
c·
. Gould MPX-32 TM

Release 1.,2

Technical Manual

April 193'

c
PmUcation Order Number: 322-00:3660-000

TMMPX-32 is a 1rademark of Gould inc.
I

-} GOULD
Electronics

This manual is supplied without representation or warranty of any kind. Gould Inc.,
Computer Systems Division therefore assumes no responsibility and shall have no liability
of any kind arising from the supply or use of this pUblication or any material contained
herein.

UMITED RIGHTS LEGEND

for

PROPRIETARY INPORMA nON

The information contained herein is proprietary to Gould CSD and/or Its vendors, and its
use, disclosure or duplication is subject to the restrictions stated in the Gould CSD
license agreement Form No. 620-06(1/82) or the appropriate thir~-party sublicense
agreement. The information is provided to government customers with limIted rights as
described in DAR 7-104.9A.·., ,

(C) Copyright 1982
Gould.Inc., Computer Systems Division,

All Rights Reserved
Printed in U.S.A.

" ",

C'
i

('

, . ,~

HISTORY

The MPX-32 1.0 Technical Manual, Publication Order Number 322-001010-000, was
printed September, 1979.

Publication Order Number 322-001010-100 (Revision 1, Release 1.3) was printed March,
1980.

Publication Order Number 322-001010-200 (Revision 2, Release 1.4) was printed August,
1980.

Publication Order Number 322-003660-000 (Revision 3, Release 1 • .58) was printed
September, 1982.

Publication Order Number 322-003660-001 (Change 1 to Revision 3, Release 1.50) was
printed February, 1984.

Publication Order Number 322-003660-002 (Change 2 to Revision 3, Release 1 • .5E) was
printed April, 198.5. The updated manual contains the following pages:

* Change
Number

Title page •••••••••••••••••• 2
Copyright page ••••••••••••••• 2
iii/iv Change 2 ••••••••••••••• 2
!!!/!v Change 1 ••••••••••••••• 1
Ill/IV •••••••••••••••••••••• 0
v through xix •••••••••••••••• 0
xx••.••....••..... 2
xxi through xxxii ••••••••••••• 0
1-1 through 1-61/1-62 •••••••••• 0
2-1 through 2-10 •••••••••••••• 0
2-11 •••••••••••••••••••••• 1
2-12 through 2-30 ••••••••••••• 0
2-31 •••••••••••••••••••••• 1
2-32 through 2-90 ••••••••••••• 0
3-1 through 3-10 •••••••••••••• 0
3-11 •••••••••••••••••••••• 1
3-12 through 3-32 ••••••••••••• 0
3-33 •••••••••••••••••••••• 1
3-34 through 3-174 •••••••••••• 0
3-17.5 and 3-176 •••••••••••••• 1

* Change·
Number

3-177 through 3-279 •••••••••••• 0
3-280 and 3-281 ••••••••••••••• 2
3-282 through 3-284 •••••••••••• 0
4-1 through 4-11/4-12 ••••••••••• 0
5-1 through .5- 20 ••••••••••••••• 0
6-1 through 6- 22 ••••••••••••••• 0
6- 23 through 6-31/ 6-32 •••••••••• 2
7-1 through 7-2.5/7-26 ••••••••••• 0
8-1 through 8-13/8-14 ••••••••••• 0
9-1 through 9-9/9-10 •••••••••••• 0
10-1 through 10-12 ••••••••••••• 0
11-1 and 11-2 ••••••••••••••••• 0
12-1 through 12-28 ••••••••••••• 0
13-1 through 13-10 ••••••••••••• 0
14-1 through 14-41/ 14-42 •••••••• 0
1.5-1 through 1.5-44 ••••••••••••• 0
16-1 through 16-4 •••••••••••••• 0
A-I through A-6 ••••••••••••••• 0
B-l/8-2 0

* Zero in this column indicates an original page.

On a change page, the portion of the page affected by the latest change is indicated by a
vertical bar in the outer margin of the page. However, a completely changedpage will
not have a full length bar, but will have the change notation by the page number.

Change 2
iii/iv

(

(

TABLE OF CONTENTS

1. SYSTEM DESCRIPTION

1.1

1.2
1.3
1.4

1.5

1.6
1.7

1.8
1.9
1.10
1.11
1.12

Naming Conventions ••.•...•••
1.1.1 Communications Region
1.1.2 Task Service Area (TSA)
1.1.3 Entry Variables •••.••.
1.1.4 System Modules and Interrupt Handlers
1.1.5 Common System Subroutines •.
1.1.6 System Macros •..••••••.•.•
1.1.7 System Task Load Module Files.
1.1.8 Batch Task Load Module Files.
1.1. 9 System Permanent Files ••••.•.•••••
Scheduler - IOCS Interface •••••
I/O Overview from User Request to I/O Complete
Scheduler - Task Termination Interface
1.4.1 Exit Task •••
1.4.2 Abort Task ••
1.4.3 Delete Task
Scheduler-Debug Interface
1.5.1 Entry Point 1 Startup
1.5.2 Entry Point 2 Restart
1.5.3 Entry Point 3 Trap/Break
1.5.4 Entry Point 4 User Break Exit
1.5.5 Entry Point 5 Abort
MPX-32 Task Interrupts ••.••
MPX-32 Send/Receive Facilities
1.7.1 Receiving Task Services
1.7.2 Sending Task Services •.
MPX-32 Device Address Specification
MPX-32 CPU Scheduling •••.•.••..
FAT /FPT and Blocking Buffer Allocation
Indirectly Connected Interrupts.
Miscellaneous System Macros
1.12.1 M.BACK
1.12.2 M.CALL
1.12.3 M.CLSE •
1.12.4 M.DFCB
1.12.5 M.DFCBE
1.12.6 M.EIR •.
1.12.7 M.FWRD
1.12.8 M.INIT •••
1.12.9 M.INITX
1.12.10 M.IOFF
1.12.11 M.IONN •
1.12.12 M.IVC ••
1.12.13 M.KILL
1.12.14 M.MODT

1-1
1-1
1-1
1-1
1-2
1-2
1-2
1-2
1-2
1-2
1-2

1-12
1-13
1-13
1-14
1-16
1-17
1-18
1-19
1-19
1-19
1-20
1-21
1-24
1-24
1-26
1-38
1-40
1-43
1-45
1-49
1-49
1-50
1-50
1-50
1-52
1-53
1-54
1-54
1-55
1-55
1-55
1-56
1-56
1-56

v

1.12.15
1.12.16
1.12.17
1.12.18
1.12.19
1.12.20
1.12.21
1.12.23
1.12.24
1.12.25
1.12.26

M.OPEN .. .
M.RTNA•.•..................•..........
M.R TRN ..••.••.••..••..•••............•.........
M.SHUT•...............................
M.SP AD•................................
M.SVCT .•.•..........•..
M. TRAC ..•...•.•..•.•.......•.....••.•••.•••...•
M.USHUT •••••
M. XIR•.....•.............•.••...••.••.•.....
HMP.INIT
IB.INIT•........

1-57
1-57
1-57
1-58
1-58
1-59
1-59
1-60
1-60
1-60
1-61

2. SYSTEM TABLES AND VARIABLES

2.1
2.2
2.3

2.4

2.5

2.6

2.7

2.8

vi

Communications Region
Task Service Area (TSA) ..•••.••••..•••••••••.••••••••••••••••
Executive (H.EXEC) Data Areas and Tables ••••••••••••••••••••••••
2.3.1
2.3.2
2.3.3

CPU Dispatch Qu'eue Area ••••••••••••••••••••••••••••
CPU Dispatch Queue Entry (DQE) •••••••••••••••••••••••
DQE Address Table (DA T) •••••••••••••••••••••••••••••

Input/Output ,e •••••••••••••••••••••••••••••

2.4.1 I/O Table Linkages --
2.4.2 File Control Block (FCB) ••••••••••••••••••••••••••••••

2.4.2.1 Special Control Specifications ••••••••••••••••••
2.4.2.2 Device Status (2000 Level) Non-Extended

2-1
2-16
2-25
2-25
2-25
2-39
2-39
2-39
2-40
2-45

I/O 2-48

2.4.3
2.4.4
2.4.5
2.4.6
2.4.7
2.4.8
2.4.9
2.4.10
2.4.11

2.4.2.3 Channel Status and Controller/Device Status
for Extended I/O Devices •••••••••••••••••••••

Type Control Parameter Block (TCPB) ••••••••••••••••••••
Device Type Table (DTT) •••••••••••••••••••••••••••••
Controller Definition Table (CDT) •••••••••••••••••••••••
Unit Definition Table (UDT) ••.••••••••••••••••••••••••
File Pointer Table (FPT) ••••••••••••••••••••••••••••••
File Assignment Table (FAT) •••••••••••••••••••••••••••
I/O Queue (IOQ) .-
Blocking Buffer Control Cells •••••••••••••.••••••••••••
lOP Channel Definition Table (CHT) •••• • ••••••••.•

Memory Management•........•
2.5.1 Memory Pool Management •••••••••••
2.5.2 Memory Allocation Tables ••••••••••••
2.5.3 Shared Memory Table ••.••••••••••••••••
Disc Management•.......•.•........
2.6.1 SMD Entries
2.6.2 Disc Allocation Map
Ba t ch Process i ng •. . • • • • . • • . • • . •
2.7.1 Spooled File Directories •••••••••••••.•••••••.••••••••
2.7.2 System Input (M.Sm) and System Output (M.SOD)

2.7.3
2.7.4

Directory Formats ..•.•••...•.•.••••.•.
Link File Formats (Batch SLO and 5130) ••••
Job Table.

Terminal Services ••..........
2.8.1 Terminal Line Buffer •

2-49
2-52
2-53
2-54
2-56
2-58
2-59
2-60
2-64
2-65
2-66
2-66
2-67
2-68
2-74
2-74
2-76
2-77
2-77

2-79
2-80
2-80
2-83
2-83

C· ... \ ,~~)

(

(

(/

2.9
2.10
2.11
2.12

Page

MPX-32 Load Module Format •• . • • • • • • • • . •. 2-84
Resource Requirement Summary (RRS) Entries. • • • • • • • • • • • • • • • • • • . •• 2-84
Job Accounting ... e 2-86
Timer Table. .. 2-88

3. MODULE DESCRIPTIONS

3.1 Executi ve (H.EXEC) .•....•...••.•.•....•.•..•...•.•.•..••...
3.1.1 Entry Point I-Interactive Input Starting •••••..•••••.•...••

3-1
3-3
3-4
3-4
3-5

3.1.2 Entry Point 2 - Terminal Cutput Starting •••••••••••••••.••
3.1.3 Entry Point 3 - Wait I/O Starting •••••••••••••••.•.••••..
3.1.4 Entry Point 4 - No-Wait I/o Starting .•••••.•••••••••••••.
3.1.5 Entry Point 5 - Wait For Any No-Wait Operation

3.1.6
3.1.7
3.1.8
3.1.9
3.1.10
3.1.11

3.1.12

3.1.13
3.1.14
3.1.15

3.1.16
3.1.17
3.1.18

3.1.19

3.1.20

3.1.21

3.1.22

3.1.23
3.1.24
3.1.25

3.1.26
3.1.27
3.1.28

3.1.29

3.1.30
3.1. 31

Com plete. .. 3-6
Entry Point 6 - Wait For M emory Pool . • • • • • • • • • • • • • • • . • •• 3-6
Entry Point 7 - Memory Request Processing Complete •...••.. 3-7
Entry Point 8 - Wait for Memory Scheduler Event. • • • • • • • • • .. 3-8
Entry Point 9 - Report Menory Scheduler Event. • • . • • • . • • • •. 3-8
Entry Point 10 - Report ME"mory Pool Available • • • • • • • • • 3-9
Entry Point 11 - Completion of Unswappable I/O
Request. .. 3-10
Entry Point 12 - No-Wait 1:0 Post Processing
Complete ~ .. 3-10
Entry Point 13 - Wait For Peripheral Resource • • • • • • • • • • • • •. 3-11
Entry Point 14 - Wait For Disc File Space ••••••••.•••••.•• 3-12
Entry Point 15 - Report Pe-ipheral Resource
Available a ••••••••••••••.•••••••••••••••••••••• 3-13
Entry Point 16 - Report Di!:c File Space Available •••.••.••.• 3-14
Entry Point 17 - Wait For FISE •.••.•••••••••••••••.•.•• 3-14
Entry Point 18 - Report Gated FISE Operation
Complete 0 ••••••••••••••••••• 5 ••••••• 3-15
Entry Point 19 - Resume Execution of Specified
Task 0 • 0 • o. 3-16
Entry Point 20 - Suspend Execution of Current
Task 0 • ,. ••••••••••• 0 •••••••••• 0 •••••••••••• 0 3-16
Entry Point 21 - Suspend Execution of Specified
Task 3-17
Entry Point 22 - Go To Specified Task Context
(DEBUG) .. 0 3-18
Entry Point 23 - Run User Break Receiver (DEBUG) ••...••..• 3-18
Entry Point 24 - Restart Debug (DEBUG) • • • • . • • • • • . . • • • • •. 3-19
Entry Point 25 - Wait For Any No-Wait Operation
Complete, Message Interrupt or Break Interrupt. . • • • . •• 3-19
Entry Point 26-Continue Specified Task. • • • • . • . • • • • .. 3-20
Entry Point 27 - General El"queue •••••••••••••••••..•... 3-20
Entry Point 28 - Report Run Request Post Processing
Complete 0 ••• 0 •••••••••••••••••••••• C> 0 •• ~ 3-21
Entry Point 29 - Report Wait Mode Run Request
Starting .. 0 • 0 •• 0 •• 0 •• 0 •• 0 0 ••• 0 •••• 0 eo ••••••••• 0 • 0 0 3-22
Entry Point 30 - Enable DEBUG Mode Break. . • . • • • . • • • • 3-22
Entry Point 31 - Hold Current Task. • • • • • • • • . • • • . • . • . • . .. 3-23

Vll

viii

3.1.32
3.1.33
3.1.34

3.1.35

3.1.36
3.1.37
3.1.38

3.1.39
3.1.40
3.1.41
3.1.42
3.1.43
3.1.44
3.1.45
3.1.46

3.1.47

3.1.48
3.1.49

3.1.50
3.1.51

3.1.52
3.1.53

3.1.54
3.1.55
3.1.56

3.1.57

3.1.58
3.1.59
3.1.60

3.1.61
3.1.62
3.1.63

3.1.64

3.1.65
3.1.66

3.1.67
3.1.68

Page

Entry Point 32 - Hold Specified Task •• 3-24
Entry Point 33 - Disable DEBUG Mode Break • • • • • • • • • • • • • •• 3-24
Entry Point 34 - Report No-Wait Message Post
Processing Complete •••.•••••••••••.•...•••.•••••••• 3-25
Entry Point 35 - Report Wait Mode Message
Starting. • • • . • • • • • • . • . . • . • • • . . • • . • . . • • • • • . • • • • . • •• 3-25
Entry Point 36 - General D~queue •• 3-26
Entry Point 37 - Wait For Memory Available ••••••••••••••• 3-27
Entry Point 38 - Inhibit Asynchronous
Abort/Delete • • • • • • • • • • • • • • • • • • . • • • • . • • • • • • . • • •. 3-28
Entry Point 39 - Allow Asynchronous Abort/Delete. • • • • • • • • •• 3-28
Entry Point 40 - End Action Wait. •• 3-29
Subroutine S.EXEC 1 - Interacti ve Input Complete. • • • • • • • • • •• 3-29
Subroutine S.EXEC2 - Terrninal Output Complete. • • • • • • • • • •• 3-29
Subroutine S.EXEC3 - Wait I/O Complete. • • • • • • • • • • • • • • • •• 3-30
Subroutine S.EXEC4 - No-Wait I/O Complete • • • • • • • • • • • • • •. 3-31
Subroutine S.EXEC5 - Exit From Interrupt • • • • • • • • • . • . • • • •• 3-31
Subroutine S.EXEC5A - Ex!t From Trap Handler
With Abort •••••••••.• f •• 3-32
Subroutine S.EXEC6 - No-Wait I/O Post Processing
Com plete. • • • • • • • • • . • . •• 3-3 3
Subroutine S.EXEC7 - Report Memory Pool Available. • • • • • • •• 3-33
Subroutine S.EXEC8 - Line; Entry to Queue By
Priority •••••••••••.•••••••••••••••••••••••••••••• 3-34
Subroutine S.EXEC9 - Unl;nk Entry From Queue. • • • • • • • • • • •• 3-35
Subroutine S.EXEC 10 - Li'·,k Entry to Bottom of
Queue • • • • • • • • • • • • .. • . •• 3-3 5
Subroutine S.EXEC 11 - ~ii;k Entry to Top of Queue. • • • • • • . • •. 3-36
Subroutine S.EXEC 12 - R.eport Memory Scheduler
Event •••.•.•...•...•....•.•.•..•••.•.•.•....••.. 3-38
Subroutine S.EXEC 13 - Break Specified Task ••••••••••••• •• 3-39
Subroutine S.EXEC 14 - R~sume Specified Task. • • • • • • • • • • • .. 3-40
Subroutine S.EXEC 15 - Suspend Execution of Current
Task ••• • • • • • • • • • • • .. •• 3-40
Subroutine S.EXEC 16 - Suspend Execution of Specified
Task ••••••••••••••.••••••••••••.••••••••...•.••. 3-41
Subroutine S.EXECI7 - :\')ort Current Task ••.•••••.•.••..• 3-41
Subroutine S.EXECI8 - Abort Specified Task •••.••••••.•.•. 3-42
Subroutine S.EXEC 19 - Abort Task Processing
Control Subroutine • • • • . . • • • • • • • • • • • • • • • . . . • • 3-43
Subroutine S.EXEC20 - CPU Scheduler. • • • • • • • • • • • • • • • . • •. 3-44
Subroutine S.EXEC21 - Process Task Interrupt . • • • • . • . • • 3-48
Subroutine S.EXEC22 - Wait For Completion of All
No-Wait Operations .•. .. . • • • • • • • • • • . • • • • . • • . . • • • • • • •. 3-49
Subroutine S.EXEC23 - Terminate Messages In Receiver
Queue • • • • • • • • • • • • • . •• 3-50
Subroutine S.EXEC24 - Reserved. • • • • • • . . • . . • • • • • • . . • • .. 3-50
Subroutine S.EXEC25 - Tc"minate Next Run Request
in Receiver Queue .••.. .. • . . • . • • • • • . . . • • • . . . • . . •. 3-50
Subroutine S.EXEC26 - Rf:~move Task Gating .•..•...•...... 3-51
Subroutine S.EXEC27 - '~'ransfer Control to Abort
Receiver • • • • • • • • • • . • . •• 3-51

()

I

'"

3.1.69

3.1.70'

3.1.71
3.1.72

3.1.73

3.1.74

3.1.75
3.1.76

3.1.77

3.1.78

3.1.79

3.1.80
3.1.81
3.1.82
3.1.83
3.1.84

3.1.85

3.1.86

3.1.87
3.1.88
3.1.89

3.1.90
3.1.91

3.1.92

3.1.93

3.1.94
3.1.95
3.1.96

3.1.97
3.1.98

3.1.99

3.1.100
3.1.101

Subroutine S.EXEC28 - Delete Task Processing Control
Subroutine .. 3-52
Subroutine S.EXEC29 - Exit Task Processing Control
Subroutine. .. 3-53
Subroutine S.EXEC30 - Reserved. •• 3-54
Subroutine S.EXEC31 - Report No-Wait Run Request
Post Processing Complete ••••••••••• : • • • • • • • • • • • • • • • •• 3-54
Subroutine S.EXEC32 - Report Wait Mode Run Request
Complete. .. 3-55
Subroutine S.EXEC33 - Report No-Wait Mode Run
Request Complete 3-55
Subroutine S.EXEC34 - Reserved. • • • • • • • • • • • • • • • • . • • • • •• 3-56
Subroutine S.EXEC35 - Report No-Wait Mode Message
Post Processing Complete. •• 3-56
Subroutine S.EXEC36 - Report Wait Mode Message
Com plete. • 3-57
Subroutine S.EXEC37 - Report No-Wait Mode Message
Complete. .. 3-58
Subroutine S.EXEC38 - Inhibit Swap of Current
Task .. 3-58
Subroutine S.EXEC39 - Enable Swap of Current Task ••••••••• 3-59
Subroutine S.EXEC40 - Reserved. •• 3-60
Subroutine S.EXEC41 - Exit Run Receiver • • • • • • • • • • • • • • • •• 3-60
Subroutine S.EXEC42 - Exit Message Receiver. • • • • • • • • • • • •• 3-60
Subroutine S.EXEC43 - Reactivate Run Receiver
Task ••••••.• • • • • • . . • • • . • • • • • • • . . • • • • . • • . • . • • • • •• 3-61
Subroutine S.EXEC44 - Change Priority Level of
Current Task • • • . • • • • • • • • • • • • • • • . • • • • • • • • • • • • • • • • •• 3-62
Subroutine S.EXEC45 - Change Priority Level of
Specified Task .. 3-62
Subroutine S.EXEC46 - Reserved. • • • • • • • • • • • • • • . • • • • • • •• 3-63
Subroutine S.EXEC47 - Reserved. • . •• 3-63
Subroutine S.EXEC48 - Convert Task Number to DQE
Address .. 3-63
Subroutine S.EXEC49 - Construct MRRQ • • • • • • • • • • • • • • • • •• 3-64
Subroutine S.EXEC50 - Link MRRQ to Run Receiver
of Destination Task 3-64
Subroutine S.EXEC51 - Link Current Task to
Designated Wait State ••••••••••••••••••••••••••••••• 3-65
Subroutine S.EXEC52 - Message or Run Request Post
Processing Subroutine. •• 3-66
Subroutine S.EXEC53 - Validate PSB •• 3-66
Subroutine S.EXEC54 - Move Byte String. • • • • • • • • • • • • • • • •• 3-67
Subroutine S.EXEC55 - Unlink Task From Designated
List and Link to Ready List. •• 3-68
Subroutine S.EXEC56 - Resume Memory Scheduler • • • • • • • • • •• 3-69
Subroutine S.EXEC57 - Link Task to Ready List by
Priority. .. 3-69
Subroutine S.EXEC58 - Link MRRQ to Message
Receiver of Destination Task •••••••••••••••••••••••••• 3-70
Subroutine S.EXEC59 - Reserved •••••••••••••••••••••••• 3-71
Subroutine S.EXEC60 - Validate PRB •• 3-71

ix

3.2

x

3.1.102

3.1.103
3.1.104

3.1.105

3.1.106

3.1.107
3.1.108

3.1.109

3.1.110

3.1.111

3.1.112

3.1.113
3.1.114

3.1.115
3.1.116

3.1.117

3.1.118

3.1.119

3.1.120

Subroutine S.EXEC61 - Transfer Parameters From
MRRQ to Receiver Buffer ••••.•••••••••••••••••••••••. 3-71
Subroutine S.EXEC62 - Validate RXB. • • • • • • • • • • • • • . • . • • •. 3-72
Subroutine S.EXEC63 - Transfer Return Parameters
From Destination Task to MRRQ • . • •• 3-73
Subroutine S.EXEC64 - No-Wait Mode Message Post
Processing Subroutine. •• 3-74
Subroutine S.EXEC65 - No-Wait Mode Run Request
Post Processing Subroutine •. 3-74
Subroutine S.EXEC66 - Deallocate MRRQ ••••••••••••••••• 3-75
Subroutine S.EXEC67 - Link Entry to End Action
Queue • • • . • • . . . • • • . • . • •. 3-76
Subroutine S.EXEC68 - Construct and Vector Context
to End Action PSD .. 3-76
Subroutine S.EXEC69 - Common No-Wait Post
Processing Merge Point. •• 3-77
Subroutine S.EXEC70 - Terminate All Run Requests in
Receiver Queue of Current Task •. 3-78
Subroutine S.EXEC71 - Insure Startup of Destination
Run Receiver Task. •• 3-78
Subroutine S.EXEC72 - Report Wait I/O Starting •••••••••••• 3-79
Subroutine S.EXEC73- - Replace Context on TSA
Stack. •• 3-&0
Subroutine S.EXEC74 - Reset Stack to User Level ••••••••••• 3-80
Subroutine S.EXEC75 - Situational Priority
Increment Subroutine • . . • • . . • • • . . • • •. 3-81
Subroutine S.EXEC76 - Update Task Execution
Accounting Value.. • . • • • • . • . • • . . • • • • • . • • • • • • • • . • . • • •. 3-81
Subroutine S.EXEC77 - Update DQE.CQC on Preemptive
Context Switch•.......... 3-82
Subroutine S.EXEC78 - Move Context from Stack to
T .CONTXT ••••••••••••••••••••••••••••••••••••••. 3-83
Subroutine S.EXEC79 - Push Current Context onto Stack
for Deferred EA Pull•...........

3.1.121 Subroutine S.EXEC80 - Start the IPU and Verify ••••••••••.•.
3-83
3-84
3-85
3-89
3-89
3-89
3-89
3-89
3-89
3-89
3-89
3-89
3-90
3-90
3-90
3-90
3-90
3-90
3-90
3-90

System Services (H.MONS)
3.2.1
3.2.2
3.2.3
3.2.4
3.2.5
3.2.6
3.2.7
3.2.8
3.2.9
3.2.10
3.2.11
3.2.12
3.2.13
3.2.14
3.2.15
3.2.16
3.2.17

Entry Point 1 - Physical Device Inquiry ••••••••••••••••••.
Entry Point 2 - Permanent File Address Inquiry •••••••••••••
Entry Point 3 - Memory Address Inquiry •••••••••••••••••••
Entry Point 4 - Create Timer Entry ••••••••••••••••••••••
Entry Point 5 - Test Timer Entry ••••••••••••••••••••••••
Entry Point 6 - Delete Timer Entry ••••••••••••••••••••••
Entry Point 7 - Set User Status Word •••••••••••••••••••••
Entry Point 8 - Test User Status Word ••••••••••••••••••••
Entry Point 9 - Change Priority Level •••••••••••••••••••.
Entry Point 10 - Connect Task To Interrupt ••••••••••••••••
Entry Point 11 - Time-of-Day Inquiry •••••••••••••••••••••
Entry Point 12 - Memory Dump Request •••••••••••••••..••
Entry Point 13 - Load Overlay Segment •••••••••••••••..•.
Entry Point 14 - Load And Execute Overlay Segment •••••.••.
Entry Point 15 - Acti va te Task •••••••••••••••.•••.••••.
Entry Point 16 - Resume Task Execution ••••••••.•••••••••
Entry Point 17 - Suspend Task Execution ••••••••••••••.••.

G

o

o

(

3.2.18
3.2.19
3.2.20
3.2.21

3.2.22

3.2.23
3.2.24
3.2.25
3.2.26
3.2.27
3.2.28
3.2.29

3.2.30
3.2.31
3.2.32
3.2.33
3.2.34
3.2.35
3.2.36
3.2.37

3.2.38
3.2.39
3.2.40
3.2.41
3.2.42
3.2.43
3.2.44
3.2.45

3.2.46
3.2.47
3.2.48
3.2.49
3.2.50

3.2.51

3.2.52
3.2.53
3.2.54
3.2.55

3.2.56
3.2.57
3.2.58
3.2.59
3.2.60
3.2.61
3.2.62

Page

Entry Point 18 - Terminate Task Execution •••••••••••••••• 3-90
Entry Point 19 - Abort Specified Task • • • • • • • • • • • • • . • . • • •• 3-91
Entry Point 20 - Abort Self •• 3-91
Entry Point 21 - Allocate File or Peripheral
Device. .. 3-91
Entry Point 22 - Deallocate File or Peripheral
Device. .. 3-91
Entry Point 23 - Arithmetic Exception Inquiry •••• • • • • • • • • •• 3-91
Entry Point 24 - Task Option Word Inquiry • • • • • • • • • • • • • • • •• 3-91
Entry Point 25 - Program Hold Request • • • • • • • • • • • • • • • • • •• 3-91
Entry Point 26 - Set User Abort Receiver Address ••••••••••• 3-91
Entry Point 27 - Submit Job From Disc File • • • • • • • • • • • • • • •• 3-91
Entry Point 28 - Abort With Extended Message. • • • • • • • • • • • •• 3-92
Entry Point 29 - Load and Execute Interactive
Debugger • • • • • • • • • • • • . . • . • • •• 3-92
Entry Point 30 - Delete Interactive Debugger. • • • • • • • • • • • • •• 3-92
Entry Point 31 - Delete Task. •• 3-93
Entry Point 32 - Get Task Number. •• 3-93
Entry Point 33 - Permanent File Log •• 3-93
Entry Point 34 - Username Specification •••••••••••••••••• 3-93
Entry Point 35 - Get Message Parameters ••••••••••••••••• 3-93
Entry Point 36 - Get Run Parameters. • • • • • • • • • • • • • • • • • • •• 3-93
Entry Point 37 - Wait For Any No-Wait Operation
Complete; Message Interrupt or Break Interrupt. • • • • • • • • • • •• 3-93
Entry Point 38 - Disconnect Task From Interrupt •••••••••• •• 3-93
Entry Point 39 - Exit From Message Receiver. • • • • • • • • • • • • •• 3-93
Entry Point 40 - Parameter Task Activation. • • • • • • • • • • • • • •• 3-94
Entry Point 41 - Get Address Limits ••••••••••••••••••••• 3-94
Entry Point 42 - DEBUG Link Service •••••••••••••••••••• 3-94
Entry Point 43 - Receive Message Link Address ••••• • • • • • • •• 3-94
Entry Point 44 - Send Message to Specified Task. • • • • • • • • • • •• 3-94
Entry Point 45 - Send Run Request to Specified
Task •••• ". • .• 3-94
Entry Point 46 - Break/Task Interrupt Link. • • • • • • • • • • • • • • •• 3-94
Entry Point 47 - Activate Task Interrupt • • • • • • • • • • • • • • • • •• 3-94
Entry Point 48 - Exit From Task Interrupt Level. • • • • • • • • • • •• 3-94
Entry Point 49 - Exit Run Receiver •••••••••••••••••••••• 3-95
Entry Point 50 - Exit From Message End Action
Routine • .. 3-95
Entry Point 51 - Exit From Run Request End
Action Routine .. ,. • 3-95
Entry Point 52 - Terminate Task Execution •••••••••••••••• 3-95
Entry Point 53 - Activate Task •••••••••••• • • • • • • • • • • • •• 3-96
Entry Point 54 - Suspend Task Execution •••••••• • • • • • • • • •• 3-97
Entry Point 55 - Allocate File or Peripheral
Device , ... '. 3-98
Entry Point 56 - Physical Device Inquiry •••••••••••••• •••• 3-100
Entry Point 57 - Disable Message Task Interrupt ••••••••••••• 3-101
Entry Point 58 - Enable Message Task Interrupt ••••••••••••• 3-101
Entry Point 59 - Get Physical Memory Contents ••••••••••••• 3-101
Entry Point 60 - Change Physical Memory Contents •••••••••• 3-102
Entry Point 61 - Permanent File Log ••••••••••••••••••••• 3-103
Entry Point 62 - Resourcemark Lock ••••••••••••••••••••• 3-104

xi

3.2.63
3.2.64
3.2.65
3.2.66

Page

Entry Point 63 - Resourcemark Unlock •••••••..•..•.•••... 3-104
Entry Point 64 - Remove RSM Lock on Task Term ••.•••••••. 3-105
Entry Point 65 - Task CPU Execution Time .••••..•..•..•.. 3-105
Entry Point 66 - Activate Program at Given Time of
Day ... 3-105

3.2.67 Entry Point 67 - Set Synchronous Task Interrupt ••....•.•••.• 3-105
3.2.68 Entry Point 68 - Set Asynchronous Task Interrupt ••.•..•.•••• 3-106
3.2.69 Entry Point 69 - Reserved ••.••••.••••••.•••.••••.••••. 3-106
3.2.70 Entry Point 70 - Date and Time Inquiry ••.•••••••.•••••.•. 3-106
3.2.71 Entry Point 71 - Get Device Mnemonic or Type Code •.•.•••.. 3-106
3.2.72 Entry Point 72 - Enable User Break Interrupt ••••••.••..••.• 3-106
3.2.73 Entry Point 73 - Disable User Break Interrupt. •••••...••.•.. 3-106
3.2.74 Entry Point 99 - SYSGEN Initialization ••.•.•••..•...••..• 3-106

3.3 System Output Module (H.SOUT) .••.•••••.•••••••.••.•....••••.. 3-107

3.4

xii

3.3.1 Entry Point 1 - Link SLO or SBO File to System

3.3.2
3.3.3
3.3.4
3.3.5
3.3.6
3.3.7
3.3.8
3.3.9
3.3.10
3.3.11
3.3.12

3.3.13

3.3.14
3.3.15

3.3.16

3.3.17

3.3.18
3.3.19
3.3.20
3.3.21
3.3.22
3.3.23

3.3.24

3.3.25

Output Queue. • • . • . • • • • • . • . . 3-108
Entry Point 2 - Reserved •.•.•...•.•••.•....••......... 3-108
Entry Point 3 - Process End of Job •.••••.•.••.••..•.•••.. 3-108
Entry Point 4 - Get and Delete M.SID Entry ••••.•••..••••.. 3-109
Entry Point 5 - Get Next SLO or SBO File •••••••••.••••••. 3-110
Entry Point 6 - Log M.SID or M.SOD •••••••••••••.•.••••. 3-112
Entry Point 7 - Allocate SLO or SBO File •••••••••.•••••.•• 3-113
Entry Point 8 - Process Deprint Com mand ••••••••.•••••••• 3-114
Entry Point 9 - Process Depunch Command •••••••...••.••• 3-115
Entry Point 10 - Acti va te System Output Task •••••••.•••.•. 3-116
Entry Point 11 - Delete Job's SLO or SBO Files •••••••••••... 3-117
Entry Point 12 - Delete Real-Time SLO or SBO
File . • • • .'. . 3-1 1 7
Entry Point 13 - System Output Task Abort
Processing ••.••.•......••....•.•••.•.•...•..••.... 3-118
Entry Point 14 - Relink M.SID or M.SOD Entry •••..•••••••.. 3-119
Entry Point 15 - Find Free And Write M.SID or
M.SOD Entry 3-120
Entry Point 16 - Set System Output Task's User
Status Word 3-121
Entry Point 17 - Get Next Linked M.SID or M.SOD
Entry .. 3-122
Entry Point 18 - Gate and Read Header •••..••••...••••••• 3-123
Entry Point 19 - Build System FAT, FPT and FCB •.•.••••.••• 3-124
Entry Point 20 - Link M.SID or M.SOD Entry .••.•...•.••.•. 3-125
Entry Point 21 - Unlink M.SID or M.SOD Entry •••••.•.•..••• 3-126
Entry Point 22 - Search Job Table •••••.••..•••••••.•.••. 3-128
Entry Point 23 - Read Specified M.SID or M.SOD
Entry .. 3-128
Entry Point 24 - Build User Disc FAT and FPT
Entries for a Disc File •••••••••.••••••..•••.••••••.•. 3-129
Entry Point 25 - Convert Device Address to
Hexadecimal 3-130

3.3.26 Entry Point 26 - Batch Task Exit Reporting .••••••••••••••• 3-131
3.3.27 Entry Point 99 - SYSGEN Initialization •.•..•••••..••••••. 3-131-
Input/Output Control System (H.IOCS) •.•.••.•••..•••.•.••••••.••• 3-132
3.4.1 Entry Point 1-0penFile ..•••.•••••.•••.••••••••••••• 3-133
3.4.2 Entry Point 2 - Rewind File •••••••••••.•••.•.•••••••••• 3-133

,0'· .. ·,' ',., , ·1

o

f 3.4.3
3.4.4
3.4.5
3.4.6
3.4.7
3.4.8
3.4.9
3.4.10
3.4.11
3.4.12
3.4.13
3.4.14
3.4.15
3.4.16
3.4.17
3.4.18
3.4.19
3.4.20
3.4.21
3.4.22
3.4.23
3.4.24

3.4.25
3.4.26
3.4.27

3.4.28

3.4.29

3.4.30
3.4.31
3.4.32
3.4.33
3.4.34
3.4.35
3.4.36
3.4.37
3.4.38
3.4.39

3.4.40

3.4.41
3.4.42
3.4.43
3.4.44
3.4.45
3.4.46
3.4.47
3.4.48

Page

Entry Point 3 - Read Record •••••.••••••.•••.••••••.••• 3-134
Entry Point 4 - Write Record •••••••..••.••••••••.••••.. 3-134
Entry Point 5 - Write End of File ••••..••.•.•••..••••••.. 3-134
Entry Point 6 - Reserved •••••••••...••...•.•••••.••••• 3-134
Entry Point 7 - Advance Record ••.•••.••..••••••••••••. 3-134
Entry Point 8 - Advance File •••••••.•••••.•••••..••...• 3-134
Entry Point 9 - Backspace Record •.•.•••.•••.•••••••.••• 3-134
Entry Point 10 - Execute Channel Program •...•..•••••••.•. 3-134
Entry Point 11 - Reserved•••..••.•.••••••••.•••.. 3-134
Entry Point 12 - Reserve Channel •.•..••••.•••••••.•..•• 3-134
Entry Point 13 - Release Channel Reservation •.•••••••••.•• 3-135
Entry Point 14 - OPCOM Console Type ••••..••••.•.•.•.•. 3-135
Entry Point 15 - Suspend User Until I/o Complete .••.••••..• 3-135
Entry Point 16 - Reserved ..•..••.••••..•.••.••••••.••• 3-136
Entry Point 17 - Get Memory Pool Buffer ••.•.•••••••.••••• 3-136
Entry Point 18 - Reserved .••.•..••••..•••••.••••.•••.. 3-137
Entry Point 19 - Backspace File .••.••.••.••••••••••••••• 3-137
Entry Point 20 - Upspace .••..••..•.••...•••...••.•.•. 3-137
Entry Point 21 - Erase or Punch Trailer ••••••••••••••.•.•• 3-137
Entry Point 22 - Eject/Purge Routine •.•••••.••••••.•••••• 3-138
Entry Point 23 - Close File .••..•••.•••••••••••••.•.••• 3-138
Entry Point 24 - Reserve Dual Ported Disc/Reserve
FHD Port II ••••••••••••••••••• II •• 3-139
Entry Point 25 - Wait I/o •....••.•••••.•••••.••.••••.• 3-139
Entry Point 26 - System Console Wait ...•••.•.••••.•.•.•• 3-139
Entry Point 27 - Release Dual Ported Disc/Release
FHD Port II •••• 3-139
Entry Point 28 - Absolutize TCW for Class lEI
Devices .. 3-139
Entry Point 29 - Handler Entry Point 5 and
2 Interface .. 3-140
Entry Point 30 - Adjust TCW Format to Bytes •••.•••••••.•• 3-140
Entry Point 31 - Adjust TCW Format to Halfwords •.••.•.•..• 3-141
Entry Point 32 - Adjust TCW Format to Words ••.•.••......• 3-142
Entry Point 33 - Reserved •••••..••••....••••...••.•.•. 3-143
Entry Point 34 - No-Wait I/O End Action Return ••.•••...•.•. 3-143
Entry Point 35 - Reserved ••••..•••.•.....•••...••.•... 3-143
Entry Point 36 - Restart I/O ..•••.•....•••••••.•.•••.•. 3-143
Entry Point 37 - Virtual Address Validate •.•..•.•.••..••... 3-144
Entry Point 38 - Kill All Outstanding I/O •.•..•••.••••..... 3-144
Entry Point 39 - Discontiguous E-Memory Data
Address Check .•..•........• II •••••••••••••••••••••• 3-14-5
Entry Point 40 - Build 10CDIs for Extended
I/O Reads and Writes•...••••.••..•••..•.... 3-146
Entry Point 41 - Reserved ..•...•.•.•.••.•...•.•..•.... 3-147
Entry Point 42 - Reserved•...••....•••••••.. 3-147
Entry Point 43 - Reserved•..•••.••.•.••.... 3-147
Entry Point 99 - SYSGEN Initialization ••..•..•••...•.•.•. 3-147
Subroutine S.IOCS 1 - Post I/O Processing ••..••.•.••.•....• 3-148
Subroutine S.IOCS2 - Perform Device Testing••....•.... 3-151
Subroutine S.IOCS3 - Unlink I/O Queue From COT•.••... 3-151
Subroutine S.IOCS4 - Half ASCII to Full AS~II
Conversion II •• II II •• II II • II II II •• II • II • II II " 3-152

xiii

3.5

xiv

3.4.49
3.4.50

3.4.51

3.4.52

3.4.53
3.4.54

3.4.55
3.4.56

3.4.57

3.4.58
3.4.59

3.4.60
3.4.61
3.4.62
3.4.63
3.4.64

3.4.65
3.4.66
3.4.67

3.4.68

3.4.69
3.4.70
3.4.71
3.4.72
3.4.73
3.4.74

3.4.75
3.4.76

Subroutine S.IOCS5 - Peripheral Time Out ••••••••••••••••• 3-153
Subroutine S.IOCS6 - Buffer To Buffer Move
Routine (Byte) .••.••.••• e Co ~ • 3-154
Subroutine S.IOCS7 - Buffer to Buffer Move
Routine (Word) .•.•...•.•....•..•••.•...••.......... 3-154
Subroutine S.IOCS8 - Buffer to Buffer Move
Routine (Doubleword) •••••••••••••••••••••••••••••••• 3-155
Subroutine S.IOCS9 - 1/0 Handler Abort ••••••••••••••••••• 3-156
Subroutine S.IOCS 10 - Delete I/O Queue And OS
Buffer .••.•.....•...........••.••••.•...••..•.... 3-156
Subroutine S.IOCSl1- GPMC Device Status •••••••••••••••• 3-157
Subroutine S.IOCS12 - Store IOCD's for Extended
I/O ... 3-158
Subroutine S.IOCS 13 - Allocate I/O Queue and
Buffer Space ..•.......•..•.•..••.•..••............ 3-159
Subroutine S.IOCS 14 - Reserved •••••••••••••••••••••••• 3-160
Subroutine S.IOCS 15 - Delete 1/0 Queue and OS
Buffer •................•.•.••....•....•.......... 3-160
Subroutine S.IOCS 16 - Find FPT •••••••••••••••••••••••• 3-160
Subroutine S.IOCS 17 - Link FAT •••••••••••••••••••••••• 3-161
Subroutine S.IOCS 18 - Initialize Blocking Buffer ••••••••••••• 3-162
Subroutine S.IOCS 19 - Get SYC/SGO Space Definition •••••••• 3-162
Subroutine S.IOCS20 - Get Data Address and Transfer
Count •..•......••........•.••••.•.••.•••••••..•. 3-163
Subroutine S.IOCS21 - Read Logical Blocked Record •••••••••• 3-163
Subroutine S.IOCS22 - Report Blocked I/O Error ••••••••••••• 3-164
Subroutine S.IOCS23 - Post Process Non-Device
Access I/O .. 3-165
Subroutine S.IOCS24 - Restore FCB Parameters
from IOQ .. 3-165
Subroutine S.IOCS25 - Save FCB Parameters in Spad •••••••••• 3-166
Subroutine S.IOCS26 - Write Logical Blocked Record ••••••••• 3-166
Subroutine S.IOCS27 - Perform Implicit Open ••••••••••••••• 3-167
Subroutine S.IOCS28 - Initialize IOQ Entry ••••••••••••••.•• 3-167
Subroutine S.IOCS29 - Report I/O Complete •••••••••••••••• 3-168
Subroutine S.IOCS30 - Advance Logical Blocked
Record ••.••.•..•..••••..•.•••.•.•.••.••••••••.•• 3-169
Subroutine S.IOCS31 - Mark Units Offline •••••••••••••••.• 3·-169
Subroutine S.IOCS32 - Restore FCB Parameters
fro m 5 pad .•..•••••••••••...••••.....••••.•....... 3-1 70

3.4.77 Subroutine S.IOCS33 - Update Disc FAT ••••••••••••••••••• 3-170
3.4.78 Subroutine S.IOCS34 - Allocate Variable IOQ Entry ••••••••••• 3-171
Resource Allocator (H.ALOC) •••••••••••••••••••••••••••••••••• 3-173
3.5.1 Entry Point 1 - Construct TSA and DQE •••••••••••••••••.• 3-175
3.5.2 Entry Point 2 - Task Activation Processing ••••••••••••.•••• 3-176
3.5.3 Entry Point 3 - Task Exit Processing •••••••••••••.••••••• 3-177
3.5.4 Entry Point 4 - Allocate Memory ••••••••.••••••••••••••• 3-177
3.5.5 Entry Point 5 - Deallocate Memory •••••••••••••••••••••. 3-178
3.5.6 Entry Point 6 - Allocate File/Device ••••••••••••••••••.•• 3-179
3.5.7 Entry Point 7 - Deallocate File/Device ••••••••••••••••••• 3-179
3.5.8 Entry Point 8 - Get Dynamic Extended Indexed

Data Space 3-181

(

(

3.5.9

3.5.10

3.5.11

3.5.12
3.5.13
3.5.14
3.5.15
3.5.16
3.5.17

3.5.18

3.5.19

3.5.20
3.5.21
3.5.22
3.5.23
3.5.24

3.5.25

3.5.26
3.5.27

3.5.28
3.5.29
3.5.30
3.5.31

3.5.32
3.5.33

3.5.34

3.5.35
3.5.36

3.5.37
3.5.38

3.5.39
3.5.40
3.5.41
3.5.42

3.5.43
3.5.44
3.5.45
3.5.46

Entry Point 9 - Free Dynamic Ex:ended Indexed
Data Space 3-181
Entry Point 10 - Get Dynamic Task Execution
Space .. 3-181
Entry Point 11 - Free Dynamic 1 ask Execution
Space ••.•••••......•.•.............•..•.•••..••. 3-181
Entry Point 12 - Share Memory With Another Task •••••.•.••. 3-181
Entry Point 13 - Get Shared Memory (INCLUDE) ••••.••••••• 3-181
Entry Point 14 - Free Shared Memory (EXCLUDE) ••••••..•.. 3-182
Entry Point 15 - Get IE' Class I/O Map Block .•••••••.•.•••• 3-182
Entry Point 16 - Free IE' Class 10 Map Block •••••••.••.•••• 3-182
Entry Point 17 - Allocate Disc File By Space
Definition .. 3-183
Entry Point 18 - Share CSECT ~iemory with Another
Task .. e .3-184
Entry Point 19 - Unlock and Dequeue Shared
Memory •...••......•.•.. " ...•.••. . " 3-184
Entry Point 20 - Deallocate Me' lory Due to Swapping •••••••.• 3-184
Entry Point 99 -SYSGEN Initialization •••.•....••.••••..•. 3-185
Subroutine S.ALOC1 - Read and Verify Preamble •••.••••.••. 3-185
Subroutine S.ALOC2 - Deallocate TSA and DQE ••••••..•...• 3-186
Subroutine S.ALOC3 - Write Prntection Image to RAM
(32/7x only) .. 3-187
Subroutine S.ALOC4 - Magnetic Tape Dismount
Message .. 3-187
Subroutine S.ALOC5 - Magnetic Tape Mount Message •••.••••• 3-188
Subroutine S.ALOC6 - Deallocate All Peripheral
Devices Ii 3-189
Subroutine S.ALOC7 - Test for Device on System .••••••••••• 3-189
Subroutine S.ALOC8 - Get First Matching UDT •••.•..•.•••• 3-190
Subroutine S.ALOC9 - Get Next Matching UDT •••••..•••••• 3-191
Subroutine S.ALOC 10 - Allocate Disc File by Space
Definition .. 3-192
Subroutine S.ALOC 11 - Allocate Blocking Buffer •••...•.•••. 3-193
Subroutine S.ALOC 12 - Locate FPT /F A T Address for
Allocated LFC 3-193
Subroutine S.ALOC 13 - Locate Shared Memory Table
Entry ... 3-194
Subroutine S.ALOC 14 - AllocatE'· FPT /F AT •.••••...••••••.• 3-195
Subroutine S.ALOC 15 - Allocat· .. Shared Memory
Swap File " 3-196
Subroutine S.ALOCI6 - Delete Swap File Space •..•..••.•••. 3-196
Subroutine S.ALOC 17 - Update ~~ap Segment
Descriptor Count in DQE •••...•••••••.•..••....•..•.• 3-197
Subroutine S.ALOC 18 - Get Swap File Space •.•.•.•..••••.• 3-198
Subroutine S.ALOC 19 - Remap Users Address Space••... 3-199
Subroutine S.ALOC20 - Validate Buffer Address•.••..•. 3-199
Subroutine S.ALOC21 - Allocate Memory Pool
Buffer II • e 3-200
Subroutine S.ALOC22 - Release Memory Pool Buffer .•....•.. 3-201
Subroutine S.ALOC23 - Compress File Name .•.••..•.•.•.•• 3-201
Subroutine S.ALOC24 - Uncompress File Name ••..•......... 3-202
Subroutine S.ALOC25 - Set Any Bit In Memory •••.•...•....• 3-203

xv

3.5.47
3.5.48
3.5.49
3.5.50
3.5.51
3.5.52

3.5.53

Page

Subroutine S.ALOC26 - Clear Any Bit In Memory •••••••••••• 3-203
Subroutine S.ALOC27 - Te:"t Any Bit In Memory ••••••••••••• 3-204
Subroutine S.ALOC28 - Delllocate Debugger Memory ••••••••• 3-204
Subroutine S.ALOC29 - LOc;d Debug Overlay •••••••••••••••• 3-205
Subroutine S.ALOC30 - err. 'lte A Protection Image ••••••••••• 3-206
Subroutine S.ALOC31 - Upeate Task Proctection Image Due to
Increase in Execution Space (32/7x only) •••••••••••••••••• 3-206
Subroutine S.ALOC32 - Update Shared Memory Protection
Image ..•.... 3-207

3.5.54 Subroutine S.ALOC33 - L'DC :e Task Protection Image Due to
Decrease in Execution Spac\C· C32/7x only) •••••••••••••••••• 3-207

3.6 Terminal Services (H. TSM) •••••• , • ' .•••••••••••••••••••••••••• 3-209

3.7

xvi

3.6.1 Entry Point 1 - Terminal :/0 interface •••••••••••••••••••• 3-212
3.6.2 Entry Point 2 - Syntax Scanner ••••••••••••••••••••••••• 3-214
3.6.3 Entry Point 3 - User Task Exit. ••••••••••••••••••••••••• 3-214
3.6.4 Entry Point 4 - User Task Abort •••••••••••••••••••••••• 3-215
3.6.5 Entry Point 5 - Set User Tab Positions •••••••••.••.••••.•• 3-215
3.6.6 Entry Point 6 - Break Prc.;essing Entry •••••••••••••••••.• 3-216
3.6.7 Entry Point 7 - Convert r,SCII Decimal To Binary •••••••••••• 3-216
3.6.8 Entry Point 8 - Convert ASCII Hexadecimal to

3.6.9
3.6.10

Binary ••...................••...••............... 3-216
Entry Point 9 - Convert Binary to ASCII Decimal •••••••••••• 3-216
Entry Point 10 - Convert [~inary to ASCII
Hexadecimal 3-216

3.6.11 Entry Point 99 - SYSGEN Initialization ••••••••••••••••••• 3-216
File System Executive (H.FISE) •••••..••.•••••••••••••••.••••.•• 3-2 J 7
3.7.1
3.7.2
3.7.3
3.7.4
3.7.5
3.7.6
3.7.7
3.7.8
3.7.9
3.7.10
3.7.11
3.7.12
3.7.13

3.7.14

3.7.15
3.7.16
3.7.17
3.7.18
3.7.19
3.7.20
3.7.21

3.7.22
3.7.23
3.7.24

Entry Point 1 - Get System SMD Entry •••••••••••••••••••• 3-220
Entry Point 2 - Rewrite SMD Entry •••••••••••••••••••••• 3-222
Entry Point 3 - Allocate Temporary Disc Space ••••••••••••• 3-223
Entry Point 4 - Deallocate Temporary Disc Space •••••••••••• 3-225
Entry Point 5 - Allocate Permanent Disc Space •••.•.••••••• 3-226
Entry Point 6 - Un gate FISE .•••••••••••••••••••••••••• 3-228
Entry Point 7 - Deallocate Permanent Disc Space ••••.••••••• 3-229
Entry Point 8 - ASCII Compression .••••••••.••••••••••.• 3-230
Entry Point 9 - Gate FISE .••••••.•••••.••.•••••••••••• 3-231
Entry Point 10 - Get User SMD Entry •••••••••••••••••••.• 3-232
Entry Point 11 - Permanent File Allocation Check ••••••••.•• 3-234
Entry Point 12 - Create Permanent File •••••••.••••••••••• 3-235
Entry Point 13 - Change Temporary File to
Permanent ••••••••••..•.••••••.••••..•.••.••••.... 3-235
Entry Point 14 - Delete Permanent File or
Non-SYSGEN Memory Partition ••••••••••••••••••••••••• 3-235
Entry Point 15 - Permaner. t File Log ••••••••••••••••••••• 3-235
Entry Point 16 - Validate Username •••.•••••.••.••••••••• 3-237
Entry Point 17 - Read Allocation Map into Memory •.•.•••...• 3-239
Entry Point 18 - Write Al1ocation Map to Disc •.•••••••.•••• 3-240
Entry Point 19 - Undefined ..••••••••••..•.•••.•••••••• 3-241
Entry Point 20 - Create Permanent File ••••••••••.•••••••• 3-241
Entry Point 21 - Change Terr,Dorary File to
Permanent ••......•.......•.......••.......••...•. 3-243
Entry Point 22 - Set Exclusive File Lock .•.•••••••••••.•.• 3-245
Entry Point 23 - Release Exciusive File Lock ••.••.••••••••. 3-245
Entry Point 24 - Set Synchronization-File Lock •.•••.••.••.•. 3-245

o

o

o

C

3.7.25

3.7.26

3.7.27

3.7.28

3.7.29

3.7.30
3.7.31

3.7.32
3.7.33

3.7.34

3.7.35

3.7.36

3.7.37
3.7.38
3.7.39

3.7.40

3.7.41
3.7.42

3.7.43

3.7.44

3.7.45

3.7.46

3.7.47

3.7.48

3.7.49

3.7.50

Entry Point 25 - Release Synchronization File
Lock .•.••.•••••••••..••..•.••.•.•.•.•...•••..... 3-245
Entry Point 26 - Set Exclusive File Lock
(M.CALL Only) 3-245
Entry Point 27 - Release Exclusive File Lock
(M.CALL Only) 3-246
Entry Point 28 - Set Synchronization File
Lock (M.CALL Only) •••••••••.•••••••••••.•••••.••••. 3-246
Entry Point 29 - Release Synchronization File
Lock (M.CALL Only) ••••••..••••••••••••••••••.•••••• 3-247
Entry Point 30 - Release File Allocation in FL T •.••••••••••• 3-248
Entry Point 31 - Wait for Release of Exclusive
File Lock ... 3-248
Entry Point 32 - Wait for FL T Entry Space •••••••••••••••.• 3-249
Entry Point 33 - Record Disc File Allocation
In FL T ... 3-249
Entry Point 34 - Exclusive Lock File If
Unallocated 2-250
Entry Point 35 - Release Exclusive Lock
(Unallocated File) 3-250
Entry Point 36 - Release Exclusive Locks For
Unallocated Files on Task Termination •••••••••••••••••••• 3-251
Entry Point 99 - SYSGEN Initialization ••••••••••••••••••• 3-251
System Master Directory (SMD) ••••••••••••••••••••••••• 3-251
Disc Allocation Maps •••••••••••••••••••••••••••••••• 3-254
3.7.39.1 Disc Description Table ••••.•••••••••••••.••• 3-255
3.7.39.2 Disc Format •••••••••••••••••••••••••••••• 3-256
MPX-32 Disc File Gating ••••••••••••••••••••••••••••• 3-257
3.7.40.1 General Method ••••••••••••••••••••••••••. 3-257
3.7.40.2 Locking Services •••••••••••••••••••••••••• 3-257
3.7.40.3 Exclusi ve Lock (FXL) ••••••••.•.••••.••••••. 3-257
3.7.40.4 Synchronization Lock (FSL) •••••••••••••••.••• 3-257
3.7.40.5 Task Queueing •••••••••••••••••••••••••••• 3-257
3.7.40.6 Cooperative Environment •••••••••••••••••••• 3-258
System Subroutine S.FISE 1 - Search SMD for Entry ••••••••••• 3-258
System Subroutine S.FISE2 - Setup F AT for SMD
I/O ... 3-259
System Subroutine S.FISE3 - Setup System FPT
and FeB ... 3-259
System Subroutine S.FISE4 - Record Disc File Allocation
in FL T•....................... 3-260
System Subroutine S.FISE5 - Wait for FLT Entry
Space ••••••.••••••••.••••••••••••••••••••••••••• 3-261
System Subroutine S.FISE6 - Wait for Release of File
Exclusi ve Lock •••.•••••.••••.•••••••••.•••.••••••.. 3-261
System Subroutine S.FISE7 -Release Disc File Allocation
in FL T •..........•.......•...•.•..•.•.•..•••..... 3-262
System Subroutine S.FISE8 - Search FL T for Matching
Entry .. 3-263
System Subroutine S.FISE9 - Convert LFC to Concatenated
File 10 ... 3-263
System Subroutine S.FISE 10 - Checksum Disc Allocation
Map •••••••••••••....•.•..•.••••••••••••••••••••. 3-264

xvii

3.8 Interrupt and Trap Processors •••.•..•••.•...••••.••..••...•••.. 3-265
3.8.1 Power Fail Save - Auto Start Interrupt/Trap

3.8.2

3.8.3

3.8.~

3.8.5
3.8.6
3.8.7
3.8.8
3.8.9
3.8.10
3.8.11
3.8.12
3.8.13
3.8.1~
3.8.15
3.8.16
3.8.17

3.8.18
3.8.19

3.8.20

3.8.21
3.8.22
3.8.23

Processor (H.IPOO) 3-265
System Override Interrupt/Trap Processor - 32/7x only
(H.IPOl)•.................................. 3-266
System Auto Start Trap Processor - 32/27 only
(H.IPAS) ... 3-267
Memory Parity Trap Processor (H.IP02) •••••••.•.•.••.•... 3-268
Non-Present Memory Trap Processor (H.IP03) •••.....••••... 3-269
Undefined Instruction Trap Processor (H.IPO~) •••..•.•.•.•.. 3-269
Privilege Violation Trap Processor (H.IP05) ••••••...•••.••• 3-270
SVC Trap Processor (H.IP06) •.•....••.••..••.••••••..•• 3-271
M.CALL SVC Processor (H.SVCO) ••••..••.•••••.•••..•.. 3-272
Supervisor Call Trap Processor (H.SVC 1) •••••.••.•..•••••• 3-272
M.OPEN SVC Processor (H.SVC3) ••••••••••..•••..•.•••• 3-273
MRTRN/M.RTNA SVC Processor (H.SVC~) •••••••••.•.••••• 3-27~
Invalid SVC Type Processor (H.SVCN) •..••..••••••••••••• 3-274
Machine Check Trap Processor (H.IP07) .••.•.••.•••••••••• 3-275
System Check Trap Processor (H.IP08) •••••••••••.••••.••. 3-276
Map Fault Trap Processor (H.IP09) .•••.•••••••••.••••.••• 3-277
Address Specification Trap - CONCEPT /32 only
(H.IPOC)•....................•..•. 3-278
Block Mode Timeout Trap Processor (H.IPOE) ••••••••••••••• 3-279
Arithmetic Exception Interrupt/Trap Processor .
(H.IPOF) •...............................•.•.•..... 3-280
Cache Memory Parity Error Trap Processor - 32/87
only (H.IP 1 0)•...... 3-281
Console Interrupt Processor (H.IP 13) .••.•••..••.••••••.•. 3-282
Call Monitor (CALM) Interrupt Processor (H.IP27) •••••••..•• 3-283
Real-Time Clock Interrupt Processor (H.IPCL) ••.•••.••.•••. 3-283

4. SYSTEM TASK DESCRIPTIONS

~.1 Swap Scheduler Task (J.SWAPR) ••.•••..•••...•..••..•.•.••..•.. 4-1

4.2

xviii

4.1.1 Structure. • 4--1
4.1.2 Entry Conditions 4-6

4.1.2.1 Dynamic Expansion of Address Space. • . • • • • . . • .. ~-6
~.1.2.2 Deallocation of Memory. • • • . • . • • . • • • • • • • • • •• 4-6
~.1.2.3 Request for Inswap (Memory Roll-In) • • • • • • . • • • •• 4-6
~.1.2.~ Change in Task Status. • • • • • • • • • . • • • • . • • • • • •• 4-6
~.1.2.5 Expansion Request for Inclusion of Shared

Memory •.••. 'I •••••••••••••••••••••••••••

4.1.3 Exit Conditions
4.1.~ Selection of Outswap Candidates •...••••••..••...•...••.
~.l.5 Outswap Process (Memory Roll-Out) ••..•.•••••••••.•.•••
~.1.6 Inswap Process (Memory Roll-In) ••••....••.••••.•••••.•.
4.1.7 Swap I/O Process
4.1.8 Other Considerations
Terminal Service Manager Task (J.TSM) ...•.•••••••••.•••.•••....•
4.2.1 Functional Description
4.2.2 Initial Activation ~
4.2.3 Terminal Log-On

~-7
4-7
4-7
4-9
4-9
~-9

~-10
~-10

4-10
4-10
4-10

,"-'"
I

~

c
,

, .

c-

(,,,

"

4.2.4
4.2.'
4.2.6

Command Processing ••••••••••••••••••
Resumption of Command Processing •••••••
Messages •••••••••••••••••••••••

· ·

,. SYSTEM GENERAnON TASK DESCRIPTION

5.1

5.2

5.3

5.4
5.5

Task Structure and Functional Organization ••••••• . . .
5.1.1 SYSGEN Overlay Structure and Functions . . .
5.1.2 Directive Processing Breakdown ••••••
SYSGEN Library (SG.LIB) ••••••••••••••••••••

....
5.2.1 DID and OTT Definitions •••••

'.2.1.1 Device Type Table
'.2.1.2 Device ID Table ••

5.2.2 SYSGEN Scanner •••••••••••••••••••
5.2.2.1 Directive Definition List ••••
'.2.2.2 SYSGEN Scanner Example •••

T abJ e Building •••••••••••.•••••••••••••••••••••••••••••••••
5.3.1 System Tables •••••••••••••••••••••

'.3.1.1 Tables Referenced in SYSGEN ••
5.3.2 Internal Tables ••••••••••••••••••

'.3.2.1 SYSGEN Internal Tables ••••
Handler and Module Loading and Initialization •••••
S pee ial Considerations ••••••••••••••••••••
5.5.1 MAPTGT/MAPHOST Routines ••••••••••••••••••••••••
5.5.2 Special Case Activation •••••••••••••

6. BATCH TASK DESCRIPTIONS

6.1 Cataloger
6.1.1
6.1.2

6.1.3
6.1.4
6.1.'
6.1.6

.
Introduction ••••••••••••••
Processing Regions .. _. . . . • • . • • . .•.•••••...
6.1.2.1 X Region ••....••••.••..••...•..•.•••.••
6.1.2.2 M Region•....•••..•••••.••••.
6.1.2.3 C Region

6.1.2.3.1
6.1.2.3.2

6.1.2.4 B Region

General Table Area
SYMTAB Entries

Load Module Structure •••••••••••••••
Symbol Table Output Format •••••••••

.

.
Load Module Format (Card) ••••••••••••••••
Object Language ••••••••••••••••••
6.1.6.1 Object Module Records ••••• ·
6.1.6.2 Object Commands •••••••

6.1.6.2.1 Absolute Data •••••••••••••••
6.1.6.2.2 Program Origin ••••••••••••••
6.1.6.2.3 Absolute Data Repeat ••••••••••
6.1.6.2.4 Transfer Address
6.1.6.2.5 Relocatable Data ••••••••
6.1.6.2.6
6.1.6.2.7
6.1.6.2.8

Program Name •••••••••••
Relocatable Data Repeat •••••••
External Definition. • • ••••

4-10
4-11
4-11

.5-1

.5-2

.5-3

.5-8

.5-8

.5-9
.5-10
5-11
.5-13
.5-14
.5-1.5
.5-1'
.5-16
.5-17
.5-18
.5-19
.5-19
.5-19
.5-20

6-1
6-1
6-1
6-2
6-2
6-2
6-3
6-4
6-6
6-7

6-13
6-13
6-14
6-14
6-14
6-1'
6-1'
6-15
6-15
6-15
6-16
6-16
6-16

xix

6.2 DEBUG
6.2.1
6.2.2

6.2.3
6.2."
6.2.'
6.2.6
6.2.7
6.2.8

6.1.6.2.9
6.1.6.2.10

f!S!
Forward Reference •••••••••••••• 6-16
External Reference ••••••••••••• 6-17

6.1.6.3

6.1.6.2.11 Common Definition •••••••••••••
6.1.6.2.12 Common Reference •••••••••••••
6.1.6.2.13 DATA POOL Reference •••••••••••
6.1.6.2.1" Escape to Extended Functions ••••••
6.1.6.2.1' Common Origin ••••••••••••••••
6.1.6.2.16 Object Termination •••••••••••••
Extended Object Commands ••••••••••••••••••
6.1.6. 3.1 Section Definition" ••••••••••••••
6.1.6.3.2
6.1.6.3.3
6.1.6.3.4
6.1.6.3.'
6.1.6.3.6
6.1.6.3.7
6.1.6.3.8
6.1.6.3.9
6.1.6.3.10
6.1.6.3.11
6.1.6.3.12
6.1.6.3.13

Section Origin •••••••••••••••••
Section Reloeatable Reference •••••
Section Transfer Address •••••••••
Section External Definition ••••••••
Section External Reference ••••••••
Section Forward Reference ••••••••
Large Common Definition •••••••••
Large Common Origin •••••••••• " ••
Large Common Reference •••••••••
DEBUGGER Information ••••••••••
Object Creation DatelTime ••••••••
Product Identification •••••••••••

6-17
6-17
6-18
6-18
6-18
6-18
6-18
6-19
6-19
6-19
6-20
6-20
6-20
6-21
6-21
6-21
6-21
6-22
6-23
6-23

• •• 6-24
The DEBUG Environment ••••••••••••••••••••••••••••• 6-24
Entry Points •••••••••••••••••••••••••••••••••••••••
6.2.2.1 Entry Point 1 - Start-Up •••••••••••••••••••••
6.2.2.2 Entry Point 2 - Restart ••••••••••••••••••••••
6.2.2.3 Entry Point 3 - Trap/Break Receiver ••••••••••••
6.2.2.4 Entry Point 4 - M.BRKXIT Receiver ••••••••••••
6.2.2.' Entry Point , - Abort Receiver ••••••••••••••••
H.EXEC Calls •••••••••••••••••••••••••••••••••••••
H.MONS Calls
PIle Code Usa.ge •
TSA References ••••••••••••••••••••••••••••••••••••
Communication Region References ••••••••••••••••••••••

6-26
6-26
6-26
6-27
6-27
6-28
6-28
6-29
6-30
6-31
6-31

Dispatch Queue Entry (DQE) References • • • • • • • • • • • • • • • • •• 6-31

7. SYSTEM TRACE

7.1
7.2
7.3
7.4
7.'
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.1"
7.U

Trace Type 1 - Task Activation •••••••••••••••••••••••••••••••••• 7-3
Trace Type 2 - Task Termination ••••••••••••••••••••••••••••••••• 7-4
Trace Type 3';' Dispatch CPU to Task ••••••••••••••••••••••••••••• 7-'
Trace Type" - Task Relinquishes CPU ••••••••••••••••••••••••••••• 7-6
Trace Type , ... Que\le VO ••••••••••••••••••••• ". • • • • • • • • • • • • • • •• 7-7
Trace Type 6 - EI'lCf I/O ••••••• ' ••••••• " •• 7-8
Trace Type 7 - Interrupt/Trap Handler Entry •••••••••••••••••••••••• 7-9
Trace Type 8 •. Interrupt/Trap Handler Exit •••••••••••••••••••••••• 7-10
Trace Type 9 - M.5HUT •••••••••••••••••••••••••••••••••••••• 7-11
Trace Type 10 - M.OPEN ••••••••••••••••••••••••••••••••••••• 7";12
Trace Type 11 - M.IOFFor BEl ••••••••••• ". •• 7-13
Trace Type 12 - MJONN or UEI ••••••••••••••••••••••••••••••••• 7-14
Trace Type 13 - M.CALL ••••••••••••••••••••••••••••••••••••• 7-1'
Trace Type I" - SVC (1 or 2) ••••••••••••••••••••••••••••••••••• 7-16
Trace Type l' - M.RTRN or M.RTNA •••••••••••••••••••••••••••• 7-17

Change 2
xx

c

Page

(- 7.16 Trace Type 16 - Inswap Task •••••• . . . 7-18

7.17 Trace Type 17 - Outswap Task •••• 7-19

7.18 Trace Type 18 - Dispatch IPU Task 7-20

7.19 Trace Type 19 - Relinquish IPU Task 7-21

7.20 Trace Type 20 - CALM •••••••••••. 7-22

7.21 Trace Type 21 - Mobile Event Trace 1 7-23

7.22 Trace Type 22 - Mobile Event Trace 2 7-24
7.23 Trace Type 23 - SVC Type 15 7-25

8. SYSTEM INmALlZERS AND BUILDERS

8.1 The SDT Leader •••••••••••••• 8-3
8.1.1 Functional Description 8-3
8.1.2 SDT Loader Activation 8-3
8.1.3 Required Input ••••••• 8-3
8.1.4 SDT Loader Processing 8-3
8.1.5 SDT Loader Resul ts ••• 8-4

8.2 BOOT xx (RLOAD, SYSINIT, and SYSBUILD). 8-4
8.2.1 BOOT xx Components 8-5

8.3 The RLOAD Program Section • 8-6
8.3.1 RLOAD Activation. · 8-6
8.3.2 RLOAD Processing •• 8-6
8.3.3 RLOAD Results ••••• 8-7

(- 8.3.4 The Device Parameter Table (DPT) 8-7
8.4 The SYSINIT Program Section ••. 8-9

8.4.1 SYSINIT Activation 8-9
8.4.2 SYSINIT Processing 8-9
8.4.3 SYSINIT Results ••• 8-10

8.5 The SYSBUILD Task •••••••••• 8-10
8.5.1 SYSBUILD Activation •• 8-10
8.5.2 SYSBUILD Processing •• · 8-10
8.5.3 SYSBUILD Results ••• 8-11

8.6 On-Line Restart •••••••••••••• · 8-11
8.6.1 Functional Description · 8-11
8.6.2 RESTART Activation 8-11
8.6.3 Required Input •••••. 8-12
8.6.4 REST AR T Processing 8-12
8.6.5 REST AR T Results 8-13

8.7 J.INIT and J.TINIT Tasks. 8-13

9. INTERNAL PROCESSING UNIT UPU)

9.1 Overview ••••••••...•••••••• 9-1
9.1.1 IPU - Memory Interface . . . 9-1
9.1.2 IPU - CPU Interface •••• · 9-1
9.1.3 System Services and I/O 9-1

9.2 Data Structures ••••..•.•.•••. 9-2
9.2.1 Program Status Doubleword (PSD) 9-2

(~ 9.2.2 IPU Status Word •• 9-4
9.3 Options 9-5

9.3.1 IPU Bias · 9-5

xxi

Page

9.3.2 CPU Only . 9-5
9.4 Task Scheduling ••••••••••••••••••••••••••••••••••••••.•••••• 9-5

9.4.1 IPU - Biased Tasks ••..•.•••••••••••••••••••••••••••• 9-5
9.4.2 Unbiased Tasks ••••••••••••••••••••••••••••••••••••• 9-5
9.4.3 CPU - Only Tasks ••••••••••••••••••••••••••••••••••• 9-6

9.5 IPU Execution ••• 9-6
9.5.1 Execution of Time Distribution Tasks in the IPU ••••••••••••• 9-6
9.5.2 SVC, CALM, Privileged Instructions and Errors •••••••••••••• 9-6
9.5.3 CPU Execution of IPU Tasks ••••••.•••••••••••••••••••• 9-7

9.6 IPU Executive 'Module Descriptions •••••••••••••••••••••••••••••• 9-7
9.6.1 Entry Point 1 - IPU Executive •••••••••••••••••••••••••• 9-7
9.6.2 Entry Point 2 - Execute IPU Task ••••••••••••••••••••••• 9-7
9.6.3 Entry Point 3 - SVC Trap Handler ••••••••••••••••••••••• 9-7
9.6.4 Entry Point 4 - CALM Trap Handler •••••••••••••••••••••• 9-7
9.6.5 Entry Point 5 - Exceptional Condition (ERROR) Trap

Handler •• 9-7
9.6.6 Subroutine S.IPU 1 - Perform Stack Push ••••••••••••••••••• 9-7.
9.6.7 Subroutine S.IPU2 - IPU Initialization •••••••••••••••••••• 9-8
9.6.8 Subroutine S.IPU3 - Terminate IPU Execution ••••••••••••••• 9-8

9.7 IPU Scheduler Module Descriptions •••••••••••••••••••••••••••••• 9-8
9.7.1 Entry Point 1 - Field IPU Halt •••••••••••••••••••••••••• 9-8
9.7.2 Entry Point 2 - Schedule IPU-Biased Tasks ••••••••••••••••• 9-8
9.7.3 Entry Point 3 - Schedule Unbiased Tasks •••••••••••••••••• 9-8
9.7.4 Subroutine S.CPU 1 - Link Task to IPU Request State ••••••••• 9-9
9.7.5 Subroutine S.CPU2 - IPU Eligibility Test •••••••••••••••••• 9-9

9.8 IPU Accounting Module Descriptions ••••••••••••••••••••••••••••. 9-9
9.8.1 Entry Point I - Field Interval Timer Interrupt ••••••••••••••• 9-9
9.8.2 Subroutine S.IPUIT 1 - Perform Accounting after

IPU Trap ••• 9-9
9.8.3 Subroutine S.IPUIT2 - Perform Accounting Prior to

Starting the IPU •••••••••••••••••••••••••••••••••••• 9-9
9.9 IPU SYSGEN Directive ••••••••••••••••••••••••••••••••••••••• 9-9

10. MPX-32 HANDLER FOR HIGH SPEED DATA INTERFACE (HSD)

10.1 HSD Overview •• 10-1
10.2 Related Data Structures •• 10-1

10.2.1 HSD I/O Command Block Structure •• 10-1
10.2.2 IOCB Classes. •• 10-2

10.2.2.1 Device Command Transfer. • • • • • • • • • • • • • • • • •• 10-3
10.2.2.2 Device Status Transfer •• 10-3
10.2.2.3 Transfer In Channel •••••••••••••••••••••••• 10-3
10.2.2.4 Data Transfer Request. •• 10-3
10.2.2.5 Data Chain Descriptor. •• 10-3

10.3 HSD Request Processing •• 10-3
10.3.1 FCB Format Request •••••••••••••••••••••••••••••••• 10-4

10.3.1.1 I/O Operation Codes. •• 10-5
10.3.1.2 Device Open •••••.••••••••••••••••••••••• 10-5

0

(t)
\u.!

10.3.1.3 Device Close. •• 10-5
10.3.1.4 Device Control Functions •••••••••••••••••••• 10-5 0
10.3.1.5 Data Transfer Initiate Requests. • • • • • • • • • • • • • •• 10-6

10.3.2 STARTIO Format Requests. •• 10-6

xxii

(

(.. ';
j

10.3.2.1
10.3.2.2

Subtract Ore and Branch Non-Zero ••••••••••••• 10-7
AsynchronoJs Status Presentation and
Notification. •• 10-8

10.4 HSD I/O Request Processing Details •••••.•••••••••••.•••••••••• 10-8
10.4.1 FCB Format Request Processing. •• 10-8

10.4.1.1 FCB Request 10CL Size Computation ••••••••••• 10-9
10.4.1.2 FCB Request 10CL Construction ••••••••••••••• 10-9

10.4.2 Logical 10CL STARTIO Format Request •••••••••••••••••• 10-10
10.4.3 Conversion of Logical to Physical 10CL ••••••••••••••••••• 10-10
10.4.4 Physical 10CL Processing •••••.••••••••••••••••••••••• 10-11

10.5 Common Request Handling ••••.•••.•••••••••••••••••••••••••• 10-11
10.6 Product Relationships ••••••••.•••••••••••••••••••••••••••••• 10-11
10.7 Device Considerations •••••••••.•••••••••••••••••••••••••••• 10-11

H. MEMORY-ONLY MPX-32

11.1 System Modifications • • • • • • • • . •• 11-1
11.1.1 System Resource Allocator (H.ALOC) .••••••••••••••••••• 11-1
11.1.2 File System Executive (H.FISE) •• 11-1
11.1.3 System Loader (H.LODR) •• 11-2
11.1.4 System Spooled Output (H.SOUT) •••••••••••••••••••••••• 11-2
11.1.5 System Swap Scheduler (J.SW APR) •••••••••••••••••••••• 11-2

12. E-CLASS DEVICE HANDLERS

12.1 Entry Point 1 - Queue Drive Interrupt Service Routine ••••••••••••••• 12-1
12.2 Entry Point 2 - Queue Start Interrupt Service Routine. • • • • • • • • • • • • • •• 12-2
12.3 Entry Point 3 - Spurious Interrupt Service Routine •••••••••••••••••• 12-2
12.4 Entry Point 4 - Lost (Timed Out) Interrupt Processor •••••••••••••••• 12-3
12.5 Entry Point 5 - Opcode Processing Reentrant Service • • • • • • • • • • • • • • •• 12-4-
12.6 Entry Point 6 - Post Transfer Processing Service ••••••••••••••••••• 12-5
12.7 Entry Point 7 - Error Processing ••• •• 12-6
12.8 Entry Point 8 - Device Handler Initialization I/O

Handlers •• 12-6
12.9 Subroutine S.IOCS2 - Common Test Device ••••••••••••••••••••••• 12-8
12.10 Subroutine S.IOCS3 - Common Queue Entry Unlink. • • • • • • • • • • • • • • • •• 12-8
12.11 Subroutine S.IOCS4 - Half ASCII to ASCII Conversion • • • • • • • • • • • • • • •• 12-9
12.12 E-Class Line Printer Handler Coding Example ••••••••••••••••••••• 12-11

13. GENERAL PURPOSE MULTIPLEXER (GPMC) SUPPORT

13.1
13.2
13.3

13.4

Overview •••••••.•••••••••••••••••••••••.••••••••••••••••
Hardware Structure .•••••..•.•••••••••••••••••••••••••••.•.
Software Structure ••••••••••.•••••••••••••••••••.••••••••••
13.3.1
13.3.2
13.3.3
13.3.4
13.3.5

Input/Output Control S~'stem (IOCS) ••••••••••••••••••.••
GPMC Interrupt Execut've (H.MUXO) •••••••.•••••••••••••
GPDC Device Handlers (H.??MP) •.•••••.••••..••••••••••
Normal I/O Logic .•...•..•..•••••••••.•••••.••••••••
Execute Channel Program •••••••••••••••••••• -•••••••••

Data Structures •••.•..•........••••• -•••••••.•••••••••••.••

13-1
13-1
13-2
13-2
13-2
13-2
13-2
13-3
13-3

xxiii

13.5

13.6

13.4.1

13.4.2

System Blocks ••••••••.•.••••••••••••••••••••••.•••
13.4.1.1 Controller Defimtion Table (CDT) ••••••••••.•••
13.4.1.2 Unit Definition Table (UDT) ••••••••••••••••••
Architecture •.•...•••.•••..•••••••.••••••••••..•..
13.4.2.1
13.4.2.2
13.4.2.3

Overview •••.•.•.••.•.••..•.•••..••••.•..
Interrupt Block ..•••..••••.••.•••••••.•.••.
Data Block Linkage

Handler Entry Points
13.5.1 H.MUXO•...••.........
13.5.2 H.??MP
Com mon Logic. ..
13.6.1 Subroutine S.GPMCO - Report GPMC Status ••••••••••••••••
13.6.2 Subroutine S.GPMC I - I/O Initiation Logic •••••••••••••••••
13.6.3 Subroutine S.GPMC2 - Lost Ir-::errupt Logic ••••••••••••••••
13.6.4 Subroutine S.GPMC3 - Operat.on Initiation and IOQ Entry

13-3
13-3
13-3
13-4
13-4
13-5
13-6
13-7
13-7
13-7
13-7
13-8
13-8
13-8

Acquisi tion .. 13-8
13.6.5 Subroutine S.GPMC4 - Execute Channel Program Inspection and

Absolutizing. .. 13-9
13.7 GPMC Support Macros ••••••••••••••••••••••••••••••••••••••• 13-9

13.7.1 IS.DATI,IB.DAT2 13-9
13.7.2 M.IS .. 13-9
13.7.3 GPDC.IT•........... 13-9
13.7.4 M.DIB ... 13-10

13.8 User Handlers ... 13-10

14. DISC PROCESSOR HANDLER

14.1 Overview... 14-1
14.1. I Discs Supported .. 14-1
14.1.2 Track Format•..............•......•..•..•..... 14-2
14.1.3 Dual Subchannell/O •••••••.••••••••••••••••••••••••• 14-2
14.1.4 Dual-PortSupport ••••••.•.••••••••••••••••••••••••• 14-2

14.1.4.1 Normal Support ••••••••••••••••••••••••••• 14-2
14.1.4.2 System Failure in Dual-Port Environment ••••••••• 14-3

14.1.5 Maximum Byte Transfer and lOCO Generation •••••••••••••• 14-3
14.1.6 Hardware/Software Relationship •••••••••••••••••••••••• 14-3

14.2 Extended I/O Commands and CPU Instructions •••••••••••••••••••••• 14-5
14.2.1 XIO Channel Commands. •• 14-5

14.2.1.1 Command Summary ••••••••••••••.••••••••• 14-5
14.2.1.2 lOCO Format 14-6
14.2.1.3 Commands. .. 14-6

14.2.1.3.1 Initialize Channel (INCH) •••••••• 14-6
14.2.1.3.2 Sense (SENSE) • • • • • • • • • • • • • • •• 14-9
14.2.1.3.3 Transfer In Channel (TIC) •••••••• 14-11
14.2.1.3.4 Write Data (WD) ••••••••••••••• 14-11
14.2.1.3.5 \Vrite Sector Label (WSL) •••••••• 14-11
14.2.1.3.6 Write Track Label (WTLL •••••••• 14-11
14.2.1.3.7 Read Data (RD) ••••••••••••••• 14-12
14.2.1. 3. 8 Read Sector Label (RSL) ••••••••• 14-12
14.2.1.3.9 Read Track Label (RTL) ••••••••. 14-12 C
14.2.1. 3.10 Read Angular Position (RAP) ••.••• 14-12
14.2.1.3.11 No Operation (NOP) •••••••••••• 14-12

xxiv

(

14.2.2

14.2.1.3.12
14.2.1.3.13
14.2.1.3.14
14.2.1.3.15
14.2.1.3.16
14.2.1.3.17
14.2.1.3.18
14.2.1.3.19
14.2.1.3.20
14.2.1.3.21
14.2.1.3.22
14.2.1.3.23
14.2.1.3.24

Seek Cylinder (SKC) •.•.•.•••••. 14-12
Format for No Skip (FNSK) •••...• 14-13
Lock Protect Label (LPL) .•••.... 14-13
Load Mode Register (LMR) •••.•.. 14-13
Reserve (RES) •••••••••..•.••• 14-13
Release (REL) •••.•.••••.•.•.• 14-13
Rezero (XEZ) ••••••••••.•••••• 14-13
Test Star (TESS) ••••••••.•••.•. 14-14
Increment Head Address (IHA) ••••. 14-14
Priority Override (POR) ••••••••. 14-14
Set Reserve Track Mode (SRM) ••.• 14-14
Reset Reserve Track Mode (XRM) •• 14-14
Read ECC (REC) ••••••••••.••• 14-14

CPU Instructions 14-15
14.2.2.1
14.2.2.2
14.2.2.3
14.2.2.4

14.2.2.5

Instruction Summary •••••.••••.•.••.•••••••• 14-15
CPU Instruction Format •••.•••••••••.••••••. 14-15
Condition Codes ~ 14-16
Conditon Code Checking ••••.••••••••••••.••. 14-18
14.2.2.4.1 For SIO Instruction ••••.••....•• 14-18
14.2.2.4.2 For HIO Instruction •••••••••••. 14-18
14.2.2.4.3 For Remaining Instructions ••••••• 14-19
Instructions 14-19
14.2.2.5.1
14.2.2.5.2
14.2.2.5.3
14.2.2.5.4

14.2.2.5.5
14.2.2.5.6
14.2.2.5.7
14.2.2.5.8

14.2.2.5.9

14.2.2.5.10

Start I/O (SIO) •••••••••••••••• 14-19
Test I/O (TIO) •••••••••••••••• 14-19
Halt I/O (HIO) ••••••••••••••.. 14-19
Halt Channel (HCHNL) and Reset
Channel (RSCHNL) ••••..••••••• 14-19
Stop I/O (STPIO) •.•••••.••.•..• 14-20
Reset Controller (RSCTL) •••••••• 14-20
Enable Channel Interrupt (ECI) •••• 14-20
Disable Channel Interrupt
(DC I) ••••••••••••••••••••••• 14-20
Activate Channel Interrupt
(ACI) It 14-20
Deacti vate Channel Interrupt
(DACI) •••••••.••.••••••••••• 14-21

14.3 Related Data Structures •••••..•.•••••••••••••••••.••••••••••• 14-21
14.3.1 I/O Queue (IOQ) •.•.•••..•..••••.•••••.••••••.•••••• 14-21
14.3.2 Unit Definition Table (UDT) ••••••••••••••.•••••.•••••• 14-21
14.3.3 Controller Definition Table (CDT) •..••••••••••••.••••••• 14-21
14.3.4 File Control Block (FCB) •••.•••••••..••••••••••••••••• 14-21
14.3.5 File Assignment Table (FAT) •••••.•••..••••••.•••••••.• 14-21
14.3.6 Context Block 14-21
14.3.7 Status Doubleword ••••••.•••.•.••..••..••••••••••.•• 14-24
14.3.8 Input/Output Control Doubleword (IOCD) ..•....••...•••••. 14-25
14.3.9 Interrupt Context Block nCB) ••••.•••.••••.••••.••.•••• 14-25
14.3.10 Sense Buffer ...•....•...••.•...............•••••.. 14-25
14.3.11 INCH Buffer II •••••••••••••• • ' • • 14-25
14.3.12 Status Returned to User's FCB •••.••..••••...•••••••••• 14-26

14.4 XIO Disc Interrupt Fielder (H.EXIO) .•.••.•••.•.••••••••••.•••••• 14-27
14.4.1 Entry Point Summary ••...••..••••..••.•.•••••••.•••• 14-27
14.4.2 Entry Point 1 and 3 - Queue Drive Interrupt Service

Routine Spurious Interrupt Service Routine ••••.•••••••••.• 14-27

xxv

14.4.2.1
14.4.2.2

14.4.2.3

Processing - When an Interrupt Fires .••.•.•••••• 14-27
Processing - As a Result of Status Stored For
Start I/O (SIO) 14-27
Processing - As a Result of Status Stored For
Hal t I/O (HIO) •••••.•.••••••••••••••.••••. 14-28

14.4.2.4 Common Processing •••••••.•..••••.•••••••. 14-28
14.4.3 Entry Point 2 - Queue Start Service Routine •....••••••••••• 14-29
14.4.4 Entry Point 8 - SYSGEN Initialization ••••••.•••••.••••••• 14-30

14.5 XIO Disc Handler (H.DP02) •••.•.•....•••••••••••••••••.••••••• 14-30
14.5.1 Entry Point Summary ••.•.••••.•.••••.•.•..•••••••••• 14-31
14.5.2 Entry Point 1 - Queue Drive Interrupt Service

14.5.3
14.5.4
14.5.5
14.5.6

14.5.7
14.5.8

14.5.9
14.5.10

14.5.11

Routine •.•...•.••.......••....•.................. 14-31
Entry Point 2 - Queue Start Service Routine •••••.•••••••.•• 14-32
Entry Point 3 - Spurious Interrupt Service Routine ••••••••••• 14-32
Entry Point 4 - Lost Interrupt Service Routine ••.•••••••.••• 14-33
Entry Point 5 - Opcode Processing Service Routine •••.••••••• 14-33
14.5.6.1 Common Processing ••••••••••••••••••••••• 14-33
14.5.6.2 Opcode Dependent Processing •••••••••••••••. 14-34

14.5.6.2.1 Opcode Summary Table ••••••••. 14-34
14.5.6.2.2 Open 14-35
14.5.6.2.3 Read 14-35
14.5.6.2.4 Write •.•••••••••••••••••••• 14-35
14.5.6.2.5 Rewind •••.•••••••••••••••• 14-36
14.5.6.2.6 Write End-of-File ••••••••••••• 14-36
14.5.6.2.7 Execute Channel Program ••••••• 14-36
14.5.6.2.8 Advance Record •••••••••••.•• 14-36
14.5.6.2.9 Advance File •••••••••••••••. 14-36
14.5.6.2.10 Backspace Record •••••••••••. 14-36
14.5.6.2.11 Backspace File ••••••••••••••• 14-36
14.5.6.2.12 Upspace •.•••••••••••••••••. 14-37
14.5.6.2.13 Erase •••.••....•••••••••••. 14-37
14.5.6.2.14 Eject •.•••••.•••••••••••••• 14-37
14.5.6.2.15 Close File •...•••••••••••••• 14-37
14.5.6.2.16 Reserve ••••••••.••••••...•. 14-37
14.5.6.2.17 Release ••••••••.•.••••..•.. 14-37

Entry Point 6 - Post Transfer Processing Service •.••••••.••• 14-37
Entry Point 7 - Error Processing For Operator
Intervention 14-37
Entry Point 8 - SYSGEN Initialization •••••••••••••••••••• 14-38
Error Processing for Conventional I/O Requests ••••••••••••• 14-38
14.5.10.1 Abort the I/O Request •••••••••••••••••••• 14-39
14.5.10.2 Retry the I/O Request •••••••••••••••••••• 14-39
14.5.10.3 Perform Read ECC Correction Logic ., ••••••••. 14-40
14.5.10.4 Rezero and Retry •••.•••••••••••••••••••• 14-40
Error Processing for Execute Channel Program
Requests ... 14-41

14.6 SYSGEN Directives ... 14-41

15. INPUT/OUTPUT PROCESSOR (lOP) HANDLER

15.1 Introduction. .. 15-1
15.2 Hardware Overview : .. 15-1

xxvi

'0:· ."': \.' I"~

(

15.3

15.4

15.5

15.6

15.2.1

15.2.2
15.2.3
15.2.4

Hardware Block Diagram Description ••••••••••••••.•.•.••
15.2.1.1 The Input/Output Processor (lop) ••••••••••••••
15.2.1.2 lOP Control Panel/Operator Console •.•••••.••••
15.2.1.3 lOP Controllers
15.2.1.4 lOP Support for Real-Time Interrupts •••••••••••
lOP Device Addressing
10 P Protocol
Detailed lOP Hardware Information ••••••••••••••••••••••

Software Overview

15-1
15-1
15-1
15-3
15-3
15-3
15-3
15-4
15-4
15-4
15-4
15-6
15-6
15-6

15.3.1 Software Block Diagram Description •••••••••••••••••••••
15.3.1.1 lOP Device Handler Programs •••••••••••••••••
15.3.1.2 lOP Device Context Areas •••••••••••••••••••
15.3.1.3 lOP Channel Executive ••••••••••••••••••••••
15.3.1.4 H.IOCS/IOP Handler Interaction •••••••••••••••

Required Data Structure Additions and Modifications for lOP
Implementation 15-6

15-6
15-6
15-7
15-7
15-7
15-8

15.4.1 Data Structure Additions •••••••••••••••••••••••••••••
15.4.1.1 Channel Definition Table (CHT) ••••••••••••••••

15.4.2 Data Structure Modifications ••••••••••••••••••••••••••
15.4.2.1 Controller Definition Table (CDT) ••••••••••••••
15.4.2.2 Unit Definition Table (UDT) ••••••••••••••••••
15.4.2.3 Communication Region Variables •••••••••••••••

Required Modifications to Existing Software for lOP
Implementatioo e.. 15-8
15.5.1 10CSModifications •••••••••••••••••••••••••••••••••• 15-8

15.5.1.1 10CS to lOP Handler Communications ••••••••••• 15-8
15.5.1.1.1 10CS Calls to lOP Handler Entry Points

OP. and IQ. 15-8
15.5.1.1.2 10CS Calls to lOP Handler Entry

Point PX.. 15-8
15.5.1.1.3 IOCS Calls to lOP Handler Entry

Point LI. 15-8
15.5.1.2 I/O Queue Entry Linking and Unlinking ••••••••••• 15-8

15.5.1.2.1 Linking an Entry to an I/O Queue ••• 15-8
15.5.1.2.2 Unlinking an Entry from an

I/O Queue ••••••••••••• ~ • . • •• 15-9
15.5.1.3 Kill I/O Queue Search. •• 15-9

15.5.2 SYSGEN Modifications •• 15-9
15.5.2.1 Data Structure Requirements •••••••• • • • • • • • •• 15-9
15.5.2.2 Device Requirements •• 15-9

15.5.2.2.1 lOP Controller Directive. • • • • • • •• 15-9
15.5.2.2.2 lOP Device Directive • • • • • • • • • •• 15-9
15.5.2.2.3 lOP RTOM Function Directive ••••• 15-11

15.5.2.3 lOP SYSGEN Initialization ••••••••••••••••••• 15-11
New Software Required for lOP Implementation ••••••••••••••••••••• 15-11
15.6.1 lOP Channel Executive - H.IOPX •••••••••••••••••••••••• 15-11

15.6.1.1 Interrupt Fielding Entry Point ••••••••••••••••• 15-11
15.6.1.2" Interrupt Exit Entry Point •••••••••••••••••••• 15-11
15.6.1.3 Initialize Channel Entry Point ••••••••••••••••• 15-11
15.6.1.4 Initialization Entry Point •••••••••••••••••••• 15-12

15.6.2 lOP Device Handlers ••••••••••••••••••••••••••••••••• 15-12
15.6.2.1 lOP Device Context Area - H.DCAxxx ••••••••••• 15-12

xxvii

15.6.2.1.1

15.6.2.1.2

15.6.2.1.3

Device Context Area
Configuration •••••.•.•••••.••. 15-12
Device Context Area Construction
and Initialization ••••••.•••.••• 15-13
Device Context Area Element
Access ••••••••.•.••.•....... 15-13

15.6.2.2 lOP Device Handler Programs •••••.••••••••••• 15-13
15.6.3 Miscellaneous New Software •••••••••••••••••••••.•••.. 15-13

15.6.3.1 Report I/O Complete - S.IOCS29 ••••••••••.•••• 15-13
15.6.3.2 Mark Unit5 Offline - S.IOCS31 ••••••••••••••••• 15-13

15.7 lOP Floppy Disc Handler Program (H.FLIOP) •••••••••.••••••••••.•• 15-13
15.7.1 Functional Characteristics by Entry Point •••••••••..••.•.• 15-14

15.7.1.1 Opcode Processor (OP.) •••••••••.•••••••.•••• 15-14
15.7.1.2 I/O Queue Processor (IQ.) ••••••••.••••••••.•• 15-15
15.7.1.3 Service Interrupt Processor (SI.) ••••••••••••••• 15-15

15.7.1.4
15.7.1.5
15.7.1.6

15.7.1.3.1 Read End-of-File Processing •••••• 15-15
15.7.1.3.2 Backspace File and Skip File

Processing ••••••••••••••••..• 15-15
15.7.1.3.3 Error Recovery Processing ••••••. 15-16
Lost Interrupt Processor (LI.) ••••••••••••••••. 15-16
Special Post Transfer Processor (PK.) ••••••••••• 15-16
SYSGEN Initialization Processor (SG.) ••••••••••• 15-16

15.8 lOP Device Handler Prototype •••••••••••••••••••••••••••••••••• 15-17
15.9 Sample" lOP Device Handler •••••••••••••••••••••••••••••••••••• 15-30

16. lOP EIGHT-LINE FULL DUPLEX HANDLER (H.F810P)

16.1

16.2

16.3

Entry Points .. .
16.1.1 Opcode Processor (OP.)
16.1.2 I/O Queue Processor (1Q.) •••••••••••••••••••••••••••••
16.1.3 Service Interrupt Processor (SI.) ••••••••••••••.••••••••.
16.1.4 Lost Interrupt Processor (LI.) ••.•••••••••••••••••••.••.
16.1.5 Post Transfer Processing (PX.) •••••••.••••.••••••••••••
16.1.6 Pre-SIO Processor (PRE.SIO). .•••••••••••••••.•••.•••.•
16.1.7 SYSGEN Initialization Processor (SG.) ••••••..••.••••••••.
Options
16.2.1 Read Echoplex ..•.................•...•........•...
16.2.2 ASCII Control Character Detect ••••••••••••••••••••••••
16.2.3 Special Character Detect •••••••••••••••••••••••••••••
16.2.4 Purge Input Buffer
Subroutines .. .
16.3.1
16.3.2
16.3.3
16.3.4
16.3.5
16.3.6

NORMAL •.•.•...•.......••.....•.................
UNEXPT•........................
SNSNOIOQ
SENSE .. .
CENODE .•..•...............•...•...•.........•..
TIM EO • •• -••

APPENDIXES

16-1
16-1
16-2
16-2
16-2
16-2
16-2
16-2
16-2
16-3
16-3
16-3
16-3
16-3
16-3
16-3
16-3
16-4
16-4
16-4

Appendix A
Appendix B

MPX-32 Macro Cross Reference ••••••••••••••••••••••••• A-I
Com pressed Source Format • • . • • • • • • • • • • • • . . • • • • • • • • • • . • B-1

xxviii

Figure

8-1
8-2

aLUSTRA nONS

Title Page

Components and Functions in Boot from an SDT • • • • • • • • • • • • • • • •• 8-1
Components and Functions in Boot from CPU Front
Panel. .. 8-2

8-3 Components and Functions in Boot from Online
REST AR T •..•.....................•.•...•.........••• 8-2

14-1 Disc Processor Hardware/Software Relationship. • • • • • • • • • • • • • • •• 14-4

15-1 lOP Hardware Block Diagram •••••••••••••••••••••••••••••• 15-2
15-2 Software Block Diagram. • • . • . •• 15-5
15-3 Sample lOP SYSGEN Directives ••••••••••••••••••••••••••••• 15-10
15-4 lOP Device Context Area ••••••••••••••••••••••••••••••••• 15-12

xxix

Documentation Conventions

Notation conventions used in command syntax and message examples throughout this
manual are described below.

lowercase letters

In command syntax, lowercase letters identify a generic element that must be replaced
with a value. For example,

!ACTIVA TE taskname

means replace taskname with the name of a task, e.g.,

!ACTIV A TE DOCCONV

In messages, lowercase letters identify a variable element. For example,

**BREAK ** ON:taskname

means a break occurred on the specified task.

UPPERCASE LETTERS

In command syntax, uppercase letters specify a keyword must be entered as shown for
input, and will be printed as shown in output. For example,

SA VE filename

means enter SAVE followed by a filename, e.g.,

SA VE DOCCONV

In messages, uppercase letters specify status or information. For example,

taskname, task no ABORTED

*YOUR TASK IS IN HOLD. ENTER CONTINUE TO RESUME IT

Braces { }

Elements placed one under the other inside braces specify a required choice. You must
enter one of the arguments from the specified group. For example,

j counter t
1 startbyte~

means enter the value for either counter or startbyte.

xxx

o

o

o

Brackets []

(An element inside brackets is optional. For example,

(

[CURR]

means the term CURR is optional.

Items placed one under the other within brackets specify you may optionally enter one of
the group of options or none at all. For e'<ample,

[base name]
progname

means enter the base name or the prograM name or neither.

Items in brackets within encompassing b(ackets specify one item is required only when
the other item is used. For example,

TRACE [lower address [upper addr"SS]]

means both the lower address and the upper address are optional, and the lower address
may be used alone. However, if the upper address is used, the lower address must also be
used.

Commas between multiple brackets within an encompassing set of brackets are semi
optional; that is, they are not required unless subsequent elements are selected. For
example,

M.OFCB fcb,lfc[,[a], [b] , [c] , [d], [e J]
could be coded as

M.OFCB FCB12,IN

or

M.OFCB FCB12,IN"ERRAO

or

M.OFCB FCB13,OUT"ERAO"PCK

Hor izontal Ellipsis

The horizontal ellipsis indicates the previous element may be repeated. For example,

name , ••• ,name

means you may enter one or more name values separated by commas.

xxxi

Vertical Ellipsis

The vertical ellipsis specifies commands, parameters, or instructions have been
omitted. For example,

COLLECT 1

LIST

means one or more commands have been omitted between the COLLECT and LIST
commands.

Numbers and Special Characters

In a syntax statement, any number, symb; . or special character must be entered as
shown. For example,

(value)

means enter the proper value enclosed in par -ntheses; e.g., (234).

Underscore

In syntax statements, underscoring specifies the letters, numbers or characters that may
be typed by the user as an abbreviation. For example,

ACTIVA TE taskname

means spell out the command verb ACTIVATE c- abbreviate it to ACTI.

RESET

means type either RESET or RST.

In examples, all terminal input is underscored; terminal output is not. For example,

TSM> EDIT

means TSM> was written to the terminal; EDIT is typed by the user.

Subscript Delta ..

A subscript delta specifies a required space. For example,

EDT> STO.TSSPGM

means a space is required between ° and T.

xxxii

, . O·~··'

·f~
'.~,

o

(
1. SYSTEM DESCRIPTION

1.1 Naming Conventions

To assist in the identification of system components, the following naming conventions
are used in MPX-32 software and documentation.

1.1.1 Communications Region

Names of variables within the MPX-32 communications region are prefixed by the
characters "C.". Their general form is C.x where x is a string of one to six characters.

1.1.2 Task Service Area (TSA)

Names of variables within the TSA associated with each task are prefixed by the
characters "T.". Their general form is T.x where x is a string of one to six characters.

1.1.3 Entry Variables

Names of variables within table and file entries consist of characters which identify the
table or file and the variable. Their general form is x.y where x consists of 2-4
characters which identify the table and y consists of 3-6 characters which identify the
variable. Table or file name prefixes (x) are as follows:

CDT
CHT
OAT
OFT
DQE
OTT
FCB
FPT
ICB
10Q
JOB
MEM
MEML
MIDL
MQ
PRB
PSB
RRS
RXB
SO
SMD
SMT
TCA
TCP
UDT

Controller Definition Table
lOP Channel Definition Table
Dispatch Queue Address Table
Disc File Assignment Table
Dispatch Queue Entry Table
Device Type Table
File Control Block
File Pointer Table
Interrupt Control Block
I/o Queue Entry
Job Table
Memory Table
Memory Attribute List
Map Image Descriptor List
Message or Run Request Queue Entry
Parameter Receive Block
Parameter Send Block
Resource Requirement Summary Entry
Receiver Exit Block
System Input Directory (M.SID)/System Output Directory (M.SOD) Entry
System Master Directory Entry
Shared Memory Table
Terminal Context Area
Type Control Parameter Block
Unit Definition Table

I-I

I
;1

1.1.4 System Modules and Interrupt Handlers

Names of system modules and interrupt handlers are prefixed by the characters "H.".
Their general form is H.x where x is a string of one to six characters. Entry points
within system modules are identified by the module name followed by the entry point's
numeric identifier. Entry point names are of the general form H.x,n where n is the
numeric entry point identifier.

I.I.S Common System Subroutines

Common system subroutines are subroutines contained within moouies intended for use
by other modules. Their names are prefixed by the characters "5.". Their general form is
S.xn where x is the one- to four-character module identifier and n is the subroutine
numeric identifier. For example S.EXECI is the first subroutine in the H.EXEC module.

1.1.6 System Macros

Names of system macros are prefixed by the characters "M.". Their general form is M.x
where x is a string of one to six characters.

1.1.7 System Task Load Module Files

Names of system task load module files are prefixed by the characters "J.". Their
general form is J.x where x is a string of one to six characters.

1.1.8 Batch Task Load Module Files

Names of system batch task load module files are identical to the names of the tasks
contained on the files.

1.1.9 System Permanent Files

Names of system permanent files not containing load modules are prefixed by the
characters "M.". Their general form is M.x where x is a string of one to six characters.

1.2 Scheduler - IOCS Interface

I/o Initiation

A user task issues an SVC to enter IOCS. I/o services for pre-transfer processing are
then executed at the software priority level of the requesting task. Once the I/O request
has been initiated (or queued for initiation), an H.EXEC entry point is called to report
the event to the CPU and swapping scheduler:

1-2

o

o

Entry Point Event

H.EXEC,l Interacti ve input starting

H.EXEC,2 Terminal output starting

H.EXEC,3 Wait I/O starting

H.EXEC,4 No-wait I/O starting

Wai t I/o Post Processing

A return will be made to 10CS from H.EXEC,I, 2, or 3 only upon completion of the I/O
request. Post transfer processing may then occur at the software priority level of the
requesting task.

No-Wait I/o Post Processing

A return from H.EXEC,4 will be made immediately after recording the no-wait I/O
event. Since 10CS will also make an immediate return to the user task, no-wait I/O post
transfer processing will occur as a task interrupt service.

No-Wait I/O Completion Task Interrupt Service

When the I/O handler interrupt service routine fields a completion interrupt for a no-wait
I/O request, it will call the executive subroutine S.EXEC4 to report the event. The I/o
queue entry associated with the call will be linked to the task interrupt list in the DQE of
the task which made the I/O request. When the scheduler attempts to dispatch control to
the task, it will discover that a task interrupt is outstanding. It should be noted that task
interrupts are inhibited during execution of any system service on behalf of a task. It
should be also noted that no task interrupt will be honored while a previous task
interrupt is active. When the task interrupt is honored, control will be transferred to the
10CS routine specified in the Preemptive System Service Header of the I/O queue
entry. Post transfer processing may then occur at the software priority level of the
requesting task. When post processing of the no-wait I/O request is complete, the task
interrupt service may be exited by a call to S.EXEC6 or H.EXEC,12.

No-Wait I/O Restrictions for System Services

Post transfer processing for a no-wait I/O request is processed as a task interrupt. Task
interrupts are not honored while the task is executing in a system service (PC .LE. TSA
address). An exception to this rule is made for a task that is in a wait-for-any-no-wait
I/O-completion state. A task interrupt generated by the completion of no-wait I/O will
be honored if the task is in the wait-for-any-no-wait-I/O-completion state. A system
service desiring to do no-wait I/O may issue a series of no-wait calls followed by a wait
for-any-call. Care should be exercised to insure that all outstanding calls are completed
as appropriate.

1-3

1-4

Scheduler - lacs Interface - laCS I/o SVC Processing Overview

Wait I/O

IOCS from SVC

Construct
Environment

For I/O
Initiation

Complete

No-Wait I/O

0:'.
, I

o

(

Scheduler - IOCS Interface - IOCS No-Wait I/O Post Processing Overview

IOCS Task Interrupt
from Scheduler

Retry

Reconstruct
Initiation
Environment

No Return
Continue Task At
Point of Interrupt

or
Continue Wait For
Any 1/0 Completion

Complete

IOCS From SVC To
Exit User No Wait
1/0 Service

No Return

No Return
Continue Task
At Point of
Interrupt

or
Continue Wait
For Any I/O
Completion

Continue Task At
Point of Interrupt

or
Continue Wait For
Any I/O Completion

1-5

r
I

I

L

1-6

Scheduler - IOCS Interface - IOCS Initiate I/O Procedure

From Wait I/O SVC, or
From No-Wait Task Interrupt

I
Initiate I/O Procedure

Handler
Entry Point

2

H.EXEC,2
Terminal
Output

Starting

H. EXEC, lj. ,

No-Wait I/O
Starting

Return After
Event I

Return ,hen Recorded
I 10 Comp let e I

I~ ~ ___ *
~

V
To IOCS
Point of Call

o

C,\<
'._1

Scheduler - IOCS Interface - ICCS Post Processing Procedure

Error

Operator
Intervention
Re uired

?

Fran Wait I/O SVC, or
Fran No-Wait Task Interrupt

I
Post XFR Processing

A

No Error

Error
Unrecoverable

Automatic
Retry

"--------,

R

To IOCS

To IOCS
Point of Call

o in t of Ca 1 J

1-7

Scheduler - 1/0 lDterrupt Interface Overview

r----'

~
Standard .~/OPti.""l \

Proceuing
Entry ~

ProcesSlng Re ort r-
110 Procedure As Requireci , Ev:nt A. Required

Interrupt
I

'-- ---'
Levels

r---,
~ H'

,
~ >- t--,

I

"-- - --'

r- --""'\

~
I \

~ .H)- r--, I
'-- _-oJ

r---"'"

B-
I \

~ ~ >- ~

\ /
"-- - -'

Return To Any
Preempted
Lower Level Is. EXECS '\.
lnterruot I Staodard ,)

Exit
Procedure

Return to Interrupted
Task or Perform Context Software
Switch to Higher Priority Priority
Candidate for CPU Control Tasks

o

1-8

S. EXEC!
Report Event
Interactive

Input Compl et

Scheduler - I/O Interrupt - Interface, Procedures

Enter Blocked
Wi th Leve I
Active

S.EXEC2

Set Unblocked
(Level Remains
Act i ve)

Increment
Global Interrupt
Count

Processing As
Required For
This Level

S. EXEC5
Standard

Interrupt Exit
Procedure

1-9

Scheduler - I/O Interrupt Interface, Reentrant Subroutines

Interrupt Service
Routines

X3=Addr
r-----~--~Scratchpad

INT.
Conte
Block
22W
Scratc
Pad

1-10

X3=Addr
Scratchpad

I
I
I
I
I
I
I
I
I
t-
I
I

S. EXECX

I
Use X3 As
Scratchpad

Index
1

TRSW RO
Return

Software Priority
Tasks

TSA
Push
Down
Lev;el

2ZW
Scratch
Pad·

Monitor
Service

X3=Addr
Scratchpad

M.RTRN

o

(Preemptive System Service List Entry Header Format

0 String Forward Address

1 String Back Address

2 Priority

3

4 PSD Word 1

5 PSD Word 2

6

('.
7

c
1-11

"1 ~'. 1. 3 I/O Overview from User Request to I/O Complete

I/O Request Processing

User task H.IOCS Device Handler
I/O Op code proces sing: Op code EPS - Op Code
Request (BEL sequences to processing Processor

link 1/ 0 queue to EPZ - I/O Start Up
COT, check I/O
complete)

I H.EXEC,n
Notify Executive H. EXEC, 1: inter-
of I/O initiation active input

H. EXEC, Z: ter-
minal output
H. EXEC, 3: wait I/O
H. EXEC, 4: no-wait
I/O

I
No-wait I/O

I
All other
I/O

Service Interrupt Processing

Device Handler EPI Notify

Service interrupt- Service interrupt Executive
proces sing: of I/o
error retry, status complete
posting, issue CD/ (level
SIO active)

I (externals blocked)

S.EXECS

Post I/O Processing

Executive S.IOCSI
User task I/O post processing:
scheduled post status to FCB,
(via task device inop mes s-
interrupt ages, data moves,
service deallocate I/O queue
for no- and OS buffer as
wait I/O) required

I
1-12

User task

user task

S. EXECn
S. EXECI:

Suspend
user task

inter-
active input
S. EXECZ: ter-
minal output
S. EXEC3: wait I/O
S.EXEC4: no-wait
I/O

o

o

o
I" I~
1
1 ,.

I

1.1f Scheduler - Task Termination Interface

Three types of task termination are provided in the MPX-32 system: exit, abort, and
delete task execution.

1.4.1 Exit Task

The exit task service is called by a task that wishes to terminate its execution in a
normal fashion.

Outstanding I/O (Exit)

If an exiting task has outstanding I/O, further exit processing will be deferred until all
outstanding I/O is complete. Any user end action routines associated with I/O which
completes while a task is exiting, will result in a task abort.

Messages in Receiver Queue (Exit)

All outstanding messages sent to an exiting task will be unlinked from the message
receiver queue, and treated as complete with abnormal status.

Outstanding Run Requests (Exit)

If an exiting task has outstanding run requests (with call back) for other tasks, further
exit processing will be deferred until all such requests are complete. End action routine
execution will be inhibited and end action not processed status will be reflected in the
Run Request Block.

Run Requests in Receiver Queue (Exit)

If an exiting task has requests in its run receiver queue, they will be unlinked and treated
as complete with abnormal status.

Task Abort Receiver (Exit)

A task abort receiver is not processed on task exit.

Files (Exit)

All open files associated with a task will be automatically closed during task exit
processing.

Resources (Exit)

C All resources associated with a task will be automatically deallocated during task exit
processing.

1-13

1.4.2 Abort Task

The abort task service is called by a task that wishes to terminate its execution in an
abnormal fashion. It may also be initiated by the system when a task encounters a
system trap condition (e.g., undefined instruction, privilege violation, or non-present
memory); or by a system service because of a parameter validation error. This service
may also be asynchronously initiated by another task of the same ownername or by
operator communications.

Asynchronous Abort

When a task wishes to abort another task, of the same ownername, .it calls the
asynchronous abort service. The task to be aborted may be in a ready-to-run state, or it
may be in one of the following wait states:

(0 Waiting for Execution Signal

(2)

Timed suspend
Message receive
Run request receive
Interrupt receive

Waiting for Resource

Device
Disc space
Memory
Memory pool

(3) Waiting for Operation Complete

Interactive input
Low speed output
Any no-wait I/O
Wait I/O
Any no-wait message
Wait message
Any no-wait run request
Wait run request

If the specified task to be aborted is waiting for an execution signal, an abort request bit
is set in the DQE, the DQE is unlinked from its current state queue, and linked to the
ready to run list at its current priority. The abort request processing will then proceed
on behalf of the aborting task when it is selected for execution by the CPU scheduler.

If the specified task is waiting for a resource or operation complete, the abort requested
bit will be set in its DQE. The task will remain linked to its current list, and abort
processing will not proceed until outstanding operations are complete and the task is
ready to run.

1-14

0·····)'·· ", ,~ i

Synchronous Aborts

When the currently executing task encounters an abort condition, the abort bit will be set
in the DQE. The CPU scheduler will then process the abort request.

Outstanding I/O (Abort)

If an aborting task has outstanding I/O, further abort processing will be deferred until all
outstanding I/O is complete. End action routine execution will be inhibited, and task
abort status reflected in the FCB.

Messages in Receiver Queue (Abort)

All outstanding messages sent to an aborting task will be unlinked from the message
receiver queue, and treated as complete with abnormal status.

Outstanding Run Requests (Abort)

If an aborting task has outstanding run requests (with call back) for other tasks, further
abort processing will be deferred until all such requests are complete. End action routine
execution will be inhibited, and task abort status will be reflected in the Run Request
Block.

Run Requests in Receiver Queue (Abort)

If an aborting task has requests in its run receiver queue, it will be unlinked and treated
as complete with abnormal status. If any run requests still remain in the queue, a new
copy of the task is activated.

Abort Receiver (Abort)

If an aborting task has an abort receiver, control will be transferred to it. All
outstanding operation or resource waits will have been completed, and all no-wait I/o or
no-wait run requests (with call back) will have been completed when the abort receiver is
entered. End action routines associated with no-wait operations which completed while
the abort request was outstanding will not have been executed. Status bits reflecting
this will be posted in the appropriate FCB's and RRB's. Any files open at the time the
abort request was received will remain open on an abort receiver entry. Any resources
allocated at the time the abort request was received will also remain allocated when the
abort receiver is executed.

Files (Abort)

If an aborting task has no intercepting abort receiver, all files open at the time the abort
request was encountered will be automatically closed.

I-I')

Resources (Abort)

If an aborting task has no intercepting abort receiver, all previously allocated resources
will be deallocated, and the task will no longer be active in the system.

1.4.3 Delete Task

The delete task service is called by the system on behalf of a task that encounters a
second abort condition during processing of an initial abort request. This service may
also be asynchronously initiated by another task of the same ownername or by operator
communications.

Asynchronous Delete

When a task wishes to delete another task, of the same ownername, it calls the
asynchronous delete service. The task to be deleted may be in a ready-to-run state, or it
may be in a wait state (e.g., wait for execution signal, wait for resource, or wait for
operation complete). In any case, the Delete task bit is set in the DQE, and the task is
linked to the ready to run list or to the memory request queue for inswap. An exception
is made for a task already in the memory request queue. In this case, the task will not be
linked into the ready-to-run queue until memory scheduler processing is complete.

Synchronous Deletes

When the currently executing task encounters a delete condition, the delete task bit will
be set in the DQE. The CPU scheduler will then process the delete request.

Outstanding I/O (Delete)

Delete processing will cause all outstanding I/O to be terminated (killed); if I/O is no
wait it is forced into its end action receiver (if it has one) then I/O is terminated.

Messages in Receiver Queue (Delete)

All outstanding messages sent to a task being deleted will be unlinked from the message
receiver queue, and treated as complete with abnormal status.

Outstanding Run Requests (Delete)

If a task being deleted has outstanding run requests for other tasks, any call back will be
ignored.

Run Requests in Receiver Queu~ (Delete)

If a task being deleted has requests in its run receiver queue, it will be unlinked and
treated as complete with abnormal status. If any run requests still remain in the queue,
a new copy of the task is acti va ted.

1-16

o

(Abort Receiver (Delete)

Abort receivers are not processed for tasks being deleted.

Files (Delete)

Files associated with a task being deleted are not automatically closed.

Resources (Delete)

All resources associated with a task being deleted are deallocated, and the task is no
longer active in the system.

1.5 Scheduler-Debug Interface

Design Goals

The structure of the Scheduler-Debug interface is dictated by the following major design
goals:

(1) DEBUG may optionally be associated with a task at task activation time, or
subsequently associated with a terminal task when the break key is struck.
DEBUG may also be associated with a task dynamically through a system
service call.

(2) When a task that has DEBUG associated with it is executing, two methods of
entering DEBUG are provided: (a) The executing task encounters a previously
set DEBUG trap instruction, or (b) The terminal operator depresses the break
key.

(3) Entering DEBUG mode via trap or break is allowed during execution of
software (task) interrupt receivers (e.g., message, end action, and break).

(4) DEBUG will intercept any task aborts, automatically enter the DEBUG mode,
and inform the operator of the abort reason.

(5) System entry into the abort receiver will be "soft" in that outstanding I/O
requests will be completed, and files will remain open and allocated. This
allows the operator the ability to correct and proceed from the environment
that caused the abort condition.

Debug Entry Points

To accommodate the scheduler interface, and achieve the DEBUG design goals, DEBUG
is organized into five entry points. These entry points are reflected by an address table
(HA T) structure at the beginning of the DEBUG program. When DEBUG is loaded, the
address of the DEBUG HAT is stored in T .DBHAT in the TSA. The first word of the HAT
contains the number of DEBUG entry points. Subsequent words contain the address of
the individual DEBUG entry points. The entry points p'rovided are:

1-17

ENTRY POINT

1
2
3
4
5

Task Interrupt Status

DESCRIPTION

Debug startup
Debug restart
Trap/break
User break exit
Abort

DEBUG may examine a byte (DQE.A TO in the dispatch queue entry to determine the
status of task interrupts. When DEBUG is entered, DQE.ATI contains the definition of
all active task interrupts.

BIT LABEL

o Reserved
1 DQE.AEAl
2 DQE.ADM
3 DQE.AUB
4 DQE.AEA
5 DQE.AMI
6-7 Reserved

MEANING

Active end action interrupt 1
Active Debug mode interrupt
Acti ve user break interrupt
Acti ve end action interrupt 2
Acti ve message interrupt

TSA Stack Pushdown Level Interpretation

For all DEBUG entry points, except Restart, the context associated with the most
recently interrupted task level will be contained in T.CONTXT. Nested levels of task
interrupt will be contained in the TSA stack. Unless one of the task interrupt levels
(other than DQE.ADM) is active, the TSA stack will be clean (empty) on entry to
DEBUG. If task interrupts are active, the context storage in the TSA will be in reverse
order of priority (e.g., highest priority = most recent). Note that in the active task
interrupt bit assignments bit 0 is the lowest priority, etc.

Exit from DEBUG Mode

Whenever DEBUG is executing (regardless of entry point) the task is said to be in DEBUG
mode. DEBUG mode may be exited by calling one of the following H.EXEC entry points.

ENTRY POINT

H.EXEC,22
H.EXEC,23

1-18

DESCRIPTION

Go to Specified Task Context
Run User Break Receiver

c

1.5. J Entry Point 1 - Startup

This entry point is accomplished in either of two methods: (1) DEBUG is activated with
the user task, or (2) the user task may issue a SVC call to load and execute DEBUG.

DEBUG Activated with User Task

The program activation service which runs on behalf of the task being activated, detects
that DEBUG is to be activated with the task. When the task has been loaded, a special
service is called to load DEBUG. Once DEBUG is loaded, the service will store the
normal startup registers and PSD in a DEBUG context block in the TSA (T.CONTXT).
The service will then adjust the stack in the TSA to enter DEBUG at the DEBUG startup
entry point. When DEBUG is entered the stack is clean, DEBUG mode is set, and
T.CONTXT contains the user task startup registers and PSD.

DEBUG Activated by Load and Execute (M.DEBUG) SVC

When the user task issues a load and execute DEBUG SVC, the system service will load
DEBUG, store the user's registers and PSD in T.CONTXT, set DEBUG mode, and adjust
the TSA stack for entry at DEBUG's startup entry point.

1.5.2 Entry Point 2 - Restart

This entry point will be executed when DEBUG wishes to terminate any outstanding I/O,
discard any outstanding messages, and clear the TSA stack. A DEBUG restart is invoked
by a DEBUG call to H.EXEC,24.

1.5.3 Entry Point 3 - Trap/Break

This entry point will be executed when a hardware break or M.INT is received by the user
task being debugged. It will also be entered when a trap SVC is executed. On entry,
T .CONTXT will contain the interrupted context and the DEBUG mode task interrupt flag
will be set.

1.5.4 Entry Point 4 - User Break Exit

This entry point will be executed when the user task being debugged executes a break
exit. Note that a user task being debugged may only execute his break receiver by giving
a break command to DEBUG. DEBUG will in turn call H.EXEC,23. Normal break
receiver entry is reserved for DEBUG use when DEBUG is associated with a task. At the
time DEBUG's user break exit entry point is entered, T.CONTXT will contain the most
recent level of pushdown from the TSA "tack. The number of pushdowns in the TSA
stack will vary based upon the number of active task interrupts (e.g., message, end
action).

1-19

1.'.' Entry Point , - Abort

This entry point will be executed when an abort request is received for the user task and
no user abort receiver has been specified. The user task context at the time the abort
was received will be in T.CONTXT in the TSA. If a task interrupt (e.g., message or break
receiver) was in effect at the time the abort request was received, the TSA stack will be
at the associated level of pushdown. Otherwise, the TSA stack will be clean.

Wait I/O Operation Status on Abort Receiver Entry

When the abort receiver is entered, any wait I/O operation will have first been
completed. This means that if an abort request is received for a task with wait I/O
outstanding, abort processing will be deferred until the wait I/O is complete. It should be
noted that a service is provided by operator communications to terminate (kill)
outstanding I/O requests associated with the specified task. When an I/o request is
terminated, appropriate status will be posted in the FeB.

No-Wait I/O Operation Status on Abort Receiver Entry

When the abort receiver is entered, aU no-wait I/O operations will have been
completed. If an abort request is received for a task with no-wait I/O outstanding, abort

o

processing will be deferred until all no-wait I/O requests are complete. User end action ,~,
routine processing will be inhibited for no-wait I/O completions when the task is V
aborting. Task abort status will be posted in the FCB.

File Status on Abort Receiver Entry

All user files will remain open on entry to the task abort receiver.

Inhibit of Abort Receiver Entry

If an abort condition is detected during abort processing for a previously detected abort
condition, all outstanding I/o will be terminated (killed), no status will be posted, abort
receiver entry will be inhibited, resources will be deallocated, and the task removed from
the system.

Re-use of Abort Receiver

Privileged tasks may re-establish an abort receiver from within an abort receiver. This
allows privileged tasks to enter their abort receiver more than once. Unprivileged tasks
may establish a one-shot abort receiver, but will be aborted if an attempt is made to re
establish this receiver.

1-20

o

1.6 MPX-32 Task Interrupts

In addition to the 64 levels of execution priority available for task execution, the MPX-
32 scheduler provides a software interrupt facility within the individual task
environment.

Task Interrupt Priorities

Individual tasks operating in the MPX-32 environment may be organized to take
advantage of the task unique software interrupt levels. Each task in the MPX-32 system
may have six levels of software interrupt:

Level Priority

o
I
2
3
4
5

Task Interrupt Receivers

Description

Reserved for operating system use
DEBUG
Break
End Action
Message
Normal Execution (Run Request>

An individual task is allowed to issue system service calls to establish interrupt receiver
addresses for both break and message interrupts. The DEBUG interrupt level is reserved
for system use by tasks running in DEBUG mode. The end action interrupt level is used
for system post processing of no-wait I/O, message, or run requests. It is also used for
execution of user task specified end action routines. The normal execution level is used
for run request processing and general base level task execution.

Task Interrupt Scheduling

Task interrupt processing is gated by the MPX-32 scheduler during system service
processing. If a task interrupt request occurs while the task is executing in a system
service, the scheduler will defer the interrupt until a return is made to the user task
execution area.

System Service Calls from Task Interrupt Levels

A task may utilize the complete set of system services from any task interrupt level. It
is prohibited, however, from making a wait-for-any-no-wait-completion call (M.ANYW)
from an end action routine. It is therefore illegal to issue an I/O request on any FCB
which is busy or may have post processing outstanding.

1-21

Task Interrupt Context Storage

When a task interrupt occurs, the scheduler will automatically store the interrupted
context into the TSA pushdown stack. This context will be automatically restored when
the task exits from the active interrupt level.

Task Interrupt Level Gating

When a task interrupt occurs, the level is marked active. Additional interrupt requests
for that level are queued until the level active status is reset by the appropriate level
exit system service call. When the level active status is reset, any queued request will
be processed.

In addition, the following services can be used to inhibit higher priority task interrupts:

M.ASYNCH Resets the asynchronous task interrupt mode back to the default
environment.

M.DSMI

M.DSUB

M.ENMI

M.ENUB

M.SYNCH

Disables the task interrupts for messages sent to the calling task.

Deactivates the user break interrupt and allows user breaks via the
terminal BREAK key to be acknowledged.

Enables task interrupts for messages sent to the calling task.

Activates the user break interrupt and causes further user breaks via
the terminal BREAK key to be ignored.

Causes message and task interrupts to be deferred until the user
makes a call to M.ANYW,M.ASYNCH, M.EAWAIT, or M.WAIT.

Note that any deferred task interrupts will be processed when a lower level task
interrupt calls the M.ANYW ,M.EA WAIT or M. WAIT services.

User Break Interrupt Receivers

A task may enable the break interrupt level by calling the M.BRK monitor service to
establish a break interrupt receiver address. The level becomes active as a result of a
break interrupt request generated either from a hardware break or from a M.INT service
call which specified this task. When the break level is active, end action, message, and
normal execution processing is inhibited. The level active status is reset by calling the
M.BRKXIT monitor service to exit from the pseudo interrupt (break) level.

User End Action Receivers

When a task issues a no-wait I/O, send message, or send run request, a user task end
action routine adddress may optionally be specified. If specified, the routine will be 0
entered at the end action priority level from the appropriate system post processing
routine. When the end action level is active, processing at the message or normal

1-22

execution level is inhibited. The level active status is reset by calling the appropriate
end action service:

End Action
Type

I/O
Send Message
Send Run Request

End Action
Exit Service

H.IOCS,34
M.XMEA
M.XREA

All types of user end action exits provide a "return" or "continue-wait-for-any" option.
An interrupt exit will normally rerurn to the interrupted context. A task may, however,
have issued a series of no-wait request calls followed by a wait-for-any-completion
service call from the base level. This wait service (M.ANYW) will place the task in an
interruptible wait state, allowing the execution of post processing and end action
routines associated with the no-wait call. The "return" or "continue wait" end action exit
options allow the exiting end action routine to either return to the point following the
wait-for-any call or to continue the wait-for-any state. Note: A task is prohibited from
making a wait-for-any service call from an end action routine.

User Message Receivers

A task may enable the message interrupt level by calling the M.RCVR system service to
establish a message interrupt receiver address. The level becomes active as the result of
a message send request specifying this task as the destination task. When the message
level is active, normal execution processing is inhibited. Upon entry to the message
interrupt receiver, Rl contains the address of the queue entry (MRRQ) in memory pool.
The receiver may optionally call a service M.GMSGP to store the message in a user
receiver buffer. No-wait I/O is permitted in conjunction with the M. WAIT service.
After appropriate processing, the message interrupt level may be reset by calling the
M.XMSGR system service to exit from the message interrupt receiver.

User Run Receivers

User run receivers execute at the normal task execution (base) level. The cataloged
transfer address is used as the run receiver execution address. The run receiver
mechanism is provided by the system to allow queued requests for task execution with
optional parameter passing. When a run request is issued, the task load module name is
used to identify the task to be executed. If a task of that load module name is currently
active, the run request will be queued from the DQE of the specified task. If the
specified task is not active, it will first be activated. When a task begins execution as
the result of a run request, R 1 contains the address of the run request queue entry. The
receiver may optionally call a service M.GRUNP to store the run parameters in a user
receiver buffer. After appropriate processing, the run receiver task may exit by calling
the M.XRUNR system service. Any queued run requests will then be processed.

User Abort Receivers

(User abort receivers execute at the normal task execution (base) level. The user task
may optionally establish an abort receiver by calling the M.SUAR monitor service. If an

1-23

I
~ I

abort condition is encountered during task operation, control will be transferred to it. 0"11
Upon entry, any active software interrupt level will have been reset, all outstanding
operations or resource waits will have been completed, and all no-wait requests will have
been processed. End action routines associated with no-wait requests which completed
while the abort was outstanding will not have been executed. Status bits reflecting this
will be posted in the appropriate FCB's and PSB's. Any files opened or resources allocated
at the time the abort condition was encountered will remain opened and/or allocated
when the abort receiver is executed. The TSA stack will be clean, and the context at the
time the abort condition was encountered will be stored in T.CONTXT. When the abort
receiver is entered, R6 contains a status byte reflecting task interrupt status at the time
the abort condition was encountered.

Bit

24
25
26
27
28

N/A
N/A

Meaning When Set

User Break Interrupt Active
End Action Interrupt Active
Message Interrupt Active

The standard exit service is used to exit from an abort receiver. If another abort
condition is encountered, while a task is in an abort receiver, the task will be deleted.

1.7 MPX-32 Send/Receive Facilities

MPX-32 provides both message and run request send/receive processing. Run request
services allow a task to queue an execution request (with optional parameter pass) for
another task. Message services allow a task to send a message to another active task.
The services provided for use by the destination tasks are called "receiving task
services". Those provided for tasks which issue the requests are called "sending task
services".

1.7.1 Receiving Task Services

Establishing Receiver Capability

Establishing Message Receivers -- In order to receive messages sent from other tasks, a
task must be active and have a message receiver established. A message receiver is
established by calling the monitor service M.RCVR, and providing the receiver routine
address as an argument with the call.

Establishing Run Receivers -- Any valid task may be a run receiver. Although a set of
special run receiver services are provided, in the most simple case, they need not be
used. The run receiver mechanism is provided by the system to allow queued requests for
task execution, with optional parameter passing. The cataloged transfer address is used
as the run receiver execution address. The task load module name is used to identify the
task to be executed. If a task of that load module name is currently active, and is a O·
single-copied task, the run request will be queued until the task exits. If a task of that ' ','
,load module name is currently active, but is not a single-copied task, the load module
will be activated (multi-copied) to process this request. When a single-copied task exits,

1-24

,I

(

any queued run requests will be executed. If a run request is issued for a task that is not
currently active, an activation will automatically be performed.

Execution of the Recei ver Program

Execution of Message Receiver Programs - When a task is active and has a message
receiver established, it may receive messages sent from other tasks. A message sent to
this task will cause a software (task) interrupt entry to the established message receiver.

Execution of Run Receiver Programs - When a valid task is executed as a result of a run
request sent by another task, it will be entered at its cataloged transfer address. A run
receiver executes at the normal task execution (base) level.

Obtaining the Passed Parameters

Obtaining Message Parameters - When the message receiver is entered, Rl contains the
address of the message queue entry in memory pool. The task may optionally retrieve
the message directly from memory pool, or the task may call a receiver service
(M.GMSGP) to store the message into the designated receiver buffer. If the M.GMSGP
service is utilized, the task must present the address of a five-word Parameter Receive
Block (PRB) as an argument with the call.

Obtaining the Run Request Parameters - When the run recei ver is entered, R 1 contains
the address of the run request queue entry in memory pool. The task may optionally
retrieve the run request parameters directly from memory pool, or the task may call a
receiver service (M.GRUNP) to store the run request parameters into the designated
receiver buffer. If the M.GRUNP service is utilized, the task must present the address
of a five-word Parameter Receive Block (PRB) as an argument with the call.

