_PROCESSES] = {
1, 4; 5, 9, 2, 6, 8, 10
};
/*

* Process_schedule is the # of 60HZ frames to suspend before starting the
* next execution of the process...

*/
int Process_schedule [NO_OF_ PROCESSES] = {
0; 2 2 2x 2. 2, 2. 2
}i
enum SVCtypes SVClist [NO_OF_PROCESSES] [MAXSVC] = {
{ NoSVC, NoSVC, NoSVC, NocSVC, NoSsSVvC },
{ HispeedClock, ReadClcck, NoSVC, NoSVC, NosvC },
{ HiSpeedClock, ReadClock, NoSVC, NoSVC, NosvC 1},
{ HiSpeedClock, ReadClock, NoSVC, NoSVC, NoSVC },
{ HiSpeedClock, ReadClcck, NoSVC, NoSVC, NoSvC },
{ HispeedClock, ReadClcck, NcSVC, NoSVC, NosSvC },
{ HiSpeedClock, ReadClock, NoSVC, NoSVC, NosvVvC },
{ HispeedClock, ReadClock, NoSVC, NoSVC, NoSVC }
}i
/*
* The DirectIOs struct contains the count of direct I/O operations to be
* done on a per process basis. The "count_physical" is the number of
* physical (no translation) IOCLs to be executed. The "count_ logical” is the
* number of logical (translation by direct i/o) IOCLs to be executed. The
* "count_ IOCDS" is the number of IOCDS in the logical IOCL.
*/
struct {
int count_physical;
int count_logical;
int count_IOCDS;
} DirectIOs[NO_OF PROCESSES] = {

b,
b,
}’
1

~

~ 0~
~ 0~

~
~

b
}

~

~
~

P e T e e R NP

O 000 oo+ o

O O 0O O O O o o
~

OO0 00 oOoNOo
——

B-2 UTX/32 Real-Time User’s Guide

/*

* Other globals for each process...

*/
int cid;

TIOCD P_iocl[2];
TIOCD L_iocl([100];

UTX/32 Real-Time User’s Guide

/* connection ID for direct I/0 */
/* physical IOCL list */
/* logical IOCL list */

B-3

B.2 High-Resolution Interval Timers Model

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

#include

<stdio.h>
<signal.h>
<sys/time.h>
<sys/wait.h>
<sys/lock.h>
<selio/di.h>
<sys/rt_time.h>
<directfiles.h>
<machine/cpu.h>
<sys/types.h>

"model.h"

#define TRUE 1
$define FALSE 0
extern errno;
int totallIOs;
int check = TRUE;
void childalarm handler();
main (argc, argv)
int argc;
char *argv([];
{
register int process;
int seconds;
int passes;
union wait waitstat;
register int k;
static TIOCD C_iocl[200];
statdic int stat_buf[2];
int err;
int clockrate;
int rate;

B4

struct hscval hscval, hscval2;

/*
* declarations for system calls...
*/
int which;
struct itimerval value;
if (argc < 2)
{
fprintf (stderr, "\nUsage:
exit (1),
}
seconds = atoi (argv([1l]);

/ *x
/

* model head that defines

* the model */

/*
/*

/*

logical True */
logical False */

total # of IOs for dio */

/*alarm signal handler for child procs*/

/ *
/*
/ *

/ *

/*
/*
/*

/ *x

/*

process number *x/
seconds to run tests */
of passes to run tests */
status of "wait" call

return */
where converted IOCL gces *x/
status buffer */

return values from sys calls */

the clock rate

(e.g. 60) */

clock rate in nanoseconds x/

%s seconds\n",

argv(0]);

/* get number of seconds to
* run model */

UTX/32 Real-Time User’s Guide

* Get clock rate
o */
clockrate = cycgetrate();

/*
* Convert clock rate to nanoseconds
*/
rate = (int) NS_PER_SEC / clockrate;
/*
* Establish child processes
*/
process = init_processes (seconds, &passes, argv([0]);
/*
* Process = 0 is the parent process. Processes >= 1 are

* the child processes.
* Wait for child processes to complete.

