
Gould MPX-32 ™ Utilities

Release 3.0

Reference Manual

July 1987

Publication Order Number: 323-004590-000

TMMPX_32 is a trademark of Gould Inc.

-} GOULD
Electronics

This manual is supplied without representation or warranty of any kind. Gould fnc.,
Computer Systems Division therefore assumes no responsibility and shall have no liability
of any kind arising from the supply or use of this publication or any material contained
herein.

PROPRIET ARY INFORMATION

The information contained herein is proprietary to Gould CSD and/or its vendors, and its
use, disclosure or duplication is subject to the restrictions stated in the Gould CSD
license agreement Form No. 620-06 or the applicable third-party sublicense agreement.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the
Government is subject to restrictions
as set forth in subdivision (b) (3) (ii) of

the Rights in Technical Data and Computer
Software clause at 52.227.7013

Gould Inc., Computer Systems Division
6901 West Sunrise Boulevard
Fort Lauderdale, FL 33313

MPX-32 is a trademark of Gould Inc.
CONCEPT /32 is a registered trademark of Gould Inc.

Copyright 1987
Gould Inc., Computer Systems Division

All Rights Reserved
Printed in U.S.A.

HISTORY

The Gould MPX-32 Utilities Release 3.0 Reference Manual, Publication Order Number
323-004590-000, was printed July, 1987.

This manual contains the following pages:

Title page
Copyright page
iii/iv through xxi/xxii

OVERVIEW

1-1 and 1-2
2-1 through 2-3/2-4

CATALOGER

Title page
iii through v/vi
1-1 through 1-3/1-4
2-1 through 2-25/2-26
3-1 through 3-22
4-1 through 4-4
5-1 through 5-5/5-6

DA T APOOL EDITOR

Title page
iii and iv
1-1 and 1-2
2-1 through 2-8
3-1 through 3-3/3-4
4-1 and 4-2
5-1/5-2

FILE MANAGER

Title page
ii i/i v
1-1 through 1-3/1-4
2-1 through 2-8
3-1 through 3-10
4-1 and 4-2
5-1/5-2

MACRO ASSEMBLER

Title page
iii through v/vi
1-1 through 1-3/1-4
2-1 through 2-16
3-1 through 3-29/3-30
4-1 through 4-33/4-34
5-1 through 5-6
6-1 through 6-12
A-I through A-3/ A-4
B-l/B-2
C-l and C-2
0-1 and 0-2

MACRO LIBRARY EDITOR

Title page
ii i/i v
1-1 and 1-2
2-1 through 2-4
3-1 through 3-4
4-1 and 4-2
5-1 and 5-2

MEDIA CONVERSION

Title page
iii/iv
1-1 and 1-2
2-1 through 2-3/2-4
3-1 through 3-10
4-1 and 4-2
5-1 through 5-4

Continued

iii

iv

SOURCE UPDATE

Title page
iii and iv
1-1 and 1-2
2-1 through 2-8
3-1 through 3-9/3-10
4-1 through 4-3/4-4
5-1 through 5-4

SYMBOLIC DEBUGGER

Title page
iii through v/vi
1-1 through 1-6
2-1 through 2-26
3-1 through 3-29/3-30
4-1 through 4-10
5-1 through 5-12

SUBROUTINE LIBRARY EDITOR TEXT EDITOR

Title page
iii/iv
1-1/1-2
2-1 through 2-5/2-6
3-1/3-2
4-1/4-2
5-1 and 5-2

Title page
iii and iv
1-1 through 1-3/1-4
2-1 through 2-6
3-1 through 3-25/3-26
4-1 through 4-4

('

CONTENTS

GOULD MPX-32 UTILITIES OVERVIEW

Section

1 - USING THE MPX-32 UTILITIES MANUAL 1-1

2 - DOCUMENT A TION CONVENTIONS .. 2-1

MPX-32
Utilities v

CATALOGER (CATALOG)

Section

1- OVERVIEW

1.1 General Description .. 1-1
1.2 Directive Summary ... 1-1

2-USAGE

2.1
2.2

2.3
2.4
2.5

2.6

2.7
2.8
2.9
2.10
2.11

2.12

2.13

2.14

vi

Accessing CATALOG .. .
Logical File Code Assignments ••••••••••••••••••••••••.•.•.•••••
2.2.1 Source Input (SYC)•........
2.2.2 Object Modules from Compilation or

2.2.3

2.2.4

2.2.5
2.2.6
2.2.7
2.2.8
2.2.9
2.2.10

Assembly (SGO)•.........•.....
Object Modules from Subroutine Libraries
(LIS, LIB, and Lnn)

Subroutine Library Directories
(LID, DIR, and Dnn)•... ~

DA T APOOL Variables Dictionary (DPD) •••••••••••••••••••••
DPOOLOO-DPOOL99 Variables Dictionaries (POO-P99) •••••••••••
System Listed Output (SLO) •••••••••••••••••••••••••••••
Symbol Table Output (SYM) ••••••••••••••••••••••••••••••
Symbol Table as Input (SYI) ••••••••••••••••••••••••••••••
LF C Summary

2-1
2-1
2-2

2-2

2-2

2-3
2-4
2-4
2-4
2-5
2-5
2-6

Options .. 2-7
Exi ting CATALOG .. 2-8
Object Modules and Load Modules •••••••••••••••••••••••••••••••• 2-8
2.5.1 Load Modules. .. 2-9
2.5.2 Absolute Load Modules. .. 2-9
The Cataloging Process. .. 2-9
2.6.1 Selective Retrieval of Object Modules. • • • • • • • • • • • • • • • • • • •• 2-10
2.6.2 Allocation and Use of Global Common and

Datapool Partitions ..•...............................
2.6.3 Allocation of Local Commons •••••••••••••••••••••••••••
Load Module Information
Resource Requirements .•••..•.••.•.•..••.••.•..•.••••.••••••
Sectioned and Nonsectioned Tasks •••••••••••••••••••••••••••••••
Segmented and Nonsegmented Tasks •••••••••••••••••••••••••••••
Overlay Load Modules
2.11.1 Single and Multiple Disc File Modes •••••••••••••••••••••••
2.11.2 Overlay Levels
2.11.3 Modi fying Overlay Origins ••••••••••••••••••••••••••••••
2.11.4 The Overlay Transient Area ••••••••••••••••••••••••••••
Local Common Allocation and Global Symbol Resolution
in Segmented Tasks .. .

2.12.1 Local Common Allocation ••••••••••••••••••••••••••••••
2.12.2 Global Symbol Resolution ••••••••••••••••••••••••••••••
Cataloging a Segmented Task in Stages •••••••••••••••••••••••••••
2.13.1 Recataloging a Load Module ••••••••••••••••••••••••••••
2.13.2 Limitations on Cataloging in Stages •••••••••••••••••••••••
Cataloging a Nonsegmented Task ••••••••••••••••••••••••••••••••

2-10
2-11
2-12
2-13
2-14
2-15
2-16
2-16
2-16
2-18
2-20

2-20
2-21
2-22
2-23
2-23
2-24
2-24

MPX-32
Utiiities

.... ~

(

Section

3 - DIRECTIVES

3.1 Introduction •.••••••••••••
3.2 Directive Order Requirements .•
3.3 ABSOLUTE Directive .•
3.4 ALLOCATE Directive .•
3.5 ASSIGN Directive .••
3.6 ASSIGN1 Directive
3.7 ASSIGN2 Directive
3.8 ASSIGN3 Directive.
3.9 ASSIGN4 Directive
3.10 BUFFERS Directive
3.11 CATALOG and BUILD Directives
3.12 CONNECT Directive
3.13 ENVIRONMENT Directive ••
3.14 EXCLUDE Directive.
3.15 EXIT Directive ••••••
3.16 EXTDMPX Directive
3.17 FILES Directive •..•
3.18 INCLUDE Directive
3.19 LINKBACK Directive
3.20 LMPATH Directive.
3.21 LORIGIN Directive ••
3.22 MOUNT Directive
3.23 OPTION Directive
3.24 ORIGIN Directi ve .••
3.25 PASSWORD Directive.
3.26 PROGRAM Directive.
3.27 PROGRAMX Directive
3.28 RECATALOG Directive
3.29 SEGFILES Directive
3.30 SPACE Directive ••
3.31 SYMT AB Directi ve •
3.32 VOLUMES Directive
4 - ERRORS AND ABORTS.

4.1 Error Overview
Phase One Errors
Phase Two Errors

.
.

.

·

.........
· · ·

·
·

.

......

.
·

.

4.1.1
4.1.2
4.1.3
4.1.4

Errors from MPX-32 (Phase One and Two)
Conditions that Cause Incomplete

Load Modules.
4.2 Abort Codes.

5 - EXAMPLES

MPX-32
Utilities

3-1
3-1
3-2
3-2
3-3
3-7
3-8
3-9

3-10
3-10
3-11
3-12
3-13
3-14
3-14
3-14
3-15
3-16
3-16
3-16
3-17
3-17
3-18
3-19
3-19
3-19
3-19
3-20
3-20
3-20
3-21
3-21

• 4-1

4-1
4-1
4-2
4-2

4-2
4-4

5-1

vii

2-1
2-2
2-3
2-4
2-5
2-6

2-1

3-1

CA T ALOG I/O Overview •••
Single Overlay Structure ••••
Multilevel Overlay Structure

FIGURES

Default Memory Allocation for Overlays
Modified Memory Allocation for Overlays
Recataloging Illustration •••••••••••••

TABLES

CAT ALOG LFC Summary ••

LMPA TH/BUILD/CA T ALOG Interaction

OAT APOOL EDITOR (DPEDIT)

Section

1- OVERVIEW

1.1 General Description ••••.••••
1.1.1 Datapool Dictionaries
1.1.2 Static versus Dynamic Datapool

1.2 Directive Summary •••••••••••••••••

2 -USAGE

2.1
2.2

2.3
2.4
2.5
2.6

Accessing DPEDIT ••••••••••
Logical File Code Assignments
2.2.1 Dictionary (DPD) ••••
2.2.2 Source Input (SYC) ••••••••••••••
2.2.3 Listed Output and Error Listings (LO and ER) ••
2.2.4 Save and Remap Files (OT and IN)
2.2.5 Scratch Files (Ul and XU1)
2.2.6 LFC Summary
Exiting DPEDIT •••
Input Data Format •
Dictionary Records.
Listings •••••••••

3 - DIRECTIVES

3.1
3.2
3.3
3.4
3.5
3.6
3.7

viii

Introduction ••••
/DPD Directive
/ENTER Directi ve
/LOG Directive
/REMAP Directive.
/SAVE Directive •••
/VERIFY Directive ••

2-7
2-17
2-17
2-19
2-20
2-25

2-6

3-22

1-1
1-1
1-2
1-2

2-1
2-1
2-1
2-2
2-2
2-3
2-3
2-4
2-4
2-5
2-7
2-8

3-1
3-1
3-1
3-2
3-2
3-3
3-3

MPX-32
Utilities

o

C' , ., .. '/

Section

4 - ERRORS AND ABORTS

4.1
4.2
4.3

DPEDIT Error Codes •.
DPEDIT Abort Codes .••••••
Console Messages

4-1
4-1
4-2

5 - EXAMPLES. .. 5-1

2-1
2-2
2-3

FIGURES

DPEDIT Data Record Format
Datapool Dictionary Entry Format ••
DPEDIT Listed Output Format

TABLES

2-1 DPEDIT LFC Summary ••••••••••••••••••••••

FILE MANAGER (FILEMGR)

1- OVERVIEW

1.1
1.2

General Description
Directive Summary ••

2-USAGE

2.1 Accessing FILEMGR •••••••••••••••
2.2 Saving, Restoring, and Creating Files ••
2.3 Computing the Size of a File ••••••
2.4 The System Master Directory (SMD)
2.5 Logical File Code Assignments

2.5.1 Source Input (SYC) ••••
2.5.2 Listed Output (SLO) •••
2.5.3 Input for Restores (IN)
2.5.4 Output for Saves (OUT).
2.5.5 LFC Summary

2.6 File-to-Tape Transfers
2.7 Options
2.8 Exiting FILEMGR •

3 - DIRECTIVES

3.1 Introduction •••••••
3.2 BACKFILE Directive
3.3 CREATE and CREATEU Directives
3.4 CREATEM Directive
3.5 DELETE and DELETEU Directives.
3.6 DELETEW Directive.
3.7 EXIT Directive ••••••
3.8 EXPAND and EXPANDU Directives.

MPX-32
Utilities

.....

......
.......

·
.......

·

·
·

.....

. ·

·

2-6
2-7
2-8

2-4

1-1
1-2

2-1
2-1
2-2
2-3
2-3
2-4
2-4
2-4
2-5
2-5
2-6
2-8
2-8

3-1
3-1
3-2
3-3
3-4
3-5
3-5
3-6

ix

Section

3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16

LOG, LOGU, and LOGC Directives
PAGE Directive •••••••..•..•.
RESTORE and RESTOREU Directives
REWIND Directive ••••••••
SAVE and SAVEU Directives
SAVELOG Directi ve •••
SKIPFILE Directive •••
USERNAME Directive

4 - ERRORS AND ABORTS

4.1
4.2

Abort Codes ••••
Error Messages ••

3-6
3-6
3-7
3-8
3-8
3-9

3-10
3-10

4-1
4-1

5 - EXAMPLES. .. 5-1

FIGURES

2-1 File-to-Tape Transfers .. 2-7

TABLES

2-1 FILEMGR LFC Summary. .. 2-5

MACRO ASSEMBLER (ASSEMBLE)

1- OVERVIEW

1.1

1.2

General Description •••••••••••.
1.1.1 Macro Assembler Features
1.1.2 Macro Assembler Operation
Directive Summary ••••••••••••••

2 -USAGE

2.1
2.2

2.3
2.4
2.5

x

Accessing the Macro Assembler •••
Logical File Code Assignments •••
2.2.1 Source Input (PRE and SO
2.2.2 Macro Libraries (MAC and MA2)
2.2.3 Temporary Files (UTI and UT2) ••
2.2.4 Listed Output (LO) •••••••••••
2.2.5 Object Code - BO (Binary Object) and GO

2.2.6
2.2.7

(General Object) ••••••
Compressed Source (CS)
LFC Summary ••••

Options
Exiting the Macro Assembler ••
Using Macros ••••••••••••
2.5.1 Macro Components ••
2.5.2 Symbolic Parameters

1-1
1-1
1-1
1-2

2-1
2-1
2-3
2-4
2-4
2-5

2-5
2-6
2-7
2-7
2-9
2-9
2-9

2-10

MPX-32
Utilities

J

Section

2.6
2.7

2.5.3
2.5.4
2.5.5
2.5.6
2.5.7
2.5.8
Datapool

Macro Definition
Macro Call ••••••
Macro Expansion
Label Generation within Macros
Symbol Concatenation
Nested Macros

Global Common

3 - MACRO ASSEMBLER LANGUAGE

3.1
3.2

3.3

3.4

Introduction •.••••••••
Source Statement Format
3.2.1 Label Field
3.2.2
3.2.3
3.2.4
3.2.5
3.2.6
3.2.7

Operation Field
Operand Field
Comment Field •••••••••
Sequence Field •••
Continuation Lines
Character Set
3.2.7.1 Escape Character.

Data Representation ••
3.3.1 Symbols •••
3.3.2 Literals ••
3.3.3 Constants

3.3.3.1
3.3.3.2
3.3.3.3
3.3.3.4
3.3.3.5
3.3.3.6
3.3.3.7
3.3.3.8

C-Character String.
G-Character String.
Hexadecimal Constant (X).
Fixed Point Decimal Word (N)
Fixed Point Decimal Doubleword (F)
Floating Point •••••••••••••
Floating Point Decimal Word (E) •••••••••
Floating Point Decimal Doubleword (R)

3.3.4 Expressions
3.3.4.1 Expression Evaluation
3.3.4.2 Expression Types

Addressing Techniques ••••••••••
3.4.1 Location Counter ••••••••
3.4.2 Self-Relative Addressing.
3.4.3 Symbolic Addressing.
3.4.4 Relative Addressing
3.4.5 Absolute Addressing
3.4.6 Literal Addressing
3.4.7 Blank Addressing
3.4.8 Addressing Attributes

4 - DIRECTIVES

4.1
4.2
4.3
4.4
4.5

Introduction •••
ABS Directi ve
AC Directive ••
ANOP Directive.
BOUND Directive ••

MPX-32
Utilities

2-10
2-11
2-12
2-12
2-14
2-14
2-16
2-16

3-1
3-1
3-1
3-1
3-1
3-3
3-3
3-3
3-4
3-4
3-6
3-6
3-6
3-7
3-7

3-11
3-13
3-13
3-16
3-18
3-19
3-20
3-21
3-22
3-22
3-24
3-24
3-25
3-26
3-27
3-27
3-27
3-28
3-28

4-1
4-2
4-2
4-4
4-4

xi

Section

4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26
4.27
4.28
4.29
4.30
4.31
4.32
4.33
4.34
4.35
4.36
4.37
4.38
4.39

COMMON Directive ••••••••
COMPUTED GOTO Directive
CSECT Directive
OAT A Directive.
DEF Directive.
DEFM Directive ••••••••
DSECT Directive
END Direcctive ••
ENDM Directive.
ENDR Directive.
EQU Directive.
EXITM Directive
EXT Directive •••
FORM Directive ••
GEN Directive.
GOTO Directive.
IF A Directive ••
IFF Directi ve
IFP Directive
1FT Direetive •
LIST Directi ve
LPOOL Directive
ORG Directive.
PAGE Directive
PROGRAM Directive
REL Directive.
REPT Directi ve
RES Directi ve
REZ Directi ve
SET Directive
SETF Directi ve
SETT Directive
SPACE Directive
TITLE Directive ••

5 - ERRORS AND ABORTS

5.1
5.2
5.3

Error Codes ••
Abort Codes.
Error Messages ••

6 - OUTPUT AND EXAMPLES

6.1
6.2
6.3
6.4
6.5
6.6

xii

Introduction ••
Source Listing
Symbol Cross-Reference.
Error Diagnostics ••••••
Object Output •••••••
Macro Assembler Programming Examples ••

4-5
4-7
4-7
4-8

4-10
4-10
4-11
4-11
4-12
4-12
4-13
4-13
4-14
4-16
4-19
4-20
4-20
4-21
4-22
4-22
4-23
4-24
4-25
4-25
4-26
4-26
4-27
4-28
4-30
4-32
4-32
4-32
4-33
4-33

5-1
5-3
5-6

6-1
6-1
6-4
6-7
6-7
6-9

MPX-32
Utilities

C .. "" . . ,

",...,,;v

A
B
C
D

2-1
3-1
3-2
6-1
6-2
6-3

2-1
3-1
3-2
3-3
3-4
3-5

APPENDICES

Instruction F orrnats
Extended Mnemonic Codes
Compressed Source Format.
ASCII Code Set ..••••••

FIGURES

Macro Assembler Flow of Operation
Assembler Coding Form ••••••
Floating Point Data Formats ••.
Sample Assembler Listed Output
Sample Symbol Cross-Reference
Pass One Error List •••••••••

Macro Assembler LFC Summary
ASCII Control Characters
Addition Operations ••

TABLES

Subtraction Operation.
Multiplication/Division Operations ••
Operand Code Format ••••••••••

MACRO LIBRARY EDITOR (MACLIBR)

Section

1- OVERVIEW

1.1
1.2

General Description
Directive Summary ••

2 -USAGE

2.1
2.2

2.3
2.4
2.5

Accessing MACLIBR ••••••••••••••
LOQical File Code Assignments
2.2.1 Macro Library (MAC)
2.2.2 Macro Input File (51) •••
2.2.3 Directives (DIR) ••
2.2.4 Listed Output (LO)
2.2.5 LFC Summary
Options •••••••••
MACLIBR Listings
Exiting MACLIBR.

3 - DIRECTIVES

3.1
3.2
3.3
3.4
3.5

Introduction •••.••
/ APPEND Directive
/CREATE Directive
/DELETE Directive
/DISPLAY Directive

MPX-32
Utilities

•• (e •

A-I
B-1
C-l
D-l

2-2
3-2

3-18
6-3
6-6
6-7

2-7
3-5

3-23
3-23
3-23
3-28

1-1
1-2

2-1
2-1
2-1
2-2
2-2
2-3
2-3
2-4
2-4
2-4

3-1
3-1
3-2
3-2
3-2

xiii

Section

3.6
3.7
3.8
3.9
3.10
3.11

/END Directive
/EXIT Directi ve
/INSERT Directive
/LOG Directive •••
/MACLIST Directive.
/REPLACE Directive

4 - ERRORS AND ABORTS

4.1
4.2
4.3

Abort Codes ••••
Error Messages.
Information Messages

3-2
3-3
3-3
3-3
3-4
3-4

4-1
4-1
4-2

5 - EXAMPLES. 5-1

TABLES

2-1 MACLIBR LFC Summary .. 2-3

MEDIA CONVERSION (MEDIA)

I-OVERVIEW

1.1
1.2

General Description
Directive Summary ••

2-USAGE

2.1
2.2

2.3

Accessing MEDIA ••.•••••••
Logical File Code Assignments
2.2.1 Source Input (*IN) •••
2.2.2 Listed Output (*OT)
2.2.3 Input Files ••••
2.2.4 Output Files •••
2.2.5 LFC Summary
Exiting MEDIA ••••••••

J - DIRECTIVES

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13

xiv

Introduction •••••••
BACKFILE Directive
BACKREC Directive
BUFFER Directive ••••
CONVERT Directive.
COPY Directive ••
DUMP Directi ve •
END Directive.
EXIT Directi ve ••
GOTO Directive ••••••
INCR Directi ve
MESSAGE Directive
MOVE Directive ••••

. ..

1-1
1-1

2-1
2-1
2-1
2-2
2-2
2-2
2-3
2-3

3-1
3-1
3-2
3-2
3-2
3-3
3-3
3-3
3-4
3-4
3-5
3-5
3-5

MPX-32
Utilities

)

j

(

(~:

Section

3.1lt
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22

OPTION Direcive
READ Directive ••
REWIND Directive
SETC Directive
SKIPFILE Directive
SKIPREC Directive
VERIFY Directive
WEOF Directive .•
WRITE Directive

4 - ERRORS AND ABORTS

4.1
4.2

Error Codes ••
Abort Codes.

5 - EXAMPLES.

2-1
3-1

MEDIA LFC Summary ••
MEDIA Options

TABLES

SOURCE UPDATE (UPDATE)

1- OVERVIEW

1.1
1.2

General Description
Directive Summary ••

2 - USAGE

2.1
2.2

2.3
2.4
2.5
2.6

Accessing UPDATE ••••••••
Logical File Code Assignments
2.2.1 Directive Input (SYC)
2.2.2 Input Files (SI1, S12, and S13)
2.2.3 Output File (SO) •••••••••
2.2.4 Work File (UTY) ••••••••
2.2.5 Output Image Listing (LO) ••
2.2.6 LFC Summary ••••••
Options
Compressed Source Format
Library Source Format
Exiting UPDATE

3 - DIRECTIVES

3.1
3.2
3.3
3.4
3.5
3.6

Introduction ••••••••••••
/ ADD Directive
/ ASl Directive ••
/ AS3 Directive.
/8KSP Directive ••
/8LK Directi ve

MPX-32
Utilities

3-6
3-8
3-8
3-8
3-9
3-9
3-9

3-10
3-10

4-1
4-2

5-1

2-3
3-7

1-1
1-1

2-1
2-1
2-2
2-2
2-2
2-3
2-3
2-4
2-4
2-5
2-6
2-6

3-1
3-1
3-2
3-2
3-2
3-3

xv

Section

3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25

/COM Directive ••••
/COPY Directive ••
/DELETE Directive
/END Directive
/EXIT Directi ve
/INSERT Directive
/LIST Directi ve
!MOUNT Directive
/NBL Directi ve
/NOLIST Directi ve
/NOSEQN Directive
/REPLACE Directive
/REWIND Directive
/SCAN Directive
/SELECT Directive ••
/SEQUENCE Directive
/SKIP Directive.
/USR Directive
/WEOF Directi ve

4 - ERRORS AND ABORTS

4.1
4.2

Abort Codes •••
Error Messages ••

5 - EXAMPLES.

FIGURES

2-1
2-2
2-3
2-4

Compressed Record Card Format
Library Format
Header Record Format
End-of-Library File Record ••

TABLES

3-3
3-3
3-4
3-4
3-4
3-5
3-5
3-6
3-6
3-6
3-7
3-7
3-7
3-7
3-8
3-8
3-8
3-9
3-9

4-1
4-1

5-1

2-5
2-7
2-8
2-8

2-1 UPDA TE LFC Summary ..•.........................•......... 4O 2-4

xvi
MPX-32
Utilities

(

SUBROUTINE LIBRARY EDITOR (LIBED)

Section

1- OVERVIEW

1.1
1.2

General Description
Directi ve Summary ••

2 - USAGE

2.1
2.2

2.3
2.4
2.5

Accessing LIBED •••••••••••••
Logical File Code Assignments •.••
2.2.1 Control Directives eCTU
2.2.2 Directory (DIR) •••••••
2.2.3 Library General Output (LGO) •
2.2.4 Library (LIB)
2.2.5 Listed Output (LLO)
2.2.6 Internal LFCs ••
2.2.7 LFCSummary ••••••
Options
Directory File Format •••••••
Exiting LIBED •••••••

3 - DIRECTIVES

3.1
3.2
3.3

DELETE Directive
EXIT Directive ••
LOG Directive ••

4 - ERRORS AND ABORTS

4.1
4.2

Abort Codes ••••
Error Messages ••

1-1
1-1

2-1
2-1
2-1
2-1
2-2
2-2
2-3
2-3
2-3
2-4
2-5
2-5

3-1
3-1
3-1

4-1
4-1

5 - EXAMPLES. .. 5-1

TABLES

2-1 USED LFC Summary •••••••••••••••

MPX-32
Utilities

2-4

xvii

SYMBOLIC DEBUGGER (SYMDB)

!--OVERVIEW

1.1
1.2
1.3
1.4
1.5

General Description •••••••
Local and Global Symbols •••
Accessing Program Symbols
Summary of SYMDB Capabilities
Directive Summary ••••••••••

2-USAGE

2.1

2.2
2.3

2.4
2.5
2.6

2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21

2.22

xviii

Accessing SYMDB ••.••••.•.....•.•••
2.1.1 Accessing SYMDB in TSM
2.1.2 Accessing SYMDB via the Batch Stream.
Using M.DEBUG •••.•••••.•
Logical File Code Assignments
2.3.1 Source Input (lIIN and 1103)
2.3.2 Listed Output (!lOT) ••••
2.3.3 Temporary Log File (IIOl)
2.3.4 Log Output (1/02)
2.3.5 . Symbol Table (IISM) •••••••
2.3.6 LFC Summary
Exiting SYMDB •••.••
Attaching SYMDB to a User Task
Input/Output .••••••
2.6.1 Terminal I/o
2.6.2 Command Files
Control Transfers.
Break Handling ••
Setting the Default for Symbolic References
Program Execution ••
Traps and Trap Lists ••
Nested Traps •••.•••
Examining Memory and Registers
Modi fying Memory and Registers
Selecting the Input Radix
Establishing User Bases ••
Selecting Relati ve or Absolute Addressing
Selecting Log/No Log File ••••••••
Selecting Label Field Format
Selecting Extended Memory Access
SYMDB Directive Expressions .••
2.21.1 Arithmetic Expressions.
2.21.2 Logical Expressions
2.21.3 Relational Expressions
Terms used in SYMDB Expressions.
2.22.1
2.22.2
2.22.3
2.22.4
2.22.5
2.22.6
2.22.7

Integers
Constants ••••••••••
Register and Memory Contents
Bases ••
Symbols
COUNT
Period C.)

1-1
1-1
1-2
1-3
1-3

2-1
2-1
2-1
2-3
2-3
2-4
2-4
2-4
2-5
2-5
2-6
2-6
2-7
2-9
2-9

2-10
2-10
2-11
2-12
2-13
2-13
2-15
2-15
2-16
2-17
2-17
2-17
2-17
2-17
2-18
2-18
2-19
2-19
2-20
2-20
2-20
2-21
2-22
2-22
2-24
2-25
2-25

!\~PX-32

Utilities

(--~\

~J

(

Section

3--DIRECTIVES

3.1
3.2
3.3
3.4
3.5
3.6
3-7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28
3.29
3.30
3.31
3.32
3.33
3.34
3.35
3.36
3.37
3.38
3.39
3.40
3.41
3.42
3.43
3.44
3.45
3.46
3.47

Using SYMDB Directives ••
A (Address) Directive
ABSOLUTE Directive
B (Binary) Directive
BASE Directive
BREAK Directive ••
CC (Condition Code) Directive
CLEAR Directive •••••••.••
CM (Change Memory) Directive.
CR (Change Register) Directive
DA (Display ASCII) Directive
DO (Display Double Precision) Directive
DELETE Directive ••••••••••••••
DET ACH Directive ••••••••••••••
OF (Display Floating Point) Directive
DI (Display Instruction) Directive
ON (Display Numeric) Directive
DNB (Display Numeric Byte) Directive.
DNH (Display Numeric Halfword) Directive
DNW (Display Numeric Word) Directive ••••
DUMP Directi ve•.............
E (Single Precision Floating Point) Directive
END Directi ve •••••••
EXIT Directive •••••••
FILE Directive ••
FORMAT Directive
GO Directive
IF Directive ••
LIST Directive
LOG Directive
MODE Directive ••
MSG (Message) Directive
N (Numeric) Directive
PGM (Program) Directive
RELA TIVE Directive
REVIEW Directive
RUN Directive
SET Directive
SHOW Directive.
SNAP Directi ve
STATUS Directive
STEP Directive
TIME Directive
TRACE Directive.
TRACK Directive.
WATCH Directive
X (Hexadecimal) Directive

MPX-32
Utilities

3-1
3-2
3-2
3-3
3-3
3-5
3-5
3-6
3-7
3-8
3-9
3-9

3-10
3-11
3-11
3-12
3-12
3-13
3-13
3-14
3-14
3-15
3-15
3-15
3-16
3-16
3-17
3-18
3-18
3-19
3-19
3-20
3-20
3-21
3-21
3-22
3-22
3-23
3-24
3-25
3-25
3-26
3-26
3-26
3-28
3-28
3-29

xix

Section

4-ERRORS AND ABORTS

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

SYMDB File Assignment Error Messages
Addressing Error Messages ••••••••
Trap Error Messages ••••••••••••
Directive Expression Error Messages
Base Error Messages •••••••••••••
Directive File Error Messages ••••••
Directive Argument Error Messages.
Other Error Messages
Abort Codes

5--SAMPLE DEBUGGING SESSIONS

5.1
5.2

5.3

Debugging Session Introduction •••••••••••
Example 1: Scanning Data in a Program Loop
5.2.1 Sample Program--DBGTST •••••••
5.2.2 Sample Debugging Sessions for Program DBGTST
Example 2: Searching Through a Linked List •••••••••••
5.3.1 Sample Program--DBGTST2 •••••••••••••••
5.3.2 Sample Debugging Session for Program DBGTST2

FIGURES

4-1
4-2
4-4
4-5
4-7
4-8
4-8
4-9

4-10

5-1
5-1
5-2
5-3
5-6
5-7
5-8

2-1 SYMDB Memory Map•.. .. 2-8

2-1
2-2
3-1

SYMDB LFC Summary ••••••
SYMDB Prompts and Labels
Instructions that Break a Trace

TABLES

TEXT EDITOR

1- OVERVIEW

1.1 General Description
1.1.1 Accessing Files

1.2 Directi ve Summary.

2-USAGE

2.1
2.2

2.3
2.4

xx

Accessing EDIT ••••••••••••
Logical File Code Assignments
2.2.1 Source Input (TIN)
2.2.2 Output File (TOT).
Exiting EDIT•...........
Lines and Line Numbers ••••
2.4.1 Line Numbers Generated by the Editor ••

. 2-6
2-10
3-28

1-1
1-1
1-2

2-1
2-1
2-1
2-2
2-2
2-2
2-3

MPX-32
Utilities

[-'\

''-J

c

Section

2.5

2.6

2.4.2

2.4.3
2.4.4

Line Numbers at the Beginning and End of the
Work File

Physical Position of Line Numbers.
Text Listed without Line Numbers.

Addressing Techniques .•••••••••
2.5.1 Special Characters ••••••
2.5.2 Line and Range Addressing
2.5.3
2.5.4
2.5.5

Groups .•••••••••
Content Identifiers ••
Defaults

Using the Break Key.

3 - DIRECTIVES

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28
3.29

Introduction ••••••••••••
APPEND Directive ••••••
BATCH or RUN Directives ••••••
CHANGE Directive ••••••
CLEAR Directive ••
COLLECT Directive
COMMAND Directive.
COpy Directive ••
DELETE Directive
EXIT Directive ••••
INSERT Directive ••
LIST Directive ••••
MODIFY Directive
MOVE Directive •••
NUMBER Directive •••••••
PREF ACE Directive
PRINT Directi ve
PUNCH Directive.
REPLACE Directi ve •
RUN Directive •••
SAVE Directi ve
SCRATCH Directive.
SET DELTA Directive ••
SET TABS Directive
SET VERIFICA nON Directive ••
SHOW Directive.
STORE Directive
USE Directive •••
WORKFILE Directive

4 - ERRORS AND ABORTS

4.1
4.2

Abort Codes •••
Error Messages ••

MPX-32
Utilities

2-3
2-3
2-4
2-4
2-4
2-4
2-5
2-5
2-6
2-6

3-1
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-9

3-10
3-11
3-12
3-13
3-14
3-14
3-15
3-15
3-15
3-16
3-17
3-17
3-18
3-20
3-21
3-23
3-24
3-25

4-1
4-1

xxi/xxii

o

o

GOULD MPX-32 UTILITIES OVERVIEW

SECTION 1 - USING THE MPX-32 UTILITIES MANUAL

The Gould MPX-32 utility package is a collection of the following utilities:

Cataloger (CATALOG)

Datapool Editor (OAT APOOL)

File Manager (FILEMGR)

Macro Assembler (ASSEMBLE)

Macro Library Editor (MACUBR)

Media Conversion (MEDIA)

Source Update (UPDATE)

Subroutine Library Editor (UBED)

Symbolic Debugger (SYMDB)

Text Editor (EDIT)

Because the utilities can be installed on a system individually, each utility description in
this manual can be used as a stand-alone manual. To tailor this manual to a particular
system, remove the descriptions of the utilities which are not installed on the system.

Each utility description begins with a tabbed page and generally has the following
format:

Overview

Usage

Directives

Errors and Aborts

Examples

The Overview section describes the utility's function and summarizes its directives.

The Usage section describes how to access, exit, and use the utility. Related
information, such as logical file code assignments and utility options, are also described
in this section.

The Directives section describes the function and syntax of each directive in alphabetical
order.

MPX-32
Utilities

Overview
Using the Manual 1-1

The Errors and Aborts section describes possible errors, aborts, and their messages.
Explanations of the error and abort code numbers are included.

The Examples section contains sample input and/or output illustrating the usage of the
utility.

Most utilities provide the capability to use previously created files for input sources
and/ or output destinations. Valid characters for file names, directories, and other
referenced names are A-Z, 0-9, period, and underscore. Although other characters are
generally accepted, their use is not recommended.

If a complete pathname is specified, any valid file name can be used. If only a file name
is specified, the file name cannot begin with a period or a string of digits (0-9) followed
by a period.

For file names containing special characters, enclose the name in single quotes. Use this
feature only to gain access to files with names containing unrecommended characters.
After gaining access, save or store the file using a file name of recommended characters.

Files assigned to logical file codes (LFC's) will be forced to the appropriate format -
blocked or unblocked unless otherwise noted in the LFC description.

Input records to the utilities must be in 80-byte card image format.

When a utility is activated, a copyright statement is issued. If the utility is accessed in
the batch mode, the copyright is printed on the listed output. In the interactive mode,
the copyright is displayed on the user terminal. The copyright statement has the
following format:

MPX-32 UTILITIES RELEASE x.x (utility Rx.x.x)
(C) COPYRIGHT 1983, GOULD INC., COMPUTER SYSTEMS DIVISION, ALL RIGHTS RESERVED

RELEASE x.x is the release number of the MPX-32 Utilities and utility Rx.x.x is the
name of the specific utility and its internal version number.

1-2
Overview

Using the Manual
MPX-32
Utilities

,(.. -)
I'. '

'-J

c····. '~\
I

SECTION 2 - DOCUMENTATION CONVENTIONS

Notation conventions used in directive syntax, messages, and examples throughout this
manual are described below.

lower case letters

In directive syntax, lower case letters identify a generic element that must be replaced
with a value. For example:

!ACTIV ATE taskname

means replace taskname with the name of a task. For example:

!ACTIV ATE DOCCONV

In messages, lower case letters identify a variable element. For example:

BREAK ON:taskname

means a break occurred on the specified task.

UPPER CASE LETTERS

In directive syntax, upper case letters specify a keyword must be entered as shown for
input, and are printed as shown in output. For example:

SAVE filename

means enter SAVE followed by the name of a file. For example:

SAVE DOCCONV

In messages, upper case letters specify status or information. For example:

taskname,taskno ABORTED

*YOUR TASK IS IN HOLD. ENTER CONTINUE TO RESUME IT.

Braces {}

Elements placed one under the other inside braces specify a required choice. You must
enter one of the arguments from the specified group. For example:

{ counter }
startbyte

means enter the value for either counter or startbyte.

MPX-32
Utilities

Overview
Documentation Conventions 2-1

Brackets []

An element inside brackets is optional. For example:

[CURR]

means the term CURR is optional.

Items placed one under the other within brackets specify you may optionally enter one of
the group of options or none at all. F or example:

[base name]
progname

means enter the base name or the program name or neither.

Items in brackets within encompassing brackets specify one item is required only when
the other item is used. For example:

TRACE [lower address [upper address]]

means both the lower address and the upper address are optional, and the lower address
may be used alone. However, if the upper address is used, the lower address mustalso be
used.

Commas between multiple brackets within an encompassing set of brackets are not
required unless subsequent elements are selected. For example:

M.DFCB fcb,lfc ~ [a] , [b] , [c] , Cd] , [e]]

could be coded as:

M.DFCB FCB12,IN

or

M.DFCB FCB12,IN"ERRAD

or

M.DFCB FCB13,OUT "ERRAD"PCK

Horizontal Ellipsis .••

The horizontal ellipsis indicates the previous element can be repeated. For example:

name [,name] •••

means one or more values separated by commas can be entered.

" " L,.-L,.

Overview
Documentation Conventions

MPX··32
Utilities

(1
'0

Vertical Ellipsis

The vertical ellipsis used in examples indicates that directives, parameters, or
instructions have been omitted. For example:

COLLECT 1

LIST

means one or more directives have been omitted between COLLECT and LIST.

Numbers and Special Characters

In a syntax statement, any number, symbol, or special character must be entered as
shown. For example:

(value)

means enter the proper value enclosed in parentheses, i.e., (234).

Underscore

In syntax statements, underscoring specifies the letters, numbers, or characters that may
be used as an abbreviation. F or example:

LIST filename

means spell out the directive LIST or abbreviate it to either LIS or L.

Bold

In examples, all terminal input is printed in bold; terminal output is not. For example:

TSM> EDIT

means TSM > was written to the terminal and EDIT was typed by the user.

CNTRL Key

CNTRL indicates the terminal Control key. For example:

CNTRLI

means to simultaneously press the Control and I keys.

MPX-32
Utilities

Overview
Documentation Conventions 2-3/2-4

o

C:

(//

c

Cataloger (CATALOG)

MPX-32 Utilities

o

C:

C:

o

CONTENTS

Section

1- OVERVIEW

1.1 General Description .. 1-1
1.2 Directive Summary ... 1-1

2-USAGE

2.1
2.2

2.3
2.4
2.5

2.6

2.7
2.8
2.9
2.10
2.11

2.12

2.13

2.14

Accessing CATALOG •••.••.•.•••••••••••••••.••.•••••••••••••
Logical File Code Assignments •••••••••••••••••••••.•.••••••••••
2.2.1 Source Input (SYC)•..............
2.2.2 Object Modules from Compilation or

2.2.3

2.2.4

2.2.5
2.2.6
2.2.7
2.2.8
2.2.9
2.2.10

Assembly (SGO)•........•..•...•..•.......••.....
Object Modules from Subroutine Libraries
(LIS, LIB, and Lnn) ..•..•......•..•.............•......

Subroutine Library Directories
(LID, DIR, and Dnn)•.............•.........

DA T APOOL Variables Dictionary (DPD) •••••••••••••••••••••
DPOOLOO-DPOOL99 Variables Dictionaries (POO-P99) •••••••••••
System Listed Output (SLO) •••••••••••••••••••••••••••••
Symbol Table Output (SYM) ••••••••••••••••••••••••••••••
Symbol Table as Input (SYI) ••••••••••••••••••••••••••••••
LFC Summary _

2-1
2-1
2-2

2-2

2-2

2-3
2-4
2-4
2-4
2-5
2-5
2-6

Options . • •• 2-7
Exi ting CATALOG .. 2-8
Object Modules and Load Modules •• 2-8
2.5.1 Load Modules. .. 2-9
2.5.2 Absolute Load Modules. •• 2-9
The Cataloging Process. .. 2-9
2.6.1 Selective Retrieval of Object Modules. • • • • • • • • • • • • • • • • • • •• 2-10
2.6.2 Allocation and Use of Global Common and

Datapool Parti tions
2.6.3 Allocation of Local Commons •••••••••••••••••••••••••••
Load Module Information
Resource Requirements
Sectioned and Nonsectioned Tasks •••••••••••••••••••••••••••••••
Segmented and Nonsegmented Tasks •••••••••••••••••••••••••••••
Overlay Load Modules
2.11.1 Single and Multiple Disc File Modes •••••••••••••••••••••••
2.11.2 Overlay Levels
2.11.3 Modi fying Overlay Origins ••••••••••••••••••••••••••••••
2.11.4 The Overlay Transient Area ••••••••••••••••••••••••••••
Local Common Allocation and Global Symbol Resolution

in Segmented Tasks
2.12.1 Local Common Allocation
2.12.2 Global Symbol Resolution ••••••••••••••••••••••••••••••
Cataloging a Segmented Task in Stages •••••••••••••••••••••••••••
2.13.1 Recataloging a Load Module .•••••••••••••••••••••••••••
2.13.2 Limitations on Cataloging in Stages •••••••••••••••••••••••
Cataloging a Nonsegmented Task ••••••••••••••••••••••••••••••••

2-10
2-11
2-12
2-13
2-14
2-15
2-16
2-16
2-16
2-18
2-20

2-20
2-21
2-22
2-23
2-23
2-24
2-24

MPX-32
Utilities

Cataloger (CATALOG)
Contents iii

Section

3 - DIRECTIVES

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.B
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.1B
3.19
3.20
3.21
3.22
3.23
3.24
3.24
3.26
3.27
3.2B
3.29
3.30
3.31
3.32

Introduction •••••••••••••••
Directive Order Requirements ••
ABSOLUTE Directive.
ALLOCATE Directive ••
ASSIGN Directive ••
ASSIGNl Directive.
ASSIGN2 Directi ve •
ASSIGN3 Directive.
ASSIGN4 Directive.
BUFFERS Directive
CAT ALOG and BUILD Directives
CONNECT Directive
ENVIRONMENT Directive ••
EXCLUDE Directive •••
EXIT Directive ••••••
EXTDMPX Directive
FILES Directive ••••
INCLUDE Directive
LINKBACK Directive
LMPA TH Directive.
LORIGIN Directive.
MOUNT Directive
OPTION Directive
ORIGIN Directive ••
PASSWORD Directive.
PROGRAM Directive.
PROGRAMX Directive
RECA T ALOG Directi ve
SEGFILES Directi ve
SPACE Directive.
SYMTAB Directive.
VOLUMES Directive

4 - ERRORS AND ABORTS

4.1 Error Overview ••••••••
4.1.1 Phase One Errors
4.1.2 Phase Two Errors
4.1.3 Errors from MPX-32 (Phase One and Two)
4.1.4 Conditions that Cause Incomplete Load Modules

4.2 Abort Codes.

5 - EXAMPLES

iv
Cataloger (CATALOG)

Contents

3-1
3-1
3-2
3-2
3-3
3-7
3-B
3-9

3-10
3-10
3-11
3-12
3-13
3-14
3-14
3-14
3-15
3-16
3-16
3-16
3-17
3-17
3-1B
3-19
3-19
3-19
3-19
3-20
3-20
3-20
3-21
3-21

4-1
4-1
4-2
4-2
4-2
4-4

5-1

MPX-32
Utilities

o

FIGURES

2-1 CATALOGI/OOverview 2-7
2- 2 Single Overlay Structure. • . . . • • • . . • • • . • . • . • • • • • . • • • • • • • • • • • • •• 2-17
2-3 Multilevel Overlay Structure. . • • • • • • • . . • • . •• 2-17
2-4 Default Memory Allocation for Overlays .••.•••••••••••••••••••••• 2-19
2-5 Modified Memory Allocation for Overlays •••••..•••••••••.••.••••• 2-20
2-6 Recataloging Illustration•.•...•.•••.•.•.•••••.•.••.•••••• 2-25

TABLES

2-1 CAT ALOG LFC Summary ••••••..•••••••.•••••••••••••••••••••• 2-6

3-1 LMPA TH/BUILD/CATALOG Interaction •••••••••••••••••••••••••• 3-22

MPX-32
Utilities

Cataloger (CATALOG)
Contents v/vi

o

o

(~

(
'~

, ~/

1.1 General Description

CATALOGER (CATALOG)

SECTION 1 - OVERVIEW

The Cataloger (CATALOG) utility processes standard, non base mode object code to
produce load modules that are ready to activate in one of three task environments: real
time, interactive, or batch.

A load module is created using job control language and CATALOG directives. The load
module resides in a permanent file specified in an LMPATH directive. If LMPATH is not
used, the file name is taken from the load module name on the first BUILD or CATALOG
directive.

CAT ALOG recognizes 1 to 16 character file names. Unless specified, files assigned to
logical file codes are forced to the appropriate format--blocked or unblocked.

1.2 Directive Summary

Below is a list of CATALOG directives in alphabetical order. Underlining indicates
accepted directive abbreviations. Each directive is explained in more detail in Section 3.

Directive

*Cin Column 1)

ABSOLUTE

ALLOCATE

ASSIGN

ASSIGNI

ASSIGN2

ASSIGN}

ASSIGN4

BUFFERS

BUILD

MPX-32
Utilities

Function

Indicates a comment line

Specifies an absolute origin for the task data section (DSECT)
in the task being cataloged

Allocates additional memory for a main load module in the
task being cataloged

Equates system files, pathnames, RIDs, temporary files,
devices, and LFCs with an LFC in the task being cataloged

Equates a permanent disc file with an LFC in the task being
cataloged. This directive is for compatibility only; its use is
not recommended.

Equates system files SBO, SLO, SYC, or SGO with an LFC in
the task being cataloged. This directive is for compatibility
only; its use is not recommended.

Equates a device with an LFC in the task being cataloged.
Also assigns a temporary disc file. This directive is for
compatibility only; its use is not recommended.

Equates an LFC in the task being cataloged with an existing
LFC. This directive is for compatibility only; its use is not
recommended.

Establishes the number of blocking buffers required for
dynamic assignments in nonshared tasks. Establishes the total
number of blocking buffers required for shared tasks.

Identifies and describes a load module to be cataloged in the
current working directory or in the pathname of a previous
LMPATH directive

Cataloger (CATALOG)
Overview 1-1

Directive

CATALOG

CONNECT

ENVIRONMENT

EXCLUDE

EXIT

EXTDMPX

FILES

INCLUDE

LINKBACK

LMPATH

LORI GIN

MOUNT

OPTION

ORIGIN

PROGRAM

PROGRAMX

RECATALOG

SEGFILES

SPACE

SYMTAB

1-2

Function

Identi fies and describes a load module to be cataloged in the
system directory or in the pathname of a previous LMPATH
directive

Assigns a Datapool dictionary to a specified Datapool
(DPOOLOO through DPOOL99 or DATAPOOL) partition

Describes the memory class, residency, map size, and sharing
or multicopying requirements of a task

Specifies referenced global symbol names in library object
modules to be excluded from the load module

Terminates CATALOG directive input

Positions the extended portion of MPX-32 in the logical
address space of the task being cataloged (if the expanded
space option of MPX-32 is used).

Establishes the number of dynamic disc file and device
assignments in nonshared tasks. Establishes the total disc file
and device assignments in shared tasks.

Specifies unreferenced global symbol names in library object
modules to be included in the load module

Specifies the overlay load modules at lower levels to link to
the current overlay load module

Specifies the pathname of the file where the load modules are
to be written

Establishes a new overlay level and origin for an overlay load
module

Indicates a nonpublic volume that is required by the task being

cataloged

Sets execution options for the task being cataloged

Establishes a new origin (at current level) for an overlay load
module

Specifies an object module by program name from SGO to
include in a load module

Specifies no object modules from SGO should be included in a
load module

Indicates that one or more overlay segments of a single file
load module are being updated. Optionally supplies the name
of the file.

Specifies the number of noncontiguous disc files to be accessed
by the task being cataloged

Allows the potential maximum task size to be increased above
the default 2MB size.

Specifies that symbol table references saved previously with a
CAT ALOG SYM option are to be used when an overlay load
module for a task is cataloged separately or recataloged

Cataloger (CATALOG)
Overview

MPX-32
Utilities

,(... ~ ~ ..

\.Y

(""\

Directive

VOLUMES

MPX-32
Utilities

Function

Specifies the number of non public volumes that can be
dynamically mounted at anyone time by the task being
cataloged

Cataloger (CATALOG)
Overview 1-3/1-4

o

o

SECTION 2 - USAGE

2.1 Accessing CATALOG

CAT ALOG can be accessed in the batch or interactive modes in one of three ways:

• $CATALOG

• $RUN CATALOG (valid only from the system directory)

• $EXECUTE CATALOG

When accessing CATALOG interactively, the CAT> prompt is displayed:

TSM> $CATALOG
CAT>

2.2 Logical File Code Assignments

The following logical file codes are used by CATALOG:

Logical File Code Description

CA T ALOG directive input

Object modules from compilation or assembly

SYC

SGO

LIS Library assignment for object modules from the system
subroutine library (default @SYSTEM(SYSTEM)MPXLIB)

LID

LIB or
Lnn

DIR or
Dnn

DPD

SLO

SYI

SYM

POO - P99

MPX-32
Utilities

Directory assignment for object modules from the
system subroutine directory (default
@SYSTEM(SYSTEM) MPXDIR)

Library assignment for object modules from user
libraries (nn = 00 through 99)

Directory assignment corresponding to assigned
library (nn = 00 through 99) .
Dictionary assignment for DA T APOOL variables used in
object modules

Listed output

Symbol table as input

Symbol table as output

Dictionary assignments for DPOOLOO - DPOOL99
variables used in object modules

Cataloger (CATALOG)
Usage 2-1

The following sections describe and Table 2-1 summarizes the default and optional LFC
assignments.

2.2.1 Source Input (SYC)

Source input is a file of CATALOG directives that is assigned to logical file code SYC.

SYC Default and Optional Assignments

The default assignment for SYC is to the System Control file (SYC):

$ASSIGN SYC TO SYC

There are two optional assignments for SYC:

$ASSIGN SYC TO {pathname }
DEV=devmnc

pathname is the pathname of a file containing CATALOG source input

devmnc is the device mnemonic of a device containing CATALOG source
input

2.2.2 Object Modules from Compilation or Assembly (SGO)

The file of object modules from compilation or assembly is assigned to logical file code
SGO.

SGO Default and Optional Assignments

The default assignment for SGO is to the System General Object file (SGO):

$ASSIGN SGO TO SGO

There are two optional assignments for SGO:

$ASSIGN S.GO TO pathname
DEV=devmnc

pathname is the pathname of a file containing object modules from compilation
or assembly

devmnc is the device mnemonic of a .device containing object modules from
compilation or assembly

2.2.3 Object Modules from Subroutine Libraries (LIS, Lm, and Lm)

CATALOG links object modules from subroutine libraries assigned to logical file codes
LIS, LIB, and Lnn. LIS is used (by default) to access the system subroutine library
(MPXLlB). LIB or Lnn should be assigned to access user subroutine libraries.

2-2
Cataloger (CATALOG)

Usage
MPX-32
Utilities.

o

o

CA T ALOG searches the library assigned to logical file code LIS by default and any user
spec i fied libraries assigned to logical file codes LIB and Lnn. The libraries are searched
in the following order: LIB, LOO through L99, and LIS. The number of libraries searched
is limited only by the number of ASSIGNs which may be processed by TS'v1 plus any
statically assigned user libraries adrJed to the CATALOG load module. These LFCs are
forced unblocked by CATALOG.

LIS, LIB, and Lnn Default and Optional Assignments

The default assignment for LIS is to the system subroutine library:

$ASSIGN LIS TO @SYSTEM (SYSTEM) MPXLIB

There is one optional assignment for LIS:

$ASSIGN LIS TO pathname

pathname is the pathname of a file containing object modules in Subroutine
Library Editor (LIBED) format

There are no de faul t assignments for LIB and Lnn. To access user subroutine libraries,
the optional assignments for LIB or Lnn should be specified as follows:

$ASSIGN LIB TO pathname

$ASSIGN Lnn TO pathname

pathname is the pathname of a file containing object modules in Subroutine
Library Editor (LIBED) format

Lnn is a user-defined LFC in the range LOO to L99 representing a user
subroutine library

2.2.4 Subroutine Library Directories (LID, DIR, and Dnn)

The directory for a subroutine library is assigned to logical file codes LID, DIR, and
Dnn. These LFCs are forced unblocked by CATALOG.

The LID assignment is to the directory that corresponds to the LIS system subroutine
library assignment. If user subroutine libraries are assigned to LIB or Lnn, the
corresponding DIR or Dnn assignments must be made for the related directories.

LID, DIR and Dnn Default and Optional Assignments

The default assignment for LID is to the system subroutine library directory:

$ASSIGN LID TO @SYSTEM (SYSTEM) MPXDIR

There is one optional assignment for LID:

$ASSIGN LID TO pathname

pathname is the pathname of a file containing the subroutine library directory

MPX-32
Utilities

Cataloger (CATALOG)
Usage 2-3

There are two optional assignments for assigning user subroutine library directories:

$ASSIGN DIR TO pathname

$ASSIGN Dnn TO pathname

pathname is the pathname of a file containing the subroutine library directory

Dnn is a user-defined LFC representing the directory for a user subroutine
library. Directory LFCs are 000 to D99, corresponding to the user
subroutine libraries LOO to L99.

Note: There are no default assignments for DIR or Dnn.

2.2.5 DATAPOOL Variables Dictionary (DPD)

OAT APOOL variables referenced in object modules are defined in a Datapool
dictionary. Datapool dictionaries are built using the Datapool Editor (DPEDIT) utility.
The DA T APOOL dictionary for use by CATALOG is assigned to logical file code DPD.
This LFC is forced unblocked by CATALOG.

DPD Default and Optional Assignments

There is no default assignment for DPD.

There is one optional assignment for OAT APOOL variables:

$ASSIGN DPD TO pathname

path name is the pathname of a file containing the OAT APOOL dictionary

Note: The OAT APOOL dictionary can optionally be assigned using the CONNECT
directive. If this is done, LFC DPD must not be user assigned.

2.2.6 DPOOLOO - DPOOL99 Variables Dictionaries (POO - P99)

DPOOLOO through DPOOL99 variables referenced in object modules are defined in
Datapool dictionaries. Datapool dictionaries are built using the Datapool Editor
(DPEDIT) utility. The Datapool dictionaries used by CATALOG are assigned by the
CONNECT directive to logical file codes POO through P99.

POO - P99 Default and Optional Assignments

There are no default or optional assignments for POD through P99; the user must not
assign these LFCs.

2.2.7 System Listed Output (SLO)

The system listed output file contains the output of the cataloging session. The output
includes a directive log, a load map, and any error messages generated. The system
listed output file is assigned to logical file code SLOe

5LO Default and Optional Assignments

The default assignment for SLO is to the System Listed Output device (SLO):

$ASSIGN SLO TO SLO

2-4
Cataloger (CATALOG)

Usage
MPX-32
Utilities

o

()

(

There are three optional assignments for SLO:

$ASSIGN SLO TO
[
pathname]
DEV=devmnc
LFC=UT

pathname is the pathname of a file to contain listed output

devmnc is the device mnemonic of a device to which the listed output will
be directed

LFC=UT assigns output to the user terminal

Note: If the origin of CATALOG is interactive, any error messages generated are
written to both UT and SLO automatically. If the user wants the load map to
appear on the terminal, SLO must oe assigned to UT.

2.2.8 Symbol Table Output (SYM)

A symbol table is the mechanism for resolving external references when cataloging a
task with overlays in separate CATALOG runs. If a symbol table is desired for later use
with logical file code SYI, the symbol table option must be set and a file or device for
symbol table output must be assigned. The file or device to contain the symbol table
output is assigned to logical file code SYM.

SYM Default and Optional Assignments

There is no default assignment for SYM.

There are two optional assignments for SYM:

$ASSIGN SYM TO J pathname t
1 DEV=devmnc j

pathname is the pathname of a file to contain the symbol table output

devmnc is the device mnemonic of a device where the symbol table output is
directed

2.2.9 Symbol Table as Input (SYI)

Instead of regenerating the symbol table when recataloging a load module, the symbol
table which was assigned to logical file code SYM generated by the previous cataloging
of the load module can be used as input. The file or device containing the symbol table is
assigned to logical file code SYI.

SYI Default and Optional Assignments

There is no default assignment for SYI.

MPX-3Z
Utilities

Cataloger (CATALOG)
Usage 2-5

There are two optional assignments for SYI:

$ASSIGN SYI TO { pathname }
DEV=devmnc

pathname is the pathname of a file containing the symbol table

devmnc is the device mnemonic of a device containing the symbol table

2.2.10 LFC Summary

The following is a table of LFCs used by CATALOG and their default and optional
assignments:

LFC

SYG

SGO

LIS

LIB

Lnn

LID

OIR

Onn

OPD

SLO

SYM

SYI

POD - P99

2-6

Table 2-1
CATALOG LFC Summary

Default
Assignment

SYC

SGO

@SYSTEM (SYSTEM)MPXLlB

none

none

@SYSTEM (SYSTEM)MPXDIR

none

none

none

SLO

none

none

none

Cataloger (CATALOG)
Usage

Optional
Assignment

pathname
DEV = devmnc

pathname
DEV = devmnc

pathname

pathname

pathname

pathname

pathname

pathname

pathname

pathname
DEV = devmnc
LFC = UT

pathname
OEV = devmnc

pathname
DEV = devmnc

Do not assign

MPX-32
Utilities

o

o
~

()

Figure 2-1 illustrates the CATALOG process and the LFCs used by CATALOG.

DIRECTIVE
rII LOAD

INPUT I--
MODULE

SYC

4 f-
OBJECT

---II ~
LISTED

MODULES CATALOG OUTPUT
SGO ~ I- SLO

~ ~ ~

SYMBOL SYMBOL
TABLE AS I-- ~ TABLE
INPUTSYI OUTPlITSYM

(OPTIONAL) (OPTIONAL)

I I
SUBROUTINE SUBROUTINE DATAPOOL

LIBRARY LIBRARY DICTIONARY
L1S,L1B,OR DIRECTORY DPD

LOO-L99 L1D,DIR,OR '(OPTIONAL)
000-099

'MULTIPLE DATAPOOL DICTIONARIES MAY BE SUPPLIED BY USING THE CONNECT DIRECTIVE.

87D4K02

Figure 2-1. CATALOG I/o Overview

2.3 Options

Options used by CATALOG control various processing options. Options are specified by
number in a $OPTION job control language statement. The $OPTION statement must
appear before the $EXECUTE CATALOG statement in a jobstream.

Option

MPX-32
Utilities

1

2

3

Description

Suppress subroutine library search - Suppresses automatic search of
system and user subroutine libraries to resolve external references,
All object modules to be linked must be specified in INCLUDE
directives, or be contained on SGO.

Multiple disc files - Produces multiple disc files when cataloging
overlay tasks.

Branch references - Enforces strict on-branch linkages for local
common and global symbols. For more information, refer to Section
2.12.

Cataloger (CATALOG)
Usage 2-7

15

18

19

20

Time, date, and program identification - Include the time and date
the object code was assembled or compiled and/or program
identi fication information as part of the load module if present in
the object code. This information is included in the object code by
setting the appropriate Macro Assembler or compiler options during
assembly or compilation. Option 15 is not supported for overlay
modules.

Inhibit load module generation if errors - Certain error conditions
cause CATALOG to take corrective or alternate actions. There is,
however, doubt as to the correctness and/or completeness of the
load module. This option inhibits writing the load module in these
cases.

Note: The production of possibly incomplete load modules is
provided as an aid to the code development cycle; the
programmer can decide to use the load module or not.
Production environment jobstreams should always set
option 18.

See Section 4 (Errors and Aborts) for a description of the conditions
that cause incomplete modules.

Include symbolic debug information - Includes symbolic debug
information which is placed at the end of the load module. Setting
option 19 does not affect memory requirements but does increase
disc usage. Option 19 is not supported for overlay modules.

Inhibits memory resident directory searches. By default, the
contents of all assigned library directories are loaded into a
dynamically allocated memory buffer. This buffer is expanded
automatically as needed and is limited only by available physical
memory and the size of the logical address space (as defined by
$SPACE). Option 20 forces all directories to be searched on disc
and limits CATALOG's dynamic memory buffer to approximately
32KB. Setting' option 20 significantly increases' CATALOG
execution times.

TEXT(23) Causes CATALOG directives read from system file SYC or a
directive file to be echoed to the terminal. Directives are also
written to LFC SLOe

2.4 Exiting CATALOG

To exit CATALOG in the batch or interactive modes, specify the EXIT directive.

2.5 Object Modules and Load Modules

A load module is composed of one or more object modules cataloged into executable
format. A source module is the source code that produced the object module. After
source code is assembled or compiled, the object modules are normally written to the
System General Object (SGO) file for use by CATALOG. Object modules can also be
stored in a file or incorporated into a library (by UBED) for subsequent CATALOG
access.

2-8
Cataloger(CA T ALOG)

Usage
MPX-32
Utilities

o

o

,
L/

o

A nonbase mode object module produced by an assembly or compilation is identical in
format to any other nonbase mode object module; therefore, source modules written in
different languages may be linked into a single load module if the source languages
support a compatible call/return interface.

2.5.1 Load Modules

CAT ALOG combines the object code from the various object and library input files into
one or more load modules. These load modules are written to one or more permanent
disc files. In combining the input object, CATALOG resolves global symbol references
and converts the object format data into a relocatable memory image ready for loading.
CAT ALOG also produces the runtime resource requirement summary and optionally, the
program element information and the global and local debug symbol tables.

2.5.2 Absolute Load Modules

CA T ALOG can build an absolute load module. An absolute load module requires no
relocation by the loader and reduces the task activation time.

The ABSOLUTE directive resolves all relocatable addresses relative to the base address
supplied in the directive. The user is responsible for selecting a base address large
enough to be beyond the task's TSA. The TSA is allocated after the end of MPX-32 and
varies in size based on the number of files and buffers required in the task.

Tasks that are cataloged as absolute may require recataloging if the size of MPX-32
changes. If there is an overlap between MPX-32 or the task's TSA and the absolute task
itself, the task aborts during the loading phase.

2.6 The Cataloging Process

CA T ALOG makes two passes over the file or device assigned to logical file code SGO and
the libraries to resolve external symbolic references and include the proper object
modules in the load module.

On the first pass, CATALOG searches the file or device assigned to logical file code SGO
for global symbol references and definitions in the object modules. CATALOG builds a
table of all references and definitions it finds.

If CATALOG cannot find a definition to match a reference in the modules in the file
assigned to logical file code SGO, it searches the assigned user libraries, followed by the
file assigned to logical file code LIS. Any definitions in the library that resolve
references are added to the symbol table for the load module. Any new references in the
library are also added.

After the first pass the symbol table contains the names of all definitions, references,
and program names in the· order they were found on: SGO, user libraries and the system
subroutine library.

MPX-32
Utilities

Cataloger (CATALOG)
Usage 2-9

On the second pass, CATALOG retrieves an object module for the occurrence of each
global symbol definition and matches the definition to its corresponding references.
Object modules are retrieved from SGO and the libraries in the order of the symbol
table. If CATALOG finds more than one definition with the same name, it uses the first
object module that contains the definition. Duplicate definitions and unresolved
references are indicated on the listed output.

The symbol table provides the communication medium between the different object
modules in the load module. It is also used to resolve references when overlay load
modules are cataloged in separate runs.

2.6.1 Selective Retrieval of Object Modules

When object modules are retrieved during CATALOG's first pass to resolve external
references and definitions, the order of search is the SGO file, user-assigned libraries,
and the file assigned to logical file code LIS. Four directives are used to manipulate the
object modules retrieved: PROGRAM, PROGRAM X, INCLUDE, and EXCLUDE.

The PROGRAM directive specifies particular object modules, by program name,
contained in the SGO file to be added to the load module. The PROGRAMX directive
suppresses all object modules in the SGO file from the load module. If neither directive
is used, all object modules from SGO are added to the load module.

Object modules in libraries that are not referenced are included in the load module by
specifying them in an INCLUDE directive. The supplied name must be a global symbol
defined in the object module.

Object modules in libraries can be excluded from the load module even though they are
referenced by specifying them in an EXCLUDE directive. The parameter of the
EXCLUDE directive is a global symbol. All global symbols defined in an object module
must be explicitly excluded to assure that the object module is not added to the load
module.

PROGRAM and PROGRAMX directives relate to object modules on SGO. The parameter
on the PROGRAM directive line is a program element (program, subroutine, function,
etc.) name.

INCLUDE and EXCLUDE directives relate to object modules in the libraries LIB, LOO -
L99, and LIS. The parameter on the INCLUDE and EXCLUDE directive lines is a global
symbol.

2.6.2 Allocation and Use of Global Common and Datapool Partitions

Global Common and Datapool are memory partitions defined at system generation
(SYSGEN) or by the Volume Manager (VOLMGR).

Labeled common blocks are identified as Global Common by the name GLOBALnn, where
nn specifies two decimal digits from 00 to 99. When CATALOG encounters a common
block named GLOBALnn, space is not allocated for it in the module's area. Instead, all
references to the common block are resolved using the memory partition of the same
name. Therefore, the global common memory partition must be created before a
program referencing it can be cataloged. If the definition of the partition changes, the
programs referencing the partition must be recataloged.

2-10
Cataloger (CATALOG)

Usage
MPX-32
Utilities

(0· -.'
, '

~ ...

(~

Datapools are structured and resolved according to the Datapool dictionaries created
with the Datapool Editor (DPEDIT) utility. Datapools are identified by the name
DAT APOOL or DPOOLnn, where nn specifies two decimal digits from 00 to 99. Datapool
references in an object module are resolved to locations in the specified Datapool
memory partition according to the corresponding user-supplied Datapool dictionary.

There are two mechanisms available to access DA T APOOL. If the corresponding
dictionary is assigned to LFC DPD, then the memory partition must be created before
the task can be cataloged. If the CONNECT directive is used and the optional starting
address and size parameters are specified, then the memory partition is not accessed.

The CONNECT directive allows a load module cataloged on one system (host) to be
executed on another system (target). Any datapools referenced are allocated during
execution and must reside on the target system.

When a global common or Datapool memory partition must be accessed, CATALOG
searches for the defini tion in directories. The order the directories are searched is:

With LMPATH and either BUILD or CATALOG:
• LMPATH target volume/directory

Current working volume/directory
@ SYSTEM (SYSTEM)

Without LMPATH and with BUILD:
Current working volume/directory
@ SYSTEM (SYSTEM)

Without LMPATH and with CATALOG:
@ SYSTEM (SYSTEM)

The memory allocation unit for memory partitions is one map block (2KW). If the
partitions are created by VOLMGR (dynamic), they must be allocated in map block
increments. In SYSGEN created partitions (static), protection granule allocation allows
multiple partitions within a map block. The allocation unit for the task remains one map
block. If multiple static partitions are defined within a map block, only one partition can
be included in the task's logical address space at a given time. The unused partitions in a
map block are write protected.

Static partitions are defined in @ SYSTEM (SYSTEM) by MPX-32 and are automatically
included in the referencing task's logical address space. Dynamic partitions must be
explicitly included in the logical address space at execution time. The user must be sure
that the partition included at run time matches the starting address and size values used
at CATALOG time. Also, some run time included services may require that a specific
volume and/or directory contain the partition definition.

2.6.3 Allocation of Local Commons

Common blocks with names other than GLOBALnn, DPOOLnn, or DATAPOOL (including
BLANK) are called local common. CATALOG allocates space for local common within
the load module according to references to the common contained in the object code
being linked.

MPX-32
Utilities

Cataloger (CATALOG)
(Usage) 2-11

When the object code contains initialization data for the common block (such as a block
data subprogram), storage for that common is allocated immediately before the program
element containing the data. The amount of memory allocated is established as the
largest size of the common block as defined in any referencing program element. If
another program declares a larger size, a warning message is issued and the extra size is
initialized to binary zeros.

When the object code contains no initialization data, CATALOG allocates storage
immediately before the first program element that defines this common. The size of the
area allocated -is that of the largest definition contained in any referencing program
element.

Uninitialized common that is allocated before the first program element of a load
module is treated differently than commons allocated in the body of the load module.
CATALOG does not allocate either memory or load module file space for these common
blocks. Instead, a loading offset is supplied to the task loader and the required memory
is allocated (with unpredictable contents) at task loading time. Common blocks that are
allocated within the load module body allocate both memory and load module file space
as required. These areas are set to binary zeros by CATALOG.

Allocating uninitialized commons in the first program element can be utilized to reduce
CA T ALOG memory requirements and load module file size and to provide faster task
activation. For more information, refer to the Local Common Allocation and Global
Symbol Resolution in the Segmented Tasks section.

2.7 Load Module Information

The ENVIRONMENT and BUILD/CATALOG directives establish the following special
characteristics for a task:

Residency - A task defined as resident remains memory resident until it exits or
aborts. It is not a candidate fOr swap to disc. The default is nonresident.

• Memory class - A task may need to execute in a special class of physical memory. E
executes in class E memory, H executes in class H or E, and S executes in any class of
memory available. The default is class S.

• Sharing:

• Multicopying - A task can be active concurrently in several logical address spaces.
The entire task is copied to physical memory each time it is activated.

• Sectioned sharing - A task can be active concurrently in several logical address
spaces. The CSECT area of the task is copied into physical memory once. A new
DSECT area is established in physical memory each time the task is activated.
DSECT areas are deallocated as sharers exit. CSECT remains allocated until all
sharers exit.

• No sharing (unique) - Only one copy of the load module can be active in one logical
address space at a time. The default for a task is unique.

2-12
Cataloger (CATALOG)

Usage
MPX-32
Utilities

o

c

o

[~
Privilege - A task that accesses a privileged system service must be cataloged as
privileged. A privileged task can write into any area of memory in its logical address
space, including the system area, and execute the privileged instruction set. The
default is unpri vileged.

• Base priority - The priority the task executes at if activated as an independent task
(by the TSM or OPCOM ACTIVATE, OPCOM ESTABLISH directive, another task, a
timer, or an interrupt). Base priorities are in the range 1 to 64. The default is 60. If
activated from TSM or in a batch stream, this priority is overridden by the SYSGEN
defined terminal or batch priority.

• Debugging - A task may prohibit attaching the debugger to it. The default is to allow
debugger attachment.

Unless otherwise defined by the ENVIRONMENT directive, a task:

is nonresident

is unique

is executable in any memory class available (S, H, or E)

allows debugger attachment

Unless otherwise specified by the BUILD/CATALOG directive:

• The base priori ty of a task is 60

• The status of a task is unprivileged

This information is written at the beginning of the main load module by CATALOG so
that it is available for the MPX-32 allocator and execution scheduler when the task is
activated.

2.8 Resource Requirements

The resource requirements for a task include all files and devices used by the task:

• default assignments

• run-time assignments that override the defaults

run-time assignments for required or optional files or devices that do not have default
assignments

dynamic assignments

A task's default resource requirements, if any, are established by CATALOG ASSIGN
directi ves when the main load module is cataloged. Required, optional, or overriding
run-time resources are established by TSM $ASSIGN directives when the task is
activated.

Dynamic assignment of files or devices is made by the task through MPX-32 service
calls, the FORTRAN OPEN statement, or subroutine calls.

MPX-32
Utilities

Cataloger (CATALOG)
(Usage) 2-13

A prerequisite for blocked I/O used by a task is a blocking buffer, which the allocator
establishes in the Task Service Area eTSA). This can be controlled with the BUFFERS
directive. Files on disc and magnetic tape assume the system default for blocking unless
otherwise specified by an ASSIGN directive or a dynamic service call. Files also require
FPT /F A T table entries in the TSA. This can be controlled with the FILES and SEGFILES
directi ves.

CA T ALOG preserves resource information on the default files and devices used by a
task, including the number of blocking buffers and table entries required. At acti vation,
run-time assigned files and devices are allocated as specified and override default file
and device assignments. The appropriate memory is then allocated for table space and
buffers. However, if files and/or devices are allocated dynamically by the task, the
number of addi tional file table entries and buffers required must be indicated.

Cataloger FILES, SEGFILES, and BUFFERS directives account for dynamic
assignments. The FILES directive specifies the number of files and devices allocated
dynamically (and thus the number of table entries to leave room for). The SEGFILES
directive specifies the number of noncontiguous disc files allocated dynamically. The
BUFFERS directive specifies the number of blocking buffers required for blocked files or
devices accessed dynamically.

Resource requirements for shared tasks require special treatment because several
concurrent sharers of the task can use different run-time assignments that require
different allocation of blocking buffers and file space. FILES, SEGFILES, and BUFFERS
directi ves for cataloging shared tasks must reflect the maximum number of files and
devices that can be assigned: default (or override), required, optional, and dynamic. This
information is required by CATALOG to ensure that the TSA for each sharer is the same
size and that the OSECT section of the shared task begins at the same location in each
sharer's logical address space.

2.9 Sectioned and Nonsectioned Tasks

CA T ALOG supports both sectioned and nonsectioned tasks.

Nonsectioned tasks are allocated in a logically contiguous area immediately above the
TSA. In effect, they are structured as one large OSECT. Nonsectioned tasks can be
cataloged as multicopied or unique. Multicopied tasks are copied into physical memory
to support multiple concurrent activations. A nonsectioned task that is cataloged as
unique allows only one activation at a time. If not specified, a nonsectioned task
defaults to unique.

Sectioned tasks are created when CSECT /OSECT definitions are contained in the object
code. CSECT defines a pure code and constant data section of a task; OSECT defines an
impure, user-dependent, variable data section. CATALOG merges all CSECTs into a
write protected allocation in upper memory and all OSECTs in lower memory just above
the task's TSA. Sectioned tasks can take advantage of CSECT /OSECT sectioning to
write protect pure code and data, but the primary purpose of CSECT /DSECT is to
support sharing.

A sectioned task can be cataloged as shared, multicopied, or unique. If a sectioned task
is cataloged as shared, the CSECT of the task is copied into memory once and only the
DSECT is recopied with subsequent activations.

2-14
Cataloger (CATALOG)

Usage
MPX-32
Utilities

l.

The minimum allocation for a CSECT area is a map block (2KW); DSECT is allocated in a
separate map block along with the TSA. The minimum space used for the task's DSECT
is one map block, including the TSA size. If a task is less than a map block, mUlticopying
and nonsectioning may allow more efficient use of memory than using sectioning.

2.10 Segmented and Nonsegmented Tasks

Two types of load modules can be part of one task: one main load module and one or
more overlay modules required to satisfy references for the task. A task that contains a
main load module and one or more overlays is segmented. A task that contains only a
main load module is nonsegmented.

Each load module is constructed by a separate BUILD/CATALOG directive. The main
and overlay modules can reside on the same disc file or on multiple disc files. Overlay
load modules are loaded and/or executed by system service calls within the programs.

A nonsegmented task can reference overlays built in separate cataloging sessions. When
a nonsegmented task references such overlays, the main module and all overlay modules
are in memory when the task is executing.

Overlays provide a way to segment tasks for more efficient memory utilization. When it
is impractical to have a large task in its entirety in memory, it can be divided into a
main load module and one or more overlay load modules. A segmented task is activated
by using the name of the file containing the main load module.

In a segmented task, only the main module and modules concurrently referenced in the
task are in memory at the same time. When modules other than the main module are no
longer needed by the task, they are replaced, or overlaid, by other referenced modules.

CAT ALOG supports two types of overlay load modules and several overlaying
strategies. The user may choose the type and strategy that best suits the requirements
of a particular application. The two types of overlay load modules are characterized by
the method of accessing the overlay. Overlay load modules that contain a transfer
address may be loaded and executed by a single service call. Upon completion, control is
returned to the calling load module. This overlay is referred to as a single point of call
overlay and is used when a particular portion of the application can be achieved by one or
more program elements executing off a single call. This type of structure contains no
cross module subroutine references and is more flexible with regard to cataloging in
stages or recataloging. A drawback is that the passing of parameters must be explicitly
handled by the programs.

The second overlay structure is constructed by grouping related subroutines in an overlay
load module. The load module is invoked by making the service call to load that overlay.
The caller can then reference the various subroutines directly and independently. This
type of structure is referred to as the independent subroutine type of load module and is
less flexible with regard to cataloging in stages or recataloging, but allows the user to
utilize any mechanism for parameter passing defined in the implementation language.

MPX-32
Utilities

Cataloger (CAT ALOG)
(Usage) 2-15

2.11 Overlay Load Modules

The following sections describe the use and structure of overlay load modules.

2.11.1 Single and Multiple Disc File Modes

CAT ALOG produces overlays in two modes: single disc files and multiple disc files.

In single disc file mode, the root and overlay load modules are produced in a single disc
file. Single disc file mode supports a maximum of 75 overlays.

Individual overlays in a single disc file can be cataloged in stages or without recataloging
the entire task by using the RECAT ALOG directive.

In multiple disc file mode, CATALOG produces separate files for the main load module
and each overlay. This mode is indicated by setting option two. The overlay load
modules in multiple disc file mode can be built in any directory but can only be executed
from the system directory.

In multiple file mode, individual overlay load modules can be built in stages or
recataloged by providing only the directives for the overlays involved to CATALOG. In
this mode, the LMPATH directive may not supply the filename.

Multiple disc file mode supports more than 75 overlays; for less than 75 overlays, it is
recommended that single disc file mode be used.

Symbolic debugger informstion is not available for overlays even if option 19 is set at
catalog time. Time, date, and program identification information is not available for
overlays even if option 15 is set at catalog time.

2.11.2 Overlay Levels

Single point of call and independent subroutine overlay load modules can be organized
into levels. An overlay level consists of one or more overlay load modules that do not
reference each other internally and can be loaded into the same logical memory locations
within the task.

Low level overlays usually represent the overlays a main load module calls in after it is
loaded. Higher level overlays which follow are associated with the root and/or one or
more of the lower level overlays.

The simplest overlay structure consists of a single overlay level as illustrated in Figure
2-2. As each overlay is accessed by a system service call, it replaces the previous
overlay in memory.

Figure 2-3 illustrates the logical structure of a task with a number of overlays and
overlay levels. This task consists of a main load module and seven overlay load
modules. The overlay load modules are grouped into levels A and B. Level A overlays
are low level; level B overlays are higher level.

A maximum of 255 overlay levels are supported. The root is always level O. A maximum
of 32,768 overlays are supported at each level above level O.

2-16
Cataloger (CATALOG)

Usage
MPX-32
Utilities

o

I
B1

MPX-32
Utilitres

I

A1

I
I

B2

MAIN

A1 A2 A3

Figure 2-2. Single Overlay Structure

MAIN

I

A2

I
B3 B4

Figure 2-3. Multilevel Overlay Structure

. Cataloger (CATALOG)
(Usage)

8704105

I
B5

8704.J09

2-17

Figdure1 2-h4 illu~trFa.tes th2e3 deE fault m1 e3m.oryS alt~oca5tiohn ford.the t~ainthantd oveldrlaYh~oad U-·-.-" .. " ...
mo u es s own In 19ure -. xamp e In ec IOn sows lrec lves a wou ac levei ,
this structure.

Level one is automatically established by the processing of the second BUILD/CATALOG
directive. All subsequent load modules are at level one until an LORIGIN directive is
processed. Each time an LORIGIN directive is processed, the level is increased by one.

The allocation of memory (overlays above the root) depicted in Figure 2-4 is valid only if
the TRA= parameter of the BUILD/CATALOG directive has not been specified. The
TRA parameter causes CATALOG to allocate the overlay transient area below the
root. This is useful when the application performs dynamic memory allocation during
execution.

Using this default memory allocation, any second level overlay (B) can be in memory with
any first level overlay. The second level overlay can operate on behalf of the root or any
first level overlay at any time. With independent subroutine load modules, the calling
program must ensure that all overlays at any level that contains the definitions of any
global symbol referenced, are actually in memory when that symbol is referenced.

2.11.3 Modifying Overlay Origins

The ORIGIN or LORIGIN directives modify the memory allocation for the overlay
structure. For example, a different origin can be set for higher level overlays associated
with A2 (B3, B4, and B5) so that space not being used when A2 is in memory can be
used. The total program memory requirements are reduced. Figure 2-5 illustrates how
the overlay transient area is modified. Example 8 in Section 5 demonstrates these
directi ves.

Overriding the default memory allocation means that B1 and B2 may be loaded with
either Al or AZ, but B3, B4 and B5 may be loaded only with AZ (see Figure 2-5).

If the higher level overlays are intended to operate on behalf of a particular lower level
overlay, the user's code must ensure that the correct lower level overlays are loaded.

If the higher level overlays are intended to operate on behalf of the root, any overlay
may be loaded at any level without concern for other levels. However, if B3 through B5
are loaded with Al in memory, Al must be reloaded before it can be used.

2-18
Cataloger (CATALOG)

Usage
MPX-3Z
Utilities

~ ... /

MPX-32
Utilities

HIGH
UPPER BOUND

LEVEL B ORIGIN

LEVEL A ORIGIN

MAIN LOAD MODULE

UPPER BOUND

TSA
LOW ~ ________________________ ~

2ZZZZZ UNUSED SPACE

Figure 2-4. Default Memory Allocation for Overlays

Cataloger (CATALOG)
(Usage)

87D4104

2-19

HIGH MEMORY ...,~~""""~,..,..,..,-..-,..,..,..,..,.,..,..,..,..,~

LEVEL B ORIGIN
MODIFIED FOR
B3-BS BY USING
ORIGIN DIRECTIVE --..

