
Gould Scientific Run-time Library

Release 4.2

Reference Manual

July 1985

Publication Order Number 323-004020-000

GOULD
Electronics

",

This manual is supplied without representation or warranty of any kind. Gould Inc.,
Computer Systems Division therefore assumes no responsibility and shall have no liability
of any kind arising from the supply or use of this publication or any material contained
herein.

UMITED RIGHTS LEGEND

for

PROPRIETARY INFORMATION

The information contained herein is proprietary to Gould CSD and/or its vendors, and its
use, disclosure or duplication is subject to' the restrictions stated in the Gould CSD
license agreement Form No. 620-06(1/82) or the appropriate third-party sublicense
agreement. The information is provided to government customers with limited rights as
described in DAR 7-104.9A. -

MPX-3Z and CONCEPT /32 are Trademarks of Gould Inc.

(C) Copyright 1984
Gould Inc., Computer Systems Division

All Rights Reserved
Printed in the U.S.A. c

(-

HISTORY

The Scientific Runtime Library Release 4.1 Reference Manual, Publication Order
Number 323-004020-000, was printed July 1984.

Publication Order Number 323-004020-001 (Change 1, Release 4.2) was printed July 1985.

The updated manual contains the following pages:

* Change
Number

Title Page 1
Copyright Page ••••••••••••••••• 0
iii/ i v Change 1 1
iii/iv through vi ••••••••••••••••• 0
vii and viii •...•................ 1
ix through xi/xii ••••••••••••••••• 0
1-1 through 1-4 •••••.••••••••••• 0
2-1 and 2-2 1
2-3 through 2-5/2-6 •••••••••••••• 0
2-7/2-8 through 2-13/2-14 •••••••••• 1
2-15/2-16 through 2-25/2-26 •••••••• 0
2-27/2-28 1
2-29/2-30 through 2-31/2-32 •••••••• 0
2-33 through 2-34 •••••••••••••••• 0
2-35/2-36 1
3-1 through 3-26 •.••.•••••••••••• 0
4-1 through 4-5 ••••••••••••••.•.• 0
4-6 1
4-7 through 4-34 .•••••••••••••••• 0
4-35 1
4-36 through 4-40 •••••••••••••••• 0
4-40A/4-408 ••••••••••••••••••• 1

* Change
Number

4-41 through 4-53/4-54•••••• 0
5-1 through 5-6 ••••••••.•••••• 0
5-7 1
5-8 a
5-8A/5-8B " 1
5-9 0
5-10 1
5-11 through 5-18 •••••••••••••. 0
6-1 through 6-8 •••••••• ••••••• 0
6-9 1
6-10 through 6-13 •••••••••••••• 0
6-14 through 6-15/6-16 •••••••••• 1
7 -1 through 7 -4 ••••••••••••••• 0
8-1 through 8-2 ••••••••••••••. 0
A-1 through A-7 / A-8 ••••••••••• 0
8-1 through 8-4 .•••••.•••••••• 0
8-5 1
8-6 0
B-7 1
8-8 through 8-9/8-10 ..•••.•.••• 0

* Zero in this column indicates an original page.

On a change page, the portion of the page affected by the latest change is indicated by a
vertical bar in the outer margin of the page. However, a completely changed page will
not have a full length bar, but will have the change notation by the page number.

Change 1
iii/iv

c

l

CONTENTS

Documentation Conventions•....................... 0 II ••••••• " • x

CHAPTER 1 INTRODUCTION

1.1 Scientific Run-time Library •••••••••••••••••••••••••••••••• 1-1
1.2 Description of Scientific Run-Time Library Routines •••••••••••••• 1-3

1.2.1 Mathematical Library Routines. •• 1-3
1.2.2 MPX-32 System Service Routines ••••••••••••••••••••• 1-3
1.2.3 Supplemental User Support Routines ••••••••••••••• • • •• 1-3
1.2.4 Supplemental Language Support Routines. • • • • • • • • • • • • • •• 1-4

1.3 Scientific Run-Time Differences. •• 1-4

CHAPTER 2 MA ll-iEMA TICAL UBRARY ROUTINES

2.I
2.2
2.3

2.4

2.5
2.6
2.7
2.8

Support Functions.
Run-time Support Routines ••••••••
Standard Calling Sequences. • • • • • • • • ••••••••••••
2.3.1 Single Argument II ••••• II ••••

2.3.2 Multiple Argument 0 II II •••••••• II

Exceptions to the Standard Calling Sequence ••••••••••••••••••••
2.4.1 Conversion Routines
2.4.2 Exponentiation Routines ••••••••••••••••••••••••••••
2.4.3 Multiplication Routines •••••••••••••••••••••••••
2.4.4 Division Routines II •••••• II ••••••

Argument Checking and Error Conditions ••••••••••••••••••••
Register Preservati on•........
Accuracy of Results II ••• II • • • • • II • • .. • • • • • • • • • • • • we ..

Mathematical Library Usage Conventions •••••••••••••••••••••••
2.8.1 Zero Division and Exponentiation ••••••••••••••••••••••
2.8.2 Calling Double Precision Routines •••••••••••••••••••••
2.8.3 Complex Routines
2.8.4 Testing for Overflow "
2.8.5 Common External Temporary Storage ••••••••••••••••••

CHAPTER 3 MPX-32 COMPATIBLE MODE SUBROUTINES

3.1
-

M: and X: Subroutines
3.1.1
3.1.2
3.1.3
3.1.4
3.1.5
3.1.6
3.1.7
3.1.8
3.1.9
3.1.10

M:ALOCI
M:ALOC2 ...•.•....•.•..........•.•.......
M:ALOC3
M:ALOC4
M:ALOCS
M:CLOSE ••
M:CREATE
M:OALOC •
M:DELETE ..••...•...•.•..•••......
M:LOG ...•.••.....•.......••.•• -...•.......•••

2;.1
2-1
2-2
2-2
2-2
2-2
2-3
2-3
2-3
2-3
2-3
2-3
2-4
2-4
2-4
2-4
2-4
2-4
2-5

3-1
3-2
3-4
3-6
3-8

3-10
3-12
3-13
3-15
3-16
3-17

v

3.1.11 M:OPEN ·
3.1.12 M:PDEV ••
3.1.13 M:PERM
3.1.14 M:PFAD
3.1.15 M:USER. . ..
3.1.16 X:EXCL •• ·
3.1.17 X:INCL ••
3.1.18 X:SHARE ••

CHAPTER 4 MPX-32 COMPATIBLE OR NATIVE MODE SUBPROGRAMS

vi

4.1
4.2

4.3

M:, X: and Named Subprograms
M: Subprograms •••
4.2.1
4.2.2
4.2.3
4.2.4
4.2.5
4.2.6
4.2.7
4.2.8
4.2.9
4.2.10
4.2.11
4.2.12
4.2.13.
4.2.14
4.2.15
4.2.16
4.2.17
4.2.18
4.2.19
4.2.20
4.2.21 " ., .,., ~.--
4.2.23
4.2.24
4.2.25
4.2.26
4.2.27
4.2.28
4.2.29
4.2.30
4.2.31
4.2.32
4.2.33

M:ABORT
M:ACTIV.
M:8LOCK
M:CLOCK
M:CONECT ••••••
M:CONRES
M:CORE
M:DELTIM
M:DUMP ••••••••
M:END
M:ERRFLG
M:HOLD
M:IOEX ••
M:IOLEN
M:LINKJ
M:LOAO
M:LOAOX ••••••
M:PGOPT
M:PR ••••
M:RSUM
M:RTN
M:SET •

...
M:SSPNO.
M:START ••
M:TDAY
M:TELER.
M:TELEW
M:TESTAT ••
M:TESTIM
M:TIME5 •••••••
M:TIME12
M:TIME34
M:WAIT.

X: Subroutines •••
4.3.1 X:ANYW
4.3.2 X:ASYNCH
4.3.3 X:BOR T ••
4.3.4 X:8RK •••
4.3.5 X:8RKXIT •••••
4.3.6 X:DEL TSK •
4.3.7 X:DISCON
4.3.8 X:DSMI ••

....

....

...

·
.

. . .

3-18
3-19
3-20
3-22
3-23
3-24
3-25
3-26

4-1
4-3
4-3
4-4
4-4
4-5
4-5
4-6
4-7
4-8.
4-8
4-8
4-9
4-9

4-10
4-10
4-11
4-11
4-11
4-12
4-12
4-13
4-13
4-14
4-15
4-15
4-15
4-16
4-16
4-17
4-17
4-18
4-18
4-19
4-20
4-21
4-21
4-22
4-22
4-23
4-23
4-24
4-25
4-25

'"./

l-

[

4.3.9 X:EAWAIT •• 4-26
4.3.10 X:ENMI ••••• 4-26
4.3.11 X:EOPT ••• ... 4-27
4.3.12 X:FDSPCE 4-28
4.3.13 X:FESPCE 4-28
4.3.14 X:FSLR. 4-29
4.3.15 X:FSLS •• · 4-30
4.3.16 X:FWRD 4-31
4.3.17 X:FXLR ••• 4-32
4.3.18 X:FXLS •• 4-33
4.3.19 X:GADRL 4-34
4.3.20 X:GDSPCE. 4-35
4.3.21 X:GESPCE. 4-36
4.3.22 X:GMSGP 4-37
4.3.23 X:GRUNP · 4-37
4.3.24 X:ID 4-38
4.3.25 X:INT •••• · 4-40
4.3.2SA X:MPXEOF 4-40A I
4.3.26 X:RCVR 4-40
4.3.27 X:RSML ••• 4-41
4.3.28 X:RSMU 4-42
4.3.29 X:SMSGR •• · 4-43
4.3.30 X:SRUNR 4-44
4.3.31 X:SUAR ••• . .. 4-45
4.3.32 X:SUSP •• · 4-45
4.3.33 X:SYNCH 4-46
4.3.34 X:TDAY 4-46
4.3.35 X:TSCAN •• 4-47
4.3.36 X:XMEA •• 4-47
4.3.37 X:XMSGR 4-48
4.3.38 X:XNWIO •• 4-48
4.3.39 X:XREA 4-48
4.3.40 X:XRUNR 4-49

4.4 Named Subprograms • 4-50
4.4.1 ADDR •••• 4-50
4.4.2 CARRIAGE 4-50
4.4.3 DUMPUSER •• 4-50
4.4.4 EOF 4-51
4.4.5 EXIT · 4-51
4.4.6 LOCF 4-52
4.4.7 MPXSVC 4-52
4.4.8 SSWTCH 4-53
4.4.9 STATUS. t~-53

a-tAPTER 5 MPX-32 NA TlVE MODE SLBROUTINES

5.1 X Subroutines •••••••
5:1..1 X CPART
5.1.2 X-CREDIR •
5.1.3 XDDIR •••
5.1.4 X-DIRECT
5.1.5 X-DISMNT
5.1.6 X-DPART
5.1.7 X-DPXMNT
5.1.8 X-EXCL.

... 5-1
5-2
5-4
5-5
5-6
5-6
5-6
5-7
5-7

Change 1
vii

I

5.1.9 X EXTEND 5-7
5.1.10 X-INCLO. 5-8
5.1.10A X-INCXOP. 5-8A
5.1.11 X-INQ •••• 5-9
5.1.12 X-LOG •••• 5-11
5.1.13 X-MOESC 5-12
5.1.14 X-MOUNT 5-12
5.1.15 X-PERM 5-13
5.1.16 ·X-PROJCT. 5-13
5.1.17 X-ROESC •• 5-14
5.1.1S X-RECON 5-14
5.1.19 X-REPLC •• 5-15
5.1.20 X-RID ••• • iii •••• 5-15
5.1.21 X-RNA ME
5.1.22 X-TRUNC
5.1.23 X-WDESC

5.2 Device Type-Codes ••

D-iAPTER 6 SUPPORT FOR OTHER ST ANDAROS

6.1
6.2

6.3

6.4

6.5

6.6

Change l'
viii

Support Subroutines and Functions ••
Bit Field Manipulation
6.2.1 Logical Operations •

6.2.1.1 lAND ••
6.2.1.2 IE OR ••
6.2.1.3 IOR •••
6.2.1.4 NOT ••

6.2.2 Shift Operations •••
6.2.2.1 ISHFT
6.2.2.2 ISHFTC ••

6.2.3 Bit Processing ••••
6.2.3.1 BTEST ••
6.2.3.2 IBSET ••
6.2.3.3 IBCLR.

6.2.4 Bit Sub fields
6.2.4.1 IBITS ••
6.2.4.2 MVBITs

Time and Date ••
6.3.1 TIME.
6.3.2 DATE
T ask Control Calls
6.4.1 START
6.4.2 TRNON ••
6.4.3 WAIT •••
File Access ••••••
6.5.1 CFILW ••
6.5.2 DFILW ••
6.5.3 OPENW
6.5.4 CLOSEW
Unformatted Random I/O
6.6.1 RORW •••
6.6.2 WRTRW •••••

5-16
5-16
5-17
5-18

6-1
6-1
6-1
6-1
6-1
6-2
6-2
6-3
6-3
6-3 6-4
6-4
6-4
6-5
6-6
6-6
6-6
6-7
6-7 6-7
6-8
6-S
6-9

6-10
6-11
6-11
6-12
6-13
6-13
6-14
6-14
6-15

CHAPTER 7 SUBROUTINE AND FUNCTION CALUNG CONVENTIONS

7.1 Calling FORTRAN Subroutines from Assembly
Language Programs•................................ 7-1
7.1.1 Calling a FORTRAN Subroutine with No Parameters •••••••• 7-1
7.1.2 Calling a FORTRAN Subroutine with One Parameter ••••••• 7-1
7.1.3 Calling a FORTRAN Subroutine with Two or

More Parameters ...•...............•............ 7-2
7.2 Example: Assembler Routine Calling FORTRAN Subroutine ••••••••• 7-3

CHAPTER 8 RUN-TIME I/O TABLES AND BUFFERS

8.1 L.BB4 ... It 8-1
8.2 L.DIOBUF • .. 8-2

APPENDIX A STANDARD ASCn CODE SET ••••••••••••••••••••••••••••• A-I

APPENDIX B DIAGNOSTIC AND ERROR STATUS

B.l Execution-time Diagnostics ••••••••••••••••••••••••••••••••• B-1
B.2 Error Status Values for ><- Subroutines ••••••••••••••••••••••••• B-7

c
TABLES

1-1 FORTRAN 77+/SRTL Installation Modes •••••••••••••••••••••••••••• 1-2
2-1 Mathematical Library Routines •• 2-6

ix

Oacumentation Conventions

The following notations are used in this document to express source text syntax.
Notational symbols are not a part of the text entered by the user; they are merely aids
designed to make the syntax of the statements easier to understand.

Notation

lowercase letters

UPPERCASE LETTERS

[]

Meaning

Lowercase letters identify a generic
element that must be replaced with a
user-selected value or a returned value.
r or example, in the statement:

CALL STATUS (u, s, n)

u is replaced by a user-selected value,
while sand n are returned values.

Uppercase letters represent keywords and
must be entered as shown for input. In the
control statement:

CALL M:END

the words CALL and M:END represent
keywords.

Brackets indicate that the enclosed
elements are optional

CALL X:DISCON (task, [istatus] , [$n])

istatus and $n are optional.

Several elements placed one under the
other inside a pair of brackets indicate the
user may select one' or none of the
elements.

c

()

Numbers and
special characters

A horizontal ellipsis indicates repetition.

GO TO (Xl,x2,X3, ... ,xn)

A vertical ellipsis indicates that
statements or instructions have been
omitted.

J=3

GO TO 450

Parentheses are part of the source text
entered by the user and must appear as
shown in statement syntax when entered.

CALL M:DEL TIM (id)

A two character timer id is required and
must be enclosed by parentheses

Numbers that appear on the line (i.e., not
subscripts), special symbols, and punc­
tuation marks other than dotted lines,
brackets, braces, and underlines appear as
shown in output messages and must be
entered as shown when input.

CALL M:PFAD (filename, i, *labeO

An asterisk * is required before the user­
selected value *label.

xi/xii

c

C··. -.
/'

c··

1.1 Scientific RUl-time Library

CHAPTER 1

INTRODUCTION

The Scientific Run-time Library (SRTL) is a collection of subprograms that provides
mathematical library routines, operating system service routines, and language
extensions for FORTRAN 77+. The SRTL routines may also be accessed by Pascal,
COBOL, and Assembly programs, if the proper calling interface is maintained. The SR TL
contains routines which conform to the following FORTRAN standards:

• ANSI - X3.9-I978 (American National Standards Institute)

• MIL-STD - 1753-1978 (Military Standard)

• ISA/S61.1-1976 (Instrument Society of America)

• ISA/S6I.2-I978

There are four possible installation modes for the SRTL. They are: native/hardware
assisted, native/non-hardware assisted, compatible/hardware assisted, and
compatible/non-hardWare asSisted.

The native and compatible aspects of the compiler are indicative of the file system
interface being selected. Code is contained in the native mode SRTL for accessing
available MPX-32 resources through the MPX-32 file system in accordance with methods
native only. to MPX-32 Rev. 2 and Rev. 3. Code is contained in the compatible mode
SRTL for accessing resources in accordance with methods that are compatible with
MPX-32 Rev. 1.

The hardware assisted and non-hardware assisted aspects of the SRTL allow for the
selection or non-selection of certain. hardware floating point instructions. These
instructions are available on CONCEPT 32/67, 32/87 and 32/97 machines. Code
contained in the hardware assisted mode SRTL utilizes refined math algorithms
incorporating special register to register hardware floating point instructions. Code
contained in the non-hardware assisted mode SRTL retains the math algorithms
contained in previous releases of the SRTL. Either mode may be used on machines
having the special register to register instructions although the hardware assisted mode
is recommended for those machines. Machines not having the special instructions are
restricted to using the non-hardware assisted mode.

In order to catalog programs compiled under FORTRAN 77+, the SRTL must be assigned
as one of the available object libraries to the cataloger. Unlike the compiler which can
use options for mode selection, the mode of the SRTL is dependent solely upon which
installation of the SRTL is assigned to the cataloger at catalog time. The FORTRAN 77+
compiler and the SRTL have the same possible installation modes. It is therefore
recommended that the modes selected at installation for the SRTL match those selected
for the compiler installation.

SRTL Introduction 1-1

Table 1-1
FORTRAN TI+/SRTL Installation Modes

REV. 2 REV. 3

NON-HW compatible
SERIES 3U7X ASSIST ~-------~ - - -- - ----

ONLY native *

NON-HW compatible compatible
CONCEPT 3U27 ASSIST :------ - ~---- ---:-

ONLY native native *

HW compatible
ASSIST native *

CONCEPT 3U67 - - - - - - - --r- - - - -------
NON-HW compatible
ASSIST native

HW compatible compatible
ASSIST native native *

CONCEPT 3US7 - - - ~ - -- - to-- - --- ---
NON-HW· compatible compatible
ASSIST native native

HW compatible
ASSIST native *

CONCEPT 3U97 - - - - - ----... t------ -----
NON-HW compatible
ASSIST native

* - RECOMMENDED

F or more information about the MPX-32 file system, refer to the MPX-32 Reference
Manual.

During library installation, the user can place either the native or compatible, hardware
assisted or non-hardware assisted set of routines into a library. For convenience it is
advisable to place the set most frequently used in MPXLIB/MPXDIR. If the other sets
are also desired, they can be placed under other library/directory names. The alternate
libraries can be specified for use at catalog time.

1-2 Introduction SRTL

r--

I

L

1.2 Description of Scientific Run-Time Library Routines

The routines in the SRTL are divided into four classes:

• Mathematical Library

• MPX-32 System Service

• Supplemental User Support

• Supplemental Language Support

L2.1 Mathematical Ubrary Routines

The mathematical library class of routines contains the FORTRAN intrinsic and bit
manipulation functions. These functions can be directly referenced from FORTRAN
77+. The mathematical library also contains other routines for run-time support of data
type converSion, exponentiation, multiplication, and division. These routines are not
available directly from FORTRAN 77+, but can be referenced from Assembler programs
if the proper calling sequence is maintained. References to these routines are generated
as needed by the FORTRAN 77+ compiler.

The mathematical library routines are described in more detail in Chapter 2 and Section
6.2.

L2.2 MPX-l2 System Service Routines

The system service routines provide access to the MPX-32 System Services. These
routines are the M:, X:, and X routines described in Chapters 3, 4, and 5, which contain
descriptions of subprograms that provide MPX-32 services to FORTRAN 77+ programs.
Chapter 3 describes subprograms which are available to MPX-32 users only in compatible
mode. Chapter 4 describes subprograms which are available to MPX-32 users in either
compatible or native mode. Chapter 5 describes subprograms which are available only in
native mode.

The following notes refer to the use of the MPX-32 service subprograms:

• Attempts to mix modes, i.e. using a compatible mode only subprogram while executing
using native mode, will result in an RS99 error.

The subprograms are not reentrant. Use caution when processing break interrupts
during I/O routines.

L2.J Supplemental User Support Routines

The supplemental user support routines provide additional language support for
FORTRAN 77+. These routines allow for such functions as: obtaining the address of a
variable, direct access to MPX-32 SVC services, obtaining the system time and date, task
control, file access, and unformatted random access I/O. These routines are described in
Section 4.4 and Sections 6.3 through 6.6.

SRTL Introduction 1-3

LU Supplemental Language Support Routines

The supplemental language support routines are not directly available to FORTRAN
77+. References to these routines are generated by the FORTRAN 77+ compiler to
support language features such as READ and WRITE.

1.3 Scientific RWl-time Differences

Release 4.1 of the Scientific Run-time Library differs from previous releases as follows:

Regular FORMAT statements are now converted to format item tables. These are
readily used by the run-time library routines to eliminate redundant re-evaluation of
formats during run time I/O.

• Extended memory addressing has been improved.

• The logical functions lAND, lOR, IEOR, and NOT will now be expanded inline unless
these functions are specifically defined as EXTERNAL to the program, or declared
INTRINSIC and referenced in a subprogram where the name of the function was passed
as an argument to the subprogram.

• Date and time of assembly and product identification information are stored in the
object code for all SRTL routines, and are now available at the user's option at catalog
and library editing time. This will better identify native, compatible, hardware
assisted and non-hardware assisted routines.

• The utility of BUFFERIN/BUFFEROUT has been modified so that the user can select a
"sector specifier" as an optional parameter in order to do random I/O on disc files
only.

1-4 Introduction SRTL

\ ,
'---:;7

r-
OiAPTER 2

MA THEMA TICAL LIBRARY ROUTINES

2.1 Support Functions

The mathematical library is a collection of mathematical and utility functions that
provides full computational support for FORTRAN 77+ and Assembly programs. The
functions are listed in Table 2-1 at the end of this chapter.

Common features of the functions are:

• Each is referenced by its name, which in all cases is one to eight alphanumeric
characters, the first of which is alphabetic.

• Each returns a single value; i.e., each returns one value to the expression from which
it was referenced.

• Each is referenced by an expression containing a function name or by a direct call to a
specified routine name.

Each FORTRAN 77+ intrinsic function name is predefined to the compiler and is
automatically typed.

2.2 Run-time Support Routines

In addition to the FORTRAN intrinsic and bit manipulation functions, the mathematical
library contains other routines for run-time support of data type conversion,
exponentiation, multiplication and division. These routines are distinguished by the
presence of a period in the routine name (e.g., C.IR). These routines are not available to
the FORTRAN user directly; calls are generated inline by the compiler as they are
needed. However, they are available to Assembly language users.

The FORTRAN 77+ compiler generates inline code for Lhe following intrinsic functions.

ABS
lABS
DABS
JABS

SIGN.
ISIGN
DSIGN
JSIGN

DIM
101M
JDIM
CONJG

REAL
OREAL
AIMAG
DIMAG

SNGl
DBlE
CMPlX
DCMPlX

The compiler will not generate inline code under the following circumstances:

• the function is declared EXTERNAL

• the function is declared INTRINSIC and referenced in a subprogram where the name of
the function was passed as an argument to the subprogram.

SRTl Mathematical Library Routines
Change 1

2-1

I

In those cases, the FORTRAN 77+ compiler generates a branch and link instruction for
those references to the function. Note that the use of in line code results in faster
execution at run-time.

2.3 Standard Calling.Sequences

All mathematical library routines use a standard calling sequence. The calling sequences
for FORTRAN are described in the FORTRAN 77+ Reference Manual. The calling
sequences for Assembly are described in the following sections.

2.3.1 Single Argument

F or single argument routines, the calling sequence is:

LA 1,Arg
BL Routine

2.3.2 Multiple Argument

For multiple argument routines, the calling sequence is:

BL
OATAW
ACs
ACt

ACu

Routine
n
Argl
Arg2

Argn
argument

n is the number of arguments.
generate address pointers to arguments

S, t, ... , u are B, H, W, or 0, depending on the mode of the

2.4 Exceptions to the Standard Calling Sequence

The routines in the mathematical library for run-time support of data type conversion,
exponentiation, multiplication, and division do not follow the standard calling
sequences. The calling sequences for these routines are described in the following
sections.

R in the calling sequences is defined as follows:

R7

R6,R7

R4,R5,R6,R7

passes halfword integer, integer, and single precision floating­
point values.

pass doubleword integer, double precision floating-point, and
single precision complex values.

pass double precision complex values.

These general purpose registers are used to pass arguments to the routines. The result
produced by the routines is returned in these same registers.

Change 1
2-2 Mathematical Library Routines SRTL

2.4.1 Conversion Routines

F or conversion routines (C.DJ, C.JD, C.IR, C.RI), the calling sequence is:

Load
BL

R,Arg
C.xx

2.4.2 Exponentiation Routines

EXAMPLE: L W 7 ,REAL WORD
BL C.RI

For exponentiation routines (P.ZZ, P.DI, P.CC, P.CI, P.RR, P.RI, P.ll, P.JJ), the calling
sequence is:

Load
LA
BL

R,Base
1,Exponent
P.xx

2.4.3 Multiplication Routines

EXAMPLE: LD
LA
BL

6,DBLEREAL
1,EXPONENT
P.OI

F or multiplication routines (M.ZZ, M.CC, M.JJ), the calling sequence is:

Load
LA
BL

R,Multiplier
1,Multiplicand
M.xx

2.4.4 Division Routines

EXAMPLE: LD 6,CMPLXARG
LA 1,MUL TCAND
BL M.CC

For division routines (D.ZZ, O.CC, D.JJ), the calling sequence is:

Load
LA
BL

R,Dividend
1,Oivisor
D.xx

EXAMPLE: LD
LD
LA
BL

2.5 Argument Checking and Error Conditions

4,REALPART
6,IMAGPART
1,DIVISOR
O.ZZ

Generally, the mathematical library routines do not check to determine if the number of
arguments passed equals the number of arguments required or if the passed arguments
are of appropriate type. .

If any reference to a mathematical library routine results in an error condition, the
routine may continue execution rather than abort. In this situation, the routine attempts
to provide a reasonable result. However, a run-time diagnostic message is written to the
Diagnostic Output (DO) logical file code by a call to L.ERR, and condition code 1 is set
on return to flag the error condi tion.

2.6 Register Preservation

In the case of a user-generated reference to a mathematical library routine, except the
run-time support routines, ,all registers are volatile and may be assumed to be
destroyed. Exceptions are noted in the program descriptions of the individual
mathematical library routines.

SRTL Mathematical Library Routines 2-3

In the case of the run-time support routines, all registers are preserved except 0, 1, and ~.
R, where R is the register(s) in which the result is returned. The conversion routines 0
preserve register 1.

2.7 Accuraf:y of Results

The maximum relative error in single precision floating-point routines is approximately
r19. In double precision, the maximum relative error is approximately 2-49.

Any exceptions to these accuracy figures are noted in the individual program descriptions
for the mathematical library routines.

2.8 Mathematical Ubrary Usage Conventions

The following conventions are applicable to various mathematical library routines.

2.8.1 Zero Division a1d Exponentiation

Any nonzero positive or negatIve number divided by zero returns the larg~st positIve or
smallest negative number, respectively. In both cases, the overflow bit (con8ition code
1) is set. Zero divided by zero (a/a) and zero raised to the zero power (0) are both
defined to be one.

2.8.2 Calling Double precision Routines

When calling double precision routines, the user must specify double precision arguments,
because no mode conversions are performed.

2.8.3 Complex Routines

All complex routines, except CMPLX, DCMPLX, P .CC, P .ZZ, M.CC, M.ZZ, D.Ce, and
D.ZZ, are single-argument routines.

2.8.4 Testing for Overflow

Test for arithmetic overflow by calling the subroutine OVERFL as follows:

CALL OVERFL(I)

where

2-4

I An INTEGER variable that assumes a value of 1 or 2 as follows:

1 if any hardware arithmetic exception trap has occurred since the last call
to OVERFL.

2 if no hardware arithmetic exception trap has occurred since the last call to
OVERFL.

Mathematical Library Routines SRTL

\

~

(
A call to this subroutine resets the overflow indicator. This test is valid only if the
arithmetic exception trap is enabled and the arithmetic exception handler (or an
equi valent) is installed.

The value returned by a function may also indicate the occurrence of an overflow
condition by being equal to the maximum positive (MAXPOS) or maximum negative
(MAXNEG) value.

T est for arithmetic overflow or other error conditions in the assembler by testing the
overflow bit (condition code 1) immediately upon return from a given math library
routine. If this bit is set, an arithmetic exception or other error condition has occurred.

2.8.5 Common External Temporary Storage

Common external temporary storage (L.TEMPO through L.TEMP25) and some common
constants for mathematical library routines are provided by a data area, MLSTOR.

SRTL Mathematical Library Routines 2-5/2-6

Number
Houtine 01 Argument Hesult Error Exception Exception

function Name Ar!lulllents Modes Mode. Routine Purpose Message Condition Result

UlMAG 1 Doubla complex Double real To obtain tha Irna91- Nona
nary part of a doubla
precision complex floating-
point number.

Nearest (A) ANiNT 1 Heal Real To find the nearest None
whole whole number.
number

(A)DNINT 1 Double Double To find the nearest None
whole number.

Nearest (A) IDNINT 1 Double Integer To find the nearest None
integor intoger.

(A)NINT 1 Real Integer To find the nearest None
integer.

Conversion C.DJ I Double real Double Integer To convert from None IARGI>2"'6J +1fffffffffffffff
double preclalon -(CCI bit set)
floating-point to
double precision Integer
format.

C.IR 1 Integer Real To convert from Inte- None IARGI>2"28 IErrorl<128
ger to alngle precision IARGI>2"24 IErrorl<8
floating-point format. Refer to Note 14.

C.JD 1 Double Integer Double real To convert from None IARGI>2"56 IErrorl<28
double precision Integer
to double precilion
floating-point fonnat.

C.JR I DOuble Integer Real To convert from None
double precision Integer
to 11~le precision floating-
point ormat.

C.RI I Real Integer To convert from None IARGI>2**n +1fffffff
lingle precision floating- fCCI bit set)
point to Integer format.

(A)DBLE 1 Real Double real To convert a lingle None
precision floallng-polnt
quanlity to a double
precision floating-point
format. Refer to note l.

Mathematical Library Routines (Sheet 10 of lJ) Table 2-1

2·25/2-26

L '.'----' \... • ...1

/----,

;~-j

Nurnbcr

~

Houtinu of Argument Result Error Exception Exception
Function NOlne ArgUJOeftl8 Modes Mode. Routine Purpose Mes.aY8 Condition Result

Complex (A)CONJG 1 Complex Complex To obtain the conlu-- None
conjugate gote of a single precision

complex floating-point
number. Refer to note 6.