*/
if (process == 0)
{
for(;;)
{
if (wait (s&waitstat) == -1)
break;

}
/* exzit from parent process */
exit (0);
h
else
{
/*
* Set up alarm handler for child process
x/
signal (SIGALRM, childalarm_handler);

/ %*

* Exzecute mcdel for this process...
*/

for (; passes > 0; passes--)

{
check = TRUE;

/*
* Do SVCs for this pass...
*/
for (k = 0; k < MAXSVC; k++)
{
switch (SVClist [process] [k])
{
case NoSVC:
break;

case HiSpeedClock:
err = gethscvalue (&hscval);
if (err == -1)
{
fprintf (stderr,"gethscval failed errno=3d\n",
errno);
exit (1);
}

break;

_ UTX/32 Real-Time User’s Guide

case ReadClock:
getitimer (which, &value);

break;
default:
fprintf (stderr, "%s: invalid SVC specified\n",
argv[0]);
break;
}
}
/*
* Do Direct I/Os for this pass...
o/

for (k = 0; k < DirectICs([process].count_physical; k++)
{
err = diosiophys (Cid, &P_iocl[0], stat_buf, 0, 2);
if (err == -1)
{
fprintf (stderr, "%s: sio physical failed, errno was:
argv([0], errno);
exit (1);

/*
* Turn off all IOCDs after the number for this
* process have been completed
*/
/
L_iocl[DirectIOs[process].count_IOCDS - 1].i IOflags &=
~IO_CMD_CHAIN;

for (k = 0; k < DirectIOs[process].count logical; k++)
{
err = diosioleg (Cid, s<L_iocl(0],
DirectIOs [prccess] .count IOCDS * 8, &C_iocl(C],
DirectIOs [process].count_IOCDS * 8 * 2, stat_buf, 0, 2);

if (err == -1)
{
fprintf (stderr, "ss: sio logical failed, errno was:
argv[0], errno);
exit (1);
}
}
/*
* Turn on IOCDs again
x/

L iocl[DirectIOs [process].count_IOCDS - 1].i_Icflags |=
IO_C MD_CHAIN;

check = FALSE;

/*
* set up timer for next alarm
L
hscval2.hsc_seconds = 0;
hscval2.hsc_nanosecs = Frocess_schedule[process] * rate;

if ((err = sethsctimer (HSC_RELATIVE, &hscval2, &hscval)) ==
{

fprintf (stderr, "Sethsctimer failed errno=%d\n",

UTX/32 Real-Time User’s Guide

sd\n",

zd\n",

-1)

errno) ;

exit (1);
}
/*
* gsuspend process till alarm goes off
*/
pause () ;
}
/*
* if process used dio then disconnect dio
*/

if (totalIOs > 0)
{

if ((err = diodisconnect (Cid)) == -1)

{
fprintf(stderr,"Diosiconnect failed errno=xd\n", errno) ;
exit (1) ;

/* exit from child process */

exit (0);
}
}
/*
* init processes -- sets up the child processes.
* 1) forks the child process off
* 2) Locks process in memory
* 3) Targets process to CPU
L 4) and Sets up dio operations if necessary
*
* RETURNS -> The process number
*
*/

init_processes (seconds, passes, modelname)

int seconds;
int *passes;
char *modelname;
{
int : BT /* counter variable */
register int process; /* process # *x/
static int seekword,
buffer;

static int notify([2];
cpumask_t mask; /* used to target process to CPU or IPU*/
/*

* process 0 is the parent and processes >= 1 are the children

L4
process = 0;

/*

* fork off all processes...

X

for (i = 0; i < NO_OF_PROCESSES - 1; it++)
{
if (fork () == 0)

UTX/32 Real-Time User’s Guide

B-7

process = i + 1;

break;
}
}
/*
* if parent process return
*/
if (process == 0)
return (process) ;
/*
* compute # of passes...
*/
*passes = 60 * seconds / Process_schedule [process];
/*
* lock down process in memory...
*/
if (plock (PROCLOCK) == -1)
{
fprintf (stderr, "%s: Unable to lock down process #%d, errno was:
mcdelname, process, errno);
evit (1)
}
/*

* schedule process at a real-time priority...
*y

setrealpriority (0, Priority[process]);