LOW MEMORY

BS B4 B3

A2

B2 B1

UPPER BOUND IS
NOW MOVED DOWN

1--...... ----1 ~ LEVEL B DEFAULT ORIGIN

A1

ESTABLISHED BY USE OF
LORIGIN DIRECTIVE, FOR
B1-B2

.... ------...... -------I~ LEVEL A ORIGIN
(AUTOMATIC)

MAIN LOAD MODULE

TSA

87D4J08

Figure 2-5. Modified Memory Allocation for Overlays

2.11.4 The Overlay Transient Area

By default, CATALOG establishes an overlay transient area above the root (logically
higher addresses) that is of a sufficient size. In applications, where dynamic memory
allocation above the root is required, the overlays can be directed to load in low memory
below the root. This is accomplished by specifying a transient area using the TRA=
parameter on the BUILD/CATALOG directive for the root segment. This relocates the
root higher in memory by the amount specified. It is the user's responsibility to supply a
value large enough to accommodate the overlays.

2.12 Local Common Allocation and Global Symbol Resolution in Segmented Tasks

In segmented tasks comprised of several load modules grouped into several levels, the
resolution of common and global symbol references is complicated and can lead to
unpredictable results and/or unresolvable situations unless given due consideration.

2-20
Cataloger (CATALOG)

Usage
MPX-32
Utilities

(J

o

r",
L,'

CATALOG provides options and directives to control the resolution of these references.
The user can select an overlay strategy that best suits the requirements of the
application.

2.12.1 Local Common Allocation

An overlay load module is essentially, the same as a non-segmented load module.
Therefore, the rules in the Allocation of Local Commons section apply to all intra-load
module commons. The following discussion applies to inter-load module commons.

A common is said to be "defined" in any program element that references a datum
declared in that common. When CATALOG allocates the memory that holds the data
declared in a common within a load module, the common is said to be "allocated" in that
load module. All definitions are "linked" to the allocated location.

CATALOG 8ption 3 and the LINKBACK directive allow the user to control the allocation
of and references to local common. The use and effects of Option 3 and the LINKBACK
directive are described below.

Local commons defined in the root segment are allocated in the root segment. All
definitions in high level overlays are linked to the root segment allocation. This ensures
that all higher level overlays can communicate through root allocated commons
regardless of the transient area contents.

When a local common definition occurs only in higher level overlays, it is allocated in the
first, lowest level, overlay that defines it. When a common is defined in more than one
load module at the same level, it will be allocated in each defining module.

Usually, this means that the data declared in such a common will be "common" only to
the program elements of each load module. (The area cannot be used to communicate
between load modules at the same leve!). However, if all the load modules have the
same origin, the common is allocated in the first program element of each overlay and
this common is not initialized in any of the overlays, the data contained in the common
remains intact from one overlay to the next. This is because uninitialized common at the
beginning of a load module contains no space in the load module file and remains
unchanged by the loader. This form of cross module common allows the common to be
used for inter-module communication.

When a local common is allocated in several overlay load modules at a given level,
definitions occurring in higher level overlays are linked to the low level allocations in
several different ways depending on Option 3 and the LINKBACK directive.

With Option 3 Reset (the default), local common definitions occurring in higher level
overlays are linked to the allocation in the last lower level overlay processed by
CATALOG. This occurs regardless of the LINKBACK directive. If the conditions
described above for cross module commons are met, then the lower level allocation is at
the same place in memory for all lower level modules. It is unaffected by loading
activity and can be successfully used in any higher level overlay. In all other cases,
Option 3 must be used.

When Option 3 is set, local commons are reallocated in higher level defining overlays
unless the common is already allocated in a lower level overlay to which the current load
module is linked with the LINKBACK directive. Initialized commons follow the same
rules as uninitialized commons with the following additional requirements:

MPX-32
Utilities

Cataloger (CATALOG)
(Usage) 2-21

Cross module common at the same level is unavailable to initialized common.
Each load module that initializes a common area resets the area to its initial
values as it is loaded.

The program element that contains the initialization code must be part of the
lowest level defining overlay whenever multi-level linkages occur.

2.12.2 Global Symbol Resolution

The following describes the rules for subroutine linkage in overlay environments.

Each overlay load module is built as a complete unit. This means that all external
symbol references are resolved by including program elements which contain satisfying
definitions found in SGO or any available library in the load module.

To build an overlay structure, it is necessary to indicate to CATALOG that specific
references should remain unsatisfied (temporarily) in a load module. This can be
accomplished in several ways. By default, all object modules on SGO are processed at
the first BUILD/CATALOG directive. By using the PROGRAM directive only
specifically named programs are processed from SGO for any particular
BUILD/CATALOG. The PROGRAM X directive inhibits all processing of SGO. Further,
as programs are processed, all references to external symbols are retained and all
assigned libraries are searched for matching definitions. By supplying the global symbol
name in an EXCLUDE directive, CATALOG will not load a program containing a
matching definition. Alternatively, Option 1 can be set and all global symbol definitions
required are then indicated on INCLUDE directives.

Similarly, programs which contain global symbol definitions that are not otherwise
referenced can be forced into any particular load module by specifying the symbol name
in an INCLUDE directi vee

The user explicitly indicates the contents of each load module by using the following:

The PROGRAM and PROGRAM X directives to control the processing of SGO.

OPTION 1 and the INCLUDE directive or the INCLUDE/EXCLUDE directives to
control processing of the libraries (in conjunction with each BUILD/CATALOG
directive).

Once the contents of each overlay is established, CATALOG resolves cross module
linkages of global symbols (if any exist) according to the following rules. Option 3 and
the LINKBACK directive control the resolution.

Symbols excluded from a particular load module are assumed to be defined in a higher
level overlay. CATALOG provides automatic forward linkage to higher level overlays in
two ways depending on Option 3. However, to satisfy a symbol reference to lower level
overlays, the load module must be explicitly linked to the lower level using the
LINKBACK directive.

Global symbols defined in the root segment are available to all higher level overlays and
are used first to satisfy references in any higher level (i.e there is an implici t linkback to
the root provided to all higher level overlays).

References in modules at levels above the root are satisfied first by definitions in the
root. If the symbol is not defined in the root, the first definition in lower level overlays

2-22
Cataloger (CATALOG)

Usage
MPX-32
Utilities

o

1"\
, '

"./

o

r c
".

l~ .. /

to which the current module is linked, in the order of the LINKBACK directives, is
used. If the symbol is not defined in any linked lower level, higher levels are used.

When Option 3 is reset (the default) a definition in any higher level module will be used.
The search is performed in the order of the CATALOG/BUILD directives, with the first
definition found being used. When Option 3 is set, only higher level which are linked
(with the LINKBACK directive) to the module containing the reference are used. The
first definition found is linked.

In all cases it is the responsibility of the calling module to ensure that the correct
overlay is actually in memory.

2.13 Cataloging a Segmented Task in Stages

A segmented task may be cataloged in one operation or in stages. The main load module
can be cataloged in one session, with or without overlay load modules. Overlay modules
can be cataloged in subsequent sessions. If the transient area size option (TRA=) is not
declared for the main load module in the BUILD or CATALOG directive, CATALOG
reserves a transient area large enough to accommodate any overlay modules cataloged in
the same run as the main load module. If overlay modules cataloged separately from the
main load module require more space, an adequate transient area size must be specified
when the main load module is cataloged.

When cataloging in stages, the main load module can be cataloged without its overlays
only when the single point of call (load and execute) methodology is used. If the main
load module contains references to external symbols that are defined in the overlays,
these overlays must be cataloged in the same run as the main.

The symbol table (SYMT AB) resolves external references when load modules are
cataloged in separate stages. The SYMTAB contains the definitions of all common blocks
and all DEFs from the previous cataloging session. All references must be resolved when
the SYMT AB is built.

The SYMT AB is saved by assigning a file or device to logical file code SYM and
specifying the SYM option on the BUILD/CATALOG directive for the main load module.
SYMT ABS are restored by assigning the same file or device (used with SYM) to logical
file code SYI and using the SYMTAB directive before the first BUILD/CATALOG
directive of a subsequent run.

Common blocks defined in cataloged load modules are not reallocated when new load
modules are cataloged. Common block sizes are not expanded as a result of definitions
contained in new load modules being cataloged.

References to global common and Datapool are not affected because these areas are
allocated in a separate area of memory from the task.

2.13.1 Recataloging a Load Module

When operating in single file mode (option 2 reset), the RECA T ALOG directive must be
used to specify the recataloging of one or more of the overlay load modules contained in
the file.

MPX-32
Utilities

Cataloger (CATALOG)
(Usage) 2-23

When a load module is recataloged, the new version is written over the existing version.
The disc file is automatically expanded, if needed, to accommodate the new version.
Other load modules in the file are copied to the new file.

2.13.2 Limitations on Cataloging in Stages

Care is required in recataloging some load modules. Load modules whose sizes increase
may result in allocations that overlap the address spaces of load modules that are not
being recataloged. In addition, resolution of references to external symbols and common
blocks within the task can be affected.

Overlap can be detected by examining the addresses of each load module, which are
printed in the module's map. Overlap is indicated when an overlay's end address is
greater than the beginning address of a higher level overlay, or is greater than the
beginning address of the main load module (with TRA parameter).

Changing the size of the transient area with the TRA parameter changes the location of
the main module in relation to the overlay modules. If the size of the transient area is
changed, all previously cataloged overlay modules that reference the main load module
must be recataloged.

When a load module is recataloged, the resolution of addresses for global symbols and
common blocks defined within the task may also change. As a result, references to the
global symbols or common blocks by other load modules are incorrect unless they are
recataloged. Assume intermodule referencing for the task as illustrated in Figure 2-6.

In the table at the bottom of Figure 2-6, if any load module(s) are recataloged, all other
load modules which correspond to Xs in the vertical column beneath the load module
must also be recataloged. For example, if the main load module is recataloged, Al and
A2 must be recataloged. If Al and A2 are recataloged, all load modules must be
recataloged.

As a general rule, partial catalogs (with option 2 or RECATALOG in single file mode) are
only practical when the load modules are executed in the single point of call load and
execute mode. When the overlays consist of collections of independently called
subroutines, a change in size of any subroutine will invalidate all linkages to all
subroutines above the one changed in the load module.

2.14 Cataloging a Nonsegmented Task

Cataloging a nonsegmented task is similar to cataloging the main load module of a
segmented task.

2-24
Cataloger (CATALOG)

Usage
MPX-32
Utilities

[-,

~J

o

C·.'
/

I
81

MPX-32
Utilities

MAIN

Ai

A2

81

82

83

84

85

I

Ai

I
I

82

MAIN

X

X

MAIN

I

I
83

LOAD MODULE REFERENCED

Ai A2 81 82

X X

X X

X

X

X

X

X

Figure 2-6. Recataloging Illustration

Cataloger (CATALOG)
Usage

A2

I
84 85

83 84 85

X X X

87D4109

2-25/2-26

('
ill'

"'J

C"'''"
I, ... ~

SECTION 3 - DIRECTIVES

3.1 Introduction

CATALOG directives are summarized in the Overview section and described in detail in
this section.

All CATALOG directives begin in column one. Most directives can be abbreviated to
four characters. Valid abbreviations are indicated by underlining.

Legal delimiters between directive parameters are commas or blanks. Commas need to
be used only where shown.

3.2 Directive Order Requirements

The following directives can appear as needed in any order after the $EXECUTE
CA T ALOG directive and before the first BUILD/CATALOG directive. They cannot be
used after the first BUILD/CATALOG directive.

ABSOLUTE
ALLOCATE
ASSIGN
ASSIGNI
ASSIGN2
ASSIGN3
ASSIGN4
BUFFERS
CONNECT
ENVIRONMENT

EXTDMPX
FILES
LMPATH
MOUNT
OPTION
RECATALOG
SEGFILES
SPACE
SYMTAB
VOLUMES

Note: When CONNECT directives require location of a Datapool partition definition,
the LMPATH target volume/directory will be searched only if the LMPATH
directive precedes the CONNECT directives.

These directives supply parameter values and static resource requirements to the task
being cataloged. Many of these directives are similar in syntax and function to TSM
directives. Directives such as ASSIGN, ALLOCATE, OPTION, etc. entered before the
$EXECUTE CATALOG directive affect the execution of the CATALOG task. Directives
entered after the $EXECUTE CATALOG directive affect the user task being built.

The following directives appear as required in the order shown after the
BUILD/CAT ALOG directives:

EXCLUDE
INCLUDE

{
PROGRAM t
PROGRAMX)

MPX-32
Utilities

Cataloger (CATALOG)
Directives 3-1

ABSQ.UTEI ALLOCATE

When cataloging overlay load modules, the following directives appear as required in the ill
order shown for each overlay and following the directives for the root: '--.J

{LORIGIN~
ORIGIN J
BUILD/CATALOG load module 0
LINKBACK
EXCLUDE
INCLUDE

{PROGRAM ~
PROGRAMXJ

The directive stream is terminated by:

EXIT

A directive line which contains an asterisk (*) in column one is treated by CATALOG as a
comment. Comment lines may appear anywhere between the $EXECUTE CATALOG
directive and the EXIT directive. See Section 5 for examples.

3.3 ABSQ.UTE Directive

The ABSOLUTE directive builds an absolute load module. An absolute load module is one
that requires no relocation by MPX-32 at load time. The base address specified must be
higher than MPX-32 and the TSA. If the base address creates an overlap between the
task and MPX-32 or the task's TSA, the task will not load. When the task is loaded at the
specified address, memory between the end of the TSA and the start of the task is
allocated to the task and is available for use by the task.

The CSECT origin is not affected by this directive. The transient area option on the
CATALOG and BUILD directives (TRA=) has no effect when the ABSOLUTE directive is
used. Multiple ABSOLUTE directives are not allowed.

Syntax:

ABSOLUTE [base]

base is a hexadecimal logical address specifying the base address of the task. This
address is rounded up to the nearest 512 word boundary. If no base is supplied,
the default is a value of 40000(16)'

3.4 ALLOCATE Directive

The ALLOCATE directive increases the memory allocation for a task at execution time.

If the ALLOCATE directive is used when cataloging a task, additional static memory is
allocated every time the task is run. The allocation cannot be reduced at run time or by
dynamic service calls.

3-2
Cataloger (CATALOG)

Directives
MPX-32
Utilities

o

ALLOCATE (Cont.)! ASSIGN

Syntax:

ALLOCA TE bytes

bytes specifies the hexadecimal number of additional bytes to allocate to the task

3.5 ASSIGN Directive

The ASSIGN directive supplies default assignments for logical file codes used by the task
being cataloged. Assignments for a task must be cataloged with the main load module.

Syntax:

ASSIGN lfc TO

SBO
SLO
SYC
SGO
@ANSITAPE(lvid)file
pathname
RID=resid .
TEMP[= (volname)]
DEV=devmnc
LFC=lfc

[FORMAT =format] [SIZE=blocks]

[SHARED= boot] [GENERA TION=gennum] rGENVERSION=genvum] [BSIZE=bsize]
[RECLENGTH=recsize] [ACCESS=([READHWRITE] [MODIFY] [UPDA TE] [APPEND])]
[BLOCKED= boot] - - N - -

[EXPIRE = {+~:~:}] [~~H] DENSITY= ~oo rpROTECT = {~ ••• z}]
1600 ~
6250

[MUL TIVOL=number] [ID=id] [BBUF =buffers]

SBO

SLO

SYC

SGO

@]ANSITAPE

lvid

file

pathname

resid

volname

MPX-32
Utilities

treat resource as System Binary Output

treat resource as System Listed Output

treat resource as a System Control file

treat resource as a System General Object file

treat resource as an ANSI labeled tape

is the one- to six-character logical volume identifier previously
mounted by the ANSI labeled tape AMOUNT utility

is a one- to seventeen-character file identifier

is the pathname to be associated with the resource

is a unique resource identifier (including the volume name, creation
date, creation time, resource descriptor block, resource type, and
code) returned by the system when a resource is created

is the volume name on which temporary space is to be allocated. If
not specified, the default is any volume.

Cataloger (CATALOG)
Directives 3-3

ASSIGN (Cont.)

devmnc

lfc

format

blocks

SHARED

gennum

genvum

bsize

recsize

ACCESS

3-4

is the device mnemonic of a configured peripheral device. See
Appendix A.

is a one- to three-character logical file code used in the task. For an
ANSI labeled tape, only one LFC can be assigned to an lvid. Before
further assignments can be made, the M.DASN service must be used.

is the ANSI labeled tape record format. If not specified, the default
for write access is D. For read access, the format is read from the
tape. The formats are:

Format
F
o
S

Description
Fixed length
Variable length
Spanned

specifies the initial size, not greater than 65,535 blocks, of a file in
logical blocks. If not specified, the default is 16 blocks. If EOM is
encountered, the file extends automatically. This option is only valid
when used with the TEMP parameter.

if yes (Y) is specified, the resource is explicitly shared. If no (N) is
specified, the resource is exclusive. If not specified, the default is
implicitly shared. This option is only valid when used with the
pathname, RID, TEMP, and DEV parameters.

is the one- to four-decimal digit ANSI labeled tape file generation
number. On input (read access), this number must match the
generation number of the ANSI tape file that is being assigned. On
output (write, update, or append access), this value becomes the
generation number of the new ANSI tape file. If not specified, the
default is one on output; no check on input.

is the one- or two-decimal digit ANSI labeled tape file generation
version number. On input (read access), this value must match that of
the ANSI tape file. On output (write, update or append access), this
value becomes the generation version number of the new ANSI tape
file. If not specified, the default is zero on output; no check on input.

is read from the ANSI labeled tape on read access. For other types of
access, the value specifies the byte size of each data block including
the padding on an ANSI labeled tape. A maximum bsize of 2048
provides sufficient space for ANSI tape-switch label information after
the physical end-of-tape marker. If not specified, the default is 2048
bytes.

is read from the ANSI labeled tape header on read access. For other
types of access, this value specifies the record size for fixed length
records or the maximum record size for spanned and variable length
record formats. The maximum size for recsize is bsize. If not
specified, the default is 80.

specifies the type of access for resource. This must be a subset of
access allowed at resource creation. If not specified, the default is
the access specified at resource creation. This option is only valid
when used with the @ANSITAPE, pathname, RID, TEMP, and DEV
parameters.

Cataloger (CATALOG)
Directives

MPX-32
Utilities

· ' ~/

C'/
/'

o

BLOCKED

EXPIRE

date

+days

PRINT

PUNCH

DENSITY

PROTECT

MPX-32
Utilities

ASSIGN (Cont.)

For ANSI tapes, only read, write, update and append can be
specified. The ANSI default is read. ACCESS for ANSI labeled tapes,
is as follows:

Value
R
W
A
U

Description
Read existing file
Create file at first unexpired file on tape
Create file at end of tape
Overwrite existing file with a new file of the same
name

if yes (Y) is specified, the resource is explicitly blocked. If no (N) is
specified, the resource is explicitly unblocked. If not specified, the
default is blocked. This option is only valid when used with the
(8)ANSITAPE, pathname, RID, TEMP, and DEV parameters.

specifies the termination date of an ANSI labeled tape file. If the file
has a termination date that is later than the file that physically
precedes it, the termination date is identical to the termination date
of the preceding file. If a file has a termination date that is earlier
than the file that physically precedes it, the files will expire on the
earlier termination date. If not specified, the default is +30 days
from creation.

specifies the date after which an ANSI labeled tape file can be
overwritten. The date is given in ASCII format--YYDDD where YY is
the year and DOD is the day number within the year (January 1 is
001). If the date is 00000, or a date prior to the current date, the file
has been terminated and is no longer accessible.

specifies the number of days after the creation date that an ANSI
tape file can be overwritten. This number must be preceded with a
plus (+) when entered. If not specified, default is +30 days.

WARNING: If the number of days is not preceded by a plus (+), the
number entered can be read as the date.

indicates the file is to be printed after deassignment. This option is
only valid when used with the pathname, RID, and TEMP parameters.

indicates the file is to be punched after deassignment. This option is
only valid when used with the pathname, RID, and TEMP parameters.

specifies density of high speed XIO tape. If not specified, the default
is 6250 BPI. This option is only valid when used with the DEV
parameter.

specifies protection for new ANSI labeled tape files. Zero specifies
owner only access. A ••• Z are reserved by the ANSI specification for
installation-specific protection. MPX-32 treats A •• Z as owner-only
protection. If the correct protection value is not specified when using
an ANSI labeled tape, an I/O error occurs. If a user signs on as
'system', any protection value or owner name written by J.LABEL can
be overridden. If not specified, the default is no protection.

Cataloger (CATALOG)
Directives 3-5

ASSIGN (Cont.)

MULTIVOL

ID

buffers

Usage:

is a volume number for a multivolume tape. If not specified, the
default is zero (not mUltivolume). This option is only valid when used
with the DEV parameter.

is an identifier for an unformatted medium. If not specified, the
default is SCRA (scratch). This option is only valid when used with
the DEV parameter.

is the number of 192W blocking buffers if using a large blocking
buffer. If not specified, the default is one. This applies only to
permanent disk files.

ASSIGN SYM TO DEV=M9 DENSITY=800 BLOC=Y

ASSIGN SGO TO OUTFILE

ASSIGN IN TO MYFILE BBUF =10

Notes:

1. To continue parameters over more than one input line, a hyphen (-) must terminate
the current input line. A blank space is required before the hyphen as shown in the
following example:

ASSIGN ABC TO DEV=M9 DENSITY=800 -
BLOCKED=Y

2. An individual parameter cannot be split between input lines.

3-6
Cataloger (CATALOG)

Directives
MPX-32
Utilities

()

c\

ASSIGNl

3.6 ASSIGNl Directive

The ASSIGNl directive supplies default file assignments for logical file codes used by the
task heing cataloged. This directive is for compatibility with MPX-32 l.x. Its use is not
recommended.

Syntax:

ASSIGNl lfc=filename [
,password
,password,U [Ifc~ ••• l]

lfc

filename

password

U

Usage:

"U

is a logical file code used in the task to denote a generic input or output
source

is the name of a permanent disc file to assign to the LFC

Anyone of the optional parameters following the file name may be
entered in the order shown in the syntax statement. Commas separate
options. If an option is omitted, the comma must be supplied:

filename"U

is ignored

indicates the file is unblocked. If not specified, the default is blocked.

ASSIGNl LIB=LIBRAR Y "U DIR=DIRECTOR Y "U

ASSIGNl OT =OUTFILE IN=INFILE,MYPASS

MPX-32
Utilities

Cataloger (CATALOG)
Directives 3-7

ASSIGN2

3.7 ASSIGN2 Directive

The ASSIGN2 directive supplies default system file assignments for logical file codes.
This directive is for compatibility with MPX-32 l.x. Its use is not recommended. At run
time, an LFC assignment to a system file results in the creation of one of the following
types of files for use by the task:

SBO

SLO

SYC

SGO

Syntax:

System Binary Output - A temporary file for buffering output to the
device defined at SYSGEN or by the OPCOM SYSASSIGN directive as
POD (Punched Output Device).

System Listed Output - A temporary file for buffering output to the
device defined at SYSGEN or by the OPCOM SYSASSIGN directive as
LaD (Listed Output Device).

System Control - A temporary system file associated only with jobs
processed in the batch mode (one SYC per job). SYC is used for buffering
input from the device defined at SYSGEN or by the OPCOM SYSASSIGN
directive as SID (System Input Device). Tasks not designed to run only in
the batchstream should not make assignments to SYC. Batch tasks can
use SYC to input data records.

System General Object - A system file associated only with jobs processed
in the batch mode. SGO is a permanent file used to accumulate object
code. The SGO file is deleted after the job is complete.

ASSIGN2Ifc=

~ SBO,cards ~ nfc= •••]

Ife

SBO

cards

SLO

printlines

SYC

SGO

3-8

SL. O,printlines ..
SYC
SGO

is a logical file code used in the task to denote a generic input or output
source

is the System BinaryOutput file

is the number of cards expected as object deck output. This number
determines the size of the SSO temporary file.

is the System Listed Output file

specifies the number of print lines required for listed output. This number
determines the size of the SLO temporary file.

is the System Control file. Use only if the task runs solely in the batch
mode.

is the System General Object file

Cataloger (CATALOG)
Directives

MPX-32
Utilities

l
"' .. '\

. '\.. /

o

ASSIGN2 {Cont.)1 ASSIGN3

Usage:

A2INN=SYC
A2 OT =SLO, 100 OT2=SBO,50

3.8 ASSIGN3 Directive

The ASSIGN3 directive supplies default device assignments for logical file codes used by
the task being cataloged. It also assigns a temporary disc file. This directive is for
compatibility with MPX l.x. Its use is not recommended.

Syntax:

ASSIGN3 lfc=devmnc, rblocks] [,U] [lfc= •••]
, Lreel ,[vol]

Ifc

devmnc

blocks

reel

vol

U

Usage:

is a logical file code used in the task to denote a generic input or output
source

is the device mnemonic of a configured peripheral device

specifies the number of disc blocks (192 words) to allocate for the file

specifies a one to four character identifier for the reel. If not specified,
the default is SCRA (scratch) •

indicates the volume number for a multivolume tape. If not specified, the
default is 0 (not multivolume).

indicates that tne tape or disc is unblocked. If not specified, the default
is blocked.

Tape: A3IN=M91000,SRCE"U OT=PT

Disc: A3 IN=DC,20

MPX-32
Utilities

Cataloger (CATALOG)
Directives 3-9

ASSIGN4/BLFFERS

3.9 ASSIGN4 Directive

The ASSIGN4 directive associates one or more logical file codes used by the task being
cataloged with an existing LFC assignment. This assignment remains for the associated
file or device even if the original assignment is deallocated. This directive is for
compatibility with MPX 1.x. Its use is not recommended.

Syntax:

ASSIGN4 lfc=lfc [lfc=lfc]

lfc=lfc

Usage:

A2 6=SYC

is a pair of logical file codes. The first LFC is the new assignment and the
second is the LFC already associated with a file or device in any previous
ASSIGN directive, including ASSIGN4. Any number of LFC to LFC
associations can be established.

A3 IN=M91000,REEL
A4 OUT=IN
A4 IN2=6

3.10 BUFFERS Directive

The BUFFERS directive specifies the number of blocking buffers required to support
dynamically assigned blocked files in the task being cataloged.

Syntax:

BUFFERS buffers

buffers is the number of 768-byte blocking buffers required. The range is 0-255. If
not specified, the default is three.

If option 19 is set, the number of buffers specified is added to the three buffers required
by the Debugger. If option 19 is not set, the number of buffers specified is the number of
buffers reserved.

NOTES:

F or shared tasks, BUFFERS supplies the total blocking buffer allocation for both static
and dynamic file allocations.

The total buffer count from all sources (static, dynamic, and run time) is limited to 254
buffers at execution time.

3-10
Cataloger (CA T ALOG)

Directives
MPX-32
Utilities

{--,
\\~

" .. ~. ", ,

\..J'

c···."'>\:

,/

BUILD/CATALOG

3.11 CATALOG and BUILD Directives

The CATALOG and BUILD directi ves supply the load module name plus other control
inforl1ation for the task being built. CATALOG creates a file whose name is equal to
the load module name in directory @SYSTEM (SYSTEM). BUILD creates a file whose
na:l1e is equal to the load module name in the default working volume and directory. To
create a load module file with a di fferent file name, directory name, or volume name,
use the LMPATH directive. See the LMPATH directive and Table 3-1 for a summary.

When cataloging the main module of a task, CATALOG and BUILD specify the task's
privilege, priority, and overlay transient area. The optional parameters can be specified
in any order.

BUILD and CATALOG cannot be used in the same CATALOG job.

Syntax:

{ CAT ALOG} loadmod
BUILD

[~J [TRAosize] [priority] [NOM] [NOP] [SYM]

load mod

P,U,O

TRA=size

priority

NOM

NOP

SYM

MPX-32
Utilities

is the name of the load module being built and, if not supplied by
LMPATH, the name of the file which contains the load module. The
name can be a maximum of eight characters. File names that begin with
the letters SYSG are loaded with a TSA address of X'60000'. This
facilitates SYSGEN's remapping between host and target systems.

for the main module only, specify P for a privileged task or U for an
unprivileged task (default). For an overlay module, specify O. Overlays
assume the privileged or unprivileged status of the main load module.

is used with the main load module to specify the hexadecimal number of
bytes to allocate for the overlay transient area below the main load
module. The default is an area above the main load module which is
large enough to accommodate all overlay load modules cataloged in the
same run as the main load module.

for main load module only, specifies a base priority in the range 1 to
64. If not specified, the default is 60. Overlay load modules assume the
priori ty of the related main load module. If the BUILD or CATALOG
directive pertains to an overlay module, do not specify priority.

The priority at which a task executes depends on how the task is
activated (on-line, batch, or real time). In real time, the task maintains
its cataloged priority. If activated in TSM or in the batchstream, its
priority changes to the SYSGEN-defined priorities of either interactive
or batch.

inhibits printing a main or overlay load module map

inhibi ts output of a main or overlay load module to the file specified as
the load module file

saves the symbol table for the main load module on a device or file.
This option is used when cataloging load modules of a segmented task in
different CATALOG runs. If the module is an overlay module, do not
specify SYM.

Cataloger (CATALOG)
Directives 3-11

Usage:

BUILD
CATALOO

L0AD1
L0AD2

P TRA=40000
N:P

CATALOG (Cont.)/CONNECT

3.12 CONNECT Directive

The CONNECT directive establishes a connection between a specified Datapool
(DATAPOOL or DPOOLOO through DPOOL99) partition and its corresponding Datapool
dictionary. The parameters specified with this directive supply CATALOG with
information on which dictionary to access when a Oatapool variable is referenced in the
object code.

Syntax:

CONNECT pathname TO partition [[PROTGRAN=]

number [FIRSTPAGE=] start]

pathname

partition

number

start

is the Datapool dictionary pathname

is the Datapool partition (DATAPOOL, DPOOLOO - DPOOL99)

is the number of 512-word protection granules included in the partition.
If not specified, the partition must be defined prior to catalog time.

is the beginning page number of the partition. If not specified, the
partition must be defined prior to catalog time.

The dictionary for OAT APOOL may be statically assigned to LFC DPD. This is provided
for compatibility; its use is not recommended.

The CONNECT directive may be continued on a subsequent line by entering a hyphen (-)
as the last nonblank character on a line. The hyphen must be preceded by a blank.

When CONNECT directives require location of a Datapool partition definition, the
LMPATH target volume/directory will be searched only if the LMPATH directive
precedes the CONNECT directives.

Usage:

CONNECT @VOLUME(SOME DIR)POOLOO.DICT TO DPOOLOO -
PROT=4 FlRST=l92 -

3-12
Cataloger (CA T ALOG)

Directives
MPX-32
Utilities

!c-)

:'0

C··-~.~'· . ',,!

ENVIRONMENT

3.13 ENVIRONMENT Directive

The ENVIRONMENT directive establishes residency, memory execution class, sharing
characteristics, and other environmental parameters for A. task. The entries with this
directive supply information for the load module information area (preamble) in the main
load module.

If the ENVIRONMENT directive is not used, a task is nonresident and executable in any
available memory class (S, H, or E), UNIQUE, MAP8192, and DEBUGGABLE.

Syntax:

ENVIRCNvENT [RES IPENT] ,H ,S~ED I,Ml\P204Sl l' E] [LNlGUEj

RESIDENT

E

H

S

UNIQUE

SHARED

MULTI

MAP2048

MAP8192

NODEBUG

Usage:

,S ,MJLTI ~~PB192J [,N:DEBUG]

speci fies the task is resident in memory and cannot be swapped

executes in class E memory only. If class E is unavailable, delay
execution until class E is available.

executes in class H or faster memory. If both class Hand E memory are
unavailable, delay execution until either one is available. If the requested
class of memory is not installed on the system, the first lower speed
memory available is allocated to the task.

executes in any class of memory available (H, 5, or E). Class 5 is the
default if no memory class is specified.

speci fies the task is unique and not available for multiple concurrent
activations. Only one copy of the load module can be active in the system
at one time. This is the default and can be used with sectioned or
nonsectioned tasks.

copies the C5ECT area of a sectioned task into physical memory once and
copies D5ECT as needed for sharing. Use only with a sectioned task.

multicopies the entire load module into physical memory as needed for
concurrent activations. Can be used with a sectioned or nonsectioned
task.

indicates the map size of the target system is 2KW. This establishes the
memory allocation and bounding requirement for the C5ECT in sectioned
tasks to be 2KW. This is the default if a map size is not specified.

indicates the map size of the target system is BKW. This establishes the
memory allocation and bounding requirement for the CSECT in sectioned
tasks to be BKW.

indicates the Debugger cannot be attached to the load module. If not
speci fied, the Debugger can be attached.

ENVIRONMENT RESI,H,MUL TI,MAP204B

MPX-32
Utilities

Cataloger (CATALOG)
Directives 3-13

EXCLlDE/EXIT /EXTDMPX

3.14 EXCLUDE Directive

The EXCLUDE directive excludes object modules in the system or user libraries from the
load module being cataloged, even though the modules contain definitions for referenced
global symbols.

Object modules INCLUDEd from a library during cataloging may also reference the
EXCLUDEd object modules. The references are ignored and the specified object modules
remain excluded.

Object modules are excluded by specifyi'lg the referenced glohal symbol name. All
global symbols defined in an object module must be excluded for the object module to be
excluded from the load module.

Syntax:

EXCLUDE name rname] •••

name is the name of a global symbol in the object module

3.15 EXIT Directive

The EXIT directive terminates CATALOG processing. In interactive mode, control
returns to TSM. In batch mode, processing continues with the next JCL statement.

Syntax:

EXIT

3.16 EXTDMPX Directive

The EXTDMPX directive positions the extended portion of MPX-32 in the logical address
space of the task being cataloged. This directive pertains to the expanded execution
space option of MPX-3Z.

Syntax:

EXTDMPX

MINADDR

MAXADDR

mapblock

{
MINADDR }
MAXADDR
[MBLK] = mapblock

locates the extended portion of MPX-32 at the top of the task service
area, below the DSECT

locates the extended portion of MPX-3Z at the top of the task's
extended data space

is a 1 to 4 digit decimal value between 64 and 2047 that specifies a
particular map block in the task's logical address space where the
extended portion of MPX-3Z is to be located

At run time, values for mapblock below 64 (other than MINADDR) or above MAXADDR
cause an abnormal termination in task activation.

3-14
Cataloger (CA T ALOG)

Directives
MPX-32
Utilities

{-~

'0

C··.~\ J

c\

EXTDMPX (Cont.)/FILES

F or shared tasks, the cataloged value of EXTDMPX cannot be overridden by the
EXTDMPX TSM directive.

This directi ve has no effect if the expanded execution space option is not in use.

3.17 FILES Directi ve

The FILES directive specifies the number of resources (files or devices) required for
dynamic assignments in a task.

Syntax:

FILES number

number is the number from a to 255 of dynamic resource assignments required
for the task. If not specified, the default is five.

If option 19 is set, the number specified is added to the five files required by the
Debugger. If option 19 is not set, the number of files specified is the number of files
reserved.

Notes:

MPX-32
Utilities

For shared tasks, this specifies the total number of resources from all sources
(run time, static, and dynamic) that may be allocated.

The total file count at run time may not exceed 248.

Cataloger (CATALOG)
Directives 3-15

INCLUDE/LINKBACK/LMPATH

3.18 INCLUDE Directive

The INCLUDE directive includes object modules fro'l1 the system or user library in the
load module being cataloged, even though the modules are not referenced. If the
PROGRAMX directive is used to suppress SGO as an input source, INCLUDE must be
used to retrieve object modules from a library.

Syntax:

INCLUDE name [name] •••

name is the name of a global symbol in the object module

3.19 LINKBACK Directive

The LINKBACK directive specifies overlay load modules at lower levels for backward
links when cataloging an overlay load module. Forward links from lower to higher level
overlay load modules are established automatically by CATALOG. LlNKBACK allows
resolution of global symbol references in the current load module to definitions in the
specified lower level overlays. In addition, if Option 3 is set, references to local
commons in the current load module are resolved by corresponding local commons in the
speci fied lower level overlays.

Syntax:

LlNKBACK loadmod Doadmod] •••

load mod is the name of an overlay load module at a lower level. More than
one name can be supplied.

3.20 LMPATH Directive

The LMPA TH directive speci fies the pathname (including the file name) of a resource in
which to store the load module(s). LMPATH is optional. If not supplied, the file name is
the load module name taken from the first BUILD/CATALOG directive. Volume and
directory are the current default or @SYSTEM(SYSTEM) as appropriate. See the
CATALOG/BUILD directive and Table 3-1 for further information.

Syntax:

LMPA TH pathname

pathname is the pathname of a file in which the load module is cataloged

When CONNECT directives require location of a Datapool partition definition, the
LMPATH target volume/directory is searched only if the LMPATH directive precedes the
CONNECT directi ves.

3-16
Cataloger (CATALOG)

Directives
MPX-32
Utilities

(----'
~

o

,,--- /

LORIGIN/MOUNT

3.21 LORIGlN Directive

The LORIGIN directive establishes a new overlay level and origin. The default origin (no
parameter specified) is above the largest overlay load module at the preceding level.
LORIGIN does not have to be used for the lowest level of overlays, but must be used for
all higher levels.

If the second or higher level overlay is being replaced when recataloging an overlay load
module, the load module specified in the LORIGIN directi ve must have been previously
cataloged by a BUILD or CATALOG directive within the same CATALOG run.

Syntax:

LORIGIN

X bytes

loadmod

[X byteS]
loadmod

is the hexadecimal number of bytes to offset this level from the beginning
of the overlay transient area. The value is specified by X, one or more
blanks, and the number of bytes in hexadecimal.

specifies the override origin at the end of a specific overlay load module
at the previous level. This overlay does not have to be the largest overlay
at that level.

3.22 MOUNT Directive

The MOUNT directive specifies non-public volume requirements for the task being
cataloged.

Syntax:

~OUNT volname ON devmnc [SYSID=id] [OPTIONS=([PUBLIC] [,NOMSG])]

[SHARED = ~~}]
volname

devmnc

id

OPTIONS

SHARED

Usage:

is the name of the volume to be mounted

is the device mnemonic of a configured peripheral device

specifies the port identifier required for multipart volumes only. Must be
MPx where x is a single hexadecirnal digit.

speci fies options for the mounted volume. If PUBLIC is specified, the
volume is to be mounted for public use (valid only if task has System
Administrator attribute). If not specified, the default is nonpublic. If
NOMSG is specified, a mount message is not displayed on the operator's
console. If not specified, a mount message is displayed.

specifies sharing attributes for the volume. If yes (Y) is specified, the
resource is explicitly shared. If no (N) is specified, the resource is for
exclusive use. If not specified, the resource is implicitly shared.

MOUNT DIR1 ON DM0202 SHARED=Y

MPX-32
Utilities

Cataloger (CATALOG)
Directives 3-17

OPTION

3.23 OPTION Directive

The OPTION directive specifies up to 32 options that become permanent attributes of
the load module being cataloged. Options 1 to 32 set bits in the option word in the task's
TSA. The bit set is determined by subtracting the option number from 32.

When activated, the task can use the M.PGOW service to return the contents of the TSA
option word, check the bit settings, and take action as required.

Options can also be specified before a task is run in the interactive or batch mode.
Options supplied at run time may override cataloged options or may be added to (ORed
with) cataloged options. Options 1 to 20 are task-dependent. Options 21 to 32 are
system-defined and available to all tasks. Refer to the MPX-32 Reference Manual for
more information.

Syntax:

OPTION n En] •••

n

3-18

is a number from 1 to 32 which sets thE;} corresponding bit in the TSA
status word. CA T ALOG options are described in Section 1. System
options for the load module can be specified by name or number:

Option
Number

21

22

23

24

25

26

Option
Name

PROMPT

LOWER

TEXT

DUMP

CPUONLY

IPUBIAS

Description

displays the first three characters of the.
task name (load module name) before
reading from the terminal when the task is
run in the interacti ve mode

inhibits converting lower case to upper
case. This option is only valid if the task
is run in the interactive mode.

echoes text to the user terminal
(interactive) or SLO file or device (batch)
as it is read from the SYC file

specifies that if the task aborts a dump of
the task's area of memory will be
generated

executes the task on the CPU only

executes the task on the IPU if the task is
IPU-compatible

Cataloger (CATALOG)
Directives

MPX-32
Utilities

[~,

o

, I 0·· -~"'." .. '

ORIGIN/PASSWORD/PROGRAM/PROGRAMX

3.24 ORIGIN Directive

The ORIGIN directive establishes a new origin Clevel unchanged) for subsequent overlay
load modules. It can be used to override the default origin for a set of overlays at a
particular level. The default origin (no parameter specified) is above the largest overlay
load module at the preceding level.

Syntax:

ORIGIN

X bytes

loadmod

rX bytes 1
~oadmodJ

is the hexadecimal number of bytes to offset this level from the
beginning of the overlay transient area. The value is specified by X,
one or more blanks, and the number of bytes in hexadecimal.

specifies the new origin to be at the end of a specific overlay load
module at the previous level. The specified overlay does not have to be
the largest overlay at that level. If replacing the second or higher
level overlay when recataloging an overlay load module, the loadmod
name cannot be used unless the referenced load module has been
previously cataloged by a BUILD or CATALOG directive within the
same CATALOG run.

3.25 PASSWORD Directive

The PASSWORD directive is included for compatibility and is ignored by CATALOG.
Items following this directive on the same line are ignored.

Syntax:

PASSWORD

3.26 PROGRAM Directive

The PROGRAM directive specifies object modules to include from SGO in a main or
overlay load module. If omitted, all object modules on the file or device assigned to SGO
are included.

Syntax:

PROGRAM objmod [objmod] •••

objmod is the name of the object module (such as, program/subroutine name) to
include. More than one name can be specified.

3.27 PROGRAMX Directive

The PROGRAMX directive excludes all object modules from SGO when cataloging a load
module. An INCLUDE directive is required to get object modules from a library if the
PROGRAMX directive is used.

Syntax:

PROGRAMX

MPX-32
Utilities

Cataloger (CATALOG)
Directives 3-19

RECATALOG/SEGFILES/SPACE

3.28 RECA T ALOG Directive

The RECA T ALOG directive is used when cataloging a segmented task in phases or when
recataloging one or more overlays of a segmented task. RECA T ALOG can only be used
wi th single file load modules. The load module file must exist if RECA T ALOG is used.

Syntax:

RECA T ALOG [loadmod]

loadmod is the one- to eight-character name of the permanent disc file containing
the load modules. If LMPATH supplies a file name, loadmod is ignored.

3.29 SEGFILES Directive

The SEGFILES directive specifies the number of noncontiguous disc files required for use
by the task. If this directive is not used, the default is the number of files specified in
the FILES directive. If neither the SEGFILES or FILES directives are specified, the
default is five.

Syntax:

SEGFILES number

number is the number of noncontiguous disc files required by the task. This number
must not be greater than the number specified in the FILES directive.

If option 19 is set, the number specified is added to the five files required by the
Debugger. If option 19 is not set, the number of files specified is the number of files
reserved.

3.30 SPACE Directive

The SPACE directive allows the potential maximum task size to be increased above the
default 2MB size.

Syntax:

SPACE

increment

mapblock

I increment I
MBLK = mapblock ~

is a 1 to 2 digit number that specifies the maximum task size in one
megabyte increments. The range is from 3 to 16MB.

is a 1 to 4 digit decimal number that specifies the maximum task size in
map blocks. The range is from 256 to 2048.

The SPACE directive establishes the maximum size to which a task can grow. No
memory is actually allocated to the task.

'For shared tasks, the cataloged value can not be overridden with the TSM SPACE
command.

The SPACE directive has no effect on tasks executed on a CONCEPT 32/27, or
CONCEPT 32/87 system.

3-20
Cataloger (CATALOG)

Directives
MPX-32
Utilities

!(-)J , '

U

SYMT AB/VC1UMES

3.31 SYMTAB Directive

The SYMTAB directive loads the symbol table containing the names of all common
blocks, defini tions, and references from a previous CATALOG session. The symbol table
is used when cataloging a segmented task in phases or when recataloging a segmented
task. If the SYMTAB directive is used, the SYMTAB file or device must be assigned to
logical file code SYI prior to executing CATALOG.

Syntax:

SYMTAB

3.32 VOLUMES Directive

The VOLUMES directive specifies the number of nonpublic volumes that can be
dynamically mounted by the task at one time.

Syntax:

VOLUMES number

number

MPX-32
Utilities

is the number of entries to be reserved. This number is in addition to the
current working volume plus any MOUNT directives processed. If not
specified, the default is zero.

Cataloger (CATALOG)
. Directives 3-21

LMPATH
Condition

Table 3-1.

LMPATH/BUILD/CATALOG Interaction

Name and Location of
Load Module File

BUILD X CA T ALOG Y

Execution
Directives

NO LMPATH @working(working) X $@working(working) X (or)

LMPATH is:
@VOL(DIR)

@VOL(DIR)X

@SYSTEM(SYSTEM) Y $@SYSTEM(SYSTEM) Y

@VOL(DIR)Y
$@VOL(DIR) X (or)
$@VOL(DIR) Y

LMPATH is: @VOL(DIR)FILENAME @VOL(DIR)FILENAME $@VOL(DIR)FILENAME
:@VOL(DIR) FILENAME

Notes:

• X and Yare limited to eight characters and may contain any printable characters if
LMPA TH has supplied the file name. If this field will be used as the file name, then
normal MPX-32 rules for file names apply. This field may optionally be enclosed in
single quotes (not counted in the eight characters).

• FILENAME may be up to 16 characters long and adheres to normal MPX-32 rules for
file names.

• Load modules are placed in execution by referencing the file that contains them.

• By default, the execution time task name is the name of the file that contains the load
module (truncated to eight characters).

,....,. ~.t.. __ ' ____ /"""1\""1\1 r""""'\
...... ClI.CllUyCl\'--M I ML,-",U/

3-22 Directives Utilities

[,
'~

o

(.

SECTION 4 - ERRORS AND ABORTS

4.1 Error Overview

CAT ALOG reports error conditions as (WARNING) or «FATAL» depending on
severity. Fatal type errors may cause immediate termination of processing or may allow
processing to continue. In either case, any fatal error will inhibit the generation of a
load module file, and will set the task abort flag. Warning type errors never cause
process termination and inhibit the production of a load module file only in certain cases
and when option 18 is set.

These cases are conditions that CATALOG has resolved, but there is doubt as to the
correctness and/or completeness of the load module. In such cases, the process abort
flag is set; if option 18 is set, the load module file is not updated. By examining the
flagged conditions, the usability of the load module can be determined. If the abort flag
is set, CATALOG always indicates, at termination whether the load module file has been
updated or not.

4.1.1 Phase One Errors

During phase one (the linking phase) CATALOG processes the directives and performs the
first pass over the object code. Every effort is made to complete phase one and report
as many problems as possible.

Directi ve errors are reported by a message of the form:

ERROR IN FIELD n: description

which is displayed immediately under the incorrect directive. The following example
demonstrates how field n is assigned:

Directive:
Field: n=

BUILD
1

TESTMOD
2

P
3

TRA=lOOO
4 5

NOM
6

If appropriate, a second line is displayed which provides more information on the error
and/or possible corrective actions.

Errors in the object code are of two origins:

physically corrupted records which fail the tests for record type, checksum, or
sequence
logically incorrect operations which, in the context of this run, direct CATALOG to
perform an inconsistent operation

Object code errors are reported in the following form:

LFC: lfc
MODULE: module
PROGRAM: program, OBJECT REC X'nnn' - description

MPX-32
Utilities

Cataloger (CATALOG)
Errors and Aborts 4-1

lfc is the logical file code presenting the origin of the record (SGO or a
library)
is the load module currently being linked module

program
nnn
description

is the name of the program element currently being processed
is the program's logical object record number
indicates the nature of the error

A blank program name field indicates that the error occurred while processing the first
record of a new program element.

All directive and object code errors detected in phase one are fatal. CATALOG issues a
fatal message and terminates at the end of phase one without updating the load module
file.

4.1.2 Phase Two Errors

During phase two (the building phase) a fatal error generally causes immediate
termination of CATALOG. Warning errors are reported and always result in an updated
load module file, unless option 18 has been set.

4.1.3 Errors from MPX-32 (Phase One and Two)

When input/output operation errors occur, the File Control Block (FCB) status word,
logical file code, and other pertinent information are displayed. Such errors usually
indicate a hardware failure in the I/o device involved. See the MPX-32 Reference
Manual Volume I for a description of the FCB status word (word 3) and its interpretation
for different devices.

CATALOG also reports errors returned from MPX-32 services. The MPX-32 error/abort
code is contained in a message that supplies pertinent information. To interpret the
error/abort code, use the TSM $ERR directive, or consult Appendix C of the MPX-32
Reference Manual.

4.1.4 Conditions that Cause Incomplete Load Modules

The following paragraphs describe conditions that CATALOG has resolved, but there is
doubt as to the correctness and/or completeness of the load module.

Allowing incomplete load modules to be built is a feature that is provided to aid code
development. The programmer can assess the problems and decide whether the load
module is executable or usable in a debugging session.

The production of an incomplete load module can be inhibited by option 18. If the
replacement of an existing load module with a faulty one could cause problems, it is
recommended that option 18 be used.

Multiple Transfer Addresses

When the object code linked into a load module contains more than one transfer address,
CA T ALOG selects and uses the first one detected. Subsequent transfer addresses are
reported in a warning message.

4-2
Cataloger (CATALOG)

Errors and Aborts
fv''pX-3Z
Utilities

c

o

(

No Transfer Addresses

When the object code linked into a root load module contains no defined transfer address,
CA TALOG attempts to select an address. The selection criteria is:

1) The address of the first DEF ed symbol of the first program element of the load
module is selected.

2) If the first program element contains no DEFed symbols, the address of the
first noncommon word allocated in the first program element of the load
module is selected.

The selected symbol or address is displayed in a warning message and the load map
header indicates no transfer address.

Providing a transfer address allows the load module to be loaded. Even if the selected
location is incorrect, the load module can be loaded with the debugger, and execution
starts at the correct location using the appropriate DEBUG directive.

The following three conditions result from memory reference instructions for which
CA T ALOG cannot provide a valid address. The action taken by CATALOG is to replace
the instruction with a call to DEBUG. The effect of this is to cause the debugger to be
automatically loaded if the task is executed and the faulty instruction is encountered. If
the debugger is already loaded and a faulty instruction is executed, DEBUG signals a
BREAK occurrence.

1. Unresol ved External References

When a program element references an external symbol which is not defined,
CA T ALOG issues a warning message that displays the symbol name and the location
of the reference (both program and load module-relative addresses are displayed).

When an external symbol is referenced several times in one program element, the
references are linked together in the object code. The warning message issued by
CA T ALOG provides the address of all the instructions in the list.

2. Unresolved Datapool References

When a program element references a Datapool variable and that variable is not
defined in any connected dictionary, CATALOG issues a warning message that
displays the symbol name and the program and load module relative addresses of
the reference.

3. Out of Range Datapool References

When a program element references a Datapool variable whose dictionary definition
causes the generated address to be beyond the bounds of the partition definition,
CA T ALOG issues a warning message that displays the symbol name and the location
of the reference (both program and load module-relative addresses are displayed).

In the following three conditions, the executable portion of the load module is not
affected, but the requested information is missing.

MPX-32
Utilities

Cataloger (CATALOG)
Errors and Aborts 4-3

1. DEBUG Symbol Data Processing Errors

Any errors detected while DEBUG symbol data is being processed cause CATALOG
to reset option 19. Processing then continues, and a warning message is displayed.
The load module preamble will indicate that symbolic DEBUG data is not present.

2. Program Information Data Processing Errors

Any errors detected while program identification or time/date records are being
processed cause CATALOG to reset option 15. Processing continues, and a warning
message is displayed. The load module preamble will indicate that program
information data is not present.

3. SYMT AB Save File Generation Errors

Any errors detected while producing the symbol table save file cause an appropriate
warning message to be issued and the operation terminated. CA T ALOG processing
continues.

4.2 Abort Codes

CT04 UNRECOVERABLE I/O ERROR ON FILE OR DEVICE ASSIGNED TO LFC: SLO,

ST =RMXX IF ERROR ON OPEN; 10XX IF ERROR ON WRITE

Abort status includes Resource Manager (RM) status if the error occurred on open,
or IOCS (10) status if the error occurred on a write operation.

CT06 CA T ALOG EXECUTION ERRORS AS DESCRIBED ON LFC: SLO AND/OR UT

4-4

All «FATAL» errors indicate a CT06 abort status. The specific reason for the
abort displays in the listed output stream and on the terminal.

Cataloger (CATALOG)
ErrorS arid Aborts

MPX-32
Utilities

~-" ! '.\

C:

SECTION 5 - EXAMPLES

This section provides sample programming sequences illustrating the use of CATALOG.

Example 1 - Catalog Load Module in User Directory

The following example catalogs a load module named X.TST1 in the user's current
working directory:

TSM >$A5SIGN SGO TO O. TSTI
TSM >$OPTION 19
TSM >$CATALOG

(Object file to be cataloged)
(Option to include debugger symbols)

MPX-32 UTILITIES RELEASE x.x (CATALOG Rx.x.x)
(C) COPYRIGHT 1983 GOULD INC., CSD, ALL RIGHTS RESERVED
CAT> BUILD X.TSTI (Load module is built in current directory)
CAT> EXIT
TSM>

Example 2 - Catalog Load Module in User Directory

The following example catalogs a load module named X.TST2 in the user's current
working directory in file LONGFILENAME, and satisfies external references from a user
object code library:

TSM >$ASSIGN SGO TO O.TST.2
TSM >$A5SIGN LIB TO ULIB.L
TSM >$ASSIGN DIR TO ULIB.D
TSM >$OPTION 15 19
TSM >$CATALOG

(Subroutine library file)
(Subroutine directory file)

MPX-32 UTILITIES RELEASE x.x (CATALOG Rx.x.x)
(C) COPYRIGHT 1983 GOULD INC., CSD, ALL RIGHTS RESERVED
CA T> LMPATH LONGFILENAME
CA T > BUILD X. TST2
CAT> EXIT
TSM>

Example 3 - Catalog Segmented Task

The following example catalogs, with selective use of SGO, a segmented task with the
overlay structure illustrated in Figure 2-3, with default origins as illustrated in
Figure 2-4:

TSM >$A5SIGN SGO TO O.TST3
TSM >$A5SIGN SYMTO SVMFILE (File for symbol table output)
TSM >$CATALOG
MPX-32 UTILITIES RELEASE x.x (CATALOG Rx.x.x)
(C) COPYRIGHT 1983 GOULD INC., CSD, ALL RIGHTS RESERVED
CAT> BUILD X.TST3 SYM (Catalog root of program and output

symbol table to SYM)

. MPX-32
Utilities

Cataloger (CA T ALOG)
Examples 5-1

CA T > PROGRAM MAIN
CAT> BUILD Al 0
CA T > PROGRAM Al
CAT> BUILD A2 0
CA T > PROGRAM A2
CA T > LORIGIN
CAT> BUILD BI 0
CAT> PROGRAM BI
CAT> BUILD B2 0
CAT> PROGRAM B2
CAT >-BUILD B3 0
CAT> PROGRAM B3
CAT> BUILD B4 0
CAT> PROGRAM B4
CAT> EXIT
TSM>

Example 4 - Catalog Segmented Task

(Catalog overlay Al)

(Catalog overlay A2)

-(Catalog overlay B1)

(Catalog overlay B2)

(Catalog overlay B3)-

(Catalog overlay B4)

The following example catalogs a segmented task wi th the overlay structure illustrated
in Figure 2-2:

TSM>$ASSIGN SGO TO O. TST3
TSM >$ASSIGN SYM TO SYMFILE (File for symbol table output)
TSM >$CATALOG
MPX-32 UTILITIES RELEASE x.x eCA T ALOG Rx.x.x)
(C) COPYRIGHT 1983 GOULD INC., CSD, ALL RIGHTS RESERVED
CA T > BUILD X. TST3 SYM (Catalog root of program and output symbol

table to SYM)
CA T > PROGRAM MAIN
CAT> BUILD Al 0
CAT> PROGRAM Al
CAT> BUILD A2 0
CA T > PROGRAM A2
CAT> BUILD A3 0
CAT> PROGRAM A3
CAT> EXIT
TSM>

Example 5 - Replace Overlay

(Catalog overlay AI)

(Catalog overlay A2)

(Catalog overlay A3)

The following example replaces an overlay in the load module created in example 4:

TSM >$ASSIGN SGO TO 0.TST4
TSM >$ASSIGN SYI to SYNFILE (File for symbol table input)
TSM >$CA T ALoG
MPX-32 UTILITIES RELEASE x.x (CATALOG Rx.x.x)
(C) COPYRIGHT 1.983 GOUI,...D INC., CSD, ALL RIGHTS~RESERVED
CAT> SYMT AS - (Restore symbol table from SyJ) :
CAT> LMPATH @VOLUM::(DIRE~TORV) (Set directory for RECATAL9G)

5-2
Cataloge~. (CATALOG)

E>eampies

.. ;.

MPX .. 32
Utilities

SA T > RECA T ALOG X. TST3
CAT> BUILD Al 0
CA T > PROGRAM Al
CAT> EXIT
TSM>

(Replace overlay AI)

Example 6 - Catalog Overlays as Separate Files

The following example catalogs three overlays as separate files by setting the option for
multiple disc file mode:

TSM >$ASSIGN SGO TO O.TST5
T5M >$ASSIGN LIB TO ULIB.L
T5M >$ASSIGN DIR TO UUB.D
TSM >$ASSIGN SYM TO SYMFILE
T5M>$OPTION 2 (Option to create separate files for each

overlay)
TSM >$CATALOG
MPX-32 UTILITIES RELEASE x.x (CATALOG Rx.x.x)
(C) COPYRIGHT 1983 GOULD INC., CSD, ALL RIGHTS RESERVED
CA T > CATALOG X. TST5 SYM
CA T > PROGRAM MAIN
CAT> CATALOG Al 0
CA T > PROGRAM Al
CAT> CATALOG A2 0
CA T > PROGRAM A2
CAT> CATALOG A3 0
CA T > PROGRAM A3
CAT> EXIT
TSM>

MPX-3Z
Utilities

Cataloger (CATALOG)
Examples 5-3

Example 7 - INCLUDE and EXCLUDE Directive Usage

The following example illustrates the use of INCLUDE and EXCLUDE directives:

TSM >$ASSIGN LIB TO ULIB.L
TSM >$ASSIGN DIR TO ULIB.D
TSM >$CATALOG
MPX-32 UTILITIES RELEASE x.x (CATALOG Rx.x.x)
(C) COPYRIGHT 1983 GOULD INC., CSD, ALL RIGHTS RESERVED
CAT> BUILD X.TST6
CA T > EXCLUDE Al,A2,A3
CA T > INQUDE MAIN

(These subroutines will be in overlays)
(Get global symbol MAIN from the
library)
(No object code is read from SGO)

subroutine

CA T > PROGRAMX
CAT> BUILD Al 0
CA T > INQUDE Al
CA T > PROGRAMX
CAT> BUILD A2 0
CA T > INQUDE A2
CA T > PROGRAMX
CAT> BUILD A3 0
CA T > INQUDE AJ
CAT> PROGRAMX
CAT> EXIT

(Get global symbol Al from the subroutine library)
(No object code is read from SGO)

(Get global symbol A2 from the subroutine library)
(No object code is read from SGO)

(Get global symbol A3 from the subroutine library)
(No object code is read from SGO)

TSM>

Example 8 - Catalog Load Module

The following example catalogs the load module illustrated in Figure 2-3 with memory"~/
allocated as in Figure 2-5.

TSM >$ASSIGN SGO TO O.TST7
TSM >$CATALOG
MPX-32 UTILITIES RELEASE x.x (CATALOG Rx.x.x)
(C) COPYRIGHT 1983 GOULD INC., CSD, ALL RIGHTS RESERVED
CA T > CATALOG MAIN
CAT> P'ROGRAM MAIN
CAT> CATALOG Al 0
CA T > PROGRAM Al
CAT> CATALOG A2 0
CA T > PROGRAM A2
CA T > LORIGIN Al (Start new overlay level, origin at end of AI)
CAT> CATALOG BI 0
CA T > LlNKBACK Al (Links overlay through AI)
CA T > PROGRAM BI
CAT> CATALOG B2 0
CAT> LINKBACK Al (Links overlay through AI)
CA T > PROGRAM B2
CA T > ORIGIN A2 (Change origin to end of A2, remain at same overlay

level)
CAT> CATALOG 830
CA T > UNKBACK A2

5-4

(Links overlay through A2)

Cataioger (C.A T ALOG)
Ey.amp!e~

MPX~32

Utilities

CA T > PROGRAM B3
CAT> CATALOG B4 0
CA T > LINKBACK A2
CA T > PROGRAM B4
CAT> CATALOG 850
CA T > LINKBACK A2
CAT> PROGRAM 85
CAT> EXIT
TSM>

MPX-32
Utilities

(Unks overlay through A2)

(Unks overlay through A2)

Cataloger (CATALOG)
Examples 5-5/5-6

l·'~.-.~ .. ········ 'j

o

Datapool Editor (DPEDIT)

MPX-32 Utilities

(

\

Ci

CONTENTS

Section

1- OVERVIEW

1.1 General Description ...••••••.••.•••
1.1.1 Datapool Dictionaries •..••••••
1.1. 2 Static versus Dynamic Datapool

1.2 Directi ve Summary ••••.•.•••••••••

2 - USAGE

2.1
2.2

2.3
2.4
2.5
2.6

Accessing DPEDIT ...•.•.•••
logical File Code Assignments
2.2.1 Dictionary (DPD) •••••
2.2.2 Source Input (SYC) ••••
2.2.3 Listed Output and Error Listings (lO and ER) •
2.2.4 Save and Remap Files (OT and IN)
2.2.5 Scratch Files (Ul and XUl)
2.2.6 lFC Summary
Exiting DPEDIT •.••
Input Data Format ••
Dictionary Records ••.
listings •.•••••••

3 - DIRECTIVES

3.1
3.2
3.3
3.4
3.5
3.6
3.7

Introduction ••••.
/DPD Directive
/ENTER Directive
flOG Directi ve
/REMAP Directive
/SAVE Directive •.
/VERIFY Directive

4 - ERRORS AND ABORTS

4.1
4.2
4.3

DPEDIT Error Codes ••
DPEDIT Abort Codes
Console Messages

5 - EXAMPLES

MPX-32
Utilities

Datapool Editor (DPEDIT)
Contents

1-1
1-1
1-2
1-2

2-1
2-1
2-1
2-2
2-2
2-3
2-3
2-4
2-4
2-5
2-7
2-8

3-1
3-1
3-1
3-2
3-2
3-3
3-3

4-1
4-1
4-2

5-1

iii

FIGURES

2-1 DPEDIT Data Record Format •••••••••••••••••••••••••••••••••••• 2-6
2-2 Datapool Dictionary Entry Format. •• 2-7
2-3 DPEDIT Listed Output Format ••••••••••••••••••••••••••••••••••• 2-8

TABLES

2-1 DPEDIT LFC Summary. .. 2-4

iv
Datapool Editor (DPEDIT)

Contents
MPX;.32
Utilities

DA T APOOL EDITOR (DPEDIT)

SECTION 1 - OVERVIEW

Datapools are memory partitions defined either at system generation (SYSGEN) or with
the Volume Manager (VOLMGR). Datapool partitions (OAT APOOL, DPOOLOO -
DPOOL99) contain data structured by Datapool dictionaries that are built and maintained
by the Datapool Editor (DPEDIT) utility. DPEDIT can add, change, delete, and equate
variables in an existing dictionary, or build a new dictionary.

In order to build and maintain Datapool dictionaries on one (host) system and then run the
task using the same dictionary on another (target) system, the Datapool parti tions
DPOOLOO through DPOOL 99 need not be present on the host system when using
DPEDIT. DPEDIT does not check if each entry into the dictionary is within the range of
the parti tion.

The word Datapool or Datapool partition used in the following sections refers to the
partitions named DATAPOOL and DPOOLOO through DPOOL99.

DPEDIT recognizes file names of 1 to 16 characters. Unless otherwise specified, files
assigned to logical file codes are forced to the appropriate format - blocked or
unblocked.

1.1 General Description

A task using a location in a common partition other than Datapool must define all of the
common partition's locations. Whenever a common partition is changed, the source for
each task accessing the partition must be modified to reflect the change.

Datapool and Datapool dictionaries allow tasks to reference memory locations
symbolically and define only the locations to be accessed.

Each task structures and shares a given Datapool partition through a Datapool
dictionary. Different tasks can access the same Datapool variables by assigning the
same dictionary.

The Datapool partition can be defined by a single dictionary or multiple dictionaries. A
change in a variable is reflected by a change in a dictionary. All tasks referencing the
partition are then recataloged with the modified dictionary. If multiple dictionaries are
used, their modification depends on whether they reference Datapool locations whose
offset would be affected by the change. Variables can be grouped into different offsets
from the beginning of the Datapool partition. Therefore, unrelated tasks need not be
concerned with a redefined location.

1.1.1 Datapool Dictionaries

A Datapool dictionary file must exist before DPEDIT can be used. A Datapool dictionary
is a permanent file created by the Volume Manager (VOLMGR). The VOLMGR
parameters EOFM=N and ZERO=Y must be specified when the Datapool dictionary is
created. Make the size of the file large enough to hold twice the number of symbols to
be defined in the dictionary. Because a block contains eight records, a formula for
determining the file size necessary is:

2 x number of symbols
8 = necessary file size in blocks

The minimum allowable size for a dictionary is five blocks.

MPX-32
Utilities

Datapool Editor (DPEDIT)
Overview 1-1

Multiple dictionaries allow tasks to communicate with each other. For example, assume
task A stores a status variable in Datapool that is listed in Datapool dictionary AAA, and
task B stores a status variable in Datapool that is listed in Datapool dictionary BBB.
Task C can access these status variables through the Datapool dictionaries.

A task cannot modify a location not defined in its dictionary.

1.1.2 Static versus Dynamic Datapool

Datapool can be created statically at system generation (SYSGEN) or dynamically with
the Volume Manager (VOLMGR).

SYSGEN permanently allocates memory for a Datapool partition in protection granule
increments (512W). SYSGEN marks the allocated protection granules as unavailable for
outswap and creates an entry defining the partition in the system directory.

The VOLMGR CREATE COMMON directive creates a Datapool partition when required
by a task. These partitions are allocated in map blocks (2KW on a CONCEPT /32
computer).

MPX-32 can dynamically generate multiple Datapool map blocks into more than one
logical address space. The physical space for a Datapool partition created with VOLMGR
is not permanently allocated, as it is when a Datapool partition is created with SYSGEN.

1.2 Directive Summary

Directive

/DPD

/ENTER

/LOG

/REMAP

/SAVE

/VERIFY

1-2

Function

Assigns a new permanent file name to the LFC used for the
Datapool dictionary

Indicates the following are data records to be used to change
the Datapool

Lists the contents of the Datapool dictionary

Reuses the. Datapool dictionary by rebuilding from the /SAVE
dictionary . entries and hashing them into the Datapool
dictionary

Preserves the binary contents of each active entry in the
Datapool dictionary

Verifies Datapool elements in the dictionary for proper
bounding, duplicate entries, and improper relative addresses

Datapool Editor (DPEDIT)
Overview

MPX-JZ
Utilities

0 '· .,

..... ,. /

SECTION - 2 USAGE

2.1 Accessing DPEDIT

OPEDI r can be accessed in the batch or interactive modes in one of three ways:

$DPEOIT
$F~LN OPED I T
$EXEOJTE OPEOIT

$RUN OPEDIT is valid only from the system directory.

When accessing DPEOIT interactively, the OPE) prompt is displayed:

TSM)$CPEDIT
OPE)

2.2 Logical File Code Assignments

There are eight logical file codes (LFCs) associated with DPEOIT: Dictionary (DPD),
Input (SYC), Listed Output (LO), Error Listing (ER), Save File (OT), Remap File (IN), and
Scratch Files (UI and XUl). LFC assignment statements must 'Je made before DPEDIT is
called.

2.2.1 Dictionary (DPD)

A Datapool dictionary is a permanent file containing symbol definitions. The Datapool
dictionary is assigned to logical file code DPD. This LFC is forced unblocked by
DPEDIT.

DPD Default and Optional Assignments

There is no default assignment to DPD.

Each time a Datapool dictionary is used, the dictionary must be assigned as follows:

$ASSIGN DPD TO pathname

pathname is the pathname of a file containing a Datapool dictionary. The file is forced
unblocked by DPEOIT.

MPX-32
Utilities

Datapooi Editor (DPEDIT)
Usage 2-1

2.2.2 Source Input (SYC)

The source input file contains DPEDIT directives and data statements used for
structuring the partition. Data statements are described in Section 2.4. The source
input file is assigned to logical file code SYC.

SYC Default and Optional Assignments

The default assignment for SYC is to the System Control file (SYC):

$ASSIGN SYC TO SYC

There are two optional assignments for SYC:

$ASSIGN SYC TO fpathname }.
IDEV=devmnc

pathname
devmnc

is the pathname of a file containing input
is the device mnemonic of a device containing input

2.2.3 Listed Output and Error Listings (LO and ER)

As DPEDIT processes directives, one line of listed output is generated for each operation
performed. Operations that produce errors are written to a separate file or device. The
listed output file is assigned to logical file code LO. The error file is assigned to logical
file code ER. Listed output and errors can be produced on one file or device by equating
the two file codes with $ASSIGN statements.

LO and ER Default and Optional Assignments

The default assignment for LO and ER is to logical file code (UT):

$ASS[GN{~~}TO LFC~UT

In the interactive mode, output is generated on the user terminal.

In the batch mode, output is generated on the SLO device.

There are two optional assignments for LO and ER:

$ASSIGN{LO}TO {pathname l
ER DEV=devmncf

pathname
devmnc

2-2

is the pathname of a file to contain listed or error output
is the device mnemonic of a device to contain listed or error output

Datapool Editor (DPEDIT)
Usage

MPX-32
Utilities

C
--~

::;i

(.. ~\,
/

2.2.4 Save and Remap Files (OT and IN)

The /REMAP directive restructures an existing Datapool dictionary that was saved (by
the /SAVE directi ve) during a previous DPEDIT run or in the current DPEDIT run.

The file or device used by the /SAVE directive is assigned to logical file code OT. The
file or device to be used by the /REMAP directive is assigned to logical file code IN. The
/DPD directi ve can assign a different file for Datapool dictionary output, or the name of
the file can be specified with /REMAP. If the assignment is not changed, the existing
dictionary is overwritten.

OT and IN Default and Optional Assignments

There are no default assignments for OT and IN.

There are two optional assignments for OT and IN:

$AS {~~} TO {t:~:~:~~nc}
pathname
devmnc

is the pathname of a file containing the /SAVE or /REMAP file
is the device mnemonic of a device containing the /SAVE or /REMAP file

2.2.5 Scratch Files (UI and XU!)

A sorted alphabetical listing and a sorted address listing are produced by the /LOG
directi vee The alphabetical listing is assigned to logical file code Ul. The address listing
is assigned to logical file code XUl. Both Ul and XUl are forced unblocked by DPEDIT.

UI and XUI Default and Optional Assignments

The default assignment for Ul is to a temporary file of 100 blocks:

$AS Ul TO TEMP SIZE=lOO

The file size in the SIZE= parameter can be increased if necessary.

The default assignment for XUl is to logical file code Ul:

$AS XUl TO LFC=Ul

There are no optional assignments for Ul and XUl.

MPX-32
Utilities

Datapool Editor (DPEDIT)
Usage 2-3

2.2.6 LFC Summary

The following is a table of LFCs used by DPEDIT and their default and optional (. '
assignments.

LFC

DPD

ER

IN

LO

OT

SVC

Ul

XUl

2.3 Exiting DPEDIT

Table 2-1
DPEDIT LFC Summary

Default
Assignment

N/A

LFC=LO

N/A

LFC=UT

N/A

SVC

temporary file

LFC=Ul

Optional
Assignment

pathname

pathname
DEV=devmnc

pathname
DEV=devmnc

pathname
DEV=devmnc

pathname
DEV=devmnc

pathname
DEV=devmnc

N/A

N/A

To exit DPEDIT from the interactive mode, enter CNTRL C. In the batch mode, DPEDIT
exits when it encounters a job control statement without a / in column one.

2-4
Datapool Editor (DPEDIn

Usage
MPX-32
Utilities

o

C.· "'." ...
;.-/

2.4 Input Data Format

Datapool dictionaries are structured through data records. These data records are built
built in 72-byte card image format and are used to add, delete, or change Datapool
symbols.

The structure of a data record is shown in Figure 2-1.

All fields of the data record except the SOURCE and DESCRIPTION fields must be left
justi fied and may not contain embedded blanks. The VARIABLE SYMBOL field contains
the one to eight character name of the symbol to be added, deleted, or changed as
specified by the U field.

The U field specifies the add function with a blank, the delete function with a minus sign,
and the change function with an asterisk.

To specify the add function, all fields up to and including the BASE SYMBOL field must
be used. The remaining fields are optional. A symbol can be added to the dictionary if it
has not been previously defined in the dictionary. If the PRECISION field is specified,
address bounding is verified before adding the symbol to the dictionary.

The delete function requires only the VARIABLE SYMBOL and U fields. The remaining
fields are ignored. A symbol can be deleted only if it is not used as a base. If the symbol
to be deleted references a base, the responsibility count for the base symbol is
decremented. Responsibility count is the number of times the symbol is used as a base
for other symbols.

The change function requires the VARIABLE SYMBOL and U fields. The remaining fields
are optional. All fields describing the symbol can be changed if the symbol is not used as
a base. If the symbol is used as a base, no changes can be made in the BASE SYMBOL or
OISPLACEMENT fields.

Each blank column on the data record causes no change to the corresponding column of
the original specification; a column containing a number sign (II) generates blanks in the
corresponding column of the original specification; a column containing any other
character causes a replacement of the corresponding column of the original
specification.

The change function is column oriented. When an entire field is to be replaced, the high
order columns of the field should contain number signs (II) to blank out unwanted
characters from the original specification. For example, if the BASE SYMBOL field
entry is replaced with an entry of fewer characters, the unused columns in the changed
record should contain number signs. The E field, which equates symbols with base
symbols, must contain EQU. Any other character string is invalid.

The BASE SYMBOL field is used with the VARIABLE SYMBOL field and the E field. The
base symbol referenced must have been previously defined by the Datapool dictionary.
The BASE SYMBOL field may optionally contain a dollar sign ($) indicating location 0 of
the dictionary.

The DISPLACEMENT field modifies the base symbol location if column 22 contains a plus
sign (+). Absence of the plus sign in column 22 causes DPEDIT to ignore the
displacement.

MPX-32
Utilities

Oatapool Editor (DPEDIT)
Usage 2-5

N
I
0\

0
III
r1'
III
-0
0
0 -e fTI

en a. III _.

1Or1'
CD ~

."
IS'

~
~
~

~
~ .--.
I» 0

1) :::c
fTI

B 0
.:j

.,
Q.

Cs;
l:!:1)
:::X
~.~
a: N

."

~
I»

~ ..
~-)

00
(..)
o
CJ1

~

G~'" ---J

BLANK = Addition
= Delete
= Change

0·4 ----J

Eau = Equate

~~

BASE SYMBOL Uj ... 41-__ ---J

$ = 0 (Beginning of Dictionary}
aaaaaaaa = Base Symbol

DISPLACEMENT 1-----------1

X'nnnnn'
nnnnnnnn
nnnnnnnB
nnnnnnnW
nnnnnnnD

= Hexadecimal Bytes
= Decimal Bytes
= Decimal Bytes
= Decimal Words
= Decimal Doublewords

. I

l-.----.~0

'For Page Eject During LOG REL

L---·~0
'For Page Eject During LOG ALPHA

~------..~~

Dimension Array Elements = nnn (decimal)

L---------+·0
PRECISION

W =Word
D = Doubleword
H = Halfword
B = Byte
L = Bit

~-----------------~~~~
(NOTE: If the DISPLACEMENT entry is specified, a plus sign (+} must be present in column 22}.

TYPE

I = Integer
E = Float
F = Fixed
L = Logical

(j

o

The T field is for symbol type. If used, the T field must contain an E, F, I, or L.

The P field specifies precision. If used, the specified boundary, L, B, H, W, or D, is
verified against the actual symbol address to ensure proper bounding.

The D field is for array dimensions. If used, the D field must contain decimal integers.

The SOURCE and DESCRIPTION fields are for user documentation. The SOURCE field
provides a User Descriptor Area to identify the originator of the symbol. An asterisk in
the first column of the DESCRIPTION field (column 43) causes a page eject during
alphabetical logging (LOG ALPHA). An asterisk in the second column of the
DESCRIPTION field (column 44) causes a page eject during relative logging (LOG REL).
Columns 45 through 72 of the DESCRIPTION field can be used for comments.

2.5 Dictionary Records

Figure 2-2 shows the format for a Datapool dictionary entry built by DPEDIT. The
dictionary entry record is a binary record of the entire dictionary entry, including a
checksum and a sequence number. When a task is cataloged, and the partition used is
named DA T APOdL, then the Datapool dictionary to be used must be assigned to logical
file code DPD. If the partition used is named DPOOLOO through DPOOL99, then the
Datapool dictionary to be used must be connected to the corresponding partition by the
cataloger's CONNECT directive.

WORD r---~
1-20 DATAPOOL EDITOR INPUT DATA IMAGE (80 BYTES)

21 '" I ,ZE,""', I , " I" I ' , ~~~VE,A":'R~ , , I ' , ,
o 1 2 3 4 5 6 7 8 9 10 11 121314 15 16 17 18 1920212223 242526 272829 3031

NUMBER OF DISC ACCESSES
22 TO LOCATE THIS ENTRY RESPONSIBILITY COUNT

. I I . I . . . I J _L I..
o 1 2 3 4 5 6 7 8 9 10 11 121314 15 16 17 18 1920212223 242526 272829 3031

231, , , I , , , I ~ES,ER~ , , , I , , , I , , , I, , ~A~ , , I
o 1 2 3 4 5 :~::;:::I::~. 17 1. 1. 2D 21 22 23 t 25 26 27 r 3031

COLLISION ENTRY OCCURRED AT THIS ENTRY (SET) ___________ _

24 '" I , , , I , , , I , ,~~, , I , , , I , , , I , , , I

MPX-32
Utilities

o 1 2 3 4 5 6 7 8 9 10 11 1213 14 15 16 17 18 19 20 21 22 23 24 2526 2728 29 30 31

Figure 2-2. Datapool Dictionary Entry Format

Datapooi Edi tor (DPEDIT)
Usage

87D4J02

2-7

2.6 Listings

DPEDIT produces two output files: the listed output file accessed through logical file
code LO and the error file accessed through logical file codeER. If either file overflows
and is assigned to the System Listed Output (SLO) file, the old SLO is dynamically
deallocated (released for system output on job termination) and a new SLO file is
allocated with the same size requirements as the original. Figure 2-3 describes listed
output format.

Listed output contains a definition of the operations performed, the source records
(Figure 2-1), the relative address within the Datapool of the symbol defined by the
dictionary entry, the number of additional disc accesses required to locate the entry, the
number of times this symbol is used as a base, and when applicable, an error code
defining why the requested operation was not performed.

Format

CURRENT DATAPOOL FILE: MAIN
ERROR FUNCTION SYMBOL U E BASE DISP T P D SC A R DESCR RELATIVE RESP CM
CODE SYMBOL ADDRESSCNT

Format Explanation

The CURRENT DA T APOOL FILE is MAIN unless otherwise specified by a /DPD or
/REMAP directive.

The ERROR CODE field contains four character codes on the lines where errors
occurred.

The FUNCTION field indicates the function in effect (add, delete, log, or change).

The SYMBOL, U, E, BASE SYMBOL, DISP (displacement), T, P, D, SC (source), A, R, and
DESCRIPTION (DESCR) fields are identical to those in Figure 2-1.

The RELATIVE ADDRESS field contains a hexadecimal address assigned to the variable
SYMBOL relative to the beginning of the Datapool partition.

The RESPCNT (responsibility count) field contains the decimal number of times SYMBOL
is used as a base.

The CM (collision mapping) field contains the decimal number of disc accesses required
to locate SYMBOL.

2-8

Figure 2-3. DPEDIT Listed Output Format

Datapool Editor (DPEDIT)
Usage

MPX-32
Utilities

(--)

i"-J

()

,.....".,
\

o

SECTION 3 - DIRECTIVES

3.1 Introduction

The following sections describe DPEDIT directives. The legal delimiter between
p8rameters is a comma. Only one blank is allowed between a directive and a parameter.

3.2 /DPD Directive

The /DPD directive assigns a different permanent file to logical file code DPD. This
directi ve allows the use of multiple dictionary files during a single edit run.

The specified file is dynamically allocated unblocked by MPX-32 services.

Syntax:

/DPD filename

filename is a permanent file name of a Datapool dictionary

3.3 /ENTER Directive

The /ENTER directive indicates the following are data records to be processed by
DPEDIT. DPEDIT processes data records until it encounters a different directive or an
end-of-file. More than one /ENTER directive can be used in a DPEDIT directive stream.

Syntax:

/ENTER

MPX-32
Utilities

Datapool Edi tor (DPEDIT)
Directives 3-1

LOG/REMAP

3.4 /LOG Directive

The fLOG directive provides a listed output audit trail of all symbols defined in the
datapool dictionary, the total number of entries in the dictionary, and the number of
active entries.

Syntax:

fLOG [{~~~HA}]
ALPHA

REL

specifies listed output in alphabetical order

specifies listed output in the relati ve order symbols reside in the Datapool
memory parti tion

If neither is specified, both types of output are generated.

3.5 /REMAP Directive

The fREMAp· directive expands or rebuilds a Datapool dictionary without recreating
dictionary entries.

fREMAP rebuilds a dictionary from the file assigned to logical file code IN. This file
must contain the image of a dictionary specified with a /SAVE directive. Each entry is
remapped through the hash coding scheme and written to the dictionary assigned to
logical file code DPD. A new assignment to DPD can be made with the /REMAP and
fDPD directives or the $ASSIGN job control language statement. If DPD is not
reassigned, the file currently assigned to DPD is overwritten.

Syntax:

fREMAP [file] [,R]

file

R

3-2

is the name of a permanent file to assign to logical file code DPD

rewinds the file assigned to logical file code IN before the dictionary entry
records are processed

Datapool Editor (DPEDIT)
Directives

MPX-32
Utilities

.t~.'·,·.
,"-y

o

SAVE/VERIFY

3.6 /SAVE Directive

The /SAVE directive preserves the contents of each active entry in the Datapool
dictionary in dictionary entry records on the file assigned to logical file code OT. An
end-of-file is written to OT when the function is complete.

When a /SAVE directive is specified, logical file codes DPD and OT must not be assigned
to the same file.

