
c

322-001551-500
11~llllllnnll~I~1

MPX-32 ™

System Tables and Tasks

Revision 3.5

Technical Manual Volume I

April 1990

Limited Rights

This manual is supplied without representation or warranty of any kind. Encore
Computer Corporation therefore assumes no responsibility and shall have no liability of
any kind arising from the supply or use of this publication or any material contained
herein.

Proprietary Information
The information contained herein is proprietary to Encore Computer Corporation
and/or its vendors, and its use, disclosure, or duplication is subject to the restrictions
stated in the standard Encore Computer Corporation License terms and conditions or
the appropriate third-party sublicense agreement.

Restricted Rights
Use, duplication, or disclosure by the Government is subject to restrictions as set forth
in subdivision (c) (1) (ii) of the Rights in Technical Data and Computer Software clause
at 252.227.7013.

Encore Computer Corporation
6901 West Sunrise Boulevard
Fort Lauderdale, Florida 33313

TM MPX-32 is a trademark of Encore Computer Corporation

® CONCEPT/32 is a registered trademark. of Encore Computer Corporation

Copyright © 1990 by Encore Computer Corporation
ALL RIGHTS RESERVED
Printed in the U.S.A.

o

o

o

() History

The MPX-32 Release 3.2 Technical Manual, Publication Order Number 322·001550-
000, was printed September, 1983.

Publication Order Number 322-001550·100, (Revision 1, Release 3.2B) was printed
March, 1985.

Publication Order Number 322·001550·101, (Change 1 to Revision 1, Release 3.2C)
was printed December, 1985.

The MPX-32 Release 3.3 Technical Manual Volume I, Publication Order Number
322·001551·200, was printed December, 1986.

Publication Order Number 322·001551·300, (Revision 3, Release 3.4) was printed
January, 1988.

Publication Order Number 322·001551-400, (Revision 4, Release 3.4U03) was printed
October, 1989.

Publication Order Number 322·001551·500, (Revision 5, Release 3.5) was printed
April, 1990.

This manual contains the following pages:

Title page
Copyright page
iii/iv through xxv/xxvi
1-1 through 1-69/1-70
2-1 through 2-206
3-1 through 3-60
4-1 through 4-27/4-28
5-1 through 5-31/5-32
6-1 through 6-25/6-26
7-1 through 7-17n-IS
8-1 through 8-14
9-1 through 9-29/9-30
10-1 through 10-6
A-I through A-3/A-4

III/Iv

o

o

o

Contents

Page

Documentation Conventions .. xxiii

1 System Description

1.1 Naming Conventions .. 1-1
1.1.1 Communications Region .. 1-1
1.1.2 Task Service Area (TSA) ... 1-1
1.1.3 Entry Variables ... 1-1
1.1.4 System Modules and Interrupt Handlers 1-2
1.1.5 Common System Subroutines .. 1-2
1.1.6 System Macros .. 1-3
1.1.7 System Task Load Module Files .. 1-3
1.1. 8 Batch Task Load Module and Executable Image Files 1-3
1.1.9 System Permanent Files ... 1-3

1.2 Scheduler - IOCS Interface .. 1-4
1.2.1 I/O Initiation ... 1-4

1.2.1.1 Wait I/O Postprocessing .. 1-4
1.2.1.2 No-wait I/O Postprocessing ... 1-4
1.2.1.3 No-wait I/O Completion Task Interrupt Service 1-4
1.2.1.4 No-wait I/O Restrictions for System Services 1-5

1.3 Scheduler - Task Termination Interface .. 1-15
1.3.1 Exit Task ... 1-1 5

1.3.1.1 Outstanding I/O (Exit) ... 1-15
1.3.1.2 Messages in Receiver Queue (Exit) 1-15
1.3.1.3 Outstanding Run Requests (Exit) 1-15
1.3.1.4 Run Requests in Receiver Queue (Exit) 1-15
1.3.1.5 Task Abort Receiver (Exit) .. 1-15
1.3.1.6 Files (Exit) .. 1-15
1.3.1.7 Resources (Exit) ... 1-15

1.3.2 Abort Task .. l-16
1.3.2.1 Asynchronous Abort .. 1-16
1.3.2.2 Synchronous Aborts ... 1-17

1.3.3 Delete Task ... 1-18
1.3.3.1 Asynchronous Delete ... 1-18
1.3.3.2 Synchronous Deletes .. 1-18

1.4 Scheduler-Debug Interface ... 1-19
1.4.1 Design Goals ... 1-19

MPX·32 Technical Volume I v

Contents

vi

Page 0
1.4.2 Debug Entry Points•..•.......... 1-19
1.4.3 Task IntelT'U.pt Status•......•....................•..............•................ 1-20
1.4.4 TSA Stack Pushdown Level Interpretation •............................... 1-20
1.4.5 Exit from AIDDB Mod.e•.•....................................... 1-20
1.4.6 Entry Point 1 - Start-up•.......•.......•....•.•........•...•.... 1-20

1.4.6.1 AIDDB Activated with User Task 1-20
1.4.6.2 AIDDB Activated by Load and Execute SVC 1-21

1.4.7 Entry Point 2 - Reserved ... 1-21
1.4.8 Entry Point 3 - Trap/Break ... 1-21
1.4.9 Entry Point 4 - User Break Exit ... 1-21
1.4.10 Entry Point 5 - Abort ... 1-21

1.4.10.1 Wait I/O Operation Status on Abott Receiver 1-21
1.4.10.2 No-Wait I/O Operation Status on Abott Receiver 1-22
1.4.10.3 File Status on Abott Receiver Entry 1-22
1.4.10.4 Inhibit of Abort Receiver Entry 1-22
1.4.10.5 Re-use of Abort Receiver .. 1-22

1.5 Task Interrupts•... 1-23
1.5.1 Task Interrupt Priorities •...........•.......•... 1-23
1.5.2 Task Interrupt Receivers ... 1-23 0
1.5.3 Task Interrupt Scheduling .. 1-23
1.5.4 System Service Calls from Task Interrupt Levels 1-23
1.5.5 Task Interrupt Context Storage .. 1-23
1.5.6 Task Interrupt Level Gating ... 1-24
1.5.7 User Break Interrupt Receivers .. 1-24
1.5.8 User End-Action Receivers .. 1-24
1.5.9 User Message Receivers ... 1-25
1.5.10 User Run Receivers•.........•..........•.........•.......•..•.................... 1-25
1.5.11 User Abort Receivers •....••.....•.............•.......•...................••......... 1-26

1.6 SendIR.ecei ve Facilities .. 1-27
1.6.1 Receiving Task Services•............................. 1-27

1.6.1.1 Establishing Message and Run Receiver Capability 1-27
1.6.1.2 Execution of Message and Run Receiver Programs 1-27
1.6.1.3 Obtaining the Passed Parameters 1-28
1.6.1.4 Exiting the Receiver Program .. 1-28
1.6.1.5 Waiting for the Next Request .. 1-29

1.6.2 Sending Task Services .. 1-29
1.6.2.1 Sending th.e Request••..•....•.......................•................• 1-29
1.6.2.2 Waiting for Request Completion 1-30
1.6.2.3 End-Action Processing ... 1-30 0
1.6.2.4 Parameter Send Block (PSB) ... 1-30

Contents

c

1.7
1.8

1.9

Contents

Page

1.6.2.5 Parameter Receive Block (PRB) 1-36
1.6.2.6 Receiver Exit Block (RXB) ... 1-37
1.6.2.7 Message or Run Request Queue Entry (MRRQ) 1-38
1.6.2.8 Messages and Run Request Services Summary 1-41

Device Address Specification .. 1-42
CPU Scheduling ... 1-45
1.8.1 Execution Priorities .. 1-45
1.8.2 Real-Time Priority Levels (1 to 54) ... 1-45
1.8.3 Time-Distribution Priority Levels (55 to 64) 1-45
1.8.4 Priority Migration ... 1-45

1. 8.4.1 Situational Priority Increments 1-46
1.8.5 Time-Quantum Controls ... 1-46
1.8.6 State Chain Management .. 1-46
FAT/FPT and Blocking Buffer Allocation .. 1-48
1.9.1 FAT/FPT Area .. 1-48
1.9.2 Blocking Buffer Area. ... 1-48

1.10 Indirectly Connected Interrupts .. 1-49
1.10.1 Connect Task to Interrupt Service (M. CONN) 1-49
1.10.2 Disconnect Task from Interrupt Service (M.DISCON) 1-49
1.10.3 Indirectly Connected Task Linkage Table (ITL T) 1-49
1.10.4 Indirectly Connected Task Linkage Block (ITLB) 1-50
1.10.5 Indirectly Connected Interrupt Program (H.ICP) 1-52

1.11 Miscellaneous System Macros ... 1-5 3
1.11.1 M.BACK .. 1-53
1.11.2 M.CALL ... 1-53
1.11.3 M.CLSE ... 1-54
1.11.4 M.DFCB•.. 1-54
1.11.5 M.DFCBE ... 1-55
1.11.6 MEIR ... 1-56
1.11.7 M.FCBEXP .. 1-5 6
1.11.8 M.FWRD .. 1-57
1.11.9 M.INIT ... 1-57
1.11.10 M.INITX .. 1-58
1.11.11 M.IOFF .. 1-58
1.11.12 M.IONN .. 1-58
1.11.13 M.IPUOFF ... 1-58
1.11.14 M.IPUON .. ~ 1-58
1.11.15 MIPURTN ... 1-59
1.11.16 M.IVC .. 1-59
1.11.17 M . .KII..l.. ... 1-59

MPX·32 Technical Volume I vII

Contents

Page 0
1.11.18 M.MODT ... 1-59
1.11.19 M.OP.EN•...................•... 1-60
1.11.20 M.RTNA•... 1-60
1.11.21 M.RTRN•...........••... 1-61
1.11.22 M.RTRNOS ... 1-61
1.11.23 M.SHUT .. 1-61
1.11.24 M.SPAD .. 1-61
1.11.25 M.SVCP .. 1-62
1.11.26 M.SVCP2 .. 1-62
1.11.27 M.Svcr .. 1-63
1.11.28 M.SVCf2 · ... 1-63
1.11.29 M.m.AC ..•................. 1-63
1.11.30 M.'fR.PIN'T .•.. 1-63
1.11.31 M.TSAD .. 1-64
1.11.32 M.TYPE .. 1-64
1.11.33 M.USHUT ... 1-64
1.11 .. 34 M . .x:IR.. •••••••••••••..•••.•.••.•.•••.•••.••••..•••..•••.••..••••.•••..•••.••••...•.•••••...•.. 1-64
1.11.35 DCA.DATA .. 1-65
1.11.36 DCA.IN'Il•................... · ...•........... 1-65
1.11.37 DCA.INI2 .. 1-66
1.11.381iMP.IN'IT•....................................•................................... 1-66
1.11.39 IB.IN'IT•.•..•...•...•..................•.......•........•............................ 1-66

1.12 Extended MPX-32 Macros ... 1-67
1.12.1 MBR_DBG (Calls to System Debugger) Macro 1-68
1.12.2 MBR_DScr (OSEcr Data Separation) Macro 1-68
1.12.3 MBR_ENT (Extended Code Routine Entry) Macro 1-68
1.12.4 MBR_IN'IT (Module Initialization) Macro 1-68
1.12.5 MBR_SScr (System Code Separation) Macro 1-69

2 System Tables and Variables

2.1 Overview•...........•...........................•.......•............................... ~ 2-1
2.2 Memory Layout .. 2-4
2.3 Communi.cations Region .•.......... , .. ~ .. 2-6
2.4 Allocated Resource Table (ART) .. 2-34
2.5 Blocking Buffer Control Cells ... 2-36

2.5.1 Blocking Buffer Head Cells ... 2-37
2.6 Caller Notification Packet (CNP) .. 2-38
2.7 Channel Definition Table (CHT) ... 2-39 0

vIII Contents

c

2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21
2.22

Contents

Page

Controller Definition Table (CDT) .. 2-41
Device Context Area (DCA) .. 2-43
Device Type Table (DIT) .. 2-45
Directory Entry Table (M.DN.TEQ) .. 2-46
Dispatch Queue Area .. 2-48
Dispatch Queue Entry (DQE) .. 2-48
Dispatch Queue Address Table (DAT) .. 2-63
File Assignment Table (FAT) .. 2-64
Pile Control Block (FCB) .. 2-67
File Control Block (8 Word Compatible Mode) 2-75
File Pointer Table (FPT) ...•.................. 2-82
I/O Queue (IOQ) Entry .. 2-83
M.KEY Entry Fennat ... 2-89
M.PRJCT Format ... 2-89
Map Image Descriptor List (MIDL) .. 2-90
2.22.1 Halfword MIDL Entries .. 2-90
2.22.2 Fullword MIDL Entries .. 2-91

2.23 Memory Allocation Pointer List (MPJL) .. 2-92
2.24 Memory Allocation Table (MA TA) ... 2-93
2.25 Memory Attribute List (MEML) .. 2-94

2.25.1 Halfword MEML Format .. 2-94
2.25.2 Fullword MEMI... Fennat .. 2-95

2.26 Memory Pool Management .. 2-96
2.27 Memory Resident Descriptor Table (MDT) .. 2-99
2.28 Message or Run Request Queue (MRRQ) ... 2-99

2.28.1 Remote Messaging Request Queue .. 2-101
2.29 Module Address Table ... 2-103
2.30 Mounted Volume Table (MVT) ... 2-103
2.31 Physical Shared Memory Table (PSM) .. 2-105
2.32 Resource Create Block (RCB) ... 2-107
2.33 Resource Inquiry Table (M.RIQ) ... 2-109
2.34 Resource Logging Block (RLB) .. 2-110
2.35 Resource .Requirement Summary (RRS) Entries 2-111
2.36 Shared Memory Table (SMT) .. 2-117
2.37 Spooled File Data Sttu.ctu:res ... 2-120

2.37.1 I.SSIN Run Request ... 2-121
2.37.2 I.TSM Run Request ... 2-12i
2.37.3 I.SOEX Run Request ... ~ 2-122
2.37.4 I.SOUT Run Request ... 2-123

2.38 System Master Directory (SMD) ... 2-124

MPX·32 Technical Volume I Ix

Contents

Page 0
2.39 Task Service Area (TSA)•.. 2-126
2.40 Tenninal Line Buffer .. 2-140
2.41 Timer Table•.. 2-141
2.42 Type Control Parameter Block (TCPB) ... 2-143
2.43 Unit Definition Table (UDT) ... 2-145
2.44 Volume Assignment Table (VAT) ... 2-148
2.45 Disk Resident Resource Descriptors (RD) .. 2-149

2.45.1 Resource Descriptor (M.RDCOM) ... 2-150
2.45.2 Resource Descriptor Space Definition (M.RDSPD) 2-154
2.45.3 Bad Block Descriptor (M.BBDEQ) 2-155
2.45.4 Descriptor Allocation Map Descriptor (MDM.DEQ) 2-155
2.45.5 Descriptors Descriptor (M.DD.DEQ) 2-155
2.45.6 Descriptor Map (DMAP) Deallocation File Descriptor

(M.BD.DEQ) ... 2-156
2.45.7 Directory Descriptor (M.D1DEQ) ... 2-157
2.45.8 File Descriptor (M.FIDEQ) ... 2-158
2.45.9 Memory Partition Descriptor (M.ME.DEQ) 2-159
2.45.10 Space Allocation Map Descriptor (M.SMDEQ) 2-160
2.45.11 Space Map (SMAP) Deallocation File Descriptor

(M.BSDEQ) .. 2-160 ()
2.45.12 Volume Descriptor (M.VO.DEQ) ... 2-162
2.45.13 Segment Definitions (RD.SEGDF} ... 2-164
2.45.14 User Area (RD.USER) .. , 2-165

2.46 Disk Resident Structures .. 2-165
2.46.1 Volume Fonn.at t ••••••••• t.t ••••••••••••• t a •••••••••••••••••••• 2-166
2.46.2 Load Module Structure ... 2-167
2.46.3 Load Module Preamble .. 2-167
2.46.4 Executable Image Structure · 2-175
2.46.5 Executable Image Preamble ... 2-176
2.46.6 Shared Executable Image Structure 2-182
2.46.7 . Shared Executable Image Preamble 2-183
2.46.8 Shared Image Descriptors ... 2-189
2.46.9 COFF Load Module StruCtuIe .. 2-190
2.46.10 COFF Executable Image Preamble .~ 2-191
2.46.11 COFF Shared Image Preamble ... 2-198

2.47 Internal J.VFMT Structures .. 2-204
2.47.1 Newboot Macro Offsets' (M.BO.EQU) 2-204
2.47.2 Disk Pa,rameter Table Structures ... 2-205

2.47.2.1 Disk Parameter Table Offsets (M.DPT) 2-205 0..
2.47.2.2 Disk Parameter Table Fonn.at (SJ.VFDPT) 2-206

x Contents

Contents

Page

3 System Task Descriptions

3.1 Swap Scheduler Task (I.SW APR) ... 3-1
3.1.1 J.SWAPR Processing .. 3-4

3.1.1.1 Dispatch Processing .. 3-5
3.1.1.2 Inswap Processing .. 3-5
3.1.1.3 Shared Memory Request (SISHR) Processing 3-5
3.1.1.4 No Memory Available (NOMEM) Processing3-5
3.1.1.5 Outswap Processing .. 3-6
3.1.1.6 I/O Error Handling Processing 3-8
3.1.1.7 Initialization Processing ... 3-8

3.1.2 I.SW APR Internal Subroutines ... 3-9
3.1.3 J.SWAPR Memory Request Functions 3-10

3.1.3.1 Memory Expansion Request3-11
3.1.3.2 Memory Deallocation Request3-11
3.1.3.3 Inswap Request (Memory Roll-in)3-11
3.1.3.4 Change in Task Status Request 3-11
3.1.3.5 Shared Memory Include Request 3-11
3.1.3.6 Exit Conditions ... 3-12

3.1.4 Managing Swap Space Entries ... 3-12
3.1.5 Swap Context Area ... 3-13
3.1.6 Swap Activity Table ... 3-14
3.1.7 Shadow Memory Outswap Tables .. .3-14

3.2 Terminal Services Manager Task (J.TSM) ... 3-16
3.2.1 Functional Description .. 3-16
3.2.2 Operational Design ... 3-16

3.2.2.1 Base I..eve1 .. 3-16
3.2.2.2 Message I..evel .. 3-17
3.2.2.3 End Action Level .. 3-18
3.2.2.4 Break I..evel. .. 3-19
3.2.2.5 Abort Level ... 3-19

3.2.3 Data Structures .. 3-19
3.2.3.1 Terminal Context Area (TCA) Table 3-21
3.2.3.2 Nested Context Area (NCA) Table3-34
3.2.3.3 TSM Procedure Call Buffer (TPCB) 3-35

3.2.4 Intertask Communications .. 3-35
3.2.5 TSM Command Line Recall and Edit (CLRE) Processing 3-35

3.3 System Mount Task (I.MOUNT) .. 3-38
3.3.1 Run Request Interface .. 3-38·

3.3.1.1 Formatted Mount Requests3-38

MPX·32 Technical Volume I xl

Contents

Page 0
3.3.1.2 Unformatted Mount Requests3-39
3.3.1.3 Formatted and Unformatted Dismount Requests3-39

3.3.2 Mount Messages and Requests .. 3-39
3.3.3 Checks on Mounted Volumes3-40
3.3.4 Dismount Messages and Requests .. .3-42
3.3.5 Error Status Return ... 3-43

3.4 Multiprocessor Recovery Task (I.UNLOCK) 3-43
3.4.1 Structure .. 3-43
3.4.2 Entry Conditions ... ;.3-43
3.4.3 Exit Conditions ... 3-44
3.4.4 Multiprocessor Recovery .. 3-44
3.4.5 Error Status Return ... 3-45

3.5 System Spooled Output Tasks (I.SOUT and I.SOEX) 3-46
3.5.1 Functional Description ... 3-46
3.5.2 Operational Design ... 3-46

3.5.2.1 I.SOEX Message Receiver ... 3-46
3.5.2.2 Call Back Information .. 3-48
3.5.2.3 Return Sta.tus .. 3-49
3.5.2.4 Break Receiver ... 3-50

3.6 Online Help Facilit;y ... 3-50
3.6.1 Online Help Tasks .. 3-50

3.6.1.1 lIELP Task .. ~ 3-S1
3.6.1.2 J.1H2 Task ... 3-51
3.6.1.3 ~ Task ... 3-54

3.6.2 Data Sttllc'tUres .. 3-54
3.6.2.1 Terminal Context Area (TCA) , 3-55
3.6.2.2 Topic Name Table List (TNlL) 3-59
3.6.2.3 Keyword list (KWLn .. 3-59
3.6.2.4 Positional Information List (PllJ) 3-59
3.6.2.5 Print Screen Audit Trail (PSAT) 3-59

3.6.3 Interfacing J.HLP with Other Tasks .. .3-60
3.6.3.1 Sending Message Requests Via the Interface 3-60

(\
',-_.J

4' System Generation Task Description
4.1 Task Sttllc'tUre and Functional Organization .. .4-1
4.2 SYSGEN Components ... 4-14

4.2.1 DID and DTT Definitions ~ .. 4-14
4.2.1.1 Device Type Table ... 4-15 0

xII Contents

Contents

c ~
4.2.1.2 Device ID Table .. ; 4-16
4.2.2 SYSGEN Scanner ... 4-17

4.2.2.1 Directive Definition List .. .4-19
4.3 Table Building .. 4-20

4.3.1 System Tables ... 4-20
4.3.1.1 Tables Referenced in SYSGEN4-20

4.3.2 Internal Tables .. 4-21
4.3.2.1 SYSGEN Internal Tables .. .4-22

4.4 Handler and Module Loading and Initialization4-24
4.5 SYSGEN Load Map Descriptions .. .4-25
4.6 Special Considerations ... 4-25

4.6.1 MAPTGTJMAPHOST Routines .. .4-25
4.6.2 Special Case Activation .. 4-25
4.6.3 SYSINIT Loading ... 4-26

5 Batch Task Descriptions

5.1 Cataloger .. 5-1
5.1.1 Introduction ... 5-1

5.1.1.1 Exit Conditions ... 5-1
5.1.2 Processing Regions ... 5-1

5.1.2.1 X Region ... 5-2
5.1.2.2 M Region .. 5-2
5.1.2.3 C Region ... 5-2

5.1.3 SYMT AB Entries ... 5-4
5.1.3.1 Linkback Entries ... 5-4
5.1.3.2 Segment (Module) Entry .. 5-4
5.1.3.3 Defined Entry Point .. 5-5
5.1.3.4 Common Entry ... 5-6
5.1.3.5 Section Entry .. 5-6
5.1.3.6 Program Name .. 5-7
5.1.3.7 Control Entry .. 5-8
5.1.3.8 B Region ... 5-8

5.1.4 Load Module Structure ... 5-9
5.1.5 Symbol Table Output Format ... 5-10
5.1.6 Object Language ... 5-10

5.1.6.1 Object Module Records .. 5-11
5.1.7 Object Commands .. 5-11

5.1.7.1 Absolute Data ... 5-11

MPX·32 Technical Volume I xiii

Contents

Page 0
5.1.7.2 Prognun Origin ... 5-12
5.1.7.3 Absolute Data Repeat ... 5-12
5.1.7.4 Transfer Address ... 5-12
5.1.7.5 Relocatable Data ... 5-12
5.1.7.6 Program Name .. 5-13
5.1.7.7 Relocatable Data Repeat .. 5-13
5.1.7.8 External Definition ... 5-13
5.1.7.9 Forward Reference ... 5-14
5.1.7.10 External Reference .. 5-14
5.1.7.11 Common Definition .. 5-14
5.1.7.12 Common Reference .. 5-15
5.1.7.13 Datapool Reference ... 5-15
5.1.7.14 Escape to Extended Functions 5-15
5.1.7.15 Common Origin .. 5-16
5.1.7.16 Object Tennination ... 5-16

5.1.8 Extended Object Commands .. 5-16
5.1.8.1 Section Definition ... 5-16
5.1.8.2 Section Origin ... 5-17
5.1.8.3 Section Relocatable Reference 5-17 0
5.1.8.4 Section Transfer Address ... 5-17
5.1.8.5 Section External Definition .. 5-18
5.1.8.6 Section External Reference .. 5-18
5.1.8.7 Section Forward Reference .. 5-19
5.1.8.8 Large Common Definition ... 5-19
5.1.8.9 Large Common Origin ... 5-19
5.1.8.10 Large COmmon.Reference .. 5-20
5.1.8.11 Debugger Information ... 5-20
5.1.8.12 Object Creation Date!fime ... 5-21
5.1.8.13 Product Identification Information Leader 5-22
5.1.8.14 Multiple Datapool Reference 5-22

5.1.9 Assembler Instructions and Generated Object Commands 5-22
5.2 AIDDB ... 5-25

5.2.1 The AIDDB Environment .. 5-25
5.2.2 Entr'y' Points .. 5-26

5.2.2.1 Entry Point 1 - Start-up .. 5-26
5.2.2.2 Entr'y' Point 2 - Reserved ... A .. 5-27
5.2.2.3 Entry Point 3 - Trap/Break: Receiver 5-27
5.2.2.4 Entr'y' Point 4 - M.BRKXIT Receiver .~ 5-27

o
xlv Contents

Contents

5.2.2.5 Entry Point 5 - Abort Receiver 5-28
5.2.2.6 Entry Point 6 - User Overlay Load Courtesy Call 5-28

5.2.3 H.EXEC Calls ... 5-29
5.2.4 H.REXS Calls ... 5-29
5.2.5 File Code Usage .. 5-30
5.2.6 TSA References .. 5-31
5.2.7 Communication Region References ... 5-31
5.2.8 Dispatch Queue Entry (DQE) References 5-31

6 System Trace
6.1 Introduction .. 6-1
6.2 Trace Type 1 - Task Activation ... 6-3
6.3 Trace Type 2 - Task Tennination .. 6-4
6.4 Trace Type 3 - Dispatch CPU to Task .. 6-5
6.5 Trace Type 4 - Task Relinquishes CPU .. 6-6
6.6 Trace Type 5 - Queue I/O .. 6-7
6.7 Trace Type 6 - End I/O ; ... 6-8
6.8 Trace Type 7 - Interrupt/Trap Handler Entry .. 6-9
6.9 Trace Type 8 - Intenupt/Trap Handler Exit .. 6-10
6.10 Trace Type 9 - M.SHUT .. 6-11
6.11 Trace Type 10 - M.OPEN .. 6-12
6.12 Trace Type 11 - MJOFF or BEI .. 6-13
6.13 TraCe Type 12 - MJONN or UEI .. 6-14
6.14 Trace Type 13 - M.CALL .. 6-15
6.15 Trace Type 14 - SVC Type 1 ... 6-16
6.16 Trace Type 15 - M.RTRN or M.RTNA ... 6-17
6.17 Trace Type 16 - Inswap Task .. 6-18
6.18 Trace Type 17 - Outswap Task .. 6-19
6.19 Trace Type 18 _ Dispatch IPU Task .. 6-20
6.20 Trace Type 19 - Relinquish IPU Task ~ .. 6-21
6.21 Trace Type 20 - Reserved .. 6-22 .
6.22 Trace Type 21 - Mobile Event Trace 1 ... 6-22
6.23 Trace Type 22 - Mobile Event Trace 2 ... 6-23
6.24 Trace Type 23 - SVC Type 15 ... 6-24
6.25 Trace Type 24 - SVC Type 2 ... 6-25

o
MPX-32 Technical Volume I xv

Contents

Page 0
7 System Initializers and Builders

7.1 futtocluction•....................... ~ .. 7-1
7.2 SDT Load.er ...•........•.........•..•..•.........•..........•.......•.............•.......•.•••••......•• 7 -4

7 .2.1 Activating ... 7 -4
7.2.2 Requit-ed mput '•........................ t •••••••••••••••••••••• 7-4
7.2.3 Pt-ocessing .•..•.................................. 7 -4
7.2.4 Results•... 7-4

7.3 The DBOOT Program Section ... 7-5
7 .3.1 Activating .. 7-5
7.3.2 Pt-ocessing ..•.... 7-5

7.4 The SYSINIT Program Section ... 7-5
7 .4.1 Activating•..•. 7-5
7.4.2 Pt-ocessing•..................•... 7 -5

7.4.2.1
7.4.2.2
7.4.2.3
7.4.2.4
7.4.2.5

Memory/ Initialization•... 7-6
System Date and Time ... 7..;7
Disk Start-up Final Initialization 7-8
Tape Start-up Final Initialization ...•............................. 7-8
Masrer SDT ...•.......•..•.•....••..........•................................. 7-9

7.4.3 Autodisk Subroutine•...................•..................................... 7-13
7.4.4 Memo-ry Disk•..•......•.......•...............•...........•....•............ 7-15

7.5 Online RESTART ' ... 7-16
7.5.1 Activating•.......•........•.......•.....••.......•.••...........•............•........... 7-16
7 .S.2 Requit-ed Input•....................................... 7-16
7.5.3 Pt-ocessing .•.•......•.•.....•.••.•.••.••.•..••....•••.............•.••.....••...........•..... 7 -16

8 Internal Processing Unit (IPU)

xvi

8.1 Overv-iew•... 8-1
8.1.1 IPU - Memo-ry Interf'ace•..............•...........•............................... 8-1
8.1.2 IPU - CPU Interf'ace•...................................•........................... 8-1

8.2 Task Scheduling and Execution•......................•............................ 8-2
8.2.1 Task Biasing ..•............•... 8-2
8.2.2 Standard CPUIIPU Scheduling•................••......... ~ 8-3

. 8.2.3 Optional CPU/IPU Scheduling••....••..........•..........•............... 8-3
8.2.4 Standard Scheduling of IPU-Biased Tasks•............................ 8-3
8.2.5 Optional Scheduling of IPU-Biased Tasks•..... :~•. 8-3

Contents

o

Contents

(Page

8.2.6 Scheduling Unbiased Tasks .. 8-4
8.2.7 Scheduling CPU Only Tasks .. 8-4
8.2.8 IPU Task Execution .. 8-4

8.3 IPU Executive Module Description ... 8-5
8.3.1 Entry Point 1 - IPU Executive ... 8-5
8.3.2 Entry Point 2 - Undefined IPU Instruction 8-5
8.3.3 Entry Point 3 - Memory Parity Error ... 8-5
8.3.4 Entry Point 4 - Nonpresent Memory .. 8-5
8.3.5 Entry Point 5 - Undefined Instruction .. 8-5
8.3.6 Entry Point 6 - Privilege Violation .. 8-5
8.3.7 Entry Point 7 - Map Fault .. 8-6
8.3.8 Entry Point 8 - SVC Trap Handler .. 8-6
8.3.9 Entry Point 9 - Arithmetic Exception Trap Handler 8-6
8.3.10 Entry Point 10 - Privilege Mode Halt ... 8-6
8.3.11 Entry Point 11 - Address Specification 8-7
8.3.12 Entry Point 12 - Cache Fault ... 8-7
8.3.13 Entry Point 13 - Machine Check ... 8-8
8.3 .14 Entry Point 14 - System Check ... 8-8
8.3.15 Entry Point 15 - Power Fail Trap .. 8-9
8.3.16 Subroutine S.IPUI - Perform Stack Push 8-9
8.3.17 Subroutine S.IPU2 - IPU Initialization 8-9
8.3.18 Subroutine S.IPU3 - Terminate IPU Execution 8-10
8.3.19 Subroutine S.IPU4 - Generate IPU History Buffer 8-10

8.4 IPU Auto Start Trap Processor - H.IPUAS ... 8-11
8.5 IPU Task Scheduler - H.CPU/FI.CPU2 ... 8-11

8.5.1 Entry Point 1 - Field IPU Halt ... 8-11
8.5.2 Entry Point 2 _ Schedule IPU Biased Tasks 8-12
8.5.3 Entry Point 3 - Schedule Unbiased Tasks 8-12
8.5.4 Subroutine S.CPUI - Link Task to IPU Request State 8-12
8.5.5 Subroutine S.CPU2 - IPU Eligibility Test 8-12

8.6 IPU Accounting Module Descriptions ... 8-13
8.6.1 Entry Point 1 - Field Interval Timer Interrupt 8-13
8.6.2 Subroutine S.IPVITI - Perform Accounting After IPU Trap 8-13
8.6.3 Subroutine s.IPUm - Perfonn Accounting Before

Starring IPU .. 8-13
8.7 IPU SYSGEN Directives ... 8-13
8.8 SVCs Executable by an IPU .. 8-14

MPX-32 Technical Volume I xvii

Contents

Page 0
9 Converting Modules for Extended MPX-32

9.1 General. Infonn.ation ... 9-1
9.2 Programming Considerations ... 9-2
9.3 Macros for Extended MPX-32 ... 9-3

9.3.1 MBR_BL - Branch and Link Macro .. 9-4
9.3.2 MBR_BU - Branch Unconditional Macro 9-7
9.3.3 MBR_Bxx - Conditional Branch Macro 9-9
9.3.4 MBR_DBG - Calls to System Debugger Macro 9-11
9.3.5 MBR_DEF - Identify Linkage Symbols Macro 9-11
9.3.6 MBR_DScr - DSEcr Data Separation Macro 9-11
9.3.7 MBR_ENT - Extended Code Routine Entry Macro 9-12
9.3.8 MBR_EXT - Identify External Linkage Symbols Macro 9-12
9.3.9 MBR_INIT - Module Initialization Macro 9-12
9.3.10 MBR_OFFS - Offset Mode Macro ! 9-13
9.3.11 MBR_REL - Relative Mode Macro .. 9-13
9.3.12 MBR_SScr - System Code Separation Macro 9-13
9.3.13 MBR_TRSW - Transfer Register Status Word Macro 9-14

9.4 Macro Assembler and Extended MPX-32 ... 9-15 (\
9.5 Macro Assembler Directives for Extended MPX-32 9-15 _)

9.5.1 OP'IR Directive .. 9-16
9.5.2 O.P'rS Directive ... 9-16
9.5.3 O.P'rI' Directive .. 9-1<;)
9.5.4 SDEF Directive ... 9-17
9.5.5 SEXT Directive ... 9-17
9.5.6 SORG Directive .. 9-19
9.5.7 SSEcr Directive .. 9-19
9.5.8 SSEcr FLG-_MPX Directive ... 9-20

9.6 Macro Assembler Options for Extended MPX-32 9-25
9.7 Macro Assembler Errors and Aborts for Extended MPX-32 9-25
9.8 Extended MPX-32 Examples ... 9-25

9.8.1 Nonextended SVC (H.NONEXT) .. 9-26
9.8.2 Extended MPX-32 SVC (H.EXTMOD) 9-27
9.8.3 Assemble Assignment for Extended MPX-32 SVC 9-28
9.8.4 JH.32_E File Sample .. 9-29
9.8.5 JCL for Compressing the Extended MPX-32. SVC 9-29
9.8.6 JCL for SYSGENing ~ Extended MPX-32 Opetating

System .. 9-29

o
xviii Contents

Contents

Page

10 RTOM Interval Timer

10.1 General Infonnation ... 10-1
10.2 SYSGENing RTOM ... 10-1
10.3 Frequency Rate of the Interval Timer .. 10-2
10.4 Controlling the Interval Timer ... 10-3
10.5 Exrunples ... 10-4

10.5.1 Exrunple 1: Enabling and Reading the Timer 10-4
10.5.2 Exrunple 2: Reading the Timer ... 10-5

A System Tables and Variables .. A-1

MPX·32 Technical Volume I xix

List of Figures o
Figure Page

1-1 Scheduler - IOCS Interface - IOCS I/O SVC Processing Overview 1-6
1-2 Scheduler - IOCS Interface - IOCS No-Wait I/O Postprocessing Overview 1-7
1-3 Scheduler - IOCS Interface - IOCS Initiate I/O Procedure 1-8
1-4 Scheduler - IOCS Interface - IOCS Postprocessing Procedure 1-9
1-5 Scheduler - I/O Interrupt Interface Overview .. 1-10
1-6 Scheduler - I/O Interrupt - Interface, Procedures .. 1-11
1-7 Scheduler - I/O Interrupt Interface, Re-entrant Subroutines 1-12
1-8 Pre-emptive System Service List Entry Header Format 1-13
1-9 I/O Overview from User Request to I/O Complete .. 1-14

2-1 I/O Table Linkages ... 2-87
2-2 Handler Tables and Corresponding Hardware ... 2-88
2-3 Memory Pool Dia~m ... 2-98
2-4 Spooled File Data Structures ... 2-120
2-5 TSA Structure ... 2-127

(\
3-1 System Swap Scheduler ... 3-1 \J
3-2 Mapping of Candidate Task's TSA (an overview) .. .3-2
3-3 Mapping of a Candidate Task During Roll-out .. .3-3

4-1 SYSGEN Output File Format .. 4-27

5-1 General Table Area .. 5-3
5-2 Sample Source Listing ... 5-23
5-3 Sample Object Code Dump ... 5-24

7 -1 Components and Functions in Boot from an SDT .. 7-1
7-2 Components and Functions in Boot from lOP Console 7-2
7-3 Components and Functions in Boot from Online RESTART 7-3

9-1 Adaptive Sequence Generated By a Branch and Link From a
Nonextended to an Extended MPX-32 Module for Extended MPX-32 9-5

9-2 Adaptive Sequence Generated By a Branch and Link
From Extended to a Nonextended MPX-32 Module ... 9-6

c
xx Contents

List of Figures

Figure Page

9-3 Adaptive Sequence Generated By an Unconditional Branch
From Nonextended to an Extended MPX-32 Module ... 9-7

9-4 Adaptive Sequence Generated By an Unconditional Branch
From Extended to a Nonextended MPX-32 Module ... 9-8

9-5 Adaptive Sequence Generated By a Conditional Branch
From a Nonextended to an Extended MPX-32 Module 9-10

9-6 Adaptive Sequence Generated By a Conditional Branch
From an Extended to a Nonextended MPX-32 Module 9-10

MPX·32 Technical Volume I xxi

List of Tables o
Table Page

1-1 Device Type Mnemonics and Codes ... 1-44

2-1 Special Control Flags ... 2-70
2-2 Special Control Flags (8-wordFCB) ... 2-78

3-1 Memory Request Function Codes for J .SW APR .. 3-11

4-1 SYSGEN Overlays - Overview of Functions .. 4-2
4-2 SYSGEN l..oading Sequence .. 4-3

8-1 IPU Trap Structure ... 8-2

9-1 Conditional Branch Macros for Extended MPX-32 .. 9-9

10-1 RTOM Frequency Rates and Jumper Addresses ... l0-2

c
xxII Contents

c Documentation Conventions

Conventions used in directive syntax, messages, and examples throughout the
MPX-32 documentation set are described below.

Messages and Examples

Text shown in this distinctive font indicates an actual representation of a
system message or an example of actual input and output. For example,

or

VOLUME MOUNT SUCCESSFUL

TSM>!ACTIVATE MYTASK
TSM>

Lowercase Italic Letters

In directive syntax, lowercase italic letters identify a generic element that must be
replaced with a value. For example,

$NOTE message

means replace message with the desired message. For example,

$NOTE 10/12/89 REV 3

In system messages, lowercase italic letters identify a variable element. For example,

BREAK ON:mskname

means a break: occurred on the specified task.

Uppercase Letters

In directive syntax, uppercase letters specify the input required to execute that
directive. Uppercase bold letters indicate the minimum that must be entered. For
example,

$ASSIGN llc TO resource

means enter $AS or $ASSIGN followed by a logical file code, followed by TO and a
resource specification. For example,

$AS OUT TO OUTFILE

In messages, uppercase !etters specify status or information. For example,

TERMDEF HAS NOT BEEN INSTALLED

MPX-32 Technical Volume I xxiii

Documentation Conventions

Brackets []

An element inside brackets is optional. For example.

$CALL pathname [arg]

means supplying an argument (arg) is optional.

Multiple items listed within brackets means enter one of the options or none at all.
The choices are separated by a vertical line. For example,

$SHOW [CPUTIMEIJOBSIUSERS]

means specify one of the listed parameters. or none of them to invoke the default.

Items in brackets within encompassing brackets or braces can be specified only when
the other item is specified. For example,

BACKsPACE Fn.E [[FILES=] eoft]

indicates if eofs is supplied as a parameter. FIL= or FILES= can precede the value
specified.

Commas within brackets are required only if the bracketed element is specified. For
example.

LIST [taskname][. [ownername] [.pseudonym]]

indicates that the first comma is required only if ownername and/or pseudonym is
specified. The second comma is required only if pseudonym is specified.

Braces { }

Elements listed inside braces specify a required choice. Choices are separated by a
vertical line. Enter one of the arguments from the specified group. For example.

[BLOCKED={YI N}]

means Y or N must be supplied when specifying the BLOCKED option.

Horizontal Ellipsis ..•

xxiv

The horizontal ellipsiS indicates the previous element can be repeated. For example.

$0 EFM [par] [. par] ..•

means one or more parameters (par) separated by commas can be entered.

Documentation Conventions

0··
','"

. .

o

o

c!

o

Documentation Conventions

Vertical Ellipsis
The vertical ellipsis indicates directives, parameters, or instructions have been omitted.
For example,

$DEFM SI,ASSEMBLE,NEW,OP

$IFA %OP ASSM

means one or more directives have been omitted between the $DEFM and $IF A
directives.

Parentheses ()
In directive syntax, parentheses must be entered as shown. For example,

(value)

means enter the proper value enclosed in parentheses; for example, (234).

Special Key Designations
The following are used throughout the documentation to designate special keys:

<ctrl>
<ret> or <CR>
<tab>
<break>
<bck>

control key
carriage return/enter key
tab key
break key
backspace key
delete key

When the <ctrl> key designation is used with another key, press and hold the control
key, then press the other key. For example,

<ctrl>C

means press and hold the control key, then press the c.

Change Bars
Change bars are vertical lines (I) appearing in the right-hand margin of the page for
your convenience in identifying the changes made in MPX-32 Revision 3.5.

When an entire chapter has been changed or added, change bars appear at the chapter
title only. When text within figures has changed, change bars appear only at the top
and bottom of the figure box.

MPX-32 Technical Volume I xxv/xxvi

c

c: 1 System Description

1.1 Naming Conventions
MPX-32 software and documentation use the following naming conventions for
system components.

1.1.1 Communications Region

Names of variables within the MPX-32 communications region are prefixed by the
characters "C.". The general form is C.X where x is a string of one to six characters.

1.1.2 Task Service Area (TSA)

Names of variables within the TSA associated with each task are prefixed by the
characters "T.". The general form is T.x where x is a string of one to six characters.

1.1.3 Entry Variables

Names of variables within table and file entries consist of characters which identify
the table or file and the variable. The general form is x.y where x consists of two to
four characters which identify the table and y consists of three to six characters which
identify the variable. Table or file name prefixes (x) are as follows:

MPX·32 Technical Volume I 1·1

Naming Conventions

ART
CDT
CIIT
DAT
DCA
OFf
DQE
DTI
FCB
FPr
ICB
IOQ
JOB
MEM
MEML
MIDL
MQ
MVT
PRB
PSB
RCB
RD
RLB
RRS
RXB
SMD
SMT
TCA
TCP
UDT
VAT

Allocated Resource Table
Controller Definition Table
lOP Channel Definition Table
Dispatch Queue Address Table
Device Context Area
Disk File Assignment Table
Dispatch Queue Entry Table
Device Type Table
File Control Block
File Pointer Table
IntelTIlpt Control Block
I/O Queue Entry
Job Table
Memory Allocation Table
Memory Attribute List
Map Image Descriptor List
Message or Run Request Queue Entry
Mounted Volume Table
Parameter Receive Block
Parameter Send Block
Resource Create Block
Resource Descriptor
Resource Logging Block
Resource Requirement Summary Entry
Receiver Exit Block
System Master Directory Entry
Shared Memory Table
Terminal Context Area
Type Control Parameter Block
Unit Definition Table
Volume Assignment Table

1.1.4 System Modules and Interrupt Handlers

Names of system modules and intelTIlpt handlers are prefixed by the characters "H.".
The general fonn is H.x where x is a string of one to six characters. Entry points in
system modules are identified by the module name, followed by the entry point's
numeric identifier. Entry point names are of the general fonn H.x,n, where n is the
numeric entry point identifier.

1.1.5 Common System Subroutines

1-2

Common system subroutines are subroutines contained within modules intended for
use by other modules. Their names are prefixed by the characters "S.". The general
form is S.m, where x is the one to four character module identifier and n is the
subroutine numeric identifier. For example, S.EXECI is the first subroutine in the
H.EXEC module.

System Description

o

c

c

Naming Conventions

1.1.6 System Macros

Names of non base mode system macros are prefixed by the characters "M.". Names
of base mode system macros are prefixed by "M_". The general form is M.x or M~,
where x is a string of one to six characters for nonbase mode or one to fourteen
characters for base mode.

1.1.7 System Task Load Module Files

Names of system task load module files are prefixed by the characters "J.". The
general form is J.x, where x is a string of one to six characters.

1.1.8 Batch Task Load Module and Executable Image Files

Names of system batch task load module files are identical to the names of the tasks
contained on the files.

1.1.9 System Permanent Files

Names of system permanent files not containing load modules are prefixed by the
characters "M.". The general form is M.x, where x is a string of one to six characters.
M.ERR, M.CNTRL, and MKEY are examples of system permanent files.

MPX-32 Technical Volume I 1-3

Scheduler - 10CS Interface

1.2 Scheduler - loes Interface

1.2.1 110 Initiation

A task issues an SVC to enter IOCS. I/O selVices for pretransfer processing are then
executed at the software priority level of the requesting task. Once the I/O request is
initiated (or queued for initiation), an H.EXEC entry point is called to report the event
to the CPU and swapping scheduler:

Enny Point

H.EXEC,l
H.EXEC,2
H.EXEC,3
H.EXEC,4

Event

interactive input starting
tenninal output starting
wait I/O starting
no-wait I/O starting

1.2.1.1 Walt 110 Postprocessing

A return is made to IOCS from H.EXEC,l, 2, or 3 only when the I/O request
completes. Post transfer processing may then occur at the software priority level of
the requesting task.

1.2.1.2 No-Walt 110 Postprocessing

A return from H.EXEC,4 is made immediately after recording the no-wait I/O event
Since IOCS also makes an immediate return to the user task, no-wait I/O post transfer
processing occurs as a task interrupt service.

1.2.1.3 No-Walt 110 Completion Task Intenupt Service

1-4

When the 110 handler interrupt service routine fields a completion interrupt for a no
wait I/O request, it calls the executive subroutine S.EXEC4 to report the event The
I/O queue entry associated with the call is then linked to the task interrupt list in the
DQE of the task that made the I/O request When the scheduler attempts to dispatch
control to the task, it finds that a task interrupt is outstanding. Task interrupts are
inhibited during execution of any system selVice for a task. No task interrupt is
honored while a higher priority task interrupt is active. When the task interrupt is
honored, control is transferred to the IOCS routine specified in the pre-emptive system
selVice header of the I/O queue entry. Post transfer processing then occurs at the
software priority level of the requesting task. When postprocessing of the no-wait I/O
request is complete, the task interrupt service is exited by a call to S.EXEC6 or
H.EXEC,12.

System Description

o

o

o

C~
/

(~\

o

Scheduler· loes Interface

1.2.1.4 No-Walt 1/0 Restrictions for System Services

Post transfer processing for a no-wait I/O request is processed as a task interrupt. Task
interrupts are not honored while the task is executing in a system service
(PC LE. TSA address). An exception is made for a task that is in a wait for any no
wait I/O completion state. A task interrupt generated by the completion of no-wait
1/0 is honored if the task is in the wait for any no-wait I/O completion state. A
system service that wants no-wait 1/0 can issue a series of no-wait calls followed by a
wait-for-any call. Be careful that all outstanding calls are completed appropriately.

MPX-32 Technical Volume I 1-5

Scheduler -Ioes Interface

IOCS FROM SVC

WArrl/O NO-WArrI/O

COMPLETE

T1002

Figure 1-1
Scheduler - 10CS Interface - 10CS I/O SVC Processing Overview

1-6 System Description

c:

c

10es TASK INTERRUPT
FROM SCHEDULER

NOBETURN
CONTINUE TASK AT

POINT OF INTERRUPT
OR

CONTINUE WAlT FOR ANY
110 COMPLETION

COMPLETE

• • •
IOCS FROM SVC TO
EXIT USER NO - WAlT

1/0 SERVICE

NO RETURN
CONTINUE TASK AT

POINT OF INTERRUPT
OR

CONTINUE WAlT FOR ANY
110 COMPLETION

Figure 1·2

Scheduler· loes Interface

NO RETURN
CONTINUE TASK AT

POINT OF INTERRUPT
OR CONTINUE
WAlT FOR ANY

110 COMPLETION

T1003

Scheduler· 10CS Interface - 10CS No-Walt 1/0 Postprocessing Overview

MPX-32 Technical Volume I 1-7

Scheduler - IOCS Interface

RETURN WHEN
110 COMPLETE

BEl

M.SHUT

UEI

INITIATE 1/0
PROCEDURE

FROM WAfT 110 SVC,
OR FROM NO - WAfT
TASK INTERRUPT

TOIOCS
POINT OF CAll

Figure 1-3

T1004

Scheduler - lacs Interface - lacs Initiate 1/0 Procedure

1-8 System Description

o

()

o

FROM WAIT I / 0 SVC,
OR FROM NO - WAIT
TASK INTERRUPT

POST TRANSFER
PROCESSING

NO ERROR

ERROR ERROR
UNRECOVERABLE

OPERATOR
INTERVENTION

REQUIRED

? A R

AUTOMATIC
RETRY

TOIOCS
POINT OF CALL

Figure 1-4

Scheduler - IOCS Interface

TOIOCS
POINT OF CALL

T1005

Scheduler - IOCS Interface - IOCS Postprocessing Procedure

MPX-32 Technical Volume I 1-9

Scheduler - IOes Interface

1/0
INTERRUPT

LEVELS

STANDARD
ENTRY

PROCEDURE

RETURN TO ANY PRE-EMPTED
LOWER LEVEL INTERRUPT

ROCESSING
AS

REQUIRED

Figure 1-5

PROCESSING
AS

REQUIRED

RETURN TO INTERRUPTED TASK
OR PERFORM CONTEXT SWITCH
TO HIGHER PRIORITY CANDIDATE
FOR CPU CONTROL

SOFTWARE
PRIORITY

TASK

T1006

Scheduler - 1/0 Interrupt Interface Overview

1-10 System Description

o

o

START

ENTER
UNBLOCKED
WITH LEVEL

ACTIVE

INCREMENT
GLOBAL

INTERRUPT
COUNT

PROCESSING
AS REQUIRED

FOR THIS
LEVEL

SET BLOCKED,
DEACTIVATE

LEVEL

Figure 1-6

Scheduler - loes Interface

T1007

Scheduler - 1/0 Interrupt - Interface, Procedures

MPX-32 Technical Volume I 1-11

Scheduler - IOCS Interface

X3=
ADDRESS OF
SCRATCH PAD

INTERRUPT
CONTEXT
BLOCK

22 WORD
SCRATCH

PA

X3=
ADDRESS OF
SCRATCHPAD

INTERRUPT SERVICE
ROUTINES

·

TSAPUSH
DOWN
LEVEL

22 WORD
SCRATCH

PAD

... ----------· · · · ·
S.EXECX

USEX3AS
SCRATCH PAD

INDEX

TRSW RO
RETURN

Figure 1-7

MONITOR
SERVICE

X3 ..
ADDRESS OF
SCRATCHPAD

M.RTRN

T1008

Scheduler - 110 Interrupt Interface, Re-entrant Subroutines

1-12 System Description

o

o

o

Scheduler· IOCS Interface

o String Forward Address

1 String Back Address

2 Priority

3

4 PSD Word 1

5 PSD Word 2

6

7

T1009

Figure 1-8
Pre-emptive System Service List Entry Header Format

MPX·32 Technical Volume I 1·13

Scheduler - IOCS Interface

110 ReqUeS1 Processing

Ueer Task

H.lOCS Device Handler

OPCODE P_ing:
OPCODE EPS • OPCODE Prcce.ot'

BEl Processing to Unk
110 Queue to COT
Check VO COmplete

Processing EP2·1IO Stan-up

Notify Exacutive
01 I/O In.lalion

H.EXEC,n

H.EXEC,1: lnl8radivelnput
H.EXEC,2: Terminal Output
H.EXEC,3: W'-IIO
H.EXEC,4: No-W •• ,IO

AI Other 110

PoS1 110 Proces.'ng

Ueer Talk Sc/Ie<1JIecI
(VIa T_lntenupI
SeMceFPR
No-W'-VO

S.lOCS1

110 "'* "-1119: "'* SlWs To FCB,
Oavice INOP Meaag ..
Data M-. o.aJIocata
110 Queue Ud OS Bufter
.. ~il'8d

Figure 1-9

sarvlc •• nt.rrupt Processing

Sarvice InlenUpt

Device Handler EP1

Service Interrupt Processing:
(Externale BI Error Retry, SflWs

Posting, I CO/SIO

A -
Notify Ex4l<lU1ive of
110 Complete
(Level Active)

S.EXEC,n

S.EXEC1: Int_!velnput
S.EXEC2: Terminal Input
S.EXEC3: Wa.'10
S.EXEC4: No-W.lllO

n010

1/0 Overview from User Request to 110 Complete

1·14 System Description

o

-',,\

()

c

o

Scheduler· Task Termination Interface

1.3 Scheduler - Task Termination Interface
Three types of task termination are provided in the MPX-32 system: exit, abort, and
delete task execution.

1.3.1 Exit Task

The exit task selVice is called by a task that needs to terminate its execution normally.

1.3.1.1 Outstanding 1/0 (Exit)

If an exiting task has outstanding I/O, further exit processing is deferred until all
outstanding I/O is complete. Any user end-action routines associated with no-wait I/O
which completes while a task is exiting result in a task abort.

1.3.1.2 Messages In Receiver Queue (Exit)

All outstanding messages sent to an exiting task are unlinked from the message
receiver queue and treated as complete with abnormal status.

1.3.1.3 Outstanding Run Requests (Exit)

A task attempting to exit with outstanding no-wait run requests (with call back) for
other tasks is aborted.

1.3.1.4 Run Requests In Receiver Queue (Exit)

If an exiting task has requests in its run receiver queue, the currem run request is
terminated and the appropriate status is posted in the run request parameter block. If
any additional run requests are queued, a new copy of the task is activated.

1.3.1.5 Task Abort Receiver (Exit)

A task abort receiver is not processed on task exit.

1.3.1.6 Flies (Exit)

All open files associated with a task are automatically closed during task exit
processing.

1.3.1.7 Resources (Exlt)~

All resources associated with a task are automatically deallocated during task exit
processing.

MPX-32 Technical Volume I 1-15

Scheduler· Task Termination Interface

1.3.2 Abort Task

The abort task service is called by a task that needs to tenninate its execution
abnormally. It is also initiated by the system when a task encounters a system trap
condition, such as undefined instruction, privilege violation, nonpresent memory, or
by a system service because of a parameter validation error. This service is
asynchronously initiated by another task or by operator communications. If the
OWNERNAME restriction is set in T.ACCESS, only a task of the same owner name
can initiate the abort.

1.3.2.1 Asynchronous Abort

1-16

When a task needs to abort another task it calls the asynchronous abort service. If the
OWNERNAME restriction is set in T.ACCESS, only a task of the same owner name
can initiate the abort. The task to be aborted is in a ready-to-run state or one of the
following wait states:

1. Waiting for execution signal:

• timed suspend
• message receive
• run request receive
• interrupt receive

2. Waiting for resource:

• device
• disk space
• memory
• memory pool

3. Waiting for operation complete:

• interactive input
• low speed output
• any no-wait I/O
• wait I/O
• any no-wait message
• wait message
• any no-wait run request
• wait run request

If the specified task to be aborted is waiting for an execution signal, an abort request
bit is set in the DQE. The DQE is unlinked from its CWTeIlt state queue and linked to
the ready-to-run list at its CWTeIlt priority. When it is selected for execution by the
CPU scheduler, the abort request processing then proceeds for the aborting task.

System Description

Q t .,

0

o

Scheduler - Task Termination Interface

If the specified task is waiting for a resource or operation complete, the abort
requested bit is set in its DQE. The task remains linked to its current list, and abort
processing does not proceed until outstanding operations are complete and the task is
ready to run.

1.3.2.2 Synchronous Abons

When the currently executing task encounters an abort condition, the abort bit is set in
the DQE. The CPU scheduler then processes the abort request The following is an
outline of synchronous abort processing.

Outstanding 1/0 - If the aborting task has outstanding I/O, further abort processing
is deferred until all outstanding I/O is complete. End-action routine execution is
inhibited, and task abort status is reflected in the FCB.

Messages in Receiver Queue - All outstanding messages sent to an aborting task
are unlinked from the message receiver queue and treated as complete with abnormal
status.

Outstanding Run Requests - If the aborting task has outstanding run requests
(with call back) for other tasks, further abort processing is deferred until completion of
all such requests. End-action routine execution is inhibited, and task abort status is
reflected in the run request block.

Run Requests In Receiver Queue - If the aborting task has requests in its run
receiver queue, the current run request is terminated and the appropriate status is
posted in the run request parameter block. If any additional run requests are queued, a
new copy of the task is activated.

Abon Receiver - If the aborting task has an abort receiver, control is transferred to
it All outstanding operation or resource waits have been completed, and all no-wait
I/O or no-wait run requests (with call back) have been completed when the abort
receiver is entered. End-action routines associated with no-wait operations that
completed while the abort request was outstanding have not been executed Status
bits reflecting this are posted in the appropriate FCBs and PSBs. Any files open when
the abort request was received remain open on an abort receiver entry. Any resources
allocated when the abort request was received remain allocated when the abort
receiver is executed.

Open Flies - If the aborting task has no intercepting abort receiver, all files open
when the abort request was encountered are automatically closed.

Resources - If an aborting task has no intercepting abort receiver, all previously
allocated resources are deallocated and the task is no longer active in the system.

MPX·32 Technical Volume I 1·17

Scheduler· Task Termination Interface

1.3.3 Delete Task

. The delete task. service is called by the system for a task that encounters a second
abort condition during processing of an initial abort request. This service is
asynchronously initiated by another task or by operator communications. If the
OWNERNAME restriction is set in T.ACCESS, only a task of the same owner name
can initiate the task delete request.

1.3.3.1 Asynchronous Delete

When a task needs to delete another task of the same owner name, it calls the
asynchronous delete service. The task to be deleted can be in a ready-to-run state or a
wait state, such as wait for execution signal, wait for resource, or wait for operation
complete. In any case, the delete task bit is set in the DQE, and the task is linked to
the ready-to-run list or to the memory request queue for inswap. An exception is
made for a task already in the memory request queue. In this case, the task is not
linked into the ready-to-run queue until memory scheduler processing is complete.

1.3.3.2 Synchronous Deletes

1-18

When the currently executing task encounters a delete condition, the delete task bit is
set in the DQE. The CPU scheduler then processes the delete request. The following
is an outline of synchronous delete processing.

Outstanding 1/0 - Delete processing causes all outstanding I/O to be terminated
(killed).

Messages In Receiver Queue - All outstanding messages sent to a task being
deleted are unlinked from the message receiver queue and treated as complete with
abnormal status.

Outstanding Run Requests - If the task being deleted has outstanding run
requests for other tasks, any call back is ignored.

Run Requests In Receiver Queue - If the task being deleted has requests in its
run receiver queue. the current run request is terminated and the appropriate status is
posted in the run request parameter block. If any additional run requests are queued. a
new copy of the task is activated.

Abon Receiver - Abort receivers are not processed for tasks being deleted.

Open Files - Fues associated with a task being deleted are not automatically
closed.

Resources - All resources associated with a task being deleted are deallocated,
and the task is no longer active in the system.

System Description

O· .' ,,'.

o

o

()

Scheduler-Debug Interface

1.4 Scheduler-Debug Interface

1.4.1 Design Goals

The structure of the scheduler-debug interface is dictated by the following major
design goals:

• AIDDB can be associated with a task at task activation time, or subsequently
associated with a terminal task when the break key is pressed. AIDDB can also be
associated with a task dynamically through a system seIVice call.

• When a task that has AIDDB associated with it is executing, two methods of
entering AIDDB are provided: the executing task encounters a previously set
AIDDB trap instruction, or the terminal operator presses the break key.

• Entering AIDDB mode by a trap or break is allowed during execution of software
(task) interrupt receivers like message, end action, and break.

• AIDDB intercepts any task aborts, automatically enters the AIDDB mode, and
informs the operator of the abort reason.

• System entry into the abort receiver is soft (outstanding I/O requests are completed,
and files remain open and allocated). This allows the operator to correct and
proceed from the environment that caused the abort condition.

1.4.2 Debug Entry Points

AIDDB has five entry points. These entry points are reflected by the halfword address
table (HAT) at the beginning of the AIDDB program. When AIDDB is loaded, the
address of the AlDDB HAT is stored in T.DBHAT in the TSA. The first word of the
HAT contains the number of AIDDB entry points. Subsequent words contain the
address of the individual AIDDB entry points. The entry points provided are:

Entry Point

1
2
3
4
5

Description

debug start-up
reseIVed
trap/break
user break exit
abort

MPX-32 Technical Volume I 1-19

Scheduler-Debug Interface

1.4.3 Task Interrupt Status

To determine the status of task interrupts, AIDDB examines a byte (DQE.ATI) in the
dispatch queue entry. When AIDDB is entered, DQE.ATI contains the definition of
all active task interrupts.

Bit Meaning

o reserved
1 active end action interrupt 1 (DQE.AEAl)
2 active debug mode interrupt (DQE.ADM)
3 active user break interrupt (DQE.AUB)
4 . active end action interrupt 2 (DQE.AEA)
5 active message interrupt (DQE.AMI)

6-7 reserved

1.4.4 TSA Stack Pushdown Level Interpretation

For all AIDDB entty points except restart, the context associated with the most
recently interrupted task level is contained in T.CONTXT. Nested levels of task
interrupt are contained in the TSA stack. Unless one of the task interrupt levels (other
than DQE.ADM) is active, the TSA stack is empty on entry to AIDDB. !ftask
interrupts are active, the context storage in the TSA is in reverse order of priority. For
example, highest priority is the most recent In the active task interrupt bit
assignments, bit zero is the lowest priority.

1.4.5 Exit from AIDDB Mode

When AIDDB is executing (regardless of the entty point) the task is in the AIDDB
mode. The AIDDB mode is exited by calling one of the following H.EXEC entry
points:

EntrY Point

H.EXEC,22
H.EXEC,23

Description

go to specified task context
run user break receiver

1.4.6 Entry Point 1 • Start-up

This entry point is entered in one of two methods: AIDDB is activated with the user
task, or the user task issues an SVC call to load and execute AIDDB.

1.4.6.1 AIDDB Activated with User Task

o

o

The program activation service t:hcia. runs for the task being activated detects that
AIDDB is to be activated with the task. After the task is loaded, a special service is
called to load AIDDB. Once AIDDB is loaded, the service stores the normal start-up
registers and PSD in an AIDDB context block in the TSA (T.CONTXT). The service
then adjusts the stack in the TSA to enter AIDDB at the AIDDB start-up entry point.
When AIDDB is entered the stack is empty, AIDDB mode is set, and T.CONTXT
contains the user task start-up registers and PSD. 0

1-20 System Description

()

Scheduler-Debug Interface

1.4.6.2 AIDDB Activated by Load and Execute SVC

When the user task issues a load and execute AIDDB SVC, the system service loads
AIDDB, stores the user's registers and PSD in T.CONTXT, sets AIDDB mode, and
adjusts the TSA stack for entry at AIDDB's start-up entry point.

1.4.7 Entry Point 2 - Reserved

1.4.8 Entry Point 3 - Trap/Break

This entry point is entered when a hardware break or M.INT is received by the user
task being debugged. It is also entered when a trap SVC is executed. On entry,
T.CONTXT contains the interrupted context, and the AIDDB mode task interrupt flag
is set.

1.4.9 Entry Point 4 - User Break Exit

This entry point is executed when the user task being debugged executes a break exit.
A user task being debugged can only execute its break receiver by giving a break
command to AIDDB. AIDDB in tum calls H.EXEC,23. Normal break receiver entry
is reselVed for AIDDB use when AIDDB is associated with a task. When AIDDB's
user break exit entry point is entered, T.CONTXT contains the most recent level of
pushdown from the TSA stack. The number of pushdowns in the TSA stack varies
based on the number of active task interrupts like message and end action.

1.4.10 Entry Point 5 - Abort

This entry point is executed when an abort request is received for the user task and no
user abort receiver has been specified. When the abort is receiVed, the user task
context is in T.CONTXT of the TSA. If a task interrupt like message or break
receiver was in effect when the abort request was received, the TSA stack is at the
associated level of pushdown. Otherwise, the TSA stack is empty.

1.4.10.1 Walt 1/0 Operation Status on Abort Receiver

When the abort receiver is entered, any wait I/O operation is completed first. If an
abort request is received for a task with wait I/O outstanding, abort processing is
deferred until the wait I/O is complete. A seIVice is provided by operator
communications to terminate (kill) outstanding I/O requests associated with the
specified task. When an I/O request is terminated, appropriate status is posted in the
FCB. .

MPX-32 Technical Volume I 1-21

Scheduler-Debug Interface

1.4.10.2 No-walt 110 Operation Status on AbOn Receiver

When the abort receiver is entered, all no-wait I/O opera.tions is complete. If an abort
request is received for a task with no-wait I/O outstanding, abort processing is
deferred until all no-wait I/O requests are complete. User end-action routine
processing is inhibited for no-wait I/O completions when the task is abolting. Task
abort status is posted in the FCB.

1.4.10.3 File Status on Abort Receiver Entry

All user files remain open on entry to the task abort receiver.

1.4.10A Inhibit of Abort Receiver Entry

If an abort condition is detected during abort processing for a previously detected
abort condition, all outstanding I/O is terminated, no status is posted, abort receiver
entry is inhibited, resources are deallocated, and the task is removed from the system.

1.4.10.5 R8-use of Abon Receiver

1-22

Privileged tasks can re-establish an abort receiver from within an abort receiver,
allowing privileged tasks to enter their abort receiver more than once. Unprivileged
tasks are aborted if an attempt is made to re-establish this receiver.

System Description

·0

o

o

(

Task Interrupts

1.5 Task Interrupts
In addition to the 64 levels of execution priority available for task execution, the
:MPX-32 scheduler provides a software interrupt facility within the individual task
environment.

1.5.1 Task Interrupt Priorities

Individual tasks operating in the :MPX-32 environment can be organized to take
advantage of the task unique software interrupt levels. Each task in the :MPX-32
system has six levels of software interrupt:

Level Priority Description

o reserved for operating system use
1 AIDDB
2 break
3 end action
4 message
5 normal execution (run request)

1.5.2 Task Interrupt Receivers

An individual task is allowed to issue system service calls to establish interrupt
receiver addresses for both break and message interrupts. The AIDDB interrupt level
is reserved for system use by tasks running in AIDDB mode. The end-action interrupt
level is used for system postprocessing of no-wait I/O, message, or run requests. It
also executes user-task specified end-action routines. The normal execution level is
used for run request processing and general base level task execution.

1.5.3 Task Interrupt Scheduling

Task interrupt processing is gated by the MPX-32 scheduler during system service
processing. If a task interrupt request occurs while the task is executing in a system
service, the scheduler defers the interrupt until a return is made to the user task
execution area.

1.5.4 System Service Calls from Task Interrupt Levels

A task can utilize the complete set of system services from any task interrupt level. It
is prohibited. however, from making a wait for any no-wait completion call
(M.ANYW) from an end-action routine. It is illegal to issue an I/O request on any
FCB that is busy or has postprocessing outstanding.

1.5.5 Task Interrupt Context Storage

When a task interrupt occurs, the scheduler automatically stores the interrupted
context into the TSA pushdown stack. This context is automatically restored when
the task exits from the active interrupt level.

MPX-32 Technical Volume I 1-23

Task Interrupts .

1.5.6 Task Interrupt Level Gating

When a task intemJpt occurs, the level is marked active; Additional intemJpt requests
for that level are queued until the level active status is reset by the appropriate level
exit system service call. When the level active status is reset, any queued request is
processed.

In addition, the following selVices can inhibit higher priority task intemJPts:

M.ASYNCH

M.DSMI
M.DSUB

M.ENMI
M.ENUB

M.SYNCH

resets the asynchronous task. intemJpt mode back to the default
environment
disables the task intemJPts for messages sent to the calling task

deactivates the user break intemJpt and allows user breaks by the
terminal break key to be acknowledged
enables task intemJPts for messages sent to the calling task
activates the user break intemJpt and causes further user breaks by the
terminal break key to be ignored
causes message and task intemJPts to be deferred until the user makes a
call to M.ANYW, M.ASYNCH, M.EA WAlT, or M.W AlT. Any
deferred task intemJpts are processed when a lower level task intelTUpt
calls the M.ANYW, M.EA WAlT, or M.W AlT selVices.

1.5.7 User Break Interrupt Receivers

A task can enable the break intemJpt level by calling the M.BRK monitor selVice to
establish a break intemJpt receiver address. The level becomes active as a result of a
break interrupt request generated either from a hardware break or from an M.INT
selVice call that specified this task. When the break level is active, end action,
message, and normal execution processing is inhibited. The level active status is reset
by calling the M.BRKXIT monitor selVice to exit from the pseudointemJpt (break)
level

1.5.8 User End-Action Receivers

1-24

When a task issues a no-wait I/O, send message, or send run request. a user-task. end
action routine address can be specified. If specified, the routine is entered at the end
action priority level from the appropriate system postprocessing routine. When the
end-action level is active, processing at the message or normal execution level is
inhibited. The level active status is reset by calling the appropriate end-action selVice:

End-action Type End-action Exit SelVice
I/O H.IOCS,34
Send message M.XMEA
Send run request M.XREA

System Description

o

o

o

(.. ".-... '
.. -/

(

Task Interrupts

All types of user end-action exits provide a return or a continue-wait for any option.
An interrupt exit normally returns to the interrupted context. A task can issue a series
of no-wait request calls followed by a wait for any completion service call from the
base level. This wait service (MANYW) places the task in an interruptive wait state,
allowing the execution of postprocessing and end-action routines associated with the
no-wait call. The return or continue wait end-action exit options allow the exiting
end-action routine to return to the point following the wait for any call or to continue
the wait for any state.

Note: A task is prohibited from making a wait for any service call from an end
action routine.

1.5.9 User Message Receivers

A task can enable the message interrupt level by calling the M.RCVR system service
to establish a message interrupt receiver address. The level becomes active as the
result of a message send request specifying this task as the destination task. When the
message level is active, normal execution processing is inhibited. On entry to the
message interrupt receiver, register one contains the address of the queue entry
(MRRQ) in memory pool. The receiver can call a service M.GMSGP to store the
message in a user receiver buffer. No-wait I/O is permitted with the M. WAIT service.
After appropriate processing, the message interrupt level can be reset by calling the
M.XMSGR system service to exit from the message interrupt receiver.

1.5.10 User Run Receivers

User run receivers execute at the normal task execution (base) level. The cataloged
transfer address is used as the run receiver execution address. The run receiver
mechanism is provided by the system to allow queued requests for task execution with
optional parameter passing. When a run request is issued, the task load module name
is used to identify the task to be executed. If a task of that load module name is
currently active, the run request is queued from the DQE of the specified task. If the
specified task is not active, it is first activated. When a task begins execution as the
result of a run request, register one contains the address of the run request queue
entry. The receiver can call a service M.GRUNP to store the run parameters in a
user-receiver buffer. After appropriate processing, the run receiver task exits by
calling the MJ{RUNR system service. Any queued run requests are then processed.

MPX-32 Technical Volume I 1-25

Task Interrupts

1.5.11 User Abort Receivers

1-26

User abort receivers execute at the normal task execution (base) level. The user task
establishes an abort receiver by calling the M.SUAR monitor service. If an abort
condition is encountered during task operation, control is transferred to it On entry,
any active software interrupt level is reset, all outstanding operations or resource waits
are complete, and all no-wait requests were processed. End-action routines associated
with no-wait requests that completed while the abort was outstanding were not
executed. Status bits reflecting this are posted in the appropriate FCBs and PSBs.
Any files opened or resources allocated when the abort condition was encountered
remain opened and/or allocated when the abort receiver is executed. The TSA stack is
clean, and the context when the abort condition was encountered is stored in
T.CONTXT. When the abort receiver is entered, register six contains a status byte
reflecting task interrupt status when the abort condition was encountered.

Bit Meaning if Set

24 N/A
25 N/A
26 user break interrupt active
27 end action interrupt active
28 message interrupt active

The standard exit service is used to exit from an abort receiver. If another abort
condition is encountered while a task is in an abort receiver, the task is deleted.

System Description

()

(;

()

Send/Receive Facilities

1.6 Send/Receive Facilities

MPX-32 provides both message and run request send/receive processing. Run request
services allow a task to queue an execution request (with optional parameter pass) for
another task. Message services allow a task to send a message to another active task.
The services provided for use by the destination tasks are called receiving task
services. Those provided for tasks that issue the requests are called sending task
services.

1.6.1 Receiving Task Services

1.6.1.1 Establishing Message and Run Receiver capability

Establishing Message Receivers - To receive messages sent from other tasks, a
task must be active and have a message receiver established. A message receiver is
established by calling the system service M.RCVR, and providing the receiver routine
address as an argument with the call.

Establishing Run Receivers - Any valid task can be a run receiver. Although a
set of special run receiver services are provided, in the most simple case they are not
needed. The run receiver mechanism is provided by the system to allow queued
requests for task execution with optional parameter passing. The cataloged transfer
address is used as the run receiver execution address. The task load module name is
used to identify the task to be executed. If a task of that load module name is
currently active and is a single-copied task, the run request is queued until the task
exits. If a task of that load module name is currently active but is not a single-copied
task, the load module is activated (multicopied) to process the request If a
multicopied task is waiting for a run request, the task number is used to activate the
load module to process the request When a single-copied task exits, any queued run
requests are executed. If a run request is issued for a task that is not currently active,
the task is activated automatically.

1.6.1.2 execution of Message and Run Receiver Programs

execution of Message Receiver Programs - When a task is active and has a
message receiver established, it can receive messages sent from other tasks. A
message sent to this task causes a sOftware (task) intenupt entry to the established
message receiver.

execution of Run Receiver Programs - When a valid task is executed as a result
of a run request sent by another task, it is entered at its cataloged transfer address. A
run receiver executes at the normal task execution (base) level.

MPX-32 Technical Volume I 1-27

Send/Receive Facilities

1.6.1.3 Obtaining the Passed Parameters

Obtaining Message Parameters - When the message receiver is entered. register
one contains the address of the message queue entry in memory pool. The task can
retrieve the message directly from memory pool or call a receiver service (M.GMSGP)
to store the message into the designated receiver buffer. If the M.GMSGP service is
utilized, the task must present the address of a five word parameter receive block
(PRB) as an argument with the call.

Obtaining the Run Request Parameters - When the run receiver is entered.
register one contains the address of the run request queue entry in memory pool. The
task can retrieve the run request parameters directly from memory pool or call a
receiver service (M.GRUNP) to store the run request parameters into the designated
receiver buffer. If the M.GRUNP service is utilized, the task must present the address
of a five word parameter receive block (pRB) as an argument with the call.

1.6.1.4 exiting the Receiver Program

exiting the Message Receiver - When processing of the message is complete, the
message interrupt level must be exited by calling the M.XMSGR service. When
M.XMSGR is called, the address of a two word receiver exit block (RXBj must be

o

provided. The RXB contains the address of the return parameter buffer and the o .. ~ ..
number of bytes (if any) to be returned to the sending task. The RXB also contains a
return status byte to be stored in the parameter send block (PSB) of the sending task.

1-28

After message exit processing is complete, the message-receiver queue for this task is
examined for any additional messages to process. If none exist, a return to the base
level interrupted context is perfonned.

ExIting the Run Receiver Task - When run request processing is complete, the
task uses either the standard exit call (M.EXlT) or the special run receiver exit service
(M.XRUNR). If the standard exit service (M.EX1T) is used to exit the run receiver
task, no user status or parameters are returned. Only completion status is posted (in
the scheduler status word) of the parameter send block (PSB) in the sending task.
After completion processing for the run request is accomplished, the run receiver
queue for this task is examined, and any queued run request causes the task to be re
executed. If the run receiver queue for this task is empty, a standard exit is
perfonned.

System Description

o

()

Send/Receive Facilities

If the special exit (M.XRUNR) is used to exit the run receiver task, the address of a
two word receiver exit block (RXB) must be provided as an argument with the call.
The RXB contains the address of the return parameter buffer and the number of bytes
(if any) to be returned to the sending task. The RXB also contains a return status byte
to be stored in the PSB of the sending task. After completion processing for the run
request is accomplished, the exit control options in the RXB are examined. If the wait
exit option is used, the run receiver queue for this task is examined for any additional
run requests to be processed. If none exist, the task is put into a wait state, waiting
for the receipt of new run requests. Execution of the task does not resume until such
a request is received. If the terminate exit option is used, any queued run requests are
processed. If the run receiver is empty, however, a standard exit is perfonned.

1.6.1.5 Waiting for the Next Request

In addition to the wait options described under the previous section, Exiting the
Receiver Program, a special message-wait call is provided. When operating at the
base execution level, a task that has established a message receiver can invoke a
service call (M.SUSP) to enter a wait state until the next message is received.

A task can also make use of the M.ANYW service from the base software level. The
M.ANYW service is similar to M.SUSP. However, the M.SUSP wait state is ended
only on receipt of a message interrupt, timer expiration, or resume. The M.ANYW
wait state is ended upon receipt of any message, end-action, or break software
interrupt.

1.6.2 Sending Task Services

1.6.2.1 Sending the Request

Message Send Service - A task can send a message to another active task that has
a message receiver established. The sending task must identify the destination task by
task activation sequence number. When the send message service (M.SMSGR) is
called, the address of a parameter send block (PSB) must be provided as an argument
The PSB fonnat allows for the specification of the message to be sent, any parameters
to be returned, scheduler and user status, and the address of a user end-action routine.
No-wait and no call back mode control options are also provided.

Send Run Request Service - A task can send a run requ:st to any active or
inactive task, identifying the task by load module name or task number if the task is
multicopied and waiting for a run request. When the run request service (M.SRUNR)
is called, the doubleword-bounded address of a parameter ~nd block (PSB) must be
provided as an argument. The PSB fonnat allows for the specification of the run
request parameters to be sent, any parameters to be returned. ~cheduler and user status,
and the address of a user end-action routine. No-wait and no call back mode control
options are also provided.

MPX-32 Technical Volume I 1-29

Send/Receive Facilities

1.6.2.2 Waiting for Request Completion

Waiting for Message Completion - A message can be sent in the wait or no-wait
mode. If the wait mode is used, execution of the sending task is deferred until
processing of the message by the destination task is complete. If the no-wait mode is
used, execution of the sending task continues immediately after the request is queued.
The operation in progress bit in the scheduler status field of the PSB is examined to
detennine completion. A sending task issues a series of no-wait mode messages
followed by a call to the M.ANYW system wait service. 'This allows a task to wait
for the completion of any no-wait mode messages previously sent. The completion of
such a message causes resumption at the point after the M.ANYW call.

Waiting for Run Request Completion - Waiting for a run request completion
follows the same fonn and has the same options as waiting for message completion.

1.6.2.3 End-Action Processing

Message End-Action Processing - User-specified end-action routines associated
with no-wait mode message-send requests are entered at the end-action software
interrupt level when the requested message processing is complete. Status and return
parameters are posted as appropriate. When end-action processing is complete, the
MJ{MEA service must be called to exit the end-action software interrupt level.

Run Request End-Action Processing - Run request end-action processing
follows the same fonn and has the same options as message end-action processing.
The only difference is that the M.XREA service is used instead of M.XMEA.

1.6.2.4 Parameter Send Block (PSB)

1-30

The parameter send block (PSB) describes a send request issued from one task to
another. The same PSB fonnat is used for both message and run requests. The
address of the PSB (word bounded) must be specified when invoking the M.SMSGR
or M.SRUNR services, but is optional when invoking the M.PTSK service.

When a load module name is supplied in words 0 and 1 of the PSB. the operating
system searches the system directory only. For activations in directories other than
the system directory, a pathname or RID vector must be supplied.

When activating a task with the M.SRUNR or M.PfSK service, the value specified in
byte 0 ofPSB word 2 (pSB.PRI) is used to detennine the task's execution priority.
'This value overrides the cataloged priorities of the sending and receiving tasks (t.1'vt the
priority specified in the Pf ASK parameter block. However, priority clamping is used
to prevent time-distribution tasks from using this value to execute at a real-time
priority, and real-time taSks from executing at a time-distribution priority. Values L.'1at
can be specified in PSB.PRI are 1-64 (to be the task priority), zero (to use the base
priority of the sending task), and X'FF' (to ignore the PSB priority field).

System Description

,·0' .- ...) \ I "I

O···~·· , ,

o

Send/Receive Facilities

A PSB can be specified as a parameter for the M.PTSK selVice, along with the
required task activation (PT ASK) block. The PT ASK block also contains a priority
specification field. The PSB priority value always overrides the PT ASK block priority
value.

Word 0

1

2

3

4

5

6

7

Word 0

o 7 8 15 16 23 24 31
Load module or executable image name (PSBLMN) or zero if activation
(or task number (pSB.TSKN) if message or run request to multicopied task)

Load module or executable image name, pathname vector, or RID vector
if activation (or zero if message or run request to multicopied task)

Priority Reserved Number of bytes to be sent (pSB.SQUA)
(pSB.PRI)

ReselVed Send buffer address (PSB.SBA)
RetlD'Il parameter buffer length Number of bytes actually
in bytes (PSB.RPBL) returned (pSB.ACRP)

Reserved Return parameter buffer address (pSB.RBA)
Reserved No-wait request end action address (psB.EAA)
Completion Processing User status Options
status (psB.CST) start status (PSB.UST) (pSB.OPT)

(pSB.IST)

Bits 0-31 Load module or executable image name - contains characters I
through 4 of the name of the load module or executable image to
receive the run request or

Word I

Bits 0-31

Word 2

Bits 0-7

MPX-32 Technical Volume I

Task number - contains the task number of the task to receive
the message or the task number of the multicopied load module
or executable image to receive the run request

Load module or executable image name - contains characters 5
through 8 of the name of the load module or executable image to
receive the run request, or zero if the message or run request is
sent to multicopied load module or executable image.

Contains the priority at which the receiver task is expected to be
activated. Valid values are 1-64, zero, (for base priority of the
sending task) and X'FF', which generates activation priority
based on a combination of values that can be specified during
task activation.

1-31

Send/Receive Facilities

1-32

The following tables show how the priority of a receiver task is determined when
activated with M.SRUNR or with MPrSK.

When Activating with M.SRUNR

Cataloged
Priority of Priority Activates

Send Task Receive task inPSB Receive task at

1-54 1-54 0 Send task cat. priority
1-54 55-64 0 55 (time-dist. cJamp)

55-64 1-54 0 54 (real-time clamp)
55-64 55-64 0 Send task cat. priority

... 1-54 1-54 PSB priority

... 1-54 55-64 54 (real-time clamp)

... 55-64 1-54 55 (time-dist. clamp)

... 55-64 55-64 PSB priority

... ... X'FF' Receive task cat. priority

* not specified

When Activating with M.PTSK

Cataloged
Priority of Priority in

Send Receive PTASK Activates
Task task block: PSB Receive task at

1-54 1-54 0 0 Send task cat. priority
1-54 55-64 0 0 55 (time-dist. clamp)
1-54 * 1-54 0 Send task cat. priority
1-54 ... 55-64 0 55 (time-dist.clamp)

55-64 1-54 0 0 54 (real-time clamp)
55-64 55-64 0 0 Send task cat. priority
55-64 ... 1-54 0 54(real-time clamp)
55-54 ... 55-64 0 Send task cat. priority

... 1-54 0 1-54 PSB priority

... 1-54 0 55-64 54 (real-time clamp)

... 55-64 0 1-54 55 (time-dist.clamp)

... 55-64 0 55-64 PSB priority

... ... 1-54 1-54 PSB priority

... ... 1-54 55-64 54 (real-time clamp)

... ... 1-54 X'FF' PT ASK block priority

... ... 55-64 1-54 . 55 (real-time clamp)

... ... 55-64 55-64 PSB priority

... ... 55-64 X'FF' PTASK block priority

... ... 0 X'FF' Receive task cat. priority

* not specified

Sy~em Description

o

(\
V

o

Bits 8-15

Bits 16-31

Word 3

Bits 0-7

Bits 8-31

Word 4

Bits 0-15

Bits 16-31

WordS

Bits 0-7

(
Bits 8-31

Word 6

Bits 0-7

Bits 8-31

MPX-32 Technical Volume I

Send/Receive Facilities

reserved

Number of bytes to be sent - specifies the number of bytes to
be passed (0 to 768) with the message or run request.

reserved

Send buffer address - contains the word address of the buffer
containing the parameters to be sent.

Return parameter buffer length - contains the maximum number
of bytes (0 to 768) that may be accepted as returned parameters.

Number of bytes actually returned - set by the send message or
run request service upon completion of the request.

reserved

Return parameter buffer address - contains the word address of
the buffer where any returned parameters are stored.

reserved

No-wait request end-action address - contains the address of a
user routine to be executed at a software interrupt level upon
completion of the request.

1-33

Send/Receive Facilities

Word 7

Bits 0-7

1-34

Completion status - contains completion status information
posted by the operating system as follows:

Bit Meaning if Set

o operation in progress (pSB.OIP)

1 destination task was aborted before completion of
processing for this request (pSB.DT A)

2 destination task was deleted before completion of
processing for this task (pSB.DTD)

3 return parameters truncated - attempted return
exceeds return parameter buffer length (pSB.RPT)

4 send parameters truncated - attempted send exceeds
destination task receiver buffer length (pSB.SPf)

5 user end-action routine not executed because of
task abort outstanding for this task (can be examined
in abort receiver to determine incomplete operation)
(pSB.EANP)

6-7 reserved

System Description

((, ",--")
'J

C--\','
" !

Send/Receive Facilities

(~i
Bits 8-15 Processing start (initial) status - contains initial status

information posted by the operating system as follows:

Bit Meaning if Set

0 normal initial status (pSB.lST)

1 message request task number invalid (pSB.TSKE)

2 run request load module or executable image name not
found (psB.LMNE)

3 reserved

4 file associated with run request load module or
executable image name does not have a valid
load module or executable image format (pSB.LMFE)

5 dispatch queue entry (DQE) space is unavailable for
activation of the load module or executable image
specified by a run request (psB.DQEE)

6 an I/O error was encountered while reading the
directory to obtain the file definition of the
load module or executable image specified in a run
request (pSB.SMIO)

7 an I/O error was encountered while reading the
file containing the load module or executable image

('
specified in a run request (pSB.LMIO)

8 memory unavailable

9 invalid task number for run request to module
or executable image in RUNW state

10 invalid priority specification. An unprivileged
task can not specify a priority which is higher than
its own execution priority (psB.PRIE).

11 invalid send buffer address or size (pSB.SBAE)

12 invalid return buffer address or size (pSB.RBAE)

13 invalid no-wait mode end action routine address
(pSB.EAE)

14 memory pool unavailable (pSB.MPE)

15 destination task receiver queue is full (psB.DTQF)

Bits 16-23 User status - defined by the destination task.

o
MPX-32 Technical Volume I 1-35

Send/Receive Facilities

Bits 24-31 Options - contains user-request control specification as follows:

Bit Meaning if Set

24 request is to be issued in no-wait mode (pSB.NWM)

2S do not post completion status or accept return
parameters. This bit is examined only if bit 24 is
set. When this bit is set, the request was issued
in the no call back mode. (pSB.NCBM).

1.6.2.5 Parameter Receive Block (PRB)

1-36

The parameter receive block (PRB) is used to control the storage of passed parameters
into the receiver buffer of the destination task. The same fonnat PRB is used for
message and run requests, The address of the PRB must be presented when the
M.GMSGP or M.GRUNP services are invoked by the receiving task.

Word 0

1

2

3

4

Word 0

o 78 15 16 2324 31

StablS (pRB.ST) .Iparameter receiver buffer address (PRB.RBA)

Receiver buffer length (PRB.RBL) Number of bytes actually received
(PRB.ARQ)

Owner name of sending task, word one (PRB.OWN)

Owner name of sending task, word two

Task number of sending task (PRB.TSKN)

Bits 0-7 Status - contains status as follows:

Bits 8-31

Bit Meaning if Set

o nonnal status
1 invalid PRB address

2 invalid receiver buffer address or size detected
during parameter validation (PRB.RBAE)

3 no active send request (pRB.NSRE)

4 receiver buffer length exceeded (pRB.RBLE)

S-7 reserved

Parameter receiver buffer address - contains the word address of
the buffer where any returned parameters are 'stored.

System Description

o

c

o

Word 1

Bits 0-15

Bits 16-31

Words 2 to 3

Bits 0-63

Words 4

Bits 0-31

Send/Receive Facilities

Receiver buffer length -'- contains the length of the receiver
buffer (0 to 768 bytes).

Number of bytes actually received - set by the operating system
and is a maximum equal to the receiver buffer length.

Owner name of sending task - set by the operating system to
contain the owner name of the task which issued the parameter
send request.

Task number of sending task - set by the operating system to
contain the task activation sequence number of the task which
issued the parameter send request.

1.6.2.6 Receiver exit Block (RXB)

The receiver exit block (RXB) is used to control the return of parameters and status
from the destination (receiving) task to the task that issued the send request. It is also
used to specify receiver exit options. The same fonnat RXB is used for both
messages and run requests. The address of the RXB must be presented as an
argument when either the MJ{MSGR or M.XRUNR services are called.

o 7 8 15 16 23 24 31

Word 0 Retmn slaWS Return parameter buffer address (RXB.RBA)
(RXB.S1)

1 Options
(RXB.OPlj

Word 0

Bits 0-7

Bits 8-31

MPX-32 Technical Volume I

Reserved Number of byteS to be returned
(RXB.RQ)

Return status - contains status as defined by the receiver task.
Used to set the user status byte in the parameter send block
(PSB) of the task which issued the send request.

Return parameter buffer address - contains the word address of
the buffer containing the parameters which are to be returned to
the task that issued the send request.

1-37

Send/Receive Facilities

Word 1

Bits 0-7

Bits 8-15

Bits 16-31

Options - contains receiver.exit control options asfollows:

Value Meaning
o wait for next run request (M.XRUNR).

Return to point of task interrupt (M.xMSGR)
1 exit task, process any additional run requests.

reserved

If none exist, perfonn a standard exit (M.XRUNR)
not applicable for M.XMSGR

Number of bytes to be returned - contains the number of bytes
(0 to 768) to be returned on a message or receiver run exit.

1.6.2.7 Message or Run Request Queue Entry (MRRQ)

The message or run request queue entry (MRRQ) is generated by the system to
process a send request After the MRRQ has been generated by the send service, it is
attached to the appropriate queue slot in the DQE of the destination task. When the
receiver program is entered, R1 contains the address of the MRRQ in memory pool.
The receiver program can reference the l\IIRR.Q directly, without issuing a M.GRUNP

o

or M.GMSGP service call. The same fonnat MRRQ is used for both messages and (\
run requests. .)

1-38

Word 0

1

2

3
4

5

6

7

8-9

10

11

n

o 7 8 15 16 23 24 31
String forward address (MQ.SF)

Siring backward address (MQ.SB)

Priority (MQ.PR) Address of parameter send block (PSB) (MQ.PSBA)

Task number of sending task (MQ.1NST)

Sending task owner name word one

Sending task owner name word two

Passed parameter quantity in bytes Return parameter buffer length
or number of bytes of stomge space in bytes or number of actual
(MQ.PPQ) return parameters (MQ.RBL)

Completion status-- Initial stablS-- User status- Options--
PSB fannat PSB fannat PSB fannat PSB fannat
(MQ.CST) (MQ.IST) (MQ.UST) (MQ.OPT)

End action PSD (MQ.EAPSD)

Parameter area pointer (MQ.PPTR)

Reserved

Variable length storage area for passed and returned parameters

o
System Description

Word 0

Bits 0-31

Word 1

Bits 0-31

Word 2

Bits 0-7

Bits 8-31

Word 3

Bits 0-31

Words 4-5

Bits 0-63

Word 6

Bits 0-15

Bits 16-31

Word 7

Bits 0-15

Bits 16-23

Bits 24-31

MPX-32 Technical Volume I

Send/Receive Facilities

String forward address - contains the address of next entry of
top-to-bottom list.

String backward address - contains address of next entry in
bottom-to-top list.

Priority - contains the priority (1 to 64) of this request.

Address of parameter pend block (PSB) - contains the logical
address of the PSB in the address space of the task which
initiated the request.

Task number of requesting task - contains the task activation
sequence number of the task which issued the request.

Send task's owner name.

Passed parameter quantity - contains the number of bytes sent
to the destination task.

Return parameter buffer length - contains the length in bytes of
the return parameter buffer in the task which issued the request.

Scheduler status - contains status information to be posted in
the scheduler status field of the PSB upon request completion.
See PSB format.

User status - contains status as defined by the destination task.

