Gould Scientific Run-time Library
Release 4.2

Reference Manual

July 1985

Publication Order Number 323-004020-000

=x GOULD

Electronics

This manual is supplied without representation or warranty of any kind. Gould Inc.,
Computer Systems Division therefore assumes no responsibility and shall have no liability

of any kind arising from the supply or use of this publication or any material contained
herein.

LIMITED RIGHTS LEGEND
for
PROPRIETARY INFORMATION

The information contained herein is proprietary to Gould CSD and/or its vendors, and its
use, disclosure or duplication is subject to' the restrictions stated in the Gould CSD
license agreement Form No. 620-06(1/82) or the appropriate third-party sublicense
agreement. The information is provided to government customers with limited mghts as
described in DAR 7-104.9A. ’

MPX-32 and CONCEPT/32 are Trademarks of Gould Inc.

(C) Copyright 1984

Gould Inc., Computer Systems Division
All Rights Reserved
Printed in the U.S.A.

)

HISTORY

The Scientific Runtime Library Release 4.1 Reference Manual, Publication Order
Number 323-004020-000, was printed July 1984.
Publication Order Number 323-004020-001 (Change 1, Release 4.2) was printed July 1985.

The updated manual contains the following pages:

* Change * Change
Number Number

Title Page « e e ee e . | 4-41 through 4-53/4-54 0
Copyright Page « .. ieveveeennnn .C 5-1 through5-6 «.ievivvieennns 0
li/ivChange 1l «vvv e vnennnnennns 1 L ool
Hi/ivthrough vi oo veenennnnennn 0 e 0
viiand Vill oo e vevnne i innennn 1 S5=8A/5-BB st ittt 1
ix through Xi/Xil e v e o v e v neovnennns 0 5-9 ... Gt e et e et 0
1-1 through 1-4 ceeseeessl0 5-10 t ittt it it i e 1
2-1and 2-2 . iiiii it 1 5-11 through 5-18.....c..c.0
2-3 through 2-5/2-6 v vvvevieennenn 0 6-1 through 6-8vvvivann. 0
2-7/2-8 through 2-13/2-14 . v v v v 1 69 4ttt 1
2-15/2-16 through 2-25/2-26 v vev... 0 6-10 through L I ..0
2-27/2-28. 00 iiiinnnn l 6-14 through 6-15/6-16 .. e vvvv .. 1
2-29/2-30 through 2- 31/2-32 . 0 7-1through 7-4 ..o ivinnenenns 0
2-33 through 2-34 . 0 8-1 through 8-2 ceeaan .0
235/236........ . e ..l A-1 through A-7/A-8cvuv. 0
3-1through 3-26..ccvvteeneeasnsas 0 B-1throughB-4cvovvvvnnn 0
4-1 through 4-5 ...t 0 B-5...00.. ccecssereaen e 1
46 vivi i et eas e aens 1 T 0
47through434 eeess0 B-7 ¢ttt iiiiie st ool
L 3 1 B-8 through B-9/B-10 ... cvvv v 0
4-36 through 4-40 Ceeesesesan 0

4-40A/4-40B l

* Zero in this column indicates an original page.

On a change page, the portion of the page affected by the latest change is indicated by a
vertical bar in the outer margin of the page. However, a completely changed page will
not have a full length bar, but will have the change notation by the page number.

Change 1
ii/iv

CONTENTS
Documentation ConventionS « . ececececocccocscosscooccceees cecocsesseecesaX

CHAPTER 1 INTRODUCTION

1.1 Scientific Run-time Libraryeccsveceeesssccccorscsnnaass 1=l
1.2 Description of Scientific Run-Time Library Routinescco0000.. 1-3
1.2.1 Mathematical Library Routines « « c e s e e eeveesnveennnaos 1=3
1.2.2 MPX-32 System Service Routines «..cceeeseessssssssas 1=3
1.2.3 Supplemental User Support Routines «...c.cceeevescsees 1=3
1.2.4 Supplemental Language Support Routines . . . ceceveesaaee. 14

1-4

1.3 Scientific Run-Time Differences « c c c e s e e o e evsesososccccsccescaes

CHAPTER 2 MATHEMATICAL LIBRARY ROUTINES

1 Support FUNCLioNS. « c e et ocvevsoscccsceccscsscosnsocscocssssssse
2.2 Run-time Support ROULINES ¢« vt ceveeenersocescceoscsonsacocsssns
2.3 Standard Calling Sequences ¢ « « c c e et e veeeeeceeccascossacassans
2.3.1 Single Argument. .. ccceeeeecccccsecccccnsacsconncsns
2.3.2 Multiple Argument . s c e cceeecesroascccsocscasssasns
2.4 Exceptions to the Standard Calling Sequence «...cceeeceeceoccnns

2.4.1 Conversion Routines « ¢ ¢ e e c v eeeveececcecosccssscsnnas
2.4.2 Exponentiation Routines . c c e e s s e ceveceecceccccssacss
2.4.3 Multiplication Routines. ... eeeoeeceerscossosssscocns
2.4.4 Division Routines « v c et et vt teeveeeeeeeenns

5 Argument Checking and Error Conditions . « « « c e e e e o vveeeceenne
6 Register Preservation . e c o cceeoosoccsccosscossseses
i Accuracy of Results .« c s et e s cevncecscescosacccccsoccscsens
8 Mathematical Library Usage Conventions. .« ccceeeceecccocssccccs
2.8.1 Zero Division and Exponentiation. « e ¢ e c e e e vseecececcccss
2.8.2 Calling Double Precision Routines « « c e e e ceoevseecenccns
2.8.3 Complex ROULINES o ¢ coevreeeossssocsososcoccssssncsns
2.8.4
2.8.5

U U I |
WWUWWWUWNNNNE

SIS

IS S S S

Testing for Overflowcccciceeeeenennccccnccccns
Common External Temporary Storage «.....cccceee

NNNNNNNNN%\)NNNNNNNNN

U
w

CHAPTER 3 MPX-32 COMPATIBLE MODE SUBROUTINES

Nd X: SUbroUtiNES . ¢ e ceeeeeeocosscceccscsosososscssoncnoocs
MiALOCL ittt teceeeoecssscacsnssoscnssscsassacssscs
MIALOC2 v v eveeececococnnns cecesessseen e
MiALOCS o it tvooecosossossosescsosascssassssasocoss
MiALOCS & ittt verecasoassaoscsossssosanassa
M:ALOCS .t it veeeeeensne T
MiCLOSE e ¢ e e oo eevvoectecsossososcscscssssscsssoesce 3
MiCREATE ittt eeeeceonssceoscscnssosnsonccsnas R

3

3

3

3.1

<
o

\A\A\'A\H\A

°
.

—omuUnnes -

o

.
Tl ol o Y Sy Sy S

M:DALOC ooooo ® 6 0 0 0 ¢ 00 0 000 0000 00000 08000000000
MDELETE . it eeeeereeetosccescsccccoocsccncnas
M:LOG nooo-o-..o.oooovo--oo".-." oooooooooo o o 0 o

\MW\A\A\A.\A\M\A\A\N

<

3.1.11
3.1.12
3.1.13
3.1.14
3.1.15
3.1.16
3.1.17
3.1.18

MIOPEN ..t iieteeecteonssoscessasoscssssscseos =18
M:pDEV..................-.............--..... 3-19
M:pERM-.oooo‘.o-.'ooococo.oaoo--oo-onoo.oooo 3"20
M:PFAD ® © 0 6 8 2 0 0 @ 0 00 00 00000 00000000 e 0o 3"22
M:USER.-..oaooooo.aoooo-oooo.ooaooooo.-ooo;oo 3‘23
X:EXCLCDOOIO00'...0.'..000.00.!!...00"....lo 3"‘24

X:INCL S ® 0 0 0 0 0600 00 00 000 0 000 0 00 P0G E N0 o0

x:sHAREo..on.....'aononooo'tc.o.ooo.-ccn‘ono

CHAPTER 4 MPX-32 COMPATIBLE OR NATIVE MODE SUBPROGRAMS

vi

4.1
4.2

4.3

Mz, X: and Named SUDPrograms « s c s e cosvsesososcsosososaass
M:Subprograms .'......Q...0.0.Q.'l..‘..I0.0...O..IQ...Q

4.2.1
4.2.2
4.2.3
4.2.4
4.2.5
4.2.6
4.2.7
4.2.8
4.2.9
4.2.10
4.2.11
4.2.12
4.2.13,
4.2.14
4.2.15
4.2.16
4.2.17
4.2.18
4.2.19
4.2.20
4.2.21
4.2.22
4.2.23
4.2.24
4.2.25
4.2.26
4.2.27
4.2.28
4.2.29
4.2.30
4.2.31
4.2.32
4.2.33

X: SUbl‘OUtiﬂBS--...............-........-......-....-

4.3.1

J-\I-\J-\;(-\J-\«Pb
U\N\A.\N\AU\A
OOV EWDN

.
D)

.
)

o o
.