DCONJG 1 Double complex Double complex T a obtain the conju- None
gate of H double precision
complex floating-point
number. Refer to note 6.

Complex (A)CMPLX lor 2 Integer T a express one or two None
form Real Complex Integer, Bingle precision

DOUble real floating-paint, or double
precision floating-point
numbers in complex form.
Refer to note 4.

1
Complex
Double complex Complex To expreBB one complex None

or double preclaion com-
plex number in complex
form. Refer to note 4.

()CMPLX lor 2 Integer To expreas one or two None
Real integer, lingle precision
Double real Double complex floating-point, or double

precision floating-point
numbers in double precilion
complex form. Refer to
note 4.

1 Complex To expre88 one complex None
Double complex Double complex or double precision

complex number In double
precision complex form.
Refer to note 4.

Complex OREAL 1 Double complex DOUble real T a obtain the real None
real port part of a camplax

double preCision floatlng-
point number.

(A) REAL 1 Complex Real T a obtain the real None
part of a slngla precision
complex floating-paint
numbar. Refer to note 2.

Complex (A)AIMAG 1 Complex Real T a obtain the Imagi- None
imaginary nary part of a alngle
port precision complex f1oating-

point number. Refer to
note 6.

--- -

Mathematical Library RoutiJ_ (Sheet 9 of n) Table 2-1

2-Z1/Z-24

L.., "'-' ~

NU"Iher

t
Houtine of Argument Result Lrror Exception Exception

Function Name ArgUlllents Mod". Mode. Rouline Purpose Mes.oge Condition HeBult

(A) TANtt 1 Heal Reul To compute the hyper- None ARG~12 Ln 2 =1
bolic tangent of a lingle
precision floating-point
number.

Logurithn. (A) AtUU 1 Heal Real To compute the natur- LOG OJ9 AHG,SO =80000001
al logarithm of a lingle
precision floating-point
number.

(A)ALOGI0 1 Heal Real To compute the common ALUGIO OJ9
logarithm of a single

ARG,SO =80000001

precision floating-point
number.

COLOG 1 Double complex Double complex To compute the prln- COLOG 007 Any arithmetic =0 (CCI bit oet)
clpal value of the overflow
natural logarithm of a
double precision complex
floating-point number.

(A) CLOG 1 Complex Complex To compute the prin- CLOG on Any arithmetic =0 (CCI bit oet)
clpal valua of the overflow
natural logari thm of a
complex floating-point
number.

(A)DLDG 1 Double real Double real To compute the nat- OLOG 017
ural logarithm of a

ARG,SO =8000000000000001

double precision floatlng-
point number.

(A)OLOGI0 1 Double real Double real To compute the common OLOGIO 017
10gariUun lif e double

ARG,SO =8000000000000001

preclaion floating-
point number.

Exponential COEXP 1 Double complex Double complex To compute eZ for CDEXP 004 Any arithmetic =0 (CCI bit let)
double precl.ion complex overflow
floating-point z.

(A) CEXP 1 Complex Complex To compute eC for CEXP OJO Any arithmetic =0 (CCI bit let)
complex floatlng- overflow
point c

(A)DEXP 1 Double real Double real To compute ed for None ARG<-256 Ln 2 =0
double precision
floating-point d. ARG>256 Ln 2 = 1FFFFFFH"FffftTF

(A)E.XP 1 Real Real To compute er for None AHG<-256 Ln 2 =0
.Ingle precision
floating-point r. AHU>256 Ln 2 =1FFFfFFf

Malhematlcal Library Routines (Sheel 8 of U) Table 2-1

2-21/2-22

~ :~ t...........)

NUJnber
Huutine uf Argument

t
f'Hlction Nallle ArlJulllenta Modes

Hyperbolic (A) COSH 1 Reol
Cosine

(A)OCOSH 1 Double real

Tangent (A) TAN 1 Real

(A) DTAN 1 DlHJble

Arctangent (A) ATAN 1 Real

(A)DATAN 1 Double feal

(A) ATAN2 2 Real

(A)DATAN2 2 Double real

Hyperbolic (A)DTANH 1 Double real
tangent

'"---'

Result
Modes Routine Purpose

Reol To compute the hyper-
bollc cosine of 0 aingle
precision flooting-point
number.

Double reol To compute the hyper-
bollc cosine of a double
precision floating-point
number.

Real To compute the t8O-
gent of a aingle
precision floating-
point number.

Double To computa tha tan-
gent of a double precision
floating-point number.

Real T a compute the prln-
cipal value of the Inverse
tangent of a single
precision floating-point
number.

Double real T a compute the prln-
cipal value of the arc-
tl'ngent of a double
precision floating-point
number.

Real To compute the In-
verae tangent of the
quotient of two lingle
precision floating point
number., adjusting for
proper quadrant.

Double real T a compute the arc-
tangent of the quotient
of two double precision
floating-point quantities,
adjusting for proper
quadrant.

Double real T a compute the hyper-
bollc tongent of a double
precision f1ootlng-
point number.

Mathematical Library Rautln ... (Sheet 1 of n)

Error Exception
Messoge Condition

None

None

None

None

None

None

None Arithmetic
overflow

None Arithmetic
overflow

None AR~28Ln2

Exception
Results

+<"/4)(CCl bit set)

!. (w /4) (CCl bit set)

=1

, '\
LJ

Table 2-1

2-19/2-20

Number

"
Houtine 01 Argument Result Error Exception Exception

function Name Arguments Modes ModeB Houtine Purpose Message Condition Result

CDS IN } Double Complex Double Complex To compute the sine COSIN 005 Any arithmetic =0 (CCI hit .et)
01 a double precision overflow
complex floating-point I
number.

I

Arc sine (A) ASIN 1 Re.1 Real To compute the arc- ASIN 037 IARGI>} ;0 (CC} bit set)
uine of a Bingle
precision flDoLing-point
number.

(A)UASIN } Double Double To compute the Brc- DASIN 092 IARGI>} ;0 (eCI bit set)
sine of B double
precision floaUng-
point number.

Hyperbolic (A) SINH } Real Real T a compute the hyper- None IARGI>256 Ln 2 !.7FFFFFFF
SinB bolic sine of 8 singl .. (eC} bit Bet)

preciuion floating-point
number.

(A)D,SINH I Double real Double real To computa tha hyper- None IARGI>256 Ln 2 !.7FFFFFFFFFFFFFFF
bollc line of a doubla (CCI bit set)
precision floating-
point number.

Cosine (A) COS } Real Real To compute the cosina None F or beat reBults, ARG
of a single precision should be in the
floating-point number. range (0, 2 IT)

(A)CCDS I Complex Complex T a compute tho casino CCOS OJ) Any arithmetic ;0 (CCI bit set)
of a complex floating- overflow
point number.

(A) DCOS I Double real Double real T a compute the cOBine Nona For beBt results, ARG
of a double precision should bo in the
floating-point number. range (0, 2 w)

COCOS } Double complex Duuble complex To compute the cosine COCOS 006 Any arithmetic ;0 (CC} bit set)
01 a double preciSion overflow
complex floating-point
number.

Arccosine (A) ACOS } Real Real T a compute the arc ACOS on .IARGI>1 ;0 (CCI bit set)
cosine of a single
precision floating-
point number.

(A)OACOS } Double Double To compute the arc DACOS 092 IARGI>1 ;0 (en bit set)
cosine of a double
precision lioating-
point number ..

MaU.ematical Library Routines (Sheet 6 of Il) Table 2-1

2-17/2-18

i ,-.

c

Number

•
Routine of Argument Reault Error Exception Exception

Function Name Argument. Modea Model Routine Purpoae Me •• age Condition Reault

(A) MAXI 1£.2 Real Integer To find the maximum None
value In a variable
length lI.t of lingle
precl.lon floating-point
number. and converl the
re.ult to Integer format.

(A)DMAXI 1£.2 Double real Double real To find the meximum None
value In e veri able
length lI.t of double
precl.lon floating-
point valuea.

Minimum (A) AMINO ~2 Integer Real To find the minimum None
value In a varlabla
length lI.t of Integer.
and convert the relult
to alngle precilion
floating-point format.

(A) AMINI ~2 Real Real To find the minimum None
value In a variable length
n.t of reall.

,
(A)MINO ~2 Integer Integer To find the minimum None

value In a variable
length nat of Inleger ..

(A) MINI ~2 Real Integer To find the minimum None
value In a varlabla
length nat of alngle
precilion numbera and
converl the re.u1t to
Integor format.

(A)DMINI 1£.2 Double real Double real To find the minimum Nono
valuo In a varlablo
length nat of double
preclaion floating-point
value ..

Sine (A) SIN 1 Real Heal To computo the alne None F or best reoults ARG
of a 81ngle precision ahould be in the
floating-point !lUmber. range (0,2")

(A)C5IN I Complex Complex To compute the sine C51N 032 Any arithmetic ~O (CCI bit aet)
of a complex floating- overflow
point number.

(A) DSIN i Double real Doubie real To compute the aine None F or best result.,
of a double precision arguments should be
floaling-point number. In the rang" (0, 2")

Mathomatical Library Routines (Sheet 5 of n) Tabla 2-1

2-1~/2-16

~ '- u

F 11
,

__ t • ___ ~ .. -------------

Number
Routine of • Argument

Function Name Arguments Modes

::=) Subtrac- (A)DDIM 2 Double real
tion

(A) DIM 2 Real

(A)IDlM 2 Integer
(Note 16).

Multipli- (A) DPROD 2 Real
cation

M.CC 2 Complex

M.JJ 2 Double integer

~-(" M.ZZ 2 Double complex

Division D.CC 2 Complex

D.JJ 2 Double integer

D.ZZ 2 Double complex

Absolute (A) ABS I Real
value

(A) CABS I Complex

'.

~
SRTL

r ---·-~---l

Result
Modes Routine Purpose

Double real To find the positive
difference between
two double precision
arguments.

Real T a find the positive
difference between
two single precision
floating·point numbers.

Integer T a find the positive
di fference between
two integers.

Double real To find the double
precision product of
two real argumen~fs.

Complex To multiply two com-
plex floating-point
numbers.

Double integer To mUltiply two
doubleword integers.

Double complex To mUltiply two
double precision complex
floating-point numbers.

Complex To divide one complex
floating-point number by
another.

Daub Ie integer To divide one integer
doubleword by
another,

Double complex T a divide a double
precision complex
floating-point number
by another.

Real To compute the abso-
lute value of a single
precision f1oating·point
number or an integer.

Real T a compute the abso·
lute value of a complex
floating.point argument.
Refer to note 6.

-- ------

Mathematical Library Routines (Sheet 1 of lJ)

Error
Message

None

None

None

None

M.CC 035

None

M.ZZ 009

D.CC 036

None

D.ZZ 010

None

CABS 028

Exception'
Condition

Arithmetic
overflow

ArIthmetic
overflow

Arithmetic
overflow

!

Arithmetic
overflow

Arithmetic
overflow

Division by zero ,

Arithmetic
overflow

,

Arithmetic
overflow

Exception
Result

+7FFFFFFFFFFFFFFF
-(CCI bit set)

=0 (CCI bit set)

+7FFFFFFFFFFFFFFF
-(CCI bit set)

=0 (CCI bit set)

=0 (CCI bit set)

+7FFFFFFFFFFFFFFF
-(CCI bit set)

=0 (CCI bit set)

=0 (CCI bit set)

.~

Change 1
2-7/2~

c

c

Number
Routine of Argument Result

Function Name Arguments Modes Mcdes Routine Purpose ,
CDABS 1 Double complex Double real To compute the abso-

lute value of a double
precision complex f1oating-
point number. Refer to
note 6.

(A) DABS 1 Double real Double real To compute the abso-
lute value of a double
precision floating-point
number.

(A) lABS 1 Integer Integer To compute the abso-
(Note 16) I lute value of an inte'ger

argument.

Square CDSQRT 1 Double complex Double complex To compute the prin-
root cipal square root of a

double precision complex
floating-point number.

(A) CSQRT 1 Complex Complex To compute the prin-
cipal square root
of a complex f1oating-
point number.

((A) DSQRT 1 Double real Double real To compute the posi-
tive square root of a
double precision
floating-point number.

(A) SQRT 1 Real Real To compute the posi-
tive square root of a
single precision floating-
point number.

Modular (A) AMOD 2 Real Real To find the remainder
arithmetic when one single precision

floating-point number is
divided by another.

(A) DMOD 2 Double real Double real To compute the re-
mainder obtained in
dividing the first double
precision floating-point
argument by the second.

(A) MOD 2 Integer Integer To find the remainder
when the first integer is
divided by the second .

. -
(Mathematical Library Routines (Sheet 2 of n)

SRTL

r------"-

Error
Message

COABS 002

None

None

CDSQRT 001
I

CSQRT 027

DSQRT 011

SQRT 049

AMOD 045

DMOD 020

None

--.--~

Exception Exception
Condition Result

Arithmetic 00 (CCI bit set)
overflow

ARG=MAXNEG =MAXNEG «0)
(CCI bit set)

Arithmetic =0 (CCI bit set)
Overflow

Arithmetic =0 (CCI bit set)
Overflow

ARG(O SQRT (lARGIl

t

ARG(O SQRT (IARGIl
I

I QUOTIENTI>2**24 =0 (CCl bit set)
Arithmetic Overflow
Division by zero

I QUOTlENTl>2**52 =0 (CCl bit set)
Arithmetic Overflow
Division by zero

Division by =0 (CCI bit set)
zero

-_. __ ._1 _

"I

Table 2-1

Chal')ge 1
2-9/2-10

1~ i,, __

(­,

SRTL

r---c ..

Function

Fraction
truncation

Sign
transfer .

Exponent

Routine
Name

(A) AINT

(A) DINT

(A) DSIGN

(A) SIGN

(A) ISIGN
(Note 16).

P.CC

P.CI

P.DD

P.D!

P.II

Number
of Argument

Arguments Modes
-

1 Real

I Double real

2 Double real

2 Real

2 Integer

2 Complex

2 Complex,
Integer

2 Double real

2 Double real,
Integer

2 Integer

r----'"

Result
Modes Routine Purpose

Real To truncate the frac-
tional bits from a sinqle
precision floating-point
quantity. Refer to note 1.

Double real To truncate t.he frac-
tional bits of a double
precision floating-point
quantity. Refer to note 1.

Double real To transfer the sign
of the second double
precision floating-point
argument to the first
double precision floating
point argument.

Real To, transfer the sign
a f the second sing Ie
precision floating-point
argument to the first
single precision argument.

Integer To transfer the sign
of the second single
precision integer argu-
ment to the first single
precision integer argument.

Complex To compute the prin-
eipal value of a complex
floating-point number
raised to R complex
floating-point number
power.

Complex To raise a complex
floating-point number
to an inteqer power.

Double real To compute a double
precision floating-point
power of a double
precision floating-point
number.

Double real To raise a double
precision floating-
point quantity to an
integer power.

Integer To raise an integer
value to an integer
power.

Mathematical Library Routines (Sheet 3 of 13)

Error Exception
Messagp ronctition

~.-

None

No~e

None

None

None

P.CC 029 Arithmetic
overflow

! ,
i

P.CI 034 Arithmetic
overflow

None Arithmetic
overflow

None Any arithmetic
overflow

None Any arithmetic
overflow

~

rxrp.f)tion
Rf'f,lllt

-.----.--------~ ~.-. ~---

=0 (CCI bit set)

=0 (CCI bit set)

7FFFFFFFFFFFFFFF
(Sign of result = sign of
base)
(CCl bit set)

7FFFFFFFFFFFFFFF
(CCl bit set)

+7FFFFFFF

I
-(CCl b,t set)

Table 2-1

Change 1
2-11/2-12

r -..,

,-----,-.-.--,--~.

Number
Routine of Argument

Function Name Arguments Modes

(~ P.JI 2 Double integer,
Integer

P.JJ 2 Double integer

P.RI 2 Real, Integer

P.RR 2 Real

P.lI 2 Double complex,

(
Integer

P.ll 2 Double complex

Maximum (A) AMAXO n~2 Integer

(A) AMMO rQ.2 Real

(A) MAXO n~2 Integer

i,

SRTL

Result
Modes Routine Purpose .

Doub Ie integer To raise a double
precision integer
quantity to an integer
power.

Double integer To raise a double
word integer to a
doubleword integer
power.

Real To raise a single
precision floating-
point number to an
integer power.

Real To raise a single
precision floating-
point number to a
single precision
floating-point
power. Refer to I
note 15.

Double complex To raise a double
precision complex
floating-point number
to an integer power.

Double complex To compute the
principal valua of
of a double precision
complex power of a
double precision
complex number.

Real To find the maximum
value In a variable
length list of Integers
and convert the result to
single precision floating-
point format.

Real To find the maximum
value in a variab Ie length
list of reals.

Integer To find the maximum
value in a variable length
list of integer values.

Mathematical Library Routines (Sheet 4 of 13)

Error Exception
Message Condition

None Any arithmetic
overflow

None Any arithmetic
overflow

None Any arithmetic
overflow

None Any arithmetic
overflow

P.lI 008 Any arithmetic
overflow i

P.ll 003 Any arithmetic
overflow

None

None

None

~
!

Exception
Result

7FFFFFFFFFFFFFFF
(CCl bit set)

7FFFFFFFFFFFFFFF
(Cel b it set)

+7FFFFFFF
(eCl b it set)

+7FFFFFFF
(eel bit set?

=0 (eel bit set)

=0 (eel bit set)

Table %-1

Change 1 . <.
2-13/2-14/

>"

c

"""I
,~~~ .~;

Number
Routine 01 Argument Result Error Exception E.ceptlon

Flulction Name Arguments Modes Modes Routine Purpose Mes.age Condition Result

length of (A) lEN 1 Character Integer To determine the length
Character (note 12) 01 a charocter string.
String

le.ically (A)lGI:. 2 Choracter logicel To compore two character
Grealer (nole 12) strings and return 8 logical
lhan or value ol.TRUE. or FALSE.,
Equal to deponding on the ASCII

collating sequence.

le.ically (A) LGT 2 Character Logical To compare two character
Greater (note 12) strings 8nd .eturn a logical
Thun value of .TRUE. or FALSE.,

depending on Ihe ASCII
collating sequence.

Le.icolly (A)LLE 2 Character Logical To compare two character
less Ihon (note 12) strlngl and return a logical
or Equal to value of .1RUE. Dr FALSE.,

depending on the ASCII
collating sequence.

Le.ically (AlLlT 2 Character Logical To compare two character
Le8s lhan (note 12) atringl and return a logical

volue of .TRUE. Dr FALSE.,
depending on tho ASCII
collating sequence.

Inde. 01 (A) INDEX 2 Character Integer To return an integer
A Substring (note 12) value locating substring

c2 within a string Cl"
Refer to note 7"

Inclusive (I) lOR 2 Integer Integer T a permit Interrogation
OR and manipulation of

Integer. on a blt-by-bit
bosls. Refer to 6.2.1.1.

Logical (I) lAND 2 Integer Integer 10 permit Interrogation
Product and manipulation of

Integers on a blt-by-bit
basla. Refer to 6.2.1.1

Logicol (I) NOT 1 Integer Integer 10 permit Interrogation
com"le- and manlJ>Ulation of
rnent Integers on a blt-by-blt

baals. Refer to 6.2.1.4.

Exclusive (I) lEUR 2 Integer Integer To permit InterrogoUon
OR and manipulation of

Integers on a bit-by-blt
balil. Refer to 6.2.1.2.

--

Melhornetlcal Library Routl~ (Sh t 12 of n) Tabl .. 2-1

2-29/Z-}O

· ·~·r

I'

)

Number
£ .! Houtine of Argument Result Error EKception KceptlOn .

FUllction Nome Arguments Modes Modes Houtine Purpose Messoge Condition ReBult

Logical (I) lSi 1FT 2 Integer Integer To shift k places all bits
shilt representing argumant m.

Refer to 6.2.2.1.

Circular (I) ISHFIC } Inleger Integer To shift circularly k places
shift the rightmost ic bits of

argument m. Refer to
6.2.2.2.

Hit test (I)BTEST 2 Inleger Logical To test a specified bit
of an integer.
Rafer to 6.2.).1.

Bit set (I) IBSET 2 Integer Integer To set a specified bit
of an integer.
Refer to 6.2.}.2.

Bit clear (I) IBCLR 2 Integer Integer To clear a specified bit
, of an integer.

Rafar to 6.2.).}.

Bit field (I) IBITS } Integer Integer To axtract a specified
extraction aubfield of bits.

Refer to 6.2.4.1.

-

Mathematical Library Routil18ll (Sheet U 0' U) Tabl.2-1

2-11/Z-}2

("'.

. -:;;..--/

r

Notes for Table 2-1

The Mathematical Library Routines, which conform to the ANSI X3.9-1978 (American
National Standards Institute), are identified by an (A) next to the routine name.

The Mathematical library Routines, which conform to the ISA/S61.1-1976 (Instrument
Society of America), are identified by an (I) next to the routine name.

1. F or an integer argument, INT (a) = a. For a real or double precision argument,
there are two cases: if lal < 1,INT (a) = 0, but if lal ~ 1,INT (a) equals the integer
whose magnitude is the largest integer that does not exceed the magnitude of (a)
and whose sign is the same as the sign of (a). For example:

INT (-3.7)=-3

For a complex a~ument, INT (a) is the value obtained by applying the above rule to
the real part of (a).

F or a real argument, IF'IX (a) is the same as INT (a).

Z. F or a real argument, REAL (a) is (a). For an integer or double precision argument,
REAL (a) is as much precision of the significant part of (a) as a real datum can
contain. F or a complex argument, REAL (a) is the real part of (a).

F or an integer argument, FLOAT (a) is the same as REAL (a).

3. F or a double precision argument, DBlE (a) is (a). For an integer or real argument,
DBlE (a) is as much precision of the significant part of (a) as a double precision
datum can contain. For a complex argument, DBlE (a) is as much precision of the
signi ficant part of the real part of (a) as double precision datum can contain.

4. CMPlX (or DCMPlX) may have one or two arguments. If there is one argument, it
must be of type integer, real, double precision, or complex. If there are two

, arguments, they must both be of the same type and must be of type integer, real, or
double precision.

SRTl

For an integer, real, or double precision argument:

CMPlX (a) = REAL (a)
OEO

DCMPlX (a) = DBLE (a)
000

F or a complex argument:

CMPlX (a) = a

DCMPlX (a) = DBlE (REAL (a»
DBlE (AIMAG(a»

F or a double precision complex argument:

CMPlX (a) = REAL (DREAl(a»
REAL (DIMAG(a»

DCMPlX(a) = a

real part
imaginary part

real part
imaginary part

real part
imaginary part

real part
imaginary part

Mathematical Library Routines 2-33

F or two arguments:

= REAL(a1)
REAL(a2)

= DBLE(a1)
DBLE(a2)

real part
imaginary part

real part
imaginary part

5. ICHAR converts a character to an integer, based on the position of the character in
the ASCII collating sequence. The first character in the coUating sequence
corresponds to position 0 and the last to position n-l, where n is the number of
characters in the collating sequence.

The value of ICHAR (a) is an integer in the range:

o ~ ICHAR (a) ~ 127, where (a) is a character argument of length one. The position
of that character in the collating sequence is the value of ICHAR.

For any characters c1 and c2 capable of representation in the processor, (c1.LE.c2)
is true only if (ICHAR (c]).LE.ICHAR (c2» is true and (c1.EQ.c2) is true only if
(ICHAR (cl).EQ.ICHAR (c2) is true. .

CHAR en returns the ith position of the ASCII collating sequence. The character
argument is of length one. i must be an integer expression whose value must be in
the range 0 ~ i ~ 127:

ICHAR (CHAR (i» = i
CHAR (ICHAR (c» = c

for 0 ~ i ~ 127

for any character c capable of
representation in the processor.

6. A complex value is expressed as an ordered pair of reals (ar,ai)' where Br is the real
part and ai is the imaginary part.

7. INDEX (a1,a2) retums an integer value indicating the substring identical to string
a2. If a2 occurs more than once in aI' the starting position of the first occurrence
is returned. .

If a2 does not occur in aI' the value zero is returned. Note that zero is returned if
LEN (al) < LEN (a2).

8. All angles are expressed in radians.

9. If the operands for LGE, LGT, LLE, and LL T are of unequal length, the shorter
operand is considered as if it were extended on the right with blanks to the length
of the longer operand.

10. M.VE causes a character string to move from a specified source to a specified
destination. If the source string is longer than the destination, the source string is
truncated. If the source string is less than the destination, the source is left
justified and padded with blanks.

2-34 Mathematical Library Routines SRTL

r
l

11. C.MP accomplishes the following (LGE, LGT, LLE, LL T are entries within C.MP):

(a) Logically compares two character strings and returns the resulting condition
codes for compiler generated calls to C.MP.

(b) Logically compares two character strings in one of the following four ways:

.LGE., .LGT., .LLE., .LL T.

12. When used in ASSEMBLY, character arguments consist of a pair of parameter
words. The first word specifies the address of the first byte of the character
item. The second word specifies the address of the length of the character item.

13. When used in ASSEMBLY, CHAR requires three actual parameter words. The first
two specify a target character item On storage) that is to receive the value of
CHAR. The third parameter corresponds to the actual argument, I, in CHARm.
The integer value of I cannot exceed 127.

14. For exception conditions, the returned value differs from the correct return value
by less than the margin indicated.

15. If the base value is negative, the absolute value of the result is returned. I
16. The following intrinsic functions will accept integer*8 arguments: JABS, JDIM, I

JINT and JSIGN.

SRTL Mathematical Library Routines
Chanoe 1

2-35/2--36

(

CHAPTER 3

MPX-32 COMPATIBLE MODE SUBROUTINES

3.1 M: and X: Subroutines

This chapter contains descriptions of compatible mode subroutines that provide MPX-32
subroutines to FORTRAN 77+.

The M: subroutines described in this chapter are equivalent to the subroutines under
RTM. The X: subroutines described in this chapter are additional compatible mode
subroutines. These subroutines must not be used by programs using the native mode file
system features.

Any attempt to mix modes; i.e., compatible with native, will result in an RS99 error with
the entry point displayed in an extended abort message.

A delimiting comma must be present in the calling sequence of M: subroutines only if an
omitted optional argument is followed by other arguments. A delimiting comma must be
present in all X: subroutines whenever an optional argument is not included in the calling
sequence.

All error codes are expressed as decimal integers.

If a task is multicopied, any later reference to that task.!!!.!:!!!. be by task number.

An argument list that does not contain the arguments *label (a denial return address) and
an istatus, results in an RSxx abort code message and program termination if the
subroutine performs ·unsuccessfully. If only istatus is specified, the istatus value should
be checked to determine if the subroutine performed successfully. If a denial return
address is specified and the subroutine performs unsuccessfully, control will transfer to
the specified address.

SRTL
MPX-32 Compatible Mode

Subroutines 3-1

M:ALOC1

3.1.1 M:ALOC1

The M:ALOCI subroutine dynamically allocates a previously created permanent file and
assigns a Logical File Code (LFC) to it.

Calli n9 Sequence

CALL M:ALOC1 (lfc, filename,[*labeij,lPassword],[blocked],[wait],[istatus])

Lfc An INTEGER or CHARACTER expression or variable that specifies the
logical file code. If the LFC is an INTEGER, this argument must be an
integer constant in the range of 1-999 or a 1-3 character string left justified
and blank filled. If the LFC is a CHARACTER, this argument must be a 1-3
character string.

filename An INTEGER*8 variable that specifies the permanent file name. This
argument must be one to eight ASCn characters, left justified and blank
filled.

label The statement label to which control is retumed if a request is denied due to
file unavailability.

password An INTEGER*8 variable that specifies the password. This argument is a
place holder provided for compatibility and; if specified, is ignored.

blocked A LOGICAL variable. If present and specified true (. TRUE.), the file is
allocated blocked. Unblocked is the default.

wait A LOGICAL variable. I~ present and specified true (. TRUE.), the allocation
is performed in the wait mode. No-wait is the default. In the wait mode,.
the calling task is queued for the requested resource and suspended until the
resource becomes available.

istatus

3-Z

An INTEGER variable. If specified, istatus is set to a completion code upon
retum from the subroutine. Possible istatus values are:

o
1
Z
3

4
5
6
7
8
9

10
11
13
14
15

16
17
18

Normal completion.
Permanent file nonexistent.
lllegal file password specified.
No File Assignment Table/File Pointer Table (FAT /FPT) space
available.
No blocking buffer space available.
Shared memory table entry not found.
Invalid shared memory table password specified.
Dynamic common specified in $ASSIGNl.
Unrecoverable I/O error to System Master Directory (SMD).
System General Object (SGO) assignment specified by terminal
task.
No' User Terminal (UT) file code exists for terminal task.
Invalid Resource Requirement Summary (RRS) entry.
Assigned device not on system.
Device in use by requesting task.
SGO or System Control (SYC) assignment not allowed by real­
time task.
Common memory conflicts with allocated task.
Duplicate LFC allocation attempted.
Incompatible call.

MPX-3Z Compatible Mode
Subroutines SRTL

(

M-.ALOCl

The following error codes are returned if allocation is requested with no wait and one of
the conditions exists. If allocation is requested with wait mode, no error code is returned
and the system continues waiting.

30 Permanent file exclusively closed.
31 File Lock Table (FLT) full.
32 Nonshared device busy (already allocated).
33 Disc space is not available.
70 Allocation error.

Programming Considerations

Static LFC assignments (via job control or cataloging) may not be overridden until the
LFC has been deallocated, typically with the M:DALOC subroutine.

SRTL
MPX-32 Compatible Mode

Subroutines 3-3

M:ALOC2

3.1.2 M:ALOC2

The M:ALOC2 subroutine dynamically allocates a System Listed Output (SLO) or System
Sinary Output (SSO) file and assilJII':I ~ '_olJical FilA r.ode (LFC) to the file.

Calling Sequence

CALL M:ALOC2 (lfc, sfc, size,(*label],(wait],Ostatus])

lfc An INTEGER. or CHARACTER expression or variable that specifies the
logical file code. If the LFC is an INTEGER, this argument must be an
INTEGER constant in the range of 1-999 or a 1-3 character string left
justified and blank filled. If the LFC is a CHARACTER, this argument must
be a 1-3 character string.

sfc An INTEGER variable that specifies the system file code (either SLO or
S80). This argument must be three ASCn characters, left justified and
blank ftlIed.

size An INTEGER variable that specifies the allocation required in physical
record blocks (192 words each).

label The statement label to which control is retumed if a request is denied
because of file unavailability.

wait

istatus

3-4

A LOGICAL variable. If present and specified true C. TRUE.), the allocation
is performed in the wait mode. No-wait is the default.

