A

Gould MPX-32TM tilities
Release 3.0

Reference Manual

July 1987

Publication Order Number: 323-004590-000

TMMPX--32 is a trademark of Gould Inc.

== GOULD

Electronics

This manual is supplied without representation or warranty of any kind. Gould Inc.,
Computer Systems Division therefore assumes no responsibility and shall have no liability
of any kind arising from the supply or use of this publication or any material contained
herein.

PROPRIETARY INFORMATION

The information contained herein is proprietary to Gould CSD and/or its vendors, and its
use, disclosure or duplication is subject to the restrictions stated in the Gould CSD
license agreement Form No. 620-06 or the applicable third-party sublicense agreement.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the
Government is subject to restrictions
as set forth in subdivision (b) (3) (ii) of
the Rights in Technical Data and Computer
Software clause at 52.227.7013

Gould Inc., Computer Systems Division
6901 West Sunrise Boulevard
Fort Lauderdale, FL 33313

MPX-32 is a trademark of Gould Inc.
CONCEPT/32 is a registered trademark of Gould Inc.

Copyright 1987
Gould Inc., Computer Systems Division
All Rights Reserved
Printed in U.S.A.

HISTORY

The Gould MPX-32 Utilities Release 3.0 Reference Manual, Publication Order Number
323-004590-000, was printed July, 1987.

This manual contains the following pages:

Title page
Copyright page
iii/iv through xxi/xxii

OVERVIEW

1-1 and 1-2
2-1 through 2-3/2-4

CATALOGER

Title page

iii through v/vi

1-1 through 1-3/1-4
2-1 through 2-25/2-26
3-1 through 3-22

4-1 through 4-4

5-1 through 5-5/5-6

DATAPOOL EDITOR

Title page

iit and iv

1-1 and 1-2

2-1 through 2-8

3-1 through 3-3/3-4
4-1 and 4-2

5-1/5-2

FILE MANAGER

Title page

iii/iv

1-1 through 1-3/1-4
2-1 through 2-8

3-1 through 3-10
4-1 and 4-2

5-1/5-2

MACRO ASSEMBLER

Title page

iii through v/vi

1-1 through 1-3/1-4
2-1 through 2-16

3-1 through 3-29/3-30
4-1 through 4-33/4-34
5-1 through 5-6

6-1 through 6-12

A-1 through A-3/A-4
B-1/B-2

C-1and C-2

D-1 and D-2

MACRO LIBRARY EDITOR

Title page
iiifiv

1-1 and 1-2

2-1 through 2-4
3-1 through 3-4
4-1 and 4-2

5-1 and 5-2

MEDIA CONVERSION

Title page

iii/iv

1-1 and 1-2

2-1 through 2-3/2-4
3-1 through 3-10
4-1 and 4-2

5-1 through 5-4

Continued

iii

iv

SOURCE UPDATE

Title page

iii and iv

1-1 and 1-2

2-1 through 2-8

3-1 through 3-9/3-10
4-1 through 4-3/4-4
5-1 through 5-4

SUBROUTINE LIBRARY EDITOR

Title page

ii/iv

1-1/1-2

2-1 through 2-5/2-6
3-1/3-2

4-1/4-2

5-1 and 5-2

SYMBOLIC DEBUGGER

Title page

iii through v/vi

1-1 through 1-6

2-1 through 2-26

3-1 through 3-29/3-30
4-1 through 4-10

5-1 through 5-12

TEXT EDITOR

Title page

iii and iv

1-1 through 1-3/1-4
2-1 through 2-6

3-1 through 3-25/3-26
4-1 through 4-4

CONTENTS

GOULD MPX-32 UTILITIES OVERVIEW

Section

1 - USING THE MPX-32 UTILITIESMANUALo v v e e

2 - DOCUMENTATION CONVENTIONS ceerennan

MPX-32
Utilities

CATALOGER (CATALOG)

Section
1 - OVERVIEW
1.1 General Description « v cveveesersteseeecsosocosossossssssssssssneeos 1-1
1.2 Directive SUMMArY .« oot e eeteceesnecncccoccssanns cecevcce eeee 1-1
2 - USAGE
2.1 Accessing CATALOGcccveveene e e s e esecessesssss s seennn 2-1
2.2 Logical File Code Assignmentsceceeeeeeeocscsoscosccacnscoconesns 2-1
2.2.1 Source INput (SYC) & v vttt eneenncencnans B 2 A
2.2.2 Object Modules from Compilation or
Assembly (SGO) e e s v vevesesossesesensssossssssosssass 22
2.2.3 Object Modules from Subroutine Libraries
(LIS, LIB,and Lnn) e e e e v e v eeenencnanne 4
2.2.4 Subroutine Library Directories ,
(LID,DIR, and DNN) s e sveeesesosccnsncnnnns ceeeeesenss 2-3
2.2.5 DATAPOOL Variables Dictionary (DPD). ¢ vt v v v v e oeeeaseess .o 2-4
2.2.6 . DPOOLO00-DPOOLY99 Variables Dictionaries (P00-P99).....ccvv.. 2-4
2.2.7 System Listed Output (SLO) .+ evvvvneennn Cereeeenn ceseees 2-4
2.2.8 Symbol Table Output (SYM). . et vviveenennnns ceceseneaasess 225
2.2.9 Symbol Table as Input (SYD) . .vvvenn A, 2-5
2,210 LFCSUMMAErY «eoesseesosoccsansss)
2.3 Options v e veeoe cecccesccnccsssans csessssssascsccss ceeeeeees 2-7
2.4 Exiting CATALOG . .veevveesnse c e e eecctcecnceassssaeaeene ceee. 2-8
2.5 Object Modules and L.oad Modules Ceeeccecccscsaens cesseeess 2-8
2.5.1 LoadModules...ceeeeeeeeeeeenss D .es 229
2.5.2 Absolute Load Modules ceecssecsseseesssenssens 2-9
2.6 The Cataloging Process. « « e e v v e v et eeeereeneeceonsane ceesenneens 229
2.6.1 Selective Retrieval of Object Modules Ceeee sttt ennnas 2-10
2.6.2 Allocation and Use of Global Common and
Datapool Partitions . « e ¢ ¢ e e e e v cesesvecsosons csesescns 2-10
2.6.3 Allocation of Local Commons ceeestaesenenn cesseees 2-11
2.7 Load Module Information e ceereecsctaeeasssscennn e 2-12
2.8 Resource Requirements ccscececsnsscsssensnaas ceceecnns 2-13
2.9 Sectioned and Nonsectioned Tasks 2 1
2.10 Segmented and Nonsegmented Taskscvveeveeeceeenn cesesseses 2-15
2,11 OverlayLoad ModuleS. « s s e et e e vvesstssccscascsssnssssscssacss 2-16
2.11.1 Single and Multiple Disc File Modes cessseses ceteenan 2-16
2,11.2 Overlaylevels...oeene 2 1)
2.11.3 Modifying Overlay Origins. « « « c et e v v e eeeeeeneeceneeesss 2-18
2.11.4 The Overlay Transient Areaeceeceeoeescoscsases eeeee 2-20
2.12 Local Common Allocation and Global Symbol Resolution
inSegmented Tasks o« st et vsvvseencecsssssssssssnsnosssssssss 2-20
2.12.1 Local Common Allocation .. .ceeeeeeeecesene ceteeseenees 2-21
2.12.2 Global Symbol Resolution « e eeveeeeencsssscossscossnsesss 2-22
2.13 Cataloging a Segmented Task iNnStages «veeeeeeeeevveescocenenoeses 2-23
2.13.1 RecatalogingaloadModulecceeeeeeeeecens ceecenes 2-23
2.13.2 Limitations on Catalogingin Stagescceeeeecccccccecsss 2-24
2.14 Cataloging a Nonsegmented Task. « e eeessocessssscecsscssasesasss 2-24
MPX-32
vi Utilities

-

w

Section

3 - DIRECTIVES

3.1 o8 oo 1o [T3 4 a1 3-1
3.2 Directive Order Requirements. v v v oot e v st ot oeosesssossssscsssosns 3-1
3.3 ABSOLUTE DIireCtive v o e vttt v eeeseesosescssossscssssssssssssos 3-2
3.4 ALLOCATE Directive e o o v oo e s e v esesonens cese e e s aes ce e . 3-2
3.5 ASSIGN DireClIVe e ¢t o v ottt et eeeeotoeesosossossossssssssssssnsose 3-3
3.6 ASSIGNL DB IVE ¢ v v ot ettt e e eeeneeeesenecossosesoesssasenossos 3-7
3.7 ASSIGN 2 DI CEIVE ¢ ¢t v ot et et ot eooeeeeoeosocosossosossosscscssoneses 3-8
3.8 ASSIGNS DIreClIVE ¢t v v ettt et ososeosssesssssassssesssssssssese 3-9
3.9 ASSIGNSL DIreCtIVE ¢ v v v v vt ettt e eeeenoesssessssoscsssssssesosasse 3-10
3J0 BUFFERS DITeCtIVE ¢ttt ottt veveeoeeocesesoecososcsscssnsss .e. 3-10
3.11 CATALOG and BUILD Directives v .eeeeeees oo c e e et e eacseeceees 3-11
3.12 CONNECT DIreCliVe oo eeeeuseoeeeeesssssscscsosossssscsssssosaes 3-12
3.13 ENVIRONMENT DireCtiVe e ¢ o e o o e ot e veoseoecosccscsoscsosccoseses 3-13
304 EXCLUDE DIirBCLIVE e ¢ o o t ¢ e s oo oo eossoecssoscescocosecasnceccsses 3-14
305 EXIT Directive e e o e vt e vt oot e eoeecsosecssossssscsssscssssssscssoss 3-14
316 EXTDMPX DITECLIVE ¢ e ettt vt v eeeeeosescosassoscsssscocssssssesaes 3-14
307 FILES DIrBClIVE ¢ vt vt v et e et ovssnsesoscssocscssoscsossocssocssccsons 3-15
3.18 INCLUDE Directive v v eeeeeeeeeeosseocccocces ce e e c e ee e .o 3-16
3.19 LINKBACK DIrTeCtivVe ¢ « e o vt et eeeeeecesscecssoscsocssssssssss . . 3-16
320 LMPATH DIreCliVe . ¢ ¢ o v e et et eveseeesssosccscssscsssccssscsss .. 3-16
3.21 LORIGINDirective . e eeeeeeeeesoees cees e esecs s e et esennne .. 3-17
322 MOUNT DIireCtiVe « e v e oo et oeeeessesosecssosssssssscsosssscsoans 3-17
3.23 OPTION Directive «oeveeeeees c et e et e e cse s s st et et et s e sen s .e. 3-18
3.2 ORIGIN DIireCtiVE. e e o et oot s v seeesssacssescsoesssscsacsasas eeee 3-19
3.25 PASSWORD DireCtiVe e o e o ot et oo eoeoeossoscsscssssossssscssssess 3-19
3,26 PROGRAMDITECEIVE ¢ vttt eteeeeecossossesssaasasssnnscsssssasns 3-19
3.27 PROGRAMX Directive « ¢ e e e e e 0o c et e s es s e s e et e et ennnenen 3-19
328 RECATALOG DITECLIVE vt vttt eeesoossocsscsccsssosoccssscssnse .. 3-20
3,29 SEGFILES Directive « ¢ v v e 0o cetet et ceereesenae ce e eeeae 3-20
330 SPACE DITECLIVE vttt v vt v osoveeoeososssssosssccscssses c e e e 3-20
331 SYMT AB DIreCliVe ¢ o v vttt vt oveeeececseoscssoccscossossssssscnssaes 3-21
332 VOLUMES DireCtive ¢ ot ottt e et eeoososseosscossssososssssssosses 3-21
4-ERRORS AND ABORTSttt teneeeeonceoenes e eeseesences e 4-1
4.1 Error Overviewceeeee. C e ec s sttt e e e e e cees e e ees eees b4-1
4.1.1 Phase One ETTOTS ¢ e e v v e e v v e e < 1 |
4.1.2 Phase TWOEITOrS v v vt eeevveneeesoneses c e e et 4-2
4.1.3 Errors from MPX-32 (Phase One and TWO) « v e v v eeeeenenoens .. 42
4.1.4 Conditions that Cause Incomplete
load Modules . vt v et ee vt eetossoescasassascssns ceees 4-2
4.2 Abort Codes. v vvvveeeeennns c e e et e s s e s es e et en e ans ceees e . 4-4
5-EXAMPLES. Gt et bt e s e e e L
MPX-32

Utilities vii

FIGURES

CATALOG I/O Overview. e« e e e v e v s cesssnne et eecenenneneeasaaes 2-7
Single Overlay Structure . . e v e v v e v e eene 2 V)
Multilevel Overlay Structureo v et cecrecccccsecscsnsesaccns 2-17
Default Memory Allocation for Overlays «cooeeeeeeeeeeeeennns ceee. 2-19
Modified Memory Allocation for Overlays Al
Recataloging Illustration..... e s e s e seeseeseses s et esssssosne . 2-25

TABLES
CATALOGLchummBI‘y.. ooooooo ® o 0o 0 0 0 ® 6 0 0 0 0 0 00 00 0000000 00000 2-6

LMPATH/BUILD/CATALOG Interactioncev0e. ceeseees ceseens 3-22

DATAPQOOL EDITOR (DPEDIT)

Section

1 - OVERVIEW

1.1

1.2

General Description « e ceeeieeeeeenn
1.1.1 Datapool Dictionaries .« e e e oo et csesessessecnns ceseoceeen
1.1.2 Static versus Dynamic Datapool Ceeesecnsenen .o
Directive Summary...... ceecesons ceeceanes

2 - USAGE

2.1
2.2

2.3
2.4
2.5
2.6

Accessing DPEDIT & ittt ittt eneeeeeesesscennnososnosososcsscnssans
Logical File Code Assignmentseeeeeeeeeenn ceesscsseccenenos .
2.2.1 Dictionary (DPD) v cvevuens c e e esessscsessesesetseanaens
Source INpUL (SYC) v vttt terensosesnesesososssscsnsnnss
Listed Output and Error Listings (LOandER) . v v v v veveeenenans
Save and Remap Files(OT andIN) . ¢t v v vt evseenscnscncnnns
Scratch Files(Uland XUL) v et v vveverncsososocncncsnocnsns
2.2.6 LFCSUMMArY «eteveeeeseoccsonssneosnnnns cesennoe
Exiting DPEDIT @ittt eesessoccscossssssssssosssssasssnsssscsce
Input Data Format « v oo e e eveoseceosssssossssssocssssssssssssccscs
Dictionary ReCOrds. « « « e s e e s s e s ccesscsossssssssosccscsssonsassae £

Listings-oooa-oco'Qoooovo-oooootoouooco-oooooaoo'oo.oonoooo

]

NNNNNI'\JNNNNNN
ONUVELEHEWHWNN

2
2
.2

2

NINNN
Ve WN

3 - DIRECTIVES

.

W AW AW W W W W
NOONWVMES W -

D

viii

Introduction .. eeveeeeereoeecscsssassssessssssssscssssssscsse 3=1
JOPD DireCtive «oeeeeseeseeececscscecoscscossssosscsscsaocssses 31
JENTER Directive «eeeeeeens s 1 |
JLOG DIirECtiVe «oeeeeeeeeeeesessoosessesosasasossancocncecssees 3-2
JREMAP DirBCtiVe « o o e c oo vveeoreeocesceessssossasencscesenees 3-2
JSAVE DireCtiVe . e oot oo e veeeeseccacssoscssssosssssccsssnccesnses 3-3
JVERIFY DireCtive « o e s s o v eveeseososoecossncosscenscsancessescses 3=3

MPX-32
Utilities

VR

Section

4 - ERRORS AND ABORTS

4.1 DPEDIT Error Codes. « v st v e et o vesssoossasossssssssssssssssscsas

4.2 DPEDIT Abort Codes v v vt vttt nnnneansns C et et ec e

4.3 Console Messages « « v et e vttt eenennenneens O

S-EXAMPLES. . ..ttt t ittt it it e s cee e
FIGURES

2-1 DPEDIT Data Record FOrmat v v e oo e veooessoesccsssscssscssoccssas

2-2 Datapool Dictionary Entry Format..... Ceseenaeens crese s

2-3 DPEDIT Listed Output FOrmat v v v e e e e e eeeeeeeeeeeosnooncascncosss
TABLES

2-1 DPEDIT LFC SUMmMary « e e e e e s s s o

FILE MANAGER (FILEMGR)

1 - OVERVIEW

1.1 General DesCription « v ot ene ettt teetesoseenseeeecscssssososoess
1.2 Directive SUMMArY .. e e oo s eesesosassceoss
2 - USAGE
2.1 Accessing FILEMGRo v vt v e e cesessennen oo
2.2 Saving, Restoring, and Creating Files. T S
2.3 Computing the Size of aFile........ cesens cecessesetcssnseseenens
2.4 The System Master Directory (SMD) + vt v vt vt etneososevsocsssonnnns
2.5 Logical File Code Assignments
2.5.1 Source INpUL (SYC) &t vttt et neseseessssncasssnssnsnsans
2.5.2 Listed Output (SLO) cv v v v e vsennns et easensen ceseeseas
2.5.3 Input for Restores (IN) v vt vttt enreeseesenscooscnonnns
2.5.4 Output for Saves (OUT) . v v vt vt et s tesessoessassssnsons .
2.5.5 LFC Summary «...... ces e essecsssaseasan
2.6 File-to-Tape Transfers v oo veeeeeeee ittt einenneteeesncannns o e
2.7 Options . v . oo v teceseseeas Cecsesesesssenss e
2.8 ExmngFILEMGR cteeecssss s ssernese e an

3 - DIRECTIVES

3.1 Introduction....... s e e s e ce e ee e ceee c e ees et neseserenne
3.2 BACKFILE Directive «eeeeeeeeese . . cesesesess e ceaes
3.3 CREATEandCREATEUDlrectlves t et e e et e e ses e e eses e eann
3.4 CREATEMDirective «.veeeeeeess ce e
3.5 DELETE and DELETEU Directives...... I, ce e
3.6 DELETEW Directive ¢ o e ot et v e eveeseneocososones ce s e e e esenann
3.7 EXIT Directive .o e v eeeeeenoocnosnns t it e s e s s e s e e e e s s e senene
3.8 EXPAND and EXPANDU Dlrectlveso ceeans ceessansae
MPX-32

Utilities

-l-\-!r\-l}
N = b

2-4

ooV ERERPEWWNFH

\A\A\A\{J\N\N\A\N
ANV EWN M-

Section

LOG, LOGU, and LOGC Directives v v veveeveesssssssosossossccsess
PAGE Directive « ¢ e o et o e v eveeess c et et e e eeesesssssssssaeesenn
RESTORE and RESTOREU Directives «.eeeeeeeoeee cecestesessesenens
REWIND Directive ¢ e v e vt 0o v e cec e e ceecenee
SAVE and SAVEU DIirectives ¢ e v e e e vt et sveoeosscessssssoscsoscsccssas
SAVELOG Directive ¢« e e s e et v eeness t et ecssesesc st e e e P
SKIPFILE Directive «ceeceeeeeeooess ceeseeceness e B 2
USERNAME DIirective «ceoeeeeeeecsceosocsnn R T

R R B BV BV R
[S R TR
OUVEWN~O

OOV ®®IO O

ERRORS AND ABORTS

4 -

4.1 AbOl‘tCOdeS......-..-.o.......-....-..... ooooooo oo.o-oo-.ooa‘"’l
4.2 ErTOr MESSAgES e ¢ o o o e e s oo s ssssssssssescssssssassssccnccsns ceees 4-1
5

~EXAMPLES. . ittt ittt ittt ettt er et ettt ceeseann e . 5-1

FIGURES

2-1 File-to-Tape Transfers .o cveeteeereeeoesscencenons cesveccss oo 2-7

TABLES

2-1 FILEMGR LFC SummMary..«seso oo ceseeecsensens ceeseseennenes 2-5

MACRO ASSEMBLER (ASSEMBLE)

1 - OVERVIEW

1.1 General Description ¢ oo eeeeeeeesosssosossssscsscssssossossscocsscsss 1
1.1.1 Macro Assembler Features e |
1.1.2 Macro Assembler Operationceeeeee.. coeee e cesess oo 1-
1.2 Directive SUMMAry ..o eeeeeeeeeeeesecescssssessocsscsosnnnscs |

2 - USAGE

2.1 Accessing the Macro Assembler. ..o oo s eeeseeeeeecsccssssecosnoscsess
2.2 Logical File Code Assignments ... ceeeeeenceeceecncenns
2.2.1 Source Input (PRE and SI) v ivveneeeesesenssoscssnnanes
Macro Libraries MAC and MA2) v i v vevenencnens
Temporary Files(UT1 and UT2) s v v vt eeeveesonconnsnsanases
Listed Output (LO) v v o vt vinvneevovsonsesesaassancnnsnes
Object Code - BO (Binary Object) and GO
(General ObJECt) v e v v vvenesvssoscsososcsssesncscsnnsoss
2.2.6 Compressed Source (CS) Ceeescsceseseaeseassesan e
2.2.7 LFCSUMMArY «eeveeseeecsesnscssessscncsssnascnss
OptionNs s e e eeeeeeeccconoess
Exiting the Macro Assembler. ..o ee et eeeesssecscosccssscccsscasces
USINGMECT0S ¢ et e vt eeveeecccsoosossssscsscsoscssssssss
2.5.1 Macro ComponentS . e oo v eessosscccesosessscssocossocnsscs
2.5.2 Symbolic Parameters .. .ececeeeeeeesccssoscscocssncsnse

2
2.
2.
2

NDNDNN

Vi & W
NNI'\)NNN
Vs S We -

N!\)N
v & W

OOV~ ON

>
|

MPX-32
X Utilities

)

Section

2.5.3 Macro Definition o i v vttt eeeeseeeenscssoscnsannsns .. 2-10
2.5.4 MacroCall. .ttt ii i it it ci et v c e s e s e s et eesena 2-11
2.5.5 Macro EXpansion . ..eeeeesceessssoscnnsens e eeees e 2-12
2.5.6 Label Generation within Macros «...ceeeesoeess ceeenn eee. 2-12
2.5.7 Symbol Concatenation ...ccevveeeeennns ceteees e ee. 2-14
2.5.8 Nested Macros e e s e s s es s eassessessesecsessas e 2-14
2.6 Datapool + v ittt et eciasnensas N te e et s essensenen 2-16
2.7 Global Common v v vt neeesneeons et ees s sesa s ceene 2-16
3 - MACRO ASSEMBLER LANGUAGE
3.1 Introduction.....ceeee. ceseenesen senvsecssecnersecs cecessces 3-1
3.2 Source Statement Format . ..o oo eencens cseec s ceessesesss 3-1
3.2.1 Label Field .v.vevevennns cees s sesesencasan ceeeees 3-1
3.2.2 Operation Field e se e e esescs s esanns cees 3-1
3.2.3 OperandFieldcitiiiiiiiinnnenas ceseeseennnn cees 3-1
3.2.4 Comment Field e eeen C e e sessess st snsns ee. 323
3.2.5 Sequence Field....... cessesstesaeansas cesseseesns ceee -3
3.2.6 Continuation Lines ceceesennnns evsvssrasnere ceees 3-3
3.2.7 Character Set ceeenn Ceecessesans seeevresessens cees -4
3.2.7.1 Escape CharaCter.c.eeeeeeesevosccccsccsssccss 3-4
3.3 Data Representation. .« v vvveeeieeeeeenennns ceevtreenn e)
3.3.1 SYMbOlS . s ettt s tieet et eteeesssescsnncennns cesseee 3-6
3.3.2 Literals oo e e vevevoncenns cees e ss s e O]
3.3.3 Constants « ... teesesecr et e s reesscnes s nes s oo 3-7
3.3.3.1 C-Character String. « e v e e vt eeeveeeeeecncens . N
3.3.3.2 G-Character Stringe e e s o e e 00 s o cessessseeessss 3-11
3.3.3.3 Hexadecimal Constant (X). s T
3.3.3.4 Fixed Point Decimal Word (N) v v v v v eeennnnnn ee. 3-13
3.3.3.5 Fixed Point Decimal Doubleword (F) cersecees 3-16
3.3.3.6 FloatingPoint cessescans cessesessss =18
3.3.3.7 Floating Point Decimal Word (BE) vevereeecnnnnsnas 3219
3.3.3.8 Floating Point Decimal Doubleword (R) ceeee 3-20
3.3.4 EXpressions «.eeeeeeeeen ceessessesssses s cvseon s . 3-21
3.3.4.1 Expression Evaluation . e e v e evveneessseeenons oo 3-22
3.3.4.2 Expression Types ceeee e enene ceeeeeee 3=22
3.4 Addressing Techniques « .+ oeve s ees et seenn cecesssennenn 3-24
3.4.1 Location COUNtEr ¢ v ot v evensoossnsosssscssossossses ceees 3-24
3.4.2 Self-Relative Addressmg ceseserresrnase 3-25
3.4.3 Symbolic Addressing e eeeeereceeececesseans ceeenes cees 3-26
3.4.4 Relative Addressing « e cveeeeeasssss cesens ceeseseene eos 3-27
3.4.5 Absolute Addressing B T T T I ey .. 3-27
3.4.6 Literal Addressing v o eveeeesesssosssssocasssssss ces e e 3-27
3.4.7 Blank Addressing «.cvvveeeeeeecnaess ceeecrssessssssses 3-28
3.4.8 Addressing Attributes .« ¢ v vt ettt e i en ches s e s 3-28
4 - DIRECTIVES
4.1 Introduction .. cveeeeeeessn. e O
4.2 ABS Directive «eeeveeenns e XY
4.3 AC Directive v oo v v v v eeen cesesas ceeseneen cesesssecncssssssess U-2
4.4 ANOP Directive e e v e v e v v cesessesenasece ceossessscee ceseseeaess b-4
4.5 BOUND Directive.oeeeeesssooeess ces s e ennes tesescncenssss U-4
MPX-32
Utilities xi

Section

® e o e o o o o o o o

J-\J-\b&bbbbb&kb?bbbbbb#bbbb#
AR NN RN RNN NN NN e et e et bt et = \0 O~ O\

ovoNOUVAEUWUNFOVONOANUVMEWNEFO

COMMON DIireCtiVe ¢ o e e s s o s e osesossscsossesssosscsassscssscssse ceeee 84-5
COMPUTED GOTO DIrective ¢ eeeeceesssseccsssscsscssssccscsess 4-7
CSECT DIrective vvveeeeoecessesosscscscseassscssossssssssssasess U=7
DATA DIrective e s o et eeeeeeessesssessscsscsossssssnsssssnssesss 4-8
DEF Directive v ceveeeceeeossessscsscsscncsscs ceeeescscsesess 4-10
DEFM Directive e e v« « « cesescans Ceese s eens cecesssessssssssss 4-10

DSECT DIir€CLIVE v v e s oo voeosessesssssssssssessesseassensssees O-11

END DIrecCtive e e e eeeeeeeeveoscsosscscssssssssosccssssscessees 4=11
ENDM Directive s e oeeeeeeeeseseossesessessscssscssscsscsscssses 4-12
ENDR Directive e « ¢ e et e e v v seveeosscossscssscascsosssscssnssess 4-12
EQU Directive cesecesretssssses e ceseenssesssseessess 4-13
EXITM Directive «coeeeeee c e e et eecess s asessse st e seeseseene 4-13
EXT DIirective ¢ e eeeeeeeeeseesesosscascsssssasssssssnsssssss 4-14
FORMDIreCtiVe e e e e s e oo eoessesosssssosssssssscsscssnsensssass U4-16
GEN Directive ¢ e e e oo 00 v ceseesesececsesscsseseseasseressscsss 4-19
GOTO DIrEeCtiVE ¢ o ¢ e s o e o oo o sseoossssscsescsscsesosscsssscsscsscses 4-20
IFA DIrective . e oo e ot e evveeesesoscssssosssssesosssssnsos ceesess 4-20
IFF Directive e v e ot v et eeesensesscsssssnscsssanscaose cececen o oee 4-21
IFP DIirective ¢ o ¢ e et oo s eeeeeooeoscsssssosssscssssocsossscseses U=22
IFT Directive e e e e e 0 o & et e e e s eceeeses s st s eeses s ros e es e e 4-22
LIST Directive ¢ e ¢ e e e e s c e e cseesesces s et eecssssesssscsseseaess U4-23
LPOOL Directive « e e e e et eveees cees st eeeseane s ceseeseseseess 4-24
ORG Directive e e e e oo e eveecsscecoess ceeertes e cesesscne eeees 4-25
PAGE Directive ¢ e e et e o veevsesecsns e e e es s e s esene s s es e e 4-25
PROGRAMDITECEIVE ¢ttt eeeveeroestseasssccscnscaceas ceeceess 4-26
REL Directive ¢coco.. ceeeennn ceestsess e s e nae ceseenssesseeces U-26
REPT DITeCtiVe ¢ oo veeeteeseescocesssossossssssosccosnssnsssssess 84-27
RESDIrective ¢oeeeeeeeeeoecsosescsosossoscscsosssnncss ceeeess 4-28
REZ Directive v veceeeeecececes cesesesceces ceees e e ceces oo 4-30
SET Directive «.eeeeeeeeececcoososces ceceeeens ceceons ceeeseees U4-32
SETF DIireCtive «eeeeeeeeeeesossescsoscsossossssssscssssssnsssees 4-32
SETT Directive ¢ cceeeeen cees st esseses e e cesescessvsscesseses U4-32
SPACE DireCtiVe v o eveeeeeeecsscececsscsssssssccsses ceseseenes 4-33
TITLE Directive e e e e e e s 0000 e ceeces st esseseesanns cesesscsane 4-33

5 - ERRORS AND ABORTS

5.1
5.2
5.3

ErrOr COGBS ¢ ¢ v v e et evvesosoeesosacssssonsssesscsssnscssass ceees D=1
Abort Codes. e eveeeeeeesoreacsencncanns ceeens cecescaccanca e 5-3
ErrOr MESSAgES. ¢ v v s s o s s sssssessssssssosssssscsssssssscssascsce D=6

6 - OUTPUT AND EXAMPLES

.
ANV EWN -~

AN

xii

Introduction.....ccveveeee... e e eesesesesessaessasscanssanese 6-1
Source Listing « oo eeeereeessonocensossssasscssanssncnses oo 6-1
Symbol Cross-Referencevoveeeietieteteeterecseesonsneceesss 6-4
Error Diagnostics ¢« e e e e e e v vesenssocencnns cesesessesssssssecsss 6-7
Object OULPUL 4 vt eveesssessanssosssssssssesssssssscssessses 6=7
Macro Assembler Programming Examples. . e v e e 0o v e s N

MPX-32
Utilities

i

.

C

APPENDICES

Instruction Formatst i it eeeetnonecsosconeaes et s e secene e
Extended Mnemonic Codes « e v vt eeveeeens C e et s et e st eees e anne .
Compressed Source Format .,cc0vne cecsecsesccsnnsennns ceeeen
ASCII Code Set v v v v e erecenoansns ce e e

onwr

FIGURES

Macro Assembler Flow of Operation ceeesens ceteseasssees e
Assembler CodingFormvveeeeeensnnn ceeecsscesccccas e ceene
Floating Point Data Formats..... Cheessasnenas ceeeessenessenenn

Sample Assembler Listed Outputo ... crecnvrccscscassasnnoa .
Sample Symbol Cross-Reference ... vovvieieieinnneeeecens
Pass One Error List Ceseesssecaasenns ceeeessennn

1

N R A RN
W N

TABLES

1 Macro Assembler LFC SUMMArY v o e eeesssosssccssonessascsnssns
1 ASCII Control Characters
2 Addition Operations Ccceeccssesesrsessrrsaresssencens e
-3 Subtraction Operation.......... ceseeane Ceeeseeeseneacaeans
4 Multiplication/Division Operations. s o esocececeeescesssossssassons
5 Operand Code Format..... e ectes et teseaenn e

MACRO LIBRARY EDITOR (MACLIBR)

Section

1 - OVERVIEW

1.1 General Description ¢ oo e vttt ei et eeteeesssssosossssscsssscsss
1.2 Directive Summary........

2 - USAGE

AccessingMACLIBR . et ittt tnttsseeososesssocssssassscnccss
Logical File Code Assignments . .c.veeeseescscsccsoncssssss

2. .
2 .
2.2.1 Macro Library (MAC) ® & 5 & 5 & 5 0 & 0 % 0 0 0 " 0 S 20 s 0 e s s e e o

N -

.

2.2.2 Macro Input File (SD v .o v v v e, Ceteeesteseatrresnnan
2.2.3 Directives (DIR) v v vt vt eeeesevsecoscscacsncnsns
2.2.4 Listed OUtpUt (LO) ¢t v it vttt ivteencemecsssesssansssnsoss
2,2.5 LFCSUMMAry vueeeeoececnnss
2.3 OpLioNS o vt tetereteeteeeeceosososcsssccccccosossossssasoncnnsss
2.4 MACLIBR Listings .. .ccvevnin oo ceececsssesssssensese cesses
2.5 Exiting MACLIBR. ..t c e vt e s v ens s ecesescesssssesessssenessancs

3 - DIRECTIVES

3.1 Introduction....... T, ceeseccsecsnne
3.2 /APPEND Directive «veeeeeeens e
3.3 JOREATE DIreCtive ¢ v v et eeeeeeeeesseesscooocsasesecascnnsns ..
3.4 JOELETE Directive vveeeeeeees
3.5 /DISPLAY Directive v v v v v v v e et e e s eseces s e s e s e e ees s et sece e e

MPX-32
Utilities

NNN!\?(?’I'\’NNNN
S EEFWAWNNF -

\:J\.AYJVIVJ
NINN -

xiii

Section

JEND DiTeCtiVe o v oo v voeeeooeocososncessecsnscscsonsasossanesss 3-2
JEXIT DIrBCLIVE v o v o oo vvoeeoceeoocssenssssosssoesossossaseacses 3=3
JINSERT DITeCtIVE v ot v v o veeeeeeesonseeossesscssosssescsnssses 33
JLOG DITCtIVE « o v oot voeeeeeeeessoseesseesssocsssessnonssses 33
IMACLIST DIreCtiVe . ¢ v v et v e eeeeveseesesseacsaonssanoscecnsans 34
JREPLACE DIiTeCtiVe oo oo veveceessosseccscsncssccsssscnscscssces 3=U

4 - ERRORS AND ABORTS

AbO[‘tCOdeS....’.-..-o-..-......-.-.-...-..................4-1
Error Messages. e o e v v eeeeencencnes Oy 23 |
Information Messages o« e et vt et et ssssoscosscscssssnsoncsss 4-2

S-EXAMPLESo'oonooo.oco-n.cc.coon.-.o.onooooo.oooo.o.oon.ooo.- S-l

2-1

TABLES

MACLIBRLFCSummary ...llIl...........l.........ll.l.....’2-3

MEDIA CONVERSION (MEDIA)

1 - OVERVIEW

1.1
1.2

General Description v v cveee ettt oeecsosssssssssssssosnncsssns .
Directive SUMMArY.eoeeteeeetsessnecsenesssssssocssonssssssss .

e

2 - USAGE

2.1
2.2

3

L] - . . u .N

REC RV RV EVEVEVEVEVEVEVEV RS
VO NON VNS WN -

Xiv

AccessingMEDIA i ii it ceecessesesssetessstcaases
Logical File Code AsSigNMeNnts «.evovesessssosescsosssssssssansess
2.2.1 Source INpUEt (¥IN) . v v v v v e e neeonsossssscsensosscsannns
2.2.2 Listed Output (¥*OT) 4 e v cvsonssonsosessssssscnsesesossss
2,23 Input Files e e evveveeennns

2,2.4 Output Files. . v eeveeenens
2.2.5 LFCSummary «eeeeseeess
ExitingMEDIA ¢ i s it iveveeasnenes

9 6 6 60 000 2 06 000 060 0063 000000080

3 © 8 066 9 065 600 00 08000 0 0 0 e s 0 00

© © o 6 06 0 02 060 00 00 00600000 000000

NNNI'\)NNNN
WWNNN B

® & 8 0 06 00 0 0606 50 600 035 06006000600 00

- DIRECTIVES

Introduction e eeeeeeeeecesssoconns .
BACKFILE DireCtive ¢ oo eeeeeceeosssssssscssssssssssssssanssas
BACKREC DIireCtive e eeeeeeveeessecsscssssscsssscssosscasscnsss .
BUFFER DIrective v e e o v oo e e vevossssossssessscsssosssccsssscscsses
CONVERT DireCtive s s et o e o s s cvsssossescsossssscssssssasacnssss
COPY DireCtiVe s e e e e s s e vestoessssessssssssssssssssssscssanss
DUMP Directive . e oo eeeeeersessescsososssssssssoscssasscssssssscas
END DITeCtiVe ¢ oo v evsvseoessosssssassesssssasssassssssssssassas
EXITDirective s e oeeeeeecocsesecsecs s e ctececceseaenns
GOTODIreCctiVe ¢ o v st et e et esoeescsssssssssossssssssssasssssasns
INCRDITECEIVE 4o vveeveoeesvessessosssssssasesosssossosncscssss
MESSAGE Directive ¢« e e v s et e sscesvocssosscsoncssasonss
MOVE Directive « e e e o v oeoeesssssssscscscs cesssesscscecceeanne

VWUV UVNELELEWHWWNNN R -

MPX-32
Utilities

Section
314 OPTION DITECIVE v vttt vt eennvonnsnnnsonns Ceseeteaseseseeseean 3-6
3.15 READDirective ¢ v v v vvvennns Ceese s eeeanenn cetteeanaaas cseses 3-8
3.6 REWIND Directive v e v veveeeeosssnosnssnensssas s]
3.17 SETCDirective vveeeeessecesonnesss ce e ceecsesasasssssssnss 3-8
3.18 SKIPFILE Directive v v vvieeeeeeetesoenecennns creeseaen cesseee 3-9
3,19 SKIPREC Directive «eeeeeeseseosesoncassa Gt et sessesescstseesns 3-9
3.20 VERIFY Directive «veevieeeeesonases et ecseesecerenes a0 3-9
3.21 WEOF Directive .. v veeeenss ceeesessens cececesseacas s cesees 3-10
3.22 WRITE Directive cee e c ettt et etes e st eessen s aesesnaa 3-10
4 - ERRORS AND ABORTS
4.1 Error Codes ¢ v e v v evennvnnenconss ceceeen cee e e ceeos e .. 4-1
4.2 AbOrt CodesS. s v evvveerossseascnsacnsasans ceeenn ceseesesessses U-2
S-EXAMPLES.......ciieeeen cheeeeaan ceeees ceeses S 2 |
TABLES
2-1 MEDIA LFC SUMMAary...eeeeees cevseerseasanssecnse ceesesssensse 2-3
3-1 MEDIA Options «eceeeeeeeensssens ceeseseseanee ceeresseseeens 3-7
SOURCE UPDATE (UPDATE)
1 - OVERVIEW
1.1 General Description . ..o cvveeeeeess e ssscasascssorncass ceseses 1-1
1.2 Directive SUMMAry...ooeeeeoseossses cesseven s s 3 |
2 - USAGE
2.1 Accessing UPDATE ceeseesessassessssann ceseeesens ces 2-1
2.2 Logical File Code Assignments . .eoeeneeecees sesses Ceeseencoeanann 2-1
2.2.1 Directive Input (SYC) v v v v vvvnvnnnen Che ettt ceseeeeeeannes 2-2
2.2.2 Input Files (SI1,S12,and SI3) v e vt vt v eeneencncennnnns cees 2-2
2.2.3 Output File (SO) v e ceseeaae e teceeeees ceeeees 222
2.2.4 Work File (UTY) et vt v e e v nnenne Gt eeeeesceeseseeesaennnns 2-3
2.2.5 Output Image Listing (LO) s e v v v et vetnrecesononnnns ceeeees 223
2.2.6 LFCSUMMAErY «eoeeeeesccnnsoocsoss ceecsesseesseascenons 2-4
2.3 Options + v eeveeerenneeennnans cosvsassa s cesessessssansssssss 274
2.4 Compressed Source Format e« v e v s v v o eeesens cressessea e ceseees 25
2.5 Library Source Format .. .eeeevesens D sesessasenss e ceeees 2-6
2.6 ExitingUPDATE ...ttt eeceesnnnnnns cheease e ceseceenn ceeeses 2-6
3 - DIRECTIVES
3.1 Introduction .. ccoviieineniereenssoeasosnasosncasncsss ceesees 5-1
3.2 JADD Dir€CLiVE v e v vt v st eensosssnoceenssenscannaancnnssns ceeeen 3-1
3.3 J/AS1 Directive « v v e vveenen. et et ee et ceeesees 3-2
3.4 /AS} DiI‘eCtiVB ----------------- o e o o o o e o 0 0 0 0 0 0 ® e o 0 0 0 00 0 0 0 0 0 0 0 3"’2
3.5 /BKSP Directive..ceeeeeeeenns et ceaeee e 2 4
3.6 [BLKDIirective «eeeeveroeenens C et seere et eesans P 2
MPX-32

Utilities XV

Section

D) o o

))

e o o o o e o

NN RNNNRN e b et = bt = = \0 00~

VMEWNFOOVONONUVMEWNEFO

JCOMDITECEIVE v et ovvveeeooacoccennns et
JCOPY DireCtiVe v e v eeeeeeeceoosoasoceaneess Cheecereer e
JOELETE DireCtiVe oo eeeeeeeeooscsceesscceoosossscscsncsssss
J/END Directive C e e e e e ccesecettencsneeeeaseonns
JEXIT Directive « oo e eveees et eete st eeeeeseenecesasasesn e
JINSERT Directive v o oo e evvvonnons Ceecoseesascensseees

JLIST DIirective v v eeeeeeeccecoecocoes e et eeeenesseenene

IMOUNT DirectiVe « o e e vt veveeeoeesoconcnnes ceceeeees
/NBL Directive v.eeeeeeeens et eeseseeceeeeneneeeecanseene
/NOLIST Directive « e et e e e cccsectercetsenecnasnans
/NOSEQN Directive «vveeeeeeeeees e ceeeseeneenn cececensnens
/REPLACE Directive «veveveveeoeens S,
/REWIND Directive «.ceeeeeeees et e et s e eeseeccenennnneneenn
JSCAN Directive v.eeeeeo. et et eecceeeseseenneesananncs
JSELECT Directive.eeeeeeen. i e tec e ecteenesen e neenn .

/SEQUENCE Directive «....

JSIKIP DITECEIVE v e oo o oo eeeeeeesessasescosonsosssses
JUSR Directive «.coeeee. et e s s s e e e eeeneseeeeeeesans
/WEOF Directive «..... C et e ecectreaeeeescnensssenesonoaenn

4 - ERRORS AND ABORTS

2-1

XVi

Abort Codes. . eeeeeeeenn ceseccsecne Ceceeccsasaccncns
Error Messages. « « « « « o« e e e s et e eesseeassesessecnssenn

FIGURES

Compressed Record Card Format ceceenns sseassecces
Library Formatcceeeeeeeeocececcennnne cesceesesnne
Header Record Format v v v v e ettt tetteeeeeeacsscecssocnnncans
End-of-Library File Record . . e v e et eevesssoocscssassssscassses

TABLES

UPDATE LFC SUMMArY oo eesosssoscessssssasssssosssscsccanscs

\NW\N\N\N\N\A\N\N\[A\N\A\N\A\M\N\N\N\N
VNV OoONNNNINONONDONV P PP WW

eee 25
«oo 2-7
... 2-8
.e. 2-8

MPX-32
Utilities

A

(

s

SUBROUTINE LIBRARY EDITOR (LIBED)

Section
1 - OVERVIEW

1 General Description . .cvvviieeveenen.
.2 Directive SUMMAry . oo e et eeseeeeesocsossossocsssnssssns

2 - USAGE

2.1 AccessingLIBED cesccses v cesvecsanseces .
2.2 Logical File Code Assignmentscceeees tececestseestscecen e

2.2.1 Control Directives (CTL) viveveneeeennsens ceeeseeanee cen
Directory (DIR) v ev e evenennenns ceersceaseeans ceeeaae
Library General Output (LGO)....... ceeenne Ceceessseaeenas
Library (LIB) Ceeeeee et eeseeseseeesesannens oo
Listed Output (LLO) Ceteetsieeas e ennas
Internal LFCs. v vveveennnnss cecrcssresssrece ceeeneeen .

MU NI SR

NN RN NN

NN NNNN

2. LFC Summary «....... ceseessesenasnnn
2.3 Options e vveeeeeeeeeeennnnns ceoees ceeestetsetetsncennn

2.4 Directory FileFormatccciiieeeeeens ceecessssessanns
2.5 ExitingLIBED cese e cheseeseeenenn

3 - DIRECTIVES
.1 DELETE Directive ¢« v e e vceeeeeeee c e e e e s e s s essces et st s s s es e e s

3

3.2 EXIT DIirective s e e o e e e o e seeesssovsssccscsssssssss cesecesene .o

3.3 LOGDirective « v e et eeveeesesoas et e e e e e s e es s e acane e cecee s o
ERRORS AND ABORTS

4 -
4.1 ADOrt Codes. e e vt eveeeereeensesesssscscscsossosscsossssscscsscss
4.2 Error Messages. . cceeeeesoosssosssss cececrecscsessssssssessene

5S-EXAMPLES........... O T T T

TABLES

2"1 LIBEDLFCSUIT\maI‘y ® © 0 6 0 0 0 00 0 0 00 00 00 0000000 O G0 L0000 o0

MPX-32
Utilities

]
VMUV EWWUWNNEE -

ll\)NNI\JNNII\)NNMNN

W
=

xvii

SYMBOLIC DEBUGGER (SYMDB)

1--OVERVIEW
1.1 General Description ¢ e ot et veteeeeeeceoccccnns B . 1-1
1.2 Local and Global Symbols Cee et esreaes s nnn ceeenenn 1-1
1.3 Accessing Program Symbols Y B4
1.4 Summary of SYMDB Capabilities . e v e e vt et e i ieneeteeeeeeneenns eese 13
1.5 Directive SUMMAry .. e oo eeeeecveeaoes ceeceseenn O B
2--USAGE
2.1 AccessingSYMDB ...ttt ittt ettt tsatcnsannes ceees e . 2-1
2.1.1 Accessing SYMDB in TSM ¢ vttt v eeeennennoseess seseeesenss 2-1
2.1.2 Accessing SYMDB via the Batch Stream et ereeteseanaaan 2-1
2.2 UsingM.DEBUG . .ttt et v iieeereeeeertsoecennns e ceeeaseeenaaan 2-3
2.3 Logical File Code Assignments «.veeeeeseeeecoonecss ceeeeeeens 2-3
2.3.1 Source Input (#IN and #03) et eeseaseeseeaans ceeenn 2-4
2.3.2 Listed Output (FOT) ¢« e v e vvveeennnsns cecessesees 2-4
2.3.3 Temporary LogFile (#01) v v v e ev e vnncnncnnnns ceeeesaeas 2-4
2.3.4 Log Output (#02) et eeeeeaeen Ceeeees Ceeteeeaas 2-5
2.3.5 Symbol Table (FSM) vt eiiieeneneneoneonssossonsnsnnns 2-5
2.3.6 LFCSUMMAErY ¢ eeeereneneeooneoonsens ceeectenenn ceeeee 2-6
2.4 Exiting SYMDB 1ttt ittt teeteeeescnnoecoanncncns ceeteenn 2-6
2.5 Attaching SYMDB toaUser Task +...... ceeeeeeseenn ceeeescnnnnss 2-7
2.6 Input/OUtput .. vvvreeneenennconnns ettt eseac s ceeesess 229
2.6.1 Terminal I/O v vevenenennennns Che et e et et 2-9
2.6.2 Command Files et eceet e creeeans ceeeeneens 2-10
2.7 Control Transfers.. e ceve vttt eeeneeeenns ceeecessesessessses 2-10
2.8 Break Handling. ceeevereccessesessesanenasens cesescenssns 2-11
2.9 Setting the Default for Symbolic References e ceeesestaaanaenone 2-12
2,10 ProgramExecution.....ceeietereetcosccscccccnseccnncns cecennn . 2-13
2.11 TrapsandTrapLists..... c e secessses s e s ecesaaaneens 2-13
212 Nested Traps v e cveveeeeenecceonens cecene ceeeeenn ceeeeene eeo 2-15
2.13 Examining Memory and Registersceeeeeeeeeccenens ceeeees 2-15
2.14 ModifyingMemory and Registers......ceeeeeeeececcccescees ceess 2-16
2,15 Selecting the Input Radix «..cceeeeesen cee ettt ctccsasssene e 2-17
2.16 EstablishingUser Bases. ... cveeeeeeeereeesseensoscocconosssseess 2-17
2.17 Selecting Relative or Absolute Addressing « . cccveeeeeneeeeceneneess 2-17
2.18 SelectinglLog/No LogFile.eeseeeeeeoeeneosenensssenssssnsonnss 2-17
2,19 SelectinglLabel FieldFormat ...eeeeeeeesssassscsccccossnas .o 2-17
2.20 Selecting Extended Memory ACCESS ¢ « s e e e oo sssossesossccsses . 2-18
2.21 SYMDB Directive EXpressions « e« e e cevvvesoecececsccsssocsccses 2-18
’ 2.21.1 Arithmetic EXpressions . ceeseeeescecscssccssssssssassss 2-19
2.21.2 Logical EXpressions «..eeeeecececeecsccnoccnns ceeeee 2-19
2.21.3 Relational EXpressions s e seseeeeecssecesscssocsssssesess 2-20
2,22 Terms used in SYMDB EXPressionS .« cceeeseeesccssssscsssssssssss 2-20
2221 INtBQErS . e o e eeesssnsssonsssssossssssssnasnan 2-20
2.22.2 Constants .eceeeeesencns Ceeecesteeesstesssnsssneesass 2-21
2.22.3 Register and Memory Contents .« cceesecoveccsossccsosees 2-22
2,22 BBSES. s s e eets ettt sstesss st sss st s st esasecsesennes 2-22
2,225 SymbolS..eeeeeececans Ceessessssessesssssasasasesss 2-24
2226 COUNT tvveeeeeecessssseensoscsssssssssssssassenssss 2=25
2227 Period (1) et v e et ie it tstscacesscsssssascsenonensese 2-25
MPX-32
xviii Utilities

(2

(’\

L%

)

Section
3--DIRECTIVES
1 Using SYMDB Directives........ Che ettt
.2 A (Address) Directive « v v vveennens e eieeae s
S ABSOLUTE Directive v v e v e vt v vt v eeeans ceesecace
4 B(Binary) Directive v v e veneeeneseeecenanneees
.5 BASE Directive v vviiite ittt enennnnnns oo
.6 BREAK Directive e v v vt ettt vnen e teeresancens
-7 CC (Condition Code) Dlrectlve
CLEARDIirective s« v v vttt veinnennoens ceseson
CM (Change Memory) Directive.vceeeeceosescens .
. CR (Change Register) Directive «...eeu.. et
DA (Display ASCII) Directive veeeveeessosscosens
. DD (Display Double Precision) Directive ceee
. DELETE Directive «vvvvveeeeenan
. DETACH Directive...cceeeeeeeenns ceesecsescnn
. DF (Display Floating Point) Dlrectlve ceen
. DI (Display Instruction) Directive «.viveveceoencns
. DN (Display Numeric) Directive «.voeeeeesoceesss

DNB (Display Numeric Byte) Directive..vceeeeo.. ..
DNH (Display Numeric Halfword) Directive + .4 vvues

e e o o ° e L) . .
oooooo
. . e e 0o 0 00 00 00 00
oooooooo L) . .
® 6 o o0 0 00 0 0 o0 . .
----------- . . .

e e 0 0 00000000 00 00

e e o0 0 0 0 ® o o 0 0 0 0 0
e e o 0 0 0 o LY LY .
o o o . DI} o o o o
s o 0 e o o o . e o 0
--------- L) L)
o e o o e . .

e e 0o 0 0 0 00 L) .
® 0o e 0 00 LY LY
@ o 00 00 00 00 s o 0
@ e 00 00 00 000 0 00

8

9

10

11

12

13

14

15

16

17

18

19

.20 DNW (Display Numeric Word) Directive o v v e veveeeesnss Ceetereeneaen
.21 DUMP Directiveeeeeeeeees c e essesessssessssen e
.22 E (Single Precision Floating Point) Directive «.eeveeeeevesessnscecns
23 ENDDIrective v v veeeeeeeees cteeesec s e s ressesassessaseasnan s
28 EXIT DireCtive .o s e eeeseesoesoeoseossssssossscsoscsscsoscsscsescass
.25 FILE Directive e e e e e e v 0 v ceeenen s ce s eesseeeserennes
26 FORMAT Directive v vevveteetocecesnsons ceecsensnns
27 GO DIrective oo vttt eeseesossessssossssssssscsossessesscsscses
28 IF DIrECIVE e v vt vt e et teneenoeoanooesoesennsnnsns Ceereeaenn
.29 LIST Directive e v v cteesesseeecnsnnens
S0 LOGDIirective e v eeeeeeecsoscoccese
31 MODE Directive. s o eeeeeseeesceesens
.32 MSG (Message) Directive «ovvu... cheseeeas .
33 NNUMEric) DITEClIVE v v vt e eeeseeesesosseeeneeosonsoscsaceoaoceess
34 PGM (Program) DireCtive v o vveeveesoosecssssssssssnsosnsss
.35 RELATIVE Directive ceets et s e eseanns cecesesescennan
36 REVIEWDirective ¢ cecoeeeeens
37 RUNDirective .o v veeeeese cecectessesesesennen
38 SET DITective voeeeeeeeeseesocccscscnscneos csesseean
39 SHOW Directive e e e e e e e e e venne Gt e e e ces e s esessesesssessnsne .
40 SNAP Directive ¢ v vt e eveveeeees ceeseeese ces o
A1 STATUS Directive v v et v e e v eeeseoncens ce e st ee et eses s et sesee s
L2 STEP Directive vvovveeeeeeeeeosocsoscssocsnes .o .
43 TIME Directive oo v e veveeeeeeen ceeeensaes ceeecccecsene et ne
A4 TRACE Directive ¢ o v o ettt et eteesecscsessssoscccccas .
A5 TRACKDIrective e e e v e e eeeeneeeceeee . cesen .o
L6 WATCHDITECHIVE ¢t vttt e et eeoseososcosossccacnocenss ceeceean
47 X (Hexadecimal) Dlrectwe e eeeeseeasseeseeeneens
MPX-32

Utilities

L L)

\'N\JJ\N\N\N\(J\N\N\N\A
WWNNFFFFOVWVVONAANUVWUVMWWNN -

Xix

Section

4--FRRORS AND ABORTS

J-\PJ-\&.J-\-‘-\QPP
VOV WN -

SYMDB File Assignment Error Messages «.veeeecescescsscsscssssoss b
Addressing Error Messages . v eeeeeeeeesecssccosssssssssosscnassss b
Trap Error Messages e e oo v enveeeenceeesssconscssosscscnsanceses b
Directive Expression Error Messages v oo oo veesevesssssosccconses oo b
Base Error MessagesS e e e o v oeveooososossssssssssssssssssssssess O-
Directive File Error Messages « o e e e e v e vssnovsonsssssesssscccnees b
Directive Argument Error Messages. « « s s s oo e evesssossssssssonssss b
Other Error Messages « o e s s s e e 0000 s o .
Abort Codes. v eeeetesseneeenssenccscscnssns cressssnsnsss «o. 4-10

5--SAMPLE DEBUGGING SESSIONS

5.1
5.2

5.3

2-1

N
(S

Debugging Session Introduction . ..o c v i ettt ii ittt ssssnseceasss 5-1
Example 1: ScanningDatainaProgramLoop «¢ceeeeeeosceosnssnss oo D=1
5.2.1 Sample Program--DBGTST .. .cceveeeeeracsssesccoconnsssas D=2
5.2.2 Sample Debugging Sessions for Program DBGTST ¢ . ceveveeeesss 5-3
Example 2: Searching Through alinkedList «..cvveteeeeeeenenenaees 56
5.3.1 Sample Program--DBGTST2 e
5.3.2 Sample Debugging Session for Program DBGTST2 o v e v v e e eeeeess -8

FIGURES

SYMDB Memory Map . eeeeeeeeeesoesossssosossssasssssnssscssss 2-8

TABLES

SYMDBLchummaI‘y.........-.-.......................o---. 2‘6
SYMDB PromptsandlLabels0c0tctieneceseessssscssssceess 2-10
Instructions that Break @ TraCe v« e v e e s e v e veoveccoccesssssscscsess 3-28

TEXT EDITOR

1 - OVERVIEW

1.1

1.2

General Description ¢ e e covseneeeossssssossssssscsssasssssscss 1-1
10101 AccessingFiles ® & & & 0 ¢ 2 0 0 0 S O 0 B S OO O S S T S O S S OO SO PO S 0 1-1
Directive SUMMAary ... eeceseeseceesocessosssssssssscsssssssssss 1-2

2 - USAGE

N -

2.
2.