.
*

MIABORT tteveeeeessessosctsessososcsssasssoass
MIACTIV ¢ttt e veoncascssnscssosanssacsnsssasssssse
MBLOCK veveeeecsoscossscssossascsasnssossasscnsas
MICLOCK tieeeevseesoessascosscssssascasossssscsss
MCONECT cvoevosesecestsosssccsscasessasscassse
MiCONRES ¢t eeeececestscesoccssnsscssssosasnasse
MiCORE 4 v eteeocosoccscossscssonssanasscsssasse
MeDELTIM e ettt eneeeoccesosssossacsosenasossacssoccss
MiDUMP ¢ it et eecasecesosesosnsssessosssoscsssnses
MIERRFLG ceseceveccessscascncscsssanosnasssass
3 00 0
MiLINKD ¢ et veeeeeososososesssososscscscscacsosas
MILOAD ¢eevvoenseosocsnssessscacsocsssasosasae
MiLOADX et eevesosetcesancacssncsnssssasasnsaasns
MIPGOPT it eveveoseeesesssosscsoscsssssnnnnns

M:RSUM ® © 6 0 8 2 92 0009 0 0 00 0000 0 00 0 02000000

M:RTN ® 0 0 0 0 8 20 0 0 0 00 0 0000000 SO0 o

M:SETbtc'vo-iaiéisasat=e==eeegog-.-nocooooo

MiSSPND 4 e ettt eeeacessscosasssoscssnssascasnaans
MeST AR T ¢t e cteessvsscsosscoscscossosaasnssscsssas
MiTELER ¢t st eeecossscccsosesscscssoscasscsnscanass
MiTELEW i eieeieereeescaascacosssasasasscnss
MITESTAT vttt eeveescrscsesscsnscsssossssscasona
MITESTIM v i ittt eeeeeeesesseanssossssssasanssa
MiTIMED ot tveeeenoessosocsoscosonacnesnnssncas
MiTIMELZ 4t v eeveenecoasoossonososssnssascasnas
MiTIME3S ot ittt tennoesoesoscansosssaosnssanas

XeASYNCH ittt tcoresonesssessossosnsosnansns
D =
X BRIKXIT 4t ittt eeeeossesessessssnasosocsasssasas
XiDELTSK 4 ettt eneveuvoeotasoscessonscsssansss

.« o « o o o o o s o o

X:DISCON0.....'C..l.'.el......:....".‘..n.l.
X:DSMI.0.....0..'.'...t....ollttto'.'.l..t't.

e o o e o e o o e o o o

e o o . e o e o o e e o o o e o e o o

. 3"25
. 3‘26

oo b4-1
oo 423
oo 43
.o 4-4
oo b4
oo 4-5
oo 4=5
oo 4-6
oo 47

o o a"e

.. 4-8
.. 4-8
.. 429
.. 49
4-10
4-10
4-11
4-11
4-11
4-12
4-12
4-13
4-13
4-14
4-15
4-15
4-15
4-16
4-16
4-17
4-17
4-18
4-18
4-19
4-20
4-21
421
4-22
. 4222
. 4-23
. 4-23
. 4-24
4-25
4-25

——,

~

.

X:ENMI...... e ettt ettt 4-26
X:EOPT........ ettt ettt et e 4-27

.
)

.
.

XeFESPCE it v it i iiennnnnans e e s eneaneaaan 4-28
XiFSLR ottt iiiiei it eeenonnnans cetes e aan 4-29
X:FSLS ..., ceenass et et aeeennen cerecaean 4-30

.
.

Prrrrrrr el LUUULUULEULULULLLULULULLWWLWLWLGWLW

X:GDSPCE .+ v v... e et .
X:GESPCE vt v e e e enennnnnnns e e 4-36
X:GMSGP v s vt eeennnnnnns ettt 4-37
X:GRUNP &t tiervtnnnnnnes e e 4-37
XD v v eeenenns e eeeoenan e, 4-38
XNT oot esenenennennnnnns ettt 4-40
X:MPXEOF +.u... e e e 4-40A §
X:RCVR vvrnnn. et eeees e e, 4-40
XRSML .t oo e v veennnnns ettt ettt 4-41
X:RSMU v eeeeveeeennnn. ettt 4-42
XISMSGR 4 4 v oo v eesennnnnenseeeeeeennnnennnns 4-43
XSRUNR 4 oveeenennnnnnnnns e 4-44
XSUAR . ¢ttt tennennnnns e e 4-45
XiSUSP 4t eseenrnnnnnnnnnnnns ettt 4-45
XS YNCH ottt et eeeenennenenoeeseseennennnnns 4-46
X:TDAY oo ervennnnnnnas ettt 4-46
XTS AN . ¢ttt ettt eeeneneeseeneaeoessnnsannnns 4-47
XXMEA & iesennnnnnnns e e, 4-47
X:XMSGR v evvvencennnnnnoes et 4-48
XXNWIO. o oo vvesevennnnnsns e, 4-48
XeXREA vevennnneens e e et 4-48
XXRUNR & oo evvennnnennnnnns et 4-49
ed Subprograms Ceesesesessaananns ceesecasenen 4-50
ADDR +vvvvnn. e eee e Ceeeea e 4-50

e o o s o e » e e e o
e o o ¢« o o o o o o o

D\Dm\lO\\nb\ANHD\Om\IU\;\n«l—\UNI—'O\Om\lO\U‘!b\AN!—‘D

E o O ol o o o a2 S S

4.4

Z
3

SSWTCH .. .vvvenvnnn e eeceecceenereee s 4-53
STATUS . e ettt ittt eenocneesannannssoanssans 4-53

4.4.1
4.4.2 CARRIAGE . .ivvevneenness creeceneaenne ceeaeaas 4-50
4.4.3 DUMPUSER ¢t ettt eenenenaceneans Ceteeit e 4-50
4.4.4 EOF tiiiitienecneennenns Ceteen ettt 4-51
4.4.5 2 1 4-51
4.4.6 LOCF tiveeineencananenns Ceesasarsesasenasens 4-52
4.4.7 MPXSVC i ieiitinnnenannnes e reeteees e 4-52
4.4.8
4.4.9

CHAPTER 5 MPX-32 NATIVE MODE SUBROUTINES

DroULINES. ¢« ¢ ¢t e e et v eeeeeorseesocacasoaossscsssaconcsss 5-1
D O o 5-2
XCREDIR....cv0unn s e o eeena e e cecceseaaens eeee 5=4
XDDIR ¢eeeeenens et st ee s e e eee o c e e rs e e e eens 5-5
X:DIRECT c et e et e eeces s et s ec sttt eeanees s 5-6
XDOISMNT 4ttt tieetnieeteenennnnsnnsonns ceees e 5-6
XDPART coveevenennn. ceeeeeeens c et e s enees e 5-6
X OPXMNT ettt itteeioteeeeaeosossessasasnas 5-7
X EX Lttt iieeniiieeeteneacnnnsnnesnnasnaans 57

5.1

X
wn
c

)
®

LBV, RV, RV, RV, RV IRV, RV, |
. . i . . .
OOV EWRN -

Change 1
vii

X EXTEND
XINCLD . . .
XINCXDP « v e veeeennnn.
XING e
XLOGeeeveennnn. .
XMDESC «uveeennnnnn.

>

XPERM ivvnennennnns
"X PROJCT.......
XRDESC.vteuvernnennnn
XRECON tivvvennennnn
XREPLC.evvunenn
XRID veennnennnnenns

R R R b bt s s 1 b s b e O
NHOWVONOUVMPUWUNHOO

X TRUNC

5.1.23 XWDESC vevueennnenns
5.2 Device Type ¢ Codes.covvennnnnnnn.

CHAPTER 6 SUPPORT FOR OTHER STANDARDS

6.1 Support Subroutines and Functions. ...
6.2 Bit Field Manipulation ...
6.2.1

Logical Operations
6.2.1.1 IAND..voveens
IEOR.........

SESENE,
=

NOT covvv.. .

2

3

4
6.2.2 Operations. ...
1
2

t Operations.........
.2. ISHFT
ISHFTC.......

O\O\U)EJ\O\O\

. .
NN =

6.2.3 cecesen s e
1 BTEST eeeoeewne
2 IBSET veeeeene
3 BCLR.:.oveene
ubfields .« .ceeeeeeen
.1 BITS.eeeeence
2 MVBITSo
6.3 Time and Date........
6.3.1 TIME ¢t e teeeneoccscnne
6.3.2 DATE e eteeancnns .o
6.4 Task Control Calls v v v v veeeeeeans .
6.4.1 START i eeeecenne e
6.4.2 TRNON £ i et teevenneas
6.4.3
6.5 File ACCESS v v v vttt eeenceanencns

o
=
LY
-3
o
7]
@
(7]
e
b=

Qa

.

oo
NN

@
o

6.2.4

.O\
N
°

4

6.6 Unformatted RandomI/O
6.1 RDRW .o eeeeooenncen

2 WRTRW......

Change 1
viii

XMOUNT ¢ veeeeenccness

XRNAME & vvvvvnnnmnn,

IOR.........

CLOSEW:::....

LI . . o o o o o @ e o o 0 0 0 .
o o 0 0 0 0 ¢ o0 00 0 0 e e e 0 0 0 0 0 0
LR . @ ® 00 00 0 00 LY . .

¢ o 0 o © e s 00 000 0 ® o 0 0 0 0 0

e o0 0 0 e o 0 0 0 e e o 00 000 00
--------- ® e 0 0 0 00 o o 0
. @ e o0 006 00 0 00 0 LRI .
------- o o 0 00 ® o0 ¢ 00 0 0 0 0
ooooo LR} ® o 0 0 0 00 00 0 .