Options - contains user request control specifications as
follows:

Meaning if Set

request is in no-wait mode

Bit

24
25 request is in no call back mode (no wait, no status,

no return parameters)

1-39

Send/Receive Facilities

1-40

Words 8-9

Bits 0-31

Word 10

Bits 0-31

Word 11

Bits 0-31

End action PSD (words 1 & 2) (post processing service PSD).

Pointer to variable length parameter area.

ReselVed

System Description

I
I
I
I
I

o

o

o

Send/Receive Facilities

1.6.2.8 Messages and Run Request Services Summary

The following table lists the message and run request services provided by the
MPX-32 system.

Run Request Message
Services Services Function

Receiver Services:

N/A M.RCVR recvaddr Establish receiver address

M.GRUNP prbaddr M.GMSGP prbaddr

M.XRUNR rxbaddr MJeMSGR rxbaddr
orM.EXIT

N/A M.ANYW timel or
M.SUSP tas/cno,timel

Sender Services:

M.SRUNR psbaddr M.SMSGR psbaddr

M.ANYW timel M.ANYW timel

M.XREA

M.EA W AlT timel

M.XMEA

Description
address of receiver
address of parameter receive block (PRB)
address of receiver exit block (RXB)
address of parameter send block (PSB)
contains zero

Get parameters

Exit receiver

Wait for receipt of next
message

Send request

Wait for any request
completion

Exit user end action
service

Argument

recvaddr
prbaddr
rxbaddr
psbaddr
taskno
time1 contains zero if indefinite wait. or contains a

negative number of time units to be used as a wait
time-out value

MPX·32 Technical Volume I 1-41

Device Address Specification

1.7 Device Address Specification

1-42

Device addresses are specified using a combination of three levels of identification:
device type, device channeJ/controller address, and device address/subaddress.

A device may be specified using the generic device type mnemonic only. which will
result in allocation of the first available device of the type requested. Device type
mnemonics are listed in Table 1-1.

A second method of device specification is achieved by using the generic device type
and specifying the channel/controller address which results in allocation of the first
available device of the type requested on the channel/controller-specified.

The third method of device selection requires specification of the device type
mnemonic, channel/controller, and device address/subaddress. This method allows
specification of a speCific device.

Examples

Type 1 - Generic device class:

ASSIGN OUT TO DEV=M9

In this example, the file associated with logical file code OUT is allocated to any 9-
track tape 1Dlit on any channel.

Type 2 - Generic device class and channel/controller:

ASSIGN OUT TO DEV=M910

In this example, the file associated with logical file code OUT is allocated to the first
available 9-track tape unit on channel 10. The specification is invalid if a 9-track
tape unit does not exist on the channel.

Type 3 - Specific device request:

ASSIGN OUT TO DEV=M91001

In this example, the file associated with logical file code OUT is allocated to the 9-
track tape unit 01 on channel 10. The specification is invalid if unit 01 on channel
10 does not exist or is not a 9-track tape •. '

GPMC/GPDC devices are specified in keeping with the general structure as defined.
For instance, the CRT at subaddress 04 on GPMC 01 whose channel address is 20
would be identified as follows:

ASSIGN OUT TO DEV=TY2004

A special device type, NUt is available for null device specifications. Files accessed
using this device type generate an end-of-file upcu attempt to read and normal
completion upon attempt to write.

System Description

o

o

r-.

Device Address Specification

Assignment of logical file codes to the operator console is achieved through usage of
the device type cr.

A description of device selection possibilities is constructed as follows:

Disk

DC
DM
DM08
DM0801
DMOOO2
DF
DF04
DF0401

Tape

MT
M9
M910
M91002

card Equipment

CR
CR78
CR7800

Line Printer

LP
LP7A
LP7AOO
LP7EAO

MPX-32 Technical Volume I

any disk: except memory disk
any moving head or memory disk
any moving head disk on channel 0 8
moving head disk 01 on channel 08
memory disk 02 on channel 00
any fixed head disk:
any fixed head disk: on channel 0 4
fixed head disk 01 on channel 04

any magnetic tape
any 9-track magnetic tape
any 9-track magnetic tape on channel 10
9 -track magnetic tape 02 on channel 10

any card reader
any card reader on channel 7 8
card reader 00 on channel 7 8

any line printer
any line printer on channel 7 A
line printer 00 on channel 7 A
serial printer AO on ACM channel 7E

1-43

Device Address Specification

Table 1-1
Device Type Mnemonics and Codes

Device Device
Type Type
Code Mnemonic Device Description

00 CT operator console (not assignable)
01 DC any disk unit except memory disk
02 DM any moving head or memory disk
03 DF any fixed head disk
04 MT any magnetic tape unit
05 M9 any 9-track magnetic tape unit*
06 M7 any 7-track magnetic tape unit*
08 CR any card reader
OA LP any line printer
OB PI' any paper tape reader-punch
OC TY any teletypewriter (other than console)
OD CT operator console (assignable)
OE FL floppy disk
OF NU null device
10 CA communications adapter (binary synchronous/asynchronous)
11 UO available for useN1efined applications
12 Ul available for user-defined applications
13 U2 available for user-defined applications o
14 U3 available for user-defined applications
15 U4 available for user-defined applications
16 U5 available for user-defined applications
17 U6 available for user-defined applications
18 U7 available for user-defined applications
19 U8 available for user-defined applications
lA U9 available for user-defined applications
IB LF line printer/floppy controller (used only with SYSGEN)
N/A ANY any nonfloppy disk except memory disk

* When both 7- and 9-track magnetic tape units are configured. the designation must be
7-track.

o
1-44 System Description

(.. ~

CPU Scheduling

1.8 CPU Scheduling
The MPX-32 CPU scheduler allocates CPU execution time to active tasks. Tasks are
allocated CPU time based on execution priority and execution eligibility. Execution
priority is specified when. a task is cataloged into the system. Execution eligibility is
determined by the task's readiness to run.

1.8.1 Execution Priorities

The MPX-32 system provides 64 levels of execution priority. These priority levels
are divided into two categories. Real-time tasks operate in the priority range 1 to 54.
Time-distribution tasks operate in the priority range 55 to 64.

1.8.2 Real-Time Priority Levels (1 to 54)

Real-time tasks are scheduled on a strict priority basis. The system does not impose
time-slice, priority migration, or any other scheduling algorithm that interferes with
the execution priority of a real-time task. Execution of an active real-time task at its
specified priority level is inhibited only when it is ineligible for execution (not ready
to run). Execution of a real-time task can always be pre-empted by a higher priority
real-time task that is ready to run.

1.8.3 Time-Distribution Priority Levels (55 to 64)

For tasks that execute at priority levels 55 to 64, MPX-32 provides a full range of
priority migration, situational priority increment, and time-quantum control.

1.8.4 Priority Migration

The specified execution priority of a time-distribution task is used as the task's base
execution priority. Each time-distribution task's current execution priority is
determined by the base priority level as adjusted by any situational priority increment
The current execution priority is further adjusted by increasing the priority by one
level whenever execution is pre-empted by a higher priority time-distribution task, and
decreasing the priority whenever the task gains CPU control. The highest priority
achievable by a time-distribution task is priority level 55. The lowest priority is the
task's base execution priority level.

MPX-32 Technical Volume I 1-45

CPU Scheduling

1.8.4.1 Situational Priority Increments

Time-distribution tasks are given situational priority increments to increase program
responsiveness. The effect of situational priority increments is to give execution
preference to tasks that are ready to run after having been in a natural wait state. A
task that is CPU bound migrates toward its base execution priority. Situational
priority increments are invoked when a task is unlinked from a wait-state list and
relinked to the ready-to-run list.

Situation
Tenninal input wait complete
I/O wait complete
Message (send) wait complete
Run request (send) complete
Memory (inswap) wait complete
Pre-empted by real-time task

Priority Increment

Base level + 2
Base level + 2
Base level + 2
Base level + 2
Base level + 3
Level 55

1.8.5 Time-Quantum Controls

Two time-quantum values can be specified at system generation. If these values are
not specified, system default values are used. The two quantum values are provided
for scheduling control of time-distribution tasks.

The first quantum value (stage I) indicates the minimum amount of CPU execution
time guaranteed to a task before pre-emption by a higher priority time-distribution
task. The stage 1 quantum value is also used as a swap inhibit quantum after inswap.
The second quantum value represents the task's full-time quantum. The difference
between the first and second quantum values defines the execution period called
quantum stage 2. During quantum stage 2, a task is pre-empted and/or out-swapped
by any higher priority task. When a task's full time-quantum has expired, it relinks to
the bottom of the priority list at base execution priority.

Time-quantum accumulation is the accumulated sum of actual execution times used by
this task. A task's quantum accumulation value resets when the task voluntarily
relinquishes CPU control; for example, suspend, wait I/O, etc.

1.8.6 State Chain Management

1-46

The current state of a task, such as ready to run or waiting for I/O, is reflected by the
linkage of the dispatch queue entry associated with the task into the appropriate state
chain. The state queues are divided into two major categories: ready to run and
waiting. The ready-to-run category is subdivided by priority, with a single queue for
the real-time priorities and a separate queue for each of the time-distribution priority
levels. The waiting category is subdivided according to the resource or event required
to make the· task eligible for execution.

System Description

o

o

()

c
MPX-32 Technical Volume I

CPU Scheduling

MPX-32 State Queues

Ready-to-Run Queues

1. Current CPU task (in execution) - CURR
2. Current IPU task (in execution) - CIPU
3. IPU requesting state - RIPU
4. Real-time priority levels (1-54) - SQRT
5. Time-distribution priority level 55 - SQ55
6. Time-distribution priority level 56 - SQ56
7. . Time-distribution priority level 57 - SQ57
8. Time-distribution priority level 58 - SQ58
9. Time-distribution priority level 59 - SQ59

10. Time-distribution priority level 60 - SQ60
11. Time-distribution priority level 61 - SQ61
12. Time-distribution priority level 62 - SQ62
13. Time-distribution priority level 63 - SQ63
14. Time-distribution priority level 64 - SQ64

Wait Mode Operation Queues

15. Wait mode interactive input - swn
16. Wait mode JJO - SWIO
17. Wait mode send message - SWSM
18. Wait mode send run request - SWSR
19. Wait mode low speed output

(not implemented) - SWLO

Execution Wait Queues

20. Suspended waiting for message interrupt,
timer expiration, or resume - SUSP

21. Waiting for run request or timer expiration
-RUNW

22. Operator hold, waiting for continue - HOLD

Wait for Any Operation Complete Queue

23. Waiting for completion of any no-wait JJO,
no-wait message, no-wait run request, or any
message interrupt or break - ANYW

W~jting for Resource Queues

24. Waiting for disk space - SWDC
25. Waiting for peripheral device - SWDV
26. Reserved
27. Waiting for memory - MRQ
28. Waiting for memory pool- SWMP

1-47

FAT/FPT and Blocking Buffer Allocation

1.9 FAT/FPT and Blocking Buffer Allocation

During the task allocation process, separate areas are reselVed in a task's TSA for
FAT/FPT pairs and blocking buffers. The size of each area is fixed for the duration of
a task's execution. The size of the FAT/FPT area limits the number of file codes that
a task can have allocated concurrently. The size of the blocking buffer area limits the
number of file codes assigned to blocked devices or files that a task can allocate
concurrently. The number of entries in each area is established as follows.

1.9.1 FAT/FPT Area

Nonshared task - one FAT and FPr entry for each cataloged assignment, plus one
entry for each TSM assignment that does not override a cataloged assignment, plus
the number specified on the cataloger FILES directive.

Shared task - the number specified on the cataloger FILES directive.

1.9.2 Blocking Buffer Area

1-48

Nonshared task - from the assignments resulting from merging cataloger and TSM
assignments, one buffer for each ASSIGN; plus one buffer for each ASSIGN to a
magnetic tape or disk unit on which the unblocked option is nOl specified, plus one
buffer for each ASSIGN plus the number specified on the cataloger BUFFERS
directive.

Shared task - the number specified on the cataloger BUFFERS directive.

Cataloger and TSM ASSIGN directives are modified by the addition of an unblocked
specification as follows:

ASSIGN lfe TOfile BLOCKED-N

The following cataloger directives are added:

FILES number - number specifies the maximum number of dynamically allocated
file codes that a nonshared task can allocate concurrently. It specifies the maximum
number of file codes that a shared task can have allocated concurrently.

BUFFERS number - number specifies the maximum number of dynamically
allocated file codes assigned to blocked files or devices that a nonshared task can
allocate concurrently. It specifies the maximum number of file codes assigned to
blocked files or devices that a shared task can allocate concurrently.

FILES and BUFFERS override parameters are specified in the parameter task
activation (M.PfSK) system selVice. These parameters allow addition of TSM FILES
and BUFFERS directives if required by a future "load and go" capability.

System Description

o

()

o

('
Indirectly Connected Interrupts

1.10 Indirectly Connected Interrupts

An indirectly connected interrupt is an interrupt that is associated with an MPX-32
task. When the interrupt occurs, the associated task is resumed. An interrupt is
declared as indirectly connected at system generation (SYSGEN) time. This
declaration causes SYSGEN to generate an indirectly connected task linkage block
(ITLB). The ITLB is permanently associated with the specified interrupt level, but
only becomes associated with an MPX-32 task when the M.CONN system service is
invoked. A task can be disconnected from an interrupt level by invoking the
M.DISCON system service.

1.10.1 Connect Task to Interrupt Service (M.CONN)

The M.CONN system service associates an MPX-32 task with an external interrupt
that was declared at SYSGEN as indirectly connected. When called, M.CONN is
presented the priority level of the interrupt and the task activation sequence number of
the task. The task number is first validated to ensure that it is currently active and has
either the same owner name as the calling task, or the owner name of the calling task
is privileged or is not restricted from access to tasks of a different owner. If so, the
M.CONN service next checks to see if the specified task is already connected to an
interrupt. DQE.ILN in the DQE contains the interrupt priority level if the task is
already connected. If the task is not previously connected, the M.CONN service
searches the indirectly connected task linkage table (ITL T) to find the linkage block
(ITLB) associated with this interrupt. If one exists and is not already connected, the
DQE address of the task being linked is stored in word one of the ITLB to reflect the
linkage. DQE.ILN in the DQE is set to contain the interrupt priority level.

Note: The task is automatically disconnected from the interrupt on abort, delete, or
exit.

1.10.2 Disconnect Task from Interrupt Service (M.DISCON)

The M.DISCON system service disconnects an MPX-32 task from an external
interrupt it had previously been connected to. When called, M.DISCON is presented
the task activation sequence number of the task as an argument with the call. If the
specified task is not connected to an interrupt, DQE.ILN in the DQE is equal to zero
and the request is ignored. Otherwise, DQE.ll..N contains the external interrupt
priority level. M.DISCON uses this priority level to locate the linkage block (ITLB)
in the linkage table (ITLT). The DQE address (word one of the ITLB) is cleared to
mark the level as disconnected. DQE.ILN is cleared in the DQE of the specified task.

1.10.3 Indirectly Connected Task Linkage Table (lTL T)

The indirectly connected task linkage table (TILT) is a variable length table huilt by
SYSGEN. It contains an entry for each interrupt specified as indirectly coflJlectable.
An entry is called an indirectly connected task linkage block (TILB) and is 24 words
in length. The address of the ITLT is contained in C.ITLT. The number of ~T1tries in
111.. T is contained in C.NITI. Both C.ITL T and C.NITI are initialized by SYSGEN.

MPX-32 Technical Volume I 1-49

Indirectly Connected Interrupts

1.10.4 Indirectly Connected Task Linkage Block (ITLB)

1-50

An entry in the indirectly connected task linkage table is called an indirectly
connected task linkage block (lTLB). An ITLB is 24 words long and is used to
associate an external interrupt with an indirectly connected task.

Word 0

1

2

3

4

5

6

7

8

9

10

11

12

13

14-15

16 - 23

Word 0

o
Priority level

DQE address of indirectly
connected program

Old PSD word one

Old PSD word two

New PSD word one

New PSD word two

Increment global interrupt
count instruction

Save register instruction

Branch and link to ICP routine

Address of register save area
for S.EXEC5 call

Old PSD for S.EXEC5 call

Reserved

Deactivate interrupt

Branch back for S.EXEC5 call

Reserved for future use

Register save area

31

[DATAW X'YY']

[DATAWO]

[DATAW 0]

[DATAW 0]

[GEN 1/1, 12/0, 19/W($+2W)]

[GEN 1/1, 14/0, 1/1, 1/0, 1/0, 14/0]

[ABM 31,C.GINT]

[SlF RO,$+9W]

[BL ICP]

[LA X2, $+ 7W]

[LD R6, -8W]

[DAI X'YY']

[BL S.EXINT]

Bits 0-31 Priority level - set by SYSGEN to contain the priority level of
the associated interrupt.

Word 1

Bits 0-31 DQE address of indirectly connected program - contains the
dispatch queue entry (DQE) address of the task to be resumed on
occurrence of this interrupt Initially set to zero by SYSGEN.
Initialized by M.CONN system service.

Words 2 to 3

Bits 0-63 Old PSD - contains the old PSD slot of the interrupt control
block. Used to store the PSD associated with the interrupted
context. Initially set to zero by SYSGEN. The dedicated
interrupt location (IVL) is initialized by SYSGEN to contain the
address of word two of the ITLB.

System Description

()

Words 4 to 5

Bits 0-63

Word 6

Bits 0-31

Word 7

Bits 0-31

Word 8

Bits 0-31

Words 9 to 13

Words 14 to 15

Words 16 to 23

MPX-32 Technical Volume I

Indirectly Connected Interrupts

New PSD - contains the new PSD slot of the interrupt control
block to be used on occurrence of this interrupt. Causes
execution to begin at ITLB word 6 in privileged mode,
unblocked state, with old map status retained.

Increment global interrupt instruction - contains an add bit in
memory instruction to increment the global interrupt count.
Execution begins at this location when the associated interrupt
occurs. It must be the first instruction executed in ICP. This
location is initialized by SYSGEN to contain an ABM
31,C.GINT.

Save registers instruction - contains a store file instruction to
save all eight registers in words 16 to 23 of the ITLB. This
location is initialized by SYSGEN to contain an STF RO,$+9W.

Branch and link to ICP routine - executed after the register save
instruction on occurrence of the associated interrupt. Transfers
control to the single-copied ICP routine. This location is
initialized by SYSGEN to contain a BL ICP.

Branch back for S.EXINT call returns control to this location
after S.EXEC14 is called in the ICP routine. Set-up is made for
exiting the interrupt; then control is transferred back to ICP for
the S.EXEC5 call.

reserved for future use

register save area

1-51

Indirectly Connected Interrupts

1.10.5 Indirectly Connected Interrupt Program (H.ICP)

1-52

The indirectly connected interrupt program (H.lCP) is a single-copied routine that
processes all indirectly connected external interrupts. It is entered in blocked,
wunapped mode with the end address (+1W) of the linkage block (ITLB) in RO. The
global interrupt count is incremented within the ITLB and the registers from the
interrupted context are stored in words 16 to 23 of the block.. When H.ICP is entered,
it checks ITLB word one to verify connection of the interrupt to an MPX-32 task. If
the interrupt is not connected, it is ignored and H.ICP transfers back to the ITLB to
exit the interrupt

When ITLB word 1 contains a valid DQE address, H.lCP performs the following
checks to determine if the task resumption time can be optimized:

• is the task a real-time task

• does the task have any system action requests or task interrupts pending

• is the task outswapped

• are interrupts nested

• is context switching inhibited

• can the task run in the CPU

If the task meets these checks, its resumption can be optimized and dispatched directly
from H.ICP.

If the task does not meet the checks, S.EXEC14 links the task to the ready to run
queue. The task then exits the interrupt level via S.EXECS.

System Description

0 .. '; , ,

o

o

r

Miscellaneous System Macros

1.11 Miscellaneous System Macros

1.11.1 M.BACK

This macro backspaces the current address of a blocked file by the specified number of
file or record marks.

Calling Sequence

M.BACK addr,[R] [,num]

addr is the FCB address

R specifies record. If not specified, the default is file.

num is the number of record or file marks to be backspaced. The number
specified must be word scaled, for example, one word for one record. If not
supplied, the current contents of register four are used.

1.11.2 M.CALL

This macro generates a supervisor call instruction. If code has been assembled with
an MPX-32 PRE file, interrupts are unblocked by default (SVC '6' call). If code has
not been assembled with an MPX-32 PRE file, interrupts are blocked by default (SVC
'0' call). Each of the three standard MPX-32 PRE files contain the symbol
MPX_SVC. This symbol is set to 6 so MPX-32 uses the optimized M.CALL macro,
which increases the performance of MPX-32. Defaults can be overridden with the
state parameter on individual macro calls.

calling Sequence

M.CALL name,num[,state]

name is the name of a system module

num is an entry point number (1,2,3, ...) within the system module

state is the state of processing:

RETAIN generates an SVC '0' call with blocked interrupts

UEI generates an SVC '6' call with unblocked interrupts

MPX·32 Technical Volume I 1·53

Miscellaneous System Macros

1.11.3 M.CLSE

This macro marks a file closed to subsequent service. An end-of-file (BOF) mark can
be written and a rewind' can be performed.

calling Sequence

M.CLSE addr.[EOFJ.[REW]

addr FCB address

EOF specifies an end-of-file mark is to be written

REW specifies the file is to be rewound

1.11.4 M.DFCB

This macro creates a file control block (FCB). It also sets the appropriate parameters
and specifications that are common to I/O requests issued for the file.

Calling Sequence

M.DFCB label./fc.[count].[addrl],[addr2],[addr3].

[NWT].[NER],[DFI],[NST],[RAN]

[ASCIBIN],[LDRINLD],[INTIPCK],[EVNIODD] [,556,800]

label is the ASCn character string to be used as the symbolic label for the
address of the FCB

/fc is the 1- to 3-character AScn string to be used as the logical file code
in the FCB

count is the transfer count in bytes

addr 1 is the data transfer address

addr2 is the error return address

addr3 is the random access address expressed as the hexadecimal block
number (zero origin) relative to the base of the random access file

NWT is the·no-wait I/O specification indicator

NER is the inhibit peripheral error processing indicator

DFI is the inhibit data formatting indicator

NST is the inhibit status tesr'..ng indicator

RAN is the random accese mode indicator

ASC or BIN is the forced AScn or forced binary mode specification for read or
punch operations performed when the file code for this file is assigned
to a card reader

o

LDR or NLD is the skip leader or do not skip leader speCification when the file code C' ~'''.''''.,
for this file is assigned to a paper tape reader/punch device .

1-54 System Description

(~ ...•

c

Miscellaneous System Macros

INT or PCK is the interchange or packed mode specification when the file code for
this file is assigned to a magnetic tape device

EVN or ODD is the even or odd parity specification when the file code for this file is
assigned to a magnetic tape device

556 or 800 is the 556 or 800 BPI tape density specification when the file code for
this file is assigned to a magnetic tape device

1.11.5 M.DFCBE

This macro creates an expanded file control block (FCB). It also sets the appropriate
parameters and specifications that are common to I/O requests issued for the file.

calling Sequence

M.DFCBE label,/fc,[count],[addrl],[addr2],[addr3],

[NWT],[NER],[DFI], [NST], [RAN],

[ASCIB1N],[LDRJNLD],[INTIPCK],[EVNIODD],[556,800]

[addr4],[addr5],[addr6]

label

/fc

count

addrl

addr2

addr3

NWT

NER

DFI

NST

RAN

ASC or BIN

is the ASCII character string to be used as the symbolic label for the
address of the FCB

is the 1- to 3-character ASCII string to be used as the logical file code
in the FCB

is the transfer count in bytes

is the data transfer address

is the wait I/O error return address

is the random access address expressed as the hexadecimal block
number (zero origin) relative to the base of the random access file

is the no-wait I/O specification indicator

is the inhibit peripheral error processing indicator

is the inhibit data formatting indicator

is the inhibit status testing indicator

is the random access mode indicator

is the forced ASCII or forced binary mode specification for read
operations performed when the file code for this file is assigned to a
card reader

LDR or NLD is the specify skip leader or do not skip leader specification when the
file code for this file is assigned to a paper tape reader/punch device

MPX·32 Technical Volume I 1·55

Miscellaneous System Macros

INT or PCK is the interchange or packed mode specification when the file code for 0
this file is assigned to a magnetic tape device

EVN or ODD is the even or odd parity specification when the file code for this file is
assigned to a magnetic tape device

556 or 800 is the 556 or 800 BPI tape density specification when the file code for
this file is assigned to a magnetic tape device

addr4 is the no-wait I/O normal end-action service address

addr5 is the no-wait I/O error end-action service address

addr6 is the user-supplied blocking buffer

1.11.6 M.EIR

This macro is called by the resident system module's initialization entry points at
entry. It stores RO for later recall by M.xIR, the initialization entry point exit macro.

calling Sequence

M.EIR

1.11.7 M.FCBEXP

1-56

This macro defines a file control block (FCB) to be used for an execute channel
program request.

calling Sequence

M.FCBEXP iabel,lje[, [epaddr],[tout], [PCP],[NWI], [NST],

[ssize],[sbuffer], [nowait],[nowaite"or],[waiterror],[psize],[ppeiadr]

label

lie

epaddr

tout

PCP

NWI

NST

ssize

sbuffer

nowait

is the ASCII string to use as the symbolic label for the address of the
FCB

is the logical file code, word 0, bits 8 to 31 of the FCB

the logical address of the channel program to be executed

a time-out value specified in seconds

specifies physical channel program

specifies llO-wait I/O request

specifies status checking not requested

the size of the user-specified sense buffer

the address of the user-specified sense buffer

normal no-wait end-action return address

System Description

(

Miscellaneous System Macros

nowaiterror no-wait end-action error return address

waite"or

psize

ppciaddr

1.11.8 M.FWRD

wait end-action error return address

size of PPO status buffer to use

PPCI end-action address

TIlls macro advances the current address of a blocked file by the number of file or
record marks specified.

calling Sequence

M.FWRD addr, [R] [,num]

addr is the FCB address

R specifies record. If not specified, the default is file.

num is the number of record or file marks to be advanced, one word for one
record.

1.11.9 M.INIT

TIlls macro initializes device handler parameters through entry point eight The code
generated by this macro is executed by SYSGEN and overlayed.

calling Sequence

M.INIT label,[NOP][,SPAI, [SPA2] ... [,SPAt5]]

label is the entry point truncated label; for example, MTO for magnetic tape
handler. TIlls argument must be three ASCII characters. The first two
represent the device mnemonic and the third is zero.

NOP specifies that TD 2000 level device status testing is not to be performed

SPAt-SPAI5 are the SPA parameters to be initialized. A maximum of 15 parameters
can be specified.

Usage:

M.INIT MTO"SPA1"SPA3

When placed as the last source statement in the device handler, this macro provides
the necessary code to initialize the handler. The HAT must be modified to specify
entry point eight and an additional entry must be made in the table (ACH MTOO.8).

MPX-32 Technical Volume I 1-57

Miscellaneous System Macros

1.11.10 M.INITX

This macro is called by the handler initialization macros to combine basic instruction
and commands with priority levels and device addresses for later execution within the
handler. When this macro is called, RS must be preloaded with the properly
positioned priority level or device address.

calling Sequence

M.INITX cmd,mask

cmd is the basic instruction or command

mask is a mask which is ORed with command

1.11.11 M.lOFF

This macro generates a block external interrupt (BEl) instruction that prevents the
CPU from sensing all external interrupt requests generated by the I/O channel and
RTOM.

calling Sequence

M.IOFF

1.11.12 M.lONN

This macro generates an unblock external interrupt (UEI) instruction that causes the
CPU to sense all external interrupt requests generated by the I/O channel and RTOM.

calling Sequence

M.IONN

1.11.13 M.IPUOFF

This macro causes the IPU to be put omine in software by setting bit C.IPUOFF.

calling Sequence

M.IPUOFF

1.11.14 M.IPUON

1-58

This macro causes the IPU to be put online in software by resetting bit C.IPUOFF.

calling Sequence

M.IPUON

System Description

o

o

o

Miscellaneous System Macros

1.11.15 M.lPURTN

This macro allows an IPU executable system module to return to the caller with
registers preserved. The system service performs a register pop-up, except for those
registers to be preserved, and returns to the location specified by the saved program
status word (PSW).

Calling Sequence

M.IPVRTN regn [,regn] ...

regn is a list of register numbers (0 to 7) identifying the registers to be preserved
through the register pop-up. Any register not specified is not preserved.

1.11.16 M.IVC

This macro connects a handler entry point to an interrupt vector location.

calling Sequence

M.IVC num,addr

num is the register number containing the interrupt level

addr is the handler entry point address label

1.11.17 M.KILL

This macro disables the CPU Halt Trap Processor (H.IPHT) and halts the system.

calling Sequence

M.KILLaddr

addr is the address of a 4-character ASOI crash code

1.11.18 M.MODT

This macro builds an entry in the module address table.

calling Sequence

M.MODT addr,num

addr is the address label of the module' s HAT table

rrum is the module number

MPX-32 Technical Volume I 1-59

Miscellaneous System Macros

1.11.19 M.OPEN

This macro controls gating. If code has been assembled with an.MPX -32 PRE file,
context switch inhibit is reset and an SVC '3' call is issued only if a scheduling event
occurred while M.SHUT was in effect. If code has been assembled without an
.MPX-32 PRE file, context switch inhibit is removed by issuing an SVC '3' call with
each M.OPEN call. Each of the three standard .MPX-32 PRE files contain the symbol
.MPX_SVC. This symbol is set to 6 so .MPX-32 uses the optimized M.OPEN macro,
which increases the perfonnance of .MPX-32.

These processing states can be altered on a call by call basis by specifying the state
parameter.

Entry Conditions

calling Sequence
M.OPEN [state]

state specifies the state of processing:

RETAIN retains original functionality of the MOPEN call that

FAST

removes the task context switch inhibit state set by MSHUT
by issuing the SVC '3' call.

provides the optimized state of resetting context switch
inhibit and issuing the SVC '3' call only if a scheduling
event occurred while M.SHUT was in effect The optimized
M.OPEN cannot be used in mapped out tasks.

1.11.20 M.RTNA

1-60

This macro provides the facility to return to the caller from a system module to an
address other than that specified by the saved PSW. It is used primarily for denial
returns. It operates like the M.RTRN macro. The interrupt handler tests for the
presence of an address specification in the parameter and replaces the saved program
status word (pSW) if an address is found.

calling Sequence

M.RTNA addr,regn [,regn] ...

addr is the register number of the register containing the address where return
control resumes

regn is a list of register numbers (0 to 7) identifying the registers to be preselVed
through ti'Je register pop-up. Any register not specified is not preselVed.

System Description

o

C)

o

(

Miscellaneous System Macros

1.11.21 M.RTRN

This macro is the complement of M. CALL and allows a system module to return to
the caller with registers preserved. The system service performs a register pop-up
(except for those registers to be preserved) and returns to the location specified by the
saved program status word (pSW).

Calling Sequence

M.RTRN regn [,regn] ...

regn is a list of register numbers (0 to 7) identifying the registers to be preserved
through the register pop-up. Any register not specified is not perserved.

1.11.22 M.RTRNOS

This macro is used to return control from the task level debugger to the MPX-32
Operating System.

Calling Sequence

M.RTRNOS

1.11.23 M.SHUT

This macro is used to control gating. It results in context switching being inhibited.
This macro should not be used in a user task which is eligible for IPU execution. See
M.USHUT.

Calling Sequence

M.SHUT

1.11.24 M.SPAD

At each register push-down level, 22 scratchpad storage cells are provided for the use
of re-entrant system modules. The scratchpad storage macro, M.SP AD, provides a
convenient means of referencing the current level of scratchpad storage. The M.SP AD
macro performs any memory reference operating on at least a word boundary (L W,
STF, ARMD, DVMW), or any bit in memory operation (TBM, SBM, ABM, ZBM).

Calling Sequence

M.SPAD mnem,reg,spad,index

MPX-32 Technical Volume I 1-61

Miscellaneous System Macros

mnem is an instruction mnemonic defining the operation to be perfonned

reg is the register number (0 to 7) or bit position (0 to 31) on which the
operation is to be perfonned, or null

spad is the scratchpad cell number (1 to 22) to be referenced by the operation

index is an index register number (1, 2, or 3) that is used to perfonn the operation

1.11.25 M.SVCP

This macro establishes any required protect bits in the high order byte of the SVC ' 1 '
table. A table is supplied containing 16 bit entries aligned on a half word boundary.
Each entry contains the SVC number in byte 0 and the required protect bits in byte 1.
The following protect bits are defined:

Bit Meaning if Set

o privileged SVC
1 IPU
2 base mode tasks executable

3-7 reserved

Calling Sequence

M.SVCP addr,num

addr is the address of the data table

num is the number of entries in the table

1.11.26 M.SVCP2

1-62

This macro establishes any required protect bits in the high order byte of the SVC '2'
table. A table is supplied containing 16 bit entries aligned on a halfword boundary.
Each entry contains the SVC number in byte 0 and the required protect bits in byte 1.
The following protect bits are defined:

Bit Meaning if Set

o privileged SVC
1 IPU
2 base mode tasks executable

3-7 reserved

calling Sequence

M.SVCP2 addr,num

addr is the address of the data table

num is the number of entries in the table

System Description

c'·.·.··.".'···· I· ,I

(

c ... -.• ····
... .>/

Miscellaneous System Macros

1.11.27 M.SVCT

This macro builds one entry in the SVC '1' table for each SVC type one defined in
the calling module's prototype SVC table. Each one word entry contains the address
of the corresponding SVC; i.e., the 20th entry contains the address of the 20th SVC.

Calling Sequence

M.SVcr addr,num

addr is the address label for the calling module's prototype SVC table

num is the number of SVC entries in the module's prototype SVC table

1.11.28 M.SVCT2

This macro builds one entry in the SVC '2' table for each SVC type two defined in
the calling module's prototype SVC table. Each one word entry contains the address
of the corresponding SVC. For example, the 20th entry contains the address of the
20th SVC.

calling Sequence

M.SVCf2 addr,num

addr is the address label for the calling module's prototype SVC table

num is the number of SVC entries in the module's prototype SVC table

1.11.29 M.TRAC

See Chapter 6 - System Trace.

1.11.30 M.TRPINT

This macro generates an entry in the trap vector table.

Calling Sequence

M.TRPINT rpl,teb

rpl is the hexadecimal trap priority level

teb is the address of the trap context block of the user trap handler

MPX·32 Technical Volume I 1·63

Miscellaneous System Macros

1.11.31 M.TSAD

This macro allows resident modules to obtain the TSA address regardless of which
processor they may be executing in.

Calling Sequence

M.TSAD regn [,proc]

regn the general purpose register RO through R7 to which the TSA address will
be returned.

proc CPU or IPU. Omission of this field indicates either processor may be
executing this macro call.

1.11.32 M.TYPE

This macro types a user-specified message and performs an optional read on the
system console teletype.

calling Sequence

M.TYPE outaddr,outcnt [, inaddr] [,incm]

outaddr is the output message address

outem is the output transfer count

inaddr is· the input message address

inent is the input transfer count

1.11.33 M.USHUT

This macro is used to inhibit context switching of a user task. It should be used in
user tasks which are eligible for IPU execution. See M.SHUT.

calling Sequence

M.USHUT

1.11.34 M.XIR

1-64

This macro is called by the resident system module's initialization entry points right
before they exit. It decrements the number of entry points in the calling module by
one so the initialization entry point is no longer included, and returns to the SYSGEN
processor.

calling Sequence

M.XIR addr

addr is the address label of the module's HAT table

System Description

,0
I
I
I

I
I

Miscellaneous System Macros

1.11.35 DCA.DATA

1bis macro is used within the SYSGEN entry point of F class handlers to reserve
device context area (DCA) space for the number of DCAs specified by the repeat
(REPT) count During SYSGEN execution, one DCA is initialized for each unit
definition table (VDT) entry containing the name of the handler. The unused DCAs
and the code contained within the SYSGEN entry point are overlayed following
execution.

calling Sequence

DCA DATA sbu! [,[xwrds] [,timeO, ... ,timeF]]

sbu! specifies the sense buffer size (bytes) for automatic sense retrieval by
the extended I/O (XIO) common subroutines following an I/O error
indication

xwrds is the number of extra words to reserve for each DCA If not
specified, the standard DCA size is used.

timeO-timeF specifies the time-out value in seconds for each input/output control
system (lOCS) opcode, hexadecimal 0 through F; for example, open,
rewind, read, write, etc. If not specified or if zero is specified, no
time out is associated with the I/O request.

1.11.36 DCA.lNI1

1bis macro is used within the SYSGEN entry point of F-class handlers to initialize
areas of the device context area (DCA), controller definition table (COT) and unit
definition table (UDT) associated with the particular handler. The code generated by
this macro is overlayed following SYSGEN execution.

calling Sequence

DCAINII hname [,[OPIN] ,[IOQCDT] [,COM]]

hname specifies the handler name, e.g., H.DCXIO for F class disk handlers

OPIN specifies operator intervention is applicable for this handler

IOQCOT specifies I/O queue entries are to be linked to the COT. If not specified,
I/O queue entries are linked to the UDT. Because many standard handlers
assume I/O queue entries are linked a certain way, this parameter must be
used with caution. 1bis parameter is available to allow users flexibility
when building handlers.

COM specifies the handler interfaces with the XIO common subroutines

MPX-32 Technical Volume I 1-65

Miscellaneous System Macros

1.11.37 DCA.lNI2

This macro is used within the SYSGEN entry point of F-class handlers to restore the
working environment within the SYSGEN entry point following any user added
executable code.

calling Sequence

DCA.IN12

1.11.38 HMP .lNIT

This macro initializes multiplexed I/O processor (MIOP) device handler parameters
with entry point eight The code generated by this macro is executed by SYSGEN
and overlayed.

calling Sequence

HMP.INIT label

label is the entry point truncated label; for example, ASO for the asynchronous
communications handler. This argument must be 3 ASCn characters. The
first two represent the device mnemonic and the third is zero.

1.11.39 IB.lNIT

1-66

This macro initializes multiplexed I/O processor (MIOP) device handler parameters
with entry point 8, where R7 contains the controller definition table CCDT) address
and R2 contains the address of the current context block.

calling Sequence

IB.INIT

System Description

o

o

(,

. .<

Extended MPX-32 Macros

1.12 Extended MPX-32 Macros
The extended MPX -32 macros allow existing- user modules and service routines to run
in the extended mode. These macros select the appropriate coding, extended or
nonextended, for a task by testing the state of the Macro Assembler option 16. (For
example, if the MBR_DEF macro is specified, the coding for a DEF or SDEF
directive is supplied depending on the state of option 16.)

The following are extended macros that directly replace the corresponding Macro
Assembler directive:

Macro

MBR_BEQ
MBR_BGE
MBR_BGT
MBR_BL
MBR_BLE
MBR_BLT
MBR_BNE
MBR_BNS
MBR_BS
MBR_DEF
MBR_EXT
MBR_1RSW

Assembler Directive

BEQ
BGE
BGT
BL
BLE
BLT
BNE
BNS
BS
DEF
EXT
1RSW

For descriptions of these macros, see the corresponding Macro Assembler directive
description in the MPX-32 Utilities Manual.

The following macros do not have corresponding Macro Assembler directives, and
must be placed within the code that is to operate in the extended mode:

Macro

MBR_DBG
MBR_DScr

MBR_ENT

Description

calls the system debugger

directs data into the DSEcr

generates the adaptation sequence required to reference
a routine from a nonextended module
tests the state of Macro Assembler option 16

returns to a local code section in the system section
(SSECf) area after an MBR_DScr has been specified

MPX-32 Technical Volume I 1-67

Extended MPX-32 Macros

1.12.1 MBR_DBG (Calls to System Debugger) Macro

Syntax

The MBR_DBG macro calls the system debugger from the target extended module.
This macro references the system debugger extended code entry within the adaptation
code sequence.

MBR_DBG <symbol>

1.12.2 MBR_DSCT (DSECT Data Separation) Macro

The MBR_DSCf macro specifies that the following code is data, and directs the data
into the DSECf. All data and variable constants must have been separated for
inclusion in the DSECf section.

1.12.3 MBR_ENT (Extended Code Routine Entry) Macro

Syntax

The MBR_ENT macro generates the adaptative sequence required to reference a
routine from a nonextended module. Each entry point must have an MBR_ENT
macro before the first instruction.

MBR_ENT <symbol> Replaces <symbol> EQU $

1.12.4 MBR_INIT (Module Initialization) Macro

1-68

The MBR_INIT macro tests the state of option 16. If option 16 is set, MBR_INIT
initializes the code location to SSEcr EXT _MPX. This macro is required after the
program statement of an extended module.

System Description

o

c

Extended MPX-32 Macros

1.12.5 MBR_SSCT (System Code Separation) Macro

The MBR_SScr macro specifies that the following code is executable data, and
returns to a local code section in the system section (SSECf) area after an
MBR_DScr macro has been specified.

Usage:

MER DSCT
J.MOUNT DATAD
OPCOM DATAD
SYS.LFC DATAW
LFC3 DATAW
J.ATAPE DATAD

LPOOL
MER SSCT

MPX-32 Technical Volume I

C'J. MOUNT
C'OPCOM
X'OOM532A
G' (3)
C'J.ATAPE

SEND DATA TO DATA SECTION
SYSTEM MOUNT TASK
OPERATOR COMMUNICATIONS TASK

SYSTEM LFC '?T*' (H.TAMM)
LFC FOR SYSTEM FCB3 (H.VOMM)
ANSI TAPE HANDLER TASK

RETURN TO CODE SECTION

1-69/1-70

: ' C-.-"

c

2 System Tables and Variables

2.1 Overview
This chapter contains descriptions and format layouts for the tables and variables used
by the MPX-32 operating system.

The MPX-32 table structure consists of the following categories:

Batch processing data area which contains the following:

• Job table
• Link file format (batch SLO and SBO)
• Run request format (J.SOEX)
• Spooled file directories

Executive (H.EXEC) data area which contains the following:

• Central Processing Unit (CPU)
• Dispatch Queue Entry (DQE)
• Dispatch Queue Address Table (DAT)

Input/output data area which contains the following:

• Blocking buffer control cells
• Controller Definition Table (CDT)
• Device Context Area (DCA)
• File Assignment Table (FAT)
• File Control Block (FCB)
• File Pointer Table (FPT)

• I/O Queue (IOQ) entry
• I/O table linkages
• Type Control Parameter Block (TCPB)
• Unit Definition Table (UDT)
• XIO Channel Definition Table (CHT)

Memory Management data area which contains the following:

• Map Image Descriptor List (T.MIDL)
• Memory Allocation Table (MA TA)
• Memory Attribute List (T.MEML)
• Memory pool management
• Physical Shared Memory Table (PSM)

• Shared Memory Table (SMT)

MPX-32 Technical Volume I 2-1

Overview

2·2

Resource Management data area which contains the following:

• Allocated Resource Table (ART)
• Device Type Table (D'IT)

• Mounted Volume Table (MVT)

• Resource Inquiry Table (MRIQ)
• Resource Requirement Summary (RRS) entries
• Task Service Area (TSA)
• Volume Assignment Table (VAT)

Status Management data area which contains the following:

• Caller Notification Packet (CNP)

Tenninal Services data area which contains the following:

• Terminal Line Buffer

Volume Management data area which contains the following:

• Bad Block Descriptor (M.BB.DEQ)
• Descriptor Allocation Map Descriptor (M.DM.DEQ)
• Descriptor Map (DMAP) Deallocation File Descriptor (M.BD.DEQ)

• Descriptors Descriptor (M.DD.DEQ)
• Directory Descriptor (M.DI.DEQ)
• Directory Entry Table (M.DN.TEQ)
• DQE Address Table (DAT)
• Memory Partition Descriptor (M.ME.DEQ)
• Resource Create Block (RCB)
• Resource Descriptor (M.RDCOM)
• Resource Descriptor Space Definition (M.RDSPD)

• Resource Logging Block (RLB)
• Space Allocation Map Descriptor (M.SM.DEQ)
• Space Map (SMAP) Deallocation File Descriptor (M.BS.DEQ)

• System Master Directory (SMD)
• Volume Descriptor (M.VO.DEQ)

System Tables and Variables

0'/ , "

o

o

C~\·' . ,

Overview

Disk resident structures are:

• Volume fonnat
• Load module structure
• Load module preamble
• Nonshared executable image structure
• Nonshared executable image preamble
• Shared executable image structure
• Shared executable image preamble
• Shared image descriptor

The resident system memory layout and utilization structure is described first.

The communications region is described next.

The table fonnats are then described, arranged in alphabetical order by the table name.

The disk resident resource descriptors are described in alphabetical order after the
tables.

The disk resident structures are described last.

MPX-32 Technical Volume I 2-3

Memory Layout

2.2 Memory Layout

Resident system memory layout and·utilization structures are described below.

2-4

Entries
in Table

C.TMCC

C.NITI

C.SMTN

C.TENT

C.ARTN

C.MVTN

C.RMTM

C.ACTN

C.SEQN

C.NQUE

C.CDTN

Table
Address

O-lC

20-60

64-7C

SO-FC

lOO-2FC

300-6FC

700-7FC

800
C.TABLES

C.MATA

C.ITI..T

C.MPAA

C.SMTA

C.TTAB

C.ARTA

C.MVTA

C.RMTA

C.ACTA

C.SEQA

C.DQUE

C.ADAT+IW

C.CDTA

CONCEPT/32

Not used

IPU trap vectors

Not used

Tmp vectors

Interrupt vectors

CPU scnuchpad save area

IOCD emulation area

Communication Region (C.)

Memory Allocation Table (MEM.)
1 byte/map configured (word bound)

Indirectly connected interrupt
24 words/entry (file bound)

Patch area user defined (word bound)

Shared Memory Table (SMT.) variable -
C.SMTS contains the nwnber of bytes/entry (file bound)

Interrupt Timer Table (ITT,)
5 words/entry (word bound)

Allocated Resource Table (AR.)
8 words/entry (doubleword bound)

Mounted Volwne Table (MV.)
40 words/entry (doubleword bound)

Resourcemark Table (RMT,)
1 byte/entry (word bound)

Activation Table
4 words/entry (doubleword bound)

Sequence Table
4 words/entry (doubleword bound)

Dispatch Queue (DQE.)
58 words/entry (file bound)

DQE Address Table
1 word/DQE (word bound)

Conttoller Definition Table (CDT.)
24 words/entry (word bound)

System Tables and Variables

o

o

o

(~> , .,

/

(/

C.UDTN C.UDTA

C.DITN C.DTTA

C.CHTN C.CHfA

C.MPL

C.MIDL

C.SPAD

C.SVTN C.SVTA

C.SVTA2

C.MIOP

C.MODN C.MODD

Start of resident
code. All programs
are file bound.

C.SBUFA

C.SBUFB

C.SBUF
C.POOL

End of resident
system

CLOSEND

MPX-32 Technical Volume I

Memory Layout

Unit Definition Table (UDT.)
16 words/entry (word bound)

Device Type Table (OTT.)
2 words/entry (doubleword bound)

Channel Definition Table (CHf.)
40 words/entry (file bound)

Master process list
2 words/entry (doubleword bound)

Map image list for operating system
1 halfword/operating system map (doubleword bound)

CPU scratchpad image
256 words (word bound)

SVC Type 1 Vector Table
128 words or user defined (word bound)

SVC Type 2 Vector Table
128 words (word bound)

GPMC Jump Table
16 words (file bound)

Module Address Table
16 words (word bound) .
Trap processors

Interrupt processors

I/O processors

System modules:
H.ALOC, H.BKDM, H.EXEC, H.FISE, H.IOCS,
H.MEMM, H.MONS, H.MVMT, H.REMM, H.REXS,
H.SOUT, H.TAMM, H.TSM, H.VOMM

User operating system resident modules and tasks, if any

System debugger (H.DBUGl)

Swapper (H.SW APR)

IOQ memory pool (doubleword bound)

MSG memory pool (doubleword bound)

Memory pool area (doubleword bound, map block bound)

Logical end of the operating system + 1 byte

User task space

2-5

Communications Region

2.3 Communications Region

2·6

The communications region is an area of main memory reserved for MPX-32 to store
common data. This data is referenced by symbols that are equated to absolute
memory locations. With each symbol is the length of the variable associated with the
symbol The length is in units, which is also the minimum boundary on which the
variable resides.

Bit variables are contained in a set of contiguous words with the symbol C.BIT or
C.BITI equated to the address of the first word. Bit variables are equated to bit
positions relative to C.BIT or C.BITI. Bit variables are referenced by a combination
of the variable symbol and C.BIT or C.BITl; for example, TBM C.AFLK,C.BIT.

System Tables and Variables

o

o

o

Communications Region

(Word No. Byte
(Decimal) (Hex) o 7 8 15 16 23 24 31

512-513 800 C.DATE

514 808 C.CAL

515 80C C.INTC

516-517 810 C.TIME

518-519 818 C.LODC

520-521 820 C.SYMTAB

522-523 828 C.PODC

524-525 830 C.SBUF

526-527 838 C.SIDV

528 840 C.TMAC C.EMAC

529 844 C.RMAC C.SMAC

530 848 C.TMCC C.EMCC

531 84C C.HMCC C.SMCC

532-533 850 C.SYSTEM

534-537 858 C.SYPATH

538-539 868 C.PCHFLE

(. 540-541 870

542-543 878

C.TRACE

C.DBGLM

544 880 C.SWPRD

545 884 C.SWPDEV

546 888 C.IREGS

547 88C C.ITSAD

548 890 C.LOSEND

549 894 C.POSEND

550-553 898 C.HLPVOL

554-557 8A8 C.HLPDIR

558-560 8B8 C.C1PU

561-563 8C4 C.RIPU

564-566 800 C.FREE

567-569 8DC C.PREA

570-572 8E8 C.CURR

573-575 8F4 C.SQRT

576-578 900 C.SQ55

579-581 90C C.SQ56

582-584 918 C.SQ57

585-587 924

C
C.SQ58

MPX·32 Technical Volume I 2·7

Communications Region

Word No. Byte
(Decimal) (Hex) o 7 8 o

15 16 23 24 31

588-590 930 C.SQ59

591-593 93C C.SQ60

594-596 948 C.SQ61

597-599 954 C.SQ62

600-602 960 C.SQ63

603-605 96C C.SQ64

606-608 978 C.SWTI

609-611 984 C.SWIO

612-614 990 C.SWSM

615-617 99C C.SWSR

618-620 9A8 C.SWLO

621-623 9B4 C.SUSP

624-626 9CO C.RUNW

627-629 9CC C.HOLD

630-632 908 C.ANYW

633-635 9E4 C.SWDC

,636-638 9FO C.SWDV

639-641 9FC

642-644 A08

C.SWFI

C.MRQ
o

645-647 A14 C.SWMP

648-650 A20 C.SWGQ

651-671 A2C C.SPCH

672 A80 C.TSAD

673 A84 C.AcrSEQ

674 A88 C.ADAT

675-676 A8C C.BIT

677 A94 C.CDTA

678 A98 C.CPRI

679 A9C C.DQUE

680 AAO C.OTTA

681 AA4 C.FADR

682 AA8 C.FGONR
'"

683 AAC C.GINT

684 ABO C.IDLA . "

o
2-8 System Tables and Variables

Communications Region

(~' Word No. Byte
(Decimal) (Hex) o 7 8 15 16 23 24 31

685 AB4 C.IDLC

686 AB8 C.ITLT

687 ABC C.BATSEQ

688 ACO CJOBN

689 AC4 C.MGRAN

690 AC8 C.MIDL

691 ACC C.MIOP

692 ADO C.MODD

693 AD4 C.MPL

694 AD8 C.MSD

695 ADC C.MTIM

696 AEO C.NTIM

697 AE4 C.PATCH

698 AE8 C.POOL

699 AEC C.SGOS

700 AFO C.SICI'D

(/ 701 AF4

7(J2 AF8

C.SMTA

C.ARTA

703 AFC C.SPAD

704 BOO C.SVTA

705 B04 C.SVTA2

706 B08 C.SWAP

707 BOC C.SYCS

708 BI0 C.TSKN

709 B14 C.TSMDQA

710-717 B18 C.TTBT

718 B38 C.UDTA

719 B3C C.TIAB

720 B40 C.MATA

721 B44 C.MPAA

722 B48 C.MPAC

723 B4C C.MPAH

724 B50 C.RMTA

725 B54 C.EMTA

726 B58 C.REV

(:
727 B5C C.DEBUG

MPX-32 Technical Volume I 2-9

Communications Region

Word No. Byte
(Decimal) (Hex) o 7 8

o
15 16 23 24 31

728 BOO C.TDQl

729 B64 C.TDQ2

730 B68 C.TDQ3

731 B6C C.REGS

732 B70 C.MVTA

733 B74 C.ACI'A

734 B78 C.SEQA

735 B7C C.SCDIPU

736 BSO C.CHTA

737 B84 C.ETLOC

738 B88 C.ADMASK

739 B8C C.IDLAI

740 B90 C.IDLCI

741 B94 C.IPUlTI

742 B98 C.IPUIT2

743 B9C C.BTIME

744 BAO

745 BA4

C.BDATE

C.TCORR o
746 BA8 C.FSSP

747 BAC C.DPTIMO

748 BBO C.MDTA

749 BB4 C.MDTE

750 BB8 C.SWPLIM

751 BBC C.PDQE

752-759 BCO C.MPXBR

760 BEO C.MPXBRD

761 BE4 C.IPOO

762-763 BE8 C.PSDBRE

764-765 BFO C.PSDBRX

766-767 BPS C.PSDMSE

768-769 COO C.PSDMSX

770-771 C08 C.PSDEAE

772-773 CI0 C.PSDEAX

774 C18 C.DSECT

775 CIC C.ADAPT

776 C20 C.TDEFA

o
2-10 System Tables and Variables

Communications Region

c " j Word No. Byte
(Decimal) (Hex) o 7 8 15 16 23 24 31

777 C24 C.SWIOCL

778 C28 C.CRDUMP

779 C2C C.HSTADR

780 C30 C.CDTN C.ITRS

781 C34 C.SMVTI C.SVTN

782 C38 C.UDTN C.RMTM
783 C3C C.EMTM CNOS

784 C40 C.NRST C.MVTN

785 C44 C.ARTN C.CHTN

786 C48 C.IllMAP C.SVTN2

787 C4C C.MDTN C.MDTAV

788-789 CSO C.RMS

790 CS8 C.GSLEMC

791 CSC C.P1RINT

792-793 COO C.BDBUG

794 C68 C.PET

(~: 795-797 C6C-C74

798-800 C78-C80

C.TSMIR

C.TSMIA

801-802 C84-C88 C.SBUFA

803-804 C8C-C90 C.SBUFB

805 C94 ClPUAE

806 C98 C.Ill..PDQA

807 C9C C.NODEID

808 CAO C.PSMA

809 CA4 C.RMSS

810 CA8 C.RCASIZ C.PSMSIZ

811 CAC C.DPTRY C.SMAPS

812 CBO C.BPRI C.DTTN C.FSFLGS C.MODN

813 CB4 C.NITI CNQUE C.RRUN C.SMTN

814 CB8 C.TSMCNT C.TSMPRI C.TSMTOT C.TENT
815 CBC C.RMTL C.EMTL C.CONF C.MACH

816 CCO C.ACTN C.DBTLC C.SMTS C.SEQN

817 CC4 C.IPUIDS

818 CC8 C.SHRHI (C.UNCAIn) C.SHRLO (C.UNCALO)

819 CCC C.MAXSWP C.NLOAD2 C.PDPEND C.PSMN

C
820 coo C.CDTSIZ C.DFfSIZ C.DTTSIZ C.FPTSIZ

MPX-32 Technical Volume I 2-11

Communications Region

2-12

Word No.
(Decimal)

821

822

823

824

825

826

827

828

829

830

831

832

833-864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884-885

886-887

888-889

Byte
(Hex)

CD4

CD8

CDC

CEO

CE4

CE8

CEC

CFO

CF4

CF8

CFC

DOO

004-D80

D84

D88

D8C

D90

094

098

D9C

DAO

DA4

DAS

DAC

DBO

DB4

DB8

DBC

DCO

De4

DC8

DeC

DDO-DD4

DD8-DDC

DEO-DE4

o
o 7 8 15 16 23 24 31

C.IOQSIZ C.DPGPRI C.NFRAME C.MRQLEN

C.MMSG C.MRUN C.MNWI C.GSLEGI

C.GSLEPR C.ADAFL C.TKILL C.DELTA

C.MPXBRN C.DBMAPS C.SWAPSZ

C.DTSAVE

C.SHCPU

C.SHIPU

C.UPDT

C.SWPBUF

C.MRQTMR

C.SHBTH

C.TABLES

C.USER

C.USERVA

C.TPVA

C.EXEND C.FRAME

C.SCOFDQ

C.CTSAD

C.AGE

C.EFRPG

C.HFRPG

C.SFRPG

C.DFRPG

C.MPFRPG

C.MPI'LA

C.CREGS

C.PTEA

C.PSTA

C.CHTSIZ C.DQESIZ

C.RDSIZ C.MPMAC

C.BEGPGO C.ENDPGO

C.DMCC CDMAC

C.BITI

C.SPGOL

C.COMM

o
System Tables and Variables

Communications Region
(~

Word No. Byte
(Decimal) (Hex) o 7 8 15 16 23 24 31

890-946 DE8-ED4 Reserved for MPX-32

947 ED8 Reserved C.TPGOC

948 EDC C.MVTSIZ C.DCASIZ

949 BEO C.RCBSIZ C.UDTSIZ C.DPTSIZ C.TIQSIZ

950 EE4 C.MRQSIZ Reserved C.PCBSIZ C.ARTSIZ

951 EE8 C.DETSIZ C.BBFSIZ C.VATSIZ

952-956 EEC-EFC Reserved for MPX-32

MPX-32 Technical Volume I 2-13

Communications Region

2-14

Byte
(Hex)

800

808

80C

810

818

820

828

830

Symbol

C.DATE

C.CAL

C.INTC

C.TIME

C.LODC

C.SYMTAB

C.PODC

C.SBUF

Description

current date (Gregorian) as input by operator

calendar devices:

fu1L
o
1
2
3

Description

current century in binary (C. CENT)
current year in binary (C. YEAR)
current month in binary (C.MONTH)
current day in binary (C.DA Y)

interrupt counter (number of interrupts from zero
which is midnight) used for time-of-day calculations

the system start-up values from C.BTIME and
C.BDATE

the system listed output device used as a default in
operator communications commands:

fu1L
0-1
2-3
4-5
6-7

Description

ASCII device type code
ASCII channel number
ASCII subaddress
reserved

name of the symbol table file

the system punched output device used as a default in
operator communications commands:

fu1L
0-1
2-3
4-5
6-7

Description

ASCII device type code
ASCII channel number
ASCII subaddress
reserved

first word contains address of memory pool. Second
word is set by S.MEMM9 to the number of words
in memory pool.

System Tables and Variables

'0 ... "·"" I' .. '.j

c

Communications Region

C-';
,~/ Byte

(Hex) SYmbol DescriQtion

838 C.SIDV the system input device used as a default in operator
communications commands:

~ DescriQtion

0-1 ASCn device type code
2-3 ASCn channel number
4-5 AScn subaddress
6-7 reserved

840 C.TMAC total count in halfwords of all E, H, and S memory
modules available

842 C.EMAC total count of valid E type memory modules available

844 C.HMAC total count of valid H type memory modules available

846 C.SMAC total count of valid S type memory modules available

848 C.TMCC total count of all valid E, H, and S memory
modules configured (less the size of the unmapped
portion of the system debugger if it is present, and any

C maps used for static partitions or extended MPX-32)

84A C.EMCC total count of valid E type memory modules configured
(minus one if swap device is E-class and extended
memory is present in the system, minus any
E-class map blocks allocated for the unmapped portion
of the system debugger, and any E class map blocks
allocated for static partitions or extended MPX -32)

84C C.HMCC total count of valid H type memory modules configured
(minus any H-class map blocks allocated for the unmapped
portion of the system debugger and any H class map blocks
allocated for static partitions or extended MPX-32)

84E C.SMCC total count of valid S type memory modules configured
(minus any S-class map blocks allocated for the unmapped
portion of the system debugger and any S class map blocks
allocated for static partitions or extended MPX-32)

MPX-32 Technical Volume I 2-15

Communications Region

2-16

Byte
(Hex)

850

858
868

870

878
~

880

884

888

8'8C

890

~
898

8A8

Symbol

C.SYSTEM

C.SYPATH

C.PCHFLE

C.TRACE

C.DBGLM

C.SWPRD

C.SWPDEV

C.IREGS

C.ITSAD

C.LOSEND

C.POSEND

C.HLPVOL

C.HLPDIR

Description

name of current system image

system patbname prototype ,

patch file name

system trace (M.TRAC) control word

debugger load module name

absolute block number of the resource descriptor
of the swap file

MVTE address of the actual swap volume

logical address of the start of register save area in
the TSA for task running in IPU only

logical address of the TSA for the task running in
the IPU only

logical end of MPX-32 (+ IB) for the current task

physical end of non-split MPX-32 (+lB)

name of the volume used to store the HELP files

name of the directory used to store the HELP files

System Tables and Variables

o

o

o "

Communications Region

('"~
Byte
(Hex) Symbol Description

8B8 C.CIPU standard format linked list head cell for all IPU tasks
ineligible for CPU control, waiting in general queue.
C.CIPU is the first of a set of communications region
variables which are contiguous in memory. These
variables, listed in the order that they appear in memory.
are as follows:

C.CIPU
C.RIPU
C.FREE
C.PREA
C.CURR
C.SQRT
C.SQ55
C.SQ56
C.SQ57
C.SQ58
C.SQ59
C.SQ60
C.SQ61
C.SQ62

(~/
C.SQ63
C.SQ64
C.SWTI
C.SWIO
C.SWSM
C.SWSR
C.SWLO
C.SUSP
C.RUNW
C.HOLD
C.ANYW
C.SWDC
C.SWDV
C.SWFI
C.MRQ
C.SWMP
C.SWGQ
C.SPCH

8C4 C.RIPU standard format linked list head cell for all IPU
tasks ready to run, waiting in general queue

800 C.FREE standard format linked list head cell for free entries
in the CPU dispatch queue

80C C.PREA standard format linked list head cell for CPU dispatch
queue entries that are in the preactivation state

C
MPX-32 Technical Volume I 2-17

Communications Region

Byte 0 (Hex) SYmbol Description

8E8 C.CURR standard fonnat linked list head cell for the CPU
dispatch queue entry of the currently executing task. This

. list can have a maximum of two entries: one for the current
real-time task (if any) and one for the current
time-distribution task (if any).

8F4 C.SQRT standard fonnat linked list head cell for the list
of ready-to-run real-time (priority level 1 to 54) tasks

900 C.SQ55 standard fonnat linked list head cell for the list of
ready-to-run priority level 55 time-distribution tasks

90C C.SQ56 standard fonnat linked list head cell for the list
of ready-to-run priority level 56 time-distribution tasks

918 C.SQS7 standard format linked list head cell for the list
of ready-to-run priority level 57 time-distribution tasks

924 C.SQ58 standard format linked list head cell for the list of
ready-to-run priority-level S8 time-distribution tasks

930 C.SQS9 standard format linked list head cell for the list of
ready-to-run priority level S9 time-distribution tasks

93C C.SQ60 standard fonnat linked list head cell for the list
of ready-to-run priority level 60 time-distribution tasks /'\

948 C.SQ61 standard format linked list head cell for the list lj)
of ready-to-run priority level 61 time-distribution tasks

9S4 C.SQ62 standard format linked list head cell for the list
of ready-to-run priority level 62 time-distribution tasks

960 C.SQ63 standard format linked list head cell for the list
of ready-to-run priority level 63 time-distribution tasks

96C C.SQ64 standard format linked list head cell for the list
of ready-to-run priority level 64 time-distribution tasks

978 C.SWTI standard format linked list head cell for
all tasks waiting for the completion of wait mode
interactive (terminal) input

984 C.SWIO standard format linked list head cell for
all tasks waiting for the completion of wait mode I/O
requests

990 C.SWSM standard fonnat linked list head cell for all tasks
waiting for the completion of wait mode send message
request

99C C.SWSR standard fonnat linked list head cell for all tasks
waiting for the completion of wait mode send run request

9A8 C.SWLO standard format linked list head cell for all tasks
waiting for the completion of low speed output

0:
2-18 System Tables and Variables

Communications Region
('-

Byte
(Hex) SYmbol Description

9B4 C.SUSP standard format linked list head cell for
all tasks that are in an execution suspend mode, waiting
for a message interrupt, a timer expiration, or a resume
task request

9CO C.RUNW standard format linked list head cell for
all tasks that are ineligible for CPU control, waiting for
a run request to be received, or for the expiration of a
timer

9CC C.HOLD standard format linked list head cell for all tasks
that are ineligible for CPU control, waiting for a continue
request to be received

9D8 C.ANYW standard format linked list head cell for all tasks
that are ineligible for CPU control, waiting for the
completion of any no-wait mode I/O request, any no-wait
mode send message request, any no-wait mode send run
request, or any message or break interrupt

9E4 C.SWDC standard format linked list head cell for all tasks
ineligible for CPU control, waiting for disk space to
become available

(' 9FO C.SWDV standard format linked list head cell for all tasks
ineligible for CPU control, waiting for a peripheral
device to become available

9FC C.SWFI reselVed

AOS C.MRQ standard format linked list head cell for all tasks
ineligible for CPU control, waiting for memory to become
available

A14 C.SWMP standard format linked list head cell for all tasks
ineligible for CPU control, waiting for memory pool to
become available

A20 C.SWGQ standard format linked list head cell for all tasks
ineligible for CPU control, waiting in general queue

A2C C.SPCH reselVed

A80 C.TSAD address of the TSA for a CPU or IPU task running in
mapped in mode with its TSA at MINADDR
(for compatibility only)

A84 C.ACTSEQ running count of task activations, used to
form right-most 24 bits of task number when a task
is activated. SYSGEN initializes this word to zero

ASS C.ADAT address of the DQE address table (DA T)

(")
" /

MPX-32 Technical Volume I 2-19

Communications Region

Byte 0
(Hex) SYmbol DescriQtion

A8C C.BIT symbol associated with the beginning of the
bit variables:

Bit Meaning if Set

0 accounting file lock indicator (C.AFLK)
1 swap volume is E-class disk (C.ESW AP)
2 dump real-time tasks on abon (C.FGPM)
3 indicates user is using CPU scratchpad for his

own needs. IPL alters SP AD locations defined
by SYSGEN. Reset indicates SPAD
locations not defined by SYSGEN are to be
set to zero. (C.SPADOK)

4 list patches indicator (C.LSPI')
5 online restan in progress (C.RSTRT)
6 reserved
7 continuous batch mode indicator (C.SCBT)
8 1.S0UT banner page inhibit (C.SIBP)
9 SSIN device density is 556 (7-track) (C.SIDD)
10 SSIN device parity is odd (7-track) (C.SIDP)
11 inhibit context switching in IPU (C.lCSIPU)
12 task context switch inhibited (C.CSWI)
13 activation from tape (C.TAPACT) () 14 static IOQ indicator (C.PIOQ)
15 reserved ~
16 inhibit magnetic tape mount message

(C.SIMM)
17 memory error detected by H.IP02 (C.MERRl)
18 memory parity error detected during memory

initialization (C.MERR2)
19 nonpresent memory detected (C.MERR3)
20 module cannot be loaded (C.NOLOAD)
21 SYSINIT active - IPL or restan (C.SYSB)
22 IPU is otlline (C.IPUOFF)
23 IPU accounting timer present (C.IPUIT)
24 inhibit operator intervention (C.NOP)
25 reserved for RJE
26 reserved
27 shadow memory configuration error

(C.SMERR)
28 reserved
29 dual-pon disk mounted (C.DPMT)
30 activating tasks specified in the SYSGEN

SEQUENCE directive (C.SEQUEN)
31 reserved for ICS (C.ICS)
32 reserved
33 exclusive ANSI tape drive is configured

(C. ANSI)
34 Development System (C.DEV) 0 35 group swap limit exceeded (C.GSLE)

2·20 System Tables and Variables

Communications Region

(
Byte
(Hex) Symbol Descri12tion

Bit Meaning if Set

36 no tenninal definition (C.NOTDEF)
37 no ANSI (C.NOANSI)
38 H.PTRACE is present (C.PTRACE)
39 returns to implicit physical mount

functionality of MPX-32 Revision 3.3
(C.CMIMM)

40 disables public volume dismounts
(C.CMPMM)

41 real-time accounting disabled (C.RTACC)
42 H.IPCL needs to send break to J.TSM

(C.TSMLC1)
43 reserved
44 only the system administrator can

execute the PASSWORD task
(C.SAPSWD)

45 passwords are required (C.PASSWD)
46 SYSTEM is the only valid ownemame

if no M.KEY file (C.SAONL Y)
47 no rollover allowed from MSGPOOL

(C.MSGNR)

(48 no rollover allowed from IOQPOOL
(C.PIONR)

49 rollover occurred from IOQPOOL
(C.ROLIOQ)

50 rollover occurred from MSGPOOL
(C.ROLMSG)

51 inhibit write to system volume descriptor
during shutdown process (C.IWSYSY)

52 inhibit volume mounts during shutdown
process (C.lYM)

53 reserved
54 system volume is quiescent (C.SQUIET)
55 read and lock specified (C.RL WU)
56 image down loaded for host (C.IMAGDL)
57 remote task activation allowed (C.REMfSK)
58 all configured memory is physically shadow

memory (C.ALLSHD)
59 allow multiple logins using same owner name

(C.MLOGIN)
60 no system volume (C.NOSYOL)
61 mapped out image (C.MAPOUT)
62 inhibit echoing of owner name at logon

(C.NOECHO)
63 system default move TSA (C.TSA)

('~

MPX-32 Technical Volume I 2·21

Communications Region

Byte 0
(Hex) SYmbol Descri12tion

A94 C.CDTA address of controller definition table

A98 C.CPRI task execution bytes:

B~ Descri12tion

0 current execution priority of currently
executing task (C.CUP)

1 base execution priority of currently
executing task (C.BUP)

2 I/O priority of currently executing task
(C.lOP)

3 state chain index of currently executing
task (C.US)

A9C C.DQUE address of CPU dispatch queue area. The
CPU dispatch queue area is a variable length table
built by SYSGEN. It contains the number of 64-word
dispatch queue entries (DQEs) specified at system
generation time.

AAO C.DTIA address of device type table

AA4 C.FADR reserved

AA8 C.FGONR reserved

AAC C.GINT contains the count of all outstanding interrupts
and traps (except SVC). It is incremented as the first
instruction of every interrupt or trap service routine,
and decremented by S.EXEC5, the standard interrupt and
trap exit routine.

ABO C.IDLA CPU idle time accumulation value in seconds,
cleared by SYSGEN. This value is incremented when
the countdown value in C.IDLC expires.

AB4 C.IDLC CPU idle time countdown value, cleared by
SYSGEN. This value is used to load the interval timer
when there are no tasks ready to run. When a task
becomes ready to run, the interval timer is read and
the value is stored in this word.

AB8 C.ITLT address of indirectly connected task linkage table
(lTLT). Initialized by SYSGEN.

ABC C.BATSEQ next batch sequence number

ACO C.JOBN maximuc:: number of concurrent batch jobs

AC4 C.MGRAN machine dependent map granularity

2·22 System Tables and Variables

Communications Region

C~ Byte
(Hex) SYmbol Description

AC8 C.WDL address of the list of map registers used by the
operating system

ACC C.WOP address of first entry of WOP jump table

ADO C.MODD address of variable length module address table.
Initialized by SYSGEN. The module address table
contains entries in module sequence. Each entry
consists of one word that contains the address of the
entry point transfer list (HAT) of the associates
module.

AD4 C.MPL address of master process list. Length of list in
words is contained in C.NDQE plus one word.
First entry points to C.MSD (hardware requirement).

AD8 C.MSD contains map segment descriptor for operating system
(BPIX). It points to C.MIDL (hardware requirement).

ADC C.MTIM number of clock interrupts per second. Initialized
by SYSGEN.

AEO C.NTIM number of clock interrupts per time unit.
Initialized by SYSGEN.

(C AE4 C.PATCH system debug patch area

" AE8 C.POOL address of memory pool

AEC C.SGOS contains the default SGO size of 32 blocks. This is
included for compatibility purposes only and is not
examined during job processing.

AFO C.SICTD address of WOP test device status processor,
H.SICTD.

AF4 C.SMTA address of shared memory table area. Size
is determined by SYSGEN SHARE directive.

AF8 C.ARTA address of allocated resource table

AFC C.SPAD address of CPU scratchpad image

BOO C.SVTA address of variable length SVC '1' table.
Initialized by SYSGEN. Each entry consists of one
word which contains the address of the seIVice
associated with the SVC number.

B04 C.SVTA2 address of variable length SVC '2' table.
Initialized by SYSGEN. Each entry cl)nsists of
one word which contains the address of the seIVice
associated with the SVC number.

>.L. __

MPX·32 Technical Volume I 2·23

Communications Region

Byte 0
(Hex) SmAbol Descril2tion

B08 C.SWAP contains the swapper's status and DQE address.
(If bit 0 equals zero, the swapper is active. If bit
o equals one, the swapper is inactive). Bits 8 through
31 contain the address of the swapper's DQE.

BOC C.SYCS cOntains the default SYC size of 32 blocks. This is
included for compatibility only and is not examined
during job processing.

BlO C.TSKN task activation sequence number of currently executing
task

~ Descril2tion

0 contains the DQE entry number of
the currently executing task in the
range of 1 to 255; when word format is
adjusted, it may be used as an index
to the DQE address table (DA T) to obtain
the DQE for the associated task.
The address of the DAT is contained in
C.ADAT. (C.PRNO)

1-3 activation sequence number of currently
executing task

B14 C.TSMDQA address of DQE for J.TSM or 0 if J.TSM has exited.
Required for ring processing and message sending.

B18 C.TTBT task timer bit table containing 256 bits.
Each bit corresponds to a C.DQE entry and is accessed
by the DQE entry number (1 to 255). A bit set
in this table indicates the associated DQE has an active
task timer.

B38 C.UDTA address of unit definition table

B3C C.TTAB address of timer table

B40 C.MATA address of memory tables

B44 C.MPAA low address of the patch area

B48 C.MPAC current address of the patch area

B4C C.MPAH high address of the patch area

B50 C.RMTA address of resourcemark table

B54 C.EMTA address of eventmark table

B58 C.REV MPX-32 revision and interim revision

B5C C.DEBUG address location of debugger

C
2·24 System Tables and Variables

Communications Region

(~, Byte
(Hex) S~bol Description

B60 C.TDQl time-distribution quantum stage one, in interval
timer units. Initialized by SYSGEN. This value is used
to load the interval timer when CPU control is dispatched
to a time-distribution task under one of the following
conditions:
• a task is initially selected after activation
• a task is initially selected after the termination of a

voluntary wait state (e.g., wait I/O or timed suspend)
• a task is initially selected after in-swap
• a task is reselected after completion of its full quantum

During the quantum stage one interval, the currently
executing task is not eligible for out-swap, and
may not be pre-empted from CPU control by a higher
priority time-distribution task.

B64 C.TDQ2 time-distribution quantum stage two, in interval
timer units. Initialized by SYSGEN. This value is
used to load the interval timer when the stage one
quantum for the currently executing task expires. (The
quantum stage two value may be added to the quantum
stage one value to define the full task quantum.)

(~~,
B68 C.TDQ3 time-distribution full quantum value, in interval

timer units. Initialized by SYSGEN. This value is the
sum of the quantum stage one and stage two values.

B6C C.REGS TSA address of current task in the CPU
(for compatibility only)

B70 C.MVTA address of mounted volume table

B74 C.ACI'A address of activation table

B78 C.SEQA address of sequence table

B7C C.SCDIPU schedule IPU routine address

B80 C.CHTA address of channel definition table

B84 C.ETLOC address of event trace logic

B88 C.ADMASK maximum address bit mask for machine

B8C C.IDLAI IPU idle time accumulation value in seconds,
cleared by SYSGEN. . This value is incremented when
the countdown value in C.IDLCI expires.

o
MPX·32 Technical Volume I 2-25

Communications Region

Byte 0 (Hex) Sxmbol Description
B90 C.IDLCI IPU idle time countdown value, cleared by

SYSGEN. This value is used to load IPU accounting
mtelVal timer (if present) when there are no tasks
ready to run on the IPU. When a task becomes ready
to run, the IPU accounting intelVal timer is read and
the value is stored in this word.

B94 C.IPUITI address of the IPU accounting routine, S.IPUITl,
which performs accounting functions after an IPU trap
is fielded. Initialized by SYSGEN.

B98 C.IPUIT2 address of the IPU accounting routine, S.IPUIT2,
which perfonns accounting functions prior to the
starting of the IPU. Initialized by SYSGEN.

B9C C.BTIME the current time (in binary) kept as the number of
100 microsecond units

BAO C.BDATE the current date (in binary) kept as the number of
days since January 1, 1960

BA4 C.TCORR the correction factor (in 100 microsecond units)
which must be subtracted from C.BTIME to get the
correct local time. This value is detennined by the
daylight savings and time zone parameters specified

0 (if any) at IPL.

BA8 C.FSSP file system stack frame pointer

BAC C.DPTIMO default time-out value applied to dual-processor,
shared volume resource assignments

BBO C.MDTA physical starting address of the memory resident
descriptor table (MDT)

BB4 C.MDTE physical ending address of the MDT

BB8 C.SWPLIM minimum number of maps to be swapped at any
onetime

BBC C.PDQE address of DQE of a partially swapped task

BCO C.MPXBR base registers save area (eight words--one
file each)

BEO C.MPXBRD default logical map address

BE4 C.IPOO address of the A.IPOO module

o
2-26 System Tables and Variables

Communications Region

(Byte
(Hex) Symbol Description

BE8 C.PSDBRE break entered PSD for base mode task (two words)

BFO C.PSDBRX break exited PSD for base mode task (two words)

BF8 C.PSDMSE message entered PSD for base mode task (two words)

COO C.PSDMSX message exited PSD for base mode task (two words)

C08 C.PSDEAE end action entered PSD for base mode task
(two words)

ClO C.PSDEAX end action exited PSD for base mode task
(two words)

CI8 C.DSECf start address of DSECf for extended .MPX-32

CtC C.ADAPI' start address of the adapter code region for
extended .MPX-32

C20 C.TDEFA address of TERMP ART, if present

C24 C.SWIOCL swapper's IOCL address

C28 C.CRDUMP address of the crash dump routine

C2C C.HSTADR address of the optional CPU/lPU state chain
history buffer

(' C30 C.COTN number of entries in controller definition table

C32 C.ITRS interval timer resolution, in tenths of microseconds,
as derived from the SYSGEN mM directive

C34 C.SMVTI mounted volume table (MVT) index of swap device

C36 C.SVTN number of entries in the SVC '1' table.
Initialized by SYSGEN.

C38 C.UDTN number of entries in unit definition table

C3A C.RMTM maximum number of resourcemarks

C3C C.EMTM maximum number of eventmarks

C3E C.NOS number of blocks required for SYSGEN code

C40 C.NRST number of blocks required for restart code

C42 C.MVTN number of entries in mounted volume table

C44 C.ARTN number of entries in allocated resource table

C46 C.CHTN number of entries in channel definition table

MPX-32 Technical Volume I 2·27

Communications Region

C Byte " ' I

{Hex} Symbol Description

C48 C.HIMAP number of the last map block of logical address
space available to a task

C4A C.SVTN2 number of entries in the SVC '2' table.
Initialized by SYSGEN.

C4C C.MDTN total hexadecimal number of entries in the
MDT. This number is larger than the number
specified at SYSGEN time because it includes an
extra 25% for collision resolution.

C4E C.MDTAV hexadecimal number of entries currently available
in the MDT

C50 C.RMS reserved for RMS (two words)

C58 C.GSLEMC group swap limit exceeded map count

C5C C.PTRINT PTRACE task activation control address

C60 C.BDBUG base task debugger name

C68 C.PET PET patch address table pointer

C6C-C74 C.TSMIR TSM input request head cell

C78-C80 C.TSMIA TSM input active head cell

C84-C88 C.SBUFA first word contains the address of the IOQ
memory pool. Second word is set by S.MEMM9A
to the number of words in the IOQ memory pool

C8C-C90 C.SBUFB first word contains the address of the MSG
memory pool. Second word is set by S.MEMM9B
to the number of words in the MSG memory pool

C94 C.IPUAE address of the arithmetic exception handler

~ C.HLPDQA address ofDQE for J.HLP. Required for J.TSM

~ C9C C.NODEID RMSS node identifier

..) CAO C.PSMA address of PSM table

".,,) CA4 C.RMSS reserved for RMSS

CA8 C.RCASIZ size of remote context area

~ C.PSMSIZ number of context areas

CAC C.DPTRY decimal number of tries to access a dual-port
resource

CAE C.SMAPS number of MAPS used by the system
(Le., lSW APR)

CBO C.BPRI default software priority level at which batch
jobs execute

(-~
i .,~/

2-28 System Tables and Variables

Communications Region

(~ Byte
(Hex) SYmbol Description

CBI C.DTTN number of entries in device type table

CB2 C.FSFLGS reserved

CB3 C.MODN entry number of last entry in module address table.
Initialized by SYSGEN.

CB4 C.NITI contains the number of 24-word indirectly connected
task linkage block (lTLB) entries in the indirectly
connected task linkage table (ITL T).
Initialized by SYSGEN.

CBS C.NQUE number of entries (255 maximum) in CPU dispatch
queue.

CB6 C.RRUN contains the count of memory release events. It
is incremented by H.EXEC,9 when a memory
scheduler event is reported. It is cleared by the
memory scheduler (swapper) when processing of the
memory request queue begins. It is decremented by the
swapper when memory is deallocated by the swapper.
It is cleared by the swapper before H.EXEC,8 is called.
H.EXEC,8 will rerun the swapper if C.RRUN is not
equal to zero.

C\ CB7 C.SMTN number of entries in shared memory table

CB8 C.TSMCNT number of currently active TSM devices. Maintained
by lTSM.

CB9 C.TSMPRI priority default for TSM-activated tasks. Overrides
cataloged priority.

CBA C.TSMTOT number of TSM devices. Initialized by entry point
eight of all terminal device handlers.

CBB C.TENT number of timer table entries

CBC C.RM1L low address of user resourcemark area

CBD C.EMTL low address of evennnark area

CBE C.CONF configuration flags:

Bit Meaning if Set

0 CPU accelerator present (C.CPUACC)
I IPU accelerator present (C.IPUACC)
2 IPU present (C.IPU)
3 memory-only system (not valid in Revision 2.x

series) (C.MEMNL Y)
4 base code removed (C.NOBASE)
5 Ada suppoIt module present (C.ADA)
6 shadow memory configured (C.SHMEM)

() 7 shadow memory reserved (C.SHRSV)

MPX-32 Technical Volume I 2-29

Communications Region

2-30

Byte
(Hex)

CBP

ceo
CCl

CCZ

CC3

CC4

CC8

CCA

CCC

CCD

coo
CDt

CD2

CD3

CD4

CDS

Symbol

C.MACH

C.ACfN

C.DBTLC

C.SMTS

C.SEQN

C.IPUlflS

C.SHRlll

C.SHRLO

C.MAXSWP

C.NLOAD2

C.CDTSIZ

C.DFfSIZ

C.DTrSIZ

C.FPfSIZ

C.IOQSIZ

C.DPGPRI

CD6 C.NFRAME
~ _____ ~MR.QLEN

CD8 C.MMSG'

CD9 C.MRUN

CDA

CDB
C.MNWI

C.GSLEGI

Description

machine type currently in use:

Value Description

o CONOBT32nOOO
t reserved
2 CONOBT 32n7
3 CONOBT 32/67
4 CONOBT 32/87
S CONCEPT32~7

6-7 reserved

number of entries in activation table

channel address used for system debugger

shared memory table entry size in bytes

number of entries in sequence table

address of IPU history buffer

interprocessor memory high bound

interprocessor memory low bound

maximum swap size in megabytes

SYSGEN error code

number of public dismounts pending

number of entries in PSM table

size of controller definition table in bytes

size of disk file assignment table in bytes

size of device type table in bytes

size of file pointer table in bytes

size of I/O queue entry table in bytes

demand page base priority

number of frames in TSA register stack

length in bytes of the MRRQ fixed header area

nonprivileged task's no-wait message count

nonprivileged task's no-wait run request count

nonprivileged task's no-wait I/O count

group ID of a task whose group outswap limits
have been exceeded

System Tables and Variables

o

o

o

Communications Region

("C~
Byte
(Hex) SYmbol Description

CDC C.GSLEPR hexadecimal priority of a task whose group
outswap limits have been exceeded

CDD C.ADAFL control flag for Ada run-time system

CDE C.TKILL number of seconds before an abort becomes a kill

CDF C.DELTA delta value for real-time IPU tasks

CEO C.MPXBRN number of base registers to load

CEl C.DBMAPS number of MAPS used by the system debugger

CE2 C.SWAPSZ swapfile size in megabytes (halfword)

CE4 C.DTSAVE elapsed time before J .DTSA VE resumes

CE8 C.SHCPU CPU shadow memory. Starting map block number
in first halfword. Number of map blocks in second
halfword. These fields include any C.SHBTH area.

CEC C.SlllPU IPU shadow memory. Starting map block number
in first halfword. Number of map blocks in second
halfword. These fields include any C.SHBTH area.

CFO C.UPDT MPX-32 patch or replacement release

0
CF4 C.SWPBUF logical address of J.SWAPR's dedicated system buffer

CF8 C.MRQTMR timer used by J.SW APR

CFC C.SHBTH shadow memory in both CPU and IPU. Starting
map block number in first halfword. Number of map
blocks in second halfword.

DOO C.TABLES symbol equated to the absolute memory location
at which SYSGEN-built tables begin if no user
communication region is SYSGENed. This location
is on a word boundary.

D04 C.USER symbol equated to the absolute memory location
where the fixed portion of the user communication region
begins.

D84 C.USERVA address of the variable size user region.
This region is defined by the CDOTS directive
to SYSGEN and is on a·word boundary. If the CDOTS
directive is specified, the SYSGEN-built tables begin
at the first word location following this user region.

D88 C.TPVA address of the 16 word area reserved for
third party vendor products

D8C C.EXEND address of the end of executable memory

D8E C.FRAME size of each stack frame in TSA non-base
register stack push-down area

0 D90 C.SCOFDQ CPU/IPU scratchpad offset for task DQE address

MPX·32 Technical Volume I 2-31

Communications Region

Byte
{Hex} SImbol
D94 C.CfSAD

098 C.AGE

09C C.EFRPG

DAO C.HFRPG

DA4 C.SFRPG

DA8 C.DFRPG

DAC C.MPFRPG

DBO C.MPTLA

DB4 C.CREGS

DB8 C.PI'EA

DBC C.PSTA

DCO C.CHTSIZ

DC2 C.DQESIZ

DC4 C.RDSIZ

DC6 C.MPMAC

DC8 C.BEGPGO

DCA C.ENDPGO

DCC C.DMCC

DCB C.DMAC

DDO-DD4 C.BITI

2-32

Description
logical address of TSA for the current task running
in the CPU

virtual time before page considered aged

:free page head cell for E class

:free page head cell for H class

:free page head cell for S class

:free page head cell for D class

free page head cell for multi processer memory

physical memory allocation pointer list address

logical address of the TSA stack for current CPU task

physical page table entry address

physical page state table address

size of channel definition table in bytes

size of dispatch queue entry in bytes

size of resouce descripter in bytes

total valid configured multiprocessor memory

number of mapblocks to page out

number of mapblocks to stop page out

total configured DRAM (CONCEPT 32(2000)

total available DRAM (CONCEPT 32(2000)

symbol associated with the beginning of
the bit variables:

Bit
o

1

2

3

4
5
6
7
8
9
10
11
12-63

Meaning if Set
inhibit batch messages to all teIminals except
system console (C.TERM)
inhibit batch messages to system
console (C. CONS)
restrict ownemame "SYSTEM" from
multiple logons (C.NOSYS)
SYSGEN request to run all SYSMAP tasks
with MPX-32 mapped out (C.TSKOUT)
system specification for task (C.TSKOFL)
no last access update (C.NOLACC)
image supports demand page (C.DPGSYS)
TSM will exit when not in use (C.TSMXlT)
TSM reactivated (C.RACTSM)
activate TSM (C.ACTSM)
page out to swap file in progress (C.PGOPRG)
high priority task is ready to run (C.HlPRI)
reserved

System Tables and VariableS

o

Communications Region

(Byte
(Hex) SYmbol Description

DDS-DDC C.SPGOL shared page out queue head cell

string forward address (MAP.SF); 1 HW
string backward address (MAP.SB); 1 HW
number of pages in queue (SPGO.CNT); I HW
reserved; IRW

DEO-DE4 C.COMM reserved for COMM-32

DES-EDS reserved for MPX-32

EDA C.TPGOC total number of pages in the system
------""-----,

ready for pageout

EDC C.MVTSIZ size of mounted volume table in bytes

EDE C.DCASIZ size of device context area table in bytes

EEO C.RCBSIZ size of resource create block table in bytes

EEl C.UDTSIZ size of unit definition table in bytes

EE2 C.DPfSIZ size of disk parameter table in bytes

EE3 C.TIQSIZ size of terminal input queue table in bytes

EE4 C.MRQSIZ size of message or run request queue table in bytes

(--' EE5 reserved for MPX-32

EE6 C.PCBSIZ size of procedure call block in bytes

EE7 C.ARTSIZ size of allocated resource table in bytes

EE8 C.DETSIZ size of directory entry table in bytes

EE9 C.BBHSIZ size of blocking buffer head cell size in bytes

EEA C.VATSIZ size of volume assignment table in bytes

EEB-EFC reserved for MPX-32

MPX-32 Technical Volume I 2-33

Allocated Resource Table (ART)

2.4 Allocated Resource Table (ARn

2-34

The allocated resource table (ART) is a system resident structure that provides a
central mechanism to control the manipulation of all allocated resources. An entry is
made for a resource when it is allocated, and remains while there are active
assignments to that resource. Shared resources are given an entry in the ART by the
first process to allocate them. The table is linked to each task's service area file
assignment table (FAT) entry for the respective resource.

When the ART entry is made at assignment, the resource assign count is incremented.
The assign count is decremented when the task deallocates the resource. The resource
is not physically deallocated until the assign count equals zero; the physical
deallocation of the resource is not perfOImed while it is in use.

Other information is kept in the ART when a resource is detennined to be implicitly
shared. For files, pointers are kept to indicate the position of writers on the file by the
current end-of-file and end-of-medium positions. These pointers are identified by
relative block number. The current allowable access modes are also noted in the ART
entry when the resource is implicitly shared.

The size of the ART is detennined at SYSGEN by the ARTSIZE directive.

Word 0

1

2

3

4
5
6

7

o 7 8 15 16 23 24 31
Resource index Resource descriptor block address
(AR.UDTI). See (AR.BLOCK). See Note 2.
Note 1.
Current access Resource Pointer. See Note 4.
mode (AR.CACM).
See Note 3.
Resource allocation Bags DQEindex of DQE index of
(AR.FLAGS). See Note 5. exclusive lock synchronous lock

owner (AR.XRL) owner (AR.SRL)
Number of Number of Number of Number of
active userslalloca- multiprocessor readers currently
assignments tions of requests queued on this resource
(AR.ASSNS) resource for this minus the number

(AR.USERS) resource of writers,
(AR.QUE) appenders,

modifiers and
updaters
(AR.RDRS)

Current EOF position in this file (AR.EOF)
Current EOM position in this file (AR.EOM)
Port number of DQE index of task Resource reserve count (AR.RCNT)
multipart resource locking a multipart
lock owner resource
(AR.MPID)
Reserved

System Tables and Variables

c

o

o

c'

Allocated Resource Table (ART)

Notes:

1. Resource index corresponds to a UDT index in most cases or to an SMT entry
index when bit 5 of AR.FLAGS is set.

2. Resource descriptor block address field contains a shared memory table entry
pointer when bit 5 of AR.FLAGS is set.

3. Bits in AR.CACM are assigned as follows (implicit shared use only):

Bit Meaning if Set

o read access (RD.READ)
1 write access (RD.WRITE)
2 modify access (RD.MODFY)
3 update access (RD.UPDAT)
4 append access (RD.APPDN)
5-7 reserved

4. Resource pointer is as follows:

Resource Pointer

Volume mounted volume table entry pointer (AR.MVTA)
Segment definition Number of blocks in segment definition

(AR.NBLKS)
Partition shared memory table entry pointer (AR.SMT A)
Device unit definition table entry pointer (AR. UDT A)

5. Bits in AR.FLAGS are assigned as follows:

1ill
o
1
2
3
4
5
6
7
8
9-10
11

12

13

14
15

MPX-32 Technical Volume I

Meaning if Set

allocated for explicit shared use (AR.EXSHR)
allocated for implicit shared use (AR.IMSHR)
allocated as mount device (AR.MNT)
marked for deletion (AR.DELET)
segment definition (AR.SP ACE)
memory partition (AR.PART)
device (AR.DEVC)
entry is active (AR.ACTV)
resource marked for truncation (AR.TRUNC)
reserved
dual-processor resource is being appended by a
task in this system environment (AR.WOWN2)
dual-processor lock is in effect on this
resource (AR.DPLK)
dual-processor resource is being written to by
a task!n this system environment (AR. WOWN)
mulL-processor volume flag (AR.DUALP)
pon designation for resource lock owner when
resource is treated as dual processor (AR.PORT). This bit is
used Only when the system is SYSGENed to be compatible to a
previous release.

