
CPL

UTX/32'" Release 2.1

Real-Time User's Guide

January 1988

--'
-J

-

+ GouLD
Electronics

Limited Rights

This manuat is supplied without representation or waÍranty of any kind. Gould tnc.
therefore assurnes no responsibility and shall have no liability of any kind arising from
the supply or use of this publication or any material contained herein.

Proprietary Infornration

The information contained herein is proprietary to Gould CSD and/or its vendors, and its

use, disclosure or duplication is subject to the restrictions stated in the Gould CSD
license agreement Form No. 620-06 or the appropriate third-party sublicense agreement.

Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in
subdivision (b) (3) (ii) of the rights in Technical Data and Computer Software Clause at

s2.277.7013.

' Gould [nc., Computer Systems Division
6901 West Sunrise Boulevard
Fort Lauderdale, Florida 33313

UTX{3Z, MPX-32, PowerNode, and SeIBUS are trademarks of Gould, Inc.

CONCEPT/32 is a registered trademark of Gould, [nc.

UND(is a registered trademark of AT&T Bell Laboratories.

Copyright O 1988 by Gould Inc.
All Rights Reserved
Printed in the U.S.A.

History

Tlne UTX\32 Real-Time User's Guide, Release 2.1, Publication Order Number
323-005550-000, was printed in January 1988.

This document contains the following pages:

Title page
Copyright page

History page, page iii/iv
Contents, pages v tfuough ix
Figures, page x
Chapter 1, pages 1-1 through 1-4
Chapter 2, pages 2-l through 2-8
Chapter 3, pages 3-1 ttuough 3-4
Chapter 4, pages 4-1 through 4-ó
Chapter 5, pages 5-1 through 5-2
Chapter 6, pages 6-l through 6-3164
Chapter 7, pages 7-1 through 7-3n4
Chapter 8, pages 8-1 through 8-8
Chapter9, pages 9-l through 9-2
Chapter 10. pages 10-l through 10-6
Chapter 11. pages 1l-l through 1l-4
Chapter 12, pages 12-l through 12-5112-6
Chapter 13. pages l3-l through 13-31134

\!- Appendix A, pages A-1 through A-ztO

Appendix B, pages B-1 ttuough B-ZUB-Z?

UW32 Real-Time User's Guide iii/iv

Contents

Figures lx

1-1

I -1

1-l

t-2
L-2

1-3

2-l

I
1.1

1.2

r.3

1.4

1.5

2

2.1

2.2
2.2.1

2.2.2

2.3
2.3.1

2.3.1
2.3.3
2.-3.4

2.3.5
2.3.6
2.3.7
2.3.8
2.3.9

2.4

2.5

3

3.1

3.2
3.2.1

3.2.2

3.3
3.3. r
1.3.2

Introduction

Scope and Purpose of this Guide

Summary of Contents

Reader Prerequisites

Related Documentatron

Typographic Conventions

The UTX/32 Real-Time Environment

Real-Tirne-Enhanced t NIX 2-l
The Standard UTX/32 Environment 2-z

The BSD and System V Environmenrs 2-2
What UNIX Oftèrs Developers)_1

The Real-Time Envirorunent 2-3
Overview 2-3
Process Scheduling l-5
Timer Services 2-5
Paging and Swapprng 2-6
Interproc'ess Communication 2-6
The File System 2-6
Input/Output 2-6
Hardware Control 2-7
Application Models 2-7

Notes to FORTRAN Programmers 2-g

Special Considerations Z-8

Real-Time Scheduling 3-1

Aspects of Real-Time Scheduling

Real-Time Priority
Overview
User lnterface

Processor Targeting
Overview
User lnterface

-3 -l
-3 -1

-t -1

3-1

3-2
3-2
3-3

UT)K{32 Real-Time User's Guide

3.4
3.4.1

3.4.2
3.4.3
3.4.4
3.4.5

4

4.1

4.2

4.3
4.3.1
4.3.2
4.3.3
4.3.4
4.3.5
4.3.6

4.4
4.4.1
4.1.2

5.1

5.2

5.3

6

6.1

6.7

6.3
6.3.1
6.3.2
6.3.3
6.3.4
6.3.s

7

7.t
7.2

7.3
7 .3.1
7.3.2
7.3.3

vi

Special Considerations ..,.......... 3-3
Interactive ConEol of Real-Time Processes 3'3
FIFO Processing in a Multiprocessor System 34
Shared Memory 34
Targeting Nonexistent Processors 3 4
Non-Real-Time Processes 34

Cyclic Scheduling

The Cyclic Scheduler

Cycles and Frames

User Interface
Scheduling
Synchronization
Delayed Execution
Signal Handling
Lockdown
Rescheduling and Termination

Special Considerations
Setting frames_lookback
Ivlonitoring N{issed Frames

Timer Sen'ices

Overview

User Interface

Special Considerations

Prepage and L«rckdo\ï n

Description

User Interface

Special Considerations
Managing Physical Memory
Unlocking and Exiting
Waiting to Load
Shared Text
Shared Memory

4-l

4-l
4-l
4-3
4-3
4-3
4-3
4-3
44
41
1-1
1-5
1-6

5-t

5-1

-5 -1

5-2

6-l

6-1

6-L

6-2
6-2
6-3
6-3
6-3
6-3

Shared Nlemory 7'l

Description 7 -l

User Interface 7 -l

Special Considerations 7 -2

Configuration 7 -2

Synchronization 7 -2

Virtual Address Space Implications 7 -2

UTX|3? Real-Time User's Cuide

7.3.4
7.3.5

8

8.1

8.2
8.2.L
8.2.2
8.2,3
8.2.4

8.3

I
9.1

9.2

9.3

l0

r 0.1
10.1.1

r0.2
10.2.1

10.2.2

10.3

10.4

il
1 1.1

u,.2
tt.2.t
lt.2.2
I 1.3

l2

t2.t
12.2

12.3

t2.4

8-1

8-1

8-2
8-2
8-2
8-3
8-3

8-7

Paging and Swapping 7 -2

Shared Text 7 -3

High-Speed Inputioutput Supp«rrt .. 9-l

Aspects of High-Speed Input/Output 9-l
Support for Class E I/O 9-1

The Direct I/O Facility 9-1

Connected Interrupts r0-1

r0-1
l0 -2

r0-2
10-2
r0-3

t0-6

l0-ó

I I -l

I I -1

I t -t
11 -l
1l -2

Il-4

t2-lIlemorv Classes

Overview l2-l
An Example l2-2

Contiguous and Noncontiguous Memory Extents l2-2

Permissions l2-3

Direct File System

Description

User Interface
File System Structure
File Characteristics
dffstab
File System Attributes

Special Considerations

Overview
Configuration

User Interface
Indirectly Connected Intemrpt Example
Directly Connected lntemrpt Example

Stack Acldresses

Helpful Programs

Suspend and Resume

Overview

User Interface
suspend
resume

Special Considerations

UTX/3? Real-Time User's Guide vlt

t2.5

r2.6
t2.6.1
12.6.2
12.6.3

12.6.4

l3

13.1

13.2

13.3

Appendix

A.l
4.1.1
a.1.2

A,2
A.2.t
A.2.2

A.3
A.3.r

A.3.2

A.4

A.5

A.6
A.6.1
A.6.2

A.7
4.7.1
4.7.2

A.8
A.8.1
A.8.2

Reflective Memory l2-3

Summary of Special Memory Support 124
Creation 124
Allocation 124
Destruction .. 124
Inspection l2-5

Instruction Execution Nlodes 13 -1

Overview l3-1

lnstructions Requiring Privileged Mode l3-t
Ways to Execute Privileged lnstructions l3-2

.{ (ieneral Eramples. A-1

Real-Time Scheduling A-2
FORTRAN Real-Time Scheduling Example A-2
C Real-Time Scheduling Example A-4

Cyclic Scheduling A-6
Summary of the Template Example A-6
Slave Process Template A-7

Timer Services A-9
FORTRAN Test Programs A-9

Example 1
Example 2

C Test Programs
Example 1
E.xample 2

Shared Memory

Direct File System

Direct VO ...,.........
DIO FORTRAN Program

C Utilities for DIO FORTRAN Program

Connected Intemrpts
Example Using Indirectly Connected tntemrpt
Example Using Directly Connected tntenupt

Suspend and Resume
Ping-Pong
Order..........

A-9
A-11
A-t2
A-12
A-13

A-r5

A-21

A-23
A-23
A-26

A-28
A-28
A-30

A-_33

A-33
A-35

B-1

B-2

Appendix B N{odel Real-Time Applications

8.1 Header FiIe for Model Program

vlll UTX(32 Real-Time User's Guide

8.2 High-Resolution Interval Timers Model B-1

B.3 High-Resotution Repeating Timers Model B-10

8.4 Cyctic Scheduling Model .. 8-16

D(VTW32 Real-Time User's Guide

Figures

Figure

2-l
4-l
4-2
4-3
4-4

Page

Standard UTJíJ3?andUTN3Z with Real-Time Extensions 24
A Cycle of 20 Frames 4-2
A Well-scheduled Cyclic Process 4-2
A Poorly Scheduled Cyclic Process 44
A Cyclic Process Using frames_lookback 4-5

UTX/3Z Real-Time User's Guide

1 [ntroduction

This intÍoductory chapter provides the following information about this
document:

. Its scope and purpose

. A summary of its contents

. Reader prerequisites

. Related documentation

. Typographic conventions

l.I Scope and Purpose of this Guide

This guide is an introduction to the real-time features of the current release of
. Gould UTX/32ru, which is a real-time-enhanced UND(@ system that can serve

as both a development and a target environment for real-time applications. It is
intended for users who will be developing, maintaining, or running real-time
application programs under this operating system.

1.2 Summarv of Contents

This guide is divided into thirteen chapters and two appendixes. The first two
chapters acquaint readers with resources available to them and provide a

conceptual overview of UTXi-32 real-time features. The remaining chapters
describe specific functional extensions and real-time performance enhancements
to the UTX/32 operating system.

Chapter I

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Provides general information about this document

Describes the real-time enhancements to standarduTKl3z

Explains various aspects of real-time scheduling

Describes principles of cyclic scheduling and the cyclic
scheduler

Describes the real-time timer services

Describes the prepage and lockdown facility

Describes the System V shared memory interface

Discusses the direct file system facility

Describes the high-speed input/output support included in this
release

UTX/32 Real-Time User's Guide 1-1

Chapter 10

Chapter 1l

Chapter 12

Chapter 13

Appendix A

Appendix B

l.J Reader Prerequisites

Explains the connected interrupts functionality

Describes how to use the suspend and resume system calls

Describes memory classes that are used for special purposes

Describes instruction execution modes, both privileged and
unprivileged

Provides general examples of several real-time features

Provides different versions of a model real-time application

Readers should already have a working knowledge of UND(in general and,
ideally, of standard UTX/32 featuÍes. This document assumes that the audience
understands basic UNIX functionality and thus describes only real-time features
new to this release.

l.-l Related D«rcumentation

The documentation for the real-time features of UTX|32 includes the following
guides and manuals:

WXl32 Sof*+,ure Release Notes
This document describes the product release and should be read first.
Because the real-time environment is new to this release, the release notes

are of special interest to real-time users.

WXl3 2 D ocumentation Guide
This document provides an overview of the entire documentation set, Íls
rvell as a comprehensive UTX/32 glossary.

WXl32 Real-Time User's Guide
This document.

WXl32 BSD User's Reference Manual and UTX|32 BSD Programmer's Reference Manual
These are collections of manual pages with introductions, consisting of BSD
manual pages, manual pages documenting System V functionality that has

been ported to the BSD environment, and real-time-specific manual pages,

which have section specifiers of the form (nRT), such as dfcreate(lRT). For
system calls and subroutines, the specifier is (nRT) for C-callable versions

and (nRF) for FORTRAN-callable versions. (To indicate both versions in
this guide, references will sometimes be made in the form of
dÍd e I e t e (3RT IRF), for example.)

These manual pages are all accessible on line by using the man command;

see the man(L) manual page.

t-2 UW32 Real-Time User's Guide

WXI 3 2 I n p ut I O utput S ubsy ste m G uide

This guide describes changes and additions to the UTX|32 input/output
subsystem. Of special interest to real{ime users aÍe extensions to the VO
interface to support class E devices, the high-speed device (HSD) interface

driver and how to customize it, and the direct VO facility.

1.5 Typographic Conventions

The typographic conventions for this document are described below'

Prompts
The following prompts are used in this document:

Superuser PromPt

I C shell prompt

Nonprinting and control characters
Nonprinting characters obtained by striking special keys are displayed

within angle brackets. For example, indicates the delete key, <CR>

a carriage retum.

In this guide, a <CR> is assumed at the end of every command line unless

otherwise stated. The <CR> is displayed only if nothing else is entered on

the line or if the sequence of keysEokes would otherwise be unclear.

Control characters are represented using the caret notation. For example, ^D

intlicates <CTRL>-d. ln examples. conrol characters are shown as echoing

on the terminal screen. Whether they echo on your terminal depends on its

settings: see srrv(l).

Boldface
Command and utility names, filenames, pathnames. and words from code

are printed in boldface.

Example:

The nroffcommand is used to format text.

Exception: When such a term is long and all uppercase, such as

PLOCK-FRACTION, it is not printed in boldface.

Lineprinter and lineprinter bold
Displays of code and user sessions are printed in lineprinter font. In
displays of interactive user sessions, text typed by the user is printed in
lineprinter bold.

UW32 Real-Time User's Guide

i

1-3

Example:

tI'e
file1 file2 fi1e3

Italics
Variable expressions that must be replaced with a value are printed in
italics. Square brackets ([]) around an italicized variable expression signify
that specifying the value is optional.

Example:

* cd ldirectoryl

ltalics are also used to introduce new tenns, for titles of documents or
manual pages, and occasionally for emphasis.

Examples:

UND(manual pages aÍe often referred to as nanpages.

See mounr(8) for further information.

Ellipses
Vertical or horizontal ellipses (. . .) indicate that information has been

omitted.

Example:

à rsh fang

:

t I.ogout

Blank pages

Since each major section of the document begins on a ri-eht-hand (odd-

numbered) page, blank left-hand (even-numbered) pages occasionally
precede new sections. You can be assured that such a page is intended to be

blank if the preceding page has a double page number, such ts 4-514-6.

l-4 UT){R? Real-Time User's Guide

2 The UTX/32 Real-Time Environment

2.1 Real-Time-Enhanced UNIX

This release of lJTXl32, a UND(-based operating system for virnral CONCEPT
prodrrct Line (CPL) machines, is the frst version otUTXl3Z to supPort real-time

features. Thi§ chapter presents an overview of these real-time features and of the

standard UW32 UND(environments.

A real-time operating system is one that meets the requirements of the real-time

software applications that nrn on it. tn general terms, these requirements are for

determinism, control, and performance. Determinism means predictability of
program execution, such tlat each time a real-time application executes, its

computations and input/output aÍe performed in the same relative order. Control

is the ability to regulate the use of resources . Performance for a real-time system

means fast response time during both computation and input/output, such that

. neither is affected by the limitations of the other.

Unfortunately, many operating systems designed to meet these requirements

have serious disadvantages :

. They provide poor development environments and a limited range of
support software.

. They are proprietary systems. This makes applications less portable and

standardization more drfficult.

. Standard tools are generally not portable to them. so developers must. in

most cases, build their own.

On the other hand, operating systems that offer good development environments

and higher levels of standaldization tend to be the time-sharing systems, such as

UND(. Designed to maximize throughput, these systems are unsuited for real-

time execution. A real-time application can, of couÍse, be developed on a time-

sharing system, but it cannot be tested or used there. This makes development

more difficult, since testing concurent with development is not possible.

UTJ(32 solves these problems by providing a UND(development environment

as well as an environment that can meet real-time execution requirements.

UTX(3} provides the following:

. Full BSD and System V UND(firnctionality, which is development-oriented

. Enhancements that enable the operating system to meet the deterministic

execution requirements of a wide range of real{ime applications

The following sections describe the UTX|3? time-sharing development

environment and the real-time execution environment.

VTX|32 Real-Time User's Guide 2-l

2.2 The Standard UTX/32 Environment

The standaÍd VW32 environment offers two UND(operating system

environments, each of which offers benefits to the user.

2.2.1 The BSD and System V Environments

The rwo major UND(systems are the Berkeley Standard Distribution (BSD) and

AT&T's System V. UW32 provides both a BSD environment and a System V
environment. Gould enhancements are also included in UTN32. For a

discussion of this split environment, refer to the UTX|32 Operations Guide and

to the sv(1) UTX(3? manual page. For a discussion of how this split environment
affects the real-time user, see Section 2.3 of this guide, "The Real-Time

Environment."

2.2.2 What LINIX Offers Developers

UW32 is fully available to users as a single-user or a multi-user development
environment. The following list attempts to convey at least some of the

. advantages of this environment:

The LINIX standard
UND(is a well-known standard for operating systems. As a result, a wide
variety of third-parry software is available for UNIX programmers, much of
it free.

Fairness and throughput
UND(was developed as a time-sharing system for relatively slow machines.

The result is an emphasis on faimess and throughput that is beneficial to a
multiuser development environment.

Wide selection of tools
UND(provides a wide selection of basic tools that can be combined.
Because the numerous UND(tools assume a standard, byte-stream format

for their input and output, they can be combined in many ways using pipes

and I/O redirection.

Programmable shell
UND(users are not limited to a single command inteqpreter. The most

commonly used command intelpreters, the Boume shell and the C shell, are

programmable, and many useful scripts can be written for them.

Choice of editors
A variery of line, view, stÍeam. and more versatile editors, such as Emacs,

run under UND(.

Networking
Networking software available on UND(includes the Network File System

(I.[FS), support for local area networks, interfaces to high-perforÍnance
workstations, and access to world-wide networks such as Usenet (the UND(
useÍ community) and the ARPANET.

aa UTX|3Z Real-Time User's Guide

Information and communication management facilities
Electronic mail and other facilities make it easy to store and exchange
information on the system and between systems.

Online documentation
Basic documentation of UND(utilities, system calls, and libraries is
available on the system.

Because UND(is a commonly used standard operating system, many books
describe the UND(development environment and how to use it. A few of them
are:

. Brian W. Kernighan and Rob Pike. The UNIX Programming Environment.
Englewood Cliffs, New Jersey: Prentice-Hall. Inc., 1984.

. Henry l\ÍcGilton and Rachel Morgan. Introducing the UNIX S1'srern. New
York: McGraw Hill, tnc., 1983.

. S. R. Bourne. The UNIX System. Reading, Massachusetts: Addison-
Wesley, 1983.

. M. G. Sobell. A Practical Guide to the UNIX System. Menlo Park,. California: Benjamin Cummings, 1984.

Also, many UND(journals are published.

2.3 The Real-Time Envir«rnment

2.3.1 Overview

A real-time operating system must meet certain specific requirements in order to
provide the determinism, control, irnd performance needed to execute reat-time
applications. Standard UTX/-12 includes features that meet some of these real-
time requirements. [n certain critical areas, however, the real-time environment
bypasses or extends standard UTX|32.

Figure 2-1 illustrates, in a very general way, how these new real-time feahres fit
into standard UW32. The drarving on the left represents the levels in standard
UT){.(3Z, the processing paths between the levels, and examples of services
available at each level. The drawing on the right represents the levels in UTX|3L
with its real-time enhancements. This drawing also contains Íuïows that indicate
direct paths between the process interface level and the intemal services or
hardware interface levels. Real-time applications can use these direct paths to
bypass the overhead rypically encountered in a timesharing environment.

The feanres of the UTX|3? real-time environment are available within the
UW32 BSD environment (see Section 2.2, "The Standard UTXIIZ
Environment.") Since some of these features are standard System V feanres,
UW32 makes them available in the BSD environment by including them in the
real{ime library. For more information on the real-time library, refer to into(Z)
and intro(3) in the UTX|32 BSD Programmer's Reference Manual (or rype "man
2 intro" and "man 3 intro" on the system).

UTX/32 Real-Time Llser's Guide 2-3

uTxt32
UTX/32 with

Real-Time Extensions

Figure 2-1. StandarduTxl3z and UTX/32 with Real-Time Extensions

Process lnterÍace

System calls

Process Services

File svstem
t/O system
tPc

lnternal Services

Memory management
Scheduling
l/O system

Process lnterÍace

Direc't files

Process Services
lndirectly con nected interrupts
Cyclic scheduler
High-resolution timers
Memory c/asses

lnternal Services

Real-time scheduler
Prepage & lockdown

Hardware lnterÍace

Device drivers
Clocks

Hardware lnterÍace

Directly connected interrupts
Hardware privileges
Direct l/O
HSD support

24 UTX/32 Real-Time User's Guide

This chapter introduces the Uï)V32 real-time environment by summarizing, for

each real-time<ritical area of the operating system:

. The real-time requirements in that area

. The UW32 real-time features that meet each requirement

. If a feature is real-time specific, whether it bypasses or extends standard

(non-real+im e'l UTXR2 functionality

Typical real-time application models are then discussed.

Most of these features are described in Chapters 3 through 13 of this guide. The

specific system calls and library routines associated with these features are also

documented inthe WXl32 BSD Programmer's Reference Manual. Special files

are in the UTX\32 Special Files Reference Manual; commands are in the UTX|32
(Jser's Reference Manual or the UTX|32 System Administrator's Reference

Manual.

2.3.2 Process Scheduling

(l) Requirement: Delerminism and control in process schedtrling.

WXl32 real-time feature: Real-time, priority-based preemptive scheduling. See

Chapter 3, "Real-Time Scheduling," for more information.

Bypass or e.rtension? Bypasses standard UTX|3z time-shared scheduling.

(2\ R e q u ir e me nt : Frame -based, repetitive, process execution.

WXl32 real-time feature: Cyclic scheduling. See ChapteFl' "Cyclic

Scheduling." for more information.

Bypass or extensíon? Extends standard UT"X/3Z.

\3) Re qu ire menr: High-speed context switching.

WXl32 real-time feature: Suspend and resume primitives. See Chapter 11,

"suspend and Resume," for more information.

Bypass or ertension? Extends standard UTW32.

2.33 Timer Senices

Requirement: High-resolution event scheduling and execution-time

measurement.

WXl32 real-time feartre.'Enhanced timer services. These provide interval and

UTW32 Real-Time User's Guide 2-5

time-of-tlay measurements from a high-resolution clock. See Chapter 5, "Timer

Services." for more information.

Bypass or extensionT Extends standaÍd UTX|3Z timer services.

2.3.4 Paging and Swapping

Requiremen.' ConEol over process paging and swapping.

UTX\32 real-time feature: Prepage and lockdown. This facility allows the user

to make all or part of a process resident in memory. See Chapter 6, "Prepage and

Lockdown," for more information. This feature is standard in the System V
environment irnd provided in the (BSD) real-time library.

2.3.5 Interprocess Communication

R e q u ir e me nr; Deterministic interproce s s c ommunication.

WXl32 real-time fearures: Shared memory, semaphores, messages, and signals.

See Chapter 7, "Shared Memory," for more information about shared memory.

Signals are standard BSD. Shared memory, sempahores, and messages are

standard System V but are also provided in the (BSD) real-time library.

2.3.6 The File System

Requiremenr; A file system that supports contiguous files, deterministic transÍèr

times, and asynchronous I/O capability.

WXl32 real-time featrte: Direct files. The direct file system provides

preclictabte disk I/O tbr files. See Chapter 8, "Direct File System," for more

information.

Btpass or e-rtensionT Bypasses the UTX/32 file system.

2.3.7 InpuíOutput

(l) Requiremeflr.' Support for common real-time devices.

WXl32 real+ime feature; Support for class E devices. UTX|3Z includes a

generic, user-extendible high-speed device (HSD) driver. See Chapter 9, "High-

Speed Input/Output Support," for more information.

B-,-pass or extensionT Extends the UTX/32 VO interface.

12) Requirement: Direct access to VO devices for processes, including
asynchronous I/O capability.

2-6 UTX|3} Real-Time User's Guide

WXl32 real-time feature: Direct I/O. See Chapter 8, "Direct File System," for
more details.

Bypass or extension? Bypasses standard UTX|3ZVO.

2.3.E Hardware Control

(l) Re quiremel,r.' Access to special-purpose memory.