Exiting the Receiver Program

Exiting the Message Receiver - When processing of the message is complete, the
message interrupt level must be exited by calling the M.XMSGR service. When
M.XMSGR is called, the address of the return parameter buffer, and the number of bytes
(if any) to be returned to the sending task. The RXB will also contain a return status
byte to be stored in the Parameter Send Block (PSB) of the sending task. After message
exit processing is complete, the message receiver queue for this task will be examined
for any additional messages to process. If none exist, a return to the base level
interrupted context will be performed.

Exiting the Run Receiver Task -- When run request processing is complete, the task may
use either the standard exit call (M.EXIT), or the special run receiver exit service
(M.XRUNR).

If the standard exit service (M.EXIT) is used to exit the run receiver task, no user status
or parameters will be returned. Only completion statuus will be posted (in the scheduler
status word) of the Parameter Send Block (PSB) in the sending task. After completion
processing for the run request is accomplished, the run receiver queue for this task is
examined, any queued run request will cause the task to be re-executed. If the run
receiver queue for this task is empty, a standard exit will be performed.

1-25

If the special exit (M.XRUNR) is used to exit the run receiver task, the address of a two- 0
word Receiver Exit Block (RXB) must be provided as an arguument with the call. The
RXB will contain the address of the return parameter buffer, and the number of bytes (if
any) to be returned to the sending task. The RXB will also contain a return status byte
to be stored in the Parameter Send Block (PSB) of the sending task. After completion
processing for the run request is accomplished, the exit control options in the RXB are
examined. If the "wait" exit option is used, the run receiver queue for this task is
examined for any additional run requests to be processed. If none exist, the task will be
put into a wait-state, waiting for the receipt of new run requests. Execution of the task
will not resume until such a request is received. If the "terminate" exit option is used,
any queued run requests will be processed. If the run receiver is empty, however, a
standard exit will be performed.

Waiting for the Next Request

In addition to the wait options described under the heading "Exiting the Receiver
Program", a special message-wait call is provided. When operating at the base execution
level, a task that has established a message receiver may invoke a service call (M.SUSP)
to enter a wait-state until the next message is received.

A task may also make use of the M.ANYW service from the base software level. The
M.ANYW service is similar to M.SUSP. The difference is that whereas the M.SUSP wait-
state will be ended only upon receipt of a message interrupt, timer expiration, or resume,¥~.
the M.ANYW wait-state will be ended upon receipt of any message, end action, or break '0
software interrupt.

1.7.2 Sending Task Services

Sending the Request

Message Send Service - A task may send a message to another active task, providing
that task has a message receiver established. The sending task must identify the
destination task by task activation sequence number. When the send message service
(M.SMSGR) is called, the address of a Parameter Send Block (PSB) must be provided as an
argument. The PSB format allows for the specification of the message to be sent, any
parameters to be returned, scheduler and user status, as well as the address of a user end
action routine. No-wait and no-call-back mode control options are also provided.

Send Run Request Service - A task may send a run request to any active or inactive
task, identifying the task by load module name or by task number if the task is
multicopied. When the run request service (M.SRUNR) is called, the address of a
parameter Send Block (PSB) must be provided as an argument. The PSB format allows
for the specification of the run request parameters to be sent, any parameters to be
returned, scheduler and user status, as well as the address of a user end action routine.
No-wait and no-call-back mode control options are also provided.

1-26

c

(

("

(",',

"

!
' ..

Waiting for Request Completion

Waiting for Message Completion - A message may be sent in either the wait or no-wait
mode. If the wait mode is used, execution of the sending task will be deferred until
processing of the message by the destination task is complete. If the no-wait mode is
used, execution of the sending task will continue as soon as the request has been
queued. The operation in progress bit in the scheduler status field of the PSB may be
examined to determine completion. A sending task may issue a series of no-wait mode
messages followed by a call to the M.ANYW system wait service. This allows a task to
wait for the completion of any no-wait mode messages previously sent. The completion
of such a message will cause resumption at the point after the M.ANYW call.

Waiting for Run Request Completion - Waiting for a run request completion follows the
same form and has the same options as waiting for message completion.

End Action Processing

Message End Action Processing - User specified end action routines associated with no
wait mode message send requests are entered at the end action software interrupt level
when the requested message processing is complete. Status and return parameters will
have been posted as appropriate. When end action processing is complete, the M.XMEA
service must be called to exit the end action software interrupt level.

Run Request End Action Processing - Run request end action processing follows the
same form and has the same options as message end action processing. The only
difference is that the M.XREA service is used instead of M.XMEA.

Parameter Send Block (PSB)

The Parameter Send Block (PSB) is used to describe a send request issued from one task
to another. The same PSB format is used for both message and run requests. The
address of the PSB (doubleword bounded) must be presented as an argument when either
the M.SMSGR or M.SRUNR services are invoked.

1-27

Parameter Send Block (PSB)

Word o 7 8 15 16 23 24 3

o I Load Module Name (PSB.LMN) or Task Number if Message (PSB. TSKN) or
if run request to multicopied load module

I
---- r-··---· --

Priority Reserved Number of Bytes
(PSB.PRI) To Be Sent (PSB.SQUA) 2

3 Reserved Send Buffer Address (PSB.SBA)

Return Parameter Number of Bytes
Buffer Length (Bytes) Actually Returned (PSB.ACRP)

4

(PSB.RPBL)

I
5 Reserved Return Parameter Buffer Address (PSB.RBA)

·_· ____ w· ___

6 Reserved No-Wait Request End Action Address (PSB.EAA)
._-.--- -'-~." - -.---.... ~ . . . ---.. ~--- . ----- .-. -

Completion Processing User Options
7 Status Start Status (PSB.OPT)

(PSB.CST) Status (PSB.UST)

WORD 0

Bits 0-31

WORD 1

Bits 0-31

WORD 2

Bits 0-7

Bits 8-15

1-28

(PSB.IST)

Load Module Name - Characters 1-4 of the name of the load module to
receive the run request, or
Task Number - The task number of the task to receive the message, or
task number of the multicopied task to receive the run request.

Load Module Name - Characters 5-8 of the name of the load module to
receive the run request, or zero if Word 0 contains the task number.

Priority - This field contains the priority of the send request (1-64). If
the value of this field is zero, the priority used will default to the
execution priority of the sending task. This field is not examined if the
sending task is not a privileged program.

Reserved.

o

0 ,' /1

f, Bits 16-31

WORD 3

Bits 0-7

Bits 8-31

WORD 4

Bits 0-15

Bits 16-31

WORD 5

Bits 0-7

Bits 8-31

« WORD 6

Bits 0-7

Bits 8-31

WORD 7

Bits 0-7

(-

Number of Bytes to be Sent - This field specifies the number of bytes
to be passed (0-768) with the message or run request.

Reserved.

Send Buffer Address - This field contains the word address of the
buffer containing the parameters to be sent.

Return Parameter Buffer Length - Contains the maximum number of
bytes (0-768) that may be accepted as returned parameters.

Number of Bytes Actually Returned - This field is set by the send
message or run request service upon completion of the request.

Reserved.

Return Parameter Buffer Address - Contains the word address of the
buffer into which any returned parameters will be stored.

Reserved.

No-Wait Request End Action Address - Contains the address of a user
routine to be executed at a software interrupt level upon completion of
the request.

Completion Status - This bit encoded field contains completion status
information posted by the operating system as follows:

Bit

0

1

2

3

4

Meaning When Set

Operation in progress (busy) (PSB.OIP)

Destination task was aborted before completion of
processing for this request (PSB.DTA)

Destination task was deleted before completion of
processing for this task (PSB.DTD)

Return parameters truncated (attempted return exceeds
return parameter buffer length) (PSB.RPT)

Send parameters truncated (attempted send exceeds
destination task receiver buffer length) (PSB.SPT)

1-29

Bits 8-15

Bits 16-23

1-30

5 User end action routine not executed because of task abort
outstanding for this task (may be examined in abort
receiver to determine incomplete operation) (PSB.EANP)

6-7 Reserved.

Processing Start (Initial) Status - This value encoded field contains
initial status information posted by the operating system as follows:

Code Definition

o Normal initial status (PSB.IST)

1 Message request task number invalid (PSB. TSKE)

2 Run request load module name not found in System Master
Directory (SMD) (PSB.LMNE)

3 File associated with run request load module name is
password protected (PSB.LMPE)

5

File associated with run request load module name does
not have a valid load module format (PSB.LMFE)

Dispatch Queue Entry (DQE) space is unavailable for
activation of the load module specified by a run request
(PSB.DQEE)

6 An I/O error was encountered while reading the SMD to
obtain the file definition of the load module specified in a
run request (PSB.SMIO)

7 An I/O error was encountered while reading the file
containing the load module specified in a run request
(PSB.LMIO)

8-9 Reserved

10 Invalid priority specification. Note: An unprivileged task
may not specify a priority which is higher than its own
execution priority (PSB.PRIE)

11 Invalid send buffer address (PSB.SBAE)

12 Invalid return buffer address (PSB.RBAE)

13 Invalid no-wait mode end action routine address (PSB.EAE)

14 Memory pool unavailable (PSB.MPE)

15 Destination task receiver queue is full (PSB.DTQF)
-

User Status - As defined by destination task.

()

0;\
'f'

(

(

c

Bits 24-31 Options - This field contains user request control specification. It is
bit encoded as follows:

Bit Meaning When Set

24 Request is to be issued in no-wait mode (PSB.NWM)

25 Do not post completion status or accept return
parameters. This bit is examined only if bit 24 is set.
When this bit is set, the request is said to have been issued
in the "no call-back mode". (PSB.NCBM)

Parameter Receive Block (PRB)

The Parameter Receive Block (PRB) is used to control the storage of passed parameters
into the receiver buffer of the destination task. The same format PRB is used for both
message and run requests. The address of the PRB must be presented when either the
M.GMSGP or M.GRUNP services are invoked by the receiving task.

1-31

Word o

o

1

2

3

4
.

WORD 0

Bits 0-7

Bits 8-31

WORD 1

Bits 0-15

Bits 16-31

1-32

Parameter Receive Block (PRB)

7 8 15 16

Status Parameter Receiver Buffer Address
(PRB.ST) (PRB.RBA)

Receiver Buffer Number of Bytes
Length(PRB.RBL) Actually Received

(PRB.ARQ)

Ownername of Sending Task (Word 1) (PRB.OWN)

Ownername of Sending Task (Word 2)

Task Number of Sending Task (PRB. TSKN)

Status-value encoded status byte
'"3,c'

Code

o

1

2

3

4

5-7

Definition

Normal status

Reserved

Invalid receiver buffer address (PRB.RBAE)

No active send request (PRB.NSRE)

Receiver buffer length exceeded (PRB.RBLE)

Reserved

31

Parameter Receiver Buffer Address - This field contains the word
address of the buffer, into which the sent parameters will be stored.

Receiver Buffer Length - Contains the length of the receiver buffer
(number of bytes).

Number of Bytes Actually Received - This value is set by the operating
system and is clamped to a maximum equal to the receiver buffer
length.

o

o

WORDS 2,3

Bits 0-63

WORD 4

Bits 0-31

Ownername of Sending Task - Set by the operating system to contain the
ownername of the task which issued the parameter send requesl.

Task Number of Sending Task - Set by the operating system to contain
the task activation sequence number of the task which issued the
parameter send request.

Receiver Exit Block (RXB)

The Receiver Exit Block (RXB) is used to control the return of parameters and status
from the destination (receiving) task to the task that issued the send request. It is also
used to specify receiver exit-type options. The same format RXB is used for both
messages and run requests. The address of the RXB must be presented as an argument
when either the M.XMSGR or M.XRUNR services are called.

1-33

Word

o

1

WORD 0

Bits 0-7

Bits 8-31

WORD 1

Bits 0-7

Bits 8-15

Bits 16-31

Receiver Exit Block (RXB)

o 78 15 16 31

Return Return Parameter Buffer Address
Status (RXB.RBA)
(RXB.ST)

Options Reserved Number of Bytes
(RXB.OPT) to be Returned

(RXB.RQ)

Return Status - Contains status as defined by the receiver task. Used
to set the user status byte in the Parameter Send Block (PSB) of the
task which issued the send request.

Return Parameter Buffer Address - Contains the word address of the
buffer containing the parameters which are to be returned to the task
which issued the send request.

Options - This field contains receiver exit control options. It is
encoded as follows:

Value

o

1

Reserved.

Exit Type

M.XRUNR

M.XMSGR

M.XRUNR

Meaning

Wait for next run request.

Return to point of task interrupt.

Exit task, process any additional run
requests. If none exist, perform a
standard exit.

M.XMSGR N/A

Number of Bytes to be Returned - contains the number of bytes to be
returned on a message or receiver run exit.

Message or Run Request Queue Entry (MRRQ)

The Message or Run Request Queue Entry (MRRQ) is generated by the system to process
a send request. After the MRRQ has been manufactured by the send service, it is
attached to the appropriate queue slot in the DQE of the destination task. When the
receiver program is entered, R 1 will contain the address of the MRRQ in memory pool.

,0' ,

The receiver program may optionally reference the MRRQ directly, without issuing a
M.GRUNP or M.GMSGP service call. The same format MRRQ is used for both messages 0
and run requests.

1-34

Message or Run Request Queue Entry (MRRQ)
I I i

Word

o String Forward Address (MQ.SF)

1 String Backward Address (MQ.SB)

2 Priority Address of Parameter Send Block (PSB)
(MQ.PR) (MQ.PSBA)

3 Task Number of Sending Task (MQ.TNST)

4 Post Processing Service PSD Word 1, or
Sending Task Ownername Word 1 (MQ.PPSD)

Post Processing Service PSD Word 2, or
5 Sending Task Ownername Word 2 (MQ.PPSD)

(6
Passed Parameter Return Parameter
Quantity (Bytes) Buffer Length (Bytes)
or Number Bytes of or Number Actual
Storage Space (MQ.PPQ) Return Parameters (MQ.RBL)

7 Completion Initial User Options
Status Status Status (PSB format)
(PSB format) (PSB format) (PSB format) (MQ.OPT)
(MQ.CST) (MQ.IST) (MQ.UST)

Variable Length Storage
Area for Passed and

~

I
Returned Parameters ~

I
WORD 0

Bits 0-31 String Forward Address - Address of next entry of top-to-bottom list.

WORD 1

Bits 0-31 String Backward Address - Address of next entry in bottom-to-top list.

1-35

WORD 2

Bits 0-7

Bits 8-31

WORD 3

Bits 0-31

WORDS If.-5

Bits 0-63

WORD 6

Bits 0-15

Bits 16-31

WORD 7

Bits 0-15

Bits 16-23

Bits 24-31

Priority - Priority (1-64) of this request.

Address of Parameter Send Block (PSB) - Contains the logical address
of the PSB in the address space of the task which initiated the request.

Task Number of Requesting Task - This field contains the task
activation sequence number of the task which issued the request.

Post Processing Service PSD - The PSD of the appropriate post
processing service which runs on behalf of the task which issued the
request. This slot is also used to contain sending task ownername.

Passed Parameter Quantity - The number of bytes sent to the
destination task.

Return Parameter Buffer Length - Contains the length (bytes) of the
return parameter buffer in the task which issued the request.

Scheduler Status - This field is used to contain status information to be
posted in the scheduler status field of the PSB upon request completion
(see PSB format).

User Status - As defined by destination task.

Options -This field contains user request control specifications. It is
bit encoded as follows:

Bit

24

25

Meaning When Set

Request is in no-wait mode.

Request is in no-call-back mode (no-wait, no
status, no return parameters)

Messages and Run Request Services Summary

The following table is provided as a summary of message and run request services
provided by the MPX-32 system.

1-36

o

o

c
Message and Run Request Services Summary

Run Request
Services

Receiver
Services

N/A

M.GRUNP prbaddr

M.XRUNR rxbaddr,timel
or

M.EXIT

N/A

Send
Services

M.SRUNR psbaddr

M.ANYW time!

M.XREA

Argument

recvaddr

prbaddr

rxbaddr

psbaddr

taskno

timel

Message
Services Function

M.RCVR recvaddr Establish receiver address

M.GMSGP prbaddr Get parameters

M.XMSGR rxbaddr Exit receiver

M.ANYW time 1 Wait for receipt of next
message

or

M.SUSP taskno,timel

M.SMSGR psbaddr Send request

M.ANYW time 1 Wait for any request
M.EA WAIT time 1 competition

M.XMEA Exit user end action
service

Description

Address of receiver

Address of Parameter Receive Block (PRB)

Address of Receiver Exit Block (RXB)

Address of Parameter Send Block (PSB)

Contains zero

Contains zero if indefinite wait, otherwise contains negative
number of time units to be used as a wait time-out value.

1-37

1.8 MPX-32 Device Address Specification

Under MPX-32 device addresses are specified using a combination of three levels of
identification. They are Device Type, Device Channel/Controller Address, and Device
Address/Subaddress.

A device may be specified using the generic device type only, which will result in
allocation of the first available device of the type requested.

A second method of device specification is achieved by using the generic device type and
specifying the Channel/Controller Address which results in allocation of the first
available device of the type requested on the Channel/Controller specified.

The third and final method of device selection requires specification of the Device Type,
Channel/Controller, and Device Address/Subaddress. This method allows specification of
a specific device.

Examples of the three methods of device specification follow:

Type I - Generic Device Class

$ASSIGN3 DEV=M9

In this example the file associated with LFC "DEV" will be allocated to any 9-track
tape unit on any channel.

Type 2 - Generic Device Class and Channel/Controller

$ASSIGN3 DEV=M910

In this example the file associated with LFC "DEV" will be allocated to the first
available 9-track tape unit on channel 10. The specification is invalid if a 9-track
tape unit does not exist on the channel.

Type 3 - Specific Device Request

$ASSIGN3 DEV=M91001

In this example the file associated with LFC "DEV" will be allocated to the 9-track
tape unit 01 on channel 10. The specification is invalid if unit 01 on channel 10 is not
a 9-track tape.

GPMC/GPDC devices are specified in keeping with the general structure as defined.
For instance, the CRT at subaddress 04 on GPMC 01 whose channel address is 20
would be identified as follows:

$ASSIGN3 DEV=TY2004

A special device type "NU" is available for NULL device specifications. Files
accessed using this device type generate an End-of-File upon attempt to read and
normal completion upon attempt to write.

1-38

()

,,r"
''lP'

o

Assignment of logical file codes to the operator console is achieved through usage of
(the device type "CT".

A description of device selection possibilities would be constructed as follows:

(

DISC

DC
OM
DM08
DM080l
DF
DFOt,.
DFOt,.OI

TAPE

MT
M9
M910
M91002
M7
M712
M71201

CARD EQUIPMENT

CD
CR
CR78
CR7800
CP
CP7C
CP7COO

LINE PRINTER

LP
LP7A
LP7AOO

Any Disc
Any Moving Head Disc
Any Moving Head Disc on Channel 08
Moving Head Disc 01 on Channel 08
Any Fixed Head Disc
Any Fixed Head Disc on Channel at,.
Fixed Head Disc 0 I on Channel at,.

Any Magnetic Tape
Any 9-track Magnetic Tape
Any 9-track Magnetic Tape on Channel 10
9-track Magnetic Tape 02 on Channel 10
Any 7-track Magnetic Tape
Any 7-track Magnetic Tape on Channel 12
7-track Magnetic Tape 01 on Channel 12

Any CR/CP
AnyCR
Any CR on Channel 78
CR on Channel 78 Subaddress 00
Any CP
Any CP on Channel 7C
CP on Channel 7C Subaddress 00

Any LP
Any LP on Channel 7 A
LP on Channel 7 A Subaddress 00

l- 39

/1

Dev
Type
Code

00
01
02
03
04
05
06
07
08
09
OA
OB
OC
OD
OE
OF
10
11
12
13
14
15 .
16
17
18
19
lA
IB

Device
Mnemonic

CT
DC
OM
DF
MT
M9
M7
CD
CR
CP
LP
PT
TY
CT
FL
NU
CA
UO
Ul
U2
U3
U4
U5
U6
U7
U8
U9
LF

MPX-32
Device Type Codes

Device Description

Operator Console (Not Assignable)
Any Disc Unit
Any Moving Head Disc
Any Fixed Head Disc
Any Magnetic Tape Unit
Any 9-track Magnetic Tape Unit
Any 7-track Magnetic Tape Unit
Any Card Reader/Reader Punch
Any Card Reader
Any Card Reader Punch
Any Line Printer
Any Paper Tape Reader Punch
Any Teletype Compatible Device (other than Console)
Operator Console (Assignable)
Floppy Disc
Any Null Device
Communications Adapter
User Supplied Device
User Supplied Device
User Supplied Device
User Supplied Device
User Supplied Device
User Supplied Device
User Supplied Device
User Supplied Device
User Supplied Device
User Supplied Device
Line Printer/Floppy Controller (used only with SYSGEN)

1.9 MPX-32 CPU Scheduling

The MPX-32 CPU scheduler is responsible for allocating CPU execution time to active
tasks. Tasks are allocated CPU time based on execution priority and execution
eligibility. Execution priority is specified when a task enters (is cataloged into) the
system. Execution eligibility is determined by the task's readiness to run.

Execution Priorities

The MPX-32 system provides 64 levels of execution priority. These priority levels are
divided into two major categories. Real-time tasks operate in the priority range 1-54.
Time distribution tasks operate in the priority range 55-64.

1-40

o

(

Real Time Priority Levels (1-54)

Scheduling of Real Time Tasks in MPX-32 occurs on a strict priority basis. The system
does not impose time-slice, priority migration, or any other scheduling algorithm which
will interfere with the execution priority of a real time task. Execution of an active real
time task at its specified priority level is inhibited only when it is ineligible for execution
(not ready to run). Execution of a real time task may, of course, always be preempted by
a higher priority real time task that is ready to run.

Time Distribution Priority Levels (55-64)

For tasks executing at priority levels 55-64, MPX-32 provides a full range of priority
migration, situational priority increment, and time quantum control.

Priority Migration

The specified execution priority of a time distribution task is used as the tasks base
execution priority. Each time distribution task's current execution priority is determined
by the base priority level as adjusted by any situational priority increment. The current
execution priority is further adjusted by increasing the priority (by one level) whenever
execution is preempted by a higher priority time distribution task, and decreasing the
priority whenever the task gains CPU control. The highest priority achievable by a time
distribution task is priority level 55. The lowest priority is clamped at the task's base
execution level.

Situational Priority Increments

Time distribution tasks are given situational priority increments in order to increase
program responsiveness. The effect of situational priority increments is to give
execution preference to tasks that are ready to run after having been in a natural wait
state. A task that is CPU bound will migrate toward its base execution priority.
Situational priority increments are invoked when a task is unlinked from a wait state list,
and relinked to the ready to run list.

Situation

Terminal input wait
complete

I/o wait complete
Message (send) wait

complete
Run request (send)

complete
Memory (inswap) wait

complete

Priority Increment

Base level + 2

Base level + 2
Base level + 2

Base level + 2

Base level + 3

1-41

Time Quantum Controls

The MPX-32 system allows for the specification of two time quantum values at system
generation time. If these values are not specified, system default values will be used.
The two quantum values are provided for scheduling control of time distribution tasks.
The first quantum value (stage I) indicates the minimum amount of CPU execution time
guaranteed to a task before preemption by a higher priority time distribution task. The
stage I quantum value is also used as a swap inhibit quantum after inswap. The second
quantum value represents the task's full time quantum. The difference between the first
and second quantum values defines the execution period called quantum stage 2. During
quantum stage 2, a task may be preempted and/or outswapped by any higher priority
task. When a task's full time quantum has expired, it is relinked to the bottom of the
priority list, at base execution priority.

Time quantum accumulation is the accumulated sum of actual execution times used by
this task. A task's quantum accumulation value is reset when the task voluntarily
relinquishes CPU control (e.g., suspend, wait I/O, etc.).

State Chain Management

The current state of a task (e.g., ready to run, waiting for I/O, etc.) is reflected by the
linkage of the dispatch queue entry associated with the task into the appropriate state
chain. The ·state queues are divided into two major categories: ready to run and
waiting. The re\~dy-to-run category is subdivided by priority, with a single queue for the
real time priorities and a separate queue for each of the time distribution priority
levels. The "waiting" category is subdivided according to the resource or event required
to make the task eligible for execution.

1-42

o

o

o
I
! .

I

,('

(

(

MPX-32 State Queues

Ready to Run Queues

1. Current CPU Task (in execution) - CURR
2. Current IPU Task (in execution) - CIPU
3. IPU requesting state - RIPU
4. Real Time Priority Levels (1-54) - SQRT
5. Time Distribution Priority Level 55 - SQ55
6. Time Distribution Priority Level 56 - SQ 56
7. Time Distribution Priority Level 57 - SQ57
8. Time Distribution Priority Level 58 - SQ58
9. Time Distribution Priority Level 59 - SQ59

10. Time Distribution Priority Level 60 - SQ60
11. Time Distribution Priority Level 61 - SQ61
12. Time Distribution Priority Level 62 - SQ62
13. Time Distribution Priority Level 63 - SQ63
14. Time Distribution Priority Level 64 - SQ64

15.
16.
17.
18.
19.

Wait-Mode Operation Queues

Wait-Mode Interactive Input - SWTI
Wait-Mode I/O - SWIO
Wait-Mode Send Message - SWSM
Wait-Mode Send Run Request - SWSR
Wait-Mode Low Speed Output (not implemented) - SWLO

Execution Wait Queues

20.
21.

Suspended Waiting for Message Interrupt, Timer Expiration, or Resume - SUSP
Waiting for Run Request or Timer Expiration - RUNW

22.

23.

Operator Hold, Waiting for Continue - HOLD

Wait For Any Operation Complete Queue

Waiting for Completion of any No-Wait I/O, No-Wait Message, No-Wait
Run Request, or any Message Interrupt or Break - ANYW

Waiting for Resource Queues

24. Waiting for Disc Space - SWDC
25. Waiting for Peripheral Device - SWDV
26. Waiting for FISE - SWFI
27. Waiting for Memory - MRQ
28. Waiting for Memory Pool - SWMP

1.10 FAT/FPT and Blocking Buffer Allocation

During the task allocation process, separate areas are reserved in a task's TSA for
FAT /FPT pairs and blocking buffers. The size of each area is fixed for the duration of a
task's execution. The size of the FAT/FPT area limits the number of file codes that a
task can have allocated concurrently. The size of the blocking buffer area limits the
number of file codes assigned to blocked devices or files that a task can have allocated
concurrently. The number of entries in each area is established as follows.

1-43

FAT /FPT Area

Non-shared task: one FAT and FPT entry for each cataloged assignment plus one entry
for each Job Control or TSM assignment that does not override a cataloged assignment
plus the number specified on the FILES Cataloger directive.

Shared task: the number specified on the FILES Cataloger directive.

Blocking Buffer Area

Non-shared task: from the assignments resul ting from merging Cataloger and Job
Control or TSM assignments, one buffer for each ASSIGN 1, plus one buffer for each
ASSIGN3 to a magnetic tape or disc unit on which the unblocked option is not specified
plus one buffer for each ASSIGN2 plus the number specified on the BUFFERS Cataloger
directive.

Shared task: the number specified on the BUFFERS Cataloger directive.

Cataloger, Job Control, and TSM ASSIGN 1 and ASSIGN3 directives are modified by the
addition of an "unblocked" specification as follows.

ASSIGN 1 fc=file,(password),(U)
ASSIGN3 fc=device,(U)

where: U specifies that I/O to the file or device is to be unblocked. If this
parameter is absent, I/O to the file or magnetic tape or disc device is
blocked.

Files specified on ASSIGN2 directives are blocked by default.

The following Cataloger directives are added.

FILES number

where: number specifies the maximum number of dynamically allocated file
codes that a non-shared task has allocated concurrently. It specifies the
maximum number of file codes that a shared task has allocated
concurrently.

BUFFERS number

where: number specifies the maximum number of dynamically allocated file
codes assigned to blocked files or devices that a non-shared task has
allocated concurrently. It specifies the maximum number of file codes
assigned to blocked files or devices that a shared task has allocated
concurrently.

"Files" and "buffers" override parameters may be specified to the Parameter Task
Activation (M.PTSK) system service. These parameters allow addition of FILES and
BUFFERS Job Control and TSM directives if required by a future "load and goll
capability.

1-44

'('.~ .. '" \)~

(", ',.)

i",
'il

(

1.11 Indirectly Connected Interrupts

An indirectly connected interrupt is an interrupt that may be associated with a MPX-32
task. When the interrupt occurs, the associated task will be resumed. An interrupt is
declared as indirectly connected at system generation (SYSGEN) time. This declaration
will cause SYSGEN to generate an Indirectly Connected Task Linkage Block (ITLB). The
ITLB is permanently associated with the specified interrupt level, but only becomes
associated with a MPX-32 task when the M.CONN system service is invoked. A task may
be disconnected from an interrupt level by invoking the M.DISCON system service.

Connect Task To Interrupt Service (M.CONN)

The M.CONN system service associates a MPX-32 task with an external interrupt that
was declared at system generation time to be indirectly connected. When called,
M.CONN is presented the priority level of the interrupt and the task activation sequence
number (T ASKNO) of the task. The T ASKNO is first validated to insure that it is both
currently active and of the same ownername as the calling task. If so, the M.CONN
service next checks to see if the specified task is already connected to an interrupt.
DQE.ILN in the DQE will contain the interrupt priority level if the task is already
connected. If the task is not previously connected, the M.CONN service will search the
Indirectly Connected Task Linkage Table OTL T) to find the linkage block (ITLB)
associated with this interrupt. If one exists and is not already connected, the DQE
address of the task being linked is stored in word 1 of the ITLB to reflect the linkage.
DQE.ILN in the DQE is then set to contain the interrupt priority level. Note: The task
will be automatically disconnected from the interrupt on abort, delete, or exit.

Disconnect Task From Interrupt Service (M.DISCON)

The M.DISCON system service disconnects a MPX-32 task from an external interrupt to
which it had previously been connected. When called, M.DISCON is presented the task
activation sequence number (TASK NO) of the task as an argument with the call. If the
specified task is not connected to an interrupt, DQE.ILN in the DQE will be equal to zero
and the request will be ignored. Otherwise, DQE.ILN will contain the external interrupt
priority level. M.DISCON will use this priority level to locate the linkage block (ITLB) in
the linkage table (ITL T). The DQE address (word 1 of the ITLB) will then be cleared to
mark the level as disconnected. DQE.ILN will also be cleared in the DQE of the
specified task.

Indirectly Connected Task Linkage Table OTL T)

The Indirectly Connected Task Linkage Table (ITL T) is a variable length table built by
the system generation program (SYSGEN) and it contains an entry for each interrupt
specified as being indirectly connectable. An entry is called an Indirectly Connected
Task Linkage Block (ITLB) and is 24 words in length. The address of the ITL T is
contained in C.ITL T. The number of entries in ITL T is contained in C.NITI. Both C.ITL T
and C.NITI are initialized by SYSGEN.

1-45

Indirectly Connected Task Linkage Block (ITLB)

An entry in the Indirectly Connected Task Linkage Table is called an Indirectly
Connected Task Linkage Block (ITLB). An ITLB is 24 words long and is used to associate
an external interrupt with an indirectly connected task.

1-46

o

I~

Indirectly Connected Task Linkage Block (ITLB)

Word 0 31 .
(0 Priority Level [DATAW X'YY']

1 DQE Address of [DATAW OJ
Ind. Conn Prog.

2 Old PSD Word I (DATAW 0]
-- .

3 Old PSD Word 2 [DATAW 0]

4 New PSD Word 1 [GEN 1/1, 12/0, 19/W($+2W)]
--,.~

5 New PSD Word 2 [GEN 1/1, 14/0, 1/1, 1/0, 1/0, 14/0]

6 Increment Global [ABM 31,C.GINT]
Interrupt Count Inst.

(
Save Register Inst. [STF RO,$+9W]

--- -~.~-

7

8 Branch and Link

to ICP Routine
[BL ICP]

--

9 Address of Reg. Save [LA X2, $+7W]
Area for S.EXEC5 Call

---_ ...

10 Old PSD for S.EXEC5 Call [LD R6, $-8W]

11 Block External Interrupts [BEl]

12 Deactivate Interrupt [DAI XIY'll]
_--..,. _.

13 Branch Back for [BL ICP.20]
S.EXEC5 Call

-

14
15

Reserved for Future Use

(~
16

23

j
Register Save Area

I --
1-47

Word 0

Bits 0-31

Word 1

Bits 0-31

Words 2,3

Bits 0-63

Words 4,5

Bits 0-63

Word 6

Bits 0-31

Word 7

Bits 0-31

Word 8

Bits 0-31

Words 9-13

Words 14-15

Words 16-23

1-48

Priority Level - Set by SYSGEN to contain the priority level of
the associated interrupt.

DQE Address of Indirectly Connected Program - Contains the
Dispatch Queue Entry (DQE) address of the task to be resumed
on occurrence of this interrupt. Initially set equal to zero by
SYSGEN. Initialized by M.CONN system service.

Old PSD -Old PSD slot of Interrupt Control Block. Used for
storage of the PSD associated with the interrupted context.
Initially set equal to zero by SYSGEN. The dedicated interrupt
location (IVL) is initialized by SYSGEN to contain the address
of word 2 of the ITLB.

New PSD - New PSD slot of Interrupt Control Block. Contains
the PSD to be used on occurrence of this interrupt. Causes
execution to begin at ITLB word 6 in privileged mode,
unblocked state, with old map status retained.

Increment Global Interrupt Instruction - Execution will begin
at this location upon occurrence of the associated interrupt.
Contains an add bit in memory instruction to increment the
global interrupt count. It must be the first instruction
executed in ICP. This location is initialized by SYSGEN to
contain a ABM 31,C.GINT.

Save Registers Instruction - Contains a store file instruction to
save all 8 registers in words 16-23 of the ITLB. This location is
initialized by SYSGEN to contain a STF RO,$+9W.

Branch and Link to ICP Routine - Executed after the register
save instruction on occurrence of the associated interrupt.
Transfers control to the single-copied ICP routine. This
location is initialized by SYSGEN to contain a BL ICP.

Control is returned to this location after S.EXECI4 is called in
the ICP routine. Set up is made for exiting the interrupt, and
then control is tranferred back to ICP for the S.EXEC5 call.

Reserved for future use.

Register Save Area.
('~' J

"

(

Indirectly Connected Interrupt Program OCP)

The Indirectly Connected Interrupt Program OCP) is a single copied routine that
processes all indirectly connected external interrupts. It is entered in unblocked mode
with the end address (+ 1 W) of the linkage block (lTLB) in RO. The global interrupt count
will have been incremented within the ITLB and the registers from the interrupted
context will have been stored in Words 16-23 of the block. When ICP is entered, it will
check ITLB word I to verify connection of the interrupt to a MPX-32 task. If the
interrupt is not connected, it will be ignored and ICP will transfer back to the ITLB to
exit the interrupt. If ITLB word I contains a DQE address, the associated task will be
resumed by calling S.EXECI4 who will return control to word 9 of the ITLB. Set up is
made for exiting the interrupt within the ITLB, and then execution is transferred back to
ICP.20 for the S.EXEC5 exit.

H.ICP

ICP.10
ICP.20

TRR
LW
BCF
TRSW
BU
BL

RO,Rl
R2,-8W,Rl
ZR,ICP.IO
RO
S.EXECI4
S.EXEC5

ITLB END ADDRESS TO R I
GET DQE ADDR OF IND CONN TASK
CONTINUE IF CONNECTED
BRANCH BACK TO ITLB TO EXIT
RESUME PROGRAM

1.12 Miscellaneous System Macros

1.12.1 M.BACK

Functional Description

This macro backspaces the current address of the file by the specified number of file or
record marks.

Macro Call

Calling Sequence:

M.BACK ARG 1, [ARG2], ARG3

where:

ARGI

ARG2

ARG3

is the FCB address

is the optional character R to specify record (otherwise file is
assumed)

contains the number of record or file marks to be backspaced
(the number specified must be word-scaled, e.g., 1 W for 1
record)

1-49

1.12.2 M.CALL

Functional Description

This macro generates a supervisor call instruction.

Macro Call

Calling Sequence:

M.CALL ARG 1,ARG2

where:

ARGI is the name of a system module

ARG2 is an entry point number 0,2,3, •••) within the system module

1.12.3 M.CLSE

Functional Description

This macro marks the file closed to subsequent service, writes an optional end-of-file "",'
mark, and performs an optional rewind.

Macro Call

Calling Sequence:

M.CLSE ARGl, [ARG2], [ARG3]

where:

ARGI

ARG2

ARG3

1.12.4 M.DFCB

Functioned Description

is the FCB address

is the optional character string EOF, the presence of which will
cause an end-of-file mark to be written

is the optional character string REW, the presence of which will
cause the file to be rewound

This macro allows the user to create a file control block (FCB) and set the appropriate C',
parameters and specifications common to I/o requests which will be issued for the file.

1-50

(

(

Macro Call

Calling Sequence:

where:

M.DFCB ARG 1,ARG2,ARG3,ARG4,ARG5, [ARG6],

ARGI

ARG2

ARG3

ARG4

ARG5

ARG6

NWT

NER

DF!

NST

RAN

[NWT), [NER], [DFT], [NST], [RAN] ,

[ASC] rLDRl rINT J [EVN 1 [556]
BIN , LNLDJ, LpCK, ODD, 800

is the ASCII character string to be used as the symbolic label
for the address of the FCB

is the ASCII character string to be used as the logical file code
in the FCB (this file code can be one to three characters in
length)

is the optional transfer count (bytes)

is the optional data transfer address

is the optional error return address

is the optional random access address expressed as the
hexadecimal block number (original zero) relative to the base
of the random access file

is the optional character string which sets the no-wait I/o
specification indicator

is the optional character string which sets the inhibit
peripheral error processing indicator

is the optional character string which sets the inhibit data
formatting indicator

is the optional character string which sets the inhibit status
testing indicator

is the optional character string which sets the random access
mode indicator

ASC or BIN is the optional character string which will set the forced ASCII
or forced binary mode specification, respectively, for read or
punch operations performed when the file code for this file is
assigned to a card reader or card reader/punch device

LOR or NLO is the optional character string which will specify skip leader
or do not skip leader, respectively, when the file code for this
file is assigned to a paper tape reader/punch device

1-51

INT or PCK is the optional character string which will specify interchange 0'"
or packed modes, respectively, when the file code for this file

1.12.'

is assigned to a magnetic tape device

EVN or ODD is the optional. character string which will specify even or odd
parity, respectively, when the file code for this file is assigned
to a magnetic tape device

556 or 800

M.DFCBE

is the optional character string which will specify 556 or 800
bpi tape densities, respectively, when the file code for this file
is assigned to a magnetic tape device

Functional Description

This macro allows the user to create an expanded file control block (FCB) and set the
appropriate parameters and specifications common to I/O requests which will be issued
for the file.

Macro Call

Calling Sequel1ce:

M.DFCBE ARGI,ARG2,ARG3,ARG4.ARG5, [ARG6]

where:

1-52

ARGI

ARG2

ARG3

ARG4

ARG5

ARG6

NWT

NER

(NWT], [NER), [DFI], [NST], (RAN],

[ASC] [LDRJ [INT J [EVNJ [5561
BIN., NLD, PCK, ODD, 800J,ARG7,ARG8

is the ASCn character string to be used as the symbolic label
for the address of the FCB

is the ASCII character string to be used as the logical file
code in the FCB (this file code can be one to three characters
in length)

is the optional transfer count (bytes)

is the optional data transfer address

is the optional wait I/O error return address

is the optional random access address expressed as the
hexadecimal block number (original zero) relative to the base
of the random access file

is the optional character string which sets the no-wait I/O
specification indicator

is the optional character string which sets the inhibit
peripheral error processing indicator

o

(

(

DFI

NST

RAN

ASC or BIN

LOR or NLD

INT or PCK

EVN or ODD

556 or 800

ARG7

ARG8

1.12.6 M.EIR

Functional Description

is the optional character string which sets the inhibit data
formatting indicator

is the optional character string which sets the inhibit status
testing indicator

is the optional character string which sets the random access
mode indicator

is the optional character string which will set the forced
ASCII or forced binary mode specification, respectively, for
read or punch operations performed when the file code for
this file is assigned to a card reader or card reader/punch
device

is the optional character string which will specify skip leader
or do not skip leader, respectively, when the file code for this
file is assigned to a paper tape reader/punch device

is the optional character string which will specify interchange
::>r packed modes, respectively, when the file code for this file
is assigned to a magnetic tape device

is the optional character string which will specify even or odd
parity, respectively, when the file code for this file is
assigned to a magnetic tape device

is the optional character string which will specify 556 or 800
bpi tape densities, respectively, when the file code for this
file is assigned to a magnetic tape device

is the optional no-wait I/O normal end-action service address

is the optional no-wait I/O error end-action service address

This macro is called by the resident system modules initialization entry points at entry.
It stores register a for later recall by M.XIR, the initialization entry point exit macro
(see Section 1.12.24).

Macro Call

Calling Sequence:

M.EIR

1-53

1.12.7 M.FWRD

Functional Description

This macro advances the current address of the file by the number of file or record
marks specified.

Macro Call

Calling Sequence:

M.FWRO ARG 1, [ARG2] ,ARG3

where:

1.12.8

ARGI

ARG2

ARG3

M.INIT

Functional Description

is the FCB address

is the optional character R to specify record (otherwise file is
assumed)

contains the number of record or file marks to be advanced (the
number specified must be word-scaled, e.g., 1 W for 1 record)

o

".~
This macro is used to provide for user initialization of device handler parameters via 0
entry point S. The code generated by this macro is executed by SYSGEN and overlayed.

Macro Call

Calling Sequence:

where:

Usage

M.INIT ARGI, [ARG2] , [.t\RG3] ,[ARG4] , [ARG5] , [ARG6],
[ARG7] ,[ARGS] , [ARG9] ,[ARG 10] ,(ARG 11),
[ARG 12] , [ARG 13] , [ARG 14-] , [ARG 15] , [ARG 16),
[ARGI7]

ARG 1 is the entry point truncated label, e.g., MTO for magnetic
tape handler. This argument must be three ASCII
characters. The first two represent the device mnemonic and
the third is zero (0).

ARG2 is the optional specification for modification of the TO 2000
level test to no-operation

ARG3-ARG 17 are the optional special parameter addresses to be initialized,
i.e., SPA's

M.INIT MTO"SPA 1 ,SPA2,SPA3

This macro, when placed as the last source statement in the device handler, will provide
the necessary code to initialize the handler. The 'HAT' must be modified to specify entry
point S and an additional entry must be made in the table (ACH MTOO.8).

1-.54-

o

(
1.12.9 M.INITX

Functional Description

This macro is called by the handler initialization macros to combine basic instruction and
commands with priority levels and device addresses for later execution within the
handler.

Macro Call

Calling Sequence:

M.INITX ARG 1,ARG2

where:

ARGI

ARG2

contains the basic instruction or command

contains a mask which is ORed with ARG 1

NOTE:

Whenever this macro is called, register 5 must be preloaded with the properly positioned
priority level or device address.

1.12.10 M.IOFF

Functional Description

This macro generates a Block External Interrupt (BEn instruction which prevents the
CPU from sensing all external interrupt requests generated by the I/O channel and
RTOM.

Macro Call

Calling sequence:

M.IOFF

1.12.11 M.IONN

Functional Description

This macro generates an Unblock External Interrupt (UEO instruction which causes the
CPU to sense all external interrupt requests generated by the I/O channel and RTOM.

Macro Call

Calling Sequence:

M.IONN

1-55

1.12.12 M.IVC

Functional Descr iption

This macro connects a handler entry point to an interrupt vector location.

Macro Call

Calling Sequence:

M.IVC ARG 1,ARG2

where:

ARGI is the register number containing the interrupt level

ARG2 is the handler entry point address label

1.12.13 M.KILL

Functional Description

This macro generates a request for the System Override Interrupt/Trap level. A HALT
instruction follows the request in the event that the system is not in the Protect mode..r-"',

Macro Call

Calling Sequence:

M.KILL ARGI

where:

ARGI contains the address of a four character ASCII crash code

1.12.14 M.MODT

Functional Description

This macro builds an entry in the module address table.

Macro Call

Calling Sequence:

M.MODT ARG 1,ARG2

where:

ARGI is the address label of the module's HAT table 0 '·· I:,.)

ARG2 is the module number

1-56
.~.

(
1.12.15 M.OPEN

Functional Description

This macro is used for control gating purposes. It results in the termination of context
switching being inhibited.

Macro Call

Calling Sequence:

M.OPEN

1.12.16 M.RTNA

Functional Description

This macro provides the facility to return to the caller from a system module to some
address other than that specified by the saved PSW. It is intended to be used primarily
for denial returns. It operates functionally in the same way as the M.RTRN macro. The
interrupt handler tests for the presence of an address specification in the parameter and
replaces the saved PSW if an address is found.

Macro Call

Calling Sequence:

M.RTNA addr,rl,r2,r3, ••• ,r8

where:

addr

rl , ••• ,r8

1.12.17 M.RTRN

Functional Description

is the register number of the register containing the address
to which to return control

is a list of the register numbers (0,1,2, ••• ,7) identifying the
registers to be preserved through the register pop-up

This macro is the complement of M.CALL and allows a system module to return to the
caller with registers preserved. The system service performs a register pop-up (except
for those to be preserved) and returns to the location specified by the saved PSW.

Macro Call

Calling Sequence:

M.RTRN rl,r2,r3, ••• ,r8

1-57

. I

where:

rl ••• ,r8

1.12.18 M.SHUT

Functional Description

is a list of register numbers (0,1,2, ••• ,7) identifying the
registers that are to be preserved through the register pop-up

This macro is used for control gating purposes. It results in context switching being
inhibited. This macro should not be used in a user task that is eligible for IPU execution
(see M.USHUT).

Macro Call

Calling Sequence:

M.SHUT

1.12.19 M.SPAD

Functional Description

At each register push-down level, twenty-two scratchpad storage cells are provided for
the use of re-entrant system modules. The scratchpad storage macro, M.SPAD, provides
a convenient means of referencing the current level of scratchpad storage. The M.SPAD
macro will perform any memory reference operating on at least a word boundary (i.e.,
LW, STF, ARMD, DVMW, etc.) or any bit in memory operation (i.e., TBM, SBM, ABM,
ZBM).

Macro Call

Calling Sequence:

M.SPAD mnem,r,s,x

where:

mnem

r

s

x

1-58

is an instruction mnemonic defining the operation that is to
be performed

is the register number (0-7) or bit position (0-31) on which the
operation is to be performed, or is null

is the scratchpad cell number (1-22) to be referenced by the
operation

is an index register number (1,2, or 3) that will be utilized in
performing the operation

,~''!I,

\",Jii

o
, ,

,~

(
1.12.20 M.SVCT

Functional Description

This macro builds one entry in the SVC table for each of the SVC's defined in the calling
module's prototype SVC table. Each one word entry contains the address of the
corresponding SVC, i.e., the 20th entry contains the address of the 20th SVC.

Macro Call

Calling Sequence:

M.SVCT ARGl,ARG2

where:

ARGI is the address label for the calling module's prototype SVC
table

ARG2 is the number of SVC entries in the module's prototype SVC
table

1.12.21 M.TRAe

(See Chapter 7 in the MPX-32 Technical Manual.

1.12.22 M.TYPE

Functional Description

This macro types a user specified message, and performs an optional read on the system
console teletype.

Macro Call

Calling Sequence:

M.TYPE ARG1,ARG2,ARG3,ARG4

where:
ARGI is the output message address

ARG2 is the output transfer count

ARG3 is the optional input message address

ARG4 is the optional input transfer count

1-59

1.12.23 M.USHUT

Functional Description

This macro is used to inhibit context switching of a user task. It should be used in user
tasks that are eligible for IPU execution (see M.SHUT).

Macro Call

Calling Sequence:

M.USHUT

1.12.24 M.XIR

Functional Description

This macro is called by the resident system module's initialization entry points right
before they exit. It decrements the number of entry points in the calling module by one,
so the initialization entry point is no longer included, and returns to the SYSGEN
processor.

Macro Call

Calling Sequence:

M.XIR ARGI

where:

ARGI is the address label of the module's HAT table

1.12.25 HMP.INIT

Functional Description

This macro is used to provide for user initialization of MIOP device handler parameters
via entry point 8. The code generat.ed by this macro is executed by SYSGEN and
overlayed.

Macro Call

Calling Sequence:

where:

1-60

HMP .INIT ARG 1

ARGI is the entry point truncated label, e.g., ASO for the
Asynchronous Communications Handler. This argument must
be three ASCII characters. The first two represent the
device mnemonic and the third is zero (0).

o

(

1.12.26 IB.INIT

Functional Description

This macro is used for MIOP initialization via entry point 8, where register 7 contains the
CDT address and register 2 contains the address of the current context block.

Macro Call

Calling Sequence:

IB.INIT

1-61/1-62

/r" .. ·. ~

2. SYSTEM TABLES AND VARIABLES

2.1 Commmications Region

The Communications Region is an area of main memory reserved for use by MPX-32 for
storage of common data. This data is referenced via symbols which are equated to
absolute memory locations. Together with each symbol given below is the length of the
variable associated with the symbol. The length is in units which is also the minimum
boundary on which the variable resides.

Bit variables are contained in a set of contiguous words with the symbol C.BIT equated to
the address of the first word. Bit variables are equated to bit positions relative to
C.BIT. Bit variables are referenced by a combination of the variable symbol and C.BIT,
e.g.,

TBM

C.ACT A (Word)

C.ACTN (Byte)

C.AFLK,C.BIT

Address of activation table.

Number of entries in activa':lon table.

C.ACTSEQ (Word) Running count of task activations, used to form right most 24 bits
of task number when a task is activated. SYSGEN initializes this
word to zero.

C.ADAT (Word) Contains the address of the DQE address table (DAT).

C.ADMASK (Word) Maximum address bit mask for machine.

C.AFLK (Bit) Accounting File Locked Indicator.

C.AFL W (Bit) Request for J.JOBC to list contents of accounting file.

C.ANYW (3 Words) Standard format linked list head cell for all tasks that are
ineligible for CPU control, waiting for the completion of any no
wait mode I/O request, any no-wait mode send message request,
any no-wait mode send run request, or any message or break
interrupt.

C.BIT (2 Words) Symbol associated with the beginning of the bit variables.

C.BPRI (Byte) The default software priority level at which batch jobs execute.

2-1

C.BTCH (Bit)

C.BUP (Byte)

C.CAL (Dwd)

C.CDT A (W ord)

C.CDTN (Hwd)

C.CENT (Byte)

C.CHT A (Word)

C.CHTN (Hwd)

C.CIPU (3 Words)

C.CONF (Byte)

C.CPRI (Word)

C.CPUACC (Bit)

C.CSWI (Bit)

C.CUP (Byte)

C.CURR (3 Words)

2-2

When set, task currently in execution is a batch task.

Base execution priority of currently executing task.

Calendar devices as follows: century (binary), year (binary),
month (binary), day (binary), and number of interrupts from
midnight.

Address of Controller Definition Table.

Number of entries in Controller Definition Table.

Current century in binary.

Address of Channel Definition Table (CHT).

Number of entries in the Channel Definition Table (CHT).

Standard format linked list head cell for all IPU tasks ineligible
for CPU control, waiting in general queue.

Configuration flags. Bit 0 is set if CPU accelerator is present;
bit I is set if IPU accelerator is present; bit 2 is set if IPU is
present; bit 3 is set if a memory-only system.

Byte 0 contains C.CUP; byte I contains C.BUP; byte 2 contains
C.IOP; byte 3 contains C.US.

If set, CPU accelerator is present.

Task to task context switch inhibited. This bit is set by the
M.SHUT procedure and cleared by the M.OPEN procedure.

Current execution priority of currently executing task.

Standard format linked list head cell for the CPU Dispatch Queue
entry of the currently executing task. This list may have a
maximum of two entries: one for the current real time task Of
any) and one for the current time distribution task (if any).

,f"~

',j/

c

«
C.DALMAP (Word) Contains the address of the Disc Allocation Map Buffer

(initialized by FISE).

C.DAMAPT (Word)

C.DAMCST (Word)

C.DA TE (Dwd)

C.DA Y (Byte)

C.DBTLC (Byte)

C.DEBUG (Word)

C.DQUE (Word)

C.DTTA (Word)

C.DTTN (Byte)

C.EMAC (Hwd)

C.EMCC (Hwd)

C.EMTA (Word)

C.EMTL (Byte)

C.EMTM (Hwd)

Contains the address of the Disc Allocation Map Table (initialized
by SYSGEN).

Address of Disc Allocation Map Checksum Table (initialized by
SYSGEN).

The current date (Gregorian) as input by the operator in the
format: MM/DD/YY.

Current day in binary.

TLC used for System Debug.

Address location of Debugger.

Address of CPU Dispatch Queue Area~ The CPU Dispatch Queue
Area is a variable length table built by SYSGEN. It contains the
number of 42-word Disoatch Queue Entries (DQE's) specified at
system generation timE

Address of Device Type Table.

Number of entries in Device Type Table.

Total count of valid E type memory modules available.

T ota! count of valid E type memory modules configured (minus 1
if the swap device is E-class and extended memory is present in
the system).

Address of eventmark table.

Low address of eventmark area.

Maximum number of eventmarks.

2-3

C.ETLOC (Word)

C.FADR (Word)

C.FGONR (Word)

C.FGPM (Bit)

C.FIRST

C.FL T A (Word)

C.FL TC (Hwd)

C.FLTM (Hwd)

C.FREE (3 Words)

2-4

Address of event trace logic.

Reserved.

DQE address of task gating FISE.

Post-mortem dump requested when a real-time task aborts.

Symbol equated to the absolute memory location at which the
Communications Region begins.

Address of file lock table.

Number of File Lock Table (FL T) entries currently in use.

Maximum number of file locks.

Standard format linked list head cell for free entries in the CPU
Dispatch Queue. C.FREE is the first of a set of Communications
Region variables which are contiguous in memory. These
variables, listed in the order in which they appear in memory, are
as follows:

C.CIPU
C.RIPU
C.FREE
C.PREA
C.CURR
C.SQRT
C.SQ55
C.SQ56
C.SQ57
C.SQ58
C.SQ59
C.SQ60
C.SQ61
C.SQ62
C.SQ63
C.SQ64
C.SWTI
C.SWIO
C.SWSM
C.SWSR
C.SWLO
C.SUSP
C.RUNW

c

C.FSFLGS (Byte)

C.GINT (Word)

C.HIMAP (Hwd)

C.HMAC (Hwd)

C.HOLO
C.ANYW
C.SWOC
C.SWOV
C.SWFI
C.MRQ
C.SWMP
C.SWGQ
C.SPCH

FISE flags. Bit 0 indicates FISE busy; bit I indicates FISE gated
externally; bit 2 is set if temporary allocation or reset if
permanent allocation.

Contains the count of all outstanding interrupts and traps (except
SVC). It is incremented as the first instruction of every interrupt
or trap service routine, and decremented by S.EXEC5, the
standard interrupt and trap exit routine.

Number of the last map block of logical address space available
to a task.

Total count of valid H type memory modules available.

C.HMCC (Hwd) Total count of valid H type memory modules configured.

C.HOLO (3 Words) Standard format linked list head cell for all tasks that are
ineligible for CPU control, waiting for a continue request to be
received.

C.ICS (Bit) Reserved for ICS.

C.IOLA (Word) CPU idle time accumulation value in seconds, cleared by
SYSGEN. This value is incremented when the countdown value in
C.IOLC expires.

C.IOLA! (Word) IPU idle time accumulation value in seconds, cleared by
SYSGEN. This value is incremented when the countdown value in
C.IOLC! expires.

C.IOLC (Word) CPU idle time countdown value, cleared by SYSGEN. This value
is used to load the interval timer when no tasks are ready to run.
When a task becomes ready to run, the interval timer is read and
the value is stored in this word.

2-5

C.IDLCl (Word)

C.INTC (Word)

C.IOP (Byte)

C.IPU (Bit)

C.IPUACC (Bit)

C.IPUIT (Bit) ,

C.IPUITl (Word)

C.IPUIT2 (Word)

C.IPUOFF (Bit)

C.ITL T (Word)

C.ITRS (Hwd)

C.JOBA (Word)

C.JOBL (Bit)

C.JOBN (Word)

2-6

IPU idle time countdown value cleared by SYSGEN. This value is
used to load IPU accounting interval timer (if present) when no
tasks are ready to run on the IPU. When a task becomes ready to
run, the IPU accounting interval timer is read and the value is
stored in this word.

Interrupt counter (number of interrupts from zero which is
midnight) used for time of day calculations.

I/o priority of currently executing task.

If set, IPU is present.

If set, IPU accelerator is present.

If set, IPU accounting interval timer is present.

Address of the IPU accounting routine, S.IPUIT 1, which performs
accounting functions after an IPU trap is fielded. Initialized by
SYSGEN.

Address of the IPU accounting routine, S.IPUIT2, which performs
accounting functions prior to the starting of the IPU. Initialized
by SYSGEN.

If set, IPU is off-line.

Contains the address of the Indirectly Connected Task Linkage
Table (ITL T). Initialized by SYSGEN.

Interval timer resolution, in tenths of microseconds, as derived
from the SYSGEN ITIM directive.

Contains memory address of the Job Table.

Set by a System Input task after a file has been linked into the
System Input Directory (M.SID).

Number of entries in the Job Table.

o

o

o

C.LODC (Dwd)
(-

C.LSPT (Bit)

C.MACH (Byte)

C.MA T A (Word)

C.MEMNL Y (Bit)

C.MERRI (Bi~)

f C.MERR2 (Bit)

C.MERR3 (Bit)

C.MGRAN (Word)

C.MIDL (W ord)

C.MIOP (Word)

C.MODD (Word)

C.MODN (Byte)

C.MONTH (Byte)

The system listed output device to be used as a default in
Operator Communications commands. Bytes 0 and 1 contain the
ASCII device type code. Bytes 2 and 3 contain the ASCII channel
number. Bytes 4 and 5 contain the ASCII subaddress.

List patches indica tor.

Machine currently in use as follows:
o = 32/55 (not applicable)
1 = 32/75
2 = 32/27
3 = Reserved
4 = 32/87
5-15 = Reserved

Address of the memory tables.

If set, memory-only system.

A memory error has been detected by H.IP02.

A memory error has been detected by J.SW APR.

Nonpresent memory has been detected by J.SW APR.

Machine dependent map granularity.

Address of the list of map registers used by the operating system.

Address of first entry of MIOP jump table.

Address of variable length Module Address Table. Initialized by
SYSGEN. The Module Address Table contains entries in module
number sequence. Each entry consists of one word which contains
the address of the entry point transfer list (HA T) of the
associated module.

Number of entries in the Module Address Table. Initialized by
SYSGEN.

Current month in binary.

2-7

C.MPAA (Word)

C.MPAC (Word)

C.MPAH (Word)

C.MPL (Word)

C.MRQ (3 Words)

C.MSD (W ord)

C.MTIM (Word)

C.MVTA (Word)

C.MVTN (Hwd)

C.NITI (Byte)

C.NOLOAD (Bit)

C.NOS (Hwd)

C.NQUE (Byte)

C.NRST (Hwd)

C.NTBA (Word)

C.NTIM (Word)

2-8

Low address of the patch area.

Current address of the patch area.

High address of the patch area.

Address of Master Process List. Length of list is (in words)
C.NDQE+l. First entry points to C.MSD (hardware requirement).

Standard format linked list head cell for all tasks ineligible for
CPU control, waiting for memory to become available.

Contains map segment descriptor for OS (BPIX). It points to
C.MIDL (hardware requirement).

Number of clock interrupts per second. Initialized by SYSGEN.

Address of mounted volume table.

Number of entries in mounted volume table.

Contains the number of 24-word Indirectly Connected Task
Linkage Block (ITLB) entries in the Indirectly Connected Task
Linkage Table (ITL T). Initialized by SYSGEN.

Module which cannot be loaded (SYSGEN flag).

Number of blocks required for SYSGEN code.

Number of entries (255 maximum) in CPU Dispatch Queue.

Number of blocks required for restart code.

Total space currently available on all disc units.

Number of clock interrupts per time unit. Initialized by SYSGEN.

G"
" ~,

iC'" "

C.PODC (Dwd)

C.POOL (Word)

C.PREA (3 Words)

C.PRIV (Bit)

C.PRNO (Byte)

C.PSWRD (Dwd)

C.REGS (Word)

C.REV (Word)

C.RIPU (3 Words)

C.RMTA (Word)

C.RMTL (Byte)

C.RMTM (Hwd)

C.RRUN (Byte)

The system punched output device to be used as a default in
Operator Communications commands. Bytes 0 and 1 contain the
ASCII device type code. Bytes 2 and 3 contain the ASCII channel
number. Bytes 4 and 5 contain the ASCII subaddress.

Address of Memory Pool.

Standard format linked list head cell for CPU Dispatch Queue
entries that are in the pre-activation state.

When set, task currently in execution is a privileged task.

Contains the DQE entry number of the currently executing task.
It is in the range 1-255, and (when word format adjusted) may be
used as an index to the DQE address table (DA T), to obtain the
DQE for the associated task. Note: the address of the DQE
add:ess table (DA T) is contained in C.ADA T.

Indicates a valid password to use for system files.

TSA address of the current task.

MPX-32 release and interim release.

Standard format linked list head cell for all IPU tasks ready to
run, waiting in general queue.

Address of resourcemark table.

Low address of user resourcemark area.

Maximum number of resourcemarks.

Contains the count of memory release events. It is incremented
by H.EXEC,9 when a memory scheduler event is reported. It is
cleared by the memory scheduler (swapper) when processing of
the memory request queue begins. It is decremented by the
swapper when memory is deallocated by the swapper. It is
cleared by the swapper before H.EXEC,8 is called. H.EXEC,8
will rerun the swapper if C.RRUN is not equal to zero.

2-9

,I

C.RUNW (3 Words) Standard format linked list head cell for all tasks that are
ineligible for CPU control, waiting for a run request to be
received, or for the expiration of a timer.

C.SBUF (Dwd)

C.SCB T (Bit)

C.SCDIPU (Word)

C.SGOS (Word)

C.SIBP (Bit)

C.SICTD (Word)

C.SIDD (Bit)

C.SIDP (Bit)

C.SIDV (Dwd)

C.SIMM (Bit)

C.SLEN (Byte)

C.SMAC (Hwd)

C.SMCC (Hwd)

2-10

First word contains address of memory pool. Second word
contains the number of words in memory pool.

Continuous batch mode indicator.

Schedule IPU routine address.

The default size of the SGO file to be allocated for each batch
job.

When set, indicates to J.SOUT the banner page should be
inhibited.

Address of MIOP test device status processor, H.SICTD.

Set when batch system input device is 7-track magnetic tape and
its density is 556.

Set when batch system input device is 7-track magnetic tape and
its parity is odd.

The system input device to be used as a default in Operator
Communications commands. Bytes 0 and I contain the ASCII
device type code. Bytes 2 and 3 contain the ASCII channel
number. Bytes 4 and 5 contain the ASCII subaddress.

When set, inhibits magnetic tape mount message.

Number of blocks valid in System Input File (SIF) data.

Total count of valid S type memory modules available.

Total count of valid S type memory modules configured.

C.SMDD (Dwd)

C.SMDS (Word)

C.SMDUDT (Hwd)

C.SMTA (Word)

C.SMTN (Byte),

C.SMTS (Byte)

C.SPAD (Word)

C.SP ADOK (Bit)

(C.SQ" (3 Words)

C.SQ'6 (3 Words)

C.SQ'7 (3 Words)

C.SQ'8 (3 Words)

C.SQ'9 (3 Words)

C.SQ60 (3 Words)

C.SQ61 (3 Words)

. C.SQ62 (3 Words)

First word contains starting disc address of the SMD. Second
word contains SMD length in 192-word blocks.

Number of entries in the SMD.

Contains UDT index of device on which the SMD resides.

Address of the Shared Memory Table area. Size is determined by
SYSGEN SHARE directive.

Number of entries in Shared Memory Table.

Number of bytes in Shared Me!1"0ry Table entry.

Address of CPU sera tchpad image •

.
Do not zero unused scratchpad locations mode.

Standard format linked list head cell for the list of ready-to-run
priority leyel " time distribution tasks.

Standard format linked list head cell for the list of ready-t~-run
priority level '6 time distribution tasks.

Standard format linked list head cell for the list of ready-to-run
priority level 57 time distribution tasks.

Standard format linked list head cell for the list of ready-to-run
priority level '8 time distribution tasks.

Standard format linked list head cell for the list of ready-to-run
priority level '9 time distribution tasks. .

Standard format linked list head cell for the list of ready-to-run
priority level 60 time distribution tasks.

Standard format linked list head cell for the list of ready-to-run
priority level 61 time distribution tasks. • .

Standard format linked list head cell for the list of reaqy-to-run
priority level 62 time distribution tasks.

Change 1
2-11

I

C .. SQ63 (3 Words)

C.SQ64 (3 Words)

C.SQRT .(3 Words)

C.SRTA (Word)

C.SRTN (Hwd)

C.STR TR (Bit)

C.SUDT (Hwd)

C.SUPA (Bit)

C.SUSP (3 Words)

C.SVTA (Word)

C.SVTN (Hwd)

C.SW AP (Word)

C.SWDC (3 Words)

C.SWDV (3 Words)

2-12

standard format linked list head cell for the list of ready-to-run
priority level 63 time distribution tasks.

Standard format linked list head cell for the list of ready-to-run
priority level 64 time distribution tasks.

Standard format linked list head cell for the list of ready-to-run
real time (priority level 1-'4) tasks.

Address of shared resource table.

Number of entries in shared resource table.

. SYSGEN is in the starter system mode of the accounting file.

Swap device UDT index set by SYSGEN.

Unidirectional file allocation mode indicator.

Standard format linked list head cell for all tasks that are in an
execution suspend mode, waiting for a message interrupt, a timer
expiration, or a resume task request.

Address of variable length SVC Table. Initialized by SYSGEN.
The SVC table contains entries in SVC (type I or 2) number
sequence. Each entry consists of one word which contains the
address of the service associated with the SVC number. Type 2
entries (restricted to privileged users) will have bit 0 set.

Number of entries in the SVC Table. Initialized by the System
Generation (SYSGEN) program.

Contains the DQE address of the memory scheduler (swapper)
when it is waiting for a memory event.

Standard format linked list head cell for all tasks ineligible for
CPU control, waiting for disc space to become available.

Standard format linked list head cell for all tasks ineligible for c· .';

CPU control, waiting for a peripheral device to become available. '"

C.SWFI (3 Words)

C.SWGQ (3 Words)

C.SWIO (3 Words)

C.SWLO (3 Words)

C.SWMP (3 Words)

C.SWSM (3 Words)

C.SWSR (3 Words)

C.SWTI (3 Words)

C.SYCS (Word)

C.SYMT AB (Dwd)

C.SYSB (Bit)

C.SYSGEN (Word)

C.SYSTEM (Dwd)

C.TABLES

Standard format linked list head cell for all tasks ineligible for
CPU control, waiting for the File System to be ungated.

Standard format linked list head cell for all tasks ineligible for
CPU control, waiting in general queue.

Standard format linked list head cell for all tasks waiting for the
completion of wait-mode I/o requests.

Standard format linked list head cell for all tasks waiting for the
completion of low speed output.

Standard format linked list head cell for all tasks ineligible for
CPU control, waiting for memory pool to become available.

Standard format linked list head cell for all tasks waiting for the
completion of a wait-mode send message request.

Standard format linked list head cell for all tasks waiting for the
completion of a wait-mode send run request.

Standard format linked list head cell for all tasks waiting for the
completion of wait-mode interactive (terminal) input.

The initial size in 192-word blocks to be allocated for each SYC
file as the job is being spooled to disc.

Name of the symbol table file.

SYSBUILD is active in memory only.

SYSGEN scratch area.

Name of current system image.

Symbol equated to the absolute memory location at which
SYSGEN built tables begin. This location is on a word boundary.

2-13

C.TDQl (Word)

C. TD02 (Word)

C. TDQ3 (Word)

C.TENT (Byte)

C. TERM (Bit)

C. TMAC (DWD)

2-14-

Time distribution quantum stage 1, in interval timer units.
Initialized by SYSGEN. This value is used to load the interval
timer when CPU control is dispatched to a time distribution task
under one of the following conditions:

1) The task is initially selected after activation;
2) A task is initially selected after the termination of a

voluntary wait state (e.g., wait I/O, or timed suspend);
3) A task is initially selected after inswap;
4-) A task is re-selected after completion of its full

quantum.

During the quantum stage 1 interval, the currently executing task
is not eligible for outswap, and may not be preempted from CPU
control by a higher priority time-distribution task. If preempted
by a realtime task, the stage 1 time-distribution task remains
ineligible for outswap until it has been re-selected and its stage 1
quantum expires.

Time distribution quantum stage 2, in interval timer units.
Initialized by SYSGEN. This value is used to load the interval
timer when the stage 1 quantum for the currently executing task
expires. (The quantum stage 2 value may be added to the
quantum stage I value to define the full task quantum.)

Time distribution full quantum value, in interval timer units.
Initialized by SYSGEN. This value is the sum of the quantum
stage 1 and stage 2 values.

Number of timer table entries.

When set, task currently in execution is a terminal task.

Counts contained in fourhalfwords of all memory types
available. It is derived from configured size minus the 0.5. size
and any running task. It is constructed as follows:

1) Total amount of memory available
2) Amount of 'E' memory available (C.EMAC)
3) Amount of 'H' memory available <C.HMAC)
4-) Amount of '5' memory available (C.SMAC)

o

c

c

(

(

C.TMCC (DWD) Counts contained in four half words of all memory types
configured and is constructed as follows:

1) Total amount of memory configured
2) Amount of 'E' memory configured (C.EMCC)
3) Amount of 'H' memory configured (C.HMCC)
4.) Amount of '5' memory configured (C.SMCC)

Note: Total memory configured (C.TMCC) and available (C.TMAC) and memory
outside the first 128K, are decremented by the corresponding number of map
blocks of any partitions, such as shared memory and Globals.

C.TRACE (Word)

C. TSAD (Word)

C. TSKN (Word)

C. TSMCNT (Byte)

C.TSMDQA (Word)

C. TSMPRI (Byte)

C.TSMTOT (Byte)

C. TT AB (Word)

C.TTBT (8 Words)

C.UDT A (Word)

C.UDTN (Hwd)

C.US (Byte)

C.YEAR (Byte)

System trace (M.TRAC) control word.

Contains the address of the TSA for the currently executing task.

Task activation sequence number of currently executing task.
Note: byte 0 of this word contains C.PRNO.

Number of currently active TSM devices. Maintained by J.TSM.

Address of DQE for J.TSM. Required for ring processing and
message sending.

Priority default for TSM-ACTIVATED tasks. Overrides cataloged
priority.

Number of TSM devices. Initialized by entry point 8 of H.IBAS
and H.TY 10.

Address of the timer table.

Task Timer Bit Table. The Task Timer Bit Table is an 8-word
table containing 256 bits. Each bit corresponds to a C.DQE entry
and is accessed by the DQE entry number (1-255). A bit set in
this table indicates that the associated DQE has an active task
timer.

Address of Unit Definition Table (UDT).

Number of entries in Unit Definition Table (UDT).

State chain index of currently executing task.

Current year in binary.

2-15

2.2 Task Service Area (TSA)

The Task Service Area (TSA) is a section of memory associated with each active task
which is used by MPX for storage of task-unique information. A TSA is allocated for
each task when the task becomes active and is deallocated when the task terminates.
The size of each task's TSA is fixed for the duration of the task's execution. However,
the sizes of TSA's among tasks is variable and is dependent on the amount of space
reserved for I/O activity.

As depicted in the following figure, the number of blocking buffers, File Assignment
Table (FAT) entries and the File Pointer Table (FPT) entries is variable among tasks. For
all tasks, the first buffer, FAT and FPT entry are reserved for MPX use and are present
in every TSA.

The pushdown area in the TSA provides reentrancy in calls to system modules. At each
call to a system module entry point, T.REGP is incremented to the next 32-word
pushdown level where the contents of the general purpose registers and program status
doubleword (PSD) are saved. Within this 32-word level, 22 words are available for
scratch pad storage by the module entry point bing called. T.REGP is decremented to the
previous pushdown level upon return to the entry point caller. Upon context switch away
from a task, the next pushdown level is used to preserve the contents of the task's
registers and PSD. Ten words are used at the context switch level.

2-16

TSA Fixed Area

Pushdown stack (T.REGS) ... ,.. 10 32-word module call
levels
I IO-word context switch
level

T.REGP

TSA Variable Area

(T.FATA 1 to 255 16-word FAT
entries. First is
reserved for system
use.

T.FPTA I to 255 3-word FPT
entries. First is
reserved for system
use.

T.BBUFA 1 to 255 192-word
blocking buffers.
First is reserved
for system use.

TSA Structure

} Word
Module Call Level

o General Purpose
Registers 0-7

7
8 PSD
9

10
Scratchpad
Storage

31

Word
o

Context Switch Level

General Purpose
Registers 0-7

8 PSD
9

2-17

Word /I Byte
(Decimal) (Hex)

0-329
330-331
332
333
334
335
336-351
352-359
360-369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390-391
392-395
396-399
400-401
402-403
404
405
406-415
416-431
432-447

2-18

o
528
530
534
538
53C
540
580
5AO ...
5C8
5CC
5DO
5D4
5D8
5DC
5EO
5E4
5E8
5EC
5FO
5F4
5F8
5FC
600
604
608
60C
610
614
618
620
630
640
648
650
654
658
680
6CO

TSA Structure
[""

t;

o 7 8 15 16 23 24 31

T.REGS
T.USER
T.PGOW
T.PARENT
T.REGP
T.ITAC
T.BFCB
T.PROT
T.CONTXT
T.DBHAT
T.PRNO
T.ABRTA
T.BBUFA
T.VATA
T.VATN T.WORK T.UNUSED
T.FATA
T.FPTA
T.BREAK
T.MSGR
T.LINBUF
T.BIAS
T.TEND
i:ENlJ
T.TRAD
T.LINNO T.UKEY
T.BITI T.BIT2 T.BBUFN T.FILES
T.DSOR T.DSSZ T.CSOR T.CSSZ
T.MPOR T.MPSZ T.EAOR T.EASZ
T.lPUA-C-
T.ACCESS
T.SGOS
T.SYCS
T.CVOL
T.CDIR
T.CURH
T.CRHX
T.SPARES
T.MIDL (words 416-543 on CONCEPT/32 computer)
1.MEML(words 544-671 on CONCEPT /32 computer)

(

Word

o

330

332

333

334

335

336

352

360

370

371

372

373

374

375

376

377

378

379

380

381

382

383

Name

T.REGS

T.USER

T.PGOW

T.PARENT

T.REGP

T.ITAC

T.BFCB

T.PROT

T.CONTXT

T.DBHAT

T.PRNO

T.ABRTA

T.BBUFA

T.VATA

T.VATN

T.WORK

T.UNUSED

T.FATA

T.FPTA

T.BREAK

T.MSGR

T.LlNBUF

T.BIAS

T.TEND

T.END

Description

Task pushdown stack (330 words).

Current username for file allocation (2 words).

Task option word.

Task sequence number of parent task (activator).

Current level of pushdown in stack area.

Interval timer based accounting.

System service file control buffer (16 words).

Memory protection image (8 words); not used on
CONCEPT /32.

Debug context area (10 words).

Address of Debug half word address table.

Address of task's dispatch queue.

Address of task's abort receiver.

Address of task's blocking buffer.

Address of task's volume assignment table.

Number of entries in volume assignment table (l byte).

Word space scratch area.

Reserved (2 bytes).

Address of task's file assignment table.

Address of task's file pointer table.

Address of task's break receiver.

Address of task's message receiver.

Address of TSM's line buffer.

Starting address of task's DSECT area.

Ending address of TSA when task is loaded

Ending address of task's DSECT area.

2-19

Word

384

385

386

387

2-20

Name

T.TRAD

T.LINNO

T.UKEY

T.BITl

T.BIT2

T.BBUFN

T.FILES

T.DSOR

T.DSSZ

T.CSOR

Description

Transfer address of task's main segment.

Line counts (I half word). Byte 0 = maximum line
count. Byte 1 = current line count.

Co~pressed original user key (l half word).

Bit variables (l byte) assigned as follows:

o

1

2

3

4

5

6

T.EIOl

T.EI02

T.EXCP

T.EBUF

T.WAIT

T.DBG

T.SHR

Set if first 4K of E-c1ass I/o buffer
in use

Set if second 4K of E-c1ass 1/0
buffer in use

Set on arithmetic exception trap

E-c1ass buffer present (8K W map
only)

Set to indicate suspend after
activation

Set to indicate Debugger requested

Set to indicate CSECT to share

7 T.COMFIL Set to indicate command file is
active in TSM

Bit variables (l byte) assigned as follows:

o T.EBUF 1 Set if one E-c1ass I/O has been
allocated

I T.EBUF2 Set if a second E-c1ass I/O buffer has
been allocated. Used in 2KW map
granularity systems.

2-7 Reserved

Number of blocking buffers associated with task (1
byte).

Number of FAT /FPT pairs associated with task (I byte).

DSECT origin within T .MEML/T .MIDL (I byte). Usually
zero.

DSECT size in map blocks (1 byte).

CSECT origin within T.MEML/T.MIDL (1 byte). If size
is zero, T.CSOR is set equal to T.MPOR contents.

"r""
I ,
\~

Word

388

389

390

392

396

400

402

404

405

406

416

Name

T.CSSZ

T.MPOR

T.MPSZ

T.EAOR

T.EASZ

T.IPUAC

T.ACCESS

T.SGOS

T.SYCS

T.CVOL

T.CDIR

T.CURH

T.CRHX

T.SPARES

T.MIDt

Description

CSECT size in map blocks (I byte).

Memory partition origin within T.MEMt/T.MIDt (1
byte). If size is zero, contains map blocks for OS.

Memory partition size in map blocks (I byte).

Extended address origin in T .MEMt/T .MIDt (I byte). If
size is zero, contains map blocks for OS.

Extended address size in map blocks (I byte).

IPU RT clock accounting.

Privileged flags (2 words). See MPX-32 Reference
Manual, Volume 2, Chapter 7.

SGO definition (4 words).

SYC definition (4 words).

Name of current disc volume (2 words).

Name of current directory (2 words).

Current high address in map.

Current high address in extended space.

Reserved for TSA expansion (10 words).

32/7x Halfword map image descriptor list (16 words).

o
1

2

3-15

MIDL.RES

MIDt.VAL

MIDL.PRO

Reserved

Set if map block number is valid

Set if map block protected

Physical map number

CONCEPT/32 Halfword map image descriptor list (128
words).

o
1

2

3

MIDL.VAL

MIDL.PRO

MIDL.PR2

MIDL.PR3

4 MIDL.PR4

5-15

Set if number is valid

Protection granule

Protection granule

Protection granule

Protection granule

Physical map number

2-21

Word Name Description 0

432 T.MEML 32/7x Halfword memory attribute list (16 words).

0 MEML.TYE Set if E-type memory

1 MEML.TYH Set if H-type memory

2 MEML.TYS Set if S-type memory

3 MEML.SHR Set if map block is shared

4 MEML.SWP Set if map block is swappable

5 MEML.VAL Set if map is valid

6 MEML.RSI Reserved

7 MEML.RS2 Reserved

8-15 Shared index if map block shared,
otherwise zero

544 T.MEML CONCEPT/32 Halfword memory attribute list (128
i~'~~\

V
words).

0 MEML.TYE Set if E-type memory

1 MEML.TYH Set if H-type memory

2 MEML.TYS Set if S-type memory

3 MEML.SHR Set if map block is shared

4 MEML.SWP Set if map block is swappable

5 MEML.VAL Set if map is valid

6 MEML.RSI Reserved

7 MEML.RS2 Reserved

8-15 Shared index if map block shared,
otherwise zero

o

2-22

(

Map Image Descriptor List (T.MIDL)

The MIDL describes the maps that are allocated to a particular task. The MIDL and
MEML correspond one to one. The MIDL is located in the TSA at location T.MIDL.

If C.MACH = 1 indicating 32/7x machine type, there are 16 words in the MIDL, each
word containing two entries, giving a maximum of 32 entries or map blocks per task.

If C.MACH = 2 indicating 32/27 machine type or 4 indicating 32/87 machine type, there
are 128 words in the MIDL, giving a maximum of 256 entries or map blocks per task.

32/7x Machine

o 2 3 15 0 2 3
Flags Physical Map Number Flags

1. Flag bits are assigned as follows.

MIDL.RES
MIDL.VAL
MIDL.PRO

o
1
2

Reserved
Map number is valid if set
Reserved

15

Physical Map Number

2. If MIDL. VAL is set, the physical map number contains a valid map block number
that represents an entry in the Memory Allocation Table (MAT A).

32/27 or 32/87 Machine

o 4 5 15 0 4 5

Flags Physical Map Number Flags Physical Map Number

1. Flag bits are assigned as follows.

MIDL.VAL
MIDL.PRO
MIDL.PR2
MIDL.PR3
MIDL.PR4

o
1
2
3
4

Map number is valid if set
1 st protection granule
2nd protection granule
3rd protection granule
4th protection granule

2. If MIDL.VAL is set, the physical map number contains a valid map block number
that represents an entry in the Memory Allocation Table (MAT A).

2-23

Memory Attribute List (T.MEML)

The MEML describes the maps that are allocated to a particular task. The MEML and
MIDL correspond one to one. The MEML is found in the TSA at location T.MEML.

If C.MACH = 1 indicating 32/7x machine type, there are 16 words in the MEML, each
word containing two entries, giving a maximum of 32 entries or map blocks per task.

If C.MACH = 2 indicating 32/27 machine type or 4 indicating 32/87 machine type, there
are 128 words in the MEML giving maximum of 256 entries or map blocks per task.

The MEML structure is the same for both machine types.

o 7 8 15 0
I Flag s I Shared Index Flags

1.F1ag bits are assigned as follows.

MEML.TYE
MEML.TYH
MEML.TYS
MEML.SHR
MEML.SWP
MEML.VAL
MEML.RS1
MEML.RS2

o
1
2
3
4
5
6
7

If set, E-type memory
If set, H-type memory
If set, S-type memory
If set, map is shared
If set, map is swappable
If set, map is valid
Reserved
Reserved

7 8 15

Shared Index I

2. If MEML.SHR is set, the shared index will contain the index into the associated
shared memory table in which this map block has been allocated.

2-24

C·",··
'Ii

(

(

(

2.3 Executive (H.EXEC) Data Areas and Tables

2.3.1 CPU Dispatch Queue Area

The CPU Dispatch Queue Area is a variable length doubleword bounded table built by the
system generation program. It contains a maximum of 255 Dispatch Queue Entries
(DQE's). The address of the Dispatch Queue Area is contained in C.DQUE. The number
of DQE entries is contained in C.NQUE. Free DQE entries are linked into the C.FREE
head cell in the standard linked list format. When a task is activated, a DQE is obtained
from the free list and is used to contain all of the core-resident information necessary to
describe the task to the system. Additional (swappable) information is maintaind in the
Task Service Area (TSA). While a task is active, its DQE will be linked to one of the
various ready-to-run or wait state chains provided by the scheduler to describe the tasks
current status. When a task exits, its DQE is again linked to the free list.

2.3.2 CPU Dispatch Queue Entry (DQE)

The Dispatch Queue Entry (DQE) contains all of the core-resident information required
to describe an active task to the system. It is always linked to the CPU scheduler state
chain that describes the current execution status of the associated task.

2-25

Dispatch Queue Entry (DQE) Table

Decimal Hexa-
Word Decimal
Number Offset o 78 15 16 2324 31

0 0 D~ E.SF
1 4 DC E.SB
2 8 DC E.CUP DQE.BUP I DQE.IOP DQE.US
3 C DQE.NU MLDQE. T AN
4 10 DQE.ON_ . ______________

5 14
6 18 .Q.QE.LMN _____________

7 lC
8 20 D-9E•PSN ___ ----------9 24

10 28 DQE.USW
11 2C
12 30"

DQE.USHF
DQE.MSD

13 34 DOE.MRT DOE.MEM I DQE.RMMR' DQE.MEMR
14 38 DQE.MMSG DQE.MRUN I DQE.MNWI DQE.GQFN
15 3C QQE.UF2 Reserved DOE. SO PO
16 40 DQE.IPUF Reserved
17 44 DQE.UXRF I DOE.TIFC DOE.RILT
18 48 DQE.UTSI
19 4C DOE.UTS2
20 50 DQE.NWIO/DQE.TDA
21 54 D~E.PRS
22 58 DC E.PRM
23 5C)E.CME DC I DQE.CMH I DOE.CMS IDQE.MST
24 60 DC E.PSSF
25 64 DQE.PSSB
26 68 DQE.PSPR DOE.PSCT I DOE.ILN DOE.RESU
27 6C DOE.TISF
28 70 DOE.TISB
29 74 DOE.TIPR DOE.TICT 1 DQE.SWIF DQE.UBIO
30 78 DOE.RRSF
31 7C DOE.RRSB
32 80 DQE.RRPR DQE.RRCT l DQE.NSCT
33 84 DOE.MRSF
34 88 DOE.MRSB
35 8C DQE.MRPR DOE.MRCT I DOE.NWRR DOE.NWMR
36 90 DOE.RTI 1 DQE.ATI
37 94 DQE.SAIR/DQE. T AD
38 98
39 9C
40 AO

DOE.ABC
~' - - - - - - - - - - - ---
r---------------

41 A4 DOE.COC
42 A8 Reserved (7 words)

, . "",\ C'

2-26

(WORD SYMBOL ITEM DESCRIPTION
***** ******* ******************

00

01

02

DQE.SF STRING FORWARD LINKAGE ADDRESS;
STANDARD LINKED LIST FORMAT;
CONT AINS ADDRESS OF NEXT (TOP-TO-BOTTOM) ENTRY IN
CHAIN.

DQE.SB STRING BACK WARD LINKAGE ADDRESS;
STANDARD LINKED LIST FORMAT;
CONT AINS ADDRESS OF NEXT (BOTTOM-TO-TOP) ENTRY IN
CHAIN.

DQE.CUP CURRENT USER PRIORITY;
FIELD LENGTH = IB;
ST ANDARD LINKED LIST FORMAT;
THIS PRIORITY IS ADJUSTED FOR PRIORITY MIGRATION
BASED ON SITUATIONAL PRIORITY INCREMENTS.
SITUA TIONAL PRIORITY INCREMENTS ARE BASED ON THE
BASE LEVEL PRIORITY (DQE.BUP) OF THE TASK.

DQE.BUP BASE PRIORITY OF USER TASK;
FIELD LENGTH = IB;

DQE.IOP

DQE.US

LABEL

FREE
PREA
CURR

SQRT
SQ55
SQ56
SW57

USED BY SCHEDULER TO GENERATE DQE.CUP (CURRENT
PRIORITY) BASED ON ANY SITUA TIONAL PRIORITY
INCREMENTS.

I/O PRIORITY;
FIELD LENGTH = IB;
INITIALLY SET FROM BASE PRIORITY;
USED FOR I/O QUEUE PRIORITY.

ST A TE CHAIN INDEX FOR THIS USER TASK;
FIELD LENGTH = IB;
RANGE: ZERO THRU "N";
INDICATES CURRENT STATE OF THIS TASK E.G. READY - TO
RUN PRIORITY, I/O WAIT, RESOU~CE BLOCK, ETC ••

INDEX DESCRIPTION

00
01
02

03
04
05
06

DQE IS A V AIL ABLE (IN FREE LIST)
TASK ACTIVATION IN PROGRESS
T ASK IS CURRENTLY EXECUTING TASK OR IS
PREEMPTED TIME DISTRIBUTION TASK IN
QUANTUM STAGE 1.
TASK IS READY TO RUN (PRI. LEV. 1-54)
TASK IS READY TO RUN (PRI. LEV. 55)
TASK IS READY TO RUN (PRI. LEV. 56)
TASK IS READY TO RUN (PR!. LEV. 57)

2-27

SW58 07 T ASK IS READY TO RUN (PRI. LEV. 58) 0 SQ59 08 T ASK IS READY TO RUN (PRI. LEV. 59)
SQ60 09 TASK IS READY TO RUN (PRI. LEV. 60)
SQ61 OA TASK IS READY TO RUN (PRI. LEV. 61)
SQ62 OB TASK IS READY TO RUN (PRI. LEV. 62)
SQ63 OC TASK IS READY TO RUN (PRI. LEV. 63)
SQ64 00 TASK IS READY TO RUN (PRI. LEV. 64)
SWTI OE TASK IS WAITING FOR TERMINAL INPUT
SWIO OF TASK IS WAITING FOR I/O
SWSM 10 T ASK IS WAITING FOR MESSAGE COMPLETE
SWSR 11 TASK IS WAITING FOR RUN REQ COMPLETE
SWLO 12 T ASK IS WAITING FOR LOW SPEED OUTPUT
SUSP 13 TASK IS WAITING FOR:

l) TIMER EXPIRATION, OR
2) RESUME REQUEST, OR
3) MESSAGE INTERRUPT.

RUNW 14 T ASK IS WAITING FOR:
l) TIMER EXPIRATION, OR
2) RUN REQUEST.

HOLD 15 T ASK IS WAITING FOR A CONTINUE REQ.
ANYW 16 T ASK IS WAITING FOR:

1) TIMER EXPIRATION, OR
2) NO-W AIT I/O COMPLETE, OR
3) NO-WAIT MSG COMPLETE, OR
4) NO-WAIT RUN REQ COMPLETE, OR i""'\
5) MESSAGE INTERRUPT, OR Vi
6) BREAK INTERRUPT.

SWDC 17 T ASK IS WAITING FOR DISC SPACE
SWDV 18 T ASK IS WAITING FOR DEV ALLOCATION
SWFI 19 T ASK IS WAITING FOR FILE SYSTEM
MRQ lA T ASK IS WAITING FOR MEMORY
SWMP IB TASK IS WAITING FOR MEMORY POOL
SWGQ lC TASK IS WAITING IN GENERAL WAIT QUEUE
CIPU 10 CURRENT IPU TASK IN EXECUTION
RIPU IE IPU REQUESTING STATE

o

2-28

(
.

.. \

j

03

04

DQE.NUM DQE ENTRY NUMBER;
FIELD LENGTH = IB;
USED AS AN INDEX TO DQE ADDRESS TABLE (DA T);
RANGE: ONE THRU "N" (FOR MPL INDEX COMPATIBILITY);
USED BY SCHEDULER TO SET C.PRNO TO REFLECT THE
CURRENTL Y EXECUTING TASK.

THIS VALUE IS ALSO USED AS THE MPL INDEX. IT IS USED BY
THE SCHEDULER TO INITIALIZE THE CPIX IN THE PSD,
BEFORE LOADING THE MAP FOR THIS TASK.
NOTE: THE SPECIFIED ENTRY IN THE MPL (ONE PER TASK)

CONT AINS THE COUNT AND ADDRESS OF THE MSD
IN THE DQE, WHICH IN TURN POINTS TO THE MIDL IN
THE TSA.

DQE.TAN TASK ACTIVATION SEQUENCE NUMBER;
FIELD LENGTH = lW;

DQE.ON

THIS NUMBER IS ASSIGNED BY THE ACTIVATION SERVICE,
AND UNIQUELY IDENTIFIES A TASK.
NOTE: THE MOST SIGNIFICANT BYTE OF THIS VALUE IS THE

DQE ENTRY NUMBER AND MAY BE ACCESSED AS
DQE.NUM.

OWNER NAME;
FIELD LENGTH = 10

06 DQE.LMN LOAD MODULE NAME;
FIELD LENGTH = ID

08 DQE.PSN PSEUDONY M ASSOCIATED WITH TASK;
FIELD LENGTH = ID;
THIS PARAMETER IS AN OPTIONAL ARGUMENT ACCEPTED
BY THE PSEUDOTASK ACTIVATION SERVICE.IT MAY BE USED
TO UNIQUELY IDENTIFY A TASK WITHIN A SUBSYSTEM (E.G.
MUL TIBA TCH). IT CONTAINS DESCRIPTIVE INFORMATION
USEFUL TO THE SYSTEM OPERATOR OR TO OTHER TASKS
WITHIN A SUBSYSTEM. CONVENTIONS USED TO GENERATE A
PSEUDONYM ARE DETERMINED BY THE ASSOCIATED
SUBSYSTEM. A SYSTEM-WIDE CONVENTION SHOULD BE USED
TO ESTABLISH PSEUDONYM PREFIX CONVENTIONS TO AVOID
CONFUSION BETWEEN SUBSYSTEMS.

10 DQE.USW USER STATUS WORD;
FIELD LENGTH = 1 W

2-29

~, i

11

2-30

DQE.USHF SCHEDULING FLAGS;
FIELD LENGTH = lW; o

BIT

00
01
02

--D3
I 04
,05

06
_07

08
09
10

IJ--
12
13

• 14

....J2...
16
17
18

19
, -----
20

21
.. 22

23 --

24
25

26
27
28
29

USED BY THE SCHEDULER TO INDICATE SPECIAL STATUS
CONDITIONS.

LABEL

AVAILABLE
DQE.SING
DQE.INDC
DQE.PRIV
DQE.MSGR
DQE.BRKR
DQE.QSIX
DQE.QS2X
DQE.INER
DQE.WIOA
DQE.WIOC

DQE.INMI
DQE.BAOR
DQE.TMOR
DQE.ABRT
DQE.PRXT
DQE.RRMD
DQE.WMSA
DQE.WMSC

DQE.WRRA

DQE.WRRC

DQE.DBAT
DQE.RT
DQE.TDID

DQE.DELP
DQE.ABRA

DQE.ABRC
DQE.ADIN
DQE.ADDF
DQE.INAC

DESCRIPTION

SINGLE COpy LOAD MODULE
TASK IS INDIRECTLY CONNECTED.
TASK IS PRIVILEGED.
T ASK HAS MESSAGE RECEIVER.
T ASK HAS BREAK RECEIVER.
TASK QUANTUM STAGE 1 EXPIRED.
TASK QUANTUM STAGE 2 EXPIRED.
INSW AP I/O ERROR.
WAIT I/O REQUEST OUTSTANDING.
WAIT I/O COMPLETE BEFORE IN-
PROGRESS NOTIFICATION.
INHIBIT MESSAGE PSEDUO INTERRUPT
BA TCH ORIGIN TASK.
TERMINAL ORIGIN TASK.
TASK ABORT IN PROGRESS.
TASK IS IN PRE-EXIT STATE.
RUN RECEIVER MODE. C"',I
WAIT-SEND MSG OUTSTANDING.
WAIT MSG COMPLETE BEFORE LINK TO
WAIT QUEUE.
WAIT MODE SEND, RUN REQUEST
OUTST ANDING.
WAIT MODE SEND RUN REQUEST
COMPLETE BEFORE LINK TO WAIT
QUEUE.
DEBUG ASSOCIATED WITH TASK.
REAL TIME TASK •
TIME DISTRIBUTION TASK INITIAL
DISPATCH. SET BY:
1) H.ALOCI ON ACTIVATION OF T/D

TASK.
2) S.EXEC51 WHEN TASK IS LINKED TO

WAIT STATE.
3) H.EXEC7 ON COMPLETION OF INSW AP

OR OTHER MEMORY REQUEST.
CLEARED BY S.EXEC20 ON INITIAL
DISPATCH OF TASK AFTER ACTIVATION,
WAIT-STATE TERMINATION, OR INSWAP.
T ASK DELETE IN PROGRESS.
T ASK ABORT (WITH ABORT RECEIVER) IN
PROGRESS.
ABORT RECEIVER ESTABLISHED.
ASYNCHRONOUS ABORT/DELETE INHIBITED. 0
ASYNCHRONOUS DELETE DEFERRED. ' " .•
T ASK IS INACTIVE.

(

30
31

DQE.AADF
DQE.ACTT

ASYNCHRONOUS ABORT DEFERRED.
ACTIVATION TIMER IN EFFECT.

12 DQE.MSD MSD ENTRY POINTING TO MIDL IN TSA FOR 7X PROCESSORS;
FIELD LENGTH = lW

13 DQE.MRT MEMOR Y REQUEST TYPE CODE;
FIELD LENGTH = IB;

INSW AP ONLY. 00 =
01 =
02 =
03 =
04 =
0' ::

PREACTIVA TION REQUEST.
ACTIVATION REQUEST.
MEMORY EXPANSION REQUEST.
IOCS BUFFER REQUEST.
SHARED MEM. ORY REQUEST. BYTES TWO AND THREEI
EQUAL THE ADDRESS OF THE REQUESTED USER SMT

DQE.MEM TYPE OF MEMORY REQUESTED;
FIELD LENGTH = 1B;
01 ~ CLASS 'E' MEMORY.
02 = CLASS 'H' MEMORY.
03 = CLASS'S' MEMORY.

DQE.RMMR MAP REGISTER FOR REQUESTED MEMORY;
FIELD LENGTH = 1B

DQE.MEMR NUMBER OF MEMORY BLOCKS REQUIRED;
FIELD LENGTH = 1B

14 DQE.MMSG ONE LESS THAN MAXIMUM NUMBER OF NO WAIT SEND
MESSAGE REQUESTS ALLOWED TO BE CONCURRENTLY
OUTSTANDING FOR THIS TASK. DEFAULT IS , (6 NO-WAIT
REQUESTS) FOR UNPRIVILEGED TASKS, 0 (2" NO-WAIT
REQUESTS) FOR PRIVILEGED.

DQE.MRUN ONE LESS THAN MAXIMUM NUMBER OF NO-WAIT SEND RUN
REQUESTS ALLOWED TO BE CONCURRENTLY OUTSTANDING
FOR THIS TASK. DEFAULT IS , (6 NO-WAIT REQUESTS) FOR
UNPRIVILEGED TASKS, 0 (2" NO-WAIT REQUESTS) FOR
PRIVILEGED.

DQE.MNWI MAXIMUM NUMBER OF NO-WAIT I/O REQUESTS ALLOWED TO
BE CONCURRENTLY OUTSTANDING FOR THIS TASK;
FIELD LENGTH = lB.

DQE.GQFN CONTAINS THE GENERALIZED QUEUE (SWGQ) FUNCTION
CODE;
FIELD LENGTH = lB.
01 = QUEUED FOR FILE EXCLUSIVE LOCK
02 = QUEUED FOR FL T SPACE

. 03 = QUEUED FOR FI! ~ SYNCHRONIZATION LOCK
04 = QUEUED FOR RE50URCEMARK LOCK
0' = RESERVED FOR EVENTMARK
06 = QUEUED FOR MISCELLANEOUS ID
07 :: QUEUED FOR SHARED MEMOR Y TABLE

Change 1"
. 2-31

17 DQE.UXRf UDT INDEX OP ROLLOUT <SV{ AP) PILE;

2-32

PIELD LENGTH = IH; .
SET WHEN THE ROLLOUT PILE IS ALLOCATED;
USED FOR mENnFICAnONOF THE SWAP DEVICE.

PQE. nrc nMER FUNCTION CODE;
FIELD LENGTH = IS;
00 = NOT ACTIVE.
01 = REQUEST INTERRUPT. .
02 = RESUME PROGRAM PROM SUSPEND (SUSP) QUEUE.
03 = RESUME PROGRAM FROM ANY-WAIT (ANYW) QUEUE.
04 = RESUME PROGRAM PROM RUN-REQUEST-WAIT

(RUNW) QUEUE.

o

(DQE.RIL T REQUEST INTERRUPT (RI) LEVEL FOR TIMER;
FIELD LENGTH = IB;
IDENTIFIES THE INTERRUPT LEVEL TO BE REQUESTED UPON
TIMER EXPIRATION.

18 DQE.UTSI USER TIMER SLOT WORD 1;
FIELD LENGTH = lW;
CURRENT TIMER VALUE;
CONT AINS NEGATIVE NUMBER OF TIMER UNITS BEFORE
TIME-OUT.

19 DQE.UTS2 USER TIMER SLOT WORD 2;
FIELD LENGTH = 1W;
RESET TIMER VALUE;
CONT AINS NEGATIVE NUMBER OF TIME UNITS;
USED TO RESET THE CURRENT TIMER VALUE WHEN IT
EXPIRES.

20 DQE.NWIO NUMBER OF NO-WAIT I/O REQUESTS OUTSTANDING;
FIELD LENGTH = lB.

DQE. TDA DISC ADDRESS OF SWAPPED TSA;
FIELD LENGTH = 1W (BYTE 0 = DQE.NWIO) CONTAINS DISC
RELATIVE SECTOR NUMBER;
USED IN CONJUNCTION WITH DQE.UXRF TO IDENTIFY THE
ROLLOUT FILE.

21 DQE.PRS PERIPHERAL REQUIREMENT SPECIFIC A TION;
FIELD LENGTH = 1W;
BITS 0-7 = RESERVED.
BITS 8-15 = DEVICE TYPE CODE.
BITS 16-23 = CHANNEL ADDRESS.
BITS 24--31 = SUBCHANNEL ADDRESS.

OR, CONTAINS FIRST WORD OF SWGQ ID.

22 DQE.PRM PERIPHERAL REQUIREMENTS MASK;
FIELD LENGTH = 1 W;

23

X'OOFFOOOO' = ANY DEVICE OF THIS TYPE CODE.
X'OOFFFFOO' = ANY DEVICE OF THE SPECIFIED TYPE

CODE, ON THE SPECIFIED CHANNEL.
X'OOFFFFFF' = THE SPECIFIC DEVICE AS DESCRIBED BY

TYPE CODE, CHANNEL, AND SUBCHANNEL
ADDRESS.
OR, CONTAINS SECOND WORD OF SWGQ
ID.

DQE.CME NUMBER OF SWAPPABLE CLASS 'E' MAP BLOCKS
CURRENTL y ALLOCATED;
FIELD LENGTH = lB.

2-33

DQE.CMH NUMBER OF SW APPABLE CLASS 'H' MAP BLOCKS '0
CURRENTL Y ALLOCATED;

24

FIELD LENGTH = lB.

DQE.CMS NUMBER OF SW APPABLE CLASS'S' MAP BLOCKS
CURRENTL Y ALLOCATED;
FIELD LENGTH = lB.

DQE.MST ST A TIC MEMORY TYPE SPECIFICATION;
FIELD LENGTH = IB;
01 = CLASS 'E' MEMORY.
02 = CLASS 'H' MEMORY.
03 = CLASS'S' MEMORY.
THIS FIELD IS USED TO SPECIFY THE TYPE OF MEMORY
REQUIRED FOR INSWAP. THE AMOUNT OF MEMORY
REQUIRED FOR INSWAP IS COMPUTED BY TAKING THE SUM
OF DQE.CME, DQE.CMH, DQE.CMS.

DQE.PSSF PREEMPTIVE SYSTEM SERVICE HEAD CELL
STRING FORWARD ADDRESS;
ST ANDARD HEAD CELL FORMAT;
FIELD LENGTH = 1W;
CO NT AINS ADDRESS OF NEXT (TOP-TO-BOTTOM) ENTRY IN
CHAIN.

25 DQE.PSSB PREEMPTIVE SYSTEM SERVICE HEAD CELL
STRING BACKWARD LINKAGE ADDRESS;
ST ANDARD HEAD CELL FORMAT;
FIELD LENGTH = 1 W;
CONT AINS ADDRESS OF NEXT (BOTTOM-TO TOP) ENTRY IN
CHAIN.

26 DQE.PSPR PREEMPTIVE SYSTEM SERVICE HEAD CELL
DUMMY PRIORITY (AL WAYS = 0);
STANDARD HEAD CELL FORMAT;

2-34

FIELD LENGTH = lB.

DQE.PSCT PREEMPTIVE SYSTEM SERVICE HEAD CELL
NUMBER OF ENTRIES' IN LIST;
ST ANDARD HEAD CELL FORMAT;
FIELD LENGTH = IB;

DQE.ILN INTERRUPT LEVEL NUMBER;
FIELD LENGTH = IB;
IDENTIFIES ASSOCIATED INTERRUPT LEVEL FOR INTERRUPT
CONNECTED TASKS.

DQE.RESU RESER VED USAGE INDEX
FIELD LENGTH = IB o

(
27 DQE. TISF T ASK INTERRUPT HEAD CELL

STRING FORWARD ADDRESS;
ST ANDARD HEAD CELL FORMAT;
FIELD LENGTH = 1 W;
CONT AINS ADDRESS OF NEXT (TOP-TO-BOTTOM) ENTRY IN
CHAIN.

28 DQE.TISB TASK INTERRUPT HEAD CELL
STRING BACKWARD LINKAGE ADDRESS;
ST ANDARD HEAD CELL FORMAT;
FIELD LENGTH = 1 W;
CONT AINS ADDRESS OF NEXT (BOTTOM-TO TOP) ENTRY IN
CHAIN.

29 DQE.TIPR TASK INTERRUPT HEAD CELL
DUMMY PRIORITY (AL WAYS = 0);
ST ANDARD HEAD CELL FORMAT;
FIELD LENGTH = IB

DQE.TICT TASK INTERRUPT HEAD CELL
NUMBER OF ENTRIES IN LIST;
ST ANDARD HEAD CELL FORMAT;
FIELD LENGTH = IB;

DQE.SWIF SW APPING INHIBIT FLAGS;
FIELD LENGTH = IB;

BIT LABEL DESCRIPTION

T ASK IS RESIDENT.
T ASK IS LOCKED IN MEMORY.

a
1

~ 2

DQE.RESP
DQE.LKIM
DQE.IO T ASK HAS UNBUFFERRED I/O IN

PROGRESS.
...l

~ 4
5

6

DQE.OTSW
DQE.TLVS
DQE.FCUS

DQE.FCRS

7 RESERVED

T ASK IS OUTSW APPED.
T ASK IS LEAVING SYSTEM
TASK FORCED TO UNSW APPABLE
ST A TE DURING TERMINAL OUTPUT.
T ASK FORCED UNSW APPABLE
BECAUSE SWAP FILE HAS NOT BEEN
ALLOCA TED FOR IT.

DOE.UBIO NUMBER OF UNBUFFERRED I/O REQUESTS CURRENTLY
~ OUTSTANDING;

FIELD LENGTH = lB.

2-35

,I
:1

30

31

32

33

34

35

2-36

DQE.RRSF

DQE.RRSB

DQE.RRPR

DQE.RRCT

DQE.NSCT

DQE.MRSF

DQE.MRSB

DQE.MRPR

RUN RECEIVER HEAD CELL 0
STRING FORWARD ADDRESS;
STANDARD HEAD CELL FORMAT;
FIELD LENGTH = 1 W;
CONT AINS ADDRESS OF NEXT (TOP-TO-BOTTOM) ENTRY IN
CHAIN.

RUN RECEIVER HEAD CELL
STRING BACKWARD LINKAGE ADDRESS;
STANDARD HEAD CELL FORMAT;
FIELD LENGTH = lW;
CO NT AINS ADDRESS OF NEXT (BOTTOM-TO TOP) ENTRY IN
CHAIN.

RUN RECEIVER HEAD CELL
DUMMY PRIORITY (AL WAYS = 0);
ST ANDARD HEAD CELL FORMAT;
FIELD LENGTH = lB.

RUN RECEIVER HEAD CELL
NUMBER OF ENTRIES IN LIST;
ST ANDARD HEAD CELL FORMAT;

0 FIELD LENGTH = IB;

NUMBER OF SECTORS IN SWAP FILE;
FIELD LENGTH = IH.

MESSAGE RECEIVER HEAD CELL
STRING FORWARD ADDRESS;
ST ANDARD HEAD CELL FORMAT;
FIELD LENGTH = 1 W;
CONT AINS ADDRESS OF NEXT (TOP-TO-BOTTOM) ENTRY IN
CHAIN.

MESSAGE RECEIVER HEAD CELL
STRING BACKWARD LINKAGE ADDRESS;
ST ANDARD HEAD CELL FORMAT;
FIELD LENGTH = lW;
CONTAINS ADDRESS OF NEXT (BOTTOM-TO-TOP) ENTRY IN
CHAIN.

MESSAGE RECEIVER HEAD CELL
DUMMY PRIORITY (AL WAYS = 0);
STANDARD HEAD CELL FORMAT;
FIELD LENGTH = lB.

0 '" I

(

36

DQE.MRCT MESSAGE RECEIVER HEAD CELL
NUMBER OF ENTRIES IN LIST;
STANDARD HEAD CELL FORMAT;
FIELD LENGTH = lB.

DQE.NWRR NUMBER OF NO-W AIT MODE RUN REQUESTS OUTSTANDING.
FIELD LENGTH = lB.

DQE.NWMR NUMBER OF NO-WAIT MODE MSG REQUESTS OUTSTANDING;
FIELD LENGTH = lB.

DQE.RTI

BIT

o
1

2
3
4

5
6-15

DQE.ATI

BIT

o
1
2
3
4
5
6-15

REQUESTED TASK INTERRUPT FLAGS;
FIELD LENGTH = 1 H.

LABEL

RESERVED
DQE.EAIR

DQE.DBBR
DQE.UBKR
DQE.EA2R

DQE.MSIR
RESERVED

DESCRIPTION

PRIORITY 1 END ACTION REQUEST.
USED FOR PREEMPTIVE SYSTEM
SERVICES.
DEBUG BREAK REQUEST.
USER BREAK REQUEST.
END ACTION REQUEST.
(PRIORITY 2).
MESSAGE INTERRUPT REQUEST.

ACTIVE TASK INTERRUPT FLAGS;
FIELD LENGTH = IH.

LABEL

RESERVED
DQE.AEAl
DQE.ADM
DQE.AUB
DQE.AEA
DQE.AMI
RESERVED

DESCRIPTION

ACTIVE END ACTION PRIORITY 1.
ACTIVE DEBUG BREAK.
ACTIVE USER BREAK.
ACTIVE END ACTION PRIORITY 2.
ACTIVE MESSAGE INTERRUPT.

37 DQE.SAIR SYSTEM ACTION TASK INTERRUPT REQUEST;
FIELD LENGTH = lB.

BIT

o
1
2
3
4
5
6
7

LABEL

DQE.DELR
RESERVED
DQE.HLDR
DQE.ABTR
DQE.EXTR
DQE.SUSR
DQE.RRRQ
RESERVED

DESCRIPTION

REQUEST FOR DELETE OF THIS TASK

HOLD TASK REQUEST.
ABORT TASK REQUEST.
EXIT TASK REQUEST.
SUSPEND TASK REQUEST.
RUN RECEIVER MODE REQUEST.

2-37

DQE. T AD TSA ADDRESS (LOGICAL);
FIELD LENGTH = 1 W (BYTE 0 CONTAINS DQE.SAIR)

38 DQE.ABC ABOR T CODE;
FIELD LENGTH = 12B (3W).

41 DQE.CQC CURRENT QUANTUM COUNT;
FIELD LENGTH = IW;

42-48 RESERVED
END

2-38

USED BY THE SCHEDULER TO ACCUMULATE ELAPSED
EXECUTION TIME FOR THE TASK, FOR COMPARISON WITH
THE LEVEL UNIQUE STAGE! AND STAGE2 TIME
DISTRIBUTION VALUES.

(2.3.3 DQE Address Table (OAT)

The DQE Address Table (DAT) is a variable length table built by the system generation
program. It contains a maximum of 255 single word entries. It is accessed by the word
adjusted DQE entry number, and contains the address of the associated DQE in the CPU
Dispatch Queue Area. The address of the DAT (-lW) is contained in C.ADAT. The
number of OAT entries is contained in C.NQUE and is equal to the number of DQE's.

2.4. Input Output

2.4.1 I/O Table Linkages

....
FAT Pointer Table User's File ~

Control Block (2) (FPT)

(0)(
(FC~)

(l)~' ." (3)

I I/O Queue 1 I File Assignment Table
(FAT)

t J(4) ." (5)

Device Controller Unit
Type (6) Definition (7) Definition
Table Table (COT) --. Table (UDT)

.." (8)
DevIce Handler I

Notes:

(1) &: (2) Established at H.IOCS OPEN Time

(3), (4) &: (5) Established at File Allocation Time

(6), (7) &: (8) Established at SYSGEN Time

(9) &: (10) Established at H.IOCS Op Code Processing Time

2-39

2.4.2 File Control Block (FCB)

The File Control Block (FCB) is used to convey information about requested I/O
operations and to report their status to the requestor. The table entry is generally
located in the task's address space.

The task's FCB is linked to the File Assignment Table (FAT) when the file or device is
opened. This completes the logicaJ connection from the task to the requested file or
device for subsequent use. The FCB is then linked to an I/o Queue (IOQ) entry when an
operation for that logicaJ connection is requested. When this is done, the status for the
requested operation code is posted in the respective FCB.

Word 0 3 4 7 8 11 12 15 16

o

I

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Reserved Opcode logical file code (FCB.lFC)
(FCB.OPCD)

Quantity (FCB. TCW) Data Address

General control Special flags Random access address (FCB.CBRA)
flags(FCB.GCFG) (FCB.SCFG)

Status flags Test status DCC status Device status
(FCB.SFlG)

Record length (bytes) (FCB.RECl)

Reserved I/O queue address (FCB.IOQA)

Special Reserved Wait I/o error return address (FCB.ERRT)
status
(FCB.SPST)

Reserved FAT address (FCB.F A T A)

Reserved Expanded data address (FCB.ER W A)

Expanded transfer quantity (bytes) (FCB.EQTY)

Expanded random access address (FCB.ERAA)

Extended I/O status word 1 (FCB.IST 1)

Extended I/O status word 2 (FCB.IST2)

Reserved No-wait I/o normal end action service address
(FCB.NWOK)

Reserved No-wait I/O error end action service address
(FCB.NWER)

Reserved for I/O service expansion

2-40

31

""".
~.

~J

(

(

WORD °
Bits 0-3

Bits 4-7

Bits 8-31

WORD 1

This field is always zero.

Operation code - A single hexadecimal digit specifies the type of
function requested of the device handler. The allowable functions and
their definitions are unique to each peripheral device.

Logical file Code - Any combination of three ASCn codes is allowed.

Note: Words 8 and 9 are used instead of Word 1 if Bit 6 of Word 2 is set.

Bits 0-11

Bits 12,
30,31

Quantity - Three hexadecimal digits specify the number of data items
to be transferred. This quantity must include the carriage control
character, if applicable. The transfer quantity is in units determined
by the address in bits 12-31.

(or)

For GPMC devices which support chaining, number of Data/Command
chain doublewords. If data/command chaining is desired (execute
channel H.IOCS,10), this is used to indicate the number of
data/command chain doublewords in the list.

Format Code - These specify the addressing mode for data
transfers. They are interpreted as follows:

Type of Transfer F C

Byte 1 xx
Halfword ° yl
Word ° 00

xx = Byte Number (00,01,10 or 11)
y = 0, Left Halfword
y = 1, Right Halfword
00 = Word

If a half word or word transfer is specified for a device which accepts
only bytes, IOCS adjusts the quantity accordingly. If a byte transfer is
specified for a device which accepts only half words or words, IOCS will
adjust the quantity accordingly if the number of bytes is an even
multiple of the requested transfer mode and the data address is on the
correct boundary. Otherwise, the request is treated as a specification
error.

2-41

Bits 13-29

WORD 2

Bits 0-7

Data Address - The initial address data areas for read or write
operations.

(or)

Data/Command Chain Address - If using execute channel entry point
(H.IOCS, 10).

General Control Specifications - These eight bits enable the user to
specify the manner in which an operation is to be performed by
IOCS. The interpretation of these bits is shown below:

---------------- ---------------------------
Bit

o

1

2

3

4

5

2-42

Meaning

If this bit is set, IOCS will return to the user immediately after the
I/O operation is queued. If the bit is reset, IOCS will exit to the
calling program only when the requested operation has been
completed.

If this bit is set, error processing will not be performed by either the
device handler or 10CS. Normal error processing for disc and
magnetic tape is automatic error retry. Error processing for unit
record devices except the system console is accomplished by IOCS
typing the message "INOP" to the console which allows the operator
to retry or abort the I/O operation. If the operator aborts the I/O
operation, or if automatic error retry for disc or magnetic tape is
unsuccessful, an error status message is typed to the console. An
error return address is not applicable if this bit is set, however the
device status will be posted in the FCB (unless bit 3 is set).

When this bit is set, data formatting is inhibited. Otherwise, data
formatting is performed by the appropriate device handler. (See Bit 8
for further explanation.)

If this bit is set, the device handlers perform no status checking and
no status information is returned. Hence all I/O will appear to
complete without error.

When this bit is set, file accessing will occur in the random mode.
Otherwise, sequential accessing will be performed.

If set, a blocked file is specified (disc or tape assignments only).

c

(-

f.

6 Expanded FCB present (Words 8-15). This takes advantage of a larger
I/O transfer quantity (in bytes), a 24-bit addressing field, and a 32-bit
random access address. For Extended I/O operations, up to two
interrupt status words are then returned after I/O complete. When this
bit is set, IOCS assumes the FCB is 16 words long. The information in
Words 8 and 9 is used instead of the data in Word I. Also, the random
access address in Word lOis used instead of the data in word 2.

7 If this bit is set, a task will not be aborted even if an error condition
occurs that would cause the task to be aborted.

Bits 8-12 Special Control Specification - this field contains device control
specifications unique to certain devices. Interpretation and processing
of these specifications are performed by the device handlers. A
specification item is ignored unless the designated file is assigned as
indicated below:

Bit Meaning

8

9

Normally, this bit is examined only when Bit 2 (data formatting inhibit) is
set. The meaning is interpreted as shown in Section 2.4.2.1.

This bit has significance only for the following devices:

7-track tape:
examined only if bit 2
set and Bit 8 not set

ALIM (Read):
examined only if
Bit 2 reset

ALIM (Write):
examined only if
Bit 2 reset

ADS (teletype/CRT):

FH D (read or wr i te):

If set, odd parity
If reset, even parity

If set, ECHO mode
If reset (and Bit 8 reset):
Receive data
If reset (and Bit 8 set): BLIND
mode

If set, device initilization
If reset, Formatted Write

If set the handler will issue a LCW to
the ADS controller

If set, FHD will read or write single
sector
If reset, FHD will read or write
sectors sequential! y

2-43

10 This bit has significance only for the following devices:

7-track tape:

ALIM (Read):
Teletype/CRT

If set, 556 BPI mode
If reset, 800 BPI mode

If set, inhibit conversion of
lower case characters to upper case.

11 This bit has significance only for the following devices:

ADS (teletype/CRT): If set, the handler will issue a TXB
command to the ADS controller

12 This bit has significance only for the following devices:

ADS (teletype):

Note:

If set, external asynchronous interrupt
(EAI) status will be posted in the FCB
(FCB.IST 1) only if an expanded FCB,
refer to Bit 6 description

The expanded random access address in Word 10 (FCB.ERAA) is used
instead of bits 12-31 in Word 2 if bit 6 of Word 2 is set.

Bits 13-31 Random Access Address - This field contains a block number (zero
origin) relative to the beginning of the disc file, and specifies the base
address for read or write operations.

2-44

(f.· .. ·". ',','\
,\,.Ii

2.4.2.1 Special Control Specifications
(

Device BIT 2 BIT 8

CR O=Read in Automatic Not interpreted
mode select

I = Determine mode O=ASCII read
by Bit 8

CP O=Punch in automatic Not interpreted
mode select

I =Determine mode 0= ASCII punch
by Bit 8 I =Binary punch

PT (Reader) O=Read in formatted Not interpreted
mode, skipping
leader

I =Read unformatted O=Do not skip
leader

I =Skip leader

(
PT (Punch) O=Punch in formatted Not interpreted

mode

I =Punch unformatted Not interpreted

LP O=Interpret first l=No carriage control
character as and print buffer. No
carriage control LF, just print.

I=No carriage
control

Default=LF and print

TY O=Interpret first Not interpreted
character as
carriage control

I=No carriage Not interpreted
control

MT (Applicable O=Read/write Not interpreted
to 7-Track only) packed mode

(binary)

I=Determine mode O=Interchange

(by Bit 8 (BCD)
1 =Packed (binary)

2-45

DEVICE BIT 2

DM,DF,FL Not interpreted

ALIM(READ) O:Determine mode
by Bits 8,9

l:Receive data

ALIM(WRITE) O=Determine mode
by Bit 9

l=Unformatted write

2-46

BIT 8

Not interpreted

O:Determine mode
by Bit 9

1 :BLIND mode

Not interpreted

Not interpreted

Not interpreted

{)

.. nl
V

(

WORD 3

Bits 0-31

Bit

0

1

2

3

4

5

6

7

Status Word - 32 indicator bits are used by Ioes to indicate the
status, error and abnormal conditions detected during the current
or previous operation. The assignment of these bits is shown
below:

Meaning

Operation in progress. (Request has been queued.)
(Note: Reset after post I/O processing complete.)

Error condition found.

Invalid Blocking Buffer control pointers have been encountered during file
blocking or deblocking.

Write protect violation.

Device inoperable.

Beginning-of-medium (BOM) (load point) or illegal volume number (multi
volume magnetic tape).

End-of-file.

End-of-medium (end of tape, end of disc file).

Non-Extended I/O Devices:

8-11

12-15

16-31

Specifies general testing status as received from an 8000 level Test
Device instruction.

Specifies DeC testing status as received from a 4000 level Test Device
instruction.

Specifies a device status as received from a 2000 level Test Device
instruction. These bits are not applicable for the Paper Tape, Card
Reader, and Teletypewriter. Bit meanings for 2000 level testing for non
extended I/O devices are shown in Section 2.4.2.2.