XX

AccessingEDIT ...t ietereeeeseeeosssseossonsssossscnssssasss 2-1
Logical File Code Assignments s .v.eveeeeeoccscssssscccososssssssss 2-1
2.2.1 Source INPUL (TIN) 4t it eneevnseconsonscossocasscsnsans 2-1
2,2.2 Output File (TOT) e e serveosessnsosncsosassncsssesnoses 2-2
Exiting EDIT 4ottt iiiteneeieeeesssocesssssssosssnsnscsnnnsses 2-2
Linesand LineNumbersccieeeeereecssescscosssocesssnsssss 2-2
2.4.1 Line Numbers Generated by the Editors . e v evsseeeecsceaeses 2-3

MPX-32
Utilities

C

Section

2.4.2 Line Numbers at the Beginning and End of the

WorkFile «vvvievinenn Ceeeaee ce et eeseann ceceseeness 2-3
2.4.3 Physical Position of Line Numbers .« v e e et et eevvoesonssanns . 2-3
2.4.4 Text Listed without LineNumbers............. checeeseeas .o 2-4
2.5 Addressing Techniques .. .ceveteveeececananns ceeensen ceeeees 2-4
2.5.1 Special Characters « e e et v vt veeneesons ceeeses e saenanns 2-4
2.5.2 Line and Range Addressing <.« c4 . e ecesecass s cesees 2-4
2.5.3 GrOoUPS. s e oeeeessosasossssasans cececsesnsoan cesenoes . 2-5
2.5.4 Content Identifierse . e oo oo .. ce et e es e ceeescesssesas 25
2.5.5 Defaults . vveeeeeeeeaens Ceeeresesseenans Cheesecsens .. 2-6
2.6 Using the Break Key . e v e v e v e v v e enn et eeessesssenssasasans cee. 2-6
3 - DIRECTIVES
3.1 Introduction..... Ceececsseseeststse st e nans cecesesssesaaens . 3-1
3.2 APPEND Directive ¢ v e e ¢ 0 0 v e ceeeseses cheeee ceeean ceeceeenns 3-1
3.3 BATCH or RUN Directives ¢« e e eceeeeeeeeses ceeeseene Ceceees s e 3-2
3.4 CHANGE Directive «...... cheesee e ceeseeaes cetesssscssernens 3-3
3.5 CLEAR Directive v e e e et v e eevenees Ch et seeseeesassesnne ceesenes -4
3.6 COLLECTDIirective e« e e et eeeeeecscacnsossos cereseasens ceesees 35
3.7 COMMAND Directive « e e v e e 00 eewne .o ceeeeenns cetecessenean 3-6
3.8 COPY Directive . v e e v ceeann crececcas ceeseeceeens ceeersececas 3-7
3.9 DELETE Directive ¢ v eeeeeeeeoees ceesens T 1%
3.10 EXIT Directive..eeeeeeeeeecossanes ceereenns ceceses e ceesssaes 3-9
3.11 INSERT Directiveeeeeeveeeeeas Gt e e ee st s s esesesestseseens s .o 3-9
3.12 LIST Directive ¢t v e eeeeeeenes ceeanes c e e e e es s esseeressee e 3-10
3.13 MODIFY Directive « ¢ e e v e e v e ceee st ereeseenene ceeeean . ee. 3-11
3.1 MOVE Directive e s e e v et evsoceocsacconcens cesesescscenno e ees 3-12
3.15 NUMBERDIrective o eeeececeeoscccesscsss S 2 5
3.16 PREFACE Directive e« e e e e 0o 00 e cesescsseesnnen et escess et anen e 3-14
3.17 PRINT Directive «¢eeeeecececcecse cessessenes ceene creseeses 3-14
3.18 PUNCHDIrective e v e eeeeeeeeceese chesescanne ceecteseon e 3-15
3.19 REPLACE Directive e v eeeeeeeeen c et eses s e es e e esess s ns oo 3-15
3.20 RUNDirective e e e eveeeeees ceessesecanns c e et ssesessesres e n e 3-15
3.21 SAVEDirective . eceeeeeeeeses cessesenae e O R 1)
3.22 SCRATCHDirective.eeeceeeeeesen cesesess e . ¥
3.23 SETDELTA Directive..eeeeveeeeeons ceeeseeeenanas ceeseenean . 3-17
3.2 SET TABS Directive v v e v vt vt eeeeoecensoscsosocccccses ceeaseess 3-18
3.25 SET VERIFICATION Directive..... cee e ceeeneenn ceeceeceasens 3-20
3.26 SHOW Directive e v o vt v e eessveecccccnsccccscnss . ceeseanses 3-21
3,27 STORE Directive ¢ v eveeeeeeeccoseos s A
3,28 USE Directive v ceeeeeeeses cese s escesessensaen ceeseseas ceeses =24
3.29 WORKFILE Directive «v.... C et e et e ee st et e e s esssses e ssenen 3-25
4 - ERRORS AND ABORTS
4.1 Abort Codes.e.... Gt e e ecsssses e e nen ceeennn ceeseescens .o 4-1
4.2 Error MessagesS. s e eeeessoseess N e P |
MPX-32
Utilities xxif/xxii

Q

»,

GOULD MPX-32 UTILITIES OVERVIEW

SECTION 1 - USING THE MPX-32 UTILITIES MANUAL

The Gould MPX-32 utility package is a collection of the following utilities:

Cataloger (CATALOG)
Datapool Editor (DATAPOOL)
File Manager (FILEMGR)

. Macro Assembler (ASSEMBLE)

. Macro Library Editor (MACLIBR)

. Media Conversion (MEDIA)
Source Update (UPDATE)

. Subroutine Library Editor (LIBED)
Symbolic Debugger (SYMDB)

. Text Editor (EDIT)

Because the utilities can be installed on a system individually, each utility description in
this manual can be used as a stand-alone manual. To tailor this manual to a particular
system, remove the descriptions of the utilities which are not installed on the system.

tach utility description begins with a tabbed page and generally has the following
format:
Overview
Usage
Directives
. Errors and Aborts

. Examples

The Overview section describes the utility's function and summarizes its directives.

The Usage section describes how to access, exit, and use the utility. Related
information, such as logical file code assignments and utility options, are also described
in this section.

The Directives section describes the function and syntax of each directive in alphabetical
order.

MPX-32 Overview :
Utilities Using the Manual 1-1

The Errors and Aborts section describes possible errors, aborts, and their messages.
Explanations of the error and abort code numbers are included.

The Examples section contains sample input and/or output illustrating the usage of the
utility.

Most utilities provide the capability to use previously created files for input sources
and/or output destinations. Valid characters for file names, directories, and other
referenced names are A-Z, 0-9, period, and underscore. Although other characters are
generally accepted, their use is not recommended.

If a complete pathname is specified, any valid file name can be used. If only a file name
is specified, the file name cannot begin with a period or a string of digits (0-9) followed
by a period.

For file names containing special characters, enclose the name in single quotes. Use this
feature only to gain access to files with names containing unrecommended characters.
After gaining access, save or store the file using a file name of recommended characters.

Files assigned to logical file codes (LFC's) will be forced to the appropriate format -
blocked or unblocked unless otherwise noted in the LF C description.

Input records to the utilities must be in 80-byte card image format.

When a utility is activated, a copyright statement is issued. If the utility is accessed in
the batch mode, the copyright is printed on the listed output. In the interactive mode,
the copyright is displayed on the user terminal. The copyright statement has the
following format:

MPX-32 UTILITIES RELEASE x.x (utility Rx.x.x)

(C) COPYRIGHT 1983, GOULD INC., COMPUTER SYSTEMS DIVISION, ALL RIGHTS RESERVED

RELEASE x.x is the release number of the MPX-32 Utilities and utility Rx.x.x is the
name of the specific utility and its internal version number.

Overview MPX-32
1-2 Using the Manual Utilities

L

SECTION 2 - DOCUMENTATION CONVENTIONS

Natation conventions used in directive syntax, messages, and examples throughout this
manual are described below.
lower case letters

In directive syntax, lower case letters identify a generic element that must be replaced
with a value. For example:

IACTIVATE taskname

means replace taskname with the name of a task. For example:
IACTIVATE DOCCONV

In messages, lower case letters identify a variable element. For example:
BREAK ON:taskname

means a break occurred on the specified task.

UPPER CASE LETTERS

In directive syntax, upper case letters specify a keyword must be entered as shown for
input, and are printed as shown in output. For example:

SAVE filename

means enter SAVE followed by the name of a file. For example:
SAVE DOCCONV

In messages, upper case letters specify status or information. For example:
taskname,taskno ABORTED

*YOUR TASK IS IN HOLD. ENTER CONTINUE TO RESUME IT.

Braces | }

Elements placed one under the other inside braces specify a required choice. You must
enter one of the arqguments from the specified group. For example:

counter
startbyte

means enter the value for either counter or startbyte.

MPX-32 Overview
Utilities Documentation Conventions 2-1

Brackets []

An element inside brackets is optional. For example:
[CURR]

means the term CURR is optional.

Items placed one under the other within brackets specify you may optionally enter one of
the group of options or none at all. For example:

[base name]
progname

means enter the base name or the program name or neither.

Items in brackets within encompassing brackets specify one item is required only when
the other item is used. For example:

TRACE [lower address [upper address]]
means both the lower address and the upper address are optional, and the lower address
may be used alone. However, if the upper address is used, the lower address must also be

used.

Commas between multiple brackets within an encompassing set of brackets are not
required unless subsequent elements are selected. For example:

M.DFCB fcb,lfc I:, [a], [b], [c]1, 1d], [e]]
could be coded as:
M.DFCB FCB12,IN
or
M.DF CB FCB12,IN,,ERRAD
or

M.DF CB FCB13,0UT,,ERRAD,,PCK

Horizontal Ellipsis ...
The horizontal ellipsis indicates the previous element can be repeated. For example:
name [,namel...

means one or more values separated by commas can be entered.

Overview MDX-32

2-2 Documentation Conventions Utilities

@

O

9

Vertical Ellipsis
The vertical ellipsis used in examples indicates that directives, parameters, or
instructions have been omitted. For example:

COLLECT 1

LIST

means one or more directives have been omitted between COLLECT and LIST.

Numbers and Special Characters

In a syntax statement, any number, symbol, or special character must be entered as
shown. For example:

(value)

means enter the proper value enclosed in parentheses, i.e., (234).

Underscore

In syntax statements, underscoring specifies the letters, numbers, or characters that may
be used as an abbreviation. For example:

LIST filename

means spell out the directive LIST or abbreviate it to either LIS or L.

Bold

In examples, vall terminal input is printed in bold; terminal output is not. For éxample:
TSM > EDIT

means TSM > was written to the terminal and EDIT was typed by the user.

CNTRL Key

CNTRL indicates the terminal Control key. For example:
CNTRL I

means to simultaneously press the Control and I keys.

MPX-32 Overview
Utilities Documentation Conventions 2-3/2-4

Cataloger (CATALOG)

MPX-32 Utilities

N

CONTENTS
Section Page
1 - OVERVIEW
1.1 General Description « « v v eveeennn e B
1.2 Directive SUMMary coeeeeeeeecconseas ceseesencnn cesesnsass 1-1
2 - USAGE
2.1 Accessing CATALOG .. ¢ vttt neenennsnns teccenesvssecsssssnss 2-1
2.2 Logical File Code AsSSignments « ..o eeeeeeeececcccsasseecnoccnnsss 2-1
2.2.1 Source Input (SYC) .. vv .. Y
2.2.2 Object Modules from Compilation or
Assembly (SGO) . e vt e essesoeesssesossssesnssessssasssss 2-2
2.2.3 Object Modules from Subroutine Libraries
(LIS, LIB,and Lnn)e e e v oo e v C et s eceecetssesesennsenenees 2-2
2.2.4 Subroutine Library Directories
(LID,DIR, @and DNN) + ¢ e v st e esescessessosssssssassscnsas 2-3
2.2.5 DATAPOOL Variables Dictionary (DPD). c e v e eeeeeseans ceeee 2-4
2.2.6 DPOOL00-DPOOL99 Variables Dictionaries (P00-P99). .. .v v ve.. 2-4
2.2.7 System Listed Output (SLO) + v v v v vvensanesas cecessesesess 224
2.2.8 Symbol Table Output (SYM). ¢t vt vt e vnnnnss ceseesensasasaes 2-5
2.2.9 Symbol Table as Input (SYD .o vvvvennnnn. cesteseesescssases 2-5
2210 LFCSUMMArY o coeoeeseososssssssscsscsssossssssssssssss 2-6
2.3 Options + e vt veeennenens ceesessssecesscecssasssssssessssssssens 2-7
2.4 Exiting CATALOG ...ttt enesnses ceeeseses e cesessseccess 2-8
2.5 ObjectModulesandLoadModules................................2-8
2.5.1 LoadModules. ... eeieieeeeeeoseesoccseoncoscssssnas 2-9
2.5.2 Absolute Load Modules « v v e v ettt etsenccesscesssessass 2-9
2.6 The Cataloging Process. « « c e v et vttt eeeeeseeeeeessesoosonsssnas 2-9
2.6.1 Selective Retrieval ofObJectModules csseesceccscssssessss 2-10
2.6.2 Allocation and Use of Global Common and
Datapool Partitions . v « e v et v e veeeesn ceesectccncessss 2-10
2.6.3 Allocation of Local Commons .o e et ovsovvvsceoccosssassss 2-11
2.7 Load Module Informationceeeeeneeeeeceennoans ceersesenees 2-12
2.8 Resource Requirementsoeeeeeeene ciseene B 23
2.9 Sectioned and Nonsectioned Tasks « « s oo vttt vt veeenenees ceesasesss 2-14
2.10 Segmented and Nonsegmented Tasks . oo eeiteeeseeossssccocccnases 2-15
2,11 Overlay Load Modules. « c c e e e s s s sseseescssccnsssssssoscossnsssss 2-16

2.11.1 Single and Multiple Disc FileModes .« e e ettt vt iveevneeeeess 2-16
2.11.2 Overlaylevels..ocveeenn tecessseeccssnsassssesssssss 2-16
2.11.3 Modifying Overlay OriginS. « « « e e e v e v e e eeeevteneeseoeceess 2-18
2.11.4 The Overlay Transient ATEa . ccc et sevseesssccsoessssssss 2-20
2.12 Local Common Allocation and Global Symbol Resolution
inSegmented Tasks . .vvveeeereeenecenncensnns cesenvens eeee. 2-20
2.12.1 Local Common Allocationieeeetteteeeneeneconeseeass 2-21
2.12.2 Global Symbol Resolution « v vvveeet ettt enneeeeeeoonass 2-22
2.13 Cataloging a Segmented Task iNStages oo v ceevvoeesssccoocnosssees 2-23
2.13.1 Recataloging a Load Module ceeresecnnneneeeess 2-23
2.13.2 Limitations on Catalogingin Stages. .. .ceeeeeeveeccoceesess 2-24
2.14 Cataloginga Nonsegmented Task...oeoereeeeeeeeeeoosees ceeseenees 2-24

MPX-32 Cataloger (CATALOG)
Utilities Contents iii

Section

3 - DIRECTIVES

e o o o o o o 6 o © o e o o
NV OOV HES WN -

IEWEWECE R SR R OR OF SN Y C) SR VR n e I e I I I)
NEOVOARREPTUNHOOVUOAON NPT RN — O

wuuuuuuuuuuuuuuuyuuuuuuuuuuuwuuu

Introduction e v o ce e e eeeeeosseossossoscsccossossossscscssscsssosnss
Directive Order Requirements. s e s o e s o st s e e sveessssccssscosccscscs
ABSOLUTE DIireCtive « e o e e o e s oo e e sessesssssscsscsccsscssssscsss
ALLOCATE DIireCtiVe e e e e et e s oo sesocsesosscssscssssoscsssasssccss
ASSIGN DireCtiVe e e e o e e e e oo voevseososssscsssssssscsosssscscocsses
ASSIGNI Directive s c c e s e s vsssecessscsscssscscsssssssasscs
ASSIGN2Z DIireCtiVe ¢ o o e e st o s eesessssossscsossssssssosscsscscscss
ASSIGN3 DIreCtivVe ¢« o o e oo v ot v o oessscosascsoscsoscsossscscsosscsssscsnses
ASSIGNS DIireCtiVe ¢ o o ¢ o st e v v s essssssesescsssesssscsscnsnscesns
BUFFERS DIrective ¢ oo eeeeeeeeeccsscosocscsoscsscscsocscssesess
CATALOG and BUILD Directives o eceeeeo oo ceereres e ceeeecesens
CONNECT DIrective o« eeeeeecseescsscscscsssssscssssssssssssses =12
ENVIRONMENT Directive e e ceeeseeoscecscecsscessscscssssssasss 3-13
EXCLUDE Directive e e eceesescececcosccocscoscoscssns tecesesescss 3-14
EXIT Directive . s e e eeeeeseesessecsesssososcsssessesscscscnsees 3=14
EXTDMPX DIireCtive «eevoeeeeecseesesssscescsssssscssssssscscces =14
FILESDirective e e e e oo eveeeocenonces ceeescesssccenn cesecssnss 3=15
INCLUDE DIrective e e eeeeteeeeesseseccascsesssscsacsscssse ceese 3-16
LINKBACK Directive ¢ e s e e s o e s 0o o s T X Y
LMPATH DirectiVe . e v e st oo v eevesscsssesssssssscosssssssssaese .. 3-16
LLORIGIN Directive. e e oo o B, ceceseesens ceeeae ceees 3-17
MOUNT DIireCtive «eeeeeeessesoesscscassonas ceesereecececesss 3=17
OPTION Directive ¢ eeeeeceoeeees c e s e easesesssesssssesnssesss 3-18
ORIGIN Directivee e e e eveeeees c et eeecsesseenan c e e s eeseece e . 3-19
PASSWORD Directive. A B
PROGRAM Directive « e eeo e ceesecseeeseseesevee e cesecsses 3-19
PROGRAMX Directive ¢ e e e e e oo v eveeveess s T
RECATALOG DIrective «.eveeeeeeeoscccosocccscss ceesecssesseass =20
SEGFILES Directive o v e e e vt v eeveesesssoscsssssascsosssscsscsses 3=20
SPACE DIireCtivVe oo e e eeveveeesecscsscsssosssscssscssoocossssaes .e. 3-20
SYMTAB DIreCtiVe ¢« « e e e e e o s sesessecacssscsscsssossssssonsasses 3=21
VOLUMES DireCtive ¢« « s e s s e o s eeevsessssscsssssssssessasssscsse 3=21

\N\N\N\N\.N\N\N\A

Yy
bl el el 1
HOOVWVODNWNN - -

4 - ERRORS AND ABORTS

4.1

4‘2

Error OVEIrVIEW « vt ot e eevveeocanssscsssscssoscacsscsosssncsseees U=1
4.1.1 Phase ONE ETTOrS v e v oo e e vvseeseocsssscssossscssncessses O4-1
4.1.2 Phase TWOEITOrS e« e e eaaeevee e P4
4.1.3 Errors from MPX-32 (Phase One and TWO) e e e eeeeeeecceecsees 4-2
4.1.4 Conditions that Cause Incomplete Load Modules . « « e v e v s e a0 ees. 4-2
ABOrt COdES. vt s e evevesvecoesocssssossscsssssssssssoscsesss ees b4-4

5-EXAMPLESooo¢c..oooooc-oaoonn.ouo-t-ouot-o-ooooo-ooo-uvtooao 5‘1

iv

Cataloger (CATALOG) MPX-32
Contents Utilities

-~

S

)

FIGURES
2-1 CATALOG I/O OVEIVIEW e vt e st v e s e sosnososossssnsossssensnsnses 2-7
2-2 Single Overlay SETUCEUTE « ¢ v v v o vt i ettt eseeeoesoensosnossscnssesns 2-17
2-3 Multilevel Overlay Structure . v v ot o v it ettt ittt oeeseonns ee. 2-17
2-4 Default Memory Allocation for Overlays . ..o ev i it ei i ettt nnnnn 2-19
2-5 Modified Memory Allocation for Overlays ... coiie ettt 2-20
2-6 Recataloging Illustration. . .« v ottt ittt ittt enneosoeanens 2-25
TABLES
2-1 CATALOGLFC SUMMATY ¢ e e v st svsssocssssonssncssssssss covecss 2-6
3-1 LMPATH/BUILD/CATALOG Interaction e coe. 3-22
MPX-32 Cataloger (CATALOG)

Utilities Contents v/vi

CATALOGER (CATALOG)
SECTION 1 - OVERVIEW

1.1 General Description

The Cataloger (CATALOG) utility processes standard, nonbase mode object code to
produce load modules that are ready to activate in one of three task environments: real-
time, interactive, or batch.

A load module is created using job control language and CATALOG directives. The load
module resides in a permanent file specified in an LMPATH directive. If LMPATH is not
used, the file name is taken from the load module name on the first BUILD or CATALOG
directive.

CATALOG recognizes 1 to 16 character file names. Unless specified, files assigned to
logical file codes are forced to the appropriate format--blocked or unblocked.

1.2 Directive Summary

Below is a list of CATALOG directives in alphabetical order. Underlining indicates
accepted directive abbreviations. Each directive is explained in more detail in Section 3.

Directive Function

*(in Column 1) Indicates a comment line

ABSOLUTE Specifies an absolute origin for the task data section (DSECT)
in the task being cataloged

ALLOCATE Allocates additional memory for a main load module in the
task being cataloged

ASSIGN Equates system files, pathnames, RIDs, temporary files,
devices, and LFCs with an LFC in the task being cataloged

ASSIGN1 Equates a permanent disc file with an LFC in the task being

cataloged. This directive is for compatibility only; its use is
not recommended.

ASSIGN2 Equates system files SBO, SLO, SYC, or SGO with an LFC in
the task being cataloged. This directive is for compatibility
only; its use is not recommended.

ASSIGN3 Equates a device with an LFC in the task being cataloged.
Also assigns a temporary disc file. This directive is for
compatibility only; its use is not recommended.

ASSIGN4 Equates an LFC in the task being cataloged with an existing
LFC. This directive is for compatibility only; its use is not
recommended.

BUFFERS Establishes the number of blocking buffers required for

dynamic assignments in nonshared tasks. Establishes the total
number of blocking buffers required for shared tasks.

BUILD Identifies and describes a load module to be cataloged in the
current working directory or in the pathname of a previous
LMPATH directive

MPX-32 Cataloger (CATALOG)
Utilities Overview 1-1

Directive
CATALOG
CONNECT
ENVIRONMENT
EXCLUDE

EXIT
EXTDMPX

FILES

INCLUDE
LINKBACK
LMPATH
LORIGIN

MOUNT

OPTION
ORIGIN

PROGRAM
PROGRAMX

- RECATALOG

SEGFILES
SPACE

SYMTAB

1-2

Function

Identifies and describes a load module to be cataloged in the
system directory or in the pathname of a previous LMPATH
directive

Assigns a Datapool dictionary to a specified Datapool
(DPOOLO0 through DPOOL99 or DATAPOOL) partition

Describes the memory class, residency, map size, and sharing
or multicopying requirements of a task

Specifies referenced global symbol names in library object
modules to be excluded from the load module

Terminates CATALOG directive input

Positions the extended portion of MPX-32 in the logical
address space of the task being cataloged (if the expanded
space option of MPX-32 is used).

Establishes the number of dynamic disc file and device
assignments in nonshared tasks. Establishes the total disc file
and device assignments in shared tasks.

Specifies unreferenced global symbol names in library object
modules to be included in the load module

Specifies the overlay load modules at lower levels to link to
the current overlay load module

Specifies the pathname of the file where the load modules are
to be written

Establishes a new overlay level and origin for an overlay load
module

Indicates a nonpublic volume that is required by the task being
cataloged
Sets execution options for the task being cataloged

Establishes a new origin (at current level) for an overlay load
module

Specifies an object module by program name from SGO to
include in a load module

Specifies no object modules from SGO should be included in a
load module

Indicates that one or more overlay segments of a single file

~ load module are being updated. Optionally supplies the name

of the file.

Specifies the number of noncontiguous disc files to be accessed
by the task being cataloged

Allows the potential maximum task size to be increased above
the default 2MB size.

Specifies that symbol table references saved previously with a
CATALOG SYM option are to be used when an overlay load
module for a task is cataloged separately or recataloged

Cataloger (CATALOG) MPX-32
Overview Utilities

RN

N

Directive
VOLUMES

MPX-32
Utilities

Function

Specifies the number of nonpublic volumes that can be
dynamically mounted at any one time by the task being
cataloged

Cataloger (CATALOG)
Overview 1-3/1-4

LN

SECTION 2 - USAGE

2.1 Accessing CATALOG

CATALOG can be accessed in the batch or interactive modes in one of three ways:
. $CATALOG
. $RUN CATALOG (valid only from the system directory)
. $EXECUTE CATALOG

When accessing CATALOG interactively, the CAT> prompt is displayed:
TSM>$CATALOG
CAT>

2.2 Logical File Code Assignments

The following logical file codes are used by CATALOG:

Logical File Code Description
SYC CATALOG directive input
SGO Object modules from compilation or assembly
LIS Library assignment for object modules from the system
subroutine library (default @SYSTEM(SYSTEM)MPXLIB)
LID Directory assignment for object modules from the

system subroutine directory (default
ASYSTEM(SYSTEM) MPXDIR)

LIB or Library assignment for object modules from user
Lnn libraries (nn = 00 through 99)
DIR or Directory assignment corresponding to assigned
Dnn library (nn = 00 through 99)
DPD _ Dictionary assignment for DATAPOOL variables used in
object modules
SLO Listed output
SYI Symbol table as input
SYM Symbol table as output
P00 - P99 Dictionary assignments for DPOOL00 - DPOOL99

variables used in object modules

MPX-32 Cataloger (CATALOG)
Utilities Usage 2-1

The following sections describe and Table 2-1 summarizes the default and optional LFC
assignments.
2.2.1 Source Input (SYC)
Source input is a file of CATALOG directives that is assigned to logical file code SYC.
SYC Default and Optional Assighments
The default assignment for SYC is to the System Control file (SYC):
$ASSIGN SYC TO SYC
There are two optional assignments for SYC:

$ASSIGN SYC TO {pathname }

DEV=devmnc
pathname is the pathname of a file containing CATALOG source input
devmne is the device mnemonic of a device containing CATALOG source
input

2.2.2 Object Modules from Compilation or Assembly (SGO)

The file of object modules from compilation or assembly is assigned to logical file code
SGO.

SGO Default and Optional Assignments

The default assignment for SGO is t6 the System General Object file (SGO):
$ASSIGN SGO TO SGO

There are two opfidnal assignments for SGO:

$ASSIGN SGO TO pathname
DEV=devmnc

pathname is the pathname of a file containing object modules from compilation
or assembly ‘

devmnc ~ is the device mnemonic of a device containing object modules from
compilation or assembly

2.2.3 Object Modules from Subroutine Libraries (LIS, LIB, and L.nn)

CATALOG links object modules from subroutine libraries assigned to logical file codes

LIS, LIB, and Lnn. LIS is used (by default) to access the system subroutine library
(MPXLIB). LIB or Lnn should be assigned to access user subroutine libraries.

Cataloger (CATALOG) MPX-32
2-2 Usage Utilities

®

)

CATALOG searches the library assigned to logical file code LIS by default and any user-
specified libraries assigned to logical file codes LIB and Lnn. The libraries are searched
in the following order: LIB, LOO through LL99, and LIS. The number of libraries searched
is limited only by the number of ASSIGNs which may be processed by TSM plus any
statically assigned user libraries added to the CATALOG load module. These LFCs are
forced unblocked by CATALOG.
LIS, LIB, and Lnn Default and Optional Assignments
The default assignment for LIS is to the system subroutine library:

$ASSIGN LIS TO @SYSTEM (SYSTEM) MPXLIB
There is one optional assignment for LIS:

$ASSIGN LIS TO pathname

pathname is the pathname of a file containing object modules in Subroutine
Library Editor (LIBED) format

There are no default assignments for LIB and Lnn. To access user subroutine libraries,
the optional assignments for LLIB or Lnn should be specified as follows:

$ASSIGN LIB TO pathname
$ASSIGN Lnn TO pathname

pathname is the pathname of a file containing object modules in Subroutine
Library Editor (LIBED) format

Lnn is a user-defined LFC in the range L0O0 to L99 representing a user
subroutine library
2.2.4 Subroutine Library Directories (LID, DIR, and Dnn)

The directory for a subroutine library is assigned to logical file codes LID, DIR, and
Dnn. These LFCs are forced unblocked by CATALOG.

The LID assignment is to the directory that corresponds to the LIS system subroutine
library assignment. If user subroutine libraries are assigned to LIB or Lnn, the
corresponding DIR or Dnn assignments must be made for the related directories.
LID, DIR and Dnn Default and Optional Assignments
The default assignment for LID is to the system subroutine library directory:
$ASSIGN LID TO @SYSTEM (SYSTEM) MPXDIR
There is one optional assignment for LID:
$ASSIGN LID TO pathname
pathname is the pathname of a file containing the subroutine library directory

MPX-32 Cataloger (CATALOG)
Utilities Usage 2-3

There are two optional assignments for assigning user subroutine library directories:
$ASSIGN DIR TO pathname
$ASSIGN Dnn TO pathname

pathname is the pathname of a file containing the subroutine library directory

Dnn is a user-defined LF C representing the directory for a user subroutine
library. Directory LFCs are D00 to D99, corresponding to the user
subroutine libraries L00 to L99.

Note: There are no default assignments for DIR or Dnn.
2.2.5 DATAPQOOL Variables Dictionary (DPD)

DATAPOOL variables referenced in object modules are defined in a Datapool
dictionary. Datapool dictionaries are built using the Datapool Editor (DPEDIT) utility.
The DATAPOOL dictionary for use by CATALOG is assigned to logical file code DPD.
This LFC is forced unblocked by CATALOG.

DPD Default and Optional Assignments
There is no default assignment for DPD.
There is one optional assignment for DATAPQOOL variables:
$ASSIGN DPD TO pathname
pathname is the pathname of a file containing the DATAPOOL dictionary

Note: The DATAPQOOL dictionary can optionally be assigned using the CONNECT
directive. If this is done, LFC DPD must not be user assigned.

2.2.6 DPOOLO0O0 - DPOOL99 Variables Dictionaries (P00 - P99)

DPOOLO0 through DPOOL99 variables referenced in object modules are defined in
Datapool dictionaries. Datapool dictionaries are built using the Datapool Editor
(DPEDIT) utility. The Datapool dictionaries used by CATALOG are assigned by the
CONNECT directive to logical file codes P00 through P99.

P00 - P99 Default and Optional Assignments

There are no default or optional assignments for P00 through P99; the user must not
assign these LFCs.

2.2.7 System Listed Output (SLO)

The system listed output file contains the output of the cataloging session. The output
includes a directive log, a load map, and any error messages generated. The system
listed output file is assigned to logical file code SLO.

SLO Default and Optional Assignments
The default assignment for SLO is to the System Listed Output device (SLO):
$ASSIGN SLO TO SLO

Cataloger (CATALOG) MPX-32
2-4 Usage Utilities

»

There are three optional assignments for SLO:

$ASSIGN SLO TO | pathname

DEV=devmnc
LFC=UT
pathname is the pathname of a file to contain listed output
devmnc is the device mnemonic of a device to which the listed output will
be directed
LFC=UT assigns output to the user terminal

Note: If the origin of CATALOG is interactive, any error messages generated are
written to both UT and SLO automatically. If the user wants the load map to
appear on the terminal, SLO must bYe assigned to UT.

2.2.8 Symbol Table Output (SYM)

A symbol table is the mechanism for resolving external references when cataloging a
task with overlays in separate CATALOG runs. If a symbol table is desired for later use
with logical file code SYI, the symbol table option must be set and a file or device for
symbol table output must be assigned. The file or device to contain the symbol table
output is assigned to logical file code SYM.

SYM Default and Optional Assignments
There is no default assignment for SYM,
There are two optional assignments for SYM:

$ASSIGN SYM TO | pathname l
DEV:devmncS

pathname is the pathname of a file to contain the symbol table output
devmnc is the device mnemonic of a device where the symbol table output is
directed

2.2.9 Symbol Table as Input (SYT)

Instead of regenerating the symbol table when recataloging a load module, the symbol
table which was assigned to logical file code SYM generated by the previous cataloging
of the load module can be used as input. The file or device containing the symbol table is
assigned to logical file code SYI.

SYI Default and Optional Assignments

There is no default assignment for SYI,

MPX-32 Cataloger (CATALOG)
Utilities Usage 2-5

There are two optional assignments for SYI:

$ASSIGN SYI TO

pathname

devmnc

2.2.10 LFC Summary

pathname
DEV=devmnc

is the pathname of a file containing the symbol table

is the device mnemonic of a device containing the symbol table

The following is a table of LFCs used by CATALOG and their default and optional

assignments:
Table 2-1
CATALOG LFC Summary
Default Optional
LFC Assignment Assignment
SYC SYC pathname
DEV = devmnc
SGO SGO pathname
DEV = devmnc
LIS @SYSTEM (SYSTEM)MPXLIB pathname
LIB none pathname
Lnn none pathname
LID @SYSTEM (SYSTEM)MPXDIR pathname
DIR none pathname
Dnn none pathname
DPD none pathname
SLO SLO pathname
DEV = devmnc
LFC =UT
SYM none pathname
DEV = devmnc
SYI none pathname
DEV = devmnc
P00 - P99 none Do not assign
Cataloger (CATALOG) MPX-32
2-6 Usage Utilities

)

Figure 2-1 illustrates the CATALOG process and the LFCs used by CATALOG.

DIRECTIVE LOAD
INPUT MODULE
SYC
.
OBJECT LISTED
MODULES CATALOG ouTPUT
SGO > SLO
J Y
SYMBOL SYMBOL
TABLE AS TABLE
INPUT SYI OUTPUT SYM
(OPTIONAL) (OPTIONAL)
SUBROUTINE
SUBROUTINE DATAPOOL
LIBRARY LIBRARY DICTIONARY
DIRECTORY 0PD
LIS,LIB,OR LID.DIR,OR “(OPTIONAL
L00-L99 D00-D99 ()

*MULTIPLE DATAPOOL DICTIONARIES MAY BE SUPPLIED BY USING THE CONNECT DIRECTIVE.

87D4K02

2.3 Options

Figure 2-1. CATALOG I/O Overview

Options used by CATALOG control various processing options. Options are specified by
number in a $OPTION job control language statement. The $OPTION statement must
appear before the $EXECUTE CATALOG statement in a jobstream.

Option

MPX-32
Utilities

1

Description

Suppress subroutine library search - Suppresses automatic search of
system and user subroutine libraries to resolve external references.
All object modules to be linked must be specified in INCLUDE
directives, or be contained on SGO.

Multiple disc files - Produces multiple disc files when cataloging
overlay tasks.

Branch references - Enforces strict on-branch linkages for local
common and global symbols. For more information, refer to Section
2.12.

Cataloger (CATALQOG)
Usage 2-7

15 Time, date, and program identification - Include the time and date
the object code was assembled or compiled and/or program
identification information as part of the load module if present in
the object code. This information is included in the object code by
setting the appropriate Macro Assembler or compiler options during
assembly or compilation. Option 15 is not supported for overlay
modules.

18 Inhibit load module generation if errors - Certain error conditions
cause CATALOG to take corrective or alternate actions. There is,
however, doubt as to the correctness and/or completeness of the
load module. This option inhibits writing the load module in these
cases. '

Note: The production of possibly incomplete load modules is
provided as an aid to the code development cycle; the
programmer can decide to use the load module or not.
Production environment jobstreams should always set
option 18.

See Section 4 (Errors and Aborts) for a description of the conditions
that cause incomplete modules.

19 Include symbolic debug information - Includes symbolic debug
information which is placed at the end of the load module. Setting
option 19 does not affect memory requirements but does increase
disc usage. Option 19 is not supported for overlay modules.

20 Inhibits memory resident directory searches. By default, the
contents of all assigned library directories are loaded into a
dynamically allocated memory buffer. This buffer is expanded
automatically as needed and is limited only by available physical
memory and the size of the logical address space (as defined by
$SPACE). Option 20 forces all directories to be searched on disc
and limits CATALOG's dynamic memory buffer to approximately
32KB. Setting option 20 significantly increases CATALOG
execution times.

TEXT(23) Causes CATALOG directives read from system file SYC or a
directive file to be echoed to the terminal. Directives are also
written to LFC SLO.

2.4 Exiting CATALOG

To exit CATALOG in the batch or interactive modes, specify the EXIT directive.

2.5 Object Modules and Load Modules

A load module is composed of one or more object modules cataloged into executable
format. A source module is the source code that produced the object module. After
source code is assembled or compiled, the object modules are normally written to the
System General Object (SGO) file for use by CATALOG. Object modules can also be
stored in a file or incorporated into a library (by LIBED) for subsequent CATALOG
access.

Cataloger (CATALOG) MPX-32
2-8 Usage Utilities

A nonbase mode object module produced by an assembly or compilation is identical in
format to any other nonbase mode object module; therefore, source modules written in
different languages may be linked into a single load module if the source languages
support a compatible call/return interface.

2.5.1 Load Modules

CATALOG combines the object code from the various object and library input files into
one or more load modules. These load modules are written to one or more permanent
disc files. In combining the input object, CATALOG resolves global symbol references
and converts the object format data into a relocatable memory image ready for loading.
CATALOG also produces the runtime resource requirement summary and optionally, the
program element information and the global and local debug symbol tables.

2.5.2 Absolute Load Modules

CATALOG can build an absolute load module. An absolute load module requires no
relocation by the loader and reduces the task activation time.

The ABSOLUTE directive resolves all relocatable addresses relative to the base address
supplied in the directive. The user is responsible for selecting a base address large
enough to be beyond the task's TSA. The TSA is allocated after the end of MPX-32 and
varies in size based on the number of files and buffers required in the task.

Tasks that are cataloged as absolute may require recataloging if the size of MPX-32
changes. If there is an overlap between MPX-32 or the task's TSA and the ahsolute task
itself, the task aborts during the loading phase.

2.6 The Cataloging Process

CATALOG makes two passes over the file or device assigned to logical file code SGO and
the libraries to resolve external symbolic references and include the proper object
modules in the load module. ‘

On the first pass, CATALOG searches the file or device assigned to logical file code SGO
for global symbol references and definitions in the object modules. CATALOG builds a
table of all references and definitions it finds.

If CATALOG cannot find a definition to match a reference in the modules in the file
assigned to logical file code SGO, it searches the assigned user libraries, followed by the
file assigned to logical file code LIS. Any definitions in the library that resolve
references are added to the symbol table for the load module. Any new references in the
library are also added.

After the first pass the symbol table contains the names of all definitions, references,
and program names in the order they were found on: SGO, user libraries and the system
subroutine library.

MPX-32 Cataloger (CATALOG)
Utilities Usage 2-9

On the second pass, CATALOG retrieves an object module for the occurrence of each
global symbol definition and matches the definition to its corresponding references.
Object modules are retrieved from SGO and the libraries in the order of the symbol
table. If CATALOG finds more than one definition with the same name, it uses the first
object module that contains the definition. Duplicate definitions and unresolved
references are indicated on the listed output.

The symbol table provides the communication medium between the different object
modules in the load module. It is also used to resolve references when overlay load
modules are cataloged in separate runs.

2.6.1 Selective Retrieval of Object Modules

When object modules are retrieved during CATALOG's first pass to resolve external
references and definitions, the order of search is the SGO file, user-assigned libraries,
and the file assigned to logical file code LIS. Four directives are used to manipulate the
object modules retrieved: PROGRAM, PROGRAMX, INCLUDE, and EXCLUDE.

The PROGRAM directive specifies particular object modules, by program name,
contained in the SGO file to be added to the load module. The PROGRAMX directive
suppresses all object modules in the SGO file from the load module. If neither directive
is used, all object modules from SGO are added to the load module.

Object modules in libraries that are not referenced are included in the load module by
specifying them in an INCLUDE directive. The supplied name must be a global symbol
defined in the object module.

Object modules in libraries can be excluded from the load module even though they are
referenced by specifying them in an EXCLUDE directive. The parameter of the
EXCLUDE directive is a global symbol. All global symbols defined in an object module
must be explicitly excluded to assure that the object module is not added to the load
module.

PROGRAM and PROGRAMX directives relate to object modules on SGO. The parameter
on the PROGRAM directive line is a program element (program, subroutine, function,
etc.) name.

INCLUDE and EXCLUDE directives relate to object modules in the libraries LIB, L0O -
L99, and LIS. The parameter on the INCLUDE and EXCLUDE directive lines is a global
symbol.

2.6.2 Allacation and Use of Global Common and Datapool Partitions

Global Common and Datapool are memory partitions defined at system generation
(SYSGEN) or by the Volume Manager (VOLMGR).

Labeled common blocks are identified as Global Common by the name GLOBALnNn, where
nn specifies two decimal digits from 00 to 99. When CATALOG encounters a common
block named GLOBALnNN, space is not allocated for it in the module's area. Instead, all
references to the common block are resolved using the memory partition of the same
name. Therefore, the global common memory partition must be created before a
program referencing it can be cataloged. If the definition of the partition changes, the
programs referencing the partition must be recataloged.

Cataloger (CATALOG) MPX-32
2-10 Usage Utilities

)

Datapools are structured and resolved according to the Datapool dictionaries created
with the Datapool Editor (DPEDIT) utility. Datapools are identified by the name
DATAPOOL or DPOOLNN, where nn specifies two decimal digits from 00 to 99. Datapool
references in an object module are resolved to locations in the specified Datapool
memory partition according to the corresponding user-supplied Datapool dictionary.

There are two mechanisms available to access DATAPOOL. If the corresponding
dictionary is assigned to LFC DPD, then the memory partition must be created before
the task can be cataloged. If the CONNECT directive is used and the optional starting
address and size parameters are specified, then the memory partition is not accessed.

The CONNECT directive allows a load module cataloged on one system (host) to be
executed on another system (target). Any datapools referenced are allocated during
execution and must reside on the target system. ’

When a global common or Datapool memory partition must be accessed, CATALOG
searches for the definition in directories. The order the directories are searched is:

With LMPATH and either BUILD or CATALOG:
. LMPATH target volume/directory

. Current working volume/directory
. @ SYSTEM (SYSTEM)

Without LMPATH and with BUILD:
Current working volume/directory
@ SYSTEM (SYSTEM)

Without LMPATH and with CATALOG:
@ SYSTEM (SYSTEM)

The memory allocation unit for memory partitions is one map block (2KW). If the
partitions are created by VOLMGR (dynamic), they must be allocated in map block
increments. In SYSGEN created partitions (static), protection granule allocation allows
multiple partitions within a map block. The allocation unit for the task remains one map
block. If multiple static partitions are defined within a map block, only one partition can
be included in the task's logical address space at a given time. The unused partitions in a
map block are write protected.

Static partitions are defined in @ SYSTEM (SYSTEM) by MPX-32 and are automatically
included in the referencing task's logical address space. Dynamic partitions must be
explicitly included in the logical address space at execution time. The user must be sure
that the partition included at run time matches the starting address and size values used
at CATALOG time. Also, some run time included services may require that a specific
volume and/or directory contain the partition definition.

2.6.3 Allocation of Local Commons

Common blocks with names other than GLOBALnn, DPOOLnNN, or DATAPOOL (including
BLANK) are called local common. CATALOG allocates space for local common within
the load module according to references to the common contained in the object code
being linked.

MPX-32 Cataloger (CATALOG)
Utilities (Usage) 2-11

When the object code contains initialization data for the common block (such as a block
data subprogram), storage for that common is allocated immediately before the program
element containing the data. The amount of memory allocated is established as the
largest size of the common block as defined in any referencing program element. If
another program declares a larger size, a warning message is issued and the extra size is
initialized to binary zeros.

When the object code contains no initialization data, CATALOG allocates storage
immediately before the first program element that defines this common. The size of the
area allocated is that of the largest definition contained in any referencing program
element.

Uninitialized common that is allocated before the first program element of a load
module is treated differently than commons allocated in the body of the load module.
CATALOG does not allocate either memory or load module file space for these common
blocks. Instead, a loading offset is supplied to the task loader and the required memory
is allocated (with unpredictable contents) at task loading time. Common blocks that are
allocated within the load module body allocate both memory and load module file space
as required. These areas are set to binary zeros by CATALOG.

Allocating uninitialized commons in the first program element can be utilized to reduce
CATALOG memory requirements and load module file size and to provide faster task
activation. For more information, refer to the Local Common Allocation and Global
Symbol Resolution in the Segmented Tasks section.

2.7 Load Module Information

The ENVIRONMENT and BUILD/CATALOG directives establish the following special
characteristics for a task:

. Residency - A task defined as resident remains memory resident until it exits or
aborts. It is not a candidate for swap to disc. The default is nonresident.

. Memory class - A task may need to execute in a special class of physical memory. E
executes in class E memory, H executes in class H or E, and S executes in any class of
memory available. The default is class S.

. Sharing:

. Multicopying - A task can be active concurrently in several logical address spaces.
The entire task is copied to physical memory each time it is activated.

. Sectioned sharing - A task can be active concurrently in several logical address
spaces. The CSECT area of the task is copied into physical memory once. A new
DSECT area is established in physical memory each time the task is activated.
DSECT areas are deallocated as sharers exit. CSECT remains allocated until all
sharers exit.

. No sharing (unique) - Only one copy of the load module can be active in one logical
address space at a time. The default for a task is unique.

Cataloger (CATALOG) MPX-32
2-12 Usage Utilities

Privilege - A task that accesses a privileged system service must be cataloged as
privileged. A privileged task can write into any area of memory in its logical address
space, including the system area, and execute the privileged instruction set. The
default is unprivileged.

Base priority - The priority the task executes at if activated as an independent task
(by the TSM or OPCOM ACTIVATE, OPCOM ESTABLISH directive, another task, a
timer, or an interrupt). Base priorities are in the range 1 to 64. The default is 60. If
activated from TSM or in a batch stream, this priority is overridden by the SYSGEN-
defined terminal or batch priority.
Debugging - A task may prohibit attaching the debugger to it. The default is to allow
debugger attachment.

Unless otherwise defined by the ENVIRONMENT directive, a task:
is nonresident

. is unique

. is executable in any memory class available (S, H, or E)

allows debugger attachment

Unless otherwise specified by the BUILD/CATALOG directive:
The base priority of a task is 60
The status of a task is unprivileged

This information is written at the beginning of the main load module by CATALOG so
that it is available for the MPX-32 allocator and execution scheduler when the task is
activated.

2.8 Resource Requirements
The resource requirements for a task include all files and devices used by the task:

default assignments
run-time assignments that override the defaults

. run-time assignments for required or optional files or devices that do not have default
assignments '

. dynamic assignments

A task's default resource requirements, if any, are established by CATALOG ASSIGN
directives when the main load module is cataloged. Required, optional, or overriding
run-time resources are established by TSM $ASSIGN directives when the task is
activated.

Dynamic assignment of files or devices is made by the task through MPX-32 service
calls, the FORTRAN OPEN statement, or subroutine calls.

MPX-32 Cataloger (CATALOG)
Utilities (Usage) 2-13

A prerequisite for blocked 1/O used by a task is a blocking buffer, which the allocator
establishes in the Task Service Area (TSA). This can be controlled with the BUFFERS
directive. Files on disc and magnetic tape assume the system default for blocking unless
otherwise specified by an ASSIGN directive or a dynamic service call. Files also require
FPT/FAT table entries in the TSA. This can be controlled with the FILES and SEGFILES
directives.

CATALOG preserves resource information on the default files and devices used by a
task, including the number of blocking buffers and table entries required. At activation,
run-time assigned files and devices are allocated as specified and override default file
and device assignments. The appropriate memory is then allocated for table space and
buffers. However, if files and/or devices are allocated dynamically by the task, the
number of additional file table entries and buffers required must be indicated.

Cataloger FILES, SEGFILES, and BUFFERS directives account for dynamic
assignments. The FILES directive specifies the number of files and devices allocated
dynamically (and thus the number of table entries to leave room for). The SEGFILES
directive specifies the number of noncontiguous disc files allocated dynamically. The
BUFFERS directive specifies the number of blocking buffers required for blocked files or
devices accessed dynamically.

Resource requirements for shared tasks require special treatment because several
concurrent sharers of the task can use different run-time assignments that require
different allocation of blocking buffers and file space. FILES, SEGFILES, and BUFFERS
directives for cataloging shared tasks must reflect the maximum number of files and
devices that can be assigned: default (or override), required, optional, and dynamic. This
information is required by CATALOG to ensure that the TSA for each sharer is the same
size and that the DSECT section of the shared task begins at the same location in each
sharer's logical address space.

2.9 Sectioned and Nonsectioned Tasks
CATALOG supports both sectioned and nonsectioned tasks.

Nonsectioned tasks are allocated in a logically contiguous area immediately above the
TSA. In effect, they are structured as one large DSECT. Nonsectioned tasks can be
cataloged as multicopied or unique. Multicopied tasks are copied into physical memory
to support multiple concurrent activations. A nonsectioned task that is cataloged as
unique allows only one activation at a time. If not specified, a nonsectioned task
defaults to unique.

Sectioned tasks are created when CSECT/DSECT definitions are contained in the object
code. CSECT defines a pure code and constant data section of a task; DSECT defines an
impure, user-dependent, variable data section. CATALOG merges all CSECTs into a
write protected allocation in upper memory and all DSECTs in lower memory just above
the task's TSA. Sectioned tasks can take advantage of CSECT/DSECT sectioning to
write protect pure code and data, but the primary purpose of CSECT/DSECT is to
support sharing.

A sectioned task can be cataloged as shared, multicopied, or unique. If a sectioned task
is cataloged as shared, the CSECT of the task is copied into memory once and only the
DSECT is recopied with subsequent activations.

Cataloger (CATALOG) MPX-32
2-14 Usage Utilities

-
i

N

r

The minimum allocation for a CSECT area is a map block (2KW); DSECT is allocated in a
separate map block along with the TSA. The minimum space used for the task's DSECT
is one map block, including the TSA size. If a task is less than a map block, multicopying
and nonsectioning may allow more efficient use of memory than using sectioning.

2.10 Segmented and Nonsegmented Tasks

Two types of load modules can be part of one task: one main load module and one or
more overlay modules required to satisfy references for the task. A task that contains a
main load module and one or more overlays is segmented. A task that contains only a
main load module is nonsegmented.

Each load module is constructed by a separate BUILD/CATALOG directive. The main
and overlay modules can reside on the same disc file or on multiple disc files. Overlay
load modules are loaded and/or executed by system service calls within the programs.

A nonsegmented task can reference overlays built in separate cataloging sessions. When
a nonsegmented task references such overlays, the main module and all overlay modules
are in memory when the task is executing.

Overlays provide a way to segment tasks for more efficient memory utilization. When it
is impractical to have a large task in its entirety in memory, it can be divided into a
main load module and one or more overlay load modules. A segmented task is activated
by using the name of the file containing the main load module.

In a segmented task, only the main module and modules concurrently referenced in the
task are in memory at the same time. When modules other than the main module are no
longer needed by the task, they are replaced, or overlaid, by other referenced modules.

CATALOG supports two types of overlay load modules and several overlaying
strategies. The user may choose the type and strategy that best suits the requirements
of a particular application. The two types of overlay load modules are characterized by
the method of accessing the overlay. Overlay load modules that contain a transfer
address may be loaded and executed by a single service call. Upon completion, control is
returned to the calling load module. This overlay is referred to as a single point of call
overlay and is used when a particular portion of the application can be achieved by one or
more program elements executing off a single call. This type of structure contains no
cross module subroutine references and is more flexible with regard to cataloging in
stages or recataloging. A drawback is that the passing of parameters must be explicitly
handled by the programs.

The second overlay structure is constructed by grouping related subroutines in an overlay
load module. The load module is invoked by making the service call to load that overlay.
The caller can then reference the various subroutines directly and independently. This
type of structure is referred to as the independent subroutine type of load module and is
less flexible with regard to cataloging in stages or recataloging, but allows the user to
utilize any mechanism for parameter passing defined in the implementation language.

MPX-32 Cataloger (CATALOG)
Utilities (Usage) 2-15

2.11 Overlay L oad Modules

The following sections describe the use and structure of overlay load modules.
2.11.1 Single and Multiple Disc File Modes

CATALOG produces overlays in two modes: single disc files and multiple disc files.

In single disc file mode, the root and overlay load modules are produced in a single disc
file. Single disc file mode supports a maximum of 75 overlays.

Individual overlays in a single disc file can be cataloged in stages or without recataloging
the entire task by using the RECATALOG directive.

In multiple disc file mode, CATALOG produces separate files for the main load module
and each overlay. This mode is indicated by setting option two. The overlay load
modules in multiple disc file mode can be built in any directory but can only be executed
from the system directory.

In multiple file mode, individual overlay load modules can be built in stages or
recataloged by providing only the directives for the overlays involved to CATALOG. In
this mode, the LMPATH directive may not supply the filename.

Multiple disc file mode supports more than 75 overlays; for less than 75 overlays, it is
recommended that single disc file mode be used.

Symbolic debugger information is not available for overlays'even if option 19 is set at
catalog time. Time, date, and program identification information is not available for
overlays even if option 15 is set at catalog time.

2.11.2 Overlay Levels

Single point of call and independent subroutine overlay load modules can be organized
into levels. An overlay level consists of one or more overlay load modules that do not
reference each other internally and can be loaded into the same logical memory locations
within the task.

l_.ow level overlays usually represent the overlays a main load module calls in after it is
loaded. Higher level overlays which follow are associated with the root and/or one or
more of the lower level overlays.

The simplest averlay structure consists of a single overlay level as illustrated in Figure
2-2. As each overlay is accessed by a system service call, it replaces the previous
overlay in memory.

Figure 2-3 illustrates the logical structure of a task with a number of overlays and
overlay levels. This task consists of a main load module and seven overlay load
modules. The overlay load modules are grouped into levels A and B. Level A overlays
are low level; level B overlays are higher level.

A maximum of 255 overlay levels are supported. The root is always level 0. A maximum
of 32,768 overlays are supported at each level above level 0.

Cataloger (CATALOG) MPX-32
2-16 Usage Utilities

=7

MAIN

At A2

A3

87D4105
Figure 2-2. Single Overlay Structure
MAIN
A1l A2
B1 B2 B3 B4 B5

™ 87D4J09
Figure 2-3. Multilevel Overlay Structure

MPX-32 " Cataloger (CATALOG)

Utilities (Usage) 2-17

Figure 2-4 illustrates the default memory allocation for the main and overlay load
modules shown in Figure 2-3. Example 3 in Section 5 shows directives that would achieve
this structure.

Level one is automatically established by the processing of the second BUILD/CATALOG
directive. All subsequent load modules are at level one until an LORIGIN directive is
processed. Each time an LORIGIN directive is processed, the level is increased by one.

The allocation of memory (overlays above the root) depicted in Figure 2-4 is valid only if
the TRA= parameter of the BUILD/CATALOG directive has not been specified. The
TRA parameter causes CATALOG to allocate the overlay transient area below the
root. This is useful when the application performs dynamic memory allocation during
execution.

Using this default memory allocation, any second level overlay (B) can be in memory with
any first level overlay. The second level averlay can operate on behalf of the root or any
first level overlay at any time. With independent subroutine load modules, the calling
program must ensure that all overlays at any level that contains the definitions of any
global symbol referenced, are actually in memory when that symbol is referenced.

2.11.3 Modifying Overlay Origins

The ORIGIN or LORIGIN directives modify the memory allocation for the overlay
structure. For example, a different origin can be set for higher level overlays associated
with A2 (B3, B4, and B5) so that space not being used when A2 is in memory can be
used. The total program memory requirements are reduced. Figure 2-5 illustrates how
the overlay transient area is modified. Example B8 in Section 5 demonstrates these
directives.

Overriding the default memory allocation means that Bl and B2 may be loaded with
either Al or A2, but B3, B4 and B5 may be loaded only with A2 (see Figure 2-5).

If the higher level overlays are intended to operate on behalf of a particular lower level
overlay, the user's code must ensure that the correct lower level overlays are loaded.

If the higher level overlays are intended to operate on behalf of the root, any overlay
may be loaded at any level without concern for other levels. However, if B3 through B5
are loaded with Al in memory, Al must be reloaded before it can be used.

Cataloger (CATALOG) MPX-32
2-18 Usage Utilities

C

HIGH P77 VAL LA S S S SN
L VS 222227
VS A
B 5 B N B 3 82 B1
HIIIIIIIIIIYZ
V. S S S S S S S]
A2 A1
MAIN LOAD MODULE
TSA
LOW

UPPER BOUND

LEVEL B ORIGIN

LEVEL A ORIGIN

UPPER BOUND

UNUSED SPACE

87D4104
Figure 2-4. Default Memory Allocation for Overlays
MPX-32 Cataloger (CATALOG)
Utilities (Usage) 2-19

HIGHMEMORY 17 Y 77 7 A7 7 e 2 X 7 7 7 7 v
727775977, /ST UPPERBOUND IS
7222 /) 1PIII7S|
y 4
L K
B B B B B
3 2
LEVEL B ORIGIN > 4 !
BMao-gISFIBEYDUFSOIIE}G <4— LEVEL B DEFAULT ORIGIN
ORIGIN DIRECTIVE ESTABLISHED BY USE OF
» LORIGIN DIRECTIVE, FOR
B1-B2
A, Ay
<4— LEVEL AORIGIN
(AUTOMATIC)
MAIN LOAD MODULE
TSA
LOW MEMORY

87D4J08

Figure 2-5. Modified Memory Allocation for Overlays

2.11.4 The Overlay Transient Area

By default, CATALOG establishes an overlay transient area above the root (logically
higher addresses) that is of a sufficient size. In applications, where dynamic memory
- allocation above the root is required, the overlays can be directed to load in low memory
below the root. This is accomplished by specifying a transient area using the TRA=
parameter on the BUILD/CATALOG directive for the root segment. This relocates the
root higher in memory by the amount specified. It is the user's responsibility to supply a
value large enough to accommodate the overlays.

2.12 Local Common Allocation and Global Symbol Resolution in Segmented Tasks
In segmented tasks comprised of several load modules grouped into several levels, the
resolution of common and global symbol references is complicated and can lead to

unpredictable results and/or unresolvable situations unless given due consideration.

Cataloger (CATALOG) MPX-32
2-20 Usage Utilities

-

¥

S

CATALOG provides options and directives to control the resolution of these references.
The user can select an overlay strategy that best suits the requirements of the
application.

2.12.1 Local Common Allocation

An overlay load module is essentially, the same as a non-segmented load module.
Therefore, the rules in the Allocation of Local Commons section apply to all intra-load
module commons. The following discussion applies to inter-load module commons.

A common is said to be "defined" in any program element that references a datum
declared in that common. When CATALOG allocates the memory that holds the data
declared in a common within a load module, the common is said to be "allocated" in that
load module. All definitions are "linked" to the allocated location.

CATALOG Option 3 and the LINKBACK directive allow the user to control the allocation
of and references to local common. The use and effects of Option 3 and the LINKBACK
directive are described below.

Local commons defined in the root segment are allocated in the root segment. All
definitions in high level overlays are linked to the root segment allocation. This ensures
that all higher level overlays can communicate through root allocated commons
regardless of the transient area contents.