WXl32 feature: Memory classes. See Chapter 12, "Memory Classes."

Standard or new? New.

B-;pass or exrcnsionT Extends standard UW32 functionality.

(2) Requiremenr.' Minimal intemrpt response time.

WXl32 feature: Directly connected interrupts. See Chapter 10, "Connected
Interrupts."

Stondard or new? New.

8-r'pass or e.rtension? Extends standard UW32 functionality.

l3') Requiremenr.' Execution of privileged instructions by user processes.

WXl32 feature: Privileged insfruction e.\ecution mode. See Chapter 13,
" Instruction Execution Modes. "

Standard or new,? New.

B-rpass or e.rtension? Extends standard UTX(3? functionality.

2.3.9 Application llÍodels

UW32 supports the execution of real-time applications on several models:

. Clock-driven control processes

. Clock-drivenindepenrJentprocesses

. Cyclically scheduledprocesses (frame-basedexecution)

. Event-driven processes

The high-resolution clock and cyclic scheduler support the clock-driven and
cyclically scheduled models, respectively, which are highly sensitive to context-
switching time. Direct VO and connected intemrpts support the event-driven
model, where VO response time is critical.

Appendix B provides two versions of a simple real-time application written in C.
The first version runs off the high-resolution clock, the second uses cyclic
scheduling.

UW32 Real-Time User's Guide 2-7

2..1 Notes to FORTRAN Programmers

The FORTRAN progïÍunmer should be aware of the following:

. Using the UTX/32 F77 compiler is not recommended. The Gould Common
FORTRAN compiler is strongly recommended instead, because it provides
a syntax that is common to MPX-32ru, UW32 on CPL machines, and

UTX{32 on NPL machines.

. This release of the operating system includes support for global commons
and datapools, but this functionality is only accessible by using Gould
Common FORTRAN, a product that is available separately.

. It is often possible to use C subroutines to advantage in places where you
may be accustomed to using assembly language code. FORTRAN
programs can call C subroutines that define system calls. See Section A.6,
"Direct I/O," for an example.

2.5 Special Considerations

. The following are warnings to heed when using the real-time features:

. Do not log in and work at the console. UT)({32 console I/O is unavoidably
slow and resource consumptive in the real-time environment.

. When compiling or linking any real-time program, you must load the real-
time library using the -lrt option to the compiler or linker.

I cc -O -o control control.c -Irt

. If the program is in FORTRAN, you must also load the the real-time
FORTRAN library using -lrtf. Because FORTRAN library functions may
call functions from the C real-time library, -lrt must follow -lrtf.

t f,ort -O -o dioteat.f -lrtf, -Irt

2-8 UTX/3? Real-Time User's Guide

3 Real-Time Scheduling

3.1 Aspects of Real-Time Scheduling

UTX|3Z real-time scheduling has two components:

. Preemption based only on real-time priority

. Processor targeting

These topics will be addressed separately.

3.2 Real-Time Pri«rritv

3.2.1 Overview

The UTX/32 timesharing scheduling algorithm continuously adjusrs the priority
. of each process based on the recent resource use of Íhe process. The adjustrnent

is intended to give each process a fair share of the system's resources. Since
real-time applications may need to give very unbalanced shares of resources to
specific processes. UTX|32 includes scheduling options allowin_r an application
to assign nonadjustable real-time priorities to pro!'esses. This results in stricter
control over process ordering.

Real-time processes have priority values in the range 0-63. with 0 being the
highest priority. The process with the highest priority executes continuously
until it voluntarily relinquishes the processor to await an event, which is krown
as bloc'king, or until a process with a higher real-time priority becomes runnable.

Real-time priorities are logical process priorities; they do not affec:t interrupt
servicing. Real-time priorities do not change except as the result of a
setrealpriority or unlxscheduling system call. See r eal pri o r it

-v
(2RT/RF).

3.2.2 User Interface

UW32 provides system calls to switch a process between real-time and
standard UT){(32 scheduling and to determine the real-time priority of a process.

l. To make a process run at a real-time prioriry, use the following code:

oldprio = setrealpriority (pid, newprio)

This sets oldprio to the old real-time priority of the process with the process
identification number of pid, or to NONRT if the process was formerly a
standard UTX|32 (non-real-time) process (NONRT is defined in
/usr/include/sys/types.h). It assigns newprio to be the curenr real-rime
priority of the process.

UW32 Real-Time User's Guide 3-l

2. To find out the real-time priority of a process, use the following code:

realprio = g:etrealPrioritY lPid)

This sets realprio to the reahime priority. If the process is a standard

UND(process, realprio is set to -l and errno is set to EINVAL.

3. To revert to standaÍd UW32 scheduling, use the following code:

error = unixscheduling lpid)

This assignment works without comment, unless the process was already a

standard UTX|32 process, in whichcase error is set to -1 and errno is set

to EINVAL.

3.3 Processor Targeting

3.3.1 Overview
'

virtual CPL processor architecture is asymmetricall both a CPU and an IPU are

supported. To improve total throughput, the UTX/32 scheduler reviews how

processes use the processor services and restricts those proc'esses that use CPU-

only services to running on the CPU. Such a process mty have to wait for the

CPU to become free even though the IPU is idle. Surce real-time applications

often tlo very explicit load balancing of their own, UTX/32 includes options

allowing a process to indicate which processor it should be run on: those options

override the targeting done automatically by the time-sharing scheduler.

Processor targeting permits ÍhL' user to indicate that prmesses should run on

particular processors w'henever possible. On virtual CPL ntachines, all processes

con Ívn on the CPU, but processes doing I/O or system calls rlr.it run on the

CPU and cannot mn on the IPU. Processor targeting lc'ts the user specily thitt

important computations should run only on the IPU. where they are not subject to

external inteÍïupts. Such a process will run on the CPU during execution of
system calls but will be moved back to the IPU immediately. instead of moving

back slowly under UTX/-32's adaptive load balancing algorithm.

If only invalid processors are specified when Brgeting processes,

settargetcpumask retums an error, setting errno to EIIWAL. If valid as well as

invalid processors are specified, the valid processors are enabled and no error is

returned. tn particular. an error will occur if a task is targeted only to the IPU on

a cPU-onIy CPL system. Applications using processor targeting should use

getactivecpumask to check the system configuration before trying to assign

tasks to particular processors. This consideration is especially important when

developing code on a CPU-only system if that code will eventually be run on a

CPUIPU system.

3-2 UTX(3} Real-Time User's Guide

3.3.2 User Interface

uTN32 provides system calls to target a proces§ to a §et of processors, to

determine the targeting of a process, and to determine what processors aÍe

available. CPU targeting defines symbolic names for processors. It also defines

cpumask_t, an integer type to which logical operations can be applied.

cpunumner t is the acnral number of a processor. Numbers are converted to

masks by P-CPUMASKO.

. To taÍget a proce§s to a set of processor§, use the following code:

mask : settargetcpumask (pid, newmask)

This sets mask to the old CPU targeting of the process and assigns the

process to the processors specified by newmask. If any invalid processors

are specified by newmask. errno is set to EINN/AL'

. To find out what processors a process is targeted to, use the following code:

mask = qettargetcPumask lPid)

This sets mask to the current processor targeting of the process.

. To find out what processors aÍe on the system, use the following code:

mask = getactivecPumask o

This sets mask to the set of processors available as targets'

For examples of real-time scheduhng, refer to Section A.l, "Real-Time

Scheduling," and Section 8.4, "Cyclic Scheduling lvlodel"'

J.{ Special Considerations

3.4.1 Interactive Control of Real'Time Processes

Running real-time processes from a shell session may lead to confusing problems

since real-time processes take priority over the normal shell. In order to keep

interactive control of real-time processes in development, the prioriry of the shell

may be boosted above that of the processes being tested. In a networked

environment, it may also be necessary to boost the priority of processes handling

user input, like telnetd. See cs/r(l), sà(l), and nice(l) for more information

about boosting the priority of shells and processes'

UW32 Real-Time User's Guide 3-3

3.43

3.4.2 FIFO Processing in a Multiprocessor System

Even with real-time scheduling, it is difficult to guarantee frst-irVfust-out
(FIFO) processing of tasks on a multiprocessor such as the dual CPUIPU
configuration. The real-time implementation ensures that event handling occurs
in a FIFO order, but not total execution. Differing intemrpt loads and the
requirement that system calls be executed on the CPU may result in different
effective execution speeds on different processors. A process that started
executing on the IPU may be "passed" by a process at the sarre priority that staís
later but nms on the CPU, or vice versa. [f the overall load is well understood.
processor targeting may help in serializing the execution of a particular set of
processes.

Shared Memory

The CPUItrU implementation for virtual CPL machines does not guarantee
cache consistency between the two processors under all circumstances. Although
the inconsistency is ÍaÍe, processes that share memory across processors must
implement their own synchronization and may be sensitive to the inconsistency.
To ensure that all users of a given segment will be in the same cache, processes

using shared memory are usually marked automatically so that they will not
execute on the IPU. Only non-targeted processes can be thus marked.

Targeting Nonexistent Processors

As previously mentioned, if all specified processors aÍe invalid,
settargetcpumask renrrns an eÍïor. For more information, see Section 3.3.1.
"Overview."

3.tt.5 Non-Real'Time Processes

For non-real-time UTX/32 processing, processor taÍgeting is less strict, involving
biasing rather than targeting. An idle CPU may pick up IPU-targeted tasks.

3.1.4

34 UW32 Real-Time User's Guide

4 Cyclic Scheduling

4.1 The Cyclic Scheduler

The cyclic scheduler provides an efficient, reliable, and easy{o-use way to

schedule processes periodically, according to the specifications supplied by each

process. one or more proce§ses may be scheduled for the same time. These

processes subsequently run according to their real-time priority' The cyclic

scheduler can also synchronize processes so that they maintain a constant phase

relationshiP.

The cyctic scheduler divides each second into frames, based upon the line

frequency.Forexample,ona60HzSystem,eachframewillbe1.6,667
milliseconds long. Every cyclically scheduled process defines two variables in

Settingupitscycleanditsscheduling:cycle-lengthandcycle.

4.2' Cy'cles antl Frames

cycle_length is the number of frames in the process's cycle. The number of

fiamÀ in a cycle is usually, but not always, equal to the line frequency or to a

fractional multiple of rhe line tiequency. on a 60 Hz system, rypical cycles

would have lengths of 60, 30, 20, 15, or even l0 frames' In the current

implementation. the number of frames cannot be greater than the line frequency'

bui since line frequency standards vary, the cyclic scheduler can handle any line

frequency up to 256 Hz. Note, however. that the length of each individual frame

is Oetennined by the line [requency, not the number of frames per cycle' Thus. in

the 60 Hz system example, the frame duration is 1ó.667 milliseconds. no matter

rvhat the cycle-length might be.

cycle is an array of dimensions I by cycle_length that defines the process-

specific cycle. The maximum number of frames is equal to the line frequency'

Therefore, for any cycle with a cycle-length less than the line frequency, the

cyctic scheduler will ignore frames from cycle length + I to the line frequency'

À cyclically scheduted process is scheduled to perform its work only in certain

frames, known as seÍ frames, during its process-specified cycle. The process

defines those set frames in the array variable cycle. For example, on a 60 Hz

system, a tlpical process might have a cycle_length of 20 frames and a cycle

*hi.n ,"tr- èvery-other frame. The lst through the 20th frames define the

process's cycle and can be set to run or left unset. The 21st through the 60th

frames will be ignored by the cyclic scheduler'

set frames can come singly or in groups, and any pattern of set frames is

permitted---every second frame, every fifth frame, two set frames followed by an

àpen frame-whatever is desired. A cyclically scheduled process is expected to

nnistr its work before the next set fÍame; that is' each set frame should represent

one complete execution of a cyclically scheduled process. The process must

VTX(3? Real-Time User's Guide 4-l

suspend itself when it is done with the task by invoking the cycsuspend system
call. The process then waits for its next set frame. A process that continues
running past a set frame will miss that frame and be scheduled for the next set
frame. Figures 4-1 and 4-2 demonstrate these basic concepts of cyclic
scheduling.

Time-

Figure 4-1. A Cycle of 20 Frarnes

Figure 4-l illustrates an isolated cycle with a length of 20 frames. (The ignored
frames are not pictured.) Thus, for a 60 Hz system, each frame lasts 16.667
milliseconds. Every odd frame in the cycle is set, indicated by the shading. This
cycle and framing rvould be appropriate for a process thrt needs to run 10 times
each cycle and requires less than 16.667 milliseconds to complete its work each
time it runs. Note that the process can actually run tbr 33.333 milliseconds,
because it has an unset frame separating each set frame.

+
Time

--+ -{> + + -+

Figure 4-2. A Well-scheduled Cyclic Process

Figure 4-2 illustrates a cycle segment showing a well-scheduled cyclic process.

The arrows beneath the frames represent process execution time. Notice that ihe
process initiates at the beginning of each set frame, and finishes and suspends

before the end of the set frame.

For examples of cyclic scheduling, refer to Section A.2, "Cyclic Scheduling,"
and Appendix B, "Model Real-Time Applications."

4-2 UTX(ïZ Real-Time User's Guide

4.3 User Interface

4.3.1 pcheduling

tProcesses request cyclic scheduling by calling the cycsetdata library' routine and

passing three parameters: the cycle, the cycle's length, and a variable called

frames lookback, which helps cyclic processes stay on schedule. cycgetrate
retuÍns the hardware-dependent line frequency, which can be used in setting the

cyc le. S ee cy c s e tdata (3RT/RF) and cy c g etr are(3RT/RF).

Once the process has called cycsetdata. cyclic scheduling begins at the next

clock tick, with frame number zero. The process will be scheduled tbr its first set

frame after the next clock tick. If more than one process is scheduled to begin at

the same time, real-time priority scheduling takes place. The process with the

highest priority witl mn first. If t\vo processes having the same real-time priority
are scheduled for the same time, the order of their execution is undefined.

4.3.2 Synchronization

Cyclically scheduled processes otten need to run syncfuonously. cycsync resets

the frame counters of all cyclically scheduled processes to zero. The processes

will be resynchronized at frame zero of the next cloc'k tick. Processes do not

need to be cycsuspended at the time o[a cy'csJ'nc: however, any processing they

do will not be synchronized with other processes until a cycsuspend is issued.

See c -vcsyn c(3 RT/RF) and c u' c s u s p en d(2RTIRF).

4.3.3 Delayed Execution

lf a process must coordinate activities §'ith several olher pro('esses, then it may

choose to delay execution until all of lhose processes hal'e completed theiÍ

staÍtup procedures. Processes request this delay by' setting the wait_for_sync

flag in the cycsetdata routine. One of the pror:esses will then call the cycsync

library routine. Cyclic scheduling will commence at the next clock tick for all

cyclically scheduled processes. All tiame counteÍs are reset to zero. Those

processes that are scheduled to run m Íiame zero will be scheduled; the rest will
remain suspended until theiÍ first set frame.

4.3.4 Signal Handling

A cyclically scheduled process may receive signals while suspended or while

wairing for cyclic synchronization. If this happens, the process will field the

signal, execute the signal handle if one has been specified, return from the system

call with an eror. and set errno to EINTR. If they do not want to service
.intemrpts, processes need to guard against the possibiliry by blocking or ignoring

signals.

UTX|3? Real-Time User's Guide 4-3

Signals may be blocked or ignored during the system call. Ignored signals will
be thrown away, hut blocked signals will remain.

4.3.5 Lockdown

It is strongly suggested that cyclically scheduled processes be locked into
memory using the plock system call, especially if they use real-time priorities.
This will avoid possible deadlock, since real-time priority processes run before
standard UW32 priority processes (including the swapper). See plock(2RT/RF)
and Chapter 6, "Prepage and Lockdown," of this document.

11.3.6 Rescheduling and Termination

Processes may change their cyclic scheduling parameters at any time by calling
cycsetdata again. The new paÍameters will take effect with the next clock tick.
If this is done, a cycsync must be issued to resynchÍonize all cyclically scheduled
processes. [n C, cyclic scheduling may be terminated by calling cycsetdata with
a null pointer for the frst pararneter. FORTRAN users should supply a third

. parameter of zero to terminate cyclic scheduling.

Processes can get their current cyclic scheduling parameters by calling the
cycgetdata library routine; see cycgetdara(3RT/M).

.l.J Special Considerati«rns

Although cyclicalty scheduled processes are expected to suspend before their
next set frame, this does not always happen. When a process suspends in a set

frame other than one in which it started or resumed, it is said to have overrun.
The cyclic scheduler does not schedule processes tbr frmes into which an
overrunning process spills, and these become missetl .fi'arnes. Several set frames
may be missed at one time if a process severely overuns a set frame. lvÍissing
frames can be hazardous to certain cyclic processes. The cyclic scheduler has

services that can help cyclic processes adjust to minor ovemrns. Figure 4-3
illustrates a poorly scheduled cyclic process.

Time+

Figure 4-3. A Poorly Scheduled Cyclic Process

The process consistently overïuns, misses frames, and will not perform its work

44 UTX{3? Real-Time User's Guide

a§ frequently as desired. Note that the amount of work can build up. causing the
process to miss more and more frames as time passes.

4.4.1 Setting frames Iookback

Some processes will not be harmed if they miss a frame. On the other hand,
processes sometimes overïun a frame through no fault of their own, and it may
be important that they not miss that frame. Cyclically scheduled processes can
request help adjusting to missed ftames, depending on their needs. This is done
by an appropriate setting of frames lookback. This variable determines
scheduling when a cyclic process overruns, as follows:

frames lookback=O
The cyclic scheduler will assume that the current frame has been missed,
whether or not it is set, and will schedule the process for the next set frame.
This is the usual setting for a well-scheduled cyclic process that will never
miss a frame, or will miss one so rarely that such a mishap does not matter.

frames lookback>0
The cyclic scheduler will look at (frames_lookback - l) frames prior to the
current frame. If any of those frames is set, then the process is scheduled
immediately, that is, it returns immediately from a cycsuspend system call.
This feature is intended to be used by well-scheduled cyclic processes that
occasionally miss a frame but still want to mn. er.en though they run a bit
latel that is, the processes are expected to catch up by the next set frame.
Figure 4-1 illustrates such a pro!'ess.

cycsuspend and
immediate return

Figure 44. A Cyclic hocess Using frames_lookback

This process occasionally misses a frame and would benefit from a
judicious setting of frames lookback. Given that this process usually runs
and completes within a single set frame, setting frames_lookback to I or 2
would force the process to Íun at its usual time. The process would then be
caught up.

Potentially missed frame

VW32 Real-Time User's Guide 4-5

Large Values of frames lookback
Setting frames lookback to (cycle length - f) or larger effectively turns
off cyclic scheduling, since the process will resume after every suspension.
This is rarely desired ofcyclic pÍocesses.

Caution is needed in using the frames lookback feature. It should not be used
to fix a poorly scheduled set of processes. [f a process is continually missing
frarnes, then the amount of wort it does must be cut, or the cycle must be
rearranged. Using large values for frames lookback only delays this inevitable
rearrangement.

4.4.2 Monitoring Missed Frames

Processes can monitor the state of their missed frames in three ways:

cycsuspend
Returns the current frame number so the process knows what frame it is in
when it begins to run. Frame numbers begin with zero, not one; therefore,
the first frame in the cycle is frame 0, not frame 1.

cycgetframe
Renrrns the current frame at anv time.

cycgetstatus
Renrrns the current status of any cyclically scheduled process. The status
information contains:

The number of missed frames since the process last resumed
The number of missed frames is the number of frames the process has

missed since it last resumed, whether the process is currently running
or not. A process has not missed a frame until the frame has

completely transpired.

The total number of missed frames
The number of missed frames does not count the current frame or the

frame in which the process resumed. The total number of missed
frames is the number of missed frames the process has missed since the

time it requested cyclic scheduling or the last cycsync, whichever is the

more recent.

The current state of the process

The state of a cyclically scheduled process is either running or
suspended. See c.t'csttspend(3RT/RF), cycgerframe(3RT/RF),
cy c g e tstatu s(3RT/RF), and c vcsyn c(3RT/RF).

Status information is invalid in the following two cases:

1. The process is initializing. In this case, cycgetstatus will return an error.

2. The process has not suspended since the last cycsync. In this case, the

process has not had a chance to synchronize itself with other processes.

When the process next suspends, it will notice that a cycsync has occurred;
it will synchronize, and status information will again become valid.

4-6 UTX(32 Real-Time User's Guide

5 Timer Services

5.1 Ol'erview

VTX|3Z real-time timer services allow the user to create alarms and to measure
intervals with gïeater resolution than has formerly been available on Uï!32.
These real{ime services are based on a high-resolution clock distinct from the

UTX{32 system clock.

5.2 User Interface

UW32 timer services use the gethscvalue and sethsctimer system calls; see

gethsctalue(2RT/RF) and sethsctimer(2RT/RF). These calls respectively get the
current value of the timer and set an alarm for the process. The user interface is

almost exactly the same as that of the standardUTX(32 getitimer and setitimer
calls. gethscvalue returns the number of seconds and nanoseconds since the last
system boot. sethsctimer sets the high-resolution clock. Each process may have
only one outstanding alarm. Setting an alarm cancels any existing alarm. When
the timer expires, the process receives a SIGALRM signal. sethsctimer can be
used to set three kinds of alarms. An absolute alarm is sent at a time measured
from system boot time. A reladve alarm is sent at a time measured from when it
was set. A relative alarm can also be repeating. in which case a SIGALRM
signal is sent periodically. The thÍee types of alarms can be requested by giving
the appropriate mode value to sethsctimer. An additional mode allows the user
to cancel an outstanding alarm.

The mode values are defined in <sys/rt time.h>. This file includes the
following defines:

#define HSC_MÀX_TICKS 2000000000 /* 20 mín at 600 ns per tick */
#define HSC_RÀTE 600 ,/* nanosec per hsc tick */

It is recommended that the timer frequency be set to 600 nanoseconds per tick.
This will yield a maximum high speed clock interval of about 1288.24 seconds.
In addition to modifying the count rate, the interval timer hardware on the MFP
or IOP must be jumpered to count at the same rate. Consult your hardware
service representative to change the interval timer count rate.

For examples of using the timer services, refer to Section A.3, "Timer Services,"
Section A.4, "Shared Memory," Section B.2, "High-Resolution Interval Timers
Model," and Section 8.3, "High-Resolution Repeating Timers Model."

UTX/32 Real-Time User's Guide 5-l

5.3 Special Considerations

. It is possible for an alarm o be delivered while a cancel request for it is in
progress.

. Use of the repeating timer feature available through sethsctimer should be
reserved for applications requiring its high-resolution accuracy. For most
cases in which periodic scheduling is required, use of the UT)í32 cyclic
scheduler is recommended for its high reliabili§.

. The high-speed timer services, as distributed, use ttrc interval timer on the
IOP. They expect the interval timer to be jumpered to 600 ns. [t does not
come distributed that way. If the user notices that only a few million
"nanoseconds" are passing every second, this is the problem.

5-2 UT}(fiz Real-Time User's Guide

6 Prepage and Lockdovyn

6.I Description

This facility permits a process to fix its virtual memory pages in physical
memory, resulting in (1) the avoidance of nondeterministic delays as paging
occlrÍs, and (2) the ability to do VO directly in user memory. For more
information, refer to plock(2RTlRF). For more information on direct VO. see

Section 9.3, "The Direct [/O Facility."

6.2 User lnterface

Prepage and lockdown are implemented by the plock system call. With this call,
you can do the following:

. Lock an entire process with plock(PROCLOCK)

Lock the text segment of a process with plock(TXTLOCK)

. Lock the data and stack segments of a process with plock(DATLOCK)

. Remove all locks with plock(UNLOCK)

The following code is a simple instance of using the plock system call in C.

main ()

{

if (pJ-ock(PRoCLoCK) !: 0)

{

print f ('rCan't plock\n") ;
exit (1) ,'

)

/* use direct Í/o * /
)

,/* plock implicitly released on exit from process */

For further examples of plock in use, refer to Section A.2, "Cyclic Scheduling,"
Section A.5, "Direct File System," Section A.6, "Direct I/O," and Appendix B,
"Model Real-Time Applications."