/*

* target process to CPU

*/'
if ((mask = settargetcpumask(0, P_CPUMASK (Processor [prccess]))) == -1)

{
fprintf (stderr, "targetcpu failed, errno=*d\n",errno);
exit (1) ;

totalIOs = DirectIOs([process].count_physical +
DirectIOs [process].count_logical;

if (totalIOs > 0)
{

/ %
* connect to direct i/o...
*/
Cid = dioconnect (DEVICE ADDR, 0, totalIOs, notify);
if (Cid == -1)
{
fprintf (stderr,"*s:unable to connect to dio, errno =%d\n",
modelname, errno);
exit (1);
}
/*

* This example uses disk I/O
* Create the IOCL
*/

L_iocl[0].i_IOCmd = IO_SEEK;

UTX/32 Real-Time User’s Guide

%d\n",

L iocl[0].i_Address = (unsigned) &seekword;
L_jocl[0].i_IOflags = IO _CMD_CHAIN;
L iocl[0].i_XferCount = 4;

L _iocl[l].i_IOCmd = IO_READ;

L _iocl[l].i_Address = (unsigned) &buffer;
L_iocl[l].i_IOflags = 0;

L iocl[l].i_XferCount = 4;

/*

* convert logical IOCL to physical IOCL

*/

if (dioconvert (Cid, &L_iocl[0], 16, &p_iocl[0], 16) == -1)

{
fprintf (stderr, "%s: Error ccnverting logical to physical IOCL,
exit (1);

}

/*

* complete IOCL

*/

L_iocl(l].i_IOflags = IO _CMD_CHAIN;
for (i =0; 1< 97; i =1+ 2)
{
L _iocl[i + 2] L_iocl[i];
L_iocl[i + 3] = L_iocl(i + 1];

}
L _iocl[99].i ICflags = O;
}

return (prccess);

/*
* childalarm handler
*/’
void
childalarm handler()
{
/*
* check to see if system calls and dio’s
* completed before alarm received
*/
if (check)
{
fprintf (stderr, "SVC and DIO code not completed\n") ;
}

UTX/32 Real-Time User’s Guide

errnoc was:

3d\n",

modelna

B.3 High-Resolution Repeating Timers Model

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

<stdio.h>
<signal.h>
<sys/time.h>
<sys/wait.h>
<sys/lock.h>
<selio/di.h>
<sys/rt_time.h>
<directfiles.h>
<machine/cpu.h>
<sys/types.h>
"model.h"

#include model head that defines

* the model *x/

#define TRUE 1
$define FALSE Q

/*
/*

logical True */
logical False*/

/*
/'k

extern int
int
int

error number
total # of I0s for dio

errno;
totallOs;
check = TRUE;

i
)

veid childalarm handler () ; /* alarm signal handler for child

* child processes

*/
main (argc, argv)
int argc;
char *argv[];
{
register int process; /* process number L
int seconds; /* seconds to run tests i
int passes; /* # of passes to run tests */
union wait waitstat; /* status of "wait" call
* return */
register int k:
static TICCD C_iocl([200]; /* where converted IOCL goes */
static int stat_buf(2]; /* status buffer */
int err; /* holds sys call return values */
int clockrate; /* the clock rate (e.g. 60) */
int rate; /* clock rate in nancseccnds */

struct hscval

/*

hscval, hscval2;

* declarations for system calls...

*/'

int

struct itimerval

if (argc < 2)
{

fprintf (stderr,

exit (1);

which;
value;

"\nUsage: %s

seconds\n", argv([0]);

UTX/32 Real-Time User’s Guide

seconds = atoi (argv[1]): /* get number of seconds to
* run model */

/*
* get clock rate
4
clockrate = cycgetrate();
/*
* convert clock rate to nanoseconds
*f
rate = (int) NS_PER_SEC / clockrate;
/*
* Establish child processes
X/
process = init_processes (seconds, &passes, argv[0]);
/*
* if parent process wait for child processes to complete
*/
if (process == 0)
{
for (;;)
{
if (wait (&waitstat) == -1)
break;
}
/* exit from parent */
ezit (C) ;
}
else