2-35

Blocking Buffer Control Cells

2.5 Blocking Buffer Control Cells
Blocking buffer control cells are built by IOCS for blocked files as the file is written
and they become a pennanent part of the file. This infonnation is then used by IOCS
as the file is read to unblock individual records within the file.

Blocking Buffer Control Word

o 7 8 15 16

Word 0 Buffer status.
See Note.

I Next read/write address

Notes:

Bits in buffer status are assigned as follows:

Bit Status

o reserved
1 buffer is empty
2 buffer is output active
3 reserved
4 buffer is free to allocate
5-7 reserved

Record Control Bytes

o 7 8 15 16

23 24 31

23 24 31

Status bits last record. Byte count last record. Status bits this record. Byte count this record.

2·36

See Note 1. BB.BCLR See Note 2. BB.BCI'R
BB.SBLR BB.SBTR

For the last record in a block, bytes 2 and 3 -- status bits this record and byte
count this record - are omitted.

Notes:

1. Bits in this field are assigned as follows:

Bit Meaning if Set
o end-of-file (SB.EOF)
1 beginning-of-block (SB.BOB)
2 end-of-block (SB.EOB)
3 end of medium (SB.EOM)
4-7 reserved

2. BitS in this field are assigned as follows:

Bit Meaning if Set
o end-of-file (SB.EOF)
1-7 reserved

System Tables and Variables

o

I 0 ''., ,.

Blocking Buffer Control Cells

2.5.1 Blocking Buffer Head Cells

The DFf.BBA field of the FAT contains the address of the 8 word blocking buffer
head cell. Head cells are built in the TSA. The total number, as well as the address,
of the first head cell are contained in T.BBHCA. The head cell includes the following
information:

o 7 8 15 16

Word 0

1

2

3

4

5-7

Notes:

Status bits (BB.SW). See Note.

Address of first buffer (BB.FlRS1)

Address of current buffer (BB.CURR)

Block nwnber in first buffer (BB.FBLK)

Nwnberof Buffer nwnber
buffers in big being read/
blocking buffers written
(BB.SIZE) (BB.NBUF)

Reserved

Status bits in BB.SW are assigned as follows:

Meaning if Set

o blocking buffer status word (BB.SW)
1 buffer is empty (SW.EMP)
2 buffer is output active (SW.OUT)
3 buffer is in use (SW.BBB)
4 buffer is free to allocate (SW.FRE)

Reserved

5 buffer is allocated by H.BKDM (SW.ALL)
6 user-supplied buffer is in use (SW.UBB)
7 reserved for S.BKDM9 (SW.SVC)
8-31 read/write address

MPX-32 Technical Volume I

23 24 31

2-37

Caller Notification Packet (CNP)

2.6 Caller Notification Packet (CNP)

2-38

The caller notification packet (CNP) is the mechanism used by the Resource
Management Module (H.REMM) and the Volume Management Module (H.VOMM)
for handling abnormal conditions that may result during resource requests. All or part
of this structure can be used by a particular service being called. The CNP must be
on a word boundary.

Word 0

1

2

3

4

5

Notes:

o 7 8 15 16 23 24 31

Time-out value (CP.TIMO)

Abnonnal return address (CP.ABRET)

Option field (CP.OPTS). See Note 1. I Status field (CP.STAT). See Note 2.

Actual file size created (CP .FSIZ)

Reserved (See Note 3.)

Automatic open FCB address (CP .FCBA)

I

1. A bit sequence and/or value used to provide additional information that can be
necessary to fully define the calling sequence for a particular service.

2. A right-justified numeric value identifying the return status for this call.

3. Refer to the individual system service description in the MPX-32 Reference
Manual Volume I for intetpretation of word 4.

System Tables and Variables

(

,.>),

, , ,
~ '~

n
~.,

c

(;

Channel Definition Table (CHT)

2.7 Channel Definition Table (CHT)

The channel definition table (CHT) is a system resident structure applicable only to
F-class and extended I/O devices. The CHT is built by the SYSGEN process, one for
each extended I/O channel configured in the system. It selVes as a register save area,
contains the interrupt context block associated with extended I/O protocol, identifies
COTs linked to the channel, and defines other pertinent channel information.

Word 0-7

8-9

10-11

12

13

14

IS

16

17-31

32

33

34

35

36

37

38-39

o 78 IS 16 2324

Register save area (CHT .REGS). See Note 1.

Old PSDl/old PSD2 (CRT.OPSD)

New PSDl/new PSD2 (CHT.NPSD)

IOCL address (CHT.IOCL)

Status address (CRT.STAD)

Flag word (CHT .FLGS). See Note 2.

Channel spurious interrupt Channel Channel address*
count (CRT. SPUR) interrupt (CRT.CHAN)

priority*
(CRT.IPL)

CDT address unit 0* (CRT.CDTO). See Note 3.

CDT address unit 1* (CRT.CDT1). through
CDT address unit 15* (CRT.CDW). See Note 3.

lOP status doubleword (CRT. STOW) (or)
Subadd.ress Real IOCD address (CRT .RIOA)
(CRT.SUBA)

Channel status Cont/device status Residual byte count
(CRT.CHST) (CRT.CDST) (CRT.RBC)

Address of XIO.SUB exit entry point (CRT.EXIT). See Note 4.

Address of H.IFXIO initialization entry point (CRT.INCH). See Note S.

SIO status stored return address (CRT.RTN)

HIO status stored return address (CHT.HRTN)

Reserved for future development use.

'" Initialized by SYSGEN

MPX-32 Technical Volume I

31

2·39

Channel Definition Table (CHT)

2·40

Notes:

1. CHT.REGS must begin on a register file boundary.

2. Bits in CHT.FLGS are assigned as follows:

Bit Meaning if Set
o INCH (initialize channel) has been performed
1 status stored response for SIO or HIO instruction
2 S1. routine was called from LUCIO routine .

(common XIO routines)
3 interrupt level was activated by IQ.xIO routine

(common XIO routines)
4 cache controller (CHT.CAC)
5 SCSI controller (CHT.SCSI)
6-31 reserved

3. These fields contain the addresses of the CDT entries for controllers connected to
the corresponding XIO channel. Entries for unimplemented controllers are set to
zero.

4. CHT.EXIT contains the address of the exit procedure within the common XIO
subroutines.

5. CHT.INCH contains the address of the initialization procedure used to initialize
the correspondi~g XIO channel.

System Tables and Variables

l'~
:;""j!

c

Controller Definition Table (COT)

2.8 Controller Definition Table (COT)

The controller definition table (CDT) is a system resident structure used to identify
infonnation required by handlers and the I/O processor for a specific controller. The
CDT is built by the SYSGEN process, one for each controller configured on the
system. The CDT identifies devices (UDTs) associated with the controller, the
handler address associated with the controller, and defines other pertinent controller
infonnation.

a 7 8 15 16 23 24

String forward address (CDT.FIOQ)

String backward address (CDT.BIOQ)

31

Word a
1

2 Link priority Number of Class (CDT.CLAS). Flags (CDT.FLG2).
(CDTLPRI). entries in list See Note 3. See Note 4.

See Note 1. (CDT.IOCT).
See Note 2.

3 CDT index (CDT.INDX) Device type code Interrupt priority
(CDT.DTC) level
See Note 5. (CDT.lPL)

4 Number units Number requests Channel number Subaddress of
on controller outstanding (CDT.CHAN) first device
(CDT.NUOC) (CDT.IORO) (CDT.SUBA)

5 Program number Interrupt handler address (CDT.SIHA) or controller
if reserved information block (CDT.ClF)
(CDT.PNRC)

6 Flags DDT address of first device on controller
(CDT .FLGS). (CDT.UDTA)
See Note 6.

7 I/O status TI address (CDT.TIAD)
(CDT.IOST). or
See Note 7. SI address if extended 1/0 (CDT.SJAD)

8

9-23

UDT address unit 0* (CDT.UTO)

UDT address unit 1* (CDT.UTI) through
UDT address unit 15* (CDT.U1F)

*Initialized by SYSGEN

Notes:

1. Alway~ zero (head cell)

2. Numix;f of entries in list (zero if none)

3. Values in CDT.CLAS are assigned as follows:

Value
X'OD'
X'OE'
X'OF'

MPX-32 Technical Volume I

Meaning
TCW· type with extended addressing capability
TCWtype
extended I/O

2-41

Controller Definition Table (COT)

2-42

4. Bits in CDT.FLG2 are assigned as follows:

Bit Meaning if Set
o SCSI device (CDT.SCSI)

1-7 reserved for future use

5. For example, 01 for any disk, 04 for any tape, etc. Valid device type codes are
listed in Chapter 1 of this reference manual.

6. Bits in CDT.FLGS are assigned as follows:

Bit
o
1

2
3

4
5

6
7

Meaning if Set
extended I/O device (CDT.FCLS)
I/O outstanding (set by handler, reset by IOCS)
(CDT.IOUl)
GPMC device (CDT.GPMC)
initialization (INC) needs to be performed for this
controller(CDT~
D-class (CDT.XGPM)
used only when IOQs are linked to the COT. Set when
SIO is accepted by the controller. Reset when IOQ is
unlinked from the CDT or when I/O is reported complete
to IOes in the case of operator intervention type errors
(CDT.IOU5).
lOP controller (CDT.IOP)
controller malfunction (COT .MALF)

7. Bits in CDT.IOST are assigned as follows:

Bit Meaning if Set
o IOQ linked to UDT (CDT.NIOQ)
1 multiplexing controller (CDT .MUXC)
2 use standard XIO interface
3 16MB GPMC (CDT.XGPS)
4 cache conttoiler (CDT.CAC)
5 H.F8XIO has determined if the controller is

pre-8512-2 or not (CDT.CKFL)
6 controller not pre-8512-2 (CDT.FLOW)
7 reserved for FMS

System Tables and var~bles

(

C· ~ .. "
.;.1

f~

Device Context Area (DCA)

2.9 Device Context Area (DCA)

A device context area (DCA) exists for each active subchannel and serves as a storage
area for information regarding the subchannel and its operation. The DCAs are
physically located at the end of each device-dependent handler (H.??XIO) and must be
doubleword bounded. The first 33 words of each DCA are identical; however,
additional words can be added to suit the needs of the particular device. The
following represents the first 33 words of each DCA.

o 7 8 15 16 23 24 31

Word 0 DCA size (DCA.SIZE)

1 Device address (DCA.UADO) I Reserved

2 CHT address (DCA.CHTA)

3 COT address (DCA.COT A)

4 UDT address (DCA.UDTA)

5 IOQ address (DCA.IOQA)

6 Lost interrupt count (DCA.LINC)

7 Spurious interrupt count (DCA.SINC)

8 Total retry count this device (DCA.RETC)

9 Flags (DCA.FLAG). See Note 1. Retry count this
request (DCA.RCNT)

10 UDT address (DCA.NUDT). See Note 2.

11 Status word one (DCA.WSTl)

12 Status word two (DCA. WST2)

13 Number of reserves outstanding (DCA.RESC)

14 Time-out value opcode 0 (DCA. TIMO). See Note 3.

15 Time-out value opcode l. See Note 3.

29 Time-out value opcode F. See Note 3.

30-31 Sense lOCO (DCA.SEN!)

32 Sense buffer (DCA.SENS)

MPX·32 Technical Volume I 2·43

Device Context Area (DCA)

2-44

Notes:

1. Bits in DCA.FLAG are assigned as follows:

Bit Meaning if Set
o interrupts not expected
1 HIO issued at UJCIO
2 HIO needs to be reissued
3 device rewinding or seeking
4 sense issued without an IOQ
5 device is an XIO magnetic tape

6-15 reserved for common subroutine usage
16-23 reserved for device dependent handler usage

2. This UDT address is the UDT address of the device for which an SIO or HIO
was issued when a status stored response was generated for this device. It
indicates the need to reissue the I/O request for that device.

3. Time-out values corresponding to opcodes 0 through F (16 entries).

System Tables and Variables

c

o

Device Type Table (OTT)

2.10 Device Type Table (OTT)

The device type table (DIT) is a system resident structure used to identify device
types that are configured in the system and their associated controllers. The D'IT is
built by the SYSGEN process and its entries are linked to the associated controller
definition table (CDT).

Valid device type codes are listed in Chapter 1 of this manual.

o 7 8 15 16 23 24 31

Ward 0 Device type code Address of first CDT entry of this type

(OIT.COD) See Note 1 (D'IT.CDTA)

1 Number of controller Flags ASCII device mnemonic
entries (D'IT.CNT) (D'IT.FLGS). (D'IT .NAM).

See Note 2. See Note 3.

Notes:

1. For example, 01 = any disk, 04 = any magnetic tape, 08 = any reader card, and
OA = any line printer.

2. Used by job control and cataloger to validate ASSIGN3 statements with bits
assigned as follows:

Bit Meaning if Set
o entry of device address not legal
1 entry of size or reel ID required
2 entry of reel ID required

3-7 reserved

3. For example, X'4443' (DC) = any disk; X'4D54' (MT) = any tape

MPX-32 Technical Volume I 2-45

Directory Entry Table (M.DN.TEQ)

2.11 Directory Entry Table (M.ON.TEO)

The directory entry table (M.DN.TEQ) contains information pertinent to resources
defined in a directory. Each resource defined in a directory has an M.DN.TEQ
associated with it

Word 0-3

4

5
6

7

8

9

10

11

12-13

14-15

o 7 8 15 16 23 24

Resource name (DN.IDNAM)

Binary creation date (DN.DAlE)

Binary creation time (DN.TIME)

Absolute block number of resource descriptor (DN.DOFF)

Resource ID flags Resource type (numeric value)
(DN.RDFLG). See Note 1. (DN.RTYPE). See Note 2.

Number of entries that collided with this entry (DN.COLCI')

Number of hashes required to locate this entry (DN.HSHCI')

Directory entry flags (DN.FLAGS). See Note 3.

Directory entry index (DN.DIRI)

Owner name of directory entry creator (DN.OWNR)

Filler (DN.FILL)

31

2-46 System Tables and Variables

c

o

Directory Entry Table (M.ON.TEQ)

Notes:

1. Internal flags reseIVed for MPX-32

2. Values for DN.RTYPE are as follows:

Value
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

18

Meaning
volume type (DN.VOL)
resource descriptor description (DN.RESRC)
descriptor map descriptor (DN.DMAP)
space map descriptor (DN.SMAP)
root directory descriptor (DN.ROOT)
system image descriptor (DN.IMAGE)
bad block descriptor (DN.BDBLK)
value for spool file descriptor (DN.SYM)
extra segment definition descriptor (DN.XSEGD)
permanent file (DN.FILE)
permanent directory (DN.DIR)
temporary file (ON.TFll..E)
temporary directory (DN.TOIR)
static memory partition (DN.MEM)
dynamic memory partition (ON.TMEM)
device descriptor (DN.DEVC)
resource descriptor for the DMAP bad block
deallocation file (ON.BDMAP)
resource descriptor for the SMAP bad block
deallocation file (DN.BSMAP)

3. Bits in DN.FLAGS are assigned as follows:

Bit Meaning if Set
o active entry (DN.ACTIV)

1-31 reseIVed

MPX-32 Technical Volume I 2-47

Dispatch Queue Area

2.12 Dispatch Queue Area

The dispatch queue area is a variable length doubleword-bounded table built by
SYSGEN. It contains a maximum of 255 dispatch queue entries (DQEs). The
address of the dispatch queue area is contained in C.DQUE. The number of DQE
entries is contained in C.NQUE. Free DQE entries are linked into the C.FREE head
cell in the standard linked list format When a task is activated, a DQE is obtained
from the free list and is used to contain all of the core-resident information necessary
to describe the task to the system. Additional (swappable) information is maintained
in the task selVice area (TSA). While a task is active. its DQE is linked to one of the
various ready-to-run or wait state chains provided by the scheduler to describe the
task's current status. When a task exits. its DQE is again linked to the free list.

2.13 Dispatch Queue Entry (DQE)

2-48

The dispatch queue entry (DQE) contains all of the core-resident information required
to describe an active task to the system. It is always linked to the CPU scheduler
state chain that describes the current execution status of the associated task.

System Tables and Variables

o

o

Dispatch Queue Entry (OQE)

(~.
Dispatch Queue Entry (DQE) Table

Word No. Byte
(Decimal) (Hex) o 7 8 15 16 23 24 31

0 0 DQE.SF

1 4 DQE.SB

2 8 DQE.CUP DQE.BUP DQE.lOP DQE.US

3 C DQE.NUMjDQE.TAN

4-5 10 DQE.ON

6-7 18 DQE.LMN

8-9 20 DQE.PSN

10 28 DQE.USW

11 2C DQE.USHF

12 30 DQE.MSD

13 34 DQE.KCTR

14 38 DQE.MMSG DQE.MRUN DQE.MNWI DQE.GQFN

15 3C DQE.UF2 DQE.IPUF DQE.NWIO DQE.SOPO

16 40 DQE.CQC

17 44 DQE.SH DQE.SHF DQE.TIFC DQE.RILT

(18 48

19 4C

DQE.UTSI

DQE.UTS2

20 50 DQE.DSW

21 54 DQE.PRS

22 58 DQE.PRM

23 5C Reserved DQE.TSKF DQE.MSPN DQE.MST

24 60 DQE.PSSF

25 64 DQE.PSSB

26 68 DQE.PSPR DQE.PSCT DQE.ILN DQE.RESU

27 6C DQE.TISF

28 70 DQE.TISB

29 74 DQE.TIPR DQE.TICT DQE.SWIF DQE.UBIO

30 78 DQE.RRSF

31 7C DQE.RRSB

32 80 DQE.RRPR DQE.RRCT DQE.NSCT

33 84 DQE.MRSF

34 88 DQE.MRSB

MPX-32 Technical Volume I 2-49

Dispatch Queue Entry (DQE)

Word No. Byte
(Decimal) (Hex)

35 8C
36 90

37 94

38-40 98
41 A4

42-43 A8
AC

44·51 BO
52 DO

53 D4

54 D8
55 DC

56 EO
57 E4

58·63 E8·FC

Byte
(Hex} S~bol

0 DQE.SF

4 DQE.SB

8 DQE.CUP

DQE.BUP

DQE.IOP

2-50

o 7 8 15 16 23 24 31

DQE.MRPR DQE.MRCT DQE.NWRR DQE.NWMR

DQE.RTI DQE.NWLM DQE.ATI Reserved

DQE.SAlR/DQE.TAD

DQE.ABC

DQE.TSAP

DQE.SRIDIDQE.PGOL

DQE.SRIDIDQE.PGOC DQE.SRIDlReserved

DQE.CDIR/DQE.CVOL

DQE.OID Reserved DQE.ASH

DQE.ACX2

DQE.MRQ DQE.MEM DQE.MEMR

DQE.MRT Reserved DQE.RMMR

DQE.MAPN DQE.CME

DQE.CMH DQE.CMS

Reserved

Description

String forward linkage address;
Field length = IW;
Standard linked list format;
Contains address of next (top·to-bottom) entry in chain.

String backward linkage address;
Field length = IW;
Standard linked list format;
Contains address of next (bottom-to-top) entry in chain.

Current user priority;
Standard linked list format;
This priority is adjusted for priority migration based on
situational priority increments. Situational priority
increments are based on the base level priority
(DQE.BUP) of the task.

Base priority of user task;
Field length = IB;
Used by scneduler to generate DQE.CUP (current priority)
based on any situational priority increments.

I/O priority;
Field length = IB;
Initially set from base priority;
Used for I/O queue priority.

System Tables and Variables

o

o

Dispatch Queue Entry (DQE)

(',
Byte
(Hex) SYmbol DescriQtion

DQE.US State chain index for this user task;
Field length = IB;
Range: zero through X'lE';
Indicates current state of this task, such as ready-to-run
priority, I/O wait. resource block, etc.

Label Index Task descriQtion

FREE 00 DQE is available (in free list)
PREA 01 activation in progress
CURR 02 currently executing task or is pre-empted

time-distribution task in quantum stage one
SQRT 03 ready to run (priority level I to 54)
SQ55 04 ready to run (priority level 55)
SQ56 05 ready to run (priority level 56)
SQ57 06 ready to run (priority level 57)
SQ58 07 ready to run (priority level 58)
SQ59 08 ready to run (priority level 59)
SQ60 09 ready to run (priority level 60)
SQ61 OA ready to run (priority level 61)
SQ62 OB ready to run (priority level 62)
SQ63 DC ready to run (priority level 63)

(\ SQ64 OD ready to run (priority level 64)
// SWTI OE waiting for terminal input

SWIO OF waiting for I/O
SWSM 10 waiting for message complete
SWSR 11 waiting for run request complete
SWLO 12 waiting for low speed output
SUSP 13 waiting for timer expiration, resume

request, or message intenupt
RUNW 14 waiting for timer expiration, or run request
HOLD 15 waiting for a continue request
ANYW 16 waiting for timer expiration, no-wait I/O

complete, no-wait message complete, no-wait
run request complete, message intenupt,
or break intenupt

SWDC 17 waiting for disk space
SWDV 18 waiting for device allocation
SWFI 19 waiting for file system
MRQ 1A waiting for memory
SWMP IB waiting for memory pool
SWGQ lC waiting in general wait queue
CIPU ID current IPU task in execution
RIPU IE IPU requesting state

c
MPX-32 Technical Volume I 2-51

DiSpatch Queue Entry (DQE)

C i, ",

Byte
i

(Hex) SYmbol Description

C DQE.NUM OQE entry number;
Field length = IB;
Used as an index to DQE address table (DA T);
Range: one through "N"(for MPL index compatibility);
Used by scheduler to set C.PRNO to reflect
the currently executing task. This value is also
used as the MPL index. It is used by the scheduler
to initialize the CPIX in the PSO before loading the
map for this task.

DQE.TAN Task activation sequence number;
Field length = 1 W;
This number is assigned by the activation service
and uniquely identifies a task.

Note: The most significant byte of this value
is the DQE entry number and is accessible as
DQE.NUM.

10 DQE.ON Owner name;
Field length = 10.

18 OQE.LMN Load module name;
Field length = ID.

20 DQE.PSN Pseudonym associated with task; 0 Field length = 10;
This parameter is an optional argument accepted by the
pseudo task activation service. It can be used to
uniquely identify a task within a subsystem, such as
multibatch. It contains descriptive infonnation useful
to the system operator or to other tasks within a
subsystem. Conventions used to generate a pseudonym
are detennined by the associated subsystem.
A system-wide convention should be used to establish
pseudonym prefix conventions to avoid confusion
between subsystems.

28 DQE.USW User status word;
Field length = 1 W.

2C DQE.USHF Scheduling flags;
Field length = 1 W;
Used by the scheduler to indicate special status
conditions.

o
2-52 System Tables and Variables

(~;

c

Byte
(Hex) Symbol

MPX-32 Technical Volume I

Dispatch Queue Entry (DQE)

Description

Bit

00
01
02
03
04
05
06
07
08
09
10

11
12
13
14
15
16
17
18

19

20

21
22
23

24
25

26
27

28
29
30
31

Meaning When Set

10ad protection image requested (DQE.LPI)
single copy load module (DQE.SING)
task is indirectly connected (DQE.INDC)
task is privileged (DQE.PRIV)
task has message receiver (DQE.MSGR)
task has break receiver (DQE.BRKR)
task quantum stage one expired (DQE.QSIX)
task quantum stage two expired (DQE.QS2X)
in-swap I/O error (DQE.INER)
wait I/O request outstanding (DQE. WIOA)
wait I/O complete before in-progress notification
(DQE.WIOC)
inhibit message pseudointerrupt (DQE.INMI)
batch origin task (DQE.BAOR)
running in TSM environment (DQE.TMOR)
task abort in progress (DQE.ABRT)
task is in pre-exit state (DQE.PRXT)
run receiver mode (DQE.RRMD)
wait send message outstanding (DQE. WMSA)
wait message complete before link to wait
queue (DQE. WMSC)
wait mode send run request outstanding
(DQE.WRRA)
wait mode send run request complete before
link to wait queue (DQE. WRRC)
debug associated with task (DQE.DBAT)
real-time task (DQE.RT)
time-distribution task initial dispatch (DQE.IDID)
Set by:
• H.ALOCI on activation ofT/D task.
• S.EXEC51 when task is linked to wait state.
• H.EXEC7 on completion of inswap or other

memory request.
Reset by:
• S.EXEC20 on initial dispatch of task after

activation
• Wait state termination
• In-swap
task delete in progress (DQE.DELP)
task abort (with abort receiver) in progress
(DQE.ABRA)
abort receiver established (DQE.ABRC)
asynchronous abort/delete inhibited
(DQE.ADIN)
asynchronous delete deferred (DQE.ADDF)
task is inactive (DQE.INAC)
asynchronous· abort deferred (DQE.AADF)
activation timer in effect (DQE.ACTT).

2·53

Dispatch Queue Entry (DQE)

Byte
{Hex) SImbol

30 DQE.MSD

34 DQE.KCfR

38 DQE.MMSG

DQEMRUN

DQE.MNWI

DQE.GQFN

2·54

Description

Physical address of MIDL in TSA;
Field length = 1 W.

Kil1/abort timer;
Field length = 1 W.

Maximum number of no wait messages
allowed to be sent by this task;
Field length = lB.

Maximum number of no-wait run requests allowed
to be sent by this task;
Field length = lB.

Maximum number of no-wait I/O requests allowed
to be concurrently outstanding for this task;
Field length = lB.

Contains the generalized queue (SWGQ)
function code;
Field length = IB;
Function codes are queued as follows:

Code Meaning

01
02
03
04
05
06
07
08
09
OA
OB
OC
OD
OE
OF
10
11
12
13

volume resource (QVRES)
ART space (QART)
mount in progress (QMNT)
resourcemark lock (QRSM)
reserved for eventmark (QEVM)
read wait for writer (QGEN)
shared memory table (QSMT)
synchronous resource lock (QSRL)
mounted volume table (QMVT)
dual-port lock (QDPLK)
suspend dual-port lock (QSUSP)
debug wait (QDBGW)
remote message area (QMSG)
remote message event (QSER)
remote allocate area (QASMP)
remote deallocate area (QDSMP)
remote abort area (QAMSG)
remote enable/disable area (QOMSG)
wait for TSM (QWTSM)

System Tables and Variables

o

o

Byte
(Hex)

3C

Symbol

DQE.UF2

DQE.IPUF

DQE.NWIO

DQE.SOPO

MPX-32 Technical Volume I

Dispatch Queue Entry (OQE)

Description

Scheduling flags;
Field length = IB;

Bit Meaning if Set

o enable debug mode break (DQE.EDB)
I generalized wait queue time-out (DQE.GQTO)
2 task interrupts are synchronized (DQE.SYNC)
3 task is part of a job (DQEJOB)
4 ACX-32 task flag (DQE.ACX)
5 special arithmetic function requested (DQE.AF) .
6 reserved
7 run request teIlIlinated (DQE.RRT)

IPU flag byte;
Field length = 1B;

Bit Meaning if Set

IPU inhibit flag (DQE.IPUH)
IPU bias flag (DQE.IPUB)
CPU only (DQE.IPUR)

o
I
2
3 OS execution direction flag (set when PSD

is in user area) (DQE.OSD)
base register task (DQE.BASE)
Ada task (DQE.ADA)

4
5
6
7

PTRACE debugger task (DQE.PDBG)
H.PTRAC task association control bit
(DQE.PTRA)

Number of no-wait I/O requests;
Field length = lB.

Priority bias only swapping control flags;
Field length = IB;

Bit Meaning if Set
o SWGQ state priority-based swapping

(DQE.GQPO)
1 swap inhibit due to bit map access

(DQE.BMAP)
2 inhibit swap device while accessing MDT

(DQE.MDTA)
3 user swap inhibit flag (DQE.USWI)
4 user swap on priority only flag (DQE.USPO)

5-7 reserved

2-55

Dispatch Queue Entry (DQE)

Byte 0 (Hex) SYmbol Description

40 DQE.CQC Current quantum count;
Field length = 1W;
Used by the scheduler to accumulate elapsed execution
time for the task to compare the level unique
stage one and stage two time-distribution values.

44 DQE.SH Used by J.SW APR to swap shadow memory;
Field length = lB.

DQE.SHF Shadow memory flag;
Field length = 1B;

Bit Meaning if Set

0 task requests shadow memory (DQE.SHAD)
1 IPU shadow memory requested (DQE.SHI)
2 IPU/CPU Common Shadow Memory

requested (DQE.SHB).

DQE.TIFC Timer function code;
Field length = 1B;

Value Meaning

00 not active (1
01 request interrupt '<-J
02 resume program from suspend (SUSP)

queue
03 resume program from any-wait (ANYW)

queue
04 resume program from run-request-wait

(RUNW) queue
05 resume program from generalized

(SWGQ) queue
06 resume program from peripheral device

(SWDV) queue
07 resume program from disk space (SWDC)

queue

DQE.RILT Request Interrupt (RI) level for timer;
Field length = 1B;
Identifies the interrupt level to be requested upon
timer expiration.

48 DQE.UTS1 User timer slot word 1;
Field length = 1 W;
Current timer value;
Contains negative number of timer units before
time out

0
2·56 System Tables and Variables

Dispatch Queue Entry (DQE)

(Byte
(Hex) S~bol DescriQtion

4C DQE.UTS2 User timer slot word 2;
Field length = 1 W;
Reset timer value;
Contains negative number of timer units;
Used to reset the current timer value when
it expires.

50 DQE.DSW Base mode debugger status word (PCALL);
Field length = 1 W.

54 DQE.PRS Peripheral requirement specification;
Field length = lW;

Bit DescriQtion

0-7 reserved
8-15 device type code
16-23 channel address
24-31 subchannel address or contains first

word of SWGQ ID.

58 DQE.PRM Peripheral requirements mask;

(.•.
Field length = 1 W;

Value Meaning

X 'OOfFOOOO , any device of this type code
X'OOfFfFOQ' any device of the specified type

code on the specified channel
X'OOFFFFFF' the specified device as described

by type code, channel, and
subchannel address, or contains
second word of SWGQ ID.

5C Reserved Field length = 1 B

DQE.TSKF Task flags;
Field length = IB;

Bit Meaning if Set

0 real-time accounting disabled
(DQE.RTAC)

1-2 reserved for RMSS
3 task is running with MPX-32 mapped out

(DQE.MAPO)
4 reserved for MPX-32
5 task is demand page (DQE.DPG)
6 inhibit page out (DQE.NPGO)
7 reserved

('\

MPX-32 Technical Volume I 2-57

DiSpatch Queue· Entry (DQE)

Byte 0
(Hex) SYmbol Descri)2tion

DQE.MSPN TSA maps required to span MIDLs and MEMLs;
Field length = lB.

DQE.MST Static memory type speCification;
Field length = IB;

Value MemoryOass

01 E
02 H
03 S
04 HI
05 H2
06 H3

This field is used to specify the type
of memory required for in-swap.

60 DQE.PSSF Pre-emptive system service head cell string
forward linkage address;
Standard head cell fonnat;
Field length = 1 W;
Contains address of next (top-to-bottom) entry in chain.

64 DQE.PSSB Pre-emptive system service head cell string 0 backward linkage address;
Standard head cell fonnat;
Field length = 1 W;
Contains address of next (bottom-to-top) entry in chain.

68 DQE.PSPR Pre-emptive system service head cell dummy
priority (always zero);
Standard head cell fonnat;
Field length = lB.

DQE.PSCT Pre-emptive system service head cell number of
entries in list;
Standard head cell fonnat;
Field length = lB.

DQE.ILN Intenupt level number;
Field length = 1B;
Identifies associated intenupt level for intenupt
connected tasks.

DQE.RESU Reserved usage index;
Field length = lB.

o
2-58 System Tables and Variables

Dispatch Queue Entry (DQE)

(,. Byte
(Hex) SYmbol Description

6C DQE.TISF Task interrupt head cell string fOIward linkage address;
Standard head cell fonnat;
Field length = IW;
Contains address of next (top-to-bottom) entry in chain.

70 DQE.TISB Task interrupt head cell string backward linkage address;
Standard head cell fonnat;
Field length = I W;
Contains address of next (bottom-to-top) entry in chain.

74 DQE.TIPR Task interrupt head cell dummy priority (always zero);
Standard head cell fonnat;
Field length = lB.

DQE.TICf Task interrupt head cell number of entries in list;
Standard head cell fonnat;
Field length = IB.

DQE.SWIF Swapping inhibit flags;
Field length = lB;

Bit Task Meaning if Set

0 resident (DQE.RESP)

(1 locked in memory (DQE.LKIM)
2 unbuffered I/O in progress (DQEJO)
3 outswapped (DQE.OTSW)
4 leaving system (DQE.TL VS)
5 forced unswappable during tenninal output

(DQE.FCUS)
6 forced unswappable because swap file has

not been allocated for it (DQE.FCRS)
7 imbedded in the operating system

(DQE.INOS)

DQE.UBIO Number of unbuffered I/O requests currently outstanding;
Field length = lB.

78 DQE.RRSF Run receiver head cell string forward linkage address;
Standard head cell fonnat;
Field length = 1 W;
Contains address of next (top-tu-bottom) entry in chain.

7C DQE.RRSB Run receiver head cell string backward linkage address;
Standard head cell fonnat;
Field length = lW;
Contains address of next (bou:om-to-top) entry in chain.

80 DQE.RRPR Run receiver head cell dummy priority (always zero);
Standard head cell fcnnat;
Field length = lB.

(~\

MPX-32 Technical Volume I 2-59

Dispatch Queue Entry (DQE)

Byte
(Hex)

84

88

8C

90

Symbol

DQE.RRCf

DQE.NSCf

DQE.MRSF

DQE.MRSB

DQE.MRPR

DQE.MRCf

DQE.NWRR

DQE.NWMR

DQE.RTI

Description

Run receiver head cell number of entries in list;
Standard head cell format;
Field length = lB.

Number of map blocks outswapped;
Field length = IH.

Message receiver head cell string fOIWard
Linkage address;
Standard head cell format;
Field length = I W;
Contains address of next (top-to-bottom) entry in chain.

Message receiver head cell string backward
Linkage address;
Standard head cell format;
Field length = I W;
Contains address of next (bottom-to-top) entry in chain.

Message receiver head cell dummy priority (always zero);
Standard head cell format;
Field length = lB.

Message receiver head cell number of entries in list;
Standard head cell format;
Field length = lB.

Number of no-wait mode run requests outstanding;
Field length = lB.

Number of no-wait mode message requests outstanding;
Field length = lB.

Requested task interrupt flags;
Field length = IB;

Bit Meaning if Set

o reserved
I priority one end action request Used for

pre-emptive system services. (DQE.EAIR)
2 debug break request (DQE.DBBR)
3 user break request (DQE.UBKR)
4 priority two end action request (DQE.EA2R)
5 message interrupt request (DQE.MSIR)

6-7 reserved

System Tables and Variables

o

o

Dispatch Queue Entry (DQE)

(Byte
(Rex) SYmbol Description

DQE.NWLM No-wait run request limit.
Field length = lB.

DQE.ATI Active task interrupt flags;
Field length = lB;

Bit Meaning if Set
0 reserved
1 priority one active end action (DQE.AEAl)
2 active debug break (DQE.ADM)
3 active user break (DQE.AUB)
4 priority two active end action (DQE.AEA)
5 active message interrupt (DQE.AMI)

6-7 reserved

Reserved Field length = lB.

94 DQE.SAIR System action task interrupt request;

Bit Meaning if Set
0 request for delete of this task (DQE.DELR)
1 reserved
2 hold task request (DQE.HLDR)

(-
3 abort task request (DQE.ABTR)
4 exit task request (DQE.EXTR)
5 suspend task request (DQE.SUSR)
6 run receiver mode request (DQE.RRRQ)
7 reserved

DQE.TAD TSA address (logical);
Field length = t W;
Byte zero contains DQE.SAIR.

98 DQE.ABC Abort code;
Field length = 3W.

A4 DQE.TSAP Physical address of the TSA

A8-AC DQE.SRID If DQE.DPG is reset;
Used swap space linked list;
Field length = 2W.

DQE.PGOL ffDQE.DPGisset;
Page out list;
Forward pointer to MPTL (MAP.SF);
Field length = tRW
Backward pointer to MPfL (MAP.SB)
Field length = tRW.

DQE.PGOC Number of pages queued for pageout
Field length = lRW.

Reserved Field length = lRW.

('

MPX-32 Technical Volume I 2-61

Dispatch Queue Entry (DQE)

Byte 0 (Hex) Symbol Description

BO DQE.COIR Load module RID at activation; .
Field length = 8W.

DQE.CVOL Current working volume at activation;
Field length = 8W.

DO DQE.GIO Group swap identification;
Field length = lB.

D1 Reserved 1 Byte

02 DQE.ASH Number of shadow memory blocks currently allocated
Field length = 1H.

D4 DQE.ACX2 Advance communication word;
Field length = 1 W.

08 DQE.MRQ Memory request doubleword;
Reserved field length = lB.

DQE.MEM Type of memory requested;
Field length = 1B;

Value Memory Class

01 E
C~ 02 H

03 S ./

DQE.MEMR Number of memory blocks required;
Field length = 1H.

DC DQE.MRT Memory request type code;
Field length = IB;

Value Meaning

00 in-swap only
01 preactlvation request
02 activation request
03 memory expansion request
04 IOCS buffer request
05 shared memory request
06 system buffer request
07 release swap file space

If DQE.MRT equals 05, the next three bytes will
contain the address of the shared memory table entry.

Reserved Field length = lB.

DQE.RMMR Map register for requested memory;

0 Field length = 1H.

2·62 System Tables and Variables

Byte
(Hex)

EO

E4

E8

Symbol

DQE.MAPN

DQE.C:ME

DQE.CMH

DQE.CMS

Reserved

Dispatch Queue Entry (DQE)

Description

Inclusive span of maps in use;
Field length = IH.

Number of swappable class E map blocks
currently allocated;
For resident tasks, if not zero, reflects the
total number of map blocks in use.
Field length = IH.

Number of swappable class H map
blocks currently allocated;
For resident tasks, if not zero, reflects the
total number of map blocks in use.
Field length = IH.

Number of swappable class S map blocks
currently allocated;
For resident tasks, if not zero, reflects the
total number of map blocks in use.
Field length = IH.

Reserved for MPX-32;
Field length = 6W.

2.14 Dispatch Queue Address Table (DA T)

The dispatch queue address table (DA 1) is a variable length table built by SYSGEN.
It contains a maximum of 255 single word entries. It is accessed by the word adjusted
DQE entry number, and contains the address of the associated DQE in the CPU
dispatch queue area. The address of the DAT minus one word is contained in
C.ADAT. The number of DAT entries is contained in C.NQUE and is equal to the
number of DQEs.

MPX-32 Technical Volume I 2-63

File Assignment Table (FA 1)

2.15 File Assignment Table (FAT)

2-64

The file assignment table (FAT) is used to associate a logical file code (LFC) to a
resource. It also coordinates access to the resource referenced by an LFC. The FAT
is linked to the unit definition table (UDT) and the controller definition table (CDT)
when the resource is allocated.

The FAT must contain information related to the requestor of the resource, such as
position within the file (segment and byte within the segment) and current access
mode. To increase efficiency, the FAT also contains information pertaining to
allowable access modes, segmentation, and extendibility.

Word 0 7 8 15 16 23 24 31

o

1

2

3

4

5
6

7

8

9

10

11

12
13

14

15

Status Access flags or COT index (DFf.CDTX)
bits system file code
(OFf.STB). (DFI'.ACF)
See Note 1. See Note 2.

Flags Number of UDT index (DFf.UDTX)
(DFI' .FLGS). FPTs assigned
See Note 3. (DFf.NAS)

Segment definition area address (DFI'.SEGA)
or
Volume name for dismount message (DFI'.VNAM)

Relative file block position (DFI' .POS)

Relative EOM block position (DFI'.EOM). See Note 4.

Relative EOF block number (DFI' .EOF)

Current segment position in Number of segments (DFI' .NSEG)
file (DFI'.CSEG) or device
specification mask (DFI'.MASK)

Relative end block number of Append record pointer (DFI'.AREC).
current segment (DFI'.SEGE) or See Note 5.
Unformatted medium identifier
(MTF.REEL). See Note 5.

File attributes field (DFI'.ATIR). See Note 6.

Append block number (DFI' .ABLK) or volume number
for multivolume media (MTF.VOL)

Blocking buffer head cell address (DFI'.BBA)

Associated Number of opens Current access I Resource type
VAT index on this FAT mode (DFT.CACM) I code (DFT.TYPE)
(DFT.VATX) (DFT.OPCI') i
Address of parent directory resource descriptor (OFT .PDIR)

Relative offset of parent directory entry (DFT.DOFF)

Allocated resource table entry pointer (DFT .ARTA)

Assigned access restrictions (DFT.ACCS). See Note 7.

System Tables and Variables

o

o

()

o

File Assignment Table (FAT)

Notes:

1. Bits in DFf.STB are assigned as follows:

Bit Meaning if Set
o file open
1 file opened read/write
2 permanent file
3 blocking buffer output active
4 unformatted medium
5 volume resource
6 read only access
7 TSM associated FAT

2. Bits 0-4 in DFf.ACF are assigned as follows:

Volume resource only:

Bit Meaning if Set
0-1 reserved
2 $ read on SYC

3-4 reserved

Unformatted medium only:

Bit
o
I
2
3
4

Meaning if Set
mount message has been inhibited or tape is shared
multivolume tape
mount message has been output
tape atEOT
tape at BOT

Bits 5-7 in DFf.ACF apply only to volume usage and contain one of the
following values:

Value Meaning if Set
o nota system file
1 SYC file
2 multivolume magnetic tape was generated by an

MPX-32 revision 3.3 or later source system
3 SLO file
4 SBO file

3. Bits in DFf.FLGS are assigned as follows:

Bit
o
I
2

3
4
5
6
7

MPX-32 Technical Volume I

Meaning if Set
blocking buffer present
SMAP or DMAP assignment
multivolume magnetic tape was generated by an
MPX-32 revision 3.3 or later source system
file has been assigned to the null device
this FAT entry is not in use
TSM I/O (task is swappable)
ANSI labeled tape assignment
reserved

2-65

File Assignment Table (FA 1)

2-66

4. Byte 3 of word four contains tape density for high speed tape (OFf. DENS) and 0
EOM does not apply (OFf.EOM).

5. For an ANSI labeled tape assignment, this address contains the six-character
Volume Identifier (VIO).

6. Bits in DFf.A TI'R are assigned as follows:

Bit
o
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

18
19-31

Meaning if Set
file is automatically extendable
file is implicitly shared
file data has been modified
unblocked specified at assignment
file opened for random access
file opened in blocked mode
expanded FCB
resource descriptor opened for modify
current access mode specified at assignment
resource to be marked blocked at close
queue inhibit
spool option requested
EOF update required
reseIVed for IOCS
file assigned to nonpublic volume
segmented file
task in resource queue when deleted
the date and time of last change field in the resource
descriptor is not changed on a rewrite
data in file is blocked (OFf.BLKD)
reseIVed

7. Bytes in DFf.ACCS are assigned as follows:

~ Definition
0-1 Bit pattern from RR.ACCS if specified at assignment

(see section 2.32 for details on RR.ACCS). If not specified,
the bit pattern is from the appropriate access restriction
field (RD.AOWNR, RD.AUORP, RD.AOTHR) in the resource
descriptor. See the Resource Descriptor (M.RDCOM) section
in this chapter for details.

2 Bits are assigned as follows:

Bit Meaning if Set

o assigned for explicit shared use
1 assigned for exclusive use

2-7 reseIVed

3 Bit pattern specified in byte three of RD.SFLGS in the
associated resource descriptor. See the Resource
descriptor space definition (M.RDSPD) section in this
chapter for details.

System Tables and Variables

o

o

c'

File Control Block (FCB)

2.16 File Control Block (FCB)

The file control block (FCB) is used to convey infOImation about requested I/O
operations and to report their status to the requestor. The table entry is generally
located in the task's address space. The task's FCB is linked to the file assignment
table (F AT) when the resource is opened. This completes the logical connection from
the task to the requested resource for subsequent use. The FCB is then linked to an
I/O Queue (IOQ) entry when an operation for that logical connection is requested.
When this is done, the status for the requested operation code is posted in the
respective FCB.

Linkages among the FCB, FPT, and FAT are established at open time. To minimize
I/O overhead, use the opened FCB for all I/O to a specific LFC. Using alternate
FCBs is possible but not recommended because it changes these linkages. If alternate
FCBs are used, an explicit close must be perfonned for each LFC used. Because the
operating system relies on infonnation in the FCB during I/O processing, the FCB
must not be modified from the time the I/O operation issues until it completes end
action processing.

MPX·32 Technical Volume I 2·67

File Control Block (FCB)

Wad 0 7 8 12 13 31

8

9

10

11

Logical file code (FCBLFC)

~--~

No-wait I/O nonna! end·action service address (FCB.NWOK)

No-wait I/O error end·action service address (FCB.NWER)

15 Nwnberof Address of blocking buffer (FCB.BBA)
buffers
(FCB.BBN)

Shaded areas are set by the system.

Word 0

Bit 0 Reserved

TlFCB

Bits 1·7 Operation code (FCB.OPCD) - type of function requested of the device
handler. This field is set by laCS as a function of the executed service.

Bits 8·31 Logical file code (FCB.LFC) - any combination of three AScn
characters is allowed. The LFC must match the previously assigned LFC
of the I/O resource being accessed.

Word 1

Bits 0.31 Reserved

Word 2

o

C)

Bits 0-7 General control flags (FCB.GCFG) - these eight bits enable the user to
specify the manner in which an operation is to be performed by lacs.
The interpretation of these bits is shown below: 0

2·68 System Tables and Variables

File Control Block (FCB)
("~

Meaning
Bit if Set Definition

0 NWT IOCS returns to the user immediately after the
I/O operation is queued. If reset, IOCS exits to the
calling program only when the requested operation
has been completed.

1 NER error processing is not performed by either the device
handler or IOCS. An error return address is ignored
and a normal return is taken to the caller, however,
the device status is posted in the FCB unless bit
3 is set. If reset, normal error recovery is
attempted. Normal error processing for disk and
magnetic tape is automatic error retry. Error
processing for unit record devices except the
system console is accomplished by IOCS typing
the message INOP to the console, which allows
the operator to retry or abort the I/O operation.
If the operator aborts the I/O operation, or if
automatic error retry for disk or magnetic tape is
unsuccessful, an error status message is typed
to the console and the error return address is
taken if provided. Otherwise, the task is aborted.

2 DFI data formatting is inhibited. Otherwise, data

(-: ... formatting is performed by the appropriate device
handler. See Table 2-1 for more explanation.

3 NST device handlers perform no status checking and no
status information is returned. Ali I/O appears
to complete without error. Otherwise, status
checking is performed and status information
is returned as necessary.

4 RAN file accessing occurs in the random mode.
Otherwise, sequential accessing is performed.

5 reserved (M.FILE)

6 EXP must be 1 for 16-word FCB.

7 IEC this bit is reserved for internal IOCS use.

Bits 8-12 Special Control Specification (FCB.SCFG). - This field
contains device control specifications unique to certain devices.
Interpretation and processing of these specifications are performed
by the device handlers. A bit setting is meaningful only when a
particular type of device is assigned as indicated in Table 2-1.

Bit.:, 13-31 reserved for extended control specifications

Meaning
Bit if Set Definition

13 RXON software read flow control required

('" for 8-Line ACM (FCB.RXON)

MPX-32 Technical Volume I 2-69

File Control Block (FCB)

Device Bit 2::0

Line Interpret first
Printer character as
(LP) carriage

control

Discs, ReponEOFif
(DM,DF, X'OFEOFEOF'
FL) encountered

in word 0 of
1st block
during read
of unblocked
file

M.READ
8-Line
Asynchronous Perform
Communications special
Multiplexer character
(TY) formatting

M.WRIT

Interpret first
character as
carriage
control

Device Bit 10::0

Line Printer (LP) Reserved

Discs,
(OM,DF,
FL)

M.READ
8-Line
Asynchronous (If bit 2=0)
Communications convert lower
Multiplexer case
(TY) character

to upper case

M.WRIT

Continued on next page

2·70

Bit 2=1

Table 2-1
Special Control Flags

Bit 8--0 Bit 8=1 Bit 9::0

Interpret first Form No form
character as control control
data
See bit 8

X'OFEOFEOF'
in word 0
not
recognized
asEOF

M.READ M.READ M.READ M.READ

No special ASCII control ASCII control Echo by
character passed as character controller
formatting data detect

M.WRlT SVC I,X'3E' SVC 1,x'3E' M.WRIT

Interpret first Stop Start Normal
character as transmitting transmitting write
data break break:

Bit 10=1 Bit 11::0 Bit 11=1 Bit 12::0

Reserved Reserved Reserved Reserved

Normal read

M.READ M.READ M.READ M.READ

Inhibit No special Special Do not purge
conversion character character type ahead

detect detect buffer

M.WRIT M.WRIT M.WRIT M.WRlT

Normal write Write with
input sub-
channel
monitoring
plus software
flow control

Bit 9=1

M.READ

No echo by
controller

M.WRIT

Initialize
device (load
UART
parameters)

Bit 12=1

Reserved

Read with byte
granularity
(word 2 bit
4 set)

M.READ

Purge type
ahead buffer

M.WRIT

System Tables and Variables

o

o

File Control Block (FCB)

Table 2-1
Special Control Flags (Continued)

Device (Bit 2=0) (Bit 2=1) Bit 8 Bit 9 Bit 10 Bit 11 Bit 12

ALIM Read: Bit 2 Bit 8 Bit 9 Read On Read:
(Asynch- receive
ronous data 0 1 0 =Blind mode reset 1= Inhibit
Line (bytes) 0 0 1 =Echo on read conversion
Interface defined 1 N/A N/A =Receive data of lower
Module) for 0 0 0 =Receive data case
Terminals transfer characters
(TY) count to upper

Write case
Write: 0 N/A 0 =Fonnatted write 0= Convert
formatted 0 N/A 1 =Initialize device

1 N/A N/A =Unformatted write

o
MPX-32 Technical Volume I 2-71

File Control Block (FCB)

Word 3 10
Bits 0-31 Status word (FCB.SFLG) - 32 indicator bits are set by IOCS to

indicate the status, error, and abnonnal conditions detected
during the current or previous operation. The assignment of
these bits is shown as follows:

Meaning
Bits if Set Definition

0 OP operation in progress. Request has
been queued. (Note: Reset after post I/O
processing complete.)

1 ERR error condition found
2 BB invalid blocking buffer control pointers

have been encountered during file blocking
or unblocking

3 PRO write protect violation
4 !NOP device inoperable
5 BOM beginning-of-medium (BOM) (load point)

or illegal volume number (multivolume
magnetic tape)

,

6 EOF end-of-file
7 EOM end-of-medium (end of tape. end of

disk file) C) 8-9 reserved
10 TIME last command exceeded time-out value

and was tenninated
11-15 reserved
16 ECHO echo
17 !NT post program-controlled interrupt
18 LEN incorrect length
19 PROG channel program check
20 DATA channel data check
21 CTRL channel control check
22 INTF interface check
23 CHAI chaining check
24 BUSY busy
25 ST status modified
26 CTR controller end
27 ATIN attention
28 CHA channel end
29 DEV device end
30 CHK unit check
31 EXC unit ex~ption

Word 4

Bits 0-31 Record length (FCB.RECL) - this field is set by IOCS to indicate the
actual number of bytes transferred during read/write operations. 0

2-72 System Tables and Variables

c

File Control Block (FCB)

WordS

Reserved Bits 0-7

Bits 8-31 I/O queue address (FCBJOQA) - this field is set by Ioes to point
to the I/O queue for an I/O request initiated from this FCB

Word 6

Bits 0-7 Special status bits (FCB.SPST). The interpretation
of these bits is shown below:

Bits Definition

o no-wait normal end action not taken

1 no-wait error end action not taken

2 request killed, I/O not issued

3 if set, exceptional condition has occurred in the
I/O request

4 if set, software read fiow control required

5-7 reserved

Bits 8-31 Wait I/O error return address (FCB.ERRT) - this field is set by the
user and contains the address to which control is to be transferred

Word 7

in the case of an unrecoverable error when control bits 1 and 3
of word 2 are reset. If this field is not initialized and an
unrecoverable error is detected under the above conditions, the
requesting task is aborted.

Bits 0-7 Index to FPf (FCB.FPfI) - this field is set by IOCS to index
into the associated entry in the file pointer table (FPT)

Bits 8-31 FAT address (FCB.FATA) - this field is set by IOCS to point
to the associated file assignment table (FAT) entry.

Word 8

Bits 0-7

Bits 8-31

Word 9

Reserved

Data buffer address (FCB.ERW A) - start address of data area
for read or write operations. (24 bit pure address)

Bits 0-31 Quantity (FCB.EQTY)- number of bytes of data to be transferred

MPX-32 Technical Volume I 2-73

File Control Block (FCB)

2-74

Word 10

Bits 0-31

Word 11

Random access address (FCB.ERAA) - this field contains a
block number (zero origin) relative to the beginning of the
disk file. It is the start address for the current read or
write operation with word 2 bit 4 set and word 2 bit 12 reset

or

For disk read requests with word 2 bits 4 and 12 set (read with
byte granularity), this word defines the byte offset relative to
the beginning of the file where the current read will start.

Note: If word 9 is zero, the file retains its position prior to
the call.

Bits 0-31 Status word one (FCB.ISTl) - these are the first 32 bits
of status returned by the sense command

Word 12

Bits 0-31

Word 13

Bits 0-7

Bits 8-31

Word 14

Bits 0-7

Bits 8-31

Status word two (FCB.ISTI) - these are the second 32 bits
of status returned by the sense command

Reserved

No-wait I/O (FCB.NWOK) - normal completion return address.
This user routine must be exited by calling the M.xIEA service.

Reserved

No-wait I/O (FCB.NWER) - error completion return address.
This user routine must be exited by calling the MJeIEA service.

Word 15 (Applicable only to volume resource.)

Bits 0-7 (FCB.BBN) - Number of 192 word buffers for user supplied blocking
buffers. A value of one or zero in this field specifies one
blocking buffer.

Bits 8-31 Blocking buffer address (FCB.BBA) - starting address
of a contiguous area of memory FCB.BBN buffers long

System Tables and Variables

10

10

o

(

File Control Block (8 Word Compatible Mode)

2.17 File Control Block (8 Word Compatible Mode)

12 13

Logical me code (FCBLFC)

1 Trnnsfercontrol word (FCB.TCW)

2 General control
flags
(FCB.GCFG)

Special flags Random access address
(FCB.SCFG) (FCB.CBRA)

Shaded areas are set by the system.

Word 0

Bit 0 ReseIVed

A.LSW.FCB

Bits 1-7 Operation code (FCB.OPCD) - type of function requested of
the device handler. This field is set by IOCS as a function of the
requested service. See Table 2-2 for allowable functions by
device.

Bits 8-31 Logical file code (FCB.LFC) - any combination of three ASCII
characters is allowed.

Word 1 (FCB.TCW)

This word supplies a transfer control word (TCW) that describes a data buffer
and transfer quantity. If no TCW definition is supplied, the transfer buffer
defaults to location zero of the task's togical address space and is 4096 words
long.

Bits 0-11 Quantity - 12 bit field specifying the number of data
items to be transferred. This quantity must include the
carriage control character, if applicable. The transfer quantity
is in writs detennined by the address in bits 12 to 31.

31

MPX·32 Technical Volume I 2-75

File Control Block (8 Word Compatible Mode)

2·76

Bits 12-31 FOImat code and buffer address- bits 12,30 and 31
specify byte, halfword, or word quantities for data transfers.
They are interpreted as follows:

Word 2

Type of
Transfer
Byte
Halfword
Word

F
(12)

1
o
o

C
(30,31)

xx
xl
00

Address
13-31
13-30
13-29

Bits 0-7 General control flags (FCB.GCFG) - these eight bits enable the user to
specify the manner in which an operation is to be performed by IOCS.
The interpretation of these bits is shown below:

System Tables and Variables

ii', 0_-.... 11 .. '.\

o

File Control Block (8 Word Compatible Mode)

c: Meaning
Bit if Set Definition

0 NWI' IOeS renuns to the user immediately after the
I/O operation is queued. If reset, IOeS exits to the
calling program only when the requested operation
has been completed.

1 NER error processing is not performed by either the device
handler or IOeS. An error return address is ignored
and a nonnal return is taken to the caller; however,
the device stablS is posted in the FCB unless bit
3 is set. If reset, nonnal error recovery is
attempted. Normal error processing for disk and
magnetic tape is automatic error retry. Error
processing for unit record devices except the
system console is accomplished by IOCS typing
the message INOP to the console. which allows
the operator to retry or abort the I/O operation.
If the operator aborts the I/O operation, or if
automatic error retry for disk or magnetic tape is
unsuccessful. an error stablS message is typed
to the console and the error return address is
taken if provided. Otherwise, the task is aborted.

2 DFI data formatting is inhibited. Otherwise. data
(-' formatting is performed·by the appropriate device

handler. See Table 2-1 for more explanation.
3 NST device handlers perfonn no status checking and no

stablS infonnation is returned. All I/O appears
to complete without error. Otherwise, status
checking is performed and status information
is returned as necessary.

4 RAN file accessing occurs in the random mode.
Otherwise. sequential accessing is performed.

5 reserved (M.FILE)
6 EXP must be 0 for 8 word FCB.
7 IEe this bit is reserved for internal IOCS use.

Bits 8-12 Special Control Specification (FCB.SCFG). - This field
contains device control specifications unique to certain devices.
Interpretation and processing of these specificaOons are performed
by the device handlers. A bit setting is meaningful only when a
particular type of device is assigned as indicated in Table 2-2.

Bits 13-31 Random access address (FCB.CBRA) - This field contains
a block number (zero origin) relative to the beginning of the disk
file. and s{y':=ifies the base address for read or write operations.

C)

MPX-32 Technical Volume I 2·n

File Control Block (8 Word Compatible Mode)

Table 2-2
Special Control Flags (8 Word FCB)

Device Bit 2::0 Bit 2=1 Bit 8::0 Bit 8=1 Bit 9=0 Bit 9=1

Line Interpret first Interpret first Fonn No fonn
Printer character as character as control control
(LP) carriage data

control See bit 8

Discs, Report EOF if X'OFEOFEOF'
(DM,DF, X'OFEOFEOF' in word 0
FL) encountered not

in word 0 of recognized
1st block as EOF
during read
of unblocked
file

M.READ M.READ M.READ M.READ M.READ M.READ
8-Line
Asynchronous Perfonn No special ASCII control ASCII control Echo by No echo by
Communications special character passed as character controller controller
Multiplexer character fonnatting data detect
(TY) fonnatting

M.WRIT M.WRIT SVC 1,X'3E' SVC 1,x'3E' M.WRIT M.WRIT

Interpret first Interpret first Stop Start Nonnal Initialize
character as character as transmitting transmitting write device (load
carriage data break break UART
control parameters)

Device Bit 10::0 Bit 10=1 Bit 11::0 Bit 11=1 Bit 12=0 Bit 12=1

Line Printer (LP) Reserved Reserved Reserved Reserved Reserved Reserved

Discs,
(DM,DF,
FL)

M.READ M.READ M.READ M.READ M.READ M.READ
8-Line
Asynchronous (If bit 2=0) Inhibit No special Special Do not purge Purge type
Communications convert lower conversion character character type ahead ahead buffer
Multiplexer case detect detect buffer
(TY) character

to upper case

M.WRIT M.WRIT M.WRIT M.WRIT M.WRIT M.WRIT

Nonnal write write with
input sub-
cr..lUl11el
monitoring
plus software
flow control

Continued on next page

2-78 System Tables and Variables

File Control Block (8 Word Compatible Mode)

Table 2-2
Special Control Flags (8 Word FeB) (Continued)

Device (Bit 2=0) (Bit 2=1) Bit 8 Bit 9 Bit 10 Bit 11 Bit 12

AUM Read: Bit 2 Bit 8 Bit 9 Read On Read:
(Asynch- receive
ronous data 0 1 0 =Blind mode reset 1= Inhibit
Line (bytes) 0 0 1 =Echo on read conversion
Interface defined 1 N/A N/A =Receive data of lower
Module) for 0 0 0 =Receive data case
Terminals transfer characters
(TY) count to upper

Write case
Write: 0 N/A 0 =Formatted write 0= Convert
formatted 0 N/A 1 =Initialize device

1 N/A N/A =Unformatted write

MPX-32 Technical Volume I 2-79

File Control Block (8 Word Compatible Mode)

Word 3 10)
Bits 0-31 Status word (FCB.SFLG) - 32 indicator bits are set by IOCS to

indicate the status, error, and abnormal conditions detected
during the current or previous operation. The assignment of
these bits is shown as follows:

Meaning
Bits if Set Definition

0 OP operation in progress. Request has
been queued. (Note: Reset after post I/O
processing complete.)

1 ERR error condition found
2 BB invalid blocking buffer control pointers

have been encountered during file blocking
or unblocking

3 PRO write protect violation
4 !NOP device inoperable
5 BOM beginning-of-medium (BOM) (load point)

or illegal volume number (multivolume
magnetic tape)

6 EOF end-of-file
7 EOM end-of-medium (end'of tape, end of

disk file) 0 8-9 reserved
10 TIME last command exceeded time-out value

and was terminated
11-15 reserved
16 ECHO echo
17 !NT post program-controlled interrupt
18 LEN incorrect length
19 PROG channel program check
20 DATA channel data check
21 CTRL channel control check
22 INTF interface check
23 CHAI chaining check
24 BUSY busy
25 ST status modified
26 erR controller end
27 ATTN anention
28 CRA channel end
29 DEV device end
30 CHK unit check
31 EXC unit exception

o
2-80 System Tables and Variables

(.
File Control Block (8 Word Compatible Mode)

Word 4

Bits 0-31 Record length (FCB.RECL) - this field is set by IOCS to indicate the
actual number of bytes transferred during read/write operations.

WordS

Reserved Bits 0-7

Bits 8-31 I/O queue address (FCB.IOQA) - this field is set by 10CS to point
to the I/O queue for an I/O request initiated from this FCB

Word 6

Bits 0-7 Special status bits (FCB.SPST). The interpretation
of these bits is shown below:

Bits Definition

o no-wait normal end action not taken

1 no-wait error end action not taken

2 kill command, I/O not issued

3 if set, exceptional condition has occurred in the
I/O request

4

5-7

if set, software read flow control required

reserved

Bits 8-31 Wait I/O error return address (FCB.ERRT) - this field is set by the
user and contains the address to which control is to be transferred

Word 7

in the case of an unrecoverable error when control bits 1 and 3
of word 2 are reset. If this field is not initialized and an
unrecoverable error is detected under the above conditions, the
user is aborted.

Bits 0-7 Index to FPT (FCB.FPTI) - this field indexes into the appropriate
entry in the file pointer table (FPT)

Bits 8-15 FAT address (FCB.FATA) - this field points to the file assignment
table (FAT) entry associated with ali I/O performed for this
FCB. This field is supplied by IOCS.

MPX-32 Technical Volume I 2-81

File Pointer Table (FPT)

2.18 File Pointer Table (FPT)

2-82

The file pointer table (FYI') provides the linkage between the file control block (FCB)
and the file assignment table (FAT). It also allows for multiple logical file code
assignments to be made equivalent to the same FAT. The linkage to the FAT is
performed at assignment. The linkage to the FCB is performed at open and is re
established if necessary for every operation at opcode processing time. The FPT
resides in the task's service area.

FPT entries one to six are reserved for the system as follows:

Entry 1 - System LFC *s*
Entry 2 - Load module LFC *LM
Entry 3 - H.VOMM resource descriptor LFC (1)
Entry 4 - H.VOMM directory LFC (2)
Entry 5 - H.VOMM DMAP/SMAP LFC (3)
Entry 6 - H.VOMM modify resource descriptor LFC X'FFFEE'

Each FPT entry has the following format:

Ward 0

1

2

Notes:

o
Reserved

Flags (FPI' .FLGS).
See Note 1.

Reserved

7 8 15 16 23 24

Logical file code (FPI'.LFC)

FCB address (FPT .FCBA)

FAT address (FPT.FATA)

1. Bits in FPT.FLGS are assigned as follows:

Bit Meaning if Set

o reserved
1 multiple FPT entries exist that point to the same FAT

(Le., $ASSIGN4 or $ASSIGN lfc TO LFC = lfc statements)
2 FPT busy flag
3 FPT open
4 this FPf entry is not in use
5 pseudo-SYC assignment (used by TSM)
6 pseudo-FPT for unassigned temporary file
7 reserved

31

System Tables and Variables

1/0 Queue (IOQ) Entry

2.19 I/O Queue (IOQ) Entry

The I/O queue (l0Q) entry is dynamically allocated from memory pool and contains
infonnation required to queue and process an I/O request These entries are variable
in length and support multiple device commands that are built starting at the end of
the standard IOQ entry. The I/O queue consists of one or more I/O queue entries
linked to either a controller definition table (COT) or a unit definition table (UDT).
See Figures 2-1 and 2-2.

MPX-32 Technical Volume I 2·83

1/0 Queue (IOQ) Entry

2-84

o 78 15 16 23 24 31

Word 0 String forward address (IOQ.SFA)

1 String backward address (IOQ.SBA)

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Queue priority I/O type Channel number Subaddress
(IOQ.PRI) (IOQ.TYPE) (IOQ.CHNO) (IOQ.SUBA)

Reserved (IOQ.RTN)

PSD1 of task interrupt routine (IOQ.PSD). See Note 1.

PSD2 of task interrupt routine

Status (IOQ.STAT) FCB or TCPB address (IOQ.FCBA)
See Note 2.

Program number CDT address (IOQ.CDT A)
(IOQ.PRGN)

Handler function word one (IOQ.FCTI)

Handler function word two (IOQ.FCTI). See Note 3.

Handler function word three (IOQ.FCT3). See Note 4.

Handler function word four (IOQ.FCf4)

32-bit flag word (IOQ.FLGS). See Note 5.

FAT address (IOQ.FATA)

Number of bytes transferred Number of words in OS buffer
(IOQ.U1RN). See Note 6. (IOQ.WOSB). See Note 6.

OS buffer address (IOQ.FBUF)

User's buffer address (IOQ.TBUF)

I/O returned status word one (IOQ.IOST)

I/O returned status word two (IOQ.lSTI). See Note 7.

I/O returned status word three (IOQ.ISTI). See Note 8.

UDT address (IOQ.UDTA)

Control information from word two of FCB (IOQ.CONT)

Address of context block (IOQ.CBLK) or device context area address
(IOQ.DCAA)

Mode bits Queue priority Number of extra words in this
(extended I/O) temporary storage queue entry (IOQ.XTRA)
(IOQ.MODE). (IOQ.PSAV)
See Note 9. .
(or)
Word address of
set mode bits
(IOQ.MOWD)

Device inoperable buffer address (for I/O error processing) (IOQ.INOP)

Address of first word of dynamic IOCD list (extended I/O) (IOQ.IOCD).
See Note 10.

System Tables and Variables

(\

C;

1/0 Queue (IOQ) Entry

Notes:

1. For no-wait I/O, this field is set to point to the I/O postprocessing routine
(S.IOCSI). When I/O completes, control is passed to this service.

2. Bits in IOQ.STAT are assigned as follows:

Bit Meaning if set

o I/O queue is active. This bit is reset by the device handler
when physical I/O transfer completes.

1 sense command was issued on behalf of this I/O request
(extended I/O)

2 error retry was issued (rezero and retry
entire IOCD list) (extended I/O)

3 operator intervention required. Do not restart I/O.
4 user's buffer is used for I/O
5 read ECC was issued (extended I/O)
6 error retry was issued (retry entire IOCD

list) (extended I/O). Backspace write or read sequence
performed for extended I/O· tape.

7 reserved

3. For extended I/O devices, IOQ.FCT2 contains the 24-bit virtual address of the
data or IOCL (bits zero to seven are zero).

4. For extended I/O devices, IOQ.FCT3 contains the adjusted byte transfer count in
bits 0 to 31 (maximum is C.ADMASK plus one).

5. Bits in IOQ.FLGS are assigned as follows:

Bit

0
1
2
3
4
5
6
7
8
9

10
11
12
13

14
15
16

MPX-32 Technical Volume I

Meaning if set

multiplexed controller
OPCOM console request
TCW has been absolutized
IOQ will be linked to the UDT, not the CDT
deallocate OS buffer
extended I/O
error found
system console queue
data move required (OS to user buffer)
rewind command in IOCD list for magnetic
tape or reserve command in IOCD list for disk (extended I/O)
nonexecute channel read command (exterAled I/O)
nonexecute channel write command (ex&.cllded I/O)
special handler postprocessing required (handler EP6)
H.CI'OO has been called with an FCB, not with a TCPB
(Le., not by H.IOCS,14)
floating IOQSIZE by 2 words
terminal input
terminal output

2-85

I/O Queue (IOQ) Entry

2-86

Bit

17
18
19
20
21
22
23
24
25
26

27
28
29
30
31

Meaning if set

task swappable during I/O
release command in IOCD list for disk (extended I/O)
no-wait I/O (not TSM)
I/O restan entry
nondevice access I/O performed
kill command issued for this I/O request
execute channel program (extended I/O)
user privileged
D-class controller (GPMC) only
physical I/O performed for a user requesting
blocked I/O
static IOQ
reserved
EOF testing required for disk
movement in file is in negative direction
continuous EOF search (disk and floppy disk only)

6. For extended I/O devices, IOQ.UTRN is a full word (bits 0 to 31) and
IOQ.WOSB is not applicable.

7. For extended I/O devices, IOQ.IST1 is initialized to the start address within the
I/O queue for any dynamic IOCDs.

8. For extended I/O devices, IOQ.IST2 is initialized to the stop address within the
I/O queue for any dynamic IOCDs.

9. Mode bits are peculiar to each device.

10. This field contains the absolute data or IOCL address associated with the I/O
request

System Tables and Variables

G~.' .. ····· l",

c

I/O Queue (IOQ) Entry

.. OP
OP OP

FILE FILE
CONTROL POINTER

~
BLOCK (FCB) .,Q. rA- TABLE (FPT)

OP
r Ir

INPUTI
OP

FILE ~------------ ... VOLUME
OUTPUT ASSIGNMENT ASSIGNMENT

OUEUE(IOO) t TABLE (FAT) A TABLE (MVT)

OP OP A, , A ~M , , , , A MOUNTED CHANNEL SEGMENT , , ALLOCATED
DEFINITION - DEFINmON , , .. RESOURCE VOLUME

TABLE(CDT) TABlE(CHT) , , , TABLE (ART) ~ TABLE (MVT) , , , ,
I ,

tA

M M
S

, , , , , , , , ,
DEVICE

, , ,
SHARED ,

TYPE
,

~MORY , ,
TABLE (OTT)

,
TABLE(SMT) , , I ,

I ,
1s· ,

'-- I . ---
+

, I

+ + riA

S
DEVICE S CONTROLLER . ---- UNIT

HANDLER ... DEFINITION DEFINITION
TABLE (COT) S . TABLE (UOT)

f r- I s

!SA SYSTEM RESIDENT USER SUPPLIED

FCB

! INK ESTAB! ISHMENT

1) IOQ
2) MVT
3) ART
4) SMT
5) UOT

1) FPT
2) FAT
3) SOT
4) VAT

6) COT
7) OTT

MPX-32 Technical Volume I

Figure 2-1
110 Table Linkages

A. AT ASSIGN~NT
S.ATSYSGEN
O.ATOPEN
M - AT VOLUME MOUNT
OP.ATOPCODE PROCESSING

T1011

2-87

I/O Queue (IOQ) Entry

(-"
For F-c1ass devices, the device specific tables in MPX-32 mirror the hardware iV

2-88

configured at SYSGEN time as illustrated in the following figure. For each I/O
channel configured, there is a corresponding channel definition table (CHT). For each
controller on that channel, there is a controller definition table (COT) linked to that
CHT. For each device on each controller, there is a unit definition table (UDT) linked
to the corresponding CDT. Handler specific device information is retained in the
device context area (DCA) that is then linked to the corresponding UDT.

HARDWARE TABLES

0 1

I I
I

0 1

I I
I

SOFTWARE TABLES

CHT'n'

I
I I

COT 0 COT1

I
I I

UDTO UOT1

I
I I

DCA 0 DCA 1

Figure 2·2 .

15

I

15

I

110 CHANNEL 'n'

CHANNEL
DEFINITION
TABLE

I

COT 15

I

UOT15

I

DCA 15

DEVICES

CONTROLLERS

CONTROLLER
DEFINITION
TABLES

UNIT
DEFINITION
TABLES

DEVICE
CONTEXT
AREAS

T1012

Handler Tables and Corresponding Hardware

System Tables and Variables

o

(~

C .•. -/
~-

M.KEY Entry Format

2.20 M.KEV Entry Format

The M.KEY entry file is built by the KEY editor and interpreted by J.TSM. It is an
unblocked, nonextendible file. Blank fields default to SYSTEM. All fields are in
ASCII except the following:

• Access flags - See task service area (TSA) description of T.ACCESS for bit
assignments.

• Tab settings - One byte per tab position. A zero indicates end of tabs. Maximum
of eight tab positions.

• Key - Compressed key associated with owner name. Compression is done by
H.FISE,8. A zero indicates no key.

o 7 8 15 16 23 24

Word 0-1 Owner name

2-3 Access flags

4-5 Tab settings

6 Reserved

7 Owner key

8-9 Project name

10-11 Reserved

12-15 Volume name

16-19 Directory name

20-23 Encrypted password

2.21 M.PRJCT Format

31

The M.PRJCf file is built by lPRJCf and is interpreted by J.TSM. It is an
unblocked, nonextendible file. The project key is compressed by H.FISE,8. A zero
indicates no key.

0 7 8 15 16 23 24 31

Word 0-1 Project name

2-6 Reserved

7 Project key

8-23 Reserved

MPX-32 Technical Volume I 2-89

Map Image Descriptor List (MIDL)

2.22 Map Image Descriptor List (MIDL)

The map image descriptor list (MIDL) entries are halfwords for all CONCEPf
machines except the 32/2000 when running mapped out, which is a fullword entry.
MIDL entries cont3.in the physical map block numbers corresponding to a task's
logical map blocks. The MIDL size varies depending on the type of task and the
processor used.

The bit definitions in the MIDLs depend on whether MPX-32 is running mapped in or
running mapped out, as on the CONCEPf 3212000. If running mapped in, the old
halfword definitions apply and if running mapped out, the new fullword definitions
apply.

2.22.1 Halfword MIDL Entries

2-90

The contents of T.MIDLA point to the first MIDL entry.

For nonbase mode tasks, the maximum size of the MIDL is 256 maps minus the
operating system size in maps.

If the TSM $SPACE command is used, the size of the MIDL is the logical address
space, specified in maps, minus the operating system size in maps.

For base mode tasks, the size of the MIDL is the program's size, in maps, plus 16
maps if the task is greater than 2MB. If not, the MIDL size is 256 maps.

The memory attribute list (MEML) entries correspond one to one to the MIDL entries.
The MEML describes the attributes associated with each map block.

Halfword MIDL entries have the following format:

o 4 5 15 0 4 5

Flags. Physical map·number Flags Physical map number
See Note.

Notes:

Flag bits are assigned as follows:

Bit Meaning if Set

o map number is valid (MIDL. VAL)
1 first protection granule is write protected (MIDL.PRO)
2 second protection granule is write protected (MIDL.PR2)
3 third protection granule is write protected (MIDL.PR3)
4 fourth protection granule is write protected (MIDL.PR4)

If bit 0 (MIDL. V AL) is set, the physical map number contains a valid map block
number that represents an entry in the memory allocation table (MATA).

15

System Tables and Variables

C)

o

(

Map Image Descriptor List (MIDL)

2.22.2 Fullword MIDL Entries

MIDL entries must be one fullword to support 256MB of physical memory, SRAM
and/or DRAM. Fullword MIDL entries are used on any mapped out system image.
The fullword MIDL is used by the CONCEPT 32/2000 processors only. All other
processors use the halfword MIDL.

Fullword MIDL entries have the following fonnat:

o 5 6 15 16 23

I~~o~. Physical map block nwnber

Notes:

Flag bits are assigned as follows:

Bit Meaning if Set
o map number is valid (MIDL.V AL)

1-2 map block has restrictions according
to the following bit encoding:

PSD
Priv. -2L 2L

0 0 0 read/execute
0 1 0 read/write/execute
0 0 1 not used by MPX-32
0 1 1 not used by MPX-32
1 0 0 read/write/execute
1 1 0 read/write/execute
1 0 1 not used by MPX-32
1 1 1 not used by MPX-32

3 map block has been modified (MIDL.MOD)
4 map block has been referenced (MIDL.ACC)
5 indicates SelBUS (DRAM) memory (MIDL.SEL)

24

If bit 0 (MIDL. V AL) is set, the physical map number contains a valid map block
number that represents an entry in the memory allocation table (MAT A).

MPX-32 Technical Volume I

31

2·91

Memory Allocation Pointer List (MPTL)

2.23 Memory Allocation Pointer List (MPTL)

2·92

The memory allocation pointer list contains pointerS to head cells for free-page and
page-out queues. Each entry has a fOlWard pointer and a backward pointer. Each
entry is one word in length. There is a one to one correspondence with the MATA,
PST and PTE tables. The pointer value is a physical map block number which is used
as an index into the MAT A, PST and PTE tables. The table size is equal to one map
block when physical memory is 16 MB. The address of the MPfL table is contained
in C.MPfLA.

The MPfL is placed in a location which is unmapped from .MPX-32 and is not
included in the logical address space of a task. Therefore, .MPX-32 must be executing
unmapped when accessing the MPfL.

This table is created for all images.

The MPfL has the following fonnat:

o 7 8 15 16 23 24 31

Forward pointer into MP1L (MAP.5F) Backward pointer ~to MP1L (MAP.SB)

System Tables and Variables

o

o

(\

c

Memory Allocation Table (MAT A)

2.24 Memory Allocation Table (MATA)

The memory allocation table (MATA) contains the current status of each 2KW map
block of main memory that is present in a configuration. The address of this table is
contained in C.MATA.

Each MA TA entry consists of a flag byte representing the status of a configured map
block. There is one flag byte for every map block configured. The flag bytes are
positional, relative to the first block of the configured class of memory.

o 7 8 15 16 23 24

Number of map blocks Starting map number for memory table
configmed in system (MEM.SMN)
(MEM.CNT)

Flag bits
(MEM.STAT). MEM.STAT MEM.STAT
See Note.

MEM.STAT MEM.STAT etc.

Notes:

Hag bits in MEM.STAT are defined as follows:

Meaning if set

o map block is allocated (MEM.ALL)
1 map block is shared (MEM.SHR)
2 map block is multiprocessor shared (MEM.PRO)
3 malfunction exists (MEM.MAL)
4 map block is nonpresent (MEM.CON)
5 map block is initialized (MEM.INIT)
6 defined below (MEM.CLl)
7 defined below (MEM.CL2)

Bit 6
o
o
1
I

Bit 7
o
1
o
1

Class
E
H
S
D*

* CONCEPT 32/2000 only

MPX·32 Technical Volume I

MEM.STAT

etc.

31

2·93

Memory Attribute List (MEML)

2.25 Memory Attribute List (MEML)

The memory attribute list (MEML) entries corresporid one-to-one to the map image
descriptor list (MIDL) entries. The MEML describes the attributes associated with \
each map block. The maximum number of MEML entries is the same as MIDL
entries (see section 2.22). The contents ofT.MEMLA point to the first MEML entry.

2.25.1 Halfword MEML Format

2·94

Halfword .MEML entries have the following fonnat:

o 7 8 15 0

Flags I Flags
See Note.

Shared index

Notes:

Hag bits are assigned as follows:

Bit

o
I
2
3
4
5
6
7

Meaning if set

E-type memory (MEML.TYE)
H-type memory (.MEML.TYH)
S-type memory (MEML.TYS)
map is shared (MEML.SHR)
map is swappable (MEML.SWP)
map is valid (MEML.VAL)
map block used by system (MEML.SYS)
map is outswapped (MEML.OUT)

7 8 15

Shared index

If bit 3 (MEML.SHR) is set, the shared index contains the index into the associated
shared memory table where the map block has been allocated.

System Tables and Variables

o

o

o

Memory Attribute List (MEMl)

2.25.2 Fullword MEMl Format

Fullword MEW.. entries have the following fonnat:

o 7 8 15 16 23 24 31

Flags Shared index Fullword flags - See Note 2.
See Note 1.

Notes:

1. Flag bits are assigned as follows:

Btl ~eanWngifset

o E-type memory (~ML.TYE)
1 H-type memory (~ML.TYH)
2 S-type memory (~ML.TYS)
3 map is shared (~ML.SHR)
4 map is swappable (MEML.SWP)
5 map is valid ~ML.VAL)
6 map block used by system (~ML.SYS)
7 map is outswapped (~.OUT)

If bit 3 ~.SHR) is set, the shared index contains the index into the
associated shared memory table where the map block has been allocated.

If bits 0-2 are not set, then DRA~ has been specified (CONCEPT 32/2000 only).
2. The fullword flags are set as follows:

Bit ~eanWng if set

16 page contents located in swap file ~ML.SPF)
17 page contents located in load module file (MEW...LD~
18 page is in process of being paged in (~.PGI)
19 page is in process of being paged out (~.PGO)
20 map block is available for page out ~.PG)
21 zero the page contents on first page in (~.ZER)

22-31 reserved

MPX-32 Technical Volume I 2-95

Memory Pool Management

2.26 Memory Pool Management

2-96

Memory pool is an area of main memory beginning at the high address end of resident
MPX-32. Its size is specified at SYSGEN and it occupies an area up to the next map
block boundary. It is used as temporary storage space by various system services. It
contains, at anyone time, line buffers, I/O queues, messages, IOeD lists, etc., that are
dynamic and not predefined in size. C.SBUF contains the address of memory pool.
e.SBUF+ 1 W contains the number of words in memory pool.

If the memory pools, IOQPOOL and MSGPOOL, are specified at SYSGEN then
IOQPOOL is the doubleword bounded area at the end of resident MPX-32 and
MSGPOOL occupies the next doubleword bounded area. All other memory pool is
then called miscellaneous pool, and occupies the next contiguous space. It is
doubleword bounded and ends on a map block boundary. e.SBUFA and
e.SBUFA+IW contain the address and the number of words, respectively, in
IOQPOOL. e.SBUFB and C.SBUFB+ 1 W contain the address and number of words,
respectively, in MSGPOOL.

Areas within memory pool are allocated in multiples of two words (doubleword
bounded). A free list and allocated list of buffer areas are maintained. They are in
double-linked list fonnat and are linked to head cells located in S.MEMM9 to control
allocation and deallocation of memory pool areas. Entries are linked in ascending
memory address order.

An allocation request for memory pool is obtained from the first free space large
enough to satisfy the request. A four-word header is built and linked by address to
the allocated head cell. The free area entry header is updated to reflect the size
reduction caused by the requested allocation.

A deallocation request for memory pool causes the allocated list to be searched for the
allocated entry. Verification is made on the buffer address and size provided by the
caller. If valid, the entry is moved to the free list and agglomeration attempted with
previous and next entries.

When the debugger and event trace are present in the system, the debugger prompt is
displayed if an abnonnal condition is detected when using the S.MEMMIO system
subroutine to deallocate memory pool. The following register definitions are
displayed in response to the debugger DR command:

System Tables and Variables

C··"
..... ;

(

Register

1

2
3
4
7

Memory Pool Management

Contents

abort condition as follows:

Abort Condition

1

2

3

Description

buffer address in register three is not
in memory pool
buffer address in register three is not
allocated
invalid byte count is specified in the
deallocation request

buffer header address if Rl is three
buffer address from the caller if Rl is one or two
free head cell address if Rl is one or two
invalid byte count from the caller if Rl is three

If the debugger TE command is entered to the debugger prompt and Rl is one or two,
the request is ignored.

If the debugger TE command is enteredto the debugger prompt and Rl is three, the
request is continued using the corrected count obtained from the buffer header that
was originally allocated (R2 address plus three words).

Buffer Header Entry

The address in R2 points to the following structure:

Forward link

Backward link

Address of this header

Number of words in buffer

Memory pool buffer area

Free Head Cell

Link address to next buffer header entry

Link address to last buffer header entry

Address of this buffer header entry

Number of words, excluding header,
in this area

User buffer area

The address in R4 points to the following structure:

Forward link

Backward link

Address of this header

Number of entries in list

MPX·32 Technical Volume I

Next free entry address

Last free entry address

Address of this head cell

Number of entries in free list

2-97

Memory Pool Management

FREE HEAD CELL

~ FORWARD LINK '---
~

BACKWARD LINK -
HEADER ADDRESS

NUMBER OF ENTRIES

2·98

C.SBUF

ADDRESS OF MEMORY POOL -
SIZE OF MEMORY POOl..

r MEMORY POOL

r=; FORWARD LINK
.-

BACKWARD LINK

ADDRESS OF THIS HEADER

NUMBER OF WORDS
(MODULO 2W) IN AREA

I: =
FREE AREA ~ ~

FORWARD LINK
f+-
...

BACKWARD LINK

ADDRESS OF THIS HEADER

NUMBER OF WORDS
(MODULO 2W) ALLOCATED

1::-~ ALLOCATED AREA ::: ~ FORWARD LINK

"-- BACKWARD LINK

ADDRESS OF THIS HEADER

NUMBER OF WORDS
(MODULO 2W) IN AREA

'"I." FREE AREA ""'oJ

J' [::

Figure 2-3
Memory Pool Diagram

o
USER HEAD CELL

-
~ FORWARD LINK

BACKWARD LINK f-

HEADER ADDRESS

NUMBER OF ENTRIES

o

T1013

o
System Tables and Variables

(/
Memory Resident Descriptor Table (MDT)

2.27 Memory Resident Descriptor Table (MDT)

The memory resident descriptor table (MDT) is a table of resource descriptors that
resides in main memory. The resource descriptors in the MDT are exact copies of the
resource descriptors that reside on the disk.

o 7 8 15 16

Word 0-191 First 192-word resource descriptor entry

192-384 Second 192-word resource descriptor entry

385

n Last 192-word resource descriptor entry

n + 191

23 24 31

~--~

2.28 Message or Run Request Queue (MRRQ)

H.EXEC creates this parameter block with a user-generated parameter send block
(PSB). It is used for message and run request processing.

Word 0

1

2

3

4

5

6

7

8-9

10

11

n

o 7 8 15 16 23 24 31

String forward address (MQ.SF)

String backward address (MQ.SB)

Priority Parameter send block address (MQ.PSBA)
(MQ.pR)

Task number of sending task (MQ.TNST)

Sending task owner name word one

Sending task owner name word two

Passed parameter quantity Sending task return buffer length
(MQ.PPQ) (MQ.RBL)

Completion Initial status User status Options (MQ.OPT).
status (MQ.IST). (MQ.UST) See Note 3.
(MQ.CST). See Note 2.
See Note 1.

End action PSD (MQ.EAPSD)

Parameter area pointer (MQ.PPTR.)

Reserved

Variable length storage area for passed and returned parameters

MPX-32 Technical Volume I 2-99

Message or Run Request Queue (MRRQ)

2-100

Notes:

1. Bits in MQ.CST are the same as the parameter send block (PSB) fonnat and are
assigned as follows:

Bits Meaning if Set

o operation in progress (pSB.lOP)
1 destination task aborted (pSB.DTA)
2 destination task deleted (pSB.DTD)
3 return parameters truncated (pSB.RPT)
4 send parameters truncated (pSB.SPT)
5 end action routine not processed (pSB.EANP)
6-7 reserved

2. Codes in MQ.lST are the same as the parameter send block (PSB) fonnat and are
assigned as follows:

Bits Meaning if Set
o normal initial status
1 task number invalid (pSB.TSKE)
2 load module name error (pSB.LMNE)
3 reserved
4 load module fonnat error (pSB.LMFE)
5 DQE space unavailable (pSB.DQEE)
6 I/O error reading directory (pSB.SMIO)
7 I/O error reading load module (pSBLMIO)
8-9 reserVed
10 invalid priority (psB.PRIE)
11 invalid send buffer address (pSB.SBAE)
12 invalid return buffer address (pSB.RBAE)
l3 invalid end action address (pSB.EAE)
14 memory pool unavailable (pSB.MPE)
15 destination task receiver queue full (pSB.DTQF)

3. Bits in MQ.OPT are the same as the parameter send block (PSB) format and are
assigned as follows:

Bits Meaning if Set

24 no-wait mode (pSB.NWM)
25 no call-back mode (pSB.NCBM)
26-31 reserved

System Tables and Variables

l~\ ,J

I: I C~-."'····

Message or Run Request Queue (MRRQ)

2.28.1 Remote Messaging Request Queue

The following structure is used in remote message request processing for Refective
Memory System Software only.

Word 0

1

2

3

4

5

6

7

8-9

10

11

12

13

n

Notes:

o 7 8 15 16 23 24 31

String forward address (MQ.SF)

String backward address (MQ.SB)

Priority Parameter send block address (MQ.PSBA)
(MQ.PR)

Zero

Sending task owner name word 1

Sending task owner name word 2

Passed parameter quantity Sending task return buffer length
(MQ.PPQ) (MQ.RBL)

Completion Initial status User status Options (MQ.OP'I).
status (MQlST). (MQ.UST) See Note 3.
(MQ.CST). See Note 2.
See Note 1.

End action PSD (MQ.EAPSD)

Parameter area pointer (MQ.PP'IR)

Reserved

(MQ.RTNST) - Remote task number. See Note 4.

(MQ.NIDST) - Remote node ID. See Note 5.

Variable length storage area for passed and returned parameters

1. Bits in MQ.CST are the same as the parameter send block (PSB) format and are
assigned as follows:

Bits Meaning if Set

o operation in progress (pSB.lOP)
1 destination task aborted (pSB.DT A)
2 destination task deleted (psB.DTD)
3 return parameters truncated (pSB.RPI')
4 send parameters truncated (pSB.SPI')
5 end action routine not processed (pSB .EANP)
6-7 reserved

MPX-32 Technical Volume I 2-101

Message or Run Request Queue (MRRQ)

2-102

2. Codes in MQ.IST are the same as the parameter send block (PSB) format and are
assigned as follows:

Bits Meaning if Set
o normal initial status
1 task number invalid (pSB.TSKE)
2 load module name error (pSB.LMNE)
3 reserved
4 load module format error (pSB.LMFE)
5 DQE space unavailable (pSB.DQEE)
6 I/O error reading directory (psB.SMIO)
7 I/O error reading load module (pSB.LMIO)
8-9 reserved
10 invalid priority (pSB.PRIE)
11 invalid send buffer address (PSB.SBAE)
12 invalid return buffer address (pSB.RBAE)
13 invalid end action address (pSB.EAE)
14 memory pool unavailable (pSB.MPE)
15 destination task receiver queue full (pSB.DTQF)

3. Bits in MQ.OPT are the same as the parameter send block (PSB) format and are
assigned as follows:

Bits

24
25
26-31

Meaning if Set

no-wait mode (pSB.NWM)
no call-back mode (PSB.NCBM)
reserved

4. Remote task number (MQ.RTNST) - this field is present as part of the fixed
header length for messaging performed by RMSS 3.0 release.

5. Remote node ID (MQ~NIDST) - this field is present as part of the fixed header
length for messaging performed by RMSS 3.0 release. .

System Tables and Variables

o

o

o

(

Module Address Table

2.29 Module Address Table

The module address table contains the addresses of the resident system modules as
they are referenced by the M.CALL macros. The address of this table is contained
within C.MODD.

o 7 8 15 16 23 24 31
Ward 0 Reserved

1 Address of H.EXEC

2 Address of H.MONS

3 Address of H.IOCS

4 Address of H.FISE

5 Address of H.ALOC

6 Address of H.MEMM

7 Address of H.TSM

8 Address of H.T AMM

9 Address of H.REXS

10 Address of H.REMM

11 Address of H.VOMM

12 Reserved for ACX

2.30 Mounted Volume Table (MVT)

The mounted volume table (MVT) is a system resident table built at SYSGEN (its
size is variable and determined by the SYSGEN process). The MVT is used to create
and maintain an entry for each volume physically mounted on the system. Each entry
is identified by the volume name and associated with the device the volume is
mounted on. The entry contains a use count for the volume.

For nonpublic volumes, the use count in the MVT represents the number of tasks that
are logically mounted to the volume. The count is decremented each time a logical
dismount completes on behalf of a task that has the volume logically mounted but has
no resources allocated on the volume. For the task J .TSM, a logical dismount of a
nonpublic volume can only complete as a result of a logical dismount of the last TSM
environment that has mounted the volume.

For public volumes. the use count is only maintained after a request for a physical
dismount of that volume. While physical dismount is pending. the count represents
the total resources allocated on the volume. The count increments or decrements as
resources are allocated or deallocated on the volume.

When the MVT use count goes to zero and a physical dismount is pending, a physical
dismount of the volume is performed. The MVT entry for the volume is cleared.

MPX-32 Technical Volume I 2-103

Mounted Volume Table (MVT)

2-104

Word 0-3

4

5
6

7

8

9

10

11

12

13

14

15

16

17

18

19

20-34

35

36

37

38

39

Notes:

o 7 8 15 16 23 24

Volume name (MV.VOLNM)

CDT address of volume device (MV.CDTA)

UDT address of volume device (MV.UDTA)

Cwrent number of users of this volume
(MV.USERS)

Cwrent number of temporary files allocated (MV.TFILS)

Space map start address (MV .SMAPS)

Space allocation map length in blocks (MV.SMAPL)

Number of allocation units reflected in space
map (MV.SMAPU)

Number of allocation units currently available (MV.SMAPC).
See Note 1.