UT]íJ32 Real-Time User's Guide 6-l

6.3 Special Considerations

6.3.1 Managing Physical Memory

Because physical memory is a limited resource, plocked processes cannot
increase their stacks or data areas without limit. In the current UTX|32
implementation, the variable max_tota§locks in the kemel sets an upper limit
on the amount of plocked memory. By default, it is set at boot time to
PLOCK_FRACTION (75Vo) of the physical memory available to the user. The
actual amount of locked down memory is contained in the variable totaljlocks.
All of these are defined in usr/include/sys/cmap.h. Their units arc cmaps,
which are individual 8Kb pages of physical memory. Because of this
granularity, the limit on the amount of locked down memory should be

considered advisory only. The limit may be exceeded if multiple processes

perform plocks simultaneously.

lf you wish to change the lirnit for plocked memory, proceed as follows:

1.In a source code system, change PLOCK_FRACTION and reboot the
system.

2.ln a binary system, patch the variable max_total_plocks into the running
kernel using adb; see adb(l). This is shown in the following example. The
user first invokes adb, including the -k option to use kernel memory and
the -w option to enable write mode. Of course, someone doing this must
have permission to write /dev/kmem. Note that adb does not retum a

prompt, and that it spaces out its responses. The user next examines the

current value of max_totaljlocks (24a in this example) and is returned a

value. The user rvrites the new value for max_totaljlocks and finally
examines the variable to ensure that the new value is in place.

adb -k -r /unix /dev/lmn
sbr af7c8 slr afbc8
pObr 0 p0lr 0 plbr 0 pllr 0

max_total_;rlocka/X
_ma:<_t.otal3locks t 24a
max_t ot al,J,].oc ka /n7 f, f f, f, Ë, f f,

_max_total3locks: 24a =
nax_total;lockr/X
_max_total3locks: Tfffff ff

7 fffffff

Note that, in changing the limit, care must be taken to avoid situations in which
deadlock can occur involving other facilities that require locked-down memory.

6-2 UTW32 Real-Time User's Guide

Unlocking and Exiting

Memory must be locked down if direct VO is being done into it and must remain
locked uÍrtil the VO is completed. plock provides a facility inside the kemel by
which the direct VO driver or a directly connected intemrpt can register a claim
against locked-down memory. Attempts to unlock memory while this claim is
outstanding are prevented, and facilities using locked-down memory must call
cleanup routines before plock can exit.

IVaiting to Load

plock waits for virtual memory pages to be paged in when locking. This means

that plock may take a long time to return if very little physical memory is free.

Shared Text

In fte current implementation, shared text that is plocked remains locked down,
even after the process that locked it exits, until all processes using that shared

text have exited.

Shared Memory

plock is intended to lock only the principal data segment of a process; it does not
necessarily lock down shared memory segments. In the current implementation.
this distinction does not matter, because shared memory is alwal's locked down,
but this locking should not be relied on in the fuhre. It is possible to lock down
shared memory explicilly by using the shmctl system call. See s/rrnctl(2RT) for
more information.

6.3.2

6.3.5

6.33

6.3.4

UW32 Real-Time User's Guide 6-3164

7 Shared Memory

7.1 Description

The current release of UTN32 includes an AT&T System V shared memory

interface that altows two or more processes to shaÍe physical memory segments

for data storage. The interface is intended to be used with semaphores or a
simple message protocol to provide a high bandwidth interprocess

communicarion (IPC) facility. tn tight of this, the System V shared memory

interface uses standard IPC control and operation primitives and values in
common with System V messages and semaphores.

Shared memory segments are dynamically created. Each segment is assignèd a

unique identifier by its creator and, Iike UTX|3L files, a set of access

permissions. Processes wishing to attach to the segEent must use the same

identifier and have appropriate permissions.

'
Shared memory segments need not occupy the same virtual address space in each

sharing process. In normal usage, assignment of shared memory virtual
addresses is left to the operating system. A process can request ihat a segment be

attached at a specified address as long as that space is not already in the process

image.

NOTE: The FORTRAN interface to shared memory is through global coÍnmons

and datapool facilities provided by the Gould Common FORTRAN compiler.

The System V shared memory facilities will provide the underlying mechanism

for the implementation of these language facilities.

7.2 User Interface

Four functions are provided for manipulating shared memory segments:

shmget
Gets a shared memory segment; see sftmget(2RT).

shmctl
hovides a variety of specifiable shared memory control operations; see

shmctl(ZRT). These include

. Setting permissions on a shared memory segment

. Placing the contents of a shared data structuÍe into a buffer

. Locking a shared memory segment into memory and unlocking it

. Removing a shared memory identifier from the system and destroying

the shared memory segment and data structure associated with that

identifier

UTN32 Real-Time User's Guide 7-l

shmat
Attaches the shared memory segment associated with the shared memory
identifier to the data segrnent of the calling process. Depending on the

address specifier and other factors, the segment may be attached at the fiÍst
available address selected by the system or at a specified address, and it may
be read-only or read-write. See s&mop(2RT).

shmdt
Detaches the shared memory segment located at a specified address from
the calling process's data segment; see sltmop(2RT).

The following header files should be included in any program which uses any of
the C shared memory interface functions: <sys/types.h>, <sys/ipc.h>, and
<sys/shm.h>.

For an example of using shared memory, see Section A.4, "Shared lvÍemory."

7.3 Special Considerations

. 7.3.1 Configuration

Several limits on the number and size of shared memory segments exist as

, configuration paÍameters. See Chapter 7, "Reconfiguring the System," in the

WXi 32 Operations Guide.

7.3.2 Synchronization

On PNó080 and PN9080 (CPU/IPU) multiprocessor systems. processes must use

some method of explicit synchronizalion to ensure consistency of shared data.

7.33 Virtual Address Space Implications

A shared memory segment can be attached only at a virtual address greater than

the highest valid address in the curent process image.

The address of the Íirst (lowest) shared memory segment attached to a process

places an upper bound on the dynamic data region that can be allocated to a

process.

7.3.4 Paging and Swapping

If a real-time process requires deterministic access to a shared memory segment,

it is recommended that the plock system call prepage and lock down the shared

segment. [n the current implementation, shared memory is locked down, but this
locking should not be relied on in the future: see plock(2RTAF).

7-2 UTX|3? Real-Time User's Guide

7.3.5 Shared Text

The System V shared memory interface does not support text sharing. Shared
text is implemented uaUTX{3Z as a characteristic of the process specified ar link
time. (Text sharing is the defaulr mode of Id.)

UW32 Real-Time User's Guide 7-3n4

I Direct File System

8.1 Description

Tïl.e UTN32 direct file system allows processes to perform disk VO in a fast,
efÍicient manner. It is a collection of library routines that allow the user to
manipulate a disk volume using UïX/32 direct I/O capabilities. With this
facility, you can

. Define contiguous file structures

. Create preallocated files

. Perform priority I/O requests with asynchronous notification

. Achieve fast and predictable VO times

. Perform VO without buffering

_ r Access a disk volume from multiple processes

These features are useful for real-time processing and applications that require
high-speed, predictable disk data rates. Standard UT)í32 I/O does nor support
contiguous files, static priority I/O, or asynchronous I/O completion notification.

The structure of the direct file system makes single-revolution opens, reads. and
writes possible for preexisting files. This implies that files can be created so that
the directory entry can be located on the first disk access, and read/writes can be
started without reading any disk information other than the data to be transferred.
Only siruations resulting Íiom disk contention rvith other proc'esses can slow
down the direct tile system.

The direct file system was implemented using the direct I/O interface. but if
necessary, the standard UTX|3Z raw VO interface can be specified when
mounting a direct file system. Note, however, that when using the UT)í32 I/O
interface, asynchronous capabilities are lost and access is not guaranteed to be
synchronous. See dio(7RT), ioi(7), and the UTXIJ2 lnputlOutput Subsystem
Guide for further information.

The user commands for the direct Íile system are: dfcreate, dfdelete, dfextend,
dfls, dfread, dfrename, and dfwrite. The system administrator commands are
dfmkfs, dffsck, dfmount, and dfumount. These commands, and the direct file
system library routines and system calls, are documented in the WXl32 BSD
User's Reference Manual, the WXl32 BSD Programmer's Reference Manual,
and the UTX|32 System Adminisnator's Reference Manuol. All relevant
manpages begin with d/.

UW32 Real-Time User's Guide 8-1

This is useful if the user wishes to have both a direct Íile system and a UND(file
system on the same volume and use them simultaneously. The direct file system
demands exclusive access to a volr me.

8.2 User [nterface

E.2.1 File System Structure

Each direct file system resides on its own volume and must be mounted, using
the dfmount utility, on a disk device. The direct file system is not accessible by
the UTX/32 file system, but it is mounted and dismounted similarly.

Files are referenced by pathnames of the form /volume/name, where volume is
the name by which the volume is mounted and name is the name of the file on
the volume; see dfmount(8RT). Neither the volume name nor the filename can
be longer than 31 characters.

The dfmkfs utility formats the direct file disk; see dfmffs(9RT). Ir formats an
empty directory on the disk and forms a free list of all the disk tracks that have

- not been marked "bad" by the veritication diagnostic. Each volume contains one
directory (i.e., a flat file system) that contains entries for all files on the volume.
To give better hashing performance, twice the number of entries requested are
created, but only the requested number of entries can be accessed.

Here is how the disk is organized:

. The first block contains a volume descriptor describing the disk geomeEy
and the volume formatting.

. The free list bit map occupies the next set of sequential btocks. Each bit in
the free list corresponds to a track on the disk. All tracks on the disk are
represented, including the free lisl itself. A set bit denotes that the track is
allocated. The number of blocks in the free list depends on the size of the
disk.

. The disk directory occupies the next set of sequential blocks. It extends to a
track boundary.

. AII disk blocks following the directory are data blocks.

8.22 File Characteristics

Direct Íiles have these characteristics:

Extents
Direct files are composed of groups of contiguous disk blocks called
extents. Files may be composed of 1 to 16 extents, with each extent a
multiple of disk tracks. The user controls the size of each extent and the
distance between the extents (see "Gaps," below) at creation time. By
creating a Íile with an extent size the same as the file size. you can create an
entirely contiguous file.

8-2 UTX/32 Real-Time User's Guide

Gaps
There will often be cases where bad blocks partition the disk so that large,
contiguous files cannot be created. For this reason, you can specify a
maximum ga! size when you create a file. Maximum gap size is defined to
be the number of bytes that can separate two adjacent extents in a file.

Since the minimum disk allocation unit is one track, the minimum
allowable gap size is also one track. This implies that the start of the nth
extent i5 vithin some user-defined number of tracks from the last track of
the n-lth extent. Skipping a track or cylinder may be acceptable, but
seeking to the front of the disk may be unacceptable in certain applications.

Disk geometry
Disk geometry (bytes per block, blocks per track, etc.) can vary from disk to
disk. The direct file system can suppoí any size the disk driver for the

UW32 disk processor can initialize, as long as the block size is greater
than the size of a single directory entry. Recommended sizes for transfers
are multiples of the disk block size.

'8.2.3 dffstab

The file /etc/dffstab describes tlre file systems used by ttre direct file system. It
is read by dfmount to determine device address. This file must be created before
a direct file system can be mounted. See r/fïstaD(,lRT).

8.2.4 File System Attributes

The direct file system, using the direct I/O interface, has the tbllowing attributes:

No buffering
All VO is done directly into the caller's address space. Data is not buffered
or blocked.

Priority VO queuing by process
Each process has its I/O queued at the process' real-time execution priority.
Within a process, I/O requests to a given device are queued in FIFO order.

Asynchronous VO completion notification
When files are opened, the mechanism for I/O completion notification is

specified. VO can be performed as wait, where the process is blocked from
execution until the I/O has completed, or no-w,ait, where the process

continues executing after the I/O request has been queued. In either mode.
the user supplies a pointer to a set of three event counters that are to be

incremented, respectively, as follows:

. When an VO request is received for that file

UTX|3} Real-Time User's Guide 8-3

. When an VO request has completed for that fïle

. When anUO elror occurs on that file

The user can poll the completion event counter to determine when VO has

completed. Optionally in either mode, the user can supply the address of a
procedure to be called and executed when the VO completes. The user-

supplied procedure is passed two parameters that contain the file descriptor
and a pointer to a structure that contains the [OCL, elror status, and seek

data. Users cÍm use this data for error recovery. Or, they can copy the

IOCL to perform their own direct VO requests when the process has

returned from the signal. tf the IOCL data is to be sent back as an I/O
request, it must be copied to a static structue before issuing the request.

Note that stxtic structures do not always exist in FORTRAN, except in
commons.

ln no-wait mode, calls to dfread, dfwrite, dfexcp, dffstat, dfvstat, or
dfseek are guaranteed not to block the process while t/O is occurring. In
wait mode, the process resumes execution only after the I/O has completed.

Certain operations cause the process to block, regardless of the wait/no-wirit
mode of operation:

. All dfopen. dfcreate. dfrename, dfdelete, dfsetEOF, and dfextend
calls rvill cause the process to block until the call is completed.

. Calling dfwrite antl autoextending a tlle will cause the process to

block while the file is extended.

. Calling dfclose may cause the process to be blocked while waiting for
access to shared memory.

Maximum transfer size
The ma.rimum single triursfer size is 26 tracks. (On a 300lvtb disk, a

cylinder is l9 tracks.) The maximum number of bytes per transfer depends

on the number of bytes per track. Transfers larger than 26 tracks must be

sepÍuated into tivo or more I/O requests.

Random access within a file
Files can be accessed randomly by disk blocks, using dfseek. When each

read/write has completed, a file pointer is updated to the next unreferenced

disk block. You can change the pointer by calling the dfseek routine. Note
that the resolution of the pointer is a single disk btock.

Logical EOF
Unless the file is truncated, the logical end of file denotes the largest block
number of the file ever written using dfwrite. This block number is kept
local to the process. It is not visible to other processes unless it is saved by
calling the dfsetEOF function each time it is to be updated. (NOTE: The
FORTRAN version of this function is called dfseteof.) When this function
is called, the logical EOF is set to be the laÍger of (1) the largest block
number written since the file was opened and (2) the previous logical end of
file.

84 UTX|32 Real-Time User' s Guide

There is one copy of the logical EOF for each Íïle, regardless of how many
times the file is opened. It is updated whenever dfsetEOF is called. If the

file is opened and the TRUNCATE flag is set, the logical EOF is reset to the

start of the file. Each time dfsetEoF is called, the disk directory entry for
the Íile is updated. The proc'ess blocks while this update is made. When an

end of file is set via dfsetEoF, the date and time are saved in the directory.

Note that the logical EOF differs from the physical end of file, which
denotes the end of the file's allocated space.

Extending files
Files may be extended manually or, when the user attempts to write past the

physical end of file, automatically. When opening a file, you can specify,
with the DF-AUTOEXT flag, that it can be extended automatically
(autoextended).

When a file is autoextqnded, an effort is made to meet user-specified
minimum extent size and the maximum gap size, if possible. [f this is not
possible, the file will be extended with the largest extents available. Note

that. when autoextending, the process will be blocked from execution while
the directory is being updated.

When a file is extended manually, user specifications for minimum extent

size and maximum gap size are guaranteed, because if they cannot be met,

tire call rvill fail.

Users can optionally disregard extent and gap sizes when explicilly
extending a file.

Multiple process access to the same file system
Any number of proe'esses ma)' access r file sy'stem simultaneously, with
semaphores controlling directory access.

Files may be opened for exclusive or shared use. A user trying to open a
file that is in exclusive use rvill fail, but aÍryone can access a shared file. It
is the user's responsibility to ensure that use of a shared file is coordinated

by using semaphores rvhen necessary.

Error correction
Error correction is not performed on any disk errors encountered by the

direct file system. with the exception of seek errors. Seek errors are

recalibrated and retried once. AII other errors are reported back to the user

in the I/O completion notification procedure.

Access controls
There are nolJTXl3Z access controls on the direct file system. This implies

that no owners or groups are associated with the files.

Reliability
The direct file system is reliable. The file structure will retain its integrity
when processes abort or the sy§tem crashes. If the system crashes in a

critical section, the only free space that can be lost is free space that can be

UT){{3Z Real-Time User's Guide 8-5

recovered by rebuilding the free list when the disk is next mounted. The
direct file system is not protected when users issue their own IOCLs.

Speed
The direct file system is capable of doing single-revolution opens. These
are file opens in which the diÍectory en§ for the file is accessed on the first
disk read of the directory. To achieve this, the file must be created as

DF-FASTOPEN.

Due to the hashing scheme used to access the directory, occasionally a
paíicular file name may not be creatable as DF_FASTOPEN. If this
happens, an eÍror condition will be retumed. The best thing to do is to try
again using a different file name.

Sizing information
All calls to the direct file system represent sizes in bytes by default. This
promotes compatibility with the UND(philosophy and encourages code that
is less dependent on the physical characteristics of the disk medium.

User-definable limits
The following paÍameters are listed in /usr/include/dfconflrg.h, and can be

adjusted when configuring the direct file system. Default values are shown
in brackets.

MA}(FILES
Iv[aximum number of concurrently open files per process [20]

MAXVOLUMES
Maximum number of concurrently mounted volumes [10]

MAXSYSFILES
lvÍaximum number of concurrently open (tliÍferent) files for all
processes [40]

MAXBSÍZE
Maximum disk block size [1024 bytes]

MAXTOREQ
Maximum number of queued I/O requests per process [16]

MAXTRACKS
Maximum number of tracks per disk Í15637 tracksl

For examples of using the direct file system facility, refer to Section A.5, "Direct
File System."

8-6 UTX|3? Real-Time User's Guide

Here is an example user session that exercises some of the facility's user and
system administrator commands:

cat ,/etc/dffgtab
disk0a: /dev/rdk0a
disk0b: /dev/rdk0b
diskla t /dev/ rdk4a
dfrcunt diekOa
dfcreate 200t /die!c0a/fi1e
dfextend -z 16b /digt<Oalfile
dfrrite /aieyOa/eile (/etc/dffstab
dfread -e /diskOa/fiJ.e
disk0a: /dev/rdk0a
disk0b: /dev/rdk0b
diskLa: /dev/ rdk|a
dfdslete /diek0a/fiIe
dfumount digk0a

. In this example, the direct file volume disk0a is mounted. A file named file is
created on this volume, with an initial size of 200 tracks. The file is extended by
16 bytes, and the extended portion of the file is zeroed after it is created. The
contents of /etc/dffstab, a standard UTX/32 tlle, are written to the new direct
tile. The direct file is then opened for exclusive use. and its contents are reatl and
printed to standard output. Finally. the direct file is deleted and the direct file
volume is unmounted.

ll.J Special Considerations

The following restrictions apply to the direcr file system:

Use of signals
When signals are used, be sure to observe the following guidelines:

Signal 29 (SIGDIRF) is reserved for use by the direct file system
library routines.

Signals must always retum properly.

If a process receives a signal, requests from that process to the direct
file system may be rejected while the process is in the signal handler.
If the file system is intemrpted by a signal while processing a request
and the signal handler calls a direct file system function, the direct file
system will reject the request and retum EINTR as an error. To avoid
this, do not mix direct file requests from the normal process
environment with those from a signal handler.

The procedure called for VO completion notification is called within a

signal handler. Therefore, all restrictions applying to signal handlers
also apply to this procedure.

a

a

UW32 Real-Time User's Guide 8-7

Lockdown
While using the direct file system, the process must have all its pages locked
down.

Killing a process
If a process using the direct file system is killed, the file system may hang.
A reboot will be necessary.

Disk formatting
Before dfmkfs can create a direct file system, the disk must be formatted
using prep; see prep(8).

E-8 UÏXRZ Real-Time User's Guide

9 High-Speed Input/Output Support

9.I Aspects of High-Speed Input/Output

UW32 support for high-speed VO consists primarily of

. Class E I/O suppoí, which includes VO interface (IOI) extensions and a
generic HSD device driver

. A direct I/Ofacility

Detailed information can be found in the UTX|32 InputlOutput Subs.vstem Guide.

9.2 Support for Class E Vo

Many real-time applications use devices connected thÍough the Gould high-speed

device (HSD) interface. This interface is a SeIBUSN card that responds to class

E machine instructions. UW32 support for the HSD consists of a generic
. device driver for a "typical" HSD-interfaced device and a set of modifications to

the IOI to support class E operations similar to those for class F devices.

The generic driver, ce, is a simple U'IIX|32 device driver that uses the class E
facilities of the IO[; see ce(7RT). Since the HSD supports a wide varietl' of
devices, most users will have to write their own device drivers to suit the needs

of their specific devices. The generic driver is intended to help in this process by
demonstrating the form of a UTX/32 device driver and the use of the IOI
facilities for low-level operations.

Refer to the WXl32 InputlOutltur Stbs-r'srcnr Guide tor a more extensive

discussion of the IOI extensions, the generic HSD driver, and the rvriting of
custom drivers.

9.3 The Direct I/O Facility'

Many real-time tasks need faster access to devices and files lhan can be provided

using standafi UTX|3Z I/O, which is designed for time-sharing. UTX/:Z
therefore includes facilities allowing real-time applications to establish direct

attachments to devices and to perform I/O and control operations without going

through the normal UTX|32 ll0 and file syslem facilities. While the

conveniences of standard U'fXl32 I/O are lost, performance and control are

greatly increased.

The direct IiO facility and its use are described in detail in the UTX|32

Inputtoutput Subsystem Guide. The direct VO device driver, on which the

facility is built, is described in detail in dia(7RT). The subroutines that support

UTX/32 Real-Time User's Guide 9-1

the system are documented by those manual pages beginning with dio in Section
3, "Subroutines," in the UTX|32 BSD Programmer's Reference Manual.

For examples of the use of direct t/O in code, refer to Section A.6, "Direct I/O,"
and Section B.l, "Header File for Model Program."

9-2 UT)((3Z Real-Time User's Guide

10 Connected Interrupts

10.[0vervierv

Real+ime applications must be able to respond quickly to intemrpts, and
response time is quickest when an application program is connected to one or
more intemrpt levels. Connected interrupts provide an easy and reliable way of
connecting an application process to an interrupt level. With connected
intemrpts, an application may process device interrupts in user space or just
choose to be notified when interrupts occuÍ.

When the teÍÍn connected interrupr is used. it is never meant to imply that an
intemrpt is connected to anything. Rather, it is a term commonly used to refer to
the situation in which a connection exists between an application process and an
intemrpt level. In such situations, the connected pÍocess handles atl intemrpts
that occur at that level.

Connected intemrpts come in two varieties: directly connected and indirectly
connected. Directly connected intemrpts enable the user to process interrupts at
intemrpt time in user space. The user will usually' be privileged in order to do
this, since device control requires privileged instructions. tndirectly connected
interrupts use an event mechanism to notify a number of processes when an
intemrpt occurs. Currently, signals are used as the events.

Connected intemrpts have the following uses:

. Device control

. Performance evaluation

. Statistics gathering

. Scheduling

By using device control through connected intemrpts, new device drivers can be

written and tested without recompiling the kernel and rebooting for each test.

Performance can be evaluated by a separate process that connects to an intemrpt
from a Real-Time Option Module (RTOM) interval timer. A process can be
coded to send an intemrpt to the RTOM periodically. The intemrpt routine
would then increment a counter. Querying the counter at the beginning and at
the end of the evaluated code provides a means of timing. Statistics can be
gathered in much the same manner.

Although cyclic scheduling provides a better interface for process scheduling,
certain processes will require better performance than the cyclic scheduler can
provide and thus will use connected interrupts scheduling.

UTX(32 Real-Time User's Guide 10-1

A user process installs a connected interrupt by making two system calls: plant
and graft. The plant system call performs scratchpad initialization and saves
context for later use during an intemrpt. The graft system call installs the
Intemrpt Service Routine (ISR). The user supplies the ISR for directly connected
interrupts. The kernel supplies the ISR if the intemrpt level is indirectly
connected. Several processes may indirectly connect to the same intemrpt level
by calling graft with appropriate arguments, although the same process cannot
connect to the same intemrpt level more than once. The same process must issue
both the plant and the graft system calls for directly connected intemrpts. The
user process is responsible for enabling intemrpts, whether it is directly or
indirectly connected. Library routines are provided to do this.

l0.L.l Configuration

Use of connected intemrpts must be conÍigured. This release of Ufii32 is
distributed with no connected intemrpts. Attempts to use the connected
intemrpts functionality will result in an ENORESOURCE error. See Chapter 7,
"Reconfiguring the System" inthe WXl32 Operations Guide for instructions on

. configuring connected intemrpts.