2-47

0·
·.·.·.··"'····· i. ," ,

2.4.2.2 Device Status (2000 Level) Non-Extended I/O

fa IC)rd 16 17 II It a 11 II
) Bits

2J ~ n 2' 27 21 It :III 31 - .~ ~~ I=- • u 0 0 U 0 - " 0 0 DEY 0 u

~- lUll IUSY

:.w: • u u ., a II II II 0 II 10 II t:oM I=~ ~:rr 101'

;::. ~ ~~. I:' •• 1; ., uw ~:~ DAT." a EOT "",T EOI' a
!::Y :::-~T ~ .. LOST

liT "'OC VII) LeT

~- 1- ~~ ':.. ~:' f::- r:.f. :u r~: a 5eC- ~'!.- ~i TeA Wi- ~~ ~: TOIl

=-
EIIIl ate. a •• SAIII! "'OC .T elY elY VII)

011 • • 2 • ~XCll'1' . . - .
=: 1~1lII ~~ ':' ~::- !::- .,

:\;T ~:
., :: ;i" ~~- ~: I~ ~T • TOIl

DIJC ... , is., I'IIOC elY ~ .T elY VII) .. 1RTOIl 1R'ft)a • 2 •

.."-'

.T. .T .6

~~.D I~ 1::-" .:. ~HQ • ;TU • • 0 0 • 0 .,
I~~ II • 1lUDU/ BUSY

PI..:II I!U
CD

;;''SC"'
1_

I~Qi :, ~:- I:. I!~!. :- ~; u
~~~ ao:" ~- u: - ~cn ~~ MNQa. 

DC ... , CSW • MAL ... 010 VII) 

1::,:0 't:.a. 1;;-" I~ DATA ~~R 
PIW~T . :s ~~A • • '~o:" • ~: a u 

~~ 
DIJC I!U w, 1'11010 UR 

011 U_ 
0,...· 
I~ .... ! is:';'~';:._i' ftllll ADOIt 

~. ~ ~~ CHANNEL ..ROca.w 
DATA I!U nA~OI ~l- IOCIITY~IN 
INft •• ACI PeTCH LUDI!D ERROR 
(GIICIIIC ~~!sT oo.oATA TRANSPI!Il 
JtMDLU) EUUIG Ol-DEY STATUS 

10000MMAND 
TRANSFER 

en, ft. ca no& appUc:aIIle 

o 
2-48 



( For Extended I/o Devices Only 

(' 

Bit Meaning 

Zero 

Zero 

8 

9 

10 Last command exceeded time out value and was terminated. 

11-15 Zero 

16-23 Channel status (see Section 2.4.2.3) 

24-31 Controller/device status (see Section 2.4.2.3) 

2.4.2.3 Channel Status and Controller/Device Status for Extended I/O Devices 

CHANNEL STATUS 

CONTROLLER! 
DEVICE STATUS 

16 -
17 -
18 -
19 -
20 -
21 -
22 -
23 -

24 -
25 -
26 -
27 -
28 -
29 -
30 -
31 -

Bit Description 

Echo 
Post program controlled interrupt 
Incorrect length 
Channel program check 
Channel data check 
Channel control check 
Interface check 
Chaining check 

Busy 
Status modifier 
Controller end 
Attention 
Channel end 
Device end 
Unit check 
Unit exception 

2-49 



WORD 4 

Bits 0-31 

WORD 5 
Bits 0-7 

Bits 8-31 

WORD 6 

Bit 0 

Bit 1 

Bit 2 

Bits 3-7 

Bits 8-31 

WORD 7 

Bit 0-7 

Bits 8-15 

Record Length - This field is used by IOCS to indicate the actual 
number of bytes transferred during read/write operations. 

Reserved. 

I/O Queue Address - This field is set by IOCS to point to the I/O 
queue for an I/O request initiated from this FCB. 

No wait normal end action not taken 

No wait error end action not taken 

"Kill" command, I/O not issued 

Reserved. 

Wait I/O Error Return Address - This field is set by the user and 
contains the address to which control is to be transferred in the 
case of an unrecoverable error when control bits 1 and 3 of word 2 
are reset. If this field is not initialized and an unrecoverable error 
is detected under the above conditions, the user is aborted. 

Reserved. 

FAT Address - This field points to the File Assignment Table (FAT) 
entry associated with all I/O performed on behalf of this FCB. 
This field is supplied by IOCS. 

o 

Note: Words 8-15 are valid only if Bit 6 of Word 2 is set. 

WORD 8 

Bits 0-7 

Bits 8-31 

2-50 

Reserved. 

Expanded Data Address - Start address of data area for read or 
write operations. Must be a word address. 

(or) 

Expanded Data/Command Chain Address - Word address that points 
to thee data or co)mmmand chain list if using execute channel entry 0 .. 
point H.IOCS, 10 • 

I:: 
I", 



WORD 9 

Bits 0-31 

WORD 10 

Bits 0-31 

WORD 11 

Bits 0-31 

WORD 12 

Bits 0-31 

WORD 13 

Bits 0-7 

Expanded Quantity - Number of bytes of data to be transferred. 

(or) 

For GPMC devices which support data/command chaining: 
Expanded Number of Data/Command Chain Doublewords. If 
data/command chaining is desired (execute channel H.IOCS,10), 
this is used to indicate the number of data/command chain 
doublewords in the list. 

Expanded Random Access Address - This field contains a block 
number (zero origin) relative to the beginning of the disc file. It is 
the start address for the current read or write operation. 

(or) 

For High Speed Data (HSD) Interface requests in non-Execute 
Channel Program format, this word defines a device command. 

Status Word 1 - For extended I/O, these are the 32 bits returned by 
the SENSE command. 

(or) 

For communications adapter interface, external asynchronous 
interrupt (EAI) status if Bit 12 of Word 2 is set. 

Status Word 2 - Second status word as returned from the Extended 
I/O hardware. 

(or) 

For High Speed Data (HSD) Interface applications, this word 
contains status sent from the user's device. 

Reserved. 

2-51 



Bits 8-31 

WORD 14 

Bits 0-7 

Bits 8-31 

WORD 15 

No-Wait I/O normal completion service address return. This user 
service must be terminated by calling H.IOCS,34 (no-wait I/O end 
action return). 

(or) 

For High Speed Data (HSD) Interface applications, this address plus 
1 word is the location to which control is transferred on 
asynchronous notification. 

Reserved. 

No-Wait I/o error completion service address return. This user 
service must be terminated by calling H.IOCS,34 (no-wait I/O end 
action return). 

Reserved for I/O service expansion. 

2.4.3 Type Control Parameter Block (TCPB) 

The Type Control Parameter Block (TCPB) is used to allow I/O to and from the OPCOM 
console by setting up task buffer areas for messages output by a task and optional reads 
back from the console. 

Word o 11 12 13 

o Output quantity I Output data address 
(TCP.OQ) (TCP.OTCW) 

I Input quantity I Input data address 
(TCP.IQ) (TCP.ITCW) 

2 2 Reserved Console Teletype Flag Byte 
(TCP.CONF) 

Notes 

I. This bit is set to one. 

2. Bit 0 of this word is set if no-wait I/O. 

3. 

4. 

2-52 

Bit 31 of this word is set if operation in progress. 
(Note: Reset after post I/O processing complete.) 

If no input is desired, word I of the TCPB must be zero. 

31 

3 

() 

O~· 
I , 'I, 

, 

I~ 
i: 



2.4.4 Device Type Table (DTT) 

The Device Type Table (OTT) is a system resident structure used to identify device types 
which are configured in the system and their associated controllers. The OTT is built by 
the SYSGEN process and its entries are linked to their associated Controller Definition 
Table (COT) for identifying their controllers. 

Word 0 7 8 15 16 31 

o Device type Address of first COT entry of this type 
code (1) (OTT.COTA) 
(OTT.COO) 

Number of 
1 controller Flags (2) ASCII device mnemonic (3) 

entries (OTT.FLGS) (DTT.NAM) 
(OTT.CNT) 

Notes 

(1) For example, 01=any disC; 04=any magnetic tape; 08=any reader card; OA=any line 
(' printer. 

c 

(2) Used by Job Control and Cataloger to validate ASSIGN3 statements with bits 
assigned as follows. 

a - If set, entry of device address not legal 
1 - If set, entry of size or reel 10 required 
2 - If set, entry of reel ID required 
3-7 - Reserved 

(3) For example, X'4443' (OC)=any disc; X'4D54' (MT)=any tape 

2-53 



2.4.5 Controller Definition Table (COT) 

The Controller Definition Table (COT) is a system resident structure used to identify 
information 'required by handlers and the I/O processor for a specific controller. The 
COT is built by the SYSGEN process, one for each controller configured on the system. 
The COT identifies devices (UDTs) associated with the controller, the handler address 
associated with the controller, and defines other pertinent controller information. 

Word o 7 8 15 16 23 24 

o String forward address (CDT.FIOQ) 

I String backward address (CDT.BIOQ) 

2 Link priority Number of Class Reserved 
(CDT.LPRI) entries in list (CDT.CLAS) 
See Note 1 (CDT.IOCT) See Note 3 

See Note 2 

3 CDT index (CDT.INDX) Device type Interrupt 
code priority level 
(CDT.DTC) (CDT.IPL) 

Number units Number requests Channel Subaddress 
4 on controller outstanding number of first device 

(CDT.NUOC) (CDT.IORO) (CDT.CHAN) (CDT.SUBA) 

Program num ber 

() 

31 

,r. 
\ 

I 

5 if reserved Interrupt handler address (CDT.SIHA) or controller information 

6 

7 

8 

9 

". 

(CDT.PNRC) block (CDT.CIF) 

Flags UDT address of first device on controller 
(CDT.FLGS) (CDT.UDTA) 
See Note 4 

I/o status TI address (CDT.TIAD) or 
(CDT.IOST) SI if class 'F' (CDT.SIAD) 
See Note 5 

UDT address unit 0* (CDT.UTO) 

UDT address Unit 1 * (CDT .UT 1) 

23 T UDT address unit 15* (CDT.UTF) 

*Initialized by SYSGEN 

2-54 

~ 
i.---

J 
C"·" " 



(:' Notes 

1. Always zero (head cell) 

2. Number of entries in list (zero if none) 

3. Bits in COT .CLAS are assigned as follows. 

X'OO' - TLC line printer 
X'OI' - TLC card printer 
X'02' - TLC typewriter 
X'OD' - TCW type with bank bits 
X'OE' TCW type 
X'OF' - Extended I/O 

4. Bi ts in COT .FLGS are assigned as follows. 

- Extended I/O device 
- I/O outstanding (set by handler, reset by IOCS) 
- GPMC device 

o 
1 
2 
3 - Set if extended I/O initialization (INCH) has been performed for this 

4 
5 
6 
7 

channel 
- Set if 0 class (16MB GPMC) 
- "I/O outstanding (set/reset by H.XMT) 

If set, lOP controller (COT .IOP) 
- If set, controller malfunction (COT .MALF) 

5. Bits in CDT.IOST are assigned as follows. 

o - If set, 10Q linked to UDT (CDT.NIOQ) 
1 - Multiplexing controller 
2-7 - Reserved 

6. CDT .SIZE = 24W 

2-55 



2.4.6 Unit Definition Table (UOT) 

The Unit Definition Table (UDT) is a system resident structure used to identify device 
dependent information required by a handler for a specific device. The UDT is built by 
the SYSGEN process, one for each device configured in the system. During SYSGEN, 
each UDT is linked to its corresponding Controller Definition Table (CDT) and 
consequently its associated controller and handler. 

Word 0 7 8 15 16 23 24 31 

o 
1 

2 

3 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

UDT index (UDT.UDTI) CDT index LUDLCDTTl 
Unit status Device type Logical Logical sub-
(UDT.STAT) code(UDT .DTC) channel address (UDT.SUBA) 
See Note (1) See Note (2) number 

(UDT.CHAN) 

Address of Dispatch Queue entry of 
Reserved task which has device allocated if device is not shared 

(UDT.DQEA) 

Physical Physical sub- Sectors per Sectors per allocation 
channel address block unit (UDT.SPAU) 
number (UDT.PSUB) (UDT.SPB) 
(UDT.PCHN) or or 

Number Number lines per 
characters screen (UDT.LINE) 
per line See Note (4) 
(UDT.CHAR) 
See Note (3) 

Number of sectors 
Flags per track on Maximum byte transfer 
(UDT.FLGS) disc or global (UDT.MBX) 
See Note (5) line counter if a 

terminal (UDT .SPT) 

Total number of allocation units on disc or tab setting if a terminal (UDT. TAU) 

Sector size, on disc or a Number of heads on disc or a tab setting 
tab setting if a terminal if a terminal (UDT .NHDS) 
(UDT.SSIZ) 

Serial number if tape or removable disc (UDT.SERN) 

Peripheral time out value (UDT .PTOV) 

Reserved Address of context block (extended I/O) (UDT.CBLK) (UDT.XIOC) 

Bit flags See Note (6) (UDT .BIT2) 

Service interrupt handler adc!ress (UDT .SIHA) 

Device historical data address (UDT .HIST) 

Address of first IOQ linked to this device (UDT.FIOQ) 

Address of previous IOQ for this device (UDT .BIOQ) 

Link Priority Link Count Unit Status Reserved 
(UDT.LPRl) (UDT.IOCT) byte 2 

(UDT.STA2) 
See Note (7) 

2-56 

:'I.r~< 

"".p! 



( 

( 

Notes 

(I) Bits in UDT .ST AT are assigned as follows. 
o - If set, on line . 
I - If set, dual ported XIO disc 
2 - If set, allocated 
.3 - If set, in use 
4 - If set, system output unable to allocate 
5 - If set, shared device 
6 - If set, pre-mounted 
7 - If set, terminal (TSM) device 

(2) For example, 01 for any disc; 04 for any tape, etc. 

(3) For discs, contains number of sectors per block (UDT.SPB). For terminals, contains 
number of characters per line (UDT .CHAR). 

(4) For discs, contains number of sectors per allocation unit (UDT.SPAU). For 
terminals, contains number of lines per screen (UDT.LINE). 

(5) Bits in UDT .FLGS are assigned as follows. 
o - If set, extended I/O device 
I - If set, I/O outstanding 
2 - If set, rem 0\. able disc pack 
3 - If set, terminal user logged on 
4 - If set, auto-selectable for batch SLO 
5 - If set, auto-selectable for batch SBO 
6 - If set, auto-selectable for real-time SLO 
7 - If set, auto-selectable for real-time SBO 

(6) Bits in UDT .BIT2 are assigned as follows. 
o -If set, port is private; else switched. 
1 -If set, port is configured multi-drop. 
2 -If set, port has graphic capability. 
3 -If set, port is full duplex. 
4-7 - Reserved 

(7) Bits in UDT.STA2 are assigned as follows. 
o -If set, IOQ linked f rom this UDT. 
1 -If set, lOP device (initialized by SYSGEN) 
2 -If set, device malfunction 
3 -If set, operator intervention applicable 
4-5 Reserved 
6 -If set, cartridge module drive 
7 -If set, moving head disc with fixed head option 

2-57 



2. ... 1 File Pointer Table (FPT) 

The File Pointer Table (FPT) provides the linkage between the File Control Block (FCB) 
and the File Assignment Table (FAT). It also allows for multiple logical file code 
assignments to be equivalenced to the same FAT. The linkage to the FAT is performed 
at assignment. The linkage to the FCB is performed at opening. The FPT resides in the 
task's service area. 

Word 0 

o 

I 

2 

Notes 

Reserved 

Flags 
(FPT.FLGS) 
See Note 1 

Reserved 

7 8 

Logical file code (FPT .LFC) 

FCB address (FPT .FCBA) 

FAT address (FPT.F AT A) 

1. Bits in FPT.FLGS are assigned as follows 
o - If set, file dynamically allocated 

31 

1 If set, multiple FPT entries exist which point to the same FAT (i.e., 
n$ASSIGN4n) 

2 If set, FPT and corresponding FAT are allocated 
3 If set, FPT open 
4 If set, free to allocate 
5-7 Reserved 

2-58 

(.1\ 

'"i 

0.):' . 'J 



2.4.8 File Assignment Table (FAT) 

The File Assignment Table (FAT) is used to provide an association between a logical file 
code (lfe) and a file or device. It also coordinates access to the file or device referenced 
via lfc. The FAT is linked to the Unit Definition Table (UDT) and the Controller 
Definition Table (COT) when the file or device is allocated. 

Word 0 7 8 12 13 15 16 31 

o Status Access Sys CDT index (DFT .CDTX) 
(DFT.STB) (DFT.ACF) See 
See Note 1 See Note 2 Note 3 

Flags ASSIGN4 count UDT index (DFT.UDTX) 
(DFT.FLGS) (DFT.NAS) 

1 

See Note 4 

2 Reel ID (MTF.REEL) or starting disc address (DFT.SDA) 

3 Magnetic tape volume number (bits 0-7)(MTF.VOL) or current disc address 
(Bits 0-3I)(DFT .CDA) 

Number of physical blocks in file (DFT .BIF) 

5 Open file Blocking Buffer address (DFT .BBA) 
count 
(DFT.OPCT) 

Notes 

1. Bits in DFT.STB are assigned as follows. 
o - If set, file open 
1 If set, file opened read/write 
2 If set, permanent file 
3 _ If set, blocking buffer output active 
4 If set, file assigned magnetic tape 
5 If set, file assigned to disc 
6 If set, read only access 
7 If set, TSM associated FAT 

2. Bits in DFT.ACF are assigned as follows. 
If disc: 
0-1 Reserved 
2 If set, "$" read on SYC 
3-4 Reserved 

If tape: 
o - If set, mount message has been inhibited or tape is shared 
1 - If set, multivolume tape 
2 - If set, mount message has been output 
3 - If set, tape at EOT 
4 - If set, tape at BOT 

2-59 



3. Bits 5-7 in OFT .ACF will contain one of the following values. 
Value=O 
Value=1 
Value=2 
Value=3 
Value-4 

- Not a system file 
SYC file 
SGO file 
SLO file 
SBO file 

4. Bits in DFT .FLGS are assigned as follows. 
o - Blocking buffer present 
1-3 Reserved 
4 If set, FAT sJ)ace available 
5 If set, TSM 1/0 (task is swappable) 
6-7 Reserved 

2.4.9 I/o Queue (IOQ) 

The I/O Queue (IOQ) is used to identify information required to process and queue a 
specific I/O operation. 10Q entries are allocated for processing I/O requests. They are 
linked to the File Control Block (FCB) and Controller Definition Table (COT) at the start 
of operation code processing for an operator request. "Also included is information for 
error processing, transaction identifier, control information, etc. The 10Q entry is 
variable in length and allows for command and data chaining for supporting extended I/O. 

2-60 

G"~.~\ i ,I 

o 



( 

(-'~ 
-, / 

Word 0 7 8 15 16 23 24 31 

o 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

String forward address (lOQ.SF A) 

String backward address (IOQ.SBA) 

Queue priority I/o type Channel number Sub-address 
(lOQ.PRJ) (lOQ.TYPE) (lOQ.CHNO) (lOQ.SUBA) 

Reserved (IOQ.RTN) 

PSOI of task interrupt routine (IOQ.PSO) See Note 1 

PS02 of task interrupt routine 

Status FCB or TCPB address 
(lOQ.STAT) (lOQ.FCBA) 
See Note 2 

Program COT address 
number (lOO.COTA) 
(lOQ.PRGN) 

Handler function word 1 (lOQ.FCT 1) 

Handler function word 2 (lOQ.FCT2) See Note 3 

Handler function word 3 (lOQ.FCT3) See Note 4 

Handler function word 4 (lOQ.FCT4) 

32-Bit flag word (IOQ.FLGS) 
See Note 5 

FAT address (IOQ.FATA) 

Number of bytes transferred Number of words in OS buffer 
(IOQ.UTRN) See Note 6 (lOQ. WOSB) See Note 6 

OS buffer address (IOQ.FBUF) 

User's buffer address (IOQ.TBUF) 

I/O returned status word 1 (lOQ.IOST) 

I/o returned status word 2 (lOQ.IST I) See Note 7 

I/o returned status word 3 (IOQ.IST2) See Note 8 

UDT address (IOQ.UDT A) 

Control information from word 2 of FCB (lOQ.CONT) 

Address of context block (extended I/O) 
(IOQ.CBLK) 

Mode bits Reserved Number of words extra in this 
(extended I/O) 
(lOQ.MODE) 

queue entry (IOQ.XTRA) 

See Note 9 or 
Word address of 
set mode bits 
(lOQ.MOWD) 

Device inop buffer address (for I/O error processing) (lOQ.INOP) 

First word of dynamic lOCO list (extended I/O)(IOQ.IOCD) See Note 10 

2-61 



Notes 

1. For no-wait I/o this field is set to point to the I/o post processing routine 
(S.IOCS 1). When I/o completes, control will be passed to this service. 

2. Bits in IOQ.ST A T are assigned as follows. 
o - If set, I/O queue is active (Note: Reset by device handler when physical I/o 

transfer completes.) 
I - If set, Sense command was issued on behalf of this I/o request (extended 

I/O) 
2 - If set, Error retry to be issued (rezero and retry entire lOCO list) 

(extended I/O) 
3 - If set, Sense command is to be issued on behalf of this I/O request 

(extended I/O) 
1+ - If set, Read ECC needs to be issued (extended I/O) 
5 - If set, Read ECC was issued (extended I/O) 
6 - If set, Error retry to be issued (retry entire lOCO list) (extended I/O) 
7 - If set, ECC correction performed, continue processing lOCO list 

(extended I/O) 

3. For extended I/O devices, IOQ.FCT2 contains the 21+-bit virual address of the data 
(or) IOCl. (Bits 0-7=0) 

o 

1+. For extended I/O devices, IOQ.FCT3 contains the adjusted byte transfer count in (';, 
bits 0-31 (maximum is 512K bytes). "U" 

5. Bits in IOQ.FlGS are assigned as follows. 
0 -
1 -
2 -
3 -
1+ -
5 -
6 -
7 -
8 -
9 -

10 -
11 -
12 -
13 

11+ -
15 -
16 -
17 -
18 -
19 -
20 -
21 -
22 -
23 -
21+ -

2-62 

. ------- - - .. _._-

If set, multiplexed controller 
If set, OPCOM console request 
If set, TCW has been absolutized 
If set, IOQ will be linked to the UDT 
If set, deallocate OS buffer 
If set, extended I/O 
If set, error found 
If set, system console queue 
If set, data move required (OS to user buffer) 
If set, rewind command in lOCO list for magnstic tape or Reserve 
command in lOCO list for disc (extended I/O) 
If set, non-execute channel read command (extended I/O) 
If set, non..execute channel write command (extended I/O) 
If set, special handler post processing required (Handler EP6) 
H.CTOO has been called with an FCB, not with a TCPB (i.e., not via 
H.IOCS, 11+) 
If set, special class IE' device I/O buffer in use 
If set, terminal input 
If set, terminal output 
If set, task swappable during I/O 
If set, release command in lOCO list for disc (extended I/O) 
No-wait I/O (not TSM) 
If set, I/O restart entry 
If set, nondevice access I/O performed 
"Kill" command issued for this I/O request 
If set, execute channel by handler (extended I/O) 
If set, user privileged 

o 
I " ,:' 



( 

25 
26 
27 

28 
29-31 

- D class controller (GPMC) only) 
- Physical I/O performed on behalf of a user requesting blocked I/o 
- Set by XIO disc handler when a reserve is issued to a dual port disc 

already reserved by an opposing CPU 
- If set, priority override to be issued (extended I/O) 
- Reserved 

6. For extended I/O devices, 10Q.UTRN is a full word (Bits 0-31) and 10Q.WOSB is not 
applicable. 

7. For extended I/O devices, 10Q.IST I is initialized to the start address within the I/O 
queue for any dynamic 10CD's. 

8. For extended I/O devices, IOQ.IST2 is initialized to the stop address within the I/O 
queue for any dynamic 10CD's. 

9. Mode bits are peculiar to each device. 

10. IOCD's are built and stored dynamically. Starting at this word in the I/o queue, as 
many IOCD's will be chained as required in case of discontinuity due to program 
loading. This cell contains the absolute data (or) JOCL address associated with the 
I/o request initially. 

2-63 



2.4.10 Blocking Buffer Control Cells 

Blocking buffer control cells are built by IOCS for blocked files as the file is written and 
they become· a permanent part of the file. This information is then used by IOCS as the 
file is read to unblock individual records within the file. 

Blocking Buffer Control Word 

Word 0 11 12 

o Buffer status (1) Next read/write address 

Notes 

(1) Bits in this field are assigned as follows. 
o - Reserved 
1 - Set if buffer is empty 
2-3 - Reserved 
4 - Set if buffer is free to allocate 
5-11 - Reserved 

Record Control Bytes 

o 7 8 15 16 

Status bits Byte count Status bits 
last record (1) last record this record(2) 

Notes 

(1) Bits in this field are assigned as follows. 
o - Set if end-of-file 
1 - Set if beginning of block 
2 - Set if end of block 
3-7 - Reserved 

(2) Bits in this field are assigned as follows. 
o - Set if end-of-file 
1-7 - Reserved 

31 

23 24 31 

Byte count 
this record 

(3) For the last record in a block, "status bits this record" and "byte count this record" 
are omitted. 

2-64 

o 

.0 



2.4.11 lOP Channel Definition Table (CHT) 

The Channel Definition Table (CHT) is a system resident structure applicable only to F
class extended I/o devices. The CHT is built by the SYSGEN process, one for each 
extended I/o channel configured in the system. It serves as a register save area, 
contains the interrupt context block associated with extended I/O protocol, identifies 
Controller Definition Tables (COTs) linked to the channel, and defines other pertinent 
channel information. 

Word 0 7 8 15 16 

o 
7 

8 

9 

Register save area (CHT.REGS) (See Note 1) 

Old PSDl/Old PSD2 (CHT.OPSD) 

New PSDl/New PSD2 (CHT.NPSD) 

JOCL Address (CHT .IOCL) 

Status Address (CHT .ST AD) 

Flag Word (CHT.FCGS) 

23 24 31 

10 

11 

12 

13 

14 

15 Channel Interrupt Channel Address* Channel Spurious Interrupt 

16 

17 

31 

32 

33 

34 

35 

36 

39 

Notes: 

Priority* 
(CHT.IPL) 

(CHT.CHAN) Count (CHT .SPUR) 

COT Address Unit 0* (CHT.COTO) (See Note 2) 

COT Address Unit 1* (CHT .CDT 1) (See Note 2) 

COT Address Unit 15* (CHT .COTF) (See Note 2) 

lOP Status Doubleword (CHT .STOW) (or) 
Subaddress Real lOCO Address (CHT.RIOA) 
(CHT.SUBA) 

Channel Status Cont/Device Residual Byte Count 
(CHT.CHST) Status (CHT .COST) (CHT.RBC) 

Address of H.IOPXx Exit Entry Point (CHT.EXIT) (See Note 3) 

Address of H.IOPX Initialization Entry Point (CHT .INCH) (See Note 4) 

Reserved 

* Initialized by SYSGEN 

1. CHT .REGS must begin on a register file boundary. 

2. These fields contain the addresses of the COT entries for controllers connected to 
(' the corresponding lOP. Entries for unimplemented controllers will be set to zero. 

2-65 



3. CHT.EXIT contains the address of the exit procedure in the corresponding lOP 
Interrupt Executive Program. 

4. CHT.INCH contains a SIO instruction used to initialize the corresponding lOP 
channel. 

2.5 Memory Management 

2.5.1 Memory Pool Management 

Memory Pool is an area of main memory beginning at the high-address end of resident 
MPX. Its size is specified at SYSGEN and it occupies an area up to the next map block 
boundary. Areas within Memory Pool are allocated in multiples of two words. Free 
areas are linked together; used areas are not linked and the entire area is useable. 
C.SBUF contains the address of the first free area within Memory Pool or equals zero if 
no free areas exist. C.POOl contains the starting address of Memory Pool which begins 
on a two word boundary. 

C.SBUF 
(contains address 
of first free 
area) 

2-66 

= 

Memory Pool 

Address of next free area or 
zero if none 

Number of words in this area including 
two word header 

A vailable Area 

Used Area 

C··n :;1 



(-' 

(~' 

2.5.2 Memory Allocation Tables 

The Memory Allocation Tables contain the current status of each 8K W map block of main 
memory that is present in a configuration. The address of this table is contained in 
C.MATA. 

Each Memory Allocation Table entry consists of a flag byte representing the status of a 
configured map block. If C.MACH equals a 32/7x, there is one flag byte for every 8K W 
map block configured. If C.MACH equals a CONCEPT/32, there is one flag byte for 
every 2KW map block configured. The flag bytes are positional, relative to the first 
block of the configured class of memory. 

o 7 8 15 16 23 24 

MEM.CNT MEM.SMN 

MEM.STAT MEM.STAT MEM.STAT MEM.STAT 

MEM.STAT MEM.STAT etc. etc. 

1. MEM.CNT - the number of map blocks configured in the system. 

2. MEM.SMN - starting map number for memory table. 

3. Flag bits in MEM.ST A T are defined as follows. 

MEM.ALL 0 
MEM.SHR I 
MEM.PRO 2 
MEM.MAL 3 
MEM.CON 4 
MEM.TYP 5 
MEM.CLI 6 
MEM.CL2 7 

If set, map block is allocated 
If set, map block is shared 
If set, multiprocessor shared 
If set, malfunction exists 
If set, non present 
If set, semiconductor 
Defined as follows 
Defined as follows 

Bit 6 Bit 7 

0 0 
0 1 
1 0 
1 1 

Class 

E 
H 
5 

Undefined 

31 

2-67 



2 • .5.3 Shared Memory Table (SMT) 

Each entry in the Shared Memory Table (SMT) defines a shared memory area, i.e., 
CSECT, Global Common or Datapool. The number of entries in the SMT is established by 
the SYSGEN SHARE directive. 

C.SMT A contains the address of the SMT; C.SMTN contains the number of entries in the 
SMT. Each entry is doubleword bounded. 

2-68 



(-' 

(~ 

Shared Memory Table 

o 7 8 15 16 23 24 

0 SMT.NAME (Partition name) 

1 

2 SMT.TNUM (Ownername or task number) 

3 

4 SMT.FLAG SMT.ACNT SMT.UCNT 

5 SMT.MAPN SMT.MAPS SMT.MTY SMT.QUE 

6 SMT.PAGE SMT.PTOT 

7 SMT.SCTN SMT.PSWD 

8 SMT.UDTI SMT.SCTA 

9 SMT.IND Reserved 

10 SMT.MIDL SMT.MIDL+IH 

11 Map Image Descriptor List 

12 I 
13 

14 

For 32/7x provides I For CONCEPT /32 provides 
up to 96 KW up to 152 KW 

I 
15 I 

I 
Bits in SMT.FLAG are assigned as follows. 

SMT.CSCT 0 
SMT.STCM 1 
SMT.DYCM 2 
SMT.SWBL 3 
SMT.OUTS 4 
SMT.BLDG 5 
SMT.RO 6 
SMT.PO 7 
SMT.PRSW 8 
SMT.LOCK 9 

Entry is a CSECT area 
Entry defines a static common 
Entry defines a dynamic common 
Partition is swappable 
Partition is outswapped 
Shared memory table is in unstable state 
Partition is read only protected 
Partition has password limited access 
Set if previously outswapped (CSECTS only) 
Set if user requested no auto DEQUE 

SMT .QUE - Number of tasks queued to this table 
SMT.ACNT - Number of tasks sharing this memory area 
SMT .UCNT - Number of tasks sharing this area that are not outswapped 
SMT.MAPN - Number of map image descriptors 

'31 

2-69 



SMT .MAPS - Starting map register number 
SMT .MTY - Memory type 
SMT .INO - Shared memory table index 
SMT.PAGE - Starting 512 word page number (static case only) 
SMT.PTOT - Total numQer of pages (static case only) 
SMT .SCTN - Number of sectors in swap file 
SMT .PSWO - Password 
SMT.UOTI - UOT index of swap file 
SMT .SCT A - Sector address of swap file 
SMT.MIOL - Beginning of map image descriptor list 

2-70 



( 

Address Generation Using the MPX 8KW Mapping Scheme 

Instruction 

Zero 
Extended Address 

.Lj 3] 
~ 

Don't 
Care 

Primary Map Primary Map 
Block 0 Block 1 , 

l1.ap'Image 
Descriptor 
List 

(Primary Map) 
I 

Primary Map Primary Map 
Block 14 Block 15 

Extended Extended 
Operand r-1ap Operand Hap 
Block 16 Block 17 

Map 'Image 
Descriptor 
List 

(Extended Operand 
I 

Map) 

Extended Extended 
Operand Map Operand Map 
Block 30 Block 31 

(X) 

Index 

8 31 
'-----v 

.. + ... 

l 
Logical Address 

I 

I ....... 

h 
I 

1 

1>-
L 

~ 

I ....... 

~_IL 1. t Prima TV Map Addition or - - --., - -, 
I 

~~1 
l.t __ ff/ t ~ B' 

!Ex~ 
~d ' 

tended Ma~ _/'-...... _----, .r-__ A.~--\ 
dition I Physical i Address 

8 16 17 31 

2-71 



(
st DOE is always Swapr 

C.MPL 
I W(C. MSD) BPIX 
2 DOE.MSD 
3 DOE.MSD 

1 

,...--__ Number oC Maps in the 0/5 

C.MSD 
C.MIDL 

C.DOE 

= 0 iC 'F' Class 
Swap Devic:e 

MIDL 

Poin 
Swapped 
Task TSA 

C.MIDL 
4000 4001 
4002 4003 

o 0 

C. TSAD 

T.MIDL 

32 HW 

Y = Number oC 
Maps in Task 
to be Out/In 
Swa ed 

/ ~~~ ~T_.M __ E_M_L~ ____ ~ 

I DOE.MSD 

MSD = Map Segme t 
Descriptor 

MPL = Master Proc ss 
List 

DOE = Dispatch Oueu 
Entry 

MIDL = Map Image De
scriptor List 

MEML = Memory Attribut 
List 

TSAD = Current Task TSA 

Last 
DOE 

A = Number oC 

Maps in the 
Task 

MPX-32 Mappinq Structure for 32/7x 

2-72 

32 HW 

CODE 

C. TSAD 

32 HW 

CODE 

C. TSAD 

T.MIDI-

32 HW 

T.MEML 

32 HW 

CODE 

0", 
.' 



-
~"O 
UJ ... 
IG 0 

E-4 3 

0 0 

1 

1 2 

3 

2 
4 

(j 
5 

3 6 

7 

N 

( "'" 
. , 

(C. MIDL) 
8000 8001 
8002 800l 
8004 8005 
8006 8007 
8008 8009 
BOOA BOOB 
BOOC 800D 
800E 800F 
8010 8011 

(C.MPL) 8012 8013 

C.MIDL 

Zero 

(C.TSAD/when current) 
Swapper TSA 

1 S~eEi!l_C!s!_ 

Zero (J .SWAPR) J.SWAPR is 
~----~~~--~ special case. 

See 
~----~~~~~documentation 

T.MIDL 

T.MIDL 

T.MIDL 

T.MEML - - -

DOE.MSD is maintained 
for compatibility only 

(C.MSD) 
I # Map I C.MIDL 

· 
J. S~'1APR DOE 
Scecial Case 1 

* Mac I T.MIDL 

(C.TSAD/when current) (C DOE+2*DOE.SIZE) · 

" 

of maps 
in Task ~l 

T.MIDL (Task N) 

Task A TSA 

T.MI::>L 

T.MEML - - -

(C.TSAD/when current) 

Task B TSA 
T.t-1IDL 

T .tmr·iL 

MPX-32 Map Structure for 32/27 

2 

3 

Task A DOE 

* Map I T.MIDL 

(C DOE+3*DOE SIZE) · . 
Task B DCE 

# r.1ap I T.MIDL 

2-73 



2.6 Disc Management 

The following variables contain the definition of the System Master Directory (SMD). 

C.SMDUDT 

C.SMDD 

C.SMDS 

UDT index of disc 
~ontaining SMD 

. Must be 
zero 

Must be 
zero 

Startmg diSC address 
(Starting Block Number) 

Length in 192-word 
blocks 

INumber of entries in SMD 

Variables used by H.FISE for gating are as follows: 

C.FGONR 

C.FSFLGS 

IDQE Address of FISE gate owner 1 

Bit 0 = FISE busy 
Bit I = gated externally 
Bit 2 = temporary allocation if set· 

= permanent allocation if reset 
Bits 3-7 = Reserved 

2.6.1 - SMD Entries 

SMD.SIZE is equated to the SMD entry length. 

2-74 

0 



( 

Word 

o 
1 

2 

3 

4 

5 

6 

7 

Word 

0 

1 

2 

3 

4 

5 

6 

7 

Notes 

Disc File SMD Entry 
o 7 8 15 16 31 

File name (SMD.AFN) 

File type Start disc address (starting 
(SMD.FTYP) block number) (SMD.SBN) 

File indicators Length in 192-word blocks 

(SMD.FIN) (SMD.BIF) 

User name (SMD.AUN) 

Compressed password UDT index (SMD.UDTX) 
(SMD.PWD) 

Reserved (SMD.NU) 

Me!Tlory Partition SMD Entry 
o 7 8 15 16 31 

File Name (SMD.AFN) 

Starting logical page /I Starting physical page /I 
(SMD.SLP) or zero (SMD.SPP) 

File indicators Memory class Length in pages 

(SMD.FIN) (SMD.MC) (SMD.LIP) 

Reserved 

Compressed password Reserved 
(SMD.PWD) 

Reserved (SMD.NU) 

1. File type (SMD.FTYP) specifies a two-character hexadecimal code which is output by 
the File Manager in ASCII. Default is 00. 

ED 
EE 
FE 

- EDITOR SAVE 
- EDITOR STORE 
- EDITOR Workfile 

2-75 



:: 
,'r 

FF 
BA 
CA 
01-99 

- SYSGEN-created 
- BASIC (unused) 
- Cataloged Load Module 
- Available for Customer Use 

2. Bits in SMD.FIN are assigned as follows. 

o - If set, permanent file is active 
1 - If set, SYSGEN memory partition 
2 - If set, File Manager (do not save) 
3 - If set, fast file 
4 - If set, collision mapping 
5 - If set, non-SYSGEN memory partition 
6 If set, password is required to write 
7 - If set, password is required to read/write 

2.6.2 Disc Allocation Map Table 

C.DAMAPT contains the address of the Disc Allocation Map Table. C.DALMAP contains 
the address of the Disc Allocation Bit Map Buffer. C.DAMCST contains the address of 
the Disc Allocation Map Checksum Table. Refer to Section 3.7.39 for further details. 

o 

1 

2 

3 

Disc Allocation Table 

o 7 8 15 16 23 24 31 

Number of words in bit map UDT index of the disc described by 
(DAT.NWDS) this map (DAT.UDTO 

Flags I Starting block number of allocation map (192W)(DAT.SBM) 

Number of 192W blocks in allocation map (DAT.NBM) 

Number of 192W free blocks in unit (DAT.BFU) 

This table contains an entry for each disc defined to the system as follows: 

Word 0 

Word 1 

2-76 

Bytes 0-1 
Bytes 2-3 

Bit 0 

Bits 1-7 

Bytes 1-3 

Number of words in map 
UDT index of the disc described by this map 

Resident flag - set if map currently in memory, reset if map on 
disc 

Reserved 

Starting block number of map 
c' 



( 

( 

(\ 

Word 2 

Byte 0 Reserved 

Bytes 1-3 Length of map in 192W blocks 

Word 3 

Number of 192W blocks currently available for allocation on this disc 

The end of the table is indicated by Word 0 being zero. 

The Checksum Table contains one word for each Disc Allocation Table entry. SYSGEN 
initializes the Checksum Table so that each word has bit 0 set and bits 1-31 are zero. 

2.7 Batch Processing 

2.7.1 Spooled File Directories 

Spooled file directories contain definitions of System Control (SYC), System Listed 
Output (SLO), and System Binary Output (SBO) files. The Spooled Input Directory 
(M.SID) contains definitions of SYC files. The Spooled Output Directory (M.SOD) 
contains definitions of real-time SLO and the SBO files and the definitions of batch SLO 
and SBO Link Files. Each job has an SLO Link File and and SBO Link File which contain 
definitions of the job's SLO and SBO files respectively. Entries in M.SID and M.SOD are 
linked by priority. Entries in SLO and SBO Link Files are sequential. A header entry 
occupies the first 12 words of the M.SID and M.SOD files. The header entry is followed 
by entries which contain actual file definitions. Unused entries must be zeroed. 

2-77 



2-78 

Spooled 
Input 
Oi rec
tory 
(M. S 10) 

SYC 
Fi les 

Organization of Spooled Files 

SMD 

!C -::::> 
....... .--
~.SIO ....... 

M. SC:O ...... ...... 

"- ....... 

Spooled~ ____________________ ~ 

Output 
Oi rec-
tory 
(M. SC:O) 

Real-
Time 
SLO de 
SBO 
F i I es 

r5 ~ 
,- ......... 

Batch 
SLO 
Link 
Fi les 

.". 

Batch 
SLO 
Files 

i'" 

Batch 
SBO 
Link 
F i I es 

Batch 
SBO 
Files 

o 



( 2.7.2 

T 
Header 
Entry 

System Input (M.SID) and System Output (M.SOD) Directory Formats 

Word 0 15 16 

o 
1 
2 
3 
4 

Index to first entry (0 
Index to last entry (1) 
Priority of first entry I Priority of last entry 
Last assigned job sequence number in binary (2) 

R ese ved r 

Job name or real-time task's sequence number (SD.NAME) 

M.SID: owner name from $JOB (SO.DEST) 
M.SOD: assigned destination task's pseudonym (SD.DEST) 
M.SID: Reserved 

31 

File 
Defini
tion 
Entry 

11 
o 
1 
2 
3 
4 
5 
6 
7 
8 
9 

M.SOD: pseudonym of current destination processil1K task (SD.CURR)(3) 

Notes 

10 
11 

Job sequence number in ASCII (SD.JSEQ) 
Disc space definition of SYC, real-time SLO/SBO, or batch 
SLO/SBO link file (SD.DEF)(4) 

Priority (SO.PRJ) I Flaes (SD.FLAGS)(5) 
Index to next entry (SD.INDEX)(l) 

(l) Bits 0-7 contain the entry number of the M.SID/M.SOD entry relative to the 
beginning of the 192-word block that contains the entry. This value must be 
shifted left two places to obtain an index relative to the beginning of the 192-
word block. Bits 8-31 contain the block number relative to the beginning of 
M.SID/M.SOD of the 192-word block that contains the entry. 

(2) M.SID only. Unused in M.SOD. 

(3) For M.SOO entries for jobs not completed, contains "BUILDING". 

(4) The format of disc space definitions is as follows. 

Word 

o 

I 

2 

o 7 8 15 16 

1 UDT index 

Starting disc address in 192-word blocks 

Length in 192-word blocks 

31 

2-79 



(5) 

2.7.3 

Word 
o 
1 
2 

o 
1 
2 
o 
1 
2 

Notes 

Bits in SO.FLAGS are assigned as follows: 
o Set if M.SOO entry is for a batch job (SO.BA TCH) 
1 Set if M.SIO entry is for sequential job (SO. SEQ) 
2 Set if M.SOO entry is real-time and output is complete (SO.COMP) 
3 Set if M.SOO entry is for SBO <SO.SBO) 
4-15 - Reserved 

Link File Formats (Batch SLO and 580) 

Oisc space definition of job's first SLO/SBO file 1 

Oisc space definition of job's last SLO/SBO file 1 

Must be zero 

1. The format of disc space definitions is as follows. 

Word 0 

o 

1 

2 

2.7.4 Job Table 

7 8 15 16 

I UOT index 

Starting disc address in 192-word blocks 

Length in 192-word blocks 

31 

The Job Table contains an entry for each currently active job. C.JOBA contains the 
memory address of the Job Table. C.JOBN contains the total number of entries in the 
Job Table. 

2-80 

o 



( Job Table Entry 

Word o 7 8 15 16 31 

0 
Job name from $JOB or contains zero if entry is 
unused (JOB.NAME) 

1 
2 

Owner name from $JOB (JOB.OWNR) 
3 
4 

SLO destination task pseudonym or file name (JOB.SLOD) 
5 
6 

User name of SLO destination file (JOB.SLUS) 
7 
8 

Password of SLO destination file (JOB.SLPW) 
9 
0 

SBO destination task pseudonym or file name (JOB.SBOD) 
1 
2 

(- 3 
4 

User name of SBO destination file (JOB.SBUS) 

Password of SBO destination file (JOB.SBPW) 
5 
6 
7 User name from SUSERNAME (JOB.UNAM) 
8 

PSD at batch task abort (JOB.ABAD) 
9 
0 
1 Batch task abort code (JOB.ABT) 
2 
3 T .BIAS at batch task abort (JOB.BIAS) 
4 Sequence II of task processing this job (JOB. TSKP) 
5 Sequence II of current batch task if any (JOB. STEP) 
6 Job sequence number in ASCII (JOB.SEQ) 
7 Cumulative iob CPU time (JOB.XTIM) 
8 Job start time {JOB.STIM} 
9 Job end time (JOB.NTIM) 
0 Program option word (JOB.PGOW) 
1 
2 SGO file definition (JOB.SGO) 1 
3 
4 SGO next write address (JOB.SGAD) 
5 

(~ 
6 
7 
8 

SYC file definition (JOB.SYC) 1 

SYC next read address (JOB.SY AD) 

-2-81 



Word 0 7 8 15 16 31 

M.SOD SLO index (JOB.SLIX) 2 

SLO link file definition (JOB.SLLF) 1 

Number of SLO links allowed (JOB.SLAL) 
Number of SLO links currentlY" output iJOB.SLCR) 
M.SOD SBO index (JOB.SBIX) , 

SBO link file definition (JOB.SBLF) 1 

Number of SBO links allowed (JOB.SBAL) 
Number of SBO Im~s currently output (JOB.SBCR) 
Flags (JOB.FLGS) -' 

9 
o 
1 
2 
3 
4 
5 
6 
7 
8 
9 
o 
1 
2 Conditional job control flags (JOB.COND) Compressed key from SUSERNAME 

(JOB.KEY) 
3 JOB.SCAN* Job priority 

(JOB. PRJ) 

*Last scan column for Job Control statements (JOB.SCAN) 

Notes 

1. The format of all file definition items is as follows. 

Word o 7 8 15 16 31 

o I UDT index 

1 Starting disc address in 192-word blocks 

2 Length in 192-word blocks 

2. M.SOD indexes are formatted as follows. 

o 7 8 31 

Entry number I 192-word block number 

The "entry number" is relative to the beginning of a 192-word block and must be 
shifted left two positions to obtain an index relative to the beginning of the block. 
The 192-word block relative to the beginning of M.SOD that contains the entry is 
contained in the "block number" field. 

2-82 



3. Bits in JOB.FLGS are assigned as follows 
o - Set if SLO destination is null (JOB.SLNO) 
1 - Set if SLO destination is a permanent file (JOB.SLPF) 
2 - Set if SBO destination is null (JOB.SBNO) 
3 - Set if SBO destination is permanent file (JOB.SBPF) 
4 - Set if operator REMOVE request for this job (JOB.RMOV) 
5 - Set if SLO link file is allocated for job (JOB.JLL) 
6 - Set if SBO link file is allocated for job (JOB.JBL) 
7 - Set if SGO file is allocated for job (JOB.JGA) 
8 - Set if Job Control task has completed processing of this job (JOB.DONE) 
9 - Set if $JOB statement has been processed by Job Control task 

(JOB.JBCD) 
10 - Set if job is sequential (JOB.SEQL) 
11 - Set if previous batch task aborted or was deleted (JOB.ABDE) 
12-31 - Reserved 

2.8 Terminal Services 

2.8.1 Terminal Line Buffer 

The terminal Line Buffer is used to buffer terminal input and output. It is allocated from 
memory pool for each on-line task when the terminal is opened. The size of the buffer is 
determined by the contents of UDT.CHAR. The buffer is pointed to by T.LINBUF. It is 
deallocated when the terminal is closed. 

Word 

o 

I 

2 

3 

nW 

(length 
may 
vary) 

Notes 

o 

Buffer 2 
length 

7 8 15 16 23 24 31 

Last argument 1 
found by scanner 

Cursor 3 Field 4 Field 5 
index delimiter size 

1. Doubleword containing last argument found by syntax scanner. It is left justified 
and blank filled. 

2. Byte containing length of line buffer. 

2-83 



3. Cursor index for next call to scanner. Relative to word 0 of line buffer. 

4. The delimiting character previously found by scanner. 

5. Number of significant characters in previous argument found by scanner. 

Word o 

o 

Terminal I/O Buffer Pool Entry 

UDT index of terminal 
allocating this buffer 
or zero if free 

15 16 

I/O Buffer (C.TWID 
contains length in 

bytes) 

3! 

~ ~ 
I I 

2.9 MPX-32 Load Module Format 

See Chapter 6 for detailed description. 

2.10 Resource Requirement Summary (RRS) Entries 

ASSIGN! fc=permanent file 

o 7 8 15 16 3 i 

Type (1)(RRS.FLGS) Logical file code (fc) (RRS.LFC) 

Password (2) Permanent f i Ie name ( 3 ) 

-

ASSIGN2 fc=system file (SLO or SBO) 
o 7 8 15 16 31 

Type (1)(RRS.FLGS) Logical file code (f c) (RRS.LFC) 

Reserved "SLO" or "SBO" in ASCI I (RRS.SFC) 

Reserved Size in 192-word blocks (RRS.SNO) 

2-84 

o 



ASSIGN2 
( 0 

Type 

fc=system file (SOO or SYC) 
7 8 

(1)(RRS.FLGS) Logical file code 

15 16 

(fc) (RRS.LFC) 

Reserved "SOO" or "SYC" in ASCI I (RRS.SFC) 

Reserved 

AS SIGN3 fc=device 
0 1 7 8 15 16 17 23 

Type (l) 
(RRS.FLGS) 

Logical f i Ie code (fc) (RRS.LFC) 

4 Device type Volume 5 Channel 
code (RRS.DT) number number (RRS .CN) 

(RRS.VN) 

For disc, size in 192-word blocks. 

24 

Subaddress 
(RRS.SA) 

For magnetic tape, the reel identifier in ASCII. (RRS.REEL) 

ASSIGN4 fcl=fc2 
o 7 8 

Type (I)(RRS.FLGS) Logical 

Reserved Logical 

Reserved 

file code (fcl) (RRS.LFC) 

file code (fc2 ) (RRS.LFC) 

2-85 

31 

31 

31 



Notes 

(1) Bits in RRS.FLGS are assigned as follows. 

o - Set if ASSIGN 1 type 
1 - Set if ASSIGN2 type for SLO or SBO 
2 - Set if ASSIGN2 type for SGO or SYC 
3 - Set if ASSIGN3 type 
4 - Set if ASSIGN4 type 
5 - Set if "unblocked" is specified for an ASSIGN 1 or ASSIGN3 type 
6 - Mount message inhibited 
7 - System file allocation 

(2) Compressed equivalent of eight-character password or zero if none. 

(3) The characters in the name are in six-bit code where hexadecimal values 0 
through 3F correspond to ASCII values 20 through 5F. 

(4) Bit zero of this word is set if a value is present in the channel number field. 

(5) Bit 16 of this word is set if a value is present in the subaddress field. 

2.11 Job Accounting 

The job accounting facility indicates elapsed time and CPU time for all jobs. It 
optionally collects job information on an accounting file used by TSM. 

The accounting file is not blocked by MPX-32. However, J.ACCNT blocks the file in a 
special format which is 12 entries per 192 words of physical record space, with each of 
the 12 entries containing 16 words. 

Default project names/numbers for accounting purposes can be established with the 
M.KEY utility (see MPX-32 Reference Manual Volume 2, Chapter 7). 

For use of wild card characters, see the OPCOM LIST command in the MPX-32 
Reference Manual Volume 1, Chapter 4. 

2-86 



C 

( 

Word 0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

Words 0-1 

Words 2-3 

Words 4-5 

Words 6-7 

Words 8-9 

o 31 

Owner name 0-8 character ASCII) 

Project 0-8 character ASCII) 

Date (mm/dd/yy) (ASCII) 

Log-on time (hh/mm/ss) (ASCII) 

Elapsed time (hh:mm:ss) (ASCII) 

CPU time (hh:mm:ss. tht) (ASCII) 

Raw CPU time (Binary) 

Origin 0-8 character ASCII) 

Owner name - The 1-8 character owner name associated with the job. 

Project - The 1-8 character alphanumeric project name/number 
associated with the job. 

Date - The numeric date associated with the job. 

Log-on time - The numeric time of day on the 24-hour clock the user 
signed on the system. 

Elapsed time - The total time (24-hour clock) the user was signed on 
the system. 

Words 10-12 CPU time - The total CPU execution time for the job (formatted). 

Word 13 

Word 14-15 

Raw CPU time - The actual number of 38.4 microsecond intervals of 
CPU time for the job (unformatted equivalent of CPU time). 

Origin - The task pseudonym for the accounting session. 

2-87 



2.12 Timer Table 

The Timer Table contains all necessary information for the time scheduling of the 
functions provided in the Create Timer Entry service. The functions include activating a 
program, resuming a program, setting a bit, resetting a bit, and requesting an interrupt. 

The table also contains a variable number of five-word timer entries which are specified 
at SYSGEN. Entries in the table are identified by a two-character (ASCII) Timer ID 
specified via the Create Timer Entry service. Entries may be deleted by the Delete 
Timer Entry service. SYSGEN forces three entries for the exclusive use of J.SSIN 1, 
J.SSIN2, and J.SOUT. The format of the Timer Table entries follows. 

o I 2 4 7 8 16 17 

o 

31 

Word 0 I I I~ Func t i on I xxxxxxxxxxxxxxxl Timer ID (2 ASCII Chars) 

1 
2 
3 
4 

Notes: 

WORD 0 

2-88 

Function parameter 1 
Function parameter 2 
Current time value (negative time units) 
Reset time value (negative time units) 

Bit 0 Timer Hold bit assigned as follows 

= 0, timer not in hold state 

= 1, timer in hold state 

Bit 1 Free Entry bit assigned as follows 

= 0, timer entry is free 

= 1, timer entry is taken 

Bit 2 Timer Override bit assigned as follows 

= 0, no override requested 

= 1, reissue activation request 

Bit 3 reserved 

Bits 4-7 function codes (4 bit numeric value) assigned as follows 

= 1, Activate program 

= 2, Resume program 

= 3, Set bit in operating system or static memory partition 

= 4, Reset bit in operating system or static memory partition 

= 5, Request interrupt between X'12' to X'7F 

Bits 8-16 Reserved 

Bits 17-31 Timer ID, any two ASCII characters not matching any other ID in 

the timer table. 

o 

o 



(-
Words 1 and 2 Function Parameters 

Word 3 

Word 4 

Function Parameters 1 and 2 for each function are assigned as follows. 

Function 1 (Activate task) 

Parameter 1, 

Parameter 2, 

DQE address of task to be activated upon timeout 
(the set timer service will pre-activate the task the 
user requests by 1 to 8 character taskname and then 
acquire the DQE address, the task will then remain 
in a suspended state until timeout). 

Reserved. 

Function 2 (Resume Task) 

Parameter 1, 

Parameter 2, 

DQE address of task to be resumed upon timeout 
(the set timer service will acquire the DQE address 
from the user supplied 1 to 8 character taskname or 
8 digit tasknumber). 

Reserved. 

Function 3 (Set bit in memory) 

Parameter 1, Address of word where bit is to be set. 

Parameter 2, Bit configuration that will be ored with the word 
specified in parameter 1 upon timeout. 

Function 4 (Reset bit in memory) 

Parameter 1, Address of word where bit is to be reset. 

Parameter 2, Bit configuration that will be anded with the word 
specified in parameter 1 upon timeout. 

Function 5 (Request Interrupt) 

Parameter 1, 

Parameter 2, 

Current time value. 

A request interrupt (Rn instruction for the user 
specified priority level to be executed upon 
timeout. 

Reserved. 

Current time value is the negative timer units to elapse before the selected 
function is done. This word is incremented until its value is zero. At that 
time the selected function is done. If word 4 is zero at timeout this entry 
will be deleted. If word 4 is non-zero at timeout, the value in word 4 is 
loaded into word 3 and incremented. 

Reset time value. 

Reset time value is the negative timer units to elapse before the selected 
function is repeated. This value is placed into word 3 when the timer expires 
and word 3 is then incremented. Word 4 is not changed until the timer is 
deleted, or the system is rebooted. 

2-89 



I 
i 
! 

, 

! 

, 

I 
I 

I 
i 
, 

I 
I 

---.'~- .. -~ .... _ ... _~_~ .~~. _.~_H_··"._· __ .~_. ',._. -~-- .. - ~-.--.. 

! I ! PROGRAM 
FUNCTION I FUNCTION NO. SET IN 
CODE i FUNCTION PARAMETERS TIMER ENTRY? ----! 

1 I Activate 1 and 2: 1 to 8 No 
. Program ASCII character 

(left-justified) 
program name of 
program to be 
activated upon 
timeout. -

2 Resume 1 and 2: 1 to 8 No 
Program ASCII character 

(left-justified) 
program name of 
program to be 
resumed upon 
timeout. 

3 Set Parameter 1 Set bit(s) 
Bit(s) contains the out of 

I address to program 
which the bit bounds: No 
configuration 
specified in 
parameter 2 Set bits(s) 
will be logi- within 
cally "ORed" program 
upon timeout. bounds: Yes 

4 Reset I Parameter 1 Reset bit(s) 
Bit(s) I contains the lout of I address to 1 program 

which the bit I bounds: No 
configura tion 
specified in I 

i Reset bit(s) parameter 2 
I will be logi- 1 within 
cally "ANDed" i program I . 

I 

I 
i 

I 
! 

i 

i 
I 

! 
! 
i 
t 

I 

--
PROGRAM 

DEPEN. TIMER 
BIT SET IN 

~.DQ~~"_EN~g Y 
No 

""--_ .... _---- -.---

No 

I 

ABORT 
CASES 

None 

None 

No lRe~:::t 
by non
privi
leged 

Yes 

-----... 

No 

Yes 

J 
I 
I 
i , 
f 
I 

i 
I 
! 
I 

I 
I 
I 
i 
i 
I 

I 

user is 
out of 
program 
bounds 

Request 
by non
privi
leged 
user is 
out of 
program 
bounds 

I upon tl~_eout. 1 bounds: Yes - ---_. -.--.------... '"-- ---t-------- , 
.- --..... ~ - --... "1 

Request I 
by 

5 Request j Parameter 2 is I 

Interrupt ! 
I null. Para- I 
I ! ; meter 1 con- I 
i tains an RI for 

i : the priority 
i 

• level of the ; 

: interrupt to be 
' requested upon 
timeout. 

- ____ .0 __ ••• _---

2-90 

No I 

- .... .. -- ~ - , 

No 

- . --- .-- -- -

I 
I 

batch 
(back
ground) 
program 

o 



( 

( 

3. MODULE DESCRIPTIONS 

3.1 Executive (H.EXEC) 

Entry Point Summary 

Entry 
Point Description 

INTERACTIVE INPUT STARTING 
TERMINAL OUTPUT STARTING 
WAIT I/O STARTING 
NO-WAIT I/O STARTING 
WAIT FOR ANY NO-W AIT OPERATION COMPLETE 
WAIT FOR MEMORY POOL 
MEMOR Y REQUEST PROCESSING COMPLETE 
WAIT FOR MEMORY SCHEDULER EVENT 
REPORT MEMORY SCHEDULER EVENT 
REPORT MEMORY POOL AVAILABLE 
COMPLETION OF UNSWAPPABLE I/O REQUEST 
NO-WAIT I/O POST PROCESSING COMPLETE 
WAIT FOR PERIPHERAL RESOURCE 
WAIT FOR DISC FILE SPACE 
REPORT PERIPHERAL RESOURCE A V AIL ABLE 
REPORT DISC FILE SPACE AVAILABLE 
WAIT FOR FISE 
REPORT GATED FISE OPERATION COMPLETE 
RESU ME EXECUTION OF SPECIFIED TASK 
SUSPEND EXECUTION OF CURRENT TASK 
SUSPEND EXECUTION OF SPECIFIED TASK 
GO TO SPECIFIED TASK CONTEXT (DEBUG) 
RUN USER BREAK RECEIVER (DEBUG) 
RESTART DEBUG (DEBUG) 

H.EXEC,1 
H.EXEC,2 
H.EXEC,3 
H.EXEC,4 
H.EXEC,5 
H.EXEC,6 
H.EXEC,7 
H.EXEC,8 
H.EXEC,9 
H.EXEC,10 
H.EXEC,ll 
H.EXEC,12 
H.EXEC,13 
H.EXEC,14 
H.EXEC,15 
H.EXEC,16 
H.EXEC,17 
H.EXEC,18 
H.EXEC,19 
H.EXEC,20 
H.EXEC,21 
H.EXEC,22 
H.EXEC,23 
H.EXEC,24 
H.EXEC,25 WAIT FOR ANY NO-WAIT OPERATION COMPLETE, MESSAGE 

INTERRUPT OR BREAK INTERRUPT 
H.EXEC,26 
H.EXEC,27 
H.EXEC,28 
H.EXEC,29 
H.EXEC,30 
H.EXEC,31 
H.EXEC,32 
H.EXEC,33 
H.EXEC,34 
H.EXEC,35 
H.EXEC,36 
H.EXEC,37 
H.EXEC,38 
H.EXEC,39 
H.EXEC,40 

CONTINUE SPECIFIED TASK 
GENERAL ENQUEUE 
REPORT RUN REQUEST POST PROCESSING COMPLETE 
REPORT WAIT MODE RUN REQUEST STARTING 
ENABLE DEBUG MODE BREAK 
HOLD CURRENT TASK 
HOLD SPECIFIED TASK 
DISABLE DEBUG MODE BREAK 
REPORT NO-WAIT MESSAGE POST PROCESSING COMPLETE 
REPOR T WAIT MODE MESSAGE STARTING 
GENERAL DEQUE 

- WAIT FOR MEMORY A V AIL ABLE 
INHIBIT ASYNCHRONOUS ABORT/DELETE 
ALLOW ASYNCHRONOUS ABORT/DELETE 
END ACTION WAIT 

3-1 



Subroutine Summary 

Subroutine 

S.EXECI 
S.EXEC2 
S.EXEC3 
S.EXEC4 
S.EXEC5 
S.EXEC5A 
S.EXEC6 
S.EXEC7 
S.EXEC8 
S.EXEC9 
S.EXECIO 
S.EXECII 
S.EXEC12 
S.EXEC13 
S.EXEC14 
S.EXEC15 
S.EXEC16 
S.EXEC17 
S.EXEC18 
S.EXEC19 
S.EXEC20 
S.EXEC21 
S.EXEC22 
S.EXEC23 
S.EXEC24 
S.EXEC25 
S.EXEC26 
S.EXEC27 
S.EXEC28 
S.EXEC29 
S.EXEC30 
S.EXEC31 

S.EXEC32 
S.EXEC33 
S.EXEC34 
S.EXEC35 

S.EXEC36 
S.EXEC37 
S.EXEC38 
S.EXEC39 
S.EXEC40 
S.EXEC41 
S.EXEC42 
S.EXEC43 
S.EXEC44 
S.EXEC45 
S.EXEC46 
S.EXEC47 

3-2 

Description 

INTERACTIVE INPUT COMPLETE 
TERMINAL OUTPUT COMPLETE 
WAIT I/o COMPLETE 
NO-W AIT I/o COMPLETE 
EXIT FROM INTERRUPT 
EXIT FROM TRAP HANDLER WITH ABORT 
NO-WAIT I/O POST PROCESSING COMPLETE 
REPORT MEMORY POOL AVAILABLE 
LINK ENTRY TO QUEUE BY PRIORITY 
UNLINK ENTR Y FROM QUEUE 
LINK ENTR Y TO BOTTOM OF QUEUE 
LINK ENTRY TO TOP OF QUEUE 
REPOR T MEMORY SCHEDULER EVENT 
BREAK SPECIFIED TASK 
RESUME SPECIFIED TASK 
SUSPEND EXECUTION OF CURRENT TASK 
SUSPEND EXECUTION OF SPECIFIED TASK 
ABORT CURRENT TASK 
ABORT SPECIFIED TASK 
ABORT TASK PROCESSING CONTROL SUBROUTINE 
CPU SCHEDULER 
PROCESS TASK INTERRUPT 
WAIT FOR COMPLETION OF ALL NO-WAIT OPERATIONS 
TERMINA TE MESSAGES IN RECEIVER QUEUE 
RESERVED 
TERMINATE NEXT RUN REQUEST IN RECEIVER QUEUE 
REMOVE T ASK GATING 
TRANSFER CONTROL TO ABORT RECEIVER 
DELETE TASK PROCESSING CONTROL SUBROUTINE 
EXIT TASK PROCESSING CONTROL SUBROUTINE 
RESERVED 
REPORT NO-WAIT RUN REQUEST POST PROCESSING 
COMPLETE 
REPORT WAIT MODE RUN REQUEST COMPLETE 
REPORT NO-WAIT MODE RUN REQUEST COMPLETE 
RESERVED 
REPORT NO-WAIT MODE MESSAGE POST PROCESSING 
COMPLETE 
REPORT WAIT MODE MESSAGE COMPLETE 
REPORT NO-W AIT MODE MESSAGE COMPLETE 
INHIBIT SWAP OF CURRENT TASK 
ENABLE SW AP OF CURRENT TASK 
RESERVED 
EXIT RUN RECEIVER 
EXIT MESSAGE RECEIVER 
REACTIVATE RUN RECEIVER TASK 
CHANGE PRIORITY LEVEL OF CURRENT TASK 
CHANGE PRIORITY LEVEL OF SPECIFIED TASK 
RESERVED 
RESERVED 

!f·~\ 

'\..i 



( 

S.EXEC48 
S.EXEC49 
S.EXEC50 
S.EXEC51 
S.EXEC52 
S.EXEC53 
S.EXEC54 
S.EXEC55 

S.EXEC56 
S.EXEC57 
S.EXEC58 
S.EXEC59 
S.EXEC60 
S.EXEC61 

S.EXEC62 
S.EXEC63 

S.EXEC64 
S.EXEC65 

S.EXEC66 
S.EXEC67 
S.EXEC68 
S.EXEC69 
S.EXEC70 

S.EXEC71 
S.EXEC72 
S.EXEC73 
S.EXEC74 
S.EXEC75 
S.EXEC76 
S.EXECn 
S.EXEC78 
S.EXEC79 

S.EXEC80 

CONVERT TASK NUMBER TO DQE ADDRESS 
CONSTRUCT MRRQ 
LINK MRRQ TO RUN RECEIVER OF DESTINATION TASK 
LINK CURRENT TASK TO DESIGNATED WAIT STATE 
MESSAGE OR RUN REQUEST POST PROCESSING SUBROUTINE 
V ALIDA TE PSB 
MOVE BYTE STRING 
UNLINK TASK FROM DESIGNATED LIST AND LINK TO READY 
LIST 
RESUME MEMORY SCHEDULER 
LINK TASK TO READY LIST BY PRIORITY 
LINK MRRQ TO MESSAGE RECEIVER OF DESTIN A TION TASK 
RESERVED 
V ALIDA TE PRB 
TRANSFER PARAMETERS FROM MRRQ TO RECEIVER 
BUFFER 
V ALIDA TE RXB 
TRANSFER RETURN PARAMETERS FROM DESTINATION TASK 
TO MRRQ 
NO-WAIT MODE MESSAGE POST PROCESSING SUBROUTINE 
NO-WAIT MODE RUN REQUEST POST PROCESSNG 
SUBROUTINE 
DEALLOCATE MRRQ 
LINK ENTRY TO END ACTION QUEUE 
CONSTRUCT AND VECTOR TO USER END ACTION PSD 
COMMON NO-WAIT POST PROCESSING MERGE POINT 
TERMINATE ALL RUN REQUESTS IN RECEIVER QUEUE OF 
CURRENT TASK 
INSURE STARTUP OF DESTINATION RUN RECEIVER TASK 
REPOR T WAIT I/O STARTING 
REPLACE CONTEXT ON TSA STACK 
RESET STACK TO USER LEVEL 
SITUA TIONAL PRIORITY INCREMENT SUBROUTINE 
UPDATE TASK EXECUTION ACCOUNTING VALUE 
UPDA TE DQE.CQC ON PREEMPTIVE CONTEXT SWITCH 
MOVE CONTEXT FROM STACK TO T .CONTXT 
PUSH CURRENT CONTEXT ONTO STACK FOR DEFERRED EA 
PULL 
START THE IPU AND VERIFY 

3.1.1 Entry Point 1 - Interactive Input Starting 

Functional Description 

H.EXEC,l is called to report the beginning of processing for an interactive input request 
made by the currently executing task. The task will be removed from the associated 
ready-to-run list, and placed in the wait-for-interactive-input list. A return to the calling 
routine will be made upon completion of the input request. 

Entry Conditions 

Calling Sequence: 

M.SHUT 
UEI 
M.CALL H.EXEC,l 

3-3 



Registers: 

RO bit 0 1 indicates task is swappable during input processing 

Exit Conditions 

Return Sequence: 

CPU scheduler (when I/o complete, with M.OPEN status) 

Registers: 

None 

3.1.2 Entry Point 2 - Terminal Output Starting 

Functional Description 

H.EXEC,2 is called to report the beginning of processing for a terminal output request 
made by the currently executing task. The task will be removed from the associated 
ready-to-run list, and placed in the wait-for-terminal-output list. A return to the calling 
routine will b~ made upon completion of the output request. 

Entry Conditions 

Calling Sequence: 

Registers: 

M.SHUT 
UEI 
M.CALL H.EXEC,2 

RO bit 0 1 indicates task is swappable during output processing 

Exit Conditions 

Return Sequence: 

CPU scheduler (when I/o complete, with M.OPEN status) 

Registers: 

None 

3.1.3 Entry Point 3 - Wait I/O Starting 

Functional Description 

H.EXEC,3 is called to report the beginning of processing for a wait I/O request made by 
the currently executing task. The task will be removed from the associated ready-to-run 

3-4. 

G
~-,\, 

, . , 

(j 

1·\, 
," 



( 
list, and placed in the wait-for-I/O list. A return to the calling routine will be made upon 
completion of the I/O request. 

Entry Conditions 

Calling Sequence: 

Registers: 

M.SHUT 
UEI 
M.CALL H.EXEC,3 

RO bit 0 I indicates task is swappable during I/O processing 

Exit Conditions 

Return Sequence: 

CPU scheduler (when I/o complete, with M.OPEN status) 

Registers: 

None 

3.1.4 Entry Point 4 - No-Wait I/o Starting 

Functional Description 

H.EXEC,4 is called to report the beginning of processing for a no-wait I/O request made 
by the currently executing task. A return to the calling routine is made after recording 
the no-wait I/o start event. 

Entry Conditions 

Calling Sequence: 

Registers: 

M.SHUT 
UEI 
M.CALL H.EXEC,4 

RO bit 0 1 indicates task is swappable during I/O processing 

Exit Conditions 

Return Sequence: 

M.OPEN 
M.RTRN 

3-5 



Registers: 

None 

3.1.5 Entry Point 5 - Wait for Any No-Wait Operation Complete 

Functional Description 

H.EXEC,5 is functionally identical to H.EXEC,25 except that it does not check for 
outstanding message or break interrupt requests before placing the task on the ANYW 
queue. All queued end action requests will be processed before a return is made to the 
calling routine. The purpose for this special entry point is for IOCS usage when waiting 
for the completion of a particular no-wait I/O request. 

Entry Conditions 

Calling Sequence: 

Registers: 

M.CALL H.EXEC,5 

R6 Zero if indefinite wait, otherwise contains negative number of timer 
units for timed wait. 

Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

None 

3.1.6 Entry Point 6 - Wait for Memory Pool 

Functional Description 

H.EXEC,6 is called when the required memory pool space is not available. The currently 
executing task will be removed from the associated ready-to-run list, and placed in the 
wait-for-memory-pool list. A return to the calling routine will be made when any 
memory pool space is deallocated. The calling routine may then make another attempt 
to allocate the required memory pool space. 

Entry Conditions 

Calling Sequence: 

M.CALL H.EXEC,6 

3-6 

G' i, " 

t,' _ I,,' 

o 



( 

( 

Registers: 

None 

Exit Conditions 

Return Sequence: 

CPU scheduler 

Registers: 

None 

3.1.7 Entry Point 7 - Memory Request Processing Complete 

Functional Description 

H.EXEC,7 is called by the memory scheduler when processing for a memory request is 
complete. The DQE associated with the memory request will have been unlinked from 
the memory request queue by the memory scheduler. The completed memory request 
will be processed by H.EXEC,7 according to request type. The request type information 
is contained in the DQE. The task will then be linked into the appropriate ready-to-run 
list. A return to the memory scheduler will be made by issuing a M.R TRN. 

Entry Conditions 

Calling Sequence: 

M.CALL H.EXEC,7 

Registers: 

R2 DQE address 

Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

None 

3-7 



3.1.8 Entry Point 8 - Wait for Memory Scheduler Event 

Functional Description 

H.EXEC,8 is called by the memory scheduler when either no additional processing of 
outstanding memory requests is possible, or the memory request list is empty. H.EXEC,8 
examines C.RRUN. If C.RRUN is not equal to zero, and the memory request queue is 
not empty, the memory scheduler will be re-executed. Otherwise, the memory scheduler 
will be removed from the ready-to-run list and placed in the wait-for-memory-event 
list. A return to the memory scheduler will occur when: 

(a) A new memory request is queued, or 

(b) The memory request queue is not empty and the status of allocated 
memory changes such that it either is deallocated or becomes more 
eligible for swapping. 

Entry Conditions 

Calling Sequence: 

M.CALL H.EXEC,8 

Registers: 

None 

Exit Conditions 

Return Sequence: 

CPU scheduler 

Registers: 

None 

3.1.9 Entry Point 9 - Report Memory Scheduler Event 

Functional Description 

H.EXEC,9 is called when the status of allocated memory changes such that it is either 
deallocated, or becomes more eligible for swapping. The purpose of this routine is to 
insure the appropriate execution of the memory scheduler task. If the memory-request 
list is empty, no additional processing is required and a return is made to the user. If the 
memory-request list is not empty, C.RRUN is incremented, and the memory scheduler 
state is checked. If the memory scheduler is in the wait-for-memory-event list, it will 
be removed from that list, and placed in the ready-to-run list at the priority of the 
highest priority entry in the memory-request list. A return will then be made to the 
calling routine. 

3-8 



(:; 

Entry Conditions 

Calling Sequence: 

M.CALL H.EXEC,9 

Registers: 

None 

Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

None 

3.1.10 Entry Point 10 - Report Memory Pool Available 

Functional Description 

H.EXEC, lOis called when memory pool space is deallocated. The purpose of this routine 
is to resume the execution of all tasks in the wait-for-memory-pool list. If the wait-for
memory-pool list is empty, no additional processing is required and a return is made to 
the calling routine. Otherwise, each entry in the list is removed and placed in its 
associated ready-to-run list. It is expected that when these tasks resume execution, they 
will reissue the request for the required memory pool space. When all entries have been 
flushed from the wait-for-memory-pool list, a return will be made to the calling routine. 

Entry Conditions 

Calling Sequence: 

M.CALL H.EXEC,lO 

Registers: 

None 

Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

None 

'3-9 



3.1.11 Entry Point 11 - Completion of Unswappable I/o Request 

Functional Description 

H.EXEC,11 is called by the IOCS post transfer processing logic, executing on behalf of 
the current task. The count of unswappable I/o transfers in the DQE is decremented. If 
no other swap inhibit reasons exist, a call will be made to H.EXEC,9 to report the 
memory scheduler event. A return is then made to the calling routine. 

Entry Conditions 

Calling Sequence: 

M.CALL H.EXEC,11 

Registers: 

None 

Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

None 

3.1.12 Entry Point 12 - No-Wait I/O Post Processing Complete 

Functional Description 

H.EXEC,12 is called by the IOCS no-wait I/O post processing logic to exit from the task 
interrupt state. Its purpose is to clear the task interrupt processing lock, and to return 
to the point of task interrupt. It will discard one level (the most recent) of pushdown in 
the TSA stack, then issue a M.RTRN to return to the point of task interrupt. 

Entry Conditions 

Calling Sequence: 

M.CALL H.EXEC,12 

Registers: 

None 

3-10 

o 



( 

Exit Conditions 

Return Sequence: 

None 

Registers: 

None 

3.1.13 Entry Point 13 - Wait fer Peripheral Resource 

Functional Description 

H.EXEC,13 is called when the required peripheral resource is not available. The 
currently executing task will be removed from the associated ready-to-rtm list, 'and 
placed in the wait-for-peripheral-resource list. A return to the calling routine will be 
made when the specified peripheral is deallocated by its current user. The calling 
routine may then make another attempt to allocate the device. 

Entry Condi~ions 

Calling Sequence: 

M.CALL H.EXEC,13 

Registers: 

R6 

bits 0-7 

bits 16-23 

bits 24-31 

R7 

X'OOFFOOOO' 

X'OOFFFFO(1 

X'OOFFFFFF' 

Peripheral requirements specification 

Reserved 

Device type code 

Channel address 

Subchanneladdre~ 

Requirements mask 

Any device of this device type code 

Any device of the specified type code, on the specified 
channel 

The' specific device described by this type code, channel 
addre~, and subchannel addre~ 

Change 1 
3-11 

I 



,~ I 
" 

Exit Conditions 

Return Sequence: 

CPU scheduler 

Registers: 

None 

3.1.14 Entry Point 14 - Wait fer Disc File Space 

Functional Description 

H.EXEC,14 is called when the required disc file space is not available. The c:urrently 
executing task will be removed from the associated ready-to-run list, and placed in the 
wait-for-disc list. A return to the calling routine will be made when any disc file space 
is deallocated. The calling routine may then make another attempt to allocate the 
required dlsc file space. 

Entry Conditions 

Calling Sequence: 

M.CALL H.EXEC,14 

Registers: 

R6 

R7 

bits 0-7 

. bits 8-U 

bits 16-23 

bits 24-31 

X'OOOOOOOO' 

X'OOFFOOOO' 

X'OOFFFFOO' 

X'OOFFFFFF' 

Disc device requirements specification 

Reserved 

Device type code 

Channel address 

Subchannel address 

Disc device requirements mask 

Any disc 

Any disc of the specified type code 

Any disc of the specified type code on the specified channel 

The specific disc device described by this type code, channel 
address, and subchannel address 

• 

6' 
'\.J 

I 

"II 



(_. Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

None 

3.1.13 Entry Point 13 - Wait for Peripheral Resource 

Functional Description 

H.EXEC,13 is called when the required peripheral resource is not available. The 
currently executing task will be removed from the associated ready-to-run list, and 
placed in the wait-for-peripheral-resource list. A return to the calling routine will be 
made when the specified peripheral is deallocated by its current user. The calling 
routine may then make another attempt to allocate the device. 

Entry Conditions 

Calling Sequence: 

M.CALL H.EXEC,13 

Registers: 

R6 

bits 0-7 

bits 8-15 

bits 16-23 

bits 24-31 

R7 

X'OOFFOOOO' 

X'OOFFFFOO' 

X'OOFFFFFF' 

Peripheral requirements specification 

Reserved 

Device type code 

Channel address 

Subchannel address 

Requirements mask 

Any device of this device type code 

Any device of the specified type code, on the specified 
channel 

The specific device described by this type code, channel 
address, and subchannel address 

3-11 



Exit Conditions 

Return Sequence: 

CPU scheduler 

Registers: 

None 

3.1.1. Entry Point 1. - Wait for Disc File Space 

Functional Description 

H.EXEC,14 is called when the required disc file space is not available. The currently 
executing task will be removed from the associated ready-to-run list, and placed in the 
wait-for-disc list. A return to the calling routine will be made when any disc file space 
is deallocated. The calling routine may then make another attempt to allocate the 
required disc file space. 

Entry Conditions 

Calling Sequence: 

M.CALL H.EXEC,14 

Registers: 

R6 

bits 0-7 

bits 8-15 

bits 16-23 

bits 24-31 

R7 

X'OOOOOOOO' 

X'OOFFOOOO' 

X'OOFFFFOO' 

X'OOFFFFFF' 

3-12 

Disc device requirements specification 

Reserved 

Device type code 

Channel address 

Subchannel address 

Disc device requirements mask 

Any disc 

Any disc of the specified type code 

Any disc of the specified type code on the specified channel 

The specific disc device described by this type code, channel 
address, and subchannel address 

0·.'.·····'···· I, I 



( 

( 

Exit Conditions 

Return Sequence: 

CPU scheduler 

Registers: 

None 

3.1.15 Entry Point 15 - Report Peripheral Resource Available 

Functional Description 

H.EXEC,15 is called when a peripheral device is deallocated. The purpose of this routine 
is to resume the execution of the tasks in the wait-for .... peripheral-resource list, which 
have specified requirements that will be satisfied by the deallocated device. If no such 
tasks exist, no additional processing is required and a return is made to the calling 
routine. Otherwise, each such entry in the list is removed and placed in its associated 
ready-to-run list. It is expected that when these tasks resume execution, they will 
reissue the request for the required device. When all appropriate entries have been 
flushed from the wait-for-peripheral resource list, a return will be made to the calling 
routine. 

Entry Conditions 

Calling Sequence: 

M.CALL H.EXEC,15 

Registers: 

R6 Peripheral resource definition 

bits 0-7 Reserved 

bits 8-15 Device type code 

bits 16-23 Channel address 

bits 24-31 Subchannel address 

Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

None 

3-13 



3.1.16 Entry Point 16 - Report Disc File Space Available 

Functional Description 

H.EXEC,16 is called when disc space is deallocated. The purpose of this routine is to 
resume the execution of the tasks in the wait-for-disc list which have specified 
requirements that may be satisfied by the deallocated disc file space. If no such tasks 
exist, no additional processing is required and a return is made to the calling routine. 
Otherwise, each such entry in the list is removed and placed in its associated ready-to
run list. It is expected that when these tasks resume execution, they will reissue the 
request for the required space. When all appropriate entries have been flushed from the 
list, a return will be made to the calling routine. 

Entry Conditions 

Calling Sequence: 

M.CALL H.EXEC,16 

Registers: 

R6 Disc device resource definition 

bits" 0-7 Reserved 

bits 8-15 Device type code 

bits 16-23 Channel address 

bits 24-31 Subchannel address 

Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

None 

3.1.17 Entry Point 17 - Wait for FISE 

Functional Description 

() 

H.EXEC,17 is called by the File System Executive (FISE) on behalf of the currently 
executing task. FISE will call H.EXEC,17 when a task has requested a File System 
Executive service to be performed, and FISE is busy performing a gated operation on 
behalf of another task. The currently executing task will be removed from the 
associated ready-to-run list, and placed in the wait-for-FISE list. A return to the calling lO 
routine will be made when FISE is no longer gated, and a call to H.EXEC,18 has been 
made to flush the wait-for-FISE list. 

3-14 
,j 



(' 

Entry Conditions 

Calling Sequence: 

M.CALL H.EXEC,17 

Registers: 

None 

Exit Conditions 

Return Sequence: 

CPU scheduler 

Registers: 

None 

3.1.18 Entry Point 18 - Report Gated FISE Operation Complete 

Functional Description 

H.EXEC,18 is called by the File System Executive (FISE) upon completion of a gated 
FISE operation. The purpose of this routine is to resume the execution of the highest 
priority task in the wait-for-FISE list. If the wait-for-FISE list is empty, no additional 
processing is required and a return is made to the calling routine. Otherwise the first 
entry is removed and placed in its associated ready-to-run list. A return to the calling 
routine is issued after the list relinkage is complete. 

Entry Conditions 

Calling Sequence: 

M.CALL H.EXEC,18 

Registers: 

None 

Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

None 

3-15 



3.1.19 Entry Point 19 - Resume Execution of Specified Task 

Functional Description 

H.EXEC,19 is called to resume execution of the specified task. This routine will in turn 
call S.EXEC14 to accomplish the resume function. A return will then be made to the 
calling routine. 

Entry Conditions 

Calling Sequence: 

M.CALL H.EXEC,19 

Registers: 

R2 DQE address of task to be resumed 

Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

None 

3.1.20 Entry Point 20 - Suspend Execution of Current Task 

Functional Description 

H.EXEC,20 is called to suspend execution of the current task, either for an indefinite 
period, or for the specified number of time units. The specified time (if any) is stored as 
a one shot timer in the DQE along with a resume-program timer function code. 
S.EXEC 15 is then called to suspend execution of the current task. A return will not be 
made until the timer expires or until the task is resumed. 

Entry Conditions 

Calling Sequence: 

M.CALL H.EXEC,20 

Registers: 

3-16 

R6 Zero if indefinite suspend, otherwise contains negative 
number of timer units for timed suspend 

o 



( Exit Conditions 

Return Sequence: 

M.RTRN (on time out or resume) 

Registers: 

None 

3.1.21 Entry Point 21 - Suspend Execution of Specified Task 

Functional Description 

H.EXEC,21 is called to suspend execution of the specified task, either for an indefinite 
period or for the specified number of time units. The specified time (if any) is stored as 
a one-shot timer in the DQE of the specified task, along with a resume-program timer 
function code. S.EXEC16 is then called to suspend execution of the specified task. A 
return is then made to the calling routine. 

Entry Conditions 

Calling Sequence: 

M.CALL H.EXEC,21 

Registers: 

R2 

R6 

Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

None 

DQE of task to be suspended 

Zero if indefinite suspend, otherwise contains negative 
number of timer units for timed suspend 

3-17 



3.1.22 Entry Point 22 - Go To Specified Task Context (DEBUG) 

Functional Description 

H.EXEC,22 is called by DEBUG to either begin or continue processing of the task being 
debugged. The execution context (registers and PSD) are contained in a parameter block 
associated with the call. The DEBUG mode is reset and control is passed to the specified 
user context, by pushing the context onto the TSA stack and invoking the CPU scheduler. 

Entry Conditions 

Calling Sequence: 

M.CALL H.EXEC,22 

Registers: 

Rl Address of context block where: 

word 0-7=registers 0-7; 
word 8-9=PSD. 

The context block must be on a file (8W) address boundary. 

Exit Conditions 

Control will be passed to the specified context. DEBUG will not be re-entered until a 
TRAP, break, or abort is encountered. 

3.1.23 Entry Point 23 - RtDl User Break Receiver (DEBUG) 

Functional Description 

H.EXEC,23 is called by DEBUG to initiate execution of the user break receiver. The 
contents of T .CONTXT are pushed onto the TSA stack. The DEBUG mode is reset. The 
user break request flag is set, and control is passed to the CPU scheduler. 

Entry Conditions 

Calling Sequence: 

M.CALL H.EXEC,23 

Registers: 

None 

Exit Conditions: 

" ,~"", I, ': e-·' 

Control will be passed to the user break receiver by the CPU scheduler. DEBUG will not () 
be re-entered until a TRAP, break, break exit, or abort is encountered. 

3-18 

" 

I~ 



3.1.24 Entry Point 24 - Restart DEBUG (DEBUG) 

Functional Description 

H.EXEC,24 is called by DEBUG to restart DEBUG execution. All outstanding I/o 
requests are terminated; any outstanding messages are discarded; the stack is cleared, 
and control is passed to DEBUG entry point 2. 

Entry Conditions 

Calling Sequence: 

M.CALL H.EXEC,24 

Registers: 

None 

Exit Conditions 

Return Sequence: 

M.RTNA 

Registers: 

None 

3.1.2.5 Entry Point 2.5 - Wait for Any No-Wait Operation Complete, Message 
Interrupt or Break Interrupt 

Functional Description 

H.EXEC,25 is called to place the current task in a wait-state, waiting for the completion 
of any no-wait mode I/O request, no-wait mode message request, no-wait mode run 
request, or the receipt of a message or break interrupt. The wait state may be either 
indefinite in length, or may have an associated time-out value. A return will not be 
made until one of the wait conditions is satisfied, or until expiration of the time-out 
value. 

Entry Conditions 

Calling Sequence: 

M.CALL H.EXEC,25 

Registers: 

R6 Zero if indefinite suspend, otherwise contains negative 
number of timer units for timed suspend 

3-19 



Exit Conditions 

Return Sequence: 

M.RTRN (on time out or satisfaction of wait condition) 

Registers: 

None 

3.1.26 Entry Point 26 - Continue Specified Task 

Functional Description 

H.EXEC,26 is called to continue a task that is in the "hold" wait state. The DQE of the 
specified task is unlinked from the hold-state queue and linked to the ready-to-run 
queue. Note: if the task is not in the hold-state, the hold request flag in the DQE will be 
reset. A return to the calling routine will then be made. 

Entry Conditions 

Return Sequence: 

M.RTRN 

Registers: 

Rl DQE address of task to be continued 

Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

None 

3.1.27 Entry Point 27 - General Enqueue 

Functional Description 

H.EXEC,27 is called to place the current task in the general wait queue (C.SWGQ). The 
task will remain on the general wait queue until the optional watchdog timer expires, or 
unitl a corresponding general dequeue call (to H.EXEC,36) is made, whichever occurs 
first. 

3-20 



(' Entry Conditions 

Calling Sequence: 

c' 

Registers: 

R4 

R5 

R6,R7 

M.CALL H.EXEC,27 

Bit 0 

Bits 1-23 
Bits 24-31 

Zero if indefinite wait, otherwise contains negative number 
of timer units for timed wait. 

Zero if normal <not-ready based) swapping, one if the task is 
to be swapped only by a higher priority task. 
Unused 
Function code (0-255) 

Enqueue ID 

Exit Conditions 

Return Sequence: 

Registers: 

3.1.28 

M.RTRN (on timer expiration or Dequeue call with corresponding function 
code and ID - with M.OPEN in effect) 

Note: Swap on priority restriction removed before M.RTRN 

R3 Zero if wait state terminated by corresponding Deque call, 
one if wait state time-out. 

Entry Point 28 - Report Run Request Post Processing Complete 

Functional Description 

H.EXEC,28 is called by the run-request post processing logic to exit from the end action 
interrupt state. Its purpose is to clear the task interrupt processing lock, and to return 
to the point of task interrupt. It will discard one level of pushdown in the TSA stack. A 
M.R TRN will then be issued to return to the point of task interrupt (or the point 
following the M.ANYW call). 

Entry Conditions 

Calling Sequence: 

M.CALL H.EXEC,28 

Registers: 

None 

3-21 



Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

None 

3.1.29 Entry Point 29 - Report Wait Mode RlDl Request Starting 

Functional Description 

H.EXEC,29 is called to report the beginning of processing for a wait mode run request 
issued by the currently executing task. The task will be removed from the associated 
ready-to-run list, and placed in the wait-for-run-complete list. A return to the calling 
routine will be made upon completion of the run request by the destination task. 

Entry Conditions 

Call1ng Sequence: 

M.CALL H.EXEC,29 

Registers: 

None 

Exit Conditions 

Return Sequence: 

CPU scheduler (when run request complete) 

Registers: 

None 

3.1.30 Entry Point 30 - Enable DEBUG Mode Break 

Functional Description 

H.EXEC,30 is called by the DEBUG program to allow a break while the task is in DEBUG 
mode. It is used in conjunction with H.EXEC,33 (Disable DEBUG mode break). 

3-22 

/{~ ..... \\ 
V 

~~ .. ': V 



( Entry Conditions 

Calling Sequence: 

M.CALL H.EXEC,30 

Registers: 

None 

Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

None 

3.1.31 Entry Point 31 - Hold Current Task 

Functional Description 

( H.EXEC,31 is called to remove the current task from execution and place it in a hold 
state. The task will not continue execution until a continue request is issued to 
H.EXEC,26. 

Entry Conditions 

Calling Sequence: 

M.CALL H.EXEC,31 

Registers: 

None 

Exit Conditions 

Return Sequence: 

M.RTRN (only after continue request) 

Registers: 

None 

3-23 



3.1.32 Entry Point 32 - Hold Specified Task 

Functional Description 

H.EXEC,32 is called to place the specified task in a hold state. The hold request system 
action interrupt flag is set in the DQE of the specified task. A return is then made to 
the calling routine. 

Entry Conditions 

Calling Sequence: 

M.CALL H.EXEC,32 

Registers: 

Rl DQE address of task to be placed in hold state 

Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

None 

3.1.33 Entry Point 33 - Disable DEBUG Mode Break 

Functional Description 

H.EXEC,33 is called by the DEBUG program to disable a break while the task is in 
DEBUG mode. Note: normally DEBUG mode break is not enabled. This routine is 
provided for use in conjunction with H.EXEC,30 (Enable DEBUG mode break). 

Entry Conditions 

Calling Sequence: 

M.CALL H.EXEC,33 

Registers: 

None 

3-24 



( Exi t Conditions 

Return Sequence: 

M.RTRN 

Registers: 

None 

3.1.34 Entry Point 34 - Report No-Wait Message Post Processing Complete 

Functional Description 

H.EXEC,34 is called by the message request post processing logic to exit from the end 
action interrupt state. Its purpose is to clear the task interrupt processing lock, and to 
return to the point of task interrupt. It will discard one level of pushdown in the TSA 
stack. A M.RTRN will then be issued to return to the point of task interrupt (or to the 
point following the M.ANYW call). 

Entry Conditions 

Calling Sequence: 

M.CALL H.EXEC,34 

Registers: 

None 

Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

None 

3.1.35 Entry Point 35 - Report Wait Mode Message Starting 

Functional Description 

H.EXEC,35 is called to report the beginning of processing for a wait mode message 
request issued by the currently executing task. The task will be removed from the 
associated ready to run list, and placed in the wait-for-message-complete list. A return 
to the calling routine will be made upon completion of message processing by the 
destination task. 

3-25 



Entry Conditions 

Calling Sequence: 

M.CALL H.EXEC,35 

Registers: 

None 

Exit Conditions 

Return Sequence: 

CPU scheduler (when message request complete) 

Registers: 

None 

3.1.36 Entry Point 36 - General Dequeue 

Functional Description 

H.EXEC,36 is called to release the highest priority task queued for the specified function 
code and Enqueue ID. If none exist, the request is ignored. 

Entry Conditions 

Calling Sequence: 

M.CALL H.EXEC,36 

Registers: 

R5 
R6,R7 

Exit Conditions 

Return Sequence: 

Function code (0-255) 
Enqueue ID 

M.RTRN (with M.SHUT in effect) 

Registers: 

3-26 

R2 contains program number of dequed task, or zero if none 
dequed 

c 

,r";, 

".JO' ........ 

o 



{ 

3.1.37 Entry Point 37 - Wait for Memory Available 

Functional Description 

H.EXEC,37 is called when the required memory space is not available. The currently 
executing task will be removed from the associated ready-to-run list, and placed in the 
memory request list. A return to the calling routine will be made when the memory 
request has been satisfied. 

Entry Conditions 

Calling Sequence: 

M.CALL H.EXEC,37 

Registers: 

R7 memory request definition word: 

byte 0 = Memory request type: 
o = Inswap task 
1 = Preacti vation request 
2 = Activation request 
3 = Memory expansion request 
4 = IOCS buffer request 
5 = Shared memory request; bytes 2 and 3 will equal the 

address of the requested user SMT 

byte 1 = Type of memory required: 
1 = Class IE' memory 
2 = Class 'H' memory 
3 = Class'S' memory 

byte 2 = Map register to be used (if byte 0 is not equal to 5): 

Computed by subtracting the contents of C.MSD from the 
map register number (0-31). 

byte 3 = Number of memory blocks required (if byte 0 is not equal to 5) 

Exit Conditions 

Return Sequence: 

CPU scheduler (when memory is allocated) 

Registers: 

None 

3-27 



3.1.38 Entry Point 38 - Inhibit Asynchronous Abort/Delete 

Functional Description 

H.EXEC,38 is called to inhibit an asynchronously requested task abort or task delete. 
This entry point is used for gating purposes and is called when a program sequence is 
started that must be completed in order to maintain system integrity. Any asynchronous 
abort or delete requests received while abort/delete is inhibited will be deferred until the 
system critical sequence is complete, and a call is made to H.EXEC,39 to remove the 
inhibit status. 

Entry Conditions 

Calling Sequence: 

M.CALL H.EXEC,38 

Registers: 

None 

Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

None 

3.1.39 Entry Point 39 - Allow Asynchronous Abort/Delete 

Functional Description 

H.EXEC,39 is called at the conclusion of a system critical program sequence, to remove 
the asynchronous abort/delete inhibit state previously invoked by a call to H.EXEC,38. 
Any deferred abort or delete requests will be processed. 

Entry Conditions 

Calling Sequence: 

M.CALL H.EXEC,39 

Registers: 

None 

3-28 

IC·"! 
" 

c 



( Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

None 

3.1.40 Entry Point 40 - End Action Wait 

See Section 8.2.17 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.1.41 Subroutine S.EXEC 1 - Interactive Input Complete 

Functional Description 

S.EXEC 1 is called by the appropriate I/O handler from the interrupt service routine. Its 
purpose is to report the completion of processing for an interactive input request. The 
associated task is removed from the wait-for-interactive-input list and linked to the 

( ready-to-run list (or to the memory-request list if an inswap is required). 

Entry Conditions 

Calling Sequence: 

BL 
Registers: 

Rl 

Exit Conditions 

Return Sequence: 

Registers: 

TRSW 

None returned 

None saved 

S.EXECI 

DQE entry number 

RO 

3.1.42 Subroutine S.EXEC2 - Terminal Output Complete 

Functional Description 

S.EXEC2 is called by the appropriate I/O handler from the interrupt service routine. Its 
purpose is to report the completion of processing for a terminal output request. The 
associated task is removed from the wait-for-terminal-output list and linked to the 
ready-to-run list (or to the memory-request list if an inswap is required). 

3-29 



Entry Conditions 

Calling Sequence: 

BL 

Registers: 

Rl 

Exit Conditions 

Return Sequence: 

Registers: 

TRSW 

None returned 
None saved 

S.EXEC2 

DQE entry number 

RO 

3.1.43 Subroutine S.EXEC3 - Wait I/O Complete 

Functional Description 

S.EXEC3 is called by the appropriate I/O handler from the interrupt service routine. Its 
purpose is to report the completion of processing for a wait I/O request. The associated 
task is removed from the wait I/O list and linked to the ready-to-run list (or to the 
memory-request list if an inswap is required). 

Entry Conditions 

Calling Sequence: 

BL S.EXEC3 

Registers: 

Rl DQE entry number 

Exit Conditions 

Return Sequence: 

TRSW RO 

Registers: 

R6 Undisturbed 

3-30 

o 



( 

{--

3.1." Subroutine S.EXEC4 - No-Wait I/O Complete 

Functional Description 

S.EXEC4 is called by the appropriate I/O handler from the interrupt service routine. Its 
purpose is to report the completion of processing for a no-wait I/o request. The 
associated task may be in the wait-for-any I/O list. If so, it will be removed from that 
list and linked to the ready-to-run list (or to the memory request list if an inswap is 
required). 

The I/O queue entry will be linked to the DQE task interrupt list and will contain the no
wait I/O post processing service address. When the scheduler dispatches CPU control to 
this task, the specified routine will be entered as a preemptive system service. 
Preemptive system services take precedence over execution of the task, but do not take 
precedence over system services being executed on behalf of the task. 

Entry Conditions 

Calling Sequence: 

Bt S.EXEC4 

Registers: 

R6 I/O queue entry address 

Note: The first eight words of the I/O queue entry must be in the preemptive 
system service list entry header format. 

Rl DQE entry number 

Exit Conditions 

Return Sequence: 

TRSW RO 

Registers: 

R6 Undisturbed 

3.1.45 Subroutine S.EXEC5 - Exit from Interrupt 

Functional Description 

S.EXEC5 is called as an exit service by all interrupt service routines. Its purpose is to 
allow CPU scheduling based on events which may have occurred at an interrupt level. If 
lower level interrupts are active, processing will continue at the last (highest) 
interrupted level. If no interrupts are active, the CPU scheduler is entered. 

3-31 



Entry Conditions 

Calling Sequence: 

BEl 
DAI/DACI (for associated level) 
BL ~EXEC5 

Registers: 

R6,R7 

X2 

Exit Conditions 

Return Sequence: 

PSD from interrupted environment 

Address of register save block containing registers from 
interrupted environment 

LPSD (or) CPU scheduler 

Registers: 

None 

3.1.46 Subroutine S.EXEC5A - Exit From Trap Handler With Abort 

Functional Description 

S.EXEC5A is called as an exit service from the system error trap handlers: non-present 
memory, undefined instruction, privilege error, address exception (CONCEPT /32 only); 
cache memory parity (32/87 only), and map fault. Its purpose is to request that the 
current task be aborted and transfer execution back to the CPU scheduler, S.EXEC20. If 
lower levels of interrupt are active, a system KILL will be executed. 

Entry Conditions 

Calling Sequence: 

Registers: 

3-32 

BEl 
BL 

R2 

R5 

R6,R7 

S.EXEC5A 

address of register save area 

abort code 

PSD from interrupt environment 

o 

o 
i ,~ 
I~ 

I 
I 



" 

( 

( 

Exit Conditions 

Return Sequence: 

CPU scheduler or M.I<ILL 

Registers: 

None 

3.1.47 Subroutine S.EXEC6 - No-Wait UO Post Processing Complete 

Functional Description 

S.EXEC6 is called to report the completion of no-wait I/O post processing. Its purpose is 
to clear the task interrupt processing lock, and to return to the point of task interrupt. It 
will discard one level (the most recent) of pushdown in the TSA stack. A M.RTRN" will 
then be issued to return to the point of task interrupt. 

Entry Conditions 

Calling Sequence: 

BL S.EX EC6 

Registers: 

None 

Exit Conditions 

Return Sequence: 

BU S.EXEC20 

Registers: 

None 

3.1.48 Subroutine S.EXEC7 - Report Memory Pool Available 

Functional Description 

S.EXEC7 is called when memory pool space is deallocated. The purpose of this 
subroutine is to resume the execution of all tasks in the wait-for-memory-pool list. If 
the wait-for-memory-poollist is empty, no additional processing is required and a return 
is made to the calling routine. Otherwise, each entry in the list is removed and placed in 
its associated ready-to-run list. It is expected that when these tasks resume execution, 
they will reissue the request for the required memory pool space. When all entries have 
been flushed from the wait-for-memory-pool list, a r~turn will be made to the calling 
routine. 

• 
Change 1 

3-33 

I 



Entry Conditions 

Calling Sequence: 

BL 

Registers: 

None 

Exit Conditions 

Return Sequence: 

TRSW 

Registers: 

R',R6 
R 1,R2,R3,R4,R7 

S.EXEC7 

RO 

Saved 
Destroyed 

3.1."9 Smroutine s.!!XECa - Unk Entry To Queue By Priarlty 

Punctional Description 

S.EXEC8 is a register-reentrant subroutine, callable from either a software or interrupt 
priority level. Its purpose is to link an entry into the list associated with the designated 
head cell, by priority. This routine assumes that a standard head cell and entry header 
format are used. After the specified linkage is performed, a return is made to the 
calling program •• 

Entry Conditions 

Calling Sequence: 

(Gat~ as appropriate) 

BL 

Registers: 

Rl 

R2 

Exit Conditions 

Return Sequence: 

Registers: 

3-34 

TRSW 

R2,R4,R6,R7 

Rl,R3,R' 

5.EXEC8 

Head cell address 

Address of entry ~o be linked 

RO 

Saved 

Destroyed 

() 

o 



.( . 

3.1.50 Subroutine S.EXEC9 - Unlink Entry From Queue 

Functional Description 

S.EXEC9 is a register-reentrant subroutine, callable from either a software or interrupt 
priority level. Its purpose is to unlink the specified entry from the list associated with 
the designated head cell. This routine assumes that a standard head cell and entry 
header format are used. After the entry is unlinked, a return is made to the calling 
program. 

Entry Conditions 

Calling Sequence: 

(Gating as appropriate) 

BL S.EXEC9 

Registers: 

Rl Head cell address 

R2 Address of entry to be linked 

Exit Conditions 

Return Sequence: 

TRSW RO 

Registers: 

R2,R4,R5,R6,R7 Saved 

Rl,R3 Destroyed 

3.1.51 Subroutine S.EXEC 10 - Link Entry To Bottom Of Queue 

Functional Description 

S.EXEC lOis a register-reentrant subroutine, callable from either a software or interrupt 
priority level. Its purpose is to link an entry to the bottom of the list associated with the 
specified head cell. This routine assumes that a standard head cell and entry header 
format are used. After the specified linkage is performed, a return is made to the 
calling program. 

3-35 



Entry Conditions 

Calling Sequence: 

(Gate as appropriate) 

BL S.EXEC 10 

Registers: 

Rl Head cell address 

R2 Address of entry to be linked 

Exit Conditions 

Return Sequence: 

TRSW RO 

Registers: 

R I,R2,R4,R5,R6,R7 Saved 

R3 Destroyed 

3.1.52 Subroutine S.EXEC 11 - Link Entry To Top Of Queue 

Functional Description 

S.EXEC 11 is a register-reentrant subroutine, callable from either a software or interrupt 
priority level. Its purpose is to link an entry to the top of the list associated with the 
specified head cell. This routine assumes that a standard head cell and entry header 
format are used. After the specified linkage is performed, a return is made to the 
calling program. 

Entry Conditions 

Calling Sequence: 

(Gate as appropriate) 

BL S.EXECII 

Registers: 

RI Head cell address 

R2 Address of entry to be linked 

3-36 



(_- Exit Conditions 

Return Sequence: 

Registers: 

WORD 
o 
1 
2 

Notes 

TRSW RO 

R 1,R2,R4,R5,R6,R7 Saved 

R3 Destroyed 

Standard Linked List Head Cell Format 

o 7 8 15 16 23 24 31 
STRING FORWARD ADDRESS (1) 
STRING BACKWARD ADDRESS (2) 

PRIORITY (3) COUNT (4 >1 RESERVED 

(1) The string forward address is a 1 W field which points to the first entry in the 
top-to-bottom chain. When the list is empty, it contains the address of the 
head cell. 

(2) The string backward address is a 1 W field which points to the first entry in the 
bottom-to-top chain. When the list is empty, it contains the address of the 
head cell. 

(3) The head cell priority is a IB field which contains a dummy head cell priority 
which is always zero. 

(4) The count value is a IB field which contains the number of entries in the list. 
This value is incremented/decremented as required by subroutines S.EXEC8 
through S.EXECll. 

3-37 



WORD 
o 
1 
2 

Notes 

Standard Linked List Entry Header Format 

0 7 8 15 16 23 24 ~ 1 

STRING FORWARD ADDRESS (1) 
STRING BACKWARD ADDRESS (2) 

PRIORITY (3) AVAILABLE FOR USE AS DEFINED BY ENTRY 
FORMAT 

(1) The string forward address is a I W field which points to the next entry in the 
top-to-bottom chain. If this is the last entry in the top-to-bottom chain, the 
string forward address will be the address of the head cell. 

(2) The string backward address is a I W field which points to the next entry in the 
bottom-to-top chain. If this is the last entry in the chain, the string backward 
address will be the address of the head cell. 

(3) The priority field is a 1B field containing the priority of this entry. The 
acceptable range of this value is 1-255. Note that priority zero is reserved 
for use as a dummy priority by the head cell. 

Misc. The last entry in the top-to-bottom chain is the first entry in the bottom-to
top chain. The last entry in the bottom-to-top chain is the first entry in the 
top-to-bottom chain. 

3.1.53 Subroutine S.EXECI2 - Report Memory Scheduler Event 

Functional Description 

S.EXEC12 is called when the status of allocated memory changes such that it is either 
deallocated or becomes more eligible for swapping. The purpose of this subroutine is to 
insure the appropriate execution of the memory scheduler task. If the memory-request 
list is empty, no additional processing is required and a return is made to the user. If the 
memory-request list is not empty, C.RRUN is incremented, and the memory scheduler 
state is checked. If the memory scheduler is in the wait-for-memory-event list, it will 
be removed from that list and placed in the ready-to-run list at the priority of the 
highest priority entry in the memory-request list. A return will then be made to the 
calling routine. 

Entry Conditions 

Calling Sequence 

BL S.EXEC12 

3-38 

o 

o 



( 
Registers: 

None 

Exit Conditions 

Return Sequence: 

Registers: 

TRSW 

R3,R6 
RI,R2,R4,R5,R7 

RO 

Saved 
Destroyed 

3.1.54 Subroutine 5.EXEC13 - Break Specified Task 

Functional Description 

S.EXEC 13 is called by the appropriate I/O handler from the interrupt service routine, or 
by the M.INT monitor service. It's purpose is to set the DEBUG-Break requested flag in 
the DQE if DEBUG is associated with the task and if the DEBUG mode active task 
interrupt flag is not already set. If DEBUG is not associated with the task, but a user 
break receiver has been established, the user-break requested flag will be set in the 
DQE. If DEBUG is not associated with the task, and no user break receiver has been 
established, the break is ignored. A return to the calling routine is made upon 
completion of processing. 

Entry Conditions 

Calling Sequence: 

BL S.EXEC13 

Registers: 

R2 DQE address of task to receive break 

R3 Address of 2W scratchpad area {doubleword bounded} 

Exit Conditions 

Return Sequence: 

TRSW RO 

Registers: 

X3==X3-4W (scratchpad pointer) 

R 1,R2,R4 Saved 

R5,R6,R7 Destroyed 

3-39 



3.1.55 Subroutine S.EXECI4 - Resume Specified Task 

Functional Description 

S.EXEC 14 may be called either from an interrupt service routine or from a system 
service operating on behalf of a task. It's purpose is to resume the execution of a 
suspended task. If the specified task is not in a suspended state, no action will be 
taken. If the specified task is suspended and outswapped, it will be unlinked from the 
suspended list, and linked to the memory request list. Otherwise, it will be unlinked from 
the suspended list, and linked to the ready-to-run list at its current priority. 

Entry Conditions 

Calling Sequence: 

BL S.EXEC14 

Registers: 

R2 DQE address of task to be resumed 

Exit Conditions 

Return Sequence: 

TRSW RO 

Registers: 

None returned 

R2 Saved 

R 1,R3,R4,R5,R6,R7 Destroyed 

3.1.56 Subroutine S.EXEC 15 - Suspend Execution of Current Task 

Functional Description 

S.EXEC 15 is called to suspend execution of the current task. The DQE for the current 
task is unlinked from the ready-to-run list, and linked to the suspended list. Control is 
then transferred to the CPU scheduler to select the next task for execution. 

Entry Conditions 

Calling Sequence: 

BL 

Registers: 

R6 

3-40 

S.EXEC 15 

Zero if indefinite suspend, otherwise contains negative 
timer units 



( Exit Conditions 

( 

Branch to CPU Scheduler; 

When resumed, the task will continue operation at the most recent context in the 
pushdown stack. 

3.1.57 Subroutine S.EXECI6 - Suspend Execution Of Specified Task 

Functional Description 

S.EXEC16 is called to suspend execution of the specified task. The DQE is marked to 
indicate that an asynchronous suspend has been requested. The suspend request will be 
processed on behalf of the task being suspended, when the CPU scheduler selects that 
task for execution. 

Entry Conditions 

Calling Sequence: 

BL 

Registers: 

R2 

R6 

Exit Conditions 

Return Sequence: 

TRSW 

Registers: 

None returned 

Rl,R2,R3 

R4,R5,R6,R7 

S.EXEC16 

DQE address of task to be suspended 

Zero if indefinite suspend, otherwise contains negative 
timer units 

RO 

Saved 

Destroyed 

3.1.58 Subroutine S.EXEC17 - Abort Current Task 

Functional Description 

S.EXEC 17 is called either from a system service, or from a system trap level. Its 
(-\ purpose is to store the abort code and set the abort requested bit in the DQE. It will 

.... then reset the TSA stack to a level routine. 

3-41 



If the task has an abort receiver established, the DQE.ABRA flag will be set and a return 
will be made to the calling routine. If no abort receiver is established, the DQE.ABRT 
flag will be set and the task will be marked as leaving the system (by setting the 
DQE. TL VS flag). A return will then be made to the calling routine. 

Entry Conditions 

Calling Sequence: 

BL 

Registers: 

R5 

R6,R7 

Exit Conditions 

Return Sequence: 

Registers: 

TRSW 

R2 

R4,R7 

Rl,R3,R5,R6 

S.EXEC17 

Abort code char acters 1-4 

Abort code characters 5-12 

RO 

DQE address of current task 

Saved 

Destroyed 

3.1.59 Subroutine S.EXECI8 - Abort Specified Task 

Functional Description 

S.EXEC 18 is called from a system service. Its purpose is to store the abort code and set 
the abort requested (asynchronous) bit in the DQE. It will then return to the call1ng 
routine. The abort requested bit will not be examined until the scheduler selects this 
task for execution. 

If the specified task is in the SUSP, ANYW, or RUNW list, it will be unlinked from the 
wait list and linked to the ready to run list. If the task does not have an abort receiver 
established, DQE.TLVS and DQE.ABRT will be set. If an abort receiver has been 
established, only DQE.ABRA will be set. 

Entry Conditions 

Calling Sequence: 

Registers: 

3-42 

BL 

Rl 

R5 

R6,R7 

S.EXEC18 

DQE address of task to be aborted 

Abort code characters 1-4 

Abort code characters 5-12 

o 

c 

o 



C Exit Conditions 

( 

(~ 

Return Sequence: 

TRSW RO 

Registers: 

R2 DQE address of task to be aborted 

R4 Saved 

R I,R3,R5,R6,R7 Destroyed 

3.1.60 Subroutine S.EXEC 19 - Abort Task Processing Control Subroutine 

Functional Description 

S.EXEC 19 is an internal H.EXEC subroutine which is called only by S.EXEC21 to process 
an abort request on behalf of the currently executing task. The purpose of S.EXEC 19 is 
to control the sequencing of abort processing by calling abort processing modules 
associated with the pertinent subsystems: 

Module 

S.EXEC26 

S.EXEC23 

S.EXEC22 

S.EXEC25 

S.EXEC43 

S.EXEC27 

S.MONS2 

H.MONS,38 

S.EXEC76 

[H.TSM,4] 

[H.SOUT,26] 

Description 

Remove context switch or FISE gating if any. 

Terminate all messages in receiver queue. 

Defer continued processing until all outstanding no-wait 
operations are complete. 

Terminate active run request (if any). 

Reactivate task if additional run requests queued. 

Transfer control to abort receiver if any. 

Remove task associated timers. 

Disconnect interrupt (if interrupt connected). 

Update execution accounting value. 

TSM task abort/delete processing (called only if TSM task). 

Batch task abort processing (called only if Batch task). 

3-43 



Module 

H.ALOC,3 

Entry Conditions 

Calling Sequence: 

BU 

Registers: 

None 

Exit Conditions 

Return Sequence: 

Clear 

BU 

Registers: 

None 

Description 

Close and deallocate system critical files. 

Close and deallocate user I/o files/devices with blocking 
buffer purge and automatic EOF as appropriate. 

Deallocate all swap files and memory (excluding TSA). 

Deallocate TSA memory, DQE space, clear C.PRNO, transfer 
control to the CPU scheduler. 

S.EXECI9 

C.PRNO 

S.EXEC20 

3.1.61 Subroutine S.EXEC20 - CPU Scheduler 

Functional Description 

S.EXEC20 is an internal H.EXEC subroutine. It is called by S.EXEC5 when all 
outstanding interrupts or traps have been exited, or by M.RTRN/M.RTNA with the return 
context on the TSA stack. Its purpose is to check for a ready-to-run task that is higher 
in priority than the currently executing task. This check is quickly made because the 
linkage of any task to the ready-to-run queue will cause a priority comparison between 
that task and the currently executing task. If the newly ready to run task is of higher 
priority, an indicator is set for S.EXEC20. S.EXEC20 will either return to the context of 
the current task, process a task interrupt on behalf of the current task, or select a higher 
priority task for execution. 

3-44 

c 

o 



Entry Conditions 

Calling Sequence: 

BU S.EXEC20 

Registers: 

None 

Exit Conditions 

Dispatch of CPU control 

3-45 



w 
I 
~ 
en 

I 1-- -*,_ 

c 

o 

no 

no 

no 

IPU offline 
or 

not Sysgened 

no 

() 

If there are no current tasks, one of three actions will occur: (I) if there are R/T tasks ready to 

~~ 
\~,) 

} .. run one will be selected by SX20.'; (2) if there are no R/T tasks, C.CURR will be examined for ------, 

yes 

yes 

a preempted TID task and if found, it's context will be reestablished; en if there is no pre
empted task, SX20.' will be allowed to search for a TID task and select one or go into CPU wait 
until the next interrupt. 

This block of logic does the preparation and relinking of the current CPU task from the 
C.CURR to its ready-to-run state. The interval time is collected and stored, the quantum flags 
reinitialized, and the priorities reset. A branch to S.EXEC" links the current task to a ready 
state. 

If the current CPU task is executing an OS service on behalf of the IPU, the IPU inhibit flag will I 
be set to prevent it from being selected for IPU execution before it has finished in the OS. .. 

f 
If there is a higher priority task requesting and context switching is not inhibited, there are two 
logical paths. If there is a real time task requesting, the current time distributed task will be 
preempted and the real time task selected as the current CPU task. If the higher priority task 
is not real time, the current TID task will be permitted to complete its allotted rotation time 
before task reselection occurs. 

t-) 
'---- "j;C) "-- '---



w 
I 
~ 

-J 

~ 

.. 

Is the recovered 
PSD in the OS 

yes 

Is a delete task 
requested 

no 

.. 
Pop Stack 

and 
Transfer control 

to recovered PSD 

~ 

.~ 

II there is an IPU online and it is idle, a branch link will be e)(ecuted to a subroutine ot H.CPU 
called SCHEO. SCHEO scans the ready queues and selects the highest priority ready-to-run 
task which is eligible for the IPU. The task will be linked to the IPU head cell and tlte IPU 
started. If the IPU is off line, an unconditional branch will direct execution around the IPU test 
and branch code in S.EXEC20. 

The state chain queues are searched from the highest priori ty (SQR T) to the lowest (SQ64) • 

~ .... 

When an entry is found (j.e., state chain where tht head cell count> I) the first entry in the ..... �__ __ --' 
chain is unlinked and relinked to the current head cell (C.CURR). The context of the 
communication region is established. The CPU is then remapped for the new current task; the 
map and protect registers are loaded into the CPU scratchpad. Finally, the interval is read, 
reset, loaded, and started. 

no 
------..... If there is an online IPU e)(ecuting a task, it will be tested for eligibility vis-a-vis software 

interrupts and system action requests. II the task is found to be ineligible for the IPU, a flag 
(EXEC.STR) will be set to indicate that the task should be remo\led from the IPU and linked to a 
ready state in the CPU. 

yes 

I 
The current CPU task is then tested for software interrl)gts and/or system action requests. If 
either one is found requesting, control is passed to S.EXEC21 to process the request. 

~ c( 
S. 

eset stack 
ontrol to 
EXEC21 

If there are no software interrupts or system action requests, processing continues in S.EXEC20. 
The next step occurs only if there is an IPU online. The current CPU task will be tested for the 
IPU inhibited state by zeroing the IPU inhibit flag (DQE.IPUH). If the task is not inhibited, it 
will be tested for the IPU biased option. A biased task will replace the current IPU task if it is 
of higher priority. If the task is not biased and is not optioned CPU only, it will be an IPU 
candidate only if the IPU is idle. 

If the current CPU task is optioned CPU only, is IPU inhibited, or for some other rcason (no IPU 
in the system) the current CPU task is not an IPU candidate, the task's stack will be pushed and 
control passed to it via LPSD. 

.~ ~. 
. I 



,fI'!""·'h 

't) 

3.1.62 Subroutine S.EXEC21 - Process Task Interrupt 

Functional Description 

S.EXEC2l is called by S.EXEC20 to process any task interrupt requests, after the CPU 
scheduler has determined that the return address in the task context is not in the 
operating system area. It processes both system action interrupt requests in DQE.SAIR, 
and requested software task interrupts in DQE.RTI. 

Entry Conditions 

Calling Sequence: 

BU S.EXEC21 

Registers: 

R2 DQE address 

Exit Conditions 

Return Sequence: 

Transfer control as appropriate for task interrupt, or return to interrupted 
context. 

Task Interrupt Request Processing (S.EXEC2l) 

System Action Task Interrupts (DQE.SAIR) 

PRIORITY PROCESSING 
(BIT) LABEL DESCRIPTION ROUTINE 

0 DQE.DELR DELETE TASK REQUEST S.EXEC28 

RESERVED 

2 DQE.HLDR HOLD TASK REQUEST S.EXEC51 

3 DQE.ABTR ABOR T TASK REQUEST S.EXEC19 

4 DQE.EXTR EXIT TASK REQUEST S.EXEC29 

5 DQE.SUSR SUSPEND TASK REQUEST S.EXEC21 

6 DQE.RRRQ RUN REQUEST S.EXEC21 

7 RESERVED 

3-48 



Requested Software Task Interrupts (DQE.RTI) 

PRIORITY 
(BIT) LABEL DESCRIPTION 

o RESERVED 

DQE.EAIR END ACTION REQUEST (PRIORITY 1) 

2 DQE.DBBR DEBUG BREAK REQUEST 

3 DQE.UBKR USER BREAK REQUEST 

4 DQE.EA2R END ACTION REQUEST (PRIORITY 2) 

5 DQE.MSIR MESSAGE INTERRUPT REQUEST 

6-7 RESERVED 

3.1.63 Subroutine S.EXEC22 - Wait for Completion Of All No-Wait Operations 

Functional Description 

S.EXEC22 is called from either the task abort or task exit processing control subroutines 
(S.EXECI9 or S.EXEC29). Its purpose is to delay until all outstanding no-wait processing 
is complete. It accomplishes this by calling H.EXEC,25 until the number of outstanding 
no-wait requests is equal to zero. A return is then made to the calling routine. 

Entry Conditions 

Calling sequence: 

BL S.EXEC22 

Registers: 

R2 Current task DQE address 

Exit Conditions 

Return Sequence: 

TRSW RO 

Registers: 

R 1,R2,R3,R4,R5,R7 Saved 

R6 Destroyed 

3-49 

( 



f~"'. 
"'-'I 3.1.64 Subroutine S.EXEC23 - Terminate Messages In Receiver Queue 

Functional Description 

S.EXEC23 is called from one of the task termination processing control subroutines 
(S.EXEC 19, S.EXEC28, or S.EXEC29). Its purpose is to unlink all messages from the 
receiver queue and to terminate these messages, relinking any waiting tasks to their 
respective ready-to-run queues. A return is then made to the calling routine. 

Entry Conditions 

Calling Sequence: 

BL S.EXEC23 

Registers: 

None 

Exit Conditions 

Return Sequence: 

TRSW RO 

Registers: 

All registers destroyed 

3.1.65 Subroutine S.EXEC24 - Reserved 

3.1.66 Subroutine S.EXEC25 - Terminate Next Run Request In Receiver Queue 

Functional Description 

S.EXEC25 is called from one of the task termination processing control subroutines 
(S.EXEC19, S.EXEC28, or S.EXEC29). Its purpose is to unlink the next run request from 
the receiver queue, and to terminate the requests with abnormal status. A return is then 
made to the calling routine. 

Entry Conditions 

Calling Sequence: 

BL S.EXEC25 

Registers: 

X3 Scratch pad address 

3-50 

o i: 

-
I 



( 

( 

Exit Conditions 

Return Sequence: 

TRSW RO 

Registers: 

X3=X3-4W Scratch pad address 

R 1,R2,R4,R 5,R6,R7 Destroyed 

3.1.67 Subroutine S.EXEC26 - Remove Task Gating 

Functional Description 

S.EXEC26 is called from one of the task termination processing subroutines (S.EXEC 19, 
S.EXEC28, or S.EXEC29). Its purpose is to remove any outstanding gating mechanisms 
associated with the terminating task (e.g., context switch or FISE). A return is then 
made to the calling routine. 

Entry Conditions 

Calling Sequence: 

BL S.EXEC26 

Registers: 

R2 Current task DQE address 

Exit Conditions 

Return Sequence: 

TRSW RO 

Registers: 

All registers preserved 

3.1.68 Subroutine S.EXEC27 - Transfer Control To Abort Receiver 

Functional Description 

S.EXEC27 is called from the abort task processing control subroutine (S.EXEC 19). Its 
purpose is to transfer control to the user task abort receiver if one exists. Otherwise, a 
return will be made to the calling routine. 

Entry Conditions 

Calling Sequence: 

BL S.EXEC27 

3-51 

( 



<, 

I 

Registers: 

R2 Current task DQE address 

Exit Conditions 

Return Sequence: 

TRSW RO (or LPSD to abort receiver) 

Registers: 

All registers preserved 

3.1.69 Subroutine S.EXEC28 - Delete Task Processing Control Subroutine 

Functional Description 

S.EXEC28 is an internal H.EXEC subroutine which is called only by S.EXEC21 to process 
a task delete request on behalf of the currently executing task. The purpose of 
S.EXEC28 is to control the sequencing of delete task processing modules associated with 
the pertinent subsystems: 

Module 

S.MONS2 

H.MONS,38 

S.EXEC26 

H.IOCS,38 

S.EXEC23 

S.EXEC25 

H.ALOC,3 

S.EXEC4-3 

S.EXEC76 

[H.TSM,4-] 

[H.SOUT,26] 

S.ALOC2 

3-52 

Description 

Remove task associated timers. 

Disconnect interrupt (if connected). 

Remove context switch or FISE gating if any. 

Terminate all outstanding I/O requests 

Terminate all messages in receiver queue. 

Terminate active run request (if any). 

Close and deallocate system critical files. 

Close and deallocate user I/O files/devices with minimal processing 
required (no attempt to preserve data integrity). 

Deallocate all swap files and memory (excluding TSA). 

Deallocate TSA memory, DQE space, clear C.PRNO, transfer control 
to CPU scheduler. 

Reactivate task if additional run requests queued. 

Update task execution accounting value. 

TSM task abort/delete processing (called only if TSM task). 

Batch task delete processing (called only if Batch task). 

Deallocate TSA and DQE. 

0·< 
.,'.1 



( 

( 

Entry Conditions 

Calling Sequence: 

BU 

Registers: 

None 

Exit Conditions 

Return Sequence: 

Registers: 

Clear 

BU 

None 

S.EXEC28 

C.PRNO 

S.EXEC20 

3.1.70 Subroutine S.EXEC29 - Exit Task Processing Control Subroutine 

Functional Description 

S.EXEC29 is an internal H.EXEC subroutine which is called only by S.EXEC21 to process 
an exit request on behalf of the currently executing task. The purpose of S.EXEC29 is to 
control the sequencing of exit processing by the exit processing modules associated with 
the pertinent subsystems: 

Module 

S.MONS2 

H.MONS,38 

S.EXEC26 

S.EXEC22 

S.EXEC25 

H.ALOC3 

S.EXEC43 

S.EXEC76 

[H.TSM,3 ] 

[ H.SOUT,26J 

S.ALOC2 

Description 

Remove task associated timers. 

Disconnect interrupt (if connected). 

Remove context switch or FISE gating if any. 

Defer continued processing until all outstanding no-wait operations 
are complete. 

Terminate active run request if any. 

Close and deallocate system critical files. 

Close and deallocate user I/O files/devices with blocking buffer purge 
and automatic EOF as appropriate. 

Deallocate all swap files and memory (excluding TSA). 

Deallocate TSA memory, DQE space, clear CPRNO, transfer control 
to CPU scheduler. 

Reactivate task if additional run requests queued. 

Update task execution accounting value. 

TSM task exit processing (called only if TSM task). 

Batch task exit processing (called only if Batch task). 

Deallocate TSA and DQE. 

3-53 

( 



Entry Conditions 

Calling Sequence: 

BU S.EXEC29 

Registers: 

None 

Exit Conditions 

Return Sequence: 

Clear C.PRNO 

BU S.EXEC20 

Registers: 

None 

3.1.71 

3.1.72 

Subroutine S.EXEC30 - Reserved 

Subroutine S.EXEC31 - Report No-Wait Rm Request Post Processing 
Complete 

Functional Description 

S.EXEC31 is called to report the completion of no-wait run request post processing. Its 
purpose is to clear the task interrupt processing lock, and to return to the point of task 
interrupt. It will discard one level (the most recent) of push down in the TSA. A 
M.RTRN will then be issued to return to the point of task interrupt. 

Entry Conditions 

Calling Sequence: 

BL S.EXEC31 

Registers: 

None 

Exit Conditions 

Return Sequence: 

M.RTRN (to previous context) 

Registers: 

None 

3-54 



( 
( 

(" 

3.1.73 Staoutine S.EXEC32 - Report Wait Mode Ram Request Complete 

Functional Description 

S.EXEC32 is called by the appropriate run request exit processor on behalf of the 
requested task. Its purpose is to report completion of the wait mode rlBl request to the 
requesting (waiting) task. The waiting task is removed from the wait list and placed in 
the ready-to-run list (or in the memory request list if an inswap is required). 

Entry Conditions 

Calling Sequence: 

BL S.EXEC32 

Registers: 

Xl DQE entry address of sending task 

X2 MRRQ address 

X3 Address of 22W scratch pad area 

Exit Conditions 

Return Sequence: 

TRSW RO 

Registers: 

X3=X3-4W 

RI,R2,R4,R5,R6,R7 

Scratchpad address 

Destroyed 

3.1.74 Subroutine S.EXEC33 - Report No-Wait Mode Run Request Complete 

Functional Description 

S.EXEC33 is called to report the completion of run request processing. The call is made 
on behalf of the task which processed the run request. The requesting task may be in the 
wait-for-any-run-request-completion state. If so, it will be removed from that list and 
linked to the ready-to-run list (or to the memory request list if an inswap is required). 

The run request queue entry will be linked to the DQE task interrupt list and will contain 
the no-wait mode run request post processing service address. When the scheduler 
dispatches control to the task, the specified routine will be entered as a preemptive 
system service. 

3-55 



Entry Conditions 

Calling Sequence: 

BL S.EXEC33 

Registers: 

Rl DQE address of sending task 

R2 MRRQ address 

R3 Address of 22W scratchpad area 

Exit Conditions 

Return Sequence: 

TRSW RO 

Registers: 

X3=X3-4W Scratchpad address 

R 1,R2,R4,R5,R6,R7 Destroyed 

3.1.75 

3.1.76 

Subroutine S.EXEC34 - Reserved 

Subroutine S.EXEC35 - Report No-Wait Mode Message Post Processing 
Complete 

Functional Description 

S.EXEC35 is called to report the completion of no-wait mode message post processing. 
Its purpose is to clear the task interrupt processing lock, and to return to the point of 
task interrupt. It will discard one level (the most recent) of pushdown in the TSA stack. 
A M.R TRN will then be used to return to the point of task interrupt. 

Entry Conditions 

Calling Sequence: 

BL S.EXEC35 

Registers: 

None 

3-56 

(.,:, .. Jtl 



( 
( 

( 

Exit Conditions 

Return Sequence: 

CPU scheduler (to previous context) 

Registers: 

None 

3.1.n Subroutine S.EXEC36 - Report Wait Mode Message Complete 

Functional Description 

S.EXEC36 is called by the appropriate message exit processor on behalf of the task that 
processed the message. Its purpose is to report completion of wait mode message 
processing to the waiting task. The waiting task is removed from the wait list and placed 
in the ready-to-run list (or in the memory request list if an inswap is required). 

Entry Conditions 

Calling Sequence: 

BL S.EXEC36 

Registers: 

Xl DQE entry address of sending task 

X2 MRRQ address 

X3 Address of 22W scratchpad area 

Exit Conditions 

Return Sequence: 

TRSW RO 

Registers: 

X3=X3-4W Scratchpad address 

R 1,R2,R4,R5,R6,R7 Destroyed 

3-57 

( 



/"''''; 
~y 

() 

3.1.78 Stmroutine S.EXEC37 - Report No-Wait Mode Message Complete 

Functional Description 

S.EXEC37 is called to report the completion of message processing. The call is made on 
behalf of the task which processed the message. The task which sent the message may 
be in the wait-for-any-message-completion queue. If so, it wHl be removed from that 
list and linked to the ready-to-run-list (or to the memory request list if an inswap is 
required). 

The message queue entry will be linked to the DQE task interrupt list and will contain 
the no-wait mode message post processing service address. When the scheduler 
dispatches control to the task, the specified routine will be eentered as a preemptive 
system service. 

Entry Conditions 

Calling Sequence: 

Registers: 

BL 

Rl 

R2 

R3 

Exit Conditions 

Return Sequence: 

TRSW 

Registers: 

S.EXEC37 

DQE address of requesting task 

MRRQ address 

Address of 22W scratchpad area 

RO 

Scratchpad address 

R 1,R2,R4,R5,R6,R7 Destroyed 

3.1.79 Subroutine S.EXEC38 - Inhibit Swap Of Current Task 

Functional Description 

S.EXEC38 is called to set the inhibit swap flag (DQE.LKIM) in the DQE of the current 
task. A return is then made to the calling routine. 

3-58 

,if >\ 
l,<,,~ 

o 



( Entry Conditions 

Calling Sequence: 

BL S.EXEC38 

Registers: 

None 

Exit Conditions 

Return Sequence: 

TRSW RO 

Registers: 

R2 Destroyed 

R 1,R3,R4,R5,R6,R7 Saved 

3.1.80 Subroutine S.EXEC39 - Enable Swap of Current Task 

Functional Description 

S.EXEC39 is called to reset the inhibit swap flag (DQE.LKIM) in the DQE of the current 
task. A return is then made to the calling routine. 

Entry Conditions 

Calling Sequence: 

BL S.EXEC39 

Registers: 

None 

Exit Conditions 

Return Sequence: 

TRSW RO 

Registers: 

R2 Destroyed 

R 1 ,R3,R4,R5,R6, R7 Saved 

3-59 

( 



3.1.81 

3.1.82 

Subroutine S.EXEC40 - Reserved 

Subroutine S.EXEC41 - Exit Run Receiver 

Functional Description 

S.EXEClJ.I is called to exit a run receiver when the M.XRUNR exit type is invoked. Its 
purpose is to process the exit according to the specifications contained in the Receiver 
Exit Block (RXB). The run receiver queue will be examined, and if not empty, the task 
executed again at the point following the M.XRUNR call on behalf of the next request. 
If the queue is empty, the exit options are examined. If option bit 0 is set, the task will 
be placed in a wait-state, waiting for the next run request to be received. If option bit 0 
is reset, the task will exit the system. 

Entry Conditions 

Calling Sequence: 

BL S.EXEClJ.I 

Registers: 

Rl Current task DQE address 

R2 Receiver Exit Block (RXB) address 

X3 Scratchpad address 

Exit Conditions 

Return Sequence: 

No return (rerun task or exit) 

3.1.83 Subroutine S.EXEC42 - Exit Message Receiver 

Functional Description 

S.EXEC42 is called to exit a message receiver when a M.XMSGR service has been 
called. If the message interrupt is not active, the task will be aborted. Its purpose is to 
reset the task interrupt lock and to process the exit according to the specifications in the 
Receiver Exit Block (RXB). The message receiver queue will be examined, and if not 
empty, the message interrupt will be invoked again on behalf of the next request. If the 
queue is empty, a return will be made to the point of interrupt (or following 
M.SUSP /M.ANYW) at the base execution level. 

3-60 

o 

" "\ 0" 

o 
, 

I, :. 
I , 



Entry Conditions 

Calling Sequence: 

BL 

Registers: 

Rl 

R2 

X3 

Exit Conditions 

Return Sequence: 

S.EXEC42 

Current task DQE address 

Receiver Exit Block (RXB) address 

Scratch pad address 

No return to caller (rerun message receiver or return to user base level 
context) 

3.1.84 Subroutine S.EXEC43 - Reactivate RlDl Receiver Task 

Functional Description 

S.EXEC43 is called to examine the run receiver queue of a run receiver task that has 
used a standard M.EXIT call. S.EXEC43 is called by S.EXEC28, S.EXEC29, or S.EXEC 19. 
If queued run requests exist, a call to H.ALOCI is made to reactivate the task. If 
H.ALOC 1 makes a denial return, all outstanding requests are terminated with abnormal 
status. If H.ALOCI successfully starts the activation, S.EXEC43 wi11link any remaining 
queued requests to the DQE of the task being activated. A return is then made to the 
calling routine. 

Entry Conditions 

Calling Sequence: 

BL S.EXEC43 

Registers: 

None 

Exit Conditions 

Return Sequence: 

TRSW RO 

Registers: 

All registers destroyed 

3-61 

() 



() 

3.1.85 Subroutine S.EXEC44 - Change Priority Level of Current Task 

Functional Description 

S.EXEC44 is called to change the priority level of the current task. The specified 
priority level is stored in DQE.CUP and DQE.BUP and as the priority level of the 
currently executing task. (No relink of this task is required since it is linked to the 
special state chain for the currently executing task.) A return is then made to the 
calling routine. 

Entry Conditions 

Calling Sequence: 

BL S.EXEC44 

Registers: 

R6 Priority level 

Exit Conditions 

Return Sequence: 

TRSW RO 

Registers: 

R2 Current task DQE address 

R 1,R3,R4,R5,R6,R7 Saved 

3.1.86 Subroutine S.EXEC45 - Change Priority Level of Specified Task 

Functional Description 

S.EXEC45 is called to change the priority level of the specified (not current) task. The 
specified task may either be in a ready-to-run state, or in a wait state. If the task is in a 
ready-to-run state, the specified priority is stored in DQE.CUP and in DQE.BUP. The 
task is then unlinked from its current ready to run list and relinked to the ready to run 
list associated with the new priority. If the task was in a wait state, it will be relinked 
according to its new priority into the same wait list. A return will then be made to the 
calling program. 

3-62 

0··' . . . 

o 



(-

(- " 

.~ 

(' 

Entry Conditions 

Calling Sequence: 

BL S.EXEC45 

Registers: 

R6 Priority level 

Rl DQE address of specified task 

Exit Conditions 

Return Sequence: 

TRSW RO 

Registers: 

All registers destroyed 

3.1.87 Subroutine S.EXEC46 - Reserved 

3.1.88 Subroutine S.EXEC47 - Reserved 

3.1.89 Subroutine S.EXEC48 - Convert Task Number to DQE Address 

Functional Description 

S.EXEC48 is called to calculate the DQE address of the specified task. 

Entry Conditions 

Calling Sequence: 

BL 

Registers: 

R7 

Exit Conditions 

Return Sequence: 

Registers: 

TRSW 

R2 

R 1,R3,R4,R5,R7 

R6 

S.EXEC48 

Task activation sequence number of specified task 

RO 

DQE address of specified task 

Saved 

Destroyed 

( 

(""" 

3-63 



3.1.90 Subroutine S.EXEC49 - Construct MRRQ 

Functional Description 

S.EXEC49 is called to construct an MRRQ entry for either a message or run request. 
Space for the MRRQ is allocated from memory pool. The MRRQ is constructed 
according to the contents of the Parameter Send Block (PSB) specified as a calling 
parameter. 

Entry Conditions 

Calling Sequence: 

BL S.EXEC49 

Registers: 

R2 Parameter Send Block (PSB) address 

X3 Scratchpad address 

Exit Conditions 

Return Sequence: 

TRSW RO (CC 1 set indicates memory pool unavailable) 

Registers: 

RI MRRQ address 

X3=X3-4W Scratchpad address 

R2,R4 Saved 

R5,R6,R7 Destroyed 

3.1.91 Subroutine S.EXEC50 - Link MRRQ To Run Receiver Of Destination Task 

Functional Description 

S.EXEC50 is called to link the designated MRRQ entry to the run receiver queue of the 
specified task. If the target task is in a RUNW wait state, it will be unlinked from the 
wait list and linked to the ready-to-run list. 

Entry Conditions 

Calling Sequence: 

BL S.EXEC50 

3-64 

I 



( 

(' 

Registers: 

Rl Target task DQE address 

R2 MRRQ address 

X3 Scratchpad address 

R5 Zero indicates unlink if in PREA list 

R7 Task activation sequence number of target task 

Exit Conditions 

Return Sequence: 

TRSW RO (CC 1 set indicates invalid target task) 

Registers: 

X3=X3-4W Scratch pad address 

Rl,R2 Saved 

R4,R5,R6,R 7 Destroyed 

3.1.92 Subroutine S.EXEC51 - Link Current Task To Designated Wait State 

Functional Description 

S.EXEC51 is called to place the currently executing task in the designated wait state. If 
the task is a time distribution task, the execution time accounting value is updated in the 
TSA. The current quantum value for next dispatch is updated in DQE.CQC for both real
time and time distribution tasks. When linkage to the wait state is complete, the 
memory scheduler is resumed if entries are queued in the memory request list. 

Entry Conditions 

Calling Sequence: 

Registers: 

BEl 
BL 

Rl 

R2 

Exit Conditions 

Return Sequence: 

STATUS 
S.EXEC51 

Address of wait state headcell 

Current task DQE address 

No return to calling routine 

M.RTRN to TSA stack context when task is ready to run 

3-

( 

(" 

C: 



o 

Registers: 

None 

3.1.93 Subroutine S.EXEC52 '"': Message Or Run Request Post Processing Subroutine 

Functional Description 

S.EXEC52 is called on behalf of the sending task when a message or run request has been 
processed by the destination task. It will transfer the return parameters to the return 
buffer designated in the PSB, update PSB status, and deallocate the MRRQ. 

Entry Conditions 

Calling Sequence: 

Registers: 

BL 

R2 
X3 

Exit Conditions 

Return Sequence: 

TRSW 

Registers: 

X3=X3-4-W 

R5 

R 1,R2,R4-,R6,R7 

S.EXEC52 

MRRQ address 
Scratchpad address 

RO 

Scratchpad address 

Saved 

Destroyed 

3.1.94 Subroutine S.EXEC53 - Validate PS8 

Functional Description 

S.EXEC53 is called to validate the parameters contained in the Parameter Send Block 
(PSB) associated with a message or run request. An immediate return is made if the 
most recent context on the TSA stack reflects a privileged caller. Otherwise, S.ALOC20 
is called to verify the PSB address arguments, and general parameter validation is 
performed. 

3-66 

c,) 

(1~'\ 

VI 

o 



( 

Entry Conditions 

Calling Sequence: 

BL S.EXEC53 

Registers: 

R2 PSB address 

X3 Scratchpad address 

Exit Conditions 

Return Sequence: 

TRSW RO (CC 1 set indicates validation error) 

Registers: 

X3=X3-4W Scratch pad address 

R6 Contains error code if CC 1 set, otherwise destroyed 

R2 Saved 

R 1,R4,R5,R7 Destroyed 

3.1.95 Subroutine S.EXEC54 - Move Byte String 

Functional Description 

S.EXEC54 is a register reentrant routine which moves a byte string of the designated 
length from the origin address to the destination address. 

Entry Conditions 

Calling Sequence: 

BL S.EXEC54 

Registers: 

RI Origin (from) address 

R2 Destination (to) address 

R7 Negative number of bytes to be transferred 

3-67 

( 



Exit Conditions 

Return Sequence: 

TRSW RO 

Registers: 

R3,R4,R5 Saved 

R 1,R2,R6,R7 Destr9yed 

3.1.96 Subroutine S.EXEC55 - Unlink Task From Designated List and Link To Ready 
List 

Functional Description 

S.EXEC55 is called to link a task to the ready-to-run queue. It will unlink the task from 
the designated list, then link the task to the ready list associated with its current 
priority. If the task is outswapped and cannot run, it will be linked to the memory 
request queue and the memory scheduler will be resumed. 

Entry Conditions 

Calling Sequence: 

Registers: 

BEl 
BL 

Rl 

R2 

Exit Conditions 

Return Sequence: 

TRSW 

Registers: 

R2,R4,R7 

Rl,R3,R5,R6 

3-68 

STATUS 
S.EXEC55 

Designated list headcell address 

DQE address 

RO 

Saved 

Destroyed 

I ~ 



( 3.1.97 Subroutine S.EXEC56 - Resume Memory Scheduler 

Functional Description 

S.EXEC56 is called as a result of a memory scheduler event. An immediate return will 
be made if no memory requests are queued. Otherwise the memory scheduler is made 
ready to run at the priority of the highest priority memory request queued. 

Entry Conditions 

Calling Sequence: 

Registers: 

BEl 
BL 

None 

Exit Conditions 

Return Sequence: 

TRSW 

Registers: 

R4,R6,R7 

Rl,R2,R3,R5 

STATUS 
S.EXEC65 

RO 

Saved 

Destroyed 

3.1.98 Subroutine S.EXEC57 - Link Task To Ready List By Priority 

Functional Description 

S.EXEC57 is called to link the designated task to the ready to run list associated with its 
current priority. 

Entry Conditions 

Calling Sequence: 

Registers: 

BEl 
BL 

R2 

Exit Conditions 

STATUS 
S.EXEC57 

DOE address of specified task 

3-69 

C~\ 

.' 



Return Sequence: 

TRSW RO 

Registers: 

R2,R4,R6,R7 Saved 

R 1,R3,R5 Destroyed 

3.1.99 Subroutine S.EXEC58 - Link MRRQ To Message Receiver Of Destination Task 

Functional Description 

S.EXEC58 is called on behalf of the sending task to link an MRRQ entry to the message 
receiver queue of the destination task. 

Entry Conditions 

Calling Sequence: 

BL S.EXEC58 

, , 

'~j Registers: 

Rl Destination task DQE address 

R2 MRRQ address 

X3 Scratch pad address 

R7 Task activation sequence number of destination task 

Exit Conditions 

Return Sequence: 

TRSW RO (CC 1 set indicates invalid destination task) 

Registers: 

X3=X3-4W Scratchpad address 

R 1,R2,R4 Saved 

R5,R6,R7 Destroyed 

3-70 

() 



( 
3.1.100 Subroutine S.EXEC.59 - Reserved 

3.1.101 Subroutine S.EXEC60 - Validate PRB 

Functional Description 

S.EXEC60 is called to validate the Parameter Receive Block (PRB) of the destination 
task, when the destination task has made a request for the message or run request 
parameters. Validation is bypassed if the most recent pushdown on the TSA stack 
reflects a privileged caller. Otherwise general PRB validation is performed. 

Entry Conditions 

Calling Sequence: 

BL S.EXEC60 

Registers: 

R2 PRB address 

X3 Scratchpad address 

Exit Conditions 

Return Sequence: 

TRSW RO (CC 1 set indicates validation error) 

Registers: 

R6 Error code if CC 1 set, otherwise destroyed 

R2 Saved 

Rl,R4,R5,R7 Destroyed 

X3=X3-4W Scratchpad address 

3.1.102 Subroutine S.EXEC61 - Transfer Parameters From MRRQ To Receiver 
Buffer 

Functional Description 

S.EXEC61 is called on behalf of the destination task after a request for message or run 
request parameters has been made. The sent parameters are transferred by S.EXEC61 
from the MRRQ entry to the receiver buffer specified in the PRB. 

Entry Conditions 

3-71 

( 



il 

~1 

(f-"'-

V 

(F""" 

0 

c 

Calling Sequence: 

BL S.EXEC61 

Registers: 

Rl MRRQ address 

R2 PRB address 

X3 Scratchpad address 

Exit Conditions 

Return Sequence: 

TRSW RO 

Registers: 

X3=X3-4W Scratchpad address 

Rl,R2,R4,R5 Saved 

R7 Destroyed 

R6 Status code: O=OK, 4=Receiver buffer length exceeded 

3.1.103 Subroutine S.EXEC62 - Validate RXB 

Functional Description 

S.EXEC62 is called to validate the Receiver Exit Block (RXB) after the destination task 
has issued an exit from message or run request processing. 

Entry Conditions 

Calling Sequence: 

BL S.EXEC62 

Registers: 

R2 RXB address 

X3 Scratchpad address 

Exit Conditions 

Return Sequence: 

TRSW RO (CC 1 set indicates validation error) 

3-72 

C' 'I j) 

, , 
,c,v 

o 



( Registers: 

R6 Error code if CC I set, otherwise destroyed 

X3=X3-4W Scratchpad address 

R2 Saved 

RI,R4,R5,R7 Destroyed 

3.1.104 Subroutine S.EXEC63 - Transfer Return Parameters From Destination Task 
ToMRRQ 

Functional Description 

S.EXEC63 is called on behalf of the destination task to transfer return parameters to the 
MRRQ after the destination task has issued an exit from message or run request 
processing. 

Entry Conditions 

Calling Sequence: 

BL S.EXEC63 

Registers: 

Rl MRRQ address 

R2 RXB address 

X3 Scratch pad address 

Exit Conditions 

Return Sequence: 

TRSW RO 

Registers: 

X3=X3-4W Scratchpad address 

R 1,R2,R4,R5 Saved 

R6,R7 Destroyed 

3-1'3 

( 

f 



3.1.105 Subroutine S.EXEC64 - No-Wait Mode Message Post Processing Subroutine 

Functional Description 

S.EXEC64 is invoked as a preemptive system service (end action priority 2) on behalf of 
the sending task. It in turn calls S.EXEC52 to accomplish post processing of the MRRQ. 
It will optionally vector to a user specified end action routine, or call H.EXEC,34 to 
report no-wait message post processing complete. 

Entry Conditions 

Calling Sequence: 

Preemptive system service 

Registers: 

R2 MRRQ address 

Exit Conditions 

Return Sequence: 

No return is made 

S.EXEC64 will exit to the user end action routine or to H.EXEC,34 

Registers: 

3.1.106 

Rl PSB address on entry to user end action routine 

Subroutine S.EXEC65 - No-Wait Mode Run Request Post Processing 
Subroutine 

Functional Description 

S.EXEC65 is invoked as a preemptive system service (end action priority 2) on behalf of 
the sending task. It in turn calls S.EXEC52 to accomplish post processing of the MRRQ. 
It will optionally vector to a user specified end action routine, or call H.EXEC,28 to 
report no-wait run request post processing complete. 

Entry Conditions 

Calling Sequence: 

Preemptive system service 

Registers: 

R2 MRRQ address 

3-74 



( 

Exi t Conditions 

Return Sequence: 

No return is made 

S.EXEC65 will exit to the user end acti'on routine or to H.EXEC,28 

Registers: 

RI PSB address on entry to user end action routine 

3.1.107 Subroutine S.EXEC66 - Deallocate MRRQ 

Functional Description 

S.EXEC66 is called to deallocate an MRRQ when processing associated with the MRRQ is 
complete. S.ALOC22 is called to return the MRRQ space to memory pool. 

Entry Conditions 

Calling Sequence: 

BL S.EXEC66 

Registers: 

R2 MRRQ address 

X3 Scratchpad address 

Exit Conditions 

Return Sequence: 

TRSW RO 

Registers: 

X3=X3-4W Scratchpad address 

R5 Saved 

RI,R2,R4,R6,R7 Destroyed 

3-75 

( 

c 



3.1.108 Subroutine S.EXEC67 - Link Entry To End Action Queue 
1:~ "Ic, 

'''-JlFunctional Description 

S.EXEC67 is called on behalf of the destination task when destination task processing of 
a no-wait mode message or run request is complete. Its purpose is to link the MRRQ 
entry to the end action queue of the sending task. This will cause the appropriate post 
processing routine to be invoked as a preemptive system service on behalf of the sending 
task. 

Entry Conditions 

,Calling Sequence: 

Registers: 

BEl 
BL 

Rl 

R2 

X3 

~"'lExit Conditions 

Return Sequence: 

TRSW 

Registers: 

X3=X3-4W 

R 1,R2,R4,R6 

R5,R7 

STATUS 
S.EXEC67 

DQE address of sending task 

MRRQ address 

Scratch pad address 

RO 

Scratchpad address 

Saved 

Destroyed 

3.1.109 Subroutine S.EXEC68 - Construct And Vector Context To User End Action 
PSD 

Functional Description 

S.EXEC68 is called by the send request post processing logic to vector to a user specified 
end action routine. Control will be transferred with mapped, unblocked status. 

Entry Conditions 

Calling Sequence: 

I{) BL S.EXEC68 

3-76 

-

1,\ 



Registers: 

Rl PSB address 

R6 User end action routine address 

Exit Conditions 

Return Sequence: 

No return 

LPSD to user end action routine 

Registers: 

R2 PSB address 

3.1.110 Subroutine S.EXEC69 - Common No-Wait Post Processing Merge Point 

Functional Description 

S.EXEC69 is called to remove the task interrupt processing lock and mark the task 
interrupt request if additional end action entries are queued. The most recent level of 
context in the TSA stack is discarded, and an M.RTRN is issued to pop to the previous 
context level. 

Entry Conditions 

Calling Sequence: 

BL S.EXEC69 

Registers: 

Rl Current task DQE address 

Exit Conditions 

Return Sequence: 

No return to caller 

M.R TRN to previous context level 

Registers: 

None 

3-77 

( 

c: 



I,! 

3.1.111 Subroutine S.EXEC70 - Terminate All Run Requests In Receiver Queue Of 
Current Task 

Functional Description 

S.EXEC70 is called when an error is encountered in attempting to reactivate a 
terminating task with additional run requests queued. S.EXEC70 will in turn call 
S.EXEC25 until the receiver queue is empty. 

Entry Conditions 

Calling Sequence: 

BL 

Registers: 

X2 

X3 

Exit Conditions 

Return Sequence: 

Registers: 

TRSW 

X3=X3-4W 

R2 

RI,R4,R5,R6,R7 

S.EXEC70 

Current task DOE address 

Scratchpad address 

RO 

Scratchpad address 

Saved 

Destroyed 

3.1.112 Subroutine S.EXEC71 - Insure Startup Of Destination Run Receiver Task 

Functional Description 

S.EXEC71 is called to unlink the destination task from the RUNW or PREA list (unless 
R5 is not zero), and to link the destination task to the ready list at the priority specified 
in R6. 

Entry Conditions 

Calling Sequence: 

3-78 

BEl 
BL 

STATUS 
S.EXEC71 c\ "I 



( 
Registers: 

R2 DQE address of destination task 

R5 Zero if task is to be unlinked from PREA list 

R6 Priority 

Exit Conditions 

Return Sequence: 

TRSW RO 
Registers: 

R2,R4 Saved 

R I,R3,R5,R6,R7 Destroyed 

3.1.113 Subroutine S.EXEC72 - Report Wait I/o Starting 

Functional Description 

S.EXEC72 is called to process a report of wait mode I/O starting. A check is made to 
see if the associated I/O has already completed. If so, an immediate return is made. 
Otherwise the swap inhibit flag will be set (unless RO bit I is set) and the task will be 
linked to the designated wait list. 

Entry Conditions 

Calling Sequence: 

BU S.EXEC72 

Registers: 

RO Bit 0 set indicates task is swappable during I/O 

RI Address of wait list headcell 

Exit Conditions 

Return Sequence: 

No return to caller 

CPU scheduler return to context on TSA stack when I/O complete 

Registers: 

None 

3-79 

( 



3.1.114 Subroutine S.EXEC73 - Replace Context On TSA Stack 

Functional Description 

S.EXEC73 is called to replace the most recent context on the TSA stack with the 
designated context block. 

Entry Conditions 

Calling Sequence: 

BL S.EXEC73 

Registers: 

Rl Address of lOW context block 

Exit Conditions 

Return Sequence: 

TRSW RO 

Registers: 

Rl,R3 Saved 

R2,R4,R5,R6,R7 Destroyed 

3.1.115 Subroutine S.EXEC74 - Reset Stack To User Level 

Functional Description 

S.EXEC74 is called on abnormal task termination to reset the stack to the point of last 
user call. 

Entry Conditions 

Calling Sequence: 

BL S.EXEC74 

Registers: 

None 

Exit Conditions 

Return Sequence: 

TRSW RO 

3-80 

G 



( 

( 

Registers: 

R2,R4,R6,R7 Saved 

Rl,R3,R5 Destroyed 

3.1.116 Subroutine S.EXEC75 - Situational Priority Increment Subroutine 

Functional Description 

S.EXEC75 is called to increment the priority of the specified task. Priority adjustment 
is bypassed if the specified task is a real time task. 

Entry Conditions 

Calling Sequence: 

BL S.EXEC75 

Registers: 

R2 DQE address of target task 

R4 Situational priority increment 

Exit Conditions 

Return Sequence: 

TRSW RO 

Registers: 

R 1,R2,R3,R4,R6,R7 Saved 

R5 Destroyed 

3.1.117 Subroutine S.EXEC76 - Update Task Execution AccolDlting Value 

Functional Description 

S.EXEC76 is called during task termination processing. The interval timer is read and 
the elapsed time added to T .IT AC in the TSA. 

Entry Conditions 

Calling Sequence: 

BL S.EXEC76 

3-81 

( 



o 

~egisters: 

R2 Current task DQE address 

Exit Conditions 

Return Sequence: 

TRSW RO 

Registers: 

R3 Current task TSA address 

R 1,R2,R4,R6,R7 Saved 

R5 Destroyed 

3.1.118 Subroutine S.EXEC77 - Update DQE.CQC On Preemptive Context Switch 

Functional Description 

S.EXEcn is called by S.EXEC20 when a context switch is being performed as a result of 
preemption by a higher priority task. Its purpose is to update the current quantum value 
in the DQE (DQE.CQC) for use when the preempted task is re-dispatched. 

Entry Conditions 

Calling Sequence: 

Registers: 

BEl 
BL 

R2 

Exit Conditions 

Return Sequence: 

TRSW 

Registers: 

R 1,R2,R4,R6 

R3,R5,R7 

3-82 

STATUS 
S.EXEC77 

Current task DQE address 

RO 

Saved 

Destroyed 

() 

o 



( 

( 

3.1.119 Subroutine S.EXEC78 - Move Context From Stack to T .CONTXT 

Functional Description 

S.EXEC78 is called when the context of the PSD, RO-R7, and PC are copied from the 
TSA of the current task to the Debug context area. After filling the T .CONTXT area, it 
will return to the calling routine. 

Entry Conditions 

Calling Sequence: 

BL S.EXEC78 
Registers: 

None 

Exit Conditions 

Return Sequence: 

TRSW RO 

Registers: 

RI Current pushdown address from T.REGP 

R3 TSA Address of current task 

R2,R4-,R5 Unchanged 

R6,R7 Destroyed 

3.1.120 Subroutine S.EXEC79 - Push Current Context onto Stack for Deferred EA 
Pull 

Functional Description 

S.EXEC79 is called to format a PSD with the privileged mode set, the condition codes 
clear, the Extended Addressing Mode clear, the right halfword instruction clear, the 
arithmetic exception trap clear, and the PC pointing into H.EXEC25 in word one. Word 
two has the Map Mode set and CPIX of the specified task. The subroutine will then place 
the PSD and the registers (with the contents at the end of the subroutine) onto the 
stack. After placing the information onto the stack, the subroutine will return to the 
calling routine. 

Entry Conditions 

Calling Sequence: 

BL S.EXEC79 

3-83 

( ) 
.' 



Registers: 

R2 DQE Address of specified task 

Exit Conditions 

Return Sequence: 

R2,R3,R6,R7 Unchanged 

Rl,R4,R5 Destroyed 

3.1.121 Subroutine S.EXEC80 - Start IPU and Verify 

Functional Description 

S.EXEC80, when called, will reset the IPU run flag and initialize and start the IPU 
verification timer. The subroutine will then return control to the calling routine. 

Entry Conditions 

Calling Sequence: 

BL S.EXEC80 

Registers: 

None 

Exit Conditions 

Return Sequence: 

TRSW RO 

Registers: 

Rl,R2,R3,R5,R6,R7 Unchanged 

R4 Destroyed 

3-84 

(' ," 



(-

3.2 System Services (H.MONS) 

SVC 
ENTR Y POINT NUMBER DESCRIPTION 

42 PHYSICAL DEVICE INQUIR Y 
43 PERMANENT FILE ADDRESS INQUIRY 
44 MEMOR Y ADDRESS INQUIRY 
45 CREA TE TIMER ENTRY 
46 TEST TIMER ENTRY 
47 DELETE TIMER ENTR Y 
48 SET USER STATUS WORD 
49 TEST USER STATUS WORD 

4A* CHANGE PRIORITY LEVEL 
4B CONNECT TASK TO INTERRUPT 
4E TIME OF DAY INQUIR Y 
4F MEMOR Y DUMP REQUEST 
50 LOAD OVER LA Y SEGMENT 
51 LOAD AND EXECUTE OVERLAY SEGMENT 
52 ACTIV A TE TASK 
53 RESUME TASK EXECUTION 
54 SUSPEND TASK EXECUTION 
55 TERMINATE TASK EXECUTION 
56 ABOR T SPECIFIED TASK 
57 ABORT SELF 

H.MONS,l 
H.MONS,2 
H.MONS,3 
H.MONS,4 
H.MONS,5 
H.MONS,6 
H.MONS,7 
H.MONS,8 
H.MONS,9 
H.MONS,lO 
H.MONS,ll 
H.MONS,12 
H.MONS,13 
H.MONS,14 
H.MONS,15 
H.MONS,16 
H.MONS,17 
H.MONS,18 
H.MONS,19 
H.MONS,20· 
H.MONS,21 
H.MONS,22 
H.MONS,23 
H.MONS,24 
H.MONS,25 
H.MONS,26 
H.MONS,27 
H.MONS,28 
H.MONS,29 
H.MONS,30 
H.MONS,31 
H.MONS,32 
H.MONS,33 
H.MONS,34 
H.MONS,35 
H.MONS,36 
H.MONS,37 

40 ALLOCA TE FILE OR PERIPHERAL DEVICE c. 
4-1 DEALLOCATE FILE OR PERIPHERAL DEVICE . 

H.MONS,38 
H.MONS,39 
H.MONS,40 
H.MONS,41 
H.MONS,42 
H.MONS,43 
H.MONS,44 

4-D ARITHMETIC EXCEPTION INQUIRY 
4-C T ASK OPTION WORD INQUIRY 
58 PROGRAM HOLD REQUEST 
60 SET USER ABORT RECEIVER ADDRESS 
61 SUBMIT JOB FROM DISC FILE 
62 ABORT WITH EXTENDED MESSAGE 
63 LOAD AND EXECUTE INTERACTIVE DEBUGGER 

N/ A DELETE INTERACTIVE DEBUGGER 
5A DELETE TASK 
64 GET TASK NUMBER 
73 PERMANENT FILE LOG 
74- USERNAME SPECIFICATION 
7A GET MESSAGE PARAMETERS 
7B GET RUN PARAMETERS 
7C WAIT FOR ANY NO-WAIT OPERA TION COMPLETE, 

MESSAGE INTERRUPT OR BREAK INTERRUPT 
5D DISCONNECT TASK FROM INTERRUPT 
5E EXIT FROM MESSAGE RECEIVER 

5F* PARAMETER TASK ACTIVATION 
65 GET ADDRESS LIMITS 
66 DEBUG LINK SERVICE 
6B RECEIVE MESSAGE LINK ADDRESS 
6C SEND MESSAGE TO SPECIFIED TASK 

* Implies that this service is available to privileged users only. 
N/ A implies reserved for internal use by MPX-32. () 



'1",' ',"\ 11",1 

SVC 
ENTRY POINT NUMBER DESCRIPTION 

H.MONS,45 
H.MONS,46 
H.MONS,47 
H.MONS,48 
H.MONS,49 
H.MONS,50 
H.MONS,51 
H.MONS,52 
H.MONS,53 
H.MONS,54 
H.MONS,55 
H.MONS,56 
H.MONS,57 
H.MONS,58 
H.MONS,59 
H.MONS,60 
H.MONS,61 
H.MONS,62 
H.MONS,63 
H.MONS,64 
H.MONS,65 
H.MONS,66 
H.MONS,67 
H.MONS,68 
H.MONS,69 
H.MONS,70 
H.MONS,71 
H.MONS,72 
H.MONS,73 
H.MONS,99 

6D SEND RUN REQUEST TO SPECIFIED TASK 
6E BREAK/TASK INTERRUPT LINK 
6F ACTIVATE TASK INTERRUPT 
70 EXIT FROM TASK INTERRUPT LEVEL 
7D EXIT RUN RECEIVER 
7E EXIT FROM MESSAGE END ACTION ROUTINE 
7F EXIT FROM RUN REQUEST END ACTION ROUTINE 

N/ A RTM CALM 'X55' EXIT 
N/A RTM CALM X'52' ACTIVATE 
N/A RTM CALM X'54' SUSPEND SELF 
N/ A RTM CALM X'40' ALLOCATION FILE OR DEVICE 
N/A RTM CALM X'41' PHYSICAL DEVICE INQUIRY 
2E DISABLE MESSAGE TASK INTERRUPT 
2F ENABLE MESSAGE TASK INTERRUPT 

N/ A GET PHYSICAL MEMORY CONTENTS 
N/ A CHANGE PHYSICAL MEMORY CONTENTS 
N/ A RTM CALM X'73' LOG FILE(S) 
19 RESOURCEMARK LOCK 
lA RESOURCEMARK UNLOCK 

N/ A REMOVE RSM LOCK ON TASK TERM 
2D TASK CPU EXECUTION TIME 
IE ACTIVATE PROGRAM AT GIVEN TIME OF DAY 
IB SET SYNCHRONOUS TASK INTERRUPT 
IC SET ASYNCHRONOUS TASK INTERRUPT 

RESERVED 
15 DATE AND TIME INQUIRY 
14 GET DEVICE MNEMONIC OR TYPE CODE 
13 ENABLE USER BREAK INTERRUPT 
12 DISABLE USER BREAK INTERRUPT 

N/ A SYSGEN INITIALIZATION 

N/ A implies reserved for internal use by MPX-32. 

RTM System Services Under MPX-32 

MPX-32 will accept call monitor (CALM) instructions which are syntactically and 
functionally equivalent to the RTM CALM's. These CALM's are implemented for 
compatibility purposes, only. The user is encouraged to use the new MPX-32 System 
Services, instead of CALM's, because they will run faster and support the new 
capabilities available in MPX-32. Mixing CALM's and SVC's in the same program 
element is discouraged. 

Generally, RTM CALM's will operate under MPX-32 without any change in syntax or 
function. A few seldom-used CALM's have been deleted, and others may have additional 
restrictions applied to them. In general, however, the changes to the users source code 
should be minimal in the conversion from RTM to MPX-32. 

3-86 



On a CONCEPT/32 computer, a new SVC type 15 replaces CALM instructions. During ( .... 
reassembly of a program, the Assembler automatically converts CALM instructions to 
their equivalent SVC 15,X'nn' number if Option 20 is set. 

Also, an address exception trap will be generated when a doubleword operation code is 
used with an incorrectly bounded operand, therefore coding changes will be required 
when a trap occurs. 

Under MPX-32 the following RTM CALM implementation is slightly different from its 
RTM equivalent: 

CALM X'73' Permanent File Log (The file definition is returned in sectors 
instead of allocation units). 

The following RTM CALM's have been deleted in MPX-32. 

CALM X'62' 

CALM X'63' 

CALM X'64' 

CALM X'65' 

Unlink Dynamic Job Queue Entry (not required in MPX). 
M.DDJS or CALL M:UNLKJ 

Acti vate with Core Append (replaced by memory expansion and 
contraction services of MPX). 
M.ACAP (was not in RTM run-time) 

Retrieve Address of Appended Core (same as CALM X'63'). 
M.APAD (was not in RTM run-time) 

Initialize reentrant library pointers (MPX-32 does not support the 
RTM reentrant run-time library). 

All Random Access Calls 

CALM X'59' 

CALM X'5A' 

CALM X'5B' 

CALM X'5C' 

CALM X'5D' 

TSS CALM's 

Random Access OPEN (MPX-32 does not support DRAH). 
(CALL M:OPEN) 

Random Access READ (same as CALM X'59'). 

Write Function (same as CALM X'59'). 
(CALL M:WRITE) 

Define Function 
(CALL M:DEFINE) 

Find Function 
(CALL M:DEFINE) 

MPX-32 replaces TSS with TSM, a new online support package. Therefore, all TSS 
CALM's X'80' - X'84' have been deleted. 

( C 

3-87 



FORTRAN Run-Time 

OPX-32 does not contain the FORTRAN run-time package. Certain performance 
differences will be associated with certain functions as have been highlighted in the 
monitor service section. 

Summarizing 

M:CONNECT is equivalent to M:CONRES. 

M:UNLKJ is deleted. 

M:IOEX 

1. Files are left open after dispatch to abort receiver. 

2. Normal exit does not result in dispatch of control to abort receiver. 

3. Only privileged users may re-establish an abort receiver from an abort receiver 
(only one abort allowed for unprivileged user). 

M:LOG - note SMD layout is different in MPX. 

M:BLOCK 

1. 

2. 

3. 

c 
3-88 

The user may specify blocking via the JCL or Catalog directives, rather than 
use this service. 

Number of block files is specified by user via JCL and Catalog directives. 
. Blocking buffers are maintained in user's TSA rather than in run-time 

package. Not limited to 5. 

Number of FCB's has been expanded to 64. 

o 

-

o 

---~--~.----.~.--- - -



3.2.1 Entry Point 1 - Physical Device Inquiry 

See Section 7.8.16 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.2.2 Entry Point 2 - Permanent File Address Inquiry 

See Section 7.8.8 of the MPX- 32 Reference Manual for a detailed description of this 
entry point. 

3.2.3 Entry Point 3 - Memory Address Inquiry 

See Section 8.3.1 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.2.4 Entry Point 4 - Create Timer Entry 

See Section 8.2.33 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.2.5 Entry Point 5 - Test Timer Entry 

See Section 8.2.43 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.2.6 Entry Point 6 - Delete Timer Entry 

See Section 8.2.14 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.2.7 Entry Point 7 - Set User Status Word 

See Section 8.2.32 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.2.8 Entry Point 8 - Test User Status Word 

See Section 8.2.42 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.2.9 Entry Point 9 - Change Priority Level 

See Section 8.2.29 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3-39 

( 



3.2.10 Entry Point 10 - Connect Task To Interrupt 

.f"'See Section 8.2.8 of the MPX-32 Reference Manual for a detailed description of this 
''-' . entry pomt. 

3.2.11 Entry Point 11 - Time-Of-Day Inquiry 

See Section 8.2.40 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.2.12 Entry Point 12 - Memory Dump Request 

See Section 8.3.2 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.2.13 Entry Point 13 - Load Overlay Segment 

See Section 8.2.27 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.2.14 Entry Point 14 - Load and Execute Overlay Segment 

"~ee Section 8.2.27 of the MPX-32 Reference Manual for a detailed description of this 
'''L4!ntry point. 

3.2.15 Entry Point 15 - Activate Task 

See Section 8.2.1 in the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.2.16 Entry Point 16 - Resume Task Execution 

See Section 8.2.37 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.2.17 Entry Point 17 - Suspend task Execution 

See Section 8.2.38 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.2.18 Entry Point 18 - Terminate Task Execution 

See Section 8.2.20 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

e 
3-90 

-



( 

3.2.19 Entry Point 19 - Abort Specified Task 

See Section 8.2.4 of the MPX-32 Reference Manual for a detailed description of this 
entry point •. 

3.2.20 Entry Point 20 - Abort Self 

See Section 8.2.4 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.2.21 Entry Point 21 - Allocate File Or Peripheral Device 

See Section 7.8.1 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.2.22 Entry Point 22 - Deallocate File Or Peripheral Device 

See Section 7.8.6 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.2.23 Entry Point 23 - Arithmetic Exception Inquiry 

See Section 8.2.41 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.2.24 Entry Point 24 - Task Option Word Inquiry 

See Section 8.2.28 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.2.25 Entry Point 25 - Program Hold Request 

See Section 8.2.23 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.2.26 Entry Point 26 - Set User Abort Receiver Address 

See Section 8.2.36 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.2.27 Entry Point 27 - Submit Job From Disc File 

See Section 8.2.7 of the MPX-32 Reference Manual for a detailed description of this 

( 

entry point. (-'\ 

3-91 



"I , 

3.2.28 Entry Point 28 - Abort With Extended Message 

r See . Sec~ion 8.2.4 of the MPX-32 Reference Manual for a detailed description of this 
~ entry pOlnt. . 

3.2.29 Entry Point 29 - Load and Execute Interactive Debugger 

See Section 8.2.10 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.2.30 Entry Point 30 - Delete Interactive Debugger 

Functional Description 

A call to this entry point will cause the Interactive Debugger to be disassociated with the 
calling task. 

Entry Conditions 

Calling Sequence: 

M.CALL 

Exit Conditions 

Oeturn Sequence: 

M.RTRN 

Registers: 

None 

External References 

System Macros: 

M.RTRN 

Abort Cases: 

None 

Output Messages: 

None 

3-92 

H.MONS,30 

( '''' .. '. ) 
_.F 

o 

I 

I 
,I 

, I 
, I 

, I 

Iii 
Ii 
1'1 
i' 
Ii I 



( 

3.2.31 Entry Point 31 - Delete Task 

See Section 8.2.11 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.2.32 Entry Point 32 - Get Task Number 

See Sections 8.2.24 and 8.2.26 of the MPX-32 Reference Manual for a detailed 
description of this entry point. 

3.2.33 Entry Point 33 - Permanent File Log 

See Section 7.8.15 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.2.34 Entry Point 34 - Username Specification 

See Section 7.8.28 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.2.3.5 Entry Point 3.5 - Get Message Parameters 

See Section 8.2.21 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.2.36 Entry Point 36 - Get Rm Parameters 

See Section 8.2.22 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.2.37 Entry Point 37 - Wait For Any No-Wait Operation Complete; Message 
Interrupt Or Break Interrupt 

See Section 8.2.2 of the MPX-32 Referel1ce Manual for a detailed description of this 
entry point. 

3.2.38 Entry Point 38 - Disconnect Task From Interrupt 

See Section 8.2.13 of the MPX-32 Refer-nce Manual for a detailed description of this 
entry point. 

3.2.39 Entry Point 39 - Exit From Message Receiver 

See Section 8.2.47 of the MPX-32 Refer, nce Manual for a detailed description of this 
entry point. 

3-93 

c 

c; 



3.2.40 Entry Point 40 - Parameter Task Activation 

See Section 8.2.30 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.2.41 Entry Point 41 - Get Address Limits 

See Section 8.3.7 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.2.42 Entry Point 42 - DEBUG Link Service 

See Section 8.2.51 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.2.43 Entry Point 43 - Receive Message Link Address 

See Section 8.2.31 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.2.44 Entry Point 44 - Send Message To Specified Task 

"". See Section 8.2.34 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

·c''''I>· 
" 

3.2.45 Entry Point 45 - Send Run Request To Specified Task 

See Section 8.2.35 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.2.46 Entry Point 46 - Break/Task Interrupt Link 

See Section 8.2.5 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.2.47 Entry Point 47 - Activate Task Interrupt 

See Section 8.2.25 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.2.48 Entry Point 48 - Exit From Task Interrupt Level 

See Sections 8.2.6 and 8.2.45 of the MPX-32 Reference Manual for a detailed description 
of this entry point. 

3-94 



( 

3.2.49 Entry Point 49 - Exit Run Receiver 

See Section 8.2.49 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.2.50 Entry Point 50 - Exit From Message End Action Routine 

See Section 8.2.46 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.2.51 Entry Point 51 - Exit from Run Request End Action Routine 

See Section 8.2.48 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.2.52 Entry Point 52 - Terminate Task Exectution 

Functional Description 

This entry point performs all normal termination functions required of exiting tasks. All 
devices and memory area are deallocated, related table space is erased, and the task's 
Dispatch Qu~ue entry is cleared. If a timer or interrupt level is associated with the task, 
it will be reactivated, connected, and suspended. Resident tasks are merely suspended. 

Entry Conditions 

Calling Sequence: 

Registers: 

CALM 
(or) 
M.CALL 

None 

Exit Conditions 

Return Sequence: 

X'55' 

H.MONS,52 

Return to EXEC for sweep of Dispatch Queue 

Registers: 

None 



External References 

System Macros: 

M.RTRN 

Abort Cases: 

None 

Output Messages: 

None 

3.2.53 Entry Point 53 - Activate Task 

Functional Description 

This entry point is used to activate a task. The task assumes the owner name of the 
caller. 

Entry Conditions 

Calling Sequence: 

Registers: 

CALM 
(or) 
M.CALL 

R6,R7 

Exit Conditions 

Return Sequence: 

M.RTRN 

X'52' 

H.MONS,53 

1-8 ASCII character left-justified blank filled program name 
for which an activation request is to be queued. 

Note: If the task being activated is not in the system, an abort indication is 
not given. 

Registers: 

None 

3-96 

,If"", 
i{j 



External References 

System Macros 

M.RTRN 

Abort Codes: 

None 

Output Messages: 

None 

3.2.54 Entry Point 54 - Suspend Task Execution 

Functional Description 

This entry point results in the suspension of the caller or any other task of the same 
owner name for the specified number of time units or for an indefinite time period, as 
requested. A task suspended for a time interval results in a one-shot timer entry to 
resume the task upon time-out of the specified interval. A task suspended for an 
indefinite time interval must be resumed through the M.SUME system service (see 
MPX-32 Reference Manual Volume 1, Section 8.2.37). 

Entry Conditions 

Calling Sequence: 

Registers: 

CALM 
(or) 
M.CALL 

R7 

Exit Conditions 

Return Sequence: 

M.RTRN 

X'54' 

H.MONS,54 

zero if suspension for an indefinite time interval is 
requested 

(or) 

the negative number of time units to elapse before the 
caller is resumed 

3-97 



Registers: 

None 

External References 

System Macros: 

M.RTRN 
M.IOFF 

Abort Cases: 

None 

Output Messages: 

None 

M.IONN 
M.OPEN 

M.CALL 

3.2 • .5.5 Entry Point .5.5 - Allocate File or Peripheral Device 

Functional Description 

This entry point dynamically allocates a peripheral device, a permanent disc file, a 
temporary disc file, or a SLO or SSO file, and creates a File Assignment Table (FAT) 
entry for the allocated unit and specified logical file code. This entry point may also be 
used to equate a new logical file code with an existing logical file code. 

Entry Conditions 

Calling Sequence: 

Registers: 

3-98 

CALM 
(or) 
M.CALL 

Rl 

R5 byte 0 

bytes 1,2,3 

X'40' 

H.MONS,55 

denial return address 

function code as follows: 

I =assign file code to a user or system permanent file 
2=assign file code to a system file code 
3=assign file code to a peripheral device 
4=assign file code to a defined file code 
5=assign file code to a system permanent file only 

file code to be assigned 

o 

o 



( 
Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

None 

(or) 

Return Sequence: 

M.RTRNA 1 

Registers: 

None 

(or) 

Return Sequence: 

M.RTRNA2 

Registers: 

None 

External References 

Error Conditions: 

None 

Output Messages: 

None 

condition code 1 is set in the program status doubleword if 
the calling task has read but not write access rights to the 
specified permanent file 

for denial returns if the requested file or device cannot be 
allocated. 

condition code 2 is set in the program status doubleword if 
the calling task does not have read or write access rights to 
the specified permanent file. 

3-99 



3.2.56 Entry Point .56 - Physical Device Inquiry 

Functional Description 

This entry point returns to the caller physical device information describing the unit to 
which a specified logical file code is assigned. 

Entry Conditions 

Calling Sequence: 

Registers: 

CALM 
(or) 
M.CALL 

R5 

Exit Conditions 

Return Sequence: 

X'42' 

H.MONS,56 

three character logical file code for which physical device 
information is requested in bytes 1, 2, and 3 

M.RTRN 7 

Registers: 

R7 zero, if the specified logical file code is unassigned 

(or) 

Return Sequence: 

M.RTRN 5,6,7 

Registers: 

R5 

R6 

R7 

3-100 

disc=number of 192-word blocks in file 
magnetic tape=reel identifier 
all other devices =0 

bytes 0,1= maximum number of bytes transferrable to 
device 
bytes 2,3= device mnemonic (2 ASCII characters) 

bits 0-5 = device type code 
bits 6-15 = device address 
bits 16-23 = system file codes as follows: 
o = not a system file 
I = SYC file 
2 = SGO file 
3 = SLO file 
4 = SBO file 

c 
I 

iii\, 



External References 

System Macros: 

M.RTRN 

Abort Cases: 

None 

Output Messages: 

None 

bits 2lt-31 = disc = number of 192-word blocks per 
allocation unit 
= magnetic tape = volume number (0 if single 
volume) 
= all other devices = 0 

Note: If the file is a SYC or SGO file that is not open, bits 
13 through 15 of R 7 are returned equal to 1 or 2. All other 
result bits are not applicable. 

3.2.57 Entry Point 57 - Disable Message Task Interrupt 

See Section 8.2.l5 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.2.58 Entry Point 58 - Enable Message Task Interrupt 

See Secton 8.2.18 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.2.59 Entry Point 59 - Get Physical Memory Contents 

Function Description 

This entry point forces the specified physical address to an 8 word boundary and returns 
the memory contents of that 8 word block to the callers 8 word buffer area, which must 
be on an 8 word boundary. . 

Entry Conditions 

Calling Sequence: 

M.CALL H.MONS,59 

3-101 



Registers: 

Rl 

R2 

Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

None 

External References 

Abort Cases: 

None 

Output Messages: 

None 

physical address of memory 

caller's buffer address, must be on an 8 word boundary 

3.2.60 Entry Point 60 - Change Physical Memory Contents 

Functional Description 

This entry point stores a given value at the physical address specified by the caller. 

Entry Conditions 

Calling Sequence: 

Registers: 

M.CALL 

Rl 

R7 

Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

None 

3-102 

H.MONS,60 

physical address to change 

value to be stored 

o 

o 



( External References 

Abort Cases: 

None 

Output Messages: 

None 

3.2.61 Entry Point 61 - Permanent File Log 

Functional Description 

This entry point provides a log of currently existing permanent files. 

Entry Conditions 

Calling Sequence: 

CALM 
(or) 
M.CALL 

X'73' 

H.MONS,61 

f Registers: 

R4 

R5 

contains a byte-scaled value which specifies the type of lot 
to be performed as follows: 

o specifies a single named system or user file 
1 specifies all permanent files 
2 specifies system files only 
3 specifies user files 
4 specifies a single named system file 

If R4 contains zero and a user name is associated with the 
calling program, an attempt is made to locate the user file 
directory entry for the given file name. If unsuccessful, the 
system file directory entry is located, if any. If a user name 
is not associated with the calling program, the file is 
assumed to be a system file. 

If R4 contains 3 and the calling program has an associated 
user name, that user's files are logged or all files are logged 
if the calling program has no associated user name. 

contains the address of an eight-word area where the file 
directory entry is to be stored 

3-10' 



Exit Conditions 

Return Sequence: 

M.RTRN 4,5 

Registers: 

R4 

R5 

External References 

System Macros: 

M.CALL 

Abort Cases: 

MS28 

MS30 

Output Messages: 

None 

If type ='N' or "0" (R4=0 or 4), R4 is destroyed. If type = 
"A", "5", or "U" (R4=1,2 or 3), this entry point is called 
repeatedly to obtain all the pertinent file definitions. The 
type parameter in R4 is specified in the first call only. R4 
is returned containing the address of the next directory 
entry to be returned. The value returned in R4 must be 
unchanged upon the subsequent call to this service. 

Contains zero if type = "N" or "0" (R4=0) and the specified 
file could not be located or type = "A", "5", or "U" (R4=1,2 
or 3) and all pertinent files have been logged. Otherwise, 
R5 is unchanged. 

M.RTRN 

A permanent file log has been requested, but the address 
specified for storage of the directory entry is not contained 
within the calling task's logical address space. 

Task has attempted to obtain a permanent file log in a 
memory-only environment. 

3.2.62 Entry Point 62 - Resourcemark Lock 

See Section 7.8.22 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.2.63 Entry Point 63 - Resourcemark Unlock 

See Section 7.8.23 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 0 

3-104 



3.2.64 Entry Point 64 - Remove RSM Lock on Task Term 

Functional Description 

This entry point searches the Resourcemark Table for the calling tasks program 
number. If found, locks belonging to the task are cleared, the task is dequeued, and the 
lock is given to the next task waiting for that resource. 

Entry Conditions 

Calling Sequence: 

M.CALL H.MONS,64 

Registers: 

None 

Exit Conditions 

Return Sequence: 

M.RTRN 

External References: 

H.EXEC,36 

Abort Cases: 

None 

Output Messages: 

None 

3.2.65 Entry Point 65 - Task CPU Execution Time 

See Section 8.2.50 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.2.66 Entry Point 66 - Activate Program at Given Time of Day 

See Section 8.2.44 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.2.67 Entry Point 67 - Set Synchronous Task Interrupt 

See Section 8.2.39 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3-1 ,-. 



3.2.68 Entry Point 68 - Set Asynchronous Task Interrupt 

See Section 8.2.3 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.2.69 Entry Point 69 - Reserved 

3.2.70 Entry Point 70 - Date and Time Inquiry 

See Section 8.2.9 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.2.71 Entry Point 71 - Get Device Mnemonic or Type Code 

See Section 8.2.12 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.2.72 Entry Point 72 - Enable User Break Interrupt 

See Section 8.2.19 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.2.73 Entry Point 73 - Disable User Break Interrupt 

See Section 8.2.16 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.2.74 Entry Point 99 - SYSGEN Initialization 

Functional Description 

This entry point is for internal use only and is called during SYSGEN. H.MONS sets up its 
Entry Point Table, then returns to SYSGEN. 

3-106 

·C~·'··" I .; 



3.3 System Output Module (H.SOUT) 

The System Output module consists of entry points for processing listed (SLO) and 
punched (SBO) spooled output files. Certain entry points are designed to be called 
exclusively by other H.SOUT entry points and are so noted. 

System Input Directory (M.SID), System Output Directory (M.SOD) and link file indexes 
used as parameters throughout H.SOUT consist of a word with bits 0-7 containing the 
entry number of the entry relative to the beginning of the 192-word block that contains 
the entry. This value must be shifted left two places to obtain an index relative to the 
beginning of the 192-word block. Bits 8-31 contain the block number relative to the 
beginning of the M.SID, M.SOD or link files of the 192-word block that contains the 
entry. 

Entry 
Point 

H.SOUT,1 
H.SOUT,2 
H.SOUT,3 
H.SOUT,4 
H.SOUT,5 
H.SOUT,6 
H.SOUT,7 
H.SOUT,8 
H.SOUT,9 
H.SOUT,IO 
H.SOUT,11 
H.SOUT,12 
H.SOUT,13 
H.SOUT,14 
H.SOUT,15 
H.SOUT,16 
H.SOUT,17 
H.SOUT,18 
H.SOUT,19 
H.SOUT,20 
H.SOUT,21 
H.SOUT,22 
H.SOUT,23 
H.SOUT,24 
H.SOUT,25 
H.SOUT,26 

Description 

LINK SLO OR SBO FILE TO SYSTEM OUTPUT QUEUE 
RESERVED 
PROCESS END OF JOB 
GET AND DELETE M.SID ENTRY 
GET NEXT SLO OR SBO FILE 
LOG M.SID OR M.SOD 
ALLOCA TE SLO OR SBO FILE 
PROCESS DEPRINT COMMAND 
PROCESS DEPUNCH COMMAND 
ACTIV A TE SYSTEM OUTPUT TASK 
DELETE JOB'S SLO OR SBO FILES 
DELETE REAL-TIME SLO OR SBO FILE 
SYSTEM OUTPUT TASK ABORT PROCESSING 
RELINK M.SID OR M.SOD ENTR Y 
FIND FREE AND WRITE M.SID OR M.SOD ENTRY 
SET SYSTEM OUTPUT TASK'S USER STATUS WORD 
GET NEXT LINKED M.SID OR M.SOD ENTRY 
GA TE AND READ HEADER 
BUILD SYSTEM FAT, FPT AND FCB 
LINK M.SID OR M.SOD ENTRY 
UNLINK M.SID OR M.SOD ENTRY 
SEARCH JOB TABLE 
READ SPECIFIED M.SID OR M.SOD ENTRY 
BUILD USER DISC FAT AND FPT ENTRIES FOR A DISC FILE 
CONVERT DEVICE ADDRESS TO HEXADECIMAL 
BATCH TASK EXIT REPORTING 

3-107 



3.3.1 Entry Point 1 - Link SLO or SSO File To System Output Queue 

Functional Description 

This entry point adds the definition of a completed SLO or SBO file to a system output 
queue and activates a System Output task to process the file. 

Entry Conditions 

Calling Sequence: 

M.CALL H.SOUT,1 

Registers: 

R3 Address of FAT 

Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

None 

External References 

Abort Cases: 

SMll 

Output Messages: 

None 

Unrecoverable I/O error to the allocation map denial 
received from H.FISE,4 on attempted deallocation of file 
space. 

3.3.2 Entry Point 2 - Reserved 

3.3.3 Entry Point 3 - Process End of Job 

Functional Description 

This entry point initiates output to destination terminal devices of a completed job's 
accumulated SLO and SBO files. 

3-108 

- ~' 

o 



( 

( 

Entry Conditions 

Calling Sequence: 

M.CALL H.SOUT,3 

Registers: 

R7 ASCII job sequence number 

Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

None 

External References 

Abort Cases: 

SM04 

SMll 

Output Messages: 

None 

A job with the specified job sequence number cannot be 
located in the Job Table. 

See H.SOUT,l 

3.3." Entry Point" - Get and Delete M.SID Entry 

Functional Description 

This entry point unlinks and deletes an entry from the System Input Directory, M.SID. 

Entry Conditions 

Calling Sequence: 

M.CALL H.SOUT,4 

Registers: 

R3 memory address at which 12-word unlinked entry is to be stored 

o if unlinked entry is not to be returned 

3-10Q 

i. 



R7 

Exit Conditions 

Return Sequence: 

job sequence number in ASCII 

o to get first M.SID entry 

1 to get first M.SID entry that is not sequential 

M.RTRN 7 

Registers: 

R7 M.SID index of entry found 

o if entry was not found 

External References 

Abort Cases: 

None 

Output Messages: 

None 

3.3.' Entry Point' - Get Next SLO or S80 File 

Functional Description 

This entry point returns information on the next linked SLO or SBO file defined in the 
System Output Directory (M.SOD) or Link File associated with a M.SOD entry. 

Entry Conditions 

Calling Sequence: 

Registers: 

M.CALL H.SOUT,5 

Rl address of FCB to be allocated to the file 

o if file is not to be allocated 

R6,7 index of previous file processed with R6 containing the M.SOD index 
and R7 containing the job link file index if previous was batch 

() 

~ 0 
R6 M.SOD index and 

3-110 



( 

r( 

R7 o to obtain the first SLO or SBO file of a job 

(or) 

R6 0 if no previous SLO or SBO file was processed 

Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

Rl bit 0 

bit 1 

bit 2 

bit 3 

bit 4 

bit 5 

R3 

R4,5 

R6 

R7 

1,3,4,5,6,7 