An INTEGER variable. If specified, istatus is set to a completion code upon
return from the subroutine. Possible istatus values are:

o
1
2
3

4
5
6
8
9

10
11
13
14
15

16
17
18

Normal completion.
Permanent file nonexistent.
Illegal file password specified.
No File Assignment Table/File Pointer Table CF AT /FPT) space
available.
No blocking buffer space available.
Shared memory table entry not found.
Invalid shared memory table password specified.
Unrecoverable I/O errol' to System Master Directory (SMD).
System General Object (SGO) assignment specified by terminal
task.
No User Terminal (UT) file code exists for terminal task.
Invalid Resource Requirement Summary (RRS) entry.
Assigned device not on system.
Device in use by requesting task.
SGO or System Control (SYC) assignment not allowed by real­
time task.
Common memory conflicts with allocated task.
Duplicate LFC allocation attempted.
Incompatible call~

MPX-32 Compatible Mode
Subroutines SRTL

i'-"
~_ji

[

M:ALOC2

The following error codes are returned if allocation is requested with no-wait and
one of the conditions exists. If allocation is requested with wait mode, no error
code is returned and the system continues waiting.

30 Permanent file exclusively closed.
31 File Lock Table (FLT) full.
32 Nonshared device busy (already allocated).
33 Disc space not available.
70 Allocation error.

Programming Considerations

Static LFC assignments (via job control or cataloging) may not be overridden until the
LFC has been deallocated, typically with the M:DALOC subroutine.

SGO and SYC files may not be assigned with this subroutine.

SLO and sao are blocked files.

SRTL
MPX-32 Compatible Mode

Subroutines 3-5

M:ALOC3

3.1.3 M:ALOC3

The M:ALOC3 subroutine dynamically allocates a physical device and assigns a Logical
File Code (LFC) to the device.

Calling Seguence

CALL M:ALOC3 (lfc, dt,(channel],[param],[*labe1],[mo],[vol],(blocked],[wait],(istatus],[da])

lfc An INTEGER or CHARACTER expression or variable that specifies the
logical file code. If the LFC is an INTEGER, this argument must be integer
constant in the range of 1-999 or a 1-3 character string left justified and
blank filled. If the LFC is a CHARACTER, this argument must be a 1-3
character string.

dt An INTEGER variable or constant that specifies the device type code (refer
to Chapter 5). If the dt parameter is a constant, it must represent a value
corresponding to one specified in Section 5.2. For example, the following
calling sequence would cause a line printer to be allocated:

channel

param

CALL M:ALOC3(OUT,lO,2Z7A,,*40)

An INTEGER variable that specifies the channel number (hexadecimal) of
the particular device on which the file is to reside. Channel is a
configuration restraint established at the time of system generation
(SYSGEN) and configuration.

An INTEGER variable that specifies the four-ASCII-character reel 10, if the
device is magnetic tape, or the number of 192-word blocks to allocate, if the
device is a disc. Otherwise, the value of param is null.

label The statement label to which control is returned if allocation is denied
because of device unavailability.

mo An INTEGER variable or constant that specifies the mount-only option for
magnetic tapes:

vol

blocked

wait

istatus

3-6

o Allocate and mount
1 Mount only

An INTEGER variable or constant that specifies the magnetic tape volume
number (l through 255).

A LOGICAL variable. If present and specified true (. TRUE.), the peripheral
device or file is allocated blocked. Unblocked is the default.

A LOGICAL variable. If present and specified true (.TRUE.), the allocation
is performed in the wait mode. No-wait is the default.

An INTEGER variable. If specified, istatus is set to a completion code upon
.return from the subroutine. Possible istatus values are:

MPX-32 Compatible Mode
Subroutines SRTL

r-

0
1
2
3

4
5
6
8
9

10
11
13
14
15

16
17
18

Normal completion.
Permanent file nonexistent.
Illegal file password speci fied.

M:ALOC3

No File Assignment Table/File Pointer Table (FAT/FPT) space
available.
No blocking buffer space available.
Shared memory table entry not found.
Invalid shared memory table password specified.
Unrecoverable I/O error to System Master Directory (SMD).
System General Object (SGO) assignment specified by terminal
task.
No User Terminal (UT) file code exists for terminal task.
Invalid Resource Requirement Summary (RRS) entry.
Assigned device not on system.
Device in use by requesting task.
SGO or System Control (SYC) assignment not allowed by
realtime task.
Common memory conflicts with allocated task.
Duplicate LFC allocation attempted.
Call was incompatible.

The following error codes are returned if allocation is requested with no wait and
one of the conditions exists. If allocation is requested with wait mode, no error
code is returned and the system continues waiting.

30 Permanent file exclusively closed.
31 File Lock Table (FL T) full.
32 Nonshared device busy (already allocated).
33 Disc space not available.
70 Allocation error

da An INTEGER variable that specifies the device subaddress. The default value is
zero.

Programming Considerations

A message, MOUNT TAPE (reel identification) (volume) ON UNIT (magnetic tape device
number), is written to the operator's console for magnetic tape use.

Static LFC assignments (via job control or cataloging) may not be overridden until the
LFC has been deallocated, typicaUy with the M:DALOC subroutine.

If the device is a disc drive, a formatted volume must be mounted. A temporary file will
be created by the subroutine. The disc drive is treated as a formatted medium and a
mount message will not be issued.

SRTL
MPX-J2 Compatible Mode

Subroutines 3-7

M:ALOC4

3.1.4 M:AL0C4

The M:ALOC4 subroutine equates a new Logical File Code (LFC) to an existing logical
file code.

Callinq Sequence

CALL M:ALOC4 (lfc, pfc,[*IabeI],Ostatus]

, lfc

pfc

label

istatus

3-8

An INTEGER or CHARACTER expression or variable that specifies the new
logical file code. If the LFC is an INTEGER, this argument must be an
integer constant in the range of 1-999 or a 1-3 character string left justified
and blank filled. If the LFC is a CHARACTER, this argument must be a 1-3
character string.

An INTEGER or CHARACTER expression or variable that specifies the
existing logical file code. If the LFC is an INTEGER, this argument must be
an INTEGER constant in the range of 1-999 or a 1-3 character string left
justified and blank filled. If the LFC is a CHARACTER, this argument must
be a 1-3 character string.

A statement label to which control is returned if a request is denied.

An INTEGER variable. If specified; istatus is set to a completion code upon
return from the subroutine. Possible istatus values are:

o
1
2
3

4
5
6
8
9

10
11
13
14
15

16
17
18

Normal completion.
Permanent file nonexistent.
Illegal file password specified.
No File Assignment Table/File Pointer Table (FAT /FPT) space
available.
No blocking buffer space available.
Shared memory table entry not found.
Invalid shared memory table password specified.
Unrecoverable I/O error to System Master Directory (SMD).
System General Object (SGO) assignment specified by terminal
task.
No User Terminal (UT) file code exists for terminal task.
Invalid Resource Requirement Summary (RRS) entry'.
Assigned device not on system.
Device in use by requesting task.
SGO or System Control (SYC) assignment not allowed by
realtime task.
Common memory conflicts with allocated task.
Duplicate LFC allocation attempted.
Incompatible call.

, The following error codes are returned if allocation is requested with no wait
and one of the conditions exists. If allocation is requested with wait mode,
no error code is returned and t~e system continues waiting.

30 Permanent file exclusively closed.
31 File Lock Table (FL T) is full.
32 Nonshared device busy (already allocated).

MPX-32 Compatible Mode
Subroutines SRTL

,/ ~,

I
'~j

)

33
70

Disc space ·not available.
Allocation error.

Programming Consideration

M:ALUl,;4

Static LFC assignments (via job control or cataloging) may not be overridden until the
LFC has been deallocated, typically with the M:DALOC subroutine.

SRTL
MPX-32 Compatible Mode

Subroutines 3-9

M:ALOC5

3.1.5 ~:ALOC5

The M:ALOC5 subroutine dynamically allocates a permanent system file and assigns a
Logical File Code (LFC) to the file.

Calling Sequence

CALL M:ALOCS (lfc, filename,Cltlabel],(password],[blocked],[wait],[istatus])

lfc

filename

label

password

blocked

wait

istatus

3-10

An INTEGER or CHARACTER expression or variable that specifies the
logical file code. If the LFC is an INTEGER, this argument must be .. an
integer constant in the range of 1-999 or a 1-3 character string left
justified and blank filled. If the LFC is a CHARACTER, this argument
must be a 1-3 character string.

An INTEGER*8 variable that specifies the permanent file name. The file
name must be one to eight ASCn characters, left justified and blank filled.

The statement label to which control is returned if a request is denied due
to file unevailability.

An INTEGER*8 variable that specifies the password. This argument is a
place holder provided for compatibility and, if specified, is ignored.

A LOGICAL variable. If present and specified true (. TRUE.), the
peripheral device or file is allocated blocked. Unblocked is the default.

A LOGICAL variable. If present and specified true (. TRUE.), the allocation
is performed in the wait mode. No-wait is the default.

An INTEGER variable. If specified, istatus is set to a completion code
upon return from the subroutine. Possible istatus values are:

o Normal completion.
1 Permanent file nonexistent.
2 Illegal file password specified.
3 No File Assignment Table/File Pointer Table (FAT/FPT) space

available.
4 No blocking buffer space available.
5 Shared memory table entry not found.
6 Invalid shared memory table password specified.
8 Unrecoverable I/O error to System Master Directory (SMD).
9 System General Object (SGO) assignment specified by terminal

task.
10 No User Terminal (Un file code exists for terminal task.
11 Invalid Resource Requirement Summary (RRS) entry.
13 Assigned device not on system.
14 Service in use by requesting task.
15 SGO or System Control (SYC) assignment not allowed by real­

time task.
16 Common memory conflicts with allocated task.

MPX-32 Compatible Mode
Subroutines SRTL

c

r

[

M:ALOC5

17 Duplicate LFC allocation attempted.
18 Incompatible call.

The following error codes are returned if allocation is requested with no wait
and one of the conditions exists. If allocation is requested with wait mode,
no error code is returned and the system continues waiting.

30 Permanent file is exclusively closed.
31 File Lock Table (FLT) full.
32 Nonshared device busy (already allocated).
33 Disc space not available.
70 Allocation error.

Programming Consideration

Static LFC assignments (via job control or cataloging) may not be overridden until the
LFC has been deallocated, typically with the M:DALOC subroutine.

SRTL
MPX-32 Compatible Mode

Subroutines 3-11

M:CLOSE

3.1.6 M:CLOSE

The M:CLOSE subroutine will close a file associated with a specified Logical File Code
(LF'C).

Calling Sequence

CALL M:CLOSE (lfc)

Ifc:: An INTEGER or CHARACTER expression or variable that specifies the
logical file code. If the LFC is an INTEGER, this argument must be an
INTEGER constant in the range of 1-999 or. a 1-3 character string left
justified and blank filled. If the LF'C is a CHARACTER, this argument must

3-12

be a 1-3 character string. .

MPx-n Compatible Mode
Subroutines SRTL

C"
" ..

[

r

r···

M:CREATE

3.1.7 M:CREA TE

The M:CREA TE subroutine creates a permanent file that remains defined to the system
until it is deleted.

Callinq Sequence

CALL M:CREATE (filename, blocks; devtype, [channel],(restr],[password], [sys], [nosav] ,
[speed],[type],[nuU],[zeroing],[istatusJ,[da])

filename An INTEGER*8 variable that specifies the permanent file name. This
argument must be one to eight ASCn characters, left justified and blank
filled.

blocks An INTEGER variable that specifies the size of the file as a multiple of 192-
word blocks.

devtype An INTEGER variable that specifies the type of disc on which the, file is to
reside. The end of Chapter 5 contains valid disc device type codes. Note
that the device type code is an integer, not the two-character device
mnemonic.

channel An INTEGER variable that specifies the channel number of the particular
device on which the file is to reside.

restr An INTEGER variable that specifies the file access restrictions. This
argument is a place holder provided for compatibility and, if specified, is
ignored.

password This argument, is a place holder provided for compatibility and, if specified,
is ignored.

ays An INTEGER variable that specifies the type of file. This argument must be
a single ASCn character, left justified and blank filled. Options are:

nosav

SRTL

'5'
Default

System file
User file (system file if a user name is not associated
with the calling program)

An INTEGER variable that specifies if the file is to be saved. This argument
must be a single ASCn character, left justified and blank filled. Options are:

'N'
Default

File is not saved without special FILEMGR or VOLMGR
option
File is saved

MPX-32 Compatible Mode
Subroutines 3-13

M:CREATE

speed An INTEGER variable that specifies the speed of the file. This argument
must be a,single ASCn character, left justified and blank filled. Options are:

'F'
Default

Fast file
Slow file

A file specified as a fast file is one for which the file definition will be
retrieved from the System Master Directory (SMD) with one access. If the
file is apecified as slow, the scatter storage mechanism that builds SMD
entries uses backup algorithms if the file name maps into an existing active
file (collision mapping). Each backup algorithm used requires an additional
disc access.

type A two-digit (one byte) hexadecimal value you specify to associate a type
with the file being created. Some examples of system file types are:

ED
EE
FE
FF
BA
CA

Editor save file
Editor store file
Editor work file
SYSGEN-created file
BASIC file
Cataloged load module

null A null parameter that must be specified in the form of " if additional
parameters are to be used after this point.

zeroing

istatus

da

3-14

An INTEGER variable that specifies whether allocated disc space is to be
zeroed. This argument must be a single ASCn character, left justified and
blank filled. Options are:

'Z'
Default

Zeroing
No zeroing

An INTEGER variable. If specified, istatus is set to a completion code upon
return from the subroutine. Possible istatus values' are:

o Normal completion.
1 File already exists.
2 Fast file specified and collision mapping occurred with an

existing directory entry.
3 Restricted access specified, but no password entered.
4 Disc space unavailable.
6' Specified device off-line.
7 Directory is full.
a Specified device type not configured.

10 Access denied.

An INTEGER variable that specifies a particular device subaddress, as
defined at SYSGEN time, on which the file is to reside.

MPX·32 Compatible Mode
Subroutines SRTL

C
~

,; ,\

[

(

r

M:OALOC

3.1.8 M:DALOC

The M:DALOC subroutine deallocates a peripheral device or disc file to which the
specified Logical File Code (LFC) is assigned. Dynamic deaUocation of a peripheral or
permanent file releases that resource to other tasks. Deallocation of a temporary file
deletes the file. Therefore, use M:PERM to change the status of a temporary file to
permanent if you want the file to remain accessible. Deallocation of System Listed
Output (SLO) or System Binary Output (SBO) files passes their definitions to system
output t'1 be written to their terminal devices. This subroutine deallocates only the
specified code when that logical file code has been equated to other logical file codes in
the system.

Calling Sequence

CALL M:DALOC (lfc)

lfc An INTEGER or CHARACTER expression or variable that specifies the
logical file code. If the LFC is an INTEGER, this argument must be an
integer constant in the range of 1-999 or a 1-3 character string left justified
and blank filled. If the LFC is a CHARACTER, this argument must be a 1-3
character string.

Programming Considerations

If I/O is in progress for the requested file, the file is closed automatically.

If the device specified by the logical file code is magnetic tape and only a dismount
message (i.e., without de allocation) is required, the LFC parameter should be a four­
character specification with the last character an asterisk (e.g., 'ABC*', '4~~*', 'A4~*').

SRTL
MPX-3Z Compatible Mode

Subroutines 3-15

M:OELETE

3.1.9 M:OB..ETE

The M:DELETE subroutine deletes a specified permanent file or a dynamic (non-SYSGEN
created) memory partition.

Calling Sequence

CALL M:DELETE (filename,[sys],[password],(istatl,ls])

filename

sys

An INTEGER*8 variable that specifies the permanent file name or memory
partition. This argment must be one to eight ASCII characters, left justified
and blank filled.

An INTEGER variable that specifies the type of file. This argument must be
a single ASCn character, left justified and blank filled. Options are:

'5'
Default

System file
User file (system file if user name is not associated with
the calling program)

password An INTEGER*8 variable that specifies the password. This argument is a
place holder provided for compatibility and, if specified, is ignored.

istatus An INTEGER variable. If specified, istatus is set to a completion code upon
retum from the subroutine. Possible istatus values. are:

3-16

o Normal completion. .
1 A file of the specified name either does not exist or is a static

(SYSGEN created) memory partition.
2 A required password was not specified.

MPX-32 Compatible Mode
Subroutines SRTL

(

[

r

M:LOG

3.1.10 M:LOG

The M:LOG subroutine provides a log of current permanent files and memory partitions.
The log is stored as an eight-word System Master Directory (SMD) entry at the address
you specify. The SMD entry is copied into the specified array. The password field of the
SMD entry contains zero or one to indicate either the absence or presence of a password,
respectively.

Calling Seguence

CALL M:LOG (type, smdbuff, filename, status)

type

smdbuff

filename

status

An INTEGER variable that specifies the type of log to be performed.
The contents of this argument are altered by the subroutine. This
argument's value must be left justified and blank filled. Values are:

'N' A single-named system or user file
'a' A single-named system file
'A' All permanent user files
'5' System files only
'U' User files

If 'N' is specified and a user name is associated with the calling task,
an attempt is made to locate the user file directory entry for the
given file name. If the user file directory entry cannot be found, then
an attempt is made to locate the system file directory entry, if one
exists. If a user name is not associated with the calling task, the file
is assumed to be a system file.

If 'U' is specified and the calling task has an associated user name,
that user's files are logged. All files are logged if the calling task has
no associated user name.

This argument cannot be a constant. The M:LOG subroutine destroys
the contents of the type argument. Therefore, you must establish the
contents before the initiation of a log sequence.

An INTEGER array consisting of eight elements in which the SMD
entry is to be stored.

An U'-ITEGER*8 variable that specifies the permanent file name. This
argument must be one to eight ASCII characters, left justified and·
blank filled. Filename is required if type is 'N' or '0'.

An INTEGER variable within the calling task that will be zeroed by
this subroutine if type is 'N' or '0' and the file cannot be located, or if
type is 'A', '5', or 'U' and all pertinent files have been logged.

Programming Consideration

If type is 'A', '5', or 'U', this subroutine must be called repeatedly to obtain all pertinent
file definitions. The word within the caUing program (defined as status in the argument
list) will be set to zero when all pertinent files have been logged.

SRTL
MPX-32 Compatible Mode

Subroutines 3-17

M:OPEN

3.1.11 M:OPEN

The M:OPEN subroutine opens the resource associated with the specified Logical File
Code (LFC).

Calling Sequence

CALL M:OPEN (lfc)

lfc An INTEGER or CHARACTER expression. or variable that specifies the
logical file code. If the LFC is an INTEGER, this argument must be an
integer constant in the range of 1-999 or a 1-3 character string left justified
and blank filled. If the LFC is a CHARACTER, this argument must be a 1-3
character string.

3-18
MPX-32 Compatible Mode

Subroutines SRTL

\
/

c-

(

M:POEV

3.1.12 M:POEV

The M:PDEV subroutine returns physical device information describing the unit
connected to the specified Logical File Code (LFC).

Calling Sequence

CALL M:PDEV (lfc, i)

Ifc An INTEGER or CHARACTER expression or variable that specifies the
logical file code. If the LFC is an INTEGER, this argument must be an
integer constant in the range of 1-999 or a 1-3 character string left justified
and blank filled. If the LFC is a CHARACTER, this argument must be a 1-3
character string.

An INTEGER*2 array consisting of eight elements that contains, upon
return, the physical device information for the specified unit.

Results

i(l) A device mnemonic; see the end of Chapter 5.

i(2) The byte count. The maximum number of bytes per physical record that is
transferable to this device.

i(3) A device type code; see the end of Chapter 5.

i(4) The device address.

i(5) A system file type code, as follows:

o Not a system file
1 System Control (SYC)
2 System General Db ject (SGO)
3 System Listed Output (SLO)
4 System Binary Output (SeO)

i(6) Zero if the LFC is not assigned to a disc, tape, or Terminal Services Manager
(TSM) device. If the LFC is assigned to a disc, the number of 192-word
blocks in the file is returned. If the file is assigned to a magnetic tape, the
rightmost two characters of the reel identifier (ID) are returned. If the file
is assigned to a TSM device, the line size (byte 0) and page size (byte 1) are
returned.

i(7) The device sub address.

i(8) Extended device flag.

o All other device classes
1 Extended I/O (class F) device

Programming Consideration

If the file is an unopened SYC or SGO file, i(5) is returned equal to one or two,
respectively. All other elements of i are meaningless. If the file code is unassigned, i(3),
i(4), i(5), and i(6) will return equal to O.

SRTL
MPX-32 Compatible Mode

Subroutines 3-19

M:PERM

3.1.13 M:PERM

The M:PERM subroutine changes the status of a file allocated to the calling program
from temporary to permanent. The file must be an open temporary, System Listed
Output (SLO), or System Binary Output (SBO) file.

Calling Seguence

CALL M:PERM (filename, lfc, (restr],[password],(sys],[nosav], [speed], [type] ,
[zeroing],[istatus])

filename An INTEGER*8 variable that specifies the permanent file name. This
argument must be one to eight ASCn characters, left justified and blank
filled.

Ifc An INTEGER or CHARACTER expression or variable that specifies the
logical file code. If the LFC is an INTEGER, this argument must be an
integer constant in the range of 1-999 or a 1-3 character string left justified
and blank filled. If the LFC is a CHARACTER, this argument must be a 1-3
character string.

restr An INTEGER variable that specifies the file access restrictions. This
argument is a place holder provided for compatibility and, if specified, is
ignored.

password This argument is a place holder provided for compatibility and, if specified,
is ignored.

sys An INTEGER variable that specifies the type of file. This argument must be
a single ASCn character, left justified and blank filled. Options are:

nosav

speed

3-20

'5'
Default

System file
User file (system file if a user name is nat associated
with the calling program)

An INTEGER variable that specifies if the file is to be saved. This argument
must be a single ASCn character, left justified and blank filled. Options are:

'N'
Default

File is nat saved without special FILEMGR or VOLMGR
aptian
File is saved

An INTEGER variable that specifies the speed of the file. This argument
must be a single ASCn character, left justified~ and blank filled. Options
are:

'F'
Default

Fast file
Slow file

Fast and slow refer to the speed of file definition retrieval. Under most
circumstances the file definition is retrieved a minimal number of times.
Therefore, a slow file should be used. If it is necessary to retrieve the file
definition repeatedly 0. e., allocating and deaUocating a file several times
within a task), a fast file should be used. .

MPX-32 Compatible Mode
Subroutines SRTL

type

zeroing

istatus

[

SRTL

M:PERM

A two-digit (one byte) hexadecimal value which specifies the file type.
Some examples of system file types are:

ED Editor save file
EE Editor store file
FE Editor work file
FF SYSGEN-created file
BA BASIC file
CA Cataloged load module

An INTEGER variable that specifies whether the allocated disc space is to
be zeroed. This argument's value must be a single ASCII character, left
justified, and blank filled. Options are:

'Z'
Default

Zeroing
No zeroing

An INTEGER variable. If specified, istatus is set to a completion code upon
return from the subroutine. Possible istatus values are:

1
2

3
4

5
7
9

File of the name specified already exists.
Fast file specified and collision mapping occurred with an
existing directory entry.
Restricted access specified, but no password entered.
The file associated with the specified logical file code is not a
temporary file.
·Directory and temporary file are not on the same volume.
The directory is full.
File name or password contains invalid characters or embedded
blanks.

MPX-32 Compatible Mode
Subroutines 3-21

M:PFAO

3.1.14 M:PF AD

The M:PFAD subroutine returns information necessary to access memory partitions or
disc files directly. Specifically, the subroutine provides either the word address of the
beginning of a memory partition or the track, head, or sector address (in the format used
by Assembly Language Command Device (CD) and Test Device (TO) instructions) of a
disc file.

Calling Sequence

CALL M:PF AD (filename, i, *label)

filename An INTEGER*8 variable that specifies the permanent file name. This
argument must be one to eight ASCII characters, left justified and blank
filled.

An INTEGER*8 variable or a two-word INTEGER array defined as follows:

Memory Partition

i(l)
i(2)

Disc File

i(1)

i(2)

Word address of first word of file
Bit 0 = 1
Bits 1-15 = 0
Bits 16-31 = number of pages allocated 'to the partition

Bits 0-5 = 0
Bits 6-12 = device address
Bits 13-22 = 0
Bits 23-27 = head number
Bits 28-31 = sector number
Bits' 0-5 = 0
Bits 6-12 = device address
Bits 13-22 = 0
Bits 23-31 = track number

label The statement label to which control is returned if the request is denied
because the specified file cannot be found in the System Master Directory
(SMO).

3-22.
MPX-3Z Compatible Mode

Subroutines SRTL

\ ./ '--../

(

M:USER

3.1.15 M:USER

The M:USER subroutine associates a user name with the calling program. Optionally,
this subroutine nullifies any user name associated with the calling program. The user
name associated with the program is used in any file create, deiete, log and allocate
subroutines subsequently called.

Calling Sequence

CALL M:USER ([username],[key], istatus)

username An INTEGER*8 variable that specifies a one to eight character left justified
blank filled directory name on the current volume only. If omitted or zero,
this will default to the system directory if present on the current volume or
return an error status if not.

key Is ignored if specified.

istatus An INTEGER variable set according to the results of the subroutine as
follows:

SRTL

o Normal completion .•
1 Service not performed.

MPX-32 Compatible Mode
Subroutines 3-23

X:EXCl.

3.1.l6 X:EXCL

The X:EXCL subroutine dynamically deallocates any memory partition a task has
previously either shared or included and decrements the use count for the memory
partition by one. The memory partition is deleted when its use count is zero.

Calling Sequence

CALL X:EXCL (partition, ownername)

partition

ownername

3-24

An INTEGER*8 or CHARACTER variable that specifies the memory
partition name. This argument must be one to eight ASCII characters,
left justified and blank filled.

An INTEGER*8 or CHARACTER variable that specifies the memory
partition owner. Ownername must be one to eight ASCII characters, left
justified and blank filled.

MPX-32 Compatible Mode
Subroutines . SRTL

r/----"".,

(

'--

X:INCL

3.1.17 X:INCL

The X:INCL subroutine dynamically includes a memory partition (i.e., a global common,
datapool, or other memory partition) in a task's address space. The task must know the
owner name of this memory partition. The use count for this memory partition is
incremented by one.

Calling Sequence

CALL X:INCL (partition, ownername,[restr],[password],Ostatus],[*label])

partition

ownername

restr

password

istatus

An INTEGER*8 or CHARACTER v~riable that specifies the memory
partition name. This argument must be one to eight ASCn characters,
left justified and blank filled.

An INTEGER*8 or CHARACTER variable that specifies the owner name
that issued an X:SHARE subroutine call. This argument must be one to
eight ASCn characters, left justified and blank filled.

An INTEGER variable that specifies the memory partition access
restrictions. This argument must be one or two ASCn characters, left
justified and blank filled. Options are:

'RW' Read/write access (default)
'R' Read access only

An INTEGER*8 or CHARACTER variable that specifies a password. This
argument is a place holder provided for compatibility and, if specified, is
ignored.

An INTEGER variable. If specified, istatus is set to a completion code
upon return from the subroutine. Possible istatus values are:

a Normal completion.
1 Entry not found in shared memory table.
2 Invalid password specified.
3 Memory requirements conflict with task's address space.

label The statement label to which control is returned if an error exists.

Programming Consideration

If istatus and *label are omitted and an error occurs, the current task aborts with an
RSxx, where xx is one of the listed istatu~ codes.

SRTL
MPX-32 Compatible Mode

Subroutines 3-25

X:5HARE

3.1.18 X:5HARE

The X:SHARE subroutine dynamically allocates a shared memory partition from the
partition definition found in the system directory. This definition must have been
previously defined via the Volume Manager utility.

The call results-in the allocation of a new common area, which will be uniquely identified
by the owner name or task number of the caller, and by the memory partition name. The
memory type will be specified by the directory definition. Pre-zeroing is not performed
by this service. The partition is swappable with the task if the use count equals zero.
The partition is deallocated when the allocation count equals zero. The task is suspended
until the Shared Memory Table entry is built and the memory allocation is complete.

Callinq Sequence

CALL X:SHARE (partition,u-estr],lPassword])

partition

restr

password

3-26

An INTEGER*8 or CHARACTER variable that specifies the memory
partition name. This argument must be one to eight ASCII characters,
left justified and blank filled.

An INTEGER variable that specifies the file access restrictions. This
argument must be one or two ASCU characters, left justified and biank
filled. Options are:

'RW' Read/write access (default)
'R' Read access only

An INTEGER*8 or CHARACTER variable that specifies a password. This
argument is a plcae holder provided for compatibility and, if specified, is
ignored.

l
.",

MPX-32 Compatible Mode
Subroutines SRTL

l

(

CHAPTER 4

MPX-32 COMPATIBLE OR NATIVE MODE SUBPROGRAMS

4.1 M:, X: and Named Subprograms

This chapter contains descriptions of subprograms that provide MPX-32 services to
FORTRAN 77+ programs. These sUbprograms are available to IVIPX-32 users in either
compatible or native mode.

The following general notes refer to these system subprograms under MPX-32:

• Any attempt to mix modes; i.e., compatible with native, will result in an RS99 error
with the entry point displayed in an extended abort message.

• Run-time subroutines are not reentrant. Use caution when processing break interrupts
during I/O routines.

• FORTRAN users must process software interrupts synchronously by calling X:SYNCH
or unpredictable results occur. No-wait end action routines and message end action
routines are handled synchronously by X:SYNCH.' Either X:ANYW or X:EAWAIT
passes control to these routines.

• Break interrupts are always processed asynchronously, even if the synchronous
processing mode has been established (X:SYNCH). Because run-time routines are not
reentrant, a task must not invoke any run-time routines from within a break receiver
if the task is to resume processing at the end of its break interrupt processing routine.

• If a task is multicopied, any later reference to that task must be by task number.

• An argument list that does not contain the arguments "label (a denial return address)
and an istatus, results in an RSxx abort code message and program termination if the
subroutine performs unsuccessfully. If only istatus is specified, the istatus value
should be checked to determine if the subroutine performed successfully. If a denial
return address is specified and the subroutine performs unsuccessfully, control will
transfer to the. specified address.

F or those SRTL routines that have possible istatus values of 50, 51, 52, 53 where
istatus and "label are omitted, the current task will abort with an RTxx rather than an
RSxx for those values.

SRTL
MPX-32 Compatible or Native Mode

Subprograms 4-1

• A delimiting comma must be present in the calling sequence of all M: subprograms and
X: subprograms if an omitted optional argument is followed by other arguments.
Delimiting commas which lie outside the brackets for optional arguments are also
required.

• AU error codes are expressed as decimal integers.

4-2
MPX-32 Compatible or Native Mode

. Subprograms SRTL

,

'""

c

[

M:ABORT

4.2 M: Subprograms

The subprograms described in this section begin with an M: prefix. This indicates they
are RTM equivalent subprograms available to the MPX-32 user.

4.2.1 M:ABORT

The M:ABOR T subroutine allows a task to abort any task. The named task is not aborted
until it gains CPU control. If the specified task is not in execution, the request is
ignored. To force I/O completion and abort the specified task immediately, use
X:DELTSK.

Calling Seguence

itask

icode

SRTL

CALL M:ABORT (itask, icode)

An INTEGER*8 variable that specifies the task name or task number. A task
name must be an INTEGER*8 variable of one to eight ASCn characters, left
justified and blank filled. A task number must be right justified and zero
filled. Specifying a task name of zero (not ASCn) will abort the calling task.

An INTEGER variable that specifies an abort code consisting of four ASCn
characters.