When a local common definition occurs only in higher level overlays, it is allocated in the
first, lowest level, overlay that defines it. When a common is defined in more than one
load module at the same level, it will be allocated in each defining module.

Usually, this means that the data declared in such a common will be "common" only to
the program elements of each load module. (The area cannot be used to communicate
between load modules at the same level). However, if all the load modules have the
same origin, the common is allocated in the first program element of each overlay and
this common is not initialized in any of the overlays, the data contained in the common
remains intact from one overlay to the next. This is because uninitialized common at the
beginning of a load module contains no space in the load module file and remains
unchanged by the loader. This form of cross module common allows the common to be
used for inter-module communication.

When a local common is allocated in several overlay load modules at a given level,
definitions occurring in higher level overlays are linked to the low level allocations in
several different ways depending on Option 3 and the LINKBACK directive.

With Option 3 Reset (the default), local common definitions occurring in higher level
overlays are linked to the allocation in the last lower level overlay processed by
CATALOG. This occurs regardless of the LINKBACK directive. If the conditions
described above for cross module commons are met, then the lower level allocation is at
the same place in memory for all lower level modules. It is unaffected by loading
activity and can be successfully used in any higher level overlay. In all other cases,
Option 3 must be used.

When Option 3 is set, local commons are reallocated in higher level defining overlays
unless the common is already allocated in a lower level overlay to which the current load
module is linked with the LINKBACK directive. Initialized commons follow the same
rules as uninitialized commons with the following additional requirements:

MPX-32 Cataloger (CATALOG)
Utilities (Usage) 2-21

. Cross module common at the same level is unavailable to initialized common.
Each load module that initializes a common area resets the area to its initial
values as it is loaded.

. The program element that contains the initialization code must be part of the
lowest level defining overlay whenever multi-level linkages occur.

2.12.2 Global Symbol Resolution
The following describes the rules for subroutine linkage in overlay environments.

Each overlay load module is built as a complete unit. This means that all external
symbol references are resolved by including program elements which contain satisfying
definitions found in SGO or any available library in the load module.

To build an overlay structure, it is necessary to indicate to CATALOG that specific
references should remain unsatisfied (temporarily) in a load module. This can be
accomplished in several ways. By default, all object modules on SGO are processed at
the first BUILD/CATALOG directive. By wusing the PROGRAM directive only
specifically named programs are processed from SGO for any particular
BUILD/CATALOG. The PROGRAMX directive inhibits all processing of SGO. Further,
as programs are processed, all references to external symbols are retained and all
assigned libraries are searched for matching definitions. By supplying the global symbol
name in an EXCLUDE directive, CATALOG will not load a program containing a
matching definition. Alternatively, Option 1 can be set and all global symbol definitions
required are then indicated on INCLUDE directives.

Similarly, programs which contain global symbol definitions that are not otherwise
referenced can be forced into any particular load module by specifying the symbol name
in an INCLUDE directive.

The user explicitly indicates the contents of each load module by using the following:
. The PROGRAM and PROGRAMX directives to control the processing of SGO.

. OPTION 1 and the INCLUDE directive or the INCLUDE/EXCLUDE directives to
control processing of the libraries (in conjunction with each BUILD/CATALOG
directive).

Once the contents of each overlay is established, CATALOG resolves cross module
linkages of global symbols (if any exist) according to the following rules. Option 3 and
the LINKBACK directive control the resolution.

Symbols excluded from a particular load module are assumed to be defined in a higher
level overlay. CATALOG provides automatic forward linkage to higher level overlays in
two ways depending on Option 3. However, to satisfy a symbol reference to lower level
overlays, the load module must be explicitly linked to the lower level using the
LINKBACK directive.

Global symbols defined in the root segment are available to all higher level overlays and
are used first to satisfy references in any higher level (i.e there is an implicit linkback to
the root provided to all higher level overlays).

References in modules at levels above the root are satisfied first by definitions in the
root. If the symbol is not defined in the root, the first definition in lower level overlays

Cataloger (CATALOG) MPX-32
2-22 Usage Utilities

C

to which the current module is linked, in the order of the LINKBACK directives, is
used. If the symbol is not defined in any linked lower level, higher levels are used.

When Option 3 is reset (the default) a definition in any higher level module will be used.
The search is performed in the order of the CATALOG/BUILD directives, with the first
definition found being used. When Option 3 is set, only higher level which are linked
(with the LINKBACK directive) to the module containing the reference are used. The
first definition found is linked.

In all cases it is the responsibility of the calling module to ensure that the correct
overlay is actually in memory.

2.13 Cataloging a Segmented Task in Stages

A segmented task may be cataloged in one operation or in stages. The main load module
can be cataloged in one session, with or without overlay load modules. Overlay modules
can be cataloged in subsequent sessions. If the transient area size option (TRA=) is not
declared for the main load module in the BUILD or CATALOG directive, CATALOG
reserves a transient area large enough to accommodate any overlay modules cataloged in
the same run as the main load module. If overlay modules cataloged separately from the
main load module require more space, an adequate transient area size must be specified
when the main load module is cataloged.

When cataloging in stages, the main load module can be cataloged without its overlays
only when the single point of call (load and execute) methodology is used. If the main
load module contains references to external symbols that are defined in the overlays,
these overlays must be cataloged in the same run as the main.

The symbol table (SYMTAB) resolves external references when load modules are
cataloged in separate stages. The SYMTAB contains the definitions of all common blocks
and all DEFs from the previous cataloging session. All references must be resolved when
the SYMTAB is built.

The SYMTAB is saved by assigning a file or device to logical file code SYM and
specifying the SYM option on the BUILD/CATALOG directive for the main load module.
SYMTABS are restored by assigning the same file or device (used with SYM) to logical
file code SYI and using the SYMTAB directive before the first BUILD/CATALOG
directive of a subsequent run.

Common blocks defined in cataloged load modules are not reallocated when new load
modules are cataloged. Common block sizes are not expanded as a result of definitions
contained in new load modules being cataloged.

References to global common and Datapool are not affected because these areas are
allocated in a separate area of memory from the task.

2.13.1 Recataloging a Load Module

When operating in single file mode (option 2 reset), the RECATALOG directive must be

used to specify the recataloging of one or more of the overlay load modules contained in
the file.

MPX-32 Cataloger (CATALOG)
Utilities (Usage) 2-23

When a load module is recataloged, the new version is written over the existing version.
The disc file is automatically expanded, if needed, to accommodate the new version.
Other load modules in the file are copied to the new file.

2.13.2 Limitations on Cataloging in Stages

Care is required in recataloging some load modules. Load modules whose sizes increase
may result in allocations that overlap the address spaces of load modules that are not
being recataloged. In addition, resolution of references to external symbols and common
blocks within the task can be affected.

Overlap can be detected by examining the addresses of each load module, which are
printed in the module's map. Overlap is indicated when an overlay's end address is
greater than the beginning address of a higher level overlay, or is greater than the
beginning address of the main load module (with TRA parameter).

Changing the size of the transient area with the TRA parameter changes the location of
the main module in relation to the overlay modules. If the size of the transient area is
changed, all previously cataloged overlay modules that reference the main load module
must be recataloged.

When a load module is recataloged, the resolution of addresses for global symbols and
common blocks defined within the task may also change. As a result, references to the
global symbols or common blocks by other load modules are incorrect unless they are
recataloged. Assume intermodule referencing for the task as illustrated in Figure 2-6.

In the table at the bottom of Figure 2-6, if any load module(s) are recataloged, all other
load modules which correspond to Xs in the vertical column beneath the load module
must also be recataloged. For example, if the main load module is recataloged, Al and
A2 must be recataloged. If Al and A2 are recataloged, all load modules must be
recataloged.

As a general rule, partial catalogs (with option 2 or RECATALQG in single file mode) are
only practical when the load modules are executed in the single point of call load and
execute mode. When the overlays consist of collections of independently called
subroutines, a change in size of any subroutine will invalidate all linkages to all
subroutines above the one changed in the load module.

2.14 Cataloging a Nonsegmented Task

Cataloging a nonsegmented task is similar to cataloging the main load module of a
segmented task.

Cataloger (CATALOG) MPX-32
2-24 Usage Utilities

MAIN
A1 A2
B1 B2 B3 B4 B5
LOAD MODULE REFERENCED

MAIN Al A2 B1 B2 B3 B4 B5
MAIN X X
A1 X X X
A2 X X X X
B1 X
B2 X
B3 X
B4 X
BS X

87D4I09

Usage

Cataloger (CATALOG)

Figure 2-6. Recataloging Illustration

2-25/2-26

TN
S~

F

SECTION 3 - DIRECTIVES

3.1 Introduction

CATALOG directives are summarized in the Overview section and described in detail in
this section.

All CATALOG directives begin in column one. Most directives can be abbreviated to
four characters. Valid abbreviations are indicated by underlining.

l_egal delimiters between directive parameters are commas or blanks. Commas need to
be used only where shown.

3.2 Directive Order Requirements

The following directives can appear as needed in any order after the $EXECUTE

CATALOG directive and before the first BUILD/CATALOG directive. They cannot be
used after the first BUILD/CATALOG directive.

ABSOLUTE EXTDMPX
ALLOCATE FILES
ASSIGN LMPATH
ASSIGN1 MOUNT
ASSIGN2 OPTION
ASSIGN3 RECATALOG
ASSIGN4 SEGFILES
BUFFERS SPACE
CONNECT SYMTAB
ENVIRONMENT VOLUMES

Note: When CONNECT directives require location of a Datapool partition definition,
the LMPATH target volume/directory will be searched only if the LMPATH
directive precedes the CONNECT directives.

These directives supply parameter values and static resource requirements to the task
being cataloged. Many of these directives are similar in syntax and function to TSM
directives. Directives such as ASSIGN, ALLOCATE, OPTION, etc. entered before the
$EXECUTE CATALOG directive affect the execution of the CATALOG task. Directives
entered after the $EXECUTE CATALOG directive affect the user task being built.

The following directives appear as required in the order shown after the
BUILD/CATALOG directives:

EXCLUDE
INCLUDE

(PROGRAM |

]PROGRAMX |

MPX-32 Cataloger (CATALOG)
Utilities Directives 3-1

ABSOLUTE/ALLOCATE

When cataloging overlay load modules, the following directives appear as required in the
order shown for each overlay and following the directives for the root:

{LORIGIN \
ORIGIN
BUILD/CATALOG load module 0
LINKBACK
EXCLUDE
INCLUDE
{PROGRAM [
PROGRAMXJ

Tl;e directive stream is terminated by:
EXIT

A directive line which contains an asterisk (¥) in column one is treated by CATALOG as a
comment. Comment lines may appear anywhere between the $EXECUTE CATALOG
directive and the EXIT directive. See Section 5 for examples.

3.3 ABSOLUTE Directive

The ABSOLUTE directive builds an absolute load module. An absolute load module is one
that requires no relocation by MPX-32 at load time. The base address specified must be
higher than MPX-32 and the TSA. If the base address creates an overlap between the
task and MPX-32 or the task's TSA, the task will not load. When the task is loaded at the
specified address, memory between the end of the TSA and the start of the task is
allocated to the task and is available for use by the task.

The CSECT origin is not affected by this directive. The transient area option on the
CATALOG and BUILD directives (TRA=) has no effect when the ABSOLUTE directive is
used. Multiple ABSOLUTE directives are not allowed.
Syntax:
ABSOLUTE [base]
base is a hexadecimal logical address specifying the base address of the task. This
address is rounded up to the nearest 512 word boundary. If no base is supplied,
the default is a value of &0000(16).
3.4 ALLOCATE Directive
The ALLOCATE directive increases the memory allocation for a task at execution time.
If the ALLOCATE directive is used when cataloging a task, additional static memory is

allocated every time the task is run. The allocation cannot be reduced at run time or by
dynamic service calls.

Cataloger (CATALOG) MPX-32
3-2 Directives Utilities

-

[\ Syntax:

ALLOCATE (Cont.)/ASSIGN

ALLOCATE bytes

bytes specifies the hexadecimal number of additional bytes to allocate to the task

3.5 ASSIGN Directive

The ASSIGN directive supplies default assignments for logical file codes used by the task
being cataloged. Assignments for a task must be cataloged with the main load module.

Syntax:

SBO

SLO

SYC

SGO
@ANSITAPE(lvid)file
pathname

RID=resid

ASSIGN Ifc TO TEMP[= (volname)] [FORMAT=format] [SIZE=blocks]

DEV=devmnc
LFC=Ifc

[SHARED= bool] [GENERATION=gennum] [GENVERSION=genvum] [BSIZE=bsize]
[RECLENGTH=recsize] [ACCESS=([READTTWRITE] [MODIF Y] [UPDATE] [APPEND])]

(’ [BLOCKED-= bool] N
=)
[EXPIRE - { date}] [PRINT] G {0 }
+days BUNCH DENSITY= 800 PROTECT =) A...Z
— — 1600
6250

[MULTIVOL=number] [ID=id] [BBUF=buffers]

SB0O

SLO

SYC

SGO
@ANSITAPE
lvid

file
pathname

resid

. volname
C’

MPX-32
Utilities

treat resource as System Binary Output

treat resource as System Listed Output

treat resource as a System Control file

treat resource as a System General Object file
treat resource as an ANSI labeled tape

is the one- to six-character logical volume identifier previously
mounted by the ANSI labeled tape AMOUNT utility

is a one- to seventeen-character file identifier
is the pathname to be associated with the resource

is a unique resource identifier (including the volume name, creation
date, creation time, resource descriptor block, resource type, and
code) returned by the system when a resource is created

is the volume name on which temporary space is to be allocated. If
not specified, the default is any volume.

Cataloger (CATALOG)
Directives 3-3

ASSIGN (Cont.)

devmnc

1fc

format

blocks

SHARED

gennum

genvum

bsize

recsize

ACCESS

3-4

is the device mnemonic of a configured peripheral device. See
Appendix A.

is a one- to three-character logical file code used in the task. For an
ANSI labeled tape, only one LFC can be assigned to an lvid. Before
further assignments can be made, the M.DASN service must be used.

is the ANSI labeled tape record format. If not specified, the default
for write access is D. For read access, the format is read from the
tape. The formats are:

Format Description
F Fixed length
D Variable length
S Spanned

specifies the initial size, not greater than 65,535 blocks, of a file in
logical blocks. If not specified, the default is 16 blocks. If EOM is
encountered, the file extends automatically. This option is only valid
when used with the TEMP parameter.

if yes (Y) is specified, the resource is explicitly shared. If no (N) is
specified, the resource is exclusive. If not specified, the default is
implicitly shared. This option is only valid when used with the
pathname, RID, TEMP, and DEV parameters.

is the one- to four-decimal digit ANSI labeled tape file generation
number. On input (read access), this number must match the
generation number of the ANSI tape file that is being assigned. On
output (write, update, or append access), this value becomes the
generation number of the new ANSI tape file. If not specified, the
default is one on output; no check on input.

is the one- or two-decimal digit ANSI labeled tape file generation
version number. On input (read access), this value must match that of
the ANSI tape file. On output (write, update or append access), this
value becomes the generation version number of the new ANSI tape
file. If not specified, the default is zero on output; no check on input.

is read from the ANSI labeled tape on read access. For other types of
access, the value specifies the byte size of each data block including
the padding on an ANSI labeled tape. A maximum bsize of 2048
provides sufficient space for ANSI tape-switch label information after
the physical end-of-tape marker. If not specified, the default is 2048
bytes.

is read from the ANSI labeled tape header on read access. For other
types of access, this value specifies the record size for fixed length
records or the maximum record size for spanned and variable length
record formats. The maximum size for recsize is bsize. If not
specified, the default is 80.

specifies the type of access for resource. This must be a subset of
access allowed at resource creation. If not specified, the default is
the access specified at resource creation. This option is only valid
when used with the @ANSITAPE, pathname, RID, TEMP, and DEV
parameters.

Cataloger (CATALOG) MPX-32
Directives Utilities

F

BLOCKED

EXPIRE

date

+days

PRINT

PUNCH

DENSITY

PROTECT

MPX-32
Utilities

ASSIGN (Cont.)

For ANSI tapes, only read, write, update and append can be
specified. The ANSI default is read. ACCESS for ANSI labeled tapes,
is as follows:

Value Description
R Read existing file
W Create file at first unexpired file on tape
A Create file at end of tape
U Overwrite existing file with a new file of the same

name

if yes (Y) is specified, the resource is explicitly blocked. If no (N) is
specified, the resource is explicitly unblocked. If not specified, the
default is blocked. This option is only valid when used with the
@ANSITAPE, pathname, RID, TEMP, and DEV parameters.

specifies the termination date of an ANSI labeled tape file. If the file
has a termination date that is later than the file that physically
precedes it, the termination date is identical to the termination date
of the preceding file. If a file has a termination date that is earlier
than the file that physically precedes it, the files will expire on the
earlier termination date. If not specified, the default is +30 days
from creation.

specifies the date after which an ANSI labeled tape file can be
overwritten. The date is given in ASCII format--YYDDD where YY is
the year and DDD is the day number within the year (January 1 is
001). If the date is 00000, or a date prior to the current date, the file
has been terminated and is no longer accessible.

specifies the number of days after the creation date that an ANSI
tape file can be overwritten. This number must be preceded with a
plus (+) when entered. If not specified, default is +30 days.

WARNING: If the number of days is not preceded by a plus (+), the
number entered can be read as the date.

indicates the file is to be printed after deassignment. This option is
only valid when used with the pathname, RID, and TEMP parameters.

indicates the file is to be punched after deassignment. This option is
only valid when used with the pathname, RID, and TEMP parameters.

specifies density of high speed XIO tape. If not specified, the default
is 6250 BPI. This option is only valid when used with the DEV
parameter.

specifies protection for new ANSI labeled tape files. Zero specifies
owner only access. A...Z are reserved by the ANSI specification for
installation-specific protection. MPX-32 treats A..Z as owner-only
protection. If the correct protection value is not specified when using
an ANSI labeled tape, an I/O error occurs. If a user signs on as
'system', any protection value or owner name written by J.LABEL can
be overridden. If not specified, the default is no protection.

Cataloger (CATALOG)
Directives 3-5

ASSIGN (Cont.)

MULTIVOL

ID

buffers

Usage:

is a volume number for a multivolume tape. If not specified, the
default is zero (not multivolume). This option is only valid when used
with the DEV parameter.

is an identifier for an unformatted medium. If not specified, the
default is SCRA (scratch). This option is only valid when used with
the DEV parameter.

is the number of 192W blocking buffers if using a large blocking
buffer. If not specified, the default is one. This applies only to
permanent disk files.

ASSIGN SYM TO DEV=M9 DENSITY=800 BLLOC=Y

ASSIGN SGO TO OUTFILE

ASSIGN IN TO MYFILE BBUF=10

Notes:

1. To continue parameters over more than one input line, a hyphen (-) must terminate
the current input line. A blank space is required before the hyphen as shown in the
following example:

ASSIGN ABC TO DEV=M9 DENSITY=800 -
BLOCKED=Y

2. Anindividual parameter cannot be split between input lines.

Cataloger (CATALOG) MPX-32
Directives Utilities

"

ASSIGN1

3.6 ASSIGNI1 Directive

The ASSIGNI directive supplies default file assignments for logical file codes used by the
task being cataloged. This directive is for compatibility with MPX-32 1.x. Its use is not
recarnmended.

Syntax:
,password
ASSIGN1 Ife=filename ,password,lJ [lfc=...]
»U
Ifc is a logical file code used in the task to denote a generic input or output
source
filename is the name of a permanent disc file to assign to the LFC
Any one of the optional parameters following the file name may be
entered in the order shown in the syntax statement. Commas separate
options. If an option is omitted, the comma must be supplied:
filename,,U
password is ignored
U indicates the file is unblocked. If not specified, the default is blocked.
Usage:

ASSIGNL1 LIB=LIBRARY,,U DIR=DIRECTORY,,U

ASSIGN1 OT=0OUTFILE IN=INFILE,MYPASS

MPX-32 Cataloger (CATALOG)
Utilities Directives 3-7

ASSIGN2

3.7 ASSIGN2 Directive

The ASSIGN2 directive supplies default system file assignments for logical file codes.
This directive is for compatibility with MPX-32 1,x, Its use is not recommended. At run
time, an LFC assignment to a system file results in the creation of one of the following
types of files for use by the task:

SBO System Binary Output - A temporary file for buffering output to the
device defined at SYSGEN or by the OPCOM SYSASSIGN directive as
POD (Punched Output Device).

SLO System Listed Output - A temporary file for buffering output to the
device defined at SYSGEN or by the OPCOM SYSASSIGN directive as
LOD (Listed Output Device).

SYC ' System Control - A temporary system file associated only with jobs
processed in the batch mode (one SYC per job). SYC is used for buffering
input from the device defined at SYSGEN or by the OPCOM SYSASSIGN
directive as SID (System Input Device). Tasks not designed to run only in
the batchstream should not make assignments to SYC. Batch tasks can
use SYC to input data records.

SGO System General Object - A system file associated only with jobs processed
in the batch mode. SGO is a permanent file used to accumulate object
code. The SGO file is deleted after the job is complete.

Syntax:
ASSIGN2 Ifc= (SBO,cards Mfec=...]
SLO,printlines
SYC
SGO
Ifc is a logical file code used in the task to denote a generic input or output
source
SBO . is the System Binary Output file
cards is the number of cards expected as abject deck output.. This number
determines the size of the SBO temporary file.
SLO is the System Listed Output file
printlines specifies the number of print lines required for listed output. This number
: determines the size of the SLO temporary file,
syC ~ is the System Control file. Use only if the task runs solely in the batch
mode. , :
SGO is the System General Object file

Cataloger (CATALOG) MPX-32
3-8 Directives ' Utilities

\ S

-

ASSIGN2 (Cont.)/ASSIGN3

Usage:

A2 INN=SYC
A2 OT=SL0,100 0T2=580,50

3.8 ASSIGN3 Directive

The ASSIGN3 directive supplies default device assignments for logical file codes used by
the task being cataloged. It also assigns a temporary disc file. This directive is for
compatibility with MPX 1.x. Its use is not recommended.

Syntax:

ASSIGN3 Ifc=devmnc, [blocks LUl [ife=...]
, [reel ,lvol]

Ifc is a logical file code used in the task to denote a generic input or output
source

devmnc is the device mnemonic of a configured peripheral device

blocks specifies the number of disc blocks (192 words) to allocate for the file

reel specifies a one to four character identifier for the reel. If not specified,

the default is SCRA (scratch).

vol indicates the volume number for a multivolume tape. If not specified, the
default is 0 (not multivolume).

U indicates that the tape or disc is unblocked. If not specified, the default
is blocked.

Usage:
Tape: A3 IN=M91000,SRCE,,U OT=PT

Disc: A3 IN=DC,20

MPX-32 Cataloger (CATALOG)
Utilities Directives 3-9

ASSIGN4/BUFFERS

3.9 ASSIGN4 Directive

The ASSIGN4 directive associates one or more logical file codes used by the task being
cataloged with an existing LFC assignment. This assignment remains for the associated
file or device even if the original assignment is deallocated. This directive is for
compatibility with MPX 1.x. Its use is not recommended.

Syntax:
ASSIGN4 Ife=Ifc [Ifc=lfc]

Ife=Ifc is a pair of logical file codes. The first LFC is the new assignment and the
second is the LFC already associated with a file or device in any previous
ASSIGN directive, including ASSIGN4. Any number of LFC to LFC
associations can be established.

Usage:
A2 6=SYC
A3 IN=M91000,REEL

A4 OUT=IN
A4 IN2=6

3.10 BUFFERS Directive

The BUFFERS directive specifies the number of blocking buffers required to support
dynamically assigned blocked files in the task being cataloged.

Syntax:
BUFFERS buffers

buffers is the number of 768-byte blocking buffers required. The range is 0-255. If
not specified, the default is three.

If option 19 is set, the number of buffers specified is added to the three buffers required
by the Debugger. If option 19 is not set, the number of buffers specified is the number of
buffers reserved.

NOTES:

For shared tasks, BUFFERS supplles the total blocking buffer allocation for both static
and dynamic file allocations.

The total buffer count from all sources (static, dynamlc, and run time) is limited to 254
buffers at execution time.

Cataloger (CATALOG) MPX-32
3-10 - Directives Utilities

C

BUILD/CATALOG

3.11 CATALOG and BUILD Directives

The CATALOG and BUILD directives supply the load module name plus other control
information for the task being built. CATALOG creates a file whose name is equal to
the load moadule name in directory @SYSTEM (SYSTEM). BUILD creates a file whose
name is equal to the load module name in the default working volume and directory. To
create a load module file with a different file name, directory name, or volume name,
use the LMPATH directive. See the LMPATH directive and Table 3-1 for a summary.

When cataloging the main module of a task, CATALOG and BUILD specify the task's
privilege, priority, and overlay transient area. The optional parameters can be specified
in any order.

BUILD and CATALOG cannot be used in the same CATALOG job.

Syntax:

g_@LOG} loadmod | P | [TRA=size][priority] [NOM][NOP][SYM]
|50 g
O

loadmod is the name of the load module being built and, if not supplied by
LMPATH, the name of the file which contains the load module. The
name can be a maximum of eight characters. File names that begin with
the letters SYSG are loaded with a TSA address of X'60000'. This
facilitates SYSGEN's remapping between host and target systems.

P,U,0 for the main module only, specify P for a privileged task or U for an
unprivileged task (default). For an overlay module, specify O. Overlays
assume the privileged or unprivileged status of the main load module.

TRA=size is used with the main load module to specify the hexadecimal number of
bytes to allocate for the overlay transient area below the main load
module. The default is an area above the main load module which is
large enough to accommodate all overlay load modules cataloged in the
same run as the main load module.

priority for main load module only, specifies a base priority in the range 1 to
64. If not specified, the default is 60. Overlay load modules assume the
priority of the related main load module. If the BUILD or CATALOG
directive pertains to an overlay module, do not specify priority.

The priority at which a task executes depends on how the task is
activated (on-line, batch, or real time). In real time, the task maintains
its cataloged priority. If activated in TSM or in the batchstream, its
priority changes to the SYSGEN-defined priorities of either interactive

or batch.
NOM inhibits printing a main or overlay load module map
NOP inhibits output of a main or overlay load module to the file specified as

the load module file

SYM saves the symbol table for the main load module on a device or file.
This option is used when cataloging load modules of a segmented task in
different CATALOG runs. If the module is an overlay module, do not

- specify SYM.

MPX-32 Cataloger (CATALOG)
Utilities Directives 3-11

CATALOG (Cont.)/CONNECT

Usage:

BUILD LOAD1 P TRA=40000 NOM
CATALOG LOAD2 NOP

3.12 CONNECT Directive

The CONNECT directive establishes a connection between a specified Datapool
(DATAPOOL or DPOOL00 through DPOOLY99) partition and its corresponding Datapool
dictionary. The parameters specified with this directive supply CATALOG with
information on which dictionary to access when a Datapool variable is referenced in the
- .object code.

Syntax:

CONNECT pathname TO partition [[PROTGRAN=]
number [FIRSTPAGE=] start]

pathname is the Datapool dictionary pathname
partition is the Datapool partition (DATAPOOL, DPOOL00 - DPOOL99)
number is the number of 512-word protection granules included in the partition.

If not specified, the partition must be defined prior to catalog time.

start is the beginning page number of the partition. If not specified, the
partition must be defined prior to catalog time.

The dictionary for DATAPOOL may be statically assigned to LFC DPD. This is provided
for compatibility; its use is not recommended.

The CONNECT directive may be continued on a subsequent line by entering a hyphen (-)
as the last nonblank character on a line. The hyphen must be preceded by a blank.

When CONNECT directives require location of a Datapool partition definition, the
LMPATH target volume/directory will be searched only if the LMPATH directive
precedes the CONNECT directives.

Usage:

CONNECT @VOLUME(SOME _DIR)POOL00.DICT TO DPOOL00 -
PROT=4 FIRST=192

Cataloger (CATALOG) MPX-32
3-12 Directives Utilities

S

ENVIRONMENT

3.13 ENVIRONMENT Directive

The ENVIRONMENT directive establishes residency, memory execution class, sharing
characteristics, and other environmental parameters for a task. The entries with this
directive supply information for the load module information area (preamble) in the main
load module.

If the ENVIRONMENT directive is not used, a task is nonresident and executable in any
available memory class (S, H, or E), UNIQUE, MAP8192, and DEBUGGABLE.

Syntax:

JE | [, UNIQUE
ENVIRONMENT [RESIDENT] |,H| |, SHARED|[,MAP2048
,S | [,MOCT1 ||,MAPB192]| [,NODEBUG]

RESIDENT specifies the task is resident in memory and cannot be swapped

E executes in class E memory only. If class E is unavailable, delay
execution until class E is available.

H executes in class H or faster memory. If both class H and E memory are
unavailable, delay execution until either one is available. If the requested
class of memory is not installed on the system, the first lower speed
memory available is allocated to the task.

S executes in any class of memory available (H, S, or E). Class S is the
default if no memory class is specified.

UNIQUE specifies the task is unique and not available for multiple concurrent
activations. Only one copy of the load module can be active in the system
at one time. This is the default and can be used with sectioned or
nonsectioned tasks.

SHARED copies the CSECT area of a sectioned task into physical memory once and
copies DSECT as needed for sharing. Use only with a sectioned task.

MULTI multicopies the entire load module into physical memory as needed for
concurrent activations. Can be used with a sectioned or nonsectioned
task.

MAP2048 indicates the map size of the target system is 2KW,. This establishes the

memory allocation and bounding requirement for the CSECT in sectioned
tasks to be 2KW. This is the default if a map size is not specified.

MAP8192 indicates the map size of the target system is 8KW. This establishes the
memory allocation and bounding requirement for the CSECT in sectioned
tasks to be 8KW.

NODEBUG indicates the Debugger cannot be attached to the load module. If not
specified, the Debugger can be attached.

Usage:
ENVIRONMENT RESI,H,MULTI,MAP2048

MPX-32 Cataloger (CATALOG)
Utilities Directives 3-13

EXCLUDE/EXIT/EXTDMPX

3.14 EXCLUDE Directive

The EXCLUDE directive excludes object modules in the system or user libraries from the
load module being cataloged, even though the modules contain definitions for referenced
global symbols.

Object modules INCLUDEd from a library during cataloging may also reference the

EXCLUDEd object modules. The references are ignored and the specified object modules
remain excluded.

Object modules are excluded by specifying the referenced global symbol name. All
global symbols defined in an object module must be excluded for the object module to be
excluded from the load module.
Syntax:

EXCLUDE name [name] ...

name is the name of a global symbol in the object module

3.15 EXIT Directive

The EXIT directive terminates CATALOG processing. In interactive mode, control
returns to TSM. In batch mode, processing continues with the next JCL statement.

Syntax:

EXIT

3.16 EXTDMPX Directive

The EXTDMPX directive positions the extended portion of MPX-32 in the logical address
space of the task being cataloged. This directive pertains to the expanded execution
space option of MPX-32,

Syntax:
MINADDR
EXTDMPX (MAXADDR
[MBLK] = mapblock

MINADDR locates the extended portion of MPX-32 at the top of the task service
area, below the DSECT

MAXADDR locates the extended portion of MPX-32 at the top of the task's
extended data space

mapblock is a 1 to 4 digit decimal value between 64 and 2047 that specifies a
particular map block in the task's logical address space where the
extended portion of MPX-32 is to be located

At run time, values for mapblock below 64 (other than MINADDR) or above MAXADDR

cause an abnormal termination in task activation.

Cataloger (CATALOG) MPX-32
3-14 Directives Utilities

~

EXTDMPX (Cont.)/FILES
For shared tasks, the cataloged value of EXTDMPX cannot be overridden by the
EXTDMPX TSM directive.

This directive has no effect if the expanded execution space option is not in use.

3.17 FILES Directive

The FILES directive specifies the number of resources (files or devices) required for
dynamic assignments in a task.

Syntax:
FILES number

number is the number from 0 to 255 of dynamic resource assignments required
for the task. If not specified, the default is five.

If option 19 is set, the number specified is added to the five files required by the
Debugger. If option 19 is not set, the number of files specified is the number. of files
reserved.

Notes: For shared tasks, this specifies the total number of resources from all sources
(run time, static, and dynamic) that may be allocated.

The total file count at run time may not exceed 248.

MPX-32 Cataloger (CATALOG)
Utilities Directives 3-15

INCLUDE/LINKBACK/LMPATH

3.18 INCLUDE Directive

The INCLUDE directive includes object modules from the system or user library in the
load module being cataloged, even though the modules are not referenced. If the
PROGRAMX directive is used to suppress SGO as an input source, INCLUDE must be
used to retrieve object maodules from a library.

Syntax:
INCLUDE name [name] ...

name is the name of a global symbol in the object module

3.19 LINKBACK Directive

The LINKBACK directive specifies overlay load modules at lower levels for backward
links when cataloging an overlay load module. Forward links from lower to higher level
overlay load modules are established automatically by CATALOG. ' LINKBACK allows
resolution of global symbaol references in the current load module to definitions in the
specified lower level overlays. In addition, if Option 3 is set, references to local
commons in-the current load module are resolved by corresponding local commons in the
specified lower level overlays.

Syntax:

LINKBACK loadmod [loadmod] ...
loadmod is the name of an overlay load module at a lower level. Mare than

one name can be supplied.

3.20 LMPATH Directive
The LMPATH directive specifies the pathname (including the file name) of a resource in
which to store the load module(s). LMPATH is optional. If not supplied, the file name is
the load module name taken from the first BUILD/CATALOG directive. Volume and
directory are the current default or @SYSTEM(SYSTEM) as appropriate. See the
CATALOG/BUILD directive and Table 3-1 for further information.
Syntax:

LLMPATH pathname
pathname is the pathname of a file in which the load module is cataloged
When CONNECT directives require location of a Datapool partition definition, the

LMPATH target volume/directory is searched only if the LMPATH directive precedes the
CONNECT directives.

Cataloger (CATALOG) MPX-32
3-16 Directives Utilities

@

LORIGIN/MOUNT

3.21 LORIGIN Directive

The LORIGIN directive establishes a new overlay level and origin. The default origin (no
parameter specified) is above the largest overlay load module at the preceding level.
LORIGIN does not have to be used for the lowest level of overlays, but must be used for
all higher levels.

If the second or higher level overlay is being replaced when recataloging an overlay load
module, the load module specified in the LORIGIN directive must have been previously
cataloged by a BUILD or CATALOG directive within the same CATALOG run.

Syntax:

LORIGIN [X bytesJ
loadmod

X bytes is the hexadecimal number of bytes to offset this level from the beginning
of the overlay transient area. The value is specified by X, one or more
blanks, and the number of bytes in hexadecimal.

loadmod specifies the override origin at the end of a specific overlay load module
at the previous level. This overlay does not have to be the largest overlay
at that level.

3.22 MOUNT Directive

The MOUNT directive specifies non-public volume requirements for the task being
cataloged.

Syntax:
MOUNT volname ON devmne [SYSID=id] [OPTIONS=([PUBLIC] [,[NOMSG])]

[sHARED = {}]

volname is the name of the volume to be mounted
devmnc is the device mnemonic of a configured peripheral device
id specifies the port identifier required for multiport volumes only. Must be

MPx where x is a single hexadecimal digit.

OPTIONS specifies options for the mounted volume. If PUBLIC is specified, the
volume is to be mounted for public use (valid only if task has System
Administrator attribute). If not specified, the default is nonpublic. If
NOMSG is specified, a mount message is not displayed on the operator's
console. If not specified, a mount message is displayed.

SHARED specifies sharing attributes for the volume. If yes (Y) is specified, the
resource is explicitly shared. If no (N) is specified, the resource is for
exclusive use. If not specified, the resource is implicitly shared.

Usage:

MOUNT DIR1 ON DM0202 SHARED=Y

MPX-32 Cataloger (CATALOG)
Utilities Directives 3-17

OPTION

3.23 OPTION Directive

The OPTION directive specifies up to 32 options that become permanent attributes of
the load module being cataloged. Options 1 to 32 set bits in the option word in the task's
TSA. The bit set is determined by subtracting the option number from 32.

When activated, the task can use the M.PGOW service to return the contents of the TSA
option word, check the bit settings, and take action as required.

Options can also be specified before a task is run in the interactive or batch mode.
Options supplied at run time may override cataloged options or may be added to (ORed
with) cataloged options. Options 1 to 20 are task-dependent. Options 21 to 32 are
system-defined and available to all tasks. Refer to the MPX-32 Reference Manual for
more information.

Syntax:
OPTION n [n] ...
n is a number from 1 to 32 which sets the corresponding bit in the TSA

status word. CATALOG options are described in Section 1. System
options for the load module can be specified by name or number:

Option Option
Number Name Description

21 PROMPT displays the first three characters of the
task name (load module name) before
reading from the terminal when the task is
run in the interactive mode

22 LOWER inhibits converting lower case to upper
case. This option is only valid if the task
is run in the interactive mode.

23 TEXT echoes text to the wuser terminal
(interactive) or SLO file or device (batch)
as it is read from the SYC file

24 DUMP specifies that if the task aborts a dump of
the task's area of memory will be
generated

25 CPUONLY executes the task on the CPU only

26 IPUBIAS executes the task on the IPU if the task is
IPU-compatible

Cataloger (CATALOG) MPX-32

3-18 Directives Utilities

ORIGIN/PASSWORD/PROGRAM/PROGRAMX

3.24 ORIGIN Directive

The ORIGIN directive establishes a new origin (level unchanged) for subsequent overlay
load modules. It can be used to override the default origin for a set of overlays at a
particular level. The default origin (no parameter specified) is above the largest overlay
load module at the preceding level.

Syntax:

ORIGIN |X bytes
loadmod

X Dbytes is the hexadecimal number of bytes to offset this level from the
beginning of the overlay transient area. The value is specified by X,
one or more blanks, and the number of bytes in hexadecimal.

loadmod specifies the new origin to be at the end of a specific overlay load
module at the previous level. The specified overlay does not have to be
the largest overlay at that level. If replacing the second or higher
level overlay when recataloging an overlay load module, the loadmod
name cannot be used unless the referenced load module has been
previously cataloged by a BUILD or CATALOG directive within the
same CATALOG run.

3.25 PASSWORD Directive

The PASSWORD directive is included for compatibility and is ignored by CATALOG.
Items following this directive on the same line are ignored.

Syntax:

PASSWORD

3.26 PROGRAM Directive

The PROGRAM directive specifies object modules to include from SGO in a main or
overlay load module. If omitted, all object modules on the file or device assigned to SGO
are included.

Syntax:
PROGRAM objmod [objmod] ...

objmod is the name of the object module (such as, program/subroutine name) to
include. More than one name can be specified.

3.27 PROGRAMX Directive

The PROGRAMX directive excludes all object modules from SGO when cataloging a load
module. An INCLUDE directive is required to get object modules from a library if the
PROGRAMX directive is used.

Syntax:
PROGRAMX

MPX-32 Cataloger (CATALOG)
Utilities Directives 3-19

RECATALOG/SEGFILES/SPACE

3.28 RECATALOG Directive

The RECATALOG directive is used when cataloging a segmented task in phases or when
recataloging one or more overlays of a segmented task, RECATALOG can only be used
with single file load modules. The load module file must exist if RECATALOG is used.

Syntax:
RECATALOG [loadmod]
loadmod is the one- to eight-character name of the permanent disc file containing

the load modules. If LMPATH supplies a file name, loadmod is ignored.

3.29 SEGFILES Directive

The SEGFILES directive specifies the number of noncontiguous disc files required for use
by the task. If this directive is not used, the default is the number of files specified in
the FILES directive. If neither the SEGFILES or FILES directives are specified, the
default is five.

Syntax:
SEGFILES number
number " is the number of noncontiguous disc files required by the task. This number
must not be greater than the number specified in the FILES directive.

If option 19 is set, the number specified is added to the five files required by the
Debugger. If option 19 is not set, the number of files specified is the number of files
reserved.

3.30 SPACE Directive

The SPACE directive allows the potential maximum task size to be increased above the
default 2MB size.

Syntax:
increment
SPACE MBLK = mapblock

increment is a 1 to 2 digit number that specifies the maximum task size in one
megabyte increments. The range is from 3 to 16MB.

mapblock is a 1 to 4 digit decimal number that specifies the maximum task size in
map blocks. The range is from 256 to 2048.

The SPACE directive establishes the maximum size to which a task can grow. No
memory is actually allocated to the task.

'For shared tasks, the cataloged value can not be overridden with the TSM SPACE
command.

The SPACE directive has no effect on tasks executed on a CONCEPT 32/27, or
CONCEPT 32/87 system.

Cataloger (CATALQOG) MPX-32
3-20 Directives Utilities

T

SYMTAB/VOLUMES

3.31 SYMTAB Directive

The SYMTAB directive loads the symbol table containing the names of all common
blocks, definitions, and references from a previous CATALOG session. The symbol table
is used when cataloging a segmented task in phases or when recataloging a segmented
task. If the SYMTARB directive is used, the SYMTAB file or device must be assigned to
logical file code SYI prior to executing CATALOG.

Syntax:
SYMTAB

3.32 VOLUMES Directive

The VOLUMES directive specifies the number of nonpublic volumes that can be
dynamically mounted by the task at one time.

Syntax:
VOLUMES number
number is the number of entries to be reserved. This number is in addition to the

current working volume plus any MOUNT directives processed. If not
specified, the default is zero.

MPX-32 Cataloger (CATALOG)
Utilities ~Directives 3-21

Table 3-1.
LMPATH/BUILD/CATALOG Interaction

Name and Location of

Load Module File Execution
LMPATH Directives
Condition BUILD X CATALOG Y
NO LMPATH @working(working) X $@working(working) X (or)

@SYSTEM(SYSTEM) Y $@SYSTEM(SYSTEM) Y

LMPATH is: @VOL(DIR)X $@VOL(DIR) X (or)
@VOL(DIR) @VOL(DIR)Y $@VOL(DIR) Y
LMPATH is: AVOL(DIRFILENAME @VOL(DIR)FILENAME $@VOL(DIR)FILENAME

AVOL(DIR) FILENAME

Notess

. X and Y are limited to eight characters and may contain any printable characters if
LMPATH has supplied the file name. If this field will be used as the file name, then
normal MPX-32 rules for file names apply. This field may optionally be enclosed in
single quotes (not counted in the eight characters).

. FILENAME may be up to 16 characters long and adheres to normal MPX-32 rules for
file names.

. Load modules are placed in execution by referencing the file that contains them.

. By default, the execution time task name is the name of the file that contains the load
module (truncated to eight characters).

M~ oa Vo (AATAT AN NAMN/ _ZD
ataluycl \\«vMm i ALy Yl N

3-22 irectives Utilities

SECTION 4 - ERRORS AND ABORTS

4.1 Error Overview

CATALOG reports error conditions as (WARNING) or <KFATAL>> depending on
severity. Fatal type errors may cause immediate termination of processing or may allow
processing to continue. In either case, any fatal error will inhibit the generation of a
load module file, and will set the task abort flag. Warning type errors never cause
process termination and inhibit the production of a load module file only in certain cases
and when option 18 is set.

These cases are conditions that CATALOG has resolved, but there is doubt as to the
correctness and/or completeness of the load module. In such cases, the process abort
flag is set; if option 18 is set, the load module file is not updated. By examining the
flagged conditions, the usability of the load module can be determined. If the abort flag
is set, CATALOG always indicates, at termination whether the load module file has heen
updated or not.

4.1.1 Phase One Errors

During phase one (the linking phase) CATALOG processes the directives and performs the
first pass over the object code. Every effort is made to complete phase one and report
as many problems as possible.

Directive errors are reported by a message of the form:
ERROR IN FIELD n: description

which is displayed immediately under the incorrect directive. The following example
demonstrates how field n is assigned:

Directive: BUILD TESTMOD P TRA=1000 NOM
Field : n= 1 2 3 4 5 6

If appropriate, a second line is displayed which provides more information on the error
and/or possible corrective actions.

Errors in the object code are of two origins:

. physically corrupted records which fail the tests for record type, checksum, or
sequence

. logically incorrect operations which, in the context of this run, direct CATALOG to
perform an inconsistent operation

Object code errors are reported in the following form:

LFC: Ifc
MODULE: module
PROGRAM: program, OBJECT REC X'nnn' - description

MPX-32 Cataloger (CATALOG)
Utilities Errors and Aborts 4-1

Ifc is the logical file code presenting the origin of the record (SGO or a

library)
madule is the load module currently being linked
program is the name of the program element currently being processed
nnn is the program's logical object record number
description indicates the nature of the error

A blank program name field indicates that the error occurred while processing the first
record of a new program element.

All directive and object code errors detected in phase one are fatal. CATALOG issues a
fatal message and terminates at the end of phase one without updating the load module
file.

4.1.2 Phase Two Errors

During phase two (the building phase) a fatal error generally causes immediate
termination of CATALOG. Warning errors are reported and always result in an updated
load module file, unless option 18 has been set.

4.1.3 Errors from MPX-32 (Phase One and Two)

When input/output operation errors occur, the File Control Block (FCB) status word,
logical file code, and other pertinent information are displayed. Such errors usually
indicate a hardware failure in the I/O device involved. See the MPX-32 Reference
Manual Volume I for a description of the FCB status word (word 3) and its interpretation
for different devices.

CATALOG also reports errors returned from MPX-32 services. The MPX-32 error/abort
code is contained in a message that supplies pertinent information. To interpret the
error/abort code, use the TSM $ERR directive, or consult Appendix C of the MPX-32
Reference Manual.

4.1.4 Conditions that Cause Incomplete Load Modules

The following paragraphs describe conditions that CATALOG has resolved, but there is
doubt as to the correctness and/or completeness of the load module.

Allowing incomplete load modules to be built is a feature that is provided to aid code
development. The programmer can assess the problems and decide whether the load
module is executable or usable in a debugging session.

The production of an incomplete load module can be inhibited by option 18. If the
replacement of an existing load module with a faulty one could cause problems, it is
recommended that option 18 be used.

Multiple Transfer Addresses

When the object code linked into a load module contains more than one transfer address,
CATALOG selects and uses the first one detected. Subsequent transfer addresses are
reported in a warning message.

Cataloger (CATALOG) MPX-32
4-2 rrors and Aborts Utilities

f"\‘

No Transfer Addresses

When the object code linked into a root load module contains no defined transfer address,
CATALOG attempts to select an address. The selection criteria is:

1) The address of the first DEFed symbol of the first program element of the load
module is selected.

2) If the first program element contains no DEFed symbols, the address of the
first noncommon word allocated in the first program element of the load
module is selected.

The selected symbol or address is displayed in a warning message and the load map
header indicates no transfer address.

Providing a transfer address allows the load module to be loaded. Even if the selected
location is incorrect, the load module can be loaded with the debugger, and execution
starts at the correct location using the appropriate DEBUG directive.

The following three conditions result from memory reference instructions for which
CATALOG cannot provide a valid address. The action taken by CATALOG is to replace
the instruction with a call to DEBUG. The effect of this is to cause the debugger to be
automatically loaded if the task is executed and the faulty instruction is encountered. If
the debugger is already loaded and a faulty instruction is executed, DEBUG signals a
BREAK occurrence.

1. Unresolved External References

When a program element references an external symbol which is not defined,
CATALOG issues a warning message that displays the symbol name and the location
of the reference (both program and load module-relative addresses are displayed).

When an external symbol is referenced several times in one program element, the
references are linked together in the object code. The warning message issued by
CATALOG provides the address of all the instructions in the list.

2. Unresolved Datapool References

When a program element references a Datapool variable and that variable is not
defined in any connected dictionary, CATALOG issues a warning message that
displays the symbol name and the program and load module relative addresses of
the reference.

3. Out of Range Datapool References

When a program element references a Datapoo! variable whose dictionary definition
causes the generated address to be beyond the bounds of the partition definition,
CATALOG issues a warning message that displays the symbol name and the location
of the reference (both program and load module-relative addresses are displayed).

In the following three conditions, the executable portion of the load module is not
affected, but the requested information is missing.

MPX-32 Cataloger (CATALOG)
Utilities Errors and Aborts 4-3

l.

2.

DEBUG Symbol Data Processing Errors

Any errors detected while DEBUG symbol data is being processed cause CATALOG
to reset option 19. Processing then continues, and a warning message is displayed.
The load module preamble will indicate that symbolic DEBUG data is not present.

Program Information Data Processing Errors

Any errors detected while program identification or time/date records are being
processed cause CATALOG to reset option 15. Processing continues, and a warning
message is displayed. The load module preamble will indicate that program
information data is not present.

SYMTAB Save File Generation Errors

Any errors detected while producing the symbol table save file cause an appropriate
warning message to be issued and the operation terminated. CATALOG processing
continues.

4.2 Abort Codes

CT04

CT06

4-4

UNRECOVERABLE 1/O ERROR ON FILE OR DEVICE ASSIGNED TO LFC: SLO,
ST=RMXX IF ERROR ON OPEN; IOXX IF ERROR ON WRITE

Abort status includes Resource Manager (RM) status if the error occurred on open,
or IOCS (I0) status if the error occurred on a write operation.

CATALOG EXECUTION ERRORS AS DESCRIBED ON LFC: SLLO AND/OR UT

All <KFATALD>> errors indicate a CT06 abort status. The specific reason for the
abort displays in the listed output stream and on the terminal.

Cataloger (CATALOG) MPX-32
Errors and Aborts Utilities

_,/’/

o~
N

| G

SECTION 5 - EXAMPLES

This section provides sample programming sequences illustrating the use of CATALOG.

Example 1 - Catalog Load Module in User Directory

The following example catalogs a load module named X.TST1 in the user's current
working directory:

TSM >$ASSIGN SGO TO O.TST1 (Object file to be cataloged)

TSM >$0OPTION 19 (Option to include debugger symbols)

TSM >$CATALOG

MPX-32 UTILITIES RELEASE x.x (CATALOG Rx.x.x)

(C) COPYRIGHT 1983 GOULD INC., CSD, ALL RIGHTS RESERVED

CAT > BUILD X.TST1 (Load module is built in current directory)
CAT > EXIT

TSM >

Example 2 - Catalog Load Module in User Directory

The following example catalogs a load module named X.TST2 in the user's current
working directory in file LONGFILENAME, and satisfies external references from a user
object code library:

TSM >$ASSIGN SGO TO O.TST.2

TSM >$ASSIGN LIB TO ULIB.L (Subroutine library file)
TSM >$ASSIGN DIR TO ULIB.D (Subroutine directory file)
TSM >$OPTION 15 19

TSM >$CATALOG

MPX-32 UTILITIES RELEASE x.x (CATALOG Rx.x.x)

(C) COPYRIGHT 1983 GOULD INC., CSD, ALL RIGHTS RESERVED
CAT> LMPATH LONGFILENAME

CAT > BUILD X.TST2

CAT > EXIT

TSM >

Example 3 - Catalog Segmented Task

The following example catalogs, with selective use of SGO, a segmented task with the
overlay structure illustrated in Figure 2-3, with default origins as illustrated in
Figure 2-4:

TSM >$ASSIGN SGO TO O.TST3

TSM >$ASSIGN SYM TO SYMFILE (File for symbol table output)

TSM >$CATALOG

MPX-32 UTILITIES RELEASE x.x (CATALOG Rx.x.x)

(C) COPYRIGHT 1983 GOULD INC.,, CSD, ALL RIGHTS RESERVED

CAT > BUILD X.TST3 SYM (Catalog root of program and output
symbol table to SYM)

MPX-32 Cataloger (CATALOG)
Utilities Examples 5-1

CAT > PROGRAM MAIN

CAT >BUILD A1 O (Catalog overlay Al)
CAT > PROGRAM Al
CAT > BUILD A2 0O (Catalog overlay A2)

CAT > PROGRAM A2

CAT > LORIGIN

CAT >BUILDB1 O ' - (Catalog overlay B1)
CAT > PROGRAM B1

CAT>BUILDB20 (Catalog overlay B2)
CAT > PROGRAM B2

CAT >BUILDB3 0 ‘ (Catalog overlay B3)
CAT > PROGRAM B3

CAT >BUILDB4 0O (Catalog overlay B4)
CAT > PROGRAM B4 : .

CAT > EXIT - ‘

TSM >

Example 4 - Catalog Segmented Task

The following example catalogs a segmented task with the overlay structure 1llustrated
in Figure 2-2:

TSM>$ASSIGN SGO TO O.TST3 B

TSM >$ASSIGN SYM TO SYMFILE (File for symbol! table output)

TSM >$CATALOG

MPX-32 UTILITIES RELEASE x.x (CATALOG RX.X.X)

(C) COPYRIGHT 1983 GOULD INC., CSD, ALL RIGHTS RESERVED

CAT > BUILD X.TST3 SYM (Catalog root of program and output symbol
table to SYM) \

CAT > PROGRAM MAIN ‘

CAT>BUILDA1O (Catalog overlay Al)

CAT > PROGRAM Al

CAT>BUILD A20 (Catalog overlay A2)

CAT > PROGRAM A2

CAT >BUILD A3 0 : (Catalog overlay A3)

CAT > PROGRAM A3 ' :

CAT > EXIT

TSM >

Example 5 - Replace Overlay

The following example replaces an overlay in the load module created in example 4:

~ TSM >$ASSIGN SGO TO O.TST4 S o

~ TSM >$ASSIGN SYI TOSYMFILE (File for symbol table input)
TSM >$CATALOG

MPX-32 UTILITIES RELEASE x.x (CATALOG Rx.x.x)

(C) COPYRIGHT 1983 GOULD INC., CSD, ALL RIGHTS. RESERVED :

CAT > SYMTAB (Restore symbol table from SYI) .
CAT > LMPATH @VCl_UME(DIRECTORY) (Set du‘ectory for RECATALOG)

| Cataloger (CATALOG) MPX-32
5-2 Examples © Utilities

A

-

— CAT > RECATALOG X.TST3

CAT >BUILD A1 O (Replace overlay Al)
w CAT > PROGRAM Al

CAT > EXIT

TSM >

Example 6 - Catalog Overlays as Separate Files

The following example catalogs three overlays as separate files by setting the option for
multiple disc file mode:

TSM >$ASSIGN SGO TO O.TSTS
TSM >$ASSIGN LIB TO ULIB.L
TSM >$ASSIGN DIR TO ULIB.D
TSM >$ASSIGN SYM TO SYMFILE
TSM>$OPTION 2 (Option to create separate files for each
overlay)
TSM >$CATALOG
MPX-32 UTILITIES RELEASE x.x (CATALOG Rx.x.x)
(C) COPYRIGHT 1983 GOULD INC., CSD, ALL RIGHTS RESERVED
CAT > CATALOG X.TST5 SYM
CAT > PROGRAM MAIN
CAT > CATALOG A1 O
CAT > PROGRAM Al
CAT > CATALOG A2 0O
CAT > PROGRAM A2
CAT > CATALOG A3 O
(CAT > PROGRAM A3
w CAT > EXIT

TSM >

C

MPX-32 Cataloger (CATALOG)
© Utilities Examples 5-3

Example 7 - INCLUDE and EXCLUDE Directive Usage

The following example illustrates the use of INCLUDE and EXCLUDE directives:

TSM >$ASSIGN LIB TO ULIB.L

TSM >$ASSIGN DIR TO ULIB.D

TSM >$CATALOG

MPX-32 UTILITIES RELEASE x.x (CATALOG Rx.x.x)

~ (C) COPYRIGHT 1983 GOULD INC., CSD, ALL RIGHTS RESERVED
CAT > BUILD X.TSTé6

CAT > EXCLUDE Al1,A2,A3 (These subroutines will be in overlays)

CAT > INCLUDE MAIN (Get global symbol MAIN from the subroutine
library)

CAT > PROGRAMX (No object code is read from SGO)

CAT>BUILDA1O

CAT > INCLUDE Al (Get global symbol Al from the subroutine library)

CAT > PROGRAMX (No object code is read from SGO)

CAT>BUILD A20

CAT > INCLUDE A2 (Get global symbol A2 from the subroutine library)

CAT > PROGRAMX (No object code is read from SGO)

CAT>BUILD A3 0O ‘

CAT > INCLUDE A3 (Get global symbol A3 from the subroutine library)

CAT > PROGRAMX (No object code is read from SGO)

CAT > EXIT

TSM >

Example 8 - Catalog LLoad Module

The following example catalogs the load module illustrated in Figure 2-3 with memory
allocated as in Figure 2-5.

TSM >$ASSIGN SGO TO O.TST7

TSM >$CATALOG

MPX-32 UTILITIES RELEASE x.x (CATALOG Rx.x.x)

(C) COPYRIGHT 1983 GOULD INC., CSD, ALL RIGHTS RESERVED
CAT > CATALOG MAIN

CAT > PROGRAM MAIN

CAT > CATALOG A1 O

CAT > PROGRAM A1l -

CAT > CATALOG A2 0O

CAT > PROGRAM A2

CAT > LORIGIN Al (Start new overlay level, origin at end of Al)
CAT > CATALOGB1 O
CAT > LINKBACK Al (I_inks overlay through Al)

CAT > PROGRAM B1
CAT > CATALOGB2 O

CAT > LINKBACK Al (Links overlay through Al)
CAT > PROGRAM B2
CAT > ORIGIN A2 (Change origin to end of A2, remain at same overlay
1 level)
CAT > CATALOGB3 O :
CAT > LINKBACK A2 (LLinks overlay through A2)
Cataioger (CATALOG) MPX .32

5-4 Examples Utilities

®

CAT > PROGRAM B3
s CAT > CATALOGB4 O
CAT > LINKBACK A2 (lLinks overlay through A2)
CAT > PROGRAM B4
CAT > CATALOGBS O

CAT > LINKBACK A2 (Links overlay through A2)
CAT > PROGRAM B5

CAT > EXIT

TSM >

MPX-32 Cataloger (CATALOG)

Utilities Examples 5-5/5-6

Datapool Editor (DPEDIT)

MPX-32 Utilities

<

"~

RN

l&\.