1 if no further files remain in M.SOD to be processed 

1 if the previous file processed was a background file and no 
further SLO or SBO files remain to be processed in the job 

1 if returned file is first file in a batch job 

1 if returned file is batch 

1 if returned file is SLO 

1 if returned file was assigned to a specific device 

job sequence number in ASCII if batch file is returned 

real-time task sequence number or job name 

M.SOD index of entry found 

Link File index if SLO or SBO file is for a batch job 

If R 1 is not equal to zero in the call, the file code contained in the FCB 
specified in R 1 is returned allocated to the SLO or SBO file. 

External References 

Abort Cases: 

SM05 

Output Messages: 

None 

The previous entry specified in the call could not be located 
in M.SOD 

3-1l I 



3.3.6 Entry Point 6 - Log M.SID or M.SOD 

Functional Description 

This entry point returns consecutive System Input Directory (M.SID) or System Output 
Directory (M.SOD) entries. 

Entry Conditions 

Calling Sequence: 

Registers: 

M.CALL H.SOUT,6 

RI address at which to store 12-word M.SID or M.SOD entry 

R5 

o if M.SID or M.SOD entry is not to be returned 

bit 29= 1 

bit 30= 1 

bit 31 

to return with FISE gated 

to clear current destination in M.SID or M.SOD entry 
corresponding to the returned entry 

=0 to log M.SID 

= 1 to log M.SOD 

R6 index of M.SID or M.SOD entry returned from previous call 

o if first call to this entry point 

Exit Conditions 

Return Sequence: 

Registers: 

M.RTRN 6 

R6 M.SID or M.SOD index of returned entry 

o if no first or next M.SID or M.SOD entry 

If R 1 specifies an address in the cali, the M.SID or M.SOD entry is stored at 
the specified address. 

External References 

Abort Cases: 

None 

Output Messages: 

None 

3-112 

I' 
,~ 



3.3.7 Entry Point 7 - Allocate SLO or SSO File 

Functional Description 

This entry point provides the System Output task a means of allocating a previously 
output SLO or SBO file. 

Entry Conditions 

Calling Sequence: 

M.CALL H.SOUT,7 

Registers: 

Rl address of FCB containing file code to be allocated to the SLO or SBO 
file 

R6 M.SOD index of SLO or SBO file 

R7 Link File index of SLO or SBO file if file is batch 

o if SLO or SBO file is real-time 

Exit Conditions 

Return Sequence: 

M.RTRN 

{or} 

M.RTRN 6 

Registers: 

Unchanged if the specified file exists with the file code in the specified FCB 
allocated to the file 

(or) 

R6 0 if the specified file does not exist 

External References 

Abort Cases: 

SM03 FAT /FPT space is not available 

Output Messages: 

None 

3-11 ~, 



3.3.8 Entry Point 8 - Process Deprint Command 

"I 
Functional Description 

This entry point processes the operator command DE PRINT. 

Entry Conditions 

Calling Sequence: 

M.CALL H.SOUT,8 

Registers: 

R5 bit 31 = 0 for de print current only 

= 1 for deprint all files 

For deprint current: 

R6,7 destination task pseudonym 

For deprint all: 

R6,7 real-time task sequence number in ASCII 

(or) 

R6 = 0 and 

R7 ASCII job sequence number 

Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

None 

External References 

Abort Cases: 

None 

Output Messages: 

None o 
3-114 



I ( 

c-' 

3.3.9 Entry Point 9 - Process Depunch Command 

Functional Description 

This entry point processes the operator command DEPUNCH. 

Entry Conditions 

Calling Sequence 

M.CALL H.SOUT,9 

Registers: 

R5 bit 31 = 0 for depunch current only 

= 1 for depunch all files 

For depunch current: 

R6,7 destination task pseudonym 

For de punch all: 

R6,7 real-time task sequence number in ASCII 

(or) 

R6 o and 

R7 ASCII job sequence number 

Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

None 

External References 

Abort Cases: 

None 

Output Messages: 

None 

3-1. 



3.3.10 Entry Point 10 - Activate System Output Task 

Functional Description 

This entry point activates System Output tasks for other resident system functions. 

Entry Conditions 

Calling Sequence: 

M.CALL H.SOUT,IO 

Registers: 

Option I for SYSASSIGN and REPRINT operator commands: 

R5 bit 30 = 1 

R6,7 left justified device type code and four-character device 
address in ASCII 

Option 2 for H.SOUT,1 and H.SOUT,3: 

R5 bit 29 = I 
bit 28 = a if SLO 

= I if SBO 

bit 27 = a if batch 

= I if real-time 

R6,7 destination task pseudonym 

(or) 

R6 a if no destination task is assigned 

Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

None 

External References 

Abort cases: 

SM12 Attempt to activate System Output task unsuccessful 

Output Messages: 

None 

3-116 



( 

3.3.11 Entry Point 11 - Delete Job's SLO or SBO Files 

Functional Description 

This entry point deletes the disc space occupied by a job's SLO or SBO files and notifies 
any System Output task processing the files if that task is not the caller. 

Entry Conditions 

Calling Sequence: 

M.CALL H.SOUT,ll 

Registers: 

R6 0 if SLO 

non-zero if SBO 

R7 job sequence number in ASCII 

Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

None 

External References 

Abort Cases: 

SMll See H.SOUT, 1 

Output Messages: 

None 

3.3.12 Entry Point 12 - Delete Real-Time SLO or SBO File 

Functional Description 

This entry point deletes the disc space occupied by a real-time SLO or SBO file and 
notifies any System Output task processing the file if that task is not the caller. 

3-117 



Entry Conditions 

Calling Sequence: 

M.CALL H.SOUT,12 

Registers: 

R5 0 if delete only if current destination matches calling task's name 

R5 non-zero if delete unconditionally 

R6 M.SOD index 

Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

None 

External References 

Abort Cases: 

SMll See H.SOUT,l 

Output Messages: 

None 

3.3.13 Entry Point 13 - System Output Task Abort Processing 

Functional Description 

This entry point is called by System Output tasks upon task abort to ensure M.SOD 
bookkeeping. 

Entry Conditions 

Calling Sequence: 

M.CALL H.SOUT,13 

Registers: 

None 

3-118 

c 



Exit Conditions 

( Return Sequence: 

( 

M.RTRN 

Registers: 

None 

External References 

Abort Cases: 

None 

Output Messages: 

None 

3.3.14 Entry Point 14 - Relink M.SID or M.SOD Entry 

Functional Description 

This entry point relinks a job's M.SID or M.SOD entry as required by a specified priority. 

Entry Conditions 

Calling Sequence: 

M.CALL 

Registers: 

R4 bit 31 = 0 

= 1 

bit 30 = 0 

= 1 

bit 28 = 0 

= 1 

bit 26 = 0 

= 1 

H.SOUT,14 

if M.SID entry 

if M.SOD entry 

if current destination not to be cleared in M.SID or 
M.SOD entry 

if current destination to be cleared 

for a SLO M.SOD entry 

for a SBO M.SOD entry 

if assigned destination not to be changed 

if value from RO, I to be stored in M.SID or M.SOD 
assigned destination 

3-119 



R5 

R7 

Exit Conditions 

Return Sequence: 

M.RTRN 

(or) 

new priority of M.SID or M.SOD entry 

job sequence number in ASCII of M.SID or M.SOD entry to be 
relinked 

M.RTRN 7 

Registers: 

Unchanged if the specified entry was found 

(or) 

R7 0 if specified entry was not found 

External References 

Abort Cases: 

None 

Output Messages: 

None 

3.3.15 Entry Point 15 - Find Free and Write M.SID or M.SOD Entry 

Functional Description 

This entry point adds a new entry to M.SID or M.SOD and links the entry at its priority. 

Entry Conditions 

Calling Sequence: 

M.CALL H.SOUT,15 

Registers: 

R3 address of II-word M.SID or M.SOD entry 

R5 bit 31. 0 for M.SID entry 

I for M.SOD entry , 

3-120 

o 



Exit Conditions 

Return Sequence: 

M.RTRN 5 

Registers: 

R5 0 if free entry was not found 

M.SID or M.SOD entry index if free entry was found with the new entry 
linked at the priority specified in the furnished entry 

External References 

Abort Cases: 

None 

Output Messages: 

None 

3.3.16 Entry Point 16 - Set System Output Task's User Status Word 

Functional Description 

This entry point stores the specified value in a System Output task's user status word for 
communication with the task. 

Entry Conditions 

Calling Sequence: 

M.CALL H.SOUT,16 

Registers: 

R5 value to be set in bits 0-31 of user status word 

R6,7 pse.J,Jdonym of System Output task 

Exit Conditions 

Return Sequence: 

M.RTRN 7 

Registers: 

R7 o if task is not active 

Unchanged if task is active 

3-121 



'" , 

External References 

Abort Cases: 

None 

Output Messages: 

None 

3.3.17 Entry Point 17 - Get Next Linked M.SID or M.SOD Entry 

Functional Description 

This entry point is for internal use by H.SOUT only. No gating is done. 

Entry Conditions 

Calling Sequence: 

Registers: 

M.CALL H.SOUT,17 

The system FAT, FPT, and FCB are assumed to be buH t. A valid M.SID or 
M.SOD block is assumed to be contained in the system buffer. 

R3 memory address of M.SID or M.SOD entry returned from previous call 
to this entry point 

o on first call to this entry point 

R4 index to first M.SID or M.SOD entry from header entry on first call to 
this entry point 

Exit Conditions 

Return Sequence: 

Registers: 

3-122 

M.RTRN 3,5 

R3 memory address of next linked M.SID or M.SOD entry. Entry is 
contained in system buffer 

o if none 

R5 M.SID or M.SOD entry index, if any 

/~"" . 

..... :0 

o 



c\ 

External References 

Abort Cases: 

None 

Output Messages: 

None 

3.3.18 Entry Point 18 - Gate and Read Header 

Functional Description 

This entry point is for internal use by H.SOUT only. No gating is done. 

Entry Conditions 

Calling Sequence: 

M.CALL 

Registers: 

R5 bit 31 

Exit Conditions 

Return Sequence: 

Registers: 

M.RTRN 

(or) 

M.RTRN 

H.SOUT,18 

o for M.SID 

1 for M.SOD 

3,4 

3,4,5,6,7 

R3,4 0 if M.SID or M.SOD does not exist 

(or) 

R3 non-zero if M.SID or M.SOD exists and 

R4-7 first four words of M.SID or M.SOD header entry 

If M.SID/M.SOD exists, the system buffer contains its first 192-word block. 

Return is with FISE gated. 

3-123 



, 

.,.' 

External References 

Abort Cases: 

None 

Output Messages: 

None 

3.3.19 Entry Point 19 - Build System F AT, FPT, and FeB 

Functional Description 

This entry point is for internal use by H.SOUT only. 

Entry Condi tions 

Calling Sequence: 

M.CALL H.SOUT,19 

Registers: 

R4 bit 30 1 if R5-7 contain the file's disc space definition 

bit 31 o if M.SID file 

1 if M.SOD file 

Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

None 

I/O error return addresses are inserted in FCBs to abort as follows on unrecoverable I/O 
errors encountered when these FCBs are used. 

SM08 

SM09 

SMIO 

3-124 

Unrecoverable I/O error on file whose disc space definition was 
furnished. 

Unrecoverable I/O error on System Input Directory, M.SID. 

Unrecoverable I/O error on System Output Directory, M.SOD. 

( ""\ 
I :V 

o 

o i 
I 
I 
I 
I 
, 

" it 
I, 
i,.';. 



( 

External References 

Abort Cases: 

SMOI Call specified M.SID, but M.SID is not defined In the System 
Master Directory (SMD). 

SM02 Call specified M.SOD, but M.SOD is not defined in the SMD. 

SMl3 Unrecoverable I/o error to the SMD received from H.FISE,1. 

Output Messages: 

None 

3.3.20 Entry Point 20 - Link M.SID or M.SOD Entry 

Functional Description 

This entry point is for internal use by H.SOUT only. No gating is done. 

Entry Conditions 

Calling Sequence: 

Registers: 

M.CALL H.SOUT,19 

R4 bit 30 = 1 to clear current destination field in entry to be linked 

R5 

R7 

bit 31 = 0 if M.SID entry 

= 1 if M.SOD entry 

bit 26 = 0 if assigned destination not to be changed 

= 1 if value from RO,1 to be stored in assigned destination 

priority of entry to be linked 

M.SID or M.SOD entry index 

The system F AT, FPT and FCB must be built for M.SID/M.SOD prior to calling 
this entry point. 

Exit Conditions 

Return Sequence: 

M.RTRN 

3-L: . 



Registers: 

None 

External References 

Abort Cases: 

SM06 

SM07 

Output Messages: 

None 

Entry linkage has been destroyed on the System Input Directory, 
M.SID 

Entry linkage has been destroyed on the System Output 
Directory, M.SOD 

3.3.21 Entry Point 21 - Unlink M.SIO or M.SOO Entry 

Functional Description 

This entry point is for internal use by H.SOUT only. No gating is done. 

Entry Conditions 

Calling Sequence: 

Registers: 

3-126 

M.CALL 

R3 

R4 bit 25 

bit 31 

H.SOUT,2l 

memory address at which l2-word unlinked entry is to be 
stored 

o if unlinked entry is not to be returned 

1 if unlinked entry is to be cleared to zero 

o if M.SID entry 

1 if M.SOO entry 

For M.SID entries, the following additional information is contained in R4: 

bit 28 o to return sequential or non-sequential entry 

1 to return non-sequential entry only. If set, R6,7 must be 
zero 

For M.SOD entries in calls where the M.SID or M.SOD index is not specified in C 
R6, the following additional information is contained in R4: 



bit 28 a for a SLO entry 

1 for a SBO entry 

R6,7 contain the identification of the entry to be unlinked in one of the 
following forms: 

R6 M.SID or M.SOD index 

(or) 

R6 a and 

R7 job sequence number in ASCII 

(or) 

R6 a and 

R7 0 to unlink the first M.SID or M.SOD entry 

The system FAT, FPT and FCB must be buH t for M.SID/M.SOD prior to calling this entry 
point. 

Exit Conditions 

Return Sequence: 

M.RTRN 7 

Registers: 

R 7 the entry's M.SID or M.SOD index if the specified entry was found 

a if the specified entry was not found 

External References 

Abort Cases: 

None 

Output Messages: 

None 

3-127 



3.3.22 Entry Point 22 - Search Job Table 

Functional Description 

This entry point locates a specified Job Table entry. 

Entry Conditions 

Calling Sequence: 

M.CALL H.SOUT,22 

Registers: 

R7 job sequence number in ASCII 

Exit Conditions 

Return Sequence: 

M.RTRN 3 

Registers: 

R3 memory address of Job Table entry 

o if Job Table entry Wcl'; not found 

External References 

Abort Cases: 

None 

Output Messages: 

None 

3.3.23 Entry Point 23 - Read Specified M.SID or M.SOD Entry 

Functional Description 

This entry point for internal use by H.SOUT only. No gating is done. 

Entry Conditions 

Calling Sequence: 

M.CALL H.SOUT,23 C·"'··\ 
I' ': 

3-128 



( 

Registers: 

RO bit 31 o for M.SID entry 

1 for M.SOD entry 

Rl M.SID or M.SOD entry index 

(or) 

o to read first M.SID or M.SOD entry (header entry) 

Exit Conditions 

Return Sequence: 

M.RTRN 1 

Registers: 

Rl memory address (in System Buffer) of entry 

o if specified entry does not exist 

External References 

Abort Cases: 

None 

Output Messages: 

None 

3.3.24 Entry Point 24 - Build User Disc FAT and FPT Entries for a Disc File 

Functional Description 

This entry point simulates the allocation function by building FAT and FPT entries for a 
disc file. 

Entry Conditions 

Calling Sequence: 

M.CALL 

Registers: 

Rf.t. bit 0 

bit 1 

H.SOUT,2f.t. 

o if permanent file 
1 if temporary file 

o if blocked file 
1 if unblocked file 

3-12C 



R4 file code in bytes 1-3 

R5,6,7 disc space definition 

Exit Conditions 

Return Sequence: 

M.RTRN 7 

Registers: 

R7 non-zero if blocking buffer and FAT space is available 

o if blocking buffer or FAT space is unavailable 

External References 

Abort Cases: 

None 

Output Messages: 

None 

3.3.25 Entry Point 25 - Convert Device Address to Hexadecimal 

Functional Description 

This entry point is for internal use by H.SOUT only. 

Entry Conditions 

Calling Sequence: 

M.CALL H.SOUT,25 

Registers: 

R2 UDT entry address 

Exit Conditions 

Return Sequence: 

M.RTRN 4,5 

Registers: 

R4 two-character device mnemonic in bytes 3 and 4 in ASCII 

R5 four-character device address in ASCII 

3-130 

, 

I~ 
I~ 



(- External References 

Abort Cases: 

None 

Output Messages: 

None 

3.3.26 Entry Point 26 - Batch Task Exit Reporting 

Functional Description 

This entry point is used by the Executive for reporting batch task exits, aborts, and 
deletes. 

Entry Conditions 

Calling Sequence: 

M.CALL H.SOUT,26 

Registers: 

None 

Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

None 

External References 

Abort Cases: 

None 

Output Messages: 

None 

3.3.27 Entry Point 99 - SYSGEN Initialization 

Functional Description 

This entry point is for internal use only and is called during SYSGEN. H.SOUT sets up its 
Entry Point Table, then returns to SYSGEN. 

3-131 



3.4 Input/Output Control System (H.IOeS) 

Entry Point Summary 

ENTRY POINT DESCRIPTION 

H.IOCS,l 
H.IOCS,2 
H.IOCS,3 
H.IOCS,4 
H.IOCS,5 
H.IOCS,6 
H.IOCS,7 
H.IOCS,8 
H.IOCS,9 
H.IOCS,10 
H.IOCS,ll 
H.IOCS,12 
H.IOCS,13 
H.IOCS,14. 
H.IOCS,15 
H.IOCS,16 
H.IOCS,17 
H.IOCS,18 
H.IOCS,19 
H.IOCS,20 
H.IOCS,21 
H.IOCS,22 
H.IOCS,23 
H.IOCS,24 
H.IOCS,25 
H.IOCS,26 
H.IOCS,27 
H.IOCS,28 
H.IOCS,29 
H.IOCS,30 
H.IOCS,31 
H.IOCS,32 
H.IOCS,33 
H.IOCS,34 
H.IOCS,35 
H.IOCS,36 
H.IOCS,37 
H.IOCS,38 
H.IOCS,39 
H.IOCS,40 
H.IOCS,41 
H.IOCS,42 
H.IOCS,43 
H.IOCS,99 

3-132 

OPEN FILE 
REWIND FILE 
READ RECORD 
WRITE RECORD 
WRITE END OF FILE 
RESERVED FOR INTERNAL USE BY H.IOCS 
ADV ANCE RECORD 
ADV ANCE FILE 
BACKSPACE RECORD 
EXECUTE CHANNEL PROGRAM 
RESERVED FOR INTERNAL USE BY H.IOCS 
RESERVE CHANNEL 
RELEASE CHANNEL 
SYSTEM CONSOLE TYPE 
SUSPEND USER UNTIL I/O COMPLETE 
RESERVED FOR INTERNAL USE BY H.IOCS 
GET MEMORY POOL BUFFER 
RESERVED FOR INTERNAL USE BY. H.IOCS 
BACKSPACE FILE 
UPSPACE 
ERASE OR PUNCH TRAILER 
EJECT /PURGE ROUTINE 
CLOSE FILE 
RESER VE FHD PORT 
WAIT 
CONSOLE WAIT 
RELEASE FHD PORT 
ABSOLUTIZE TCW FOR CLASS 'E' DEVICES 
HANDLER ENTRY POINT 5 AND 2 INTERFACE 
ADJUST TCW FORMAT TO BYTES 
ADJUST TCW FORMAT TO HALFWORDS 
ADJUST TCW FORMAT TO WORDS 
RESERVED FOR INTERNAL USE BY H.IOCS 
NO-WAIT I/O END ACTION RETURN 
RESERVED FOR INTERNAL USE BY H.IOCS 
RESTART I/O 
VIR TUAL ADDRESS V ALIDA TE 
KILL ALL OUTSTANDING I/O 
SPECIAL DISCONTIGUOUS MEMORY CHECK 
BUILD lOCO'S FOR EXTENDED I/O READS AND WRITES 
RESERVED FOR INTERNAL USE BY H.IOCS 
RESERVED FOR INTERNAL USE BY H.IOCS 
RESERVED FOR INTERNAL USE BY H.IOCS 
SYSGEN INITIALIZATION 



( Subroutine Summary 

SUBROUTINE DESCRIPTION 

S.IOCSI 
S.IOCS2 
S.IOCS3 
S.IOCS4 
S.IOCS5 
S.IOCS6 
S.IOCS7 
S.IOCS8 
S.IOCS9 
S.IOCSIO 
S.IOCSII 
S.IOCS12 
S.IOCS13 
S.IOCS14 
S.IOCS15 
S.IOCS16 
S.IOCS17 
S.IOCS18 
S.IOCS19 
S.IOCS20 
S.IOCS21 
S.IOCS22 
S.IOCS23 
S.IOCS24 
S.IOCS25 
S.IOCS26 
S.IOCS27 
S.IOCS28 
S.IOCS29 
S.IOCS30 
S.IOCS31 
S.IOCS32 
S.lOCS33 
S.IOCS34 

POST I/O PROCESSING 
PERFORM DEVICE TESTING 
UNLINK I/O QUEUE FROM CDT 
HALF-ASCII TO FULL ASCII CONVERSION 
PERIPHERAL TIME OUT 
BUFFER TO BUFFER MOVE ROUTINE (BYTE) 
BUFFER TO BUFFER MOVE ROUTINE (WORD) 
BUFFER TO BUFFER MOVE ROUTINE (DOUBLEWORD) 
I/O HANDLER ABORT 
DELETE I/O QUEUE AND OS BUFFER 
GPMC DEVICE STATUS 
STORE 10CD'S FOR EXTENDED I/O 
ALLOCA TE I/O QUEUE AND BUFFER SPACE 
RESERVED 
DELETE I/O QUEUE AND OS BUFFER 
FIND FPT 
LINK FAT 
INITIALIZE BLOCKING BUFFER 
GET SYC/SGO SPACE DEFINITION 
GET DATA ADDRESS AND TRANSFER COUNT 
READ LOGICAL BLOCKED RECORD 
REPOR T BLOCKED I/o ERROR 
POST PROCESS NON-DEVICE ACCESS I/O 
RESTORE FCB PARAMETERS FROM 10Q 
SAVE FCB PARAMETERS IN SPAD 
WRITE LOGICAL BLOCKED RECORD 
PERFORM IMPLICIT OPEN 
INITIALIZE IOQ ENTRY 
REPORT I/O COMPLETE 
ADVANCELOG~ALBLOCKEDRECORD 
MARK UNITS OFFLINE 
RESTORE FCB PARAMETERS FROM SPAD 
UPDATE DISC FAT 
ALLOCA TE VARIABLE IOQ ENTRY 

3.4.1 Entry Point 1 - Open File 

See Section 7.8.9 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.4.2 Entry Point 2 - Rewind File 

See Section 7.8.25 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3-1:' "' 



3.4.3 Entry Point 3 - Read Record 

See Section 7.8.18 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.4.4 Entry Point 4 - Write Record 

See Section 7.8.31 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.4.5 Entry Point 5 - Write End Of File 

See Section 7.8.30 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.4.6 Entry Point 6 - Reserved for internal use by H.IOCS 

Write blocked End of File - this routine called internally by Entry Point 5. 

3.4.7 Entry Point 7 - Advance Record 

See Section 7.8.12 of the MPX-32 Reference Manual for a detailed description of this 
entry point. ""-.,,,/ 

3.4.8 Entry Point 8 - Advance File 

See Section 7.8.12 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.4.9 Entry Point 9 - Backspace Record 

See Section 7.8.2 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.4.10 Entry Point 10 - Execute Channel Program 

See Section 7.8.34 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.4.11 Entry Point 11 - Reserved (lUlused) 

3.4.12 Entry Point 12 - Reserve Channel 

See Section 7.8.24 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3-134 

c 
,:i 



( 3.4.13 Entry Point 13 - Release Channel Reservation 

See Section 7.8.21 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.4.14 Entry Point 14 - OPCOM Console Type 

See Section 7.8.26 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.4.15 Entry Point 15 - Suspend User Until I/O Complete 

Functional Description 

Suspend checks the operation in progress bit in the FCB. If the bit is set, suspend calls 
the executive to wait until I/O completes. If the bit is reset, suspend performs a 
M.RTRN immediately. 

Entry Conditions 

Calling Sequence: 

M.CALL H.IOCS,15 

Registers: 

RI FCB address 

NOTE 

The FCB address must be the address of the same FCB used to initiate the 
transfer on which the I/O suspend is being made. 

Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

None 

Abort Cases: 

None 

Output Messages: 

None 

3-1"3 s 



.." 
3.4.16 Entry Point 16 - Reserved (mused) 

3.4.17 Entry Point 17 - Get Memory Pool Buffer 

Functional Description 

This entry point is used to obtain chunks of memory from the system memory pool. The 
maximum amount of core to allocate is 192 words. All core can be optionally zeroed 
before returning to the calling task. 

If core is not available, the calling task will be suspended (via H.EXEC,6) until available. 

Note that all core returned has the attribute that its virtual address is the same as its 
absolute address. 

Entry Conditions 

Calling Sequence: 

M.CALL H.IOCS,l7 

Registers: 

RO Bit 0, set if zeroing of core desired 

RO Bit 0, reset if no zeroing desired 

R7 number of words to allocate 

Exit Conditions 

Return Sequence: 

M.RTRN R6,R7 

Registers: 

R6 start virtual (same as absolute) address 

R7 actual number of words in buffer (may be more than requestep amount) 

Abort Cases: 

None 

Output Messages: 

None 

3-136 

() 

o 



( 3.4.18 Entry Point 18 - Reserved (mused) 

3.4.19 Entry Point 19 - Backspace File 

See Section 7.8.2 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.4.20 Entry Point 20 - Upspace 

See Section 7.8.27 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.4.21 Entry Point 21 - Erase Or Punch Trailer 

Functional Description 

The volume record is written if BOT on multi-volume magnetic tape; and ERASE/WRITE 
EOF performed if BOT on multi-volume magnetic tape. 

Erase, punch trailer is not applicable to blocked or system files (i.e., SYC, SGO, SLO, 
SBO). 

Entry Conditions 

Calling Sequence: 

Registers: 

M.CALL 

(or) 

SVC 

Rl 

Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

None 

Abort Cases: 

1012 

H.IOCS,21 

1,X'3E' 

FCB address 

File not opened in write mode. 

3-137 



1013 Illegal operation on system file. 

Output Messages: 

MOUNT /DISMOUNT messages if EOT on multi-volume magnetic tape 

3.4.22 Entry Point 22 - Eject/Purge Routine 

Functional Description 

This entry point performs the following functions: 

If the file is blocked and output active, a purge is issued. Return is made to 
the user. 

Writes volume record if BOT on multi-volume magnetic tape. 

Performs ERASE/WRITE EOF if EOT on multi-volume magnetic tape. 

Eject is not applicable to system files (i.e., SYC, SGO, SLO, SBO). 

Entry Conditions 

Calling Sequence: 

M.CALL H.IOCS,22 

Registers: 

Rl FCB address 

Exit ConCfitions 

Return Sequence: 

M.RTRN 

Registers: 

None 

Abort Cases: 

1013 Illegal operation on system file. 

Output Messages: 

MOUNT/DISMOUNT messages if EOT on multi-volume magnetic tape 

3.4.23 Entry Point 23 - Close File 

See Section 7.8.3 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3-138 



( 3.4.24 Entry Point 24 - Reserve Dual Ported Disc/Reserve FHD Port 

See Sections 7.8.20 and 7.8.36 of the MPX-32 Reference Manual for a detailed 
description of this entry point. 

3.4.25 Entry Point 25 - Wait I/o 

See Section 7.8.29 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.4.26 Entry Point 26 - System Console Wait 

See Section 7.8.5 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.4.27 Entry Point 27 - Release Dual Ported Disc/Release FHD Port 

See Sections 7.8.19 and 7.8.35 of the MPX-32 Reference Manual for a detailed 
description of this entry point. 

3.4.28 Entry Point 28 - Absolutize TCW for Class 'E' Devices 

Functional Description 

Absolutize transfer control word for class 'E' devices. 

Entry Conditions 

Calling Sequence: 

M.CALL H.IOCS,28 

Registers: 

Rl FCB address 

R6 TCW associated with class IE' device with address virtual 

Exit Conditions 

Return Sequence: 

M.RTRN R6 

Registers: 

R6 TCW associated with class IE' device with address 
absolutized 

3-139 



Abort Cases: 

1047 TCW address not within class lEI memory. 

Output Messages: 

None 

3.4.29 Entry Point 29 - Handler Entry Point 5 and 2 Interface 

Functional Description 

This entry point performs the following functions: 

Places I/O request in a prioritized queue. 

Branches to appropriate executive entry point to report type of I/O initiated. 

For Wait I/O, branches to I/O post processing; for No-Wait I/O, returns 
immediately to the user. 

Entry Conditions 

Calling Sequence: 

M.CALL 

BU 

Registers: 

Rl 

Exit Conditions 

Return Sequence: 

H.IOCS,29 

H29 

FCB address 

used internally to H.IOCS by blocked I/O 
routines 

used by internal H.IOCS routines to 
complete normal I/O processing 

See Return Sequence for S.IOCSI (Section 3.4.45). 

3.4.30 Entry Point 30 - Adjust TCW Format to Bytes 

Functional Description 

This entry point adjusts the transfer control word (TCW) to bytes. The adjusted quantity 
is clamped so as to not exceed the maximum quantity specified. 

3-140 

( 

Il_ >~ 

I 

I 

i ,j\ 



Entry Conditions 

Calling Sequence: 

M.CALL H.IOCS,30 

Registers: 

Rl FCB address 

R6 TCW 

R7 maximum quantity 

Exit Conditions 

Return Sequence: 

M.RTRN 4,6 

Registers: 

R4 adjusted quantity 

R6 adjusted TCW 

Abort Cases: 

1024 Boundary error. 

Output Messages: 

None 

3.4.31 Entry Point 31 - Adjust TCW Format to Halfwords 

Functional Description 

This entry point adjusts the transfer control word (TCW) to halfwords. The adjusted 
quantity is clamped so as not to exceed the maximum quantity specified. 

Entry Conditions 

Calling Sequence: 

M.CALL H.IOCS,31 

Registers: 

RI FCB address 

R6 TCW 

R7 maximum quantity 

3-141 



-, 

Exit Conditions 

Return Sequence: 

M.RTRN 4,6 

Registers: 

R4 adjusted quantity 

R6 adjusted TCW 

Abort Cases: 

1024 Boundary error. 

Output Messages: 

None 

3.4.32 Entry Point 32 - Adjust TCW Format to Words 

Functional Description 
f""\ 
I , 

This entry point adjusts the transfer control word (TCW) to words. The adjusted quantity ~ 
is clamped so as not to exceed the maximum quantity specified. 

Entry Conditions 

Calling Sequence: 

Registers: 

M.CALL 

Rl 

R6 

R7 

Exit Conditions 

Return Sequence: 

H.IOCS,32 

FCB address 

TCW 

maximum quantity 

M.RTRN 4,6 

Registers: 

R4 adjusted quantity 

R6 adjusted TCW 

3-142 



Abort Cases: 

1024 Boundary error. 

Output Messages: 

None 

3.4.33 Entry Point 33 - Reserved for internal use by H.IOCS 

Read blocked record service, called internally by Entry Point 3 - read record. 

3.4.34 Entry Point 34 - No Wait I/O End Action Return 

See Section 7.8.32 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.4.35 Entry Point 35 - Reserved for internal use by H.IOCS. 

Write blocked record service, called internally by Entry Point 4 - write record. 

3.4.36 Entry Point 36 - Restart I/o 

Functional Description 

This entry point is used to restart I/O for devices where no-wait I/O incurred error or 
wait I/O retry aborted. 

It is also used to restart I/O after an I/O channel is released back to the system. 

Entry Conditions 

Calling Sequence: 

M.CALL H.IOCS,36 

Registers: 

RO I/O queue address (from CDT.FIOQ) 

Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

None 

Abort Cases: 

None 

(-" Output Messages: 

None 

3-14 :, 



3.4.37 Entry Point 37 - Virtual Address Validate 

Functional Description 

This entry point verifies that a given virtual start address through an optional transfer 
length is within a user's legal limits of program execution. 

Entry Conditions 

Calling Sequence: 

Registers: 

M.CALL 

R6 bits 0-11 
bits 12-31 

R7 bits 0-15 
bits 16-31 

Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

R6 

Abort Cases: 

None 

Output Messages: 

None 

H.IOCS,37 

ignored 
virtual start address 

ignored 
transfer length in bytes 

6 

virtual start address (same as on entry) 

(or) 

o (transfer outside legal limits) 

3.4.38 Entry Point 38 - Kill All Outstanding I/o 

Functional Description 

() 

This entry point is used to terminate all outstanding I/O for the current executing task. 

Peripheral time-out is forced for pendhg I/O whereas queued I/O is removed from the 
CDT string. Appropriate status will be set to indicate either device time-out or "I/O 0 
killed" respectively. 

3-144 



( 

:( 

Entry Conditions 

Calling Sequence: 

M.CALL H.IOCS,38 

Registers: 

None 

Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

None 

Abort Cases: 

None 

Output Messages: 

None 

3.4.39 Entry Point 39 - Discontiguous E-Memory Data Address Check 

Funct_ional Description 

This entry point ensures that a given virtual data transfer is within E-memory and will 
not cross discontiguous memory blocks base on an optional transfer length. 

Entry Conditions 

Calling Sequence: 

M:CALL H.IOCS,39 

Registers: 

R6 

R7 

Exit Conditions 

bit 0-11 
bits 12-31 

bit 0-15 
bits 16-31 

ignored 
virtual start address 

ignored 
transfer length in bytes 

(--- Return Sequence: 

M.RTRN 0 

3- \1, •. 



Registers: 

RO 0, if transfer address are out of E-memory, or cross discontiguous 
memory blocks 

(or) 

RO not equal to 0, if transfer address are within contiguous E-memory 

Abort Cases: 

None 
Output Messages: 

None 

Note: RO=I, 

RO=2, 

Operating system portion of E-memory 
(virtual = absolute) 

Not in operating system portion of E-memory 
(virtual = absolute) 

3.4.40 El'!try Point 40 - Build lOCO's for Extended I/O Reads and Writes 

Functional Description 

Breaks down lOCO into two or more transfers and sets data chaining bit in lOCO if 
discontiguous. 

Absolutes lOCO address. 

Stores lOCO's into lOCO buffer within I/O queue and increments lOCO buffer address as 
required. 

Entry Conditions 

Calling Sequences: 

M.CALL H.IOCS,40 

Registers: 

R3 I/O queue address 

R6 lOCO word 1 with command only (Bits 8-31 = 0). 

R7 lOCO word 2 with flags only (Bits 8-31 = 0). 

Note: The 20-bit virtual data start address is in cell IOQ.FCT2 and the 
adjusted transfer count is in cell IOO.FCT3. 

'3-146 

I, 
I~ 



( 
Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

None 

Abort Cases: 

1046 Dynamic storage space for lOCO's within IOQ exhausted. 

Output Messages: 

None 

3.4.41 Entry Point 41 - Reserved (unused) 

3.4.42 Entry Point 42 - Reserved (unused) 

3.4.43 Entry Point 43 - Reserved (unused) 

3.4.44 Entry Point 99 - SYSGEN Initialization 

Functional Description 

Performs any required H.IOCS initialization at SYSGEN time. 

If no extended I/O devices are configured, all associated H.IOCS entry points are 
overlaid. (Note: Because of this feature, only extended I/O routines are allowed at the 
end of H.IOCS.) 

Entry Conditions 

Calling Sequence: 

Branch to H.IOCS initialization 
Entry Point "H.IOCS. I" 

Registers: 

R5 

R6 

HA T address of GPMC device handler if applicable (e.g., 
H.ASMP) 

UDT address, if applicable 

3-147 



.,.., 

R7 

Exit Conditions 

Return Sequence: 

M.XIR 

Registers: 

bits 0-7 hardware priority level, if applicable 

bits 8-31 COT address, if applicable 

H.IOCS (Special SYSGEN Initialization Termination Macro) 

NOTE 

If no extended I/O devices are configured, the 
initialization entry pointer is updated with a new pointer 
such that extended I/O related H.IOCS entry points are 
overlaid. 

Same as on entry. 

Abort Cases: 

None 

Output Messages: 

None 

3.4.45 Subroutine S.IOCSI - Post I/O Processing 

Functional Description 

This routine is entered via a branch and link directly after a wait I/O request completes 
or indirectly as a Task Interrupt service when a no-wait I/O request completes. 

If wait I/o completed with errors, applicable error messages are output and I/o retry 
attempted unless error processing is inhibited. If error processing is not applicable, an 
abort message is output or the error return address is taken. Note that wait I/O would 
take the error return in FCB word 6. 

For the no-wait I/O requests or wait I/O requests, appropriate data conversions and 
buffer transfers from system buffers to user buffers are performed. Any system buffer 
which had been allocated and the I/o queue itself are deallocated. 

If no-wait I/O completed with errors, the no wait error end action address in word 14- of 
the FCB is honored if present. The user must return via H.IOCS,34- to exit his error end 
action service. If no error end action address is present, status information is posted in 
the FCB and a return is made to the user. Note that if an abort of this task had been 
issued, the end action routine will not be called anp a status bit will be set to indicate 
this. 

3-14-8 

.r"", 
\_-~ 

o 

c 



For wait I/O with errors for which retry is applicable yet the operator aborted, all 
system buffers and the I/O queue are deallocated and the I/O queue is unlinked from the 
CDT. 

For no-wait I/O that completes without error, the no-wait normal end action address in 
word 13 of the FCB will be honored if present. The user must return via H.IOCS,34 to 
exit his normal end action service. Note that if an abort had been issued for this task, 
the end action routine will not be called and a status bit will be set to indicate this. 

Wait I/o that completes without error always returns back one word beyond the original 
point of call. 

Entry Conditions 

Calling Sequence: 

BL S.IOCSI 

(or) 

LPSD (I/O queue + 4W) 

Registers: 

R3 I/O queue address 

Exit Conditions 

Return Sequence: 

M.RTRN 

(or) 

MRTNA REGISTER 

(or) 

Xl FCB ADDRESS 

(wait I/O) 

(no-wait I/O) 

{normal wait I/O completion; or error 
processing inhibited. 

(error return, wait I/O) (address from FCe, 
word 6) 

BL ERROR-END-ACTION (no-wait, complete with error) (address 
from FCB.NWER) 

(Note: User exits via H.IOCS,34) 
(or) 

Xl FCB ADDRESS 
BL NORMAL-END-ACTION(no-wait, complete without error) (address 

M.CALL H.EXEC,12 

from FCB.NWOK) 

(Note: User exits via H.IOCS,34) 

(normal no-wait I/O completion; or error 
process.ing inhibited; or no end-action 
addresses specified) 

3 1',·) 
- 1 - . 



Registers: 

(or) 

M.CALL H.EXEC,l 

H.EXEC,2 
H.EXEC,3 

None unless noted. 

Abort Cases: 

1021 Unrecoverable I/O error. 

(Note: Post I/O processing will be re-
initiated when I/O completes) 

wait I/O retry: 

wait I/O interactive input 

wait I/O terminal output 
wait I/O (not interactive input or terminal 
output) 

(Note: Post I/O processing will be re-
initiated when I/O completes) 

Output Messages: .~ .. 

*DTCHSA INOP: R,A? 

where: 

DT device type code (e.g., LP) 

CH channel number 

SA sub address 

I/O ERR DEVICE: DTCHSA STATUS (XXCCDDDD)=ZZZZZZZZ LFC KKK 

where: 

DT device type code 

CH channel number 

SA subaddress 

ZZZZZZZZ actual status returned 

KKK logical file code associated with I/O 

c:' 

3-150 



( 

( 

( 

3.4.46 Subroutine S.IOCS2 - Perform Device Testing 

Functional Description 

This routine performs device testing for applicable class IE' devices. TD 8000, TO 4000 
and TO 2000 test level commands are issued and status returned in the I/o queue. 

Entry Conditions 

Calling Sequence: 

BL S.IOCS2 

Registers: 

R I I/o queue address 

R2 COT address 

R3 address of test device instructions (TO 8000 followed by TO 4000 
and TO 2000) 

Exit Conditions 

Return Sequence: 

TRSW RO (or) TRSW R7 

Registers: 

Rl,R2,R3 undisturbed 

R6,R7 destroyed 

Abort Cases: 

None 

Output Messages: 

None 

3.4.47 Subroutine S.IOCS3 - Unlink I/o Queue from COT 

Functional Oescription 

This routine unlinks the just complete I/o queue entry from the COT active I/O queue 
string. 

Entry Conditions 

Calling Sequence: 

BL S.IOCS3 

3-151 



Registers: 

R2 I/o queue address 

R3 COT address 

Exit Conditions 

Return Sequence: 

TRSW RO 

Registers: 

R I COT address 

R2,R3 undisturbed 

R4,R6,R7 destroyed 

Abort Cases: 

None 

Output Messages: 

None 

3.4.48 Subroutine S.IOCS4 - Half ASCn to Full ASCn Conversion 

Functional Description 

This routine takes half ASCII input and translates each byte into full ASCII code. The 
full ASCII data is put directly back into the half ASCII buffer. 

Entry Conditions 

Calling Sequence: 

BL S.IOCS4 

Registers: 

R2 address of half ASCII buffer 

R4 negative number of bytes to conyert 

Exit Conditions 

Return Sequence: 

TRSW RO 

3-152 

0 .. \ I~ 

o 



Registers: 

R2,R3,R4,R6 destroyed 

Abort Cases: 

None 

Output Messages: 

None 

3.4.49 Subroutine S.IOCS5 - Peripheral Time Out 

Functional Description 

This routine performs peripheral time out checking for all devices with I/O outstanding. 

This routine is entered every timer unit and will branch to device handler entry point 4 
(Lost Interrupt) for processing if the time limit is exceeded. 

Entry Conditions 

Calling Sequence: 

BL S.IOCS5 

Registers: 

None 

Exit Conditions 

Return Sequence: 

TRSW RO 

Registers: 

Rl,R2,R3,R4,R5,R6,R7destroyed 

Abort Cases: 

None 

Output Messages: 

None 

3 '''- i_ 



3.4.50 Subroutine S.I0CS6 - Buffer to Buffer Move Routine (Byte) 

Functional Description 

This routine moves the contents of one buffer to another buffer, one byte at a time. 

Entry Conditions 

Calling Sequence: 

BL S.IOCS6 

Registers: 

R I from buffer byte address 

R2 to buffer byte address 

R4 negative number of bytes to move 

Exit Conditions 

Return Sequence: 

TRSW RO 

Registers: 

RI,R2,R4,R6 destroyed 

Abort Cases: 

None 

Output Messages: 

None 

3.4.51 Subroutine S.IOCS7 - Buffer to Buffer Move Routine (Word) 

Functional Description 

This routine moves the contents of one buffer to another buffer, one word at a time. 

Entry Conditions 

Calling Sequence: 

BL S.IOCS7 

3-154 

o 

o 



c 

Registers: 

Rl from buffer word address 

R2 to buffer word address 

R4 negative number of words to move 

Exit Conditions 

Return Sequence: 

TRSW RO 

Registers: 

R 1,R2,R4,R6 destroyed 

Abort Cases: 

None 

Output Messages: 

None 

3.4.52 Subroutine S.IOCS8 - Buffer to Buffer Move Routine (Doubleword) 

Functional Description 

This routine moves the contents of one buffer to another buffer, one doubleword at a 
time. 

Entry Conditions 

Calling Sequence: 

Registers: 

BL 

Rl 

R2 

R4 

Exit Conditions 

Return Sequence: 

TRSW 

S.IOCS8 

from buffer doubleword address 

to buffer doubleword address 

negative number of doublewords to move 

RO 

3-155 



Registers: 

R I,R2,R4,R6 destroyed 

Abort Cases: 

None 

Output Messages: 

None 

3.4.53 Subroutine S.IOCS9 - I/O Handler Abort 

Functional Description 

This routine is used by all I/O handlers which encounter fatal input parameter errors 
during op-code (entry point 5) processing. 

Entry Conditions 

Calling Sequence: 

BL . S.IOCS9 

Registers: 

Rl File Control Block Address 

R5 ASCII Abort Code 

Exit Conditions 

Return Sequence: 

M.CALL H.MONS,28(abort with extended message) 

3.4.54 Subroutine S.IOCSIO -Delete I/O Queue and OS Buffer 

Functional Description 

This routine deallocates the I/O queue and any system memory pool core areas used 
during I/O. 

Entry Conditions 

Calling Sequence: 

BL S.IOCSI0 

3-156 

c 



(~. 

Registers: 

R3 I/o Queue address 

Exit Conditions 

Return Sequence: 

TRSW R6 

Registers: 

Rl FCB address 

RO,R2,R3,R4,R5,R6,R7destroyed 

Abort Cases: 

None 

Output Messages: 

None 

3.4.55 Subroutine S.IOCS 11 - GPMC Device Status 

Functional Description 

This routine performs device status testing for GPMC devices. A test device command is 
issued and status is returned. 

As of MPX-32 Release 1.4, this subroutine is no longer physically a part of IOCS. It is 
loaded as a separate module only if the user SYSGENs using pre-1.4 GPMC support (i.e., 
MUX=QGPMC). For details on GPMC support, see Chapter 13. 

Entry Conditions 

Calling Sequence: 

BL S.IOCSII 

Registers: 

RO Return address 

R2 IOQ entry address 

R3 Device context block 

R4 Status mask 

3-157 



Exit Conditions 

Return Sequence: 

TRSW RO 

Registers: 

RO,Rl,R2,R3,R4same as on entry 

R5 address of COT 

R6 specific TO - TIO command 

R7 device status in right halfword 

Abort Cases: 

None 

Output Messages: 

None 

3.4.56 Subroutine S.IOCS12 - Store lOCO's for Extended I/O 

Functional Description 

This routine dynamically stores lOCO's into the I/O queue as required during extended 
I/O request processing. 

Entry Conditions 

Calling Sequence: 

BL S.IOCS12 

Registers: 

RO Return address 

R3 I/O queue address 

R6 lOCO most significant word 

R 7 lOCO least significant word 

Exit Conditions 

Return Sequence: 

TRSW RO 

3-158 • 

'(,," , 
, " 

~ 

~"'IiL.>I 



{ 

( 

Registers: 

RO,Rl,R2,R3,R4,R6,R7same as on entry 

R5 last dynamic lOCO location 

Abort Cases: 

1038 Dynamic storage space for lOCO's within 10Q exhausted. 

Output Messages: 

None 

3.4.57 Subroutine S.IOCS13 - Allocate I/o Queue and Buffer Space 

Functional Description 

This routine must be called by entry point 5 of device handlers processing operation 
codes for which I/O queue entries are required (i.e., those operations which result in a 
device access). 

Entry Conditions 

Calling Sequence: 

BL S.IOCSl3 

Registers: 

Rl FCB address 

R2 FAT address 

R3 COT address 

Exit Conditions 

Return Sequence: 

TRSW RO 

Registers: 

Unchanged 

Abort Cases: 

1033 Unprivileged user data buffer not in user's area. 

Output Messages: 

None. 

3-159 



I 
I 

Subroutine 5.IOCS14 - Reserved 

Subroutine S.IOCSU - Delete I/o Queue and OS Buffer 

Functional Description 

This routine deallocates the I/o queue and any system memory pool core areas used 
during I/O. It is called from the handlers as a result of an OPCOM KILL request. 

Entry Conditions 

Calling Sequence: 

BL S.IOCS15 

Registers: 

R3 I/o queue address 

Exit Conditions 

Return Sequence: 

TRSW R6 

Registers: 

Rl 10Q address 

RO,R2,R3,R4,R5,R6,R7destroyed 

Abort Cases: 

None. 

Output Messages: 

None. 

3.4.60 Subroutine S.IOCS16 - Find FPT 

Functional Description 

This routine is used to find a FPT entry in the user's TSA with a logical file code which 
matches that in the user's FCB. 

Entry Conditions 

Calling Sequence: 

BL S.IOCSI6 

3-160 

£"'. 
U' 

c 



(--
Registers: 

Rl FCB address 

R3 TSA address 

R4 X'OOFFFFFF' (mask value) 

R5 lfc from FCB 

Exit Conditions 

Return Sequence: 

TRSW RO no matching lfc 

RO+IW match and FPT open 

RO+2W match and FPT closed 

Registers: 

Rl FCB address 

R3 FPT address 

R5 lfc from FPT 

3.4.61 

R2,R6,R7 destroyed 

Subroutine S.IOCS 17 - Link F AT 

Functional Description 

This routine is used to link a FAT to a FCB and a FCB to a FPT. 

Entry Conditions 

Calling Sequence: 

BL S.IOCS17 

Registers: 

R 1 FCB address 

R3 FPT address 

Exit Conditions 

Return Sequence: 

TRSW RO 

3-16 i 



Registers: 

Rl,R3 unchanged 

R2 FAT address 

R4 destroyed 

3.4.62 Subroutine S.IOCS18 - Initialize Blocking Buffer 

Functional Description 

This routine is used to initialize a blocking buffer. 

Entry Conditions 

Calling Sequence: 

BL S.IOCS18 

Registers: 

Rl FCB address 

Exit Conditions 

Return Sequence: 

TRSW RO 

Registers: 

R3,R4 destroyed 

3.4.63 Subroutine S.IOCS19 - Get SYC/SGO Space Definition 

Functional Description 

This routine is used to retrieve the address of a SYC or SGO file space definition. 

Entry Conditions 

Calling Sequence: 

BL S.IOCS19 

Registers: 

Rlj. FAT system file code 

I ~;, 

3-162 



( 

{ 

Exit Conditions 

Return Sequence: 

TRSW RO 

Registers: 

R2 address of SYC!SGO file space definition 

R5,R7 destroyed 

3.4.64 Subroutine S.IOCS20 - Get Data Address and Transfer Count 

Functional Description 

This routine extracts the user's data address and transfer count from an 8 or 16 word 
FCB. The extracted transfer count is always in bytes and the extracted data address is 
always a pure address (no F and C bits). The transfer count is clamped to the maximum 
value for the device or transfer type. 

Entry Conditions 

Calling Sequence: 

BL S.IOCS20 

Registers: 

Rl FCB address 

Exit Conditions 

Return Sequence: 

TRSW RO 

Registers: 

R3,R4 destroyed 

R6 data address 

R7 transfer count 

3.4.6.5 Subroutine S.IOCS21 - Read Logical Blocked Record 

Functional Description 

This routine performs a read of a logical blocked record, i.e., it transfers a logical 
blocked record from a blocking buffer to a user's data area. 

3-163 



Entry Conditions 

Calling Sequence: 

BL S.IOCS21 

Registers: 

R 1 FCB address 

R2 next read/write address 

R3 blocking buffer address 

Exit Conditions 

Return Sequence: 

TRSW RO 

Registers: 

Rl FCB address 

R2,R3,R4,R5,R6,R7destroyed 

3.-4.66 Subroutine S.IOCS22 - Report Blocked I/o Error 

Functional Description 

This routine is used to report an error on a blocked I/o operation. 

Entry Conditions 

Calling Sequence: 

BL S.IOCS22 

Registers: 

R 1 FCB address 

Exit Conditions 

Return Sequence: 

TRSW RO 

Registers: 

R 1 FCB address 

R3,R4 destroyed 

3-164 

o 

o 



( 

3.4.67 Subroutine S.IOCS23 - Post Process Non-Device Access I/o 

Functional Description 

This routine post processes non-device access I/O, i.e., logical blocked I/O requests and 
other I/O requests for which no device access occurs. 

Entry Conditions 

Calling Sequence: 

BU S.IOCS23 

Registers: 

Rl FCB address 

Exit Conditions 

Return Sequence: 

None 

Registers: 

None 

3.4.63 Subroutine S.IOCS24 - Restore FCB Parameters from IOQ 

Functional Description 

This routine restores original FCB parameters following a physical I/O done on behalf of 
a user who requested blocked I/O. 

Entry Conditions 

Calling Sequence: 

BL S.IOCS24 

Registers: 

R 1 FCB address 

R3 I/O queue address 

Exit Conditions 

Return Sequence: 

TRSW RO 

Registers: 

Rl 

R2 

R3 

FCB address 

address of saved parameters 

I/O queue address 

3-165 



R4- users or iginal opcode 

R7 special status byte 

R6 destroyed 

3.4.69 Subroutine S.IOCS2.5 - Save FCB Parameters in Spad 

Functional Description 

This routine saves original FCB parameters and inserts new FCB parameters prior to a 
physical I/o to be done on behalf of a user who requested blocked I/O. 

Entry Conditions 

Calling Sequence: 

BL S.IOCS2.5 

Registers: 

R 1 FCB address 

R3 blocking buffer address 

R7 special status byte 

Spad Cells Used: "I, 2, 3 

Exit Conditions 

Return Sequence: 

TRSW RO 

Registers: 

R2 

R4-,R6 

address of saved parameters 

destroyed 

3.4.70 Subroutine S.IOCS26 - Write Logical Blocked Record 

Functional Description 

This routine performs a write of a logical blocked record, i.e., it transfers a logical 
blocked record from the users data area to a blocking buffer. 

Entry Conditions 

Calling Sequence: 

BL S.IOCS26 

Registers: 

Rl FCB address 

R2 blocking buffer address 

3-166 

'U '" ,': 



( Exit Conditions 

Return Sequence: 

« 

TRSW RO 

Registers: 

Rl FCB address 

R2,R3,R4,R5,R6,R7destroyed 

3.4.71 Subroutine S.IOCS27 - Perform Implicit Open 

Functional Description 

This routine performs an implicit open of a logical file code on behalf of the calling IOCS 
entry point. If the open service is called (i.e., file not already open), the open is 
performed in the WAIT mode. If the file opened is the null device, a return is made 
directly to the user. 

Entry Conditions 

Calling Sequence: 

BL S.IOCS27 

Registers: 

Rl FCB address 

Spad Cell Used: 2 

Exit Conditions 

Return Sequence: 

TRSW RO 

Registers: 

Rl FCB address 

R2 FAT address 

R3,R4,R5,R6,R7 destroyed 

3.4.72 Subroutine S.IOCS28 - Initialize IOQ Entry 

Functional Description 

This routine initializes the IOQ parameters from the FCB, CDT, UDT and FAT. It also 
sets the program number into the IOQ and sets FCB.IOQA. 

3-1::' -



Entry Conditions 

Calling Sequence: 

Registers: 

BL 

Rl 

R2 

R3 

R6 

R7 

Exit Conditions 

Return Sequence: 

S.IOCS28 

FCB address (or TCPB address) 

F AT address (or zero) 

CDT address 

IOQ address 

number of words extra in this 10Q 

TRSW RO 

Registers: 

RI,R2,R3,R6 same as on entry (masked with X'FFFFF') 

R4,R7 destroyed 

3.4.73 Subroutine S.IOCS29 - Report I/O Complete 

Functional Description 

This routine is called by handlers to report I/O completion. 

Entry Conditions 

Calling Sequence: 

Registers: 

BL 

Rl 

R2 

Exit Conditions 

Return Sequence: 

S.IOCS29 

program number 

10Q address 

TRSW RO 

Registers: 

R2,R6 IOQ address 

RO,R I,R 3,R4,R5,R7destroyed 

Note: IOQ.RTN is used to save the return address before calling S.EXECl, S.EXEC2, 
S.EXEC3 or S.EXEC4. 

3-168 

-. 

c 



3.4.74 Subroutine S.IOCS30 - Advance Logical Blocked Record 

Functional Description 

This routine performs an advance logical blocked record; no transfer is required, only 
next read/write address is updated. 

Entry Conditions 

Calling Sequence: 

BL S.IOCS30 

Registers: 

Rl FCB address 

R2 current logical record 

R3 blocking buffer address 

Exit Conditions 

Return Sequence: 

TRSW RO 

Registers: 

Rl FCB address 

R6 destroyed 

3.4.75 Subroutine S.IOCS31 - Mark Units Offline 

Functional Description 

This routine marks a controller, and all the units connected to the controller, offline. 

Entry Conditions 

Calling Sequence: 

BL S.IOCS3l 

Registers: 

Rl COT address 

5- ' 



Exit Conditions 

Retu.rn Sequence: 

TRSW' RO 

Registers: 

RI COT address 

R3,R7 destroyed 

3.4.76 Subroutine S.IOCS32 - Restore FCB Parameters from Spad 

Functional Description 

This routine restores original FCB parameters from spad subsequent to physical 
operations performed on behalf of a user who requested blocked I/o operations. 

Entry Conditions 

Calling Sequence: 

BL S.IOCS32 

Registers: 

Rl FCB address 

Exit Conditions 

Return Sequence: 

TRSW RO 

Registers: 

R2 address of saved parameters 

R4,R6 destroyed 

3.4.77 Subroutine S.IOCS33 - Update Disc FAT 

Functional Description 

This routine is called by disc handler programs to update the users FAT prior to 
performing a disc file operation which would move the disc file relative block address in 
the forward or backward direction. Checks are made to determine whether the operation 
would cause the current disc address to move outside the file boundaries. 

3-170 

c 



( 

( 

Entry Conditions 

Calling Sequence: 

Bl S.IOCS33 
• 

Registers: 

Rl FCB address 

R2 FAT address 

R7 blocks spanned in operation (+ if forward, - if backward) 

Exit Conditions 

Return Sequence: 

TRSW RO 

Registers: 

R6 . 0 if operation within file bounds. Not equal to 0 if operation 
. causes EOM/EOF or BOM. 

R7 logical disc address (block number) for current operation 

R3,R4,R6 destroyed 

3.4.78 Subroutine S.IOCS34 - Allocate Variable IOQ Entry 

Functional Description 

This routine is called by entry point 5 of device handlers processing opcodes for which 
I/O queue entries are required (i.e., opcodes resulting in a device access). It allows the 
handler to specify the amount of additional space it wants added to the end of the IOQ 
entry for creation of the actual IOCl chain. 

Note: The IOQ may be extended by an additional 3 words if blocked I/O is being done. 

For F-class devices, this routine: 

o allocates and initializes an 10Q entry. 

For D- and E-class devices, this routine: 

o allocates and initializes an 10Q entry. 

o allocates an OS I/o buffer if necessary. 

o builds a TCW if necessary. 

3-1 :" 



1 

'I 
I 
I 

Entry Conditions 

Calling Sequence: 

BL S.IOCS34 

Registers: 

R 1 FCB address 

R7 number of words to extend the 10Q by 

Note: Enters S.IOCS13 for completion of 10Q building. 

Spad Cells Used: 12, 13, 15-22 

Exit Conditions 

Return Sequence: 

TRSW RO 

Registers: 

R2 destroyed 

3-172 

o 



( 

( 

3.5 Resource Allocator (H.ALOC) 

Entry Point Summary 

ENTRY POINT 

H.ALOC,l 
H.ALOC,2 
H.ALOC,3 
H.ALOC,4 
H.ALOC,5 
H.ALOC,6 
H.ALOC,7 
H.ALOC,8 
H.ALOC,9 
H.ALOC,lO 
H.ALOC,11 
H.ALOC,12 
H.ALOC,13 
H.ALOC,14 
H.ALOC,15 
H.ALOC,16 
H.ALOC,17 
H.ALOC,18 
H.ALOC,19 
H.ALOC,20 
H.ALOC,99 

SVC 
NUMBER 

N/A 
N/A 
N/A 
N/A 
N/A 
N/A 
N/A 
X'69' 
X'6A' 
X'67' 
X'68' 
X'71' 
X'72' 
X'79' 
N/A 
N/A 
N/A 
N/A 
X'lF' 
N/A 
N/A 

DESCRIPTION 

CONSTRUCT TSA AND DQE 
TASK ACTIVATION PROCESSING 
TASK EXIT PROCESSING 
ALLOCA TE MEMORY 
DEALLOCA TE MEMORY 
ALLOCATE FILE/DEVICE 
DEALLOCA TE FILE/DEVICE 
GET DYNAMIC EXTENDED INDEXED DATA SPACE 
FREE DYNAMIC EXTENDED INDEXED DATA SPACE 
GET DYNAMIC TASK EXECUTION SPACE 
FREE DYNAMIC TASK EXECUTION SPACE 
SHARE MEMORY WITH ANOTHER TASK 
GET SHARED MEMORY (INCLUDE) 
FREE SHARED MEMORY (EXCLUDE) 
GET E CLASS I/O MAP BLOCK 
FREE E CLASS I/O MAP BLOCK 
ALLOCA TE FILE BY SPACE DEFINITION 
SHARE CSECT MEMORY WITH ANOTHER TASK 
UNLOCK AND DEQUEUE SHARED MEMORY 
DEALLOCA TE MEMORY DUE TO SWAPPING 
SYSGEN INITIALIZATION 

N/ A implies reserved for internal use by MPX-32 

3-173 



Subroutine Summary 

SUBROUTINE 

S.ALOCI 
S.ALOC2 
S.ALOC3 
S.ALOC4 
S.ALOC5 
S.ALOC6 
S.ALOC7 
S.ALOC8 
S.ALOC9 
S.ALOCIO 
S.ALOCII 
S.ALOC12 
S.ALOC13 
S.ALOC14 
S.ALOC15 
S.ALOC16 
S.ALOC17 
S.ALOC18 
S.ALOCI9 
S.ALOC20 
S.ALOC21 
S.ALOC22 
S.AlOC23 
S.ALOC24 
S.ALOC25 
S.ALOC26 
S.ALOC27 
S.ALOC28 
S.ALOC29 
S.ALOC30 
S.ALOC31 

S.ALOC32 
S.ALOC33 

3-174 

DESCRIPTION 

READ AND VERIFY PREAMBLE 
DEALLOCA TE TSA AND DQE 
WRITE PROTECTION IMAGE TO RAM (32/7x only) 
MAGNETIC TAPE DISMOUNT MESSAGE 
MAGNETIC TAPE MOUNT MESSAGE 
DEALLOCATE ALL PERIPHERAL DEVICES 
TEST FOR DEVICE ON SYSTEM 
GET FIRST MATCHING UDT 
GET NEXT MATCHING UDT 
ALLOCATE DISC FILE BY SPACE DEFINITION 
ALLOCA TE BLOCKING BUFFER 
LOCA TE FPT IF A T ADDRESS FOR ALLOCATED LFC 
LOCATE SHARED MEMORY TABLE ENTRY 
ALLOCA TE FPT IFA T 
ALLOCA TE SHARED MEMORY SW AP FILE 
DELETE SWAP FILE SPACE 
UPDA TE MAP SEGMENT DESCRIPTOR COUNT IN DQE 
GET SWAP FILE SPACE 
REMAP USERS ADDRESS SPACE 
VALIDA TE BUFFER ADDRESS 
ALLOCA TE MEMORY POOL BUFFER 
RELEASE MEMORY POOL BUFFER 
COMPRESS FILE NAME 
UNCOMPRESS FILE NAME 
SET ANY BIT IN MEMORY 
CLEAR ANY BIT IN MEMORY 
TEST ANY BIT IN MEMORY 
DEALLOCA TE DEBUGGER MEMORY 
LOAD DEBUG OVERLAY 
CREATE A PROTECTION IMAGE 
UPDA TE TASK PROTECTION IMAGE DUE TO INCREASE IN 
EXECUTION SPACE (32/7x only) 
UPDA TE SHARED MEMORY PROTECTION IMAGE 
UPDA TE T ASK PROTECTION IMAGE DUE TO DECREASE IN 
EXECUTION SPACE (32/7x only) 

'~ 



Entry Point 1 - Construct TSA and DQE 

Functional Description 

This entry point is called by H.MONS,I.5 and H.MONS,40 to initialize a primitive TSA and 
DQE for task activation. This is ac:hieved in the following manner: 

Determine if task is already in execution. If not ••• 
Allocate a free DQE from the free list and attac:h it to the preactivation list. 
Build a primitive DQE. . 
Merge in the load module information table. 
Check for privileged execution and allocate swap file. 
Allocate one map block of memory and logically locate it in the first invalid 
map block found in the parent's TSA in which to build the c:hild's TSA. 
Construct a primitive TSA for the child. 
Update T.REGS and T.REGP to point to the second phase of activation, 
H.ALOC,2. . 
Un map the child from the parent's logical space but leave the child linked to 
the preactivation state. 

Special Cases: 
,,-

AI1Y load module" starting with the letters 'SYSG' will be treated as the 
SYSGEN task which requires special loading. 

Entry Conditions 

Calling Sequence: 

M.CALL 

Registers: 

RI 

R6,R7 

Exit Conditions 

Return Sequence: 

H.ALOC,I 

address of parameter block, or zero if none 

name of specified load module 

M.RTRN R6,R7 

Registers: 

R6 

R7 

o if valid request, non-zero if invalid 

task DQE address of new or existing task 

Change 1 
3-175 

I 



Entry Point 2 - Task Activation Processing 

Punctional Description 

This entry point is entered on behalf of a new task being activated. It· performs all 
necessary functions to complete the introduction of the new tas~ to the system. This is 
accomplished by the following sequence: 

I· 

Get resource requirements from the load module. 
Merge 'any extra requirements from the parameter block. 
Verify all ASSIGN I's, ASSIGN2's, ASSIGN3's and ASSIGN4's. 
Determine complete TSA' size and initialize-remaining TSA data. 
Determine total task size and initialize bases. 
Create a protection image (32/7x only). 
Allocate all memory needed and distribute to proper locations in the task. 
Create a protection image (CONCEPT/32 ~mly). 
Mark all PAT's and F'PT's free to allocate. 
Allocate permanent fUes, static partitions and spooled files. 
Allocate temporary disc files and other· peripherals. -
Move the preamble into scratchpad and call H.LODR,1 (see Section 8.1.4). 
Include task debugger if requested. 
Dispatch the task. 

Special Cases: 

The common error code return paths for the Allocator are found in this entry 
point. . 

Entry Conditions 

CallIng Sequence: 

Entered by pop of TSA stack bull t ~y H.ALOC,I 

Registers: 

All zero 

Exit Conditions 

Return Sequence: 

Change 1 
3-176 

Dispatch to transfer address or to H.MONS,20 with abort code in R,S 

0, 
, 'I',' 

o 



( 

( 

3.5.3 Entry Point 3 - Task Exit Processing 

Functional Description 

This entry point is called by S.EXEC18. The abort code, if any, will be output. The task 
clean-up includes the deallocation of all peripherals, disc space, memory and memory 
pool. Finally the TSA and DQE are deallocated and a return is made to the scheduler via 
S.EXEC20. 

Entry Conditions 

Calling Sequence: 

M.CALL H.ALOC,3 

Registers: 

None 

Exit Conditions 

Return Sequence: 

BU S.EXEC20 (CPU scheduler routine) 

3.5.4 Entry Point 4 - Allocate Memory 

Functional Description 

This entry point is called by H.ALOC entry points 1, 2, 8, 10, and 15. It is also called by 
the Swapper. Its function is to allocate the memory required for the calling task. The 
memory is returned in the form of map image descriptors (MIDL) and memory attributes 
(MEML), one MIDL and one MEML per map block. Swappable map counts ih the DQE are 
incremented as needed based on the MEML information. The entries in the memory 
allocation table are updated to reflect allocation. 

Special Cases: 

1. For CONCEPT /32 machines, the protection granules remain as they were 
before the call. 

2. For 32/7x machines, the protection image is unchanged by this entry point. 

Entry Conditions 

Calling Sequence: 

M.CALL H.ALOC,4 

Registers: 

Rl address of MIDL (half word bounded) 

3-177 



R5 right half word = number of map blocks required 

left half word = 1 = E memory 

2= H memory 

3= S memory 

R3 address of MEML (HW bounded) 

Exit Conditions 

Return Sequence: 

M.RTRN or M.RTRN R5 

Registers: 

If the request cannot be fully satisfied, no memory is allocated by this 
service. 

CC I is set if unable to allocate all required memory and R5 contains the 
number of map blocks which cannot be allocated now. 

CCI is reset if request is successful and R5 is unchanged. 

Physical memory definitions in MIDL. Memory attributes returned in MEML. 

DQE.CME, DQE.CMH, and DQE.CMS incremented for each swappable map. 

3.5.5 Entry Point 5 - Deallocate Memory 

Functional Description 

This entry point is called by H.ALOC entry points 3, 9, 11, and 14. Its function is to 
deallocate memory as directed by the map image descriptor list (MIDL) and the memory 
attribute list (MEML) which are required inputs to this routine. Memory can be of mixed 
types and of mixed swappable characteristics. The swappable count in the DQE is 
updated according to the information in the MEML. 

Special Cases: 

1. For 32/7x machines, the protection image is not changed. 

2. For CONCEPT/32 machines, the protection granules are set to show a 
protected map hole exists. 

Entry Conditions 

Calling Sequence: 

M.CALL H.ALOC,5 

3-178 

o 

o 



( 
Registers: 

RI address of MIDL (halfword bounded) 

R5 number of map blocks to deallocate 

R3 address of MEML (HW bounded) 

Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

DQE.CME, DQE.CMH, and DQE.CMS are decremented for each swappable 
map. 

3 • .5.6 Entry Point 6 - Allocate File/Device 

Functional Description 

This entry point is called by H.ALOC,2 or by H.MONS,21. It performs all necessary steps 
to allocate a file based on a 3 word RRS entry. The FAT, FPT and if necessary, blocking f buffer, are all allocated and initialized in this service. 

Entry Conditions 

Calling Sequence: 

M.CALL H.ALOC,6 

Registers: 

Rl address of 3 word RRS entry 

Exit Conditions 

Return Sequence: 

M.RTRN Rl or M.RTRN RI,R6,R7 

Registers: 

RI 

cel 

o if allocation was unsuccessful. Otherwise unchanged. 

set if allocation denied 
R6 = scan mask 
R 7 = device requirements mask 

3-179 



CC2 

Error Conditions: 

If allocation is denied for a permanent file, R7 will contain 
one of the following error codes: 

1 if file is exclusively locked 
2 if FL T is full 

set if allocation error 
R6 = error code 
R7 = 0 

R6= 1 - permanent file non-existent 
=2 - illegal file password specified 
=3 - no FAT /FPT space available 
=4 - no blocking buffer space available 
=5 - shared memory table entry not found 
=6 - invalid shared memory table password specified 
=7 - dynamic common specified in ASSIGN 1 
=8 - unrecoverable I/O error to SMD 
=9 - SGO assignment specified by terminal task 

= 10 - no 'UTI file code exists for terminal task 
= 11 - invalid RRS entry 
= 12 - LFC in ASSIGN4 non-existent 
=13 - assigned device not on system 
= 14 - device in use by requesting task 
= 15 - SGO or SYC assignment by real-time task 
=16 - common memory conflicts with allocated task 
= 17 - duplicate LFC allocation attempted 

3.5.7 Entry Point 7 - Deallocate File/Device 

Functional Description 

This entry point is called by H.ALOC,2 and 3 and by H.MONS,41. The FAT associated 
with the lfc is deallocated unless an active ASSIGN4 is vectored through it. In that case, 
only the FPT is deallocated. For any deallocated peripheral a call is made to the 
scheduler via H.EXEC,15 to allow reallocation. File space is deallocated by calling 
H.FISE,4. 

Entry Conditions 

Calling Sequence: 

M.CALL H.ALOC,7 

Registers: 

R5 right justified ASCII logical file code 

3-180 

C·i\ \ ,:! 



( 

:( 

(. 

Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

None 

Error Conditions 

CC 1 = SET - unrecoverable I/o error to SMD 

3.5.8 Entry Point 8 - Get Dynamic Extended Indexed Data Space 

See Section 8.3.8 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.5.9 Entry Point 9 - Free Dynamic Extended Indexed Data Space 

See Section -8.3.5 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.5.10 Entry Point 10 - Get Dynamic Task Execution Space 

See Section 8.3.9 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.5.11 Entry Point 11 - Free Dynamic Task Execution Space 

See Section 8.3.6 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.5.12 Entry Point 12 - Share Memory With Another Task 

See Section 8.3.11 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.5.13 Entry Point 13 - Get Shared Memory (INCLUDE) 

See Section 8.3.10 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3-18 : 



3.'.14 Entry Point 14 - Free Shared Memory (EXCLUDE) 

See Section 8.3.3 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

Entry Point IS - Get 'E' Class I/O Map 8lock 

Functional Description 

This entry point is called by H.IOCS on behalf of a user who has requested a transfer of 
greater than 192 words to an 'E' class device, but has not specified a contiguous 'E' class 
memory buffer. An 'E' class map block will be allocated and mapped through logical 
address X'FOOOO'. It is understood that H.IOCS will use X'FOOOO' through X'F3FFF' to 
buffer no-wait requests, and will use X'F4000' through X'F7FFF' to buffer wait requests 
for I/O. If the map block is unavailable the user will be suspended by H.EXEC,5. 

Special Cases: 

'E' class devices are not supported by the CONCEPT /32 machines. Therefore, 
this routine is not needed for CONCEPT /32 support. 

Entry Conditions 

Calling Sequence: 

M.CALL 

Registers: 

None 

Exit Conditions 

Return Sequence: 

H.ALOC,15 

M.RTRN R6 

Registers: 

R6 physical address of 8K buffer 

CC 1 set if map block already allocated 

3.'.16 Entry Point 16 - Free 'E' Class I/O Map 8lock 

Functional Description 

This entry point is called by H.IOCS on behalf of a user whose 'E' class I/O has completed 
and been moved. 

Special Cases: 

o 

'E' class devices are not supported by the CONCEPT/32 machines. Therefore, 0 
this routine is not needed for CONCEPT /32 support. 

3-182 



Entry Conditions 

Calling Sequence: 

M.CALL H.ALOC,16 

Registers: 

None 

Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

None 

3.5.17 Entry Point 17 - Allocate Disc File By Space Definition 

{_ Functional Description 

This entry point allocates a FAT /FPT for the space definition provided by the caller. If 
bit zero of R4 is set, the system FAT /FPT is allocated. If bit zero of R5 is set, a 
blocking buffer is allocated. 

Entry Conditions 

Calling Sequence: 

M.CALL 

Registers: 

R4 

R5 

R6 

R7 

Exit Conditions 

Return Sequence: 

M.RTRN 

H.ALOC,17 

LFC (bit 0 set for system FAT /FPT) 

UDT index (bit 0 set for blocking buffer) 

sector address 

number of sectors 

Rl, R2, R3, R5 

3-13-:, 



Registers: 

Rl 

R2 

R3 

R5 

CCI 

CC2 

3.5.18 

UDT address 

FPT address 

FAT address 

blocking buffer address if required 

set, no FAT /FPT space 

set, no blocking buffer space 

Entry Point 18 - Share CSECT Memory with Another Task 

Functional Description 

This entry point is called only by H.ALOC,2. It is a subset of H.ALOC,12. 

3.5.19 Entry Point 19 - Unlock and Dequeue Shared Memory 

o 

See Section 8.3.12 of the MPX-32 Reference Manual for a detailed description of this : "-.iii 

entry point. 

3.5.20 Entry Point 20 - Deallocate Memory Due to Swapping 

Functional Description 

This entry point is called only by the Swapper. Its function is to deallocate memory as 
directed by the map image descriptor list (MIDL) and the memory attribute list (MEML) 
which are required inputs to this routine. Memory can be of mixed types but all map 
blocks are swappable. The swappable count in the DQE is updated according to the 
information in the MEML. 

Special Cases: 

1. For 32/7x machines, the protection image is not changed. 

2. For CONCEPT/32 machines, the protection granules are not changed. 

Entry Conditions 

Calling Sequence: 

M.CALL H • .A.LOC,20 

Registers: 

Rl address of MIDL (halfword bounded) 

3-184 

o 



( 

Note: 

R3 

R5 

address of MEML (half word bounded) 

number of map blocks to deallocate 

DQE.CME, DQE.CMH and DQE.CMS are decremented for each swappable 
map. Protection registers are unchanged. MEML and MIDL reflect maps 
deallocated. 

Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

None 

3.5.21 Entry Point 99 - SYSGEN Initialization 

Functional Description 

This entry point performs any necessary SYSGEN initialization. 

( Entry Conditions 

Calling Sequence: 

BL *HAT+18W 

Regis.ters: 

None 

Exit Conditions 

Return Sequence: 

TRSW RO 

3.5.22 Subroutine S.ALOCI - Read and Verify Preamble 

Functional Description 

This subroutine is used to read the preamble of a load module into the sysem buffer. The 
doubleword filename is compared with the name specified in the preamble. Error 
conditions are returned. This subroutine is used for activation and overlay functions. 



Entry Condition 

Calling Sequence: 

BL 
Registers: 

R6,R7 

Exit Conditions 

Return Sequence: 

S.ALOCl 

left-justified filename of load module 

Words 6 and 7 of scratchpad are assumed equal to R6 and R7 
respecti vel y 

TRSW RO 

Registers: 

3.5.23 

R6,R7 

R5 

unchanged if valid load module, else indeterminate 

zero if valid, else 

2 if file not found 
3 if file is password protected 
4 if invalid preamble 
6 if I/o error on SMD 
7 if I/O error on file 

RI address of preamble (T.BBUFA) 

R2 current register pointer (T.REGP) 

R3 address of TSA 

Note: This routine uses word 29 of scratchpad. 

Subroutine S.ALOC2 - Deallocate TSA and DQE 

Functional Description 

This subroutine deallocates all TSA map blocks and updates the memory allocation 
table. It also clears the tasks DQE and relinks it to the DQE free list. 

Entry Conditions 

Calling Sequence: 

BL S.ALOC2 

3-186 

(J 

/r'''', 
'"';11>/ 



( Registers: 

None 

Exit Conditions 

Return Sequence: 

Return to S.EXEC20 

Registers: 

None 

3.5.24 Subroutine S.ALOC3 - Write Protection Image to RAM (32/7x only) 

Functional Description 

This subroutine is for use on a SYSTEMS 32/7x computer and it writes the protection 
image contained in T.PROT into the hardware protection registers. If the task is 
privileged, this subroutine is not executed. 

Entry Conditions 

( Calling Sequence: 

BL S.ALOC3 

Registers: 

None 

Exit Conditions 

Return Sequence: 

TRSW RO 

Registers: 

RO,R2 destroyed 

Note: Words 16-23 of scratch pad are used. 

3.5.25 Subroutine S.ALOC4 - Magnetic Tape Dismount Message 

Functional Description 

This subroutine is used to issue a dismount message to the operators console. No 
operator response is required. 

3-187 



Entry Conditions 

Calling Sequence: 

BL S.ALOC4 
Registers: 

R3 FAT address 

Exit Conditions 

Return Sequence 

TRSW RO 

Registers: 

RI,R2,R4,R5,R6,R7 destroyed 

R3 unchanged 

3 • .5.26 Subroutine S.ALOC.5 - Magnetic Tape Momt Message 

Functional Description 

This subroutine is used to issue a mount message in the following format to the operators 
console. A response is required by the operator. 

{!ASKt ,taskname,taskno MOUNT reel VOL volume ON devmnc DEV'R'A'H?~I devmn~ 'J 
Jobno f R densltyr) 

, A \ 
. H ) 

Entry Conditions 

Calling Sequence: 

BL S.ALOC5 

Registers: 

R 1 FCB address 

Exit Conditions 

Return Sequence 

TRSW RO 

Registers: 

RI unchanged 

3-188 

fl, 
V 

o 
~ , 
, 



( 

( 

R2,R3,R4,R5,R6,R7 destroyed 

CCI set if abort requested, otherwise CC I =0 

Abort Conditions: 

If abort response input from operator, the requesting task is aborted with an MS25. 

3.5.27 Subroutine S.ALOC6 - Deallocate All Peripheral Devices 

Functional Description 

A scan is made of the FPT IF A TIS and the non-disc devices are deallocated. Devices are 
made available and FPT IF A T and blocking buffer entries freed. Peripherals made 
available are reported to the executive via H.EXEC, 13. 

Entry Conditions 

Calling Sequence: 

BL S.ALOC6 

Registers: 

None required 

Exit Conditions 

Return Sequence: 

TRSW RO 

Registers: 

R2,R3,R4,R5,R6 destroyed 

RI,R7 unchanged 

3.5.28 Subroutine S.ALOC7 - Test For Device On System 

Functional Description 

This subroutine builds a scan mask and requirements mask from a user provided ASSIGN3 
type RRS. System tables are checked to see if the specified device is in the system. 

Entry Conditions 

Calling Sequence: 

BL S.ALOC7 

3-18 Ci 



Registers: 

RI. address of 3 word RRS entry 

Exit Conditions 

Return Sequence: 

TRSW RO 

Registers: 

RI,R2 unchanged 

R3 address of first matching UDT 

R4,R5 destroyed 

R6 scan mask 

R7 requirements mask 

CCl set if device not found 

3.5.29 Subroutine S.ALOC8 - Get First Matching UOT 

Functional Description 

This subroutine sets up a scan of the UDT's for a specified mask and request. The first 
matching entry is returned. No allocation is made of the device. Other matching entries 
are obtained by calling S.ALOC9. 

Entry Conditions 

Calling Sequence: 

Registers: 

BL 

R4 

R7 

Exit Conditions 

Return Sequence: 

TRSW 

3-190 

S.ALOC8 

scan mask 

requirements mask 

RO 

t~ i, ); 



( 
Registers: 

RI,R2,R4,R7 

CCI 

CC2 

unchanged 

set, matching UDT not found 

set if user has all of requested devices previously 
allocated 

The following registers should not be modified if S.ALOC9 is to be called to 
get next matcing device: 

R3 

R5 

R6 

UDT address 

internal status register 

loop count 

3.5.30 Subroutine S.ALOC9 - Get Next Matching UOT 

Functional Description 

This subroutine is called after calling S.ALOC8 to get first matching UDT entry. A 
forward scan is made for unshared devices first. A reverse scan is then made for a 
shared or unshared matching device. Registers 3, 5 and 6 should not be modified between 
calls. No device allocation is made. 

Entry Conditions 

Calling Sequence: 

BL S.ALOC9 

Registers: 

R3 current UDT address (from previous call) 

R4 scan mask 

R5 internal status register (from previous call) 

R6 loop count (from previous call) 

R7 requirements mask 

Exit Conditions 

Return Sequence: 

TRSW RO 

3-19 ! 



Registers: 

Rl,R2,R4,R7 

CCl 

CC2 

R3 

R5 

R6 

unchanged 

set, matching UOT not found 

set if user has all requested devices previously 
allocated 
UOT address 

internal status register, if required 

loop count, if required 

3.5.31 Subroutine S.ALOCI0 - Allocate Disc File By Space Definition 

Functional Description 

This subroutine allocates a FAT /FPT for the space definition provided by the caller. If 
bit zero of R4 is set, the system FAT /FPT is allocated. If bit zero of R5 is set, a 
blocking buffer is allocated. 

Entry Conditions 

Calling Sequence: 

Registers: 

BL 

R4 

R5 

R6 

R7 

Exit Conditions 

Return Sequence: 

3-192 

Rl 

R2 

R3 

R5 

R4,R6,R7 

S.ALOCIO 

LFC (bit 0 set for system FAT /FPT) 

UOT index (bit 0 set for blocking buffer) 

sector address 

number of sectors 

UOT address 

FPT address 

FAT address 

blocking buffer address if required 

destroyed 

( """ ',i 

o 



( 

I( 

Error Conditions: 

CCI set, no FAT /FPT space 

CC2 set, no blocking buffer space 

Note: Uses word 31 of scratch pad for storage. 

3 • .5.32 Subroutine S.ALOC 11 - Allocate Blocking Buffer 

Functional Description 

This subroutine allocates a free blocking buffer for the caller. The control word in the 
blocking buffer is cleared and the buffer empty bit is set. The buffer is marked 
allocated. The blocking buffer address is inserted in the FAT and the blocking buffer 
active bit is set in the status word. If the FAT address provided is the system FAT, the 
system blocking buffer is unconditionally allocated. CCI is set if no blocking buffer is 
available. 

Entry Conditions 

Calling Sequence: 

BL S.ALOCll 

Registers: 

R3 FAT address 

Exit Conditions 

Return Sequence: 

TRSW RO 

Registers: 

R3 FAT address 

R5 blocking buffer address (0 if no allocation) 

R4 destroyed 

CCI set if no blocking buffer found (R5=O) 

3 • .5.33 Subroutine S.ALOC12 - Locate FPT/FAT Address For Allocated LFC 

Functional Description 

This subroutine scans the allocated FPT entries for a matching LFC. The FPT and FAT 
addresses are returned for the matching LFC. If bit zero of register 5 is set on entry, 
the system FPT and FAT addresses are returned. No comparison check is made for the 
LFC in the system FPT. 

3-193 



Entry Conditions 

Calling Sequence: 

BL 

Registers: 

R5 

Exit Conditions 

Return Sequence: 

S.ALOC12 

LFC to match (bit 0 set indicates get system FPT IF A T 
addresses) 

TRSW RO 

Registers: 

R2' 

R3 

R5 

R4-

CC1 

FPT address (0 if no match) 

FAT address (0 if no match) 

LFC with byte 0 cleared 

word address mask (X'FFFFFF') 

set no match found (R2,R3 zeroed) 

3.5.34 Subroutine S.ALOCI3 - Locate Shared Memory Table Entry 

Functional Description 

This subroutine is used to find the first entry in the Shared Memory Table which contains 
the name and task number specified by the caller. It is also used to find a free entry. 

Entry Conditions 

Calling Sequence: 

Registers: 

3-194-

BL 

R4-,R5 

R6,R7 

(or) 

R4-

S.ALOC13 

owner name 

name of shared memory partition or zero to locate a free entry 

task activation number 



( 

( 

R5 o 

R6,R7 name of shared memory partition or zero to locate a free entry 

Exit Conditions 

Return Sequence: 

TRSW RO 

Registers: 

Rl 

R4 

R5,R6,R7 

address of shared memory table entry or 0 if not found 

destroyed 

unchanged 

3.5.35 Subroutine S.ALOC14 - Allocate FPT/FAT 

Functional Description 

This subroutine will locate an available FPT and associated FAT. The FPT is marked 
unavailable and the LFC and FAT address inserted. The associated FAT is marked 
unavailable and cleared. If bit zero of R5 is set on entry, the system FPT/FAT is 
unconditionally allocated. 

Entry Conditions 

Calling Sequence: 

BL 

Registers: 

R5 

Exit Conditions 

Return Sequence: 

S.ALOC14 

logical file code to allocate (bit 0 set indicates system 
FPT IF A T be allocated) 

TRSW RO 

Registers: 

R2 

R3 

R5 

R4 

FPT address (0 on no space available) 

FAT address (0 on no space available) 

LFC with byte 0 cleared 

destroyed 

3-195 



( 

CCI set, allocation denied 

CC2 set, matching LFC exists (R2=FPT ADDR, R3=FAT ADDR) 

3.5.36 Subroutine S.ALOC15 - Allocate Shared Memory Swap File 

Functional Description 

This subroutine allocates temporary disc space for use as a swap file. The shared 
memory table is updated to reflect the space information for the swap file. If a swap 
file is successfully allocated, the swappable bit in the shared memory table is set. 

Entry Conditions 

Calling Sequence: 

BL S.ALOC15 

Registers: 

RI address of shared memory table 

Exit Conditions 

Return Sequence: 

TRSW RO 

Registers: 

RI address of shared memory table 

R3 unused 

R2,R4,R5,R6,R7 destroyed 

SMT updated with swap file information 

Error Conditions: 

CCI set, unrecoverable I/o error to SMD 

3.5.37 Subroutine S.ALOC16 - Delete Swap File Space 

Functional Description 

This subroutine deallocates temporary disc space used as a swap file. The DQE is 
updated to reflect the new swap file status. 

3-196 

I~, 
'V 



( 
Entry Conditions 

Calling Sequence: 

BL S.ALOC16 

Registers: 

None 

Exit Conditions 

Return Sequence: 

TRSW RO 

Registers: 

RO 

R3 

R4,R5,R6,R7 

Error Conditions 

CCI 

error code, if any 

DQE address (C.CURR) 

destroyed 

set, unrecoverable I/O error to SMD 

3.5.38 Subroutine S.ALOC 17 - Update Map Segment Descriptor Count In DQE 

Functional Description 

This subroutine updates byte 0 of DQE.MSD, which is the number of map image 
descriptors required to map the CPIX. The count is determined by examining TSA 
variables T.EBUF, T.DSOR, T.DSSZ, T.CSOR, T.CSSZ, T.MPOR, T.MPSZ, T.EAOR and 
T.EASZ. 

Entry Conditions 

Calling Sequence: 

BL S.ALOC1? 

Registers: 

None 

Exit Conditions 

Return Sequence: 

TRSW RO 

3-197 



Registers: 

R3 TSA address 

R2 DQE address 

R4 number of map blocks in CPIX 

DQE.MSD (byte 0) is updated by contents of R4 

3.5.39 Subroutine S.ALOC18 - Get Swap File Space 

Functional Description 

This subroutine allocates temporary disc space for use as a swap file. The device 
denoted by SYSGEN as the swap device is tested first for allocation of the file. If a 
failure occurs, allocation will be attempted on any device that has the same 
classification as the swap device. If a swap file cannot be allocated for the calling task, 
the task is marked unswappable and allowed to be dispatched. The DQE is updated to 
reflect the space definition of the swap file. 

Entry Conditions 

Calling Sequence: 

BL S.ALOC18 

Register~: 

R5 number of map blocks that are to be swappable 

Exit Conditions 

Return Sequence: 

Registers: 

TRSW RO 

RO 

R3 

Rl,R2,R4,R5,R6,R7 

Error Conditions 

CCI 

3-198 

error code, if any 

DQE address 

destroyed 

set, unable to allocate file. DQE.FCRS is set to show 
task is forced to be unswappable. 

,i'/, 



( 

( 

(: 

3. 5. If.O Subroutine S.ALOC 19 - Remap Users Address Space 

Functional Description 

This subroutine is used during allocation and deallocation of memory to add or delete 
physical maps from the users address space. The hardware map registers are reloaded 
with the new map images. 

Entry Conditions 

Calling Sequence: 

BL S.ALOC19 

Registers: 

None 

Exit Conditions 

Return Sequence: 

TRSW RO 

Registers: 

R3,R4,R5 destroyed 

3.5.41 Subroutine S.ALOC20 - Validate Buffer Address 

Functional Description 

This subroutine is used to verify a logical address provided by the user. The following 
inquiries are made: 

Is the starting address lower than the DSECT start address? 
Do the addresses specified cross a map block boundary? 
Are the addresses specified in a valid map block? 
Are the addresses specified in the extended address space? 
Are the addresses specified in a protected area? 

Entry Conditions 

Calling Sequence: 

BL S.ALOC20 

Registers: 

R6 20 bit logical starting address 

R7 number of bytes to validate (buffer size). If zero, single 
address check is made. 

3-199 



Exit Conditions 

Return Sequence: 

Registers: 

Status: 

TRSW 

R6,R7 

RI,R2,R4,R5 

CC4 

CC3 

CC2 

CCI 

RO 

unchanged 

destroyed 

set, invalid address (i.e., in OS, below DSECT, or not 
mapped into users space) 

set, locations specified are protected 

set, buffer crosses map block boundary 

set, address below DSECT 

3.5.42 Subroutine S.ALOC21 - Allocate Memory Pool Buffer 

Functional Description. 

This subroutine is used J;y system services requiring temporary memory for I/O queue 
entries, I/O buffering, and messages. No attempt is made to track the use of such 
buffers by the memory management services. Thus use of this service must be 
restricted. Buffers are allocated on a double word boundary. 

Entry Conditions 

Calling Sequence: 

BL S.ALOC21 

Registers: 

R7 number of words required 

Exit Conditions 

Return Sequence: 

TRSW RO 

Registers: 

R3 starting address of memory pool {doubleword bounded} 

R7 number of words rounded to 2W increment 

RI,R2 destroyed 

3-200 

( ..•. " ';) 



( 

( 

Status: 

CCl set, no memory available and R3=0 

Abort Cases: 

None 

3.5.43 Subroutine S.ALOC22 - Release Memory Pool Buffer 

Functional Description 

This subroutine will deallocate a previously allocated memory pool buffer. 

Entry Conditions 

Calling Sequence: 

BL S.ALOC22 

Registers: 

R3 starting address of memory pool 

R7 number of words to deallocate 

Exit Conditions 

Return Sequence: 

TRSW RO 

Registers: 

R3 unchanged 

Rl,R2,R4,R7 destroyed 

3.5.44 Subroutine S.ALOC23 - Compress File Name 

Functional Description 

This subroutine converts 8 bit ASCII coded characters to 6 bit ASCII coded characters. 
Hex 20 is subtracted from each byte to get new code. 

Entry Conditions 

Calling Sequence: 

BL S.ALOC23 

3-20 I 



Registers: 

R6,R7 8 bit ASCII coded name blank filled 

Exit Conditions 

Return Sequence: 

TRSW RO 

Registers: 

R6,R7 6 bit ASCII coded name in lower 48 bits 

CCI set if character found X'20' or X' 5F' 

R2,R3,R4,R5 destroyed 

3.5.45 Subroutine S.ALOC24 - Uncompress File Name 

Functional Description 

This subroutine converts 6 bit ASCII coded characters to 8 bit ASCII coded characters. A 
hex 20 is added to each 6 bit value to get new 8 bit value. 

Entry Conditions 

Calling Sequence: 

BL 

Registers: 

R6,R7 

Exit Conditions 

Return Sequence: 

S.ALOC24 

6-bit ASCII coded name right-justified in lower 48 bits of 
R6,R7 

TRSW RO 

Registers: 

R6,R7 8 bit ASCII coded name 

R2,R3,R4,R5 destroyed 

3-202 



( 

( 

( 

3.5.46 Subroutine S.ALOC25 - Set Any Bit In Memory 

functional Description 

This subroutihe is used to set any bit in memory. 

Entry Conditions 

Calling Sequence: 

BL S.ALOC25 

Registers: 

R2 base address of bit string 

R4 relative bit number (0-2**20) 

Exit Conditions 

Return Sequence: 

TRSW RO 

Registers: 

R2 unchanged 

R4,R5 destroyed 

3.5.47 Subroutine S.ALOC26 - Clear Any Bit In Memory 

Functional Description 

This subroutine is used to clear any bit in memory. 

Entry Conditions 

Calling Sequence: 

BL 

Registers: 

R2 

R4 

Exit Conditions 

Return Sequence: 

TRSW 

S.ALOC26 

RO 

base address of bit string 

relative bit number (0-2**20) 

I 

3-203 



Registers: 

R2 unchanged 

R4,R5 destroyed 

3.5.48 Subroutine S.ALOC27 - Test Any Bit In Memory 

Functional Description 

This subroutine is used to test the status of any bit in memory. 

Entry Conditions 

Calling Sequence: 

Registers: 

BL 

R2 

R4 

Exit Conditions 

Return Sequence: 

S.ALOC27 

base address of bit string 

relative bit number (0-2**20) 

TRSW RO 

Registers: 

R2 unchanged 

R4,R5 destroyed 

Status: 

CCI set if bit tested is set 

3.5.49 Subroutine S.ALOC28 - Deallocate Debugger Memory 

Functional Description 

This subroutine is used to deallocate the memory that was dynamically allocated for the 
loading of the task debugger into the calling task's space. 

Entry Conditions 

Calling Sequence: 

BL S.ALOC28 

3-204 

o 

I·~\ 

\ ! 
'<LJ.' 

o 



( 

Registers: 

None 

This routine is called by H.MONS,30 

Exit Conditions 

Return Sequence: 

TRSW R7 (R7 contains return address) 

Registers: 

None 

3.5.50 Subroutine S.ALOC29 - Load Debug Overlay 

Functional Description 

This subroutine performs all memory management and set up requirements for loading 
the Debug overlay. The users context is copied to T .CONTXT prior to dispatching 
control to the Debug overlay. DQE.ADM, DQE.DBAT,T.DBHAT are all initialized. 
T .CSOR points to the start of the Debug overlay. 

Entry Conditions 

( Calling Sequence: 

BL S.ALOC29 

Registers: 

None 

This subroutine is called by H.TSM,6, H.MONS,29, or by H.ALOC,2. 

Exit Conditions 

Return Sequence: 

TRSW RO 

Registers: 

R7 transfer address of Debug overlay. Bit 0 is set to indicate 
privileged mode. 

Note: Word 28 of scratch pad is used by this subroutine. 

R5 zero if valid 

1 if I/O error on SMD 
2 if file not found 

3-205 



3 if I/O error on file 
4 if invalid preamble 
5 if insufficient room in user's address space 

3.5.51 Subroutine S.ALOC30 - Create a Protection Image 

Functional Description 

This subroutine creates a protection image for the calling task. If the machine type is 
32/7x, the protection image is built backwards in T .PROT. For the CONCEPT /32 
machines, the protection granules in the MIDL entry are set. This subroutine protects 
every map block in the tasks logical space. This is allowed because at the point in time 
that this subroutine is called, the only memory that has been allocated to the task is the 
memory for the TSA, which needs to be protected. 

Entry Conditions 

Calling Sequence: 

BL S.ALOC30 

Registers: 

R3 TSA address 

Exit Conditions 

Return Sequence: 

TRSW RO 

Registers: 

3.5.52 

None (all registers are destroyed) 

Subroutine S.ALOC31 - Update Task Protection Image Due to Increase in 
Execution Space (32/7x only) 

Functional Description 

This subroutine updates the calling tasks protection image due to an increase in the 
primary execution space. This subroutine is for 32/7x machines only. S.ALOC3 is called 
to write the protection image into RAM. 

Entry Conditions 

Calling Sequence: 

BL S.ALOC31 

3-206 

o 



:( 

Registers: 

R3 relative map number 

Exit Conditions 

Return Sequence: 

TRSW RO 

Registers: 

Rl,R2 destroyed 

R3 starting address of last DSECT map 

3.5.53 Subroutine S.ALOC32 - Update Shared Memory Protection Image 

Functional Description 

This subroutine updates the protection image of the calling task when a shared memory 
partition is included. For a 32/7x machine, the protection image is located in T .PROT. 
For a CONCEPT /32 machine, the protection granules in the MIDL are updated. 

Entry Conditions 

Calling Sequence: 

BL S.ALOC32 

Registers: 

Rl shared memory table address 

Exit Conditions 

Return Sequence: 

TRSW RO 

Registers: 

R2,R4,R5,R6,R7 destroyed 

3.5.54 Subroutine S.ALOC33 - Update Task Protection Image Due to Decrease in 
Execution Space (32/7x only) 

Functional Description 

This subroutine is used to update the calling tasks protection image due to a decrease in 
the primary execution space. This subroutine is for 32/7x machines only. S.ALOC3 is 
called to write the protection image into RAM. 

3-207 



Entry Conditions 

Calling Sequence: 
o 

.J 
BL S.ALOC33 

Registers: 

R3 relative map number 

Exit Conditions 

Return Sequence: 

TRSW RO 

Registers: 

RI,R2 destroyed 

R3 . unchanged 

o 

3-208 



( 

3.6 Terminal Services (H. TSM) 

The following table describes the Terminal Context Area (TCA) which J.TSM maintains 
for every TSM device (DTC=TY). This area is allocated and initialized in memory which 
J.TSM obtains dynamically using the memory expansion services when it starts. 

0 7 8 15 16 23 24 31 
Word I Terminal 0 context area FCB (TCA.FCB) 

= 
16 External permanent file FCB (TCA.EFCB) 

= 
32 I Macro parameters (TCA.MPAR) 

-:;::;. 

48 Number of characters per macro parameter (TCA.MSIZ) 
===- = 

50 Number: of parameters in macro call (TCA.CPAR) 
===-

66 Number of characters per parameter (TCA.CSIZ) 
===-

68 Target of current label scan (TCA.LABL) 
-:;::;. = 

70 Header for macro buffer, used by M.TSCAN (TCA.MHDR) 
-:;::;. 

73 I Macro buffer from file (TCA.MBUF) 

91 Second word of Number of Number of Reserved 
status flags parameters parameters in 
(TCA.STS2) in macro macro call 
See Note I (TCA.MNlJM) (TCA.CNUM) 

92 Used by IFP/IFA (TCA. EXMl ) 

93 Used by 1FT/IFF (TCA.EXM2) 

94 Current project number (TCA.PROJ) 

96 Accumulated CPU time per session (TCA.CPU) 

! 



Word 
97 

98 

99 

100 

.1 0 1 

102 

103 

104 

106 

110 

112 

116 

119 

122 

124 

143 

1~7 

150 

153 

3-210 

o 7 8 15 16 23 24 

Accumulated IPU time per session (TCA.IPU) 

Last abort code (TCA.ERR) 

Time-of-day session started (TCA.LOGN) 

Termi nal attributes (TCA.TERM) 

Status flags Address of terminal UDT (TCA.UDTA) 
(TCA. STAT) 
See Note 2 
Task number of active TSM task (TCA.TNUM) 

r":onditional job flags (TCA.JFLG) See Note 3 

Privileged access bits (TCA.ACES) 

space definition (TCA.SGOS) 

Ownername of first message sender (TCA.ONRI) 

T Da te of fir s t mes sage (TCA.DATI) 

I Time of first message (TCA.TlM!) 

I First message mailbox (TCA.MBX!) 
= 
I 

Canned message header (TCA.HDR2) 

Ownername of second message sender (TCA.ONR2) 

T Da te of second me s sage (TCA.DAn) 

I Time of second message (TCA. TlM2) 
= 

31 

1 

1 
= 

I 
1 
1 
I 
= 

= 

I 
= 

= 

o 

o 



( 

( 

o 7 8 15 16 23 24 31 

Word 1 
155 _Second mes sage mail box (TCA.MBX2) 

= 

174 Execution mode Number of Number of pro- Memory class 
flags RRS entries tection granules (TCA.MEw(:) 

175 

176 

178 

180 

182 

184 

185 

186 

187 

189 

247 

(TCA.lVODE) (TCA.NRRS) to allocate 
(TCA.ALLO) 

Number of Number of Priority level 
blocking files of task 
buffers (FAT/FPT) (TCA.PRIO) 
(TCA.NBUF) additional 

(TCA.NFIL) 
Load module 
name 

L-_ (TCA. LM'J) 

I Pseudonym of task (TCA.SUDO) 

I o.vne r name of task (TCA.ONRN) 

Tusername of task (TCA.USRN) 

User key for username (TCA.USRK) 

Option word for activation (TCA.PGOW) 

User status word (TCA.USW) 

Address of fir s t RRS entry (TCA.FRRS) 

IAddress of I/O line buffer (TCA.lBFA) 

lEnd of TCA table 

Notes: 

1. Bits in TCA.STS2 are assigned as follows. 

o - If set, reading first line of command/macro file 
1 - If set, processing macros 
2 - If set, scanning for label 
3 - If set, displaying processor input 
4 - If set, next record already read 
5 - If set, reading from message receiver 
6 - If set, macro expansion inhibited 
7 - Permanent file input mode 

Reserved 
(TCA.NUSE) 

= 

1 
I 

I 

3-211 



2. Bits in TCA.ST A T are assigned as follows. 

o - If set, terminal in task mode (TCA. TASK) 
1 - If set, terminal in command modeCA.COMM) 
2 - If set, first mailbox has valid message 
3 - If set, second mallbox has valid message 
# - If set, next mailbox flip-flop 
5 - If set, terminal has valid ownername (TCA.OWNR) 
6 - If set, terminal expecting message input 
7 - If set, control file processed 

3. Bits in TCA.JFLG are assigned as follows: 

o 
1-16 
17 
18 
19-32 

ENTRY 
POINT 

H.TSM,1 
H.TSM,2 
H.TSM,3 
H.TSM,4 
H.TSM,5 
H.TSM,6 
H.TSM,7 
H.TSM,8 
H.TSM,9 
H.TSM,10 
H.TSM,99 

- Reserved 
- Conditional job processing flags 
- If set, previous task aborted 
- If set, inhibit error expansions 
- Reserved 

SVC 
NUMBER 

N/A 
5B 
N/A 
N/A 
59 
5C 
28 
29 
2A 
2B 
N/A 

DESCRIPTION 

TERMINAL I/o INTERFACE 
SYNTAX SCANNER 
USER TASK EXIT 
USER TASK ABORT 
SET USER TAB POSITIONS 
BREAK PROCESSING ENTR Y 
CONVERT ASCII DECIMAL TO BINARY 
CONVERT ASCII HEXADECIMAL TO BINARY 
CONVERT BINARY TO ASCII DECIMAL 
CONVER T BINARY TO ASCII HEXADECIMAL 
SYSGEN INITIALIZATION 

3.6.1 Entry Point 1 - Terminal I/O Interface 

Functional Description 

This entry point is called by H.IOCS exclusively, when H.IOCS detects the on-line bit (7) 
in the caller's FAT. Return is back to the caller at the instruction following his original 
call to H.IOCS. H.IOCS performs general validation and set up of the user's FCB before 
calling this service. The IOCS op-code is examined by H.TSM; OPEN, READ, WRITE, 
CLOSE, REWIND, and WEOF result in further processing. All other operations result in 
the immediate return to the user. For READ and WRITE requests, TSM performs 
intermediate buffering operations, reissuing of the I/O request, and error checking. 

READ Logic 

First the program option word (T .PGOW) is tested to determine if prompt-before-read is 
in effect. If so, a prompt message is formed from the current load module name and 

3-212 



written to the terminal. Next, the caller's TCW is clamped with the maximum transfer 
specified in UDT.CHAR. Then the READ is reissued to IOCS with a new FCB (T.BFCB) 
and a new input buffer (from T.LlNBUF). Lower case input is allowed if the option was 
set in T .PGOW. The scheduler is alerted that terminal read is in progress, and the task is 
made roll-outable, even though it is in I/O wait. 

After I/O is complete, including post I/O processing, the contents of the input buffer are 
moved back to the caller's buffer. All characters from the carriage return (if any) to the 
end of the buffer are blank-filled. The transfer count in the FCB is updated to reflect 
the actual nuumber of characters entered before the carriage return. Finally, the 
scheduler is informed that terminal input is complete and return is made back to the 
caller, or, if a BREAK was detected during the READ, H.MONS,47 is called, instead. 

WRITE Logic 

First the line count (T.LINNO) is checked to see if a screen size has been specified. If 
so, the current position of the cursor is checked against the maximum count. A prompt 
message is written if we are at bottom of screen. After user response, the count is reset 
to top of screen. Next, the caller's TCW is clamped with the maximum transfer specified 
in UDT.CHAR. Break detection is enabled and the scheduler is informed that terminal 
output is in progress. Finally, the write service is reissued to IOCS with a new FeB 
(from T.BFCB). 

When I/O is complete, the scheduler is informed and a test for break is made. If BREAK 
occurred, this service calls H.MONS,47. Otherwise, return is made to the instruction 
following the original IOCS call. 

OPEN Logic 

The UDT is examined by H.TSM,l to determine the width and height of the terminal 
device. The height (number of lines) is stored in T .LINNO (byte 0). Then a line buffer is 
allocat~d from the memory pool via H.ALOC, 17. The size of the line buffer is 
determined by adding three words to UDT .CHAR and rounding up to an 8-word 
boundary. T.LlNBUF is set to point to the start of the line buffer and the contents of 
UDT.CHAR is stored in byte 8 of the line buffer. Finally the OPEN request is issued to 
H.IOCS. 

Note that multiple OPEN requests are ignored if T.LINBUF is not equal to zero. 

CLOSE Logic 

The line buffer pointed to by T .LINBUF is deallocated via S.ALOC,22. Then the CLOSE 
request is issued to H.IOCS. 

REWIND Logic 

The cursor position in the linebuffer is reset to the first input character. Then the 
REWIND request is issued to H.IOCS. 

Entry Conditions 

( Calling Sequence: 

M.CALL H.TSM,l 

3-213 



Registers: 

Rl 

Output Conditions 

Updated FCB 

External References: 

H.IOCS,1 
H.IOCS,3 
H.IOCS,4 
H.IOCS,19 
H.IOCS,23 
H.EXEC,7 
H.MONS,47 
H.ALOC,17 
S.ALOC,22 

Terminal Messages: 

address of user's FCB 

ENTER CR FOR MORE 
task (prompt) 

3.6.2 Entry Point 2 - Syntax Scanner 

See Section 5.6.1 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.6.3 - Entry Point 3 - User Task Exit 

Functional Description 

This entry point is entered by the scheduler as part of the exit process for an on-line 
task. The terminal1ine buffer is deallocated and a break is sent to J.TSM. 

Entry Conditions 

Calling Sequence: 

M.CALL H.TSM,3 

Registers: 

None 

Exit Conditions 

Return Sequence: 

M.RTRN 

3-214 

" 
c···' .. ··"····· 



( 

( 

Registers: 

None 

3.6.4 Entry Point 4 - User Task Abort 

Functional Description 

This entry point is entered by the scheduler when an on-line task aborts. The abort code 
and PSW address are written to the user's terminal. If the terminal is malfunctioning, 
the abort code is written to the system console device. Then this entry point merges 
with entry point 3. 

Entry Conditions 

Calling Sequence: 

M.CALL H.TSM,4 

Registers: 

None 

Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

None 

3.6.5 Entry Point 5 - Set User Tab Positions 

Functional Description 

This entry point is used by the Editor to pass the user's specified tab positions to the 
UDT. The user's tabs are examined by the terminal handler during formatted I/O 
processing and the cursor is adjusted as appropriate. 

Entry Conditions 

Calling Sequence 

LD R6, TABS 

SVC I,X'59' (or) M.CALL H.TSM,5. 

where: 

TABS is a double-word containing up to eight tab positions. These 
positions must be in ascending order with 0 being used to 
indica te no more tabs. 

3-215 

I 



The caller must be a TSM task. 

Exit Conditions 

Return Sequence 

M.RTRN 

Registers: 

None 

3.6.6 Entry Point 6 - Break Processing Entry 

See Section 5.6.2 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.6.7 Entry Point 7 - Convert ASCn Decimal To Binary 

See Section 5.6.3.1 of the MPX-32 Reference Manual· for a detailed description of this 
entry point. 

3.6.8 Entry Point 8 - Convert ASCn Hexadecimal To Binary 

See Section 5.6.3.2 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.6.9 Entry Point 9 - Convert Binary To ASCn Decimal 

See Section 5.6.3.3 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.6.10 Entry Point 10 - Convert Binary To ASCn Hexadecimal 

See Section 5.6.3.4 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.6.11 Entry Point 99 - SYSGEN Initialization 

There is currently no SYSGEN initialization required. Return is made via TRSW through 
Register O. 

3-216 

o 

o 

1 

1 

1 

,I 



3.7 File System Executive (H.FlSE) 

( 
SVC 

ENTRY POINT NUMBER DESCRIPTION 

H.FISE,l N/A GET SYSTEM SMD ENTRY 

H.FISE,2 N/A REWRITE SMD ENTRY 

H.FISE,3 N/A ALLOCATE TEMPORARY DISC SPACE 

H.FISE,4 N/A DEALLOCATE TEMPORARY DISC SPACE 

H.FISE,5 N/A ALLOCATE PERMANENT DISC SPACE 

H.FISE,6 N/A UNGATE FISE 

H.FISE,7 N/A DEALLOCATE PERMANENT DISC SPACE 

H.FISE,8 N/A ASCII COMPRESSION 

H.FISE,9 N/A GATE FISE 

H.FISE,10 N/A GET USER SMD ENTR Y 

,( 
H.FISE, II N/A PERMANENT FILE ALLOCATION CHECK 

H .. FISE,12 75 CREA TE PERMANENT FILE 

H.FISE,13 76 CHANGE TEMPORARY FILE TO PERMANENT 

H.FISE,14 77 DELETE PERMANENT FILE 

H.FISE,15 N/A PERMANENT FILE LOG 

H.FISE,16 N/A V ALIDA TE USERNAME 

H.FISE,17 N/A READ ALLOCATION MAP INTO MEMORY 

H.FISE,18 N/A WRITE ALLOCATION MAP TO DISC 

H.FISE,19 N/A RESERVED FOR FUTURE USE 

H.FISE,20 N/A CREA TE PERMANENT FILE 

H.FISE,21 N/A CHANGE TEMPORARY FILE TO PERMANENT 

H.FISE,99 N/A SYSGEN INITIALIZATION 

N/ A implies reserved for internal use by MPX-32 

f 

3-217 



File Gating Services Available To Unprivileged Tasks 

SVC MODULE 
MACRO NUMBER ENTRY PT. DESCRIPTION 

M.FXLS X'21' 

M.FXLR X'22' 

M.FSLS X'23' 

M.FSLR X'24' 

MODULE 
ENTRY PT. 

H.FISE,26 

H.FISE,27 

H.FISE,28 

H.FISE,29 

H.FISE,30 

H.FISE,31 

H.FISE,32 

H.FISE,33 

H.FISE,34 

H.FISE,35 

H.FISE,36 

3-218 

H.FISE,22 

H.FISE,23 

H.FISE,24 

H.FISE,25 

SET EXCLUSIVE FILE LOCK 

RELEASE EXCLUSIVE FILE LOCK 

SET SYNCHRONIZATION FILE LOCK 

RELEASE SYNCHRONIZATION FILE LOCK 

File Gating Services Available To Other 
Services and Privileged Tasks 

DESCRIPTION 

SET EXCLUSIVE FILE LOCK 

RELEASE EXCLUSIVE FILE LOCK 

SET SYNCHRONIZATION FILE LOCK 

RELEASE SYNCHRONIZATION FILE LOCK 

RELEASE FILE ALLOCATION IN FL T 

WAIT FOR RELEASE OF EXCLUSIVE FILE LOCK 

WAIT FOR FLT ENTRY SPACE 

RECORD FILE ALLOCATION IN FL T 

SET EXCLUSIVE LOCK IF FILE IS NOT ALLOCATED 

RELEASE EXCLUSIVE LOCK (SPACE DEFINITION) 

RELEASE ALL EXCLUSIVE LOCKS ON TASK TERMINATION 

- .", 

I"' .. '.,.· 
V 



{ 

SUBROUTINE 

S.FISEI 
S.FISE2 
S.FISE3 
S.FISE4 
S.FISE5 
S.FISE6 
S.FISE7 
S.FISE8 
S.FISE9 
S.FISE 10 

DESCRIPTION 

SEARCH SMDFOR ENTRY 
SETUP FAT FOR SMD I/o 
SETUP SYSTEM FPT AND FCB 
RECORD DISC FILE ALLOCATION IN FL T 
WAIT FOR FLT ENTRY SPACE 
WAIT FOR RELEASE OF FILE EXCLUSIVE LOCK 
RELEASE DISC FILE ALLOCATION IN FL T 
SEARCH FL T FOR MATCHING ENTRY 
CONVERT LFC TO CONCATENATED FILE ID 
CHECKSUM DISC ALLOCATION MAP 

3-210 



3.7.1 Entry Point 1 - Get System SMD Entry 

Functional Description 

This entry point is used to locate the System Master Directory (SMD) entry for a System 
permanent file or memory partition. The SMD consists of a prime number of entries and 
resides on disc. This number is computed by an algorithm that doubles the number of 
entries specified at SYSGEN and adds one to convert to an odd number. Each entry 
contains eight words which define the file and is located by mapping the file name into a 
directory entry number. After a circular right shift of I bit of the left half of the file 
name, the two words of the file name are exclusively ORed to obtain a bit difference. 
This difference is then divided by the number of directory entries. The remainder of the 
division is the directory entry number of the space definition of the file. If a file name 
.other than that used to compute the entry number is defined in the directory entry 
(collision mapping), 1 is repeatedly added to the entry number, modulo the number of 
directory entries, until the desired name is located or an inactive entry is encountered. If 
an inactive entry is encountered, a return is made to the caller with the space definition 
of the file zeroed. 

Entry Conditions 

Calling Sequence: 

M.CALL 

Registers: 

R3 

R6,R7 

Exit Conditions 

Return Sequence: 

. H.FISE,l 

contains the denial return address in case of an 
unrecoverable I/O error to the SMD 

contains the permanent file name consisting of one to eight 
ASCII characters, left-justified, and blank filled. 

M.RTRN 5,6,7 

Registers: 

R5 contains the UDT index in bytes 2 and 3 

R6,R7 zero if the entry for the file could not be located 

(or) 

The space definition of the specified file as follows: 

3-220 

'0" \ .. , . , 

C'·"'" , 'I 



R6 

R7 

(or) 

Return Sequence: 

M.RTNA 

Registers: 

None 

External References 

System Macros: 

M.RTNA 
M.RTRN 

System Subroutines: 

S.FISEI 
S.FISE2 
S.FISE3 

Abort Cases: 

None 

Output Messages: 

(' None 

byte 0 

bytes 1,2,3 

byte 0 

bytes 1,2,3 

3 

file type 

starting disc address or starting memory 
page 

File indicators as follows: 

Bit 0 - Active Permanent File 
Bit 1 - SYSGEN Memory Partition 
Bit 2 Not saved via SAVE DEVICE 
Bit 3 - FAST File 
Bit r.,. - Collision Mapping 
Bit 5 - Non-SYSGEN Memory Partition 
Bit 6 - Write Protected (RO) 
Bit 7 - Password Protected (PO) 

number of 192 word blocks in file or 
number of memory pages (bytes 1,2 only) 

R3 is the denial return address in case of 
an unrecoverable I/O error to the SMD 

3-221 



3.7.2 Entry Point 2 - Rewrite SMD Entry 

Functional Description 

This entry point is used to output to the SMD an eight word permanent file or memory 
partition definition. It is provided primarily for the creation of new entries and the 
deletion of existing entries, but it may be utilized for altering the content of any entry. 
The specified permanent file or memory partition name is mapped into the directory in 
the same manner as in Entry Point 1. If no collision occurs on the first mapping, the 
specified eight word space definition is entered in the SMD. If there is a collision 
mapping, the specified space definition is tested to determine whether a FAST or SLOW 
permanent file is specified. If a SLOW permanent file is specified, the backup algorithm 
is utilized to locate the existing entry for the file or an inactive entry. If a FAST file is 
specified, the entry mapped into is tested. If that entry is SLOW, it is replaced by the 
specified entry values and the backup algorithm is employed to locate an inactive entry 
for the use of the old entry values. For any entry which is re-written, the collision 
mapping indicator (bit 4 of word 3) is maintained intact. Thus, for entries which are 
deleted, entries mapping "through" deletions may still be located. 

NOTE: This entry point may not be used to change the name of a permanent file or 
memory partition and may not be used to change the definition of a file from SLOW to 
FAST. 

Entry Conditions 

Calling Sequence: 

M.CALL 

Registers: 

RI 

R4 

Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

None 

(or) 

Return Sequence: 

M.RTNA 

3-222 

H.FISE,2 

contains the address of the eight word space definition block 
to replace the existing entry for the file or to occupy the 
first inactive entry mapped into. 

contains the denial return address 

4,1 R4 is the denial return address 

o 

() 



(- Registers: 

(-

Rl 

External References 

System Macros: 

M.CALL 
M.RTRN 
M.RTNA 

System Subroutines: 

S.FISE I 
S.FISE2 
S.FISE3 

Abort Cases: 

None 

Output Messages: 

None 

contains the reason for denial 

=0 if a FAST file entry was to be written and a collision 
mapping occured with an existing FAST file entry 
= I if SMD is full 
=2 if an unrecoverable I/O error to the SMD 

H.IOCS,3; H.IOCS,4 

3.7.3 Entry Point 3 - Allocate Temporary Disc Space 

Functional Description 

This entry point is used to effect the allocation of temporary disc file space. When this 
entry point is called, the allocation map for the specified disc is read into a FISE buffer 
area if it is not already in memory. The first string of reset bits satisfying the length 
requested is located (temporary space is allocated from the low to high end of a disc, 
unless Unidirectional File Allocation has been declared via the Operator Communications 
MODE command, in which case all disc space is allocated from high to low). The bit 
string is set, the allocation map is rewritten, the space definition is computed and return 
is made to the caller. If the specified device does not contain available space of 
sufficient length to satisfy the request, a denial return is made to the caller with the 
space definition zeroed. 

This entry point decrements the count of total disc space available on all units in 
C.NTBA in the communications region. 

3-223 



Entry Conditions 

Calling Sequence: 

M.CALL 

Registers: 

R4 

R5 

R7 

Exit Conditions 

Return Sequence: 

H.FISE,3 

contains the denial return address in case of an unrecoverable 
I/o error to the allocation map 

contains the Unit Definition Table (UOT) index (entry number) 
of the entry which defines the disc for which the space 
allocation is requested, or zero to indicate any disc. 

contains the number of 192 word blocks requested for allocation. 

M.RTRN 5,6,7 

Registers: 

R5 

R6,R7 

(or) 

Return Sequence: 

M.RTNA 

Registers: 

None 

External References 

System Macros: 

3-224 

M.CALL 
M.RTRN 
M.RTNA 

contains the UnT index of the disc where the space was 
allocated 

contain the space definition of the allocated file space. 

(or) 

zero if the requested space was not available 

4 R4 is the denial return address in case of an 
unrecoverable I/o error to the allocation map 

H.FISE,17; H.FISE,18 

I" 



( 

(> 

Abort Cases: 

None 

Output Messages: 

None 

3.7.4 Entry Point 4 - Deallocate Temporary Disc Space 

Functional Description 

This entry point is called to release temporary disc file space, making it available for 
allocation. Although permanent disc space may be deallocated through this entry point, 
Entry Point 7 should be used for that purpose. The allocation map for the specified disc 
is read into a FISE buffer area if it is not already in memory; the bit string corresponding 
to the specified space definition is reset; the allocation map is rewritten on the disc, and 
a return is made to the caller. 

This entry point increments the count of total disc space available (C.NTBA). 

Entry Conditions 

Calling Sequence: 

M.CALL 

Registers: 

R4 

R5 

R6 

R7 

Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

None 
(or) 

H.FISE,4 

contains the denial return address in case of an unrecoverable 
I/O error to the allocation map 

contains the UDT index of the disc on which the file resides 

contains the starting disc address 

contains the number of 192 word blocks to release 

3-225 

:, ••. 

" 



Return Sequence: 

M.RTNA 

Registers: 

None 

External References 

System Macros: 

M.CALL 
M.RTRN 
M.RTNA 

Abort Cases: 

None 

Output Messages: 

None 

4 R4 is the denial return address in case of an 
unrecoverable I/O error to the allocation map 

H.FISE,17; H.FISE, 18; H.EXEC,16 

3.7.5 Entry Point 5 - Allocate Permanent Disc Space 

Functional Description 

This entry point functions identically to Entry Point 3 with the exception that the 
allocation map is searched from the end toward the beginning for a bit string of 
sufficient length to satisfy the request. Allocating permanent file space at the end of 
the disc and temporary file space at the beginning reduces fragmentation of disc usage, 
and reduces the time required to allocate space. If Unidirectional File Allocation mode 
has been set via the Operator Communications MODE command, this algorithm is used to 
allocate temporary space also. 

This entry point decrements the count of total disc space available on all units in 
C.NTBA. 

Entry Conditions 

Calling Sequence: 

M.CALL 

Registers: 

R4 

3-226 

H.FISE,5 

contains the denial return address in case of an unrecoverable 
I/O error to the allocation map 

\' , ' , G·~····· 

I ~ 



( R5 

R7 

Exit Conditions 

Return Sequence: 

contains the Unit Definition Table (UDT) index (entry number) 
of the entry which defines the disc for which the space 
allocation is requested, or zero to indicate any disc. 

contains the number of 192 word blocks requested for allocation 

M.RTRN 5,6,7 

Registers: 

R5 

R6,R7 

(or) 

Return Sequence: 

M.RTNA 

Registers: 

None 

External References 

System Macros: 

M.CALL 
M.RTRN 
M.RTNA 

Abort Cases: 

None 

Output Messages: 

None 

contains the UDT index of the disc where the space was 
allocated 

contain the space definition of the allocated file space 

(or) 

zero if the requested space was not available 

4. R4. is the denial return address in case of an unrecoverable 
I/O error to the allocation map 

H.FISE,17; H.FISE,18 

3-227 



3.7.6 Entry Point 6 - Ungate FISE 

Functional Description 

This entry point makes FISE avaialable for use and allows any users that are suspended 
awaiting FISE to gain access to it. If applicable, the calling task is permitted to be 
swapped after FISE is unga ted. 

Entry Conditions 

Calling Sequence: 

M.CALL 

Registers: 

None 

Exit Conditions· 

Return Sequence: 

M.RTRN 

Registers: 

None 

External References 

System Macros: 

M.CALL 
M.RTRN 

System Subroutines: 

S.EXEC39 

Abort Cases: 

None 

Output Messages: 

None 

3-228 

H.FISE,6 

H.EXEC,18 

C
c~ 

I ',: 



3.7.7 Entry Point 7 - Deallocate Permanent Disc Space 

Functional Description 

This entry point is called to release permanent disc file space, making it available for 
allocation. Although temporary space may be deallocated through this entry point, Entry 
Point 4 should be used for that purpose. The allocation map for the specified disc is read 
into a FISE buffer area if it is not already in memory; the bit string corresponding to the 
specified space definition is reset; the allocation map is rewritten on the disc and a 
return is made to the caller. 

This entry point increments the count of total disc space available (C.NTBA). 

Entry Conditions 

Calling Sequence: 

M.CALL 

Registers: 

R4 

R5 

R6 

R7 

Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

None 

(or) 

Return Sequence: 

M.RTNA 

Registers: 

None 

H.FISE,7 

contains the denial return address in case of an unrecoverable 
I/O error to the allocation map 

contains the UDT index of the disc on which the file resides 

contains the starting disc address 

contains the number of 192 word blocks to release 

4 R4 is the denial return address in case of an unrecoverable 
I/o error to the allocation map 

3-22-=1 



External References 

System Macros: 

M.CALL 
M.RTRN 
M.RTNA 

Abort Cases: 

None 

Output Messages: 

None 

H.FISE,17; H.FISE,18; H.EXEC,16 

3.7.8 Entry Point 8 - ASCn Compression 

Functional Description 

This entry point performs compression on an ASCII character string to yield its halfword 
equivalent. 

Entry Conditions 

Calling Sequence: 

M.CALL 

Registers: 

R6,R7 

Exit Conditions 

Return Sequence: 

H.FISE,8 

contain the one to eight character ASCII string, left-justified, 
and blank filled 

M.RTRN 7 

Registers: 

R7 contains the equivalent of the ASCII string in the right half word 

External References 

System Macros: 

M.RTRN 

3-230 

o 

() 



( 

Abort Cases: 

None 

Output Messages: 

None 

3.7.9 Entry Point 9 - Gate FISE 

Functional Description 

This entry point gates FISE and prevents its use by any other task until Entry Point 6 is 
called. If FISE is currently gated when this call is made, the scheduler is notified and the 
calling task is placed in a "Waiting For FISE" queue until FISE is freed by a call to Entry 
Point 6. Once gated, the calling task will not be allowed to swap until FISE is ungated. 

Entry Conditions 

Calling Sequence: 

M.CALL 

Registers: 

None 

Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

None 

External References 

System Macros: 

M.CALL 
M.RTRN 

System Subroutines: 

S.EXEC38 

H.FISE,9 

H.EXEC,17 

3-231 



Abort Cases: 

None 

Output Messages: 

None 

3.7.10 Entry Point 10 - Get User SMD Entry 

Functional Description 

This entry point is used to locate the entry for a specified user permanent file in the 
System Master Directory. If unsuccessful, an attempt is made to locate a system file or 
memory partition of the specified name, however, Entry Point 1 should be used for this 
purpose. 

Entry Conditions 

Calling Sequence: 

M.CALL 

Registers: 

R3 

R4,R5 

R6,R7 

Exit Conditions 

Return Sequence: 

H.FISE,lO 

contains the denial return address in case of an unrecoverable 
I/O error to the SMD 

contain the user name consisting of one to eight ASCII 
characters, left-justified, and blank filled 

contain the permanent file name consisting of one to eight 
ASCII characters, left-justified, and blank filled 

M.RTRN 5,6,7 

Registers: 

R5 contains the UDT index in bytes 2 and 3 

R6,R7 zero if the entry for the file could not be located 

(or) 

The space definition of the specified file as follows: 

3-232 

I , 
I 

. I 



R6 

R7 

Additionally CCI 

(or) 

Return Sequence: 

M.RTNA 

Registers: 

None 

External References 

System Macros: 

M.RTNA 
M.RTRN 

System Subroutines: 

S.FISEI 
S.FISE2 
S.FISE3 

Abort Cases: 

None 

Output Messages: 

None 

byte 0 file type 

bytes 1,2,3 starting disc address or starting memory 
page 

byte 0 File indicators as follows: 

Bit O-Active Permanent File 
Bit I-SYSGEN Memory Partition 
Bit 2-Not saved via SAVE DEVICE 
Bit 3-F AST File 
Bit Lt.-Collision Mapping 
Bit 5-Non-SYSGEN Memory Partition 
Bit 6-Write Protected (RO) 
Bit 7-Password Protected (PO) 

bytes 1,2,3 number of 192 word blocks in file or number of 
memory pages (bytes 1,2 only) 

3 

o If no file, or a user file, was found 
1 If a System file was found 

R3 is the denial return address in case of an 
unrecoverable I/O error to the SMD 

3-233 



3.7.11 Entry Point 11 - Permanent File Allocation Check 

Functional Description 

This entry point checks access rights to a permanent file being statically or dynamically 
allocated. 

Entry Conditions 

Calling Sequence: 

M.CALL 

Registers: 

R2,R3 

R4,R5 

R6,R7 

(or) 

Rl 

R4,R5 

R6 

Exit Conditions 

Return Sequence: 

H.FISE,ll 

contain the one to eight character password, left-justified, and 
blank filled 

contain the one to eight character user name, left-justified, and 
blank filled, or zero if allocation of a system file only is to be 
checked 

contain the one to eight character permanent file or memory 
partition name, left-justified, and blank filled 

contains the address of a three word permanent file resource 
requirement summary entry 

contain the one to eight character user name, left-justified, and 
blank filled, or zero if allocation of a system file only is to be 
checked 

contains zero 

M.RTRN 5,6,7 

Registers: 

R5 

R6,R7 

3-234 

unT index of disc on which file resides 

contain the space definition of the specified permanent file. If 
access to the file is restricted and a matching password was not 
furnished, bits 6 and 7 of R 7 are returned as follows: 

Bit 6 = 1 Write access is not allowed 
Bit 7 = 1 No access is allowed 
Bi ts 6,7 = 0 If read and write access is all owed 



( 

(or) 

R6,R7 zero if the specified file could not be located 

Addi tionall y: 
CC I = 1 if an unrecoverable I/O error occurred 

External References 

System Macros: 

M.CALL H.FISE,8 
M.RTRN 

System Subroutines: 

S.FISEI 
S.FISE2 
S.FISE3 

Abort Cases: 

None 

Output Messages: 

None 

3.7.12 Entry Point 12 - Create Permanent File 

See Section 7.8.4 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.7.13 Entry Point 13 - Change Temporary File To Permanent 

See Section 7.8.17 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.7.1" Entry Point 1" - Delete Permanent File or Non-SYSGEN Memory Partition 

See Section 7.8.7 of the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.7.15 Entry Point 15 - Permanent File Log 

Functional Description 

This entry point provides a log of currently existing permanent files and memory· 
parti tions. 

3-235 



Entry Condi tions 

Calling Sequence: 

M.CALL 

Registers: 

R4 

R5 

R6,R7 

Exit Conditions 

Return Sequence: 

H.FISE,15 

contains a byte-scaled value which specifies the type of log to 
be performed as follows: 

= 0 specifies a single named system or user file 
= I specifies all permanent files 
= 2 specifies system files only 
= 3 specifies user files 
= 4 specifies a single named system file 

If R4 contains zero and a user name is associated with the 
calling task, an attempt is made to locate the user file directory 
entry for the given file name. If unsuccessful, the system file 
directory entry, if any, is located. If a user name is not 
associated ",(ith the calling task, the file is assumed to be a 
system file. 

If R4 contains 3 and the calling task has an associated user 
name, that user's files are logged or all files are logged if the ,,~) 
calling task has no associated user name. 

contains the address of an eight word area where the file 
directory entry is to be stored 

contain the one to eight character file name if R4 contains a or 
4 

M.RTRN 4,5 

Registers: 

R4 

R5 

3-236 

If R4 contains a or 4 in the service call, R4 is destroyed. If R4 
contains 1,2,or 3 in the service call, this service is called 
repeatedly to obtain all the pertinent file descriptions. The 
parameter in R4 is specified in the first call only. R4 is 
returned containing the address of the next directory entry to be 
returned. The value returned in R4 must be unchanged upon the 
subsequent call to this service. --

contains zero if R4 contained a or 4 in the service call and the 
specified file could not be located, or R4 contained 1,2, or 3 and 
all pertinent files have been logged. Otherwise, R5 is 
unchanged. 

c 



( 

(~ 

Additionally, the eight word SMD entry, if any, is stored at the address 
specified in R5. The password field contains zero or one to indicate the 
absence or presence of a password respectively. 

CC 1 is set to I if there was an unrecoverable I/O error 

External References 

System Macros: 

M.CALL 
M.RTRN 

System Subroutines: 

S.FISEI 
S.FISE2 
S.FISE3 

Abort Cases: 

None 

Output Messages: 

None 

H.IOCS,3 

3.7.16 Entry Point 16 - Validate Usemame 

Funtional Description 

This entry point validates a user name and optional key against the user name file, 
M.KEY, if it exists. 

Entry Conditions 

Calling Sequence: 

M.CALL 

Registers: 

R3 

R4,R5 

R6,R7 

H.FISE,16 

should contain zero 

contain the one to eight character user key, left-justified and 
blank filled, or zero in R4 and R5 contains the compressed user 
key 

contain the one to eight character user name, left-justified and 
blank filled. Each character must have an ASCn equivalent in 
the range 01 through 7F. 

3-237 

!I 
I 
'I 

I II 
!.i 
I' 

i 

I 



Exit Conditions 

Return Sequence: 

Registers: 

M.RTRN 
(or) 
M.RTRN 

R3 

R6,R7 

3 

6,7 

contains the address of an 8W area in T .BBUF A which contains 
the M.KEY entry, or is zero if no M.KEY file is present 

unchanged if the user name is valid. Both R6 and R7 are zero if 
the user name contains invalid characters or is not contained in 
M.KEY or the user key is not correct. 

Additionally, CCI = I if an unrecoverable I/O error occured 

External References 

System Macros: 

M.CALL 
M.RTRN 

System Subroutines: 

S.FISE3 

Abort Cases: 

None 

Output Messages: 

None 

H.FISE,I; H.FISE,8; H.IOCS,3 

**NOTE: MPX-32 M.KEY file entries are twelve words long** 

3-238 

Words 0-1 
2-3 
t,.-5 

6 
7 

8-9 
10-11 

Username 
OPCOM Flags 
Tab Settings 
Unused 
Compressed key in right half word 
Left halfword is zero 
Key (ASCII) 
Unused 

--I 

o 

o I 
I 

\,.1 
I 



3.7.17 Entry Point 17 - Read Allocation Map Into Memory 

Functional Description 

This entry point determines if the allocation bit map for the specified disc is resident in 
memory or not, and reads the map into memory if required. 

Entry Conditions 

Calling Sequence: 

M.CALL 

Registers: 

R3 

Exit Conditions 

Return Sequence: 

H.FISE,17 

contains the UDT index of the disc whose allocation map is to be 
read 

M.RTRN 3 

( . Registers: 

R3 unchanged or zero if the specified UDT index does not exist 

Additionally, CC 1 is set if an unrecoverable I/o error occurred when trying to 
read the map. 

External References 

System Macros: 

M.CALL 
M.RTRN 

System Subroutines: 

S.FISE3 

Abort Cases: 

None 

Output Messages: 

None 

H.IOCS,3 

3-239 



3.7.18 Entry Point 18 - Write Allocation Map to Disc 

Functional Description 

This entry point writes the currently resident allocation bit map back to the disc it 
describes. 

Entry Conditions 

Calling Sequence: 

M.CALL H.FISE,18 

Registers: 

None 

Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

None 

Additionally, CC 1 is set if an unrecoverable I/O error occurred when trying to 
write the map. 

External References 

System Macros: 

M.CALL 
M.RTRN 

System Subroutines: 

S.FISE3 

Abort Cases: 

None 

Output Messages: 

None 

3-240 

H.IOCS,4 

:0······"\ ',' 



( 
3.7.19 Entry Point 19 - Undefined 

Functional Description 

This entry point is reserved for future expansion. Its current intended use is to 
implement a Contract File Space service. A call to this entry point causes an immediate 
return to the calling task; no action is taken prior to the return. 

Entry Conditions 

Calling Sequence: 

M.CALL H.FISE,19 

Registers: 

None 

Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

None 

External References 

System Macros: 

M.RTRN 

Abort Cases: 

None 

Output Messages: 

None 

3.7.20 Entry Point 20 - Create Permanent File 

Functional Description 

This entry point allocates disc space for the specified permanent file and writes a 
corresponding entry into the SMD. Optionally, the allocated space is zeroed. 

3-24 ; 



Entry Conditions 

Calling Sequence: 

CALM X'75' 

(or) 

M.CALL 

Registers: 

Rl 

R2 

R3 

R4,R5 

R6,R7 

Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

None 

(or) 

Return Sequence: 

M.RTRN 6,7 

3-242 

H.FISE,20 

bytes 1,2 
byte 3 

bit 0 
bit 1 
bit 10 
bit 11 
bit 14 
bit 15 
byte 2 
byte 3 

contain restricted file code 
contains file type code 

file size 

set if a system file 
set if pre-zero 
set if not a save device 
set if a fast file 
set if read onl y 
set if password only 
contains device type code 
contains optional device address 

(if present, bit 16 is also set) 

password or R4=0 

file name 



( 

( 

Registers: 

R6 

R7 

External References 

System Macros: 

M.RTRN 
M.CALL 

Abort Cases: 

= I, file already exists 
=2, fast file collision mapping occurred 
=3, restricted access but no password supplied 
=4, disc space unavailable 
=5, specified device not configured or available 
=6, specified device is off-line 
=7, SMD is full 
=8, specified device type is not configured 
=9, file name or password contain invalid characters 

zero 

FSOI Unrecoverable I/O error to SMD 
FS02 Unrecoverable I/O error to disc allocation map 

O'-!tput Messages: 

None 

3.7.21 Entry Point 21 - Change Temporary File to Permanent 

Functional Description 

This entry point changes the status of a temporary file allocated to the calling task to 
permanent. The file must be an open, temporary, SLO or SBO file. 

Entry Conditions 

Calling Sequence: 

CALM X'76' 

(or) 

M.CALL H.FISE,21 

Registers: 

RI byte 3 contains file type code 

R2 bytes 0,1,2 contain logical file code 

3-24'; 



R3 

R4,R5 

R6,R7 

Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

None 

(or) 

Return Sequence: 

M.RTRN 6,7 

Register~: 

R6 

R7 

External References 

System Macros: 

M.RTRN 
M.CALL 

Abort Cases: 

FSOI 
FS02 

Output Messages: 

None 

3-244 

bit 0 
bit 1 
bit 10 
bit 11 
bit 14 
bit 15 

set if a system file 
set if pre-zero 
set if not a save device 
set if a fast file 
set if read only 
set if password only 

password or R 4=0 

file name 

=1, file already exists 
=2, fast file collision mapping occurred 
=3, restricted access but no password supplied 
=4, file not open, temporary, SLO or SBO file 
=7, SMD is full 
=9, file name or password contain invalid characters 

zero 

Unrecoverable I/O error to SMD 
Unrecoverable I/O errror to disc allocation map 

o 

o 
: 

ill 



(~' 

3.7.22 Entry Point 22 - Set Exclusive File Lock 

See Section 7.8.14 in the MPX- 32 Reference Manual for a detailed description of this 
entry point. 

3.7.23 Entry Point 23 - Release Exclusive File Lock 

See Section 7.8.13 in the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.7.24 Entry Point 24 - Set Synchronization File Lock 

See Section 7.8.11 in the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.7.25 Entry Point 25 - Release Synchronization File Lock 

See Section 7.8.10 in the MPX-32 Reference Manual for a detailed description of this 
entry point. 

3.7.26 Entry Point 26 - Set Exclusive File Lock (M.CALL Only) 

Functional Description 

This entry point is provided for use by other system services. It is functionally identical 
to the M.FXLS (H.FISE,22) service except that it identifies the file by the concatenated 
UDT index and starting sector rather than by logical flle code. 

Entry Conditions 

Calling Sequence: 

R6 
R4 
M.CALL 

Exit Conditions 

Return Sequence: 

Concatenated UDT index and file starting sector number 
timev (see H.FISE,22) 
H.FISE,26 

M.RTRN R7 

Registers: 

R7 = 0, Request accepted, file is exclusively locked. 

= I, Request denied, file is allocted to multiple tasks, or is . 
already exclusively locked and cannct be exclusively locked by 
this task. 

3-24-5 



= 2, Request denied, FL T space not available. 
Note 1: applies to privileged requests to exclusively lock an 
unallocated file, and does not apply to SVC utilization through 
H.FISE,22. 

= 3, Request denied, time-out occurred while waiting for FL r 
space. (See Note I above.) 

= 4, Request denied, time-out occurred while waiting to become 
lock owner. 

3.7.27 Entry Point 27 - Release Exclusive File Lock (M.CALL Only) 

Functional Description 

This entry point is provided for use by other system services. It is functionally identical 
to the M.FXLR (H.FISE,23) service except that it identifies the file by the concatenated 
UDr index and starting sector rather than by logical file code. 

Entry Conditions 

Calling Sequence: 

R6 
M.CALL 

Exit Conditions 

Return Sequence: 

Concatenated UDr index and file starting sector number 
H.FISE,27 

M.RTRN R7 

Registers: 

3.7.28 

R7 = 0, Request accepted, exclusive file lock released 

= 1, Request denied, an exclusive file lock owned was not owned 
by this task 

Entry Point 28 - Set Synchronization File Lock (M.CALL Only) 

Functional Description 

This entry point is provided for use by other system services. It is functionally identical 
to the M.FSLS (H.FISE,24) service except that it identifies the file by the concatenated 
UDT index and starting sector rather than by logical file code. 

3-246 

"~-------"-- -- -------

o 

o 

o 



Entry Conditions 

( Calling Sequence: 

R6 
R4 
M.CALL 

Exit Conditions 

Return Sequence: 

Concatenated UDT index and starting sector number 
timev (see H.FISE,24) 
H.FISE,28 

M.RTRN R7 

Registers: 

R7 = 0, Request accepted, synchronization lock set. 

= I, Request denied, synchronization lock already owned by 
another task. 

= 2, Request denied, time-out occurred while waiting to become 
lock owner. 

= 3, Request denied, matching FL T entry not found. 

3.7.29 Entry Point 29 - Release Synchronization File Lock (M.CALL Only) 

Functional Description 

This entry point is provided for use by other system services. It is functionally identical 
to the M.FSLR (H.FISE,25) service except that it identifies the file by the concatenated 
UDT index and starting sector rather than by logical file code. 

Entry Conditions 

Calling Sequence: 

R6 
M.CALL 

Exit Conditions 

Return Sequence: 

Concatenated UDT index and starting sector number 
H.FISE,29 

M.RTRN R7 

Registers: 

R7 = 0, Request accepted, synchronization lock released. 

= 1, Request denied, synchronization lock was not set. 



3.7.30 Entry Point 30 - Release File Allocation in FL T 

Functional Description 

This entry point is provided for use by system static and dynamic deallocation services. 
It searches the FLT for a matching file identifier. Once a matching FLT entry is found, 
any outstanding locks owned by the current task are released, and the allocation count is 
decremented. If the allocation count then equals zero, the FL T entry is marked 
available. The associated wait queues will also be pulled. 

Entry Conditions 

Calling Sequence: 

R6 
M.CALL 

Exit Conditions 

Return Sequence: 

M.RTRN 

Concatenated UDT index and file starting block number 
H.FISE,30 

3.7.31 Entry Point 31 - Wait for Release of Exclusive File Lock 

Functional Description 

This entry point is provided for use by system static and dynamic allocation services. It 
searches the FL T for an existing exclusive lock on the specified file. If one exists, the 
task is placed in a wait state until the lock is released. Otherwise, an immediate return is 
issued. 

Entry Conditions 

Calling Sequence: 

R6 
M.CALL 

Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

None 

3-248 

Concatenated UDT index and file starting block number 
H.FISE,31 

o 

C~··\ ,,' ,I 



3.7.32 Entry Point 32 - Wait for FL T Entry Space 

f Functional Description 

( 

This entry point is provided for system static and dynamic allocation services. It returns 
immediately if FL T entry space is available, otherwise the task is placed in a wait state 
until FL T space is available. 

Entry Conditions 

Calling Sequence: 

M.CALL H.FISE,32 

Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

None 

3.7.33 Entry Point 33 - Record Disc File Allocation In FL T 

Functional Description 

This entry point is provided for use by the allocation system service to maintain system 
wide information on all currently allocated permanent disc files. It is used in conjunction 
with H.FISE,30 which is called by the deallocation system service. 

Entry Conditions 

Calling Sequence: 

R6 
M.CALL 

Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

None 

File ID (Concatenated UDT index and starting sector) 
H.FISE,30 

3-249 



3.7.34 Entry Point 34 - Exclusive Lock File U Unallocated 

Functional Description 

This entry point is used to insure that a file is not currently allocated by any task, and 
then to set an exclusive lock to prohibit subsequent allocations. It is used by the file
delete system service, and is used in conjunction with H.FISE,35. 

Entry Conditions 

Calling Sequence: 

R5 
R6 
M.CALL 

Exit Conditions 

Return Sequence: 

UDT index 
Starting sector address 
H.FISE,34 

M.RTRN R4 

Registers: 

R4 = 0, Request accepted. 

= 1, Request denied, file is allocated. 

= 2, Request denied, file is exclusively locked (but not allocated) 
by another task. 

= 3, Request denied, FL T space unavailable. 

3.7.35 Entry Point 35 - Release Exclusive Lock (Unallocated File) 

Functional Description 

This entry point is identical to H.FISE,27 except that it accepts the UDT index and 
starting sector address as separate arguments, then concatenates them to form the file 
identification. 

Entry Conditions 

Calling Sequence: 

3-250 

R5 
R6 
M.CALL 

UDT index 
Starting sector address 
H.FISE,35 

.. ~ 



( 

( 

Exit Conditions 

Return Sequence: 

Registers: 

3.7.36 

M.RTRN 

Note: Request is ignored if the calling task is not the lock owner. 

None 

Entry Point 36 - Release Exclusive Locks For Unallocated Files On Task 
Termination 

Functional Description 

This entry point is called during task termination processing to release any file exclusive 
locks which are set for files which the task did not have allocated. Note that exclusive 
locks on allocated files are released when the file is deallocated. 

Entry Conditions 

Calling Sequence: 

M.CALL H.FISE,36 

Exit Conditions 

Return Sequence: 

M.RTRN 

Registers: 

None 

3.7.37 Entry Point 99 - SYSGEN Initialization 

Functional Description 

This entry point is for internal use only and is called during SYSGEN. H.FISE sets up its 
Entry Point Table then returns to SYSGEN. 

3.7.38 System Master Directory (SMD) 

Functional Description 

Each permanent file, temporary file, or memory partition has associated with it a two 
word space definition which describes the location, length, etc. of the file or memory 

3-251 



partition. The space definition of permanent files or memory partitions resides on the 
System Master Directory, and together with the permanent file name, user name and 
password, or memory partition name, comprise the SMD entry. 

The space definition of temporary files are retained in the File Assignment Table area of 
the defining task's TSA until termination of the task or completion of System Output. At 
that time, these definitions are returned to the File System Executive for deallocation of 
the defined space. Deallocation of permanent file space is performed via Entry Point 14 
or by the File Manager upon encountering a DELETE directive. 

Memory partitions, similar to permanent disc files, have a two word space definition in 
the associated SMD entry. The SMD entry for a statically allocated memory partition is 
built by SYSGEN when a PARTITION directive is specified. This type of partition can be 
deleted only by omitting the definition in a subsequent SYSGEN warm or cold start. The 
SMD entry for a dynamically allocated memory partition is built by the File Manager in 
response to a CREA TEM directive. This type partition is deleted by the File Manager 
upon encountering a DELETE directive, or alternatively via Entry Point 14. 

System Master Directory (SMD) Entry 

Permanent File Format: 

Word 0,1 

Word 2,3 

3-252 

contain the one to eight ASCII character, left-justified, blank 
filled file name 

contain the space definition as follows: 

Word 2 

Byte 0 File Type -This field contains one or two 
hexadecimal digi ts to identify the origin of the 
file as follows: 

ED - Editor Save File 
EE - Editor Store File 
FE - Editor Work File 
FF - SYSGEN Created File 
BA - BASIC File 
CA - Cataloged Load Module 

Bytes 1-3 

Word 3 

Byte 0 

This field contains the starting (base) disc 
address of the file expressed as the starting 
allocation unit number. 

File Indicators - Bits set in this field indicate the 
following: 

Bit 
0- Active Permanent File 
I SYSGEN Memory Partition 
2 File is not saved in response to the SAVE 

FILE File Manager directive 

.. ~ 



( 

Word 4,5 

Word 6 

Word 7 

Bytes 1-3 

3 FAST File 
4 Collision Mapping 
5 Non-SYSGEN Memory Partition 
6 Password required to write (read-only file) 
7 Password required to read or write 

(password-only file) 

This field contains the number of 192 word blocks 
in the file 

contain the one to eight ASCII character, left-justified, blank 
filled, user name or zero if no user name is associated with the 
file 

contains the compressed password or zero in Bytes 0 and 1 and 
the UDT index of the disc on which the file resides in Bytes 2 
and 3 

Zero 

Memory Partition Format: 

Word 0,1 

Word 2,3 

Word 4,5 

Word 6 

Word 7 

contain the memory partition name; GLOBALxx or DATAPOOL 

contain the space definition as follows: 

Word 2 

Bytes 0-1 

Bytes 2-3 

Word 3 

Byte 0 

Byte 1 

Bytes 2-3 

contain the partition's starting logical page 
number 

contain the partition's starting physical page 
number if the partition is created by SYSGEN or 
are zero for a non-SYSGEN partition 

File Indicators - Same as in Permanent File 
Format definition above 

Memory Class - this field contains a 1,2, or 3 to 
indicate the class of memory (E, H, or 5) this 
partition is to be allocated 

This field contains the number of pages allocated 
for the partition 

Zero (Memory partitions are always System files) 

contains the compressed password or zero in Bytes 0 and 1 and 
zero in Bytes 2 and 3 

Zero 

3-253 



3.7.39 Disc Allocation Maps 

Functional Description 

Each disc consists of a string of 192 word records. Disc space is allocated in blocks 
(called allocation units) of records. The number of records in an allocation unit is disc 
dependent. Each type of disc contains a different number of allocation units. 
Allocatable disc space is followed by a variable length record which serves as the space 
allocation map for the device. The map begins with the first bit of the record and 
consists of as many bits as there are allocation units on the disc. Each bit defines the 
state of the corresponding allocation unit and is set if the unit is allocated and reset if 
the unit is available for allocation. Following the allocation map is unused disc space 
(less than one allocation unit in length) which results from the disc sizes not being even 
multiples of the allocation unit. Additionally, an area of the disc may be reserved for 
diagnostic purposes, and therefore, not available for allocation (see Section 3.7.37.2). 

A separate allocation bit map is maintained for each disc defined to the system at 
SYSGEN. The File System Executive builds an Allocation Map Table defining each 
allocation map during its SYSGEN Initialization phase. The allocation maps reside on the 
particular disc they define and are read into memory one at a time as required. 

If control switch 0 is set, checksumming is performed on the bit maps whenever they are 
read from disc, written to disc, or changed during disc space allocation/deallocation. An 
Allocation Map Checksum Table, containing one entry for each disc, is defined at 
SYSGEN time. Detection of a checksum error causes execution of M.KILL with the 
abort code FS04 in R5. ''''--''' 

The allocation bit maps vary in length as described above and as shown in the following 
table: 

3-254 



~ -.. ~ 

Number Max \,00) 

Unit Wordsl Sectors/ of Max Sectorsl Max Sectors/ Alloc. Bit Map Max Byte • 
" Size Type Sector Track Heads Cylinders Cylinder Sectors Allocation Units Size· Capacity • \,00) - ------ -- --- -

\D • -4MB Fixed Head 192W 23 2~6 0 0 '888 '888 184 4.'2MB 

~MB Fixed Head 192W 23 4 64 92 '888 '888 184 ".'2MB 0 
10MB Cartridge Disc Iii' 

n 
'MB Removable 96W 16 2 "00 J2 12,800 12,800 200 4.91MB 0 Media 
5MB Captive 96W 16 2 400 32 12,800 12,800 200 4.91MB II 

Media Q 
Totals 4 64 2',600 2',600 400 9.82MB 

..... 
"C ... .... 

40MB Moving Head 192W 21 , 400 11' 46,000 2 23,000 719 3S.32MB 9 
80MB Moving Head 192W 23 , 800 II' 92,000 2 46,000 1438 70.6'MB -of 

III 
0-

300MB Moving Head 192W 23 19 800 437 349,600 4 87,400 2712 268.49MB -(I) 
Extended I/O Devices 

1MB Floppy Disc 64W 26 2 77 52 4002 3 1334 1.02MB 

5MB Fixed Head 192W 20 4 64 80 '120 '120 184 3.93MB 

32MB Cartridge Disc 
16MB Removable 192W 20 800 20 16,000 2 8000 2'0 12.28MB 

Media 
16MB Captive 192W 20 800 20 16,000 2 8000 2'0 12.28MB 

Media 
Totals 2 40 32,000 16,000 '00 24.56MB 

40MB Moving Head 192W 20 , 400 100 40,000 2 20,000 615 30.72MB 

80MB Moving Head I92W 20 , 800 100 80,000 2 40,000 12'0 61.44MB 

300MB Moving Head 192W 20 19 800 380 304,000 " 76,000 2315 233.47MB 

• Decimal Words 

Note: The 10MB Cartridge Disc and 32MB Cartridge Disc contain removable and captive media within a single cabinet. Software treats the removable and captive 
medias as separate devices, each with its own device subaddress. Figures presented for these devices include each medias capacity and total drive capacity. 

All discs with a Unit Size of 24MB or larger have reserved cylinders that are not useable by the operating system, i.e., the 80MB Moving Head Disc physically has 
w 823 cylinders, however, only 800 are defined to the operating system. I 
N 
\..n 
\..n 

1'.- 727 - F 



VJ 
I 

N 
VI 
0'\ 

o 

D D DLJ D D D D D DLl D DIJ D D[] 
192-1 
Word I 

Record 

Allocation Unit 

(1 to 4 Records) 

~ Allocatable Disc Space 

,. Total Disc Space 

Unused --i 

Allocation 

Map "tI >Reserved 

~ ...... • 
~ 
I'.) 

o 
Iii' 
n 

i 
~ 

~j 



( 3.7.40 MPX-32 Disc File Gating 

MPX-32 provides both mutual exclusion and access synchronization methods of disc file 
gating. These functions are used by system services and are available to privileged and 
unprivileged tasks to ensure the access integrity of associated files. 

3.7."'0.1 General Method 

MPX-32 maintains a memory resident File Lock Table (FLT). It contains an entry for 
each permanent disc file that is currently allocated. An FL T entry in turn contains an 
allocation count to reflect multiple tasks which concurrently have the associated file 
allocated. A file is uniquely identified in the FL T by the concatenation of its UnT index 
and starting sector number. The two-word FL T entry also contains space to reflect the 
program number of the task which has exclusively locked the file, or the program number 
of the task which has a synchronization lock set for the file. 

3.7."'0.2 Locking Services 

Services are provided to set exclusive or synchronization locks for files that are 
allocated to a task. A task may use a logical file code (lic) to identify the file when the 
lock request is m~de. 

3.7.40.3 Exclusive Lock (FXL) 

In order for an unprivileged task to exclusively lock a file, the file must be allocated to 
the requesting task, and will therefore have an entry in the FL T. When an FXL request is 
made it will be accepted if the file is allocated to the requesting task, and is not 
concurrently allocated to another task. Once a file has been exclusively locked, other 
tasks will be prevented from allocating it until the exclusive lock is released. 

3.7."'0.'" Synchronization Lock (FSL) 

In order for a task to set a synchronous lock for a file, the file must first be allocated to 
the requesting task, and will therefore have an entry in the FL T. When an FSL request is 
made, it will be accepted if the file is allocated and an FSL for the file is not already 
owned by another task which has the file concurrently allocated. 

3.7.40.5 Task Queueing 

When a locking service is requested, the task may optionally specify an immediate denial 
return if the lock is unavailable, or the task may specify that it wishes to wait until the 
lock is available. If it specifies the wait option, it may also specify a watchdog timer 
value to ensure a return of control to the task if the lock does not become available 
within the time specified. 

3-257 



3.7.40.6 Cooperative Environment 

It should be understood that use of the file locking services is voluntary. Participating 
tasks must utilize the file locking services in a cooperative environment to ensure 
properly synchronized access and to avoid deadlock situations. 

3.7.41 System Subroutine S.FISE! - Search SMD For Entry 

Functional Description 

This subroutine searches the SMD for the specified entry and returns the address of an 
8W area containing the SMD entry if successful. If a username is specified, a search is 
made for the named userfile, else a system file is assumed. If the named userfile does 
not exist, the entry describing the system file of the same name is returned, if any. 

****************************************************************************** 
* 

* 
* 
* 
* 
* 

CAUTION 

When this subroutine is called, it is assumed 
that calls have previously been made to gate FISE 
and also that the caller will un gate FISE after 
S.FISE I returns 

* 

* 
* 
* 
* 
* 

****************************************************************************** 

Entry Conditions 

Calling Sequence: 

BL 

Registers: 

Rl 

R4,R5 

R6,R7 

Exit Conditions 

Return Sequence: 

S.FISE 1 

contains the FCB address - FCB, FAT, and FPT must be setup 
for I/O to the SMD 

contain the one to eight ASCII character, left-justified, blank 
filled username, or zero if a system file only is to be found 

contain the one to eight ASCII character, left-justified, blank 
filled filename of the entry to be found 

TRSW RO 

3-258 



:( 

Registers: 

3.7.42 

R2 contains the address of an 8W area containing the SMD entry if 
the specified file exists 

CC 1 =0 if the specified file was found 
= 1 if no file was found 

CC2 = 0 if no file was found or a user file was found during a user 
search 
= 1 if a System file was found while looking for a user file and 
none existed 

System Subroutine S.FISE2 - Setup FAT for SMD I/O 

Functional Description 

This subroutine sets up the system FAT to perform I/O to the SMD. It uses registers R 1, 
R2, R3, and R5. 

f 

Entry Conditions 

Calling Sequence: 

BL S.FISE2 

Registers: 

R3 contains the UDT index of the disc on which the SMD resides 

Exit Conditions 

Return Sequence: 

TRSW RO 

Registers: 

Rl contains the system F AT address 

R5 contains the logical file code '(S)' 

3.7.43 System Subroutine S.FISE3 - Setup System FPT and FeB 

Functional Description 

This subroutine sets up the system FPT and FCB for I/O. It uses registers R 1, R2, R3, 
R4, and R5. 

3-259 



Entry Conditions 

Calling Sequence: 

BL 

Registers: 

Rl 

R4 

R5 

Exit Conditions 

Return Sequence: 

S.FISE3 

contains the system F AT address 

contains the denial return address in case of an unrecoverable 
I/O error to the SMD 

contains the logical file code '(S)' 

TRSW RO 

Registers: 

R3 contains the system FCB address 

Additionally, the system FPT and FCB are setup for a 192 word transfer 
to/from T.BBUFA 

3.7.44 System Subroutine S.FISE4 - Record Disc File Allocation in FL T 

Functional Description 

This subroutine modifies the File Lock Table (FL T) to reflect the additional allocation. 

Entry Conditions 

Calling Sequence: 

BL 

Registers: 

R6 

Exit Conditions 

Return Sequence: 

TRSW 

3-260 

S.FISE4 

contains file ID (concatenated UDT index and starting sector 
number) 

RO 
i ~ 

C··'''··· 



( 

(> 

Registers: 

RI,R2,R3,R5 

R4,R6 

R7 

destroyed 

saved 

0, request accepted 
1, request denied (file is exclusively locked) 
2, request denied (FL T space not available) 

3.7.45 System Subroutine S.ASE5 - Wait for FL T Entry Space 

Functional Description 

This subroutine enqueues the caller until File Lock Table (FL T) space becomes available. 

Entry Conditions 

Calling Sequence: 

BL S.FISE5 

Registers: 

None 

Exit Conditions 

Return Sequence: 

TRSW RO 

Registers: 

Rl,R2,R3 saved 

R4,R5,R6,R7 destroyed 

3.7.46 System Subroutine S.ASE6 - Wait for Release of File Exclusive Lock 

Functional Description 

This subroutine enqueues the caller until the file lock owner releases the file lock. 

Entry Conditions 

Calling Sequence: 

BL S.FISE6 

3-261 



Registers: 

R6 

Exit Conditions 

Return Sequence: 

contains file ID {concatenated UDT index and starting sector 
number} 

TRSW RO 

Registers: 

R l,R2,R3,R5,R7 destroyed 

R4,R6 saved 

3.7.47 System Subroutine S.FISE7 - Release Disc File Allocation in FL T 

Functional Description 

This subroutine decrements the use count in the file by one. The entry is cleared when 
the use count goes to zero. 

NOTE 

Queued exclusive locks (QFXL) must be pulled if an exclusive lock 
(FXL) is owned by the releasing task or if the decremented 
allocation count is less than or equal to 1 and FXL is not set. 

Entry C~nditions 

Calling Sequence: 

BL 

Registers: 

R6 

Exit Conditions 

Return Sequence: 

S.FISE7 

contains file ID {concatenated UDT index and starting sector 
number} 

TRSW RO 

Registers: 

R 1,R2,R3,R5,R7 destroyed 

R4,R6 saved 

3-262 

c 



( 
3.7.48 System Subroutine S.FISE8 - Search FL T for Matching Entry 

Functional Description 

This subroutine searches the File Lock Table (FL T) for a matching concatenated file ID. 

Entry Conditions 

Calling Sequence: 

BL 

Registers: 

R6 

Exit Conditions 

Return Sequence: 

TRSW 

Registers: 

Rl 

R2,R5 

R3,R4,R6 

R7 

S.FISE8 

contains file ID <Concatenated UDT index and starting sector 
number) 

RO ignore (FL T not configured) 

RO+IW no match, no FLT space 

RO+2W no match, Xl=free entry address 

RO+3W match, Xl=entry address 

destroyed, or contains matching entry address or free entry 
address 

destroyed 

saved 

2 if no match and no FL T space, otherwise = 0 

3.7.49 System Subroutine S.FISE9 - Convert LFC to Concatenated File ID 

Functional Description 

This subroutine converts the lfc in register 5 to the concatenated file ID, consisting of 
the UDT index and starting sector address. 

Entry Conditions 

Calling Sequence: 

BL S.FISE9 

3-263 



Registers: 

R5 

Exit Conditions 

Return Sequence: 

Registers: 

TRSW 

Rl,R2 

R3,R5 

R4 

R6 

R7 

contains lfc 

RO error return 

RO+IW normal return 

destroyed 

saved 

saved (destroyed if denial return) 

concatenated ID Of found} 

0, request accepted 
5, request denied, (lfc not found) 
6, request denied, Ofc not assigned to permanent disc file} 

3.7.50 System Subroutine S.FISE 10 - Checksum Disc Allocation Map 

Functional Description 

This subroutine computes the checksum of a specified disc's allocation map by 
sequentially summing half words. The checksum is compared to the current checksum for 
the disc in the Disc Allocation Map Checksum Table (DAMCST). Registers 2, 3, 4, 6, and 
7 are used. 

Entry Conditions 

. Calling Sequence: 

BL 

Registers: 

RI 

Exit Conditions 

Return Sequence: 

TRSW 

3-264 

S.FISEIO 

points to the disc's entry in the Disc Allocation Map Table 
(DAM APT} 

RO o 
1 '• 1 

i· 
I 



( 

(' 

Registers: 

Rl unchanged 

External References 

System Macros: 

M.KILL 

Abort Cases: 

FS04 checksum error detected 

Output Messages: 

None 

3.8 Interrupt and Trap Processors 

3.8.1 Power Fail Save - Auto Start and Interrupt/Trap Processor(H.IPOO) 

Functional Description 

Processing performed at this level is considered to be dependent upon the installation and 
application. Therefore, MPX-32 provides a minimal routine for this level which may be 
easily overridden by a user-supplied routine. The processor executes a HALT 
instruction. Processing may be continued at the point of interrupt by the operator 
depressing the program STEP switch on the console to bypass the HALT "loop" and then 
depressing the RUN/HALT switch. Registers and PSD will remain intact but I/O in 
progress will be effected by the execution of the HALT instruction. 

Entry Conditions 

Calling Sequence: 

Occurrence of interrupt or trap signal at priority level X'OO'. 

Exi t Conditions 

Return Sequence: 

Depress program STEP switch on console. 
Depress RUN/START switch on console. 

NOTE 

Depressing the RUN/START switch without first depressing STEP 
results in a branch that returns to the execution of the HALT 
instruction. 

3-265 



External References 

System Macros: 

None 

Abort Cases: 

None 

Output Messages: 

None 

3.8.2 System Overide Interrupt/Trap Processor - 32/7x only (H.IPOI) 

Functional Description 

Processing at this level is considered to be application and installation dependent, and, 
therefore, a minimal routine is provided which may be easily overridden by a user
supplied routine. The processor executes a HALT instruction. Processing may be 
continued at the point of interrupt with the registers and PSD intact. 

Entry Conditions 

Calling Sequence: 

Occurrence of interrupt or trap signal at priority level X'Ol'. 

Exit Conditions 

Return Sequence: 

Depress program STEP switch on console. 

Depress RUN/START switch on console. 

NOTE 

Depressing the RUN/START switch without first depressing STEP 
results in a branch that returns to the execution of the HALT 
instruction. 

External References 

System Macros: 

None 

Abort Cases: 

None 

3-266 

o 



( 
Output Messages: 

None 

3.8.3 System Auto Start Trap Processor - 32/27 only (H.IPAS) 

Functional Description 

Processing at this level is considered to be application and installation dependent, and, 
therefore, a minimal routine is provided which may be easily overridden by a user
supplied routine. The processor executes a HALT instruction. Processing may be 
continued at the point of interrupt with the registers and PSD intact. 

Entry Conditions 

Calling Sequence: 

Occurrence of interrupt or trap signal at priority level X'Q I I. 

This trap occurs during the power up sequence, provided a valid scratch pad 
image is resident in low memory (core memory or MOS memory with battery 
back-up only). 

Exit Conditions 

Retume Sequence: 

Depress program STEP switch on console. 

Depress RUN/START switch on console. 

NOTE 

Depressing the RUN/START switch without first depressing STEP 
results in a branch that returns to the execution of the HALT 
instruction. 

External References 

System Macros: 

None 

Abort Cases: 

None 

Output Messages: 

None 

3-267 



3.8.4 Memory Parity Trap Processor (H.IP02) 

Functional Description 

A memory parity error is considered to be an indication of total hardware failure and is 
treated as a fatal system crash. Registers are loaded (for display) with the saved PSD 
and the instruction resulting in the trap, and the M.KILL macro is invoked. Processing 
may be continued at the point of interrupt with the registers and PSD intact, but I/o in 
progress when the HALT was executed will be terminated. 

Entry Conditions 

Calling Sequence: 

Occurrence of interrupt signal at priority level X'12', or trap signal at level 
X'02'. 

NOTE 

Entry into this routine results in registers being loaded for console 
display as follows: 

RO,Rl 
R2 
R3 
R4 
R5 
R6 
R7 

Exit Conditions 

Return Sequence: 

M.KILL 

PSD saved by the hardware when the trap occurred 
Physical address of the instruction causing the trap 
Instruction being executed when trap occurred 
CPU status word stored when trap occurred 
Abort code 
Address of register save block 
Trap 

NOTE 

Unless a user-supplied System Override Interrupt/Trap Processor is 
connected, processing may be continued by depressing the program 
STEP switch and then the RUN/START switch on the console. 

External References 

System Macros: 

M.KILL 

Abort Cases: 

MPOl Memory error occurred 

3-268 

0'·'''''·'·''··', .", r 

o 



( 

( 

Output Messages: 

None 

3.8.5 Non-Present Memory Trap Processor (H.IP03) 

Functional Description 

This routine resul ts in the task current [y in execution being aborted. A register push
down and PSD save is made, the abort request is reported to the scheduler, and a 
standard exit is performed. 

Entry Conditions 

Calling Sequence: 

Occurrence of interrupt signal at interrupt level X'24', or trap signal at level 
X'D3'. 

Exit Conditions 

Return Sequence: 

BL S.EXEC5A 

Registers: 

R2 Register save area address 

R5 Abort code 

R6,R7 PSD 

External References 

System Macros: 

None 

Abort Cases: 

NMOI Non-Present Memory Trap (all cases) 

Output Messages: 

None 

3.8.6 Undefined Instruction Trap Processor (H.IP04) 

Functional Description 

This routine results in an abort of the task currently in execution. 

3-269 



Entry Conditions 

Calling Sequence: 

Occurrence of an interrupt signal at priority lvel X'25', or trap signal at level 
X'04'. 

Exit Conditions 

Return Sequence: 

BU S.EXEC5A 

Registers: 

R2 Register save area address 

R5 Abort code 

R6,R7 PSD 

External References 

System Macros: 

None 

Abort Cases: 

UIOI Unimplemented instruction 

Output Messages: 

None 

3.8.7 Privilege Violation Trap Processor (H.IPO.5) 

Functional Description 

This routine results in an immediate abort of the task currently in execution. 

Entry Conditions 

Calling Sequence: 

Occurrence of an interrupt signal at priority level X'26', or a trap signal at 
level X'05'. 

Exit Conditions 

Return Sequence: 

BL S.EXEC5A 

3-270 



( 

( 

Registers: 

R2 Register save area address 

R5 Abort code 

R6,R7 PSD 

External References 

System Macros: 

None 

Abort Cases: 

PVOl Privilege violation (all cases) 

Output Messages: 

None 

3.8.8 SVC Trap Processor (H.IP06) 

Functional Description 

This processor provides the SVC Secondary Vector Table and selects the appropriate 
processing routine based on SVC type. 

Entry Conditions 

Occurrence of a trap signal at priority level X'06'. 

Exit Conditions 

SVC TYPE 

o 
1 
2 
3 
4 

5-8 
9 

A-D 
E 
F 

External References 

None 

DESCRIPTION 

M.CALL Processor 
SVC Type' I' Processor 
SVC Type '2' Processor 
M.OPEN Processor 
M.RTRN/M.RTNA Processor 
Reserved 
Diagnostics 
Event Trace 
Available for customer use 
'CALM' Replacement SVC 

3-271 

~ 

I 
:1 
'I 

II 
;i 
! 



3.8.9 M.CALL SVC Processor (H.sVCO) 

Functional Description 

This processor provides the means to enter any system module with a register push-down. 

Entry Conditions 

The requestor must be privileged. 

Execution of the following code: 

M.CALL mm,ee (SVC type '0' instruction) 

where: 

mm is the module number being called (bits 20-23 of SVC instruction) 

ee is the entry point number within the module to which control will be 
transferred (bits 24-31 of SVC instruction) 

Exit Conditions 

Return Sequence: 

LPSD SVCO.Tl 

Registers: 

SVCO. T 1 = Address of the entry point within the called 
module 

All registers remain intact 

External References 

Abort Cases: 

SV01 Unprivileged task attempted use of M.CALL 

3.8.10 Supervisor Call Trap Processor (H.SVC 1) 

Functional Description 

This trap processor is entered whenever a SVC type' l' is executed for an I/O service, 
Monitor service, or dynamic DEBUG service. The processor determines the module and 
entry point to enter. A register push-down and PSD save is performed and control is 
transferred to the specified module. 

Entry Conditions 

Calling Sequence: 

SVC type' l' instruction is executed. 

3-272 

.f ''I::' .V' 

C'" 
, • I 



( 

(: 

Exit Conditions 

Return Sequence: 

LPSD SVCO.Tl SVCO.Tl = Address of MOD., E.P. 

Registers: 

Same as upon detection of trap signal. 

External References 

System Macros: 

None 

Abort Cases: 

SV02 Invalid SVC number 

SV03 Attempted use of privileged only service by unprivileged task 

Output Messages: 

None 

3.8.11 M.OPEN SVC Processor (H.SVC3) 

Functional Description 

This routine removes the task context switch inhibit state set by the M.SHUT procedure. 

Entry Conditions 

Execution of the following code: 

Exit Conditions 

Return Sequence: 

BU 

External References 

None 

M.OPEN (SVC type '3' instruction) 

S.EXEC20 

3-273 

I 



3.8.12 M.RTRN/M.RTNA SVC Processor (H.SVC4) 

Functional Desription 

This processor provides the control transfer mechanism for system modules to return to 
the calling program. A register pop-up is performed with specified registers preserved 
returning control to the location specified or the location following the last CALM or 
M.CALL. 

Entry Conditions 

The requester must be privileged. 

Execution of the following code: 

Exit Conditions 

Return Sequence: 

BU 

SVC type '4' instruction 
WAIT 
DATAB X'rr' 
DATAB X'aa' 

where: 

rr Bits 0-7 indicate the registers to be preserved through the pop
up. Each register is preserved if its corresponding bit is set. 

aa May contain a bit (0-7) set indicating the corresponding register 
containing the address to which to return. 

S.EXEC.20 

External References 

None 

3.8.13 Invalid SVC Type Processor (H.SVCN) 

Functional Description 

Entry to this processor results in an abort of the currently executing task. 

Entry conditions 

SVC type 'N' (where N is 5, 6, 7, 8 or E) 

3-274 

I."" "" .. '" V 

!:~ 



( 
Exit Conditions 

Return Sequence: 

BU S.EXEC20 

External References 

Abort Cases: 

SV04 Invalid SVC type 

3.8.14 Machine Check Trap Processor (H.IP07) 

Functional Description 

A machine check trap is treated as a fatal system crash. Registers are loaded for 
display, and the M.KILL macro is invoked. Processing may be continued at the point of 
interrupt with the registers and PSD intact, but I/O in progress when the HALT was 
executed will be terminated. 

Entry Conditions 

Occurrence of a trap signal at priority level X'07'. 

NOTE 

Entry into this routine results in registers being loaded for console 
display as follows: 

RO,RI 
R2 

R3 
R4 
R5 
R6 
R7 

Exit Conditions 

Return Sequence: 

M.KILL 

= PSD saved by the hardware when the trap occurred. 
= Physical address of instruction being executed when the 

trap occurred. 
= Instruction being executed when the trap occurred. 
= CPU status word stored when the trap occurred. 
= Abort code 
= Address of register save block. 
= Trap. 

NOTE 

Unless a user-supplied System Override Interrupt/Trap Processor is 
connected, processing may be continued by depressing the program 
STEP switch and then the RUN/HALT switch on the CPU Control 
Panel. 

3-275 



External References 

System Macros: 

M.EQUS, M.KILL 

Abort Cases: 

MCOI Machine check trap 

Output Messages: 

None 

3.8.15 System Check Trap Processor (H.IP08) 

Functional Description 

A system check trap is treated as a fatal system crash. Registers are loaded for display, 
and the M.KILL macro is invoked. Processing may be continued at the point of interrupt 
with the registers and PSD intact, but I/O in progress when the HALT was executed will 
be terminated. 

Entry Conditions 

Occurrence of a trap signal at priority level X'08'. 

NOTE 

Entry into this routine results in registers being loaded for console 
display as follows: 

RO,RI 
R2 

R3 
R4 
R5 
R6 
R7 

= 
= 

= 
= 
= 
= 
= 

PSD saved by the hardware when the trap occurred. 
Physical address of instruction being executed when the 
trap occurred. 
Instruction being executed when the trap occurred. 
CPU status word stored when the trap occurred. 
Abort code. 
Address of register save block. 
Trap. 

Exit Conditions 

Return Sequence: 

3-276 

M.KILL 

NOTE 

Unless a user-supplies System Override Interrupt/Trap Processor is 
connected, processing may be continued by depressing the program 
STEP switch and then the RUN/HALT switch on the CPU Control 
Panel. 

c 



( 
External References 

System Macros: 

M.EQUS, M.KILL 

Abort Cases: 

SCOI 

SC02 

SC03 

SC04 

Output Messages: 

None 

System check trap occurred at an address located within the 
operating system. 

System check trap occurred within the current task's space. 

System check trap occurred at a time when there were no tasks 
currently being executed (C.PRNO equals zero). 

System check trap occurred within another trap (C.GINT does 
not equal I). 

3.8.16 Map Fault Trap Processor (H.IP09) 

Functional Description 

This processor results in the task currently in execution being aborted. A register pUS' 
down and PSD save is made, the abort request is reported to the scheduler, and ;:: 
standard exit is performed. 

Entry Conditions 

Calling Sequence: 

Occurrence of trap signal at priority level X'09'. 

Exit Conditions 

Return Sequence: 

BL S.EXEC5A 

Registers: 

R2 Register save area address 

R5 Abort code 

R6,R7 PSD 

3-27"" 



External References 

System Macros: 

M.EQUS 

Abort Cases: 

MFOl Map fault has occurred. Rerun task. 

Output Messages: 

None 

3.8.17 Address Specification Trap - CONCEPT /32 only (H.IPOC) 

Functional Description 

This processor generates a trap when an address specification error occurs on a 
CONCEPT /32. If other tasks are not active, a normal return is taken from the 
interrupt. If other tasks are active, the processor will halt the system and display an 
abort code. 

Entry Conditions 

Occurrence of a trap signal at priority level X'OC'. 

NOTE 

Entry into this routine results in registers being loaded for console 
display as follows: 

RO,Rl = 

R2 = 

R3 = 
R4 = 
R5 = 
R6 = 
R7 = 

PSD saved by the hardware when the trap 
occurred. 
Physical address of instruction being executed 
when the trap occurred. 
Instruction being executed when the trap occurred. 
CPU status word stored when the trap occurred. 
Abort code AD03 or AD04. 
Address of register save block. 
Trap. 

(or) If current task is being aborted 

R5 = Abort code AD02 

Exit Conditions 

Return Sequence: 

3-278 

M.KILL (Abort code AD03 or AD04) 
Normal interrupt return (Abort code AD02) 

o 
!~ 
i 
, 



External References 

) ( System Macros: 

M.TRACE, M.KILL, M.EQUS, M.TBLS 

Abort Cases: 

AD02 

AD03 

AD04 

Output Messages: 

None 

Address specification occurred within the current trask 

Trap occurred while no tasks were in active state 

Trap occurred in another interrupt trap routine 

3.8.18 Block Mode Timeout Trap Processor (H.IP«E) 

Functional Description 

A block mode timeout trap is treated as a fatal system crash. Registers are loaded for 
display, and. the M.KILL macro is invoked. Processing may be continued at the point of 
interrupt with the registers and PSD intact, but I/O in progress when the HALT was 
executed will be terminated. 

Entry Conditions 

Occurrence of a trap signal at priority level X'OE'. 

NOTE 

Entry into this routine results in registers being loaded for console 
display as follows: 

RO,Rl = 
R2 = 

R3 = 
R4 = 

Exit Conditions 

Return Sequence: 

M.KILL 

PSD saved by the hardware when the trap occurred. 
Physical address of instruction being executed when the 
trap occurred. 
Instruction being executed when the trap occurred. 
CPU status word stored when the trap occurred. 

(Crash Code BTOI) 

3-279 



NOTE 

Unless a user-supplied System Override Interrupt/Trap Processor is 
connected, processing may be continued by depressing the program 
STEP- switch and then the RUN/HALT switch on the CPU Control 
Panel. 

External References 

System Macros: 

M.EQUS,M.KILL 

Abort Cases: 

None 

Output Messages: 

None 

Crash Codes: 

STOt Slock mode timeout trap. 

3.8.19 Arithmetic Exception Interrupt/Trap Processor (H.IP(F) 

Functional Description 

This processor performs a set bit in memory instruction (SSM) on the arithmetic 
exception bit of the user a.trrently in execution. The arithmetic exception bit may then 
be tested by requesting the Arithmetic Exception Inquiry monitor service. 

Entry Conditions 

Calling Sequence: 

Occurrence of an interrupt signal at priority level X'29', or trap signal at 
priority level X'OP'. 

Exit Conditions 

Return Sequence: 

LPSD IPOP .OLD IPOF .OLD=PSD saved by interrupt 

Returns to destination registers are handled as follows: 

I Single Precision Floating Point 

Change 2 
3-280 

Underflow 
Positive Overflow 
Negative Overflow 

All zeros 
7FFFFFFF 
80000001 

L--c .... 

U 



.( 
Double Precision Floating Point 

Underflow 
Positive Overflow 
Negative Overflow 

External References 

System Macros: 

None 

A bort Cases: 

None 

Output Messages: 

None 

All zeros 
7FFFFFFFFFFFFFFF 
80000001 

3.8.20 Cache Memory Parity Error Trap Processor - 32/13 only (H.IP 10) 

Functional Description 

This processor generates a trap when cache memory parity errors occur on a 32/87. If 
other tasks are not active, a normal return is taken from the interrupt. If other tasks are 
active, the processor will halt the system and display an abort code. 

Entry Conditions 

Occurrence of a trap signal at priority level X'10' 

NOTE 

Entry into this routine results in registers being loaded for console 
display as follows: 

RO,Rl 
R2 

R3 
R4 
R.5 
R6 
R7 

(or) 

R.5 

= PSD saved by the hardware when the trap occurred. 
= Physical address of instruction being executed when the 

trap occurred. 
= Instruction being executed when the trap occurred. 
= CPU status word stored when the trap occurred. 
= Abort code CP03 or CP04. 
= Address of register save block. 
= Trap. 

If current task is being aborted: 

= Abort code CP02 

Change 2 
3-281 

I 



Exit Conditions 

Return Sequence: 

M.KlLL (Abort code CP03 or CP04) 
Normal interr~t return (Abort code CP02) 

External References 

System Macros: 

M.TRACE, M.KlLL, M.EQUS, M.TBlS 

Abort Cases: 

CP02 

CP03 

CP04 

Output Messages: 

None 

Cache parity error occurred in task body 

Trap occurred while no tasks were in active state 

Trap occurred in another interrupt trap routine 

3.8.21 Console Interrupt Processor (H.IP 13) 

Functional Description 

The console interrupt processor is directly connected to the console interrupt and is 
thereby activated ~on its occurrence. This processor has one primary function, that of 
recognizing a request for console services, via the console interrupt, and issuing a break 
request for the associated task. 

Entry Conditions 

The processor is entered directly upon the occurrence of the console interrupt 
(pricrity level 13). Only register"s used by this processor are saved. 

Exit Conditions 

All registers are restored to their content at the time of interrupt. Exit is made 
to the system via the standard interrupt exit sequence (BL S.EXEC'). 

External References 

System Macros: 

M.EQUS 

Abort Cases: 

None 

3-282 

C'·· 
' ) 

I~ 



Output Messages: 

None 

3.8.22 Call Monitor (CALM) Interrupt Processor (H.IP27) 

Functional Description 

Entry to this routine results in an immediate abort of the task currently in execution. 

Entry Conditions 

Occurrence of an interrupt signal at priority level X'27'. 

Exit Conditions 

Return Sequence: 

BL S.EXEC5 

Registers: 

R2 Register save area address 

R6,R7 PSD 

External References 

System Macros: 

M.EQUS 

Abort Cases: 

CMOI Physical end-of file encountered on write to the compressed 
source output file. CALM instruction was not located. 

Output Messages: 

None 

3.8.23 Real-Time Clock Interrupt Processor (H.IPCL) 

Functional Description 

The Real-Time Clock Interrupt Processor is directly connected to the specified real-time 
clock interrupt and therefore is activated upon its occurrence. This processor performs 
two primary functions: (I) maintains the clock interrupt counter (C.INTC) which is used 
for time of day calculations and (2) processes any active DQE timers. 

3-283 



Entry Conditions 

The processor is entered directly upon the occurrence of the real-time clock 
interrupt to which it is connected. 

Exit Conditions 

Return Sequence: 

BL S.EXEC5 

Registers: 

R2 Address of register save area 

R6,R7 PSD 

External References 

System Macros: 

M.EQUS 

Abort Cases: 

None 

Output Messages: 

None 

3-284 

o 

o 



( 

( 

4. SYSTEM TASK DESCRIPTIONS 

4.1 Swap Scheduler Task (J.SW APR) 

The Swap Scheduler Task is a memory management task. Its purpose is to process entries 
in the Memory Request Queue (MRQ) and provide memory allocation scheduling as 
appropriate to service individual requests for memory, i.e., make memory available to a 
task when there is no memory available. 

4.1.1 Structure 

J.SW APR is a resident, privileged task residing in low memory, and is mapped into the 
address space of every current task in the system. It has its own minimal Task Service 
Area (TSA) and Dispatch Queue Entry (DQE) and it executes at the priority of the highest 
priority task in the MRQ. 

4-1 



* u 1 S ~ ATe H 1..1 U toll E. t. N T I< Y rol A C I'( U 
.. 

if." .. ··.·· Vi 

* * *****.*.*** •••• *****.*****.******************************************* •• 
u~E Ut~M ~~,~o,CUP,ijU~,IU~,ua~~N,LMN,U~HF~M~O~CYC,SWIF,TAU 
~'A~ ~tt U 
'l~uM SE T "r A,~+ 1 

G~~ 52/'~F srHINb fu~Ew A~O 
G~~ j~/Xb~ 5r~I~~ dA~~~AkO 

GE~ ~/4CU~,~/XdU~,d/'lUP,H/~US 

bf~ 8/4N~M,i~/~TA~ yut ~~T #,rAS~ ACT. 
l~~ 'U~"Ll 
~~~ b~'1U~ u~~tl'(~AMt 