Syntax:

/SAVE

3.7 /VERIFY Directive

The /VERIFY directive checks each active entry in the Datapool dictionary for proper
placement in the dictionary, for precision to assure proper bounding, and for relative
address within the range of the Datapool to ensure the correct computed value at entry
time. Any discrepancies detected in the dictionary are noted on a listed output file.

Improperly mapped new entries are corrected and no error flags are generated.
Improperly mapped entries whose names are already in the dictionary are deleted and an
error flag is generated.

Incorrect relative addresses are corrected and an error flag is generated. Entries with no
base symbol in the dictionary, or entries whose data record is invalid, are deleted and
error flags are generated.

Range and precision errors generate flags.

Syntax:

/VERIFY

MPX-32
Utilities

Datapool Editor (DPEDIT)
Directives 3-3/3-4

(.... " .. '3

(".

SECTION 4 - ERRORS AND ABORTS

4.1 DPEDIT Error Codes

When an error occurs, an error code is displayed. The following are DPEDIT error codes
and their explanations.

Code

ECll

EC12

EC13

EC14

EClS

EC16

EC19

EC20

EC2l

EC22

EC23

EC24

EC2S

ERnn

Explanation

Attempt to delete a symbol not found in the dictionary.

Attempt to delete a symbol used as a base for another variable.

Change requested for a symbol used as a base that may result in a
change in the relative address.

The calculated relative address does not fall on the specified
boundary (precision).

The referenced base symbol is not in the Datapool dictionary.

Attempt to add a symbol that is already defined in the dictionary.

Invalid specification in directive.

Log not processed; not enough memory to sort data.

Log not processed; scratch sort file not large enough to hold the
necessary data.

Log not processed; unrecoverable I/o error on the scratch sort file.

Attempt to change a symbol not found in the dictionary.

Computed relative address does not agree with actual address.

Entries are multiply defined.

Error encountered in processing data statement fields. The column
number in which the error occurred is specified by "nn".

4.2 DPEDIT Abort Codes

The following are DPEDIT abort codes and their messages.

Code Message

OPOI

DP02

DP03

DP04

MPX-32
Utilities

UNRECOVERABLE I/O ERROR WHILE READING OR WRITING THE
DATAPOOL DICTIONARY.

DICTIONAR Y LOGICAL FILE CODE (DPD) UNASSIGNED.

UNRECOVERABLE ERROR ON ERROR (ER) FILE.

UNRECOVERABLE ERROR ON LISTED OUTPUT (LO) FILE.

Datapool Editor (DPEDIT)
Errors and Aborts 4-1

Code

DP05

DP06

DP07

DP09

DPIO

DPll

DP12

DP13

DP14

DP15

DP16

DP17

DP18

DP19

DP20

DP21

DP22

Message

UNABLE TO ALLOCATE ADDITIONAL SLO SPACE FOR LISTED
OUTPUT. INITIAL FILE IS FILLED.

UNABLE TO ALLOCATE ADDITIONAL SLO SPACE FOR ERROR
FILE. INITIAL FILE IS FILLED.

INV ALID DIRECTIVE.

DICTIONAR Y OVERFLOW.

UNABLE TO REASSIGN THE FILE ASSIGNED TO LOGICAL FILE
CODE DPD.

END-OF -TAPE OR ILLEGAL END-OF -FILE ENCOUNTERED ON
FILE OR DEVICE ASSIGNED TO LOGICAL FILE CODE IN.

PHYSICAL END-OF -MEDIA ENCOUNTERED ON FILE OR DEVICE
ASSIGNED TO LOGICAL FILE CODE OT.

UNRECOVERABLE ERROR ON FILE OR DEVICE ASSIGNED TO
LOGICAL FILE CODE IN.

UNRECOVERABLE ERROR ON FILE OR DEVICE ASSIGNED TO
LOGICAL FILE CODE OT.

LOGICAL FILE CODE OT UNASSIGNED AND THE SAVE FUNCTION
REQUESTED.

LOGICAL FILE CODE IN UNASSIGNED AND THE REMAP
FUNCTION REQUESTED.

SEQUENCE ERROR ON DICTIONARY ENTRY RECORD (ACCESSED
THROUGH LOGICAL FILE CODE IN).

CHECKSUM ERROR ON DICTIONARY ENTRY RECORD
(ACCESSED THROUGH LOGICAL FILE CODE IN).

INVALID SPECIFICATION ON /REMAP DIRECTIVE.

INV ALID SPECIFICATION ON /DPD DIRECTIVE.

UNRECOVERABLE ERROR ON DIRECTIVE INPUT (SYC) FILE.

DICTIONAR Y SIZE IS LESS THAN THE REQUIRED MINIMUM (FIVE
BLOCKS).

4.3 Console Messages

The following messages are issued by DPEDIT to the operator console if logical file code
IN is assigned to a card device. The "devmnc" specification gives the device mnemonic.
A fter the message is issued, DPEDIT enters a program hold. To retry the read,
reposition the deck in the reader and enter the OPCOM directive CONTINUE DPEDIT. If
no retry is desired, enter the OPCOM directi ve ABORT DPEDIT.

DPEDIT devmnc CKSM

DPEDIT encountered a checksum error on the input (IN) file to the remap function.

DPEDIT devmnc SQER

DPEDIT encountered a sequence error on the input (IN) file to the remap function.

4-2
Datapool Editor (DPEDIT)

Errors and Aborts
MPX-32
Utilities

o

SECTICl'I 5 - EXAM>L.ES

The following example saves several dictionaries:

$ J03OPEO r T 1 ()N\£R
$ASS ICN OPO TO DPDl BLOC=N
$AS S I CN OT TO DEV =MT I D=OPDS
$EXEOJTE OPED IT
/SAVE
/OPD DPD2
/SAVE
/OPO OPD3
/SAVE
$EOJ
$$

The following example remaps a dictionary:

$JOB OPEDIT2 OWNER
$AS 5 I CN DPD TO DPDl BLOC=N
$ASS ICN IN TO DEV=MT ID=OPDS
$EXEOJTE OPED I T
/R~P ,R
/VERIFY
IR~ OPD2
/~ OPD3
/ENTER
A EQJ $ (See Figure 2-1 for column placement)
$EOJ
$$

The following. example expands, saves, and remaps a dictionary:

$JOO DPEDIT3 OM\ER
$EXEOJTE VClJv(R
EXTEND OPOI EXTS=lOO
$ASSIGN OT TO DEV=MT ID=DPDT
$ASSICN IN TO LFC=OT
$ASS IGN OPD TO OPDl BLOC=N
$EXEOJTE OPEDIT
/SAVE
/R~P ,R
$EOJ
$$

The following example saves a dictionary on magnetic tape:

$JOB DPEOIT4 OWNER
$AS SIGN DPD TO DPDl BLOC=N
$ASSIGN OT TO DEV=MT
$EXEOJTE OPED I T
/SAVE
$EOJ
$$

MPX-32
Utilities

Datapool Editor (DPEDIT)
Examples 5-1/5-2

o

"", -,/

(

c

File Manager (FILEMGR)

MPX-32 Utilities

c

o

(

CONTENTS

Section

1- OVERVIEW

1.1
1.2

General Description
Directive Summary.

2 - USAGE

2.1
2.2
2.3
2.4
2.5

2.6
2.7
2.8

Accessing FILEMGR .••••.•••••••
Saving, Restoring, and Creating Files.
Computing the Size of a File ••••••
The System Master Directory (SMD)
Logical File Code Assignments
2.5.1 Source Input (SYC) ••••
2.5.2 Listed Output (SLO) ••
2.5.3 Input for Restores (IN)
2.5.4 Output for Saves (OUT).
2.5.5 LFC Summary
File-to-Tape Transfers •••••••
Options •••••••
Exiting FILEMGR

3 - DIRECTIVES

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16

Introduction ••••••••
BACKFILE Directive
CREATE and CREATEU Directives
CREA TEM Directi ve ••••••••••
DELETE and DELETEU Directi ves ••
DELETEW Directive ••••••••••••••••••
EXIT Directive ••••••••••••••••
EXPAND and EXPANDU Directives ••
LOG, LOGU, and LOGe Directives
PAGE Directive ••••••••••••••
RESTORE and RESTOREU Directives
REWIND Directive ••••••••
SAVE and SAVEU Directi ves
SAVELOG Directive
SKIPFILE Directive
USERNAME Directive

4 - ERRORS AND ABORTS

4.1
4.2

Abort Codes •••
Error Messages.

5 - EXAMPLES.

FIGURES

2-1 File-to-Tape Transfers •••••••

TABLES

2-1 FILEMGR LFC Summary •••••••••••••••••••

MPX-32
Utilities

File Manager (FILEMGR)
Contents

1-1
1-2

2-1
2-1
2-2
2-3
2-3
2-4
2-4
2-4
2-5
2-5
2-6
2-8
2-8

3-1
3-1
3-2
3-3
3-4
3-5
3-5
3-6
3-6
3-6
3-7
3-8
3-8
3-9

3-10
3-10

4-1
4-1

5-1

2-7

2-5

ii iIi v

c

C)

0····· -~--

c

FILE MANAGER (FILEMGR)

SECTION 1 - OVERVIEW

1.1 General Description

The File Manager (FILEMGR) utility provides a compatible mode of operation to
facilitate converting files from pre-MPX-32 Release 2.x systems to Release 2.x and 3.x
systems. FILEMGR also creates or deletes permanent disc files, global or Datapool
partitions, and can be used to make permanent backup copies of system and user files.
(Use of these functions is not recommended).

FILEMGR is the predecessor of the MPX-32 Volume Manager (VOLMGR). With the
exception of converting pre-MPX-32 Release 2.x files, VOLMGR provides all of the
functions of FILEMGR, plus additional capabilities. It is recommended that FILEMGR be
used to convert files to MPX-32 Release 2.x and later systems, and VOLMGR be used for
all other requirements.

FILEMGR directives are based on the current user volume, system volume, or current
working directory. FILEMGR cannot be used to copy a file from one user directory into
another; to do this, use the Volume Manager (VOLMGR).

Placement of files into a specific directory is done by changing the user directory in
effect. The user name specified at logon establishes the current working directory. This
can be changed by the TSM $USERNAME job control language statement or by the File
Manager USERNAME directive:

TSM> $USERf'I.Wv£ name

FIL> USERf'I.Wv£ name

Device mnemonics and passwords are ignored by FILEMGR. Device and password
parameters are shown in directive syntax statements for compatibility purposes only.

FILEMGR recognizes file names of 1 to 8 characters. Unless otherwise specified, files
assigned to logical file codes will be forced to the appropriate format - blocked or
unblocked.

MPX-32
Utilities

File Manager (FILEMGR)
Overview 1-1

1.2 Directive Summary

Following is a list of FILEMGR directives in alphabetical order. Each directive is
explained in more detail in Section 3. A U appended to the directive specifies a user
file. System files are assumed by default when a U is not specified.

Directive

BACKFILE

CREATE
or CREATEU

CREATEM

DELETE
or DELETEU

DELETEW

EXIT

EXPAND
or EXPANDU

LOG, LOGU, or LOGC

PAGE

RESTORE DEVICE
or
RESTOREU DEVICE

RESTORE FILE
or
RESTOREU FILE

REWIND

SAVE DEVICE
or
SAVEU DEVICE

1-2

Function

Backspaces the magnetic tape assigned to LFC IN or OUT a
specified number of EOF marks.

Creates a permanent system or user file on the current
working volume.

Defines a dynamic area of memory with a global common
variable name (GLOBAL 00-99) or the name DA T APOOL. The
defined area can be included in the user's logical address space
by the M.INCLUDE system service. Can also define a memory
partition in the user's extended address space.

Deletes a specified system or user file and deallocates disc
space.

Deletes more than one specified system or user file and
de allocates disc space.

In interactive mode, exits FILEMGR and returns control to
TSM. In batch, designates the end of FILEMGR directives in a
jobstream.

Expands disc space of a permanent system or user file in 192-
word blocks.

Provides information about all system or user files.

Puts a page eject and header on listed output.

Restores all permanent system or user files to the current
default volume/directory. If a file being restored does not
already exist in the directory, it is added. If the file already
exists, it is replaced.

Restores permanent system or user files to disc from the
device assigned to LFC IN (usually magnetic tape). (This was
the device assigned to LFC OUT when the SAVE command was
used.) If the files being restored already exist in the directory,
existing contents are replaced by the IN contents. If the file
does not exist, it is created.

Positions an input file or device (LFC IN) or output file or
device (LFC OUT) at its beginning.

Saves all permanent system or user files from the current
working volume/directory (except those created by SYSGEN).

File Manager (FILEMGR)
Overview

MPX-32
Utilities

o

Directive

SAVE FILE
or
SAVEU FILE

SAVELOG

SKIPFILE

USERNAME

MPX-32
Utilities

Function

Saves specified system or user files on device assigned to LFe
OUT.

Lists the files in the current working directory on LFe IN,
beginning at the current location.

Advances past a specified number of EOFs on the file or device
assigned to LFe IN or OUT.

Associates a new user name (current working directory) with
FILEMGR operations.

File Manager (FILEMGR)
Overview 1-3/1-4

r'
~

J " O.~.·.·'·

o

SECTION 2 - USAGE

2.1 Accessing FlLEMGR

FILEMGR can be accessed in the batch or interactive modes in one of three ways:

$FILEMGR
$RUN FILEMGR
$EXECUTE FILEMGR

$RUN FILEMGR is valid only from the system directory.

When accessing FILEMGR interactively, the FIL prompt is displayed:

TSM) $FILEMGR
FIL)

2.2 Saving, Restoring, and Creating Files

When files are saved, FILEMGR builds a directory containing directory entries for all
files saved in a group. A group is one or more files specified with one SAVE or SAVEU
directi vee FILEMGR logs the current working and system directories and copies files in
the group to an output medium. The data is copied after the directory.

When files are restored, a directory entry is created for each file to be restored. The
directory itself must have been previously created. FILEMGR locates the file on the
input medium and reads it to temporary space on disc. It matches the name against the
user or system directory and deletes the existing file that matches the name. FILEMGR
then creates a new permanent file in the directory for the file being restored. The
existing user name from the saved version is used as the name.

Reading files into temporary space ensures that an I/O error in the restoration process
does not result in the loss of existing disc files. This function can be bypassed by
specifying option 2 as described in the Options section.

FILEMGR cannot create, save, restore, or delete temporary files. Temporary files are
tracked by the system during task execution. FILEMGR cannot use them because they
are not logged in the volume directory. Disc space for temporary files is allocated only
for the duration of the task. FILEMGR does not allocate permanent files in space
concurrently being used by temporary files.

Global common and Datapool partitions defined by FILEMGR are considered system files.

MPX-32
Utilities

File Manager (FILEMGR)
Usage 2-1

When saving or restoring files, a question mark (wild card character) can be used in place
of any character. Since file names can contain one to eight characters, one to eight C
question marks can be used in specifying a file name. "

For example, using five question marks as a file name saves all files with five or less
characters. Using PJ?????? as a file name saves all files beginning with PJ.

If more than one prototype is specified in a directive line and a wild card character is
used as part of the second prototype, the following message is displayed when FILEMGR
processes the second prototype if the same file matches both prototypes:

WARNING PROTOTYPE filename NOT MATCHED BY ANY FILE

If a file name specified with a SAVE or RESTORE directive contains any of the following
characters, the name must be enclosed in single quotes:

;
(
)
I

F or example:

SAVEU FILE='EM:02'

Files with special characters can only be accessed by interfaces that accept special
characters. 0

2.3 Computing the Size of a File

When a file is created by the CREATE or CREATEU directives, the initial file size is
defined in blocks. A block is 192 words (768 bytes). In unblocked files, records are
stored one per block.

The maximum record size for a blocked file is 254 bytes. A guide for approximating the
space required for a blocked file is:

• Records between 4 and 254 bytes long (1 and 53 words) are packed together up to a
block boundary.

• Records cannot span block boundaries.

• A new file always begins on a block boundary.

• Two header and two trailer bytes are automatically inserted on each packed record for
identification and tracking.

2-2
File Manager (FI!-EMGR)

Usage
MPX-32
Utilities

~ , _J

o

c

In computing the space needed for blocked files, allow four extra bytes in each packed
record. Fixed length records less than 254 bytes take up blocks on the file as follows:

768 (bytes per block)
Record Length (bytes) + 4

Number of Records
Number of Records per Block

=

=

Number of
Records per Block

Number of Blocks

For example, if each record is 80 bytes long, each block holds nine records (768/84). To
hold 2000 records, a file must be 223 blocks long (2000/9, rounded).

The number of blocks required to accommodate variable length records can be estimated
by figuring an average byte/record value and using that value as the record length in the
formula. For a file with approximately 150 variable-length records, none exceeding 254
bytes, and the average about 50 bytes long, the computation would be:

768 150
50 +4 = 14 14 = 11 blocks (rounded)

Output to all disc files is assumed to be in blocked format unless otherwise specified
when assigning or allocating a file.

2.4 The System Master Directory (SMD)

The presence of a System Master Directory (SMD) is emulated to allow conversion of
pre-MPX-32 Release 2 files to MPX-32 Release 2.x and 3.x. The volume directory on
each disc contains entries for all permanent files and global common/Datapool partitions
located on that disc. Each entry is reconstructed, or defaults are used, to construct a
compatible SMD entry that shows:

• File name/partition name (limited to eight characters)

• User name, if any (limited to eight characters, defaults to current working directory)

• Beginning address for the file (block number)

Password (is ignored or set to zero)

• Number of 192-word blocks in the file or protection granules in the partition (this is
the sum of all segments in the file)

• Access speed (FAST/SLOW), disc type, channel, subaddress, and other information
used by the system when the file or partition is accessed.

2.5 Logical File Code Assignments

Default logical file code (LFC) assignments are provided for all FILEMGR operations
except the input and output assignments for SAVE and RESTORE operations. F or these
operations, the logical file codes IN (for RESTORE input) and OUT (for SAVE output) are
provided, but the files or devices assigned to them must be speci fied.

MPX-32
Utilities

File Manager (FILEMGR)
Usage 2-3

2.5.1 Source Input (SYC)

The source input file contains FILEMGR directives. The source input file is assigned to
logical file code SYC.

SYC Default and Optional Assignments

The default assignment for SYC is to the System Control file (SYC):

$ASSIGN SYC TO SYC

In the interactive mode, source is input from the user terminal. In the batch mode,
source is input from the SYC file.

There are two optional assignments for SYC:

$ASSIGN SYC TO {pathname }
DEV=devmnc

is the pathname of the file containing FILEMGR source input pathname
devmnc is the device mnemonic of a device containing FILEMGR source input

2.5.2 Listed Output (SLO)

The listed output file contains an audit trail of FILEMGR activity. The file or device to
be used for listed output is assigned to logical file code SLO.

SLO Default and Optional Assignments

The default assignment for SLO is to logical file code UT:

$ASSIGN SLO TO LFC=UT

In the interactive mode, output is generated on the user terminal. In the batch mode,
output is generated on the SLO device.

There are two optional assignments for SLO:

$ASSIGN SLO TO {pathname }
DEV=devmnc

pathname is the pathname of a file to contain the listed output. The file must have
been previously created.

devmnc is the device mnemonic of a device to contain the listed output

2.5.3 Input for Restores (IN)

Logical file code IN is used to specify the input file or device from which to restore files
that were previously saved by a SAVE directive. Logical file code IN should be the same
file or device defined for logical file code OUT when the files were saved. The IN
assignment is usually a tape from which files are to be restored. Logical file code IN is
forced unblocked by FILEMGR.

2-4
File Manager (FILEMGR)

Usage
MPX-3Z
Utilities

C··-.·.'\···
I

(

IN Default and Optional Assignments

There is no IN default assignment.

These are two optional assignments for IN:

$ASSIGN IN TO $pathname }
l DEV =devmnc

pathname is the pathname of a file containing files to be restored
devmnc is the device mnemonic of a device containing files to be restored

2.5.4 Output for Saves (OUT)

Logical file code OUT is used to specify the file or device on which to save files. The
OUT assignment is usually to a magnetic tape. Logical file code OUT is forced
unblocked by FILEMGR.

OUT Default and Optional Assignments

There is no OUT default assignment.

There are two optional assignments for OUT:

$ASSIGN OUT TO $ pathname }
lDEV=devmnc

pathname is the pathname of a file to contain saved files
devmnc is the device mnemonic of a device to contain saved files

2.5.5 LFC Summary

The following is a table of the LFCs used by FILEMGR and their default and optional
assignments.

MPX-3Z
Utilities

LFC

IN

OUT

SLO

SYC

Table 2-1
F1LEMGR LFC Summary

Default
Assignment

N/A

N/A

LFC=UT

SYC

File Manager (FILEMGR)
Usage

Optional
Assignment

pathname
DEV=devmnc

pathname
DEV=devmnc

pathname
DEV=devmnc

pathname
DEV=devmnc

2-5

2.6 File-to-Tape Transfers

All SAVEs in a FILEMGR session apply to the magnetic tape or set of tapes assigned to
logical file code OUT prior to executing FILEMGR. A set of tapes is implied by
indicating multivolume on the device assignment. For example: .

$AS OUT TO DEV=MT MUL T =1 ID=SAVE

When FILEMGR is ready to execute, it issues a mount message on the operator's console
prompting the operator to mount the appropriate tape. When the tape is mounted and
the operator responds on the console, FILEMGR processing continues.

SAVEs and RESTOREs must be coordinated in the following way:

• A SAVE or SAVEU directive produces a group of one or more files on tape with one
EOF mark at the end of the group.

· If a RESTORE directive in a subsequent session selects files or a group of files from a
tape that contains several groups, FILEMGR must be informed of the physical location
on the tape.

• FILEMGR assumes a sequential restoration in the order that files were saved. If files
are restored outside the order in which they were saved, FILEMGR REWIND and/or
BACKFILE directives must be used to position the input device.

Figure 2-1 illustrates the physical result of multiple SAVE/RESTORE operations.

The left side of the figure illustrates SAVEs used to output disc files to a magnetic
tape. The right side illustrates how RESTOREs could be used to restore the files back to
disc.

In the figure, one tape contains five groups of files, each with a separate set of directory
entries. All files are saved for User A. One file is saved for User B, followed by files
from two other users. USERNAME with no following parameter specifies system files.
All system files are saved, then all User C files that begin with CC are saved.

User A's file, ONEFILE, is restored. FILEMGR then goes past the EOF marking the end
of User A's files. To restore the system files, the SKIPFILE directive is used to move
past two EOFs to the beginning of the system files.

Restoring User C's files requires no special directive because FILEMGR is already
positioned at the beginning of that group.

The REWIND or BACKFILE directives are used if files are not restored in the same order
in which they were saved. Do not use REWIND in the middle of a multivolume
restoration.

2-6
File Manager (FILEMGR)

Usage
MPX-32
Utilities

SAVES

USERNAMEA
SAVEU

USERNAMEB
SA VEU FILE = BERRY

SAVEU FILE = (HENRY) 1,
(JOHN) 3

USERNAME
SAVEU DEVICE - DM0800

USERNAMEC
SAVEU FILE = CC??????

MPX-32
Utilities

BEGINNING OF TAPE

DIRECTORY .-

FILE(S)

.- DIRECTORY
..........................

BERRY

DIRECTORY
..........................

.- FILE(S)

DIRECTORY
..........................

.-

EOF

EOF

EOF

•

RESTORES

USERNAMEA
RESTOREU FILE = ON FILE

SKIPFILE IN 2
USERNAME
RESTOREU DEVICE = DM0800

... -.

SYSTEM
FILES

.- DIRECTORY
..........................

FILES

END OF TAPE

EOF

• USERNAMEC
RESTOREU

Figure 2-1. File-to-Tape Transfers

File Manager (FILEMGR)
Usage

87D4S02

2-7

2.7 Options

FILEMGR options are specified by number on a TSM $OPTION job control language C
statement. The $OPTION statement must appear before the $FILEMGR statement in a
job stream. FILEMGR options affect processing of SAVE, SAVEU, RESTORE,
RESTOREU, and SAVELOG directi ves.

Option

1

2

J

4

5

2.8 Exiting FILEMGR

Description

Tape Assigned to LFC IN is Pre-MPX-J2
All files restored are assumed to have eight-word, RTM
6.x or later formatted SMD entries. Eight-word MPX-J2
formatted entries are written to the directory.

Delete Existing File Before Restoring
Normally, when restoring files, LFC IN is written first to
temporary disc file space. This option causes FILEMGR
to delete the existing disc file specified for the restore
before copying the saved file back to disc from LFC IN.

Save NOSAVE Files
Overrides the NOS AVE attribute specified when a file is
created and allows NOSAVE files to be saved.

Change User Name to Current Working Directory
Allows all files on the save tape to be restored to the
current working directory in effect. This overrides the
user name associated with the file when it was saved on
tape.

Change User Name to System
Allows all files on the save tape to be restored as system
files. This overrides the user name associated with the
file when it was saved on tape.

To exit FILEMGR from the batch and interactive modes, specify the EXIT directive.

2-8
File Manager (FILEMGR)

Usage
MPX-J2
Utilities

o

SECTION 3 - DIRECTIVES

3.1 Introduction

FILEMGR directives are summarized in the Overview section and explained in detail in
alphabetical order in this section.

FILEMGR directives cannot be abbreviated and must begin in column one. Several
directives and their associated parameters can be speci fied on one line by separating
them with commas. Blanks are ignored.

User files are denoted specifically by a U as part of the directive (SAVEU, RE5TOREU,
CREA TEU). If U is specified, FILEMGR first searches the directory of the user name
last specified in a T5M $USERNAME job control statement or a FILEMGR LJSERNAME
directive. If neither type of USERNAME statement was specified, the operation defaults
to the current working directory.

System files are assumed by default when a directive does not end in a U and if a
USERNAME statement is specified without supplying a user name.

3.2 BACKFILE Directive

The BACKFILE directive backspaces the magnetic tape assigned to logical file code IN
or OUT a specified number of EOF marks. Use BACKFILE when restoring files out of
the order in which they were saved. Because of characteristics of unblocked disc files,
BACKFILE is not valid for assignments to disc files.

Syntax:

BACKFILE fIN }[,nJ
tOUT

IN specifies the device assigned to logical file code IN

OUT specifies the device assigned to logical file code OUT

n specifies the number of files to backspace. If not specified, the default is
one.

MPX-32
Utilities

File Manager (FILEMGR)
Directives 3-1

ffiEATE

3.3 CREATE and CREATEU Directives

The CREATE directive allocates file space for a system file. For CREA TEU, the file is
created in the current working directory or the directory of the user whose name was
most recently specified in a USERNAME statement. If CREATEU is used and no user
name is associated for FILEMGR operations, or if a USERNAME statement with no
following parameter has been specified, a system file is created.

Syntax:

CREA TE [U] filename, [devmnc], blocks, [type],
[FAST] , f.NZRO], [NSAV]

filename

devmnc

blocks

type

FAST

SLOW

NZRO

NSAV

RO

t {~~}. password]

SLOW

is a one to eight character file name

allocates a disc file. Defaults to DC for Release 2.x compatible mode even
if disc device code, channel, and subaddress are specified.

the initial increment size of the file. Specifies the number of In-word
blocks to allocate for the file.

specifies the hexadecimal equivalent of a two-character ASCII code to
display or print with the file name. If not specified, the default is 00. Files
containing load modules must be type CA.

is ignored

is ignored

suppresses initializing the disc file space to zero.
default is to initialize the file space to zero.

If not specified, the

suppresses saving the file when all files on the disc are saved by a SAVE
DEVICE directive. If not specified, the default is to save the file.

allows write access by the owner of the file. All other users have read only
access.

PO is ignored

password is ignored

NOTE: This directive is provided for compatibility. Its use is not recommended; instead
use the VOLMGR CREATE FILE directive.

3-2
File Manager (FILEMGR)

Directives
MPX-32
Utilities

o

CREATEM

3.4 CREATEM Directive

The CREATEM directive defines a global common partition, a Datapool partition, or a
partition in the user's extended address space (above the 128KW logical address space
mapped for each task). Memory partitions defined by FILEMGR are dynamically
allocated when required by a task. They do not remain allocated in physical memory
regardless of use as do SYSGEN-defined partitions. To use a memory partition defined
by FILEMGR, tasks must use the M.INCLUDE system service.

A partition defined by FILEMGR is 2KW minimum on a CONCEPT /32 computer or 8KW
on a 32/7x series computer. A SYSGEN-defined partition is structured in protection
granule increments of 512 words per protection granule.

A partition name can be created only once. If created through SYSGEN, a partition
name cannot be created again with FILEMGR. MPX-32 has the ability to multicopy
partition space into more than one logical address space.

Syntax:

CREATEM { GLOBALnn} [[E] [IRO!]] ~~~:~~OL ,protgran, firstpage, ~ ,PO, password

GLOBALnn creates a global common partition (00-99) which can be physically located
in any class of memory (E, H, or S) and is mapped into the address space of
each task that accesses it through the M.INCLUDE system service

DA T APOOL creates a Datapool partition whose structure is defined by one or more
Datapool dictionaries. Like global common, the Datapool area can be
physically located in any class of memory (E, H, or S) and is mapped into
the logical address space of each task that accesses it. The first task
calling M.INCLUDE defines the partition as sharable.

extname

prot gran

MPX-32
Utilities

is a one to eight character name of a memory parti tion in a task's extended
address space. This partition may be mapped into memory above the first
128KW logical address space available to a task. Since the partition is in
extended memory, certain restrictions apply. Refer to the MPX-32
Reference Manual.

Partitions in a task's extended address space can be located in any class of
physical memory (E, H, or S).

The name used for a parti tion that is allocated in extended address space
must not be GLOBALnn.

specifies the number of 512-word protection granules to include in the
partition. (Four protection granules equal one map block on a
CONCEPT /32 computer; sixteen protection granules equal one map block
on a Series 32/7x computer.) Unused physical protection granules within
the last map block allocated to the partition are write-protected from all
sharing tasks. Only one partition may be defined in anyone map block.

File Manager (FILEMGR)
Directives 3-3

CREATEM (Cont.)/DELETE

firstpage

E

H

S

RO

PO

password

NOTE:

specifies the starting protection granule in the nonextended logical address
space (pages 0 to 255) or in the extended address space (pages 256 to 495 on
a Series 32/7x or pages 256 to 1019 on a CONCEPT /32) where the partition
is to be mapped. Protection granules in the first several map blocks should
not be specified because they are used for the MPX-32 operating system.

Protection granules for global and datapooi partitions are normally
allocated from the top down in a task's logical address space, or below any
SYSGEN-created common partitions.

allocates the partition in the first 128KW. If not available, the partition is
queued in the Memory Request Queue (MRQ) until class E becomes
available.

allocates the partition in class H (high speed) or E memory. If Hand E are
not available, the partition is queued in the MRQ until class H or E
becomes available.

allocates the partition in class S (slow), H, or E memory. If no memory is
available, the partition is queued in the MRQ until memory becomes
available.

allows write access to the owner of the file. All other users have read only
access.

is ignored

is ignored

This directive is provided for compatibility only. Its use is not
recommended; instead use the VOLMGR CREATE COMMON directive.

3.5 DELETE and DELETEU Directives

The DELETE and DELETEU directives delete files from disc and free the disc space.
When a file is deleted, its directory entry is removed. The DELETE directive deletes
system files. The DELETEU directi ve deletes user files from the current working
directory or the directory of the user whose name was specified in a TSM $USERNAME
statement or FILEMGR USERNAME directive.

Syntax:

DELETE[U] filename [,password]

filename specifies a one to eight character file name. The name cannot contain
blanks or wild card characters.

password is ignored

To use the DELETE command, the user name in effect must have delete access to the
file to be deleted and delete entry access to the directory where the file is located.

NOTE:

3-4

This directive is provided for compatibility only. Its use is not
recommended; instead use the VOLMGR DELETE FILE directive.

File Manager (FILEMGR)
Directives

MPX-32
Utilities

1~'

I,~

'. c·.··.'··

DELETEW /EXIT

3.6 DELETEW Directive

The DELETEW directive deletes more than one file per directory from the disc, frees
disc space, and removes the directory entry for each deleted file from the current
working directory. Up to 20 file prototypes can be specified per directive. A directive
can be continued on several lines. Each line must contain a comma as the last nonblank
character.

There are no defaults for the DELETEW directive. For each file to be deleted, the word
SYSTEM or the user name of the current working directory and the file name must be
speci fied (see the Examples section for sample use of this directive).

Syntax:

DELETEW [FILE=] prototype [,prototype •••]

prototype identifies a file as follows:

(username [,key]) ['] filename ['] [;password]

username,key

filename

;password

user name and optional key must be the same as the current working
directory and must be enclosed in parentheses. The name SYSTEM can
be used to specifically indicate system files and must be enclosed in
parentheses.

speci fies a one to eight character file name. Wild card characters (?)
are allowed.

is ignored

NOTE: This directive is provided for compatibility only. Its use is not recommended;
instead use the VOLMGR DELETE FILE directive.

3.7 EXIT Directive

The EXIT directive exits FILEMGRand returns control to TSM when running in the
interacti ve mode.

When running in the batch mode, the EXIT directive signifies the end of FILEMGR
directi ves in a jobstream.

Syntax:

EXIT

MPX-32
Utilities

File Manager (FILEMGR)
Directives 3-5

EXPAND/LOG/PAGE

3.8 EXPAND and EXPANDU Directives

The EXPAND and EXPANDU directives increase the size of an existing file. If the file
space is increased in size, the additional space is zeroed if the file was not created with
the NZRO attribute.

Syntax:

EXPAND[U] filename, blocks [,password]

filename

blocks

password

NOTE:

specifies a one to eight character file name. The file name cannot contain
blanks or wild card characters.

is the new size of the file. Specifies the number of 192-word blocks to
allocate for the file.

is ignored

This directive is provided for compatibility only. Its use is not
recommended; instead use the VOLMGR EXTEND directi ve.

3.9 LOG, LOGU, and LOGe Directives

The LOG and LOGU directives provide information about all permanent files defined in
the system or user directory or a subset of files. Output includes the file name,
directory name, device on which the file resides, starting address of the file, file size,
and file type. If no parameters are specified, the output contains data on all permanent
files in the system directory (for LOG) or current working directory (for LOGU).

Syntax:

LOG [~J [[FILE=] prototype] [,prototype ••• J

c

FILE=

prototype

provides same results as if no parameters were specified

limits the list to a specific file or set of files

identifies files as described in the DELETEW dir.ective. Up to 20 file
prototypes per directive can be specified. A directive can be continued on
several lines or cards if each line or card contains a comma as the last
nonblank character.

3.10 PAGE Directive

The PAGE directive forces a page eject and prints a header on the listed output. A
header is automatically printed on the first page of the listed output without specifying
the PAGE directive.

Syntax:

PAGE

3-6
File Manager (FILEMGR)

Directives
MPX-3Z
Utilities

c

RESTORE

3.11 RESTORE and RESTOREU Directives

/ The RESTORE and RESTOREU directives copy files saved by a SAVE or SAVEU directive
back to disc. Assign the medium that was assigned to logical file code OUT during the
save to logical file code IN to restore the files. The RESTORE and RESTOREU
directives can be used to restore:

• All system and/or user files assigned to logical file code IN to the system or a user
directory on the current working volume

• A subset of system and/or user files

When specifying a list of prototypes, files from other user names can also be restored.

Syntax:

RESTORE[U] [DEVICE=devmnc] , (FILE= prototype] [,prototype •••]

DEVICE=

devmnc

FILE=

prototype

Usage:

restores all files from logical file code IN to the system or user directory
on the current working volume

is ignored

limits the restoration to a specific file or set of files

identi fies files as described in the DELETEW directi ve. Up to 20 file
prototypes per directive can be specified. A directive can be continued on
several lines or cards if each line or card contains a comma as the last
nonblank character.

If no parameters are specified, all files from logical file code IN are
restored to the system or user directory on the current working volume.

FIL> RESTORE

This example restores all files from logical file code IN to the system or user directory.

FIL> RESTORE DEVICE=Dtv10800

This example restores all system and user files from logical file code IN to the current
system or user directory.

MPX-32
Utilities

File Manager (FILEMGR)
Directives 3-7

REWIND/SAVE

3.12 REWIND Directive

The REWIND directive rewinds a file or device.

FILEMGR does not rewind automatically after saves or restores. If a tape has not been
rewound off-line, the REWIND directive should be used.

Syntax:

REWIND {~UT}
IN specifies the device assigned to logical file code IN

OUT specifies the device assigned to logical file code OUT

3.13 SAVE and SAVEU Directives

The SAVE and SAVEU directives copy permanent disc files to the medium assigned to
logical file code OUT. Normally files are saved on and restored from magnetic tape.
SAVE is usually used for creating backup copies.

The SAVE and SAVEU directi ves can be used to copy:

• All system files and/or all files belonging to a particular user

• A subset of system and/or user files

If no user name is associated with FILEMGR operations, or if a USERNAME statement
with no following parameter has been specified, system files are saved.

As files are saved, FILEMGR builds a compatible SMD entry containing the same
information as the pre-MPX-32 Release 2 SMD. The SMD entry is output at the
beginning of each group of files saved on the medium assigned to logical file code OUT.
An error message and a zero-filled block on logical file code OUT indicating an end-of
file (EOF) is produced if a SAVE directive is specified and no files are saved.

An audit trail of all files saved in a particular FILEMGR session is listed automatically
on the device assigned to logical file code SLOe The files are listed in the order in which
they were saved.

Syntax:

SAVE [U] [{[DEVICE=devmnC] }]
[FILE=] prototype [,prototype •••]

3-8

If no parameters are supplied, all system and user files (SAVE) or all user
files in the current working directory (SAVEU) are saved on logical file
code OUT.

File Manager (FILEMGR)
Directives

MPX-32
Utilities

f-~

:L

o

SAVE (Cont.)/SAVELOG

DEVICE= saves all files from the system or current working directory

devmnc is ignored

FILE= limits the save to a specific file or set of files.

prototype identifies a file as described in the DELETEW directive. Up to 20 file
prototypes per directive can be specified. A directive can be continued on
several lines or cards if each line or card contains a comma as the last
nonblank character.

Usage:

FIL) SAVE

This example saves all system and user files in the system and current working
directories.

3.14 SAVELOG Directive

The SAVELOG directive lists the files grouped in the current directory that resides on
the tape assigned to logical file code IN. After the files are listed, the tape returns to
the beginning of the current directory.

The SAVELOG directive is useful during restoration because it allows matching of
RESTORE directi ves against the actual saved files on a tape. Checking the contents of a
tape also ensures that the right tape is mounted.

If a tape contains several directories, the SKIPFILE directive can be used to get to and
list the next directory. For example, if a tape has three directories, the following
directi ves:

SAVELOG
SKIPFILE IN
SAVELOG
SKIPFILE IN
SAVELOG
REWIND IN

output all directory entries to the device assigned to logical file code SLOe If SAVELOG
is inserted between the RESTORE directives, each directory list precedes the RESTORE
operations shown on the SLO device.

Syntax:

SAVELOG

MPX-32
Utilities

File Manager (FlLEMGR)
Directives 3-9

SKIPFILE/USERNAME

3.15 SKIPFILE Directive

The SKIPFILE directive advances past one or more end-of-file (EOF) marks on the file or
device assigned to the logical file code IN or OUT.

Syntax:

SKIPFILE {~UT} [,nl

IN specifies the device assigned to logical file code IN

OUT specifies the device assigned to logical file code OUT

n specifies the number of EOFs to skip. If not specified, the default is one.

For sample use of this directive, see Figure 2-1 and the SAVELOG directive description.

3.16 USERNAME Directive

The USERNAME directi ve names the directory to be used for subsequent FILEMGR
operations.

If running from a terminal in TSM, the initial user name defaults to the directory name
established at lagon. The initial user name can be changed by supplying a different name
in a USERNAME directive.

Syntax:

USERNAME [username] [,key]

username specifies the riame of a directory an the current working volume. If no name
is supplied, defaults to system files.

key is ignored

3-10
File Manager (FILEMGR)

Directives
MPX-32
Utilities

c

o

(~'

SECTION 4 - ERRORS AND ABORTS

4.1 Abort Codes

FlLEMGR generates the following abort codes and messages:

Code

FM13

FM14

FM15

FM16

FM17

FM20

FM41

FM42

FM99

Message

UNRECOVERABLE I/O ERROR TO THE DIRECTORY

UNRECOVERABLE I/O ERROR TO THE SYC FILE

UNRECOVERABLE I/O ERROR TO THE SLO FILE

UNRECOVERABLE I/O ERROR TO THE 'IN' FILE

UNRECOVERABLE I/O ERROR TO THE 'OUT' FILE

UNRECOVERABLE I/O ERROR ON SAVE, RESTORE, OR EXPAND
FILE

END-OF -MEDIUM ON LFC SLO

INV ALID USER NAME

ERROR(S) (DESCRIBED ON LFC SLO) DETECTED DURING
EXECUTION

4.2 Error Messages

The following are the possible error messages for errors which lead to an FM99 abort
code.

INSURE BOUNDING

INV ALID COMMAND VERB

REQUIRED ARGUMENTS ARE ABSENT

REQUEST IGNORED - FILE ALREADY EXISTS

INV ALID DEVICE SPECIFICATION

INV ALID NUMERIC SPECIFICATION

SPECIFIED FILE IS ACCESS PROTECTED

REQUEST TO EXPAND MEMORY PARTITION

(~~ REQUEST IGNORED - SPACE UNAVAILABLE

MPX-32
Utilities

File Manager (FILEMGR)
Errors and Aborts 4-1

REQUEST IGNORED - COLLISION MAPPING

UNABLE TO DELETE FILE - VMxx

INSUFFICIENT FAT SPACE FOR SMD

INVALID ARGUMENT

CANNOT ALLOCATE REQUIRED RESOURCE - VMxx
RMxx

UNEXPECTED EOF ON IN FILE

FILE SPECIFIED NOT FOUND

OVER 20 PROTOTYPES SPECIFIED IN COMMAND

EOF EXPECTED - NOT FOUND

ERROR ENCOUNTERED WHILE MAKING TEMP FILE PERMANENT

UNABLE TO ALLOCATE SCRATCH FILE

INVALID CHARACTERS IN FILENAME

ERROR IN SORTING LOG LISTING

WARNING: FILE (username) filename -- IS "NO SAVE". OPTION 113 { }
MUST BE SPECIFIED TO SAVE

RESTORE

WILD CARD DELETE (DELETEW) MUST HAVE ARGUMENTS

USER NAME MUST BE EXPLICITLY STATED WITH WILD CARD DELETE (DELETEW)

FILE NAME(S) NOT SPECIFIED

END-OF -MEDIUM ENCOUNTERED ON LOGICAL FILE CODE "Ife"

NAMES "GLOBALII AND IIDATAPOOL" INVALID IN EXTENDED MEMORY

NO DIRECTORY ENTRIES ARE AVAILABLE

UNABLE TO ACCESS RESOURCE IN REQUIRED MODE. ACCESS RIGHTS VIOLATION.

UNABLE TO CREATE MEMORY PARTITION.
ERROR = VMxx REPLACED WITH ASCII NUMBER

INVALID COMMAND - USE VOLUME MANAGER TO CREATE DIRECTORIES

INVALID COMMAND - USE VOLUME MANAGER TO CREATE SOT TAPES

UNABLE TO EXPAND FILE - VMxx

4-2
File Manager (FILEMGR)

Errors and Aborts
MPX-32
Utilities

o

SECTION 5 - EXAMPLES

This section provides sample programming sequences illustrating the use of various
FILEMGR directives.

The following example converts 2.x/3.x disc files to Lx tape files. FILEMGR saves all
files in the current working directory to tape.

TSM>AS OUT TO DEV=M9
TSM>FILEMGR
FIL>SAVEU
FIL>EXIT
TSM>

The following batch example restores l.x tape files to 2.x/3.x disc files. FILEMGR
restores all JJ. files with five or less trailing characters and a username of DIRABC to
disc in directory DIRABC.

MPX-32
Utilities

$JOB EXAMPLE2 OWNER
$AS IN TO DEV=M9
$FILEMGR
USERNAME DIRABC
RESTORE FILE=(DIRABC)JJ. ?????

$EOJ
$$

File Manager (FILEMGR)
Examples 5-1/5-2

(

o

C:

Macro Assembler (ASSEMBLE)

MPX-32 Utilities

o

o

(

CONTENTS

Section

1- OVERVIEW

1.1 General Description •••••••••••••
1.1.1 Macro Assembler Features ••
1.1.2 Macro Assembler Operation

1.2 Directi ve Summary .•..•.•..•.•••••

2 - USAGE

2.1
2.2

2.3
2.4
2.5

2.6
2.7

Accessing the Macro Assembler.
Logical File Code Assignments •
2.2.1 Source Input (PRE and SI)
2.2.2 Macro Libraries (MAC and MA2)
2.2.3 Temporary Files (UTI and UT2) ••
2.2.4 Listed Output (LO) •••••••••••
2.2.5 Object Code - BO (Binary Object) and GO

2.2.6
2.2.7

(General Object) •.••••
Compressed Source (CS)
LFC Summary ••••

Options
Exiting the Macro Assembler •••
Using Macros ••••••••••••
2.5.1 Macro Components ••
2.5.2 Symbolic Parameters ••••••
2.5.3 Macro Definition
2.5.4 Macro Call ••••.
2.5.5 Macro Expansion
2.5.6 Label Generation within Macros
2.5.7 Symbol Concatenation
2.5.8 Nested Macros
Datapool
Global Common

3 ... MACRO ASSEMBLER LANGUAGE

3.1
3.2

3.3

Introduction •••••••••••
Source Statement Format
3.2.1 Label Field
3.2.2 Operation Field
3.2.3 Operand Field
3.2.4 Comment Field .•••••••••
3.2.5 Sequence Field.
3.2.6 Continuation Lines
3.2.7 Character Set

3.2.7.1 Escape Character.
Data Representation ••
3.3.1 Symbols ••
3.3.2 Literals.

MPX-32
Utilities

Macro Assembler (ASSEMBLE)
Contents

1-1
1-1
1-1
1-2

2-1
2-1
2-3
2-4
2-4
2-5

2-5
2-6
2-7
2-7
2-9
2-9
2-9

2-10
2-10
2-11
2-12
2-12
2-14
2-14
2-16
2-16

3-1
3-1
3-1
3-1
3-1
3-3
3-3
3-3
3-4
3-4
3-6
3-6
3-6

iii

Section

3.4

3.3.3 Constants
3.3.3.1
3.3.3.2
3.3.3.3
3.3.3.4
3.3.3.5
3.3.3.6
3.3.3.7
3.3.3.8

C-Character String ••
G-Character String.
Hexadecimal Constant (X) ••
Fixed Point Decimal Word (N) ••••••
Fixed Point Decimal Doubleword (F)
Floating Point ••••••••••••••••
Floating Point Decimal Word (E) •••
Floating Point Decimal Doubleword (R)

3.3.4 Expressions e' ••

3.3.4.1 Expression Evaluation.
3.3.4.2 Expression Types

Addressing Techniques •••••••••
3.4.1 Location Counter ••••••
3.4.2 Self-Relative Addressing.
3.4.3 Symbolic Addressing.
3.4.4 Relative Addressing
3.4.5 Absolute Addressing
3.4.6 Literal Addressing ••
3.4.7 Blank Addressing
3.4.8 Addressing Attributes ...

4 - DIRECTIVES

4.1 Introduction ••
4.2 ABS Directive
4.3 AC Directive.
4.4 ANOP Directive.
4.5' BOUND Directive •• ·
4.6 COMMON Directive.
4.7 COMPUTED GOTO Directive .. ·

......

3-7
3-7

3-11
3-13
3-13
3-16
3-18
3-19
3-20
3-21
3-22
3-22
3-24
3-24
3-25
3-26
3-27
3-27
3-27
3-28
3-28

4-1
4-2
4-2
4-4
4-4
4-5
4-7

4.8 CSECT Directi ve 4-7
4.9 DA T A Directive. ... 4-8
4.10 DEF Directive •• · -.. 4-10
4.11 DEFM Directive. .' . 4-10

, 4.12 DSECT Directi ve 4-11
4.13 END Direcctive • 4-11
4.14 ENDM Directive. , 4-12
4.15 ENDR Directi ve ••• · 4-12
4.16 EQU Directive ••• · 4-13
4.17 EXITM Directive " . 4-13
4.18 EXT Directive ••• · 4-14
4.19 FORM Directive. 4-16
4.20 GEN Directive •• 4-19
4.21 GOTO Directive. 4-20
4.22 IF A Directive. 4-20
4.23 IFF Directive. · ... 4-21
4.24 IFP Directive 4-22
4.25 1FT Directive. · ... 4-22
4.26 LIST Directive 4-23
4.27 LPOOL Directive · 4-24
4.28 ORG Directive •• · 4-25
4.29 PAGE Directive. . . · 4-25

Macro Assembler (ASSEMBLE) MPX-32
iv Contents Utilities

o

0 ,(' J

COo'"
"0

.;~

Section

4.30
4.31
4.32
4.33
4.34
4.35
4.36
4.37
4.38
4.39

PROGRAM Directive
REL Directive •••
REPT Directive
RES Directive
REZ Directive.
SET Directive
SETF Directive
SETT Directive
SPACE Directive
TITLE Directi ve •••

" .

5 - ERRORS AND ABORTS

5.1
5.2
5.3

Error Codes •••
Abort Codes •••
Error Messages.

6 - OUTPUT AND EXAMPLES

6.1
6.2
6.3
6.4
6.5
6.6

A
B
C
o

2-1
3-1
3-2
6-1
6-2
6-3

2-1
3-1
3-2
3-3
3-4
3-5

Introduction •••••••••••
Source Listing •••••••••
Symbol Cross-Reference
Error Diagnostics ••••••
Object Output ••••••••
Macro Assembler Programming Examples.

Instruction Formats
Extended Mnemonic Codes
Compressed Source Format.
ASCII Code Set •••••••••

APPENDICES

FIGURES

Macro Assembler Flow of Operation
Assembler Coding Form ••••••
Floating Point Data Formats •••
Sample Assembler Listed Output
Sample Symbol Cross-Reference
Pass One Error List ••••••••••

TABLES
Macro Assembler LFC Summary
ASCII Control Characters ••••••
Addition Operations •.
Subtraction Operation.
Multiplication/Division Operations ••
Operand Code Format •••••••••••

MPX-32
Utilities

Macro Assembler (ASSEMBLE)
Contents

4-26
4-26
4-27
4-28
4-30
4-32
4-32
4-32
4-33
4-33

5-1
5-3
5-6

6-1
6-1
6-4
6-7
6-7
6-9

A-I
B-1
C-1
0-1

2-2
3-2

3-18
6-3
6-6
6-7

2-7
3-5

3-23
3-23
3-23
3-28

v/vi

. , 0 ,

t". • < •

o

1.1 General Description

MACRO ASSEMBLER (ASSEMBLE)

SECTION 1- OVERVIEW

The Macro Assembler (ASSEMBLE) utility translates Macro Assembler source code into
standard non-base object programs for execution. Assembler source code consists of
Assembler language instructions and Macro Assembler directives. The Assembler
language instruction set is described in the CPU reference manual that corresponds to
the machine type being used.

Macro Assembler directives provide capabilities for program control, symbol and data
definition, listed output, and macro support. Macro Assembler source statement format
is described in Section 3.

The Assembler recognizes 1 to 16 character file names. Unless speci fied, files assigned
to logical file codes will be forced to the appropriate format-blocked or unblocked.

1.1.1 Macro Assembler Features

General operating features and capabilities of the Macro Assembler include:

• A comprehensive set of Assembler directives.

Mnemonic operation codes for all directives and instructions.

• Symbolic addressing.

• Decimal (integer and real), hexadecimal, and character representation of machine
language binary values.

• Programs may be arbitrarily grouped into logical sections (subroutines) which may be
assembled separately and combined into one executable program at load time.
Linkage information between sections is provided through the EXT and DEF Assembler
directi ves.

• Relocatable object programs.

• Macro instruction support.

• System services support.

• Listed output of source program and resulting object code.

1.1.2 Macro Assembler Operation

The Macro Assembler translates Assembler source program statements into binary
equivalent machine instructions, equates symbols to numeric values, assigns relocatable
or absolute memory addresses for program instructions and data, and generates listed
output.

MPX-32
Utilities

Macro Assembler (ASSEMBLE)
Overview 1-1

A fter a source program has been assembled, the object module output can be placed in a
subroutine library or a permanent file, output to a device medium, or cataloged into a
load module. Object modules can be linked together to form a single task by assembling
and cataloging the modules in the same job, by accessing the Subroutine Library during a
separate Cataloger run, or by using a $SELECTx job control statement in batch mode
prior to cataloging the object modules.

1.2 Directive Summary

Macro Assembler directives provide program control, symbol and data definition, listed
output control, conditional assembly, macro support, and special usage functions.
Directives are summarized by function below. Section 4 contains detailed directive
descriptions in alphabetical order. Extended mnemonic instructions are listed in
Appendix B.

Program Control

ABS

REL

CSECT

DSECT

ORG

BOUND

RES

REZ

END

Assembles source code in absolute mode (CATALOG does not process)

Assembles source code in relocatable mode

Assembles source code in code section mode

Assembles source code in data section mode

Assigns a value to the location counter

Advances the location counter to represent a byte multiple of a
speci fied value

Reserves memory locations

Reserves and zeroes memory locations

Indicates the end of Assembler source code

Symbol Definition

EQU

EXT

DEF

Data Defini tion

GEN

DATA

AC

1-2

Defines a symbol by equating it to an expression

Declares an external reference

Declares an external definition

80nstructs a hexadecimal value by generating a bit pattern

Generates a value

Generates an address constant

Macro Assembler (ASSEMBLE)
Overview

MPX-32
Utilities

o

o

(

C.""';
./

Conditional Assembly

ANOP No operation

GOTO Branches uncondi tionall y

Computed GOTO Branches conditionally based on indexed argument list

IFF Branches if the specified expression is evaluated as true

1FT Branches if the specified expression is evaluated as false

SET Assigns the value of an expression to a label

SETF Assigns the value false to a label

SETT Assigns the value true to a label

Listed Output Control

PAGE Causes a page eject on listed output

SPACE Skips lines on listed output

TITLE Prints a title at the top of each page of listed output

LIST Controls listed output by requesting or inhibiting parts of source output

Macro Support

DEFM

ENDM

EXITM

IFA

IFP

Special Usage

PROGRAM

COMMON

LPOOL

REPT

ENDR

FORM

MPX-3Z
Utilities

Defines a macro by specifying its name and arguments

Terminates a macro definition

Terminates processing of a macro structure

Branches on presence of arguments

Branches on absence of arguments

Specifies the name of an Assembler program

Defines, manipulates, and initializes common communication areas.

Inserts literals into object code

Generates a repeat loop

Terminates a repeat loop

Defines variable length data subfields

Macro Assembler (ASSEMBLE)
Overview 1-3/1-4

o

o

SECTION 2 - USAGE

2.1 Accessing the Macro Assembler

The Assembler can be accessed in batch or interactive mode in one of three ways:

$ASSEMBLE
$RUN ASSEMBLE
$EXECUTE ASSEMBLE

$RUN ASSEMBLE is valid only from the system directory.

When accessing the Assembler interactively, the ASS> prompt is displayed:

TSM> $ASSEM3LE
ASS>

2.2 Logical File Code Assignments

Logical file code (LFC) assignments are made by the $ASSIGN job control language
statement. In an Assembler program, place the assignment statements before the
$ASSEMBLE statement. If no assignments are made, the Assembler uses default
assignments.

Figure 2-1 shows the Assembler's flow of operation and default assignments for logical
file codes.

MPX-32
Utilities

Macro Assembler (ASSEMBLE)
Usage 2-1

INPUT
SI,PRE

PASS ONE
PROCESSING

SYMBOLIC
CROSS

REFERENCE
TABLE

UT2

MACRO
STORAGE

TABLE

PASS TWO
PROCESSING

Figure 2-L Macro Assembler Flow of Operation

LISTED
OUTPUT

LO

BINARY
OUTPUT

BO

87D4oo1

The default assignments are not valid in independent mode. If an LFC is assigned to a
file, that file must have been previously created.

During Pass One, the Assembler scans the source code for macro calls, referenced
symbols, and "errors which will not be resolved in Pass Two. Unresolvable errors include
multiply defined symbols and illegal operations.

If the source program contains macro calls or referenced symbols, the Assembler
dynamically establishes macro storage and symbol cross-reference tables in memory.
Additional memory for these tables is allocated when they are accessed during Pass
Two. However, the Assembler de allocates statically allocated memory before
dynamically allocating additional memory.

During Pass Two, the Assembler reads the source code from the scratch file created
during Pass One. The macro storage and symbol cross-reference tables are accessed to
resolve macro and symbol references. If necessary, a macro library is also searched.

2-2
Macro Assembler (ASSEMBLE)

Usage
MPX ... 32
Utilities

(

A fter the scratch file is processed, the output is sent to the device or file assigned for
listed or binary output.

The following sections describe the LFC assignments used by the Assembler.

2.2.1 Source Input (PRE and 51)

Source code is assigned to logical file codes PRE and 51 for input. Source code can be
input from any device or file and can be in compressed format. User program source
code should be assigned to 51. Source code containing nonexecutable Assembler
directi ves (such as SET directives) can be assigned to PRE. During processing, the source
code assigned to PRE is input until an end-of-file (EOF) is reached, then the source code
assigned to 51 is input.

The Macro Assembler accepts source input in upper and lower case. All input except the
text specified in a TITLE directive, G-character strings, and C-character strings are
converted to upper case by the Macro Assembler.

51 Default and Optional Assignments

The default assignment for Assembler source input is:

$A55IGN 51 TO 5YC

There are two optional assignments for 51:

$A55IGN 51 TO lpathname I
DEV=devmnc

pathname
devmnc

is the pathname of the file containing Assembler source input
is the device mnemonic of a device containing Assembler source input

PRE Default and Optional Assignments

There is no default assignment for PRE.

There are two optional assignments for PRE:

$A5SIGN PRE TO lpathname I
DEV=devmnc

pathname
devmnc

is the pathname of the file containing nonexecutable Assembler source input
is the device mnemonic of a device containing nonexecutable Assembler
source input

MPX-32
Utilities

Macro Assembler (ASSEMBLE)
Usage 2-3

2.2.2 Macro Libraries (MAC and MA2)

If macros are called in the source program, the Assembler searches a macro library
during Pass One processing. The system macro library (M.MPXMAC) provjdes a
collection of macro definitions which can be used by source programs. Users can also
add macros to the library using the MACLIBR utility.

In addition to M.MPXMAC, the Assembler can support another macro library referenced
by logical file code MA2. If assigned, MA2 is searched before MAC and the permanent
symbol table for all names that appear in the opcode/instruction field of Assembler
statements. Assignment to MA2 is useful for overriding an existing opcode or Assembler
directive. However, use of MA2 is not recommended unless this override feature is
needed.

Logical file codes MAC and MA2 are forced unblocked by the Macro Assembler.

MAC Default and Optional Assignments

The default assignment for MAC is to the system macro library (M.MPXMAC):

$ASSIGN MAC TO @SYSTEM(SYSTEM)M.MPXMAC

There are two optional assignments for MAC:

$ASSIGN ~C TO{@SYSTEM(SYSTEM)M.~CLIB}
pathname

M.MACLIB contains RTM-compatible macros
pathname is the pathname of the file containing the macro library

MA2 Optional Assignment

There is no default assignment for MA2 and one optional assignment:

$ASSIGN MA2 TO pathname

pathname is the pathname of the file containing the macro library

If this assignment is made, the library assigned to MA2 is searched before the system
macro library.

2.2.3 Temporary Files (UTI and UT2)

Logical file code UTI is used to store the source and expanded macro text for processing
during Pass Two. In Pass One, the Assembler writes the text to UTI; in Pass Two, the
Assembler reads UTI.

Logical file code UT2 is used for the symbol cross-reference table during assembly.

2-4
Macro Assembler (ASSEMBLE)

Usage
MPX,,:,32
Utilities

o(-~,\

V

(~)

C:··
UTI and UT2 Default Assignments

Both UTl and UT2 are assigned to temporary scratch files. UTl is forced to blocked
format; UT2 is forced to unblocked format. The default assignments for UTI and UT2
are:

$ASSIGN UTl TO TEMP SIZE=BOO

$ASSIGN UT2 TO TEMP SIZE=400

The file size in the SIZE= parameter can be increased if an AS04 or AS05 abort occurs.

2.2.11 Listed Output (La)

The Assembler produces listed output that pairs the hexadecimal representation of object
code with the corresponding source program statements. Also included in the listing are
symbol cross-reference tables and error diagnostics. Refer to Section 6· for anexarilple
and explanation of Assembler listed output. Refer to Section 5 for a list of error codes
and their meanings.

La Default and Optiooal Assignments

The default assignment for LO is to the System Listed Output file (SLO):

$ASSIGN LO TO SLO

There are three optional assignments for LO:

$ASSICl'J LO TO{pa thname }
DEV=devrnnc
LFC=UT

pathname
devmnc
LFC=UT

is the pathname of the file to contain listed output
is the device mnemonic of the device to contain listed output
assigns output to the user terminal

2.2.5 Object Code - BO (Binary Output) and GO (General Object)

Object code is output to the file or device assigned to logical file codes BO .and GO. If
binary output is desired, use BO; otherwise, use GO.

If .Assembler option 2 is set, output to BO is suppressed.

BO Default and Optional Assignments .

The default assignment for BO is the System Binary Output file (SBO):

$ASSIGN BO TO SBO

The· SBO file is output to the device assigned as POD (Punched Output Device) at
SYSGEN. The POD assignment can be overridden by the OPCOM SYSASSIGN directive.

MPX-32
Utilities

Macro Assembler (ASSEMBLE)
Usage 2-5

The SBO file is a temporary file. If it is not accessed during the job in which it was 0
generated,. it will be lost. ,If necessary, make a permanent copy of the. file 01: device . . \'
~~~~~n . 
There are two optional assignments for BO: 

$ASSI{]\J BO To{pathname } 
DEV=devmnc 

pathname 
devmnc 

is the pathname of the file to contain binary output 
is the device mnemonic of a device to contain the binary output 

GO Default and Optional Assignments 

The default assignment for GO is the System General Object file (SGO): 

$ASSIGN Gp TO SGO 

The SGO file is a temporary file. If it is not accessed during the job in which it was 
generated, it will be lost. Some utilities, such as UBED and CATALOG, access the SGO 
file automatically. If necessary, make a permanent copy of the file or d~vice assigned to 
SGn . . 

There are two optional assignments for GO: 

$ASS I{]\J CD To{pa t hname }' 
DEV=devmnc 

pathname 
devmnc 

is the pathname of the file to contain object code 
is the device mnemonic of the device to contain object code 

2.2.6 Compresssed Source (CS) 

The Assembler can produce source output in compressed format. Compressed source 
output is assigned to the logical file code CS. There is no default assignment for CS. 

CS Optional Assignments 

To output compressed source, assign a.file or device to logical file code CS: 

$ASS I{]\J CS To{pa t hname }' 
DEV=devmnc 

If both BO and CS are assigned to SBO, BO output is generated first. 

Refer to Appendix C for additional information on compressed source format. 

2-6 
Macro Assembler (ASSEMBLE) 

Usage 
MPX-32 
Utilities 

./'~\ 

~~~! 

o

(-

c

2.2.7 LFC Summary

The following is a table of LFCs used by the Macro Assembler and their default and
optional assignments.

Table 2-1
Macro Assembler LFC Summary

Default Optional
LFC Assignment Assignment

SI SYC pathname
DEV=devmnc

PRE none pathname
DEV=devmnc

MAC M.MPXMAC M.MACLIB
pathname

MA2 none pathname

UTI temporary file N/A

UT2 temporary file N/A

LO SLO pathname
DEV=devmnc
LFC=UT

80 SBO pathname
DEV=devmnc

GO SGO pathname
DEV=devmnc

CS (output) none pathname
DEV=devmnc

2.J Options

Options used by the Assembler include control and macro percentage parameters.
Options are specified by number in an $OPTION job control language statement. The
$OPTION statement should appear before the $ASSEMBLE statement in a jobstream. If
no options are specified, the default in effect is option 5.

Option

1

MPX-32
Utilities

Description

No Listed Output
Suppresses source program listing on logical file code LO.
Error messages are generated.

Macro Assembler (ASSEMBLE)
Usage 2-7

Option

2

3

4

5

6

7

8

9

10

11-13

14

15

,16-18 0

2-8

Description

No Binary Output
Suppresses binary output on logical file code BO.

Internally Generated Symbols
Includes internally .generated symbols in the symbol cross
reference listing. Does not apply if option 4 is set.

No Symbol Cross-Referepce
Suppresses listing of symbol cross-reference table.

Binary Output Directed to GO
Directs binary output to logical file code GO.

Reserved

Compressed Source Output
Generates source output in compressed format on logical
file code CS.

SI Not Blocked
Reads source input (SI) in unblocked format.
job control language statement must
unblocked (BLOC = N).

LO, BO, and CS Not Blocked

The $ASSIGN
also specify

Writes logical file codes LO, BO, and CS in unblocked
format. The $ASSIGN statements for these LFCs must
also speci fy unblocked.

Nonreferenced Symbols
Includes nonreferenced symbols in the symbol cross
reference listing. Does not apply if option 4 is set.

Reserved

Program Identification Information
Processes up to 20 bytes of identification information from
the id field of the PROGRAM directive and puts the
information into the object code.

Date and Time Information
Obtains the system date and time and puts it into the
object code.

Reserved

Macro Assembler (ASSEMBLE)
Usage

MPX-32
Utilities

c

Option

19

20

Description

Symbolic Information to Cataloger
Outputs symbolic information to the Cataloger for use by
the Symbolic Debugger (COMMON information is not
included). Do not specify this option if creating object
code that is to be processed by SYSGEN.

Call Monitor Compatibility
Generates replacement SVC 15, X Innl instructions for Call
Monitor (CALM) instructions.

2.4 Exiting the Assembler

In batch mode, the Assembler exits when it encounters the first job control language
statement with a $ in column one following the $ASSEMBLE, $RUN ASSEMBLE, or
$EXECUTE ASSEMBLE statement.

To exit the Assembler in interactive mode, enter CNTRL C in response to the Assembler
prompt.

2.5 Using Macros

A macro is a named set of program instructions that occur frequently in a program.
Once a macro has been defined, subsequent use of. the macro name is all that is needed to
generate the instruction sequence. The use of macros can simplify source program
coding, minimize programming errors in repetitive instructions, and standardize coding
sequences associated with similar functions.

The System Macro Library provides a collection of frequently used macros for use by
Assembler source programs. If macros are used within a source program, the system
library is assigned by default unless this assignment is specifically overridden. Refer to
Section 2 (Logical File Code Assignments) for the LFC assignments used for macro
processing.

Users can also create and maintain macro libraries using the Macro Library Editor
(MACLlBR) utility.

2.5.1 Macro Components

The instruction sequence that comprises a macro is the macro definition. The variable
components within a macro definition are called arguments. Use of a macro is referred
to as a macro call, which results in the substitution of the macro instruction sequence for
the macro name. The process of assembling the instruction sequence generated by a
macro call is referred to as macro expansion.

The macro structure is defined by a set of source statements that specify the legal
symbolic macro name, parameters used in the macro, and the sequence of instructions to
be generated when a macro call is specified in the source program. Thus, every macro
defini tion consists of the following three elements:

MPX-32
Utilities

Macro Definition Directive (DEFM)
Macro Prototype
Macro Termination Directive (ENDM)

Macro Assembler (ASSEMBLE)
Usage 2-9

2.5.2 Symbolic Parameters

Symbolic parameters in the macro definition, also called 'idummy" arguments, represent
symbolic arguments supplied with the macro call. Parameters specified by the macro
call are substi tuted for the symbolic parameters in the code generated for macro
expansion.

All symbolic parameters consist of a percent sign followed by a unique symbolic name of
one to eight alphanumeric characters. Examples of valid symbolic parameters are:

%ABCOEFGZ
%$50F
%B
%4FX
%C207

This syntax is also used to define local symbols within a macro structure.

Use of symbolic parameters in the macro definition is shown in the following sequence:

SAMPL

%LABELI

OEFM
LW
STW
BCT
ENOM

LABELl,A,B
3,%A
3,%B
2,TESTX

The percent sign must not be used as the leading character for a symbolic parameter
definition included in the operand field of the OEFM directive.

Macros that are stored in a macro library by the MACLIBR utility retain only those
dummy arguments that are actually referenced in the macro body.

2.5.3 Macro Definition

The macro definition is the instruction sequence to be generated in response to a macro
call.

Rules of syntax and usage for the source statements comprising a macro are the same as
described in the Macro Assembler Language section, with the following exceptions:

The OEFM, ENOM, and FORM directives may not be used within the range of a
macro definition delimited by OEFM and ENOM directives.

Labels of the form %xxxxxxxx are valid as shown above.

Comment lines and comment fields of macro definition instructions are not included in
the macro expansion or the macro definition storage.

The macro definition may include calls to other macro structures.

2-10
Macro Assembler (ASSEMBLE)

Usage
MPX-32
Utilities

lee"
'0

c

2.5.4 Macro Call

A macro is called by placing its name in the operation field and associated arguments in
the operand field of an instruction.

Syntax:

Label Operation Operand

symbol name a1,a2, ••• an

symbol

name

is an optional symbolic label that is assigned the current value of the
location counter

specifies the name of the macro definition being referenced. This name
corresponds to name specified in the label field of the DEFM directive.

al,a2, ••• an specifies the arguments, if any, to replace the operand field parameters
of the DEFM directive

Rules of syntax and usage for entries in the macro instruction are the same as described
in the Macro Assembler Language section, with the following exceptions:

The number of entries specified in the operand field (macro call arguments)
must be in the range 0 to 254 and separated by commas.

The operand field (argument list) must be terminated by a blank.

Each parameter (argument) in the operand field is limited to 24 characters in
length.

The operand field may be continued to the next source statement by using the
continuation character (;).

Operand field entries (macro call arguments) replace symbolic parameters in
the macro definition on a positional basis.

If no symbolic parameters are specified in the macro definition, the operand
field for the corresponding macro call instruction must contain at least 12
blank spaces; i.e., a minimum of 12 blank spaces must be embedded between
the operation and comment fields.

The macro call argument list (operand field) may specify null arguments, which can be
tested and referenced like an actual argument. Null argument specification results in no
source replacement and thus may be used as an optional field. Null arguments are
indicated by the omission of an argument in the list.

A typical macro call instruction for the macro defined as SAMPL with an argument list
is:

MPX-32
Utilities

EXMAC SAMPL XYZABZ, TEST, 7

Macro Assembler (ASSEMBLE)
Usage 2-11

A call for the same macro expansion with null argument specification could be:

EXMAC SAMPL- XYZAB2" TESTX'

2.5.5 Macro Expansion

A macro call generates the instruction sequence defined in the macro definition.
Symbolic parameters are replaced by the actual arguments supplied with the call.

The following example illustrates a typical macro expansion sequence.

Macro Definition

SAMPL

%LABEL1

Macro Call

FIG61

Macro Expansion

TEST

DEFM
LW
STW
BCT
ENDM

SAMPL

LW
STW
BCT

2.5.6 Label Generation Within Macros

LABEL1,A,B
3,%A
3,%B
2,TESTX

TEST ,XLOC, YLOC

3,XLOC
3,YLOC
2,TESTX

A unique symbol is generated for any symbolic parameter in the macro definition for
which no corresponding actual parameter is passed by the macro call.

A unique symbol is generated each time a macro is called and an actual parameter is not
specified. These unique symbols are generated in the form:

!xxxx

xxxx is a hexadecimal value in the range 0000 to FFFF

2-12
Macro Assembler (ASSEMBLE)

Usage
MPX-32
Utilities

o

o

c:
The following example illustrates the result of unspecified actual parameters:

Macro Definition

TEST
O/OLABEL

Macro Call

Macro EXr::!ansion

10000

DEFM
LW
BL
BCT
BU
ENDM

TEST

LW
BL
BCT
BU

LABEL, VALUE
3,%VALUE
TESTX
2,$+2W
%LABEL

,ALPHA

3,ALPHA
TESTX
2,$+2W
10000

Note that the generated code for the macro expansion is exactly the same as for a macro
definition of:

Label 0r::!eration

TEST DEFM VALUE

and the macro call:

Label 0r::!eration 0r::!erand

TEST ALPHA

The Assembler-generated symbol IXXXX, should not be confused with a user-coded
symbol of the similar format, IYYYY. These two types of symbols are treated uniquely
and are listed separately in any symbol cross-reference.

In addition to a standard symbol cross-reference, a cross-reference of internally
generated symbols may be optionally requested. If specified, the internal symbol cross
reference is listed immediately following the symbol cross-reference.

MPX-32
Utilities

Macro Assembler (ASSEMBLE)
Usage 2-13

2.5.7 Symbol Concatenation

Concatenation is the process of combining symbolic parameters within a macro definition
with symbolic strings or other symbolic parameters. Concatenation may be performed in
any field of a source statement.

Concatenation of symbolic parameters as a suffix to a symbolic string or to another
symbolic parameter is indicated by a percent sign (%). The percent sign indicates the
presence of the symbolic parameter. If a symbolic parameter is to be concatenated as a
prefix to a symbolic string, it must be delimited by a colon (:).

Be sure that symbols to be generated from concatenated strings are syntactically correct
and uniquely defined.

The following example illustrates the use of concatenation:

Macro Definition

MOVE
X%LABEL

Macro Call

Macro Expansion

X5

2.5.8 Nested Macros

DEFM
%OP1:W
%OP2:W
BU
ENDM

MOVE

LW
STW
BU

TO,FROM,LABEL,OPl,OP2,LABI,LAB2
3,A%FROM
3, % TO:FIELD
%LABl%LAB2

X,FIELD,5,L,ST ,CON, T1

3,AFIELD
3,XFIELD
CONTI

A macro call used within the body of a macro definition is referred to as an inner macro
call.

The macro definition structure that includes the inner macro call is called the outer
macro.

Such inner macr%uter macro constructions are commonly referred to as nested
macros. The inner macro call refers to the innermost, or nested, macro structure.

The nested macro is not defined until the outer macro is expanded. Likewise, a macro
call in the text of another macro structure is not expanded until the outer macro is
called.

If a macro expansion contains a nested macro call, the expansion of the outer macro is
suspended until the inner macro is completely expanded. The expansion of the innermost
macro in a structure of nested macros a1o.-,ays precedes that of the next outermost
macro.

2-14
Macro Assembler (ASSEMBLE)

Usage
MPX-32
Utilities

I{-~'
~

o

o

Symbolic parameters specified with the inner macro call are replaced by the
corresponding values of the outer macro call before the nested macro is processed.

A macro definition that corresponds to an outer macro call instruction may contain any
number of inner macro calls.

The depth to which macro calls may be nested is a function of the macro definition's
complexity, the number and length of actual parameters, and the amount of storage
available.

MPX-32
-Utilities

Macro Assembler (ASSEMBLE)
Usage 2-15

2.6 Datapool

The Datapool feature defines variables for inclusion in a memory partition with the name
DATAPOOL or DPOOLOO through DPOOL99. These partitions are similar in use and
function to a global common partition. However, Datapool variables are unique in that
their placement in a Datapool partition is not order critical like common usage. This
eliminates the need to ensure a gi ven order for proper address generation.

Ordering of Datapool variables is defined in the Datapool dictionary. The Datapool
Editor (DPEDIT) utility creates and maintains Datapool dictionaries.

Variables used in Assembler language source programs can be typed as Datapool items by
defining them as elements of labeled common DA T APOOL or DPOOLOO through
DPOOL99.

References to Datapool variables result in the character A being appended to the
location counter address field of Assembler listed output. Similarly, the character A is
used to denote a Datapool variable in the symbol cross-reference.

The following rules apply to the use of Datapool variables in Assembler language source
programs:

• A program variable cannot be equated to a Datapool variable using the EQU directive.

• Four bytes of data must be generated for each reference to a Datapool variable.

• Only one Datapool variable may be referenced in anyone instruction.

• For instances where the same variable name is used for both a program variable name
and a Datapool variable name, the program variable name will take precedence.

The Datapool Editor section of this manual provides additional information regarding the
use of the Datapool feature and operation of the Datapool Edi tor (DPEDIT).

2.7 Global Common

The labeled common areas GLOBALOO through GLOBAL99 are treated by the Assembler
as externally defined memory partitions. Consequently, variables allocated to these
areas may not be initialized.

2-16
Macro Assembler (ASSEMBLE)

Usage
MPX-32
Utilities

o

o

., c·.·.·.·

SECTION 3 - MACRO ASSEMBLER LANGUAGE

3.1 Introduction

This section provides details of Assembler language coding conventions, methods of data
representation, and addressing techniques.

3.2 Source Statement Format

Assembler source statements consist of five elements: label, operation, operand,
comment, and sequence identification. There are only two syntax requirements: the
first four elements must occur in the first 72 input columns, and sequence identification
must occur in input columns 73 to 80 (see Figure 3-1). All lower case characters are
converted to upper case internally, except for titles, and C and G character strings.

3.2.1 Label Field

The label field is an optional entry that identifies a source statement. The entry consists
of a string of alphanumeric characters, of which the first eight characters must be
unique. The first character must be an alphabetic character. An error will not be
generated if the first character in the label field is not alphabetic. However, statements
that reference that label are flagged as errors. The label field begins in input column
one and terminates at the first blank column. A blank in input column one indicates the
absence of a label. Embedded blanks are not permitted within the label field.

3.2.2 Operation Field

The operation field is required and specifies the mnemonic operation code, Assembler
directive or macro name. The operation field begins in the first nonblank input column
following the label field or in the first nonblank input column following input column one
if the label field is blank. The operation field may be separated from the last nonblank
character of the label field by no more than eleven blanks. Only the first eight
characters of the operation field are interpreted by the Macro Assembler. Embedded
blanks are not permitted in the operation field.

3.2.3 Operand Field

The operand field is required and specifies operands associated with the current
operation. Operands may identify storage locations, masks, storage area size, or data
types and may take the form of a single expression, a series of expressions separated by
commas, a constant, or a constant expressed as a literal. Multiple operands must be
separated by commas.

The operand field begins in the first nonblank input column following the operation field
and is terminated by a blank. If there are eleven blank columns after the last nonblank
character of the operation field or input column 72 is encountered, the operand field is
treated as empty.

MPX-32
Utilities

Macro Assembler (ASSEMBLE)
Language 3-1

1".1
I

N

~
III
f') ..,
0

~
en en

rCD
~ 3
109
c CD III ..,

1O ,......
CD ~

til
til
fTI
~
CD
r
fTI,

c~
C'.lj
::::x
=.~
gj N

." ...
1
.."..
I

t'"'

~
3
C"

~
Q
Q.
:;,
Ie
."
SJ
3

o

(X)
(..)
-"
.".
-"
(11

-} GOULD 1 PROGRAMMER'

Electronics I PROGRAM'

LABEL OPERATION

1 H3141516171s19 10111112113114115116117118119

I

I..........J------.l _~ • 1_1. 1._1- i L._-1 __ ~ .1._ i.---.l

ASSEMBLY CODING FORM

PAGE Of

I CHARGE NO. DATE

73 SO
REGISTER. ADDRESS,INDEX COMMENTS

IDENTifiCATION
,

2012112212~2412512612712sl2913013113;j;*~3*$;~~3~ *f4~4~~4* 7148149150 151152153154155156 5715815916016162~3Isi6516616716816917017l1n17317417517617~ 7817918~

I
T

T I

I

I

;
1 :

T
I
I

I

: 1111111111111111

~
T

;
:
:
:
:
: I :
:
~
I

I

: ,
I

L ___ ~_I I I I 11----,---1 I I I I II II I I I I I I I I I I I I I I I

(~ ',:)

c'

Operand field entries may not contain embedded blanks except when an entry is used to
specify a null character string or when an operati ve special character is being used.

Embedded blanks cannot be used between multiple operands separated by commas.

3.2.4 Comment Field

The comment field is optional and provides descriptive information to be included with
program listed output. Typical usage is for program documentation. All valid
characters, including blanks, may be used in the comment field. The comment field
begins in the first nonblank input column following the operand field and terminates with
input column 72. If the last entry in the operand field is blank, eleven blank columns
must separate the comment field from the comma which is the last nonblank character
of the operand field.

A source statement with an asterisk (*) in input column one is treated as a comment
line. Each comment line is assigned a line number as part of the assembly process and
appears as part of the program's listed output.

3.2.5 Sequence Field

The sequence field specifies program identification information and/or sequential
ordering for source statements. The sequence field occupies input columns 73 to 80 and
is not examined during Assembler processing. The entry is listed on all Assembler
printed output.

3.2.6 Continuation Lines

When coding source statements that must be continued on the next line, the following
rules apply:

MPX-32
Utilities

A semicolon Cj) within or following the label or operation fields, or within an
operand field, indicates continuation of the field to the next source statement
line. Continuation starts in column one of the next line.

Blanks cannot be imbedded within the label, operation, or operand fields when
they are continued. The blanks between each field must either precede the
semicolon or appear in column one of the continued line.

Comments can be placed after the semicolon but cannot continue to the next
line. The next line must contain the continuation of the source statement,
beginning in column one.

Comments cannot be continued by appending the semicolon continuation
indicator.

The number of character positions allowed for each field is the same as in
noncontinued source statements.

Macro Assembler (ASSEMBLE)
Language 3-3

3.2.7 Character Set

Valid characters for coding source statements are:

Character Name

Alphabetic
Numeric
Plus Sign (Addition)
Minus Sign (Subtraction)
Asterisk (Multiplication/Indirect)
Slash (Division)
Dot/Period (Decimal Point)
Comma (Subfield Delimiter)
Left Parenthesis (Attribute Delimi ter)
Right Parenthesis (Attribute Delimiter)
Single Quote (Constant Delimiter)
Double Quote (Escape Control Character)
Equal Sign (Literal Definition)
Blank (Field Delimiter/Spacing)
Semicolon (Continuation Indicator)
Colon (Dummy Parameter Concatenation)
Percent Sign (Dummy Argument Identifier)

Character Representation

Letters A through Z
Digits a through 9
+

*
/

,
(
) ,
"
=

%

Source statements are usually coded from a combination of these 51 characters.
However, the use of character constants in character strings permits the use of any of

o

the 128 ASCII character codes supported by the symbolic input device. The ASCII codes /~\
are listed in Appendix D. \",,-~

3.2.7.1 Escape Character

The escape character (II) causes the Macro Assembler to generate the ASCII control
characters listed in Table 3-1. The character immediately following the escape
character is logically ANDed with 3F (hexadecimaI), then ASCII-coded, resulting in one
of the control characters.