° * e © 66 o 0 0 00 0 0 . .
. e s » e o o © % 00 0 0 00 0 0o
® e e 000 00000 e % o 05 0 0 0 . .
e e 0 0 0 0 e e e o e o 0 0 0 0 . L)
oooooo o o 0 e 0 e 0 00 0 0080 00
------ oo e e 0 0 0 o o o o 0 0 0 0
....... . ® e o 00 0 0 ¢ o 0 0 0 0
. e o 0 0 o . .o e o o e s 0 0

ooooo . e e o o . . e
oooooooo ® o e 0 0 0 00 o o o .
© o 0 0 00 00 0 0 @ e 0 0 00 0 00 0 0
------ LY ® o ¢ o 0 . . .
ooooooo e o 0 o e s 0 0 0 00 o
ccccc . . ® 6 6 068 0000 000 00
----------- e e 0 0 0009 0 0 000
®© 06 0 0 0 00 0 02 0000060000 009000
. . e e 0 00 o 0 . e o o e e o 0 0 0 0
oooooooooooo L) . e o o .
® e o 0 0 0 0 0 e e o 0 0 . o e % 0 0 0 0 .
LR e s 00 0 0 0 © e 0 0 0 00 0 00 0 0
........... . . . o e o o 0
oooooooooooooooooooooooo
v o 0 0 0 e o . ® o e 0 00 0 0 0 0 0
@ e 9 6 00003 0 0 0 LI Y e e ¢ o s 0 0 0 0

ooooooooooooo ® e e 0 0 0 s 0 0 0 0
------- ® 9 0 0 e 0 0 00 0 s e 00 e e
oooooo o . @ o 0o 0 0 0 0 0 0 0
------- . o o L A R]
o e e 00 00 0 0 . e o e 0 0 0 0 0 o
-------- @ o s 6 0 00 00 0 00 0 0
e e 6.0 0 00 0 0 0 ® e e 0 0 0 0 0 00 0 0 e

® e e 0 00 0 0 0 e o o 0 e 0 00 00 0 00

----- ® e o 0 0 00 00 00 00 0 00 0

ooooooooooooooooooooooo

0\0\0\0\0\(.1\0\0\0\0\0\

1
[I N N e e e

T
[l =RV

6
6-4
6-5

(’

("~

CHAPTER 7 SUBROUTINE AND FUNCTION CALLING CONVENTIONS

7.1 Calling FORTRAN Subroutines from Assembly
Language Programs «..c.ceecececeess Cecsesssrettrennns
7.1.1 Calling a FORTRAN Subroutine with No Parameters. coceaes
7.1.2 Calling a FORTRAN Subroutine with One Parameter
7.1.3 Calling a FORTRAN Subroutine with Two or
More Parameters « . ccoeeeeeescesossososccsssonsse 1=2
7.2 Example: Assembler Routine Calling FORTRAN Subroutine0.. 7-3

AR
—

CHAPTER 8 RUN-TIME I/O TABLES AND BUFFERS

801 LOBBA co-'oo.0"0.0.00000.0.tooooao.otooooc-oooooo.o-oo 8-1
82 LﬂDIOBUFl.'.'.0..'...'!Ol.....'......‘...O....'0.0IO. 8‘2

APPENDIX A STANDARD ASCII CODE SET ¢ vt veeeeesenseccssssscssasses A=l

APPENDIX B DIAGNOSTIC AND ERROR STATUS

B.l Execution-time Diagnostics. s c e e s et s eeecsssscsscssssscnases B=1
B.2 Error Status Values for X_Subroutinescccoceevecececsecsess B=7

TABLES

1-1 FORTRAN 77+/SRTL Installation Modes «..eevveveereeecvreanneocees 1=2
2-1 MathematicalLibra!‘}’ROUtines.......-.-..........---............ 2‘6

ix

Documentation Conventions

The following notations are used in this document to express source text syntax.
Notational symbols are not a part of the text entered by the user; they are merely aids
designed to make the syntax of the statements easier to understand.

Notation Meaning

lowercase letters Lowercase letters identify a generic
element that must be replaced with a
user-selected value or a returned value.
For example, in the statement:

CALL STATUS (u, s, n)

u is replaced by a user-selected value,
while s and n are returned values.

UPPERCASE LETTERS Uppercase letters represent keywords and
must be entered as shown faor input. In the
control statement:

CALL M:END

the words CALL and M:END represent
keywords.

[] Brackets indicate that the enclosed
elements are optional

CALL X:DISCON (task, [istatus], [$n])
istatus and $n are optional.

Several elements placed one under the
other inside a pair of brackets indicate the
user may select one or none of the
elements.

[

2y

)

Numbers and
special characters

A horizontal ellipsis indicates repetition.

GO TO (Xl,XZ,X3,...,Xn)

A vertical ellipsis indicates that
statements or instructions have been
omitted.

.GO TO 450

Parentheses are part of the source text
entered by the user and must appear as
shown in statement syntax when entered.

CALL M:DELTIM (id)

A two character timer id is required and
must be enclosed by parentheses

Numbers that appear on the line (i.e., not
subscripts), special symbols, and punc-
tuation marks other than dotted lines,
brackets, braces, and underlines appear as
shown in output messages and must be
entered as shown when input.

CALL M:PFAD (filename, i, *label)

An asterisk * is required before the user-
selected value *label.

xi/xii

£

CHAPTER 1
INTRODUCTION

1.1 Scientific Run-time Library

The Scientific Run-time Library (SRTL) is a collection of subprograms that provides
mathematical library routines, operating system service routines, and language
extensions for FORTRAN 77+. The SRTL routines may also be accessed by Pascal,
COBOL, and Assembly programs, if the proper calling interface is maintained. The SRTL
contains routines which conform to the following FORTRAN standards:

. ANSI - X3.9-1978 (American National Standards Institute)
. MIL-STD - 1753-1978 (Military Standard)

. ISA/S61.1-1976 (Instrument Society of America)

. ISA/S61.2-1978

There are four possible installation modes for the SRTL. They are: native/hardware
assisted, native/non-hardware assisted, compatible/hardware assisted, and

compatible/non-hardware assisted.

The native and compatible aspects of the compiler are indicative of the file system
interface being selected. Code is contained in the native mode SRTL for accessing
available MPX-32 resources through the MPX-32 file system in accordance with methods
native only to MPX-32 Rev. 2 and Rev. 3. Code is contained in the compatible mode
SRTL for accessing resources in accordance with methods that are compatible with
MPX-32 Rev. 1.

The hardware assisted and non-hardware assisted aspects of the SRTL allow for the
selection or non-selection of certain hardware floating point instructions. These
instructions are available on CONCEPT 32/67, 32/87 and 32/97 machines. Code
contained in the hardware assisted mode SRTL utilizes refined math algorithms
incorporating special register to register hardware floating point instructions. Code
contained in the non-hardware assisted mode SRTL retains the math algorithms
contained in previous releases of the SRTL. Either mode may be used on machines
having the special register to register instructions although the hardware assisted mode
is recommended for those machines. Machines not having the special instructions are
restricted to using the non-hardware assisted mode.

In order to catalog programs compiled under FORTRAN 77+, the SRTL must be assigned
as one of the available object libraries to the cataloger. Unlike the compiler which can
use options for mode selection, the mode of the SRTL is dependent solely upon which
installation of the SRTL is assigned to the cataloger at catalog time. The FORTRAN 77+
compiler and the SRTL have the same possible installation modes. It is therefore
recommended that the modes selected at installation for the SRTL match those selected
for the compiler installation.

SRTL Introduction 1-1

Table 1-1

FORTRAN 77+/SRTL Installation Modes

REV. 2 REV. 3
NON-HW compatible
SERIES 32/7X ASSIST e e e - — —_— e — —— — — S
ONLY native *
NON-HW compatible compatible
CONCEPT 32/27 ASSIST e o e . e e e o —— — — — — — —
ONLY native native *
HW compatible
ASSIST native ¥
CONCEPT 32/67 == == = = = e e e el e e e e e e = -
NON-HW compatible
ASSIST native
HW compatible compatible
ASSIST native native *
CONCEPT 32/87 = = e f o e o e e e o e e o e e
NON-HW. compatible compatible
ASSIST native native
HW compatible
ASSIST native *
CONCEPT 32/97 = == = e e e e e e e e e e e e e —
NON-HW compatible
ASSIST native

* - RECOMMENDED

For more information about the MPX-32 file system, refer to the MPX-32 Reference

Manual.

During library installation, the user can place either the native or compatible, hardware
assisted or non-hardware assisted set of routines into a library. For convenience it is
advisable to place the set most frequently used in MPXLIB/MPXDIR. If the other sets
are also desired, they can be placed under other library/directory names. The alternate
libraries can be specified for use at catalog time.

1-2 Introduction SRTL

/.‘)‘/ ™~
“

1.2 Description of Scientific Run-Time Library Routines
The routines in the SRTL are divided into four classes:

. Mathematical Library

. MPX-32 System Service

. Supplemental User Support

. Supplemental Language Support

1.2.1 Mathematical Library Routines

The mathematical library class of routines contains the FORTRAN intrinsic and bit
manipulation functions. These functions can be directly referenced from FORTRAN
77+. The mathematical library also contains other routines for run-time support of data
type conversion, exponentiation, multiplication, and division. These routines are not
available directly from FORTRAN 77+, but can be referenced from Assembler programs
if the proper calling sequence is maintained. References to these routines are generated
as needed by the FORTRAN 77+ compiler.

The mathematical library routines are described in more detail in Chapter 2 and Section
6.2.

1.2.2 MPX-32 System Service Routines :

The system service routines provide access to the MPX-32 System Services. These
routines are the Mz, X:, and X_ routines described in Chapters 3, 4, and 5, which contain
descriptions of subprograms that provide MPX-32 services to FORTRAN 77+ programs.
Chapter 3 describes subprograms which are available to MPX-32 users only in compatible
mode. Chapter 4 describes subprograms which are available to MPX-32 users in either
compatible or native mode. Chapter 5 describes subprograms which are available only in
native mode.

The following notes refer to the use of the MPX-32 service subprograms:

. Attempts to mix modes, i.e. using a compatible mode only subprogram while executing
using native mode, will result in an RS99 error.

. The subprograms are not reentrant. Use caution when processing break interrupts
during I/O routines.

1.2.3 Supplemental User Support Routines

The supplemental user support routines provide additional language support for
FORTRAN 77+. These routines allow for such functions as: obtaining the address of a
variable, direct access to MPX-32 SVC services, obtaining the system time and date, task
control, file access, and unformatted random access I/O. These routines are described in
Section 4.4 and Sections 6.3 through 6.6.

SRTL Introduction 1-3

1.2.4 Supplemental Language Support Routines

The supplemental language support routines are not directly available to FORTRAN
77+. References to these routines are generated by the FORTRAN 77+ compiler to
support language features such as READ and WRITE.

1.3 Scientific Run-time Differences

Release 4.1 of the Scientific Run-time Library differs from previous releases as follows:

Regular FORMAT statements are now converted to format item tables. These are
readily used by the run-time library routines to eliminate redundant re-evaluation of
formats during run time I/O.