CONTENTS
Section Page
1 - OVERVIEW
1.1 General Description «voeeeeeecesnsses cees e e B]
1.1.1 Datapool Dictionarieso eeoeeees ceeceseces e . . 1-1
1.1.2 Static versus Dynamic Datapoolccieiiteiiieetenneennnns 1-2
1.2 Directive SUMMEry..oeeeseoeecssscsccccescencen ceeeee ceea. 1-2
2 - USAGE
2.1 AccessingDPEDIT ...cvevennn ceeeeens Gereveescens . ceceeees 2-1
2.2 Logical File Code Assignments Chtec e s tes ettt ensesns ceees 2-1
2.2.1 Dictionary (DPD) «vvev v ceesseesane ceeasns ceesssesaass 2-1
2.2.2 Sourcelnput (SYC) v vvvvenvnenns Ceesesssasesseseseesennn 2-2
2.2.3 Listed Output and Error Listings (LO and ER) tieenenennencnsanns 2-2
2.2.4 Save and Remap Files(OTandIN)ov... Ceceseeeeae ce. 2-3
2.2.5 Scratch Files (Ul and XUl) .ovovnw ceseesennn ceesesseesenss 2-3
2.2.6 LFC Summary cessescensennaene ceeeccesssesssssesaes 2-4
2.3 ExitingDPEDIT ...vevvene Gt eececeeesssteanseneenas ceseeaean cees 224
2.4 InputDataFormat ..c.civeeeeeeenns Chececes ettt eseeeseneasena ees 2-5
2.5 Dictionary Records...eseeeose Ceesesscccsesncsesscnasona ceeesean . 2-7
2.6 Listings c...... Ceeeeseas e enannn che et onns ceeceecees 2-8
3 - DIRECTIVES
3.1 Introduction.......cectieeeieenennnn et eees et eanssans R
3.2 /DPD Directive «eeveesesses et eeceeste ettt eseaans ceeeeees 3-1
3.3 [ENTER Directive «..oev.ns Ceceeestaestesaenae Cecereseasenas .. 3-1
34 JLOGDITeCtIVE v vvsvesenscescencsssssoncnsas A 4
3.5 /REMAP Directive v v vvveseessescessocssas e tcesces et seneens 3-2
3.6 [SAVE Directive..ueeueeeseseseaens c et esceseesceacessseseasenan . 3-3
3.7 /VERIFY Directive e v v v e vveeeoesocscsseacsosnns e eaens P 2%
4 - FERRORS AND ABORTS
a-l DPEDIT EI‘I‘OF COdeS. ® o 06 ® 0 0 6 00 0 0 0 0 0 0 0 ® 06 0 00 0 0 0 0 0 0 0 0 o o e o o 0 o o . 4-1
4.2 DPEDIT Abort Codes + v cveeveenenns Cececeeseenns ceseesessnessss b4-1
4.3 Console Messages........ ch e s esecsnaneennn 4
S5-EXAMPLES.c00eeennenssess e A |
MPX-32 Datapool Editor (DPEDIT)
Utilities Contents iii

2-1

iv

FIGURES
DpEDITDataReCOPdFOrmat ® & & 0 0 0 O O 0 O O S 0 OSSP O S O SO OSSO S OO PO ST 2-6

Datapool Dictionary Entry Format. . e e oo evescsoecssssccscsscsoccscss 2-7
DPEDITLiStedOUtPUtFOrmat ® ® ® 6 8 0 5 6 0 8 0 0 0 O 8 S O O S O O O O G e S P00 o 2-8

TABLES

DPEDITLFCSummaryo.uoooo.oono‘.oo.oo00000...0000000.....0.. 2"‘"

Datapool Editor (DPEDIT) MPX-32
Contents Utilities

U

NS

DATAPOOL EDITOR (DPEDIT)

SECTION 1 - OVERVIEW

Datapools are memory partitions defined either at system generation (SYSGEN) or with
the Volume Manager (VOLMGR). Datapool partitions (DATAPOOL, DPOOL0OO -
DPOOL99) contain data structured by Datapool dictionaries that are built and maintained
by the Datapool Editor (DPEDIT) utility. DPEDIT can add, change, delete, and equate
variables in an existing dictionary, or build a new dictionary.

In order to build and maintain Datapool dictionaries on one (host) system and then run the
task using the same dictionary on another (target) system, the Datapool partitions
DPOOLO00 through DPOOL99 need not be present on the host system when using
DPEDIT. DPEDIT does not check if each entry into the dictionary is within the range of
the partition.

The word Datapoo! or Datapool partition used in the following sections refers to the
partitions named DATAPOOL and DPOOLO00 through DPOOL99.

DPEDIT recognizes file names of 1 to 16 characters. Unless otherwise specified, files
assigned to logical file codes are forced to the appropriate format - blocked or
unblocked.

1.1 General Description

A task using a location in a common partition other than Datapool must define all of the
common partition's locations. Whenever a common partition is changed, the source for
each task accessing the partition must be modified to reflect the change.

Datapool and Datapool dictionaries allow tasks to reference memory locations
symbolically and define only the locations to be accessed.

Each task structures and shares a given Datapool partition through a Datapool
dictionary. Different tasks can access the same Datapool variables by assigning the
same dictionary.

The Datapool partition can be defined by a single dictionary or multiple dictionaries. A
change in a variable is reflected by a change in a dictionary. All tasks referencing the
partition are then recataloged with the modified dictionary. If multiple dictionaries are
used, their modification depends on whether they reference Datapool locations whose
offset would be affected by the change. Variables can be grouped into different offsets
from the beginning of the Datapool partition. Therefore, unrelated tasks need not be
concerned with a redefined location.

1.1.1 Datapool Dictionaries

A Datapool dictionary file must exist before DPEDIT can be used. A Datapool dictionary
is a permanent file created by the Volume Manager (VOLMGR). The VOLMGR
parameters EOFM=N and ZERO=Y must be specified when the Datapool dictionary is
created. Make the size of the file large enough to hold twice the number of symbols to
be defined in the dictionary. Because a block contains eight records, a formula for
determining the file size necessary is:

2 x number of symbols
8 = necessary file size in blocks

The minimum allowable size for a dictionary is five blocks.

MPX-32 Datapool Editor (DPEDIT)
Utilities Overview 1-1

Multiple dictionaries allow tasks to communicate with each other. For example, assume
task A stores a status variable in Datapool that is listed in Datapool dictionary AAA, and
task B stores a status variable in Datapool that is listed in Datapool dictionary BBB.
Task C can access these status variables through the Datapool dictionaries.

A task cannot modify a location not defined in its dictionary.

1.1.2 Static versus Dynamic Datapool

Datapool can be created statically at system generation (SYSGEN) or dynamically with
the Volume Manager (VOLMGR).

SYSGEN permanently allocates memory for a Datapool partition in protection granule
increments (512W). SYSGEN marks the allocated protection granules as unavailable for
outswap and creates an entry defining the partition in the system directory.

The VOLMGR CREATE COMMON directive creates a Datapool partition when required

by a task. These partitions are allocated in map blocks (2KW on a CONCEPT/32
computer).

MPX-32 can dynamically generate multiple Datapool map blocks into more than one
logical address space. The physical space for a Datapool partition created with VOLMGR
is not permanently allocated, as it is when a Datapool partition is created with SYSGEN.
1.2 Directive Summary

Directive Function

/DPD Assigns a new permanent file name to the LFC used for the
Datapool dictionary

/ENTER Indicates the following are data records to be used to change
the Datapool

/LOG Lists the contents of the Datapool dictionary

/REMAP Reuses the Datapool dictionary by rebuilding from the /SAVE
dictionary entries and hashing them into the Datapool
dictionary

/SAVE Preserves the binary contents of each active entry in the

Datapool dictionary '

/VERIFY Verifies Datapool elements in the dictionary for proper
bounding, duplicate entries, and improper relative addresses

Datapool Editor (DPEDIT) MPX-32
1-2 Overview Utilities

SECTION - 2 USAGE

2.1 Accessing DPEDIT
DPEDIT can be accessed in the hatch or interactive modes in one of three ways:
$OPEDIT
$RUN DPEDIT
$EXECUTE DPEDIT
$RUN DPEDIT is valid only from the system directory.
When accessing DPEDIT interactively, the DPE> prompt is displayed:
TSM> $DPEDIT
DPE>
2.2 Logical File Code Assignments
There are eight logical file codes (LFCs) associated with DPEDIT: Dictionary (DPD),
Input (SYC), Listed Output (LO), Error Listing (ER), Save File (OT), Remap File (IN), and
Scratch Files (U1 and XU1). LFC assignment statements must be made before DPEDIT is
(called.
2.2.1 Dictionary (DPD)
A Datapool dictionary is a permanent file containing symbol definitions. The Datapool
dictionary is assigned to logical file code DPD. This LFC is forced unblocked by
DPEDIT.
DPD Default and Optional Assignments
There is no default assignment to DPD.
Each time a Datapool dictionary is used, the dictionary must be assigned as follows:

$ASSIGN DPD TO pathname

pathname is the pathname of a file containing a Datapool dictionary. The file is forced
unblocked by DPEDIT.

MPX-32 Datapool Editor (DPEDIT)
Utilities Usage 2-1

2.2.2 Source Input (SYC)
The source input file contains DPEDIT directives and data statements used for
structuring the partition. Data statements are described in Section 2.4. The source
input file is assigned to logical file code SYC.
SYC Default and Optional Assignments
The default assignment for SYC is to the System Control file (SYC):
$ASSIGN SYC TO SYC
There are two optional assignments for SYC:

$ASSIGN SYC TO pathname
DEV=devmnc

pathname is the pathname of a file containing input
devmnc is the device mnemonic of a device containing input
2.2.3 Listed Output and Error Listings (LO and ER)
As DPEDIT processes directives, one line of listed output is generated for each operation
performed. Operations that produce errors are written to a separate file or device. The
listed output file is assigned to logical file code LO. The error file is assigned to logical
file code ER. Listed output and errors can be produced on one file or device by equating
the two file codes with $ASSIGN statements.
LO and ER Default and Optional Assignments
The default assignment for LO and ER is to logical file code (UT):

$ASSIAN)LO(TO LFC=UT

ER

In the interactive mode, output is generated on the user terminal.
In the batch mode, output is generated on the SLO device.

There are two optional assignments for LO and ER:

$ASSIGN)LO(TO)pathname
ER DEV=devmnc

pathname is the pathname of a file to contain listed or error output
devmnc is the device mnemonic of a device to contain listed or error output

Datapool Editor (DPEDIT) MPX-32
2-2 Usage Utilities

E

\\\N/

@

2.2.4 Save and Remap Files (OT and IN)

The /REMAP directive restructures an existing Datapool dictionary that was saved (by
the /SAVE directive) during a previous DPEDIT run or in the current DPEDIT run.

The file or device used by the /SAVE directive is assigned to logical file code OT. The
file or device to be used by the /REMAP directive is assigned to logical file code IN. The
/DPD directive can assign a different file for Datapool dictionary output, or the name of
the file can be specified with /[/REMAP, If the assignment is not changed, the existing
dictionary is overwritten.
OT and IN Default and Optional Assignments
There are no default assignments for OT and IN.
There are two optional assignments for OT and IN:

$AS)OT{ TO)pathname

IN DEV=devmnc

pathname is the pathname of a file containing the /SAVE or /REMAP file
devmnc is the device mnemonic of a device containing the /SAVE or /REMAP file
2.2.5 Scratch Files (Ul and XU1)
A sorted alphabetical listing and a sorted address listing are produced by the /LOG
directive. The alphabetical listing is assigned to logical file code Ul. The address listing
is assigned to logical file code XU1l. Both Ul and XU1 are forced unblocked by DPEDIT.
Ul and XU1 Default and Optional Assignments
The default assignment for Ul is to a temporary file of 100 blocks:

$AS Ul TO TEMP SIZE=100
The file size in the SIZE= parameter can be increased if necessary.
The default assignment for XUL1 is to logical file code Ul:

$AS XUl TO LFC=U1

There are no optional assignments for Ul and XUL.

MPX-32 Datapool Editor (DPEDIT)
Utilities Usage 2-3

2.2.6 LFC Summary

The following is a table of LFCs used by DPEDIT and their default and optional
assignments.

Table 2-1
DPEDIT LFC Summary
Default Optional
LFC Assignment Assignment
DPD N/A pathname
ER LFC=LO pathname
DEV=devmnc
IN N/A pathname
DEV=devmnc
LO LFC=UT pathname
» DEV=devmnc
oT N/A pathname
DEV=devmnc
SYC SYC pathname
DEV=devmnc
Ul temporary file N/A
XU1 LFC=U1 N/A

2.3 Exiting DPEDIT

To exit DPEDIT from the interactive mode, enter CNTRL C. In the batch mode, DPEDIT
exits when it encounters a job control statement without a / in column one.

Datapool Editor (DPEDIT) MPX-32
2-4 Usage Utilities

-

-

2.4 Input Data Format

Datapool dictionaries are structured through data records. These data records are built
built in 72-byte card image format and are used to add, delete, or change Datapool
symbols.

The structure of a data record is shown in Figure 2-1.

All fields of the data record except the SOURCE and DESCRIPTION fields must be left-
justified and may not contain embedded blanks. The VARIABLE SYMBOL field contains
the one to eight character name of the symbol to be added, deleted, or changed as
specified by the U field.

The U field specifies the add function with a blank, the delete function with a minus sign,
and the change function with an asterisk.

To specify the add function, all fields up to and including the BASE SYMBOL field must
be used. The remaining fields are optional. A symbol can be added to the dictionary if it
has not been previously defined in the dictionary. If the PRECISION field is specified,
address bounding is verified before adding the symbol to the dictionary.

The delete function requires only the VARIABLE SYMBOL and U fields. The remaining
fields are ignored. A symbol can be deleted only if it is not used as a base. If the symbol
to be deleted references a base, the responsibility count for the base symbol is
decremented. Responsibility count is the number of times the symbol is used as a base
for other symbols.

The change function requires the VARIABLE SYMBOL and U fields. The remaining fields
are optional. All fields describing the symbol can be changed if the symbol is not used as

a base. If the symbol is used as a base, no changes can be made in the BASE SYMBOL or
DISPLACEMENT fields.

Each blank column on the data record causes no change to the corresponding column of
the original specification; a column containing a number sign (#) generates blanks in the
corresponding column of the original specification; a column containing any other
character causes a replacement of the corresponding column of the original
specification.

The change function is column oriented. When an entire field is to be replaced, the high-
order columns of the field should contain number signs (#) to blank out unwanted
characters from the original specification. For example, if the BASE SYMBOL field
entry is replaced with an entry of fewer characters, the unused columns in the changed
record should contain number signs. The E field, which equates symbols with base
symbols, must contain EQU. Any other character string is invalid.

The BASE SYMBOL field is used with the VARIABLE SYMBOL field and the E field. The
base symbol referenced must have been previously defined by the Datapool dictionary.
The BASE SYMBOL field may optionally contain a dollar sign ($) indicating location O of
the dictionary.

The DISPLACEMENT field modifies the base symbol location if column 22 contains a plus
sign (+). Absence of the plus sign in column 22 causes DPEDIT to ignore the
displacement.

MPX-32 Datapool Editor (DPEDIT)
Utilities Usage 2-5

9-Z

abesn
(11a3dq) J031p3 [oodejeq

serInIN
ZE-XdW

JeWI0 § PI033Y Bl 11A3dA “T-Z 3anbr 4

)

¥850€8

VARIABLE
symsoL |u] E SYMBOL

BASE

DISPLACEMENT

T

[

D

SOURCE

|
AR DESCRIPTION

)

N

1 IZ I 3|4[5|G l7l 8 IDJH 12 14||5|16]17[18|19[20 2

9 I 2% !25128[27[28[29[30 31132

X
x

x

-+
T
—p

+ } 1t
LI LI LR LA

.

-+

-+

I
1

!135138 38{39[‘0]41 !. 43!44 45]46 I47I4GH50I51[52153[54E5! 5§l 57I58|59|60I GIIGZIGS lﬂq 65]68167[8?[59‘70‘ 71k2

3
LI

-+
—
-+
-+
—
-
4

T

PO W N N T |
L |

-+
-+
-4

-

3.
1

i
T

-+
-4

i O T N G |
T T

-+
-
=

-

BLANK = Addition
- = Delete
* = Change

[e]le—

EQU = Equate

I BASE SYMBOL | €————

$ = 0 (Beginning of Dictionary)
aaaaaaaa = Base Symbol

DISPLACEMENT |«

X‘nnnnn' = Hexadecimal Bytes
nnnnnnnn = Decimal Bytes
nnnnnnnB = Decimal Bytes
nnnnnnnW = Decimal Words
nnnnnnnD = Decimal Doublewords

<+

T

*For Page Eject During LOG REL

[4]

*For Page Eject During LOG ALPHA

>[o]

Di ion Array El

= nnn (decimal)

>[r]

PRECISION

W =Word

D = Doubleword
H = Halfword

B =Byte

L =Bit

(NOTE: If the DISPLACEMENT entry is specified, a plus sign (+) must be present in column 22).

J

N

-

The T field is for symbol type. If used, the T field must contain an E, F, I, or L.

The P field specifies precision. If used, the specified boundary, L, B, H, W, or D, is
verified against the actual symbol address to ensure proper bounding.

The D field is for array dimensions. If used, the D field must contain decimal integers.

The SOURCE and DESCRIPTION fields are for user documentation. The SOURCE field
provides a User Descriptor Area to identify the originator of the symbol. An asterisk in
the first column of the DESCRIPTION field (column 43) causes a page eject during
alphabetical logging (LOG ALPHA). An asterisk in the second column of the
DESCRIPTION field (column 44) causes a page eject during relative logging (LOG REL).
Columns 45 through 72 of the DESCRIPTION field can be used for comments.

2.5 Dictionary Records

Figure 2-2 shows the format for a Datapool dictionary entry built by DPEDIT. The
dictionary entry record is a binary record of the entire dictionary entry, including a
checksum and a sequence number. When a task is cataloged, and the partition used is
named DATAPOOL, then the Datapool dictionary to be used must be assigned to logical
file code DPD. If the partition used is named DPOOLOO through DPOOL99, then the
Datapool dictionary to be used must be connected to the corresponding partition by the
cataloger's CONNECT directive.

WORD
1-20 DATAPOOL EDITOR INPUT DATA IMAGE (80 BYTES)
21 ZERO RELATIVE ADDRESS
1 1 1 I 1 1 1 I 1 '} 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 | 1 1 1
01 2 3456 7 8 91011121314 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
NUMBER OF DISC ACCESSES
22 TO LOCATE THIS ENTRY RESPONSIBILITY COUNT
1 1 1 l 1 '] I] 'l 1 I 1 3 1 1L Il 1 I Il 1 1 I 1 1 1 ' 1 1 1
01 2 3456 7 8 91011121314 15 16 17 18 19 20 21 22 23 24 2526 27 28 29 30 31
23 RESERVED STATUS
1 1 1 I 1 1L 1L l 1 1 1L | 'l 1 1 I 1L 'l 1 l 1 1 1 'l 1 'l l 1 1 1
01 2 34 56 7 8 9 10111213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
" DICTIONARY ENTRY ACTIVE (SET)
COLLISION ENTRY OCCURRED AT THIS ENTRY (SET)
24 RESERVED
1 1 1 l 1 1 1 l 1 1 1 l 1 1 1 I 1 1 1 I 1 1] I 1 1 L I 1 1L 1
01 2 34567 8 9 10111213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
87D4J02
Figure 2-2. Datapool Dictionary Entry Format
MPX-32 Datapool Editor (DPEDIT)

Utilities Usage 2-7

2.6 Listings

DPEDIT produces two output files: the listed output file accessed through logical file
code LO and the error file accessed through logical file code ER. If either file overflows
and is assigned to the System Listed Output (SLO) file, the old SLO is dynamically
deallocated (released for system output on job termination) and a new SLO file is
allocated with the same size requirements as the original. Figure 2-3 describes listed
output format.

Listed output contains a definition of the operations performed, the source records
(Figure 2-1), the relative address within the Datapool of the symbol defined by the
dictionary entry, the number of additional disc accesses required to locate the entry, the
number of times this symbol is used as a base, and when applicable, an error code
defining why the requested operation was not performed.

Format

CURRENT DATAPOOL FILE: MAIN
ERROR FUNCTION SYMBOL U E BASE DISP T P D SC A R DESCR RELATIVE RESP CM
CODE SYMBOL ADDRESS CNT

Format Explanation

The CURRENT DATAPOOL FILE is MAIN unless otherwise specified by a /DPD or
/REMAP directive.

The ERROR CODE field contains four character codes on the lines where errors
occurred.

The FUNCTION field indicates the function in effect (add, delete, log, or change).

The SYMBOL, U, E, BASE SYMBOL, DISP (displacement), T, P, D, SC (source), A, R, and
DESCRIPTION (DESCR) fields are identical to those in Figure 2-1.

The RELATIVE ADDRESS field contains a hexadecimal address assigned to the variable
SYMBOL relative to the beginning of the Datapool partition.

The RESPCNT (responsibility count) field contains the decimal number of times SYMBOL
is used as a base.

The CM (collision mapping) field contains the decimal number of disc accesses required
to locate SYMBOL.

Figure 2-3. DPEDIT Listed Output Format

Datapool Editor (DPEDIT) MPX-32
2-8 Usage Utilities

SECTION 3 - DIRECTIVES

3.1 Introduction

The following sections describe DPEDIT directives. The legal delimiter between
parameters is a comma. Only one blank is allowed between a directive and a parameter.
3.2 /DPD Directive .

The /DPD directive assigns a different permanent file to logical file code DPD. This
directive allows the use of multiple dictionary files during a single edit run.

The specified file is dynamically allocated unblocked by MPX-32 services.
Syntax:
/DPD filename

filename is a permanent file name of a Datapool dictionary

3.3 /ENTER Directive

The /ENTER directive indicates the following are data records to be processed by
DPEDIT. DPEDIT processes data records until it encounters a different directive or an
end-of-file. More than one _/ENTER directive can be used in a DPEDIT directive stream.

Syntax:

JENTER

MPX-32 Datapool Editor (DPEDIT)
Utilities Directives 3-1

LOG/REMAP

3.4 /LOG Directive C

The /LOG directive provides a listed output audit trail of all symbols defined in the
datapool dictionary, the total number of entries in the dictionary, and the number of
active entries.

Syntax:
/LOG [{ALPHA}]
REL
ALPHA specifies listed output in alphabetical order
REL specifies listed output in the relative order symbols reside in the Datapool

memory partition

If neither is specified, both types of output are generated.

3.5 /REMAP Directive

The /REMAP -directive expands or rebuilds a Datapool dictionary without recreating
dictionary entries.

/REMAP rebuilds a dictionary from the file assigned to logical file cade IN. This file
must contain the image of a dictionary specified with a /SAVE directive. Each entry is

remapped through the hash coding scheme and written to the dictionary assigned to R
logical file code DPD. A new assignment to DPD can be made with the /REMAP and \ v
/DPD directives or the $ASSIGN job control language statement. If DPD is not —

reassigned, the file currently assi‘gned to DPD is overwritten.
Syntax:
[REMAP [file][,R]
file is the name of a permanent file to assign to logical file code DPD

R rewinds the file assigned to logical file code IN before the dictionary entry
records are processed

C

Datapool Editor (DPEDIT) MPX-32
3-2 Directives Utilities

1
C"
)

SAVE/VERIFY

3.6 /SAVE Directive

The /SAVE directive preserves the contents of each active entry in the Datapool
dictionary in dictionary entry records on the file assigned to logical file code OT. An
end-of-file is written to OT when the function is complete.

When a /SAVE directive is specified, logical file codes DPD and OT must not be assigned
to the same file.

Syntax:

/SAVE

3.7 /VERIFY Directive

The /VERIFY directive checks each active entry in the Datapool dictionary for proper
placement in the dictionary, for precision to assure proper bounding, and for relative
address within the range of the Datapool to ensure the correct computed value at entry
time. Any discrepancies detected in the dictionary are noted on a listed output file.

Improperly mapped new entries are corrected and no error flags are generated.
Improperly mapped entries whose names are already in the dictionary are deleted and an
error flag is generated.

Incorrect relative addresses are corrected and an error flag is generated. Entries with no
base symbol in the dictionary, or entries whose data record is invalid, are deleted and
error flags are generated.

Range and precision errors generate flags.

Syntax:

/VERIFY

MPX-32 Datapool Editor (DPEDIT)
Utilities Directives 3-3/3-4

~

R
/ N

N

SECTION 4 - ERRORS AND ABORTS

4.1 DPEDIT Error Codes

When an error occurs, an error code is displayed. The following are DPEDIT error codes
and their explanations.

Code

EC11
EC12
EC13

EC14

ECI15
EC16
EC19
EC20
EC21

EC22
EC23
EC24
EC25
ERnn

Explanation

Attempt to delete a symbol not found in the dictionary.
Attempt to delete a symbol used as a base for another variable.

Change requested for a symbol used as a base that may result in a
change in the relative address.

The calculated relative address does not fall on the specified
boundary (precision).

The referenced base symbol is not in the Datapool dictionary.
Attempt to add a symbol that is already defined in the dictionary.
Invalid specification in directive.

Log not processed; not enough memory to sort data.

LLog not processed; scratch sort file not large enough to hold the
necessary data.

Log not processed; unrecoverable 1/O error on the scratch sort file.
Attempt to change a symbol not found in the dictionary.

Computed relative address does not agree with actual address.
Entries are multiply defined.

Error encountered in processing data statement fields. The column
number in which the error occurred is specified by "nn".

4.2 DPEDIT Abort Codes
The following are DPEDIT abort codes and their messages.

Code

DPO1

DPO2
DPO3
DPO4

MPX-32
Utilities

Message

UNRECOVERABLE I/O ERROR WHILE READING OR WRITING THE
DATAPOOL DICTIONARY.

DICTIONARY LOGICAL FILE CODE (DPD) UNASSIGNED.
UNRECOVERABLE ERROR ON ERROR (ER) FILE,
UNRECOVERABLE ERROR ON LISTED OUTPUT (LO) FILE.

Datapool Editor (DPEDIT)
Errors and Aborts 4-1

Code

DPO5
DPO06

DPO7
DPO9
DP10

DP11
DP12
DP13
DP14
DP15
DP16
DP17
DP18

DP19
DP20
DP21
DP22

Message

UNABLE TO ALLOCATE ADDITIONAL SLO SPACE FOR LISTED
OUTPUT. INITIAL FILE IS FILLED.

UNABLE TO ALLOCATE ADDITIONAL SLO SPACE FOR ERROR
FILE. INITIAL FILE IS FILLED.

INVALID DIRECTIVE.
DICTIONARY OVERFLOW,

UNABLE TO REASSIGN THE FILE ASSIGNED TO LOGICAL FILE
CODE DPD.

END-OF-TAPE OR ILLEGAL END-OF-FILE ENCOUNTERED ON
FILE OR DEVICE ASSIGNED TO LOGICAL FILE CODE IN,

PHYSICAL END-OF-MEDIA ENCOUNTERED ON FILE OR DEVICE
ASSIGNED TO LOGICAL FILE CODE OT.

UNRECOVERABLE ERROR ON FILE OR DEVICE ASSIGNED TO
LOGICAL FILE CODE IN.

UNRECOVERABLE ERROR ON FILE OR DEVICE ASSIGNED TO
LOGICAL FILE CODE OT.

LOGICAL FILE CODE OT UNASSIGNED AND THE SAVE FUNCTION
REQUESTED. ‘

LOGICAL FILE CODE IN UNASSIGNED AND THE REMAP
FUNCTION REQUESTED,,

SEQUENCE ERROR ON DICTIONARY ENTRY RECORD (ACCESSED
THROUGH LOGICAL FILE CODE IN).

CHECKSUM ERROR ON DICTIONARY ENTRY RECORD
(ACCESSED THROUGH LOGICAL FILE CODE IN).

INVALID SPECIFICATION ON /REMAP DIRECTIVE.
INVALID SPECIFICATION ON /DPD DIRECTIVE,
UNRECOVERABLE ERROR ON DIRECTIVE INPUT (SYC) FILE.

DICTIONARY SIZE IS LESS THAN THE REQUIRED MINIMUM (FIVE
BLOCKS).

4.3 Console Messages

~ The following messages are issued by DPEDIT to the operator console if logical file code
IN is assigned to a card device. The "devmnc' specification gives the device mnemonic.
After the message is issued, DPEDIT enters a program hold. To retry the read,
reposition the deck in the reader and enter the OPCOM directive CONTINUE DPEDIT, If
no retry is desired, enter the OPCOM directive ABORT DPEDIT.

DPEDIT devmnc CKSM

DPEDIT encountered a checksum error on the input (IN) file to the remap function.

DPEDIT devmne SQER

4-2

DPEDIT encountered a sequence error on the input (IN) file to the remap function.

Datapool Editor (DPEDIT) MPX-32
Errors and Aborts Utilities

»

SECTION 5 - EXAMPLES

The following example saves several dictionaries:

$J0B DPEDIT1 OWNER
~ $ASSIGN DPD TO DPD1 BLOC=N
$ASSIGN OT TO DEV=MT 1D=DPDS
$EXEQUTE DPEDIT
/SAVE
/DPD DPD2
/ SAVE
/DPD DPD3
/SAVE
$E0J
$%

The following example remaps a dictionary:

$J08 DPEDIT2 OWNER

$ASSIGN DPD TO DPD1 BLOC=N
$ASSIGN IN TO DEV=MT 1D=DPDS -
$EXECUTE DPEDIT

/REMAP ,R

/VERIFY

/REMAP DPD2

/REMAP DPD3

/ENTER :

AEQU $ (See Figure 2-1 for column placement)
$EQJ

$$

The following example expands, saves, and remaps a dictionary: .

$JOB DPEDIT3 OWNER
$EXEQUTE VOLMOR

EXTEND DPD1 EXTS=100
$ASSIGN OT TO DEV=MT ID=DPDT
$ASSIAN IN TO LFC=0T
$ASSIGN DPD TO DPD1 BLOC=N
$EXECUTE DPEDIT

/ SAVE

/REMAP ,R

$E0J

$$

The following example saves a dictionary on magnetic tape:

$JOB DPEDIT4 OWNER

$ASSIGN DPD TO DPD1 BLOC=N
$ASSIGN OT TO DEV=MT
$EXECUTE DPEDIT

/SAVE

$E0J

$$

MPX-32 Datapoo! Editor (DPEDIT)
Utilities Examples

5-1/5-2

File Manager (FILEMGR)

MPX-32 Utilities

&

CONTENTS
Section Page

- OVERVIEW

1 General Description « oo oveevveeennn N
2 Directive SUMMary...c.eeeeeoseas e s eeseessessssesseessesaans 1-

USAGE

Accessing FILEMGR ceccsecsccscsanasasnses
Saving, Restoring, and Creating Files. e v e v e vt vennnnnsns
Computing the Size of aFile..
The System Master Directory (SMD) .. v v ittt tertoreressesnanssonns
Logical File Code Assignments « ... eeeeeeeteeneeeeeeocssscocnecss
2.5.1 Source Input (SYC) v vvvvvennns
2.5.2 Listed Output (SLO)v... et eseeceseseretcesnsenans
2.5.3 Input for Restores (IN) v . veeeevenesesesesessesoasossnsns
2.5.4 Output for Saves (OUT) .t vttt vsesnevsescssossssssssssnns
2.5.5 LFC SUMMArY «eeeeeeoensssassssssacenscs cresssevenene
File-to-Tape Transfers « e v e v et eenenvneenns ceesetesanene ceceennne
Options v oot eseescsssesscscssenscnsse ceeececcesssrsrsssnes o
EXitingFILEMGR « vttt ittt ittt it eeeseesososoosossssssscnoncos

- DIRECTIVES

Introduction. . ceceeeonn ceeseccsenas c e eeseeseescess et een e
BACKFILEDlrectlve......................
CREATE and CREATEU DIrectives « e e s e vt eeeessversescscscscscsans
CREATEM Directive «.coeeen.
DELFTEandDELETEUDlrectlves.......
DELETEWDirective e« v e e vt eee e
EXIT Directive.eeeeeeeseseeocenes et e se s s e essess s e s e s e eenas
EXPANDandEXPANDUDlrectlves
LOG, LOGU, andLOGPDlrectlves.......
0 PAGEDlrectlve
1 RESTOREandRESTOREUDlrectlves.............................
2 REWIND Directive « e v v e v ene et e seesaon s
.13 SAVE and SAVEU Directives ¢ « ¢ v o v « &
I3

5

6

1
1.
1.
2 -
2.
2.
2.
2.
2.

\J‘lb\ﬂi\)v—'
]

NN NN NN NN NN
DOAVVIEE S WWN

[o oL N Rw)N

D)
| |

. . .
]]
OO0OVODONONONONVVUVEWNFMF

® 0 6 0 0 0 0000000 0005 000 00

— e Y

SAVELOG Directive « v e e e v e
SKIPFILE DIireCtivVe v v e eeeeeeesosocsscssssssosssssossscssssssses 3=
USERNAME Directive ce s o 3-

- ERRORS AND ABORTS

A Abort Codes..ceeveeeoeseenseoncns cet st eecensanssees ceeeeess 4-1
.2 Error Messages. s c v v eeeesceeenenn tesesssseseesesesseees cesene b4-1

®© ¢ 06 0 0 0 0 00 00600 00 00000 0 0

A OONNOANV S WN -~

® o6 0 00 0 00 0000000000000

2-1 File-to-Tape Transfers o ooeveen ce s seseseeeenaens cee s eseann 2-7

2"1 FILEMGRLchummaI‘y........ t-o-oo-oooonnoovou-oooo..o2'5

MPX-32 File Manager (FILEMGR)
Utilities Contents iii/iv

&

O

FILE MANAGER (FILEMGR)

SECTION 1 - OVERVIEW

1.1 General Description

The File Manager (FILEMGR) utility provides a compatible mode of operation to
facilitate converting files from pre-MPX-32 Release 2.x systems to Release 2.x and 3.x
systems. FILEMGR also creates or deletes permanent disc files, global or Datapool
partitions, and can be used to make permanent backup copies of system and user files.
(Use of these functions is not recommended).

FILEMGR is the predecessor of the MPX-32 Volume Manager (VOLMGR). With the
exception of converting pre-MPX-32 Release 2.x files, VOLMGR provides all of the
functions of FILEMGR, plus additional capabilities. It is recommended that FILEMGR be
used to convert files to MPX-32 Release 2.x and later systems, and VOLMGR be used for
all other requirements.

FILEMGR directives are based on the current user volume, system volume, or current
working directory. FILEMGR cannot be used to copy a file from one user directory into
another; to do this, use the Volume Manager (VOLMGR).

Placement of files into a specific directory is done by changing the user directory in
effect. The user name specified at logon establishes the current working directory. This
can be changed by the TSM $USERNAME job control language statement or by the File
Manager USERNAME directive:

TSM> $USERNAME name

FIL> USERNAME name

Device mnemonics and passwords are ignored by FILEMGR. Device and password
parameters are shown in directive syntax statements for compatibility purposes only.

- FILEMGR recognizes file names of 1 to 8 characters. Unless otherwise specified, files

assigned to logical file codes will be forced to the appropriate format - blocked or
unblocked.

MPX-32 File Manager (FILEMGR)
Utilities Overview 1-1

1.2 Directive Summary

Following is a list of FILEMGR directives in alphabetical order. Each directive is
explained in more detail in Section 3. A U appended to the directive specifies a user
file. System files are assumed by default when a U is not specified.

Directive
BACKFILE
CREATE

or CREATEU
CREATEM

DELETE
or DELETEU -

DELETEW

EXIT

EXPAND
or EXPANDU

LOG, LOGU, or LOGC
PAGE
RESTORE DEVICE

or
RESTOREU DEVICE

- RESTORE FILE
or
RESTOREU FILE

REWIND

SAVE DEVICE
or
SAVEU DEVICE

1-2

Function

Backspaces the magnetic tape assigned to LFC IN or OUT a
specified number of EOF marks.

Creates a permanent system or user file on the current
working volume.

Defines a dynamic area of memory with a global common
variable name (GLOBAL 00-99) or the name DATAPOOL. The
defined area can be included in the user's logical address space
by the M.INCLUDE system service. Can also define a memory
partition in the user's extended address space.

Deletes a specified system or user file and deallocates disc
space.

Deletes more than one specified system or user file and
deallocates disc space.

In interactive mode, exits FILEMGR and returns control to
TSM. In batch, designates the end of FILEMGR directives in a
jobstream.

Expands disc space of a permanent system or user file in 192-
word blocks.

Provides information about all system or user files.
Puts a page eject and header on listed output.

Restores all permanent system or user files to the current
default volume/directory. If a file being restored does not
already exist in the directory, it is added. If the file already
exists, it is replaced. ' '

Restores permanent system or user files to disc from the
device assigned to LFC IN (usually magnetic tape). (This was
the device assigned to LFC OUT when the SAVE command was
used.) If the files being restored already exist in the directory,
existing contents are replaced by the IN contents. If the file
does not exist, it is created.

Positions an input file or device (LFC IN) or output file or
device (LFC OUT) at its beginning.

Saves all permanent system or user files from the current
working volume/directory (except those created by SYSGEN).

File Manager (FILEMGR)
Overview

MPX-32
Utilities

‘o

\\\7)/

Directive
SAVE FILE
w. or
SAVEU FILE

SAVELOG
SKIPFILE

USERNAME

MPX-32
Utilities

Function
Saves specified system or user files on device assigned to LFC
OuT.
LLists the files in the current working directory on LFC IN,

heginning at the current location.

Advances past a specified number of EOFs on the file or device -
assigned to LFC IN or OUT.

Associates a new user name (current working directory) with
FILEMGR operations.

File Manager (FILEMGR)
Overview 1-3/1-4

"

SECTION 2 - USAGE

2.1 Accessing FILEMGR
FILEMGR can be accessed in the batch or interactive modes in one of three ways:

$FILEMGR
$RUN FILEMGR
$EXECUTE FILEMGR

$RUN FILEMGR is valid only from the system directory.
When accessing FILEMGR interactively, the FIL prompt is displayed:

TSM> $FILEMGR
FIL>

2.2 Saving, Restoring, and Creating Files

When files are saved, FILEMGR builds a directory containing directory entries for all
files saved in a group. A group is one or more files specified with one SAVE or SAVEU
directive. FILEMGR logs the current working and system directories and copies files in
the group to an output medium. The data is copied after the directory.

When files are restored, a directory entry is created for each file to be restored. The
directory itself must have been previously created. FILEMGR locates the file on the
input medium and reads it to temporary space on disc. It matches the name against the
user or system directory and deletes the existing file that matches the name. FILEMGR
then creates a new permanent file in the directory for the file being restored. The
existing user name from the saved version is used as the name.

Reading files into temporary space ensures that an 1/O error in the restoration process
does not result in the loss of existing disc files. This function can be bypassed by
specifying option 2 as described in the Options section.

FILEMGR cannot create, save, restore, or delete temporary files. Temporary files are
tracked by the system during task execution. FILEMGR cannot use them because they
are not logged in the volume directory. Disc space for temporary files is allocated only
for the duration of the task. FILEMGR does not allocate permanent files in space
concurrently being used by temporary files.

Global common and Datapool partitions defined by FILEMGR are considered system files.

MPX-32 File Manager (FILEMGR)
Utilities - Usage 2-]

When saving or restoring files, a question mark (wild card character) can be used in place
of any character. Since file names can contain one to eight characters, one to eight
question marks can be used in specifying a file name.

For example, using five question marks as a file name saves all files with five or less
If more than one prototype is specified in a directive line and a wild card character is
used as part of the second prototype, the following message is displayed when FILEMGR
processes the second prototype if the same file matches both prototypes:

WARNING PROTOTYPE filename NOT MATCHED BY ANY FILE

If a file name specified with a SAVE or RESTORE directive contains any of the following
characters, the name must be enclosed in single quotes:

NN SNee e

For example:
SAVEU FILE='"EM:02'

Files with special characters can only be accessed by interfaces that accept special
characters.

2.3 Computing the Size of a File

When a file is created by the CREATE or CREATEU directives, the initial file size is
defined in blocks. A block is 192 words (768 bytes). In unblocked files, records are
stored one per block.

The maximum record size for a blocked file is 254 bytes. A guide for approximating the
space required for a blocked file is:

. Records between 4 and 254 bytes long (1 and 53 words) are packed together up to a
block boundary.

. Records cannot span block boundaries.

. A new file always begins on a block boundary.

. Two header and two trailer bytes are automatically inserted on each packed record for
identification and tracking.

File Manager (FILEMGR) MPX-32
2-2 - Usage Utilities

C

In computing the space needed for blocked files, allow four extra bytes in each packed
record. Fixed length records less than 254 bytes take up blocks on the file as follows:

768 (bytes per block) Number of
Record Length (bytes) + 4 Records per Block

Number of Records Number of Blocks
Number of Records per Block

For example, if each record is 80 bytes long, each block holds nine records (768/84). To
hold 2000 records, a file must be 223 blocks long (2000/9, rounded).

The number of blocks required to accommodate variable length records can be estimated
by figuring an average byte/record value and using that value as the record length in the
formula. For a file with approximately 150 variable-length records, none exceeding 254
bytes, and the average about 50 bytes long, the computation would be:

768 150
50+4 =14 14 = 11 blocks (rounded)

Output to all disc files is assumed to be in blocked format unless otherwise specified
when assigning or allocating a file.
2.4 The System Master Directory (SMD)
The presence of a System Master Directory (SMD) is emulated to allow conversion of
pre-MPX-32 Release 2 files to MPX-32 Release 2.x and 3.x. The volume directory on
each disc contains entries for all permanent files and global common/Datapool partitions
located on that disc. Each entry is reconstructed, or defaults are used, to construct a
compatible SMD entry that shows:
. File name/partition name (limited to eight characters)
User name, if any (limited to eight characters, defaults to current working directory)
Beginning address for the file (block number)

Password (is ignored or set to zero)

Number of 192-word blocks in the file or protection granules in the partition (this is
the sum of all segments in the file)

Access speed (FAST/SLOW), disc type, channel, subaddress, and other information
used by the system when the file or partition is accessed.

2.5 Logical File Code Assignments

Default logical file code (LFC) assignments are provided for all FILEMGR operations
excent the input and output assignments for SAVE and RESTORE operations. For these
operations, the logical file codes IN (for RESTORE input) and OUT (for SAVE output) are
provided, but the files or devices assigned to them must be specified.

MPX-32 File Manager (FILEMGR)
Utilities Usage 2-3

2.5.1 Source Input (SYC)

The source input file contains FILEMGR directives. The source input file is assigned to
logical file code SYC.

SYC Default and Optional Assignments
The default assignment for SYC is to the System Control file (SYC):
$ASSIGN SYC TOSYC

In the interactive mode, source is input from the user terminal. In the batch mode,
source is input from the SYC file.

There are two optional assignments for SYC:

pathname
$ASSIGN SYC TO {ng=devmnc}

pathname is the pathname of the file containing FILEMGR source input
devmnc is the device mnemonic of a device containing FILEMGR source input

2.5.2 Listed Output (SLO)

The listed output file contains an audit trail of FILEMGR activity. The file or device to
be used for listed output is assigned to logical file code SLO.

SLO Default and Optional Assignments
The default assignment for SLO is to logical file code UT:
$ASSIGN SLO TO LFC=UT

In the interactive mode, output is generated on the user terminal. In the batch mode,
output is generated on the SLO device.

There are two optional assignments for SLO:

SI S pathname
$ASSIGN SLO TO {DEV:devmnc

~ pathname is the pathname of a file to contain the listed output. The file must have
been previously created.
devmnc is the device mnemonic of a device to contain the listed output

2.5.3 Input for Restores (IN)

Logical file code IN is used to specify the input file or device from which to restore files
that were previously saved by a SAVE directive. Logical file code IN should be the same
file or device defined for logical file code OUT when the files were saved. The IN

assignment is usually a tape from which files are to be restored. Logical file code IN is
forced unblaocked by FILEMGR.

File Manager (FILEMGR) MPX-32

2-4 Usage Utilities

E

IN Default and Optional Assignments
There is no IN default assignment.

These are two optional assignments for IN:

ASSIGN IN TO pathname
’ {DEV=devmnc

pathname is the pathname of a file containing files to be restored
devmnc is the device mnemonic of a device containing files to be restored

2.5.4 Output for Saves (OUT)

Logical file code OUT is used to specify the file or device on which to save files. The
OUT assignment is usually to a magnetic tape. Logical file code OUT is forced
unblocked by FILEMGR.

OUT Default and Optional Assignments

There is no OUT default assignment.

There are two optional assignments for OUT:

N OUT TO pathname
SASSIG DEV=devmnc

pathname is the pathname of a file to contain saved files
devmnc is the device mnemonic of a device to contain saved files

2.5.5 LFC Summary

The following is a table of the LFCs used by FILEMGR and their default and optional
assignments.

Table 2-1
FILEMGR LFC Summary
Default Optional
LFC Assignment Assignment
IN N/A pathname
: DEV=devmnc
ouT N/A pathname
DEV=devmnc
SLO LFC=UT pathname
DEV=devmnc
SYC SYC pathname
DEV=devmnc
MPX-32 File Manager (FILEMGR)

Utilities Usage 2-5

2.6 File-to-Tape Transfers

All SAVEs in a FILEMGR session apply to the magnetic tape or set of tapes assigned to
logical file code OUT prior to executing FILEMGR. A set of tapes is implied by
indicating multivolume on the device assignment. For example: ‘

$AS OUT TO DEV=MT MULT=1 ID=SAVE

When FILEMGR is ready to execute, it issues a mount message on the operator's console
prompting the operator to mount the appropriate tape. When the tape is mounted and
the operator responds on the console, FILEMGR processing continues.

SAVEs and RESTORESs must be coordinated in the following way:

. A SAVE or SAVEU directive produces a group of one or more files on tape with one
EOF mark at the end of the group.

. If a RESTORE directive in a subsequent session selects files or a group of files from a
tape that contains several groups, FILEMGR must be informed of the physical location
on the tape. ‘

. FILEMGR assumes a sequential restoration in the order that files were saved. If files
are restored outside the order in which they were saved, FILEMGR REWIND and/or
BACKEFILE directives must be used to position the input device.

Figure 2-1 illustrates the physical result of multiple SAVE/RESTORE operations.

The left side of the figure illustrates SAVEs used to output disc files to a magnetic
tape. The right side illustrates how RESTORESs could be used to restore the files back to
disc. ' :

In the figure, one tape contains five groups of files, each with a separate set of directory
entries. All files are saved for User A. One file is saved for User B, followed by files
from two other users. USERNAME with no following parameter specifies system files.
All system files are saved, then all User C files that begin with CC are saved.

User A's file, ONEFILE, is restored. FILEMGR then goes past the EOF marking the end
of User A's files. To restore the system files, the SKIPFILE directive is used to move
past two EOF s to the beginning of the system files.

Restoring User C's files requires no special directive because FILEMGR is already
positioned at the beginning of that group.

‘The REWIND or BACKFILE directives are used if files are not restored in the same order
in which they were saved. Do not use REWIND in the middle of a multivolume

restoration.

File Manager (FILEMGR) ' MPX-32
2-6 Usage Utilities

‘o
A\

N
j
\\‘K: 4)/

C

G

C

SAVES BEGINNING OF TAPE RESTORES
USERNAME A DIRECTORY
SAVEU > o ¢ USERNAME A
FILE(S) RESTOREU FILE = ONFILE
EOF
USERNAME B DIRECTORY
SAVEU FILE Tbemry — L
BERRY EOF
DIRECTORY
SAVEU FILE = (HENRY) 1,
(JOHN) 3 > FILE(S)
EOF
DIRECTORY SKIPFILE IN 2
.......................... <4—— USERNAME
RESTOREU DEVICE = DM0800
USERNAME >
SAVEU DEVICE = DM0800
SYSTEM
FILES
EOF
USERNAMEC _____p, DIRECTORY
SAVEUFILE=CC?27222 * k..iiiiliiesiseeenas USERNAME G
¢ RESTOREU
FILES
END OF TAPE

87D4S02
Figure 2-1. File-to-Tape Transfers
MPX-32 File Manager (FILEMGR)
Utilities Usage 2-7

2.7 Options

FILEMGR options are specified by number on a TSM $OPTION job control language
statement. The $OPTION statement must appear before the $FILEMGR statement in a
job stream. FILEMGR options affect processing of SAVE, SAVEU, RESTORE,
RESTOREU, and SAVELOG directives.

Option Description
1 Tape Assigned to LFC IN is Pre-MPX-32

All files restored are assumed to have eight-word, RTM
6.x or later formatted SMD entries. Eight-word MPX-32
formatted entries are written to the directory.

2 Delete Existing File Before Restoring
Normally, when restoring files, LFC IN is written first to
temporary disc file space. This option causes FILEMGR
to delete the existing disc file specified for the restore
before copying the saved file back to disc from LFC IN.

3 Save NOSAVE Files
: Overrides the NOSAVE attribute specified when a file is
created and allows NOSAVE files to be saved.

4 Change User Name to Current Working Directory
Allows all files on the save tape to be restored to the
current working directory in effect. This overrides the
user name associated with the file when it was saved on
tape.

5 Change User Name to System
Allows all files on the save tape to be restored as system

files. This overrides the user name associated with the
file when it was saved on tape.

2.8 Exiting FILEMGR

To exit FILEMGR from the batch and interactive modes, specify the EXIT directive.

File Manager (FILEMGR) MPX-32
2-8 Usage Utilities

¢

®

SECTION 3 - DIRECTIVES

3.1 Introduction

FILEMGR directives are summarized in the Overview section and explained in detail in
alphabetical order in this section.

FILEMGR directives cannot be abbreviated and must begin in column one. Several
directives and their associated parameters can be specified on one line by separating
them with commas. Blanks are ignored.

User files are denoted specifically by a U as part of the directive (SAVEU, RESTOREU,
CREATEU). If U is specified, FILEMGR first searches the directory of the user name
last specified in a TSM $USERNAME job control statement or a FILEMGR USERNAME
directive. If neither type of USERNAME statement was specified, the operation defaults
to the current working directory.

System files are assumed by default when a directive does not end in a U and if a
USERNAME statement is specified without supplying a user name.

3.2 BACKFILE Directive

The BACKFILE directive backspaces the magnetic tape assigned to logical file code IN
or OUT a specified number of EOF marks. Use BACKFILE when restoring files out of
the order in which they were saved. Because of characteristics of unblocked disc files,
BACKFILE is not valid for assignments to disc files.

Syntax:
BACKFILE le }[,n]
IOUT
IN specifies the device assigned to logical file code IN
ouT specifies the device assigned to logical file code OUT
n specifies the number of files to backspace. If not specified, the default is
one.
MPX-32 File Manager (FILEMGR)

Utilities Directives 3-1

CREATE

3.3 CREATE and CREATEU Directives

The CREATE directive allocates file space for a system file, For CREATEU, the file is
created in the current working directory or the directory of the user whose name was
most recently specified in a USERNAME statement. If CREATEU is used and no user
name is associated for FILEMGR operations, or if a USERNAME statement with no
following parameter has been specified, a system file is created.

Syntax:

CREATE [U] filename , [devmnc], blocks , [type], [FAST] y [NZRO], [NSAV]

SLLOW
, §PO , password
1Ro

filename is a one to eight character file name

devmnc allocates a disc file. Defaults to DC for Release 2.x compatible mode even
if disc device code, channel, and subaddress are specified.

blocks the initial increment size of the file. Specifies the number of 192-word
blocks to allocate for the file.

type specifies the hexadecimal equivalent of a two-character ASCII code to
display or print with the file name. If not specified, the default is 00. Files
containing load modules must be type CA.

FAST is ignored

SLOW . is ignored

NZRO suppresses initializing the disc file space to zero. If not specified, the
default is to initialize the file space to zero.

NSAV suppresses saving the file when all files on the disc are saved by a SAVE
DEVICE directive. If not specified, the default is to save the file.

RO allows write access by the owner of the file. All other users have read only
access.

PO is ignored

~ password is ignored

NOTE: This directive is provided for compatibility. Its use is not recommended; instead
use the VOLMGR CREATE FILE directive.

File Manager (FILEMGR) MPX-32
3-2 Directives Utilities

C

\\

e

CREATEM

~ 3.4 CREATEM Directive

“ The CREATEM directive defines a global common partition, a Datapool partition, or a
partition in the user's extended address space (above the 128KW logical address space
mapped for each task). Memory partitions defined by FILEMGR are dynamically
allocated when required by a task. They do not remain allocated in physical memory
regardless of use as do SYSGEN-defined partitions. To use a memory partition defined
by FILEMGR, tasks must use the M.INCLLUDE system service.

A partition defined by FILEMGR is 2KW minimum on a CONCEPT/32 computer or 8KW
on a 32/7x series computer. A SYSGEN-defined partition is structured in protection
granule increments of 512 words per protection granule.

A partition name can be created only once. If created through SYSGEN, a partition
name cannot be created again with FILEMGR. MPX-32 has the ability to multicopy
partition space into more than one logical address space.

Syntax:
GLOBALNN E RO
CREATEM DATAPOOL) ,protgran ,firstpage ,| | H , |PO{ , password
extname S

GLOBALnNn creates a global common partition (00-99) which can be physically located
in any class of memory (E, H, or S) and is mapped into the address space of
each task that accesses it through the M.INCLUDE system service

(' DATAPOOL creates a Datapool partition whose structure is defined by one or more
— Datapool dictionaries. Like global common, the Datapool area can be
physically located in any class of memory (E, H, or S) and is mapped into
the logical address space of each task that accesses it. The first task

calling M.INCLUDE defines the partition as sharable.

extname is a one to eight character name of a memory partition in a task's extended
address space. This partition may be mapped into memory above the first
128KW logical address space available to a task. Since the partition is in
extended memory, certain restrictions apply. Refer to the MPX-32
Reference Manual.

Partitions in a task's extended address space can be located in any class of
physical memory (E, H, or S).

The name used for a partition that is allocated in extended address space
must not be GLOBALNn.

protgran specifies the number of 512-word protection granules to include in the
partition. (Four protection granules equal one map block on a
CONCEPT/32 computer; sixteen protection granules equal one map block
on a Series 32/7x computer.) Unused physical protection granules within
the last map block allocated to the partition are write-protected from all
sharing tasks. Only one partition may be defined in any one map block.

C
)

MPX-32 File Manager (FILEMGR)
Utilities Directives ~ 3-3

CREATEM (Cont.)/DELETE

firstpage specifies the starting protection granule in the nonextended logical address
space (pages 0 to 255) or in the extended address space (pages 256 to 495 on
a Series 32/7x or pages 256 to 1019 on a CONCEPT/32) where the partition
is to be mapped. Protection granules in the first several map blocks should
not be specified because they are used for the MPX-32 operating system.

Protection granules for global and datapool partitions are normally
allocated from the top down in a task's logical address space, or below any
SYSGEN-created common partitions.

E allocates the partition in the first 128KW. If not available, the partition is
queued in the Memory Request Queue (MRQ) until class E becomes
available.

H allocates the partition in class H (high speed) or E memory. If H and E are

not available, the partition is queued in the MRQ until class H or E
becomes available.

S allocates the partition in class S (slow), H, or E memory. If no memory is
available, the partition is queued in the MRQ until memory becomes
avallable.

RO allows write access to the owner of the file, All other users have read only
access.

PO is ignored

password is ignored

NOTE: This directive is provided for compatibility only. Its use is not

recommended; instead use the VOLMGR CREATE COMMON directive.

3.5 DELETE and DELETEU Directives

The DELETE and DELETEU directives delete files from disc and free the disc space.
When a file is deleted, its directory entry is removed. The DELETE directive deletes
system files. The DELETEU directive deletes user files from the current working
directory or the directory of the user whose name was specified in a TSM $USERNAME
statement or FILEMGR USERNAME directive.

Syntax:
DELETE[U] filename [,password]

filename specifies a one to eight character file name. The name cannot contain
blanks or wild card characters.

password is ignored

To use the DELETE command, the user name in effect must have delete access to the
file to be deleted and delete entry access to the directory where the file is located.

NOTE: This directive is provided for compatibility only. Its use is not
recommended; instead use the VOLMGR DELETE FILE directive.

File Manager (FILEMGR) MPX-32
3-4 Directives Utilities

-

_/

DELETEW/EXIT

3.6 DELETEW Directive
The DELETEW directive deletes more than one file per directory from the disc, frees
disc space, and remaves the directory entry for each deleted file from the current
working directory. Up to 20 file prototypes can be specified per directive. A directive
can be continued on several lines. Each line must contain a comma as the last nonblank
character.
There are no defaults for the DELETEW directive. For each file to be deleted, the word
SYSTEM or the user name of the current working directory and the file name must be
specified (see the Examples section for sample use of this directive).
Syntax:
DELETEW [FILE=] prototype [,prototype...]
prototype identifies a file as follows:
(username [,key]) ['] filename ['] [;password]
username,key user name and optional key must be the same as the current working
directory and must be enclosed in parentheses. The name SYSTEM can
be used to specifically indicate system files and must be enclosed in
parentheses.

filename specifies a one to eight character file name. Wild card characters (?)
are allowed.

spassword is ignored

NOTE: This directive is provided for compatibility only. Its use is not recommended;
instead use the VOLMGR DELETE FILE directive.

3.7 EXIT Directive

The EXIT directive exits FILEMGR and returns control to TSM when running in the
interactive mode.

When running in the batch mode, the EXIT directive signifies the end of FILEMGR
directives in a jobstream.

Syntax:

EXIT

MPX-32 File Manager (FILEMGR)
Utilities Directives 3-5

EXPAND/LOG/PAGE

3.8 EXPAND and EXPANDU Directives

The EXPAND and EXPANDU directives increase the size of an existing file. If the file
space is increased in size, the additional space is zeroed if the file was not created with
the NZRO attribute. '

Syntax:
EXPAND[U] filename, blocks [,password]

filename specifies a one to eight character file name. The file name cannot contain
blanks or wild card characters.

blocks is the new size of the file. Specifies the number of 192-word blocks to
allocate for the file. ’

password is ignored

NOTE: This directive is provided for compatibility only. Its use is not
recommended; instead use the VOLMGR EXTEND directive.

3.9 LOG, LOGU, and LOGC Directives

The LOG and LOGU directives provide information about all permanent files defined in
the system or user directory or a subset of files. Output includes the file name,
directory name, device on which the file resides, starting address of the file, file size,
and file type. If no parameters are specified, the output contains data on all permanent
files in the system directory (for LOG) or current working directory (for LOGU).