(,uTU IL1.1
lL 1 A I'll uP

bc.l~ b4'C'MPX 1.4 '
XL1.l

"L2.1

4-2

At'4UP
H~
btl'4
GUTU
Ai'fUP
bt.N
A,'iUP
Io(fZ
Gc:.N
GEI~

DA1Ad
uATAct
uATA~

C;~N

HfZ
OATAW
OATAW
C;t.N
GfN
UATAfW
OATAW
LlATA"
i:;EI~

UATAfW
EI~u",

~LMI'4' 'Lc
b4'~LMN LUAO MOuULE NAME
''-~.1

3 ..
3c/~IJSHF
32/~,~SO

Q,v,u,Q
O,V,U,U
I,)

3/1,c'l,XCQC
1ft
S,.·1W~,U

~,~·lft

1b/U
ct/lS .. lF,tt/O
i,~·lw,u
,,~·lw,Q

o
8/U,c4/lTAO
U,u,U,ij

c

(
The Swapper's TSA contains a MOS memory initializer. This code is in the TSA, instead
of the main task body, to save space and make the Swapper smaller. This can be
accomplished because the MOS initializer is executed only at boot time and the code
itself does not contain references to system services (SVC's or M.CALL's). This code is
overwritten by the Swapper's main body initialization when building is completed.

**

*
* TSA ~~UTUfYPE

*
*

* ** • _ ~ t._

*

J.SWAP~ ~wU S
TSA R~Z rSA.SIZE PSEuuU HAT AUuRtSS

o "Hi TSA
OATAW 1
OATAf4 SGINIT
I'(t.S bff
~EN 1/1,1IU,~~/S~APPEW

SI¥P.77

1FT C.J227,SwP.11
GE~ 1/1,15/U,1/1,1~/l,J/U

GUTO sw~.~uNl
AI'fOP
GEN

(' Sf4P .CONT ANUP
~ O~'

AES
TSA+J2W

(-

GEN
IF T
GEN
GOTO
ANOP
GEN

SWP.XXXl A~UP

8w
1/1,110,24/SWAPPER
C.j2~7,SI¥P.117
1/1,15/U,1/1,12/1,l/U
swP.lXXl .

* • t • • • • • • • • • • • • • • • •

* .*

*

•
•
•

* •
•

UrHi r~"'+I.t-lI:.GP

•
•

* •
*
* ENU UF MUS !tHT!ALIZEW

•
•

* •

4-

*
*
*
*
*
*
*
* FAT A

*
*
* FPTA

*
*
*
88IJfA

4-4

UAIA~ T~A+j~~ RUN AI UNE LEVEL UF ~U~HUU~N

O~~ T~A+I.P~NU
vATA~ 0
UKG lSA+T.adUFA
IJATA~ IjdUFA
UKG TSA+I.FATA
uA1Aw FAIA
UK~ rSA+f.FPTA
UATA... ftllA
U~G r~i+r.dlAS
I,)ArA.-. dM!uL
u~G rSA+l.TE~u
uAfAi'4 dMlu~

uwG TSA+I.tNU
uATAW S,~.E'~U

uwG rS~+T.T~AU
uATA~ S~A~~EH

U~G r~A+l.dlTl
uATA~ O,v,l,]
u~G rSA+r.uso~
uATAd V,v,lO,u
u w"G . r SA + r • t~ PUR ;"f~',

UATAd lo,vrtv,U -'~i
OHG T~A+TSA.5IZE FATA, F~TA, ETC MUST STAHT AFTER

F1XEU SlZ~ UF TSA.
FOH THE SWAPPE~ THIS IS NUr UUNt SU TNAT wE CAN SA¥E SPACE
1~ THE O/S. TniS IS ALLUwEU d~CAU$E lHE SWAPPER N~VER GOES
r"HUUGri fHE TASK EXIT ~EQUE~C~~·

FILE ASS!GNMENr TAdLE AHEA (let wUHD I FAT)

OATA ...
OATAw
\JATA ...

O,A'V80u~OOO',u,U,U,U,O,0,U,U,0,0,U,O,U,0
O,X'v800uOOO',u,u,u,u,o,o,0,0,o,o,o,o,o,o
v,~'V6VVOVOU',u,v,v,v,u,o,0,0,0,u,u,u,o,o t.. .

FIL~ POINTEH TA~L~ AREA

DATAW
OATAW
DATA"

U,X'U8UOOOOO',U
0,X'080UOOOO',0
u,X'~8000UOO!,o

8LUCKIN' 8U~~EH AREA

dUUNO
uATAW
RES

10
X'08UOI)000'
19~w

(1 wURua I FPT)

l 19i wURDS J

:~

(

{

The Swapper is set up to run by SYSGEN through its own SYSGEN initialization entry
point. The initialization entry links the Swapper into the C.SQR T state where it is
discovered by S.EXEC,20 after the first clock interrupt. The Swapper is then dispatched
according to its priority (initially two) and suspended until resumed by H.EXEC,9 in
response to a memory scheduler event.

**
*
*
*

STSG~N INITIALltAT1UN ENr~T

**

!'i.SOUT.
MEMU.9
~GINIT

MUVEOQE

OQE1

1FT
EJU

AN"''''
Elh'
M.c.IR
L. .. ~
STw
LA
ST ...
ST~
ST~
L.t'4
AUM ...
STt'4
LA
L.X
TI.fN
LfW
STW
AUI
AOI
tHW
i"I.XIR

OQE

sw.END ENU

o • • • •

C .,tott-totU, I'IIt,MU. ~

~

~

io(l,C.lJi.lU~
~l,TSAOQ

re7,C.SiIlHT
~7'O"'El
io(1,C.SQfH
re1 ,C.~Q'H+ltf
"7,C.Sw,H+2~
,H,=X'OOOlUOOO'
re7,C.SQHT+~'"
H2,u~El

ic"'O~E.SIZE
IICi+,R'4
;0, u~,H2
..,7,O ... ,Rl
,a,l'"
~1 d"
K4'MUVEOQE
TSA

(MEMO)
UUMMT U£~ FUR SYST. OE~UGGER (MEMO)

(MEMO)

I~IT ~P MACHO
F~TCH015~ArCH Q AOOHESS
PLACt OQ iNTRY AUDH IN TSA
F~TCH "fAOY·TU·~UN QU~U~ POINTER
STU~t FU"AHO POINTER

PUT J~S~APW UN ~EAOY·TO.~UN QUEUE - -

INCH N~H ON QUEUE

NfGArt SllE OF OQE
MOvE iJ.S"'APR* OQE ENTRY . - -

O,~.SYio(T,2,2,2,3"C'J.S~AP~I"
X'5000020u',U,l1250,i'60 i ,J.St'4APN - -

4-5

I
J~
I'
Ii

The Swapper's main initialization area is different from the MOS initializer. It cannot be
placed inside the TSA because it includes SVC calls, and at this point, the Swapper is no
longer running blocked (J.INIT among others are now active). The basic function of the
main initialization area is to start up J.INIT, determine the TCW type of the swap
device, and allocate an E-type memory buffer if needed. At this time, the Swapper also
calculates the location within itself where inswap and outswapped candidates will be
mapped. This location is saved as the User's TSA (UTSA) location.

Any MPX configuration containing an E-class swap device and a H-type or S-type
memory are required to also have one dedicated E-type map block allocated to the
Swapper. This map block is used exclusively for double buffering of H-type or S-type
memory transfers to an E-class swap device (E-class disc).

Inswap and outswap are serial processes; they are always completed before the MRQ is
reexamined. When sufficient memory is available to load an outswapped task into
memory off the swap device, the in swap process is initiated. Dynamic memory requests
are similar to inswap requests except there is not an associated disc file to read. Tasks
linked to the MRQ may be queued for both expansion and inswap. There must be
sufficient memory available to satisfy both requests before the inswap process is started.

4.1.2 Entry Conditions

When a memory scheduler event is reported by H.EXEC,9, the Swapper is linked to the
ready-to-run state queue and resumed. The Swapper is concerned with five (5) types of
memory scheduler events.

4.1.2.1 Dynamic Expansion of Address Space

A memory expansion request will occur whenever there is sufficient memory to satisfy a
dynamic memory request on behalf of a task. The task is linked to the MRQ with the
number of map blocks needed, the type of memory needed, the starting address of where
to load new memory, and the expansion request code. The Swapper is then resumed.

4.1.2.2 Deallocation of Memory

When a task deallocates some or all of its allocated memory, and there are other tasks
linked on the MRQ, the Swapper is resumed to satisfy the memory requests on behalf of
those on the MRQ.

4.1.2.3 Request for Inswap (Memory Roll-In)

When a currently outswapped task becomes a candidate for execution (I/O completion
occurs, device allocation occurs, etc.), the EXEC resumes the Swapper (the task is found
on the MRQ and its inswap request is processed).

4.1.2.4 Change in Task Status

When a task which has been previously ineligible for swapping becomes eligible
.(completion of an unbuffered I/O operation, release of a lock-in-memory flag, expiration
of a stage one time quantum, etc.), the Swapper is resumed.

4-6
,:il

(
4.1.2.5 Expansion Request for Inclusion of Shared Memory

When there is insufficient memory to satisfy the inclusion of a dynamic shared memory
partition on the behalf of a task, the Swapper (having already been resumed prior to
receiving the request) links the task to the MRQ in order to process the request.

4.1.3 Exit Conditions

When the Swapper finds the MRQ empty or when there are no outstanding requests to
process, it suspends itself by unlinking from the ready-to-run queue and relinking to the
wait-for-memory-event queue. This is accomplished by using entry point 8 in the EXEC.

4.1.4 Selection of Outswap Candidates

The Swapper initially attempts to allocate the memory requirement for the highest
priority task on the MRQ. If there is insufficient memory available, the Swapper
examines the state queues on a priority basis, searching for the memory class and number
of map blocks required by the requesting task. The first task found with resources
satisfying any of the requirements of the requestor is completely outswapped. Upon
completion of the outswap process, the Swapper reexamines the memory request queue
and continues to process memory requests.

Outswap candidates are chosen first from wait states then from run states. The order of
(each is shown on page 4-8.

('

4-7

NWS DATAW
WAITSTAT DATAW

DATAW
DATAW
DATAW
DATAW
DATAW
DATAW
DATAW
DATAW
DATAW
DATAW
DATAW
DATAW
DATAW
DATAW

NRS
RUNSTAT

DATAW
DATAW
DATAW
DATAW
DATAW
DATAW
DATAW
DATAW
DATAW
DATAW
DATAW
DATAW
DATAW
DA-TAW

15
C_HOLD
C. SUSP
C. RUNW
C. SWDV
C. SWDC
C. SWTI
C. SWLO
C.SWIO
C.ANYW
C. SWSR
C.SWSM
C. MRG
C. SWMP
C. SWQO
C.SWFI

13
C. S064
C. SG63
C.SG62
C.S061
C.SG60
C.SGS9
C.SOSS
C.SOS7
C.SGS6
C.SGS5
C.CURR
C.RIPU
C. SGRT

NUMBER OF WAIT STATES
WAITSTATE Q POINTERS IN OUT SWAP ORDER

NUMBER OF RUN STATE Q ENTRIES
RUN STATE G POINTERS IN OUTSWAP ORDER

Once an outswap candidate is chosen by the Swapper, two locations in its DQE are
examined: DQE.SWIF and DQE.SOPO. Both locations are byte variables, each containing
several different swapping limitations.

DQE.SWIF (swap inhibit flags) is checked first. If any bit in this flag byte is set, the task
is unswappable and the Swapper searches for a new outswap candidate. If DQE.SWIF
equals zero, DQE.SOPO (swap on priority only) is examined. If any bit in DQE.SOPO is
set, the priority of the inswap requester is compared to the outswap task priority. If the
inswap requester does not have a higher priority, the Swapper searches again for another
outswap candidate. If DQE.SOPO equals zero, the outswap candidate is outswapped.

4-8

t'~ (VI

c

(

4.1.5 Outswap Process (Memory Roll-Out)

Outswap is a demand process which is initiated in response to an inswap or memory
expansion request. The TSA of the outswap candidate is mapped into the Swapper.
Protocol of outswap requires two (2) complete passes of the user's TSA tables (MEML and
MIDL). '

On the first pass, all swappable shared regions (if any) are built into a work area inside
the Swapper in a logically contiguous format. A swap file is allocated and the outswap
I/O process is performed. If there are no shared regions, I/O is not performed in this
pass.

On the second pass, only non-shared maps are logically built into the Swapper's work area
in their original TSA format. A second swap file is allocated and the outswap I/O process
is performed.

At the end of each pass, memory is returned to the free list. When both passes of
outswap are complete, the MRQ is reexamined to find the highest priority candidate to
receive the memory from the free list.

4.1.6 Inswap Process (Memory Roll-In)

When sufficient memory is available, the Swapper allocates it to the highest priority task
on the MRQ. If the request is for inswap, the Swapper allocates and opens the swap file
associated to the task and reads the swapped image into the newly allocated memory_
This is done in three (3) passes.

On the first pass, the entire TSA and DSECT are read off the file.

On the second pass, the MEML is scanned for shared regions. If any shared regions are
found and they are not outswapped, the TSA is updated from the corresponding Shared
Memory Table (SMT) entry.

On the third pass, the shared regions are interrogated to find out if they are
outswapped. If they are outswapped, memory must be allocated and a second inswap
performed before they can be loaded into the task's TSA tables. If sufficient memory
cannot be allocated, the task is put on the MRQ asking for dynamic expansion to include
a shared region.

4.1.7 Swap I/O Process

A single write request is given to H.IOCS for F-class and D-class swap devices (disc).
Command and data chains are built in the handler to perform the specified transfer.

Multiple 4KW write requests are given to H.IOCS for E-class swap devices from the
Swapper's internal buffer until all swappable map blocks have been wri tten. The Swapper
alternates between wait and no-wait requests and performs its own double-buffering of
H-type and S-type map blocks through its dedicated E-class map block.

4-Y

4.1.8 Other Considerations

The Swapper contains a MOS memory initializer which clears all memory parity errors at
boot time. The initializer is located in the TSA area of the Swapper and is over-wri tten
after start-up is complete.

4.2 Terminal Service Manager Task (J. TSM)

4.2.1 FlDlctional Description

The Terminal Service Manager Task (J.TSM) is a non-resident privileged system task
whose function is to activate tasks which run in the on-line (interactive) environment.
Its primary responsibilities include processing of initial log-on requests, command
processing, parameter validation, and task activation. It also processes inter-terminal
messages. J.TSM is scheduled to run whenever the user depresses the 'wake-up'
character on his terminal, or whenever an on-line task exi ts or aborts.

4.2.2 Initial Activation

J.TSM is activated by J.INIT following a system restart. During this phase, J.TSM
allocates one context area for each potential TSM terminal. (Each UDT belonging to
TSM can be identified by bit 7 in UDT flags.) If necessary, J.TSM will expand its memory
to contain the necessary context areas. Each context area is initialized with some fixed
parameters. The DQE address of J.TSM is stored in C.TSMDQA. The number of TSM
terminals is maintained in C.TSMTOT. C.TSMCNT equals the number of terminals in
command mode.

4.2.3 Terminal Log-on

A terminal can be logged on by depressing the wake up character (specified in log-on file,
M.LOGON). This generates a ring interrupt which is processed by EP3 of the ALIM or
ADS handler. The handler resumes the task indicated in C.TSMDQA. When J.TSM is
resumed, it will scan the terminal UDT's to determine which terminal(s) to allocate. The
context areas are searched until the UDTI is matched. Then the terminal is allocated to
J. TSM. If the terminal is already allocated, the ring is ignored. Otherwise, the terminal
is opened and a greeting message is issued. Then the user is solicited for a valid
ownername.

4.2.4 Command Processing

All write operations are performed in no-wait I/O with end action addresses. All read
operations are performed in no-wait I/O with end-action addresses pointing to the
command processing routine. There are two end-action routines. The first verifies that
the ownername just entered is valid. This involves checking all the context areas and the C.'
M.KEY file. The second end action routine is the command processor. Generally, this
involves converting the input into the form used by the M.PTSK service.

4-10

Upon entry into either end action receiver, register I will point to the current context
area (equal to the FCB address). A test is made to determine if any messages need to be
displayed. If so, they are written to the terminal. Two messages may be queued for each
terminal. If the terminal is not logged on when the message is sent, it will be saved until
the terminal is logged on. Messages sent to other on-line tasks are wri tten by those tasks
as a pre-emptive system service, not managed by J. TSM.

When the end-action routine processes a RUN command, the parameter block is passed to
the M.PTSK service to activate an on-line task. Assignment to the terminal is
transmitted in the parameter block by an assignment to UTe If the activation is
unsuccessful, J.TSM will report the error status before soliciting the next command from
the user. Following a successful activation, the context area is made inactive, and the
end-action routine is exited. All previously entered commands remain effective until the
CLEAR command is entered.

When the EXIT command is entered, a EOF is wri tten to the terminal (enabling ring for
ADS), the terminal is deallocated and the context area is cleared.

4.2.5 Resumption of Command Processing

When an on-line task exits or aborts, H.TSM,3 is called to inform J.TSM. The terminal is
deallocated for the exi ting task, and a break is sent to J.TSM. When resumed, J.TSM will
reallocate the terminal. The context area is located by matching the UDTI, and the
terminal is reallocated and opened. Then the user is solicited for the next command.
Optionally, the previous assignments may remain in effect. After the user is prompted
for input, the message exit service is called, and further processing is performed at the
end action level.

4.2.6 Messages

There are two options for sending messages to terminals. The first form is to specify a
single ownername. If the ownername is not in use, the message is discarded.

The second option is to send the message to all terminals. For all terminals the message
is copied into the first or second mailbox. These messages are printed when the terminal
becomes free, generally after a read is complete.

4-11/4-12

5. SYSTEM GENERA nON TASK DESCRIPTION

5.1 Task Structure and Fmctional Organization

The System Generation Task, SYSGEN, is a resident, privileged MPX-32 system task that
operates within the framework of a standard MPX-32 system and can be executed either
in batch or interactively. It consists of an executive segment and five overlays. Section
5.1.1 shows the loading sequence and gives a description of each phase.

System generation for an MPX-32 system involves supplying a set of configuration
directives to the SYSGEN task. Section 5.1.2 shows the functional breakdown of
directive processing for each overlay. The end result is the creation of a permanent file
containing the installation specific MPX-32 system in memory image absoulte format.
This file may be subsequently restarted or utilized on a System Distribution Tape (SOT).

System generation via the SYSGEN utility is fully described in the MPX-32 Reference
Manual Volume III. This chapter provides a functional description only.

5-1

5.1.1 SYSGEN Overlay Structure and Functions

Opens statically Reads directives Initializes
allocated files: from OIR. tables (memory,
DIR,OBJ, and LO. ITLB, patch, job,

Writes directives timer, RMT, FL T,
Outputs title. to LO. and activation).

Sets up map info Does initial pro- Constructs dis-
and variables cesssing of patch queue and
for remap of directives. OQE address
target system. tables and links

them.

Ini tializes Builds OTT, COT,
default values CHT and UOT tables
in target
communication Allocates and
region. links the disc

allocation table
(OAT). Builds
Checksum Table.

Processes inter-
rupt table
entries and
builds load
module table
entries.

Builds target
system scratch
pad image.

Obtains space for
the SVC table,
the GPMC table,
and the module
address table.

Builds miscella-
neous system para-
meters (MPL, MIDL,
etc.)

5-2

Positions object
file and allo-
cates temporary
disc space for
loading process.

Ini tializes
loader variables
and sets up
pointers to the
interrupt table.

Scans object
input file (OBJ)
for match on
program name in
module record
file.

When match found,
copies to tempo-
rary disc file
and loads it.

Initializes system
modules (branches
and links to their
last entry point).

Outputs load map.

Builds symbol table
and outputs it to file.

Finalizes memory pool

Builds
memory
tables to re-
f1ect target
system.

Constructs
partition in
shared
memory
table.

Writes MPX
image to
file.

!

C""·'··'·· ! ' " ,

I" I'"'

(
5.1.2 Dire<.tive Processing Breakdown

!/HARDWARE S.INIT S.PHOI S.PH02 S.PH03 S.PH04

/PARAMETERS

MACHINE=type Sets C.MGRAN,
C.MACH,
C.H1MAP and
C.ADMASK

IPU Sets C.IPU
in C.CONF

MEMONLY Sets C.MEMNL Y

/MEMORY

SIZE=nn, Builds memory Sets C.MATA. Allocates
TYPE=c, table proto- Builds memory memory in
CLASS=x type in allocation target

scratch space table from system.
prototype Builds MIDL.

/CHANNELS

CONTROLLER=ttcc, Builds prelim- Builds DTT ,CHT, Loads String CD7's.
PRIORITY =intlev iary DTT, CDT,CHT, CDT, and UDT handIer's
CLASS=c1ass, and UDT as for tarl':et object and Ii
HANDLER=name, linked lists system. ini tializes. 1

I
MUX=type in scratch Sets C.DTT A,C.CHT At

space. C.DTTN, C.CDTA
DEVICE=aa, Adds handler and C.UDTA.
DlSC= devcode, to interrupt Reserves space
SHR, DTC=tt, list. for the GPMC
LINSIZ=x, Sets C.CDTN,C.CHTN, jump table.
PAGE=y, and C.UDTN. Sets C.MIOP.
SPOOL: code, Builds disc
HANDLER=name, allocation table
PHYSA=ccaa,OFF (DAT).
IOQ::mode Sets C.DAMAPT.

Sets C.SMDD,
C.SMDD + lW,
C.NTBA and
C.SMDUDT.
Ruilds Scratch
pad entries.
Builds Checksum
Table. Sets
C.DAMCST.

~

5-'

S.INIT S.PHOI S.PH02 S.PH03 S.PH04

/TRAPS
r--'- - ------- - .. -.

PROGRAM= Builds inter- Builds load Loads

(name 1 , ... namen nal interrupt table with program's
table in interrupt object and
scratch space. table. ini tializes.

Builds scratch
pad entries. --------.

/INTERRUPTS

PRIORITY =intlev, Builds inter- Builds load Loads

RTOM=(channel, nal interrupt table with program's

subaddress), table in interrupt object and

PROGRAM =name,INTV scratch space. table. ini tializes.
Builds scratch
pad entrie!~ ____ •..

, -- ... -... __ ._----
/SYSDEVS

SID=devmnc, Sets C.SIDV, Verities C.SIDV
DENSITY =density, C.SIDD and
PARITY=parity C.SIDP

-f-----.-. --

LOD=devmnC,ISP Sets C.LODC Verifies C.LODC
and C.SISP

POD=devmnc Sets C.PODC Verifies C.PODC

SWP=devmnc Sets S.SUDT Sets C.SUDT
-.-

//SOFTWARE
/PARAMETERS

D1SP=entries Defaults Sets C.NQUE Constructs dis- Sets C.SWAP.

C.NQUE pa tch queue and
to 10 DQE address

table and links
them.
Sets C.ADAT and
C.DQUE

POOL=words Detaults : Sets C.POOL Builds

C.POOL to I memory pool
1000 Sets C.SBUF.

NTlM=number Defaults ! Sets C.NTlM
C.NTlM I
to 60

,
I
I
I

c···.··'-,"-

5-4

(
CUNtT S.PHOI C;~PHn2 S.PH03 S.PHOt.

MTIM::number Defaults Sets C.MTIM
C.MTIM
to 60

ITIM: Defaults Sets C.ITRS Used to re-
milliseconds C.ITRS to compute C.IDLC,

la~ C.TDQI, C.TDQ2,
and C.TD03.

ITLB=intlev Builds entry Ini tializes H.ICP
in internal indirectly loaded from
interrupt connected object file
table for interrupt and
H.ICP. table. ini tialized.
Sets C.NITI Sets C.ITLB.

Builds scratch
oad en tries.

PASSWORD" Sets C.PSWRD Uses Uses
password C.PSWRD C.P5WRD

for sym- for target
bol table system fiJe.
file.

SYSTEM=sysfile. Sets C.SYSTEM Uses
C.SYSTEM
for name of
target
system file.

SYMTAB=fi1ename Sets C.SYMTAB Uses
C.SYMTAB
for name of
symbol table
file.

TQFULL:time Defaults Sets C.TOO3 Recomputes
C.IDCL to C.TOO3,
260~2, C.TDQ3 C.TOO2 and
to 1200, and C.IDLC.
and C. TOO2 to
aoo.

TQMIN=time Defaults Sets C.TDQl Recomputes
C.IDCL to

,

C.TOO2,
26042, C. TOOl C.TDQI and
to 400, and C.IDLC
C. T002 to 800.

SA TCHPRI::nn Defaults Sets C.BPRI
C.BPRI to 61

TERMPRI::nn Defaults Sets C.TSMPRI
C.TSMPRI to
6O.

5-~

;,1

S.INIT S.PHOI

PATCH=number Sets C.PATCH

I
I

MODE=code I Sets C.SCBT,
C.SIBP, C.SUFA
and C.5IMM as
specified.

SVC=num Defaults' Sets C.SVTN

I
C.SVTN to
X '7F'.

RMTSIZE=num Defaults Sets C.RMTM
C.RMTL to 32,
and C.RMTM to
64.

FL TSIZE=num Defaults Sets C.FLTM
C.FLTM to
200 and zeros
C.FLTC.

ACTIVATE: Builds proto-
(name! , ... name7) type acti-

vation table
as linked list
in scratch
space. Sets C.ACTN

TRACE=num Defaults Sets C.TRACE
C.TRACE to
X'FFFFFFFE' •

DEBUGTLC=cc Defaults Sets C.DBTLC
C.DBTLC
to X'7E'.

!MODULES

MODULE=(name, Defaults Builds proto-
module, ent- C.MODN to 8. type module
points) table in

scratch space.
Sets C.MODN.

5-6

S.PH02

Sets C.MPAA,
C.MPAC, C.MPAH,
and zeros patch
area.

Sets C.SVT A and
zeros SVC table.

Sets C.RMTA and
zeros resource-
mark table.

Sets C.FL TA and
zeros file lock
table.

Builds acti-
vation table
and sets C.ACTA.

Uses prototype
module table
to build load
table.
Sets C.MODD
and zeros
module address
table.

S.PH03 S.PH04

--~ .

Loads
modules
and initializes.

I
I
I

(f·~.
'\..,

. \ 0···.'····

(
--- • .--r----.---.--- --- -- -

/OVERRIDE S.INIT S.PHOI ______s..PH02 I S.PHOL ___ .s_J'-':iQ~ -
I SYSMOD=namel, Replaces module

REPMOD=name2 with given name
in the system
module table de-
fined in SYSGEN.

/PARTITIONS

NAME=name, ~ui1ds internal Uses par-
SIZE=np, partition table tition table
STRTPG=sp, in scratch to initialize
MAP=pm space. shared m ~"llory

table and allo-
cate more :nemory to
the system.

/TABLES

JOBS=num~r Defaults Sets C.JOBN Zeros job
C.JOAN to 1 table.

Sets C.JOBA

SHARE=number Sets C.SMTN Zeros shared Ini tializes
memory table. shared memory
Sets C.SMTA table
and C.SMTS

TIMER=number Sets C.TENT Zeros timer

I table. I
Sets C.TTAB. I I

--,

/FILES I ;
I
I
i

SMD=devmc, Defaults Sets S.SMD, Create scratch I
ENTRIES=ents C.SMDS to S.SPS, C.SMDS pad entry for I

3001 and and C.SMDD + I W SPS. Sets !
C.SMDD+ IW C.SMDUDT, I

I to 126 C.SMDD and I

C.SMDD + IW j

SYCSIZE=blocks Defaults Sets C.SYC:S ! I
i I C.SYCS to 100 I i ------- ---1

SGOSIZE=blocks Defaults Sets C.SGOS
I

i
C.SGOS to 100 I

5-7

5.2 SYSGEN Library (SG.LlB)

SYSGEN is cataloged with a library assignment to SG.LIB. SG.LIB contains the Device
Type Table definition, the Device ID Table definition, and a special scanner used to parse
SYSGEN directives.

5.2.1 DID and OTT Definitions

The fJevice Identification Table 2nd tt~e Device Type Table definitions in SC.UR are
defined using the Macro Assembler rirective FORM. SYSGEN fills in the Device Type
Table with information from the Cr:·"tt"oller nefinition Table (COT), and vice-versa.~,
diagram of the fJTT is shown in Section 5.2.1.1.

SYSGEN uses the Device Identification Tabie to build Unit Definition Table (UDT\
entries for discs. Information for all types of discs is contained in the DID table. Ser"
Section 5.2.1.2.

5-8

c··.·"·· C"\

I ,':

(

(

5.2.1.1 Device Type Table

* UtviCE T'~€ TAoL~ luTf) •
* •• ** ••• ***.********.******.**************.***.*.***.*.**.************** ,
•

"OUl';u liJ
OTT.TbL ~Qu S

* •
•
* •
*
*
*
*

• •••••••••••••••••••••••••••• e· •••••••••••

· • · •
;

· •

· •

· •

· •

•

:
· •

•

· ·
• • • • • • • • • • • • • • • • • · • • • • • • • • • • • •

• • • • • · • • • •• ••••• ••••• ••••• ••••• ••••• ••••• •

OEv. r,l"t=. CLJut.
(.;~T PUlNfC.r<
II. ut- CiJT'~

"L~i:tS
OEV!Ct ''''0Vit.
I"AI dt"~;)/"'tpo(

AL..lA~ !J1C
f'~tt HTIt.

OTT FORM ~, 8, lb,

OTT
OTT
OTT
OTT
OTT
OTT
OTT
OTT
uTT
OTT
OTT
OTT
uTT
IiTT
orT
IHT
OTT
OTT
OTT
OTT
OTT
urT
OTT
uTT
01T
OTT
OTT
OTT

:SPACe.
X'Vu',l(UO),X'VU',X'UO',C'Cl I, 4UQb,X'OD',O DU~MY CT
A'Ul',A(vv),X'VO',A'~1',e'uC',lbj8~,I'VQ',O A~Y UI~C
l'02',A(O~),I'OO',X'4U',C'UM',lbj~~,X'ul',~ MOViNG ~~AU LlIse
l'v3','(OO),I'Vv',I'~V',C'u"',lb~b4,1'~1',~ flAtu Hc.A~ ulse
l'vU',A(uO),X'vV',X'bl',C'Mf', ~19~,x'vO',o A~Y MAb. IAP~
~'O~',A(OO),I'uO',X'bU',L'M9', dl~i,A'v4',~ 9·TWAC~ MAG. T~PE
~'Ob',A(OO),A'UO',A'bO',C'M1', d19i,~'V~',o 7-T~AC~ ~A~. TAPt
x'u7',A(Ov),l'v~',X'Ol',C'CO', V1CV,I'vV',v CA~O OevlCc.
l'06','(OO),I'VV',I'VU',C'C~', vl~v,~'v7',u CA~u W~~U~r<
X'O~',A(O~),X'vU',x'uv',C'C~', Ul~O,~'~7',O CA~~ ~u~C~
X'OA',A(OO),"vO',X'OU',C'LP', vlj3,_'v~',V Ll~~ P~~~lt~
~'Ub',A(~O),~'O~',X'OO',C'~1 " 40Qb,X'~O',v PA~~~ lA~t
X'OC',A(VO),I'OU',I'vu',C'TY', 4~~c,I'UU',U fEL~TT~t.
x'uv',A(OV),I'VU',~'Ol',C'CT', 4u~b,~'VV"U LJ~~"ArU"'~ CuNSUL~
X'Ot',A(OO),I'uU',X'4U',~'fL',lbl&4,X'vO',u fLU~~Y ul~C
X'OF',A(OO),X'vO',X'UO',C'~~',lb3b~,~'vu',o ~LJLL utv
1'10',A(OO),~'uO',X'~~',C'CA', 40Qb,~'uO',o CA uEvl~t
X'11',A(OO),X'~U',X'vO',c,u~', ~ooo,~'vv',u uO uEV1C~
X'12',A(OO),)'~O',X'vv',C'vl', OOOO,A'VV',O ul vt.V!C~
~'lj',A(vO),X'vv',I'vv',C'u2', vOvv,x'uv',u u2 uevlee
1'14','(OO),~'UO',x'uO',C'u3', UOUU,I'UO',V u3 V~V1~~
X'1~',A(OO),.'vu',X'~v',C'u4', VOUV,A'VO',O u4 UtVl~~
X'l&',A(vO),X'VO',X'VV',(.;'u~', ~OOv,X'VO',v u~ U£VlCe
X'll',A(OO),X'vO',X'vu',C'Llb', uOO~,~'vu',v ub utV!CC.
X'1~',A(OO),Xtvv',x'vv',C'u7', OuOO,_'vv',u u/.vtv!Cc.
l'19t,A(OO),I'~O',X'vu',C'Ub', UUUV,A'VU',O uH U~V!~~
X'lA',A(OO),XlvO',x'uv',~'uq', VVCO,I'UO',V uQ ~evlC~
X ' 1 tS ' , A ((j 0) , " ' () (i , , X ' V V ' , C ' L F " 0 V 0 u,)(, u (; , , V PH.l ,~T t ~ I FLu ~ P '(

5-9

.5.2.1.2 Device ID Table

*****-*** •• * •• **
* Ut~lCE 10 TA~L~ *
*****_ •• _*.**.********.****** •• *********************.********.**.*******
*

tHlur..u lV'f
DID.r~L EQu i

. *
*DEVICt. lu NAM~ ••
-TOTAL ALLOt. ~NITS ••••••••••••••••••••••••••••••••••••

• • • • • • • •
*ijIT ~AP SIl~ ••••••••••••••••••••••••••••••
*NU. u~ ~tAUS •••••••••••••••••••••••• I
*SECTu~ SIlt: :
·~~CTu~S/T~AC~ •••••••••••••• ;:
.SECTU~S/ALuC. U~IT..........: ::
·~ECTO~S/OLOC~ ••••••• : ::
.ULD utV ICt l~ I~AME.... : : I ::

· • : . •
.
• • • . -• *

* · •• ••••••••••••••••• ••••••••
DID

•

5-10

rO~'"
SPACf
CLASS
ulO
",lu
:JIii
iilu
ulJ
",IJ
CL~S~
Ioilu
ulJ
Jlli
",Iu
~lJ
tJlu

12, ", 8, 8, 8, 1&,

'E' DISC utVICES
C'O~Ol', 1, 1, 23, 192, 25&,
C'O~Oi', ~, 1, lb, 9b, 2,
C'ueOQ', 1, 2, e', 192, ~,
C'O~~~', 1, 2, eJ, 19c, ~,
C'",~Vb', 1, ~, ~J, 1~~, 19,
C'ut.vl', 1, 1, eJ, 1(je, '4,

'F' tlTE~U~U I/O 01SC UtwIC~S
C'u~u1', j, j, 2b, b~, ~,

C'OFOc', 1, ~, cu, 1~c, ~,
C'~~vj', 1, 2, 2v, 1~~, ~,
C'uFvQ', 1, ~, ~v, 1ge, 19,
C'OFu~', 1, 1, cO, 192, 4,
C'OFOb', 1, 2, cu, 1qa, 1,

lb,

184,
2UO,
711i,

1"Ja,
21J~,

US" ,

,
&e5,
12~O,

2,H"
1~4&,

c:!~u,

5d88,
l~aOO,

2301.1\1,
4&000,
e;7400,
~o88,

1334,
20vOu,
"OOOu,
7&000,
,12u,
80UO,

C'FEUU4
C'Cc:ul0
C'''''fv'4v
C ' l'le; U au
C'Mr:;..luO
C'FEuv5

C'rLuvl
C'MI'tU'60
C't""ve,O
(.;, "'I1JOO
C'Fl1uv~
C'Cvlll2

o

o

(

5.2.2 SYSGEN Scanner

Functional Description

The SYSGEN scanner parses SYSGEN directives by utilizing linked information tables
built by calling system macros. The sytem macros SECTION, SUBSECT, DIRTV,
KEYWD, and PARAM set up tables as shown in Section 5.2.2.1. SECTION and SUBSECT
correspond to SYSGEN directive sections and subsections. KEYWD and PARAM
correspond to the keyword and parameter elements of each directive - DIRTV. (See the
MPX-32 Reference Manual, Volume 3, Chapter 7.)