{
£
* Execute model for this process...
s
signal (SIGALRM, childalarm_handler) ;
hscval2.hsc_seconds = 0;
hscval2 . hsc_nanosecs = Process_schedule[process] * rate;
if ((err = sethsctimer (HSC_CYCLE, &hscval2, &hscval)) == -1)
{
fprintf (stderr, "Sethsctimer failed errnc=%d\n",
errno) ;
exit (1);
}
for (; passes > 0; passes--)
{
check = TRUE;

/*
* Do SVCs for this pass...
x
for (k = 0; k < MAXSVC; k++)
{
switch (SVClist [process] [k])
{
case NoSVC:
break;

case HiSpeedClock:

err = gethscvalue (&hscval);
if (err == -1)

UTX/32 Real-Time User’s Guide

printf ("gethscval failed errno=%d\n",
errno) ;
exit (1)
}

break;

case ReadClock:
getitimer (which, &value);

break;
default:
fprintf (stderr, "%s: invalid SVC specifed\n",
argv([0]);
break;
}
}
/*
* Do Direct I/Os for this pass...
*x/

for (k = 0; k < DirectIOs[process].count_physical; k++)
{
err = diosiophys (Cid, &P_iocl([0], stat buf, 0, 2);
if (err == =1)
{
fprintf (stderr, "%s: sio physical failed, errno was: “d\n",
argv([C], errno);
exit (1);

L _iccl[DirectIOs[process].count IOCDS - 1].i IOflags &=
“IO_CMD_CHAIN;

for (k = 0; k < DirectIOs[process].count_logical; k++)
{
err = diosiolog (Cid, &L _iocl([0],
DirectIOs[process].count ICCDS * 8, &C_iocl([O0],
DirectIOs [process].count_IOCDS * 8 * 2, stat_buf, 0, 2);
if (err == =1)
{
fprintf (stderr, "%s: sio logical failed, errno was: xd\n",
argv([0], errno);
exit (1);

}
L iocl[DirectIOs[process].count_IOCDS - 1].i IOflags |=
IO_CMD_CHAIN;

/* sleep(l); do this until cyclic suspend is working */
check = FALSE;

pauase();
}
/*
* if dio’s used in this process disconnect dio
By
/

if (totalIOs > 0)
{
if ((err = diodisconnect (Cid)) == -1)

UTX/32 Real-Time User’s Guide

/*

fprintf(stderr, "Diodisconnect failed errno=%d\n",errno);
exit (1),

}
/* exit from child process */
exit (0);

* init_processes -- sets up the child processes.

*

* % % A O * *

1) forks the child process off

2) Locks process in memory

3) Targets process to CPU

4) and Sets up dio operations if necessary

RETURNS -> The process number

init_processes (seconds, passes, modelname)

int seconds;
int *passes;
char *modelname;
int i /* counter variable */
register int process; /* process # */
static int seekword,
buffer;
static int notify([2];
cpumask_t mask; /* mask used to target process to CPU or IPU*/
/*
* process =) is the parent process process >= 1 are the child
x processes
*x/
process = 0;
/*
* fork off all processes...
*f

for (i = 0; 1 < NO_OF_PROCESSES = 1; 1%+)
{

if (fork () == 0)

{

process = i + 1;

break;
}
}
/*
* if parent process return
xy
if (process == 0)
return (process);
/*
* compute # of passes...
*f

UTX/32 Real-Time User’s Guide

*passes = 60 * seconds / Process_schedule[process];

/*
* lock down process in memory...
*/
if (plock (PROCLOCK) == -1)
{
fprintf (stderr, "%s: Unable to lock down process #%d, errno was: %d\n",
modelname, process, errno);
exit (1);
}
/*
* schedule process at a priority...
*/
setrealpriority (0, Priority(process]);
/*
* target process to CPU
*/

if ((mask =settargetcpumask (0,P_CPUMASK(Processor([process]))) == -1)
{

fprintf (stderr, "targetcpu failed, errno=%d\n",errno);

exit (1)