Extended memory addressing has been improved.

The logical functions IAND, IOR, IEOR, and NOT will now be expanded inline unless
these functions are specifically defined as EXTERNAL to the program, or declared
INTRINSIC and referenced in a subgrogram where the name of the function was passed
as an argument to the subprogram.

Date and time of assembly and product identification information are stored in the
object code for all SRTL routines, and are now available at the user's option at catalog
and library editing time. This will better identify native, compatible, hardware
assisted and non-hardware assisted routines.

The utility of BUFFERIN/BUFFERQUT has been modified so that the user can select a
"sector specifier" as an optional parameter in order to do random I/O on disc files
only.

1-4 Introduction SRTL

CHAPTER 2

MATHEMATICAL LIBRARY ROUTINES

2.1 Support Functions

The mathematical library is a collection of mathematical and utility functions that
provides full computational support for FORTRAN 77+ and Assembly programs. The
functions are listed in Table 2-1 at the end of this chapter.

Common features of the functions are:

Each is referenced by its name, which in all cases is one to eight alphanumeric
characters, the first of which is alphabetic.

Each returns a single value; i.e., each returns one value to the expression from which
it was referenced.

Each is referenced by an expression containing a function name or by a direct call to a
specified routine name.

. Each FORTRAN 77+ intrinsic function name is predefined to the compiler and is
automatically typed.

2.2 Run-time Support Routines

In addition to the FORTRAN intrinsic and bit manipulation functions, the mathematical
library contains other routines for run-time support of data type conversion,
exponentiation, multiplication and division. These routines are distinguished by the
presence of a period in the routine name (e.g., C.IR). These routines are not available to
the FORTRAN user directly; calls are generated inline by the compiler as they are
needed. However, they are available to Assembly language users.

The FORTRAN 77+ compiler generates inline code for ihe following intrinsic functions.

ABS SIGN . DIM REAL SNGL
IABS ISIGN IDIM DREAL DBLE
DABS DSIGN JDIM AIMAG CMPLX
JABS JSIGN CONJG DIMAG DCMPLX

The compiler will not generate inline code under the following circumstances:
the function is declared EXTERNAL
the function is declared INTRINSIC and referenced in a subprogram where the name of

the function was passed as an argument to the subprogram.

Change 1
SRTL Mathematical Library Routines 2-1

In those cases, the FORTRAN 77+ compiler generates a branch and link instruction for
those references to the function. Note that the use of inline code results in faster
-execution at run-time.
2.3 Standard Calling Sequences
All mathematical library routines use a standard calling sequence. The calling sequences
for FORTRAN are described in the FORTRAN 77+ Reference Manual. The calling
sequences for Assembly are described in the following sections.
2.3.1 Single Argument
For single argument routines, the calling sequence is:

LA 1,Arg

BL Routine
2.3.2 Multiple Argument

For multiple argument routines, the calling sequence is:

BL Routine

DATAW n n is the number of arguments.

ACs Argl generate address pointers to arguments

ACt Arg2 .

ACu Argn Sy t, «., U are B, H, W, or D, depending on the mode of the
argument

2.4 Exceptions to the Standard Calling Sequence

The routines in the mathematical library for run-time support of data type conversion,
exponentiation, multiplication, and division do not follow the standard calling
sequences. The calling sequences for these routines are described in the following
sections.

R in the calling sequences is defined as follows:

R7 passes halfword integer, integer, and single precision floating-
point values.

R6,R7 pass doubleword integer, double precision floating-point, and
single precisicn complex values.

R4,R5,R6,R7 pass double precision complex values.
These general purpose registers are used to pass arguments to the routines. The result

produced by the routines is returned in these same registers.

Change 1
2-2 Mathematical Library Routines SRTL

2.4.1 Conversion Routines

For conversion routines (C.DJ, C.JD, C.IR, C.RI), the calling sequence is:
Load R,Arg EXAMPLE: LW 7,REALWORD
BL C.xx BL C.RI

2.4.2 Exponentiation Routines

For exponentiation routines (P.ZZ, P.DI, P.CC, P.Cl, P.RR, P.RI, P.II, P.JJ), the calling
sequence is:

Load R,Base EXAMPLE: LD 6,DBLEREAL
LA 1,Exponent LA L1L,EXPONENT
BL P.xx BL P.DI

2.4.3 Multiplication Routines

For multiplication routines (M.ZZ, M.CC, M.JJ), the calling sequence is:

Load R,Multiplier EXAMPLE: LD 6,CMPLXARG
LA 1,Multiplicand LA 1,MULTCAND

BL M.xx BL M.CC

2.4.4 Division Routines

For division routines (D.ZZ, D.CC, D.JJ), the calling sequence is:

Load R,Dividend EXAMPLE: LD 4,REALPART
LA 1,Divisor LD 6,IMAGPART
BL D.xx LA 1,DIVISOR

BL D.ZZ

2.5 Argument Checking and Error Conditions

Generally, the mathematical library routines do not check to determine if the number of
arguments passed equals the number of arguments required or if the passed arguments
are of appropriate type.

If any reference to a mathematical library routine results in an error condition, the
routine may continue execution rather than abort. In this situation, the routine attempts
to provide a reasonable result. However, a run-time diagnostic message is written to the
Diagnostic Output (DO) logical file code by a call to L.ERR, and condition code 1 is set
on return to flag the error condition.

2.6 Register Preservation
In the case of a user-generated reference to a mathematical library routine, except the
run-time support routines, all registers are volatile and may be assumed to be

destroyed. Exceptions are noted in the program descriptions of the individual
mathematical library routines.

SRTL Mathematical Library Routines 2-3

In the case of the run-time support routines, all registers are preserved except 0, 1, and
R, where R is the register(s) in which the result is returned. The conversion routines
preserve register 1.

2.7 Accuracy of Resuits

The maximum relative error in single precision floating-point routines is approximately
2-19, In double precision, the maximum relative error is approximately 27 7.

Any exceptions to these accuracy figures are noted in the individual program descriptions
for the mathematical library routines.
2.8 Mathematical Library Usage Conventions

The following conventions are applicable to various mathematical library routines.

2.8.1 Zero Division and Exponentiation
Any nonzero positive or negative number divided by zero returns the largest positive or
smallest negative number, respectively. In both cases, the overflow bit (condition code
1) is set. Zero divided by zero (0/0) and zero raised to the zero power (0Y) are both
defined to be one.
2.8.2 Calling Double precision Routines
When calling double precision routines, the user must specify double precision arguments,
because no mode conversions are performed.
2.8.3 Complex Routines
All complex routines, except CMPLX, DCMPLX, P.CC, P.ZZ, M.CC, M.ZZ, D.CC, and
D.ZZ, are single-argument routines.
2.8.4 Testing for Overflow
Test for arithmetic overflow by calling the subroutine OVERFL as follows:

CALL OVERFL(I)
where

I An INTEGER variable that assumes a value of 1 or 2 as follows:

1 if any hardware arithmetic exception trap has occurred since the last call
to OVERFL.

2 if no hardware arithmetic exception trap has occurred since the last call to
OVERFL.

2-4 Mathematical Library Routines SRTL

N

A call to this subroutine resets the overflow indicator. This test is valid only if the
arithmetic exception trap is enabled and the arithmetic exception handler (or an
equivalent) is installed.

The value returned by a function may also indicate the occurrence of an overflow
condition by being equal to the maximum positive (MAXPQOS) or maximum negative
(MAXNEG) value.

Test for arithmetic overflow or other error conditions in the assembler by testing the

overflow bit (condition code 1) immediately upon return from a given math library
routine. If this bit is set, an arithmetic exception or other error condition has occurred.

2.8.5 Common External Temporary Storage

Common external temporary storage (L.TEMPO through L.TEMP25) and some common
constants for mathematical library routines are provided by a data area, MLSTOR.

SRTL Mathematical Library Routines 2-5/2-6

TN

N/

Function

Routine
Naime

Number
of
Arguments

Argument
Mades

Kesult
Modes

Routine Purpose

Error
Message

Exception
Condition

Exception
Result

Nearest
whole
number

Nearest
integer

Conversion

DIMAG

(A) ANINT

(A) DNINT
(A) IDNINT
(A) NINT

Cc.DJ

C.IR

C.JD

C.JR

C.RI

(A) DBLE

1

Double complex

Real

Double

Double

Real

Daouble real

Integer

Daouble integer

Double integer

Real

Real

Double real

Real

Double
Integer
Integer

Double integer
Real

Double real
Real

Integer

Double real

To obtain the imagi-
nary part of a double
precision complex floating-
point number.

To find the nearest
whole number.

To find the nearest
whole number.

To find the nearest
integer.

To find the nearest
integer.

To convert from
double precision
floating-point to
double precision integer
format.

To convert from inte-
ger to single precision
floating-point format,

To convert from
double precision integer
to double precision
floating-point format,

To convert from
double precision integer
to single precision floating-
point format.

To convert from
single precision floating-
point to integer format.

To convert a single
precision floating-point
quantity to a double
precision floating-point
format. Refer to note 3.

None

None

None

None

None

None

None

None

None

JIARG|>2**63

ARG 2%%28
JARGD2%*24
Refer to Note 14.

IARG]>2##56

|IARG]2##31

+IFFFFFFFFFFFFFFF
(CC1 bit set)

|Errori<128
|Errori<s

|Errori<28

+TFFFFFFF
{Cc1 bit set)

Mathematical Library Routines (Sheet 10 of 13)

Table 2-1

2-25/2-26

\,

L/

N

Function

Routine
Naine

Number
of
Arguments

Arguinent
Modes

Result
Mades

Routine Purpose

Error
Messaye

Exception
Condition

E xception
Result

Complex
conjugate

Complex
form

Complex
real part

Complex
imaginary
part

(A) CONJG

DCONJG

(A) CMPLX

DCMPLX

DREAL

(A) REAL

(A) AIMAG

1

lor2

lor2

Complex

Double complex

Integer
Real
Double real

Complex
Double complex

Integer
Real
Double real

Complex
Double complex

Oouble complex

Complex

Complex

Complex

Double complex

Complex

Complex

Double complex

To obtain the conju-
gate of a single precision
complex floating-point
number. Refer to note 6.