The action addresses in Section 5.2.2.1 are addresses within the SYSGEN program where
action should be transferred when the scanner encounters that directive, keyword or
parameter type. The SDINIT macro must be called prior to setting up the information
tables. It assigns the equates for the parameter type tables. Finally, the macro KWEND
must be called after the setup is complete to specify the end of the tables.

Entry Conditions

Calling Sequence:

BL SCANNER

Registers:

Rl

R2
R3

Exit Conditions

Return Sequence:

Registers:

TRSW

Rl
R2
R3

Address of directive definition list; a byte address on a word
boundary.
Address of directive to scan; a byte address on a word boundary.
Negative length of directive, in bytes.

RO (CC 1 = 1 if error detected)
(CC2 = 1 if terminating section directive was

encountered, i.e., section definition has null
sub-section link)

Error message TCW if error detected.
Current directive pointer.
Negative length of remaining directive.

5-11

Action Routine Linkage:

Inputs: CCI = 0
(t~, ,-,

RO = Return address
R2 = Byte address of item
R4 = Length of item, in bytes
R5 = Last character scanned
R6 = 1st four bytes of string
R7 = 2nd four bytes of string

(or)
R7 = Converted decimal number

(or)
R7 = Converted hexadecimal number

Outputs: CCI = I if error detected by action routine.

Example: See Section 5.2.2.2.

o
5- I 2

f
5.2.2.1 Directive Definition List

SECTION e'name' SUBSECT c 'name'

~'ord Word

0 SECTION LINK SUB-SECTION LINK 0

1 SUB-SECTJON LINK DIRECTIVE LINK 1

2 SCD SECTION NAME ASCn SUB-SECTION NAME 2

3 3

DIRTV [strtactad] [,endactad] KEYWD c 'keyword' [,actionad]

"'ord Word

0 DIRECTIVE LINK KEYWORD LINK 0

1 K EYW ORO LINK " OF
PARAM's o ACTION ADDRESS

(2 ASCD NAME OF ASCII KEYWORD 2

3 FlRST KEYWORD 3

4 START ACTION ADDRESS param - 1 4

, END ACTION ADDRESS param - 2 .5

PARAM type, actionad (,repeatlJ)

param - n n

Type label Internal value Description

G 'a' ASCII Character
DIGIT EOU X'84' Digit (0-9)
ALPHA EOU X'88' Alphabetic (A-Z)
SPECL EQU X'8C' Special (not 0-9 or A-Z)
ANYS EQU X'90' Anything (X'OO' - X'FF')
STRING EQU X'94' Alphanumeric string

(
SYMBOL EQU X'98' Symbol string
DNUMB EQU X'9C' Decimal number
HNUMB EQU X'AO' Hexadecimal number

5-13

5.2.2.2

5-14

SYSGEN Scanner Example

START

PROGRAM
M.EGUS
SDINIT
M.READ
LA
LA
SSR
LI
BL
BCT
BCF
BU

EXAMPLE

DIR.FCB
RI. SDLIST
R2.DIR. aUF
R2. 12
R3.-72
SCANNER
2. EX IT
1. START
ERROR

TYPE TABLE EGUATES
READ DIRECTIVE
FETCH ADDR OF STMT DEF LIST
ADDR OF DIR STMT BUFFER
SET 'F' BIT FOR SCANNER
.. BYTES TO SCAN
SCAN DIRECTIVE
TERMINATION?
ERROR? NO. GET NEXT STMT
OUTPUT ERR MSG

* STATEMENT DEFINITION LIST *

SDLIST EGU S

* IIHARDWARE *

SECTION C 'HARDWARE ,

* ISYSDEVS *

SU13SECT C'SYSDEVS'

* LOD-<:DEVMNC>.IBP.DIR=<N13LKS> *

*

DIRTV
KEYWD
PARAM
KEYWD
KEYWD
PARAM

A.LODS EGU
STW
S13M
13U

A.LOD! STW
13L
BCT
SSM
BU

A. LOD1. 1 STD
BU

A.LOD2 STW
SBM
13U

A. LOD3 STW
TRR
BNZ
S8M
au

A.LOD3.1 STW
au

A. LODX STW
au

A. LODS.A. LODX
C'LOD'
STRING.A.LOD1
C'IBP'.A.LOD2
C 'DIR '
DNUMB.A.LOD3

S
RO.SCN.RTRN
O.S.LOD
*SCN. RTRN
O.SCN. RTRN
CONDEV
LA. LOD1. 1
1. SCN. RTRN
*SCN.RTRN
6.C:LODC
*SCN. RTRN
O.SCN. RTRN
C: S I BP. C: 13 IT
*SCN. RTRN
O.SCN.RTRN
7.7
A.LOD3.1
1. SCN. RTRN
*SCN. RTRN
7.5. SOD
*SCN. RTRN
RO,SCN. RTRN
SCN. RTRN

START ACTION ROUTINE
SAVE RETURN ADDRESS
INDICATE LOD DEFINED
RETURN TO SCANNER
SAVE RETURN ADDRESS
SCAN DEVICE MNEMONIC
NO ERROR DEVICE FOUND
SET ERROR INDICATOR CCI
RETURN TO SCANNER
SET DEFAULT SYSTEM PUNCHED DEVICE
RETURN TO SCANNER
SAVE RETURN ADDRESS
INHIBIT BANNER PAGE
RETURN TO SCANNER
SAVE RETURN ADDRESS
NO. OF DIRECTORY BLOCKS
MUST aE NON-ZERO
SET ERROR INDICATOR
RETURN TO SCANNER
SAVE NO. OF DIRECTORY BLOCKS
RETURN TO SCANNER
END ACTION ROUTINE

* POD .. <:DEVMNC) *

*
*

DIRTV
KEYWD
PARAM

C 'POD'
STRING,A. POOl

ETCETERA

* I lEND *

SECTION C 'END'

* END OF STATEMENT DEFINITION LIST *

KWEND
END START

h C,",""

(

5.3 Table Building

5.3.1 System Tables

SYSGEN's main function is building the tables used by a MPX-32 system. Utilizing the
supplied directives, SYSGEN tailors the tables for the installation required. Some of the
system tables which SYSGEN builds are first formed as linked lists in SYSGEN's scratch
space and are later inserted in the target file after all pertinent information has been
collected. Section 5.3.1.1 provides a list of all the tables with which SYSGEN interfaces,
and where information about them can be found.

5-1 "

5.3.1.1 Tables Referenced in SYSGEN

Name of Table

.. " Acti vation Table
. Channel Definition

Table - CHT
Controller Definiton

Table - CDT
Device Identification

Table - DID
Device Type Table - DTT
Disc Allocation Map

, Checksum Table - DAMCST
Disc Allocation Map Table
DQE Address Table - DA T
DOE Table

File Lock Table - FL T

GPMC Jump Table

Indirectly Connected Task
Linkage Table - ITL T

Job Table

Map Tables

Memory Allo~ation Table
Memory Pool

Module Table

Patch Area

Resourcemark Table - RMT

Scratch Pad
Shared Memory Table - SMT

SVC Table

Timer Table

Unit Definition Table -
UDT

5-16

SYSGEN Interaction

Built by SYSGEN
Partially built by SYSGEN

Built by SYSGEN

Used by SYSGEN

Used and filled in by SYSGEN
Allocated and zeroed

by SYSGEN
Built by SYSGEN
Built by SYSGEN
Allocated, zeroed &:

linked by SYSGEN
Alloca ted and zeroed

by SYSGEN
Allocated and zeroed

by SYSGEN
Allocated and initialized

by SYSGEN
Allocated and zeroed

by SYSGEN
MPL, MSD &: MIDL built

by SYSGEN
Built by SYSGEN
Allocated and zeroed

by SYSGEN
Allocated and zeroed

by SYSGEN
Allocated and zeroed

by SYSGEN
Allocated and zeroed

by SYSGEN
Partially built by SYSGEN
Allocated and initialized

by SYSGEN
Allocated and zeroed

by SYSGEN
Allocated and zeroed

by SYSGEN
Built by SYSGEN

Where Documented

Ref. Man., Vol. 3, Sec. 9.1
Tech. Man., Sec. 2.4.11

Tech. Man., Sec. 2.4.5

Tech. Man., Sec. 5.2.1

Tech. Man., Sec. 5.2.1
Tech. Man., Sec. 2.6.2

Tech. Man., Sec. 2.6.2
Tech. Man., Sec. 2.3.3
Tech. Man., Sec. 2.3.2

Ref Man., Vol. 1, Sec. 2.9.1.6

See H.MUXO

Tech. Man., Sec. 1.12

Tech. Man., Sec. 2.7.4

,tI "" ! ... ,
,)Ii

Tech. Man., Sec. 2.5.3 ''-..)1i

Tech. Man., Sec. 2.5.2
Tech. Man., Sec. 2.5.1

Tech. Man., Sec. 1.13.14

Ref. Man., Vol. 3, Sec. 9

Ref. Man., Vol. 1, Sec. 2.Q.l.;;

32/70 Tech. Man., Sec. 3-77
Tech. Man., Sec. 2.5.3

Tech. Man., Sec. 1.13.20

Ref. Man., Vol. 1, Sec. 8.2.33

Tech. Man., Sec. 2.4.6

C··· . \",'

(

(

5.3.2 Internal Tables

As SYSGEN processes directive input, it collects some information in its own internal
tables for utilization later in the task. It has three tables which are limited to internal
use: the Partition Table, the Module Table and the Interrupt/Trap Table. See Section
5.3.2.1.

The Partition Table is built with information provided from the Partition directives in
Phase One (S.PHOl). It is later used to initialize the Share Memory Table in Phase Four
(S.PH04). SYSGEN's internal Module Table, not to be confused with the system Module
Table, is a table of all system and user modules that are to be loaded in the target file.
It is built in Phase One and utilized in Phase Two (S.PH02) to build the load map table.
The Interrupt/Trap Table is also used to build the load map table, and it is additionally
used to create interrupt entries in the scratch pad in Phase Two.

5- 17

5.3.2.1

5-18

SYSGEN Internal Tables

Word

o
I

2

3

4

5

Word

o

2

3

4

5

Word

o

2

3

4

5

Partition Table

String forward address (PAR.LINK)

Start logic If pages
Page If (PAR.NPG)
(PAR.SPG)

Physical
Map block If
(PAR.PBN)

Reserved

Partition Name

(PAR.NAME)

Module Table

String forward address (MOD.LINK)

Module number If of entry points
(MOD. NO.) (MOD.NEPT)

Module name
(MOD.NAME)

Reserved

Reserved Module type
(MOD.L TYP)

Interrupt/Trap Table

String forward address ((NT. LINK)

Interrupt Priority Controller
type level class

(INT. TYP) (INT.L!) {INT.ClS)

Interrupt handler name
(INT.NAME)

Pointer to device handler list
([NT .HNDA)

Device type Channell/ Sub address
code (INT.CHAN) (INT.SUBA)

(INT .DTC)

Reentrant
descriptor
ONT.REEN)

Module
type

(INT.l TYP)

"r"
\~j:')

C···'\ I' : i

Notes

1. Bits in INT .TYP are assigned as follows.

1 If set, indirect (TYP.NDIR)
2 If set, direct (TYP.DIR)
3 If set, service interrupt (TYP .SI)
lj. If set, GPMC service interrupt (TYP.GPMC)
5 If set, extended I/o service interrupt (TYP.XIO)
6-7 Reserved

2 Values for INT.CLS are as follows.

5.4

Value=O - TLC line printer
Value=1 - TLC card reader
Value=2 - TLC teletype
Value=3 - RTOM interval timer
Value=D - TCW class with blank bits
Value=E - TCW class
Value=F - Extended I/O

Handler and Module Loading and Initialization

In Phase Three (S.PH03) of the SYSGEN task, the system modules, user modules,
interrupt handlers and trap handlers are all loaded and initialized for the target file.
SYSGEN reads the object input file (OBJ) and scans the load table built in Phase Two for
a match on the program name in the binary object record file. When a match is found,
the module is copied to a temporary disc file and subsequently loaded as often as it
appears in the load table. If the object module does not match one entered in the load
table, it is skipped.

The last entry point of all modules and handlers is reserved for SYSGEN initialization,
and provides the capability of self-initialization. SYSGEN calculates the address of the
last entry point of each module and does a Branch and Link to that location, thus
initializing the module. On return from the initialization via the macro M.XIR (see
Chapter 1), the current entry in the load table is cleared, the current address pointer
gets updated, and the initialization code is zeroed and overlayed with the next module.

5.5 Special Considerations

5.5.1 MAPTGT /MAPHOST Routines

SYSGEN initially obtains two 8K blocks of memory in which to build the target system
and acquires additional 8K blocks as needed. By using the internal routine MAPTGT, it
can map its acquired memory to address zero, replacing the host operating system. This
enables SYSGEN to use Communication Region equates as references within the target
system instead of within the host. When it becomes necessary for SYSGEN to use host
system variables or services, it utilizes the internal routine MAPHOST to put the host
system back in place. Mapping back and forth prevents SYSGEN to be run with the
Debugger.

5-19

5.5.2 Special Case Activation

SYSGEN is a two 8K map block task. In order to allow SYSGEN to build target systems
as large as 7 map blocks on the 32/7x and as large as 28 map blocks on the CONCEPT /32,
the system allocator special cases it and loads it at address X'38000', which is the 8th
block on the 32/7x and the 29th map block on the CONCEPT /32. This gives SYSGEN a
maximum of 7 map blocks of memory on the 32/7x and a maximum of 28 map blocks on
the CONCEPT /32 in which to map the target system.

5-20

il ~.
,"J

c

(-
6. BA TCH TASK DESCRIPTIONS

6.1 CATALOGER

6.1.1 Introduction

The Cataloger builds load modules from an object code file assigned to lfc SGO.
External references are resolved from a user specified subroutine library assigned to lfc
DIR and LIB and from the system subroutine library assigned to lfc LID and LIS. The
catalog directives are input from lfc SYC and the load module map is output to lfc SLOe
The load module is a system permanent file created by the Cataloger; its file name is the
program name supplied in the CATALOG directive.

Exit Conditions:

Normal Exit:

CALM X'55'

Abnormal Exits:

CALM X' 57' Abort

Abort Cases:

CTOI

CT02

CT03

CT04

CT05

CT06

6.1.2

Physical end-of-file encountered on permanent file containing System
Subroutine Library (MPXLIB) or assigned user library. Contents of the library
altered subsequent to creation.

Load module file specified with Catalog cannot be allocated.

Unrecoverable I/o error encountered on the OAT APOOL dictionary file
assigned to OPO.

Listed output space is depleted and additional SLO space cannot be allocated.

Unrecoverable I/O error on file or device assigned to SBM for SYMTAB
output.

An error occurred, conditional Batch directives are still processed.

Processing Regions

The Cataloger consists of four distinct processing regions each of which is identified by a
letter as follows:

X - External
M - Main
C - Control Card Interpretation and First Object Code Pass
B - Second Object Code Pass

(- Program tags, subroutine names, and names of variables begin with the letter of the
region with which they are associated.

6-1

6.1.2.1 X Region

The X region is composed of subroutines relating to MPX provided services.

6.1.2.2 M Region

The M region is primarily composed of subroutines, variables, and tables which are
referenced by more than one region. It also contains the entry point called by MPX in
response to the $EXECUTE CATALOG Job Control Statement. When the entry point is
called, the limits of the general table area are established and control is transferred to
the C region. The general table area occupies the free memory allocated to the
Cataloger, but following the Cataloger program logic. The utilization of this area is
depicted in 6.1.2.3.1.

6.1.2.3 C Region

The C region interprets Cataloger directives and makes the first pass over the object
code comprising each segment being cataloged. Information about each program
element, its external definitions and common blocks is extracted and stored in the
symbol table (SYMTAB). SYMTAB is built from the high memory end of the general
table area toward low memory. SYMTAB data restored with the SYMTAB directive is
stored first in the table. SYMT AB entry formats are presented in 6.1.2.3.1. The first
entry for each segment is the control entry. The control entry is followed by a program
name entry.

For each segment, a table of external references from EXCLUDE directives is built from
the low memory end of the general table area. This table is followed by a table of
undefined external references. Names from INCLUDE directives are placed in the
undefined external references table. It also contains any unsatisfied external references
encountered during the processing of a segment. If unsatisfied externals exist after all
program elements have been processed from the SGO file for a segment, the subroutine
libraries are searched for the externals. Program elements that satisfy external
references are selected from the libraries. Any remaining undefined external references
are ignored since they may be satisfied by segments that are subsequently processed.

If the first pass over the object code for aU segments is successful, SYMT AB addresses
are made module relative, and control is transferred to the B region.

6-2

o

o

6.1.2.3.1

MPFST

MXCL

MPNXT
(Last
Entry
Stored

MSYMN
(Ist cell
of next
entry to
be

(stored)

MPLST

General Table Area

Segment External
References From
EXCLUDE
Directives -
(2 Words Per Entry)

External References
To Be Included In
Segment From SGO file
and INCLUDE directives
(2 words Per Entry)

SYMTAB Entries

2nd Control Entry

SYMTAB Entries

1st Control Entry

1st Segment Entry

Object Code
Pass 1

MPFST

MRMTX

MDPFT

MSYMN
+4 W

MPLST

Program Element
Data

Relocation Matrix

Datapool Table

Completed

SYMTAB

Object Code
Pass 2

6-3

6.1.2.3.2 SYMT AB Entries

o 6 8 16 31

Lin k b a c k I 1ft he L I NKBACK d ire c t i ve i sus ed, the
En t r i e ssp e c i fie d 0 v e r I a y s e gme n t s are s a v e d

I toward low memory in 4-word blocks.

identities of
in entries built

Segment
(Module)
Entry 0

1

2

3

4

5

6

7

I

Flags 10

01

Option Flags

6-4

Must be zero Overlay level Sequence Number

ID Flags Option Number of

1 0 0 0 0 0 Flags Linkback Entries

Overlay Level Sequence Number
(Main i s zero) (Main i s zero)

ASCI I Segment Name, Left Justified

Must be zero Transfer Address

Origin of Segment TSA Relative*

Number of Bytes in Module Common Delta

Last (END) Address of Segment

* Bit z e roo f the wo r dis set i f the 0 rig 1 n i s the end
of a specified segment; bit is set if the origin is in
the end of the previous overlay level.

The CATALOG directives for the overlay was preceded by an
LORIGIN or ORIGIN directive.

The segment has a transfer address.

00000001

00001000

00010000

00100000

Suppress printing of module map

Suppress output of load module to disc file

Punch load module on cards

Output Segment's SYMTAB

I

·f~
',"-,J

',," O~'··

c

(

(

Defined 0
Entry 0
Point

1
2

3

o

0
ID

1 a 0 0
Section

ID

6

0
I Flags

Number
ASCI I

6

8 31

Module relative address
Name, Left Justified

8 3 J
Size in Bytes (zero i f

Conmon 0 0 0 I 0 0 0* Flags* allocated in another element

Section Number ** Module relative address

2 ASCI I Name, Left Justified

3

* The ID is 091100 for the first COMMON entry for a given global COMMON block.

** Address (if allocated in another element, the address of the entry where
allocated).

Flags:
10 Common block is program origined in this element
01 Common block is Cataloger allocated in this element

o 6 8
Section ID Flags
Entry 0 0 0 0 1 0 0 Size in bytes

Section
Number Section Origin

2 ASCI I Name, Left Justified

3

31

Program
Name

Flags:

o 6 8 16 31

ID Sub.Lib Sub Lib. Block No.
0 0 a a a 1 a Flags Log. Rec. Containing 1st Record

No.

Module transfer address i f
1 Section Number contained in this element (MTADD)

2 ASCI I Name, Left Justified

3

10 Word 1 of entry contains Module Transfer Address
01 Program is from System Subroutine Library

a 6 8

ID Total SYMTAB Entries

31

Con t ro I a
Entry

a 0 a a a 1 Flags* for this element

Max. Bound Number of words (Byte Scaled)
1 Required Allocated this Element for

Comnon and Bounding

2 Number of Words (Byte Scaled) of Object Code
in this Element

3 Module Relative Address of this E 1 emen t , i. e. ,
the Address of its Comnon i f any

*Bit 8 set if section code

Flags:
10 Program element is from System Subroutine Library
01 Element is last in segment including (System Subroutine Library routines)

6.1.2.4 B Region

The B region makes a second pass over the object code and outputs the cataloged
segments in load module format. Absolute overlays are output in absolute format.

6-6

I

o

c At the beginning of the B region, the space in the general table area not occupied by
SYMTAB is partitioned. An area large enough to build the core image of the largest
program element in the segments being cataloged is reserved. An area for an associated
relocation matrix is also reserved. Each bit in the matrix corresponds to a word in the
program element data area and is set to one if the word contains relative data. The
remaining space is allocated for a datapool table. The three-word datapool table entries
contain the datapool item name in the first and second words and the item's address in
the third word. During the second pass over the object code, the datapool item table is
searched for each datapool reference that is encountered. If not found, an attempt is
made to locate the item in the datapool dictionary. If the item is found, it is added to
the datapool table. Items are added sequentially to the table. Wraparound occurs when
table space is exhausted, with new items replacing previously stored items.

An image of each program element comprising each segment is built in memory before
being written to the segment's disc file (if not suppressed). A module map of a segment
is printed before the next segment is formatted. After all segments are processed,
request SY MT ABs are output.

6.1.3 Load Module Structure

A load module consists of one or more program elements in a form which requires only
load origin biasing at load time. A program element is the unit of program organization
bounded by the assembler directives IIPROGRAMII and "END". Program elements include
programs written by the user and any subroutines called from subroutine libraries. All
program elements must be assembled in the relative mode.

Each load module occupies a permanent file whose name is the name by which the
module is known to the system.

The load module consists of up to 6 major segments. They are: the preamble, the
resource requirement summary, CSECT data, CSECT relocation matrix, DSECT data, and
DSECT relocation matrix. Either the CSECT segments or the DSECT segments may be
omitted if they are empty. The resource requirement summary block is always present
even if it is empty.

6-7

I

,I
!

Byte

0

8

10

14

18

lC

20

24

28

2C

30

34

38

3C

40

44

48

4C

50

54

58

5C

60

64

68

6C

70

74

78

6-8

Word

0

2

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Load Module Preamble Equates

:f "\.
V

PR.NAME - Load module name

PR.USER - User name

PR.UKEY - Userkey

PR TRAN- Module transfer address

PR.CNTL PR.FLAG PR.NRRS PR.PRIOR

PR.PAGLEC PR.PAGED PRo PGS IZ PR.MEMS

PR.PAGEG PR.FILE PR.BUFR RESERVED

PR.OPTN - Program option word

PR ORGC - Starting byte address of code section

PR.CQ'\IC - Comnon delta

PR.ENOC - Ending byte address of code section

PR.SFAC - Relative f i Ie address of code section

PR.BYTEC - Number of bytes in code section

PR.CHKC - Code section checksum

PR.SFACR - Address of code section relocation ma t r i

PR.BYTCR - Number of bytes in matrix

PR CHKCR- Matrix checksum
I

j

PR.ORGD Starting byte address of data section
i - I
~

PR.COV\D - Comnon delta

PR.ENDD - Ending byte address of data section

PR.SFAD - Relative f i Ie address of data section

PR.BYTED - Number of bytes in data section

PR.CHKD - Data section checksum

PRo SFADR - Address of data section relocation matrix

PR.BYTDR - Number of bytes in matrix

PR.CHKDR - Matrix checksum I
PR.Snc - Global symbol block number I

- 1

PR.SYMP Local symbol block number I - i C'" I II

!
PR.DATE - Date load module was created -

(Control Information

(

Load Module Name (PR.NAME)

The left-justified and blank filled eight-character ASCII name of the load module.
This name must match the file name and the file must be a system file.

User Name (PR.USER)

The left-justified and blank filled eight-character ASCII user name associated with
the load module. This field is zero if the USERNAME directive was not used.

User Key (PR.UKEY)

The compressed (half word) ASCII user key associated with the load module. This
field is zero if the USERNAME directive was not used.

Module Transfer Address (PR. TRAN)

The module relative address of where the module is to start execution when loaded.
Bit 7= 1 indicates the transfer address is absolute.

Control (PR.CNTL)

A flag byte that defines the following software characteristics:

Bit 0 set = Reserved
Bit 1 set = Reserved
Bit 2 set = Overlay segment (PR.OVER)
Bit 3 set = Privileged task (PR.PRIV)
Bits 4-7 = Reserved

Flags (PR.FLAG)

A flag byte that defines the following software characteristics:

Bit 0 set = absolute CSECT load addresses (PR.ABSC)
Bit I set = resident (PR.RES) (program cannot be swapped to back store when
in execution)
Bit 2 set = shared (PR.SHR) (a single copy can be shared by two or more users)
Bit 3 set = absolute OSECT load addresses (PR.ABSO)
Bit 4 = reserved
Bit 5 set = multicopy (PR.MUL TI)
Bits 6-7 = reserved

RRS CNT (PR.NRRS)

The number of entries in the Resource Requirement Summary Table.

Priority (PR.PRIOR)

The base execution priority of the cataloged task/program.

6-9

CSECT pgs (PR.PAGEC)

The number of 512-word pages in CSECT.

DSECT pgs (PR.PAGED)

The number of 512-word pages in DSECT. This is derived from the ending address of
the DSECT (PR.ENDD).

Block Size (PR.PGSIZ)

Defines the map block granularity required by the program. This granularity is the
granularity specified in the ENVIRONMENT directive. It is the number of 512-word
protection granules in a map block (10 hexadecimal for a 32/7x or 4 hexadecimal for
a CONCEPT/32).

Mem Class (PR.MEMS)

Defines the class of memory required by the program. This memory class is the
memory class specified in the ENVIRONMENT directive. The values currently
defined are: 1 for E-class memory, 2 for H-class memory, and 3 for S-class
memory. The default value is 3.

Common pgs (PR.PAGEG)

The number of 512-word pages in Global Common/Datapool.

Files (PR.FILE)

The number from the Files directive. The default value is 5 (the requirement for the
Debugger).

Buffers (PR.BUFR)

The number from the Buffers directive. The default value is 3 (the requirement for
the Debugged.

Program Option Word

A 32-bit program option word.

Description of CSECT and DSECT

CSECT Origin (PR.ORGC)

The address at which to begin loading the CSECT. Bit 7 indicates absolute origin.

CSECT Common Delta (PR.COMC)

Not used, contains 0 (zero).

CSECT Ending Address (PR.ENDC)

The address of the first free word after the CSECT.

6-10

,,~

(CSECT Data Block Number (PR.SFAC)

(

c

The file relative block number of the CSECT data.

CSECT Data Byte Count (PR.B YTEC)

The number of bytes of CSECT data.

CSECT Data Checksum (PR.CHKC)

The checksum for the CSECT data. All half words of CSECT data are summed in a
register.

CSECT Relocation Matrix Block Number (PR.SFACR)

The file relative block number of the CSECT relocation matrix.

CSECT Relocation Matrix Byte Count (PR.B YTCR)

The number of bytes, rounded up to a multiple of 4, of CSECT relocation matrix.

CSECT Relocation Matrix Checksum (PR.CHKCR)

The checksum for the CSECT relocation matrix. All half words of CSECT relocation
matrix are summed in a register.

DSECT Origin (PR.ORGD)

The address at which to begin loading the DSECT. Bit 7 indicates absolute origin.

DSECT Common Delta (PR.COMD)

Not used, contains 0 (zero).

DSECT Ending Address (PR.ENDD)

The address of the first free word after the DSECT.

DSECT Data Block Number (PR.SF AD)

The file relative block number of the DSECT data.

DSECT Data Byte Count (PR.BYTED)

The number of bytes of DSECT data.

DSECT Data Checksum (PR.CHKD)

The checksum for the DSECT data. All half words of DSECT data are summed in a
register.

6-11

i

I
!I

OSECT Relocation Matrix Block Number (PR.SF AOR)

The file relative block number of the DSECT relocation matrix.

DSECT Relocation Matrix Byte Count (PR.BYTOR)

The number of bytes, rounded up to a multiple of 4, of OSECT relocation matrix.

OSECT Relocation Matrix Checksum (PR.CHKOR)

The checksum for the OSECT relocation matrix. All half words of OSECT relocation
matrix are summed in a register.

Global Symbol Block Number (PR.SYMG)

The relative sector number of the global symbol table. A zero indicates no symbols.

Local Symbol Block Number (PR.SYMP)

The relative sector number of the local symbol table. A zero indicates no symbols.

Date of Creation (PR.OA TE)

A doubleword containing the date the load module was created. The format is
identical to that for C.DA TE.

Common blocks are allocated within a segment according to these rules:

1. A common block is allocated preceding the program element which contains a
common origin referencing the block.

2. If a common block is not referenced by a common Origin, it is allocated
preceding the first program element which contains its definition.

Program areas which are reserved but do not contai:n data and are not included in the
module common delta exist as words of zeros on disc. Therefore, these areas are
initialized to zero when loaded into core. The module common delta is an area at the
beginning of the module which occupies no space on disc and which is not initialized when
loaded. It includes bounding and common which precedes the first program element and
which precedes any common which is referenced by a common origin.

Each program element's assembled relative zero is placed on a doubleword boundary.
Common blocks are placed on 8-word boundaries. The main segment of a module with
overlays is placed on a 8-word boundary. If necessary, the size of the transient area is
increased so that it consists of an integral number of 8-word units.

References can be mad~ from an overlay segment to symbols contained within the main
segment. These symbols may be contained in subroutines called from the subroutine
libraries. The symbols are established by using the assembler directives "OEF" and
"COMMON". Within the overlay, the assembler directives "EXT" and "COMMON" allow
the symbols to be referenced. Th~ main segment may reference symbols which are ~.
"OEFs" in overlay segments as main overlays reference symbols in lower level overlays. '\...II
Other linkage is dependent on the use of the LINKBACK directive.

6-12

6.1.4 Symbol Table Output Format

(The Symbol Table (SYMT AB) is output by the Cataloger in a format similar to object
records output by the assembler. The format of each record is as follows:

Byte 0 I 2,3 4,5 6

FF Byte Count* Checksum Sequence Number Data Blocks

*Number of bytes in data block on card

Each data block is preceded by a control byte in the form XXXXNNNN. XXXX identifies
the data block type and NNNN specifies the number of bytes of data in the block. If
NNNN is zero, the number of bytes is 16. Data block types and their contents are as
follows:

Type (Hex)

o

5

F

No. Bytes Data

16

I to 8

I

Contents

The Symbol Table data output as four-word
entries from high to low memory.

The name of the segment during whose
cataloging the SYMTAB was output.

None - signals end of output.

A Type 5 block is output first. Type 0 blocks are output next and are terminated by a
Type F block. All cards, except the last, contain six data blocks. The last may contain
up ~o seven blocks (6 data and I end).

6.1 • .5 Load Module Format (Card)

When card output of a load module is specified, an image of the load module is built on a
temporary file. This image is identical to the load module output to the module'S
permanent file. An integral number of 192-word records are punched to cards from the
temporary file. Therefore, 192 words are output from the last record of the module
whether the module occupies the entire record or not.

Cards containing the load module are formatted as follows:

Byte 1 2,3 4,5 6

Type (1) Byte Checksum of Sequence Data
Count (2) Data Number Blocks (3)

(1) For all cards of the module except the last, the hexadecimal value FF is
entered. The last card contains the value DF.

(2) The number of bytes of data on the card.

The load module data. Each card contains 28 words of data except that the
last card may contain fewer.

6-13

6.1.6 Object Language

The object code is the output of the language processors and is the primary input to the
Cataloger. It describes the contents to be placed into the load module as a result of the
inclusion of the object module into the Cataloger's input stream. The details of the
object language follow.

6.1.6.1 Object Module Records

The object module consists of 1 or more variable length records up to 120 bytes. Each
record contains 6 bytes of header information which describe that object record.

Byte I (Record Type)

Byte 2 (Byte Count)

Bytes 3,4 (Checksum)

Bytes 4,5 (Sequence)

6.1.6.2 Object Commands

This byte field contains either X'FF' or X'DF'. A value of
X'DF' indicates the last record of the current object
module.

This byte field contains the number of data bytes in the
current record. It ranges from 2 to 114 (X'2', to X'72') and
does not include the 6 bytes of header information.

This half word field is the checksum of the data bytes
within the record. It is computed by adding the data bytes
and truncating the sum to a half word.

This half word field is the sequence number of the current
object record. Its initial value is 1. If the field overflows,
the count is reset to 1.

The data portion of the object records consists of a series of object commands. Each
object command is described by a control byte. The control byte is the first byte (byte 0)
of each object command and contains two fields, the function code and the byte count.
The function code is the left hand four bits and ranges from X'O' to X'F'. The byte count
is the right hand four bits and is the count of data bytes for each command, exclusive of
the control byte. A byte count of 0 is interpreted as X' 10' data bytes.

A 'stringback' is a linked list of data that are terminated by a zero address. The word
containing the zero address is absolute rather than relocatable. The Cataloger will make
that word relocatable if necessary. The addresses in the list are module relative and are
19 bit word addresses. The Cataloger preserves bits 30 and 31 in stringing back the data.

The individual commands are detailed below.

6-14

r'('r> ..
\..,

, , C''·

6.1.6.2.1 Absolute Data

o len
I I

Absolute Data

len: Number of bytes of absolute data, 1-16.

6.1.6.2.2 Program Origin

I I
1 3 Program Origin

19-bit origin, right justified.

Bit 0 must be set.

6.1.6.2.3 Absolute Data Repeat

I .2 len I repeat
I

Absolute Data

len-I: Number of bytes of absolute data, 1-15.

repeat: Number of times to repeat data, 1-255.

6.1.6.2.4 Transfer Address

3
I I

Transfer Address

19-bit transfer address, right justified.

Bit 0 must be set.

6.1.6.2.5 Relocatable Data

len

Data

I I
Relocatable

len: Number of bytes of relocatable data, 4-16. Must be a mUltiple
of 4.

6-1 .:

6.1.6.2.6 Program Name

5 len

Program Name:

Bound:

I
Program

Bound

1 to 8 character program name.

3-byte field containing the minimum bounding requirement
for the program. The nominal value is X'8', the maximum
is X'20' or 8 words.

6.1.6.2.7 Relocatable Data Repeat

6

len-I:

repeat:

len I repeat Re 1 0 cia tab I e I
Data

Number of bytes of relocatable data, 4-12. Must be a multiple
of 4.

Number of times to repeat data, 1-255.

6.1.6.2.8 External Definition

7 len symbol

Definition Address

Symbol Name: 1-8 character name of symbol being defined.

Definition Address: 19-bit address, right justified. Bit 0 must be set.

6.1.6.2.9 Forward Reference

8

Data:

Address:

6-16

6 Data

Address

19 bits of data, right justified. Bit 0, if set, indicates data is
relocatable

19-bit address of stringback list. Data is put into each word in
list. List is terminated by absolute a link. Bit a must be set.

,~

"l,

c

6.1.6.2.10 External Reference

9 len Symbol Name

Stringback Address

Symbol Name:

Stringback Address:

6.1.6.2.11 Common Definition

A len

Block

Common Name:

Block:

Size:

6.1.6.2.12 Common Reference

B 1 en I
Reference

Block:

1-8 character name of symbol being referenced.

19-bit address of stringback list. External address
is put into each word in the list. List is
terminated by absolute 0 link.

I I
Comnon Name I
Size I

1-8 character name of common.

I-byte block number, assigned by compiler.

2-byte size of common in bytes.

Block Comnon I

I-byte common block number referenced by data.

Common Reference: 4-12 bytes of data that reference a common
block. The base address of the common block is
added to the low order 19 bits of each word.

6-17

6.1.6.2.13 DATAPOOL Reference

c len I Symbol Name
I

DATA POOL Reference

Symbol Name: 1-8 character name of symbol in DATA POOL.

DAT APOOL Reference: 4-bytes of DA T APOOL reference. Symbol's value
is added to low order 19 bits of DA T APOOL
reference.

6.1.6.2.14 Escape to Extended Functions

D X

Function code of X'D' indicates extended item. See Section 6.1.6.3.

6.1.6.2.15 Common Origin

E 3

Block:

Origin:

Block
I

Origin

I-byte common block number.

2-byte offset from beginning of com mon block.

6.1.6.2.16 Object Termination

F I o

This record terminates the object code for the current module.

6.1.6.3 Extended Object Commands

The extended object commands differ from the previous commands in the following
respects:

Byte 1 contains the function code ranging from 1 to B.

Byte 2 contains the length of the item including byte o.

Each command is detailed below.

6-18

C"." • I

(

6.1.6.3.1 Section Definition

D 0 0 I I I 0 I bounding

sect. no. section size (bytes)

section name - 8 characters

sect. no.

section name

6.1.6.3.2 Section Origin

D 0

sect. no

origin:

0= DSECT
I = CSECT

o

**DSECT*
**CSECT*

2 o 8 o o

origin

The offset within the section to establish as the new origin.

6.1.6.3.3 Section Relocatable Reference

D 0 0 3 length I 0 0

sect. no. rept. cnt. relocatable data

4 - 248 bytes.

sect. no.: Section number the address is defined in.

rept. cnt.: The number of times to repeat the data. A value
of 0 is equivalent to a value of 1.

relocatable data: Data in multiples of 4 bytes whose rightmost 19
bits is a relocatable address.

6-19

!
I,

II I

~
Ii
i!
"

6.1.6.3.4 Section Transfer Address

D 0 0 4

sect. no.

transfer address:

I 0 8 I 0 0

transfer address

The offset within the section that is the transfer
address.

6.1.6.3.5 Section External Definition

D 0 0

sect. no.

symbol

definition address:

5 I length J 0 0

definition address

name 1 - 8 characters

The offset within the section where the symbol is
defined.

6.1.6.3.6 Section External Reference

6-20

D 0 0 6 I length I 0 0

sect. no. string back address

symbo I name 1-8 characters

stringback address: The offset within the section where the stringback
list begins.

Note: If the address is zero and bit 0 of the address is set, a stringback is
performed to address zero of the section.

A single stringback list may not include references to both CSECT
and DSECT.

o

(

6.1.6.3.7 Section Forward Reference

D 0 0 7 I 0 c I 0 0

sect. no. definition address

sect. no. stringback address

definition address: The offset within the section where the symbol is
defined.

stringback address: The offset within the section where the stringback
list begins.

I

6.1.6.3.8 Large Common Definition

D 0 0 8 I length I 0 0

comnon no. comnon size (bytes)

comnon name I - 8 characters

common no.: Number assigned by compiler to common block.

6.1.6.3.9 Large Common Origin

D 0 0 9 I 0 8 I 0 0

corrmon no. corrmon origin

common origin: Offset from beginning of common.

6.1.6.3.10 Large Common Reference

D 0 0 A lengthl 0 0

comnon no. rept. cnt. relocatable data

4 - 248 bytes

common no: Common the address is defined in.

rept. cnt.: The number of times to repeat the data. A value of 0 is
equivalent to a value of 1.

6-21

6.1.6.3.11 Debugger Information

6-22

D fig 0 B I length 1 flag

type address

size 1 symbol name

8 characters

I corrrnon name

(if any) 8 characters

flg:

length:

flag:

type:

address:

size:

I
bit 4 = Symbol is in extended memory (address is that of a 24-

bit pointer to the symbol).
bit 5 = Symbol is a formal parameter (address is that of a

pointer to the symbol).
bit 6 = Symbol is in common. The common name follows the

symbol's name.
bit 7 = Symbol is in DA T APOOL.

18 if symbol is not in common
26 if symbol is in common

bit 0 = Symbol is in CSECT

0 = integer* I
I = integer*2
2 = integer*4
3 = integer*8
4 = real*4
5 = real*8
6 = complex*8
7 -- complex*16
8 = bit logical
9 = logical*1

10 = logical*4
II = character
14 = statement label
15 -- procedure

23-bit bit address. Bits 29-31 indicate bit within byte while hits
9-28 indicate hyte address.

Length of datum in hytes.

symbol name: 8 character, left-justified, blank filled variable name.

comrn<m name: 3 charac:ter, left-justified, blank filled common name.

o

o

" "

6.1.6.3.12 Object Creation Date/TIme

0 0 I 0 C I 14 I 0 0

- - - - - date - - - - -
- - - - - time - - - - -
length: Number of bytes in the command.

date: An eight byte date in the ASCn standard
format mm/ dd/yy.

time: An eight byte time in the ASCn standard
format hh:mm:ss.

Note: This object command is only output by FORTRAN 77+ release 4.1 or
later.

6.1.6.3.13 Product Identification

o o J 0 C I 1 eng th I 0 o

product identification

length: Number of bytes in the command.

prodoct identification A user-supplied string of up to 32 bytes of
text identifying the generated object code.

Note: This object command is only output by FORTRAN 77+ release 4.1 or
later.

Change 2 I
6-23

6.2 DEBUG

DEBUG functions essentially as an unsolicited overlay of a task being debugged. When
attached to a user task it provides a set of commands through which the user can monitor
and control the execution of the task. It is intended primarily as an interactive tool for
the on-line terminal user operating under TSM, but may also be used to debug a batch
task.

The design goals for DEBUG are the following:

(a) Provide an extensive and flexible set of interactive tools to aid the user in
the development of his application software.

(b) Restrict the user's normal access to operating system facilities as little as
possible.

(c) Provide a single debugging facility which functions in the on-line and batch
environments.

(d) Provide the batch user as many of the on-line debugging facilities as
possible.

(e) Provide a sound base for future enhancements, such as symbolic debugging
and high-level language facilities.

6.2.1 The DEBUG Environment

The activation sequence for a task to be run under DEBUG is similar to the normal
activation sequence except that:

(a) The size of the address space constructed is increased by the size of DEBUG.

(b) Control is given to DEBUG's startup entry point instead of the transfer
address of the user task.

The address space constru:ted for DEBUG is pictured below:

Change 2
6-24

()

(

*------------------------------- *
* GLOBAL COMMON/DATAPOOL *
* (IF ANY) *
*------------------------------- *
*
* USER'S CSECT

*
*

* *
*------------------------------- *
* *
*
*

DEBUG *
*

*------------------------------- * */////////////////////////////// *
*/////////////////////////////// *
*/////////////////////////////// *
*/////////////////////////////// *

*------------------------------- *
* *
* USER'S DSECT *
* * *------------------------------- *
* TSA *
*------------------------------- *
*
*
* MPX-32

*
*
*

* *
* * *------------------------------ *

The DEBUG environment is established for a task by a call to H.MONS,29 (M.DEBUG
service). The task may call H.MONS,29 at any time. The TSM command "DEBUG" and
the Job Control command "$DEBUG" will cause H.MONS,29 to be called as part of the
activation sequence for a user task.

Note that the combination of DEBUG and the user's code is a single task, with a single
TSA and a single Dispatch Queue entry. When DEBUG gains control at its startup entry
point, it makes dynamic assignments for its file codes according to whether it is running
on-line or batch. Any dynamic assignments for these file codes made by the user task
are prohibited. To minimize conflict with user file codes, all DEBUG file codes begin
with the character "n".

When DEBUG gains control, whether at activation or upon the occurrence of a trap or
abort, it runs privileged, allowing it to replace user instructions with traps. When DEBUG
transfers control to the user's task it restores the privilege state (as cataloged) of the
user's task.

Change 2
6-2.5

6.2.2 Entry Points

DEBUG begins with a half word address table (HAT) in the following format:

DEBUG DATAW
ACH
ACH
ACH
ACH
ACH

,
DEBUG. 1
DEBUG.2
DEBUG. 3
DEBUG.4
DEBUG.'

The entry points have the following functions:

6.2.2.1

Entry Point

1
2
3
4 ,

Entry Point 1 - Start-Up

Functional Description

Function

Startup
Restart
Trap/break receiver
Re-entry after BREAK command
User abort receiver

File codes are assigned appropriately to the operating mode (on-line or batch), and files
are opened. T.CONTXT is saved for a possible RESTART command. The first immediate
command is read from /lIN and DEBUG proceeds under control of the command stream.

Entry Conditions

The user PSD in T .CONTXT points to the cataloged transfer address of the user task.
The user registers in T.CONTXT all contain zeroes. T.REGP points to T.REGS+OW.

EP 1 is called as the result of a call to H.MONS,29 (M.DEBUG service), either by the user
task or as part of the activation sequence for the user task.

Exit Conditions

Exit is through any of the H.EXEC calls described in seCtion 6.2.3, or M.EXIT in response
to an immediate EXIT command, or H.MONS,'O (described in section 6.2.4).

6.2.2.2 Entry Point 2 - Restart
•

Functional Description

All files are closed and deallocated. The T.CONTXT image saved at entry point 1 is
copied to T.CONTXT. All defaults are reset; e.g., PIF reverts to /lIN, SS (single-step) is
reset, etc. The trap table and base table are re-initialized. Control is then passed to
entry point 1.

Change 2
6-26

c

.f

(

Entry Conditions

T.CONTXT contents are unpredictable and not used. T.REGP points to T.REGS+OW •.
This entry point is called by H.EXEC,24, which is called by DEBUG in response to an
immediate RESTART command.

Exit Conditions

Exit is through any of the H.EXEC calls described in section 6.2.3, or M.EXIT in response
to an immediate EXIT command, or H.MONS,.50 (described in section 6.2.4).

6.2.2.3 Entry Point 3 - Trap/Break Receiver

Functional Description

T .CONTXT and the trap table are analyzed to distinguish breaks from traps. For a trap
the COUNT for that trap is incremented by one.

For a conditional trap whose IF expression equals zero, control is passed back to the user
task. F or conditional traps whose IF expression does not equal zero a trap report is
issued and the IF command is displayed on HOT. For unconditional traps a trap report is
issued on DOT. In either case DEBUG proceeds under control of the commands in the
trap list. .

For a break, the PIF reverts to /lIN, a break report is issued on /lOT, am DEBUG reads
the next immediate command from the PIF.

Entry Conditions

This entry point is called when the user task executes a SVC 1,X'66' (DEBUG trap)
instruction or receives a break. T.CONTXT indicates the user context following the
execution of the last user instruction. T.REGP, T.REGS, and flags in DQE.ATI allow
DEBUG to report the nesting (if any) of push-down levels due to any task interrupts
active at the time of the trap or break.

Exit Conditions

Exit is through any of the H.EXEC calls described in section 6.2.3, or M.EXIT in response
to an immediate EXIT command, or H.MONS,.50 (described in section 6.2.4).

6.2.2." Entry Point" - M.BRKXIT Receiver

Functional Description

Execution of the user's M.BRKXIT is reported on HOT. DEBUG then reads the next
immediate commam from the PIF.

Change 2
6-27

Entry Conditions

This entry point is called as the result of the user's execution of M.BRKXIT. The user's
break receiver is run only as the result of a DEBUG call to H.EXEC,23. T.CONTXT,
T.REGS, and T.REGP are the same as they were immediately before DEBUG called
H.EXEC,23.

Note that if, after DEBUG calls H.EXEC,23, the user task never executes M.BRKXIT,
the break receiver push-down level in T.REGS will never be cleared. Each trap or break
report on nOT will remind the user of this condition with its push-down analysis.

Exit Conditions

Exit is through any of the H.EXEC calls described in section 6.2.3, or M.EXIT in response
to an immediate EXIT command, or H.MONS,.50 (described in section 6.2.4).

Entry Point' - Abort Receiver

Functional Description

A report of the user abort (similar in form to a trap or break report) is displayed on
/lOT. The abort report includes the abort code message found in the Dispatch Queue
Entry. DEBUG then reads the next immediate command from the PIF.

Entry Conditions

This entry point is called when the user task encounters an abort condition. T .CONTXT
indicates the user context following the execution of the last user instruction. T.REGS,
T.REGP, and flags in DQE.ATI allow DEBUG to report the nesting (if any) of push-down
levels due to any task interrupts active at the time of the abort. This entry point is
never entered while the user task has an abort receiver established (M.SUAR service).

Exit Conditions

Exit is through any of the H.EXEC calls described in section 6.2.3, or M.EXIT in response
to an immediate EXIT command, or H.MONS,.50 (described in section 6.2.4). .

6.2.3 H.EXEC Calls

DEBUG uses three special entry points in H.EXEC for control transfers, as follows:

H.EXEC,22

H.EXEC,22 is called by DEBUG in response to an immediate GO or TRACK command, to
begin or continue execution of the user task.

Change 2
6-28

(

H.EXEC,23

H.EXEC,23 is called in response to an immediate BREAK command, to pass control to
the user's break receiver. When the user task executes M.BRKXIT, control is passed to
DEBUG Entry Point 4.

H.EXEC,24

H.EXEC,24 is called in response to an immediate RESTART command, to clear any push
down levels in T.REGS and perform related cleanup functions prior to passing control to
DEBUG Entry Point 2.

6.2.4 H.MONS Calls

This section describes only those H.MONS calls which perform special DEBUG-related
functions. DEBUG makes free use of many other H.MONS calls.

H.MONS,29

H.MONS,29 (M.DEBUG) is not called by DEBUG •. It is called by a user task, or as part of
the activation sequence, to establish the DEBUG environment for a user task.

H.MONS,30

H.MONS,30 is called in response to an immediate KILL commarxl. Its function is to
destroy the DEBUG environment previously established by H.MONS,29 (M.DEBUG),
leaving the user task intact and transferring control to it at a specified context. In
particular, H.MONS,30 makes DEBUG memory available for allocation by the user task.

H.MONS,42

H.MONS,42 (SVC 1,X'66') is the DEBUG trap instruction. It is stored in the user task,
replacing the user's instruction, in response to the SET, GO, and TRACK commands.
Execution of SVC 1,X'66' by the user task causes control to pass to DEBUG Entry Point 3
after T.CONTXT is loaded with the user context.

H.MONS,50

H.MONS,.50 (SVC 1,X'7E') is called by the user program to exit. If DEBUG is associated
with the task, Entry Point 5 is entered and a user exit message is generated.

Change 2
6-29

6.2., Pile Code Usap

DEBUG has no cataloged assignments. When it gains control at Entry Point I it
dynamically assigns HIN, ROT, 001 and 004 according to the operating mode (on-line or
batch). It assigns D02 and D03 in response to LOG, DUMP, FILE, and STORE
commands. The following table lists the DEBUG file codes and their uses:

Change 2
6-30

DIN Control input (commands)

On-line: ASSIGN 4 OIN =UT

Batch: ASSIGN2 OIN:SYC (only if not already assigned)

ROT Primary output (displays, trap reports, diagnostics, etc.)

On-line: ASSIGN4110T=UT

Batch: ASSIGN2 IIOT =SLO, 10000 (only if not already assigned)

110 I Log File (log of all I/O on UT)

On-line: ASSIGN31101=DC,300

Batch: Not used

1102 SLO files for LOG and DUMP commands

On-line:

Batch:

ASSIGN2 1I02=SLO,x (where "x" is determined by the size
of the log or dump being produced)

Not used

1103 FILE and STORE files

On-line:

Batch:

ASSIGN 1 1103:file (where "file" is as specIfied in FILE or
STORE command)

Same as on-line

1104 Patch file (saved CM commands)

On-line: ASSIGN 3 1100=DC, 100

Batch: Not used

C'
(. :

"

TSA References

The following TSA areas are referenced by DEBUG:

together with DQE.A TI, to analyze T.REGS
T.REGP user task interrupt status for abort, trap and break reports

T.CONTXT user task context as of its last executed instruction

6.2.7 Communication Region References

None so far.

6.2.8 Dispatch Queue Entry (DQE) References

The following areas of the DQE are referenced by DEBUG:

DQE.USHF to determine operating mode (on-line or batch)

DQE.A TI together with T.REGS and T.REGP to analyze user task
interrupt status for abert, trap, and break repcrts

Change 2
6-31/6-32

\

c
f

(

(

7. SYSTEM TRACE

System Trace is an MPX-32 debug facility designed to assist in determining the causes of
system crashes. System events are recorded circularly in a trace table which may be
dumped in the event of a system crash.

Thirty trace event types are available for recording as follows:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21-22
23
24-30

Task activation
Task termination
Dispatch CPU to task
Task relinquishes CPU
Queue I/O
End I/O
Interrupt/trap handler entry
Interrupt/trap handler exit
M.SHUT
M.OPEN
M.IOFF or BEl
M.IONN or UEI
M.CALL
SVC (I or 2)
M.RTRN or M.RTNA
Inswap Task
Outswap Task
Dispatch IPU Task
Relinquish IPU Task
CALM
Mobile Event Trace
SVC Type 15
Reserved

Occurrences of trace events are signaled by SVC instructions. These SVCs are generated
by the expanded BEl and UEI macros for trace types 11 and 12, and by the expanded
M.TRAC macro for all other trace types. The M.TRAC macro is implanted within MPX-
32 as required by each trace type. SVC types X'A', X'B', X'C', and X'D' are used by the
System Trace event recorder.

The System Trace event recorder is an SVC processor which is assembled within H.IP06.
Recorded events each use an eight-word entry in the trace table which occupies memory
from absolute locations 40000 to 7FFFF. The table is circular in that when the last entry
in the table is used, the first entry is reused to record the next event.

System Trace event recording is controlled by flags in a word in the communications
region, C.TRACE. Bit zero of C.TRACE controls all trace types. If this bit is set, no
tracing is performed. If this bit is not set, tracing is controlled by bits 1 through 30 of
C.TRACE. Bits 1 through 30 correspond to trace types I through 30, respectively, and
may be set to turn each trace type off. Bit 31 of C.TRACE is reserved as an indicator
that the trace table recording control words have been initialized by the event
recorder. If the value of this bit is not disturbed, recording is continuous, i.e., the
control words are not reset. If the value of this bit is set to zero, the event recorder
initializes the recording control words to indicate that the trace table is empty.

7-1

The first eight words of the trace table are reserved for control information. The first ()
word contains the absolute memory address within the trace table at which the last trace
entry was stored. Bit zero of the second word is a wraparound indicator. This bit is set
if wraparound from the last to first trace table entry has occurred.

The trace table dump routine is incorporated in resident MPX-32. This routine formats
each trace table entry and writes it to the line printer. The routine is controlled by the
contents of C. TRACD which is equated to absolute memory location 4008. Bits 1
through 15 of C.TRACD correspond to trace types 1 through 15, respectively, and may be
set to inhibit printing of any trace types. Bits 16 through 31 of C.TRACD may be used to
limit the number of trace table entries eligible for printing. If this field contains zero,
all trace table entries are eligible for printing. If this field contains a non-zero value,
this is the number of most recently recorded entries eligible for printing.

To use the trace table dump routine, the contents of C.TRACD should be set as desired
and control transferred to the routine at its entry point. The symbol TRACDUMP is
associated with the entry point via a DEF. The routine must be entered unmapped.
After the dump is completed, the routine halts. Each trace type is detailed below.
Fields in printout formats are underlined to indicate actual values. Numeric hexadecimal
fields are indicated by "x". Numeric decimal fields are indicated by "d". The printout of
each trace table entry occupies one printer line.

7-2

7.1 Trace Type 1 - Task Activation

Macro:

M.TRAC

TBM O,C.TRACE
BCT 1,$+2W
SVC X'A',l

Implanted in H.ALOC such that the address of the Task's Dispatch Queue entry is
contained in register 7 to be returned and may be obtained as follows:

LW
LW
LW

Trace Table Entry

Word 0

2

3

5

6

7

Printout:

C.INTC

R2,C.TSAD
R2,T.REGP,R2
R2,7W,R2

Type 01 TSA Address (DQE.TAD)

Interrupt Counter (C.INTC)

Load Module Name (DQE.LMN)

Owner Name (DQE.ON)

DQE Entry /I Task Activation Sequence Number
(DQE.NUM) (DQE.TAN)

Scheduling Flags (DQE.USHF)

ACTIV A TE TASK = xxxxxxxx DQE.LMN DQE.ON

DQE.USHF = xxxxxxxx DQE.TAD = xxxxxxxx

7-3

7.2 Trace Type 2 - Task Termination

Macro:

M.TRAC 2

TBM
BCT
SVC

O,C.TRACE
1,$+2W
X'A',2

Implanted in H.EXEC such that C.CURR contains the address of the task's Dispatch
Oueue entry number.

Trace Table Entry

Word 0 Type 02 TSA Address (DQE. T AD)

I Interrupt Counter (C.INTC)

2
Load Module Name (DQE.LMN)

3

4
Owner Name (DQE.ON)

5

DOE Entry /I Task Activation Sequence Number
(DQE.NUM) (DQE.TAN)

6

7 Scheduling Flags (DQE.USHF)

Printout:

C.INTC TERMINATE TASK = xxxxxxxx DQE.LMN DQE.ON

DQE.USHF = xxxxxxxx DQE.TAD = xxxxxxxx

7-4

(f~'
'~J

c

(

(

7.3 Trace Type 3 - Dispatch CPU to Task

Macro:

M.TRAC

TBM
BCT
SVC

3

O,C.TRACE
1,$+2W
X'A',3

Implanted in H.EXEC such that register 2 contains the address of the Task's Dispatch
Queue entry number.

Trace Table Entry

Word 0 Type 03 TSA Address (DQE.TAD)

Interrupt Counter (C.INTC)

2
Load Module Name (DQE.LMN)

3

4
Owner Name (DQE.ON)

5

6 DQE Entry 1/ Task Activation Sequence Number
(DQE.NUM) (DQE.TAN)

7 Scheduling Flags (DQE.USHF)

Printout:

C.INTC DISPATCH TASK = xxxxxxxx DQE.LMN DQE.ON

DQE.USHF = xxxxxxxx DQE.TAD = xxxxxxxx

7-5

7.4 Trace Type 4 - Task Relinquishes CPU

Macro:

M.TRAC 4

TBM
BCT
SVC

O,C.TRACE
1,$+2W
X'A',4

Implanted in H.EXEC such that register 2 contains the address of the Task's Dispatch
Queue entry number.

Trace Table Entry

Word 0 Type 04 TSA Address (DQE. T AD)

I Interrupt Counter (C.INTC)

2
Load Module Name (DQE.LMN)

3

4
Owner Name (DQE.ON)

5

DOE Entry /I Task Activation Sequence Number
(DQE.NUM) (DQE.TAN)

6

7 Scheduling Flags (DQE.USHF)

Printout:

C.INTC RELINQ TASK = xxxxxxxx DQE.LMN DQE.ON

DQE.USHF = xxxxxxxx DQE.TAD = xxxxxxxx

7-6

c

(

7.5 Trace Type 5 - Queue I/O

Macro:

M.TRAC 5

TBM
BCT
SVC

O,C.TRACE
1,$+2W
X'A',5

Implanted in H.IOCS such that register 3 contains the I/O Queue entry address.

Trace Table Entry

Word 0 Type 05 FCB or TCPB Address (IOQ.FCBA)

1 Interrupt Counter (C.INTC)

2 Handler Function Word I (IOQ.FCT 1)

3 Handler Function Word 2 (IOQ.FCT2)

4 Handler Function Word 3 (IOQ.FCT3)

5 32-Bit Flag Word (IOQ.FLGS)

6 Task Activation Sequence Number (C.TSKN)

7 Channell! Subaddress
(IOQ.CHNO) (IOQ.SUBA)

Printout:

C.INTC QUE I/o TASK = xxxxxxxx DEV=xxxx

IOQ.FLGS = xxxxxxxx FN WDS = xxxxxxxx xxxxxxxx xxxxxxxx

FCB = xxxxxxxx

7-7

7.6 Trace Type 6 - End I/O

Macro:

M.TRAC

TBM
BCT
SVC

6

O,C.TRACE
1,$+2W
X'A',6

Implanted in H.EXEC (S.EXECI, S.EXEC2, S.EXEC3 and S.EXEC4) such that register
contains the Task's Dispatch Queue entry number.

Trace Table Entry

Word 0 Type 06

1 Interrupt Counter (C.INTC)

2

3

4

5

DQE Entry /I Task Activation Sequence Number
(DQE.NUM) (DQE.TAN)

6

7

Printout:

C.INTC END I/o TASK = xxxxxxxx

7-8

I ,: c".···'·'·'

«

(

7.7 Trace Type 7 - Interrupt/Trap Handler Entry

Macro:

M.TRAC 7,level

TBM
BCT
SVC

a,C.TRACE
1,$+2W
X'B',X'level'

Implanted in Interrupt/Trap handler.

Trace Table Entry

Word a Type 07

Interrupt Counter (C.INTC)

2

3

it

5

6

7

Printout:

C.INTC ENTERINT xxxx

Level

7 -'

7.8 Trace Type 8 - Interrupt/Trap Handler Exit

Macro:

M.TRAC 8,level

TBM
BCT
SVC

O,C.TRACE
1,$+2W
X'C',X 'level'

Implanted in the Interrupt/Trap handler.

Trace Table Entry

Word 0 Type 08

Interrupt Counter (C.INTC)

2

3

4

5

6

7

Printout:

C.INTC EXITINT xxxx

7-10

Level

,/-~

()

() ,
I
I,

:
1-

I~

f

7.9 Trace Type 9 - M.SHUT

Macro:

M.TRAC 9

TBM
BCT
SVC

O,C.TRACE
1,$+2W
X'A',9

Implanted in M.SHUT macro.

Trace Table Entry

Word a Type 09

Interrupt Counter (C.INTC)

2

3

4
PSD

5

6 Task Activation Sequence Number (C.TSKN)

7

Printout:

C.INTC M.SHUT TASK = xxxxxxxx PSD = xxxxxxxx xxxxxxxx

7 -11

7.10 Trace Type 10 - M.OPEN

Macro:

M.TRAC 10

TBM O,C.TRACE
BCT 1,$+2W
SVC X'A',lO

Implanted in M.OPEN macro.

Trace Table Entry

Word 0 Type 10

1 Interrupt Counter (C.INTC)

2

3

4
PSD

5

6 Task Activation Sequence Number (C. TSKN)

7

Printout:

C.INTC M.OPEN TASK = xxxxxxxx PSD = xxxxxxxx xxxxxxxx

7-12

","

-(~

i
I

,
,-

(
7.11 Trace Type 11 - M.IOFF or BEl

Implemented via BEl macro whose prototype is as follows:

REI DEFM
TBM O,C. TRACE
BCT 1,$+3W
DATA W X'00060002'
SVC X'A',ll
ENDM

Trace Table Entry

Word 0 Type II

Interrupt Counter (C.INTC)

2

3

'+ \

PSD

I 5

Task Activation Sequence Number (C.TSKN)

7

Printout:

C.INTC M.IOFF TASK = xxxxxxxx PSD=xxxxxxxx xxxxxxxx

(

7-1 '3

7.12 Trace Type 12 - M.IONN or UEI

Implemented via UEI macro whose prototype is as follows:

UEI DEFM
TBM
BCT
DATAW
SVC
ENDM

Trace Table Entry

Word 0 Type 12

1 Interrupt Counter (C.INTC)

2

3

4
PSD

5

O,C.TRACE
1,$+3W
X'00070002'
X'A',12

6 Task Activation Sequence Number (C.TSKN)

7

Printout:

C.INTC M.IONN TASK = xxxxxxxx PSD= xxxxxxxx xxxxxxxx

7-14

(J

c

(7.13 Trace Type 13 - M.CALL

Macro:

M.TRAC 13

TBM
BCT
SVC

O,C.TRACE
I,$+2W
X'A',13

Implanted in H.IP06.

Trace Table Entry

Word 0

1 Interrupt Counter (C.INTC)

2

3

;

4 I

I PSD
5

IBitS 2~31 of the SVC

6 Task Activation Sequence Number (C. TSKN)

7 Stack Frame Pointer (T .REGP)

Printout:

C.INTC M.CALL TASK = xxxxxxxx PSD=xxxxxxxx xxxxxxxx

MODULE = name,dd

where dd is the entry point number.

7 ; ~ -, "

7.14 Trace Type 14 - svc U or 2)

Macro: r{)
M.TRAC 14

TBM
BCT
SVC

O,C.TRACE
1,$+2W
X'A',14

Implanted in H.IP06.

Trace Table Entry

Word 0 Type 14

1 Interrupt Counter (C.INTC)

2

3

4
PSD

5

Bits 20-31 of the SVC

6 Task Activation Sequence Number (C. TSKN)

7 Stack Frame Pointer (T.REGP)

Printout:

C.INTC SVC 112 TASK = xxxxxxxx PSD=xxxxxxxx xxxxxxxx

SVC=dddd

7-16

(

(

7.15 Trace Type 15 - M.RTRN or M.RTNA

Macro:

M.TRAC 15

TBM
BCT
SVC

O,C.TRACE
1,$+2W
X'A',15

Implanted in M.RTRN and M.RTNA macros.

Trace Table Entry

Word 0 Type 15

1 Interrupt Counter (C.INTC)

2

3

4
PSD

5

6 Task Activation Sequence Number (C. TSKN)

7 Stack Frame Pointer (T .REGP)

Printout:

C.INTC M.RTRN/ A TASK = xxx xxx xx PSD = xxxxxxxx xxxxxxxx

7-17

7.16 Trace Type 16 - Inswap Task

Macro:

M.TRAC 16

TBM
BCT
SVC

O.C.TRACE
1,$+2W
X'A',16

Implanted in H.IP06.

Trace Table Entry

Word 0 Type 16 TSA Address (DQE. T AD)

Interrupt Counter (C.INTC)

2
Load Module Name (DQE.LMN)

3

4
Owner Name (DQE.ON)

5

6 DQE Entry II Task Activation Sequence Number
(DQE.NUM) (DQE.TAN)

7 Scheduling Flags (DQE.USHF)

Printout:

C.INTC INSW AP TASK = xxxxxxxx DQE.LMN DQE.ON

DQE.USHF = xxxxxxxx PQE.TAD = xxxxxxxx

7-18

(

f

7.17 Trace Type 17 - Outswap Task

Macro:

MTRAC

TBM
BCT
SVC

17

O,C.TRACE
1,$+2W
X'A',17

Implanted in IP06.

Trace Table Entry

Word 0 Type 17 TSA Address (DQE. TAD)

1 Interrupt Counter (C.INTC)

2
Load Module Name (DQE.LMN)

3

4
Owner Name (DQE.ON)

5

6 DQE Entry II Task Activation Sequence Number
(DOE.NUM) (DQE.TAN)

7 Scheduling Flags (DQE.USHF)

Printout:

C.INTC OUTSW AP TASK = xxxxxxxx DQE.LMN DQE.ON

DQE.USHF = xxxxxxxx DQE.TAD = xxxxxxxx

7-19

7.18 Trace Type 18 - Dispatch IPU Task

Macro:

M.TRAC 18

TBM
BCT
SVC

O,C.TRACE
1,$+2W
X'A',18

Implanted in H.CPU such that R2 contains the address of the Dispatch Queue Entry
address.

Trace Table Entry

Word 0

2

3

4

5

6

7

Printout:

C.INTC

7-20

Type 18 TSA Address (DQE. T AD)

Interrupt Counter (C.INTC)

Load Module Name (DQE.LMN)

Owner Name (DQE.ON)

DQE Entry II Task Activation Sequence Number
(DQE.NUM) (DQE.TAN)

Schedule Flags (DQE.USHF)

DISP IPU TASK = xxxxxxxx DQE.LMN DQE.ON

DQE.USHF = xxxxxxxx DQE.TAD = xxxxxxxx

C·,n."
""

c

(

7.19 Trace Type 19 - Relinquish IPU Task

Macro:

M.TRAC

TBM
BCT
SVC

19

O,C.TRACE
1,$+2W
X'A',19

Implanted in H.CPU such that R2 contains the address of the Dispatch Queue Entry
address.

Trace Table Entry

Word 0 Type 19 TSA Address (DQE. TAD)

Interrupt Counter (C.INTC)

2
Load Module Name (DQE.LMN)

3

4
Owner Name (DQE.ON)

5

6 DQE Entry II Task Activation Sequence Number
(DQE.NUM) (DQE.TAN)

7 Schedule Flags (DQE.USHF)

Printout:

C.INTC RELINQ IPU TASK = xxxxxxxx DQE.LMN DQE.ON

DQE.USHF = xxxxxxxx DQE.TAD = xxxxxxxx

7-21

7.20 Trace Type 20 - CALM

Macro:

M.TRAC 20

TBM
BCT
SVC

O,C.TRACE
1,$+2W
X'A'20

Implanted in H.IP27 such that R5 contains the CALM number.

Trace Table Entry

Word 0 Type 20 CALM Number

1 Interrupt Counter (C.INTC)

2
PSD

3

4
Ownername (DQE.ON)

5

6 DQE Entry II Task Activation Sequence Number
(DQE.NUM) (DQE.TAN)

Stack Frame Address
7 (T.REGP)

Printout:

C.INTC CALM TASK = XXXXXXXX PSD = XXXXXXXX XXXXXXXX

MODULE = XXXXXXXX CALM = XXXXXXXX

T .REGP = XXXXXXXX

7-22

" \>, ty

o

7.21 Trace Type 21 - Mobile Event Trace 1

. Implanted by the System Debugger via ET command.

Trace Table Entry

Word 0

1

2

3

4

5

6

7

Printout:

C.INTC

Type 21 Stack Frame Address
(T.REGP)

Interrupt Counter (C.INTC)

DQE Schedule Flags (DQE.USHF)

Requested Task Active Task
Interrupts Interrupts
(DQE.RTI) (DQE.ATI)

-

PSD

DQE Entry /I Task Activation Sequence Number
(DQE.NUM) (DQE.TAN)

Swap Inhibit System Action
Flags Interrupt Requests
(DQE.SWIF) (DQE.SAIR)

ET III TASK = XXXXXXXX PSD = XXXXXXXX XXXXXXXX

USHF = XXXXXXXX RTI/ATI = XXXXXXXX T.REGP = XXXXXXXX

SWIF = XX SAIR = XX

7-23

I
I
I

J

I

7.22 Trace Type 22 - Mobile Event Trace 2

Implanted by the System Debugger via ET command.

Trace Table Entry:

Word 0 Type 22 Contents of GPR 0

1 Contents of GPR 1

2 Contents of GPR 2

3 Contents of GPR 3

4 Contents of GPR 4

5 ·Contents of GPR 5

6 Contents of GPR 6

7 Contents of GPR 7

Printout:

RO = XXXXXXXX R 1 = XXXXXXXX R2 = XXXXXXXX

R4 = XXXXXXXX R5 = XXXXXXXX R6 = XXXXXXXX

7-24

I ,
I

i
!

R3=XXXXXXXX

R7=XXXXXXXX

o
!!
Ii
I
I,

(

(

7.23 Trace Type 23 - SVC Type 15

Macro:

M.TRAC 23

TBM
BCT
SVC

O,C.TRACE
1,$+2W
X'A',23

Implanted in H.IP06.

Trace Table Entry

Word 0 Type 23

Interrupt Counter (C.INTC)

2

3

4

PSD
5

6 Task Activation Sequence Number (C.TSKN)

7 Stack Frame Pointer (T.REGP)

Printout:

Bits 20-31 of the SVC

C.INTC SVC 15 TASK = xxxxxxxx PSD = xxxxxxxx xxxxxxxx

SVC = dddd

7-25/7-26

8. SYSTEM INITIALIZERS AND BUILDERS

(. This chapter describes the components of MPX-32 that are responsible for loading and
initializing the system when it is booted. The components involved are:

(

(--

o The SDT loader contained within the File Manager
o The BOOT7X or BOOT27
o SYSBUILD, J.INIT, J.TINIT, and RESTART system tasks

A system boot can be performed in various operating environments and involve various
system devices. In a given environment, all of the above components or a subset may be
required.

Fi~ures 8-1 - 8-3 describe the components which come into play when the system is
booted from a Software Distribution Tape (SDT), booted from the CPU front panel, and
booted from an online RESTART command.

~ .. I SYSINIT I .. I MPX-32I .. I SYSBUILD I Loader

I. Reads system 1. Initializes 1. Transfers 1. Forms disc
into memory disc/SMD control to files from

(cold start SYSBUILD as remaining
2. Reads BooTxx only). a ready-to load modules

into memory run, real- named in
2. Puts disc time task SDT direct-

3. Transfers image of ive.
control to bootstrap
H.LD and system 2. Positions

on SMD device tape to
user files

3. Initializes (Master SDT
system. only).

4. Defines and
links SYSBUILD
as a task.

Figure 8-1
Components and Functions in Boot from an SDT

Q

I RLOAD I
1. Reads base or default

system into memory from disc.

2. Initializes system.

•

Figure 8-2

I MPX-32 I
1. Transfers control to

CPU Scheduler.

Components and Functions in Boot from CPU Front Panel

I RESTART I ~ [RLOAD I ~ I MPX-32I

1. Sets restart flags 1. Reads base, 1. Transfers
in RLOAD (default! default, or control to
one-shot image one-shot CPU
defined). system into Scheduler.

memory from
2. Reads RLOAD disc.

from disc to
memory via 2. Initializes
internal buffer system.

3. Performs simulated
system reset.

Figure 8-3
Components and Functions in Boot from Online RESTART

8-2

"' __ i#1

(

8.1 SOT Loader

8.1.1 Functional Description

The SOT loader is a section of code written to a Software Distribution Tape (SOT) by the
portion of the File Manager that processes the SOT directive. Its purpose is to read load
modules from the SOT into memory until it encounters a transfer address. At that time,
it transfers control to that address and execution continues within the context of the last
module loaded.

8.1.2 SDT Loader Activation

The SOT loader is activated from the SDT by depressing the IPL button on the CPU front
panel with the address of the input device displayed on the keyboard. The loader code
must be the first piece of information contained on the SOT.

8.1.3 Required Input

The SOT loader requires no input. However, the starting load point may be altered bv
supplying a value other than zero in register 3 prior to depressing the IPL button.
Starting load points default to X'800' for the SYSTEMS 32/7x and X'780' for the
CONCEPT /32. .

8.1.4 SOT Loader Processing

The SDT loader is written to tape as absolute code by supplying the SOT directive to tr'>
File Manager. The loader code is then followed by any other load modules whose name-
are supplied in the directive.

When the IPL button is depressed, the firmware reads the SOT loader from the IPL
medium into memory, starting at absolute address zero. Control is then transferred t(1
location zero, at which time the loader reads load modules into memory from tape or
floppy disc sequentially starting at the load point specified in register 3 or the defaul t
load point if register 3 is zero.

Modules are read in 192W blocks by means of a buffer reserved in low memory. The load
module preamble is read first and the appropriate information is extracted from it. Then
the Resource Requirement Summary (RRS) block of the preamble is ignored, and the
remainder of the module is loaded into memory.

A checksum is performed while loading each module. The checksum is compared with
the checksum value supplied in the preamble. If the checksum values do not agree, the
loader halts execution.

If a relocation matrix is specified in the preamble, a bias factor (determined by the load
point) is added to all relocatable items after the module has been loaded into memory.

After loading the last block of the load module, the loader checks the preamble data to
determine if a transfer address is specified. If it is, control is transferred to that address
and loading is complete. If no transfer address is specified, the next load module is rear'
in from tape, and the process continues until the loader encounters a transfer address.

8.1.5 SOT Loader Results

A t successful completion (no checksum errors), all load modules on the tape up to and
including the first module with a transfer address are present in memory.

Loading has commenced at the appropriate load point, with all memory locations below
the load point undefined. For a normal boot from a System Distribution Tape (SDT),
memory resident code consists of the version of MPX-32 specified in the SDT directive,
immediately followed by the BOOTxx load module. From this point, control is
transferred to the BOOT xx entry point as the first transfer address encountered during
loading.

The system images created by SYSGEN do not contain a transfer address.

8.2 BOOTxx (RLOAD, SYSINIT, and SYSBUILD)

The cataloged load module, BOOTxx, is responsible for system boot from an SDT only. It
consists of two program sections. The first section is named RLOAO. RLOAD contains
the bootstrap code necessary to boot MPX-32 from a moving-head (XIO/non-XIO) or
fixed-head (non-XIO) disc.

The second program section is named, SYSINIT. SYSINIT consists of code which is first
executed as a standalone process and later as a task. Running standalone, SYSINIT
creates a disc image of the bootstrap code and the MPX-32 load module on the System
Master Directory (SMD) device. This allows subsequent boot operations to be directed
from the SMO device rather than the IPL device.

SYSINIT then establishes the task, SYSBUILD, as a ready-to-run, real-time task.
SYSBUILD creates disc files from load modules on the SOT under a fully operating
version of MPX-32 (which does not yet include the File Manager). SYSBUILD is actually
comprised of code contained within the SYSINIT program section and is executed as a
task after the operating system becomes active. None of the programs or tasks
contained within the BOOTxx load module require any input other than replies to console
prompts, which will be discussed in context.

Section 8.2.1 shows the structure of BOOT xx.

8-4

c\

8.2.1
(

BOOT xx Components

SYSTEM BOOTSTRAP
(written to sector 0
of SMD device)

SYSBUILD TASK
(forms disc files
of load modules
read from SDT)

STANDALONE
SYSTEM AND DISC
INITIALIZATION

BOOT xx LOAD MODULE

RLOAD PROGRAM SECTION

STANDALONE
CODE/DATA

SYSINIT PROGRAM SECTION

(HAND-BUlL T TSA)

(CODE/DATA - DSCECT)

~------ -

H.LD (BooTxx, TRANSFER ADDRESS)

STANDALONE
CODE/DATA

8.3 The RLOAD Program Section

8.3.1 RLOAD Activation

The system bootstrap code, RLOAD, is activated after a system has been installed from
an SOT. The user depresses the IPL button on the CPU front panel with the physical
channel and subaddress of the SMD device displayed on the keyboard. The bootstrap code
will have been previously placed at Sector 0 of the SMD device by SYSINIT and will be
transferred from there into memory by the firmware during Initial Program Load (IPL).

8.3.2 RLOAD Processing

When the IPL button is depressed on the CPU front panel with the SMD device address
displayed on the keyboard, the firmware reads the bootstrap code into low memory,
starting at absolute address zero.

The amount of code read in by the firmware varies, depending on the device class (XIO or
non-XIO). The bootstrap must be able to determine the class status of the IPL device
prior to executing any of its code. This is accomplished by means of a Device Parameter
Table (OPT) and overlay logic. The Device Parameter Table (Section 8.3.4) contains
information about the specific system to be booted, and about the device from which
that system is to be loaded.

The bootstrap code is always read from the SMD device. However, the operating system
can be loaded from the same device or another disc on the same controller as the SMD
device. To accommodate this flexibility, the Device Parameter Table can contain
information specific to three different versions of the operating system: the base system
read from the SOT, a default system supplied via the on-line RESTART task, or a one
shot test system supplied via on-line REST AR T.

If it is loading from a non-XIO device, the bootstrap code overlays itself by reading from
Sector 0 of the SMD device. This is necessary because only 96W are read into memory on
IPL, from a cartridge disc, an amount insufficient to include all of the bootstrap code.
Hence, overlay logic is provided within the first 96W of the bootstrap code to insure that
all of RLOAD is resident before loading is attempted. This operation is not necessary for
XIO devices.

Next the appropriate scratchpad entries are established to perform standalone I/o to the
console and boot devices. The console i.s assumed to have physical address, X'7801' (TLC)
or X'7EFC' (fOP), while the boot device information is obtained from the Device
Parameter Table by testing the status of the Restart bit flags (base, default, or one
shot).

When the default bit is set, the bootstrap code displays a message at the console, giving
the user the ability to select the default or base image before loading begins. The
appropriate system image is then loaded into memory in 192W blocks.

o

The load module preamble is read first to obtain the starting sector address, byte count,
and checksum value of the system image on the disc. The RRS block is ignored. Loading
starts at X'800' for the 32/7x or X'780' for the CONCEPT/32. The last block of the
system load module contains the trap and interrupt vectors established for handlers at 0
SYSGEN. After the system is loaded, this block is ~oved down to low memory as an
absolute module starting at X'O'.

8-6

i ,Ii
I'

(

A checksum is performed in a manner similar to that employed by the SDT loader (see
. Section 8.1.4) and compared to the value obtained from the load module preamble, if the
preamble value is non-zero. If the values do not correspond or if any other I/O error is
encountered during loading, error retry logic is executed a set number of times.

With loading complete, the firmware scratchpad is initialized from information contained
in the system area pointed to by C.SPAD. Finally, the service interrupt levels for all
peripheral devices and designated RTOM interrupt levels are enabled along with the CPU
mode. A wait state is then induced. When the interval timer fires, control is transferred
to S.EXEC20 (the CPU Scheduler) within the context of a fully operational system.

8.3.3 RLOAD Results

When the bootstrap process is complete, the system indicated by the setting of the
Restart flags is loaded into memory and initialized just as though a warm start from tape
had been performed.

8.3.4 The Device Parameter Table (DPT)

Function: Defines device information necessary to boot base, default, or one
shot versions of MPX-32.

Built By:

Managed By:

Word II
(Dec ima 1)

o
1
2
3
4
5
6
7
8
9

10
1 1
12
13
14
15
16
17
18
19
20
21

BOOTxx/REST AR T

BOOTxx, REST AR T, and RlOAD

Offset
(Hex)

o
4
8
C

o

SG. SPT

SG. SPB
OF.CLAS

7 8 15 16
R.NRST

SG. IMAGE
SG. IMAGE Con t •

DF. IMAGE
DF IMAGE Cont.

IMAGE
IMAGE Cont.

SG. STBlK
DF.STBlK
STBlK
SG.PHYDV
SG LOGDV
DF.PHYDV
DF.LOGDV
IPLDV

I DF.SPT SPT
NBLK

I DF.SPB SPB
I CLASS

OF. SPC

23 24 3 1
SG.NOS

I RSFLAGS

J SG.ClAS
SG. SPC

SPC

10
14
18
lC
20
24
28
2C
30
34
38
3C
40
44
48
4C
50
54

SG.OEVT I OF.OEVT OEVT I SG.NHDS
OF.NHDS I NHDS

8- ".

~ Bit(s) !!!!!!!.
0 0-1$ R.NRST

16-11 SC.NOS

1-2 SG.IMAGE

3-4 OF.IMAGE

'-6 IMAGE

7 SC.STBLK

8 OF.STBLK

9 STBLK

10 SG.PHYOV

11 SC.LOCOV

12 OF.PHYOV

13 OF.LOCOV

14 IPLOV

l' 0-7 SC.SPT

I-I' OF.SPT

16-21 SPT

RSFLAGS

211

2'
26

27-31

16 NBLK

17 0-7 SG.SPB

8-1' OF.SPB

16-23 SPB

24-31 SC.CLAS

18 0-7 OF.CLAS

I-U CLASS

16-31 SG.SPC

19 0-1' OF.SPC

16-31 SPC

20 0-7 SC.OEVT

8-1' DF.DEVT

16-23 DEVT

24-31 SG.NHOS
21 0-7 DF.NHDS

8-1' NHDS

8-8

Description

Size of bootstrap in 192'1' blocks

Size of base system module in 192'1' blocks

Sue system name (MPX-12)

Default system name

Current system name

Startins disc block of base system

Startins disc block of default system

Startins disc block of current system

Sase physical channeJlsubaddress

Sue losical channel/subaddress

Default physical channeJlsubaddress

Default losical channel/subaddress

Current physical channeJlsubaddress

SMO device sector per track

Default device sectors per track

Current device sectors per track

Restart bit flags

One-Shot System

Default Image Present

Console is an lOP

Reserved

Size of current system in 19211' blocks

SMO device sectors per block

Default device sectors per block

Current device sectors per block

SMO device dass (XIO or non-XIO)

Default device class

Current device dass

SMD device sectors per cylinder

Default device sectors per cylinder

Current device sectors per cylinder

SMD device type (MH or FH)

Default device type

Current device type

No. of heads on SMD device

No. of heads on default device

No. of heads on current device

Set By

BOOTxx

BOOTxx

BOOTxx

RESTART

RLOAO

BOOTxx

BOOTD

RLOAD

BOOTxx

BOOTD

RESTART

RESTART

RLOAD

BOOTD

RESTART

RLOAD

RESTART

RLOAO

BOOTD

RESTART

RLOAO

BOOTD

RESTART

RLOAD

BOOTxx

RESTART

RLOAD

BOOTD

RESTART

RLOAD

800Tllx

RESTART

RLOAD

Reset By

BOOTxx

BOOTxx

BOOTllx

REST",RT

RESTAkT

BOOT~lo:

BOOTIIY

RESTART

BOOTxx

BOOTxx

RESTART

RESTART

RESTART

BOOT""

RESTART

RESTART

RESTART

RLOAO

BOOTxx

REST,".R T

REST,"" -

BOOTxx

RESTART

REST,4RT

800Txx

RESTART

RESTART

BOOT xx

REST,A,RT

RESTART

800Txx

REST,A.R T

RESTART

,.tr", ,"I, ", "',

c
: "

1 Ii
I
I

(

(

8.4 The SYSINIT Program Section

8.4.1 SYSINIT Activation

The SYSINIT program is activated by the SDT loader when its entry point is encountered
as a transfer address during a boot from the SDT. Execution continues within SYSINIT as
standalone code, since certain operating system elements have not yet been initialized.

8.4.2 SYSINIT Processing

The SYSINIT program section is used only during system boot from an SDT. When control
is transferred to its entry point by the SDT loader, the operating system is present in
memory, but has yet to be completely initialized.

SYSINIT first loads the firmware scratchpad from information contained within the
system code pointed to by C.SP AD. If the System Debugger has been included as part of
the operating system, control is transferred to it. The remainder of the standalone
portion of system initialization can then be traced by the user.

The appropriate information required to describe the SMD device is then placed in the
Device Parameter Table (contained within the RLOAD bootstrap code). The information
for the DPT is extracted from the SMD entry of the Unit Definition Table (UDT), which
is part of the system code. This information is then used by the bootstrap code whenever
a boot of the base system is requested.

The user is then given the option of performing a cold or warm start via a prompt at the
console. If a cold start is selected, a new disc allocation bit map is written out to every
disc identified in the disc allocation map table pointed to by C.DAMAPT using
information contained in the associated UDT. After initializing all bit maps, a zeroed
SMD is written out to the SMD device.

A cold start assumes that the SMD device was either void of any useful information or
the user wished to remove all traces of the file structure of the previous system.

If a warm start is selected, the modifications to the disc allocation bit maps and the SMD
are bypassed. From this point on, processing is the same for a cold or warm start.

The RLOAD bootstrap code is now written out to the SMD device in 192W blocks,
starting at Sector O. A psuedo load-module preamble is written out to the first block
following the bootstrap code. The pseudo preamble contains the starting sector address
of the system image, a byte count, and a zero checksum value. This is followed by a
dummy RRS block to conform to the standard MPX-32 load module format.

Next, the system image, loaded from tape and presently residing in memory, is written
out to the SMD device in 192W blocks, starting at the sector specified in the preamble.
The tape image of the system thus becomes the base system loaded by the bootstrap code
on subsequent system boots from the front panel (providing a default or one-shot system
has not been selected). If any errors occur during I/o to the disc, error retry logic is
executed a set number of times.

After the system image is written to the SMD device successfully, memory is allocated t
and defined for the SYSBUILD task. A Dispatch Queue Entry (DQE) is constructed and 'V
linked to the head of the real-time task queue. A disc allocation bit map is then written
to the SMD device to protect the bootstrap and system images (residing on the low end of
the disc) from possible overwrite by the SYSBUILD task.

When this is completed, the last block of the system image in memory is moved to the
dedicated location in low memory. This block contains the trap and interrupt vectors
defined by the handlers at SYSGEN. The service interrupt levels for all peripheral
devices defined in the Controller Definition Table (CDT) are enabled along with
designated R TOM interrupt levels. The CPU mode is set, and a wait state is induced.

Up to this point, the operating system has been resident but unable to function on its
own. Hence, all I/O operations have been performed using standalone code. Now, when
the Real-Time Clock fires, execution continues within the context of SYSBUILD as the
first ready-to-run, real-time task under a functioning operating system.

8.4.3 SYSINIT Results

The system read in from the SDT is identified as the base system and an image of it is
written to the SMD device along with the bootstrap code.

If a cold start has been selected, the SMD and disc allocation bit maps of all discs are
destroyed and re-initialized. The necessary memory management and data structures are
constructed so that SYSBUILD is created as a ready-to-run task. The resident system,
read from the SDT, is initialized so that it can function on its own.

8.5 The SYSBUD..O Task

8.5.1 SYSBUaO Activation

Execution commences within the context of the SYSBUILD task when the Real-Time
Clock fires after having been enabled by SYSINIT. This occurs after all system
initialization is complete, and the operating system is capable of functioning as an
independent entity.

8.5.2 SYSBUll..O Processing

SYSBUILD is code within the SYSINIT program that can be executed as a task in order to
take advantage of the full functionality of the operating system, specifically, the
services in the I/O Control System (IOCS).

First, SYSBUILD allocates and opens the device associated with the address displayed on
the CPU front panel during IPL.

If the IPL device is a magnetic tape mechanism, the user receives the standard MOUNT
message on the console and can either continue loading modules from tape or abort the
SYSBUILD function. The MOUNT message is not displayed when IPL is performed from a
floppy disc. If a resume indication is received in response to the MOUNT message, load 0
modules are read from the tape and written to the SMD device under the control of IOCS
until SYSBUILD detects an End-of-File mark (written by the File Manager).

8-10

This alJows key load modules to be introduced to the system at a time when the File
Manager is not present. Load modules required at this point are: J.INIT (for final system
initialization), J.TSM and OPCOM (for user communication with the system), and
FILEMGR (for restoring subsequent files). See Volume 3, Chapter 4 of the MPX-32
Reference Manual for a complete description of the SOT directive.

Upon detecting an EOF mark on the IPL medium, SYSBUILO rewinds the tape. The tape
needed for subsequent RESTORE operations via the File Manager can then be mounted.

The rewind function only applies when starting up a system from a master SOT in which
several versions of the operating system are present on the tape. After performing the
rewind (if necessary), SYSBUILD exits normally. This allows the Swapper to activate
J.INIT as the next task for final system initialization functions.

8.5.3 SYSBUILD Results

All load modules included in the File Manager SOT directive after BOOT xx are written to
the SMO device so that they are available immediately when control is transferred to the
operating system.

8.6 On-line Restart

8.6.1 Functional Description

The cataloged load module, RESTART, functions as a task and provides the user with the
ahility to reboot MPX-32 online, under TSM control.

RESTART allows the user to replace the existing system with the base system defined
from the SOT or with a system of his own. If a system other than the base system is
indicated, the user can specify that system as the default for subsequent bootstraps or as
a one-time-only, test version.

RESTART is a privileged task and produces the same effect on the system as a boot from
the CPU front panel.

8.6.2 RESTART Activation

RESTART is activated in a manner similar to any other TSM task. However, the user
must be privileged in order to gain access to the utility. For a full description of the
TSM RESTART command, see Volume 3, Chapter 5 of the MPX-32 Reference Manual.

8-11

8.6.3 Required Input

REST AR T needs to know which system to use. If no name is specified in the REST AR T
command line, the base system created from the SDT (or the default system, if one is
pre~ent) will be used. If a name is specified in the command line, it may be designated as
the default system by providing an additional keyword after the system name.

The only operator input required by REST AR T is a response to a prompt at the user's
terminal. This prompt is issued by REST AR T prior to loading a new system and has the
following format:

DO YOU WANT TO BOOT (YIN):

8.6.4 REST ART Processing

The REST AR T task begins by verifying that the access flags of the user indicate a
sufficient privilege to continue the boot procedure. If the user has sufficient privilege,
RESTART reads the RLOAD bootstrap image from sector 0 of the SMD device into a
512W internal buffer. The internal buffer now contains the Device Parameter Table used
by the bootstrap code to determine what system to load and where it resides.

Next, the RESTART command line is parsed using the standard TSM scanning routines. If
no system name is specified in the command line, RESTART checks to see if the Default
bit is set within the Device Parameter Table. If a default image is indicated, the logical
and physical channel information for the device associated with that image are
initialized for use by the bootstrap code. If a default image is not indicated, the channel
information for the base system on the SMD device is used.

When a system name is supplied in the command line, RESTART checks to see if the
specified name matches the name of the base system (MPX-32). (This name is
established in the Device Parameter Table by BOOTxx before it writes the RLOAD
bootstrap image out to disc.)

If the specified name does not match the base name, the file location is determined using
the File System Execution (FISE). Then, using information contained in the UDT entry
for this file, the appropriate information is inserted into the buffer image of the Device
Parameter Table to identify the system as a one-shot system.

The first two blocks of the specified system image are read into a 384W internal buffer.
Information in this buffer is compared to the corresponding information in the resident
system image to insure that no changes will be made to the SMD when the new system is
loaded. If the two SMD definitions are discrepant, the RESTART task is aborted with an
error message.

Upon successfuUy verifying the integrity of the SMD, RESTART checks to determine if
the DEF AUL T option has been selected for this file. If so, the one-shot system data
previously inserted in the buffer image is duplicated in the corresponding default
parameter locations of the DPT to identify it as the default system. The Restart default
bit flag is also set in the buffer image at this time. The Device Parameter Table portion
of the internal buffer now reflects the device data necessary to honor the RE~T AR T
command.

8-12

, " 0','"

o

(

(

RESTART writes the first block of the buffer back to sector 0 of the SMD device,
thereby installing the new device data for subsequent bootstrap operations. If a one-shot
only request has been made (file name with no DEF AUL T option), the one-shot Restart
bit flag is set in the internal buffer. In order to preclude the one-shot system from being
selected on a system boot directed from the CPU front panel, the one-shot Restart bit is
never set in the disc image of the bootstrap code.

The user is now given the option of continuing with the boot procedure or exiting via a
prompt at the console. If the response to the prompt indicates that no further action is
to be taken, RESTART exits normally. If the user has specified the DEFAULT option,
default information has been written to the SMD device and it will be reflected in all
subsequent boots from the CPU front panel, even though the online boot operation may
have been bypassed.

If the user chooses to boot, modifications to the Device Parameter Table are completed
and a simulated system reset is performed. In the simulated system reset, REST ART
issues appropriate termination commands to all devices defined in the Controller
Definition Table (CDT) found to be active with I/O operations. This is necessary to
insure that these devices will be properly initialized by the RLOAD bootstrap operation.

RESTAR Tis final action is to write the internal buffer containing the RLOAD bootstrap
image into low memory and to branch to the portion of the code that starts beyond the
overlay logic. From this point, system startup proceeds as if a boot from the CPU front
panel had been initiated.

8.6.5 RESTART Results

The system specified in the command line is brought up as the new, resident operating
system. All devices and I/O activity are terminated and re-initialized. If the DEFAUL T
option is selected, the Device Parameter Table within the bootstrap image on the SMD
device is changed to reflect the presence and characteristics of the default system.

8.7 J.INIT and J.TINIT Tasks

See the MPX-32 Reference Manual, Volume 3, Chapter 9, for J.INIT documentation.
J.TINIT is described in Volume 1, Chapter 5.

8-13/8-::

9. INTERNAL PROCESSING UNIT (IPU)

9.1 Overview

The IPU is a parallel CPU connected directly to the SelBUS. Scheduling for the IPU is
accomplished by the MPX-32 executive and a new resident module, H.CPU. Execution of
an IPU task is initiated and controlled by a small executive module, H.IPU.
Synchronization between the IPU and CPU is maintained by the use of six (6) new traps
supported by the 75A version of the CPU/IPU.

Task execution in the IPU is transparent to the user. User intervention is not required
for the IPU to execute task level code.

If an IPU accounting interval timer is present and SYSGEN'd into the system, IPU
execution time and idle time are tabulated by the resident handler H.IPUIT.

9.1.1 IPU-Memory Interface

The IPU can address all locations of physical memory. All memory allocation occurs
before a task is queued for execution in the IPU. The Task Service Area (TSA) for the
task is constructed before the task is passed to the IPU, and contains appropriate map
block allocation. The IPU and CPU are thus coordinated in use of memory.

9.1.2 IPU-CPU Interface

New traps are implemented to coordinate IPU processing. Traps are:

0 Start IPU processing

0 IPU Supervisor Call

0 IPU errors (non present memory, undefined instruction, privileged instruction,
etc.)

0 IPU Call Monitor

o Stop IPU processing

o Terminate IPU processing and re<;chedule IPU

9.1.3 System Services and I/O

When a SVC, CALM, or undefined instruction (CD, TC, etc.) is encountered during
execution of a task by the IPU, execution is forced back to the CPU. If the task is IPU
biased, execution will remain in the CPU only for the single SVC, CALM, or undefined
instruction; the next instruction will be e ,ecuted in the IPU. Any unbiased task will be
allowed to execute as many instructions in the CPU as the scheduling algorithm and
system resources will allow.

9-1

9.2 Data Stroctures

9.2.1 Program Status Doubleword (PSD)

Bit

Bits

Bit

Bit

Bit

*Bit

*Bit

I I I I I I
B P E H A P M N R CONOITION X I E S A PROGRAM COUNTER R L I CODES T S X D P K

V I T P i I I I I

o 1 2 3 4 I) 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 21 23 24 25 26 27 28 29 30 3 1

1":-1 : : : : : ~:< : : : : I, 111 ,~fGI : : : : : ,,:< : : : : 1 + 1
31 33 34 36 36 37 J8 39 40 41 42 43 44 45 46 47 48 49 50 51 52 63 54 5f> 56 57 58 59 60 61 62 63

0=0
=1

1-4

5=0
=1

6=0
=1

7=0
=1

8=0

=1

9=0
=1

Unprivileged mode
Privileged mode

Condition codes as follows:
Bit 1 = CC1
Bit 2 = CC2
Bit 3 = CC3
Bit 4 = CC4

Extended mode (OFF) CEA
Extended mode (ON) SEA

Last instruction executed was not a right half word
Last instruction executed was a right half word

Arithmetic exception trap mask (OFF)
Arithmetic exception trap mask (ON)

Computer is in PSW mode (displayed PSD only) (PSW
mode not used by IPU)
Computer is in PSD mode (displayed PSD only)

Unmapped (displayed PSD only)
Mapped (displayed PSD only)

Bits 10-12 Reserved

Bits 13-29

Bit 30

*Bit 31

Bit 32

Bit 33

Logical word address

Next instruction is a right halfword

Blocked (displayed PSD only)

Map mode
O=Unmapped
l=Mapped

Reserved

*These bits are used for display only and are not present in the PSD stored in memory.

9-2

ct. "'\
"lY

o

Bits 34-45

Bit 46

Bit 47

Bits 48-49

Bits 50-61

Bits 62-63

Provide a word index into the Master Process List (MPL) for the base
process

Reserved

Retain current map contents

Interrupt control flags as follows:

Bits
4849
00
o 1
1 0
1 1

operate with unblocked interrupts
operate with blocked interrupts
retain current blocking mode
retain current blocking mode

Provide a word index into the Master Process List (MPL) for the
current process

Reserved

9-3

9.2.2 IPU Status Word

Bit Definition

° =0, Class 0, 1, 2, or E error*
=1, Class F (Extended I/O) error*

1 =0, I/O processing error
= 1, Interrupt processing error*

2 Final bus transfer error

3 Bus number transfer error

4 I/O channel busy or busy status bit error*

5 Ready timeout error*

6 I/o DRT timeout error*

7 Retry count exhausted error*

8 Operand fetch parity error

9 Instruction fetch parity error

10 Operand non present error

11 Instruction nonpresent error

12 Undefined PSD mode instruction error

13 Memory fetch DR T timeout error

14 Reset channel error*

15 Channel WCS not enabled error

16 Map not found (LEM, SEM, CEMA instructions only) or map register address
overflow (map context switch)

17 Unexplained memory error

18 BRI I/O error*

19 Undefined instruction PSW mode only*

20 Map invalid access or map mode restriction error

21 IPU privileged violation or IPL I/O or memory error flag

22 IPU power fail occurred

23 IPU arithmetic exception

24 Enable arithmetic exception trap

25 Disable PSD mode traps

26 Block mode is active

27 IPU status or CPU power fail memory error (32/7x only)

28 Reserved

29 Reserved

30 Reserved

31

*

9-4

=0, CPU mode 55
= 1, CPU mode 75

Not applicable to IPU

9.3 Options

There are two scheduling options related to IPU task execution -- IPU biased and CPU
only. Either option may be specified at catalog time or at execution time.

9.3.1 IPU Bias

This option is specified as IPUB and causes every task level instruction to be executed by
the IPU.

9.3.2 CPU Only

This option is specified as CPUO and causes the task to run only in the CPU.

9.4 Task Scheduling

The relationship between the CPU and IPU is symbiotic with the CPU in the dominant
role. The IPUls function is to execute task level, unprivileged code in parallel with CPU
execution.

There are two C. head cell addresses used by the operating system to control IPU
execution: C.CIPU and C.RIPU. C.CIPU contains the Dispatch Queue Entry (DQE)
address of the task currently executing in the IPU. There is only one task linked to
C.CIPU at any time. C.RIPU contains the DQE addresses of tasks biased to the IPU
waiting for IPU execution.

The CPU is responsible for all task scheduling, I/O, and System Services as well as for
execution of its own scheduled tasks. Synchronization and communication between the
CPU and IPU are accomplished through the use of six new trap vectors in low memory.

Tasks will be scheduled by the CPU for execution in the IPU dependent on their
cataloged status as biased or unbiased tasks.

9.4.1 IPU-Biased Tasks

Tasks cataloged with a bias to the IPU will be queued on the IPU ready-to-run state
queue, C.RIPU. Er.tries will be linked by priority, with the highest at the head. As long
as tasks reside on the IPU ready queue they will monopolize IPU execution, ahead of
higher priority unbiased tasks. Task replacement of biased tasks in the IPU will occur
when a higher priority task is queued to the IPU ready state. If a biased task is linked to
C.RIPU while a higher priority task is currently in the IPU, the higher priority task will
continue to run in the IPU.

9.4.2 Unbiased Tasks

When there are no IPU biased tasks queued to the ready-to-run state, IPU task selection
will proceed with the unbiased tasks. A search through the ready states, real time to
priority 64, will begin looking for the first eligible task. Eligibility consists of the
following:

o Task is not restricted to CPU execution.

o Task is not inhibited from execution.

o There are no run requests or messages outstanding against the task.

9-5

If all three of the above are met, the candidate task is selected for IPU execution. If ;f
not, the next lower priority task is tested. If there are no tasks meeting the IPU'4.,;,:
eligibility requirements, the IPU remains idle.

9.4.3 CPU-Only Tasks

Tasks cataloged as CPU-only will not be selected for IPU execution. Typically these
tasks are I/o bound.

9.5 IPU Execution

When a task is running in the IPU, it will continue until one of the following occurs:

1. The IPU encounters a System Service request (SVC or CALM).

2. The IPU encounters an exceptional or error condition (privileged instruction,
undefined instruction).

3. The CPU executes a 'START IPU' instruction.

In each of the above cases, the IPU will trap via a dedicated vector to the IPU trap
handler in order to process the event.

9.5.1 Execution of Time Distribution Tasks in the IPU

Tasks running in the IPU with Batch priorities (55-64) are not subject to priority
migration or time distribution while executing in the IPU.

9.5.2 SVC, CALM, Undefined Instructions and Errors

When a SVC, CALM, undefined instruction, or error is encountered during execution of a
task by the IPU, an internal trap occurs in the IPU. Processing for each trap is as
follows:

..
SVC IPU SVC processing consists of 15 indirect secondary vectors pointing to a

single ICB. When a trap occurs, the OLD PSD is backed up 1 word to point
to the SVC. The corrected PSD and the registers are pushed on the task's
stack and the CPU is signaled to take control of the task and schedule
another for the IPU.

CALM The IPU CALM trap consists of a single ICB, PSD retard mechanism and a
request for the CPU to take the task and schedule a replacement. The PSD
retard mechanism requires the use of bit 6 as well as the F and C bits of the
old PSD to determine if the 'calm' is in the left or right half word.

ERRORS Defined errors are map fault and privilege errors. These are processed by
writing an extended abort code (either MFOl.IPU or PVOl.IPU) into the task's
dispatch queue and setting the delete request bit.

Undefined instruction errors are special case errors in the IPU. Undefined 1";,.,'\"

instructions include all I/O class instructions and most of the other '-'
privileged instructions (refer to the appropriate IPU Technical Manual for
more detailed information on the IPU instruction set). When an undefined

9-6

(

instruction is encountered during execution of a task, the IPU will trap to
error processing logic with the undefined instruction bit set in the status
word. The error logic is special cased for undefined instruction to back-up
the PSD, push the stack and pass the task back to the CPU for execution of
the instruction.

Undefined errors in the IPU are all those errors other than map fault,
privilege error or undefined instructions. They are reported to the user as
'IPOI '.

Arithmetic exceptions in the IPU (as in the CPU) are handled by H.IPOF.

9.5.3 CPU Execution of IPU Tasks

An IPU-biased task sent to the CPU for execution of an exceptional condition (SVC,
CALM, etc.) will execute in the CPU only until the PSD points back to the task execution
area. At this point, the task will be relinked to the IPU ready state.

An unbiased task which has executed in the IPU but has been returned to the CPU will
remain in the CPU until it has completed or has been reselected for IPU execution.

9.6 IPU Executive Module Descriptions

9.6.1 Entry Point 1 - IPU Executive

This entry point is used to request task scheduling, start task execution, or stop task
execution on the receipt of traps from the 'START IPU'.

9.6.2 Entry Point 2 - Execute IPU Task

This entry point is used to remap the IPU to the task's map, perform a context switch,
and dispatch control to the task.

9.6.3 Entry Point 3 - SVC Trap Handler

This entry point is used to correct the PSD to allow the CPU to re-execute an offending
instruction. A call to the PUSH and HALT subroutines will be executed.

9.6.4 Entry Point 4 - CALM Trap Handler

This entry point is used to correct the PSD to allow the CPU to re-execute an offending
instruction. A call to the PUSH and HALT subroutines will be executed.

9.6.5 Entry Point 5 - Exceptional Condition (ERROR) Trap Handler

This entry point is used to correct the PSD to allow the CPU to re-execute an offending
instruction. A call to the PUSH and HALT subroutines will be executed.

9.6.6 Subroutine S.IPU 1 - Perform Stack Push

This subroutine pushes the registers and PSD of the current task into the next stack
frame as defined by T.REGP. This is a clean-up activity in preparation for the return of
task control to the CPU.

9-7

9.6.7 Subroutine S.IPU2 - IPU Initialization

This subroutine initializes the IPU by storing the MPL address in the scratch pad and by
setting the CPU (IPU) status word to 75 mode.

9.6.8 Subroutine S.IPU3 - Terminate IPU Execution

This subroutine contains both the trap which signals the CPU to trap and the privileged
wait instruction which is the quiescent state of the IPU.

9.7 IPU Scheduler Module Descriptions

9.7.1 Entry Point I - Field IPU Halt

This entry point fields the IPU 'HALT' trap. It schedules IPU tasks based on the following
criteria:

1.

2.

3.

9.7.2

If the head cell count of the IPU current state is 0, then the IPU is idle.
Entry point 2 schedules the current task.

If the head cell count is greater than 0 and the Inhibit IPU flag is set, entry
point 2 unlinks the current task, relinks it at its base priority state, then
schedules the new IPU task.

If the head cell count is greater than 0, but the Inhibit IPU flag is reset,
entry point 2 unlinks the task from the current state, relinks it to the IPU
request queue, then schedules the new IPU task.

Entry Point 2 - Schedule IPU-Biased Tasks

If tasks are queued to the IPU request queue, this entry point unlinks the highest priority
task, relinks it to the IPU current state, and calls the IPU start subroutine. If there are
no tasks· on the IPU request queue, this entry point goes to entry point 3 for unbiased task
selection.

9.7.3 Entry Point 3 - Schedule Unbiased Tasks

This entry point begins at the real time state queue to select an IPU candidate. It tests
each encountered task for IPU eligibility as follows:

1. IPU inhibit flag = reset
2. CPU-Only flag = reset
3. No system actions (DQE.SAIR = 0)
4. No run requests (DQE.R TI = 0)
5. Execution address is not in the operating system

This entry point continues testing each lower priority task until an eligible candidate is
found. It unlinks that task from its ready state and relinks it to the IPU current state.
This entry point then calls the start IPU subroutine. If no elibible task is found, it leaves
the IPU idle.

9-8

9.7.4 Subroutine S.CPUI - Link Task to IPU Request State

This subroutine links a task to the IPU request queue. If the task is higher priority than
the current IPU task, IPU task replacement takes place.

9.7.5 Subroutine S.CPU2 - IPU Eligibility Test

This subroutine contains the tests for task eligibility to run in the IPU. The items
checked are:

a. Is the task executing in the monitor (DQE.OSD)?

b. Is the task CPU only (DQE.IPUR)?

c. Is the task IPU inhibited (DQE.IPUH)?

d. Is a system action request pending against the task (DQE.SAIR)?

9.8 IPU Accounting Module Descriptions

9.8.1 Entry Point 1 - Field Interval Timer Interrupt

This entry point fields the IPU accounting interval timer interrupt. If there is a current
IPU task, it updates a local IPU execution time accumulator. If the IPU is idle, the IPU
idle time accumulator (C.IDLAl) is updated. The timer is then reset for I second and the
handler is exited.

9.8.2 Subroutine S.IPUIT I - Perform Accounting After IPU Trap

This subroutine is called by H.CPU after an IPU HALT trap is fielded. It updates the
TSA of the current IPU task with the accumulated IPU execution time and resets the
interval timer to accumulate idle time.

9.8.3 Subroutine S.IPUIT2 - Perform Accounting Prior to Starting the IPU

This subroutine is called by H.CPU just prior to calling S.EXEC80 to start the IPU. It
updates the IPU idle time accumulator and resets the timer to accumulate execution
time.

9.9 IPU SYSGEN Directive

Upon encountering the following directives, SYSGEN automatically includes H.IPU and
H.CPU in the target system and sets C.IPU to indicate the IPU is configured:

//HARDWARE
/PARAMETERS
IPU

If an IPU accounting interval timer is present, the following is required (after the
/INTERRUPTS directive):

PRIORITY = 77,R TO" =(channel,subaddress),PROGRAM=H.IPUIT,INTV

However, if a Scientific Accelerator is also configured, priority 3F should be used for the
IPU accounting interval timer.

9-9/9-1';

I :
-.~/

10. MPX-32 HANDLER FOR HIGH SPEED DATA INTERFACE (HSD)

10.1 HSD Overview

The HSD handler is an optional software component of MPX-32 which provides general
device support for user devices connected to an MPX-based SERIES 32 computer.

The handler design is based on the notion that the HSD hardware acts as a controller: it
performs hand shaking with the CPU and performs all SelBUS operations needed to fetch
and store either data or status relating to requested operations. Therefore, references to
the HSD imply controller functions which are generic to I/O operations in general. The
device attached to the HSD is the user's addition. Little is known or presumed about its
nature. The general assumption is that the device can source and/or synchronize data
with the possibility of presenting device specific status on request.

For additional information, refer to the High Speed Data Interface Technical Manual,
publication number 325-329132-000.

10.2 Related Data Structures

The HSD handler provides a software interface between MPX-32 tasks and the HSD. The
HSD, in turn, provides a hardware interface to a user device. The HSD is a class 'D' I/o
device that uses an Input/Output Command List (IOCl) located in the processor memory
to provide the commands for the operation. The IOCl is made up of one or more
Input/Output Command Blocks (IOCB's). For each I/O operation processed by the HSe
handler, an IOCl will be constructed. When the operation can be, it will be initiated b~
loading the address of the IOCl into the Transfer Interrupt (TI) location assigned to the
device and executing the command device instruction START I/O for the HSD.

10.2.1 HSD I/O Command Block Structure

The HSD uses a four word 10CB with the following format:

Word
o

1

2

3

0

HSIXMD

7 8 15 16 23 24

UDDOv1D Transfer Count

Data Address or Device Comnand

Unused by Hardware (Software)

HSD/Device Status Word

~ 1

10-

, -,

where:

HSDCMD is the HSD command and defines the operation of the controller with the
following bit definitions:

10.2.2

Bit

UDDCMD

o
1
2
3
4
5
6
7

Transfer Count

Data Address

Device Command

Unused Word

HSD/Device
Status Word

IOCB Classes

When set indicates input transfer, reset for output.
Command transfer, Word 1 of 10CB is sent to device.
Device status request, store into Word 3 of 10CB.
Continue on Error.
Interrupt when completed processing 10CB.
Transfer in channel; that is, branch to specified 10CB.
Command chain, that is, execute next 10CB.
Data chain, continue transfer with address and count specified
in the next 10CB.

is the user device dependent command byte and is
passed by the HSD to the user device.

is the count in bytes to transfer when the operation is
not a command transfer or Transfer in Channel.

is the physical address of data to be read or written (if
data transfer operations) or the address of the 10CB to
process next if a Transfer in Channel.

is a 32-bit value sent to the device in the case that
HSDCMD Bit 1 is set to A 1.

is made available for use by the software.

is used to store operation status whenever an interrupt
on end of block is requested or to store external device
status returned in the case that HSDCMD Bit 2 is set.

The HSD I/o Command List (IOCL) is composed of one or more I/o Command Blocks
(IOCB's). Each 10CB is one of the following general classes depending on the bits set in
HSDCMD:

1.
2.
3.
4.
5.

10-2

Device Command Transfer
Device Status Transfer
Transfer in Channel
Data Transfer Request
Data Chain Descriptor

C' ", \

o

".
i

(

(

10.2.2.1 Device Command Transfer

Device commands are operations with the command transfer bit set in the HSDCMD
byte. The second word of the 10CB is sent to the device. This is generally used to
provide device addressing or commanding. This is normally followed by a transfer
request, but not necessarily.

10.2.2.2 Device Status Transfer

Under normal conditions, the status posted in the IOCB is controller status, i.e., generic
information about the transfer. If specific information about the device is desired, it
must be specifically requested by constructing an 10CB with bits 2 and 4 set in
HSDCMD. This will cause the HSD to request the specific device status, and store it in
the 10CB word 3. By convention, bit 0 of the returned status in word 3 is set to a 1 to
flag device status as opposed to controller (HSD) status.

10.2.2.3 Transfer In Channel

This command is used to instruct the HSD to continue processing the IOCL at the address
specified in the second word of the 10CB. This is a branch in the I/O Command List. A
TIC is gener:ally. used to link discontiguous IOCL's together to form one logically
contiguous command set or it is used to cause the device to reexecute the I/O Command
List. In this case, the interrupt on end of block (word 3 of IOCB) is usually set to inform
the software that the device has restarted the I/O command list.

10.2.2.4 Data Transfer Request

All 10CB's which do not have the command transfer, device status request, or transfer in
channel bits set are data transfer requests. Write request is indicated by setting bit 0 of
HSDCMD to A 1.

10.2.2.5 Data Chain Descriptor

This form of 10CB can only occur following a data transfer or another data chain
descriptor IOCB. It has the effect of specifying a continuation of the current transfer
operation. It is used to effect a "scatter write" or "gather read." One use is to account
for the discontinuities in the logical-to-physical mapping of tasks in MPX-32.

10.3 HSD Request Processing

The handler will accept requests in two general formats. One looks very much like other
MPX-32 I/O requests where the buffer address and transfer count as well as an optional
device control word is included in the File Control Block (FCB). This is referred to as
FCB format.

The other format permits the user to construct an I/O Command List (JOCL) and to have
the FCB reference this list of commands to define the desired operation. This is referred
to as STARTlO format.

10--

The STARTIO format is indicated by I/O function EXCPM (Execute Channel Program) {;
and the 15 remaining function codes are FCB format.

In START I/O format, there are two variations. The difference is whether the IOCL
provided is a logical or physical 10CL. A physical 10CL is a final device I/O command
list ready to be processed by the device. All addresses are physical and discontinuities in
the logical to physical mapping have been resolved by breaking the request into
physically contiguous segments with data chaining. A logical 10CL is an I/O command
list representing the desired operation into the logical address space of the task. It must
be transformed to a physical 10CL. This means that the addresses must be changed to
physical, and logical address discontinuities must be accounted for by breaking the
transfer into a series of data chained transfers.

For tasks which will perform the same operation repeatedly, the overhead of translation
may not be acceptable. The physical 10CL can be generated once and used on each
subsequent request. Note that tasks using a single physical IOCL must be privileged and
non-swapable. Physical IOCL is indicated by the task setting the "Data Format Inhibit"
bit in the FCB general control flags byte.

10.3.1 FCB Format Request

This form of request provides an interface to the user device compatable with standard
devices and provides the flexibility to control almost any device. The FCB interface is
designed to permit a device command and/or a data transfer to be initiated as the result
of a user request. The standard MPX-32 FCB used to request I/O contains fields to~/
define buffer address, byte count, and device address. See Volume 1, Chapter 7 of the
MPX-32 Reference Manual for relateci FCB information.

For requests which involve data transfer, the buffer address and byte count describe the
user buffer for the operation. The device address field in the FCB is used to supply the
data to send to the device for device command transfers. .

Note: MPX-32 supports two variant forms of the FCB, normal and
extended. Both forms are supported, however, the normal
form has limited transfer count and device address fields
which will restrict functionality.

MPX-32 supports 16 I/O operation codes. Section 10.3.1.1 defines the operation code
number, its name, its corresponding IOCS entry point number for reference, its use by
the HSD handler, and special considerations.

10-4

(

(

10.3.1.1 I/o Operation Codes

Op Code Name EP Use Notes

0 OPEN 1 device/handler init only called once until close
1 RWND 2 device control function (rewind device)
2 READ 3 output data transfer may cause device command

status
3 WRITE 4 input data transfer may cause device command

status
4 WEOF 5 device control function (write end of file)
5 EXCPM 10 ST AR TIO format request not used for FCB format
6 ADVR 7 device control function (advance record)
7 ADVF 8 device control function (advance file)
8 BKSR 9 device control function (backspace record)
9 BKSF 19 device control function (backspace file)

10 UPSP 20 device control function (up space)
11 ERPT 21 device control function (erace or punch trailer)
12 EJCT 22 device control function (eject)
13 CLOSE 13 device/handler reset
14 RSVP 24 device control function (reserve port)
15 RLSP 27 device control function (release port)

10.3.1.2 Device Open

This function is intended for user device specific processing as required. The standard
handler will contain a null routine that can be expanded by the user as needed.

10.3.1.3 Device Close

This is the complementary function to open and will also consist of a null routine.

10.3.1.4 Device Control Functions

All device control functions will dispatch to a common routine in the device driver. An
internal table, which could be written at open time, is used to set the UDDCMD field of
the IOCB. The device address field from the FCB is used as the device command word
(IOCB word 1) and will be sent to the device.

Users have the option of adding specific processing to the standard handler on a per
operation code basis. The first FCB special flag bit (bit 8 of word 2 of FCB) is used to
indicate if device specific status should be requested after the device command
transfer. This results in a second IOCB being added to the IOCL. The device status wlll
be returned in extended I/O status word 2 of the FCB. This requires that the request be
made using the expanded FeB.

10- 5

10.3.1.5 Data Transfer Initiate Requests

Input and output requests are processed in the same fashion. The only difference is the
direction bit in the HSDCMD. The following special flag bits are used to control the
operation:

SCFG 0
SCFG 1
SCFG 2
SCFG 3

Request Device Status After Transfer
Send Device Command Prior to Data Transfer
Disable Timeout on this Request
Set UDDCMD from Least Significant Byte of Word 2

Request Device Status After Transfer - This bit indicates that an IOCB should be
added to the IOCL to retrieve device specific status after the data transfer has
completed.

Send Device Command Prior to Data Transfer - This bit indicates that an 10CB
should prefix the data transfer to transmit a device command word to the device. If
the FCB is the expanded form, the value sent is the 32-bit expanded random access
address. Otherwise, the value sent is the least significant 20 bits of word 2 of the
10CB: the random access address field.

Disable Timeout on this Request - This flag indicates that the operation will take an
indeterminable period of time and the handler should wait an indefinite period of
time for the I/O to complete. This generally only has meaning on read operations.

Set UDDCMD from Least Significant Byte of Word 2 - This bit indicates the
UDDCMD byte in the data transfer operation should be set from the least significant
byte of the random access address field of the FCB. This provides the ability to pass
additional control information to the device without modifying the device driver.

10.3.2 STARTIO #Format Requests

The STARTIO format is intended to permit tasks to take full advantage of the hardware
capability available from their device/HSD interface.

A STARTIO format request is indicated by the operation code EXCPM. The data format
inhibit flag bit indicates request with physical IOCL. For physical 10CL requests, the
handler simply queues the request for processing. For logical requests, the IOCL must be
made physical.

This involves three transformations. First, all addresses in data transfer 10CB's must be
converted to physical. In addition, each time a transfer crosses a physical boundary,
(8KW for a 32/7x and 2KW for a CONCEPT/32), the request must be broken at the
boundary, and data chaining must be specified to account for the physical discontinuity
of the task address space. Finally, Transfer in Channel request addresses must be
updated to reflect the final address of the target 10CB. This must account for
expansions in the 10CL due to intervening data transfers that have crossed map blocks.

10-6

(

(-

The HSD device handler in MPX-32 supports two additional functions as part of the start
I/O protocol. They are:

1. Subtract one and branch non-zero 10CB (SOBNZ).
2. Asynchronous status presentation.

These functions are initiated when the HSD handler receives a non-terminal interrupt (an
interrupt when Transfer Interrupt (TI) status does not indicate End of Line (EOL». This
indicates that the interrupt on End of Block bit was set on an 10CB that was not last in
the list. The 10CB could be a TIC or a command with the command chaining bit set.

10.3.2.1 Subtract One and Branch Non-Zero

This function is a special version of the Transfer in Channel 10CB. It provides the ability
for the task to specify that a series of 10CB's may be executed a specific number of
times.

0 7 8 15 16 2324 11
Word

a HSIX1v1D UDDCMD Not Used

1 Address of Next IOCB

-2 Initial Count Current Count

3 Normal Next IOCB Address

The HSDCMD specifies Transfer In Channel (TIC) and interrupt on end of block. When
processing starts, the initial count and current count values are equal to the number
minus 1 of times to execute the IOCB loop. The contents of word 1 and 3 are equal of
the address of the 10CB to execute in the loop.

Each time the HSD processes the TIC, it will interrupt. The handler will detect the
interrupt to be a SOBNZ function and subtract one from the current count value. When
this causes the count to go to zero, word 1 is modified to contain the 10CB following the
SOBNZ. On the next pass, the interrupt will indicate that processing has passed out of
the loop. The handler resets word 1 to the loop IOCB from word 3 and resets the current
count from the left half word of word 2.

10-7

1

10.3.2.2 Asynchronous Status Presentation and Notification

Asynchronous status presentation and notification is a software analog to the hardware
capability to receive an interrupt and HSD status on the completion of each block, or the
ability to explicitly request status from the device at the completion of any operation.

Asynchronous Status Presentation - When a logical JOCL is converted to physical
and asynchronous status is required. The address of the logical 10CB is saved in
word 2 of the physical 10CB. When the HSD handler receives a non-terminating
interrupt, the 10CB indicated by the TI location indicates status should be posted in
the user space. This is done by copying word 3 of the physical 10CB to word 3 of
the logical 10CB and by adding to the right halfword of word 2 of the logical 10CB
to indicate that the status changed.

Asynchronous Notification - Asynchronous notification is a logical extension to the
I/o end action routines in MPX-32. They are delivered with the same priority as
I/o end action routines so that notification routines will not interrupt end action
routines and vice/versa.

Whenever the HSD updates status in the task's logical address space, it checks to
see if the previously requested notification has been delivered. If yes, the request
for notification interrupt is requeued to the Task Interrupt Dispatch Queue. If it
has not been delivered, nothing further is done. Whenever the task receives the
interrupt. It must check for all possible status changes until it finds one that has
not changed. On the next interrupt, the task can be assured that the status will
have changed, since the hardware executes the 10CL in a well defined order. The
task should know where to look for status changes.

10.4 HSD I/O Request Processing Details

When an I/O request is made by a task in MPX-32, 10CS performs some initial
validation. If validation is successful, IOCS transfers control to the associated device
driver at entry point five with the address of the user's FCB as input. Byte zero of the
FCB is set to contain the requested operation code in the range of 0 to 15. The handler
performs an indexed jump based on this value. In the standard driver, this will result in
codes 0 to 13 going to the FCB format request routine, 14 to the logical 10CL routine,
and 15 going to the physical IOCL routine.

10.4.1 FeB Format Request Processing

Processing of the FCB request is done in two phases. First, the required size of the IOCL
is computed. This is added to the size of the I/O Queue Entry (lOQ) and the 10Q is
allocated from the system's memory pool. The I/O queue portion is then initialized by
the IOCS routine INIT .IOQ. The JOCL is then constructed according to the tables based
on the tasks operation code. The request is queued to the CDT and initiated in its turn.
When it completes, the final status is sent into the FCB and the request is terminated.

10-8

I. 'I (.. '" , .¥

o

(

10.4.1.1 FCB Request JOCl Size Computation

The IOCL for FCB format request has from one to three sections in it. They are any
combination of:

1. Device Command Transfer IOCB
2. Data Transfer IOCL
3. Device Status Request IOCB

The device command and status IOCBls are always one word. Space is allocated if the
related function is required. The data transfer IOCL is one IOCB to initiate the request
with one additional IOCB for each map block crossed by the transfer. The total size is
the sum of the required pieces.

10.4.1.2 FCB Request JOCl Construction

The following procedure defines the construction of the IOCL:

1. Set IOCBPTR to first IOCB.

2. If device command transfer required, then:

o set HSDCMD to CMDXFER
o set device address from FCB to word 1 of IOCB

If data or device status transfer required, then:

o set command chain in HSDCMD
o advance IOCBPTR
o ENDlF
ENDlF

or

If data transfer, then:

o set HSDCMD to read
o if transfer is write, then set output bit in HSDCMD

W: set XFERADR in IOCB to transfer address·
o set XFERCNT in IOCB to number of bytes within map block
o add XFERCNT to transfer address
o subtract XFERCNT from transfer count

If transfer count greater that zero, then:

o set data chain in HSDCMD

10-9

o advance IOCBPTR
o go to W
o ENDIF

3. If device status request, then:

o set command chain in HSDCMD
o advance IOCBPTR
o ENDIF

4. If device status transfer, then:

o set HSDCMD to XFRDEVSTAT

5. Set interrupt on End of Block in HSDCMD (for last IOCB)

10.4.2 Logical IOCL STARTIO Format Request

Users of this form of request will generate a logical IOCL. This will contain some
number of IOCB's that define their operation. The IOCL will perform anyone the
following operations:

1. Command Device
2. Transfer In Channel
3. Data Transfer
4. Data Chain

The logical IOCL must be converted to a physical IOCL since the device deals in terms of
physical addresses which can not be generated by a non-privileged user. Also, transfers
which cross map block boundaries must be separated using data chaining to allow for
physical memory discontinuities. The entire IOCL is copied to the system memory pool
to perform the conversion. This insures the physical IOCL itself is physically contiguous.

10.4.3 Conversion of Logical to Physical IOCL

The conversion process varies for each type IOCB in the logical IOCL. Command device
IOCB's need no conversion other than the move to the physical IOCL.

Transfer In Channel IOCB's must be moved and the physical address of the target IOCB
must be found. This results in a two pass conversion of the IOCL. During pass 1, the
TIC's are simply copied to the physical IOCL. Also on pass 1, word 3 of each IOCB in the
physical IOCL is loaded with the logical address of its counterpart in the logical IOCL.
This serves as a logical to physical address translation table. At the end of pass 1, when
the IOCL has been expanded to its maximum size, pass 2 is initiated. Pass 2 searches the
physical IOCL for TIC's and then searches the physical IOCL for the JOCL which
corresponds to the logical IOCB referenced in the TIC. The address is updated.

Data transfer and data chained entries are handled the same way as TIC's. Each time the
requested transfer crosses a map block, the IOCB is divided and data chaining is
specified. This results in the physical IOCL becoming larger than its logical counterpart

10-10
I.,'

I

(

(

which necessitates the use of the translation table for conversion. (Same as previously
described for TIC's.)

The size of the physical IOCl is equal to the size of the logical IOCl plus the additional
space required for the additional data chain entries needed. Therefore, the size is
computed by adding the number of TIC, device command, and device status 10CB's plus
the number needed to map each data transfer initiate or data chain IOCB.

10.4.4 Physcial JOCL Processing

Service of this request is a subset of the logical 10Cl processing in that the 10Cl needs
no conversion. Tasks must be privileged and resident to use this form of the request. An
I/o queue and a notification packet is allocated for processing this request. When
asynchronous status is presented by the device, aU that is done is to bump the right
half word of word 2 of the 10CB and request a task interrupt.

10.5 Common Request Handling

For aU requests, an I/o queue is allocated and set to describe the request. This includes
the 10Cl address to account for the variation in location of the 10Cl depending on the
request type.

10.6 Product Relationships

The HSD handler becomes an integral part of the MPX-32 system when included at
SYSGEN time. The handler is designed to operate with MPX-32 release 1.2 and above. It
will require minimum 1.2 level software to operate.

10.7 Device Considerations

Development of the generic HSD handler has uncovered several characteristics of the
HSD which would require a significant increase in the overhead of using the device if
programmed around. They are described in this section.

1. The device will not interrupt on END-OF-LIST unless explicitly told to do so.

It is software's responsibility to insure that the IOE bit is set whenever an IOCB
does not have COMMAND or DATA CHAINING set in order to insure that an
interrupt is generated when the device goes idle.

2. In the case of non-present memory or FIFO overflow when the 10CB has
CONTINUE ON ERROR set, the device will post status but only interrupt if the
INTERRUPT ON END OF BLOCK bit is set. It was felt that the device should
interrupt when it posts error status.

When the HSD is operated in MODE 2, only NON-PRESENT MEMORY errors are
effected by CONTINUE ON ERROR. Therefore, it is recommended that MODE
2 be used and that CONTINUE ON ERROR be avoided since NON-PRESENT

10-1 '

MEMOR Y errors are serious and their cause should be determined and
eliminated.

3. If the device stops a transfer due to DEVICE-END-OF-BLOCK and is executing
an IOCB in a data chain sequence that is not the last 10CB in that sequence, it
will stop processing the IOCL. The device will not interrupt unless the IOE bit
was set in the IOCB currently being processed, or the device is operating in
MODE 2. INTERRUPT ON END OF BLOCK for an 10CB of this nature is not the
normal case. This behavior varies depending on whether it is the last data
chaining IOCB or not. Also, if COMMAND CHAIN and no INTERRUPT ON END
OF BLOCK is set in the IOCB for which DEVICE-END-OF-BLOCK is posted, no
residual byte count is given. In other words, if there is no interrupt, no residual
byte count is posted.

As indicated, this problem does not exist in MODE 2, therefore, it is again
recommended that the device be operated in MODE 2 to prevent this behavior
from causing a problem.

4. When EXTERNAL MODE is active and the software issues a CD STARTIO, the
device rejects the command with a privilege violation, but no indication is given
to the software. The operation will timeout, resulting in a HALT I/o being
issued which will kill the external operation if it is still going.

This problem only becomes apparent when the device is operated in a
combination of normal (internal) and external control mode. This is probably
rare, however, there is no clean work around. One approach is to have the user
device force an error at the end of each external mode transfer. This will cause
an interrupt each time and if the handler had started a transfer, it would know to
restart the operation. Note that any device timeout must be set long enough to
insure that the external transfer can complete or else it may get aborted in the
device timeout routine.

5. If the interrupt bit is set on a TIC, no SI STATUS is posted, the interrupt is
delivered, and the TIC address is lost, causing the device behavior to be
unpredictable.

10-12

Interrupts on TIC IOCBs must be avoided. When the software needs to know that
the HSD has executed a TIC, it should set the INTERRUPT ON END OF BLOCK
on the previous IOCB. By the time the software finds out what is going on, the
HSD will have long since executed the TIC and will be off processing the IOCL at
the point indicated by the TRANSFER IN CHANNEL IOCB. The speed of the
HSD guarantees this. Also, if the TIC is being used to effect a channel program
loop and manages to complete the IOCB preceeding the TIC before the software
has deactivated the interrupt, the HSD will stall and wait until the level becomes
inactive. Therefore, if the software wants to perform a loop counting operation
and modify the branch address, it can do so with repeatable behavior as long as
the interrupt service routines run with the interrupt level active until after the
adjustment, or the decision not to adjust the TIC destination address, is made.

c

« H. MEMORY-ONLY MPX-32

11.1 System Modifications

A synopsis of modifications made to MPX-32 to create memory-only MPX-32
(MPX-32/M) follows.

H.I.I System Resource Allocator (H.ALOC)

The resource allocation module is modified primarily in the areas of task preactivation
and activation (entry points 1 and 2). Details of these changes are discussed in the
MPX-32 Reference Manual, Volume 3, Section 10.5.