MPX-32 Compatible or Native Mode
Subprograms 4-3

M:ACTlV
M:BLOCK

4.2.2 M:ACnV

The tvl:ACTlV subroutine activates a specified task. The task assumes the ownername of
the calier. The load module must reside in the system directory.

Calling Sequence

CALL M:ACTIV (taskname,[istatus],[*label])

taskname An INTEGER*8 variable that specifies the file name for a load module in the
system directory. This argument must be one to eight ASCII characters, left
justified and blank filled. When running in native mode for load modules not
residing on the system, the first word of taskname should contain binary
zeros and the second word should contain a pathname vector to the load
module.

istatus An INTEGER variable. If specified, istatus is set to a completion code upon
return from the subroutine. Possible istatus values are:

o
1
2
3
4
5
6
7
8
9

10
50

Normal completion.
Invalid attempt to multicopy a unique task.
Specified file not in System Directory.
File is password protected.
File does not co.ntain valid data.
No dispatch queue entry available.
Read error on System Directory.
Read error on load module.
No free Map Image Description List (MIDL) space.
Insufficient memory.
No physical memory available.
Missing parameter (e.g., taskname).

label A statement label to which control is returned if an error exists.

Programming Consideration

If istatus and *label are omitted and an error occurs, the current task aborts with an
RSxx, where xx is Orie of the listed istatus codes; or RTxx, where xx is an istatus code of
50.

4.2.3 M:BLOCK

In compatible mode the M:BLOCK subroutine defines a particular file code as a blocked
file. A File Control Block (FCB) is established and bit 5, word 3 of the FCB is set to
indicate blocking. The maximum physical record size on a blocked file is 254 bytes.
While the MPX-32 Operating System defaults all files to blocked, the Scientific Run­
Time Library defaults all files to unblocked.

This subroutine is included in the native mode library but does not define the file code as
a blocked file. Use the FORTRAN 77+ OPEN statement to perform blocking in native
mode.

Calling Sequence

Ifc

4-4

CALL M:BLOCK (lfc)

An INTEGER or CHARACTER expression or variable that specifies the
logical file code. If the LFC is an INTEGER, this argument must be an
integer constant in the range of 1-999 or a 1-3 character string left justified
and blank filled. If the LFC is a CHARACTER, this argument must be a 1-3
character string.

MPX-32 Compatible or Native Mode
Subprograms SRTL

(

Programming Considerations

M:BLOCK
M:CLOCK

M:CONECT

Despite the fact that blocked is the default under MPX-32, the FORTRAN 77+
environment assumes that files are unblocked.

It is necessary to call M:BLOCK only once for a file. The call must be made prior to any
I/O to the logical file code.

The FORTRAN 77+ OPEN statement also provides this function.

4.2.4 M:CLOCK

The M:CLOCK subroutine provides the current time of day as computed from the real­
time clock in seconds and number of interrupts.

Calling Segue nee

CAl-L M:CLOCK (iseconds, interrupt)

iseconds An INTEGER variable that contains, upon return, the value of the current
time in seconds.

interrupt An INTEGER variable that contains, upon return, the number of interrupts
since the last second.

4.2.5 M:CONECT

The M:CONECT subroutine indirectly connects a task to an interrupt level so that when
the interrupt occurs, the program can be scheduled for execution (resumed). If the task
is not active at the time of the call, the task will be preactivated depending on the
parameters being passed and then connected to the interrupt.

Note: M:CONECT and M:CONRES are routines that were retained from SRTL running
under the RTM operating system. They formerly called different RTM services to
accomplish their functions. MPX-32 combined the functions of the two RTM services
into one. This gave both M:CONECT and M:CONRES identical functionality. These
routines are being maintained for compatibility.

Calling Seguence

CALL M:CONECT(taskname, priority, interrupt, [istatusJ , [*label])

Refer to M:CONRESS for parameter descriptions.

SRTL
MPX-32 Compatible or Native Mode

Subprograms 4-5

M:CONRES

4.2.6 M:CONRES

The M:CONRES subroutine indirectly connects a task to an interrupt level so that when
the interrupt occurs, the program can be scheduled for execution (resumed). If the task
is not active at the time of the call, the task will be preactivated depending on the
parameters being passed and then connected to the interrupt.

Note: M:CONECT and M:CONRES are routines that were retained from SRTL running
under the RTM operating system. They formerly called different RTM services to
accomplish their functions. MPX-32 combined the functions of the two RTM services
into one. This gave both M:CONECT and M:CONRES identical functionality. These
routint;!s are being maintained for compatibility.

Calling Seguence

CALL M:CONRES(taskname, priority, interrupt, [istatus] , [*label]

taskname

I priority

interrupt

istatus

An INTEGER*8 variable that specifies the task name or task number for
tasks that are already active, or a load module name (or pathname vector
for native mode operation) for tasks that are not yet active. A task name
must be one to eight ASCn characters, left justified and blank fiJled. If the
task is not yet active, the taskname is assumed to be the load module name
in, the system directory. A task number must be right justified in the
doubleword and zero filled. If the entire doubleword is zero filled, the
calling task is assumed. If the task to be connected is not yet active and
calling task is operating in native mode, then the first word of the
doubleword must contain a pathname vector and the second word of the
doubleword must be zero. In this case, the load module need not be in the
system directory.

An integer variable that is now only a place holder for compatibility
purposes. Its value is not used by the service, but it must be present.

An integer variable that specifies the external hardware priority level to
which the program is to be connected (e.g., 2A-7E).

An integer variable. If specified, istatus is set to a completion code upon
return from the subroutine. Possible istatus values are:

a Normal completion.
1 Task already connected to an interrupt.
2 Another task already connected to the specified interrupt.
3 Interrupt not SYSGEN specified indirectly connectable.
4 Specified' task number not found in dispatch queue or the

requesting task is not privileged and the ownername is restricted
from access to tasks with a different ownername (via the M.KEY
file).

label The statement label to which control is returned if an error exists.

Ch:mge 1
4-6

MPX-32 Compatible or Native Mode
Subprograms SRTL

(

(

M:CONRES
M:CORE

Programming Considerati ons

If istatus and *label are omitted and an error occurs, the current task aborts with an
RSxx, where xx is one of the listed istatus codes.

The external interrupt level must be designated as 'ITLB' at SYSGEN time to be eligible
for having tasks indirectly connected.

The M:CONRES subroutine preactivates the connecting task if it is not already active
and if one of the following situations occurred.

Taskname was specified and the load module for the connecting task is accessible on
the system directory.

. A pathname vector was supplied (applies to native mode only),

If M:CONECT or M:CONRES are required to preactivate a task, but the actual interrupt
connection is denied, the user is responsible for deleting the residual task. Otherwise,
the task will continue in the suspended state indefinitely.

Only one task may be indirectly connected to an external interrupt.

4.2.7 M:CORE

The M:CORE function provides the beginning and ending word addresses of memory that
is allocated to a user.

Calli ng Sequence

iaddress = M:CORE Cloc)

iaddress

lac

SRTL

An INTEGER variable that is set to the high or low address, depending on the
value of the argument loco

An INTEGER variable that specifies which memory location should be
returned. This argument's value must be two ASCn characters, left justified
and blank filled. Options are:

'Hr
'LO'
Default

Places user's last memory location in iaddress
Places user's beginning memory location in iaddress
'LO'

MPX-3Z Compatible or Native Mode
Subprograms 4-7

M:OELTIM
M:OUtvP
M:END

4..2.8 M:OEL TIM

The M:DEL TIM subroutine deletes the timer table entry for a specified timer.

Calling Seguences

CALL M:DEL TIM (id)

id An INTEGER variable that specifies the timer entry identification. This
argument must be two ASCII characters, left justified and blank filled.

Programming Considerations

Invalid requests are ignored.

Deletion of a timer entry will not delete the associated task.

One shot timers are deleted upon expiration.

4..2.9 M:OUtvP

The M:DUMP subroutine provides a listed dump of the caller's Program Status
Doubleword (PSD), general-purpose registers, and specified memory limits. Output is to
the default spooled output device (specified at SYSGEN) in side by-side hexadecimal with
ASCII format. The PSD and registers precede the specified memory limits. The PSD and
registers in the dump contain their values at the time of the M:DUMP call. Any task
may request a memory dump.

Calling Sequence

istart

iend

CALL M:DUMP (istart, iend)

An INTEGER*4 variable that specifies the low logical word address of the
first location to be dumped.

An INTEGER variable that specifies the high logical address of the last
location to be dumped.

Programming Consideration

The start and end addresses are adjusted to inclusive eight-word boundaries prior to the
dump.

4..2.10 M:ENO

The M:END subroutine calculates the total elapsed time from the last call to subroutine
M:ST ART to this call, M:END. The total time is written to a System Listed Output (SLO)
file. The user may not reassign to another file.

Calling Sequence

CALL M:END

4-8
MPX-32 Compatible or Native Mode

Subprograms SRTL

/

4..2.11 M:ERRFLG

M:ERRFLG
M:HOLO

The IVI:ERRFLG subroutine allows user programs to continue operation if minor run-time
errors (i.e., errors found within the run time, not within the operating system) are
encountered during execution. The subroutine initializes the variable to a (.FALSE.).
Run-time routines then set the variable to 1 (. TRUE.) if they encounter minor run-time
errors during execution. Minor run-time errors are listed in Appendix B.

Calling Seguence

CALL IVI:ERRFLG (ierror)

ierror An INTEGER or LOGICAL variable that is set to 1 (.TRUE.) if minor run­
time errors occur. The variable ierror cannot be type INTEGER*l or type
LOGICAL BIT.

4..2.12 M:HOLO

The M:HOLD subroutine holds a specified program until OPCOM CONTINUE is issued. A
HOLD bit is turned on in the Dispatch Queue Entry (DQE) for the program, and the
program's current status is retained so that it can be continued from the point it was
held.

Calling Seguence

(CALL M:HOLD (itask, *label)

(

itask An INTEGER*8 variable that specifies the task name or task number. A task
name must be one to eight ASCII characters, left justified and blank filled.
A task number must be right justified within the doubleword and zero
filled. Specifying a task name of zero (not ASCII) will hold the caller's
program.

label The statement label to which control is returned if the program is not in the
CPU dispatch queue.

SRTL
IVIPX-32 Compatible or Native Mode

Subprograms 4-9

M:IOEX
M:IOLEN

4.2.13 M:IOEX

The M:IOEXsubroutine permits both the privileged and unprivileged user to designate a
statement label to which control will be transferred on normal job termination or on
abort processing.

Calling Seguence

CALL M:IOEX (*labell' *labeIZ)

labell

labelZ

The statement label to which control is transferred upon either normal job
termination or on abort processing.

The statement label to which control is returned if an unprivileged user
has specified an address outside the user's allocated area.

Programming Considerations

No address validation is provided for the privileged user.

Unprivileged users can enter abort receivers only once.

User files remain open until task exit occurs.

4.2.14 M:IOLEN

The M:IOLEN function returns the transfer count after a read or write. The transfer
units returned depend upon the access mode (sequential or direct), the units of the
corresponding device type, and whether the I/O operation is blocked or unblocked.

Calling Seguence

itrancnt = M:IOLEN (lfc)

itrancnt

Ifc

4-10

The INTEGER variable transfer count after a read or write.

An INTEGER or CHARACTER expression or variable that specifies the
logical file code. If the LFC is an INTEGER, this argument must be an
INrEGER constant in the range of 1-999 or a 1-3 character string left
justified and blank filled. If the LFC is a CHARACTER, this argument
must be a 1-3 character string.

MPX-32 Compatible or Native Mode
Subprograms SRTL

./\

c

(
4.2.15 M:UNKJ

M:UNKJ
M:LOAD

M:LOADX

The M:L1NKJ subroutine links a disc file into the dynamic job stream queue and activates
the system input program (J.SSIN) for job processing.

Calling Seguence

CALL M:LlNKJ (filename,[*label],[password])

filename An INTEGER*8 variable that specifies the permanent file name. This
argument must be one to eight ASCII characters, left justified and blank
filled. If a user name is in effect, it will be applied to the file name search.

label The statement label to which control is returned if the subroutine cannot be
performed.

password An INTEGER*8 variable that specifies the password. The password must be
one to eight ASCII characters, left justi fied and blank filled.

4.2.16 M:LOAD

The M:LOAD subroutine loads an overlay segment into the transient area specified to the
cataloger.

Calling Seguence

CALL M:LOAD (loadmodule, address)

loadmodule

address

An INTEGER*8 variable that specifies the load module. This argument
must be one to eight ASCII characters, left justified and blank filled.

An INTEGER variable that returns the transfer address of an overlay
segment.

4.2.17 M:LOADX

The M:LOADX subroutine loads an overlay segment into the transient area specified to
the cataloger and executes the task.

Calling Seguence

CALL M:LOADX (loadmodule)

load module

SRTL

An INTEGER*8 variable that specifies the .loadmodule. This argument
must be one to eight ASCII characters, left justified and blank filled.

MPX-3Z Compatible or Native Mode
Subprograms 4-11

M:PGCPT
M:PR

4.2.18 M:PGCPT

The M:PGOPT subroutine provides the caller with the 32-bit task option word.

Calling Sequence

CALL M:PGOPT(ioption)

ioption An INTEGER variable. Bits 0 through :n (numbered left to right) correspond
to user-defined options 32 through 1, respectively. These bits 'are set via the
job control directive $OPTION.

Programming Consideration

Options 7 and 8 are used by FORTRAN 77+ run-time support routines.

4.2:.19 M:PR

The M:PR subroutine dynamically alters either a caller's priority level or the priority
level of another task, temporarily or permanently. Valid priority levels for real-time
tasks are 1-54 inclusive. Valid priority levels for time distribution tasks are 55~64
inclusive. A real-time task cannot be changed to a time distribution priority level and a
time distribution task cannot be changed to a real-time priority level. I/O continues to
operate at the base priority level of the cataloged task. Tasks using this service must be
privileged.

Calling Sequence

CALL M:PR (itask, iprior, *labeI)

itask

iprior

label

Abort Case

RX06

4-12

An INTEGER*8 variable that specifies the task name or task number. A
task name must be one to eight ASCn characters, left justified and blank
filled. A task number must be right justified in the doubleword and zero
filled. Specifying a task name of zero (not ASCII) alters the caller's
priority level.

An INTEGER variable that specifies a priority level to be assigned to the
task. (1-54 for a real-time task; 55-64 for a time distribution task.)

The statement label to which control is returned if the specified task is
not in execution.

Unprivileged task has attempted to reset a task priority level or a
privileged task has attempted to reset a task priority to a level outside
the range of 1 to 64, inclusively.

MPX-J2 Compatible or Native Mode
Subprograms SRTL

c:

(

(

l

4.2.20 M:RSUM

M:RSUM
M:RTN

The M:RSUM subroutine resumes a suspended task. The suspended task must have been
cataloged into the system directory.

Calling Seguence

CALL M:RSUM (itask, *labeO

itask An INTEGER*8 variable that specifies the task name or task number. A task
name must be one to eight ASCII characters, left justified and blank filled.
A task number must be right justified in the double word and zero filled.

label The statement label to which control is returned if the task is not in the
CPU dispatch queue.

Programming Considerations

If the task is not suspended, the request is ignored.

Both the task making the M:RSUM call and the task being resumed must have the same
ownername.

4.2.21 M:RTN

The M:RTN subroutine permits return to the root from an overlay after the overlay has
completed execution.

Calling Seguence

~ALL M:RTN

Programming Consideration

M:LOADX must bring the overlay into execution. Return is to one word beyond the call
. to M:LOADX.

SRTL
MPX-3Z Compatible or Native Mode

Subprograms 4-13

M:5ET

The M:SET subroutine modifies a task's user status word. The user status word resides in
the CPU dispatch queue and has a value of zero until modified by this subroutine. The
user status word is removed from the queue, modified as specified, and replaced in the
queue. Bit 0 is never set.

Calling Sequence

CALL M:SET (ifunction, istatus , itask)

ifunction

istatus

An INTEGER variable that specifies one of four function codes which
determines the type of modification to be performed. Possible function
codes are:

1 Set flag
2 Reset flag
3 Set counter
4 Increment counter

An INTEGER variable that specifies one of four values, depending on the
function code (i.e., if function = 1, istatus indicates the bit position).

Function Code

1

2

3
4

istatus Value

Bit position in the status word to be set (1 to 31
numbered left to right)
Bit position in the status word to be reset (1 to 31
numbered left to right)
Value to which the status word is to be set
Value by which the status word is to be incremented

itask An INTEGER*8 variable that specifies the task name or task number. A task
name must be one to eight ASCU characters, left justified and blank filled.
A task number must be right justified in the doubleword and zero filled. A
task name of zero (not ASCU) specifies the calling task's user status word.

4-14
MPX-32 Compatible or Native Mode

Subprograms SRTL

(

(

(

L~

4.2.23 M:SSPND

M:SSPND
M:START
M:TDAY

The M:SSPND subroutine suspends the calling task for either a specified number of time
units or an indefinite time, as requested (the time unit is set at SYSGEN). A one-shot
timer entry resumes a task suspended for a specified time interval. M:RSUM resumes
either a task suspended for an indefinite time interval or a task suspended for a specified
number of time units that have not yet expired. To suspend another task, use the
subroutine X:SUSP.

Calling Seguence

CALL M:SSPND (itime, *label)

itime An INTEGER variable interpreted as follows:

o A suspension for an indefinite period of time.
+n The positive number of units to elapse before the caller is

resumed. The actual time elapsed can vary by one time unit
because of system design.

label The statement label to which control is returned if timed suspension is
requested and no timer entries are available.

4.2.24 M:ST ART

The M:START subroutine stores the current value of the real-time clock for subsequent
calculation of elapsed time by M:END.

Calling Seguence

CALL M:ST ART

4.2.25 M:TDA Y

The M:TDA Y subroutine returns the time of day as computed from the real-time clock
interrupt counter. The counter is initialized by a SYSGEN parameter. The clock rolls
over at midnight.

Calling Seguence

itime

SRTL

CALL M:TDAY (itime)

An INTEGER*l array that contains, upon return, the following four
elements:

itime(l)
itime(Z)
itime(3)
itime(4)

Hours (0-23)
Minutes (0-59)
Seconds (0-59)
Number of interrupts (within current second)

MPX-32 Compatible or Native Mode
Subprograms 4-15

M:TElER
M:TELEW

4.2.26 M:TEL.ER

The M:TELER subroutine allows reads from the operator's console.

Calling Seguence

CALL M:TELER (buffer, nbytes)

buffer An INTEGER variable or array into which the message is transferred. The
number of bytes read is placed in the first byte of the buffer, followed by
the message.

nbytes An INTEGER variable that specifies the number of bytes to be read
(including byte count in first byte).

Programming Considerations

This subroutine does not execute a carriage return or line feed. CALL CARRIAGE must
be used to carriage return/line feed.

The first byte of the user's input buffer contains the number of bytes transferred. You
must provide for this extra byte.

"-2.27 M:TELEW

The M:TELEW subroutine allows writes to the operator's console.

Calling Seguence

CALL M:TELEW (buffer, nbytes)

buffer An INTEGER variable or array from which the message is typed.

nbytes An INTEGER variable that specifies the number of bytes to be written.

Programming Consideration

This subroutine does not execute a carriage return or line feed. CALL CARRIAGE must
be used in order to carriage return/line feed.

4-16
MPX-32 Compatible or Native Mode

Subprograms SRTL

."".-/

(

4.2.28 M:TEST A T

M:TESTAT
M:TESTIM

The M:TESTAT function returns the 3Z-bit user status wo j of any specified task in
execution. The user status word resides in the CPU dispatch queue and is modified by
the M:SET subroutine. Bit a is never set.

Calling Sequence

i = M:TEST AT (itask, *label)

An INTEGER variable that is set to the status word.

itask An INTEGER*8 variable that specifies the task name or task number. A task
name must be one to eight ASCII characters, left justi fied and blank filled.
A task number must be right justified in the doubleword and zero filled.

label The statement label within the user task to which control is returned if the
specified task is not currently in execution.

Programming Consideration

T est your own program user word by using zero (not ASCII) for a task name.

4.2.29 M:TESTIM

The M:TESTIM function returns the negative number of time units remaining until the
specified timer entry times out. If the time has expired, the result returned is zero. The
timer unit is set at system generation (SYSGEN).

Calling Seguence

id

SRTL

i = M:TESTIM (id)

An INTEGER variable. Possible results in i are:

Negative number of time units remaining until timer times out
Zero if timer has expired
Zero if timer does not exist

An INTEGER variable that specifies the timer entry identification. This
argument must be two ASCII characters, left justified and blank filled.

IVIPX-32 Compatible or Native Mode
Subprograms 4-17

M:T1ME5
M:TlME12

4.2.30 M:T1ME5

The M:TIME5 subroutine creates entries in the timer table to request an interrupt. The
timer unit is set at system generation (SYSGEN).

Calling Seguence

id

next

CALL M:TIME5 (id, next, period, interrupt, *label)

An INTEGER variable that specifies the timer entry identification. This
argument must be two ASCU characters, left justi fied and blank filled.

An INTEGER variable that specifies the time to first activation (positive)
in timer units.

period An INTEGER variable that specifies the repetition period (positive) in
timer units; if zero, a one-shot timer entry is created.

interrupt An INTEGER variable that specifies the interrupt level to be requested.

label The statement label to which control is returned if it is not possible to
create a timer entry.

Programming consideration

Only privileged tasks may create the above timer entries.

4.2.31 M:TlME12

The M:TIME12 subroutine creates entries in the timer table to activate or resume a
task. If the specified task does not have an associated entry in the dispatch queue when
M:TIME12 is called, the task is placed in a preactivation stage and linked to the CPU
dispatch queue in a suspend (SUSP) state. When the timer times out, the task is
activated. If the task attempts to exit upon normal completion, it returns to the SUSP
state.

Deletion of a task's associated timer entry has the following effects, depending on the
task's current state:

Task active .

T ask in SUSP state

The task terminates upon normal completion.

The task remains in the SUSP state until the user
resumes or deletes it.

Note that if a task is in a dynamic suspend state and the timer entry is deleted, the task
will terminate upon normal completion.

Calling Sequence

CALL M:TIME12 (functi~n, id, next, period, taskname, "label)

4-18
MPX-32 Compatible or Native Mode

Suhprograms SRTL

l

function

id

An INTEGER variable that specifies either of two function codes:

1 Acti vate task
2 Resume task

Timer entries for 1 and 2 may be created by any program.

M:TIME12
M:TIME34

An INTEGER variable that specifies the timer entry identification. This
argument must be two ASCII characters, left justified and blank filled.

next An INTEGER variable that specifies the time to first activation (positive) in
timer units.

period An INTEGER variable that specifies the repetition period (positive) in timer
units.

taskname An INTEGER*B variable that specifies the task. This argument must be one
to eight ASCII characters, left justified and blank filled.

label The statement label to which control is returned if it is not possible to
create a timer entry.

4..2.32 M:TIME34

The M:TIME34 subroutine creates entries in the timer table to set/reset a parameter via
a mask. The timer unit is set at system generation (SYSGEN).

Calling Seguence

CALL M:TIME34 (function, id, next, period, switch, mask, *label)

function An INTEGER variable that specifies either of two function codes:

3 Set bits
4 Reset bits

Timer entries to set or reset bits may be created by any task, provided the bit is within
the current user's map and is in a static memory partition. Only privileged users may set
bits. in a protected area of memory, i.e., the communication region of the operating
system.

id

next

period

switch

SRTL

An INTEGER variable that specifies the timer entry identification. This
argument must be two ASCII characters, left justified and blank filled.

An INTEGER variable that specifies the time to first activation (positive) in
timer units.

An INTEGER variable that specifies the repetition period (positive) in timer
units; if zero, a one-shot timer entry is created.

An INTEGER variable that specifies the word in which bits may be set or
reset.

MPX-32 Compatible or Native Mode
Subprograms 4-19

M:nK34
M:WAIT

mask

label

An INTEGER that specifies the bit configuration of the mask word, ORed for
set, ANDed for reset function.

The statement label to which control is returned if it is not possible to
create a timer entry.

4.2.JJ M:WAIT

The M:WAIT subroutine suspends the execution of the task until I/O (e.g.,
BUFFERIN/BUFFEROUT) is complete.

Calling Sequence

CALL M:WAIT (lfc)

Lfc An INTEGER or CHARACTER expression or variable that specifies the
logical file code. If the LFC is an INTEGER, this argument must be an
INTEGER constant in the range of 1-999 or a 1-3 character string left
justified and blank filled. If the LFC is a CHARACTER, this argument must
be a 1-3 character string.

4-20
MPX-3Z Compatible or Native Mode

Subprograms SRTL

r

l._ /

X:ANYW

4.3 X: Subroutines

The subroutines described in this section begin with an X: prefix, which indicates
additional subroutines available to the MPX-32 user only.

Many of the X: subroutines contain the optional parameters istatus and *label. If both of
these parameters are omitted and an error occurs, the current task aborts with an RSxx
code, where xx is one of the is tat us codes listed in the parameter description for that
subroutine. .

4.3.1 X:ANYW

The X:ANYW subroutine places the calling task in a state waiting for the completion of
any no-wait request, the receipt of a message, or a break interrupt. The task is removed
from the associated ready-to-run list and placed in the any-wait list. A return is not
made until one of the wait conditions has been satisfied or until t!1e specified time-out
value has expired.

Calling Seguence

CALL X:ANYW (itime,[istatus],[*label])

itime

istatus

An INTEGER variable interpreted as follows:

a If wait for an indefinite period is requested.

-n Contains the negative number of time units to elapse before the
wait is terminated. The actual time elapsed can vary by one
time unit because of system design.

An INTEGER variable. If specified, istatus is set to a completion code upon
return from the subroutine. Possible istatus values are:

o Normal completion.
47 Invalid time interval request.
50 Missing parameter.
51 Invalid parameter.

label The statement label to which control is returned if an error exists.

Programming Consideration

If istatus and *label are omitted and an error occurs, the current task aborts with an
RSxx, where xx is one of the listed istatus values.

SRTL
MPX-32 Compatible or Native Mode

Subprograms 4-21

X:ASYNCH
X:BORT

4.3.2 X:ASYNCH

The X:ASYNCH subroutine, in conjunction with X:SYNCH, enables the task to reenter
the normal asynchronous task interrupt mode. Any software interrupts occurring in the
asynchronous mode are processed immediately. When interrupt processing is complete,
the task resumes execution at the point at which it was interrupted. If the task is
already in the asynchronous mode when the subroutine is called, it remains in the
asynchronous mfJde.

Calling Seguence

CALL X:ASYNCH

Programming Consideration

Main program and interrupt routines in the asynchronous interrupt mode must not call
common routines that are not reentrant.

4.3.3 X:BORT

The X:BORT subroutine aborts a task. If the specified task is swapped out, it is not
aborted until it regains CPU control. If the specified task is not in execution, the denial
return is taken. This subroutine can also abort the calling task. In both cases, the abort
may be with an extended message. To force I/O completion and immediately abort a
specified task, use the X:DEL TSK subroutine. The scope of X:BOR T is dependent upon
the access restrictions of the owner of the calling task. Three types of task termination
are provided by the MPX-32 executive: exit, abort, and delete task execution.

Calling Sequence

CALL X:BORT (ltask, iabcode,[extcode],Dstatus],[*label])

itask

iabcode

extcode

istatus

4-22

An argument that specifies the task name or task number. The task name
must be an INTEGER *8 or CHARACTER variable of one to eight characters,
left justified and blank filled. The task number must be an INTEGER*8
variable with bits 0 through 31 containing binary zeros and bits 3Z through 64
containing an eight-digit hexadecimal task number. A task number of zero
specifies the calling task.

An INTEGER variable that specifies a one to four ASCII character abort
code.

An INTEGER*8 or CHARACTER variable that specifies the extended abort
. code message. This argument must be one to eight ASCII characters, left
justified and blank filled.

An INTEGER variable. If specified, istatus is set to a condition code upon
return from the subroutine. Possible istatus values are:

a
1

50

Normal completion.
Request denied, task does not have a Dispatch Queue Entry
(DQE).
Missing parameter.

MPX-3Z Compatible or Native Mode
Subprograms SRTL

(.

(

r

label

X:80RT
X:BRK

X:BRKXIT

The statement label to which control is returned if an error exists.

Programming Consideration

If istatus and *label are omitted and an error occurs, the current task will abort with an
RSxx, where xx is one of the listed istatus values; or RTxx, where xx is an istatus code of
50.

4...3.4 X:BRK

The X:BRK subroutine establishes a routine that is entered whenever any task acti vates
the break interrupt using the X:INT subroutine.

Calling Sequence

CALL X:BRK (*labell,[istatus],[*labeI2])

label 1

istatus

label2

The statement label of the beginning of the task's break/ task interrupt
routine.

An INTEGER variable. If specified, istatus is set to a completion code upon
return from the subroutine. Possible istatus values are:

a Normal completion.
32 Missing parameter.
33 Parameter out of range (Iabell is outside of user's address space).

The statement label to which control is returned if an error exists.

Programming Consideration

If istatus and *labelZ are omitted and an error occurs, the current task aborts with an
RSxx, where xx is one of the listed istatus values.

4...3.5 X:BRKXIT

The X:BRKXIT subroutine returns control to the point of interruption at the conclusion
of a software interrupt routine (i.e., break receiver).

Calling Seguence

CALL X:BRKXIT

SRTL
MPX-32 Compatible or Native Mode

Subprograms 4-23

X:OELTSK

4..3.6 X:OEL TSK

The X:DELTSK subroutine forces I/O completion and immediately aborts the specified
task. The user must specify an abort code and may optionally specify an extended code.
To abort a task when it gains CPU control (i.e., not immediately), use the M:ABORT
subroutine or the X:BORT subroutine. Three types of task termination are provided by
the MPX-3Z executive: exit, abort, and delete task execution.

Calling Seguence

CALL X:DEL TSK (itask, iabcode,[iextcode],[istatus],[*rabel])

itask

iabcode

iextcode

istatus

An INTEGER*8 variable that specifies the task name or task number. A task
name must be one to eight 'ASCII characters, left justified and blank filled.
A task number must be right justified in the doubleword and zero filled. A
task number of zero specifies the calling task.

An INTEGER variable that specifies the one to four ASCII character abort
code.

An INTEGER*8 or CHARACTER variable that specifies the extended abort
code message. This argument must be one to eight ASCII characters, left
justified and blank filled.

An INTEGER variable. If specified, istatus is set to a completion code upon
return from the subroutine. Possible istatus values are:

o
1

Normal completion.
Request denied, task does not have a Dispatch Queue Entry
(DGE).

50 Missing parameter.

label The statement label to which control is returned if an error exists.

Programming Consideration

If istatus and *label are omitted and an error occurs, the current task aborts with an
RSxx, where xx is one of the listed istatus values; or RTxx, where xx is an istatus code of
50.

4-24
MPX-32 Compatible or Native Mode

Subprograms SRTL

(

[

r

4.3.7 X:DlSCON

X:DISCON
X:DSMI

The X:DISCON subroutine disconnects a task previously connected to an interrupt level.

Calling Seguence

CALL X:DISCON (i task,[istatus],[* label])

itask An INTEGER*8 variable that specifies the task name or task number. A task
name must be one to eight ASCII characters, left justified and blank filled.
A task number must be right justi fied in the doubleword and zero filled. A
task number of zero specifies the calling task.

istatus An INTEGER variable. If specified, istatus is set to a completion code upon
return from the subroutine. Possible istatus values are:

o Normal completion.
50 Missing parameter.
68 Task name/task number not found.

label The s.tatement label to ,which control is returned if an error exists.