Descriptor allocation map start address (MV.DMAPS)

Descriptor allocation map length in blocks (MV.DMAPL)

Number reso~ descriptors in descriptor map (MV.DMAPU)

Number resource descriptors currently available (MV.DMAPC)

Root directory segment definition (MV .ROOTS)

Root directory segment definition (MV .RooTL)

Blocks per allocation unit (MV.BLKAU)

Number of blocks in system area (MV.SYSBL)

Dismount owner name (MV DOWNR)

Volume flags (MV .FLAGS). See Note 2.

Associated SYSlD. if multiprocessor volume (MV.SYSlD)

Port (MV.MPID). Reserved
See Note 3.

Count of I/O errors since the last mount (MV.CAECT)

Reserved

1. This number includes some blocks allocated by the operating system.

2. Bits in MV .FLAGS are assigned as follows:

Bits
o
1
2
3
4
5
6

Meaning if Set
system volume (MV.SYS)
volume is physically mounted (MV.OPER)
fixed media volume (MV.FIXED)
public volume (MV.PUBLC)
entry is active (in use) (MV.AerY)
mount in progress (MV .MNT)
inhibit mount message (MV.NOMSG)

31

System Tables and Variables

o

o

o

(

2.31

Bits

7
8
9
10
11
12
13
14
15

16
17-26

27
28-31

Mounted Volume Table (MVT)

Meaning if Set

swap volume (MV.SWP)
volume device offline (MV .OFFLN)
volume not safe for use (MV.UNSAF)
physical dismount pending (no mounts allowed) (MV.DMNT)
DMAP locked (MV.DLOCK)
space map lock (MV .sLOCK)
root directory locked (MV.RLOCK)
multiprocessor volume flag (MV.DUALP)
lock all volume resources so physical dismount
can occur (MV.PHDLK)
reserved for future development (MV.PRIM)
reserved
mounted for shared use (MV.SHRBL)
reserved

3. Port number under which multiport volume was mounted.

Physical Shared Memory Table (PSM)

The physical shared memory (PSM) table is a system resident structure used to define
the reflective regions of memory to Reflective Memory Support Software (RMSS)
tasks. It is created at SYSGEN and contains one entry for each Reflective Memory
(RM) Bus.

o 7 8 15 16 23 24 31

Word 0 PSM.S1RT PSM.LEN
RM starting address RM length in map blocks

1 PSM.CRAD (See PSM.NCNT (See PSM.INTI (See PSM.INTO (See
Note 1) Note 2) Note 3) Note 4)

2-5 PSM.BUSN
Bus name as defined by M.BOOT (4 words)

6 PSM.SMP
Physical address of POOLP ARn

7 PSM.RCAA
Physical Address of Remote Context Area

8 PSM.FLAG
(Note 5)

9 PSM.RI
RI Instruction used by H.RMSS

MPX-32 Technical Volume I 2-105

Physical Shared Memory Table (PSM)

2-106

Notes:

1. PSM.CRAD contains the control register offset from location X'700' in memory.
This value is set at SYSGEN.

2. PSM.NCNT contains the number of nodes on the bus. The number of nodes
indicates the number of remote context areas (RCAs) in the POOLP ARn region.

PSM.NCNT is initialized by J.BOOT.

3. PSM.INTI contains the input interrupt level for remote task activations.

4. PSM.INTO contains the output interrupt level for remote task activations.
5. PSM.FLAG contains one of the following bit settings:

Bit Eguate DeSCription
0 PSM.BERR set if bus error during J.BOOT parsing of

M.BOOT file. J.BOOT sets this flag.

1 PSM.PRIM set if bus is primary bus for this node.
J.BOOT sets this flag.

2 PSM.HOST set if node is the host node for this bus.
J.BOOT sets this flag.

3 PSM.OVL set if an overlap occurs between BOOTPAR and
COMSPAR regions.

4 PSM.VAL set if the interrupt handlers have been initialized.
When set. this flag indicates that this bus is
valid for remote task activation (RT A).

5 PSM.OFLP set if an oflline is pending (SVC M.RMOFF
in progress).

6 PSM.ONLP set if an online is in progress (SVC M.RMON
in progress).

7 PSM.OFFL set if bus is currentlyoffline.

8 PSM.BOOT set if J.BOOT is currently active.

System Tables and Variables

0(-.-.-_·)0·"·,,,
';- .;., ,

c

(

Resource Create Block (RCB)

2.32 Resource Create Block (RCB)

The resource create block (RCB) is a doubleword bounded data structure which
defines the attributes of a resource (permanent file, temporary file, memory partition,
or directory) created by a Volume Management Module (H.VOMM) entry point.

o 7 8 15 16 23 24 31
Word 0-1 Resource owner name (RCB.OWNR)

2-3 Resource project group name (RCB.USER)

4 Resource owner rights specifications (RCB.OWRI). See Note 1.

5 Resource project group rights specifications (RCB.UGRI). See Note 1.

6 Resource others rights specifications (RCB.01RI). See Note 1.

7 File management flags (RCB.SFLG). See Note 2.

8 Maximum file extension increment (RCB.MXEn

9 Minimum file extension increment (RCB.MNEI)

10 Maximum file size (RCB.MXSZ) (or) starting physical page (RCB.PPAG)

11 Original resource size (RCB.OSIZ)

12 Resource starting address (RCB.ADDR)

13 Resource RID buffer (RCB.FAST). See Note 3.

14 Option flags (ReB.OPTS). See Note 4.

15 Default override (RCB.FREE). See Note 5.

All RCB fields are optional. If the owner and project group names are not specified,
the names default to those used by the calling task. All other fields not specified use
the system defaults.

Notes:

1. Bits in RCB.OWRI, RCB.UGRI and RCB.OTRI are assigned as follows:

Bits Meaning if Set
o read access (RCB.READ)
I write access (RCB. WRIT)
2 modify access (RCB.MODI)
3 update access (RCB.UPDA)
4 append access (RCB.APPN)

5-7 reserved
8 traverse directory access (RCB.TRA V)
9 delete resource access (RCB.DELE)
10 delete directory entry access (RCB.DEEN)
11 add directory entry access (RCB.ADEN)

12-31 reserved

Bits 2, 3, and 4 are not valid for use with memory partitions.

MPX-32 Technical Volume I 2-107

Resource Create Block (RCB)

2. Bits in RCB.SFLG are assigned as follows (for any bit not set, system 0
defaults apply):

Bits Meaning if Set
0-7 resource type, equivalent to file type code, interpreted

as two hexadecimal digits, 0 through FF (RCB.FrYP)
8-10 reserved

11 file EOF management required (RCB.EOFM)
12 resource fast access (RCB.FSTF)
13 resource not to be saved (RCB.NSA V)
14 reserved for MPX -32 usage
15 start block requested (RCB.SREQ)
16 file is executable (RCB.EXEC)
17 owner ID set on access (RCB.OWID)
18 project group 10 set on access (RCB.UGID)
19 reserved
20 maximum file extension increment is zero. System

default value not used. (RCB.MXEF)
21 minimum file extension increment is zero. System

default value not used. (RCB.MNEF)
22 reserved
23 file zeroed on creation/expansion (RCB'zERO)
24 file automatically extendible (RCB.AUTO)
25 file manually extendible (RCB.MANU)
26 file contiguity is desired (RCB.CONT)
27 resource is sharable (RCB.SHAR)
28 link access (RCB.LINK)

29-30 reserved
31 file data initially recorded as blocked (RCB.BLOK)

3. The resource RID buffer is the address within the resource creator's task
where the eight word resource identifier (RID) is to be returned. If this
parameter is not supplied (Le. is zero), the RID for the created resource

4. Bits in RCB.OPI'S are assigned as follows:

Bits Meaning if Set

0 owner has no access rights (RCB.OWNA)
1 project group has no access rights (RCB. USNA)
2 others have no access rights (RCB.OTNA)

3-6 reserved
7 multi-segment create
8 spool file type (RCB.sPOO)
9 defines a static partition (RCB.STAT)

10-15 reserved
16-23 maximum segments at creation (RCB.SEGN)
24-31 defines memory class:

Value Class
0 S (default)
1 E
2 H

C 3 S

2-108 System Tables and Variables

C··.-.·~·
./

Resource Create Block (RCB)

5. Bits in ReB.FREE are assigned as follows (these bits override any
corresponding bit set in ReB.SFLG and the system defaults):

Bits

0-7
11
12
13
23
24
25
26
27

~31

Meaning if Set

must be zero
file EOF management not required
fast access not required
resource can be saved
do not zero file on creation/extension
file is not automatically extendible
file is not manually extendible
file contiguity is not desired
resource is not sharable
file data initially recorded as unblocked

2.33 Resource Inquiry Table (M.RIQ)

The resource inquiry table (M.RIQ) contains information specific to an allocated
resource. The information is returned in the form of a series of pointers to various
data structures within the system which describe the resource. For memory partitions
only, words zero and five apply. For volume resources, words two through four apply
to the device where the volume is mounted.

Word 0

1

2

3

4

5

6

7

o 7 8 15 16

Address of allocated resource table entry (RIQ.ART)

Address of file assignment table entry (RIQ.FAT)

Address of unit definition table entry (RIQ.UDT)

Address of device type table entry (RIQ.DTI)

Address of controller definition table entry (RIQ.CDT)

Address of shared memory table entry (RIQ.SMT)

Address of file pointer table entry (RIQ.FP1)

Address of mounted volume table entry (RIQ.MVT)

. MPX-32 Technical Volume I

23 24 31

2-109

Resource Logging Block (RLB)

2.34 Resource Logging Block (RLB)

2-110

The resource logging block (RLB) is a word-bounded data structure used to pass
infonnation between H.VOMM and the caller. The infonnation is used to locate a
directory entry and resource descriptor for a single resource or for all resources
defined in a particular directory.

Word 0

1

2

3

4

5

6

7

Notes:

o 7 8 15 16 23 24

Pathname vector or RID address (RLB.TGT)

Resource directory buffer address (192W) (RLB.BUFA). See Note 1.

Associated mounted volume table entry address (RLB.MVTE)

Parent directory RD block address (RLB.RDAD)

Type (RLB.TYPE). Buffer offset (RLB.BOFF)
See Note 2.

Length. Return buffer address (RLB.DIRA)
See Note 3.

User FCB address (RLBFCB)

Flags. Reserved (RLB.INT)
See Note 4.

1. Optional. If not specified, a resource directory i~ not returned.

2. Bits in RLB.TYPE are assigned as follows:

Bits Meaning if Set

o indicates recall (RLB.RECA)
1-7 reserved

31

3. This word contains the address of a buffer and its length in words (the buffer can
be up to 16 words long).

4. Bits in the flags byte are assigned as follows:

Bits Meaning if Set

0-1 reserved
2 directory entry and resource descriptor for specified

directory are returned
3 root directory
4 resource is located

5-7 reserved

System Tables and Variables

Resource Requirement Summary (RRS) Entries

2.35 Resource Requirement Summary (RRS) Entries
The resource requirement summary (RRS) is a doubleword bounded data structure
used to identify the resources required by a task. to the resource manager. Resources
are statically allocated using the information in the RRS entry. The RRS is generally
built by processors requiring static allocation of resources, such as TSM, cataloger,
etc., or supplied as an argument for dynamic allocatioll

For compatibility purposes, revision l..x RRS fonnats can be used. The details of these
formats can be found in Chapter 2 of a revision l..x Technical Manual.

Type 1 • Assign by Pathname

Word 0

1

2

3

4-n

o 7 8 15 16

Zero Logical file code (RR.LFC)

Type Size Plength
(RR.TYPE). (RR.SIZE) (RR.PLEN)
See Note 1.

Access (RR.ACCS). See Note 3.

Options (RR.OPTS). See Note 4.

Pathname (variable length) (RR.NAME1)

Type 2 • Assign to Temporary File

o 7 8 15 16

Zero Logical file code (RR.LFC)

23 24

Reserved.
See Note 2.

23 24

Word 0

1 Type Size Initial file size
(RR.TYPE). (RR.SIZE) (RR.PLEN)
See Note 1.

Access (RR.ACCS). See Note 3.

Options (RR.OPTS). See Note 4.

2

3

4-7 Volume name (16 characters; left-justified, blank-filled) (RR.NAME1)
(Volume name is optional)

MPX·32 Technical Volume I

31

31

2·111

Resource Requirement Summary (RRS) Entries

Type 3 - Assign to Device

Word 0

1

2

3

4

5

o 7 8 15 16

Zero Logical file code (RRLFC)

Type Size Density
(RR.TYPE). (RR.SIZE) (RR.DENS).
See Note 1. See Note 5.

Access (RR.ACCS). See Note 3.

Options (RR.OPTS). See Note 4.

Device type Volume Channel number
(RR.DT3). number See Note 7.
See Note 6. (RR.VLNUM) (RR.CHN3)

Unformatted ID (1-4 characters) (RR.UNFID)

Type 4 - Assign to LFC

Word 0

1

2

3

o 7 8 15 16

Zero Logical file code (RR.LFC)

Type Size Zero
(RR.TYPE). (RR.SIZE)
See Note 1.

Zero Logical file code (RR.SFC)

Options (RR.OPTS). See Note 4.

Type 5 - Assign by Segment Definition

Word 0

1

2

3

4

5

o 7 8 15 16

Zero Logical file code (RRLFC)

Type Size UDTindex
(RR.TYPE). (RR.SIZE) (RR.UDTI)
See Note 1.

Access (RR.ACCS). See Note 3.

Options (RR.OPTS). See Note 4.

Starting block number (RR.STBLK)

Number of blocks (RR.NBLKS)

23 24 31

Zero

Subchannel
number
(RR.SCHN3)

23 24 31

23 24 31

Reserved

2-112 System Tables and Variables

o

C-~

.. ~

o

Resource Requirement Summary (RRS) Entries

Type 6 - Assign by Resource 10

078 15 16

Word 0

1

2

3

4-7

Zero Logical file code (RR.LFC)

Type (RR.TYPE). Size (RR.SIZE) Zero
See Note 1.

Access (RR.ACCS). See Note 3.

Options (RR.OPTS). See Note 4.

Volume name (16 characters; left-justified, blank-filled)
(RR.NAMEl)

Binary creation date (RR.DATE)

Binary creation time (RR.TIME)

Resource descriptor block address (RR.DOFF)

23 24

Reserved

8

9

10

11 Reserved Resource type (RR.RTYPE)

Type 7 • Reserved for Future Use

Type 8 - Reserved for Future Use

Type 9 - Mount by Device Mnemonic

o 7 8 15 16 23 24 31

Word 0

1

2

3

4-7

8

9

Zero System ID (RR.SYSID). See Note 11.

Type Size (RR.SIZE) Zero
(RR.TYPE).
See Note 1.

Access (RR.ACCS). See Note 3.

Options (RR.OPTS). See Note 4.

Volume name (16 characters; left-justified, blank-filled)
(RR.NAMEl)

Device type Reserved Channel number ' Subchannel
(RR.DT9). (RR.CHN9). number
See Note 8. See Note 9. (RR.SCHN9)

Zero

MPX-32 Technical Volume I

31

2-113

Resource Requirement Summary (RRS) Entries

Type 10 - Assign to ANSI Tape

o 7 8 15 16 23 24

Word 0

1

Zero Logical file code (RRLFC)

Type (RR.TYPE). Size (RR.SIZE) Format (RR.FORM)
See Note 1.

Access (RR.ACCS). See Note 3.

Options (RR.OPTS). See Note 4.

Record length (RR.RECL) Block size (RR.BSIZE)

Generation number (RR.GENN)

Generation version number (RR.GENV)

Absolute termination date (RR.EXPIA)

Protect
(RR.PROT)

2

3

4

5

6

7

8 Relative termination date Logical volume identifier (RRL VID)

9

10-13

14

15

(RR.EXPlR)

RR.LVID (cant)

17-character file identifier (RR.AFID)

RR.AFID (cont) Reserved

Reserved

Type 11 - Assign to Shadow Memory

078 15 16 23 24

Word 0

1

2

3

Notes:

Zero

Type (RR. TYPE) Size Shadow flags
See Note 1. (RR.SIZE) (RR.SHAD). See Note 10.

Start address (RR.SADD)

End address (RR.EADD)

1. Bits in RR.TYPE are assigned as follows:

Value Meaning

1
2
3
4
5
6
7
8
9
10
11

12-255

assign by patbname (RR.PA TH)
assign to temporary file (RR. TEMP)
assign to device (RR.DEVC)
assign to secondary LFC (RR.LFC2)
assign to segment definition (RR.SP ACE)
assign by resource ID (RR.RID)
reselVed for future use
reselVed for future use
mount by device mnemonic (RR.MTDEV)
assign to ANSI labeled tape (RR.ANS)
assign to shadow memory (RR.SHTYP)
reselVed

31

31

2-114 System Tables and Variables

f~.

U

(

(-,'"
/

Resource Requirement Summary (RRS) Entries

2. Byte 3 is zero. This field is used by MPX-32 for big blocking buffers.

3. Bits in RR.ACCS are assigned as follows:

Bits Meaning if Set

o read access allowed (RR.READ)
1 write access allowed (RR. WRITE)
2 modify access allowed (RR.MODFY)(not valid for ANSI

tapes)
3 update access allowed (RR.UPDAT)
4 append access allowed (RR.APPND)

5-15 reserved
16 explicit shared use requested (RR.SHAR)
17 exclusive use requested (RR.EXCL)
18 assign as volume mount device (RR.MNT)

19-31 reserved

4. Bits in RR.OPfS are assigned as follows:

Bits

0
1
2
3
4
5
6
7
8
9

10-11
12
13
14

15
16

17-31

Meaning if Set

treat as SYC file (RR.SYC) (TSM/JOB only)
treat as SGO file (RR.SGO) (TSM/JOB only)
treat as SLO file (RR.SLO)
treat as SBO file (RR.SBO)
explicit blocked option (RR.BLK)
explicit unblocked option (RR. UNBLK)
inhibit mount message (RR.NOMSG)
reserved for system use
automatic open requested (RR.OPEN)
user-supplied blocking buffer address in FCB (RR.BUFF)
reserved for system use
mount with no-wait (RR.NOWT)
mount as public volume (RR.PUBLC)
set by H.VOMM for special case handling of VOMM
assignments (RR. VOMM)
file is spooled when deallocated (RR.SEP)
ANSI labeled tape on RRS type 3 (RR.ANSI)
reserved

5. RR.DENS contains the density specification for XIO high speed tape units.
When specified, this field has the following bit significance:

Bits Meaning if Set

o indicates 800 bpi nonretum to zero inverted (NRZI)
1 indicates 1600 bpi phase encoded (PE)
6 indicates 6250 bpi group coded recording (GCR)

If this field is zero, 6250 BPI is set by default.

MPX·32 Technical Volume I 2-115

Resource Requirement Summary (RRS) Entries

2-116

6. RR.DT3 specifies whether or not a channel is present and specifies the device
type:

Bits Meaning if Set
o channel present

1-7 device type

7. RRCHN3 specifies whether or not a subchannel is present and specifies the
channel number:

Bits Meaning if Set
o subchannel is present. Examined only if bit zero of

RR.DT3 is set.
1-7 channel number

8. RR.DT9 specifies whether or not a channel is present and specifies the device
type:

Bits Meaning if Set
o channel present

1-7 device type

9. RRCHN9 specifies whether or not a subchannel is present and specifies the
channel number:

Meaning if Set Bits
o

1-7
subchannel is present. Examined only if RR.DT9 is set.
channel number

10. RRSHAD contains the shadow flags that qualify the start and end addresses, or
specify what portions of the task are to be shadowed:

Bits Meaning if Set
0-7 reserved
8 shadow the task (RR.SHTSK)
9 shadow the TSA (RR.SHTSA)
10 shadow the stack (RR.SHST)
11 shadow memory is required (RR.SHRQ)
12 shadow the entire task (RR.SHALL)
13 absolute address (RR.ABS)
14 relative to the code section origin (RR.CREL)
15 relative to the data section origin (RR.DREL)

11. RR.SYSID is the ID for mounting a multiprocessor volume. Valid IDs are:

Multiported (MP) 0 through F

Dual Ported (OP) 0 or 1

For more information on mounting multiprocessor volumes see the MPX-32
Reference Manual Volume I, Chapter 4, Mounting Multiprocessor Volumes.

System Tables and Variables

c

c;

c

(-

Shared Memory Table (SMT)

2.36 Shared Memory Table (SMT)

Each entry in the shared memory table (SMT) defines a shared memory area, such as
CSECf, Global Common or Datapool. The number of entries in the SMT is
established by the SYSGEN SHARE directive.

C.SMT A contains the address of the SMT; C.SMTN contains the number of entries in
the SMT. Each entry is doubleword bounded.

Word 0-7

8-9

10-11

12-13

14-15

16-17

18

19

20

21

22

23

24

25

26

27

28

29

o 7 8 15 16 23 24 31

Resource identifier (SMT.RID)

Partition name (SMT NAME)

Owner name or task number associated with this partition inclusion
(SMT.TNUM)

Owner name of partition creator (SMT.OWNR)

Project group of partition creator (SMT.PROJ)

Swap file resource ID (SMT.SRID)

Compatibility version level (SMT.COMP)

Pathname identifier (SMT.PNID)

SMT index Address of associated allocated resource
(SMTlND) table entry (SMT.ARTA)

Partition flags (SMT.FLAG). See Note 1.

Starting 512-word page number Total number of pages
(SMT.PAGE) (SMT.PTOT)

Starting map block (SMT.MAPS) Number of map blocks
See Note 2. (SMT.MAPN). See Note 2.

Start of DSECT (SMT.DSES) Number of blocks in DSECT
(SMT.DSEN)

Start of CSECT (SMT.CSES) Number of blocks in CSECT
(SMT.CSEN)

Memory type Number of tasks Number of words of memory
(SMT.MTY) not outswapped pool used for the SMT's

(SMT.UCNT) MIDL (SMT .POOL)

File offset of the write Reserved
back read/write section
within the shared image disk
file (SMT.WBKS)

Address of the map image descriptor list (SMT.MTllL)

Size in byteS of the read/write section to be written back (SMT.WBKN)

MPX-32 Technical Volume I 2-117

Shared Memory Table (SMT)

2-118

o 7 8 15 16 23 24 31

Word 30 Number of swappable E-class Number of swappable H-class
memory map blocks (SMT.CME) memory map blocks (SMT.CMH)

31 Number of swappable S-class Number of outswapped map
memory map blocks (SMT.CMS) blocks (SMT.OTSW)

32-33 Time when shared CSECT was cataloged or time when executable
image was linked (SMT.TIME)

34-35 Date when shared CSECT was cataloged or date when executable
image was linked (SMT.DATE)

36 Spare bytes (SMT.SPBT) Swapper trial
use count
(SMT.TUC)

37-39 Reserved

Notes:

1. Bits in SMT.FLAG are assigned as follows:

Bit

o
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Meaning if Set

entry defines CSECT partition (SMT.CSCI')
entry defines static common (SMT.STCM)
entry defines dynamic common (SMT.DYCM)
entry defines shared image (SMT.SlllM)
partition is swappable (SMT.SWBL)
partition is currently outswapped (SMT.OUTS)
SMT is unstable (SMT.BLDG)
multi copy shared image (SMT.MULT)
previously outswapped (CSECT only) (SMT .PRSW)
no automatic dequeue (SMT.LOCK)
owner has read access (SMT.OW.R)
owner has write access (SMT.OW. W)
project group has read access (SMT.PJ.R)
project group has write access (SMT.PJ.W)
others have read access (SMT.OT.R)
others have write access (SMT.OT.W)
write back on last deallocation required (SMT.WRBK)
SMT active (SMT.ACTV)
partition established by OPCOM (SMT.OPCM). See Note 3.
partition requires shadow memory (SMT.SHAD)
sh~d image is sharing by owner group (SMT.SHBO)
entry defines memory disk (SMT.MD)
trial swap (SMT.TS)
CSECT is loaded (SMT.CSLD)
resource is remote (SMT.REM)
logical include on this SMT (SMT.LIN)
SMT describes shared memory that can be
demand paged (SMT.DPG)

System Tables and Variables

o

(:~

Shared Memory Table (SMT)

2. For a single-copy shared image partition, SMf.MAPN reflects the size of both
the read only and read/write sections and SMT.MAPS reflects the start of the
read-only section.

For a multicopy shared image partition, SMT.MAPN reflects the size of the
read-only section and SMf.MAPS reflects the start of the read only section.
Data for the read/write section is obtained from disk.

3. An OPCOM-established dynamic partition or shared image remains in memory
when its assign count goes to zero. A user task can establish a resident dynamic
partition or shared image by including it, setting SMT.OPCM, and then
excluding the partition or shared image.

MPX-32 Technical Volume I 2-119

Spooled File Data Structures

2.37 Spooled File Data Structures

The organization of input and output for spooled files is shown in the following
illustration. The remainder of this section describes the input and output spooling
processes separately.

J.TsM COMMAND DYNAMIC JOB OPCOM
PROCESSOR REQUEST BATCH

(BATCH REQUEsn (M.BATCH) COMMAND

RUN REQUEST RUN REQUEST

RUN REQUEST RUNREOUEST

• , • ~
I'-.. ..,.,- J.SsIN1

INPUT INPUT
SOURCE SPOOlER

FILES

"- .."
RUN REQUEST

..
CARD

J.SSIN2 INPUT
READER SPOOLER

RUN REQUEST .. ,
,.. r
....... ..",..,

r , SYC SGO

MAGNETIC J.TSM "- ~ ~
TAPE I-- COMMAND

PROCESSOR
....

RUNREOUEST I

~ 1
f' "

J.SOEX
r--... ..",.,-

OUTPUT SPOOL
RUN REQUEST

EXECUTIVE

~
SlO SBO

"- ~ ~

J.SOUT T OUTPUT
SPOOLER

MAGNETIC TAPE
LINE PRINTER

Tl014

Spooled ~:~U~~-4~)tructures C
2-120 System Tables and Variables

Spooled File Data Structures

(':: 2.37.1 J.SSIN Run Request

Input spooling is accomplished by run requesting a spool request to J.SSINI or
lSSIN2. Primary input source files must be blocked with either compressed or
uncompressed data. The format of the lSSIN run request is as follows:

o 7 8 15 16 23 24

Word 0-7 Resource ID of the source file

8 Line buffer address. See Note.

Notes:

31

Line buffer address applies only to jobs batched by the command processor, J.TSM.

2.37.2 J.TSM Run Request

Each lSSIN input spool request results in the creation of an SYC and SGO file and
the initiation of a run request to J.TSM for batch processing. The fonnat of the
J.TSM run request is as follows:

Word 0-7

8

9

10-11

12-19

Notes:

o 7 8 15 16

Resource ID of SYC file

Job number

Flags and line buffer. See Note.

Job name

Resource ID of SGa file

Bits are assigned as follows:

Bits

o
1
2

3-31

Meaning if Set

sequential job
$DEFM specified in job stream
batch job
reserved

23 24 31

I

MPX·32 Technical Volume I 2-121

Spooled File Data Structures

2.37.3 J.SOEX Run Request

2-122

J.SOEX is the first of two phases of output spooling. Spooled files which are to be
output to a device for processing are queued to J.SOEX by a run request to detennine
device availability. The fonnat of the J.SOEX run request is as follows:

Word 0-7

8-15

16-17

18-19

20

21

22

23

Notes:

o 7 8 15 16

MRRQ. See the MRRQ section.

Resource ID of SLO/SBO file

Device address (left-justified ASCn doubleword)

Task name/job name (left-justified ASCII doubleword)

Task number/job number (binary)

Flags. See Note l.

Reprint or repunch copy count. See Note 2.

Reprint or repunch numbers. See Note 3.

1. Flag bits are assigned as follows:

Bits Meaning if Set

o do not delete after deassignment
1 copy/reprint request
2 output in unfonnatted mode

3-23 reserved
24-31 value is as follows:

Value

o
1
2

3-255

Meaning

print output
punch output
plot output
reserved

23 24 31

2. This word contains the number of copies to be printed or punched in addition to
the original.

3. The first halfword contains the beginning page number to be reprinted or
repunched and the second halfword contains the ending page number to be
reprinted or repunched.

Comments:

The actual J.SOEX run request is words 8 to 21. The run request is always appended
to an MRRQ. See the Message or Run Request Queue section.

Temporary job-related SLO/SBO files are converted to pennanent, non-SLO/SBO files
prior to the run request of J.SOEX. Temporary job-related SLO/SBO files are output
at end-of-job processing.

System Tables and Variables

(\

(~

Spooled File Data Structures

Permanent job-related SLO/SBO files are output by the M.DASN service as each is
deassigned.

Nonjob-related SLO/SBO files are output by the M.DASN service. Temporary real
time SLO/SBO files are deleted after being output; permanent files are not. Real-time
users may elect to use spooling directly by formatting and executing a run request to
J.SOEX. The advantage is the specification of an output device.

2.37.4 J.SOUT Run Request

J.SOUT is the second phase of output spooling. When J.SOEX determines that a
device is available for output processing, J.SOEX uses M.PTSK to activate J.SOUT.
As part of the activation, a parameter buffer is passed to J.SOUT. The format of the
J.SOUT parameter buffer is as follows:

o 7 8 15 16 23 24 31

Word 0-7 Resource ID of SLO/SBO file

8 Reserved

9 Flags. See Note 1.

10 Device mnemonic (ASCII)

11 Task number/job number (binary)

12-13 Task name/job name (ASCII)

14 Reprint copy count. See Note 2.

15 Reprint page numbers. See Note 3.

Notes:

1. Bits are assigned as follows:

Bits Meaning if Set

0-1 reserved
2 beginning a new job
3 job is batch origin
4 SLO output request
5 output device specified
6 permanent file - do not delete
7 reserved
8 inhibit banner page
9 display output - not formatted

10-31 reserved

I

I

I

2. This word contains the number of copies to be printed in addition to the original.

3. The first halfword contains the beginning page number to be reprinted and the
second halfword contains the ending page number to be reprinted.

MPX-32 Technical Volume I 2-123

System Master Directory (SMD)

2.38 System Master Directory (SMD)

2-124

The system master directory (SMD) is not supported as of MPX-32 revision 2.0, but
its format is retained for compatibility purposes. H.FISE compatible services and the
File Manager utility are the only users of this structure.

Disk File SMD Entry

o 7 8

File name (SMD.AFN)

15 16 23 24 31

Word 0-1

2 File type Start disk address (starting block number) (SMD.SBN)
(SMD.FrYP).
See Note 1.

3 File indicators Length in I92-word blocks (SMD.BIF)

4-5

6

7

(SMD.FIN).
See Note 2.

User name (SMD.AUN)

Compressed password (SMD.PWD)

Reserved (SMD.NU)

Memory Partition SMD Entry

Word 0-1

2

3

4-5

6

7

o 7 8
File Name (SMD.AFN)

Starting logical page or number
(SMD.SLP)

File indicators Memory class
(SMD.FIN). (SMD.MC)
See Note 2.

Reserved

Compressed password (SMD.PWD)

Reserved (SMD.NU)

I UDT index (SMD.UDTX)

15 16 23 24

Starting physical page
number or zero (SMD.SPP)

Length in pages
(SMDLIP)

Reserved

31

System Tables and Variables

o

o

System Master Directory (SMO)

Notes:

1. SMD.FfYP specifies a 2-character hexadecimal file type that is output by the
Volume Manager in ASCII. Default is 00.

Value

00-39
40-5F
60-9F
AO-AF
BO
BA
BB
BC
BE
CO
CA
CE
CF
DO
DB
ED
EE
FD
FE
FF

Description

available for customer use
reserved for system
available for customer use
reserved for system
base mode object file
base mode shared image (or BASIC file)
base mode object library file
base mode macro library file
base mode load module file
spooled output file
cataloged load module
MPX-32JCOFF executable image
MPX-32/COFF shared image
memory disk save task (J.MDSAVE) file
symbolic debugger command file
saved text editor file
stored text editor file
translated help file
text editor work file
SYSGEN generated file

2. Bits in SMD.FIN are assigned as follows:

Bits
o
1
2
3
4
5
6
7

MPX-32 Technical Volume I

Meaning if Set
permanent file is active
SYSGEN memory partition
no-save option is in effect
fast file
collision mapping
non-SYSGEN memory partition
password is required to write
password is required to read/write

2-125

Task Service Area (TSA)

2.39 Task Service Area (TSA)

2·126

The task service area (TSA) is a section of memory associated with each active task
which is used by MPX-32 for storage of task-unique information. A TSA is allocated
for each task when the task becomes active and is deallocated when the task
terminates. The size of each task's TSA is fixed for the duration of the task's
execution. However, the sizes of TSAs among tasks are variable and are dependent
on the amount of space reserved for I/O activity.

As depicted in the following figure, the number of blocking buffers, file assignment
table (FAT) entries and the file pointer table (FPT) entries is variable among tasks.
For all tasks, the first six buffers' FAT and FPT entries are reserved for MPX-32 use
and are present in every TSA.

The pushdown area in the TSA provides re-entrancy in calls to system modules. At
each call to a system module entry point, T.REGP is incremented to the next 32-word
pushdown level where the contents of the general purpose registers and program status
doubleword (PSD) are saved. Within this 32-word level, 22 words are available for
scratchpad storage by the module entry point being called. T.REGP is decremented to
the previous pushdown level upon return to the entry point caller. When context
switch away from a task occurs, the next pushdown level is used to preserve the
contents of the task's registers and PSD. Ten words are used at the context switch
level.

System Tables and Variables

" I ("""," , 1

(

T.MIDLA

T.MEMLA

T.SHTBL

T.STBRGA

T.FATA

T.FPTA

T.PIOOA

T.SEGA

T.VATA

T.lDXA

T.RDBUFA

T.FSSP
T.SHIMDA

T.BBHCA

T.BBUFA

Task Service Area (TSA)

TSA VARIABLE AREA

256 TO 2048
HALFWORD ENTRIES FOR

MIDL TABLE

256 TO 2048
HALFWORD ENTRIES FOR

MEML TABLE

256 TO 2048
BYTE ENTRIES FOR

SHADOW MEMORY TABLE

GCL TASK STARTUP
BASE REGISTER SAVE AREA

(B3-B7) 5 WORDS

1 TO 254 16-WORD FAT
ENTRIES. FIRST SIX

ARE RESERVED FOR
SYSTEM USE

1 TO 254 3-WORD FPT
ENTRIES. FIRST SIX

ARE RESERVED FOR
SYSTEM USE

1T0254 l-WORD
PIO ENTRIES. FIRST
SIX ARE RESERVED
FOR SYSTEM USE..

SEGMENT DEFINITION
AREA. 1 16-WORD ENTRY

FOR EACH SEGMENTED
FILE RESERVATION

IN THE FAT.

1 TO 255 2-WORDVAT
ENTRIES. FlRST IS

RESERVED FOR DEFAULT
WOR<ING VOLUME IF rr IS
A NONPUBLIC VOLUME.

OVERLAY INDEX TABLE
VARIABLE LENGTH.

192 WORD DUAL PROCESSOR
SHARED VOLUME RESOURCE

DESCRIPTOR BUFFER.

192 WORD VOLUME
MANAGEMENT MODULE

STACK AREA.
FILE BOUNDED.

16 WORD SHARED
IMAGE DESCRIPTORS. .

1 TO 248 a.WORD HEAD CELLS.

1 TO 255 192-WORD
BLOCKING BUFFERS.
FIRST IS RESERVED
FOR SYSTEM USE..

FIXED AREA

T.REGP

T.MPXBR+3W

PUSHDOWN STACK (T.REGS)
20 32-WORD MODULE CALL

OR
CONTEXT SWITCH LEVELS

BASE REGISTER STACK
20 a-WORD ENTRIES

CONTEXT swrrCH LEVEL

GENERAL PURPOSE
REGISTERS 0 -7

7~ __________________ ~

a
PSD 9~ __________________ ~

MODULE CALL LEVEL

GENERAL PURPOSE
REGISTERS 0 - 7

71-__________ -1

a
9

10

PSD

1-----------1

SCRATCHPAD
STORAGE

Figure 2-5
TSA Structure

T1001

MPX-32 Technical Volume I 2-127

Task Service Area (TSA)

TSA Structure

Word No. Byte
(DecimaQ {Hex2 o 7 8 15 16 23 24 31

0-345 0 Reserved for MPX-32
346-361 568 T.DFCB
362-363 5A8 T.PRJCT

364 5BO T.PGOW
365 5B4 T.PARENT
366 5B8 T.REGP
367 5BC T.FSSP

368-385 5CO T.CONTXT

386-389 608 T.FREE
390-393 618 T.USED

394 628 T.FIRST
395 62C T.LAST

396 630 T.ITAC
397 634 T.BASEP

398-413 638 T.BFCB

414-421 678 T.PROT
422-429 698 T.BREGS
430-437 6B8 T.MPP

438 6D8 T.DBHAT
439 6DC T.PRNO
440 6EO T.ABRTA
441 6E4 T.BBUFA
442 6E8 T.VATA
443 6EC T.VATN I T.LMFPT T.SEGN I T.BIT3
444 6FO T.FATA
445 6F4 T.FPTA
446 6F8 T.SEGA
447 6FC T.BREAK
448 700 T.MSGR
449 704 T.BIAS
450 708 T.TEND
451 70C T.END
452 710 T.TRAD
453 714 T.LINNO T.UKEY
454 718 T.BITI I T.BIT2 T.BBUFN I T.FILES

2·128 System Tables and Variables

Task Service Area (TSA)

('"" Word No. Byte
(Decimal) (Hex) o 15 16 31 7 8 23 24

455 71C T.DSOR T.DSSZ

456 720 T.CSOR T.CSSZ

457 724 T.MEMLI T.MEML2

458 728 Reserved

459 72C T.EAOR T.EASZ

460-461 730 T.ACCESS

462-463 738 T.SYCS/T.LINBUF

464-471 740 T.SGOS

472-479 760 T.SLOS

480-487 780 T.SBOS

488-491 7AO T.CDIR

492-499 7BO T.CVOL

500 7DO T.IPUAC

501 7D4 T.CURH

502 7D8 T.CRHX

503 7DC T.SYCF

504 7EO T.SGOF
(C~

505 7E4

506 7E8

T.SLOF

T.SBOF

507 7EC T.CPUSH I T.LDATTR T.DBOR

508 7FO T.DPINFO T.T ASKK I T.BIT4

509 7F4 T.RDBUFA

510 7F8 T.EXCPAD

511 7FC T.RORG

512 800 T.RWORG

513 804 T.DBSTAT

514 808 T.MIDLA

515 80C T.MEMLA

516 810 T.MEMLO

517 814 T.STKSZ .
518-521 818 T.DBNAME

522-523 828 T.EXPSD

524 830 T.IDXA

525 834 T.WORK T.NS!

526 838 T.SHIMDA

(.. "~ ...
c

MPX-32 Technical Volume I 2-129

Task Service Area (TSA)

Word No. Byte
(Decimal) (Hex) o 23 24 31 7 8 15 16

o
-

527 83C T.PREL

528 840 T.OBSTW2

529 844 T.BBHCA

530 848 T.BIT5

531 84C T.SHTBL

532 850 T.SMTMLT

533 854 T.SIGSTK

534-541 858-877 T.MPXBR

542 878 T.MPXLM

543 87C T.NSTAT T.REMIX I T.RTAIX

544 880 T.TSAOR T.TSASZ

545 884 T.ATBIAS Reserved

546-553 888-8A4 T.SPARES

554 8A8 T.DSBSZ

555 8AC T.AGE

556 8BO T.CSEcr

557 8B4 TDSECT

558 8B8 T.CSBSZ

559 8BC TLSTAGE

560 8CO T.SFPTA

561 8C4 TLAS'IP

562 8C8 T.MIDLI T.MIDL2

563 8CC Reserved

564 8DO T.TSAEND

565 804 T.PG02

566 8D8 T.ADRTSA

567 80C T.ATADOR

568 8EO T.AESTKP

569 8E4 T.STBRGA

570 8E8 T.PIOQA

571 8EC T.TIQA

572 8FO T.LOBSS

573 8F4 T.PTRMP

574 8F8 T.WKADR

575 8FC T.ABPSD

o
2·130 System Tables and Variables

(".

"

Word No.
(Decimal)

576-1216

1217-2047

2048

Byte
(Hex)

o
568

5A8

5BO
5B4
5B8

5BC

5CO

608

618

628

62C

630

634

638

678

698

6B8

6D8

6DC

6EO
6E4

6E8
6EC

Byte
(Hex)

900

1300

2000

Symbol

T.DFCB

T.PRJCf

T.PGOW

T.PARENT

T.REGP

T.FSSP

T.CONTXT

T.FREE

T.USED

T.FIRST

T.LAST

T.ITAC

T.BASEP

T.BFCB

T.PROT

T.BREGS

T.MPP

T.DBHAT

T.PRNO

T.ABRTA

T.BBUFA

T.VATA

T.VATN

T.LMFPT

T.SEGN

MPX-32 Technical Volume I

Task Service Area (TSA)

o 7 8 15 16 23 24 31

TREGS

Reserved for MPX-32

T.MIDL

Description

reserved for MPX-32

demand page 16 word FCB

current project group name for file allocation (2 words)

task option word one

task sequence number of parent task (activator)

pointer/address of current level of pushdown in stack area

address of the current pushdown level for file system
(H. VOMM environment)

debug context area (18 words, must be on an
8 word boundary)

free list head cell (4 words)

allocated list head cell (4 words)

first logical memory address mapped into user task

last logical memory address mapped into user task

interval timer based accounting (CPU)

address of file system buffer

system service file control block (16 words)

reserved (8 words)

task base register context area (8 words)

memory pool pointers (8 words)

address of debug halfword address table

address of task's dispatch queue entry

address of task's abort receiver

address of task's blocking buffer

address of task's volume assignment table

number of entries in volume assignment table (1 byte)

FPT index for load module file (1 byte)

number of dynamic s(.,gment definition areas (1 byte)

2-131

Task Service Area (TSA)

2-132

Byte
(Hex)

6FO
6F4

6F8
6FC

700

704

708
70C

710
714

718

Symbol

T.BIT3

T.FATA
T.FPTA

T.SEGA
T.BREAK

T.MSGR

T.BIAS

T.TEND
T.END

T.TRAD
TLINNO

T.UKEY
T.BIT1

Description

TSA bit field assigned as follows:

Bit Meaning when Set

o PT ASK RRS error encountered (T.RRERR)
1 static assignment in progress (T.SASSN)
2 M.GE or M.GD service in use (T.GEGD)
3 M.MEMB service in use (T.MEMB)
4 base mode save (T.BRSA VE)
5 modify descriptor in progress (T.MOD)
6 retry suspended (multiport only) (T.SUSP)
7 ACX-32 privUeged task (T.ACXP)

address of task's file assignment table
address of task's file pointer table

address of segment definition area
address of task' s break receiver

address of task's message receiver

starting address of task's DSECT area

ending address of TSA when task is loaded
last location loaded by the task loader within
the DSECT plus one word

transfer address of task's main segment
number of lines on a TSM screen (1 halfword)

compressed original user key (1 halfword)
bit variables (1 byte) assigned as follows:

Bit Meaning when Set

o first 4K of E-c1ass I/O buffer in use
(T.EIOl)

1 second 4K of E-c1ass I/O buffer in use
(T.EI02)

2 arithmetic exception trap (T.EXCP)
3 reserved (T.EBUF)
4 suspend after activation (T.WAIT)
5 debugger required (T.DBG)
6 CSECT to share (T.SHR)
7 command file is active in TSM

(T.COMFIL)

System Tables and Variables

o

o

Task Service Area (TSA)

(~
Byte
(Hex) S'y!!!bol Description

T.BIT2 bit variables (1 byte) assigned as follows:

Bit Meaning when Set

0 E-c1ass wait buffer (T.EBUF1)
1 E-c1ass no-wait buffer (T.EBDF2)
2 user area of descriptor is being modified

(T.MODU)
3 base mode debugger (T.BASE)

-4 system administrator attribute (T.SAM)
5 all SLO output is directed to the terminal

(T.UTSLO)
6 H.VOMM file control block reinitialization

is required (T.FCBINT)
7 task cannot attach debugger (T.NODBG)

T.BBUFN number of blocking buffers associated with task
(1 byte)

T.FILES number of FAT /FPT pairs associated with task
(1 byte)

71C T.DSOR DSECT origin within T.MEMLff.MIDL (1 halfword);

('
usually zero

T.DSSZ DSECT size in map blocks (1 halfword)

720 T.CSOR CSECf origin within T.:MEMLff.MIDL (1 halfword).
If size is zero, T.CSOR is set equal to T.EAOR
contents.

T.CSSZ CSECT size in map blocks (1 halfword)

724 T.MEMLI MEML overlay map one (1 halfword)

T.MEML2 MEML overlay map two (1 halfword)

728 reserved for MEML overlay map two if fullword MIDLs

nc T.EAOR extended address origin in T.MEMLff.MIDL
(1 halfword)

T.EASZ extended address size in map blocks (1 halfword)

730 T.ACCESS privileged flags (2 words). Bit variables are
assigned as follows:

Bit Meaning when Set
0 EXIT directive disabled (T.EXIT)
1 ABORT directive disabled (T.ABORT)
2 ACTIVATE directive disabled (T.ACTVT)
3 BATCH directive disabled (T.BATCH)
4 BREAK directive disabled (T.BRK)
5 CONNECT directive disabled (T.CONNCT)
6 CONTINUE directive disabled (T.CONTNU)

(' 7 DEPRINT directive disabled (T.DEPRNT)

MPX-32 Technical Volume I 2-133

Task Service Area (TSA)

Byte
(~\

(Hex) Symbol Description '\../'

Bit Meaning if Set

8 DEPUNCH directive disabled (T.DEPNCH)
9 DISABLE directive disabled (T.DISABL)
10 DISCONNECf directive disabled

(T.DISCON)
11 DUMP directive disabled (T.DUMP)
12 ENABLE directive disabled (T.ENABLE)
13 reserved
14 HOLD directive disabled (T.ROLD)
15 KILL directive disabled (T.KILL)
16 LIST directive disabled (T.LIST)
17 MODE directive disabled (T.MODE)
18 MODIFY directive disabled (T.MODIFY)
19 OFFLINE directive disabled (T.OFFLNE)
20 ONLINE directive disabled (T.ONLINE)
21 PURGEAC directive disabled (T.PURGAC)
22 REDIRECf directive disabled (T.REDIR)
23 TSM REMOVE directive disabled

(T.REMOVE)
24 REPRINT directive disabled (T.REPRNT)
25 REPUNCH directive disabled (T.REPNCH)
26 REQUEST directive disabled (T.REQEST)
27 DELETETIMER directive disabled

(T.DTIMER)
28 reserved
29 SEARCH directive disabled (T.SEARCH)
30 SEND directive disabled (T.SEND)

-ll--- SETTIMER directive disabled (T.STIMER)
32 SNAP directive disabled (T.SNAP)
33 START directive disabled (T.ST ART)
34 STATUS directive disabled (T.STATUS)
35 SYSASSIGN directive disabled (T.SYSASN)
36 TIME directive disabled (T.TIME)
37 TSM URGENT directive disabled

(T.URGENT)
38 RESUME directive disabled (T.RESUME)

----3L ESTABLISH directive disabled (T.ESTAB)
40 access to other owners disabled (privileged)

(T.OWNACC)
41 activation of privileged tasks disabled

(privileged) (T.APRIV)
42 cataloging as privileged user disabled

(privileged) (T.CPRIV)
43 TSM REST ART (privileged) disabled

(T.RESTRT)
44 TSM URGENT directive disabled

(privileged) (T.PRIOR)

()
2·134 System Tables and Variables

Task Service Area (TSA)

C' Byte
(Hex) Symbol Description

Bit Meaning if Set

45 MOUNT directive disabled (T.MOUNT)
46 DISMOUNT directive disabled

(T.DMOUNT)
47 system administrator attribute (privileged)
~ enabled (T.SAA)

48 commands are not echoed (privileged)
(T.NOCOMM)

49 cataloging tasks which set owner ID on
access enabled (privileged) (T.OWNRID)

50 changing defaults enabled (T.CHAt'l"OD)
51 reserved for future use
52 TSM $SUBMIT jobs run sequentially
53 cannot use the lMDTI Utility

54-55 reserved for future use
56-63 available for customer use

738 T.SYCS SYC definition (2 words)

T.LINBUF address of TSM's line buffer (1 word)

(""
740 T.SOOS SOO definition (8 words)

760 T.SLOS SLO definition (8 words)
~.

780 T.SBOS SBO definition (8 words)

7AO T.CDIR name of current working directory (4 words)

7BO T.CVOL name of current working volume (8 words)

700 T.IPUAC IPU real-time clock accounting

704 T.CURH current high address in map

7D8 T.CRHX current high address in extended space

7DC T.SYCF address of SYC dedicated FAT

7E0 T.SOOF address of SOO dedicated FAT

7E4 T.SLOF address of SLO dedicated FAT

7E8 T.SBOF address of SBO dedicated FAT

7EC T.CPUSH number of push levels used for compatibility
(1 byte)

T.LDATTR H.TAMM loader attributes

T.DBOR task debugger origin within T.MIDL/f.MEML
(1 halfword). If debugger is not included with the
task, T.DBOR is set equal to T.CSOR contents.

7FO T.DPINFO dual-processor information (1 halfword). Bit
variables 0 to 15 indicate the base priority.

T.TASKK number of maps in the TSA and CALL stack (1 byte)

('
~.

MPX-32 Technical Volume I 2-135

Task Service Area (TSA)

Byte 0
(Hex) S,Y!!!bol Description

T.BIT4 bit variables (1 byte) assigned as follows:

Bit Meaning if Set

0 inhibit exception handler (T.NOSET)
1 inhibit command line scan (T.INHSCN)
2 debugger load in progress (T.DBLIP)
3 arithmetic exception handling in

progress (T.ARTECP)
4 base mode task with shared CSECT

(T.BRSCS)
5 no checksum on load (T .NCKSM)
6 task is swappable (T.SWP)
7 shadow memory table is present

(T.SHAD)

7F4 T.RDBVFA address of dual-processor resource descriptor buffer

7F8 T.EXCPAD arithmetic exception handler address

7FC T.RORO read-only section origin

800 T.RWORO read/write section origin

804 T.DBSTAT debugger status word

808 T.MIDLA MIDL array address (~ ..
80C T.MEMLA MEML array address \,J
810 T.MEMLO MIDL to MEML offset

814 T.STKSZ number of bytes in CALL stack

818 T.DBNAME base mode debugger name (4 words)

828 T.EXPSD PSD at arithmetic exception (2 words)

830 T.IDXA overlay count and index table address. Bytes
are assigned as follows:

Bytes Definition

0 number of entries in the overlay index
table (each entry in the table is ten bytes
in length)

1-3 address of the overlay index table

If this word is zero, there are no overlays in single file
format. If this word is minus one, there are overlays in
separate file format.

834 T.WORK work space scratch area (1 halfword)

T.NSI number of shared image descriptors (1 halfword)

838 T.SHIMDA shared image descriptor table address

83C T.PREL prelocation delta

840 T.DBSTW2 debugger status word 2 0 844 T.BBHCA address of task's blocking buffer head cell

2-136 System Tables and Variables

Task Service Area (TSA)

(Byte
(Hex) SYmbol DescriQtion

848 T.BIT5 bits defined as follows:

Bit Meaning if Set

0 task activation complete (T.T AC)
1 reserved
2 PTRACE debug activating task (T.PDBA)
3 no arithmetic exception handler

(T.NOEXCP)
4 arithmetic exception occurred in CPU

(T.CPUAE)
5 task is GCL load module (T.COFF)
6 task has included a multi-copied shared

image (T.MCSHINI)
7 command line recall and edit (T.CLRE)
8 permanent IOQ in effect (T.PIOQE)
9 dispatch address to pseudo interrupt

receivers requires 1 word offset
(T. GCL OFF)

10 task is running with O.S. mapped out
(T.MAPOUT)

11 task is running with TSA moved (T.MVTSA)

(- 12 return to AID debugger or O.S.
(T.RTRNOS)

13 task is running demand page mode (T.DPG)
14-31 reserved

84C T.SHTBL shadow memory table address

850 T.SMTMLT SMT index for multicopied shared image with
no read only section

854 T.SIGSTK ADA stack size

858 T.MPXBR 8 word area containing pointers for EXTDMPX

T.MPXBR+OW the logical end of extended MPX-32

T.MPXBR+1W reserved

T.MPXBR+2W starting address of the base register stack

T.MPXBR+3W the current push level of the base register stack

T.MPXBR+4W reserved

T.MPXBR+5W extended MPX-32 logical starting address
of segment three

T.MPXBR+6W extended MPX-32 logical starting address
of segment two

T.MPXBR+7W extended MPX-32 logical starting address
of segment one

(""

MPX-32 Technical Volume I 2-137

Task Service Area (TSA)

Byte 0 (Hex) SY!!,!bol Description

878 T.MPXLM the first halfword contains the length of extended
MPX-32 in units of 2KW maps. The second half-
word contains EXTDMPX offset into the task's T.MIDL.

87C T.NSTAT number of static partition maps in use (1 halfword)

87E T.REMIX remote index to file control block

87F T.RTAIX remote task activation index

880 T.TSAOR the starting MIDL number for the task's TSA
within T.MIDL (1 halfword)

882 T.TSASZ TSA size in map blocks (1 halfword)

884 T.ATBIAS the number of MPX-32 maps included in the task's
address space (1 halfword)

886-8A4 T.SPARES reseIVed

8A8 T.DSBSZ DSECT byte size

8AC T.AGE virtual time before page considered aged

8BO T.CSECT byte offset to CSECT code in load module

8B4 T.DSECT byte offset to DSECT code in load module

8B8 T.CSBSZ CSECT byte size

8BC T.LSTAGE virtual time of last age

8CO T.SFPTA shared image/FPT pair \
8C4 T.LASTP logical address of last stack frame in the TSA ~)
8C8 T.MIDLl MIDL overlay map one (1 halfword)

8CA T.MIDL2 MIDL overlay map two (1 halfword)

8CC reseIVed for MIDL overlay map two if fullword MIDLs

8DO T.TSAEND ending address of TSA when task is loaded. Exclude
split portion of MPX when at MINADDR.

804 T.PG02 second task option word

8D8 T.ADRTSA TSA address from EXTDMPX specifications on non-split
images

8DC T.ATADDR logical end of MPX-32 (+ 1 byte) for task

8EO T.AESTKP arithmetic exception segment list address save area

8E4 T.STBRGA address of GCL task's startup base register save area

8E8 T.PIOQA address of task's static IOQ table. This
table provides indirect linkage between the FCB
and the static IOQ address.

8EC T.TIQA tenninal input queue entry address

8FO T.LDBSS GCL task's BSS section size in bytes

8F4 T.PTRMP PTRACE memory pool use word

8F8 T.WKADR address of working map block during task activation

8FC T.ABPSD abonPSD

0
2-138 System Tables and Variables

Byte
(Hex)

900

1300

2000

2000

Symbol

T.REGS

T.MIDL

T.MIDL

MPX-32 Technical Volume I

Task Service Area (TSA)

Description

offset from the beginning of TSA to start of
start of the pushdown stack

reserved for MPX-32

halfword map image descriptor list (128 to 1024 words
depending on the logical space requirement of task)

Bit
o
1

2

3

4

5-15

Meaning if Set
map number is valid (MIDL.V AL)
first protection granule is write
protected (MIDL.PRO)
second protection granule is write
protected (MIDL.PR2)
third protection granule is write
protected (MIDL.PR3)
fourth protection granule is write
protected (MIDL.PR4)
physical map number

or

fullword map image descriptor list (256 to 2048 words
on mapped out images depending on the logical space
requirement of task)

Bit Meaning if Set
o map number is valid (MIDL.VAL)

1-2 map block has restrictions according
to the following bit encoding:

PSD
Priv. PI P2

0 0 0 read/execute
0 1 0 read/write/execute
0 0 1 not used by MPX-32
0 1 I not used by MPX-32
1 0 0 read/write/execute
1 1 0 read/write/execute
1 0 1 not used by MPX-32
1 1 1 not used by MPX-32

3 map block has been modified (MIDL.MOD)
4 ill:>;; block has been referenced (MIDL.ACC)
5 iIidicates SelBUS (DRAM) memory (MIDL.SEL)

2-139

Terminal Line Buffer

2.40 Terminal Line Buffer

2-140

The terminal line buffer, buffers terminal input and output. It is allocated from
memory pool for each online task when the terminal is opened. The size of the buffer
is determined by the contents of DDT.CHAR. The buffer is pointed to by T.LINBUF
and always begins on a doubleword boundary. It is deallocated when the terminal is
closed.

o 7 8 15 16

Word 0-3

4

Last argument found by scanner. See Note 1.

Buffer length.
See Note 2.

5-n

(length may vary)

Notes:

Cursor index. Field delimiter.
See Note 3. See Note 4.

23 24

Field size.
See Note 5.

1. Two doublewords containing last argument found by syntax scanner. It is left
justified and blank filled.

31

2. Number of words in line buffer (20 minimum, 59 maximum). This number does
not reflect possible words required to maintain memory pool doubleword
bounding.

3. Cursor index for next call to scanner. Relative to word 0 of line buffer.

4. The delimiting character previously found by scanner.

5. Number of significant characters in previous argument found by scanner.

System Tables and Variables

o

o

o

(.'" \
/

Timer Table

2.41 Timer Table

The timer table contains all necessary infonnation for the time scheduling of the
functions provided in the create timer entry service. The functions include activating
a program, resuming a program, setting a bit, resetting a bit, and requesting an
interrupt.

The table also contains a variable number of five word timer entries that are specified
at SYSGEN. Entries in the table are identified by a 2-character (ASCII) timer ID
specified by the create timer entry service. Entries are deleted by the delete timer
entry service. SYSGEN forces three entries for the exclusive use of lSSINl,
J.SSIN2, and J.SOUT. The fonnat of the timer table entries follows:

o 3 4 7 8 15 16 31

Word 0 Timer Status. Function code. Reserved Timer ID - two unique

1

2

3

4

Notes:

See Note 1. See Note 2. ASCII characters

Function parameter one. See Note 3.

Function parameter two. See Note 3.

Current time value in negative time units. See Note 4.

Reset time value in negative time units. See Note 5.

1. The time status bits have the following meanings:

Bits

o
1
2
3

Meaning if Set

timer in hold state
timer entry is taken
re-issue activation request
reserved

2. The function code (4-bit numeric value) is assigned as follows:

Value

1
2
3
4
5

MPX·32 Technical Volume I

Meaning

activate program
resume program .
set bit in static memory partition or operating system .
reset bit in static memory partition or operating system
request interrupt between X'12' to X'7F'

2·141

Timer Table

2·142

3. The function code, bits 4 through 7 in word 0, determines the contents of the
function parameters (words 1 and 2).

Function
Code Word Contents

1 1 Dispatch queue address of task to be
activated at time out M.SEIT preactivates
the task, then acquires the dispatch queue
address. The task remains suspended until
time out

2 Reserved

2 1 Dispatch queue address of task to be
resumed at time out. M.SEIT acquires the
dispatch queue address from the user-
supplied task name or task number.

2 Reserved

3 1 Address of word where the bit is to be set

2 The bit configuration to be ORed at time
out with the data at the address specified in
word one.

4 1 Address of word where the bit is to be reset.

2 The bit configuration to be ANDed at time
out with the data at the address specified in
word one.

S 1 A request interrupt (RI) instruction, for the
user-specified priority level, to be executed
upon time out.

2 Reserved

4. The current time value is the negative timer units to elapse before the selected
function is completed. This value is incremented until it equals zero. At that
time, the selected function is complete.

If word 4 is zero when time out occurs, the entry is deleted. If word 4 is non-zero
when time out occurs, the value in word 4 is loaded into word 3 and
incremented.

5. The reset time value is the negative timer units to elapse before the selected
function is. repeated. When the timer expires, this value is loaded into word 3
and incremented.

Word 4 is not changed until the timer is deleted or the system is rebooted.

System Tables and Variables

o

o

c:

c

Type Control Parameter Block (TepS)

2.42 Type Control Parameter Block (TCPB)
The type control parameter block (TCPB) allows I/O to and from the system console
by setting up task buffer areas for messages output by a task and optional reads back
from the console. If no input is desired, word one of the TCPB must be zero.

See the MPX-32 Reference Manual Volume I, Chapter 5 for further details on the
TePB.

Type Control Block (TCPB) using 19-bit address

o 11 12 13

Word 0 Output quantity See Output data address
(TCP.OQ) Note 1. (TCP.OTCW)

1 Input quantity See Input data address
(TCP.IQ) Note 1. (TCP.ITCW)

2 Console Teletype Flags
(TCP.FLGS). See Note 2.

Notes:

1. Bit 12 is set to 1.

2. Bits in TCP.FLGS are assigned as follows:

Bits Meaning if Set

o no-wait I/O

31 operation in progress. This bit is reset after post-I/O
processing completes.

MPX-32 Technical Volume I

31

2-143

Type Control Parameter Block (TCPB)

2-144

Type Control Parameter Block (TCPB) using 24-bit address:

o 7 8 15 16 23 24 31

Word 0 Output Output data buffer address (TCP.OTCW)
quantity
(TCP.OQ)

1 Input Input data buffer address (TCP.ITCW)
quantity
(TCP.IQ)

2 Console device flags (TCP.FLGS) See Note 1.

Notes:

1. Bit interpretations for TCP.FLGS are:

Bits Meaning if Set
o no-wait I/O

1 data buffer addresses are 24-bit addresses (TCP.LAD)
Note: This bit must be set.

31 operation in progress. This bit is reset after
post-I/O processing completes.

System Tables and Variables

o

o

('

C~:

Unit Oeflnition Table (UOT)

2.43 Unit Definition Table (UDT)
The unit definition table (UDT) is a system resident structure that identifies device
dependent information required by a handler for a specific device. The UDT is built
by the SYSGEN process, one for each device configured in the system. During
SYSGEN, each UDT is linked to its corresponding controller definition table (eDT)
and its associated controller and handler.

Ward 0

1

2

3

o 7 8 15 16 23 24

UDT index (UDT.UDTI) CDT index (UDT.CDTI)
Unit status Device type code Logical Logical
(UDT.STAT). (UDT.DTC). channel number subaddress
See Note 1. See Note 2. (UDT.CHAN) (UDT.SVBA)
Reserved Address of dispatch queue entry of task: which has

device allocated if device is not shared (UDT.DQEA)
Physical channel Physical Sectors per block Sectors per
number subaddress (UDT.SPB) allocation unit
(UDT.PCHN) (UDT.PSUB) or (UDT.SPAU)

number of or

31

characters number of lines per

4

5
6

7
8
9

10

11

12

13
14

15

per line screen (UDT.LINE).
(UDT.CHAR). See Note 4.
See Note 3.

Flags Number of sectors Maximum byte transfer
(UDT.FLGS). per track on (UDT.1v1BX)
See Note 5. disk or global

line counter if a
terminal (UDT.SPT)

Number of sectors on disk or tab setting if a terminal (UDT.SECS)
Sector size, on disk or a tab Number of heads on disk or a tab
setting if a terminal (UDT.SSIZ) setting if a terminal (UDT.NHDS)
Serial number if tape or removable disk (UDT.SERN). See Note 6.
Peripheral time-out value (UDT .PTOV)
Reserved Address of device context area (UDT.OCAA)

or handler name at initialization (UDT.HNAM)
Bit flags (UDT.BIT2). See Note 7. Associated allocated resource

table index if assigned (UDT.ART!)
Service interrupt handler address (UDT.SIHA)
Reserved Secondary flags Reserved Reserved
(UDT.CXR) (UDT.BIT3) (UDT.SHFL) (UDT.DQEN)
See Note 8. See Note 9. UDTt &p+-.

or UDT.mST. See Note 10
Address of first IOQ linked to this device (UDT.FIOQ)
Address of last IOQ linked to this device (UDT.BIOQ)
Link Priority Link Count Unit Status byte 2 (UDT.STA2).
(UDT.LPRl) (UDT.IOCT) See Note 11.

MPX-32 Technical Volume I 2-145

Unit Definition Table (UDT)

2-146

Notes:

1. Bits in UDT.STAT are assigned as follows:

Bit Meaning if Set

o online (UDT.ONLI)
1 dual-portd XIO disk (UDT.DPDC)
2 allocated (UDT.ALOC)
3 tenninal in use and not in wait (UDT.USE)
4 system output unable to allocate (UDT.NOAL)
5 shared device (UDT.SHR)
6 premounted (UDT.PREM)
7 tenninal (TSM) device (UDT.TSM)

2. For example, 01 for any disk, 04 for any tape, etc. Valid device type codes are
listed in Chapter 1 of this manual.

3. For disks, contains the number of sectors per block (UDT.SPB). For tenninals,
contains the number of characters per line (UDT.CHAR).

4. For disks, contains the number of sectors per allocation unit (UDT.SPAU). For
SLO or tenninals, contains the number of lines per page or screen (UDT.LINE).

5. Bits in UDT.FLGS are assigned as follows:

Bit Meaning if Set

o extended I/O device (UDT.FCLS)
1 I/O outstanding (UDT.IOUT)
2 removable disk pack (UDT.RMDV)
3 a break has been requested for this device (UDT.LOGO)
4 autoselectable for batch SLO (UDT.BSLO)
5 autoselectable for batch SBO (UDT.BSBO)
6 autoselectable for real-time SLO (UDT.RSLO)
7 autoselectable for real-time SBO (UDT.RSBO)

6. If the device is a tenninal or console, the first halfword is the current tenninal
type for TERMDEF (UDT.CfDF) and the second halfword is the default
tenninal type (UDT.DTDF).

7. Bits in UDT.BIT2 are assigned as follows:

Bits

o
1

?--Z
~

4
5
b
7
8
9
10

Meaning if Set

port is private; else switched (UDT.DIAL)
port is connected to modem (UDT.MODM) U1)r...5 c -r v
port has graphic capability (UDT.GRFC)-- I "

port is full duplex (UDT.FDUX)
port is configured multidrop (UDT.MDRA)
volume mounted on device (UDT.VOL)
echo by computer (UDT.ECHO)
device has failed. Log off TSM (UDT.DEAD)
cache device (UDT.CAC)
inhibit automatic line wrap (UDT.NRAP)
spool device requires fonn feed after printing rather
than before; initial fonn feed is inhibited (DDT.FEOP)

System Tables and Variables

" ('.".

("' ..
"

:

" ",/

\

8.

9.

Bits

--11
12
13
14
15

Unit Definition Table (UDT)

Meaning if Set

quarter inch cartridge tape drive (UDT.QITD) ---.
software read flow control required (UDT.RXON)
software write flow control required (UDT.WXON)
hardware read flow control required (UDT.RHWF)
hardware write flow control required (UDT. WHWF)

For switched port, contains the value specified in the LOGONFLE CXR = option
(UDT. CXR) . .f.- Up/I sc...f r ~::r-
Bits in UDT.BIT3 are assigned as follows: /~ I

~b'l ,
Bits Meaning if Set / /- f-OLFV C4/AMc >1(" /0.-00)4-,!d~

o SCSI device (UDT.SCSI) -: l - Pr?-Y I$. ,., SO f"
1-7 reserved /'

10. UDT.HIST is used as an address save area by pseudo device handlers, such as
ON.IPXIO

11. Bits in UDT.ST A2 are assigned as follows:

Bits Meaning if Set

o IOQ linked from DDT (UDT.lOQ)
1 lOP device (initialized by SYSGEN) (UDT.IOP)
2 device malfunction (UDT.MALF)
3 operator intervention applicable (UDT.INTV)
4 use standard XIO interface
5 floppy disk
6 cartridge module drive
7 moving head disk with fixed head option
8 if software read flow control enabled, use

DTR line; otherwise, use RTS line. (UDT.RDTR)
9 memory disk (UDT.MD) or valid command line recall and

edit device (UDT.CLRE)
10 memory allocated for memory disk (UDT.MDAL)
11 start address of memory disk specified at SYSGEN (UDT .MDST)
12 multipart device is shared with an MPX-32 Revision 3.2C

or earlier version (UDT.PPV)
13 device is exclusive ANSI (UDT.ANSI)
14 serial printer (UDT.SLPR)
15 port is switched and CXR=N option has been specified

(UDT.DCXR)
tl X's-z.,' scs:~

U Dr. Dpr = I.A fYi, 511ft-

uI:flt vJf 111 ;r; 0 - LV t!~ 1r:J2 -f't ~r M~J l r" !J ""~£,
tAD T", Q\c-

V StoP-

W Cd"IN wnrr
V! or. p~,.'t

I --
Z-~

3 -

'f-

Q'L-
!/O~j.r' t;~ ..

01/fo/fl vol", 1'»1-

5c<;;::;:;.

Jvt 6v.-t, /'Le.(J c",E?:.r

tN c.u~/" I".. V pA, J
iv 11(

MPX-32 Technical Volume I 2-147

Volume Assignment Table (VAT)

2.44 Volume Assignment Table (VAT)

2-148

The volume assignment table (V AT) is used to identify a nonpublic volume associated
with a particular task. The table is located in the task's service area (TSA). The VAT
points to the infonnation necessary to process access to the volume for a specific task
and is required to be memory resident (frequently required infonnation). The V AT
contains a use count that represents the number of resources allocated on a non-public
volume by the task.

A VAT entry is created for a task when a nonpublic volume is logically mounted by
that task. A logical mount is necessary before a task is allowed to reference any
resources on the nonpublic volume. A linkage in the V AT is then connected to a
corresponding entry in the mounted volume table (MVT) for the requested volume. If
an entry does not exist in the MVT for the requested volume, the volume must be
physically mounted to establish an entry. The linkage in the VAT is then connected
to the MVT.

o 7 8 15 16 23 24

Word 0 Assign count
(VA.ASSNS)

Mounted volume table address (V A.MVT A)

1 Assigned access restrictions (V A.ACCS). See Note.

Notes:

Bits in V A.ACCS are assigned as follows:

Bits Meaning if Set

0-15 reserved
16 entry is available (V A.A VAIL)

17-31 reserved

31

System Tables and Variables

o

o

C'

Disk Resident Resource Descriptors (RD)

2.45 Disk Resident Resource Descriptors (RD)

The following chart shows the NlPX-32 disk resident resource descriptors most
commonly used and their correlation to each other.

As shown in the chan, the first 86 words of each descriptor are identical. For
example, words 0 through 63 are the common parameters and words 64 through 85
are the space parameters.

Unique descriptor types begin at word 86 and end at word 95, with the exception of
the memory partition parameters that end at word 97 because of memory page
parameters, and the volume descriptor parameters that end at word 159 because they
do not contain a segment definition area.

The descriptors, with the exception of the two noted above, contain a segment
definition area that begins at word 96 and ends at word 159. The segment definition
area for memory partitions begins at word 98 and ends at word 159.

The descriptors contain a free usage area that begins at word 160 and ends at word
190.

Each descriptor is described following the chart.

Words 0-63

64-85

86-95

o 7 8 15 16 23 24

Common parameters (M.RDCOM) - 29 spare words

Space parameters (MRDSPD)

Bad block file descriptor parameters (M.BB.DEQ) - 8 spare words
Descriptor allocation map parameters (M.DM.DEQ) - 4 spare words
Descriptors descriptor parameter (M.DD.DEQ) - 9 spare words
Descriptor map (DMAP) deallocation file descriptor (M.BD.DEQ) -

2 spare words
Directory descriptor parameters (M.DI.DEQ) - 1 spare word
File descriptor parameters (M.F1.DEQ) - no spare words
Memory partition parameters (M.ME.DEQ) - 8 spare words
Space allocation map parameters (M.SM.DEQ) - 3 spare words
Space map (SMAP) deallocation file descriptor (M.BS.DEQ) -

3 spare words
Volume descriptor parameters (M.VO.DEQ)

31

--
96-159

160-190

191

Memory partition parameters (M.ME.DEQ) (continued to word 97)
Volume descriptor parameters (M.VO.DEQ) (continued) - 9 spare words
Segment definitions (RD.SEGDF)

User area (RD. USER)

Reserved for "MPX-32

MPX-32 Technical Volume I 2-149

Disk Resident Resource Descriptors (RD)

2.45.1 Resource Descriptor (M.RDeOM)

2-150

The resource descriptor (M.RDCOM) defines the system common portion of a
resource descriptor. The common area ends at 64W, immediately followed by the
infOImation specific to the resource descriptor type.

Words 0 to 7 correspond to M.RDID, words 8 to 25 correspond to M.RDACf, words
26 to 32 correspond to M.RDACC, and words 33 to 64 define the balance of the
common area.

Word 0-3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20-21

22-23

24

25

26-27

....... 28-29

30

31

32

o 78 15 16 23 24 31

Volume name (RD.IDNAM)

Binary creation date (RD.DATE)

Binary creation time (RD.TIME)

Absolute block number of resource descriptor (RD.OOFF)

Resource ID Bags (RD.RDFLG). Resource type (numeric value)
See Note 1. (RD.RTYPE). See Note 2.

Binary date of creation/deletion (RD.CRDAT)

Binary time of creation/deletion (RD.CRTIM)

Binary date of expiration (RD.XPDAT)

Binary time of expiration (RD.XPTIM)

Binary date of last read access (RD.RDDAT)

Binary time of last read access (RD.RDTIM)

Binary date file last changed (RD.CHDA1)

Binary time file last changed (RD.CHTIM)

Binary date of last save (RD.SVDAT)

Binary time of last save (RD.SVTIM)

Binary date of last restore (RD.RSDA 1)

Binary time of last restore (RD.RSTIM)

Owner name of last changer (RD.CHOWN)

Owner name of creator (RD. CROWN)

Count of opens in read mode (RD.RDCN1)

Accounting Bags (RD.AFLGS). See Note 3.

Name of resource owner (RD.OWNR)

Name of resource project group (RD.UGRP)

Owner access/privileges (RD.AOWNR). See Note 4.
"-Project group access/privileges (RD.AUGRP). See Note 4.

Others access/privileges (RD.AOTHR). See Note 4.

System Tables and Variables

o

(~~'-
, ,

\J

o

Disk Resident Resource Descriptors (RD)

Word 33

34

35

o 7 8 15 16

Reserved

Resource link count (RD.LNKC1)

Port number Port number Port number
(1 through (1 through (1 through
16) of task 16) of task 16) of task
that opened that opened that opened
resource for resource for resource for

23 24 31

Port number
(1 through
16) of task
that opened
resource for

write access modify access update access append access

36-43

44

45

46-51

52-53

54-57

58-61

62-63

Notes:

(RD.WRID) (RD.MDID) (RD.UPID) (RD.APID)

Information to reconstruct spool files (RD.SUBMT)

Number of MDT entries Number of hashes required
(RD.MDTC) to locate entry (RD.MDTH)

Flag word (RD.MDTF). See Note 5.

Reserved for MPX-32 Usage

Owner name at last access (RD.RDOWN)

Number of resource assigners by port number (RD.ASSN). See Note 6.

Number of resource users by port number (RD. USER). See Note 7.

Reserved

1. Internal flags reserved for MPX-32.

2. Values for RD.RTYPE are as follows:

Value

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

18

MPX-32 Technical Volume I

Meaning

volume type (RD.YOL)
resource descriptor description (RD.RESRC)
descriptor map descriptor (RD.DMAP)
space map descriptor (RD.SMAP)
root directory descriptor (RD.ROOT)
system image descriptor (RD.IMAGE)
bad block descriptor (RD.BDBLK)
value for spool file (RD. SPOOL)
reserved
pelTIlanent file or shared image (RD. FILE)
pelTIlanent directory (RD.DIR)
temporary file (RD.TFILE)
temporary directory (RD.TDIR)
static memory partition (RD.MEM)
dynamic memory partition (RD.TMEM)
device descriptor (RD.DEVC)
resource descriptor for the DMAP bad block
deallocation file (RD.BDMAP)
resource descriptor for the SMAP bad block
deallocation file (RD.BSMAP)

2-151

Disk Resident Resource Descriptors (RD)

2-152

3. Bits in RD.AFLGS are assigned as follows:

Meaning if Set Bits

o
1

2-31

record last read infonnation (RD.AREAD)
RD is being deleted (RD.DEL)
reserved

4. Bits in RD.AOWNR, RD.AUGRP and RD.AOTHR are assigned as follows:

Bits Meaning if Set

o read access allowed (RD.READ)
1 write access allowed (RD.WRITE)
2 modify access allowed (RD.MODFY)

...3 update access allowed (RD. UPDAT)
4 append access allowed (RD.APPND)

5-7 reserved
-8 traverse directory access allowed (RD.TRA VR)

9 delete resource access allowed (RD.DELET)
10 delete directory entry access allowed (RD.DEENT)

..J 1 add directory entry access allowed (RD.ADENT)
12-31 reserved

5. Bits in RD.MDTF are assigned as follows:

Bits Meaning if Set

o MDT entry is in use. This bit is never set in the
disk copy of the resource descriptor.

1-31 reserved

6. Bytes in RD.ASSNS are as follows:

~ Meaning

o number of assigners on port 0
1 number of assigners on port 1
2 number of assigners on port 2
3 number of assigners on port 3
4 number of assigners on port 4
5 number of assigners on port 5
6 number of assigners on port 6
7 number of assigners on port 7
8 number of assigners on port 8
9 number of assigners on port 9
10 number of assigners on port 10
11 number of assigners on port 11
12 number of assigners on port 12
13 number of assigners on port 13
14 number of assigners on port 14
15 number of assigners on port 15

System Tables and Variables

...•. '\ it ...
'0

()

Disk Resident Resource Descriptors (RD)

7. Bytes in RD.USERS are as follows:

I!Y!L. Meaning

o number of users on port 0
1 number of users on port 1
2 number of users on port 2
3 number of users on port 3
4 number of users on port 4
5 number of users on port 5
6 number of users on port 6
7 number of users on port 7
8 number of users on port 8
9 number of users on port 9
10 number of users on port 10
11 number of users on port 11
12 number of users on port 12
13 number of users on port 13
14 number of users on port 14
15 number of users on port 15

MPX-32 Technical Volume I 2-153

Disk Resident Resource Descriptors (RD)

2.45.2 Resource Descriptor Space Definition (M.RDSPD)

The resource descriptor space definition (M.RDSPD) descriptor defines a resource
descriptor space definition area.

o 7 8 15 16 23 24

Space definition flags (RD.SFLGS). See Note.

Maximum file extension increment (RD.IvIXEXT)

Word 64

65

66

67

68

69

70
71

Minimum file/directory extension increment (RD.MNEXT)

72-75

76

77
78-79

80-83

84
85

86-95

Notes:

Maximum attainable file/directory size (RD.MXSIZ)

End-of-file relative block number (RD.EOFBL)

End-of-medium relative block number (RD.EOIvffiL)

Number of segments in file/directory (RD.NUMSG)

Absolute address (block number) of resource descriptor
with extra segment definition (RD.xSABA)

Directory name (RD.DNAME)

Block address of parent directory descriptor (RD.PAREN)

Number of segments at creation time (RD.NUMCR)

Reserved

Directory entry value (RD.DIRP)

Resource directory address of parent directory (RD.DADD)

Directory entry index into parent (RD.DIDX)

Reserved for unique descriptor parameters

Bits in RD.SFLGS are assigned as follows:

Bits Meaning if Set

0-7 resource type. equivalent to file type code,
interpreted as two hexadecimal digits, O-FF (RD.FTYPE)

8-10 reserved
11 EOF management required (RD.EOFi\1)
12 fast access file (RD.F AST)
13 no-save file (RD.NSA VE)
14 file contains default image (RD.DEFI)
15 start segment requested (RD.SSREQ)
16 execute access (RD. EXEC)
17 set owner ID on access (RD.OWNID)
18 set project group ID on access (RD.USRID)
19 restoring this file (RD.PREFR)

20-22 reserved

31

2-154 System Tables and Variables

(

Disk Resident Resource Descriptors (RD)

Meaning if Set

23 zero file on creation/expansion (RD.zERO)
24 automatically extendible (RD. AUTO)
25 manually extendible (RD.MANUL)
26 contiguity desired (RD.CONTG)
27 shareable access allowed (RD.SHRBL)
28 link access (RD.LINK)
29 file physically/logically contiguous (RD.NCNTG)
30 file written to DFI (RD.DFI)
31 file data is recorded as blocked (RD.BLOCK)

2.45.3 Bad Block Descriptor (M.BB.DEQ)

The bad block descriptor (M.BB.DEQ) defines the bad block file descriptor.

o 7 8 15 16

Word 86 Number of bad blocks (BB.NVMBL)

87 Number of bad allocation units (BB.N1JMAU)

88-95 Reserved

23 24

2.45.4 Descriptor Allocation Map Descriptor (M.DM.DEQ)

The descriptor allocation map descriptor (M.DM.DEQ) defines the descriptor map
descriptor block.

Word 86

87

88

89

90

91

92-95

o 7 8 15 16 23 24

Descriptor allocation map length in blocks (DM.DMAPL)

Descriptor allocation map length in words (DM.DMAPW)

Number of resource descriptors in descriptor map (DM.DMAPU)

Number of resource descriptors available (DMDMAPC)

Number of words in last block (DM.LASTB)

Number of bits used in last word of map (DMLASTW)

Reserved

2.45.5 Descriptors Descriptor (M.DD.DEQ)

The descriptors descriptor (M.DD.DEQ) defines the descriptor for the resource
descriptors.

o 7 8 15 16 23 24

Word 86 Maximum number of resource descriptors (DD.NUMRD)

87-95 Reserved

31

31

31

MPX-32 Technical Volume I 2-155

Disk Resident Resource Descriptors (RD)

2.45.6 Descriptor Map (DMAP) Deallocation File Descriptor
(M.BD.DEQ)

2-156

The DMAP deallocation file descriptor (M.BD.DEQ) defines the DMAP deallocation
file descriptor. Each entry in the DMAP de allocation file is 4 bytes in length
(BD.ESlZE) and contains the disk block number of the block (resource descriptor) to
be deallocated.

Word 86

87

88

89-91

92

o 7 8 15 16 23 24 31
Reserved

Total number of entries that can be specified in the bad
DMAP deallocation file (BD.NEN1R)

Total number of entries available in the bad DMAP deal location file
(ED.AVAIL)

Reserved

Number of resource assigners Number of resource users by
by the dual-port number the dual-port number (RD.USERS).
(RD.ASSNS or RD.ART). See Note 1.

93 Current multi- Part number of
port access resource lock
mode (RD. CACM) owner (RD.MPID)

94 AR.FLAGS. See Note 3.

95 AR.ASSNS. AR.USERS.

See Note 3. See Note 3.

Notes:

1. Bytes in RD.ASSNS are as follows:

fu1L
o
1

Description

number of assigners on port 0
number of assigners on port 1

See Note 2.

Reserved

ARJffiL. AR.SRL.
See Note 3. See Note 3.

Reserved AR.RDRS.
See Note 3.

RD.ART is equivalent to RD.ASSNS, and indexes the ART information stored in
words 94 and 95.

2. Bytes in RD.USERS are as follows:

!lliL
2
3

Description

number of users on port 0
number of users on port 1

3. For detailed description of field contents, refer to the corresponding field within
the allocated resource table (ART) in this chapter.

System Tables and Variables

('.'

-.,/

Disk Resident Resource Descriptors (RD)

2.45.7 Directory Descriptor (M.DI.DEQ)

The directory descriptor (M.DI.DEQ) defines the directory descriptor block (also
pertains to the root directory).

o 7 8 15 16 23 24

Number of entries per block (DI.ENTSG)

Current number of active entries (DI.ACTIV)

Total entry capacity (DI.TOTEN)

Current number of available entries (DI.A VLEN)

Directory descriptor flags (DI.FLAGS)

Reserved

31

Word 86

87

88

89

90
91

92 Number of resource assigners Number of resource users by the
by the dual-port number
(RD.ASSNS or RD.ART). See Note 1.

93 Current multipart Port number of
access mode resource lock
(RD. CACM) owner (RD.MPID)

94 AR.FLAGS. See Note 3.

95 AR.ASSNS. AR.USERS.
See Note 3. See Note 3.

Notes:

1. Bytes in RD.ASSNS are as follows:

lli1L
o
1

Description

number of assigners on port 0
number of assigners on port 1

dual-port number (RD.USERS).
See Note 2.

Reserved

AR.xRL. AR.SRL.
See Note 3. See Note 3.

Reserved AR.RDRS.
See Note 3.

RD.ART is equivalent to RD.ASSNS, and indexes the ART information stored in
words 94 and 95.

2. Bytes in RD.USERS are as follows:

JmL
2
3

Description

number of users on port 0
number of users on port 1

3. For detailed description of field contents, refer to the corresponding field within
the allocated resource table (ART) in this chapter.

MPX-32 Technical Volume I 2-157

Disk Resident Resource Descriptors (RD)

2.45.8 File Descriptor (M.FI.DEQ)

2-158

The file descriptor (M.FI.DEQ) defines the file descriptor block (also penains to
descriptors for the system image).

Word 86-90

91

92

93

94

95

Notes:

o 78

RD.STRUC. See Note 1.

Assign count Assign count
Port O. Port 1.
See Note 2. See Note 2.

Nwnber of resource aSsigners
by the dual-port nwnber
(RD.ASSNS or RD.ART).
See Note 3.

Current multi- Port number of
port access resource lock
mode (RD.CACM) owner (RD.MPID)

AR.FLAGS. See Note 5.

AR.ASSNS. AR.USERS.
See Note 5. See Note 5.

15 16 23 24

Use count Use count
Port O. Port 1.
See Note 2 See Note 2.

Nwnber of resource users by the
dual-port number (RD.USERS).
See Note 4.

Reserved

AR.XRL. AR.SRL.
See Note 5. See Note 5.

Reserved AR.RDRS.
See Note 5.

31

1. Reserved for use by utilities, runtime or related products. The value in byte zero
of RD.STRUC indicates how the subsequent words 87 through 90 are interpreted.
Byte zero of RD.STRUC is assigned as follows:

Value Description

o standard MPX -32 file sUUcture
1 GCL file SUUcture. GCLL last opened file unblocked.

Word 87 contains byte count of file's EOF. Words 88-90
are unused.

2 GCL file suucture. GCLL last opened file
blocked. Words 87- 90 are unused.

2. Interpreted for explicit shared use only.

3. Bytes in RD.ASSNS are as follows:

~ Description

o number of assigners on port 0
1 number of assigners on port 1

RD.ART is equivalent to RD.ASSNS, and indexes the ART infonnation stored in
words 94 and 95.

System Tables and Variables

o

o

f.

(

Disk Resident Resource Descriptors (RD)

4. Bytes in RD.USERS are as follows:

!ll!L Description

2 number of users on port 0
3 number of users on port 1

5. For detailed description of field contents, refer to the corresponding field within
the allocated resource table (ART) in this chapter.

2.45.9 Memory Partition Descriptor (M.ME.DEQ)

The memory partition descriptor (M.NfE.DEQ) defines the memory partition
descriptor.

o 7 8 15 16 23 24

Word 86 Starting logical page number (ME.PPAGE)

87 Memory class (ME.MCLAS)

88 Starting logical page number (RD.LPAGE)

89 Total number of pages (RD.PGLEN)

90 Owner access Project group Others access Reserved
rights access rights rights (ME.AOTHR).
(ME.AOWNR) (ME.AUGRP). See Note.

See Note.

91-95 Reserved

Notes:

31

Access rights apply to the shared image loaded into memory. Bits in NfE.AOWNR,
NfE.AUGRP, and NfE.AOTHR are assigned as follows:

Bits Meaning if Set

o read access
1 write access

2-7 reserved

MPX-32 Technical Volume I 2-159

Disk Resident Resource Descriptors (RD)

2.45.10 Space Allocation Map Descriptor (M.SM.DEQ)

The space allocation map descriptor (M.SM.DEQ) defines the space map descriptor
block.

Word 86

87
88
89

90

91

92

93-95

o 78 15 16 23 24

Space allocation map length in blocks (SM.SMAPL)

Space allocation map length in words (SM.SMAPW)

Number of allocation units in space map (SM.SMAPU)

Number of allocation units available (SM.SMAPC)

Number of words in last block (SM.LASTB)

Number of bits used in last word of map (SM.LASTW)

Number of blocks remaining as a fragment of allocation unit (SM.FRAG)

Reserved

2.45.11 Space Map (SMAP) Deallocation File Descriptor (M.BS.DEQ)

The SMAP deallocation file descriptor (M.BS.DEQ) defines the SMAP de allocation
file descriptor. Each entry in the SMAP deallocation file is eight bytes in length
(BS.ESIZE) and contains the segment definition of the disk space to be deallocated.

Word 86

87

88

89-91

92

93

94

95

o 78 15 16 2324

Reserved

Total number of entries that can be specified in the bad SMAP
deallocation file (BS.NENTR)

Total number of entries available in the bad SMAP deallacation file
(BS.AVAIL)

Reserved

Number of resource assigners Number of resource users by the
by the dual-port number dual-port number (RD.USERS).
(RD.ASSNS or RD.ART). See Note 2.
See Note l.

Current multiport Port number of Reserved
access mode resource lock
(RD.CACM) owner . (RD.MPID)

AR.FLAGS. See Note 3. AR.XR.L. ~.SRL.
See Note 3. See Note 3.

AR.ASSNS. AR.USERS. Reserved AR.RDRS.
See Note 3. See Note 3. See Note 3.

31

31

2-160 System Tables and Variables

0,;
, ,

o

o

(
Disk Resident Resource Descriptors (RD)

Notes:

1. Bytes in RD.ASSNS are as follows:

fu1L
o
1

Description

number of assigners on pon 0
number of assigners on pon 1

RD.ART is equivalent to RD.ASSNS, and indexes the ART information stored in
words 94 and 95.

2. Bytes in RD.USERS are as follows:

fu1L
2
3

Description

number of users on port 0
number of users on port 1

3. For detailed description of field contents, refer to the corresponding field within
the allocated resource table (ART) in this chapter.

MPX·32 Technical Volume I 2·161

Disk Resident Resource Descriptors (RD)

2.45.12 Volume Descriptor (M.VO.CEQ)

The volume descriptor (M. VO.DEQ) defines the volume descriptor block.

Word 86

87

88
89
90
91

92

93

94

95

96
97

98

99
100

101

102
103
104

105
106

107

108
109

110

111

112-121

122

123

o 7 8 15 16 23 24

Binary date of last mount (VO.MTDAT)

Binary time of last mount (VO.MITIM)

Binary date of last dismount (VO.DTDA 1j

Binary time of last dismount (VO.DTTIM)

Total number of blocks on volume (VO.TOTBL)

Total number of allocation units on volume (VO.TOTAU)

Number of allocation units for user allocation (VO.USRAU)

Number of blocks available for user allocation (VO.USRBL)

Space map start address (VO.SMAPS)

Space allocation map length in blocks (VO.SMAPL)

Number of allocation units reflected in space map (VO.SMAPU)

Number of allocation units currently available (VO.SMAPC).
See Note 1.

Descriptor allocation map start address (VO.DMAPS)

Descriptor allocation map length in blocks (VO.DMAPL)

Number of resource descriptors in descriptor map (VO.DMAPU)

Number of resource descriptors currently available (VO.DMAPC)

Root directory segment definition start (VO.ROOTS)

Root directory segment definition size (VO.ROOTL)

Blocks per allocation unit (VO.BLKAU)

Number of blocks in system area (VO.SYSBL)

Number of allocation units occupied by system (VO.SYSAU)

Number of blocks of resource descriptors (VO.RESBL)

Volume flags (VO.FLAGS). See Note 2.