All references to establishing a swapping mechanism for the task are removed. Any
ASSIGN 1 Ofc to file} or ASSIGN2 (lfc to system input/output file) references in the
Resource Requirement Summary (RRS) block of the load module are ignored and all code
associated with the processing of these assignments is deleted. All code associated with
the allocation of files of any kind is removed.

Each task is ~ssigned the pseudonym TSM.xxxx where xxxx represents the logical address
of the system console or zero if a console is not configured. This allows all tasks to
communicate with the operator's console via the TSM mechanism without requiring any
changes to the resident module H. TSM. In lieu of this, the task pseudonym entry in the
activation parameter block is ignored during an activation from M.PTSK.

In addition to the normal abort conditions, an abort indication will be issued by the
memory-only system allocator for the following reasons:

(1) If attempting to allocate an unshared resource that was not available during
task activation.

(2) If insufficient memory to perform task loading.

(3) If inability to resume SYSBUILD during system installation.

(4) If inability to deallocate IPL device after dynamic task activation.

(5) If attempt to share memory via a dynamic memory partition.

H.l.2 File System Executive (H.FISE)

The file system executive is reduced extensively from its MPX-32 counterpart. All entry
points are defined with the exception of entry points 8 (ASCII compress) and 22 (SYSGE0.:
initialization), All entry points return an unrecoverable I/O error or null return
indication. If a call is made to any of the non-applicable entry points, the caller will be
able to process the returned conditions as though the call had been made under MPX-32.

l'

I
'f
I
I

:1 I,
I'

11.1.3 System Loader (H.LODR)

The system loader has been converted to a sequential loading device. Information
obtained from the preamble buffer is interpreted to determine the starting locations of
the various load module sections, as with random access loading. However, if the current
position in the load module does not match the starting position of a particular section,
the appropriate number of records are advanced to position the file location to the
correct point before the information in that section is processed.

11.1.4 System Spooled Output (H.SOUT)

The concepts of system input/output files and batch job stream do not exist in MPX-32!M
and all references to it have been eliminated from the resident system code.

11.1.5 System Swap Scheduler (J.SW APR)

The system swap scheduler is modified to preclude the inswap or outswap of any task.
All references to the swap device are removed. The routine that searches for an outswap
candidate unconditionally suspends itself through entry point 8 of H.EXEC. Therefore,
when a memory scheduling event occurs, outswapping will not take place (hence, no
inswapping).

The swapper task continues to perform the functions of MOS memory initialization and
other memory related operations in the MPX-32!M environment.

11-2

' '.'''\ C·."'·

" !

i~

(

12. E-CLASS DEVICE HANDLERS

This chapter defines a prototype Class E device handler.

12.1 Entry Point I - Queue Drive Interrupt Service Routine

Functional Description

This entry point accomplishes rlevice access on behalf of queued I/O service requests.
Individual queue entries are processed in the order of the requestor's software priority.
Processing of an I/O queue by this entry point continues until the queue is exhausted or
until the associated channel is reserved by a user wishing to issue I/O requests directly.
Upon entry, this routine will typically perform the following functions:

1.

2.

Post-access processing associated with the device access which has just been
completed. Post access processing most typically will include device testing,
automatic error retry, status information update in the 10Q, minimal format
conversions, unlinking of the queue entry for which processing has been
completed, and finding the next highest priority queue entry in the I/O queue
for processing.

Pre-access processing associated with the next queued device access
request. Pre-access processing most typically will include minimal format
conversions and set up of multiple command device instructions which might
be necessary to complete servicing for this single request.

Issuance of the Command Device instructions necessary to service a particular request
may, of course, include the storing of the associated TCW (transfer count and data
address) in the appropriate dedicated TI (transfer interrupt) location.

When the queue has been emptied, processing is discontinued, and the service interrupt is
connected to Entry Point 3 (Spurious Interrupt Service Routine).

Entry Conditions

This entry point is entered at the service interrupt level, as the result of the completion
of a command issued to a device.

The new PSD (program status doubleword) is set so that the machine state will be
unmapped, interrupts unblocked, and the interrupt level that is being serviced active.
The current map at interrupt time is retained. Note that all referenced addresses must
be absolute.

The global interrupt count (C.GINT) must be incremented and all registers saved.

Exit Conditions

After issuing the next command, or after determining that the I/O queue is empty and no
more commands are to be issued, this entry point returns to the point of interrupt after
performing the following functions:

1. Report I/O complete via the appropriate executive routine (S.EXEC 1,
S.EXEC2, S.EXEC3, or S.EXEC4).

12- !

7.. Restore the state of the machine to mapped, block all interrupts and issue a
deactivate request on the interrupt level being serviced.

3. Exit via executive routine (S.EXECS)'

12.2 Entry Point 2 - Queue Start Interrupt Service Routine

Functional Description

This entry point initiates processing of the I/o queue for this channel. Upon entry, this
routine will set the interrupt linkage such that subsequent interrupts at this level will
cause execution of Device Handler Entry Point I (Queue Drive Interrupt Service
Routine). With the exception of post-access processing, (none exists since a command is
not completing), and the method of exiting, this entry point is functionally identical to
the Queue Drive entry point. This routine will therefore, typically merge with entry
point 1 at the pre-access processing phase.

Entry Conditions

This entry point is entered via a "BL" from IOCS with interrupts blocked. IOCS will
cause execution of this entry point whenever a request is queued for this channel and the
queue is not actively being driven.

Calling Sequence:

Registers:

M.IOFF
BL *2W,R2
BL W(-4W),R2
M.IONN

CDT Address

(Block Interrupts)
(From 10CS to EP2)
GPMC devices
(Unblock interrupts)

Rl =
R2 = Handler HAT address (H.MUXO's HAT if GPMC) (WDO of 6 word

interrupt block if extended I/O)

Exit Conditions

This entry point exits directly back to H.IOCS via a TRSW after restoring the saved
registers.

12.3 Entry Point 3 - Spurious Interrupt Service Routine

Functional Description

This entry point is connected to the appropriate SI level whenever the I/O queue is not
being driven (the channel is not in use). The function of this entry point is to prevent a
spurious type interrupt from causing illegal execution of the normal handler entry C~\I
points. Normally, this entry point will keep a tally of all such spurious interrupts
·received. This tally can be used as a check to insure proper operation of the I/O channel.

12-2

(

(

Entry Conditions

This routine is entered from the associated SI interrupt level. The global interrupt count
(C.GINT) mtist be incremented and all registers saved.

Exit Conditions

Exit from this entry point is via executive routine S.EXEC5.

12.4 Entry Point 4 - Lost (Timed Out) Interrupt Processor

Functional Descr iption

The function of this entry point is to take corrective measures appropriate to the device
when an expected service interrupt fails to occur. A running tally of all such time-outs
is normally kept for subsequent reference. Typical corrective action is to reset the
status of the channel by executing a CD "Terminate" command to the channel. This will
cause entry into entry point I where normal status testing and error retry can occur.

Entry Conditions

Whenever a command is issued to a device (normally in Entry Point 1 or Entry Point 2) a
timer associated with the channel for that device may be set. Every timer unit the real
time clock interrupt handler (H.IPCL) calls S.IOCS5 to see if a timer has expired. If the
timer has expired, S.IOCS5 forces execution of entry point 4 of the Device Handler.
When an interrupt occurs, a handler utilizing this time-out feature must reset the timer
so that it will not expire. Execution of this entry point of the handler takes place at the
priority level of the clock connected to H.IPCL.

Calling Sequence:

M.IOFF
BL *4W,R2
M.IONN

Registers:

R 1 = UDT address

(Block Interrupts)
(From S.IOCS5 to handler EP4)
(Unblock Interrupts)

R2 = HAT address of handler
R3 = CDT address

Exit Conditions

After taking the appropriate corrective measures, the Device Handler Entry Point 4 must
return to S.IOCS5. This can be accomplished by execution of the TRSW instruction.

12- ~

. ~I

I!
'I

!
I

12.5 Entry Point 5 - Opcode Processing Reentrant Service

Functional Description

In requesting a particular operation to be performed, the user program will invoke the
appropriate lacs entry point (open, read, write, etc.). The IOCS entry point will
accomplish processing of this request which is common to all devices (e.g. general
parameter validation, etc.). Ultimately, however, the IOCS entry point must pass control
to the appropriate device handler for request processing which is unique to each device.
This is accomplished by the 10CS entry point storing an operation (function) code in the
first byte of the FCR and then entering entry point 5 of the Device Handler. Entry point
5 will then examine the saved OP code to determine the requested operation. User
control specifications pertinent to the request are of course, contained in the FCB.
Entry point 5 may wish to examine these specifications in order to handle the service
request. For service requests which do not require device access, (e.g. rewind of a disc
file) a service complete return can be made to IOCS. For requests which require device
access, the handler should call subroutine S.IOCS 13 to allocate I/O queue space and
buffer space if necessary. The handler should then make a "Request Must be Queued"
return to 10CS. If this type of return is taken, laCS will expect to find in registers 5, 6,
7, the special information which must be stored in I/o queue entry words. These three
words are called the Handler Function Words, and may contain whatever information is
desired to be passed from Device Handler entry point 5 to Device Handler entry point(s)
1 and/or 2. These function words would typically contain (I) any special handling flags
required, (2) the transfer quantity and data address (TCW), and (3) the appropriate
command device instruction.

Entry Conditions

Calling Sequence:

Registers:

RL *5W,R3

R 1 = FCR address
R2 = FAT address
R 3 = HAT address

Exit Conditions

(Iocs to handler EP 5)

Entry point 5 must select one of the following four returns by branching unconditionally
to the external labels listed below.

Return 1 (Illegal OP code-BU ILOPCODE) is selected when the OP code passed to the
device handler is clearly in error (e.g. a read operation requested from the line printer
device handled.

Return 2 (Servicing Complete-BU SERVCOMP) is selected when the request has been
serviced, with no device access required (e.g. rewind of disc file). This return may also
be taken to ignore requests for operations which have no meaning for this device, but
which the user program may have included for the sake of device interchangeability.

12-4

((-:-~\

"'-.Ji

(

(

('

Return 3 (Post Transfer Processing Required-BU POSTPROS) is selected when device
access is required and a request must be queued, but in addition, lengthy post transfer
processing, which should not be done at the interrupt service routine level, must be
performed. Lengthy format conversion or input data manipulation are examples of this
type of post transfer processing. This will cause 10CS to impose "wait" I/o upon the
user, and when the requested device access is complete, to enter Device Handler Entry
Point 6 to accomplish the post transfer processing at the user's software priority level.

Return 4 (Queue Request-BU IOLINK) is selected when normal device access is required
to service the request.

(Note: Registers 5, 6, 7 must contain the handler function words as described above).

Registers:

R 1 = FCB address

12.6 Entry Point 6 - Post Transfer Processing Service

Functional Description

This entry point is used if the device requires lengthy post transfer processing after
input. It would typically be used for lengthy format conversion or input data
manipulation.

Entry Conditions

This entry point is entered at the software priority level of the user on whose behalf the
original I/O request was issued.

Calling Sequence:

Registers:

BL *6W,X3

RO = Return address
Rl = FCB address
R2 = FAT adress

(IocS to handler EP6)

R3 = HAT address of handler

Exit Conditions

This entry point exits to 10CS by executing a TRSW RO instruction.

Registers:

R 1 = FCR address

12-')

12.7 Entry Point 7 - Error Processing

Functional Description

This entry point is entered at the software priority level of the user when 10CS
determines that an error or abnormal condition was encountered during device access.

Entry Conditions

Calling Sequence:

BL *7W,R2 (Iocs to handler EP7)

Registers:

R 1 = FCB address
R2 = HAT address of handler
R3 = IOQ address

Exit Conditions

Entry point 7 must select one of the two returns listed below. The return is selected by
adding 0, or 1 words to the return address contained in register zero, and then executing
a TRSW RO instruction to effect the return.

Return 1 (Operator Intervention Not Applicable) is selected when operator intervention,
followed by operator specified retry of the device access is not applicable to this
particular error. It should be noted here that compatible treatment of error status
between entry points 1 and 7 is necessary. In order to effect operator specified retry,
the I/O queue entry on whose behalf the error was encountered must be left strung to the
Controller Definition Table (COT), and not unlinked as it would be if it was determined
by entry point 1 that operator specified retry did not apply. If this return is taken, the
IOQ must have been unlinked from the COT during entry point I processing.

Return 2 (Allow Operator Intervention) is selected when it is desired that an error
notification message be printed by IOCS on the operator's console, and the operator given
the opportunity to specify retry or abort of the I/O operation. If this return is taken, the
IOQ must remain linked to the COT during entry point 1 processing.

Registers:

R 1 = FCB address
R3 = IOQ address

12.8 Entry Point 8 - Device Handler Initialization I/o Handlers

Functional Description

This entry point, which may be entered only by SYSGEN, provides the capability of

* 't, ,L>

handler self-initialization of all DCC/device dependent parameters, i.e., Command il."''''
Device and Test Device instructions. Device handler initialization, which is normally V
entry point 8, must be the last entry point of a handler, and code connected to this entry
point should physically be located at the end of the handler.

12-6
, I

i

(

(

Communications between the system (including SYSGEN) and the handler is via the
handler's Halfword Address Table (HAT). This protocol makes the following options
available to the handler:

1. In all cases, SYSGEN resumes loading of subsequent modules at the address
indicated by the entry point 8 HAT pointer. This enables the handler to
allocate or release space to the system. Generally, this option is used to
overlay the handler initialization once it has been executed.

2. If a copy of a reentrant handler has already been loaded (to service another
DCC), the handler initialization may' link its HAT to that logic. Space
occupied by the unneeded logic may be returned to the system by updating the
address in its entry point 8 HAT pointer.

Entry Conditions

Calling Sequence:

BL

Registers:

RO =
R2 =
R5 =
R6 =
R7 =

Exit Conditions

Return Sequence:

M.XIR

*8W,R2 (SYSGEN to handler EPg)

Return address
HA T address of handler
HAT address of GPMC device handler if applicable (e.g., H.ASMP)
UDT address
bits 0-7
bits 8-31

HAT

hardware priority level
CDT address

(Special SYSGEN Initialization Termination Macro)

Note: "HAT" is a label equated to 0 relative within the handler.

Registers:

Same as on entry

Common Handler Subroutines

A set of resident, reentrant subroutines are provided for use by the I/O Device
Handlers. This set of subroutines is designed for use by entry point or 2 of a device
handler or by the I/O post processing routine S.IOCS 1.

12- -

12.9 Subroutine S.IOCS2 - Common Test Device

Functional Description

The' purpose of this routine is to accomplish device testing and to update the resulting
status information in the user's I/o queue entry. It is entered at the device SI priority
level.

Entry Conditions

Calling Sequence:

Registers:

BL S.IOCS2

R 1 = 10Q address
R2 = COT address
R3 = address of test device parameter block

Note: This test device parameter block consists of 3 test device instructions for the
appropriate device as follows:

TD8000
TD4000
TD2000

In the case of a device to which 2000 level status does not apply, two NOP instructions
may replace the TD2000.

Exit Conditions

Return Sequence:

Registers:

TRSW RO"

R 1,R2,R3,R4,R5
RO,R6,R7

= same as on entry
= destroyed

12.10 Subroutine S.IOCS3 - Common Queue Entry Unlink

Functional Description

The purpose of this routine is to unlink the current I/O queue entry from the Controller
Definition Table (COT) link list. It is entered by entry point 1 of the device handler or by
the I/O post processing routine S.IOCS I at the device SI priority level or with interrupts
blocked respectively.

12-8

o

I
i
I,

"

(
Entry Conditions

Calling Sequence:

Registers:

BL S.IOCS3

R2 = 100 address
R3 = CDT address

Exit Conditions

Return Sequence:

Registers:

TRSW RO

Rl
R2,R3
RO,R4,R5,R6,R7

= CDT address
= same as on entry
= destroyed

12.11 Subroutine S.IOCS4 - Half ASCn to ASCn Conversion

(Functional Description

The purpose of this routine is to convert half-ASCII to ASCII coded data. It is caned by
the special I/O post processing routine S.IOCS 1 and runs at the requestor's software
priority. Note that the data is converted in place within the buffer ,i.e., data to be
converted buffer = destination buffer.

Entry Conditions

Calling Sequence:

Registers:

BL S.IOCS4

R2 = address of data to be converted
R2 = destination address for converted data
R4 = negative number of bytes to convert

Exit Conditions

Return Sequence:

TRSW RO

12-

Registers:

12-10

RO,Rl,R5,R7
R2,R3,R4,R6

= same as on entry
= destroyed

(

('-

12.12 E-CLASS Line Printer Handler Coding Example

.LINE PRINTER HANDLER RELtASE 1.5 MPX HEAOEA H.I-POO
• DATE 6/0l/8Z TIME I 17144 -

PROGRAM H.~POO
t •• * •• ** ••• tt._ •• *t.* •••••••••••••• _t_ •• - ••• _.*_.***.**et_.*_*_* ____ *t __

*
*
*

.

LINE PRINTER HANDI-ER --•
* -
* -*.tt. __ ***** •• ___ t**_t*_*_._*_ •• _- ______ *_*._*_*.* __ ._-**- •• *****-*-*---

*
* •
* HAT

".LPOO

SPINT

* • • • •

M.EYUI .,
ENOM
M.IOQ.
ENOM
M.COT.
ENOM
M.UOT.
ENOM
M.FCB.
fNOM
.... ICS.
ENOM
M.OQE.
ENOM
EXT
EXT
EXT
EXT
EXT
EXT
EXT
ExT
ExT
EXT
EXT

a.ExEC)
a.ExEC"
S.EXECS
I.IUCSZ
S.lOCS)
I.IOCS10
1.~OCS15
S.10(';S13
lLOPC.9DE
SERVCOMP
lU'-INf(

HANDLER AOUREIS TABLE

EQU
DEf
EQU
DATA"
ACH
AC"
ACH
AC"
At"
AtH
AC"
At"

I
".LPOO,LPOO.8
S
I
L.POO.l
L.POO.i
L.P~O.l
L.POO.4
L.PIIO.5
&.POO.e.
&.1'00.7
&.POO.I

LINI PRINTIR

NUM8ER 0' HANDLER ENTRY POINTS
QUEU£ DRIVE INTERRUPT SERVICE ROUTINE
QuEU£ ITARt IhTERRUPT SERVICE ROUTI~~
SPU~IOU& INTERRUPT SERVICE ROUTI~E
LOST (TIM~D OUT) INTERRUPT PROCESSO~
Opcuut PROCESS IN. REENTRANT SERVICE
POST TRANS'ER PROCESSIN& SERVICE
ERRO~ PROC£IIIN& ENTRY POINT
INIT i. P •.

12- ! I

J
I

:~

';""1

• COMMgN PARANETER' I E. P •• INIT
•
PAl DATA" 0 COT ADDRESS
PAZ TD X'7A',X'1000' Ttl IUUO
tlAl TO X"AI,X'4000' Ta) 4UOO
tlA4 T&l X'7A',X'iOOO' TO iOufl
tlA5 CO X'7A',X'O' Cil "SAS IC) •
PA6 OATA~ -4 Lost !NTERRUPT TIME OUT YALUE
~A7 01 ;C'Zl' OlSAdLE INTtRRUPT INSTRUCTION
PA8 to1 X'Zl' ENASLE INTE~~UPT INSTRUCTION
~A9 Itl x'al t HtQU~~T l~Tt~~UPT INSTHuCTION
PAU CD ."A',X'1000' CIl Tt.WMINAT~

DATA ..
. . ,

SPu~lous INTEN~UPT COUNTER PAll 0
~All OATA .. 0 LOST1~TERRUPT CUUNTER
PA14 OATA. 0 TI D~UICATEO LOCATION
I'A15 OATA .. 0 51 OfUICATEO LOCATION -
*
* LU,E PH INTER
* SPECIAL PARAMETERS I E. P. 8 II'41T
•
HL.PCOT EQU
~PAl DATA ..
SPAi DATAW
SPA] DATA"
SPA4 DATA"
SPA5 DATA ..
•
SPA' DATA ..
• CO SPA7

TAttLE FOR
DATA~

DATA"
DATA ..

SPAI
S~A9
SPA10
~~All
SPA1Z
ttLPFCT8L

•

DATA"
DATA"
OATA"
&lATA.

S-l"
.'FfD68800' - CD t::JECT AeiD PRINT 1
X'I"F068000' • Ca) NO SPACE AND PRINT Z
X'FFuoaaoo' 1 Ca) c.JECT ANI) PRINT 3
X'FF&)6~100' U Cal SPACE (OUUBLE SPACE) • X'FF&l'"l00' CD SPACE AND PRINT 5

X'F'O'O_OO' CU EJtCT (OP-CUOE)
'O~MAT CUNT~OL ONLY (QTY TO PRINT EQU ZERO)

X'FFOoOIOO' • CO EJECT .
x"'w,oaoo' • CO ~JECT
X'FFU60IuO' 1 CO eJECT
X'FFOoOl00' 0 CO iPACE
X"FO'0100' SPACE CD SPACE
X"'DolOOO' CO'Tt~MINATE
C' ',C·O',C'l"C~.~,~'·'

* INTERNAL SAVE CELLS, FLAGS, AND MASKS
•

tlOUNO
ITACK 'II'
ACTIVE 11£1
CO*'iAO" .1111 .
FLAi. DATA'
ENTRY'T lQU
~OSTPROC EQU
COTEMMFL EQ",
MASKi. DATA.
MAS"l' DATA.
MAl.lA0'- DATA.
TERMSTAT DATA.

'OUND
,SC.''''. 1t11

12-12

•

...
8"
I'"
1"
o
Z
3
7
X'"", X'fi'",,' xt""" .·.0 ••••• 0·

• lD a ...

RlillTIR SAVE ARIA
ACTIYI QUiUE ADOR"I
~VM''''~Tl~ WUlUI ADORE ••
, .. Ail
I' SiT • iNTI.IO AT I'Z
l' I&T • 'OST 'ROCESIINi RlQUIRlO
l' S.T • CD T£RMINAT£ "AI ISSUED
n.o .YT£ MAlIC
TttRI& I'T' MAl"

Dec iRa, CO TI'-MINATt
IC " MUIT I' DOUILlwo.l I(wHOID C)
ii -OlD ICRAT'MPAD ,a. 1.llle

(
_ •• *---_ .. _-*--.****- ••• _* •• **---***._-**_ •• *-* ••• ******************

• * • LINE PRINTE~ HANOLEH *
* £NT~Y PUINT 1 *
* QUEuE OWl~E INTERRUPT ~ERVICE ROUTINE •
* * _.**_ •• _**-***--**---*****----**-*.******._* ••• ******-****-*********.*** , ,

~OUNO lU '
LPOO.l WEZ 2~ OLPSU SAYf AH~A

* IOCDA
TCw
EPl

102EA

102ES
102E9

GOON

GONOOS

Noeo ...

UNLINK

•
*

GEN
DAlAW

OATAW
OATA~
ADM
STF
M.TRAC
1FT
TDM
deT
1FT
svc
GOlD

1FT
SVC
GOTO

svc
ANOP

ENOM
Lw
STW
TRR

T~M
as
TaM
BCT
BU
Lt.
ZttM
ZDM
tfCT
TaM
eCF
SiM
ZIlM
LJIW
SNL.

STM
EQU
LW

12IX'800',20/W(EP1J EPl EXtCUTAHLE CODE AOUR
x'UU010000' UNMAP~EO, 847 = ~l~P CURR MAP

o
o
11,C.GINT
IiCO,5TACK
7,~1
C. TlUCF, 102E9
7,l.;.TRACE
1,a .. 2w
7 .~~. 7dO~EA
X'tfl,X'21'
102£9

a~a, D49 • U • UN8LK INT I LEAVE
AOOH uF 2ND .. ONO OF lOCO (32/c7)
D~DICATEO lCw LOCATION (32/27)
AuO l'TO GL.UeOL INTERHUPT CNTH
SAvE'WEGlSTf.~S
f'UR ut.ttuG

(.fQ. es,102Ett
X'C',X'21'
10l£9

""A',7

Rl,ACTlV£
Rl,CUMQEAOR
wl,R2

22,IOQ.FLGS,Xl
UNL.INK
3,IUQ.CONT,Xl
SE',GOON
HL'TUS
H2,AC1IV£
COT£~MFL,FLAGS
O,!Ow.FCT1,Xi
SET,OODUB
1,IOQ.FCT1,Xi
SEI,NOIitOM
5,IOw.IOST,X2
O,lOQ.STAT,x2
R7,lOQ.FCT2,x2
R7,20

GET QUEUE ENTRY ADDRESS
SAVE AS COMPL.ETING gUEUE AOOR
Rl a ACTIVf 109 ENTRY AuORESS

, .

~lLL COMMAND ISSUED?
YES, dlUNCH
IS TfSTINi INHIBITED?
YES, tlRANCH
NO, TtST AND PLACE STATUS IN 109
ifT ACTIVt gU~UE ENTRY AUORESS
CL.EA~ CO TE~MINATE FL"
C~EAW OOU8L~ FLA'
8KANCH IF SET
eOM f LoUa
NO, aRANeH
SET dOM FLA' IN IOQ WRD 14
C~EA~ IN PRo'REsa 8IT IN lOQ
FfTCH TCW FROM 109
~iEP wUANTITY ONL.Y

ACT

R7,IOQ.UTRN,Xi
I
fel"A1
POtsTPROC,"L'(lS

STOH£ QUANTITY TRANSFEREO INTO IOQ

"ETCM COT AUDRESS
StfM
UNL.INK
ENTRY.

log ENT"Y FROM 109
INDICATE PUST PROCESSINi REQUIRED

CMlIN

J
:1
.1
I

• • •
•
•
-"GEP~

NORMCO

SET.TIM

EXIT

EXITl

•
•
•
•

Cl(80

NOWAIT

XZ • luQ ADDRESS
Xl • C~T 4DO"£8'

EXITI
Xl & .XJ • U~CriANGEO
Hl,H4,R& = O;STHOYEO

8L
EQU
La
az
Lw
L. i""
ST"
SdM
Lw
LW
ST"
Sd'"
L.ei
el
dL.T
L.A
ST"
LMI'f
Li'f
STW
SSM
EXM

ZdM
8eT
ZdM
~eF
L.ft
TR~

L8
L.A

T8M
BNS
T"R

8L
au
EQU
T8M
8S
SL.
dU
EQU
8L.

a.IOCSl
a
R2,C~T.IOCT,Xl
wEMPT
t(,,',MASK38
R~,cur."IOQ,)(l

"~,ACTlvE
o , 10111 • S TAT,)"f
R7,10Q.FCT~,x~
~3,PAl
r(7,.COT.TIAO,X3
1,cor.FLGS,X3
H7;C.MACI'!
R7,l
~Er.TIM
tiC7;rCW
~7,·IoeOA
"3,IOQ.UOTA,X2
R7,PA6
fH,UOT.PTOy,X3
1. , U 0 r • F L G a , x 1
IOQ.FCTl,X2

ENTRYPT,FL.AGS
SE',E.ITl
POSTPROC,FL.AGS
St:T,'-'ERGE
~c,Cu~QEAOR

~c'Rb

Rl,IOQ.PRGN,X2
Rl,SCR8L.K

2adOQ.FL.GS,XZ
CI(80
Rl,RJ

5.1U(;315
MER'!
I
O,IOg.CO~T,Xi
NOWAIT
I.ExtCl
Mi~'£
I
8.EXEC4

UNLINK 1/0 QUEUE FROM COT

ANY MORE 1/0 QUEUE ENTRIES?
NO, dRA,...CH
FtTCM 1 BYTE MASK
~~T NExT ~Utut ENT~Y AOOR FROM COT
SAVE w~EUE ~NT~Y AOORESS
SET !~ P~OG~ESS STATUS IN QUEUE ENTRY
GtT Tew F~OM QUEUE ENTRY
GC:T CiJT AuOr(ESS
STOR~ TCw IN OED. TI LOC. VIA COT
SET !IO uUTSTANOING IN COT
Ft:TeH CPu TYPE
3i.17t.t
IF SU ••• SET TIME OUT VAL.UE
F~T~" AOOH OF OEOICATEO TCW LOCATION
STORf TCw AOOR rN Ioca
ftTC~ UOT AuORESS
FETCH TIME OUT VAL.UE
8TO~~ TIME UuT INTO UOT
SET 110 OUTST06 SIT IN UOT
EXECUTE CO IN QUEUE ENTRY

CLEAR ENTRY POINT FL.AG
8RANCH IF ENT~Y FROM EPi
S~OULO POST PROCEsa EXIT BE TAKEN?
Nu, ClRANCH
F~TCri CO~PLET1NG IOQ ADDRESS
Ro .-10Q ADDR

F~TCH PROGRAM NUMBER
FETCH liW SCRATCH 8LOCK ADDR
HI • PRUwRAM NUM8ER
Ri • log AOORESS
Rl • II WHO SCRATCH 8L.OCK AOOR
R, • log AOOR~55
~1L.L. COMMAND ISUEOl
NO, tlliUNCH
RJ • COMP~ETING log ENTRY ADDRESS

OEL.ETE THE 109 ENTRY
8HANC'"

WAIT 1/0 COMPL.ETE?
NO, IRANCH
REPORT EvENT • WAIT 1/0 COMP~ET!
8HANel'!

REPORT EVENT • NO WAIT 1/0 CM'LT

(

MERGE EQU
LA

CALLEXEC EQU
1.0
LA
".TRAC
1FT
TiM
ICT
1FT
S~C
'OTO

102ED 1FT
IVC
GOTO

'02~E SVC
'OiEC ANOP

*

ENDM
L.PSU

1l0UND
RESTRMAP C;EN

DATA ..
* D08El

DAll

EXIT2

•
•
*
* WEMPT

• •
*

lEI

OAT ...
iL

LF
TRS ..

EQU

Llf
aTW
L."
L."
IMW
iU

• QUEUE ENTRY
DODUI EQU

LH
aCT
L.W
ST.
L.I
t"T

• R2,LPOg.1

• 'R6, ICS.OLD, X2
M.!,SJACK
l,iU-
C.lfUCF,·102EC
a,C.TtlACE
1"·2~
• ~E.Q. 7.10iED
X'IS',X'~l'
'O~EC

fETCH EPI AODkEas

ffTCH OLD PSD (EPI OR EP3)
F~TCH AOOR OF REG lAVE BLOCK
FOR uUtus.

II .EQ. e,,02EE
X'C',X'ZI'
'UifC

""A',es

RESTRMAP RESTURE CURRENT MAP

10
12/x'800',20/Wl008EIJ NEw PSD
X'80UI0~OO' . 1133 a IK GRAN, 841 • KEEP CURR MAP

o
S.EXECS

RO,ITACK
NO

I

RT.SPINT
R7,.PA1S
~Z'COMQElOR
~Z,IOIiI.UDTl,X2
UOT.PTOv,X2
EAlT

ADOR~SI IN H2
I

BLOCK EXT~NNAL INTERRUPTS

DAI dUILT IY EPI • ITORED HERE
EXIT TO a.E.XEC, NO RETURN

REaTORE RE&lSTERI
~ETURN

&ET SPURIDUI INTERRUPT ADDRESS
STaRt IN II DtD. LaC.
FETC" CDMPLE.TIN& QUEUE ADDRESS
FfTC" UOT ADDWESS
Z~RO TIME OUT VALuE

Rl,IOQ.FCT1.1H,XZ &ET QUANTITY
L.E,HORMCD BRANCH IF HO DATA TO PRINT
RT,IOQ.'CTZ,Xi FEtCH TCW
R7,.~ll. aTORi IHTO TI DEDICATED L.OCATION
~7,C;MAC" FETCH CPU TYPE
a7.i 3i/1xt

1'1 ;"

8Lf
LA
STW

SET.LTIM LW
L"
STW
EXM
au

HLPTOS EQU
L~

LA
IttM
aeF
Lw
ST"
8U

NoeDTERM EQU
8L
LW
L~
LMW
SCT
TSR

8CT
TtlR

atF
S8M
au

NOTiNOP ToM

HLP ERR

1 ~- 'M

aCF
loM
8u

EQU
I."
S8M
TtlM
8CT
ToM
8eT
ZSM
S8M
jU

SET.LTIM
R7,TCW
R7,*IOCOA
rCi, l\.hil.IJOTA,Xa
,0,PA6
R7, UIH .PTOY, xa
SPAS
EXAT

• k2,PA1
R3,PA2
CUTEI'(MFL,FLAGS
SET,NUCOTfRM
~q,TE"MSTAT

w4,IIJIl.IOST,Xl
HL"'E~R
S
S.IUCS2
R1,AeTlvE
R4,MASl(ld
w6,IUQ.IOST,x1
lW,GuON
IH., 10

SET,I1LPERR
REt,le

SfT,"~OTINOP
4,LUQ.IOST,Xl
ML"'EWR
2S;IUQ.IOST,X1
SET,I1L.PERR
1,ICJw.IOST,X1
GUVN

• R2,ACTIVE
b,IOQ.FI.GS,Xa
1,10Q.CONT,Xi
SE T , l~oaOM
19; IOfil.FL.li3,Xa
SET,~080M
O,IOQ.STAT,Xi
PO~TPROC,'I.A"
QEMPT

IF SO ,., SET LOST INTRPT TID E~
FETCH AODR UF DEOIC~TEO TCW LOCATION \)
U~OATE IOC8 WITH TCW ADDRESS
FiTCH-UOT AOUHESS
fETt" LOST INT TIMEOUT VALUE
srol'(£ TIME \JuT INTO UOT
CO UPSPACE A~O PNINT - - .

GfT COT ADO~ESS
AuDwfSS OF TO 8LOCK
tL.EAW co TERMINATE FLAG
NOT StT '.~ PROCEED NORMALLY
dlTS 1,10,16
STUR~'STATUS INTO IOQ ~RO 14
eUNTlNuE-~~OC~SSlNG

PERFURM DEY ICE TESTING
G,T QUEUE ENTWY ADDRESS
STATUS MASI(_
GfT STATUS, ANY ~RHURS1
NU, tflUNCH
Yt.S, ~NY OCC ERRORS?

YES, dRANCH
NO, l~ UEVICE INCJP

NO, ~I'(ANeH

YES, SET-GENERAL STATUS FI.AIi

HOF STATUS??
NO, dRANCH
RfSET ERROR CONDITION FOUND BIT

QUEUt ENTRY AODRESS
SfT fHROR FOUNO FLAG IN 109
EMROR PROCESSINIi INHIBITEO?
YES, dlUNCH
CHECK FOR NO-WAIT 1/0
YES, .0 UN~INK IOQ
C~EAR 'IN PRO'RES8' INDICATOR IN QU£U
INCICATl POST PROC!SSIN' ElIT R!gUI~'

C,.\
'/

_.**.*.* •• ****.*.***.***********.******-*****.************* •• -.*.-

• * • Ll~E PHINTEH HANDL~A •
• ENT~Y POI~T Z •
• QUEuE aIA"T INTERHUPT SERV1CE ROUTINE *
* •
****************.**************t***'**t********.**~~t*t*tt***t*t.*****.*
LPOO.Z STF RO,STAC~" . SAV~'H~bl~TtHS' . .

86M ENTRYPT,FLA~~ S~T QU~U~ SfAHT FLAG
Lw Rl,PAl GfT t~T AUOH~SS
Lw R6,MAT+1W G~T ~u£uE O~lVE AOuRESS
Slw ~6'*PA1S STOH~ IN'SI D~O. LOC.
au MGEPc=

("

12-1 ..

• •• _** ___ * __ * •••• ******_**.* __ •• * •• _*******.* __ •• ***_***** •• ** __ ** •• t_*_ ~

- -* LINE PRINTER HANDLER *
- ENTrtY POINT 3 •
- SPURIOUS INTE~RUPT SERVICE RUUTINE •
* * .***---*.*-_ ••• * •• ***--*_._.*._*****-******._***-*****.**-* •• *~**~****** SOUND 1 U· - . . - - .. -' . . .
LPOO.3 kEZ 2ft OLOP5U SAVE AHEA

*

EP3

JOZFO

12-18

GfN
OATAit

1~/X'800',20/W(EPl) tP 1 EXECUTABLE CODE AODR
X'U00100UO' . UNMAP~EO, d~1 : ~EEP CURR MAP

8~8, -d49 a 0 • UNeL~ INT' LEAVE ACT
IH.I 2"

AaM
STF
M. flUC
1FT
TaM
BCT
1FT
SvC
C;OTO

1FT
SVC
1i0TO

svc
ANOP

ENOM
AdM
.LA
au

31,C.GINT
~O,STACj(

1,iU
C.TRACF,10ZEF
f,C.TRACE
1,i+lit
7 .trlll. 7"OZFO
X'tt',X'21'
lOZEF

AOU 1 TO GLUBOL INTERRUPT COUNT
SAIJE"REGISTERS
FUR OtduG

1 .EIIl. e,10iFl
X'C',X'il'
'Oif'

~'A',7

31,PAli
RZ,Lto'UO.3
CAL.L£XEC

INCREMENT SPURIOUS INTERRUPT COUNTER
FETCH EP3 AOD~ESI
BRANCH

C'·."'--J

I,
i

(
****--.*.* .. *._ * .. *.* ... _* **.*_.*._-* *-*****-.-_._._-.- ..
•
• ---

LINE PHINTEH HANDLER
tNT'" POINT •

..

Losr INTtWHUPT PROCESSING

--•
•
* -** ... _.*--_.--_ .. _*-**-_ .. _._--**---._._----**_.* -.*.--.. * •• _ ••• _.

LPOO.4 EQU I •
AdM 31,PA13 INC~tMENT LOST INTERRUPT COUNTER
ElM 8~Al~ ISSUE CD TERMINATE
S6M CUfEKMFL,FLAGS SET ~o TEWM. FLAG ISSuEO dIT
TWSw ~o H~TuWN

12-

~'I

**************_***** ••• _ ••• _.*.* ••• ** •• **.*.** •• *.** ••••• ** ••• tt*t_ •• *_ •
* • ~IN~ PRINTEN HANU~ER :0
• ENT';'Y POII-H 5 •
* OPCuUE PRuCESSING REENTRANT SERVICE -* ENTt~= Rl:FCd ADDRESS -* Ai-FAT AOOiCESS •
• •
•• ** •• t*ttt*t**t*.*************** ••• ******* •• *********t****.*t*tt.t*****
~POO.5 EQU .", .

~1
EXM
8FT
Z~

~a
S~~

ttU

* HANO~ER OPCODE
BOUND

OTAB Ecau

RWNO

EJCT

M8QR

READ
UNUSED
AOVR
AOV'

12-20

ACI1-
AC"
ACM
AeM
AC,",
AC,",
ACM
ACM
AeM
AC,",
AC ..
AC"
AC,",
AC,",
At'"'
AC"

EQU
SiR
Ecay

LW
8L.
LW
Ih.

Ecau
EQU
EQU
EQU

114,X'l'
PAZ
OEVINOP
115

~3,FCts.OPCD,Xl
~J,i

*UTAI3,X3

VECT~R TAB~E
1ft

• UPEN
RWND
AE4D
N~.~T
"EUF
uNuSED
ADvR
AD'I'
~IUR
aJ(~F
UtitSP
E~PT
EJ"T
CLi!
uNUSED
UNuSED

• •

RS,l
I

Rl,PAl
S.10CS13
RT,SPAt.
10~lHK

•
~
•

FUNCTION COUE FaN 8'T
tXECUTE 'T08000'
j~A ON ALL eCls SET
C~EAR FUNCTION WOI

GfT UP CQUE FRUM FC8

VECTUR TO OPCCJOE PROCESSOR

1
i
3

" !»
t.
7
I
9
iU
11
ii

14
1~

aET

GiT

tlDN F~A;

CUT AOOR
;ET iOQ
CO EJiCT

IN

MUIT-.' QUEUED

HANDLER FUNCTION

RETURN

WD~

0

(

(

6KSR
dKSF

OPEN
CLSE
wEOF
EI1PT
~CR

*
*
* UPSP

~RIT

EQU
EQU
8L

£QU
EQU
EQU
fwU
aLo
TMSw

EQU

Lw
ilL
LoW
au
EwU
Lw
aL
LoW
LoW
L.W
LMH
L.W
M.CALL
svc
ENOM
.... C.LL
svc
ENOM
LoW
TKR

T8M
BCT
L.W
L.W
SEA

L.t)
CEA

SUI
'NMw
SLL
OAR
AaR
SAL.
L.l
C.M8
ICT
III

I
I
ILOPCOOE

I

• S
I
SENVCOMP
NO

I

R3,PAl
8.10CS13
R7,SPA4
MBY~

I
R],PAl
5.10eS13
Ri,FC~.lOQA,Xl

Ri,I"'Q.UOTA,Xi
A4,MASKid
A7,UOT.MSX,Xi
"et,FCS.TCw,X1
I'4.IOCS,30
O,H.IUCS*i5e+30

H •. ~ocs,ia
O,H.I0CS*iSe+ia

R7,SPAS
iU II",
i,FCI •• CF',X1
SET,!!IBQR
HZ,FeB.IOQA,X1
A],10Q.T8UF,Xi

R5.1
Ae,MASKAOR
R5'ZO
A5,Re
~e,31
A!I,iO

ILLEwAL OR UNSPECIFIED RETURN

REQU~ST 5ERVICIN. COMPL.ETE RETURN

GET COT AOOR
(i~T 109
CO SPACE

GET CUT AOOR
(ifT luQ
FiTCH 109 ADDRESS FROM FCB
F~TCH UOT AOORESS FROM 109

FETC" ~ aYTE MASK
FETCH MAX TRANSFER COUNT FROM WOT
GET tCw FROM FCe
ADJUST AND CLAMP QUANTITY

MAKE TCw ABSOL.UTE

CO SPACE ANU PAINT (OEFAULT NO Fe)
SET WUANTITT IN HFW!

DATA FORMATTIN(i INHIBITEO?
\'I:.S
CltT lUg AOOA
GiT AOOR OF BUFFER IN USER'S SPACE
SET ~ITENOEg ADORESSING

GtT Ft; CHAR
CL.EAN EXTENOED ADDRESSING

DfCREMENT QUANTITY
~EEP-'UORESS UNLY

INSERT NEw QUANTITY
INCAEMENT AODR

Rc,·~B COUNTlR
~4,HL.PFCTBL.+5B,Ri

EQ,'CFNO FC CHAR FOUNO
Rl,l-cw CONTINUE Sf.RCH

12-2 !

FCFND
LI
TRN
ILL
Cl
aCF
SCStf

Ll
TRRM

BeF
ADI

HLPOUT L ..
Ilu

DfVl~OP LI
* •

12-22

al.L

STW
bU
,-POOL

Ri,-58
RZ,Ri
~z,z
~Z, II"
EQ,'+ZW
tC),O

Ztt,HLPOUT
RZ,6tf
Rl,HLPCDT,RZ
MtsLl~

~";X'48FO'

ASSUME SPACE I' NOT FOUND
CUNViRT TU PPSITIVE
CONvi~T TO wORD DISPLACEMENT
11 THIS A DOU~L£ SPACE AND PRINT?
NO
Y~S, SET DOUBLE FLA;

ANY UATA TO 8E PRINTED

YfS
AOJUST POINTEH FOR NO DATA
~£T APP~OPRIATE CO INSTRUCTION
Musr dE QUEUED RETURN
8UILU STATUS TO PLACE IN FC8
S~T tRROR CUND., OEVICE INOP AND
T~ST STATuS 81TS IN THE FC8 •
MOV~ TO Fl~ST HALF OF STATUS wRD

R~'FCB.SFL~,Xl PLACE IN FCB
SEHVCOMP SERVICE COMPLETE RETURN TO laCS

DUMP LITE~ALS HERE

(

••• * ••••••••••••••••••••••••••• * •••• * •• _ •• _ ••• _.*.** ••• * •• * ••••••• **--••
• •
--•

LINE PRINTER HANDLER
£NTWY POINT ,
POST T~AN~FE~ PROCESSING

• -• - -•••••••• *.* •• -* ••••••••• * •••••• *.* •• *._ ••• * •• _ ••••• *-*.***_ ••• _._-*--* ••
LPOO." EQU I,.

TASW NO NOT APPLICAHLE • RETURN

-* ••••••••••• -*.* •••••• *******.*-- •••• *.- •• _**-*-*.*.*****_._*-_ •• _-----
•
• • •

LINE PRINTER HANDLER
ENTK' POlNT 7
fHHON PROCESSING

. .
•
•
•
•

• •
--*-_._**._*--*.-*._-._*.***.***-*****_.*** ••• _ ••• *.*****.****** ••
LPOU.1 EwU I

AOI
TRS~

~O,l"
wo

YES • OPERe INTERVENT. APPLIC.

i
I,
!
,

*****.-_ •• *** •••• *** •• ****** •• *.* •• ****.*****_ ••• ** •• **.***.************
* •

* * *
*
*

LINE PRl~TEH HANULER
ENTHY I'Ol~T I
"ANOLE~ l~lTIALIZATION -0 * •

. •••••• *.*** •••• * ••• ** ••••• ** •••• *.*.**.* •• ****************t* •• *t***
M.INIT LPO,,~PAi,S~Ai;SPA1,ipA4,S'A5,SPA',SPA7,4

SPA8,SPA9,SPA1Q,S~Al1,S~Ala -
LPOO.8 M.EIM

ENUM
ST" 7,PAI
Lw 1,~Al
LB 5,CDT.CHAN,1
S~C 5,~3

SUI S,AOf!F7
H.INITX f"a,:OaF8
LW .,PAa
ANMw .,:OaF8
O .. R 5,.

ST~ .,~Al
ENDM
H.INITX p'3,&OaF8 L __

.,PA3
ANM .. ',iOlF8
O .. R· 5, ..

ST,~Al
ENDM
H.INITX P'4,&Oi'8
LW .,PA"
ANMW ',iO~F8
O~R 5, ..

Sr.I .,~A4
ENOM
M.INITX P15,lOaF8
LVI tt,PA'
ANMW 6,iOiF8
ORR 5, •

ST .. • ·,~'5
ENDM
LNW 5,P, ..
SCT ZIti '~i"
"PM" 4,C.MTIM
DVM" 4,~.I'HIM
BCF 6,AOiF9
L.l 5,1

10i'9 TRN 5,5

ST .. '5,P"
L.. t 5,CDf.lPL.,1
SRC 5,!) o

12-24

M.!N!TX PA7,I02FI

L" .,P"
(ANMIf ',IU~FI

OAR 5,!

ST. .,PAl
ENDM
M.INITX P'8,!OcFI
Lif .,PA8
ANM" ,-,'O~FI
O~A 5,!

ST" ,-,PAl
ENDM
M.1t~lTX P'9,~02F8
L" ,-,P'9
ANMW ,,'U~F8
O~A 5,!

ST" ,-,P"
£t4DM
Lfl 5,iOlF7
".IN!TX PAll,IOlFI
Lw ,-,~AII

AN"''' ,-,IOZFI
OAR 5,1t

(ST" ft,r'All ..
,- END.

LI 2,CDT.IPL,1
TAR 2,~
SLL 5,~, I OAM. 5,'OlF' I,

ST- 5,UA!1
L8 "C.MACH ,

I

Cl "i , I,

i
IlLT IOlFj r

L" 3,"AT+l.
ZitI),ll

LA 4,5W,)
ST" ",PA14
IT" 4,"DT.TIAD,1
Ll 5,i'Fl'
ILL),i

ADM. 5,C.IP'D
TAR 2,1
ILL S,1l
ADM" S,U,)
lUI 2,4
ILL i,l

(~\ AOJ i," • ADM .. i,~1f,3

12-25

ST .. .,O,Z
LW],HAT+1W
ZaR J,~l (~:

.,$<'

STW 2,4W,]
au lO~FC

l02F8 AOI 2,)C'10'
SLL 2,2

ADMW 2,I.:.SPAO
LH 5,iH,l
SuI 5, .. (140'
ST" 5,Io'AI4
STW 5,COT.TIAO,1
1.1 7,""40'-
La .,COT.IPL,l
Cl .,'''l3' ...
eCT 6,loaFO
SLLO 6,a
1RA 6,?

102FD ADA 1,5

l02FC ST" 5,PA15
LA .,HAT
8TW 6,CDT.SIHA,1
L. .,HAT+] ..
ST. .,~PA1S

1" lOZ'Z,&02'E
LW .,Ioa"
ST .. .,ttA4

l02F£ ANOP
LW S,!Oi'7
1" SPA1,I0300
M.INIT. SPA1,IUi,.
L" .,SPAI
ANM .. .,&OZF.
OR. S,!

ST. .,!'AI
INOM

10]00 AHQ,
1" a'AI,'.IOl
M.INITI "AI,IOi,.
I. • .,"AI ·.10i'.
Oft" I,.
I'. .,,'AI

''"* 10Jll AH~

I"~ "AI,l"'1 -.1."1 "Al,'.I'.
,"If ,,"'AJ •• 1IU' C OM I,. ')

,~

12-26

(
STW "SPA]
E~DM

lOlOZ ANOP
1FT 6'I.PO' .EQ • G'eNU',IulOl
L-. • ,~AI4
STW 4,~PA4

,oro lOJ,,"
1010] ANOP

1FT G'I-PU' .EQ. G'CPU',IUJ05
L .. 4,I"A14
ST .. 4,~~A4
60TO ,O$(lb

10305 ANOP
IFP S~A4'10lU4
H.IN1T. :lPA4~'UZF8
L.W ,,~PA4

AN"''' b,:O~F8
O~~ S,e

ST" ,,::if'A4
ENDM

10104 ANOP
IFP SPAS,10lU7
H.INITX SPA~,'UZFI
LW ,,~p,,!»

(/
ANM .. lI,lUZre
ONR 5,'
ST .. "SPAS
ENDM

10107 ANOP
IFP SPA',103u8
M.INITl SP.",OZF8
LW ,,')PAII
ANM .. "loiF8
OHR 5,11

ST .. .,~PA'
ENUM

'0]08 AN UP
IFP St'.7,&OlUCf
M.INITX SPA7,'UZF8
L .. "SPA7
ANM .. ,,:OZF8
ORR 5,.

STII .,~PA7
ENDM

'O]OCf A~OP

IF' SPAe,IOlOA
M.INITX IPAe,1Ui!Fe

('~'
Lw "SPAI

"\

ANMII ',iOlF•
O~R 5,.

ST .. "IP"I

l2-27

-.-.-----.-~ .. "-~~-:-.--. -----"~-.. ----- -"---~- .. -.- -- -- - ..

ENDM
l030A ANOP

IFP 8PA',IO)01
H.INITl SPA',IOiF.

{~ L" .,~PA9 .. 'l

ANMW .,luaF.
,

OKR s, •

ar" • ,SPA'
ENOM

10)OB ANOP
IFP 8pA10,,030C
H.INITl SP"lo,~oa,a
LW .,~PA1O

ANMW .,iolF.
ORR 5,'
ST .. .,!PA10
ENOM

,030e ANOP
IFP 8PA11,1030D
H.INITX SPAll"oaFI
Lif .,SPAll
ANM .. .,:OiF.
ORR 5,.

aT" .,!'Al1
ENOM

,030D ANO' (' IF' a'Ali,,0301 V
M.INlT. S'Alt£,lOiF.
LW 6,i'All
ANM" .,:OIF.
ORR 5,.

ST .. .,S'Ali
ENOM

'030£ ANOP ", 'Oi,.,,030'
M.INIT. lOi,4,IOIF.

10.50' ANO'
I" 10i'5,10110
M.INITI I.Oi", I 8i'.

10310 ANOP
I" 104",101 ••

• M.INIT' 'O~",'8."
10306 A,.OP

IU lOJII
101" OAT'" 0
'Oi'. DATA .. "'CO,"",
,0." OAT." 1'80,aool.'
loa,' OAT.'- .',co.oooo·
'OJII lau • ..

IMOM
M.lll ",T 0 INOM
'NO

12-28 i4
I
I

-~ ,"- -.-- -._-- -~-- .. ---.- _ -.

(

13. GENERAL PURPOSE MULTIPLEXER (GPMC) SUPPORT

13.1 Overview

The General Purpose Multiplexer Controller (GPMC) is structured as follows:

o All General Purpose Device Controller (GPDC) handlers are system reentrant,
therefore only one copy of a handler is needed per system.

o All handlers and the interrupt executive use common logic where reasonable,
reducing duplication of logic. In addition, as much GPMC specific logic as possible
is placed within this common logic, removing it from IOCS. If a GPMC is
configured, this group of routines is loaded only once.

o SYSGEN creates only one Controller Definition Table (CDT) entry per GPMC
(regardless of the number of device addresses) and no longer creates a handler entry
point jump table.

o All I/o requests are queued from the Unit Definition Table (UDT) entry.

Current devices supported are:

9103 Extended GPMC, Class D (16MB)
9104 GPMC, Class E (1/2 MB) (32/7X only)
9109 Synchronous Line Interface Module (SLIM)
9110 Asynchronous Line Interface Model (ALlM)
9116 Binary Synchronous Line Interface Module (BLlM)

Card Reader and/or Punch
Paper Tape

13.2 Hardware Structure

SelBUS

I
GPMC

Controller 9103 or 9104

I
GPDC interface

9105 or 9106

GPDC Bus

ALIM 9110

Channels

BSLIM 9116

GPDC Chassis

13-1

Refer to the GPMC Technical Reference Manual, 325-329104/9103, for details of the
GPMC operation. Refer to the appropriate technical manual part number 325-32XXXX
where XXXX is th~ model number, for details of a particular GPDC channel's operation.

13.3 Software Structure

13.3.1 Input/Output Control System (lOCS)

The GPMC enqueues IOQ entries onto the UDTs. Code previously contained within IOCS
that is solely required for GPMC operation is in a separate subroutine module which is
loaded only if a GPMC is configured.

13.3.2 GPMC Interrupt Executive (H.MUXO)

The GPMC Interrupt Executive, H.MUXO, is entered every time an interrupt occurs at
the level for which the GPMC is configured. H.MUXO queries the GPMC to find which
channel caused the interrupt, and then vectors to the handler's Service or Spurious
Interrupt entries via the contents of IB.EP in the device Interrupt Block, which is built by
SYSGEN and filled by the handler. Since H.MUXO is entered only on an interrupt, it
contains one entry point which comprises both. IOCS goes directly to the device handler
by using the contents of UDT.SIHA.

The handler entry point is found by: 1) locating the device UDT through the list
CDT .UTn, 2) locating the device context or "interrupt" block whose address is saved in~'
UDT.CP,LK, and 3) branching through IR.EP in the interrupt block.

13.3.3 GPDC Device Handlers (H.??MP)

These handlers contain all eight stanrlard hamiler entry points, and perform the actual
IOCS handler functions. However, their order in the handler address table has been re
arranged. They are not entered clirectly when an interrupt occurs.

The SYSGEN initialization entry point determines how many ore-built device interrupt
blocks are needed (maximum is 64) and instructs SYSGEN to overlay the remainder of the
blocks with the next handler.

These handlers are system re-entrant and only one copy is needed per rv\PX- 32 system
\-vhen controller(s) are present. In addition, different handlers use common logic within
the module "GPMC.SUP," which is loaded only when GP\1C(s) are configured. This
reduces their aggregate size.

13.3.4 Normal I/O Logic

When a normal IOCS request for input or output (such as read or write) occurs, the
opcode entry processes it, returninp appropriately if it is either illegal or a logical
"NOP". If an actual I/O nperation is rpeded, the entrY point builc-ls J.n 100.

The 100 is returned tn memnrv pnol, eitf-)er due to I/O cnmpletion nr a task: rlelete.

11-2

(

f

In the case of a Model 9104 GPMC which can only reference physical E memory, an OS
buffer may also be obtained, and pointed to by 10Q.FBUF. This is performed
automatically by IOCS, and it returns the buffer when the 10Q is released.

13.3.5 Execute Channel Program

The user has the ability to perform direct channel I/O using physical addresses from a
privileged task. The I/O transfer address points to an I/O Command List (IOCL).

13.4 Data Structures

13.4.1 System Blocks

The following communication region variables are special to GPMC support.

13.4.1.1 Controller Definition Table (COT)

One CDT is generated for each GPMC, and the CDT fields added for the lOP support are
utilized.

COT Variables Used:

CDT.CLAS
CDT.FLGS
CDT.IOST

CDT.SIHA
CDT.UTn

Hexadecimal OE for Model 9104, hexadecimal OD for Model 9103.
Bit 2 (CDT.GPMC) is set to indicate a GPMC controller.
Bit 0 (CDT .NIOQ) is set for the new structure.
Bit 1 (COT.MUX) is set to indicate a multiplexing controller.
Points to the H.MUXO HAT.
Where n is a hex digit from 0 to F a table of sixteen entries, each of
which corresponds to a channel. If a device is configured, the
corresponding entry contains the address of the UOT, or zero if no
UDT corresponds.

13.4.1.2 Unit Definition Table (UDT)

One UDT is built by SYSGEN for each configured address and is flagged as having 100
entries queued from it.

UDT var iables used:

UDT.CBLK
UDT.SIHA
UDT.STA2
UDT.TIAD
UDT head cell

points to the interrupt block which corresponds to this device.
points to the appropriate device handler HAT.
bit 0 is set to indicate 10Qs are strung from UDT.
is filled with the TI location address (for debug purposes only).
10Q entries are queued here.

13- 3

13.4.2 Architecture

13.4.2.1 Overview

Assume that you have two GPMCs. Each has 3 ALIMs; in addition, one has two BSLIMs
and the other has a card punch and a paper tape. You would have the following in
memory:

Subroutines
comnon logic

GP!VK: I:

H.I'v1UXO

CDT

One per GPMC.

llDT

H.ASMP

H.CPMP

Interrupt Block

13-4

Only resident if a GPMC present

GP!VK: 2:

H.I'vllJXO

CDT

28, one per device.

H.BSVlP

H.PTMP

28, one per device.

o

13.4.2.2 Interrupt Block

Dec ima 1
Offset

+---------------------------+
! IB.QEADR !

+---------------------------+
! IB.CMPQE * !
+---------------------------+
! IB.CDTD * !
+---------------------------+
! H.AUT H.AUTCNT *!
+---------------------------+
! IB.DQEAD !

+---------------------------+
! IB.CDTA * !
+---------------------------+
! IB.UDTA * !

a w

w

2 W

3 W

4 W

5 W

6 W

+---------------------------+ 7 W
! lB. lB. lB. IB.* !
! LICNT SPCNT OPKODE DHBF

(See Note 1)

+---------------------------+
! IB.EP * !

+---------------------------+
! lB. EXIT !
+---------------------------+
! IB.LITIM * !
+---------------------------+
! H.CNT !

+---------------------------+
! H.BUF !
+---------------------------+
! H.NCT !

+---------------------------+
! IB.IOCL !

+~--------------------------+
! OPTIONAL !

DEVICE DEPENDENT
I NFORMA T I CN

+---------------------------+

(~ * referenced by GPMC/SUB or H.MUXO

8 W

9 W

lOW

11 W

"12 W

13 W

14 W

16 W

current IOQ entry address

address of IOQ entry just
completed
prototype for device CDs
&. TDs
GPMC status/residual byte
count
address of UDT location
which points to DQE of
task allocating
address of CDT

address of UDT

Bit 6

Bit 7

handler entry
address to
use (queue drive or
spurious interrupt)
return address from
handler entry
time 0 u t val u e
(in timer units)
I/O transfer count
in bytes
I/O buffer address

negative of transfer
count remaining
1st doubleword of GPMC
IOCL

handler dependent

13-5

Note I

LIeNT
SpeNT
OPKODE
f)HPlF

Lost Interrupt Count
Spurious Interrupt Count
IOCS Byte Operation Code
Oevice Handler Bit Flags as follO'.vs:

Plit (., Postprocessinf needed (tells H.~"UXI) to report I/O completion)
Bit 7 CD terminate issued by lost interrupt entry

13.4.2.3 Data Block Linkage

.~~---~~------------~

~
~DT.SIHA

~-------------------H.MUXO

CDT.UTn

---!-----------------
UDT

- - - - - - - - - -.• -:- -.,. - - --~
; rUDT head ce 11 unT. S IHA

~---------------------! H.??MP handler
I

. I

UDT .CBlK ~
--__---------------- ~

I

I
! -----~~:~~~~~-~~~---
~IOO.CDTA lOO.UDTA IB.QEADR

IPl.EP

~ ___________ L _________ 7
! 100 !

Linkage Values

CDT.SIHA points to HAT of H.MUXO.
CDT.UTn where "n" is the device number (0 to F). Points to UDT of corresponding

UDT.SIHA
UDT.CBlK
m.EP

IB.QEADR
IOO.CDTA
IOQ.UDTA

device.
points to HAT of appropriate LIM handler (H. ??MP).
points to Interrupt Block which corresponds to this device.
points to either Entry Point) or Entry Point 3 in corresponding device
handler, depending on whether there is I/O in progress.
points to the IOQ Entry which is currently being performed.
CDT address.
UDT address.

DQE pointers (not shown)
UDT.DQEA points to DQE of task if device not shared.
IB.DQEA points to UDT.DQEA.

13-6

I~':t··.
V

,

!f

(
13.5 Handler Entry Points

13.5.1 H.MUXO

E.P.

Entered on interrupt. Registers saved in register file in GPMC Context Block, and
restored on exit to S.EXEC5.

2 SYSGEN initialization. Entered with COT address in register 7.

13.5.2 H. ??MP

Entry points have designated names.

E.P.

SI. Entered by H.MUXO, which finds this address in the interrupt block variable
IB.EP. Register 3 points to the UDT. The Interrupt Block is found thru
UDT.CBLK.

IQ. Entered by H.IOCS,29, who finds it via UDT.SIHA. Register 3 points to the UOT.
The Interrupt Block is found thru UDT .CBLK. Returns through E.P. 1 logic.

SP. Post Transfer processing - returns thru RO.

LI. Entered by S.IOCS5 or H.IOCS,38. Register 2 is the HAT Address, Register 3 is
the UDT address.

OP. Entered by H.MUXO if GPMC has an interrupt for this type of device. H.MUXO
finds this address thru the interrupt block variable IB.EP. Register 3 points to the
UOT. The Interrupt block is found thru UDT.CBLK. Returns to H.MUXO through
H.EXIT return address in Interrupt Block.

PX. Entered by H.IOCS,29. Register 1 is the FCB address, register 2 is the HAT
address (unused), and register 3 is the UOT address. The Interrupt block is found
thru UDT .CBLK.

01. Error Processing - returns thru RO.

SG. SYSGEN initialization logic. Register 7 points to the CDT.

13.6 Common Logic

The following subroutines are contained in the module GPMC.SUB, which is loaded by
SYSGEN if any GPMCs are configured. They permit the GPDC device handlers to be
smaller.

13-7

13.6.1 Subroutine S.GPMCO - Report GPMC Status

Entry
RO
R2
R3

Exit
RO-R4
R 5,R6
R7

Return address
10Q address
Interrupt Block Address

Unchanged
Destroyed
Device Status in Right Halfword

13.6.2 Subroutine S.GPMC 1 - I/o Initiation Logic

Entry
R2
R3
R6

10Q Address
Interrupt Block Address
IOCL address

13.6.3 Subroutine S.GPMC2 - Lost Interrupt Logic

Entry
RO
R2
R3

10CS return address
Handler Address (unused)
UDT address

Exi t - Di rect to 10CS
RO-R3 Unchanged
R4-R7 Destroyed

13.6.4 Subroutine S.GPMC3 - Operation Initiation and IOQ Entry Acquisition

If the opcode vector table entry bit 0 is set, an IOQ is built for the user. If bit 1 in the
word is set,the IOQ is extended by enough space to hold the absolutized IOCL necessary
to perform the requested 10.

Entry
RO
Rl
R2
R3

H.??MP return address (not used)
FCB address
Opcode vector table address
Interrupt Block address

Exit - via vector table
RO,Rl,R3 unchanged

Other Registers Indeterminate

13-8

it.·.· .. · ~~··.··i \'V

C",'\· ! ,)

iii

(
13.6.5 Subroutine S.GPMC4 - Execute Channel Program Inspection and Absolutizing

New IOCL is produced in a memory pool buffer whose address is placed in IOQ.FBUF, and
whose size is placed in IOQ. WOSB. The User's IOCL address is placed in IOQ. TBUF (not
yet implemented).

Entry
RO
Rl

E.P. 5 return address
FCB address

13.7 GPMC Support Macros

13.7.1 IB.DAT1,IB.DAT2

Functional Description

This macro defines the standard information for a Device Interrupt Block. Special
handler information should be inserted between IB.DA T I and IB.DA T2. The latter macro
closes the Interrupt Block Definition and computes its size. This macro must start on a
doubleword boundary.

For use by unique handler logic, the SET label H.IOCL always points to the physical
address of IB.IOCL in the current Interrupt Block.

e Calling Sequence:

(

IB.DATI
(handler specific information)

IB.DAT2

Use the REPT directive to get mUltiple copies of the interrupt block.

13.7.2 M.IB

Functional Description

This macro establishes the Interrupt Block offset labels. It maps to the contents of
IB.DAT 1. Special handler information may be equated starting at IB.DFSIZ, which is
doubleword bounded.

Calling Sequences:

M.IB

13.7.3 GPDC.IT

Functional Description

This macro generates the SYSGEN Initialization logic for a GPMC handler.

13-9

Calling Sequence:

GPDC.IT labL timout]

where:

lab starting label, SG.lab

tim out is a positive number indicating the number of seconds for device timeout. If
not provided, a word variable "PA6" should contain the negative timeout
count.

13.7.4 M.DIB

Functional Description

This macro is called by GPDC.IT to initialize the Device Interrupt Block. This macro
contains special case code for the ALIM (Model 9110) handler.

Calling Sequence:

M.DIB type

where:

type is the information passed to GPDC.IT as "lab"

13.8 User Handlers

Customers writing their own GPMC/GPDC handlers need not use the common logic of
GPMC.SUB, although in most cases it can simplify design and development. Customer
wr itt en handlers do not need to be reentrant, however, if they are not, interrupt
reentrancy must be specified in the SYSGEN directives.

Customer written handlers must use the Interrupt Block arrangement because H.MUXO
and GPMC.SUB reference certain locations.

13-10

14. DISC PROCESSOR HANDLER

14.1 Overview

The Extended I/O Disc Handler is a software component of MPX-32 intended to provide
support for Extended I/O Disc Processors connected to an MPX-based SERIES 32
computer.

The product is designed to support any number and mix of extended I/O disc drives listed
below. These include fixed-head discs (FHD), moving-head discs (MHD), and cartridge
module drives (CMD).

The design supports IOCS callable I/O service requests as described in the MPX-32
Reference Manual, Volume 1.

An execute channel program capability has been incorporated to allow the priviledged
user to execute his own IOCD list. Care should be exercised when using this feature as
only minimal support has been included. No validation of commands or addresses is
performed. Tasks should be cataloged as resident (see MPX-32 Reference Manual,
Volume 1, Chapter 2) and all IOCD addresses made absolute. Basic error conditions are
detected and noted in the FCB, however, sense information generation, error correction,
and error retry are the responsibiJi ty of the user. It should be noted that sense
information relates to the last I/O request to the disc which mayor may not be that of
the requesting user. Reserve and Release 10CDs must never be included within an
execute channel program 10CD list (see Sections 14.2.1.3.16 and 14.2.1.3.17).

14.1.1 Discs Supported

The following discs are supported by the extended I/O disc handler.

Compatible Disc Drives

Man uf actu rer ID II ~ Heads

CDC 9320 MHD 5
CDC 9323 MHD 19
CDC 9733-5 FHD 4
CDC 9448-32 CMD 1+1

CDC - Control Data Corporation
MHD - Removable media, moving-head disc
FHD - Captive media, moving-head disc

Cylinders

823
823

64
823

Byte
Capacity

82,958,400
315,241,920

5,160,960
33,183,360

CMD - Cartridge module drive, removable and captive media

(Moving head rliscs (MHD) are available in both single and dual-port versions.

SYSGEN
Device
Code

MH080
MH300
FHOO5
CD032

f
:1
i

The 5 megabyte Fixed Head Disc (FHD) is by definition a fixed head device with 256
fixed heads. However, software must treat this unit as a moving head disc with 64 ()
cylinders and 4 heads. The fixed head disc may be single or dual ported.

A Cartridge Module Drive (CMD) is two devices in one package. The first is the
removable media (MHO) and the second is the captive media (FHD). MPX-32 software
dedicates the even subchannel to the removable media and the odd subchannel to the
captive media. Cartridge module drives will only operate in the single-port mode.

14.1.2 Track Format

The disc processor and disc handler support two track formats. One format, designated
F16, provides 16 data sectors where each data sector contains storage for 1024 data
bytes. The second format, designated F20, provides 20 data sectors where each data
sector contains 768 data bytes. While the disc processor and disc handler are capable of
supporting both track formats, only the F20 format is supported within the MPX-32
operating system.

14.1.3 Dual Subchannel I/o

The disc processor firmware allows two communication paths to each device. These
paths are called subchannels and occur in sequential even and odd pairs. This is to say
that a device with a unit address plug of I (see Section 14.6) has software subaddress
assignments of 02 and 03.

Under MPX-32, dual subchannel I/O is applicable only to cartridge module drives where
the even subchannel is dedicated to the removable media and the odd subchannel is
dedicated to the captive media. For SYSGEN purposes, this device must be assigned an
even subaddress on the DEVICE directive.

For devices other than cartridge module drives, the odd subchannel address is unusable
and should never be assigned on the SYSGEN DEVICE directive.

14.1.4 Dual Port Support

14.1.4.1 Normal Support

Dual porting allows two CPUs to share a single disc drive. In order to maintain disc and
system integrity, mechanisms must exist to prevent both CPUs from accessing the device
at the same time. This is accomplished through device reservation which makes the
device unaccessable to the nonreserving CPU. Device reservation may be implicit or
explicit.

Implicit device reservation is a disc processor func·tion and is transparent to the
operating system. If a drive is defined as dual ported, the disc processor automatically
issues a RESERVE command to the device before initiating an I/O request. Once the I/O
is complete, the disc processor issues a RELEASE command. An I/O request from the
opposing CPU will be postponed from the time the RESERVE is issued until the RELEASE
is performed.

14-2

('-

Explicit device reservation makes a device unaccessable to the opposing CPU for a user
requested period of time. The explicit device reservation is user invoked through the
M.RESP service request. The device remains unavailable to the opposing CPU until the
user releases the device through the M.RELP service request. When performing explicit
device reservation, the release timer switch located on the disc drive must be set to the
off position to disable the drive from performing its own release. (This is a drive
performed release which is different from the implicit disc processor release mentioned
above. Also, the channel 1 and channel 2 inhibit switches located on the disc drive must
be in the off position. Should more than one user on the same CPU have a device
explicitly reserved at the same time, the drive will not be released until the last such
user explicitly releases it.

14.1.4.2 System Failure in Dual-Port Environment

In a dual-port environment, there exists the possibility that one of the systems may fail
while having the shared disc reserved. Should this happen, the shared disc would be
unaccessable to the opposing CPU because the failing system (CPU or disc processor)
would have no way of releasing the drive. A mechanism is available to preclude this
from happening.

When an explicit reserve (M.RESP) is issued to a. device that is already reserved by the
opposing CPU, a SYSGEN defineable time out value (DPTOV) begins to count down.
Should this timer expire before the device becomes available, a priority override (POR)
command is issued to gain absolute control over the device. A drive that is selected
using the POR command remains reserved to the channel gaining control over the drive
until such time that the channel releases the drive.

14.1.5 Maximum Byte Transfer and lOCO Generation

The MPX-32 services available for user Read and Write requests allow for a maximum
transfer of 1,000,000 hexadecimal bytes (1,048,576 decimal bytes) per request. Requests
larger than this are truncated to this amount.

H.IOCS,40 processes Read and Write requests by building data chained lOCOs as
necessary to span map blocks. The number of lOCOs generated for any transfer request
depends on how large the transfer is and where, within the MAP block, the buffer begins.

14.1.6 Hardware/Software Relationship

The dual-ported XIO disc hardware/software relationship is presented in Figure 14-1.
The system consists of disc drives (I.O-n.n which can be either single or dual port, disc
processors (l-n), and the disc handler.

The disc handler consists of three parts. H.EXIO is the interrupt fielder and corresponds
one for one with the number of disc processors configured. H.DP02 is a system reentrant
handler that processes I/O requests. Context Blocks are areas of storage and record
keeping and correspond one for one with the number of active subchannels configured.
They are physically located at the end of H.DP02.

Up to eight (8) disc drives can be connected to any disc processor. The number of disc
processors configured per system is limited by the number of channels and cabinet space
available.

14-3

~

.t:o
I

.t:o

. , CPU I CPU 2

SEL8US SEL8US

,-----------ll H. EX 10

OISC
PROCESSCQ

I

DISC
PROCESSCQ

I
H. EXIO 1 ... ______ --,

H.EXIO ._

H.DP02

0 I CXNTEXT 0
8UXX 1.0 0

CXNTEXT

I 81..OCX n.7

81

DISC
PROCESSCQ 11--_...(

2

I 0
0

I
0

-...........

DISC
I--_~I PROCESSCR

2

0
0
0

I

I
~ DISC ~Il~ DISC PROC~SSCQ n. n.t . PROC~SSCR U

H. EXIO

I
0
0
0

I
LI H.EXIO

I I U I
410------ Software ----..... -- ----------- Hardware/Firmware -------------~ -----

o

H.DP02

I I a:M'EXT
8LCXlC. 1.0

[8~~71

Sot tware -------...

c.····~ wi
"'-__ .7

I

(

14.2 Extended I/o Commands and CPU Instructions

The Extended I/O (XIO) philosophy provides channel commands and CPU instructions for
accomplishing I/O requests. The following is a summary of these features and their use
by software.

14.2.1 XIO Channel Commands

14.2.1.1 Command Summary

The following is a summary of the XIO channel commands.

MPX Used by
Channel Command Command Code Service Call MPX Software

Initiate Channel (INCH) X'OO' None Yes
Sense (SENSE) X'04' None Yes
Transfer in Channel (TIC) X'08' None Yes
Write Data (WD) X'Ol' M.WRIT Yes
Write Sector·Label (WSL) X'3l' None No
Write Track Label (WTL) X'5l' None No
Read Data (RD) X'02' M.READ Yes
Read Sector Label (RSL) X'32' None No
Read Track Label (R TL) X'52' None No
Read Angular Position (RAP) X'A2' None No
No Operation (NOP) X'03' None Yes
Seek Cylinder (SKC) X'07' None Yes
Format for No Skip (FNSK) X'OB' None No
Lock Protected Labels (LPL) X'13' None No
Load Mode Register (LMR) X'IF' None Yes
Reserve (RES) X'23' M.RESP Yes
Release (REL) X'33' M.RELP Yes
Rezero (XEZ) X'37' None Yes
Test S tar (TESS) X'AB' None No
Increment Head Address (IHA) X'47' None No
Priority Override (POR) X'43' None Yes
Set Reserve Track Mode (SRM) X'4-F' None No
Reset Reserve Track Mode (XRM) X'5F' None No
Read ECC (REC) X'B2' None Yes

I I'

1

I

:1
I'

I
!
ii'
j'!
I'

,

,I

14.2.1.2 IOCD Format

All channel commands have the following IOCD format:

00 07 08

Word 1 Conmand
Code Absolute Date Addresss

Word 2 Flags Byte Count

00 15 16

Flag bits 00 through 04 have the following significance:

Bit

00
01
02
03
04

Mnemonic

DC
CC
SLI
SKIP
PCI

Name

Data Chain
Command Chain
Suppress Incorrect Length Indication
Skip Read Data
Program Controlled Interrupt

31

31

The command code field defines the operation to be performed during command
execution.

The data address must be a 24-bit absolute addresss.

TIC branch address must be 24-bit addresses that address word boundaries.

The requirements for lOCO validity apply to all 10CDs regardless of the contents of the
command code field.

The requirements are:

o lOCO word 2 bits 05 through 15 must be zero
o The PCI bit must be zero
o The byte count must be nonzero

14.2.1.3 Commands

14.2.1.3.1 Initialize Channel (INCH)

This command is the means by which disc drive information is relayed to the disc
processor and the means by which a buffer area is declared and made available for use by
the Disc Processor. An INCH command must be the first I/O command to any channel
that has a disc processor configured and is performed automatically by the disc handler

14-6

" ' C''!\

(
as a result of the first I/o request to the channel. The data address specified in the
INCH lOCO points to a nine word buffer that must fall on a word boundary. The first
word of this nine-word buffer must contain a 24-bit address that points to a file bounded
224 word buffer that is used by the disc processor for record keeping. The remaining 8
words contain disc drive information pertinent to each of the 8 drives that may be
configured. The following diagram shows the overall picture of this relationship.

INCH IOCD 00 I 9-Word Buffer Address

Byte Count = 3610

Word 1 224 Word Buffer Address
Word 2 Drive Attribute Register, Drive 0

9-Word Buffe r Word 3 Drive Attribute Register, Drive 1

· ·
·
· · Word 9 Drive Attribute Register, Drive 7

224 Word Buffer-I File Bounded

Drive Attribute Register - layout is as follows:

o 78 15 16 23 24

Flags Sector Count MHD Count

Bits Meaning

~}

2
3
4-
5

6-7

1
10 = FHD
01 = MHD
11 = MHD with FHD option
00 = Reserved
1 = Cartridge Module Drive
Reserved
1 = Drive Not Present
1 = Drive is Dual Ported
Reserved for future expansion; must be zero

1-

I~

,.

31

FHD Count

14-7

Sector Count is the number of sectors per track (I4 16).

MHO Count is the number of heads on the MHO or the number of heads for
the removeable media portion of the cartridge module drive.

FHD Count is the number of heads for the captive media portion of the
cartridge module drive.

The drive attribute register for a 40 MB single port moving head disc would be generated
as follows:

DATAW
X'T

40 r4TL-50_-8_' _____ Zero FHD count I - 5 MHO count
20 Sectors per Track
Moving Head Disc

The drive attribute register for an 80 MB dual ported moving head disc would be
generated as follows:

DATAW X'44140'iOO'

II T T TL-----Zero FHD count
... --------5 MHO count

20 Sectors per Track
&.---------Dual port indication

'----------Moving Head Disc

The drive attribute register for a 5 MB single port fixed head disc would be generated as
follows:

DATAW X'40140400'

T T T _T _____ Zero FHD count I - 4 MHO count
20 Sectors per Track

&.--------- Moving Head Disc

The drive attribute register for a 32 MB cartridge module drive would be generated as
follows:

DATAW
X'12°TI4TL-l_9f_' _____ 1 FHD count

- 1 MHD count
20 Sectors per Track
Cartridge Module Drive

The drive attribute register for a drive that is not present would be generated as follows:

DATAW X'OfoOOOO'
Drive Not Present

14-8

I;
I
I

(

t I,

14.2.1.3.2 Sense (SENSE)

This command is a means by which information can be retrieved concerning the results of
the last SIO processed by a subchannel.

The disc handler issues the SENSE command to generate information regarding I/o error
completions and uses the information in determining certain retry requirements. The
Sense information is stored in the absolute data address specified in the Sense lOCO.
When the disc handler issues a SENSE command, it specifies a data address in the context
block associated with the device (see Section 14.3.6). Some of the sense information
generated is passed to the user (see Section 14.3.12).

Note: The drive is reselected if a byte count greater than 12 is specified.

The following describes the information returned from the SENSE command:

Word

1

2

3

4

Word 1:

Word 2:

Bit

o

1

2

3

SENSE Information

o 7 8 15 16 23 24 31

Cylinder Track Sector

Mode

Byte Contents of SENSE Buffer Register

Drive Attribute Register

Drive Status Not Used

current cylinder, track and sector.

Mode Byte - bit assignments are as follows:

Function

A 1 implies that the drive carriage will be offset.

This bit is effective only when bit 0 is in the 1 state; a zero implies a
positive track offset and a 1 implies a negative track offset; a positive
offset is an offset toward the next higher cylinder number.

A 1 implies a read timing offset.

This bit is effecti ve only when bit 2 is in the one state; a a implies that a
positive read strobe timing adjustment will be used; a 1 implies that a
negative read strobe timing adjustment will be used.

14--9

I

Bit

4

Function

A 1 implies diagnostic mode for Error Corrrection Code (ECC)
generation and checking.

5 A 1 implies that reserved tracks can be accessed without causing an
error; a zero implies that reserved track data cannot be written.

6 A 1 implies that the associated Subchannel (SSC) will access the captive
media portion of a cartridge module drive (CMO).

7 A 1 implies that the channel functions will use the RAM buffer for data
operations, i.e., buffer mode is invoked.

When all Mode bits are set to the zero state, data operations occur between main
memory and a Moving Head Disc (MHO); this setting might be considered to be the
normal mode. A Halt Channel Directive (HCHNL) places all channels in this mode. A
Halt I/O (HIO) does not change the selected subchannel's mode.

Word 2: Contents of SENSE Buffer Register - bit assignments are as follows:

Bit

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

•

Meaning

Command Rejected
Intervention Requested
Spare
Equipment Check
Data Check
Data Over or Under Run
Disc Format Error
Defective Track Encountered
Last Track Flag Encountered
At Alternate Track
Write Protection Error
Write Lock Error
Mode Check
Invalid Memory Address
Release Fault
Chaining Error
Lost Revolution
Disc Addressing or Seek Error
Buffer Check
ECC Error in Sector Label
ECC Error in Data
ECC Error in Track Label
Reserve Track Access Error
Uncorrectable ECC

Word 3: Drive Attribute Register - For layout, see Section 14.2.1.3.1.

14-10

o r

I

(

Word 4: Orive Status - hit assignments are as follows:

Bit

o
1
2
3
4
5
{.,

7
8
9

10
11
12
13
14
15

14.2.1.3.3

Meaning

Seek End
Unit Selected
Sector Pulse Counter Bit 0
Sector Pulse Counter Bit 1
Sector Pulse Counter Bit 2
Sector Pulse Counter Bit 3
Sector Pulse Counter Plit 4
Sector Pulse Counter Bit 5
Disc Drive Detected a Fault
Seek Error
On Cylinder
Unit Ready
Write Protected
Drive is Busy
Spare
Spare

Transfer In Channel (TIC)

This command causes Input/Output Command Doubleword (IOCD) execution to continue
at the address specified in the TIC command. Effectively, a TIC serves as a branch for
lOCO execution. A TIC command cannot point to another TIC command nor can it be
the first commancl in an lOCO list.

The TIC command is used by the handler to link lOCOs located in the Context Block (see
Section 14.3.6) to lOCOs located in the I/O Queue OOQ).

14.2.1.3.4 Write Data (WD)

This command transfers data to the disc from the address specified in the lOCO. Entry
point 5 of H.DP02 processes user Write requests by calling H.IOCS,40 to build Write Data
lOCOs within the IOQ.

14.2.1.3.5 Write Sector Label (WSL)

This command is the means by which sector labels are written to the disc.

It is not currently used by the disc handler.

14.2.1.3.6 Write Track Label (WTL)

This command is the means by which track labels are written to the disc.

It is not currently used by the disc handler.

14-11

1".2.1.3.7 Read Data (RD)

This command transfers data from the disc to the address specified in the lOCO. Entry
point 5 of H.DP02 processes user Read requests by calling H.IOCS,40 to build Read Data
lOCOs within the 10Q.

1".2.1.3.8 Read Sector Label (RSL)

This command reads sector labels from the disc.

It is not currently used by the disc handler.

1".2.1.3.9 Read Track Label (RTL)

This command reads track labels from the disc.

It is not currently used by the disc handler.

1".2.1.3.10 Read Angular Position (RAP)

This command reads the sector pulse counter from the disc.

It is not currently used by the disc handler.

1".2.1.3.11 No Operation (NOP)

This command executes without selecting the associated disc drive.

Completed Read Data lOCOs within the I/O Queue (lOQ) lOCO list are changed to NOP
commands at entry point 1 of H.DP02 when performing error correction code (ECC)
logic.

1".2.1.3.12 Seek Cylinder (SKC)

This command causes a disc head seek/select to the specified cylinder, track, and
sector. The address specified in the Seek Cylinder command points to a memory word
which contains the following:

o 15 16 23 24 31

o Cylinder Track I Sector

Entry point 5 of H.DP02 computes the cylinder, track, and sector address for user .rL"'.::. ...
requested' reads and writes, and stores this information into the I/O Queue cell named '"
10Q.FCTl. S.IOCS12 is then called to build the seek lOCO and store it into the 10Q.

14-12

(

(

14.2.1.3.13 Format for No Skip (FNSK)

This command is used by the diagnostic to format a disc.

It is not currently used by the disc handler.

14.2.1.3.14 Lock Protect Label (LPL)

This command involves write lock.

It is not currently used by the disc handler.

14.2.1.3.15 Load Mode Register (LMR)

This command is used to identify a byte of information which specifies the manner in
which I/O is to take place with the disc. The address specified in the Input/Output
Control Doubleword (IOCD) points to this byte of information which is physically located
in the I/O Queue. See Section 14.2.1.3.2 (Word 2, Byte 0 of the Sense Information) for
interpretation of the mode bits.

The disc handler automatically generates this command as the first lOCO presented for
disc access user requests. The command physically resides in the Context Block.

14.2.1.3.16 Reserve (RES)

This command causes a device to be reserved to the requesting CPU until such time as a
Release (REL) or Priority Override (POR) is issued. The command is user callable
through the M.RESP service routine and is associated with dual-port operations. Execute
channel programs must never include a Reserve command and should use the M.RESP
service routine when device reservation is desired.

14.2.1.3.17 Release (REL)

This command causes a Reserved device to be released by the reserving CPU. The
Release will not be issued if more than one task has the device Reserved. The command
is user callable through the M.RELP service routine and is associated with dual-port
operations. Execute channel programs must never include a Release command and should
use the M.RELP service routine when device release is desired.

14.2.1.3.18 Rezero (XEZ)

This command is effectively a recalibration request to the disc which resets the drive's
seek logic and causes the drive to locate cylinder and track zero. Entry point 1 of
H.DP02 uses it to recover from seek and drive fault errors. The command physically
resides in the Context Block.

14-1 .,

14.2.1.3.19 Test Star (TESS)

This command causes the currently addressed cylinder, track, and sector to be compared
to that specified by the Test Star lOCO. It can be used to skip the next sequential
lOCO.

It is not currently used by the disc handler.

14.2.1.3.20 Increment Head Address (IHA)

This command is used to select sector zero of the next sequential track in the associated
disc drive.

It is not currently used by the disc handler.

14.2.1.3.21 Priority Override (POR)

This command provides a mechanism for overriding and disabling dual-ported disc drive
Reserve functions. The drive specified in the POR command is absolutely reserved to
the requesting channel until the channel Releases the drive.

This command is used by the handler to gain control of a drive that is reserved by the
opposing channel in a dual ported configuration if that channel does not ReJease the drive
within a specified period of time. This time value is an optional SYSGEN parameter
(DPTOV) which defaults to two timer units.

14.2.1.3.22 Set Reserve Track Mode (SRM)

This command allows all data areas designated as reserve tracks to be read or written. It
should be noted that in order for this to work, the reserve track mode jumper must be set
on the Device Interface Adapter (DIA) board.

It is not currently used by the disc handler.

14.2.1.3.23 Reset Reserve Track Mode (XRM)

This command makes all data areas designated as reserve tracks unavailable for write
operations.

It is not currently used by the disc handler.

14.2.1.3.24 Read ECC (REC)

This command causes the channel to compute and present error correction information
needed to recover from a disc read error. The information returned to the address
specificied in the Read ECC lOCO contains the following:

14-14

",-"

It)

(

(

o

Displacement

where:

Displacement

Correction Mask

15 16 31

Correction Mask

is the number of bits from the end of the last sector
transferred to the last bit in the field found to
contain the error.

is a 9-bit correction mask that can be used to correct
erroneous data stored in memory.

The Read ECC command is used at entry point 1 of H.DP02 to recover from data errors.

14.2.2 CPU Instructions

14.2.2.1 Instruction Summary

The following is a summary of the Extended I/O CPU instructions.

Instruction
Mnemonic Code Function

SIO X'2' Start I/O
TIO X'3' Test I/O
HIO X'6' Halt I/O
HCHNL X'5' Halt Channel
RSCHNL X'5' Reset Channel
STPIO X'4' Stop 1/0
RSCTL X'8' Reset Controller
ECI X'C' Enable Channel Interrupt
DCI X'D' Disable Channel Interrupt
ACI X'E' Activate Channel Interrupt
DACI X'F' Deacti vate Channel Interrupt

14.2.2.2 CPU Instruction Format

All Extended I/O CPU instructions have the following format:

o 5 6 8 9 12 13 15 16 3 1

Op Code R Instruction Aug Code Constant
Code

14-1 "

I

Bits 00-05:

Bits 06-08:

Bits 09-12:

Bits 13-15:

Bits 16-31:

14.2.2.3 Condition Codes

specifies the operation code, hex 'FC'.

specifies the general register, when nonzero, whose
contents will be added to constant to form the logical
channel and subaddress.

specifies the instruction code.

specifies the augment code, hex '7'.

specifies a constant that will be added to the contents of R
to form the logical channel and subaddress. If R is zero,
only constant will be used to specify the logical channel
and subaddress.

Condition codes are generated for all extended I/O instructions and indicate the
successful or unsuccessful initiation of an I/O instruction. For extended I/O purposes,
the four normal condition code bits are interpreted as a four bit hexadecimal number
ranging from 0 - F. This means that there are 16 possible condition code responses to an
extended I/O instruction. The following is a summary of extended I/O condition code
assignments.-

14-1 (,

,~.'\\
V

Extended I/o
(Condition Code Assignments

Condition Code Hex Value Meaning

CCI CC2 CC3 CC4

0 0 0 0 X'O' Accepted W ill Echo

0 0 0 1 X'I' Channel Busy

0 0 1 0 X'2' Channel Inoperable or Undefined

0 0 1 1 X'3' Subchannel Busy

0 1 0 0 X'4' Status Stored

0 0 X'5' Unsupported Transaction

0 1 0 X'6' Unassigned

0 1 X '7' Unassigned

0 0 0 X'8' Request Accepted

Ie 0 0 X'9' Unassigned

0 1 0 X'A' Unassigned

0 1 X'B' Unassigned

0 0 X'C' Unassigned

0 X'D' Unassigned

0 X'E' Unassigned

1 X'F' Unassigned

14- 17

14.2.2.4 Condition Code Checking

Condition code checking within the disc handler varies depending on the instruction
issued. The following summarizes condition code checking and disc handler action.

14.2.2.4.1 For SIO Instruction

Hex
Condition Codes

X'8'

X'I'

X'3'

X'2'

X'4'

X'5'

X'6',X'7'

X'9"X'F. 1
X'O'

Meaning

Request Accepted

Channel busy

Subchannel Busy

Channel Inoperative

or Undefined

Status Stored

Unsupported Transaction

Unassigned

Not supported by the disc
processor

14.2.2.4.2 For HIO Instructions

Hex
Condition Codes

X'4'

Meaning

Status Stored

NO OTHER CONDITION CODES ARE CHECKED

14-18

Action

Continue normal processing

Retry 1 time, if unsuccessful
process next I/o request

Retry I time, if unsuccessful
process next I/o request

Set operator intervention
bit, show
error condition for FCB,
abort I/O request

Branch to H.EXIO and
process as though an
interrupt had occurred

Show error condition for
FCB, abort the I/O request

Show error condition for
FCB, abort the I/O request

Action

Branch to H.EXIO and process as
though an interrupt had occurred

o

o L.;.

I
I
I

(

:(

14.2.2.4.3 For Remaining Instructions

For ACI, DACI, RSCTL, RSCHNL, DCI, and ECI instructions:

NO CONDITION CODES ARE CHECKED

14.2.2.5 Instructions

14.2.2.5.1 Start I/o (510)

The 510 instruction is used to hegin I/O execution if the subchannel number is valid and
the channel has no pending final status. If the channel has pending final status, the 510
instruction is rejected with a status stored condition code response. The status stored
response is equivalent to an interrupt status presentation and must be treated as such as
no further indication of the I/O completion is given.

The 510 instruction is used by entry point I of H.DP02 as indicated above.

14.2.2.5.2 Test I/o (TIO)

The TIO instruction is used to test controller status and to return appropriate condition
codes and status reflecting the state of the channel and addressed subchannel.

The TIO instruction is not used by the disc handler.

14.2.2.5.3 Halt I/o (HIO)

The HIO instruction is directed to a particular subchannel; the channel and subchannel
respond to the HIO by terminating all activities in the subchannel at the end of the
current- sector. The instruction will not halt the I/O to a malfunctioning device. The
HIO instruction does not affect subchannels other than the subchannel addressed:
however, it will generate a status stored response if status is pending in any of the
channel's subchannels and reject the HIO instruction. The status stored response is
equivalent to an interrupt status presentation and must be treated as such as no further
indication of the I/O completion is given.

The HIO instruction is used by entry point 4 of H.DP02 to recover from I/O requests that
time-out.

14.2.2.5.4 Halt Channel (HCHNL) and Reset Channel (RSCHNL)

HCHNL and RSCHNL are the same instruction.

These instructions terminate all activity in the channel. Issuance of these instructions
requires that an INCH command (see- Section 14.2.1.3.1) be performed before any
subsequent I/O to the affected channel.

The RSCHNL instruction is used at entry point 5 of H.DP02 prior to issuing the INCH
command.

14-19

..... 1

14.2.2.5.5 Stop I/O (STPIO)

The STPIO instruction is used to perform an orderly termination of an lOCO list by
stopping lOCO execution at the completion of the current lOCO. The STPIO instruction
applies only to the addressed subchannel; however, if there is pending status for any
subchannel associated with the addressed channel, the instruction will not be executed
and a status stored condition code response will be returned. The status stored response
is equivalent to an interrupt status presentation and must be treated as such as no
further indication of the I/o completion is given.

The STPIO instruction is not used by the disc handler.

14.2.2.5.6 Reset Controller (RSCTL)

The RSCTL instruction causes the addressed subchannel to terminate its I/O operation
immediately. If the subchannel is in a hung condition the device will be reset so that
normal I/O operations may resume. The RSCTL instruction will always be accepted, will
never generate a status stored response, and will never generate an interrupt.

The RSCTL instruction is used to recover from the HIO instruction issued at entry point
4 of H.DP02 should it also time out. This condition would indicate that the device is
actually broken. It should be noted that when the RSCTL instruction is issued at EP4, a
HIO instruction is also issued to gain access to EP I processing.

14.2.2.5.7 Enable Channel Interrupt (Eel)

The ECI instruction causes the addressed channel to be enabled to request interrupts
from the CPU.

The ECI instruction is used at entry point 5 of H.DP02 prior to issuing the INCH
command.

14.2.2.5.8 Disable Channel Interrupt (DCI)

The DCI instruction causes the addressed channel to be disabled from requesting
interrupts from the CPU.

The DCI instruction is used at entry point 5 of H.DP02 prior to issuing an Enable Channel
Interrupt (ECI) instruction.

14.2.2.5.9 Activate Channel Interrupt (ACI)

The ACI instruction causes the addressed channel to begin actively contending with other
interrupt levels preventing its level and all lower priority levels from requesting an
interrupt.

The ACI instruction is used by H.DP02 for protection of certain sensitive code paths.

14-20

! ~

14.2.2.5.10 Deactivate Channel Interrupt (DACO

The DACI instruction causes the addressed channel to remove its interrupt level from
content ion.

The DACI instruction is used by H.EXIO just prior to entry point I and 3 exits. It is also
used to clear explicit ACI instructions within H.DP02.

14.3 Related Data Structures

This section outlines the data structures used by the disc handler.

14.3.1 I/O Queue (lOQ)

See the MPX-32 Technical Manual, Chapter 2.

14.3.2 Unit Definition Table (UDT)

See the MPX-32 Technical Manual, Chapter 2.

14.3.3 Controller Definition Table (CDT)

See the MPX-32 Technical Manual, Chapter 2.

14.3.4 File Control Block (FCB)

See the MPX-32 Technical Manual, Chapter 2.

14.3.5 File Assignment Table (FAT)

See the MPX-32 Technical Manual, Chapter 2.

14.3.6 Context Block

A Context Block exists for each active subchannel and serves as a storage area for
information regarding the subchannel and its operation. The Context Blocks are
physically located at the end of the disc handler (H.DP02) and contain the following:

14-21

Word
o

2

3

5

6

7
8
9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

14-22

Context Block Format

II of H.DP02 Entry Points

H.DP02 EP 1 Address

H.DP02 EP2 Address

H.DP02 EP3 Address

H.DP02 EP4 Address

H.DP02 EP5 Address

H.DP02 EP6 Address

H.DP02 EP7 Address
Status Word 1 1
Status Word 2 1

Active I/o Queue Address 2

Flagword 3

CDT Address 4

Sense Buffer Word 1 5

Sense Buffer Word 2 5

Sense Buffer Word 3 5

Sense Buffer Word 4 5

Channel Address and Sub address

Address of IOCD Pointer Within H.EXIO 6

II Error Retries Attempted

II Sectors/Cylinder

ECC Data

Rezero IOCD Word I

Rezero IOCD Word 2

Load Mode IOCD Word 1

Load Mode IOCD Word 2

Word

«
26 TIC lOCO Word 1

27 TIC lOCO Word 2

28 Sense lOCO Word 1

29 Sense lOCO Word 2

30 Read ECC lOCO Word I

31 Read ECC lOCO Word 2

32 POR lOCO Word 1

33 POR lOCO Word 2

34 Working Status Word I 7

35 Working Status Word 2 7

36 H.EXIO OLDPSD Address 8

37 Successful SIO Counter

'C 38

39

Error Retry Counter

Lost Interrupt Counter I
40 II of Reset Controller Commands Issued

41 If of ECC Corrections Performed

42 ECC Bit Displacement I ECC Byte Displacement

43 Not Used

44 Last Buffer Address for Previous lOCO (ECC Logic)

45 Start Buffer Address for Current lOCO (ECC Logic)

4(; Address of End of Erring Sector (ECC Logic)

47 Address of Erring Halfword (ECC Logic)

48 It of Bytes Transferred for Current lOCO (ECC Logic)

49 End of Current IOCf) Buffer (ECC Logic)

50 Dual Port Time Out Value9

(51 1/ of Reserves Active for this Subchannel

14-23

Notes:

1. This is the status doubleword returned when an interrupt fires or when a status
stored response is generated as a result of the SIO and HIO instructions (see Section
14.3.7).

2. This is the address of the IOQ for which an interrupt is pending.

3. Flagword bits have the following meaning:

Bit Meaning

1 if set, lost interrupt

2 if set, I/O completed for a device that had timed out

0, 3-31 reserved

4. COT address associated with this channel.

5. See Section 14.2.1.3.2 for format of these four words.

6. Contains the address of the fourth word of the interrupt context block located in
H.EXIO.

7. Used for error retry logic.

8. Contains the address of the interrupt context block located in H.EXIO.

9. This is the SYSGEN specifiable time-out value for dual-ported (DPTOV) discs.

14.3.7 Status Doubleword

A Status Doubleword is presented each time an interrupt is generated or as a result of
the "status stored" response to a SIO or HIO instruction. It has the following format:

Word 0 8 9 15 16 31

1 Sub-channel I lOCO Address

2 Status J Residual Byte Count

Word 1:

Subchannel - subchannel address of interrupting device
. lOCO Address - this address points 8 bytes past the last lOCO processed

14--24-

/'- ."\

l"j

o

Residual Byte Count - number of bytes not transferred for the last lOCO processed

14.3.8 Input/Output Control Doubleword (IOCD)

See Section 14.2.1.2.

14.3.9 Interrupt Context Block

See the 32/70 Series Reference Manual.

14.3.10 Sense Buffer

See Section 14.2.1.3.2.

14.3.11 INCH Buffer

See Section 14.2.1. 3.1.

14.3.12 Status Returned to User's FeB

The handler places the following information into the IOQ which is relayed back to the
user's File Control Block (FCB) by IOCS. Not all of the sense information obtained by
the handler is returned to the user.

.IOQ Word

Special Bits Status
IOQ.IOST Set by handler Bits

Mode Contents of
IOQ.ISTl Byte Sense Buffer

Register

Status Residual
IOQ.IST2 Bits Byte Count

Nwnber of bytes
IOQ.UTRN red

From

STATUS + 2H

SENSE BUFFER
WORD 2

STATUS WORD 2

COMPUTED BY
HANDLER

Becomes FCB
Word

Special Bits
Set by handler

I Status
Bits

Mode Contents of
Byte Sense Buffer

Register

Status I Residual .
Bits Byte Count

Nwnber of bytes
transferred

FCB.SFLG

FCB.ISTI

FCB.IST2

FCB.REeL

Note: For Execute Channel Program requests, IOQ.IST 1 contains STATUS WORD 1 and
IOQ.UTRN is invalid.

14-26

(
J 4.4 XIO Disc Interrupt Fielder (H.EXIO)

One copy of H.EXIO exists for each channel that is connected to a disc processor. It
serves as the interrupt/event fielder for that channel and as the link to entry points 1 and
2 of H.DP02.

14.4.1 Entry Point Summary

H.EXIO has four entry points as follows:

Entry Point
Handler Entry

Point Name Function

EPI
EP2
EP3
EP8

EPIAND3
EP2
EPIAND3
EXIO.8

Queue Drive Interrupt Service Routine
Queue Start Service Routine
Spurious Interrupt Service Routine
SYSGEN Initialization

14.4.2 Entry Point 1 and 3 - Queue Drive Interrupt Service Routine Spurious
Interrupt Service Routine

Because it is not known whether a valid or spurious interrupt/event has occurred until
some processing has taken place within H.EXIO, entry points 1 and 3 are physically the
same. Entry point 1 and 3 is entered any time one of the following occurs:

an interrupt fires o
o
o

status is stored as a result of the SIO instruction in entry point I of H.DP02
status is stored as a result of the HIO instruction in entry point 4 of H.DP02

14.4.2.1 Processing - When an Interrupt Fires

Calling Sequence:

Entered through Service Interrupt (SI) vector location, where the new Program Status
Ooubleword (PSO) causes the system to go unmapped with interrupts unblocked and the SI
level active. This is always the initial mechanism for reporting I/O complete for a given
channel.

Registers Passed in Calling Sequence: None.

Control Transferred to:

o
o

14.4.2.2

Entry point 1 of H.DP02 if valid interrupt
Exit routine of H.EXIO if spurious interrupt

Processing - As a Result of Status Stored for Start I/O (510)

Calling Sequence:

Entered from entry point I of H.DP02 by:

14-27

,

I

I'
I

I
1
I

I
II
I,

ji
Ii
I,
I,

i

o
o

setting bit within H.EXIO indicating entry is from H.DP02
BU *XIO.EP13,X3 X3 = H.EXIO OLDPSD address

Registers Passed in Calling Sequence:

RO = context block address that was in effect when the Status Stored Condition
Code was generated in response to the SIO instruction.

Control Transferred To:

o Entry point 1 of H.DP02 if status was stored for a valid I/O request
o Entry point 2 of H.DP02 if status was stored for a spurious event

14.4.2.3 Processing - As a Result of Status Stored for Halt I/o (HIO)

Calling Sequence:

Entered from entry point 4 of H.DP02 by:

o setting bit within H.EXIO indicating entry is from H.DP02
o setting bit within H.EXIO indicating entry is from EP4 of H.DP02
o BU *XIO.EP 13, X2 X2 = H.EXIO OLDPSD address

Registers Passed in Calling Sequence:

RO = context block address that was in effect when the Status Stored Condition
Code was generated in response to the HIO instruction.

Control Transferred To:

o Entry point 1 of H.DP02 if status was stored for a valid I/o request
o Entry point 2 of H.DP02 if status was stored for a spurious event

14.4.2.4 Common Processing

External Routines Called:

o Entry point 1 of H.DP02 .
o Entry point 2 of H.DP02

Functions Performed:

o increments global interrupt count (C.GINT) - only when an interrupt fires
o saves registers - only when an interrupt fires
o determines the validity of the interrupt or status stored event
o fetches the context block address of the offending device
o transfers control to appropriate processing as defined above

14-28

Exit Sequence:

o
o
o
o

LPSD
BEl
DACI
BL

return to the mapped mode
block external interrupts
deactivate interrupt level
S.EXEC5 (no return)

Registers Passed in Exit Sequence:

R6 and R7 - PSD in effect when the interrupt occurred
R2 - address of the register save area

14.4.3 Entry Point 2 - Queue Start Service Routine

Entry point 2 of H.EXIO is entered from 10CS each time it queues an I/O request and the
channel is not busy. It is entered with interrupts blocked and the appropriate context
block address.

Calling Sequence:

Entered from H.IOCS,29 by:

BEl
BL *XIO.EP2,X2

Registers Passed in Calling Sequence:

R3 = Context Block address

External Routines Called:

o Entry point 2 of H.DP02

Functions Performed:

Block External Interrupts
X2 = H.EXIO OLDPSD address

o sets bit indicating a handler EP2 entry
o transfers control to EP2 of H.DP02

Exit Seguence:

TRSW RO

Registers Passed in Exit Seguence:

All registers returned unchanged.

14-29

14.4.4 Entry Point 8 - SYSGEN Initialization

Entry point 8 of H.EXIO is called by SYSGEN when configuring a new system.

Calling Sequence:

BL *IW,X2 X2 = H.EXIO HAT address

Registers Passed in Calling Sequence:

R7 = CDT address

External Routines Called: None.

Functions Performed:

o provides a buffer area used by the disc processor for storage and record
keeping

o builds the deactivate channel interrupt (DACI) instruction for EP I and EP3
exit routines

o computes the SI vector location address and initializes it with the H.EXIO
execution address

o stores the SI scratchpad address into CDT.SIAD

o builds the drive attribute information table needed for channel initialization
(INCH)

Exit Sequence:

M.XIR HAT (Special SYSGEN Initialization Termination Macro)

Note: 'HAT' is a label equated to 0 relative within the H.EXIO handler.

Registers Passed in Exit Sequence: Non~.

14.5 XIO Disc Handler (H.DP02)

One copy of H.DP02 exists for each system that supports the disc processor. Its function
is to process I/o requests on behalf of the user.

14-30

C.,\
I _-j

I
ii

I

I'

('

14.5.1 Entry Point Summary

H.DP02 has 8 entry points as follows:

Entry Point
Handler Entry

Point Name Function

14.5.2

EPI
EP2
EP3
EP4
EP5
EP6
EP7
EPg

DP02.!
DP02.2
DP02.3
DP02.4
DP02.5
DP02.6
OP02.7
OP02.8

Queue drive interrupt service routine
Queue start service routine
Spurious interrupt service routine
Lost (timed out) interrupt processor
Op code processing routine
Post transfer processing routine
Error processing routine
SYSGEN initialization

Entry Point 1 - Queue Drive Interrupt Service Routine

Entry point 1 of H.DP02 performs I/O post-access processing for completed I/o requests
and pre-access processing associated with all queued I/O requests for non busy devices on
the interrupting channel.

Calling Sequence:

This entry point is called from H.EXIO entry point 1 by a:

BU *JUMPLOC

where JUMPLOC contains the address of EP 1 of H.OP02.

Registers Passed In Calling Sequence:

R3 = Context Block address of completing subchannel

External Routines Called:

S.IOCS3
S.IOCS15
S.IOCS29

unlink 100 from Controller Definition Table (COT) chain
delete IOQ for task delete requests
report I/O complete

Functions Performed:

Entry point 1 performs the following functions

0

0

0

0

0

0

0

0

stores status into IOQ
computes and stores transfer count into IOQ
issues SENSE commands when needed
stores SENSE information into 10Q
determines if error condi tions exist
processes error conditions and does retries as required
initiates I/O for queued I/O requests
takes various action in response to condition codes returned from SIO
commands

14-'31

o processes device time-outs
o unlinks 10Q from CDT chain
o processes requests for task deletes
o reports I/o complete
o issues priority override for dual ported discs that time out

Exit Sequence:

Entry point 1 always exits with an unconditional branch to the H.EXIO exit processing
routine.

BU *XI0.XIT,X3 X3 = H.EXIO OLDPSD address

Registers Passed in Exit Sequence: None.

14.5.3 Entry Point 2 - Queue Start Service Routine

Entry point 2 of H.DP02 serves as the link between EP2 of H.EXIO and the pre-access
processing code of H.DP02 EP 1.

Calling Sequence:

This entry point is called from H.EXIO entry point 1 by a

BU *JUMPLOC

where JUMPLOC contains the address of EP2 of H.DP02

Registers Passed In Calling Sequence:

R3 = context block address associated with the I/O request

External Routines Called: None.

Functions Performed:

Branches to pre-access processing code of H.DP02 EP 1.

Exit Sequence:

Entry point 2 merges with entry point 1 and uses its exit sequence to return to H.EXIO.

Registers Passed in Exit Sequence: None.

14.5.4 Entry Point 3 - Spurious Interrupt Service Routine

Entry point 3 of H.DP02 is a dummy entry point which is never called because spurious
interrupts are discovered and processed at EP3 of H.EXIO.

14-32
..~.

(

If

14.5.5 Entry Point 4 - Lost Interrupt Service Routine

Entry point 4 of H.OP02 is entered from S.IOCS5 to take corrective measures
appropriate to the device when an expected Service Interrupt (SI) fails to occur. It is
also entered from H.IOCS,38 when a 'KILL' command is issued for I/O that has started
but has not completed. Because a Halt I/O (HIO) instruction is issued, EP4 contains logic
to handle a status stored response.

Calling Sequence:

This entry point is called from either S.IOCS5 or H.IOCS,38 with:

BEl Block External Interrupts
BL *4W,X2 X2 = H.DP02 Halfword Address Table (HAT) address

Register Passed in Calling Sequence:

R 1 = UOT address

External Routines Called:

H.EXIO if HIO produces status stored response

Functions Performed:

o terminates device activity and sets lost interrupt flag

Exit Sequence:

Entry point 4 returns to the calling sequence with a:

TRSW RO

Registers Passed in Exit Sequence: None.

14.5.6 Entry Point 5 - Opcode Processing Service Routine

14.5.6.1 Common Processing

Entry point 5 of H.DP02 is called by IOCS to process various user I/O requests.

Calling Sequence:

BL *5W,R3 R3 = H.DP02 Halfword Address Table (HAT) address

Registers Passed in Calling Sequence:

R I = FCB address
R2 = FAT address

14-33

i'

i
,I
,1

External Routines Called:

S.IOCS13

H.IOCS,40

S.IOCS33

S.IOCSI0

S.IOCSI2

Exit Sequence:

build an IOQ

set up lOCOs in 10Q

update File Assignments Table (FAT) and File Control
Block (FCB); return files starting block number

delete IOQ

set up lOCOs in IOQ

All entry point 5 returns are to IOCS through one of the following calls:

o BL 10LlNK

o BL SERVCOMP

o BL ILOPCODE

used when normal device access is required to service the
request

used when request has been serviced with no device access
required

used when op code passed to EP 5 is in error

Registers Passed in Exit Sequence: None.

14.5.6.2 Opcode Dependent Processing

14.5.6.2.1 Opcode Summary Table

The following table summarizes FCB op code assignments.

Timeout
02 Code Value Function EP5 return to 10CS

X'OO' 0 Open File Service Complete I
X'Ol' 0 Rewind File Service Complete
X'02' 4 Read Queue Request
X'O)' 4 Write Queue Request
X'04' 0 Write End-of-File Service Complete
X'05' 0 Execute Channel Program Queue Request
X'06' 0 Advance Record Service Complete
X'07' 0 Advance File Service Complete
X'08' 0 Backspace Record Service Complete
X'09' 0 Backspace File Service Complete
X'OA' 0 Upspace Service Complete
X'OB' 0 Erase Service Complete
X'OC' 0 Eject Service Complete
X'OD' 0 Close File Service Complete
X'OE' 2 Reserve Queue Request
X'OF' 0 Release Queue Request

I Open commands normally take the service complete return except for the first
I/O request to the channel which forces channel "initialization (INCH).

14-34

G

I~

(

('

where:

Op code is a hexadecimal number from OO-OF used by 10CS and EP5 only
Timeout Value is in seconds
Service Complete returns to IOCS SERVCOMP routine
Queue Request returns to 10CS IOLINK routine

14.5.6.2.2 Open

Open commands are normally processed in EP5 by taking the service complete return
with no other action. The exception to this is when OPEN is called the first time for a
given channel. The first OPEN call will effect a channel initialization (INCH) by:

o calling S.IOCS 13 to build an 100
o issuing a Reset Controller (RSCTL) instruction
o issuing a Reset Channel (RSCHNL) instruction
o delaying for 32000 timer units
o issuing a Disable Channel Interrupt (DCI) instruction
o issuing an Enable Channel Interrupt (ECI) instruction
o setting up the 100 with an execute channel program request which points to an

INCH command lOCO
o setting the bit in IOO.FLGS specifying execute channel program
o storing a positive timeout value in seconds into IOQ.FCT4
o taking the q'ueue request return to IOCS

14.5.6.2.3 Read

Read commands are processed in EP 5 by:

o calling S.IOCS 13 to build an 10Q
o calling S.IOCS33 to update the FAT and FCB and return the absolute starting

block number for the requested file
o computing a seek address
o calling S.IOCS12 to set up a Seek command lOCO within the 100
o calling H.IOCS,40 to set up a Read lOCO or lOCOs within the IOQ
o building mode byte within the 100
o storing a positive timeout value in seconds into IOQ.FCT4
o taking the queue request return to 10CS

14.5.6.2.4 Write

Write commands are processed in EP5 by:

0 calling S.IOCS 13 to build an IOQ
0 calling S.IOCS33 to update the FAT and FCB and return the absolute starting

block number for the requested transfer file
0

0

0

0

0

0

computing a seek address
calling S.IOCS12 to set up a Seek command lOCO within the 100
calling H.IOCS,40 to set up a \Vrite lOCO or lOCOs within the 10Q
building mode byte within the IOQ
storing a positive timeout value in seconds into IOO.FCT4
taking the queue request return to IOCS

14-35

14.5.6.2.5 Rewind

Rewind commands are processed in EP 5 by:

o zeroing the current disc address in the FAT
o setting the Beginning of Media (BOM) flag in the FCB
o taking the service complete return to IOCS

14.5.6.2.6 Write End-of-File

Write End-of-File commands are processed in EP5 by taking the service complete return
to IOCS with no other action.

14.5.6.2.7 Execute Channel Program

Execute Channel Program commands are processed in EP5 by:

o calling S.IOCS 13 to build an IOQ
o setting the bit in IOQ.FLGS specifying execute channel program
o storing a positive timeout value in seconds into IOQ.FCT4
o taking the queue request return to IOCS

14.5.6.2.8 Advance Record

Advance Record commands are processed in EP5 by:

o calling S.IOCS33 with a count of + 1 to update the FAT and FCB
o taking the service complete return to IOCS

14.5.6.2.9 Advance File

Advance File commands are processed in EP 5 by taking the service complete return to
IOCS.

14.5.6.2.10 Backspace Record

Backspace Record commands are processed in EP5 by:

o calling S.IOCS33 with a count of -1 to update the FAT and FCB
o taking the service complete return to IOCS

14.5.6.2.11 Backspace File

Backspace File commands are processed in EP5 by taking the service complete return to
IOCS.

14-36

G

14.5.6.2.12 Upspace

Upspace commands are processed in EP 5 by taking the service complete return to IOCS.

14.5.6.2.13 Erase

Erase commands are processed in EP 5 by taking the service complete return to IOCS.

14.5.6.2.14 Eject

Eject commands are processed in EP5 by taking the service complete return to IOCS.

14.5.6.2.15 Close File

Close File commands are processed in EP 5 by taking the service complete return to
IOCS.

14.5.6.2.16 Reserve

Reserve commands are processed in EP5 by:

o calling S.IOCS 13 to build an IOQ
o calling S.IOCSI2 to set up a Reserve lOCO within the IOQ
o setting bit in IOQ specifying Reserve command
o building mode byte within the IOQ
o storing timeout value in seconds into IOQ.FCT4
o taking queue request return to IOCS

14.5.6.2.17 Release

Release commands are processed in EP 5 by:

o calling S.IOCS 13 to build an IOQ
o calling S.IOCS 12 to set up a Release lOCO within the IOQ
o setting bit in IOQ specifying Release command
o building mode byte within the IOQ
o storing timeout value in seconds into IOQ.FCT4
o taking queue request return

14.5.7 Entry Point 6 - Post Transfer Processing Service

Entry point 6 of H.DP02 is a dummy entry point and should never be called.

14.5.8 Entry Point 7 - Error Processing for Operator Intervention

. Entry point 7 of H.DP02 does an immediate TRSW RO return thus disallowing any
operator intervention error retry.

14-37

14.5.9 Entry Point 8 - SYSGEN Initialization

Entry point 8 of H.DP02 is entered by SYSGEN when SYSGEN encounters an extended
I/O disc specified in the Controller Definition Table (CDT). It is called only once
regardless of the number of channels configured with extended I/O discs.

Calling Sequence:

BL *8W,R2 R2 = H.DP02 Handler Address Table (HAT) address

Registers Passed In Calling Sequence:

R7 = CDT address

External Routines Called: None.

Function Performed:

Entry point 8 performs the following functions for all extended I/O disc CDTs, UDTs and
context blocks:

o provides memory space allocation for context blocks
o stores handler Halfword Address Table (HAT) address into CDT .SIHA
o stores context block address into UDT .CBLK
o stores CDT address into context block
o stores max transfer byte count into UDT.MBX
o stores channel address and device subaddress into context block
o stores SYSGEN specifiable timeout value (DPTOV) into context block for

dual ported devices
o computes and stores number of sectors per cylinder into context block
o stores service interrupt vector address into context block
o stores channel 10CD vector address location into context block
o converts EP5 time out values to seconds and stores into EP5 time out table

Exit Sequence:

M.XIR HAT (Special SYSGEN Initialization Termination Macro)

Note: 'HAT' is a label equated to 0 relative within the H.DP02 handler.

Registers Passed in Exit Seguence: None.

14.5.10 Error Processing for Conventional I/O Requests

When an I/o operation completes, the 16 status bits presented in the Status Doubleword
are checked for error conditions. If only Channel End (CE) and Device End (DE) are
presented, the I/o operation is considered complete with no errors and normal post-
access processing is continued. If other bits are found to be set, the handler issues a
SENSE command to gain additional information regarding the error. The Sense
information is stored in the context block for the device (see Section 14.2.1.3.2). The 'G
status bits, sense bits, and drive status bits are then interrogated to determine
appropriate action as described next.

14-38 i",·

(

(

14 • .5.10.1 Abort the I/o Request

The following Status bits, Sense bits, and Drive Status bits will abort the I/o request:

Status Bit Meaning

2 Incorrect Length
3 Program Check
4 Channel Data Check
5 Channel Control Check

Sense Bit Meaning

8 Command Reject
9 Operator Intervention Required*

10 Spare
12 Data Check
14 Disc Format Error
18 Write Protect Error**
19 Write Lock Error
20 Mode Check
21 Invalid Memory Address
23 Chaining Error
30 Reserve Track Access Error

Drive Status Bit Meaning

12 Write Protected**

All of the above errors will cause the Error Condition Found bit (1) in Word 3 of the FCB
to be set which indicates to the user that the I/o operation completed abnormally.

14 • .5.10.2 Retry the I/o Request

The following Sense bits will cause five (5) retries of the whole IOCD list before aborting
the I/O request:

*

**

Sense Bit

11
13
27
29

Meaning

Equipment Check
Data Over or Under Run
ECC Error in Sector Label
ECC Error in Track Label

This condition will also cause the Device Inoperable bit (4) in Word 3 of the FCB
to be set.
If I/O request was a write, this condition will also cause the Write Protection
Violation bit (3) in Word 3 of the FCB to be set.

14-39

1

I
-I

I/o requests which timeout will be retried five (.5) times.

If error retry is unsuccessful, the Error Condition Found bit (1) in Word 3 of the FCB will
be set which indicates to the user that the I/O operation completed abnormally.

There exists the capability within the disc processor to retry erring read commands using
various combinations of carriage and timing offsets as defined by the "Mode" byte
specified by the Load Mode Register command (see Section 14.2.1.3.2). This capability is
extremely useful for recovering data from transportable disc packs and shall be
incorporated in a future version of the XIO disc handler.

1" • .5.10.3 Perform Read ECC Correction Logic

The following Sense bits will cause the ECC logic to be performed:

Sense Bit Meaning

.28 ECC Error in Data

When an ECC Error in Data is detected, the Read ECC command is issued to obtain
correction information. This information is invalid if the Status returned from the Read
ECC command contains other than Channel End (CE) and Device End (DE) or if the bit
displacement exceeds the sector size. In either case the error correction logic is
bypassed and error retry is initiated as per Section 14.5.10.2.

When the correction information is determined to be valid, the bit displacement is used
to locate the address of the erring bits. If the address is outside the users buffer, no
error correcting takes place and the I/O request is considered complete without error. If
the address is within the users buffer, the data is corrected. The 10CD list is then
modified to begin data transfer from the point of interruption and the I/o transfer is
continued.

14.5.10." Rezero and Retry

The following Sense bits and Drive Status bits will cause drive recalibration and retry of
the whole 10CD list:

Sense bit

2.5

Drive Status Bit

8
9

Meaning

Disc Addressing or Seek Error

Meaning

Disc Drive Detected a Fault
Seek Error

The Sense bits and Drive Status bits not specifically mentioned above are considered
'don't care' items and normal post-access processing is continued.

14-40

o

o ~
i·
:

i
I

I~
Iii
Iii
I

14.5.11 Error Processing for Execute Channel Program Requests

Error processing for execute channel programs is impossible to perform at the handler
level; therefore, only a minimal amount of support can be given. Information returned
will consist of Status Words I and 2 passed to FCB Words 11 and 12. If bits other than
Channel End (CE) and Device End (DE) are present, bit 1 (error condition found) of Word
3 in the FCB will be set. Bits 16-31 of Word 3 are valid. Sense information generation,
error correction, and error retry are the responsibility of the user.

14.6 SYSGEN Directives

SYSGEN 'CONTROLLER' and 'DEVICE' directives are used to define XIO discs configured
in an MPX-32 system. See Volume III of the MPX-32 Reference Manual for details.

Each disc drive attached to a disc processor is assigned a unique unit address in the range
o to 7. This unit address is determined by a unit address plug installed in the drive or by
switches contained in the drive depending upon drive type. The device subaddress
specified on the SYSGEN 'DEVICE' directive is the unit address from above multiplied by
2 and converted to its hexadecimal equivalent, i.e., unit address 7 is specified as OE.
Sample SYSGEN directives follow:

CONTROLLER=DM08, PRIORITY = 16, CLASS=F, MUX=XIO, HANDLER=(H.EXIO,I) I

DEVICE=OO, DTC=DM, HANDLER=(H.DP02,S), DISC=MH0402

DEVICE=02, DTC=DM, DISC=MH080 3

DEVICE=04, DTC=DM, DISC=(MH040,D), DPTOV=34

DEVICE=06, DTC=DM, DISC=CD0325

1. The CONTROLLER directive specifies an IF' class, extended I/O moving head disc on
channel 8 at priority level 16. The handler name (interrupt fielded is H.EXIO and is
channel reentrant (one copy per channen.

2. This DEVICE directive specifies a 40 MB moving head disc assigned to subaddress
00. The handler is H.DP02 and is system reentrant (one copy per system).

3. This DEVICE directive specifies an 80 MB moving head disc assigned to subaddress
02.

4. This DEVICE directive specifies a 40 MB dual-ported moving head disc assigned to
subaddress 04 with a dual-port timeout value of three (3) timer units.

5. This DEVICE directive specifies a 32 MB cartridge module drive. The removable
media portion (MHD) of the cartridge module drive is assigned subaddress 06 and the
captive media portion (FHD) is assigned subaddress 07 (by SYSGEN).

14-41/14-42

(
15.0 INPUT IOUTPUT PROCESSOR (lOP) HANDLER

15.1 Introduction

This chapter describes in functional terms the software requirements for integrating
Input/Output Processor (lOP) hardware into MPX-32. It also serves as a guide to
programmers whose task is to design device handler programs for lOP controllers.

This chapter is not intended to supply detailed lOP hardware information. Such
information can be found in the lOP Technical Manual and in the individual lOP
Controller Technical Manuals.

15.2 Hardware Overview

15.2.1 Hardware Block Diagram Description

A block diagram of the lOP and associated hardware elements is contained in Figure 15-1
and is explained in the paragraphs which follow.

15.2.1.1 The Input/Output Processor (lOP)

The lOP is a multifunction processor which plugs into the SelBUS and requires two
SelBUS addresses. The lOP is an I/o multiplexing channel capable of interfacing up to I F
lOP controllers to the SelBUS. Each of the 16 controllers can communicate with
m~ltiple devices.

The lOP also provides two ports for the connection of two TTY compatible devices, each
of which can function as both System Control Panel and operator console.

Optionally, the lOP can also provide the same real-time interrupt input capability that
one R TOM board provides with the exception that only 4 external interrupts are available
to the user.

15.2.1.2 lOP Control Panel/Operator Console

The lOP eliminates the need for a System Control Panel by providing the most commonly
used System Control Panel functions as interactive commands on a CRT or TTY which is
connected to one of the two integral lOP ports. The same CRT or TTY also functions as
the operator console.

Each port can operate in the full duplex mode, and will support a TTY compatible device
or a modem for remote operation. One port is designated as the master port and the
second port is designated as the slave port.

Upon system power-up, the devices connected to both ports are automatically activated
in the control panel mode. While in control panel mode, the CRT or TTY is driven
strictly by lOP firmware. Automatic switching from control panel mode to operator
console mode is effected when the CPU enters the RUN mode. In the operator console
mode, the CRT or TTY is driven by software. Upon transition of the CPU from RUN to

15- 1

RTa.i 0
Interrupt 1 ,

Inputs ~
I

3 I

Subchannel.
0

lOP
Controller I

- --
o 1 F
'-' _--..-_~J

Device
Addresses

SeiBUS

Channel nn, nn+l

Fe Master ,
lOP { Control Pane 1/1

FD Console Dev ice
Input/Output J

Processor I FE l Slave ,
(Control Pane 1 I)

FF onsole Dev i ce -
lOP Bus

Subchannel Subchannel
1 F

lOP lOP I
Con t roll er 2 - - --- Con t ro Iler 16

--- ---
o 1 F o I B

Figure 15-1. lOP Hardware Block Diagram

15-:/

G

HAL T, the CRT or TTY device is automatically switched to the control panel mode. The
transition from operator console mode to control panel mode can also be effected via
software (i.e., operator command).

For a list of control panel mode displays and interactive commands, consult the lOP
Technical Manual. A description of the operation of the slave port can also be found in
the lOP Technical Manual.

15.2.1.3 lOP Controllers

The lOP supports up to 16 independent device controllers. Each controller connects to
the mUltipurpose bus. All controllers connected to a particular lOP share both the
channel address and service interrupt (SI) priority of their parent lOP.

Each lOP controller has a subchannel address which is its multipurpose bus address. Each
lOP controller supports up to 16 devices except the controller on subchannel F, since four
subchannel F addresses are com m i tted to the control panel/console devices.

Even though the lOP is theoretically capable of addressing 254 devices, the amount of
RAM configured on the lOP limits lOP addressability to 124 devices.

15.2.1.4 lOP ~upport fO(" Real-Time Interrupts

As an option, the lOP can, in addition to its other previously described functions, assume
the role of an RTOM. That is, it can process up to 16 real-time priority interrupt levels.

If the RTOM function is required for a CONCEPT /32 CPU, the appropriate real-time
interrupt levels should be configured in CPU scratchpad using the odd SelBUS address of
the 10P's even/odd address pair. If the RTOM function is required for a 32/7x CPU, the
10P's even/odd address pair must be 78/79 with the appropriate interrupt levels
configured in CPU scratchpad using address 79. If the R TOM function is not required on
a 32/7x CPU, the lOP SelBUS address pair should start at less than 78.

15.2.2 lOP Device Addressing

lOP device addresses have the following format:

15.2.3

CCSD, where
CC = Channel/lOP Address
S = Subchannel/Controller Address
D = Device Address

lOP Protocol

lOP devices use standard F-cJass I/O (XIO) instructions with the following exceptions:
Enable WCS (EWCS), Write Channel WCS (WCWCS), and Grab Controller (GRIO) except
in the case of the console which uses a special form of GRIO to facilitate usage of the
MPX-32 System Debugger.

Operation of the IOP/XIO instructions is explained in the lOP Technical Manual.

15--

15.2.4 Detailed lOP Hardware Information

For detailed IOP hardware information, see the lOP Technical Manual.

15.3 Software Overview

15.3.1 Software Block Diagram Description

A block diagram of MPX-32 software related to the lOP and the control of lOP devices is
contained in Figure 15-2. The various elements of Figure 15-2 are explained in the
paragraphs which follow.

15.3.1.1 lOP Device Handler Programs

lOP device handler programs are designed to provide generalized MPX-32 I/O support for
specific lOP device controllers. Each handler consists of six entry points. Each entry
point represents a functional block of code as follows:

Entry Point OP. - Operation Code Processor

This entry point performs device specific processing of user I/O requests including the
formatting of I/O queue entries.

Entry Point IQ. - I/O Queue Processor

This entry point processes I/O queue entries in order to initiate actual device I/O.

Entry Point SI. - Service Interrupt Processor

This entry point performs all service interrupt processing, status reporting, and
automatic error recovery if applicable.

Entry Point LI. - Lost Interrupt Processor

This entry point performs handler recovery from a lost service interrupt due to device
timeout.

Entry Point PX. - Special Post Transfer Processor

This entry point performs optional handler related processing after completion of the I/O
request but before return to the requesting task. This entry point operates at task
priority level.

Entry Point SG. - SYSGEN Initialization Processor

Executed by SYSGEN during MPX-32 image construction and subsequently overlayed.
Builds and initializes DCAs, and initializes other MPX-32 I/O data structures.

15-4

f~

It)

o

User I/O

Requests

I/O
Control
System
H.lOCS

EP OP.

Device
Handler
H.xxIOP

Q

Device
Context
Area

IQ.
Ll.
Px.

lOP
Channel

Executive
H.IOPX

AIlS Is ..
for devices
on th is lOP

EP S I .

Device
Handler
H. yy lOP

Device
Context
Area

Device
Context
Area

Figure 15-2. Software Block Diagram

15- 5

15.3.1.2 lOP Device Context Areas

Associated with each device connected to an lOP controller is an lOP Device Context
Area (DCA). The lOP DCA allows lOP device handlers to be system level reentrant by
containing pointers to system tables associated with the device, and by providing
temporary storage locations for each device.

The confi~uration of the DCA is discussed in detail in subsequent paragraphs.

15.3.1.3 lOP Channel Executive

The lOP Channel Executive program fields interrupts on behalf of all controllers
connected to a particular lOP. Subsequent to fielding an interrupt the lOP Channel
Executive passes control to the interrupt servicing entry point of the appropriate lOP
device handler. The lOP Channel Executive locates the correct lOP handler by locating
the appropriate UDT.

Returns from handler interrupt servicing entry points are made via the lOP Channel
Exe.cutive.

15.3.1.4 H.IOCS/IOP Handler Interaction

H.IOCS makes calls to entry points OP., IQ., LI., and PX. of lOP device handlers to
perform the device specific processing required when users execute I/O requests.

15.4 Required Data Structure. Additions and Modifications for lOP
Implementation

15.4.1 Data Structure Additions

15.4.1.1 Channel Definition Table (CHT)

The CHT as shown in Section 2.4.11 of the MPX-32 Technical Manual will be constructed
to support the lOP Channel Executive program and lOP Handlers. The first 14 words will
include a register save area, CHT.REGS, and a service interrupt control area comprised
of CHT.OPSD, CHT.NPSD, CHT.IOCL, and CHT.STAT. Locating these items in the CHT
serves to centralize them for easy scrutiny. CHT.REGS must begin on a register file
boundary.

Fields CHT.IPL, CHT.CHAN, and CHT.FLGS will provide lOP attribute descriptors.

Fields CHT .CDTO through CHT .CDTF will contain the addresses of the CDT entries for
the controllers connected to the corresponding lOP. These addresses will provide for the
fastest possible service interrupt response times by allowing the lOP Channel Executive
the most convenient access method to the lOP handler interrupt servicing entry point.
These addresses will be used together with the analogous UDT addresses (CDT.UTO
through CDT.UTF) described in Section 2.4.5 of the MPX-32 Technical Manual. Entries
for unimplemented controllers will be set to zero.

15-6

,4"c,
V

i

il
1:
I'
I
I

(

Field CHT.STDW is a double word location into which the lOP will store its channel
status.

Field CHT .EXIT contains the address of the exit entry point in the corresponding lOP
Channel Executive program. lOP handler interrupt servicing entry points will branch to
the exit procedure via the address contained in CHT.EXIT.

Field CDT.INCH contains the address of the channel initialization entry point in the
corresponding lOP Channel Executive program.

Only lOPs will have a CHT entry, and these entries will not affect the operation of any
currently implemented device handlers.

15.4.2 Data Structure Modifications

15.4.2.1 Controller Definition Table (CDT)

The CDT is modified as shown in Section 2.4-.5 of the MPX-32 Technical Manual. First,
to allow for the possibility of an I/O queue per UDT (i.e., per device), bit 0 of CDT .IOST
when set indicates that no I/O queue entries are linked to the corresponding CDT.

Second, bit f, of CDT.FLGS, when set, indicates that the corresponding CDT represents
an lOP controller.