Programming Consideration

If istatus and *label are omitted and an error occurs, the current task aborts with an
RSxx, where xx is one of the listed istatus vaiues.

4.3.8 X:DSMI

The X:DSMI subroutine disables software interrupts for messages sent to the calling
task. This subroutine is useful for synchronous control of task message interrupt gating.

Calling Seguence

CALL X:DSMI

SRTL
MPX-32 Compatible or Native Mode

Subprograms 4-25

)(:£AWAIT
X:ENMI

4..3.9 X:EAWAIT

The X:EA WAIT subroutine allows a task that is processing software interrupts
synchronously (i.e., has called X:SYNCH) to proceed as follows:

1. If there are any no-wait operations (e.g., BUFFERIN/BUFFEROUT) that have
not yet completed, the task is placed in a wait state where it remains until
either the completion of any no-w.ait operations or the specified time-out value
expires.

2. All software interrupts that occurred either before X:EAWAIT was called or
during X:EAWAIT, are processed on a priority basis until all interrupts and no­
wait operations have been processed.

3. If there are no no-wait operations outstanding, control will return immediately
to the task without waiting for the specified time-oat value.

If X:EAWAIT is used in the asynchronous processing mode, it has the same effect as
X:ANYW. Break interrupts are still handled asynchronously (refer to X:SYNCH).

Calling Seguence

CALL X:EAWAIT (itime,[istatus],(*label])

itime An INTEGER variable interpreted as follows:

a Wait for an indefinite period is requested.
-n Contains the negative number of timer units to elapse before

the wait is terminated. The actual time elapsed can vary by one
time unit because of system design.

istatus An INTEGER variable. If specified, istatus is set to a completion code upon
return from the subroutine. Possible istatus values are:

a Normal completion.
47 Invalid time interval request.
50 Missing parameter.

label The statement label to which control is returned if an error exists.

Programming Consideration

If istatus and *label are omitted and an error occurs, the current task aborts with an
RSxx, where xx is one of the listed istatus values.

4.3.10 X:ENMI

The X:ENMI subroutine enables task interrupts for messages sent to the calling task.
This subroutine removes an inhibit condition previously established by X:DMSI.

Calling Seguence

CALL X:ENMI

4-26
MPX-32 Compatible or Native Mode

Subprograms SRTL

(

X:EOPT

4.3.11 X:EOPT

The X:EOPT subroutine writes the volume record (a header record for each volume of a
multi-volume tape) if the tape is positioned at the Beginning-Of-Tape (BOT) on a
multivolume magnetic tape. If the tape is positioned at the End-Of-Tape (EOT) on a
multivolume magnetic tape, the subroutine performs an erase/write End-Of-File (EOF).

X:EOPT is not applicable to either blocked or system files, e.g., System Control (SYC),
System General Object (SGO), System Listed Output (SLO), System Binary Output (SBO).

Calling Seguence

CALL X:EOPT Cifc,Qstatus],[*label])

Ifc

istatus

label

An INTEGER or CHARACTER expression or variable that specifies the
logical file code. If the LFC is an INTEGER, this argument must be an
INTEGER constant in the range of 1-999 or a 1-3 character string left
justi fled and blank filled. If the LFC is a CHARACTER, this argument must
be a 1~3 character string.

An INTEGER variable. If specified, istatus is set to a completion code upon
retum from the subroutine. Possible istatus values are:

o Normal completion.
50 Missing parameter.
69 File Control Blo~k (FCB) not located.

The statement label to which control is returned if an error exists.

Programming Consideration

If istatus and *label are omitted and an error occurs, the current task aborts with an
RSxx, where xx is one of the listed istatus codes.

SRTL
MPX-32 Compatible or Native Mode

Subprograms 4-27

X:FDSPCE
X:FESPCE

4.3.12 X:FDSPCE

The X:FDSPCE subroutine deallocates a task's most recently acquired extended memory
map block(s), thus contracting its address space. Refer to the MPX-32 Reference
Manual, Volume 1, for a discussion of memory allocation and logical address space.

Calling Seguence

CALL X:FDSPCE (nask, nget,[istatus],[*label])

nask An INTEGER variable that specifies the number of map blocks of extended
data space to deallocate.

nget An INTEGER variable that,upon return, contains the number of map blocks
actually deallocated.

istatus An INTEGER variable. If specified, istatus is set to a completion code upon
return from the subroutine. Possible istatus values are:

o Normal completion.
50 Missing parameters.
51 Parameter out of range (nask must be positive).

label The statement label to which control is returned if an error exists •

• Programming Consideration

If istatus and *label are omitted and an error occurs, the current task aborts with an
RSxx, where xx is one of the listed istatus codes.

4..3.13 X:FESPCE

The X:FESPCE subroutine dynamically deallocates a task's most recently acquired
execution space map block, thus contracting the task's address space.

Calling Sequence

CALL X:FESPCE (nask, nget)

nask An INTEGER variable that specifies the number of map blocks of execution
space to deallocate.

nget An INTEGER variable that, upon return, contains the number of map blocks
actually deallocated.

4-28
MPX-32 Compatible or Native Mode

Subprograms SRTL

(

1
l

X:FSLR

4.3.14 X:FSLR

The X:FSLR subroutine, in conjunction with X:FSLS, controls a synchronization lock
indicator for disc file gating. A call to X:FSLR releases the synchronization lock and
polls the queue of tasks waiting to become lock owners.

Calling Seguence

CALL X:FSLR (lfc, [istatus],[*label])

lfc

istatus

label

An INTEGER or CHARACTER expression or variable that specifies the
logical file code. If the LFC is an INTEGER, this argument must be an
integer constant in the range of 1-999 or a 1-3 character string left justified
and blank 'filled. If the LFC is a CHARACTER, this argument must be a 1-3
character string.

An INTEGER variable. If specified, istatus is set to a completion code upon
return from the subroutine. Possible istatus values are:

Native

o
32
29
30

69

Compatible

o
1
5
6

69

Normal Completion.
Request denied, file lock not set.
Request denied, LFC not allocated.
Request denied, specified LFC not assigned
to a permanent disc file.
File Control Block (FCB) not located.

The statement label to which control is returned if an error exists.

Programming Considerations

A file lock can be cleared only by the task that set it.

A file lock owned by a task is automatically released when the task terminates.

A file lock is automatically released when the file is deallocated.

If istatus and *label are omitted and an error occurs, the current task aborts with an
RSxx, where xx is one of the listed istatus codes.

SRTL
MPX-32 Compatible or Native Mode

Subprograms 4-29

tU.lS X:F'SLS

The X:FSLS subroutine, in conjunction with X:FSLR, provides disc file gating. The
X:FSLS and X:FSLR subroutines control a synchronization lock indicator, which allows
synchronized access to a disc file concurrently allocated to multiple tasks. A call to
X:FSLS sets a synchronous lock. The file identified by the logical file code in the syntax
must have been previously allocated to the calling task.

Calling Seguence

CALL X:FSLS (lfc,(time],(istatus],[*label])

Ltc An INTEGER or CHARACTER expression or variable that specifies the
logical file code. If the LFC is an INTEGER, this argument must be an
INTEGER constant in the range of 1-999 or a 1-3 character string left
justified and blank filled. If the LFC is a CHARACTER, this argument must
be a 1-3 character string.

time' An INTEGER variable interpreted as follows:

istatus

+1 Return immedi~tely with a denial code if the file already has a
file lock set.

o Place the calling task in a wait state until the task owns the
synchronous lock. This is the default value.

-n Place the calling task in a wait state until either the task owns
the file lock or the expiration of n timer units, whichever
occurs first.

An INTEGER variable. If specified, istatus is set to a completion code upon
return from the subroutine. Possible istatus values are:

Native

o
50
38

29
30

69

Compatible

o
1
2

5
6

69

Normal completion.
Request Denied, file lock already owned.
Request denied, time out occurred while
waiting to become lock owner.
Request denied, LFC not allocated.
Request denied, LFC not assigned to a
permanent" disc file.
File Control Block (FCB) not located.

label The statement label to which control is returned if an error exists.

Programming Consideration

If istatus and *label are omitted and an error occurs, the current task aborts with an
RSxx, where xx is one of the listed istatus codes.

MPX-32 Compatible or Native Mode
Subprograms SRTL

(

~--

X:FWRO

4.3.16 X:FWO

The X:FWD subroutine advances files or records on sequential blocked files. This
subroutine performs the following functions for advance records:

• Verifies volume record if Beginning-Of-Tape (BOT) is on multivolume magnetic tape.
• Advances the specified number of records.

X:FWRD performs the following functions for advance file:

Advances logical records until an End-Of-File (EOF) is found, if the file is blocked.
• Verifies volume record if BOT is on multivolume magnetic tape.
• Advances the specified number of files.

This subroutine is not applicable for unblocked files in the file advance mode or system
files in the record advance mode.

Ca lli ng Sequence

CALL X:FWRD Ofc,(record], adv,[istatus],(I"labeQ)

lfc An INTEGER or CHARACTER expression or variable that specifies the
logical file code. If the LFC is an INTEGER, this argument must be an
INTEGER constant in the range of 1-999 or a 1-3 character string left
justified and blank filled. If the LFC is a CHARACTER, this argument must
be a 1-3 character string.

record

adv

istatus

An INTEGER variable that specifies the type of advance to be performed.
This argument value must be a single ASCn character, left justified and
blank filled. Options are:

'R'
Default

Record advance.
File advance.

An INTEGER variable that contains the number of records or files to
advance. If zero is specified, the service is nullified.

An INTEGER variable. If specified, istatus is set to a condition code upon
return from the subroutine. Possible istatus values are:

o Normal completion.
50 Missing parameter.
69 File Control Block (FCB) not located.

label The statement label to which control is returned if an error exists.

Programming Consideration.

If istatus and *label are omitted and an error occurs, the current task aborts with an
RSxx, where xx is one of the listed istatus codes.

SRTL
MPX-32 Compatible or Native Mode

Subprograms 4-31

X:FXLR'

4.3.17 X:FXLR

The X:FXLR subroutine, in conjunction with X:FXLS, provides disc file gating. A call to
X:FXLR releases the exclusive lock and allows other tasks to allocate the associated disc
file. Another task is not able to exclusively lock the file until the file is deallocated by
this task.

Calling Sequence

CALL X:FXLR (lfc, (istatusJ,C*labeI])

lfc

istatus

An INTEGER or CHARACTER expression or variable that specifies the
logical file code. If the LFC is an INTEGER, this argument must be an
INTEGER constant in the range of 1-999 or a 1-3 character string left
justified and blank filled. If the LFC is a CHARACTER, this argument must
be a 1-3 character string.

An INTEGER variable. If specified, istatus is set to a completion code upon
return from the subroutine. Possible istatus values are:

Native

o
32
29

30

33

69

Compatible

o
1
5

6

N/A

69

Normal completion.
Request denied, file lock not set.
Request denied, specified LFC not
allocated.
Request denied, speci fied LFC not assigned
to a permanent disc file.
Request denied, resource is not allocated in
a sharable mode by this task.
File Control Block (FCB) not located.

label 111e statement label to which control is retumed if an error exists.

Programming Considerations

A file lock can be cleared only by the task that set it.

A file lock owned by a task is automatically released when the task terminates.

A file lock is automatically released when the file is deallocated.

If istatus and *label are omitted and an error occurs, the current task aborts with an
RSxx, where xx is one of the listed istatus codes.

4-32
MPX-32 Compatible or Native Mode

Subprograms SRTL

(

(

X:FXLS

4.3.18 X:FXLS

The X:FXLS subroutine, in conjunction with X:FXLR, provides disc file gating. This
subroutine allows the calling task to gain exclusive allocation of a file as though it were
an unshared resource. The file must have been previously allocated.

Calling Seguence

CALL X:FXLS (Ifc,(time],[istatus],[*label])

lfc An INTEGER or CHARACTER expression or variable that specifies the
logical file code. If the LFC is an INTEGER, this argument must be an
INTEGER constant in the range of 1-999 or a 1-3 character string left
justified and blank filled. If the LFC is a CHARACTER, this argument must
be a 1-3 character string.

time An INTEGER variable interpreted as follows:

istatus

+1 Return immediately with a denial code if the file already has a
file lock set.

o Place the requesting task in a wait state until the task owns
the exclusive lock. This is the default value.

-n Place the requesting task in a wait state until either the task
owns the file lock or the expiration of n timer units, whichever
occurs first.

An INTEGER variable. If specified, istatus is set to a completion code upon
return from the subroutine. Possible istatus values are:

Native

o
90

38

29
30

69

Compatible

o
1

4

5
6

69

Normal completion.
Request denied, file lock allocated to
another task, or is already exclusively
locked.
Request denied, time-out occurred while
waiting to become lock owner.
Request denied, LFC is not allocated.
Request denied, LFC is not assigned to a
permanent disc file.
File Control Block (FCB) not located.

label The statement label to which control is returned if an error exists.

Programming Consideration

If istatus and *label are omitted and an error occurs, the current task aborts with an
RSxx, where xx is one of the listed istatus codes.

SRTL
MPX-32 Compatible or Native Mode

Subprograms 4-33

X:GACRL

4.3.19 X:GADRL

The X:GADRL subroutine returns the memory addresses a$Sociated with the boundaries
of a user's task.

Calling Seguence

CALL X:GADRL (lextn, fdsect, Hoad, ldsect, fcsect)

lextn

fdsect

Hoad

ldsect

fcsect

4-34

An INTEGER variable that contains the word address of the last location
currently available in the tasJ<ls extended data space (always a map block
boundary - one word).

An INTEGER variable that contains the word address of the first location of
the task's OSECT (always a map block).

An INTEGER variable that contains the word address of the last location in
the OSECT actually loaded by the loader.

An INTEGER variable that contains the logical word address of the last
location available in the task's OSECT (always a map block boundary - one
word).

An INTEGER variable that contains the word address of the first location of
the task's CSECT or COMMON allocation (always a map block boundary).

MPX-32 Compatible or Native Mode
Subprograms SRTL

l
X:GDSPCE

4.3.20 X:GDSPCE

The X:GDSPCE subroutine dynamically acquires additional map blocks of memory in a
task's extended area. Up to 15 blocks may be requested in an 8KW (32/7X) environment
if sufficient memory exists. On a 2KW (32/27 or 32/87) environment up to 190 blocks
may be requested and on a 2KW (32/67 or 32/97) environment up to 1900 blocks may be
requested if sufficient memory exists. The memory will be the same type sped fied when
the task was cataloged, and it is mapped in a logically contiguous manner, with the first
requested map block starting at 128K words. The task is suspended until the allocation is
successful. X:FDSPCE de allocates the acquired space in reverse order.

Calling Seguence

CALL X:GDSPCE (tnask, nget,[istatus],[*label])

nask An INTEGER variable that specifies the number of map blocks of extended
index data space to append with zeroing (-nask) or without zeroing (+nask)
before return.

nget An INTEGER variable that, upon return, contains the number of map blocks
actually received.

istatus An INTEGER variable. If specified, istatus is set to a completion code upon
return from the subroutine. Possible istatus values are:

o Normal completion.
1 Attempted allocation of an excessive number of map blocks.
2 Attempted allocation exceeds physical memory configured.

50 Missing parameter.

label The statement label to which control is returned if an error exists.

Programming Considerations

If istatus and *label are omitted and an error occurs, the current task aborts with an
RSxx, where xx is one of the listed istatus codes; or RTxx, where xx is an istatus code of
50.

If the map block starting at 128K words is in use, the next available block is used. If an a
extended block above 128K words is in use, the map block starting at 128K words is i
used. (Blocks will be acquired up to and then beyond the extended block.)

SRTL
MPX-32 Compatible or Native Mode

Subprograms
Change 1

4-35

X:GESPCE

4..3.21 X:GESPCE

The X:GESPCE subroutine dynamically expands a task's memory allocation in map block
increments starting at the end of its DSECT, up to the top of its logical address space.
The additional memory is the same type specified when the task .was cataloged. The task
is mapped in a logically contiguous manner up to the start of its CSECT, global common,
or 128K words, whichever occurs first. The task is suspended until the allocation is

. successful.

Calling Sequence

CALL X:GESPCE (±nask, nget,[istatus],[*label]

nask

nget

istatus

An INTEGER variable that specifies the number of map blocks of extended
execution space to obtain with zeroing (-nask) or without zeroing (+nask)
before return.

An INTEGER variable that contains upon return, the number of map blocks
actually received.

An INTEGER variable. If specified, istatus is set to a completion code upon
return from the subroutine. Possible istatus values are:

o
1
2

Normal completion.
Excessive DSECT allocation attempted.
Attempted allocation exceeds physical memory configured.

label The statement label to which control is returned if an error exists.

Programming Consideration

If istatus and *label are omitted and an error occurs, the current task aborts with an
RSxx, where xx is one of the listed istatus codes.

4-36
MPX-32 Compatible or Native Mode

Subprograms SRTL

("

X:GMSGP
X:GRUNP

4..3.22 X:GMSGP

The X:GtlltSGP subroutine, when called from the message receiver routine of a task that
has recei ved a message interrupt, transfers message parameters into the designated
receiver buffer and posts the owner name and task number of the sending task into the
Parameter Receive Black (PRB).

Calling Segueuce

CALL X:GMSGP (prbname,[istatus],[*label]

prbname

istatus

An INTEGER array that specifies the PRB. Refer to the MPX-32 Reference
Manual, Volume 1, for a description of the contents of the PRB. Note that
the parameter receiver buffer address within the PRB must be aligned on a
word boundary.

An INTEGER variable. If specified, istatus is set to a completion code upon
return from the subroutine. Possible istatus values are:

o Normal completion.
1 Invalid PRB address.
2 Invalid recei ver buffer address.
3 No active send request.
4 Receiver buffer length exceeded.

label The statement label to which control is returned if an error exists.

Programming Consideration

If istatus and *label are omitted and an error occurs, the current task aborts with an
RSxx, where xx is one of the listed istatus values.

4.3.23 X:GRLNP

The X:GRUNP subroutine, when called by a task that is executing on behalf of a run
request, transfers the run parameters into the designated receiver buffer and posts the
owner name and task number of the sending task into the Parameter Recei ve Block
(PRB).

Calling Seguence

CALL X:GRUNP (prbname,[istatus],[*label]

prbname

SRTL

An INTEGER array that specifies the PRB. Note that the parameter
receiver buffer address within the PRB must be aligned on a word boundary.

MPX-32 Compatible or Native Mode
Subprograms 4-37

X:GRUNP
X:ID

istatus An INTEGER variable. If specified, istatus is set to a completion code upon
return from the subroutine. Possible istatus values are:

o Normal status.
1 Invalid PRB address.
2 Invalid receiver buffer address.
3 No acti ve send request.
4 Receiver buffer length exceeded.

label The statement label to which control is returned if an error exists.

Programming Consideration

If istatus and *label are omitted and an error occurs, the current task aborts with an
RSxx, where xx is one of the listed istatus values.

4.3.24· X:ID

The X:ID subroutine obtains information about an active task, including the calling task,
when one of the following parameters is known:

• T ask number
• T ask load module name
• Owner name
• Pseudonym name of the task

The caller must supply at least one of these parameters; remaining parameters are
returned by the subroutine. Repeated calls may be made to the subroutine to find all
copies of a multicopied task.

Calling Seguence

CALL X:ID (index, taskno, taskname, ownername, pseudo,[istatus],[*label])

index An INTEGER variable that must be zero for the initial search. This
argument is used by the system subroutine to control the points at which
previous searches are discontinued and a search of the dispatch queue is
begun. Index must not be a constant because the X:ID subroutine updates
the contents of this parameter for retrieval of further entries when
repeated calls are made. When all matching tasks are identified, index is
returned with value zero.

task no An INTEGER variable that specifies the task number. It must be set to zero
if the task number is unknown.

taskname An INTEGER*8 variable or CHARACTER variable that specifies the task
name. This argument must be one to eight ASCII characters, left justified
and blank filled. If the taskname is unknown, taskname must contain either
a zero or ail blanks.

ownername An INTEGER*8 variable or CHARACTER variable that specifies the task's
owner name. This argument must be one to eight ASCII characters, left
justified and blank filled. If the task owner name is unknown, ownername
must contain either a zero or all blanks.

4-38
MPX-32 Compatible or Nati ve Mode

Subprograms SRTL

pseudo

istatus

X:ID

An INTEGER*8 variable or CHARACTER variable that specifies
pseudonym. This argument must be one to eight ASCII characters, left
justified and blank filled. If the pseudonym is unknown, pseudo must
contain ei ther a zero or aU blanks.

An INTEGER variable. If specified, istatus is set to a completion code
upon return from the subroutine. Possible istatus values are:

o Normal completion.
50 Missing parameter.
51 Task not found.
52 AU tasks found.

label "The statement label to which control is returned if an error exists.

Programming Consideration

If istatus and *label are omitted and an error occurs, the current task aborts with an
RSxx, where xx is one of the listed istatus values.

SRTL
MPX-32 Compatible or Native Mode

Subprograms 4-39

X:JNT
X:RCVR

4.3.25 X:INT

The X:INT subroutine issues a break interrupt to any specified task, including the calling
task. The specified task is required to have a break receiver routine (refer to X:BRK).
This subroutine has the same effect as depressing the break key on the user terminal.

Calling Seguence

CALL X:INT (i task,[istatus],[*labelD

itask

istatus

label

An INTEGER*8 that specifies the task name or task number. This argument
must be one to eight ASCn characters, left justified and blank filled. A task
number must be right justified in the doubleword and zero filled. A task
number of zero specifies the calling task. .

An INTEGER variable. If specified, istatus is set to a completion code upon
return from the subroutine. Possible istatus values are:

a Normal completion.
48 Invalid task number.
50 Missing parameter.
53 Invalid receiver.

The statement label to which control is returned if an error exists.

Programming Consideration

If istatus and *label are omitted and an error occurs, the current task aborts with an
RSxx, where xx is one of the listed istatus values; or RTxx, where xx is an istatus code of
50 or 53.

4.3.26 X:RCVR

The X:RCVR subroutine establishes the address of a routine that is to be entered to
receive messages sent by other tasks.

Calling Seguence

CALL X:RCVR (*labell,[istatus],[*labeI2])

labell

istatus

Iabel2

The statement label of the beginning of the task's message recei ver routine.

An INTEGER variable. If specified, istatus is set to a completion code upon
return from the subroutine. Possible istatus values are:

a Normal completion.
50 Missing parameter.
5l Parameter out of range (invalid receiver address).

The statement label to which control is returned if an error exists.

Programming Consideration

If istatus and "label2 are omitted and an error occurs, the current task aborts with an
RSxx, where xx is one of the listed istatus values; or RTxx, where xx is an istatus code of (1'-

50 or 51. l ..

4-40
MPX·32 Compatible or Nati ve Mode

Subprograms SRTL

X:MPXEOF

4.3.25A X:MPXEOF

The X:MPXEOF subroutine establishes an optional method of end-of-file checking for
formatted, unblocked disc and magnetic tape files. This optional method overrides the
default FORTRAN 77+/SRTL method by checking for X'OFEOFEOF' in the first word of a
formatted, unblocked record, instead of checking for X'OF' in the first byte of the
record. All ENDFILE operations on formatted, unblocked disc and magnetic tape files
will write X'OFEOFEOF' in the first word of the current record.

This optional method provides a better method of discrimination between data patterns
and EOF indicators, but does not completely eliminate ambiguities. If closer
discrimination is necessary·, blocked files should be used.

Calling Sequence

CALL X:MPXEOF

Programming Consideration

For proper use, this subroutine must be called only once, at the beginning of a main
. program before any I/O is attempted.

SRTL
MPX-32 Compatible or Native Mode

Subprograms
Change 1

4-40A/4-40B I

.~~ . -. -

X:RSML

4.3.27 X:RSML

The X:RSML subroutine locks a specified resourcemark and, in conjunction with X:RSMU,
synchronizes access to a common resource.

Calling Seguence

CALL X:RSML (lockid,(time],(swap],[istatus],[*label])

lockid

time

An INTEGER variable that specifies the unique numeric resourcemark
index (1 through 64). Privileged tasks may use 1 through 64, unprivileged

. tasks 33 through 64.

An INTEGER variable that specifies action to be taken if the lock is
currently set and owned by another task. Possible values are:

+1 Immediate denial return.
o Wait until task is lock owner (default).

-n Wait until task is lock owner or until n timer units have expired,
whichever occurs first.

swap An INTEGER variable that specifies the swapping mode for the calling
task. This argument must be a single ASCn character, left justified and
blank filled. Options are:

istatus

'PI

Default

While this task is waiting to become lock owner, the
swapping mode is to be set to swap this task only if a
higher priority task is requesting memory space.

The task is a swap candidate if any task is requesting
memory.

An INTEGER variable. If specified, istatus is set to a completion code upon
return from the subroutine. Possible istatus values are:

o Normal completion.
1 Lock index exceeds maximum range.
2 Lock index less than minimum range.
3 Lock owned by another task, and time = + 1.
4 Lock owned by another task, time = -n;

n timer units have elapsed.

label The statement label to which control is returned if an error exists.

Programming Consideration

If istatus and *label are omitted and an error occurs, the current task aborts with an
RSxx, where xx is one of the listed istatus values.

SRTL
MPX-32 Compatible or Native lVIode

Subprograms 4-41

X:RSMU

4.3.28 X:RSMU

The X:RSMU subroutine unlocks a resourcemark previously locked by a call to the
X:RSML subroutine. If any other tasks are waiting to lock the specified resourcemark,
the highest priority waiting task becomes the new lock owner.

Calling Seguence

CALL X:RSMU (lockid,(istatus],[*labeiD

lockid

istatus

An INTEGER variable that specifies the unique numeric resource mark index
(1 through 64).

An INTEGER variable. If specified, istatus is set to a completion code upon
return from the subroutine. Possible istatus values are:

o Normal completion.
1 Lock index exceeds maximum range.
2 Lock index less than minimum range.
3 Lock owned by another task.

label The statement label to which control is returned if an error exists.

Programming Consideration

If istatus and *label are omitted and an error occurs, the current task aborts with an
RSxx, where xx is one of the listed istatus values.

4-42
MPX-32 Compatible or Native Mode

Subprograms SRTL

(

(

(

X:SMSGR

4.3.29 X:SMSGR

The X:StvlSGR subroutine sends up to 768 bytes to a specified destination task. This
subroutine may also accept up to 768 bytes as return parameters.

Calling Seguence

CALL X:SMSGR (ipsb,[istatus],[*label])

ipsb

istatus

An INTEGER array that specifies the Parameter Send Black (PSB). Nate
that the send buffer and the return parameter buffer within the Parameter
Receive Block (PRB) must be aligned on a word boundary.

An INTEGER variable. If specified, istatus is set to a completion code upon
return from the subroutine. Possible istatus values are:

o Normal completion.
1 Task not found in Dispatch Queue.

10 Invalid priority.
11 Invalid send buffer address.
12 Invalid return buffer address.
13 Invalid no-wait mode end-action routine address.
14 Memory pool unavailable.
15 Destination task queue depth exceeded.
16 Invalid PSB address.

label The statement label to which control is returned if an error exists.

Programming Consideration

If istatus and *label are omitted and an error occurs, the current task aborts with an
RSxx, where xx is one of the listed istatus values~

SRTL
MPX-32 Compatible or Native Mode

Subprograms 4-43

X:5RUNR

4.3.30 X:SRUNR

The X:SRUNR subroutine activates or reactivates the specified destination task with a
parameter pass of up to 768 bytes. This subroutine also accepts up to 768 bytes as return
parameters.

Calling Sequence

CALL X:SRUNR (ipsb,[istatus],[*label],[itaskno])

ipsb

istatus

label

itaskno

An INTEGER array that specifies the Parameter Send Block (PS8). Note
that the send buffer and the retum parameter buffer within the Parameter
Receive Block (PRS) must be aligned on a word boundary.

An INTEGER variable. If specified, istatus is set to a completion code upon
return from the subroutine. Possible istatus values are:

o
2
3
4
5
6
7

10
11
12
13
14
15
16

Normal completion.
Load module name not found in System Master Directory (SMD).
Load module fUe is password protected.
Invalid load module file format.
Dispatch Queue Entry (DQE) unavailable.
I/O error on SMD read.
I/O error on load module read.
Invalid priority.
Invalid send buffer address or send quantity exceeds 768 bytes.
Invalid return buffer address.
Invalid no-wait mode end-action routine address.
Memory pool unavailable.
Destination task queue depth exceeded.
Invalid PS8 address.

The statement label to which control is returned if an error exists.

An INTEGER variable that will receive, upon return, the task number of the
task to which the run request was sent.

Programming Consideration

If istatus and *label are omitted and an error occurs, the current task aborts with an
RSxx, -.vhere xx is one of the listed istatus values.

4-44
MPX-32 Compatible or Native Mode

Subprograms SRTL

(

i'"
..

,I

'-'/

(

(

r

U.31 X:SUAR

X:SUAR
X:SUSP

The X:SUAR subroutine establishes an address to which control is transferred when an
abort occurs during task execution.

Calling Seguence

CALL X:SUAR (*labell' istatus , *label2)

labell A statement label that receives control when the executing task is aborted
for any reason.

istatus An INTEGER variable. If specified, istatus is set to a completion code upon
retum from the subroutine. Possible istatus values are:

o Normal completion.
1 Specified address outside of the user's allocated area.

label2 A statement label to which control is returned when a denial error exists.

Programming Consideration

All files remain open if transfer occurs.

If istatus and *label2 are omitted and an error occurs, the current task aborts with an
RSxx, where xx is one of the listed istatus values.

4.3.32 X:sUSP

The X:SUSP subroutine suspends any task, including the calling task, for either a
specified number of time units or an indefinite time, as requested. A task resumes after
the specified time interval completes. The M:RSUM subroutine resumes a task suspended
for an indefinite time interval. Receipt of a message interrupt also resumes a suspended
task.

Calling Seguence

CALL X:SUSP (task, time, *label)

task An INTEGER*8 variable that specifies the task name or task number. A task
name must be one to eight ASCn characters, left justified and blank filled.
A task number must be right justified in the doubleword and zero filled.

time An INTEGER variable interpreted as follows:

o
+n

Suspension for an indefinite period of time.
Positive number of units to elapse before the calling task is
resumed. The actual time elapsed can vary by one time unit
because of system design.

label The statement label to which control is returned if an error exists.

SRTL
MPX-32 Compatible or Native Mode

Subprograms 4-45

X:SYNCH
X:TDAY

4\.3.33 X:SYNO-i

The X:SYNCH subroutine processes task interrupts by placing the task in a synchronous
task interrupt mode. X:EAWAIT must be used in conjunction with X:SYNCH. X:SYNCH
processes interrupts in the following manner:

• Interrupts that occur after a call to X:SYNCH are queued on a priority basis until
X:EAWAIT ia called.

• X:EAWAIT either processes interrupts or completes outstanding no-wait operations.

• The wait subroutine is exited immediately if there are no interrupts or outstanding no­
wait operations.

Other wait subroutines (X:ANYW, X:ASYNCH, or M:WAIT) may be used with X:SYNCH;
however, they only provide a subset of the X:EAWAIT service. If M:WAIT is called
subsequent to X:SYNCH, no breaks can occur.