Use the escape character to generate the following characters wi thin a C or G-character
string:

"

3-4

(percent)
(single quotation mark)
(double quotation mark)
(semicolon)

Macro Assembler (ASSEMBLE)
Language

MPX-32
Utilities

-0

('''1

(/

MPX-32
Utilities

Control
Character

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT

LF
VT
FF
CR
SO
SI
OLE
DCI
De2
DC3
DC4
NAK
SVN
ETB
CAN
EM
SUB
ESC
FS
GS
RS
US

Table 3-1

ASCII Control Characters

Character
String Entry Description

"@ Null
"A Start of Heading
liB Start of Text
"C End of Text
"0 End Of Transmission
"E Inquiry
"F Acknowledge
"G Bell
"H Backspace
"I Horizontal Tabulation

(punch card skip)
"J Line Feed
"K Vertical Tabulation
ilL Form Feed
"M Carriage Return
liN Shift Out
"0 Shift In
lip Data Link Escape
"Q Device Control I
"R Device Control 2
liS Device Control 3
liT Device Control 4
"U Negative Acknowledge
"V Synchronous Idle
"W End Of Transmission Block
"X Cancel
"V End Of Medium
liZ Substitute
" [Escape
"I File Separator
"] Group Separator
" ... Record Separator
" - Unit Separator

Macro Assembler (ASSEMBLE)
Language 3-5

J.J Data Representation

Most source program statements include one or more operands composed of one or more
expressions. Expressions are composed of a term or a valid combination of terms. Every
term represents a value which may be assigned by the Macro Assembler (symbol) or
which may be inherent to the term itself (literal, constant).

Arithmetic combinations of terms are reduced to a single value in the assembly process.

J.J.l Symbols

A symbol is a character or combination of characters that references program
elements. Symbols are typically used in the source statement label field and/or operand
field.

Symbols consist of a string of alphanumeric characters, of which the first eight must be
unique. The first character must be an alphabetic character. The symbol may not
include embedded blanks. Only the first eight characters of the symbol name are printed
in the symbol cross-reference listing.

Examples of valid symbols are:

MACR02
BP1234XX
H204

Examples of invalid symbols are:

7GPI
AB 0

(first character not alphabetic)
(contains embedded blank)

Each defined symbol must be unique within an assembly job step. Multiply defined
symbols are denoted by the error flag M in the listed output.

J.J.2 Literals

Literal terms are used to enter numeric values, addresses, or alphabetic character strings
for phrases or message output to the source program. Literals specify a constant or
executable address attribute preceded by an equal sign (=).

Literals represent data rather than a reference to data. In general, literals may be used
wherever a storage address is permitted as a valid operand. Literal terms are
relocatable since the address of the literal, rather than the literal itself, is assembled.

The following rules apply to the use of literals:

3-6

Literals may not be combined with other terms.

Literals may not be used in any statement that requires a previously defined
symbol.

Literals may not contain external references.

Symbols used in literals must be previously defined.

Macro Assembler (ASSEMBLE)
Language

MPX-32
Utiiities

o

o

To process a literal, the Assembler stores the literal's value in the literal pool. The
address of the literal pool containing the value is placed in the operand field of the
assembled source statement. All literals generate a 32-bit value.

The literal pool begins on the first available word boundary location following the
program counter location for the Assembler END or LPOOL directive. Only one entry is
made for the same literal term in the literal pool.

The LPOOL directive controls the placement of the literal pool contents.

Examples of literal terms are:

As written in source

=A(TAGl)
=B(TAGl)
=W(TAGl)
=5
=C'END'
=X'3A7'
=A+B+C

3.3.3 Constants

As written in literal pool

(Address of T AGl)
(Byte Address of T AGl)
(Word Address of T AGl)
(Decimal Value=5)
(Data=END)
(Hexadecimal Value=3A7)
(Value of A+B+C)

A constant is used to enter data into storage. The Macro Assembler supports constants
used in data statements and as operands in immediate type instructions. Constant length
is limited to one doubleword (eight bytes), with the exception of C-character strings,
which may be any length.

The Macro Assembler recognizes seven types of constants:

C - Character String

G - Character String

X - Hexadecimal Constant

N - Fixed Point Decimal Word

F - Fixed Point Decimal Doubleword

E - Floating Point Decimal Word

R - Floating Point Decimal Doubleword

3.3.3.1 C-Character String

A C-character string consists of any number and any combination of ASCII characters
enclosed in single quotation marks preceded by the letter C. A C-character string is
left-justified to the boundary defined by the operation code. For C-character strings, all
ASCII characters are stored in hexadecimal form. An internal lower to upper case
conversion does not occur for C-character strings.

MPX-32
Utilities

Macro Assembler (ASSEMBLE)
Language 3-7

Usage:

A typical C-character string entry is:

DATAW C'NORMAL STRING l'

This entry is transferred to memory on the first available word boundary as follows:

Memory
Location Contents

0 7 8 15 16 23 24 31

N 0 R M

Word 1 0100 I 1110 0100 I 1111 0101 J 0010 0100 I 1101

A L (Space) S

Word 2 0100 I 0001 0100 I 1100 0010 I 0000 0101 I 0011

T R I N

Word 3 0101 I 0100 0101 I 0010 0100 I 1001 0100 I 1110

G (Space) 1 (Space)*

Word 4 0100 I 0111 0010 1 0000 0011 I 0001 0010 I 0000

*This space was added by the Assembler to complete the word boundary.

3-8
Macro Assembler (ASSEMBLE)

Language
MPX-32
Utilities

,,(--"'c

't.J

c

The entry for a C-character string with ASCII control characters that will generate
'MESSAGE' followed by a carriage return and line feed is:

DA T AH C'MESSAGE"M" J'

M and J are the ASCII control characters for a carriage return and line feed.

This entry will be transferred to memory on the first available halfword boundary as
follows:

Memory
Location Contents

0 7 8 15 16 23 24 31

Previous Entry M E

Word 1 XXXX I XXXX XXXX Ixxxx 0100 I 1101 0100 I 0101

S S A G

Word 2 0101 I 0011 0101 I 0011 0100 I 0001 0100 I 0111

E CR* LF* (Space)**

Word 3 0100 I 0101 0000 11101 0000 I 1010 0010 J 0000

*The upper case alphabetic character is logically ANDed with a 3F (hexadecimal)
to produce the ASCII control character when preceded by an escape character
(").

**This space was added by the Assembler to complete the halfword boundary.

MPX-32
Utilities

Macro Assembler (ASSEMBLE)
Language 3-9

An entry for a C-character string using the symbols ("), ('), and (;) is:

DATAB C'AB" "C"'D";'

This entry is transferred to memory on the first available byte boundary as follows:

Memory
Location

0

Word 1 xxxxi XXXX

B

Word 2 0100 I 0010

D

Word 3 "0100 I 0100

3-10

Contents

7 8 15 16 23 24 31

Previous Entry A

xxxxi XXXX XXXX Ixxxx 0100 I 0001

" C

0010 I 0010 0100 I
;

0011 I 1011 I

Macro Assembler (ASSEMBLE)
Language

,

0011 0010 I 0111

Available Memory

I

MPX-,Z
Utilities

o

c

(... ~ •.
..

o

An entry for a C-character string with continuation is:

DA TAD C'ABC;
DEFG'

This entry is transferred to memory on the first available doubleword boundary as
follows:

Memory
Locatiun Contents

0 7 8 15 16 23 24 31

A B C D

Word 1 0100 I 0001 0100 I 0010 0100 I 0011 0100 I 0100

E F G (Space)*

Word 2 0100 I 0101 0100 I 0110 0100 I 0111 0010 I 0000

*This space was added by the Assembler to complete the doubleword boundary.

3.3.3.2 G-Character String

A G-character string has the same format as a C-character string except it is right
justified, limited to the size of its defined boundary (a maximum of eight bytes), and
zero-filled on the left for bounding purposes. For G-character strings, all ASCII
characters are stored in hexadecimal form. The G-character string constant type can be
used as the operand field of immediate type instructions and should be used in preference
to the left-justified C-type constant. An internal lower to upper case conversion does
not occur for G-character strings.

F or example:

Ll4, CIA'

Ll4, G'A'

Ll4, G'AB'

MPX-32
Utilities

generates

generates

generates

Macro Assembler (ASSEMBLE)
Language

CA002020

CA000041

CA004142

3-11

An entry for a typical G-character string is:

DATAW G'A G'

This entry is transferred to memory on the first available word boundary (right-justified)
as follows:

Memory
Location Contents

0 7 8 15 16 23 24 31

(00)* (A) (Space) G

Word 1 .. 0000 0000 0100 0001 0010 0000 0100 0111

*These zeros were added by the Assembler to complete the word boundary.

·3-12
Macro Assembler (ASSEMBLE)

Language
MPX-32
Utilities

o

o

o

c·· .. ·····,,·
~--_/

3.3.3.3 Hexadecimal Constant (X)

A hexadecimal constant consists of an optionally signed hexadecimal number enclosed in
single quotation marks and preceded by the letter X. No sign indicates a positive
number. If the hexadecimal constant is preceded by a minus sign, a two's complement of
the hexadecimal number will be generated. A hexadecimal constant is right-justified and
is limited to the size of its defined boundary (a maximum of eight bytes). Hexadecimal
constant definitions must not contain embedded blanks.

Usage:

The following hexadecimal constant definitions generate the indicated constants:

DATAB X'E'

DATAW X'C2DA'

DATAD X'B123F6C'

DA T AH X'FFC213D'

OE

OOOOC2DA

OOOOOOOOOB123F6C

2130 (the three most significant bytes are
lost because of the defined boundary size)

The following negative hexadecimal constant definitions generate the indicated
constants:

DA T AB X' -E2'

DA T AH XI -E2'

IE

FFIE

3.3.3.4 Fixed Point Decimal Word (N)

A fixed point decimal word string consists of a decimal number up to 16 digits on either
side of the decimal point. A fixed point decimal word is right-justified and limited to its
defined boundary (a maximum of eight bytes). Embedded blanks may be used to improve
legibili ty.

Syntax:

+

m

E

MPX-32
Utilities

indicates a positive decimal number. If no sign is present, the default is
positive.

indicates a negative decimal number

is a constant in the form of a decimal fraction, decimal integer, or mixed
number. A number such as 1234567890123456.123401234 is valid even
though truncation would occur and significant digits would be lost. Larger
numbers, such as the above, may be significantly encoded by use of the
optional binary scaling point.

indicates that the following number represents an exponent

Macro Assembler (ASSEMBLE)
Language 3-13

xx

B

yy

is a one or two-digit exponent in the range of +77 through -77. A positive
integer is the default ifno sign is present.

indicates that the following number represents a binary scale

is a one or two-digit binary scale specification. If Byy is omitted, the
default is B31, as this is the register scaling for 16 digits on either side of
the decimal point.

Usage:

An entry for a positive decimal number is:

DA T AB N'105'

This entry is transferred to memory on the first available byte boundary as follows:

Memory
Location Contents

0 7 8 15 16 31

Previous
Entry 69 Available Memory

Word 1 XXXXIXXXX 0110
1 1001 J I I

An entry for a negati ve decimal number is:

DATAH N'-6'

This entry is transferred to memory on the first available halfword boundary as follows:

Memory
Location Contents

0 7 8 15 16 31

FF FA Available Memory

Word 1 1111 11111 1111 I 1010 i I I

~ ... 1acro ;!\ssembler (ASSEt-ABLE)
3-14 Utilities

I

o

An entry for an exponentiated fixed point decimal number is:

DA T AH N'9.2E2'

This entry is transferred to memory on the first available halfword boundary as shown
below. Truncation has occurred since 9.2 cannot be represented as an exact binary
quantity.

Memory
Location Contents

a 7 8 15 16 31

03 97 Available Memory

Word 1 0000 I 0011 1001 I 0111 I I I

An entry for a fixed point decimal string with binary specification is:

DA TAW N'19B7'

This entry is transferred to memory on the first available word boundary as follows:

Memory
Location Contents

a 7 8 15 16 23 24 31

13 00 00 00

Word 1 0001 I 02,11 0000 I 0000 0000 I 0000 00001 0000

/
Note: The arrow denotes the binary scale specification which specifies the bit

position to the right of the decimal integer in a fixed point decimal word
string.

MPX-32
Utilities

Macro Assembler (ASSEMBLE)
Language . 3-15

An entry for a fixed point decimal string with binary specification is:

DA T AD N' .25B14'

This entry is transferred to memory on the first available doubleword boundary as
follows:

Memory
Location Contents

a 7 8 15 16 23 24 31

00 00 00 00

Word 1 0000 I 0000 0000 I 0000 0000 I 0000 0000 I 0000

00 00 80 00

Word 2 0000 1 0000 0000 I O~O 1000 I 0000 0000 I 0000

/'"
Note: The arrow denotes the binary scale specification which specifies the bit

position to the right of the decimal integer in a fixed point decimal word
string. Because a doubleword data definition has been specified, both the
value and binary scale specification apply to word two.

3.3.3.5 Fixed Point Decimal Doubleword (F)

A fixed point decimal doubleword string consists of a decimal number with up to 16 digits
on either side of the decimal point. A fixed point decimal doubleword is right-justified.
Embedded blanks may be used to improve legibility.

Syntax:

+

m

E

xx

B

yy

3-16

indicates a positive decimal number. If no sign is present, the default is
positive.

indicates a negative decimal number

is a constant in the form of a decimal fraction, decimal integer, or a mixed
decimal number

indicates that the following number represents an exponent

is a one or two-digit exponent in the range +77 through -77

indicates that the following number represents a binary scale

is a one or two-digit binary scale specification. If Byy is omitted, the
default is B63 as this is the register scaling for 32 digits on either side of the
decimal point.

Macro Assembler (ASSEMBLE)
Language

MPX-32
Utilities

rf~~'\

.'-J

'''.

C)

()
Usage:

An entry for a positive fixed point decimal number is:

DA T AD F'16E2'

This entry is transferred to memory on the first available doubleword boundary as
follows:

Memory
Location

a

00

7 8

00

Contents

15 16 23 24 31

00 00

Word 1 0000 I 0000 0000 I 0000 0000 I 0000 0000 I 0000

32 39 40 47 48 55 56 63
00 00 06 40

Wo r d 2 a a a a I a a a a 0000 I 0000 0000 I 0110 0100 I O!OO

Note: The arrow denotes the binary scale specification which specifies the bit
position to the right of the decimal integer in a fixed point decimal
doubleword string.

MPX-32
Utilities

Macro Assembler (ASSEMBLE)
Language 3-17

3.3.3.6 Floating Point.

Floating point constants can be expressed as word or doubleword decimal values. The
Macro Assembler converts the specified constant value to its hexadecimal equivalent to
produce a floating point hexadecimal number.

The floating point number (either word or doubleword) is comprised of three parts: sign,
fraction, and exponent. Floating point data formats are shown in Figure 3-2.

WORD FORMAT

H EXPONENT I FRACTION (24BITS) I
o 1 2 3 4 567 8 9 10 11 1213 14 15 16 17 18 1920212223 242526 272829 3031

DOUBLEWORD FORMAT ((
))

S EXPONENT FRACTION (56BITS)

I I ((I I I
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14)) 4950515253 545556 575859 6061 6263

S=SIGN

87D4J1 0

Figure 3-2. Floating Point Data Formats

The sign (bit 0) applies to the fractional part of the value and denotes positive or
negative. The fraction is a hexadecimal normalized number with a radix point to the left
of the highest order fraction bit (bit 8). The exponent (bits 1-7) is a seven-bit binary
value to which the base 16 (decimal) is raised.

Negative exponents are carried in two's complement format by the hardware. To remove
the sign and provide for direct comparison of exponents, both positive and negative
exponents are biased upward by 40 (hexadecimaI). Thus, the quantity a floating point
value represents is derived by multiplying the hexadecimal fraction by the number 16
(decimal) raised to the power specified by the exponent minus 40 (hexadecimaI).

For example, to convert the value 31 (decimal) to a hexadecimal fraction:

.1F x 162

The power of 16 (i.e., 2) is added to the exponential bias 40 (hexadecimal) to yield an
operative exponent of 42 (hexadecimaI).

Thus, the range of values that can be represented in floating point format is:

F is a hexadecimal fraction and N is the range of values.

The range of the fraction F in nomalized format is:

(Word)

(Doubleword)

3-18

(2-4) .s. F .s.1-(Z-24)

(2-4) .s. F .s. 1_(2-56)

Macro Assembler·(ASSEMBLE)
Language

MPX-32
Utilities

Hardware converts a positive floating point number to a negative floating point number
by taking the two's complement of the positive fraction and the one's complement of the
biased exponent. All floating point operands are normalized before the floating point
instruction is performed. A positive floating point value is normalized when the fraction
is in the range (1 > F > 1/16). A negative floating point value is normalized when the
fraction is in the range (-1 ~ F ~ -1/16). All floating point results are normalized by
floating point hardware.

Details of floating point hardware operation, including instruction formats, are given in
the appropriate CPU reference manual.

3.3.3.7 Floating Point Decimal Word (E)

A floating point word string consists of a decimal number with up to 16 digits on either
side of the decimal point. A floating point word string is right-justified and limited to its
defined boundary (a maximum of eight bytes). Embedded blanks may be used to improve
legibility.

Syntax:

+ indicates a positive decimal number. If no sign is present, the default is
positive.

indicates a negative decimal number

m is a constant in the form of a decimal fraction, decimal integer, or mixed
decimal number

E

xx

Usage:

indicates that the following number represents an exponent

is a one or two-digit exponent

The processing involved in producing the floating point hexadecimal representation for:

DATAW E'12'

includes the following sequence:

(1) Decimal 12 is converted to hexadecimal C.

(2) The decimal point is moved until only a fraction remains:

.C x 161

The exponent indicates the number of places the decimal point was moved.

(3) A biased exponent is produced by adding the power of 16 (i.e., 1) to the biased
exponential representation (40):

1640 + 161 = 1641

which produces the biased exponent 41.

MPX-32
Utilities

Macro Assembler (ASSEMBLE)
Language 3-19

(4) The biased exponent and hexadecimal fraction are stored in memory right-justified
and bounded. The internal representation for this example is:

41COOOOO

The following are sample coding entries for floating point decimal word constants and
their generated internal representation:

Coding Entry Internal Reeresentation

DATAW E'l' 41100000

DATAW E'-l' BEFOOOOO

DATAW E'15' 41FOOOOO

DATAW E'-15' BEI00000

DATAW E'16' 42100000

DATAW E'-16' BDFOOOOO

DATAW E'2E3' 437DOOOO

DATAW E'3.14159265359' 413243F6

3.3.3.8 Floating Point Decimal Doubleword (R)

A floating point doubleword string follows the same rules as a floating point word string
except for the range of the hexadecimal fraction [(2-4) ~ F ~ 1_(2-56)].

Syntax:

R' [{..:t.}]m[E[{..:t.}] xx]

+

m

E

xx

3-20

indicates a positive decimal number. If no sign is present, the default is
positive.

indicates a negati ve decimal number

is a constant in the form of a decimal fraction, decimal integer, or mixed
number

indicates that the following number represents an exponent

is a one or two-digit exponent

Macro Assembler (ASSEMBLE)
Language

MPX-32
Utilities

r-"
'-Y

(

The following are sample coding entries for floating point decimal doubleword constants
and their generated internal representation:

Coding Ent..£Y

DATAD R'l'

DATAD R'17'

OAT AD R'3.14159'

OAT A 'vV R'3.14159'

Internal Representation

41100000
00000000

42110000
00000000

413243F3
E0370CDC

E0370CDC

For the last entry (DATAW R'3.14159'), only the least significant 32 bits are retained
because of the word constant size.

3.3.4 Expressions

An expression is a single term, i.e., symbol or constant, or an arithmetic combination of
terms. Examples of legal expressions are:

PRNT
IBUF +6
TBLI-TBL2
CD*7
$+4

The following rules apply to the use of expressions:

MPX-32
Utilities

Expressions may not begin with an arithmetic operator (+ - * /).

Expressions may not contain two terms or two arithmetic operators in
succession.

A multi term expression may not contain a literal or attributed term.

A multiterm expression in a DATA or GEN directive may not contain an entry
C-character string as a first term.

Negative results cannot be generated because evaluation is done in 23 bits.

Floating point cannot be used in expressions because evaluation is done in 23
bits.

Macro Assembler (ASSEMBLE)
Language 3-21

3.3.4.1 Expression Evaluation

Expressions are evaluated from left to right with arithmetic operations performed as
encountered. Thus, the leftmost operator has the highest hierarchical priority and the
rightmost operator the lowest. Expression evaluation cannot be altered by using nested
expressions in parentheses. Parentheses are used to delineate attributed expressions. A
missing expression on either side of an arithmetic operator is evaluated as zero.

Division by zero is valid and yields a zero result. If the value of the symbol to be used as
a divisor is zero, the expression is flagged as an error by a backslash. Division always
yields an integer result and any remainder is truncated. For example, the expression:

5 - 4/2

yields a result of zero. For arithmetic operations, each term in an expression is stored
internally in 23 bits.

3.3.4.2 Expression Types

Multiterm expressions are relocatable, absolute, or common. An expression is
relocatable if its value is changed by program relocation. An absolute expression is
unaffected by program relocation.

Single term expressions can be anyone of four modes: absolute, relocatable, common, or
external.

Tables 3-2, 3-3, and 3-4 illustrate the types of terms which may be combined
arithmetically and the mode of the result.

3-22
Macro Assembler (ASSEMBLE)

Language
MPX-32
Utilities

Addition

(+)

ABSOLUTE

RELOCATABLE

COMMON

EXTERNAL

Subtraction

c-)
ABSOLUTE

RELOCATABLE

COMMON

EXTERNAL

Table 3-2
Addition Operations

ABSOLUTE RELOCATABLE -
Abso:'~te Relocatable -

Relocata::t~e lI1egal
-

Common Illegal -
Illegal Illegal

Table 3-3
Subtt"action Operations

ABSOLUTE RELOCATABLE

Absolute Illegal

Relocatable Absolute

Common Illegal

Illegal Illegal

COMMON EXTERNAL

Common Illegal

Illegal Illegal

Illegal Illegal

Illegal Illegal

COMMON EXTERNAL

Illegal Illegal

Illegal Illegal

Absolute(*) Illegal

Illegal Illegal

* All references to common within an expression must refer to the same common
block

Multiplication
Division

(* I)
ABSOLUTE

RELOCATABLE

COMMON

EXTERNAL

MPX-32
Utilities

Table 3-4
Multiplication/Division Operations

ABSOLUTE RELOCATABLE

Absolute Illega!

Illegal Illegal
-

Illegal Illegal
-

Illegal Illegal

Macro Assembler (ASSEMBLE)
Language

COMMON EXTERNAL

Illegal Illegal

Illegal Illegal

Illegal Illegal

Illegal Illegal

3-23

3.4 Addressing Techniques

Memory is addressable in byte, halfword, word, and doubleword entities. Most memory
reference instructions require that the operand field specify a general purpose register
and an effective address. The effective address may be derived from a 20-bit memory
address modified by indirect addressing and/or indexing. Symbolic addressing is allowed
by the Macro Assembler.

Addressing in the Macro Assembler defaults to the data section (DSECT) mode. All data
and program source code is generated as part of a DSECT unless the addressing mode is
changed using the CSECT directive.

The code section (CSECT) mode is an optional mode used for data and source code that
will not be changed during program execution. CSECT mode, also called control, pure, or
read-only, allows the creation of shared or reentrant programs. C~ECT mode also
provides additional memory protection because it allows read only access.

Variables, buffers, and areas of code subject to self-modification should be addressed in
DSECT mode when creating shared tasks. Constants and pure data can be addressed in
CSECT mode. At catalog time, a shared environment is declared. The CSECT is loaded
into the system once. The DSECT will be loaded into the system once for each user of
the task. The. amount of memory saved by using a combination of CSECT and DSECT
depends on the sizes of the CSECT and DSECT and the number of users sharing the task.

3.4.1 Location Counter

The Macro Assembler maintains an internal location counter to determine memory
allocation for each assembled source program statement. This counter is a byte counter
that provides for location assignment to bytes in a memory word. For example:

W

X

Y

Z

Location Counter

00000
00001
00003
00004
OOOOC

Label Operation

W RES
X RES
Y RES
Z RES

(Next Source Statement)

is assigned to byte zero of word zero

Operand

1
2
1
8

is assigned to bytes one and two of word zero. Even though X is a halfword
(two bytes), it is entered across a halfword boundary.

is assigned to byte three of word zero

is assigned to bytes one through three of words one and two

The contents of the location counter is expressed in hexadecimal format for all
Assembler listed output.

3-24
Macro Assembler (ASSEMBLE)

Language
MPX-32
Utilities

o

When an instruction sequence is encountered and the location counter is not positioned at
a byte multiple of the number of bytes required, the location counter is advanced for
proper boundary alignment. In the case of a full word instruction being assembled after a
halfword instruction, a halfword may not be usable. In this case, a no operation (NOP)
instruction is entered into the halfword. If a label appears in the label field, the label is
assigned after the NOP instruction. For example:

Location
Counter

00000
00002
00004
00006
00008

Generated
Code

OE40
2F40

0002
AD880427

Label

START

STOP

QQeration Operand

ABS
ORG X'OOOOO'
RES IB
ZR 4
TRR 4,6

LB 3,A

The halfword instruction, ZR, forces the location counter to a halfword boundary. The
symbolic address, START, is defined at location two. When the instruction LB is
encountered, a NOP instruction (0002) is generated for the halfword location six prior to
assigning a location for STOP and processing the LB operation.

I f the symbolic address does not fall on a proper boundary because of the operand size,
the least significant bites) are interpreted as zero and an error condition flag is set.

3.4.2 Self-Relative Addressing

Self-relative addressing implicitly defines a symbolic name which has an address equal to
the current value of the location counter, or constructs a reference to a memory location
in relation to the location counter. References to the location counter may be made by
use of the special symbol $ as follows:

${:I:}n[s]

$ is the current value of the location counter. For multi word instructions, $ always
refers to the first word.

+ increments the location counter

decrements the location counter

n is an integer specifying the count of the size attribute

s is an address size attribute indicating one of five types of addressing:

8 - Byte
H - Halfword
W - Word
D - Doubleword
F - File (8 Words)

If s is not specified, a byte count is assumed.

MPX-32
Utilities

Macro Asse~bler (ASSEMBLE)
Language 3-25

For multiword instructions, $ always refers to the first word.

Usage:

In the following example, the symbolic address ZET has an address equal to location
three:

Location Counter Label Operation Operand

00003 ZET EQU $

In the following example, the L W instruction loads the contents of location OOC into
register two:

Location Counter Label Operation Operand

00000 STORE LW 2,$+3W

OOOOC DATAW 2000

3.4.3 Symbolic Addressing

Symbolic addressing allows user-defined symbols to represent the location of a particular
constant, instruction, or storage location. Symbols are defined in the label field of a
program source statement. A symbol may be referenced by any operand field entry. The
value assigned to a symbol is the address of the most significant byte of the constant,
instruction, or referenced storage location.

Usage:

The following example illustrates symbolic addressing:

Labei

TAGl

3-26

Operation

DATAW
LW

Macro Assembler (ASSEMBLE)
Language

Operand

X'lOOO'
l,TAGl

MPX-32
Utilities

o

3.4.4 Relative Addressing

Relative addressing allows the of addressing instructions, constants, or storage locations
by designating their location relative to a symbolic location.

Usage:

In this example, the L W instruction loads the second word of doubleword A into register
three. The LB loads the fourth byte of A into register two. Signed address attributes
can be used similar to self-relati ve addressing.

Label

A

3.4.5 Absolute Addressing

Operation

RES
LW
LB

Operand

10
3,A+1W
2,A+3

Absolute addressing explicitly defines the location of a particular constant, instruction,
or storage location to be used in the operation.

Usage:

Label Operation

A LW

B LH

x STW

3.4.6 Literal Addressing

Operand

4,X'1000'

2,200

1,N'16B29'

Comments

Loads the contents of location 1000
(hexadecimal) into register four.

Loads the contents of location 200
(decimal) into register two.

Stores the contents of register one in
the word beginning at location 40
(hexadecimal).

Literal addressing allows a defined literal term to specify an address to be used in the
operation.

Usage:

The use of the literal GEE with the Load Word (LW) instruction loads the byte address of
the symbol GEE (190 hexadecimal) into register two:

Label

GEE

MPX-32
Utilities

Operation

EQU
LW

Operand

400
2,=B(GEE)

Comments

The generated internal data represen
tation for the literal address B(GEE)
is: 00080190

Macro Assembler (ASSEMBLE)
Language 3-27

J.4. 7 Blank Addressing

Blank addressing allows the symbolic representation $$ to inform the Macro Assembler
that an address will be inserted at program execution time. When the $$ specification is
used, zeros will be assembled into the address field of the instruction. The F and C bits
of the address field depend on the operation to be performed.

3.4.8 Addressing Attributes

Addressing attributes allow the specification of a 20-bit operand address other than that
which would normally be used for a particular mnemonic instruction.

The resulting 20-bit effective address incorporates the user-specified address expression
with F and C bits corresponding to standard operand format codes (see Table 3-5).

F Bit ---
0
0
0
0
1
1
1
1

Table 3-5
Operand Format Code

C Bits Designated Format

00 Word
01 Left Halfword
10 Doubleword
11 Right Halfword
00 Byte 0
01 Byte 1
10 Byte 2
11 Byte 3

Addressing attributes have the following format:

a (address)

a is the addressing attribute as follows:

3-28

Attribute Result

B Byte address

H Halfword address

W Word address

D Doubleword address

A Byte address with F bit set to zero

Macro Assembler (ASSEIV1BLE)
Language

MPX-32
Utilities

Oi',: "

o

(~)
. /

Usage:

In the following example of addressing attributes, the statements wi th labels X, Y, and Z
produce the same halfword address (00003) which contains C and D:

Location
Counter Label Operation Operand -.--
00000 A RES 1

00001 B RES 1

00002 C RES 1

00003 0 RES 1

00004 X DATAW H(C)

00008 Y DATAW H(A+IH)

OOOOC Z DATAW H(A+2B)

For the following operation, only the first byte of location ALPHA is loaded into register
three because the address attribute of the expression overrides the operation:

L W 3,B(ALPHA)

MPX-32
Utilities

Macro Assembler (ASSEMBLE)
Language 3;.;29/3-30

'",,--/

(".'"

--"

SECTION 4 - DIRECTIVES

4.1 Introduction

Macro Assembler programs contain source statements consisting of Assembler
instructions and Macro Assembler directives.

Assembler instructions are categorized by the type of function they perform. Assembler
instructions are provided for the following types of operations:

Load/Store
Branch
Compare
Register Transfer
Memory Management
Logical
Shifting
Bit Manipulation
Fixed & Floating Point Arithmetic
Control
Interrupt Control
Writable Control Storage
Input/Output

These instructions are documented in the CPU hardware reference manual corresponding
to the machine type.

Macro Assembler directives are provided for program control, data and symbol
definition, listed output control, conditional assembly, macro support, and special usage.

For some directives described in this section, the syntax may include an optional label
entry in the first field of an Assembler source statement. Thus, where the syntax is
shown as:

Label Operation Operand

label

label may be any valid entry used for convenience to identify a source statement as
described in the Macro Assembler Language section. If the label field has significance
other than as an optional identifier, it will be identified with another variable name in
the syntax and explained in the usage notes for that directive.

MPX-32
Utilities

Macro Assembler (ASSEMBLE)
Directives

,
4-1

ASS/AC

4.2 ASS Directive

The ABS directive indicates a section of program coding to be assembled in absolute
mode. Generated object code cannot be relocated by the loader. All symbolic names are
assigned absolute memory addresses relative to location zero (absolute). Subsequent use
of this directi ve causes the location counter to be assigned a value equal to the next
absolute memory address to be allocated.

Syntax:

Label Operation Operand

ABS

Usage:

The following example assembles code in the absolute mode beginning at location 1000
(hexadecimaI):

TAG ABS
ORG X'lOOO'

NOTE: Object code containing absolute sections cannot be processed by CATALOG.

4.3 AC Directive

The AC directive allows for address generation within a source program. The address
may incorporate indexing and/or indirect modification. The directive may also be used
to reserve a word of storage.

Use of this directive results in word bounding of the location counter.

Bits zero to eight of the generated word address are always zero.

Syntax:

x

_ ..J...J ___ _
~\..a_&,u

4-2

Label Operation

label ACx

specifies the address field as follows:

Variable

8
H
W
D

Field

Byte
Halfword
Word
Doubleword

If nul speci fied, the defauit is B.

modification

Operand

address

~ _, - - '" - I
lJ 1\....Ll.luci

. . .
H'IUO)\ll'.y

iv1acro Asset nblt:l~ (ASSEiv16LE)
Directives

• I
01 lui Ul !lILUi ct.,;l..

iviPX-32
Utilities

()

(~.

Usage:

The following example illustrates typical usage of the AC directive:

Location
Counter

P0140C
P01410
P01414
P01418
P0141C
P01420

P0153C

P017B8

P01978

P019A4
P0l9A4

P029A4

tvlPX-32
Utili!:ies

Machine
Instruction ----
00001788
0040153C
00101978
000019A4
000019A4
000029A4

00000000

00001788

Byte
Address Label Operation ---
P017B8 KTXT ACW
P0153C LNK1 ACW
P01978 PARS ACW
P019A4 PARE ACW
P019A4 BFOP ACW
P029A4 BFIP ACW

LINK EQU

TEXT EQU

PPAK EQU

PlAT EQU
BFO DATAW

P0l7BB BFI GEN

Macro Assembler (ASSEMBLE)
Directives

AC (Cont.)

Operand

TEXT
LINK,2
*PPAK
PlAT
BFO
BFI

· $

· $

· $

· $
0

· 32/A(TEXT)

4-3

ANOP/BOUND

4.4 ANOP Directive

The ANOP directive facilitates conditional and unconditional branching to source
statements identified by labels that are defined by variable symbols. Typical usage
involves branching to a source statement whose label is defined by a symbolic
parameter. An ANOP directive coded immediately preceding a source statement
provides the capability to generate conditional and unconditional branching to that
statement at assembly time.

No code is generated for this directive.

No entry is made in the symbol table for the symbol specified in the label field.

Syntax:

Label Operation Operand

symbol ANOP

4.5 BOUND Directive

The BOUND directive advances the location counter until it represents a byte multiple of
the bounding value specified in the operand field.

Symbols used in the operand field must have been previously defined.

Syntax:

Label Operation Operand

label BOUND value

Usage:

The following example sets the location counter to the first even multiple of four:

4-4

(LC-OOOOO)

(LC-00004)

RES
BOUND
DATA

1
4
C'A'

Macro Assembler (ASSEMBLE)
Directives

MPX-32
Utilities

(--... ".: ..
J

COMMON

4.6 COMMON Directive

The COMMON directive, used in conjunction with data-generating directives, defines,
initializes, and manipulates common communication areas. Common data storage areas
can be shared between prograflls loaded at different locations in memory. The sharing
programs may be coded in Assembler language or FORTRAN. Common areas are always
generated in DSECT mode.

Syntax:

symbol

n1,n2, ••• ,nn

Label Q.Eeration Operand

symbol COMMON n1,n2, ••• ,nn

is the symbolic name of the common block defined by the operand
field. If specified, this symbolic name is unique and must be previously
undefined. If no entry is specified in the label field, the directive
defines BLANK common.

are unique symbolic names which define the common area. The names
can be subsequently referenced to define elements of common. Each
entry in the operand field may optionally have the form:

name(number)

name is the location to begin allocation and number is the decimal
number of words that are to be allocated. No embedded blanks are
allowed between name and number.

The common block name specified in the label field of a COMMON directive may not be
referenced in the operand field of other instructions or directives. Symbolic names used
to define the common area result in the allocation of contiguous full word storage
locations.

A maximum of 254 distinct common areas (including blank common) with a maximum
16K words per area can be defined.

Actual memory allocation for common areas in a subsequently generated task is decided
by the CATALOG utility.

To initialize and manipulate data elements in common areas:

1. Set the location counter to the element of COMMON where initialization is to
begin using the ORG directive. The symbol must have been defined by a preceding
COMMON directive.

2. Define initialization data with the appropriate data generation directives.

3. Specify the appropriate assembly continuation mode with either the REL or ABS
directive. Note: ASS is not supported by CATALOG.

MPX-32
Utilities

Macro Assembler (ASSEMBLE)
Directives 4-.5

COMMON (Cont.)

The following example illustrates the sequence:

AB COMMON
ORG
DATAW
REL

A(lO),B(2)
B
X'FF',X'3E8'

In this example, labeled common AB consists of twelve contiguous words of storage, ten
words for area A and two for area B. The first word of area B is initialized to the value
FF (hexadecimal) and the second word of area B is initialized to the value 3E8
(hexadecimal).

The following example defines a labeled common area XV consisting of eleven contiguous
words of storage, ten words associated with area X and one word with common area V.
The second line defines the blank common area:

XV COMMON
COMMON

X(lO),V
A(20)

A COMMON directive may be used in conjunction with data generating directives and a
PROGRAM directive to define a subprogram structure functionally equivalent to a
FORTRAN block data subprogram.

COMMON block names GLOBALOO through GLOBAL99, DA TAPOOL, and DPOOLOO
through DPOOL99 have the same special meaning as in FORTRAN. Elements within
these areas may not be initialized.

4-6
Macro Assembler (ASSEMBLE)

Directives
MPX-32
Utilities

o

o

(

Computed GOTO/CSECT

4.7 Computed GOTO Directive

The Computed GOTO directive directs the assembly process to continue processing at
the source statement whose label is given by a symbol in an indexed argument list in the
operand field.

Syntax:

Label

label

xl,x2, ••• ,xn

Operation Operand

GOTO i,xl,x2, ••• ,xn

is an arithmetic expression that represents an integer value. The value
is used as an index pointer into the symbolic argument list.

are symbols comprising the symbolic argument list. The symbols must
represent forward references. The number of symbols in this list (n)
should be equal to or greater than the integer value (0 used as an index.

If the index expression is evaluated as zero or an integer value greater than the integer
value index, the assembly process continues at the source statement immediately
following the COMPUTED GOTO directive.

4.8 CSECT Directive

The CSECT directive assembles a section of program source code in code section mode.
All symbolic names (labels) are assigned relocatable memory addresses relative to the
beginning of the code section.

Syntax:

Label Operation Operand

label CSECT

Usage:

The following example sets code section mode:

MPX-32
Utilities

STRTC CSECT
LW 2,NUM

Macro Assembler (ASSEMBLE)
Directives 4-7

DATA

4.9 DATA Directive

The DATA directive allows specific data representation within a source program. Use of
this directive results in automatic bounding for the location counter.

Syntax:

Label

symbol

symbol

x

vl,v2, ••• vn

4-8

Operation Operand

DATAx vl,v2, ••• vn

is an optional entry that may be any symbol. If specified, the symbol is
equal to the address of the first operand.

specifies the bounding and length of the entries in the operand field as
follows:

Variable

B
H
W
D

Field

Byte
Halfword
Word
Doubleword

If not specified, the default is B.

specifies the list of data values to be generated. These values may be
any valid expressions.

Macro Assembler (ASSEMBLE)
Directives·

MPX-32
Util1ties

Ole.· . .

o

('"

DATA (Cont.)

Usage:

The following example illustrates attributed expression, address attribute, and constant
string operands:

I1PX-32 UTILITIES RELEASE 1 .1 (ASSEMBLE .'0.5.11)

•

MPX-32
Utilities

HAIN

00001
00002
00003
00004

00005

00006
OOOtH
00008
00009

00010

00011
00012
00013
00014
00015

00016

00017

00018

00019

0000

12119/83 16157:51

LIST
POOOOO SOUND
POOOOO 0064 C.O DATA
POOO02 4142 C.1 DATA
POOO04 43444546
POOO08 01160808 C.2 OATAS
POOOOC 080S
POOOOE 5S C.3 DATU
1>00010 0001 C.4 DATAH
POOO12 FF"" c.s DATAH
POO014 8001 C.6 DATAH
POO016 0002
POOO18 59202020 C.7 DATAW
POO01C 0000005A
POO020 0007FF"C A.1 DATAW
1'00024 00000002 POOO02 A.2 DATAW
POO028 00080002 P80002 A.3 DATAW
POO02C 41200000 A.4 DATAW
1'00030 52535420 0.1 DATAD
POO034 20202020
POO038 00000000 0.2 DATAD
POO03C 00585951
POO040 00000000 0.3 DATAO
POO044 00000001
POO048 41100000 0.4 OATAO
POO04C 00000000
POO050 lEND

ERRORS IN MAIN

Macro Assembler (ASSEMBLE)
Directives

DATA
111
0,100
C'A',C'SC',C'OEF"

N'1',22,8,88,4H,211

G'X'
N'1'
N"-1'
32769

C'y',G'l'

X'OO07FI'FC"
A(C.1)
S(C.1>
E·2.0'
C'RST'

G'I(YI'

.'1.0'

870027

4-9

DEF/DEFM

4.10 DEF Directive

The DEF directive identifies linkage symbols within a given program which may be
referenced by another program or subroutine as entry points or data.

The symbols referenced in the operand field must be defined in the same program in
which the directi ve is used.

DEF directives must precede data definitions and executable statements in the source
program.

Syntax:

Label Operation Operand

label DEF sl,s2, ••• ,sn

sl,s2, ••• ,sn are symbolic names local to the program

See the EXT directive description.

4.11 DEFM Directive

The DEFM directive specifies the name of a macro. A macro definition must always
begin with a labeled DEFM directive.

Syntax:

name

pl,p2, ••• pn

4-10

Label Operation Operand

name DEFM pl,p2, ••• pn

is a symbolic name which generates the macro when used in the
operation field of a macro instruction

specify parameters that correspond to arguments supplied with the
macro call

Macro Assembler (ASSEMBLE)
Directives

MPX-32
Utilities'

0,,' ,'i: __ '

o

('

DSECT/END

4.12 DSECT Directive

The DSECT directive assembles a section of program source code in data section mode.
All symbolic names (labels) are assigned relocatable memory addresses relative to the
beginning of the data section. DSECT is the default addressing mode used by the Macro
Assembler.

Syntax:

Usage:

Label

label

Operation

DSECT

The following example sets data section mode:

STARTD
TCWI

4.13 END Directive

DSECT
RES

Operand

lW

The END directive indicates the end of the source program and must always be the last
Assembler language statement in a source program. END directive processing dumps all
literals defined since the last LPOOL directive.

The operand field may contain an expression specifying a transfer address to which
control is passed at load time. For a series of programs and subprograms, a transfer
address is provided only with the main program. The operand field expression must not
be literal.

Use of the label field is optional. If specified, the label is equal to the address of the
first unused word location following the program.

Syntax:

MPX-32
Utilities

Label

label

Operation

END

Operand

expression

Macro Assembler (ASSEMBLE)
Directives 4-11

ENDM/ENDR

4.14 ENDM Directive

The ENDM directive terminates a macro definition.

Syntax:

Label Operation Operand

label ENDM

There must be one ENDM directive for each macro definition. Entries in the label and/or
operand fields are ignored.

The following sequence illustrates a macro definition that generates the load, store, and
branch instructions each time the macro is called:

SAMPL

4.15 ENDR Directive

DEFM
LW
STW
BCT
ENDM

3,ABC
3,XYZ
2,TEST

The ENDR directive delineates the range of the repeat loop for the preceding REPT
directive. This directive must be the last statement in a repeat loop. See the
description of the REPT directive.

Syntax:

Label

label

4-12

Operation Operand

EN DR

Macro Assembler (ASSEMBLE)
DirecJives

MPX-32
Utilities

(\
~--)

O·
,',"

EQU/EXITM

4.16 EQU Directive

The EQU directive defines a symbol by assigning the attributes of the expression in the
operand field to the symbol. This directive can be used to equate symbols to frequently
used expressions such as register numbers, data, or arbitrary values.

The operand field must specify an evaluatable expression which may be absolute,
relocatable, or common. External symbols or Datapool references cannot be specified.
Symbols used in the operand field must have been previously defined if used in an
arithmetic expression.

The label field must specify a symbolic name which cannot be redefined. The symbolic
name assumes the same attributes as the expression. If the label field is not specified,
the source statement is ignored.

Symbols used in the operand field must have been previously defined if BOUND, FORM,
1FT, IFF, ORG, REPT, RES, or REZ directives reference the symbol in the label field of
the EQU directive.

Syntax:

Label Operation Operand

symbol EQU expression

Usage:

The following example illustrates EQU directive usage when the operand is a constant
expression:

Location Byte
Counter Address Label Operation Operand

0002F 0002F SLSH EQU X'2F'
00040 00040 ASGN EQU X'40'
OOOOA OOOOA CSZE EQU 10
0005A 0005A ZLET EQU G'Z'

4.17 EXITM Directive

The EXITM directive terminates processing of a macro structure. Label and operand
field entries are ignored.

If this directive is ust;ld within a nested macro structure, assembly processing continues in
the next outer macro, if applicable.

The EXITM directive should not be confused with the ENDM directive. The ENDM
directive indicates the end of a macro definition and must be the last statement of any
defined macro structure, including one that could contain one or more EXITM directives.

Syntax:

MPX-32
. Utilities

Label

label

Operation Operand

EXITM

Macro Assembler (ASSEMBLE)
Directives 4-13

EXT

4.18 EXT Directive

The EXT directive identifies linkage symbols which are entry points or data in another
program or subroutine, but referenced by the given program.

The symbols referenced in the operand field must be defined in a different program than
the one in which the EXT directive is used. The symbols are given defined addresses at
load time if corresponding DEF directives in another program or subroutine are present.

Symbols defined by EXT directives may not be used within a common definition or in the
operand field of the EQU directive.

Syntax:

Label

label

Operation

EXT

Operand

sl,s2, ••• sn

sl,s2, ••• sn are symbolic names defined in another program or subroutine

Usage:

The following examples illustrate use of the EXT and DEF directi ves:

REFERENCING PROGRAM

Location Machine
Counter Instruction

POOOOO
POOOOO D4000018
POOO04 F8800001
POOO08 F8800005
POOOOC F8800009
POODlO F8800DlD
POODl4 EC100019
POODl8 00000000
POODlC D4000028
POO020 C9800003
POO024 EC100029
POO028 00000000
POOO2C

4-14

Byte
Address Label Operation

PROGRAM
EXT

CAL5 EQU
POOO18 STW
XOOOOO BL
YOOO04 BL
YOOO08 BL
POODlC BL
POODl8 BU

CAL5RO DATAW
POO028 CAL2 STW

LI
POO028 BU

CAL2RO DATAW
END

Macro Assembler (ASSEMBLE)
Directives

Operand

EXTDEFl
CAL4
$
0,CAL5RO
CAL4
CAL4
CAL4
CAL2
*CAL5RO
0
0,CAL2RO
3,3
*CAL2RO
0

MPX-32
Utilities

(~

\._-_//

o

(-
REFERENCED PROGRAM

Location
Counter

POD 000
POOOOO
POOO04
POOO08
POOOOC
POO010
POO0l4
POOOl8
POOOIC
POO020
POO024

MPX-32
Utilities

Machine
Instruction

D4000014
D5800018
D60000lC
D6800020
ECIOOOl5
00000000
00000000
00000000
00000000

Byte
Address Label Operation

PROGRAM
DEF

CAL4 EQU
POOOl4 STW
POO018 STW
POOOIC STW
POO020 STW
POO014 BU

CAL4RO DATAW
WORD3 DATAW
WORD4 DATAW
WORD5 DATAW

END

Macro Assembler (ASSEMBLE)
Directives

EXT (Cant.)

Operand

EXTDEF2
CAL4
$
0,CAL4RO
3,WORD3
4,WORD4
5,WORD5
*CAL4RO
0
0
0
0

4-15

FORM

4.19 FORM Directive

The FORM directive defines variable length data subfields. The bit size of each subfield
is defined in the operand field of the directive. The data specification in the operand
field is subsequently invoked when a source statement whose operation field matches the
label field entry (symbol) of the FORM directi ve is encountered.

Syntax:

Label

symbol

symbol

fl, f2, ••• , fn

Operation Operand

FORM fl, f2, ••• , fn

is a symbol that identifies the format definition given by the
directi vee When used as an operation in a subsequent source
statement, this symbol invokes the format specification for the
designated data constants.

are positive integer values in the range 1 to 254 specifying the bit
size of a gi ven sub field. The number of subfields that may be defined
is limited only by available storage. Symbols used in the operand field
must be previously defined.

0.·'·: " 'I

A subfield specification that exceeds 254 bits is flagged with the Assembler error code
H. If this occurs in a FORM directive defining only a single subfield, the directive is
flagged and processing continues with the next source statement. References to the
erroneous specification are ignored with no code generated. If the 254-bit limit is (/~.
exceeded in a FORM directive defining multiple subfields, the directive is flagged, , __ j
directi ve processing is terminated, and the next source statement is processed.
Subsequent references to the format specification result in correct code generation for
subfields defined prior to the erroneous subfield.

A subfield specification of zero bits is ignored. No Assembler error code is generated
and no code is generated for subsequent references to the format specification.

Data definitions that use fewer bits than specified for a subfield are aligned, justified,
and/or zero-filled according to the conventions for the corresponding constant type (see
Section 2, Data Representation). -

For data definition entries exceeding the size of the specified subfield, high order bits
are truncated. Alignment and justification are performed according to constant type.

4-16
Macro Assembler (ASSEMBLE)

Directives
MPX-32
Utilities

o

c::,

(~

FORM (Cont.)

Usage:

The following example generates one word with the following format:

An 8-bit field containing the hexadecimal character A

A 16-bit field containing the C-string characters YZ

An 8-bit field containing the decimal number 15

Label Operation Operand

EXAMPL1 FORM 8,16,8

EXAMPL1 X'A',C'YZ',N'15'

The following example illustrates excessive bit field specification,
specification, alignment, and justification for various constant types:

Error
Line

H
H

MPX .. 32
Utilities

Line
Counter

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013.
00014

Location Machine
Counter Instruction Label

F1
F2
F3
F4
F5

POOOOO 41424320
POOO04 00414243
POOO08 41424344
POOOOC 42434445

POO010 80
POO014

Macro Assembler (ASSEMBLE)
Directives

Operation

FORM
FORM
FORM
FORM
FORM
F1
F1
F1
F1
F2
F3
F4
F5
END

zero bit field

Operand

32
4097
4096
0
1

. C'ABC'
G'ABC'
C'ABCDE'
G'ABCDE'
1
1
X'44'
1

4-17

FORM (Cont.)

The following example is similar to the previous example. Note that the data
specification format given in the FORM directive is serially reusable for cases where the
actual number of subsequent data definitions is greater than the number of subfields
specified.

Error Line
Line Counter

OOODl
00002

H 00003
00004
00005
00006
00007
00008
00009
00010
00011

00012
00013
00014
00015

00016

4-18

Location Machine
Counter Instruction Label

Fl
F2
F3
F6
F4
F5

POOOOO 41424320
POOO04 00414243
POOO08 41424344
POOOOC 42434445
POODlO 00000000
POO014 00000000
POODl8 00000000
POOO1C 00000000
POO020 00000000
POO024 00000000
POO028 00000000
POO02C 00000004

POO030 80
POO031 040404
POO034 04040404
POO038 040404
POO03C

Macro Assembler (ASSEMBLE)
Directives

Oeeration

FORM
FORM
FORM
FORM
FORM
FORM
F1
F1
F1
F1
F2

F4
F5
F6
F6

END

Oeerand

32
254
255
8,8,8,8
0
1
C'ABC'
G'ABC'
C'ABCDE'
G'ABCDE'
1

X'44'
1
4,4,4
4,4,4,4,4,4,4

MPX-32
Utilities

0

/-~'"
. .
'\J

o

(

GEN

4.20 GEN Directive

The GEN directive constructs a hexadecimal value representing specified bit string
combinations.

The operand specifies a field list comprised of subfields separated by commas. Each
subfield is packed into a contiguous bit string. If the total length of all subfields in bits
is not a multiple of eight, the bit string is zero-filled to achieve byte multiplicity.

All relocatable, common, and external mode address fields must be 20 to 32 bits in length
and right-justified within a word. Fields of other types may range in length from 0 to
4096 bits.

Precise bounding can be achieved through use of the BOUND directive immediately
preceding the GEN directive.

Syntax:

fl, f2, ••• fn

I

e1,e2, ••• en

Usage:

Label

label

Operation

GEN

Operand

fll e1, f21 e2, ••• fnl en

is a positive integer specifying the bit length of a given subfield

separates subfield bit length and subfield contents

is an expression specifying the contents of a given subfield

The following GEN directive specification generates a 32-bit word. The first 12 bits
contain the hexadecimal value FFF and the remaining 20 bits contain the word address
location for ALPHA.

GEN 12/X'FFF',20/W(ALPHA)

The following GEN directive specification generates a 64-bit field. The first 24 bits
contain the decimal value 1, the next 24 bits contain the hexadecimal value 374AC1, and
the last 16 bits contain character codes for the representation XV:

MPX-32
Utilities

GEN 24/1,24/X'374AC1',16/C'XV'

Macro Assembler (ASSEMBLE)
Directives 4-19

GOTO/IFA

4.21 GOTO Directive

The GOTO directive directs the Macro Assembler to continue processing at the source
statement whose label is indicated by the symbol in the operand field. Source statements
between the GOTO directive and the specified source statement are not processed.

The symbol entry in the operand field must be a forward reference.

Syntax:

Label Operation Operand

label GOTO symbol

4.22 IFA Directive

The IFA directive can only be used within a macro structure.

The IF A directive checks the symbolic parameter list of the expression in the operand
field for the existence of actual arguments. If absent, processing continues at the source
statement immediately following the IF A directive. If arguments are present, processing
branches to the source statement with a label specified by symbol2.

Symbols defined by the SET, SETF, and SETT directives may be used in 1FT, IFP, IFA,
and IFF directives. These symbols must not represent forward references.

Symbols used in the label field of 1FT, IFF, IFP, and IF A directives are not entered into
the symbol table.

Syntax:

exp

symbol2

4-20

Label

label

Operation

IFA

Operand

exp,symbol2

is a valid expression. This expression typically specifies a symbolic
parameter of the form %xx ••• x, or a string of symbolic parameters combined
wi th arithmetic and/or logical operators (e.g., %AB+%CB+%XY + •••). This
expression could also represent a value corresponding to a locally generated
label within a macro.

is a valid symbol specifying the label of the source statement to branch to if
the expression contains internally generated symbols

Macro Assembler (ASSEMBLE)
Directives

MPX-32
Utilities

c

(~,

~j

o

(

IFF

4.23 IFF Directi ve

The IFF directive evaluates the expression in the operand field. If the expression is
evaluated as a FALSE (0), assembly processing continues with the source statement
immediately following the directive. If the expression is evaluated as TRUE (1),
assembly processing continues at the source statement with the label specified by
symbol2.

The following information applies to the IFF and 1FT directives.

The expression specified in the operand field may consist of a string combined
with arithmetic: operators (+ - * /) and/or logical operators (.AND. .OR. .EQ. .NE.
.L T. .GT. .LE. .GE.). Logical operators must be preceded and followed by a blank
(e.g., XYZ .NE. XYW).

Only the least significant 23 bits of the expression or logical subexpression are used in
determining the logical value for the entire expression.

Syntax:

exp

symbo12

MPX-32
Utilities

Label Operation Operand

label IFF exp,symbol2

is a valid expression. This expression typically specifies a symbolic
parameter of the form %xx ••• x, or a string of symbolic parameters combined
with arithmetic and/or logical operators. This expression could also
represent a value corresponding to a locally generated label within a
macro. Symbols used in exp must have been previously defined.

is a valid symbol specifying the label of the source statement to branch to if
the expression is evaluated as TRUE (1).

Macro Assembler (ASSEMBLE)
Directives 4-21

IFP/IFT

4.24 IFP Directive

The IFP directive can only be used within a macro structure.

The IFP directive checks the symbolic parameter list of the expression in the operand
field for the existence of actual arguments. If present, processing continues with the
source statement immediately following the IFP directive. If arguments are absent,
processing branches to the source statement with a label specified by symbol2.

See the IF A directive description for further details.

Syntax:

exp

symbol2

Label Operation Operand

label IFP exp,symbol2

is a valid expression (see IF A directive description)

is a valid symbol specifying the label of the source statement to branch to if
the expression does not contain internally generated symbols

4.25 1FT Directive

The 1FT directive evaluates the expression in the operand field. If the expression is
evaluated as TRUE (1), assembly processing continues with the source statements
immediately following the directive. If the expression is evaluated as FALSE (0),
assembly processing continues at the source statement with the label specified by
symbol2.

See the IFF directive description for further details.

Syntax:

exp

symbol2

4-22

Label Operation Operand

label 1FT exp,symbo12

is a valid expression (see IFF directive description)

is a valid symbol specifying the label of the source statement to branch to if
the expression is evaluated as FALSE (0)

Macro Assembler (ASSEMBLE)
Directives

MPX-32
Utilities

c

/

o

c

LIST

4.26 LIST Directi ve

The LIST directive controls listed output. This directive is meaningful only when listed
output has not been inhibited through the use of option 1.

Syntax:

Label

label

terml, ••• ,term5

List Option

ON
OFF

DATA

NODATA

NGLIST
NONG

MAC
NOMAC

REP
NOREP

Operation Operand

LIST terml, ••• ,term5

specify one to five terms from the following operator pairs:

Results

Generate listed output (default).
Suppress listed output.

Print data in full wi th listed output. Addi tional print lines may
be required (default).
Restrict data printing to single source image. Suppress
addi tional lines.

List all source statements (default).
Suppress listed output for the following types of statements:
(1) ANOP, GOTO, SET, SETT, SETF, 1FT, IFF, IFP, IF A

DEFM, ENDM, EXITM, REPT, END, and FORM directives
(2) Statements within macro prototype definitions
(3) Statements within REPT loop definitions
(4) Statements not assembled because of conditional

assembly

List macro expansions (default).
Suppress listed output of macro expansions.

List REPT loop expansions (default).
Suppress listed output of REPT loop expansions.

If multiple or conflicting option are specified, the last option specified is the controlling
element. This includes specification of LIST options within macros.

If a LIST directive is not specified, Macro Assembler operation assumes the following
defaults for listed output control:

ON,DA T A,NGLIST ,MAC, REP

LIST directives specifying the ON option while under control of a LIST OFF directive are
not listed.

MPX-32
Utilities

Macro Assembler (ASSEMBLE)
Directives 4-23

LPOOL

4.27 LPOOL Directive

The LPOOL directive inserts literals into the generated object code beginning at the
current location within the program. Processing of the LPOOL directive causes all
literals since the previous LPOOL directive (or start of the program) to be assembled at
word boundaries starting at the first full word boundary following the directive. If no
literals are assembled as the result of a given LPOOL directive, the location counter is
advanced to the next full word boundary following the LPOOL directive.

Syntax:

symbol

Label Operation Operand

symbol LPOOL

is an optional symbolic entry. If specified, this entry represents the address
of the first unused full word location following literal pool output.

Only the first 31 LPOOL directives are processed. All others are not processed, and are
flagged with the Assembler error code Z.

All literals encountered between the last LPOOL directive of a program and the END
directi ve are dumped as part of the Assembler's END directi ve processing.

MP.-32 UTILITIES RELEASE 1.1 (ASSEMBLE ~10.5.11)
~AIN 02/28/84 16120:24

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016 POOOOO C8800001
00017 POOO04 &OCOO010 POOC10
00018 POOC08 ECOOOOOO POOOOC
00019 POOOOC

POOOOC C8061055

POO010 41424320
00020
000 21 POOOH
00022 POO1&4 POOOOO

0000 ERRORS IN MAIN

•
• THIS EXAMPLE SHOWS THE USe OF THE LPOOL DIRECTIVE TO FORCE THE
• LITERALS TO BE INCLUDED IN THE OBJECT CODE IT THE CURRENT
• PROGRAM COUNTER LOCATIO~.

* • THIS PERMITS THE LITERALS TO aE PoSITIONED IWAY FROM THEIR NORMAL
* PLACE AT THE END OF THE PROGRAM. TMIS PERMITS USERS TO USE
• E.TRA PROGRAM SPACE VII SALLOCATE ANO TESTlNG OF THE PRCGRAM'S
• ADDRESS tIMITS.
•
• IN THIS EXAMPLE THE LITERALS WOULO APPEl. IN THE GeNERATED CODE
• BETWEEN M.EXIT AND THE START OF aUF. hENCE !T USING M.GIORL, THE
* PROGRAM CAN USE THE SPACE BETWEEN aUF+99w AND THE LAST LOCATION
* CURRENTLT AVAILABLE IN THE TAS~'S CONTIGUOUSLY ALLOCATED DseCT.

STn LI 1,1
LW 2,-C"BC'
au STP

STP M. EXIT
SVC 1,x'55'
ENOM

LPOOL
aUF RES 100W

END STn

Macro Assembler (ASSEMBLE)
Directives

A LITERAL "ILL BE GENERATED

(S VC 1, x' 55')

INCLUDE LITERALS IN GENERATED ceDE

870024

MPX-32
utl!!t!eS

r"
l.

(

ORG/PAGE

4.28 ORG Directive

The ORG directive assigns the value specified in the operand field to the location
counter. Symbolic names are assigned absolute or relocatable values relative to the
point of origin until a subsequent ABS, REL, or ORG directive is encountered.

Symbols used in the operand field must have been previously defined.

External references may not be used in the operand field.

Syntax:

Label Operation Operand

label ORG value

Usage:

The following example assigns the value 1000 (hexadecimal) to TAGA and START:

TAGA
START

4.29 PAGE Directive

ORG
LW

X'lOOO'
2,TAGA

The PAGE directive causes a page eject on the listed output (LO) device. The current
TITLE identification is printed on each new page. The PAGE directive is not printed but
is assigned a line number.

Syntax:

MPX-32
Utilities

Label

label

Operation

PAGE

Macro Assembler (ASSEMBLE)
Directives

Operand

4-25

PROGRAM/REL

4.30 PROGRAM Directive

The PROGRAM directive identifies Macro Assembler generated programs and specifies
the program name to be printed on each page of listed output. Only one PROGRAM
directive can be specified within one program assembly.

If a PROGRAM directive is not specified, the program name defaults to MAIN. If the
operand field of a PROGRAM directive is blank, the program module is assembled with
no name.

Syntax:

name

id

Label Operation Operands

label PROGRAM [name [id]]

is a string of one to eight alphanumeric characters that specifies a program
name. Embedded blanks are not permitted.

is a string of up to 20 alphanumeric characters for optional identification
information. This field is inserted into the object code if option 14 is set •

. The program name field must be specified if the id field is specified.

4.31 REL Directive

The REL directive assembles a section of program coding in relocatable mode.
Generated object code can be relocated by the loader. All symbolic names are assigned
relocatable memory addresses relative to the program start location. Subsequent use of
this directive causes the location counter to be assigned a value equal to the next
relati ve memory address to be allocated.

Syntax:

Label Operation Operand

label REL

Usage:

The following example assembles the code in the relocatable mode beginning at location
1000 (hexadecimal):

TAG

;~-26

REL
ORG X'lOOO'

Mac!'o .A.ssemble!' (ASSEtv!8LE)
[J!recti ves LJtil!t!es

o

(

REPT

4.32 REPT Directive

The REPT directive allows the repetitive generation of a sequence of coding or data.
The number of repetitions is specified by an expression in the operand field. This
directive is typically used within repeat loops.

The special symbol $$$ can be used in coding within a repeat loop, and is always equal to
the current repetition count. The value of the special symbol $$$ is initially equal to
one.

REPT directi ves may not be utilized in nested loop structures.

The FORM directive cannot be used within the range of a repeat loop.

Syntax:

Label

label

expression

Usage:

Operation Operand

REPT expression

specifies the repetition count. This expression is evaluated as an
arithmetic expression. If the value specified is zero or negative, the
assembly process is suspended until an ENDR directive is
encountered. Symbols used in the operand field must have been
previously defined.

The following example illustrates typical usage of the REPT and ENDR directives.

Code:

Result:

MPX-32
Utilities

TABLE

TABLE

REPT 3
GEN 16/ A($-TABLE), 16/ A($$$)
ENDR

GEN 16/0,16/1
GEN 16/4,16/2
GEN 16/8,16/3

Macro Assembler (ASSEMBLE)
Directives 4-27

RES

4.33 RES.Directive

The RES directive reserves blocks of storage for use as tables, data arrays, or work
areas.

Halfword, word, doubleword, and file unit specifications are adjusted for proper
bounding.

If the operand field contains an evaluatable expression, the location counter is adjusted
by the defined number of bytes with no bounding performed. Symbols used in the operand
field must have been previously defined.

Syntax:

symbol

n

s

Usage:

Label

symbol
symbol

Operation

RES
RES

Operand

ns
expression

is an optional symbol that is assigned the value of the location counter at the
time the first location of the reserved block is allocated

is a decimal integer value designating the unit multiple to be reserved

specifies the size of the unit to be reserved as follows:

Variable

B
H
W
o
F

Field

Byte
Halfword
Word
Ooubleword
File (8 words)

If not specified, the default is B.

The following example reserves storage as indicated:

Code:

Result:

4-28

(LC=OOOOO)
(LC=00006)
(LC=00008)

0000

0004

0008

oooe

IHW

IHW

RES
RES
RES

lOW

18

3H
1
10

IHW

Unused

Macro Assembler (ASSEMBLE)
Directives

MPX-32
UtHities

c

o

[~'
. /

RES (Cont.)

The following sample program listing illustrates the use of the RES directive:

Line
Number

01410
01411
01412
01413
01414
01415
01416
01417
01418
01419
01420

MPX-32
Utilities

Location
Counter Label Operation

P017A8 TXPR RES
P017AC PRAF RES
P017BO OCTV RES
P017B4 EXTC RES
P017B8 TEXT RES
P01830 STAT RES
P01858 HOR RES
P01860 IPRF RES
P01868 TORT RES
P0186A KSRF RES
P0186B RCFG RES

Macro Assembler (ASSEMBLE)
Directives

Operand

lW
lW
lW
1W
30W
lOW
10
10
IH
IB
IB

4-29

REZ

4.34 REZ Directive

The REZ directive reserves and zeroes blocks of storage for use as tables, data arrays,
and/or work areas.

Halfword, word, doubleword, and file unit specifications are adjusted for proper
bounding.

If the operand field contains an evaluatable expression, the defined number of bytes is
reserved and zeroed with no bounding performed. Symbols used in the operand field must
have been previously defined.

Syntax:

symbol

n

s

Usage:

Label

symbol
symbol

Operation

REZ
REZ

Operand

ns
expression

is an optional symbol that is assigned the value of the location counter at the
time the first location of the reserved block is zeroed

.is a decimal integer value designating the unit multiple to be reserved and
zeroed

specifies the size of the unit to be reserved and zeroed as follows:

Variable Field

B
H
W
o
F

Byte
Halfword
Word
Ooubleword
File (8 Words)

If not specified, the default is B.

The following example reserves and zeroes storage as indicated:

Code:

(LC=OOOOO)
(LC=00006)
(LC=00008)

Result:

00000

00004

00008

ooooe

4-30

lHW

IHW

lDW

REZ
REZ
REZ

0000

0000

0000

0000

IB

3H
1
10

IHW

00

0000

0000

Macro Assembler (ASSEMBLE)
Directives

0000

Unused

MPX-32
Utilities

o

C'~

(

REZ (Cont.)

The following sample program listing illustrates the use of the REZ directive:

Line
Number

00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016

MPX-32
Utilities

Location
Counter

P017A8
P017AC
P017BO
P017B4
P017B8
P01830
P01858
P01860
P01868
P0086A
P0186B

Generated
Code Label OQeration

LIST
00000000 TXPR REZ
00000000 PRAF REZ
00000000 OCTV REZ
00000000 EXTC REZ
00000000 TEXT REZ
00000000 STAT REZ
00000000 I-OU REZ
00000000 IPRF REZ
0000 TaU REZ

00 KSRF REZ
00 RCFG REZ

Macro Assembler (ASSEMBLE)
Directives

OQerand

NDATA
1W
1W
1W
1W
30W
lOW
10
10
IH
IB
IB

4-31

SET /SETF /SETT

4.35 SET Directive

The SET directive assigns the value of the expression in the operand field to the symbolic
name specified in the label field. The expression is evaluated as an arithmetic expression
and may consist of a string combined by arithmetic operators (+ - * I).

The symbol defined by the SET directive may be subsequently redefined any number of
times.

Symbols used in the operand field must have been previously defined if BOUND, FORM,
1FT, IFF, ORG, REPT, RES, or REZ directives reference the symbol in the label field of
the SET directive.

Syntax:

Label Operation Operand

symbol SET expression

4.36 SETF Directive

The SETF directive assigns the Boolean value false (0) to the symbolic name specified in
the label field.

Syntax:

Label Operation Operand

symbol SETF

4.37 SETT Directive

The SETT directive assigns the Boolean value true (1) to the symbolic name specified in
the label field.

Syntax:

Label

symbol

4-32

Operation Operand

SETT

Macro Assembler (ASSEMBLE)
Directives

MPX-32
Utilities

o

SPACE/TITLE

4.38 SPACE Directive

The SPACE directive skips a specified number of lines on listed output. The SPACE
directi ve is not printed but is assigned a line number.

Syntax:

n

Label Operation Operand

label SPACE n

is an integer value in the range 1 to 59 specifying the number of lines to
skip. If n is specified as a blank, zero, or negati ve integer, the output device
skips one line.

4.39 TITLE Directive

The TITLE directive specifies a heading to be printed on each page of Macro Assembler
listed output. The heading is printed until a subsequent TITLE directive is encountered.

When encountered, a TITLE directive causes a page eject on the listed output device
prior to printing the new TITLE heading.

The TITLE directive is not printed but is assigned a line number.

Syntax:

cs

MPX-32
Utilities

Label Operation Operand

label TITLE cs

is a string of ASCII characters comprising the heading identification. The
text consists of all characters encountered between the blank input column
immediately following the directive and input column 72, exclusive. This
field may be blank.

Macro Assembler (ASSEMBLE)
Directives 4-33/4-34

.,f ... ~

',,-,

o

(-

SECTION 5 - ERRORS AND ABORTS

5.1 Error Codes

Errors detected by the Macro Assembler during Pass One and Pass Two processing are
printed on the program's listed output.

During Pass One, errors which will not be resolved during Pass Two are detected. Pass
One errors are printed before the source program listing on the La file or device. The
Pass One error statement contains the alphabetic error code, source program line
number, and source image.

Pass Two errors are listed in the error flag field on the La file or device. The total
number of Pass Two errors is given in the error report line following the source program
listing.

Refer to Section 6 for a sample Assembler output listing showing the location of error
code flags.

Macro Assembler error codes are denoted by an alphabetic character as follows:

Error Code

A

B

C

o
E

F

G

H

I

MPX-32
Utilities

(1)
(2)
(3)

Explanation

Nested Macro Definition(s)
External Reference from Common
External Reference from Noncode-generating
Statement

(4)
(5)

FORM Directi ve Encountered during Macro Expansion
FORM Directive Encountered within REPT Loop

Addressing Boundary Error (1)
(2)
(3)
(4)
(5)

Odd Register Specification in Double Register Operand
Improper Register Usage
Illegal Condition Code for BCF /BCT Instructions
Bit Value Out of Range (0-31) for External Variable

Character Constant String Improperly Terminated

Data Statement Field Error

Expression Improperly Terminated

(1) DEF Undefined
(2) DEF Improperly Defined
(3) DEF Does Not Precede Executable Code/Data

SPACE Directive Specifies Excessive Line Count

GEN or FORM Directive Specifies Excessive Field Size

(1)

(2)

Internally Generated Symbol Specified as COMMON
Block Name
Internally Generated Symbol Specified as External

Macro Assembler (ASSEMBLE)
Errors and Aborts 5-1

Error Code

J

K

L

M

N

o

P

Q

R

T

U

V

W

x

y

z
\ (Backslash)

5-2

(3)

Explanation

Internally Generated Symbol Used in Concatenated
String Used as Macro Argument

Attempt to Use Previously Defined Symbol as Common Block
Name

Illegal Option Specified for LIST Directive

Data Constant Defini tion Error

Symbol Multiply Defined

Numeric Constant Field Error

Operation Field Error

Multiple PROGRAM Directives

(1)
(2)

(1)

(2)

(1)

(2)

Illegal Location Specified with ORG Directive
Illegal Boundary Specified with BOUND Directive

Relocatable/Common/External Symbolic Field Too
Small
COMMON size> 16KW

Phasing Error - Pass Two Symbolic Value Not Equal to
Pass One Symbolic Value
Phasing Error - Symbol Detected In Pass Two that Was
Not Defined by Pass One

Symbol Undefined

Illegal Combination of Symbols in Expression

Illegal Constant Type or Address Attribute

(1)
(2)
(3)
(4)

Literal Not Defined during Pass One
END Directi ve Processing Error
Illegal Number of Arguments Specified
Illegal Type for Literal

Violation of REPT Usage Conventions

Excessive LPOOL Directives (Maximum 31)

Attempted Division by Zero Is Illegal

Macro ,A.ssembler U\SSEMBLE)
Errors anrl /\b~r~s

1 .. "
'(~/

C·~"'··· .' "

.!

o

5.2 Abort Codes

If the Macro Assembler aborts, an abort code or message is shown on the listed output
assigned to logical file code LO. The following is a list of the codes, messages, and
action to take when a program abort occurs.

ASOl PHYSICAL END-OF -FILE ENCOUNTERED ON WRITE TO THE GENERAL
OBJECT (GO) FILE

If logical file code GO is assigned to SGO, the maximum number of extents
was reached. Specify a larger SGO size to reduce the number of extents
needed.

If logical file code GO is assigned to a file, the file is too small and could not
be extended, or the maximum number of extends was reached. Recreate the
file with a larger size so it can be extended.

AS02 PHYSICAL END-OF -FILE ENCOUNTERED ON WRITE TO THE BINARY
OUTPUT (BO) FILE

AS03

If logical file code BO is assigned to SBO, the maximum number of extents
was reached. Specify a larger SBO size to reduce the number of extents
needed.

If logical file code GO is assigned to a file, the file is too small and could not
be extended, or the maximum number of extents was reached. Recreate the
file with a larger size so it can be extended.

PHYSICAL END-OF -FILE ENCOUNTERED ON WRITE TO THE LISTED
OUTPUT (LO) FILE

If logical file code LO is assigned to SLO, the maximum number of extents
was reached. Specify a larger SLO size to reduce the number of extents
needed.

If logical file code LO is assigned to a file, the file is too small and could not
be extended, or the maximum number of extents was reached. Recreate the
file with a larger size so it can be extended.

AS04 PHYSICAL END-OF -FILE ENCOUNTERED ON WRITE TO THE SCRATCH
(UTI) FILE (I.E., $AS UTI TO TEMP SIZE=800 BLOC=Y)

The maximum number of extents was reached for the file assigned to UTI.
Specify a. larger size to reduce the number of extents needed.

AS05 PHYSICAL END-OF -FILE ENCOUNTERED ON WRITE TO THE CROSS
REFERENCE (UT2) FILE (I.E., $AS UT2 TO TEMP SIZE=400 BLOC=N)

The maximum number of extents was reached for the file assigned to UT2.
Specify a larger size to reduce the number of extents needed.

AS06 Reserved

MPX-32
Utilities

Macro Assembler (ASSEMBLE)
Errors and Aborts 5-3

AS07 UNRECOVERABLE I/O ERROR ON THE BINARY OUTPUT (BO) FILE

Improper request for unblocked output. Correct the JCL and rerun the
program.

AS08 UNRECOVERABLE I/O ERROR ON THE GENERAL OBJECT (GO) FILE

Possible hardware problem. Rerun the program.

AS09 UNRECOVERABLE I/O ERROR ON THE LISTED OUTPUT (LO) FILE

Possible hardware problem. Rerun the program.

ASIO UNRECOVERABLE I/O ERROR ON THE SOURCE INPUT (sl) FILE

Possible hardware problem. Rerun the program.

ASH UNRECOVERABLE I/o ERROR ON THE INTERMEDIATE COMPRESSED
SOURCE (UTI) FILE

Possible hardware problem. Rerun the program.

ASl2 PHYSICAL END-OF -FILE ENCOUNTERED ON WRITE TO THE COMPRESSED
SOURCE OUTPUT (CS) FILE

If CS is assigned to a file, the maximum number of extents was reached.
Recreate the file at a larger size to reduce the number of extents needed.

ASl3 CHECKSUM ERROR ON COMPRESSED SOURCE INPUT DURING PASS I
WHILE READING COMPRESSED SOURCE FROM THE SOURCE INPUT (SI)
FILE OR DURING PASS 2 WHILE READING THE INTERMEDIATE
SCRA TCH COMPRESSED SOURCE (UTI) FILE.

Rerun the program. If the program aborts a second time with this abort
code, access the program's file with the Text Editor, SAVE the file, and
rerun the program. If the program aborts with this code again, a hardware
problem, such as a bad spot on a disc, probably exists.

ASl4 THE FILE THE ASSEMBLER IS USING AS THE MACRO LIBRARY WAS NOT
SUCCESSFULLY CREATED BY THE MACRO LIBRARY EDITOR. THE
FILE IS INV ALID.

ASl5 UNRECOVERABLE I/o ERROR ON THE MACRO LIBRARY (MAC) FILE

Possible hardware problem. Rerun the program.

ASl6 UNRECOVERABLE I/O ERROR ON THE CROSS-REFERENCE CUT2) FILE

Possibie hardware problem. Rerun the program.

AS17 UNRECOVERABLE I/O ERROR ON THE COMPRESSED SOURCE OUTPUT
(CS) FILE

Possible hardware problem. Rerun the program.

Macro .Assembler (ASSEMBLE)
Errors and ,u.borts

MPX-32
Utmties

4-·~

~J

()

(~~

,./

ASl8

ASl9

AS20

AS21

AS22

AS23

AS24

AS25

AS26

AS27

INV ALID BLOCKING BUFFER CONTROL POINTER ENCOUNTERED ON
THE BINAR Y OUTPUT (BO) FILE

INV ALID BLOCKING BUFFER CONTROL POINTER ENCOUNTERED ON
THE GENERAL OBJECT (GO) FILE

INV ALID BLOCKING BUFFER CONTROL POINTER ENCOUNTERED ON
THE LISTED OUTPUT (LO) FILE

INV ALID BLOCKING BUFFER CONTROL POINTER ENCOUNTERED ON
THE SOURCE INPUT (SI) FILE

INV ALID BLOCKING BUFFER CONTROL POINTER ENCOUNTERED ON
THE SCRATCH COMPRESSED SOURCE (UTI) FILE

INV ALID BLOCKING BUFFER CONTROL POINTER ENCOUNTERED ON
THE COMPRESSED SOURCE OUTPUT (CS) FILE

INV ALID BLOCKING BUFFER CONTROL POINTER ENCOUNTERED ON
THE CROSS-REFERENCE (UT2) FILE

THE MACRO LIBRARY (MAC) FILE IS UNBLOCKED

Make sure the assignment for MAC is unblocked. See Section 2.2.2.

END-OF -FILE ON MA2 FILE

The file assigned to MA2 is too small for the job. Increase the size specified
by the assignment so that UT2 is large enough to hold the program.

UNRECOVERABLE I/O ERROR ON MA2 FILE

Possible hardware problem. Rerun the program.

AS28 INVALID BLOCKING BUFFER CONTROL POINTER ON MA2 FILE

AS29 MAC ASSIGNED TO ILLEGAL DEVICE

The Assembler probably encountered a problem opening the file assigned to
MAC. The device may not be configured correctly for use by the Assembler.

AS30 MA2 ASSIGNED TO ILLEGAL DEVICE

MPX-32
Utilities

The Asser:nbler probably encountered a problem opening the file assigned to
MA2. The device may not be configured correctly for use by the Assembler.

Macro Assembler (ASSEMBLE)
Errors and Aborts 5-5

AS31 ERROR(S) (DESCRIBED ON LFC LO) DETECTED DURING EXECUTION

The program did not assemble. A problem exists within the source code and
is flagged with an Assembler error code on the LO.

AS32 UNRECOVERABLE I/o ERROR ON THE PREFIX (LFC PRE) FILE

Possible hardware problem. Rerun the program.

AS33 INVALID BLOCKING BUFFER CONTROL POINTER ENCOUNTERED ON
THE PREFIX (LFC PRE) FILE

5.3 Error Messages

The following situations do not report abort codes, although they cause Macro Assembler
programs to abort and generate the following error messages:

Message: ** BAD MACRO ENCOUNTERED DURING MACRO SEARCH **

The Assembler attempted to read an improperly formatted macro library.

Message: ** XREF COULD NOT BE PERFORMED **

A cross-reference was not generated because there was insufficient memory
available to sort the cross-reference information.

The message above is also produced if there is insufficient memory available to store the
required macros and the symbol table.

Message: ** SYMBOL TABLE OVERFLOW **

The number of symbols in a program exceeded the number of symbols the
symbol table can hold.

Message: ** UNABLE TO ALLOCATE MEMORY FOR MACRO STORAGE **

The macro table size is exceeded due to excessive bytes of in-line macros,
FORM skeletons, repeated code, or macro call argument data.

Message: ** UNEXPECTED END STATEMENT, PROBABLY MISSING ENDM, ENDR
OR CONDITION LABEL **

5-6

An END statement was detected while processing a macro prototype, repeat
loop, or conditionally skipping code.

Macro Assembler (ASSEMBLE)
Errors and .D..herts

MPX-32
Utilities

("
\~

Q.---" " i' ,
(

o

SECTION 6 - OUTPUT AND EXAMPLES

6.1 Introduction

The Macro Assembler optionally produces listed output, object program output, and/or
compressed source output.

Listed output typically consists of a program source listing with a symbol cross-reference
table and an error diagnostic report. The LIST, PAGE, SPACE, and TITLE Assembler
directives provide control of the quantity and format of listed output.

Object program output is a binary representation of assembled machine instructions,
data, and encoded loader function codes. The object program serves as input for a
cataloger or linking-type loader which physically loads the program into memory. The
loading process involves allocation of memory space for the program, resolution of
external and internal symbolic references, and relocation of address-dependent locations.

The Macro Assembler optionally produces source output in compressed format on cards,
magnetic tape, or disc. The option is specified at assembly time by a JCL statement.
Details of the compressed source format are in Appendix C.

6.2 Source Listing

The source listing produced by the Macro Assembler pairs a hexadecimal representation
of object code with the corresponding source program statement.

Figure 6-1 illustrates typical Assembler listed output. The basic format is organized in
columns. The following paragraphs provide details for each of the circled entries in
Figure 6-1.

1 Program Name - The name specified in the PROGRAM directive is printed at
the top of each listed output page. If a PROGRAM directive is not specified,
the program name defaults to MAIN. If a PROGRAM directive is specified
with a blank operand field, no program name is printed.