/*
* connect to direct i/o...
*/’
totalIOs = DirectIOs([process].count physical +
DirectIOs [process] .count_logical;

if (totalIOs > 0)
{

fprintf (stderr,"%s:unable to connect to dio, errno =xd\n",
modelname, errno);

exit (1);
}
/*
* create iocd structures (very machine dependent)... ...its
* also for the disk only, since thats the only device I’ve
* got...
*/

L_jocl[0].i_IOCmd = IO_SEEK;

L _iocl[0].i_Address = (unsigned) &seekword;
L_iocl[0].i_IOflags = IO_CMD_CHAIN;
L_jocl[0].i_XferCount = 4;

L _iocl[l].i_IOCmd = IO_READ;

L _iocl[l].i_Address = (unsigned) &buffer;
L_iocl[l].i_IOflags = 0;

L_iocl[l].i_ XferCount = 4;

if (dioconvert (Cid, &L_iocl([0], 16, &P_iocl[0], 16) == -1)
{
fprintf (stderr, "%s: Error converting logical to physical ICCL, errnc was: 3d\n",
modelname, errno);
exit (1);

B-14 UTX/32 Real-Time User’s Guide

}
L iocl[l].i_I0flags = IO _CMD_CHAIN;

for (i =0; 1< 97; 1i =1 + 2)
{
L_iocl[i + 2] = L_iocl[i];
L_jiocl[i + 3] = L_iocl[i + 1];
}
L_iocl([99].i_10flags = 0;
}

return (process);

}

/*
* childalarm handler
x/

void

childalarm_handler()

{

if (check)

{
fprintf (stderr, "SVC and DIO code not completed\n");

UTX/32 Real-Time User’s Guide

B-15

B.4 Cyclic Scheduling Model

B-16

<stdio.h>
<signal.h>
<sys/time.h>
<sys/wait.h>
<sys/lock.h>
<selio/di.h>
<sys/rt_time.h>
<directfiles.h>
<machine/cpu.h>
<sys/types.h>

#include
#$include
#include
#include
#include
#include
#include
#include
#include
#include

#include
#include

<sys/param.h>
<sys/cyclic.h>
#include <sys/proc.h>
#include <errno.h>
extern int errno;

#$include "model.h"

/* model

* the model

int totalIOs; /* total
Tcyclicdata TestCycle;
main (argc, argv)
int argc;
char *argv([];
{
rejyister int process;
int seconds;
int passes;
uniocn wait waitstat;
register int ki
static TIOCD C_iocl[200];
static int stat_buf([2];
int err;
int curframe;
struct hscval hscval;
/*
* declarations for system calls...
*y/
int which;
struct itimerval value;

if (argc < 2)

{
fprintf (stderr,
exit (1);

}

seconds =

"\nUsage: *s seconds\n"

atoi (argv[1l]);

head that defines
x/

of IC0s for dio *x/
/* process number

/* seconds to run tests

/* # of passes to run tests

/* status cf "wait" call

* return ®

/* where converted IOCL goes
/* status buffer

, argv([0]);

/* get number of seconds to
* run model */

UTX/32 Real-Time User’s Guide

x /

/
Y

*/

%/

/*
* Establish child processes
*/

process = init_processes (seconds, &passes, argv([0]);

/*
* process 0 is the parent process process >= 1 are child processes
* in order for cyclic scheduled processes to work properly
* they must be cycsynced
*/

if (process == 0)

{

/*
All processes must be established before cycsync can be
* performed. So sleep for a while
*/
sleep(4);

if ((err = cycsync ()) < 0)

{
fprintf (stderr,"sync failed, errno=%d\n", errno);
exit (1);
}
/*
* wait for child processes to complete
*//
for (:;)
{
if (wait (&waitstat) == -1)
break;

/* exit from parent process */

exit (0);
}
else
{
/*
* Erxecute model for this process...
=/
for (; passes > 0; passes--)
{
/’*
* suspend process till its next set frame
*/
cycsuspend() ;
/*
* Do SVCs for this pass...
*/

for (k = 0; k < MAXSVC; k++)
{
switch (SVClist[process] [k])

{
case NoSVC:
break;

case HiSpeedClock:
err = gethscvalue (&hscval);

UTX/32 Real-Time User’s Guide

B-17

if (err == =-1)