To obtain the conju-
gate of a double precision
complex floating-point
number. Refer to note 6.

To express one or two
integer, single precision
floating-point, or double
precision floating-point
numbers in complex form.
Refer to note 4.

To express one complex
or double precision com-
plex number in complex
form. Refer to note 4.

To express one or twa
integer, single precision
floating-point, or double
precision floating-point
numbers in double precision
complex form. Refer to
note 4.

To express one complex
.

Double |

p

Double real

Real

Real

or P’ hi T £

complex number in double
precision complex form.
Refer to note 4.

To obtain the real
part of a complex
double precision floating-
point number.

To obtain the real
part of a single precision
complex floating-point
number. Refer to note 2.

To abtain the imagi-
nary part of a single
precision complex floating-
point number. Refer to
note 6.

None

None

None

None

Nane

None

None

Mathematical Library Routines (Sheet 9 of 13)

Tuble 2-1

2-23/2-24

©

Function

Routine
Name

Number
of
Arguments

Argument
Mades

Result
Modes

Routine Purpose

Error
Message

Exception
Condition

Exception
Result

Logarithm

Exponential

(A) TANH

(A) ALOG

(A) ALOG10

CDLOG

(A) CLOG

(A) DLOG

(A) DLOGIO

CDEXP

(A) CEXP

(A) DEXP

(A) EXP

1

Real

Real

Real

Double complex

Complex

Double real

Double real

Double complex

Complex

Double real

Real

Real

Real

Real

Daouble |

To compute the hyper-
bolic tangent of a single
precision floating-point
number.

To compute the natur-
al logarithm of a single
precision floating-point
number.

To compute the common
logarithm of a single
precision floating-point
number.

Ta compute the prin-

Complex

Double real

Double real

Double complex

Complex

Double real

Real

cipal value of the
natural logerithm of a
de hi T ial 1

p
floating-point number.

To compute the prin-
cipal value of the
natural logarithm of a
complex floating-point
number,

To compute the nat-
ural logarithm of a
double precision floating-
point number.

To compute the common
logarithm of a double
precision floating-
point number.

To compute eZ for
double precision complex
floating-point z.

To compute e€ for
complex floating-
point ¢

Ta compute ed for
double precision
floating-point d.

To compute €' for
single precision
floating-point r.

None

LOG 039

ALOG10 039

CDLOG o007

CLOG 031

DLOG 017

DLOG10 017

CDEXP 004

CEXP 030

None

None

ARWI121Ln 2

ARGKO

ARG

Any srithmetic
overflow

Any arithmetic
overflow

ARG

ARG

Any arithmetic
overflow

Any arithmetic
overflow
ARGK-256 Ln 2
ARG>256 Ln 2
ARGK-256 Ln 2

ARG>256 Ln 2

=80000001

=80000001

=0 (CC1 bit set)

=0 (CC1 bit set)

=8000000000000001

=8000000000000001

=0 (CC1 bit set)

=0 (CC1 bit set)

=0
=IFFFFFFFFFFFFFFF
=0

<TFFFFFFF

Mathemnatical Library Routines (Sheet 8 of 13)

Table 2-1

2-21/2-22

2

Function

Routine
Naine

Number
of
Arguiments

Argument
Modes

Result
Modes

Routine Purpose

Error
Message

Exception
Condition

Exception
Resulls

Hyperbolic
Cosine

Tangent

Arctangent

Hyperbolic
tangent

(A) COSH

(A) DCOSH

(A) TAN

(A) DTAN

(A) ATAN

(A) DATAN

(A) ATANZ

(A) DATAN2

(A) DTANH

1

Real

Doaouble real

Real

Double

Real

Double real

Real

Double real

Double real

Real

Double real

Real

Double

Real

Double real

Real

Daouble real

Double real

To compute the hyper-
bolic cosine of a single
precision floating-point
number.

To compute the hyper-
bolic cosine of a double
precision floating-point
number.

To compute the tan-
gent of a single
precision floating-
point number.

To compute the tan-
gent of a double precision
floating-point number.

To compute the prin-
cipal value of the inverse
tangent of a single
precision tloating-point
number.

To compute the prin-
cipal value of the arc-
tangent of a double
precision floating-point
number.

To compute the in-
verse tangent of the
quotient of two single
precision floating point
numbers, adjusting for
proper quadrant.

To compute the arc-
tangent of the quotient
of two double precision
floating-point quantities,
adjusting for proper
quadrant.

To compute the hyper-
bolic tangent of a double
precision floating-
point number.

None

None

Nane

None

None

None

None

None

None

Arithmetic
overflow

Arithmetic
overflow

ARG28 Ln 2

+ (m/4) (CC1 bit set)

+ (7 /4) (CC1 bit set)

Mathematical Library Routines (Sheet 7 of 13)

Table 2-1

2-19/2-20

Number
Routine of Argument Result Error Exception Exception
F unction Name Arguments Modes Modes Routine Purpose Message Condition Result
CDSIN 1 Double Complex Double Complex To compute the sine CDSIN 005 Any arithmetic =0 (CC1 bit set)

of a double precision overflow
complex floating-point
number.

Arc sine (A) ASIN 1 Real Real To compute the arc- ASIN 037 JARGP1 =0 (CC1 bit set)
sine of a single
precision floating-point
number.

(A) DASIN 1 Double Double To compute the arc- DASIN 092 IARG]1 =0 (CC1 bit set)
sine of a double
precision floating-
point number,

Hyperbolic (A) SINH 1 Real Real To compute the hyper- None IARGP256 Ln 2 +IFFFFFFF
Sine bolic sine of a single (CC1 bit set)
precision floating-point
number,

(A) DSINH 1 Double real Double real To compute the hyper- None IARGP 256 Ln 2 HIFFFFFFFFFFFFFFF
bolic sine of a double (CC1 bit set)
precision floating-
point number.

Cosine (A) COs 1 Real Real To compute the cosine None For best results, ARG
of a single precision should be in the
floating-point number, range (0, 27)

(A) CCOS 1 Complex Complex To compute the cosine CCOSs 033 Any arithmetic =0 (CC1 bit set)
of a complex floating- overflow
point number.

(A) DCOS 1 Double real Double real To compute the cosine None For best results, ARG
of a double precision should be in the
floating-point number, range (0, 27)

Ccbcos 1 Double complex Double complex To compute the cosine CDCOS 006 | Any arithmetic =0 (CC] bit set)
. of a double precision averflow

complex floating-point
number.

Arccaosine (A) ACOS 1 Real Real To compute the arc ACOS 037 [IARGD1 =0 (CC1 bit set)
cosine of a single
precision floating-
point number.

(A) DACOS 1 Double Double To compute the arc DACOS 092 | IARGP1 =0 (CC1 bit set)
casine of a double
precision floating-
point number.

Mathematical Library Routines (Sheet 6 of 13)

Table 2-1

2-17/2-18

Function

Routine
Name

Number
of
Arguments

Argument
Modes

Result
Modes

Rautine Purpose

Error
Message

Exception
Condition

Exception
Result

Minimum

Sine

(A) MAX1

(A) DMAX1

(A) AMINO

(A) AMIN1
(A) MINO

(A) MINL

(A) DMINL

(A) SIN
(A) CSIN

(A) DSIN

w2

Real

Double real

Integer

Real

Integer

Real

Double real

Real

Complex

Double real

Integer

Double real

Real

Real

Integer

Integer

Dauble real

Real

Complex

Double real

To find the maximum
value in a variable
length list of single
precision floating-point
numbers and canvert the
result to integer format.

To find the maximum
value in a variable
length list of double
precision floating-
paint values.

To find the minimum
value in a variable
length list of integera
and convert the result
to single precision
floating-point format.

To find the minimum
value in a variable length
list of reals.

To find the minimum
value in a variable
length list of integers.

To find the minimum
value in a variable
length list of single
precision numbers and
convert the result to
integer format.

To find the minimum
value in a variable
length list of double
precision floating-point
values.

To compute the sine
of a single precision
floating.polnt number.

To compute the sine
of a complex floating-
point number.

To compute the sine
of a double precision
floating-point number.

None

None

None

None

None

CSIN 032

None

Any arithmetic
overflow

For best results ARG
should be in the
range (0, 27)

=0 (CC1 bit set)

For best results,
arguments should be
in the range (0, 2 1)

Mathematical Library Routines (Sheet 5 of 13)

Table 2-1

2-15/2-16

P

Function

Routine
Name

Number
of
Arguments

. Argument
Modes

Result
Modes

Routine Purpose

Error
Message

Exception
Condition

Exception
Result

Subtrac-
tion

Multipli-
cation

Division

Absolute
value

(A) DDIM

(A) DIM

(A) IDIM

(Note 16)'

(A) DPROD
M.CC
M.JJ
M.ZZ
D.CC

D.JJ

D.zz

(A) ABS

(A) CABS

2

Double real

Real

Integer

Real

Complex

Double integer

Double complex

Complex

Double integer

Double complex

Real

Complex

Double real

Real

Integer

Double real

Complex

Dauble integer

Double complex

Complex

Double integer

Double complex

Real

Real

To find the positive
difference between
two double precision
arguments.

To find the positive
difference between
two single precision
floating-point numbers.

To find the positive
difference between
two integers.

To find the double
precision product of
two real arguments.

To multiply two com-
plex floating-point
numbers.

To multiply two
doubleword integers.

To multiply two
double precision complex
floating-point numbers.

To divide one complex
floating-point number by
another.

To divide one integer
doubleword by
another.

To divide a double
precision complex
floating-point number
by another.

To compute the abso-
lute value of a single
precision floating-point
number or an integer.