Syntax: o

LOG [g] [[FILE=] prototype] [,prototype ...]
C provides same results as if no parameters were specified
FILE= limitsbthe lyist to a specific file or set of files

prototype - identifies files as described in the DELETEW directive. Up to 20 file

prototypes per directive can be specified. A directive can be continued on
several lines or cards if each line or card contains a comma as the last
nonblank character.

3.10 PAGE Directive
The PAGE directive forces a page eject and prints a header on the listed output. A
header is automatically printed on the first page of the listed output without specifying
the PAGE directive.
Syntax:

PAGE

File Manager (FILEMGR) MPX-32-
3-6 Directives Utilities

RESTORE

3.11 RESTORE and RESTOREU Directives

The RESTORE and RESTOREU directives copy files saved by a SAVE or SAVEU directive
back to disc. Assign the medium that was assigned to logical file code OUT during the
save to logical file code IN to restore the files. The RESTORE and RESTOREU
directives can be used to restore:

. All system and/or user files assigned to logical file code IN to the system or a user
directory on the current working volume

. A subset of system and/or user files
When specifying a list of prototypes, files from other user names can also be restared.
Syntax:

RESTORE[U] [DEVICE=devmnc], [FILE= prototype][,prototype ...]

DEVICE= restores all files from logical file code IN to the system or user directory
on the current working volume

devmnc is ignored

FILE= limits the restoration to a specific file or set of files

prototype identifies files as described in the DELETEW directive. Up to 20 file
prototypes per directive can be specified. A directive can be continued on
several lines or cards if each line or card contains a comma as the last

nonblank character.

If no parameters are specified, all files from logical file. code IN are
restored to the system or user directory on the current working volume.

Usage:

FIL> RESTORE

This example restores all files from logical file code IN to the system or user directory.
FIL> RESTORE DEVICE=DMO0800

This example restores all system and user files from logical file code IN to the current
system or user directory.

MPX-32 File Manager (FILEMGR)
Utilities Directives 3-7

REWIND/SAVE

3.12 REWIND Directive
The REWIND directive rewinds a file or device.

FILEMGR does not rewind automatically after saves or restores. If a tape has not been
rewound off-line, the REWIND directive should be used.

Syntax:
IN
EWIND
R {OUT}
IN specifies the device assigned to logical file code IN
ouT specifies the device assigned to logical file code OUT

3.13 SAVE and SAVEU Directives

The SAVE and SAVEU directives copy permanent disc files to the medium assigned to
logical file code OUT. Normally files are saved on and restored from magnetic tape.
SAVE is usually used for creating backup copies.

The SAVE and SAVEU directives can be used to copy:

. All system files and/or all files belonging to a particular user

. A subset of system and/or user files

If no user name is associated with FILEMGR operations, or if a USERNAME statement
with no following parameter has been specified, system files are saved.

As files are saved, FILEMGR builds a compatible SMD entry containing the same
information as the pre-MPX-32 Release 2 SMD. The SMD entry is output at the
beginning of each group of files saved on the medium assigned to logical file code OUT.
An error message and a zero-filled block on logical file code OUT indicating an end-of—
file (EOF) is produced if a SAVE directive is specified and no files are saved.

An audit trail of all files saved in a particular FILEMGR session is listed au'tomatically
on the device assigned to logical file code SLO. The files are llsted in the order in which
they were saved.

Syntax:

£ [DEVICE=devmnc]
SAVE [U] [{[FILE=] prototype [,prototype ...]

If no parameters are supplied, all system and user files (SAVE) or all user
files in the current working directory (SAVEU) are saved on logical file
cade OUT.

File-Manager (FILEMGR) ~ . MPX-32
3-8 Directives Utilities

&

C

SAVE (Cont.)/SAVELOG

DEVICE-= saves all files from the system or current working directory
devmnce is ignored
FILE= limits the save to a specific file or set of files.

prototype identifies a file as described in the DELETEW directive. Up to 20 file
prototypes per directive can be specified. A directive can be continued on
several lines or cards if each line or card contains a comma as the last
nonblank character.

Usage:
FIL> SAVE

This example saves all system and user files in the system and current working
directories.

3.14 SAVELOG Directive

The SAVELOG directive lists the files grouped in the current directory that resides on
the tape assigned to logical file code IN. After the files are listed, the tape returns to
the beginning of the current directory.

The SAVELOG directive is useful during restoration because it allows matching of
RESTORE directives against the actual saved files on a tape. Checking the contents of a
tape also ensures that the right tape is mounted.

If a tape contains several directories, the SKIPFILE directive can be used to get to and
list the next directory. For example, if a tape has three directories, the following
directives: '

SAVELOG
SKIPFILE IN
SAVELOG
SKIPFILE IN
SAVELOG
REWIND IN

output all directory entries to the device assigned to logical file code SLO. If SAVELOG
is inserted between the RESTORE directives, each directory list precedes the RESTORE
operations shown on the SLO device.

Syntax:
SAVELOG

MPX-32 File Manager (FILEMGR)
Utilities Directives 3-9

SKIPFILE /USERNAME

3.15 SKIPFILE Directive

The SKIPFILE directive advances past one or more end-of-file (EOF) marks on the file or
device assigned to the logical file code IN or OUT.

Syntax: v
IN
SKIPFILE
{OUT} Lynd
IN specifies the device assigned to logical file code IN
ouT specifies the device assigned to logical file code OUT
n specifies the number of EOF's to skip. If not specified, the default is one.

For sample use of this directive, see Figure 2-1 and the SAVELOG directive description.

3.16 USERNAME Directive

The USERNAME directive names the directory to be used for subsequent FILEMGR
operations. .

If running from a terminal in TSM, the initial user name defaults to the directory name
established at logon. The initial user name can be changed by supplying a different name
in a USERNAME directive.
Syntax:

USERNAME [username] [,key]

username specifies the name of a directory on the current working volume. If no name
is supplied, defaults to system files.

key is ignored

File Manager (FILEMGR) : MPX-32
3-10 Directives Utilities

«

4.1 Abort Codes

SECTION 4 - ERRORS AND ABORTS

FILEMGR generates the following abort codes and messages:

Code
FM13
FM14
FM15
FM16
FM17

FM20

FM41
FMa42

FM99

Message
UNRECOVERABLE I/O ERROR TO THE DIRECTORY

UNRECOVERABLE I/O ERROR TO THE SYC FILE
UNRECOVERABLE 1/0 ERROR TO THE SLO FILE
UNRECOVERABLE I/O ERROR TO THE 'IN' FILE
UNRECOVERABLE 1/O ERROR TO THE 'OUT' FILE

UNRECOVERABLE I/O ERROR ON SAVE, RESTORE, OR EXPAND
FILE

END-OF -MEDIUM ON LFC SLO
INVALID USER NAME

ERROR(S) (DESCRIBED ON LFC SLO) DETECTED DURING
EXECUTION

4.2 Error Messages

The following are the possible error messages for errors which lead to an FM99 abort

code.

INSURE BOUNDING

INVALID COMMAND VERB

REQUIRED ARGUMENTS ARE ABSENT

REQUEST IGNORED - FILE ALREADY EXISTS

INVALID DEVICE SPECIFICATION

INVALID NUMERIC SPECIFICATION

SPECIFIED FILE IS ACCESS PROTECTED

REQUEST TO EXPAND MEMORY PARTITION

REQUEST IGNORED - SPACE UNAVAILABLE

MPX-32
Utilities

File Manager (FILEMGR)
Errors and Aborts 4-1

REQUEST IGNORED - COLLISION MAPPING
UNABLE TO DELETE FILE - VMxx
INSUFFICIENT FAT SPACE FOR SMD
INVALID ARGUMENT
CANNOT ALLOCATE REQUIRED RESOURCE - VMxx
UNEXPECTED EOF ON IN FILE | RV
FILE SPECIFIED NOT FOUND
OVER 20 PROTOTYPES SPECIFIED IN COMMAND
EOF EXPECTED - NOT FOUND
ERROR ENCOUNTERED WHILE MAKING TEMP FILE PERMANENT
UNABLE TO ALLOCATE SCRATCH FILE
INVALID CHARACTERS IN FILENAME
ERROR IN SORTING LOG LISTING
WARNING: FILE (username) filename -- IS "NO SAVE". OPTION #3
MUST BE SPECIFIED TO SAVE
{RESTORE}
WILD CARD DELETE (DELETEW) MUST HAVE ARGUMENTS
USER NAME MUST BE EXPLICITLY STATED WITH WILD CARD DELETE (DELETEW)
FILE NAME(S) NOT SPECIFIED
END-OF -MEDIUM ENCOUNTERED ON LOGICAL FILE CODE "Ifc"
NAMES "GLOBAL" AND "DATAPOOL" INVALID IN EXTENDED MEMORY
NO DIRECTORY' ENTRIES ARE AVAILABLE
UNABLE TO ACCESS RESOURCE IN REQUIRED MODE. ACCESS RIGHTS VIOLATION.

UNABLE TO CREATE MEMORY PARTITION,
ERROR = VMxx REPLACED WITH ASCII NUMBER

INVALID COMMAND - USE VOLUME MANAGER TO CREATE DIRECTORIES
INVALID COMMAND - USE VOLUME MANAGER TO CREATE SDT TAPES

UNABLE TO EXPAND FILE - VMxx

File Manager (FILEMGR) MPX-32
4-2 Errors and Aborts Utilities

)

SECTION 5 - EXAMPLES

This section provides sample programming sequences illustrating the use of various
FILEMGR directives.

The following example converts 2.x/3.x disc files to 1.x tape files. FILEMGR saves all
files in the current working directory to tape.

TSM>AS OUT TO DEV=M9
TSM>FILEMGR
FIL>SAVEU

FIL>EXIT

TSM>

The following batch example restores l.x tape files to 2.x/3.x disc files. FILEMGR
restores all JJ. files with five or less trailing characters and a username of DIRABC to
disc in directory DIRABC.

$JOB EXAMPLE2 OWNER
$AS IN TO DEV=M9

$FILEMGR
USERNAME DIRABC
RESTORE FILE=(DIRABC)JJ.?777?
($E0J
$$
C
MPX-32 File Manager (FILEMGR)

Utilities Examples 5-1/5-2

Z}’i\\

)

Macro Assembler (ASSEMBLE)

MPX-32 Utilities

CONTENTS

Section - Page

1 - OVERVIEW

1.1 General Description « ¢ ot v o veeeeteeeeeeccccssssscnns O |
1.1.1 Macro Assembler Featureseeeeeeacssosssescasasnssasns l
1.1.2 Macro Assembler Operation «....veeeeeeeceescssesssaenas 1=
1.2 Directive SUMMAry .. oo oot e eeeeceessesesssssosassscsncssnans 1

2 - USAGE

2.1 Accessing the Macro Assembler. s oo e e eeeeseeceeeeeecosssosscascccss
2.2 Logical File Code Assignments «...eeeeeteeeseossssscsscscasccnsccs
2.2.1 Source Input (PRE andSI) v cvvevevennnnnns
Macro Libraries MAC andMA2) .. it tiinrnnenenescsnnnans
Temporary Files(UT1 andUT2) e et eeeneenee.
Listed Output (LO) v e vvv v eenencenns
Object Cede - BO (Binary Object) and GO
(General ObjJect) v v veeeesoonssosesesessscesssassoannsns
2.2.6 Compressed Source (CS) v v vveeeesesecsarosasnscncssonnans
2.2.7 LFC SUMMArY ¢ oeeeeseossascsccsssssosossassssssssscsas

)
V& & W=

NN N
NNNl'\)NN

N
V& W

2.3 Options cscecssecensestscteanseccssasreene
2.4 Exitingthe Macro Assembler. ..o vcveee ettt eetoeeeeceanacnsas 2-
2.5 USingMaCI‘OS...... ------ ® 8 06 0 0 06 0 06 0 0 0 02 0 0 00 0900 000000006000 0008 -

NNN!.\)NNN

2.5.1 Macro Components...ceseeeeeecesss
2 Symbolic Parameters «...eeeeeeeeens
3 Macro Definition ce e eetcecccsosesasennn
4 Macro Call. s st eeeeeeenssosssnsossosssssossssassssnsas
5
6
7

Macro EXpansioneeieeeeceesesssossssccnocssssses
Label Generation withinMacros «....ccceveeeerccccosaces
Symbol Concatenationcceeeeeeccasccscscnoocnsasnss

2.5.8 NestedMacros « v e e v e eveveee ceenee
.6 = 1 - oo o)
7 Global ComMmMON oo et eeteesaessscscssesossosossasssscsscscsossess

AN ELENNFFOOVVOVONIONU

NN NN NN
I e e e N el

1 Introduction. ..o ieieeccesncanas
.2 Source Statement Format . . o vttt ittt iieeetsesssncssssans
3.2.1 LabelField ... ciiiiiiiieiiieieieeeeeeessneccncocnnsas
Operation Field0.. O
OperandField .. .veeeeeeenoerseseesssecnsncoscosssncsnss
Comment Field ..cceiieeieeseeteteeeceooscnsssscsancncs
Sequence Field. ...t ieneeennnnnn tecesceses
Continuation Lines ¢ v v vvevesensceecesosnososnosssssssassass
Character Set + ... eeeeeseceososssssccosssnnsssansss
3.2.7.1 Escape Character........
Representation....... ceeesseaen cececesssessesssanens
Symbols......... Gt e et ece e eesetesacssse e nsaasass
Literals ¢ v vt vt tve sttt eveesonassssssssssscesosssassnsncs

2
2
3 - MACRO ASSEMBLER LANGUAGE
3
3

WA WA
ISR N
R RV I SN

3.3

e o O
el
N~

t

e et e e e e e e
ON O\ ON D B AW AN AN bt b bt bt

N W

MPX-32 Macro Assembler (ASSEMBLE)
Utilities Contents iii

Section

3.3.3

3.4 Add

-

3.4.1
3.4.2
3.4.3
3.4.4
3.4.5
3.4.6
3.4.7
3.4.8

- DIRECTIVES

NNNNNNNNNNH?—‘HF—';—"—'HP—'H’—‘\DCD\IO\WJ-\\NNH

NVONOANWVMESEWNFODOVONONUVMEWNEFO

e 8 e e e o ¢« o o o

.

. o . .

.

MWW W

essing Techniques ...

Introduction. .
ABS Directive ..
ACDirective « v vvveveeeeneans
ANOP Directive....

GEN Directive v e v e v v v v s
GOTODirective c e s e 0 e v«
IFA DIrectiVe. st vt vt ettt eesseeessscosssosssasessssossoasnsnsons
IFF Directive e e oo o0 vt .
IFP Directive s e ¢ e s o«
TFT Directive s e ¢ 0« v
LISTDxrectlve.............
- LPOOL Directive « e v e e e v e s e v cees e
ORG Directive s v v oo e oe &
PAGE DIrECLIVE « o v o e oo esossoecsessscsonscssssosssscsssssees U4-25

nst

Y}

[7] CD\IO\U'I&\AN#—'

G-Character String. .

W)

.

Floating Point
Floating Point Decxmal

uuuu'uuuuo

3
3
3
3.
3.
3
3
3.
r

SIONS ¢ o eeeveons

x

pre
. 4.
3.3.4.2

N
Nt
[

Expression Types
Location Counter . ..
Self-Relative Addressing.......

® 00 0000 0 0

Symbolic Addressing e .eeoeeeeen

Relative Addressing « oo v 000 v ..

Absolute Addressing ¢« c « v v e 0o .

Literal Addressing . ¢cc0 ..
Blank Addressing ..

e e 00 0 0 0 0 ..

~ Addressing Attributes...... v

® ® 0 060 060 000500000 0000

® 0 6 0 0 0 00 0000000 00 00

® o 08 0 00 000 000

* o o 0 o

© o 0 00 00 0000 000000

o o s o

IWOPA (E) + v vevnsnnennns
Floating Point Decimal Doubleword (R) « v cveevees.. 3-20

® 6 s 00 000 0 00 ® o e 0 0 0 0 00

NES c s eevesenccsoosscsosoaccsnse

C-Character String. .o coeceesee

Hexadecimal Constant (X)......
Fixed Point Decimal Word (N) . ..
Fixed Point Decimal Doubleword (F)

o e 0000 600 000 e

Expression Evaluation.........

e s 0o 0 o

Page

® o 0 2000005000000 00 3"7

e
cececssssesssseass 3-11
e 23 B
3-13
3-16
cessesecessses 3-18
. 3-19

o o e 0 0 0

® e o 80 000000000 00

o o 0 0 00 0 0

R 231
Ceeeeeeeeeeaaae. 3222
3-22
3-24
Ceeeeeeneeea .. 3220
Ceeeea. 3225
cee.. 3226
el 3227

@ 0 0 069 060 080800 00

® 5 0 0 000 0000000 00

e o 000 00 08

® o’ 0 00 0 0 0o

s 1Y
Ceeececssensennnsenes 327
coesenas cececcaneee. 3-28
s 294

1

2

2

BOUND DirECtIVE e e v v et s eeeeeeoessosseseseossssssssasssassaseee =4
COMMON DIirective « e o e e e e s ooeeese ceeessevsscassaseseses 8=5
COMPUTED GOTODirective «veeesceeeeesceecssnosssonsssssseees b7
CSECT Directive ¢ v eeeeee ceeesane c e e e et s s sscssecccssssssssesse b4=7
DATA DIrectiVe e o e o ceecovesseesescscscsccse Y £ gt
DEF Directive oo eeeeeeeeoeatsccscessssssosscsscsassscsssassass 410
DEFM DIrectiVe ¢ o e e e e e ot s seeeeccsnoscscsscsascses ceeesssscess 4-10
DSECT Directive ¢« ¢ e e e .. c e et e e ceecessesersersscessessscencess 4-11
END Direcctive ¢ oo ceeeeosee ceees s e c e e s st e eee s ss e . 4-11
ENDM Directive. .o cveveen. I I A ceeeaen cerseeeeaes 4-12
ENDR DIrectiVe ¢« o « e e e e oo eeoeececoceseses . Y < B 4
EQU Directive ¢« ¢ e e e v e e v v c e e ceaceae e e e e iecsenenn e eeeees U4-13
EXITMDIrective o eeeeecesccocosssoscssssscscs ceseseseess 4-13
EXTDIirective ¢ coeeeeeeeesvccsonsonee < £}
FORM Directive. . v oo T X
4-19

4-20

4-20

4-21

4-22

® 9 % 08 006 0000 06008 00000 o o 0 0 0

Macro Assembler (ASSEMBLE)

Contents

® o e 00 000 0

bbbb-l.}bbbb

@ o 8 00 060000000 00

cessreceeeeeeas 4-22
ceceeserssessenes 4-23
4-24
ceeees 84-25

® 5 0000 0 0 0 0

MPX-32
Utilities

S

N

Section Page

PROGRAMDIrective «v.oeeeeeeeeeeeeas Y A)
REL Directive v vvv vttt it neeessn anae e terttecssaneasenn . 4-26
REPT Directive ¢« oo e vt et v eeeencenss e e et e s et et escen e e ee. 427
RES Directive ¢ oo eeeeees e e Gttt et eet et e e et e e ee s . 4-28
REZ Directive ¢« e e eeeeereesnsenns S, e e e ee e eee. 4-30
SET Directive oo eeeeeeeees e e e e et ettt eesessssasesesesasaes U4=-32
SETF Directive «cceeeeeen c et et et e s e e Y ¥ ¥4
SETT DIirective «eeeeeeecereeeececccsosessoconocsase ceteeseaes ees 4-32
SPACE Directive « v e e oo e e e es et es st e s ee e e ceseesesceses 433
TITLE Directive « o « e« e ¢ e e 0 cee oo e s 5 3

W AN AW W W W W W W

)

W opEspspeees
NVONONWVNESEWNKEFO

- ERRORS AND ABORTS

ErrorCodes c v v vevveonanns ceee e . 0
Abort CodesS..veeeevees certee e ceseaceseen .]
Error Messages. . v« c e e o ceee e ceesescccas s B

O W
WIN -

- OUTPUT AND EXAMPLES

Introduction..cceeeeeeeececanss

6.1 23 |
6.2 Source Listing «¢ec0e0e teeecscessssaressssssssasssessscasasss 6-1
6.3 Symbol Cross-Reference v e oo v vvessseveeocsossscsosssccsasan . 6-4
6.4 Error Diagnostics v v oo o vt eeeeteeecececsssescessncscnssssssanss 6-7
6.5 Object Output ceeeansann cee et cesesrssnsssnss 6-7
6.6 Macro Assembler Programming Examples. . .t v voevsveeessssccccsases 6-9
APPENDICES
A InstructionFormatscocveeeesncccncoansocnnnas ceesesecesss A-l
B Extended Mnemonic Codes cheesessesecnassecsssssssassss B-1
C Compressed Source Format........ seeeesenns O 025 1
D ASCIICode Set . ceeeeeeessesecosnesassssesasscsssssasssseass D=1
FIGURES
2-1 ~Macro Assembler Flow of Operation ...coceveeteteccccssecennes ces 222
3-1 Assembler CodingForm ...coveevean s R4
3-2 Floating Point Data Formats..... s 23 8
6-1 Sample Assembler Listed Output . . v vttt i ettt eneeeeanasanas 6-3
6-2 Sample Symbol Cross-Referenceceeeeeeeeeeeerteesccccocceoss 6-6
6-3 PassOneErrorlist e ettt Ceeecceneas 6-7

TABLE
1. Macro Assembler LFC Summaryccveeeeeenesns
1 ASCII Control Characters « e« e e e o s s s e eossoeossssase .

2 Addition Operations .. .cceeeeeess
-3 Subtraction Operation. . s oo ceeeesesscssosossososssssssscsssosass
4 .

5

Multiplication/Division Operations. ceeenens
Operand Code Format....... ceerecsecseaesrtnnns

MPX-32 Macro Assembler (ASSEMBLE)
Utilities Contents : v/vi

VRN

\\\7\7)/,‘

MACRO ASSEMBLER (ASSEMBLE)

SECTION 1 - OVERVIEW

1.1 General Description

The Macro Assembler (ASSEMBLE) utility translates Macro Assembler source code into
standard non-base object programs for execution. Assembler source code consists of
Assembler language instructions and Macro Assembler directives. The Assembler
language instruction set is described in the CPU reference manual that corresponds to
the machine type being used.

Macro Assembler directives provide capabilities for program control, symbol and data
definition, listed output, and macro support. Macro Assembler source statement format
is described in Section 3.

The Assembler recognizes 1 to 16 character file names. Unless specified, files assigned
to logical file codes will be forced to the appropriate format-blocked or unblocked.

1.1.1 Macro Assembler Features
General operating features and capabilities of the Macro Assembler include:

. A comprehensive set of Assembler directives.

. Mnemonic operation codes for all directives and instructions.

. Symbolic addressing.

. Decimal (integer and real), hexadecimal, and character representation of machine
language binary values.

. Programs may be arbitrarily grouped into logical sections (subroutines) which may be
assembled separately and combined into one executable program at load time.
Linkage information between sections is provided through the EXT and DEF Assembler
directives.

. Relocatable object programs.
. Macro instruction support.
. System services support.

. Listed output of source program and resulting object code.

1.1.2 Macro Assembler Operation

The Macro Assembler translates Assembler source program statements into binary-
equivalent machine instructions, equates symbols to numeric values, assigns relocatable
or absolute memory addresses for program instructions and data, and generates listed
output. -

MPX-32 Macro Assembler (ASSEMBLE)
Utilities Overview 1-1

After a source program has been assembled, the object module output can be placed in a
subroutine library or a permanent file, output to a device medium, or cataloged into a
load module. Object modules can be linked together to form a single task by assembling
and cataloging the modules in the same job, by accessing the Subroutine l_ibrary during a
separate Cataloger run, or by using a $SELECTx job control statement in batch mode
prior to cataloging the object madules.

1.2 Directive Summary

Macro Assembler directives provide program control, symbol and data definition, listed
output control, conditional assembly, macro support, and special usage functions.
Directives are summarized by function below. Section 4 contains detailed directive
descriptions in alphabetical order. Extended mnemonic instructions are listed in
Appendix B.

Program Control

ABS Assembles s‘ource code in absolute mode (CATALOG does not process)

REL Assembles source code in relocatable mode

CSECT ~ Assembles source code in code section mode

DSECT Assembles source code in data section mode

ORG Assigns a value to the location counter ;

BOUND Advances the location counter to represent a byte multiple of a

specified value

RES Reserves memory locations
REZ Reserves and zeroes memory locations
END Indicates the end of Assembler source code

Symbol Definition

EQU Defines a symbol by equating it to an expression
EXT Declares an external reference
DEF Declares an external definition

Data Definition

GEN Constructs a hexadecimal value by generating a bit pattern
DATA Generates a value |
AC Generates an address constant
Macro Assembler (ASSEMBLE) MPX-32

1-2 Overview Utilities

Conditional Assembly

ANOP No operation
GOTO Branches unconditionally

Computed GOTO Branches conditionally based on indexed argument list

IFF Branches if the specified expression is evaluated as true
IFT Branches if the specified expression is evaluated as false
SET Assigns the value of an expression to a label

SETF Assigns the value false to a label

SETT Assigns the value true to a label

L_isted Output Control

PAGE Causes a page eject on listed output

SPACE Skips lines on listed output

TITLE Prints a title at the top of each page of listed output

LIST Controls listed output by requesting or inhibiting parts of source output

Macro Support

DEFM Defines a macro by specifying its name and arguments
ENDM Terminates a macro definition

EXITM Terminates processing of a macro structure

IFA Branches on presence of arguments

IFP Branches on absence of arguments

Special Usage

PROGRAM Specifies the name of an Assembler program

COMMON Defines, manipulates, and initializes common communication areas.
LLPOOL Inserts literals into object code

REPT Generates a repeat loop

ENDR Terminates a repeat loop

FORM Defines variahle length data subfields

MPX-32 Macro Assembler (ASSEMBLE)

Utilities Overview 1-3/1-4

\\,/’

SECTION 2 - USAGE

2.1 Accessing the Macro Assembler

The Assembler can be accessed in batch or interactive mode in one of three ways:

$ASSEMBLE
$RUN ASSEMBLE
$EXECUTE ASSEMBLE

$RUN ASSEMBLE is valid only from the system directory.
When accessing the Assembler interactively, the ASS> prompt is displayed:

TSM > $ASSEMBLE

ASS >
2.2 Logical File Code Assignments
Logical file code (LFC) assignments are made by the $ASSIGN job control language
statement. In an Assembler program, place the assignment statements before the
$ASSEMBLE statement. If no assignments are made, the Assembler uses default

assignments.

Figure 2-1 shows the Assembler's flow of operation and default assignments for logical
file codes.

MPX-32 Macro Assembler (ASSEMBLE)
Utilities Usage 2-1

LISTED
OUTPUT
> Lo
INPUT PASS ONE PASS TWO
SI,PRE PROCESSING PROCESSING
' BINARY
s 2 s 4 ouTPUT
BO
SYMBOLIC
CROSS-
REFERENCE
TABLE
uT2
MACRO
LIBRARY
MAC,MA2
MACRO
®1 SsTORAGE
TABLE
87D4Q01

Figure 2-1. Macro Assembler Flow of Operation

The default assignments are not valid in independent mode. If an LFC is assigned to a
file, that file must have been previously created.

During Pass One, the Assembler scans the source code for macro calls, referenced
symbols, and errors which will not be resolved in Pass Two. Unresolvable errors include
multiply defined symbols and illegal operations.

If the source program contains macro calls or referenced symbols, the Assembler
dynamically establishes macro storage and symbol cross-reference tables in memory.
- Additional memory for these tables is allocated when they are accessed during Pass
Two. However, the Assembler deallocates statically allocated memory before
dynamically allocating additional memory.

During Pass Two, the Assembler reads the source code from the scratch file created
during Pass One. The macro storage and symbol cross-reference tables are accessed to
resolve macro and symbol references. If necessary, a macro library is also searched.

Macro Assembler (ASSEMBLE) MPX-32
2-2 ’ Usage Utilities

®

After the scratch file is processed, the output is sent to the device or file assigned for
listed or binary output.

The following sections describe the LF C assignments used by the Assembler.

2.2.1 Source Input (PRE and SI)

Source code is assigned to logical file codes PRE and SI for input. Source code can be
input from any device or file and can be in compressed format. User program source
code should be assigned to SI.. Source code containing nonexecutable Assembler
directives (such as SET directives) can be assigned to PRE. During processing, the source
code assigned to PRE is input until an end-of-file (EOF) is reached, then the source code
assigned to Sl is input.

The Macro Assembler accepts source input in upper and lower case. All input except the
text specified in a TITLE directive, G-character strings, and C-character strings are
converted to upper case by the Macro Assembler.
SI Default and Optional Assignments
The default assignment for Assembler source input is:

$ASSIGN SI TO SYC
There are two optional assignments for Sl:

$ASSIGN SI TO pathname

DEV=devmnc

pathname is the pathname of the file containing Assembler source input
devmne is the device mnemonic of a device containing Assembler source input

PRE Default and Optional Assignments

There is no default assignment for PRE.
There are two optional assignments for PRE:

$ASSIGN PRE TO |pathname

DEV=devmnc

pathname is the pathname of the file containing nonexecutable Assembler source input
devmne is the device mnemonic of a device containing nonexecutable Assembler
source input

MPX-32 Macro Assembler (ASSEMBLE) ‘
Utilities Usage : 2-3

2.2.2 Macro Libraries (MAC and MA2)
If macros are called in the source program, the Assembler searches a macro library
during Pass One processing. The system macro library (M.MPXMAC) provides a
collection of macro definitions which can be used by source programs. Users can also
add macros to the library using the MACLIBR utility. :
In addition to M.MPXMAC, the Assembler can support another macro library referenced
by logical file code MA2, If assigned, MA2 is searched before MAC and the permanent
symbol table for all names that appear in the opcode/instruction field of Assembler
statements. Assignment to MA2 is useful for overriding an existing opcode or Assembler
directive. However, use of MA2 is not recommended unless this override feature is
needed.
Logical file codes MAC and MA2 are forced unblocked by the Macro Assembler.
MAC Default and Optional Assignments
The default assignment for MAC is to the system macro library (M.MPXMAC):

$ASSIGN MAC TO @SYSTEM(SYSTEMM.MPXMAC
There are two optional assignments for MAC:

$ASSIGN MAC TO)@SYSTEM(SYSTEM)M.MACL IB
pathname

M.MACLIB contains RTM-compatible macros
pathname is the pathname of the file containing the macro library
MA2 Optional Assignment
There is no default assignment for MA2 and one optional assignment:
$ASSIGN MA2 TO pathname
pathname is the pathname of the file containing the macro library
If this assignment is made, the library assigned to MAZ2 is searched before the system
macro library.
2.2.3 Temporary Files (UT1 and UT2)
Logical file code UT1 is used to store the source and expanded macro text for processing
during Pass Two. In Pass One, the Assembler writes the text to UT1; in Pass Two, the

Assembler reads UT1.

Logical file code UT2 is used for the symbol cross-reference table during assembly.

Macro Assembler (ASSEMBLE) MPX-,-}Z
2-4 Usage Utilities

7N

o/

UT1 and UT2 Default Assignments

Both UT1 and UT2 are assigned to temporary scratch files. UT1 is forced to blocked
format; UT2 is forced to unblocked format. The default assignments for UT1 and UT2
are:

$ASSIGN UT1 TO TEMP SIZE=800
$ASSIGN UT2 TO TEMP SIZE=400

The file size in the SIZE= parameter can be increased if an AS04 or AS05 abort occurs.

2.2.4 Listed Output (LO)

The Assembler produces listed output that pairs the hexadecimal representation of object
code with the corresponding source program statements. Also included in the listing are
symbol cross-reference tables and error diagnostics. Refer to Section 6 for an.example
and explanation of Assembler listed output. Refer to Section 5 for a list of error codes
and their meanings.

LO Default and Optional Assignments
The default assignment for LO is to the System Listed Output file (SLO):
$ASSIGN LO TO SLO
There are three optional assignments for LO:
$ASSIGN LO TO(pathname
DEV=devmnc
LFC=UT
pathname is the pathname of the file to contain listed output

devmnc is the device mnemonic of the device to contain listed output
LFC=UT assigns output to the user terminal

'2.2.5 Object Code - BO (Binary Output) and GO (General Object)

Object code is output to the file or device assigned to logical file codes BO and GO. If
binary output is desired, use BO; otherwise, use GO.

If Assembler option 2 is set, output to BO is suppressed.

BO Default and Optional Assignments
The default assignment for BO is the System Binary Output file (SBO):
$ASSIGN BO TO SBO
The SBO file is output to the device assigned as POD (Punched Output Device) at
SYSGEN. The POD assignment can be overridden by the OPCOM SYSASSIGN directive.

MPX-32 Macro Assembler (ASSEMBLE)
Utilities Usage 2-5

The SBO file is a temporary file. If it is not accessed during the job in which it was Y
generated, it will be lost. .If necessary, make a permanent copy of the file or device C(j
~ assigned to SBO. o ' C Co S y ~

There are two optional assignments for BO:

$ASSIGN BO TO)pathname
DEV=devmnc

pathname is the pathname of the file to contain binary output
devmnc is the device mnemonic of a device to contain the binary output
GO Default and Optional Assignments
The default_ assignment for GO is the System General Object file (SGO):

$ASSIGN GO TO SGO |
The SGO file is a temporary file. If it is not accessed during the job in which it was
generated, it will be lost. Some utilities, such as LIBED and CATALOG, access the SGO
file automatically. If necessary, make a permanent copy of the file or device assigned to
SGO.
There are two optional assignmenté for GO:

$ASSIGN GO TO)pathname '
DEV=devmnc

pathname is the pathname of the file to contain object code
devmnc is the device mnemonic of the device to contain object code

2.2.6 Compresssed Source_(CS)

The Assembler can produce source output in compressed format. Compressed source
output is assigned to the logical file code CS. There is no default assignment for CS.

CS Optional Assignments

To output compressed source, assign a.file or device to logical file code CS:

$ASSIGN CS TO)pathname
DEV=devmnc

If both BO and CS are assigned to SBO, BO output is generated first.

Refer to Appendix C for additional information on compressed source format.

Macro Assembler (ASSEMBLE) MPX-32
2-6 Usage Utilities

2.2.7 LFC Summary

The following is a table of LFCs used by the Macro Assembler and their default and
optional assignments.

Table 2-1
Macro Assembler LFC Summary
Default Optional
LFC Assignment Assignment
SI SYC pathname
DEV=devmnc
PRE none pathname
DEV=devmnc
MAC M.MPXMAC M.MACLIB
pathname
MA2 none pathname
uTl temporary file N/A
uT2 temporary file N/A
LO SLO pathname
DEV=devmnc
LFC=UT
BO SBO pathname
DEV=devmnc
GO SGO pathname
- DEV=devmnc
CS (output) none pathname
DEV=devmnc

2.3 Options

Options used by the Assembler include control and macro percentage parameters.
Options are specified by number in an $OPTION job control lanquage statement. The
$OPTION statement should appear before the $ASSEMBLE statement in a jobstream. If

no options are specified, the default in effect is option 5.

Option Description
1 No Listed Output

Suppresses source program listing on logical file code LO.
Error messages are generated.

MPX-32 Macro Assembler (ASSEMBLE)
Utilities Usage 2-7

Option

10

11-13
14

15

16-18

Description

No Binary Output
Suppresses binary output on logical file code BO.

Internally Generated Symbols
Includes internally generated symbols in the symbol cross-
reference listing. Does not apply if option 4 is set.

No Symbol Cross-Reference
Suppresses listing of symbol cross-reference table.

Binary Output Directed to GO
Directs binary output to logical file code GO.

.

Reserved

Compressed Source Output
Generates source output in compressed format on logical
file code CS.

SI Not Blocked
Reads source input (SI) in unblocked format. The $ASSIGN
job control language statement must also specify
unblocked (BLOC = N).

LO, BO, and CS Not Blocked
Writes logical file codes LO, BO, and CS in unblocked
format. The $ASSIGN statements for these LFCs must
also specify unblocked.

Nonreferenced Symbols
Includes nonreferenced symbols in the symbol cross-
reference listing. Does not apply if option 4 is set.

Reserved

Program Identification Information
Processes up to 20 bytes of identification information from
the id field of the PROGRAM directive and puts the
information into the object code.

Date and Time Information
Obtains the system date and time and puts it into the
object cade.

Reserved

Macro Assembler (ASSEMBLE) : MPX-32
Usage Utilities

>

({j\
v

C

Option Description
19 Symbolic Information to Cataloger
Outputs symbolic information to the Cataloger for use by
the Symbolic Debugger (COMMON information is not
included). Do not specify this option if creating object
code that is to be processed by SYSGEN.

20 Call Monitor Compatibility
Generates replacement SVC 15, X 'nn' instructions for Call
Monitor (CALM) instructions.

2.4 Exiting the Assembler

In batch mode, the Assembler exits when it encounters the first job control language
statement with a $ in column one following the $ASSEMBLE, $RUN ASSEMBLE, or
$EXECUTE ASSEMBLE statement.

To exit the Assembler in interactive mode, enter CNTRL C in response to the Assembler
prompt.

2.5 Using Macros

A macro is a named set of program instructions that occur frequently in a program.
Once a macro has been defined, subsequent use of the macro name is all that is needed to
generate the instruction sequence. The use of macros can simplify source program
coding, minimize programming errors in repetitive instructions, and standardize coding
sequences associated with similar functions.

The System Macro Library provides a collection of frequently used macros for use by
Assembler source programs. If macros are used within a source program, the system
library is assigned by default unless this assignment is specifically overridden. Refer to
Section 2 (Logical File Code Assignments) for the LFC assignments used for macro
processing.

Users can also create and maintain macro libraries using the Macro Library Editor
(MACLISR) utility.

2.5.1 Macro Components

The instruction sequence that comprises a macro is the macro definition. The variable
components within a macro definition are called arguments. Use of a macro is referred
to as a macro call, which results in the substitution of the macro instruction sequence for
the macro name. The process of assembling the instruction sequence generated by a
macro call is referred to as macro expansion.

The macro structure is defined by a set of source statements that specify the legal
symbolic macro name, parameters used in the macro, and the sequence of instructions to
be generated when a macro call is specified in the source program. Thus, every macro
definition consists of the following three elements:

Macro Definition Directive (DEFM)
. Macro Prototype
Macro Termination Directive (ENDM)

MPX-32 Macro Assembler (ASSEMBLE)
Utilities Usage 2-9

2.5.2 Symbolic Parameters | ,(\m

Symbolic parameters in the macro definition, also called "dummy" arguments, represent
symbolic arguments supplied with the macro call. Parameters specified by the macro
call are substituted for the symbolic parameters in the code generated for macro
expansion.

All symbolic parameters consist of a percent sign followed by a unique symbolic name of
one to eight alphanumeric characters. Examples of valid symbolic parameters are:

%ABCDEFGZ
%$50F

%B

%4F X

%C207

This syntax is also used to define local symbols within a macro structure.

Use of symbolic parameters in the macro definition is shown in the following sequence:

SAMPL DEFM LABEL1,A,B
Lw 3,%A
STW 3,%B
%L ABEL1 BCT 2,TESTX
ENDM
The percent sign must not be used as the leading character for a symbolic parameter P

definition included in the operand field of the DEFM directive. {
Macros that are stored in a macro library by the MACLIBR utility retain only those

dummy arguments that are actually referenced in the macro body.

2.5.3 Macro Definition

The macro definition is the instruction sequence to be generated in response to a macro
call,

Rules of syntax and usage for the source statements comprising a macro are the same as
described in the Macro Assembler Language section, with the following exceptions:

. The DEFM, ENDM, and FORM directives may not be used within the range of a
macro definition delimited by DEFM and ENDM directives.

. Labels of the form %xxxxxxxx are valid as shown above.

Comment lines and comment fields of macro definition instructions are not included in
the macro expansion or the macro definition storage.

The macro definition may include calls to other macro structures.

Macro Assembler (ASSEMBLE) MPX-32
2-10 Usage Utilities

2.5.4 Macro Call

A macro is called by placing its name in the operation field and associated arguments in
the operand field of an instruction.

Syntax:
Label Operation Operand
symbol name al,a2,...an
symbol is an optional symbolic label that is assigned the current value of the
location counter
name specifies the name of the macro definition being referenced. This name
corresponds to name specified in the label field of the DEFM directive.
al,a2,...an specifies the arguments, if any, to replace the operand field parameters

of the DEFM directive

Rules of syntax and usage for entries in the macro instruction are the same as described
in the Macro Assembler Language section, with the following exceptions:

The number of entries specified in the operand field (macro call arguments)
must be in the range O to 254 and separated by commas.

The operand field (argument list) must be terminated by a blank.

. Each parameter (argument) in the operand field is limited to 24 characters in
length.

The operand field may be continued to the next source statement by using the
continuation character (3).

. Operand field entries (macro call arguments) replace symbolic parameters in
the macro definition on a positional basis.

. If no symbolic parameters are specified in the macro definition, the operand
field for the corresponding macro call instruction must contain at least 12
blank spaces; i.e., a minimum of 12 blank spaces must be embedded hetween
the operation and comment fields.

The macro call argument list (operand field) may specify null arguments, which can be
tested and referenced like an actual argument. Null argument specification results in no
source replacement and thus may be used as an optional field. Null arguments are
indicated by the omission of an argument in the list.

A typical macro call instruction for the macro defined as SAMPL with an argument list
is

EXMAC SAMPL XYZABZ,TEST,7

MPX-32 Macro Assembler (ASSEMBLE)
Utilities Usage 2-11

A call for the same macro expansion with null argument specification could be: £

EXMAC SAMPL - XYZAB2,, TESTX -

2.5.5 Macro Expansion

A macro call generates the instruction sequence defined in the macro definition.
Symbolic parameters are replaced by the actual arguments supplied with the call.

The following example illustrates a typical macro expansion sequence.

Macro Definition

SAMPL DEFM LABEL1,A,B
LW 3,%A
STW 3,%B
%I|_ABEL1 BCT 2,TESTX
ENDM
Macro Call
FIG61 SAMPL TEST,XLOC,YLOC

Macro Expansion

LW 3,XLOC
STW 3,YLOC
TEST BCT 2, TESTX

2.5.6 Label Generation Within Macros

A unique symbol is generated for any symbolic parameter in the macro definition for
which no corresponding actual parameter is passed by the macro call.

A unique symbol is generated each time a macro is called and an actual parameter is not
specified. These unique symbols are generated in the form:

IXXXX

XXXX ~is a hexadecimal value in the range 0000 to FFFF

Macro Assembler (ASSEMBLE) MPX-32
2-12 Usage Utilities

The following example illustrates the result of unspecified actual parameters:

Macro Definition

TEST DEFM

%L ABEL LW
BL
BCT
BU

ENDM

Macro Call

TEST
Macro Expansion
10000 LW
BL
BCT
BU

LABEL, VALUE
3,%VALUE
TESTX

2,$+2W

%L ABEL

JALPHA

3, ALPHA
TESTX
2,$+2W
10000

Note that the generated code for the macro expansion is exactly the same as for a macro

definition of:

Label Operation
TEST DEFM

and the macro call:

Label Operation

TEST

Operand
VALUE

Operand
ALPHA

The Assembler-generated symbol !XXXX, should not be confused with a user-coded
symbol of the similar format, 'YYYY. These two types of symbols are treated uniquely"
and are listed separately in any symbol cross-reference.

In addition to a standard symbol cross-reference, a cross-reference of internally
generated symbols may be optionally requested. If specified, the internal symbol cross-
reference is listed immediately following the symbol cross-reference.

MPX-32 Macro Assembler (ASSEMBLE)

Utilities

2-13

2.5.7 Symbol Concatenation

Concatenation is the process of combining symbolic parameters within a macro definition
with symbolic strings or other symbolic parameters. Concatenation may be performed in
any field of a source statement.

Concatenation of symbolic parameters as a suffix to a symbolic string or to another
symbolic parameter is indicated by a percent sign (%). The percent sign indicates the
presence of the symbolic parameter. If a symbolic parameter is to be concatenated as a
prefix to a symbolic string, it must be delimited by a colon (3).

Be sure that symbols to be generated from concatenated strings are syntactically correct
and uniquely defined.

The following example illustrates the use of concatenation:

Macro Definition

MOVE DEFM TO,FROM,LABEL,OP1,0P2,LAB1,LAB2
X%LABEL %OP1:W 3,A%FROM
. %OP2:W 3,%TO:FIELD

BU %L AB1%L.AB2
ENDM
Macro Call
MOVE X,FIELD,5,L,ST,CON,T1
Macro Expansion
X5 LW 3,AFIELD
STW 3,XFIELD
BU CONT1

2.5.8 Nested Macros

A macro call used within the body of a macro definition is referred to as an inner macro
call.

The macro definition structure that includes the inner macro call is called the outer
macro.

Such inner macro/outer macro constructions are commonly referred tc as nested
macros. The inner macro call refers to the innermost, or nested, macrec structure.

The nested macro is not defined until the outer macro is expanded. Likewise, a macro
call in the text of another macro structure is not expanded until the outer macro is
called.

If a macro expansion contains a nested macro call, the expansion of the outer macro is
suspended until the inner macro is completely expanded. The expansicn cf the innermost
macro in a structure of nested macros always precedes that of the next cutermost
macro.

Macro Assembier (ASSEMBLE) MPX-32
2-14 Usage Utilities

v

Symbolic parameters specified with the

inner macro call are replaced by the

corresponding values of the outer macro call before the nested macro is processed.

A macro definition that corresponds to an outer macro call instruction may contain any

number of inner macro calls.

The depth to which macro calls may be nested is a function of the macro definition's
complexity, the number and length of actual parameters, and the amount of storage

available.

The following example illustrates the use of a nested macro structure:

Macro Definitions

AAA DEFM
ZMW
LI
%INT1 TRR
BCT
%INT?2 SLL
BIB
BU
%INT3 ABM
BU
ENDM

‘Macro Call
| BBB

Macro Expansion

BBB
LW
ANMW
AAA
MW
LI
10000 TRR
BCT
10001 SLL
BIB

10002 ABM
BU
ENDM
ARMW
ENDM

MPX-32
‘Utilities

JA,IB,IC BBB DEFM
%JA LW
%JC,-47 ANMW
6,6 AAA
%8, %INT3 ARMW
6,1 ENDM
%IC,%INT1

$+2W

31,%JA

%INT2

SY,KEN,2

Outer Macro

Inner Macro

} Outer Macro

Macro Assembler (ASSEMBLE)
Usage

JA,J8,3C
6,%JA
6,%J8
D,LT,%JC
6,TOT

2-15

2.6 Datapool

The Datapool feature defines variables for inclusion in a memory partition with the name
DATAPOOL or DPOOLOO through DPOOL99. These partitions are similar in use and
function to a global common partition. However, Datapool variables are unique in that
their placement in a Datapool partition is not order critical like common usage. This
eliminates the need to ensure a given order for proper address generation.

Ordering of Datapool variables is defined in the Datapool dictionary. The Datapool
Editor (DPEDIT) utility creates and maintains Datapool dictionaries.

Variables used in Assembler language source programs can be typed as Datapool items by
defining them as elements of labeled common DATAPOOL or DPOOLOO through
DPOOL99.

References to Datapool variables result in the character A being appended to the
location counter address field of Assembler listed output. Similarly, the character A is
used to denote a Datapool variable in the symbol cross-reference.

The following rules apply to the use of Datapool variables in Assembler language source
programs:

. A program variable cannot be equated to a Datapool variable using the EQU directive.
. Four bytes of data must be generated for each reference to a Datapool variable.
. Only one Datapool variable may be referenced in any one instruction.

. For instances where the same variable name is used for both a program variable name
and a Datapool variable name, the program variable name will take precedence.

The Datapool Editor section of this manual provides additional information i‘egarding the
use of the Datapool feature and operation of the Datapool Editor (DPEDIT).
2.7 Global Common

The labeled common areas GLOBALOO through GLOBAL99 are treated by the Assembler

as externally defined memory partitions. Consequently, variables allocated to these

areas may not be initialized.

Macro Assembler (ASSEMBLE) MPX-32

2-16 Usage Utilities

»

SECTION 3 - MACRO ASSEMBLER LANGUAGE

3.1 Introduction

This section provides details of Assembler language coding conventions, methods of data
representation, and addressing techniques.

3.2 Source Statement Format

Assembler source statements consist of five elements: label, operation, operand,
comment, and sequence identification. There are only two syntax requirements: the
first four elements must occur in the first 72 input columns, and sequence identification
must occur in input columns 73 to 80 (see Figure 3-1). All lower case characters are
converted to upper case internally, except for titles, and C and G character strings.

3.2.1 Label Field

The label field is an optional entry that identifies a source statement. The entry consists
of a string of alphanumeric characters, of which the first eight characters must be
unique. The first character must be an alphabetic character. An error will not be
generated if the first character in the label field is not alphabetic. However, statements
that reference that label are flagged as errors. The label field begins in input column
one and terminates at the first blank column. A blank in input column one indicates the
absence of a label. Embedded blanks are not permitted within the label field.

3.2.2 Operation Field

The operation field is required and specifies the mnemonic operation code, Assembler
directive or macro name. The operation field begins in the first nonblank input column
following the label field or in the first nonblank input column following input column one
if the label field is blank. The operation field may be separated from the last nonblank
character of the label field by no more than eleven blanks. Only the first eight

. characters of the operation field are interpreted by the Macro Assembler. Embedded

blanks are not permitted in the operation field.

3.2.3 Operand Field

The operand field is required and specifies operands associated with the current
operation. Operands may identify storage locations, masks, storage area size, or data
types and may take the form of a single expression, a series of expressions separated by
commas, a constant, or a constant expressed as a literal. Multiple operands must be
separated by commas.

The operand field begins in the first nonblank input column following the operation field
and is terminated by a blank. If there are eleven blank columns after the last nonblank
character of the operation field or input column 72 is encountered, the operand field is
treated as empty.

MPX-32 Macro Assembler (ASSEMBLE)
Utilities Language 3-1

ASSEMBLY CODING FORM

= + 4+ S 4+ - - 4+ 4 + + + + 4! <+ 4+ 4+ 4 4+ L! + 4+ T+
= 4+ + 4+ 4+ 4+ 4 + 4+ + + T + + + 4+ 4+ 4+ 1+ 4+ + 4+ 1+ 4+ 1
= L L 4L 4+ 4 4 4 4 4 4+ 4
— [T U A e - <+ <+ 4 -+ <+ <+ 4 ~
-—e 4+ 4+ 4+ 4 4+ u- + 4+ 4+ 4 4+ 4 4+ 4+ 4 4 4+ 4+ 4+ 4+ 4 4+ 4
—— + 4+ 4+ + 4+ 4+ 1+ 4+ T + 4+ 4+ 4+ + 4 4 4 + 4+ 4+ 4+ 4+ + 4
L= 4 + 4+ 4+ 4+ 4+ + + + 4 + 4 + 4+ 4 4+ 4+ 4+ 4+ 4+ 4 4+ 4
_— 4 4L 4 4 4 4 4+ 4 4 4+ 4+ 4 4 4 4 4 4+ 4 + + + 1+ + 1
d
|m| 4+ 4+ 4L 4+ 4+ 4+ 4+ 4 + ++ 4+ + + + + T 4 4 4 <4 u
- —— 4+ 4+ 4+ 4+ 4 4+ 4+ 4+ + 4 4+ 4 4 4+ 4+ 4+ 4+ 4 4+ 4+ 4 4 4
= .|”, T T T . s S ST R 4+ 4 4 A -’ aT - e 4 4 - - o
M llml P e e N T T e + 4+ 4+ 4+ 4+ 4+ 4+ 4+ 4 4+ 4 4 + <+
=l L+ 4 1+ 4 4 4 4 4 1+ + 1+ 44+ 4+ +4+ 4+ 4+ + -
= L= +++T T+ T+ T T T + ++ +++ ++ 1+ + T T + 1+
= =l L+ 1+ 4+ 4+ 4+ 4+ + + 1 4+ 4+ 1 4+ 4 4 4L 4 1+ 4+ 4 4+ 4
=ty L 1L 4 4L 4 44 4 4 4 4+ 1 4+ 1+ 4 4+ 4 1+ 4+ 4 4+ 4+
=] [4 4+ 4+
~ + 4+ 4 4 4 4+ 4+ 4 4+ 4 4 4+ 4+ 4+ 4 4+ 4 4 4 4+ 4 - 4
. 5a
< [~ R . S S S S R T Jl 4 4 4 4+ 4+ 4 4 4! + 1+ + + + T+ A
.* + 4+ 4+ + 4+ 4+ ++++ 1+ ++ + + T ...ﬁ. ur H” “.|. “” “” ...” “” “
<2 4+ 4+ 4+ 4 4+ 4 4+ 4 4+ 4+ 4+ + 4+ 4+ + 4 A -
- 4+ 4+ 4 4 4 ..Au 4 4 4 4 4 4 4 Aﬁ 4+ 4+ 4+ 4 4+ 4+ 4+ 4 4+ 4+ 4
lm + 4+ 4+ 4+ 4 4+ 4+~ 4 4+ 4+ u1 4+ <4+ <+ ur 4+ A e 4 4 4 4 JI 4
2! 1 1 1 1141 4+ 14 44 +4+ 4+ 44 4+ 4 4 4+ 1+ 4 4+ 4
HE : ITITICT T I TTITIITITIILCL
- - = 4 4+ + 4+ 4+ 4+ + 4+ + + A
” ol u' - - - - - — - — -+ o - lf - -+ - 4' - - - - - —— -
-y 4+ L 4L 4 4 4 4+ 4 4+ 4 4+ + 4+ 4+ 4+ 4+ 4+ 4+ 4+ 4+ + + +
=] I ITIITIIITIITIITTITTITTITIITITITTITIT T]
-
L 4+ 4 4 L. 4 4+ 4 4 4 4+ 4 4 4+ 4+
= +++ T+ T+ T+ T+ T+ T 1 -+ + T 1 A .
) L1111 14+ 414 4+ 4+ 3 4+ 4 4+ 43 4 4 4+ 4+ 4+ 4 4+ 4 4
H 4+ L 44 4 4 4L 4 1 1L 4+ 44 4+4 44 4 4 4 4 4 4 4+ 4 4
r]“v L L e lﬁn -4 - - - - - -~ - L o o - - — - - - —— - S IA.I -
=) r 1 T ...‘r 1 N
2 + 4+ 4+ 4 4 4 4+ 4 4+ 4 4+ 4 ur 4 4 4 4+ 4 4 4+ 4 4 4 4 4
H - - e 4 4 4+ 4 4+ .;» B . r 4+ 4+ 4+ + + + + T+ + -+ 4 4
5 @©
H ..l.Ml + +++++++++++ T+ ++T+T+T T T+ T T+ T+ T
= e L= +++4+4+++ 14+ +++++++ 4+ FFF
3 w
slE K + 444+ 4+ + 4+ +++ 1+ +4+4+ 4+ F+ 1
=3 = 1= 1 4L 1+ 4L 4 4 4+ 4+ 44 +4+4 4 4+ 44 4144 4 1 4+ 4
.I.w. + +++ T+ + 1+ + T+t TTTT 4 4+ 4 4 4 4 4+ 4 4 4+ 4 4
- ++++++++T++T T T T T+ T T T T T <+ 4+ 4+ 4+ 4 4
=] I rT11111111111 11111111 1111
=i ++++4++++++4+++ 4+ + 4 A + 1 4 1 41 4 4+ |
lm_ + + + + + + + <+ 4+ 4 4 4 4 -t + -+ 4 a4 4 4 4 - -
L S e e - - .ul T e e R . T ILT -t e e e
Ll 4+ 4L 4+ 4+ 4+ 4 4+ 4 4 4 4 4+ 4 4 4+ 4+ 4+ 4 L 4+ 4 4 4+ 4
=] I'TITITIIITIIIIIITIITIIIIIITITIITL]
e}
.IIN 4+ 4+ + 4+ 4+ + 4+ + + + + 4+ 4+ 4+ 4+ 4+ 4+ 4+ 4+ 4+ 4+ 4+ + 4+ 4
| o | +++ 1+ +++++ 1+ 1+ ++ T 4 4 4 4 4 4 4 4 4+ 4+ 4
5 =2 +++++++t+T++T+TT+TT+FT T T TFTTFTTTFTT A
a o
= '1m1 ++++ 4+ 4+ 4+ 4+ 4+ 4+ 4+ +4+ + + + 4 4+ 4 41 4+ 4 L 4
2 - 4+ 4+ 4+ 4 4+ 4+ 4+ 4+ 4+ 4+ 1+ ..ﬁ + + + + + + 4+ + + “r 4 Ur 4
3 N -+ - 4 4+ 4+ 4 P S <4+ -+ - 4 _—
- 4+ 4+ + 4+ 4 4 4 4 4 p ﬁ ﬁ
] an + ++ 4+ 1+ 4+ 4+ 44+ 4+ 4+ 4 4+ 4 4 4+ 4+ 4 43 4 4 4+ 4
s A 4+ 4+ 4+ 4 4 44 4+ 4 4 4 4+ 4+ 4+ 4+ 44+ 4 44+ 4 4 4+ 4+ 4 4
W - 4+ 4+ 4 4 4 4+ 4+ 4 4+ 4 4+ .ﬁ 4+ 4+ 4+ 4 4 -+ <+ .ﬁ <+~ 4 4+ 4 4
s 1 1111+ 4 140444444 £ 1314+ 4 44+ 4+ 4 4+
<! 1 1 1L 1 4 4+ 4 4 4+ 4+ 1+ + 4+ 4+ 4+ 4 1+ 4 4 4 4+ 4 4+ 4 4
L s 1 +1+d4 4+ 4+ + 4+ ++++4++4+ 1T+ + 1+ +FF
Do “+ + 4+ 4 4 4 + 4+ 4 4+ 4+ 4+ 4 4+ 4+ 4 4 4
= 4+ 4+ + 4+ 4 4+ +
<
=3 g
—— 4+ + 4+ 4+ 4+ + 4+ ++++++ F+ + + 1+ + + 4+ 4 4+ 4+ A
= 4
I.Ml. - [S - 4 - -+ - 4 -+ -+ -+ -+ <+ <+ -+ - lﬁ -+ -— - + T+ A
a - 4+ 4+ 4+ 4 4 4+ 1 + T + + 4+ 4+ 4+ 4+ 4+ 4+ 4 4+ 4+ 4 4+ 4
£ - =] 4+ 4+ 4+ 4 4+ 4+ 4+ 4+ 4 4+ 4+ 4 4+ 4+ 4+ 4 4 4 4+ 4 4+ 4 4
x| = = ")
=| = = = ++r++++++T++T+T+TT+T T T T+TTTTTTT 4+ 4+ 4
o -
218 wo = 4+ 4+ + 4+ 4+ 4+ 4+ 4 4+ 44 4+ 4+ 4 4+4 4+ 4 4 4 4 4 4 L L
| = = 2]
| —] + ++ +4++ 4+ 4+ +4+++++ 1+ ++4+ + 4+ + 4+ + +
= L
L — + + 4 4+ 4 + + + + 4 4 + + 4+ 4+ 4+ 4+ 4 4 4+ 4+ 4+ 4 A
[L=l +r+t++4 1+ +4+++4+++++++++++F + 1+ A
L S
- S
m s +++++++ 1+ +t+T+ T+ T+ +T T+ T T+ TFTFT T T
©
(=) ~ I TIITITITTITITITITIITIICIL 11 I I IT]]
G = rIMI 4+ 4+ 4+ + 4+ =+ ...T ++ 1t 1T 1T T T nf + 4+ 4 4 -+ e o
= | + 4+ + ++ 4+ + 4+ + 4+ 4+ ++ 4+ + + u‘ 4+ 4 4+ 4 4 4+ 4L 4
‘ ‘- Irrrrrrrr1r1r1r1rrr111r1r1rr1rrri
PN = IFITITITFTITFIITITIITIIITIITILT LT
- — ++++++ T+ T+ T+ T + 4+ + 4 4 ttTTtTTTTTT 1
-

831415

Figure 3-1. Assembler Coding Form

Macro Assembler (ASSEMBLE)
Language

MPX-32
Utilities

C,

Operand field entries may not contain embedded blanks except when an entry is used to
specify a null character string or when an operative special character is being used.