10.2 User Interface

10.2.1 Indirectly Connected [nterrupt Example

Section A.7.1, "Example 1," presents a simple example of an indirectly
connected intenupt. The program connects to the IOP RTOM intemrpt level
0x50 t80) at address 0x7f0d. The program sets up the connected intemrpt by
calling the plant and the graft system calls. Two signal handlers are set up: one
tbr killing the process, and one tbr receiving intem:pts. The process then enables
the interrupl level imd waits for interrupts. When an intemrpt is received. the
signal handler sig_handler is called as a result of the process being signaled.
The process then enables the rnterrupt level and waits for interrupts.

Note that the indirectly connected process does not need to deactivate the
intemrpt level in the signal handler. This has already been done by the operating
system. It is possible for multiple intemrpts to occur before the process' signal
handler runs. In this case, only one signal will be delivered, and the signal
handler will execute only once.

It is not required that an indirectly connected process be privileged. None of its
work requires the execution of privileged machine instructions. It is
recommended the prorcess not be privileged for greater protection of the kernel.

The kernel tries to remove connections when a proces§ exits, although for
indirectly connected intemrpts, it cannot always do so. All programs that
indirectly connect should contain code to remove the connection to avoid such
failure. Since many processes can graft to one indirectly connected intemrpt,
each should remove that connection when it terminates. However, the

connection created by plant will remain unless some process removes it. This

to-2 UTX(3Z Real-Time User's Guide

connection cannot be removed until all indirect grafts have been removed. For
this reason, there should be a goveming process that waits for the indirectly
connected processes to exit and then removes the connection using uproot. If,
despite all caution, a connection remains, it may be removed by using the cis and

cirm progÍams.

10.2.2 Directly Connected lnterrupt Example

Section A.7.2, "Example 2," presents a simple example of a directly connected

intemrpt. The program connects to the IOP RTOM interrupt level Ox50 (80) at

address 0x7f0d. The process begins by locking itself into memory and targeting
itsetf to the CPU. A signal handler is set up so that the process will clean up

after itself and exit when it receives a SIGINT intemrpt from the terminal. The
process initializes the connected interrupt using the plant and graft system calls.
Interrupts are enabled using the ei library routine and the process waits for an

intemrpt. When an intemrpt is received, the intr_handler routine is called.
Note that the intr handler deactivates intemrpts just before retuming.

This is different from indirectly connected processes, which do not have to

deactivate the intemrpt level. A directly connected process nast deactivate the

intemrpt level in the intemrpt handler.

The process may make no system calls within the intemrpt service routine,
including system calls from within library calls. For example, the user will not

be able to debug the interrupt service routine by inserting printf statements.
Debu_eging in this mode will be limited to console debugging (write stops,
instruction stops, etc.) and to setting global variables that can be read by some

other process or the same process at some later time. Attempts to make system

calls will result in a signal (SICSYS) as rvell as a failed return from the system

call (ESYSUNAVAIL). The signal should terminate the process, although it
mal' take awhile if the prot'ess is mnning on the IPU when the intemrpt is taken.
The signal will be noticed as soon as the pru:ess enters the kernel, either for a

scheduling change or to make a system call.

A process can be running in both processors simultaneously on PowerNoderu
machines. The process can be running on the IPU and its intemrpt service
routine can be running on the CPU. This will ordinarily not cause any problems,
except perhaps with cache coherency. If a simultaneous read and write occur to

the same doubleword of memory, then the processor that did the read will not get

the updated write until the cache is tlushed. It is therefore strongly suggested

that users taÍget to the CPU a process that is directly connected (see the

ta r g e rcpu(ZRT) manual page).

Even though system calls are traps, they are handled differently from other kinds
of traps. If a directly connected process traps while in the intemrpt routine, the

process will trap in an ordinary way. However, the effect of the trap will not be

felt until the process enters the kernbl. This effect may be delayed if the process

is mapped in the IPU and is doing computation-bound processing. [t is also
possible for the process to be trapping from elsewhere in the process when an

intemrpt is taken. [n the rare instance that the intemrpt is connected to the saÍre

UTXI3Z Real-Time User's Guide 10-3

process that is already trapping, the kemel will not proceed correctly. Behavior
at this point is undefined, but a panic or machine halt is likely to occur in the
near future.

The process must perforrn intemrpt control. This means that the process must
enable the intemrpt and deactivate it during the intemrpt service routine. Note
that this has been done in the example pro$am using the library routine
hwprivdai.

It is guaranteed that the user's ISR will be entered with intemrpts blocked. The
user may choose not to unblock inlemrpts, but tiis means that the tSR is
unintemrptible. If the ISR is a very long one, then the user may choose to
unblock intemrpts. This can be accomplished with the hwprivuei library
routine. This allows intemrpts at a higher priority level to intemrpt the current
interrupt service routine. The higher prioriry ISR will complete and then
continue the intemrpted ISR.

If intemrpts are unblocked, then the current intemrpt should not be deactivated
until intemrpts are again blocked. This action disallows receiving an intemrpt
from the same level that is currently being processed. [f the user chooses to
leave intemrpts blocked. then no action in the intemrpt routine is necessary. [f
the user chooses to unblock intemrpts, then the intemrpt rouline should perform
the following steps:

l. Begin intem-rpt

2. Unblock intemrpts

3. Perform intemrpt processing

4. Block interrupts

5. Deactivate interrupts

6. Rerurn from intemrpt

The user must not use the same intemrpt stack for different interrupt levels,
especially if intemrpts are unblocked in the user's ISR. Such a situation would
make it possible for one interrupt to intemrpt the other and use the same stack,
thus destroying the integriry of the values stored on the stack by the first ISR.

A user may change the default settings in the Program Status Doubleword (PSD),
although this action is not expected. One possible setting change is that of the

block/unblock mode bit. The plant system call currently sets ttris bit to be

unblocked. That is, when the CPU accepts an intemrpt, il blocks all intemrpts at

Iower priority levels. The user must deactivate the intemrpt to restore intemrpt
processing for that and lower priorities. Blocked mode automatically issues the

deactivate intemrpt command, but it blocks all intemrpts. In this case, the user
must be careful not to unblock intemrpts, because another intemrpt at the same

priority level might come in immediately and destroy the integrity of the stack.

104 UTX|3} Real-Time User's Guide

The file /usr/include/seUpsd.h contains the definition of the PSD structure. The
plant system call sets the Iïelds in an ICB's new PSD as follows:

. The privileged bit is set.

. The condition codes are all reset.

. The extended addressing option bit is reset.

. The base register mode bit is set.

. The arithmetic exception trap is disabled.

. The program counter is the address of a known function within the kernel.
This function will later call the user's function.

. The mapped environment bit is set.

. The retain current map bit is reset.

. The intemrpt control flags are all zero.

. The current process index is obtained from the current PSD.

Debuggers such as adb and dbx will not work in a directly connected intemrpt
routine. The user must use the console debugging commands such as IS
(instruction stop) and WS (write stop). Another possible mode of debugging is

to use shiued memory by having the process write debugging information into
shared memory using a protocol that is understood by some other process. The
other process can then digest and print this information.

Some interrupt control is available through system calls, so some debuggin_e can
be done using indirectly connected intem-rpts. When the prograÍn works using
indirectly connected intemrpts, it rvill likely also work usin-e directly connected
intemrpts. Note that the intemrpt control system calls are available only to the

superuser.

The kernel automatically removes direct connections when a process exits. This
is useful when a program terminates unexpectedly. The program should,
however, prune and uproot upon normal termination.

The process that uses directly connected intemrpts will usually be privileged.
This allows the use of privileged instructions for intemrpt control and I/O. Note
that this is a dangerous situation, because the user can now write and destroy
parts of the operating system. Once privileged, the user can do considerable
damage that might not be immediately apparent, and appropriate caution is
urged.

UTXJ3} Real-Time User's Guide 10-5

10.3 Stack Addresses

Stacks on CPL hardware grow downwards, toward decreasing addresses. The
address that is given to the graft system call should be ttre highest address of the
memory allocated for the stack.

If the stack were declared in C as

int Stack [500] ,

then the address given to graft should be

&Stack t4991

If the stack were declared in FORTRAN as

integer Stack (500) ,

then the address given to graft should be

Stack (500)

The graft system call will handle all requirements for alignment.

The user must provide a large enough stack. Stack overflorv rvill -eenerally not
be detected, especially if the user is privileged. Stack overt'lorv will result in
writing to data structures that are near the stack (usually declared before the stack
in the program). Many nested function calls and much storage for local variables
increase the memory required tbr stacks. Five hundred words should be
sufficient for most medium-sized intemrpt routines. One hundred words is
probably sufficient for a minimal intemrpt routine. An intenupt routine that just
calls hwprivdai and returns requires 16 words (24 words including enough tbr
file alignment). Because stacks must be file (32 byte) aligned, enough memory
must be reserved for the worst case alignment, that is, in the worst case, enough
memory must be reserved for the minimum requirement plus 32 bytes. If
memory is at a premium, then the user should determine exactly how much
memory the intemrpt routine and all of its called functions need for stack, being
watchful of recursive routines.

10..1 Helpful Programs

The cis and cirm programs allow the user to get status on outstanding
connections and remove them if possible. cis prints the status of the requested
connections, including the intemrpt level. the class and address of the device, and
the type of connection, if connected at all. Given this information, the user may
remove selected interrupt levels using cirm. Cis will display all connections that
have been made, including those intemrpt levels in use by the kernel. This
information is useful when sing to determine what level to use for a given
progïam. The cistatus system call will also return this information. See
cis(lRT) and cirrr(1RT) for more details.

l0ó UT)t{32 Real-Time User's Cuide

11 Suspend and Resume

1l.l Overview

The suspend and resume system calls provide a fast, simple method for process

context switching. By invoking suspend, an active process relinquishes the CPU
without the overhead of sending and handling signals. By invoking resume. a
process causes one or more suspended processes to be immediately placed on the

mn queue.

I1.2 User Interface

11.2.1 suspend

A suspended process remains suspended until it is resumed or until it receives a

signal. If the suspended process is resumed, suspend renrrns a value of 0. tf a

suspended process receives a signal, execution continues, suspend returns a

value of -1, and errno is set to equal EINTR. For more information. see

suspertrl(2RFIRT).

A suspended process has the same characteristics as a process that was stopped
by sending a SIGSTOP via signal.

The following examples show how to call suspend. (For more detailed examples
on horv to use suspend. refer to Section A.8. "Suspend and Resume.") ln the

first example, a process suspends itself. If it receives a signal, the process

executes, but it immediately suspends itself again. Its execution continues
normally only aÍier it is resumed by another process.

/* suspend repeatedly until resumed */
while ((ret = suspendO == -1) && (errno == EINTR))
{

/* l.tul,t statement */
)

/* suspend failed or process was resurned */
if (ret l= O) /* if suspend failed */
{

printf("unexpected return from suspend =ldr errno = id",
ret, errno);

exit (-1);
)

/* suspend and resume succeeded so continue with program */

UW32 Real-Time User's Guide l1-t

In the following example, the process that called suspend will continue
executing, either when the process is resumed via resume or when it receives a
signal.

if ((ret = suspend0 != 0) &e (ret != -1) ll (errno != EINTR)) {
printf("unex1>ected return from suspend =td, errno = *d",

ret, errno) i
exit (-1) ;
)

/* process yras resumed or received a signal so
* continue with program
*/

11.2.2 resume

The resume system call awakens one or more suspended processes and adds

them to the run queue. It optionally suspends the calling program after resuming
the specifi ed processes.

If only one process is to be resumed, the calling program invokes resume with
t\r'o arguments. The first argument is a flags field. When the calling pro-sr&m

resumes only one process, none of the bits in this field need to be set. The
second argument is the process id of the process to be resuÍred. [f resume fails
to resume the specified process, it returns a value of - I and sets errno to indicate
the reason tor the failure.

If more than one process is to be resumed, the calling program invokes resume
rvith four arguments. The first argument is a flags field in u'hich the

SR_MULTIPLEPIDS bit must be set. The second argument is the address of an
array containing the process ids of the prmesses to be resumed, and the third
argument is the number of processes to be resumed. The fourth argument is the

address of an array into which resume copies the return status for the prcx'esses,

as each process may have a ditÏerent return status.

Two examples of the use of resume are as follows:

resume (flags, pid)

resume(flagslSR_MULTIPLEPIDS. pidlist, numb__pids_to_resume, statuslist)

By default, resume resumes the specified processes and retums control to the

calling program. tf the calling program sets the SR-SUSPEND bit in the first
aÍgurnent, it is suspended after the specified processes are resumed. The resume
system call retums control to the calling progÍam only when another program
awakens it by invoking resume with the calling program's process id.

See resume(2RT/RF), and refer to Section A.8, "Suspend and Resume," for
detailed examples on the use of resume.

rt-2 UTX{3? Real-Time User's Guide

In the following example, the calling program resumes a suspended process.

/* set flags field to specify to continue with execution
* after resuming suspended process */

flags = 0;

/* pia is the procèss id of a suspended process and
r has been set somerhere else in the program

if (resume(flags, pid) == -1) t
printf("resume failed errno = àd",errno)
exit (-1)
)

In the following example, the calling program resumes a suspended process. then
immediately suspends itself.

/* se! flags field to specify that caller shouid
* suspend itself after resuming the suspended prccess

flaqs = SR_SUSPEND,'

7* pit is the process id of a suspenled process and
* has been set somewhere else in the prcgram

if (resume (flags, Pidl == -11 {
printf ("resume f aileC errno = .-d", errno) ,'

e:iit (-1) ;
i

_-. UTX/32 Real-Time User's Guide I l-3

ln the following example, the calling program resumes multiple processes.

/* declare space for pidllst and statuslist *,/
int pidlisLÍ25);
int statuslist [25] ,'

:
set pidlist[0] through pidlist[24] to
equal the procèss ids of 25 suspended
Processes

/* ee|- flags field to continue e:iecution
* after resuming suspended process and to specify
* that multiple processes should be resumed

flags - SR_IIULTIPLEPIDS;
numb3ids = 25,'

if (resume(flags, pidList, numb_-pids, staÈuslist) == -1) {
printf("resume failed errno = td",errno)
for(counter = 0; counÈer (numb3idsi counter++)

printf("staÈuslistItd] = àd\n",
counter, statuslist Icounter]) ,-

ei:iÈ (- 1) ,.

i

I 1.3 Special Considerations

. A proc'ess resumed via resume is not guaranteed lo execute irnmediately.
Although such a proc'ess is immediatelv placed in the run queue. it rvill not
execute until it becomes the process with the highest priority.

. When a child process suspends itself. the parent process does not
automatically receive notification, via SIGCHILD, that the chitd has

changed state.

. A child of vfork cannot be suspended until it has done an exec, because
such a suspension may cause deadlock.

. Not all signals can be handled by a suspended process. For more
information, see signal(3).

114 UW32 Real-Time User's Guide

12 Memory Classes

[2.1 Oven'iew

Memory classes provide the user with a mechanism for controlling physical
memory for special purposes.

The conventional model of memory use rests on two assumptions: that all
memory is alike and that a process does not depend on the particular physical
addresses of the memory it uses. Given those assumptions. the physic'al memory
attached to a machine can be treated as a single pool of indistinguishable pages.

When a process is _uiven a page by the operating system--at process starrup,
when expanding memory use at runtime. or because of paging-any physical
page may be chosen.

In real-time systems, the basic assumptions do not hold. for these reasons:

1. Not all physical memory is alike. For example. some physical memory may
be faster but more expensive than the rest. Real-time applications may
require that such memory be held in a separate pool so that it can be
allocated w'hcn needed.

2. Some memory may be shiued among several machines. To allorv processes

to communicate rvith their countefparts, each must be able to attach
precisely the memory that is shared. Hence, a process must be able to
request pages of memory at piuticular physical addresses.

The UTX/32 implementation tlf memory classes introduces two related $'ays to
group memory for special purposes, i.e.. to cretle speL'ial memory:

Memory extents
A memorl e-rrerrr describes a single, continuous range of memor)' that is set

aside from general use. Memory outside a memory extent is allocated to
processes in the usual ways. memory in an extent is set aside from general
use and must be specially allocated. Generally, an extent is made up
entLely of a particular kind of memory. such as shadow (fast) memory or
reflective (shared) memory.

Memory extents aÍe never paged or swapped, and they caÍrnot overlap.

Memory regions
A memory region is a subset of a memory extent. It may cover the entire
extent or be as small as a single page. The memory region is the unit of
allocation; processes request special memory by requesting paflicular
regions.

The UTX/32 implementation of memory classes is upwardly comparible wirh
System V shared memory. The System V implementation is based on shared
memory objects, which are sets of pages with some associated information. Two
processes share memory when both allocate the same shared memory object.

UTX(32 Real-Time User's Guide t2-1

UW32 extends the System V implementation in two ways:

1. tn System V, shared memory objecs are referred to by numeric keys. In
VW32, shared memory objects may also have string names; they may be
created with names, keys, or both.

2. In System V, the creator of a shared memory object may specify precisely
which pages it contains by giving it pages from a memory extent. tn
UW32, shared memory objects whose pages come from a memory extent
are called memory regions.

12.2 An Example

The FORTRAN language provides shared memory between processes through
global coÍnmons and datapools.

1. A FORTRAN program F declares a global common X, rvhich is a set of
data with a group nÍrme.

2. When F begins execution, the global common is placed into the shared
emory object named X. tf no such object exists, one is created in general

memory. [f the shared memory object is a memory region. the global
common is placed in the special memory named by the region.

NOTE: In the curent implementation, global commons and datapools
remain uninitialized on process startup.

3. When another program. G, using global common X begins execution, it
shares memory with F.

4. Program G may be moved to a completely new machine. [f the two
machines are connected rvith shared memory. and if both have regions X
defined to be at the same offset within the shared memory. G will run
without recompilation.

12.3 Contiguous and Noncontiguous \Iemorl' Extents

When special memory is shared rvith another machine, a process must be able to
allocate a particular range of physical pages. But when special memory is simply
faster than general memory. any page of fast memory is as good as any other.
This distinction is captured by two types of memory extents: contiguous and
noncontiguous. They differ in the type of regions they contain.

Contiguous memory extents
A region within a c'orttiguous extent is a set of pages that begins at a

specified offset from the start of the extent and extends without gaps for a

specified number of pages. Any process allocating that region rvill receive
the same set of pages.

t2-2 UW32 Real-Time User's Guide

Noncontiguous memory extents
Wiftin a noncontigrt()us extent, there is typically only one region, called the
template region. This region contains all otherwise unused pages of the
extent. It is created when the memory extent is created and has the same
name as the memory extent. ([t is, in actuality, simply the name by which
memory in the extent can be allocated.)

A process may allocate the template region, but instead of receiving all the
pages in the extent, it receives a set of pages of the requested size. These
pages are private to the process. The template region thus serves as a pool
of pages to be allocated in much the same way as general memory pages are
allocated by the sbrk sy'stem call (see sbrk(2)).

Named regions (other than the template region) within a noncontiguous
memory extent are still necessary for sharing memory. For example. if two
processes want to share a global common in fast memory, they must make a
region within the memory extent. That region will be permanently allocated
pages the processes can share; these pages are not contained in the template
egion.

12.{ Pernrissions

Shared memory objects obey the' same rules for owne'rship and pennission that
tiles do. See arrra(2) for details. tn brief, shared memory objects have a

specified owner and group. They also have permission modes that sprecify
whether the owner, the group. or other users may read or write the pages in the
ohject. When a process atlempts to attach to the shared memory object, it is
classified as being either the owner. in the owning group. or other. The requested
access type (reird-only or rc'atl/writc') is checked a-tainst the access permissions.

The abilit,v to creilte irnd de'stroy' regions is subject to the restrictions imposed by
the real-tirne access control mcchanism. A noncontiguous rnemory extent's
template region is owned by the superuser (user ID 0) and group 0. A template
region's mode is always 0666, which allows any process to allocate pages for
reading or writing.

12.5 Reflective l\Iemorv

Reflective memory is a form of shared memory between machines. Writes into
reflective memory on one machine may be "reflected" over a special bus to
reflective memory on other machines. All reads are from local memory.

The operating system may specify the range of reflective memory that is to
reflect writes and receive reflected writes. The ret'lected locations are referred to
as the yyindow. lJTXl3z supports this feature by providing a system call
mem_reflect (see mem_reÍlect(2RT)). which sets the reflective memory window
to a particular region.

VTX/32 Real-Time User's Guide t2-3

12.6 Summary of Special Ntemory Support

12.ó.1 Creation

Memory extents are created at system startup. They are defined in the system

configuration file. Instructions on editing the system configuration file to create

memory extents may be found in rhe UTX|32 Operations Guide.

Memory regions may be defined in the system configuration file. They can also

be created with the mkregion utility or within a program by the mkregion
system call. See mkregion(9Rt), mkregion(2RT), or mh'egion{3RF).

Shared memory objects that are not memory regions (that is, not within memory
extents) can be created with the shmget or shmgetbyname system calls. See

s hm g e t (2RT) and s hm g e t by n o m e (ZRT).

Shared memory objects may also be created by the execution of a FORTRAN
program containing a named global common or datapool. If no shared memory
segment or region with that name exists, a shared memory segment will be

created in general memory (never in special memory).

12.6.2 Allocation

Regions iue allocated in trvo steps. [n the lirst step. the region is irllocated to the

process with shmget or shmgetby-name. tn the se'cond step. the region is

attached to the process's virfual address space with the shmat system call (see

the shruop(2RT) manual page). The same sequence is used for shared memory
objects that are not regions.

Allocation of pages from a noncontiguous memory estent requires the sanle t§'o
steps. shmget or shmgetb.vname is used on the extent's template region. The

result is a private shared memory object with the requested number of pages.

That private object is then attached using shmat.

The two steps take place automatically when a FORTRAN program naming a

shared -ulobal coÍnmon or datapool is placed into execution.

12.6.3 Destruction

A shared memory object created during process startup is destroyed when the last

process using that object exits. For example, a global common created by a

FORTRAN program will be destroyed when the last program using it exits.

ln no other case is a shared memory object or region automatically destroyed. tn
particulaÍ, a private shared memory object creflted by shmget or shmgetbynarne
will not be destroyed when the process exits, even though no other process may

attach to it.

124 tJW32 Real-Time User's Guide

\--, i,"":i:"i.%.ï,j::ï:J,',1.ï;ïJï:,ffi;í',fr, ily#.ïl'x.ï" rmregion

shared memory segments tbat are not regio$ may be desroyed with the ipcrm
utility or the shmctl system call. See ipcrm(lRT) or sàrncrl(2RT).

12.6.4 Inspection

The ipcs utility (see rpcs{lRT)) can be used from the shell to inspect shared
memory segments and regions. There is currently no defined way to inspect
regions from within a progftlm.

UTW32 Real-Time User's Guide tz-slt2-6

13 lnstruction Execution Modes

13.1 Or'erview

The Gould CONCEPT Product Line (CPL) architecture supports two modes of
instruction execution, privileged and unprivileged. These two modes are

necessary because certain instructions in the CPU instruction set can be executed
only by programs that have special privileges. On UMX-based operating
systems such as UTX|32, machines typically execute in privilegetl mode only
within the kernel, and the existence of two distinct modes is transparent to user
programs. (Kemel mode thus mistakenly became synonymous with privileged
execution, although privileged mode is not really equivalent to kernel mode.)

However, with the introduction of connected intemrpts (see Chapter 10,
"Connected lnterrupts"), a user program must be able to execute privileged
instructions that affect an interrupt level to which it has established a connection.

' Two new system calls, hwpriv and hwunpriv, allow a user program to run in
privileged instruction execution mode and unprivileged instruction execution
mode, respectively. Because these system calls regulate the execution of CPU
instructions, i.e., the execution o[instructions at the hiudware level. the two
modes are often referred to as hardware privilcged nrtde tvrd hurdv'ore
ttnprivileged mode. respectively, and hence the names of the system calls.