Number of critical I/O errors during mount sessions that ended
with a proper dismount (VO.CAECT)

Number of physical blocks not in logical volume (VO.FRAG)

Reserved

Number of IOCDs to boot maximum size system
(VO.IOCDI or VO.BTDSC)

Number of blocks in Number of blocks in restart
restart code (VO.RNRST) image (VO.SGNOS)

Restart/bootstrap Index to Reserved
flags (VO.RFLGS). selected image
See Note 3. for rest

(VO.IMGSL)

31

2-162 System Tables and Variables

o

()

c

Disk Resident Resource Descriptors (RD)

Word 124-125

126

127

128

129

130-131

132

133

134

135

136

137

o 78 15 16 2324 31

SYSGEN (cold start) image name (VO.PRIMG)

SYSGEN (cold start) starting block (VO.PRSTB)

SYSGEN (cold start) number of blocks (VO.PRNBK)

SYSGEN (cold start) image checks (VO.PRCKS)

SYSGEN (cold start) number of bytes (VO.PRBCT)

Current selected image name (VO.CUIMG)

Current selected starting block number (VO.CUSTB)

Current selected number of blocks (VO.CUNBK)

Current selected image checksum (VO.CUCKS)

Current selected number of bytes (VO.CUBCT)

Sectors per block Sectors per track Sectors per cylinder (VO.SPC)
(VO.SPB) (VO.SPT)

Device type Number of Sector size (VO.SSIZ)
(VO.DEVT). heads
See Note 4. (VO.NHDS)

138 Device class Reserved Channel/subaddress for boot/restart

139

140-141

142-150

151

152-159

Notes:

(VO.CLASS) (VO.CHNSA)

Boot device (VO.IPLDV)

Reserved for future development use (VO.IOCD2)

Drive attribute information (VO.DATR)

Seek information for boot of primary image (VO.SEEK)

Long resource identifier of current default system image
(doubleword bounded) (VO.LRID)

1. This number includes some blocks allocated by the operating system.

2. Bits in VO.FLAGS are assigned as follows:

Bits

o
1
2
3
4
5
6
7
8
9

MPX-32 Technical Volume I

Meaning if Set

volume currently mounted (VO.MONTD)
volume is mounted under MP(DP)O (VO.PORTO)
volume is mounted under MP(DP)l (VO.PORTl)
volume is mounted under MP2
volume is mounted under MP3
volume is mounted under MP4
volume is mounted under MP5
volume is mounted under MP6
volume is mounted under MP7
volume is mounted under MP8

2-163

Disk Resident Resource Descriptors (RD)

Bits

10
11
12
l3
14
15
16
17

18-31

Meaning if Set

volume is mounted under MP9
volume is mounted under MP A
volume is mounted under MPB
volume is mounted under MPC
volume is mounted under MPD
volume is mounted under MPE
volume is mounted under MPF
critical access error occurred (VO.CAERR)
reserved

3. Bits in VO.RFLGS are assigned as follows:

Bits Meaning if Set

o program restart flag (VO.PGMRS)
1 default image established flag (VO.DEFL T)
2 bootstrap in retry mode (VO.BRTRY)
3 automatic default flag (VO.AUTO)
4 debugger requested flag (VO.DEBUG)

5-7 reserved

4. Bits in VO.DEVT are assigned as follows:

Bits Meaning if Set

o moving head disk (VO.MHDDT)
1 fixed head disk (VO.FHDDT)
2 cartridge module drive (VO.CMDDT)
3 reserved
4 device not present (VO.NPRES)
5 multi-/dual-port disk (VO.DUAL)

6-7 reserved

2.45.13 Segment Definitions (RD.SEGDF)

2-164

The segment definition (RD.SEGDF) total area covers words 96 to 159 of the
M.RDSPD. Each entry in RD.SEGDF is a doubleword entry, with a maximum of 32
entries.

o 7 8 15 16

Word 96 Absolute disk address (starting block number)

97-159 Number of 191. word blocks

23 24 31

System Tables and Variables

C··"···
i· .. !

c

Disk Resident Resource Descriptors (RD)

2.45.14 User Area (RD. USER)

(RD. USER) covers words 160 to 191 of M.RDSPD and is reserved for application
use.

o 7 8 15 16 23 24 31

Word 160-190 Reserved for application use

191 Reserved I Multiprocessor resource lock

2.46 Disk Resident Structures

The following are disk resident structures in the order they appear in this section.

• Volume Format
• Load Module Structure

• Load Module Preamble

• Executable Image Structure

• Executable Image Preamble

• Shared Executable Image Structure

• Shared Executable Image Preamble

• Shared Image Descriptor

• COFF Load Module Structure

• COFF Executable Image Preamble

• COFF Shared Image Preamble

MPX·32 Technical Volume I 2·165

Disk Resident Structures

2.46.1 Volume Format

2-166

After a volume is fonnatted by J.VFMT (volume fonnatter), the volume has the
following fonnat:

Physical
Block No.

0-3

4

5
6

7

8

9

10

11

12

13-15

16-nO

nl-n2

n3-n4

n5-n6

n7-n8

n9-nlO

nll-nl2

n13-nI4

n15-n16

Notes:

Bootstrap loader

Volume Descriptor

General allocatable resource descriptors' descriptor

Descriptors' allocation map (DMAP) descriptor

Space allocation map (SMAP) descriptor

Root directory descriptor

System image descriptor - if no image, reserved

Media deallocation file descriptor. See Note 1.

DMAP deallocation file descriptor

SMAP deallocation file descriptor

Reserved resource descriptors - for future use •

General allocatable resource descriptor area. See Note 2. The number
of descriptors in this area is user specified with the J. VFMT format
command, or the default of 1000 descriptors (blocks) is used.

DMAP - bit map for resource descriptors. The starting block, size,
and other attributes are described by block 6. DMAP always begins on an
allocation unit boundary.

SMAP - bit map for allocatable disk space. The starting block, size,
and other attributes are described by block 7.

Fragment of allocation unit not used by DMAP and SMAP

Root directory - size varies for the number of entries specified by
the user with the VFMT FORMAT command, or the default of 100 entries.

System image file

BDMAP deallocation file. The starting block, size, and other
attributes are described by block 11.

BSMAP deallocation file. The starting block, size, and other
attributes are described by block 12.

Free allocatable space (as described by SMAP) .

1. The cylinder closest to the spindle of all disk packs is reselVed for the disk
vendor's use.

2. This area is described by the DMAP area (blocks nl through n2). Block 16 is
reselVed for the system directory resource descriptor.

System Tables and Variables

o

o

c

Disk Resident Structures

2.46.2 Load Module Structure

A load module is a permanent file of cataloged nonbase mode object code. The
following is the load module structure.

Load Module Preamble

Resource Requirement Summary

CSEcr Data

CSEcr Relocation Matrix

DSECT Data

DSECT Relocation Matrix

Debugger Information

Module Information

Overlay

If either the CSECT or DSECT segments are empty, the empty segments are omitted.

2.46.3 Load Module Preamble

The load module preamble contains load module information in the following format:

7 8 15 16 23 24 31

0-4 0-1 PR.NAME - Load module name

8-C 2-3 PRUSER - User name

10 4 PRMOUNT Reserved PR.KEY

14 5 PR.TRAN - Module transfer address

18 6 PRCNTL PR.FLAG PR.NRRS PR.PRIOR

IC 7 PR.PAGEC PR.PAGED PR.PGSIZ PRMEMS

20 8 PR.PAGEG PR.FILE PRBUFR PR.SEGS

24 9 PR.OPTN - Program option word

28 10 PRORGC - Starting byte address of code section

2C 11 PRCOMC Reserved for Reserved for Reserved for MPX-32
big blocking big blocking
buffers buffers -

30 12 PR.ENDC - Ending byte address of code section

34 13 PR.SFAC - Relative file address of code section

38 14 PRBYTEC - Number of bytes in code section
~

3C 15 PRCHKC - Code section checksum

40 16 PRSFACR - Address of code section relocation matrix
~--

44 17 PR.BYTCR - Number of bytes in matrix

MPX·32 Technical Volume I 2-167

Disk Resident Structures

Byte Word o 7 8 15 16 23 24 31

48 18 PR.CHKCR - Matrix checksum

4C 19 PR.ORGD - Starting byte address of data section

50 20 PR.COMD - Common delta

54 21 PR.ENDD - Ending byte address of data section

58 22 PR.SFAD - Relative file address of data section

5C 23 PR.BYTED - Number of bytes in data section

60 24 PR.CHKD - Data section checksum

64 25 PR.SFADR - Address of data section relocation matrix

68 26 PR.BYTDR - Number of bytes in matrix

6C 27 PR.CHKDR - Matrix checksum

70 28 PR.SYMG - Global symbol block number

74 29 PR.SYMP - Local symbol block number

78-7C 30-31 PR.DATE - Date load module was created

80 32 PR.INDEX - Block number of overlay

84 33 Reserved for MPX-32

8C 35 PR.LAS - logical address Reserved for MPX-32
space required

90 36-38 Reserved for :MPX-32

9C 39 PR.SFAID - Block number of module information

AO-A4 40-41 PR.TIME - Time load module built

A8-AC 4243 Reserved for MPX-32

BO 44 PR.MPXBR - EXTDMPX logical map address

B4 45 PR.GID J PR.FLAG3 PR.FLAG4

B8 46 Reserved

BC-CO 47-48 Reserved for MPX-32

C4 49 PR.CATD

C8-100 50-64 Reserved for MPX-32

104 65 PR.PG02 - Second task option word

108 66 PR.AGE - Virtual time before aging for demand page task

IOC 67 PR.PRTGC PR.PRTGD

110 68 PR.PRTGG PR.PRTGE

114-27C 69-159 Reserved for MPX-32

280-2FC 160-191 Available for customer use

o
2·168 System Tables and Variables

(

c··.· .. '
., /'

Byte
(Hex)

o

8

10

14

18

Symbol

PR.NA.ME

PR.USER

PR.MOUNT

Reserved

PR.KEY

PR.TRAN

PR.CNTL

PR.FLAG

MPX-32 Technical Volume I

Disk Resident Structures

Description

Load module name
Field length = 2W;
Left-justified and blank-filled eight-character ASCII;
This name must match the file name.

User name;
Field length = 2W;
Left-justified and blank-filled eight-character ASCII;
Zero if the USERNAME directive was not used.

Mounts;
Field length = lB;
Contains the number from the VOLUMES directive;
Default value is zero.

Field length = lB.

User key;
Field length = IH;
Compressed ASCII;
Zero if the USERNAME directive was not used.

Module transfer address;
Field length = 1 W;
Module relative address where the module is to
start execution when loaded;
Bit 7 set indicates the transfer address is absolute.

Control;
Field length = lB;

Bit Meaning When Set

o overlay'is in separate file format (PR.OVLS)
1 no overlays (pR.NOVL)
2 reserved
3 privileged task (pR.PRlV)
4 system administrator attribute (pR.SAlvI)

5-7 reserved

Rags;
Field length = lB;

Bit Description

o absolute CSECf load addresses (pR.ABSC)
1 resident (program cannot be swapped

out when in execution) CPR.RES)
2 shared (a single copy can be shared

by two or more users) (PR.SHR)

2-169

Disk Resident Structures

Byte 0 .. ,I

(Hex) Symbol Description

Bit Description

3 absolute DSECf load addresses (pR.ABSD)
4 do not attach debugger (PR.NODBG)
5 multicopy (pR.MUL TI)
6 load base mode debugger
7 MPX-32 Revision 2.0+ load module (pR.MPX20)

PR.NRRS RRS count;
Field length = IB;
Number of entries in the resource requirement
summary table.

PR.PRIOR Priority;
Field length = IB;
Base execution priority of the load module.

IC PR.PAGEC CSECf pages;
Field length = 1 B;
Number of 512-word pages in CSECf.

PR.PAGED DSECf pages;
Field length = IB;
Number of 512-word pages in DSECf;
Derived from the ending address of the
DSECf (pR.ENDD).

PR.PGSIZ Block size;
Field length = IB;
Defines the map block granularity required as
specified in the environment directive. It is the
number of 512-word protection granules in a map
block (four hexadecimal).

PR.MEMS Memory class;
Field length = IB;
The value indicates memory class as follows:
one for E-c1ass memory, two for H-class memory,
and three for S-c1ass memory. The default value is
three.

20 PR.PAGEG Common pages;
Field length = IB;
Number of 512-word pages in Global Common/Datapool.

PR.FILE Files;
Field length = IB;
Number from the FILES directive;
Default value is five (the requirement for
the debugger).

0
2-170 System Tables and Variables

Disk Resident Structures

(". Byte
(Hex) SlIDbol Description

PRBUFR Buffers;
Field length = IB;
Number from the BUFFERS directive;
Default value is three (the requirement for
the debugger).

PRSEGS Segmented files;
Number from the SEGFILES directive;
Default is PR.FILE.

24 PROPTN Program option word;
Field length = 1 W;

28 PRORGC CSECf origin;
Field length = 1 W;
Address at which to begin loading the CSECf;
Bit 7 set indicates absolute origin.

2C PRCOMC CSECf common delta;
Field length = lB;

Static buffer count;
Field length = lB.

Head cell count;

(- Field length = lB.

Reserved For MPX-32;
Field length = lB.

30 PRENDC CSECf ending address;
Field length = 1 W;
Address of the first free word after the CSECf.

34 PR.SFAC CSECf data block number;
Field length = 1 W;
File relative block number of the CSECf data.

38 PRBYTEC CSECf data byte count;
Field length = 1 W;
Number of bytes of CSECf data.

3C PRCHKC CSECf data checksum;
Field length = 1 W;
Checksum for the CSECf data;
All halfwords of CSECf data are summed in a register.

40 PRSFACR CSECf relocation matrix block number;
Field length = 1 W;
File relative block number of the CSECf relocation
matrix.

44 PRBYTCR CSECf relocation matrix byte count;
Field length = 1 W;

('. Number of bytes, rounded up to a multiple
of four. of CSECf relocation matrix.

MPX-32 Technical Volume I 2-171

Disk Resident Structures

C Byte (-", , '\

(Hex) Symbol Description

48 PR.CHKCR CSECf relocation matrix checksum;
Field length = 1 W;
Checksum for the CSECf relocation matrix;
All halfwords of CSECf relocation matrix are summed
in a register.

4C PR.ORGD DSECf origin;
Field length = 1 W;
Address at which to begin loading the DSECf;
Bit 7 set indicates absolute origin.

50 PR.COMD DSECf common delta;
Field length = 1 W;
Not used, contains zero.

54 PR.ENDD DSECf ending address;
Field length = 1 W;
The address of the first free word after the DSECT.

58 PR.SFAD DSECf data block number;
Field length = 1 W;
File relative block number of the DSECf data.

5C PR.BYTED DSECf data byte count;
Field length = 1 W;
Number of bytes of DSECT data.

60 PR.CHKD DSECf data checksum;
Field length = 1 W;
Checksum for the DSCECf data.
All halfwords of DSECf data are summed in
a register.

64 PR.SFADR DSECf relocation matrix block number;
Field length = 1 W;
File relative block number of the DSECf relocation
matrix.

68 PR.BYTDR DSECf relocation matrix byte count;
Field length = 1 W;
Number· of bytes, rounded up to a multiple
of four, of DSECT relocation matrix.

6C PR.CHKDR DSECf relocation matrix checksum;
Field length = 1 W;
Checksum for the DSECf relocation matrix.
All halfwords of DSECf relocation matrix are
summed in a register.

70 PR.SYMG Global symbol block number;
Field length = 1 W;
Relative sector number of the global symbol table;
Zero indicates no symbols. C)

2-172 System Tables and Variables

(

c

Byte
(Hex)

74

78

80

84

8C

90

9C

AO

A8

BO

B4

B5

Symbol

PR.SYMP

PR.DATE

PR.INDEX

Reserved

PR.LAS

Reserved

PR.SFAID

PR.TlME

Reserved

PR.MPXBR

PR.GID

PR.FLAG3

MPX-32 Technical Volume I

Disk Resident Structures

Description

Local symbol block number,
Field length = 1 W;
Relative sector number of the local symbol table;
Zero indicates no symbols.

Date of creation;
Field length = 2W;
Date load module was created;
Format identical to C.DATE.

Index block;
Field length = 1 W;
Relative block number of the overby index for
single file load modules;
Zero indicates no overlays.

Field length = 2W.

Logical address size;
Field length = 1 H;
The size in map blocks of the logical
address space.

For MPX-32;
Field length = 3W.

Block number of load module information;
Field length = 1 W.

Time load module built;
Field length = 2W.

For MPX-32;
Field length = 2W.

EXTDMPX logical map address;
Field length = 1 W.

Task Group identification;
Field length = lB.

Flags;
Field length = IB;

Bits Meaning if Set

reserved o
1
2
3
4

enable realtime accounting (PR3.0NRA)
disable realtime accounting (PR3.0FRA)
task supplied blocking buffers (pR3.TSBB)
retain cataloged load module name
(PR3.RCMN)

5
6
7

enable move TSA to extended (pR.ETSA)
request to move TSA to extended (pR.RTSA)
reserved

2-173

Disk Resident Structures

2-174

Byte
(Hex)

B6

B8

BC

C4

C8-100

104

108

lOC

lOE

110

112

114

280

Symbol

PR.FLAG4

Reserved

Reserved

PRCATD

Reserved

PRPG02

PRAGE

PRPRTGC

PRPRTGD

PRPRTGG

PRPRTGE

Reserved

Reserved

Description

Flags;
Field length = IHW;

Bits

o
Meaning if Set

1
2
3
4

enable mapout (PREMAP)
request mapout (PR.RMAP)
demand page this task (PR.DPG)
do not demand page this task (pRNDPG)
segment mode task (pR.SEGT)

5-15 reserved

Field length = 1 W.

For MPX-32;
Field length = 2W.

Pointer to Cataloger directives;
Field length = 1 W.

For MPX-32;
Field length = 15W.

Second task option word;
Field length = 1 W.

Virtual time before aging for demand page task
Field length = 1 W.

Protection granules in CSECT;
Field length = 1 HW.

Protection granules in DSECT;
Field length = IHW.

Protection granules in GLOBAL;
Field length = IHW.

Proctection granules in EXTENDED;
Field length = IHW.

For MPX-32;
Field length = 91 W.

For customer use;
Field length -= 32W.

System Tables and Variables

C-''''· ,. ,I

/------'"

0" I. . .• \

Disk Resident Structures

2.46.4 Executable Image Structure

An executable image is a permanent file of base mode object code that was built by
the LinkerlX32. The following is the nonshared executable image structure.

Image Preamble

Resource Requirement Summary Table

Shared Image Descriptors

Read Only Image Section

ReadlWrite Image Section

Debugger Information

Relocation Lists

MPX-32 Technical Volume I 2-175

Disk Resident Structures

2.46.5 Executable Image Preamble o
The executable image preamble contains image infonnation in the following fonnat:

Byte Word o 7 8 15 16 23 24 31

0 0 PR.L VER - Linker version number

4 1 PR.IVER - Image version number

8 2 PR.ROSIZ - Number of bytes in read only section

C 3 PR.RWSIZ - Number of bytes in read/write section

10 4 PR.MNT I PR.FLAG2 PR.NSI

14 5 PRo TRAN - Transfer address

18 6 PR.CNTL I PR.FLAG PR.NNRS PR.BPRI

lC 7 PR.NOOL PR.IPRI PR.RRSSZ

20 8 PR.RRS I PR.FILE PR.BUFR PR.SEGS

24 9 PR.OPTN - Program option word

28 10 PR.RESVD I PR.SSIZ - Stack size in bytes

2C 11 PR.OLD - File address of overlay descriptors

30 12 PR.GST - File address of global symbol table

34 13 PR.DBG - File address of debugger information

38-4C 14-19

50-64 20-25

PR.ROSD - Read only image section descriptor

PR.RWSD - Read/Write image section descriptor (J
68-74 26-29 PR.DBNAM - Debugger name

78-88 30-34 Reserved for MPX-32

8C 35 PR.LAS Reserved for MPX-32

90 36 PR.REGD - Reserved for Linker

94 37 PR.OIT - Reserved for Linker

98 38 PR.SHIMG - File address of shared image descriptors

9C 39 Reserved

AO-A4 40-41 PRo TIME - Time image linked

AB-AC 42-43 PR.DA mB - Date image linked

BO 44 PR.MPXBR - EXTDMPX logical map address

B4 45 PR.GID I PR.FLAG3 PR.FLAG4

B8 46 Reserved

BC-lOO 47-64 Reserved for MPX-32

104 65 PR.PG02 - Second task option word

108 66 PR.AGE - Virtual time before aging for demand page task

IOC-27C 67-159 Reserved for MPX-32

280-2FC 160-191 Reserved for customer use

o
2-176 System Tables and Variables

Disk Resident Structures

(Byte
(Hex) Symbol Description

0 PR.LVER Linker version number,
Field length = 1 W;
Indicates which hash mechanism is used for hash
accesses and the size of the global symbol table
entries for use by the Symbolic Debugger/X3Z.

4 PR.IVER Image version number,
Field length = 1 W;
Task version number of the nonshared image.

8 PR.ROSIZ Bytes in read only section;
Field length = 1 W;
Number of bytes in the read only section.

C PR.RWSIZ Bytes in read/write section;
Field length = 1 W;
Number of bytes in the read/write section.

10 PR.MNT Dynamic mount count;
Field length = lB;
Number of nonpublic volumes required for dynamic
mounts; Default is zero.

PR.FLAGZ Second flag;

(~
Field length = IB;

Bit Meaning if Set

0 debugger symbol support not present
(pRZ.NOSY)

1 debugger speed support present (pRZ.DBSS)
Z task is an Ada task (PRZ.ADA)
3 reserved for shared image use by owner

(PRZ.SHBO)
4 special arithmetic function (PRZ.AF)
5 BSS section should be zeroed (pRZ.ZBSS)
6 module is a COFF (PRZ.COFF)
7 PTRACE debugger (pRZ.PDBG)

PR.NSI Number of shared images included;
Field length = lH.

14 PR.TRAN Transfer address;
Field length = lW.

MPX·32 Technical Volume I

Disk Resident Structures

Byte
(Hex)

18

2-178

Symbol

PRCNTL

Bit

0

1

2

3

4

5
6
7

PRFLAG

Bit

o

1

2

3

4

5

6

7

Description

Control;
Field length = IB;

Meaning if Set

load module file status
is segmented
link operation status
(pR.LOS) is executable
loader (PRNOCKS) is no
checksum
task status (PRPRIV) is
privileged
system administrator
(PRSAM) attribute is on
overlay status is overlaid
image status is shared
overwrite status is
verified

Flags;
Field length = 1B;

Meaning if Set

address mode (pR.ABSC) is
absolute
residency (PRRES) is
unswappable
read only section (pRSHR)
is shared
prelocation status

Meaning if Reset

load module status is
continuous
link operation CPRLOS)
is nonexecutable
loader (pRNOCKS) is
checksum
task status (PRPRIV) is
unprivileged
system administrator
cPR.SAM) attribute is off
overlay status is nonoverlaid
image status is nonshared
overwrite status is not
verified

Meaning if Reset

address mode (PRA1~SC) is
relocatable
residency (PRRES) is
swappable
read only section (pRSHR)
is unshared

(pRPREL) is prelocated
debugger (pRNODBG) is not
allowed. See Note.

prelocation status (pRPREL)
is not located
debugger (pRNODBG) is
allowed

task configuration
(pR.MUL TI) is multi copied
base mode executable image
PR.BASE is always set
PRMPX20 always set

task configuration (PRMUL TI)
is wtique

Note: If bit 4 is set. the file and buffer assignment totals in PR.FILE .
and PRBUFR are incremented for debugger support

PRNNRS Resource requirement summary entry;
Field length = 1B;
Number of entries in the resource requirement summary
table.

System Tables and Variables

I, ' O··~·~.".···\

Disk Resident Structures

(Byte
(Hex) S~mbol Description

PR.BPRI Execution priority;
Field length = IB;
Base execution priority.

Ie PR.NOOL Overlay;
Field length = IH;
Number of overlays;
Should be zeroed.

PR.IPRI I/O priority;
Field length = IB;
Base I/O priority level;
Default is equal to PRBPRI.

PRRRSSZ Resource requirement summary size;
Field length = IB;
Size in blocks of the resource requirement summary
table.

20 PRRRS Resource requirement summary address;
Field length = 1 B;
File address of the resource requirement summary table.

PR.FILE Files;

(
Field length = IB;
Total number of files that can be concurrently
open during task execution. This number is the sum
of the file allocations specified in the LINKER!X32
FILES directive plus the number of files specified in
any shared images included in the task.

PR.BUFR Buffers;
Field length = IB;
Total number of blocking buffers required by the
task. This number is the sum of the buffers specified
in the LINKER!X32 BUFFERS directive plus the
number of buffers specified in any shared images
included in the task.

PRSEGS Segment definition;
Field length = IB;
Segment definition area count. This number is the
sum of the segmented files specified in the LINKER/X32
SEGFILES directive plus the number of files
specified in any shared images included in the task.

24 PR.OPfN Program option word;
Field length = I W;

MPX-32 Technical Volume I 2-179

Disk Resident Structures

Byte • 0 (Hex) SYmbol DescriQtion

28 PR.RESVD Reserved;
Field length = lB.

PR.SSIZ Stack size;
Field length = 3B;
Program stack size in bytes. This number is
the sum of the ST ACKSlZE specified in the LINKER/X32
STACKSIZE directive plus the number of files
specified in any shared images included in the task.

2C PR.OLD Overlay descriptors;
Field length = IW;
Should be zeroed.

30 PR.GST Global symbol table;
Field length = 1 W;
File address of the Global Symbol Table.

34 PR.DBG Debugger infonnation;
Field length = lW;
File address of debugger infonnation.

38 PR.ROSD Read only image section descriptor;
Field length = 6W;

Word Definition 0 •
0 load address (RO.LADD)
1 sector address (RO.FADD)
2 length in bytes (RO.SIZE)
3 checksum (RO.CKSM)
4 relocation list sector address (RO.RLAD)
5 number of relocation entries (RO.NRE)

50 PR.RWSD Read/write image section descriptor;
Field length = 6W;

Word Definition

0 load address (RW.LADD)
1 sector address (RW.FADD)
2 length in bytes (RW.SIZE)
3 checksum (R W.CKSM)
4 relocation list sector address (RW.RLAD)
5 number of relocation entries (RW.NRE)

68 PR.DBGNM Debugger name;
Field length = 4W;
Debugger name to be used if different from
the default debugger name.

78-88 Reserved ForMPX-32

0
2-180 System Tables and Variables

Disk Resident Structures

(" Byte
(Hex) S~mbol Description

8C PR.LAS Logical address size;
Field length = lH;
The size in map blocks of the logical address space.

Reserved For MPX-32;
Field length = 1 H.

90 PR.REGD Region descriptor;
Field length = 1 W;
Should be zeroed.

94 PR.OIT Overlay information table;
Field length = 1 W;
Should be zeroed.

98 PR.SHIMG Shared image descriptors;
Field length = 1 W;
File address of shared image descriptors.

9C Reserved For MPX-32;
Field length = 1 W.

AO PR.TIME Time image linked or relinked;
Field length = 2W.

A8 PR.DATEB Date image linked or relinked;
Field length = 2W.

(BO PR.MPXBR EXTDMPX logical map address;
Field length = 1 W.

B4 PR.GID Task group identification;
Field length = 1 W.

B5 PR.FLAG3 Flags;
Field length = lB;

Bit Meaning if Set
0 reserved
1 enable realtime accounting (PR3.0NRA)
2 disable realtime accounting (PR3.0FRA)

3-4 reserved

B6 PR.FLAG4 Flags;
Field length = 1 HW.

B8 Reserved Field length = 1 W.

BC Reserved For MPX-32;
Field length = 18 W.

104 PR.PG02 Second task option word;
Field length = 1 W.

108 PR.AGE Virtual time before aging for demand page task
Field length = 1 W.

lOC Reserved For MPX-32

(~'
Field length = 93W.

280 Reserved For customer use;
Field length = 32W.

MPX-32 Technical Volume I 2-181

Disk Resident Structures

• 2.46.6 Shared Executable Image Structure

An executable image is a permanent file of base mode object code that was built by
the Linker1X32. The following is the shared executable image structure.

Shared Image Preamble

Shared Image Descriptors

Read Only Image Section

Read/Write Image Section

Read/Write Writeback Image Section

Universal Symbol Table

Global Common Program Image Section Information

2·182 System Tables and Variables

o

o

o

(-

c

Disk Resident Structures

2.46.7 Shared Executable Image Preamble

The shared image preamble contains image infonnation in the following format:

Byte Word o 7 8 15 16 2324 31

0 0 PRL VER - Linker version nwnber

4 1 PRlVER - Shared image version number

8 2 PRCOMP - Compatibility level

C 3 PRPHADS - Physical load address

10 4 PRMNT IPRFLAG2 IPR.NSI

14 5 PRmAN - Should be zeroed

18 6 PRCNTL IPR.FLAG I Reserved for Linker

lC 7 Reserved for Linker

20 8 Reserved IPR.FlLE lpRBUFR IPRSEGS

24 9 Reserved for Linker

28 10 PRSSIZE - Stack size in bytes (first byte reserved)

2C 11 PR.GCMFA - File address of global common definitions

30 12 PRGCMNE - Number of global common definitions

34 13 PRDBG - File address of debugger information

38-4C 14-19 PR.ROSD - Read only image section descriptor

50-64 20-25 PRRWSD - Read/write image section descriptor

68-7C 26-31 PR.RWWB - Read/write writeback image section descriptor

80 32 PRUST - File address of universal symbol table

84 33 Reserved for MPX-32

88 34 Reserved for MPX-32

8C 35 PRUSTSO - Sector offset for universal symbol table

90 36 PRUSHLN - Universal symbol hash table length in bytes

94 37 PRUSTLN - Universal symbol table length in bytes

98 38 PRSHIMG - File address of shared image descriptors

9C 39 Reserved for MPX-32

AO-A4 40-41 PR TIME - Time image linked

A8-AC 42-43 PRDATE - Date image linked

BO-27C 44-159 Reserved for MPX-32

280-2FC 160-191 Reserved for customer use

Some of the above reserved areas are used by the Linker/X32. They are not used by
the MPX-32 operating system.

MPX-32 Technical Volume I 2-183

Disk Resident Structures

2-184

Byte
(Hex)

o

4

8

C

10

14

Symbol

PRLVER

PR.IVER

PRCOIvIP

PRPHADS

PRMNT

~PRFLAG2

PR.NSI

PRTRAN

Description

Linker version number;
Field length = 1 W;
Indicates that hash mechanism is used for hash
accesses and the size of the global symbol table
entries for use by the Symbolic Debugger/X32.

Shared image version number;
Field length = 1 W;
Task version number of the shared image.

Compatibility level;
Field length = 1 W;
The lowest version number that is compatible with
this copy of the shared image.

Physical load address;
Field length = 1 W;
The physical address where the shared image is loaded.

Dynamic mount count;
Field length = lB;
Number of nonpublic volumes required for dynamic mounts;
Default is zero.

Second flag;
Field length = lB;

Bit Meaning if Set

o debugger symbol support not present
(pR2.NOSY)

1 debugger speed support present (pR2.DBSS)
2 task is an ADA task (pR2.ADA)
3 share image by owner (pR2.SHBO)

4-7 reserved for executable image use

Number of shared images included;
Field length = I H.

Should be zeroed;
Field length = I W.

System Tables and Variables

/ '.
I

Disk Resident Structures

(~ Byte
(Hex) Symbol DescriQtion

18 PR.CNTL Control;
Field length = IB;

Bit Meaning if Set Meaning if Reset

0 load module file load module status is
status is segmented continuous

1 link operation status link operation status
(pR.LOS) is executable (pR.LOS)

is nonexecutable
2 loader (pRNOCKS) is no loader (pRNOCKS)

checksum is checksum
3 task status (PRPRIV) task status (PR.PRIV)

privileged is unprivileged
4 system administrator system administrator

(PRSAM) attribute is on (PRSAM) attribute is off
5 overlay status is overlay status is

overlaid nonoverlaid
6 image status is shared image status is

nonshared
7 oveIWrite status is oveIWrite status is

verified not verified

(~ PRFLAG Flags;
Field length = lB;

Bit Meaning if Set Meaning if Reset

0 address mode (PRABSC) address mode
is absolute (pRABSC) is relocatable

1 residency (PRRES) is residency (PRRES)
unswappable is swapp able

2 read only section read only section
(pR.SHR) is shared (pR.SHR) is unshared

3 pre location status prelocation status
(pR.PREL) is prelocated (pR.PREL) is not prelocated

4 debugger (pRNODBG) debugger (pRNODBG) is allowed
is not allowed. See Note.

5 task configuration task configuration
(pRMUL TI) is multicopied (pRMUL TI) is unique

6 base register load module
(pR.BASE) is always set

7 PRMPX20 is always set

Note: If bit 4 is set, the file and buffer assignment totals in
PRE.FLE and PRBUFR are incremented for debugger
support.

(~~'

MPX-32 Technical Volume I 2-185

Disk Resident Structures

Byte 0 (Hex) Sy!!!bol DescriQtion

ReseIVed For Linker;
Field length = IH.

Ie ReseIVed For Linker;
Field length = IW.

20 ReseIVed For MPX-32;
Field length = lB.

PRFILE Files;
Field length = IB;
Number of dynamic file allocations specified in the
Linker/X32 FILES directive.

PRBUFR Buffers;
Field length = IB;
Number of dynamic blocked file allocations specified
in the Linker/X32 BUFFERS directive.

PR.SEGS Segment definition;
Field length = IB;
Segment definition area counts specified in
LINKER/X32 SEGFILES directive.

24 ReseIVed For Linker;
Field length = I W. C)

28 PRSSIZE ReseIVed;
Field length = I B.

Stack size;
Field length = 3B;
Program stack size in bytes specified in LINKER/X32
ST ACKSIZE directive.

2C PRGCMFA File address of global common definitions;
Field length = I W.

30 PRGCMNE Number of global common definitions;
Field length = 1 W.

34 PRDBG Debugger infonnation;
Field length = IW;
Should be zeroed.

38 PRROSD Real only image section descriptor;
Field length = 6W;

Word Definition

0 load address (RO.LADD)
1 sector address (RO.FADD)
2 length in bytes (RO.SIZE)
3 checksum (RO.CKSM)
4 relocation list sector address (RO.RLAD)

0 5 number of relocation entries (RO.NRE)

2-186 System Tables and Variables

Disk Resident Structures

(Byte
(Hex) Symbol DescriQtion

50 PR.RWSD Read/write image section descriptor;
Field length = 6W;

Word Definition

0 load address (RW.LADD)
1 sector address (RW.FADD)
2 length in bytes (RW.SIZE)
3 checksum (RW.CKSM)
4 relocation list sector address (R W.RLAD)
5 Number of relocation entries (RW.NRE)

68 PR.RWWB Read/write image section descriptor for writeback;
Field length = 6W;

Word Definition

0 load address (WB.LADD)
1 sector address (WB.FADD)
2 length in bytes (WB.SIZE)
3 checksum (WB.CKSM)
4 relocation list sector address (WB.RLAD)
5 number of relocation entries (WB . .N'RE)

(80 PR.UST Universal symbol table;
Field length = 1 W;
File address of the universal symbol table.

84 Reserved For MPX-32;
Field length = 1 W.

88 Reserved For MPX-32;
Field length = 1 W.

8C PR.USTSO Universal symbol table offset;
Field length = 1 W;
Sector offset for the universal symbol table.

90 PR.USlll..N Universal symbol hash table;
Field length = 1 W;
Length in bytes of the universal symbol hash table.

94 PR.USTLN Universal symbol table;
Field length = 1 W;
Length in bytes of the universal symbol table.

98 PR.SHIMG File Address of shared image descriptors;
Field length = 1 W.

MPX·32 Technical Volume J 2·187

Disk Resident Structures

Byte
{Hex) Symbol

9C Reserved

AD PR.TlME

A8 PR.DATE

BO Reserved

280 Reserved

2-188

Description

Field length = tW.

Time image linked or relinked;
Field length = 2W.

Date image linked or relinked;
Field length = 2W.

ForMPX-32:
Field length = 115W.

For customer use;
Field length = 32W.

System Tables and Variables

o

o

(-
Disk Resident Structures

2.46.8 Shared Image Descriptors

Every shared image has a shared image descriptor that is doubleword bounded.
Shared image descriptors are used by the loader to verify that a task can access the
required shared images.

Preassigned shared images are loaded at task activation. Other shared images are
loaded by the task through run-time shared image calls.

o 7 8 15 16 23 24

Word 0 Logical load address of shared image (SI.LOAD)

Version number of shared image at link time (SLVERS)

2 SI.FLGS. SI.PLEN Reserved.
See Note 1. See Note 2. See Note 3.

Pathname identifier (SI.PNID) 3

4-21 Pathname block of up to 72 bytes for shared images (SI.PNAl'vlE)

Notes:

1. Bits in SI.FLGS are assigned as follows:

Bits

o
1
2
3
4
5

6-7

Meaning. if Set

preassigned shared image
read/write access requested (SI.RWAC)
modified read/write image section request
position dependent shared image (SI.PDEP)
writeback mode requested (SI.WRBK)
write back section present
reserved

2. Byte 1 is the shared image pathname length (SI.PLEN).

3. Byte 2 is reserved for LINKX32 (should be zeroed). Byte 3 is reserved for
Lit'fKX32-inclusion level of the shared image.

31

MPX-32 Technical Volume I 2-189

Disk Resident Structures

2.46.9 COFF Load Module Structure

2-190

The COFF load module enables loading and execution of tasks developed in the
environment. The module has the following structure:

File Header (32 bytes)
Unused by MPX-32

Preamble (736 bytes)

Resource Requirement Summary Table
(multiple of 768 bytes)

Shared Image Descriptor Table
(multiple of 768 bytes)

Section Headers

Read Only Section
(Code)

ReadIWrite Section
(data + bss)

Debugger Inforrnation

System Tables and Variables

(... " ... I

()

(

('"
-"

Disk Resident Structures

2.46.10 COFF Executable Image Preamble

The COFF Executable Image preamble follows the 32 byte file header and contains
image information in the following format:

Byte Word o 7 8 15 16 23 24 31

0 0 PRL VER - Linker version number

4 1 PRIVER - Image version number

8 2 PRROSIZ - Number of bytes in read only section

C 3 PRRWSIZ - Number of bytes in read/write section

10 4 PRMNT PRFLAG2 PR.NSI

14 5 PR1RAN - Transfer address

18 6 PRCNTL PR.FLAG PR.NNRS PRBPRI

lC 7 PRNOOL PR.IPRI PRRRSSZ

20 8 PRRRS PR.FILE PR.BUFR PR.SEGS

24 9 PROPTN - Program option word

28 10 PRRESVD PRSSIZ - Stack size in bytes

2C-34 11-13 Reserved for MPX-32

38-4C 14-19 PRROSD - Read only image section descriptor

50-64 20-25 PRRWSD - Read/write image section descriptor

68-74 26-29 PRDBNAM: - Debugger name

78-88 30-34 Reserved

8C 35 PRLAS Reserved

90 36 PRREGD - Reserved for Linker

94 37 PROIT - Reserved for Linker

98 38 PRSHIMG - File address of shared image descriptors

9C 39 Reserved

AO-A4 40-41 PRTIME - Time image linked

AS-AC 42-43 PR.DATEB - Data image linked

BO 44 Reserved for PR.MPXBR

B4 45 Reserved for PRFLAG3 PR.FLAG4
PRGID

B8 46 PRBSS - Size of COFF - type BSS section

BC-EC 47-59 Reserved for MPX-32

FO-IOO 60-64 PRSTBRG

104 65 PRPG02 - Second task option word

lOS 66 PRAGE - Virtual time before aging for demand page task

lOC-27C 67-159 Reserved for MPX-32

280-2DC 160-183 Reserved for customer use

MPX-32 Technical Volume I 2-191

Disk Resident Structures

Byte 0
(Hex) SYmbol Description

0 PR.LVER Linker version number,
Field length = 1 W;
Indicates which hash mechanism is used for hash
accesses and the size of the global symbol table
entries for use by the symbolic debugger.

4 PR.IVER Image version number,
Field length = 1 W;
Task version number of the nonshared image.

8 PR.ROSIZ Bytes in read only section;
Field length = 1 W;
Number of bytes in the read only section.

C PR.RWSIZ Bytes in read/write section;
Field length = lW;
Number of bytes in the read/write section.

10 PR.MNT Dynamic mount count;
Field length = IB;
Number of nonpublic volumes required for
dynamic mounts;
Default is zero.

PR.FLAG2 Second flag;
(''j Field length = 1B;
'''-J'

Bits Meaning if Set

0 debugger symbol support not present
(pR2.NOSY)

1 debugger speed support present
(pR2.DBSS)

2 task is an Ada task (PR2.ADA)
3 reselVed for shared image use by owner

(PR2.SHBO)
4 special arithmetic function (pR2.AF)
5 BSS section should be zeroed (pR2.ZBSS)
6 module is a COFF load module

(pR2.COFF)
7 PTRACE Debugger (pR2.PDBG)

PR.NSI Number of shared images included;
Field length = lH.

14 PR.TRAN Transfer address;
Field length = I W.

o
2-192 System Tables and Variables

(Byte
(Hex}

18

Disk Resident Structures

Svmbol Descril2tion

PR.CNTL Control;
Field length = IB;

Bit Meaning if Set Meaning if Reset

0 load module file status load module status is
is segmented continuous

1 link operation status link operation (PR.LOS)
(pR.LOS) is executable is nonexecutable

2 loader (pR.NOCKS) is no loader (pR.NOCKS) is
checksum checksum

3 task status (PR.PRIV) is task status (PR.PRIV)
privileged is unprivileged

4 system administrator system administrator
(pR.SAM) attribute is on (pR.SAM) attribute is off

5 overlay status is overlaid overlay status is nonoverlaid
6 image status is shared image status is nonshared
7 overwrite status is overwrite status is not

verified verified

PR.FLAG Flags:
Field length = IB;

Bit Meaning if Set Meaning if Reset

0 address mode (PR.ABSC) is nla
absolute. Always set

1 residency (PRRES) is residency (PRRES) is
unswappable swappable

2 read only section (pRSHR) read only section
is shared (PR.SHR) is unshared

3 prelocation status prelocation status
(pR.PREL) is prelocated (PRPREL) is not prelocated

4 debugger (pRNODBG) is not debugger (pRNODBG) is
allowed. See Note. allowed

5 task configuration task configuration
(pR.MUL TI) is multi copied (PRMUL TI) is unique

6 base mode executable image
PRBASE is always set

7 PR.MPX20 always set

Note: If bit 4 is set, the file and buffer assignment totals in PR.FILE
and PRBUFR are incremented for debugger support

PR.NNRS Resource requirement summary entry;
Field length = 1 B;
Number of entries in the resource requirement summary
table.

MPX-32 Technical Volume I 2-193

Disk Resident Structures

Byte 'C I, "

(Hex) Symbol Description

PR.BPRI Execution priority;
Field length = IB;
Base execution priority.

Ie PR.NOOL Overlay;
Field length = IH;
Number of overlays;
Should be zeroed.

PR.IPRI I/O priority;
Field length = IB;
Base I/O priority level;
Default is equal to PR.BPRI.

PR.RRSSZ Resource requirement summary size;
Field length = IB;
Size in blocks of the resource requirement summary
table.

20 PR.RRS Resource requirement summary address;
Field length = lB;
File address of the resource requirement summary table.

PR.FILE Files;
Field length = IB;
Total number of files that can be concurrently
open during task execution. This number is the sum
of the file allocations specified in the Linker FILES
directive plus the number of files specified in any shared
images included in the task.

PR.BUFR Buffers;
Field length = 1 B;
Total number of blocking buffers required by the task.
This number is the sum of the buffers specified in the
Linker BUFFERS directive plus the number of buffers
specified in any shared images included in the task.

PR.SEGS Segment definition;
Field length = IB;
Segment definition area count. This number is the
sum of the segmented files specified in the Linker
SEGFILES directive plus the number of files specified
in any shared images included in the task.

24 PR.OPTN Program option word;
Field length = 1 W.

28 PR.RESVD Reserved;
Field length = lB.

(';~\ , ,

j

2-194 System Tables and Variables

Disk Resident Structures

(' Byte
(Hex) Sy!!!bol DescriQtion

PR.SSIZ Stack size;
Field length = 3B;
Program stack size in bytes. This number is
the sum of the ST ACKSIZE specified in the Linker
ST ACKSIZE directive plus the number of files
specified in any shared images included in the task.

2C Reserved for MPX-32;
Field length = 3W.

38 PRROSD Read only image section descriptor;
Field length = 6W;

Word Definition

0 load address (RO.LADD)
1 byte offset from beginning of file

(RO.FADD)
2 length in bytes (RO.SIZE)
3 checksum (RO.CKSM)
4 byte offset of relocation list from

beginning of file (RO.LAD)
5 number of relocation entries (RO.NRE)

(50 PRRWSD Read/write image section descriptor;
Field length = 6W;

Word Definition

0 load address (RW.LADD)
1 byte offset from beginning of file

(RW.FADD)
2 length in bytes (RW.SIZE)
3 checksum (RW.CKSM)
4 byte offset of relocation list from

beginning of file (RW.RLAD)
5 number of relocation entries (RW.NRE)

68 PRDBNAM Debugger name;
Field length = 4W;
Debugger name to be used if different from
the default debugger name.

78-88 Reserved Field length = 5W.

8C PR.LAS Logical address size;
Field length = lH;
The size in map blocks of the logical address space

Reserved For MPX-32;
Field length = lH.

C'-

MPX-32 Technical Volume I 2-195

Disk Resident Structures

2-196

Byte
(Hex)

90

94

98

9C

AO

A8

BO

B4

B5

B6

B8

BC-EC

FO-lOO

Symbol

PR.REGD

PROIT

PRSHIMG

Reserved

PRTlME

PRDATEB

Reserved

Reserved

PRFLAG3

PRFLAG4

PRBSS

Reserved

PRSTBRG

Description

Region descriptor;
Field length = 1 W;
Should be zeroed.

Reserved
Field length = 1 W;
Should be zeroed.

Shared image descriptors;
Field length = 1 W;
File address of shared image descriptors.

For MPX-32;
Field length = 1 W.

Time image linked or relinked;
Field length = 2W.

Date image linked or relinked;
Field length = 2W.

For PRMPXBR;
Field length = 1 W.

For PRGID;
Field length = lB.

Flags;
Field length = IB;

Bit Meaning if Set

o pseudo interrupt receiver address requires
1 word offset (PR3.0FF)

1 enable realtime accounting (pR3.0NRA)
2 disable realtime accounting (PR3.0FRA)

3-4 reserved

Flags;
Field length = IH.

Size of COFF-type BSS section;
Field length = 1 W;
The size in bytes needed to load the
COFF BSS section.

For MPX-32;
Field length = 13W.

LD assigned base register values to
be loaded at task startup (B3-B7);
Field length = 5W.

System Tables and Variables

()

Byte
(Hex} Symbol

104 PR.PG02

lOS PR.AGE

10C-27C Reserved

2S0-2DC Reserved

MPX·32 Technical Volume I

Disk Resident Structures

Description

Second task option word;
Field length = 1 W.

Virtual time before aging for demand page task;
Field length = IW.

ForMPX-32;
Field length = 93W.

For customer use;
Field length = 24 W.

2·197

Disk Resident Structures

2.46.11 COFF Shared Image Preamble

2-198

The COFF shared image preamble follows the 32 byte file header and contains image
information in the following format:

Byte Word o 78 15 16 2324 31

0 0 PR.L VER - Linker version number

4 1 PR.IVER - Shared image version number

8 2 PR.COMP - Compatibility level

C 3 PR.PHADS - Physical load address

10 4 PRMNT IPR.FLAG2 I PR.NS I

14 5 PRTRAN - Should be zeroed

18 6 PR.CNTL IPR.FLAG IReserved for Linker

IC 7 Reserved for Linker

20 8 Reserved IpR.FILE IPRBUFR IpR.SEGS

24 9 Reserved for Linker

28 10 PRSSIZE - Stack size in bytes (first byte reserved)

2C-34 11-13 Reserved for MPX-32

38-4C 14-19 PR.ROSD - Read only image section descriptor

50-64 20-25 PR.RWSD - Read/write image section descriptor

68-7C 26-31 PR.RWWB - Read/write writeback image section descriptor

80 32 PR.UST - File address of universal symbol table

84 33 Reserved for MPX-32

88 34 Reserved for MPX-32

8C 35 PRUSTSO - Sector offset for universal symbol table

90 36 PRUSHLN - Universal symbol hash table length in bytes

94 37 PR.USTLN - Universal symbol table length in bytes

98 38 PRSHIMG - File address of shared image descriptors

9C 39 Reserved for MPX-32

AO-A4 40-41 PRTIME - Time image linked

A8-AC 42-43 PRDA TE - Date image linked

B0-25C 44-151 Reserved for MPX-32

260-28C 152-183 Reserved for customer use

Some of the above reserved areas are used by the Linker. They are not used by the
MPX-32 operating system.

System Tables and Variables

Disk Resident Structures

(~" Byte
(Hex) Symbol Description

0 PR.LVER Linker version number;
Field length = 1 W;
Indicates that hash mechanism is used for hash
accesses and the size of the global symbol table
entries for use by the symbolic debugger.

4 PRIVER Shared image version number;
Field length = 1 W;
Task version number of the shared image.

8 PRCOMP Compatibility level;
Field length = 1 W;
The lowest version number that is compatible with
this copy of the shared image.

C PR.PHADS Physical load address;
Field length = I W;
The physical address where the shared image is loaded.

10 PR.MNT Dynamic mount count;
Field length = IB;
Number of nonpublic volumes required for dynamic
mounts; Default is zero.

("
PRFLAG2 Second flag;

Field length = IB;

Bit Meaning if Set

0 debugger symbol support not present
(pR2.NOSY)

1 debugger speed support present (pR2.DBSS)
2 task is an ADA task (PR2.ADA)
3 share image by owner (pR2.SHBO)
4 reserved for executable image use
5 reserved
6 module is a COFF load module (pRCOFF)
7 reserved

PRNSI Number of shared images included;
Field length = 1H.

14 PR.TRAN Should be zeroed;
Field length = 1 W.

MPX·32 Technical Volume I 2·199

Disk Resident Structures

Byte 0 (Hex) SYmbol DescriQtion

18 PR.CNTL Control;
Field length = IB;

Bit Meaning if Set Meaning if Reset

0 load module file load module status is
status is segmented continuous

1 link operation status link operation status
(pR.LOS) is executable (pR.LOS)

is nonexecutable
2 loader (pR.NOCKS) is no loader (pR.NOCKS)

checksum is checksum
3 task status (PR.PRIV) task status (PR.PRIV)

privileged is unprivileged
4 system administrator system administrator

(pR.SAM) attribute is on (pR.SAM) attribute is off
5 overlay status is overlay status is

overlaid nonoverlaid
6 image status is shared image status is

nonshared
7 ovelWrite status is ovelWrite status is

verified not verified

PR.FLAG Flags; 0 Field length = IB;

Bit Meaning if Set Meaning if Reset

0 address mode (PR.ABSC) address mode
is absolute (pR.ABSC) is relocatable

I residency (pR.RES) is residency (pR.RES)
unswappable is swappable

2 read only section read only section
(pR.SHR) is shared (pR.SHR) is unshared

3 prelocation status prelocation status
(pR.PREL) is prelocated (pR.PREL) is not prelocated

4 Debugger (pR.NODBG) Debugger (pR.NODBG) is allowed
is not allowed. See Note.

5 task configuration task configuration
(pR.MUL TI) is multicopied (pR.MUL TI) is unique

6 base register load module
(pR.BASE) is always set

7 PR.MPX20 is always set

Note: If bit 4 is set, the file and buffer assignment totals in
PRE.FLE and PR.BUFR are incremented for debugger
support.

0
2·200 System Tables and Variables

Disk Resident Structures

(~ Byte
(Hex) S;imbol Descri12tion

Reserved For Linker,
Field length = lH.

IC Reserved For Linker,
Field length = I W.

20 Reserved For MPX-32;
Field length = lB.

PRFILE Files;
Field length = lB;
Number of dynamic file allocations specified in the
Linker FILES directive.

PRBUFR Buffers;
Field length = lB;
Number of dynamic blocked file allocations specified
in the Linker BUFFERS directive.

PRSEGS Segment definition;
Field length = lB;
Segment definition area counts specified in Linker
SEGFILES directive.

24 Reserved For Linker,

(Field length = 1 W.

28 PRSSlZE Reserved;
Field length = lB.

Stack size;
Field length = 3B;
Program stack size in bytes specified in Linker
STACKSIZE directive.

2C Reserved For MPX-32;
Field length = 3W.

38' PRROSD Read only image section descriptor,
Field length = 6W;

Word Definition

0 load address (RO.LADD)
1 sector address (RO.FADD)
2 length in bytes (RO.SIZE)
3 checksum (RO.CKSM)
4 relocation list sector address (RO.RLAD)
5 number of relocation entries (RO.NRE)

MPX-32 Technical Volume I 2-201

Disk Resident Structures

Byte 0 (Hex) Symbol DescriQtion

50 PR.RWSD Read/write image section descriptor;
Field length = 6W;

Word Definition

0 load address (RW.LADD)
1 sector address (RW.FADD)
2 length in bytes (RW.SlZE)
3 checksum (RW.CKSM)
4 relocation list sector address (RW.RLAD)
5 number of relocation entries (R W .NRE)

68 PRRWWB Read/write image section descriptor for writeback;
Field length = 6W;

Word Definition

0 load address (WB.LADD)
1 sector address (WB.FADD)
2 length in bytes (WB.SIZE)
3 checksum (WB.CKSM)
4 relocation list sector address (WB.RLAD)
5 number of relocation entries (WB.NRE)

80 PR.UST Universal symbol table; 0\
Field length = lW; V
File address of the universal symbol table.

84 Reserved For MPX-32;
Field length = 1 W.

88 Reserved For MPX-32;
Field length = 1 W.,

8C PRUSTSO Universal symbol table offset;
Field length = lW;
Sector offset for the universal symbol table.

90 PRUSHLN Universal symbol hash table;
Field length = lW;
Length in bytes of the universal symbol hash
table.

94 PRUSTLN Universal symbol table;
Field length = lW;
Length in bytes of the universal symbol table.

98 PRSHIMG File Address of shared image descriptors;
Field length = 1 W.

9C Reserved Field length = lW.

0
2·202 System Tables and Variables

Disk Resident Structures

Byte
(Hex) Symbol Descri ption

AO PR.TlME Time image linked or relinked;
Field length = 2W.

A8 PR.DATE Date image linked or relinked;
Field length = 2W.

BO Reserved For MPX-32;
Field length = 107W.

260 Reserved For customer use;
Field length = 22W.

MPX·32 Technical Volume I 2·203

Internal J. VFMT Structures

2.47 Internal J.VFMT Structures 0
2.47.1 Newboot Macro Offsets (M.BO.EQU)

M.BO.EQU is part of the MPX-32 Macro Library providing symbolic access to the
new disk bootstrap program for J.VFMT and RESTART. This macro's equates are
offsets into the new disk bootstrap code which is contained within J.VFMT and
written to the disk.

Using this macro with the new bootstrap program removes the requirement for
RESTART to reference absolute memory locations. Additionally, J.VFMT's code
verifies that the bootstrap code generated during assembly is consistent with the
equate values within this macro. These two features simplify changing the bootstrap
and reduce unexpected coding errors among bootstrap, J.VFMT, and RESTART.

The macro contains the following definitions (offsets):

IOCD.WOO EQU X'OO' class F IOCD word 0
IOCD.OP EQU X'OO' class F IOCD op code byte
IOCD.XFR EQU X'OO' class F IOCD transfer address
IOCD.WDI EQU X'04' class F IOCD word 1
IOCD.FLG EQU X'04' class F IOCD flag byte
IOCD.CNT EQU X'06' class F IOCD transfer count
IOCD.LEN EQU X'08' class F IOCD length

BO.STRT EQU X'OO' bootstrap code start ("'-)
BO.PSDI EQU X'OO' new PSD word 1 after IPL ~
BO.PSW EQU X'OO' another name for BO.PSDI
BO.XFER EQU X'OO' bootstrap transfer address (pSW PC)
BO.PSD2 EQU X'04' new PSD word 2 after IPL
BO.REST EQU X'04' memory location stuffed by RESTART
BO.IOCL EQU X'08' location for chained IOCDs to sustain IPL
BO.lOCLN EQU 4 number of chained-to-IPL IOCDs before TIC
BO.TIC EQU X'28' location of TIC IOCD (TIC to image load IOCDs)
BO.MODAT EQU X'30' contains Load Mode data byte
BO.DUMMY EQU X'31' reserved (dummy) byte
BO.NIOCD EQU X'32' contains number of read IOCDs space reserved for
BO.RSTPC EQU X'34' location of restart's PC
BO.REV EQU X'38' revision number of this bootstrap
BO.INCH EQU X'40' location of INCH IOCD
BO.NOP EQU X'48' location of No Op/Init Cant IOCD
BO.INCC EQU X'48' another name for BO.NOP
BO.LMOD EQU X'50' location of Load Mode IOCD
unnamed EQU X'S8' normal location for target address of TIC IOCD
BO.SEEK EQU X'OO' offset from TIC target to image Seek IOCD
BO.READ EQU X'08' offset from TIC target to first image Read IOCD

(Number of Read IOCD prototypes is in BO.NIOCD)

VD.PBUFF EQU X'200' buffer address in bootstrap where partial volume
descriptor read in from IPL disk

VD.DATAL EQU X'3C' length of partial volume descriptor buffer

0
2·204 System Tables and Variables

Internal J.VFMT Structures

2.47.2 Disk Parameter Table Structures

2.47.2.1 Disk Parameter Table Offsets (M.OPT)

The macro M.DPI' is part of the MPX-32 Macro Library. It is used to interface to the
new disk parameter table in I.VFMT.

The macro contains the following definitions (offsets):

DPT.DDTC EQU X'OO' disk device type code
DPT.SPB EQU X'08' number sectors per block
DPT.SPAU EQU X'09' number sectors per allocation unit
DPT.SPT EQU X'OA' number sectors per track
DPT.NHDS EQU X'OB' number read/write heads
DPT.SSIZ EQU X'OC' formatted sector size (number words)
DPT.RAWS EQU X'OE' raw (unforamned) sector size (bytes)
DPT.RAWF EQU X'IO' raw sector size fragment (bits)
DPT.RSBI EQU X'II' reserved
DPT.NCYL EQU X'I2' total number cylinders on disk
DPT.SECS EQU X'14' total number sectors on disk
DPT.RAWT EQU X'18' raw track size (capacity) in bytes
DPT.RSWI EQU X'IC' reserved

C DPT.MODL EQU X'20' Encore Disk Model Number
DPT.SIZE EQU X'28' size of each DPT entry

MPX·32 Technical Volume I 2·205

Internal J. VFMT Structures

2.47.2.2 Disk Parameter Table Format (SJ.VFDPT)

The following diagram shows the fonnat for each OPT entry in the disk parameter
table (S1. VFDPT).

MODEL NUM

RESERVED

RAW TRK SIZ

TOT SECTS

NUM CYLS

RESERVED

R SECT FRAG

RAW SECT SZ

FMT SECT SZ

NUM HEADS

SECT/TRACK

SECT/ALC UN

SECT/BLOCK

DISK TYPE

DPT.E FORM

DPT.E

DPT.E

DPT.E

DPT.E

DPT.E

DPT.E

DPT.E

DPT.E

DPT.E

DPT.E

DPT.E

DPT.E

DPT.E

DPT.E

DPT.E

DPT.E

DPT.E

DPT.E

DPT.E

DPT.E

DPT.E

DPT.E

DPT.E

2-206

(DPT. MODL) .•.•••••••.•••...•.•...•...•.. ; .•...•.•..•..•.•.......•

(DPT. RAWT) .•••.•..•.•..••.•••..•..•...•...••.•...•....•

(DPT. SECS) •••.••••••...•..•.•.•..•...•••...•.•..•

(DPT. NCYL) •..•..•.•••.•...••..•........•.

(DPT.RAWF) •••......•••....•.......

(DPT.RAWS) ..•....•........••....

(DPT.SSIZ)•......•.

(DPT. NHDS) •....•••.•...

(DPT. SPT) .•..•••.•..

(DPT. SPAU) •...•..

(DPT.SPB)•

(DPT. DOTC) .

64,8,8,8,8,16, 16,8,8, 16, 32, 32,32, 64

C'MMNNNN', N,NN,NN,NN,NNN,NNNN,N,N,NNNN,NNNNNNN,NNNNN,NN,C'NNNN'

C'DP0080', 1,02,22,05,192,0912,O,O,0823,0090530,20160,OO,C'8138'

C'DP0337', 1,05,45,10,192,0908,O,O,0823,0370350,40960,OO,C'8887'

C'DP0474', 1,05,30,20,192,0934,O,O,0842,0505200,28160,OO,C'8884'

C'DP0500', 1,05,45,10,192,0909,O,O,1217,0547650,41088,OO,C'8812'

C'DP0689', 1,09,45,20,192,0908,O,O,0842,0757800,40960,OO,C'8889'

C'DP0800', 1,09,45,23,192,0892,O,O,0850,0879750,40960,OO,C'8881'

C'DP0850', 1,09,45,15,192,0909,O,O,1381,0932175,41088,OO,C'8813'

C'OP0858', 1,09,54,16,192,0927,O,O,1064,0919296,50400,OO,C'8888'

C'DP1230', 1,11,55,15,192,0909,O,O,1635,1348875,50400,OO,C'8814'

C'DC0080', 1,02,20,05,192,OOOO,O,O,0823,0082300,20160,OO,C'VAR.'

C'MH080 " 1,02,20,05,192,OOOO,O,O,0823,0082300,20160,OO,C'VAR.'

C'DC0160', 1,04,20,10,192,OOOO,O,O,0823,0164EOO,20160,OO,C'8127'

C'MH160 " 1,04,20,10,192,OOOO,O,O,0823,0164600,20160,OO,C'8127'

C'OC0300', 1,04,20,19,192,OOOO,O,O,0823,0312740,20160,OO,C'9346'

C'MH300 " 1,04,20,19,192,OOOO,O,O,0823,0312740,20160,OO,C'9346'

C'DC0340', 1,04,20,24,192,OOOO,O,O,0711,0341280,20160,OO,C'8858'

C'MH340 " 1,04,20,24,192,OOOO,O,O,0711,0341280,20160,OO,C'8858'

C'DC0600', 1,10,20,40,192,OOOO,O,O,0843,0674400,20160,OO,C'8155'

C'MH600 " 1,10,20,40,192,OOOO,O,O,0843,0674400,20160,OO,C'8155'

C'SD0150', 1,04,24,09,192,OOOO,O,O,0967,0208872,OOOOO,OO,C'8820'

C'SD0300', 1,04,32,09,192,OOOO,O,O,1362,0392256,OOOOO,OO,C'8828'

C'SD0700', 1,07,35,15,192,OOOO,O,O,1546,0811650,OOOOO,OO,C'8833'

System Tables and Variables

(I.". .y

3 System Task Descriptions

3.1 Swap Scheduler Task (J.SWAPR)

The swap scheduler (J.SWAPR) is a nonswappable memory management task.
lSW APR provides memory allocation for tasks that require memory, and services
memory requests when memory is not available. J.SW APR is not embedded in the
operating system, and does not occupy logical address space. lSW APR is not
mapped into the address space of every task in the system. J .SW APR is a memory
resident, privileged task. See Figure 3-1.

J.SWAPR

Memory Pool

H.SWAPR

MPX-32 operating system

Not embedded in operating
system

Operating system embedded

T1015

Figure 3-1
System Swap Scheduler

J.SW APR is activated by the system initializer task (SYSINIT). Once activated,
, lSW APR remains in a suspended state until it is needed. When resumed, lSW APR

executes at the priority of the highest priority task in the memory request queue
(MRQ). When all swap activity is completed, lSW APR returns to the suspended
state. J.SWAPR remains suspended until it is resumed by H.EXEC,9 in response to a
memory scheduler event.

To free memory, lSW APR selects a task for outswap and proceeds to write all or
parts of the task to a secondary storage area called the swap file. When memory
becomes available, outswapped tasks that are requesting memory are inswapped in
priority order, and are allowed to execute normally.

MPX·32 Technical Volume I 3·1

Swap Scheduler Task (J.SWAPR)

3-2

J.SW APR uses two sets of MIDL and MEML arrays for task map manipulation.
J.SWAPR's TSA MIDL/MEML arrays are used to map the candidate task's TSA on
top of J.SW APR. See Figure 3-2. If the task is to be outswapped, the MIDL entries
for maps to be rolled out are copied to J.SW APR's working MIDL. See Figure 3-3.
J.SWAPR then calls internal subroutine S.SWAPIA to remap to the working MIDL.
This gives J.SWAPR address ability to the outswap candidate's memory in order to
write the maps to the swap file.

Candidate task's TSA maps·

....
-. Map block bounded

Local data and expansion data

Working MIDL

J.SWAPR code

J.SWAPRTSA

* These maps are included above J.SWAPR using map information
contained in J.SWAPR's TSA, not the working MIDL. Only 2 maps
of the TSA are mapped in because all mapping information is
contained in the first 2 maps.

T1016

Figure 3-2
Mapping of Candidate Task's TSA (an overview)

System Task Descriptions

C''''
I . , '\,

(

(

J.SWAP
working
during
roll-out

C.TSAD

Ruses
MIDL

roll-in or
of a task

..

Swap Scheduler Task (J.5WAPR)

Task when mapped Logically contigu ous task maps
into J.SWAPR to be rolled out

Working
MIDUMEML

...
~

J.SWAPR main code

J.SWAPR task
T.MEMLA

service area (TSA) -
- T.MIDLA
-

T1017

Figure 3-3
Mapping of a Candidate Task During Roll-out

J.SW APR has an operating system resident counterpart called H.SW APR. H.SW APR
performs .MIDL entry copying, and holds data structures that are required by other
areas of the operating system. This ensures that the system trace and system debugger
function normally. Base R in the system debugger references H.SW APR, not
J.SWAPR.

J.SWAPR also provides for selective partial outswapping. Partial outswapping allows
a small portion of a large task to be outswapped when only a small portion of memory
is required. Partial outswapping saves the time it would take to outswap and
eventually inswap the un-needed memory.

The SYSGEN SW APLIM directive allows the user to specify a minimum partial
outswap quantum. When heavy swapping is anticipated, a value between 7 and 15 is
recommended. A SW APLIM within this range reduces the number of swaps
necessary to obtain the required memory. A SW APLlM value of 16 or greater can
reduce the effectiveness of partial swapping.

When memory is requested by a task or tasks, and there is insufficient memory to
satisfy the request, J.SW APR is resumed by using H.EXEC,37. J.SW APR allocates
and deallocates memory for the memory requests listed in sections 3.1.2 and 3.1.3.

MPX-32 Technical Volume I 3-3

Swap Scheduler Task (J.SWAPR)

The following illustrates J.SW APR's task layout

Remap area: used to map task's TSA or memory that is being swapped

J.SW APR swap file entties pool (Q-entties): expands as the system
runs to meet the system's requirements. See Note 1.

Dedicated system buffer space

J.SW APR's shadow tables: used to allocate shadow memory. See Note 2.

J.SW APR's outswap shadow tables: one for each DQE. See Note 2.

J.SW APR's working MIDL/MEML arrays (WORKMIDL and WORKMEML): used
for managing memory that is being swapped. See Note 3.

Swap context area: one entry for each DQE

J.SW APR's DSECT

J.SW APR's TSA (SWPMIDL and SWPMEML)

Memory pool

H.SWAPR

MPX-32

Notes:

1. Q-entries are also built from the initialization code after it is executed.

2. Shadow tables are present only if shadow memory is configured.

3. WORKMIDL and WORKMEML point to the mapping information for
J.SW APR while MIDLA and MEMLA point to the mapping information for the
logical address space called the remap area.

3.1.1 J.SWAPR Processing

3-4

J.SW APR can perform the following types of processing:

• dispatch processing

• inswap processing

• shared memory request processing

• no memory available processing

• outswap processing

• I/O error handling processing

• initialization processing

When sufficient memory is unavailable, inswap and outswap are both serial processes,
and are completed before the MRQ is re-examined. When sufficient memory is
available to load an outswapped task into memory from the swap volume, the inswap
task is initiated. The difference between memory requests and inswap requests is that
there is no associated disk file to read. Tasks linked to the MRQ can be queued for
both expansion and inswap.

System Task Descriptions

o

o

o

(

Swap Scheduler Task (J.SWAPR)

3.1.1.1 Dispatch Processing

Dispatch processing begins when swap activity is resumed. Dispatch processing
performs the following functions:

• calls the inswap routine if the task is outswapped

• allocates memory as required by calling H.~MM, 1

• outswaps a task if no memory is available

• links the task's DQE to the ready queue

• suspends itself if the MRQ (memory request queue) is empty

• redispatches if entries still exist in the MRQ

• calls H.EXEC,7 to report memory requests event complete

• changes J.SW APR's priority to that of the requesting task

The dispatcher examines the memory request queue (MRQ). If entries are not present.
J.SW APR suspends until another memory request event occurs. If entries are present,
dispatch processes memory requests, and counts unprocessed memory CMRQ.CNT)
and memory release events (C.RRUN). J.SW APR attempts to allocate memory to
tasks waiting for memory.

3.1.1.2 Inswap Processing

When sufficient memory is available, J.SW APR allocates the memory to the highest
priority task on the MRQ. If the request is for inswap, J.SW APR reads the swapped
image into the newly allocated memory. This process is completed in two passes.

On the first pass, the outswapped TSA and DSECT are read off the swap space, and
the swap space entries are released.

On the second pass, the outswapped shared regions are interrogated to find out if they
are outswapped. If they are outswapped, memory must be allocated before they can
be loaded into the task's TSA tables. If sufficient memory cannot be allocated. the
task is put on the MRQ requesting dynamic expansion to include a shared region.
After the shared memory is inswapped, the used swap space entries are released if the
shared memory is not a CSECT.

3.1.1.3 Shared Memory Request (SISHR) Processing

Shared memory request (SISHR) process begins when there is currently outswapped
shared memory that needs to be inswapped, or when a specified memory partition
needs to be included into the address space of a task.

3.1.1.4 No Memory Available (NOMEM) Processing

No memory available (NO~M) processing begins when there is insufficient memory
to fulfill the memory requestor's requirements. NOMEM determines if enough
memory can be freed by outswapping. If so, NOMEM calls the outswap process to
free the required memory. then calls the inswap or SISHR process to allow the
memory requestor to get the free memory.

MPX·32 Technical Volume I 3·5

Swap Scheduler Task (J.SWAPR)

3.1.1.5 Outswap Processing

3-6

Outswap processing occurs when the outswapping of a particular task or tasks will
free sufficient memory for the memory requestor.

In order to complete the outswap process, the TSA of the outswap candidate is
mapped into J.SW APR. The protocol of outswap requires two (2) complete passes of
the user's TSA tables (MIDL and MEML).

On the first pass, only nonshared maps are logically built into J.SWAPR's work area
in their original TSA fonnat A second swap space is allocated and the outswap I/O
process is perfonned. A used swap space entry is then added to DQE.SRID.

On the second pass, all swappable regions (if any) are built into a work area inside
J.SWAPR in logically contiguous fonnat. A swap space is allocated and the outswap
I/O process is perfonned. A used swap entry is then added to SMT.SRID. If there
are no shared regions, I/O is not perfonned in this pass.

At the end of each pass, memory is returned to the free list When both passes of the
outswap are complete, the MRQ is re-examined to find the highest priority candidate
to receive the memory from the free list

Outswap candidates are first chosen from the wait states, then from the run state. The
default order is described in the next section.

Selection of Outswap candidates - The swapper initially attempts to process the
memory requirement for the highest priority task on the MRQ. If insufficient memory
is available, the swapper examines the state queues on a priority basis searching for
the memory class and number of map blocks required by the requesting task. The first
task found with resources satisfying any of the requirements of the requester is
partially or totally outswapped. When the outswap process is complete, the swapper
re-examines the MRQ and continues to process memory requests.

System Task Descriptions

o

o

(

(

Swap Scheduler Task (J.SWAPR)

Outswap candidates are first chosen from wait states and then from run states. The
order is shown below:

NWS DATAW 15 NUMBER OF WAIT STATES
WAITSTAT DATAW C.HOLD WAIT STATE Q POINTERS IN OUTSW AP ORDER

DATAW C.SUSP
DATAW C.RUNW
DATAW C.SWDV
DATAW C.SWDC
DATAW C.SWSR
DATAW C.SWSM
DATAW C.SWLO
DATAW C.SWFI
DATAW C.MRQ
DATAW C.ANYW
DATAW C.SWGQ
DATAW C.SWTI
DATAW C.SWIO
DATAW C.SWMP

NRS DATAW 12 NUMBER OF RUN STATE Q EN1RIES
RUNSTAT DATAW C.SQ64 RUN STATE Q POINTERS IN OUTSWAP ORDER

DATAW C.SQ63
DATAW C.SQ62
DATAW C.SQ61
DATAW C.SQ60
DATAW C.SQ59
DATAW . C.SQ58
DATAW C.SQ57
DATAW C.SQ56
DATAW C.SQ55
DATAW C.RIPU
DATAW C.SQRT

Once an outswap candidate is selected by J.SW APR, DQE.SOPO (swap-on priority
only) and DQE.SWIF are examined. Both locations are one byte variables containing
several swap limitations.

Swap inhibit conditions are checked first If any DQE.SWIF bit other than
DQE.TL VS (task leaving system) is set, the task is unswappable. If DQE.SOPO bits
DQE.BMAP or DQE.MDTA are set, the task is unswappable. J.SWAPR then
searches for a new outswap candidate.

MPX-32 Technical Volume I 3-7

Swap Scheduler Task (J.SWAPR)

DQE.SOPO is examined only if DQE.SWIF equals zero or if DQE.TL VS is set If
the DQE. USPO bit in DQE.SOPO is set, the priority of the memory requestor is
compared to the outswap task priority. If the user settable swap-on priority only
feature is enabled, and if the DQE.USPO bit in DQE.SOPO is set, the priority of the
memory requestor is compared to the outswap task priority. J.SWAPR searches for
another outswap candidate if the memory requestor does not have a higher priority if
the outswap task is ready to run, if the memory requestor does not have a higher or
equal priority or if the outswap task is in a wait state. If DQE.SOPO equals zero, the
outswap candidate is outswapped.

3.1.1.6 I/O Error Handling Processing

The I/O error handling portion of lSW APRs code helps the system recover from I/O
errors. If a write error is encountered during the outswap of a task. J.SW APR
assumes that the error is a bad block on the disk. J.SW APR discards the current Q
entry that is defining the bad swap space. allocates another Q-entry for new swap
space, and retries the write request If succeeding writes fail and the end of the swap
file is reached, lSW APR releases the bad Q-entries and suspends for ten seconds.
After the suspension, lSW APR retries the write. lSW APR repeats the process until
the write is successfully completed.

On a read error during the inswap of an outswapped task, lSW APR places the inswap
candidate in the hold state, outputs a message to the console, and continues the
swapping activities. In order to resume the task in the hold state, the operator must

, , 0','"

issue the OPCOM CONTINUE directive for that task. (~"\

~J
3.1.1.7' Initialization Processing

3-8

The system initialization program (SYSINIT) creates a swap file and activates
J.SWAPR. J.SWAPR then activiates its secondary initialization routine S.SWAP99.
S.SW AP99 then does the following:

• initializes the swap activity table

• allocates memory for Q-entries dynamically

• allocates the working MIDL/MEML dynamically

• allocates the shadow memory tables dynamically, if applicable

• allocates the swap files space dynamically

• assigns and opens'the swap file

• sets the MIDL/MEML pointers for use by the remap routines

• computes the location where task's TSA will reside in lSW APR

• sets up swap inhibit and swap-on priority only (SOPO) masks

• builds Q-entries from J.SW APR's secondary initialization code space

--After the initialization code is processed, its space is used as a buffer area for I/O
operations or as an extension of linked list structures. This ensures a compact
J.SWAPR.

System Task Descriptions

o

(.
Swap Scheduler Task (J.SWAPR)

3.1.2 J.SWAPR Internal Subroutines

The following are internal subroutines of J.SW APR:

Subroutine

S.SWAPI

S.SWAPIA

S.SWAP2

S.SWAP3

S.SWAP4

S.SWAP5

S.SWAP6

S.SWAP7

S.SWAP8

S.SWAP9

S.SWAPIO

S.SWAPll

S.SWAP12

S.SWAP13

S.SWAP14

S.SWAP15

S.SWAP16

S.SWAP17

MPX-32 Technical Volume I

Description

remaps task into J.SW APR not using the working array

remaps lSW APR using the working MIDL/MEML array

updates the SMT use count when a task using shared image
is rolled back into memory. S.SW AP2 also updates tasks
.MIDL/MEML to correctly reference the shared image.

determines the outswap candidate. S.SW AP3 also checks
for sufficient available outswap maps. For example,
do the requested maps equal the maps available if the
candidate is outswapped.

reads in a task from the swap file with the initial 128KB
read. It is followed by a single disk sector read until
the task is restored to memory. Memory roll-in is a
random access operation.

writes a task to the swap file with the initial 128KB
write. It is followed by single disk sector writes until
the task is rolled out of memory. Memory roll-out is a
random access operation.

allocates the swap space on the swap file; if none
is available, it aborts the task.

releases swap spaces. Where applicable, it will
coalesce two small free swap spaces into one large free swap
space. This is a garbage collection routine.

allocates a free space entry

releases a free space entry

builds a linked list of free entries

links an entry to a given queue by priority

unlinks an entry from a given queue

increases the priority of a target task. The target
task's DQE address and the amount of increase are supplied
by the caller.

stores information needed to inswap a task
requesting shadow memory

is a swap file extension subroutine

adds an entry into the shared memory include list (SMIL)

removes an entry from the shared memory include list (SMIL)

3-9

Swap Scheduler Task (J.SWAPR)

Subroutine

S.SWAP18

S.SWAP19

S.SWAP20

S.SWAP21

S.SWAP22

S.SWAP23

S.SWAP24

S.SWAP99

Description

allocates a map block for more queue entry space

detennines the total number of map blocks needed
to inswap an outswapped task

counts the number of swappable map blocks belonging
to an outswap candidate

detennines if an inswap of a task requiring multiple
memory types is possible

detennines how many map blocks of a shared memory partition
to outswap

detennines if a task is swap-on priority only (SOPO)

is the thrash control subroutine

perfonns J.SW APR self initialization. S.SW AP99 is executed
once when SYSINlT activates J.SWAPR The space occupied
is then reclaimed for swap space entries by S.SWAPIO if
the initial allocation of swap entries is used up.

3.1.3 J.SWAPR Memory Request Functions

3-10

Memory request functions perfonned by J.~W APR are:

• memory expansion request

• memory deallocation request

• inswap request

• change in task status request

• shared memory include request

• exit conditions

See the following sections for descriptions of the memory request functions.

There are memory request function codes for J.SW APR These function codes
detennine the action that J.SWAPR perfonns for a requesting task. See Table 3-1.

System Task Descriptions

o

o

(~

(~

Swap Scheduler Task (J.SWAPR)

Table 3-1
Memory Request Function Codes for J.SWAPR

Function
Code Description

0 inswap request
1 pre-activation request
2 rask activation request
3 memory expansion request
4 laCS buffer request
5 shared memory include request
6 system buffer space request
7 release swap space request
8 exclude shared memory request
9 SW.MON activation request

3.1.3.1 Memory Expansion Request

A memory expansion request occurs when there is insufficient memory to satisfy a
task's dynamic memory request. The task is linked to the memory request queue
(MRQ) with the number of maps needed, the type of memory needed, the address
where the memory is loaded, and the expansion request code. J .SW APR is then
resumed to process the request.

3.1.3.2 Memory Deallocatlon Request

When a task deallocates all or some of its memory and there are tasks linked to the
MRQ, lSW APR is resumed so it can reallocate the memory to a task in the MRQ.

3.1.3.3 Inswap Request (Memory Roll-in)

When a currently outswapped task is ready for execution, lSW APR is resumed. The
task is located in the MRQ, and the inswap request is processed.

3.1.3.4 Change In Task Status Request

When a task which has previously been ineligible for swapping due to unbuffered I/O
in progress, release of a lock in memory flag, expiration of a stagt: 1 time quantum,
etc., J.SW APR is resumed.

3.1.3.5 Shared Memory Include Request

When there is sufficient memory to satisfy the inclusion of a task's dynamic shared
memory partitions, lSW APR, having been resumed prior to receiving the request.
links the tasks to the MRQ to process the request.

MPX-32 Technical Volume I 3-11

Swap Scheduler Task (J.SWAPR)

3.1.3.6 Exit Conditions

When J.sWAPR finds the MRQ empty, or when there are no outstanding requests to
process, J.SW APR suspends itself by unlinking from the ready-to-run queue and
relinking to the wait-for-memory-event queue. This is accomplished by using
H.EXEC,8.

3.1.4 Managing Swap Space Entries

3-12

lSW APR manages swap space entries by using four one-way linked entry lists:

List

H.ENTRY
Q.SWP
DQE.SRID
SMT.SRID

Description

points to free queue entry lists
lists all free queue entries
contains queue entries for DSECT memory
contains queue entries for outswapped shared memory

H.ENTRY is an intemallinked head cell list that monitors the free swap file entries.
H.ENTRY is located in H.SWAPR. The first word is the link, and the last three words
are reserved. The addresses of the swap file free entries are maintained by Q.SWP.

Ward 0

1-3

o
Link

Reserved

7 8 15 16 23 24 31

Q.SWP is an internal linked list head cell that maintains the addresses of all swap file
free entries. Q.SWP has a four word entry for each linked list entry. The swap space
entry, Q.SWP, is as follows:

0 7 8 15 16 23 24 31

Ward 0 Pointer

1 Reserved

2 Free swap space address

3 Size of segment in blocks

System Task Descriptions

o

o

o

Swap Scheduler Task (J.SWAPR)

DQE.SRID is a two-word linked list headce1!. DQE.SRID functions as a queue and is
located in the task's DQE. Each swap space entry is four words long. The first word
points to the first used swap space entry. The second word points to the last entry.
All entries except the headcell are located internal to J.SW APR. When a task's
nonshared memory is outswapped, the swap space is allocated and DQE.SRID is
updated. When the memory is inswapped, the swap space is freed, and DQE.SRID is
emptied. The swap space entry (headcell = DQE.SRID) is as follows: '

Word 0

1

2

3

o 7 8 15 16 23 24 31

Pointer

Number of Number of
outswapped maps outswapped TSA maps

Used swap space address

Size of segment in blocks

SMT.SRID is a linked list headcelllocated in the SMT. When memory is:'~ CSECf,
the swap space is not released, and the SMT.SRID remains the same as b~fore the
inswap. SMT.SRID empties when the task exists and the user count is z~i'o. A
SMT.SRID entry has the same format as a DQE.SRID except the right half.i of the
second word is always zero. The swap space entry (headcell = DMT.SJ.\IP..)' is as
follows: " .

Word 0

1

2

3

o 7 8

Pointer

Number of
outswapped maps

Used swap space address

Size of segment in blocks

3.1.5 Swap Context Area

15 16

Zero

.. ?,
,.~ ..

23 24 .. \ 31 ,

..
:

.. ,.
'i;

The swap context area (SCA) is a table of fixed size entries. There is one{entry for
each DQE in the system. The SCA entries are indexed by the DQE index number
which is the first byte of the task activation number (DQE.TAN). ~_

,

Word 0

1

2

3

o 7 8

SCA.TAN. See Note 1.

SCA.s:MIL. See Note 2.

SCA.MIDL. See Note 3.

SCA.MAPN. See Note 4.

15 16 23 24

I SCA.FLGS. See Note 5.

31

·1

MPX·32 Technical Volume I 3-13

Swap Scheduler Task (J.SWAPR)

• Notes:

1. SCATAN contains the task activation number most recently associated with the
entry.

2. SCASMll. contains the address of the first shared memory include (SMI)
Q-entry of the shared memory include list (SMll.).

3. SCAMIDL can contain the beginning address with ISWAPR's address space
where the last partial outswap MIDL scan started.

4. SCAMAPN is used with SCAMIDL. SCAMAPN is the negative number of
MIDs left to scan when outswapping a partially swapped task.

5. SCA.FLGS indicates the swap state of a task. The bit settings are as follows:

Bits

o
1
2-15

Meaning if Set

DSECT is partially outswapped
DSECT is completely outswapped
reserved

3.1.6 Swap Activity Table

The swap activity table is maintained and updated by the J.SW APR subroutine
S.SW AP24. This subroutine determines how active J.SW APR is and sets the global
swap-on priority only (SOPO) flag if the actual swap activity exceeds the desired
maximum swap activity. S.SW AP24 is called at the end of an inswap, at the end of
an outswap, and just prior to searching for an outswap candidate.

3.1.7 Shadow Memory Outswap Tables

3-14

J.SW APR initializes outswap shadow tables within its logical address space. If
needed, J.SW APR dynamically allocates more memory for these tables. The number
of words of memory needed for the outswap tables is equal to the number of dispatch
queue entries in the system times the sum of the greater number of physical map
blocks shadowed by either pro~essor 1 or processor 2 plus one. For example:

1. 48 dispatch queue entries

2. one l28KB shadow memory board on processor 1 (16 map blocks)
3. two 128 KB shadow memory board on processor 2 (32 map blocks)

System Task Descriptions

Swap Scheduler Task (J.SWAPR)

•
Outswap shadow tables needed equals 48 X (32 + 1) words.

J.SW APR uses the outswap shadow memory tables to remember which map blocks an
outswapped task may need to be shadowed when inswapped.

Outswap Shadow Table

I DQE 1 I Word 1 Word 2 Wordn

I DQE2 I Word 1 Word 2 I ... Wordn

One word for each map
block* in the task

I DQEn I Word 1 Word 2 I ... Wordn

* The bits in each word have the following meaning:

..mL
a
1
2
3
4-31

Label

SH.REQST
SH.REQRD
SH.IPU
SH.BTH
N/A

MPX-32 Technical Volume I

Meaning if Set

shadow memory requested
shadow memory required
IPU shadow memory
IPU/CPU common shadow memory
contains the MIDL of the map image descriptor.
This points to the map block number to be
shadowed.

3-15

Terminal Services Manager Task (J.TSM)

3.2 Terminal Services Manager Task (J.TSM)

3.2.1 Functional Description

The tenninal services manager (J.TSM) is a nonresident privileged system task which
provides job control processing in both the batch and interactive environments. Its
functions include validating logon requests, processing command files, initiating batch
jobs, and activating tasks.

3.2.2 Operational Design

1.TSM is designed to operate in five logical interrupt levels. An activation request at
a given level may interrupt processing of any lower level. The context of an
interrupted process is saved in the TSA stack to enable resumption after completion of
the interrupting level. The following are the five logical interrupt levels in order from
lowest to highest:

• Base (initial task activation level)

• Message

• End Action

• Break

• Abort

3.2.2.1 Base Level

3-16

1.TSM is activated at the base level by SYSINIT following a system restart.
SYSINIT computes the maximum number of files, segment tables, and mounted
volume assignments that 1.TSM might need based on communication region variables.
These parameters are used to construct 1.TSM's TSA via the M.PI'SK system service.

At 1.TSM's initial activation, a one time initialization is perfonned by 1.TSM, at
which time the abort, break, and message level entry points are established. The base
level then enters a scan, all tenninal and batch context searching for any outstanding
base level selVice requests. After all base level selVices are perfonned, the base level
requests an indefinite suspension. The base level will be removed from the any wait
state whenever 1. TSM exits from a break, message or end action level.

Base level selVice requests include:

• context clean-up if device failure

• logon end action chain initiation

• task status request

• message sending

• batch job initiation

System Task Descriptions

o

o

Terminal Services Manager Task (J.TSM)

3.2.2.2 Message Level

All messages sent to J.TSM have a message type passed in a byte field of the
message. The message type detennines the type of process to be perfonned by
J.TSM. If the message level is active, further message requests are queued from the
message head cell in J.TSM's DQE. The message types recognized by J.TSM are as
follows:

Type Processing

a echo messages to screen
1 set SYC record
2 task exit processing
3 validate owner name
4 task hold processing
5 purge account file
6 validate project group
7 update key file
8 update project file
9 output message on system console
10 invoke online help
11 perfonn TSM procedure call
12 shutdown TSM

MPX-32 Technical Volume I 3-17

Terminal Services Manager Task (J. TSM)

3.2.2.3 End Action Level

3-18

End action is the transfer of control upon completion of no-wait I/O to the end action
address specified in the FCB. No-wait I/O with end action is used by J.TSM to
read/write tenninals and batch SYC. Therefore, each tenninal session is a chain of
end action activations as illustrated below:

Base level scan
Write-----------ENTER YOUR OWNERNAME:
Request indefinite suspension

Enter end action from write
Read---------------S Y S TEM <ret>
Process owner name. entered
Report end action complete

Enter end action from read
Write--------------TSM>
Report end action complete

Enter end action from write
Read------------SHOW <ret>
Report end action complete

Enter end action from read
Process show command at end action level
Write------------(show output to TrY)
Report end action complete

etc.

SelVices perfonned at the end action level are as follows:

• tenninal I/O
• SYC I/O for interactive and batch

• interactive command processing
• interactive and batch command file processing
• TSM and batch accounting
• abort and error message output

Since the bulk. of command processing is perfonned at the end action level, J.TSM
performs only one command at a time. If the end action level is active, further end
action requests are queued from. the task. interrupt head cell in J.TSM's DQE.

System Task Descriptions

o

o

c

Terminal Services Manager Task (J.TSM)

3.2.2.4 Break Level

Break level processing sets the break received flag in J.TSM and searches the TSM
input request queue. If the queue is empty, break level processing exits. If the queue
is not empty, break level processing first processes all input requests and then exits.
The break level exit removes J.TSM base level from the any wait state to resume the
scan for base level service requests. This level is entered when a user presses the
wake up character (not the break key) on their tenninal.

3.2.2.5 Abort Level

J.TSM should never be entered at the abort level. If it is, a fatal system error message
is sent to the system console requesting a system reboot J.TSM then attempts to run
by restarting the base level scan.

3.2.3 Data Structures

J.TSM retains a temtinal context area (TCA)/nested context area (NCA) for each
temtinal and batch job configured at SYSGEN time. Each $CALL command
dynamically acquires a new NCA. Each end action level activation of J.TSM
generally operates on one TCNNCA. In addition to the TCA/NCA, some TSM
commands use global data structures such as flags local to J.TSM, the project group in
the TSA, or the owner name in the DQE. The global data structures are redefined by
J.TSM upon entry to each end action message, and certain base level operations.
Processes which depend on these global data structures, but can be logically
interrupted by some higher logical activation of J.TSM, must logically block higher
requests by setting the synchronous task interrupt bit in J.TSM's DQE.