2 Statement Counter - The five-digit statement counter numbers each source
code staterT!ent in the program.

3 Error Flag - Macro Assembler error flags are indicated by one alphabetic
character per error condition. If more than one error of the same type occurs
within a statement, the error flag is printed only once. If more than one
different type of error occurs within the same statement, an error code is
printed for each type; if more than two types of errors occur within the same
statement, they are continued on the next line.

MPX-32
Utilities

Macro Assembler (ASSEMBLE)
Output and Examples 6-1

4 Location Counter - Specifies the mode and hexadecimal value of the location
counter in byte increments. The five least significant positions represent the
location counter. The most significant character indicates one of the following
address modes:

Character Mode Location Counter Significance

Blank ABSOLUTE Absolute address of the generated code

C

P

*

COMMON

RELOCATABLE

CSECT

Leftmost digit is the least significant digit of
the common block number into which code is
being generated. Least significant four digits
give the relative address within the common
block at which code is being generated.

Relocatable address of the generated code

Address reference is within a code section

5 Object Code - Contains the hexadecimal representation of object code for the
corresponding source program instruction. The positioning indicates
byte/halfword position within a word. In the case of multiword instructions,
multiple lines of object code are generated.

6 Symbol Address - Specifies the type and hexadecimal address of a referenced
symbol. The address is given in bytes by the five least significant positions.
The address corresponds to the word address operand format code in the object
output. The most significant character indicates the symbol type and address
significance as follows:

Character Symbol Type Address Significance

Blank

C

P

x

y

A

*

6-2

ABSOLUTE

COMMON

RELOCATABLE

EXTERNAL
(Absolute
Linked)

EXTERNAL
(Relocatable
Linked)

DATAPOOL

CSECT

Absolute address or value of the referenced
symbol

Leftmost digit is the least significant digit of
the common block number in which the
referenced symbol occurs. Least significant
four digits give the relative address of the
referenced symbol wi thin the common block.

Relocatable address of the referenced symbol

Zero on first reference to symbol. For all
other occurrences, this is the program address
of the last instruction that referenced the
symbol (absolute programs only).

Program address of the last instruction that
referenced the symbol (relocatable programs
only)

Value is always zero

Address reference is within a code section

Macro Assembler (ASSEMBLE)
Output and Examples

MPX-32
Utilities

(~--)

~J

c~

~
• MP'-32 UTILITIES AELlASE 1.1 (ASSE"BLE AI0.5.1I) ~ ,.

.;!!1!!"'!",'''''0-: j!~r ~m;;' mt~!(~!~~:!IT:!;lill;ii:i;;~.;.
DOOOb COOOOO C8800001 LI 1.1 lOAD REGISTER I WITH I.
00001 C00004 20\4 TAN I,Z PUT NEGATIVE CONTENTS IN REGISTEA 2.
0000. COOOOb 2015 ICR I,Z flCHANGE THE TWO REGISTERS.
0000' CIOOOO ORG R SET PAOGAAM COUNTER TO AOOAESS OF A.
00010 CIOOOO CAD0003F LI ""3F' lOAD REGISTER. WITH HEI 3'.
000\1 CIOOO4 CAe00041 LI 5,G'A' lOAD REGISTEA 5 WITH ASClI A.
00012 POOOOO All RESET PROGRAM COUNTER TO MElOCATA8LE.
00013 [IT POP DECLARE fI TEANAl POP.
0001' fiT lOP OEClAAE EXTERNAL lOP.
000 I 5 LL OE'M OEF INE MlCAO Ll.
OODa DATA. C'TEST' ASCII nRING TEST IN A "DAD.
00011 fNDM END OF MACRO DEFINITION.
ooota A80 FOAM 32 DECLARE ASO AS A FORM.
0001' Aec SEn SET A8C TO TRUE.
00020 88N SET' SET BB'N TO '.
00021 88N SET eRNoZ SET 88N TO UNOi!.
ODDU NESt SET ITl SET NEST TO In. ~u
OOUH .R SET 3] SET RR TO 33.

U 00024 • RR SET HIT SET A. TO HiT.
U 00025 • IT SET" SET TT TO ".

SQ02b TT SET' SET TV TO '.
MT00021 00001 CC £au I CC • I.
"T00028 00002 CC EOu Z CC • Z.

00029 POOOOO AFOOOOO' COOOO' lW 6,0 lOAO REGISTER. WITH CONTENTS OF O.
0003. P00004 CB0203U SUI', 1000 SUBTRACT 1000 fROM REG '.
00031 P00006 B8000038 POOO]. lOM" 6,,,'lZ2Z22ZZ' ADD LITERAL TO CONTENTS OF REG .,
00032 POOOOC 00000000 All DAUN 0 DECLARE AlZ AS A .ORO D. ZUD.
OOOl! '00010 0000001. A80 l~ EXPAND FOAM ADD,
00014 POOOl4 II CAll MACRO LL.

POOOto 5 •• 55354 DlTAW

OOU]5
OOU3.
0003/
00018

u 0001.
OOllQU
00041
00042
00U43
0"004.
00U4'5
0004b
00041
00048
OOU4"1
00050
00051

000'512

pooo 18
POOOIC
P00020
P0002.
POOOl8

00000
00020
00020
0002'
00023

P0002C
P0002C
P00030

·pooooo
·pooooo
pooo]4

PQ003q
P00018
P0001C

ENDM
AOOOOOOO XOOOOU lW
eAOOOOU 'OOOt! ORM"
O&OOOOIC TOOOIC ST.
'8500001 XOOOOO Il
lEUOOOi& P00028 lW

OOOOF ACE
if.OOOOO
07000000

'[1t00000
Obt5000]Q

00000125

22'22222

lOOOOO
000000

.POOOQO
POOOH

COVE

CONSI

"ARI

18~
ORG
DAU.
l.
ST.
AEL
l"
ST.
CSEtr
OATAW
OSEeT
AES

END

• oooa EA.OAS IN All TYPES - a
UNUEfINED KTl e-v
UNUtf INEO " HIT
UNUE.FINED y.,.
UNOH INEO MOVE

C'TEST

!,LOP
.,lOP
.,lOP
POP
_,MO\'[

X' ZO I

X'fACE'
... lZI
6,""W
'5,CONSl
I), VARl

I.

LOAU REG] OITH CONTENTS OF LOP.
'OR' REG •• IT~ CONTENTS OF LOP.
STORE CONTENTs Of REG. IN lOP.
UANCH AND LIN" TO ROUTINE PDp,
LOAD REG • "IT" CONTENTS OF MOVE.
SET PROGRAM COUNTER TO ABSOLUTE.
SET PROGRA" tOUNTER TO HEI lO,
DECLARE COVE .S HU FACE.
LOAO REO & WITH CONTENTS Of In.
STORE CONTENTS OF REG b IN ••••

LOAD' cnCT CONUANT.
STOAE IT IN • VARIABLE IN OSECT.

A CONSTANT THAT IS IN CSECT,

A VARIAULE THAT IS IN OSECT,

840358

MPX-32
Utili ties

Figure 6-1. Sample Assembler Listed Output

Macro Assembler (ASSEMBLE)
Output and Examples 6-3

7 Label Field - Source statement label field

8 Operation Field - Source statement operation (directive) field

9 Operand Field - Source statement operand field

10 Comment Field - Source statement comment field

11 Release Number - Release number of the MPX-32 utilities followed by the
Macro Assembler internal release number.

12 Error Report - The error report line gives the total number of errors detected
in the assembly process.

13 Undefined Symbols - If undefined symbols were referenced by the source
program, they are listed below the error report line.

6.3 Symbol Cross-Reference

A symbol cross-reference is optionally produced at the end of each source program
assembly.

In addition to the standard symbol cross-reference, a cross-reference of internally
generated symbols may be optionally requested by specifying option 3. If specified, the
internal cross-reference is listed immediately following the symbol cross-reference in
descending alphanumeric order. Symbols that are not referenced are not included unless
option 10 is specified.

The symbol cross-reference for the ALL TYPES program used in Figure 6-1 is shown in
Figure 6-2. The following paragraphs detail each of the circled entries in Figure 6-2.

6-4

1 Program Name - The program name specified in the PROGRAM directive is
printed on each page of listed output.

2 Symbol Type - Specifies the symbol type and its value or address. The value or
address is given in bytes by the five least significant positions. The most
significant character indicates the symbol type and significance of the value as
follows:

Character

Blank

A

B

C

51mbol Tl2e

ABSOLUTE

DATAPOOL

MACRO

COMMON
ITEMS

Value Significance

Absolute address or value of the symbol

Value is always zero

Relative address of the macro prototype
in the macro storage table

Most significant digit is the least signi
ficant digit of the common block number
in which the referenced symbol occurs.
Least significant four digits are the
relative address of the symbol within the
common block.

Macro Assembler (ASSEMBLE)
Output and Examples

MPX-32
Utilities

o

(-

Character

D

F

J

1-<:

L

M

P

U

X

y

*

Symbol Type

COMMON
BLOCK

FORM

SET
(ABSOLUTE)

Value Significance

Leftmost digit is the least significant
digit of the common block number. Least
significant four digits are the common
block size in bytes.

Relative address of the form prototype in
the macro storage table

Last absolute value to which the symbol
was set

SET Last relocatable value to which the sym-
(RELOCA TABLE) bol was set

LITERAL

MUL TIPLE
DEFINITION

RELOCA TABLE

UNDEFINED

EXTERNAL

EXTERNAL

CSECT

Leftmost digit is the least significant digit
of the literal pool number. Least signifi
cant four digits are the number of the
literal within the literal pool.

Initial value the symbol was assigned

Relocatable address of the symbol

Contents of the location counter when the
symbol was last referenced

The program address at which the symbol
was last referenced (absolute programs
only). Value is zero if the symbol was
never referenced.

Program address at which the symbol was
last referenced (relocatable programs
only)

The symbol is within a code section

3 Symbol - Lists the symbol being cross-referenced. A blank entry indicates
blank COMMON.

4 Symbol Defined - Lists the line number of the source statement in which the
symbol is defined. The line number specifying symbol definition is always
preceded by an asterisk (*).

5 Symbol Referenced - Multiple entries specifying line number(s) in the source
program where the symbol was referenced and/or redefined.

MPX-32
Utilities

Macro Assembler (ASSEMBLE)
Output and Examples 6.-5

6-6

•
MPX-32 UTI~ITIES RE~fASE 1.1 (ASSEMBLE Rl0.S.11)

-- • AL~TYPES 02/2Q/84 15:27:12 CROSS REFERENCE

.o-LOOOOO ~222 ~31 ~
Ol002C *00003 00003

"J00006 BBN *00020 *00021 00021
MOOOOl CC *00027 *00028

*POOOOO CONSl *00049 00046
C00004 D *00002 00029
Y00020 ~OP *00014 00035 00036 00037
DOOOOC MMM *00002 00002
Y00024 POP .00013 00038
C10000 R *00003 OOOoQ
KOOOOO RR *00023 *00024
COOOOO S *00002 OOOOS
J00006 TT *00025 *00026
POOO]4 VARI *00051 00047
AOOOOU WWW *00004 00044
AOOOOO ZZZ *0000400043
680000 ~~ *00015 00034
F80048 ABO *00018 000]3

Figure 6-2. Sample Symbol Cross-Reference

Macro Assembler (ASSEMBLE)
Output and Examples

870023

MPX-32
Utilities

o

(

6.4 Error Diagnostics

A comprehensive set of error diagnostics is defined for error conditions detected by the
Macro Assembler during source code processing. Refer to Section 5 for a list of error
codes.

Pass One errors are printed on the listed output page immediately preceding the source
program listing. Pass One error information includes the error code, the source program
line number of the error, and the source image. Figure 6-3 shows the Pass One error list
for the program ALL TYPES used in Figures 6-1 and 6-2.

MPX-$Z UTI~ITIES RE~EASE 1.1 (ASSEM~LE Rl0.S.1l)
A~~TYPES Oi/i9/84 15127112

M OOO~8 cc EQU cc • ~.

870026

Figure 6-3. Pass One Error List

The total number of Pass Two errors is listed in the error report line. The error report
line also lists the program name, if specified, or the default name MAIN.

The error report line is followed by a listing of undefined symbols for a particular
program step.

Figure 6-1, items 12 and 13, depict Pass Two error reporting.

6.5 Object Output

Macro Assembler object output is produced in word format. Object records are variable
length depending on the peripheral device to which object output is directed. All object
records, regardless of the peripheral device used for output, contain the following
information in this order:

(1) RECORD TYPE (1 byte) -- Defines the type of record being processed. The
hexadecimal value FF signifies a binary record. The last record of a program is
signified by the hexadecimal value OF.

(2) BYTE COUNT (1 byte) -- Specifies the number of data bytes in the object record,
exclusive of checksum and sequence number

(3) CHECKSUM (2 bytes) -- Is a halfword additive checksum of data bytes within the
object record, exclusive of byte count and sequence number

(4) SEQUENCE NUMBER (2 bytes) -- Is the binary sequence number of the object
record. The sequence number count is initialized to one for each new program. If
more than 65,536 records occur in a particular program, the sequence number
count resets to one and continues.

MPX-32
Utilities

Macro Assembler (ASSEMBLE)
Output and Examples 6-7

(5)

xxxx

nnnn

OBJECT PROGRAM -- Is of a series of data blocks. Each data block is preceded
by a control byte specifying a loader function code and byte count. The format of
the control byte is:

xxxxnnnn

specifies a loader function code as follows:

Code

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Definition

Absolute
Program Origin
Absolute Data and Repeat Load
Transfer Address to Start Execution
Relocatable Data
Program Name
Relocatable Data and Repeat Load
External Definition
Forward Reference Stringback
External Reference
Common Block Definition
Common Reference
Datapool Reference
Extended Codes
Common Origin
Last Byte of Object Output

specifies the byte count for the data block being processed by the
loader. This entry is the least significant four bits of the control
byte. For a data block of 16 bytes, the bit representation for nnnn is
0000.

Data blocks comprising the object program are grouped and output in the following order:

(1) Program Name (with maximum boundary required for loading)

(2) Common Block Names and Sizes Cif any)

(3) Defined Entry Points (DEFs, if any)

(4) Binary Object Code

(5) External Stringbacks (EXTs, if any)

(6) Transfer Address Cif any)

(7) Termination Code

A relocation offset of zero is assumed by the loader for binary object code, unless
otherwise specified. Object code must end with a final origin to the next available
location.

Macro Assembler (ASSEMBLE)
Output and Examples

MPX-32
Utilities

c

('

c:'

6.6 Macro Assembler Programming Examples

The following section provides sample programming sequences illustrating the use of
various Macro Assembler directi ves.

Example 1 shows the use of conditional assembly directives. Examples 2 through 11 show
the use of macros. The same macro defini tion is used for Examples 2 through 5. The
code generated is di fferent for each example based on the di fferent usages of the macro
call. Examples 6 through 11 show the use of recursive macros. The same macro
definition is used for Examples 6 through 11. The code generated is different for each
example based on the different usages of the macro call.

Example 12 shows a program that assembles source code from a user file, catalogs the
object output into a load module, and directs the job output to a user file.

Example 1

The following coding sequence:

STEP
LEVEL

LEVEL

STEP
ENDLOOP

LIST
SET
SET
REPT
DATAH
SET
1FT
SET
ANOP
ENDR
END

NONG
45
o
6
A(LEVEL)
LEVEL+STEP
LEVEL.GE.IBO,ENDLOOP
55

generates the following sequence of instructions:

POOOOO
P00002
P00004
P00006
P00008
POOOOA

0000
0020

005A
0087

00B4
OOEB

Example 2

DATAH
DATAH
DATAH
DATAH
DATAH
DATAH

o
45
90
135
180
235

Macro Definition for Examples 2 through 5

MOVE DEFM LABEL,A
LW 3,FLAG
1FT %A,LABELI

%LABEL STW 3,RESETl
EXITM

LABELl ANOP
IFF %A,LABEL2

%LABEL STW 3,RESET2
LABEL2 ANOP

ENDM

MPX-32 Macro Assembler (ASSEMBLE)
Utilities Output andExampies 6-9

Usage

ONE

Result

X

Example 3

Usage

ONE

Result

X

Example 4

Usage

I

Result

X

Example 5

Usage

I

Result

X

6-10

LIST
SETT

MOVE

LW
STW

LIST
SETF

MOVE

LW
STW

SET

MOVE

LW
STW

SET

.
MOVE

LW
STW

NONG o
X,ONE

3,FLAG
3,RESET1

NONG

X,ONE

3,FLAG
3,RESET2

1

X,I

3,FLAG
3,RESET1

2

X,I

3,FLAG 0 3,RESET2

Macro Assembler (ASSEMBLE) MPX-32
Output and Examples Utilities

[

(

Example 6

Macro Definition for Examples 6 through 11

RECURS

%LABI

%LABZ

%LAB3

Usage

RECURS

Result

STW
STW
STW

Example 7

Usage

RECURS

Result

STW
STW

Example 8

Usage

RECURS

Result

STW

!v1PX-32
Utilities

DEFM ARGl,ARG2,ARG3
IFP %ARGl,%LABl
STW 1,%ARGl
RECURS , %ARG2, %ARG3
EXITM
IFP %ARGZ, %LABZ
STW 2,%ARGZ
RECURS ,,%ARG3
EXTIM
IFP %ARG3, %LAB3
STW 3,%ARG3
ANOP
ENDM

WORDl, WORDZ, WORD3

1,WORDl
Z,WORDZ
3,WORD3

WORDl, WORDZ

1,WORDl
2,WORDZ

WORDI

1,WORDl

Macro .Assembler (ASSEMBLE)
Output and Exampies 6-11

Exam~le 9

Usage

RECURS WORD1" WORD3

Result

STW 1,WORDl
STW 3,WORD3

Exam~le 10

Usage

RECURS "WORD3

Result

STW 3,WORD3

Exam~le 11.

Usage

RECURS

Result

No Code Generated

6-12
Macro Assembler (ASSEMBLE)

Output and Examples
MPX-32
Utilities

C

/~~.

~.

o

. \ c·.-""

APPENDIX A

INSTRUCTION FORMATS

MEMORY ADDRESS

I ,~~IE , I ,R I I ~ I, I FI ' , I ' , , I ,W~ , I , , , I ,
o 1 2

OPCODE
R
X
I
F
WA
C

3 4 5 6 7 8 9 10 11 1213 14 15 16 17 18 19 20 21 22 23 24 2526 2728 29 30 31

OPERATION CODE
GENERAL PURPOSE REGISTER (0-7)
INDEX REGISTER (1-3)
INDIRECT ADDRESSING SPECIFICATION
FORMAT BIT
WORD ADDRESS
ADDRESS CODE (INCLUDING BYTE ADDRESS)

INDIRECTIEFFECTIVE ADDRESS

~ : I'IFI " '" I ,W: , I , , , I , I ~ I
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 2526 2728 29 30 31

MEMORY REFERENCE INSTRUCTION

WA
, I I , , , I , , I I I , , I ,

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 2526 2728 29 30 31

OPCODE R I ~ 0 0 0 I ~ I OPERANDVAWE
, , , I, ,I." I . ' I • ' , , I , , , I , , , I , , ,

o 1 2 3 4 5 6 7 8 9 10 11 121314 15 16 17 18 1920212223 242526 272829 3031

BITS 13-15
BITS 16-31

. MPX-32
Utilities

AUGMENTING OPERATION CODE
16-BIT OPERAND VALUE

Macro Assembler (ASSEMBLE)
Instruction F crr:1ats

87D4J04

,0.-1

A-2

I/O INSTRUCTION

I , ~~i ' I, I"':c~,,:. ~E I, , , I ,F,U":l~E, I , , ,
o 1 2 3 4 5 6 7 8 9 10 11 121314 15 16 1718 1920212223 242526 272829 3031

BITS 6-12
BITS 16-31

I/O DEVICE NUMBER
16-BIT 110 FUNCTION CODE

INTERRUPT CONTROL INSTRUCTION

I ~COOE I PRK)RnYLEVEL ~E = ",I"I",I,,~
o 1 2 3 4 5 6 7 8 9 10 11 121314 15 16 1718 19202122 23 242526 272829 3031

BITS 6-12 INTERRUPT PRIORITY LEVEL

INTER-REGISTER INSTRUC110N
(LEFT HALFWORD) (RIGHT HALFWORD)

I, ':"~i, I ~Ol I, ~ ~E ,,:"~E , ~Ol "s I J~J I
o 1 2 3 4 5 6 7 8 9 10 11 1213 14 15 16 1718 1920 21 22 23 242526 2728 29 3031

BITS 6-8/22-24 DES11NATION REGISTER (0-7)
FOR RESULT OF OPERATION

BITS 9-11125-27 SOURCE REGISTER OF OPERAND

SHIFT INSTRUC110N
(LEFT HALFWORD) (RIGHT HALFWORD)

I ~COOE 1 R 1 DI 0 1 SHIFT COUNT 1 ~COOE R 101 c 1 SHFTCOltIT I
- ' , I I , .. ~ , I , , , .. ' . . I I "...... I , , ! _

o 1 2 3 4 5 6 7 8 9 10 11 121314 15 16 17 18 1920212223 242526 272829 3031

BITS 6-8122-24
BITS 9/25
BITS 10/26
BITS 11-15127-31

GENERAL PURPOSE REGISTER (0-7)
SHIFT DIRECTION (0=RIGHT/1 =LEFT)
UNUSED (-0)
SHIFT COUNT

Macro Assembler (ASSEMBLE)
Instruction Formats

87D4J05

MPX-32
Utilities

o

o

(

FIXED POINT FORMATS

BYTE

S o 0 0 0 o 0 o 0 o 0 0 0 o 0 o 0 o 0 o 0 0 o 0 INTEGER VALUE

I I I I I I I I I I

o 1 2 3 4 5 6 7 8 9 10 11 1213 14 15 16 17 18 1920212223 242526 272829 3031

(BIT O=SIGN)

HALFWORD (SIGN - EXTENDED)

I $, $, $, $ I $, $, $,$ 1$,$, $, $ I $, $, $, $ I $ I, , I ,'~TE~i V;'"~E, I , , ,
o 1 2 3 4 5 6 7 8 9 10 11 1213 14 15 16 17 18 1920212223 242526 272829 3031

FULLWORD

I $ I, , I , , , I , , , I , '~E~E~ V~~E, I , , , I , , , I , , ,
o 1 2 3 4 5 6 7 8 9 10 11 1213 14 15 16 17 18 1920212223 242526 272829 3031

DOUBLEWORD

S

FLOATING POINT FORMATS

WORD

INTEGER VALUE

lsi EXPONENT I FRACTION (24 BITS)

, , I , , , I , I I I I • I , , , , I , .• , , , , I , , ,
o 1 2 3 4 5 6 7 8 9 10 11 121314 15 16 17 18 19 20 21 22 23 242526 272829 3031

DOUBLEWORD

S EXPONENT FRACTION (56BITS)

o 2 3 4 5 6

87D4J03

MPX-32
Utilities

Macro Assembler (ASSEMBLE)
Instruction Formats A-3/A-4

o

o

C· .. -.. ~\
-'

APPENDIXB

EXTENDED MNEMONIC CODES

Assembler language extended mnemonic codes are used to specify conditional branch
instructions. Included within the extended mnemonic codes are both the branch
instruction and the branch condition. The Macro Assembler translates the extended
mnemonic code into the appropriate machine instruction -- Branch Condition True (BCT)
or Branch Condition False (BCF). The extended mnemonic codes, together with their
operand formats and equivalent machine instruction, are shown below. The symbols used
to indicate entries in the operand field are:

* Indirect Addressing
m Memory Address
x Index Register

USED AFTER COMPARE INSTRUCTIONS

Extended
Mnemonic
Code

Operand
Format

Machine
Instruction Description

BGT *m,x BCT 2,*m,x Branch If Greater Than
BL T *m,x BCT 3,*m,x Branch If Less Than
BEQ *m,x BCT 4,*m,x Branch If Equal To
BGE *m,x BCT 5,*m,x Branch If Greater Than or Equal To
BLE *m,x BCT 6,*m,x Branch If Less Than or Equal To
BNE *m,x BCF 4,*m,x Branch If Not Equal To

USED AFTER ARITHMETIC, LOGICAL, AND LOAD INSTRUCTIONS

Extended
Mnemonic
Code

BOV
BP
BN
BZ
BNOV
BNP
BNN
BNZ

Operand
Format

Machine
Instruction Description

*m,x BCT 1, *m,x
*m,x BCT 2,*m,x
*m,x BCT 3, *m,x
*m,x BCT 4, *m,x
*m,x BCF 1, *m,x
*m,x BCF 2, *m,x
*m,x BCF 3,*m,x
*m,x BCF 4, *m,x

Branch If Overflow
Branch If Positive
Branch If Negati ve
Branch If Zero
Branch If No Overflow
Branch If Nonpositive
Branch If Non-negati ve
Branch If Nonzero

USED AFTER TEST INSTRUCTIONS

Extended
Mnemonic
Code

BS
8NS
BANY
8AZ

MPX-32
Utiiities

Operand
Format

Machine
Instruction Description

*m,x BCT 1, *m,x
*m,x BCF l,*m,x
*m,x BCT 7,*rn,x
*rn~x BCF 7,*rn,x

Branch If Set
Branch If Not Set
Branch If Any One
Branch If All Zeros

Macro Assembler (ASSEMBLE)
Extended Mnemonic Codes B-liB--2

i(--------,:'
I,

'-Y

G

APPENDIXC

COMPRESSED SOLRCE FORMAT

The Macro Assembler optionally accepts source program input or produces source output
in compressed format on cards, magnetic tape, or disc. The records are 120 bytes in
length.

The compressed source format for card input media is:

CARD COLUMN 2 3 4 5-80

2

1 - 3

4 5
3
r-

2 4

87D4106

The format fields are specified as follows:

1 - Data Type Code (8 bits) - Hexadecimal values BF or 9F specify compressed format;
otherwise noncompressed. Hexadecimal value 9F indicates last record of a
compressed source module.

2 - Byte Count (8 bits) - Specifies number of bytes remaining in record.

3 - Checksum (16 bits)

4 - Sequence Number (16 bits)

5 - Compressed Source Data (n bytes) - Contiguous bytes of source data to be
assembled. Record length varies depending on peripheral device from which data is
being input.

tv1PX-32
l~-'tilitie~

Macro Assembler (ASSEMBLE)
Compressed Source F or~3!: C-l

Compression is accomplished by squeezing blanks and inserting field and string counts. A
string is broken only when three or more blanks are encountered. For the following 80-
character source record:

ALPHA LW 3,BETA

the resulting compressed source image is the following byte string:

Blank Count
String Count
Data
Blank Count
String Count
Data
Blank Count
String Count
Data
Terminator

- 0
- 5
ALPHA
- 5
- 2
LW
- 4
- 6
3,BETA
- FF (Hexadecimal)

(Remainder Of Compressed Source Record)

The compression ratio for a source program is dependent on the number and size of

C'\
I " I

source comments. Compression is normally in the range from 3-2 to 4-1. ~.

C-2
Macro Assembler. (ASSEMBLE)

Compressed Source Format
MPX-32
Utilities

i~

o

How Cui

Bit Positions
4 0-

Iii
1-

2
3

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8

1001 9

1010 A

1011 B

1100 C

1101 D

1110 E

1111 F

MpX-32
Utilities

o

1--0
1--0

0
0

NUL
12-0-9-8-1

SOH
12-9-1

STX
12-9-2

ETX
12-9-3

EaT
9-7

ENG
0-9-8-5

ACK
0-9-8-6

BEL
0-9-8-7

BS
11-9-6

HT
12-9-5

LF
0-9-5

VT
12-9-8-3

FF
12-9-8-4

CR
12-9-8-5

SO
12-9-8-6

SI
12-9-8-7

APPENDIXD

Ascn CODE SET

2 3 4

0 0 0 0
0 0 0 1

0 1 1 0
1 0 1 0

DLE SP 0 @

12-11-9-B-1 No Punch 0 8-4

DCI
11-9-1

DC2
11-9-2

DC3
11-9-3

DC4
9-84

NAK
9-8-5

SYN
9-2

ETB
0-9-6

CAN
11-9-8

EM
11-9-8-1

SUB
9-8-7

ESC
0-9-7

FS
11-9-8-4

GS
11-9-8-5

RS
11-9-8-6

US
11-9-8-7

! 1 A
12-8-7 1 12-1

" 2 B
8-7 2 12-2

3 C
8-3 3 12-3

$ 4 D
11-8-3 4 12-4

% 5 E
0-8-4 5 12-5

& 6 F
12 6 12-6

/
7 G

8-5 7 12-7

(8 H
12-8-5 8 12-8

) 9 I
11-8-5 9 12-9

. : J
11-8-4 8-2 11-1

+ K
12-8-6 11-8-6 11-2

< L
0-8-3 12-8-4 11-3

- = M
11 8-6 11-4

> N
12-8-3 0-8-6 11-5

/ ? 0
0-1 0-8-7 11-6

Macro Assembler (i\SSEMBLE)
/\SCII Cede Set

5 6

0 0
1 1
0 1

1 0

P
,

11-7 8-1

G a
11-8 12-0-1

R b
11-9 12-0-2

S c
0-2 12-0-3

T d
0-3 12-0-4

U e
0-4 12-0-5

V f
0-5 12-0-6

W 9
0-6 12-0-7

X h
0-7 12-0-8

Y i
0-8 12-0-9

Z j
0-9 12-11-1

[k
12-8-2 12-11-2

\
0-8-2 12-11-3

J m
11-8-2 12-11-4

1\ n
11-8-7 12-11-5

- 0

0-8-5 12-11-6

7

0
1

1
1

P
12-11-7

q
12-11-8

r
12-11-9

s
11-0-3

t
11-0-3

u
11-0-4

v
11-0-5

w
11-0-6

x
11-0-7

y
11-0-8

z
11-0-9

{
12-0

I
I

12-11

~
11-0

-11-0-1

DEL
12-9-7

840813

n. ,
U-J.

Some positions in the ASCII code chart may have a different graphic representation on
various devices as:

ASCIIIBM 029

I
[¢
]

>

Control Characters:

D-2

NUL - Null
SOH - Start of Heading (CC)
STX - Start of Text (CC)
ETX - End of Text (CC)
EOT - End of Transmission (CC)
ENQ - Enquiry (CC)
ACK - Acknowledge (CC)
BEL - Bell (audible or attention signal)
BS - Backspace (FE)
HT - Horizontal Tabulation (punch card skip) (FE)
LF - Line Feed (FE)
VT - Vertical Tabulation (FE)
FF - Form Feed (FE)
CR - Carriage Return (FE)
SO - Shift Out
SI - Shift In
DLE - Data Link Escape (CC)
DCI - Device Control I
DC2 - Device Control 2
SUB - Substitute
DC4 - Device Control 4 (stop)
NAK - Negative Acknowledge (CC)
SYN - Synchronous Idle
ETN - End of Transmission Block (CC)
CAN - Cancel
EM - End of Medium
SS - Start of Special Sequence
ESC - Escape
FS - File Separator (IS)
GS - Group Separator (IS)
RS - Record Separator (IS)
US - Unit Separator (IS)
DEL - Delete
SP - Space (normally nonprinting)
(CC) - Communication Control
(IS) - Information Separator

Macro Assembler (ASSEMBLE)
ASCII Code Set

MPX-32
Utilities

Macro Library Editor (MACLIBR)

MPX-32 Utilities

Section

1- OVERVIEW

1.1
1.2

General Description
Directive Summary.

2 - USAGE

2.1
2.2

2.3
2.4
2.5

Accessing MACLIBR ••••••••
Logical File Code Assignments
2.2.1 Macro Library (MAC)
2.2.2 Macro Input File (SI)
2.2.3 Directives (DIR) ••••
2.2.4 Listed Output (LO)
2.2.5 LFC Summary
Options •.••••••
MACLIBR Listings
Exi ting MACLIBR ••

3 - DIRECTIVES

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11

Introducti on •••••••
I APPEND Directive
ICREATE Directive
IDELETE Directi ve
IDISPLA Y Directi ve •
lEND Directi ve
IEXIT Directive •••
IINSERT Directive
ILOG Directive
IMACLIST Directive.
IREPLACE Directive

4 - ERRORS AND ABORTS

4.1
4.2
4.3

Abort Codes ••.•
Error Messages ••
Information Messages

5 - EXAMPLES •••.•••••••

2-1 MACLIBR LFC Summary

CONTENTS

TABLES

MPX-32
Util!t!es

~v1acro Library Editor (M.8,CL!BR)
Contents

1-1
1-2

2-1
2-1
2-1
2-2
2-2
2-3
2-3
2-4
2-4
2-4

3-1
3-1
3-2
3-2
3-2
3-2
3-3
3-3
3-3
3-4
3-4

4-1
4-1
4-2

5-1

2-3

; i ~ i;. •.
~lJ/lV

(C-,,)

i\..J

c

(~

1.1 General Description

~~~RO LI!!'3}~~y'£DI!9R (MACLIBR) 

SECTION 1- OVERVIEW 

The Macro Library Editor (MACLIBR) utility creates and maintains system or user macro 
libraries. 

MACLIBR can be used to: 

Delete or replace macros by name 

Illsert macros 

Build a new macro library 

List or print a macro in a macro library 

Log the names of macros in a macro library 

Macros are sequences of Assembly language instructions with unique names that can be 
stored in a library maintained by MACLIBR. Up to 65,535 macros can be contained in a 
macro library. When a macro name is used in source code, the Macro Assembler 
retrieves the macro from the macro library and expands the macro. Up to 255 variable 
parameters to pass to the macro can be defined in a macro. The task using a macro 
supplies the parameters. The parameters are used for macro expansion. 

M.MPXMAC is the system macro library. Supplied with the operating system, 
M.MPXMAC contains all of the macros required to expand references to system services 
into Assembler level code, plus the definitions of all MPX-32 data structures. 

Macros begin with a DEFM statement, which can be preceded by Assembler comment 
lines describing the macro. The /MACLIST directive lists the DEFM statements 
contained in a library. 

Parameters to be passed to the macro can be defined within the macro. The parameters 
are dummy symbols preceded by percent signs. Other dummy symbols are labels used for 
conditional processing. The /MACLIST directive lists all dummy symbols used in a 
macro. 

NOTE: Only parameters actually referenced in the macro body are retained in the 
DEFM. 

MACLIBR processes files sequentially. A macro specified with any directive must be 
located in the library file after the macro specified with the previous directive. For 
example, a macro cannot be added in the middle of a library before replacing a macro at 
the beginning of the same library. The only exception to this rule is the /DISPLAY 
directive, which may be placed anywhere within a MACLIBR directive stream. Prepare 
the directive file and the file assigned to logical file code S1 so both follow the sequence 
of the macros in the library being updated. 

MACL TBR recogni zes 1 to 8 character macro names and 1 to 16 character file and library 
names. Unless specified; files assirJned to logical file codes will be rorced to the 
appropriate fOfmat-blocked Of unblocked. 

MPX-32 :vlacru Librar~y Editor (iv1ACLIBR) 
1"""'\ _ ~ 

UVel"Vle'.lJ 1.-1. 



MACLIBR does not check for duplicate names. If two macros have the same name and 
one is to be deleted, the first one encountered is deleted. A log of the library shows the ,(-, 
relative position of each macro in the library. 0 

1.2 Directive Summary 

The following list summarizes the MACLIBR directives. Underlining indicates accepted 
abbreviations. Each directi ve is described in more detail in Section 3. 

Directive 

/APPEND 

/CREATE 

/DElETE 

/DISPlAY 

/END 

/EXIT 

/INSERT 

flOG 

/MACLIST 

/REPlACE 

1-2 

Function 

Adds one or more macros to the end of a library file 

Generates a macro library 

Deletes a macro from a library 

Lists a macro 

Defines the end of an INSERT, REPLACE, APPEND, or 
CREA TE sequence. A fter APPEND or CREA TE, END has the 
same effect as EXIT. 

Performs update and returns control to the calling task. This 
is the last update directive. 

Inserts one or more macros before a specified macro 

Lists names and numbers of all macros after all updates are 
complete 

Lists all, part, or none of the source for each macro in a 
library 

Replaces an existing macro with a new macro of the same 
name 

Macro Library Editor (MACLIBR) 
Overview 

MPX-32 
Utilities 

\ 

" 

({-". " "'-I 



( 

SECTION 2 - USAGE 

2.1 Accessing MACLmR 

MACLIBR can be accessed from the batch or interactive modes in one of three ways: 

$MACLIBR 
$RUN MACLIBR 
$EXECUTE MACLIBR 

$RUN MACLIBR is valid only from the system directory. 

When accessing MACLIBR interactively, the MAC> prompt is displayed: 

T5M> $MACLmR 
MAC> 

2.2 Logical File Code Assignments 

There are four logical file codes (LFCs) associated with MACLIBR: Macro Library 
(MAC), Macro Input File (50, Directives (DIR), and Listed Output (LO). 

2.2.1 Macro Library (MAC) 

A macro library can reside in either a permanent disc file or on a magnetic tape file. If 
the macro library file is a disc file, the Volume Manager (VOLMGR) must be used to 
create the macro library file before the macro library is generated. The macro library is 
assigned to logical file code MAC. Logical file code (LFC) MAC is forced unblocked by 
MACLIBR. (This LFC must not be assigned by the user). 

A temporary file which is the same size as the macro library being used is assigned to 
MAC. This file is dynamically allocated by MACLIBR and is used to build and edit 
macros from the source into an existing or new library. 

MACLIBR checks the access rights associated with a macro library file. Depending on 
how the macro library was created, there may be access limitations. An error message is 
generated if the user does not have the appropriate access rights to the library. A user 
with read only access can use only the /DI5PLA Y, /EXIT, /LOG, and /MACLIST 
directives. If an access error occurs, it may be necessary to create the file with 
different access rights or to change the owner name and/or project name before 
attempting to access it. 

MPX-32 
Utilities 

Macro Library Editor (MACLIBR) 
Usage 2-1 



MAC Default and Optional Assignments 

The default assignment for MAC is to the system macro library (M.MPXMAC): 

$ASSIGN MAC TO M.MPXMAC BLOC=N 

There are two optional assignments for MAC: 

$ASSIGN MAC TO 5 pathname t 
( OEV =devmnc f 

pathname 
devmnc 

is the pathname of a macro library file 
is the device mnemonic of a device containing a macro library file 

2.2.2 Macro Input File (50 

The macro input file is a file of macros in uncompressed format. Each macro may have a 
maximum of 255 parameters. The maximum number of macros is 65,535. The macro 
input file is assigned to logical file code SI. 

51 Default and Optional Assignments 

The default assignment for SI is to the System Control file (SYC): 

$ASSIGN SI TO SYC 

There are two optional assignments for SI: 

$ASSIGN SI TO 5pathname t 
(OEV=devmnc~ 

pathname 
devmnc 

is the pathname of a file containing macro input 
is the device mnemonic of a device containing macro input 

2.2.3 Directives (DIR) 

The directives file is a file of MACLIBR directives to be performed. The directives file 
is assigned to logical file code OIR. 

DIR Default and Optional Assignments 

The default assignment for OIR is to the System Control file (SYC): 

$ASSIGN DIR TO SYC 

There are two optional assignments for OIR: 

$ASSIGN DIR TO 5pathname t 
( OEV=devmnc5 

pathname 
devmnc 

2-2 

is the pathname of a file containing MACLIBR directives 
is the device mnemonic of a device containing MACLIBR directi ves 

Macro Library Editor (MACLIBR) 
Usage 

MPX-32 
Utilities 

"- .' 'I 0.·.·'''.······· 



C~') 

./ 

2.2.4 Listed Output (LO) 

The listed output file contains a MACLIBR audit trail. The listed output file is assigned 
to logical file code LO. 

LO Default and Optional Assignments 

The default assignment for LO is to logical file code UT: 

$A55IGN LO TOLFC=UT 

In the interactive mode, output is generated on the user terminal. In the batch mode, 
output is generated on the 5LO device. 

There are two optional assignments for LO: 

$A55IGN LO TO {pathname l 
DEV=devmnc§ 

pathname 
devmnc 

is the pathname of a file to contain listed output 
is the device mnemonic of a device to contain listed output 

2.2.5 LFC Summary 

The following is a table of LFCs used by MACLIBR and their default and optional 
assignments. 

MPX-32 
Utilities 

LFC 

MAC 

51 

DIR 

LO 

UTI 

Table 2-1 
MACLIBR LFC Summary 

Default 
Assignment 

M.MPXMAC 

5YC 

5YC 

LFC=UT 

TEMP 

Optional 
Assignment 

pathname 
DEV=devmnc 

pathname 
DEV=devmnc 

pathname 
DEV=devmnc 

pathname 
DEV=devmnc 

none 

Macro Library Editor (MACLIBR) 
Usage 2-3 



2.3 Options 

Two options can be specified for MACLIBR. Options are specified by number on an 
$OPTION job control language statement. 

Option 

7 

8 

Description 

DIR Unblocked 
The file assigned to logical file code DIR is unblocked. If 
this option is specified, the $A55IGN statement for DIR 
must also be unblocked (i.e., BLOC=N). 

51 Unblocked 
The file assigned to logical file code 51 is unblocked. If 
this option is specified, the $A55IGN statement for 51 must 
also be unblocked (i.e., BLOC=N). 

2.4 MAa...mR Listings 

MACLIBR listed output is an audit trail including directives, a list of all macros, the 
contents of each macro, and the following MACLIBR operation counters: 

Counter 

BR 

BW 

MD 

MR 

MI 

BU 

NM 

Description 

Number of In-word blocks read from the file assigned to logical file code 
MAC 

Number of In-word blocks written to the scratch file 

Number of macros deleted 

Number of macros replaced 

Number of macros inserted and appended 

Number of In-word blocks used on the file assigned to logical file code 
MAC after updating 

Number of next macro 

The counter values appear at the end of the listed output. 

2.5 Exiting MAa...mR 

To exit MACLIBR from the batch and interactive modes, specify the IEXIT directive. In 
addition, MACLIBR exits when the lEND directive follows either the IAPPEND or 
/CREATE directive. 

2-4 
Macro Library Editor (MACLIBR) 

Usage 
MPX-32 
Utilities 

c 

;'" . '\ 

\ ... , .... )1 

o 



~ ... 

( 

SECTION 3 - DIRECTIVES 

3.1 Introduction 

MACLIBR directives can be abbreviated to the first four characters, including the 
preceding slash. If a directive or parameter can be abbreviated, the acceptable 
abbreviation is underlined in the syntax. 

Both a comma and blanks between parameters are valid delimiters. Commas need be 
used only where shown. 

Only upper case is permitted for directives, the MACRO name, DEFM, or ENDM. 

Directives are processed sequentially until an /EXIT directive or an end-of-file is 
encountered. At least one blank must separate the end of a directive verb and a required 
parameter. A required parameter must not be placed beyond column 21 or exceed eight 
characters. Directives referencing a macro by name must be in the same order as the 
macros in the macro library file. The only exceptions are the /D1SPLA Y and /LOG 
directives, which may occur anywhere in the MACLIBR directive stream. 

MACLIBR writes the updated macro library to a dynamically allocated temporary file 
(UTl). When the updating sequence is complete, the /EXIT directive causes the scratch 
file to be copied to the file assigned to MAC. An /END directive or an end-of-file serves 
as an /EXIT directive for I APPEND and ICREATE directives, and causes the scratch file 
to be copied to the file assigned to MAC. If the message "NAME NOT FOUND" is 
displayed after a/DELETE, /DISPLA Y, /INSERT, or /REPLACE, the scratch file is not 
copied and no updating occurs. 

3.2 I APPEND Directive 

The /APPEND directive adds macros to the end of a macro library. All macros from the 
current file position to the end of the macro library remain the same. Macros are read 
from the file assigned to logical file code SI until an lEND directive or an end-of-file is 
encountered. MACLIBR then terminates. 

Syntax: 

IAPPEND 

MPX-32 
Utilities 

Macro Library Editor (MACUBR) 
Directives 3-1 



CREATE/DELETE/DISPLAY /END 

3.3 /CREA TE Directive 

The ICREATE directive generates a macro library. Macros are read from the file {~~: 
assigned to logical file code SI until an lEND directive or an end-of-file is encountered. ~ 
MACLIBR then terminates. 

Syntax: 

ICREATE 

3.4 /DELETE Directive 

The IDELETE directive deletes the specified macro from the macro library. All macros 
from the current file position to the named macro remain the same. The next directive 
is processed after the macro is deleted. 

Syntax: 

IDELETE macro 

macro is the one to eight ASCII character name of the macro to be deleted 

3.5 /DISPLA Y Directive 

The IDISPLAY directive lists the statements of the specified macro or of all macros if a 
name is not specified. This directive may be placed anywhere in the directive stream. / . '\ 
After this directive is processed, the macro library is repositioned to the point where the 
display began. The next directive is then processed. 

Syntax: 

IDISPLA Y [macro] 

macro is the one to eight ASCII character name of the macro to be displayed. If 
not specified, all macros in the library are displayed. 

3.6 /END Directive 

The lEND directive defines the end of an IINSERT, IREPLACE, IAPPEND, or ICREATE 
sequence. After an IINSERT or IREPLACE sequence, the next MACLIBR directive is 
processed. When lEND occurs after an I APPEND or ICREA TE sequence, processing is 
the same as an IEXIT directive. 

Syntax: 

lEND 

3-2 
Macro Library Editor (MACLIBR) 

Directives 
MPX-32 
Utilities 

C' 

..... "'.' 
I ,i 



c 

EXIT !INSERT !LOG 

3.7 !EXIT Directive 

The fEXIT directive is the last directive of a MACLIBR session. If updates were 
performed, the scratch file is copied to the file assigned to MAC. If a fLOG END 
directive was included, the updated library is logged. If no updates were performed, 
MACLIBR terminates. If MACLIBR was run interactively, control returns to TSM. 

Syntax: 

fEXIT 

3.8 !INSERT Directive 

The flNSERT directive inserts one or more macros ahead of the specified macro. All 
macros from the current file position to the specified macro remain unchanged. Macros 
are read from the file assigned to logical file code SI until an fEND directive or an end
of-file is encountered. The next directive is then processed. 

Syntax: 

flNSERT macro 

macro is the one to eight ASCII character name of the macro before which the new 
macro will be inserted 

3.9 !LOG Directive 

The fLOG directive writes the name and number of each macro to the file or device 
assigned to logical file code La. This directive may be placed anywhere in the MACLIBR 
directive stream. If the END parameter is specified, logging is performed after all 
updates are complete. If the END parameter is not specified, the macro library is logged 
without updates. When logging is complete, the macro library is repositioned to the point 
where logging began. The next directive is then processed. 

Syntax: 

fLOG [END] 

END writes the log after all updates are complete. If not specified, the updates 
are not written. 

MPX-32 
Utilities 

Macro Library Editor (MACLIBR) 
Directives 3-3 



MACLIST /REPLACE 

3.10 /MACLIST Directive 

The /MACLIST directive allows the listing of all, part, or none of each source macro. /1-' 
This directive does not affect listed output already formatted by the /DISPLAY and G 
/LOG directives. When dummy symbols are listed, their corresponding hexadecimal 
assignments are included. 

Syntax: 

/MACLIST [option] 

option is one of the following parameters: 

Parameter 

ON 
OFF 
ID= 
BODY 
SYMS 

Definition 

Complete listing 
Suppress listing 
List each macro DEFM statement 
List each macro but exclude output of dummy symbols 
List each macro DEFM statement including output of 
dummy symbols 

If no parameters are specified, the default is ON. 

3.11 /REPLACE Directive 

The /REPLACE directive replaces the specified macro with a new macro. All macros 
from the current file position to that of the specified macro remain the same. New 
macros are read from the file assigned to logical file code SI until an /END directive or / 
an end-of-file is encountered. The next directive is then processed. 

Syntax: 

/REPLACE macro 

macro is the one to eight ASCII character name of the macro to be replaced 

3-4 
Macro Library Editor (MACLIBR) 

Directives 
MPX-32 
Utilities 

(j 



c 

SECTION 4 - ERRORS AND ABORTS 

4.1 Abort Codes 

The following is a MACLIBR abort code and its corresponding message: 

ME99 ERROR(S) (DESCRIBED ON LFC LO) DETECTED DURING EXECUTION 

4.2 Error Messages 

When one of the following error messages is displayed, MACLIBR processing is inhibited 
until the error condition is corrected. 

ARGUMENT 'NI' MATCHES ARGUMENT 'N2' 

Macro parameters in the N1 and N2 positions of the parameter list are equal. 

DIRECTIVE FILE READ ERROR 

Error condition detected while reading the directive file. 

DUMMY PARAMETERS OVERFLOW 

A macro has exceeded the maximum of 255 parameters. 

DYNAMIC ALLOCATION OF *Ul SCRATCH FILE FAILED 

A scratch file the same size as the MAC file could not be allocated. There may be 
insufficient disc space. 

EOF /EOM ON DIRECTIVE FILE 

An end-of-file on the directive file was encountered before normal termination by 
an /EXIT or /END directive. 

ILLEGAL DIRECTIVE 

The directive is not a legal directive. 

MAC FILE SIZE INCREASE REQUIRED 

The updated macro library is larger than the macro library file. 

NAME NOT FOUND 

A macro specified on a/REPLACE, /INSERT, /DELETE, or /DISPLAY directive 
was not found in the library file assigned to MAC. The macro may not exist or the 
file may be positioned beyond that macro. /INSERT, /REPLACE, and /DELETE 
directives must be entered in the sequence in which the specified macros are found 
in the macro library file. 

MPX-32 
Utilities 

Macro Library Editor (MACLIBR) 
Errors and Aborts . 4-1 



WARNING: ACCESS RIGHTS ARE LIMITED. OWNER AND/OR PROJECT MUST BE 
CHANGED OR THE FILE ASSIGNED TO "MAC" MUST BE RECREATED TO AllOW 
FOR DESIRED ACCESS PRIVILEGES. 

The owner and/or project attempting to access the file assigned to MAC does not 
have the required access rights to the file. 

4.3 Information Messages 

The following messages display information about a previous MACLIBR operation. They 
are not error or abort conditions. 

MAC UPDATE COMPLETE 

The editing of the macro library assigned to logical file code MAC is complete. 
Updates have been written from the scratch file to the library. 

CURRENT MAC POSITION: location 

This message is issued, followed by the current position of the macro library file, 
when a ./lOG directive is encountered following a/DELETE, /INSERT, or 
/REPlACE directive. 

REPOSITIONED TO: location 

4-2 

When a/DELETE, /REPlACE, or /INSERT directive is followed by a /DISPlAY or 
flOG directive, processing of the /DISPlAY or flOG completes and this message 
lists the current location of the macro library file. 

Macro Library Editor (MACLIBR) 
Errors and Aborts 

MPX-32 
Utilities 

(~' .. "" 'V' 



SECTION 5 - EXAMPLES 

The following example generates a new macro library with source input from magnetic 
tape: 

Assign source file to tape 
$JOB CREATE OWNER 
$ASSIGN SI TO DEV=MT 
$ASSIGN MAC TO MYMACS 
$EXECUTE MACLIBR 
ICREATE 

Assign macro library to MYMACS 

(Macro Source) 
lEND 
$EOJ 
$$ 

The following example logs each macro by number and name: 

$JOB LOG OWNER 
$EXECUTE MACLIBR 
ILOG 
lEND 
IEXIT 
$EOJ 
$$ 

The following example displays the macro named M.EQUS: 

$JOB DISPLAY OWNER 
$EXECUTE MACLIBR 
lOIS M.EQUS 
lEND 
IEXIT 
$EOJ 
$$ 

The following example appends the macro named M.TEST to the macro library and lists it 
with no output of dummy symbols: 

MPX-32 
Utilities 

$JOB APPEND OWNER 
$EXECUTE MACLIBR 
IMACBODY List with no dummy symbol output 
ILOG END 
IAPPEND 
(M. TEST Source) 
lEND 
$EOJ 
$$ 

Ma~ro Library Editor (MACLIBR) 
Examples 5-1 



The following example updates the macro library using the fREPlACE, fDElETE, and 
fINSERT directives: 

5-2 

$JOB UPDATE OWNER 
$ASSIGN MAC TO MYMACS 
$EXECUTE MACLIBR 
flOG 
flOG END 
fREP M.EQUS 
(Replacement Macro Source) 
fEND 

List current macros 
List updated macro library 
Replace M.EQUS 

Delete M.EXIT fDElETE M.EXIT 
fINS M.FADD Insert macro before M.F ADD 
(Macro Source to be Inserted) 
fEND 
fEXIT 
$EOJ 
$$ 

Copy from scratch to MAC 

Macro Library Editor (MACLIBR) 
Examples 

MPX-32 
Utilities 

,('<) 

'0 



( 

Media Conversion (MEDIA) 

MPX-32 Utilities 



c 

Ci 



( 

c\ 

Section 

1- OVERVIEW 

1.1 
1.2 

General Description 
Directi ve Summary •• 

2 - USAGE 

CONTENTS 

2.1 
2.2 

Accessi ng MEDLA •••••••••• 
Logical File Code Assignments 

2.3 

2.2.1 Source Input (*IN) •• 
2.2.2 
2.2.3 
2.2.4 

Listed Output (*OT) 
Input Files •••• 
Output Files .• 

2.2.5 LFC Summary 
Exiting MEDIA ••••••• 

3 - DIRECTIVES 

3.1 
3.2 
3.3 
3.4 
3.5 
3.6 
3.7 
3.8 
3.9 
3.10 
3.11 
3.12 
3.13 
3.14 
3.15 
3.16 
3.17 
3.18 
3.19 
3.20 
3.21 
3.22 

Introduction ••••••• 
BACKFILE Directive 
BACKREC Directive 
BUFFER Directive •• 
CONVERT Directive. 
COPY Directive. 
DUMP Directive •• 
END Directi ve •• 
EXIT Directi ve • 
GOTO Directive. 
INCR Directive 
MESSAGE Directive 
MOVE Directive ••• 
OPTION Directive 
READ Directive ••• 
REWIND Directive 
SETC Directive 
SKIPFILE Directive 
SKIPREC Directive 
VERIFY Directive 
WEOF Directi ve • 
WRITE Directi ve 

4 - ERRORS AND ABORTS 

4.1 
4.2 

Error Codes •• 
Abort Codes .•• 

5 - EXAMPLES. . . . . . . . . . . . . . . . . . . . . . . .. 

2-1 
3-1 

MEDIA LFC Summary •• 
MEDIA Options 

MPX-32 
Utilities 

TABLES 

Media Conversion (MEDIA) 
Contents 

1-1 
1-1 

2-1 
2-1 
2-1 
2-2 
2-2 
2-2 
2-3 
2-3 

3-1 
3-1 
3-2 
3-2 
3-2 
3-3 
3-3 
3-3 
3-4 
3-4 
3-5 
3-5 
3-5 
3-6 
3-8 
3-8 
3-8 
3-9 
3-9 
3-9 

3-10 
3-10 

4-1 
4-2 

5-1 

2-3 
3-7 

iii/iv 



[~ 

:~ 



( 

(" .. /' 

MEDIA CONVERSION (MEDIA) 

SECTION 1 - OVERVIEW 

1.1 General Description 

The Media Conversion (MEDIA) utility implements a procedural language used to 
manipulate the contents of data files contained on various media. MEDIA allows the user 
to: copy one file to another file, copy a file from one type of medium to another (e.g., 
copy a magnetic tape file to a disc file), or dump a file from one type of medium to 
another (e.g., from magnetic tape to a line printer). 

MEDIA can also manipulate data by rearranging one group of columns on an input file to 
another group of columns on an output file or merging data from mUltiple files into an 
output file. Another feature allows data to be converted from one type of code to 
another, such as from EBCDIC to ASCII. 

MEDIA recognizes 1 to 16 character file names. Unless specified, files assigned to 
logical file codes will be forced to the appropriate format - blocked or unblocked. 

1.2 Directive Summary 

The following list summarizes the MEDIA directives. Refer to Section 3 for detailed 
descriptions of each directive. 

Directive 

8ACKFILE 

BACKREC 

BUFFER 

CONVERT 

COpy 

DUMP 

END 

EXIT 

GOTO 

MPX-32 
Utilities 

Function 

Posi tions file or device back n files 

Posi tions file or device back n records 

Names a buffer (B03-B09) and specifies its size or resets a 
huffer's current read address to the buffer's start address 

Converts contents of a buffer from ASCII to BCD, BCD to 
ASCII, ASCII to EBCDIC, EBCDIC to ASCII, or 026 to 029 

Copies input records from a file or device to an output file or 
device 

Copies a file by converting it to ASCII-coded hexadecimal. 
Output is to the line printer or SLOe 

Indicates the end of a MEDIA directive stream 

Terminates MEDIA processing 

Specifies conditional transfer to another directive based on 
counter value, error, or EOF. Transfer can also be 
uncondi tional. 

Media Conversion (MEDIA) 
Overview 1-1 



INCR 

MESSAGE 

MOVE 

OPTION 

READ 

REWIND 

SETC 

SKIPFILE 

SKIPREC 

VERIFY 

WEOF 

WRITE 

Adds a specified value to counter (KOl-K20) 

Sends a message to operator's console 

Moves bytes from one buffer to another buffer 

Modifies default output characteristics for devices 

Copies data to a buffer. Provides count by bytes, halfwords, 01' 

words. 

Rewinds the specified logical file code 

Sets counter (KOl-K20) to a specified value 

Posi tions file or device forward n files 

Positions file 01' device forward n records 

Compares records on one file 01' device to records on another 
file 01' device 

Writes an end-of-file (EOF) on a file 

Copies data from a buffer. Provides count by bytes, halfwords, 
or words. 

Media Conversion (MEDIA) 
Overview 

MPX-32 
Utilities 

c 

o 



'"-.-- -' 

( 

C~~-_\ 
, 

/ 

SECTION 2 - USAGE 

2.1 Accessing Media 

MEDIA can be accessed in the batch or interactive modes in one of three ways: 

$MEDIA 
$RUN MEDIA 
$EXECUTE MEDIA 

$::~UN MEDIA is valid only from the system directory. 

When accessing MEDIA interactively, the MED> prompt is displayed: 

TSM>$MEDIA 
MEO> 

2.2 Logical File Code Assignments 

MEDIA provides two default logical file code (LFC) assignments: *IN for MEOLA source 
input and *OT for listed output. All other LFC assignments for input and output files are 
user-defined. All assignments are made by $ASSIGN job control language statements 
before MEDIA is executed. 

The following sections describe the LFC assignments used by MEDIA. The default and 
optional LFC assignments are summarized in Table 2-1. 

2.2.1 Source Input (*IN) 

MEDIA directives are assigned to logical file code *IN for input. 

*IN Default and Optional Assignments 

The default assignment for *!N is to the System Control file (SYC): 

$ASSIGN *IN TO SVC 

Utilities 
t ... 1E:diCi COilveb3iull (MEDiA) 

Usage 2-1 



There are two optional assignments for *IN: 

$ASSIGN *IN TO 
5Pathname t 
/DEV=devmnc) 

is the pathname of a file containing MEDIA directives pathname 
devmnc is the device mnemonic of a device containing MEDIA directives 

2.2.2 Listed Output (*OT) 

Listed output contains a list of the MEDIA directives processed during the MEDIA 
session. Listed output is assigned to logical file code *OT. 

*OT Default and Optional Assignments 

The default assignment for *OT is to logical file code UT: 

$ASSIGN *OT TO LFC=UT 

In the interactive mode, output is generated on the user terminal. In the batch mode, 
output is generated on the SLO device. 

There are two optional assignments for *OT: 

$ASSIGN *OT TO 
5 pathname t 
IDEV=devmnd 

pathname 
devmnc 

2.2.3 Input Files 

is the pathname of the file to contain listed output 
is the device mnemonic of the device to contain listed output 

There is no default assignment for input files; they are user-defined. Input files can be 
from cards, permanent disc files, or magnetic tape. Input files are specified in MEDIA 
directi ves by referring to the LFC used in the $ASSIGN statement. Assignments for 
input files must specify blocked or unblocked format, as appropriate to the data 
contained in the assigned disc or tape file. 

For unblocked input, the following transfer count limitations are in effect: 192 words for 
a disc, 4095 half words for magnetic tape, and 120 bytes for a card device. For blocked 
input, the transfer count is limited to 254 bytes. 

For input and output files, MEDIA recognizes a hexadecimal OF (EOF indicator) record 
only on card reader and card punch devices. 

2.2.4 Output Files 

There is no default assignment for output files; they are user-defined. If output is 
directed to a disc file, that file must have been previously created. Output files are 
specified in MEDIA directives by referring to the LFC used in the $ASSIGN statement. 
Assignments for output files should specify blocked or unblocked format. For unblocked 
output, transfer counts are limited to 133 bytes for line printers and the actual write 
count for files and magnetic tapes. 

2-2 
Media Conversion (MEDIA) 

Usage 
MPX-32 
Utilities 

o 



( 

c . \, 

, 

2.2.5 LFC Summary 

The following is a table of LFCs used by MEDIA and their default and optional 
assignments. 

LFC 

*IN 

*OT 

Input Files 

Output Files 

2.3 Exiting MEDIA 

Table 2-1 
MEDIA LFC Summary 

Default 
Assignment 

SYC 

LFC=UT 

none 

none 

To exit MEDIA directive input in interactive mode, enter: 

CNTRL Cor EN) 

If MEDIA execution input is from UT, enter: 

CNTRL C 

To exit MEDIA directive input in batch mode, use the END directive. 

Optional 
Assignment 

pathname 
DEV=devmnc 

pathname 
DEV=devmnc 

User-assigned 

User~assigned 

If MEDIA execution input is from SYC, follow the last data line with a $ directive. 

MPX-32 
Utilities 

Media Conversion (MEDIA) 
Usage 2-3/2-4 



C-" 
1,,0' '-.l I" ... ' 



( 

SECTION 3 - DIRECTIVES 

3.1 Introduction 

MEOlA source statements have three fields: label field, directive field, and parameter 
field. Each field must be separated by a comma. Embedded blanks within a MEDIA 
source statement are ignored. 

The label field is optional. It is used to direct a branch to that source statement by 
specifying the label in a GOT a or END directive. Labels can be from 1 to 255, beginning 
in column one. Labels do not have to be numbered sequentially; they bear no relationship 
to the physical sequence of MEDIA directi ves in a control file. 

Directives begin in the first input column following a label, or column one if a label is 
not used. A maximum of 256 MEDIA directives can be specified in one jobstream. 

Parameters begin in the first input column following a directive. Numeric parameters 
are specified in decimal and are limited to eight digits. Multiple parameters are 
separated by commas. 

Two types of predefined areas may be referenced within MEDIA directives: buffer areas 
and counters. 

The two predefined buffer areas are referenced by the names 801 and B02. Each buffer 
is 2048 words in length. Additional buffer areas may be defined as B03 to B09 by using 
the BUFFER directive. A total of 3K bytes can be allocated for buffers B03 to B09. 
Buffer names other than BOl to B09 are not valid. 

Twenty predefined counter cells exist within MEDIA. These counters are referenced by 
the names KOl to K20. Counters may be used as program flags, record counters, file 
counters, etc. They may contain any positive decimal value within the range of 0 to 
99,999,999. 

3.2 BACKFILE Directive 

The BACKFILE directive positions the specified LFC backwards by the number of files 
speci fied in the count field. .A. fter the BACKFILE operation, the pointer is positioned at 
the end-of-file. 

Syntax: 

8ACKFILE, Ifc, count 

Ifc 

__ ."_~ 
t.-UUI'\-

MPX-32 
Utilities 

is the LFC on which to perform the 8ACKFlLE operation 

is one to eight digits specifying the Ilullibe.· of fiies to skip 

Media Conversion (MEDIA) 
Directives 3-1 



BACKREC/BlFFER/CONVERT 

3.3 BACKREC Directive 

The BACKREC directive positions the specified LFC backwards by the number of records 
specified in the count field. 

Syntax: 

BACKREC, lfc, count 

lfc is the LFC on which to perform the BACKREC operation 

count is one to eight digits specifying the number of records to skip 

3.4 BUFFER Directive 

The BUFFER directi ve defines a buffer or resets the current buffer read address to the 
buffer starting address. The space allocated to the buffer is allocated from a 3000-byte 
buffer pool, which is the maximum allowable additional buffer. 

Syntax: 

BUFFER buffer jnbytest 
~ , 1R 5 

buffer 

nbytes 

R 

is the name of the buffer, B03 to B09. Buffers B01 and B02 are predefined. 
Buffer names B03 to B09 must be defined by a BUFFER directive before 
being used. 

is the size of the buffer in decimal bytes 

resets the buffer pointer. If specified, B01 and B02 can be specified in the 
buffer field. 

3.5 CONVERT Directive 

The CONVERT directive converts data in a buffer to the specified code. 

Syntax: 

CONVERT,buffer,code [,nbytes] 

buffer 

code 

nbytes 

3-2 

is the name of the buffer, B01 to B09. Buffer names B03 to B09 must be 
defined by a BUFFER directi ve before being used. 

is the four-character code specifying the type of conversion: 

2629 
ASBC 
BCAS 
ASEB 
EBAS 

026 to 029 
ASCII to BCD 
BCD to ASCII 
ASCII to EBCDIC 
EBCDIC to ASCII 

is the number of bytes to be converted. If this parameter is omitted, the 
count is obtained from the total number of bytes read and/or moved into the 
buffer. 

Media Conversion (MEDIA) 
Directives 

MPX-32 
Utilities 

o 



(" 

c, 

COPY/DUMP/END 

3.6 COPY Directive 

The COPY directive copies the specified input file, record by record, to the specified 
output file until an end-of-file (EOF) is encountered on either file. The EOF is not 
copied to the output file. Use the WEOF directive to write an EOF mark on the output 
file. The input and output files must have been previously defined in a $ASSIGN 
statement. 

Syntax: 

COPY, Ifcl, Ifc2 

lfcl is the LFC identifying the input file to be copied 

Ifc2 is the LFC identifying the output file to which the copy is made 

3.7 DUMP Directive 

The DUMP directive copies an input file to an output file and converts it to ASCII-coded 
hexadecimal with side-by-side ASCII translation. The dump is terminated when an EOF 
is encountered on either file or when the specified number of records is copied. 

Syntax: 

DUMP, lfcl, Ifc2 [,recordcount] 

lfcl 

Ifc2 

record count 

3.8 END Directive 

is the LFC identifying the file to be dumped 

is the LFC identifying the output file 

is the number of records in the file to be dumped. If not specified, 
the dump terminates at EOF on either file. 

The END directive indicates the end of MEDIA directives. If no syntax errors are 
detected in the first pass, the END directi ve ini tiates processing of the MEDIA 
directives. Control is transferred back to the first MEDIA directive if a iabel is not 
specified. If a label is specified, control transfers to the source statement corresponding 
to the label. 

Syntax: 

END [,label] 

18.bel is a numeric label from 1 to 255 associated wit.h a directive.Controi is 
traii3ferred to that directive. If label is not specii'ieo, control is i:.l'ansferred 
to the first directi ve in the stream. 

MPX-32 
Utilities 

Media Conversion (MEDIA) 
Directives 3-3 



EXIT/GOTO 

3.9 EXIT Directive 

The EXIT directive terminates the execution of MEOLA directives. 

EXIT directives may appear anywhere in the directive stream. At least one EXIT 
directive must appear prior to the END directive. 

Syntax: 

EXIT 

3.10 GOTO Directive 

The GOTO directive transfers control to another MEDIA directive. The branch is 
unconditional if no arguments are specified, or conditional if the specified condition is 
evaluated as true. If none of the conditional specifications is satisfied, processing 
continues with the next MEDIA directi vee The following conditions can be specified: 

• the counter is equal to a value 

• an end-of-file is encountered on the specified file 

• an I/O error occurs on the specified file 

Syntax: 

[
,counter, value] 

o:::no, 1 abe 1 ,EOF, I f c 

label 

counter 

value 

EOF 

ERR 

Ifc 

3-4 

,ERR, 1 f c 

is the numeric label in the range 1 to 255 associated with a directive. 
Control is transferred to that directive. 

is the name of the counter, KOI to K20 (See the INCR and SETC directives) 

is a counter value that specifies when control is to be transferred 

specifies conditional transfer at end-of-file. When this parameter is used, 
the GOTO directive must directly follow an I/O directive, such as READ or 
WRITE. 

specifies conditional transfer if an I/O error occurs 

if the LFC indicating the file where EOF or ERR conditions apply 

Media Conversion (MEDIA) 
Directives 

MPX-32 
Utilities 

[-1 
I"'~i 

o 

o 



( 

INCR/MESSAGE/MOVE 

3.11 INCR Directive 

The INCR directive adds a value to a counter. 

Syntax: 

INCR, counter, value 

counter is the name of the counter, KOI to K20 

value is the one to eight digit decimal number to be used as an increment 

3.12 MESSAGE Directive 

The MESSAGE directive displays a message on the operator's console. A maximum of 
256 bytes of message information can be displayed in one MEDIA jobstream. Up to 72 
characters per MESSAGE directive can be specified. 

Syntax: 

MESSAGE, 'message' 

'message' is a message of up to 62 alphanumeric characters to be displayed on the 
system console. The single quotes are required. 

3.13 MOVE Directive 

The MOVE directive moves the specified number of bytes from bufferl to buffer2. The 
starting byte positions for bufferl and buffer2 are specified as an absolute byte number 
or a counter. 

Syntax: 

1counter ~ MOVE, nbytes, bufferl, 
startbyte 

, bUffer2[,counter ] 
,startbyte 

nbytes 

bufferl 

counter 

startbyte 

buffer2 

MPX-32 
Utilities 

is the number of bytes to be moved 

is the name of the buffer containing the data to be moved, BOl to B09. 
Buffer names B03 to B09 must be defined by a BUFFER directi ve before 
being used. 

is the name of a counter, KOl to K20, indicating the starting byte position 

is an absolute indicator of the starting byte position 

is the name of the buffer where data is to be moved, BOl to B09. Buffer 
names B03 to B09 must be defined by a BUFFER directive before being 
used. If both counter and startbyte are not specified, the current read 
address for buffer2 is used. 

Media Conversion (MEDIA) 
Directives 3-5 



OPTION 

3.14 OPTION Directive 

The OPTION directive specifies nonstandard options for a file. See Table 3-1 for option f-~' 

defini tions and defaults. '--J 
Syntax: 

OPT 10'\1, lfc [,BUXKED] [,B2OF][,B8OF][,E][,H] 
,B20'\1 ,B80'\1 ,0 ,L 

lfc is the LFC to which the options are assigned 

BLOCKED is the blocked option. Though syntactically correct, the MPX-32 default for 
an assigned file is blocked. The $ASSIGN statement must be used to indicate 
unblocked. 

B20F 

B20N 

B80F 

B80N 

E 

0 

H 

L 

3-6 

inhibits option 2 

enables option 2 

inhibi ts option 8 

enables option 8 

specifies even parity option 

specifies odd parity option 

specifies high density option 

specifies low density option 

Media Conversion (MEDIA) 
Directives 

MPX-32 
Utilities 



" ... 
BLOCKED 

DEVICE OPTION 

CARD READER 
READER/PUNCH N/A 

PAPER TAPE 
READER N/A 

PAPER TAPE 
PUNCH N/A 

LINE PRINTER, 
TELETYPE N/A (~ 

9-TRACK Blocked 
MAG TAPE I/O 

7-TRACK Blocked 
MAG TAPE I/o 

MOVING-HEAD, Blocked 
FIXED-HEAD I/o 
DISC 

*Default Options 
N/ A - Not Applicable 

MPX.,.32 
Utilities 

Table 3-1 
WEDIA Options 

BIT Z 
OPTION 

*BZOF -Automatic 
Mode Select 
BZON-Interpret 
Bit B 

*BZOF-Read 
Formatted 
Skipping Leader 
B20N-Read 
Unformatted 

*B20F -Punch in 
Formatted Mode 
B20N-Punch 
Unformatted 

*B20F -First 
Character is 
Carriage 
Control 
B20N-No Carriage 
Control 

N/A 

*B20F -Read/ 
Write 
Packed (Binary) 
Mode 
B20N-Interpret 
Bit B 

(BCD) 

820F -Report EOF 
for Unblocked 
Reads 
B20N-No EOF 
Reporting for 
Unblocked Reads 

BIT B 
OPTION 

N/A 

BBOF -Forced 
ASCII 
BBON-F orced 
Binary 

N/A 

BBOF-Do Not 
Skip Leader 
BBON-Skip 
Leader 

N/A 

N/A 

N/A 

N/A 

BBOF -Inter-
Change 
Parity) 
BBON-Packed 
(Binary) 

N/A 

Media Conversion (MEDIA) 
Directives 

PARITY DENSITY 

N/A N/A 

N/A N/A 

N/A N/A 

N/A N/A 

N/A N/A 

E H 
(Even (BOO BPI) 
Parity) 

L 
0 (556 LPI) 
(Odd) 

N/A N/A 

3-7 



READ/REWIND/SETC 

3.15 READ Directive 
I{---') 

The READ directive reads one record from a file into buffer BOl, or into the optionally 0 
specified buffer, starting at the current buffer address. The current buffer address is 
advanced after the read and is reset only by a write from the specified buffer or by a 
buffer reset via the BUFFER directi vee 

Syntax: 

READ,lfc[,buffer] [,count] 

lfc 

buffer 

count 

is the LFC identifying the file to be read 

is the name of the buffer, BOl to B09. Buffer names B03 to B09 must be 
defined by a BUFFER directive before being used. If not specified, BOI is 
used by default. 

is the number of bytes (B), halfwords (H), or words (W) to be read (e.g., B22, 
HID, H2048, WIn). If not specified, one record is read. 

3.16 REWIND Directive 

The REWIND directive rewinds the specified logical file code. If the LFC is a magnetic 
tape, the tape is positioned at its beginning. If the LFC is a file, REWIND returns to the 
file's first record. If the file is being sent to the line printer, a top-of-form is performed. 

Syntax: 

REWIND, 1 fc 

lfc is the LFC referencing the file or device to rewind 

3.17 SETC Directive 

The SETC directive sets a counter to a specified value. 

Syntax: 

SETC,counter,value 

counter is the name of the counter, KOl to K20 

value is up to eight decimal digits specifying the value to which the counter is to 
be set 

3-8 
Media Conversion (MEDIA) 

Directives 
MPX-32 
Utilities 



( 

C .. ".' 
/ 

SKIPFILE/SKIPREC/VERIFY 

3.18 SKIPFILE Directive 

The SKIPFILE directive skips forward the number of files specified in the count field on 
the specified logical file code. 

Syntax: 

SKIPFILE,lfc,count 

LFC is the LFC on which to perform the SKIPFILE operation 

count is the decimal number of files to be skipped 

3.19 SKIPREC Directive 

The SKIPREC directive skips forward the number of records specified in the count field 
on the specified logical file code. 

Syntax: 

SKIPREC,lfc,count 

lfc is the LFC on which to perform the SKIPREC operation 

count is the decimal number of records to skip 

3.20 VERIFY Directive 

The VERIFY directive compares the two files and displays the record numbers that 
differ. The verification is terminated when an EOF is encountered on either file. If 
records of unequal length are verified, the file specified by lfcl must contain the shorter 
record size. 

Syntax: 

VERIFY,lfcl,lfc2 

lfcl is the LFC of the first file to be compared 

Ifc2 is the LFC of the second file to be compared 

MPX-32 
Utilities 

Media Conversion (MEDIA) 
Directives 3-9 



WEOF/WRITE 

3.21 WEOF Directive 

The WEOF directive writes an end-of-file (EOF) on the specified file. 

Syntax: 

W£.OF, I f c 

Ifc is the LFC of the file on which to write the EOF 

3.22 WRITE Directive 

The WRITE directive writes one record from a buffer to a file. The WRITE directive 
resets the current buffer address and byte count for the output buffer. 

Syntax: 

WRITE,lfc[,buffer] [,count] 

Ifc 

buffer 

count 

3-10 

is the LFC previously assigned for output files in an $ASSIGN statement 

is the name of the buffer, BOl to B09. If buffer name is not supplied, BOl is 
used by default. Buffer names B03 to B09 must be defined by a BUFFER 
directive before being used. 

is the number of bytes (B), halfwords (H), or words (W) to be written (e.g., 
B22, HID, H2048, WIn). If count is not specified, the total number of bytes, 
halfwords, or words read and/or moved into the buffer is used as the output 
count. 

Media Conversion (MEDIA) 
Directives 

MPX-32 
Utilities 

( ..... ~ 
i j 



( 

c' 

SECTION 4 - ERRORS AND ABORTS 

4.1 Error Codes 

MEDIA errors are flagged with a two-digit diagnostic code. An abort is generated at the 
end of a MEDIA program that contains errors so that conditional batch processing 
directi ves can be used. 

The status for a device is printed on the output file if an I/O error occurs. 

If a loop is being executed where record or file information is accumulated, the 
information will be printed even if an abort occurs. 

The following are MEDIA error codes and their explanations. 

Code 

01 

02 

03 

04 

os 

06 

07 

DB 

09 

10 

11 

12 

13 

14 

15 

16 

MPX-32 
Utilities 

Explanation 

Control specification invalid 

File code unassigned 

Invalid conversion code specified 

Invalid count specification 

No available FCB, excessive file assignments 

Statement number not betweel'1 1 and 255 

Invalid buffer name 

Buffer already defined 

Insufficient buffer space available 

Undefined buffer 

Invalid device assignment 

Invalid counter name specified 

Insufficient message storage space available 

Invalid byte number or number of bytes speci fications 

Invalid optional parameter 

Missing parameter 

Media Conversion (MEDIA) 
Errors and Aborts 4-1 



Code 

17 

18 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

4.2 Abort Codes 

Explanation 

Incorrect message format 

Invalid decimal or hexadecimal character 

No END statement 

Excessive number of control statements specified 

Fatal control statement error(s) 

Undefined statement number encountered 

Execution of END statement attempted 

Length of READ/MOVE exceeds buffer size 

WRITE statement which is not preceded by READ statement must 
speci fy count 

End-of-medium encountered on input file 

End-of-medium encountered on output file 

CONVERT statement specified zero byte count 

Duplicate statement number 

The following are MEDIA abort codes and their messages. 

Code 

MDO! 

MD02 

4-2 

Message 

ERROR(S) (DESCRIBED ON LFC *OT) DETECTED DURING 
EXECUTION 

AT EOF ON SLO FILE 

Media Conversion (MEDIA) 
Error and Aborts 

MPX-32 
Utilities 

C···"'··\· 
I, : 



SECTION 5 - EXAMPLES 

The following example copies the tape assigned to IN to the output tape assigned to OT, 
and writes an EOF on OT; both tapes are rewound and then verified: 

$JOS EXAMPLEl OWNER 
$ASSIGN IN TO DEV=MT 
$ASSIGN OT TO DEV=MT 
$EXECUTE MEDIA 
COPY,IN,OT 
WEOF,OT 
REWIND,IN 
REWIND,OT 
VERIFY,IN,OT 
EXIT 
END 
$EOJ 
$$ 

The following example dumps the first 50 records of the second file on tape T132 to an 
SLO file: 

MPX-32 
Utilities 

$JOS EXAMPLE3 OWNER 
$ASSIGN AS TO DEV=MT 10= T132 
$ASSIGN DP TO SLO 
$EXECUTE MEDIA 
REWIND, AS 
SKIPFILE, AS, 1 
DUMP, AS, DP, 50 
EXIT 
END 
$EOJ 
$$ 

Media Coversion (MEDIA) 
Examples 5-1 



The following example outputs the first 40 columns of a maximum of 100 records to the C 
line printer: :. . . 

5-2 

$JOB EXAMPLE4 OWNER 
$ASSIGN IN TO FlLEl 
$ASSIGN OT TO DEV=LP 
$EXECUTE MEDIA 
OPTION, OT "B20N 
SETC, Kl, a 
3,READ, IN"B40 
GOTO,5,EOF ,IN 
WRITE,OT 
INCR,Kl,l 
GOTO,5,Kl,100 
GOTO,3 
5,EXIT 
END 
100 DATA RECORDS 
$EOJ 
$$ 

Media Conversion (MEDIA) 
Examples 

MPX-32 
Utilities 

o 



o 

The following example reads two source program files. Columns 20 to 40 of FILE1 are 
moved to columns 10 to 30 of the output image. Columns 65 to 80 of FILE2 are moved to 
columns 31 to 46 of the output image. The output image is written to a tape in l20-byte 
records: 

MPX-32 
Utiiities 

$JOB EXAMPLE5 OWNER 
$ASSIGN INI TO FILEI 
$ASSIGN IN2 TO FILE2 
$ASSIGN OT TO DEV=MT ID=SAVE 
$EXECUTE MEDIA 
BUFFER,B04,120 
4,READ,IN1,BOl 
GOTO,5,EOF ,IN1 
READ, IN2, B02 
GOTO, 5,EOF ,IN2 
MOVE, 21,B01, 19, B04, 9 
MOVE, 16, B02, 64, B04 
WRITE, OT, B04, B120 
BUFFER, B01, R 
BUFFER, B02, R 
GOTO, 4 
5, WEOF, OT 
REWIND,OT 
EXIT 
END 
$EOJ 
$$ 

Media Coversion (MEDIA) 
Exampies 5-3 



The following example copies FILE1 to FILE2 in the interactive mode: 

5-4 

TSM> $AS IN TO FILEl 
TSM> $AS ~ TO FILE2 
TSM> $M::DIA 
MPX-32 UTILITIES RELEASE x.x (MEDIA Rx.x.x) 
(C) CXPYRIG-IT 1983 CD...LD II\C., CSD, ALL RIG-iTS RESERVED 

MED> apy, IN,OJT 
COPY,IN,a.JT 

MED> EXIT 
EXIT 

MED> EN) 

END 
MEDIA CXJVPILATICl\I CXJVPLETE: EXEOJTICl\I STARTED 
MEDIA EXEOJTICl\I COMPLETE 

00000001 FILES COPIED 
TSM> 

Media Conversion (MEDIA) 
Examples 

MPX-32 
Utilities 

c 

C~ 

C\ 
" 



Source Update (UPDATE) 

MPX-32 Utilities 



c 

" 
,I t 

''''--~/~ 

c 



(~ 

C~\ 

CONTENTS 

Section 

1- OVERVIEW 

1.1 
1.2 

General Description 
Directi ve Summary. 

2-USAGE 

2.1 Accessing UPDATE ........ 
2.2 Logical File Code Assignments 

2.2.1 Directive Input (SYC) ••• · ....... 
2.2.2 Input Files (511, 512, and 513) 
2.2.3 Output Files (SO) ••••••• 
2.2.4 Work File (UTY) ••••••••• 
2.2.5 Output Image Listing (LO) •• 
2.2.6 LFC Summary ••• 

2.3 Options .............. 
2.4 Compressed Source Format. 
2.5 Library Source Format . . . . . . 
2.6 Exiting UPDATE 

3 - DIRECTIVES 

3.1 Introduction ••• 
3.2 IADD Directive 
3.3 IAsl Directive. 
3.4 I As3 Directive. 
3.5 IBKSP Directi ve •• 
3.6 IBLK Directive 
3.7 ICOM Directi ve •• 
3.8 ICOPY Directive ..... 
3.9 IDELETE Directive 
3.10 lEND Directve ••• · ....... 
3.11 IEXIT Directive •• 
3.12 IINsERT Directive ...... . . . . . 
3.13 ILIST Directi ve ••• ..... 
3.14 IMOUNT Directi ve • 
3.15 INBL Directi ve ..... 
3.16 INOLIST Directive · ..... 
3.17 INOSEQN Directive 
3.18 IREPLACE Directive ...... 
3.19 IRE WIND Directive ...... 
3.20 ISCAN Directi ve ••• 
3.21 /SELECT Directive ••• 
3.22 /SEQUENCE Directive 
3.23 /SKIP Directive •• 
3.24 /USR Directive *' ••••• 

3.25 /WEOF Directive . . . . . . 

· ..... . ..... 

· ..... 

. . . . . . . . . 
..... 

...... 

· ..... ...... 

....... · .... 

· .... 

· . . . . . . ... 

· . . . . 
..... 

MPX-32 Source Update (UPDATE) 
Utiiities Contents 

· . . . . 

· . . . . · . . . . · .... 

· .... · . . . . 
· .... 
· .. 

· . . . . 

· . . . . 
• • • .. Ii 

ea. ot • 

1-1 
1-1 

2-1 
2-1 
2-2 
2-2 
2-2 
2-3 
2-3 
2-4 
2-4 
2-5 
2-6 
2-6 

3-1 
3-1 
3-2 
3-2 
3-2 
3-3 
3-3 
3-3 
3-4 
3-4 
3-4 
3-5 
3-5 
3-6 
3-6 
3-6 
3-7 
3-7 
3-7 
3-7 
3-8 
3-8 
3-8 
3-9 
3-9 

iii 



Section 

4 - ERRORS AND ABORTS 

4.1 
4.2 

Abort Codes ••• 
Error Messages •• 

. . . . . . , , . 4-1 
4-1 

5 ~ EXAI\II='LES. . • • . • • • • •.• • • . • • • • . • • • • •.• • • • • • • • • • • • • • • • • • • • • • • • • •• 5-1 

2-1 
2-2 
2-3 
2-4 

2-1 

iv 

FIGURES 

Compressed Record Card Format 
Library Format ••• ~ •••••• 
Header Record Format ••••• 
End-of-Library File Record ••••••••••••• 

TABLES 

UPDA T£ LFC Summary ••••••••••••• 

Source Update (UPDA TE) 
Contents 

. . . . . . . . . 
2-5 
2-7 
2-8 
2-8 

2-4 

MPX-32 
Utilities 

c 

) 

0 , 
-' ,:, 



C--"· 
,./ 

C~\,' 

SOURCE UPDATE (UPDATE) 

SECTION 1 - OVERVIEW 

1.1 General Description 

The Source Update (UPDATE) utility adds, replaces, or deletes lines of source code 
within a particular file. It can also be used to maintain sets of source files by adding or 
deleting complete files. 

UPDATE can be used to build and edit tapes containing multiple source files for software 
libraries into a single tape or disc file. Files can be positioned by specifying the number 
of files, or symbolically by referring to a header record. To symbolically position a file, 
the file must be in library format. 

Library format is a structure in which source code is preceded by a header record and 
terminated with a single end-of-file mark. Any group of files in library format can be 
positioned symbolically using UPDATE. UPDATE also allows the insertion of header 
records during processing. 

UPDATE recognizes 1 to 16 character file names. Unless specified, files assigned to 
logical file codes will be forced to the appropriate format - blocked or unblocked. 

The following section summarizes the UPDATE directives in alphabetical order. 
Underlining indicates valid abbreviations. Section 3 describes the directives in detail. 

1.2 Directive Summary 

Directive -----
/ADD 

IASl 

IAS3 

/BKSP 

IBLK 

ICOM 

ICOpy 

IDELETE 

MPX-32 
Utilities 

Function 

Adds source lines after the specified line of source 

Reassigns input or output logical file codes to another permanent 
disc file 

Reassigns input or output files to another configured peripheral 
device 

Backspaces a specified number of files 

Blank fills the sequence field (columns 73 to 80) of each record 

Places comments within a directive stream 

Copies all files up to specified header record 

Omits the specified input source lines from the output file 

Source Update (UPDATE) 
Overview 1-1 



Directive 

lEND 

ILIST 

IMOUNT 

INEiL 

INOLIST 

INOSEQN 

IREPLACE 

IRE WIND 

ISCAN 

ISELECT 

ISEQUENCE 

IUSR 

IWEOF 

1-2 

Function 

Indicates the end of additions, deletions, and replacements. The 
remaining source lines from the input file are copied as:-is through 
EOF. 

Indicates the end of the UPDATE control stream 

Copies one file from the current input medium and optionally 
updates the header text 

Controls the generation of listed output 

Allows the mounting and dismounting of tapes without exiting 
UPDATE 

Terminates a IBLK directive 

Resets the ILIST directive's options or terminates the ILIST request 

Stops sequencing source statements 

Replaces source lines in an output file with source lines which 
follow, up to the next directive 

Rewinds the specified input or output file 

Sets the number of characters to scan on the remaining directives 

Selects an alternate logical file code for input 

Numbers source statements of the current file or all files in 
sequential order 

Skips files up to a specified header record. If the header is a 
numeric string, this directive skips the number of files in the string. 

Permi ts the directory to be changed 

Writes an EOF on the output medium. This directive must not be 
used when formatting a library file. 

Source Update (UPDATE) 
Overview 

MPX-32 
Utilities 

c 

o 



( 

SECTION 2 - USAGE 

Source updating is a two-pass process. In the first pass, UPDATE reads control 
directi ves and updating statements from the file or device assigned to logical file code 
SYC. All directives within the control stream are scanned for errors. The control 
stream, wi th error diagnostics, is copied to a work file for actual UPDATE processing. 
The work file is assigned to logical file code UTY and is normally a temporary file. 

If directive errors are detected, UPDATE exits after it encounters an /EXIT directive in 
the first pass. A listing of the control stream and error diagnostics is written. When an 
/EXIT directive is encountered without detecting directive errors, the updating sequence 
begins. Updating continues until all of the stored directives have been sequentially 
processed. 

Because UPDATE processes files sequentially, the line number specified with any 
directive must be equal to or greater than the line number specified in the previous 
UPDATE directive. 

2.1 Accessing UPDATE 

UPDA TE can be accessed from the batch or interactive modes in one of three ways: 

$UPDATE 
$HUN UPDATE 
$EXECUTE UPDATE 

$RUN UPDATE is valid only from the system directory. 

When accessing UPDATE interactively, the UPD> prompt is displayed: 

TSM>$LPDATE 
UPD) 

2.2 Logical File Code Assignments 

Logical file codes (LFCs) are assigned using the $ASSIGN job control language 
statement. Previously cataloged file assignments can be overridden by the $ASSIGN 
statement. 

Input and output files can be in either compressed or standard source format. A listing 
can also be printed as the output file is generated. 

MPX-32 
Utilities 

Source Update (UPDATE) 
lJs<::l9~ 2-1 



Files assigned to logical file codes SO, 511, 512, and 513 are assumed blocked unless 
otherwise specified with the $ASSIGN and $OPTION job control language statements. 

The following sections describe UPDATE logical file code usage. Upon entry, UPDATE 
marks all unassigned file codes as unavailable for use. 

2.2.1 Directive Input (5YC) 

The directive input file contains UPDATE directives. Directive input is assigned to 
logical file code SYC. 

5YC Default and Optional Assignments 

The default assignment for SYC is to the System Control file (SYC): 

$AS SYC TO SYC 

There are two optional assignments for SYC: 

$AS SYC TO ~ pathname t 
. 1 DEV=devmnc5 

pathname is the pathname of a source file containing UPDATE directives 
devmnc is the device mnemonic of a device containing a source file of UPDATE 

directives 

2.2.2 Input Files (511, 512, and 513) 

Input files to be manipulated by UPDATE are assigned to logical file codes 511 (first 
input file), 512 (second input file), and 513 (third input file). 

511, 512, and SO Default and Optional Assignments 

There are no default assignments for 511, 512, and 513. 

There are two optional assignments for input files: 

{SIl} $AS 512 
513 

pathname 
devmnc 

TO~pathname t 
1DEV=devmnc5 

is the pathname of a source input file 
is the device mnemonic of a device containing the source input 

2.2.3 Output File (SO) 

The output file contains the input data that has been manipulated by UPDATE. The 
output file is assigned to logical file code SO. 

2-2 
Source Update (UPDATE) 

Usage 
MPX-32 
Utilities 

c 

o 



( 

50 Default and Optional Assigments 

There is no default assignment for SO. 

There are two optional assignments to SO: 

$AS SO TO j pathname l 
1 DEV=devmnc ~ 

pathname is the pathname of a file to contain UPDATE output 
devmnc is the deyice mnemonic of a device to contain UPDATE output 

2.2.4 Work File (UTY) 

A work file for intermediate storage and directive and error listings is assigned to logical 
file code UTY. The default assignment for UTY is to a temporary file. There are no 
optional assignments for UTY. 

2.2.5 Output Image Listing (LO) 

The history, history summary, and output image listing for the UPDATE process is 
assigned to logical file code LO. 

LO Default and Optional Assignments 

The default assignment for LO is to logical file code UT: 

$AS LO TO LFC=UT 

In the interactive mode, output is generated on the user terminal. In the batch mode, 
output is generated on the SLO device. 

There are two optional assignments for LO: 

$AS LO TO j pathname t 
1 DEV=devmnc f 

is the pathname of a user file to which UPDATE listings are written pathname 
devmnc is the device mnemonic of a device to which UPDATE listings are written 

When LO is assigned to SLO or a disc file and UPDATE reaches EOM, MPX-32 extends . 
the file. 

MPX-32 
Utilities 

Source Update (UPDATE) 
Usage 2-3 



2.2.6 LFC Summary 

The following is a table of LFCs used by UPDATE and their default and optional 
assignments. 

Table 2-1 
lPDA TE LFC Summary 

Default Optional 
LFC Assignment Assignment 

SYC SYC pathname 
DEV=devmnc 

SIl N/A pathname 
DEV=devmnc 

SI2 N/A pathname 
DEV=devmnc 

S13 N/A pathname 
DEV=devmnc 

SO N/A pathname 
DEV=devmnc 

UTY temporary file N/A 

LO LFC=UT pathname 
DEV=devmnc 

2.3 Options 

Options are specified by number in a $OPTION job control language statement. Specify 
the $OPTION statement before the $UPDA TE statement in the job stream. 

Once declared, an option remains in effect until changed by a directive. 

Option 

1 

2 

3 

2-4 

Description 

Compress Source Output 
Generates the source output (SO) file in compressed format. 

Library Source Output 
Generates the source output (SO) file in library format. 

Print Control Stream 
Prints statements entered from the SYC file if SYC is assigned to 
a disc file. This option should not be specified if SYC is not 
assigned. 

Source Update (UPDATE) 
Usage 

MPX-32 
Utilities 

(.~ ..... "\ ') : 

j/ 



( 

c: 

Option 

4 

8 

9 

Description 

Inhibit EOF 
Inhibits writing end-of-file marks detected on the input file to the 
output file. This option can be used to consolidate multiple files 
that are to be assembled or compiled. This option cannot be used 
in conjunction with option 2. 

511 Not Blocked 
Allows UPDATE to read the first input file (511) in unblocked 
format. If option 8 is used, unblocked must be specified in the 
assignment statement. 

SO Not Blocked 
Creates an unblocked source output file. If option 9 is used, 
unblocked must be specified in the assignment statement. If this 
option is not specified, the file is assumed to be blocked. 

2.4 Compressed Source Format 

UPDA TE can accept source input in compressed format. The source compression ratio 
varies depending on the number of comments in the source program. A compression ratio 
of 3:2 to 4:1 is normal for the average range of source decks. All compressed records 
written by UPDATE are 120 bytes long. The maximum input record size is 192 words. 
Compressed source can be written to or processed from disc, magnetic tape, paper tape, 
or cards. See Figure 2-1 for a description of compressed record card format. 

CARD COLUMN 

(1 ) 

(2) 

(3) 

(4) 

(5) 

MPX-32 
Utilities 

1 2 3 4 5-80 

2 

1 I--- 3 

4 5 
3 
~ 

2 4 

8-SITTYPE CODE 
X'SF' AND X'9F' DESIGNATE COMPRESSED SOURCE IMAGE 
X'9F' INDICATES LAST RECORD OF A COMPRESSED SOURCE MODULE 

8-SIT COUNT OF SYTES REMAINING IN RECORD 

16-BIT CHECKSUM OF RECORD 

16-BIT SEQUENCE NUMBER 

CONTIGUOUS BYTES OF DATA 

Figure 2-1. Compressed Record Card Format 

Source Update (UPDATE) 
Usage 

87D4107 

2-5 



2.5 Library Source Format 

Library source format is a standard format for building library files. This format is used 
when option 2 is specified. 

UPDA TE accepts input files in any format, and creates output files in library format (see 
Figures 2-2, 2-3, and 2-4). Incorrectly formatted header records cause the job to be 
aborted. If consecutive end-of-file marks are encountered on the input file, one end-of
file mark is written on the output file. Upon completion of the library update, a unique 
end-of-library file record is written to the output file, and UPDATE exits. 

2.6 Exiting UPDATE 

To exi t UPDATE from the batch and interacti ve modes, specify the /EXIT directive. 

2-6 
Source Update (UPDATE) 

Usage 
MPX-32 
Utilities 

o 



( 

$$ENDIT RECORD ---I~------" 

EOF MARK -~.t======:j 

HEADER RECORD :===E======3 EOFMARK 

t:======3:::= HEADER RECORD [ EOFMARK 