13.2 Instructions Requiring Privileged)Iode

A process begins execution in hardware unprivileged modr-. Ho"vever. the

process must switch to hardwiue privileged mode before it can execute the

followin-r kinds of instructions:

. lnstructions related to intemrpt processing, such as Enable lntemrpt (EI) and
Disable Interrupt (DI)

. lnstructions that can modify a machine's memory mappin-u registers. such as

Load Program Status Doubleword and Change Maps (LPSDCIvÍ)

. tnput/Output instructions, such as Start I/O (SIO), Halt t/O (HIO), and
Command Device (CD)

. [nstructions that can place the CPU in a state that requires an operator action
at the console. such as HALT

. lnstructions that can change the state of the CPU, such as WAIT and Load
Program Status Doubleword (LPSD)

These instructions should be used with extreme caution because of the potential
for compromising the integrity of the system. (See adb(l) tbr a complete listing
of the CPU instruction set.) Their improper use can result in corruption of data

in main memory or secondary storage, or even a crash of the entire system.

When all privileged inslructions have been executed, a process should usually
invoke hwunpriv to revert back to hardware unprivileged mode.

UTX/32 Real-Time User's Guide I 3-1

Processes executing in these two modes are differentiated by a bit in the Pro-eram

Shnrs Doubleword (PSD). When the bit is set to one, the process is executing in
hardware privileged mode. Any attempt to execute a privileged instruction while
in hardware unprivileged mode causes an exception tÍap.

13.3 Ways to Execute Privileged Instructions

Once a process has executed the hwpriv system call, there are tfuee ways to
execute a privileged instruction:

l. A C program may pass the privileged instruction as an aÍgument to an dsn
statement. causing the compiler to insert the instruction directly into its

assembly language output. This method carries the least overhead, but

because Gould Common C will not support asns, its use is discouraged for
portability reasons.

2. A C or FORTRAN program may invoke a library routine that executes the

privileged instruction. The real-time C library contains one routine for each

of the privileged instructions, as does the real-time FORTRAN library. The
Iibrary routines are named by adding the hwpriv prefix to the name of the

privileged instruction. For example, the hwprivei library rouline executes
the EI instruction. For more details, see the following manpages:

. l»rpril_iirrr'_c,rnl'rrl(3RT)

. htrprir-int_L't)nrr()/(3RF)

. lnrpriv'_io_control(3RT)

. hv'prit'_io_r'orrrrol(-1RF)

-1. A privileged instruction may be e-mbedded in an assembler routine. and a C
or FORTRAN progrmr rnay mdie a call to that routine. This is the method

oi choice only u,hen a code segment is written in assembly language for
speed and efficiency considerations, and it is natural for the segment to
contain a privile-ued instruction. If an assembler routine would contain
nothing but the privileged instruction, use a library routine instead.

Some of the privileged instructions may be executed by invoking a system call
while in unprivileged instruclion execution mode. This mechanism is provided
for debugging purposes only, because system call overhead makes it undesirable

for regular use. A program may invoke the intctl system call directly, or it may
use the library routines that invoke the system call after generating its

instruction-specific arguments. Sce intctl(2RT), irrtcrl(2RF), io_conrrol(3RT),
io_control\3W). interrupt_control(3RT), and interrupt_cortrol(3M) for more

information.

Use of the hwpriv and hwunpriv system calls is subject to the restrictions
imposed by the real-time access control mechanism.

13-2 UW32 Real-Time User's Guide

See the Gould V6lV9 CPU Reference Mantnl that accompanies Gould CPL
hardware for more information about execution modes, and refer to hwpriv(zRT),
hwunpriv(2RT), hwpriv(Z$), and hwunprÍv(2RF) for details about the use of the

system calls.

UW32 Real-Time User's Guide t3-3n3.4.

Appendix A

General Examples

This appendix contains simple exarnples written in C and in FORTRAN. These

examples illustrate how to use many of the uDí32 real+ime fearures.

A-1UW3zReal-Time User's Guide

A.l Real-Time Scheduling

This section contains two examples of real+ime scheduling, one in FORTRAN and one
inC.

A.f.l FORTRAN Real-Time §cheduling Example

The following FORTRAN test progÍam exercises the real-time FORTRAN library
routines that control real-time priority and processor targeting, such as setrealpriority
and settargetcpumask.

c
c compile with; fort -o rtschedtest rtsched.test.f -Irtf -lrt
c

progràm rtschédtesÈ

integer cpumask
integèr newprio
param€ter (newprio = 5)
intèger nernnask, mask, prio, oldprio, ret
integer 1

integer sett algetcpurnàsk, g€ttargetcpumask, getactivecpumask
integer uni::gcheduling, seÈrealpriorj.ty, getrealpriority

cPumask (n) = 2**t

c
c Request real tima priority 5

oldprio = setrealpriority (0,newprio)
if (oldprio .It. 0) thèn

write (6,*) 'setrealpriority failed rèE=', oldprio
call exit (-1)

endr t

C

c cet the current priorir-y

pr:i.o = getreaLpriorify (0)
if (prio .lt. 0) then

writ6 (5,*) 'getrealpriority failed rèt=', pEio
call e:<it (-1)

éndif

U

c Did it really work?
c

if (prio ,ne. newprio) then
nrite (5,*) 'priority not corr€ct: new=',newprio,

+ ' returnèd-,,prio
call esit (-1)

endif

c
c Bias the process to the IPU
c

write (6,*) 'bias€d to the ipu'
newmask = cpumask (1)
mask - sèttargètcpumagk (0rnewmask)
if (mask .1t. 0) th6n

A-2 VTW32 Real-Time User's Guide

ïrite (5,*) 'r€ttaEgotcpumaek failad reÈ-', mask
call éxlt (-1)

eadif

maek - gcttergctcpuaÀrk (O)

if (magk . It. 0) then
writ€ (6,*) 'gettargetqrumask fall€d ss!r', màBk
call €xit (-1)

endLf
rrite (6r*)'nask-'rnaak

c
c Dtd it really rork?
c

Íf (mask .oe, newmask) Èh€n
write (5,*1 'mask not correcÈ: n€wo',newmàsk,

+ , returned-r,mask
call exit (-1)

€ndif

c
c lÍaste tlme. Rsal procésslng should go trare if this were a real
C program.
c

do 10 i-1,10000000
conÈinue

10 continu6

C

C 9ltra'. are the active CPU8 that can be used?
c

mask - gètactivecpunaek o
if (mask . lt. 0) then

wri:é (6. *) 'getactivecpurnash failed ssi=', nask
call e:.i"t (-1)

endif

c Retuln to normal prj.orlÈy
c

ret = uni--.gcheduling (01

if (rèt .It, 0) thèn
write (5,*) 'uni:.scheduling failed !'g1-', rét
call e:cit (-1)

endi.f

c
C lÍaaè6 somE more time
c

do 20 i-1,10000000
continue

20 continu€

rrite (5,*) 'test passea'

stop
€nd

_-,/ UTX|3? Real-Time User's Guide A-3

A.1.2 C Real-Time Scheduling Example

The following C program uses the real-time scheduling library routines. This program

gives the user a convenient way to cootrol the realtime priority or processor-targeting of
a proce§s.

/*
* conPile riÈh: cc -o rtsctled rtgched.c -1rt
*/

*include (stdio.h)
*include <sys/t1pes.h>
*include <errno.h)

e-Ytern int errnoi

nrain (argc, argv)
int arlrc,
cher **argvi
{

int pid;
int ttrp_rtprio, set_rtPrio, old_rtPrio, flag-rtPrio;
int trq)_targetcpumask, set-targetcpumask, old-cpurnask, flag-targ€tepumask;

if(argc <- 1)

Usage (arg'v [0]) ;
al se
for(r*++argv;) i

/*
* cet the Real Tilne Priori.ty
*/

if(sscanf(*argv,"-rtprio=id",etÍP-rtPrio) == 1 1 ,

set_rtPrio = tírP_rtPrio,
flag-rtprio = L;

)

/*
* cet thè cpu mask
*/

else
if (sscanf{*argfv,"-cPu=oÍ3Y'r,&tmP-tar9€tcPumask) == 1) {

set_talgetcpumask = ÈmP-targetcPumask;
f lag_targetcPumask = 1;

)

/*
* M:st bs an argument. Do the requ€sted operatÍons on th€ process id.
*/

else
lf(sscenf(*argv,"!d'r,epid) -' 1 1 1

if(flag_rtPrio)

t
if((old-rtprio - setrealpriority(pid,set-rtPrio)) < 0) {

fPrintf (std6rr, "couldn'È sèt RT Priority: pid=td ",
pid) ;

perror ("");
)
else {

printf("Pid td: Old prio=*d New Prio=nd\nir,
pid, old_rtprio, s€t_rtprlo) ;

)
)
if(flag_targetcPurnask) {

A4 UTX|3Z Real-Time User's Guide

if ((old-cPumask = sètÈargètdPumask(pid'set-ÈargetcPumask)) < 0) {

fprintf (stderr, "coul'd'n't s€E cPu masK: pid=td

Ptd);
Perror (í");

)

else {
printsf("Pid td: o1d' cPu mask=td Nèw cPu mask=*d\n"'

pid, old-cpumask, set-targetcpumask) ;

)

)

)
else {

fPrintf (stderr, "Unrecognized argumént:'ts'\n"' iargv);

Usage (argv[0]) ;

)

)

Usage (namè)

char *namé;

{
fPrintf (sÈderr,

"usage:ts[-rtprio[=va1]l[-cpu1=s31]l[-active]pid"'\n"'nama)i
)

UTX13} Real-Time User' s Guide A-5

A.2 Cyclic Scheduling

Many of the applications of the cyclic scheduler will be for sets of processes. The
example in this section is a template for a slave process that will be run by a master
process.

A2.1 Summary of the Template Example

The template example begins on the next page.

The particular process in this example sets up a signal handler for the SIGINT signal,
which tells the process to restart from the beginning. The SIGINT signal can be used to
restart a set of processes by sending a signal to all of them.

After the signal handler is set up, the acrual cyclic scheduling parameters íue set up. The
process in the example specifies a cycle with 60 frames and sets every third frame. [f the
process overuns a frame, it will continue with a clean staÍt on the next set frame.

To ensure good response, the process is locked into memory and real priority of zero is
requested. The entire process (text and data) is locked. The restarting place is then set
with the setjmp call.

At this point. the initialization procedure is complete. The process requests cyclic
scheduling rvith the cvcsetdata call and waits for the next cycsync. rvhich the master
process is expected to issue. Some lorm of communication should exist between the
master process utd its slaves. Shued memory might be a good vehicle lor this; see
shructl(2RT). shmget(2RT), and shmop(ZRT) for a discussion of shared memory. When
the master process notices that all slaves have completed their initialization, it issues a
cycsync, and the slave sta.rts cl,clic execution.

The slave process will run in the tirst frame after the cvcsync. \\tren it is finished, it
suspends with the cycsuspend system call. The process must be ciuet'ul to note the
refurn code from the system call. cycsuspend rerurns an eÍïor and sets errno to EINTR
if the system call is mtemrpted. This is not a fail-satè pru;edure since the system call
might return with EINTR in the frame in which the process should run. This problem
can be avoided by blocking or ignoring signals.

A-6 UTX/32 Real-Time User's Cuide

À2.2 Slave Process TemPlate

*Lncludc <eyalcYcll'c. h>
linclude <ayellock.h>
lincluda (errno.h>
lincluda <aetJtP.h>
linclude <algnal.b)
Itnclude <atdio.b>

def,1ne FR-Í,E§ 50 / I rant to bc 60 fremcr Long */

6rct6rn lnt errno;

void restartsO;

lq-buf R€start; /r t}f,e r€start environment */

* MÀIN

n ia (argc, .rgrv)
lnt atgc;
char *argrv[];
{

int i;
int reti
Tcyclicdata cd;
int frame;

t set u,p tha sígnaL handler for SIGINT.
*/

signal (sI6IN!, rostart) i

* Initializ6 thè cyclic data structure. Thé cycle lengÈh is
* FR-LEN frames. The Proc€sa e:.P€cts to run every third frame
t If Ehe procèse is late in suspanding, that's too bad' Don't
* look back on framea and try to reschedule fumtodlately'

for (i=0; icR_LEN; i++)
cd.cYcle til - I (i i; 3);

cd.cycl€_f€ngith - FR_LEN;
cd.fra:nes_lookback - 0;

* Lock thè Process into memory.

if (p1ock (PRocLocK) < 0)

i
Printf ("plock failed, errno=id\n", errno);
esit (1);

i

* Set the r6al Priority to tho highost Priority poseible'
* lhis is an imPortant Process.
*/

if (sotrèalprlority (0, 0) < 0)

{

\--'l VWS}Real-TimeUser's Guide A-7

prj.ntf ("setrealpriority failed, errno=td\n't, errno) ;
e}.it (1);

l

* Íhis is the placé to return to when the process restarts.

s€tjmp (R€sÈart),

* Set th6 cyclic scheduling palan€térs for the procèss.
* 9lait for th6 next cyclic slmc,

if ((ret = cycsetdata (6cd, 1)) < 0)

i
printf ("setdata f ailed, erxno=,'!d\ntr, errno) ;
exit (1);

)

for (;;l
{

/*
* This is where the useful work of the process gets don6.
* Every tj-me the process resumes, it will come here and
* e:<ecute whatever needs to be done.
*/

l*

* Notice that Ehe réturn code is checked. If cycsuspend()
* returns with an error and errno i_s EINTR, then we have
* received a signal-
*/

while (((frame = cycsuspend O) < 0) && (errno == EINTR))
{

prj-ntf (" j.nterlupted\n")

)

* ThÍs is thè signal catcher for sIcINT.
* Just rèseart the process from the beginnj-ng.

void
restart {)
{

longjmp (Restart, 1);
)

A-8 UTX/3Z Real-Time User's Guide

A.3 Timer Services\-,
This section contains four examples in which the enhanced timer services are used. Two

are in FORTRAN, and trro are in C. i

A3.1 FORTRAII Test kograms

The first FORTRAN test program, hscbad, tests the sethsctimer §y§tem call for bad

input values. The second, hscreadtimer, reads from the high-speed clock and prints out

the information as fast as possible.

Example I

c
C Conpil€ $lth: fort -o hscbad hscbad.f -1rtf -Irt
c

progr.rm hscbad

Par.metor (PROcIOcKrl)
palatrot€r (EINVàL-22)

paramét€r (HSCCANCEL-0, H§CÀBSOLUTE 3, HSCCYCTE=2)

lnteger ret
integ6r failed
integer hva11 (2) , hva12 (2)
intèg€r hsclsecs, hsclns, hsc2secs, hsc2ns
j,nteger sethsctimer

eqtrivalence (hval1 (1), haclaécs)
equivalence (hvaI1(2), hsclns)
eqtri.valenc€ (hva12 (1), h§c2s€ca)
€quivalence (hval2(2), hsc2ne)

failed = 0

jsg = plock (PROCLOCK)

if (ret.n€.0) thèn
rrrlto (6,*1 rplock failed, ret = ', ret
call é:<iÈ (1,

endif

réÈ - aéÈrealpriorlty (0, 0)
if (ret .ne. 0) then

write (5,*) 'sotrealPriority failed, ret - ', rot
calI 6xit (1)

endif

c
c Give settreëtimsr a bad oPcode'
c

r6t - s€thsctincr (HsccÀt{cEl-L, hvall, hval2)
i.f (rèt .ne. -EINVÀL) thon

nrite (6,*1 'bad sethsctLmer arg test 1 failed,',
+'35!r"r:€t

f,ailed-failed+1
endif

rct - sethsctin€r (BscÀBsoLUfE+1, hvaL1, hva12)
if (rcÈ .ne. -EMVÀI.) th€n

\v-, VTN32 Real-Time User's Guide A-9

§riÈd- (6,*) 'bad 6ethsctim€r àrg È6st 2 fail6d,',
+ ' ret -', réÈ

failed-fail'ed+1
endif

c
c cive sethectinor invalid data for the seeond argtlt€nt.
c ÀI1 coÍibinations.
c

hscla€cs - -1
hsclns = 0

rét - aéthsctinèr (ESCCYCLB, hvall, hval2)
if (ret .ne. -EINVÀL) then

write (6,*) 'sethsctimer invalid data test 1 failed,',
+ ' ret =', EeÈ

failed-failed+1
endif

hsclsecs = 0

hsclnE - -1,
ret = séthsctim€r (HsccYCLE, hva11. hva12)
if (ret .ne. -EINvÀl) then

rírite (5,*) 's€thsctimer invalid data tèst 2 failed,',
+ ' !etÉ" reÈ

failed=failed+1
endif

hsclsecs = -1
hsclns = -1
ret = sethscÈimer (HSCCYCLE, hva1L, hva12)
i.f (ret.ne. -EINvA.r,) then

write (6,*) 'sethsctimer invalid data test 3 failed,',
+ ' reÈ=" rèt

failed=failed+1
endif

hsclsecs - 2L47483647
hsclns = 0

ret = sethsctímer (HSCCYCLE, hval1, hval2)
if (ret.nè. -EINvÀl) then

wriÈe (5,*) 'sethsctimer invalid data test 4 faíLed,',
+ ' ret=" rët

faiLed-failed+1
endif

hsclsecs = 0

hsclns = 1000000001
let = aettrsctimer (HscctclB, hvall, hval2)
if (rèt.nè. -Er!ÍvÀl) then

t{rite (5,*} 'sethsctimer invalid data te§t 5 failed,',
+ ' rot=" ret

failed-fai16d+1
endif

if (faiIed.eq.0) then

else

endif

stoP
end

wrj,te (5,*) 'hscbad test Passed'

write (5,*) 'hscbad test had', failed, ' èrrors'

A-10 VTX|3? Real-Time User's Guide

Example 2

c
c Corylls rith: fort -o hrcre.dtln r btcre.dtlm8.f -lrtf -lrt
c

prograrm hccreadtim6r

Palaret€r (PROCLOCK-I)

intcAer r.t
int€g€r hval{2}
lntcger hccseca, hacna
integ€r gethscvalue

equivalence' (hval {1), hscaecs)
equivalsnce (hval(2), hscns)

16g - plock (EROCLOCK)

1f (ret .ne. 0) then
rrlÈe (5,*) 'plock fallcd, r€t - ', ret
call esit (1)

endi.f

ret = s€trealpriority (0, 0)
if (r6t .n6. 0) th6n

write (6,*) 'setrealpriority failed, r€t ' ', ret
cali 6:.it (L)

endif

c
c Forever loop
C

100 conÈinue
rèt = g€thscvalu€ (hva1)
if (ret .ne. 0) thèn

write (6,t) 'gethscvalue fail€d,', ' ret = ', ret
call e:.it (1)

endif
wriÈ6 (5,*1 'secs-', hscsecs, ' nanosecs-', hscns
go to 100

sÈop
end

_-,, UW32 Real-Time User's Guide A-1r

A3.2 C Test Programs

The first C example demonstrates how to measure the interval between two events. The
hscval_before stÍucture contains the value of the trmer before the event. fisyal.after
contains the value of the timer after the event. The nanosecond value is guaranteed to be
smaller than 1,000,000,000.

The second example shows how to set a timer and wait for it to expire.

Example I

* Compile rriÈh: cc -o interval interval.c -1rt

tinclude <§ys/rÈ_time.h>
*include (sys/lock.tr)
*include <errno.h>

.linelude (atdLo.h)

eYt€rn int errno;

* MÀIN

main ()

{
struct hscval hscval_before; /* time before uork */
struct hscval hscval after; /* time after wolk *,/

/*
* Lock memory and set us up at r€a1
* time priority 0 (highest).
*/

if (plock (PRoctoCK) < 0)
{

prinÈf ("plock failed, errno=!d\n", èrrno)i
exit (1);

I
if (setrealpriorj.ty (0, 0) < 0)
{

prlntf (rrsetréalpriority failed, €rrno=td\n", errno) ;
e::lt (1);

l

gethscvalue (&hscval_b€foa6),

* Do soltre work that you want to m€asurè.

g6thscvalu6 (Éhscval_after) i

A-12 UTX/3Z Real-Time User's Guide

Example 2

/*
r Corqrl,Ie vltb: cc -o tlnór tlrt'c -lrt
*/

llnclude <lYslat-tiD.h>
linclude (rYallock.h>
llnclude <errno.h)
llncludo <rtdio.b>
linclude (aignal.h>

lnt a1rm0,

€xtarn lnt errno;

lnt Tlmer€:q)ired; / * If true, the timer hag e:<Pired */
atruct hacval hscval; /* valu€ to Program timer r/

/*
* ltÀIlI
*/

maln o'{
/*
* sot up tb€ 3i9ina1 handler f,or ghe tin€r siginal'
*/

signal (sfGàLRM, alrm) ;

/*
r Pl,ock mémory and requost !sa1-t1ll6 Priority.
*/

if (Plock (PROcLocK) < 0)

{
printf ("plock failed, errno-iid\n", èrrno);
er:it (1) ;

)
if (sotreatPriority (0, 0) < 0)

t
printf, ("setr€alPriority fail€d, errno-td\nr', €rrno) i
e::it (1) ;

)
/*
t s€È th€ timeE to e:q>ire 8.325 milliseconds from now'
r Note tbat th€ second argumont to §ethactimor i8 0 '
* 9I€ don't care about Èhe Pr€vious timer,
r ihéthor it ías set or not.
*/

hscval hsc-eeconde - 0;
hscval hec-nanosecs - 8325000;
TiíErè:q>irod - 0;
if (sethsctitnór (BSC-RELÀIfVE, 6hscva1, 0) < 0)

{
printf ("6110r: errno-td\n", errno) ;
e---it (1) ;

)

/*
* If tieer has not alr6ady expired, Èhen rait for 1È'
*/

if (lTitÉr6:qrlEad)

VTXí3? Real-Time User's Guide A-13

sigpaus€ (0);

* Signal handler for the SfGÀLRM sigmal. À11 we do is a6t
* th6 TiRér€xpired valu€ to tru€ so it can be checked when
* th6 tln€r cras started,

alrm o
{

Tinrerexpired = 1;
)

A-14 UTX{32 Real-Time User's Guide

A.l Shared Ntemory

The following C program uses shared memory and timer services. This program tests

that multiple proce§§es scheduled to nrn at the §ame absolute time will run in the proper
order.