Embedded blanks cannot be used between multiple operands separated by commas.

3.2.4 Comment Field

The comment field is optional and provides descriptive information to be included with
program listed output. Typical usage is for program documentation. All valid
characters, including blanks, may be used in the comment field. The comment field
begins in the first nonblank input column following the operand field and terminates with
input column 72. If the last entry in the operand field is blank, eleven blank columns
must separate the comment field from the comma which is the last nonblank character
of the operand field.

A source statement with an asterisk (*) in input column one is treated as a comment
line. Each comment line is assigned a line number as part of the assembly process and
appears as part of the program's listed output.

3.2.5 Sequence Field

The sequence field specifies program identification information and/or sequential
ordering for source statements. The sequence field occupies input columns 73 to 80 and
is not examined during Assembler processing. The entry is listed on all Assembler
printed output.

3.2.6 Continuation Lines

When coding source statements that must be continued on the next line, the following
rules apply:

. A semicolon (;) within or following the label or operation fields, or within an
operand field, indicates continuation of the field to the next source statement
line. Continuation starts in column one of the next line.

. Blanks cannot be imbedded within the label, operation, or operand fields when
they are continued. The blanks between each field must either precede the
semicolon or appear in column one of the continued line.

. Comments can be placed after the semicolon but cannot continue to the next
line. The next line must contain the continuation of the source statement,
beginning in column one.

. Comments cannot be continued by appending the semicolon continuation
indicator.

. The number of character positions allowed for each field is the same as in
noncontinued source statements.

MPX-32 Macro Assembler (ASSEMBLE)
Utilities : Language 3-3

3.2.7 Character Set

Valid characters for coding source statements are:

- Character Name Character Representation
Alphabetic Letters A through Z
Numeric ‘ Digits 0 through 9
Plus Sign (Addition) +

Minus Sign (Subtraction)

Asterisk (Multiplication/Indirect)

Slash (Division)

Dot/Period (Decimal Point)

Comma (Subfield Delimiter)

Left Parenthesis (Attribute Delimiter)
Right Parenthesis (Attribute Delimiter)
Single Quote (Constant Delimiter)

Double Quote (Escape Control Character)
Equal Sign (Literal Definition)

Blank (Field Delimiter/Spacing)
Semicolon (Continuation Indicator)

Colon (Dummy Parameter Concatenation)
Percent Sign (Dummy Argument Identifier) %

B Y

1}

s we

Source statements are usually coded from a combination of these 51 characters.
However, the use of character constants in character strings permits the use of any of
the 128 ASCII character codes supported by the symbolic input device. The ASCII codes
are listed in Appendix D.

3.2.7.1 Escape Character

The escape character (") causes the Macro Assembler to generate the ASCII control
characters listed in Table 3-1. The character immediately following the escape
character is logically ANDed with 3F (hexadecimal), then ASClI-coded, resulting in one
of the control characters.

Use the escape character to generate the following characters within a C or G-character
string:

% (percent)

! (single quotation mark)
" (double quotation mark)
3 (semicolon)

Macro Assembler (ASSEMBLE) MPX-32
3-4 Language Utilities

N

\‘_/

Table 3-1

(1 ASCII Control Characters
Control Character
Character String Entry Description
NUL "@ Null
SOH "A Start of Heading
STX "B Start of Text
ETX "C End of Text
EOT "D End Of Transmission
ENQ "E Inquiry
ACK "F Acknowledge
BEL "G Bell
BS "H Backspace
HT "I Horizontal Tabulation
(punch card skip)
LF "J Line Feed
VT "K Vertical Tabulation
FF "L Form Feed
CR "™ Carriage Return
SO _ "N Shift Out
Sl "O Shift In
DLE "P Data Link Escape
: DCl1 "Q Device Control 1
(DC2 "R Device Contraol 2
DC3 "S Device Control 3
DC4 "T Device Control 4
NAK "U Negative Acknowledge
SYN "V Synchronous Idle
ETB "W End Of Transmission Block
CAN "X Cancel
EM "y End Of Medium
suB "z Substitute
ESC " Escape
FS "/ File Separator
GS "] Group Separator
RS ne Record Separator
us "- Unit Separator

C

MPX-32 Macro Assembler (ASSEMBLE)
Utilities : LLanguage

3.3 Data Representation

Most source program statements include one or more operands composed of one or more
expressions. Expressions are composed of a term or a valid combination of terms. Every
term represents a value which may be assigned by the Macro Assembler (symbol) or
which may be inherent to the term itself (literal, constant).

Arithmetic combinations of terms are reduced to a single value in the assembly process.

3.3.1 Symbols

A symbol is a character or combination of characters that references program
elements. Symbols are typically used in the source statement label field and/or operand
field.

Symbols consist of a string of alphanumeric characters, of which the first eight must be
unique. The first character must be an alphabetic character. The symbol may not
include embedded blanks. Only the first eight characters of the symbol name are printed
in the symbol cross-reference listing.

Examples of valid symbols are:
MACRO2
BP1234XX
H204

Examples of invalid symbols are:

7GPI (first character not alphabetic)
AB D (contains embedded blank)

Each defined symbol must be unique within an assembly job step. Multiply defined
symbols are denoted by the error flag M in the listed output.

3.3.2 Literals

Literal terms are used to enter numeric values, addresses, or alphabetic character strings
for phrases or message output to the source program. Literals specify a constant or
executable address attribute preceded by an equal sign (=).

Literals represent data rather than a reference to data. In general, literals may be used
wherever a storage address is permitted as a valid operand. Literal terms are
relocatable since the address of the literal, rather than the literal itself, is assembled.
The following rules apply to the use of literals:

. Literals may not be combined with other terms.

. Literals may not be used in any statement that requires a previously defined
symbol.

. Literals may not contain external references.
. Symbols used in literals must be previously defined.

Macro Assembler (ASSEMBLE) MPX-32
3-6 Language Utilities

To process a literal, the Assembler stores the literal's value in the literal pool. The
address of the literal pool containing the value is placed in the operand field of the
assembled source statement. All literals generate a 32-bit value.

The literal pool begins on the first available word boundary location following the
program counter location for the Assembler END or LPOOL directive. Only one entry is
made for the same literal term in the literal pool.

The LPOOL directive controls the placement of the literal pool contents.

Examples of literal terms are:

As written in source As written in literal pool
=A(TAG1) (Address of TAG1)
=B(TAG1) (Byte Address of TAG1)
=W(TAG1) (Word Address of TAG1)
=5 (Decimal Value=5)
=C'END' (Data=END)
=X'3A7' (Hexadecimal Value=3A7)
=A+B+C (Value of A+B+C)

3.3.3 Constants

A constant is used to enter data into storage. The Macro Assembler supports constants
used in data statements and as operands in immediate type instructions. Constant length
is limited to one doubleword (eight bytes), with the exception of C-character strings,
which may be any length.

The Macro Assembler recognizes seven types of constants:

. C - Character String
G - Character String
X - Hexadecimal Constant
. N -Fixed Point Decimal Word
. F - Fixed Point Decimal Doubleword
E - Floating Point Decimal Word
. R -Floating Point Decimal Doubleword

3.3.3.1 C-Character String

A C-character string consists of any number and any combination of ASCII characters
enclosed in single quotation marks preceded by the letter C. A C-character string is
left-justified to the boundary defined by the operation code. For C-character strings, all
ASCII characters are stored in hexadecimal form. An internal lower to upper case
conversion does not occur for C-character strings.

MPX-32 Macro Assembler (ASSEMBLE)
Utilities L.anguage 3-7

Usage:
A typical C-character string entry is:
DATAW C'NORMAL STRING 1'

This entry is transferred to memory on the first available word boundary as follows:

Memory
LLocation Contents

0 718 15116 23 |24 31

Word 1 0100 1110 0100 1111 0101 0010 0100 1101

A L (Space) S

Word 2 0100 0001 0100 1100 0010 oooo 0101 0011

Word 3 0101 0100 0101 0010 0100 1001 0100 1110

G (Space) 1 (Space)*

Word 4 0100 0111 0010 0000 0011 0001 0010 0000

*This space was added by the Assembler to complete the word boundary.

Macro Assembler (ASSEMBLE) MPX-32
3-8 Language Utilities

The entry for a C-character string with ASCII control characters that will generate
'MESSAGE" followed by a carriage return and line feed is:

DATAH C'MESSAGE"M"J'
M and J are the ASCII control characters for a carriage return and line feed.

This entry will be transferred to memory on the first available halfword boundary as

follows:
Memory
Location Contents
0 718 15116 23 |24 31

Previous Entry M

Word 1 XXXX XXX XXX XXX 0100 1101 0100 0101
S S A

Word 2 0101 0011 0101 0011 0100 0001 0100 0111
E CR* LF* (Spéce)**

Word 3 0100 0101 0000 1101 o000 1010 0010 0000

*The upper case alphabetic character is logically ANDed with a 3F (hexadecimal)
to produce the ASCII control character when preceded by an escape character

(ll).

**This space was added by the Assembler to complete the halfword boundary.

MPX-32
Utilities

Macro Assembler (ASSEMBLE)
L.anguage

DATAB C'AB" "C"lD";'

An entry for a C-character string using the symbols ("), (7, and (;) is:

‘ This entry is transferred to memory on the first available byte boundary as follows:

Memory
Location Contents
0 718 15116 23|24 31
Previous Entry A
Word 1]DOOX | »0x | 3000 | 00k | 0k | xx¢x | 0100 | 0001
" c '
Word 2 |0100 0010 0010 0010 0100 0011 0010 0111
H Available Memory
Word 3 |0100 0100 0011 1011
Macro Assembler (ASSEMBLE) MPX-32
3-10 L.anguage

Utilities

C

|
C

An entry for a C-character string with continuation is:

DATAD C'ABG;

DEFG'
This entry is transferred to memory on the first available doubleword boundary as
follows:
Memory
Locatiun Contents
0 8 15116 23124 31
C D
Word 1 0100 0001 0100 0010 0100 0011 0100 0100
G (Space)*
Word 2 0100 0101 0100 0110 0100 0111 0010 0000

*This space was added by the Assembler to complete the doubleword boundary.

3.3.3.2 G-Character String

A G-character string has the same format as a C-character string except it is right-
justified, limited to the size of its defined boundary (a maximum of eight bytes), and
zero-filled on the left for bounding purposes.
characters are stored in hexadecimal form. The G-character string constant type can be
used as the operand field of immediate type instructions and should be used in preference
to the left-justified C-type constant.
not occur for G-character strings.

For example:

LI4, CA'
LI 4, G'A"

LI 4, G'AB'

MPX-32
Utilities

Macro Assembler (ASSEMBLE)
Language

generates
generates

generates

For G-character strings, all ASCII

CA002020
CAO000041
CA004142

An internal lower to upper case conversion does

3-11

An entry for a typical G-character string is:
DATAW G'A G' (v(Y

This entry is transferred to memory on the first available word boundary (right-justified)
as follows: ' : '

Memory
Location Contents

0 718 15116 23 124 31

(00)* (A) (Space) o G

Word 1 | 0000 0000 0100 0001 0010 0000 0100 0111

*These zeros were added by the Assembler to complete the word boundary.

T
\\\, },/

Macro Assembler (ASSEMBLE) MPX-32
3-12 Language Utilities

3.3.3.3 Hexadecimal Constant (X)

A hexadecimal constant consists of an optionally signed hexadecimal number enclosed in
single quotation marks and preceded by the letter X. No sign indicates a positive
number. If the hexadecimal constant is preceded by a minus sign, a two's complement of
the hexadecimal number will be generated. A hexadecimal constant is right-justified and
is limited to the size of its defined boundary (a maximum of eight bytes). Hexadecimal
constant definitions must not contain embedded blanks.

Usage:

The following hexadecimal constant definitions generate the indicated constants:

DATAB X'E' OE

DATAW X'C2DA' 0000C2DA

DATAD X'B123F6C 000000000B123F6C

DATAH X'FFC213D' 213D (the three most significant bytes are

lost because of the defined boundary size)

The following negative hexadecimal constant definitions generate the indicated
constants:

DATAB X' -E2' 1E
DATAH X' -E2 FF1E

3.3.3.4 Fixed Point Decimal Word (N)

A fixed point decimal word string consists of a decimal number up to 16 digits on either
side of the decimal point. A fixed point decimal word is right-justified and limited to its
defined boundary (a maximum of eight bytes). Embedded blanks may be used to improve
legibility.

Syntax:
N'[{t}Im[E[{+}Ixx1[Byy]"

+ indicates a positive decimal number. If no sign is present, the default is
positive.

- indicates a negative decimal number

m is a constant in the form of a decimal fraction, decimal integer, or mixed
number. A number such as 1234567890123456.123401234 is valid even
though truncation would occur and significant digits would be lost. Larger
numbers, such as the above, may be significantly encoded by use of the
optional binary scaling point.

E indicates that the following number represents an exponent

MP X-32 Macro Assembler (ASSEMBLE)
Utilities Language 3-13

XX

Yy

Usage:

is a one or two-digit exponent in the range of +77 through -77. A positive ﬂ
integer is the default if no sign is present. L4

indicates that the following number represents a binary scale
is a one or two-digit binary scale specification. If Byy is omitted, the

default is B31, as this is the register scaling for 16 digits on either side of
the decimal point. .

An entry for a positive decimal number is:

DATAB N'105'

This entry is transferred to memory on the first available byte boundary as follows:

Memory
Location Contents
1] 71 8 15116 31
Previous
Entry 69 Available Memory
Word 1 XXXX | Xxxx |0110 | 1001 (™

An entry for a negative decimal number is:

DATAH N'-¢'

This entry is transferred to memory on the first available halfword boundary as follows:

Memory
Location Contents
0 7|8 15116 31
FF FA Available Memory
Word 1 1111 1111 1111 1010
C
Macro Assembler (ASSEMBLE) MPX-32

3-14 L anguage Utilities

An entry for an exponentiated fixed point decimal number is:

DATAH N'9.2E2'

This entry is transferred to memory on the first available halfword boundary as shown

below. Truncation has occurred since 9.2 cannot be represented as an exact binary
quantity.
Memory
Location Contents
0 7|8 15116 31
03 97 Available Memory
Word 1 0000 0011 1001 0111

An entry for a fixed point decimal string with binary specification is:

DATAW N'19B7'

This entry is transferred to memory on the first available word boundary as follows:

Memory
Location Contents
0 718 15116 23 24 31
13 00 00 00
Word 1 0001 0011 0000 0000 0000 gooo 0000 0000

Note:

7

The arrow denotes the binary scale specification which specifies the bit

position to the right of the decimal integer in a fixed point decimal word
string.

MPX-32
Utilities

Macro Assembler (ASSEMBLE)
Language

3-15

An entry for a fixed point decimal string with binary specification is:

DATAD N'.25B14'

This entry is transferred to memory on the first available doubleword boundary as

follows:
Memory
Location Contents
0 718 15|16 23 |24 31
00 00 00 00
Word 1 0000 0000 0000 0000 0000 oooo 0000 0000
a0 oo 80 00
Word 2 0000 0000 0000 0000 1000 0000 0000 0000
Note: The arrow denotes the binary scale specification which specifies the bit

position to the right of the decimal integer in a fixed point decimal word

string.

Because a doubleword data definition has been specified, both the

value and binary scale specification apply to word two.

3.3.3.5 Fixed Point Decimal Doubleword (F)

A fixed point decimal doubleword string consists of a decimal number with up to 16 digits
on either side of the decimal point. A fixed point decimal doubleword is right-justified.
Embedded blanks may be used to improve legibility.

Syntax:

F'I[{+}ImlE[{£}Ixx]1[Byy]"

XX

yy

3-16

indicates a positive decimal number. If no sign is present, the default is
positive.

indicates a negative decimal number

is a constant in the form of a decimal fraction, decimal integer, or a mixed
decimal number

indicates that the following number represents an exponent

is a one or two-digit exponent in the range +77 through -77

indicates that the following number represents a binary scale

is a one or two-digit binary scale specification. If Byy is omitted, the
default is B63 as this is the register scaling for 32 digits on either side of the

decimal point.

MPX-32
Utilities

Macro Assembler (ASSEMBLE)
Language

A\

(’hl\\\
1

Usage:

An entry for a positive fixed point decimal number is:

DATAD F'16E2'

This entry is transferred to memory on the first available doubleword boundary as

follows:

Memory
Location Contents
0 718 15116 23|24 31
00 00 00 00
Word 1 |0000 0000 gooo 0000 o000 oooo 0000 0000
32 39 |40 47 |48 55156 63
00 00 06 40
Word 2 |0000 0000 0000 0000 0000 0110 0100 0000
-*
Note: The arrow denotes the binary scale specification which specifies the bit

position to the right of the decimal integer in a fixed point decimal
doubleword string. ‘

MPX-32
Utilities

Macro Assembler (ASSEMBLE)

LLanguage

3-17

3.3.3.6 Floating Point

Floating point constants can be expressed as word or doubleword decimal values. The
Macro Assembler converts the specified constant value to its hexadecimal equivalent to
produce a floating point hexadecimal number.

The floating point number (either word or doubleword) is comprised of three parts: sign,
fraction, and exponent. Floating point data formats are shown in Figure 3-2.

WORD FORMAT

S EXPONENT FRACTION (24BITS)

1 1 I 1 L 1 1 1 1 I 1 l 1 1 1 I 1 L 1 l L 1 L ' 1 1 1

1 1
01 2 34 56 7 8 9101112131415 16 17 18 19 20 2122 23 24 2526 27 28 29 30 31

DOUBLEWORD FORMAT

¢ (
))
s EXPONENT FRACTION (56BITS)
AP P I T A CUNPUEN IRV R P
01 2 34567 8 91011121314)) 4950 51 52 53 54 5556 57 58 59 60 61 6263

S=SIGN
87D4J10

Figure 3-2. Floating Point Data Formats

The sign (bit 0) applies to the fractional part of the value and denotes positive or
negative. The fraction is a hexadecimal normalized number with a radix point to the left
of the highest order fraction bit (bit 8). The exponent (bits 1-7) is a seven-bit binary
value to which the base 16 (decimal) is raised.

Negative exponents are carried in two's complement format by the hardware. To remove
the sign and provide for direct comparison of exponents, both positive and negative
exponents are biased upward by 40 (hexadecimal). Thus, the quantity a floating point
value represents is derived by multiplying the hexadecimal fraction by the number 16
(decimal) raised to the power specified by the exponent minus 40 (hexadecimal).
For example, to convert the value 31 (decimal) to a hexadecimal fraction:

JF x 162

The power of 16 (i.e., 2) is added to the exponential bias 40 (hexadecimal) to yield an
operative exponent of 42 (hexadecimal).

Thus, the range of values that can be represented in floating point format is:
[(F) (167% < N < (F) (1657)]
F is a hexadecimal fraction and N is the range of values.

The range of the fraction F in nomalized format is:

(Word) 2% <F <1-(272%
(Doubleword) (2% <F < 1-(279)
Macro Assembler (ASSEMBLE) MPX-32

3-18 Language Utilities

G
‘A'\’

Hardware converts a positive floating point number to a negative floating point number
by taking the two's complement of the positive fraction and the one's complement of the
biased exponent. All floating point operands are normalized before the floating point
instruction is performed. A positive floating point value is normalized when the fraction
is in the range (1 > F > 1/16). A negative floating point value is normalized when the
fraction is in the range (-1 < F < -1/16). All floating point results are normalized by
floating point hardware.

Details of floating point hardware operation, including instruction formats, are given in
the appropriate CPU reference manual.

3.3.3.7 Floating Point Decimal Word (E)

A floating point word string consists of a decimal number with up to 16 digits on either
side of the decimal point. A floating point word string is right-justified and limited to its
defined boundary (a maximum of eight bytes). Embedded blanks may be used to improve
leqgibility.

Syntax:
E'C{e}ImlEL{£} Ixx]"

+ indicates a positive decimal number. If no sign is present, the default is
positive.

- indicates a negative decimal number

m is a constant in the form of a decimal fraction, decimal integer, or mixed
decimal number

E indicates that the following number represents an exponent

XX is a one or two-digit exponent

Usage:

The processing involved in producing the floating point hexadecimal representation for:
DATAW E'12
includes the following sequence:
(1) Decimal 12 is converted to hexadecimal C.
(2) The decimal point is moved until only a fraction remains:
.Cx 16l
The exponent indicates the number of places the decimal point was moved.

(3) A biased exponent is produced by adding the power of 16 (i.e., 1) to the biased
exponential representation (40):

1640 4 161 = 1641
which produces the biased exponent 41.

MPX-32 Macro Assembler (ASSEMBLE)
Utilities Language 3-19

(4) The biased exponent and hexadecimal fraction are stored in memory right-justified
and bounded. The internal representation for this example is:

41C00000

The following are sample coding entries for floating point decimal word constants and
their generated internal representation:

Coding Entry Internal Representation
DATAW ET' 41100000
DATAW E'-1 BEF00000
DATAW E'15 41F 00000
DATAW E'-15' BE100000
DATAW E'1¢ 42100000
DATAW E'-16' BDF 00000
DATAW E'2E3' 437D0000

DATAW E'3.14159265359' 413243F 6

3.3.3.8 Floating Point Decimal Doubleword (R)

A floating point doubleword string follows the same rules as a floating point word string
except for the range of the hexadecimal fraction [(Z‘Q)SF < 1-(2729)].

Syntax:
R'[{+}Im[EL[{+}Ixx]

+ indicates a positive decimal number. If no sign is present, the default is
positive.

- indicates a negative decimal number

m is a constant in the form of a decimal fraction, decimal integer, or mixed
number

E indicates that the following number represents an exponent

XX is a one or two-digit exponent

Macro Assembler (ASSEMBLE) MPX-32
3-20 Language Utilities

O

I

—y

£y

The following are sample coding entries for floating point decimal doubleword constants
and their generated internal representation:

Coding Entry Internal Representation
DATAD R 41100000
00000000
DATAD R17' 42110000
00000000
DATAD R'3.14159" 413243F3
E0370CDC
DATAW R'3.14159' E0370CDC

For the last entry (DATAW R'3.14159"), only the least significant 32 bits are retained
because of the word constant size.
3.3.4 Expressions

An expression is a single term, i.e., symbol or constant, or an arithmetic combination of
terms. Examples of legal expressions are:

PRNT
IBUF +6
TBL1-TBL2
CD*7
$+4
The following rules apply to the use of expressions:

Expressions may not begin with an arithmetic operator (+ - * /).

Expressions may not contain two terms or two arithmetic operators in
succession.

A multiterm expression may not contain a literal or attributed term.

A multiterm expression in a DATA or GEN directive may not contain an entry
C-character string as a first term.

. Negative results cannot be generated because evaluation is done in 23 bits.

. Floating point cannot be used in expressions because evaluation is done in 23
bits.

MPX-32 Macro Assembler (ASSEMBLE)
Utilities Language 3-21

3.3.4.1 Expression Evaluation

Expressions are evaluated from left to right with arithmetic operations performed as
encountered. Thus, the leftmost operator has the highest hierarchical priority and the
rightmost operator the lowest. Expression evaluation cannot be altered by using nested
expressions in parentheses. Parentheses are used to delineate attributed expressions. A
missing expression on either side of an arithmetic operator is evaluated as zero.

Division by zero is valid and yields a zero result. If the value of the symbol to be used as
a divisor is zero, the expression is flagged as an error by a backslash. Division always
yields an integer result and any remainder is truncated. For example, the expression:

5-4/2

yields a result of zero. For arithmetic operations, each term in an expression is stored
internally in 23 bits.

3.3.4.2 Expression Types

Multiterm expressions are relocatable, absolute, or common. An expression is
relocatable if its value is changed by program relocation. An absolute expression is
unaffected by program relocation.

Single term expressions can be any one of four modes: absolute, relocatable, common, or
external.

Tables 3-2, 3-3, and 3-4 illustrate the types of terms which may be combined
arithmetically and the mode of the result.

Macro Assembler (ASSEMBLE) MPX-32
3-22 Language Utilities

Table 3-2
Addition Operations

(:, Addition

(+) ABSLUTE RELOCATABLE COMMON EXTERNAL
ABSOLUTE Abso.ute Relocatable Common Illegal
RELOCATABLE Relocatad!e Illegal Illegal Illegal
COMMON Common Illegal Illegal Illegal
EXTERNAL Illegal Illegal Illegal Illegal
Table 3-3
Subtraction Operations
Subtraction
(-) ABSOLUTE | RELOCATABLE COMMON EXTERNAL
ABSOLUTE Absolute Illegal Illegal Illegal
RELOCATABLE Relocatable Absolute Illegal Illegal
) COMMON Common Illegal Absolute(*) Illegal
(EXTERNAL Illegal Illegal Illegal Illegal
* All references to common within an expression must refer to the same common
block
Table 3-4
Multiplication/Division Operations
Multiplication
Division
*/) ’ " ABSOLUTE RELOCATABLE COMMON EXTERNAL
ABSOLUTE . Absolute Illega! Illegal Illegal
RELOCATABLE Illegal Illegal Illegal Illegal
COMMON Illegal Illegal Illegal Illegal
EXTERNAL Illegal Illegal Illegal Illegal
C MPX-32 Macro Assembler (ASSEMBLE)
Utilities Language 3-23

3.4 Addressing Techniques

Memory is addressable in byte, halfword, word, and doubleword entities. Most memory
reference instructions require that the operand field specify a general purpose register
and an effective address. The effective address may be derived from a 20-bit memory
address modified by indirect addressing and/or indexing. Symbolic addressing is allowed
by the Macro Assembler.

Addressing in the Macro Assembler defaults to the data section (DSECT) mode. All data
and program source code is generated as part of a DSECT unless the addressing mode is
changed using the CSECT directive.

The code section (CSECT) mode is an optional mode used for data and source code that
will not be changed during program execution. CSECT mode, also called control, pure, or
read-only, allows the creation of shared or reentrant programs. CSECT mode also
provides additional memory protection because it allows read only access.

Variables, buffers, and areas of code subject to self-modification should be addressed in
DSECT mode when creating shared tasks. Constants and pure data can be addressed in
CSECT mode. At catalog time, a shared environment is declared. The CSECT is loaded
into the system once. The DSECT will be loaded into the system once for each user of
the task. The .amount of memory saved by using a combination of CSECT and DSECT
depends on the sizes of the CSECT and DSECT and the number of users sharing the task.

3.4.1 Location Counter
The Macro Assembler maintains an internal location counter to determine memory

allocation for each assembled source program statement. This counter is a byte counter
that provides for location assignment to bytes in a memory word. For example:

Location Counter Label Operation Operand

00000 W RES 1
00001 X RES 2
00003 Y RES 1
00004 4 RES 8
ooooC (Next Source Statement)

W is assigned to byte zero of word zero

X is assigned to bytes one and two of word zero. Even though X is a halfword

(two bytes), it is entered across a halfword boundary.
Y is assigned to byte three of word zero
z is assigned to bytes one through three of words one and two

The contents of the location counter is expressed in hexadecimal format for all
Assembler listed output.

Macro Assembler (ASSEMBLE) MPX-32
3-24 L.anguage Utilities

{
C

)/,

®

(

C

When an instruction sequence is encountered and the location counter is not positioned at
a byte multiple of the number of bytes required, the location counter is advanced for
proper boundary alignment. In the case of a full word instruction being assembled after a
halfword instruction, a halfword may not be usable. In this case, a no operation (NOP)
instruction is entered into the halfword. If a label appears in the label field, the label is
assigned after the NOP instruction. For example:

Location Generated
Counter Code Label Operation Operand
ABS
ORG X'00000'
00000 RES 1B
00002 0E40 START ZR 4
00004 2F40 TRR 4,6
00006 0002
00008 AD880427 STOP LB 3,A

The halfword instruction, ZR, forces the location counter to a halfword boundary. The
symbolic address, START, is defined at location two. When the instruction LB is
encountered, a NOP instruction (0002) is generated for the halfword location six prior to
assigning a location for STOP and processing the LB operation.

If the symbolic address does not fall on a proper boundary because of the operand size,
the least significant bit(s) are interpreted as zero and an error condition flag is set.

3.4.2 Self-Relative Addressing

Self-relative addressing implicitly defines a symbolic name which has an address equal to
the current value of the location counter, or constructs a reference to a memory location
in relation to the location counter. References to the location counter may be made by
use of the special symbol $ as follows:

${tlnls]

$ is the current value of the location counter. For multiword instructions, $ always
refers to the first word.
+ increments the location counter

- decrements the location counter

n is an integer specifying the count of the size attribute

s is an address size attribute indicating one of five types of addressing:
B - Byte
H - Halfword
W - Word

D - Doubleword
F - File (8 Words)

If s is not specified, a byte count is assumed.

MPX-32 Macro Assembler (ASSEMBLE)
Utilities Language 3-25

For multiword instructions, $ always refers to the first word.
Usage:

In the following example, the symbolic address ZET has an address equal to location
three: '

Location Counter Label Operation Operand
00003 ZET EQU $

In the following example, the LW instruction loads the contents of location 00C into
register two:

Location Counter Label Operation Operand
00000 STORE LW 2,$+3W
0000C DATAW 2000

3.4.3 Symbolic Addressing

Symbolic addressing allows user-defined symbols to represent the location of a particular
constant, instruction, or storage location. Symbols are defined in the label field of a
program source statement. A symbol may be referenced by any operand field entry. The
value assigned to a symbol is the address of the most significant byte of the constant,
instruction, or referenced storage location.

Usage:

The following example illustrates symbolic addressing:

Label Operaticn Operand
TAG1 DATAW X'1000"
LW 1,TAG1
Macro Assembler (ASSEMBLE) MPX-32

3-256 LLanguage Utilities

s

3.4.4 Relative Addressing

Relative addressing allows the of addressing instructions, constants, or storage locations
by designating their location relative to a symbolic location.

Usage:
In this example, the LW instruction loads the second word of doubleword A into register

three. The LB loads the fourth byte of A into register two. Signed address attributes
can be used similar to self-relative addressing.

Label Operation Operand
A RES 1D
LW 3,A+1W
LB 2,A+3

3.4.5 Absolute Addressing

Absolute addressing explicitly defines the location of a particular constant, instruction,
or storage location to be used in the operation.

Usage:

l_abel Operation Operand Comments

A LW 4,X'1000' Loads the contents of location 1000
(hexadecimal) into register four.

B LH 2,200 Loads the contents of location 200
(decimal) into register two.

X STW 1,N'16B29' Stores the contents of register one in
the word beginning at location 40
(hexadecimal).

3.4.6 Literal Addressing

Literal addressing allows a defined literal term to specify an address to be used in the
operation.

Usage:

The use of the literal GEE with the LLoad Word (LW) instruction loads the byte address of
the symbol GEE (190 hexadecimal) into register two:

L.abel Operation Operand Comments
GEE EQU 4090 The generated internal data represen-
LW 2,=B(GEE) tation for the literal address B(GEE)

iss 00080190

MPX-32 Macro Assembler (ASSEMBLE)
Utilities : L_anguage 3-27

3.4.7 Blank Addressing

Blank addressing allows the symbolic representation $$ to inform the Macro Assembler
that an address will be inserted at program execution time. When the $$ specification is
used, zeros will be assembled into the address field of the instruction. The F and C bits
of the address field depend on the operation to be performed.

3.4.8 Addressing Attributes

Addressing attributes allow the specification of a 20-bit operand address other than that
which would normally be used for a particular mnemonic instruction.

The resulting 20-bit effective address incorporates the user-specified address expression
with F and C bits corresponding to standard operand format codes (see Table 3-5).

Table 3-5
Operand Format Code
F Bit C Bits Designated Format
0 00 Word
0 01 Left Halfword
0 10 Doubleword
0 11 Right Halfword
1 00 Byte 0
1 01 Byte 1
1 10 Byte 2
1 11 Byte 3

Addressing attributes have the following format:
a (address)
a is the addressing attribute as follows:
Attribute Result
Byte address
Halfword address
Word address

Doubleword address

» O = I

Byte address with F bit set to zero

 Macro Assembler (ASSEMBLE) MPX-32
3-28 Language Utilities

N

C

Usage:

(In the following example of addressing attributes, the statements with labels X, Y, and Z

- produce the same halfword address (00003) which contains C and D:
Location
Counter Label Operation Operand
00000 A RES 1
00001 B RES 1
00002 C RES 1
00003 D RES 1
00004 X DATAW H(C)
00008 Y DATAW H(A+1H)
000oC YA DATAW H(A+2B)

For the following operation, only the first byte of location ALPHA is loaded into register
three because the address attribute of the expression overrides the operation:

LW 3,B(ALPHA)

C

MPX-32 Macro Assembler (ASSEMBLE) ‘
Utilities Language 3-29/3-30

&

SECTION 4 - DIRECTIVES

4.1 Introduction

Macro Assembler programs contain source statements consisting of Assembler
instructions and Macro Assembler directives.

Assembler instructions are categorized by the type of function they perform. Assembler
instructions are provided for the following types of operations:

L_oad/Store

Branch

Compare

Register Transfer
Memory Management
Logical

Shifting

Bit Manipulation

Fixed & Floating Point Arithmetic
Control

Interrupt Control
Writable Control Storage
Input/Output

These instructions are documented in the CPU hardware reference manual corresponding
to the machine type.

Macro Assembler directives are provided for program control, data and symbol
definition, listed output control, conditional assembly, macro support, and special usage.

For some directives described in this section, the syntax may include an optional label
entry in the first field of an Assembler source statement. Thus, where the syntax is
shown as:

I_abel Operation Operand
label

label may be any valid entry used for convenience to identify a source statement as
described in the Macro Assembler Language section. If the label field has significance
other than as an optional identifier, it will be identified with another variable name in
the syntax and explained in the usage notes for that directive.

MPX-32 Macro Assembler (ASSEMBLE)
Utilities Directives - 4-1

ABS/AC

4.2 ABS Directive

The ABS directive indicates a section of program coding to be assembled in absolute
mode. Generated object code cannat be relocated by the loader. All symbolic names are
assigned absolute memory addresses relative to location zero (absolute). Subsequent use
of this directive causes the location counter to be assigned a value equal to the next
absolute memory address to be allocated.

Syntax:
Label Operation Operand
ABS
Usage:

The following example assembles code in the absolute mode beginning at location 1000
(hexadecimal):

TAG ABS
ORG X'1000'
NOTE: Object code containing absolute sections cannot be processed by CATALOG.

4.3 AC Directive

The AC directive allows for address generation within a source program. The address
may incorporate indexing and/or indirect modification. The directive may also be used (,
to reserve a word of storage. e

Use of this directive results in word bounding of the location counter.

Bits zero to eight of the generated word address are always zero.

Syntax:
|_abel Operation Operand
label ACx address
X specifies the address field as follows:
Variable Field
B Byte
H Halfword
w Word
D Doubleword
if not specified, the defauit is B,
POt I ISy Y N U T S B N SR L N VU S L S
Glaa wow Splliiivu d vauilu aulitio uial iiay iCiduc HIUGCALIY aliu/ul nuiicu
modification P\
Macro Assembler (ASSEMBLE) VMiPX-32Z

4-2 Directives Utilities

AC (Cont.)

. Usage:

(The following example illustrates typical usage of the AC directive:
Location Machine Byte
Counter Instruction Address Label Operation Operand
P0O140C 00001788 P01788 KTXT ACW TEXT
P01419 0040153C P0153C LNK1 ACW LINK,2
P01414 00101978 P01978 PARS ACW *PPAK
P01418 000019A4 PO19A4 PARE ACW PIAT
P0141C 000019A4 PD19A4 BFOP ACW BFO
P01420 000029A4 P0O29A4 BFIP ACW BFI
P0O153C LINK EQU $
P017B8 TEXT EQU $
P01578 PPAK EQU $

(: PO19A4 PIAT EQU $
PO19A4 00000000 BFO DATAW 0
PO29A4 00001788 P01788 BFI GEN 32/A(TEXT)

MPX-32 Macro Assemblier {ASSEMBLE)

Utilities

Directives

£0©
]
N

ANOP/BOUND

4.4 ANOP Directive

The ANOP directive facilitates conditional and unconditional branching to source
statements identified by labels that are defined by variable symbols. Typical usage
involves branching to a source statement whose label is defined by a symbolic
parameter. An ANOP directive coded immediately preceding a source statement
provides the capability to generate conditional and unconditional branching to that
statement at assembly time.

No code is generated for this directive.

No entry is made in the symbol table for the symbol specified in the label field.

Syntax:
L_abel Operation Operand
symbol ANOP

4.5 BOUND Directive

The BOUND directive advances the location counter until it represents a byte multiple of
the bounding value specified in the operand field.

Symbols used in the operand field must have been previously defined.

Syntax:
Label Operation Operand
label BOUND value
Usage:

The following example sets the location counter to the first even multiple of four:

(LC-00000) RES 1
BOUND 4
(LC-00004) DATA C'A!
Macro Assembler (ASSEMBLE) MPX-32

4-4 Directives Utilities

S

COMMON

4.6 COMMON Directive

The COMMON directive, used in conjunction with data-generating directives, defines,
initializes, and manipulates common communication areas. Common data storage areas
can be shared between programs loaded at different locations in memory. The sharing
programs may be coded in Assembler language or FORTRAN. Common areas are always
generated in DSECT mode.

Syntax:
Label Operation Operand
symbol COMMON nl,n2,...,nn
symbol is the symbolic name of the common block defined by the operand
field. If specified, this symbolic name is unique and must be previously
undefined. If no entry is specified in the label field, the directive
defines BLANK common.
nl,n2,...,nn are unique symbolic names which define the common area. The names

can be subsequently referenced to define elements of common. Each
entry in the operand field may optionally have the form:

name(number)

name is the location to begin allocation and number is the decimal
number of words that are to be allocated. No embedded blanks are
allowed between name and number.

The common block name specified in the label field of a COMMON directive may not be
referenced in the operand field of other instructions or directives. Symbolic names used
to define the common area result in the allocation of contiguous full word storage
locations.

A maximum of 254 distinct common areas (including blank common) with a maximum
16K words per area can be defined.

Actual memory allocation for common areas in a subsequently generated task is decided
by the CATALOG utility.

To initialize and manipulate data elements in common areas:

1. Set the location counter to the element of COMMON where initialization is to
hegin using the ORG directive. The symbol must have been defined by a preceding
COMMON directive.

2. Define initialization data with the appropriate data generation directives.

3. Specify the appropriate assembly continuation mode with either the REL or ABS
directive. Note: ABS is not supported by CATALOG.

MPX-32 Macro Assembler (ASSEMBLE)

Litilitiss Directives 4-

\n

COMMON (Cont.)

The following example illustrates the sequence:

AB COMMON A(10),B(2)
ORG B
DATAW X'FF',X'3E8'
REL

In this example, labeled common AB consists of twelve contiguous words of storage, ten
words for area A and two for area B. The first word of area B is initialized to the value
FF (hexadecimal) and the second word of area B is initialized to the value 3E8
(hexadecimal).

The following example defines a labeled common area XY consisting of eleven contiguous
words of storage, ten words associated with area X and one word with common area Y.
The second line defines the blank common area:

XY COMMON X(10),Y
COMMON A(20)

A COMMON directive may be used in conjunction with data generating directives and a
PROGRAM directive to define a subprogram structure functionally equivalent to a
FORTRAN block data subprogram.

COMMON block names GLOBALOO through GLOBAL99, DATAPOOL, and DPOOLOO
through DPOOL99 have the same special meaning as in FORTRAN. Elements within
these areas may not be initialized.

Macro Assembler (ASSEMBLE) ' MPX-32
4-6 Directives Utilities

¥

C

C

Computed GOTO/CSECT

4.7 Computed GOTO Directive

The Computed GOTO directive directs the assembly process to continue processing at
the source statement whose label is given by a symbol in an indexed argument list in the
operand field.

Syntax:
Label Operation Operand
label GOTO iyX1,X200eyXnN
i is an arithmetic expression that represents an integer value. The value
is used as an index pointer into the symbolic argument list.
X1,X2yeeeyXn are symbols comprising the symbolic argument list. The symbdls must

represent forward references. The number of symbols in this list (n)
should be equal to or greater than the integer value (i) used as an index.

If the index expression is evaluated as zero or an integer value greater than the integer
value index, the assembly process continues at the source statement immediately
following the COMPUTED GOTO directive.

4.8 CSECT Directive

The CSECT directive assembles a section of program source code in code section mode.
All symbolic names (labels) are assigned relocatable memory addresses relative to the
beginning of the code section.

Syntax:
Label Operation Operand
label CSECT

Usage:

The following example sets code section mode:

STRTC CSECT
LW 2,NUM
MPX-32 Macro Assembler (ASSEMBLE)

Utilities Directives 4-7

DATA

4.9 DATA Directive

The DATA directive allows specific data representation within a source program. Use of
this directive results in automatic bounding for the location counter.

Syntax:
Label Operation Operand
symbol DATAX vl,v2,...vn
symbol is an optional entry that may be any symbol. If specified, the symbol is
equal to the address of the first operand.
X specifies the bounding and length of the entries in the operand field as
follows:
Variable Field
B Byte
H Halfword
w Word
D Doubleword
If not specified, the default is B.
vl,v2,...vn specifies the list of data values to be generated. These values may be

any valid expressions.

Macro Assembler (ASSEMBLE : MPX-32
4-8 - Directives - ‘ Utilities

C

Usage:

C

MPX=32 UTILITIES RELEASE 1.1 (ASSEMBLE R10.5.11)

MAIN
00001
00002
00003
00004
00005
00006
000u?
00008
00009
00010
00011

00012
00013

N 00014
(T ‘ 00015
o 00016
00017

00018

00019

+ 0000

- MPX-32
Utilities

12/19/83 16:57:51

LIST
00000 8OUND
P00000 0064 .0 0ATA
00002 4142 C.1 DATA
PO0004 43444546

P00008 01160808 c.2 DATAB
P000OC 0808 -
POO0OE s8 C.3 DATAB
200010 0001 C.d DATAN
00012 FEEF C.5 OATAM
P00014 8001 .6 DATAH
P00016 0002

P00018 59202020 C.? DATAW
PO001C 000000SA

P00020 0007FFFC A1 DATAW
P00024 00000002 PO0002 4.2 DATAN
P00028 00080002 P80002 A.3 DATAW
P0002C 41200000 Aok DATAW
PO0030 52535420 0.1 DATAD
P00034 20202020

00038 00000000 0.2 0ATAD
PO003C 00S8595A

P00040 00000000 0.3 DATAD
P00044 00000001

P00048 41100000 0.4 DATAD
P0004C 00000000

P000SO END

ERRORS IN MAIN

Macro Assembler (ASSEMBLE)

Directives

DATA (Cont.)

The following example illustrates attributed expression, address attribute, and constant
string operands:

DATA

AL}

0,100
C°A‘,C°BC*,C°DEF"°
N°1°,22,8,88,4H,2%
6 x*

N°1°

N°=1°

32769

c’Y’,6°1°

X°0007FFFC”
A(C.1)

870027

DEF /DEFM

4.10 DEF Directive

The DEF directive identifies linkage symbols within a given program which may be
referenced by another program or subroutine as entry points or data.

The symbols referenced in the operand field must be defined in the same program in

which the directive is used.

DEF directives must precede data definitions and executable statements in the source

program.

Syntax:

s1,52,...,8N

Label

label

Operation Operand
DEF s1,582,...,8N

are symbolic names local to the program

See the EXT directive description.

4.11 DEFM Directive

The DEFM directive specifies the name of a macro.

begin with a labeled DEFM directive.

Syntax:

name

pl,p2,...pn

4-10

Label

name

Operation Operand
DEFM pl,p2,...pn

A macro definition must always

is a symbolic name which generates the macro when used in the
operation field of a macro instruction

specify parameters that correspond to arguments supplied with the

macro call

Macro Assembler (ASSEMBLE)
Directives

MPX-32
Utilities

£
\—4

DSECT/END

4.12 DSECT Directive

The DSECT directive assembles a section of program source code in data section mode.
All symbolic names (labels) are assigned relocatable memory addresses relative to the
beginning of the data section. DSECT is the default addressing mode used by the Macro
Assembler.

‘Syntax:
Label Operation Operand
label DSECT

Usage:

The following example sets data section mode:

STARTD DSECT
TCW1 RES 1w

4.13 END Directive

The END directive indicates the end of the source program and must always be the last
Assembler language statement in a source program. END directive processing dumps all
literals defined since the last LPOOL directive.

The operand field may contain an expression specifying a transfer address to which
control is passed at load time. For a series of programs and subprograms, a transfer
address is provided only with the main program. The operand field expression must not
be literal.

Use of the label field is optional. If specified, the label is equal to the address of the
first unused word location following the program.

Syntax:
L_abel Operation Operand
label END expression
MPX-32 Macro Assembler (ASSEMBLE)

Utilities Directives 4-11

ENDM/ENDR

4.14 ENDM Directive

The ENDM directive terminates a macro definition.

Syntax:

Label

label

Operation Operand
ENDM

There must be one ENDM directive for each macro definition. Entries in the label and/or
operand fields are ignored.

The following sequence illustrates a macro definition that generates the load, store, and
branch instructions each time the macro is called:

SAMPL

4.15 ENDR Directive

DEFM
LW 3,ABC
STW 3 XYZ
BCT 2, TEST
ENDM

The ENDR directive delineates the range of the repeat loop for the preceding REPT

directive.

This directive must be the last statement in a repeat loop.

description of the REPT directive.

Syntax:

4-12

Label

label

Operation Operand
ENDR

Macro Assembler (ASSEMBLE)
Directives

See the

MPX-32
Utilities

)
A\ g
' d ‘\\
\\\(P /

C

EQU/EXITM

4.16 EQU Directive

The £QU directive defines a symbol by assigning the attributes of the expression in the
operand field to the symbol. This directive can be used to equate symbols to frequently
used expressions such as register numbers, data, or arbitrary values.

The operand field must specify an evaluatable expression which may be absolute,
relocatable, or common. External symbols or Datapool references cannot be specified.
Symbols used in the operand field must have been previously defined if used in an
arithmetic expression.

The label field must specify a symbolic name which cannot be redefined. The symbolic
name assumes the same attributes as the expression. If the label field is not specified,
the source statement is ignored.

Symbols used in the operand field must have been previously defined if BOUND, FORM,
IFT, IFF, ORG, REPT, RES, or REZ directives reference the symbol in the label field of
the EQU directive.

Syntax:
Label Operation Operand
symbol EQU expression
Usage:

The following example illustrates EQU directive usage when the operand is a constant
expression:

Location Byte
Counter Address Label Operation Operand
0002F - 0002F SLSH EQU X'2F"

~ 00040 00040 ASGN EQU X'40'
0000A 0000A CSZE EQU 10
0005A 0005A ZLET EQU G'z'

4.17 EXITM Directive

The EXITM directive terminates processing of a macro structure. Label and operand
field entries are ignored.

If this directive is used within a nested macro structure, assembly processing continues in
the next outer macro, if applicable.

The EXITM directive should not be confused with the ENDM directive. The ENDM
directive indicates the end of a macro definition and must be the last statement of any
defined macro structure, including one that could contain one or more EXITM directives.

Syntax:
Label Operation Operand
label EXITM

MPX-32 Macro Assembler (ASSEMBLE)

_Utilities Directives 4-13

EXT

4.18 EXT Directive

The EXT directive identifies linkage symbols which are entry points or data in another

program or subroutine, but referenced by the given program.

The symbols referenced in the operand field must be defined in a different program than
the one in which the EXT directive is used. The symbols are given defined addresses at
load time if corresponding DEF directives in another program or subroutine are present.

Symbols defined by EXT directives may not be used within a common definition or in the

operand field of the EQU directive.

Syntax:

Label

label

§1,52,...5n

Usage:

Operation

EXT

Operand
sl,82,...5n

are symbolic names defined in another program or subroutine

The following examples illustrate use of the EXT and DEF directives:

MPX-32

REFERENCING PROGRAM

Location Machine Byte

Counter Instruction Address Label Operation Operand
PROGRAM EXTDEF1
EXT CAL4

P0O0000 CALS EQU $

P0O00CO D4000018 Po0o018 STW 0,CALSRO

P0O0004 F8800001 X00000 BL CAL4

P0O0008 F8800005 Y00004 BL CAL4

Po0oo0C F8800009 Y00008 BL CAL4L

P0O0010 F880001D P0O001C BL CAL2

P00014 EC100019 P00018 BU *CAL5R0

P00018 00000000 CALSRO0 DATAW 0

PO001C D4000028 P00028 CAL2 STW 0,CAL2R0

P00020 9800003 LI 3,3

P00024 EC100029 P00028 BU *CAL2R0

P00028 00000000 CAL2R0 DATAW 0

Po002C END

Macro Assembler (ASSEMBLE)

4-14

Directives

Utilities

®

7N

RN

@

C

EXT (Cont.)

REFERENCED PROGRAM
Location Machine Byte
Counter Instruction Address Label Operation Operand
PROGRAM EXTDEF?2
DEF CAL4
P0O000O CAL4 EQU $
P000GO D4000014 PO00L4 STW 0,CAL4RO
P0O0004 D5800018 pPO0018 STW 3,WORD3
P00008 De00001C P0O001C STW 4,WORD4
P0O000C D6800020 P0O0020 STW 5,WORDS5
P00010 EC100015 P0O0014 BU *CAL4RO
P0O0014 00000000 CAL4RO DATAW 0
pPO0018 00000000 WORD3 DATAW 0
Pooo1C 00000000 WORD4 DATAW 0
P00020 00000000 WORDS5 DATAW 0
P0O0024 END
MP X-32 Macro Assembler (ASSEMBLE)
Utilities Directives 4-15

FORM

4.19 FORM Directive

The FORM directive defines variable length data subfields. The bit size of each subfield
is defined in the operand field of the directive. The data specification in the operand
field is subsequently invoked when a source statement whose operation field matches the
label field entry (symbol) of the FORM directive is encountered.

Syntax:
L_abel Operation Operand
symbol FORM f1,f2,...,fn
symbol is a symbol that identifies the format definition given by the
directive. =~ When used as an operation in a subsequent source
statement, this symbol invokes the format specification for the
designated data constants,
£1,f2,...,fn are positive integer values in the range 1 to 254 specifying the bit

size of a given subfield. The number of subfields that may be defined
is limited only by available storage. Symbols used in the operand field
must be previously defined.

A subfield specification that exceeds 254 bits is flagged with the Assembler error code

H. If this occurs in a FORM directive defining only a single subfield, the directive is

flagged and processing continues with the next source statement. References to the
erroneous specification are ignored with no code generated. If the 254-bit limit is)
exceeded in a FORM directive defining multiple subfields, the directive is flagged, N
directive processing is terminated, and the next source statement is processed.

Subsequent references to the format specification result in correct code generation for

subfields defined prior to the erroneous subfield.

A subfield specification of zero bits is ignored. No Assembler error code is generated
and no code is generated for subsequent references to the format specification.

Data definitions that use fewer bits than specified for a subfield are aligned, justified,
and/or zero-filled according to the conventions for the corresponding constant type (see
Section 2, Data Representation).)

For data definition entries exceeding the size of the specified subfield, high order bits
are truncated. Alignment and justification are performed according to constant type.

Macro Assembler (ASSEMBLE) MPX-32
4-16 Directives Utilities

Usage:

FORM (Cont.)

(. The following example generates one word with the following format:

An 8-bit field containing the hexadecimal character A
A 16-bit field containing the C-string characters YZ

An 8-bit field containing the decimal number 15

Label Operation Operand
EXAMPL1 FORM 8,16,8
EXAMPL1 X'ALC'YZ',N'15

The following example illustrates excessive bit field specification, zero bit field
specification, alignment, and justification for various constant types:

Error Line Location Machine
Line Counter Counter Instruction Label Operation Operand
00001 F1 FORM 32
H 00002 F2 FORM 4097
. H 00003 F3 FORM 4096
(00004 Fa4 FORM 0
o 00005 F5 FORM 1
00006 P00000 41424320 Fl - C'ABC!
00007 P00004 00414243 Fl G'ABC'
00008 P0o0o0o0s8s 41424344 Fl C'ABCDE"
00009 P0O000C 42434445 Fl G'ABCDE
00010 F2 1
00011 F3 1
00012 Fa X'44'
00013 P00010 80 F5 1
00014 P00014 END
MPX-32 Macro Assembler (ASSEMBLE)
Utilities

Directives 4-17

FORM (Cont.)

The following example is similar to the previous example.

Note that the data

specification format given in the FORM directive is serially reusable for cases where the
actual number of subsequent data definitions is greater than the number of subfields

specified.
Error Line Location Machine
Line Counter Counter Instruction Label Operation Operand
00001 Fl FORM 32
00002 F2 FORM 254
H 00003 F3 FORM 255
00004 Fé FORM 8,8,8,8
00005 Fa FORM 0
00006 F5 FORM 1
00007 P00000 41424320 F1l C'ABC
00008 P0O0004 00414243 F1 G'ABC'
00009 P00008 41424344 F1 C'ABCDE'
00010 PO00O0C 42434445 Fl G'ABCDE!
00011 P00010 00000000 F2 1
P00014 00000000
P0o0018 00000000
pPoo01C 00000000
P00020 00000000
P00024 00000000
P00028 00000000
Poo02C 00000004
00012 Fa X'44'
00013 P00030 80 F5 1
00014 P00031 040404 Fé6 4,4,4
00015 P00034 04040404 Fé 4,4,4,4,4,4,4
P00038 040404
00016 P0003C END
Macro Assembler (ASSEMBLE) MPX-32
4-18 Directives Utilities

-

4,20 GEN Directive

The GEN directive constructs a hexadecimal value representing specified bit string
combinations.

The operand specifies a field list comprised of subfields separated by commas. Each
subfield is packed into a contiguous bit string. If the total length of all subfields in bits
is not a multiple of eight, the bit string is zero-filled to achieve byte multiplicity.

All relocatable, common, and external mode address fields must be 20 to 32 bits in length
and right-justified within a word. Fields of other types may range in length from O to
4096 bits.

Precise bounding can be achieved through use of the BOUND directive immediately
preceding the GEN directive.

Syntax:

Label Operation Operand

label GEN fl/el,f2/e2,...fn/en
f1,f2,...fn is a positive integer specifying the bit length of a given subfield
/ separates subfield bit length and subfield contents
el,e2,...en is an expression specifying the contents of a given subfield
Usage:

The following GEN directive specification generates a 32-bit word. The first 12 bits
contain the hexadecimal value FFF and the remaining 20 bits contain the word address
location for ALPHA.

GEN 12/X'FFF',20/W(ALPHA)
The following GEN directive specification generates a 64-bit field. The first 24 bits
contain the decimal value 1, the next 24 bits contain the hexadecimal value 374AC1, and

the last 16 bits contain character codes for the representation XV:

GEN 24/1,24/X'374AC1',16/C'XY!

MPX-32 Macro Assembler (ASSEMBLE)
Utilities Directives 4-19

GOTO/IFA

4.21 GOTO Directive

The GOTO directive directs the Macro Assembler to continue processing at the source
statement whose label is indicated by the symbol in the operand field. Source statements
between the GOTO directive and the specified source statement are not processed.

The symbol entry in the operand field must be a forward reference.

Syntax:
L_abel Operation Operand
label GOTO symbol

4.22 IF A Directive
The IFA directive can only be used within a macro structure.

The IFA directive checks the symbolic parameter list of the expression in the operand
field for the existence of actual arguments. If absent, processing continues at the source
statement immediately following the IF A directive. If arguments are present, processing
branches to the source statement with a label specified by symbol2.

Symbols defined by the SET, SETF, and SETT directives may be used in IFT, IFP, IFA,
and IFF directives. These symbols must not represent forward references.

Symbols used in the label field of IFT, IFF, IFP, and IFA directives are not entered into
the symbol table.