~~~~~~~~~= HEADER RECORD ~ EOFMARK 

r:======j. - HEADER RECORD

87D4S01
~---------~"'--".>.,-- .. ~. -________________ ..-.;;.~;..;.....,'I

. MPX-32
Utilities

Figure 2-2. Library F annat

Source Update (UPDATE)
Usage 2-1

2-8

56 57 62 65 72

• UPDATE HEADER
\... RECORD MlDNY J HEADER UPDATE
~-~V "-v--' "-v--'

TEXT HEADER NAME
1.0.

Figure 2-3. Header Record Format

1 56 57 62 65 72

(:,..--''V~--.",; ~E~ 0 1
BLANK TEXT HEADER NAME

1.0.

Figure 2-4. End-of-Library File Record

Source Update (UPDATE)
Usage

87D4K03

87D4K04

MPX-32
Utilities

o

[:

c

SECTION 3 - DIRECTIVES

3.1 Introduction

UPDA TE directi ves ha ve the following format:

I directi ve parameter

A slash (/) in column one identifies the record as a directive. The directive field contains
the name of the directive. The directive field may be abbreviated to four characters
(including the slash) and must be followed by a blank. Valid abbreviations are indicated
by underlining in the directive syntax.

The parameter field contains information that describes the operation to be performed.
Parameters are separated by commas or blanks.

Special characters should not be specified in column one of a command file because they
can be incorrectly interpreted, resulting in an abort condition. For example, a dollar sign
($) in column one is interpreted by MPX-32 as a job control language (JCL) directive and
results in an UPDATE abort.

3.2 /ADD Directive

The IADD directive adds statements immediately following a specified source line. All
statements following the I ADD directive, up to the next directive, are added to the
output file.

Syntax:

IADD start

start identifies the source line after which the additions are to be inserted. A
specification of zero (/ ADD 0) adds statements to the beginning of an
existing file.

MPX-32
Utilities

Source Update (uPDATE)
Directi ves 3-1

ASll AS3/BKSP

3.3 I ASl Directive

The I AS1 directive reassigns input or output logical file codes to another permanent disc C.'··
file. The mode (blocked or unblocked) is not changed.

Only the first 19 characters of the IAS1 directive are printed on the output.

This directive reassigns only previously assigned logical file codes and does not assign
unassigned file codes.

Syntax:

IAS1 lfc,filename f,password]

lfc is the logical file code to be reassigned

filename is the one to eight character name of a disc file

password is ignored

3.4 IAS3 Directive

The I AS3 directive reassigns input or output logical file codes to another peripheral
device. The mode (blocked or unblocked) is not changed.

Only the first 19 characters of the IAS3 directive are printed on the output.

This directive reassigns only previously assigned logical file codes and does not assign
unassigned file codes.

Syntax:

I AS3 lfc,devmnc [,id,multivol]

lfc is the logical file code to be reassigned

devmnc is one of the following device mnemonics of a configured peripheral device:
CD, CP, CR, M7, M9, or MT

id is a one to four character reel identifier for magnetic tape devices

multivol is the volume number for a multivolume magnetic tape operation

3.5 IBKSP Directive

The IBKSP directive backspaces a specified number of end-of-file marks. Detection of
beginning-of-medium terminates backspacing and UPDATE proceeds to the next
directive.

Syntax:

IBKSP lfc [,n]

lfc

n

3-2

is the logical file code assigned to the device or file to be backspaced

is the number of EOF marks to be backspaced. If not specified, the default
is one.

Source Update (UPDATE)
. Directi ves

MPX-32
Utilities

o

(

BLK/COM/COPY

3.6 /BLK Directive

The /BLK directive blank fills the sequence field, columns 73 to 80, of each following
record. This directive remains in effect until a No Blank Sequence Field (/NBL) directive
is read.

Syntax:

/BLK

Usage:

/BLK
/COPY 1
/SKIP 1
/COPY 1
/BKSP SI1,1
/COPY 1

In this example, three files are copied without sequence numbers.

3.7 /COM Directive

The /COM directive places comments within an UPDATE directive stream. The
comment following this directive is ignored by UPDATE.

Syntax:

/COM comment

comment is a user comment. It must be contained within the first 72 columns.

3.8 /COPY Directive

The /COPY directive copies complete input files. Library format files can be copied to
the end of a library by the directive /COPY END.

Syntax:

/COPY ~headert
1 END 5

header

END

MPX-32
Utilities

is a one to eight character delimiter. If header is an alphanumeric string,
UPDATE copies all files up to the header record defined by header. If
header is a numeric string, UPDATE copies the number of files represented
by the string.

copies library format files to the end of the library

Source Update (UPDATE)
Directives 3-3

DELETE/END/EXIT

3.9 /DELETE Directive

The IDELETE directive deletes the specified sequential source lines from the output file.

Syntax:

IDELETE start [,end]

start identifies the first source line to be deleted

end identifies the last source line to be deleted. If not specified, the default is
the same value as start.

3.10 /END Directive

The lEND directive ends an I ADD, IDELETE, or IREPLACE sequence for a file. The
file's remaining source lines are copied through the next EOF. UPDATE then proceeds to
the next directive.

Syntax:

lEND

3.11 /EXIT Directive

The IEXIT directive ends the UPDATE directive stream. If directive errors were
detected, UPDATE exits. If directive errors were not detected, the updating sequence
begins. When all directives have been sequentially processed, UPDATE checks for the
library option. If the library option is set, a unique end-of-library file record is written
to the file or device assigned to logical file code SO. The file is then rewound and
UPDA TE exits. If UPDATE was run interactively, control returns to TSM.

Syntax:

IEXIT

3-4
Source Update (UPDATE)

Directives
MPX-32
Utilities

(

INSERT ILIST

3.12 IINSERT Directive

The IINSERT directive copies one complete file from the current input file or device.

A maximum of 56 characters of text is allowed for new header text. Text begins at the
next character after the first delimiter. If the file containing the new header text is to
be submitted to a language translator, the first character of text should be the
translator's comment character. For example, a header fora file to be translated by the
Macro ,~ssembler would contain an asterisk as the first text character.

The new header text replaces the old header text in a file that already has a header
record.

Only the first 19 characters of the IINSERT directive are printed on the output.

Syntax:

/INSERT [name,text]

name,text are optional parameters used to create header text in the following
format:

1-56 57-62 65-72

text header name
identi fication

If name and text are not specified and a header exists, the header is
cleared. If name and text are not specified and a header does not exist,
the first line of code is treated as the header.

3.13 ILIST Directive

The ILIST directive controls the generation of listed output. This directive may be
placed anywhere in the control stream. If ILIST is not specified, no lists are generated
during the updating sequence.

When ILIST is specified without optional parameters, an audit trail of the UPDATE
session is generated. When a ILIST without parameters is followed by a ICOPY
directive, a top-of-form eject is performed before each file is listed.

More than one ILIST directive can be specified in a control stream. However, the
additional ILIST directives do not reset options. The INOLIST directive must be used to
reset options.

When the FRST parameter is specified without the UPDT parameter, the file number,
record count, and first record for each file are printed. ILIST FRST is intended only for
checking file sizes or generating a header listing.

Syntax:

ILIST [FRST] [,UPDT]

FRST

UPDT

MPX-32
Utilities

lists the first record of each file. Header records are the first records in
library formatted files.

lists all control directives and records affected by I ADD, /DELETE, or
/REPLACE directi ves

Source Update (UPDATE)
Directives 3-5

MOUNT /NBL/NOLIST

3.14 /MOUNT Directive

The IMOUNT directive allows the mounting and dismounting of tapes without exiting
UPDA TE. When entered, the IMOUNT directi ve and the following mount message are
written to the oper·ator console:

UPDATE-MOUNT INPUT VOL ON MT UNIT! R,A,H?

The operator responds R for ready, A for abort, or H for hold.

Syntax:

IMOUNT lfc [,text]

lfc is the input logical file code (SIl, 512, or 513) assigned to a magnetic tape

text is a user comment to be written to the system console. It must be contained
within the first 72 columns.

3.15 /NBL Directive

The INBL directive terminates a IBLK directive. This directive may be placed anywhere
following the IBLK directive in the UPDATE control stream.

Syntax:

INBL

Usage:

/BLK
/COpy 1
/SKIP 1
/NBL

3.16 /NOLIST Directive

The INOUST directive controls the generation of listed output by resetting the options
set by lUST. This directi ve may be placed anywhere following the lUST directive in the
UPDATE control stream. If no parameters are specified, all lUST options are reset and
all listing output is terminated. If a parameter is specified, the corresponding ILIST
option is reset.

Syntax:

INOUST [FRST] [,UPDT]

FRST

UPDT

3-6

inhibits listing the first record of each file

inhibits listing all directives and records affected by IADD, /DELETE, or
IREPLACE directives

Source Update (UPDATE)
Directives

MPX-32
Utilities

(--"
i(J

c

NOSEQN/REPLACE/REWIND/SCAN

3.17 /NOSEQN Directive

The /NOSEQN directive terminates the sequence numbering of source statements set by
the /SEQUENCE directive. By default, statements are not sequenced.

Syntax:

/NOSEQN

3.18 /REPLACE Directive

The /REPLACE directive replaces a specified set of source lines from the input file with
an alternate set. The alternate set may be smaller or larger than the original set of
source lines. All statements following the /REPLACE directive, to the next control
directive, are inserted into the output file.

Syntax:

/REPLACE start [,end]

start identifies the first source line to be replaced

end identifies the last source line to be replaced. If not specified, the default is
the same value as start.

3.19 /REWIND Directive

The /REWIND directive rewinds input or output files.

If the library format option is set, logical file code SO must not be specified.

Syntax:

/REWIND lfc [,lfc] •••

lfc is the logical file code assigned to the device to be rewound

3.20 /SCAN Directive

The /SCAN directive sets the number of characters to scan on the remaining directives.
This directive should be first in a directive stream to ensure unwanted data is not
scanned.

Syntax:

/SCAN n

n

MPX-32
Utilities

is the number of characters in the range 6 to 72 to be scanned

Source Update (UPDATE)
~ Directi ves 3-7

SELECT/SEQUENCE/SKIP

3.21 /SELECT Directive

The /SELECT directive selects alternate logical file codes for input. UPDATE initially "J
assumes input from the file or device assigned to SIl. When an input device or file is
selected, all subsequent directives, with the exception of /BKSP, /MOUNT, and /REW,
pertain to the selected device or file.

Syntax:

/SELECT lfc [,BLOCKED]

lfc is the logical file code to which input is assigned (SI1, S12, or SI3)

BLOCKED is ignored. Blocking is controlled by the $ASSIGN and $OPTION JCL
directi ves.

3.22 /SEQUENCE Directive

The /SEQUENCE directive sequentially numbers source statements. This directive may
be placed anywhere in the control stream. Sequencing is terminated by the /NOSEQN
directive. By default, statements are not sequenced.

Syntax:

/SEQUENCE [id] , [inc] , [HOLD]

id is one to three alphanumeric characters to be placed in columns 73 to 75 of
all source output records. At least one character must be nonnumeric. If
not specified, the default is blanks.

inc is one to fi ve numeric characters to be placed as a sequence number in
columns 76 to 80 of the first record. The value of inc is used to increment
the sequence number for subsequent records. If not specified, the default is
one.

HOLD indicates sequencing continues until another /SEQUENCE or a /NOSEQN
directive is encountered. If HOLD is specified, the beginning sequence
number for all subsequent files is reset to zero and the file is sequenced as
specified by the id and inc parameters. If HOLD is not specified, sequencing
ends after the current file is processed.

3.23 /SKIP Directive

The /SKIP directive skips complete input files.

Syntax:

header

END

3-8

~headert
(END I

is a one to eight character delimiter. If header is an alphanumeric string,
UPDATE skips all input files up to the header record defined by header. If
header is a numeric string, UPDATE skips the number of files represented by
the string.

skips files to the end of a library

Source Update (UPDATE)
Directives

MPX-32
Utilities

c

r'""',
lee

(

USR/WEOF

3.24 /USR Directive

The /USR directive accesses files in another directory. This directive does not change
the current working volume.

If a directory name changes during the UPDATE directive sequence, /USR must precede
the first directive in the control stream that requires directory name identification. If a
/USR directive is used anywhere in a directive stream to change a directory, the default
directory as established by TSM or a JCL statement must be specified by a /USR
directive at the beginning of the directive stream. This ensures that UPDATE is using
the intended directory during pass two processing. Refer to Section 5--Examples.

Syntax:

/USR [dirname [,key]]

dirname is the one to eight character name of an existing directory on the current
working volume. If not specified, defaults to SYSTEM.

key is ignored

3.25 /WEOF Directive

The /WEOF directive writes an end-of-file (EOF) on the output file assigned to logical
file code SO. This directive is not valid when output is in library format.

Syntax:

/WEOF

MPX-32
Utilitites

Source Update (UPDATE)
Directives 3-9/3-10

(. '---".'.'
'" .'

')

(

c

SECTION 4 - ERRORS AND ABORTS

4.1 Abort Codes

The following are UPDATE abort codes and their messages.

Code Message

UDOl

UD02

ERROR(S) (DESCRIBED ON LFC La) DETECTED DURING EXECUTION

ABORT REQUESTED FOR IMOUNT DIRECTIVE

UD03 M.OPENR FAILED FOR LFC SYC

UD04 M.OPENR FAILED FOR LFC UTY

UD05 M.OPENR FAILED FOR LFC La

UD06 M.OPENR FAILED FOR LFC SI1

UD07 M.OPENR FAILED FOR LFC SI2

UDOB M.OPENR FAILED FOR LFC SI3

UD09 M.OPENR FAILED FOR LFC SO

4.2 Error Messages

The following error messages are generated by UPDATE.

INV ALID OPTION SPECIFICATION

Option 4 cannot be specified in conjunction with option 2.

lfc FILE IS NOT ASSIGNED

No file or device is assigned to the LFC named by this message.

INV ALID UPDATE DIRECTIVE

The directive is not a valid UPDATE directive.

INV ALID UPDATE DIRECTIVE SEQUENCE

An lEND directive did not follow an I ADD, IREPLACE, or IDELETE
sequence.

MPX .. 32
Utilities

Source Update (UPDATE)
Errors and Aborts 4-1

UPDA TESEQUENCE ERROR

The start or end address in an / ADD, /REPLACE, or /DELETE statement is C
not sequential. .

xxxxxxxx NOT FOUND

The file represented by xxxxxxxx cannot be found.

IMPROPER HEADER FORMAT

The library file was not created because of an improperly formatted header
record.

IMAGE NOT COMPRESSED

An illegal mixture of standard and compressed source exists in the image.

CHECKSUM ERROR

A checksum error was detected in the last record read.

lfc FILE AT END-OF -MEDIUM

The file or device assigned to the LFC named by this message is at EOM.

lfc FILE, UNRECOVERABLE I/o ERROR

An I/o error was encountered on the file or device assigned to the LFC
named by this message.

EOF DETECTED BEFORE SPECIFIED LINE NUMBER

An EOF was detected before the line number indicated in an / ADD,
/REPLACE, or /DELETE directive could be found.

LIBRARY MODE, DIRECTIVE· NOT ALLOWED

A /WEOF directive was detected in the control stream while the library
mode was in effect.

lfc FILE ASSIGNED TO UTY FILE

The UTY file code cannot be reassigned by the user.

lfc FILE ASSIGNED TO SLO FILE

An attempt was made to assign an input LFC to the SLO file.

lfc FILE, INVALID BLOCKING BUFFER CONTROL POINTER

4-2

An input operation for a blocked file assigned· to the LFC named in this
message was not successful. The file is either unblocked or does not exist.

Source Update (UPDATE)
Errors and . Aborts

MPX-32
Utilities

o

(

PERMANENT FILE NONEXISTENT

A specified file name cannot be located.

INVALID DEVICE TYPE

The specified device type is not supported by UPDATE.

FILE ALLOCA nON DENIED

Allocation for a file was denied.

DEVICE ALLOCATION DENIED

Allocation for a device was denied.

UNABLE TO ASSIGN DIRECTORY

The directory cannot be assigned.

UNABLE TO EXCLUSIVELY LOCK FILE REASSIGNED BY / ASl

MPX-3Z
Utilities

The file being reassigned by / ASl is allocated.

Source Update (UPDATE)
Errors and Aborts 4-3/4-4

[--,

'0

(':
,.

SECTION 5 - EXAMPLES

The following example updates the first file on the tape INPT and places the updated file
in the file OUTFILE.

$JOB EXAMPLEl OWNER
$AS5IGN 51l TO DEV=MT ID=INPT
$AS5IGN SO TO OUTFILE
$EXECUTE UPDATE
IADD 25
(statements to be added)
IDELETE 27, 28
IREPLACE 45,51
(replacement statements)
lEND
IEXIT
$EOJ
$$

The following example adds and deletes statements. I A.DD 0 makes additions to the
beginning of an existing file. An updated and compressed copy of PROGll is wri~ten to
file OUTFILE, and a listing of all statements affected by the update is written. INPT is
in library format, which allows a skip to the header PROGU. The output file OUTFILE
is not in library format because option 2 is not specified.

MPX-32
Utilities

$JOB EXAMPLE2 OWNER
$OPTION 1
$A5SIGN SIl TO DEV=MT ID=INPT
$ASSIGN SO TO OUTFILE
$EXECUTE UPDATE
ILIST FRST ,UPDT
ISKIP PROGll
IADDO
(statements to be added)
IDELETE 1;5
IADD 5
(statements to be added)
lEND
IEXIT
$EOJ
$$

Source Update (UPDATE)
Examples 5-1

The following example copies all files up to and including the eleventh file onto the tape
OPUT and modifies and inserts source from the SI2 file. The primary input files are
reselected, and 51 more files are copied to logical file code SO. A listing of the updates
made to logical file code SO is written to logical file code SLO.

$JOB EXAMPLE3 OWNER
$ASSIGN SIl TO DEV=MT ID=INPT
$ASSIGN 512 TO DEV=MT ID=TAPE
$ASSIGN SO TO DEV=MT ID=OPUT
$EXECUTE UPDATE
/LIST UPDT
/COpy 11
/SELECT SI2
{REPLACE 24, 33
(replacement statements)
{END
/SELECT SIl
{COPY 51
/EXIT
$EOJ
$$

The following example converts a compressed format punched card deck to a standard
format punched deck. The standard deck is sequenced by ten and the three-character id
of ABC is placed in bytes 73 to 75 of each card during the conversion.

$JOB EXAMPLE4 OWNER
$ASSIGN SO TO SSO 51ZE=1000
$ASSIGN 511 TO SYC
$EXECUTE UPDATE
{SEQ ABC, 10
/COPY 1
/EXIT
(compressed deck)
$EOJ
$$

The following example copies the library format output tape to the SO file. The program
NEW1 is sequenced by one and inserted, with a header record, on the output file. A new
library end-of-tape marker is written on the tape.

5-2

$JOB EXAMPLE5 OWNER
$OPTION 2
$ASSIGN SIl TO DEV=MT ID=INPT
$ASSIGN SO TO OUTFILE
$ASSIGN SI2 TO FILE1
$EXECUTE UPDATE
/COPY END
/SELECT SI2
{SEQ
/INSERT NEW1, *NEW 1 REV C JULY 12, 1983
/EXIT
$EOJ
$$

Source Update (UPDATE)
Examples

MPX-32
Utilities

,()
(,I, '

.~

(J

o

The following example lists all the header records on the library tape INPT. The file
number and record count for each file is written.

$JOB EXAMPLE6 OWNER
$ASSIGN SIl TO DEV=MT ID=INPT
$EXECUTE UPDATE
lUST FRST
ICOPY END
IEXIT
$EOJ
$$

The following example copies PROG13 and the file following PROG16 from INPT to
OUTFILE. Output listings are generated for the three programs. The programs that are
skipped are not listed.

$JOB EXAMPLE7 OWNER
$ASSIGN SIl TO DEV=MT ID=INPT
$ASSIGN SO TO OUTFILE
$EXECUTE UPDATE
lUST
ISKIP PROG13
ICOPY 1
ISKIP PROG16
ICOPY 2
IEXIT
$EOJ
$$

The following example copies the first, fifth, sixth, and twelfth files from INPT.
Compressed source is written to the disc file PERMFILE without EOFs. All four files are
then assembled.

MPX-3Z
Utilities

$JOB EXAMPLES OWNER
$OPTION 14
$ASSIGN 511 TO DEV=MT ID=INPT
$ASSIGN 50 TO PERMFILE
$EXECUTE UPDATE
ICOPY 1
Is KIP 3
ICOPY 2
ISKIP 5
ICOPY 1
IWEOF
IEXIT
$EOJ
$JOB ASSEMBLE OWNER
$ASSIGN SI TO PERMFILE
$EXECUTE ASSEMBLE
$EOJ
$$

Source Update (UPDATE)
Examples 5-3

The following example lists the first (header) records of the files on logical file code SIl 0' :1: ..

and copies PROG10 to logical file code SO. PROGIO from logical file code SI2 is
inserted, with a new header record, into logical file code SO. Logical file code SIl is
reselected, files up to PROGll are skipped, and files PROGll through the last file on
logical file code SIl are copied to logical file code SO.

5-4

$JOB EXAMPLE9 OWNER
$OPTION 2
$ASSIGN SIl TO DEV=MT ID=MAST
$ASSIGN SI2 TO FILE1
$ASSIGN SO TO OUTFILE
$EXECUTE UPDATE
/LIST FRST
/COpy PROGIO
/SELECT SI2
/INSERT PROGIO,*PROG10 REVB JULY 12, 1983
/SELECT SIl
/SKIP PROGll
/COPY END
/EXIT
$EOJ
$$.

Source Update (UPDATE)
Examples

MPX-32
Utilities

(-\
\~

o

c

Subroutine Library Editor (UBED)

MPX-32 Utilities

(

CONTENTS

Section

1- OVERVIEW

1.1
1.2

General Description
Directi ve Summary ••

2 - USAGE

2.1
2.2

2.3
2.4
2.5

Accessing UBED •••••••••••••
Logical File Code Assignments ••••
2.'2.1 Control Directives (CTL)
2.2.2 Directory (DIR) •••••••
2.2.3 Library General Output (LGO) •
2.2.4 Library (UB) ••••••••••••
2.2.5 Listed Output (LLO)
2.2.6 Internal LFCs.
2.2.7 LFC Summary
Options ••••••••••••
Directory File Format
Exiting U8ED •••••••

3 - DIRECTIVES

3.1
3.2
3.3

DELETE Directi ve
EXIT Directive ••
LOG Directive.

4 - ERRORS AND ABORTS

4.1
4.2

Abort Codes •••
Error Messages ••

1-1
1-1

2-1
2-1
2-1
2-1
2-2
2-2
2-3
2-3
2-3
2-4
2-5
2-5

3-1
3-1
3-1

4-1
4-1

5 - EXAMPLES. .. 5-1

TABLES

2-1 LIBED LFC Summary •• 2-4

MPX-32
Utilities

Subroutine Library Editor (UBED)
Contents ii i/iv

c·
-.-'

.'

o

(

SUBROUTINE LIBRARY EDITOR (LIBED)

SECTION 1 - OVERVIEW

1.1 General Description

The Subroutine Library Editor (UBED) utility maintains sets of system and user nonbase
object modules which can be linked at catalog time. Object modules are contained in
library files. A directory file is maintained for each library file. Directory files are used
by the UBED and CAT ALOG utilities to locate object modules within library files.

UBED can be used to create and maintain user libraries of object modules. These object
modules can then be accessed by external reference from a calling task.

Depending upon the user's access rights to the library and directory files, UBED can:

• Delete object modules from a library file
• Log the object modules in a library file
• Obtain library and directory file usage statistics
• Initialize library and directory files

A combined maximum of 2048 modules may be deleted, replaced, or added during any
UBED run. A user with read-only access to the files can use only the LOG directive.

References to object modules in a subroutine library are resolved when the referencing
task is cataloged.

UBED recognizes 1 to 16 character file names and 1 to 8 character module names.
Unless otherwise specified, files assigned to logical file codes will be forced to the
appropriate format, blocked or unblocked.

1.2 Directive Summary

The following list summarizes the UBED directives. Underlining indicates accepted
abbreviations. Each directive is described in more detail in Section 3.

Directive

DELETE

EXIT

LOG

MPX-32
Utilities

Function

Deletes a module from the library

Terminates directive input

Provides a log of all modules and their global symbol definitions

Subroutine Library Editor (USED)
Overview 1-1/1-2

c

'''l /

o

(

SECTION 2 - USAGE

2.1 Accessing UBED

LIBED can be accessed in the batch or interactive modes in one of three ways:

$LIBED
$EXECUTE LISED
$RUN LISED (valid only from the system directory)

When accessing LISED interactively, the LIB> prompt is displayed:

TSM>$UBED
LIB)

2.2 Logical File Code Assignments

There are five user-accessible logical file codes (LFC) associated with LISED: Control
directives (CTU, Directory (DIR), Library general object (LGO), Library (LIS), and
LIBED listed output eLLO). Assignment statements must be made before LISED is
executed.

2.2.1 Control Directives (CTL)

The control directive file contains LIBED directi ves for the specified library. The
control directive file is assigned to logical file code CTL. The contents of the file
assigned to CTL are written to a temporary buffer. LISED uses the contents of the
buffer as input and performs the specified directives.

CTL Default and Optional Assignments

The default assignment for CTL is to the System Control file (SYC):

$ASSIGN CTL TO SYC

There is one optional assignment for CTL:

$ASSIGN CTL TO pathname

pathname is the pathname of a user file containing LISED directives for a specified
library

2.2.2 Directory (DIR)

The directory file contains pointers for external references used by the specified
library. It is assigned to logical file code DIR. The contents of the file assigned to DIR
are written to a temporary buffer. LIBED uses the contents of the buffer as a directory
for the specified library. The file assigned to logical file code DIR is forced unblocked
by LISED.

MPX-32
Utilities

Subroutine Library Editor (LISED)
Usage 2-1

The file assigned to OIR must be created using the Volume Manager. Once the file is
created, it can be initialized and maintained by UBED.

The directory must be paired with the corresponding library when making UBED or
CA T ALOG assignments.

DIR Default and Optional Assignments

The default assignment for DIR is to the system directory MPXDIR:

$ASSIGN DIR TO (8JSYSTEM(SYSTEM)MPXDIR

There is one optional assignment to DIR:

$ASSIGN DIR TO pathname

pathname is the pathname of a user file containing the directory information to be
used for a specified library

2.2.3 Library General Output (LGO)

The library general output file contains one or more object modules and is assigned to
logical file code LGO. The contents of the file or device assigned to LGO are written to
a temporary buffer. UBED manipulates the contents of the buffer during directive
processing.

Logical file code LGO is forced unblocked by UBED.

LGO Default and Optional Assignments

The default assignment for LGO is to the System General Object file:

$ASSIGN LGO TO SGO

There are two optional assignments for LGO:

$AS LGO TO
~pathname t
/ DEV =devmnc \

is the pathname of a user file containing one or more object files pathname
devmnc is the device mnemonic of a device containing one or more object modules

2.2.4 Library (Lm)

The library file contains one or more object modules that have been manipulated by
UBED. The library file is assigned to logical file code UB. After UBED processing
completes, the final contents of the temporary buffer are written to the file assigned to
logical file code UB. The file assigned to logical file code UB is forced unblocked by
UBED.

The file assigned to UB must be created using the Volume Manager. Once the file is
created, it can be initialized and maintained by UBED.

2-2
Subroutine Library Editor (UBED)

Usage
MPX-32
Utilities

c:

('

Object modules are automatically replaced if they exist on both the file or device
assigned to LGO and the file assigned to LIB. The copy of the object module in LGO
replaces the copy of the object module in LIB.

LIB Default and Optional Assignments

The default assignment for LIB is to the system library MPXLIB:

$ASSIGN LIB TO @SYSTEM(SYSTEM)MPXLIB

There is one optional assignment for LIB:

$ASSIGN LIS TO pathname

pathname is the pathname of a library file containing one or more object modules that
have been manipulated by LISED

2.2.5 Listed Output (LLO)

The listed output file contains an audit trail of LISED processing. The file to be used for
listed output is assigned to logical file code LLO.

LLO Default and Optional Assignments

The default assignment for LLO is to logical file code UT:

$ASSIGN LLO TO LFC=UT

In the interactive mode, output is generated on the user terminal. In the batch mode,
output is generated on the SLO device.

There are two optional assignments for LLO:

$ASSIGN LLO TO j pathname t
1DEV=devmnd

pathname
devmnc

is the pathname of a user file where LIBED listings will be written
is the device mnemonic of a device where LIBED listings will be written

2.2.6 Internal LFCs

The LFCs TLB and TOR are used internally by LISED to reference the temporary library
and directory during create and update operations. They must not be assigned by the
user.

2.2.7 LFC Summary

The following is a table of the LFCs used by LIBED and their default and optional
assignments:

MPX-32
Utilities

Subroutine Library Editor (USED)
Usage 2-3

LFC

CTL

DIR

LGO

UB

LLO

2.3 Options

Table 2-1
UBED LFC Summary

Default
Assignment

SYC

@SYSTEM(SYSTEM)MPXDIR

SGO

@SYSTEM(SYSTEM)MPXUB

LFC = UT

Optional
Assignment

pathname

pathname

pathname
DEV = devmnc

pathname

pathname
DEV = devmnc

There are three options that can be specified when using UBED. When no option is
specified, UBED processes directives from the file or device assigned to logical file code
CTL.

If an object module name exists in both the file or device assigned to LGO and the file
assigned to UB, a copy of the object module in LGO replaces the object module in UB.

When UBED has completed updating a library, it automatically updates the directory.

Option

1

2

15

Description

New library and directory - Initializes a new library
and directory, which are assigned to UB and DIR.
The new library contains all the object modules in
the file assigned to LGO. CTL logical file code
assignments are ignored. All object modules and
externals in the new library are logged.

Library statistics - The amount of allocated and
remaining disc space for the library and directory
specified by UB and DIR is written to LLO.

Log time! date - Enables the display of time, date,
and program identification information as included
in the object module.

If option one is specified, the following listed output is generated:

• a directive list

• a log of module names and external definitions

statistical information on available library and directory disc space

2-4
Subroutine Library Editor (UBED)

Usage
MPX-32
Utilities

(~' (L

c:

(

If option two is specified, the listed output contains statistical information on available
library and directory disc space. A list of modules which were specified for deletion but
were not deleted is also generated.

If option 15 is specified, the data from logical file code UB is read to find the data to
display. This increases execution time because of the processing required for the I/O and
search/ display logic.

2.4 Directory File Format

A directory file consists of directory entries paired with the corresponding library file.
Each directory entry is three words in length and has the following general format:

Word o
1

2

o 15 16

Entry point name

Starting block number I Starting record number

2.5 Exiting UBED

To exit UBED from the batch and interactive modes, specify the EXIT directive.

MPX-32
Utilities

Subroutine Library Editor (UBED)
Usage

31

2-5/2-6

c

(

SECTION 3 - DIRECTIVES

All directives must begin in column one. User comments can be placed after the
directive or its associated argument (if any). Directives are separated from user
comments or arguments by a blank.

3.1 DELETE Directive

The DELETE directive deletes the specified object module from the library assigned to
logical file code UB. The deleted object module's external definitions are removed from
the directory assigned to logical file code DIR.

Syntax:

DELETE name [comments]

name is the one- to eight-character ASCII module name to be deleted

3.2 EXIT Directive

The EXIT directive terminates directive input, processes the previous directives, and
returns control to TSM.

Syntax:

EXIT [comments]

3.3 LOG Directive

The LOG directive outputs a log of all object module names and their external definitions
to the device or file assigned to logical file code LLO.

Syntax:

LOG [comments]

MPX-32
Utilities

Subroutine Library Editor (UBED)
Directives 3-1/3-2

C' I,.

fIt... ..

c

SECTION 4 - ERRORS AND ABORTS

4.1 Abort Codes

The following are UBED abort codes and their messages:

Code

LE98

LE99

Message

UNRECOVERABLE I/O ERROR ON FILE OR DEVICE ASSIGNED TO
LFC: LLO

ST =RMXX IF ERROR ON OPEN; IOXX IF ERROR ON WRITE.

UBED«FATAL»TYPE, ERROR AS DESCRIBED ON LLO AND/OR
UT

4.2 Error Messages

UBED issues error messages to LFCs LLO and UT (if interactive) preceded by a
< <F AT AL) > or (WARNING) heading.

The following information concerns interpretation of error messages:

• «FATAL» errors indicate that the requested operation could not be performed. If a
library existed, it will remain unchanged. The task abort flag is always set.

• (WARNING) errors report conditions that the user should know about, but that are not
catastrophic in nature. The library/directory is always updated when warnings are
issued.

• Abnormal status returned by MPX-32 services is reported in the format XXnn, where
XX indicates the MPX module involved and nn indicates the specific status. These
codes may be interpreted by using the TSM ERR function. If the status is associated
with a file operation, the LFC is displayed in the message.

• Object code records read from LGO and/or UB are subjected to five correctness tests
as follows:

Test

HEADER

SEQUENCE

CHECKSUM

INCMPLTE

Description

Record is not identifiable as an object code record (byte
a does not equal X'DF' or X'FF')

Sequence number field of record does not contain
expected value

Data of record fails checksum validation

End-of-file without object code termination item

• A program name of ???????? in an error message indicates that an error occurred
between valid modules. A log operation indicates the preceding valid module.

MPX-32
Utilities

Subroutine Library Editor (UBED)
Errors and Aborts 4-1/4-2

0.-."···\
"

(

("'\

/

SECTION 5 - EXAMPLES

The following section provides sample programming sequences illustrating the use of
various LlBED directives.

Example 1 - Create Library and Directory

The following example creates a subroutine library in the file LlBA and a directory in the
file DIRA. The library will contain all modules contained in the file USER.OBJ. A log of
the module names and external definitions are produced on the LLO device.

$JOB CREATE OWNER
$NOTE CREATE NEW USER LIBRARY
$CREA TE LlBA
$CREA TE DIRA
$ASSIGN LGO TO USER.OBJ
$ASSIGN LIB TO LlBA
$ASSIGN DIR TO DIRA
$OPTION 1
$EXECUTE LlBED
$EOJ
$$

Example 2 - Display Log

The following example produces a log of all library module names and external
definitions on the file LOGLIST. In addition, statistics on available space in the library
and directory are printed.

$JOB LOG OWNER
$CREA TE LOGLIST
$ASSIGN LLO TO LOGLIST
$ASSIGN LIB TO LlBA
$ASSIGN DIR TO DIRA
$EXECUTE LlSED
LOG
$EOJ
$$

MPX-32
Utilities'

Subroutine Library Editor (LiBED)
Examples 5-1

Example 3 - Update Library and Directories

The following example updates the standard MPX-32 system subroutine library and
directory MPXLIB and MPXDIR. The user must have access rights to MPXLIB and
MPXDIR. The modules contained in NEWOBJECT either replace an old module of the
same name or are added as a new module. The module name UMODI is deleted. A log of
all module names and external definitions and an analysis of remaining disc space in
MPXLIB and MPXDIR is produced.

$JOB UPDATE OWNER
$ASSIGN LGO TO NEWOBJECT
$EXECUTE LIBED
LOG
DELETE UMOD1
$EOJ
$$

Example 4 - Insert Modules

In the following example, the binary output from a compilation is taken directly from the
SGO file and used as input to LIBED. Modules on SGO replace modules of the same
names in LISB;' modules that do not match existing names are added.

$JOB UPDATE OWNER
$NOTE UPDATE OWNER LIB FROM COMPILATION
$OPTION 5
$EXECUTE FORTRAN
(Source program)
$AS LIB TO LISB
$AS DIR TO DIRB
$EXECUTE LIBED
$EOJ
$$

Example 5 - Produce Log and Exit

The following interactive example produces a log and returns the user to the TSM prompt
automatically when execution is complete.

TSM>$ASSIGN LIB TO LIBC
TSM>$ASSIGN DIR TO DIRC

(If these ASSIGN statements are not specified, the resulting log details contents of
the system subroutine library.)

TSM>$LIDED
MPX-32 UTILITIES RELEASE X.x (LIBED Rx.x.x)
(C) COPYRIGHT 1983 GOULD INC., CSD, ALL RIGHTS RESERVED
LIB>LOG
LIB>EXIT
TSM>

5-2
Subroutine Library Editor (LIBED)

Examples
MPX-32
Utilities

Symbolic Debugger (SYMDB)

MPX-32 Utilities

(

CI,

CONTENTS

Section

I-OVERVIEW

1.1
1.2
1.3
1.4
1.5

General Description ••••••••
Local and Global Symbols •••
Accessing Program Symbols
Summary of SYMDB Capabilities ••
Directive Summary •••••••••••

2-USAGE

2.1

2.2
2.3

2.4
2.5
2.6

2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21

2.22

Accessing SYMDB
2.1.1 Accessing SYMDB in TSM •••••••••••
2.1.2 Accessing SYMDB via the Batch Stream ••
Using M.DEBUG •••••••••••••••
Logical File Code Assignments
2.3.1 Source Input (IfIN and 1103)
2.3.2 Listed Output (l10T) ••••
2.3.3 Temporary Log File (1101)
2.3.4 Log Output (1102) •••
2.3.5 Symbol Table (lISM)
2.3.6 LFC Summary •••••
Exiting SYMDB ••••••••••
Attaching SYMDB to a User Task
Input/Output •••••••••
2.6.1 Terminal I/o ...
2.6.2 Command Files
Control Transfers ••••
Break Handling •••••• .' .
Setting the Default for Symbolic References
Program Execution •••
Traps and Trap Lists ••
Nested Traps •••••••
Examining Memory and Registers
Modifying Memory and Registers ••
Selecting the Input Radix •••••••
Establishing User Bases •••••••••
Selecting Relative or Absolute Addressing
Selecting Log/No Log File •••••••
Selecting Label Field Format
Selecting Extended Memory Access
SYMDB Directive Expressions ••••
2.21.1 Arithmetic Expressions.
2.21.2 Logical Expressions
2.21.3 Relational Expressions ••
Terms used in SYMDB Expressions ••
2.22.1 Integers • • • • • • • • • • • •••

....

MPX-32
Utilities

Symbolic Debugger (SYMDB)
Contents

1-1
1-1
1-2
1-3
1-3

2-1
2-1
2-1
2-3
2-3
2-4
2-4
2-4
2-5
2-5
2-6
2-6
2-7
2-9
2-9

2-10
2-10
2-11
2-12
2-13
2-13
2-15
2-15
2-16
2-17
2-17
2-17
2-17
2-17
2-18
2-18
2-19
2-19
2-20
2-20
2-20

iii

CONTENTS

Section

2.22.2
2.22.3
2.22.4
2.22.5
2.22.6
2.22.7

Constants
Register and Memory Contents
Bases •••
Symbols ••
COUNT.
Period (.)

3-DIRECTIVES

3.1
3.2
3.3
3.4
3.5
3.6
3-7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28
3.29
3.30
3.31
3.32
3.33
3.34
3.35
3.36
3.37
3.38
3.39
3.40
3.41

iv

Using SYMDB Directives ••
A (Address) Directive
ABSOLUTE Directive
B (Binary) Directive
BASE Directive ••••
BREAK Directive .••
CC (Condition Code) Directive
CLEAR. Directi ve •••••••••••
CM (Change Memory) Directive.
CR (Change Register) Directive
DA (Display ASCII) Directive
DD (Display Double Precision) Directive
DELETE Directive •••••••••••••••
DET ACH Directive •••••.••••••••.
DF (Display Floating Point) Directive
DI (Display Instruction) Directive
DN (Display Numeric) Directive
DNB (Display Numeric Byte) Directive.
DNH (Display Numeric Halfword) Directive
DNW (Display Numeric Word) Directive ••••
DUMP Directive
E (Single Precision Floating Point) Directive
END Directi ve ••
EXIT Directi ve ..
FILE Directive.
FORMAT Directive
GO Directi ve
IF Directi ve •
LIST Directi ve
LOG Directive
MODE Directi ve •
MSG (Message) Directive
N (Numeric) Directive
PGM (Program) Directi ve
RELA TIVE Directive
REVIEW Directive
RUN Directi ve ••
SET Directi ve ••••••
SHOW Directive
SNAP Directi ve
ST ATUS Directive

Symbolic Debugger (SYMDB)
Contents

2-21
2-22
2-22
2-24
2-25
2-25

3-1
3-2
3-2
3-3
3-3
3-5
3-5
3-6
3-7
3-8
3-9
3-9

3-10
3-11
3-11
3-12
3-12
3-13
3-13
3-14
3-14
3-15
3-15
3-15
3-16
3-16
3-17
3-18
3-18
3-19
3-19
3-20
3-20
3-21
3-21
3-22
3-22
3-23
3-24
3-25
3-25

MPX-32
Utilities

C)

(~

CONTENTS

Section

3.42
3.43
3.44
3.45
3.46
3.47

STEP Directive
TIME Directi ve
TRACE Directive ••
TRACK Directive ••
WATCH Directive
X (Hexadecimal) Directive

4--ERROR AND ABORTS

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

SYMDB File Assignment Error Messages
Addressing Error Messages •••••••
Trap Error Messages •••••••••••••
Directive Expression Error Messages
Base Error Messages ••••••••••••
Directive File Error Messages •••••
Directi ve Argument Error Messages.
Other Error Messages •••••••••••••
Abort Codes••

5--SAMPLE DEBUGGING SESSIONS

5.1
5.2

5.3

Debugging Session Introduction •••••••••••
Example 1: Scanning Data in a Program Loop
5.2.1 Sample Program--DBGTST •••••••.
5.2.2 Sample Debugging Sessions for Program DBGTST
Example 2: Searching Through a Linked List •••••••••••
5.3.1 Sample Program--DBGTST2 •••••••••••••••
5.3.2 Sample Debugging Session for Program DBGTST2

FIGURES

3-26
3-26
3-26
3-28
3-28
3-29

4-1
4-2
4-4
4-5
4-7
4-8
4-8
4-9

4-10

5-1
5-1
5-2
5-3
5-6
5-7
5-8

2-1 SYMDB Memory Map ... 2-8

2-1
2-2

3-1

SYMDB LFC Summary ••••
SYMDB Prompts and Labels

Instructions that Break a Trace

TABLES

MPX-32
Utilities

Symbolic Debugger
Contents

.. .. 2-6
2-10

3-28

v/vi

i(
',",-j

/

(

1.1 General Description

SYMBOLIC DEBUGGER (SYMDB)

SECTION 1 - OVERVIEW

The Symbolic Debugger (SYMDB) utility assists in locating program errors in all non-base
languages supported by MPX-32. However, the symbolic capabilities are available only
with FORTRAN 77+ and assembly languages.

SYMDB provides a stable environment to verify the correct execution of a program or to
locate any logic errors that may prevent proper execution.

SYMDB provides execution trace and breakpoint (trap) capabilities. The traps can be
established so that they occur only when certain conditions are met and that a
predetermined sequence of instructions is automatically executed upon occurrence. The
contents of memory can be changed or displayed in several different formats, including
integer (decimal, hex), real, double precision and character.

In FORTRAN 77+ and assembly language, addresses may be accessed through the use of
local and global symbols defined in the source program. These symbols represent
memory addresses, therefore the user does not need to know exact numerical addresses.
If the location is associated with a symbol, it can be accessed by using that symbol name
in the appropriate address parameter or command expression of a SYMDB command. If
the location to be accessed is not identified by a symbol, the name of the previous local
symbol plus the offset to the desired location can be entered in the command expression.

1.2 Local and Global Symbols

The symbols used by SYMDB are divided into two groups, local symbols and global
symbols. Local symbols are those symbols defined within a specific source program, and
accessed by that program. Global symbols are symbols defined within a specific source
program, and can be referenced by other programs to provide interprogram linkage.

MPX-32
Utilities

Symbolic Debugger (SYMDB)
Overview 1-1

In FORTRAN 77+, the following groups are local symbols:

Array Names
Variable Names
Statement Names
Internal Functions
Statement Functions
Symbolic Constants*
Statement Numbers**

* A symbolic cO~$ant can be used as a local symbol only if its value is less than _215,
greater than 2 ,or it is passed as an actual argument in a subroutine or function
call.

** FORTRAN-77+ (Releases 3.0 and later) assigns a statement number to each
executable statement. The format for the statement number is S.x where x is the
sequential location of the statement from the beginning of the respective program.
Statement numbers are treated as local symbols by SYMDB and can be used as
address parameters or command expressions in SYMDB commands. Assembly
language statements embedded in a FORTRAN program may be accessed by (Jsing
the nearest FORTRAN statement number plus the offset to the appropriate assembly
language statement.

In FORTRAN, the following groups are global symbols:

Program Names
Subroutine Names
Function Names
Entry Points

NOTE: In FORTRAN 77+, subprogram names occur as both local symbols (the start of
the subprogram) and global symbols (the primary entry point). The user must
exercise caution when specifying these symbols in partially qualified contexts
as they are usually different locations in memory.

In assembly language, local symbols are all symbols used as address labels. Global
symbols must be defined as linkage symbols through the DEF directive in the assembly
stage of the defining program, and referenced as linkage symbol through the EXT
directive in the assembly stage of the referencing program. Symbolic information for

. variables contained in common is not generated.

1.3 Accessing Program Symbols

To enable access to debugger symbols, option 19 must be set with the TSM OPTION
command when compiling and cataloging. Setting Option 19 for the compiler
(ASSEMBLE, FORTRAN 77+) causes symbol data to be produced in the object code.

Setting Option 19 for CATALOG causes global and local symbol tables to be produced in
the load module (only global symbols appear for program elements which are compiled
without Option 19).

1-2
Symbolic Debugger (SYMDB)

Overview
MPX-32
Utilities

C·
, /'

o

Note:

Overlays cannot be accessed by SYMDB, since the Cataloger does not generate local
symbols for overlays even though option 19 is set.

1.4 Summary of SYMDB Capabilities

SYMDB is capable of:

debugging interactively or in batch. In either environment, SYMDB commands
control the execution of the program.

accessing program locations (memory addresses) by using the symbols defined in the
source program. Addresses are displayed as symbolic expressions.

displaying data in several formats (floating point, ASCII, integer, or instruction
mnemonic).

executing program instructions one at a time and showing the result after each is
executed.

printing a debugging session log.

accessing commands from a SYMDB command file to alleviate the need of entering
each command individually during the debugging session.

1.5 Directive Summary

Directive

A

ABSOLUTE

B

BASE

BREAK

CC

CLEAR

CM

CR

MPX-32
Utilities

Description

Displays the address of the specified expression

Sets absolute mode. All subsequent address expressions are evaluated
and displayed as absolute addresses until relative mode is set via the
RELATIVE directi vee

Evaluates and displays the specified expression in binary format

Creates, deletes or modifies a user base

Transfers control to a user task's break receiver

Displays or modifies condition codes in the user task's program status
doubleword (PSD)

Clears all user defined bases or deletes all traps

Changes memory contents to the 32-bit value(s) specified beginning at
the address specified

Changes register contents to the 32-bit value(s) specified beginning at
the register specified

Symbolic Debugger (SYMDB)
Overview 1-3

Directive

DA

DD

DELETE

DETACH

DF

DI

DN

DNB

DNH

DNW

DUMP

E

END

EXIT or X

FILE

FORMAT

GO

IF

LIST

1-4

Description

Displays the contents of the memory range specified in ASCII format

Displays the contents of the memory range specified in double
precision floating-point format

Deletes the specified trap

Detaches SYMDB from the user task and transfers control to the task
at the address specified or at the last address executed in the task

Displays the contents of the memory range specified in single
precision floating point format

Displays the contents of the memory range specified in instruction
mnemonic format (assembly language)

Displays the contents of the memory range specified in decimal
integer format

Displays the contents of the memory range specified in decimal
integer byte format

Displays the contents of the memory range specified in decimal
integer halfword format

Displays the contents of the memory range specified in decimal
integer word format

Dumps the content of the memory range specified, the task's PSD and
the general purpose registers to the line printer (interactive mode) or
to the lfc /lOT (batch mode) in a side-by-side hexadecimal and ASCII
format

Evaluates and displays the result of the expression specified in single
precision floating point format

Terminates a trap list and returns control to the lfc /lIN

Terminates SYMDB and the user task

Passes control to the directive file specified to read and execute the
directives in the file, then return control to the lfc /lIN

Sets the default radix to either decimal or hexadecimal for
undesignated values in expressions

Begins execution of the user's task at the address specified or at the
current program counter value

Establishes conditional trap list execution

Displays the trap list for the specified trap

Symbolic Debugger (SYMDB)
Overvi.ew

MPX-32
Utilities

c

/

o

r
L

(

Directive -----
LOG

MODE

MSG

N

PGM

RELATIVE

REVIEW

RUN

SET

SHOW

SNAP

STATUS

STEP

TIME

TRACE

TRACK

WATCH

MPX-32
Utilities

Description

Writes the temporary log file to the line printer (interactive mode
only, not available in batch mode)

Sets log/no log file, extended/no extended memory access, and
FORTRAN/NOFORTRAN label field format

Designates a comment line

Evaluates and displays the result of the expression specified in signed
decimal format

Establishes the program name specified as the default for local
symbol searches or if no program name is specified, defaults to global
symbol searches

Sets relative mode and optionally establishes a new relative base or
program name

Writes the temporary log file (one screen at a time) to the lfc /lIN
(interactive mode only, not available in batch mode)

Sets run mode (as opposed to single-step) for tracing or tracking. A
full screen of program instructions is displayed before prompting for
continuation or termination of the trace or track.

Sets a trap at the word address specified and prompts for a trap list
directive

Displays trap addresses, base names and values, option settings and/or
symbols

Displays the contents of the memory range specified in side-by-side
hexadecimal and ASCII format

Displays the status of the user PSD and general purpose registers at
the current address

Sets single-step mode for subsequent TRACE or TRACK directives.
One program instruction is displayed before prompting for
continuation or termination of the trace or track.

Displays the current date and time

Transfers control to the user task and displays each instruction after
it is executed

Transfers control to the user task and displays each branch instruction
after it is executed

Transfers control to the user task and reports any erroneous branches
into memory (no instructions are displayed)

Symbolic Debugger (SYMDB)
Overview 1-5

Directive

x

1-6

Description

Evaluates and displays the result of the expression specified in
hexadecimal format. If no expression is specified, X is interpreted as
the EXIT directive.

Symbolic Debugger (SYMDB)
Overview

MPX-32
Utilities

{~-~"

'0

c:

SECTION 2 - USAGE

2.1 Accessing SYMDB

2.1.1 Accessing SYMDB in TSM

SYMDB can be accessed in interactive modes by placing a call to the M.DEBUG system
service in the program to be debugged, by pressing the break key while the task is
executing, or by using the following job control statement:

$DEBUG load mod

The task is activated (JCL statement only) and SYMDB is attached as a co-resident
module. Control is passed to SYMDB instead of to the task's transfer address when
activation completes.

When accessing SYMDB interactively, or when logical file code /lIN is assigned to a user
terminal, SYMDB prints the current date and time, a status report, and prompts for an
immediate directive with a dot (.):

MPX-32 UTILITIES 3.0 SYMDB R3.X.X.X mm/dd/yy TIME TASKNAME=xxxxx
(C) COPYRIGHT 1980 GOULD INC., COMPUTER SYSTEMS DIVISION, ALL RIGHTS RESERVED
••• Status Report •••

To access SYMDB for a task that was activated by a TSM RUN directive, press the break
key. TSM responds:

** BREAK ** ON taskname AT location CPU TIME = n SEC.
CONTINUE, ABORT, DEBUG, OR HOLD?

Enter D to access SYMDB. SYMDB is then loaded into the task's address space and
debugging begins at that point where the task was interrupted. The date, time, status
report, and prompt are displayed as described above. The context of the task (PSD and
general purpose registers) prior to the interrupt is retained.

Note: Tasks which configure their own break receiver disable this capability.

2.1.2 Accessing SYMDB via the Batch Stream

SYMDB can be accessed via the Batch Stream by entering the $DEBUG command in the
job control. SYMDB cannot be accessed until the program has been assembled/compiled
and cataloged. Therefore, the $DEBUG command must follow the$ASSEMBLE/
$FORTRAN and $CAT ALOG portions of the job control if the program is to be
assembled/compiled, cataloged and debugged in one job stream. Otherwise, separate job
control can be set up for each phase of the program development.

MPX-32
Utilities

Symbolic Debugger (SYMDB)
Usage 2-1

All the file assignments for the program to be debugged must be made prior to debugging
the program. These file assignments can be made by establishing defaults through the CI:
use of the Cataloger's ASSIGN directives when the program is cataloged. If no defaults
were assigned, the $ASSIGN commands must be entered in the job control preceding the
$DEBUG command.

Default file assignments are made for all necessary SYMDB files (refer to Section 2.3.6
LFC Summary). Only SYMDB input (lIIN) and output (lIOT) files may be changed from
their default.

SYMDB commands to be executed are entered following the $DEBUG command in the job
control stream, unless the LFC IIIN is assigned to another resource.

Note: If SYMDB commands and the data for the task being debugged are both in the
job stream, the order of the commands and the data must match the order of
reads that occur during exection.

Example 1

This is an example of job control to assemble, catalog and debug a program.

$JOB DBG. TST username

infile

SLO

2-2

$OPTION 19
$EXECUTE ASSEMBLE

source program

.
$OPTION 19
$EXECUTE CATALOG

Catalog directives

.
$ASSIGN1 IN=infile
$ASSIGN2 OUT =SLO,1000
$DEBUG DBG. TST
command1
command2

commandn
$EOJ
$$

specifies the name of the permanent disc file which contains the input
for the user program

specifies the user program output is to be written to the system listed
output file (spooled output) which is then written to the line printer.

Symbolic Debugger (SYMDB)
Usage

MPX-32
Utilities

o

[

(

Example Z

This is an example job control for debugging only. This example assumes that the
program has been assembled/compiled, and cataloged and that no default program file
assignments were made during Cataloging.

$JOB DBG. TST username
$ASSIGNI IN=infile
$ASSIGN2 OUT =SLO,lOOO
$DEBUG DBG. TST
command1
commandZ

commandn
$EOJ
$$

infile speci fies the name of the permanent disc file which contains the input
for the user program

SLO specifies the user program output is to be written to the system listed
output file (spooled output) whicll is then written to the line printer.

2.2 Using M.DEBUG

To access SYMDB with a call to a system service, code a call to the M.DEBUG system
service in the task itself. The call loads SYMDB into the task's address space and passes
control to SYMDB. The date, time, status report, and prompt are displayed as described
above.

If the task is executing in the interactive or batch environments, the default assignments
cause SYMDB I/O to occur to the user's terminal or SYC/SLO respectively. For
independent tasks, the user must provide assignments for IIIN and /lOUT either at
CATALOG time or prior to the TSM ACTIVATE. Usually, these assignments are to a
specific terminal device (e.g. TY7EAO) or the operator's console. The specified device
must be available for assignment (not logged in or in TSM WAIT) when the M.DEBUG call
occurs.

Example

TSM>ASSIGN IIIN TO DEV=TY7EAO
TSM>ASSIGN IIOT TO LFC=IIIN
TSM> ACTIV ATE MYT ASK
T ASK NUMBER IS 21004ECI
TSM>WAIT

2.3 Logical File Code Assignments

When SYMDB gains control, it dynamically allocates logical file codes (LFCs) for input
and output and creates a log file to record SYMD8 session. The following sections
describe the logical file code assignments used by SYMDB.

MPX-32
Utilities

Symbolic Debugger (SYMDB)
Usage 2-3

2.3.1 Source Input (lIN and 1103)

SYMDB directive input is assigned to logical file code IIIN.

lIN and 1103 Default and Optional Assignments

In interacti ve mode, the default assignment for IIIN is to logical file code UT.

In batch mode, the default assignment for IIIN is to the System Control file (SYC).

SYMDB input can also be from a directive file by specifying the FILE directive. If the
FILE directive is used, SYMDB uses the pathname specified in the directive to make the
assignment to logical file code 1103. After the directive file is read, input reverts to the
file or device assigned to logical file code IIIN.

There are two optional assignments for ffIN in the batch mode:

$AS IIIN TO ~pathname t
IDEV=devmnd

path name
devmnc

is the pathname of a directive input file
is the device mnemonic of a device containing directive input

There is no optional assignment to 1103.

2.3.2 Listed Output (lOT)

Output generated by SYMDB directives is assigned to logical file code IIOT.

lOT Default and Optional Assignments

In interacti ve mode, the default assignment for 1I0T is to logical file code UT.

In batch mode, the entire SYMDB session is output to the System Listed Output file
(SLO).

There are two optional assignments for IIOT in the batch mode:

$AS IIOT TO ~pathname t
I DEV = d e vmn c\

pathname
. devmnc

is the pathname of an output file
is a device mnemonic of a device to contain output

2.3.3 Temporary Log File (1101)

SYMDB uses logical file code 1101 to dynamically allocate a temporary log file. The log
file stores approximately 300 screens of terminal I/O or the batch equivalent. The
REVIEW command replays the LOG file data to the 1I0T LFC. This file is copied to an
output file (see logical file code 1102) when a LOG directive is issued in the interactive
mode. LOG is treated as a comment in batch because the SYMDB session is already
output to an SLO file in batch mode.

2-4
Symbolic Debugger (SYMDB)

Usage
MPX-32
Utilities

f'" :G

c

(~

2.3.4 Log Output (1102)

Alternate output assigned to logical file code 1102. This is used to record the output from
the LOG and DUMP directives in the interactive mode.

1102 Default and Optional Assignments

The default assignment for 1102 is to the System Listed Output file (SLO).

There is no optional assignment for 1102.

2.3.5 Symbol Table (115M)

The load module is assigned to logical file code 115M. The load module is accessed to
obtain the symbol table.

115M Default and Optional Assignments

The default assignment for 115M to the load module is made only if Option 19 was set for
the Cataloger when the load module was created.

There is no optional assignment to /ISM.

MPX-32
Utilities

Symbolic Debugger (SYMDB)
Usage 2-5

2.3.6 LFC Summary

The following is a table of the LFCs used by SYMDB and their default and optional C
assignments.

LFC

IIIN
(interactive)

IIIN
(batch)

1101

1102
(interactive)

1102
(batch)

IIOJ

IIOT
(interactive)

IIOT
(batch)

115M

2A Exiting SYMDB

Table 2-1
SYMDB LFC Summary

Default
Assignment

LFC=UT

SYC

none

SLO

N/A

pathname

LFC=UT

SLO

Load Module

Optional
Assignment

pathname
DEV=devmnc

pathname
DEV=devmnc

none

none

none

none

pathname
DEV=devmnc

pathname
DEV=devmnc

none

To exit SYMDB in the batch and interactive modes, specify the EXIT directive.

2-6
Symbolic Debugger (SYMDB)

Usage
MPX-J2
Utilities

o

2.5 Attaching SYMDB to a User Task

SYMDB functions as a co-resident module of the user task being debugged; the user
"neither catalogs SYMDB as part of the task nor provides any memory area for SYMDB
when the task is cataloged.

The TSM DEBUG command and the M.DEBUG system service (H.REXS,29, SVC 1,X'63')
attach SYMDB to the calling task as follows:

1. SYMDB is loaded at the beginning of the map block below the user task's pure
code and data section (CSECT) and/or common areas as illustrated in Figure
2-1. The lower address of the user's CSECT, if any, is decreased by 8KW, the
size of SYMDB.

2. The area T .CONTXT is initialized in the calling task's TSA. T .CONTXT
contains eight words for the user register contents at the point of call and two
words for the user PSD at the point of call. T.CONTXT is used by SYMDB to
determine the last known context of the user task upon entry to any SYMDB
entry point.

3. Control is passed, to SYMDB's Entry Point 1 (startup entry point). Any task
interrupt levels active at this point remain in effect. They are analyzed by
SYMDB and displayed in a status report.

,The combination of SYMDB and the user task is a single task, with a single TSA and a
single dispatch queue entry.

When a task is activated from TSM and the break key is pressed while the task is
processing, TSM provides the option to attach SYMDB. If .SYMDB is attached, the task
context is saved as described in step two.

If the Debugger is currently attached toa user task, and the task executes M.DEBUG,

and the user is in GO,mode, a break interrupt will occur~

and the user is in TR,A.CE mode, a SVC 1,X'63' will be echoed and execution will be
transferred to the next instruction in the task. '

MPX-32
Utilities

Symbolic Debugger (SYMDB)
Usage 2-7

2-8

EXTENOEO ADDRESS SPACE • · · · • 128KW

GlOBAL COMMONIOATAPOOL

CSECT

SYMOB PATCH AREA

SYMDB

I/' ////////////////////,/j
;///////////////////////

OSECT

TSA

OPERATING SYSTEM

Figure 2-1. SYMDBMemory Map

Symbolic Debugger (SYMDB)
Usage

o

8704108

MPX-32
Utilities

o

[~

(

2.6 Input/Output

2.6.1 TerminalI/O

When SYMDB is attached to a task, the screen size is obtained from the Unit Definition
Table (UDT) for the terminal device assigned to logical file code UT. This is the screen
size defined at SYSGEN. The screen size is used by SYMDB in the interactive mode and
has no meaning in batch mode.

The screen size is used to calculate the size of a temporary disc log file large enough to
contain approximately 300 full screens of terminal I/O. The log file is manipulated by
the LOG and REVIEW commands. It contains a record of the most recent screens of I/O
to the user's terminal and provides a complete audit trail of the debugging session. A
warning is displayed ten screens before the end of the log file space.

The screen width (number of characters per line) is used to calculate how many words per
line will fit into displays such as SNAPs. The minimum allowable screen width for
debugging is 72 characters and the maximum is 132 characters, the width of a System
Listed Output file.

The screen height (number of lines per screen) is used by SYMDB to enable or disable
full-screen logic.

Full-screen logic enables SYMDB to pause when a full screen of lines is written to the
terminal with no intervening terminal input. This prevents long displays from running off
the top of the screen before they can be read. A SYSGEN-defined height of zero lines
signifies that the terminal is a hardcopy device and disables full-screen logic. As a
result, long displays cannot be terminated prematurely.

When at the end of a full screen of consecutive output, SYMDB prompts for a carriage
return to continue displaying output. If anything other than a' carriage return is entered,
the current directive is terminated and SYMDB reads the next directive.

Terminal input and output are labeled with prefix characters (prompts) that indicate,
both on the terminal and on the log file, user-issued directives and SYMD8 responses.
The prompt for an input directive from the terminal is one or two dots. A single prompt
(.) signifies a request for an immediate directive; a double prompt (••) signifies a request
for a deferred directive. In all other cases, the prefix characters are pseudoprompts in
that they are only labels for terminal output lines. Table 2-2 identifies the various
combinations of prompt characters. In batch mode, only the pseudoprompts are output.

MPX-32
Utilities

Symbolic Debugger (SYMDB)
Usage 2-9

Prompt

>

»

I

II

2.6.2 Command Files

Table 2-2
SYMDB Prompts and Labels

Significance

Requests an immediate directive on logical file code IIIN

Requests a deferred directive on logical file code /lIN
SYMDB pseudo prompts:

Immediate directive from logical file code 1103 (FILE
directive)

Deferred directive from logical file code 1103 (FILE
directive)

Immediate directive from a trap list

Deferred directive from a trap list

Follows any of the above prompts and pseudoprompts;
labels output resulting from a directive

A command file is a permanent disc file that contains SYMDB directives. Directives are
in the form of 72-byte logical records. The Text Editor (EDIT) utility can be used to
create a SYMDB command file. The STORE (not SAVE) directive should be used to write
a command file. A command file is accessed by using the FILE directive.

(-"

'0

The command directive can contain any number of SYMDB directives and all directives'"
can be used in the command file except the FILE directive.

2.7 Control Transfers

During a debugging session, control can pass back and forth between SYMDB and the user
task any number of times. Because SYMDB and the user task are parts of a single task,
and it is important for the scheduler to know which part is executing at any given time,
all such control transfers take place through scheduler (H.EXEC) service calls.

Each time SYMDB gains control, T.CONTXT in the TSA contains the user task's context
as of its last executed instruction. T.REGS and T.REGP indicate the current task
interrupt push-down level in effect for the user task (i.e., the stack is not pushed an
additional level upon entry to SYMDB). SYMDB analyzes the TSA and DQE of the task in
a status report to the terminal, indicating the user context (PSD and registers) for each
active task interrupt level.

When SYMDB gains control, it runs privileged regardless of the state of the user task.
When SYMDB passes control to the user task, H.EXEC restores the user task's state.

The following is a summary of the control transfers which take place between SYMDB
and the user task. SYMDB always gains control as a result of system service M.DEBUG,
whether it is called by the task activation service, by the task itself, or by TSM at the
request of the terminal user after the task is running.

2-10
Symbolic Debugger (SYMDB)

Usage
MPX-32
Utilities

The user task gains control:

• when SYMDB executes a GO directive.

• when SYMDB executes a BREAK directive.

for the execution of a user instruction during a TRACE, TRACK, or WATCH directive.

• when SYMDB executes a DETACH directive.

SYMDBgains control:

• when the user task executes SYMDB trap instruction.

• when IDCS recognizes a break from the user's terminal.

• when the user task calls the M.BRKXIT service after SYMDB executes a BREAK
directive.

• after the execution of a user instruction during a TRACE, TRACK, or WATCH
directive.

• when the user task would normally be aborted by MPX-32.

• when the user task executes an M.EXIT system service.

If SYMDB gains control on a trap instruction (SVC 1,X'66') which was user-coded (as
opposed to one which was set by the SET directive), SYMDB interprets it as a break from
the terminal instead· of a trap.

2.8 Break Handling

A break occurs when:

• the terminal break key is pressed.

• any task uses the M.INT system service to simulate an interrupt and enter a break
receiver.

SYMDB analyzes the user context in a status report when the break handling entry point
is entered. It prompts for the next directive. If a command file is being used, command
file processing terminates.

MPX-32
Utilities

Symbolic Debugger (SYMDB)
Usage 2-11

SYMDB recognizes breaks only when:

• it executes a GO directive and has not yet prompted for the next directive, i.e., the
user task has control.

• it is executing a WATCH directive.

Breaks for the task are ignored if either of these conditions is not met.

If executing GO or WATCH as described above, the execution of a trap instruction that
was not set by the SET directi ve appears to SYMDB as a break which occurred between
the execution of the trap instruction and the next user instruction.

Breaks in batch mode are generated by an OPCOM BREAK directive or by an SVC 1,X'66'
instruction coded as part of a task.

2.9 Setting the Default for Symbolic References

There are various symbol tables in which SYMDB searches for symbol names. These are
the program name table, the global symbol table and a number of local symbol tables
(one for each of the program names in the program name table). A default· may be set to
either the global or one of the local symbol tables through the use of the PGM
directive. The default specifies that the symbol table to which the default is set will be
the first table searched for the symbol name specified in a SYMDB command.

If the PGM directive is entered without an argument, the default is set to the global
symbol table (this is· the default condition when SYMDB is accessed). Global symbols
may then be accessed by entering the symbol name in a command expression. Local
symbols may be accessed in this default condition only if they are entered in a full
pathname. A full pathname consists of the program name which defines the local
symbol, a back slash (\) character and the local symbol name (progname \ locsym).

The default may be changed to one of the local symbol tables by entering the PGM
directive and the name of the program which defines the desired local symbols. Local
symbols defined in the program specified in the PGM directive may then be entered
without specifying the program name or backslash (\) character. Local symbols defined
in another program must be entered in the full pathname format. Global symbols may be
entered in this default condition, but if a global symbol, default local symbol and/or
program have the same name, the local symbol will be accessed. Therefore, if the global
symbol was desired, the default must be returned to the global symbol table (enter PGM
with no. argument). If a program name was desired, it must be preceded with the pound
sign (II).

Examples

.PGM D.EXMPL

allows SYMDB to access all local symbols defined in the program D.EXMPL.

.PGM

allows SYMDB to access all global symbols defined in the program to be debugged (local
symbols are no longer accessible without entering a full pathname).

c

\")

Note: In FORTRAN, IISUBR is the name of a subroutine and \SUBR is the location of
the entry point. These locations are usually separated by a few words of data
and do not refer to the same location in memory. The user must ensure that the 0
wrong location is not implied when fully qualified symbols are not specified.

2-12
Symbolic Debugger (SYMDB)

Usage
MPX-32
Utilities

2.10 Program Execution

SYMDB has several directives for transferring control to the user program to begin
program execution. These directives are the GO, TRACE, TRACK and WATCH
directi ves.

After SYMDB is accessed, the execution of the program to be debugged can be started by
entering the GO directive. This directive can also be used to continue execution after
the program has been stopped. The GO directive has two optional parameters, the start
address and the stop address. If the start address is not specified, SYMDB uses the
current PSW as the start address. If the stop address is not specified, program execution
continues until the program completes or until an abort or trap is encountered. If no
parameters are specified, the program will execute as if SYMDB was not attached.

Program execution may also be started with the TRACE directive. The TRACE directive
is used to single step through program execution. This directive has two optional
parameters, the start address and the stop address. If a start address is specified,
SYMDB starts execution at that address and displays the instruction located at that
address. If no start address is specified, SYMDB starts execution at the address specified
in the current PSW and displays the instruction located at that address. After each
instruction is executed and displayed, a carriage return (cr) must be entered to execute
and display the next instruction. The single step trace continues in this manner until
reaching the stop address (if specified) or the end of the program (if no stop address is
specified). The trace may be stopped at any time by entering any character other than a
carriage return (cr) following the display of an instruction.