/*
* Proc€ss Ord€r I€st
* Thls progr:ilo tests ths ord€rly ex.cutlon of
* multiple proceaaaa .chodulod to run at th. samr abrolut. tim.
* llb6n eacb proceas runs, lt detsr:aÉnor 1f 1t 1! running
* in a€qu€nc€ by looking in shared lnemory for th€
r (test specifie) proc€ss nunÈer of the last proc€sa to
* run. :t thén stor€s ita own proceérs nu-rnber in shared memory
* and Bcheduleg itsèIf, to run on the ne:.t absolute tim€ incretTEnt.
*/

*include <sigmal.h)
linclude <maebine/cpu. h>

linclude <ayaltypes .h>
llnclude <sys/ipc.h>
*include <syslshm.h>

iinclude <sotjnp.h>
*lnclude <stdio.h>
#include <errno.h)
èi:térn int €rrno;

linclude <sys,/rt_tine.h>

|def:.na ÈrA)oEL 30
tdefi.ne litÀxNUMPRocs 10
*defi.ne TESTTIMEoUT (10*60)

!nt TDelay = 3;
struct hscval hscvaL;

ProclisÈ[laÀ:xNUMPRocS]; í* PÍ-Ds of chi.ld prccesses *,/rnt
int
iot

NunProc = 5;
ProcNum;

/* Number of proca actual.Ly running r,/
/* Process number in Èh€ set
* of child procelrsen: a loop
* countèr 1n tnain, dlfferent
* p€r-prccess in Eh6 children */

/r shared memory for last ran proc€ss number */
struct lPcbuff
(

int LastProeNum; /* Iast plocelrs that ran (us€d
i to chéck sequencing) */

t;
int Procshmid; /* shared memory identifier */
struct IPcbuff *Procbuff; /* §hared memory addresa */

/t shar€d m€mory for tegt information cornan:nication *,/

atruct cenericBuff
{

iat faÍ16dt€sÈs;
int successfulpaeses;

1.

int F1shmid; /r ceneric shared ruarn id */
stEuct c€ncrl,cBuff, rGeneric; /* Generic shared npm addr. */

UT)V32 Real-Time User's Guide A-15

/* t€st functlons i/
void endltall (); /* KiIIE all the child proc. */ .. /
voi,d choclcProë.ssorderÍng O;
vold fs.tliDotrt (),
vold .1ar:u_ba!d1.r (),

/* ehared Ínemory functions */
int ghnget O;
cher *chlrat O;
vold Blung€tat O,

int Done - 0;

maln (argc, arqv)
int ergc;
char **arÍry;

{

int r€t; /* return cods for sys calls */
int L; /* countgr */

EandleÀ.rgumnts (aEgc, argv) ;

/* Ende t€at at 10 mins */
signal (sIGÀLRM, ?èstlim6out),
alarm {TESTTIMEoUT} i

/* cleanup if signal to inÈèrrupt test */
signal (SIGTERM, enditall) ;

* Àttach to strared memory for Generic
t Note that shmgétet corÍÈines shmget and sh&at

shmgetat (sizeof (*Gene!ic), EFTShmid, &Gen6ric); .
Generic->failèdtests = 0;
cènèric->successf,ulpasses = 0 ;

/* AÈtach to shared memory for Procbuff */
shmgetat (eizeof (iProcbuff), &Procshmid, 6Procbuff) ;
Procbuff->LastProcNum = NunProc - 1i

/* @t starting àbsoluÈe timo i/
if ((r€t - gethscvalu€(ehscval)) -= -1)
{

printf ("cothecvalue failed errno-id\n",errno) ;
Generic-)fa i LedtèsÈ s++,
proccleanupO;

l

t cr€aÈó child ploc€ss€s
* children inh€rit th€ data spac€ of th€ pa!€nt process,
* so they gét a copy of 'hscval' above
* fh6y aleo inherit the ehared m€mory segments, so
* the childr€n do not nesd to do indivldual shmat's.

for (Procl{u:a - 0; ProcNum < NunrProc,' ProcNum++)
{

if ((ProclistÍProcNuml - fork O) -- O)

{
child o;
proccleanup0;

A-16 UTX|3? Real-Time User's Guide

)

/* weLt for coqrletion of all chlldren *,/
for (1 - O; 1 < NuuProc; 1++)
(

raiÈ {0};
l

prlntf (iParent .xiting\nn),
printf (nErroat ao far: td\a", Gon6rlc->faLledtclt.) i
printf (rsuccessful passcr go far: td\n', GenerLc->succcsefulpeaser) ;
erÈit (0),

)

/*
* child
* child proceas cod€ for t6st.
t Ugea
* extgrn ProcNum (pèr-proc€sr) - process ntrtlb€r ln t6st s6t.
*

chlld o
(

lnt i;
int r€t;
sÈruct hscval hscval2;
cpumask_È mask;

/*
* child iniÈialization code. Set up ordering
i anongst processos (eg. by using RT priority).
*/

\!-- signal (srGÀlRM' alarm-handler);

/*
* In thls t6st, done by setting RT prioritjr, everybody waking up
* at sane tirn€. RT priorit.ies stalt at 1, noÈ 0, so that {e can
t regain control of machine.
*/

if ((ret - setrealpriority (0, ProcNum + 1)) < 0)
t

printf (r Setrealpriority failed, errno--d\n", errno);
G€neric->f ai ledtest s++ ;
proccleanup O ;

)
if ((mask ' s.t,targgtcpunàsk(0, P_cPUr'tÀ§K(o))) -- -f)

{
printf (ntargetq>u falled, errno-*d\n",errno) ;
G€neric->f ai ledtest s*ï ;
proccleanupO;

l

/* set ner absoLute titn€r and pause unt1l it e:.piree*/
for (i = 0; i < 100; i++)
{

hscval.hsc_eèconda - hscval.hsc_seconda + IDelay,
if, ((!et - sethsctitnóE(BSC ÀBSOLUTE, Éhscval, §hscval2)) -- -1)
{

Gcn6ric- >f ailedtést s++ ;
prinÈf ("setbactimar falled, errno-*d\n", €rrno) ;
proceleanup O ;

lJTXl3? Real-Time User's Guide A-17

)

Paus€ o,
l
Donc - 1;
proccleànup O ,

)

* alar:m_band1.r - ti[6r hae gone off,

void
alarm_handler o
{

ChéckProcessOrdering () ;
)

t endíta1I

I

void

cleanup routj.n€
s€t LastProcNum to -1.
Other procosses xill 6x1t íhen they sec this,

enditall o
{

j-nt í;

Procbuff->LasÈ-Procllrim = -1;

/* remove shared memory (also detechasl */
shmctl (Procshmid, fPC_RMID, 0);
shmctl (FTShmid, IPC RMID, 0),

e::it (0) ;
)

* checkProceasordering
* Chéck thaÈ Èh€ ÈesÈ processes e:.ecuté in lrder.
* Orde! is d€termin€d by the teat, ueually using RT prio in some form.
* Ord€ring is strictly Linear-circular,
* Uses
* e:.tern ProcNum (per process) - process number in t.est set

void
CheckProc€ssordoring ()

{
int lastproc - Procbuff,->LastProcNum;

if (lastProc -= -1) /* parent saya go alray */
(

e-.:it (2) ;
)
else /* normal case */
{

if (((Iastproc + 1) t NutÍ8roc) l- ProcNun)
(

Generic-)f ailedt6sts++ ;
printf (n Ill€gà1 Proc6as sequence\n");
printf (" LaatProcNum - *d, ProcNun-*d, Succ€aaful-td\n",
leatproc, ProcNum, Generic-)guccessfulpasses) ;

A-18 UTX|3? Real-Time User's Guide

)

_--. UTr<132 Real-Time User's Guide

procclcanup O ;
/* NoÍ REÀcgBD */

)
eenaric->auccer af,ulparrce++;
Procbuf,f->LartprocltuB - Procttuni /r lndlcatc thir proc rtn */

)
)

/*
* lÍrappea around coaÈlncd celk to aÏ:mgot .trd !\h.t,
* prLntlng and cxl,ting on crror.

vold
shmg€tat (siz€, idp, basep)

j.nt alze;
lnt ridp;
char **basep;

if ((*idp - shmget (lPc_PRrvÀTE, sízà, IPc_cRE"Àr I 0660)) < 0)
{

printf, ("ahnget failed, errno-*d\n"r èrrno) i
proecleanup O ;

)
if, ((tbasep - strmat (*idp, 0, Sglt IpcK)) < 0)
{

printf ("shmg€t failed, errno-*d\n", errno);
proccleanup () ;

l
i

* Handl,eÀrgumentg -- Is uhérè t6sÈ ap€cific argLulènt
* handling code goes.

HandleÀlgunents (argc, argrv)
inÈ argc;
char *iargTv;

{
inÈ atg;

for (, *++argv;)
{

/t ÀI1ows passingr in nurnbsr procsss€s to cr€ato */
if (sscanf (*argv, "-np-*6", [arg) -- 1)
{

if (1 <- arg É6 arg <= lq)orcMPR@s)
{

Nu$proc r arg,
) else
{

printf ("-np-<nurnproc> tmrst b€ within [1,id]\nr, r.rÀXNUMpROcS];
proccleanup () ;

)
)
€1s€
{

printf (trUnrecogrriz€d argunént ts\n", *"rgr) ;
proccleanup O ;

)

A-19

)

l*
* fc.lfimout
* stopt executiolr .ft.r tEglllllEoul tdnut.r

void
f€stTlmèout ()
{

prlngf ("Trrt tlmd out\n");
prÍntf ("Baro8! to far: td\n", G.n.rlc->fai1.dtstt8),
prl,ntf ("succataf,ul paares ro f,er: *d\n", G€narlc->rucocrrf,ulpaercr) ;
procclcanup O ;

* proccl€anup -- c1€ana up the child procesaes

proccloanup ()

{
int 1;

/* KiIl all child procesÉes. À -1 in LastProcNum tells the otsher
* pEocesses Èhat th€y should Just e:rit, */

Procbuff -)Í,asÈProcNurn - -1i

è:.it (1) ,
)

A-20 UW32 Real-Time User's Guide

A.5 Dirert File System

The following FORTRAN program uses the direct file system calls. This test progÍlm
simpty exercises all direct file system calls in the real-time FORTRAN library.

c
C Corylle rlth: fort -o diróct direct.f -lrtf -lrt
c

progrsm dftest

lntegor PROCIPCK, IT}{LOCK

Pe!.ester (PROCLOCK-I, U§LOCK-o)
integ€r plock, dfcreate, dfop€n, dfyrlté , dfclo ee , df,ds lete, dfe:rtend
inÈogèr raÈ, fd,error
intèg€r 6v6ntctrs(3)
lntegor rbuff(L00)
charactor*60 pathnamo
data pathnam/, /dtsk}a/fLLe, /

error - O

sqg - plock (PROCLOCX)

lf, (r.t .nc. 0) thcn
write (6,*) 'plock failed, s6t-', r€t
call exit (1)

endif

ret - dfcreat€ (pathnam€,!,t, -L,Ol
if (ret .1È. 0) then

write (6,t) 'dfcreate failed, ret=', rèt
èrlor - 1
goto 600

endlf

rat - dféytéird (pathnam€,1,0)
if (reÈ .It. 0) then

writ€ (6,i) 'dfé.ytènd failed, r€t=', r€È
error = 1
goto 500

endif

fd - dfop€n (pathnanè, 0,oventctr§, 0)
if (fd .It. 0) th€n

write (6,r) 'dfop€n failed, ;69-,, ret
error - 1

goto 400
€ndif

ret - dfrrlte (fd,rbuff,30)
1f (r6t .It. 0) th€n

rrlÈ. (5,*) 'dfwritè failed, asg-r, r6t
arror - 1
goto 400

endif

400 ret - dfclose (fd)
if (ret .It. 0) then

writc (5,*) 'dfclosó f,ailcd, ret',, 16È
error - 1

endif

500 ret - dfdelet. (patba.m)

Vfg32 Real-Time User's Guide A-21

if (ret .It. 0) then
wrj.t6 (6,*) 'dfdè1€t6 failed, ret=,, r€è
error - 1

goÈo 600
endif

600 351 - plock (uNLocK)
if (ret.ne.0) then

rrtte (5,*) 'p1ock failed, g5g-', rèt
error = 1

endif

if (error .eq. 0) then
write (6,*) 'tèst passes'

endif

stop
end

A-22 UTX|3? Real-Time User's Guide

A.6 Direct I/o
The following FORTRAN program uses the direct VO facility. This example is of
special interest because it involves calls to C code. The FORTRAN program is diotest.
The C utilities follow.

If you nrn this program, be sure that you run it on a disk that doesn't contain important
data. This test will write the first 1024 words on the disk at address Ox800. Note that the
disk geometry given to the createiocds routine changes for various types of disk drives.

To compile the program, execute the following commands:

t cc -c createlOCD.c
* fort -o .lioteat diotest.f createlOCD.o -Lrtf -Irt

A.6.1 DIO FORTRAN Program

progr.rm diotést

. integer PROCLOCK, UNLOCK

parameter (PROCLOCK-1, UNLOCK=o)
parmetsr (REÀDCMD=o, gTRITECMD=I)

parametér (NwORDs=1024)

integer plock, dioconnect, dioconvert, dionotify, dioreleasa
integer dicreserve, dios iolog:
Ínteger notify (2) , statbf (2) , conID
integer ret,errcr
integer wbuff (NWCRDS*4), rbuff (NWORDS*4)

integer wlogiocl (4) , rlogiocl (4),.dphysÍocI (5) , rphysiocl (5)
integer seekdatè(L)
inteqer diskaddr
data <iÍskaddrri y' 800' /

error = 0

sgt = plock (PROCLCCK)

if (ret .ne. 0) then
write (5,*) 'plock failed, r€t=', ret
caJ.I e-vit (1)

endi f

rét = dioreserve (diskaddr)
if (ret .It. 0) thèn

wrj.t6 (6,*) 'dioreserve failad, ret=', reE
error = 1

goto 600
endif

conID = dioconnèct (diskaddr, 0,4,not.ify)
if (conlD .It. 0) then

write (6,r) 'dioconnect failed, ret=', conID
error = L

goto 500
endif

ret - dionotify (conID,29,O,Ol
if (ret . It. 0) then

write (6,*) 'dionotify failed, 36!=,, ret

UTX/32 Real-Time User's Guide A-23

èraor r 1
goto 400

endlf

c81,1 ar..t.locdr(m.IIBCIO,0,lftísrRDgr{,16,5,!..}d.te,röuff,rlogl,ocl)

ret - d:loconvert (conlD, rlogiocl, 16, qrbyslocl, 2{)
1f (ret .1t. O) then

rrlÈ. (6,*) ,dlocoavort f.i,lad, 36grr, rtt
orror - 1
goto aoo

endlf

c AilI up wpuff yith a known t€st patÈerÍr.
c

do100 1-1,NIfOA.DS
rbuff(i) = I

100 continue

c
C fÍrtto th6 pattarn to th. di!k.
c

ret - diosi.ophys (confD,wphysiocl,statbf,0, 10)
if (ret .It. 0) then

writè (6,i) 'dlosiophys failed, s6g=,, ret
error - 1
goÈo 400

endif

call crgaÈéiocd§ (REÀDCMD, 0, NI{ORDS t4, 1 6, 5, seekdata, rbuf f , rlogiocl)

c
C Read Èhé pattern from the disk into rbuff.

ret = diosiclog (confD, rlogiocl,16, rphysiocl,24, statbf,0, 10)
if (ret .lt. 0) thsn

vrite (6,r) 'dioslolog failéd, a6g=,, reÈ
error = 1

goto 400
endif

c Bttzz loop until th€ I/O compl€t€s, Inatead of, doing this, í6
C could hav6 requ€sÈed rait f/O in th6 dlonotify.
C No!6: no tim6out, so if the f/O n€v€r compleÈes, the program
C n€ver leavos hcre.
c

150 if (notlfy(l) .ne. notify(2)) goto 150

c
C Test the pattern that waE wrj,tten rlth the patt.rn that was read,

do200i-1,N$oRDS
if (wbuff(i) .ne. rbuff,(i)) th€n

rriÈe (6,*) ,bad Eead or tElte; buffèr'corrupt€d,
error - 1
goto 400

endif
200 continue

l0O r€t - dlodigconnoet (cohID)

A-24 UTr<132 Real-Time User' s Guide

lf (ret .It. 0) then
write (6,*) 'diodisconnect failed, r6t=', ret
error = 1

endif,

500 ret = diorelease (diskaddr)
if (ret .It. 0) then

writè (5,*) 'diorè16aEe feil€d, ret-', ret
€rlor - 1

endif

500 ret = plock (UNLOCK)

if (ret .ne. 0) Èhen
write (6,r) 'p1ock failed, ret=', ret
error = 1

endif

if (èrror .eq. 0) then
writè (6,r) 'test passes'

endif

stoP
end

WXl32 Real-Time User's Guide A-25

^.6.2
C Utilities for DIO FORTRAI{ Program

* dlo t68t utillty routinea...

*include "ayslloct1.h"
*include "eelio/iocnd.hn

*define RF.ID_CMD 0

*d6fLn€ tcRITE-Ct@ 1

/* i/

/* Eunction: */
/, This procedure creates an IocD pair for the could Disk */
/* Proc€ssor Èo se6k and read/write on the disk. The 2 loCDs */
/* are conunand chainèd. ?he addreeg fieldg in the IocD arè ell */
/* Iogical ad&esees. th€ outpuÈ of this procedure is suitablé */
/* to pass to the Dirèct I/o int€rfacè as a loclcÀf iocL. This */
/* routin€ may be called outsid€ th€ Direct Files environÍEnt, */
/* but is heavily d€p€ndont upon Gould coNcEPT,/32 cLass F hardwar€. *,/
/* */

createiocds_ (Read9írite, Block,

i,nt *Readwrite;
int *Block;
int *Size;
int *T!ksize;
int rcylsize;
Tseekword *seek;
char *Àddr;

TIOCD *Dest,

{

register int remi

,/t compute seek data word,. . r,/

size, Trksize, cylsizè, Seek, Àddr, Dèst)

/*
^

f]-ag indicating a read or a writ€ cmd */
/t :he disk block number to start I/o at */
./'* :he number of bytes to read/write ,/
/* ll cf blocks per track */
/* * of tracks p€r cylj.nder */

/r The loglcal address of where the data is
to be read/wrltten tolfron */

/* À pointer to wherè the 2 IOCD structures
are to be stored */

z'* remainder after division */

put addr of seek word i/

4 bytes of seek data */

/t increm€nt to n€YÈ IOCD */

seek->s_seekCyl = *Block / (tcylsize * *Trksize) i
r6m = *B1ock * (*cylsize * *Trksize) i
sè6k->a_se€kTlack = rem / *Tlksizèi
Seek-)e Seekséctor - rem 3 *lrksize;

,/* format seek IOCD. .. */

Dest->i_locttd = IO_SEEK;
D€st->i_Àddress = (unsigned) Seek;
Dest->i_Iof Iàqs = IO_CMD_CHÀIN ;
Dest->i_Xfercount = 4i

D€sÈ++;

A-26

./* fornat read or rrite IOCD... */

UT]{.{32 Real-Time User's Guide

{

)
elss
{

)

Dest->i_Àddress - (unlrigÍred) Àddr;
Dèst->i_Ioflags = 0i
Dest->i_Xfèlcount - *Siz€;

return;

if (*Readwrite -= REÀD CMD)

Dest->i_ÍOcmd = IO_REÀD; /t read data conmand *,/

D6st->i_Iocrnd = IO_IÍRITE; /* write data cornrnand */

UTX/32 Real-Time User's Guide A-27

A.7 Connected Interrupts

The following examples are explained in Section 10.2 of Chapter 10, "Connected

Intemrpts." The fust example shows a simple indirectly connected intemrpL The second

example shows a simple directly connected intemrpt.

A.7.1 Example Using Indirectly Connected Interrupt

* corrrl)lle wiÈh: cc -o indircon indi'rcon.c -1rt

*include <stdio.h>
*include <signal.h>
*j.nclud€ <sys/!t_ci.h>
#include <sys/Iock.h>
*include (sys/errno.tr)
*include (se1/machparam,h)

extern int érrno;

* These define the d€vice and inÈérruPÈ level of the connection.

í+define cHÀN 0::?f
#define suBcHÀN 0Y0d
*definé clÀss 0:'-03

*define PRI 0::50

int sig_handler O;
int cleanup O;

int Nsigs = 0; /r NuÍÈer of signals received *,/

int Key, /* Identifying kéy fcr the connection i,/

* main This program makes a di.rect connection to an interruPt
* level and counts the number of inr-errupts it receives '

* The Progran must be run as superuser.

nein(argc, argv)
int argc;
cher **a!g:r;
{

j.nt !et; /* R€turn velue of systsm calls */

* s€t up a sig:ral handler so that the process will clean uP and
* e:(it when j.t is sigmaled.

if (siqnàl (sIGINl, cleanup) < 0)
(

fpEintf (std€rr, "siginat (SIGINT) feil€d errno=*d\n", errno) i
exit (1);

A-28 UTX|3? Real-Time User's Cuide

)

/.
. g.È r4) tbo rigarl b.srdl.r tbrt rlu bo cellod rrhon ln lntornlpt
r ie recclnrd.
*/

tf (atgmal (Ítlcusnl, .ig_b.ndler) < 0)
{

fprintf (.td.rr, nrLgnel (SICUSRU f,e1lcd orrao-td\n,, orrnol;
exlt (11;

,

Nalgs - 0;

/*
* Install th€ lÍrdir.ctly conn€ctèd int€rrupt handlcr.
*/

if ((r€t - pl.ant (EKey, cEÀ§, stBCBÀN, CI.ÀSS, PRI, C" IIIDIRECTI) < 0)
{

fprintf (std.rr, "planè falled errno-td inta 1€vó1-0rt1a\nn,
crrno, PRI);

exlr (1);
)
if ((rét - graft (Key, SIGUSRI, 0, CI_INDIRECI)) < 0)
{

uploot (K6y);
f,printf, (ttderr, rgreft falled errno-id intr lcvcl-0xtl-.-\n"r

errno, Kéy) i
e::iÈ (1);

)

/.
* Enable tb. interrupt level.
*/

ei (Key, ,

/*
t Wait for6ver. Th€ work of, this program is done ln the sigmal
* handler.
*/

for (;;)
pause O;

l

* slg_handler - ?his function is th€ signal handlsr.

sig_handlcr o
(

Nsigr++;

/r
i tho j.nt€rrupt 1€e61 for an i.ndirectly connected lnterrupt

. is deactivated by the kernel.
*/

)

t cloanup - this function c16an8 up th. proc€s3 when ternj,naÈed.

clcanup o

UDV32 Real-Time User's Guide\-/ A-29

Prune (K3Yl,
uProot (x.y),
.xl,t (o),

)

1u7.2 Btttmple Using Directly Connected Interrupt

* cotq)i1è rl,th: cc -o dircon dlrcon.c -Irt

finclude (stdio.h)
linclude <sigmal.h>
íinclude <syslrt_ci.h>
llnclude <ayal1ock,b>
|i.nel.ude <eye,/types .b>

€:at€rn int crrnoi

ld€fin. cEÀN 0:r7f
ldefine sUBcHÀ}l 0:.0d
tdefin€ clÀss 0n03
d6fine PRI 0--50

int inÈr_handler O;
int cleanup O,

inÈ stack [500];
int Nints - 0;
int Key,

/* ht€rrupto ruÍr on t.his stack *,/
/* Nurnber of int€rrupts taken so far */
/* Key to identify conn€ction r,/

* main This program makes a dj.r€ct connection Èo an intorrupt
r l€v6l and counts th€ nutÈer of int€rruptss it r€ceiv€s.
*
* The progran must. b€ run aa sup€rua€r.

main(argc, argv)
int argci
char trargv;
t

int r.ti

/*
* Lock Èhc proc.ss lnto tr6mory.
*/

if (plock (PRocLocK) < 0)
t

fprlntf (etd€rr, "plock failed: errno-td\n', errno);
c*lt (1),

I

/*
* farg.t tbc proce.r to the CPU.
*/

A-30 UTX/32 Real-Time User's Guide

if (rettargotcpuraaek (g.tpid O, P_cPu!.IAsX (P_CPU)) < 0)
{

fprlntf (ctdcrr, ns.ttarg€tclnnark f,ailod:'l ;
fprlntl (stderr, tr.rrtro-td ptd-oxtlx q»u nark-0xt1x\n",

.!!no, gctptd O, P_cPlrl4llltt (P_cPu));
e:.it (1),

l

/,
r s€t up e rlgnal bendlor .o tbat the procoer vlll. cleen up and
* .xit rhen lt ir rlgnaled.
*/

if (slgrtel (sIcINl, clcanup) < 0)
{

. fplintf (stderr, "sigmal f,ailed: errno-td\n", errno);
€:.it (1);

)

Nints - 0,

/*
. Install Èh. direetly contrccted Lntearupt hendlcr.
*/

lf ({r€t - plant (&Koy, CEAtl, SUBCIiÀN, clÀss, PRI, CI_DIRECI)) < 0)
(

fprinÈf (atderr, 'rplant failed errno-ird intr 1€v6l-o:tilv-\ntr,
€rrno, PRI);

e::it (1);
)

if ((ret - qraft (Key, Estack[499], intr_handler, cr DIRECT)) < 0)
(

uproot (Key);
f,print.f (atderr, ngreft failed errno*id Key=0v11*1r1",

€rrno, Key);
eYit (1);

l

/*
* Enable th6 i.nterrupt l6vel.
*/

ei (PRI);

/*
r wait forever. Thè rork of thia program ig done in the interrupt
r Eoutine.
r/

for (;;)
paus€ O,

l

*
* intr-handler - Ihis f,unction is the inÈ€rruPt handler. rt is callad
t then an int€rrupt is recelved'
t

Lntr_handl.r (leveI, statur)
r.glrtór j,nÈ lsvol;
r€giat€! lnt rtàtusi

_-., VfN32 Real-Time User's Guide A-31

Nints++,

* D€activat€ th€ interruPt.

hwprivdai (level);
)

* cl€anup -

cleanup o
{

prune (Key);
uproot (Key),
ev-it (0);

)

This function cleans up when th€ Proc€ss exits'
It is e.-.pected that the Process will e:it after
receiving a SIGINT.