Calling Seguence

CALL X:SYNCH

Programming Consideration

Break interrupts are still handled asynchronously in synchronous mode. Therefore, use
caution to prevent the occurrence of any nonreentrant common routines, between the
main program and the break receiver (e.g., run-time library routines).

4\.3.34 X:TDA Y

The X:TDA Y subroutine returns the time of day to the caller as computed from the real­
time clock interrupt counter. A SYSGEN parameter initializes the counter.

Calling Seguence

itime

CALL X:TDA Y (itime, idate)

An INTEGER variable that receives the time in the following format:

Byte 0
Byte 1
Byte 2
Byte 3

Hours
Minutes
Seconds
Interrupts

(0-23)
(0-59)
(0-59)

idate An INTEGER*8 variable that contains, upon return, the date in the following
ASCII character format with embedded slant characters /:

4-46

MM/DD/YY

If the date is entered in European format, the following ASCII character
format is returned:

DDMMMYY

MPX-32 Compatible or Native Mode
Subprograms SRTL

(

('

4.3.35 X:TSCAN

X:TSCAN
X:XMEA

The X:TSCAN subroutine allows a task activated through the Terminal Subroutines
Manager (TSM) to scan the parameters (fields) you pass in the line buffer at execution
time. This subroutine returns a number of parameters from the terminal line buffer
according to the value specified by the nask argument. If the line buffer contains more
parameters than the value specified by nask, only the first nask parameters will be
returned, i.e., nget will return a value equal to nask. If the line buffer contains the same
or fewer parameters than sped fied by nask, all of the parameters will be retumed, i.e.,
nget will return a value equal to the number of parameters contained in the line buffer.

Parameters must be separated by delimiting characters. Valid delimiter characters for
parameters are blanks, commas, semicolons, equal signs, carriage return, line feeds,
dollar signs, exclamation points, percent signs and left or right parentheses. Note that
all blanks preceding a parameter or another delimiter are ignored.

Calling Sequence

CALL X:TSCAN (nask, nget, ix, text)

nask An INTEGER expression that specifies the number of parameters to be
transferred.

nget An INTEGER variable that contains, upon return, the number of parameters
actually transferred.

ix An INTEGER*1 array that contains, upon return, the indices to delimiter
. character positions in the text parameter. The dimensions of ix should be
greater than or equal to nask +1; ix(1) will always be zero.

text A CHARACTER variable of sufficient length to contain requested
parameters. Parameter text and delimiters are copied into text with
extraneous blanks deleted and individual parameter: strings truncated in
order not to exceed eight bytes.

4.3.36 X:XMEA

The X:XMEA subroutine exits an end action routine associated with a no-wait message
send request.

Calling Sequence

CALL X:XMEA

SRTL
MPX-32 Compatible or Native Mode

Subprograms 4-47

X:XMSGR
X:XNWIO
X:XREA

4.3.37 X:XMSGR

The X:XMSGR subroutine exits the message receiver routine of the calling task. This
subroutine must be called after the task has received a message from another task.

Calling Seguence

CALL X:XMSGR (rxbname,[istatus],[*labei])

rxbname An INTEGER array that specifies the Receiver Exit Block (RXB).

istatus An INTEGER variable. If specified, istatus is set to a completion code upon
return from the subroutine. Possible istatus values are:

o Normal completion.
50 Missing parameter.
51 Parameter out of range.

Label The statement label to which control is returned if an error exists.

Programming Consideration

If istatus and *label are omitted and an error occurs, the current task aborts with an
RSxx, where xx is one of the listed istatus values.

4..3.38 X:XNWlO

The X:XNWIO subroutine must be called to exit a no-wait I/O end action routine (both
normal and error end action routines). The subroutine returns control to the point of
interruption.

Calling Sequence

CALL X:XNWIO

4.3.39 X:XREA

The X:XREA subroutine exits an end action routine associated with a no-wait run
request.

Calling Seguence

CALL X:XREA

MPX-32 Compatible or Native Mode
Subprograms SRTL

(

(

X:XRUNR

4.3.40 X:XRUNR

The X:XRUNR subroutine exits a task that is executing on behalf of a run request issued
from another task.

Calling Seguence

CALL X:XRUNR (rxbname,[istatus],[*label])

rxbname An INTEGER array that specifies the Receiver Exit Block (RXB).

istatus An INTEGER variable. If specified, istatus is set to a completion code upon
return from the subroutine. Possible istatus values are:

o Normal completion.
50 Missing parameter.
51 Parameter out of range.

label The statement label to which control is returned if an error exists.

Programming Considerations

If istatus and *label are omitted and an error occurs, the current task aborts with an
RSxx, where xx is one of the listed istatUs values. '

The run receiver queue is.examined and, if it is not empty, the task is executed again on
behalf of the next request. If the queue is empty, the exit options in the RXB are
examined. If the option byte is zero, the task will be placed in a wait state, waiting for
the next run request to be received. If the option byte is nonzero, the task exits the
system. Reexecution of the task transfers control to the instruction following the
X:XRUNR call.

SRTL
MPX-32 Compatible or Native Mode

Subprograms 4-49

ADOR
CARRIAGE
OUMPUSER

4.4 Named Subprograms

The following named subprograms are available in either compatible or nati ve mode.

4.4..l AOOR

The ADDR function retums a 24 bit pure address for the specified argument. This
subroutine is generated inline by FORTRAN 77+ and does not exist in the SRTL.

Calling Sequence

i=ADDR (var)

An INTEGER variable that, upon retum, contains the 24 bit pure address of
the argument.

var A variable name, array name, procedure name or statement label for which
the .address is desired. If var is a statement label, it must be preceded by a
dollar sign ($).

4A.Z CARRIAGE .

The CARRIAGE subroutine forces a carriage retum/line-feed on the operator's console •

Calling Sequence •

CALL CARRIAGE

4.4.J DUMPUSER

The DUMPUSER subroutine writes a hexadecimal dump of a task's allocated memory,
formatted as hexadecimal side-by-side with ASCn. The program status doubleword and
machine registers are output first, followed by the task subroutine area (TSA), then the
user program and data. The dump is written to a dynamically allocated SLO file.

Calli ng Sequence

CALL DUMPUSER

4-50
MPX-32 Compatible or Native Mode

Subprograms SRTL

c

(4.4.4 EOF

EOf"
EXIT

The EOF subroutine determines if the previous I/O operation read an end-of-file mark.
EOF resets the end-of-file status.

Calling Seguence

CALL EOF (lfc, status)

lfc

status

An INTEGER or CHARACTER expression or variable that specifies the
logical file code. If the LFC is an INTEGER, this argument must be an
INTEGER constant in the range of 1-999 or a 1-3 character string left
justified and blank filled. If the LFC is a CHARACTER, this argument must
be a 1-3 character string.

A LOGICAL*l variable that is set as follows:

.TRUE.
• FALSE.

end-of-file was found •
end-of-file was not found.

Programming Consideration

STATUS and EOF both reset the EOF bit after testing. Therefore, use caution when
calling these routines in the same program, because the valid results of one routine may
be jeopardized by the other's abili ty to reset the EOF bi t.

4.4.5 EXIT

The EXIT subroutine returns control to MPX-32 and terminates execution of the
program, after closing all currently open files

Calling Seguence

CALL EXIT

SRTL
MPX-32 Compatible or Native Mode

Subprograms 4-51

Loa=­
MPXSVC

4.4.6 LOCF

The LOCF function returns the address of a speci fied argument.

Calling Seguence

iaddress = LaC:: (var)

iaddress An INTEGER variable that, upon return, contains the address of the
argument.

var A variable name, array name, subroutine name, function name, or statement
label for which the address is desired. If var is a statement label, it must be
preceded by a dollar sign ($). For example, IADORESS = LOCF ($55).

Programming Consideration

Addresses returned by this function include the F and C bits. Bit 12 set indicates bits 13
through 31 contain a byte address. Bit 12 clear indicates bits 30 and 31 are interpreted
as listed below. This does not apply to byte variables in extended memory however,
because bit 12 is used as an address bit.

30 31

o 0 - word address
o 1 - left half word address
1 0 - double word address
1 1 - right half word address

4.4.7 MPXSVC

The subroutine MPXSVC allows the user to ~xecute an MPX-32 SVC and has the following
interface:

Calling Seguence

MPX5VC(isvc,iregin,iregout,icc,istatus)

isvc

iregin

iregout

icc

istatus

An INTEGER full word that contains the SVC number to be executed.

An INTEGER fullword array whose first eight elements contain the values to
be loaded into the machine registers prior to the execution of the SVC.

An INTEGER array whose first eight elements will receive the values from
the machine registers after the SVC has been executed.

An INTEGER variable that receives the condition code bits, right justified
and zero filled, after the SVC has been executed.

An INTEGER variable that receives the status value of this subroutine. Zero
indicates success.

Programming Consideration

A system service listed as SVC 1,X'28' would be given in the form X'1028'.

MPX-32 Compatible or Native Mode
4-52 Subprograms SRTL

4"­
ii.
Jt-

(
SSWTCH
STATUS

4.4.8 SSWTCH

The SSWTCH subroutine obtains the status of a specified hardware control switch.

Calling Seguence

CALL SSWTCH (iswitch, jstate)

iswitch

jstate

An INTEGER variable that specifies the hardware control switch (0 to 12) to
be tested.

An INTEGER or LOGICAL variable that is set as follows:

If the sense switch is on, jstate is set to one if an INTEGER variable
or to • TRUE. if a LOGICAL variable.

If the sense switch is off, jstate is set to two if an INTEGER variable
or to .F ALSE. if a LOGICAL variable.

4.4.9 STATUS

The STATUS subroutine tests the status of any given unit resulting from the latest I/O
operation of the unit. This subroutine resets the end-of-file status if found •

•
Calling Seguence

CALL STATUS (lfc, istatus (,n])

lfc

istatus

n

An INTEGER or CHARACTER expression or variable that specifies the
logical file code. If the L:.FC is an INTEGER, this argument must be an
INTEGER constant in the range of 1 ... 999 or a 1-3 character string left
justified and blank filled. If the LFC is a CHARACTER, this argument must
be a 1-3 character string.

An INTEGER variable set according to the results of the status test, as
follows:

1 Not ready.
2 Ready and no previous error.
3 EOF sensed on latest input operation.
4 Parity or lost data error on latest I/O operation.
5 Unit is not open.

An INTEGER variable that is set to the data transfer count. When the
operation is complete, the data transfer count is in bytes. n is undefined if
status = 5.

Programming Consideration

ST A TUS and EOF both reset the EOF bit after testing. Therefore, use caution when
calling these routines in the same program, because the valid results of one routine may
be jeopardized by the other's ability to reset the EOF bit.

SRTL

MPX-32 Compatible or Native Mode

Subprograms 4-53/4-54

r

CHAPTER 5

MPX-32 NATIVE MODE SUBROUTINES

5.1 X _Subroutines

The subroutines described in this section begin with an X_ prefix, which indicates they
are available to FORTRAN 77+ users in native mode. All parameters contained within
the syntax of a subroutine call are required. Null parameters are not allowed for the
subroutines described in this section.

Some X_ subroutines contain the pathname argument. The pathname is a one to three
part name that identifies the path to be taken to a volume, directory, or file. Each
component of a pathname (volume, directory, file) can be one to sixteen characters.
Wherever file names are valid, a complete pathname can be specified, or missing portions
of a pathname are assigned.

Dynamic partitions may be defined in user directories on some versions of the operating
system. Although some memory management X_ subroutines contain pathname
arguments, only dynamic partitions in the system volume and directory are supported by
the SRTL.

Any attempt to mix modes; i.e., compatible with native, will result in an RS99 error with
the entry point displayed in an extended abort message.

SRTL
MPX-32 Native Mode

Subroutines 5-1

XCPART

The X CPART subroutine creates a resource descriptor for a dynamic memory
partition. A dynamic memory partition is named and exists until it is deleted.

Callinq Sequence

CALL X CPART (pathname,ownername,projectname,owneraccess,projectaccess,
- otheraccess,shared,size,start,c1ass,istatus)

patmame

ownername

projectname

owneraccess

projectaccess

5-2

A CHARACTER expression that specifies the path to the memory
partition.

A CHARACTER expression that specifies the ownername to be
associated with the partition being created. A value of all spaces
indicates the current ownername of the task is used. When you create a
resource definition, specifying an ownemame that differs from yours
does. not change your ownemame, it only specifies the ownername
associated with the resource being created.

A CHARACTER expression that specifies the projectname having
specific access privileges to the partition. A value of all spaces
indicates the projectname associated with the task is used.

A CHARACTER expression that specifies the resource owner's access
rights. The access mode (with the exceptions of 'N' and IfJI) may be
specified in any order as a concatenated string (e.g., 'RD' or 'W'//'R').
Duplicates are not allowed.

'R' Allows partition contents to be read.
'WI Allows partition write access.
'0' Allows partition to be deleted.
'N' Allows no partition access.'
~, Blank allows all access types.

A CHARACTER expression that specifies the access rights of project
groups having specific resource access privileges. The access mode
(with the exceptions of 'N' and 'IJ') may be specified in any order as a
concatenated string (e.g., 'RD' or 'W'II'R'). Duplicates are not
allowed.

'R' Allows partition contents to be read.
'W' Allows partition entries.
'0' Allows partition to be deleted.
'N' Allows no partition access.
'~, Blank allows all access types.

MPX-32 Native Mode
Subroutines SRTL

other access

shared

size

start

class

istatus

A CHARACTER expression that specifies the access rights of a
partition user other than the owner or a specified project group. The
access mode (with the exceptions of 'N' and '~') may be specified in
any order as a concatenated string (e.g~, 'RD' or 'W' ff'R '). Duplicates
are not allowed.

'R' Allows partition contents to be read.
'W' Allows partition entries.
'0' Allows partition to be deleted.
'N' Allows no partition access.
'~, Blank allows all access types.

A LOGICAL expression that is either true or false •• TRUE. spec.ifies
the partition may be shared; .F ALSE. specifies the partition can
support only one user at a time (exclusive use).

An INTEGER expression' that specifies the number of protection
granules (512 words each) to include in the partition.

An INTEGER expression that specifies the starting protection granule
in either the nonextended logical address space (1 through 255) or the
extended logical address space (256 or greater) at which the memory
partition is to be mapped.

A CHARACTER expression that specifies the memory class for the
memory partition. The values allowed are 'E' (first 128K words), 'H'
(high speed), and '5' (slow). A '~' (blank) signifies the default 'slow).

An INTEGER variable that returns the status after the subroutine has
been performed. Appendix B lists istatus values.

Programming Consideration

Granules in the first several map blocks should not be specified since they are used for
the operating system.

-
MPX-32 Native Mode

SRTL Subroutines 5-3

The X CREDIR subroutine creates a directory in a volume root directory. You may
create-entries on the specified volume by gaining access as either the owner of the
volume, a member of a defined project group, or an arbitrary user of the volume. You
must have add-entry access to volume root directory. In addition, the volume must be
mounted.

Calling Sequence

CALL ~ CREDIR (pathname,ownemame,projectname,owneraccess,projectaccess,
otheraccess,shared,maxsize,start,istatus)

pathname

ownemame

projectname

owneraccess

projectaccess

5-4

A CHARACTER expression that specifies the path to the new
directory. The one to sixteen ASCn character name of the new
directory must be the last name in the path. Supplying only a
directory name defines the directory in your current volume root
directory.

A CHARACTER expression that speCifies the ownername to be
associated with the new directory. A value of all spaces indicates the
current ownemame of the task is used. When you create a resource
definition, specifying an ownemame different from yours does not
change your ownername, it only specifies the ownername associated
with the resource being created.

A CHARACTER expression that specifies the projectname associated
with the directory. A value of all spaces indicates the projectname
associated with the task is used.

A CHARACTER expression that specifies the directory owner's
access rights. The access mode (with the exceptions of 'N' and '~')
may be specified in any order as a concatenated string (e.g., 'ADR' or
'A'I/'O'I/'R'). Duplicates are not allowed. .

'A' Allows directory additions.
'E' . Allows directory deletions.
'R' Allows directory contents to be read.
'T' Allows directory to be traversed by using pathname.
'D! Allows directory to be deleted.
'N' Allows no directory access.
'\6' Blank allows all system defaults.

A CHARACTER expression that specifies the access rights of project
groups having specific resource access privileges. The access mode
(with the exception of 'N' and ,~,) may be specified in any order as a
concatenated string (e.g., 'EAD' or 'E'I/'A'I/'D'). Duplicates are not
allowed.

MPX-32 Native Mode
Subroutines SRTL

c

c

r

(

otheraccess

shared

maxsize

start

istatus

5.1.3 X OCIR

A CHARACTER expression that specifies the access rights of a user
other than the owner or a project group associated with a resource.
The access mode (with the exceptions of 'N' and '~') may be specified
in any order as a concatenated string (e.g., 'EAD' or 'E'I I'A'I I'D)'.
Duplicates are not allowed. .

'A' Allows directory additions.
'E' Allows directory deletions.
'R' Allows directory contents to be read.
'T' Allows directory to be traversed using pathname.
'0' Allows directory to be deleted.
N' Allows no directory access.
'~' Blank allows all system defaults.

A LOGICAL expression that is either true or false. .TRUE. indicates
the directory may be shared; .F ALSE. specifies the directory can
support only one user at a time (exclusive use).

An INTEGER expression that specifies the maximum number of
entries allowed in the directory. MPX-32 creates directories with the
total entries rounded up to the number of entries which can fit into
the granularity of the disk on which the directory is created.

An INTEGER expression that specifies the disc block number where
the directory should start. If allocation in the desired space cannot
be accomplished, the function is denied. If the value of this argument
is zero, the directory may start at any available location.

An INTEGER variable that returns the status after the subroutine has
been performed. Appendix B lists istatus values.

The X_DDIR subroutine deletes a directory or a directory entry for a resource defined by
the specified pathname.

Calling Sequence

CALL X_DDIR (pathname, istatus)

pathname

istatus

SRTL

A CHARACTER expression that specifies the path to the target
directory or file.

An INTEGER variable that returns the status after the subroutine has
been performed. Appendix B lists istatus values.

MPX-32 Native Mode
Subroutines 5-5

X DIRECT
X-DISMNT
X:DPART

5.1.4 ~DIRECT

The ~OIRECT subroutine changes your working directory. Your access rights in the new
directory . depend on the protection defined for the directory and whether you own the
directory, supply a project group name to gain access rights, or are an arbitrary user of
the directory. Once the directory has been changed, the new working directory is in
effect until either this subroutine is called again or the program terminates.

Calling Seguence

CALL X _DIRECT (pathna me,pro jectname,pro jectkey ,istatus)

pathname A CHARACTER expression that specifies the path to the target
directory.

projectname

projectkey

istatus

A CHARACTER expression that specifies the projectname associated
with the directory. A value of all spaces indicates the projectname
associated with the task is used.

A CHARACTER expression of one to eight characters that specifies the
projectk~y.

An INTEGER variable that returns the status after the subroutine has
been performed. Appendix 8 lists istatus values.

5.1.5 X DISMNT

The X OISMNT subroutine requests that a specified volume or unformatted medium be
removed from a device •

. Calling Seguence

CALL X_OISMNT (volumeid,istatus)

volumeid A CHARACTER expression that specifies the volume identification of
the volume to be dismounted.

istatus

5..L6 X OPART

An INTEGER variable that returns the status after the subroutine has
been performed. Appendix 8 lists istatus values.

The X_DPART subroutine deletes the memory partition identified by the specified
pathname. If the partition is currently allocated, its Allocated Resource Table Entry
(ARTE) will be marked for deletion.

Calling Seguence

CALL X DPART (pathname, istatus)

pathname A CHARACTER expression that specifies the path to the memory
partition.

istatus

5-6

An INTEGER variable that returns the status after the subroutine has
been performed. Appendix B lists istatus values.

MPX-32 Native Mode
Subroutines SRTL

(

XDPXMNT
x EXa..

XEXrEND
5.1.7 X DPXMNT

The X DPXMNT subroutine incorporates the DA T APOOL partition into a task's extended
address area. This subroutine sets a globally defined base address for the DAT APOOL
memory partition in the user's task and returns the status of the included memory
partition.

Calling Sequence

Call X_DPXMNT (istatus)

istatus An INTEGER variable that returns the status after the subroutine has been
performed. Appendix B lists istatus values.

5.1.8 X EXa..

The X EXCL subroutine removes a static or dynamic memory partition from a task's
logical address space. A partition thus excluded cannot be referenced until it is again
included (refer to X_INCLD).

Calling Sequence

CALL X_ EXCL (pathname,ownername, istatus)

pathname

ownername

istatus

A CHARACTER expression left justified and blank filled, that specifies I
the path of the target partition. If just the partition name is specified,
then the partition must reside in the system directory.

A CHARACTER expression of one to eight characters, left justified and
blank filled, that specifies the ownername to be associated with the
excluded partition. A value of all spaces indicates the absence of an
ownername and the system default (i.e., your ownername) is used.

An INTEGER variable that returns the status after the subroutine has
been performed. Appendix B lists istatus values.

5.1.9 X EXTEND

The X EXTEND subroutine obtains more space for an existing file when an End-Of­
Medium (EOM) condition is encountered, provided the file was created with manual
extendibility. If the request space exceeds the available contiguous space, the request is
denied. .

Calling Sequence

CALL X EXTEND (pathname,inc,istatus)
X-XTENDU (unit,inc,istatus)
X,=XTENDL (lfc, inc,istatus)

pathname A CHARACTER expression that specifies the path to the target file.

unit

SRTL

An INTEGER expression, from 1 through 999, that specifies the logical
file code of the resource.

MPX-32 Native Mode
Subroutines

Change 1
5-7

lfc

inc

istatus

.~.,~.\. " ' ..

An INTEGER or CHARACTER expression or variable that specifies the
logical file code •. If the LFC is an INTEGER, this argument must be an
integer constant in the range of 1-999 or a 1-3 CHARACTER string left
justified and blank filled. If the LFC is a CHARACTER, this argument
must be a 1-3 CHARACTER string.

An INTEGER expression that specifies the size (in blocks) requested for
the extend function. The number specified is rounded up to the allocation
unit of the volume.

An INTEGER variable that returns the status after the subroutine has
been performed. Appendix B lists istatus values.

The XJNCLD subroutine allocates a static or dynamic memory partition into your logical
address space, providing that space is not currently allocated.

Callinq Sequence

CALL ><-INCLD (pathname,ownername,access,shared, timeout,istatus)

pathname A CHARACTER expression that specifies the path of the target partition.

ownername A CHARACTER expression that specifies the ownername to be associated
with the partition being transferred. A value of all spaces indicates the
absence of an ownername, and the system default (i.e, your ownername) is
used.

access

shared

timeout

istatus

A CHARACTER expression indicating the access rights. One of the
following may be specified:

'R' Read only.
'RW' Read or Write.

A LOGICAL expression that is either true or false. • TRUE. indicates the
memory partition may be shared; .F ALSE. indicates the memory partition
is exclusively requested.

An INTEGER· expression that specifies the desired time to wait for the
resource. Possible values are:

+n . Return immediately with defined istatus value.
D Wait forever.

-n Number of time units to wait.

An INTEGER variable that returns the status after the subroutine has been
performed. Appendix B lists istatus values.

MPX-32 Native Mode
Subroutines SRTL

X INCXDP

5.1.10A X INCXDP

The X INCXDP subroutine incorporates a datapool partition into a task's address area.
This subroutine sets a globally defined base address for the datapool memory partition in
the user's task and returns the status of the included memory partition. Although
primarily designed for use with extended datapool partitions, it can also be used with
non-extended datapool partitions.

Calling Seguence

CALL X INCXDP (partition, ownername, access, shared, timeout, istatus)

partition

ownername

access

shared

timeout

istatus

SRTL

A CHARACTER expression whose value must be one of the memory
partition names DPOOLOO through DPOOL99 or the standard datapool
partition name DAT APOOL.

A CHARACTER expression that specifies the ownername to be
associated with the partition being transferred. A value of all spaces
indicates that the current ownername of the task is used.

A CHARACTER expression indicating the access rights. One of the
following may be specified:

'R' Read only
'RW' Read or write

A LOGICAL expression that is either true or false. • True. indicates the
memory partition may be shared; • false. indicates the memory partition
is exclusively requested.

An INTEGER expression tnat specifies the desired time to wait for the
resource. Possible values are:

+n Return immediately with defined istatus value
o Wait forever

-n Number of time units to wait

An INTEGER variable that returns the status after the subroutine has
been performed. Appendix B lists istatus values.

MPX-3"2 Native Mode
Subroutines

Change 1
5-8A/5-8B I

c

r

XING

5.1.11 XING

The X_INQ subroutine obtains information specific to a previously connected allocated
resource. A series of pointers return the addresses of the various system data structures
that describe the resource. Resources are identified by either a logical file code
obtained when the resource was allocated or a memory partition name defined when the
partition was created. Interpret the information in the identified structures as the
application dictates.

Calling Seguence

CALL X INQ (partition, ownername, array, istatus)
X-INQU (unit, array, istatus)
XINQL (lfc, array, istatus)

partition

ownername

unit

lfc

array

SRTL

A CHARACTER expression of one to eight characters, left-justified and
blank filled, that specifies the name of a shared memory partition.

A CHARACTER expression that specifies the ownername associated with
the resource. A value of all spaces indicates the absence of an
ownername, and the system default (i.e., your ownername) is used.

An INTEGER expression, from 1 through 999, that specifies the logical
file code of the resource.

An INTEGER or CHARACTER expression or variable that specifies the
logical file code. If the LFC is an INTEGER, this argument must be an
integer constant in the range of 1-999 or a 1-3 CHARACTER string left
justified and blank filled. If the LFC is a CHARACTER, this argument
must be a 1-3 CHARACTER string.

An eight-word INTEGER array that has the following structure:

Array element 1

An Allocated Resource Table (ART) address that describes the current
resource allocation status in relation to other tasks in the system which
may be sharing it or attempting to gain access to it.

Array element 2

A File Assignment Table (FAT) address that contains information
pertinent to the access, current use, and status of the resource.

Array element 3

A Unit Definition Table (UDT) address that specifies the logical and
physical characteristics of the peripheral device associated with the
resource.

Array element 4

A Device Type Table (DDT) address that contains the ASCII
representation of the device type code associated with the device pointed
to by array element 3.

MPX-32 Native Mode
Subroutines 5-9

I

XINQ

istatus

Array element 5

A Controller Definition Table (COT) address that contajns I/O processing
information for the controller associated with the device described by
array element 3.

Array element 6

A Shared Memory Table (SMT) address that describes the physical and
logical characteristics of the shared memory region; applicable only to
memory partitions.

Array element 7

A File Pointer Table (FPT) address that contains the logical file code
associated with the resource.

Array element 8

A Mounted Volume Table (MVT) address that contains information
pertinent to the current operating characteristics of the volume on which
the resource resides; applicable only to volume resources.

An INTEGER variable that receives the status· after the subroutine has
been performed. Appendix B lists istatus values.

Programming Consideration

A parameter description area array element, containing a returned value of zero, implies
that the corresponding structure does not apply to the resource for which the inquiry was
made. For example, only elements 1, 6, and 8 apply for memory partitions. Therefore,
each array element contains a zero for any resource other than a memory partition.

Change 1
5-10

MPX-32 Native Mode
Subroutines SRTL

c

[

(

(~

The X LOG subroutine accepts a pathname and returns resource descriptors and directory
entry information for the specified resource. There are two calls for this subroutine.
The initial call, X_LOGI, initializes an internal structure that specifies the parameters
passed. Depending upon the pathname defined, a specific resource or all the resources
within a given directory are logged. If the pathname specifies that all resources within a
directory are to be logged, X_LOGS must be used to obtain all entries after the initial
call. Each call, including the initial call, X_LOGI, provides the log of one resource.

Callinq Sequence

CALL X _ LOGI (pathname,rdbuffer ,iengthl,dirbuffer ,length2,istatus)
CALL X_LOGS (rdbuffer,lengthl,dirbuffer,length2,istatus)

pathname

rdbuffer

lengthl

dirbuffer

length2

istatus

SRTL

A CHARACTER expression that specifies the path to the target
resource. If this parameter specifies a file name, only that file is
logged. If this parameter specifies only the volume and directory parts,
all files contained within the specified directory are logged.

An INTEGER*8 array that retums the resource descriptor for the logged
resource. Array rdbuffer must contain at least the number of array
elements specified by lengthl.

An INTEGER expression that specifies the number of array elements to be
retumed in rdbuffer. The value of length 1 must be 1 through 96.

An INTEGER array that returns the directory entry. The first four words
are the resource name; the remainder contains directory information
(e.g., collision counts, etc.). Array dirbuffer must contain at least the
number of array elements specified by length2.

An INTEGER expression that specifies the number of array elements to be
retumed in dirbuffer. The value of length2 must be a through 16.

An INTEGER variable that returns the status after the subroutine has
been performed. A value of -1 indicates all resources specified have been
logged. Appendix B lists istatus values.

MPX-32 Native Mode
Subroutines 5-11

X MCESC
X),40LNT

The X MDESC subroutine reads the resource descriptor into memory to modify it. This
subroutine locks the descriptor so that any other attempt to access it will not be allowed
until the descriptor is written to the volume. Therefore, X_WDESC must be called to
unlock the descriptor. X_MDESC may be called only by the owner of the resource.

Calling Seguence

CALL X_MDESC Cpathname,buffer,istatus)
X MDESCU (unit,buffer,istatus)
X':MDESCL (Ifc,buffer,istatus)

pathname

unit

lfc

buffer

istatus

A CHARACTER expression specifying the path to the target resource.

An INTEGER expression, from 1 through 999, that specifies the logical file
code of the resource.

An INTEGER or CHARACTER expression or variable that specifies the
logical file code. If the LFC is an INTEGER, this argument must be an
INTEGER constant in the range of 1-999 or a 1-3 character string left
justified and blank filled. If the LFC is a CHARACTER, this argument
must be a 1-3 character string.

A 96 doubleword integer array that retums the resource descriptor upon
completion of this subroutine.

An INTEGER variable that retums the status after the subroutine has been
performed. Appendix B lists istatus values.

5.1.14 X MOUNT

The X~OUNT subroutine requests that a volume or unformatted medium be mounted on
a device. The volume can be declared as either shared or exclusive. If not currently
mounted, a mount message appears on the console.

Calling Sequence

CALL X_MOUNT (volumeid,device,pub lic,nomsg,shared, timeout,buff er ,istat us)

volumeid

device

public

nomsg

shared

5-12

A CHARACTER expression that specifies the name of the volume to be
mounted.

A CHARACTER expression that specifies the two character device
mnemonic for the mount operation. In addition, the channel and sub address
can be specified.

A LOGICAL expression that is either true or false. 0 TRUE. specifies that
the volume is to be mounted as public; of ALSE. specifies that the volume is
to be mounted as non public.

A LOGICAL expression that is either true or false •• TRUE. specifies that
no mount message is to be displayed; .FALSE. specifies that a mount
message is to be displayed.

A LOGICAL expression that is either true or false. 0 TRUE. indicates the
volume may be shared; .F ALSE. specifies that the volume is exclusively
used.