Note: When executing a program via the TRACE directive, all traps are ignored.

There are two other directives that can be used to start program execution, the TRACK
and WATCH directives. Both of these directives are functionally like the TRACE
directive. The TRACK directive differs from the TRACE directive in that it writes only
branch instructions and their results to the lfc IIOT. The WATCH directive differs from
the TRACE directive in that it does not write any instructions or results.

The WATCH directive causes SYMDB to monitor program execution to detect erroneous
branches into memory that is not within the program's address range. If a, branching
address error occurs, an error message will be written to the lfc IIOT. There will be no
other output during program execution in WATCH mode.

2.11 Traps and Trap Lists

Program execution may be stopped by setting traps at locations within the program. The
SET directive is used to place traps at the desired locations. The SET directive requires
one parameter, the trap (stop) address. When program execution is started by the GO
directive, execution continues until a trap is encountered (or until the program finishes
processing). If during execution a trap is encountered, execution of the program will stop
at the trap address. This allows the user to execute sections of code that are known to
be correct and stop at· an address where errors are suspected. When execution is stopped
because a trap was encountered, sYMDB will execute the directives in the trap list' for
the trap specified in the SET directive. '

MPX-32
Utilities

Symbolic Debugger (sYMDB)
Usage 2-13

When the SET directive is entered, SYMDB defers the execution of subsequent directives
and stores them in a trap list for the trap specified in the SET directive. A trap list can C
contain any number of SYMDB directives. The directives will be executed in the order •.
they were entered in the trap list. All SYMDB directives can be entered in a trap list,
except the LOG and REVIEW directives.

Each directive entered in a trap list, except the CLEAR, FORMAT, MODE and SHOW
directives, is checked for validity before being stored. If a directive contains an error,
the directive is not entered in the trap list and an appropriate error message is written to
the lfc /lOT (refer to Section 6.3 Trap Error Messages). Following the error message, the
user may re-enter the directive or enter another directive as desired. The directives
CLEAR, FORMAT, MODE, and SHOW will be validated only when they are to be
executed.

A trap list directive may contain a user base parameter which has not yet been defined.
This is not considered an error in a trap list directive. Therefore, care should be taken to
define all user bases either before building the trap list or before executing the trap
which contains an undefined user base reference.

Trap lists. are ended by entering anyone of the trap list terminator directives. If the
trap list contains nested traps, each trap list terminator corresponds to the trap list
following the most recent un terminated SET directive. Valid trap list terminators are
the BREAK, END, EXIT, FILE, GO, TRACE, TRACK and WATCH directives.

The LIST command can be used to display the contents of a trap list.

Each trap maintains an attribute called COUNT. This special symbol is automatically
incremented each time the trap is executed. The current value of COUNT is displayed if
the trap is LISTed.

Traps can be established to occur only when certain conditions are met. This is done by
using the IF directi ve as the FIRST directi ve of the trap list. When. the trap is executed,
the specified conditions are evaluated and if met, the trap is recognized and the trap list
(if any) is executed.

Example

• SET S.23
•• IF C(J»n'300'&COUNT>=100
•• DN J
•• DF X
•• CM Y = E'37.91'
•• GO S.40

In the above example, a trap is set at the beginning of FORTRAN statement S.23. This
trap will be recognized when the contents of variable J has a value greater than 300
(decimal) and the COUNT for this trap is greater than or equal to X'100'. Otherwise,
COUNT is incremented and execution of the program continues. When the trap is
recognized, the values of symbols J and X are displayed. The value of symbol Y is
changed and execution is resumed at FORTRAN statement S.40.

2-14
Symbolic Debugger (SYMDB)

Usage
MPX-32
Utilities

o

2.12 Nested Traps

Traps can be set within a trap list. If a SET directive is entered in a trap list, a nested
trap list is built within the original trap list. When the original trap is encountered
during program execution, the SET directive in the trap list being executed will cause a
second trap to be set at the address specified in the nested SET directive. Any number
of trap lists may be nested within a trap list. Each nested trap will be set only after the
trap list it is nested within is executed.

Each nested trap within a trap list must have a corresponding trap list terminator. Each
trap list terminator corresponds to the trap list following the most recent unterminated
SET directive.

The size of the trap table is a 16 by 20 word two-dimensional array. If single traps are
set, each will take 16 words, giving a maximum of 20 traps.

If 1 trap contains more than 15 nested traps, the trap blocks will be linked together,
giving a maximum of 18 remaining traps, each containing less than 15 nested traps.

Example

SET trapl
directive1-1
directivel-2
SET trap2
directive2-1
SET trap3
directive3-1]
terminator3
SET trap4
directive4-1]
terminator4
terminator2
terminatorl

- trap is set at address specified by trap 1
- directivel-1 is stored in the trap list for trapl
- directivel-2 is stored in the trap list for trap 1
- trap2 will be set when trapl is encountered
- directive2-1 is stored in the trap list for trap2
- trap3 will be set when trap2 is encountered
- directive3-1 is stored in the trap list for trap3
- terminator3 is stored in and terminates the trap list for trap3
- trap4 will be set when trap2 is encountered
- directive4-1 is stored in the trap list for trap4
- terminator4 is stored in and terminates the trap list for trap4
- terminator2 is stored in and terminates the trap list for trap2
- terminator 1 is stored in and terminates the trap list for trapl

2.13 Examining Memory and Registers

SYMDB provides directives which allow the user to examine the contents of memory or
registers.

The directi ves to display memory are as follows:

Directive

DA (Display ASCII)

DD (Display Double Precision)

DF (Display Floating Point)

DI (Display Instruction)

Description

Displays the contents of memory in
ASCII format. For FORTRAN 77+
character strings, the decimal length of
the symbol is used.

Displays the contents of memory in
double precision floating point format.

Displays the contents of memory in
single precision floating point format.

Displays the contents of memory in
instruction format.

MPX-32
Utilities

Symbolic Debugger (SYMDB)
Usage 2-15

Directive

DN (Display Numeric)

DNB (Display Numeric Byte)

DNH (Display Numeric Halfword)

DNW (Display Numeric Word)

DUMP

SNAP

Description

Displays the contents of memory in a
decimal integer format (for FORTRAN
77 + symbols, the data size is selected
from the symbol table entry).

Displays the contents of memory in a
decimal integer byte format.

Displays the contents of memory in a
decimal integer halfword format.

Displays the contents of memory in a
decimal integer word format.

Dumps the contents of memory to the
line printer in a side-by-side hexadecimal
and ASCII format.

Displays the contents of memory in a
side-by-side hexadecimal and ASCII
format.

The eight general purpose registers can be displayed by entering the STATUS directive.
This directive "displays the contents of all general purpose registers in a side-by-side
hexadecimal and ASCII format. The STATUS directi ve has no parameters.

2.14 Modifying Memory and Registers

SYMDB provides directives which allow the user to change memory or register values.

The contents of memory can be changed by entering the CM (Change Memory)
directive. This directive requires two parameters separated by an equal sign (=). The
first parameter is the starting address of the address values to be changed. The second
parameter, which may be a list of values separated by commas, is the data to be entered
in memory starting at the address specified in the first parameter. If there is only one
entry in the second parameter (the data list), only the address specified will be changed.
Two successive commas in the data list specify that the corresponding address word
value will remain unchanged.

Example

.CM 100=1,2,,4

causes the values 1, 2, and 4 to replace the contents of addresses 100, 104 and 10C
respectively. Address 108 remains unchanged.

The contents of registers can be changed by entering the CR (Change Register)
directive. This directive requires two parameters separated by an equal sign (=). The
first parameter is the starting register (RO-R7) of the register(s) to be changed. The
second parameter, which may be a list of values separated by commas, is the data to be
entered in the register(s) starting with the register specified in the first parameter. If
there is only one entry in the second parameter (the data list), only the register specified
will be changed. Two successive commas in the data list specify that the corresponding
register will remain unchanged.

Example

.CR Rl=1,2,,4

2-16
Symbolic Debugger (SYMDB)

Usage
MPX-32
Utilities

c

o

causes the values 1, 2, and 4 to replace the contents of registers Rl, R2 and R4
respectively. Register R3 remains unchanged.

2.15 Selecting the Input Radix

The input radix can be selected using the FORMAT directive. The default radix is
hexadecimal. To change the default radix to decimal, enter FORMAT N. To change the
default radix back to hexadecimal, enter FORMAT X. The SHOW OPTIONS directive
may be entered to display the current default input radix.

2.16 Establishing User Bases

To establish a base at the beginning of a data structure or a subroutine that will be
referenced frequently during the debugging process, enter the BASE directive. This
directive requires two parameters, the base name and the expression whose value is
assigned to the base. Once a base is defined, it may be 'used as a term in an expression in
SYMDB directives. To change the value of a base, enter the BASE directive. To remove
all user defined bases from SYMDB's base table, enter the CLEAR BASES directive.

2.17 Selecting Relative or Absolute Addressing

To establish a relative reference point during debugging, use the RELATIVE directive.
This directive uses one optional parameter, a base name or program name to be the
relative reference point. If the parameter is omitted, SYMDB re-establishes the last
relative name used in the program. The ABSOLUTE directive is used to make all
subsequent address expressions absolute (relative to location 0 of the task's logical
address space). The SHOW OPTIONS directive may be entered to display the current
addressing mode (relative or absolute).

2.18 Selecting Log/No Log File

A temporary log file is allocated by default for SYMDB when SYMDB is accessed in
interactive mode. The log file is used to store the last 300 screens of the directives and
results of the debugging session until a LOG or REVIEW directive is entered. These
directives display the log file to the line printer (LOG directive) or the Ifc /lOT (REVIEW
directive) and then clear the log file. All subsequent directives will be entered in the log
file until another LOG or REVIEW directive is entered or until the debugging session is
ended.

The log file will not be maintained after the user enters the MODE NOLOG directive.
The log file can be maintained again by entering the MODE LOG directive thus all
subsequent directives will then be stored. The SHOW OPTIONS directive may be entered
to display whether or not a log file is being maintained.

2.19 Selecting Label Field Format

The addresses which are displayed in the label field of all SYMDB directive results can be
displayed in two formats. The first format is oriented to FORTRAN programs and
displays the address as the program name, the symbol name, and the offset. Program
name specifies the program in which the address to be displayed is located. Symbol name
specifies the symbol name within the specified program which has the closest value less
than or equal to the address to be displayed. Offset specifies the positive difference
between the symbol name's value and the address to be displayed.

MPX-32
Utilities

Symbolic Debugger (SYMDB)
Usage 2-17

The second format is oriented to non-FORTRAN programs. This format displays the ,4~
address as the program name plus the offset. Program name specifies the program in 'J. . •..
which the address to be displayed is located. Offset specifies the positive difference "--./
between the symbol name's value and the address to be displayed.

Entering the MODE FORTRAN directive causes SYMDB to select the FORTRAN
oriented format. Entering the MODE NOFORTRAN directive causes SYMDB to select
the non-FORTRAN oriented format. Both assembly language and FORTRAN programs
may use either addressing format. The default setting of SYMDB is the non-FORTRAN
mode. The SHOW OPTIONS directive may be entered to display the current label field
format.

2.20 Selecting Extended Memory Access

If the program to be debugged uses extended memory addressing, SYMDB can access this
portion of memory only when the extended memory bit is set in the program status word
(PSW)~ The extended memory bit in the PSW can be set by executing the SEA (set
extended addressing) instruction in the program being debugged or by the MODE
EXTENDED directive.

The MODE EXTENDED directive allows the user access to extended memory without
having to execute the SEA instruction within the program. This allows the user to
examine or change extended memory at any time in the debugging session. If the MODE
EXTENDED directive is not entered, the user would have to trace through the program
location which contains the SEA instruction (setting the PSW extended memory bit)
before attempting to access extended memory via a SYMDB directive.

If the program to be debugged does not require extended memory access, the MODE
NOEXTENDED directive will inhibit user access to extended memory. This is the default
condition in SYMDB. The SHOW OPTIONS directive may be entered to display the
current extended memory access mode.

2.21 SYMDB Directive Expressions

Many SYMDB directives have required or optional parameters specified as expressions.
SYMDB expressions are specified as arithmetic, logical, relational or single term
expressions. 'The expressions are evaluated as 32-bit integer expressions. Each
expression contains one or more valid terms. Valid terms used in expressions are integers
(in the default input radix), constants, register and memory contents, base names,
symbolic references, COUNT and period (.).

The rules for entering expressions are

• Operators are binary (arithmetic, logical or relational), requiring two operands.

• Expressions are evaluated left to right.

• Parentheses override left to right evaluation.

• Expressions are evaluated as 32-bit integer operations.

• Expressions contain one or more valid terms (a maximum of eight characters per
symbolic name).

2-18
Symbolic Debugger (SYMDB)

Usage
MPX-32
Utilities

(

2.21.1 Arithmetic Expressions

The following is a description of valid arithmetic expressions (X and V specify any valid
term).

Ex~ressions ~ Descrietion

X+V Addition X is added to V, overflow is ignored

X-V Subtraction V is subtracted from X, overflow is
ignored

X*V Multiplication X is multiplied by V, overflow is
ignored

X/V Division X is di vided by V, remainder is ignored

2.21.2 Logical Expressions

The following is a description of valid logical expressions (X and V specify any valid
term).

Ex~ression

X A V

X&V

XIV

X@V

MPX-32
Utilities

~ Descrietion

Logical Shift X is shifted V bits to the left if V is
positive or to the right if V is negative

Logical AND X is logically ANDed with V

Logical OR X is logically ORed with V

E xclusi ve OR X is exclusively ORed with V

Symbolic Debuqger (SVMDB)
Usage 2-19

2.21.3 Relational Expressions

The following is a description of valid relational expressions (X and Y specify any valid C
term). Comparisons are arithmetic, i.e., the 32-bit values being compared are assumed
to be the signed numbers.

Expression

X=Y

X < > Y

X > Y

X<Y

X >= Y

X <= y .

Note:

~

Equal

Not Equal

Greater

Less

Greater or Equal

Less or Equal

Description

if X is equal to Y, evaluated as TRUE
or 1 (otherwise, FALSE or 0)

if X is not equal to Y, evaluated as
TRUE or 1 (otherwise, FALSE or 0).

if X is greater than Y, evaluated as
TRUE or 1 (otherwise, FALSE or 0)

If X is less than Y, evaluated as TRUE
or 1 (otherwise, FALSE or 0)

if X is greater than or equal to Y,
evaluated as TRUE or 1 (otherwise,
FALSE or 0)

if X is less than or equal to Y,
evaluated as TRUE or 1 (otherwise,
FALSE or 0)

Single terms may be entered as expressions, and their value used as the expression result. i'- \,
\"/

2.22 Terms used in SYMDB Expressions

SYMDB expressions contain one or more valid terms. The valid terms are integers,
constants, register and memory contents, base names, symbolic references, COUNT and
period (.).

2.22.1 Integers

'Integers used as terms are entered in the default input radix. If the input radix is
hexadecimal, the first digit of the integer must be 0 through 9. Therefore, if a
hexadecimal integer beginning with A through F is to be entered, it must be preceded by
a leading zero.

If the input radix is hexadecimal, any number of digits can be entered as a hexadecimal
integer but only the last eight digits (the least significant digits) will be accepted by
SYMDB as the integer value.

If the input radix is decimal, one to ten digits can be entered as the decimal integer. If
more than ten digits are entered, SYMDB expects the eleventh digit to be a valid
operator, and displays the message:

MISSING OPERATOR

to the Ifc IIOT and reissues a prompt for another directive. The user should re-enter the
directive with a one to ten digit decimal integer or enter another directive. 0
2-20

Symbolic Debugger (SYMDB)
Usage

MPX-32
Utilities

(

2.22.2 Constants

The following are six types of constants used as terms in SYMDB expressions:

• Hexadecimal Constant - A hexadecimal constant is a string of hexadecimal digits
enclosed in apostrophes and preceded by the letter X (e.g., X 'lEC'). If the default
input radix is hexadecimal, the letter X and the apostrophes are unnecessary. If the X
and apostrophes are omitted and the hexadecimal value begins with A-F, a leading
zero must precede the hexadecimal constant (synonymous with hexadecimal integer).
In either format, any number of digits can be entered, but only the last eight digits
(the least significant) will be used as the constant.

• Decimal Constant - A decimal constant is a string of one to ten decimal digits
enclosed in apostrophes and preceded by the letter N (e.g., N '193'). If the default
input radix is decimal, the letter N is unnecessary (synonymous with decimal
integer). If more than ten digits are entered in a decimal constant string, SYMDB
expects the eleventh digit to be a valid operator, and displays the message:

MISSING OPERA TOR

to the lfc /lOT and reissues a prompt for another directive. The user should re-enter
the directive with a one to ten digit decimal constant or issue another directive.

· Binary Constant - A binary constant is a string of one to 32 ones and zeros enclosed in
apostrophes and preceded by the letter B (e.g., 8'101011'). If fewer than 32 digits are
entered, leading binary zeros are added to produce a 32-bit value.

• Floating Point Constant - A floating point constant is a string of one to 21 decimal
digits enclosed in apostrophes and preceded by the letter E. The floating point string
is entered in one of three formats, a single precision value without an exponent, a
single precision value with an exponent (denoted by the letter E) or a double precision
value with an exponent (denoted by the letter D). The mantissa and the exponent can
optionally be designated as positive (+) or negative (-).

Examples:

A single precision floating point constant without an exponent.

E'0.999'

A positive single precision floating point constant with a negative exponent.

E'+100.32E-10'

A negative double precision floating point constant with an exponent

E'-100.32DIO'

• C-Character Constant - A C-character constant is a string of one to four characters
enclosed in apostrophes and preceded by the letter C (e.g., C'Al ?'). C-character
constants are left justified and trailing blanks are added to produce a 32-bit value, if
fewer than four characters are entered.

• G-Character Constant - A G-character constant is a string of one to four characters
enclosed in apostrophes and preceded by the letter G (e.g., G'Al ?'). G-character
constants are right-justified and leading binary zeros are added to produce a 32-bit
value, if fewer than four characters are entered.

MPX-32
Utilities

Symbolic Debugger (SYMDB)
Usage 2-21

2.22.3 Register and Memory Contents

The contents of registers and memory are used as terms in expressions by specifying the
register name or the memory address of the contents to be used.

Register contents are used by entering any of the eight general purpose registers in the
form Rn en speci fies a register number 0 through 7).

Memory contents are used by entering the address of the contents to be used in one of
the following formats:

C (address)
C (address + hex)
C (address -:; dec)
C (hex) -
C (dec)

C specifies the contents of the term enclosed in parentheses is to be used in
the expression

address

hex

dec

specifies a base name, program name, symbol, period C.) or explicit pathname
(program name plus symbol name plus offset or program name plus offset).

specifies a hexadecimal value

specifies a decimal value

These expressions specify the 32-bit contents of the address or expression inside the
parentheses. Bits 30 and 31 of the expression value are zeroed to determine the word
address.

2.22.4 Bases

Bases are symbolic terms used in expressions. A base name is denoted by a $ as the first
character. SYMDB defines nine bases when it is accessed. The nine SYMDB bases are

Base Name

$

$PSD

$0

$TSA

$DSS

$DSE

$PCH

$CSS

$CSE

$END

2-22

Description

Bits 13-31 of the user task program status doubleword (PSD)

Bits 0-31 of the user task PSD

Constant zero

Start address of the user task's task service area (TSA)

Start address of the user task's DSECT

End address of the user task's DSECT

Start address of the SYMDB patch area

Start address of the user task's CSECT

End address of the user task's CSECT

End address of the user task's extended memory

Symbolic Debugger (SYMDB)
Usage

MPX-32
Utilities

,'. , C-'~''''''

o

The relative position of some of the bases described above on a memory map of a user
task which uses all possible memory areas (CSECT, DSECT, Global Common, and
extended memory) is shown below.

+ $END ----~:

$CSE

$CSS

$PCH

$DSE

$DSS

$TSA

MPX-32
Utilities

$0

•

•
•

..
•
..

•

· · · ·
EXTENDED ADDRESS SPACE

GLOBAL COMMON/DATAPOOL

CSECT

SYMBOLIC DEBUGGER PATCH AREA

SYMBOLIC DEBUGGER

DSECT

TSA

OPERATING SYSTEM

SYMDB BASE NAMES

Symbolic Debugger (SYMDB)
Usage

+ · · , , · , , · ,
, 128K

o

87D4102

2-23

Bases, other than the reserved SYMDB bases, can be defined through the use of the BASE
directive. A user defined base name contains a maximum of nine characters. The first
character must be a $ and the second an alphabetic character. Characters three through
nine are optional and may be alphanumeric. User defined base names may not be the
same as any of the reserved SYMDB bases.

2.22.5 Symbols

Programs assembled/compiled and cataloged with option 19 set allow SYMDB access to
program names, global symbols and local symbols. If option 19 is set only for the
Cataloger, only program names and global symbols can be accessed.

Program names are denoted by the special character /I (pound sign) and symbol names
(local and global) are denoted by the special character \ (backslash). Both special
characters are optional, but if global symbols, local symbols and/or programs have the
same name, the special characters should be entered for clarity.

NOTE: This is the case for FORTRAN 77+ subprograms.

When SYMDB is accessed, it defaults to searching for global symbols. If the default is
not changed (via the PGM directive), local symbols must be preceded by the program
name in which they are located and the backslash (\) character for SYMDB to access
them.

If the PGM directive and a program name are entered, SYMDB then defaults to the local
symbols within the specified program name. In this default condition, if a symbol is
entered without the special character, SYMDB will first search the local symbol table (of
the specified program). If the symbol is not found, the global symbol table will be
searched. If the symbol is not found in the global symbol table, the program table will be
searched. Therefore, the special characters should be used to avoid ambiguous cases
(symbols and programs with the same name).

Local symbols which are not located in the program specified in the PGM directive must
be preceded by the program name in which they are defined and the backslash (\)
character.

The following syntax shows valid symbolic addresses:

Syntax

[If] progname

II specifies the optional special character to denote a program name

progname specifies the program name to be used as a symbolic address

Syntax

[\] glosym

\
glosym

specifies the optional special character to denote a symbol name

specifies the global symbol to be used as a symbolic address.

Note: If the default is to local symbols and a local symbol exists with the same
name, the PGM directive must be entered without a program name to set the
default to global symbols. Otherwise, the local symbol by that name will be
accessed.

2-24
Symbolic Debugger (SYMDB)

Usage
MPX-32
Utilities

,.
i' C--"'·

o

C'~'
, "

Syntax

[[II] progname]] r \] locsym

If specifies the optional special character to denote a program name

progname specifies the program name. If the default is set to local symbols defined in
that program name, progname is optional.

\

locsym

If the default is set to global symbols (null pgm) or to local symbols defined
under a different program name, then the program name must be specified
followed by the backslash character and the local symbol name.

specifies the optional special character to denote a symbol name. This
character is optional if the local symbol name it precedes is in the default
local symbol table. Otherwise it must be specified.

specifies the local symbol to be used as a symbolic address.

2.22.6 COUNT

COUNT is a special term in expressions used to determine how many times a trap has
been encountered since it was set. When a trap is set, a counter is established to track
the number of times the trap is encountered. COUNT is always updated to reflect the
number of times that the last trap in the program was encountered. Therefore, COUNT
can be specified after each trap to determine how many times each trap has occurred.

COUNT is used only in conditional trap lists. If a program has a loop which executes
properly a num'Jer of times and then encounters an error, a trap can be set at the
beginning of the loop with a conditional trap list to execute only when COUNT equals the
number of times the loop executed properly. Then, through the directives in the trap
list, the user can examine memory or register contents during the iteration of the loop
which contains the error.

Example

The user sets a trap

SET S.10
IF COUNT Y >=100
SNAP e(I)
GO

When Y is greater than' or equal to 100, SYMDB traps and displays the value of the
variable "I".

2.22.'1 Period (.)

The special character period (.) is equal to the last address displayed by a memory
related directive. The period (.) is used as a term in an expression in place of re-entering
the last displayed address.

The period (.) is set by the execution of the CM, DA, DO, OF', 01, ON, DNB, ONH, DNW
and SNAP di recti ves.

MPX-32
Utilities

Symbolic Debugger (SYMDB)
Usage 2-25

Example

The user enters the directive

.DI IIDBGTST \ SYMBOLl

SYMDB responds

DBGTST \ SYMBOLl L W R5, DBGTST \ SYMBOL2

The user enters the directi ve

.SET.

SYMDB issues the trap list prompt and the user enters the directi ve

•• END

SYMDB sets a trap at the address specified by period (.) which is DBGTST \ SYMBOLl
with no corresponding trap list directives.

2-26
Symbolic Debugger (SYMDB)

Usage
MPX-32
Utilities

c

.I

o

(

SECTION 3 - DIRECTIVES

3.1 Using SYMDB Directives

The following rules apply to SYMDB directives, whether they are entered from the lfc
IIIN (batch mode or interactive mode) or from a command file (lfc fl03) through the use
of the FILE command.

• Each directive record read from the lfc IIIN is placed in a 72-character buffer. If the
record size of the file/device assigned to the Ifc IIIN is other than 72 characters, the
command is left-justified and blank-filled or truncated to the 72-character buffer
size.

• Compound directives and continuation of directive lines are not allowed.

• All commands have a directive verb. Some directive verbs may be abbreviated by
entering the characters underlined in the syntax. If no directive verb is entered,
SYMDB defaults to the SNAP directive.

• The directive verb is followed by a termination character (any non-alphabetic
character) and the directive argument list (if required). Multiple arguments are
separated by commas (,). Embedded blanks in a directive line are ignored except
inside a G or C character constant.

• Error messages are written to the lfc flOT when an incorrect directive is entered.
Refer to Section 4 for a description of the error messages.

• The response to each entered directive is written to the lfc flOT following that
directive. (Some directives have no displayed response.)

MPX-32
Utilities

Symbolic Debugger (SYjvlDB)
Direr.tives 3-1

A/ABSOLUTE

3.2 A (Address) Directive

The A directive evaluates and displays an expression in address format. If extended
addressing mode is not set, 19 bits are used. If extended addressing mode is set, 24 bits
are used.

Syntax:

A expr

expr specifies any valid SYMDB expression.

Response:

In relative (no FORTRAN) mode, the address is displayed as the closest base or program
name to the value plus the positive offset, in hexadecimal.

In relative FORTRAN mode, the address is displayed as IIPROGRAM\LOCSYM plus
offset.

In absolute mode, the address is displayed as a hexadecimal number without leading
zeros.

3.3 ABSOLUTE Directive

The ABSOLUTE directive sets the absolute mode. As a result, subsequent address
expressions are interpreted as absolute and displayed as absolute hexadecimal logical
addresses. This mode is in effect until a RELATIVE directive is executed.

Syntax:

ABSOLUTE

Response:

The directive is always valid.

There is no output.

SYMDB prompts for the next directive.

Usage:

.AB

.X C(lOO)
00000000
.REL
.X C(lOO)
DGE00008

3-2
Symbolic Debugger (SYMDB)

Directives
MPX-32
Utilities

f~)

'0

o

B/BASE

3.4 B (Binary) Directive

The B directive evaluates an expression and display its result in binary format.

Syntax:

B expr

expr specifies any valid SYMDB expression

Response:

The 32-character binary equivalent of the expression is displayed.

3.5 BASE Directive

The BASE directive defines a user base (add its name to the internal base definition
table), delete a user base name from the base table, or redefine a user base (change the
value specified in the base name's definition).

Up to 16 user bases are allowed. Refer to Section 2.16 Establishing User Bases.

Syntax:

BASE base [,expr]

base specifies a user base name. A user defined base name contains a maximum
of nine characters. The first character must be a $ and the second an
alphabetic character. Characters three through nine are optional and may
be alphanumeric.

expr specifies an address to be used as the base's value. If the "expression is not
specified, the base name is deleted. If expr is specified and base is already
defined, base is redefined to the value specified by expr.

Response:

There is no output except error messages. Error messages inform the user if:

• the user tries.to define a new base and the base table is full (16 user bases)

• base is not specified

• base is a base name which was defined by SYMDB and cannot be redefined

• the user attempts to delete an undefined base

MPX-32
Utilities

Symbolic Debugger (SYMDB)
Directives 3-3

BASE (Cont.)

Usage:

.BA ~INE,DSS+388

.St-ON B

BASE NAIVE
$
$PSD
$0
$TSA
$DSS
$DSE
$PD-i
$CSS
$CSE
$EI\O
$MINE

3-4

VALUE
00021860
01021860
00000000
00020000
00021800
00028000
00079488
00080000
00080000
00080000
00021B88

Symbolic Debugger (SYMDB)
Directives

MPX-32
Utilities

c

o

(

BREAK/CC

3.6 BREAK Directive

The BREAK directive transfers control from SYMDB to the user task's break receiver.

Syntax:

BREAK

Response:

The user break receiver gets control. SYMDB regains control upon the occurrence of the
next break, trap, user abort, or break recei ver exit.

An error message informs the user if the user task has no break receiver.

The BREAK directive is a trap list terminator.

3.7 CC (Condition Code) Directive

The CC directive displays the four condition code bits in SYMDB base $PSD (bits 0-31 of
the user PSD) or displays the old condition code of $PSD and inserts a new value.

Syntax:

CC [cc]

cc is a string of four binary digits that will replace the existing condition codes
in $PSD. If not specified SYMDB displays the present condition codes.

Response:

An error message informs the user if the condition code is specified incorrectly.

SYMD9 prompts for the next directive.

Usage:

.0:
OLD CC=OOOO
.0: 0101
OLD CC=OOOO
.0:

OLD CC=0101

MPX"32
Utilities

Symbolic Debugger (SY~.1D8)
Directives

CLEAR

3.8 CLEAR Directive

The CLEAR directi ve deletes all user defined bases or traps.

Syntax:

CLEAR lBASES l
TRAPS\

BASES specifies delete all user base definitions.

TRAPS specifies delete all traps.

Response:

An error message informs the user of any argument specification errors.

There is no output except for error messages. SYMDB prompts for the next directive.

Usage:

.SI-ON B
BASE f\IA/VE
$
$PSD
$0
$TSA
$DSS
$DSE
$PQ1
$CSS
$CSE
$EI\D
$MINE

.a... B

.SI-DN B
BASE f\IA/VE
$
$PSD
$0
$TSA
$DSS
$DSE
$PQ1
$CSS
$CSE
$EI\D

3-6

VALUE
00037598
01037598
00000000
00032000
00036000
0003AOOO
0007FB20
00080000
00080000
00080000
00036368

VALLE
00037598
01037598
00000000
00032000
00036000
0003AOOO
0007FB20
00080000
00080000
00080000

Symbolic Debugger (SYMDB)
Directives

MPX,.32
Utilities

./

o

C'.
,/

CM

3.9 CM (Change Memory) Directive

The CM directive alters the contents of one or more consecutive words in the task's
logical address space.

Syntax:

CM addr=expr1 [,expr2,· •• ,expr nJ

addr specifies the address of the first word to be changed (bits 30 and 31 of addr
are ignored).

expr specifies the 32-bit value to be stored at the specified address. Successive
values are stored in consecutive words beginning at addr. Two consecutive
commas with no intervening value can be used to skip the memory address
corresponding to the missing value, leaving its contents unchanged.

Response:

Error messages inform the user if:

• addr and expr are not both present and valid

• memory changes must be stopped because addr or an address derived from it (multiple
values) violates a SYMDB address restriction

• an error occurs in evaluating one of the expr values

Note: In the third case, the error message will specify which memory words, if any,
were successfully changed.

A SNAP is automatically performed by SYMDB for the modified range and the new
contents are displayed.

SYMDB prompts for the next directive.

When storing a double precision floating point constant into memory, two words are
changed.

The special character period (.) is set at the completion of this directive (refer to Section
2.22.7 Period (.».

MPX-32
Utilities

Symbolic rmbugge~ (SYMDB)
Directi'ves . "5-7

CR

3.10 CR (Change Register) Directive

The CR directive alters the contents of one or more user registers.

Syntax:

CR Rn=expr1 [,expr2,···,expr n]

n specifies a user register (0-7)

expr specifies the 32-bit value to be stored in the specified register. Succeeding
values, if any, are stored in consecutive user registers. Two consecutive
commas wi th no intervening value can be used to skip the user register
corresponding to the missing value, leaving its contents unchanged. If user
register R7 has been altered or skipped and one or more unused values
remain, they are ignored.

Response:

An error message informs the user if:

• A register speci fication is absent or not in the range 0-7.

• The first value is not specified.

SYMDB prompts for the next directive.

When changing a register to a double precision floating point constant, two registers are
changed.

Usage:

.CR Rl=I,2,3,4,5,6,7
PSW=01036E3A (CC=OOOO) (PC=$DSS+E3A)
REGS=01036920 00000001 00000002 00000003

00000004 00000005 00000006 00000007
.CR Hl=l, ,4,,6
PSW=01036E3A (CC=OOOO) (PC=$DSS+E3A)
REGS=01036920 00000001 00000002 00000004

3-8

00000004 00000006 00000006 00000007

Symbolic Debugger (SYMDB)
Directives

MPX-32
Utilities·

rr··~),

~y

:,' ,,) C~-"

,.' '-

(

DA/DD

3.11 DA (Display ASCII) Directive

The OA directive displays a memory range in ASCII format.

Syntax:

OA [low] [,high]

low specifies the first byte address to be displayed. If not specified, the last
location displayed plus on~ word is used as the default.

high specifies the last byte address of the range to be displayed. If not specified,
only the low address is displayed.

Response:

Memory addresses are displayed in label-field format. The contents of memory are
displayed in ASCII format.

The special character period (.) is set at the completion of this directive (refer to Section
2.22.7 Period (.)).

3.12 DO (Display Double Precision) Directive

The DO directive displays a memory range in double precision floating point format.

Syntax:

DO [low] [,high]

low specifies the first word address to be displayed. If not specified, the last
location displayed plus one word is used as the default.

high specifies the last word address of the range to be displayed. If not specified,
only the low address is displayed.

Response:

Addresses specified are displayed in label-field format. The contents of the specified
memory addresses plus the contents of the next word are converted to their floating
point double precision equivalent and displayed.

If a range is given, the second display begins two words (8 bytes) after the first display.

The special character period (.) is set at the completion of this directive (refer to Section
2.22.7 Period (.».

MPX-32
Utilities

Symbolic Debugger (SYMDB)
Directives

DELETE

3.13 DELETE Directive

The DELETE directive deletes a specified trap and restores the user instruction to its
original location.

Syntax:

DELETE addr

addr specifies a trap address.

Response:

An error message informs the user if:

• addr is not specified

• addr is not an address at which a trap has been set by the SET directive

The user instruction replaced by the trap instruction is restored to its original location.

SYMDB prompts for the next directive.

3-10
Symbolic Debugger (SYMDB)

Directives
MPX-32
Utilities

()

(

DETAO-I/DF

3.14 DET Aa-t Directive

The DETACH directive detaches SYMOB from the user task and transfers control to the
task at the specified address or at $ (bits 13-31 of user PSD).

Syntax:

DET ACH [addr]

addr specifies the address within the user task to which control is transferred. If
not specified, defaults to $.

Response:

All traps are deleted (there is no need to enter CLEAR TRAPS to restore user
instructions replaced by trap instructions).

SYMOB files and memory are deallocated.

SYMOB transfers control to the specified address.

An error message informs the user if the specified address violates SYMOB's address
restriction.

DET ACH is a trap list terminator.

3.15 OF (Display Floating Point) Directive

The OF directi ve displays a memory range in floating point format.

Syntax:

DF [low] [,high]

low specifies the first word address to be displayed. If not specified, the last
location displayed plus one word is used as the default.

high specifies the last word address of the range to be displayed. If not specified,
only the low address is displayed.

Response:

Memory addresses are displayed in label-field format. The content of the specified
memory address is displayed in single precision floating point format.

If a range is given, the second display begins one word (4 bytes) after the first display.

The special character period (.) is set at the completion of this directive (refer to Section
2.22.7 Period C.».

MPX-32
Utilities

Symbolic Debugger (SYMDB)
Directives 3-11

DI/DN

3.16 DI (Display Instruction) Directive

The 01 directive displays a memory range as mnemonic instructions (assembly language).

Syntax:

01 [low] [,high]

low specifies the first word or halfword address to be displayed. If not specified,
the last location displayed plus one word is used as the default.

high specifies the last word or halfword address of the range to be displayed. If
not specified, only the low address is displayed.

Response:

Memory addresses are displayed in label-field format. The contents of the memory
addresses are displayed in assembly language format.

The special character period C.) is set at the completion of this directive Crefer to Section
2.22.7 Period (.)).

3.17 ON (Display Numeric) Directive

The ON directive displays a memory range in decimal integer format.

Syntax:

ON [low] [,high]

low specifies the first word address to be displayed. If not specified, the last
location displayed plus one word is used as the default.

high specifies the last word address of the range to be displayed. If not specified,
only the low address is displayed.

Response:

Memory addresses are displayed in label-field format. The contents of the memory
addresses are displayed in decimal integer format.

The size is determined by the Symbol Table Entry. If there is no Symbol Table Entry, the
default is one word.

The special character period (.) is set at the completion of this directive (refer to Section
2.22.7 Period (.)).

Symbolic Debugger (SYMDB)
Directives

MPX-32
Utilities

o

(

DN3/DNH

3.18 DNB (Display Numeric Byte) Directive

The DNB directive displays a memory range in decimal byte format.

Syntax:

DNB [low] [,high]

low specifies the first byte address to be displayed. If not specified, the last
location displayed plus one word is used as the default.

high specifies the last byte address of the ranqe to be displayed. If not specified,
only the low address is displayed.

Response:

Memory addresses are displayed in label-field format. The contents of the memory
addresses are displayed in decimal integer byte format.

The special character period C.) is set at the completion of this directive (refer to Section
2.22.7 Period C.)).

3.19 DNH (Display Numeric Halfword) Directive

The DNH directive displays a memory range in decimal halfword format.

Syntax:

DNH [low] [,high]

low specifies the first half word address to be r:lisplayed. If not specified, the last
location displayed plus one word is used as the default.

high specifies the last halfword address of the range to be displayed. If not
sped fied, only the low address is displayed.

Response:

. Memory addresses are displayed in label-field format. The contents of the memory
addresses are displayed in decimal integer halfword format.

The special character period C.) is set at the completion of this directive (refer to Section
2.22.7 Period (.)).

IviPX-32
Utilitie::;

- ••• -. , 1_ ... , .. A~r"I'
::>Y!lIUUlIL: ut:uuyyer \::J T IVIUDj

Directives 3-13

DNW/DUMP

3.20 DNW (Display Numeric Word) Directive

The DNW directive displays a memory range in decimal word format.

Syntax:

DNW [low] [,high]

low specifies the first word address to be displayed. If not specified, the last
location displayed plus one word is used as the default.

high specifies the last word address of the range to be displayed. If not specified,
only the low address is displayed.

Response:

Memory addresses are displayed in label-field format. The contents of the memory
addresses are displayed in decimal integer word format.

The special character period (.) is set at the completion of this directive (refer to Section
2.22.7 Period (.».

3.21 DUMP Directive

The DUMP directive outputs the contents of a range of specified memory addresses,
including the user PSD and registers. When used in interactive mode, the dump is output
to the SLO file (assigned to logical file code 1102). In batch mode, the dump is output to
the file or assigned to logical file code IIOT.

Syntax:

DUMP [low] [,high]

low and high

Response:

are expressions representing memory addresses. If high is not
specified or is not greater than low, only the single word at low is
displayed.

If no addresses are specified, SYMDB will dump the addresses
following the last address dumped. If no addresses were dumped,
SYMDB will dump the contents of memory starting at absolute
address zero.

Bits 30 and 31 of the values of low and high are zeroed to produce
word addresses.

The memory range between the specified addresses is output. The user PSD and registers
are also shown.

An error message is displayed if any address in the range violates an address restriction.

3-14
Symbolic Debugger (SYMDB)

Directives
MPX-32
Utilities

o

(

E/END/EXIT

3.22 E (Single Precision Floating Point) Directive

The E directi ve iisplays an expression value in single precision floating point format.

Syntax:

E expr

expr specifies the expression to be displayed in floating point format.

Response:

The single precision floating point equivalent of the expression is displayed.

3.23 END Directive

The END directive terminates a trap list. Using a carriage return (CR) in interactive
mode performs the same function.

Syntax:

END or <CR>

Response:

END is a trap list terminator.

3.24 EXIT Directi ve

The EXIT directive terminates debugging and returns control to TSM. Both the user task
and SYMDB exit. In batch mode, if EXIT is used and/or an EOF is encountered on the
file or device assigned to logical file code IfIN, SYMDB terminates.

Syntax:

EXIT (or) X

Response:

SYMDB calls the M.EXIT service.

EXIT is a trap list terminator.

SYMDB also exits in response to a Control C (end-of-file).

MPX-32
Utilities

Symbolic Debugger (SYMDB)
Directives 3-15

FILE/FORMAT

3.25 FILE Directive

The FILE directive reads subsequent SYMDB directives from a directive file instead of
from the lfc IIIN. The current working directory name stored in T .CDIR in the task's
TSA is used to access the directive file.

Syntax:

FILE filename [,password]

filename specifies a one to eight character name of a directive file.

password is ignored

Response:

An error message informs the user if:

• filename is absent or invalid, or the file does not exist

• the FILE directive is read from a directive file

A command-file is a permanent disc file containing SYMDB directives. Directives are in
the form of 72-byte logical records. The Text Editor utility (EDIT) can be used to create
a SYMDB command file. The STORE directive (not SAVE) should be used to create a
command file.

If there are no errors, SYMDB assigns lfc 1103 to the specified file and reads subsequent
directives from 1103 instead of IIIN. When SYMDB reaches end-of-file on 1103 or a break
is recognized, directi ve input returns to /lIN.

SYMDB searches for a user file by the specified filename. If a user file is not found, it
then searches for a system file.

Use of the FILE directive terminates a trap list.

3.26 FORMAT Directive

The FORMAT directive sets the default input format for undesignated numeric constants
and integers in expressions to hexadecimal or decimal.

Syntax:

FORMAT {~}
x

N

Response:

sets the input radix to hexadecimal, which is the default when SYMDB is
accessed.

sets the input radix to decimal.

An error message informs the user if the format specification is absent or invalid.

SYMDB prompts for the next directive (no output).

3-16
Symbolic Debugger (SYMDB)

Directives
MPX~32

Utilities

c

o

(

GO

3.27 GO Directive

The GO directive transfers control to the user task, optionally setting a one-shot trap.

Syntax:

GO [addr] [, trap]

addr specifies the address within the user task to which SYMDB transfers
control. If not specified, SYMDB base $ (bits 13-31) of the user PSD is used.

trap specifies the address within the user task at which SYMDB sets a trap. The
list of SYMDB directives executed when the trap occurs is as follows:

!* ONE-SHOT TRAP SET BY GO DIRECTIVE
!DEL $
!END

$ is the special SYMDB base equal to bits 13-31 of the user PSD.

If a trap address is not specified SYMDB does not set a trap before
transferring control to the user task.

Response:

An error message informs the user if:

• ei ther the transfer address or trap address violate SYMDB address restrictions

• a trap address is specified and a. trap is already set there

• no trap table space remains and a trap address is specified

• the specified transfer address is not on a word boundary

• addr is an odd number

• trap is not on a word boundary

If GO is successful, SYMDB transfers control to the user task at the specified address. If
the last control transfer into SYMDB was caused by a trap and control is passed to the
trap address for that trap, the user instruction replaced by the trap instruction is
executed first. Control is then passed to the trap address plus one word unless the
replaced user instruction is any instruction which terminates the TRACE , TRACK, or
WATCH commands. Such a replaced instruction may not be executed without first
deleting the trap set on it.

Control remains with the user task until a trap, break, or user abort occurs, at which
time SYMDB regains control and prompts for the next directive or a trap list as
appropriate.

GO is a trap list terminator.

MPX-32
Utilities

Symbolic Debugger (SYMDB)
Directives 3-17

IF/LIST

3.28 IF Directive ,;(-"
If'

The IF directive makes a trap list conditional. (The trap list is executed only if specified ~
conditions are met.) When used, this directive must be the first directive of the trap list.

Syntax:

IF cond

cond specifies any valid SYMDB expression.

Response:

If the value of cond is nonzero, the trap is reported and remaining directives in the trap
list are executed. The relational operators produce a value of 1 if the relation is true,
and a value of 0 if false (refer to Section 2.13.3 for a description of relational operators).

If the value of cond is zero, no trap is reported and the program continues executing as if
the user issued a GO $ command.

The trap's COUNT is incremented whether the trap is reported or not •

An error message informs the user when the IF command is entered as an immediate
command or when cond is absent or invalid.

USAGE:

• SET S.4
•• IF COUNT =42

•• END

• SET S.B
•• IF C(J)=IB

•• END

3.29 LIST Directive

TRAP LIST EXECUTED
IF COUNT EQUALS 42

TRAP LISTED EXECUTED
WHEN J EQUALS IB

The LIST directive displays the trap list for a specific trap.

Syntax:

LIST trap

trap specifies a trap address

Response:

An error message informs the user if "trap" is not a trap address.

Usage:

.L 300
crA.NT = 0
MSG HELLO
SNAP 300,400
EI'O
.LOO

3-1B
Symbolic Debugger (SYMDB)

Directives
MPX-32
Utilities

. , C".··

(

(/

LOG/MODE

3.30 LOG Directive

The LOG directive outputs the current contents of the terminal log file to Ifc 1102 CSLO
file only).

Note:

A log file is maintained only when the LOG option has been specified by the MODE
directive. The default condition is to maintain a log file.

Syntax:

Response:

All log file records which have not already been printed are copied to an SLO file. The
La file is then closed and deallocated. All log file records thus copied are no longer

accessible (their space is released)~ The LOG directive is ignored in batch.

An error message is displayed if LOG is entered in response to a prompt for a deferred
directi ve C ••).

3.31 MODE Directive

The MODE directive sets the following modes for the debugging session:

• A log file is/is not maintained to log the debugging session
• Extended memory access is/is not allowed
• FORTRAN display format is/is not set

Syntax:

LOG
NOLOG

MODE EXTENDED
NOEXTENDED
FORTRAN
NOFORTRAN

LOG specifies that a log file is maintained for the debugging session.

NOLOG specifies that a log file is not maintained for the debugging session.

EXTENDED specifies that extended addressing is allowed, thus the user has access
to program locations in extended memory.

NOEXTENDED

MPX-32
Utilities

specifies that extended addressing is not allowed, thus the user must
trace through an SEA (set extended addressing) instruction to access
extended memory.

Symbolic Debugger (SYMDB)
Directives 3-19

MODE(Cont.)/MSG/N

FORTRAN specifies that FORTRAN addressing format is set. The address label
field is displayed as the program name and closest previous symbol
name and the offset address
(i.e., program \ symbol + 04).

NOFORTRAN specifies that NOFORTRAN addressing format is set. The address
label field is displayed as the program name plus the offset address
(i.e., program + 04).

Response:

An error message informs the user if the mode is invalid or missing.

SYMDB prompts for the next directive (no output).

J.J2 MSG Directive

The MSG directive denotes a comment in a debugging session. It is most useful in
directive files and trap lists to document the directives.

Syntax:

MSG message·

(or)

* message

message specifies any character string.

Response:

The character string is displayed.

Usage:

.SET JOO
•• M5G I-ELLO
•• EN>

J.JJ N (Numeric) Directive

The N directive evaluates and displays the expression's value in signed decimal integer
format.

Syntax:

N expr

expr specifies the expression to be evaluated and displayed in signed decimal
integer format.

Response:

The signed decimal integer equivalent of the expression is displayed.

Symbolic Debugger (SYMDB)
3-20 Directives

MPX-32
Utilities

c

o

(/

PGM/RELA TIVE

3.34 PGM (Program) Directive

The PGM directive establishes a program name in which the Debugger will search for
local symbols. This directive also sets a new relative program name (see RELATIVE
command).

Syntax:

PGM [progname]

progname specifies a program name which may begin with the character /I (the
designating character II is optiona!). If a program name is not specified, the
current program name is cleared and SYMDB defaults to the global symbol
table.

Response:

An error message informs the user if the program name could not be found.

3.35 RELATIVE Directive

The RELATIVE directive sets relative mode. Subsequent addresses that do not include an
explicit base, program, or symbol name are interpreted as relative to the base or
program name set by this directive. The base name must have been previously defined in
a BASE directive.

Syntax:

RELATIVE
[base 1

prognameJ

base is a base name which must begin with the character $ (refer to Section 2.16
Establishing User Bases).

progname is a program name which may begin with the character /I (the designating
character II is optiona!).

Response:

If neither parameter is specified, the last base or program name that was set
by a RELATIVE directive is used. During initialization, SYMDB sets the
relative mode and establishes $DSS (DSECT start) as the default base.

Each address subsequently displayed is represented as a displacement from the nearest
base or program name which is not greater than the address. If a base and a program
name have the same value, SYMDB uses the program name.

An error informs the user if the specified I:?ase or program name is not defined.

MPX-32
Utilities

Symbolic Debugger (SYMDB)
Directives 3-21

REVIEW/RUN

3.36 REVIEW Directive

The REVIEW directive writes the log file to the Ifc IIOT.

Syntax:

REVIEW [screens]

screens specifies the number of screens from the current position in the log file for
SYMDB to backspace before beginning the log file display. If not specified
or if specified as a number greater than the number of screens currently
contained in the log file, the display begins at the first record in the log file.

Response:

SYMDB displays the log file one screen at a time.

When SYMDB reaches the end of the log file, the display is terminated and SYMDB
prompts for the next directive. None of the above terminal I/o is copied to the log file.

REVIEW is treated as a comment in batch.

An error message informs the user if:

• REVIEW is entered as a deferred directi ve

• REVIEW is read from within a directive file

3.37 RUN Directive

The RUN directive sets the run mode. This results in TRACE or TRACK directives
continuing until SYMDB reaches a full screen of output instead of prompting for input
after each instruction.

Syntax:

RUN

Response:

Until a STEP directive is executed, the TRACE and TRACK directives will display a full
screen of output before prompting for continuation or termination of the trace or track.

3-22
Symbolic Debugger (SYMDB)

Directives
MPX-32
Utilities

c

,['''\,

''-Ie ,/

o

(

(~

SET

3.38 SET Directive

The SET directive sets a trap in the user task at a specified location.

Syntax:

1ET trap

trap specifies the address at which SYMDB sets a trap.

Response:

An error message informs the user if:

• The trap address is not specified.

· The specified address is already a trap address.

• The specified address violates an address restriction.

• SYMDB's trap table is full and thus no more traps can be set until a trap is deleted. A
maximum of 20 traps can be active at the same time in one task.

• "trap"is not on a word boundary.

The user instruction at the specified trap address is replaced by a trap instruction
(SVC 1,X'66').

SYMDB then prompts for directives to be placed in the trap list (i.e., deferred
commands).

The user can enter any SYMDB directive in a trap list. All directives placed in the trap
list are checked for validity before they are actually stored in the trap list except for the
directives CLEAR, FORMAT, MODE and SHOW. These directives will be validated only
when they are to be executed. If a directive is invalid, SYMDB will write an error
message and issue another prompt.

A nested trap list occurs if a user enters a SET directive in a trap list. This means the
second trap is set only when the first trap is encountered. Nesting can continue as far as
the user desires, however, there must be a terminator for each SET directive in the
nested trap list. Refer to Section 2.12 for a detailed description of nested traps.

T a terminate a trap list, enter one of the following directi ves: BREAK, END, EXIT,
FILE, GO, TRACE, TRACK, or WATCH.

MPX-32
Utilities

Symbolic Debugger (SYMDB)
Directives 3-23

SHOW

3.39 SHOW Directive

The SHOW directi ve displays current base definitions, trap addresses, option settings, or
symbols.

Syntax:

SHOW [BASES J TRAPS
OPTIONS
SYMBOLS

displays the current definitions of all special bases and user bases.

displays all trap addresses.

BASES

TRAPS

OPTIONS displays the settings of the options controlled by the following directives:

ABSOLUTE/RELA TIVE
RUN/STEP
FORMAT
MODE

SYMBOLS displays all symbols defined in the default program (i.e., program name
established by the most recent PGM command). If there is no default
program name established, all global symbols are displayed.

If no parameters are specified, all displays are produced.

Response:

An error message informs the user if any argument but BASES, TRAPS, OPTIONS, or
SYMBOLS is used.

Usage:

.SI-ON
TRAP AT:

BASE NLWE
$
$PSD
$0
$TSA
$DSS
$DSE
$P01
$CSS
$CSE
$EI'D

FCRtvll\T X

$005+300

VALUE
00037B34
01037B34
00000000
00032000
00036000
0003AOOO
0007FB20
00080000
00080000
00080000

RELATIVE $DSS = 00036000
STEP
I\O\J - FCR TRAN
I\O\J-EXTEI'DED ADDRESSNG
LOG FILE

3-24
Symbolic Debugger (SYMDB)

Directives
MPX-32
Utilities

f,
tJ

o

(

SNAP/STATUS

3.40 SNAP Directive

The SNAP directive writes the contents of a range of logical addresses to the file or
device assigned to lfc 1I0T. The format is a side-by-side hexadecimal and ASCII display.

This directive is also a default (implied) directive. Any expression entered without a
directive verb performs as if it were preceded by SNAP. If a carriage return without a
directive verb or expression is entered, SYMDB will snap the address following the last
address snapped. If no addresses were snapped, SYMDB will snap the contents of memory
starting at absolute address zero.

Syntax:

[~NAP] [low] [,high]

low specifies the first address to snap. If not specified, the snap begins at the
address following the last address snapped or at absolute zero if no previous
address was snapped

high specifies the last address to snap. If not specified, only the single word at
the low address is snapped. Bits 30 and 31 are ignored and assumed to be
zero.

Response:

The specified memory contents are written to lfc IIOT.

The special character period (.) is set at the completion of this directive (refer to Section
3.16.7 Period (.)).

3.41 STATUS Directive

The STATUS directi ve displays a status report indicating the user PSD and the general
purpose registers for the address contained in the program counter.

Syntax:

STATUS

Response:

SYMDB displays a status report on the terminal.

Usage:

.ST
PSW=01037834
REGS=01037590

00000000

MPX-32
Utilities

(cc=OOOO) (PC=$DSS+IB34)
00000000 00000000 00000000
00000000 00000000 00700000

Symbolic Debugger (SYMDB)
. Directives

• • u. • • • • • • • • • • •
•••••••••••• p ••

3-25

STEP/TIME/TRACE

3.42 STEP Directive

The STEP directive sets step mode.

This allows a single step trace or track through the execution of each instruction in the
user task.

Syntax:

STEP

Reponse:

Until a RUN directive is issued, all TRACE and TRACK directives will pause after each
instruction displayed so the user can inspect each instruction and its results before the
next instruction is executed. Step mode is the default and is in effect until a RUN
directi ve is executed.

STEP is ignored in batch.

3.43 TIME Directive

The TIME directive displays the current date and time of day.

Syntax:

TIME

Response:

SYMDB displays the calendar date as stored in the Communications Region (C.DA TE) and
the time of day as returned by the M. TDA Y service.

3.44 TRACE Directive

The TRACE directive executes and displays each user instruction and its results.· To
trace only branching instructions, use the TRACK command.

Syntax:

TRACE [start] [,stop]

start speci fies the address of the first user instruction to be executed. If not
specified, the special base $ (bits 13-31 of the user PSD) is used.

stop specifies the address of the last user instruction to be traced. If not
specified, the trace continues as described below.

Response:

The debugger executes user instructions beginning at the specified start address and C· ... --":

displays each instruction with its results and/or operands in an Assembler-like format.
The instruction results are displayed on the right-hand side of the output.

3-26
Symbolic Debugger (SYMDB)

Directives
MPX-32
Utilities

"" ..

(

TRACE (Cont.)

In Step rnode, SYMDB pauses after each instruction is executed or simulated and waits
for a I-character response from the user. To proceed to the next instruction, enter only
a carriage return. Any other response terminates TRACE. If SYMDB is in Run mode,
TRACE does not pause after each instruction but proceeds immediately to the next
instruction; thus the only opportunity to stop the display is at the end of each screen.
Note that in batch, TRACE functions as if a RUN command were in effect.

This process continues until one of the following occurs:

An instruction has been fetched, executed, and displayed from the specified stop
address. The user context indicates that the instruction has been executed, as shown
in the status report indicating trace termination.

A user instruction is aborted. 5YMDB executes most user instructions by transferring
control to the user task one instruction at a time. When these instructions execute, it
is as if the user had entered "GO a,b" where a is the address of an instruction and b is
the address of the next instruction (logically next, not necessarily a+IW). Any abort
condition caused by such instructions is reported as it would be after a GO command
'and the trace is terminated. The user context is reported in a status report.

• 5YMDB fetches an instruction that breaks the trace (see Table 3-1). The instruction is
displayed and TRACE is terminated. The user context still points to the untraceable
instruction, as shown in the status report announcing trace termination.

• The address of the next instruction to be fetched would violate an address
restriction. No instruction is displayed, the trace is terminated, and the user context
points to the bad address as shown in the status report indicating trace termination.

If the last control transfer to 5YMDB is caused by a trap, and the starting address is $
(the user P5D), the user instruction replaced by the trap instruction at $ is traced as if it
were at $, and the trace is continued.

An error message informs the user if the starting address violates an address restriction,
if the starting address is greater than the stop address, or if the start and/or stop address
is an odd address.

TRACE 1s a trap list terminator.

The following Assembly Language instructions causes a trace to stop (returning control
to 5YMDB):

Usage:

• TRACE
$055+1598
$D55+182C
$D55+1830
$055+1832
TRAa: 5 TOPPED

MPX-32
Utilities

8L
5VC
TBR
N::P

$DS5+1B2C
X'104C'
R7,13

Symbolic Debugger (SYMDB)
Directives

R7=00700000

3-27

TRACE (Cont.)/TRACK/WATCH

AI
BEl
BRI
CD
DAI
DI
EI
ECWCS

3.45 TRACK Directive

Table 3-1
Instructions that Break a Trace

HALT
JWCS
LPSDCM
LPSD
RDSTS
RI
RWCS
SETCPU

TD
TMAPR
TPR
TRP
UEI
WAIT
WWCS
All undefined opcodes

The TRACK directive functions exactly like TRACE, except that it displays only
instructions that resul t in a change in the flow of control.

Syntax:

TRACK [start] [,stop]

start specifies the address of the first user instruction to be executed. If not
specified, the special base $ (bits 13-31 of the user PSD) is used.

stop

Response:

specifies the address of the last user instruction to be executed. If not
specified, the track is continued as described for TRACE.

TRACK functions exactly like TRACE, except only instructions which actually cause a
branch are displayed (BCT, TRSW, LPSD, etc.).

3.46 WATCH Directive

The WATCH directive functions like TRACE, but does not display instructions. It is used
to detect erroneous branches into areas such as extended address space or MPX-32.

Syntax:

WA TCH [start] [,stop]

start specifies the address of the first user instruction to be executed. If not
specified, the special base $ (bits 13-31 of the user PSD) is used.

stop specifies the address of the last user instruction to watch. If not specified,
the watch continues as described below.

3-28
Symbolic Debugger (SYMDB)

Directives
MPX-32
Utilities

WATCH (Cont.}/X

Response:

SYMDB performs a TRACE but inhibits the usual instruction display. When, as often
happens in a new program, an erroneous branch is taken, it is often into an area
completely out of the program (e.g., a branch to location 0). Especially in the case of a
privileged task, many instructions may precede the inevitable disaster. While the system
crumbles, many of the most useful hints as to the cause (e.q., register contents) are
destroyed. WATCH provides a convenient means of detecting such branches when they
happen without all the terminal output caused by TRACE or TRACK.

3.47 X (Hexadecimal) Directive

The X directive evaluates and displays the expression's value in hexadecimal format.

Syntax:

X expr

expr specifies the expression to be displayed in hexadecimal.

Response:

The hexadecimal equivalent of the expression is displayed.

Note:

MPX-32
Utilities

If the expression is not specified, SYMDB exits.

Symbolic Debugger (SYMDB)
Directives 3-29/3-30

(

(..•.. ~ .•
"'

SECTION 4 - ERRORS AND ABORTS

4.1 SYMDB File Assignment Error Messages

The following four error messages may be written to the Ifc /lOT if an error occurs
during SYMDB file assignments.

NO FAT/FPT SPACE AVAILABLE

If the user did not assign enough dynamic file space for the executing task via the
Cataloger's FILES directive, this message is written to the lfc /lOT. The user
should recatalog the task specifying the correct number of dynamic file
assignments. SYMDB requires three additional file assignments beyond those
normally required by the task. At catalog time, the user task must specify the
number of files required to execute the task. If Option 19 is not set for the
Cataloger, the user task will not have symbols available for use in the debugging
session.

If Option 19 is set for the Cataloger, the Cataloger adds five files to the number
the user requested. These five files are needed for symbolic debugging.

NO BLOCKING BUFFER AVAILABLE

If the user did not assign enough blocking buffers for the executing task via the
Cataloger's BUFFERS directive, this message is written to the lfc /lOT. The user
should recatalog the task specifying the correct number of blocking buffers.
SYMD3 requires three additional blocking buffers beyond those normally required
by the task. At catalog time, the user task must specify the number of buffers
required to execute the task.

If option 19 is not set for the Cataloger, the user task will not have symbolic
support during debugging. If option 19 is set for the Cataloger, the Cataloger adds
three buffers to the number the user requested. These three buffers are needed for
symbolic debugging.

NO DISC SPACE AVAILABLE

If there is not enough disc space available for SYMDB to allocate for the SLO file
(1000 lines for the lfc /lOT in batch mode and 300 screens of data for the temporary
log file in interactive mode), this message is written to the Ifc /lOT. The user must
wait until disc space becomes available.

LOG FILE ALREADY ALLOCATED

If SYMDB attempts to assign the temporary log file (lfc /101) and the log file has
been statically assigned by the user before accessing SYtvlD8, this message is
written to the Ifc /lOT. Deallocate the user defined log file assignment (no static
file assignments are allowed) to allow SYMDB to assign the log file to its default
assignment.

MPX-32
Utilities

Symbolic Debugger (SYMDB)
Errors and Aborts 4-1

4.2 Addressing Error Messages

The following error messages may be written to the lfc IIOT if an invalid address is
specified in a directive.

ADDRESS MISSING

If the CM (change memory) directive is entered without specifying the address to
be changed, the message is written to the lfc IIOT. Re-enter the directive
specifying the address to be changed.

NO VALUE SPECIFIED

If the CM (change memory) directive is entered without specifying the value to be
placed in the address specified, this message is written to the lfc 1I0T. Re-enter
the directive specifying the value to replace the contents of the address specified.

NO HIGH ADDRESS

If a directive which allows a range of addresses as its parameters is entered
followed by a single address and a comma (,) and no second address, this message is
wri tten to the lfc 1I0T. Re-enter the directive followed by the low and high
addresses separated by a comma. If only one address is desired as the parameter,
no comma should be entered.

LOW> HIGH

If a directive which allows a range of addresses as its parameters is entered
followed by a low address (first address specified) which is greater than the high
address (second address specified), this message is written to the lfc 1I0T. Re
enter the directive insuring that the first address is lower than the second address
specified.

ADDRESS OUTSIDE YOUR AREA

If a directive which allows an address as its parameter is entered (other than the
CM (change memory) directive) followed by an address which is not within the user
program's addressing space, this message is written to the lfc 1I0T. Re-enter the
directive insuring that the address specified is within the allowable addressing
space.

CAN'T WRITE TO THAT ADDRESS

4-2

If the CM (change memory) directive is entered followed by an address which is not
within the user program's addressing space, this message is written to the Ifc 1I0T.
Re-enter the directive insuring that the address specified is within the allowable
addressing space.

Symbolic Debugger (SYMDB)
Errors and Aborts

MPX-32
Utilities

.(-'

~tJ

/

c

MAP HOLE

If a SNAP or DUMP directive is entered followed by a range of addresses which are
not within the user program's addressing space, this message is written to the lfc
1I0T. Re-enter the directive insuring that the range of addresses is within the
allowable addressing space.

CAN'T BRANCH TO ODD ADDRESS

If the DETACH directive is entered followed by an address which is incorrectly
bounded, this message is written to the lfc IIOT. Re-enter the directive insuring
that the address specified falls on the correct boundary.

CANNOT TRACE INSTRUCTION

If the TRACE directive is entered followed by an address which is not within the
user program's addressing space, this message is written to the lfc IIOT. Re-enter
the directi ve insuring that the address is wi thin the allowable addressing space.

REG NOT 0-7

If the CR (change register) directive is entered followed by an invalid register
number, this message is written to the lfc IIOT. Re-enter the directive insuring
that the register number specified is zero through seven.

NO CHANGE VALUE

If the CR (change register) directive is entered followed by a valid register number
and invalid or missing values to be placed in the register(s), this message is written
to the lfc IIOT. Re-enter the directive insuring that the value(s) to be placed in the
register(s) are valid 32-bit values (refer to Section 3.10 CR (Change Register)
Directi ve).

MPX-32
Utilities

Symbolic Debugger (SYMDB)
Errors and Aborts 4-3

4.3 Trap Error Messages

The following error messages may be written to the lfc flOT if an invalid trap or trap list
directi ve is entered.

TRAPS ON WORD BOUNDARIES ONLY

This message is written to the lfc flOT if the user enters a SET or GO directive
followed by a trap address that SYMDB can't locate because the:

• trap address is not on a word boundary
• trap address is a local symbol name and the default is to global symbols
• trap address is a local symbol name that is not in the default local symbol table
• trap address is a global symbol that is not in the global symbol table

Re-enter the directive insuring that the trap address is on a word boundary, and
that the symbol name specified is in the default symbol table (local or globa!).

NO TRAP ADDRESS SPECIFIED

If a SET directive with no trap address is entered, this message is written to the lfc
flOT. Re-enter the directive specifying the address where the trap is to be set.

NOT ALLOWED IN TRAP LIST

If a LOG or REVIEW directive is entered in a trap list, this message will be written
to the lfc flOT. Enter any valid trap list directive, or enter a trap list terminator
before re-entering the LOG or REVIEW directive (these are the only two directives
which are not allowed in a trap list).

ALREADY A TRAP THERE

If a SET directive is entered followed by the address of a previously set trap, this
message will be written to the I fc flOT. Re-enter the directive followed by an
address at which no trap exists.

NO TRAP THERE

If a DELETE or LIST directive is entered followed by an address at which no trap
exists, this message will be written to the lfc flOT. Verify the trap addresses, and
re-enter the directive followed by a valid trap address.

,TRAP TABLE FULL; TRAP NOT SET

4-4

If a SET directive is entered and the trap table is full (a maximum of 20 traps are
set), this message is written to the lfc flOT. Delete one or more traps before
another trap can be set.

Symbolic Debugger (SYMDB)
Errors and Aborts

MPX-32
Utilities

" C" "

o

c'

IMMEDIA TE "IF" NOT ALLOWED

If the IF directive is entered outside of a trap list, this message is written to the lfc
IIOT. Set a trap and enter the IF directive as the first directive in the trap list if
the trap is to be conditional. The IF directive may not be used at any other time.

"IF" DIRECTIVE OUT OF SEQUENCE

If the IF directive is entered in a trap list and it is not the first directive in that
trap list, this message is written to the lfc IIOT. Reset the trap (or set a new trap)
and enter the IF directive as the first directive in the trap list if the trap list is to
be conditional.

4.4 Directive Expression Error Messages

The following expression error messages may be written to the Ifc IIOT if an invalid
expression is entered.

NO EXPRESSION

If an IF or LIST directive is entered with no expression (expression is a required
parameter), this message is written to the Ifc IIOT. Re-enter the directive with the
IF conditional expression or the expression (trap address) to be listed.

NULL SUBEXPRESSION

If a directi ve is entered followed by an expression parameter which contains paired
parentheses with no value inside '()' this message is written to the lfc fIOT. Re
enter the directive with a value inside the parentheses, or delete the parentheses.

UNDEFINED SYMBOL

If a directive is entered followed by an expression which contains a symbol that
SYMDB cannot locate within the default local symbol table (if PGM directive was
entered) or within the global symbol table, this message is written to the lfc fIOT.
Verify the default symbol table (local to a program specified in the PGM directive
or global symbols) by entering the SHOW SYMBOLS directive. If the desired symbol
is a local symbol to another program name, enter the PGM directive followed by
the program name which defines the desired symbol before re-entering the
directive.

UNRECOGNIZABLE TERM

If a directive is entered followed by an expression which contains a term that
SYMDB cannot recognize, this message is written to the Ifc IIOT. Re-enter the
directi ve insuring that the expression contains valid terms (refer to Section 2.22.7
for a description of valid terms used in expressions).

MPX-32
Utilities

Symbolic Debugger (SYMDB)
Errors and Aborts 4-5

MISSING OPERATOR

If a directive is entered followed by an expression which does not contain an
operator, this message is written to the lfc 1I0T. Re-enter the directive insuring
that the expression contains a valid operator (refer to Section 2.21 SYMDB
Directive Expressions, for a description of valid operators).

Note: This message is also written if a decimal integer greater than ten digits
is entered as a term in an expression. Decimal integers may not
exceed ten digits.

DANGLING OPERA TOR

If a directive is entered followed by an expression which contains an operator with
only one operand, this message is written to the Ifc IIOT. Re-enter the directive
insuring that the expression contains two operands for each operator specified.

CONSECUTIVE OPERATORS

If a directive is entered followed by an expression which contains a sequence of two
or more operators that are not separated by operands, this message is written to
the Ifc IIOT. Re-enter the directive insuring that the expression contains two
operands for each operator specified.

UNMA TCHED LEFT (
or

UNMATCHED RIGHT)

If a directive is entered followed by an expression which contains a left parenthesis
that is not paired with a corresponding right parentheses or vice versa, one of these
messages is written to the lfc IIOT. Re-enter the directive insuring that the
expression contains paired left and right parentheses.

ADDRESS WOULD CAUSE MAP F AUL T

If a directive is entered followed by an expression which contains a memory
contents term that (when evaluated) produces an indirect address which would
cause a map fault, this message is written to the Ifc 1I0T. Re-enter the directive
insuring that the evaluated expression does not produce an invalid address. The
contents of the memory location specified in the term can be examined through the
use of the display memory directives (refer to section 2.13 Examining Memory and
Registers for a summary of the display memory directives).

EFFECTIVE ADDRESS CAUSES MAP FAULT

4-6

If a directive is entered followed by an expression which produces an invalid
effective address, this message is written to the Ifc IIOT. Re-enter the directive
insuring that the evaluated expression does not produce an invalid effective
address.

Symbolic Debugger (SYMDB)
Errors and Aborts

MPX-32
Utilities

c

o

,.,.

L

INV AUf) FLOATING POINT NUMBER
or

INV AUf) DECIMAL NUMBER
or

INV AUD HEXADECIMAL NUMBER
or

INV AUD BINAR Y NUMBER
or

INV AUf) CHAR,L\CTER STRING

If a directive is entered followed by an expression which contains an invalid
constant or integer, one of the above messages is written to the Ifc IIOT (depending
on the type of constant or integer contained in the expression).

Re-enter the directive insuring that the constant or integer value is valid (refer to
Sections 2.14.1 and 2.14.2 for a description of valid integer and constant terms in
expressions).

4.5 Base Error Messages

The following error messages may be written to the Ifc 1I0T if a user base is incorrectly
defined, redefined or deleted.

NO BASE NAME

If the BASE directive is entered without a base name, this message is written to the
1 fc IIOT. Re-enter the directive followed by an existing or new user defined base
name.

BAD BASE NAME

If the BASE directive is entered with an invalid base name, this message is written
to the 1 fc IIOT. Re-enter the directive insuring that a valid base name is
specified. (Valid base names begin with the $ and an alphabetic character followed
by one to seven alphanumeric characters).

SPECIAL BASE NOT ALLOWED

If the BASE directive is entered followed by a SYMDB base name, this message is
written to the Ifc IIOT. There are special SYMDB defined base names (refer to
section 2.22.4) which may not be redefined or deleted by the BASE directive. Re
enter the directi ve insuring that the base name is a new or existing user defined
base.

BASE TABLE FULL

If the BASE directive is entered followed by a new base name and the base table is
full, this message is written to the lfc IIOT. Delete one or more bases before a new
base can be defined.

MPX-32
Utilities

Symbolic Debugger (SYMDB)
Errors and Aborts 4-7

4.6 Directive File Error Messages

The following error messages may be written to the lfc /lOT if a directive file is
incorrectly accessed.

NO FILE NAME

If the FILE directive is entered and does not specify a file name, this message is
written to the lfc !lOT. Re-enter the directive followed by a valid directive file
name and password (if required).

NO SUCH FILE

If the FILE directi ve is entered followed by an invalid file name, this message is
written to the Ifc /lOT. Re-enter the directive followed by a valid directive file
name and password (if required).

FILE NAME> 8 BYTES

If the FILE directive is entered followed by a file name which is more than eight
characters (eight bytes) in length, this message is written to the Ifc /lOT. Re-enter
the directive followed by a valid file name (not exceeding eight characters) and
password (if required).

4.7 Directive Argument Error Messages

The following error messages may be written to the lfc flOT if an invalid or missing
argument is entered following a directive.

ARGUMENT SHOULD BE "BASES" OR "TRAPS"

If the CLEAR directive is entered with an invalid or mIssmg argument, this
message is written to the Ifc fIOT. Re-enter the directive specifying either bases
or traps as the argument.

ARGUMENT SHOULD BE BLANK, "BASES"; "OPTIONS", OR "TRAPS"

If the SHOW directive is entered with an illegal or missing argument, this message
is written to the lfc /lOT. Re-enter the directive specifying one of the valid
arguments listed in the message.

ARGUMENT SHOULD BE "X" OR "N"

4-8

If the FORMAT directive is entered with an illegal or mISSing argument, this
message is written to the lfc /lOT. Re-enter the directive specifying either X
(hexadecimal input radix) or N (decimal input radix).

Symbolic Debugger (SYMDB)
Errors and Aborts

MPX-32
Utilities

C-~"' .. '·· I, "

")

(

ARGUMENT SHOULD BE "NOFORTRAN", "FORTRAN",
"EXTENDED", "NOEXTENDED", "LOG", "NOLOG"

If the MODE directive is entered with an illegal or missing argument, this message
is written to the lfc 1I0T. Re-enter the directive specifying one of the valid
arguments listed in the message.

RELA TIVE NAME NOT FOUND

If the RELATIVE directive is entered with an invalid base or program name, this
message is written to the lfc 1I0T. Re-enter the directive insuring that a valid base
or program name is specified.

CAN'T USE "$" OR "$PSD"

If the RELATIVE directive is entered with a $ or $PSD as its argument, this
message is written to the lfc IIOT. SYMDB special bases $ and $PSD can not be
specified for relative addressing. Re-enter the directive insuring that a valid base
or program name is specified.

DELETE WHAT

If the DELETE directive is entered with no argument, this message is written to the
I fc 1I0T. Re-enter the directi ve insuring that the trap to be deleted is specified.

NO SUCH PROGRAM NAME

If the PGM directive is entered with an invalid program name, this message is
written to the lfc 1I0T. Re-enter the directive insuring that a valid program name
(to be established as default for local symbols) is specified.

BAD CONDITION CODE

If the CC (condition code) directive is entered with an invalid value to replace the
existing condition codes, this message is written to the lfc 1I0T. Re-enter the
directive insuring that the value to replace the existing condition codes is a 4-digit
binary value. (To display existing condition codes, enter the CC directive with no
argument).

4.8 Other Error Messages

These error messages may be written to the lfc IIOT if one of the following errors occur.

NO USER BREAK RECEIVER

If the BREAK directive is entered and there is no break receiver in the user
program, this message is written to the lfc 1I0T. This directive can only be used to
transfer control to the user program's break receiver. If no break receiver exists,
the di recti ve is invalid.

MPX-32
Utilities

Symbolic Debugger (SYMDB)
Errors and Aborts

UNRECOGNIZED DIRECTIVE

If an invalid directive is entered, this message is written to the Ifc IIOT. Verify the
valid directi ve syntax, and re-enter the directive.

LOG FILE IS FULL, USE "LOG" DIRECTIVE TO OUTPUT IT

If SYMDB temporary log file is filled, this message is written to the Ifc IIOT. Enter
the LOG directive (to write the log file to the line printer) or the REVIEW directive
(to write the log file to the Ifc IIOT). If neither directive is entered, the contents
of the log file are destroyed and a new log file started.

TRACE STOPPED

If any error occurs while in trace mode, or if a < CR > is not entered while in trace
mode with step in effect this message will be written to the Ifc IIOT.

4.9 Abort Codes

SYMDB has abort codes which may be written to the lfc IIOT if an abort occurs. These
abort codes are:

• DB01 In batch mode, the end of the file assigned to Ifc IIOT has been encountered
before the end of job (EOJ).

• DB02 A fatal I/O error has occurred on the Ifc specified after the abort code in the
abort message.

The following are examples of fatal I/O errors:

The input file is not assigned and there is no default input file.
The output file is not assigned and there is no default output file.
The same Ifc is assigned to both the input and output file.

The above abort codes usually refer to errors within the job control. Therefore, the job
control should be examined for errors before the program code.

The following abort codes are internal to SYMDB, and do not apply to errors within the
job control. Refer to the section 2.3 Logical File Code Assignments, for help with these
errors.

• DB03 M.ASSN ERROR ON LFC IIIN

• DB04 M.OPENR ERROR ON LFC IIIN

• DB05 M.ASSN ERROR ON LFC IIOT

• 0806 M.OPENR ERROR ON LFC /lOT

4-10
Symbolic Debugger (SYMDB)

. Errors and Aborts
MPX-32
Utilities

c

(

SECTION 5 - SAMPLE DEBUGGING SESSIONS

5.1 Debugging Session Introduction

This section illustrates how to use SYMDB. The examples show separate subprograms or
modules that can be debugged separately, and then added to the stable system.

The following sample programs and directive keys illustrate the use and results of the
debugging sessions.

5.2 Example 1: Scanning Data in a Program Loop

The sample program for this debugging session searches through a table of seven values
looking for the value five. If the value is contained in the table, the program
successfully exits. Otherwise, the program aborts.

The debugging session shows how to set a trap at the beginning of a loop and how to build
a trap list that displays the register contents for the trap address. The program then
continues execution through the loop until the trap is encountered again. This cycle
continues through each successive iteration of the loop. This allows the user to examine
the register contents to insure correct program execution for each iteration of the loop.

The following subsections contain the sample program and the debugging session which
demonstrate the procedure described above.

MPX-32
Utilities

Symbolic Debugger (SYMDB)
Sample Debugging Sessions 5-1

V1

~

til
tIl'<
III 3
3 0"
"0 g. -_.

CD n
00
CD CD
0"0"
c: c:
\.0\.0
\.0\.0 ::r :f
\.0\.0
til ,-...
CD til
~ -< _. ~
g 0
en CD

'-"

c~
C". "'0
::::X _. 'vi

~ N

co,
o

~

o

..

DPGTST

0001)1
oOl)n<,
00003
000011
000(1<;
nOllnn
00007
00110/\
(01)1)0
00010
00011
0001<'
(111)13
OOOla
001l1e;
00"11>
00017
OOOIA
0(101°
0011211
OOO?!
O(lo<,?
00023
0110;>'1
0002<'
Ol)(\(lf.
00 11 27
ono;>11
01l1l2Q

1)1)03 11
1)1)031
OO'lP

(1)n3'
0003a
0003<;
I)003b
1)0(137
000311
0003"
1I0llao
000111
Oooa?
OOOa~

0004J1J
OOl)a<;
1)0011"

000417
0(100

11110 11 0
1I00n,
Oll(\/lt'
nOI)II]

01)1)11/1
0 11 011')
0(' (\ lit-
000117

pr,llOIIO 0.)0011011 1
o () 0 11 II Ii 0 0 II 0 0 0 0 ;>
DOlI (\IIP .,ono 110 I)_~
O~.OtlIlC 1100(1110041
OIlOIlIQ 1101100011<;
PI)!'OlU 00000006
D(l1I01P 111)00 0 0/17
Oil 0 1'1f;

1")01);>11
1'1)1111;>11 <;4J<;:~e;1I/J;1

~ono'.:J 1121J7(1(\(lf)

Ol)IIO?"
P:)002C
01'(\1130
P/1003u

01'1"(13"

°OIlO~r.
00111)11(1

PIj {l(J a II
pl)Ooap
poonac

'£lAO non!)
CQl)00005
Q12000no
fEoO/l051

("'1"1/10011
oOPonOIC
F(,OOOO]I

~E/\0005U

4F n OOI)?2
("AIII>105n

01)1)('<;0 rgOt" o<;c;
onllOC;1j e5c,2'52?0
00110<;/\

F.IHH1R'l P ,)PGTST

POOOOO

00000
POOl)';O

PI)OOIC
POOO]O

POOO';11
POOOlO

PIl0021!

VER 9.3

PIlOr,RA~ ORGTST

* ..
* ..

THIS PQOGRA~ WILL DE~O~5TRATF THE SYMBOLIC CAPABILITIES
WHIC~ 4Rf USED THROUr.H THE SYMBOLIC DEBUGGER.

..
* ..

THJS PPOGRA~ ~ILl SI~PLY SCAN A TARLE OF DATA ITEMS
LnOKI~G FOR A 5pfCIFIC ITE~. IF THf ITEM IS FnUND
THFN A SUCCESSFUL· EXIT IS PERFOQMED. IF THE ITEM
IS ~nT FO!l~D T~EN THE pR(lGP6M IS ABI1RTEO.

RO
Rl
R?
Q3
IlI1
R5
Rfo
IH ..

EQU
EQIJ
EQU
EQI)
F.fJl/
EQU
f.QII
EfJU

o
t
2
3
II
5
b
7

~fGT~~lE OATAW X'I'
DATAW X'2'
OATh.)(13'
OATh. X'II'
OATAW X'5'
OATAW
[lATA~

[~nTARLE IE:IlII
B(lI.I~tn

TASKNAMF OATAR

•

X' 6'
)C' 7' ,
10
C'TSTOtlr.

.. START PF pROGPA~

" ~TA~T
LOOP

*

..