Syntax:

|_abel Operation Operand
label IFA exp,symbol2

exp is a valid expression. This expression typically specifies a symbolic
parameter of the form %xx...X, or a string of symbolic parameters combined
with arithmetic and/or logical operators (e.g., %AB+%CB+%XY+...). This
expression could also represent a value corresponding to a locally generated
label within a macro.

symbol2 is a valid symbol specifying the label of the source statement to branch to if
the expression contains internally generated symbols

Macro Assembler (ASSEMBLE) : MPX-32
4-20 Directives Utilities

IFF

4.23 IFF Directive

The IFF directive evaluates the expression in the operand field. If the expression is
evaluated as a FALSE (0), assembly processing continues with the source statement
immediately following the directive. If the expression is evaluated as TRUE (1),
assembly processing continues at the source statement with the label specified by
symbol?2.

The following information applies to the IFF and IF T directives.

The expression specified in the operand field may consist of a string combined
with arithmetic operators (+ - * /) and/or logical operators ((AND. .OR. .EQ. .NE.
.LT. .GT. .LE. .GE.. Logical operators must be preceded and followed by a blank
(e.g., XYZ .NE. XYW).

Only the least significant 23 bits of the expression or logical subexpression are used in
determining the logical value for the entire expression.

Syntax:
Label Operation Operand
label IFF exp,symbol2

exp is a valid expression. This expression typically specifies a symbolic
parameter of the form %xx...x, or a string of symbolic parameters combined
with arithmetic and/or logical operators. This expression could also
represent a value corresponding to a locally generated label within a
macro. Symbols used in exp must have been previously defined.

symbol2 is a valid symbol specifying the label of the source statement to branch to if
the expression is evaluated as TRUE (1).

MPX-32 Macro Assembler (ASSEMBLE)

Utilities Directives 4-21

IFP/IFT

4.24 IFP Directive

The IFP directive can only be used within a macro structure.

The IFP directive checks the symbolic parameter list of the expression in the operand
field for the existence of actual arguments. If present, processing continues with the
source statement immediately following the IFP directive. If arguments are absent,
processing branches to the source statement with a label specified by symbol2.

See the IFA directive description for further details.

Syntax:
Label Operation Operand
label IFP exp,symbol2
exp is a valid expression (see IFA directive description)
symbol2 is a valid symbol specifying the label of the source statement to branch to if

the expression does not contain internally generated symbols

4.25 IFT Directive

The IFT directive evaluates the expression in the operand field. If the expression is
evaluated as TRUE (1), assembly processing continues with the source statements
immediately following the directive. If the expression is evaluated as FALSE (0),
assembly processing continues at the source statement with the labe! specified by
symbol2.

See the IFF directive description for further details.

Syntax:
Label Operation Operand
label IFT exp,symbol2
exp is a valid expression (see IFF directive description)
symbol2 is a valid symbol specifying the label of the source statement to branch to if

the expression is evaluated as FALSE (0)

Macro Assembler (ASSEMRLE) MPX-32

4-22 Directives Utilities

-4

LIST

4.26 LIST Directive

The LIST directive controls listed output. This directive is meaningful only when listed
output has not been inhibited through the use of option 1.

Syntax:
Label Operation Operand
label LIST terml,...,term5
terml,...,term5 specify one to five terms from the following operator pairs:

List Option Results

ON Generate listed output (default).

OFF Suppress listed output.

DATA Print data in full with listed output. Additional print lines may
be required (default).

NODATA Restrict data printing to single source image. Suppress
additional lines.

NGLIST List all source statements (default).

NONG Suppress listed output for the following types of statements:
(1) ANOP, GOTO, SET, SETT, SETF, IFT, IFF, IFP, IFA

DEFM, ENDM, EXITM, REPT, END, and FORM directives
(2) Statements within macro prototype definitions
(3) Statements within REPT loop definitions
(4) Statements not assembled because of conditional
assembly

MAC List macro expansions (default).

NOMAC Suppress listed output of macro expansions.

REP List REPT loop expansions (default).

NOREP Suppress listed output of REPT loop expansions.

If multiple or conflicting option are specified, the last option specified is the controlling
element. This includes specification of LIST options within macros.

If a LIST directive is not specified, Macro Assembler operation assumes the following
defaults for listed output control:

ON,DATA,NGLIST,MAC,REP

LIST directives specifying the ON option while under control of a LIST OFF directive are
not listed.

MPX-32 Macro Assembler (ASSEMBLE)
Utilities Directives 4-23

LPOOL

4.27 LPOOL Directive

The LPOOL directive inserts literals into the generated object code beginning at the
current location within the program. Processing of the
literals since the previous LPOOL directive (or start of the program) to be assembled at
word boundaries starting at the first full word boundary following the directive. If no
literals are assembled as the result of a given LPOOL directive, the location counter is
advanced to the next full word boundary following the LPOOL directive.

Syntax:

symbol

L_abel

symbol

LPOOL directive causes all

Operation Operand
LPOOL

is an optional symbolic entry. If specified, this
of the first unused full word location following literal pool output.

entry represents the address

Only the first 31 LPOOL directives are processed. All others are not processed, and are
flagged with the Assembler error code Z.

All literals encountered between the last LPOOL directive of a program and the END
directive are dumped as part of the Assembler's END directive processing.

MPX=32 UTILITIES RELEASE 1.1 (ASSEMBLE R10.5.11)

MAIN

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019

00020
00021
00022 .

0000

£
U

N

£

02728784

P00000
PO000&
PO0OCO8
P00QOC
pQOOOC

PO00O10

POCO14
POO1AL

€C8800001
ADC00010
€C000000
C8061055

41424320

ERRORS IN MAIN

16:20:24

P00OC10
P00COC

P00000

OBJECT CODE AT THE CURRENT

A LITERAL WILL B8E GENERATED
(SVC 1,X°55°)

INCLUDE LITERALS IN GENERATEO CCOE

*
THIS EXAMPLE SHOWS THE USE OF THE LPOOL OIRECTIVE TO FORCE THME
+ LITERALS TO BE INCLUDED IN THE
» PROGRAM COUNTER LOCATION.
*
+ THIS PERMITS THE LITERALS TO BE POSITIONED AWAY FROM THEIR NORMAL
« PLACE AT THE END OF THE PROGRAM. THIS PERMITS USERS TO USE
« EXTRA PROGRAM SPACE VIA SALLOCATE AND TESTING OF THE PRCGRAM’S
* ADDRESS LIMITS.
*
* IN THIS EXAMPLE THE LITERALS WOULOD APPEAR IN THE GENERATED CODE
* BETWEEN M.EXIT AND THE START OF BUF. HENCE BY USING M.GADRL, THE
« PROGRAM CAN USE THE SPACE BETWEEN BUF¢99W AND THE LAST LOCATION
* CURRENTLY AVAILABLE IN THE TASK’S CONTIGUOUSLY ALLOCATED DSECT.
*
STRT L1 1.1

T 2,=C°ABC’

BU STP
sTP M. EXIT

375 1,x°58°

ENOM

LPOOL
BUF RES 100w

END STRT

Macro Assembler (ASSEMBLE)
Directives

870024

1

=~
|

ORG/PAGE

4.28 ORG Directive

The ORG directive assigns the value specified in the operand field to the location
counter. Symbolic names are assigned absolute or relocatable values relative to the
point of origin until a subsequent ABS, REL, or ORG directive is encountered.

Symbols used in the operand field must have been previously defined.

External references may not be used in the operand field.

Syntax:
Label Operation Operand
label ORG value
Usage:

The following example assigns the value 1000 (hexadecimal) to TAGA and START:
TAGA ORG X'1000'
START LW 2,TAGA
4.29 PAGE Directive
The PAGE directive causes a page eject on the listed output (LO) device. The current

TITLE identification is printed on each new page. The PAGE directive is not printed but
is assigned a line number.

Syntax:
Label Operation Operand
label PAGE

MPX-32 Macro Assembler (ASSEMBLE)

Utilities Directives 4-25

PROGRAM/REL

4.30 PROGRAM Directive

The PROGRAM directive identifies Macro Assembler generated programs and specifies
the program name to be printed on each page of listed output. Only one PROGRAM
directive can be specified within one program assembly.

If a PROGRAM directive is not specified, the program name defaults to MAIN. If the
operand field of a PROGRAM directive is blank, the program module is assembled with
no name.

Syntax:
Label Operation Operands
label PROGRAM [name [id]]
name is a string of one to eight alphanumeric characters that specifies a program
name. Embedded blanks are not permitted.
id is a string of up to 20 alphanumeric characters for optional identification

information. This field is inserted into the object code if option 14 is set.
. The program name field must be specified if the id field is specified.

4.31 REL Directive

The REL directive assembles a section of program coding in relocatable mode.
Generated object code can be relocated by the loader. All symbolic names are assigned
relocatable memory addresses relative to the program start location. Subsequent use of
this directive causes the location counter to be assigned a value equal to the next
relative memory address to be allocated.

| Syntax:

L_abel Operation . Operand
label REL
Usage:

The following example assembles the code in the relocatable mode beginning at location
1000 (hexadecimal):

TAG REL
ORG X'igoa
Macro Assembler (ASSEMBLE) MDX-32
a-74 Directives iriiitisg

@

NS

O

C

REPT

4.32 REPT Directive

The REPT directive allows the repetitive generation of a sequence of coding or data.
The number of repetitions is specified by an expression in the operand field. This
directive is typically used within repeat loops.

The special symbol $$% can be used in coding within a repeat loop, and is always equal to
the current repetition count. The value of the special symbol $$$ is initially equal to
one.

REPT directives may not be utilized in nested loop structures.

The FORM directive cannot be used within the range of a repeat loop.

Syntax:
l_abel Operation Operand
label REPT expression
expression specifies the repetition count. This expression is evaluated as an
arithmetic expression. I[f the value specified is zero or negative, the
assembly process is suspended until an ENDR directive is
encountered. Symbols used in the operand field must have been
previously defined.
Usage:

The following example illustrates typical usage of the REPT and ENDR directives.

Code:
TABLE REPT 3
GEN 16/A($-TABLE),16/A($$9$)
ENDR
Result:
TABLE GEN 16/0,16/1
GEN 16/4,16/2
GEN 16/8,16/3
MPX-32 Macro Assembler (ASSEMBLE)

Utilities Directives 4-27

RES

4.33 RES Directive

The RES directive reserves blocks of storage for use as tables, data arrays, or work
areas.

Halfword, word, doubleword, and file unit specifications are adjusted for proper
bounding.

If the operand field contains an evaluatable expression, the location counter is adjusted
by the defined number of bytes with no bounding performed. Symbols used in the operand
field must have been previously defined.

Syntax:
L_abel Operation Operand
symbol RES ns
symbol RES expression
symbol is an optional symbol that is assigned the value of the location counter at the
time the first location of the reserved block is allocated
n is a decimal integer value designating the unit multiple to be reserved
s specifies the size of the unit to be reserved as follows:
Variable Field
B Byte
H Halfword
W Word
D Doubleword
F File (8 words)
If not specified, the default is B.
Usage:

The following example reserves storage as indicated:

Code:
(LC=00000) RES 3H
(LC=00006) RES 1
(LC=00008) RES 10
Result:
0060 1HW 1IHW
0004 1IHW iB ’ Unused
0oos 1DW
000C
Macro Assembler (ASSEMBLE) MPX-32

4-28 Directives Utilities

C

RES (Cont.)

The following sample program listing illustrates the use of the RES directive:

Line

Number

01410
01411
01412
01413
01414
01415
01416
01417
01418
01419
01420

MPX-32
Utilities

Location

Counter Label
PO17A8 TXPR
PO17AC PRAF
P01780 DCTV
P017B4 EXTC
P01788 TEXT
P01830 STAT
P01858 HDR
P01860 IPRF
P01868 TDRT
PO186A KSRF
P0186B RCFG

Operation

RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES

Macro Assembler (ASSEMBLE)

Directives

Operand

1w
1w
1w
1w
30W
10W
1D
1D
1H
18
1B

4-29

REZ

4.34 REZ Directive

The REZ directive reserves and zeroes blocks of storage for use as tables, data arrays,
and/or work areas.

Halfword, word, doubleword, and file unit specifications are adjusted for proper

bounding.

If the operand field contains an evaluatable expression, the defined number of bytes is
reserved and zeroed with no bounding performed. Symbols used in the operand field must
have been previously defined.

Syntax:

symbol

Usage:

Label Operation Operand
symbol REZ ns
symbol REZ expression

is an optional symbol that is assigned the value of the location counter at the
time the first location of the reserved block is zeroed

.is a decimal integer value designating the unit multiple to be reserved and

zeroed
specifies the size of the unit to be reserved and zeroed as follows:

Variable Field

Byte
Halfword
Word
Doubleword
File (8 Words)

MOo=sIW®

If not specified, the default is B.

The following example reserves and zeroes storage as indicated:

Code:

(LC=00000) REZ 3H

(LC=00006) REZ 1

(LC=00008) REZ 1D
Result:

£§0000 IHW 0000 14w 0000

00004 IHW 000G iB 00 Unused

00008 0000 0000

1DW
0oooC 0000 8]8]8]4]
Macro Assembler (ASSEMBILE MPX-32

4-30 Directives Utilities

C

REZ (Cont.)

The following sample program listing illustrates the use of the REZ directive:

Label Operation Operand
LIST NODATA
TXPR REZ 1w
PRAF REZ 1w
DCTV REZ 1w
EXTC REZ 1w
TEXT REZ 30W
STAT REZ 10w
HDRT REZ 1D
IPRF REZ 1D
TORT REZ 1H
KSRF REZ 1B
RCFG REZ 1B

Macro Assembler (ASSEMBLE)

Line Location Generated
Number Counter Code
00005
00006 P0O17A8 00000000
00007 PO17AC 00000000
00008 P0178B0 00000000
00009 P017B4 00000000
00010 P017B8 00000000
00011 P01830 00000000
00012 P01858 00000000
00013 P01860 00000000
00014 P01868 0000
00015 PO086A 00
00016 P0186B 00

MPX-32

Utilities

Directives

4-31

SET/SETF/SETT

4.35 SET Directive

The SET directive assigns the value of the expression in the operand field to the symbolic
name specified in the label field. The expression is evaluated as an arithmetic expression
and may consist of a string combined by arithmetic operators (+ - * /),

The symbol defined by the SET directive may be subsequently redefined any number of
times.

Symbols used in the operand field must have been previously defined if BOUND, FORM,
IFT, IFF, ORG, REPT, RES, or REZ directives reference the symbol in the label field of
the SET directive.

Syntax:
Label Operation Operand
symbol SET expression

4.36 SETF Directive

The SETF directive assigns the Boolean value false (0) to the symbolic name specified in
the label field.

Syntax:
|_abel Operation Operand
symbol SETF

4.37 SETT Directive

The SETT directive assigns the Boolean value true (1) to the symbolic name specified in
the label field.

Syntax:
|_abel Operation Operand
symbol SETT
Macro Assembler (ASSEMBLE) MPX-32
4-32 Directives Utilities

N
N

O

SPACE/TITLE

4.38 SPACE Directive

The SPACE directive skips a specified number of lines on listed output. The SPACE
directive is not printed but is assigned a line number.

Syntax:
Label Operation Operand
label SPACE n
n is an integer value in the range 1 to 59 specifying the number of lines to

skip. If n is specified as a blank, zero, or negative integer, the output device
skips one line.

4.39 TITLE Directive

The TITLE directive specifies a heading to be printed on each page of Macro Assembler
listed output. The heading is printed until a subsequent TITLE directive is encountered.

When encountered, a TITLE directive causes a page eject on the listed output device
prior to printing the new TITLE heading.

The TITLE directive is not printed but is assigned a line number.

Syntax:
Label Operation Operand
label TITLE cs

cs is a string of ASCII characters comprising the heading identification. The
text consists of all characters encountered between the blank input column
immediately following the directive and input column 72, exclusive. This
field may be blank.

MPX-32 Macro Assembler (ASSEMBLE)

Utilities Directives 4-33/4-34

®

C
il
!

SECTION 5 - ERRORS AND ABORTS

5.1 Error Codes

Errors detected by the Macro Assembler during Pass One and Pass Two processing are
printed on the program's listed output.

During Pass One, errors which will not be resolved during Pass Two are detected. Pass
One errors are printed before the source program listing on the LO file or device. The
Pass One error statement contains the alphabetic error code, source program line
number, and source image.

Pass Two errors are listed in the error flag field on the LO file or device. The total
number of Pass Two errors is given in the error report line following the source program
listing.

Refer to Section 6 for a sample Assembler output listing showing the location of error
code flags.

Macro Assembler error codes are denoted by an alphabetic character as follows:

Error Code Explanation
A (1) Nested Macro Definition(s)
(2) External Reference from Common
3) External Reference from Noncode-generating
Statement

(4) FORM Directive Encountered during Macro Expansion
(5) FORM Directive Encountered within REPT Loop

B (1) Addressing Boundary Error
(2) Odd Register Specification in Double Register Operand
3) Improper Register Usage
(4) Illegal Condition Code for BCF /BCT Instructions
(5) Bit Value Out of Range (0-31) for External Variable

Character Constant String Improperly Terminated
Data Statement Field Error
Expression Improperly Terminated

(1) DEF Undefined
(2) DEF Improperly Defined
(3) DEF Does Not Precede Executable Code/Data

MmO 0

®)

SPACE Directive Specifies Excessive Line Count
GEN or FORM Directive Specifies Excessive Field Size

I (1) Internally Generated Symbol Specified as COMMON
Block Name
(2) Internally Generated Symbol Specified as External

MPX-32 Macro Assembler (ASSEMBLE)
Utilities Errors and Aborts 5-1

Error Code Explanation

3) Internally Generated Symbol Used in Concatenated
String Used as Macro Argument '

J Attempt to Use Previously Defined Symbol as Common Block
Name

Illegal Option Specified for LIST Directive
Data Constant Definition Error

Symbol Multiply Defined

Numeric Constant Field Error

Operation Field Error

Multiple PROGRAM Directives

© v o zZz X R

(1) Illegal Location Specified with ORG Directive
(2) Illegal Boundary Specified with BOUND Directive

R (1) Relocatable/Common/External Symbolic Field Too
Small
(2 COMMON size > 16KW

T (1) Phasing Error - Pass Two Symbolic Value Not Equal to
Pass One Symbolic Value

(2) Phasing Error - Symbol Detected In Pass Two that Was
Not Defined by Pass One

Symbol Undefined

Illegal Combination of Symbols in Expression

lllegal Constant Type or Address Attribute

X = < C

(1) Literal Not Defined during Pass One
(2) END Directive Processing Error

(3) Illegal Number of Arguments Specified
(4) Illegal Type for Literal

Y Violation of REPT Usage Conventions

p4 Excessive LPOOL Directives (Maximum 31)

\ (Backslash) Attempted Division by Zero Is Illegal

5.2 Abort Codes

If the Macro Assembler aborts, an abort code or message is shown on the listed output
assigned to logical file code LO. The following is a list of the codes, messages, and
action to take when a program abort occurs.

ASO1

AS02

AS03

ASD4

ASO5

AS06

MPX-32
Utilities

PHYSICAL END-OF-FILE ENCOUNTERED ON WRITE TO THE GENERAL
OBJECT (GO) FILE

If logical file code GO is assigned to SGO, the maximum number of extents
was reached. Specify a larger SGO size to reduce the number of extents
needed.

If logical file code GO is assigned to a file, the file is too small and could not
be extended, or the maximum number of extends was reached. Recreate the
file with a larger size so it can be extended.

PHYSICAL END-OF-FILE ENCOUNTERED ON WRITE TO THE BINARY
OUTPUT (BO) FILE

If logical file code BO is assigned to SBO, the maximum number of extents
was reached. Specify a larger SBO size to reduce the number of extents
needed.

If logical file code GO is assigned to a file, the file is too small and could not
be extended, or the maximum number of extents was reached. Recreate the
file with a larger size so it can be extended.

PHYSICAL END-OF-FILE ENCOUNTERED ON WRITE TO THE LISTED
OUTPUT (LO) FILE

If logical file code LO is assigned to SLO, the maximum number of extents
was reached. Specify a larger SLO size to reduce the number of extents
needed.

If logical file code LO is assigned to a file, the file is too small and could not
be extended, or the maximum number of extents was reached. Recreate the
file with a larger size so it can be extended.

PHYSICAL END-OF-FILE ENCOUNTERED ON WRITE TO THE SCRATCH
(UT1) FILE (I.E., $AS UT1 TO TEMP SIZE=800 BLOC=Y)

The maximum number of extents was reached for the file assigned to UT1.
Specify a larger size to reduce the number of extents needed.

PHYSICAL END-OF-FILE ENCOUNTERED ON WRITE TO THE CROSS-
REFERENCE (UT2) FILE (L.E., $AS UT2 TO TEMP SIZE=400 BLOC=N)

The maximum number of extents was reached for the file assigned to UT2,
Specify a larger size to reduce the number of extents needed.

Reserved

Macro Assembler (ASSEMBLE)
Errors and Aborts 5-3

AS07

AS08

AS09

AS10

AS11

AS12

AS13

AS14

AS15

ASl6

AS17

5-4

UNRECOVERABLE 1/0 ERROR ON THE BINARY OUTPUT (BO) FILE

Improper request for unblocked output. Correct the JCL and rerun the
program.

UNRECOVERABLE 1/0 ERROR ON THE GENERAL OBJECT (GO) FILE
Possible hardware problem. Rerun the program. |

UNRECOVERABLE I/O ERROR ON THE LISTED OUTPUT (LO) FILE
Possible hardware problem. Rerun the program.

UNRECOVERABLE I/0 ERROR ON THE SOURCE INPUT (SI) FILE
Possible hardware problem. Rerun the program.

UNRECOVERABLE I/O ERROR ON THE INTERMEDIATE COMPRESSED
SOURCE (UT1) FILE

Possible hardware problem. Rerun the program.

PHYSICAL END-OF -FILE ENCOUNTERED ON WRITE TO THE COMPRESSED
SOURCE OUTPUT (CS) FILE

If CS is assigned to a file, the maximum number of extents was reached.
Recreate the file at a larger size to reduce the number of extents needed.

CHECKSUM ERROR ON COMPRESSED SOURCE INPUT DURING PASS 1
WHILE READING COMPRESSED SOURCE FROM THE SOURCE INPUT (SI)
FILE OR DURING PASS 2 WHILE READING THE INTERMEDIATE
SCRATCH COMPRESSED SOURCE (UT1) FILE.

Rerun the program. If the program aborts a second time with this abort
code, access the program's file with the Text Editor, SAVE the file, and
rerun the program. If the program aborts with this code again, a hardware
problem, such as a bad spot on a disc, probably exists.

THE FILE THE ASSEMBLER IS USING AS THE MACRO LIBRARY WAS NOT
SUCCESSFULLY CREATED BY THE MACRO LIBRARY EDITOR. THE
FILE IS INVALID.

UNRECOVERABLE I/0O ERROR ON THE MACRO LIBRARY (MAC) FILE
Possible hardware problem. Rerun the program.

UNRECOVERABLE 1/0 ERROR ON THE CROSS-REFERENCE (UT2) FILE

Possibie hardware problem. Rerun the program,

UNRECOVERABLE I/O ERROR ON THE COMPRESSED SOURCE OUTPUT
(CS)FILE

Possible hardware problem. Rerun the program.

Assembler (ASSEMBLE) MPX-32

viiilL.TO

®

AS18

AS19

AS20

AS21

AS22

AS23

AS24

AS25

AS26

AS27

AS28

AS29

AS30

MPX-32
Utilities

INVALID BLOCKING BUFFER CONTROL POINTER ENCOUNTERED ON
THE BINARY OUTPUT (BO) FILE

INVALID BLOCKING BUFFER CONTROL POINTER ENCOUNTERED ON
THE GENERAL OBJECT (GO) FILE

INVALID BLOCKING BUFFER CONTROL POINTER ENCOUNTERED ON
THE LISTED OUTPUT (LO) FILE

INVALID BLOCKING BUFFER CONTROL POINTER ENCOUNTERED ON
THE SOURCE INPUT (SI) FILE

INVALID BLOCKING BUFFER CONTROL POINTER ENCOUNTERED ON
THE SCRATCH COMPRESSED SOURCE (UT1) FILE

INVALID BLOCKING BUFFER CONTROL POINTER ENCOUNTERED ON
THE COMPRESSED SOURCE OUTPUT (CS) FILE

INVALID BLOCKING BUFFER CONTROL POINTER ENCOUNTERED ON
THE CROSS-REFERENCE (UT2) FILE

THE MACRO LIBRARY (MAC) FILE IS UNBLOCKED
Make sure the assignment for MAC is unblocked. See Section 2.2.2.
END-OF-FILE ON MA2 FILE

The file assigned to MA2 is too small for the job. Increase the size specified
by the assignment so that UT2 is large enough to hold the program.

UNRECOVERABLE 1/O ERROR ON MA2 FILE

Possible hardware problem. Rerun the program.

INVALID BLOCKING BUFFER CONTROL POINTER ON MA2 FILE
MAC ASSIGNED TO ILLEGAL DEVICE

The Assembler probably encountered a problem opening the file assigned to
MAC. The device may not be configured correctly for use by the Assembler.

MA2 ASSIGNED TO ILLEGAL DEVICE

The Assembler probably encountered a problem opening the file assigned to
MAZ2. The device may not be configured correctly for use by the Assembler.

Macro Assembler (ASSEMBLE)
Errors and Aborts ‘ 5-5

AS31

AS32

AS33

ERROR(S) (DESCRIBED ON LFC LO) DETECTED DURING EXECUTION

The program did not assemble. A problem exists within the source code and
is flagged with an Assembler error code on the LO.

UNRECOVERABLE 1/O ERROR ON THE PREFIX (LFC PRE) FILE
Paossible hardware problem. Rerun the program.

INVALID BLOCKING BUFFER CONTROL POINTER ENCOUNTERED ON
THE PREFIX (LFC PRE) FILE

5.3 Error Messages

The following situations do not report abort codes, although they cause Macro Assembler
programs to abort and generate the following error messages:

Message:

Message:

** BAD MACRO ENCOUNTERED DURING MACRO SEARCH **

The Assembler attempted to read an improperly formatted macro library.

** XREF COULD NOT BE PERFORMED **

A cross-reference was not generated because there was insufficient memory
available to sort the cross-reference information.

The message above is also produced if there is insufficient memory available to store the
required macros and the symbol table.

Message:

Message:

Message:

** SYMBOL TABLE OVERFLOW **

The number of symbols in a program exceeded the number of symbols the
symbol table can hold.

** UNABLE TO ALLOCATE MEMORY FOR MACRO STORAGE **

The macro table size is exceeded due to excessive bytes of in-line macros,
FORM skeletons, repeated code, or macro call argument data.

** UNEXPECTED END STATEMENT, PROBABLY MISSING ENDM, ENDR
OR CONDITION LABEL **

An END statement was detected while processing a macro prototype, repeat
loop, or conditionally skipping code.

Macro Assembler (ASSEMBL MPX-32
Errors and Aborts Utilities

\-/

r

SECTION 6 - OUTPUT AND EXAMPLES

6.1 Introduction

The Macro Assembler optionally produces listed output, object program output, and/or
compressed source output.

Listed output typically consists of a program source listing with a symbol cross-reference
table and an error diagnostic report. The LIST, PAGE, SPACE, and TITLE Assembler
directives provide control of the quantity and format of listed output.

Object program output is a binary representation of assembled machine instructions,
data, and encoded loader function codes. The object program serves as input for a
cataloger or linking-type loader which physically loads the program into memory. The
loading process involves allocation of memory space for the program, resolution of
external and internal symbolic references, and relocation of address-dependent locations.

The Macro Assembler optionally produces source output in compressed format on cards,
magnetic tape, or disc. The option is specified at assembly time by a JCL statement.
Details of the compressed source format are in Appendix C.

6.2 Source Listing

The source listing produced by the Macro Assembler pairs a hexadecimal representation
of object code with the corresponding source program statement.

Figure 6-1 illustrates typical Assembler listed output. The basic format is organized in
columns. The following paragraphs provide details for each of the circled entries in
Figure 6-1.

1 Program Name - The name specified in the PROGRAM directive is printed at
the top of each listed output page. If a PROGRAM directive is not specified,
the program name defaults to MAIN. If a PROGRAM directive is specified
with a blank operand field, no program name is printed.

2 Statement Counter - The five-digit statement counter numbers each source
code statement in the program.

3 Error Flag - Macro Assembler error flags are indicated by one alphabetic
character per error condition. If more than one error of the same type occurs
within a statement, the error flag is printed only once. If more than one
different type of error occurs within the same statement, an error code is
printed for each type; if more than two types of errors occur within the same
statement, they are continued on the next line.

MPX-32 Macro Assembler (ASSEMBLE)
Utilities Output and Examples 6-1

4 Location Counter - Specifies the mode and hexadecimal value of the location
counter in byte increments. The five least significant positions represent the
location counter. The most significant character indicates one of the following
address modes:

Character Mode Location Counter Significance

Blank ABSOLUTE Absolute address of the generated code

C COMMON Leftmost digit is the least significant digit of
the common block number into which code is
being generated. Least significant four digits
give the relative address within the common
block at which code is being generated.

P RELOCATABLE Relocatable address of the generated code

* CSECT Address reference is within a code section

5 Object Code - Contains the hexadecimal representation of object code for the
corresponding source program instruction. The positioning indicates
byte/halfword position within a word. In the case of multiword instructions,
multiple lines of object code are generated.

6 Symbol Address - Specifies the type and hexadecimal address of a referenced
symbol. The address is given in bytes by the five least significant positions.
The address corresponds to the word address operand format code in the object
output. The most significant character indicates the symbol type and address
significance as follows:

Character Symbol Type Address Significance
Blank ABSOLUTE Absolute address or value of the referenced
symbol
C COMMON Leftmost digit is the least sighificant digit of
the common block number in which the
referenced symbol occurs. Least significant
four digits give the relative address of the
referenced symbol within the common block.
P RELOCATABLE Relocatable address of the referenced symbol
X EXTERNAL Zero on first reference to symbol. For all
(Absolute : other occurrences, this is the program address
Linked) of the last instruction that referenced the
symbol (absolute programs only).
Y EXTERNAL Program address of the last instruction that
(Relocatable referenced the symbol (relocatable programs
Linked) only)
A DATAPOOL Value is always zero
* CSECT Address reference is within a code section
Macro Assembler (ASSEMBLE) MPX-32

Output and Examples Utilities

DATAPOOL

MPX=~32 UTILITIES RELEASE 1,1 (ASSEMBLE R10,5,.11)
ALLTYPES 02/729/84 15127112

00001
00002 MM
00003
00004
00005 €00000
00006 C00000 CB8800001
00007 C00004 2014
00008 C00006 2015
00009 C10000
00010 C10000 CAO00003F
00011 €10004 CAB8000a1
00012 P00000O
00013
00014
00015 L
00016
00017
00018 ABD
00019 ABC
00020 88N
00021 88N
U 00022 NESY
00023 RR
U 00028 RR
U 00025 1A
60026 T
MT00027 00001 cc
MT00028 00002 cc
00029 PQ0000 AF000004 C00004&
00030 PQ000A CBO203ES
00031 PQ0008 B8B000038 P00038
00032 P000OC 00000000 AXZ
00033 PQ0010 00000016
00054 P0O014
PQ001a 54455354
0003S P00018 ADBOOOOO X00000
00036 PO00IC 8A000018 v00018
00037 P00C20 0&00001C Y0001C
00038 P0002a Faas00001 X00000
U 00039 P00028 AEV00028 P00028
00040 00000
00041 00020
00042 00020 O0000FACE COVE
0ouas 00024 AF000000 A00000
000aa 00028 D7000000 200000
0ovas Pooo2C
00046 P0002C AES00000 #P00000
00047 P00030 D6800032 P00034
00048 «PQ0000
00049 #P00000 00000125 CONS1
000S0 PQ003a
00051 P0003a VARI
P00038 22222222
00052 P0003C
* 0008 ERRORS IN ALLTYPES
UNDEF INED XYz
UNDEF INED T HIT
UNDEF INED 12
UNDEF INED MOVE

PROGRAM
COMMON
COMMON
COMMON
ORG

L1

TRN
xCR
ORG

Ll

(8]

REL
EXT
EXT
DEFM
DATAW
ENOM
FORM
SETT
SEY
SEY
SETY
SEY
SEY
SET
SEY
EQu
EQu

iw

1
ADMW
DATANW
ABD

L
CATAW
ENOM
(%]
ORMw

ALLTYPES
$,0,F
R,P(10)
WNW, 222
S

1,1

1,2

1,2

R
&y X' 3F
Sy6'A"

POP
Lop

Cr'TEST!
32

L}
BAN+2
XYz

33

HIT

Yy

6

1

2

6,0
6,1000
6,2x"22222222"
0

22
C'TEST

3,L0P
a,L0P
a4,L0P
POP

4, MOVE
xr20*
X'FACE®
6,212
6o WHW

S,CONS1
S,VARI

293

1w

DEFINE PROGRAM CALLED ALLTYPES,
DECLARE COMMON MMM WITH 8, 0. F,
DECLARE BLANK COMMON WITH R, 8,
DECLARE WWW, Z2Z AS DATAPOOL ITEMS,
SET PROGRAM COUNTER TO ADORESS OF 8.
LOAD REGISTER 1 WITH 1,

PUT NEGATIVE CONTENTS IN REGISTER 2,
EXCHANGE THE TWO REGISTERS,

SET PROGRAM COUNTER TO ADODRESS OF R,
LOAD REGISTER & WITH HEX 3F,

LOAD REGISTER 5 WITH ASCII A.

RESEY PROGRAM COUNTER TO RELOCATABLE,
DECLARE EXTERNAL POP,

ODECLARE EXTERNAL LOP,

DEFINE MACRO LL. :

ASCII STRING TEST IN A WORD,

END OF MACRO DEFINITION.

DECLARE ABD AS A FORM,

SET ABC TO TRUE,

SET 88N TO 4,

SET BBN TO BBNe2,

SET NEST 10 XvZ,

SET RR 70 33,

SET RR 1O MIT,

SET TT 7O Vv,

SET TT 10 &,

cc = 1,

cC = 2,

LOAD REGISTER & WITH CONTENTS OF D,
SUBTRACT 1000 FROM REG 6,

ADD LITERAL TO CONTENTS OF REG 6.
DECLARE AXZ AS A wORD OF ZERO,
EXPAND FORM ABD,

CALL MACRO LL.

LOAD .REG 3 WITH CONTENTS OF LOP.
'OR' REG & WITH CONTENTS OF LOP.
STORE CONTENTS OF REG & IN LOP,
BRANCH AND LINK TO ROUTINE POP.
LOAD REG @ WITH CONTENTS OF MOVE,
SET PROGRAM COUNTER Y0 ABSOLUTE,
SET PROGRAM COUNTER TO HEX 20,
DECLARE COVE AS HEX FACE.

LOAD REG 6 WITH CONTENTS OF 222.
STORE CONTENTS OF REG & IN WWw,

LOAD A CSECT CONSTANT,
STORE IT IN A VARIABLE IN DSECT.

A CONSTANT THAT I8 IN CSECT,

A VARIABLE THAT IS IN DSECY,

840358
P Figure 6-1. Sample Assembler Listed Output
MPX-32 Macro Assembler (ASSEMBLE)
Utilities Output and Examples 6-3

10

11

12

13

Label Field - Source statement label field

Operation Field - Source statement operation (directive) field
Operand Field - Source statement operand field

Comment Field - Source statement comment field

Release Number - Release number of the MPX-32 utilities followed by the
Macro Assembler internal release number.

Error Report - The error report line gives the total number of errors detected
in the assembly process.

Undefined Symbols - If undefined symbols were referenced by the source
program, they are listed below the error report line.

6.3 Symbol Cross-Reference

A symbol cross-reference is optionally produced at the end of each source program
assembly.

In addition to the standard symbol cross-reference, a cross-reference of internally
generated symbols may be optionally requested by specifying option 3. If specified, the
internal cross-reference is listed immediately following the symbol cross-reference in
descending alphanumeric order. Symbols that are not referenced are not included unless
option 10 is specified.

The symbol cross-reference for the ALLTYPES program used in Figure 6-1 is shown in
Figure 6-2. The following paragraphs detail each of the circled entries in Figure 6-2.

1 Program Name - The program name specified in the PROGRAM directive is
printed on each page of listed output.

2 Symbol Type - Specifies the symbol type and its value or address. The value or
address is given in bytes by the five least significant positions. The most
significant character indicates the symbol type and significance of the value as
follows:

Character Symbol Type Value Significance

Blank ABSOLUTE Absolute address or value of the symbol

A DATAPOOL Value is always zero

B MACRO Relative address of the macro prototype

in the macro storage table
C COMMON Most significant digit is the least signi-
ITEMS ficant digit of the common block number

6-4

in which the referenced symbol occurs.
LLeast significant four digits are the
relative address of the symbol within the
common block.

Macro Assembler (ASSEMBLE) MPX-32
Output and Examples Utilities

Character Symbol Type

Value Significance

D

MPX-32
Utilities

COMMON
BLOCK

FORM
SET
(ABSOLUTE)

SET
(RELOCATABLE)

LITERAL

MULTIPLE
DEFINITION

RELOCATABLE

UNDEFINED

EXTERNAL

EXTERNAL

CSECT

Symbol - Lists the symbol being cross-referenced.

blank COMMON.

Leftmost digit is the least significant
digit of the common block number. Least
significant four digits are the common
block size in bytes.

Relative address of the form prototype in
the macro storage table

Last absolute value to which the symbol
was set

Last relocatable value to which the sym-
bol was set

Leftmost digit is the least significant digit
of the literal pool number. Least signifi-
cant four digits are the number of the
literal within the literal pool.

Initial value the symbol was assigned

Relocatable address of the symbol

Contents of the location counter when the
symbol was last referenced

The program address at which the symbol
was last referenced (absolute programs
only). Value is zero if the symbol was
never referenced.

Program address at which the symbol was
last referenced (relocatable programs
only)

The symbol is within a code section

A blank entry indicates

Symbol Defined - Lists the line number of the source statement in which the
symbol is defined. The line number specifying symbol definition is always

preceded by an asterisk (¥).

Symbol Referenced - Multiple entries specifying line number(s) in the source
program where the symbol was referenced and/or redefined.

Macro Ass

Outpu

embler (ASSEMBLE)
t and Examples

On

\n

ALLTYPES 02/29/84 15327312 CROSS REFERENCE

L00000 22222222 %0003 N\

'| MPX=32 UTILITIES RELEASE 1,1 (ASSEMBLE R10,5.11)

D1002C *00003 00003
"J00006 BBN *00020 =00021 0002}
M00001 cC *00027 =#00028
*P00000 CONS1 *00049 00046
C00004 D *00002 00029
Y00020 LOP #00014 00035 00036 00037
DoovocC MMM 200002 00002
Y00024 POP *00013 00038
C10000 R #00003 00009
KQ0000 RR *00023 =*00024
€00000 S *#00002 00005
. J000oe TT 00025 *00026
P0GO34 VARI #0005y 00047
AQQQ00 WWW *00004 00044
400000 122 *00004 00043
880000 LL *0001s 00034
F80048 ABD *00018 00033

870023
Figure 6-2. Sample Symbol Cross-Reference
Macro Assembler (ASSEMBLE) MPX-32
6-6 Output and Examples Utilities

6.4 Error Diagnostics

A comprehensive set of error diagnostics is defined for error conditions detected by the
Macro Assembler during source code processing. Refer to Section 5 for a list of error
codes.

Pass One errors are printed on the listed output page immediately preceding the source
program listing. Pass One error information includes the error code, the source program
line number of the error, and the source image. Figure 6-3 shows the Pass One error list
for the program ALLTYPES used in Figures 6-1 and 6-2.

MPXe32 UTILITIES RELEASE 1,1 (ASSEMBLE R10,5,11)
ALLTYPES 02/29/84 1s327112

M 00028 cc EQU e cC = 2,

870026

Figure 6-3. Pass One Error List

The total number of Pass Two errors is listed in the error report line. The error report
line also lists the program name, if specified, or the default name MAIN.

The error report line is followed by a listing of undefined symbols for a particular
program step.

Figure 6-1, items 12 and 13, depict Pass Two error reporting.

6.5 Object Output

Macro Assembler object output is produced in word format. Object records are variable
length depending on the peripheral device to which object output is directed. All object
records, regardless of the peripheral device used for output, contain the following
information in this order:

1) RECORD TYPE (1 byte) -- Defines the type of record being processed. The
hexadecimal value FF signifies a binary record. The last record of a program is
signified by the hexadecimal value DF.

(2) BYTE COUNT (1 byte) -- Specifies the number of data bytes in the object record,
exclusive of checksum and sequence number

3) CHECKSUM (2 bytes) -- Is a halfword additive checksum of data bytes within the
object record, exclusive of byte count and sequence number

4) SEQUENCE NUMBER (2 bytes) -- Is the binary sequence number of the object
record. The sequence number count is initialized to one for each new program. If
more than 65,536 records occur in a particular program, the sequence number
count resets to one and continues.

MPX-32 Macro Assembler (ASSEMBLE)
Utilities Output and Examples 6-7

(5)

XXXX

nnnn

OBJECT PROGRAM -- Is of a series of data blocks. Each data block is preceded
by a control byte specifying a loader function code and byte count. The format of

the control byte is:

XXXxnnnn

specifies a loader function code as follows:

Code Definition

0000 Absolute

0001 Program Origin

0010 Absolute Data and Repeat Load
0011 Transfer Address to Start Execution
0100 Relocatable Data

0101 Program Name

0110 Relocatable Data and Repeat Load
0111 External Definition

1000 Forward Reference Stringback
1001 External Reference

1010 Common Block Definition

1011 Common Reference

1100 Datapool Reference

1101 Extended Codes

1110 Common Origin

1111 Last Byte of Object Output

specifies the byte count for the data block being processed by the

loader.

This entry is the least significant four bits of the control

byte. For a data block of 16 bytes, the bit representation for nnnn is

00oa.

Data blocks comprising the object program are grouped and output in the following order:

(1)
(2)
(3)
(4)
(5)
6)
(7

A relocation offset of zero is assumed by the loader for binary object code, unless

otherwise specified. Object code must end with a final origin to the next available

Program Name (with maximum boundary required for loading)

Common Block Names and Sizes (if any)
Defined Entry Points (DEFs, if any)
Binary Object Code

External Stringbacks (EXTs, if any)
Transfer Address (if any)

Termination Code

location.

6-8

Macro Assembler (ASSEMBLE)
Output and Examples

@

6.6 Macro Assembler Programming Examples

The following section provides sample programming sequences illustrating the use of
various Macro Assembler directives.

Example 1 shows the use of conditional assembly directives. Examples 2 through 11 show
the use of macros. The same macro definition is used for Examples 2 through 5. The
code generated is different for each example based on the different usages of the macro
call. Examples 6 through 11 show the use of recursive macros. The same macro
definition is used for Examples 6 through 11. The code generated is different for each
example based on the different usages of the macro call.

Example 12 shows a program that assembles source code from a user file, catalogs the
object output into a load module, and directs the job output to a user file.

Example 1

The following coding sequence:

LIST NONG
STEP SET 45
LEVEL SET 0
REPT 6
DATAH A(LEVEL)
LEVEL SET LEVEL+STEP
IFT LEVEL.GE.180,ENDLOOP
STEP SET 55
ENDLOOP ANOP
ENDR
END

generates the following sequence of instructions:

P0O000C 0000 DATAH 0
P00002 0020 DATAH 45
P0O0004 005A DATAH 90
P00006 0087 DATAH 135
PO0008 00B4 DATAH 180
POOOCA 00EB DATAH 235
Example 2

Macro Definition for Examples 2 through 5

MOVE ‘DEFM LABEL,A
LW 3 FLAG
FT %A,LABEL1
%LABEL STW 3,RESET1
EXITM
LAREL 1 ANQOP
IFF %A,LABELZ
%L ABEL STW 3,RESETZ
LABEL? ANOP
ENDM
MPX-32 Macro Assembier (ASSEMBLE)

Utilities Output and Exampies b-9

Usage

ONE

Result

X

Example 3
Usage

ONE

Result

X

Example 4

Usage
I

Result

Example 5
Usage

Result

6-10

LIST
SETT

MOVE

LW
STW

LIST
SETF

M.OVE
LW

STW

SET

MOVE

LW
STW

SET
MOVE

LW
STW

NONG

X,ONE

3,FLAG
3,RESET1

NONG

X,0ONE

3,FLAG
3,RESET2

X,1

3,FLAG
3, RESETL

X,1

3,FLAG
3,RESET2

Macro Assembler (ASSEMBLE)
Output and Examples

MPX-32
Utilities

e
7

C

Example 6

MPX-32

[\ Macro Definition for Examples 6 through 11
RECURS DEFM ARG1,ARG2,ARG3
IFP %ARG1,%LAB1
STW 1,%ARG1
RECURS ,%ARG2,%ARG3
EXITM
%L AB1 IFP %ARG2,%l.AB2
STW 2,%ARG?2
RECURS »y20ARG3
EXTIM
%LAB2 IFP %ARG3,%LAB3
STW 3,%ARG3
%L AB3 ANOP
ENDM
Usage
RECURS WORD1,WORD2,WORD?3
Result
STW 1,WORD1
STW 2,WORD2
STW 3,WORD3
(Example 7
' Usage
RECURS WORD1,WORD2
Result
STW 1,WORD1
STW 2,WORD2
Example 8
Usage
RECURS WORD1
Result
STW 1,WORD1

N

[

Jnd

Example 9

Usage
RECURS

Result

STW
STW

Example 10

Usage
RECURS

Result

STW

Example 11 .

Usage
RECURS

Result

WORD1,,WORD3

1,WORD1
3,WORD?3

,,WORD3

3, WORD?3

No Code Generated

6-12

Macro Assembler (ASSEMBLE)
Output and Examples

MPX-32
Utilities

NI

APPENDIX A
INSTRUCTION FORMATS
MEMORY ADDRESS
OP CODE R X [V]|F WA c
'l 1 'l I 1 1 l ' 1 'l l 1 'l 1 I 1 1 1 I 1 1 1 | L 1
01 234567 8910111213 1415 16 17 18 19 20 21 22 23 24 2526 27 28 29 30 31

OPCODE OPERATION CODE
R GENERAL PURPOSE REGISTER (0-7)
X INDEX REGISTER (1-3)
I INDIRECT ADDRESSING SPECIFICATION
F FORMAT BIT
WA WORD ADDRESS
c ADDRESS CODE (INCLUDING BYTE ADDRESS)
INDIRECT/EFFECTIVE ADDRESS

Y%/

01 2 34 567 8 9101112131415 16 17 18 19 20 21 22 23 24 2526 27 28 29 30 31

MEMORY REFERENCE INSTRUCTION

OP CODE R | x |I]|F WA c
NPT B | |] | ,

01 2 34 56 7 8 9101112131415 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

AUG
OP CODE R 00 00| ~opE OPERAND VALUE

1 1
01 2 34 56 7 8 9101112131415 16 17 18 19 20 21 22 23 24 2526 27 28 29 30 31

BITS 13-15
BITS 16-31

AUGMENTING OPERATION CODE
16-BIT OPERAND VALUE

Macrp Assembler (ASSEMBIF)

Instruction Forms

87D4J04

/O INSTRUCTION

OP CODE DEVICE NO. AuG FUNCTION CODE
2 1 'l l Il 1 I 1} 1 I | IwDIE 1 1 1] | 1 1 1 I 3 1 1l l 1 1 1
01 2 34567 8 91011121314 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
BITS 6-12 /O DEVICE NUMBER
BITS 16-31 16-BIT /O FUNCTION CODE

INTERRUPT CONTROL INSTRUCTION

e e, |8

BITS 6-12

INTERRUPT PRIORITY LEVEL

INTER-REGISTER INSTRUCTION

(LEFT HALFWORD) (RIGHT HALFWORD)
R AUG R AUG

op GODIE DI Rs CODE op CODIE DI Rs CODE
01 2 34 5067 B8 910111213 1415 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
BITS6-8/22-24 DESTINATION REGISTER (0-7)

FOR RESULT OF OPERATION

BITS9-11/25-27 SOURCE REGISTER OF OPERAND
SHIFT INSTRUCTION -
(LEFT HALFWORD) (RIGHT HALFWORD)

OP CODE R |p|o]| sHiFTcount OP CODE R | p|o| SHIFT counT

1 1 1 | 2 1 l | 1 1 1 1 2 1 l 1 § I I H 1 1

01 2 34 567 8 01011121314 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

BITS 6-8/22-24 GENERAL PURPOSE REGISTER (0-7)

BITS 9/25 SHIFT DIRECTION (0=RIGHT/1=LEFT)
BITS 10/26 UNUSED (=0)
BITS 11-15/27-31 SHIFT COUNT

87D4J05

Macro Assembler (ASSEMBLE)
Instruction Formats

MPX-32
Utilities

N
N

FIXED POINT FORMATS
BYTE

S/|000 00000000 O0DOOO0OO OO 00O O O| INTEGERVALUE
llllllllllllllllllllll III'III

01 2 3456 7 8 91011121314 15 16 17 18 19 20 2122 23 24 2526 27 28 29 30 31
(BIT 0=SIGN)

HALFWORD (SIGN - EXTENDED)

S S8SS 8§88 S8S8SS SS S S SS S S§|s INTEGER VALUE

L L 1 ' 1 'l L I 1 'l 1 I 1 1 1 1 1 l 1 [1 l 1 1 1 I 1 L 1

01 2 3456 7 8 9101112131415 16 17 18 19 20 21 22 23 24 2526 27 28 29 30 31

FULLWORD
[INTEGER VALUE
2 1 l 1 2 1 l Il Il l;l il 1 1 l N 3 I l 1 1 ' 1 1 i l 1 il 1
01 2 34567 8 9101112131415 16 17 18 1920212223 24 25 26 27 28 29 30 31
DOUBLEWORD ¢ ¢
) I
S INTEGER VALUE

M BRI P B et ..

01

2 34 56 7 8 9 10 111213 14 J 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

FLOATING POINT FORMATS

WORD
s| EXPONENT FRACTION (24 BITS)

1L 2 l] 1 1 1 1 1 ' 1 ‘ 1] 1 | 1 1 1 I] 1 |
01T 2 34 567 8 610171121374 715 16171810 20 2122 23 24 25 26 27 28 25 30 31
DOUBLEWORD ¢t ¢

))

S| EXPONENT FRACTION (56BITS)

. S(...I...I...I...
01 23456788101 121314) 49 50 5152 53 54 5556 57 58 59 60 61 6263

MPX-32
Utilities

Macro Assembler (ASSEMBLE)
Instruction Formats

A-3/A-4

7'“‘\

N

C

APPENDIX B
EXTENDED MNEMONIC CODES

Assembler language extended mnemonic codes are used to specify conditional branch
instructions. Included within the extended mnemonic codes are both the branch
instruction and the branch condition. The Macro Assembler translates the extended
mnemonic code into the appropriate machine instruction -- Branch Condition True (BCT)
or Branch Condition False (BCF). The extended mnemonic codes, together with their
operand formats and equivalent machine instruction, are shown below. The symbols used
to indicate entries in the operand field are: -

* Indirect Addressing
m Memory Address
X Index Register
USED AFTER COMPARE INSTRUCTIONS
Extended
Mnemonic Operand Machine
Code Format Instruction Description
BGT *m,x BCT 2,*m,x Branch If Greater Than
BLT *m,x BCT 3,*m,x Branch If Less Than
BEQ *m,x BCT 4,*¥m,x Branch If Equal To
BGE *m,x BCT 5,*m,x Branch If Greater Than or Equal To
BLE *m,x BCT 6,*m,x Branch If Less Than or Equal To
BNE *m,x BCF 4,*m,x Branch If Not Equal To

USED AFTER ARITHMETIC, LOGICAL, AND LOAD INSTRUCTIONS

Extended
Mnemonic
Code

BOV
BP
BN
Bz
BNOV
BNP
BNN
BNZ

USED AFTER TEST INSTRUCTIONS

Extended
Mnemonic
Code

BS
BNS
BANY
BAZ

MiPX-32
Utiiities

Format

Format

Operand

*m,x BCT 1,*m,x
*m,x BCT 2,*m,x
*m,x BCT 3,*m,x
*m,x BCT 4,*m,x
*m,x BCF 1,*m,x
*m,x BCF 2,*m,x
*m,x BCF 3,*m,x
*m,x BCF 4,*m,x

Operand

*m,x BCT 1,*m,x

*m,x BCF 1,*m,x
*my;x BCT 7,%m,x
*m,x BCF 7,%m,x

Machine
Instruction

Machine
Instruction

Description

Branch If Overflow
Branch If Positive
Branch If Negative
Branch If Zero

Branch If No Overflow
Branch If Nonpositive
Branch If Non-negative
Branch If Nonzero

Description

Branch If Set
Branch If Not Set
Branch If Any One
Branch If Ail Zeros

Macro Assembler (ASSEMBLE)
Extended Mnemonic Codes

APPENDIX C

COMPRESSED SOURCE FORMAT

The Macro Assembler optionally accepts source program input or produces source output

in compressed format on cards, magnetic tape, or disc. The records are 120 bytes in
length.

The compressed source format for card input media is:

CARD COLUMN 1 2 3 4 5-80

87D4I106

The format fields are specified as follows:

1 - Data Type Code (8 bits) - Hexadecimal values BF or 9F specify compressed format;
otherwise noncompressed. Hexadecimal value 9F indicates last record of a
compressed source module.

2 - Byte Count (8 bits) - Specifies number of bytes remaining in record.

3 - Checksum (16 bits)

4 - Sequence Number (16 bits)

5 - Compressed Source Data (n bytes) - Contiguous bytes of source data to be
assembled. Record length varies depending on peripheral device from which data is
being input.

MPX-32 Macro Assembler (ASSEMBLE)

Utilities Compressed Source Format C-1

Compression is accomplished by squeezing blanks and inserting field and string counts. A
string is broken only when three or more blanks are encountered. For the following 80-
character source record:

ALPHA LW 3,BETA

the resulting compressed source image is the following byte string:

Blank Count - 0

String Count -5

Data - ALPHA

Blank Count -5

String Count - 2

Data - LW

Blank Count - 4

String Count - 6

Data - 3,BETA

Terminator - FF (Hexadecimal)

(Remainder Of Compressed Source Record)

The compression ratio for a source program is dependent on the number and size of
source comments. Compression is normally in the range from 3-2 to 4-1.

Macro Assembler (ASSEMBLE) | . MPX-32
Compressed Source Format ‘ Utilities

| J
5 i
“__ ¥

O

APPENDIX D

ASCII CODE SET

Row Cul 0 1 2 3 4 5 6 7
Bit Positions
4 0——0 0 0 0 0 0 0 0
5 1——0 0 0 0 1 1 1 1
6 2—+—0 0 1 1 0 0 1 1
H 3— 0 1 0 1 0 1 0 1
0000 O NUL DLE sp 0 @ P ~ p
12:0-9-8-1 12:11-9:8-1 NoPunch 0 84 117 8-1 12-117
0001 1 SOH bl ! 1 A Q a q
1291 11.9-1 1287 1 1241 118 12:0-1 12-11-8
0010 2 STX DC2 " 2 B R b r
1292 11-9-2 8.7 2 122 119 1202 12-119
0011 3 ETX DC3 # 3 c s c s
1293 1193 83 3 123 0-2 12:0-3 1103
0100 4 EOT DC4 $ 4 D T d t
97 984 1183 4 124 0-3 1204 1103
0101 & ENQ NAK % 5 E u e u
0-9-85 985 0-8-4 5 125 0-4 1205 1104
0110 6 ACK SYN & 6 F v f v
0-9-8:6 9-2 12 6 126 05 1206 1105
. 0111 7 BEL ETB ’ 7 G w g w
0-987 0-9-6 85 7 127 0-6 1207 1106
1000 8 BS CAN (8 H X h x
1196 11-9-8 12-85 8 128 0-7 1208 1107
1001 9 HT EM 9 I Y i y
1295 11-9-8-1 1185 9 129 08 1209 1108
1010 A LF SuB * : J z i z
0-9-5 987 1184 8-2 11-1 0-9 12-111 11-09
1011 B VT ESC + ; K [k {
12983 0-9-7 1286 1186 112 1282 12-11-2 120
1100 C FF FS , < L \ :
12-9-8-4 11984 0-8-3 1284 11-3 0-8-2 12-11-3 12-11
1101 D CR GS - = M] m }
12985 11985 11 86 11-4 1182 12-114 110
1110 E S0 RS . > N A n ~
12.9-8-6 11986 1283 0-8-6 116 1187 12115 1101
111 F sl us / ? 0 - o DEL
12987 11987 0-1 087 116 0-85 12-11-6 1297
840813
(\\
MPX-37 Macro Assembler (ASSEMBILE)
Utilities ASCII Cgde Sct -1

Some positions in the ASCII code chart may have a different graphic representation on
various devices as:

ASCIIIBM 029

> bed (= o
Voo -

Control Characters:

D-2

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
VT
FF
CR
SO
SI
DLE
DC1
DC2
SUB
DC4
NAK
SYN
ETN
CAN
EM
sS
ESC
Fs
Gs
RS
us
DEL
SP
(CO)
(15)

Null

Start of Heading (CC)

Start of Text (CC)

End of Text (CC)

End of Transmission (CC)
Enquiry (CC)

Acknowledge (CC)

Bell (audible or attention signal)
Backspace (FE)

Horizontal Tabulation (punch card skip) (FE)
Line Feed (FE)

Vertical Tabulation (FE)
Form Feed (FE)

Carriage Return (FE)

Shift Out

Shift In

Data Link Escape (CC)
Device Control 1

Device Control 2

Substitute

Device Control 4 (stop)
Negative Acknowledge (CC)
Synchronous Idle

End of Transmission Block (CC)
Cancel

End of Medium

Start of Special Sequence
Escape

File Separator (IS)

Group Separator (IS)

Record Separator (IS)

Unit Separator (IS)

Delete

Space (normally nonprinting)
Communication Control
Information Separator

Macro Assembler (ASSEMBLE)
ASCII Code Set

MPX-32 -
Utilities

Macro Library Editor (MACLIBR)

MPX-32 Utilities

CONTENTS
Section Page
1 - OVERVIEW
1.1 General Description « v v vvee s eeeseesssesoassoosssssscssosncsscans 1-1
1.2 Directive SUMMAErY .. oot vttt onnseeessssosssanes O £ Y4
2 - USAGE
2.1 AccessingMACLIBR . .ttt v nneeses ceeeeen seesessseennesnean .o 2-1
2.2 Logical File Code Assignmentsoeeeeens ceseeesececesnsessenne 2-1
2.2.1 Macro Library (MAC) Ceesteseeresaeans ceeeaaan .. 2-1
2.2.2 MacroInput File (SI) e v v e v e v v et e v venenn et ereeenn ceseeas 2-2
2.2.3 Directives (DIR) 4 v v vttt it e eeeensonscesnscascanssasanss 2-2
2.2.4 Listed Output (LO) v vt e ie e v eenvesesonsanonans cesesenees 223
2.2.5 LFCSUMMAErY «ceeveeeeeeececnncennans ceeeeeneens cevene 2-3
2.3 Options ¢ v e veeeenencenns e e eeesseesseesses et asasses o0 co. 2-4
2.4 MACLIBRListings ¢ o v evveesceenscosas Ceeeese e ene ceecesen os 2-4
2.5 ExitingMACLIBR. v vieieenenns i
3 - DIRECTIVES
3.1 Introduction.....oeveeveeeeens ceceenn ceeenen ce s ereeseensenn e 3-1
3.2 /APPEND Directive «veeeeeeean e Che et et et se s ceas 3-1
3.3 J/CREATE DireCliVe v oo vseeesneosooensoasannsnns . 24
3.4 /DELETE Directive «.eeeeeeeeeoas e et eseses e 3-2
3.5 /DISPLAY Directive v st e venoeenannes cereeea e retee e 3-2
3.6 [ENDDIrective «vveeeesensosssssnnnnns et eereaenen e ee e . 3-2
3.7 JEXITDirective « v v e veeeeennn e ceceee Ceetceeeeas 3-3
3.8 JINSERT DireClive v v v v vt e vneesoeeeeeoessensaeaacanasenaeeses 3-3
39 J/LOGDIirective +eueereeeessoscesansonsones cesee e ceeeeaae . 3-3
3.10 /MACLIST Directive.e.ov... Ceeeasaean e eseceeae e ceeans ce. 3-4
3.11 /REPLACE Directive «veuvesesenss e e ee e s s es et 3-4
4 - ERRORS AND ABORTS
4.1 AbOTt COdES. o e v e e v vt eeeenesoscasossssossesssssnssses ceseeennas b4-1
4.2 Error Messages. s v v veeveeesvoncesseas ceeseaas et eseeennn B
4.3 Information Messages teseeesensssscsnsseeas ceeesseesnenn 4-2
S-EXAMPLES.ciitunne C e e s e s eea et s et e st s e s csannns 5-1
TABLES
2-1 MACLIBR LFC Summary e e s s s eessssssassessecess o e s 2-3
MPX-32 Macro ¢ ibrary Editer (MACLIBR)
Utilities Centents itifiv

¢

MACRO LIBRARY EDITOR (MACLIBR)

SECTION 1 - OVERVIEW

1.1 General Description

The Macro Library Editor (MACLIBR) utility creates and maintains system or user macro
libraries.