MPX-32 Technical Volume I 3-19

Terminal Services Manager Task (J.TSM)

3·20

A symbolic diagram of J.TSM's data structures is illustrated below:

DQE

TSA Global Data Structures

J.TSM

NCA 1.1 I INCA 2.1

NCA 1.2 I INCA 2.2

NCA 1.8 NCA2.8

Orthogonal
Data Structures '--___I

.-----.... Dynamic
NCA n.l Data Structure

NCA n.2

NCAn.8

System Task Descriptions

o

o

Terminal Services Manager Task (J.TSM)

3.2.3.1 Terminal Context Area (TCA) Table

Word No. Byte
(Decimal) (Hex) o 7 8 15 16 23 24 31

0 000 TCA.FCB

16 040 TCA.EFCB

32 080 TCA.PSB and TCA.TDFB

38 098 TCA.TDFC

40 OAO TCA.SPAD and TCA.PFCB

50 OC8 TCA.CNP

56 OEO TCA.MFCB

72 120 TCA.MHDR

77 134 TCA.MBUF

97 184 TCA.TWA1

98 188 TCA.CPU

99 18C TCA.IPU

100 190 TCA.ACES

102 198 TCA.SGOS

110 IB8 TCA.SLOS

(~~ 118 1D8
120 lEO

TCA.SLOD

TCA.NAME

122 lE8 TCAJOB#

123 1EC TCALFLG

124 1FO TCA.SBOS

132 210 TCA.SBOD

134 218 TCA.NAMB

136 220 TCAJBB#

137 224 TCA.BFLG

138 228 TCA.HDRI and TCA.MSGB

142 238 TCA.ONR1

145 244 TCA.DATI

148 250 TCA.TIM1

150 258 TCA.MBXl

171 2AC TCA.HDR2

175 2BC TCA.ONR2

178 2C8 TCA.DAT2

181 2D4 TCA.TIM2

183 2DC TCA.MBX2

('~;
'.. ~

MPX·32 Technical Vo!~ I 3-21

Terminal Services Manager Task (J.TSM)

Word No. Byte o
(Decimal) (Hex) o 7 8 15 16 23 24 31

204 330 TCAJFLG
205 334 TCA.MCEA
206 338 TCALABL
207 33C TCA.STRA
208 340 TCA.AVIN
209 344 TCA.ACCU
210 348 TCALCSF

211 34C TCALCSB
212 350 TCALOGN
213 354 TCA.TERM I TCA.MPLC
214 358 TCALBFA
215 35C TCA.UDTA
216 360 TCA.TNUM
217 364 TCA.ERR
218 368 TCA.SPOI
219 36C TCA.SP02
220 370
221 374

TCA.SP03
TCA.SP04 o

222 378 TCA.SP05
223 37C TCA.SP06
224 380 TCA.SP07
225 384 TCA.SP08
226 388 TCA.SP09
227 38C TCA.OLBA
228 390 TCA.TIQA
229 394 TCA.WBA
230 398 TCA.WBAC
231 39C TCA.RLBF
232 3AO TCA.RLBL
233 3A4 TCA.RLBC
234 3A8 TCA.GMAT
235 3AC TCA.SCTA
236 3BO TCALBSP -.
237 3B4 TCA.PFMA

o
.. ~ ,-

3-22 System Task Descriptions

(
Terminal Services Manager Task (J.TSM)

Word No. Byte
(Decimal) (Hex) o 7 8 15 16 23 24 31

238 3B8 TCALBCC TCA.LBCI

239 3BC TCA.ORCT TCA.LBEX

240 3CO TCA.OLCI TCA.EOS

241 3C4 TCALC TCA.CHSA TCA.GMET TCA.RCNT

242 3C8 TCA.RCDC TCA.RCBF TCA.NRCB TCA.CCNT

243 3CC TCALBSC TCA.SPB3

244 3DO TCA.BLDN

245 304 TCA.RCNI TCA.RCN2 TCA.RNUM TCA.RUPN

246 3D8 TCA.PCLB

247 3DC TCA.SKOO

248 3EO TCA.SKOI

249 3E4 TCA.SK02

250 3E8 TCA.SK03

251 3EC TCA.SK04

252 3FO TCA.NCAA

253 3F4 TCA.FNCA

(~ 254 3F8

255 3FC

TCA.RIDL

TCA.TPCB

256 400 TCA.ROPC

257 404 TCA.KEYA

258 408 TCA.PLFC

259 40C TCA.PSRO

260 410 TCA.PSWD

264 420 TCA.SEC

264 420 TCA.SFLG TCA.LCNT Reserved

265 424 TCA.STAT

266 428 TCA.STS2

267 42C TCA.STS3

268 430 TCA.RRSF

269 434 TCA.RRSN

270 438 TCA.KTAB

272 440 TCA.KPRJ

MPX-32 Technical Volume I 3-23

•

Terminal Services Manager Task (J.TSM)

Word No.
(Decimal)

274
278
282
283
284
285
286
288
290
292
294
294
295
296
297
298
299
305

Byte
(Hex)

000

040

080

080

098

OAO

OAO

OC8

OEO
120

134

184

188

18C

3-24

Byte
(Hex)

448

458
468
46C

470
474

478
480
488
490
498
498
49C

4AO
4A4
4A8

4AC

4C4

Symbol

TCAFCB

TCAEFCB

TCA.PSB

TCATDFB

TCATDFC

TCASPAD

TCAPFCB

TCACNP

TCAMFCB

TCAMHDR

TCAMBUF

TCA.TWAI

TCACPU

TCAIPU

•
o 7 8 15 16 23 24 31

TCA.KVOL

TCA.KDIR

TCA.KTNO TCA.KPNO TCA.KVNO TCA.KDNO

TCA.KRSV

TCA.MODE TCA.NRRS TCA.ALLO

TCA.NBUF TCA.NFIL TCA.PRIO

TCALMN

TCA.SUDO

TCA.ONRN

TCA.PROJ

TCA.USRK

TCA.VAT TCA.FLG2 TCA.EXTD

TCA.PGOW

TCA.USW

TCA.RPI'R

TCA.PG02

TCA.FSIZ TCA.RSIZ

TCA.FRRS

Description

terminal I/O FCB (16 words)

command file I/O FCB (16 words)

TCA.SPCE

TCA.IOER

mount request parameter send block (8 words)

TERMDEF block for $IN1T PRO (6 words)

TERMDEF return· address (1 word)

scratch pad area (10 words)

MPX.PRO FCB (16 words)

CNP for mount requests (6 words)

message ($SIGNAL) FCB (16 words)

command file buffer header (5 words)

command file buffer (20 words)

temporary word area (1 word)

accumulated CPU time/session (1 word)

accumulated IPU time/session (1 word)

System Task Descriptions

o

o

Terminal Services Manager Task (J.TSM)

(Byte
(Hex) Sy!!!bol Descri12tion

190 TCAACES privilege access bits defined in M.KEY
(1 double word)

198 TCASGOS SGO long RID (8 words)

IB8 TCASLOS SLO long RID (8 words)

ID8 TCASLOD SLO device (2 words)

lEO TCANAME SLO project/job name (2 words)

lE8 TCAJOB# SLO binary job number (1 word)

lEC TCALFLG SLO listed output flags (1 word)
The flag bits have the following meanings:

Bit Meaning When Set

0 do not delete file on
deassignment

1 copy/reprint request
2 output is unformatted
3-23 reserved
24-31 byte values are as follows:

Value Descri12tion
(- 0 print

1 punch
2 plot

3-255 reserved

1FO TCASBOS SBO long RID (8 words)

210 TCASBOD SBO device (2 words)

218 TCANAMB SBO project/job name (2 words)

220 TCAJBB# SBO binary job number (1 word)

224 TCABFLG SBO flags (1 word)

Bit Meaning When Set

0 do not delete file on
deassignment

1 copy/reprint request
2 output is unformatted

3-23 reserved
24-31 byte values are as follows:

Value Descri12tion

0 print
1 punch
2 plot

("' 3-255 reserved

MPX·32 Technical Volume I 3-25

Terminal Services Manager Task (J.TSM)

Byte 0 (Hex) Symbol Description

228 TCA.MSGB message buffer (66 words. Overlays area from
TCAHDR1 to TCAMBX2)

228 TCAHDR1 header for first message (2 doublewords)

238 TCAONRI ownemame of first message (3 words)

244 TCADATI date of first message (3 words)

250 TCATIMI time of first message (2 words)

258 TCAMBX1 first message mailbox (21 words)

2AC TCAHDR2 header for second message (2 doublewords)

2BC TCAONR2 ownemame of second message (3 words)

2C8 TCADAT2 date of second message (3 words)

204 TCAT1M2 time of second message (2 words)

2DC TCAMBX2 second message mailbox (21 words)

330 TCAJFLG conditional flags set by $SETF command (1 word)

334 TCAMCEA command file end action address (1 word)

338 TCALABL command file target label (1 word)

33C TCASTRA string address for $SET command (1 word)
~

340 TCA.AVIN NCAALST/NCAVPAR index save area (1 word) ",-~

344 TCAACCU accumulator for $SETI command (1 word)

348 TCALCSF string forward for looping contexts (1 word)

34C TCALCSB string back for looping contexts (1 word)

350 TCA.LOGN binary logon time (1 word)

354 TCATERM original line and page sizes (1 halfword)

356 TCA.MPLC MPX.PRO file line counter

358 TCALBFA line buffer address in memory pool (1 word)

35C TCAUDTA address of tenninal UDT (1 word)

360 TCATNUM task number of currently active task (1 word)

364 TCAERR last abort code (1 word)

368 TCA.SPOI gate/ungate R3 save area (1 word)

36C TCA.SP02 gate/ungate RI save area (1 word)

370 TCASP03 gate/ungate call from subroutine RO save area
(1 word)

o
3-26 System Task Descriptions

Terminal Services Manager Task (J.TSM)

C Byte
(Hex) Sy!!!;bol Description

374 TCASP04 GETMEM denial address save area (1 word)

378 TCASP05 CL.MACRO RO save area (1 word)

37C TCASP06 temporary line buffer size and address (1 word)

380 TCASP07 CL.TLB RO save area (1 word)

384 TCASP08 CL.TLB R3 save area (1 word)

388 TCASP09 SE~] error type and CNP address (1 word)

38C TCAOLBA original line buffer address (1 word)

390 TCATIQA TIQ address (1 word)

394 TCAWBA write buffer address (1 word)

398 TCAWBAC write transfer cOWlt (1 word)

39C TCARLBF recall buffer first pointer (1 word)

3AO TCA.RLBL recall buffer last pointer (1 word)

3A4 TCA.RLBC recall current pointer (1 word)

3A8 TCAGMAT GETMEM address table (1 word)

3AC TCA.SCTA special character function table (1 word)