To compute the abso-
lute value of a complex
floating-point argument.
Refer to note 6.

None

None

None

None

M.CC 035

None

M.ZZ 009

D.CC 036

None

D.zz 010

None

CABS 028

Arithmetic
overflow

Arithmetic
overflow

Arithmetic
overflow

Arithmetic
overflow

Arithmetic
overflow

Division by zero

Arithmetic
overflow

Arithmetic
overflow

SIFFFFFFFFFFFFFFF
(CC1 bit set)

=0 (CC1 bit set)

SIFFFFFFFFFFFFFFF
(CC1 bit set)

=0 (CC1 bit set)

=0 (CC1 bit set)

STFFFFFFFFFFFFFFF
(CC1 bit set)

=0 (CC1 bit set)

=0 (CC1 bit set)

SRTL

Mathematical Library Routines (Sheet 1 of 13)

Change 1
2-7]2-8

Number
Routine of Argument Result Error Exception Exception
Function Name Arguments Modes Medes Routine Purpose Message Condition Result
s‘} CDABS 1 Double complex Double real To compute the abso- CDABS 002 | Arithmetic =0 (CCI1 bit set)
' lute value of a double overflow
precision complex floating-
point number. Refer to
note 6.
(A) DABS 1 Double real Double real To compute the abso- None
lute value of a double
precision floating-point
number.
(A) 1ABS 1 Integer Integer To compute the abso- None ARG=MAXNEG =MAXNEG (<0)
(Note 16) | lute value of an integer (CC1 bit set)
argument.
Square CDSQRT 1 Double complex Double complex To compute the prin- CDSQRT 001 | Arithmetic =0 (CC1 bit set)
root cipal square root of a) Overflow
double precision complex
floating-point number.
(A) CSQRT 1 Complex Complex To compute the prin- CSQRT 027 | Arithmetic =0 (CCl1 bit set)
cipal square root Overflow
of a complex floating-
point number.
t ((A) DSQRT 1 Double real Double real To compute the posi- DSQRT 011 | ARG<0 SQRT (JARGI)
} tive square root of a
double precision
floating-point number. !
(A) SGRT 1 Real Real To compute the posi- SQRT 049 | ARG<0 ; SQRT (JARGI)
tive square root of a ‘
single precision floating- i
point number,
Modular (A) AMOD 2 Real Real To find the remainder AMOD 045 ||QUOTIENT]>2**24 | =0 (CCI bit set)
arithmetic when one single precision Arithmetic Dverflow
floating-point number is Division by zero
divided by another.
(A) DMOD 2 Double real Double real To compute the re- DMOD 020 IQUOT]ENTQZ“SZ =0 (CC1 bit set)
mainder obtained in Arithmetic Dverflow
dividing the first double Division by zero
precision floating-point
argument by the second.
(A) MOD 2 Integer Integer To find the remainder None Division by =0 (CC1 bit set)
when the first integer is zero
. divided by the second.
:-3 (Mathematical Library Routines (Sheet 2 of 13)
SRTL
I o 3 .

Table 2-1

Change 1
2-9/2-10

AN

-

|\

Function

Routine
Name

Number
of
Arguments

Argument
Modes

Result
Modes

Routine Purpose

Error
Message

Exception
Condition

Exception
Result

~ Fractlon'
) truncation

Sign
transfer

a

Exponent

(A) AINT

(A) DINT

(A) DSIGN

(A) SIGN

(A) ISIGN
(Note 16) §

P.CC

P.CI

P.DD

P.DI

P.II

1

Real

Double real

Double real

Real

Integer

Complex

Complex,
Integer

Double real

Double real,
Integer

Integer

Real

Double real

Double real

Real

Integer

Complex

Complex

Double real

Double real

Integer

To truncate the frac-
tional bits from a single
precision floating-point
quantity. Refer to note 1.

To truncate the frac-
tional bits of a double
precision floating-point
quantity. Refer to note 1.

To transfer the sign
of the second double
precision floating-point
argument to the first
double precision floating
point argument,

To,transfer the sign
of the second single
precision floating-point
argument to the first
single precision argument.

To transfer the sign
of the second single
precision integer argu-
ment to the first single
precision integer argument,

To compute the prin-
cipal value of a complex
floating-point number
raised to a complex
floating-point number
power.

To raise a complex
floating-point number
to an integer power.

To compute a double
precision floating-point
power of a double
precision floating-point
number.

To raise a double
precision floating-
point quantity to an
integer power.

To raise an integer
value to an integer

power.

None

None

None

None

None

P.CC 029

P.CI 034

None

None

None

Arithmetic
overflow

Arithmetic
overflow

Arithmetic
overflow

Any arithmetic
overflow

Any arithmetic
overflow

=0 (CC1 bit set)

=0 (CC1 bit set)

IFFFFFFFFFFFFFFF
(Sign of result = sign of
base)

(CC1 bit set)

IFFFFFFFFFFFFFFF
(CC1 bit set)

+TFFFFFFF
(CC1 bit set)

SRTL

Mathematical Library Routines (Sheet 3 of 13)

Table 2-1

Change 1
2-11/2-12

M

SRTL

—

Function

Routine
" Name

Number
of
Arguments

Argument
Modes

Result
Modes

Routine Purpose

Error
Message

Exception
Condition

Exception
Result

Maximum

P.JI

P.JJ

P.RI

P.RR

P.Z1

P.ZZ

(A) AMAXO0

(A) AMAX1

(A) MAXOD

2

m2

2

Double integer,

Integer

Double integer

Real, Integer

Real

Double complex,
Integer

Double complex

Integer

Real

Integer

Double integer

Double integer

Real

Real

Double complex

Double complex

Real

Real

Integer

To raise a double
precision integer
quantity to an integer
power.

To raise a double
word integer to a
doubleword integer
power.

To raise a single
precision floating-
point number to an
integer power.

To raise a single
precision floating-
point number to a
single precision
floating-point
power. Refer tol
note 15,

To raise a double
precision complex
floating-point number
to an integer power.

To compute the
principal value of
of a double precision
complex power of a
double precision
complex number.

To find the maximum
value in a variable
length list of integers

and convert the result to
single precision floating-

point format.

To find the maximum

value in a variable length

list of reeals.

To find the maximum

None

None

None

None

P.ZI 008

P.ZZ 003

None

None

None

Any arithmetic
overflow

Any srithmetic
overflow

Any arithmetic
overflow

Any arithmetic

overflow

Any arithmetic¢
overflow |

Any arithmetic
overflow

IFFFFFFFFFFFFFFF
(CC1 bit set)

IFFFFFFFFFFFFFFF
(CC1 bit set)

+TFFFFFFF
(CC1 bit set)

+TFFFFFFF
(CC1 bit set)

=0 (CC1 bit set)

=0 (CC1 bit set)

value in a variable length
list of integer values,

Mathematical Library Routines (Sheet 4 of 13) Table 2-1
Changel ..
2-13/2-14 /

e

Number
Routine of Argument Result Error E xception Exception
Function Name Arguments Modes Modes Routine Purpose Message Condition Result
Length of (A) LEN 1 Character Integer To determine the length
Character (note 12) of a character string.
String
Lexically (A)LGL 2 Character Logical To compare two character
Greater (note 12) strings and return a logical
Than or value of .TRUE. or FALSE.,
Equal to depending on the ASCHl
collating sequence.
Lexically (A)LGT 2 Character Logical To compare two character
Greater (note 12) strings and return a logical
Than value of .TRUE, or FALSE,,
depending on the ASCIl
collating sequence.
Lexically (A)LLE 2 Character L agical To compare two character
Less Than (note 12) strings and return a logical
or Equal to value of .TRUE. or FALSE.,
depending on the ASCII
collating sequence.
Lexically (A)LLT 2 Character Logical To compare twa character
Less Than (note 12) strings and return a logical
value of .TRUE. or FALSE.,
depending on the ASCII
collating sequence.
Index of (A) INDE X 2 Character Integer To return an integer
A Substring (note 12) value locating substring
co within a string c]°
Refer to note 7.
Inclusive (1) IOR 2 Integer Integer To permit interrogation
OR and manipulation of
integers on a bit-by-bit
basis. Refer to 6.2.1.3.
L ogical (1) IAND 2 Integer Integer To permit interrogation
Product and manipulation of
integers on a bit-by-bit
basis. Refer to 6.2.1.1
L ogical () NOT 1 Integer Integer To permit Interrogation
comple- and manipulation of
ment integers on a bit-by-bit
basis. Refer to 6.2.1.4.
Exclusive (1) IEOR 2 Integer Integer To permit Interrogation
OR and manipulation of
integers on a bit-by-bit
basis. Refer to 6.2.1.2,

Mathematical Library Routines (Sheet 12 of 13)

Table 2-1

2-29/2-30

F N
A
{]

Number

Routine of Argument Result Error Exception Exception
Function Name Arguments Modes Modes Routine Purpose Message Condition Result
L ogical M) ISHFT 2 Integer Integer To shift k places all bits
shift representing argument m.
Refer to 6.2.2.1.
Circular (D ISHFTC 3 Integer Integer To shift circularly k places
shift the rightmost ic bits of
argument m. Refer to
6.2.2,2,
Bit test (1) BTEST 2 Integer Logical To test a specified bit
of an integer.
Refer to 6.2.3.1.
Bit set (1) IBSET 2 Integer Integer To set a specified bit
of an integer,
Refer to 6.2.3.2.
Bit clear (1) IBCLR 2 Integer Integer To clear a specified bit
) of an integer.
Refer to 6.2.3.3.
Bit field 1) 1BITS 3 Integer Integer To extract a specified
extraction subfield of bits.

Refer to 6.2.4.1.

Mathematical Library Routines (Sheet 13 of 13)

Table 2-1

2-31/2-32

Notes for Table 2-1

The Mathematical Library Routines, which conform to the ANSI X3.9-1978 (American
National Standards Institute), are identified by an (A) next to the routine name.