A-32 UW32 Real-Time User's Guide

A.ll Suspend and Resume

À&l Ping-Pong

tn this example the parent process creates one child process. The child process

immediately suspends itself. The parent process then resumes the child and suspends

itself. Upon being resumed, the child process resumes the parent and suspends itself.
This causes a ping-pong effet between the two processes.

/*
* ping-pong - This program detnonrÈrat€s hor tro proceases can
r suspend and rosume €ach other in sequence (ping-pong
* back'and forth).

* Compilc rith: cc -o pingpong pingpong.c -lrt

/* header fílea */
llnclud. <€rrno.h>
llncludc (sÈdlo.h>
*include <eyelrt_suspres .h>

/* é:.térnally declar€d variables */
€-Ytern int errno;

./* constant declaraci-one */
*define I?EaÀTioNs 5

/* clobal variables r/
int childl; /* process liat containing child pid */
inÈ par€nÈi /t process list containing parent pLd *1

main ()

{

/* c!éace process list which contains par€rrt .oid *7
parènt = getpid();

/* fotk off child procoasr ànd creaÈe
* process list whictr contains child pid
*/

if((childl - forkfi) -- 0)
(

/* suspend chlld process
. in order Èo actrleve propsr sequsncing
* do not caró if susp6nd intórruptèd by slgmal
* if suspend fails t6st will fail

if (susP€nd() " -1)
{

printf("suspend fa1led orrno - td\n",errno);
6:rit (-1) ;

)
childl o ;

)

/r waÍt for a rhlle to asaure child proceas
r ls susp.nd.d before starting ping pong effect

UT){|32 Real-Time User's Guide A-33

* The 2 parscd to rlé6p yag chosen at landom
*/

aleep (2) ;
Pareat O ;

l

/*
* Chlldl -- r€sllt!ói tbc parónt proc.ss and iÍrn€dlat€ly su8p€nds
* lts.1f . R.pöatr thlr for ITEA;ilIIOI{S tles.

child1 o
{

lnt i - 0; /* countcr variable */

whitre (i++ < (ITERÀTrONS -1))

{
/* r€sume parent procosa and inusdiately susp€nd */
if (resuÍB (SR_SUSPEND,Perent) == -1)
{

printf(rrr€sums in child X failed l-td\n",i);
printf(n orrno - *d\n',errno);
e-Yit (-1) ;

)
PrinÈf("child 1 loop - id\n",i);

)

/t r€sum6 last parent plocéss but do not suspend
* because parent will nevar resume Ètris process
*/

if (resume(0,Parent) -= -1)
{

printf("resurns in Child 1 failed i=*d\n",i);
printf(" errno = td\n",errno);
6Yit (-1) ;

)
printf ("eYiting child 1\n") ;
e::it (0) ;

)

* Parent -- relrumes child process and immediat€ly susp€nds
* Ítse1f repeats this for IfEB,ÀlIoNS

Parent o
(

int i = 0; /* counter variable */

rÍhj.l€ (i++ < ITERÀIIONS)
{

/* resutnó child procesa and thsn suapend */
lf (resum6(sR_sUsPEND,childll -- -11
{

prÍntf("resume in ParenÈ failed i-td\n",i);
printf('r errao - Ëd\n",6rrno);
€:rit (-1)

')

Printf("Pà!eat looP - :;d\n",i);
)
wait (0) ;
printf ("€Yiting Parent\n') ;
é:rit (0) ,

A-34 UTX|3? Real-Time User's Guide

A.tJ Order

In this example, the parent process creates several child processes. Each child process
sets its real-time priority to be one greater than the last child that was forked. Each child
process then suspends itself and waits to be resumed. After all of the child processes are
suspended, the parent process resumes the list of child processes. The child processes
should then execute according to their real-time priorities.

* ordèr -- this program ssts up several child proeesg€s, assigns
i th6m each a real-tiíE priolity, and then suspends them.
* The parent process simply resumès all of the children,
* Upon b€ing resumèd the child processes should e:.:ecute
* according to their real-time prj.orities.

* Compile erith: cc -o order order.c -1rt

/* IIEÀDERS T/
*include <signal.h)
linclude (machine/cpu.h)
*include (sys/types .h>
*lnclude <sys/ipc.h>
*include <sys/shrn.h>
*include <set jlrp . h>
$lnc1ude <stdio.h>
#include <errno.h>
f include <sys/rt_suspres . h>

6:rtern int errno;

*define MÀXIIUMPRoCS 10
*defineTESTTIMEoUI (10*60)

/* Nunber of child procs to create r,/

Proclist [!4AXIIIJ]ÍPROCSI; ,/* PIDs cf chi.ld pro:esses *7'

return_statusI]4ÀXNUMPROCS), /* return status of
chJ,ld processes +,/

,/* Nunrber of procs actuèily
* running */

,/t Procèss number in the set
* of child proc€sses: a loóp
* counter in main, different
r per-process in the
* children r/

/* pid of parenÈ process */

int
int

int

int

NurnProc = 5;

ProcNumi

Parent i

/* Shar€d msmory for checking proc€ss executj.on order *,/
struct lPcbuff
(

int LastprocNumi /* Iast process that ran (use
* to ch€ck sequencing */

t;
int Procshmid, /r Shared m€mory identifier */
atruct IPCbuff *Procbuff; /* sharèd tnemory address */

/* Shared mèmory for j,nterconmunication b€trr€en processes */
struct G€neri.cBuff
{

int failedtests;
int successfulpasees;

VTX/3? Real-Time User's Guide A-35

);

lnts F"Sluld;
ltruct G.ncricBnff, rc.D.rlc;

/*cóneri,c sherod n m id */
/*Geaorlc shar.d ncn addr. */

/* procesa t6rt ord€ring functions */
void endltall (); /* K1lls all thc ctrLld PEoc' */
void ch€clcProcossordering O;
void Testflmout O,

/* doclrration f,or ehered Dsnory firnctiona */
int
char
vold

slrrgÉt O ;
*shnat (),
shmgetat O;

toain (argc, argM)
inÈ aigtc;
char **argvi

{
int r€ti
inÈ i;
int);

/* return cod6 for sya calla */
/* countèr */
/* counter */

HandléÀrgum€nts {argc, argrv),

/* Ends test at 10 mins r/
sigmal (SIGÀLRM, ?estlimeout) ;

alàrm (tESTIIMEOUT);

/* cleanup on eigrrals t/
signal (SIGTERM, enditall);

/* Àttach to strared mernory Generic */
shmgetat {sizeof (*Generic), eETshnÉd, &Generië) ;
Ceneric->fai,ledtests = 0,'

G6nerlc->suceessfulpasses = 0;

/'* Àttach to ahar€d m€mory Procbuff*/
shmgetat (sizeof, (*Procbuff), &Procsh,mid, &Procbuff) ;
procbuff-)LastProcNutn - NuDProc - 1i

/* get pid of parènt process *,/
parent - getpidfl;

/* fork off chlld proceseea */
for (ProcNum' 0i ProcNum < NutuProc; ProcNum++)

{
if ((Proclist[ProcNuÍr] - fork (]) -" 0)
{

chird o;
exlt (0) ;

)
)

/* if parent process */
if (Parent -- gctPldfl) {

/* tfait for completion of all children
* 2 seconda ia just a time chos€n at random

gleep(2);

A-36 UTXí3? Real-Time User's Guide

/* resurnc chlld procesaea */
ProclJlst [ProcNum++] - 0;
tf (r€rre.(SR_IOLTIPI"EPIDS, ProclJlat, llr:oproc, return_rtatug) - -1) t

prlnÈf (i re.urm fallcd\n") ;
for 11-6; 11x1-,9roc, J++)

Prlntf, (" Eaturn_st atus I td] - X61rr", J, return_statuc t j I] ;
Gencric->fa1l€dtert. - O,

)

/* fait foa corpletl.on of all chlldrcn
* 5 aeconde 1r Jurt a tim choren at random*/

sle€p (5) ,
prlntf ("Parent ezitlng\n") ;
printf, (rErrors go far: td\n", c€n€rlc->failedtasts);
printf (rSuccessful paaa.o so far: *d\n,', G€noric->successfulpasses) ;
ó:(it (0);

)

* child
* Child procees coda for tegt.
* Us€§
* ey.t€.En Procllum (per-process) - process nl,Iab€r in t6at a€È.
*
*/

chird o
t

1nt. i;
int r€t;
cpumaek_t tnesk;

* In this toet, done by sètting RT prioritï, everybody waking up* at gams tims. RT prloriti€g start aÈ 1,, not O, so Èhat we can
* r€gain conÈrol of machine.

if ((r€t - setreafpriority (0, procNurn + 1)) < 0)
t

prÍntf (" Setrealpriority failed, errno=3d\n", €rrno) i
c6ne ri c-> f ai l€dteat s ++..
proccleanup () ;

)
if ((naek = a.ttarg€tcpumaak(0, P_cPUttAsK(0))) -- -1)
{

printf (ntergetcpu falled, erno-td\n",errno) ;
ceneric->f ai 16dt6at a++ ;
procclaanup O ;

)

/* euapond child procesa r/
if (susPend0 =- -1) {

printf(" cuapend failed ln ProcNusn - *d\n",procNum);
c6n€ric->f a1 lodt€8ts++ ;
proccleanup O ,

)
CheckProceasordeEing (),

)

_, UÏXB2 Real-Time lJser's Guide A-37

* f€atIltnóout
* stops e..<.cuÈioa .ft6r TtsgftníEouf tsinut6!
*/

vold
f€!.{Tim€ouÈ o
{
. prlntf, ("T6at tlm€d out\n');

prinÈf (irErora so far: td\ni, Generlc-)fallcdtogta);
printf ('§uccèt8fuI Pas6€a go far: td\n", Generlc->succcsafulpasaea) ;
proccleanup{) i

l

* endital,I
t cleanup routlne
* Kitls child procéss€a and removeg ghared netnory.

void
€ndltaU o
{

int 1;

/* kil1 all child processes *,/
printf ("enditaf 1 call€d\n") ;

Procbuff->LastProcNutÍr = -1 ;

/t remove shared memory */
shmctl (Procshmid, IPC_RMID, 0);
shmctl (FTShmid, IPC RMID, 0);

esit (0) ;
)

i checkProcessorderlng
i Check that the t€st Processes e:'-ecute in orCer.
* order ie determined by the tèst, usually using RT Prio in some form.
r oldering is strictly li.near-circular.
t Uses
* è-yt€rn ProcNum (per process) - process number in Èe§t set

void
checkProceasordering o
{

int lastproc = Procbuff->LastProcNun;

lf (lastproc =- -1) /* parenÈ sàys go eerey */
{

esit (2) ,
)
elge /* normal caaa */

{
/* check €:(6cution otder */
if (((lastProc + 1) t !fi:mProc) !- P!ocNu$)
(

Gonorlc->fai Iedtest s **;
prlntf (n Illogal Process sequence\n");
printf (" LastProcNum - td, ProcNun-td, succesef,ul-*d\n",
laetproc, ProcNun, Genoric->succee efulpasaes) ;
proccleanuP O ;
/T NOÍ REÀCIIED */

A-38 UT]ifi? Real-Time User's Guide

l

IJT)V32 Real-Time User's Guide

)
c€n€ric->§ucc6 s s fulpas sos++ i
Procbuff->taatProcllum - Proc§urni /* lndlcate tbl,8 proc tatr */

l

* rrapp.r around conblned caIlr to thrgot and alrn:.È,
r paintlng end cxltlng on €rror.

vold
rhmgetat (sl,ze, idp, basep)

lnt aíze;
lnt ridp;
char **ba8€p;

{
if ((tidp = etuÍElot (rPc_PRIvÀaE, alzè, IPc_cREltI I 0650)) < 0)
(

printf ('aluuget failèd, errno-*d\n", errno);
proccleanup O ,

)
if ((*basep - slttnat (*idP, 0, slIM_IpcK)) < o)
I

printf ("shmget failed, errno=id\nF, errno);
proccleanup () ;

l
)

t tlandl€Àrqu&ents -- Is xrh€re tést specific argum€nt handling code goes.

HandleÀrgursnts (argc, argv)
int atqc;
char **argvi

{
int arg;

for (; *++argv;)
{

/* Àllows passing in nuEber Procésse8 to creatè */
if, (sseanf (iarg.v, "-nP-td", earg) r- 1)
{

if, (1 <= arg &§ ar§ (- llArNUMPRocs)

{
Numproc - ar9i

)
slse

{
printf ("-np-<tlumproc> rm-rst bè t ithin [1, td]\n", ÈIN§UMPROCS);
proccleanupO;

)
)
else
(

prlntf ("Unrecoginized argn]msnt ts\n", *argv) ;
proccleanup O ;

)

A-39

* proccLemup -- cleans up Èh€ child proc6sses

proccl€anup ()

{
int i;

/* KiII all child proc€ssés. À -1 in LastPEocNum tells ttre other
* processes that th€y should just exÍt. */

Plocbuff->LasÈProcNum = -1;

exit (1) ,
)

A-{0 UTX/32 Real-TÍme User's Cuide

Appendix B

Model Real-Time Applications

This appendix provides some simple examples of real-time programming under UTX|3Z.
One simple model application has been written in C in three versions. The programs
model a cyclic process that periodically writes information to a device. The three
different methods provide various degrees ofaccuracy. They are presented in increasing
order of accuracy.

The first version uses high-resolution interval timers. This version performs the work
and then sets a timer. When the timer expires, the work is repeated. There is no way to
determine how accurate this is, because the execution time between timers is unknown.
In addition, the time for the timer system call can vary somewhat and increase the
inaccuracy. This version is good for low resolution cyclic scheduling.

The second version uses high-resolution repeating timers. This is a more accurate
revision of the first model. The system takes care of sending the process a signal
periodically, so the user doesn't have to take the time. This removes the system call
overhead. Even though this method is more accurate, it still cannot provide the greatest
accuracy. This is an inherent problem of the interval timer. Time can be skewed by small
amounts when programming the interval timer. The more the interval limer is used, the
more it can skew.

The final version uses cyclic scheduling. This is the most accurate, but also offers the
lowesl resolution. The process requests cyclic scheduling and ilren suspends until it
needs to run. The cyclic scheduler completely removes the scheduling burden from the
process. All the process needs to do is suspend itself. The cyclic scheduler will wake it
up at the appropriate time and the process then executes.

This model application involves most of UTX/32's major real-time facilities, such as
timers or cyclic scheduling, real-time scheduling (including processor rargeting),
lockdown, and direct I/O.

The files and their contents are:

model.h The header file for the model program

model.c The version using high-resolution interval timers

model2.c The version using high-resolution repeating timers

model3.c The version using cyclic scheduling

UW32 Real-Time User's Guide B-1

B.l Header File for ilIodel Program

dcfine NO_OF_PROqESSES I / l of, procsat r c:<ecutlng */
ldcflne DEVICE_ÀDDR 0x0800 /* detice to us€ for Direct ÍlO */
fdeflne ldÀr§vc 5 /i max I of SVCa per proceas */

* s\rc typ€s (on6 for eech diff6r6nt gvc made 1n tb€ mod6l not including
* S\rce made ln initialization, direct Í/O., ox the gcbedulirg) ...

énum svctlrp€s { Nosvc, gisp€€dc1ock, Readclock };

int ProcéssorlNo OF PROCESSESI - {o,o,o,o,o,o,o,o
);

int PrioritylNO_OF_PRocE§sEsl = {
t, 4, 5, 9, 2, 6, 8, tO

1.

* Process_schedule is the I of 60Ez framos to susp€nd before starting th€
* n6---t eyecution of the procslra,..

int Process_schedul6[No_oF_PRocEssEs] - {
0,2,2,2,2,2,2,2
I

enum SVCtIT)eS svclist [No_oF_PRocEssEs] [!N(svc] = {
NoSVC, NoSVC, NoSVC, NoSVC, NoSVC),
Hisp€edcl,ock, Reàdclock, Nosvc, Nosvc, NoSVC),
Hispé€dclock, R€adclock, Nosvc, Nosvc, Nosvc l,
Hi,Spèedclock, Roadclock, NoSVC, Nosvc, NoSvC),
Hispeedclock, Readclock, Nosvc, Nosvc, Nos\tc),
Hispé€dclock, Readclcck, Nosvc, Nosvc, Nosvc),
Hispeedclock, Raadclock, NosVC, Nosvc, NoSVC).
Hispe€dc1ock, Readclock, NoSvC, NoSVc, Nosvc)

I;

* Íhè Dir€ctlos struct contalna the count of direct I/O operaÈions to bè
* done on a pèr process basis. Th€ rrcountjhysical'r is the nurÈer of
* physical (no trÀnslation) Iocts to be e::ecuted. The ÍccunÈ_Iogical" is Èhe
* number of Iogical (trànslation by direct i/o) Iocl,s Èo bé eÍecuted. The
*'count_IocDs" is thè nurb€r of IocDs in the logical IoCL.

struct {
int countjhysical;
j,nt count_logical;
int count_IocDs,

l DirectIoslNo oE PROcEssÉsl - {
0,0,0),
L, 0, 2 t,
0r 0,0),
0,0,0),
0, 0, 0),
0,0,0 l,
0,0,0),
0,0,0)

B-2 UTW32 Real-Time User' s Guide

l.

* Other globale for each procésa. , .

int Cid; /* conn€ction ID for dj.recÈ f/O */
TIOCD P_iocl[2], /* physical fOcL list */
TIOCD L_ioc1[100]; /* logical IOCL list */

UTX(3? Real-Time User's Guide B-3

8.2 High-Resolution Interval Timers lllodel

finclude <stdlo.b>
llnclude <aignal.h>
tlncludè <sysltltm.h>
*lnclude (ayelwait.h>
tinclude <sys/lock.h>
*tnclude <s€Ilo/dl.h>
*lnéIude <syslEt_tlDó.b>
*include (dlrectf,llea.h>
*include (nrachine/cpu.h)
*include <sys/t1pes.h)

*include rímodel'.h"

*défine TRUE

*define FÀLSE

e:(t6rn errno;
Ínt
int

/* model h€ad that defines
* Èhe model */

,/* logical True */
/* logical Fals6 */

/* total * of IOs for dio */

/*a1arm sigmal handler for chj.ld procs*/

/* ge|. i:utrÈer of sèconda to
* run model */

totaIIOa;
check - TRUE;

void chil-dalarm_handler O ,'

main (argc, arg.v)

int ergc;
char *argv[],

{
regisier int processt; /r process number */
int seconds; /* seconds to run tésts */
int passes; ,r* $ oí passes to run tests *i
unicn waiÈ ?raitstaÈ; /* status of "!rait" call

* retUrn */
registér int k;
static TfOcD C_ioc1[200]; /* where convértéd IOCL goé8 */
etatic int gtat_buf[2]; /* status buffèr */
int erri ,/* return valueE from sys calls */
int clockrate; /* the clock rat€ (e.9. 50) */
int ratèi /* clock rate in nanoseconds */

strucÈ hscval hscval, hscval2;

* declarationg for syst€c caLla. . .

int which;
structs itimerval value;

if (argc < 2)
(

fprintf (stdèrr, t\nUeage: ts eeconde\n", argv[0]);
e:.j.t (1);

)
s€conds - atoi (arqv[1]);

B4 UTf{'|3? Real-Time User's Guide

r Get clock rató

cloclcrat. - cycgetr.t.O,

l.
* conv.rt clock Eeta Èo nanoeecondr
./

ratc - (int) ilS_PEB_sEC / clockraÈe;

/,
* Ertablltb chlld proceeecl
,/

pEoca8a - inltJroceaaee (aeconda, tPassóa, argvtol),

/*
* Procéga - 0 is th€ Parant Process. Processes >- 1 aro
* th. child procesaea.
* 9Íalt for chitd Proceas.t to coqrlet€.

lf (progesa * 0)

{
for(;;)
{

if (rrait (ewaitstat) .' -1)
break;

l
/* e.*-it from parent proceas */
e-.rlt (0) ;

)

èlse
{

i seÈ uP alarm handler for child Procëss

signal (SIGÀLRM, childalarm-handlor),

* E:,-€cut6 model for thls procecs. '.
*/

for (; Passes > 0; Passes--)
{

check - TRUE;

/*
* Do svca for this Pasa...
*/

fór {k - 0; k < MÀ)§VC; k++)
(

grltcb (svclist lProcess] [k])

{
case Nosvc:

break;

casè III'SPeèdCIock:
err - gethscvaluè (ehscval),
if (err -- -1)
t

fprintf (sÈd.rr, "goth§cval failed errno-td\n",
crrno);

exit (1);
I
br€ak;

B-5\--,, VfXBZReal-Time User's Guide

caaè Readclock:
g€titirEr (rhich, evalue) ;
break;

default:
fprintf (stdeEr, tr*s: invalid s'tc sPecifièd\n",

argv[0]] ;
break;

)

)

* Do Direct l/os for thia pass...

for (k = 0; k < Dirèctlostprocessl.count3hysical; k++)

{
err - diosiophys (cid, &P_iocl[0], stat buf, A, 2l;
if (erc == -1)
{

fprintf (std6rr, "ts: sio physical failed, €rrno was: *d\n",
argrvtol, errno) i

euit (1) ,'

I
)

* Turn off atl IocDs after Ehe nuÍÈer for this
* process have been canpieted

Í, iocl[Directlos[process] .count_IocDs - 1l .i_Iof1ags e=
-IO-CMD-CHÀIN;

for (k = 0; k < DirectÍOs[proeess].count_logical; k++)
{

err = diosiolog (ciC, §L_iocl[0],
Dirèctlos.prccessl .count_IocDs * 8, &C_iocl[0],

Directlos[process].ccunt_IocDs * I * 2, stat_buf, O, Zl;
if (err -: -1)
{

fprintf (sÈdèrr, "is: sio logieal failed, errno was: *d\n",
argv[o], srrno) ;

e:rit (1) ;
)

)

* lurn on locDs again

r, iocl[DirèctIos[process].count_IocDs - 1l .i_Ioflage l=
IO-CMD-CHÀIN,

check = FàLSE;

* sét up tlmer for n€Yt alarm

hscval2.hec_sccondg - 0;
hscval2.hsc_nanosecs = Proc€ss_schedule[Procesa] * rat6;
if ((err - s€thsctimèr (HSC_RE!A!fVE, &hscvaI2, 6hscval)) =- -1)
{

fprlntf (std€rr, "sethscÈimér failed errno=*d\n",

Bó VTW32 Real-Time User's Guide

€rrno);
€xit (1) t ,"

l

/*
* rurpend paocers t1ll alaro gocs off
*/

pauec O ;
l

/*
* if, procoae usrd dlo tb.n dl.conncct dlo
*/

lf (totallos > 0)

{
if ((€rr - diodigconnect (cid)) -- -1)
{

f,printf (stdorr,'Dlos lconnect failed snno-td\n", errno) ;
e:rlt (1) ;

)
)

/* oxit froa chl1d procoes */
€:.it (0);

)
)

* lniÈ3rocesses -- sets up tho child Processe§'
* 1) forks the child process off
' 2) Locks Proc€as in mémory
* 3) Targets Proc€ss to cPu
* 4) and Sets uP dio operations if nécessary
*
* REIÍrRNS -> The procesc number

inltJrocesses (seconds, paas6!r, modelnarÉ)

i{rÈ secondsi
int *paeses;
char *modelname;

{
int i; /* counter varlable */
r€gist€r int process; /* process * */
stati,c int eeekrord,

buffcr;
static int notÍfy[2];
cpumaak_t macki /* uscd to targ€t Procesa to qPU or IPU*/

* proc€ss 0 ls tb6 parent and processes)- 1 àr€ tho chlldren

Proc6ss - 0i

r fork off all Proc€gr.a...

for (i - 0; i < NO-OA-PROCESSES - 1; i++)
{

if(forkO-0)

\,-, [JI)í32 Real-Time lJser's Guide B-7

Procè88-1+1;
breek;

,
l

* 1f parent procoss r€turn

if (procsss : 0)
return (procesa) ;

* computé * of paesee. , .