(" 3BO TCALBSP special line buffer printer (1 word)
~~~' ' 

3B4 TCA.PFMA possible function match pointer (1 word) 

3B8 TCA.LBCC line buffer character COWlt (1 halfword) 

3BA TCA.LBCI linebuffercursorindex(lhalfword) 

3BC TCA.ORCT original requested read COWlt (1 halfword) 

3BE TCALBEX extra character blank length (1 halfword) 

3CO TCAOLCI old cursor index (1 halfword) 

3C2 TCA.EOS end of screen COWlt (1 halfword) 

3C4 TCA.LC left cursor character (1 byte) 

3C5 TCACHSA character save area (1 byte) 

3C6 TCAGMET GETMEM number of entries (1 byte) 

3C7 TCARCNT recall nesting COWlt (1 byte) 

3C8 TCARCDC recall display COWlt (1 byte) 

3C9 TCARCBF recall buffers full (1 byte) 

3CA TCANRCB number of recall buffers (1 byte) 

3CB TCACCNT current nesting level (1 byte) 

C 
MPX·32 Technical Volume I 3-27 



Terminal Services Manager Task (J.TSM) 

Byte 
(Hex} SYmbol Descri12tion 

o 
3CC TCA.LBSC special line buffer character count (1 byte) 

3CD TCASPB3 reserved (3 bytes) 

300 TCABLDN area to build $RECALL number (1 word) 

304 TCARCN1 $RECALL range - first number (1 byte) 

3D5 TCARCN2 $RECALL range - second number (1 byte) 

3D6 TCARNUM number of commands to recall (1 byte) 

3D7 TCARUPN number of up arrows to do for $RECALL (1 byte) 

3D8 TCAPCLB procedure call line buffer save area (1 word) 

3DC TCASKOO save word 0 for seek routine (1 word) 

3EO TCASKOl save word 1 for seek routine (1 word) 

3E4 TCASK02 save word 2 for seek routine (1 word) 

3E8 TCA.SK03 save word 3 for seek routine (1 word) 

3EC TCA.SK04 save word 4 for seek routine (1 word) 

3FO TCANCAA current nested context area (1 word) 

3F4 TCAFNCA first nested context area (1 word) 

3F8 TCA.RIDL nested command file RID list (1 word) 

3FC TCATPCB procedure call buffer address (1 word) 

400 TCA.ROPC $ERR - residual output count (1 word) 

404 TCAKEYA key file record address (1 word) 

408 TCAPLFC MPX.PRO file LFC (1 word) 

40C TCAPSRO $INIT PRO RO save area (1 word) 

410 TCAPSWD temporary area for encrypted password 
(2 doublewords) 

420 TCASEC security word - flags and counter (1 word) 

TCASFLG flag portion of TCASEC (1 byte). The flag bits 
have the following meanings: 

~ Meaning When Set 

0 valid ownername (TCA VNAM) 
1 valid password/key (TCA.PASS) 

2-6 reserved 
7 overflow bit for counter 

8-15 failed logon attempts (TCA.LCNT) 

o 
3-28 System Task Descriptions 



( Byte 
(Hex) 

424 

Symbol 

TCASTAT 

MPX·32 Technical Volume I 

Terminal Services Manager Task (J.TSM) 

Description 

status flags (1 word). The flag bits have the 
following meanings: 

Bit 

o 
1 

2 
3 
4 
5 

6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

Meaning When Set 

tenninal in task mode (TCATASK) 
tenninal in command mode 
(TCACOMM) 
first mailbox has message 
second mailbox has message 
next mailbox toggle 
terminal has valid ownemame 
(TCAOWNR) 
context borrowed for message transfer 
M.CNTRL command file in process 
option noerror 
inhibit signals 
batch job 
SlOB card required 
spool file requires deassignment 
sequential job 
SLO assigned to UT ($SYSOUT=UT) 
job in effect 
remove job requested 
option nocommand 
previous task aborted 
self identifier for $SHOW command 
waiting for memory pool 
enable asynch messages 
option noabort 
option quiet 
option unquiet 
exiting deferred by busy FCB 
dead modem wind down in progress 
terminal force online (TCAFONL) 
submit job 
SLO is full (1098 on SLO) 
gate entered in synch mode 
waiting for SYC read complete 

3·29 



Terminal Services Manager Task (J.TSM) 

3-30 

Byte 
(Hex) 

428 

Symbol 

TCASTS2 

Description 

status flags (1 word). The flag bits have the 
following meanings: 

Bit 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

19 

20 
21 

22 

23 
24-31 

Meaning When Set 

reading first line of a command file 
processing a command file 
scanning for label 
unrecoverable I/O error 
next record already read 
reading from message receiver 
dollar sign ($) is required 
command file input mode 
command file end action requested 
current line must be a SlOB 
"no memory pool" message sent 
command is one shot 
limit command to "HOLD" set 
send "memory pool available" message 
unable to assign terminal 
special CNP for convert PN to PNB 
multiple logon message flag 
disable terminal flag 
found equals sign in 
$CHAN DIR= (TCACDEQ) 
processing $RECALL command 
(TCARCLL) 
special check for "#" (TCASCPS) 
parsing first $RECALL number 
(TCARNOl) 
parsing second $RECALL number 
(TCARN02) 
found a ":" in $RECALL command 
reserved 

System Task Descriptions 

o 

o 



Byte 
(Hex) 

42C 

Symbol 

TCA.STS3 

MPX-32 Technical Volume I 

Terminal Services Manager Task (J.TSM) 

Description 

status flags (1 word). 

Bit Meaning When Set 

o 

1 

2 

3 

4 

5 
6 
7 
8 
9 
10 
11 

12 

13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

24 

25 
26 
27 
28 
29 
30 
31 

file name exceeds 8 characters 
(TCA.FNGE) 
modem in logon sequence 
(TCA.MLOG) 
modem in two second delay loop 
(TCA.MDWT) 
no delay for modem in logon 
(TCA.NODL) 
flag $EXECUTE command for parse 
(TCA.EXEC) 
single channel mode (TCA.SCHM) 
GOBACK in effect (TCA.BACK) 
addition/subtraction toggle (TCA.OPER) 
suspend context (TCA.SUSP) 
context processing in progress (TCA.PROG) 
edit mode test flag (TCA.EDMD) 
Command Line RecalllEdit in use 
(TCA.CLRE) 
Command Line RecalllEdit deferred read 
(TCA.DERD) 
recall mode enabled (TCA.RCMD) 
SYC closed (TCA.CSYC) 
MPX.PRO file syntax error (TCA.PSER) 
MPX.PRO TERMDEF error (TCA.PTER) 
MPX.PRO mST.BUF = 0 (TCA.PHBO) 
SLO closed (TCA.CSLO) 
context in procedure call mode (TCA.TPCM) 
procedure call $RRS command (TCA.SRRS) 
procedure call error flag (TCA.TPCE) 
procedure call text output (TCA. TEXT) 
procedure call output data not fonnatted 
(TCA.ODNF) 
MPX.PRO reserved control string error 
(TCA.RCSE) 
TCA.SPAD contains TCA.LBFA (TCA.LBFS) 
tenninal in wait mode (TCA. WAIT) 
reserved 
auto logical mount at logon (TCA.AMNT) 
lower case enabled (TCALCEN) 
MPX.PRO duplicate key error (TCA.DUPK) 
remote task activation load module 
found (TCA.RTAF) 

3-31 



Terminal Services Manager Task (J.TSM) 

3-32 

Byte 
(Hex) 

430 

434 

438 

440 

448 

458 

468 

469 

46A 

46B 

46C 

470 

471 

472 

473 

474 

475 

476 

477 

478 

480 

488 

490 

Symbol 

TCARRSF 

TCARRSN 

TCAKTAB 

TCA.KPRJ 

TCAKVOL 

TCA.KDIR 

TCAKTNO 

TCAKPNO 

TCAKVNO 

TCA.KDNO 

TCAKRSV 

TCAMODE 

TCANRRS 

TCAALLO 

TCASPCE 

TCANBUF 

TCANFll.. 

TCAPRIO 

TCA.IOER 

TCA.LMN 

TCASUDO 

TCAONRN 

TCA.PROJ 

Description 

number of free words for RRSs (1 word) 

address of next RRS entry (1 word) 

key file tab settings (2 words) 

key file project name (2 words) 

key file volume name (4 words) 

key file directory name (4 words) 

key file tab count (1 byte) 

key file project length (1 byte) 

key file volume length (1 byte) 

key file directory length (1 byte) 

reserved for bounding (1 word) 

execution mode flags (1 byte). The flag 
bits have the following meanings: 

Bit Meaning When Set 

o 
1 
2 
3 
4 
5 
6 
7 

reserved 
job oriented (TCAJOB) 
terminal task (TCA.TRMT) 
batch task (TCABTCH) 
load debugger with task (TCADOL Y) 
RTM resident established (TCARESD) 
command file active (TCADFll..) 
SLO assigned to SYC (TCASLO) 

number of RRS entries (1 byte) 

number of pages to allocate (1 byte) 

task's logical address space (1 byte) 

number of blocking buffers (1 byte) 

number of F ATs/FPTs to be reserved (1 byte) 

priority level of task (1 byte) 

I/O error counter (1 byte) 

load module name (1 doubleword) 

pseudonym of task (1 doubleword) 

ownemame of task (1 doubleword) 

project name of task (1 doubleword) 

System Task Descriptions 

o 

o 

o 



('~~ Byte 
(Hex) Symbol 

498 TCA.USRK 

498 TCA.VAT 

499 TCA.FLG2 

49A TCA.EXTD 

49C TCA.PGOW 

4AO TCA.USW 

4A4 TCA.RPTR 

("' 4A8 TCA.PG02 

.,.,~ , 4AC TCA.FSIZ 

4AE TCA.RSIZ 

4C4 TCA.FRRS 

MPX·32 Technical Volume I 

Terminal Services Manager Task (J.TSM) 

Description 

user key 

number of V AT entries for dynamic mounts 

PTA flags (1 byte). The flag bits are defined as follows: 

Bit Meaning When Set 
o debug activating task (TCA.DEBUG) 
1 Command Line RecalllEdit in 

effect (TCA. CLRE) 
2-3 reserved 
4 expanded PT ASK block (TCA.EBLK) 

5-7 reserved 

map block number for extended MPX or -1 for 
MAXADDR or -2 for MINADDR (TCA.EXTD) (1 halfword) 

option word for activation (1 word) 

user status word (1 word) 

pointer to RRS list 

second task option word (1 word) 

size of fixed area of parameter task block 
(one halfword) 

size of resource requirement summary 
(one halfword) 

address of first RRS entry (1 word) 

3-33 



Terminal Services Manager Task (J.TSM) 

3.2.3.2 Nested Context Area (NCA) Table 

Word No. 
(Decimal) 

Byte 
(Hex) 

o 000 
64 100 

68 110 

84 150 

88 160 

152 260 

168 2AO 

172 2BO 

176 2CO 

184 2EO 

186 2E8 

187 2EC 

188 2FO 

189 2F4 

Byte 
(Hex) Symbol 

000 
100 
110 
150 
160 
260 
2AO 
2BO 
2CO 
2EO 
2E8 
2E9 
2EA 

2EC 
2FO 
2F4 

NCA.MPAR 
NCAMSIZ 
NCA.ALST 
NCA.FLST 
NCA.CPAR 
NCA.VPAR 
NCA.PPOS 
NCA.CDIR 
NCA.CVOL 
NCA.PROJ 
NCA.MNUM 
NCA.CNUM 
NCA.STAT 

NCA.CNCA 
NCA.DALW 
NCA.FREE 

o 7 8 15 16 23 24 31 

NCA.MPAR 

NCA.MSIZ 

NCA.ALST 

NCA.FLST 

NCA.CPAR 

NCA.VPAR 

NCA.PPOS 

NCA.CDIR 

NCA.CVOL 

NCA.PROJ 

NCA.MNUM I NCA.CNUM I NCA.STAT 

NCA.CNCA 

NCA.DALW 

NCA.FREE 

Description 

command file parameter area (32 doublewords). 
command file parameter size area (16 bytes). 
command file allocated space list (16 words). 
command file free space list (4 words). 
command file argument area (256 bytes). 
command file binary parameter area (16 words). 
command file caller's parameter position (16 bytes). 
current working directory (4 words). 
long RID for current directory (8 words). 
current project name (1 doubleword). 
command file number of parameters (1 byte). 
command file number of arguments (1 byte). 
halfword for status flags (1 halfword). The 
flag bits have the following meanings: 

..IDL 
o 
1 

2-15 

Meaning When Set 

nested context flag (NCA.NEST) 
nested command file error 
(NCA.NERR) 
reserved 

caller's NCA address (1 word). 
direct access location word (1 word). 
reserved (3 words). 

System Task Descriptions 

o 

o 



(~' .. '. '., 
/ 

Terminal Services Manager Task (J.TSM) 

3.2.3.3 TSM Procedure Call Buffer (TPCB) 

The TSM procedure call buffer (TPCB) is used by H.TSM to transfer data to and from 
J.TSM for TSM procedure calls. The TPCB is a 26 word buffer allocated from the 
miscellaneous memory pool area. 

o 31 

Word 0 1PC.STAT. See Note 1. 
~----------------------------------------------~ 1 1PC.DQEA. See Note 2. 

2 1PC.TQUA. See Note 3. 
~--~~----------------------------------------~ 

3-26 1PC.BVFF. See Note 4. 
~----------------------------------------------~ 

Notes: 

l. Bits in TPC.ST AT are assigned as follows: 

Bit 

o 
1 
2 
3 
4 
5 

Meaning if Set 

exit TSM procedure call mode (TPC.EXIT) 
error occurred in TSM procedure call (TPC.ERR) 
return data is ASCII text (TPC. TEXT) 
invalid return buffer was supplied (TPC.NRB) 
return buffer size is zero (TPC.RBZ) 
return data was truncated (TPC.RDT) 

2. This word contains the DQE address of the task performing the TSM procedure 
call. 

3. This word contains the number of bytes in the data transfer buffer. 

4. This word is the first word of the variable length data transfer buffer. 

3.2.4 Intertask Communications 

J.TSM interacts with two system tasks: J.SSIN and J.SOEX. J.SSIN spools input job 
streams and queues the job requests to the run request head cell in I.TSM's DQE. 
J.SOEX is sent run requests by J.TSM to service the PRINT command. 

3.2.5 TSM Command Une Recall and Edit (CLRE) Processing 

If CLRE is enabled for a terminal, when a formatted read is requested for that 
terminal, H.TSM initializes a TIQ for that read. H.TSM then links the TIQ to the 
input request queue (C.TSMIR) and sends a break request to J.TSM to process the 
read. following is the TIQ data structure: 

MPX-32 Technical Volume I 3-35 



Terminal Services Manager Task (J.TSM) 

3-36 

Word 0 

1 

2 

3 

4 

5 

6 

7 

Notes: 

o 7 8 15 16 23 24 

String Forward 

String Backward 

DQE address (TIQ.DQEA) 

Line buffer address (TIQLBFA) 

ReadOption Read request UDT index (TIQ.UDTI) 
(TIQ.RDOP). byte count 
See Note 1. (TIQ.RDRQ) 

Read comple- Actual read 
tion status byte count Reserved 
(TIQ.RDCP) (I'IQ.RDAC) 
See Note 2. 

Reserved 

Reserved 

1. TIQ.RDOP bits are defined as follows: 

Bit 
o 
1 
2 
3 
4 
5 
6-7 

Meaning When Set 
lowercase read (TIQ.LC) 
no echo read (TIQ.NE) 
option prompt (TIQ.OPP) 
input requested (TIQ.IR) 
input active (TIQ.IA) 
associated task deleted (TIQ.DELR) 
reserved 

2. TIQ.RDCP bits are defined as follows: 

Bit Meaning When Set 
o I/O ~rror (TIQ.ER) 
1 EOF encountered (TIQ.EOF) 
2-7 reserved 

31 

When the J.TSM break receiver is entered, the TSM input request queue is searched. 
If the queue is empty, J.TSM exits break receiver processing. If the queue is not 
empty, J.TSM unlinks the TIQ entry from the input ready queue, links the TIQ to the 
input active queue, and issues a no-wait unformatted, ASCn control character detect 
read to the appropriate terminal. J.TSM does not exit break processing until the input 
request queue is empty. 

When J.TSM enters CLRE input end action, the recall or edit function requested is 
determined and executed. Each terminal has a control string table and a recall buffer 
consisting of a 1- to 23-line buffers. Each teIminal also has a current recall line buffer 
and a CLRE write buffer associated with it These structures are maintained with 
pointers in each terminal's TCA. 

System Task Descriptions 

o 

o 



( 
Terminal Services Manager Task (J.TSM) 

Following is the recall line buffer data structure. 

o 7 8 15 16 23 24 31 

String forward 

String backward 

Cursor Index Character count 

Save Character I Buffer Size Reserved 

Data Buffer, Max equals SYSGEN specified device line size 

The memory necessary for the following structures is allocated in 192-word blocks 
and is not necessarily contiguous. 

TCASer A is a pointer to the control string function table. There is one entry in this 
table for each function defined in the MPX.PRO file. Each entry is two words in size 
and has the following fomat: 

o 
size 

size 
entry 

7 8 

entry 

is the size of the control string (1 byte) 
is the control string, maximum of 7 bytes. 

31 32 64 

• TCA.GMAT is a pointer to the memory address table. Each entry is one word in size 
and contains the address of a 192 word memory block obtained by the M . .MEMB 
seIVice. 

TCA. WBA is a pointer to the CLRE write buffer. This buffer is two times the 
terminaI line size in bytes. 

TCA2LBF is a pointer to the first recall line buffer allocated for this context. 

TCARLBL is a pointer to the last recall line buffer allocated for this context. 

MPX·32 Technical Volume I 3·37 



System Mount Task (J.MOUNT) 

3.3 System Mount Task (J.MOUNT) 

I. MOUNT, the system nonresident media mounting task, is executed with a run 
request from the Resource Management Module (H.REMM). lMOUNT perfOIlIlS the 
following functions: 

• mounts a fOIlIlatted volume; for example, disk or floppy disk 

• mounts an unfonnatted medium; for example, tape, disk or floppy disk 

• dismounts a fOIlIlatted volume 

• dismounts an unfonnatted medium 

Infonnation in the run request from H.REMM deteIlIlines which function lMOUNT 
perfonns. 

When a volume is being mounted, J.MOUNT initially executes the AUTODISK 
subroutine on the volume to be mounted. For more infoIlIlation on AUTODISK refer 
to the Autodisk Subroutine section in Chapter 7 of this volume. 

3.3.1 Run Request Interface 

H.REMM passes a block of infonnation with each run request to I.MOUNT. This 
block can be two words or 16 words. If it is two words, a fonnatted mount is being 
requested. If it is 16 words, one of the other three functions is being requested. 
Infonnation in the block identifies the specific function requested. 

3.3.1.1 Fonnatted Mount Requests 

3-38 

The fonnatted mount request from H.REMM carries with it a two word message. 
This message contains the following infonnation: 

Word 0 Mount device specification 

Word 1 Flag field and mounted volume table address 

. Word 0: The mount device specification contains the device type 
in byte zero and the device channel address, if present, in 
byte two with bit zero set to indicate its presence. The 
device subchannel address, if present, is supplied in byte 
three with bit 16 set to indicate its presence. 

Word 1: The flag field has the following bit significance when set: 

Bit Meaning if set 
o mount message inhibited 
1-7 reserved 

The mounted volume table address is the address of the mounted 
volume table (MVT) entry to be completed for this volume. 

System Task Descriptions 

o 

f~ 
I i 

~/ 

o 



System Mount Task (J.MOUNT) 

3.3.1.2 Unformatted Mount Requests 

When requesting an unformatted mount, H.REMM passes a 16 word message. This 
message contains the file assignment table (FAT) entry for the device on which the 
medium is to be mounted. 

3.3.1.3 Formatted and Unformatted Dismount Requests 

H.REMM passes a 16 word message with both formatted and unformatted dismount 
requests. This message, like the unformatted mount message, contains the FAT entry 
for the device requiring the dismount. lMOUNT distinguishes between mount and 
dismount requests by testing bit two of DFT.ACF (mount message output) in the 
H.REMM supplied FAT. If this bit is set, a dismount is being requested. lMOUNT 
distinguishes between a formatted or an unformatted dismount by testing bit four of 
DFT.STB (unformatted medium). If this bit is set, unformatted is indicated. 

3.3.2 Mount Messages and Requests 

For formatted volumes, the mount message that displays to the system console is as 
follows: 

MOUNT VOLUME volname ON ddccss 
REPLY R,H,A OR DEVICE: 

volname is the 1,- to 16-character volume name 
ddccss is the device mnemonic, channel, and subaddress 

For unformatted media, the mount message to the system console is: 

name 
nnn 
ddccss 
taskname 
taskno 

MOUNT name VOLnnn ON ddccss 
TASK taskname,raskno REPLY R, H, A OR DEVICE: 

is the 1- to 4-character reel ID 
is the volume sequence number if a multivolume tape 
is the device mnemonic, channel, and subaddress 
is the 8-character task name 
is ~e 8-digit hexadecimal task number 

MPX-32 Technical Volume I 3-39 



System Mount Task (J.MOUNT) 

Respond to the mount message with one of the following: 

• Reply R to indicate the volume is ready and to proceed with processing. 

• Reply A to abort the requesting task. 

• Reply H to hold the requesting task and reprocess the mount at a later time. 

• If desired, specify a device other than the one requested by the user for the volume 
to be mounted on. To do so, use a format similar to the one displayed in the mount 
message (e.g., DM0804, M91001). If this option is specified, another mount 
message issues to confirm. the user's choice. The device for a formatted mount can 
be changed several times before replying R, H, or A. The device specification 
for an unformatted mount can only be given once. If a second device specification 
is given, a warning message and a repeat of the mount message display. 

An additional option, available only on unformatted mount requests, is to specify 
recording density. If the requested device allows software control of the density, the 
user can specify the recording density in the R reply to the mount message. The 
available density specifications are listed below: 

Reply Meaning 
R use default density specification 
RN NRZI mode, 800 bpi 
RP PE mode, 1600 bpi 
RG GCR mode, 6250 bpi 
R8 0 0 NRZI mode, 800 bpi 
R16 0 0 PE mode, 1600 bpi 
R6250 GCR mode, 6250 bpi 

The density specification, if given, must immediately follow the R, as shown above in 
the Reply column. 

3.3.3 Checks on Mounted Volumes 

3-40 

J.MOUNT verifies the volume name for the current volume by comparing the name in 
the MVT entry supplied by H.REMM with the name in the volume descriptor of the 
volume currently on the requested device. If the names do not match, J,MOUNT 
informs the system console and provides the actual name of the volume. The 
exception to this is when the system is being initialized by SYSINIT. Because 
SYSINIT does not know the name of the system volume or the swap volume, 
J.MOUNT cannot verify it. Instead, J.MOUNT uses the volume name in the volume 
descriptor. When SYSINIT is running, normally no mount message displays. 
However, if a user modification to SYSINIT turns on the mount message for the 
system or swap volume, then the SYSTEM VOLUME name displays. 

In addition to checking the volume name, J.MOUNT checks the volume's last 
dismount date and time against the current date and time. If the dismount values are 
more recent than the current date and time, a warning message displays and the user 
can continue or abort. This check helps detect incorrect entry of date and time, which 
could cause problems in the operating system that uses date and time marking on files. 

System Task Descriptions 

o 



[ 
System Mount Task (J.MOUNT) 

When mounting a formatted volume, lMOUNT also checks whether the volume was 
previously dismounted. If so, volume clean-up is not needed since H.REMM updates 
the volume descriptor's values for available and allocated space when a volume 
dismounts. Additionally, because H.VOMM maintains the space and descriptor maps 
during normal system operation, the maps reflect the current condition of the disk and 
need no updating. 

The exception to this occurs when an I/O error occurs during the last mount session 
while updating critical disk file system structures (RDs, directories, SMAP or DMAP). 
In this case, the state of SMAP and DMAP is not reliable. Therefore, lMOUNT 
performs volume cleanup while mounting a formatted volume. This indicates that 
critical I/O errors have occurred on the volume during the last mount session. 

If the volume was not previously dismounted, lMOUNT performs volume clean-up. 
Volume clean-up is necessary because the volume descriptor and the maps can contain 
invalid information, and temporary files and unprocessed spool files can exist (this is 
possible following a system crash). For multiport disk mount, volume cleanup is an 
option for the user. 

During volume clean-up, J.MOUNT reads all resource descriptors on the disk being 
mounted, starting with the volume descriptor. J.MOUNT rebuilds the space map, the 
descriptor map, and the pertinent counts contained in the volume descriptor. Each 
type of resource descriptor is processed according to its particular needs. For 
example, temporary files are deleted, permanent files are marked as allocated in the 
SMAP and DMAP, and spool files are resubmitted. 

If an invalid resource descriptor is detected, J.MOUNT zeroes words 7 and 22 of the 
resource descriptor (the resource descriptor type and the link count), and stores a 
problem code, in ASCII, in the free section of the resource descriptor. Currently, an 
invalid resource descriptor type field or a bad segment definition are the only reasons 
for marking a resource descriptor invalid. If the system debugger is configured into 
the current system and control switch six is set during mount, J.MOUNT enters the 
debugger when it encounters an invalid resource descriptor, thereby allowing the user 
to discover the nature of the problem (R2 contains the address of the invalid resource 
descriptor). For multiport resources, all access information and resource descriptor 
locks are reinitialized. 

If a disk is inserted into a disk drive and mounted, that has a defect in cylinder 0, 
unpredictable errors may occur. Before continuing to use the disk, verify that cylinder 
o is good or data may be lost from disk. 

If file overlap is detected, the following messages display on the system console and 
the volume is not mounted: 

FILE OVERLAP HAS OCCURRED IN RD num 
RD TYPE num 
FILENAME is name 
SECTORS num THROUGH num 

num is a hexadecimal number 
name is the 1- to 16-character file name 

MPX·32 Technical Volume I 3-41 



System Mount Task (J.MOUNT) 

If file overlap is detected in the DMAP/SMAP deallocation file descriptor area, the 
following message is displayed on the system console and the volume is not mounted. 

J.MOUNT - ERROR - FILE OVERLAP HAS OCCURRED IN THE BAD SMAP 

or 

J.MOUNT - ERROR - FILE OVERLAP HAS OCCURRED IN THE BAD DMAP 

To mount the disk so data can be recovered, set control switch zero or seven. 
The following control switches apply to the clean-up of formatted volumes: 

Switch 
o 
6 

7 

8 

Function if Set 
inhibits volume clean-up by J.MOUNT 

if J.MOUNT encounters an invalid resource descriptor due to 
an invalid resource descriptor type field or space definition, it 
branches and links to the system debugger (if present) with 
register two pointing to the resource descriptor 

lMOUNT prereads the file space bit map (SMAP) or the 
resource descriptor allocation bit map (DMAP); lMOUNT does 
not perform file overlap detection 

delete spooled output files instead of resubmitting them for processing 

3.3.4 Dismount Messages and Requests 

3·42 

I.MOUNT is requested by H.REMM to perform a physical dismount of a formatted 
volume or to display messages about the dismount of an unformatted medium. 

For formatted dismounts, I.MOUNT verifies the presence of the requested volume 
name on the assigned device. If the volume name on the device matches the name in 
the MVT entry for the requested volume, then JMOUNT updates the volume 
descriptor of the mounted volume using current information in the MVT for that 
volume. J.MOUNT then de allocates the mount device and clears the corresponding 
MVT entry. Formatted dismounts require operator interaction through the system 
console to complete, unless operator interaction has been inhibited by the NOMSG 
option in the original mount or dismount request, or through the OPCOM 
MODE/SIMM or SNOP with the system-wide SNOP with option. 

For formatted volumes, the following dismount message displays at the system 
console: 

valname 
ddccss 

CONFIRM PHYSICAL DISMOUNT OF VOLUME va/name 
FROM ddccss 
REPLY R TO RESUME: 

is the 1- to 16-charactervolume name 
is the device mnemonic, channel, and subaddress 

The operator must enter a character response to continue. 

System Task Descriptions 



System Mount Task (J.MOUNT) 

For unformatted media, the dismount message that displays at the console is: 

DISMOUNT reel VOL nnn FROM ddccss 

reel is the 1- to 4-character reel ID 
nnn is the volume sequence number if multivolume tape 
ddccss is the device mnemonic, channel, and subaddress 

After a formatted volume or unformatted media is dismounted, the following message 
displays at the requestor's terminal: 

PHYSICAL DISMOUNT OF VOLUME volname FROM DEVICE ddccss COMPLETE 

3.3.5 Error Status Return 

J.MOUNT returns error status through the user status field of the sender's parameter 
send block (PSB). A summary of these codes and their meaning follows: 

Code 
o 
1 

8 
20 
37 
43 
42 

Explanation 
normal return, no error 
requested volume name does not match name in the disk's 
volume descriptor 
unrecoverable I/O error on requested volume 
unable to initialize the requested volume 
invalid request parameter length 
user requested hold 
user requested abon 

3.4 Multiprocessor Recovery Task (J.UNLOCK) 

J. UNLOCK. is the multiprocessor recovery task. In a multiprocessor system, 
J. UNLOCK allows any processor to recover and continue processing when one of the 
pon processors goes offline. Resource locks, assign counts, and user counts owned by 
the offline processor are removed from the shared volumes by an online processor. 

3.4.1 Structure 

J. UNLOCK. is a resident, privileged task which resides in me any wait queue. It is 
activated by an OPCOM UNLOCK directive or by J.MOUNT when a multiprocessor 
shared volume is mounted. When the last multiprocessor shared volume is dismounted 
from the system, J. UNLOCK. deactivates. 

3.4.2 Entry Conditions 

When activated by J.MOUNT, J.UNLOCK is linked to the any wait queue. 
J.UNLOCK. is resumed when a run request is issued from J.MOUNT or when an 
OPCOM UNLOCK. directive is issued. J.UNLOCK. executes at priority 58. 

MPX-32 Technical Volume I 3-43 



Multiprocessor Recovery Task (J.UNLOCK) 

3.4.3 exit Conditions 

Each time a multiprocessor shared volume is dismounted, I.MOUNTsends 
I. UNLOCK a run request. If no shared volumes are mounted when the request is 
received. I. UNLOCK exits. 

I.UNLOCK has an abort receiver, and can be aborted by the OPCOM ABORT 
directive. When aborted, 1. UNLOCK completes its current activity before exiting. 

3.4.4 Multiprocessor Recovery 

3-44 

When one processor goes oOOne. I.UNLOCK scans the resource descriptors (RDs) on 
the multiprocessor shared volumes. The resource allocation status of each RD is 
changed to reflect the online processors. 

After the status is changed, each RD is allocated by space definition. Space definition 
allows access to a resource which was locked by an offline processor. A time-out 
value prevents contention between RDs and other tasks in the same environment. The 
RDs are then recorded and processed. 

J. UNLOCK compares the allocation infonnation in each RD with the allocation 
infonnation in the memory resident allocated resource table (ART) for the RD. If an 
ART does not exist for an RD, the RD's allocation infonnation is reinitialized. If an 
RD contains status for an omine processor. the RD's infonnation is reinitialized. 

The allocation infonnation in each RD is documented in Chapter 2. 

Words 93, 94, and 95 correspond to words 1, 2, and 3 of the memory resident ART 
entry. 

The processing of each resource descriptor (RD) contains four steps: 

1. multiprocessor RD lock processing 
2. assign and user count processing 
3. resource exclusive and inclusive lock processing 
4. reader count and access processing 

Multiprocessor lock processing stores the RD locks in bytes 2 and 3 of word 191. If a 
lock in effect belongs to the port to be unlocked, word 191 is reinitialized. 

Assign and user count processing reinitializes the RD's allocation infonnation if the 
total assign count is zero. If the count is greater than zero, the specified processor's 
assign and user counts are reinitialized. The memory resident ART counts for the 
specified port processor are modified to reflect the new assign and user counts. 

Resource exclusive and inclusive lock processing removes locks owned by an offiine 
processor. The locks are removed from AR.PORT within AR.FLAGS in the ART. 

Reader count and access processing corrects the reader count and access modes. 

System Task Descriptions 

o 

o 



( • 
Multiprocessor Recovery Task (J.UNLOCK) 

There are eight combinations of resource descriptor (RD) access modes: 

• readers 
• readers plus one writer 

• readers plus one appender 

• one writer 

• one modifier 

• one updater 

• one appender 

• one modifier plus one appender 

Only one combination is allowed at a time. 

The resource allocation flags field of the allocated resource table (ART) is checked for 
set flags. To detennine the access mode, lUNLOCK uses the RD's access mode plus 
AR.WOWN and AR.WOWN2 from the online processor's ART. 

For the readers group (combination one), the read access mode is set and the new 
reader count is set to equal the online processor's assign count. The access field is 
initialized if the reader count is zero. 

For the reader plus one writer or appender groups, combinations two and three, if 
AR. WOWN or AR. WOWN2 is set, the read count is set to be one less than the online 
processor's assign count. If the resulting read count is zero, read access is removed. 
The read count plus the writer or appender equals the online processor's assign count. 

For one writer, modifier, updater, or appender, combinations four, five, six, and seven, 
the reader count is zero. If the writer is not from this environment, the access field is 
initialized. 

For the one modifier plus one appender group (combination eight), the reader count is 
zero. J.UNLOCK uses A.WOWN and A.WOWN2 to detennine if the processor has 
modify, append, or both access modes set The access field is set accordingly. 

3.4.5 Error Status Return 

J.UNLOCK sends a message to the operator console if an error occurs. 

MPX-32 Technical Volume I 3-45 



System Spooled Output Tasks (J.SOUT and J.SOEX) 

3.5 System Spooled Output Tasks (J.SOUT and J.SOEX) 

3.5.1 Functional Description 

The spooled output executive (J.SOEX) schedules activations of the spooled output 
task, J.SOUT. The activations are based on device availability. If spooled output is 
requested on a device in use, the request is queued by I.SOEX on the SOEX run 
request queue (SRRQ) until the device becomes available. 

Spooled output-printing and punching-is controlled by I.sOUT. An activation of 
I.SOUT can exist for every output device configured into the system. 

Upon completion of output spooling, lSOUT sends a break to J.SOEX to indicate the 
end of spooling and exits the system. 

3.5.2 Operational Design 

lSOEX is activated by a run request from a user task or one of the following tasks or 
services: 

• ITSM 
• I.MOUNT 
• M.DASN 
• SYSINIT 

When I.SOUT scheduling is complete, I.SOEX goes into a wait state. I.SOEX is 
resumed by new run requests or by devices becoming available. Once activated, 
I.SOEX never exits the system. 

3.5.2.1 J.SOEX Message Receiver 

The I.SOEX message receiver handles messages sent to it by OPCOM. All messages 
are sent in the wait mode with call back enabled. The messages have the following 
fonnat: 

Ward 0 

1 

2 

3 

4 

5-6 
7-8 

o 7 8 15 16 23 24 31 

Type. See Subtype. See Reserved 
Note 1. Note 2. 

Variable message information. See Note 3. 

Variable message information. See Note 4. 

Variable message information. See Note 5. 

Job or task number 

Job or task name 

Device mnemonic 

System Task Descriptions 

o 

o 



'. <.' ..... "'. 

System Spooled Output Tasks (J.SOUT and J.SOEX) 

Notes: • 
1. This byte indicates the type of message as follows: 

Type Description 
o list print directive 
1 list punch directive 
2 deprint directive 
3 depunch directive 
4 reprint directive 
5 repunch directive 
6 redirect directive 

2. This byte indicates the message subtype to be used by J.SOEX as follows: 

Type Description 
o default subtype for particular directive 
1 job/task 
2 task name 
3 device mnemonic 

3. This word contains variable message information depending on the message type 
as follows: 

Message Type 
o 
1 
2 
3 
4 
5 
6 

Message Information 
current SRRQ entry address 
current SRRQ entry address 
not used 
not used 
reprint/repunch count 
reprint/repunch count 
not used 

4. This word contains variable message information depending on the message type 
as follows: 

Message Type 
o 
1 
2 
3 
4 
5 
6 

MPX·32 Technical Volume I 

Message Information 
string forward address of current SRRQ entry 
string forward address of current SRRQ entry 
not used 
not used 
reprint/repunch starting/stopping pages 
reprint/repunch starting/stopping pages 
first word of the REDIRECf destination device 
mnemonic. This is zero if the default output 
device is used. 

3·47 



System Spooled Output Tasks (J.SOUT and J.SOEX) 

5. TIlls word contains variable message information depending on the message type 0 
as follows: 

Message Type 
o 
1 

2-5 
6 

Message Information 
string backward address of current SRRQ entry 
string backward address of current SRRQ entry 
not used 
second word of the REDIRECT destination 
device mnemonic. TIlls is zero if the default 
output device is used. 

Message types 0 and 1 retrieve information from the SRRQ for the LIST PRINT and 
LIST PUNCH directives. The information is returned to OPCOM as part of the call 
back. 

Message types 2 and 3 initiate SRRQ processing by ISOEX for DEPRINT and 
DEPUNCH directives. No information is returned from these message types. 

Message types 4 and 5 initiate SRRQ modifications by ISOEX for REPRINT and 
REPUNCH directives. No information is returned from these message types. 

Message type 6 initiates SRRQ modifications by lSOEX for the REDIRECT 
directive. No information is returned from this message type. 

3.5.2.2 can Back Infonnatlon 

The call back can contain information on up to ten SRRQ entries. TIlls information is 
formatted and displayed by OPCOM. The call back information is contained in a 
buffer with the following format: 

Word 0 

1 

2 

3 

4 

5-6 

7-8 

9 

10-11 

12-84 

o 7 8 15 16 

Status. See Number of returned entries 
Notes 1 and 2. 

Current SRRQ entry address 

Current string forward pointer 

Current string backward pointer 

Job or task number. See Note 3. 

Job or task name 

Owner name 

Priority 

Reserved 

23 24 31 

System Task Descriptions 

o 

o 



( 
System Spooled Output Tasks (J.SOUT and J.SOEX) 

• Notes: 

1. The first four words contain a header. 
2. This halfword indicates the status as follows: 

Status 

o 
1 

Description 

SRRQ not completely processed 
SRRQ processed 

If the status is zero, another message is sent to J.SOEX. J.SOEX then completes 
the SRRQ processing. 

3. Words 4 through 11 make up one SRRQ entry description. These eight words 
can be repeated until the call back buffer contains ten SRRQ entries. 

The initial message for J.SOEX to process a LIST PRINT or LIST PUNCH 
directive contains zero values in words 1 through 3. If another message is sent to 
J.SOEX, words 1 through 3 in the return buffer are used as words 1 through 3 in 
the new message. This lets J.SOEX continue directive processing where it left 
off in the SRRQ. 

3.5.2.3 Return Status 

When the message receiver completes processing and exits the message receiver level, 
return status is posted in the user status byte of the parameter send block. Returned 
status is defined as follows: 

Status 

o 
. 1 
2 
3 
4 
5 
6 
7 
8 
9 

10-255 

MPX·32 Technical Volume I 

Description 

operation successful 
no entries in SRRQ 
SRRQ pointers incorrectly linked 
error condition encountered 
invalid message type 
attempting to deprint SBO Olltput 
attempting to depunch SLO output 
error encountered while attempting to delete resource 
invalid or missing default SLO device 
invalid or missing default POD device 
reserved 

3-49 



System Spooled Output Tasks (J.SOUT and J.SOEX) 

3.5.2.4 Break Receiver 

J.SOEX has a break receiver that is entered when an interrupt is sent by a user task or 
any of the following tasks or services: 

• J.SOUT 

• J.TSM 
• J.MOUNT 

• M.DASN 

• SYSINIT 

J.TSM, M.DASN, and real-time tasks send interrupts to J.SOEX after a run request is 
sent. If a task does not send an interrupt, J.SOEX checks for queued run requests. If 
there are any, control is transferred to the break receiver that processes the run request 

When the break receiver is entered, info11llation is transferred from the memory run 
request queue (MRRQ) to the J.SOEX run request queue (SRRQ). Memory for the 
SRRQ entries is allocated from the logical address space of J.SOEX. The f011llat of 
an SRRQ is the same as the format of a J.SOEX run request. See the J.SOEX Run 
Request section in Chapter 2. After the transfer, the MRRQ entry is unlinked from 
the run request and the associated memory pool is deallocated. 

3.6 Online Help Facility 

The online help facility enables users to display help info11llation on their terminals 
and to compose additional help info11llation. This section describes the tasks and data 
structures that make up the online help facility. For info11llation about how to use 
online help, refer to the Online Help chapter in Volume II of the MPX-32 Reference 
Manual. 

3.6.1 Online Help Tasks 

Online help contains the following tasks: 

HELP sends message requests to J.HLP 

J.HLP displays help info11llation on the te11llinal 

HELPI' translates the info11llation files into a usable f011llat for lHLP 

The following sections describe these tasks in more detail. 

3-50 System Task Descriptions 

o 

o 



Online Help Facility 

3.6.1.1 HELP Task • 
The HELP task receives requests for infonnation from users and, in tum, sends 
message requests to J.HLP. HELP is a multicopied task and can be simultaneously 
invoked by more than one user. 

Once HELP sends the message request to J.HLP, it waits for J.HLP to return a 
message request infonning HELP that J.HLP has completed servicing the tenninal. 
HELP then returns control to TSM. 

3.6.1.2 J.HLP Task 

The J.HLP task receives message requests for help infonnation from the HELP task, 
J.TSM, or user tasks. It then takes the help infonnation requested from the help files 
and displays this information on the screen. IHLP is always active (ANYW) and 
waiting for message requests from the tasks via J.TSM. J.HLP performs I/O to a 
terminal in no-wait mode, and functions at end-action interrupt level. This enables 
J.HLP to concurrently service multiple tenninals. 

MPX-32 Technical Volume I 3-51 



Online Help Facility 

The following is a list of the routines in J.HLP: 

3-52 

Routine 

INIT 

GETFILES 
OPNFILES 
BLDTNTAB 
SEEK 
LOCATE 
MD_ME 
CURMOV 
ARR.STR 
GETARROW 
BACKWARD 
ABRTRCVR 
RCVR 
TYIOEA 
Fll..ERR 
BADFILE 

TOPISRCH 
FINDTOPI 
DISPTEXT 
DISPKEYW 
MENU 
KEYWRESP 
TOPIRESP 
KEYSEL 
QUIT.HLP 
ATLINK 
ATUNLINK 
PRT_SCRN 
GET_SNUM 
CHK_SNUM 
NEXT_ATS 
GET_PATH 
CHK_PATH 
PRT_OPEN 
PRT_CLSE 
LINE_NUM 
CHG_DEFS 

Description 

allocates terminals and builds a terminal context area (TCA) 
per terminal 
prepares a list of the information files 
opens all information files and builds an FCB for each 
builds a topic name table in alphabetical order 
manipulates blOCking butIers to read certain locations in files 
gets location of the next read/write to the information file 
puts highlight on/off codes in strings being written to screen 
get codes to place cursor at a certain location on the screen 
gets appropriate arrow key strings as defined in MPX.PRO 
detects if an arrow key has been pressed 
backtracks a screen of information from a file 
abort receiver 
message receiver; accepts message requests from other tasks. 
terminal I/O end-action receiver, next action routines 
marks files with errors as offline 
displays a message on the terminal if an offline file is 
encountered 
searches topic name table for a topic name 
finds the specified topic in the topic name table 
displays text for the specified topic 
displays keywords for the specified topic 
builds and displays the menu mode prompt 
prompts for and processes a keyword input response 
prompts for and processes a topic name input response 
processes a keyword selection via the arrow support 
quits help 
links an entry into audit trail 
unlinks (i.e. returns) all audit trail memory 
builds, outputs and processes the print screen menu 
prompts for and processes the number of screens to print 
checks entered number against audit trail total 
gets address of next screen to print 
prompts for the name of a permanent file 
checks if the entered file is usable 
assigns and opens the output file 
closes and deassigns the output file 
prefixes the line number to the text to be printed 
changes defaults to user's current volume and directory 

System Task Descriptions 

o 

o 

o 



Online Help Facility 

• The following is a list of the next action modes and routines that are detennined by 
the TYIOEA routine listed above: 

Next Action Mode Routine 

Find topic mode (FfM) FINDTOPI 

Display text mode (DTM) DISPTEXT 
DTCSSM - Oear screen submode 
D'ITLSM - Title line submode of display text 
DTPISM - Positional infonnation submode 
DTDTSM - Text line submode of display text 

Display keywords mode (DKM) DISPKEYW 
DKRKSM - Read keywords submode 
DKKMSM - Keyword prompt message submode 
DKKRSM - Keyword prompt read 
DKDLSM - Display keyword list submode 

Menu mode (MEM) MENU 
MEMDSM - Menu display 
MEMRSM - Menu prompt read 
MEMPSM - Menu prompt response processing 

Process keyword menu selection mode (KRM) KEYWRESP 
KRDPSM - Display keyword prompt 
KRRKSM - Read keyword 
KREASM - Read keyword end action 
KRFASM - Keyword search failure acknowledge 

• 
Process topic menu response mode (TRM) TOPIRESP 
TRDPSM - Display topic prompt 
TRRTSM - Read topic name 
TREASM - Read topic name end action 

Keyword selection via arrow mode (KSM) KEYSEL 
KSINSM - Choose first keyword to put cursor on 
KCWCSM - Write cursor on screen location 
KSRRSM - Read 1 character response 
KSPRSM - Process 1 character response 

Quit help mode (QHM) QUIT.HLP 

Print screen mode (PSM) PRT _SCRN 

MPX-32 Technical Volume I 3-53 



Online Help Facility 

The memory requirement for J.HLP in its own logical address space is dynamic. 
Given the maximum logical task space of 128KW minus the size of the resident OS 
and TSA area, the memory requirement for J.HLP at any given time is: 

No. words + 3000 + 6*m + 4O*tc + 392*cu + 20*hl + 17*ck 

m total num.ber of topic names in all help files 

tc number of configured tenninals 

cu number of users currently using J.HLP 

hI number of help files 

ck number of keywords currently being displayed by J.HLP 

3.6.1.3 HELPT Task 

The HELPf task translates infonnation files that a user creates with an ASCII editor 
into a usable format for J.HLP. These files remain as ASCII files so that the user can 
edit the files as needed. Each time a file is edited, it must be translated with the 
HELPf task. The following is a list of the HELPT states: 

State Description 

INST 
TNST 
LKST 

TXST 
KWST 
PIST 
WRST 
EFST 
SQST 

initial program state; wait to transfer to topic state 
topic name state; processes and writes topic name record 
sets up linked lists for text, keywords, and cursor 
position information 
puts text in linked lists 
finds keyword in text, puts .KW and .Pl's in linked list 
sorts positional information and writes to file 
write text, keywords and deallocates memory from all lists 
sorts topic name list, writes, and updates .TL records 
error in state transition, report it and abort 

3.6.2 Data Structures 

3-54 

Online help contains the following data structures: 

Terminal Context Area (TCA) 
Topic Name Table List (TNTL) 
Keyword List (KWLI) 
Positional Information List (pILI) 
Print Screen Audit Trail (pSA T) 

The following text describes those data structures. 

System Task Descriptions 

o 

o 



( 

" ( ---

Online Help Facility 

3.6.2.1 Terminal COntext Area (TeA) 

The TCA contains infonnation about the tenninal from which the user is accessing the 
Online Help facility. The following table shows the fields of the Online Help facility 
TCA: 

Word No. Byte 
(Decimal) (Hex) o 7 8 15 16 23 24 31 

0-15 000 TCA.FCB 

16-3~ 040 TCA.PFCB 

32 080 TCA.UDTA 

33 084 TCA.STK 

34 088 TCA.STKL TCA.NACT TCA.SACT TCA.LINE 

35 08C TCA.CLIN TCA.CROW TeA.ARNO TCA.RESB 

36 090 TCA.STAT 

37 094 TCA.TYID 

38 098 TCA.TNO 

39 09C TCA.STCA 

40 OAO TCALBFA 

41 OA4 TCA.FCBA 

42 OA8 TCALOCW 

43 OAC TCA.KWLF .. 
44 OBO TCA.KWLL 

45-46 OB4 TCA.PILF 

47 OBC TCA.PILL 

48 oeo TCA.CKWA 

49 OC4 TCA.ARRO{fCALEFT 

50 OC8 TCA.RGHT 

51 oec TCA.UP 

52 000 TCA.DOWN 

53 004 TCA.TXLN 

54 008 TCA.CPIA 

55 ODC TCA.RTRN 

56 OEO TCA.KWLN 

57-59 OE4 TCA.ATHC 

MPX-32 Technical Volume I 3-55 



Online Help Facility 

3-56 

Word No. 
(Decimal) 

60 

61-73 
74 
75 

76-79 
80-83 
84-85 
86-87 

88 
89 

Byte 
(Hex) 

000 

040 

080 
084 
088 
089 
08A 
08B 
08C 
080 
08E 
08F 

Byte 
(Hex) 

OFO 
OF4 
128 
12C 
130 
140 
150 
158 
160 
164 

Symbol 

TCA.FCB 

TCA.PFCB 

TCA.UDTA 

TCA.STK 

TCA.STKL 

TCA.NACf 

TCA.SAcr 

TCA.LINE 

TCA.CLIN 

TeA. CROW 

TCA.ARNO 

TCA.RESB 

o 7 8 15 16 23 24 31 

TCA.PSMA 

TCA.PATH 

TCA.AIDX 

TCA.CEAD 

TCA.CVOL 

TCA.CDIR 

TCA.OWNR 

TCA.PROJ 

TCA.PKEY I TCA.RSVB 

TCA.RESW 

Description 

a 16-word FCB assigned to a user terminal. All 
terminalI/O is done in no-wait through this FCB 

a 16-word FCB assigned to either a permanent file 
or to SLO. All printing is done in no-wait through 
this FCB. 

UDT address of terminal 

address of topic stack 

stack level; up to 32 levels 

next action modes 

sub action mode values 

number of lines on screen 

number of lines cwrently displayed 

current row on screen 

current arrow key being processed 

reserved byte for word boundary 

System Task Descriptions 

o 

o 

o 



Online Help Facility 

(~ 
Byte 
(Hex) SYmbol DescriQtion 

090 TCASTAT status flags: 

Bit Meaning When Set 
0 tenninal was assigned (TCA.ASSN) 
1 multiple topic names detected for 

topic entry (MTNFLAG) 
2 no line feed needed (NOLF) 
3 cursor addressing is available 

(CURADD) 
4 end of topic has been reached (EOT) 
5 routine TOPISRCH did not find topic 

name in topic name table (TCATNSR) 
6 displaying keyword list (TCADSKW) 
7 display keyword prompt for list 

(TCAKWPR) 
8 lHLP has been offiined (OFFLINED) 
9 save topic name in audit trail (AT.SAV) 
10 currently on print menu (P.MENU) 
11 printing in progress (p.PRT) 
12 output goes to penn anent file 

(p.Fll..E) 
13 pathname OK to use (P.POK) 

(~~ 14 second pathname prompt issued (p.2ND) 
15 numbef output lines (p.NVM) 
16 highlight keywords, if possible 

(p.HILIT) 
17 output file must be opened (p.OPEN) 
18 open on output file failed (p.OF AIL) 
19 output file must be created (p. CREA T) 
20 processing a title line (P.TITLE) 
21 processing a multiscreen topic 

(p.MSCRN) 
22 number of screens to print is OK 

(p.NOK) 
23 more screens to print (P.MORE) 
24 pathnames are the same length (p.LSAME) 
25 output file has been opened (p.OPENED) 
26 TERMDEF not available (NO _ TDEF) 
27 redraw print menu (REDO) 

28-31 reserved 

( " 

, ./ 

MPX·32 Technical Volume I 3-57 



Online Help Facility 

Byte 0 (Hex) SImbol Description 

094 TCA.TYID terminal ID for TY device 
098 c TCA.1NO task number requesting help 
09C TCA.STCA requesting task's TCA address 
OAO TCA.LBFA line buffer address 
OA4 TCA.FCBA current help file FCB address 
OA8 TCA.LOCW location word for next help record 
OAC TCA.KWLF keyword list forward entry pointer 
OBO TCA.KWLL keyword list last entry pointer 
OB4 TCA.PILF position information list forward entry pointer 
OBC TCA.PILL position information list last entry pointer 
OCO TCA.CKWA current keyword entry address 
OC4 TCA.ARRO where addresses of arrow strings are 
OC4 TCA.LEFf address of string used as left arrow 
OC8 TCA.RGHT address of string used as right arrow 
OCC TCA.UP address of string used as up arrow 
ODO TCA.DOWN address of string used as down arrow 
0D4 TCA.TXLN current text line on this topic 
OD8 TCA.CPIA current position information entry being used 

I 
I 

ODC . TCA.RTRN return address for end action subroutines \ 

J 
OEO TCA.KWLN number of keyword lines displayed 
0E4 TCA.ATHC audit trail linked list head cell 
OFO TCA.PSMA address of print screen menu data 
OF4 TCA.PATH print screen output pathname 
128 TCA.AIDX allocation index of output pathname 
12C TCA.CEAD current audit trail entry address 
130 TCA.CVOL user's current working volume name 
140 TCA.CDIR user's current working directory name 
150 TCA.OWNR user's owner name 
158 TCA.PROJ user's project name 
160 TCA.PKEY first character of current print screen keyword 
161 TCA.RSVB reserved bytes 
164 TCA.RESW force doubleword boundary 

o 
3-58 System Task Descriptions 



• 
Online Help Facility 

3.6.2.2 Topic Name Table List (TNTL) 

The TNTL contains a list of all the topics and their location in the information files. 
Each entry is six words that are defined as follows: 

Word Description 

0-3 topic name (TN.NAME) 
4 file index containing topic (fN.FILIX) 
5 topic name location word (TN.LOCW) 

3.6.2.3 Keyword List (KWLI) 

KWLI contains the keywords that are defined for the help information topic that is 
currently being displayed. Each entry is 10 words that are defined as follows: 

Word Description 

o forward pointer to next keyword (KW.NKW) 
1 reserved space for .KW characters (KW.KWR) 

2-5 keyword (KW.KW) 
6-9 topic name (KW.TN) 

3.6.2.4 Positional Information List (PILI) 

PILI contains the keywords that are embedded in the help infonnation topic thaf is 
currently being displayed. Each entry is 13 words that are defined as follows: 

Word Description 

o forward pointer to next entry (pI.NPI) 
I backward pointer to last entry (PI.LPI) 

2-5 keyword (pI.KW) 
6-9 topic name (PI.TN) 
10 text line where keyword is located (pI.LIN) 
11 column number where keyword is located (pI.COL) 

. 12 length of keyword (pI.LEN) 

3.6.2.5 Print Screen Audit Trail (PSAT) 

The PSAT contains the names of the screens traversed during a help session. Only 
the screens visited in a forward direction are kept; those screens displayed using the 
(R)etum function are not maintained in the list Each entry is 6 words defined as 
follows: 

Word Description 

o forward pointer to next entry (AT. SF) 
1-4 screen name (AT.SN) 
5 backward pointer to last entry (AT.SB) 

MPX-32 Technical Volume I 3-59 



Online Help Facility 

3.6.3 Interfacing J.HLP with Other Tasks 

Any user task that issues data fonnat inhibit (DFI) reads cannot use the [help] key to 
invoke IHLP. Instead, the user must design an interface that allows the user task to 
generate message requests for IHLP. 

3.6.3.1 Sending Message Requests Via the Interface 

3-60 

To send message requests via the interface to J.HLP, use the send message request 
(M.SMSGR) service call. For more infonnation about M.SMSGR, refer to the 
Nonbase Mode System Service chapter in Volume I of the MPX-32 Reference 
Manual. M.SMSGR requires that a parameter send block (PSB) be set up to send an 
18 word data structure in no-wait mode. This data structure contains the following 
fields: 

Word Byte 

0 0 
1-3 

1 

2-5 
6-9 

10-13 
14-15 
16-17 

Description 

message type (MSG.TYPE); must be set to 0 
reserved for sender's TCA address in J.TSM (MSG.STCA) 
tenninal's hex device, channeUsubaddress, 
right-justified and zero filled (MSG .TYID) 
topic requested (MSG.TOPI); left-justified, blank-filled 
user's current volume name (MSG.CVOL) 
user's current directory name (MSG.CDIR) 
user's owner name (MSG.OWNR) 
user's project name (MSG.PROJ) 

After J.HLP services the message request, it sends its own message request to the user 
task via the interface. It contains the following two words of status infonnation: 

Word 

o 

1 

Byte 

o 

1-3 

Description 

contains one of the following values: 

Value 

o 
1 
2 
3 

Meaning 

no errors 
invalid message type received (MSG.TYPE) 
channellsubaddress not found in TCA (MSG.TYID) 
help is offline 

sender's TCA address in J.TSM (MSG.STCA) 

tenninal's hex device, channeUsubaddress, right-justified 
and zero-filled (MSG.TYID) 

System Task Descriptions 

C) 



( 

c 

4 System Generation Task Description 

4.1 Task Structure and Functional Organization 

The System Generation Task. SYSGEN. is a privileged system task that operates 
within the framework of a standard MPX-32 system and can be executed in batch or 
interactive mode. It consists of an executive segment and five overlays. Table 4-2 
shows the loading sequence and gives a description of each phase. 

System generation for an MPX-32 system involves supplying a set of configuration 
directives to the SYSGEN task. Table 4-1 shows the functional breakdown of 
directive processing for each overlay. The end result is the creation of a permanent 
file containing the installation specific MPX-32 system in memory image absolute 
format. This file may be subsequently restarted or utilized on a system distribution 
tape (SDT). 

System generation by the SYSGEN utility is described in the MPX-32 Reference 
Manual Volume III. This chapter provides a functional description. 

MPX-32 Technical Volume I 4-1 



Task Structure and Functional Organization 

Table 4-1 
SYSGEN Overlays - Overview of Functions o 

S.EXEC 

S.INIT S.PHOI S.PH02 S.PH03 S.PH04 
Opens statically Reads directives Tnjtialimo tables Positions object Builds memory 
allocated files: fJonl OIR. (memory, nLB, files and allocates tables to reflect 
O!R, OBI, OBR, patch, timer, RlM, temporary disk target system. 
and SLO. Writes directives activation, sequence, space for loading 

toSLO. ART, and MV1). processes. Constructs 
Outputs titles. partitioos in 

Does initial Constructs dispatch Initializes loader shared 
Sets up map info processing of queue and DQE variables and sets memory table. 
and variables for directives. address tables and up pointers to the 
remap of target links them. interrupt table. Appends debug 
system .. blodc and vector 

Builds orr, COT, Scans object input block at end of 
Initializes default CHT,andUDT file (OBR) for SYSINIT. 
values in target tables. match on program 
canmunications name in module Writes image and 
regioo. Processes interrupt record file. When SYSINIT to file. 

table entries and match found, copies 
builds load module to temporary disk 
table entries. file and loads it. 

Builds target system Scans object input 
scratch pad image. file (OID) for 

match on program 
Obtains space for the name in module 
SCV 1 and 2 tables, record file. When 
the GPMC table, match found, copies o 
and the module to temporary disk 
address table. file and loads it. 

Builds miscellaneous Initializes system 
system parameter modules (branches and 
(MPL, MIDL, etc.) links to their last 

enny point). 

Outputs load map. 

Builds symbol table 
and outputs it to file. 

Allocates memory 
pool. 

Loads SYSINIT and 
unmapped portioo of 
system debugger (if 
appropriate) at end 
of image. 

o 
4-2 System Generation Task Description 



Task Structure and Functional Organization 

Table 4-2 
SYSGEN Loading Sequence 

Directive Actions Taken by SYSGEN 

S.INIT S.PHOl S.PH02 S.PH03 S.PH04 
IIHARDWARE 

JP ARAMETERS 

MACHINE = type Sets C.MACH. 

IPU Sets C.IPU 

in C.CONF. 

/MEMORY 

SIZE = nn. Builds memory Sets C.MA TA. Allocates 

TYPE =c, table prototype Builds memory memory in 

CLASS =x, in scratch space. allocation target system. 

MULTI Parses memory table from Builds MIDL. 

types. prototype. 

/CHANNELS 

CONTROll.ER = ttce, Builds Builds DTT, Loads handler's Strings CDTs. 

PRIORTIY = intlev, . preliminary CHT.CDT, object and 

CLASS = class, DTT,CDT, and UDT for initializes. Uses partition 

HANDLER = name, CHT and UDT target system. table to 

MUX=type, as linked lists Sets C.DTT A, initialize a shared 

SUBCH =aa, in scratch space. C.CHTA, memory table for 
CACHE Adds handler to C.DTIN, each memory 

interrupt list. C.CDTA, disk. 

Sets C.CDTN, andC.UDTA. 

DEVICE =aa, C.CHTN, and 

DISK = devcode, C.UDTN. Reserves space 

SHR,DTC = It, for the GPMC 

LlNESlZ=x, Buildsintemal jump tahle. 

PAGE=y, partition table Sets C.MIOP. 

SPOOL = code, in scratch space Builds scratch 

HANDLE = name, for each memory pad entries. 
PHYSA =ccaa,OFF disk. 

IOQ = mode,CACHE, 
QITD,DEAL 

START = start 

MPX·32 Technical Volume I 4-3 



Task Structure and Functional Organization 

Table 4-2 
SYSGEN Loading Sequence· cant. 

( " (. ) 

Directive Actions Taken by SYSGEN 

S.INIT S.PHOI S.PH02 S.PH03 S.PH04 
/TRAPS 

PROGRAM = Builds internal Builds load Loads program's 

(name 1, ... , name 7) intertupt table table with object and 

in scratch space. intertupt table. initializes. 
Builds scratch 
pad entries. 

USERPROG = Builds internal Builds load Loads program's 

(name 1, ... ,name 7) intertupt table table with object and 

in scratch space. intertupt table. initializes. 
Builds scratch 

SYS1RAP = name 1, Replaces default pad entries. Loads program's 

REmAP = name 2 trap name in object and 

trap table. initializes. 

/INTERRUPTS 

PRIORITY = intlev Builds internal Builds load Loads program's 

RTOM = (channel, intertupt table table with object and 

subaddress ), in scratch space. intertupt table. initializes. 

PROGRAM = name, Builds scratch 

IN1V pad entries. 

/SYSDEVS 

SID =devrnnc Sets C.SIDV, Vertifies 

DENSITY = density C.SIDD, C.SIDV. 

P ARlTY = parity and C.SIDP. 

LOD = devrnnc,IBP Sets C.LODC Verifies 
andc.smp. C.LODC. 

POD =devrnnc Sets C.PODC. Verifies 

C.PODC. 

SWP This directive 

is ignored. 

SWAPDEV= Initializes 
(devrnnc I IPLDEV} C.SWPDEV and 

C.SWPRDfor 

SH.SINIT 

c· 

... " 

, \ 
, ) 

4-4 System Generation Task Description 



Task Structure and Functional Organization 

( Table 4·2 
SYSGEN Loading Sequence· cant. 

Directive Actions Taken by SYSGEN 
S.INIT S.PHOI S.PH02 S.PH03 S.PH04 

NP 
VP = (aa, number), Builds Builds VP Loads VP Strings CDT, 

PROGRAM = module 1 preliminary VP UDTs. handler object if necessary. 

UDT in linked Builds null and intitializes. 

list. Builds device CDT if 
preliminary null necessary. 

device CDT if 
necessary. 

VPID =00, Adds VP Builds load Uses partition 

VPTYPE = It, internal handler table with table to 

STARTBLK = blk, to interrupt table interrupt table. initialize SMT 

PRIORITY = indev. in SCR space. Builds scratch and allocate more 

INTRPT = (cc,ss), Specifies VP pad enteries. mernory to the 

PROGRAM = module 2, device specific Builds VP system. 

IPCA = ipsize, information to UDTs. 

BUSO = bOsize, be stored in 

BUSl = blsize, preliminary 

BUS2 = b2size, UDT. Builds 

BUS3 = b3size internal 

partition table ( .... entries for VP 
in scratch space.' 

//SOFfWARE 

/pARAMETERS 

BATCHMSG Sets C.CONS 
if keyword 
NOCONS 

used 

Sets C.TERM 
if keyword 

NOTERM 
used 

EXTDMPX Defaults Sets Builds load Loads Verifies 

C.MPXBRD C.MPXBRD: module table EXTDMPX EXTDMPX 

to -2. with extended object and end address. 

MPX-32 non-EXTD 

Resets Sets C.TSA modules. object. 

C.TSA if keyword 

TSA is used 

DELTA=CC Sets C.DELTA. Loads H.EXECZ 

and H.CPU2 
into image. 

MPX·32 Technical Volume I 4·5 



Task Structure and Functional Organization 

Table 4-2 
SYSGEN Loading Sequence - cont. 

Directive Actions Taken by SYSGEN 
S.INIT S.PHOI S.PH02 S.PH03 S.PH04 

DISP = entries Defaults Sets C.NQUE. Constructs SetsC.SWAP 
C.NQUE to ten. dispatch queue 

andDQE 
address table, and 
links them. 
Sets C.ADAT 
andC.DQUE. 

LOGON = MULTI 
[,NOSYS) Sets C.MLOGIN 
SINGLE Sets C.NOSYS 

in C.BITI 

POOL = woros Defaults Sets C.POOL Builds memory 
C.POOLto pooL Sets 
1000. C.SBUF. 

IOQPOOL=n Builds IOQ 
[PERMIOQ. pooL Sets o 
[NOROLL] ] C.SBUFA. 

MSGPOOL=n BuildsMSG , 
[NOROLL) pool Sets 

C.SBUFB. 

, 

NTIM = number Defaults SetsC.NTIM. 
C.NTIM to 60. 

MTIM = nmnber Defaults Sets C.MTIM. 
C.MTIM to 60. 

ITIM= Defaults Sets C.ITRS. Used to recom-
microseconds C.ITRS to 384 pule C.IDLC. 

(38.4 micro- C.TDQl. 
seconds). C.TDQ2, 

andC.TDQ3. 

TSMEXIT sets C.TSMXIT 

NOTSMEXIT resets C. TSMXIT 

o 
System Generation Task Description 



Task Structure and Functional Organization 

( Table 4-2 
SYSGEN Loading Sequence - cont. 

Directive Actions Taken by SYSGEN 

S.INIT S.PHOI S.PH02 S.PH03 S.PH04 

ITLB = intlev Builds entry Initializes H.ICP loaded 

in internal indirectly from object file 

interrupt table colUlected and initialized. 

for H.ICP. interrupt table. 

Sets C.NITI. Sets ClTLB. 
Builds scratch 

pad entries. 

MMSG=n Defaults Sets C.MMSG. 

C.MMSG lOS. 

MRUN=n Defaults Sets C.MRUN. 

C.MRUNto S. 

MNWI=n Defaults Sets C.MNWI. 

C.MNWIto 5. 

( . 
SYSTEM = sysfile Sets C.SYSTh~. Uses C.SYSTEM 

for name of 

target system 

file. 

SYMT AB = filename Sets C.SYMT AB. Uses C.SYMTAB 

for name of 

symbol table 

file. 

MAPOUT Sets C.TSKOUT 

NOMAPOUT Resets 

C.TSKOUT 

MPX-32 Technical Volume I 4-7 



Task Structure and Functional Organization 

Table 4-2 
SYSGEN Loading Sequence - cont. 

Directive Actions Taken by SYSGEN 

S.INIT S.PHOI S.PH02 S.PH03 S.PH04 

TQFULL = time Defaults Sets C.TDQ3. Recomputes 

ClDCL to C.TDQ3, 

26042, C.TDQ2 

C.TDQ3 to 600 andC.IDLC. 
and C. TDQ2 to 
400. 

TQMIN= time Defaults Sets C.TDQl. Recomputes 

C.IDCL to C.TDQ2, 

26042, C.TDQI 

C.TDQI to 200 andC.IDLC. 
and C. TDQ2 to 

400. 

BATCHPRI = nn Defaults Sets C.BPRL 

C.BPRI to 61. 

TERMPRI=nn Defaults Sets C. TSMPRL 

C.TSMPRI 

to 60. 

PATCH = number Sets C.PA TCH. Sets C.MPAA, 
C.MPAC, 

C.MPAH, 

and zeros 

patch area. 

DEMAND= 
{NONElpp} Sets C.DPGPRL Vector location 

C4 points to 

HlPPF if 
mapped out 

image and 

CDPGSYS is 
set. 

NODEMAND Resets C.DPGSYS. If on 32{2000 

system, C4 

points to 

HlP09. 

AGE=xx Sets C.AGE. 

BEGPGOUT=zz Sets C.BEGPGO. 

ENDPGOUT=aa Sets C.ENDPGO. 

o 
4-8 System Generation Task Description 



Task Structure and Functional Organization 

• Table 4-2 
SYSGEN Loading Sequence - cont. 

Directive Actions Taken by SYSGEN 

S.INIT S.PHOl S.PH02 S.PH03 S.PH04 

HELP = (volname,dir) Sets C.HLPVOL 

and C.HLPDIR. 

MODE = code Sets C.SCBT, 
C.NOP, 
C.SPADOK, 
c.smp, C.SUPA 

and C.SIMM, 
C.RTACC 

as specified. 

SVC = number Defaults Sets C.SVTN. Sets C.SVTA and 
C.SVTNto C.SVTA2 and 
X'7P'. zeros SVC 

tables. 

R.c'vlTSIZE = number Defaults Sets C.RMlM. Sets C.RMTA 
C.RMfLto 32 and zeros . 
andC.RMTM resource-malk 

to 64. table. 

FLTSIZE This directive 

is ignored. 

ACTIVATE = Builds prototype Builds activation 
(namel, ... ,name7) activation table table and sets 

as linked list C.ACTA. 

in scratch space. 
Sets C.ACTN. 

TRACE=num Defaults Sets C. TRACE. 
C.TRACE to 

X'FFFFFFFE'. 

DEBUGTLC = cc Defaults Sets C.DBTLC. 
C.DBTLCto 

X'7E'. 

MPX-32 Technical Volume I 4-9 



Task Structure and Functional Organization 

Table 4-2 
SYSGEN Loading Sequence - cont. 

0_"'····· I . 

Directive Actions Taken by SYSGEN 

S.INIT S.PHOI S.PH02 S.PH03 S.PH04 
PCHFILE = name Sets C.PCHFLE. 

DBGFILE = name Defaults Sets C.DBGLVI. 
C.DBGLVIto 
'AIDDB·. 

SEQUENCE = Builds prototype Builds sequence 

(namel •.. .name7) sequence table table and sets 
as linked list C.SEQA. 
in scratch space. 

Sets C.SEQN. 

DPTIMO = number Initializes Sets C.DPTIMO. 
C.DPTIMO 
to zero. 

DP1RY=num Initializes Sets C.DP1RY. 
C.DP1RY 
to zero. 

DTSA VE = time Sets C.DTSA VE. 

SW APSIZE = size Sets C.SW APSZ. 

SWAPLIM=n Sets C.PDQE. 

/MODULES 

MODULE = (name. Defaults Builds prototype Uses prototype Loads modules 
module.entpoints) C.MODNto module table in module table to and intializes. 

twelve. scratch space. build load 
Sets C.MODN. table. 

SetsC.MODD 

and zeros 
module addl"'..ss 

table. 

o 
4-10 System Generation Task Description 



Task Structure and Functional Organization 

• Table 4-2 
SYSGEN Loading Sequence - cont. 

Directive Actions Taken by SYSGEN 

S.INIT S.PHOI S.PH02 S.PH03 S.PH04 
IOVERRIDE 

SYSMOD = namel Removes compat-

ibility modules 

REPMOD = name2 or replaces 
modules with 
names given in 
the system module 

defined table 

in SYSGEN. 

NOLACC Sets C.NOLACC 
in C.BITI 

NOANSI Excludes 

support for ANSI 
labeled tapes 
from the system 

image. 

(~ 
NOBASE Removes base 

mode supporL 

NOCMS Excludes 
H.ALOC, 
H.FISE, 

H.MONS, 

andH.CAL\1 

from system 

image. 

CMIMM Sets C.CMIMM. 

CMPMM Sets C.CMPMM. 

NOTDEF Excludes 
support for the 
TERMDEF 
Facility from 

the system 

image. 

c\ 
MPX-32 Technical Volume I 4-11 



Task Structure and Functional Organization 

Table 4-2 
SYSGEN Loading Sequence - cont. o 

Directive Actions Taken by SYSGEN 

S.INIT S.PHOI S.PH02 S.PH03 S.PH04 
/PARTITION 

NAME = name Builds internal Uses partition 
S1ZE=np partition table table to 
STRTPG=sp in scratch space. initialized shared 
MAP=pm memory table. 

and allocate 
more memory to 
the system. 

OWNER = name Builds internal Uses partition 
PROJECf = name partition table table to 
OTIlER = name in scratch space. initialized shared 

memory table 
and allocate 
more memory to 
the system. 

ISECURITY 

OWNERNAME= o 
NOECHO Sets C.NOECHO 

PASSWORD Sets C.PASSWD. 

SAPASSWD Sets C.SAPSWD. 

SYSONLY Sets C.SAONLY. 

/fABLES 

COOTS = number Sets parameters Allocates user 
for user communication 
communication area. 
area. 

JOBS =number Defaults Sets CJOBN. 
CJOBN to ale. 

MDT=n. Sets c.MDTN. 
BLOCK=b Sets C.MDTA. 

o 
4-12 System Generation Task Description 



Task Structure and Functional Organization 

( Table 4-2 
SYSGEN Loading Sequence - cant. 

Directive Actions Taken by SYSGEN 

S.INIT S.PHOl S.PH02 S.PH03 S.PH04 

SHARE = number Sets C.SM1N. Zeros shared Initializes 

memory table. shared memory 

Sets C.SMTA table. 

andC.SMTS. 

TIMER = number Sets C.TENT. Zeros timer 

table. Sets 

C.TIAB. 

/RMSTABLS 

ARTSIZE = number Defaults Sets C.AR1N. Allocates and 

C.AR1Nto zeros ART. 

100. Sets C.ARTA. 

/FILES 

( .. 
SMD This directive 

is ignored. 

SYCSIZE = blocks Defaults Sets C.SYCS 

C.SYCS to 32. to 32. 

SGOSIZE = blocks Defaults Sets C.SGOS 

C.SGOS to 32. to 32. 

MPX-32 Technical Volume I 4-13 



SYSGEN Components 

• 4.2 SYSGEN Components 

SYSGEN contains the device type table (DTI) definition, the device ID (DID) table 
definition, and a special scanner used to parse SYSGEN directives. 

4.2.1 DID and OTT Definitions 

4-14 

The device identification table (DID) and the device type table (DTI) definitions are 
defined using the Macro Assembler FORM directive. SYSGEN fills in the OTT with 
information from the controller definition table (CDT), and vice-versa. The 
information used by SYSGEN is shown in section 4.2.1.1. This information is used 
by SYSGEN to build the table layout of the OTT described in Chapter 2. 

The DID is an internal structure containing disk identification information. Its layout 
is shown in section 4.2.1.2. This information is used by SYSGEN to build unit 
definition table (UDT) entries during the SYSGEN process. 

... 

System Generation Task Description 

o 

o 

o 



( 
SYSGEN Components 

4.2.1.1 DevIce Type Table 

********************************************************************** 

* DEVICE TYPE TABLE * 
*********************************************************************** 

DTT.TBL 

SPACE 
BOUND 
EQU 

1D 
$ 

* 
* 
* 
* 
* 
* 
* 
* 
* 

DEV. TYPE CODE 
CDT POINTER 
* OF CDT'S 
FLAGS 
DEVICE NAME 
MAX BYTES/XFER 
ALIAS DTC 
FREE BYTE 

DTT FORM 8, 24, 
SPACE 

8, 8, 16, 16, 8, 8 

OTT X'OO',A(OO),X'OO' ,X'OO',C'CT', 4096,X'00',O DUMMY CT 
DTT X'Ol' ,A(OO),X'OO' ,X'41' ,C'DC' ,16384,X'OO',O ANY DISK EXCEPT 

MEMORY DISK 
DTT X'02' ,A(OO) ,X'OO' ,X'40' ,C'DM' ,16384,X'01',0 MOVING HEAD OR 

MEMORY DISK 
DTT X'03' ,A(OO) ,X'OO' ,X'40' ,C'DF' ,16384,X'01',0 FIXED HEAD DISK 
DTT X' 04' , A (00) , X' 00' , X' 61' , C' MT' , 8192,X'00' ,0 ANY MAG. TAPE 
DTT X'OS' ,A(OO) ,X'OO' ,X' 60' ,C'M9', 8192,X'04' ,0 9-TRACK MAG. TAPE 
DTT X' 07' , A (00) , X' 00' , X' 0 l' , C' CD' , 0120,X'00' ,0 CARD DEVICE 
DTT X' 08' , A (00) , X' 00' , X' 00' , C' CR' , 0120,X'07' ,0 CARD READER 
DTT X' OA' ,A (00) ,X' DO' ,X' 00' ,C'LP' , 0133,X'OO' ,0 LINE PRINTER 
DTT X'OB' ,A(OO) ,X'OO' ,X'OO' ,C'PT', 4096,X'00' ,0 PAPER TAPE 
DTT X'OC' ,A(OO) ,X'OO' ,X'OO' ,C'TY', 4096,X'00' ,0 TELETYPE 
DTT X'OD' ,A(OO) ,X'OO' ,X'Ol' ,C'CT', 4096,X'00' ,0 OPERATOR'S CONSOLE 
OTT X'OE' ,A(OO) ,X'OO' ,X'60' ,C'FL' ,16384,X'00',0 FLOPPY DISK 
DTT X'OF' ,A(OO) ,X'OO' ,X'OO' ,C'NU' ,16384,X'00',0 NULL DEV 
DTT X'10' ,A(OO) ,X'OO' ,X'OO' ,C'CA', 4096,X'00' ,0 CA DEVICE 
DTT X' 11' , A (00) , X' 00' , X' 00' , C' UO' , OOOO,X'OO' ,0 UO DEVICE 
DTT X'12' ,A(OO) ,X'OO' ,X'OO' ,C'U1', OOOO,C'OO' ,0 U1 DEVICE 
OTT X' 13' , A (00) , X' 00' , X' 00' , C' U2' , OOOO,X'OO' ,0 U2 DEVICE 
DTT X'14' ,A(OO) ,X' 00' ,X'OO' ,C'U3', OOOO,X'OO' ,0 U3 DEVICE 
DTT X'lS' ,A(OO),X'OO' ,X'OO' ,C'U4', OOOO,X'OO' ,0 U4 DEVICE 
DTT X' 16' ,A(OO) ,X' 00' ,X' 00' ,C'US' , OOOO,X'OO' ,0 US DEVICE 
DTT X'17' ,A(OO) ,X'OO' ,X'OO' ,C'U6', OOOO,X'OO',O U6 DEVICE 
DTT X'18' ,A(OO) ,X'QO' ,X'OO' ,C'U7', OOOO,X'OO' ,0 U7 DEVICE 
DTT X'19' ,A(OO) ,X' 00' ,X'OO' ,C'U8', OOOO,X'OO' ,0 U8 DEVICE 
DTT X'lA' ,A(OO) ,X'OC' ,X'OO' ,C'U9', OOOO,X'OO',O U9 DEVICE 
DTT X'lB' ,A(OO) ,X'OC' ,X'OO' ,C'LF', OOOO,X'OO' ,0 PRINTER/FLOPPY 

* 

MPX-32 Technical Volume I 4-15 



SYSGEN Components 

4.2.1.2 Device 10 Table 

4-16 

********************************************************************** 

* DEVICE ID TABLE * 
********************************************************************** 

SPACE 
BOUND 

DID. TBL EQU 

* 

1W 
$ 

* DEVICE IDNAME .............••...••.•.•.•.•........••.........• : 
*TOTAL SECTORS ............................................................................... 
*BIT MAP SIZE ......................................................... 
*NO. OF HEADS .. ........................................... 
*SECTOR SIZE ....................................... 
* SECTORS/TRACK ............................. 
*SECTORS/ALOC. UNIT ........... 
* SECTORS/BLOCK ............... 
*OLD DEVICE ID NAME •.•• 
* 
* .. .. .. .. .... .. .. . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . 
DID FORM 32, 8, 8, 8, 8, 16, 16, 32, 64 

SPACE 
* CLASS 'F' EXTENDED I/O DISK DEVICES 

DID C'DF01' , 3, 3, 26, 64, 2, 4004, C'FLOO1 
DID C'DF02' , 1, 2, 20, 192, 5, 642, 41100, C'MH040 
DID C'DF03', 1, 2, ~O, 192, 5, 1286, 82300, C'MH080 
DID C'DF04', 1, 4, 20, 192, 19, 2444, 312740, C'MH300 
DID C'DF05', 1, 1, 20, 192, 4, 160, 5120, C'FH005 
DID C'DF06', 1, 2, 20, 192, 1, 258, 16460, C'CD032 
DID C' DF06' , 1, 2, 20, 192, 1, 258, 16460, C'CD032 
DID C'DF07', 1, 2, 20, 192, 1, 258, 16460, C'CD064 
DID C'DF07', 1, 2, 20, 192, 3, 772, 49380, C'CD064 
DID C'DF08', 1, 2, 20, 192, 1, 258, 16460, C'CD096 
DID C'DF08', 1, 2, 20, 192, 5, 1286, 82360, C'CD096 
DID C'DF09' , 1,10, 20, 192, 40, 2635, 674400, C'MH600 
DID C'DFOA' , 1,10, 20, 192, 40, 2635, 674400, C'FM600 
DID C'DFOA' , 1, 1, 20, 192, 96, 60, 1920, C'FM600 
DID C' DFOB' , I, 4, 20, 192, 10, 1286, 164600, C'MH160 
DID C'DFOC', 1, 2, 20, 192, 5, 1286, 00, C'ANY 
DID C'DFOD', 1, 4, 20, 192, 24, 2670, 341280, C'MH340 

* 

, 
, 
, 
, 
, 
, 
, 
, 
, 
, 
, 
, 
, 
, 
, 

, 

System Generation Task Description 

• o 

0 

o 



SYSGEN Components 

Word 0 

1 

2 

3 

4 

5 

o 7 8 

Old device ID name (DID.ONAM) 

Sectors per Sectors per 
block allocation 
(DID.SPB) (DID.SPAU) 

Number of heads (DID.NHDS) 

Total sectors (DID.SEeS) 

Device ID name (5 bytes) (DID.NAME) 

5th byte of Reserved 
DID.NAME 

4.2.2 SYSGEN Scanner 

15 16 23 24 31 

Sectors per Sector size 
unit track (DID. S SJZ) 
(DID.SPl) 

Bit map size (DID.MSJZ) 

The SYSGEN scanner parses SYSGEN directives by utilizing linked infonnation 
tables built by calling system macros. The system macros SECfION, SUBSECf, 
DIRTY, KEYWD, and PARAM set up tables as shown in section 4.2.2.1. SECfION 
and SUBSECf correspond to SYSGEN directive sections and subsections. KEYWD 
and P ARAM correspond to the keyword and parameter elements of each directive -
DIRTV. See the MPX-32 Reference Manual Volume III, Chapter 7 for directive 
descriptions. 

The action addresses in section 4.2.2.1 are addresses within the SYSGEN program 
where action should be transferred when the scanner encounters that directive, 
keyword or parameter type. The SDINIT macro must be called prior to setting up the 
infonnation tables. It assigns the equates for the parameter type tables. Finally, the 
macro KWEND must be called after the set-up is complete to specify the end of the 
tables. 

Entry Conditions 

Calling Sequence 

BL SCANNER 

Registers 

R1 address of directive definition list; a byte address On a word boundary 

R2 address of directive to scan; a byte address on a wurd boundary 

R3 negative length of directive in bytes 

MPX-32 Technical Volume I 4-17 



SYSGEN Components 

Exit Conditions 

4-18 

Return Sequence 

TRSW 

Registers 

RO (eel = 1 if error detected) 

(ee2 = 1 if tenninating section directive was encountered. For 
example, section definition has null subsection link) 

R 1 error message TCW if error detected 

R2 current directive pointer 

R3 negative length of remaining directive 

Action Routine Linkage: 

Inputs: CCI =0 
RO = return address 

R2 = byte address of item 

R4 = length of item, in bytes 

R5 = last character scanned 

R6 = first four bytes of string 

R7 = second four bytes of string 

(or) 

R7 = converted decimal number 

(or) 

R7 = converted hexadecimal number 

Outputs: eel = 1 if error detected by action routine. 

System Generation Task Description 

C"·" .'i 



( 

(: 

( , 
'., ./ 

4.2.2.1 Directive Definition List 

Word 

o 

2 

3 

Word 

o 
1 

2 

3 

4 

5 

SECTION c'name' 

SECTION LINK 

~ SUB-SECTION LINK 

ASCII SECTION NAME 

DIRTV [ strtactad] [,endactadj 

DIRECTIVE LINK 
~ KEYWORD LINK 

ASCII NAME OF 

FIRST KEYWORD 

START ACTION ADDRESS 

~D=~~ 'L 
P ARAM type, actionad [,repeat#j 

TYPE 0 ACTION ADDRESS r 

Type label 

G 'a' 
DIGIT 
ALPHA 
SPECL 
ANYS 
STRING 
SYMBOL 
DNUMB 
HNUMB 

Internal value 

EQU X'84' 
EQU X'88' 
EQU X'8C' 
EQU X'90' 
EQU X'94' 
EQU X'98' 
EQU X'9C' 
EQU X'AO' 

MPX·32 Technical Volume I 

SYSGEN Components 

SECTION c'name' 

SUB-SECTION LINK 

DIRECTIVE LINK 

ASCII SUB-SECTION 

KEYWD c 'keyword' [ ,actionadj 

KEYWORD LINK 

NUMBER OF PARAMETER'S 
o ACTION ADDRESS 

ASCII KEYWORD 

param - 1 

param - 2 

param - n 

Description 

ASCII Character 
digit (0-9) 
alphabetic (A-Z) 
special (not 0-9 or A-Z) 
anything (X'QQ' - X'FF') 
alphanumeric string 
symbol string 
decimal number 
hexadecimal number 

Word 

o 
1 

2 

3 

Word 

o 

2 

3 

4 

5 

n 

4-19 



• 
Table Building 

4.3 Table Building 

4.3.1 System Tables 

4.3.1.1 

4-20 

The main function of SYSGEN is building the tables used by an .MPX-32 system. 
Utilizing the supplied directives, SYSGEN tailors the tables for the installation 
required. Some of the system tables which SYSGEN builds are first fonned as linked 
lists in SYSGEN's scratch space and are later inserted in the target file after all 
pertinent infonnation has been collected. Section 4.3.1.1 provides a list of all the 
tables with which SYSGEN interfaces, and where infonnation about them can be 
found. 

Tables Referenced in SYSGEN 

Name of Table SYSGEN Interaction Where Documented 

Activation Table Built by SYSGEN Ref. Man., Vol. III, Ch. 7 

Allocated Resource Table - ART Allocated and zeroed Tech. Man., Vol. I, Ch. 2 
by SYSGEN 

Channel Definition Table - CRT Partially built Tech. Man., Vol. I, Ch. 2 
by SYSGEN 

Controller Definiton Table - CDT Built by SYSGEN Tech. Man., Vol. I, Ch. 2 . 
Device Identification Table - DID Used by SYSGEN Tech. Man., Vol. I, Ch. 4 

Device Type Table - DTT Used and filled in Tech. Man., Vol. I, Ch. 4 
by SYSGEN 

DQE Address Table - DAT Built by SYSGEN Tech. Man., Vol. I, Ch. 2 

DQE Table Allocated, zeroed and Tech. Man., Vol. I, Ch. 2 
linked by SYSGEN 

GPMC Jump Table Allocated and zeroed SeeH.MUXO 
by SYSGEN 

Indirectly Connected Task Allocated and Tech. Man., Vol. I, Ch. 1 
Linkage Table - ITLT initialized by SYSGEN 

Map Tables MPL, MSD & MIDL Tech. Man., Vol. I, Ch. 2 
built by SYSGEN 

Memory Allocation Table Built by SYSGEN Tech. Man., Vol. I, Ch. 2 

Memory Pool Allocated and zeroed Tech. Man., Vol. I, Ch. 2 
by SYSGEN 

Memory Resident Allocated and Tech. Man., Vol. I, Ch. 2 
Descriptor Table initialized by SYSGEN 

Module Table Allocated and zeroed Tech. Man., Vol. I, Ch. 1 
by SYSGEN 

Module Address Table Built by SYSGEN Tech. Man., Vol. I, Ch. 2 

System Generation Task Description 

I ~, 
o· 

." .... \ 

C 



( 

4.3.2 

Table Building 

Name of Table SYSGEN Interaction Where Documented 

Mounted Volume Table - MVT Allocated and zeroed Tech. Man., Vol. I, Ch. 2 
by SYSGEN 

Patch Area Allocated and zeroed Ref. Man .• Vol. III, Ch. 9 
by SYSGEN 

Resourcemark Table - RMT Allocated and zeroed Ref. Man., Vol. I, Ch. 2 
by SYSGEN 

Scratch Pad Partially built 32/70 Tech. Man. 
by SYSGEN 

Sequence Table Built by SYSGEN Ref. Man., Vol. III, Ch. 7 

Shared Memory Table - SMT Allocated and Tech. Man., Vol. I, Ch. 2 
initialized by SYSGEN 

SVCl Table Allocated and zeroed Tech. Man., Vol. I, Ch. 1 
by SYSGEN 

SVC2 Table Allocated and zeroed Tech. Man., Vol. I, Ch. 1 
by SYSGEN 

Timer Table Allocated and zeroed Tech. Man., Vol. I, Ch. 2 
by SYSGEN 

Unit Definition Table - UDT Built by SYSGEN Tech. Man., Vol. I, Ch. 2 

Internal Tables 

As SYSGEN processes directive input, it collects infonnation in its internal tables for 
utilization later in the task. It has three tables that are limited to internal use: the 
partition table, the module table and the interrupt/trap table. See section 4.3.2.1. 

The partition table is built with infonnation provided from the partition directives in 
phase one (S.PHOl). Later, it initializes the shared memory table in phase four 
(S.PH04). SYSGEN's internal module table, not to be confused with the system 
module table, is a table of all system and user modules that are to be loaded in the 
target file. It is built in phase one and utilized in phase two (S.PH02) to build the 
load map table. The interrupt/trap table also builds the load map table and creates 
interrupt entries in the scratch pad in phase two. 

MPX-32 Technical Volume I 4-21 



Table Building 

• 4.3.2.1 SYSGEN Internal Tables 

Word 0 

1 

2 

3 

4 

5 

Ward 0 

1 

2 
3 

4 

5 

Ward 0 

1 

2 
3 

4 

5 

Partition Table 

o 7 8 15 16 23 24 

String forward address (pARLINK) 

Start logical page number (pAR.SPG) Number of pages (PAR.NPG) 

Physical map block number (PAR.PBN). 
See Note l. 

Reserved 

Partition name (P AR.NAME) 

o 7 8 

Module Table 

15 16 

String forward address (MOD.LINK) 

Reserved 

23 24 

Module number (MODNO) Number of entry points (MOD.NEPT) 

Module name (MODNAME) 

Reserved 

Reserved Module type (MODL TYP). 
See Note 2. 

o 7 8 

Interrupt/frap Table 

15 16 

String forward address (INT LINK) 

Interrupt type Priority level Controller class 
(INT.TYP). (lNT.Ll) (lNT.CLS) 
See Note 3. See Note 4. 

Interrupt handler name (INT NAME) 

Pointer to device handler list (lNT.HNDA) 

Device type Channel number Subaddress 
code (lNT.DTC) (INT.CHAN) (lNT.SUBA) 

23 24 

Reentrant 
descriptor 
(lNT.REEN) 

Module type 
(INTLTYP). 
See Note 2. 

31 

31 

31 

4-22 System Generation Task Description 

o 

o 

o 



( 

( 

Table Building 

Notes: 

1. Values for PAR.PBN for a memory disk only are assigned as follows: 

2. 

3. 

4. 

Value Meaning 

-1 User did not specify a staning map block 
number. Bit UDT.MOST ofUDT.STA2 in the 
corresponding DDT is reset. 

-ve User specified the staning map block number. 
This is the negative of that value. 
Bit UDT.MDST of UDT.STA2 is set. During 
phase four (S.PH04), this value is transferred 
to SMT.PAGE. It is then interpreted by SYSINIT 
or OPCOM when the position of the memory disk 
is determined. 

Values for MOD.LTYP and INT.LTYP are assigned as follows: 

Value Meaning 

1 system module (LTYP.SYS) 
2 user module (LTYP.USR) 
3 I/O handler module (L TYPJO) 
4 non-I/O interrupt handler on trap (LTYP.INT) 

Values for INT.TYP are assigned as follows: 

Value Meaning 

1 indirect (TYP.NDIR) 
2 direct (TYP.DIR) 
3 service interrupt (TYP.SI) 
4 GPMC service interrupt (TYP.GPMC) 
5 extended I/O service interrupt (TYP.XIO) 

Values for INT.CLS are assigned as follows: 

Value 

3 
D 
F 

Meaning 

RTOM interval timer (CLS.RTOM) 
TCW class with extended addressing capability (CLS.TCWB) 
extended I/O (CLS.XIO) 

MPX-32 Technical Volume I 4-23 



Handler and Module Loading and Initialization 

• 
4.4 Handler and Module Loading and Initialization 

4-24 

In phase three (S.PH03) of the SYSGEN task, the system modules, user modules, 
interrupt handlers and trap handlers are a11loaded and initialized for the target file. 
SYSGEN reads the object input file (OB]) and scans the load table built in phase two 
for a match on the program name in the binary object record file. When a match is 
found, the module is copied to a temporary disk file and subsequently loaded as often 
as it appears in the load table. If the object module does not match one entered in the 
load table, it is skipped. 

The last entry point of all modules and handlers is reseIVed for SYSGEN 
initialization, and provides the capability of self-initialization. SYSGEN calculates 
the address of the last entry point of each module and does a branch and link to that 
location, thus initializing the module. On return from the initialization, by the macro 
M.XIR (see Chapter 1), the current entry in the load table is cleared, the current 
address pointer gets updated, and the initialization code is zeroed and overlayed with 
the next module. 

System Generation Task Description 

o 

o 

o 



c 

SYSGEN Load Map Descriptions 

4.5 SYSGEN Load Map Descriptions 

Revisions of MPX-32 later than 3.3 have a variety of characters in parentheses located 
after DEF'ed locations in the SYSGEN load map. The following table describes the 
meaning of those characters. 

Entry 
(N) 

(B) 

(H) 

(A) 

(1) 

blank 

Description 
the address is within a nonbase mode module 

the address is within a base mode (extended) module 

the address is within the HAT of either a nonbase 
or base mode module 

the location is absolute, usually defining a version number 
in an older (compatibility) module 

the location is not an address, therefore, neither nonbase 
nor base mode applies 

the address is a nonnal relative one 

These descriptions may occasionally appear together, e. g., (NH), in which case the 
meaning is derived by combining the two descriptions (e. g., nonbase mode module 
address in the HAT of the module). 

4.6 Special Considerations 

4.6.1 MAPTGT/MAPHOST Routines 

SYSGEN initially obtains 16KW of extended memory in which to build the target 
system and acquires additional map blocks as needed. By using the internal routine 
MAPTGT, it can map its acquired memory to address zero, replacing the host 
operating system. This enables SYSGEN to use communication region equates as 
references within the target system instead of within the host. When it becomes 
necessary for SYSGEN to use host system variables or services, it utilizes the internal 
routine MAPHOST to put the host system back in place. 

4.6.2 Special Case Activation 

SYSGEN is a 16KW task. In order to allow SYSGEN to build target systems as large 
as 44 map blocks, the system allocator loads it at address X'60000', which is the 49th 
map block. This gives SYSGEN a maximum of 48 map blocks in which to map the 
target system and to obtain extra memory in nonextended address space for building 
system tables. 

MPX·32 Technical Volume I 4·25 



• 

Special Considerations 

• 4.6.3 SYSINIT Loading 

4-26 

When SYSGEN has completed building the target image, the load table. and the 
symbol table, it then loads the object of the SYSINIT task, which directly follows 
H.SW APR's object as the last object file on OBI if the system debugger is not 
configured. When the system debugger is requested by the USERPROG directive, the 
unmapped portion of the debugger is loaded on the next page boundary immediately 
following H.SINIT. When SYSGEN's final output file (see Figure 4-1) is 
subsequently booted, control is transferred to the SYSINIT task which starts up the 
image and then exits. When present, the unmapped portion of the system debugger 
remains memory resident with 6KW of physical memory allocated to it. It is not 
included as part of the system map and does not increase the size of the logical 
address space occupied by MPX-32. See MPX-32 Reference Manual Volume III, 
Chapter 2. 

System Generation Task Description 

o 

o 

o 



Special Considerations 

Preamble 

Dummy resource requirement summary block 

MPX-32 image 

SYSINIT task 

Unmapped portion of System Debugger when configured 

Vector block 

Debug block 

Figure 4-1 
SYSGEN Output File Format 

c 
MPX-32 Technical Volume I 4-27/4-28 



• • o 

• o 

c 



5 Batch Task Descriptions 

5.1 Cataloger 

5.1.1 Introduction 

The cataloger builds load modules from an object code file assigned to LFC SGO. 
External references are resolved from a user specified subroutine library assigned to 
LFCs DIR and LIB and from the system subroutine library assigned to LFCs LID and 
LIS. The catalog directives are input from LFC SYC and the load module map is 
output to LFC SLO. The load module is a permanent file created by the cataloger; its 
file name is the program name supplied in the CATALOG or BUILD directive. 

5.1.1.1 Exit Conditions 

Normal Exit: SVC I,X'55' 

Abnormal Exits: SVC I,X'57' Abort 

Abort cases are described in the :rvtPX-32 Utilities Reference Manual. 

5.1.2 Processing Regions 

The cataloger consists of four processing regions. Each is identified by a letter: 

• X - external 

• M-main 
• C - control card interpretation and first object code pass 

• B - second object code pass 

Program tags, subroutine names, and names of variables begin with the letter of the 
region that they are associated with. 

MPX-32 Technical Volume I 5-1 



Cataloger 

5.1.2.1 X Region 

The X region contains subroutines relating to MPX-32 provided services. 

5.1.2.2 M Region 

The M region contains subroutines, variables, and tables which are referenced by more 
than one region. It also contains the entry point called by MPX in response to the 
$EXECUTE CATALOG job control statement. When the entry point is called, the 
limits of the general table area are established and control is transferred to the C 
region. The general table area occupies the free memory allocated to the cataloger 
following the cataloger program logic. The utilization of this area is depicted in 
Figure 5-1. 

5.1.2.3 C Region 

5-2 

The C region interprets cataloger directives and makes the first pass over the object 
code comprising each segment being cataloged. Information about each program 
element, its external definitions and common blocks is extracted and stored in the 
symbol table (SYMTAB). SYMTAB is built from the high memory end of the 
general table area toward low memory. SYMTAB data restored with the SYMTAB 
directive is stored first in the table. SYMTAB entry formats are presented in Figure 
5-1. The first entry for each segment is the control entry. The control entry is 
followed by a program name entry. 

For each segment, a table of exteI1!al references from EXCLUDE directives is built 
from the low memory end of the general table area. This table is followed by a table 
of undefined external references. Names from INCLUDE directives are placed in the 
undefined external references table. The table also contains any unsatisfied external 
references encountered during the processing of a segment. If unsatisfied externals 
exist after all program elements have been processed from the SGO file for a segment. 
the subroutine libraries are searched for the externals. Program elements that satisfy 
external references are selected from the libraries. Any remaining undefined external 
references are ignored since they may be satisfied by segments that are subsequently 
processed. 

If the first pass over the object code for all segments is successful, SYMTAB 
addresses are made module relative. and control is transferred to the B region. 

Batch Task Descriptions 

• 

o 



c······ 
-,' 

c 

80,000 

Catalog Code 

Excluded Global" Symbols 
(2 words/entry) 

Included Global Symbols 
(2 words/entry) 

External Reference 
(2 words/entry) 

Symbol Table 

Deblocking Buffers for 
SlOandSGO 

Library FCBs and I/O Buffer 

Memory Resident Directories 

Object Code Pass 1 

Figure 5-1 
General Table Area 

MPX-32 Technical Volume I 

Cataloger 

Catalog Code 

Datapool Variable Storage 

Completed Symbol Table 

Deblocking Buffers for 
SLO and SGO 

Library FCBs and I/O Buffer 

Relocation Matrix Assem 

Load Module Image Assembly 

Object Code Pass 2 

T1019 

5-3 



Cataloger 

5.1.3 SYMT AS Entries 

5.1.3.1 Linkback Entries 

o 5 6 7 8 15 16 

Word 0 000000 00 Overlay level Sequence Number 

1-3 Must be zeros 

If the Linkback directive is used, the identities of specified overlay segments 
are saved in entries built toward low memory in four-word blocks. 

5.1.3.2 Segment (Module) Entry 

o 5 6 7 8 15 16 

Word 0 ID Flags Option flags. See Number of linkback entries 
100000 See Note 2. 

Note 1. .. 

000000 00 Overlay level Sequence number 
(Main is zero) (Main is zero) 

2-3 Left-justified ASCII segment name 

4 000000 00 Transfer address 

5 Origin of segment TSA relative. See Note 3. 

6 Reserved 

7 Last (END) address of segment 

31 

31 

5-4 Batch Task Descriptions 

O·.·~.···'· '.' '''1 

c·

·· ... "' .. \ 
, . ' 



c~ 

Cataloger 

Notes: 

1. Flags are as follows: 

Flag Description 

Ix CATALOG directives for the overlay were preceded by an 
ORIGIN or LORIGIN directive 

xl segment has a transfer address 

2. Option flags are as follows: 

Flag Description 

xxxxxxx I suppress printing of the module map 

xxxx 1 xxx suppress output of load module to disk file 

xxlxxxxx output segment's SYMTAB 

3. Bit 0 of the field is set if the origin is the end of a specified segment. 

5.1.3.3 Defined Entry Point 

o 5 6 7 8 15 16 

Word 0 ID 00 Reserved 
010000 

1 Section nwnber Module relative address 

2-3 Left-justified ASCII name 

MPX-32 Technical Volume I 

31 

5-5 



Cataloger 

5.1.3.4 Common Entry 

o 5 6 7 8 15 16 

Word 0 ID Flags Size in bytes (zero if allocated in another element) 
001000 See 
See Note 2. 
Note 1. 

1 Block number Module relative address. See Note 3. 

2-3 Left-justified ASCn name 

Notes: 

1. The ID is 001100 for the first common entry for a given global block. 

2. The flags are as follows: 

~ Description 

11 * common block is program initialized in this element 

xl common block is Cataloger allocated in this element 

* Catalog always allocates initialized common in the program 
that initalizes it. 

31 

to 

3. If allocated in another element, the address of the symbol table entry where the 
common is allocated. 

5.1.3.5 Section Entry 

o 5 6 7 8 15 16 31 

Word 0 ID 00 Section size in bytes 
000100 

1 Section number Section origin 

2-3 Left-justified ASCn name 

5·6 Batch Task Descriptions 

·0 

CJ 

o 



Cataloger 

5.1.3.6 Program Name 

o 5 6 7 8 15 16 

Word 0 ID Flags Subroutine library Subroutine library block 
000010 See logical record number containing first record 

Note l. number 

1 Subroutine See Module transfer address if contained in this element 
library Note 
file index 2. 

2-3 Left-justified ASCII name 

Notes: 

1. Flags are as follows: 

Flag 

Ix 

xl 

Description 

word 1 of entry contains module transfer address 

program is from a subroutine library 

31 

2. If bit 7 is set, the transfer address is in the CSECT; otherwise, the transfer 
address is in the DSECT. 

MPX-32 Technical Volume I 5-7 



Cataloger 

5.1.3.7 Control Entry 

o 5 6 7 8 15 16 31 

Word 0 ID Flags Control flags Total of SYMI'AB entries 
000001 See for this element 

Note 1. 

1 Maximum bound Number of bytes (mod 4) allocated this element 
required in bytes for common and bounding 

2 Number of bytes (mod 4) of object code in this element 

3 Module relative address of this element, i.e., the address 
of its common if any 

Notes: 

1. The flags are as follows: 

Flag Description 

Ix program element is from a subroutine library 

x I element is last in segment 

2. If section code, bit 8 is set. 

5.1.3.8 B Region 

5-8 

The B region makes a second pass over the object code and outputs the cataloged 
segments in load module format. Absolute overlays are output in absolute format. 

At the beginning of the B region, the space in the general table area not occupied by 
SYMTAB is partitioned. An area large enough to build the core image of the largest 
program element in the segments being cataloged is reserved. An area for an 
associated relocation matrix is also reserved. Each bit in the matrix corresponds to a 
word in the program element data area, and is set to one if the word contains relative 
data. The remaining space is allocated for a datapool table. The three-word datapool 
table entries contain the datapool item name in the first and second words and the 
item's address in the third word. During the second pass over the object code, the 
datapool item table is searched for each datapool reference that is encountered. If not 
found, an attempt is made to locate the item in the datapool dictionary. If the item is 
found, it is added to the datapool table. Items are added sequentially to the table. 
Wraparound occurs when table space is exhausted with new items replacing 
previously stored items. 

Batch Task Descriptions 

o 

o 

o 



c 

Cataloger 

An image of each program element comprising each segment is built in memory 
before being written to the segment's disk file (if not suppressed). A module map of a 
segment is printed before the next segment is formatted. After all segments are 
processed, request SYMTABs are output. 

5.1.4 Load Module Structure 

A load module consists of one or more program elements in a form that requires only 
load origin biasing at load time. A program element is the unit of program 
organization bounded by the macro assembler PROGRAM and END directives. 
Program elements include programs written by the user and any subroutines called 
from subroutine libraries. All program elements must be assembled in the relative 
mode. 

The six load module segments are: preamble, resource requirement summary, CSECf 
data, CSECf relocation matrix, DSECT data, and DSECT relocation matrix. CSECT 
segments or DSECf segments can be omitted if they are empty. The resource 
requirement summary block is always present even if it is empty. 

The load module preamble equates are described in Chapter 2. 

Common blocks are allocated within a segment according to these rules: 

• A common block is allocated preceding the program element that contains a 
common origin referencing the block. 

• If a common block is not referenced by a common origin, it is allocated preceding 
the program element that defines the largest area. 

Program areas, which are reserved but do not contain data and are not included in the 
module common delta, exist as words of zeros on disk. Therefore, those areas are 
initialized to zero when loaded into core. The module common delta is an area at the 
beginning of the module which occupies no space on disk and which is not initialized 
when loaded. It includes bounding and common which precedes the first program 
element and which precedes any common which is referenced by a common origin. 

Each program element's assembled relative zero is placed on a doubleword boundary. 
Common blocks are placed on eight-word boundaries. The main segment of a module 
with overlays is placed on an eight-word boundary. If necessary, the size of the 
transient area is increased so that it consists of an integral number of eight-word units. 

References can be made from an overlay segment to symbols contained within the 
main segment. These symbols can be contained in subroutines called from the 
subroutine libraries. The symbols are established using the assembler directives DEF 
and COMMON. Within the overlay, the assembler EXT and COMMON directives 
allow the symbols to be referenced. The main segment can reference symbols which 
are DEFs in overlay segments as main overlays reference symbols in lower level 
overlays. Other linkage depends on the use of the LINKBACK directive. 

MPX·32 Technical Volume I 5-9 



Cataloger 

5.1.5 Symbol Table Output Format 

The symbol table (SYMTAB) is ~utput by the cataloger in a format similar to object 
records output by the assembler. Each record format is: 

Byte 0 1 2,3 4,5 6 

FF Byte count'" Checksum Sequence Number Data blocks 

*Number of bytes in data block on card 

Each data block is preceded by a control byte in the form XXXXNNNN. XXXX 
identifies the data block type and NNNN specifies the number of bytes of data in the 
block. If NNNN is zero, the number of bytes is sixteen. Data block types and their 
contents are as follows: 

Type(Hex) No. Bytes Data Contents 

0 16 symbol table data output as four-word 
entries from high to low memory. 

5 1 to 8 name of the segment during whose 
cataloging the SYMTAB was output 

F 1 none - signals end of output. 

A type five block is output first. Type zero blocks are output next and are terminated 
by a type F block. All cards, except the last, contain six data blocks. The last card 

, can contain up to seven blocks (six data and one end). 

5.1.6 Object Language 

5-10 

The object code is the output of the language processors and is the primary input to 
the cataloger. It describes the contents to be placed into the load module when the 
object module is included into the cataloger'S input stream. 

Batch Task Descriptions 

0 

o 



c~ 

Cataloger 

5.1.6.1 Object Module Records 

The object module consists of one or more variable length records up to 120 bytes in 
length. Each record contains six bytes of header information describing the object 
record. 

Byte 

o 

1 

2,3 

4,5 

Field label 

record type 

byte count 

checksum 

sequence 

5.1.7 Object Commands 

Contents 

X'FF' or X'DF'. A value of X'DF' indicates the last record 
of the current object module. 

number of data bytes in the current record. It ranges 
from 2 to 114 (X'2', to X'72') and does not include the 
six bytes of header information. 

checksum of the data bytes within the record. It is 
computed by adding the data bytes and truncating the 
sum to a halfword. 

sequence number of the current object record. The 
initial value is one. If the field overflows, the count 
is reset to one. 

The data portion of the object records consists of a series of object commands. Each 
object command is described by a control byte. The control byte is the first byte (byte 
zero) of each object command and contains two fields, the function code and the byte 
count. The function code is the left four bits and ranges from X'D' to X'F'. The byte 
count is the right four bits and is the count of data bytes for each command, exclusive 
of the control byte. A byte count of zero is interpreted as X'lO' data bytes. 

A string back is a linked list of data that is terminated by a zero address. The word 
containing the zero address is absolute rather than relocatable. The cataloger makes 
that word relocatable if necessary. The addresses in the list are module relative and 
are nineteen-bit word addresses. The cataloger preserves bits 30 and 31 in stringing 
back the data. 

5.1.7.1 Absolute Data 

o 4 

X'l' len 

len 

MPX-32 Technical Volume I 

8 

absolute data 

is the number of bytes of absolute data, 1 to 16. A value of 
zero is equivalent to a value of sixteen. 

5-11 



Cataloger 

5.1.7.2 Program Origin 

o 4 

X'I' 3 

program origin 

bit 8 

5.1.7.3 Absolute Data Repeat 

o 4 

X'2' len 

len 

repeat 

5.1.7.4 Transfer Address 

o 4 

X'3' 3 

transfer address 

5.1.7.5 Relocatable Data 

o 4 

X'4' len 

len 

5-12 

8 

program origin 

is a right-justified three-byte field containing a 
19-bit origin 

is set if the address is relocatable 

8 16 

repeat absolute data 

is the number of bytes in the command 

is the number of times to repeat data, 1 to 255. A value of 
zero is equivalent to a value of one. 

8 

transfer address 

is a right-justified three-byte field containing a 19-bit 
transfer address. Bit zero of the field must be set. 

8 

relocatable data 

is the number of bytes of relocatable data, 4 to 16. A value 
of zero is. equivalent to a value of sixteen. Len must be a 
multiple of four. 

Batch Task Descriptions 

o 

o 

o 



C' 
. / 

5.1.7.6 Program Name 

o 

X'5' 

len 

program name 

bound 

4 

len 

5.1.7.7 Relocatable Data Repeat 

o 4 

X'6' len 

len 

repeat 

5.1.7.8 External Definition 

o 4 8 

Cataloger 

8 n 

program name bound 

is the number of bytes in the program name plus three 

is the 1- to 8-cbaracter program name 

is a 3-byte field containing the minimum bounding 
requirement for the program. The minimum value is X'8' 
maximum value is X'20' or eight words. 

8 16 

repeat relocatable data 

is the number of bytes of relocatable data (4, 8, or 12) plus one 

is the number of times to repeat data, 1 to 255. A value of 
zero is equivalent to a value of one. 

n 

X'7' len symbol name definition address 

len 

symbol name 

definition address 

MPX-32 Technical Volume I 

is the number of bytes in the symbol name plus three 

is the 1- to 8-cbaracter name of the symbol being defined 

is a 3-byte field containing a right-justified 19-bit 
address. Bit 0 of the field is set if the address is relocatable. 

5-13 



Cataloger 

5.1.7.9 Forward Reference 

o 4 

X'8' 6 

data 

address 

5.1.7.10 External Reference 

o 4 

X'9' len 

len 

symbol name 

stringback address 

8 

8 n 

data address 

is a 3-byte field containing a right-justified 19-bit 
address. Bit zero of the field is set if the address is 
relocatable. 

is a 3-byte field containing the right-justified 19-bit 
address of the striogback list. The contents of the data field are 
put into each word in the list List is terminated by absolute 
zero link. Bit zero of the field must be set. 

n 

symbol name stringback address 

is the number of bytes in the symbol name plus three 

is the 1- to 8-character name of the symbol being 
referenced 

is a 3-byte field containing the 19-bit address of the 
stringback list. External address replaces the low order 19 bits 
in each word of the list List is terminated by the absolute 
zero link. Bit zero of the field is set if the address is 
relocatable. 

5.1.7.11 Common Definition 

o 4 

X'A' len 

len 

common name 

block 

size 

5-14 

8 n n+ I byte 

common name 1 __ b_IO_ck_---' __ s_ize _________ -' 

is the number of bytes in the common name plus three 

is the 1- to 8-character name of common 

is a I-byte block number assigned by the compiler 

is a 2-byte size of common in bytes 

Batch Task Descriptions 

o 

o 

o 



Cataloger 

5.1.7.12 Common Reference 

o 4 

X'B' len 

len 

block 

common reference 

5.1.7.13 Datapool Reference 

o 4 

X'C' len 

len 

symbol name 

datapool reference 

8 

8 16 

block common reference 

is the number of bytes in the common reference plus one 

is a one-byte common block number referenced by data 

is 4, 8, or 12 bytes of data that reference the common block. 
The base address of the common block is added to the low 
order 19 bits of each reference word. 

n 

symbol name datapool reference 

is the number of bytes in the symbol name plus four 

is the 1- to 8-character name of the symbol in datapool 

is a 4-byte datapool reference. Symbol's value is added to 
the low order 19 bits of the datapool reference. 

5.1.7.14 Escape to Extended Functions 

o 4 8 

X'D' X 

Function code of X'D' indicates extended item. (See section 5.1.8). 

MPX-32 Technical Volume I 5-15 



Cataloger 

5.1.7.15 Common Origin 

o 4 8 16 

X'E' 3 block origin 

block is a I-byte common block number 

origin is a 2-byte offset from beginning of common block 

5.1.7.16 Object Termination 

o 4 8 

X'F' 1 o 0 

This record tenninates the object code for the current module. 

5.1.8 Extended Object Commands 

The extended object commands differ from object commands in the following ways: 

• Byte I contains the function code ranging from hexadecimal I to B. 

• Byte 2 contains the length of the item including overhead bytes 0 to 3. 

5.1.8.1 Section DefinHlon 

o 4 

X'D' 0 

section number 

section name 

bounding 

section number 

section name 

5-16 

8 16 24 

X'O l' X'lO' bounding 

section size in bytes 

is the section bounding requirement (X'8' to X'20') 

is a one-byte field containing zero if DSECT or one if CSECT 

is an eight-byte field containing **DSECT* or **CSECT* 

Batch Task Descriptions 

o 

o 

o 



c 

Cataloger 

5.1.8.2 Section Origin 

o 4 

X'D' 0 

section number 

bounding 

origin 

8 16 24 

X'O 2' X'O 8' bounding 

origin 

is the section bounding requirement (X'8' to X'20') 

is the offset within the section to establish as the new origin 

5.1.8.3 Section Relocatable Reference 

o 4 

X'D' 0 

section number 

len 

section number 

repeat count 

relocatable data 

8 16 24 

X'O 3' len 0 0 

repeat count 4 to 248 bytes of relocatable data 

is the number of bytes in the command 

is the section number where the relocatable data references 

is the number of times to repeat the data. A value of zero is 
equivalent to a value of one. 

is the data in multiples of four bytes whose right 19 
bits are to be relocated by the section base 

5.1.8.4 Section Transfer Address 

o 4 8 16 24 

X'D' 0 X'O 4' X'O 8' 0 0 

section number transfer address 

transfer address is the offset within the section that is the transfer address 

MPX-32 Technical Volume I 5-17 



Cataloger 

5.1.8.5 Section External Definition 

o 4 8 16 24 

X'D' I 0 X'O 5' len 0 0 

section number definition address 

1- to 8-character symbol name 

len 

section number 

definition address 

is the number of bytes in the command 

is the section number where the symbol is defined 

is the offset within that section 

5.1.8.6 Section External Reference 

5-18 

o 4 8 16 24 

X'D' 0 X'O 6' len 0 0 

section number stringback address 

1- to 8-character symbol name 

len 

section number 

stringback address 

symbol name 

is the number of bytes in the command 

is the section where the stringback list begins 

is the offset within that section 

is the global symbol referenced 

Note: If the address is zero and bit zero of the address is set, a stringback is 
perfonned to address zero of the section. 

Batch Task Descriptions 

C· -') .... I . . ' 

o 



c 

Cataloger 

5.1.8.7 Section Forward Reference 

o 4 

X'D' 0 

section number 

section number 

definition address 

stringback address 

8 16 24 

X'O 7' X'O C' 0 0 

definition address 

stringback address 

is the offset within the "section number" section where the 
symbol is defined 

is the offset within the "section number" section where the 
stringback list begins 

5.1.8.8 Large Common Definition 

o 4 8 16 24 

X'D' 0 X'O 8' len 0 0 

common number common size in bytes 

1- to 8-character common name 

len 

common number 

common name 

5.1.8.9 Large Common Origin 

o 4 

X'D' 0 

common number 

common number 

common origin 

MPX-32 Technical Volume I 

is the length of the command 

is the identifier assigned by the compiler to the common block 

is the name of common block 

8 16 24 

X'O 9' X'O 8' 0 0 

common origin 

is the number assigned by the compiler to the common block 

is the offset from beginning of common 

5-19 



Cataloger 

5.1.8.10 Large Common Reference 

o 4 

X'D' 0 

common number 

len 

common number 

repeat count 

relocatable data 

8 16 24 

X'O A' len 0 0 

repeat count 4 to 248 relocatable data 

is the length of the command 

is the identifier assigned by the compiler 

is the number of times to repeat the data. A value of zero is 
equivalent to a value of one. 

is 4-byte multiples of data which have the address of 
the referenced block added to the low order 19 bits 

5.1.8.11 Debugger Information 

5-20 

'0 4 8 16 24 

X'D' flg X'O B' len flag 

type address 

size left-justified 8-character symbol name 

left-justified 8-character common name 

len 

fig 

is the number of bytes in the command 

Value Meaning if Set 
18 symbol is not in common 
26 symbol is in common 

is as follows: 

Bit 
4 

5 

6 

7 

Meaning if Set 
symbol is in extended memory (address is that of 
a 24-bit pointer to the symbol) 
symbol is a formal parameter (address is that of 
a pointer to the symbol) 
symbol is in the common. The common name 
follows the symbol's name. 
symbol is in the datapool 

Batch Task Descriptions 

(). 'IV,I 



( 

flag 

type 

address 

size 

symbol name 

common name 

Cataloger 

is as follows: 

Bit Meaning if Set 

6 address is absolute 
7 symbol is in CSECT 

is as follows: 

Type Description 

0 integer*l 
1 integer*2 
2 integer*4 
3 integer*8 
4 real*4 
5 real*8 
6 complex*8 
7 complex*16 
8 bit logical 
9 logical*1 
10 logical*4 
11 character 
14 statement label 
15 procedure 

23-bit address. Bits 9 to 28 indicate byte address, and bits 29 
to 31 indicate bit within byte. 

length of datum in bytes 

is an 8-character, left-justified, blank-filled variable name 

is an 8-character, left-justified, blank-filled common name 

5.1.8.12 Object Creation Date/Time 

o 

X'D' 

date 

time 

date/time 

date 

time 

4 

0 

MPX-32 Technical Volume I 

8 16 24 

X'O C' X'14' 0 0 

is the day and time the object code was generated 

is the 8-byte ASCII date (mm/dd/yy) 

is the eight-byte ASCII time (hh:mm:ss) 

5-21 



Cataloger 

5.1.8.13 Product Identification Information leader 

o 4 8 

X'D' 0 0 

product identification 

len 

product identification 

16 24 

C len 0 0 

is the number of bytes in the command 

is a user supplied string of up to 32 bytes of 
text identifying the generated object code 

5.1.8.14 Mu ltiple Datapool Reference 

o 4 8 

X'D' 0 0 

symbol name 

datapool reference 

pool number 

len 

symbol name 

data pool reference 

pool number 

16 24 

D len 0 0 

is the number of bytes in the command 

is an 1- to 8-character name of a symbol in the datapool 

is a 4-byte datapool reference. The datapool 
symbol's value is added to the datapool reference. 

is a value from 0 to 99 that identifies DPOOLOO to DPOOL99 

5.1.9 Assembler Instructions and Generated Object Commands 

5-22 

A source listing is provided for an example program OBJTCOMD. This program is 
not meant to have any utility or to suggest any recommended programming practices. 
It is written to show assembly instructions and the object commands generated by 
those instructions. The comments appearing on the right side of the listing lines are 
added to help compare the assembler instructions with the generated object 
commands. 

Compare the source listing in Figure 5-2 with the object code dump in Figure 5-3. 
This dump demonstrates the object code generated when instructions are assembled, 
and the position of object commands within the project. 

Batch Task Descriptions 

o 

c 



00014 
00015 
00016 
'lOO17 
00018 
00019 
00020 
00021 
00022 
00023 
00024 
00025 00000 
00026 80000 
00027 

(~~ 
'lO028 COOOOO 
00029 COOOOO 00000001 
00030 POOOOO 
00031 POOOOO 
00032 POOOOO AD800000 
00033 'POOOOO 
00034 'POOOOO AC800000 
00035 *POOO04 FaaOOOOl 
00036 POOOO4 
00037 POOOO4 ECOOOOO9 
'lO038 POOO08 

0000 ERRORS IN OSJTCOMD 

c 
MPX-32 Technical Volume I 

(:.3227 SETF 
C. TRACF SETF 
C.MEMO SETF 
C.SALONE SETF 
C.SYSGON SETF 

PROGRAM OBJTCOMO OBJECT_COMO_DEMO 
OEF OBJTCOMO 

OATAPOOL COMMON 01(1),D2(2) 
EXT EXTEOBJT 
ABS 
ORG X'80000' 

COMMLARG COMMON Ll(l) 
ORGCOM ORG Ll 

OATAW 1 
REL 

OBJTCOMO EQU 
AOOOOO LW 3,Dl 

CSECT 
COOOOO LW 1, Ll 
XOOOOO BL EXTEOBJT 

OSECT 
POOO08 SU TRANSFER 
POOOOO TRANSFER END OBJTCOMO 

Figure 5-2 
Sample Source Listing 

Cataloger 

OBJECT COMO TYPE 
----------------

5- D10C 
0005 

A-
E3 

,)-

D002 
OOOB 
C-

0002 DOOl 
B-

0- D006 
0002 0001 

0003 
DO OS 0004 

T1020 

5-23 



Cataloger 

B L o C K W 0 R 0 

000 0 o 0 o 0 

0 0 o 4 

o 0 o a 

a a o c 

o 0 1 0 

o 0 1 4 

o 0 1 a 

o 0 1 C 

o 0 0 

o 0 2 4 

o 0 2 8 

002 C 

o 0 

o 0 3 4 

• 
• 
• 

5-24 

o 0 0 o 0 o 0 400 o 0 078 F F 70190B o 0 1~4 F ••.••.••.••••• C 0 

4 2 A 4 F 4 0 4 0 000 3~ o a 8 a a 0 a a J reo M D 

a 0 a 8 2 A ~ 4 5 J 4 5 4 3 42A~ 1 a a a a 1 a 0 ~ * D S Eo C T * 

o 0 2 ~ 2 .r... 4 3 5 3 4 3 5 4 A~4 4F4D4D4C 'C S ;: C T . - 0 M 

4 1 5 2 700 o 0 o 410 0 c 4 0 o 3 3 5 2 F 3 1 J J F ~ R G 1 

383 4 3 1 J 3 ~ 3 234 3 A 353 zlo 1 0 C 1 '* 0 0 4, E' 4 3 4 1 6 4 : 

4 A 4 3 5 F 4 F 4 D 4 4 5 F 4 4 5 J E c: T C 0 M 0 ° E M 0 

100 o 0 8 0 00004F4 4 A 5 4 434 

z~o 0 

4 D 4 '10 0 5 

4D440000 03JT::OMD 

007 8 0 o 7 D F 5 7 083 

o 0 o 0 o 110 0 

o 0 o 9 0 4 0 21 

~ ______ ~3 0 8 0 0 0 0 

08000100 

0~Do02108 ~F8 3 0 o 0 

o 0 o 0 o a E C o a 0 0 0 

5 , 4 5 4 4 A 

• • 
• • 
• • 

o 0 o O~O 0 

OOOOOO~44 A a a 

a a a 0tj0 0 
o 0 0 a 0 0 0 a 

o 0 j 0 1 

8 00 0 0 

• 
• 
• 

o 4 In 0 0 .:1 0 A 

.J 000 4. 4 5 

GOOODOU 

• 
• 
• 

Figure S';'3 
Sample Object Code Dump 

:{TE0BJ1' 

T1021 

Batch Task Descriptions 

o 1 

M 

0 

0 

L 

8 



( 
AIDDB 

5.2 AIDDB 

AIDDB functions as an unsolicited overlay of a nonbase mode task being debugged. 
When attached to a user task, it provides a set of commands that the user can use to 
monitor and control the execution of the task. It is an interactive tool for the online 
user operating under TSM, and can be used to debug a task in batch mode. 

5.2.1 The AIDDB Environment 

The activation sequence for a nonbase mode task to be run under AIDDB is similar to 
the normal activation sequence except that: 

• the size of the address space constructed is increased by the size of AIDDB 

• control is given to the AIDDB startup entry point instead of the transfer address of 
the user task 

The address space constructed for AIDDB is as follows: 

MPX-32 Technical Volume I 

Global Common/Oatapool 
(if any) 

User's CSECT 

AIDDB 

User's OSECT 

TSA 

MPX-32 

T1022 

5-25 



AIDDS 

The AIDDB environment is established for a task by a call to H.REXS,29 
(M.DEBUG service). The task can call H.REXS,29 anytime. The TSM DEBUG 
directive and the JCL $DEBUG directive cause H.REXS,29 to be called as part of the 
activation sequence for a user task. 

Notes: 

The combination of AIDDB and the user's code is a single task with a single TSA and 
a single dispatch queue entry. When AIDDB gains control at its start-up entry point, 
it makes dynamic assignments for its file codes according to whether it is running 
online or batch. The user task cannot make any dynamic assignments for these file 
codes. To minimize conflict with user file codes, all AIDDB file codes begin with the 
character #. 

When AIDDB gains control, whether at activation or upon the occurrence of a trap or 
abort, it runs privileged, so it can replace user instructions with traps. When AIDDB 
transfers control to the user's task. it restores the privilege state (from privilege state 
at point of activation or interruption) of the user's task. 

5.2.2 Entry Points 

AIDDB begins with a halfword address table (HAT) in the following format: 

DEBUG DATAW 5 
ACH DEBUG. 1 
ACH RESERVED 
ACH DEBUG.3 
ACH DEBUG.4 
ACH DEBUG.5 
ACH DEBUG.6 

The entry points have the following functions: 

Entry point Function 
1 start-up 
2 reserved 
3 trap/break receiver 
4 re-entry after BREAK directive 
5 user abort receiver 
6 user overlay load courtesy call 

5.2.2.1 Entry Point 1 - Start-up 

5-26 

File c0des are assigned to the operating mode (online or batch), and files are opened. 
The first immediate command is read from #IN and DEBUG proceeds under control 
of the command stream. 

Batch Task Descriptions 

,f .. ~ ... ~~ 
~I 



( 

( 

AIDDB 

Entry Conditions 

The user PSD in T.CONTXT points to the cataloged transfer address of the user task. 
The user registers in T.CONTXT all contain zeroes. T.REGP points to T.REGS+OW. 

EPl is called because of a call to H.REXS,29 (M.DEBUG service) by the user task or 
as part of the activation sequence for the user task. 

Exit Conditions 

Exit is through any of the H.EXEC calls described in section entitled H.EXEC Calls, 
or M.EXIT in response to an immediate EXIT directive, or H.REXS,50 described in 
the H.REXS Calls section of this chapter. 

5.2.2.2 Entry Point 2 - Reserved 

5.2.2.3 Entry POint 3 • Trap/Break Receiver 

T.CONTXT and the trap table are analyzed to distinguish breaks from traps. For a 
trap, the count for that trap is incremented by one. 

For a conditional trap whose IF expression equals zero, control is passed back to the 
user task. For conditional traps whose IF expression does not equal zero, a trap report 
is issued and the IF command is displayed on #OT. For unconditional traps, a trap 
report is issued on #OT. In either case, AIDDB proceeds under control of the 
commands in the trap list. 

For a break, the parameter input file reverts to #IN, a break report is issued on #OT, 
and DEBUG reads the next immediate command from the parameter input file. 

Entry Conditions 

This entry point is called when the user task executes an SVC I,X'66' (AIDDB trap) 
instruction or receives a break. T.CONTXT indicates the user context following the 
execution of the last user instruction. T.REGP, T.REGS, and flags in DQE.ATI allow 
DEBUG to report the nesting, if any, of push-down levels due to any task interrupts 
active at the time of the trap or break. 

Exit Conditions 

Exit is through any of the H.EXEC calls described in section entitled H.EXEC Calls. 
or M.EXIT in response to an immediate EXIT directive, or H.REXS,50 described in 
the H.REXS Calls section of this chapter. 

5.2.2.4 Entry Point 4 - M.BRKXIT Receiver 

Execution of the user's M.BRKXIT is reported on #OT. AIDDB then reads the next 
immediate command from the parameter input file. 

MPX-32 Technical Volume I 5-27 



AIDDB 

Entry Conditions 

This entry point is called as the result of the user's execution of M.BRKXIT. The 
user's break receiver is run only as the result of an AIDDB call to H.EXEC,23. 
T.CONTXT, T.REGS, and T.REGP are the same as they were immediately before 
AIDDB called H.EXEC,23. 

Note: After AIDDB calls H.EXEC,23, if the user task never executes M.BRKXIT, 
the break receiver push-down level in T.REGS will never be cleared. Each 
trap or break report on #OT will remind the user of this condition with its 
push-down analysis. 

Exit Conditions 

Exit is through any of the H.EXEC calls described in section entitled H.EXEC Calls, 
or M.EXIT in response to an immediate EXIT directive, or H.REXS,50 described in 
the H.REXS Calls section of this chapter. 

5.2.2.5 Entry Point 5 - Abort Receiver 

A report of the user abort, similar in fonn to a trap or break report, is displayed on 
#OT. The abort report includes the abort code message found in the dispatch queue 
entry. AIDDB then reads the next immediate command from the parameter input file. 

Entry Conditions 

This entry point is called when the user task encounters an abort condition. 
T.CONTXT indicates the user context following the execution of the last user 
instruction. T.REGS, T.REGP, and flags in DQE.ATI allow AIDDB to report the 
nesting, if any, of push-down levels due to any task interrupts active at the time of the 
abort. This entry point is never entered while the user task has an abort receiver 
established (M.SUAR service). 

Exit Conditions 

Exit is through any of the H.EXEC calls described in section entitled H.EXEC Calls, 
or M.EXIT in response to an immediate EXIT directive, or H.REXS,50 described in 
the H.REXS Calls section of this chapter. 

5.2.2.6 Entry Point 6 - User Overlay Load Courtesy Call 

5-28 

. 
AIDDB sets any traps in the user overlay th.at was just loaded prior to calling this 
entry point. After setting any traps, AIDDB returns to its caller. 

Entry Conditions 

H.REXS calls this entry point after a us~r overlay is loaded and before return to the 
user task. H.REXS has added the overlay name to the task's overlay name stack. R6 
and R7 have the overlay name, left-justifier), and blank filled. R2 points to the first 
instruction to be executed if the overlay was loaded with the execute flag on. 

Exit Conditions 

Exit is through M.RTRNOS. 

Batch Task Descriptions 



AIDD8 

5.2.3 H.EXEC Calls 

DEBUG uses two special entry points in H.EXEC for control transfers, as follows: 

H.EXEC,22 

H.EXEC,22 is called by AIDDB in response to an immediate go or track directive, to 
begin or continue execution of the user task. 

H.EXEC,23 

H.EXEC,23 is called in response to an immediate break directive, to pass control to 
the user's break receiver. When the user task executes M.BRKXIT, control is passed 
to AIDOB entry point 4. 

5.2.4 H.REXS Calls 

This section describes the H.REXS calls which perfonn special AIDOB-related 
functions. AIDOB makes free use of many other H.REXS calls. 

H.REXS,29 

H.REXS,29 (M.DEBUG) is not called by AIDOB. It is called by a user task, or as 
part of the activation sequence, to establish the AIDOB environment for a user task. 

H.REXS,30 

H.REXS,30 is called in response to an immediate kill directive. Its function is to 
destroy the AIDOB environment previously established by H.REXS,29 (M.DEBUG), 
leaving the user task intact and transferring control to it at a specified context. In 
particular, H.REXS,30 makes AIDOB memory available for allocation by the user 
task. 

H.REXS,42 

H.REXS,42 (SVC 1,X'66') is the AIDDB trap instruction. It is stored in the user 
task, replacing the user's instruction, in response to the set, go, and track directives. 
Execution of SVC 1,x'66' by the user task causes control to pass to AIODB entry 
point three after T.CONTXT is loaded with the user context. 

H.REXS,50 

H.REXS,50 (SVC 1,x'7E') is called by the user program to exit. If AIDOB is 
associated with the task, entry point 5 is entered and a user exit message is generated. 

MPX-32 Technical Volume I 5-29 



AIDDS 

5.2.5 File Code Usage 

5-30 

AIDDB has no cataloged assignments. When it gains control at entry point 1, it 
dynamically assigns #IN, #OT, #01 and #04 according to the operating mode, online 
or batch. It assigns #02 and #03 in response to log, dump, file, and store directives. 
The following table lists the AIDDB file codes and their uses: 

#IN Control input (commands) 

Online: AS #IN TO LFC=UT 
Batch: AS #IN TO SYC (only if not already assigned) 

#OT Primary output (displays, trap reports, diagnostics, etc.) 

Online: AS #OT TO LFC=UT 
Batch: AS #OT TO SLO (only if not already assigned) 

#0 1 Log file (log of all IIO on UT) 

Online: AS #01 TO TEMP SIZE=300 
Batch: not used 

#02 SLO files for log and dump directives 

Online: AS #02 TO SLO 
or 

AS #02 TO <filename> (when using the LOG <filename> 
command) 

Batch: not used 

#03 FILE and STORE files 

Online: 

Batch: 

AS #03 TO <file> (where file is as specified in FILE or 
STORE command) 
same as online 

#04 Patch file (saved CM commands) 

Online: 
Batch: 

AS #04 TO TEMP SIZE= 100 
not used 

#SM Symbol table file 

Online: 
Batch: 

#HP Help file 

Online: 
Batch: 

AS #SM TO <loadmodule> 
same as online 

AS #HP TO DBHELP.H 
same as online 

#OV User's overlay load module 

Online: 
Batch: 

AS #OV TO <overlay loadmodule> 
same as online 

Batch Task Descriptions 



#OD Overlay directory 

Online: 
Batch: 

AS #01 TO TEMP SIZE=20 
same as online 

#LM AIDDB load module (used for overlay processing) 

Online: 
Batch: 

5.2.6 TSA References 

AS #LM TO <loadmodule> 
same as online 

The following TSA areas are referenced by AIDDB: 

T.REGS with DQE.A TI to analyze 

AIDDS 

T.REGP user task interrupt status for abort, trap and break reports 
T.CONTXT user task context as of its last executed instruction 
T.TRAD user task transfer address 

5.2.7 Communication Region References 

C.MACH 
C.CURR 
C.SMTA 
C.MGRAN 
C.SMTS 

to determine the machine type 
to access the task's DQE entry 
to determine memory usage 
to determine memory usage 
to determine memory usage 

5.2.8 Dispatch Queue Entry (DQE) References 

The following areas of the DQE are referenced by AIDDB: 

DQE.USHF 
DQE.ATI 

to determine operating mode. online or batch 
together with T.REGS and T.REGP to analyze user 
task interrupt status for abort. trap. and break reports 

MPX-32 Technical Volume I 5-31/5-32 



o 

o 

o 



c' 

c 

6 System Trace 

6.1 Introduction 

System Trace is an MPX-32 debug facility that assists in detennining the cause of 
system crashes. System events are recorded circularly in a trace table which can be 
dumped in the event of a system crash. 

Thirty trace event types are available for recording as follows: 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16. 
17 
18 
19 
20 

21-22 
23 
24 

25-30 

Task activation 
Task tennination 
Dispatch CPU to task 
Task relinquishes CPU 
Queue I/O 
End I/O 
Interrupt/trap handler entry 
Interrupt/trap handler exit 
M.SHUT 
M.OPEN 
MJOFF or BEl 
M.IONN or VEl 
MCALL 
SVC Type 1 
M.RTRN or M.RTNA 
InswapTask 
Outswap Task 
Dispatch IPU Task 
Relinquish IPU Task 
CALM 
Mobile Event Trace 
SVCType 15 
SVCType2 
Reserved 

Occurrences of trace events are signaled by SVC instructions. These SVCs are 
generated by the expanded BEl and VEl macros for trace types 11 and 12, and by the 
expanded M.TRAC macro for all other trace types. The M.TRAC macro is included 
in MPX-32 as required by each trace type. SVC types X'A', X'B', X'C', and X'D' 
are used by the System Trace event recorder. 

The System Trace event recorder is an SVC processor which is assembled within 
H.IP06. Recorded events each use an eight-word entry in the trace table which 
occupies memory from absolute locations 78000 to 7FFFF. The table is circular
when the last entry in the table is used, the first entry is reused to record the next 
event. 

MPX-32 Technical Volume I 6-1 



Introduction 

System Trace event recording is controlled by flags in a word in the communications O~ 
region, C.TRACE. Bit zero of C.TRACE controls all trace types. If this bit is set, no . . .. 
tracing is performed. If this bit is not set, tracing is controlled by bits 1 through 30 of 
C.TRACE. Bits 1 through 30 correspond to trace types 1 through 3D, respectively, 
and may be set to tum each trace type off. Bit 31 of C.TRACE is reserved as an 
indicator that the trace table recording control words have been initialized by the event 
recorder. If the value of this bit is not disturbed, recording is continuous; for 
example, the control words are not reset If the value of this bit is set to zero, the 
event recorder initializes the recording control words to indicate that the trace table is 
empty. 

The first eight words of the trace table are reserved for control information. The first 
word contains the absolute memory address within the trace table at which the last 
trace entry was stored. Bit 0 of the second word is a wraparound indicator. This bit 
is set if wraparound from the last to first trace table entry has occurred. 

The trace table dump routine is incorporated in resident MPX-32. This routine 
formats each trace table entry and writes it to the line printer. The routine is 
controlled by the contents of C.TRACD which is equated to absolute memory location 
78008. Bits 1 through 15 of C.TRACD correspond to trace types 1 through 15, 
respectively, and may be set to inhibit printing of any trace types. Bits 16 through 31 
of C.TRACD may be used to limit the number of trace table entries eligible for 
printing. If this field contains zero, all trace table entries are eligible for printing. If 
this field contains a nonzero value, this is the number of most recently recorded 
entries eligible for printing. 

To use the trace table dump routine, the contents of C.TRACD should be set as 0 
desired and control transferred to the routine at its entry point The symbol J 
TRACDUMP is associated with the entry point via a DEF. The routine must be 
entered unmapped. After the dump is completed, the routine halts. Each trace type is 
detailed next Fields in printout formats are underlined to indicate actual values. 
Numeric hexadecimal fields are indicated by "x". Numeric decimal fields are 
indicated by "d". The printout of each trace table entry occupies one printer line. 

o 
System Trace 



c 
Trace Type 1 - Task Activation 

6.2 Trace Type 1 • Task Activation 

Macro: 

M.TRAC 

TBM 
BCT 
SVC 

1 

O,C.1RACE 
1,$+2W 
X'A',l 

Implanted in H.ALOC so that the address of the task's dispatch queue entry is 
contained in R7 to be returned and may be obtained as follows: 

LW R2,C.TSAD 
LW R2,T.REGP,R2 
LW R2,7W,R2 

Trace Table Entry: 

Word 0 Type 01 TSA address (DQE.TAD) 

1 Interrupt counter (C.INTC) 

. 
2 

Load module name (DQELMN) 
3 

4 
Owner name (DQE.ON) 

5 

6 DQE entry # Task activation sequence number 
(DQE.NUM) (DQE.TAN) 

7 Scheduling flags (DQE.USHF) 

Printout: 

C • INTC ACTIVATE TASK = xxxxxxxx DQE. LMN DQE. ON 

DQE. USHF = x.x:u;a:;o: DQE. TAD = xxx:o:xxx 

MPX·32 Technical Volume I 6-3 



Trace Type 2 • Task Termination 

6.3 Trace Type 2 • Task Termination 

6-4 

Macro: 

M.TRAC 

TBM 
BCT 
SVC 

2 

O,C.TRACE 
1,$+2W 
X'A',2 

Implanted in H.EXEC so that C.CURR contains the address of the task's 
dispatch queue entry number. 

Trace Table Entry: 

Ward 0 Type 02 TSAaddress (DQE.TAD) 

1 Interrupt counter (C.INTC) 

2 
Load module name (DQELMN) 

3 

4 
Owner name (DQE.ON) 

5 

6 DQE entry # Task activation sequence number 
(DQE.NUM) (DQE.TAN) 

7 Scheduling flags (DQE.USHF) 

Printout: 

C. INTC TERMINATE TASK = x.xx;o:;t.t:t DQE. LMN DQE. ON 

DQE • USHF = x:a:o:x:a DQE. TAD = xxx:a:xxx 

System Trace 

o 

o 

o 



[ 

( 

Trace Type 3 - Dispatch CPU to Task 

6.4 Trace Type 3 - Dispatch CPU to Task 

Macro: 

M.TRAC 

TBM 
BCT 
SVC 

3 

O,C.TRACE 
1,$+2W 
X'A',3 

Implanted in H.EXEC so that R2 contains the address of the task's dispatch 
queue entry number. 

Trace Table Entry: 

Word 0 Type 03 TSA address (DQE.TAD) 

1 Interrupt counter (C.INTC) 

2 
Load module name (DQE.LMN) 

3 . 
4 

Owner name (DQE.ON) 
5 

6 DQE entry # Task activation sequence number 
(DQE.NUM) (DQE.TAN) 

7 Scheduling flags (DQE.USHF) 

Printout: 

C. INTC DISPATCH TASK =.:t:XXtXXXX DQE. LMN DQE. ON 

DQE • USHF =.x:xx;tXXXX DQE. TJi.D = .x:xx;tXXXX 

MPX·32 Technical Volume I 6-5 



Trace Type 4 - Task Relinquishes CPU 

6.5 Trace Type 4 - Task Relinquishes CPU 

6·6 

Macro: 

M.1RAC 

TBM 
BCT 
SVC 

4 

O,C.mACE 
1,$+2W 
X'A',4 

Implanted in H.EXEC so that R2 contains the address of the task's dispatch 
queue entry number. 

Trace Table Entry: 

Word 0 Type 04 TSA address (DQE.T AD) 

Interrupt counter (C.INTC) 

2 
Load module name (DQE.LMN) 

3 

4 
Owner name (DQE.ON) 

5 

6 DQE entry # Task activation sequence number 
(DQE.NUM) (DQE.TAN) 

7 Scheduling flags (DQE.USHF) 

Printout: 

C • INTC RELINQ TASK = xxxxxxxx DQE. LMN DQE. ON 

DQE. USHF = XXXXXXXX DQE. TAD = xxx..u:xxx 

System Trace 

(~~" .... I .., 

/ 



( 
Trace Type 5 - Queue I/O 

• 6.6 Trace Type 5 - Queue I/O 

Macro: 

M.TRAC 

TBM 
BeT 
SVC 

5 

O,C.TRACE 
1,$+2W 
X'A',5 

Implanted in H.IOCS so that R3 contains the I/O queue entry address. 

Trace Table Entry: 

Word 0 Type 05 FCB or TCPB address (IOQ.FCBA) 

1 Interrupt counter (C.INTC) 

2 Handler function word 1 (IOQ.FCTl) 

3 Handler function word 2 (IOQ.FCTI) 

4 Handler function word 3 (IOQ.FCTI) 

5 32-bit flag word (lOQ.FLGS) 

6 . Task activation sequence number (C.TSKN) 

7 Channel # Subaddress 
(lOQ.CHNO) (IOQ.SUBA) 

Printout: 
C.IN.TC QUE I/O TASK = xxxx.:a:;a 

DEV = xxxx IOQ. FLGS = xxxxxxxx FN WDS = xx:uxxxx 
xxxx.:a:;a x.;o:;ax;a 

FCB xxxxxxxx 

MPX·32 Technical Volume I 6-7 



Trace Type 6 • End 1/0 

6.7 Trace Type 6 - End 1/0 

6-8 

Macro: 

M.TRAC 6 

TBM O,C.TRACE 
BCT 1,$+2W 
SVC X'A',6 

Implanted in H.EXEC (S.EXECl, S.EXEC2, S.EXEC3 and S.EXEC4) so that 
Rl contains the task's dispatch queue entry number. 

Trace Table Entry: 

Ward 0 Type 06 

1 Interrupt counter (C.INTC) 

2-5 

6 DQE entry # Task activation sequence number (DQE.TAN) 
(DQE.NUM) 

7 

Printout: 

C. INTC END I/O TASK =.x.x:o::.:axx 

System Trace 

c 

o 

o 



( 

( 

Trace Type 7 - InterruptlTrap Handler Entry 

• 6.8 Trace Type 7 - InterruptlTrap Handler Entry 

Macro: 

M.1RAC 

TBM 
BCT 
svc 

7,level 

O,C.1RACE 
1,$+2W 
X'B',X'leve}' 

Implanted in interrupt/trap handler. 

Trace Table Entry: 

Word a Type 07 

1 
Interrupt counter (C.INTC) 

2 

3 

4 

5 

6 

7 

Printout: 

C. INTC ENTERINT xxxx 

MPX-32 Technical Volume I 

Level 

6-9 



Trace Type 8 • Interrupt/Trap Handler Exit 

6.9 Trace Type 8 -lnterruptlTrap Handler Exit o 
Macro: 

M.TRAC 8,level 

TBM O,C.TRACE 
BCT 1,$+2W 
SVC X'C·.x 'level' 

Implanted in the interrupt/trap handler. 

Trace Table Entry: 

Ward 0 Type 08 Level 

1 Interrupt counter (C.INTC) 

2 

3 

4 C) 
5 

6 

7 

Printout: 

C. INTC EXITINT xxxx 

o 
6-10 System Trace 



.. 

Trace Type 9 • M.SHUT 

6.10 Trace Type 9 - M.SHUT 
Macro: 

M.1RAC 

TBM 
BCT 
svc 

9 

O,C.1RACE 
1,$+2W 
X'A',9 

Implanted in M.SHUT macro. 

Trace Table Entry: 

Ward 0 Type 09 

• 

1 Interrupt counter (C.INTC) 

2 

3 

4 
PSD 

5 

6 Task activation sequence number (C.TSKN) 

7 

Printout: 

C • INT C M • S HUT TASK = xxxxx:o:x P SD = .xx.x:x::a:xx xxxxx:o:x 

MPX·32 Technical Volume I 6-11 



Trace Type 10 - M.OPEN 

6.11 Trace Type 10 • M.OPEN 

Macro: 

M.TRAC 

TBM 
BCT 
svc 

10 

O,C.1RACE 
1,$+2W 
X'A',l0 

Implanted in M.OPEN macro. 

Trace Table Entry: 

Word 0 Type 10 

1 Interrupt counter (C.INTC) 

2 

3 

4 
PSD 

5 

6 Task activation sequence nwnber (C.TSKN) 

7 

Printout: 

C • INTC M • OP EN TASK = x:o:xx;o:x P SD = x.:o:xx;a:x x:o:xx;o:x 

6-12 System Trace 

o 

o 



[' 

C: 

Trace Type 11 • M.lOFF or BEl 

6.12 Trace Type 11 • M.lOFF or BEl 

Implemented by BEl macro whose prototype is as follows: 

BEl DEFM 
TBM 
BCT 
DATAW 
SVC 
ENDM 

O,C.TRACE 
I,S+3W 
X '00060002 ' 
X'A',l1 

Trace Table Entry: 

Word 0 Type 11 

1 Interrupt counter (C.INTC) 

2 

3 

• 
4 

PSD 
5 

6 Task activation sequence number (C.TSKN) 

7 

Printout: 

• 

C . INTC M • IOFF TASK = x;o:;o:x;a P SD = :a::;o:;o:xx .:o:x:o:n:x 

MPX-32 Technical Volume I 6-13 



Trace Type 12 - M.lONN or UEI 

6.13 Trace Type 12 - M.IONN or UEI 

Implemented by UEI macro whose prototype is as follows: 

VEl DEFM 
TBM 
BCT 
DATAW 
SVC 
ENDM 

O,C.TRACE 
1,$+3W 
X'OOO70002' 
X'A',I2 

Trace Table Entry: 

Word 0 Type 12 

1 Interrupt counter (C.INTC) 

2 

3 

4 
PSD 

5 

6 Task activation sequence number (C.TSKN) 

7 

Printout: 
C . INTC M. IONN TASK = x.x.:o:n::lX P SD = .n:o::o:::tX x.x.:o:n::lX 

6-14 System Trace 



Trace Type 13 - M.CALL 

6.14 Trace Type 13 - M.CALL 
Macro: 

M.TRAC 

TBM 
BCT 
SVC 

Implanted in H.IP06. 

Trace Table Entry: 

Word 0 Type 13 

13 

O,C.1RACE 
1,$+2W 
X'A',13 

1 Interrupt counter (C.INTC) 

2 

3 

.. 
4 

PSD 
5 

Bits 20-13 of the SVC 

6 Task activation sequence nwnber (C.TSKN) 

7 Stack frame pointer (T.REGP) 

Printout: 
C • INTC M. CALL TASK = ~ P SD = xxxx.:ux.x xxxx.:ux.x 

MODULE = name, dd 

MPX·32 Technical Volume I 6-15 

• 



Trace Type 14 - SVC Type 1 

6.15/ Trace Type 14 - SVC Type 1 o 
Macro: 

M.TRAC 14 

TBM O,C.TRACE 
BCT 1,$+2W 
SVC X'A',14 

Implanted in H.IP06. 

Trace Table Entry: 

Word 0 Type 14 Bits 20-31 of the SVC 

1 Interrupt counter (C.INTC) 

2 

3 

C) 
4 

PSD 
5 

6 Task activation sequence number (C.TSKN) 

7 Stack frame pointer (T.REGP) 

Printout: 

C. INTC SVCl TASK =.:o:tXXXXX PSD = .:o:tXXXXX.:o:tXXXXX 

SVC = dddd 

o 
6-16 System Trace 



c' 

Trace Type 15 - M.RTRN or M.RTNA 

6.16 Trace Type 15 - M.RTRN or M.RTNA 

Macro: 

M.TRAC 

TBM 
BCT 
SVC 

15 

O,C.TRACE 
1,$+2W 
X'A',15 

Implanted in M.RTRN and M.R1NA macros. 

Trace Table Entry: 

Word 0 Type 15 

1 Interrupt counter (C.INTC) 

2 

3 

4 
PSD 

5 

• 

6 Task activation sequence number (C.TSKN) 

7 Stack frame pointer (T .REGP) 

Printout: 

C • INTC M • RTRN / A TASK =.xx.x:n:n:x P SD = .xxxxxxxx .xxxxxxxx 

MPX·32 Technical Volume I 6-17 



Trace Type 16 - Inswap Task 

6.17 Trace Type 16 - Inswap Task 

Macro: 

M.mAC 

TBM 
BCT 
SVC 

Implanted in H.IP06. 

Trace Table Entry: 

Word 0 Type 16 

16 

O.C.mACE 
1,$+2W 
X'A',16 

1 Interrupt counter (C.lNTC) 

2 

TSA address (DQE.TAD) 

Load module name (DQE.LMN) 
3 

4. 
Owner name (DQE.ON) 

5 

6 DQE entry # Task activation sequence number 
(DQE.NUM) (DQE.TAN) 

7 Scheduling flags (DQE.USHF) 

Printout: 

C .INTC INSWAP TASK = xx::a:x.;o:x DQE. LMN DQE. ON 

DQE. USHF = xx::a:x.;o:x DQE. TAD =.:a:xxxxxx 

6-18 System Trace 



(~:~ 

c 

Trace Type 17 - Outswap Task 

• 6.18 Trace Type 17 - Outswap Task 

Macro: 

M.1RAC 17 

TBM 
BCT 
SVC 

Implanted in IP06. 

O,C.1RACE 
l,$+2W 
X'A',17 

Trace Table Entry: 

Word 0 Type 17 TSA address (DQE.TAD) 

1 Interrupt counter (C.INTC) 

2 
Load module name (DQELMN) 

3 

4 
Owner name (DQE.ON) 

5 

6 DQE entry # Task activation sequence number 
(DQE.NUM) (DQE.TAN) 

7 Scheduling flags (DQE.USHF) 

Printout: 

C . INTC OUT SWAP TASK = xx:oxo::x DQE. LMN DQE. ON 

DQE • USHF = xx:oxo::x DQE. TAD = xx:oxo::x 

MPX-32 Technical Volume I 6-19 



Trace Type 18 - Dispatch IPU Task 

6.19 Trace Type 18· Dispatch IPU Task 

6-20 

Macro: 

M.TRAC 

TBM 
BCT 
svc 

18 

a,C.TRACE 
1.$+2W 
X'A',18 

Implanted in H.cpu so that R2 contains the address of the dispatch queue 
entry address. 

Trace Table Entry: 

Word 0 Type 18 TSA address (DQE.TAD) 

1 Interrupt counter (C.INTC) 

2 
Load module name (DQE.LMN) 

3 

4 
Owner name (DQE.ON) 

5 

6 DQE entry # Task activation sequence number 
(DQE.NUM) (DQE.TAN) 

7 Schedule flags (DQE.USHF) 

Printout: 

C. INTC DISP IPU TASK = xx.x:xx.:o:x DQE. LMN DQE. ON 

DQE. USHF = XXXXXXXX DQE. TAD. = XXXXXXXX 

System Trace 

,.' .'\ C· -" 'j . ',1 



c 

( 

Trace Type 19- Relinquish IPU Task 

• 
6.20 Trace Type 19 - Relinquish IPU Task 

Macro: 

M.TRAC 

TBM 
BCT 
svc 

19 

O,C.TRACE 
1,$+2W 
X'A',19 

Implanted in H.CPU so that R2 contains the address of the dispatch queue 
entry address. 

Trace Table Entry: 

Ward 0 Type 19 TSA address (DQE.T AD) 

1 Interrupt counter (C.INTC) 

2 
Load module name (DQE.LMN) 

3 
.. 

4 
Owner name (DQE.ON) 

5 

6 DQE entry # Task activation sequence number 
(DQE.NUM) (DQE.TAN) 

7 Scheduling flags (DQE.USHF) 

Printout: 

C. INTC RELINQ IPU TASK = x.:u:a::ox DQE. LMN DQE. ON 

DQE • USHF = XXXXXXXX DQE. TAD = xxxx::uxx 

MPX-32 Technical Volume I 6-21 



Trace Type 20 - Reserved 

6.21 Trace Type 20 • Reserved 

6.22 Trace Type 21 - Mobile Event Trace 1 
Implanted by the system debugger by the ET command. 

Trace Table Entry: 

Word 0 Type 21 Stack frame address (T.REGP) 

1 Interrupt counter (C.INTC) 

2 DQE schedule flags (DQE.USHF) 

3 
Requested task interrupts (DQE.RTI) 

4 PSD 

5 

Active task 
interrupts 
(DQE.ATI) 

6 DQE entry # Task activation sequence number 
(DQE.NUM) (DQE.TAN) 

Swap inhibit 
7 flags System action interrupt requests (DQE.SAIR) 

(DQE.SWIF) 

Printout: 

C • INTC ET 41: 1 TASK = x.:o::o::ax P SO = .x;o:xxxxx x.:o::o::ax 

USHF = x.:o::o::ax RTI/ATI =.x;o:x;axx T .REGP = x;a:;o:xxx 

SWIF = xx SAIR = xx 

6-22 System Trace 

o 

C) 

o 



c 

Trace Type 22 • Mobile Event Trace 2 

6.23 Trace Type 22 • Mobile Event Trace 2 

Implanted by the system debugger by the ET command. 

Trace Table Entry: 

Word 0 Type 22 Contents of GPR 0 

1 Contents of GPR 1 

2 Contents of GPR 2 

3 Contents of GPR 3 

4 Contents of GPR 4 

5 Contents of GPR 5 

• 

6 Contents of GPR 6 

7 Contents of GPR 7 

Printout: 

RO = ~ Rl = x:u:o:xxx R2 = xxx.:axxx R3 = xxx.:axxx 

R 4 = x:o:;o:;o:x RS = x:u:o:xxx R 6 =.x:x:o:o:x.x R 7 = .x:x:o:o:x.x 

MPX·32 Technical Volume I 

• 

6-23 



Trace Type 23 - SVC Type 15 

6.24 Trace Type 23 - SVC Type 15 

Macro: 

M.TRAC 

TBM 
BCT 
SVC 

Implanted in H.IP06. 

Trace Table Entry: 

Word 0 Type 23 

23 

O,C.1RACE 
l,S+2W 
X'A',23 

1 Interrupt counter (C.INTC) 

2 

3 

4 
PSD 

5 

Bits 20-31 of the SVC 

6 Task activation sequence number (C.TSKN) 

7 Stack frame pointer (T.REGP) 

Printout: 

C.INTC SVC15 TASK =xxxx.;axx PSD =~xxxx.;axx 

SVC = dddd 

6-24 System Trace 

o 

o 

o 



(~' " 
~j 

c 

Trace Type 24 • SVC Type 2 

6.25 Trace Type 24 - SVC Type 2 
Macro: 

M.1RAC 

TBM 
BCT 
SVC 

Implanted in H.I06. 

Trace Table Entry: 

Word a Type 24 

24 

O,C.1RACE 
1,$+2W 
X'A',24 

1 Interrupt counter (C.INTC) 

2 

3 

4 
PSD 

5 

Bits 20-31 of the SVC 

.. 

6 Task activation sequence number (C.TSKN) 

7 Stack frame pointer (T.REGP) 

Printout: 

C • INTC SVC2 TASK = x;ux:x;a:x P SD = xx;o:;axx x;ux:x;a:x 

SVC = dddd 

MPX-32 Technical Volume I 6-25/6-26 



0." " 

o 



(' 

c 

7 System Initializers and Builders 

7.1 Introduction 

1. 

2. 

3. 

This chapter describes the components of MPX-32 that load and initialize the system 
when it is booted. The components involved are: 

• SDT loader contained within the Volume Manager 

• SYSINIT, J.INIT, J.TINIT, and RESTART system tasks 

A system boot can be performed in various operating environments and involve 
various system devices. In a given environment, a system boot can require all of the 
above components or a subset. 

Figures 7-1 through 7-3 describe the components required when the system is booted 
from a Software Distribution Tape (SDT), from the IOP console, and from an online 
REST ART directive. 

I 
SOT I J SYSINIT I J I 

Loader I I PHASE I J I MPX-32 I 
J SYSINIT I 
I PHASE II 

Reads system 1. Initializes 1. Transfers 1 . Builds system 
into memory system control to if Master SOT 

SYSINIT image 
Checksums 2. Defines and Phase II • 
image links SYSINIT as a 2. Initializes 

Phase II as ready-to- memory 
Transfers a task run, real-
control to time task 3. Gets time/date 
SYSINIT 

4. Runs Volume 
Formatter 

5. Mounts system 
disc 

6. Runs Volume 
Manager 

7. Initializes 
system 

8. Exits 

T1023 

Flaure 7-1 
Components and Functions In Boot from an SOT 

MPX·32 Technical Volume I 7·1 



Introduction 

7-2 

RLOAO J SYSINIT I 1-------..1 PHASE I . 

1 . Reads base or default 1. Initializes 
system into memory system 
from disc 

2. Checksums system 

3. Transfers control to 
SYSINIT 

2. Defines and 
links SYSINIT 
Phase II as 
a task 

~ 
1. Transfers 

control to 
SYSINIT 
Phase II as 
a ready-to
run, real
time task 

" SYSINIT 
PHASE II 

1- Builds system 
if Master SOT 
image 

2. Initializes 
memory 

3. Gets time/date 

MPX-32 

1 . Transfers control to 
CPU scheduler 

4. Mounts system disc 

5. Initializes 
system 

6. Exits 

T1024 

Figure 7-2 
Components and Functions In Boot from lOP Console 

System Initializers and Builders 

(~) 

(--\ 
'~: 



Introduction 

I RESTART I ., RLOAD I SYSINIT I 
• PHASE I rlMPX-321 

1. Reads RLOAD 1. Reads base 1. Initializes 1. Transfers 
from disc to or one-shot system control to 
memory via system into CPU 
internal buffer memory from 2. Defines and scheduler 

disc links SYSINIT 
2. Sets restart Phase II as 

flags in 2. Checksums a task 
RLOAD system 

3. Performs I MP~.32 I simulated 
system reset 

1- Transfers 
control to 
SYSINIT 
Phase II as a 
ready-to-run, 
real-time 
task 

I SYSINIT I 
(~ 

PHASE II 

1. Builds system if 
Master SDT 
image 

2. Initializes 
memory 

3. Gets timeldate 

4. Mounts system 
disc 

5. Initializes system 

6. EXits, 

11025 

Figure 7-3 
Components and Functions In Boot from Online RESTART 

MPX-32 Technical Volume I 7·3 



SOT Loader 

7.2 SOT Loader 
The SDT loader is a section of code written to a system distribution tape (SDT) by the 
portion of the Volume Manager that processes the SDT directive. Its purpose is to 
read the system image from the SDT into memory. Control is then transferred to the 
MPX-32 initialization program SYSINIT which builds a functional system. 

7.2.1 Activating 

The SDT loader is activated from the SDT by the IPL = devaddr (device address) 
console command. The loader code must be the first piece of information contained 
on the SDT. 

7.2.2 Required Input 

The SDT loader requires no input. However, the starting load point may be altered by 
supplying a value other than zero in R3 prior to depressing the IPL button. The load 
point defaults to X'780·. 

7.2.3 Processing 

The SOT loader is written to tape as absolute code by supplying the SOT directive to 
the Volume Manager. The loader code is then followed by the system image whose 
name is supplied in the directive. 

, 

When an IPL is performed, firmware reads the SOT loader from the IPL medium into 
memory, starting at absolute address zero. Control is then transferred to location zero. 
The loader then reads the system image into memory from tape or floppy disk 
sequentially starting at the load point specified in R3 or the default load point if R3 is 
zero. 

The image is read in 192W blocks by means of a buffer reserved in low memory. The 
load module preamble is read first and the appropriate information is extracted from it. 
Then the resource requirement summary (RRS) block of the preamble is ignored, and 
the remainder of the image is loaded into memory. 

A checksum is performed while loading the image. The checksum is compared with 
the c;:hecksum value supplied in the preamble. If the checksum value does not agree, 
the loader halts execution. 

After loading the system image, the loader transfers control to SYSINIT Phase I to 
allow initialization of the operating system to proceed. 

7.2.4 Results 

7·4 

Loading has commenced at the appropriate load point, with all memory locations 
below the load point undefined. For a normal boot from a system distribution tape 
(SOT), memory resident code consists of the version of MPX-32 specified in the SOT 
directive, immediately followed by the SYSINIT load module. From this point, 
control is transferred to the SYSINIT entry point. 

System Inltlalizers and Builders 

c· 

-_ ... "'.'. 
I \ 

; 



( 
The OeOOT Program Section 

7.3 The OeOOT Program Section 

7.3.1 Activating 

The system disk bootstrap is placed at sector 0 of all system disks by the Volume 
Formatter. This enables booting from any properly formatted disk. 

To boot the computer, the console is entered in panel mode and given the command 
IPL = xx:tX, where xx:tX is the channel and subaddress of the system disk. 

The CPU firmware reads 120 bytes from sector 0 of the disk. 

The IOCL starting at location eight is executed. When this IOCL terminates, the 
program status doubleword (PSD) is loaded with the contents of locations 0 and 4 and 
I/O status is placed back into locations 0 and 4. 

7.3.2 Processing 

The bootstrap code loads the operating system, checksums it, and transfers control to 
SYSINIT Phase I to complete the initialization of the MPX-32 system. 

7.4 The SYSINIT Program Section 

7.4.1 Activating 

SYSINIT is comprised of two sections: Phase I and Phase II. Phase I is entered by 
either the SDT loader or the disk bootstrap loader and runs as stand-alone code. 
Phase II is actually the first MPX-32 task and is entered by the MPX-32 execution 
scheduler as a result of the first real-time clock interrupt. 

Control transfers from either loader via a context switching type process. The address 
of SYSINIT's TSA is stored at C.CTSAD by SYSGEN. The loader uses this address 
to load general pUIpose registers 2 through 7 from the current general purpose stack 
frame in SYSINIT's TSA. (Note: GPR 0 is used to pass parameters from the loader 
to SYSINIT. GPR 1 is used by the loader in the hand-off process.) Base registers are 
loaded from the current base register stack frame in SYSINIT's TSA. The loader then 
performs a load program status double word (LPSD) using the PSD stored in the 
current frame of the general purpose stack to transfer control to SYSINIT. SYSINIT 
will pop off the current frames of the general purpose and base register stacks and 
continue with normal initialization procedures. 

7.4.2 Processing 

Phase I of SYSINIT runs as stand alone code because, when it is entered, the 
hardware and the software are not ready for OS operation. Phase I performs the 
required hardware initialization functions while Phase II performs the software 
initialization functions. 

MPX-32 Technical Volume I 7-5 



The SYSINIT Program Section 

The hardware initialization functions performed by Phase I are as follows: 

1. perform auto console configuration if booting a CONCEPT 32/2000 system 

2. load CPU scratchpad from the image built by SYSGEN 

3. update memory allocation tables to reflect the memory occupied by SYSINIT 

4. build a dispatch queue entry for SYSINIT and link it on the ready-to-run state 
queue 

5. set up the interrupt vector locations 

6. determine the unit definition table (UOT) address of the IPL device for all 
startups except for a Master SOT boot, (see section on booting from a Master 
SOT for details) 

7. enable all peripheral interrupt levels 

8. enable all software interrupt levels 

9. enable traps 

10. set the CPU mode 

11. set mapped mode, unblock interrupts, and wait for a clock interrupt 

The software initialization functions performed by Phase II are as follows: 

1. memory initialization 

2. request date and time to be entered 

3. disk start-up initialization 

4. User SOT start-up initiali~ation 

5. Master SOT start-up initialization 

7.4.2.1 Memory Initialization 

7·6 

The first function performed by SYSINIT on a nonmaster SOT boot is the 
initialization of memory. This clears parity errors which occur in MOS memory after 
power up, locates nonpresent sections of physical memory, and locates defective 
memory modules. 

The initializer revectors parity and nonpresent memory traps to point to handlers 
within SYSINIT. Then, for MOS memory, every location is read, and if it is not in a 
multi-processor shared sectipn of memory, written back. This clears all potential 
parity errors. If a parity error is detected on the read, a test data pattern is written to 
the location and then read back. If another parity error or a mismatched data pattern 
is detected, the module is marked as malfunctioning and the testing continues. If a 
nonpresent memory trap is encountered on a read, the module is flagged as nonpresent 
and testing continues. 

For core memory, one location is checked in each module to determine if the module 
is present 

System Initializers and Builders 

() 



The SYSINIT Program Section 

For the CONCEPT 3212000 processor, memory types defined at SYSGEN must be 
verified at SYSINIT. Any discrepancies between SYSGEN definitions of memory and 
physically present SRAM and DRAM memory are handled as nonpresent memory. 
(Any physically present DRAM memory which is SYSGENed as SRAM is declared 
nonpresent Any physically present SRAM memory which is SYSGENed as DRAM 
is declared nonpresent) When this occurs the following message is displayed. 

***WARNING: SYSGEN DEFINITION OF MEMORY DOES NOT MATCH PHYSICALLY 
CONFIGURED MEMORY. 

This message is followed by one of the following. 

If the physical amount of SRAM is greater than the amount of SYSGENed E, H, and 
S memory, the following message is displayed. 

ACTUAL SRAM: 0 - addr1 
SRAM FROM addr2 - addr1 IS UNUSED 

and the following if part of the SYSGENed D memory physically resides in SRAM: 

TYPE 'D' FROM addr2 - addrl MARKED NONPRESENT 

or the following if all the SYSGENed D memory physically resides in SRAM: 

TYPE 'D' FROM addr3 - addr4 MARKED NONPRESENT 

If the physical amount of SRAM is less than the amount of SYSGENed E, H, or S 
memory, the following message is displayed: 

ACTUAL SRAM: 0 - addrl 
TYPE ' type' FROM addr1 - addr5 MARKED NONPRESENT 

addr 1 is the hexadecimal address of the physical end of SRAM 

addr2 is the hexadecimal address of the start of memory SYSGENed as DRAM 
(or nonpresent) which is physically SRAM 

addr3 is the hexadecimal address of the start of SYSGENed DRAM memory 
which is physically SRAM 

addr4 is the hexadecimal address of the end of SYSGENed DRAM memory 
which is physically SRAM 

addr5 is the hexadecimal address of the end of memory SYSGENED as type 
which is physically DRAM 

type is E, H, or S 

At the end of the routine, the maps are reset to point to their normal handlers and 
SYSINIT continues software initialization. 

7.4.2.2 System Date and Time 

This routine prompts the user to enter the date and time for use by the system. See 
the MPX-32 Reference Manual Volume III, Chapter 2 for valid entry formats. 

MPX-32 Technical Volume I 7-7 



The SYSINIT Program Section 

7.4.2.3 Disk Start-up Final Initialization 

For disk start-up, the system volume must be mounted. SYSINIT automatically 
allocates the volume, reads the volume descriptor, and builds a mounted volume table 
entry (MVTE). This allows a call to be made to the mount service H.REMM,17 
which causes a run request to be sent to J.MOUNT (the system nonresident media 
mounting program) which actually performs the mount 

Next. J.SWAPR is built into the system by SYSGEN. Its SYSGEN initialization 
entry point links its own dispatch queue entry to the suspend queue. Execution is held 
until SYSINIT finishes its functions, then SYSINIT issues a resume request for 
J.SWAPR. 

Once the swapper is running, SYSINIT completes system initialization by activating 
the following sequence of tasks: 

1. J.INU' - installs system patches, mounts default public volumes, and loads ACS 

2. J.TINIT - initializes user terminals 

3. J.TSM - builds environment for interactive users 

4. J.TDEFI - initializes the TERMDEF facility, if present 

5. user sequentially run tasks, see SYSGEN SEQUENCE directive 

6. user activate table, see SYSGEN· ACTIV ATE directive 

SYSINIT then exits. 

7.4.2.4 Tape Start-up Final Initialization 

7-8 

For tape boots, it is assumed there is no information on the disk to become the system 
volume. As a result, all tasks needed to build the disk environment are included on 
the system distribution tape (SOT). These tasks are: 

1. Volume Formatter (J. YFMT) - This task builds the maps and data structures 
needed for file maintenance, places a disk bootstrap at sector 0, and writes a copy 
of the operating system to the desired disk. This assumes an empty disk. 
1. VFMT can also be used to replace an operating system image only. leaving 
other data intact, thus giving the user warm start capability. See MPX -32 
Reference Manual Volume Ill, Chapter 13. 

2. Mount Program (J.MOUNT) - This task is activated to mount the formatted 
volume created by J.YFMT. 

3. Volume Manager Program (VOLMGR) - This program is activated so files in 
the file save area following the system information on an SDT can be restored. 

System Inltializers and Builders 

o 

o 

o 



c 

The SYSINIT Program Section 

After all tasks on the tape have been activated, lSW APR is invoked. Once the 
swapper is running, SYSINIT completes system initialization by activating the 
following sequence of tasks: 

1. J.INIT - installs system patches, mounts default public volumes, and loads ACS 

2. J.TINIT - initializes user terminals 

3. J.TSM - builds environment for interactive users 

4. user sequentially run tasks, see SYSGEN SEQUENCE directive 

5. user activate table, see SYSGEN ACTIVATE directive 

SYSINIT then exits. 

7.4.2.5 Master SOT 

BOOT 

The Master System Distribution Tape for MPX-32 contains three system images, 
MSTRALL, the default image for all CONCEPT 32/xx computers; MSTREXT, the 
extended-mode image and MSTROUT, the default image for CONCEPT 32/2000 
computers. 

The format of the Master SOT is shown below and described in the paragraphs which 
follow. 

E E E E E E 
IMAGE 0 IMAGE 0 IMAGE 0 J.VFMT 0 IMOUNT,J.SW APR, 0 0 

MSTRALL F MS1REXT F MSTROUT F F VOLVIGR F F 

Tape Boot Loader - The first record on an SOT is the boot loader. This code is 
contained within the Volume Manager and written to the tape as a result of the SDT 
command. The boot loader first determines the type of machine it is executing on by 
reading the CPU status word. It then sets up the CPU scratchpad RAM to allow the 
IPL device to be read as logical device X'IOOO'. 

Two flags are set inside the bootstrap code by the Volume Manager. One specifies the 
IPL device is a floppy disk. The other indicates a master, as opposed to a user, SOT 
format. 

If the flag indicating Master SOT is set, the boot loader uses the machine type to 
determine if it is necessary to set command chain bits in the initialization IOCD list. 
These chained commands are one or two skipfile commands used to advance the tape 
to the proper system image for the CPU type being IPLed, 

Once the tape has been positioned, the image is read into memory. Control then 
passes to SYSINIT, and system initialization begins. 

SYSINIT - Phase I Initialization - Phase I of SYSINIT prepares the MPX-32 
environment. This allows the Phase II portions of SYSINIT to run as an MPX-32 
task; therefore, system service calls can be used to perform JlO rather than stand-alone 
I/O routines. 

MPX-32 Technical Volume I 7-9 

SAVED 

Fll..ES 



• 
The SYSINIT Program Section 

7-10 

The first functions SYSINIT perfonns are reading the IPL device and data return 
transfer response locations in scratchpad, loading scratchpad from the C.SP AD area 
created by SYSGEN, initializing the interrupt vector area in low memory, allocating 
SYSINIT's memory space in the MPX-32 memory tables, and building and linking a 
CPU dispatch queue entry for SYSINIT. If booting from a disk, SYSINIT may abort. 
See the MPX-32 Reference Manual, Volume Ill, Chapter 6. 

If the machine is a 32/67 or 32/97, the shared memory region's high and low bounds 
are set in C.SHRHI and C.SHRLO. 

After these operations, SYSINIT compares the doubleword value at C.SYSTEM with 
the three names reserved for Master SDT starter systems. If a match is found, a flag 
bit is set and a skip count control word is loaded to allow SYSINIT to correctly 
process a Master SDT IPL sequence for the current machine type. The skip count 
word is used to detennine where the next desired infonnation resides on the SDT. 

The three reserved system names are: 

MSTRALL - default image for all CONCEPT 32/xx computers 

MSTREXT - split-mode image 

MSTROUT - default image for CONCEPT 32/2000 computers 

The final activity in Phase I of SYSINIT is enabling all interrupts and then unblocking 
them. This allows the clock interrupt to occur, causing a context switch to SYSINIT 
Phase II, the task portion of SYSINIT. 

SYSINIT - Phase II Initialization - Phase II of SYSINIT checks for a Master SDT 
boot. This is indicated by the flag set in Phase I. If set, the proper peripheral 
configuration must be set up to allow further initialization. 

The Master SDT system images are SYSGENed in a special way. The following 
controller and device entries are included: 

/CHANNELS 
CONTROLLER=DM03,PRIORITY=06,CLASS=F,MUX=XIO,HANDLER=(H.IFXIO,I) 
DEVICE=(OO,3,2),DISK=ANY,HANDLER=(H.DCXIO,S),OFF 
CONTROLLER=DM08,PRIORITY=07,CLASS=F,MUX=XIO,HANDLER=(H.IFXIO,I) 
DEVICE=(OO,2,2),DISK=ANY,HANDLER=(H.DCXIO,S),OFF 
CONTROLLER=DM7E,PRIORITY=13,CLASS=F,MUX=MFP,HANDLER=(H.IFXIO,I) 
DEVICE=OO,DISC=ANY,HANDLER=(H.DCSCI,S),OFF 
DEVICE=08,DISC=ANY,HANDLER=(H.DCSCI,S),OFF 
CONTROLLER=DM76,PRIORITY=12,CLASS=F,MUX=MFP,HANDLER=(H.IFXIO,I) 
DEVICE=OO,DISC=ANY,HANDLER=(H.DCSCI,S),OFF 
CONTROLLER=M910,PRIORITY=08,CLASS=F,MUX=XIO,HANDLER=(H.IFXIO,I),CACHE 
DEVICE=OO,DTC=M9,HANDLER=(H.MTXIO,S),OFF 
CONTROLLER=M97E,PRIORITY=13,CLASS=F,MUX=MFP,SUBCH=4,CACHE 
DEVICE=40,DTC=M9,HANDLER=(H.MTSCI,S),OFF 
CONTROLLER=M976,PRIORITY=12,CLASS=F,MUX=MFP,SUBCH=4,CACHE 
DEVICE=40,DTC=M9,HANDLER=(H.MTSCI,S),OFF 
CONTROLLER=CT02,PRIORITY=02,CLASS=F,MUX=XIO,SUBCH=F,HANDLER=(H.IFXIO,I) 
DEVICE=FC,DTC=CT,HANDLER=H.CTXIO,LINSIZ=80,PAGE=20 

System Initlalizers and Builders 

o 



(~ 

The SYSINIT Program Section 

CONTROLLER=LF7E,PRIORITY=13,CLASS=F,MUX=IOP,SUBCH=F 
DEVICE=FO,DTC=FL,HANDLER=H.DCXIO,DISC=FL001,OFF 
DEVICE=F8,DTC=LP,SPOOL=(BL,RL),HANDLER=H.LPXIO 
CONTROLLER=DM7E,PRIORITY=13,CLASS=F,MUX=IOP,SUBCH=C 
DEVICE=(CO,2,2),DISC=ANY,HANDLER=H.DCXIO,OFF 
CONTROLLER=DM04,PRIORITY=09,CLASS=F,MUX=XIO,HANDLER=(H.IFXIO,I) 
DEVICE=(OO,2,2),DISC=ANY,HANDLER=(H.DPXIO,S),OFF 
CONTROLLER=NUOO 
DEVICE=OO,SHR,DTC=NU,SPOOL=(BB,RB) 

All possible handlers for a one disk, one tape system are included. Three dummy 
disks are included so the UDT configurations are similar, and the lOP disk is 
configured. 

The first device initialized is the tape. The IPL device address scratchpad word, saved 
in Phase I, provides the address of the tape. Using this infonnation and known UDT 
indices due to the special fonnat SYSGEN directives, SYSINIT configures the UDT, 
CDT, DCA, and CHT tables, and marks the tape on-line. 

The second device initialized is the disk. SYSINIT prompts the operator for the 
device address and the type of controller (XIO or lOP). 

Using answers to the prompts and the known UDT indices, SYSINIT selects the UDT 
entry with the proper handler for the disk. SYSINIT uses a copy of the SYSGEN 
module SJ.STBLS, which contains device dependent parameters for the various disk 
drives, to fill in the following UDT areas: sectors per block, sectors per allocation 
unit, sectors per track, total sectors, sector size, and number of heads on the unit. The 
CDT, DCA, and CHT are modified to contain the correct channel and device 
infonnation. The drive attribute registers are then constructed and the disk is marked 
online. 

If the disk specified is a cartridge disk, the even subaddress must be specified when 
SYSINIT prompts for the device address. SYSINIT then sets up two UDTs and 
associated tables, one each for the fixed media and the removable media parts of the 
disk. Either portion may be used in the Volume Fonnatter step and as a response to 
SYSINIT's prompt for the system disk address. 

After the tape and disk devices are configured, SYSINIT loops through the first seven 
UDT entries. The device address fields for offline entries are filled with X'FFFF'. 
This prevents UDT searches from finding the wrong entry. 

After the UDT device address fields are filled, SYSINIT activates the Volume 
Fonnatter from the Master SDT. 

MPX-32 Technical Volume I 7-11 



The SYSINIT Program Section 

7·12 

• SYSINIT contains a skip file control word which is used to locate the Volume 
Fonnatter. The control word consists of byte fields indicating the relative file 
positions on the tape. The word defaults to the values required for a user SOT and is 
modified during Phase I of SYSINIT if a Master SOT is being used. When the tape is 
positioned, SYSINIT reads the Volume Formatter load module preamble into the 
system buffer and perfonns a parameter task/run request activation with the bit 
indicator 'C.TAPACI" set. The bit variable infonns H.REMM, which performs the 
activation sequence, that the preamble is in the system buffer and activation is from a 
tape. The bit C.SYSB is also set, which indicates to H.REMM that no swap file 
should be obtained. During the parameter task part of the activation, SYSINIT passes 
assignments for the system console and IPL device to the Volume Fonnatter. During 
the run request part, SYSINIT waits for completion of the Volume Formatter before 
continuing the activation sequence. 

The activation call causes J.VFMT to be loaded, then placed, into the suspend queue. 
Control then passes back to SYSINIT. Before SYSINIT resumes J.VFMT, the tape 
must be positioned at the start of the correct system image. SYSINIT rewinds the 
tape, advances one record, then uses the skip file control word to advance the required 
number of files to reach the desired image. For example, MSTRALL would require 
no skip files where the MSTROUT would require two. After the tape is positioned, 
J.VFMT is resumed. The Volume Fonnatter copies the tape image of the MPX-32 
operating system to disk. The copy becomes the default system image. 

When SYSINIT is infonned of J.VFMT's completion, the parameter send block 
associated with the run request is checked for completion errors. If an error is 
reported, the error is displayed on the system console and SYSINIT aborts. 

After running J.VFMT, SYSINIT runs J.MOUNT, J.SWAPR, and the Volume 
Manager in the same manner. J.MOUNT mounts the system volume, J.SW APR is the 
swapper, and the Volume Manager allows the restoration of saved files from the SDT. 

System Initiallzers and Builders 

C·.-.-"··· " \ 
! 



The SYSINIT Program Section 

7.4.3 Autodisk Subroutine 

The autodisk subroutine determines the geometry of any F-class disk except memory 
disk. This subroutine is used by any program that communicates with an unmounted 
disk. 

Entry COnditions 

Calling Sequence 

where: 

Exit 'Conditions 

EXT AUTODISK, AUTOFLAG 
LW R7, DISKSPEC 
BL AUTODISK 

DISKSPEC contains a word describing the device to be 
verified. See the MPX-32 Reference Manual 
Volume I, Chapter 5, Resource Requirement 
Summary description. 

AUTODISK AND AUTOFLAG 
are defined labels in the autodisk subroutine. 

Return Sequence 

Registers 

Normal Return 
None 
CCI is zero 

Abnormal Return 
CCI is set 
R6 error types as follows: 

Error Type 
1 
2 
3 
4 
5 

6 
7 
8 

Description 
error in disk assignment 
I/O error reading track label zero 
media verification pointer not in track label zero 
I/O error reading media verification sector 
SYSGEN attributes do not match actual disk 
parameters and ANY was not specified as the disk type 
device not a disk 
I/O error initializing an lOP disk 
device inoperable 

9 
10 
11 
12 
13 

contents of first word of media verification sector invalid 
formatted sector size is not 768 bytes 
I/O error attempting to initialize disk processor 
disk track/sector labels corrupted, reinitialize disk 
SYSGEN configured handler does not match specified disk type 

R7 error message transfer word address 

MPX·32 Technical Volume I 7-13 



The SYSINIT Program Section 

7-14 

Autodisk subroutine perfonns the following: 

1. Verifies that the requested device is a nonfioppy disk. 

2. Assigns the disk. 

3. Reads track label zero. 

4. Compares the device dependent parameters computed from the track label with 
those generated by SYSGEN. If the parameters match, the autodisk subroutine 
returns to the caller and indicates a successful match. If the parameters do not 
match, the autodisk subroutine continues processing. 

5. Determines if the relevant operating system tables should be modified. There are 
two ways to detennine this: 

• The total sectors field of the UDT is zero. This indicates the disk type was 
SYSGENed as ANY. 

• Bit two of AUTOFLAG is set. 

If neither of these conditions exists, error type 5 is generated. 

6. Modifies the following table entries: 

UDT.SPT 
UDT.STA2 
UDT.SPAU 
UDT.NHDS 
UDT.SECS 
DCA.SCYL 

7. Updates the drive attribute infonnation (DATR). If a disk processor is used, 
there is no onboard RAM to hold the DATR. A 224-word buffer, containing the 
DA TR infonnation, is allocated following the interrupt fielding module. See 
HJaOS in Volume II for details. The autodisk subroutine updates the buffer and 
places the updated DATR in the MPX-32 drive initialization list. 

If an lOP disk is used, there is an onboard RAM which holds the DATR. The 
lOP allows an initialize controller command to reload the DA TRs without a 
preceding reset channel command. The updated DA TR is also placed in the 
MPX-32 drive initialization list. 

It is necessary to update the MPX-32 drive initialization list as REST ART uses 
the MPX-32 copy of the DATR to construct the IOCL to load a new MPX-32 
image. 

8. Deallocates the device and returns to the caller. 

System InitiaUzers and Builders 

o 

C) 

o 



( 

The SYSINIT Program Section 

7.4.4 Memory Disk 

Each memory disk has an associated UDT and SMT. The UDT is constructed by 
SYSGEN in the same manner as for any other device. The SMT is constructed by 
SYSGEN in the same manner as for a memory partition, with the exception of 
SMT.PAGE. For a memory disk, it contains the following values: 

value = -1 start of disk not specified at SYSGEN 
value = -ve start of disk specified at SYSGEN, value is the negative of the 

specified starting map block. 

If the DEAL parameter was specified in the SYSGEN DEVICE directive for a 
memory disk, bit UDT.MDAL in UDT.ST A2 is reset. As a result, SYSINIT will not 
attempt to allocate memory for the memory disk. The memory can be allocated later 
by the OPCOM ONLINE directive. The value of SMT.PAGE retains the value 
explained above until the memory disk is marked ONLINE by OPCOM. After 
memory disk is marked online, the memory disk starting page number is stored by 
OPCOM into the shared memory table (SMT). 

If the DEAL parameter was not specified (UDT.MDAL set), SYSINIT attempts to 
locate enough contiguous free memory for the memory disk. If the START parameter 
was specified in the SYSGEN DEVICE directive for the memory disk, bit 
UDT.MOST in UDT.STA2 is set. As a result, SYSINIT attempts to allocate the 
memory starting at the specified map block number. 

If a starting map block was not specified, UDT.MDST is reset and SYSINIT allocates 
the memory wherever possible, starting at the high end of the presently configured 
memory. In either case, SYSINIT does not locate a single-ported memory disk in 
Multiprocessor Shared Memory System (MSMS) memory, nor does it locate a dual
ported memory disk in non-MSMS memory. 

If memory disks or static partitions are defined in DRAM, (CONCEPf 32/2000 
processors only), SYSGEN verifies that they reside fully within the DRAM memory. 
If these definitions are incorrect the following messages are displayed on the console 
and SYSGEN aborts with no image being produced. 

***Memdiscname DOES NOT RESIDE COMPLETELY IN TYPE '0' MEMORY 

or 

***p~tname DOES NOT RESIDE COMPLETELY IN TYPE '0' MEMORY 

A dual ported memory disk always has its memory allocated by SYSINIT. If 
SYSINIT fails to allocate memory for a memory disk, the shared memory table 
(SMT) is cleared for the memory disk that was attempting to allocate memory. 

Provided that the memory for the disk was allocated successfully, SMT.PAGE is set 
to the starting page number of the memory disk. UDT.MDAL is set to indicate that 
the memory has been allocated. 

MPX-32 Technical Volume I 7-15 



Online RESTART 

7.5 Online RESTART 
RESTART is a privileged task which simulates an IPL from the lOP console. 
RESTART can test a newly SYSGENed version of MPX-32, or replace the current 
default system image with a new image. 

7.5.1 Activating 

RESTART runs as a privileged, interactive TSM task. A user activating RESTART 
must be privileged. See M.KEY, MPX-32 Reference Manual Volume Ill, Chapter 10. 

7.5.2 Required Input 

REST ART accepts a pathname as an optional parameter of an activation request. For 
example: 

RESTART@VOL1{SYSTEM)TEST.SYS 

In this case, the image TEST. SYS contained in the system directory of volume 
VOLl is booted and VOLl becomes the system volume. If a volume other than the 
current system volume is specified in the pathname, the selected volume must be 
fonnatted as a system volume. That is, it must contain bootstrap code at sector O. 

If a pathname is not specified at activation, the default image on the current system 
volume is rebooted. 

7.5.3 Processing 

7-16 

The functions perfonned by RESTART are as follows: 

1. The TSM line buffer is checked for a user-supplied pathname. If one is specified, 
it is moved to a resource requirement summary (RRS) buffer to allow the file to 
be assigned. If one is not specified, a flag is set to indicate the default image 
should be used. 

2. If a pathname is specified, the file is assigned. The unit definition table (VDT) 
address of the device it resides on is detennined, and the first five sectors of that 
device, boot code and volume descriptor are read by space definition. 

3. The image preamble is used to determine the size of the image and the system 
name. The name is compared with the user-supplied name. The size is placed in 
a table to be placed into the boot code, and an lOCO list is constructed that will 
be used to read the new image. 

4. The required drive attribute registers are constructed. 

System Inltlallzers and Builders 

o 

o 



Online RESTART 

5. At this point, the operator is prompted before proceeding with reboot. If the 
request was for the default system, a request for reboot is issued. If a pathname 
was specified, the user is also asked if this image should be made the default 
system image. If the user replies yes to the default system option, the volume 
descriptor on the target volume is updated with the new system image definition. 
This allows lOP console restarts to locate the correct image. In addition, the 
resource descriptor for the new image is marked as not deletable. This prevents 
inadvertent relocation of the default system image by SYSGEN, SA VB, 
RESTORE, COPY, etc. which causes an lOP console IPL to fail. The previous 
default image, if not the SOT image, has this flag reset so it may be deleted. 

6. The CPU scratchpad IPL device address location is updated to reflect the new 
IPL device. This location is used by the bootstrap code as it sets up scratchpad 
to perform all of its I/O from logical channel 08. 

7. A simulated system reset is performed. All interrupts are disabled and channels 
are reset 

8. The bootstrap code read from the target disk is updated by RESTART and moved 
into low memory. 

9. Control is passed to the bootstrap code, which reads the image and transfers 
control to the system initializer program, SYSINIT. 

MPX·32 Technical Volume I 7·17n·18 



o 

o 



8 Internal Processing Unit (IPU) 

8.1 Overview 

The IPU is a parallel processor connected directly to the SeIBUS. Synchronization 
between the CPU and the IPU is maintained by one CPU trap and sixteen IPU traps. 
The traps and default trap vector locations are shown in Table 8-1. 

Task execution in the IPU is transparent to the user. Scheduling for the IPU is 
accomplished by MPX-32 with no user intervention. However, IPU biasing or 
inhibiting can be used to maximize the performance of processor or I/O bound tasks. 

When an IPU is configured in a system, two modules must be included in the resident 
operating system to perform IPU biased scheduling and to provide trap handlers for 
IPU related traps. These modules are H.CPU and H.IPU. 

IPU accounting can be performed by a second interval timer (RTOM). IPU execution 
time and idle time are tabulated by the resident handler, H.IPUIT. 

When both a CPU and an IPU are configured, memory read and lock is automatically 
enabled. When one processor is accessing a memory location, the other processor is 
prohibited from accessing that location. Memory locations are unlocked when they 
are not being accessed. 

8.1.1 IPU - Memory Interface 

The IPU can address all locations of physical memory. Task loading and initialization 
are performed by the CPU before the task is queued for IPU execution. The task 
service area (TSA) includes pointers to all physical map blocks used by the task, 
allowing the IPU to remap to the task's address space. This mechanism allows the 
CPU and IPU to be coordinated in use of memory. 

8.1.2 IPU - CPU Interface 

Table 8-1 shows IPU related traps and default trap vector locations. The trap vectors 
may be stored at alternative locations if the IPU scratchpad is set up appropriately. 

MPX-32 Technical Volume I 8-1 



Overview 

IPUTrap 
Vector Location 

20 
24 
28 
2C 
30 
34 
38 
3C 
40 
44 
48 
4C 

50 
54 
58 
5C 
60 

Table 8-1 
IPU Trap Structure 

CPU Trap 
Vector Location 

80 
84 
88 
8C 
90 
94 
98 
9C 
AO 
A4 

AC 
BO 
B4 
B8 
BC 
CO 

Trap Condition 

power fail 
power oo/autostart 
memory parity 
nonpresent memory 
undefined instruction 
privilege violation 
supervisor call 
machine check 
system check 
map fault 
undefined IPU instruction 
CPU issued SIPU instruction 
IPU issued SIPU instruction 
address specification elIOr 
console attention 
privilege mode halt 
aritlnnetic exception 
cache fault 

8.2 Task Scheduling and Execution 

8.2.1 Task Biasing 

8-2 

There are three scheduling options related to IPU task execution: IPU biased, CPU 
only, and unbiased. IPU biased tasks are scheduled for IPU execution whenever 
possible. Some SVCs are executed directly by the IPU, but most SVCs and all 
privileged instructions cause a task to be returned to the CPU for execution. An IPU 
biased task is rescheduled for IPU execution at the instruction following the 
instruction which caused the trap. 

A CPU only task is never scheduled for IPU execution. 

An unbiased task can be scheduled in the CPU or the IPU depending on available 
resources. The CPU scheduler, S.EXEC20, is responsible for selecting unbiased tasks 
for IPU or CPU execution. 

Internal Processing Unit (IPU) 

o 

o 

o 



( " 
... ,/ 

( .. ,/ 

.. ./ 

Task Scheduling and Execution 

8.2.2 Standard CPU/IPU Scheduling 

There are two head cell addresses used by the operating system to control IPU task 
execution: C.CIPU and C.RIPU. The currently executing IPU task is linked to the 
head cell, C.CIPU. C.RIPU is a standard linked list head cell containing the dispatch 
queue (DQE) addresses of all IPU biased tasks awaiting IPU execution. 

Tasks are linked to the above state queues by the CPU, and control is passed to the 
IPU after the task has been linked to the C.CIPU head cell. 

8.2.3 Optional CPU/IPU Scheduling 

IPU -biased tasks are not automatically queued on the RIPU list as they are in the 
standard CPU/IPU scheduler. The RIPU list is used only when the task in the CPU is 
replacing the IPU task. 

8.2.4 Standard Scheduling of IPU-Biased Tasks 

Tasks are biased to the IPU by specifying OPTION IPUB at either catalog or run 
time, or by calling the dynamic IPU bias service, M.IPUBS. Biased tasks are queued 
on the IPU ready-to-run queue by priority with the highest priority task at the head. 
Tasks linked to C.RIPU are executed by the IPU ahead of higher priority unbiased 
tasks. Task replacement of IPU biased tasks occurs when a higher priority task is 
linked to C.RIPU or the currently executing IPU task executes an instruction causing 
control to be returned to the CPU. If a biased task is linked to C.RIPU while a higher 
priority unbiased task is currently executing in the IPU, the higher priority task 
continues to run in the IPU. 

8.2.5 Optional Scheduling of IPU-Biased Tasks 

The optional CPU/IPU scheduler is enabled by the SYSGEN DELTA directive. This 
directive replaces system modules H.EXEC and H.CPU with H.EXEC2 and H.CPU2. 
The optional scheduling approach does not queue IPU -biased tasks on the RIPU list as 
the standard scheduler does. 

Instead, all tasks are linked to their appropriate ready-to-run state chains. When the 
delta value is zero, scheduling is performed on both processors according to the tasks' 
original priorities. When the delta value is greater than zero and less than 55, the 
value is subtracted from the original priority of the IPU-biased task to create a new 
priority. The new priority is used during IPU scheduling and when the IPU-biased 
task needs the CPU for system service execution. When IPU -biased tasks run on the 
CPU, the new priority does not apply. 

MPX-32 Technical Volume I . 8-3 



Task Scheduling and Execution 

8.2.6 Scheduling Unbiased Tasks 

When an IPU biased. task is not linked to C.CIPU or C.RIPU, IPU task selection 
proceeds with unbiased tasks. The ready state queues are searched for the first eligible 
task, starting with the highest priority real-time task. The conditions for IPU 
eligibility are: 

• task is not CPU only 

• task is not inhibited for IPU execution because it has executed an instruction not 
available to the IPU 

• there are no run requests or messages outstanding against the task 

• there are no system action requests outstanding against the task 

If all the above conditions are met, the task is linked to C.CIPU and control is passed 
to the IPU. If there are no ready-to-run tasks meeting all of the above conditions, the 
IPU remains idle. 

8.2.7 Scheduling CPU Only Tasks 

Tasks with OPTION CPUO specified are never scheduled for IPU execution. 
Typically, these tasks are I/O bound. 

8.2.8 IPU Task Execution 

8-4 

A task ceases execution in the IPU when one of the following events occur: 

• the IPU encounters a system service request (SVC or CALM). Some SVCs are 
executed by the IPU and control is not returned to the CPU. 

• the IPU encounters an exceptional or error condition; for example, privilege 
violation, undefined instruction. 

• the CPU executes an SIPU instruction. 

Tasks running with batch priorities (55 through 64) are not subject to time distribution 
while being executed in the IPU. 

Internal Processing Unit (IPU) 

o 

o 

o 



(~ 

( ....•.•. ~."' 
./ 

IPU Executive Module Description 

8.3 IPU Executive Module Description 

The resident module H.IPU is responsible for initializing the IPU, dispatching tasks 
linked to the IPU current state queue, C.CIPU, handling all IPU traps, and returning 
control to the CPU on exceptional or error conditions. 

8.3.1 Entry Point 1 • IPU Executive 

This entry point is used when the CPU issues an SIPU instruction. The first time the 
trap occurs, a branch is made to the initialization subroutine, S.IPU2. The online 
restart in progress flag is checked and, if set, a simulated IPU reset is performed. If 
the IPU is currently executing a task, the CPU is requesting a context switch in the 
IPU. The context of the task is preserved and the IPU issues an SIPU instruction to 
allow the CPU to link the new task to C.CIPU. 

If there is not a current task, the IPU dispatches control to the task linked to C.CIPU. 

If there is a current task but the IPU is executing within H.IPU, the IPU is in the 
process of handling a trap and is allowed to continue. 

8.3.2 Entry Point 2 • Undefined IPU Instruction 

This entry point sets the IPU inhibit bit in the current task's DQE, which corrects the 
PSD to point to the last instruction executed by the task, and returns control to the 
CPU to re-execute the instruction. 

8.3.3 Entry Point 3 • Memory Parity Error 

This entry point sets the IPU inhibit bit in the current task's DQE, which corrects the 
PSD to point to the last instruction executed by the task, and returns control to the 
CPU to re-execute the instruction. 

8.3.4 Entry Point 4 • Nonpresent Memory 

This entry point causes the current task to be aborted. The error code is stored in the 
DQE and the abort request bit is set before returning control of the task to the CPU. 

8.3.5 Entry Point 5 • Undefined Instruction 

This entry point causes the current task to be aborted. The error code is stored in the 
DQE and the abort request bit is set before returning control of the task to the CPU. 

8.3.6 Entry Point 6 • Privilege Violation 

This entry point causes the current task to be aborted. The error code is stored in the 
DQE and the abort request bit is set before returning control of the task to the CPU. 

MPX-32 Technical Volume I 8-5 



IPU Executive Module Description 

8.3.7 Entry Point 7 - Map Fault 

This entry point causes the current task to be aborted. The error code is stored in the 
DQE and the abort request bit is set before returning control of the task to the CPU. 

8.3.8 Entry Point 8 - SVC Trap Handler 

This entry point contains a secondary vector table for the IPU SVCs. SVC types 0, 3, 
and 5 through 15 are returned to the CPU for processing. The PSD is corrected to 
point to the SVC instruction, the current context is saved, and control is returned to 
the CPU. 

Some SVC types 1 and 2 are executable directly by the IPU. These SVCs have bit 1 
in the SVC table set. The SVC number is retrieved from the trap status word and the 
SVC table entry is checked. If the SVC is not executable by the IPU, control is 
returned to the CPU as for an SVC type O. If the service is executable by the IPU, a 
PSD is constructed and control is transferred to the correct SVC processor. 

An SVC type 4 is the mechanism for returning from an SVC. This entry point is 
reached by the macro M.IPURTN, which determines if any registers are to be returned 
and issues an SVC type 4. The registers and PSD are popped from the stack and 
control is returned to the task. 

8.3.9 Entry Point 9 - Arithmetic Exception Trap Handler 

When an arithmetic exception occurs, the arithmetic exception bit in the current task's 
TSA is set and may be tested by the M.TSTE service. The return registers are set to 
the following values, depending on the cause of the exception: 

underflow zero 
positive overflow maximum positive value 
negative overflow maximum negative value 

8.3.10 Entry Point 10 - Privilege Mode Halt 

8·6 

The function this entry point performs depends on where an error occurs. If an error 
occurs in a task, an abort request is set up for the task and control is returned to the 
CPU. If an error occurs in the operating system, the registers are set up as for the 
CPU M.K.lLL macro and stored in the buffer m.. T.REG within H.EXEC. The register 
contents are as follows: 

Register 

o 
1 
2 
3 
4 
5 
6 
7 

Meaning 

old PSD word 1 
old PSD word 2 
address of the instruction causing the error 
instruction causing the error 
trap status word 
ASCII code of reason for trap, for example, HT02 
address of register save block 
ASCII 'TRAP' 

Internal Processing Unit (IPU) 



(' 

(-

8.3.11 

IPU Executive Module Description 

A flag is set requesting the IPU to be marked offline so no further tasks are scheduled 
for the IPU. 

Entry Point 11 - Address Specification 

The function this entry point performs depends on where an error occurs. If an error 
occurs in a task, an abort request is set up for the task and control is returned to the 
CPU. If an error occurs in the operating system, the registers are set up as for the 
CPU M.Kll.L macro and stored in the buffer HLT.REG within H.EXEC. The register 
contents are as follows: 

Register 

o 
1 
2 
3 
4 
5 
6 
7 

Meaning 
old PSD word 1 
old PSD word 2 
address of the instruction causing the error 
instruction causing the error 
trap status word 
ASCII code of reason for trap, for example, ADOl 
address of register save block 
ASCII 'TRAP' 

A flag is set to request the IPU be marked offline so no further tasks are scheduled for 
the IPU. 

8.3.12 Entry Point 12 - Cache Fault 

The function this entry point performs depends on where an error occurs. If an error 
occurs in a task, an abort request is set up for the task and control is returned to the 
CPU. If an error occurs in the operating system, the registers are set up as for the 
CPU M.Kll.L macro and stored in the buffer HLT.REG within H.EXEC. The register 
contents are as follows: 

Register 

o 
1 
2 
3 
4 
5 
6 
7 

Meaning 

old PSD word 1 
old PSD word 2 
address of the instruction causing the error 
instruction causing the error 
trap status word 
ASCII code of reason for trap (for example, CPOl) 
address of register save block 
ASCII 'TRAP' 

A flag is set to request the IPU be marked offline so no further tasks are scheduled for 
the IPU. 

MPX-32 Technical Volume I 8-7 



IPU Executive Module Description 

8.3.13 Entry Point 13 • Machine Check 

The function this entry point performs depends on where an error occurs. H an error 
occurs in a task, an abort request is set up for the task and control is returned to the 
CPU. If an error occurs in the operating system, the registers are set up as for the 
CPU M.Kll.L macro and stored in the buffer Ill..T.REG within H.EXEC. The register 
contents are as follows: 

Register 

o 
1 
2 
3 
4 
5 
6 
7 

Meaning 

old PSD word I 
old PSD word 2 
address of the instruction causing the error 
instruction causing the error 
trap status word 
ASCII code of reason for trap, for example, MCOI 
address of register save block 
ASCII 'TRAP' 

A flag is set to request the IPU be marked offiine so no further tasks are scheduled for 
the IPU. 

A second trap within a task causes the IPU to halt as above since this is assumed to be 
a hardware failure. 

8.3.14 Entry POint 14 • System Check 

8·8 

The function this entry point performs depends on where an error occurs. If an error 
occurs in a task, an abort request is set up for the task and control is returned to the 
CPU. If an error occurs in the operating system, the registers are set up as for the 
CPU M.KILL macro and stored in the buffer Ill..T.REG within H.EXEC. The register 
contents are as follows: 

Register 

o 
I 
2 
3 
4 
5 
6 
7 

Meaning 

old PSD word I 
old PSD word 2 
address of the instruction causing the error 
instruction causing the error 
trap status word 
ASCII code of reason for trap, for example, SCOI 
address of register save block 
ASCII 'TRAP' 

A flag is set to request the IPU be marked offiine so no further tasks are scheduled for 
the IPU. 

A second trap within a task causes the IPU to halt as above since this is assumed to be 
a hardware failure. 

Internal Processing Unit (IPU) 

o 

() 

o 



• 

(, 

IPU Executive Module Description 

8.3.15 Entry Point 15 - Power Fail Trap 

This trap saves the general purpose and base registers, and saves the IPU scratchpad 
key in memory location X'6D4'. This provides the required parameters for a power
up auto-restart when power is restored to the system. The privileged mode halt trap is 
disabled and the IPU halts. 

8.3.16 Subroutine S.lPU1 - Perform Stack Push 

This subroutine pushes the registers and program status doubleword (PSD) of the 
current task into the next stack frame as defined by T.REGP. This is a clean-up 
activity in preparation for the return of task control to the CPU. 

Calling Sequence 

LA R2,addr 
LD R6,psd 
BL S.IPUI 

addr is the address of the register save block 

psd is the current task PSD 

Exit Sequence 

TRSW RO 

8.3.17 Subroutine S.lPU2 - IPU Initialization 

This subroutine initializes the IPU by storing the master process list (MPL) address in 
the IPU scratchpad, loading the shared map registers for the operating system, setting 
up the address of the IPU history buffer, and' enabling the privilege mode halt trap. 

Calling Sequence 

BL S.IPU2 

Exit Sequence 

TRSW RO 

MPX-32 Technical Volume I 8-9 



IPU Executive Module Description 

8.3.18 Subroutine SJPU3 - Terminate IPU Execution 

This subroutine generates an SIPU instruction which causes a trap in the CPU to 
indicate the IPU has finished processing. 

calling Sequence 

BL S.IPU3 

Exit Sequence 

None 

8.3.19 Subroutine SJPU4 - Generate IPU History Buffer 

8-10 

This subroutine maintains a circular buffer containing information on the last twenty 
traps in the IPU. The buffer contains the task name, PSD at the time of the trap, and a 
code of the reason for the trap. Each entry is four words long in the following format: 

Word Meaning 

o PSD word 1 
1 PSD word 2 with bits 10 - 14 containing function code as follows: 

2-3 taskname 

Code Meaning 

2 nonpresent memory 
3 undefined instruction 
4 privilege violation 
5 SVC type 0 or 3 
6 SVC type 1 
7 SVC type 2 
8 machine check 
9 system check 
10 map fault 
11 unidentified IPU instruction or memory parity error 
12 start IPU 
13 address specification 
14 privilege mode halt 
15 arithmetic exception 
16 cache fault 
17 SVC type 4 

Internal Processing Unit (IPU) 



IPU Auto Start Trap Processor - H.lPUAS 

• 
8.4 IPU Auto Start Trap Processor - H.lPUAS 

The interrupt or trap signal occurs at priority level X'01 '. This trap occurs during the 
power up sequence, provided the following operating conditions are met: 

1. The CPU, IPU, and system software traps are enabled. 

2. The CPU scratchpad image is contained in dedicated memory locations X'300' 
through X'6FC'. 

3. The memory scratchpad image contains the CPU and IPU scratchpad keys. 

4. A successful power down trap has been executed. 

5. The integrity of the memory has been preserved. The system memory 
configuration must be core and/or MOS memory with a battery backup. 

If any of the conditions are not met, an automatic trap halt is exectued. 

If the conditions are met, H.IPUAS disables the privileged halt trap and halts the IPU. 

The H.IPUAS trap handler can be replaced with a user-supplied routine as follows: 

1. Specify the new trap in the SYSGEN SYSTRAP directive. 

2. At SYSGEN, the address of the user-supplied routine's trap context block must 
be saved in memory location X'24'. 

3. The five operating conditions must be met. 

8.5 IPU Task Scheduler - H.CPU/H.CPU2 

Two IPU task schedulers are provided. H.EXEC and H.CPU are the standard IPU 
scheduling modules; H.EXEC2 and H.CPU2 are the optional IPU scheduling modules. 
The differences that apply to H.CPU2 are noted in the following sections. 

8.5.1 Entry Point 1 - Field IPU Halt 

This entry point fields the IPU 'HALT' trap. It schedules IPU tasks based on the 
following criteria: 

1. If the head cell count of the IPU current state is zero, the IPU is idle. Entry point 
two schedules the current task. 

2. If the head cell count is greater than zero and the inhibit IPU flag is set, entry 
point two unlinks the current task, relinks it at its base priority state, then 
schedules the new IPU task. 

3. If the head cell count is greater than zero and the inhibit IPU flag is reset, entry 
point two unlinks the task from the current state, relinks it to the IPU request 
queue, then schedules the new IPU task. 

Note: For the optional scheduler, H.CPU2 never links the task to the IPU request 
queue. The task is always linked to the ready to run queue. If it is a real
time task, it is linked at its base priority minus its delta value. All other tasks 
are linked at their base priority. 

MPX-32 Technical Volume I 8-11 



IPU Task Scheduler· H.CPU/H.CPU2 

8.5.2 Entry Point 2 • Schedule IPU Biased Tasks 

If tasks are queued to the IPU request queue, this entry point unlinks the highest 
priority task, relinks it to the IPU current state, and calls the IPU start subroutine. If 
there are no tasks on the IPU request queue, this entry point goes to entry point 3 for 
unbiased task selection. 

8.5.3 Entry Point 3 • Schedule Unbiased Tasks 

This entry point begins at the real-time state queue to select an IPU candidate. It tests 
each encountered task for IPU eligibility as follows: 

1. IPU inhibit flag = reset 

2. CPU only flag = reset 

3. no system actions (DQE.SAIR = 0) 

4. no run requests (DQE.RTI = 0) 

5. execution address is not in the operating system 

This entry point continues testing each lower priority task until an eligible candidate is 
found. It unlinks that task from its ready state and relinks it to the IPU current state. 
This entry point then calls the start IPU subroutine. If no eligible task is found, the 
IPU remains idle. . 

8.5.4 Subroutine S.CPU1 - Link Task to IPU Request State 

This subroutine links a task to the IPU request queue. If the task is higher priority 
than the current IPU task, IPU task replacement takes place. 

8.5.5 Subroutine S.CPU2 • IPU Eligibility Test 

8-12 

This subroutine contains the tests for task eligibility to run in the IPU. The items 
checked are: 

• is the task executing in the monitor (DQE.OSD) 

• is the task CPU only (DQE.IPUR) 

• is the task IPU inhibited (DQE.IPUH) 

• is a system action request pending against the task (DQE.SAIR) 

Internal Processing Unit (IPU) 

C·· ... '~ . ) 



c 

IPU Accounting Module Descriptions 

• 8.6 IPU Accounting Module Descriptions 

8.6.1 Entry POint 1 - Field Interval Timer Interrupt 

This entry point fields the IPU accounting interval timer interrupt If there is a current 
IPU task, it updates a local IPU execution time accumulator. If the IPU is idle, the 
IPU idle time accumulator (C.IDLAI) is updated. The timer is then reset for one 
second and the handler is exited. 

8.6.2 Subroutine S.IPUIT1 - Perform Accounting After IPU Trap 

This subroutine is called by H.CPU after an IPU HALT trap is fielded. It updates the 
TSA of the current IPU task with the accumulated IPU execution time and resets the 
interval timer to accumulate idle time. 

8.6.3 Subroutine S.IPUIT2 - Perform Accounting Before Starting IPU 

This subroutine is called by H.CPU just prior to calling S.EXEC80 to start the IPU. 
It updates the IPU idle time accumulator and resets the timer to accumulate execution 
time. 

8.7 IPU SYSGEN Directives 
To generate a system with an IPU configured, the following SYSGEN directives must 
be used: 

//HARDWARE 
/PARAMETERS 
MACHlNE=type 
IPU 

/TRAPS 

If an IPU accounting interval timer is present, the following SYSGEN directives 
should be used: 

/INTERRUPTS 
PRIORITY=xx, RTOM= (channel,subaddress) , PROGRAM=H. IPUIT, INTV 

Note: It is recommended that xx be SE. However, if a scientific accelerator is also 
configured, priority 3F should be used for the IPU accounting interval timer. 

MPX-32 Technical Volume I 8-13 



SVCs Executable by an IPU 

8.8 SVCs Executable by an IPU 

8-14 

Certain SVCs are executable directly by the IPU. When modifying these SVCs or 
when writing new services which are executed by the IPU. the fo11owing guidelines 
should be followed: 

• The service must not be called by SYSGEN or lSW APR. 
• The M.GTSAD macro must be called to load the TSA address 
• T.PRNO must be used instead of C.CURR. 
• M.IPURTN must be used instead of M.RTRN. 
• The macro M.SVCP must be used in the SYSGEN initialization entry point to set 

bit 1 in the SVC table. 

Internal Processing Unit ~IPU) 

o 

o 

o 



( 

(~ 

9 Converting Modules for. Extended MPX-32 

9.1 General Information 

The modules that can operate in extended MPX-32 on delivery are: 

• Resource Allocator (H.ALOC) 

• Executive Subroutine Module (H.EXSUB) 

• File System Executive (H.FISE) 

• Memory Management Module (H.MEMM) 

• System Services (H.MONS) 

• Resource Management Module (H.REMM) 

• Resident Execution Services Module (H.REXS) 

• Task Management Module (H.T AMM) 

• Volume Management Module (H.VOMM) 

Any of these modules that were modified by the user can be converted to operate in 
extended MPX-32. Any user-created modules that meet the programming 
considerations can also be converted for extended MPX-32. 

Good candidates for conversion to extended MPX-32 are: 

• user SVC's 
.. • user modules 

The requirements for converting a module for extended MPX-32 are in the 
Programming Considerations section. The candidates that cannot meet the 
programming considerations and cannot be converted to execute extended MPX-32 
are: 

• tasks 
• interrupt handlers (Le., H.F8XIO) 

• trap handlers (Le., H.IPOO, H.IP03) 

• code that is callable from an interrupt level (Le., real-time clock, H.IPCL, H.IPIT, 
H.IPUIT, H.MEMM2, H.XIOS) 

MPX-32 Technical Volume I 9-1 



Programming Considerations 

9.2 Programming Considerations 

9-2 

Existing user modules, such as I/O handlers and service routines, can execute without 
code changes if positioned in the nonextended MPX-32. If user modules are 
positioned in the extended MPX-32, the following guidelines must be observed: 

• Insert SSECf directives around source lines that contain dynamic address fields in 
the source module. This causes the assembler to generate the required sectioned 
object code. 

• Use macro calls (MBR_xxx) and Macro Assembler directives designed for 
converting modules to extended MPX-32. For detailed description of the macro 
calls, see the Macros for Extended MPX-32 section. For detailed information on 
the Macro Assembler directives, see the Macro Assembler and Extended MPX-32 
section. 

• Reassemble the module with logical file code PRE assigned to MPX_EXT during 
assembly of code. Then, the modules can be compressed into OH.32_E, the object 
file assigned to OBR, for input to SYSGEN. 

Extended MPX-32 modules cannot: 

• Include code that contain: 

• subroutines that are callable from an interrupt level 

• routines that depend on logical equals physical addressing 

• nontransparent instruction addressing, such as passing return addresses to external 
routines or providing end-action addresses in file control blocks 

• Use variable points of return when designing external references. This can cause 
rapid expansion of the size of the adaptive code. 

• Use indirect addressing code that will run in the extended code region. 

• Use nonbase mode instructions, such as CEA, LEA, or SEA. 

• Run unmapped. 

• Use data parameter lists in which a branch and link is followed by data or address 
constant words in-line for external reference. 

• Use code or data that is accessed by the SYSGEN initialization entry point of 
another nonextended MPX-32 module. 

A module containing any of the above can be split into two modules - one that is 
moved to extended MPX-32 and one that remains in nonextended MPX-32. 

Converting Modules for Extended MPX-32 

o 



(~ 

Macros for Extended MPX-32 

• 
9.3 Macros for Extended MPX-32 

The macros for extended MPX-32 allow existing user modules and service routines to 
run in extended MPX-32. These macros generate extended or nonextended code 
depending on the state of the BOPT_MPX flag. After the state of BOPT_MPX is 
tested, code embedded in the macro sets or resets assembler option 16 with Macro 
Assembler OPTR and OPTS directives to generate the appropriate code. 

BOPT_MPX is set true by assigning logical file code PRE to MPX_EXT. Then, code 
embedded in the macro sets option 16 with the assembler OPTS directive. This 
causes the macro to generate extended code. 

BOPT_MPX is set false by assigning logical file code PRE to MPX_NON. Then, 
code embedded in the macro resets option 16 with the assembler OPTR directive. 
This causes the macro to generate nonextended code. 

By default, BOPT_MPX is false generating nonextended code. 

The following macros convert existing modules for extended MPX-32: 

Macro 

MBR_BL 

MBR_BU 

MBR_Bxx 

MBR_DBG 

MBR_DEF 

MBR_DScr 

MBR_ENT 

MBR_EXT 

MBR_INIT 

MBR_OFFS 

MBR_REL 

MBR_SSCT 

MBR_TRSW 

MPX-32 Technical Volume I 

.. 

Description 

branch and link 

branch unconditional 

conditional branch 

calls the system debugger 

identifies linkage symbols that can be referenced 
by another program or subroutine 

directs data into the DSECT 

generates the adaptive sequence (ADP _MPX), if 
required, for nonextended modules to reference routines 
in extended MPX-32 

identifies linkage symbols that are entry points 
or subroutines in another program, but are referenced by 
this program 

tests the state of the BOPT_MPX macro flag and sets 
Macro Assembler option 16 appropriately 

specifies offset mode of operation to SYSGEN 

specifies relative mode of operation to SYSGEN 

returns to a local code section after 
an MBR_DScr has been specified. 

transfer register to program status word 

9-3 



Macros for Extended MPX-32 

9.3.1 MBR_BL - Branch and Link Macro 

Syntax 

The MBR_BL macro tests the state of the BOPT_MPX flag. If BOPT_MPX is true, 
the assembler generates the adaptive sequence required to branch and link to a module 
in the opposite mode of execution. See Figure 2-1 and 2-2. If BOPT_MPX is false, 
the assembler BL instruction is generated. 

MBR_BL <label> 

9-4 Converting Modules for Extended MPX-32 

() 



( " 

/ 

c 

Macros for Extended MPX-32 

ThIs adapIIve sequence is generated when a nonextendecl MPX-32 module branches and Rnks to a subroutine in 
., extended MPX-32 mcxlJle. Boldface type represents base mode instructions. 

EXr 
ORG BL 

TARGET 
TARGET 

'Subroutine Return Site 

(or) 

MBR_EXr TARGET 
ORG MBR_Bl TARGET 

'SubroutIne Return Site 

MBR OEF TARGET 
MBR:ENT TARGET 

'Subroutine Code 

MBR_TRSW RO 

When BOPT_MPX is false, both examples generalethe 
same adaptive Hqlenc&. The second subrou1lne call example 
shows a code sequence in a source modulelhal has been 
converted to execute in extended MPX-32 dependng on the 
setting of BOPT _MPX. 

~------------------~ 

} 

Example of a code sequence in a subroutine module thai has been 
converted to execute in extended MPX-32 depending on the setting 
of BOPT _MPX. When assembled with BOPT _MPX set lNe, this 
example generates an extended MPX-32 object mcxlJle. 

The foIowing information shows the placement of instructions and the order of execution: 

Nonextendecl Section AOP _MPX Section .. EXT_MPX Section 

BL 8dp-'8I:\:I 
~ 

adp 

lPSO 
GEN 
GEN 

BU 

p&qJ 
1I1,4IO.211.25IH(adpb) 
111.1410.111.212.1410 

TARGET ---.. ... TARGET EQU 
'SubroutIne Code 

adp1 
psd 

TBR 
BNS 
TRSW 
LPSD 

~ __________ ------_a~2 
'SUbroutine Retum Site .. 

GEN 
GEN 
TRSW 

, Indlcales a comment fine. 
+ Although this inslNction is present in this example. it Is not executed. 

Figure 9-1 

$ 

RO,S 

RO + adp1 ~ 
pad 

1/1.4IO.2I2.1IO,24IH(adp2) 
111.1410,317.1410 
RO 

T1027 

Adaptive Sequence Generated By a Branch and Unk From a 
Nonextended to an Extended MPX-32 Module for Extended MPX-32 

MPX-32 Technical Volume I 9-5 

• 



Macros for Extended MPX-32 

9-6 

This adaptive sequence is generated when an extended MPX·32 mod.lle branches and links to a subroutine 
in a nonextended MPX·32 module. BoIctIace type represents base mode instructions. 

MBA EXT TARGET 
MBR.:BL TARGET 

·Subroutine Return Site 

~----------------~ 

} 
Subroutine cal example assembled with BOPT_MPX set true to 
generate an extended MPX-32 object module. 

DEF 
TARGET EaU 

·Subroutine Code 

TRSW 

(or) 

MBR DEF 
MBR::::ENT 

·Subroutine Code 

MBR_TRSW 

TARGET 
$ 

RO 

TARGET 
TARGET 

RO 

When BOPT _MPX is false, both examples generate the same 
adaptive sequence. The example shows a source module that 
has been converted to execute in extended MPX·32 depencing 
on the setting of BOPT _MPx. 

The following information shows the placement of instructions and the order of execution: 

LPSD 

~1 

psdb 

GEN 
GEN 
Bl 

Bl 
LPSD 
GEN 
GEN 

1/1,410,2I2.25IH(adp1 } 
1/1,1410,317,1410 

Nonextended Section 

TARGET_ 
----....... TARGET EOU $ 

·Subroutine Code 
TRSW RO 

$+ 1W ..... ~------
psdb 
111,4/0,1/0, 25/H (adp2) 
1/1,14/0,3/7,14/0 

adp2 SLC RO.5 

11m Eau $ 
..--------

TRCC RO 
au rtm 

• Incicates a comment line. 

Figure 9-2 
Adaptive Sequence Generated By a Branch and Link 

From Extended to a Nonextended MPX-32 Module 

Converting Modules for Extended MPX-32 

o 

() 



Macros for Extended MPX-32 

9.3.2 MBR_BU - Branch Unconditional Macro 

Syntax 

The MBR_BU macro branches unconditionally to externally defined labels that are in 
the opposite mode of execution (i.e., the program is in extended MPX-32 and the 
branch is to a nonextended section of code). 

The MBR_BU macro also tests the state of the BOPT_MPX flag. If BOPT_MPX is 
true, MBR_BU generates: 

• control object records for SYSGEN with the code for an adaptive sequence if the 
branch target is in nonextended MPX-32. See Figures 2-3 and 2-4. 

• a BU instruction if the branch target is in EXT_MPX. 

If BOPT_MPX is false, a BU instruction is generated. 

To convert existing modules for extended MPX-32, replace appropriate unconditional 
branch instructions with the MBR_BU macro. 

If the label branched to is internal to the module, use the assembler BU instruction. 
The MBR_BU macro is not required because adaptive sequences are not needed. 

BMBR_BU <label> 

This adaptive sequence is generated by an uncondtional branch from a nonextendect MPX-31 module 
to an extended MPX-32 mockJle. 

EXT TARGET 
BU TARGET 

(or) 

"Code branched to 