The Mathematical Library Routines, which conform to the ISA/S61.1-1976 (Instrument
Society of America), are identified by an (I) next to the routine name.

l.

For an integer argument, INT (a) = a. For a real or double precision argument,
there are two cases: if |a|l < 1,INT (a) = 0, but if |al > 1,INT (a) equals the integer
whose magnitude is the largest integer that does not exceed the magnitude of (a)

~ and whose sign is the same as the sign of (a). For example:

INT (-3.7)=-3

For a complex ar ument, INT (a) is the value obtained by applying the above rule to
the real part of (

For a real argument, IFIX (a) is the same as INT (a).

For a real argument, REAL (a) is (a). For an integer or double precision argument,
REAL (a) is as much precision of the significant part of (a) as a real datum can
contain. For a complex argument, REAL (a) is the real part of (a).

For an integer argument, FLOAT (a) is the same as REAL (a).

For a double precision argument, DBLE (a) is (a). For an integer or real argument,
DBLE (a) is as much precision of the significant part of (a) as a double precision
datum can contain. For a complex argument, DBLE (a) is as much precision of the
significant part of the real part of (a) as double precision datum can contain.

CMPLX (or DCMPLX) may have one or two arguments. If there is one argument, it
must be of type integer, real, double precision, or complex. If there are two

. arguments, they must both be of the same type and must be of type integer, real, or

SRTL

double precision.

For an integer, real, or double precision argument:

CMPLX (a) = REAL (a) real part

0EO0 imaginary part
DCMPLX (a) = DBLE (a) real part

000 imaginary part

For a complex argument:

CMPLX (a) = a
DCMPLX (a) = DBLE (REAL (a)) real part
DBLE (AIMAG(a)) imaginary part

For a double precision complex argument:

CMPLX (a) = REAL (DREAL(a)) real part
REAL (DIMAG(a)) imaginary part
DCMPLX(a) = a

Mathematical Library Routines 2-33

5.

6.

8.

10.

2-34

For two arguments:

CMPLX (ay,a,) = REAL(a;) real part
REAL(ay) imaginary part

DCMPLX (aj,a9) = DBLE(a;) real part
DBLE(aj) imaginary part

ICHAR converts a character to an integer, based on the position of the character in
the ASCII collating sequence. The first character in the collating sequence
corresponds to position 0 and the last to position n-1, where n is the number of
characters in the collating sequence.

The value of ICHAR (a) is an integer in the range: |

0 < ICHAR (a) £ 127, where (a) is a character argument of length one. The position
of that character in the collating sequence is the value of ICHAR.

For any characters ¢y and c, capable of representation in the processor, (cl.LE.cz)
is true only if (ICHAlR (e1).LE.ICHAR (cp)) is true and (c;.EQ.cy) is true only if
(ICHAR (c1)-EQ.ICHAR (c5)) is true. ,

CHAR (i) returns the ith position of the ASCII collating sequence. The character
argument is of length one. i must be an integer expression whose value must be in
the range 0 <i<127:

ICHAR (CHAR () = i for 0 <i< 127
CHAR (ICHAR (e)) = ¢ for any character c capable of
. representation in the processor.
A complex value is expressed as an ordered pair of reals (a,a;), where a; is the real

part and a; is the imaginary part.

INDEX (al,az) returns an integer value indicating the substring identical to string
ag. If ag occurs more than once in aj, the starting position of the first occurrence
is returned. ‘

If a, does nat aceur in aj, the value zero is returned. Note that zero is returned if
LEN (ap) <LEN (ag).

All angles are expressed in radians.

If the operands for LGE, LGT, LLE, and LLT are of unequal length, the shorter
operand is considered as if it were extended on the right with blanks to the length
of the longer operand.

M.VE causes a character string to move from a specified source to a specified
destination. If the source string is longer than the destination, the source string is
truncated. If the source string is less than the destination, the source is left
justified and padded with blanks.

Mathematical Library Routines SRTL

11.

12.

13.

14.

15.

16.

C.MP accomplishes the following (LGE, LGT, LLE, LLT are entries within C.MP):

(a) Logically compares two character strings and returns the resulting condition
codes for compiler generated calls to C.MP.

(b) Logically compares two character strings in one of the following four ways:
.LGE., .LGT., .LLE., .LLT.
When used in ASSEMBLY, character arguments consist of a pair of parameter
words. The first word specifies the address of the first byte of the character
item. The second word specifies the address of the length of the character item.
When used in ASSEMBLY, CHAR requires three actual parameter words. The first
two specify a target character item (in storage) that is to receive the value of
CHAR. The third parameter corresponds to the actual argument, I, in CHAR(D.
The integer value of I cannot exceed 127.

For exception conditions, the returned value differs from the correct return value
by less than the margin indicated.

If the base value is negative, the absolute value of the result is returned.]

The following intrinsic functions will accept integer*8 arguments: JABS, JDIM,I
JINT and JSIGN.

Change 1

SRTL Mathematical Library Routines 2-35/2-36

s

CHAPTER 3
MPX-32 COMPATIBLE MODE SUBROUTINES

3.1 M: and X: Subroutines

This chapter contains descriptions of compatible mode subroutines that provide MPX-32
subroutines to FORTRAN 77+,

The M: subroutines described in this chapter are equivalent to the subroutines under
RTM. The X: subroutines described in this chapter are additional compatible mode
subroutines. These subroutines must not be used by programs using the native mode file
system features.

Any attempt to mix modes; i.e., compatible with native, will result in an RS99 error with
the entry point displayed in an extended abort message.

A delimiting comma must be present in the calling sequence of M: subroutines only if an
omitted optional argument is followed by other arguments. A delimiting comma must be
present in all X: subroutines whenever an optional argument is not included in the calling
sequence.

.

All error codes are expressed as decimal integers.
If a task is multicopied, any later reference to that task must be by task number.

An argument list that does not contain the arguments *label (a denial return address) and
an istatus, results in an RSxx abort code message and program termination if the
subroutine performs unsuccessfully. If only istatus is specified, the istatus value should
be checked to determine if the subroutine performed successfully. If a denial return
address is specified and the subroutine performs unsuccessfully, control will transfer to
the specified address.

MPX-32 Compatible Mode
SRTL Subroutines 3-1

M:ALOC1

3.1.1 M:ALOC1

The M:ALOC1 subroutine dynamically allocates a previously created permanent file and
assigns a Logical File Code (LFC) to it.

Calling Sequence
CALL M:ALOC1 (Ifc, filename,[*label],[password],[blocked], [wait], [istatus])

Ife

filename

label

password
blocked

wait

istatus

3-2

'An INTEGER or CHARACTER expression or variable that specifies the

logical file code. If the LFC is an INTEGER, this argument must be an
integer constant in the range of 1-999 or a 1-3 character string left justified
and blank filled. If the LFC is a CHARACTER, this argument must be a 1-3
character string.

An INTEGER*8 variable that specifies the permanent file name. This
argument must be one to eight ASCIl characters, left justified and blank
filled.

The statement label to which control is returned if a request is denied due to
file unavailability.

An INTEGER*8 variable that specifies the password. This argument is a
place holder provided for compatibility and, if specified, is ignored.

A LOGICAL variable. If present and specified true (.TRUE.), the file is
allocated blocked. Unblocked is the default.

A LOGICAL variable. If present and specified true (.TRUE.), the allocation
is performed in the wait mode. No-wait is the default. In the wait mode,,
the calling task is queued for the requested resource and suspended until the
resource becomes available.

An INTEGER variable. If specified, istatus is set to a cor"npletion code upon
return from the subroutine. Possible istatus values are:

0 Normal completion.
1 Permanent file nonexistent.
2 Illegal file password specified.
3 No File Assignment Table/File Pointer Table (FAT/FPT) space
available.
4 No blocking buffer space available.
5 Shared memory table entry not found.
6 Invalid shared memory table password specified.
7 Dynamic common specified in $ASSIGN1.
8 Unrecoverable I/O error to System Master Directory (SMD).
9 System General Object (SGO) assignment specified by terminal
task.
10 No'User Terminal (UT) file code exists for terminal task.
11 Invalid Resource Requirement Summary (RRS) entry.
13 Assigned device not on system.
14 Device in use by requesting task.
15 SGO or System Control (SYC) assignment not allowed by real-
time task.
16 Common memory conflicts with allocated task.
17 Duplicate LFC allocation attempted.
18 Incompatible call.

MPX-32 Compatible Maode
Subroutines SRTL

M:ALOC1

The following error codes are returned if allocation is requested with no wait and one of
the conditions exists. If allocation is requested with wait mode, no error code is returned
and the system continues waiting.

30
31
32
33
70

Permanent file exclusively closed.

File Lock Table (FLT) full.

Nonshared device busy (already allocated).
Disc space is not available.

Allocation error.

Programming Considerations

Static LFC assignments (via job control or cataloging) may not be overridden until the
LFC has been deallocated, typically with the M:DALOC subroutine.

SRTL

MPX-32 Compatible Mode ,
Subroutines 3-3

M:ALOC2

3.1.2 M:ALOC2

The M:ALOC?2 subroutine dynamically allocates a System Listed Output (SLO) or System
Binary Output (SBO) file and assijns a Logical File Code (LFC) to the file.

Calling Sequence
CALL M:ALOC?2 (Ife, sfc, size,[*label],[wait],[istatus])

Ife An INTEGER or CHARACTER expression or variable that specifies the
logical file code. If the LFC is an INTEGER, this argument must be an
INTEGER constant in the range of 1-999 or a 1-3 character string left
justified and blank filled. If the LFC is a CHARACTER, this argument must
be a 1-3 character string.

sfc An INTEGER variable that specifies the system file code (either SLO or
SBO). This argument must be three ASCII characters, left justified and
blank filled.

size An INTEGER variable that specifies the allocation required in physical
record blocks (192 words each).

label The statement label to which control is retumed if a request is denied
because of file unavailability.

wait A LOGICAL variable. If present and specified true (.TRUE.), the allocation
is performed in the wait mode. No-wait is the default.

istatus An INTEGER variable. If specified, istatus is set to a completion code upon
return from the subroutine. Possible istatus values are:

Normal completion.