MPX-32 Nati ve Mode
Subroutines SRTL

(

timeout

buffer

istatus

X MOUNT
X PERM

X_PROJCT

An INTEGER expression that specifies the desired time to spend waiting
for an available disc to mount the volume. Possible values are:

> 0 Return immediately
=0 Wait forever
< 0 Number of time units to wait

An INTEGER variable that is present for compatibility with previous
releases. No information is returned in buffer.

An INTEGER variable that returns the status after the subroutine has been
performed. Appendix B lists istatus values.

5.1.15 X_PERM

The X -pERM subroutine changes the status of a file allocated to the calling program
from temporary to permanent. The temporary file must have been previously created
and allocated with all of its file attributes; this subroutine does not establish attributes
for a file.

Calling Seguence

CALL X PERML (Ifc,pathname,istatus)
, X-PERMU (unit,pathname,istatus)

Ifc An INTEGER or CHARACTER expression or variable that specifies the
logical file code. If the LFC is an INTEGER, this argument must be an
integer constant in the range of 1-999 or a 1-3 character string left
justified and blank filled. If the LFC is a CHARACTER, this argument
must be a 1-3 character string.

unit An INTEGER expression, from 1 to 999, that specify the logical file code of
the resource.

pathname

istatus

A CHARACTER expression that specifies the pathname of the target file.

An INTEGER variable that returns the status after the subroutine has been
performed. Appendix B lists istatus values.

5.1.16 X PROJCT

The X PROJCT subroutine changes a project group to gain specific access rights of the
project group to .resources.

Calling Seguence

CALL X YROJCT (projectname,projectkey,istatus)

projectname

projectkey

istatus

SRTL

A CHARACTER expression that specifies the projectname associated
with the directory. A value of all blanks indicates the projectname
associated with the task is used and no change will occur.

A CHARACTER expression of one to eight characters that specifies the
projectkey. A value of all blanks indicates the absence of a projectkey.

An INTEGER variable that returns the status after the subroutine has
been performed. Appendix B lists istatus values.

MPX-32 Native Mode
Subroutines. 5-13 .

X ROESe
>(RECON

The X ROESC subroutine reads the resource descriptor of a file, directory, or memory
partition, thus providing information about a resource. .

Calling Seguence

CALL X ROESC (pathname,buffer,istatus)
X-ROESCU (unit,buffer,istatus)
X-ROESCL (Ifc,buffer,istatus)

pathname

unit

Ifc

buffer

istatus

A CHARACTER expression specifying the path to the target file, or
memory partition.

An INTEGER expression, from 1 to 999, that specifies the logical file code
of the resource.

An INTEGER or CHARACTER expression or variable that specifies the
logical file code. If the LFC is an INTEGER, this argument must be an
integer constant in the range of 1-999 or a 1-3 character string left
justified and blank filled. If the LFC is a CHARACTER, this argument
must be a 1-3 character string.

A 96· doubleword integer array that returns the resource descriptor upon
completion of this subroutine.

An INTEGER variable that returns the status after the subroutine has been
performed. Appendix B lists istatus values.

5.1.18 x..RECON

The x..RECON subroutine reconstructs a pathname for an assigned volume resource.

Calling Seguence

CALL X_RECONU (unit,pathname,istatus)
CALL X_RECONL (lfc,pathname,istatus)

unit

lfc

pathname

istatus

5-14

An INTEGER expression, from 1 to 999, that specifies the logical file code
of the resource.

An INTEGER or CHARACTER expression or variable that specifies the
logical file code. If the LFC is an INTEGER, this argument must be an
INTEGER constant in the range of 1-999 or a 1-3 character string left
justified and blank filled. If the LFC is a CHARACTER, this argument
must be a 1-3 character string.

A CHARACTER buffer that will contain the converted pathname on return
from the subroutine.

An INTEGER variable that returns the status after the subroutine has been
performed. Appendix B lists istatus values.

MPX-32 Native Mode
Subroutines SRTL

c

The X REPLC subroutine assigns the resource descriptor of a permanent file to a
temporary file. The original· space occupied by the permanent file is released and the
logical file code associated wi th the temporary file is deallocated. The permanent file
may be open at the time X_REPLC is called. However, the file must not be shared.

Calling Seguence

unit

lfc

CALL X REPLCU (unit,pathname,istatus)
CALL X-REPLCL (lfc,pathname,istatus)

An INTEGER expression, from 1 to 999, that specifies the logical file code
of the resource. This is the unit number assigned to the temporary file.

An INTEGER or CHARACTER expression or variable that specifies the
logical file code. If the LFC is an INTEGER, this argument must be an
integer constant in the range of 1-999 or a 1-3 character string left
justified and blank filled. If the LFC is a CHARACTER, this argument
must be a 1-3 character string. This is the LFC assigned to the temporary
file.

pathname A CHARACTER expression that specifies the pathname of the permanent
file to be replaced.

istatus An INTEGER variable that returns the status after the subroutine has been
performed. Appendix B lists istatus values.

The X RID subroutine returns the first eight words of the resource descriptor for a
specified resource.

Calling Sequence

CALL X RID (pathname,rid,istatus)

pathname A CHARACTER expression that specifies the path to the target resource.

rid An eight-word INTEGER array that receives the first eight words of the
resource descriptor.

istatus An INTEGER variable that returns the status after the subroutine has been
performed. Appendix B lists istatus values.

SRTL
MPX-32 Native Mode

Subroutines 5-15
1':-,

5.1.21 X RNAME

The X RNAME subroutine renames existing files. The user must supply both the original
pathname and the new pathname.

Callinq Sequence

CALL ><-RNAME (pathname,npathname,istatus)

pathname A CHARACTER e.xpression that specifies the path to the target file.

npathname A CHARACTER expression that specifies the new pathname of the target
resource.

istatus An INTEGER variable that returns the status after the subroutine has been
performed. Appendix B lists istatus values.

Programming Consideration

Files cannot be renamed across volumes.

5.1.22 ~ TRUNC

The X_TRUNC subroutine deallocates all unused segments currently allocated to an
extended disc file. The file can be either a temporary or permanent file; if a permanent
file, it can be opened or closed when this subroutine is called. You must specify either
'write', 'update', or 'append' access when the file is created.

Calling Sequence

CALL X TRUNC (pathname,istatus)
X-TRUNCU (unit,istatus)
X:TRUNCL (ifc,istatus)

pathname A CHARACTER expression that specifies the path to the target file.

unit

lfc

istatus

5-16

An INTEGER expression, from 1 to 999, that specifies the logical file code
of the resource.

An INTEGER or CHARACTER expression or variable that specifies the
logical file code. If the lFC is an INTEGER, this argument must be an
integer constant in the range of 1-999 or a 1-3 character string left
justified and blank filled. If the lFC is a CHARACTER, this argument
must be a 1-3 character string.

An INTEGER variable that returns the status after the subroutine has been
performed. Appendix B lists istatus values.

MPX-32 Native Mode
Subroutines SRTl

(

r

x WOESC

5.1.23 X WDESC

The X WDESe subroutine writes the resource descriptor (modified by the X MDESe
subroutine) to the volume and unlocks the description to allow access.

Calling Seguence

CALL ><-WDESe (buffer,istatus)

buffer

istatus

SRTL

A 96 INTEGER*8 array that contains the resource descriptor which will be
wri tten to the volume.

An INTEGER variable that returns the status after the subroutine has been
performed. Appendix B lists istatus values.

MPX-32 Native Mode
Subroutines 5-17

5.2 Device Type Codes

The following are the device type codes used for FORTRAN 77+ callable MPX-32
subroutines.

Device
Type Code Decimal

(Hex) Equivalent

00 00
01 01
02 02
03 03
04 04
05 05
06 06
07 07

08 08
09 09
OA 10
08 11
OC 12

00 13
OE 14
OF 15
10 16

11 17
12 18
13 19
14 20
15 21
16 22
17 23
18 24
19 25
lA 26
16 27

5-18

Two-
Character

Device
Mnemonic

CT
DC
OM
OF
MT
M9
M7
CD

CR
CP
LP
PT
TY

CT
FL
NU
CA

UO
Ul
U2
U3
U4
U5·
U6
U7
U8
U9
LF

MPX-32 Native Mode
Subroutines

Device Description

Operator console (not assignable)
Any disc unit
Any moving-head disc
Any fixed-head disc
Any magnetic tape unit
Any nine-track magnetic tape unit
Any seven";track magnetic tape unit
Any card reader or card

reader/punch

Any card reader
Any card punch
Any line printer
Any paper tape reader/punch
Any teletypewriter (other than

console)

Operator console (assignable)
Floppy disc
Null device
Communications adapter

(binary synchronous/asynchronous)

F or user-defined application
F or user-defined application
F or user-defined application
F or user-defined application
F or user-defined application
F or user-defined application
F or user-defined application
F or user-defined application
F or user-defined application
F or user-defined application
Lineprinter/ floppy controller

(used only with SYSGEN)

SRTL

(-~'

0'

(

[

a-tAPTER 6

SlPPORT FOR OTHER ST ANDAROS

6.l. Support Subroutines and F lA'lCtions

This chapter presents subroutines and functions that provide the features of the following
FORTRAN 77+ related standards: ISA-S61.1, ISA-S61.2, and MIL-STD-1753.

6.2 Bit Field Manipulation

The following subprograms constitute support for the ANSI/IS A 561.1-1976 and MIL-STD-
1753 bit manipulation capability.

The functions allow the programmer to view INTEGER data as ordered sets of bits
(a31'~30~ ••• ' SO)· Note that bits are numbered from RIGHT to LEFT. The rightmost bit
posltlcn 18 zero.

·1 . I
31 24 23 16 15 B 7 o

6.2.1 Logical Operations

In the following functions, j and m are INTEGER expressions. Operations are perfcrmed
on all corresponding bits of the operands. The numericstcrage unit is a 32-bit word.

6.2.1·1 lAND (Bit-wise Logical AND Function)

Callinq Sequence

iresult = lAND (j, m)

where the result o.f lAND (j, m) is:

31
1:: 2k * Ok * mk)
k=O

6.2.1.2 lEaR {Bit-wise Exclusive OR Function)

Callinq Sequence

iresult = IEOR 0, m)

where the result cf IEOR 0, m) is:

SRTL

31
l: 2k * (2 - Ok + mk» * Ok + mk)
k=O

Support for Other Standards 6-1

lOR
NOT

6.2..1.3 lOR (Bit-wise Logical OR Function)

Calling Seguence

iresult = lOR 0, m)

where the result of lOR 0, m) is:

6.2.l.4 NOT (Bit-wise Logical Complement Ftn:tion)

Callinq Sequence

iresult = NOT (j)

where the result of NOT (j) is:

6-2 Support for Other Standards SRTL

(

c'

L/

6.2.2 Shift Operations

JSHFT
lSHFTC

The shift operations provided are logical shift and circular shift; these operations are
implemented as INTEGER functions. The arguments may be INTE'GER constants,
INTEGER variables, INTEGER array elements, or INTEGER expressions. The arguments
ivalue and ishftcnt are defined as follows:

ivalue

ishftcnt

The value (binary pattern) to be shifted.

The shift count is specified as follows:

ishftcnt> 0 Left shift.

ishftcnt = 0 No shift.

ishftcnt < 0 Right shift.

If the absolute value of the shift count is greater than the number of bits in a numeric
storage unit, the result is undefined. The shift functions do not alter the values of any of

. their arguments.

6.2.2.1 JSHFT

Calling Seguence

iresult = ISHFT (i value, ishftcnt)

All 32 bits representing the argument ivalue are shifted ishftcnt places. If ishftcnt > 0,
shift to the left; if ishftcnt < 0, shift to the right. Bits shifted out, from either the left
or right end, are lost. Zeros are shifted in from the opposite end.

6.2.2.2 ISHFTC

Calling Seguence

iresult = ISHFTC (ivalue, ishftcnt, isub)

The rightmost isub bits of the ivalue argument are shifted circularly ishftcnt places (i.e.,
the bits shifted out from one end of the subfield isub are shifted into the opposite end).
The shifted bits are combined with the leftmost 3Z-isub unshifted bits from ivalue, and
the resulting value is returned by this function. No bits are los~. The absolute value of
the argument ishftcnt must be less than or equal to isub. The argument isub must be
greater than or equal to one and less than or equal to 32.

SRTL Support for Other Standards 6-3

BTEST
IBSET

6.2.3 Bit Processing

Individual bits of numeric storage units can be tested and changed with the following
routines for bit processing. The functions have two arguments, ivalue and ibit, which are
INTEGER expressions.

ivalue Binary pattern.

ibit Position (rightmost bit is bit 0).

6.2.3.1 BTEST

The BTEST LOGICAL function tests a specified bit of an INTEGER.

Calling Seguence

iresult = BTEST (ivalue, ibit)

The bit specified by ibit of argument ivalue is tested. If it is one, the value of the
function is .TRUE.; if it is zero, the value of the function is .F ALSE..

6.2.3.2 IBSET

The IBSET INTEGER function returns the value of a specified INTEGER with a specified
bit set.

Calling Sequence

iresult = IBSET (ivalue, ibit)

The value of the IBSET function is equal to the value of ivalue, with the ibit set to one.

6-4 Support for Other Standards SRTL

(

IBCLR

6.2.3.3 IBCLR

The ISCLR INTEGER function returns the value of a specified INTEGER with a specified
bit reset.

Calling Seguence

iresult = !SCLR (ivalue, ibit)

The result of the ISCLR function is equal to the value of ivalue, with the ibit set to zero.

SRTL Support for Other Standards 6-5

IBITS
MVBITS

6.2.4 Bit Subfields

Bit subfields are referenced by specifying both a bit position and a length. Bit positions
within a numeric storage unit are numbered from RIGHT to LEFT. The rightmost bit
position is zero. Bit fields may not extend from one 32-bit word into another 32-bit word
and the length of a field must be greater than zero.

6.2.4.1 IBITS

The IBITS function extracts a specified bit subfield from a specified .argument. The
result field is right justified and the remaining bits in the returned value are set to zero.

Calling Seguence

iresult = IBITS (ivalue, isrcpos, len)

ivalue, isrcpos, len INTEGER expressions.

A bit field is extracted from the value of ivalue, starting from bit position isrcpos and
extending left for len bits. The value of isrcpos+len must be less than or equal to 32.

6.2.4.2 MYBITS

The. MVBITS subroutine moves a bit subfield from a specified value to another bit
subfield in a specified destination variable or array element.

Calling Seguence

CALL MVBITS (ivalue, isrcpos, len, iresult, idestpos)

ivalue, isrcpos, len, idestpos INTEGER expressions.

iresult An INTEGER variable or array element.

Len bits from positions isrcpos through isrcpos+len-l of argument ivalue are moved to
positions idestpos through idestpos+len-l of argument iresult. The portion of argument
iresult not affected by the movement of bits remains unchanged. Arguments ivalue and
iresult may be the same numeric storage unit. The values of isrcpos+len and idestpos+len
must be less than or equal to 32.

6-6 Support for Other Standards SRTL

,/

c

(6.3 Time and Date

6.3.1 TIME (Obtain Time-of-Day)

The TIME subroutine allows a program to determine the current time of day.

Calling Seguenc~

CALL TIME (itime)

TIME
DATE

itime An INTEGER array that contains, upon return, the absolute time of day.

itime(l)
itime(2)
itime(3)

6.3.2 DATE (Obtain Date)

Hours (0-23)
Minutes (0-59)
Seconds (0-59)

The DATE subroutine allows the call!ng program to determine the current calendar date.

Calling Seguence

r· CALL DATE (idate)

[

idate An INTEGER array that contains, upon return, the date.

SRTL

idate(l)
idate(2)
idate(3)

A.D. year since zero
Month (1-12)
Day (1-31)

Support for Other Standards 6-7

START

6.4 Task Control Calls

Task control calls control the operation of programs within the system. Through these
external procedures, the execution of programs are started, stopped, or delayed.

6.4.1 START

The START subroutine executes the designated load module after the expiration of the
specified delay. The load module must be in the system directory.

Calling Seguence

CALL START (loadmod, idelay, iunits; istatus)

loadmod

idelay

iunits

istatus

6-8

An INTEGER array that specifies the name of the program to be executed.
The array must contain a left-justified, blank-filled ASCII doubleword.

An INTEGER expression that specifies the minimum length of time, in units
specified by iunits, to delay before executing the program. If the value of
idelay is zero or negative, the requested program is run as soon as possible.

An INTEGER expression that specifies the units of time as follows:

o
1
2
3

Basic counts of the system's real-time clock.
Milliseconds.
Seconds.
Minutes.

An INTEGER variable or INTEGER array element, set upon return to the
calling program, that indicates the disposition of the request as follows:

1
2 or greater

Request accepted.
Request rejected.

Support for Other Standards SRTL

c

[

TRNON

6.4.2 TRNON

The TRNON subroutine executes the designated load module at a specified time of day.
The load module must be located in the system directory.

Calling Sequence

CALL TRNON (loadmod, itime, istatus)

load mod

itime

istatus

SRTL

An INTEGER *8 variable that specifies the load module to be executed. This I
argument must be one to eight ASCII characters, left-justified, and blank­
filled.

An INTEGER array that contains the absolute time of day at which the
specified program is to be executed as follows:

itime(l)
itime(2)
itime(3)

Hours (0 to 23)
Minutes (0 to 59)
Seconds (0 to 59)

An INTEGER variable or INTEGER array element, set on return to the
calling program, that indicates the disposition of the request as follows:

1
2 or greater

Request accepted.
Request rejected.

Support for Other Standards
Change 1

6-9

WAIT

6.4.3 WAIT

The WAIT subroutine delays the continuation of the calling program for a specified
length of time.

Callinq Sequence

CALL WAIT (idelay, iunits, istatus)

idelay

iunits

istatus

6-10

An INTEGER expression that specifies the length of time, in units specified
by iunits, to delay before returning to the calling procedure. If the value of
idelay is zero or negative, no delay occurs. If the number of time units
specified is less than one system time unit, the task is not suspended and a
status of two is returned.

An INTEGER expression that specifies units of time as follows:

o Basic counts of the system's real-time clock.
1 Milliseconds.
2 Seconds.
3 Minutes.

An INTEGER variable or INTEGER array element that is set on return to the
calling program, indicating the disposition of the request as follows:

1 Request accepted.
2 or greater Delay as specified has not occurred.

Support for Other Standards SRTL

r

CFD...W

6.5 File Access

The following subroutines allow the user to create, open, close, and delete files, as
defined by the ISA standard. Because of the unique restrictions placed on files under the
ISA standard, the file must be created and manipulated internally by the task, using only
the following ISA-related file access routines.

6.5.1 Cfll.W

The CFIL W creates a permanent file that remains defined to the system until it is
deleted. Files established by this subroutine have no privacy attribute to restrict a
concurrent program from accessing the files~ The contents of the newly created file is
all zeros.

Calling Seguence

CALL CFIL W (pathname, ibytes, irecords, istatus)

pathname A CHARACTER expression or CHARACTER variable that specifies the full
pathname of the file. For programs run in compatible mode, this argument
is an INTEGER*8 variable that contains the one to eight ASCn character,
left justified and blank filled name of the file.

ibytes An INTEGER expression that specifies the number of bytes per record in the
file.

ire cords An INTEGER expression that specifies the number of records in the file.

istatus

SRTL

An INTEGER variable that is set on retum to the calling program. The
argument indicates the disposition of the request as follows:

Native

1
2
36
26
29

Compatible

1
2
5

10
N/A

File created.
File already exists.
Disc space unavailable.
File name contains invalid characters.
Directory not found.

Support for Other Standards 6-11

DF1LW

6.5.2 DF1LW

The DFILW subroutine deletes a specified permanent file. Any file created by CFILW
can be deleted by DFILW. There is no protection against deleting a file that is currently
open to another program.

Calling Sequence

CALL DFIL W (pathname, istatus)

pathname A CHARACTER expression or CHARACTER variable that specifies the full
pathname of the file. For programs run in compatible mode, this argument
is an INTEGER*8 variable that contains the one to eight ASCn character,
left justified and blank filled name of the file.

istatus An INTEGER variable that is set on retum to the calling program. This
argument indicates the disposition of the request as follows:

1 File deleted.
2 A file of the specified name does not exist.

6-12 Support for Other Standards SRTL

t~

r

,""

'. -

CFENW
CLOSEW

6.5.3 OPENW

The OPENW subroutine associates the unit (logical file code) specified by the calling
program with the named file and defines the desired access privilege of that program to
the file. A file can be opened only if it exists.

Calling Sequence

CALL OPENW (iunit, pathname, iuse, istatus)

iunit An INTEGER expression that specifies the unit number of the file.

pathname A CHARACTER expression or CHARACTER variable that specifies the full
path name of the file for programs run in native mode. For programs run in
compatible mode, this argument is an INTEGER*8 variable that contains the
one to eight ASCII character, left justified and blank filled name of the file.

iuse

istatus

An INTEGER expression
follows:

1 Read only

2 Shared

3 Protected read

4 Exclusive all

that declares the program's intended file use as

The current program can read but not write;
other concurrent programs can read and write.

The calling program can read or write; other
concurrent programs can also read or write.

The calling program can read only; other
concurrent programs can read only.

The calling program can read or write; all
other concurrent programs cannot read or
write.

An INTEGER variable that is set on return to the calling program. The
argument indicates the disposi tion of the request as follows:

1 File opened.
11 File specified does not exist or was not created in this run.

6.5.4 CLOSEW

The CLOSEW subroutine ends the calling program's association of the specified unit
number with a named file.

Calling Sequence

CALL CLOSEW (iunh, istatus)

iunit

istatus

SRTL

An INTEGER expression that specifies the unit number of the file.

An INTEGER variable that is set on return to the calling program. The
argument indicates the disposition of the request as follows:

1 File closed.
2 File not closed.

Support for Other Standards 6-13

I

RDRW

6.6 Unformatted Random I/O

6.6.1 RDRW

The RDR W subroutine allows the transfer of one data record from a file. The file is
treated as a direct access file for selection of the record. The calling program must
open the file with the OPENW subroutine and must currently have read access privileges.

Calling Seguence

CALL RDR W (iunit, irecord, icata, iinaxtran, istatus)

iunit An INTEGER expression that specifies the unit number of the file.

irecord An INTEGER expression that specifies the record number to be read. (The
record number must be positive.)

idata An INTEGER variable, array element, or array name with a byte address
that designates the first variable into which information is to be placed.

imaxtran An INTEGER expression that specifies the maximum number of bytes that
can be transferred.

istatus

Change 1
6-14

An INTEGER variable that is set on return to the calling program. The
argument indicates the disposition of the request as follows:

1
2
3

67

Data transfer completed successfully.
Data transfer failed.
Data buffer (idata) is not a byte address; data transfer may have
failed.
Illegal random access.

Support for Other Standards SRTL

(

r
WRTRW

6.6.2 WRTRW

The WRTRW subroutine writes unformatted direct access information into files that have
previously been opened by the calling program. The file is treated as a direct access file
for selection of the record. The calling program must have opened the file with the
OPEI'JW subroutine and must currently have write access privileges.

Calling Seguence

CALL WRTRW (iunit, irecord, idata, imaxtran, istatus)

iunit

irecord

idata

imaxtran

istatus

SRTL

An INTEGER expression that specifies the unit number of the file.

An INTEGER expression that specifies the record number to be written.
(The record number must be positive.)

An INTEGER variable, array element, or array name with a byte address
that designates the first variable from which information is to be obtained.

An INTEGER expression that specifies the maximum number of bytes that
can be transferred.

An INTEGER variable that is set on return to the calling program. The
argument indicates the disposition of the request as follows:

1
2
3

67

Data transfer completed successfully.
Data transfer failed.
Data buffer Odata) is not a byte address; data transfer may have I
failed.
Illegal random access.

Support for Other Standards
Change 1
6-15/6-16

r
a-iAPTER 7

SUBROUTINE AND FUNCTION CALUNG CONVENTIONS

7.1 Calling FORTRAN Subroutines from Assembly Language Programs

The Gould CSD FORTRAN 77+ compiler generates three different types of calling
protocols for CALL statements. The code generated is determined by the number of
parameters. For an assembler program to call a FORTRAN program, it must use the
same calling protocol as the FORTRAN program.

F unction and subroutine calling conventions are the same, except the function value is
returned in one or more registers. Refer to the FORTRAN 77+ Release 4.X Reference
Manual for specifics.

7.Ll Calling a FORTRAN Subroutine with No Parameters

To call a FORTRAN subroutine with no parameters:

1. Declare the subroutine name external (Assembly statement EXT) •
2. Branch and link to the subroutine (Assembly operation BL) •

The FORTRAN subroutine returns control to the assembler routine at the word following
the branch and link.

7.1.2 Calling a FORTRAN Subroutine with One Parameter

To call a FORTRAN subroutine with one parameter:

1. Declare the subroutine name external (Assembly statement EXT).
2. Load register 1 with the parameter address.
3. Branch and link to the FORTRAN subroutine (Assembly operation BL).

The FORTRAN subroutine returns control to the assembler routine at the word following
the branch and link.

Programming Consideration

The parameter storage location in the assembler routine should start on a boundary
compatible with the type of FORTRAN variable associated with the parameter.

SRTL
Subroutine and Function

Calling Conventions 7-1

7.1.3 Calling a FORTRAN Subroutine with Two or More Parameters

To call a FORTRAN subroutine with more than one parameter:

1. Declare the subroutine name external (Assembly statement EXT).
2. Set up a parameter area immediately after the branch and link (see below).
3. Branch and link to the FORTRAN subroutine (Assembly operation BL).

Parameter Area:

BL
DATAW nW
ACx
ACx

ACx

FORTRAN subroutine name
n is number of parameters; w is 4 bytes per parameter word
Address of first parameter
Address of second parameter

Address of last parameter

The calling parameter types in the first byte of the word address in the calling list are:

Type Code

o
1
2
3
4
5
6
7
8
9
A
B

I2.
INTEGER*l
INTEGER*2
INTEGER*4
INTEGER*8
REAL*4
REAL*8
COMPLEX *8
COMPLEX*16
Undefined
LOGICAL*l
LOGICAL*4
CHARACTER

Bit addressing is not implemented.

If set, bit a indicates an array address. It will be followed by an additional parameter
word pointing to the location containing the number of elements in the array being
passed (valid for call to A.TF and A.TU only).

If set, bit 12, with an address of absolute zero, indicates a null or nonexistent argument.

For CHARACTER type arguments, two parameters per argument are passed. The first
parameter word is an address pointing to the starting address of the string argument.
The next parameter word is an address pointing to the location containing the number of
characters (bytes) in the argument.

ACx must be coded as either ACB, ACH, ACW, or ACD for parameters that are byte,
halfword, word, or doubleword, respectively. .

The FORTRAN subroutine returns control to the main or calling program at the first
word after the parameter area.

7-2
Subroutine and Function

Calling Conventions SRTL

c· 7.2 Example: Assembler Routine Calling FORTRAN Subroutine

~./'

The following is an example of an assembler routine calling a FORTRAN subroutine with
two parameters:

$JOB EXAMPLE PROGRAMMER, KEY
$OPTION 25
$FORT77

SUBROUTINE PRINTER(WORD, VALUE)
INTEGER WORD IWORD TO BE PRINTED
INTEGER VALUE !INDEX OF WORD

*** WRITE THE INDEX AND THE WORD
WRITE('LO',10) VALUE,WORD

10 FORMAT(IX,Il,' ',A4)
END

$OPTION 25
$ASSEMBLE

PROGRAM CALLER
M.REQS

***THIS PROGRAM LOOPS TILL COUNTER MATCHES CERTAIN VALUE
***THE FORTRAN PROGRAM IS CALLED TO PRINT THE VALUES

DEF CALLER ALLOWS EXTERNAL REFERENCE
EXT PRINTER ALLOWS REFERENCE

CALLER EQU $ DEMONSTRATE SOME FLEXIBILITY IN FORMAT
ZR Rl BIAS REG.
ZR R3 VALUE OF ITERATIONS IN BYTES COUNT
LNW R2,COUNT GET NUMBER OF ITER A TIONS

LOOP LW R5,DA T A,Rl
STW R5,DATUM
STW R3,VALUE
STF RO,SAVEREGS JUST IN CASE SUBROUTINE CHANGES

CALLING BL PRINTER TRANSFER TO THE PRINTER
DATAW 2W NUMBER OF PARMS IS 2
ACW DATUM TELL SUBROUTINE THAT DATUM IS WORD
ACW VALUE TELL SUBROUTINE THAT VALUE IS WORD
LF RO,SAVEREGS CONTROL RETURNS HERE
ADI R3,1 INC PRINT VALUE
ADI Rl,1 W INC
BIW 2,LOOP . LOOP AGAIN

**TO GET HERE WE FELL OUT OF LOOP
SVC I,X'55' EXIT TO MPX .

***0 A T A SECTION
COUNT DATAW lOW
DATA DATAW C'WRDO',C'WRDI',C'WRD2"C'WRD3',C'WR04'

DA T AW C'WRD5' ,C'WRD6' ,C'WRD7',C'WRD8' ,C'WRD9'
VALUE RES IW
DATUM RES IW
SAVEREGS RES IF

END CALLER

SRTL
Subroutine and Function

Calling Conventions 7-3

$CATALOG
AS LO TO SLO
BUILD TEMP
PROGRAM PRINTER
PROGRAM CALLER
$EOJ
$$

7-4
Subroutine and Function

Calling Conventions SRTL

(
CHAPTER 8

RUN-TIME I/O TABLES AND BUFFERS

8.1 L.BB4

The SRTL module L.8B4 contains I/O buffers for File Control Blocks (FCB) and
Allocation Table Entries. The value N.ENTRYS determines the number of 3aW File
Control Blocks and 22W allocation table entries the user's task will get.

By modifying the source of L.BB4, increasing or decreasing the value N.ENTR YS, the
user can tailor the overall size of the I/O library included in tasks cataloged with this
library. The default for N.ENTR YS is set at 30.

Once the user modifies the source for L.BB4, the module must be reassembled and placed
into the user's run-time library.

The following is reprinted from the source of L.8B4 for use as a reference:

Run-time static memory pool constant definitions.

The parameter 'N.ENTRYS' may be changed to allow additional or fewer entries in the
FCB and allocation tables. 'N.ENTR YS' restricts the total number of files that can be
either dynamically allocated and/or open at any given time.

N.ENTRYS EQU 30 Total number of FCB and allocation
table entries

FCBSIZE EQU 3aW

ALCENTSZ EQU 22W

File Control Block Table

BOUND 10
F.CB EQU $ FCB table beginning address

REZ FCBSIZE*N.ENTR YS FCB table reserved area
F.CL EQU $ FCB table ending address

Allocation Table

A.LCTBL EQU $ Allocation table beginning address
REZ ALCENTSZ*N.ENTR YS Allocation table reserved area

A~LCTEND EQU $ Allocation table ending address

Run-time I/O
SRTL T abIes and Buffers 8-1

8.2 LDIOBUF

The SR TL module L.DIOBUF contains blocking buffers for Direct Access I/O. The value
N.BUFFERS determines the number of 192W Blocking 6uffers the user's task will get.

By modifying the source of L.DIOBUF, increasing or decreasing the value N.BUFFERS,
the user can tailor the overall size of the I/O library included in tasks cataloged with this
library. The default for N.BUFFERS is 6.

Once the user modifies the· source for L.DIOBUF, the module must be reassembled and
placed into the user's runtime library. .