{
fprintf (stderr, "gethscval failed errno=%d\n",
errno) ;
exit (1);
}
break;

case ReadClock:
getitimer (which, &value);

break;
default:
fprintf (stderr, "%*s: invalid SVC specified\n",
argv(0]);
break;
}
}
/*
* Do Direct I/Os for this pass...
*f

for (k = 9; k < DirectICs[process].count physical; k++)
{
err = diosicphys (Cid, &P_iocl[0], stat_buf, 0, 2);
if (err == -1)
{
fprintf (stderr, "*s: sio physical failed, errno was: *d\n",
argv[0], errno);
exit (1),

/ *
* Turn off all ICCDs after the numbers for this process
* have keen completed.
*/
L _iocl(DirectIOs[process].count IOCDS - 1].i_IOflags &=
“IO_CMD_CHAIN;

for (k = 0; k < DirectIOs[process].count_logical; k++)
{
err = diosiolog (Cid, &L_iocl(0],
DirectIOs[process].count_IOCDS * 8, &C_iocl[0],
DirectIOs[process].count IOCDS * 8 * 2, stat buf, 0, 2);
if (err == -1)
{
fprintf (stderr, "%s: sio logical failed, errno was: sd\n",
argv (0], errno);

exit (1);
}
}
/*
* Turn on IOCDs again
i/

-. L_iocl[DirectIOs[process].count_IOCDS - 1].i_I0flags |=
I0_CMD_CHAIN;

/*

B-18 UTX/32 Real-Time User’s Guide

* if this process previously connected dio,

* then disconnect dio
*®/

if (totalIOs > 0)

{

if ((err = diodisconnect (Cid)) == =-1)

{

fprintf(stderr, "Diosiconnect failed errno=%d\n",errno);

counter variable
process #

target process to CPU or IPU

exit (1) ;
}
¥
/* exit from child process */
exit (0);
}
}
/*
* init processes -- sets up the child processes.
* 1) forks the child process off
* 2) Locks process in memory
* 3) Targets process to CPU
* 4) Sets up cyclic scheduler
* 5) and Sets up dio operations if necessary
*
* RETURNS -> The process number
*
*/
init_prccesses (seconds, passes, mcdelname)
int seconds;
int *passes;
char *modelname;
{
int i; /*
register int process; /*
static int seekword,
buffer;
static int notify([2];
cpumask_t mask; Vi
int no_of frames; /*

process = 0;

/*
* Get Number of frames per cycle
*/

no_of frames = cycgetrate();

/*
* fork off all processes...

&

no of frames in a cycle

process = 0 is parent process

for (i = 0; i < NO_OF_PROCESSES - 1; i++)

{
if (fork () == 0)
{
process = i + 1;
break;

UTX/32 Real-Time User’s Guide

*/

*f

*/
x/

*/

B-19

/*
* if parent process, return
]
if (process == 0)
return (process) ;

/*
* compute # of passes...

*/

*passes = 60 * seconds / Process_schedule[process];

/*
* lock down process in memory...
*/
if (plock (PROCLOCK) == -1)
{
fprintf (stderr,"%s: Unable to lock down process #%d, errno was: %d\n",
modelname, process, errno);
exit (1);
}
/*
* schedule process at a real-time priority...
*/

setrealpriority (0, Priority[process]);

/*
* target process to CPU
o
/
if ((mask = settargetcpumask(0, P_CPUMASK(Processor[process]))) == -1)
{
fprintf (stderr, "targetcpu failed, errno==d\n",errno);
exit (1) ;

/* Make cyclically scheduled */
TestCycle.cycle length = no_of frames;
TestCycle.frames_lookback = 0;

for (i = 0; i < no_of frames; i++)
{
if ((i % Process_schedule[process]) == 0)
TestCycle.cycle[i] = 1;
else

TestCycle.cycle([i] = 0;
}
if (cycsetdata (&TestCycle, 1) == -1)
{
fprintf (stderr, "cycsetdata failed process %d pid %d errno %d\n",
process, getpid (), errno);

exit (1);
}
/*
* connect to direct i/o...
*/

totallOs = DirectIOs[process].count_ physical +
DirectIOs([process].count_logical;

if (totalIds > 0)