Permanent file nonexistent.

Illegal file password specified.

No File Assignment Table/File Pointer Table (FAT/FPT) space
available,

4 No blocking buffer space available.

5 Shared memory table entry not found.

6 Invalid shared memaory table password specified.

8

9

WO

Unrecoverable I/O error to System Master Directory (SMD).
System General Object (SGO) assignment specified by terminal

task.

10 No User Terminal (UT) file code exists for terminal task.

11 Invalid Resource Requirement Summary (RRS) entry.

13 Assigned device not on system.

14 Device in use by requesting task.

15 SGO or System Control (SYC) assignment not allowed by real-
time task.

16 Common memory conflicts with allocated task.

17 Duplicate LFC allocation attempted.

18 Incompatible call.

MPX-32 Compatible Mode
3-4 Subroutines SRTL

M:ALOC2

The following error codes are returned if allocation is requested with no-wait and
one of the conditions exists. If allocation is requested with wait mode, no error
code is returned and the system continues waiting.

30
31
32
33
70

Permanent file exclusively closed.

File Lock Table (FLT) full..

Nonshared device busy (already allocated).
Disc space not available.

Allocation error.

Programming Considerations

Static LFC assignments (via job control or cataloging) may not be overridden until the
LFC has been deallocated, typically with the M:DALOC subroutine.

SGO and SYC files may not be assigned with this subroutine.

SLO and SBO are blocked files.

SRTL

MPX-32 Compatible Made
Subroutines 3-5

M:ALOC3

3.1.3 M:ALOC3

The M:ALOC?3 subroutine dynamically allocates a physical device and assigns a Logical
File Code (LFC) to the device. :

Calling Sequence

CALL M:ALOCS3 (Ifc, dt,[channell,[param],[*1abei],lmo],[vol][blocked],[wait][istatus],[da])

Ifc

dt

channel

param

label

mo

vol

blocked

wait

istatus

An INTEGER or CHARACTER expression or variable that specifies the
logical file code. If the LFC is an INTEGER, this argument must be integer
constant in the range of 1-999 or a 1-3 character string left justified and
blank filled. If the LFC is a CHARACTER, this argument must be a 1-3
character string.

An INTEGER variable or constant that specifies the device type code (refer
to Chapter 5). If the dt parameter is a constant, it must represent a value
corresponding to one specified in Section 5.2. For example, the following
calling sequence would cause a line printer to be allocated:

CALL M:ALOC3(OUT,10,2Z7A,,*40)

An INTEGER variable that specifies the channel number (hexadecimal) of
the particular device on which the file is to reside. Channel is a
configuration restraint established at the time of system generation
(SYSGEN) and configuration.

An INTEGER variable that specifies the four-ASClI-character reel ID, if the
device is magnetic tape, or the number of 192-word blocks to allocate, if the
device is a disc. Otherwise, the value of param is null.

The statement label to which control is returned if allocation is denied
because of device unavailability.

An INTEGER variable or constant that specifies the mount-only option for
magnetic tapes:

0 Allocate and mount
1 Mount only

An INTEGER variable or constant that specifies the magnetic tape volume
number (1 through 255).

A LOGICAL variable. If present and specified true (.TRUE.), the peripheral
device or file is allocated blocked. Unblocked is the default.

A LOGICAL variable. If present and specified true (.TRUE.), the allocation
is performed in the wait mode. No-wait is the defauit.

An INTEGER variable. If specified, istatus is set to a completion code upon
return from the subroutine. Possible istatus values are:

MPX-32 Compatible Mode
Subroutines SRTL

-

M:ALOC3

Normal completion.

Permanent file nonexistent.

Illegal file password specified.

No File Assignment Table/File Pointer Table (FAT/FPT) space
available.

No blocking buffer space available.

Shared memory table entry not found.

Invalid shared memory table password specified.

Unrecoverable 1/O error to System Master Directory (SMD).
System General Object (SGO) assignment specified by terminal
task.

No User Terminal (UT) file code exists for terminal task.
Invalid Resource Requirement Summary (RRS) entry.

Assigned device not on system.

Device in use by requesting task.

SGO or System Control (SYC) assignment not allowed by
realtime task.

Common memory conflicts with allocated task.

Duplicate LFC allocation attempted.

Call was incompatible.

The following error codes are returned if allocation is requested with no wait and
one of the conditions exists. If allocation is requested with wait mode, no error
code is returned and the system continues waiting.

30
31
32
33
70

Permanent file exclusively closed.

File Lock Table (FLT) full.

Nonshared device busy (already allocated).
Disc space not available.

Allocation error

da An INTEGER variable that specifies the device subaddress. The default value is

Zerao.

Programming Considerations

A message, MOUNT TAPE (reel identification) (volume) ON UNIT (magnetic tape device
number), is written to the operator's console for magnetic tape use.

Static LFC assignments (via job control or cataloging) may not be overridden until the
LFC has been deallocated, typically with the M:DALOC subroutine.

If the device is a disc drive, a formatted volume must be mounted. A temporary file will
be created by the subroutine. The disc drive is treated as a formatted medium and a
mount message will not be issued. :

SRTL

MPX-32 Compatible Mode
Subroutines 3.7

M:ALOCa

3.1.4 M:ALOC4

The M:ALOC4 subroutine equates a new Logical File Code (LFC) to an existing logical
file code.

Calling Sequence
CALL M:ALOCA4 (Ife, pfc,[*label],(status])

- Ife An INTEGER or CHARACTER expression or variable that specifies the new
logical file code. If the LFC is an INTEGER, this argument must be an
integer constant in the range of 1-999 or a 1-3 character string left justified
and blank filled. If the LFC is a CHARACTER, this argument must be a 1-3
character string.

pfe An INTEGER or CHARACTER expression or variable that specifies the
existing logical file code. If the LFC is an INTEGER, this argument must be
an INTEGER constant in the range of 1-999 or a 1-3 character string left
justified and blank filled. If the LFC is a CHARACTER, this argument must
be a 1-3 character string.

label A statement label to which control is returned if a request is denied.

istatus An INTEGER variable. If specified, istatus is set to a completion code upon
return from the subroutine. Possible istatus values are:

0 Normal completion.

1 Permanent file nonexistent.

2 Illegal file password specified.

3 No File Assignment Table/File Pointer Table (FAT/FPT) space
available.

4 No blocking buffer space available.

5 Shared memory table entry not found.

6 Invalid shared memory table password specified.

8 Unrecoverable I/O error to System Master Directory (SMD).

9 System General Object (SGO) assignment specified by terminal

task.
10 No User Terminal (UT) file code exists for terminal task.
11 Invalid Resource Requirement Summary (RRS) entry.
13 Assigned device not on system.
14 Device in use by requesting task.

15 SGO or System Control (SYC) assignment not allowed by
realtime task.

16 Common memory conflicts with allocated task.
17 Duplicate LFC allocation attempted.
18 Incompatible call.

. The following error codes are returned if allocation is requested with no wait
and one of the conditions exists. If allocation is requested with wait mode,
no error code is returned and the system continues waiting.

30 Permanent file exclusively closed.
31 File Lock Table (FLT) is full.
32 Nonshared device busy (already allocated).

MPX-32 Compatible Mode
3-8 ; Subroutines SRTL

\
N -\
~- N

M:ALOCa

33 Disc space not available.
70 Allocation error.

Programming Consideration

Static LFC assignments (via job control or cataloging) may not be overridden until the
LFC has been deallocated, typically with the MiDALOC subroutine.

MPX-32 Compatible Mode
SRTL Subroutines 3-9

M:ALOCS

3.1.5 M:ALOCS

The M:ALOCS subroutine dynamically allocates a permanent system file and assigns a
Logical File Code (LFC) to the file.

Calling Seguence
CALL M:ALOCS (Ife, filename,[*iabel],[password],[blocked),[wait],[istatus])

Ife

filename

label

password

blocked

wait

istatus

3-10

An INTEGER or CHARACTER expression or variable that specifies the
logical file code. If the LFC is an INTEGER, this argument must be an
integer constant in the range of 1-999 or a 1-3 character string left
justified and blank filled. If the LFC is a CHARACTER, this argument
must be a 1-3 character string.

An INTEGER*8 variable that specifies the permanent file name. The file
name must be one to eight ASCII characters, left justified and blank filled.

The statement label to which control is returned if a request is denied due
to file unavailability.

An INTEGER*8 variable that specifies the password. This argument is a

place holder provided for compatibility and, if specified, is ignored.

A LOGICAL variable. If present and specified true (.TRUE.), the
peripheral device or file is allocated blocked. Unblocked is the default.

A LOGICAL variable. If present and specified true (,TRUE.), the allocation
is performed in the wait mode. No-wait is the default.

An INTEGER variable. If specified, istatus is set to a completion code
upon return from the subroutine. Possible istatus values are:

Normal completion.

Permanent file nonexistent.

Illegal file password specified.

No File Assignment Table/File Pointer Table (FAT/FPT) space

available.

No blacking buffer space available.

Shared memory table entry not found.

Invalid shared memory table password specified.

Unrecoverable I/O error to System Master Directory (SMD).

System General Object {SGO) assignment specified by terminal

task. :

10 No User Terminal (UT) file code exists for terminal task.

11 Invalid Resource Requirement Summary (RRS) entry.

13 Assigned device not on system.

14 Service in use by requesting task.

15 SGO or System Control (SYC) assignment not allowed by real-
time task.

16 Caommon memory conflicts with allocated task.

AVole e B \ NV I WO

MPX-32 Compatible Mode
Subroutines SRTL

M:ALOCS

17 Duplicate LFC allocation attempted.
_ 18 Incompatible call.
(The following error codes are returned if allocation is requested with no wait

and one of the conditions exists. If al<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>