~~~:~~ f~~~~ 
~--------------~

When SOPT _MPX is false. both examples generate the same
adaptive sequence. The second example shows a source module
that has been converted to execute in extended MPX-32 depencing on
the setting of SOPT _MPX.

}

Example of a code sequence in a subroutine moc:kllethat has been
converted to execute in extended MPX-32 depencing on the setting
of SOPT_MPX. When assembled with SOP'CMPX we. this example
generates an extended MPX-32 object module.

The folowing information shows the placement of instructions and the Older of execution:

Nonextended MPX-32

" Incicates a comment line.

GEN
GEN

111.410.2I1.25IH(T ARGEl}
111.1410.317.1410 --.. TARGET EOU $

"Code branched to

T1028

Figure 9-3
Adaptive Sequence Generated By an Unconditional Branch

From Nonextended to an Extended MPX-32 Module

MPX·32 Technical Volume I 9·7

Macros for Extended MPX-32

This adaptive sequence is generated by an uncondtional branch from an extended MPX·32 module
to a nonextended MPX-'32 modJIe.

MBR EXT
MBR:BU

TARGET
TARGET

on the setting of BOPT _MPX. When assembled with BOPT _MPX
set true. this example generates an extended MPX-'32
I Example of code sequence in a subroutine module that has

I been converted to execute in extended MPX·32 dependng

1-__________ --' object module.

OEF
TARGET EOU
·Code branched to

(or)

MBR DEF
MBR:ENT

·Code branched to

TARGET
$

TARGET
TARGET

When BOPT _MPX is false. both examples generate the same
adaptive sequence. The second example shows a source
module that has been converted to execute in extended MPX-'32.

The following information shows the placement of instructions and the order of execution:

9-8

EXT _MPX Section

LPSD psm ---. psm

• Indicates a comment line

GEN
GEN

Nonextended MPX·32

1/1.410.212.25IH(T ARGET)
111.1410.:?fl.1410 -. TARGET Eau $

·Code branched to

T1029

Figure 9-4
Adaptive Sequence Generated By an Unconditional Branch

From Extended to a Nonextended MPX-32 Module

Converting Modules for Extended MPX·32

o

(~

(

Macros for Extended MPX-32

9.3.3 MBR_Bxx - Conditional Branch Macro

Syntax

The MBR_Bxx macros conditionally branch to externally defined labels that are in the
opposite mode of execution (Le., the program is in extended MPX-32 and the branch
is to a nonextended section of code).

MBR_Bxx tests the state of the BOPT_MPX flag. If BOPT_MPX is true, the macro
generates:

• control object records for SYSGEN with code for an adaptive sequence if the
branch target is in nonextended MPX-32. See· Figures 9-5 and 9-6.

• a Bxx instruction if the branch target is in EXT_MPX.

If BOPT_MPX is false, the assembler directive Bxx is generated. To convert existing
modules for extended MPX-32, replace appropriate conditional branch instructions
with the corresponding MBR_Bxx macro. See Table 9-1.

If the label that is branched to is internal to the module, use the assembler directive
Bxx. The MBR_Bxx macro is not required because adaptive sequences are not
needed.

MBR_Bxx <label>

Table 9-1
Conditional Branch Macros for Extended MPX-32

Assembler
Extended

Mnemonic Machine
Macro Code Instruction Description

MBR_BEQ replaces BEQor BeT 4,m,x Branch if equal to

MBR_BGE replaces BGEor BeT 5,m,x Branch if greater than
or equal to

MBR_BGT replaces BGTor BeT 2,m,x Branch if greater than

MBR_BL T replaces BLTor BeT 3,m,x Branch if less than

MBR_BNE replaces BNEor BCF 4,m,x Branch if not equal to

MBR_BNS replaces BNS or BCF 1,m,x Branch if not set

MBR_BS replaces BS or BeT 1,m,x Branch if set

For the machine instructions, m indicates the memory address and x indicates the index register.

..

MPX-32 Technical Volume I 9-9

Macros for Extended MPX-32

ThIs adapUve s8CJ*lCe Is generated by a c:xmcIitionaI branch from a nonextended MPX-32 module to
an extended MPX-32 moclIIe.

EXT
Bloc

TARGET
TARGET

(or)
When BOPT MPX is false, both examples generate the same adaptive
sequences. 'The second example shows a source module that has been
converted to execute in extended MPX-32.

MBR_DEF TARGET
MBR_ENT TARGET

·Code branched to

~----------------~

}

Example of a code sequence in a subroutine module that has been
converted to execute In extended MPX-32 der:Ienc:ina on the
setting of BOPT MPX. When assembled wi1h BOPi MPX true, this
example generates an extended MPX-32 object mocLIe.

The following information shows the placement of instructions In order of ex8QItlon:

Nonextended MPX-32

Blocadapt-""'adaptLPSO pectJ
pectJ GEN

GEN
1I1,4IO.2I1.25IH(T ARGET)
1I1,141O,3fl.1410 -""'TARGET EQU $

·Code branched to
• Incicates a comment line.

Figure 9-5
Adaptive Sequence Generated By a Conditional Branch

From a Nonextended to an Extended MPX-32 Module

This adapUve s8CJ*lC8 is generated by a oondlional branch from an extended MPX-32 module to a
nonextended MPX-32 module.

T1030

Example of code sequence in a subIoutine module that has been
converted to execute in extended MPX-32 depending on the
setting of BOPT _MPX. When assembled wilfl BOPT _MPX true.
this example generates an extended MPX-32 object module.

TARGET ~ ~ARGET I
·Code branched to . When BOPT MPX is false. both examples generate the same

adaptive s~ence. The second example is for a source module
that has been converted to execute in extended MPX-32
depending on the setting of BOPT_MPX.

(or)

=:~~
·Code branched to

TARGET
TARGET

The following Infonnatlon shows the placement of instJUctlons in order of execution:

EXT MPX Section

Bloc adapt -"adapt

pectJ
LPSO
GEN
GEN

Nonextended MPX-32

pectJ
1/'.4IO.2I2,25IH(TARGET)
1/1,1410,3/7.1410 ---"'TARGET eau $

·Code branched to
• Inclcates a comment line T1031

Figure 9-6

o

o

Adaptive Sequence Generated By a Conditional Branch O. •.
From an Extended to a Nonextended MPX-32 Module

9-10 Converting Modules for Extended MPX-32

(

(

(~

Macros for Extended MPX-32

9.3.4 MBR_DBG - Calls to System Debugger Macro

The MBR_DBG macro calls the system debugger from the target extended module.
This macro references the system debugger extended code entry within the H.DBUGI
module at label BRDBUG.

MBR_DBG tests the state of BOPT_MPX flag. If BOPT_MPX is true, MBR_DBG
generates he following assemble statements:

SEXT BR.DBUG
BL BR.DBUG

H.DBUGI contains code to change from the extended mode to the nonextended mode
in order for the system debugger to properly execute its nonextended code.

If BOPT_MPX is false, MBR_DBG generates an assemble "BL *C.DEBUG"
statement.

9.3.5 MBR_DEF - Identify Linkage Symbols Macro

Syntax

The MBR_DEF macro identifies linkage symbols that are within a program and can
be referenced by another program or subroutine. This macro tests the state of the
BOPT_MPX flag. If BOPT_MPX is false, a Macro Assembler DEF is generated. If
BOPT_MPX is true, a Macro Assembler SDEF is generated. The SDEF directive is
used by the assembler to provide linkages for EXT_MPX.

MBR_DEF label

9.3.6 MBR_DSCT - DSECT Data Separation Macro

The MBR_DSCT macro specifies that the code and data following this macro is to be
placed in the DSECT section. Data and variable constants can be separated for
inclusion in the DSECT section.

MBR_DSCT tests the state of the BOPT_MPX flag. If BOPT_MPX is true,
MBR_DSCT generates an assemLler SSECT DSECT directive. If BOPT_MPX is
false, no assembler code or directive is generated and the next assembler line is
processed.

MPX·32 Technical Volume I 9-11

Macros for Extended MPX-32

9.3.7 MBR_ENT - Extended Code Routine Entry Macro

Syntax

The MBR_ENT macro must define labels in an extended MPX-32 program that may
be branched to from nonextended MPX-32.

This macro is not required for labels that are not external to the program because no
adaptivesequencesarerequrred

MBR_ENT tests the state of BOPT_MPX flag. IF BOPT_MPX is true, the
MBR_ENT macro generates the adaptive sequence required to reference a label that is
in the opposite mode of execution (e.g. a program is in nonextended MPX-32 and is
branching to an extended section of code).

MBR_ENT <symbob Replaces <symbob EQU $

9.3.8 MBR_EXT - Identify External Linkage Symbols Macro

Syntax

The MBR_EXT macro identifies external linkage symbols (entry points or data) that
are referenced by the program.

MBR_EXT tests the state of the BOPT_MPX flag. If BOPT_MPX is false, an
assembler EXT directive is generated. If BOPT_MPX is true, an assembler SEXT
directive is generated. The SEXT directive is used by the assembler to provide
linkage for EXT_MPX.

To convert existing modules for extended MPX-32, replace assembler EXT directives
with the MBR_EXT macro.

MBR_EXT label

9.3.9 MBR_INIT - Module Initialization Macro

The MBR_INIT macro tests the state of the BOPT_MPX flag. If BOPT_MPX is true,
MBR_INIT sets assembler option 16. When assembler option 16 is set, the assembler
generates extended code that can be placed in extended MPX-32 via SYSGEN.

If BOPT_MPX is false, the assembler generates nonbase code that cannot be placed in
extended MPX-32.

This macro is requrred before any assembler directive that generates code or data.

Syntax

MBR_INIT

9-12 Converting Modules for Extended MPX-32

o

C)

o

Macros for Extended MPX-32

9.3.10 MBR_OFFS - Offset Mode Macro

The MBR_OFFS macro defines the offset mode of operation for SYSGEN. By
default, the offset mode is in effect (i.e., relocatable object records placed in the
EXT_MPX section by SYSGEN are resolved using base registers) until relative mode
is set using the MBR_REL macro.

MBR_OFFS tests the state of the BOPT_MPX flag. If BOPT_MPX is true, the macro
generates a control object record for SYSGEN. This allows SYSGEN to fill in the
base register field of base mode instructions in the EXT_MPX section. The control
object record consists of an ASCn string "BROFFSET" that is placed in the
FLG_MPX section. The EXT_MPX section is established upon exit from the macro.

IF BOPT_MPX is false, no assembler code or directive is generated and the next
assembler line processed.

Syntax

MBR_OFFS

9.3.11 MBR_REL - Relative Mode Macro

The MBR_REL macro defines the relative mode of operation for SYSGEN. By
default, the offset mode is in effect (Le., relocatable object records placed in the
EXT_MPX section by SYSGEN are resolved using base registers) until relative mode
is set using ~s macro.

MBR_REL tests the state of the BOPT_MPX flag. If BOPT_MPX is true, the macro
generates a control object record for SYSGEN. This allows SYSGEN to treat the
subsequent relocatable object using the relative offset from the beginning of extended
MPX-32. The EXT_MPX section is established upon exit from the macro.

IF BOPT_MPX is false, no assembler coding or directive is generated and the next
assembler line is processed.

9.3.12 MBR_SSCT - System Code Separation Macro

TIIE MBR_SSCT macro tests the state of BOP'CMPX. If BOPT_~1PX is true, an
assembler SSECT EXT_MPX directive is generated. See the SSEC'T EXT_MPX
directive. If BOPT_MPX is false, no assembler coding or directive is generated, and
the next assembler line is processed

MPX-32 Technical Volume I 9-13

Macros for Extended MPX-32

9.3.13 MBR_ TRSW - Transfer Register Status Word Macro

9-14

For MBR_TRSW, if BOPT_MPX is true, the appropriate code sequence is generated
to return to nonextended or extended MPX-32. The generated code tests the base
register mode bit, bit 6, in the specified register. See Figure 9-2.

If BOP'CMPX is false, a TRSW instruction is generated.

Converting Modules for Extended MPX-32

(
-~

....)

(

(~

Macro Assembler and Extended MPX-32

9.4 Macro Assembler and Extended MPX-32

In addition to the Macro Assembler functions stated in the :MPX-32 Utilities Manual,
the assembler can generate extended or nonextended code depending on the condition
of Macro Assembler option 16.

Extended :MPX-32 modules control option 16 with the Assembler OPTS directive.
This directive generates the appropriate code and adaptors that allow a module to
execute in extended memory. The OPTR (Option Reset) and OPTT (Option Test)
Macro Assembler directives are used to test the state of option 16 and change the
mode of the instruction set during the generation of adaptive sequences.

Note: Option 16 is declarable internally and in-line only with the OPTS directive.
If option 16 is set externally (i.e. at assemble time), it has no effect on the
generation of extended code.

9.5 Macro Assembler Directives for Extended MPX-32

Some Macro Assembler directives form the adaptor source code that must be used for
a module to run in extended MPX-32. The adaptive code is generated by a
combination of Macro Assembler directives and special communications sequences.
The adaptive code enables the properly sectioned location of nonextended code,
extended code, adaptive code, and OSEeI' data with the required changes in the
instruction mode.

The following assembler directives can be used for nonextended to extended MPX-32
conversions.

Directive
OPTR
OPTS
OPTT
SDEF*

SEXT*

SORG
SSECT
SSECTFLG_:MPX

Function
resets assembly option 16
sets assembly option 16
tests a,ssembly option 16
identifies SYSGEN linkage symbols within a program
that can be externally referenced
identifies externally defined SYSGEN linkage symbols that
are referenced by the program
assigns a specified value to the location counter
assembles the SYSGEN section of program source code
allows communication of state changes in the object code to
identify and load the code and data sections

* This directive has an MBR_xxx macro equate. The macro equate tests
BOPT_MPX and generates the appropriate extended or nonextended code.
The Assembler directive generates code that runs only in extended MPX-32.

MPX-32 Technical Volume I 9-15

Macro Assembler Directives for Extended MPX-32

9.5.1 OPTR Directive

The OPI'R directive resets option 16, regardless of the option's previoUs value. It
then assigns the new option value to the symbol.

Syntax Label Operation Operand

symbol OPI'R 16

symbol is optional, and the value assigned to it can be redefined by the OPI'R,
OPTS, and OPIT directives

Usage: See the SSEcr FLG_MPX Directive Usage section.

9.5.2 OPTS Directive

The OPI'R directive resets option 16, regardless of the option's previous value. It
then assigns the new option value to the symbol.

Syntax L;lbel Operation

OPTS

Operand

16 symbol

symbol is optional, and the value assigned to it can be redefined by the OPI'R,
OPTS, and OPIT directives

Usage: See the SSEcr FLG_MPX Directive Usage section.

9.5.3 OPTT Directive

The OPIT directive tests the selected assemble option and assigns a value of one to
the symbol if option 16 is set. A value of zero is assigned to the symbol if option 16
is not set

Syntax Label Operation

OPIT

Operand

16 symbol

symbol

9-16

is optional and the value assigned to it can be redefined by the OPI'R,
OPTS, and OPIT directives

Converting Modules for Extended MPX-32

o

o

o

(~'

c

Macro Assembler Directives for Extended MPX·32

9.5.4 SDEF Directive

The SDEF directive identifies linkage symbols that are within a given program and
may be referenced by another program or subroutine as entry points or data.

The symbols referenced in the operand field must be defined in the program where the
directive is used.

SDEF directive must precede data definitions and executable statements in the source
program.

Syntax Label

label

Operation

SDEF

Operand

sym[,sym]

sym is the symbolic name local to the program

Usage: See the SEXT directive deSCription.

9.5.5 SEXT Directive

The SEXT directive identifies linkage symbols that are entry points or data in another
program or subroutine, but referenced by the given program.

The symbols referenced in the operand field must be defined in a program other than
the program where the SEXT directive is specified. The symbols are given defined
addresses at load time if corresponding SDEP directives in another program or
subroutine are present.

Symbols defined by SEXT directives may not be used within a common definition or
in the operand field of the EQU directive.

Syntax Label

label

Operation

SEXT

Operand

sym [,sym]

sym is a symbolic name defined in another program or subroutine

Usage: These samples of listed output illustrate the use of the SEXT and SOEP
directives.

MPX-32 Technical Volume I 9-17

Macro Assembler Directives for Extended MPX-32
((-~"' •..

Referencing Program IV
Location Machine Byte
Counter Instruction Address Label Operation Operand

PROGRAM EXTDEFI
SEXT CAL4

SOOOOO SSECI' CAL
SOOOOO CAL5 EQU $
SOOOOO D4000018 SOOO18 STW O,CALSRO
SOOO04 F8800001 XOOOOO BL CAL4
SOOOO8 F8800005 XOOOOO BL CAL4
SOOOOC F8800009 XOOOOO BL CAL4
SOOOIO F880001D SOOOlC BL CAL2
SOOO14 ECl00019 SOOO18 BU *CAL5RO
SOOO18 00000000 CAL5RO DATAW 0
SOOOIC D4000028 S00028 CAL2 STW O,CAL2RO
S00020 C9800003 U 3,3
SOO024 EClO0029 SOOO28 BU *CAL2RO
SOO028 00000000 CAL2RO DATAW 0
POOOOO END

Referenced Program

Location Machine Byte
Counter Instruction , Address Label Operation Operand

PROGRAM EXTDEF2
SDEF CAL4

SOOOOO SSECT CAL
SOOOOO CAL4 EQU $
SOOOOO D4000014 SOOO14 STW 0,CAL4RO
SOOOO4 05800018 SOOO18 STW 3,WORD3
SOO008 0600001C SOOOIC STW 4,WORD4
SOOOOC 06800020 SOO020 STW 5,WORD5
SOOO10 ECI00015 SOOO14 BU *CAL4RO
SOOO14 00000000 CAL4RO DATAW 0
SOOO18 00000000 WORD3 DATAW 0
SOOOIC 00000000 WORD4 DATAW 0
SOO020 00000000 WORD5 DATAW 0
POOOOO END

9-18 Converting Modules for Extended MPX·32

c

Macro Assembler Directives for Extended MPX-32

9.5.6 SORG Directive

The SORG directive assigns the value specified in the operand field to the location
counter. Symbolic names are assigned absolute or relocatable values relative to the
point of origin until a subsequent ABS, REL, ORG or SORG directive is encountered.

Syntax Label Operation Operand

label SORG value

value a previously defined operand that is not an external reference.

Usage: This example assigns the value 1000 (hexadecimal) to TAGA and START.

9.5.7 SSECT Directive

TAGA SORG X'1000'
START LW R2,TAGA

This directive determines the location of code and data sequences, and assembles the
SYSGEN section of the program source code. All symbolic names are assigned
relocatable memory addresses relative to the beginning of the SYSGEN section. The
total number of COMMON blocks and SYSGEN sections must be less than 254.

Syntax Label Operation Operand

label SSECT sname

sname is an ASCn constant indicating the section where successive code or data
should be positioned. If sname is not specified, the default is in the
nonextended code section. Valid snames are:

Usage:

sname

ADP_MPX
DSECT
EXT_MPX
ALT_MPX

RM17.LPN

RM17.NOW

Code/data position

adaptive code sequence section
DSECT data section
extended MPX-32 code section
alternate extended MPX-32 code section to
support the IFBASE/ELSE/ENDIF construct

EQU $
BU RM17.NOW
SSECT EXT_MPX
EQU $
GOTO %SKIP2
ANOP

For an additional example, see the SSECT FLG_MPX Directive Usage section.

MPX-32 Technical Volume I 9-19

Macro Assembler Directives for Extended MPX-32

9.5.8 SSECT FlG_MPX Directive

The FLG_MPX SSECf directive signals SYSGEN to conditionally change states
when processing the object code. This directive is followed by an ASCII data
doubleword that indicates:

• the conditions SYSGEN tests to load the correct object records into the selected
section

• whether the object code is extended or nonextended code

Syntax Label Operation Operand

9·20

label SSECf
DATAD

FLG_MPX
C'keyword'

keyword is an ASCII double word. Only one keyword can be specified for each
FLG_MPX SSECT directive. Valid keywords are:

Keyword

BASECODE

NONBASE

BASENTRY.

ENDADAPT

IFBASE

ELSE

ENDIF

BROFFSET

RELATIVE

DeSCription

switch instruction set processing mode to base instruction set.
Marks extended code and the start of the adaptive code for DEFed
entry followed by ASCII label for DEFed entry.

switch instruction set processing mode to nonbase instruction set

extended module BL entry point sequence follows. An additional
ASCII doubleword containing the entry point symbolic name follows
the BASENTR Y data doubleword.

indicates the end to BASENTRY adaptor sequence. If, during
SYSGEN processing, the entry is not referenced by a nonextended
module, SYSGEN eliminates the adaptive sequence to conserve
memory space.

indicates the beginning of an IFBASEjELSE/ENDIF statement.
Code following the directive to the next occurrence of an ELSE
directive will be included in the system image if the extended
module addresses another extended module. This keyword is used
when processing a module in the extended base code object format.

divides the code for an IFBASE/ELSE/ENDIF statement. Code
preceding the directive is used for an extended-to-extended control
transfer. Code following the directive is used for a base to nonbase
control transfer.

indicates the conciusion of an FBASEjELSE/ENDIF statement

relocatable object in EXT_MPX is resolved with base registers

relocatable object is resolved by adding the relative offset from the
beginning of extended MPX-32.

Converting Modules for Extended MPX-32

Macro Assembler Directives for Extended MPX-32

Usage: The following examples illustrate the FLG_MPX SSECT directive and
keywords.

DEFM
IFT
SSECT

X.DOLLAR SET

*

NONOOP

%ADAPT

%PSDN

%NOPT

IFT
NOP
ANOP
SSECT
DATAD
SSECT
BEQ
SSECT
DATAD
SSECT
BEQ
SSECT
LPSD
SSECT
DATAD
OPTR
SSECT
GEN
GEN
SSECT
DATAD
DATAD
OPTS
SSECT
GOTO
ANOP
BEQ

%SKIF ANOP
ENDM

TARGET
BOPT_MFX,%NOPT
EXT MFX
$-X.BEGIN. ABS POSITION IN EXT MFX

CHECK ON ODD HALFWORD
X.DOLLAR+2/4.NE. X.DOLLAR/4,NONOOP

FLG MFX
C'IFBASE'
EXT MFX
% TARGET
FLG MFX
C'ELSE'
ALT MFX
%ADAPT
ADP MFX
%PSDN
FLG MFX
C'NONBASE'
16
ADP MFX

BOUND TO NEXT HIGHEST WORD

START IF/THEN/ELSE

NON-ADAPTIVE REFERENCE

END NON-ADAPTIVE REFERENCE

ALTERNATIVE ADAPTIVE REFER.

CONVERT TO NON-BASE

MARK NON-BASE
TELL ASSEMBLER

1/1,4/0,2/2,25/H (%TARGET)
1/1,14/0,3/7,14/0

NON-BASE PSD

FLG MFX
C'ENDIF'
C'BASECODE'
16
EXT MFX
%SKIF

%TARGET

END ALTERNATIVE SEQUENCE
RETURN TO BASEMODE
TELL ASSEMBLER

NON-EXTDMPX VERSION OF CODE

** BRANCH AND LINK TO EXTERNAL ROUTINE MACRO

MBR BL DEFM

IFT
SSECT

X.DOLLAR SET

*

TARGET
BOPT _ MPX, %NOPT
EXT MPX
$-X.BEGIN. ABS POSITION IN EXT MPX

CHECK ON ODD HALFWORD
IFT X.DOLLAR+2/4 .NE. X.DOLI.AR/4,NONOOP
NOP 0 BOlrnD TO NEXT HIGHEST WORD

NONOOP ANOP
SSECT
DATAD
SSECT
BL

MPX-32 Technical Volume I

FLG MPX
C'IFBASE'
EXT MPX
%TARGET

START IF/THEN/ELSE SEQUENCE

NON-ADAPTIVE REFERENCE

9-21

•
Macro Assembler Directives for Extended MPX·32

9-22

%PSDN

%ADP1

%PSDB

%ADP2

%RTRN

SSECT
DATAD
SSECT
LPSD
SSECT
DATAD
OPTR
SSECT
BOUND
GEN
GEN
BL
BL
LPSD
GEN
GEN
SSECT
DATAD
OPTS
SSECT
SLC
TRCC
BU
SSECT
DATAD
SSECT
EQU

FLG MPX
C'ELSE'
ALT MPX
%PSDN
FLG MPX
C'NONBASE'
16
ADP MPX
1W

START ADAPTIVE SECTION

ADAPTIVE REFER (VIA ADAPT)

CHANGES TO NON-BASE
TELL ASSEMBLER

1/1,4/0,2/2,25/H (%ADP1) NON-BASE PSD
1/1/,14/0,3/7,14/0
%TARGET CALL TARGET, NON-BASE
$+lW SAVE CONDITION CODES IN RO
%PSDB BACK TO BASE MODE
1/1,4/0,1/0,1/1,25/H (%ADP2)
1/1,14/0,3/7,14/0
FLG MPX
C'BASECODE'
16
ADP MPX
RO,5
RO
%RTRN
FLG MPX
C'ENDIF'
EXT MPX
$

TELL SYSGEN
TELL ASSEMBLER

MOVE CCS TO PUT IN PSW
PUT CCS IN PSW
BACK TO IN-LINE CODE

END ALTERNATIVE SEQUENCE

GOTO %SKIP
%NOPT ANOP

%SKIP
BL
ANOP
ENDM

%TARGET NON-BASE VERSION OF CODE

* BRANCH UNCONDITIONALLY TO EXTERNAL ROUTINE MACRO

MBR BU DEFM TARGET
IFT BOPT_MPX,%NOPT
SSECT EXT MPX

X.DOLLAR SET $-X.BEGIN. ABS POSITION IN EXT MPX

* CHECK ON ODD HAL FWO RD
IFT X.DOLLAR+2/4.NE. X.DOLLAR/4,NON00P
NOP BOUND TO NEXT HIGHEST WORD

NONOOP ANOP
SSECT FLG MPX
DATAD C'IFBASE' START IF/TH~N/ELSE SEQUENCE
SSECT EXT MPX
BU %TARGET NON-ADAPTIVE REFERENCE
SSECT FLG MPX
DATAD C'ELSE' ALTERNATIVE ADAPTIVE REFER
SSECT ALT MPX
LPSD %PSDN CHANGE TO NON-BASE, TO

Converting Modules for Extended MPX-32

('\ ii ,;.
)I

*

%PSDN

SSECT
DATAD
OPTR
SSECT
BOUND
GEN

GEN
SSECT
DATAD
DATAD
OPTS
SSECT
GOTO

%NOPT ANOP

%SKIP
BU
ANOP
ENDM

Macro Assembler Directives for Extended MPX-32

FLG MPX
C'NONBASE'
16
ADP MPX
1W

TARGET

TELL SYSGEN
TELL ASSEMBLER

1/1,4/0,2/2,25/H (%TARGET)
(%TARGET)
1/1,14/0,3/7,14/0

NON-BSE PSD TO TRG

FLG MPX
C'ENDIF'
C'BASECODE'
16
EXT MPX
%SKIP

%TARGET

END ALTERNATIVE SEQUENCE
BACK TO BASECODE
TELL ASSEMBLER

NON-BASE VERSION

* SWITCH SYSGEN TO BR OFFSET ADDRESSING MODE

MBR OFFS DEFM

IFT
SSECT
DATAD
SSECT

%NOPT ANOP
ENDM

BOPT_MPX,%NOPT
FLG MPX
C'BROFFSET'
EXT MPX

* RETURN TO EXTERNAL CALLING ROUTINE MACRO

MBR TRSW DEFM REG

*
%ADP1

IFT
TBR
BNS
TRSW

EQU

BOPT_MPX,%NOPT
%REG,6
%ADP1
%REG

$
LPSD %PSD

%PSD

%ADP2

BOUND
GEN
GEN
SSECT
DATAD
SSECT
OPTR
TRSW
NOP
SSECT
DATAD

MPX·32 Technical Volume I

1W
1/1,4/0,2/2,1/0,24/H(%ADP2)
1/1,14/0,3/7,14/0
FLG MPX
C'NONBASE'
ADP MPX
16
%REG

FLG MPX
C'BASECODE'

9·23

Macro Assembler Directives for Extended MPX-32

• 0 S.SECT EXT MPX
OPTS 16
GOTO %SKIP

%NOPT ANOP
TRSW %REG

%SKIP ANOP
ENDM

* SWITCH SYSGEN TO RELATIVE ADDRESSING MODE

MBR REL DEFM
IFT BOPT_MPX,%NOPT
SSECT FLG MPX
DATAD C' RELATIVE'
SSECT EXT MPX

%NOPT ANOP
ENDM

* BASE CODE ROUTINE ENTRY MACRO

MBR ENT DEFM ENTRY
IFT BOPT_MPX,%SKIP
SSECT FLG MPX 0 DATAD C'BASENTRY'
DATAD C'%ENTRY'
DATAD C'NONBASE'
SSECT ADP MPX
OPTR 16
LPSD %PSDB
BOUND 1W

%PSDB GEN 1/1,4/0,2/1,2S/H(%ADPB)
GEN 1/1,14/0,1/1,2/2,14/0

*
SSECT FLG MPX
DATAD C'BASECODE'

*
SSECT ADP MPX
OPTS 16

%ADPB EQU $
BU %ENTRY

*
SSECT FLG MPX
DATAD C'ENDADAPT'
SSECT EXT MPX

%SKIP ANOP
%ENTRY EQU $

ENDM

0

9-24 Converting Modules for Extended MPX-32

Macro Assembler Options for Extended MPX-32

9.6 Macro Assembler Options for Extended MPX-32

In addition to the options defined in the Macro Assembler section of the MPX-32
Utilities Manual, the assembler has an option for control of macro percentage
parameters:

Option

16

Description

generates extended MPX-32 opcodes and instruction fonnats.
This option is declarable internally and in-line with source code
only (the OPTS directive). If option 16 is set externally, it
has no affect on the generation of extended code.

9.7 Macro Assembler Errors and Aborts for Extended MPX-32

This error flag is generated by the assembler:

Error Description

S identifies the usage of indirect addressing when
the base register code generation option bit is set

9.8 Extended MPX-32 Examples

This section of the addendum contains examples of extended MPX-32. The following
subjects are included:

• Nonextended MPX-32 SVC

• Extended MPX-32 SVC

• Assemble assignment for extended MPX-32

• JH.32_E File Sample

• JCL for compressing the extended MPX-32 SVC

• JCL for SYSGENing an extended MPX-32 system

These examples are in order of completion. For example, the existing nonextended
SVC is converted to an extended MPX-32 SVC. Then, it must be assembled,
JH.32_E must be edited, and COMPRESS must be run. After this is completed, an
extended MPX-32 operating system can be SYSGENed.

MPX-32 Technical Volume I 9-25

Extended MPX-32 Examples

•
9.8.1 Nonextended SVC (H.NONEXT)

9·26

The following example is the nonextended MPX-32 SVC that will be converted to an
extended MPX-32 SVC. This SVC operates only in nonextended MPX-32. See the
extended MPX-32 SVC for a comparison of nonextended versus extended SVC.

HAT

EP1

EP2

EP3

EP4

INIT

*
TAB

*

PROGRAM H.NONEXT
EXT S.EXEC38
EXT S.EXEC39
M.EQUS
M.TBLS
DATAW
ACH
ACH
ACH
ACH
ACH
EQU
LW
SBM
LW
SBM
M.RTRN
EQU
LW
ZBM
LW
ZBM
M.RTRN
EQU
BL
M.RTRN
EQU
BL
M.RTRN
EQU
M:EIR
M.MODT
M.SVCT
M.XIR

GEN
GEN
GEN
GEN

END

5
EP1
EP2
EP3
EP4
INIT
$

Makes calling task privileged
Makes calling task non-privileged
Makes calling task resident
Makes calling task non-resident
SYSGEN initialization entry point

3,C.REGS
O,T.REGS+8W,3
3,C.CURR
DQE.PRIV,DQE.USHF,3

$
3,C.REGS
O,T.REGS+8W,3
3,C.CURR
DQE.PRIV,DQE.USHF,3

$
S.EXEC38

$
S.EXEC39

$

HAT, 13
TAB, 4
HAT

8/X'80',1/O,23/H(EP1)
8/X'81',1/O,23/H(EP2)
8/X'82',1/O,23/H(EP3)
8/X'83',1/O,23/H(EP4)

Converting Modules for Extended MPX-32

o

o

(

Extended MPX-32 Examples

9.8.2 Extended MPX-32 SVC (H.EXTMOD)

The following SVC is the modified version of H.NONEXT. The macro/command in
boldface type is code that differs from the nonextended SVC.

Note: This code operates in extended or nonextended MPX-32 depending on the
state of option 16.

PROGRAM
MBR lUl'r
MBR I!:X'r
MBR I!:X'r
MBR DZI'
MBR DZI'
MBR DZI'
MBR DZI'
M.EQUS
M.TBLS
M.BREGS

HAT DATAW
ACH
ACH
ACH
ACH
ACH

EPl EQU
MBR zm
LW
SBM
LW
SBM
LIST
M.RTRN
LIST

EP2 EQU
MBR ZN'r
LW
ZBM
LW
ZBM
LIST
M.RTRN
LIST

EP3 EQU
MBR zm
MBR BL
LIST
t-1. RTRN
LIST

EP4 EQU
MBR zm
MBR BL
LIST

MPX-32 Technical Volume I

H.EXTMOD

S.ZXJ!:C38
S.ZXJ!:C39
ZPl
ZP2
ZP3
ZP4

5
EPl
EP2
EP3
EP4
INIT
$
ZPl
R3,C.REGS
O,T.REGS+8w,x3
R3,C.CURR
DQE.PRIV,DQE.USHF,X3
NOMAC

MAC
$
ZP2
R3,C.REGS
O,T.REGS+8W,X3
R3,C.CURR
DQE.PRIV,DQE.USHF,X3
NOMAC

MAC
$
ZP3
S.ZXJ!:C38
NOMAC

MAC
$
ZP4P
S.EXJ!:C39
NOMAC

Get TSA address
Set privilege bit in PD stack
Get DQE address
Set privilege bit in DQE

Return to caller

Get TSA address
Set unprivilege bit in PD stack
Get DQE address
Set unprivilege bit in DQE

Force unswappable resident

Return to caller

Allow swapping nonresident

9-27

Extended MPX-32 Examples

• •
M.RTRN Return to caller
LIST MAC

INIT EQU $
M.EIR
M.MODT HAT, 13
M.SVCT TAB, 4
M.SVCl? TAB1,4
M.XIR HAT
MBa lUlL Establish relative mode

TAB GEN 8/X'80',1/0,23/H(El?1)
GEN 8/X'81',1/0,23/H(El?2)
GEN 8/X'82',1/0,23/H(El?3)
GEN 8/X'83',1/0,23/H(El?4)
MBa OI'I'S Set up flags for SVCs

TAB GEN 8/X'80',8/X'20'
GEN 8/X'81',8/X'20'
GEN 8/X'82',8/X'20'
GEN 8/X'83',8/X'20'
END

9.8.3 Assemble Assignment for Extended MPX-32 SVC

•

9-28

The following example is an interactive assignment that assembles H.EXTMOD, the
extended MPX-32 SVC example. Assigning PRE to MPX_EXT sets option 16 to
generate extended MPX-32 coding. This example can be completed in batch mode.

TSM> $JOB MWTEST SLOF=XX

TSM> $AS PRE TO "(SYSTEM) MPX EXT

TSM> $AS SI TO SH.EXTMOD

TSM> $AS GO TO OH.EXTMOD

TSM> $OPTI 2 3 4 5

TSM> $ASSEMBLE

TSM> $EOJ

TSM> $$

Converting Modules for Extended MPX-32

o

Cj

o

Extended MPX-32 Examples

9.8.4 JH.32_E File Sample

The following example is a list of the contents of JH.32_E after it has been edited to
include the extended MPX-32 SVC example H.EXTMOD. These pathnames are
COMPRESS input directives.

A (OBJECT_E)OH.REMM
A (OBJECT_E)OH.MEMM
A (OBJECT_E)OH.VOMM
A (OBJECT_E)OH.REXS
A (OBJECT_E)OH.TAMM
A (username) OH. EXTMOD

Resource Management Module
Memory Management Module
Volume Management Module
Resident Executive Services Module
Task Management Module
User Created/Modified SVC

9.8.5 JCL for Compressing the Extended MPX-32 SVC

The following example is the JCL for compressing the extended MPX-32 SVC
example. H.EXTMOD. Compress is run after the JH.32_E file has been edited.

TSM> $AS IN TO JH.32 E

TSM> $AS OT TO OH.32 E

TSM> $COMPRESS

9.8.6 JCL for SYSGENing an Extended MPX-32 Operating System

The following example is the JCL for SYSGENing an extended MPX-32 operating
system.

TSM> ASSIGN DIR TO DIRECTIVES BLO=Y

TSM> ASSIGN OBR TO @SYSTEM(SYSTEM)OH.32 E BLO=Y

TSM> ASSIGN OBJ TO @SYSTEM(SYSTEM)OH.32

TSM> ASSIGN SLO TO SLO

TSM> SYSGEN

MPX·32 Technical Volume I

BLO=Y

9·29/9·30

1 0 RTOM Interval Timer

10.1 General Information

The Real-Time Option Module (RTOM) provides an interval timer that can be used to
measure the speed at which code executes. To use the RTOM interval timer:

• Install an RTOM board on the SeIBUS. For installation information, see the
RTOM Technical Manual.

• SYSGEN the RTOM interval timer at any priority level from X'OI' through X'6E'.

• Generate code to direct the interval timer.

All communication with the RTOM interval timer is done with RD.

This chapter explains the basic use of the RTOM interval timer. For more information,
refer to the RTOM Technical Manual.

10.2 SYSGENing RTOM

Syntax

After the RTOM board is installed on the SelBUS, access the RTOM interval timer by
adding the following command to the /INTERRUPTS section of the SYSGEN file.

PRIORITY = pp, RTOM = (hh,04), INTV

pp is a 2-digit hexadecimal priority level of the RTOM. The RTOM priority level
must not be used in any other PRIORITY directive.

hh is a 2-digit hexadecimal hardware address of the RTOM. hh must be between
X'79' and X'7E', inclusive. Determine the hardware address by inspecting
jumper assembly U13 on the RTOM board or by referring to the RTOM
Technical Manual.

Note: This directive assumes that the RTOM interval timer has a subaddress of
X'04'. While this is usually true, some RTOMs are at subaddress X'OB'. In
this case, substitute DB for 04. The subaddress of the interval timer can be
determined by looking at jumper assembly UI07 or referring to the RTOM
Technical Manual.

MPX-32 Technical Volume I 10-1

Frequency Rate of the Interval Timer

10.3 Frequency Rate of the Interval Timer

10-2

The frequency rate of the interval timer (i.e .• the length of time represented by each
clock tick) is determined by the physical jumpering of the RTOM board. There are
eight frequency rates: four high frequency and four low frequency. See Table 10-1 for
the eight frequency rates and jumpering information. The RTOM board is jumpered
for one high and one low interval timer frequency rate. The user chooses between
these two rates when programming the timer.

Table 10-1
RTOM Frequency Rates and Jumper Addresses

Frequency Rate Jumper Address

300 nanoseconds U158-8 to U158-9

600 nanoseconds U158-7 to U158-10
High

1.2 microseconds U158-6 to UI58-11

2.4 microseconds U158-5 to U158-12

4.8 microseconds U158-4 to UI58-13

9.6 microseconds U158-3 to U158-14
Low

19.2 microseconds U158-2 to U158-15

38.4 microseconds U158-1 to U158-16

RTOM Interval Timer

o

o

o

Controlling the Interval Timer

10.4 Controlling the Interval Timer

The CD (Command Device) command starts, reads, or stops the RTOM interval timer.

Syntax

CD X'pp' ,X'ffJJ'

pp is a hexadecimal priority level of the interval timer as specified in the SYSGEN
directive

ffff is a hexadecimal function code for basic use of the timer.

Hex Value Description
X'38' load and start timer at high frequency
X'39' load and start timer at low frequency
X' 40' read timer
X' 50' stop timer

See the RTOM Technical Manual for additional information.

Communication to the RTOM is done through RO. The load and start function codes
transfer the contents of RO into the interval timer. The interval timer then begins
counting down from that value.

The read function code transfers the current value of the timer to RO.

Because the timer counts down, the time interval between the two reads is the first
read minus the second. For accurate results, this overhead must be estimated and
subtracted from the results from each machine type. (The overhead is about 4
microseconds on for a CD command on a CONCEPT 32/87.)

MPX-32 Technical Volume I 10-3

Examples

10.5 Examples

The following examples show how to:

• enable and read the interval timer at priority X'04' and high frequency

• estimate read overhead

• read the timer before and after the code to be timed

• time a section of code.

Note: Because the CD command is privileged, the task must be cataloged./linked as
privileged.

10.5.1 Example 1: Enabling and Reading the Timer

10·4

This example shows how to enable and read the timer. In this example
X' 7FFFFFFF' is the initial count value, but any value can be used.

Code

TIME X'7FFFFFFF'

*
* Start the timer and estimate read overhead

*

*

INLINE
BEl
LW O,TlME
CD X'04',X'38'
CD X'04',X'40'
UEI
TRN 0,0
ADMW O,TlME
S TW 0, OVERHEAD
END I

Start count value is high positive value
Start timer
Read timer

Make value negative
Add starting value
Save as the overhead

* The timer is now running and the overhead clock tick is
* stored in the variable OVERHEAD.

*

Code

RTOM Interval Timer

l~"

V

Examples

*
* This is the top of the loop to be timed.

*

lNLlNE
LW O,TlME
CD X'04',X'38'
ENDl

Load the timer with high positives
Enable the timer

Timing sequence

lNLlNE
CD X' 04' , X, 40'
TRN 0,0
ADMW O,TlME
STW O,TOTAL
SUMW 0, OVERHEAD
ENDl

Read the timer
Make value negative
Add beginning value
Store total counts
Store results

Code output to the results

10.5.2 Example 2: Reading the Timer

This example illustrates how to read the timer before and after a piece of code. This
technique can be used when multiple parts of the code are using the timer.

*
* Start the timer

*

*

lNLlNE
Ll 0,0
CD X'04',X'38'
ENDl

Code

* Estimate the read overhead

*

lNLlNE
BEl
CD X'04',X'40'

MPX-32 Technical Volume I

Read the timer

10-5

Examples

*

STW 0, SAVESTART
CD X'04',X'40'
UEI
TRN 0,0
ADMW 0, SAVESTART
STW 0, OVERHEAD
END I

Read the timer

Make value positive
Add start value
Save the overhead

* The timer is now running and the overhead in clock ticks

10-6

* is stored in the variable OVERHEAD.
*

Code

*
* This is the top of the loop to be timed.
*

INLINE
CD X'04'
STW 0, SAVES TART
END I

Read the timer

Timing sequence

INLINE
CD X'04',X'40'
TRN
ADMW 0, SAVESTART
STW O,TOTAL
SUMW O,OVERHEAD
STW O,RESULT
ENDI

Read the timer
Make value negative
Add beginning value
Store total counts
Subtract out overhead
Store result

Code output to the result

RTOM Interval Timer

c

o

o

(0 A System Tables and Variables

A.1 Cross-Reference

TABLE NAME DESCRIPTION SECTION

ART Allocated Resource Table 2.4

CDT Controller Definition Table 2.8

CRT Channel Definition Table 2.7

CNP Caller Notification Packet 2.6

DAT Dispatch Queue Address Table 2.14

DCA Device Context Area 2.9

DMAP Descriptor Map Deallocation File 2.45.6
Descriptor

DQE Dispatch Queue Entry 2.13

DTT Device Type Table 2.10

FAT File Assignment Table 2.15

FCB File Control Block 2.16

(~
FPI' File Pointer Table 2.18

IOQ I/O Queue (IOQ) Entry 2.19

lSOEX Run Request 2.37.3

lSOUT Run Request 2.37.4

J.SSIN Run Request 2.37.1

lTSM Run Request 2.37.2

M.BB.DEQ Bad Block Descriptor 2.45.3

M.BD.DEQ Descriptor Map (DMAP) Deallocation File 2.45.6
Descriptor

M.BO.EQV New Boot Macro Offset 2.47.1

M.BS.DEQ Space Map (SMAP) Deallocation File 2.45.11
Descriptor

M.DD.DEQ Descriptors Descriptor 2.45.5

M.DI.DEQ Directory Descriptor 2.45.7

MPX-32 Technical Volume I A-1

Cross-Reference

A-2

TABLE NAME

M.DM.DEQ

M.DN.TEQ

M.FI.DEQ

M.ME.DEQ

M.SM.DEQ

M.VO.DEQ

M.DPf

M.KEY

M.PRJCT

M.RDACC

M.RDACT

M.RDCOM

M.RDID

M.RDSPD

M.RIQ

MATA

MDT

MEML

MIDL

MPTL

MRRQ

MVT

PSM

RD.SEGDF

RD.USER

RCB

RLB

RRS

SlVFDPf

SMD

SMAP

SMT

DESCRIPTION

Descriptor Allocation Map Descriptor

Directory Entry Table

File Descriptor

Memory Parition Descriptor

Space Allocation Map Descriptor

Volume Descriptor

Disk Parameter Table Offset

M.KEY Entry Format

M.PRJCT Format

Resource Descriptor Access Parameters

Resource Descriptor Accounting Parameters

Resource Descriptor

Resource ID

Resource Descriptor Space Definition

Resource Inquiry Table

Memory Allocation Table

Memory Resident Descriptor Table

Memory Attribute List

Map Image Descriptor List

Memory Allocation Pointer List

Message or Run Request Queue

Mounted Volume Table

Physical Shared Memory Table

Segment ~finitions

User Area

Resource Create Block

Resource Logging Block

Resource Requirement Summary Entries

Disk Parameter Table Format

System Master Directory

Space Map Deallocation File
Descriptor

Shared Memory Table

SECTION

2.45.4

2.11

2.45.8

2.45.9

2.45.10

2.45.12

2.47.2.1

2.20

2.21

2.45.1

2.45.1

2.45.1

2.45.1

2.45.2

2.33

2.24

2.27

2.25

2.22

2.23

2.28

2.30

2.31

2.45.13

2.45.14

2.32

2.34

2.35

2.47.2.2

2.38

2.45.11

2.36

System Tables and Variables

Cross-Reference

(".'
-"' TABLE NAME DESCRIPTION SECTION

T.IvlEMLA Memory Attribute List 2.25

T.MIDLA Map Image Descriptor List 2.22

TCPB Type Control Parameter Block 2.42

TSA Task SeIVice Area 2.39

UDT Unit Definition Table 2.43

VAT Volume Assignment Table 2.44

N/A Blocking Buffer Control Cells 2.5

N/A Communications Region 2.3

N/A Dispatch Queue Area 2.12

N/A Disk Parameter Table Structures 2.47.2

N/A Disk Resident Resource Descriptors 2.45

N/A COFF Executable Image Preamble 2.46.10

N/A COFF Load Module Structure 2.46.9

N/A COFF Shared Image Preamble 2.46.11

N/A Internal 1. VFMT Structures 2.47

('~~
N/A I/O Queue (l0Q) Entry 2.19

N/A Load Module Preamble 2.46.3

N/A Load Module Structure 2.46.2

N/A Memory Layout 2.2

N/A Module Address Table 2.29

N/A Memory Pool Management 2.26

N/A Executable Image Preamble 2.46.5

N/A Executable Image Structure 2.46.4

N/A Shared Executable Image Preamble 2.46.7

N/A Shared Executable Image Structure 2.46.6

N/A Shared Image Descriptors 2.46.8

N/A Spooled File Data Structures 2.37

N/A Terminal Line Buffer 2.40

N/A Timer Table 2.41

N/A Volume Format 2.46.1

c
MPX·32 Technical Volume I A·3/A·4

~
MPX-32
Technical Manual
No. 322-001551-500

READER'S
COMMENT

FORM

Please use this form to communicate your views about this manual. The form is
pre addressed and stamped for your convenience.

I rate this manual's:

Accuracy
Clarity
Completeness
Examples
Figures
Index
Organization
Retrievability of Information

Additional comments:

Excellent Good

If you wish a reply, please print your name and mailing address:

What is your occupation/title?

Thank you for your cooperation.

Fair

Note: Copies of Encore publications are available through your Encore
represen tative or the customer service office serving your locality.

Poor

FOt.O HERE - - -- - - - - - - - _. -- - - - - -_. -- - - ._ .. - --.. - -- - --- - - -1- --1------------
II ~EC=;

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NQ 2356 FORT lAUDERDAlE, FL

POSTAGE WILL BE PAID BY ADORE SEE

ENCORE COMPUTER CORPORATION
AITENTlON: DOCUMENTATION COORDINATOR
6901 W. SUNRISE BLVD.
P.O. BOX 409148
FT. LAUDERDALE, FL 33340-9970

1"11 ••• 11,"1111 •• 1111 ••• 1.1'11.1 ••• 11 •• ,1.1 •••• 111

FOt.O HERE

PLEASE TAPE 00 NOT STAPLE

IF MAILED
IN THE

UNITED STATES

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

: i~}
I~ z
10

...J
J<l::
I

::::>
lu