{
Cid = dioconnect (DEVICE_ADDR, 0, totallIOs, notify) ;

UTX/32 Real-Time User’s Guide

if (Cid == -1)
{
fprintf (stderr, "$s:unable to connect to dio, errno =%d\n",
modelname, errno);

exit (1);
}
/*
* this example uses disk I/O
*/

L_iocl[0].i_IOCmd = IO_SEEK;
L_iocl[O].i_Address = (unsigned) &seekword;
L_iocl[0].i_IOflags = IO_CMD_CHAIN;

L iocl[0].i XferCount = 4;

L_iocl(1l].i_IOCmd = IO READ;

L iocl[l].i_Address = (unsigned) &buffer;
L_iocl[l].i_10flags = 0;

L iocl[l].i XferCount = 4;

/*
* convert logical dio to physical dio
*/
if (dioconvert (Cid, &L_iocl([0], 16, &P_iocl([0], 16) == -1)
{
fprintf (stderr, "%s: Error converting logical to physical IOCL, errno was: ¥d\n",
modelname, errno);
exit (1);
}
/*
* Create IOCL
o

L_iocl[l].i_Ioflags = IO_CMD_CHAIN;
for (i =0; i < 97; 1 =i + 2)
{

L_ioccl[i + 2] L_iocl(i];
L_iocl(i + 3] = L _iocl(i + 1];
}
L iocl([99].i_I0flags = 0;
}

return (process);

UTX/32 Real-Time User’s Guide B-21/B-22

Gould Inc., Computer Systems Division
6901 W. Sunrise Blvd.

P. O. Box 409148

Fort Lauderdale, FL 33340-9148
Telephone (305) 587-2900

USER ORGANIZATION:

Users quué -M:e':rinbér'ship _A'épliga;no,n o

=2 GOULD

Electronics

REPRESENTATIVE(S):

ADDRESS:

TELEX NUMBER:

NUMBER AND TYPE OF GOULD CSD COMPUTERS:

PHONE NUMBER:

OPERATING SYSTEM AND REV. LEVEL:

APPLICATIONS (Please Indicate)
1. EDP

A. Inventory Control

B. Engineering & Production
Data Control

C. Large Machine Off-Load

D. Remote Batch Terminal

E. Other

4. Industrial Automation

. Continuous Process Control Op.
. Production Scheduling & Control
. Process Planning

. Numerical Control

. Other

mooOw>»

7. Simulation

A. Flight Simulators

B. Power Plant Simulators
C. Electronic Warfare

D. Other

243-06-1 (1/86)

2. Communications

A. Telephone System Monitoring

B. Front End Processors -
C. Message Switching
D. Other

5. Laboratory and Computational

A. Seismic
B. Scientific Calculation
C. Experiment Monitoring
D. Mathematical Modeling
E. Signal Processing
F. Other

8. Other

3. Design & Drafting

. Electrical

. Mechanical

. Architectural

. Cartography

. Image Processing
. Other

MTMOoOO D>

6. Energy Monitoring & Control

. Power Generation

. Power Distribution

. Environmental Control
. Meter Monitoring

. Other

mooO o>

Please return to:
Users Group Representative

Date:

Gould Inc., Computer Systems Division Users Group. . .

The purpose of the Gould CSD Users Group is to help create better User/User and User/Gould CSD
communications.

There is no fee to join the Users Group. Simply complete the Membership Application on the reverse side

and mail to the Users Group Representative. You will automatically receive Users Group Newsletters,
Referral Guide and other pertinent Users Group activity information.

Fold and Staple for Mailing

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST-CLASS MAIL PERMIT NO.947 FT. LAUDERDALE, FL

POSTAGE WILL BE PAID BY ADDRESSEE

GOULD INC., COMPUTER SYSTEMS DIVISION
ATTENTION: USERS GROUP REPRESENTATIVE
6901 W. SUNRISE BLVD.

P.O. BOX 409148

FT. LAUDERDALE FL 33340-9970

mimmmimmirnnmamamiinmal

Fold and Staple for Mailing

=: GOULD

Electronics

(Detach Here)