*

LA
LJ
CAMW
'IEQ

ADJ
C:A"'I~

liNE

Lvi
LO
SVC

RI,FlFGTARLE
R2,5
A2,0,RI
ENDSUCC

RI,\W
Pl,ENOTARLf
Lonp

R5,=C'ERR'
Rb, TASKNA~f
I,X'56'

fNOSUCC SVC I,X'<;5'

END START

ESTA~LISH ENDING ADDRESS OF TARLE
DOURLEWORO ALIGN TAS~ NAME
NA~E OF THIS TASK

GET ADOP. OF BEGINNING OF TABLE
PUT I~ VALUE OF-ITEM SEARCHED FOR
CHECK IF FOUND VALUE
BRA~CH TO ENO SUCCESSFULLY IF FOUND

INC. TO LOOK AT NEXT ITEM IN TARLE
CHECK IF AT END OF TARLE
AQANCH IF NOT AT END OF TABLE

LOAD IN ABORT CODE
LOAD IN ABORT TASK NAME
ASORT THIS TASK

SUCCESSFUL END OF PROGRAM

~
~

i
i-

f
~
~

". ~-~
\, j

5.2.2 Sample Debugging Session for program DBGTST

All directives in the sample debugging session are numbered to correspond to a key which
describes the directives and responses. Each directive is immediately followed by its
response.

Directi ve Key

1) SYMDB is accessed by entering the DEBUG directive in response to the TSM
prompt.

SYMDB responds with its identifying message.

2) The directi ve to show the symbols (SHOW SYMBOLS) is entered.

The default is to the global symbol table, the response displays the global symbols
header and indicates that there are no global symbols in the program by displaying
no symbol names.

3) The directive to set the default program name and accessible symbols (PGM
DBGTST) is entered.

4)

The default program name is set to DBGTST. The symbols local to DBGTST are
accessable. There is no written response to this directive.

The directive to show symbols (SHOW SYMBOLS) is entered again (this time to
display the local symbols).

Tl,e response displays the local symbols header and all symbols local to the
program DBGTST.

5) The directive to set a trap at the beginning of a program loop at the location
whose address is specified by the symbol name LOOP (SET LOOP) is entered.

The trap is set at the address specified by the symbol name LOOP and SYMDB
responds with the trap list prompt (••).

6,7) The directive (directive 6) to snap register one (SN R1) is entered in the trap list
followed by the GO directive (directive 7). These directives are deferred until the
trap is encountered. When they are executed, R1 will be displayed and program
execution resumed. Because the trap is set at the beginning of a loop, each time
program execution is resumed the trap is encountered again and the trap list
executed. This allows the user to insure correct program execution for each
iteration of the loop. The GO directive in the trap list is a trap list terminator,
therefore the trap list is ended and the immediate lfc IIIN prompt (.) is issued.

8) The directive to begin program execution (GO) is entered. Program execution will
begin at the base $ (bits 13-31 of the user PSD or the current program counter
value) because no start address was specified.

6a)

The program will begin execution. There is no written response to the GO
directive.

The trap is encountered and the SNAP directive (deferred in the trap list) is
executed.

MPX..,32
Utilities

Symbolic Debugger (SYMDB)
Sample Debugging Sessions 5-3

The response specifies the address contained in register one (DBGTST) followed by C -'It,'.

the contents of that address (00000001).

7a) The GO directive (deferred in the trap list) is executed.

Program execution is resumed. There is no written response.

6b) The trap is encountered and the SNAP directive (deferred in the trap list) is
executed.

The response specifies the address contained in register one (DBGTST +4) followed
by the contents of that address (00000002).

7b) The GO directive (deferred in the trap list) is executed.

Program execution is resumed. There is no written response.

6c) The trap is encountered and the SNAP directive (deferred in the trap list) is
executed.

The response specifies the address contained in register one (DBGTST +8) followed
by the contents of that address (00000003).

7c) The GO directive (deferred in the trap list) is executed.

6d)

Program execution is resumed. There is no written response.

The trap is encountered and the SNAP directive (deferred in the trap list) is
executed.

The response specifies the address contained in register one (DBGTST +C) followed
by the contents of that address (00000004).

7d) The GO directive (deferred in the trap list) is executed.

Program execution is resumed. There is no written response.

6e) The trap is encountered and the SNAP directive (deferred in the trap list) is
executed.

The response specifies the address contained in register one (DBGTST +10)
followed by the contents of that address (00000005).

7e) The GO directive (deferred in the trap list) is executed.

5-4

Program execution is resumed and the value five encountered therefore a
successful exit from the program is performed. SYMDB displays the status of the
program at the exit address.

Symbolic Debugger (SYMDB)
Sample Debugging Sessions

MPX-32
Utilities

~-

o

r"···
l

f

Debugging Session

1) TSM> DEBLG OOGTST

tvPX-32 SYlVSOLIC DEBLG V2.0
PSW=01029828 (CC=OOOO)
REGS=OOOOOOOO 00000000

05/13/81, 13:00:00 TASK NAME = DBGTST
(PC=DBGTST+28)

00000000 00000000
00000000 00000000 .••••.••.•......
00000000 00000000•..••.••.••.

2)

3)
4)

5)
6)
7)
8)

6a)

7a)

6b)

7b)

6c)

7c)

6d)

.St-OW SYlVSOLS
GLOBAL SYlVSOLS
· PGvI DBGT 5 T
· SI-ON SYlVSOLS
SYlVSOLS LOCAL TO PR~ HDBGTST
START TASKNAIvE ENJSU:X:: BEGTABLE
ENJTABLE
.SET LOOP
.. SN R1
· .m
.m
TRAP @ DBGTST+30
PSW=21029830 (CC=0100)
REGS=OOOOOOOO 00029800

00000000 00000000
!SN R1
DBGTST
!m
TRAP @ DBGTST+30
PSW=21029830 (CC=0100)
REGS=OOOOOOOO 00029804

00000000 00000000
!SN Rl
DBGTST+4
!CD
TRAP @ DBGTST+30
PSW=21029830 (CC=OlOO)
REGS=OOOOOOOO 00029808

00000000 00000000
!SN Rl
DBGTST+8
!CD
TRAP @ DBQTST+30
PSW=21029830 (CC=OlOO)
REGS=OOOOOOOO 0002980C

00000000 00000000
!SN Rl
DBGTST+C

(PC=DBGTST+30)
00000005 00000000
00000000 00000000

00000001

(PC=DBGTST+30)
00000005 00000000
00000000 00000000

00000002

(PC=DBGTST=30)
00000005 00000000
00000000 00000000

00000003

(PC=DBGTST+30)
00000005 00000000
00000000 00000000

00000004
7d) !CD

TRAP @ DBGTST+30
PSW=21029830 (CC=OlOO)
REGS=OOOOOOOO 00029810

00000000 00000000
6e) ! SN Rl

DBGTST+10

(PC=DBGTST+30)
00000005 00000000
0000000000000000

00000005

MPX-32
Utilities

Symbolic Debugger (SYMDB)
Sample Debugging Sessions

LOOP

................

I I

/ I

I I

/ I

/ I

5-5

5.3 Example 2: Searching Through a Linked List

The sample program for this debugging session contains a linked list with four data words
in each node. If the nodes are linked correctly, the program successfully exits.
Otherwise, the program aborts.

The debugging session shows how to establish a value for a period C.), which will be used
to display the node address and data words of each node. The debugging session also
shows how to build a conditional trap list which is executed only if the counter (CTR,
which counts the number of nodes that are linked) is greater than two (a conditional trap
list allows the user to execute the trap list only if a specified condition is met).

The following subsections contain the sample program and the debugging session which
demonstrate the procedure described above.

5-6
Symbolic Debugger (SYMDB)
Sample Debugging Sessions

MPX-32
Utilities

10
'--,;

(' /

CS:
::!."'O
=x
.... I ~
~ N

tn
tn,<
Q) 3
30-

'"C 0
(1)

()

00
(1) (1)
0-0-
c: c:
~I!)
_.I!)
::::J (1)

I!)...,

tn ,....,
(1) tn
cn-<
2!. s:
o 0
~IJJ

V1
I

.......

........

~

CD

~

~

DSGTST2

00001
00002
00003
00000
00000;
OOOOb
00007
00001>
00000
00010
00011
00012
00013
0001'1
0001<;
00011>
00017
nOOt~

0001 0

ooo;>n
00n21
OOO??
ooon
0002/1
0002<;
noo?"
00027
000211
0002 0

00030
oon 31
0001'
0003'
n0030
0003"

0003/0
00037
n0031>
0003'1
00000
noool
00n02
nooO)
00000
0000<;
OOOOh
00007
0000/1
0000 0

000')0
OOOSI

~OOO('

!lOOQI
onoo?
~0003

OOO~Q

0000<;
oncnb
onr~7

Po"onO
p(·nono
Pj)"O('1r

"C'!"I)O(
POOOIO
orH"I(\ t u
POnOI"
Ptl"(JI(

000020
POr'02Q
P~OO?~

p"o~2C

f'on030
P~n03Q

P,'OO)~

poo03e
pnnOIlO
P(lOOIlIJ
1") 101l~

pnnOllll

POOOIIC

p:.0050
POO(;o;.
PCOOo;~

Pun!",.:;c
PI'\I'\O,",O
pon~b4

P'JnOIoI\.
p~nn .. c
Pon070

pno07Q
D'J00711

OOOo;? Pn n 07(

0000001"
nOOOOOOO
IIEIIFfloQo;
JII;>02020
0000000.
000000311
oEoFI""o;
31;>02020
nonOOOOI
'0000000
oEOF04QS
'B?020;>O
oon00003
noo0002"
oEoFoooS
'220~020
0,n00002
0000(01)0

c;,aC\3C\.uQ/J

a2" 73220

6CROOOOO
C880;0000
F20000bQ

~EII0007"
6F 000004
('1101010%

n"~0007
'CAnOOOO
F'?OOOObQ

C8~bIOSS
a,)~252Z0

• ooon EPMOQS IN DPGTST2

P~OOIIl

p~0~3q

POOOOG

PI)002o

POOOOO

Poonb8

P000711
P00048

P00047
00000

POOOb8

POOOSO

~

VEil Q.3

PROGRAM 08GT5T2
•
* •

THIS PROGR.M WILL OF.MONSTRATE THE SYMBOLIC CAPABILITIES
WHICH ARE USED THPOUGH THE SYM80LIC OE8UGGER.

* •
THIS PROGRAM wILL ESTABLISH A LINKEO LIST WHICH CAN
THEN BE DISPLAYED THROUGH THE USE OF DEBUGGER COMMANOS.

•
PO EOli
III fOU
112 EOIl
II~ EOI)
PG EOli
P'> fOU
Rb EIlU
P7 Ellli
lI"KSTRT AC"
NO OF. " DATA ..

DATAW
DATA'~

OATAII
,,(lDEI ACW

DATA ..
DATAW
I)ATA'"

flnDr 3 AC~

nATA'"
DATA ..
DATA ..

l,nOf2 ACW
DATA'"
OHAW
OATAW

CTR DATAW
IInUNO

T ASK",A .. F DA TAB

•

o
I
2
3
4
5
I>
7
NODEI
o
C'~OOE'
C'4

" ... OOE2
('NODE'
C' I
1
NODE4
C'NOOE'
C'3
3
NODEl
C''''OOE'
C'i!
2
o
10
C'TSTOBGi! '

* ST.RT OF PPOGAAM
•
START

*

* LOOP

•

LW
CI
8Nf

LW
LO
SVC

AB"
LW
IlNE

ENOSUCC SVC

END

Rl,U"'KSTRT
Al,O
LOOP

R5,aC'ERR'
RI>, TlSKNA"r
I,X'51>'

31,CTR
Rl,O,Al
LOOP

I,X'5S'

START

I INITIALIZE 8EGINNING OF LIST
I FORwARD POINTER • 0 .~ NO MORE NODE
liST WOAD Of DATA IN NOnE"
I ?ND wORO OF DATA IN NODE"
I 3AO WORD OF DATA IN NODf "
I FORwARD POINTER IN NODE I
liST wOAD OF DATA IN NODE 1
I ?NO WORD OF DATA IN NODE 1
I 3AO WORD OF DATA IN NODE 1
I fORWARD POINTER IN NODE 3
liST WORD OF DATA IN "'ODE 3
I 2ND WOAD OF DATA IN NODE 3
I 3qD wORD OF DATA IN NIJOE 3
I FORWARD POINTER IN NODE 2
liST WOQO OF DATA IN NODE 2
I 2ND wOAD OF DATA IN NODE 2
1]RO WORD OF DATA IN NOOf. 2
I INITIALIZE COUNTER OF NUMBER OF
I 00U8LEwORO ALIGN TASK NAME

.1 NAME OF THIS TASK

LOAD IN POINTER TO LINKED LIST
CMECK IF LINKED LIST IS "'ULL
BRANCH IF LI"'KED LIST IS NOT NULL

LOAD IN ABORT CODE
LOAD IN ABORT TASK NAME
ABORT THIS TASK

INC. eTR. OF NUMBER OF NODES FOUND
LOAD IN POINTER TO NEXT NODE
BRANCH IF NOT AT END OF LIST

SUCCESSFUL END OF PAOGRAM

,--,

VI • \,.,j
•
~

~
'E.

CD
"C

1
~
~
;j

5.3.2 Sample Debugging Session for program DBGTST2

All directives in the sample debugging session are numbered corresponding to a key which
describes the directives and responses. Each directive is immediately followed by its
response.

Directi ve Key

1) SYMDB is accessed by entering the DEBUG directive in response to the TSM
prompt.

SYMDB responds with its identifying message.

2) The directive to set the default program name and the accessible symbols (PGM
/lDBGTST2) is entered.

The default program name is set to DBGTST2. The symbols local to DBGTST2 are
now accessible. There is no written response to this directive.

3) The directive to snap the address which contains the address of the 1st node in the
linked list (SN UNKSTRT) is entered.

The response specifies the address to be snapped (DBSTST2) and the contents of
that address (00029814). The address is displayed in the program name plus offset
format. In this example, there is no offset. UNKSTRT is located at the start
address, program name +0 (the +0 is not displayed). The contents of the snapped
address (00029814) specifies the address of the first node in the link. The value of
the special character period (.) is set to the value of UNKSTRT (period (.) can be
entered in place of the last address specified in a memory related directive). The
value of period C.) is reset each time a memory related directi ve is entered.

4) The directive to execute the directives in a directive file (FILE FlUNK) is entered.

The response to the FILE directive is to execute the directives in the directive file
(FIUNK) specified. The directives in directive file FlUNK are

SN C(.), C(.) + OC
SN • - OC

5) The first directive in the directive file is the SNAP directive (SN C(.), C(.) + OC).

6)

5-8

The range of addresses to be snapped specifies the contents of the special character
period (.) (which is set to the address UNKST ART) through the contents of period
(.) plus 12 decimal bytes. Prior to the execution of this directive the contents of
period (.) is the address of the first node in the linked list.

The response specifies the address of the first node in the linked list (DBGTST2+14)
and the contents of the first node (00029834 4E4F4445 31202020 00000001
/ ••• 4NODE1 ••• ./). The period (.) is now set to the address of the third data word of
the first node (00029820, which was the last address in the specified range).

The second and last directi ve in the directive file is also the SNAP directive
(SN.-OC). The address to be snapped specifies the period C.) minus 12 decimal bytes
(.-OC).

Symbolic Debugger (SYMDB)
Sample Debugging Sessions

MPX-32
Utilities

(

The response specifies the address of the first node in the linked list (DBGTST2+14)
and the contents of that address (00029834). The contents (00029834) specifies the
address of the second node. This directi ve is entered to reset the value of period C.)
to the first word of the node just displayed which contains the address of the next
node.

7) The FILE directi ve is entered.

The directi ves in the directi ve file (FlUNK) are accessed.

3) The SNAP directive (specified in the directive file) is executed. The range of
addresses to be snapped specifies the contents of period (.) (which is set to the
address of the first word of the first node in the linked list) through the contents of
period C.) plus 12 decimal bytes. Prior to the execution of this directive, the
contents of period C.) is the address of the second node.

9)

10)

The response specifies the address of the second node (DBGTST2+34) and the
contents of the second node (00029824 4E4F4445 32202020 00000002
/ ••• $ NODE 2 •••• !). The period (.) is now set to the address of the third data word
of the second node (00029840).

The second SNAP directive (specified in the directive file) is executed. The address
to be snapped specifies the period C.) minus 12 decimal bytes (.-OC).

The response specifies the address of the second node in the linked list
(DBGTST2+34) and the contents of that address (00029824). The contents
(00029824) specifies the address of the third node in the linked list. The special
character period C.) is now set to the address of the second node (00029834).

The FILE Directive is entered again.

The directives in the directive file (FlUNK) are accessed.

ll) The SNAP directive (specified in the directive file) is executed. The range of
addresses to be snapped specifies the contents of period (.) (which is set to the
address of the first word of the second node in the linked list) through the contents
of period (.) plus 12 decimal bytes. Prior to the execution of this directive the
contents of period (.) is the address of the third node.

The response specifies the address of the third node (DBGTST +24) and the contents
of the third node (00029804 4E4F 4445 33202020 00000003 / •••• NODE 3 •••• !). The
period has the value of the address of the third data word of the third node
(00029830).

12) The second SNAP directive (specified in the directive file) is executed. The address
to be snapped specifies the period (.) minus 12 decimal bytes (.-OC).

The response specifies the address of the third node in the linked list (DBGTST2+24)
and the contents of that address (00029804). The contents (00029804) specify the
address of the fourth node in the linked list. The period (.) is now set to the address
of the third node (00029824).

13) The FILE directive is entered again.

The directi ves in the directive file (FlUNK) are accessed.

MPX-32
Utilities

Symbolic Debugger (SYMDB)
Sample Debugging Sessions

14) The SNAP directive (specified in the directive file) is executed. The range of
addresses to be snapped specifies the contents of period (.) (which is set to the
address of the first word of the third node in the linked list) through the contents
of period (.) plus 12 decimal bytes. Prior to the execution of this directive the
contents of period (.) is the address of the fourth node.

The response specifies the address of the fourth node (DBGTST +4) and the
contents of the fourth node (00000000 4E4F 4445 34202020 00000004
f •••• NODE 4 •••• f). The period (.) is now set to the address of the third data word
of the fourth node (00029810).

15) The second SNAP directive (specified in the directive file) is executed. The
address to be snapped specifies the period (.) minus 12 decimal bytes (.-OC).

The response specifies the address of the fourth node in the linked list
(DBGTST2+4) and the contents of the address (00000000). The contents (00000000)
specifies the start address of the program (this indicates that there are no other
nodes). The period (.) is now set to the address of the fourth node (00029804). All
nodes and their data words have been examined.

16) The directive to set a trap at the beginning of a program loop (SET LOOP) is
entered.

17)

The trap is set at the address specified by the symbol name LOOP and SYMDB
responds with the trap list prompt (••).

The directive to establish a conditional trap list (IF C(CTR) 2) is entered. The
argument specifies that the trap list at location LOOP will be executed only if the
contents of the local symbol CTR is greater than two. The conditional directive
(IF) is deferred (along with directives 18 and 19) until the trap at LOOP is
encountered.

18) The directive to snap the start address of the program (SNAP UNKSTRT) is
entered. This directive is deferred until the trap is encountered.

19) The directive to execute the directives in a directive file (FILE FlUNK) is
entered. The directives in the directive file (FlUNK) specified will be executed
when the trap is encountered. The FILE directive is a trap list terminator,
therefore the trap list is ended.

20) The directive to begin program execution (GO) is entered. Program execution will
begin at the base $ (bits 13-31 of the user PSD or the current program counter
value) because no start address was specified.

The program will begin execution. There is no written response to the GO
directive.

17a) The IF directive (deferred in the trap list) is executed.

5-10

The response specifies the IF conditional statement and the current status at the
address where the condition became true. The relational value of C(CTR) 2 is
equal to one (the condition is true).

Symbolic Debugger (SYMDB)
Sample Debugging Sessions

MPX-32
Utilities

c

o

(

18a) The SNAP directi ve (deferred in the trap list) is executed.

The response speci fies the address to be snapped (DGBTST2), which is the same
address as the symbol name (UNKSTRT), and the contents of that address
(00029814).

19a) The FILE directive (deferred in the trap list) is executed.

The directives in the directive file (FlUNK) are accessed.

The SNAP directive (specified in the directive file) is executed. The range of
addresses to be snapped specifies the contents of the period (.) (which is set to the
start address of the program) through the contents of period (.) plus 12 decimal
bytes. The contents of period (.) is the address of the first node in the linked list.

The response specifies the address of the first node in the linked list
(DBGTST2+14) and the contents of the first node (00029834 4E4F4445 31202020
00000001 / ••• 4NODEI •••• f). The period (.) is now set to the address of the third
data word of the first node (00029820).

The second SNAP directive (specified in the directive file) is executed. The
address to be snapped specifies the period C.) minus 12 decimal bytes (.-OC).

The response specifies the address of the first node in the linked list
(DBGTST2+14) and the contents of that address (00029834). The contents
(00029834) specifies the address of the second node. The period is now set to the
address of the first node in the linked list (00029814).

MPX-32
Utilities

Symbolic Debugger (SYMDB)
Sample Debugging Sessions 5-11

Debugging Session

TSM> DEBLG DBGTST2

MPX-32 S~OLIC DEBUG V2.0 05/13/81, 13:30:00 TASK NAME = DBGTST2
PSW=Ol 0298 50 (CC=OOOO) (PC=DBGTST2+ 50)
REGS=OOOOOOOO 00000000 00000000 00000000 .••.•••.•.••.•..

00000000 00000000 00000000 00000000 ...•..••.•••..••

2) • PGYl IfDBGTST2
3) .SN LINKSTRT

DBGTST2 00029814
4) .FILE FILINK
5) SN C(.),C(.)+OC

DBGTST2+14 00029834
6) SN. -OC

DBGTST2+14 00029834
7) .FILE FILINK
8) SN C(.),C(.)+OC

DBGTST2+34 00029824
9) SN. -OC

DBGTST2+34 00029824
10) .FILE FILINK
11) SN C(.),C(.)+OC

DBGTST2+24 00029804
12) SN. -OC

DBGTST2+24 00029804
13) .FILE FILINK
14) SN C(.),C(.)+OC

DBGTST2+4 00000000
15) SN. -OC

DBGTST2+4 00000000
16) SET LOOP
17) .• IF C(CTR) 2
18) .. SN LINKSTRT
19) .• FILE FILINK
20) .m

TRAP @ DBGTST2+68
17a) IF C(CTR) 2

'IF' VALUE = 00000001
PSW=21029868 (CC=0100)
REGS=OOOOOOOO 00029804
00000000 00000000

18a) !SN LINKSTRT
DBGTST2 00029814

1 9 a) ! FILE F I LINK
SN C(.) ,C(.) +OC
DBGTST2+14 00029834
SN • -OC
DBGTST2+14 00029834

4E4F4445 31202020

4E4F4445 32202020

4E4F4445 33202020

4E4F4445 34202020

(PC=DBGTST2+68)
00000000 00000000
00000000 00000000

4E4F4445 31202020

5-12
Symbolic Debugger (SYMDB)
Sample Debugging Sessions

1 •..• 1

00000001 I ... 41\lDEl. .. • 1

1 ••• 41

00000002 1 ••• $I\lDE2 •.•• 1

1 ••• $1

00000003 1 •••. 1\lDE3 •.•• 1

1 •••. 1

00000004/ •••• I\lDE4 •.•• 1

1 .••• 1

1 •••. 1

00000001 1 ... 4I\lDEl ...• 1

1 •• • 41

MPX-32
Utilities

(

C:

Text Editor (EDIT)

MPX-32 Utilities

(~

c

COI\ITENTS

Section

1- OVERVIEW

1.1 General Description
1.1.1 Accessing Files

1.2 Directive Summary.

2 - USAGE

2.1
2.2

2.3
2.4

2.5

2.6

Accessing EDIT ••••••••••••
Logical File Code Assignments
2.2.1 Source Input (TIN)
2.2.2 Output File (TOT) ••
Exi ting EDIT ••••••••••••
Lines and Line Numbers
2.4.1 Line Numbers Generated by the Editor ••
2.4.2 Line Numbers at the Beginning and End of the

2.4.3
2.4.4

Work File
Physical Position of Line Numbers.
Text Listed without Line Numbers.

Addressing Techniques •••••••••••
2.5.1 Special Characters •••••••
2.5.2 Line and Range Addressing ••••••
2.5.3
2.5.4
2.5.5

Groups
Content Identi fiers
Defaults

Using the Break Key.

3 - DIRECTIVES

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22

Introduction
APPEND Directi ve •
BATCH or RUN Directi yes
CHANGE Directi ve
CLEAR Directive •••
COLLECT Directive.
COMMAND Directive
COPY Directi ve ••••
DELETE f)irective
EXIT Directive •••••
INSERT Directive.
LIST Directive •••
MODIFY Directi ve
MOVE Directi ve ••
NUMBER Directive
PREF ACE Directi ve •
PRINT Directi ve
PUNCH Directive.
REPLACE Directive
RUN Directi ve •
SAVE Directive
SCRATCH Directive ••

MPX-32
l.Jtili ties

Text Editor (EDIT)
Contents

1-1
1-1
1-2

2-1
2-1
2-1
2-2
2-2
2-2
2-3

2-3
2-3
2-4
2-4
2-4
2-4
2-5
2-5
2-6
2-6

3-1
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-9

3-10
3-11
3-12
3-13
3-14
3-1/.j.
3-15
3-15
3-15
3-16
3-17

iii

Section

3.23 SET DELTA Directive.
3.24 SET TASS Directi ve
3.25 SET VERIFICA nON Directive ••
3.26 SHOW Directi ve ••
3.27 STORE Directive •••••
3.28 USE Directive
3.29 WORKFILE Directive

" - ERRORS AND ABORTS

4.1
4.2

iv

Abort Codes ••••
Error Messages ••

. . .
.

Text Editor (EDIT)
Contents

· · ..
· .. · . .

......

Page

3-17
3-18
3-20
3-21
3-23
3-24
3-25

4-1
4-1

MPX-32
Utilities

C

./

o

1.1 General Description

TEXT EDITOR (EDIT)

SECTION 1 - OVERVIEW

The Text Editor (EDIT) utility builds and edits text files, merges files or parts of files
into one file, copies existing text from one location to another, and performs general
editing functions.

EDIT is typically used to create source files and build job control and general text files.
A job control file built by EDIT can be copied directly into the batch stream using the
EDIT BATCH directive.

EDIT is based on the concept of a work file in which editing directives are used. Source
text may be transferred between permanent disc files and the work file. Access to
source text is based on line numbers contained within text lines.

To ensure only printable characters are contained within the text, control characters
embedded within the text (i.e., characters whose values are X'OO' through X'IF') are
replaced by blanks (X'20').

The Text Editor is cataloged with TSM OPTION LOWER (option 22) set. Files that are
built with upper and lower case text must be edited with the same character conventions
in effect. File names and work file codes can be entered in upper and! or lower case.
They are automatically converted to upper case by EDIT. OPTION LOWER may be reset
by recataloging the Text Editor utility.

EDIT recognizes 1 to 16 character file names. EDIT keywords cannot be used as file
names. If a complete pathname is specified, any valid file name can be used. If only a
file name is specified, the file name cannot begin with a dot or a string of digits (0
through 9) followed by a dot.

1.1.1 Accessing Files

The USE directive retrieves files from outside EDIT so editing functions can be
performed. If the records of an accessed file are longer than 80 bytes, the records are
truncated to 80 bytes when the file is copied into the work file. In addition, if valid line
numbers do not exist in record bytes 73 t.hrough 80, data in bytes 73 through 80 are
replaced by EDIT line numbers. The generated line numbers reflect the current value of
DEL T A, which determines line increments. If DELTA is set at the default, numbering
starts at 1.0 and increments by 1, up to 9999.

If an unnumbered file is accessed that has more than 9999 records, records 10,000 and
beyond are ignored. DELTA can be reset so that up to 10,000,000 records are copied into
the work file. See the SET DELTA directive.

To move a file from media other than disc into EDIT, first copy the file to disc using
another utility, e.g., MEDIA, then issue the EDIT USE directive.

MPX-32
Utilities

Text Edi tor (EDIT)
Overview 1-1

1.2 Directive Summary

EDIT directives are summarized below and described in detail in the Directives section.
Most EDIT directi ves can be abbreviated to three characters. Valid abbreviations are
indicated by underlining. EDIT directives are keywords and cannot be used as file
names. Back slashes, forward slashes, and commas are special characters used in EDIT
directives and cannot be used in file names.

The break key can be used to interrupt operations in progress. Use of the break key is
not recommended during SAVE and STORE operations.

Most EDIT directive parameters can be entered in any order. If directive parameter
input is order-dependent, the restriction is noted in the directive description.

Directive

APPEND

BATCH

CHANGE

CLEAR

COLLECT

COMMAND

COPY

DELETE

EXIT

INSERT

LIST

MODIFY

MOVE

NUMBER

PREFACE

PRINT

PUNCH

REPLACE

1-2

Function

Appends text to end of a line or group of lines

Copies work file or specified file into batch stream

Replaces a character string with another character string

Clears work file

Adds lines of text

Displays the last four directives performed

Copies existing text to work file

Deletes lines

Ends current EDIT session

Inserts lines of text

Lists text on terminal screen

Allows a one-for-one replacement of characters in an existing
line

Moves lines of text within the work file

Renumbers lines in work file

Inserts characters at beginning of lines

Copies work file or speci fied permanent file to SLO file

Copies work file or specified permanent file to SBO file

Replaces existing lines with new lines

Text Editor (EDIT)
Overview

MPX-32
Utilities

()

,r-.

...... ,.

(

RUN

S.AVE

SCRATCH

SET DELTA

SET TABS

SET VFA

SET VFN

SHOW

STORE

USE

WORKFILE

MPX-32
Utilities

Copies work file or specified file into batch stream (same as
the BATCH directi ve)

Saves work file compressed in permanent file

Deletes a permanent file

Sets an increment for line numbering

Modifies tab settings

Sets automatic veri fication

Inhibits automatic verification

Shows current line increment, files, or tab settings

Stores work file uncompressed in permanent disc file

Copies a permanent file into a cleared work file

Accesses a different work file

Text Editor (EDIT)
Overview 1-3/1-4

1,,,--

(

SECTION 2 - USAGE

2.1 Accessing EDIT

EDIT can be accessed from TSM in one of three ways:

$EDIT
$RUN EDIT
$EXECUTE EDIT

$RUN EDIT is valid only from the system directory.

A fter being accessed, EDIT prompts for a work file code:

ENTER WORK FILE CODE OR CR TO TERMINATE:

Enter the file code. A file code is any two printable alphanumeric characters, the first
of which must ':>e alphabetic, to be associated with the work file. Lower case letters are
converted to upper case for work file codes and file names. If the code supplied has been
used previously in accessing EDIT, the work file with that code is retrieved. A message
indicates whether the work file was cleared, saved, or changed (without a save) at the
end of the last EDIT session. The EDT> prompt is then displayed. .

If the code supplied has not been used before, EDIT creates a work file with that prefix.

The prompt for a work file code can be bypassed by entering the code when EDIT is
accessed.

TSM> $EDIT filecode
EDT>

2.2 Logical File Code Assignments

There are two logical file codes (LFC) associated with EDIT: Input (TIN) and Output
(TOT).

2.2.1 Source Input File (TIN)

The source input file contains EDIT directives. The source input file is assigned to
logical file code TIN.

TIN Default and Optional Assignments

The default assignment for TIN is to logical file code UT:

$AS TIN TO LFC=UT

In the interactive mode, input is entered on the user terminal. In the batch mode, input
is entered from the SYC file.

tv1PX-32
Utilities

Text Edi tor (EDIT)
Usage 2-1

There are two optional assignments for TIN:

$AS TIN TO {b~~~~::'v';rmc}
is the pathname of a file containing EDIT directi ves pathname

devmnc is the device mnemonic of a device containing EDIT directives

2.2.2 Output File (TOT)

The output file contains EDIT output. The output file is assigned to logical file code
TOT.

TOT Default and Optional Assignments

The default assignment for TOT is to logical file code UT:

$AS TOT TO LFC=UT

In the interactive mode, output is generated on the user terminal. In the batch mode,
output is generated on the SLO device.

There are two optional assignments for TOT:

$AS TOT TO {b~~~:'::nnc}
pathname
devmnc

2.3 Exiting EDIT

is the pathname of a file to contain EDIT output
is the device mnemonic of a device to contain EDIT output

To exit EDIT from the batch and interactive modes, specify the EXIT directive. Pressing
CNTRL C can also be used to exit EDIT from the interactive mode.

2.4 Lines and Line Numbers

Line numbers are decimal numbers in the range 0 to 9999.999, with a maximum of three
digits after the decimal point.

The work file is limited to 10,000,000 lines if the lines are numbered 0.000,
0.001, ••• ,9999.999, inclusive. Otherwise, the work file is limited by the highest line
number, 9999.

2-2
Text Editor (EDIT)

Usage
MPX-32
Utilities

o

c

2.4.1 Line Numbers Generated by the Editor

EDIT generates line numbers with the COLLECT, MOVE, COPY, and INSERT
directives. These line numbers are generated according to the specified beginning line
number (base) and optional increment. The following rules apply:

• The least significant decimal position specified for the base (or increment) is used. A
specification in tenths implies lines with decimal fractions from .1 to .9. A
specification in hundredths implies lines with decimal fractions from .01 to .99. A
specification in thousandths implies lines with decimal fractions from .001 to .999.

• EDIT stops the current operation if the next line number to be generated already
exists. As long as no existing lines are encountered, EDIT generates line numbers until
it reaches an existing line number or the operation completes.

• An increment is an absolute number to add to the previous line number to obtain the
next line number. It is not automatically relative to the base. For instance, to
specify a base line number in tenths and increment in tenths, the increment must
reflect the base decimal position. If line 2.2 is specified as the starting line and .2 is
speci fied as an increment, EDIT generates lines 2.2, 2.4, 2.6, and 2.8. If 2 is specified
as an increment, the next line number generated after 2.2 is 4.2. The default
increment used in generating line numbers is 1, .1, .01, or .001 depending on the least
significant position of the specified base number.

• DEL T A increments apply to lines following the last line of the work file.

• A special DELTA increment (1/10 of DELTA value) is used by EDIT to generate line
numbers for COLLECT and INSERT directives when the line number supplied (or
implied) already exists.

2.4.2 Line Numbers at the Beginning and End of the Work File

Unless otherwise specified at the beginning of a work file, EDIT defaults to line one for
the beginning of a file. Lines 0 to 0.999 are, however, valid line numbers and can be used
to insert lines before line one.

The special character E specifies the last line in the file plus an increment. The value of
E depends on the setting of DEL TA. DELTA is normally an increment of one more than
the last line in the file. DELTA can be overridden to a different significant digit and
increment (e.g., .02) by using the SET DELTA directive.

2.4.3 Physical Position of Line Numbers

EDIT displays line numbers at the beginning of the line, but does not store, save, or write
them there. EDIT physically writes the line numbers in columns 73 to 80 of each line of
text so that when another program reads the file, it can ignore the line numbers, if
desired. In addition, a directive, label, or other significant symbol then falls in the first
byte as required for processing.

MPX-32
Utilities

Text Editor (EDIT)
Usage 2-3

2.4.4 Text Listed Without Line Numbers

The work file can be listed or written without line numbers. Specifying the unnumbered
option, UNN, on the appropriate directive line replaces EDIT line numbers in bytes 73 to
80 wi th blanks.

2.5 Addressing Techniques

There are several ways of specifying lines to be edited. These include specifying one
line, specifying a group of lines, and specifying ranges of lines. The following sections
describe various addressing techniques.

2.5.1 Special Characters

Several characters can be used in directives in place of specifying a line number. These
characters apply to work file line numbers only:

F or FIRST first line in the file

L or LAST last line in the file

E or END last line in the file (L) plus the current increment (DELTA) for adding
lines at the end of the file

A or ALL all lines in the file (F through L)

C or CURRENT last line currently displayed on the terminal

N or NEXT line following the current line

Because these characters and words are EDIT keywords, do not use them as file names.

When referring to files other than the current work file, specific line numbers should be
stated to avoid erroneous results.

2.5.2 Line and Range Addressing

To access a specific line, enter the line number at the EDT> prompt. To access a
contiguous set of lines (range), type the first line number, a forward slash, and the last
line number in the range:

lineno

or

lineno/lineno

The characters F, L, and E can be used in place of a specific line number when referring
to the current work file. The range implied by ALL is F /L.

2-4
Text Edi tor (EDIT)

Usage
MPX-32
Utilities

o

(

The characters C and N display a single line only. Do not use them as part of a range, as
they will cause incorrect results.

When only part of a range is specified with an EDIT directive, the rest of the range is
implied. If a beginning line number is followed only by a forward slasl,:

lineno/

the last line in the range defaults to the end of the range specified in thp. previous
directive. Likewise, if a forward slash is followed by the last line number of a range:

/Hneno

the first line number defaults to the first line number from the range specified with the
previous directive.

2.5.3 Groups

A group is any combination of line numbers and ranges, where each specification is
separated from the next by a comma:

lineno/lineno,lineno,lineno/lineno

-There can be up to 24 specifications in a group. The above example shows three
speci fications.

A single line number is acceptable as a group.

2.5.4 Content Identifiers

Access can be limited within a group to lines containing a specific string. To do this,
enter the string enclosed in backslashes:

~;

\string\

Only the lines containing the specified string are accessed.

A content identifier within a group applies to the entire group:

1/60' \TRAP\ ,75,209/L

specifies that all lines within the group containing the content identifier TRAP are to be
accessed. This applies to lines 1 through 60, 75, and 209 through the last line of the file.

The text. speci fied in a content identifier must use the same upper and lower case
conventions as the text was originally entered. A content identifier in upper case will
not match text with the same characters if the text characters are lower case.

MPX-32
vtilitidS

Text Editor (COlT)
USage 2-5

2.5.5 Defaults

When no lines are specified with an EDIT directive, the lines specified with the previous
EDIT directive are used by default, with the following exceptions:

• If a group was specified previously, only the last line or range in the group (the
specification to the right of the last comma) is taken for the current directive.

• Content identifiers do not carryover. If lines were selected within a range in the
previous directive by using a content identifier, the entire last range in the group is
accessed without regard to the content identifier.

2.6 Using the Break Key

EDIT responds to the break key, providing a way to end a long display, global change, or
large set of deletions in progress. Response to the break is not guaranteed in a specific
time frame. When the break interrupt is received, the directive being processed is
terminated at the earliest safe termination point.

2-6
Text Editor (EDIT)

Usage
MPX-32
Utilities

(~'" J

SECTION 3 - DIRECTIVES

3.1 Introduction

EDIT directives are detailed alphabetically in this section. Most EDIT directives can be
abbreviated to three characters. Valid abbreviations are indicated by underlining. EDIT
directi ves are keywords and cannot be used as file names. Back slashes, forward slashes,
and commas are EDIT special characters and cannot be used in file names.

Most EDIT directive parameters can be entered in any order. If directive parameter
input is order-dependent, the restriction is noted in the directive description.

3.2 APPEND Directive

The APPEND directive adds text to the end of an existing line. If more than one line is
specified, each line is processed individually.

When an APPEND directive is entered, the first line in the group is displayed, with the
cursor positioned at the end of the line. All characters typed before a carriage return
are appended to the line. This continues with the next line in the group, and so on until
the directive is terminated.

A tab can be produced by using the tab key or entering the EDIT tab character (a
backslash). If the tab key is used, EDIT skips over the number of spaces from column one
to the first tab. Using the tab character spaces to the next set tab position.

Syntax:

APPEND [group]

group speci fies the lines to be appended. If not specified, initially defaults to the
first line of the file. After that, defaults to the last range specified in the
previous directi ve.

APPEND terminates when one of the following occurs:

• The last line number in the group is processed.
• A carriage return is the first character entered on a line.

Usage:

EDT> LIST 1/3
1. THIS IS THE FIRST LINE
2. THIS IS THE SECOND LINE
3. THIS IS THE THIRD LINE

EDT> APP 1/3
1. THIS IS THE FIRST LINE THIS IS APPENDED TO THE FIRST LINE
2. THIS IS THE SECOND LINE\THE BACKSLASH IS A TAB
3. THIS IS THE THIRD LINE THIS IS THE END

MPX-32
Utilities

Text ::::di tor (EDIT)
Directives 3-1

APPEND (Cont.)/BATD-I/RUN

EDT) UST 1/3
1. THIS IS THE FIRST LINE THIS IS APPENDED TO THE FIRST LINE
2. THIS IS THE SECOND LINE THE BACKSLASH IS A TAB
3. THIS IS THE THIRD LINE THIS IS THE END

EDT) APP 1/3
1. THIS IS THE FIRST LINE THIS IS APPENDED TO THE FIRST LINE <CR)

VOID RANGE
EDT)

3.3 BATD-I or RUN Directive

The BATCH directive or the RUN directive copies a job file into the batch stream. The
file can be the current work file or another job file in the user's directory. In either
case, the file must contain job control statements for a complete job.

The file is entered into the batch stream and the EDT) prompt is returned. The OPCOM
LIST directive can be used to check on the status of the job.

Syntax:

BA TCH [pathname] [UNN]

pathname specifies the pathname of a file. If not specified, defaults to the pathname
of the current work file. To copy a noncurrent work file into the batch
stream, use the WORK FILE directive followed by the BATCH directive.

UNN replaces the line numbers in physical line positions 73 to 80 with blanks

Usage:

EDT) LIST A
1 .$ JOB TEST CMA\ER
2. $OPTION 2 3 4 5
3. $FCRTRAN
4. PR~ ~IN
5.
6.
7.
8. END
9. $CATALffi

10. AS 5 TO DATA
11. AS 6 TO SLO
12. BUILD LM.TEST NOM
13. $EOJ
14. $$

EDT) BAT01
EDT) X
TSM> !LIST

2F000193
TSM>

3-2

FCRTRAN CMNER JOB.0022

Text Editor (EDIT)
Directives

62 SWIO IN

MPX-32
Utilities

c

'''-..

o

(

a-tANGE

3.4 a-tANGE Directive

The CHANGE directive replaces an existing string with another string. Existing
characters following the replacement string are adjusted left or right to compensate for
replacing a string of one length with one of a different length.

Lines containing tabs are also shifted to the left or right. To maintain the original
alignment of tabbed text when the existing string and replacement string are different
lengths, blanks can be included in the smaller string.

As each line is changed, the resulting line is displayed. Changed lines scroll up on the
screen until the screen is full. EDIT then pauses until a carriage return is entered to
continue the changes, or another character is entered to terminate the directive.

Syntax:

CHANGE [group]\string\ \[newstring]\[NOLlST]

group specifies the lines to be modified. If not specified, defaults to the last
range specified in the previous directive.

string specifies the string to replace. The string must be enclosed in backslashes.

newstring specifies the string to replace the existing string. The new string must also
be enclosed in backslashes. To delete the existing string, enter three
consecuti ve backslashes instead of specifying a new string.

NOLIST inhibits the automatic display of lines as they are changed.

CHANGE terminates when one of the following occurs:

• All lines in the range are processed.
• The break key is pressed.
• The response to an error message is N.
• A character other than a carriage return is entered in response to the ENTER <CR>

FOR MORE message.

Usage:

EDT) LI5T 1/4
1. THIS IS A TEST
2. TO SHOW HOW
3 • TI-£ Q-IAI\rr DIRECT I VE
4. w::ru<S

EDT> OH \5\\55\1/4
1. THISS ISS A TESST
2. TO SSHOW HOW
3. TI-£ ~ DIRECTIVE
4. \ACRKSS

EDT> LIST 6
6. THIS LINE ISN'T

EDT> CHA 6\lSNiT\\IS\
EDT> LIST 6

6 • TH 1 S L l!'JE 1 5

!ViPX-32
Utiii ties

TABBED

TABBED

Tev" C rli tnr (I='rHTl • , , .. __ .. ~. ,-~ ',I

Directives

CLEAR

3.5 CLEAR Directive

The CLEAR directive clears the contents of the work file. This directive is used before
the USE directive when accessing a disc file or before building text into a new file
interactively with the COLLECT directive.

The contents of the work file are not saved unless a SAVE or STORE directive is used
before CLEAR.

Syntax:

CLEAR

Usage:

EDT) LIST A
1. THIS IS A TEST
2 • TO SHJN roN
3. THE D-EAR
4 • 0 I RECT I VE 'MRKS

EDT) SAVE ~ILE
EDT) a.£
EDT) LIST A
VOID RAi'GE
EDT) USE NEWFILE
EDT) LIST A

1. I\EWF I LE I S
2. t-DN IN THE
3. V£RK FILE

EDT) USE BICFILE a.£AR
EDT) LIST 1/3

1. THIS IS THE FIRST LINE
2. CF A FILE
3. NAMED BIGFILE

3-4
Text Editor (EDIT)

Directives
MPX-32
Utilities

o

(

COLLECT

3.6 COLLECT Directive

The COLLECT directi ve enters new lines of text in the work file.

When a COLLECT directive is entered, the line number where collection begins is
displayed as a prompt. Enter the text followed by a carriage return. From this point on,
line numbers are generated automatically. The next sequential line number is
displayed. Continue entering lines. A blank followed by a carriage return creates a
blank line.

Syntax:

COLLECT [lineno [/lineno]] [BY increment]

lineno

!lineno

increment

specifies the line number where collection begins. If the line number
exists, EDIT adds .1 of DELTA, and begins collecting at that line number.

If not specified, the default is the line number following the last line
number collected or inserted. If this is the first COLLECT of the editing
session and no INSERT directive has been entered, the lines are collected
at the end of the file. The default increment is used unless overridden.

To add lines to the beginning of a file, specify a starting line number
between 0.0 and 0.999. To add lines to the end of a file, specify E or L.

specifies the last line number to be added. If this line number exists, text
is collected up to this line number and an error message is displayed.

specifies an absolute number, .001 to 9999.999, to add to each line number
to generate the next line number. If not specified, the default increment is
DEL T A or .1 of DELTA depending on the least significant digit used in the
line number specification.

COLLECT terminates when one of the following occurs:

· The line number at the end of a specified range is entered.
• The line number in a collection sequence already exists.
• The first character entered on a line is a carriage return.
• The break key is pressed.

MPX-32
Utilities

Text Editor (EDIT)
Directives 3-5

COLLECT (Cont.) /COMMAND

Usage:

EDT> LIST
VOID RANGE
EDT> Cll....

1. ~IS IS THE FIRST LINE
2 . ~I SIS THE SEaN) AN) LAST
3. <rn>

EDT> Cll.... 0 BY .1
o. ~IS IS THE FIRST LINE NOW
0.1 AND ~IS IS THE SEaN)
0.2 <rn>

EDT> Cll.... E
3. ~IS IS THE LAST LINE NOW
4. <rn>

EDT> A
O. THIS IS THE FIRST LINE NOW
0.1 AND THIS IS THE SECOND
1. THIS IS THE FIRST LINE
2. THIS IS THE SECOND AND LAST
3. THIS IS THE LAST LINE NOW

EDT> Cll.... L
3. THIS IS THE LAST LINE NOW
4. USE OF L DISPLAYS LAST LINE BEFORE Cll....LECTION BEGINS
5. <rn>

EDT>

3.7 COMMAND Directive

The COMMAND directive displays the last four EDIT directives issued to EDIT. If less
than four directives were issued to EDIT, only those issued are displayed.

Syntax:

COMMAND

Usage:

EDT> LIST 8
8. THE LAST LII\E

EDT> C£L 3/7
EDT> APP 1

1. FIRST LINE OF TEST
EDT> OHA 2 \1\\0\

2 . SECOND LONE
EDT> aJv1
LIST 8
DEL 3/7
APP 1
CH\ 2 \1\\0\
EDT>

3-6
Text Editor (EDIT)

Directives
MPX-32
Utilities

c

o

(

(~/

copy

3.8 COpy Directive

The COPY directive copies existing lines of text to the work file. The lines to copy can
be in the work file or in a file saved or stored previously.

To copy specific lines from a file, the file must be saved or stored with line numbers.
Line numbers are not necessary if the whole file is to be copied. If lines are coming from
a file other than the work file, the name of the file and the message *FILE* are
displayed.

The original lines are not deleted. To delete lines in one part of a work file and copy
them to a different part, use the MOVE directive.

Files can be copied that were not built by EDIT or accessed and saved by EDIT USE and
SAVE or STORE directives. To copy such files, access the file with the USE directive.
This directive attaches line numbers in a form acceptahle to EDIT. Save or store the file
on disc.

Syntax:

~9PY [group] [[FROM] pathname] [TO lineno] [BY increment] [LIST]

group

pathname

lineno

increment

LIST

specifies the numbers of the lines to be copied into the work file. If not
specified, the default is all lines in the file.

specifies the pathname of a file from which lines are to be copied. A
pathname must be specified to copy lines from a file other than the current
work file.

If not specified, the default is the current work file.

Using the keyword FROM is optional.

speci fies the work file line number where copying begins. The least
significant digit in the specified line number determines the line numbers
EDIT generates for the text being copied. The line number must not
currently exist.

I f a beginning line number is not specified, EDIT defaults to E, the line
following the last line in the work file. If collecting at the end of the file,
line numbers for copied text will reflect the least significant position and
increment of the DELTA value for line numbers. See the SET DELTA
directive.

specifies an absolute number, .001 to 9999.999, to add to each line number
to generate the next line number. If not specified, the default increment is
DEL T A or .1 of DELTA depending on the least significant digit used in the
line number speci fication.

specifies that lines are to be displayed as they are copied. If not specified,
the lines are not displayed.

COPY terminates when one of the following occurs:

A line number is generated which already exists.
• The break key is pressed.

The specified lines are copied.

!\~PX=32
Utilities

r ext ~di tor (EDIT)
Directives 3-7

COpy (Cont.) /DELETE

Usage:

EDT> LIST 1/4
1. L 1f\E CNE
2. LINE T\AO
3 • L I I\E TI-REE
4. LINE Fa..R

EDT> COP 2/3 TO 5
EDT> LIST 1/6

1. LIt'£: CNE
2. LINE T\AO
3 • L I f\E Tl-REE
4. LINE Fa..R
5. LINE T'M)
6. LINE TI-REE

EDT> COP 1 TO 4.1
EDT> LIST 4/5

4. L 1f\E Fa..R
4.1 LINE CNE
5. LINE Tm

3.9 DELETE Directive

The DELETE directi ve deletes lines of text from the work file.

Syntax:

DELETE [group] [LIST]

group specifies the numbers of the lines to be deleted. Content identifiers can be
used to identify lines to be deleted.

If not specified, initially defaults to the first line of the file. After that,
defaults to the last range specified in the previous directive.

LIST specifies the lines are to be displayed as they are deleted. If not specified,
the lines are not displayed.

DELETE terminates when one of the following occurs:

• The specified line numbers are deleted.
• The break key is pressed.

Usage:

EDT> LIST 1/5
1. L If\E CNE
2. LINE TVvO
3 • LIt'£: TI-REE
4. LINE Fa..R
5 • L I I\E FIVE

EDT> tIL 2/4
EDT> LIST 1/5

1. L II'E CNE
5. LINE FIVE

3-8
Text Editor (EDIT)

Directives
MPX-32
Utilities

(~

EXIT /INSERT

3.10 EXIT Directive

The EXIT directive exits EDIT and returns control to TSM.

Syntax:

EXIT

3.11 INSERT Directive

The INSERT directive adds one or more new lines of text to a file. INSERT is similar to
COLLECT, except INSERT adds one line at a time. COLLECT adds successive lines.

When an INSERT directive is entered, the line number where insertion begins is displayed
as a prompt. Enter the text of the line followed by a carriage return.

Syntax:

INSERT[group] [BY increment]

group

increment

specifies the numbers of the lines to be inserted. A range cannot include
an existing line number. If not specified, the default is the line number
following the last line number entered. If this is the first COLLECT or
INSERT of the editing session, lines are added to the end of the file. The
default increment will be used unless overridden.

To add lines to the beginning of a file, specify a starting line number
between 0.0 and 0.999. To add lines to the end of a file specify E.

specifies an absolute number, .001 to 9999.999, to add to each line number
to generate the next line number. If not specified, the default increment is
DEL T A or .1 of DELTA depending on the least significant digit used in the
line number specification.

INSERT terminates when one of the following occurs:

• A carriage return is the first character entered on a line.
• The last line number specified is processed.
• The line number in the insertion sequence already exists.
• The break key is pressed.

MPX-32
Utilities

Text Edi tor (EDIT)
Directives 3-9

INSERT (Cont.) ILIST

Usage:

EDT> LIST 1/3
1. LINE CNE
2. LINE TID
3. LINE TI-REE

EDT> INS 1 BY .5
1.5 ~IS LINE HAS

EDT> LIST 1/3
1. L II\E CNE
1.5 THIS LINE HAS
2. L II\E TID
3. LINE TI-REE

3.12 LIST Directive

BEEN INSERTED

BEEN INSERTED

The LIST directive displays lines from either the current work file or a permanent file.
The LIST directive is the default when no directive is supplied in response to the EDT
prompt.

Syntax:

[LIST] [group] [[FROV1] pathname] [lJ\N] [SYS]

group

pathname

UNN

SYS

specifies the numbers of the lines to be listed. Content identifiers can be
used to identify lines to be listed. If not specified, initially defaults to
the first line of a file. After that, defaults to the last range specified in
the previous directive. To list an entire work file, use LIST ALL, ALL,
or A.

specifies the pathname of a file. If not specified, defaults to the current
work file.

replaces the line numbers in physical line positions 73 to 80 with blanks

specifies the system volume and system directory. This specification
overrides any pathname component specified.

LIST terminates when one of the following occurs:

• All specified lines have been listed.
• The break key is pressed.

Usage:

EDT> LIST L
30. LAST LINE

EDT> LIST 25/30
25. LINE 25

30. LAST LINE
EDT>

3-10
Text Editor (EDIT)

Directives
MPX-32
Utilities

I'
'~

MODIFY

r""--'- 3.13 MODIFY Directive

(

The MODIFY directive changes an existing line by spacing past wanted characters and
replacing unwanted characters. A circumflex (A) can be used to replace a character
with a blank. When MODIFY is entered, one line at a time from the specified range is
displayed for modifications.

~eplacement strings must be equal to or less than the number of characters being
changed. For replacement strings larger than the original string, global modifications, or
circumflex insertion, use the CHANGE directive.

Syntax:

MODIFY [group]

group specifies the numbers of the lines to be modified. Content identifiers can be
used to identify lines to be modified. If not specified, defaults to the last
range specified in the previous directive.

MODIFY terminates when one of the following occurs:

• The last line specified is processed.
• A carriage return is the first character entered on a line.
• The break key is pressed.

Usage:

EDT> MD 1/3
1. TI-ERE WILL BE A SH:RTTIVEETII\G ~ TUESDAY.

1 1. A(CR)
1. TI-ERE WILL BE A SH:RT IVEETII\G CN TUESDAY.
2. PLEASE P~ OT ATTEND.

2 2. TO<CR)
2. PLEASE PLAN TO ATTEND.
3. ATTENDANCE WILL NOT BE NOTED.

3 3. (CR)
EDT>

Comments:

1 Space past good characters, enter circumflex (A) to replace T with a space.
2 Space past good characters, enter correction.
3 Immediate carriage return leaves line as is and returns the EDT> prompt.

MPX-32
Utilities

Text Editor (EDIT)
Directives 3-11

MOVE

3.14 MOVE Directive

The MOVE directive moves existing lines of text from one part of the work file to
another. Each line is deleted from its original position after it has been moved
successfully to the new position.

Syntax:

MOVE [group] [TO lineno] [BY increment] [LIST]

group specifies the numbers of the lines to be moved. Content identifiers can be
used to identify lines to be moved. If not specified, defaults to the last
range specified in the previous directive.

lineno specifies the work file line number where the first line of text is moved.
The least significant digit in the specified line number determines the line
numbers EDIT generates for the text being moved. The line number must
not currently exist.

If a beginning line number is not specified, EDIT defaults to E, the line
following the last line in the work file. Line numbers for text that is
moved reflect the least significant position and increment of the DELTA
value for line numbering unless an increment is specified. See the SET
DELTA directive.

increment specifies an absolute number, .001 to 9999.999, to add to each line number
to generate the next line number. If not specified, the default increment is
DEL TA or .1 of DELTA depending on the least significant digit used in the
line number specification.

LIST specifies lines are to be displayed as they are moved. If not specified, the
lines are not displayed.

Usage:

EDT) LIST 1/5
1. LINE ()\JE

2. LINE T\A.O
3. L II\E T~EE
4. LINE FCl..R
5. LINE FIVE

EDT) MOWE 1,2 TO 6
EDT) LIST 1/6

3. LINE T~EE
4. LINE FCl..R
5. LINE FIVE
6. LINE a\E
7. L II\E TID

EDT) MOW 3/5 TO 5.1 BY .1
5.1 LINE T~EE
5.2 LINE FaR
5.3 LINE FIVE
6. LINE Q\JE
7. LINE TVvO

Text Editor (EDIT)
3-12 Directives

MPX-32
Utilities

c

rt"'"

f

(
.,~

c __ '

NUMBER

3.15 NUMBER Directive

The NUMBER directive renumbers all lines in the work file using the specified decimal
posi tion and increment.

Syntax:

NUMBER [lineno] [BY increment]

lineno speci fies the line number for the first line in the work file. If not
specified, defaults to line one.

Work file line numbers reflect the increment of the DELTA value for line
numbers unless overridden.

increment specifies an absolute number, .001 to 9999.999, to add to each line number
to generate the next line number. If not specified, the default increment is
DELTA.

Usage:

EDT> LIS 3/4
3. THIS IS LINE NUMBER THREE
3.01 THIS LINE HAS BEEN INSERTED
4. THIS IS LINE NUMBER FOUR

EDT> NJVI
EDT> LIS 3/L

3. THIS IS LINE NUMBER THREE
4. THIS LINE HAS BEEN INSERTED
5. THIS IS LINE NUMBER FOUR

<break>
EDT>

MPX-32
Utilities

Text Editor (EDIT)
Directives 3-13

PREFACE/PRINT

3.16 PREFACE Directive

The PREFACE directive inserts one or more characters at the beginning of an existing
line. Additions are made character-by-character, resulting in a right shift in the existing
line.

If more than one line is to be prefaced, the first line in the specified group is displayed.
EDIT reissues the line number as a prompt. Type the new string, followed by a carriage
return. Existing characters in the line are right shifted with the new string at the
beginning of the line. The rest of the line remains unchanged. The next line in the group
is displayed for modi fication. This continues until the last line in the group is processed.

Syntax:

PREFACE [group]

group specifies the numbers of the lines to be modified. Content identifiers can
be used to identify lines to be prefaced. If not specified, defaults to the
last range specified in the previous directive.

PREF ACE terminates when one of the following occurs:

• The last number specified is processed.
• A carriage return is the first character entered on a line.
• The break key is pressed.

Usage:

EDT> PRE 1,15,20
1. CN MJDIFYING ALINE
1. LP<ffi>
1. UPON MODIFYING A LINE

15. MJDIFIED LINE SHIFTS
15. A <ffi>
15. A MJDIFIED LINE SHIFTS
20. TO BYPASS tvOOIFICATICN
20. <ffi>

VOID RAJ\GE
EDT>

3.17 PRINT Directive

The PRINT directive prints the current work file or another file on the device assigned
for system SLO files.

Syntax:

PRINT [pathname] [UNN]

pathname

UNN

3-14

specifies the pathname of a file. If not specified, defaults to the current
work file.

replaces the line numbers in physical positions 73 to 80 with blanks

Text Editor (EDIT)
Directives

MPX-32
Utilities

c

o

c

PUNCH/REPLACE/RUN

3.18 PUNCH Directive

The PUNCH directive sends the current work file or another file to the device assigned
for system SBO files.

Syntax:

PUNCH [pathname] [UNN]

pathname specifies the pathname of a file. If not specified, defaults to the current
work file.

UNN replaces the line numbers in physical positions 73 to 80 with blanks

3.19 REPLACE Directive

The REPLACE directive replaces existing lines in the work file with different lines of
text.

If more than one line is to be replaced, the first line in the specified range is displayed.
EDIT reissues the line number as a prompt. Type the replacement line, fallowed by a
carriage return. The next line in the range is displayed for replacement. This continues
until the last line in the group is processed.

To replace an existing line with all blanks, type a blank space followed by a carriage
return.

Syntax:

REPLACE [group]

group specifies the numbers of the lines to be replaced. Content identifiers can
be used to identify lines to be replaced. If not specified, defaults to the
last range specified in the previous directive.

REPLACE terminates when one of the following occurs:

• The last line specified is processed.
• A carriage return is the first character entered on a line.
• The break key is pressed.

Usage:

REP 24
The replace directive replaces existing lines.

EDT)
24.
24. The REPLACE directive is used to replace existing lines.

EDT)

3.20 RUN Directive

The RUN directive copies a file into the batch stream. Refer to the BATCH directive.

MPX-32
Utilities

Text Editor (EDIT)
Directives 3-15

SAVE

3.21 SAVE Directive

The SAVE directive writes a copy of the current work file on disc as a blocked permanent
file. The text is compressed; consecutive blanks are replaced with a string indicating the
number of blanks compressed. The work file remains intact.

To save a work file under a file name that already exists in your directory, delete the
existing contents of the permanent file by either specifying the SCRATCH parameter or
responding affirmatively to the prompt.

Syntax:

SAVE [pathname] [SYS] [SCRA TCH]

pathname specifies the pathname of a file. If not specified, defaults to the file name
used in the most recent SAVE, STORE, or USE directive, unless that file
was in a different directory. If the file was in a different directory, the
work file is copied to a file of the same name in the current directory.

SYS specifies the system volume and system directory. This parameter
overrides any pathname component specified.

SCRATCH clears the contents of the file named with the SAVE directive before the
work file is copied to that file space. If not specified and the file already
exists, a prompt for the scratch function is displayed.

When the save is complete, the following message is displayed:

volume (directory) filename ownername size
volume (directory) ii*WRKFL ownername size
ii*WRKFL SAVED xx LINES

volume

directory

filename

ownername

size

type

ii

xx

Usage:

is the name of the current working volume

is the name of the current working directory

is the name of the file saved

is the owner name associated with the file

is the file size

is the file type

is the work file code

is the number of lines in the work file

EDT> SAVE TEST
TBOO (SMITH

(SMITH
)TEST
)SS*WRKFL

8 LINES
TBOO
SS*WRKFL SAVED
EDT>

type
type

SMITH
SMITH

4 ED
80 FE

Work file SS is saved in the permanent file TEST in the current working volume and
directory.

3-16
Text Editor (EDIT)

Directives
MPX-32
Utilities

c

()

SCRATO-I/SET DELTA

J.22 SCRATO-I Directive

The SCRATCH directive deletes a file. The file name and its contents are removed from
the disc. The file name is removed from the disc directory.

Syntax:

seRA TCH [pathname] [SYS]

pathname specifies the pathname of a file. If not specified, defaults to the file name
used in the most recent SAVE, STORE, or USE directive.

SYS specifies the system volume and system directory. This parameter
overrides any pathname component specified.

I f no user file is found, but a system file is found with the specified parameter and SYS
was not specified, the following message is displayed:

SYSTEM FILE FOUND BY THAT NAME. CORRECT FILE (Y OR N)?

A Y (Yes) response scratches the file. A N (No) response terminates the scratch
operation.

Usage:

EDT> SCR AAA
EDT> SCR BAR SYS
EDT>

User file AAA in the current working volume and directory is scratched. File BAR in the
system volume and system directory is scratched.

EDT> SCR @jTBOO(TRAINII\G) INIX

User file INDEX in volume TBOO and directory TRAINING is scratched.

J.2J SET DELTA Directive

The SET DELTA directive specifies an increment other than 1.0 to be used for line
numbering. The specified DELTA increment remains in effect only for the current
editing session. DELTA is reset to 1.0 after the current editing session.

Syntax:

SET DELTA [increment]

increment

MPX-32
Utilities

specifies an absolute number, .001 to 9999.999, to add to each line number
to generate the next line number.

If 0 is entered as the increment value, the following message is displayed:

ERROR o.

Text Editor (EDIT)
Directives 3-17

SET TABS

3.24 SET TABS Directive

The SET TABS directive modifies tab positions. In MPX-32, the M.KEY file can contain
tab settings for each logon owner name. TSM defaults to these tabs if they are set. If no
tabs are set in M.KEY, TSM sets system tabs when EDIT is entered.

Default tabs are set in columns 10, 20, 36, 41, 46, 51, 61, and 71.

The most recent tabs set with SET TABS remain in effect until TSM is exited. When TSM
is exited, the SET TABS are not saved. When a logon is performed, the default tabs are
set.

When typing text with tabs, a tab character can be produced by a CNTRL I or the tab
key. This is interpreted by the TSM device handlers and replaced by the appropriate
number of blanks. The cursor is adjusted by echoing the spaces to the terminal. This
allows the tabbed spacing to be seen on the screen as text is entered.

Tabs can also be entered by using the tab character. The default tab character is a
backslash (\). The character used to define tab positions in the SET TABS directive can
be either a backslash or a user-defined character. The last tab character defined in SET
TABS is the one to use when entering a tabbed record, unless CNTRL I is used. The tab
character defined remains in effect until EDIT is exited. If EDIT is entered again before
exi ting TSM, the tab posi tions defined in the SET TABS directive remain in effect and
the tab character defaults to a backslash. If EDIT and TSM are both exited, the default
tab character and positions are set at the next logon.

The tab character is removed from the text when it is interpreted, so no special
treatment of tab characters is required from subsequent processors such as the Macro
Assembler. If a tab character is entered when all tabs have been used, a blank is inserted
in place of a tab. If CNTRL I is entered when all tabs have been used, no data is
inserted.

Syntax:

SET TABS

EDIT displays the current tab settings, then prompts for new tab positions by locating the
cursor in column two. Type blanks for nontab positions and any character desired in tab
positions (a maximum of eight tab positions can be set at one time). The tab character
supplied overrides the backslash. If different characters are used for tab specifications,
the last character typed is the tab character. Any tab that is not specified explicitly is
not set. If more than eight tab positions are entered, only the first eight are recognized
and set.

To change the tab delimiter but keep tab settings in their current positions, enter the
following directive:

SET TC

EDIT responds:

CHAR=

Enter the desired tab delimiter character. To return to the default tab delimiter, enter
the following directive:

SET OTC

3-18
Text Editor (EDIT)

Directives
MPX-32
Utilities

(

SET TABS (Cont.)

To prohibit the use of a tab character, enter the following directive:

SET NTC

This is useful when submitting directives in batch.

Usage:

EDT> SET TABS

TABS =12345678 \ 2345678 \ 2345678 3 2345\78 4\2345\78 5\2345 •••
SET = A B' , B , •••
TABS =12345678 1#234567# 2 2#45678 3 234#678 4 #345678 5 234# •••

The tab character becomes the symbol II.

To return to the EDIT default tab settings, enter one of the following directives:

SET OLD
OLDTAB
OLDTABS

MPX-32
Utilities

Text Editor (EDIT)
Directives 3-19

SET VERIFICA nON

3.25 SET VERIFICA nON Directive

The SET VERIFICA nON directive sets or inhibits the automatic verification of a file
before a NUMBER, SAVE, or STORE operation is performed. If not specified, the default
is to inhibit automatic verification.

Syntax:

SET

VFA

VFN

Response:

{ VFA}
VFN

enables the automatic veri fication of a file before any NUMBER, SAVE, or
STORE operation is performed. VF A remains in effect until a SET VFN is
entered or EDIT is exited.

inhibits the automatic verification of a file before any NUMBER, SAVE, or
STORE operation is performed.

When a SET VFA directive is used, the following message is displayed when a NUMBER,
SAVE, or STORE directive is entered:

VERIFYING BEFORE NUM/SAV/STO. PLEASE WAIT.

The number, save, or store operation is performed after verification is complete.

Usage:

EDT> SET VFA
EDT> N...M
VERIFYING BEFORE NUM/SAV/STO. PLEASE WAIT

3-20
Text Editor (EDIT)

Directives
MPX-32
Utilities

c

c

3.26 SHOW Directive

The SHOW directive displays the following status information:

• Current increment setting of DELTA.
• Current tab settings.
• Current files in user directory.

Syntax:

SHOW DELTA
[{

pathname}j

FILES
TABS

SHOW

If no parameters are specified, EDIT displays the name of the file accessed
in the current editing session if the file is in the current directory, plus the
status of the current work file.

pathname is the pathname of a file

DELTA displays DELTA

FILES displays names of permanent disc files in the user directory

TABS displays tab settings

F or SHOW, the following message is displayed:

volume (directory) filename ownername
volume (directory) ii*mKFL ownername
ii*mKFL status xx LINES

volume is the name of the current working volume

directory is the name of the current working directory

filename is the name of the file in the work file (if any)

ownername is the owner name associated with the file

size is the file size

type is the file type

ii is the work file code

status is one of the following:

size type
size type

CHANGED - the file has been edited but the edited version has not been
saved.

xx

MPX-32
Utilities

CLEAR - the file has been cleared from the work file and another disc file
has not been copied into the work file.

SAVED - that the work file has been stored or saved. No editing has been
performed on the file since the last STORE or SAVE.

is the number of lines in the work file

Text Editor (EDIT)
Directives 3-21

SHOW (Cont.)

When the FILES parameter is specified, EDIT lists each file in the current working
directory. For each file, the following information is displayed:

• volume
• directory
• file name
• owner name associated with the file
• file size
• file type

When a full screen of files is displayed, enter a carriage return to continue the listing or
any other key to terminate the directive. The display of file names can also be
terminated with the break key.

When the TABS parameter is specified, positions 1 through 72 of the tab line are
displayed. The current tab character is displayed in the positions corresponding to the
current tab stops.

When the DELTA parameter is specified, the DELTA increment value used to generate
lined numbers is displayed.

Usage:

1

2
3

EDT> SH:JN FILES
TBOO (SMITH
TBOO (SMITH

<break>
EDT> SH:JN
TBOO (SMITH
SS*WRKFL CHANGED
EDT> 51-0 OCL TA

O.OOl(DELTA)
EDT>

Comments:

)TEST
)SS*WRKFL

)SS*WRKFL
4 LINES

SMITH
SMITH

SMITH

4 ED
80 FE

8 FE

1 The break key is used to terminate the listing of files in midscreen. FE
designates a work file, ED designates a saved file, and EE designates a stored
file.

2 No files have been saved or stored in the current session. Only the status of
the work file is displayed.

3 The increment used to generate line numbers is .001.

3-22
Text Editor (EDIT)

Directives
MPX-32
Utilities

fo
1'1
C

o

r"
l.

C,"
~/

STORE

3.27 STORE Directive

The STORE directive writes a copy of the current work file on disc as a blocked,
uncompressed, permanent file. The work file remains intact.

To store a work file under a file name that already exists in your directory, delete the
existing contents of the permanent file by either specifying the SCRATCH parameter or
responding affirmatively to the prompt. This prevents inadvertent writes over existing
files.

Syntax:

STORE [pathname] [SYS] [UNN] [SCRATCH]

pathname specifies the pathname of a file. If not specified, defaults to the file name
used in the most recent SAVE, STORE, or USE directive, unless that file
was in a different directory. If the file was in a different directory, the
work file is copied to a file of the same name in the current directory.

SYS specifies the system volume and system directory. This parameter
overrides any pathname component specified.

UNN replaces the line numbers in physical positions 73 to 80 with blanks

SCRATCH clears the contents of the file named with the STORE directive before the
work file is copied to that file space. If not specified and the file already
exists, a prompt for the scratch function is displayed.

When the store is complete, the following message is displayed:

volume (directory) filename ownername size
volume (directory) ii*WRKFL ownername size
ii*WRKFL STORED xx LINES

volume is the name of the current working volume

directory is the name of the current working directory

filename is the name of the file stored

ownername is the owner name associated with the file

size is the file size

type is the file type

ii is the work file code

xx is the number of lines in the work file

Usage:

EDT> STO RRR
TBOO (SMITH
TBOO (SMITH
SS*WRKFL STORED
EDT>

)RRR
)SS*WRKFL

8 LINES

type
type

SMITH
SMITH

4 ED
80 FE

Work file SS is stored as a numbered file in the permanent file RRR in the current
working volume and directory.

MPX-32
iJtilities

Text Editor (EDIT)
Directives 3-23

USE

3.28 USE Directive

The USE directive copies a permanent disc file into the current work file.

The file can be one that has been created or edited previously using EDIT, or one not
edited previously. To use a file not edited previously that contains more than 9999
physical records, reset DELTA to an increment less than 1.0. If DELTA is not reset,
records 10,000 and up will not be brought into the work file.

Syntax:

USE pathname [CLEAR 1 [SYS]
SCRATCHJ

pathname specifies the pathname of a file. The records on the file must be blocked.

CLEAR clears the current work file before copying the contents of the specified
file into the work file. The function of this parameter is identical to that
of the CLEAR directive.

SCRA TCH is the equivalent of CLEAR

SYS specifies the system volume and system directory. This parameter
overrides any pathname component specified.

If a user file and a system file have the same pathname and SYS is not specified, the user
file is brought into the work file. If SYS is not specified and no user file is found, but a
system file is found with the pathname specified, the following message is displayed:

SYSTEM FILE FOUND BY THAT NAME. CORRECT FILE (Y OR N)?

If the specified file is not a normal source/text file, that is, it does not have a file code
type of EE, ED, or CO, the following message is displayed:

FILE TYPE NOT ED, EE, OR CO, PROCESS IT (Y OR N)?

If the work file has been changed, but not saved or stored, and CLEAR has not been
specified, EDIT prompts:

CLEAR = N

Enter N (No) or a carriage return to terminate the directive. Enter Y (Yes) to continue.
The prompt defaults to No to protect against the inadvertent clearing of unsaved edited
text. To determine the status of the work file, terminate the USE directive and use the
SHOW directi vee

Usage:

EDT> USE RRR
EDT> USE XXX SYS U.E
EDT>

c

User file RRR is brought into the work file, then system file XXX is brought into the 0
work file.

3-24
Text Editor (EDIT)

Directives
MPX-32
Utilities

c

WORKFILE

3.29 WORKFILE Directive

The WORKFlLE directive accesses a work file other than the one currently in use. The
current work file is written back on disc as is. The status message is also retained. The
speci fied work file is created or retrieved. Work files are named:

ii*WRKFL

ii is the specified work file code. The work file code is any two alphanumeric
characters, the first of which must be alphabetic, to be associated with the
work file.

Syntax:

WORKFILE [filecode]

filecode specifies a work file code

If WaR is entered without a file code, EDIT prompts:

ENTER WORK FILE CODE OR CR TO TERMINATE

Enter a valid work file code or terminate the directive with a carriage return.

If the file code entered identifies an existing work file, EDIT writes the current work file
on disc and retrieves the new specified work file. The status of the new work file is
displayed.

If the file code entered does not identify an existing work file, EDIT creates a new work
file.

Usage:

EDT> Y£R SS
TBOO (SMITH

1 SS*'hRKFL SAVED
EDT>

Comments

)SS*V\RKFL
4 LINES

1 The status of work file SS is SAVED.

MPX-32
Utilities

Text Editor (EDIT)
Directives

SMITH 80 FE

3-25/3-26

c

o

(.

.....•• ~
--,/

SECTION 4 - ERRORS AND ABORTS

4.1 Abort Codes

The following are EDIT abort codes and their descriptions. Only the codes are displayed
when an abort occurs.

Code

EDOI
ED02
ED03
ED04

4.2 Error Messages

Description

User terminal I/O hardware error
Internal line linkage invalid
Reserved
Internal logic error

The following are EDIT error messages and their solutions.

ILLEGAL USE OF AN EDIT RESERVED KEYWORD

ILLEGAL PARAMETER

MISSING PARAMETER

ILLEGAL USE OF /

ILLEGAL USE OF TO

ZERO NUMBER DETECTED ON BY COMMAND

The increment specified by the BY parameter is zero. This is not allowed.

TOO LONG, GO = Y

The line exceeds 72 characters. Enter Y or press the carriage return to keep the
first 72 characters of the changed line. Enter N to keep the line as it was before
the directive was attempted.

lineno NOT PROCESSED

Processing of the last directive terminated at the line. number indicated. To
process the remaining lines, reenter the directive, specifying a smaller increment.

LAST LINE OVERFLOW TR Y SMALLER DELTA

EDITOR FOUND UNPRINT A8LE CHARS???

MPX-32
Utilities

Text Editor (EDIT)
Errors and Aborts 4-1

???NOTHING IN WORK FILE TO BE SAVED!

EXPANDING WORK FILE. PLEASE WAIT

COULD NOT SCRATCH WORK FILE

There is a possible problem with the MPX-32 M.DELR system service. Otherwise,
check the file's access rights.

INCORRECT POINTERS IN WORKING FILE

Clear the work file and reuse the file to be changed. Any changes that were made
and not saved are lost.

COULD NOT ACCESS WORK FILE

Another user may be using the specified work file.

IS NOT A VALID SOURCE FILE

FILE IS IN USE BY ANOTHER

INVALID FILENAME OR WORK FILE NAME CANNOT BE SPECIFIED HERE

FILE IS TOO BIG FOR EDITOR TO HANDLE

UNABLE TO ALLOCATE FILE

NO CURRENT DEF AUL T FILENAME - PLEASE SPECIFY A FILENAME

COULD NOT SCRATCH FILE SPECIFIED

Check the file's access rights.

FILE TYPE NOT ED, EE, OR CO. PROCESS IT (Y,N)?

The specified file is not an EDIT saved, EDIT stored, or spooled output file.

SCRATCH FAILED

There is a possible problem with the MPX-32 M.DELR system service. Otherwise,
check the file's access rights.

FILE ACCESS WAS DENIED

The file is either sharable and exclusively locked, or nonsharable and allocated.

DISC FILE SPACE UNAVAILABLE

NO DISC SPACE AVAILABLE FOR WORK FILE

CREA TION FAILED - REASON xx

COMMAND IGNORED - JOB QUEUE FULL

4-2
Text Editor (EDIT)
Errors and Aborts

MPX-32
Utilities

c

o

('

BAD COMPRESSED RECORD DETECTED

Try to reuse the file.

IS RESTRICTED FROM BATCH BY M.KEY

READ ERROR

There is a possible hardware or I/O problem outside EDIT.

WRITE ERROR

There is a possible hardware or I/o problem outside EDIT.

I/o ERROR

SEQUENCE ERROR - LINE NOT INCLUDED

There is a possible problem with the file being used. Try to reuse the file.

BAD LINE COUNT IN WORK FILE - RECOUNTING

Verification of a file being used failed. The line count is being reverified.

SEQ ERR - BAD SECTOR LINKAGE - INTEGRITY UNCERTAIN

Verification of a file being used failed. Clear the work file and reuse the file.

INVALID SECTOR NUMBER - INTEGRITY UNCERTAIN

Verification of a file being used failed. Clear the work file and reuse the file.

HEADER SEQ INVALID - INTEGRITY UNCERTAIN

Verification of a file being used failed. Clear the work file and reuse the file.

LINE COUNT ERROR - INTEGRITY UNCERTAIN

Verification of a file being used failed. Clear the work file and reuse the file.

POINTER INVALID - INTEGRITY UNCERTAIN

Verification of a file being used failed. Clear the work file and reuse the file.

RECOUNT FAILED - WORK FILE INTEGRITY UNCERTAIN

Verification of a file being used failed. Clear the work file and reuse the file.

NEW LINE COUNT DOES NOT MATCH OLD

Ver~fication of a file being used failed. Clear the work file and reuse the file.

FORCE THIS TO BE A STORE

The verification process forces a store to salvage a file.

MPX-32
Utilities

Text Editor (EDIT)
Errors and Aborts 4-3

PROBABLE DATA LOSS IF SA V /STO CONTINUES. RISK FOR SALVAGE ATTEMPT CY,N)?

~NEXP EOM/EOF. DATA LOST. PROCESS AS EOF.

There is a possible problem with the file. Retry the last directive entered.

NEXT FREE SECTOR IN HEADER AND FREEPAGE DO NOT MATCH

Save or store the work file. Change to a different work file. Reuse the stored or
saved file.

FREEPAGE IS IN HEADER AS AN ACTIVE SECTOR

Save or store the work file. Change to a different work file. Reuse the stored or
saved file.

DETECTED EOM ON WRITE - LOGIC ERROR

There is a problem in the save size computation.

CONTINUING MAY RESULT IN LOST DATA

Issued in conjunction with an error message that provides the reason.

XXXX NOT FOUND

An invalid directory, volume, or file CXXXX) was specified in a USE directive.

4-4
Text Editor (EDIT)
Errors and Aborts

MPX-32
Utilities

c

o

(~/

c

Gould Inc., Computer Systems Division
6901 W. Sunrise Blvd.
P. O. Box 409148
Fort Lauderdale, FL 33340-9148
Telephone (305) 587-2900

Users Group Membership Application .

-) GOULD
Electronics

USERORGANIZATION: __ ___

REPRESENTATIVE(S): ___ _

ADDRESS: __ _

TELEXNUMBER: ____________________ _ PHONE NUMBER: ____________ _

NUMBER AND TYPE OF GOULD CSD COMPUTERS: _____________________________________ ___

OPERATING SYSTEM AND REV. LEVEL: _______________________ __

APPLICATIONS (Please Indicate)

1. EDP 2. Communications 3. Design & Drafting

A. Inventory Control A. Telephone System Monitoring A. Electrical
B. Engineering & Production B. Front End Processors - B. Mechanical

Data Control C. Message Switching C. Architectural
C. Large Machine Off· Load D. Other D. cartography
D. Remote Batch Terminal E. Image ProceSSing
E. Other F. Other

4. Industrial Automation 5. Laboratory and Computational 6. Energy Monitoring & Control

A. Continuous Process Control Op. A. Seismic A. Power Generation
B. Production Scheduling & Control B. Scientific Calculation B. Power Distribution
C. Process Planning C. Experiment Monitoring C. Environmental Control
D. Numerical Control D. Mathematical Modeling D. Meter Monitoring
E. Other E. Signal Processing E. Other

F. Other
7. Simulation

A. Flight Simulators B. Other Please return to:
B. Power Plant Simulators
C. Electronic Warfare Users Group Representative
D. Other Date: ____________ _

243-06·1 (1/86)

Gould Inc., Computer Systems Division Users Group .••

The purpose of the Gould CSD Users Group is to help create better User/User and User/Gould CSD
communications.

There is no fee to join the Users Group. Simply complete the Membership Application on the reverse side
and mail to the Users Group Representative. You will automatically receive Users Group Newsletters,
Referral Guide and other pertinent Users Group activity information.

Fold and Staple for Mailing -- -llTr

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 947 FT. LAUDERDALE, FL

POSTAGE WILL BE PAID BY ADDRESSEE

GOULD INC., COMPUTER SYSTEMS DIVISION
ATTENTION: USERS GROUP REPRESENTATIVE
6901 W. SUNRISE BLVD.
P. O. BOX 409148
FT. LAUDERDALE FL 33340-9970

1"11",11",11"1,,111,,,1,1,,1,1,,1,,, 111"",1,11

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

------------------------- ---------------
Fold and Staple for Mailing

-) GOULD
Electronics

'1f ",
'<0