MACLIBR can be used to:

Delete or replace macraos by name

Insert macros

Build a new macro library

List or print a macro in a macro library
Log the names of macros in a macro library

Macros are sequences of Assembly language instructions with unique names that can be
stored in a library maintained by MACLIBR. Up to 65,535 macros can be contained in a
macro library. When a macro name is used in source code, the Macro Assembler
retrieves the macro from the macro library and expands the macro. Up to 255 variable
parameters to pass to the macro can be defined in a macro. The task using a macro
supplies the paraimeters. The parameters are used for macro expansion.

M.MPXMAC is the system macro library. Supplied with the operating system,
M.MPXMAC contains all of the macros required to expand references to system services
into Assembler level code, plus the definitions of all MPX-32 data structures.

Macros begin with a DEFM statement, which can be preceded by Assembler comment
lines describing the macro. The /MACLIST directive lists the DEFM statements
contained in a library.

Parameters to be passed to the macro can be defined within the macro. The parameters
are dummy symbols preceded by percent signs. Other dummy symbols are labels used for
conditional processing. The /MACLIST directive lists all dummy symbols used in a
macro.

NOTE: Only parameters actually referenced in the macro body are retained in the
DEF M.

MACLIBR processes files sequentially. A macro specified with any directive must be
located in the library file after the macro specified with the previous directive. For
example, a macro cannot be added in the middle of a library before replacing a macro at
the beginning of the same library. The only exception to this rule is the /DISPLAY
directive, which may be placed anywhere within a MACLIBR directive stream. Prepare
the directive file and the file assigned to logical file code SI so both follow the sequence
of the macros in the library being updated.

MACLIBR recognizes 1 to 8 character macro names and 1 to 16 character file and library
names. Unless specified;, files assigned to logical file codes will be forced to the

appropriate format-biocked or unblociked.

MPX-32 Macru Library Editor (MACLIBR)
1

[
]
-

1ied . m T L
LALILILICS LUVEIVIEW

MACLIBR does not check for duplicate names. If two macros have the same name and
one is to be deleted, the first one encountered is deleted. A log of the library shows the q

relative position of each macro in the library. \

1.2 Directive Summary

The following list summarizes the MACLIBR directives. Underlining indicates accepted
abbreviations. Each directive is described in more detail in Section 3.

Directive Function

/APPEND Adds one or more macros to the end of a library file
/CREATE Generates a macro library

/DELETE Deletes a macro from a library

[/DISPLAY Lists a macro

JEND Defines the end of an INSERT, REPLACE, APPEND, or
. CREATE sequence. After APPEND or CREATE, END has the
same effect as EXIT.

[EXIT Performs update and returns control to the calling task. This
is the last update directive.
[/INSERT Inserts one or more macros before a specified macro /
NS
/LOG Lists names and numbers of all macros after all updates are o
complete
/MACLIST Lists all, part, or none of the source for each macro in a
library
/REPLACE Replaces an existing macro with a new macro of the same
name

N
{)

Macro Library Editor (MACLIBR) MPX-32
1-2 Overview Utilities

SECTION 2 - USAGE

2.1 Accessing MACLIBR
MACLIBR can be accessed from the batch or interactive modes in one of three ways:

$MACLIBR
$RUN MACLIBR
$EXECUTE MACLIBR

$RUN MACLIBR is valid only from the system directory.
When accessing MACLIBR interactively, the MAC> prompt is displayed:

TSM> $MACLIBR
MAC>

2.2 Logical File Code Assignments

There are four logical file codes (LFCs) associated with MACLIBR: Macro Library
(MAC), Macro Input File (SI), Directives (DIR), and Listed Output (LO).

2.2.1 Macro Library (MAC)

A macro library can reside in either a permanent disc file or on a magnetic tape file. If
the macro library file is a disc file, the Volume Manager (VOLMGR) must be used to
create the macro library file before the macro library is generated. The macro library is
assigned to logical file code MAC. Logical file code (LFC) MAC is forced unblocked by
MACLIBR. (This LFC must not be assigned by the user).

A temporary file which is the same size as the macro library being used is assigned to
MAC. This file is dynamically allocated by MACLIBR and is used to build and edit
macros from the source into an existing or new library.

MACLIBR checks the access rights associated with a macro library file. Depending on
how the macro library was created, there may be access limitations. An error message is
generated if the user does not have the appropriate access rights to the library. A user
with read only access can use only the /DISPLAY, /EXIT, /LOG, and /MACLIST
directives. If an access error occurs, it may be necessary to create the file with
different access rights or to change the owner name and/or project name before
attempting to access it.

MPX-32 Macro Library Editor (MACLIBR)
Utilities Usage 2-1

MAC Default and Optional Assignments

The default assignment for MAC is to the system macro library (M.MPXMAC):
$ASSIGN MAC TO M.MPXMAC BLOC=N

There are two optional assignments for MAC:

$ASSIGN MAC TO ;pathname £
DEV=devmnc

pathname is the pathname of a macro library file
devmnc is the device mnemonic of a device containing a macro library file
2.2.2 Macro Input File (SI)
The macro input file is a file of macros in uncompressed format. Each macro may have a
maximum of 255 parameters. The maximum number of macros is 65,535. The macro
input file is assigned to logical file code SI.
SI Default and Optional Assignments
The default assignment for SI is to the System Control file (SYC):
$ASSIGN SITO SYC

There are two optional assignments for SI:

$ASSIGN SI TO pathname "
3DEV=devmnc

pathname is the pathname of a file containing macro input
devmnc is the device mnemonic of a device containing macro input
2.2.3 Directives (DIR)

The directives file is a file of MACLIBR directives to be performed. The directives file
is assigned to logical file code DIR.

DIR Default and Optional Assignments

The default assignment for DIR is to the System Control file (SYC):
$ASSIGN DIR TO SYC

There are two optional assignments for DIR:

$ASSIGN DIR TO pathname 2
i DEV=devmnc

pathname is the pathname of a file containing MACLIBR directives
devmnc is the device mnemonic of a device containing MACLIBR directives

Macro Library Editor (MACLIBR) MPX-32
2-2 Usage Utilities

2.2.4 Listed Output (LO)

The listed output file contains a MACLIBR audit trail. The listed output file is assigned
to logical file code LO.

LO Default and Optional Assignments
The default assignment for LO is to logical file code UT:
$ASSIGN LO TO LFC=UT

In the interactive mode, output is generated on the user terminal. In the batch mode,
output is generated on the SLO device.

There are two optional assignments for LO:

$ASSIGN LO TO pathname }
DEV=devmnc

pathname is the pathname of a file to contain listed output
devmnc is the device mnemonic of a device to contain listed output
2.2.5 LFC Summary

The following is a table of LFCs used by MACLIBR and their default and optional
assignments.

Table 2-1
MACLIBR LFC Summary
Default Optional
LFC Assignment Assignment
MAC M.MPXMAC pathname
DEV=devmnc
SI SYC pathname
DEV=devmnc
DIR SYC pathname
DEV=devmnc
LO LFC=UT pathname
DEV=devmnc
uUTl1 TEMP none
MPX-32 Macro Library Editor (MACLIBR)

Utilities Usage 2-3

2.3 Options

Two options can be specified for MACLIBR. Options are specified by number on an
$OPTION job control language statement.

Option Description
7 DIR Unblocked

The file assigned to logical file code DIR is unblocked. If
this option is specified, the $ASSIGN statement for DIR
must also be unblocked (i.e., BLOC=N).

8 SI Unblocked
The file assigned to logical file code SI is unblocked. If
this option is specified, the $ASSIGN statement for SI must
also be unblocked (i.e., BLOC=N).
2.4 MACLIBR Listings

MACLIBR listed output is an audit trail including directives, a list of all macros, the
contents of each macro, and the following MACLIBR operation counters:

Counter Description

BR Number of 192-word blocks read from the file assigned to logical file code
MAC

BW Number of 192-word blocks written to the scratch file

MD Number of macros deleted

MR Number of macros replaced

MI Number of macros inserted and appended

BU Number of 192-word blocks used on the file assigned to logical file code

MAC after updating
NM Number of next macro

The counter values appear at the end of the listed output.

2.5 Exiting MACLIBR

To exit MACLIBR from the batch and interactive modes, specify the /EXIT directive. In
addition, MACLIBR exits when the /END directive follows either the /APPEND or
/CREATE directive.

Macro Library Editor (MACLIBR) MPX-32
2-4 Usage Utilities

C

SECTION 3 - DIRECTIVES

3.1 Introduction

MACLIBR directives can be abbreviated to the first four characters, including the
preceding slash. If a directive or parameter can be abbreviated, the acceptable
abbreviation is underlined in the syntax.

Both a comma and blanks between parameters are valid delimiters. Commas need be
used only where shown.

Only upper case is permitted for directives, the MACRO name, DEFM, or ENDM,

Directives are processed sequentially until an /EXIT directive or an end-of-file is
encountered. At least one blank must separate the end of a directive verb and a required
parameter. A required parameter must not be placed beyond column 21 or exceed eight
characters. Directives referencing a macro by name must be in the same order as the
macros in the macro library file. The only exceptions are the /DISPLAY and /LOG
directives, which may occur anywhere in the MACLIBR directive stream.

MACLIBR writes the updated macro library to a dynamically allocated temporary file
(UT1). When the updating sequence is complete, the /EXIT directive causes the scratch
file to be copied to the file assigned to MAC. An /END directive or an end-of-file serves
as an /EXIT directive for /APPEND and /CREATE directives, and causes the scratch file
to be copied to the file assigned to MAC. If the message "NAME NOT FOUND" is
displayed after a /DELETE, /DISPLAY, /INSERT, or /REPLACE, the scratch file is not
copied and no updating occurs.

3.2 /APPEND Directive

The /APPEND directive adds macros to the end of a macro library. All macros from the
current file position to the end of the macro library remain the same. Macros are read
from the file assigned to logical file code SI until an /END directive or an end-of-file is
encountered. MACLIBR then terminates.

Syntax:

/APPEND

MPX-32 Macro Library Editor (MACLIBR)
Utilities Directives 3-1

CREATE/DELETE/DISPLAY/END

3.3 /CREATE Directive

The /CREATE directive generates a macro library. Macros are read from the file
assigned to logical file code SI until an /END directive or an end-of-file is encountered.
MACLIBR then terminates.

Syntax:

/CREATE

3.4 /DELETE Directive
The /DELETE directive deletes the specified macro from the macro library. All macros
from the current file position to the named macro remain the same. The next directive
is processed after the macro is deleted. :
Syntax:

/DELETE macro

macro is the one to eight ASCII character name of the macro to be deleted

3.5 /DISPLAY Directive

The /DISPLAY directive lists the statements of the specified macro or of all macros if a
name is not specified. This directive may be placed anywhere in the directive stream.
After this directive is processed, the macro library is repositioned to the point where the
display began. The next directive is then processed.

Syntax:

/DISPLAY [macro]
macro is the one to eight ASCII character name of the macro to be displayed. If

not specified, all macros in the library are displayed.

3.6 [END Directive
The /END directive defines the end of an /INSERT, /REPLACE, /APPEND, or /CREATE
sequence. After an /INSERT or /REPLACE sequence, the next MACLIBR directive is
processed. When /END occurs after an /APPEND or /CREATE sequence, processing is
the same as an /EXIT directive.

Syntax:

/END

Macro Library Editor (MACLIBR) MPX-32
3-2 Directives Utilities

O

)

C

EXIT/INSERT/LOG

3.7 JEXIT Directive

The /EXIT directive is the last directive of a MACLIBR session. If updates were
performed, the scratch file is copied to the file assigned to MAC. If a /LOG END
directive was included, the updated library is logged. If no updates were performed,
MACLIBR terminates. If MACLIBR was run interactively, control returns to TSM.

Syntax:

JEXIT

3.8 /INSERT Directive

The /INSERT directive inserts one or more macros ahead of the specified macro. All
macros from the current file position to the specified macro remain unchanged. Macros
are read from the file assigned to logical file code SI until an /END directive or an end-
of-file is encountered. The next directive is then processed.

Syntax:
JINSERT macro

macro is the one to eight ASCII character name of the macro before which the new
macro will be inserted

3.9 /LOG Directive

The /LOG directive writes the name and number of each macro to the file or device
assigned to logical file code LO. This directive may be placed anywhere in the MACLIBR
directive stream. If the END parameter is specified, logging is performed after all
updates are complete. If the END parameter is not specified, the macro library is logged
without updates. When logging is complete, the macro library is repositioned to the point
where logging began. The next directive is then processed.

Syntax:
/LOG [END]
END writes the log after all updates are complete. If not specified, the updates
are not written,
MPX-32 Macro Library Editor (MACLIBR)

Utilities Directives 3-3

MACLIST/REPLACE

3.10 /MACLIST Directive

The /MACLIST directive allows the listing of all, part, or none of each source macro.
This directive does not affect listed output already formatted by the /DISPLAY and
/LOG directives. When dummy symbols are listed, their corresponding hexadecimal
assignments are included.

Syntax:

/MACLIST [option]

option is one of the following parameters:
Parameter Definition
ON Complete listing
OFF Suppress listing
ID= List each macro DEFM statement
BODY List each macro but exclude output of dummy symbols
SYMS List each macro DEFM statement including output of

dummy symbols

If no parameters are specified, the default is ON.

3.11 /REPLACE Directive
The /REPLACE directive replaces the specified macro with a new macro. All macros
from the current file position to that of the specified macro remain the same. New
macros are read from the file assigned to logical file code SI until an /END directive or
an end-of-file is encountered. The next directive is then processed.
Syntax:

/REPLACE macro

macro is the one to eight ASCII character name of the macro to be replaced

Macro Library Editor (MACLIBR) MPX-32
3-4 Directives Utilities

(

e

SECTION 4 - ERRORS AND ABORTS

4.1 Abort Codes
The following is a MACLIBR abort code and its corresponding message:

ME99 ERROR(S) (DESCRIBED ON LFC LO) DETECTED DURING EXECUTION

4.2 Error Messages

When one of the following error messages is displayed, MACLIBR processing is inhibited
until the error condition is corrected.

ARGUMENT 'N1' MATCHES ARGUMENT 'N2'
Macro parameters in the N1 and N2 positions of the parameter list are equal.
DIRECTIVE FILE READ ERROR
Error condition detected while reading the directive file.
DUMMY PARAMETERS OVERFLOW
A macro has exceeded the maximum of 255 parameters.
DYNAMIC ALLOCATION OF *Ul SCRATCH FILE FAILED

A scratch file the same size as the MAC file could not be allocated. There may be
insufficient disc space.

EOF/EOM ON DIRECTIVE FILE

An end-of-file on the directive file was encountered before normal termination by
an /EXIT or /END directive.

ILLEGAL DIRECTIVE
The directive is not a legal directive.
MAC FILE SIZE INCRE-ASE REQUIRED
The updated macro library is larger than the macro library file.

NAME NOT FOUND

A macro specified on a /REPLACE, /INSERT, /DELETE, or /DISPLAY directive
was not found in the library file assigned to MAC. The macro may not exist or the
file may be positioned beyond that macro. /INSERT, /REPLACE, and /DELETE
directives must be entered in the sequence in which the specified macros are found
in the macro library file.

MPX-32 Macro Library Editor (MACLIBR)
Utilities Errors and Aborts 4-1

WARNING: ACCESS RIGHTS ARE LIMITED. OWNER AND/OR PROJECT MUST BE
CHANGED OR THE FILE ASSIGNED TO "MAC" MUST BE RECREATED TO ALLOW
FOR DESIRED ACCESS PRIVILEGES.

The owner and/or project attempting to access the file assigned to MAC does not
have the required access rights to the file.
4.3 Information Messages

The following messages display information about a previous MACLIBR operation. They
are not error or abort conditions.

MAC UPDATE COMPLETE

The editing of the macro library assigned to logical file code MAC is complete.
Updates have been written from the scratch file to the library.

CURRENT MAC POSITION: location

This message is issued, followed by the current position of the macro library file,
when a ./LOG directive is encountered following a /DELETE, /INSERT, or
/REPLACE directive.

REPOSITIONED TO: location
When a /DELETE, /REPLACE, or /INSERT directive is followed by a /DISPLAY or

/LOG directive, processing of the /DISPLAY or /LOG completes and this message
lists the current location of the macro library file.

Macro Library Editor (MACLIBR) MPX-32
4-2 Errors and Aborts Utilities

FM%

SECTION 5 - EXAMPLES

The following example generates a new macro library with source input from magnetic
tape:

$J0OB CREATE OWNER

$ASSIGN SI TO DEV=MT Assign source file to tape
$ASSIGN MAC TO MYMACS Assign macro library to MYMACS
$EXECUTE MACLIBR

/CREATE

(Macro Source)

/END

$£0J

$$

The following example logs each macro by number and names:

$JOB LOG OWNER
$EXECUTE MACLIBR
/LOG

JEND

JEXIT

$£0J

$$

The following example displays the macro named M.EQUS:

$JOB DISPLAY OWNER
$EXECUTE MACLIBR
/DIS M.EQUS

JEND

JEXIT

$EOJ

$$

The following example appends the macro named M.TEST to the macro library and lists it
with no output of dummy symbols:

$J0OB APPEND OWNER

$EXECUTE MACLIBR

/MAC BODY List with no dummy symbol output
/LOG END

/APPEND

(M.TEST Source)

JEND

$E0J

$$

MPX-32 Macro Library Editor (MACLIBR)
Utilities ‘ Examples 5-1

The following example updates the macro library using the /REPLACE, /DELETE, and

/INSERT directives:

5-2

$JOB UPDATE OWNER
$ASSIGN MAC TO MYMACS
$EXECUTE MACLIBR

/LOG

/LOG END

/REP M.EQUS
(Replacement Macro Source)
/END

/DELETE M.EXIT

/INS M.FADD

(Macro Source to be Inserted)
/END

JEXIT

$EOJ

$$

Macro Library Editor (MACLIBR)
Examples

List current macros
List updated macro library
Replace M.EQUS

Delete M.EXIT
Insert macro before M.FADD

Copy from scratch to MAC

MPX-32
Utilities

VR

Media Conversion (MEDIA)

MPX-32 Utilities

CONTENTS

Section Page
1 - OVERVIEW
1.1 General Description ¢ oo vveevievnenenns Ceerseennenn cesenen .o 1-1
1.2 Directive SUMMAErY . e oo e eveessevsosonnos ceeessseen ceeeene eo. 1-1
2 - USAGE
2.1 AccessingMEDIA ¢ . o ittt ittt ittt e ettt 2-1
2.2 Logical File Code Assignmentsoeeeeens ch ettt et et 2-1
2.2.1 Source Input (¥IN) . . et vttt innerennnns et e 2-1
2.2.2 Listed OULPUL (¥OT) 4t vttt neocosseeoeneeeesonenenss 2-2
2.2.3 InputFiles oo vttt iiiii i i ieannns creeeeneenn 2-2
2.2.4 Output Files. v iiiiiiiieeeeeess Ceee ettt 2-2
2.2.5 LFC SUMMATY teveeeoseecsssensoscsssoscasssasassssas 2-3
2.3 ExitingMEDIA & . it ittt i it s teenesessasossssosncsnnns e e e s e e 2-3
3 - DIRECTIVES
3.1 18 e To [T3 8 o o 3-1
3.2 BACKFILE DireCtivVe v eeeeeeeeesecscsocesesssocsecnccsnsosss 3-1
3.3 BACKREC DITEBCLIVE ¢ vttt et et ooecesceceeeooocscsooscnsossses 3-2
3.4 BUFFER DIireCtivVe ¢« « c e e et e eveeeeseeooososccsccccoess cec e oo . 3-2
3.5 CONVERT Directive e « ¢ e e et v eeeneccesns c e e e s e s eceeeseneeese 3-2
3.6 COPY Directive « o « v et et v evececcees c e e s s ecsnsesnns ceesesesne 3-3
3.7 DUMP DirectiVe e e e e e ot o s v soeesocsssssssccees c e et e s seeesans 3-3
3.8 ENDDirective « e e et v e e veseeesen e et s et s s s e ettt s et et s e e e 3.3
3.9 EXIT DIreCtiVe . ¢ e s et ottt e oeescosecasoscsccccccoscsossoes ee. 3=4
3.10 GOTODirective ¢ e e v e v e v eee T, ceeseceenees 34
3.11 INCR DIireClIVE o e e oo vt coteseoeetscecsscssscocesssssscssesses 3-5
3.12 MESSAGE DireCliVe v v v v ottt o eoeecececossceccnsocosesenseses 3-5
3.13 MOVE DIiTBCEIVE ¢ e ¢ et e v et s v oveceesoescsocecsesecsssecnsocesss 3-5
3.14 OPTION DIir€Ctive ¢ e eeeeeesoecceosoocsoseos . ce s e ere oo 3-6
3.15 READ Directive ¢ « e e e e v e v oveeoense ceses e ceceecsctes e s s eenne 3-8
3.16 REWIND DIiTeCliVe ¢ ot ot e et v evoveoscsecssossocenesse cesecc e . 3-8
3.17 SETC DIreCtiVE vt oo e eeeessocsossosscssssscsoccccsss ceesteenns 3-8
3.18 SKIPFILE Directive v v veeeeereeesoosocsncssse ceceeceens ceeeee 3-9
3.19 SKIPREC Directive «.eeeeeceeesceosacsncoss cecesesesens ceee 3-9
3.20 VERIFY DireCtive « e eeee et eeeeeeeoseosoossscocccsccsss ceeeen 3-9
3.21 WEOF Directive ¢ « e e e oo et vesececsscsccsscsscas ceesen e er oo 3-10
3.22 WRITE Directive v v eeeeeeeeeeeeeeceneennse C e e seenersenene 3-10
4 - ERRORS AND ABORTS
4.1 Error Codes v v e v et eeeeeveecenns ettt e e e N .o 4-1
4.2 Abort Codes. . v ... ce e e e s e s s e s et s et e e s e et eeeeeeeeseanea 4-2
5S-EXAMPLES....... ce e cteeneene ceeeeees e e s ceeecceseneene e o 5-1
TABLES
2-1 MEDIA LFC SUMMArY « s e et oo evossessesesscssssossssess cesesses 23
3-1 MEDIA Options . .cceveveeeeeess tecoseenssacsne tsecccccsosasenss =7
MPX-32 Media Conversion (MEDIA)

Utilities Contents iii/iv

-

O

MEDIA CONVERSION (MEDIA)

SECTION 1 - OVERVIEW

1.1 General Description

The Media Conversion (MEDIA) utility implements a procedural language used to
manipulate the contents of data files contained on various media. MEDIA allows the user
to: copy one file to another file, copy a file from one type of medium to another (e.g.,
copy a magnetic tape file to a disc file), or dump a file from one type of medium to
another (e.qg., from magnetic tape to a line printer).

MEDIA can also manipulate data by rearranging one group of columns on an input file to
another group of columns on an output file or merging data from multiple files into an
output file. Another feature allows data to be converted from one type of code to
another, such as from EBCDIC to ASCII.

MEDIA recognizes 1 to 16 character file names. Unless specified, files assigned to
logical file codes will be forced to the appropriate format - blocked or unblocked.

1.2 Directive Summary

The following list summarizes the MEDIA directives. Refer to Section 3 for detailed
descriptions of each directive.

Directive Function

BACKFILE Positions file or device back n files

BACKREC Positions file or device back n records

BUFFER Names a buffer (803-809) and specifies its size or resets a
buffer's current read address to the buffer's start address

CONVERT Converts contents of a buffer from ASCII to BCD, BCD to
ASCII, ASCII to EBCDIC, EBCDIC to ASCII, or 026 to 029

COPY Copies input records from a file or device to an output file or
device

DUMP Copies a file by converting it to ASCII-coded hexadecimal.
Output is to the line printer or SLO.

END Indicates the end of a MEDIA directive stream

EXIT Terminates MEDIA processing

GOTO Specifies conditional transfer to another directive based on

counter value, error, or EOF. Transfer can also be
unconditional.

MPX-32 Media Conversion (MEDIA)
Utilities Overview 1-1

INCR Adds a specified value to counter (K01-K20)

MESSAGE Sends a message to operator's console

MOVE Moves bytes from one buffer to another buffer

OPTION Modifies default output characteristics for devices

READ Copies data to a buffer. Provides count by bytes, halfwords, or
words.

REWIND Rewinds the specified logical file code

SETC Sets counter (K01-K20) to a specified value

SKIPFILE Positions file or device forward n files

SKIPREC Positions file or device forward n records

VERIFY Compares records on one file or device to records on another

file or device

WEOF . Writes an end-of-file (EOF) on a file
WRITE Copies data from a buffer. Provides count by bytes, halfwords,
or words.
Media Conversion (MEDIA) MPX-32

‘Overview Utilities

[
U
N

SECTION 2 - USAGE

2.1 Accessing Media
MEDIA can be accessed in the batch or interactive modes in one of three ways:

$MEDIA

$RUN MEDIA

$EXECUTE MEDIA
$RUN MEDIA is valid only from the system directory.
When accessing MEDIA interactively, the MED> prompt is displayed:

TSM>$MEDIA

MED>
2.2 Logical File Code Assignments
MEDIA provides two default logical file code (_FC) assignments: *IN for MEDIA source
input and *OT for listed output. All other LFC assignments for input and output files are
user-defined. All assignments are made by $ASSIGN job control language statements
before MEDIA is executed.
The following sections describe the LFC assignments used by MEDIA. The default and
optional LFC assignments are summarized in Table 2-1.

2.2.1 Source Input (*IN)

MEDIA directives are assigned to logical file code *IN for input.

*¥iN Default and Optional Assignments
The default assignment for *IN ic to the System Control file (SYC):

$ASSIGN *IN TC SYC

NAMN/ TN NA_ S Iy AT AN
IVIE /N= & viedld CUNliversiuin i)

Utilities Usage 2-1

There are two optional assignments for *IN:

;pathname %
$ASSIGN *IN TO DEV=devmnc

pathname is the pathname of a file containing MEDIA directives
devmne is the device mnemonic of a device containing MEDIA directives
2.2.2 Listed Output (*OT)

Listed output contains a list of the MEDIA directives processed during the MEDIA
session. Listed output is assigned to logical file code *OT.

*0T Default and Optional Assignments
The default assignment for *OT is to logical file code UT:
$ASSIGN *OT TO LFC=UT

In the interactive mode, output is generated on the user terminal. In the batch mode,
output is generated on the SLO device.

There are two optional assignments for *OT:

; pathname %

$ASSIGN *OT TO DEV=devmnc
pathname is the pathname of the file to contain listed output
devmnc is the device mnemonic of the device to contain listed output

2.2.3 Input Files

There is no default assignment for input files; they are user-defined. Input files can be
from cards, permanent disc files, or magnetic tape. Input files are specified in MEDIA
directives by referring to the LFC used in the $ASSIGN statement. Assignments for
input files must specify blocked or unblocked format, as appropriate to the data
contained in the assigned disc or tape file.

For unblocked input, the following transfer count limitations are in effect: 192 words for
a disc, 4095 half words for magnetic tape, and 120 bytes for a card device. For blocked
input, the transfer count is limited to 254 bytes.

For input and output files, MEDIA recognizes a hexadecimal OF (EOF indicator) record
only on card reader and card punch devices.

2.2.4 Output Files

There is no default assignment for output files; they are user-defined. If output is
directed to a disc file, that file must have been previously created. Output files are
specified in MEDIA directives by referring to the LFC used in the $ASSIGN statement.
Assignments for output files should specify blocked or unblocked format. For unblocked
output, transfer counts are limited to 133 bytes for line printers and the actual write
count for files and magnetic tapes.

Media Conversion (MEDIA) MPX-32
2-2 Usage Utilities

2.2.5 LFC Summary

The foilowing is a table of LFCs used by MEDIA and their default and optional
. assignments.

Table 2-1
MEDIA LFC Summary
Default Optional
LFC Assignment Assignment
*IN SYC pathname
DEV=devmnc
*OT LFC=UT pathname
DEV=devmnc
Input Files none User-assigned
Output Files ' none User-assigned

2.3 Exiting MEDIA
To exit MEDIA directive input in interactive mode, enter:
(“ CNTRL C or END
| If MEDIA execution input is from UT, enter:
CNTRL C
To exit MEDIA directive input in batch mode, use the END directive.

If MEDIA execution input is from SYC, follow the last data line with a $ directive.

MPX-32 Media Conversion (MEDIA)
Utilities : Usage 2-3/2-4

SECTION 3 - DIRECTIVES

3.1 Introduction

MEDIA source statements have three fields: label field, directive field, and parameter
field. Each field must be separated by a comma. Embedded blanks within a MEDIA
source statement are ignored.

The label field is optional. It is used to direct a branch to that source statement by
specifying the label in a GOTO or END directive. Labels can be from 1 to 255, beginning
in column one. lLabels do not have to be numbered sequentially; they bear no relationship
to the physical sequence of MEDIA directives in a control file.

Directives begin in the first input column following a label, or column one if a lahel is
not used. A maximum of 256 MEDIA directives can be specified in one jobstream.

Parameters begin in the first input column following a directive. Numeric parameters
are specified in decimal and are limited to eight digits. Multiple parameters are
separated by commas.

Two types of predefined areas may be referenced within MEDIA directives: buffer areas
and counters.

The two predefined buffer areas are referenced by the names B0l and B02. Each buffer
is 2048 words in length. Additional buffer areas may be defined as B03 to B09 by using
the BUFFER directive. A total of 3K bytes can be allocated for buffers B03 to B09.
Buffer names other than B0O1 to BO9 are not valid.

Twenty predefined counter cells exist within MEDIA. These counters are referenced by
the names K01 to K20. Counters may be used as program flags, record counters, file

counters, etc. They may contain any positive decimal value within the range of 0 to
99,999,999.

3.2 BACKFILE Directive

The BACKFILE directive positions the specified LFC backwards by the number of files
specified in the count field. After the BACKFILE operation, the pointer is positioned at
the end-of-file.

Syntax:

BACKFILE, Ifc, count

—
-y
0

a
cr
T
(¢]

LFC on which to perform the BACKFILE operation

(%)
Q
¢

t digits specifying the nuinber of files to skip

=3
cr
o
Q
o}
m
er
Q
]
[Vut]

MPX-32 Media Conversion (MEDIA)
Utilities Directives 3-1

BACKREC/BUFFER/CONVERT

3.3 BACKREC Directive

The BACKREC directive positions the specified LF C backwards by the number of records
specified in the count field.

Syntax:
BACKREC, Ifc, count

Ife is the LFC on which to perform the BACKREC operation

count is one to eight digits specifying the number of records to skip

3.4 BUFFER Directive

The BUFFER directive defines a buffer or resets the current buffer read address to the
buffer starting address. The space allocated to the buffer is allocated from a 3000-byte

buffer pool, which is the maximum allowable additional buffer.

Syntax:

BUFFER,buffer,;‘gbytesi

buffer is the name of the buffer, B03 to B09. Buffers B0l and B02 are predefined.
Buffer names B03 to B09 must be defined by a BUFFER directive before
being used.

nbytes is the size of the buffer in decimal bytes

R resets the buffer pointer. If specified, BO1 and B0O2 can be specified in the

buffer field.
3.5 CONVERT Directive
The CONVERT directive converts data in a buffer to the specified code.
Syntax:

CONVERT,buffer,code [,nbytes]

buffer is the name of the buffer, BO1 to B09. Buffer names B33 to B09 must be
defined by a BUFFER directive before being used.
code is the four-character code specifying the type of conversion:
2629 026 to 029
ASBC ASCII to BCD
BCAS BCD to ASCII
ASEB ASCII to EBCDIC
EBAS EBCDIC to ASCII
nbytes is the number of bytes to be converted. If this parameter is omitted, the
count is obtained from the total number of bytes read and/or moved into the
buffer.
Media Conversion (MEDIA) MPX-32

3-2 Directives Utilities

q

/

COPY/DUMP/END

3.6 COPY Directive
The COPY directive copies the specified input file, record by record, to the specified
output file until an end-of-file (EOF) is encountered on either file. The EOF is not
copied to the output file. Use the WEOF directive to write an EOF mark on the output
file. The input and output files must have been previously defined in a $ASSIGN
statement.
Syntax:

COPY, Ifcl, Ifc2
Ifcl is the LF C identifying the input file to be copied

1fc2 is the LFC identifying the output file to which the copy is made

3.7 DUMP Directive

The DUMP directive copies an input file to an output file and converts it to ASCII-coded
hexadecimal with side-by-side ASCII translation. The dump is terminated when an EOF
is encountered on either file or when the specified number of records is copied.

Syntax:

DUMP, Ifcl, Ifc2 [,recordcount]

Ifcl is the LFC identifying the file to be dumped
1fc2 is the LF C identifying the output file
recordcount is the number of records in the file to be dumped. If not specified,

the dump terminates at EOF on either file.

3.8 END Directive

The END directive indicates the end of MEDIA directives. If no syntax errors are
detected in the first pass, the END directive initiates processing of the MEDIA
directives. Control is transferred back tc the first MEDIA directive if a iabel is not
specified, If a label is specified, control transfers to the source statement corresponding
to the label.

Syntax:

END [,label]

label is a numeric label from 1 to 255 associated with a directive. -Controi is
transferred to that directive. IT label is niot speciiied, conirol is transferred
to the first directive in the stream.

MPX-32 Media Conversion (MEDIA)

Utilities Directives 3-3

EXIT/GOTO

3.9 EXIT Directive
The EXIT directive terminates the execution of MEDIA directives.

EXIT directives may appear anywhere in the directive stream. At least one EXIT
directive must appear prior to the END directive.

Syntax:
EXIT
3.10 GOTO Directive
The GOTO directive transfers control to another MEDIA directive. The branch is
unconditional if no arguments are specified, or conditional if the specified condition is
evaluated as true. If none of the conditional specifications is satisfied, processing
continues with the next MEDIA directive. The following conditions can be specified:
. the counter is equal to a value
an end-of-file is encountered on the specified file
. anl/O error occurs on the specified file
Syntax:
,counter, value
GOTO, label | ,EOF, I1fc
,ERR, 1fc

label is the numeric label in the range 1 to 255 associated with a directive.
Control is transferred to that directive.

counter is the name of the counter, K01 to K20 (See the INCR and SETC directives)

value is a counter value that specifies when control is to be transferred
EOF specifies conditional transfer at end-of-file. When this parameter is used,
the GOTO directive must directly follow an I/O directive, such as READ or
WRITE.
ERR specifies conditional transfer if an I/O error occurs
Ife if the LFC indicating the file where EOF or ERR conditions apply
Media Conversion (MEDIA) MPX-32

3-4 Directives Utilities

/ 4 \
A

O

INCR/MESSAGE /MOVE

3.11 INCR Directive
The INCR directive adds a value to a counter.

Syntax:

INCR, counter, value
counter is the name of the counter, K01 to K20

value is the one to eight digit decimal number to be used as an increment

3.12 MESSAGE Directive

The MESSAGE directive displays a message on the operator's console. A maximum of
256 bytes of message information can be displayed in one MEDIA jobstream. Up to 72
characters per MESSAGE directive can be specified.

Syntax:
MESSAGE, 'message’

'message’ is a message of up to 62 alphanumeric characters to be displayed on the
system console. The single quotes are required.

3.13 MOVE Directive
The MOVE directive moves the specified number of bytes from bufferl to buffer2. The
starting byte positions for bufferl and buffer2 are specified as an absolute byte number

or a counter.

Syntax:

t t
MOVE, nbytes, bufferl,iCoun er % , buffer2 yeounter
startbyte ystartbyte

nbytes is the number of bytes to be moved

bufferl is the name of the buffer containing the data to be moved, BO1 to B09.
Buffer names B03 to B0O9 must be defined by a BUFFER directive before
being used.

counter is the name of a counter, K01 to K20, indicating the starting byte position

startbyte is an absolute indicator of the starting byte position

buffer2 is the name of the buffer where data is to be moved, BO1 to B09. Buffer

names B03 to B09 must be defined by a BUFFER directive before being
used. If both counter and startbyte are not specified, the current read
address for buffer?2 is used.

MPX-32 Media Conversion (MEDIA)
Utilities Directives 3-5

OPTION

3.14 OPTION Directive

The OPTION directive specifies nonstandard options for a file. See Table 3-1 for option
definitions and defaults.

Syntax:
B20OF 1[,B80OF |[,E ,H]
OPTION, lfc [,BLOCKED] [:BZON] [’BBON] [,O][,L
Ifc is the LFC to which the options are assigned

BLOCKED is the blocked option. Though syntactically correct, the MPX-32 default for
an assigned file is blocked. The $ASSIGN statement must be used to indicate

unblocked.

B20OF inhibits option 2

B20ON enables option 2

B8OF inhibits option 8

B8ON ehables option 8

E specifies even parity option
O specifies odd périty option
H specifies high density option
L specifies low density option

Media Conversion (MEDIA) MPX-32
3-6 Directives Utilities

C

C

Table 3-1

MEDIA Options

Reporting for
Unblocked Reads

BLOCKED | BIT 2 BIT 8
DEVICE OPTION OPTION OPTION PARITY | DENSITY
CARD READER *B20F -Automatic | N/A
READER/PUNCH| N/A Mode Select
B20ON-Interpret B8OF -Forced | N/A N/A
Bit 8 ASCII
B8ON-F orced
Binary
PAPER TAPE *B20OF -Read
READER N/A Formatted N/A
Skipping L_eader
B2ON-Read B8OF -Do Not | N/A N/A
Unformatted Skip Leader
BB8ON-Skip
L.eader
PAPER TAPE *B20F -Punch in
PUNCH N/A Formatted Mode N/A N/A N/A
B2ON-Punch
Unformatted
LINE PRINTER, *B20OF -First
TELETYPE N/A Character is
Carriage N/A N/A N/A
Control
B20ON-No Carriage
Control
9-TRACK Blocked N/A N/A N/A N/A
MAG TAPE I/0
7-TRACK Blocked *B20F -Read/ E H
MAG TAPE I/0 Write N/A (Even (800 BPI)
Packed (Binary) Parity)
Mode L
B20ON-Interpret B8OF -Inter- 0 (556 LPI)
Bit 8 Change (Odd)
(BCD) Parity)
B80ON-Packed
(Binary)
MOVING-HEAD, | Blocked B20OF -Report EOF
FIXED-HEAD 1/0 for Unblocked
DISC Reads N/A N/A N/A
B20ON-No EOF

*Default Options

N/A - Not Applicable

MPX-32
Utilities

Directives

Media Conversion (MEDIA)

READ/REWIND/SETC

3.15 READ Directive
The READ directive reads one record from a file into buffer B01, or into the optionally
specified buffer, starting at the current buffer address. The current buffer address is
advanced after the read and is reset only by a write from the specified buffer or by a
buffer reset via the BUFFER directive.
Syntax:
READ, 1 fc[,buffer] [,count]
Ife is the LFC identifying the file to be read
buffer is the name of the buffer, B0l to B09. Buffer names B03 to BO9 must be
defined by a BUFFER directive before being used. If not specified, B0l is
used by default.
count is the number of bytes (B), halfwords (H), or words (W) to be read (e.g., B22,
H10, H2048, W192). If not specified, one record is read.
3.16 REWIND Directive
The REWIND directive rewinds the specified logical file code. If the LFC is a magnetic
tape, the tape is positioned at its beginning. If the LFC is a file, REWIND returns to the
file's first record. If the file is being sent to the line printer, a top-of-form is performed.
Syntax:
REWIND, 1 fec

lfc is the LFC referencing the file or device to rewind

3.17 SETC Directive
The SETC directive sets a counter to a specified value.
Syntax:

SETC,counter,value

counter is the name of the counter, K01 to K20
value is up to eight decimal digits specifying the value to which the counter is to
be set
Media Conversion (MEDIA) MPX-32

3-8 Directives Utilities

SKIPFILE/SKIPREC/VERIF Y

3.18 SKIPFILE Directive

The SKIPFILE directive skips forward the number of files specified in the count field on
- the specified logical file code.

Syntax:
SKIPFILE,1fc,count
LFC is the LF C on which to perform the SKIPFILE operation

count is the decimal number of files to be skipped

3.19 SKIPREC Directive

The SKIPREC directive skips forward the number of records specified in the count field
on the specified logical file code.

Syntax:

SKIPREC, 1 fc,count

Ifc is the LFC on which to perform the SKIPREC operation
count is the decimal number of records to skip
(3.20 VERIFY Directive

The VERIFY directive compares the two files and displays the record numbers that
differ. The verification is terminated when an EOF is encountered on either file. If
records of unequal length are verified, the file specified by Ifcl must contain the shorter
record size.

Syntax:

VERIFY,1fcl,lfc2

Ifcl is the LFC of the first file to be compared
Ifc2 is the LFC of the second file to be compared
MPX-32 Media Conversion (MEDIA)

Utilities Directives 3-9

WEOF /WRITE

3.21 WEOF Directive
The WEOF directive writes an end-of-file (EOF) on the specified file.
Syntax:

WEOF, | fc

Ifc is the LFC of the file on which to write the EOF

3.22 WRITE Directive

The WRITE directive writes one record from a buffer to a file. The WRITE directive
resets the current buffer address and byte count for the output buffer.

Syntax:
WRITE, I fc[,buffer] [,count]
Ifc is the LFC previously assigned for output files in an $ASSIGN statement

buffer is the name of the buffer, BO1 to B09. If buffer name is not supplied, BO1 is
used by default. Buffer names B03 to B09 must be defined by a BUFFER
directive before being used.

count is the number of bytes (B), halfwords (H), or words (W) to be written (e.qg.,
B22, H10, H2048, W192). If count is not specified, the total number of bytes,
halfwords, or words read and/or moved into the buffer is used as the output
count.

Media Conversion (MEDIA) MPX-32
3-10 Directives Utilities

4.1 Error Codes

SECTION 4 - ERRORS AND ABORTS

MEDIA errors are flagged with a two-digit diagnostic code. An abort is generated at the
end of a MEDIA program that contains errors so that conditional batch processing

directives can be used.

The status for a device is printed on the output file if an I/O error occurs.

If a loop is being executed where record or file information is accumulated, the
information will be printed even if an abort occurs.

The following are MEDIA error codes and their explanations,

Code

01
02
03
04
05
06
07
08
a9
10
11
12
13
14
15

16

MPX-32
Utilities

Explanation

Control specification invalid

File code unassigned

Invalid conversion code specified

Invalid count specification

No available FCB, excessive file assignments
Statement number not between 1 and 255
Invalid buffer name

Buffer already defined

Insufficient buffer space available
Undefined buffer

Invalid device assignment

Invalid counter name specified

Insufficient message storage space available

Invalid byte number or number of bytes specifications

Invalid optional parameter

Missing parameter

Media Conversion (MEDIA)
Errors and Aborts

Code
17
18
20
21
22
23
24
25

26

27
28
29

30

4.2 Abort Codes

Explanation

Incorrect message format

Invalid decimal or hexadecimal chafacter

No END statement

Excessive number of control statements specified
Fatal control statement error(s)

Undefined statement number encountered
Execution of END statement attempted

Length of READ/MOVE exceeds buffer size

WRITE statement which is not preceded by READ statement must
specify count

End-of-medium encountered on input file
End-of-medium encountered on output file
CONVERT statement specified zero byte count

Duplicate statement number

The following are MEDIA abort codes and their messages.

Code

MDO1

MDO02

4-2

Message

ERROR(S) (DESCRIBED ON LFC *0OT) DETECTED DURING
EXECUTION

AT EOF ON SLO FILE

Media Conversion (MEDIA) MPX-32
Error and Aborts Utilities

@

¢

SECTION 5 - EXAMPLES

The following example copies the tape assigned to IN to the output tape assigned to OT,
and writes an EOF on OT; both tapes are rewound and then verified:

$JOB EXAMPLE1 OWNER
$ASSIGN IN TO DEV=MT
$ASSIGN OT TO DEV=MT
$EXECUTE MEDIA
COPY,IN,OT

WEOF,OT

REWIND,IN

REWIND,OT
VERIFY,IN,OT

EXIT

END

$£0J

$$

The following example dumps the first 50 records of the second file on tape T132 to an
SLO file:

$JOB EXAMPLE3 OWNER
$ASSIGN AB TO DEV=MT ID=T132
$ASSIGN DP TO SLO
$EXECUTE MEDIA
REWIND, AB

SKIPFILE, AB, 1

DUMP, AB, DP, 50

EXIT

END

$£0J

$$

MPX-32 Media Coversion (MEDIA)
Utilities Examples ' 5-1

The following example outputs the first 40 columns of a maximum of 100 records to the

line printer:

5-2

$JOB EXAMPLE4 OWNER
$ASSIGN IN TO FILEL
$ASSIGN OT TO DEV=LP
$EXECUTE MEDIA
OPTION, OT,,B20N
SETC, K1, 0

3,READ, IN,,B40
GOTO,5,E0F,IN
WRITE,OT

INCR,K1,1
GO0TO0,5,K1,100

GOTO,3

5,EXIT

END

100 DATA RECORDS
$£0J

$$

Media Conversion (MEDIA)

Examples

MPX-32
Utilities

@

N

The following example reads two source program files. Columns 20 to 40 of FILE1 are
moved to columns 10 to 30 of the output image. Columns 65 to 80 of FILE2 are moved to
columns 31 to 46 of the output image. The output image is written to a tape in 120-byte
records:

$JOB EXAMPLES OWNER
$ASSIGN IN1 TO FILEL
$ASSIGN IN2 TO FILE?
$ASSIGN OT TO DEV=MT ID=SAVE
$EXECUTE MEDIA
BUFFER,B04,120
4,READ,IN1,B01
GOT0,5,EO0F,IN1

READ, IN2, B02
GOTO,5,EOF,IN2

MOVE, 21,801, 19, B04, 9
MOVE, 16, B02, 64, BO4
WRITE, OT, B04, B120
BUFFER, B01, R
BUFFER, B02, R

GOTO, 4

5, WEOF, OT

REWIND, OT

EXIT

END

$F0J

£$

MPX-3Z Media Coversion (MEDIA)
Utilities Examples 5-3

The following example copies FILE] to FILE2 in the interactive mode:

TSM> $AS IN TO FILE1
TSM> $AS OUT TO FILE2
TSM> $MEDIA
MPX-32 UTILITIES RELEASE x.x (MEDIA Rx.x.x)
(C) COPYRIGHT 1983 GOULD INC., CSD, ALL RIGHTS RESERVED
MED> COPY, IN,OUT
COPY, IN,OUT
MED> EXIT
EXIT
MED> END
END
MEDIA COMPILATION COMPLETE: EXECUTION STARTED
MEDIA EXECUTION COMPLETE
00000001 FILES COPIED
TSM>

Media Conversion (MEDIA) MPX-32
5-4 Examples Utilities

Source Update (UPDATE)

MPX-32 Utilities

CONTENTS
Section Page
1 - OVERVIEW
1.1 General Description ¢ v v vvveeveesns s et e eesseseesessesassenne eeo 1-1
1.2 Directive Summary...... cheeseenenn Ceeees et cesseseess 1-1

2 - USAGE

2.1 AccessiNgQUPDATE .ttt eresesosssesssosssosscsssssosnceas
2.2 Logical File Code Assignments .. eeeeeeeosessssssosososssssssncssss

2.2.1 Directive Input (SYC) v vt v vt vovsesssescoscessscscnsocsesns
2 InputFiles(SI1,S12,and SI3) v euneeeenevnesensoscncsnnnnans
3 OutputFiles(SO) v v vvvntnenessessssssssssssssnssnsnans
b4 Work File (UTY) ittt i enenneeesnesssseossssssesssssnonans
5 OutputImage Listing (LO) .. eetneeeeneesesensesasesneans
2,26 LFCSUMMArY ettt eeneeeeessssosaesasssssssssanonccsnss
OpLioNS v v everriereeeeesosscssesosscssossasososnnsnasanssssssssnse
Compressed Source FOrmat o v v o e e e vttt eeneososssccsssassononses
Library Source Formatttt eteeeceroeenoscccncsasossassanss
EXitiNgUPDATE 4 .iteietiieteteeescseroossssssesssssnssnssnss

NNNNNIPNNNNNN
AR VELEWUWNNNF -

NN
[o)WV, ¥ S I NT)

3 - DIRECTIVES

INtroduction . v oottt es et ovsncoesasssossessssssssacsssscassasnss
JADD DireCliVe « v v oot evveenvesoosoosssssoscsensssssssoscsnnsesas
/AS] Directive . v v e veeeeen. cecenaan
JASS DIreCtIVE v o o o v oo eeeesososscsaoscssssseonsosscosnsnsnsesssoes
/BIKSP DIreCtive . o o v oo oo eorvenesoscseesosoeassossnssssscssssss
/BLIKDIrECLIVE vt v veeesvsscssnccsnsserssssensssssosssenssssess
JCOM DIreCtiVe v o o v ot ovevessososeessosocscssssssossssnssocss
JCOPY DireClIVE + e v oo veeesessnnseancsossssocnnnnas
JOELETE DireCtiVe +eveeeresseecseecsssososesssssnscssonsssess
JEND DireCtVe ¢ o v o vt oo v eooeecessnssocsassossssssasessssconses
JEXIT DIreCliVe v vt v oo veecosooessessasssenosssososssasosssssss .
JINSERT DireCtive o v oo eeveeseeneesososssoccesnasssssssassenossss
JUIST DiIreCliVe v v o v eveveossscessesosssasssocsssssossscssscaes
IMOUNT DIreCtiVe ¢ ¢ v o oo v oseeeesencesnssssossssssssssossscss
INBL DIireClIVE oo v v eeesesoesoceoncoososssnsoosseaosssssssssns
INOLIST DIireCliVe v v v e v v et osaceeeesossoccooosooseosassssscsss
JNOSEQN DIireCtiVe o oo ot eeeneeecsesosecscsecnsasssscansssnsss
JREPLACE DIreCtiVe v vveeeeeeteesesosessssessssoscononsssssses
JREWIND DireCtive v v vevseseneesssoseessosssessocsscssssnsses
/SCAN Directive
JOELE T DirectiVe e v o v s v ettt ensonssseoosonnsssssnscesasssess
JSEQUENCE DIrechive & v v et ieeteensseesssnssssssncenscsssonscs
O DLt IV & v ittt st e cvecessoassosnonsssscsossssscccsssss
JUSR Directive . .vveeeeen.e..
/\.nlr:m:' Directive

L SN

.
]

.
]

wuuuwuuuuuuu\ﬂwwuuuuuuuuuw
VOV NNNNANAONAANVUVELEPLPWMWHNNDN

)
1

.
]

.
i

\N\A:AKAU\A\N\NUUN\A.\N\N\N\M\N\N\N\N\A\N\N\.N\N
PO P F N NN bt bt ot ot ot pod ot ot o b= \O QO I ON NS NN

VMBS WNNHHEOVONONUWMEUWNE-=O

® e 0 0 0 00 00 0 o RN T A A B B B A I I I S A B Ay

MPX-32 Source Update (UPDATE)
Utilities ‘ Contents iii

Section : Page
4 - ERRORS AND ABORTS

401 Abort Codes ® 0 & 0 5 0 0 0 0 0 O O P SN PO OSSN ‘. L] 4-1
4.2 Error Messages ® @ © & 5 9 0 5 0 0 8 0 0 0O 00 00O e e 4 l

S‘EXAMPLESoo-oooooo-o.o'.-oo--a-ou,ooo-o.cooooooo-onoooonooo-- 5-1

FIGURES
2-1 Compressed Record Card Format «.veeeeececeeeesesccacscssnsosss 2=5
2-2 LibraryFormateeeecsececsosscsssssssscsccssssssssanssse 27
2-3 HeaderRecordFormat «.c.vveet ettt eececosssssssssssscnasansess 2-8
24 End-Of-LibI‘a[‘yFileRBCOPd........,..........-................. 28

TABLES

2"1 UPDATELFCSUmmary ® ¢ 0 0 00000 00 000000000000 0000000 e 2"4

Source Update (UPDATE) MPX-32
iv Contents Utilities

C

)/

SOURCE UPDATE (UPDATE)

SECTION 1 - OVERVIEW

1.1 General Description

The Source Update (UPDATE) utility adds, replaces, or deletes lines of source code
within a particular file. It can also be used to maintain sets of source files by adding or
deleting complete files.

UPDATE can be used to build and edit tapes containing multiple source files for software
libraries into a single tape or disc file. Files can be positioned by specifying the number
of files, or symbolically by referring to a header record. To symbolically position a file,
the file must be in library format.

Library format is a structure in which source code is preceded by a header record and
terminated with a single end-of-file mark. Any group of files in library format can be
positioned symbolically using UPDATE. IJPDATE also allows the insertion of header
records during processing.

UPDATE recognizes 1 to 16 character file names. Unless specified, files assigned to
logical file codes will be forced to the appropriate format - blocked or unblocked.

The following section summarizes the UPDATE directives in alphabetical order.
Underlining indicates valid abbreviations. Section 3 describes the directives in detail.

1.2 Directive Summary

Directive Function

/ADD Adds source lines after the specified line of source

/AS1 Reassigns input or output logical file codes to another perrﬁanent
disc file

/AS3 Reassigns input or 6utput files to another configured peripheral
device

/BKSP Ba'ckspaces a specified number of files

/BLK Blank fills the sequence field (columns 73 to 80) of each record

J/COM Places comments within a directive stream

/cory Copies éll files up to specified header record

[DELETE Omits the specified input source lines from the output file

MP X-32 Source Update (UPDATE)

Utilities Overview o 1-1

Directive

[END

JEXIT

/INSERT

JLIST

/MOUNT

INBL
/NOLIST
/NOSEQN
/REPLACE

/REWIND
/SCAN
/SELECT

/SEQUENCE
/SKIP

JUSR

/WEOF

1-2

Function

Indicates the end of additions, deletions, and replacements. The

remaining source lines from the input file are copied as-is through

EOF.
Indicates the end of the UPDATE control stream

Copies one file from the current input medium and optionally
updates the header text

Controls the generation of listed output

Allows the mounting and dismounting of tapes without exiting
UPDATE

Terminates a /BLK directive
Resets the /LIST directive's options or terminates the /LIST request
Stops sequencing source statements

Replaces source lines in an output file with source lines which
follow, up to the next directive

Rewinds the specified input or output file
Sets the number of characters to scan on the remaining directives
Selects an alternate logical file code for input

Numbers source statements of the current file or all files in
sequential order

Skips files up to a specified header record. If the header is a
numeric string, this directive skips the number of files in the string.

Permits the directory to be changed

Writes an EOF on the output medium. This directive must not be
used when formatting a library file.

Source Update (UPDATE) MPX-32
Overview Utilities

(

v

SECTION 2 - USAGE

Source updating is a two-pass process. In the first pass, UPDATE reads control
directives and updating statements from the file or device assigned to logical file code
SYC. All directives within the control stream are scanned for errors. The control
stream, with error diagnostics, is copied to a work file for actual UPDATE processing.
The work file is assigned to logical file cade UTY and is normally a temporary file.

If directive errors are detected, UPDATE exits after it encounters an /EXIT directive in
the first pass. A listing of the control stream and error diagnostics is written. When an
JEXIT directive is encountered without detecting directive errors, the updating sequence
begins. Updating continues until all of the stored directives have been sequentially
processed.

Because UPDATE processes files sequentially, the line number specified with any

directive must be equal to or grea