*/
*passes - 60 * secondg ,/ Process_schadule[process];

* lock dowa process in memory. ..

if (plock (PRocLocK) -= -1)
{

fprintf (stderr, "ts: Unable to lock dorn process *td, €rrno ras: *d\nn,
modelname, procèss, errno),'

eYit (1);
)

* sch€dule process at a real-time priority.. .

setrealprioriÈy (0, Prj.ority[process]) ;

* target procèss to CPU

if ((nask = settargstcpumask(0, P_CPUMÀSK(Processor[processl))) == -1)
{

fprinÈf (stderr, "targetcpu failed, errno=ld\n", errno) ;
e..rit (1) ;

)

CotalIOs = DirectIOs[process] .countjhysical +

DirectIOs [process] . count_logical ;

j.f (tocalros > 0)
{

r connoct to direct í/o.,.

Cid - di.oconnèct (DEvfCE ÀDDR, 0, totalfos, notify);
if (cid -' -1)
{

fprintf (stderrr"ts:unabl,e to conn€ct to dio, errno =*d\n",
modslname, errno);

esit (1);
)

* This exampla us€s disk I/O
* cr€at€ th€ IOCL

!_ioclÍ01 .i_Iocmd = IO_SEEK;

B-8 UTX|32 Real-Time User's Guide

r. iocl[01.i_Àddr€s! - (uneigaad) Escckroadi
L_Iocl ÍOl . i_Ioflags - IO_CMD_CHÀIN,
L_tocl [0] . l_xfercount - tli

L_locl Í11, I_IOcnd - IO_REÀD,
L_ioclÍl].i_Àddr.s, - (unÉign d) 6buffor,
&_iocl [1] .i-Iofleqe - 0;
Í, loeltll.i_xfercount - {i

i conv€rt logical IocL to Physical IocL

lf (dioconvert (ctd, sï,_{ocI[0], 16, &P_iocltol, 16) -- -U
{

fpriritf (gtdarr, "qs: Elror ccnverting logical Èo phyeical IocL, 6rrno t,aa: *d\n", modelna
estt (1);

l

* coÍE)}et€ rocL

L_locl [1] . i_Ioflagg - IO_CMD_CIIÀIN;

for(i-0;i<91;L=i+21
(

L-iocl [i + 2] - Í,-iocl [1] ;
L_ioclÍi + 3l - L_ioc].[i + 1];

l
L i.oc1[99].i Ioflags = 0;

)
return (process);

)

r childàIarm_handle!

void
childalarm_hand1ér ()

t

* check to s€e if system cal1g and dio's
* completed bef,ore alarm roc€ivod

if (check)
{

fprintf(stderr,ísvc and DIo code not coÍrPl€Èed\n"),
)

)

'v" U[]Írt3}Real-Time User's Guide B-9

8.3 High-Resolution Repating Timers Mode!

llnclude (atdlo.h>
llncludc (riEna1.b)
lincludc <sytltiD.h>
llncl.udc <cyrlvalt.b>
liaclude <eyrllock.b>
*includc <eello/dI,h>
Itncludc <.yrlrt_tlre.h>
lincluds (directfilee.h>
llacludo <n cbin€/ctu.h>
linclude <aysltyper.h>

linclude rmodellhr /* model héad that defines
t the model */

tdeflno TRUE

td€fine FÀI'88

ext€rn int
lnt
int

1

0

€rrao i

/* logical Tru6 */
/* logrical Falao*/

/* etxot nudc€r
tote1IOs, /* total I of IOg for dlo */
check - TRUE;

vold childalarn_handlero; /* alarro slgnal handler for child
* child proc6a86a
*/

main (ergc, argfv)

inÈ à'tgtci
char *"tgtrÍl;

{
régiat€.r int procass; l'* proce.as num.ber */
int seconds; /* seconds to run tèsts r/
int passes; /* * of passea to run tests */
union walt sai.tstat; /i etatus of "waiE,'r càIl

i return */
r€gist€r int k;
statlc TIOCD c_iocl[200]; /* where cónvèrt€d IOCL goes */
static int stat_buf[2], /* sÈatus buffér */
int err; /t holds sys call return values ,/
int clockraÈe; /* th6 clock rate (e.9. 60) *i
int retei /* clock rate in nanosccondg */

struct hgcval hacval, hacval2i

* dóclarationg for ayat€m cal1s...

int tíhich;
sÈruct itimcrval val,ue;

if (argc < 2)
{

fprlntf (atd..., '\nusag€: te geconda\n', argv[0]);
e:.lt (1) ,

)

B-10 UT>U32 Real-Time User's Guide

s6conds - atol (argvtll) t /* qet nunÈer of eccondg Èo
* run model */

* g€t clock r.È.

clockrate - cycAèÈr.te0,

* convert clock rate to nanoscconda

rate - (int) NS_PER_SEC / clockrate;

* Establish child proceases
*/

proc6sa - initJroc€ss€s (s€cond8, &paases, àrqv[0]),

i if parent procoaa wait for child processos to cosq)I€te

lf (proceer * 0)
{

i.ox (;;)
{

if (rait (eraitstat) -- -1)
break;

)

,/* e::it. from parent */
è:'-it (0) ;

)
else
{

* E:aeau!€ nodel f,or Èhis proc€ss...

s ignal (s IGÀLRM, childalarm_handler) ;
hscval2.hsc_seconds = 0;
hsc'/al2.hsc_nanoseca = Proceas_sch€dula[process] * raÈc;
if ((err = sethscÈjrÍér (HSC CYCLE, &hscval2, 6hecval)) -- -1)
{

fprintf (sÈderr, "Sethsctimer failed errno=td\nr,
errno) i

evit (1);
)
for (; paases > 0; passes--)
{

chock - TRUB,

/*
* Do SVCs for this paas. . .

*/
f,or (k - 0; k < MÀr(SVc, k++)
{

sríltch (svclist [procesa] [k])

{
caso NoSVCi

break;

cas€ Bislle6dclock:
s33 - gethacvalue (ehscval),
lf (.rr -' -1)

\-,, VfN32 Real-Time User's Guide B-ll

{
printf ("gethscval failed crrno-td\n",

errno) ;- .xit (1) i
)
brsak;

ca!. R.edclock:
g€tltlDr (rblch, tvrlu.) ,
broek;

dcfault:
fp.rlntf (stdeE, "ts: invalld St/C rpocifcd\nn,

argv[0]) ,
. break;

)

)

r Do Diroct I,/Or for this par!...

for (k - O; k < Diroctlo![proeera],countjhyric.l, k++)
{

err - d.Íosiophys (cid, eP_iocl[0], statiuf, O, 2l;
if, (érr -- -1)
{

fprintf (stdorr, "-s: sio phyaical failed, €rrno was: ':d\n",
argv[0!, €rrno) i

e-'rit (1);
)

)

Í._iöcltDlrectlos lprocess] .counÈ_IocDs - 1l . i_IOflags e*
-ro_cl@_cttÀIN;

foE (k = 0; k < DirectlOstproc€ss].count_logicel; k++)
{

érr = diosiolog (Cid, eÍ.:ioc1[0],
DirectIOs [process] .count_ICCDS * 8, ec_iocl IO],

Dirsctlos[procegsl.count_IocDs , I * 2t stat_buf, O, 2l;
if (eta "- -1)
{

fprintf (std€rr, "tc: gio logical failed, €rrno raa: id\n",
arqv[o], erlno];

e:riÈ (1);
)

l
L r.ocl[Dlroctloa[proc€as] .count_IocDs - 1l .i_Iof,Iagc l-

ro_clD_cEÀ$,

/* s16€p(1); do this untll cycllc suepcnd i.a rorking *,/
ch€ck - FàLSE;
pause () ;

)

r if dio'§ uled ln thig proc€as dieconnect dio

if (t,otalIos > 0)
{

if ((€rr - dlodisconngct (cld))
- -1)

B-12 VTXÍ32 Real-Time User's Guide

fpEint f (ttderr,'rDlodisconn€ct fail3d crrno-3d\n', errno) i
.:<1t (11 ,

)
/* e:<it flom chlld proceas */
exlÈ (0) ;

l
)

l*
r inttJroc6alaa -- teta uP thc chlld Procarg.a.
r 1) f,orkr tbe chlld Procesa off
* 2) Locks Proc€lr ln nnmorY
* 3) Targ€ts Proc€se to cPo
* 4) end s€tr up di,o operati.ons If necessary
*
* RETURNS -> The Process numbér
t

inltSroceases (secon&, Pase.8, mod.lnam)

lnt gecondei
int *Passes;
char rRod6lna,r6;

{
lnt i; /i counter variabie */
règister int Processi /* process * *i
sÈaEic j-nt seekword,

buffer;
static j.nt notlfyl2],
cpumesk-t maski /* rnagk ueed to target Proc€ss to CPU or ÍPlJ*/

\--'
/*
r process - J is tho Parént Process Proc€slt >- 1 are the child
* Pro.ésses

Procés§ - 0;

* fork off aI1 Process€a. . .

for (i = 0; i < NO OF PROCESSES - 1; i++)
{

if (fork O '- 0)

{

Procasrg-i+1;
break;

l
)

* if Parent Proc€ss r€turn

if (Proceas -- 01

roturn (Process) ;

i cotÍE>uÈe I of Paeses...,/

\---l VfXB2Real-Time User's Guide B-13

*pareec - 6O r ecconde./ Ptoceza echeèr1e[proceaat;

/*
* loclc dora procorr Ln ruory...
*/

lf (plock (PROcIócxl
- -1)

{
fpriatf. (atderr, i*a: gn.bl. to lock dorn.procaas l*d, errno rag: *d\n',

modelnamc, procelt, crrno) i
e:rlt (1) ,

l

/*
* schedulà paocass at a priority...
*/

setrcalprLority (0. Priority[proc6as]) ;

* target proc6aa to CPU

lf ((trask -settarg€tcprr!.tk(0,P_cPUlrlsK(Paocssaor[procees!)]) - -1)
{

fprintf (ctderr, "targ€tcpr failcd, errno-td\n!, errno) i
e:clt (1);

)

t connoct to direcÈ í/o...

totalfos = Directlos[procees] .countjhysical +

Directloa [proceeel . count_logj.cal;

if (totalIog > 0i
(

cid = dioconnect (DEVICE_ÀDDR, 0, totalIos, notify);
if rcnd -- -11
{

fprintf, (std€rr,ítsrunablé to connèct to dio, errno -Èd\n"
modelnamo, errno);

€:!it (1);
)

/*
* creat€ iocd structurés (vèry machinè dep€ndént)it§
* al.o for th€ dlek only, aince thata the only device I've
* got.'.

Í._1oc1 [0] .i_Ioctrd - ro_SEEK;
L_iocl[0] .l_Àddrcss - (unsigned) ea€€krord;
Í._iocI [0] . i_rof lags - ro_cMD_cHÀrN;
r,_locI [0] .i_xfercount - 4;

Í,_loë1 [1] .i_Iocttrd - IO_REàD;
L iocl[1].1_Àddress - (unslgn6d) §buffèr,
L_ioc1 [1] .1-rOf1a9s - 0;
Í._iocl [1] .1_xf€rcouÍrt - 4,

lf (dioconvert {cld, el_iocl[0], 16, 6P_locl[0], 16) r- -1)
{

fprlhtf (§td€rr, n*a: Error converting logical to physical IocL, errno ras: Èd\n",
modeln8tra, errno);

extt (1);

B-14 UTW32 Real-Time User's Guide

)
L_iocl [1] . i_Ioflags - rO_CMD_CHÀIN;

foa (1 - 0, 1.< 97; 1- i + 2)
{

r._iocl [i + 2] - r,_iocl [il ;
L-iocl[i + 3] - L iocl[i + 1];

)
Í. iocl[99].i_Ioflags - 0;

)
Eeturn (process);

)

* childalarm_handler

void
ch j.lda larm_handler ()

{

Íf (check)
{

fprintf(stdèrr,tSVC and DIO cod6 not conpleted\n");
)

)

UW32 Real-Time User's Guide B-15

8.4 Cyclic Scheduling }todel

llncludc <rtdlo.b>
llnclude <aignel.h)
llncludc <ryrltlm.h>
llncludc <sy./ra1t.h>
tlnclude <eyaltrock.b>
llncl.ude <gclio,/dl..h>
llnelude (cyr,/rt_tLoe.h>
linclude <dir.ctfile..b>
*Lncludo <machlne/qru. b>
lincluds <aysltypes.h>

linclude <sys/pararn.h>
linclude <sys,/cyclic,h>
linclude <syo,/proc.h)
llnclud€ <èrrno.h>
6:'t6rn int €rrno;

linclude tmodel.h"

int Èotal fOs;

/r Bod€l hóad that d6fin e
* the nodel */

/* total * of ros for dio *i

Tcyclicdata Testcycl€;

main (àrgc, àrgv)

int argci
char *.rgtr[;

{
r€gistàr inÈ process; /* process number */
int secondsi /* seconds tJ run Èèsts *./
int passes; 1* { of pasrr€s to run tests */
union 'rrait waitstati /r status óf "wait" call

* r€Èurn r /
register int k;
static ÍIocD c_iocl[200]; /* nhere convèrÈed IOCL goes */
static int sÈat_buf[2] t / * stalus buffer */
int err;
int curfrans;

struct hscvaL hscval;

* declàratj.ons for aystem caIIs...

int which;
struct ititrErval value;

if (argc < 2)
{

fprintf (stdoE, '\nusag€3 *g secondg\n", algv[0]);
exit (1);

)
seconde - atoi (argv[1]), /* geL nulnb.r of sEconds to

* run hod.l */

VTXR2 Real-Time User's GuideB-16

/*
* Do SVCg for thi8 paas. . .

*/
for (k - 0; k < ldA:as\rc, k++)
(

sritch (Svclist [procalsl [k])
(

caa. NoSVC!
break;

c.se Hlsp€.dclock:
633 r grtbscealu€ (§hrcval);

UW32 Real-Time User's Guide

* Eetabllah child proceesee
*/

procarr - lnlt-;rroccrrcr (eccondr, 6p.r..r, trgv[0]l;

* proceae O l"t the par.nt procear proca.r)- 1 ere ehild proceeaer
r in order for cyell,c ecbcduled proc.aacr to rork proporly
* th.y mrst b. cyceynced,/

lf (proccaa -- 01

{

* À11 procèaa€s mrst b€ éstablishod bofore cycslmc can bc
* perforned. so sleep for a while

sleep(4);

if ((err - cycslmc O) < 0)
{

f,prlntf (stderr, "eync fai,lcd, .rrno-td\nn, crrno);
esit {1);

)

* wait for child proc€asos to cory1€È€

fcr (;;)
{

j.f (wait (§waiÈsÈat) =- -1)
break;

)

/* e:<it flom par€nt process */
e-.:Ít (0) ;

)
è1s6
{

r E-recute model for this proc6ss...

for (,' paasos > 0i passes--)
t

/*
* ausl)€nd proc€sr tiIl lts n.:<t s€t fra.me
*/

cycauepend$;

B-17

if (etr '- -1)
{

Íprtntf (.td.rrr'g.tb.cv8l f,allod errno-8d\n",
arrno, ;

.xlt (1),
l
broak;

caro EoedClock:
gotltirr (tàtcb, tvrluo);
brcak;

dcfeult:
fprintf (rtderr, n*s: invalid svc strecified\nn,

. arfl[0]);
break;

)

,

r Do Dlr.ct ÍlO, CoE th1! pasr...

for (k - 0; k < Dirèctlos[proc€aa].countJhysical, k++)
{

err = dloaiophys (cÍd, 6P_1oc1[0], stat_buf, o, 2l;
if (err -- -1)
{

fprinÈf (stderr, "ls: sio Physicel failed, €rrno was: id\.n",
argv[0], errno);

6Yit (1),
)

)

* Turn of,f àII locDs aft€r thé nurÈers for Èhis procéss
* hav€ b€€n compl€ted.

L_iocl [Directlos [prccess] .count_IocDs - 1l . i_Ioflage c-
-ro_cto_cHÀrN,'

for (k - 0; k < Directlos[proceesl.count_1ogical; k++)
{

err - diosiolog (cid, §t_iocl[0],
DirocÈIosÍproceegl.count_IocDs * 8, &C_iocl[0],

DirèctIos[proeees].count_IocDs * I * 2, etàt_buf, O, 2l;
if (err -- -1)
{

fprlntf (stdèrr, 'tg: sio loglcal failed, 6!rno r,.r: td\n",
argv[0], errno) ;

e:rit (1);
)

l

* Turn on IOcDs agaln

L iocl [Di.rectloa [proceea] .éount_IOCDS - 1l .1. Ioflags l-
IO-CMD-CHÀITI;

)

/t

B-18 UTXÍ32 Real-Time User's Guide

* 1f thlo proc€ar prevlouely conn.ct€d d1o,
* thcn dlaconnect dlo
*/

lf (totrllOs > O)

{
lf ((.rr - dlodhcorurcct (cld)) : -1)
{

fprintf (atdcrr, iDioslconn ct fallcd errno-td\n", errno) ;
exit (1) ;

l
l

/* cxlt fronr chlld procear */
e:rit (0) ;

)
)

* init_;rroceaaes -- s6ts up th6 cblld paoc€ss€a.
*
*
*
*
*
*

1) forka the child proccas off
2) Locka procc.s ln mÉmory
3) Target! proc.sr to c?U
4) Scte up cyclic gchcduler
5) and S€tr up dlo operationa if necessary

* RETgRNS -> lh. procoss nurÈer

iniÈ1>rccesses (seconds, passos, modelnanr)

1nt
int
char

geeonds i
tpas se3 ;
*:nodelnane;

inÈ i; /* counter varÍabIe */
regist€r int process; /r process # */
static int seekrord,

buffer;
static int notify[2];
cPuÍrBrk_t nnrk; /* target paoc€ss !o CPU or IPU */
int no_of_fran€ai /* no of framos in a cycle */

proceas - 0i /* procese - 0 is paront proc€ss */

* Gst Nunber of framss pcr cycle
*/

no_of_fraÍnea - cycgetrat€ O,

/*
* fork off all proces!6a...

for (i - 0; I < NO_OF_PROCESSES - 1, i++)
{

if (fork O -- 0)
(

procosa-1,+1;
break;

l
)

\-_., VfV3zReal-Time User's Guide B-19

* if parent proc€ag, r.turn -_,/
lf (procet.

- 0l
reÈurn (proc..a) ;

/*
* conput. I of paeaee...

*pasa.a - 50 * Bcconda / Procerr_ccheàrlc[proceac];

* lock dorn proc€sa in rnemory...
*/

if (plock (PRocÍ,oct()
- -1)

{
fprintf, (Ëtd€rr,n*s: Unablo to lock dorn procees t*d, €lrno was: *d\n",

modelnalc, proceaa, errno) ;
€:.it (1) ,

)

* schedule process at a r€al-tiIllé prioriÈy,..

s€tr€alpriority (0, Priority[proc6ss]),

* :arget process to cPU

if ((mask - eetÈargetcpumesk(0, P_cPUfiasK(Procèssor[Process]))) == -1)
{

fprintf (stderr,'targétcpu failed, errnc-i:d\n",ertno) ;
o::it (1) ;

)

/* IÍakè cyeli.cally scheduled *,/

Tesr-cycle. cycle_lengÈh = no_of_frames ;
iest3jtcle, frarnes_lookback = 0;
for (i = 0; i < no_of_frames, i++)
t

if ((i t Procesa_schedule[process]) == g1

TestCycl6.cycle[i] = 1;
else

TestcycLe.cycleIi] = 0;
)
if (cycsetdata (&festcycle, 1) : -1)
t

fprintf (stderr, "cycs€tdata failed process td Pid td srrno *d\nn,
proc€a§, getpid O, errno);

e::it (1);
)

t ccnnect to dlrect L/o..,

totalloa - Di!6ctIoa [process] .countJhysical +
Directlos [process] . count_logical i

i.f (toÈallos > 0)
{

cid - dloconnece {DEvIcE ÀDDR, 0, totallos, notify);

B-20 VTW32 Real-Time User's Guide

if, (cld -- -1)
{

fprlntÍ (.td.rr,itr:unable Èo conn.ct to dio, orrno -*d\n",

oxlt (1), ,*t-.m'
orrao);

)

/*
* thir cxarplo uaer disk I/O

L_toc1 [O] . 1_Ioced - IO_SEBK;
L_iocl[O].i_Àddr.r! - (rmtlgned) Elc.kord;
L_tocl [0], i_Ioflagr - Io_CMD_CBÀrN;
L_iocl [0] . i_Xfercount r {;

ï._iocl [1] . i_roctDd - IO_R&ID;
t. iocl[11.i_Àddrega - (unr19n6d, Ebuff,er,
Í-_iocl [1].i Ioflaga = 0;
r,_J.oc1 [1! .l_XferCount - 4;

* conwert loglcal dlo to phyelcal dlo

if (dS.oconvert (cid, cr. ioc1t0l, 16, Ep_tocltOl, 16) -- -1)
{

fPrinÈf (std€rr, "!s: Error conv.rting logical to physical IocL, erEno waa: td\n",
modelname, 6rrno);

€:.it (1),.
l

* Crcato IOCIJ

r. iocl [1] . l_Ioflags - IO_CMD_CHÀIN,
for (i - 0; i < 97.' i - j. + 2)
(

Í._ioclIi + 2] = r._iocl[i],.
t. locl[i + 3] - L_ioclti + 11,

l
L_iocl [99] . i_IOflage - 0;

l
roturn (proceaa);

VTX|3? Real-Time User's Guide B-ztlB-22

Gsuld lnc., Computer Syctems Divirion
6901 W. Sunrise Blvd.
P. O. Box 409'148
Fort Lauderdale, FL 33340-9148
Telephone (305) 587-2900

+ GouLD
Electronics

USER OHGANIZAÏION:

REPRESENTATIVE(S}:

ADDBESS:

TELEX NUMBER:

NUMBER AND TYPE OF GOULD CSD COMPUTERS:

PHONE NUMBER:

OPERATING SYSTEM AND REV. LEVEL:

4.

APPLICATIONS (Please lndicate)

1. EDP

A. lnventory Control
B. Engineering & Production

Data Control
C. Large Machine Off-Load
D. Remote Batch ïerminal
E. Other

2. Communications

A. Telephone System Monitoring
B. Front End Processors .

C. Message Switching
D. Other

5. Laboratory and Computational

A. Seismic
B. Scientific Calculation
C. Experiment Monitoring
D. Mathematical Modeling
E. Signal Processing

F. Other

8. Other

3. Design & Drafting

A. Electrical
B. Mechanical
C. Architectural
D. Cartography
E. lmage Processing

F. Other

6. Energy Monitoring & Control

A. Power Generation
B. Power Distribution
C. Environmental Control
D. Meter Monitoring
E. Other

Pleas€ return to:

Users Group Representative

Date:

lndustrial Automation

A. Continuors Process Control Op.

B. Production Scheduling & Control
C. Process Planning
D. Numerical Control
E. Other

Simulation

A. Flight Simulators
B. Power Plant Simulators
C. Electronic WarÍare
D. Other

7.

243-06-1 (1/86)

Gould lnc., Computer Systemg Dlylslon Users Group. . .

The purpose of the Gould CSD Users Group is to help create better User/User and User/Gould CSD
communications.

There is no fee to ioin the Users Group. Simply complete the Membership Application on the reverse side
and mail to the Users Group Representative. You will automatically receive Users Group Newsletters,
Referral Guide and other pertinent Users Group activity information.

BUSINESS REPLY MAIL
FIRST.CLASS MAIL PERMIT NO.947 FT. LAUDERDALE, FL

POSTAGE WILL BE PAID BY ADDRESSEE

GOULD INC., COMPUTER SYSTEMS DIVISION
ATTENTION : USERS G ROUP R EPRESENTATIVE
6901 W. SUNRISE BLVD.
P. O. BOX 409148
FT. LAUDERDALE FL 33340-9970

l,,ll,,,ll,,,ll,,!,,!11,,,1,1,,1,1,,!,',!11,,,,'l,ll

Fold and Staple for Mailing

Fold and Staple for Mailing

+ GouLD
Electronics