The following is reprinted from the source of L.DIOBUF for use as a reference:

PROGRAM L.DIOBUF
UST NODATA

Definitions

DEF
DEF
DEF
DEF
DEF

B.MAP
B.NM
B.5IZ
B:BL
B:BN

I/O BUFFER FREE UST BIT MAP
SAVE AREA FOR II BLOCKING BUFFERS
SIZE OF ONE BUFFER
BLOCKING BUFFER END ADDRESS
BLOCKING BUFFER BEGIN ADDRESS AND
LENGTH OF BLOCKING BUFFERS AREA

The parameter IN.BUFFERS' may be changed to allow additional or fewer blocking
buffers used in Direct Access I/O. IN.8UFFERS' restricts the total number of blocking
buffers that can be used by a single FORTRAN task at any given time for direct access
I/O from a minimum of 1 to a maximum of 32.

N.8UFFERS EQU 6

Blocking Buffers

B:BN

B:BL
B.SIZ
B.NM
B.MAP

8-2

DATAW
REZ
EQU
DATAW
DATAW
DATAW
END

192W*N.BUFFERS Beginning and length of block buff area
192W*N.BUFFERS-l W
$-lW
192W
a
a

End of blocking buffer area
Size of one buffer
Number of blocking buffers
Buffer free list bit map

Run-time I/O
Tables and Buffers SRTL

APPENDIX A

AScn CODE SET

ASCII Card Code Internal ASCII
Hexadecimal Decimal Graphic (IBM029) Binary Name

00 a 12-0-9-8-1 0000 0000 NUL
01 1 12-9-1 0000 0001 SOH
02 2 12-9-2 0000 0010 STX
03 3 12-9-3 0000 0011 ETX

04 4 9-7 0000 0100 EOT
05 5 0-9-8-5 0000 0101 ENQ
06 6 0-9-8-6 0000 0110 ACK
07 7 0-9-8-7 0000 0111 BEL

08 8 11-9-6 0000 1000 BS
09 9 12-9-5 0000 1001 HT
OA 10 0-9-5 0000 1010 LF

[
OB 11 12-9-8-3 ·0000 1011 VT

DC 12 12-9-8-4 00001100 FF
00 13 12-9-8-5 0000 1101 CR
OE 14 12-9-8-6 0000 1110 SO
OF 15 12-9-8-7 0000 1111 SI

10 16 12-11-9-8-1 0001 0000 OLE
11 17 11-9-1 0001 0001 Cl
12 18 11-9-2 0001 0010 OC2
13 19 11-9-3 00010011 DC:;

14 20 9-8-4 00010100 OC4
15 21 9-8-5 00010101 NAK
16 22 9-2 00010110 SYN
17 23 0-9-6 . 00010111 ETB

18 24 11-9-8 ·0001 1000 CAN
19 25 11-9-8-1 00011001 EM
lA 26 9-8-7 00011010 SUB
IB 27 0-9-7 00011011 ESC

lC 28 11-9-8-4 00011100 FS
10 29 11-9-8-5 00011101 GS
IE 30 11-9-8-6 00011110 RS
IF 31 11-9-8-7 00011111 US

r
SRTL ASCll Code Set A-I

ASCII Card Code Internal ASCII
Hexadecimal Decimal Graphic (IBM029) Binary Name

20 32 0010 0000 SP
21 33 ! 12-8-7 0010 0001 Exclamation point
22 34 II 8-7 0010 0010 Quotation marks
23 35 II 8-3 0010 0011 Number sign

24 36 $ 11-8-3 0010 0100 Dollar sign
25 37 % 0-8-4 0010 0101 Percent
26 38 & 12 00100110 Ampersand
27 39 ,

8-5 '0010 0111 Apostrophe

28 40 (12-8-5 0010 1000 Opening parenthesis
29 41) 11-8-5 0010 1001 Closing parenthesiS
2A 42 * 11-8-4 00101010 Asterisk
2B 43 + 12-8-6 0010 1011 Plus

2C 44 , 0-8-3 0010 1100 Comma
20 45 - 11 0010 1101 Hyphen
2E 46 · 12-8-3 00101110 Period
2F 47 / 0-1 0010 1111 Slant

30 48 a a 0011 0000 Zero
31 49 1 1 00110001 One
32 50 2 2 0011 0010 Two
33 51 3 3 0011 0011 Three ,
34 52 4 4 0011 0100 Four
35 53 5 5 0011 0101 Five
36 54 6 6 00110110 Six
37 55 7 7 0011 0111 Seven

38 56 8 8 00111000 Eight
39 57 9 9 00111001 Nine
3A 58 · 8-2 00111010 Colon · 3B 59 ; 11-8-6 00111011 Semicolon

3C 60 < 12-8-4 00111100 Less than
3D 61 = 8-6 00111101 Equals
3E 62 > 0-8-6 00111110 Greater than
3F 63 ? 0-8-7 00111111 Question mark

40 64 @ 8-4 0100 0000 Commercial at
41 65 A 12-1 0100 0001 Uppercase A
42 66 B 12-2 0100 0010 Uppercase B
43 67 C 12-3 0100 0011 Uppercase C

44 68 0 12-4 0100 0100 Uppercase 0
45 69 E 12-5 0100 0101 Uppercase E
46 70 F 12-6 0100 0110 Uppercase F
47 71 G 12-7 0100 0111 Uppercase G

ar-

A-2 ASCII Code Set SRTL

ASCII Card Code Internal ASCII
Hexadecimal Decimal Graphic (IBM029) Binary Name

48 72 H 12-8 01001000 Uppercase H
49 73 I 12-9 0100 1001 Uppercase I
4A 74 J 11-1 0100 1010 Uppercase J
4B 75 K 11-2 0100 1011 Uppercase K

4C 76 L 11-3 01001100 Uppercase L
4D 77 M 11-4 0100 1101 Uppercase M
4E 78 N 11-5 01001110 Uppercase N
4F 79 0 11-6 0100 1111 Uppercase 0

50 80 P 11-7 0101 0000 Uppercase P
51 81 Q 11-8 0101 0001 Uppercase Q
52 82 R 11-9 01010010 Uppercase R
53 83 S 0-2 01010011 Uppercase S

54 84 T 0-3 01010100 Uppercase T
55 85 U 0-4 0101 0101 Uppercase U
56 86 V 0-5 0101 0110 Uppercase V
57 87 W 0-6 01010111 Uppercase W

58 88 X 0-7 01011000 Uppercase X
59 89 Y 0-8 01011001 Uppercase Y
5A 90 Z 0-9 01011010 Uppercase Z
5B 91 [12-8-2 01011011 Opening bracket

r 5C 92 \ 0-8-2 01011100 Reverse slant
5D 93] 11-8-2 01011101 Closing bracket
5E 94 .. 11-8-7 01011110 Circumflex
5F 95 0-8-5 01011111 Underline -
60 96 \ 8-1 01100000 Accent grave
61 97 a 12-0-1 01100001 Lowercase a
62 98 b 12-0-2 0110 0010 Lowercase b
63 99 c 12-0-3 0110 0011 Lowercase c

64 100 d 12-0-4 01100100 Lowercase d
65 101 e 12-0-5 0110 0101 Lowercase e
66 102 f 12-0-6 01100110 Lowercase f
6,7 103 g 12-0-7 0110 0111 Lowercase g

68 104 h 12-0-8 0110 1000 Lowercase h
69 105 i 12-0-9 0110 1001 Lowercase i
6A 106 j 12-11-1 0110 1010 Lowercase j
6B 107 k 12-11-2 0110 1011 Lowercase k

6C 108 1 12-11-3 0110 1100 Lowercase 1
6D 109 m 12-11-4 0110 1101 Lowercase m
6E 110 n 12-11-5 01101110 Lowercase n
6F 111 0 12-11-6 0110 1111 Lowercase 0

SRTL Ascn Code Set A-3

ASCII Card Code Internal ASCII
Hexadecimal Decimal Graphic (IBM029) Binary Name

70 112 P 12-11-7 0111 0000 Lowercase p
71 113 q 12-11-8 0111 0001 Lowercase q
72 114 r 12-11-9 0111 0010. Lowercase r
73 115 s 11-0-2 0111 0011 Lowercase s

74 116 t 11-0-3 01110100 Lowercase t
75 117 u 11-0-4 0111 0101 Lowercase u
76 118 v 11-0-5 0111 0110 Lowercase v
77 119 .w 11-0-6 0111 0111 Lowercase w

78 120 x 11-0-7 01111000 Lowercase x
79 121 y 11-0-8 01111001 Lowercase y
7A 122 z 11-0-9 01111010 Lowercase z
78 123 t 12-0 01111011 Opening brace

7C 124 I 12-11 01111100 Vertical Line
70 125 } 11-0 01111101 Closing brace
7E 126 11-0-1 01111110 Tilde
7F 127 12-9-7 01111111 DEL

80 128 11-0-9-8-1 1000 0000
81 129 0-9-1 1000 0001
82 130 0-9-2 1000 0010
83 131 0-9-3 1000 0011

84 132 0-9-4 1000 0100
85 133 11-9-5 1000 0101
86 134 12-9-6 1000 0110
87 135 11-9-7 1000 0111

88 136 0-9-8 1000 1000
89 137 0-9-8-1 1000 1001
8A 138 0-9-8-2 1000 1010
88 139 0-9-8-3 1000 1011

8C 140 0-9-8-4 1000 1100
80 ·141 12-9-8-1 1000 1101
8E 142 12-9-8-2 1000 1110
8F 143 11-9-8-3 1000 1111

90 144 12-11-0-9-8-1 10010000
91 145 9-1 1001 0001
92 146 11-9-8-2 1001 0010
93 147 9-3 1001 0011

94 148 9-4 10010100
95 149 9-5 1001 0101
96 150 9-6 10010110
97 151 12-9-8 10010111

A-4 ASCII Code Set SRTL

ASCII Card Code Internal ASCII
[Hexadecimal Decimal Graphic (IBM029) Binary Name

98 152 9-8 10011000
99 153 9-8-1 10011001
9A 154 9-8-2 10011010
9B 155 9-8-3 10011011

9C 156 12-9-4 10011100
90 157 11-9-4 10011101
9E 158 9-8-6 10011110
9F" 159 11-0-9-1 10011111

AO 160 12-0-9-1 10100000
Al 161 12-0-9-2 10100001
A2 162 12-0-9-3 10100010
A3 163 12-0-9-4 10100011

A4 164 12-0-9-5 10100100
A5 165 12-0-9-6 10100101
A6 166 12-0-9-7 10100110
A7 167 12-0-9-8 10100111

A8 168 12-8-1 10101000
A9 169 12-11-9-1 10101001
AA 170 12-11-9-2 10101010
AB 171 12-11-9-3 1010 1011

[AC 172 12-11-9-4 10101100
AD 173 12-11-9-5 10101101
AE 174 12-11-9-6 10101110
AF 175 12-11-9-7 10101111

BO 176 12-11-9-8 10110000
B1 177 11-8-1 10110001
B2 178 11-0-9-2 10110010
B3 179 11-0-9-3 10110011

B4 180 11-0-9-4 10110100
B5 181 11-0-9-5 1011 0101
B6 182 11-0-9-6 10110110
B7 183 11-0-9-7 1011 0111

B8 184 11-0-9-8 10111000
B9 185 0-8-1 10111001
BA 186 12-11-0 10111010
BB 187 12-11-0-9-1 10111011

BC 188 12-11-0-9-2 10111100
BD 189 12-11-0-9-3 10111101
BE 190 12-11-0-9-4 10111110
BF 191 12-11-0-9-5 10111111

["
SRTl.,. ASCn Code Set A-5

Ascn Card Code Internal ASCII
Hexadecimal Decimal Graphic (IBM029) Binary Name

CO 192 12-11-0-9-6 1100 0000
Cl 193 12-11-0-9-7 1100 0001
C2 194 12-11-0-9-8 1100 0010
C3 195 12-0-8-1 1100 0011

C4 196 12-0-8-2 1100 0100
CS 197 12-0-8-3 1100 0101
C6 198 12-0-8-4 1100 0110
C7 199 12-0-8-5 1100 0111

C8 200 12-0-8-6 11001000
C9 201 12-0-8-7 1100 1001
CA 202 12-11-8-1 11001010
C8 203 12-11-8-2 11001011

CC 204 12-11-8-3 11001100
CD 205 12-11-8-4 11001101
CE 206 12-11-8-5 11001110
CF 207 12-11-8-6 11001111

DO 208 12-11-8-7 11010000
Dl 209 11-0-8-1 11010001
02 210 11-0-8-2 11010010
D3 211 11-0-8-3 11010011

D4 212 11-0-8-4 11010100
DS 213 11-0-8-5 11010101
D6 214 11-0-8-6 11010110
D7 215 11-0-8-7 11010111

D8 216 12-11-0-8-1 11011000
D9 217 12-11-0-1 11011001
DA 218 12-11-0-2 11011010
DB 219 12-11-0-3 11011011

DC 220 12-11-0-4 11011100
DO 221 12-11-0-5 11011101
DE 222 12-11-0-6 11011110
DF 223 12-11-0-7 11011111

EO 224 12-11-0-8 1110 0000
E1 225 12-11-0-9 1110 0001
E2 226 12-11-0-8-2 1110 0010
E3 227 12-11-0-8-3 1110 0011

E4 228 12-11-0-8-4 1110 0100
E5 229 12-11-0-8-5 1110 0101
E6 230 12-11-0-8-6 11100110
~7 231 12-11-0-8-7 1110 0111

A-6 ASCU Code Set SRTL

Ascn Card Code Interna! ASCn
Hexadecimal Decima! Gra~hic (IBM029) Binary Name

E8 232 12-0-9-8-2 1110 1000
E9 233 12-0-9-8-3 11101001
EA 234 12-0-9-8-4 11101010
EB 235 12-0-9-8-5 1110 1011

EC 236 12-0-9-8-6 11101100
ED 237 12-0-9-8-7 1110 1101
EE 238 12-11-9-8-2 1110 1110
EF 239 12-11-9-8-3 11101111

FO 240 12-11-9-8-4 11110000
F1 241 12-11-9-8-5 11110001
F2 242 12-11-9-8-6 11110010
F3 243 12-11-9-8-7 11110011

F4 244 11-0-9-8-2 11110100
F5 245 11-0-9-8-3 11110101
F6 246 11-0-9-8-4 11110110
F7 247 11-0-9-8-5 11110111

F8 248 11-0-9-8-6 11111000
F9 249 11-0-9-8-7 11111001
FA 250 12-11-0-9-8-2 11111010

• FB 251 12-11-0-9-8-3 11111011

FC- 252 12-11-0-9-8-4 11111100
FD 253 12-11-0-9-8-5 11111101
FE 254 12-11-0-9-8-6 . 11111110
FF 255 12-11-0-9-8-7 11111111

SRTL Ascn Code Set A-7/A-8

\~--

/

[/

[~/

APPENJIX B

DIAGNOSTICS AN) ERROR STATUS

B.l Execution-time Diagnostics

RS-Error
Number Cause of Error

RSOI Error occurred in the routine named in the extended
code. See the named service for specific reason.

RS02 Error occurred in the routine named in the extended
code. See the named service for specific reason.

RS03 Error occurred in the routine named in the extended
code. See the named service for specific reason.

RS04 Error occurred in the routine named in the extended
. code. See the named service for specific reason •

RS05 Error occurred in the routine named in the extended
code. See the named service for specific reason.

RS06 Error occurred in the routine named in the extended
code. See the named service for specific reason.

RS07 I/O error while reading load module.

RS08 No free MIDL space.

RS09 Insufficient memory.

RSIO Error occurred in the routine named in the extended
code. See the named service for specific reason.

RSll Invalid send buffer address or quantity exceeds 768 bytes.

RS12 Invalid return buffer address.

RS13 Invalid no-wait mode end-action routine address.

RS14 Memory pool unavailable.

RS15 Destination task queue depth exceeded.

RS16 Invalid PSB address.

RS22 Missing file control block (FCB).

SRTL Diagnostics and Error Status

abort

abort

abort

abort

abort

abort

abort

8-1

RS Error
Number

RS29

RS30

RS32

RS33

RS38

RS47

RS48

RS49

RS50

RS53

RS60

RS65

RS66

RS67

RS68

RS69

RS70

RS90

RS99

RT Error
Number

RTOI

RT02

RT03

B-2

Cause of Error

Request denied, LFC not allocated.

Request denied, specified LFC not assigned to a permanent
disc file.

Error occurred in· the· routine named in the extended abort
code. See the named service for specific reason.

Error occurred in the routine named in the extended abort
code. See the named service for specl fic reason.

Request denied, time out occurred while waiting to become
lock owner.

Invalid time interval request.

Invalid task number.

Invalid run request.

Missing parameter.

Invalid receiver.

Invalid address specified.

Invalid delete request.

Invalid abort request.

Invalid resource mark request.

T askname/ tasknumber not found.

•

File control block (FCB) not located.

Allocation error (appears only if lOST AT and $n parameters
have been omitted).

Request denied, file lock allocated or exclusively locked.

An attempt was made to mix caUs between SRTL libraries.

Cause of Error

Unformatted read I/O error.

Formatted read I/O error.

Unformatted write I/O error.

Diagnostics and Error Status SRTL

C"" \
~~, '

c

RT Error
Number

RT04

RT05

RT06

RT07

RT08

RT09

RTIO

RTll

RT12

RT13

R"t:l4

RT15

RT16

RT17

RT18

RT19

RT20

RT21

RT22

RT23

RT24

RT25

RT26

SRTL

Cause of Error

Formatted write I/O error.

Reference ma~e to nonexistent device type or address.

Unit out of range (0-999).

No left parenthesis in format.

Transfer index out of range (option 7 or M:ERRFLG can be
used to avoid an abort.

F ormat error.

The I/O transfer requirements for data buffer are incompatible
with amount of available data.

Format parenthesis level in excess of two.

Invalid descriptor in format table.

Argument list exceeds logical read record.

Incorrect descriptor in format.
,

Integer descriptor, but non-integer argument (option 7 or
M:ERRFLG can be used to avoid an abort).

Hexadecimal descriptor, but non-hexadecimal argument (option
7 or M:ERRFLG can be used to avoid an abort).

D,E,F ,G, descriptor, not real or complex argument (option 7 or
M:ERRFLG can be used to avoid an abort).

Logical descriptor, but non-logical argument (option 7 or
M:ERRFLG can be used to avoid an abort).

Attempt to read past EOF /EOM.

Attempt to write past EOF /EOM.

Attempt to read past EOF /EOM.

Attempt to write past EOF /EOM.

Attempt to backspace following EOF /EOM.

Rewind after EOF /EOM.

Formatted record read.

Unformatted record read.

Diagnostics and Error Status 8-3

RT Error
Number Cause of Error

~.
RT27 Doubleword integer overflow (option 7 or M:ERRFLG can be

used to avoid an abort). .

RT28 Byte integer input with negative sign (option 7 or M:ERRFLG
can be used to avoid an abort).

RT29 Byte integer overflow (option 7 or IVI:ERRFLG can be used to
avoid an abort).

RT30 Halfword integer overflow (option 7 or M:ERRFLG can be used
to avoid an abort).

RT31 Fullword integer overflow (option 7 or M:ERRFLG can be used
to avoid an abort).

RT32 Illegal character in D,E,F ,G, input (option 7 or M:ERRFLG can
be used to avoid an abort).

RT33 Underflow in floating conversion (option 7 or M:ERRFLG can
be used to avoid an abort).

RT34 Overflow in floating conversion (option 7 or M:ERRFLG can be
used to avoid an abort) •

•
RT35 Argument list overflow (option 7 or M:ERRFLG can be used to·

avoid an abort).

RT36 Argument list overflow (option 7 or M:ERRFLG can be used to
avoid an abort).

RT37 Not enough arguments were passed.

RT40 Attempt to· free busy 10CH/IOCB entry.

RT41 Attempt to link busy 10CH/IOCB entry.

RT42 10CH/IOCB table overflow.

RT43 ADI wait I/O returned before I/O termination.

RT44 Status parameter not linked to ADI device prior to I/O request.

RT46 ADI table address not on halfword boundary.

RT50 Missing parameter.

RT51 Parameter out of range.

RT52 End of search list reached.

~.' RT53 No unit connection~
--'

B-4 Diagnostics and Error Status . SRTL

t

C

RT Error
Number

. RT55

RT60

RT61

RT62

RT63

RT64

RT65

RT66

RT67

RT68

RT69

RT70

RT74

RT80

RT81

RT82

RT83

RT84

RT85

RT86

RT87

SRTL

Cause of Error

Error found in math library routine •

Illegal random access.

List-directed I/o (input) encountered, character string split
between two records.

Internal file read/write past EOF /EOM with no END option.
specified.

Block number exceeds maximum block number in file.

Record overflow.

Record length exceeds maximum allowable.

Record length not specified for random access or specified for
sequential file.

Implicit open not allowed for random access I/O.

Reference to sequential operation on a file opened for direct
access.

Error(s) encountered on open.

File. must be unblocked and opened for random access for
BUFFERIN/BUFFEROUT random I/O.

Attempt to delete a file that does not exist or does not have I
delete access.

Subscript error (i.e., subscript not a decimal number, illegal
punctuation, excessive subscripts, or subscript out of range.)

NAMELIST identifier error (i.e., column 1 non-blank,
ampersand character not present, name does not immediately
follow ampersand character, or non-blank following name).

Symbolic name error (no equal sign after variable/array name).

Data item error (i.e., excessive values for symbol or expected
to find symboI).

Illegal value (i.e., illegal punctuation, mlssmg comma, zero
Hollerith count, or illegal character in value).

Attempt to read past EOF /EOM.

Attempt to write past EOF /EOM.

Symbolic name not defined in NAMELIST statement •.

Diagnostics and Error Status
Change 1

B-5

RT Error
Number

RT88

RT89

RT90

RT91

RT92

RT93

RT94

RT95

RT96

RT97

RT98

RT99

Cause of Error

Repeat count error.

Symbol name exceeds eight characters •.

Invalid read/write operation.

End-of-file status return pursuant to random access record.

Random access partition number out of range (i.e., partition
number nut between 1 and 95, inclusive).

Random access record number out of range (i.e., record
number not between 1 - 65,535, inclusive).

Random access transfer length (write/read) or record size
definition (define) out-of-range (i.e., transfer record length not
between 1 and 65,535 bytes inclusive).

Invalid random access argument list length.

FCB table overflow (31) or maximum number of entries
allowed in the allocation table (30) has been exceeded.

Diagnostic output messages exceed 100 lines. To allow more
diagnostic messages, statically assign the "DO" file (e.g.,
$ASSIGN2 DO=SLO,500).

Denial return when attempting to allocate file for diagnostic
output message.

Insufficient blocking buffer space. (Each unit assignment to a
system file requires one blocking buffer unless one file is
assigned to another, i.e., $AS LFC TO LFC).

The RT prefix can be replaced by a W. or T., which indicates whether the error is
warning or terminal, re~pectively.

B-6 Diagnostics and Error Status SRTL

[/

The following errors are considered minor in the sense that either option 7 or M:ERRFLG
may be used toavbid an abort.

RT08

RT15

RT16

RT17

RT18

RT27

RT28

RT29

RT30

RT31

RT32

RT33

RT34

RT35

RT36

B.2 Error Status Values for X Subroutines

The following istatus values may apply to these subroutines:

X_DISMNT
X_MOUNT
X_INQ

X_EXCL
X)NCLD
X_DPXMNT

Request accepted.

X INCXDP

o
1
2
3
4
5
6
7
8
9

. Resource does not exist (invalid pathname or memory partition definition).

SRTL

10
11
12

Specified access mode not allowed.
File Printer Table/File Assignment Table (FPT /FA T) space not available.
Blocking buffer space not available.
Shared Memory Table (SMT) entry not found for partition.
Volume Assignment Table (VAT) space not available.
Static assignment to dynamic common.
Unrecoverable input/output error to volume.
Invalid usage specification.
Dynamic partition definition exceeds memory limitations.
Invalid Resource Requirement Summary (RRS) entry.
Logical file code logically equated to an unassigned LFC.

Diagnostics and Error Status
Change 1

B-7

I

13
14
15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

33

35

36
37
38
50
51
52
53
54
55
57
58
59

Assigned device not in system.
Resource already allocated by requesting task •.
System General Output (SGO) or System Control (SYC) assignment not
allowed by real-time task.
Common memory conflicts with task's address space.
Duplicate LFC assignment attempted. .
Invalid device specification.
Invalid resource ida
Volume not assigned to this task or volume is public.
J.MOUNT run request failed.
Resource marked for deletion.
Assigned device is marked off-line.
Segment definition allocation by unprivileged task.
Random access not allowed for this access mode.
User attempting t~ open System Control (SYC) file in a write mode.
Resource already opened by this task in different access mode.
Invalid access specification at open.
Logical file code not assigned.
Invalid allocation index.
Close request issued for unopened resource.
Attempt to release exclusive resource lock not owned by this task or a
synchronous lock not set.
Attempt to release exclusive resource lock on resource allocated for
exclusi ve use.
Attempt to exclude memory partition not mapped into requesting task's
address space.
Attempt to include dynamic partition in memory-only environment.
Invalid J.MOUNT request.
Timeout occurred while waiting for resource to become available.
Resource is exclusively locked by another task.
Shareable resource allocated by another task in incompatible access mode.
Volume space not available.
Assigned device not available.
Unable to allocate resource for specified use.
Allocated Resource Table (ART) space is not available.
Volume not available for mount with requested use.
Shared Memory Table (SMT) space not available.
Mounted Volume Table (MVT) space not available.

The following istatus values may apply to these subroutines:

B-8

X CREDIR
X-OOIR
X-DIRECT
X-EXTEND
XPROJCT
X-LOG

X MOESC
X-PERM
X-RDESC
X~RECON
X-REPLC
X-RID

Operation successful.
Pathname invalid.

X RNAME
XTRUNC
X-WDESC
X-CPART
X-DPART

o
1
2
3
4
5
6

Pathname consists of volume only.
Volume not mounted.
Directory does not exist.
Directory name in use.
Directory creation not allowed at specified level.

Diagnostics and Error Status SRTL

""--.... "

7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

I 32 r 33
l 34

35
36
37
38
39
40

41
42
43
44
45

46
47
48
49

50

SRTL

Resource does not exist.
Resource name in use.
Resource descriptor unavailable.
Directory entry unavailable.
Required file space unavailable.
Unrecoverable input/ output error while reading DMAP.
Unrecoverable input/output error while writing DMAP.
Unrecoverable input/ output error while reading resource descriptor.
Unrecoverable input/output error while writing resource descriptor.
Unrecoverable input/ output error while reading SMAP.
Unrecoverable input/output error while writing SMAP.
Unrecoverable input/ output error while reading directory.
Unrecoverable input/ output error while wri ting directory.
Projectgroup name or key invalid.
Reserved.
File Control Block (FCB) destroyed.
Parameter address error.
Resource descriptor not currently allocated.
Pathname block overflow.
File space not currently allocated.
Change defaults not allowed.
Resource cannot be accessed in required mode.
Operation not allowed on this resource type.
Required parameter not specified.
File extension denied; segment definition area full.
File extension denied; file would exceed maximum size allowed.
Input/output occurred when resource was zeroed.
Replacement file cannot be allocated.
Invalid directory entry. ':
Directory and file not on same volume.
Reserved.
Replacement file not exclusi vel y allocated to you.
Out of system space.
Cannot allocate File Assignment Table/File Pointer Table (FAT /FPT) w6en
creating a temporary file.
Deallocate error in zeroing file.
Resource descriptor destroyed.
Invalid resource specification.
Error from Resource Management Module (H.REMM).
Attempt to modify more than one resource descriptor at the same time; or
an attempt to rewrite before mOdifying resource descriptor.
Resource descriptor is locked by another CPU (dual port only).
Directory contains acti ve entries and cannot be deleted.
A resource descriptor's link count is zero.
Attempting to delete a permanent resource without specifying a pathname
or pathname block vector. ' .
Resource descriptor contains unexpected resource descriptor type.

Diagnostics and Error Status B-9/B-10

Gould S.E.L. Users Group ...

The purpose of the Gould S.E.L. Users Group is to help create better User/User and User/Gould S.E.L
Communications.

There is no fee to join the Users Group. Simply complete the Membership Application on the reverse side
and mail to the Users Group Administrator. You will automatically receive Users Group Newsletters.
Referral Guide and other pertinent Users Group Activity information.

Fold and Staple for Mailing
... : ---,----------------------------------- ------_______-..-...;,_~' ;.. __ ;.' __ 0:.;.

1
1
1
1
1
1
1
1

I
1
1
1

I
1
1
1
i
I
I
I

.~ I

r:/:
CD 1
Cli
-I

1
1
1

IIIIII
BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 947 FT. LAUDERDALE, FLORIDA 33310

POSTAGE WILL BE PAID BY ADDRESSEE

Gould Inc., S.E.L. Computer Systems Division
Attn: Users Group Administrator
6901 W. Sunrise Blvd., P.O. Box 9148
Ft. Lauderdale, FL 33310-9148

NoPost.GE
NE£EsSAAY
IF MAILEO

IN THE
UNITED STATES

w'
i

iatf ' ,
,.t

;

r----------------------------------~o'-id-an-d-S-t-a-p·l-e-fo-r-M-a-n--In;----------------~~;·~'~M.-----'---~--------~--
I
1
1
1
I

1
1
1
1
I
1
1 (,J
1
1

I
I
I
1
1
1

-) GOULD
~/eottorifOtl

....... , U.L.CodIpucw $vn- Division
agol W. Sunrise Shid .. P.O.8ox 9148.
t=Oit UJu~.":L33:nO·9148
Phone (XIS) 587-29(jQ

-) GOULD
Electronics

Users Group MemberShip; Application . , '

USl:ROAGANIZATION: _____________________________ _

R,eprREsENTATIVE{S): _____________________________ _

AIJOi/ll£SS: _______________________________ _

T'lElEXNUMSE'R: __________ _ PHONE NUMBER: _________________ ___

'NUMBER ANO TYP.E OF GOULO S.E.L. COMPUTERS: _____________________________ _

APPLICATIONS (Please Indicate)

1.EOP

A. Inventory Control
'8. Engineering & ProductitJll

'O:.ta ContrOl
C.Uirge MachineOff~l;oad
D.RemoteSatch Terminal
E. 'Other

4. In~strial·Automation

A.ContinuousProcess ContrOl Op.
,8. Prnduction ,Scheduling&! Control
C. 'PrOC8SS;Planning
O.Nunwrieal ContrOl
e.Other

7. SimulatIon

A. FlightSimula'tc>rs
8. Power Ptant Simulators
,t. 'e~onic Warfare
D. rOther

24~1(3/83)

2. Communications

A. Telephone System Monitoring
B. Front End Processors
C. Message Switching
D. Other

5. Laboratory and Computational

A. Seismic
B. Scientific Calculation
C. Experiment Monitoring
D. Mathematical Modeling
E. Signal Processing
F. Other

8. Other

3. Design & Drafting

A. Electrical
B. Mechanical
C. Architectural
O. Cartography
E. Image Processing
F. Other

6. Energy Monitoring & Control

A. Power GeneratiOn
B. Power Distribution
C. Environmental Control
D. Meter Monitoring
E. Other

Please return to:

Users Group Administrator

Date: ____________ _