Third, in order to achieve the fastest possible lOP device interrupt response times, each
CDT contains the addresses of all associated UDTs in ascending order of device address.
Entries for unimplemented device addresses contain zero.

These modifications will not affect operation of existing device handlers.

15.4.2.2 - Unit Definition Table (UDT)

Several significant modifications have been made to the UDT for lOP implementation as
shown in Section 2.4-.6 of the MPX-32 Technical Manual and are described in the
following paragraphs.

To allow for the queueing of I/O requests on a per device basis, the UDT contains the
standard MPX-32 linked list head cell format as represented by fields UDT.FIOQ,
UDT.BIOQ, UDT.LPRI, and UDT.IOCT. In addition, bit 0 of UDT.STA2, a new status
byte, indicates that an I/O queue is linked from the corresponding UDT when set.

Bit 1 of UDT .ST A2 indicates, when set, that the corresponding UDT represents an lOP
device.

These modifications will not affect operation of existing device handlers.

15-7

15.4.2.3 Commtmication Region Variables

The following communication region variables have been added to support the CHT:

C.CHT A Address of Channel Definition Table (CHT)

C.CHTN Number of Channel Definition Table (CHT) entries

15.5 Required Modifications to Existing Software For lOP Implementation

15.5.1 10CS Modifications

10CS is modified to take into account the differences in 10CS to lOP handler
communication, I/O queueing on a per device basis, and other features new to lOP
handlers.

15.5.1.1 10CS to lOP Handler Commtmications

15.5.1.1.1 10CS Calls to lOP Handler Entry Points OP. and 10.

H.IOCS,29 is modified to determine whether calls to the opcode processor entry point
(OP.) or the I/O queue processor entry point (IQ.) are for lOP devices, and, if so , to
locate the handler via the UDT or initialized I/O queue entry (IOQ.DCAA) rather than via
the CDT.

15.5.1.1.2 10CS Calls to lOP Handler Entry Point PX.

S.IOCS 1 is modified to determine whether calls to the special device post processor entry
point (PX.) are for lOP devices, and, if so, to locate the handler via the I/O entry queue
(IOO.DCAA) rather than via the COT.

15.5.1.1.3 10CS Calls to lOP Handler Entry Point LI.

S.IOCS5 is modified to determine whether calls to the lost interrupt processor entry
point (U.) are for lOP clevices, ancl, if so, to locate the hancler via the UDT rather than
via the COT.

15.5.1.2 I/O Queue Entry Linking and Unlinking

15.5.1.2.1 Linking an Entry to an I/O Queue

H.IOCS,29 is modified to cleterminc whether I/o queue entries 2.re to be linked to the
COT or the UDT, anc present S.EX~CS 'common link subroutine} with the appropri2tE'
head cell address. G

15.5.1.2.2 Unlinking an Entry from an I/o Queue

(S.IOCS3 is modified to determine whether I/O queue entries are to be unlinked from the
COT or the UDT, and to perform the unlinking accordingly.

(-

15.5.1.3 Kill I/O Queue Search

H.IOCS,38 is modified to search for I/O queue entries linked from UOTs as well as from
COTs.

15.5.2 SYSGEN Modifications

15.5.2.1 Data Structure Requirements

SYSGEN has been modified to support the data structure additions and modifications as
described in Section 15.4 of this chapter.

15.5.2.2 Device Requirements

Samples of SYSGEN directives required for lOP support are shown in Figure 15-3.

15.5.2.2.1 lOP Controller Directive

All lOP controllers connected to the same lOP have the same channel address. One copy
of the lOP Channel Executive program (H.IOPX) is loaded per lOP. SYSGEN keys off the
MUX=IOP directive for this purpose unless the optional "HANOLER=XXXX" keyword is
present on the directive. In addition, one CHT entry is created per lOP.

The "SUBCH=n" keyword indicates which lOP subchannel a controller is connected to,
and is used to verify proper device address specifications on subsequent device directives
(i.e., the subchannel should match the first device address digit).

Note that the device mnemonic (and therefore device type) may be different on the
controller and device directives.

15.5.2.2.2 lOP Device Directive

Each lOP device directive contains the name of the handler which services it. However,
lOP handlers are assumed to be system level reentrant, and, therefore, SYSGEN
configures only one copy of each required handler.

15-9

· •. ·1·.·

I
I,

il
:1
;1
1.'1

CONTROLLER = LF12, PRIORITY=lA, CLASS=F, MUX=IOP, SUBCH=I
DEVICE=(1 0,2), DTC=FL, HANDLER=H.FLOIOP
DEVICE=18, DTC=LP, HANDLER=H.LPOIOP

FL1210, FL1211
LP1218

Floppy Disks
Line Printer

CONTROLLER=TY12, PRIORITY=lA, CLASS=F, MUX=IOP, SUBCH=2
DEVICE=20, DTC=TY, HANDLER=H.ALOIOP
DEVICE=21, DTC=TY, HANDLER=H.ALOIOP

TY 1220, TY 1221 8-Line Asynchs

CONTROLLER=CT12, PRIORITY=lA, CLASS=F, MUX=IOP, SUBCH=O
DEVICE=OO+Ol, DTC=CT, HANDLER=H.CTOIOP

CTOO Console Terminal

PRIORITY = 13, RTOM=(13,OC), PROGRAM=H.IP 13

15-10

Software interrupt level 13 corresponding to lOP channel 13 (the odd
aqdress of even/odd address pair 12 and 13) and subaddress C (which is the
l's complement of the relative physical priority, 3).

Figure 15-3. Sample lOP SYSGEN Directives

o ,-

15.5.2.2.3 lOP RTOM Function Directive

(SYSGEN does not require modification to process priority interrupt directives for the
lOP and construct the required scratch pad cell images. Note that the interrupt physical
address must be an odd number address of an even/odd address pair, and that the even
number address must appear in the controller directive set. Since the interrupt physical
sub address is the one's complement of the relative physical priority (O-F), the unused and
superfluous first hexdigit should be zero.

(

15.5.2.3 lOP SYSGEN Initialization

SYSGEN calls the initialization entry point of the lOP Channel Executive and of each
lOP handler with the address of the CHT in register I (R3).

15.6 New Software Required For lOP Implementation

15.6.1 lOP Channel Executive - H.IOPX

15.6.1.1 Interrupt Fielding Entry Point

When an interrupt occurs on an lOP channel the interrupt fielding entry point in the
corresponding copy of H.IOPX will automatically be entered. The interrupt fielding
entry point will, after updating the global interrupt count and saving all registers, locate
the handler servicing the interrupting device via the appropriate CHT, COT, and UOT
entries. Control will then be passed in the unmapped mode to the service interrupt
processor (entry point SI.) of the device handler.

15.6.1.2 Interrupt Exit Entry Point

In order to exit an lOP interrupt level, the service interrupt processor of the lOP handler
will call the interrupt exit entry point of the appropriate copy of the lOP Channel
Executive. The address of the interrupt exit entry point will be located via the COT.
The interrupt exit entry point will restore the mapped mode, deactivate the interrupt
level, and branch to S.EXEC5.

15.6.1.3 Initialize Channel Entry Point

The initialize channel entry point is called only once to perform a channel initialization
(INCH) to the lOP. This consists of a single lOCO which indicates to the lOP where
interrupt status from the lOP is to be posted. This entry point is called by the device
handler of the first device on an lOP to be opened.

15-1 i

15.6.1.4 Initialization Entry Point

The initialization entry point is an overlayable procedure called by SYSGEN to initialize
certain local and global variables as follow:

Variable Name Description

SI vector location N/A
CHT.NPSD
CHT.EXIT
CHT.INCH
IOPADDR
INCHIOCD

New PSD address in Service Interrupt Control Area (SICA)
Address of H.IOPX interrupt exit entry point
Address of H.IOPX initialize channel entry point
lOP channel address
IOCD used to perform initialize channel (INCH)

15.6.2 lOP Device Handlers

15.6.2.1 lOP Device Context Area - H.DCAxxx

15.6.2.1.1 Device Context Area Configuration

The configuration of a prototype DCA is shown in Figure 15-4. The purpose of each
element of the DCA is also explained in the figure.

DCA.SIZE REZ lW Size of this DCA

DCA.UADD REZ lW Address 1 This Unit

DCA.CHTA REZ lW CHT Entry Address This Unit

DCA.CDTA REZ 1W CDT Entry Address This Unit
, ".\',

\

DCA.UDTA REZ lW UDT Entry Address This Unit

DCA.IOQA REZ lW Current IOQ Address This Unit

DCA.LINC REZ lW Lost Interrupt This Unit

DCA.SINC REZ lW Spurious Interrupt Count This Unit
" \ " ,',

DCA.RETR REZ lW Retry Count This Unit \", \ r- \'

, r t) n " \....\'- 1\

DCA.FLAG REZ lW Bit Flags This Unit Y v
, r

\ -
DCA.TIMO REZ 16W Timeout Value Table - 1 entry, 1 opcode

DCA.SENI REZ lW IOCD for Sense Status

DCA.SENS REZ NB Sense Status This Unit

Figure 15-4. lOP Device Context Area

15-12

, 1-'0,

,
(

()

1.5.6.2.1.2 Device Context Area Construction and Initialization

(~' Entry point SG. of each lOP handler will construct and initialize the appropriate number
of DCAs. Space for the DCAs will be allocated at assembly time via assembly in entry
point SG. of a system macro named DCA.DA T A. A repeat count will be set representing
the maximum number of that type of device which is possible to configure. During
SYSGEN initialization, entry point SG. will scan the UDT for its handler name, and will
initialize only the required number via system macros DCA.INII and DCA.INI2. Entry
point SG. will then cause the remaining DCAs to be overlayed by SYSGEN. Provisions
will be made in the design of the aforementioned macros to allow for additional space in
the DCA and for insertion of user code to perform any required unique initialization.

(

15.6.2.1.3 Device Context Area Element Access

Elements of a DCA will be referenced via symbolic offsets which are defined in the
system macro DCA.EQUS. The names of the symbolic offsets defined in OCA.EQUS will
be the labels shown in Figure 15-4.

15.6.2.2 lOP Device Handler Programs

Section 15.8 contains an lOP device handler prototype or skeleton which can be "filled in"
with device specific code to produce a unique lOP device handler. This handler prototype
should be used as a time saving device, a learning tool, and a guide to coding standards to
be followed in all lOP device handlers.

Section 15.9 contains an actual sample lOP device handler.

1.5.6.3 Miscellaneous New Software

1.5.6.3.1 Report I/O Complete - S.IOCS29

This subroutine is called from entry point 1 of lOP handlers to report I/O completion to
the MPX-32 Executive program. S.IOCS29 determines the type of I/O starting and call
the appropriate Executive subroutine.

15.6.3.2 Mark Units Offline - S.IOCS31

This subroutine is called from entry point 4 of lOP handlers when it is determined that a
device is broken. S.IOCS31 marks all UOT entries of a particular controller off-line and
malfunctioning, and marks the COT malfunctioning.

1.5.7 lOP Floppy Disc Handler Program (H.FLIOP)

The lOP floppy disc handler program (H.FLlOP) is system level reentrant, i.e., only one
copy of H.FLlOP is required regardless of the number of floppy discs or lOPs configured
in a system. Reentrancy is accomplished via device context areas (OCAs). One DCA is
created and initialized in the SYSGEN iritialization entry point for each floppy disc
configured.

15- .

,
.~I

As with all lOP device handlers, interrupts are fielded by the lOP channel executive
program (H.IOPX), and then turned over to the service interupt entry point of H.FLIOP 0
for processing.

15.7.1 Functional Characteristics By Entry Point

15.7.1.1 Opcode Processor (OP.)

The following operations are supported by H.FLlOP:

Operation

Open

Rewind

Read

Write

Write End-of-File

Execute Channel
Program

Advance Record

Advance File

Backspace Record

15-14

User Call

M.FILE

M.RWND

M.READ

M.WRIT

M.WEOF

N/A

M.FWRD

M.FWRD

M.BKSP

Remarks

1. Performs lOP channel initialization if first
lOP operation.

2. Initializes FAT. Rewind is implicit

Resets current disc address in FAT to zero.

1. Resets EOF detection flag if user inhibits
data formatting, if read is blocked, or if read
is random access.

2. Saves original FAT parameters in I/O queue
for EOF processing in service interrupt entry
point.

3. Updates FAT for read operation.
4. Builds IOCL consisting of SEEK + READ

commands with data chaining as necessary.

Same processing as for read with exceptions: (I)

No EOF processing considerations (2) IOeL
consists of SEEK + WRITE commands.

Same processing as for write except that
X'OFOOOOOO' is written to the current block.

Not supported in MPX-32 Release 1.5.

Adds one (block) to the current disc address in
FAT.

Same processing as for read with exception: (1)
I/O queue indicators set such that read is
repeated until EOF detected. (2) Read buffer is
local to handler and read count is 1 word.

Subtracts one (block) from the current disc
address in FAT.

o

! ~

(

(

Operation

Backspace File

Upspace

15.7.1.2

User Call

M.BKSP

M.UPSP

Remarks

Same processing as for Advance File except that
read is in the backward direction.

Formats diskette to MPX-32 format which is 256
bytes per sector, double density.

I/o Queue Processor OQ.)

The I/O queue processor performs standard I/O queue scheduling as outlined in the
prototype lOP device handler.

15.7.1.3 Service Interrupt Processor (SI.)

The service interrupt processor performs standard I/O interrupt processing for the floppy
disc as outlined in the prototype lOP device handler with the following additional
considerations.

15.7.1.3.1 Read End-of-File Processing

Unless explicitly inhibited by the user (via bit 2, FCB.CBRA) or implicitly inhibited (via
blocked or random access operation) SI. will look for the pseudo EOF character
(X'OFOOOOOO') when processing an interrupt for a read. The first word of each 192 word
block read is examined for the pseudo EOF character. If found, the EOF indicator in the
I/o queue entry is set. This will eventually cause the EOF indicator in the users FCB to
be set.

Since the current disc address in the FAT is updated for the read prior to the operation,
and since the EOF is likely to be detected on the first block (or some block other than
the last block read), the current disc address in the FAT will have to be adjusted after
the EOF is detected. In order to accomplish the adjustment, the original FAT
parameters (prior to being updated for the read) are saved in the I/O queue entry. These
values are then updated via subroutine S.FLlO 1 upon EOF detection.

The FAT is not available to the service interrupt entry point (because it runs unmapped)
so actual updating of the FAT is performed in the special post transfer processor (PX.)
which runs at task priority level.

15.7.1.3.2 Backspace File and Skip File Processing

For both these operations, a one block read is set up in the opcode processor (OP.).
During service interrupt processing, the first word of the block is tested for EOF. If EOF
was not detected, the original rOeL is updated to point to the next or previous block, and
the original FAT parameters now in the I/O queue entry are updated (via subroutine
S.FLlO I). The 10CL is then reexecuted. When the EOF is detected, processing is as
described in Section 15.7.1. 3.1.

15- 1 c;

-I

15.7.1.3.3 Error Recovery Processing

If interrupt status indicates an error condition (i.e., unit check reported) a sense status
command is executed to gather sense data. Refer to the Line Printer/Floppy Controller
Technical Manual for a listing of sense data generated by the floppy controller. Error
conditions are categorized as unrecoverable error, seek error and data error. If
unrecoverable errors are reported, no retry is attempted. If a seek error is reported, the
floppy is rezeroed followed by up to 5 reexecutions of the user's original request. If data
errors are reported, the user's original request is reexecuted up to 5 times. If still
unsuccessful, the seek error recovery procedure is followed.

15.7.1.4 Lost Interrupt Processor (LI.)

The Lost Interrupt Processor performs standard lost interrupt and kill I/O processing as
in the prototype lOP device handler.

15.7.1.5 Special Post Transfer Processor (PX.)

The special post transfer processor updates the FAT from I/O queue entry parameters in
order to complete processing for a read in which EOF was detected, a backspace file, or
an advance file operation. See section 15.7.1.3.1.

15.7.1.6 SYSGEN Initialization Processor (SG.)

The SYSGEN Initialization Processor creates (at assembly time) and initializes (at
SYSGEN time) floppy disc device context areas (DCAs). Currently, up to two DCAs will
be created and initialized. If more than 2 floppy discs are to be configured in a system,
the count on the repeat (REPT) assembler directive immediately following label
'DCASTAR T' must be increased, and H.FLIOP reassembled.

I 5-1 (,

I i C· ."' ..

(

(

.~XllX1XXXIXX~Xl.XX ~A~OLER

SPACt. 10
-*._*.*******._-_.****.-.*.*-*.-- •••• -.*._** •• *--******.*.*_._-.***-**-. ..
* *
*
*
*
*
*

~~~~~ Rl~'~ICT~O MIGHTS LEGE~O ccccc 

USE, OuPLICA1I0I\4, Off OISCLllSUkE IS Sut\JEtT TU Tl1l 
Iola:.SfwICTIO"lS STA1EO IN SYSrE."IS· LltE~St. AGHEtME.H 
(FUHM NU. 1218J UH, FUw GOVE~~~~NT CUsrOME~S, 
yAW 1-104.''"'. 

, . 
* • 
• 
• 
* 
* 
* ***_._**.**.tt********._*****._** •• ***_*_*.*.**_**************_.**._.*._ 

T lTLE 
tllolUbtUM 

.*** •••••• -*.-_.****-*--**-**----**-**--*-****-***-*****-.*-*.-*-_.*.-*
* * 
* 
* 

* • * THIS HA~OLlH I~ s,srE~ Hf£NTRANT ~HIC~ MEANS THAT U~LY U~E CUpy * 
* SHOULO dE CO~FIG~HEU INTO AN M~X-3l SYSTEM HEG'ROLES~ U~ THE -
* NUMdE~ uF OEVleE~ UF THIS l'~E _NU TI11:. ~U~blR ~F IUP'S CU~FIGUktO * 
- Ii" TOT HE S ~ S 1 EM. * 
* * ****t._. __ •• _._ ••• __ •• __ *****_ •• _.* __ .****_*** •••••• ***.******. ___ ***._. 

HAT 

SPACE 
M.EQUS 
"". TtKS 
uCA.EwLJS 
EXT 
EXT 
I:.XT 
Exr 
EXT 
I:.XT 
EXT 
EIT 
EXT 
EXT 
EXT 
~PACE 

u'T'~ 
AC ... 
Aew 
AC~ 
AC~ 
Ae ... 

TITLE 

1 

~.t::J(£e5 

S.IUCSJ 
S.IueS1U 
S.10eS13 
S.lueS15 
S.luCSc9 
S.lUCS.H 
ILopeOIJE 
SERVCOMJI 
IOLINI( 
PUSTPRUS 
J 
& 
UP. 
HI. 
51. 
LI. 
Pl. 

5G. 

M.XXIOP 

.dl"ULEW AUiJHt.SS T AoLt 
uPCuOE PNOCfSSUR Aui,)H~SS 
1/0 YUEuE PHOCESSUR 'Ui,)N~SS 
SE~vICE l~T PROCfSSOW 'OOR~~S 
LOST INTERHUPT PROCESSOR AOUWESS 
PUST XFtR PHUCfSSU~ AUO~E~S 
-'uuI1IO~AL ~~T~Y PUl~TS ;IF ~Ey'6, 
*MuST 8f AUuEU ME~t. 
~YSGE~ INITIALIZATION PHUCESSON AOUw 
*TMIS MuST TM£ LAST ENTRY PUINT 
uPCUOE PRoCtSSON 

-.-_. __ .... _._ .. --*_ .... *--*_ ••••••••• _.--*_ ... *._ .. _-._.*-*---_ ... *_.-. 
- -- UP •• UPCovi PRuCEiSOR -
• -*.***.**_**. ___ .* •••• _. ___ • __ * •• ___ •• _.*_._ ••• *_* •• _. __ .*a***_a_ ••••• __ _ 

- . 
15- ; ~ 



* • 
• 

~ . 
~. J 

* 
* 
* 
* 
* 
* 

rHIS ENTHY P~l~T [S ACTUALLY A SU8~OUTI~E E.T£NSIO~ ~f H.IUCS,~~, 
A PO~TluN UF [uCS LOGIC COMMON TO ALL 1/0 SERVI~ES wHlCH A~E 
CAPAdLE INITIArlNG A PHYSICAL U~VICE ACCESS. IT 1S CALLEO IU 
PNOCESS THt u~CUO~ PlUGGEO [NTO TH~ FC_ ijY THE 1/0 SERYIC~ 
ONI~INALLY CAlLto ~y THE U~ER. 

l~' 
* ' 

* 
* 
* * rHE PURPOSE O~ OPe IS TO EXAMINE r~f OPCOOE ANO OTHf~ PfNTlhEhT * 

* FC~ CUNTNUL 3PtClflCArlUNS, ANU TU INDICATE TO ".lUC~,Zq ~~AT * 
* .CJIO~ 15 TU dE '.KEN. IN OWUEH Tu IhOlCA'E WHAT ACT1UN IS IU ~~ * 
* JAKtN, U~. rAK~S 1 UF q ~US~I~lE ~fTURhS TO H,lUCS,~~ AS FULLUWS: * 
* 
* 
* 
* 
* 
* 
* 
* 
* • 
• 
* 
* 
* • 
* 
* 
* 
* 
* 
* 
~ 

* 
* • 
* 
* • 
• 

* ILUPCUOE 
StNVCU~P 

IUlIN~ 
PUST~WOS 

I, uPCUOE ILLEGAL FU~ THIS otYlCE * 
~. ~E~vlCE COMPLETE, NO UEv ACCESS ~EUU* 
j, LIN~ HEYUEST TO 1/0 QUEuE * 
4. Ll~~ WEYU~ST + PuST P~uCESSlhG ~EWO * 

IF NETUNN 3 (IOLlh~) 15 rA~EN uP, MUST FINSr. 

* 
* 
* 
* 1. CALL IuCS SU8WUUT1NE S.IUeSl] TO ALLOCATE ANU tNITIALIlE * 

AN I/U ~UEuE ENTHY. fUUH luU EhTwY ~UHOS, CALLfU HANOLE~ * 
FUNCTIUN ~UNUS AHE UF ~PtCIAL INTEHtS~ TU THt PWU~WAMMER. * 
UP UN l~r~, INTO THE OPCUU~ ~WUCESSl~G RUUTl~~ THET ~~E * 
SET uP AS FULLO~S: * 

IOQ.FCTl - ijlTS 0-7 ~ W~~O AUJ UPCOOE,81TS 0-]1 F~Et* 
10Q.FCTi • USER'S LUGlCAL UATA AUDRE!S * 
IUY.FCf3 - USER'S ~YTE T~ANSfEw COUNT * 
IOY.FCT4 - AvAILABLE * 

2. dUlLD l~TO TME 1/0 YUfUE E~TRY IN THE SPACE wESERvtO FUR 
IT, AN 1/0 COM~ANO LIST (lOCl) wITH THE PROPtN COMMANO 
C~UES ANO fLAGS USI~' IUCS SUij~OUTINE S.luCS1i A~O loes 
E~rHY POINT M.IUCS,~U. 

• 

j. OR, IF THE USER ~EQutSTS ElECUTION OF HIS CHANNE~ ~HOGRAM, * 
vALIDATE THE DATA ANEAS, AND ABSOLUTIlE THE UATA AUURESSES * 
uSlN' lUCS SU8ROUTI~E S.10CS3] * 

* 
* * 'AKING ~~TURN 4 lPOSTPRO~) INOICATES THAT A~ 1/0 HEYUEST 1~ TU ~E * 

* Ll~KE~ fO THE I/U QUEUE FOA THIS DE~lCi AS I~ HETuAN ] (lULIN~), * 
* AND ALSO THAT AFTEN THE AlQUEST HAS BEEN COMPLETED wuT ~~FOH[ * 
* ~ETUR~ TO OR NOTIF"lCArION OF THE USER, THE SPECIAL OivICE ~OST * 
* PROCESSING E~J~Y PUINT (PI.) "ILL HE CALLED. - * 
* * 
**********.***.*.**********.******************************************** 
* • 
* CALLE.: H.IOCS,l. * 
* * 
* CALLERS PNIONITYI 'ASK LIYfL • 
* * 
* INTE~~uPJSI UN~LOCK£O • 
• -* ,ALLIN; S£QuE~efl .L *1_,XZ ·C * 

\; , .,.) 

* ~£'IITERS INI Rl • ","AOO.". 

15-18 'i~ 



-• 
(' -• 

-• 
• 
• 
• 
• 

",ETUIolN SEYUI:.NCE: 

"'EGISTEMS UuT: 

Re! --
MS --
nU 
I2U 
ttU 
t$U 

w1 --

HAT AUu"'tSS * uor AUOWESS * 
* lOLlfliK Ok, '* SEHVCO"'P O~ , • 

lLOfo1C()U~ UW, * POSTPHlIS .* 
* 

fCB AOlJkt:.SS • 
• 

*t* ••• ******-.** ••• _ ••• ****.****"**.*** __ ._* __ ._**_.** ••••• * •• * __ •••• _. 

(" 

SPACe: 3 

* *. THE O~COOE VECTUR TAeL~ ~HICH FuLLu~S CO~TAINS IHI:. AUIJIolES~E~ Of 
** THl UPCOOE. P~OCESSING PRUCEUURES uloluE"'~O BY (JPCOIJE NU~~Ew. EACH 
** ENTRY .. US 8ll u SET IF THt:. 'S!)IICIAfllJ PHUClLWwE IolEt.lUl..ct:.S AN l/U 
** ~Ut:.UI:. ENTRY. SYM~OLIC u~cuu~s AWt ALSO LISfI:.U. 

* uPlift eQU 
GEII4 

OPEN.UP lOU 

'II~ I T .UP 

ADVR.OP 

ll>~F'.UP 

'iI(SR.OP 

iI(SF.OP 

J.,aSP .OP 

~QPT .UP 

,JCT .Op 

'LSE.OP 

~EI\I 
EQU 
C.EN 
tQU 
bEN 
eQU 
ilE~ 
t:QU 
bEN 
EQU 
GEN 
t.~U 
.:, t:: 1\1 
E.QU 
Gf:.. 
EQU 
GEN 
EQU 
GEN 
EQU 
GE~ 
EQO 
liEN 
EQU 
GEN 
eQU 
GEN 
GEN 
SPACE 
dOUNO 
EQU 

S 
l/X,jl/~(OPI:.N) ufo1l:.~ 

o 
l/X, S1/~lwwi'4u) 

1 
1/l,.s1/~(HEAu) 

2 
l/x,~l/rd ... RlT) 
3 
1/l"H/~(W'tEOF) 
4 
1/1l"S1/,trlf::XCP) 
'5 
t/X,,51/W't(AOVIot) 
ft 
1/1,Sl/l'f(AUvF) 
1 
1/X,11/V.(df(SH) 
8 
1/~,,51/W't(~KSF') 
q 
1/."Hltt{u~SP) 

lU 
In'"H/~lEMPT) 
11 
l/X,31/~lEJCT) 

1 Ii! 
1/1,.Sl/~(CLSt::) 

1) 
1/1,31/W't(U~US) 

1/1,31/"'(UNUS) 
1 
1W 
S 

AOVA~CE "'t.COI"O 

AUVA""Cf FILl:. 

"ACf(SPACt wtCOwu 

dACf(SPACE fILE 

uPS,",ACE 

t:.~ASE OW P~NCH r"'AILEN 

EJECT 

CLOSE 

UNUSED 
UNUSED 

("~" * PROCEDuRE ro ALLUCAT E AN 110 Qua:.uE ENTRY, IF ."ECt.SiAWY, AND 
~- • VECTOR TO THE ,PPHOPIA'E OPCUOE PROCESSING PROCEDURE 

La ~2,F'C8.0~CO,Xl GET OPCOOE ~MOM FCd 

15-19 



l.)I'.O.OO 

* 

SLL 
lRo-i 
L~ 

tj I\j ." 

dL 
L .. ~ 
~T~ 

t:.QU 
LW 
T~~ 

dU 

i>i2,2 
1<2,1<& 
~1.l,UPiAti,X?. 

UP.O.OV 
5.1U(;Sl.5 
R2,FCB.IUQA,Xl 
~b,IOlJ.r-CTl,l(2 
$ 
~3,UOT.OCAA,)(3 
Kb,~2 

*UPTAti,R2 

** P~UCt:.UURE TU PE~fU~M UP~N 

* 
uP~N £QU J 

\~U/olO ALJJllSl 11PCUUE 
S A V E UP C lJ () i.. 1 i! K & 
GEr OPCUUf P~UCEUUME AUU~ES~ 
~~ IF 110 ~UEUE ENTRY ~uT ~tlJ'U 
GET l/U ~UEUE eNTHY 
GET IUU ENTRY AUUH~SS 
SAVE UPCUUE IN luQ EN1RY 

GET AOO~tSS OF UEVICE CUNTExT AWEA 
I<ESTUWE OPCUOE Tu R2 
~ECrO/ol TO UPCOUf P~UCEUUl<t 

*** INITl4LllE IuP CHA~NEL IF NECESSAI<Y 

t::1~U 

XXX 

,j 

~c?,UCA.CHrA,x3 
O,Ct'H.FLGS,Xc? 
01'.1.05 
*CHT. II'JCH, x~ 
.s 

** P~OC~UURE TU PE~FUNM RE~INO 

* 
~~NU ~Q~ S 
OP.c.OO ~QU $ 

xxx 
* 
** P~OCEOU~E TU ~EwFUWM REAO 
* 
~EAO tQU i 
OP.j.UU tQU ~ 

xxx 
* ** PROCEOURE Tv PEwFORM WRITE 
* 
~RIT EQU S 
01'.4.00 tQU S 

xxx 
* 

lJEr CHr AUOkESS 
HAS INCH 8Et~ Pf~FORMt01 
dR IF IUP ALREAUY INCHEu 
GU TO H.IUPX TU PERFUH~ INC~ 

uEvICE U~PtNUENT CUUE GUES ~EWE 

UEVICE UEPENUENT CUOE bOES HEwE 

DEVICE UEPENUENT COUE GOES NERE 

UEVICE UEPENOENT CUOE ~U~S HE~~ 

** PROCEUURE TO PEwFURM ~RITE ENO-Of-FILE 
* 
~EUf EQU S 
OP.5.00 ~QU S 

xxx DEVICE UEPE~OENT COUE GUE~ ~ERE 

* ** PRUC~OURt TO Pt~fU~M EXtCUTE CMA~NEL PRUGRAM 
* ExCP tQU 
OP.b.l)\) E.QU 

dU 
* 

s 
S 
IL.OPCOOE EXCP NOT SUPPOWTEU IN MPl 1.~ 

** PROC~OURE TO PERFORM .OVANCE RECURD 
* 

EI.lU s 

l5-20 

.vI 

c 
.. ~ 



C" 

( 

!)"'.'."" tQu 
Xlll lll:.VICl:. Ut:.~tIHilNl Cvut Gut.::t I"fI:~E 

• 
•• ~K{)CEOlJWE 1u Pl~Fu"'''' AUVINCE ,"ILl:. 
• 
.1t)VF lUU j 

U~.d."O tQlJ S 
(XI t)l:.VICl UEPlNul:.flfT COUl:. GUt:) I"ft~t:. 

• 
** t>~')CtOlJwt:: Tll PlwfU~M tUC~SPACl:. WtCu .. O 
• 
~I(!i" EQu .a 
UP.q.uu t.UU S 

All( I)t:. II 1 Cl:. ot:.tlt:.r~tjt:.1'f 1 CUuE bUt:) ti t t( t:. 

* •• PWllCEull~£ ru "'t.WFuootM d4CKStlACt. f lLt:: 
• 
,;f(SF t:QU .. 
UP.I.VU t::UU j 

IlIX IIE~lCE ut:.PE, .. IJENT CUOt:. GUE::. I'1bolt. 

• 
•• ~., LJC t.U t.J W t: TU "'1:r<tFU"'.., Ut->~t"ACt:: 

• 
I)"'SP t:.'JU • 
UP.d.U" t,QU .a 

'X' LJEVICE Uf:. f' EI~ L)I:: fH CUUE GUES I"ItJo<E:. 

• *. ~~lJCEuuwf TU tllwfUwM l:..ijASE ut< i'lHCH TIHILl:.W 
• 
I:..~pr tWU , 

-IJP.C.O" t'.lU ,j 

J(X, Ilt"lCE IJtPI:.",vtNT CUUt. GUI:.;) Ht.Io<t:. 

• 
•• "'pfUCt.UlJMt: ru PtI'CFUrcM f:JtCT 

* EJCT t.IJU at 
UP .l). U V tQU i 

Itllt LJt.VICl:. lJ 1:. ... 1:.1\; Ut:: f~ T ClIUt. GUt~ HtkE. 
• •• PwuCtU\JWt hJ Pl:.l(fUI( i"I CL~t: 

• 
CL!il:. twu .a 
o"'.I:..vo fglJ S 

Xls lJl:.vlCE lJ£Pl:.~Ul:.f>4T cuUE (iUt.S f'1tRE 
•• Il.LE(;Al. lJPCuuE FUM PHS uEvICt 
• 
u~uS Egu • uP.f.uv fQU j 

ljU Il.U"-COuE 
TITl.E H.lllll)P I/ll l~uEuf P."""Ct.SSUI( 

•••••••••••••••••••••• * •••••••••• * ••••••••••••••• * ••••••••••••••••••••• , 
• 
• 
• 

lU. - lIU IWlUt:: P"'UCt:SSUM 

*.** •••••••••••••••••••••••••••••• * •••••••••••••••••••••••••••••••••••• , 
* • rMrs E~rN' PUI~T IS CALLED dY H.IUCS,2Q AFTER l.lNKINb T~I:. ilC 

15-2 ' 



* • 
* 
• 

QUEUE E~T~' C~k.rEU BY UP. TO THE lID QUEUE FOR THIS DEvICE, 
IF THE l/U wu~ut ~AS EM~lY WHEN THE E~lHY wAS ~1~~EU. • • AI~-'''' 

~ \yl 
* 
* 
* -* 
* 

fH[S tNTRY PUINT IS ALSO CAL~EO ~y 0'. TO AUTOMATICA~l' ~ROCESS 
THE 1/0 ~u~ut .FTEW S~HVICE INTf~~UPT PHOC~SSI~G IS CU~PLE!E. 

THIS ENT~Y P~lNT IS ALSU CALLEU ~, ~I. IF OEVICE TEH~INATIUN 
FAILS, HEQUI~ING THE 1/0 QUEUE TO Sf RfSTAkTEO. 

It 

, * 
• 
* -. 
* * ••• -*-_.*---***-*-*-**._****-*.-*************.**********.*** •• ****.*.** 

* • 
* 
* 
* 
* 
* 
* • 
* 
* -* • 
* 
It 

* • 
• 
* • 
It 

* • 
* 

CALLE~: 

CALLE~S PKlu~IrY: 

INTEHRuPTS: 

CALLING SEYUtNC£: 

~EGISTERS IN: 

~ETU"'N SEWUfNCEI 

~EGISTt:.ICS OUT: 

O~, 

OR, 

TASK LEVEL IF H.IOCS,2Q 
IUP INTtRRUPT LEvtL IF SI. 
KEAL·TI~E CLUCK INT LVL I~ LI. 

dLUCKfD IF H.IOCS,2Q 
lOP LEVEL ACTIVE IF SI. 
HT CLOCK LEVEL ACTIVE IF LI. 

.:tL .lw,X2 IF H.IUCS,.2Q 
~L IQ. IF 51. OR L.~. 

"'2 a HAT 'OD~ESS IF H.IUCS,i9 
I(] - UOT lODHESS -
.,0 - IUY AOLJWfSS IF .... IuCS,~9 -
TRSw RU 

R1 MUST NOT dE OISTU"'SEU 

* 
* 
• 
* -* 
• 
• 
It 

• 
-* 
* 
* 
* 

-It 
* 
* .. 
It 

--* 
• 

*.***.-****.*-*-*-** ••• _*-** •• *****.*-*._**_.---*---*.*** ••• _ ••••• _.*.** 
:)PACE 3 
dOUNO UI 
EQU • 
L~ ~2,UUT.OCAA,XJ bET DCAlOO .. fSS 
ZSM u,DCA.FLAG,X2 CLEAR UNEXPECTED INTENHUPT INOICATU" 

• 
** PRUCEouRE TO PHUCESS NkXT 110 QUEUE ENTRY. THIS PROCEOURE ASSUMES 
** THE I/O QUEuE FO~ T~IS DEVICE IS LINKED TO ITS UUT, lNO MuST BE 
** MOOIFIEO IF THE 110 YUEUE IS LINKEO TO TME COT FOR THIS O~VICE. 
* 

*** MOIolE 

15-22 

EQU 
La 
oZ 
10Q 
LW 
~T .. 
TRR 
TAA 
5B ... 
L. .. 
I.' 

• Re.,UUT.IOCT,XJ 
IQ.l.05 

ENTRIES TO PROCESS 
1ie.,UOT.FIOQ,Xl 
1of~,lJCA.Ioca,xi 
H 3,RS 
~Jt,w 1 
O,lOQ.STAT,Xl 
~1,DC'.CHTA,lZ 
ft., IOG.IOCD, lU ... 

A~'t IOQ ENTWli:Sl 
Sli IF NO IoQ ENTRIES 

_iT NEXT lOW ENTRY 
SAllE. IN UCA 
UOT lODRESS TO RS 
IOQ ENTRY .U~R£'S TO NJ 
I~OlCATE 108 ENTR' ACTIVI 
GET CMT ADORES. 
.IT .00.1" ~ -loeL ... ---- ... --

""" 

C"" ;, I 



( 

(" 

ST" 
LA 
.O"'t4 
LW 
l~tol 

51,.. 
LH 
SS~ 

Slu 
"u 

"'&,CHl.IUCL.1Cl 
"'l,t)CA.TIMO,xl 
toll,IOY.Joell,xJ 
"'b,U,ll 
tol~,Wl 

tolb,UOT.PTOV,Xl 
~b,UCA.U'O",Xc! 
l,UOT.f-LGS,Xl 
tol&,O 
1 .... l.1u 

~HUH~ Il'4TU t ... r lUCl A~IIf'lt:.~~ 
(if r AOOklSS Uf" UCA T l/1tt.UUl I At;Lt 
OFfSEt lr..rU utA.l1,,",0 ~ASt.lI UI~ vPCUut. 
~t.' TIMEOUT V'L~E rHl~ UPkHA'l~~ 
uor AUUWfSS 'U HI 

, 
Sfuf'lE TIMEUUT VALVt. l~ uur 
(it.T U~IT AUU~t.SS· 
J~ulCATf 1/0 OU1STANU1NG THIS OtVICt. 
ISSUE STAHl l/u 

* •• ~I) I-IO"lf 1U"" t~T~lt~ TU PWOClSS - lUY IS t~PTY 
1.1.1.V~ ~IIIIJ 

l"'" 
L ""."t 
It;M 
Sb"" 

• •• I( E , lllot .\1 f U 
I I~ • 1 • 1 u i U U 

TRS~'4 

TITLf 

• IJUl.PTUY,llj 
IJ CA. !CJ I.., "' , X 2 
\,UUT.fLGS,xj 
O,uCA.FLAG,.~ 

CALLt.tol 
:J 
tol(J 
1"t.~J(IUP 

lt~U CUH~E~T llMEUUl VALUE 
lE"u CUHHtNT lUW t:.~r~y 'uu~t.SS 
I~UIC'Tt. ~o l/U UU'SlAN01~G THiS 
J~UIC4Tt. l~TlH~UP'S NUr tlPttTtU 

St~VICE INTEkHU~r Pf'lOCES~UH 

... _-.------*._*_.* .. *--... _---.-.-**-.*** .... _*._ ..• **-*._.*--.*** .... -
-• 
-

• 
-• *_ .... _* ..... _.** .. _. ___ .. __ ... ___ .•.. _*.*_*_.**._ .. _.*.*_ .. _. ___ .*t_ •• _ 

• 
* • 
• 
* 
* -* • 
-* • 
• 

-THIS t:.ft4T"'Y ~uIl'4r IS Ef'4TtWEU "'HI:., .. E:.Ilt:.1it AN 11~rE:.WAUPT FNV'" lHl~ OI:.IiICf. -
I::» .,-: It:.LIJELJ bY 1'1.1uPJ(. St,wvICt. !1 ... rt.l(~uPT pto(UCI:.S::»l~b !,.tLUUf.;) 
.. ilL L U·'t J '''b : 

1. t> E 1 E H I~ 1 ~ t. THE In A:) U I~ F U I'i I'" f E H H UP r III ~ • 
l. POST STATuS FUR USt:.~. 
5. .,: t. r C 1'1 AU 01 r h)." A L S t:: ~ S E u A T A ,IF 1'4 t. C t. 5 SA" Y • 
.... AJTEf'IIIPT t:.~~UW ~ECOlltkY, If Nt.CI:.SSAkY. 
.,. tJ; .. Llfll~ IllY l:.i~TIolY FwUIl1 IUw. 
n. ~l~uwT I/u COMPL~Tf. TO t.E:.C. 
1. AUTUMATICALLY ~RUCESS ~Elr IUQ tNTI(Y 

Tn': -• 
• 
• 
• 
• 
• 
• 
• 
• 
• * •••••••••••••••••• _ •••• --_ •• ** ••••••• -_ •• _ ••• _ •••••• -*--._ .. _.*.* •••••• 

-• CALL!:.I(: 

-- CALLI:.~S ~wlUio(lrY: 

* • Ift4T~HWuPTS: 

• 
* CALL1ft445 Sb.lut::I'o4CE: 
* • ><t.GISTE.RS It-4: 

* -- I'(E T 1) .. 1'4 SEwut llie t : 
* 
• oolt:.GISTE.1Il5 \JUT: 
• 

".ll1~l 

IUP INTbHhJt'r Lt:.VEL 

lU~ Lt.Vt.L ACTIVE:. 

"u *3w,ai 

"2 - HAT AOUwf.SS -
~3 = UOT AULJ"ESS 

dU ·CHT.E-lLT,.N 

loll" = CI'1T A()ukESS 

• 
* 
• 
• 
• 
• 
• 
* 
• 
• 
• 
• 
-

•••• -.*_ ••••• *_ ••••••••••••••••• * •••• **_ ••••• _ •• __ •••• - ••••• *- ••• ~ I~ 

SPACE. j 

! "'-

I 
I, 



I 

-/ 
51. 
• 

~OUNl) 

EQU 
1'" • • 

** PHOCtOuRt TU UtTEHHINE THE NEASUN FOR I~TEHRU'TIO~ 

* 

* 

a..w 
L-
LW 
TSM 
as 
T&M 
uS 
ltl~ 

dS 
lts ... 
iiS 
Tes ... 
a5 
T8M 
,,5 

1ol3,UOT.DCAA,X] 
IH, UCA .Ctn A, xl 
R2,OCA.loaA,x3 
0,DCA.FLAG,x3 
51.2.00 
~2,lur~.FLG5,X~ 

Sl.J.V" 
1,DCA.FLAG,X} 
SI.4.00 
I,JOQ.STAT,X&! 
5I.5.oU 
t,CHT.CHST,Xl 
51.7.0U 
23,IOQ.FLGS,Xl 
Sl.2.0U 

GET DCA AOOIotESS 
GET C"T ADDRESS 
GET CURRENT IOU fNTMY AOOHESS 
UNEXPECTED I~TEHRU'T? 
CIA IF U~E.PECTEU INTEMAuPI 
~AS IT "10 FOR KILL? 
dR IF KILL 
NAS IT HID FuR OEVICE TIMEUuT? 
dR IF TIMEOUT 
~AS If • SENSE STATUS 81U1 
d~ IF StNSE STATUS 
~AS IT-A POST PGM co~rRULLEO INT? 
&:I1ol IF PPCl 
~AS IT AN EXECUTE C"A~~EL PWOGRAM? 
dN IF EXEC CHAN PG~ 

** PHOC~UuR~ TO P~UCESS INTtHHUPT FWOM NO~MAL SI~ 
• 

lJ,CHT.tHST,Xl uEVICE tHO SET1 

, 

J8M 
dNS 
LH 
5TH 
L.NH 
AO~IW 

STw 
T~M 

dNS 
xxx 

*CHT.EXIT,xl EXIT INTERNUPT LEVEL IF NU OEVICE ~~u 
~6,CHT.CHST,XI GET C~'N/OEV STATUS 
H6,IOQ.IOST+IH,x2 STORE STATUS IN USER STArus ~ORO 
~b,CHT.RSC,Xl GET NEGATIVE RESIDUAL 8YTt COUNT 
H&,lOQ.FCT3,Xi AOU HEQUESTEO 8YTE XFER CUU~T 
1ol&,IOQ.UTRN,~2 UPOATE ACTUAL SYTE XFER CUUNT 
IS,t"T.CHST,X1 UNIT EXCEPTIU~ SET1 
SI.l.0U 8R IF NO U~IT E.CEPTlu~ 

OEV OEPE~DENT UNIT EX CooE GUES H~~E 
51.1.00 EQU » 

TSM 14,CHT.CHST,xl U~lT CHEtK S~Tl 
dNS Sl.1.0~ "Iol IF NU U~lT CHECK 

*.* FETCH SENSE STATUS IF UNIT CMECK 
Te~ 3,IOQ.CUNT,Xi STATUS CHECKING l~"l~lTEOl 
ess SI.1.10 8R I' INHIBITEO 
5S'" 1,IUQ.STAT,Xl INUICATE SE~S£ STATUS SIU lSSUEU 
~A H&,UCA.SENl,X] bET AUOHESS OF SENSE STATUS IUCO 
~T~ ~b,C~T.IOCL,Xl STOHE IN tHT (IUCLA uF Sl~AJ 
TRR ~1~~5 SAVE eHT AOO~£SS lN ~~ -
~A ~1,OCA.TIMO,X3 GET ADDRESS 0' UCA TIMEOUT TA8LE 
AOI Rl,~~AO.UP*4 USE TIMEOUT FOR ~EAO 
LW ~b,O,Xl GET TIMEOuT VALUE THII UPENArlON 
LW Hl,OCA.UUTA,X] GET UOT 'DORESS 
ST~ Rb,uUT.PTUv,ll STuRE TIMEOUT vALUE IN uor 
TRA A5,~1 ~ESTORE CMT ADDRESS TU Rl 
~H Ab,~CA.UAOO,X] GET AOORESS THIS UNIT 
~lu Ab,ij ISSUE SENSE STATUi SIU 
dU -CHT.ExIT,Xl EXIT INTERRUPT LEVEL 

*** CHECK FOR CHA~~EL ERRURS 
CrltRMAS~ u4T4~ 'X'lFOO' CHANN£~ [RROR MASK 
51.1.05 EQU t 

LW A4,CHEAMASK GET CHANNEL ERROR MASK 
15-24 ~MH Rb,C~T.CHST,ll APPLY TO CH'~NEL .TATUI 

o 



<-

dZ 
~~,., 

ftftlt UNLl"'K 10", 
SI.l.lu t::(~U 

ft 

LW 
~L 

Ltt 
~L 

Ltt 

'.>'4 
',L 
Lili 
~u 

~1.1.10 
t,IU~.IOST,xC! 

t~'H', ~~PUHT I/O 
S 
W,5,t)Cl.CU1A,)(j 
S.lU(;53 
~ 1 , 1 UY • ~ k' G I~' xC! 
S.IuC5c!'I 
~2,lOQ.I)CAl,X~ 

H3,LJCl.Ul)f',X~ 

11.,1. 
f'Ce,IJCA.CI-ITA,xi 
*CIH.ExIT,X~ 

dH IF NO C~Ah"'EL E~HU~S 
1' .. uICAli:. E:I<HUR l~ IIS~1( STAIIJS 

CUMPLlT~, AND P~OCt5S ~tXT !U~ EN'~' 

GET COT AUOwESS 
UNLl~K IOU ~~lHY fHOM IUY 
bET OyE NUH6~~ , 
H~~u~T 1/0 CUMPLETE ru EXEC 
bi' UCA AUI.HH.SS 
Get UOT lOO .. tss 
~kuCtSS Nt:.XT lu", t~rl<Y 

Gt.T CHT l1)UHt,55 
tXlT INTf~~IJPr L~VEL VIA ~.luP)( 

, 

*- PHUClOlJlolt TlJ PrtUCt:.55 'I'J Ui~£Xpt:.crto INTERIolIJPT. THIS PHUCfLJUHE TI(tAT5 
*ft lI i'4E.lPfCTtL> 11~rt:~l'luP'S AS SPII~l\JUS. IF THE UlvlCE IS CA"'ln~t:: uF 
.- Glijtl'(ATlI.b ASy·jC~wO, .. UuS Ir~lt.tolkljtJrs, TI'd5 PkuCt:.UUlo/l "'u~T HI:. '''UU!F lEt). 

* 
*. 
* 

t tJLJ 
A B '1 
~t; ... 
~u 

jJIoiOCt:.UUIolt:. 

51.3.vu E.UU 
l.t4 
';L 
r-.," 
oL 
Lw 
l." 
~L 

Lff 
'jO 

* 
** ~1«(JC't.ULlIolt:. 

-SI.".uv t,(,I1I 

-

:'d"" 
Sri : .. 

Sd'''' 
':jU 

TU 

TU 

... 
j 1 , U CA. 5 1 ,.~ C , )( l 
15,C,",f.5tJU~,)(1 

*er-If .1:1( IT,.q 

l~C~EMENT LOCAL ~PIJ~luuS ,,.,r CGu~T 

!NtH~~ENT bLU~AL SPUl(luuS l~T CUuNT 
tAIT lNli:.WHuPl LEvEL 

jJlo(UCt.ss '"'10 r ''f T t:. .. I( U ~ T HJR A KILL 

i 
;/],UCA.cuTA,l(] ,,-ET COT lOUIH.SS 
S.lUC5j IJ"4LINK IUQ t,r.,rro(Y HW~ IllY 
I(~,wj lUI", Ef>4TkY AUIJIolE.S::a TU ":5 
~.IUCS1~ IJi:.Lt:.TE lUQ E·"T..,Y 
Hc,lOY.DCAl,Xl G~r UCA AUUHf.SS 
~ 3 , I) CA. U uTA , )( c 1I~ T uCT Al)Ujo/I:.SS 
1"" • ~p(OCESS NI:X1 I L1W t I~ T " 'f 
..,~,LJCA.CHrl,l~ "t.T CI-iT AOL)kt::SS 
*C'"".tlIT,xc! ~x Ir I~TE.p('WPT l.t.VtL VIA ,",.lUPl 

P-tUCt.5S 1-410 1I\jTt.~RUpr fUR A UI:VICI: TIMe.UvT 

j 

10, !u(J. IuSl,)(~ 
b, 1 u oJ • r l. I; S , xi. 
l.IUlJ.lUST,xc! 
SI.1.10 

l~OlCA't. TIMt:.ouT l~ U5t.I'C ~TAluS 
l~ulCATE. u~"tCU~E~A~L~ l/u ~~N 
l~uIC'Ti:. Ew~UR l~ USEw ~T1TuS 

CU~"'LET~ Pjo/uCESSl~G 

i* Io'wdCE.Lh,JRE:. TU tJ.cuCt.::;::; SlU SEf'.4St:. srATuS If'ltTtN~UPT 

* 
ul~~t:I"ASK UATA" 
~ T til Y 1-1 A 51( U It 1 A It 

* 
SI.~.vo tQU 

LW 
ST", 
Lt"i 
LMt\ 
-;Z 
5t;M 

Sbr04 

lAl 
XlI, X 

$ 
t(~,DCA.SENS,Xj 

"'h,lUQ.ISTl,.xc 
"", uWolEMASI( 
'(b,~CA.SE~~,)(j 

51.'J.05 
h, IUIJ.~LGS, x~ 
1,Iu().r(JST,l~ 

DEv Ot.PEI\jOEf'ltT u~"ECUVt"A~Lt lRk MAS~ 

ul:.V uEPE~~E~T Ht.CUvtI'CAdLt. I:.~"UW ~AS~ 

GET t.RROW STATuS INFU 
STu"E I~ I~~ ENTI'lY 
bEl UN~ECuvfjo/A~LE ~~~u~ MAS~ 
~A5~ ~lTM E~wO~ srA'u~ 

t;W IF NO uN~i:.CuvERA~Lt l/u ~RRU~5 
SET IUY E~Tw' ERQO~ l~UICATU~ 

INUICATE E"WUR IN uSE" STATuS 

I ,,--

, 
I • I 

:1 



xxx 
dU SI.l.lU 

5ET OTHER O~V DEP STAfUS INDICATORS 
COMPLETE PROCESSING 

:U.;.US EQU 
L-

• 
L"" :U 

I 
~4,MTRYM4SK 
~6,DC •• SENS,lC.5 
51.1.1U 

GET RECOVE~A~Lf E~~O~ MASK 
MASK wITH ENWON STATU~ . 
DH IF NO ERNUNS 

** PROCEOURE TO PEHFORM ERROR RECOVERY P~OCES51N' 

• 
~EtWYLIM EQU IIX UEV OEPENOfNT MAX. UF ~ETRIES 

• 
~I.b.UO c.QU 

T8!14 
dNS 
S8M 
!:IU 

a 
1, 109 .CO,H, Xl 
Sl.6.0~ 
l,IOY.IUST,Xl 
~l.l.lU 
S 
31,DCA.RETC,XJ 
Rb, .. ETRYLIM 
Mb,OCA.RETC,.] 
5I.b.OS 
UCA.~ETC,x3 
b,IO~.FLGS,xl 
1,10(,l.10sr,x2 

USEN INHIBIT E~ROR P~uCESSING1 
tjN IF IhHItUTEO 
INUICATE tWHOR 1N US EN STATUS 
COMPLETE PROCESSING 

UpuATE ~ETwY CUUNTER 
GET MAX. RtTRIES 
HETMY LIMIT tXCEEOED? 
~R IF NOT EXCEEDED 
CLEAR RETNY cuuNrEw 
SET lOQ ENTRY E~"UH INOICATUR 
INUICATE ENHUR l~ USE" srArUs 

, 

SI.«».OS ~QU 
AttM 
LI 
CAMW 
IjGT 
lMIfe 
St::lM 
~aM 

XXX 
dU 51.1.10 

,I 

SET OTHER OEV OEP STATUS INDICATORS 
CO~PLETE PROCESSING 

SI.b.10 EQU 
xxx 

" 
uEV OEPENOENT RErRY LUGIC GUES HEwE 

". PROCEDuRE TO PROCESS INTE~RUPT FlfOM A CHAN~EL PRU'~AM 
• 
5I.S.OU EQU S 
* EXECUTE CHANNEL PRUGRAM NOT IMPLEMENTED IN HPJ 1.4 

HALT 
TITLE H.XAIOP LOST I~TERRUPT P"OCES~OR .* ...... -** •••••••••• " •••• _ ••• ,,*.** •••••• ** ••••• - ••••• _ ••• -_." •••••••••• 

" . 
• • 

LI. - LOST INTER~UPT PROCESSOR • 
• 

.**._**.*--****-*** ••• - •• **.*_.**." •••• _._.* •• *.- ••••••••••••••••••••••• 
• • 
• THIS eNTRY POl~T IS CALLED ~y S.IOCS5 (O~ ~EHALF OF T~E ~EAL.Tl~E • 
" CLOC~ I~TERHUPT HA~OL~~) ~HEN A DEVICE TI~EUUT OCCURS, A~D 6' • 
• ~.IUCS,38 1~ OHDEN TO ~ILL AN UuTSJANOIN& 1/0 HEQuEsr. * 
" . 
• IN COTM CASES THE CURRENT 1/0 REQUEST IS TERMINATED ~lTH A HALT • 
• 1/0 ( ... 10) INST~UCTION. IF TP1E CUNTROLLER RESPUNOS TU THE HIO, - • 
• UP. PERFO~MS fHE ~EQUIREO INTERHUPT HANOLIN'. IF THE HIU Tl~ES QuT~ 
• TME CONr~ULLEIf ANO uEVICE ARE P~ESUMED M1LFUNCTI0~lNi. * 
• 
• 
• 

5.IUCS5 AND H.IOCS,J8 ENTER LI. wITH INTERRUPTS BLOCKED. I~ 
ADDITION H.IOCS,38 ENTERS LI. wITH CONTEXT SwITCHIN_ INHI8ITED. 

* • 
1\ · , ***.**.**** ••••• *." ••••• * •••• _.*_ •• ** ••••••••••• * ••• " •• a._ •• *.a ••••• _*., C 

• 
* • 

15-26 

CALLER: S.IOCSS 

i~ 
I 
, , 



(" 

i( 

- CALLERS ~HIUWITY: 

-*- lf04TEwWUPTS. 
* 

NT CLUCK I~TERwUPT LEvEL A(llyE 
I~T~k~UPTS bLO~~tu 

-* 
* 
-• lO~TEXT S~11CHJ~G INHlbIllO , * 

• 
* C1LLl~G SEQUENCE: 

-* ~tGISTf_RS I~: 

* -* wETUIolN SEYUENCE: 
* 
* wEGISTERS OUT& 
* 

dL 

"2 = HAl AOlHtESS 
"3 = UOT AOOW~SS 

NOdE REg'O 

* 
* 
* 
* 
* 
* 
* • 
• 
* 

***.****.-_*** •• *.*********_*.*** •• **********.***.********t************_ 

LI. 

* 

SPACE 
i:fOllIllO 
EQU 

3 
lw 
S 

-- PHOCEDURE TU TtkMINATE DEVICE ANO FURCE AN INTERRUPT YIA HALT 1/0 

* 
LI. w2,uOT.t.>Cl,,)(j ~t.T DCA A(JOwf.S! 
.~~ 31,L>Cl.LINC,)(2 uPOATt. LOST INfEwRUPT CUUI'41 
stt"" 1,DCA.FLAG,l(~ INIJICATE HALT 110 ISSuED 
~5 Ll.1.00 dw IF HALT 1/0 TIMED UUT 
LW w&,LI.rI~O GET TIMEOUT VALUE FUR HALr 1/0 
STw w&,uUT.PTOv,Kj STUwE l~ UUT 
L.H '" & , U U r • CHAN, X j bf.r DEVICE AUOwESS 
ril0 "&,0 ISSUE HALT 110 
TRS'" wO "'ETURN 10 CALLER 

* 
** P~UCEDLJAE TO CLEAN uP ... HEN HALT 1/0 TIMES OUT 
* 
LI.l.UU eQU 

ll:5"" 
STw 
L.W 
1.." 
T~R 

dL 
rWR 
LW 
LW 
ttL 
T8M 
dNS 

.e* FINAL CLEANUP 
TRR 
8L 
8U 

•• * FINAL CLEANUP 
LI.l.u~ EQU 

LWI 
ST .. 
58", 
S8.-. 

1,OCA.FLlG,XC! 
RO,1..1.wETN 
1ot3,lJOT.OCAA,X] 
Rl,UCl.COTA,x3 
lot],"''' 
5.1U(S31 
W4,1ot 3 
~2,OCA.IUQA,XJ 

W],OC1.COTl,x3 
S.IOCS3 
l2,lOQ.FLGS,.i! 
LI.l.05 

HJ~ K 1 L ~ R E Y U t. 5 T 
R2,1ol] 
5.1UCS10 
Ll.l.tO 

CLEAR HIO ISSUEO FLAG 
SAvE ~ETUR~ AO~RESS 
GET DCA AOOkESS 
GET COT AOONESS FOR THIS UNIT 
uCA AUOwESS TO WG 
~AHK UNITS OFFLINE ANU MALFUNCTIO~l~G 
k~STONE DCA lOOHESS TV ~l 
GET CURRENT 1/0 QUEUE E~T"Y lOU~ESS 
GET COT AUORE-SS 
U~~INK 109 ENTRY FRUM IUW 
THIS A kILL KE~UEST1 
dH IF OEVItt TIME OUT 

lOW ENTHY ADDRESS TU loll 
OEALLUCATE IOQ E~lN' 

fUW L>EVICE TIME UUT 
I 
H&,lUW.UOU,ll 
Nb,L.I.UOTA 
b,IOlJ.FLGS,XC! 
G,IOQ.IOST,X2 

G£. T u&H ADORE.S 
SAvE FOR LATER 
lNDICATE UNRECO~EHA8I..t I/V ENR 
INOIC1T£ DEVICE IHOPEkl8LE 

15-27 



SdH 
L.8 
tiL 
L--

IO,lOtl.IOST,XC! 
HI, lUt~.t'folGN, Xi! 
S.IOCSt9 
Hl,LI.UOfA 

INDICATE OEVICE TJME UUT 
GET D~E ~UMtsEH 
~£PORT 1/0 COMPLETE 
"ESTORE UOT AOOHESS 

iL IW. ~ESTAHT 10Q TO FLUSH f~I~TI~G ENTHlls 
Ll.l.lU t:QU I 

Lw ~O,Ll.RETN GtT R~TU~N AUO~ESS 
HIS.., RO ~ETUHN TO CALLER 

LI.RETN IolES 1 ... LI. AETURN AOORESS SAYE AREA 
LI.uOTA ~ES 1111 L.I. UOT AOOHESS SAvE AREA 
L 1. T 1 (.10 lUTA ... "2 rIMtouT VALUE F~" HIO 

TITLE H.XJ(lOt' S~ECIAL POST XFE~ p~uCESSUH 

***************** •• ***.*********************_*****_***a** •• * ••• *._** •••• 
* -* Pl. - S~~CIAL POST XFEN PROCtSSOR -
* * 
******.*.***--*.-***--*****._-**-.*--*--*-*_.**---*_.-***._--*-**--*-*** 
* -* THIS ~NTRY ~OINT IS CALLEO dY S.lOCS1 (GENEHALIZEO l/U POST -
* ~HOCESSING) wHENEVER ~ETU"N fAU~ UP. IS VIA -POSTPRUS-. THIS -
- ENTRY PUINT EX~CUTES AT T4SK PWI0~lTY, AND THEHEFORE CAN ~E * 
* USED fa pwoviot A~Y SPECIAL PHUCESSING ASSOCIATED WlrM A DATA * 
- , .. AI~SF'ER (eG., LlATA THA,-,SLATIUN) AT A LOw Lt:.V~ OF SYSTt:.H * 
- OvtI'tHEAD. * 
- --***._-.*.*._****--*-**-*-**--*-*._**.*--.***.***-*.*-****--.**-*_ ••• _.* 
* • 

-• • -* -.. 
--• 
• -* • • 

CALLtH: 

CALLEHS PHluNITr: 

INTERHUPTSZ 

CAL.LING St:.~UENCEI 

~EGIST~~S IN: 

~ETUIolN SEwUI:.NCEZ 

~EGlSTE~S LlUr: 

S.luCSl • 
• 

T ASf( LEvU. • 
• 

UNSLOCKEO • 
• 

tiL *Sw,Xi • 
• 

"1 - FCi AOLlkES. * .. 
I'ti :a HAT AOOIo(ESS • 
.. 3 • UOT AOONESS * • 
TNS .. NO * 

* 
~1 • Fce AOO~ESI * * • 

*._*_ •• e •• e*._e •• ** •• *, •••• _* •••• *_*.*._._ ••••••••• * ••• * •••••••••••••••• 
SPACE 1 
dOUNO 1" 

PI. EQU I 
• OtvICE oEPENutNT COOE GUES "ERE IF Pl. IS REQUIHEO 

T~9" ~O 
TITL.E H.IIIOP SYSGE~ INITl'LIZATIO~ PROCESSOR 

••• ee •••••••••• _ •••••• *.* ••••••••••••• * •••••••• * •••••••••••••••••••• _ ••• 
• • 
• 
• 

SG •• SYSGEN INITIALIZATION P~OCESSOH 
f 

• 
• *e* •••• **.*.e***e*.*** •••••••• _ ••• _ •• _**.* ••••••••••••••••••••••••••••• _ 

• • 
• T~IS ENT.Y POl~T IS CALLED 8Y SYS'£~ FOR T~I ~URPO" 01 IHITIALIJ- * 

15-28 



( 

( 

• 
* • 
--• 
• 
• 
-• 
• 

ING CERTAIN HA~DL~~ PAWAMETtHS, INIllALIZIN& u~VICE CU~llxr A~t.S _ 
tUCA'S) A~O INI'l'LIZI~G etNT'I~ UATA STNUC'u~t tLtMt~rs Uuwl~G _ 
fME CUN5TWUCII~~ UF AN MPX·3~ IMAGE. _ 

-UCA'S FUN THIS ~ANULEW AWE CwtAT~u VIA T~i ~tPl'Tt~ 'SStM~L' uF ._ 
'I;E MACwU, ·OCA.lJAJA-. A ·';All'~IJ'1 I~UMtftW Of VeA'S IS _ 
C"EAltU ()uwl.~b MAI'WLEW ASStMtlLf. UUHINb poll El(tt:UTIU,~ uF 1HlS * 
EfliTIH PuItH, VI"!:: Del IS I;'\ilTlALIlE:.U FOr( E.A(.H lIUT ll~'-CY CU:oIIAINI,'IIG * 
rMt, NA~E UF THIS "4A'~tlLEW. A.~' 1oit:.:',Alto/liolG UCA'S A'''v THt WEMAil'4uEW O~ _ 
T-..t: CIJUE IN THIS t.NT~f ".ILL nE IJVt~LAI0 dY SYSbtN. TH~ .• H,fUl(t hHS * 
NIlSl IJHYSICALLY 1)1:. IHt LA!)T 1:.:'41"0' ?lIl~T OF lt1t:. HAIWLtW. _ 

- -••• ** ••••• **_.**- ••••• _-* ••••• _.*. __ .* ••• **------****-** •••• ** •• *- •• *_ •• 
* • 
- C ALL·tW: SY';\ii:N UuwING IMAbt:. C \,/1'45 r I( lJ C r IUN • 
- • 
- C~LLt:.~S 1"1( lut-< IT r: lOA • 
* • 
• lNT£RWUPTS: lOA • 
* * 
• CALLING SE~Utr~cE. : dL LAST Pt1YSICAL tl'4I1'1'1 I"UINT • 
• -• -ituI~Tt>cS I I~ : !'Cj = eMT AI)l)l'Ct:lS * 
* * 
* ~t.T(jkN SE",uU~Ct : rt-<S~ 10/0 lVIA M.xllol) • 
* * 
" ~t:blSTt::I'lS UuT: ·~O;"E IolEQ'O * 
* " ****_.*.***.***"**.,,*.,, •• -** •• _******* __ **_**.**,,**.*****t***.***,,* •••• * 

:SPACE 
LPllOl 

UCAS1AI(T (QU 
~~~T 

vl:A.OA1'

itllljij

l1(JlJ~Li

SG. Eyu
'"I.f.l"

.5
LIT~wALS "tHe TO Avulu UVL~LAYI~G

j ~TA~l Uf UCA'S FuW TM!S vlV1CE
XXl ~t:P~Al Cuu~T fU~ UCA LwtA'IU~

A,l,l,l,l,l,l,; ~l~"A"' MAC~~ - CKtAft 1 ut
X,l,l,l,X,.,l,X,.,l,l

~CA.l~11 M.llIUIJ
J(X.

LI~w1WY ~ACwU - t~rE" l~lr "uurI~t
Ll~~A"Y ~AC"U - UeA l~lrlALllArlu~
~s~w Cuut ~t~t iF Kt~uI~tu

xXl(
.)[1.11'412
;,.. xl tC 1'1 A T
EflliJ

'lIuTt,: 'I..l r(t.1.J1) AvAIlA~Lt., Plc=UCA AUUk

Llo~AWY MAC~O • uCA INITIALllATIUN
Ll"wAR'f ""AC~IJ • EllIT 1 .. 1T loluuTINE

15-29

U., Sample lOP Device HandIeI'

- lOP l!, .. f ~~lIHEW HANULEH

• --*
* --

SPAC~ 10

~~~~~ w~ST~lCr~O RlGHT~ LE~ENU ceccc 

USE, UUPLICATLU~, OR 01SCLOSu~E IS SUdJECT Tu THE 
~lSTHICTIU~~ STATED IN SYSTEMS' LICE~SE AG~tEME~T 
(~U~M ~O. 121~) U~, FOH ~UVl~NMfNT CUSTOM~~S, 
UAK '-10ta. cU. 

• -* 
* 
* --- -*_*** __ .*_ ••• t.*._*. __ *_ •• * ••••• _*_**.** •• ________ * ___ **-_***_ •• * __ * __ .* 

Tl'L~ H.LPIUP lOP LINE P~l~'l~ UlVIC~ HANULEH 
PHUGHAM H.L~lU~ 

****.*.* •• - •• _ ••••• **.*.*-*.-*.* •• - ••• *-****** •• *-******.*.*.*. __ •••• ---

- -• 
-

lOP Ll~E P~INTER H'NULf~ PROGRAM * -* THIS HA~OLf~ IS SYSTEM ~EfNTwA~T ~HICH MEANS THAT ONLY UNE COpy • 
* S~UUL~ dE CQNFIGUHEO I~TO A~ M~X-j~ SYSTEM ~~GAWULfS~ UF IME -
• NUMdE~ uF L)f~lCES OF THIS rYPE A~O THE ~UMdtR Uf IU~'S CuH~IGUHEO -
* l~'U rHt SYSI~~. • 
* • __ ** ••• _ •• t ••••••• __ *_ ••• _ •• _ •• _* •••• _. __ ._*._ •• _.*_* •• **_* •• * ___ * ___ *._ 

SPACe: j 

HAT 

-* 
SG.AOO~ 

* 

,~. EQU·S 
,'1. TelLS 
IJCA.~QUS 
tXT 
~XT 

c.XT 
c.XT 
~XT 
c.XT 
c.XT 
c.llT 
EXT 
C:XT 
c.xT 
tXT 
~PAC£ 
IJArA~ 
ACW 
AC ... 
AC", 
ACtt 
AC.., 

S.EXEC, 
S.lUCSl 
S.IvCS10 
S.10CSli 
S. HiCSll 
~.luCS15 
S.IuCS~9 

S.luCS:U 
lLUPCOIJE 
Stt'iVCOtl4P 
10Ll.~1( 

PuST"~OS 
J .. 
Op". 
h •• 
:il. 
LI. p,. 

:)P4CE 5 
• * •• 

• 
IUP LINt PliilNr£~ CUMMAHO TAiL' 

c ... o.rSL Ellu 

-
15-30 

HANUL~R Aou.ESS T'~LE 
OPCOO£ pwuCfSSOR AuO~fSS 

1/0 Q~EuE PROC£SSuw A~O~ESS 
SE~YICE I~T P.utfSSUN AOOWt~' 
LuST INTE~~u~r P~UCES~u" AOukESS 
~uST IFf~ P"OCESSO~ .uo.~is 
.AuUITIUNAL. fNTIiiY POll~Ta ,IF ~'o, 
-~uST HE AOOfO HERE. 
STS~Eh INITIALIZATIO~ PMUCEISO~ AOUN 
*THIS MUST THE LAST E~T~' PUINT 



(c 

( 

----
CU"",·'. i'l40S Tv hUN T HU"FE~ T 11 E I~ OU ... u.c,,)S ClJl'4HlUL. 

• 
L.fJ.CM()l O_T'" .'010uuClOu' PtoiU,T O~LY • NO foOtofMS CUI'4Tw(JL 
L,J.C~U~ "AfA" X'OSvuOUVU' Ptoil .... ' ~UH· t: Ie , <Cl(~ , 
... r'.CIIIIO$ .lATA .. l'l'Suuuvuu' "lCl~T cyf>Ft.toi, <L.f~ 

L",CMu" uATA" Ji'Z:;'uvuOvu' ~~ It'~T ~uffi.rc, <t."~ <L."~ 

~,J.C~O' &.iArA" J('J~uuvuu'" r'~I"T 8uf-fttol, ,~L.t ~ CL.t- ~ - cL.F~ 

Lr'.CMUfl ~AT't\ l'q'lIUVUVU' ~KI""T ~uffik, <f"'~ 

LI".CMOI ~ATA __ X'b!)IJUUOUO' tJl(l~T 8lJff-t.tol, <(,;~~, IHt:.N CL.tAN tsUfFEH 
• t... C0M~ANOS TO OU FOHM$ lU~THUL 4~U T~E~ P~l~T buff~H. 
•••• NJTE: rHESE Cu~MANO~ AKE A~~A~GlO SU THAT ~, uSlN~ 1Mt l~O~x *... uF THf fu~~6 CUNT~UL TAdLE ANO A utfS~l l~TO T"'~ IAdLt:. t*.. YOU CAN Gt:.f Ttit, Ar'PKOPI<lArt. CUMMAf .. U .... JH 1"E ~C CHA~. 
• 

L.:t.CMU1U 
L?CI'4Ull 
L?CMUlc! 

* 

lJA'A" 
uATA~ 

uATA" 
"'TA .. 
JATA" 
&.iATAfW 

l'vOOOUVUll' 
~'qL>uOvO"v' 
A'4u<lOvvvv' 
l'2IJOvv"uQ' 
X'llJvvUvvu' 
"']uuuuuvv' 

cCH>, P"I~I HUff-EM, <Cw~ 
cfF>, '"'wI .... T DuF~t.W, <CN~ 

<"F~, I"wl .... ' ~U~ .. ~w, <tw~ 
ct.f~ <Lf~, Prcl~f cuFftw eCH~ 

CLF~, P~lNT dUfFlw, <C~~ 
c ... F~ cL.F~ eL.~~, PWlNT, cCw~ 

.*.* CUM~A~OS r~AT uo ONLY fU~MS CUNrwOL lNO ,",WINTINb) 
• 
L.P.CMulJ UAfAff 
LP.CMlJlc& ~ATA~ 

<C~~ 

CfF~ 

<FF. 
<I."~ <Lf~ 
eL.f. 

(SPAN t.J 

~AT'" 
L.P.CM01~ \lATA" 
LfJ.CMOlb uAll" 
t.?CMulT uATl" 

X'u.500UUUU' 
X'4700vQOO' 
"470\)UO,,0' 
A'~1uuuvvv' 
1'17ijUUvvv' 
.'31u\lv\,Iuu' 
J 

cLf~ eLf~ <L.f~ lS,","loIt) 
~PACE 

• 
•• LINE Pwl~TE~ FUH~S CUNTHUL TA~LE 

-LPFCNUM ulTAw ~ 

L?Ftf~L ~WU • 
IJATld C'.' 
lurAd C.'l' 
uATAi C'·' 
uATAc C'O' 
\lATAd C" 
SPACE 2 

• 
** COMMANu rA~L£ OFFSETS £YUATES 

* Ptol.UFSET iQU 
C~.OFSt:T fQy 

rlTLE 

,-'UMttE. R uF ENTHIE.S IN II'1E Fe TA~L~ 

f-UWMS CUNTROL Fu~ ,Itt IME.N PI(INT 
fO~MS Cv~T"OL FOH Ff rl'lE"" "~INT 
Fu",,..S COf'ltTRUL FU,. fF T ... E~ pWI~T 
fUKMS Cu~H(ot. Fu" ~ Lf'S Tt1t:t. PNII'4T 
fUfI("'S Cu~TWOL fu" LF httN ~fCIN' 

U~~~El TU CMUS THAT ~u Fe l~U PRl~T 

uFFSET TO CM~S r"AT u~L' DO FC 
v~ClJu~ PMOCESSUM 

•••• ***_ ••• **-- ••• *. __ .**.** •• _*._ •••••• * ••• *-* ••••••••• - ••••••••• *** ••• 

• * * • 
U"'. • UPCOuE PRutESSOR • 

• 
** ••••• * •• _* •• _*.* ••••••••••• * ••• *-****-_ ••• _-_ •• _.** ••• ***_._ ••• * •••• ** 
• * 
• TMIS ENTRY POINT IS ACTUAL.L.T A SUSROUTINE EXTENSIuN \IF H.1UCS,~q, • 

A PURTION OF lOtS L.OGIC COMMON TO ALL I/U SERVICES .. ~IC'" A"'E ~ 
CAPAILI IHl'IATlH' • P~YSIC'L DEvICE '~CEal. IT IS CALLtU ru * 

!I 
!I 
:1 



• 
• 
* 
* • 
* • 
• 
• 
* 
* • 
* 
* • 
* • 
• 
• 
• 
• 
* • 
• 
* 
* 
* • 
* • 
* 
* 
* • 
* 
* • 

PHOC~SS TH~ UPCODE PLUGGEU INTU THE FeD dY THf 1/0 S~HYIC~ 
U"Ibl'~'LL' CALLEO 8Y 'He uSt.R. * 

* --THE PURPUSE O~ OP. IS TO EXAMINE THE OPCuOE ANO UTHEH PEWT1~ENT ,-
Fed CJNJ~UL S~tCIFICATION~, A~~ fO INOICAT~ TO H.luCS,i9 ~HAr * 
ACTIU~ IS TO dt rA~E~. IN UHUfM TO INOICAT~ WHAT ,CfLUN IS TO ~E * 
TAKEN, OPe TA~ES 1 OF 4 POSSldLE ~~TUkNS TO H.I0CS,2~ AS FULLOWS'_ • 

dU 
aU 
clU 
dU 

ILUPCOUt. 
~f.~VCOI"IP 
lUL 1 ;~f( 
pusrp~u~ 

• 
1. uPCuOt ILLEGAL fUW 1MLS uEYIC~ * 
~, ~t~YIC~ CO~PLET~, ~O U~Y ACCESS ~t.yu* 
l, Ll~K ~~QuEST TO 1/0 ~utu~ - * 
4, ~I~K ~E~~EST + pusr PHuet~Sl~' REYU • 

* 
IF ~ETUHN 1 (IULl~~J IS TAKfN UP. ~UST FI~ST: 

• 
* 
* 1. CALL !UeS SU~HOUTINf S.luCS15 TO ALLOCATt ANU INITIALIZE • 

A~ 1/0 ~u~uE t.~THY. FUU~ IUQ E~TH' ~O~uS, eALLE~ HAN~LE~ * 
FuNerIu~ ~~RUS A~E UF SPECIAL INTf~EST TO 1~~ P~UG~AMMtR. • 
uPU~ ~~TM' INrO THE IJPCUUE ~ROefSSI~G RUUTl~t '~fY AHi • 
5~T UP AS ~OLluNS: • 

lu~.~cr1 - ~ITS 0-' = wU~U AUJ ~PCuUE,~IT~ ~-31 F~t.E. 
Iv~.rCT~ - USEH'S lUGICAL UAIA Au~~fSS • 
IvW.Fcrl - U~tH'~ dYfE THA~SfEM CUUNT 
IUQ.FCT4 - A~AILA~Lt 

~. dullU I~TU rHE 1/0 uu~ut ENTHY IN T~£ ~~AC£ ~ESEHVEO FUN 
IT, A~ 1/0 eOMMA~~ lIST (l~CLJ ~ITH 'ri~ P~~PtH CUMMANu 
euufS ANU fLAGS USING lves SUijHUuTINt. ~.lue~li A~U loes 
ENT~' P~INT H.Ioes,~u. 

• 
• 
* • 
• .. 
• 
* J. OM, IF THE US~M REQutSTS EAECUTIO~ UF HIS CHA~NE~ P~OGR'.' • 

vAlIUATE '"E uATA A"fAS, ANO A~SOLUTI1~ T~E VATA Auu"~5StS • 
U~l~' IJCS SUD~UUT1Nk S.luCSJJ • 

* • 
• TAKI~' ~ETU-~ 4 lPUSTPRUS) INOIC.T~S THAT AN 1/0 ~E~uEST IS TO ~E • 
• ll~Kiu TU r~i 1/0 ~UEut FOR '"I' ~£Vlti AS ,_ H&Tu~~ 3 (IO~lN~), • 
• A~U A~SU THA' A~li~ TME ~EgUfST HAl Mf£~ CUM'~~ffu .ur dEfUNE • 
• Nt:Tu __ ,. TQ QIII lItuflFICATI0H 0' THt U:it., Hotf SPtCIAL yc.~ICi "uiT • 
• p"UC£'Sl~' tNT.' ~Ol~T "l.l .,~~ bE CALLEu. -. 
• • * ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• • • 
• C AlLitt: 
* • CALLfMS P"luRITU 
* • 1I'4r'~RUPTal 
• 
• C'L~IN' Sewut.~CEr 

• 
• ~E_lSTi~S 1"-' 

".lues,z, 

fa:;" ~E--EL 

Uf04tsLOCKEO 

d~ ·ll11,xi 

tit 1 • Felt AUONEsa 

-. 
" 
* -. 
• 
• 
• 
* • 

(~, 

~J 

• l'IIi • HAT A(.IORES' 
• 1'C5 • "UT AuO~tS' :0 
• , 

1'1-12 



<=\ 
• ~ETUR~ &t::wUt.NCEI ItU 10~I~K c OR, • 
- DU' StWVCOMP utc , • 
• ou lLO~C.OuE U~, • 
* ItU P\JS1P~uS • 
• '. 
'* IiIEGl&lI:.H& UUT& tea ;; FC .. AUUHESS • 
• * ••• * ••••••••• * •••••• ******.**** •••• **-** •• _ •• *.**.*.****.***- •• * •• *.*~ •• 

~PACE 3 . . 
• 
** THE OPCOUE VeeTON lA~L~ ~HICH FULLOwS co~rAI~S THt AUU"EStiE~ U~ 
-. THf opca~~ ~HUCl~SING ~"UCEuu~tS ~"UEHEO ~y u~COOE ~U"~EK~ ~AC~ 
•• [~rNY riAS dlT 0 SlT IF 1ME ASSO~lA'Eu P~OCtOuME KEOUl~t.S ift 1/0 
•• ~u£ut t~TRY. SYM~~LIC OPCO~f~ '~f ALSO.L1STE~. 
• 

dOUNO 
UPT'8 ~QU 

.. £,'4 
UPE~.OP EQU 

.. [i.e 

""NO.OP e.gU __ EN 

PlEAO.OP iQU 
\if ,'4. 

--~ IT. OP ~QIJ' 
GE,~ 

"EOF.OP fQu 
G[tl4 

I:..CP.OP t.QU 
liEN 

AOVR.OP fQU 
ijE~ 

AOYF.OP i:llu 
\if 1'4 

SKSR.OP fgU 
"EN 

aKSF.OP f~U 
\iE,.. 

UPSP.oP c.QU 
\i E," 

EifPT.OP tQU 
liE'" 

[JCT.OP EQu 
GE~ 

CLSE.OP ~QU 
iiEN 
liE;.. 
SPACE 
dOUND 

OPt fQu 
• 

1w 
i 
l/U,ll/wlOPEN) UPfN 
o 
1/1,ll/~~R"Nu) wEW1ND 
1 
1/O,Jl/~(RElul "tAU ~ECUHU 
~ .. 

1/1,jl/W~"~lT) ~WITE ~fCOHU 
J 
1/O,11/w(WEOF) "RITE E~U·OF·FILE MECURU 
4 
1/0,31/wlEXCP) llEcuTE CHA~~EL PtCOGwAM 
5 
1/1,11/",AOYM) AUVANCE ~tCu~O 
& 
1/O,31/W(AOVF) AUYANCE fILE 
7 
110,11/~(~~SM) ~AC~SPACE "fCOHU 
8 
1/O,Jl/~(~KSF) dACK8PACE flLt 
9 
1/1,~1/~(UPSPl UP~PACE 

10 
1/0,ll/w(E"~T) t"ASt OR PU~C" THAILEN 
11 
1/1,ll/w(EJCTl ~JftT 
12 
1/0,11/"(CLSE) CLOSE 
13 
1/U,Jl/w(U~US) u~uSEO 
1/0,31/~(U~US) u"~5E~ 
3 ,. 
I 

*. PROCEDuR£TO ALL~CATE AN 1/0 QUEuE ENTWT,IF ~£CtSSART, ANU 
** vECTOR TO T~E APPtCOPIATE UPCOOE PwOCESSING PNOCEOuRE 
• 

H~,FC8.0PCD,Xl 
~i,2 

"2rR~ 

GET OPCODE FROM FC~ 
wOAD ADJUST OPCOO£ 
SAvE OPCOOE IN ~. 

I 5- -: 



-I 

L.W MIa,OPTAH,Xa 6ET OPCUOE PROCEDURE AOO",ESS 
dNH "'.0.0" D~ IF 110 wu~uE ENTKY NUl "~EQ~O 
oL S.lUC:UJ GET 1/0 ~UEUf ~THY 
L.W f'4 a , F C II. I oru , JC 1 .fT IO~ £~T"Y AgO"~SS 
SId " .. ,liJlhFCJ 1,lltl! ~AYE UPCO(i~ IN lu., ENIRY 

OP.o.uu t.l.hJ a ..... "'l,\JOT.DCAA,X.s GtT ADO",ESS UF OEVIC~ CONTEXT ARE. 
xc", w.,"'a PL.AC~ Of'COoe. 1" "'l A,~U IOWA IN Nit 
oU *UprA~,"'a ~~ClON ro upcoot PNUC~UU~t 
:)PACE i 

• 
* 
* • 

u~COOE f'~OC~SSI~G SEC'lu~ 

* • 
• 
• 

ENT"" I Xl = 
~a = 
• .s = 
... = 

SPACE ~ 

FCd AOOA 
uPCODE 
IlCA ADO'" 
lOW Ai:)O~ 

*. PttOC~DURf To PENfOMM O~EN 
* 
U~~~ ~QU I 
*** INITIAL.IZE 10f' tHA~NEL IF NEceSSA"" 
UP.l.Uu ~Q\J i 

... ~ ~i,OCA.CHTA,XJ 
TD~ o,CHT.FLGS,X~ 
as up.l.OS 
oL I .CrtT. II'4C", l~ 

OP.l.0~ ~QU , 
dU S£M~CU~P 
SPACE 1 

• •• PMOCt.OURE 
* 
"'wNO c:.QU 

.T~M 
sall4 

* *. PAOCEOuWE 
* t:JCT tIJU 

r"~ 
L.~ 

TU PERFUAM ~ENINO 

' ., • "",flta 
ll,101.l.IOST,.a 

TO PENFOMM EJECT 

I 

GET CHT AOO"'ESS 
HAS INCH 8~EN PERFuNMtDl 
oM IF lOP AL"'EAUY l~C"EU 
~U ro H.I0PI TO PE",fO"M l~CH 

G~' 10Q AOON INTu ",a 
SET IUT IN lOST TO "'Et''''ESEIIf' 

.ET lug AOO~ INTO fti 
GET 1/0 CMO FUA FF (NU PNINT) 

EUF 

• 
.. 

ZM 
ou 
;;PACE 

",.,"Z 
fIt.,L.p.CM014 
fit 7" 
uP.5.UU 

lEMD ~E' TO dE \JSEu FUM 1/0 FLl' ~R~ 
~~ TO SETuP lOCO l~ lwij 

1 

* ** ~ROCEOu~E IU PENFUWM UPSPACE ANU A~VANCE MECUMU 
* uPSP 
AO~~ 

* 

fQu 
r.Qu 
TR" 
L." 
ZM 
~PACE 

I 
a 
...tb,flta 
rt&,L.P.CMUllt 
Jill 

fl 

GEr 109 AUOH INTO Wl 
~~T 1/0 CMO FOR L.F (NU PRINT) 
l~"U NE' TO ~ USiO FwN 1/0 F~A' ~O~ 

** PROCtOu~t: TO SET~' lueD FON COMMAND NIT" ~o DATA TRAN'FER 

15-34 

~ 
10' 

I 

! 

I~ 



(/ 

•• t."'TRY . Rl - Fee lUOt( • -•• riC? = I UI~ ADL,)t( 

** 1(3 - OC'" Aut>" -
** J(b - IvCU ",S ,Ii lUlll AUDio( - 0) - -
** 1(1 - luCU LS" t CUUI~ r - U) , - -• 
IJP.5,UU EOU I 

L" lot 5, 1 UU. IS T1 , x 2 LOAO IOU.IUCu AOvltJlNTU 10(5 
LW rt3,UC .... C;;TA,~3 GlI CHr lUCK FWUM UtA 
STW r(~,CrH .luCL,xl SAVt:. JO(J.luCU .. ,WI( IN CreT 
fIof t( rt2,rtJ ('IT lu~ AUlJrt If'4Tu W] 
dL S.IuCS12 St.Tut-' 10Cu 1 i .. 1UIII f uli( I/U t,;u~Tio/UL (; tolU 

ou 1 UL I :~K Ite.TUI(N 1U lues Tu LIN" Tr1t. luU 
SPACE 2 

• *. PROCEOU~t TO PijUClSS ~HIT uPCuuE 
* 

OP.b.1J5 

t:gU 
t:QU 
r"fIt 
S8"" 
lei ... 

dl1lS 

l~ 
Tet ... 
tts 
Lilli 
liU 
t,QU 
LA 
dU 

j 

~ 
Wb,rtc! 
11,lUQ.~LGS,X2 

2,'-Cd.GCFG,Xl 
Ut-'.b.lu 

"' 8,FCt).beFG,x~ 

UP.b.U5 
IIIIb,LP,C Mull 
UP.7.UO 
j 

Wb,LP.CMOl 
uP. 7. U 0 

GET IUY AOUH INTU kt' 2 
SET ~HITE fLAG l~ lOQ 
IS DATA fUt(~ATTl~G INHI~IT~u 11 
~U, GU UO FU"MATTING 
~t"U Ht' TO DE USlU FUN luCu LS~ 
IS TM~"t SuP~OSE TO dt NU fuHM Chft(L 
Its, ~O FORMS CO~T~UL IS ~ifOfU 
Ue.fAULT FOHMS CNT~L l~ SI~G~E LF 
by SETUP 10CU FUN UUI~UT 

~U fuHMS C~TRL O~LY PfltlNI duFF~~ 
~u ~ETuP lUtu FU" OUT~uT 

*** FORMAT OUTPuT 
OP.b.10 egu 

AeCO"OING 
I 

TO FIRST CHAH IN UATA ~~FFEH-

.*_ •• 

I~H 

LIII 
Lit 
Ad'" 
LW 
SUI 
ST" 

CI'IECK FC 
L.~" 

UP.b.15 ~QU 
c •• e 
dEw 
dId 
SUl 

••••• CUNVENT 
OP.&.20 EQU 

••••• 

.0 ..... 
:iLL 
lR 
L.iIII 
"HZ 

fiET 1/0 
AOI 
L. 

Xl,I(S SAvf FC~ AuuH I~ "E. 5 
~1,lOQ.FCT2,X~ btT OAT DufFEN AOU~ FHUM lU~ 
"~,u,Kl ~fT FIRST dyrt IN UATA ~u~FfH 

ll,luQ.ftT2,X2 l~CN DATA 8U~FER AuUN 1 o'Tf 
"b,IOQ.FCT!,X2 GET .FER tOuNT FHO" luQ 
~&, 1- ufCH Ii' 1 dYTE 
~&,luQ.FCT1,xc SfuHE NEw CUUNT 1~ IU~ 

CH.H AGAINST Ft TAttLe. 
W1,~PFC~UM '~T ~E~ NU"~tR OF C"A~S 1~ ft,; TA~Lt 
$ 
"4,LPFCT~L.5~,Rl COMPA~E FC CHAR TO FC TA~Lf 
YP.&.20 ~H IF MATCH 
li(1,uP,&.15 INCH NE~ tNT 'NU dR IF ~UI tf"U 
"1,1 IF TA~Lt f~PTIE& S~T ~l • -1; FC :' 

~c T~ x/v CO •• ANU TO ~E UiEU IN lUCO 
I 
~l,LPFCNUM MAKE NE. eNT A POSITIVE 'AdLE l~OEX 
"1,2 MA~E INDEX A WORO INOEX 
N7 C~fAR wE. TU ~E uSEU fUR luCU LS~ 
~b,IOQ.FCT3,xl TfST .FE~ COUNT TO SEi IF LENO 
UP.&.c5 1F HOT liRO~ .a TQ uo-,C • vATA lFt~ 

COMMANO F~O~ CMO TABLE FOR CONTROL O~L' (~U UAJA-AFt~) 
wl,C~.OFSET AOO OFFSET INTO CMO TA8LE Tu Fe [~uf 
~~,C.O.T8~,Rl .iT 1~ 'OMMAHO 'OA F~~ CU~T~OL 

15- "3 '5 



fWI( 

tJu 
111..1 

Up.~.ou 

wt.SluwE fCtS AUllw 
dR TO SE T uP luCU 1'" lU(~ F\J~ CUNTwOl. 

CMU TAdLE. foU'" FC A.'4U tJwlNT t;urFEw • ••••• (tt' 
U"'.th~' t:. 1.1 tJ 

~ u-l 
Lit 
IKK 
~PACt. 

CU1'1/'IAI'41J "'l'(ull 
,) 

I'Cl,,,,w.uFSt::T 
" b , 1.;"10. T d L , lot 1 
..('.:),Iq 

, 
AOO UfFsEt l~TU CMU fAdL~ TU FC INut~ 
~~T (/0 C~MMA~~ fo~ FU"~ATreu ~lotl"'T 
l1t.srUIotE FCd AuL)1ot 

1 

• 
* • P"'I)Ct.l)u~t:. lu st.rut-' lUCI) I-I)ri 
* • 
•• 
•• .-
* * 
• 
UP.7.VU 

• 

Co ,-. I r( Y 

c.1.! LJ 
L. ... 

'-It 

;)r" 
rlo/~ 

·I.,-ALL 
'HI 

,,"'~Ct. 

. 1"(1 • 
"i 
r<j 
"& ,., 

= Fed AJur< 
= J.J~ AuUi"C 

= uCA A0ui( 

= tuCu - LUCu -
.,'S f4 

L~'" 

~lTHUUT OArA dUFFEl'( ~UUri 

AITMuuT XFtw cou~r 

.5 
I( ,;), 1 Ui.I • 1 S Tl , Xi 
r(l,UCA.CHTA,~3 

1(';),t~H.luC,-,Xj 

r(c,w~ 

!'i.lues,,,u 
IuL.ll~p( 

1 

u~T IUU.IUCu A\JUW FWUM tuw 
~tT ChT AUU" F",OM ~eA 
.,IUwt iutu AUUw l~TO eHr 
~tr IUA AOuw INTu "3 
'-ALL Loes ~u Tu ~c.lupl lueu 1~ IUy 
ro(t.Tu"N TU luts ru L.1·"" Iv'" 

*. p~uet.uu~t:. TU Ptlo(FUHM f.xfeu,£:. Cr1A.~NEL P"'UGKAM 
•• (NOr IM~LfMt"'Tt~ u~~t::~ MPx-l.,,) 

* 

\ 

~ 

lLU"'CUUf:. 
1 

tltCuT~ CHA"'~tL P~UG"'AM 
lL.Lc.GAL. U~CuuE FUM M~A·l.~ 

** UPcuutj THAT Aloit. "t:.IUWI~f\J ::ifwVlei:'. L:lJ~IPL.t.Tt. i'wLTHiJUl AIH pllofuCES51r;(; 
• 
L;LSt. t~1J 

·~EuF C.WIJ 

t:.I'CPT t.~IJ 

~u 

~~lCE 

• *. ILLf.GAL,. IJ~Cuut. 

* 
U~U:; tUtJ 
-EAu c.wu 
ll,)." 5WU 

d"~" c.ioIu 

o "i'" . ~~u 
dU 
IITLf 

.i .. 
~ 

~t.WIJCOI'4P 

1 

f uw fr11:;j 

) 

~ .. .. .. 
lLU,",CUUt. 
~.~~IiJ~ 

ut.vICt. 

I,;Lu~E UI:.VILt. 
~~llt t~iJ-lJ~-FIL~ 
t.~ASf U~ ~u~C~ T~A'LE~ 

~vlu M.luCS,i9 .l'~ St~VICt. COMPL~T~ 

JLLE~AL IU ~tAQ Flotu~ Ll~fP~lNTEH 

Ll· .. t.""tlHTt:. ... 1$ lIfiJf " filE 
CA."'''IJT .AC~&P'C£' LINt:r'Hl.'4I[~ 

I/Q ~utuE PHueESSOw 
e** •••• * •••• *e.e.*_ ••••••• * •• * •••• * __ .* ••• * •• * •• *_._ •• **.*****.**.*_.**. 
• 
• 
• 

• 
• 
• 

*._ •••• *.*._ •••• _.*_*_*.*.* ••••••••• * •• ***_ ••••••• _.*_ •• _.** __ e_*_ •• * ••• 
•• • 
• rHIS EN'~Y POl~r 15 eALLE~ d' H.I0CS,i9 AFTtR LINKl~~ 'Ht 1/0 • 
- wut::IIE t,'o''''' CtocEATtu IH UP. TO 11'tt: 1/0 ~ut;u~ FUw 11'115 OE~,~CE, • 

15-36 



( 

C 

• If THt 1/0 ~UtU£ WAS cM~T' WHE~ TNt ENT~Y ~AS Ll~~EU. • 
• -• T~IS tNT~Y POINT IS ALSO CALLEU ~Y O~. TO AUTOMAlICAlLY ~~UCESS • 

* TH~ I/O ~utuE AFT£~ SEHYICE INTt"~UPT PHOCt5S1N~ 1S CU~PlEIE. -
• ,. 
• THIS E~r~Y pOI~r IS AL50 CALLEU ~y LI. If U~VICt TlH~I~'rl~~ • 

- FAllS, HEYUIMl~G THE I/v QUEUE TO 8E HfSTA",tU. * 

- • -•• *.** •••••• _***_.*.*-***-*.-_.**.*** •• ***.****.***_ •• *.--_._.-._ ••• _ ••• 
* 
* CALL.t:H: 

-* 
* - CALLENS PHIOMITt. 

-• 
-* INTEHRUPTSI 
• 
-* 
* CALLING St~UE~CE' 
* -* ",EGISlERS IN& 
• 
• 
• 
* ~£.TURN SfQUt.NCEa 
• • ~EGISTERS UUT, 
* 
* 
* 

TASK LE~EL If H.IUCS,iq 
lU~ I~TE~H~PT LEVEL If SI. 
HtAL-flMf CLVC~ lNT LYL 1~ Ll. 

~LuC~ED If H.IUCS,~q 
lOP L~VfL A~Tl~t IF 51. 
~r CLUC~ LEvtL 'CTIV~ IF LI. 

oL 
etL 

IF H.lvC~,2q 
IF SI. uW Ll. 

M~ & "AT AUUH£SS IF ~.luCS,iq 
"3 • UOT AOONESS 
1'(7 : 10(.1 AuOwtS5'lf H.l~C~,iq 

Hi a UCA ADOHESS 
w7 • UNulSTUweEU 

• 
• 
* 
* 
* 
* • 
* • 
• 
• 
* 
* .. 
* .. 
* • 
• 
• 
* 

* ,. 
• 
• *_ ••• *_.**** ••• _ •• _- ••••••••• *_ ••••••••••••••••••••• *- ••••••••• ** ••••••• 

SPACE 3 . 
~OUNO 1" 
t,QU I 
L~ ~i,vOT.OCAA,X3 w£.r OCA-AUONESS 
lDM Q,OCA.FLAG,Xi· CLEA~ u~tIPt'TE~ INTE"RU~T INOICArU~ 

• ** PROCEDuRE TO PROCESS NEXT 1/0 QUEUE ENTRY. THIS PNUCEuuWE A~SUMES .* THE 1/0 wUEuE fu~ THIS OEVICE IS LiNKED TO ITS U~" A~D ~usr dE 
** MODIFIED IF THt l/U QUEUE IS LIN~EO TO 'HE C~T fUN T"~S u~VICE. 

*.* MORE 

£QU 
i.1 
ISZ 
10Q 
LII 
STfli 
TRR 
TH~ 

LIW 
i.A 
IT. 

• H .. ,UOT.IOCT,XJ 
HI.I.OS . 

EHT~lES TO PROCESS 
~.,UOT.'IOQ,XJ 
~.,UCA.I0QA,Xi 
IIC3,w5 

- --

R.,tiCj 
l'i1,UCA.CHTA,Xl 
~.,lOQ.IOCD,ll 
~,c~n .1OCL,.li 

AHY lOa [NTHl£" 
dH IF NO 109 E~TRIES 

itT HEXT loa l~TR' 
SA~E IN DCA 
UOT AOQRESS TO HS 
l~ ENT"' AOQA[I' TO N3 
(iET CHT AODRES. 
.ET ADDRESS Of 10CL 
'TORi Iff TO '"T·· lOCI. AOO"I." 

15- ',-;-



, 

"I 

l.1r 
A f.),.,tt 
l..
(wrl 

STI4 
l.H 
S10 
5 iji'1 

S"f<it 
oU 

*** NO MO~~ hlY 
lY.1.u5 t.~U 

lit,. .. 
Z,..~ 

ld"" 
::id~ 

1ft, OCA. T 1"'0, It'i 
~1,10ihFCll,X) 
Iitb,O,Al -
1(5,W1 
rt.,uUf.PTOv,lCl 
rtb,UCA.UAOO,X~ 

rtb,O 
1,UUT.FLuS,X1 
O,luY.Sl"T,lCJ 
lw.l.1U 

ENT~l~S Tu PHOC~SS 
~ 

UOT.""OV,Xl 
&lCA.IOY",Xl 
1,UUT.FLGS,l('s 
U,OCA.~LA(i,X2 

GEt ADONESS OF DCA TI~fUdf lAdlE 
OFFstT iNTU UCA.'l~O dASE~ UN OPCOUf 
GEl" 1h4[OUT ~A"""E HUS Ut'EHAJIOH 
UllT AUUHfSS TU ~l 
STOME TIMEUUT VALUE 1~ uur 
vET uNIT AuukESS 
ISSuE STANT l/ll 
SET 110 OuTSTANDING biT IN UOT 
~ET 1/0 OuTSTA~OlNG alT l~ lOY 

- IUW IS EMPT, 

lEMU CUWRf~T TIMEUUT VALUE 
l~MO CuwrtENT 10Q ENTHY AOuRESS 
CLEAR 1/0 OUTSTANOING 81f 1~ VOT 
IN&lltAr~ I~TEWRUprS ~ur ~~P~CTEU 

* * * IH. T UR,~ T U 
lIrl.l.10 ~YU 

T"SW 
TITl.E 

CAll.Ew 

* • 
* 

.. 
"'0 
H.lPIOP SEHVICE INTEWRUPT PRUCESSUH 

51. - SEHVIC~ l~rE~wU"T PHUt:~SSUW 
* 
* 
* ***.-.**********************.*********-**********.*******_.****-* ••• *_.* . . . . . 

* -* THIS tNTRY POINT IS ENTERED ~HENE~fM AN l~TE~RUPT fHUM THIS UtVICE * 
* IS FI~l.OEU dY H.lufo'X. SE~VICE l~Tf~~UPT P~UCESSING l~CLUOES T~E -
* • 
* 
* • 
• 
* -* 

FOLl.0I41NG: 

1. uETE~MINE THE REASON FUW INTtRRUPTI0N. 
~. p~sr STATUS FU~ USE~. 

!. fETCH AUUITIO~AL StNSE vAT', IF ~EC~SSARY. 
4. ArTE~fo'T ~MHU~ WECUV~H', IF ~ECESS.~T. 
,. UNLI~~ lU~ ENT~T FR~" IUU. 
b. ~EPO~r I/U CUMPLETE TO fX~C. 
I. AurOMATICAL~T P~OCESS N~.r IOQ ~NTHY 

" • 
* -• 
* • 
• 

* -*.aa*._****_* •• a ___ *.* __ **** •••• **._._ ••••••• * ••••• _ ••• _*****._*._ ••••• _ 
* * 
* CAll.ER: H.IUPX • 
* * 
* "LLEtiI, P .. IU" 1 TV I IUP INTE~~UPT L.EvtL -- -• INTE~RUprs: lOP LEVEL ACTI~E * 
* -* C'L~lNG Sf~UtNCE: dU *3 .. ,Xi -- .. * 
* Ht.GlSrE~S INI ~i :II HAT AUURESS • 
* toe) : VCT AuOwES8 • 
a • 
* ~fTU..tN SE\rIU~NCE: "u aCHr.ElIT,IH • 
* 
* 1OCt,(aS TERS UyT: rt3 :II CHT AUOWESI 
* 
._--*** •••••• _-*-***.*-** •• _._ ••• ******* ••••• * ••••••••••• *.* ••••••••••• ~ 

SPACE J -

15-38 

CI 

, ' 
,~ 



!:SUUNO 1,. 
SI. tQu • 
* (' •• Po~OCtO\JRf TO Ot:. TEf<Ml''4E THE HEASUI" fU~ U'4T bHWP' lUN 

• 
L.w Rl,uuT.uCAA,wl liET UCA AUUfI(t.SS ,,"U,.. uur 
LW 1il3,OCA.CtHA,ll liE r tHY AOUl(tSS 
LN Kl,l)CA.I0QA,ltl btt CURwEN' lU~ ENTWY AUUfI(t:)S 
T~M (),DCl.fLAG,Xl u.'It:.lI.tlfCTfO ltH tKrt~P T '1 
as :)1.2.\lU OK 1 f ur'lf.1I. PtC H.IJ li'4Tt;fI(~ut:'l 

it)"" O,lu~.STAT,I~ CLt.Arf lOw bu~' ell 0 ... l ... lt.l(l'lUPf 
T00\4 2l,lUY.FLGS,,.~ it'S 1l f1IU fUN "ILL? 
tiS 51.3.UU 0 .. If KILL 
ItS,.. 1,OCA.FL'G,ll ",AS IT HI0 FUR Dty H;~ TIMt.uUT't 
itS SI.4.0U a .. If TIMf.OuT 
to,,", 1,lu"'.SrAr,x~ twA:) If , Sf.NSt. STATuS 51u1 
as Sl.5.0u oW IF St.NSt. STAlUS 
TetM 1,C ... T.CHST,I's \'WAS IT A pusr PbM CO.'4 ,", ULLt.u INT 0, 
tSS SI.l.UU 0" If PPtI 
T~M 23,lOY.FLGS,.~ itlS IT Af'4 ExECUTE C; 11 A Nr~EL pP(OG~A"'1 

dS SI.8.UU tSt( IF ElEC CHAN PG ... 
SPACE 1 

• 
•• PROCEOUtH:. TU PKvCt.S5 INT£WRUPT fWOM NUH"'AL 510 
• 

TDM 13,CHT.CHST,XJ Of VICE ENO St.Tl 
6~S -CHT.EIIT,Xl f.IIT INTE~HUPT LEVEL IF NU OEVICt:. t.~u 
LH K6,CHT.C~Sl,l.s ~t:.T CHAN/DEV STATUS 

( STH P(b,luY.I05T+l ... ,ll STUNE STATUS IN uSt.~ SfA'US AUWU 
LN~ ~b,CMT.~~C,IJ 'ET NtG'TIV~ N~SIOUAL ~1r~ CUUNT 
AU~W ~6,IOY.fCT],Xl A~O ~fQuESTt.O d1Tt If~K Cuu~1 
~ft\ 1'l6,10Q.UHfN,Xl UPIJATt ACTUAL ~YTt Xf~K C"'",,-.T 

SI.l.00 ~QU » 
TdM 14,CMT.CHsr,al UNIT CHt:.C~ ~t.Tl 
dNS Sl.l.O~ d~ IF NU UNIT CHECK 

••• FETCH S~NsE STAJUS IF UNIT C~ECK 
Tb~ ],lUQ.CONT,xc STATuS CHECKINi INHl~lTEu1 
~s 51.1.10 bH IF INM181TEO 
SbM 1,IUQ.STAT,X2 INOICATE SENSE STATUS SlU ISSUEU 
LA Wb,OCA.SENI,ll .ET AuURESS uF S~NSE ~TArUS lUCu 
sr~ ~b,CHT.IOCL,xl STuwE IN CHT (JOCLA uf 51CAJ 
TRR ~1,~5 - SAvE CHT Aou~E8S IN K2 
LA 1'l],OCA.TI~O,ll GET ADuwES' OF uCA Tl"EUUI lASLE 
lOI fl(3,fI(EAU.UP.~ uS~ TIMEouT fUN ~~AO 
L~ ~b,O,X] 'ET TIMEOuT yALUE THIS Ut:'E~.TI0~ 
L~ rf],DCA.UOT4,11 ~iT uuT AOU"tSI 
ST~ ~b,UIJf.PTOV,x3 STORE TIMtOuT Y'LU~ IN UOT 
LH M&,DCA.UAOO,ll ~ET ,uOHESI TH18 UNIT 
TRR ~S,~J 0 KESTU .. E CHT ADDRESS TV ~3 
S10 Kb,O IssuE SENSE STATUS SIU 
Si~ O,IUQ.STAT,xi SET 1/0 iuay lIT IN lug FUM SENSE 
bU *tHr.ExIT,x] EIIT INTtHKUPT LtvEL 

•• * CMECK FUR CHANNEL ERROWS 
C"ERMAS~ OATAw 1'1,00' CHANNEL iR~OM MllK 
SI.I.gs EQU I 

LW H.,CMERMASK 'ET CHANNEL ERRUR MASK 
~MM M.,CMT.CHST,I] APPL' TO CHANNEL STATuI 



ttl 
s.-tot 

••• U.~L!NI( lOY 
••• t.t'4If'H .... 
;)1.1.10 ~WU 

• 

L~ 

dL 
LG 
dL 
,- ... 

'-" 
dL 
L0t4 
dU 
SPACE 

Sl.l.IU 
1,lO\J.I0ST,X2 

ENT~Y, ~EPO~T 1/0 
: NI = UCA AOI)" 

H2 = 10" A~~iot 
S 
rc],OCA.CoTA,l(l 
S.IOCSl . 
Wl,lOQ.p~GI·hJ(2 

5.1UCS2"1 
"C,IOW.UCAA,Xc 
I'Cj,UCA.uorA,x2 
Iiii. 
R.5,OCA.r:HTA,~2 

*CHI.ElIT,xJ 
1 

~R IF NO CHA~NEL E~~OrcS 
jNDICATE EHHO~.lN USE~ ~rATUS 

COM~LkTE, ANQ PMOCESS N~XT lOw E~rRY 

GET CUT AUORESS 
~~LINK IOQ ~~THY fROM lOY 
Gf.r OwE NUMc:s~R 
Ht~U~' 1/0 CUM~LtTE ru fAfe 
(;ifT UCA AOuw~SS 
bc.T ul>T A(lurCt.SS 
~"uCE5S HExT lUQ E~THY 
(;ifT CHT AOUkESS Fr({JM UCA 
flIT !NT~~~UPT LfV~L VIA H.IOPX 

•• P~UCEUUHf TO PHOCESS AN UNEXPECTEO INTERWUPT. THl~ P~UCEOU"E TREATS 
•• UNExPECTEO INTtH~U?TS AS SPU~luuS. IF TH~ UEVICf 15 CAPAdLE OF 
•• GE~~~Arl~G AS'NC~rcUNUUS INrt~Ru~TS, THIS ~~UC~UUHE MUST dE MOUIFIEU. 
•• ~~T~Y : rCl = UCA AOOH 
•• ~2 = l~~ Auu~ 
.- "3 = CHI AuO~ 

• 

EYU 
AD"" 
Ao'" 
oU 
;SPACE 

~ 

.H,DC'.SI~C,Xl 
15,CHT.SPu~,.J 
*CHT .EXIT, xJ 
1 

l~C"EME~T LOCAL SPURIUUS IN! COUNT 
INcre~ME~T GLUdAL SPURIuuS I~T COUNT 
tllT INTE~~u~T ~f~f~ 

** PRUCEOuRE TO p"oetss HIO INTER~UPT FUR A KILL 
** ~NTRY I re1 = UCA AOU~ 
.* ~~ = luQ 'DuN 
** ~3 = C"' Auu~ 
* 51.l.vu 

* 

t:QU 
L'" 
dL 
r~A 

ttL 
I. III 

"'Ill 
01. 
L.!IW 
I;)U 
~PACE 

$ 
~3,UCA.CDTA,Xl 

S.10CSJ 
"i,rel 
S.lueS15 
;ci,10Q.OCAA,)(1 
"3,ue'.I.IOT',X~ 
hi. 
re j, DC A • C I'H A , R.e 
.CHT .ElIT, xl 
1 

liET CUT AOl>kESS 
UNLINK IUQ E~TAY F~UM 10Q 
lOw EHT~' A~UNESS TO N3 
u~l.t. TE lUg I:.'~T~" 
GfT ueA AOurCl:.SS 
IIET uuT AuO~tSS 
P~uCESS ~ExT lUQ ENT~Y 
~ET C~' AuuwESS FRuM UCA 
EllT lkTE""I.IPT I.Evt~ vI. H.IO'. 

.* P~uCEuuAE TO P~OCESS ~IO I~TERHI.IPT FUW , OEvICE TIMI:.UUT 
** £~TAY : ~1 = UCA AOOR 
•• "l..= 109 AOuie 
** Nl a CMf 'uO~ 

* 
51.1.&.1)0 E:QU 

15-40 

:SdM 
::»8#14 
:)0#14 
s~ .. 

S 
.1,IOY.CONT,lc 

b,IOw.FLGS,xc 
1,lUw.lOST,xc 
JO .. IOQ.IOST,.c 

INOICATE E~~UA PAYt INHIBITEQ 
l~OIC'TE uNrcECOyt"'~L~ 1/0 EM_ 
I~OlCATt fWNUA IN USf~ STAT~' 
l~uIC'TE TIMEOUT IN U~E~ jTATul 

'c!, ': ; 



,( 

(-

• 
dU 
~PACE 1 

CUMPLtlE PWuCtSS1~~ 

*. PHOC~OUHf TO PKOCES~ 510 SENSE sr.Ju~ l~T~~WUPT 
** ENTRY I Kt = DCA ADO~ 
** Ni = l~Y A~u~ 
** "3 = CHT AiJuk 
• 
UNR~MASK UATAww X'Ff-fOuOuu' 
• 
SI.!).uu t.QU • L.ft W&,ClCA.SENS,xl 

ST.., ~&,lU(.l.IST1,)(~ 

L.W rl4,u hIHf:.MASK 
L"''' "&,uCA.SENS,Xl 
dZ sld.lv 
5tH4 &,lul.l.FLGS,X~ 

SO'" 1 , 1 OQ. lOS 1 • • l 

•••• COMPLETE E~~OR t'HOCESSIN(; FOR 
TOM O,lvQ.CONT,Xl 
dS SI.5.0i 
fb"" 1,1IJU.CUNT,1l~ 

dl'llS :U.5.0;) 
5I.5.0C! UhJ ~ 

L.W ~J,lOQ.COTA.lCC! 
dL S.10CS3 

51.5.05 eQU I 
Ld Nl,lOQ.PRGN,XC! 
dL S,luCSC!9 
L.III ;ci,lOQ.DCAA,XC! 
Lfi ~],DCA.UOTA,J(C! 

ZfI4W UOT.PTOv,XJ 
lD"" 1,uUr.FLGS,XJ 
So"" U,iJCA.FI.AG,xi 
L ... Hl,tJCA.CrUA,XC! 
dU -t;Hf.EXIT,xJ 
SPACE 1 

* 

, 
uty OEPENOtNl U~"tCuV~WAdLf tww ~.~~ 

GET EHHUH STATUS I~Fu 
STUrli IN Ivy E~lHY 
bET UNHtCUvtHAdLf iHrlUH MASK 
MASK ~I'H tHWOR STA1U~ 
drl If ~U U~"lCIJYt"A~L.~ I/U t~HUHS 
Sff IUY E~T~' f:.H~UH l~ulCATIJ" 
l~UICAT~ fHrlUH £N uSfrl S"Tu~ 
UhrlECUVtHAdLf f:.~~U~ 
TE&1 FUN NO-~AIT 1/0 
dH IF NU-~AIT 1/0 
ffST FUrl tWMUM p"UCtSSII'4G IIH11~11 t.u 
~~ IF E~HU~ P~OC ~OT l~"I~l'~U 

GET eDT AUOHfSS fOR UNL.IN"II'4(; IuQ 
UNLINK 109 fOH NO-wAI' I/IJ ~I ER~U~5 

bET OQE NUMafR F~OM IUQ 
~EPUMT 1/0 COMPLtTE 
.~f GCA AOu .. lS. 
GET UOT AOu"t.SS 
l~~U TIMtOUT ~'LUE 
CI.EAH 1/0 OUTSTANOI~G FLA~ l~ UOT 
'~ulCATE l~TlRWUPTS ~UT tlPtCTfu 
lit' CHT AOuwfSS 
f:.AIl l~TEHWUPT LEVEL vlA ".IUP~ 

*. PROCEDURE TO PROCESS_INTERRUPT fWO"" A C"A~NEL PRO'~A~ 
* 
51.e.00 eQU • 
• ElECUTf CHANNEL PHUGRAM NOT IM~LtMENTED Ih MPX 1.4 

HALT 
TITLE H.LPIOP LUST INTEH~UPT P~OCES5uH 

* •••••••• * •••••••••••••••••••• * ••••••••••••••••••••••••••• ** •• - ••• * ••••• 
* * 
* • 

~1. - LOST INTE~~UPT PROCESSOR - . 
-* * •••••• *._ .........•.•......... * ..... * ••• * ••• - •••••••••••••••••••••••••• 

• 0 * THIS ENTAY ~OlNT IS CALLED 8' S.10eS5 (ON BEHALf OF THE WE'L-TI~E • 
• CLOCK INTERRUPT HANDLf:.~J ~MfN A U~~ICE TIMEOuT OCCUH5, A~U d' • 
• H.Ioes.31 IN uRDf~ TO ~ILL AN UUTSTANDIN. 1/0 HEQUfST. • 
• • 
• IN 80TH CASES THE CURRENT 1/0 ~fQUfST IS lERMlNATEU ~lTH A HALT • 
a 1/0 lHI0) INSTRUCTION. IF THE cu~rHOLL~R RESPO~O' TO THE HIO, • 
• OPe 'iRfOAMI THE REQUIREO INTER"UPf H'NOLl~" l' THi Hl~ TIMES uvT • 



I 

'I .. , 

, ,-, 

, 

* THE C~NTRULlE~ AND DEVICE ARE PHESu~EO MALfU~CTIONIN~. * 
* • * • S.IOCS~ A~U H.IOCS.)8 t~TER LI. wiTH INfEHRUPTS dLOC~~D. IN * • AODITION H.luCS,38 E~'EAS LI. nllH CONTExT S~11C"I~& l~hlbllED. * - .. 
*-*.*.**.**.** •• _-*-***.*-*-* •••• **.** •• ***._* •• *---.-***.*** •• *** •• --*~ . ... . 
• * • 
• 
• 
• 
• 
• 
* • 
* • 
• 
• 
• 
* 
* 
* 

CALLE .. ' 

CALLfRS PKju~lTya 

CALLI~G S~YUE~CEI 

~ETUA~ SE~UENCE: 

"'tGISTE~~ uUf; 

5.10CS5 , H.IoCS,]8 

~E-L·'j~E CLUC~ I~TEwWUPT LEVEL 

~T CLOC~ INrEH~UP' LEVEL AC'I~E 
l~rt~HU~TS ~LUC~EU 
CU~rfXr S~lTeHIHG INH1~lT~D 

~L 

K~ : HAT ALlONESS 
ftJ : UOT AuOR~SS 

* * * -.. 
-.. .. 
• 
• 
* 
* 
* • 
• 
• 

* • 
• ********** ••• *.*** •••• * ••••• *_ ••••••••• *-** ••• *._ ••• * ••• *****--_.* •••• -

~PACE 3' . 
gOUN!) , 1" 

LI. tQu I 

• 
•• P~UCEDU~E TO If~MINATE DEVICE A~U FUNCE A~ INTlHRUPT YIA HALT I/u 
** iNT~Y a ~i = UCA A~U~ *. ~3 : uor AOD~ 
.* 

• 

Lw 
A~M 

~I:S"" 
oS 
L~ 
Sl __ 

Lt1 
r11u 
rHS .. 
SPACE 

"'2,uOT.OCAA,lJ 
Jl,OCA.LINC,.~ 

"UCA.FLAG,X.! 
Ll.1.011 
~tt,Ll.TIMO 
Iitt,uUT • .,rov,xJ 
~tt,uUT .CI'1Afh XJ 
"'tt,v 
.cu 
~ . 

GET DCA AOOHESS 
~puArE LuST INTt~RUPT Cuu~T 
l~~lCArE HALT 1/0 ISSUEU 
~H IF HALT 1/0 TIMEU uuT 
~tT TIM~OUT VALuE FuR HALT 110 
~TONE IN UIH 
~tT utvlCE AUU~ES$ 
IssuE HALT 1/0 
HETu~N TO CALLER 

** PHUCEUu~~ TO CLEAN uP ~H£N HALT 1/0 TIMES uuT 
* LI.l.uu eQU 

lli~ 
Shl 
LV. 
dL 
L~ 

L~ 

dL 
TlS"" 
a~s 

*** Fl~AL CLEANuP 

15-42 

I 
1,UCA.FLAG,1~ 
tolO,LI."'ETN 
~l,OCA.CDTA, • .! 
:i.lueSl& 
rc],&JCA.CuTA,Xi 
l'ic,uCA.lOQ4,li 
tS.luCSJ 
cc,10Q.FLGS,X2 
Ll.1.0S 

FuH KILL REQUEST 

CLEAR HI0 ISSuEU FLAG 
SAvE RETUMN AO&J"ESS 
.ET cor A&JURESS Fuw rHIS UNIT 
MA~~ u~lTS uFFLl~i ANU MALFUNCTIU~l~. 
~ET CuT AOO~fSS . 
~ET CUN~ENT I/O ~UEUE ENr~T ADD~ESS 
u~LIN" 10" fNT~' 
rHIS A KILL REQUEST1 
aN IF OE~lC£ rlM£ OuT 

",-~ 

U 

o 



( 

(:' 

TRw 
til 
cUJ 

••• FINAL CLEANUP 
LI.I.U!) t,QU 

Lti 
51 ... 

S" .'" 
SdM 
!:io:'1 
Ld 
dL 
Lt'I 

~2,W.5 

S.II.)CS10 
LI.I.IQ 

lu~ E~TwY AuU~ESS TU ~J' 

OEALL.UCATl lUQ tN1HY 

f~~ UEVICE TIMt UUT , 
"'b,lOIll.UOTA,x2 
Plb,LI.UOTA 
b,IUa.f'LG:S,)(~ 
q,IUt~.l\JST,X~ 

10,lUil.luST,A2 
I'( 1 , Ilh';' • P w G r~ , A. 2-
~.lUCSc!'1 
~3,L.l.UuTA 

(it T UOT AlJlJwt.SS 
,sAvl ,.ow lATEN • 
II'4UICATl Ulllwi::t;UVEK'AMLt. I/U ll-lH 
l~uICATi uEvICt. INu~i::~'dL~ 
l~UICATf O~vlCc Tl~t. uUl 
(it r LlwE NIF-1ljt.", 
wt,PUkT 1/0 LUM~L~TE 
~Esrul-lE uuT AUUK~S~ 

dL lw. o(t.sTAwT IUU Tu fL~SH t.xlsll~' E~TI-llts 

LI.I.lO t,~U 

lI.KETN 
LI.uOTA 
L I. T 1'''0 

Lti 

rKSW 
wt.S 
Pits 
OArAf'4 
TITLE 

a 
~O,LI.kETN 
0(0 

1" 
Itt 
.~ 

r1.L~Il>~ 

ufT HETu~~ AOU~t.bS 
~tTUrCN TU CALLt.W 
L.I. "ETu~N AULl~t.~S SAVt Al-lfA 
LI. uuT ADUwt.SS SAVt ~KEA 
'I~t:uuTVALuE FUN'HIO' 
SP~CIAl ~OST .FEW ~HuCt:SSUH 

._ ...•. _._-_.*- ••.. *_.- •• -_ .•.. * .. * •... _*._--* ..•. ***.-.-*-.* .... -.. ~.** 
• 
• 
• 

* • 
• ._. __ ••• _ ••• _*. __ •• _.*--*.*.- •. * ••• _.- ••• -._.-.* ••••• ***.**_ •• ** •• * •... * 

• * • 
-* • -• 
* 

T~lS ENTRY POI~T IS CALLED ~Y S.lUCSI l(it~EWALIl~V 1/0 ~us, 
PWOCESSING) ~Ht~~VER ~ETU~N ~I-lUM OPe IS VIA ·POSrPRUS*. 'MIS 
E~T~Y POINT fAt.CUTtS AT TAS~ PHlU"!TY, ANU T"~~~Fu"f CAN·d~ 
USEU TO P~UVIOE Ar~y SPECIAL P~uCESSING .SSOCIAI~U ~llH A DATA 
TRI~SFE~ (EG., OATA T~ANSLATI0N) AT A LU~ LEVEL OF SYSTl~ , 
O~E~~EAU. I'J 

• ._ •• -._ ••....•••. _ •• _ •• ** •. _*.***.****._****.*_ •• _*--*_.*_ •••••.• _* ..... 
• • 
• CALLENI S.lUCSl :II 

t: .1 

• CALLERS PRIORIT.." TASK LEvEL 11 

• if 

* !NTt~~UPTS' U"'~LUCKt.U • 

- * 
• CALLING SEQUENCEI oL .5~,X2 • 
~ * 
• "E~lS1EUS 1"" "1 • FC8 AOU"t.SS • 
• ~2 - "AT AOIJ"ESS * -• iC 3 • uUT Auu.cC;SS • 
• -
* "ETURN sEliiutNCEI TRS" RO • 
• • 
• KEGlSTE~S UUT I HI • FCw ADDWESS • 
* 

t 

-.* ••••• * ••••••• * .••••• -•.•• -•.•••• * ••• *_._*.* ••••• * •• -.*** ••• _ ••• -..•.. 
SPACE 1 
dOUHU 1" 

P.. iQU I 
• DEVICE OEPENOEHT CODE 'O£S ~ERE IF PX. IS REQUIRED 

l5-4 



'~S;N 
111 Lt: S'S~~N INITIALIlATIUN ~WUCES~OR 

.*** .• *** •••••••• --_. __ •• *-*--.**--*** ••• *.**. __ •••• *.*****-_ ••• **-*_ •• -. 
* , * 
• ~~. - ~fSGEN l"lfIALllAlluN ~NUCfSSON -

• * •• ***.*** ••• _.* ..• * ••• _ •• -_._._.-.-_._-* •• -.- ••• -._ ••• *-**._-_._-- •••••• . . 

• • 
• THIS ~~l~Y PUl~f 1~ CALL~U dY ~'SGEN FU~ THE PUkP05t: ~F INII1ALIZ- -
* l~~ Ci~TAI~ MA~ULE" PARAM£TtH$, INlllALIlI~~ ~tV1Ct: tu~Ttll A~EA5 • 
• \liCA':d AIIU ! ..... lTIAL.1l1I'.lb (;twl41hl tJATA SHWcrUwi:. tL.~,.,t''4r~ lHJlI(l"'\i • 
* Ttti (;\Ji~!;ll'(ut..rlu'" uf AI~ ... PA-.s~ i··,Abt.. • 

* • 
• UtA'S fUM hi!:) HANI,)Lt.1'( Awt. (.wEATt:.u VIA TNt: .. ct.PEATEU ASsE' .. tH.Y OF • 
• T ri t. ;'1 A C to( U , • U CA. U A r A·. A , .... A X .1 MUM 'of U .11 U t. R U.. IJ C A'S 1 S • 
• CIIlt.ATiiJ vUHll'4b tU,"ULftol AS:)t.t·IDL.". uUrH"", TI'1t. t.(tCUThJN UF TI'1U:i • 
t f;,IIITloiY PIJlhd, villi:: DCA IS IiI/I r IAL.llt", foO .. t:.A," UUr t.1~rreY ,,,,rHAINIMi * 
• Trif:. r~AMf. Uf ,,11.::) nAI~I,)Lt:.Jo(. AtH HLMAl'~I.~G &)CA'S ANU. IHt. tCt,I\IIAlNuEW Uf -
* T~t:. C~iJt I'" T"I~ ~~f~" ~lLL bf ~Vt.wLAIIJ DY S'SGE~. T~ErC~~Utol~ THIS • 
* MuST r'rHSICALL.T d( THE LAST tlHkl' "'aIr", uF THE ~AI~ULt.;'. -

" • 

" " t CALLl:.w: S'~bt.N UUk IlliG l"'AGf. CUNSlwucrluN * • -* ~AlLtMS "'tollulotlf1: .'4/A * 
• * 
* 1·~T£KIotU~TS: .. -./ A • 
* 1.1 

* ~ALLINt; :) t iii u t. i'4 C t: : dL LAST P"'YSl(.;AL t,i'liltoly ,",UINr !II 

" * 
- -<t.GlSltiofS l~J 1(3 - tHT AOvk~SS • -• • 
- I"(t TUI'ltI' .)twul·'4Ct:. : Tw SfII ~u (ViA M*lllot) ~ 

" * 
* rottlil:) ft.res uul: .IIU .• t. lott:.w'U 

" *** ••• ****.*t*****.*_ ••••••• _.**_*.*_*_ ••• *._._.* •••.• _*_*_**_.*_.*_. __ , 
~PACt. 

L.P~OL. 
uCASTA~T c.wu 

~t~, 

uCA.uATA 

tNUH 
"ih.li'4U 

!:iG. ~WU 

.-'.t.llot 
",CA.1t'411 

- XXI 

• AXX 
iJC'\.I~li 

".AIN 
~r.~ 

15-44 

J 
L!TtRALS t1E~t TO AvuIU UVt.HL.ATING 

$ ~TAre' uF uCA'S rUk THIS ut.V1CE 
i "t~tAT ~UuNT FOW UCA ~HEArIuH 
~,o,~,~,~,~,~,; LlcIotA"" MACII(U - ClI(tAr~ 1 ue
Q,q,~,q,~,~,q,4,q,q,4 

HAl 

l16"ARY MAC~u • t.~'ER INII WUUTINE 
~l~"A"Y MACMU • ~eA INITI AL!lATIOH 
u5tH eODE Ht.Mt IF EXT"A U~A TU INIT 
NUTf: ALL II(E" AVAILA.LE, "laUeA AUl 
LI~WAHY MACNO • utA !~IrlAL1~A'lUN 
L.LDI(A"' ~AC"u - fAIT INIT "~UTINf 

(~, 

~j 



1:( 

( 

16. lOP EIGHT-LINE FULL DUPLEX HANDLER (H.F8IOP) 

The lOP Eight-Line Full Duplex Handler (H.F8IOP) is system level reentrant, i.e., only 
one copy is required regardless of the number of eight-line communication multiplexers 
configured in a system. Reentrancy is accomplished via Device Context Areas (DCA's). 
The appropriate number of DCA's are initialized in the SYSGEN initialization entry 
point. As with all XIO device handlers, interrupts are fielded by the XIO channel 
executive program (H.IFXIO) and then turned over to the service interrupt entry point of 
H.F8IOP for processing. 

16.1 Entry Points 

16.1.1 Opcode Processor (OP.) 

This entry point provides the interface for processing an opcode stored in the user's File 
Control Block (FCB). Depending on the particular opcode, this processing mayor may 
not involve device access. 

The 8-line handler supports fourteen 10CS opcodes enabling support of all command 
codes recognized by the eight line multiplexer plus necessary standard functions, such as 
open. The opcodes and their functions are as follows: 

OP CALL HANDLER FUNCTION 8 LINE COMMAND 

00 M.FILE Open - Perform inch if necessary 
01 M.RWND Sense Status 04 
02 M.READ Read - See Section 16.2 02 or 06 
03 M.WRIT Write - See Note I 01,05 or FF 
04 M.WEOF NOP 03 
05 SVC 1,X'25' EXCPGM - Execute Channel Program 
06 M.FWRD,R Set Data Terminal Ready 17 
07 M.FWRD Reset Data Terminal Ready 13 
08 M.BACK,R Define ACE Parameters (INIT) FF 
09 M.BACK Reset Request to Send IB 
OA M.UPSP Set Request to Send IF 
OB SVC I,X'3E' Set or Reset Break - See Note 2 37 or 33 
OC SVC I,X'OD' Define Special Character OB 
OD M.CLSE Close 
OE Invalid Opcode - Abort Caller (1007) 
OF Invalid Opcode - Abort Caller (1007) 

For an explanation of the individual command codes, see 8-Line Asynchronous 
Communications Multiplexer Technical Manual, Publication Number 303-328510. 

Note 1 - If bit 1 is set in FCB.SCFG, the write is interpreted as an init and a "define 
ACE parameters" command (FF) is issued. If bit 1 in FCB.SCFG is reset and 
bit 3 in FCB.SCFG is set, a "write with input subchannel monitoring" 
command (05) is issued. If both bits 1 and 3 in FCB.SCFG are reset, a 
"write" command (0 I) is issued. 

16-1 



Note 2 - If bit 0 in FCB.SCFG is set, a "set break" command (37) is issued. If bit 0 in 
FCB.SCFG is reset, a "reset break" command (33) is issued. Note it is not 
necessary to issue a "reset break" after a break interrupt is received. 

16.1.2 I/O Queue Processor (lQ.) 

This entry point performs standard I/O queue scheduling. 

16.1.3 Service Interrupt Processor (SI.) 

This entry point consists of the six standard subroutines described in Section 16.3. 

16.1.4 Lost Interrupt Processor (U.) 

This entry point performs standard lost interrupt and kill I/O processing. 

16.1 . .5 Post Transfer Processing (PX.) 

This- entry point performs conversion of lower case ASCII to upper case on formatted 
read operations. This processing can be inhibited by setting bit 10 in FCB.GCFG. 

In addition, reads performed for TSM tasks must have the data copied from the operating 
system buffer to the user's buffer. 

16.1.6 Pre-SIO Processor (PRE.SIO) 

This entry point is called by XIO.SUB prior to issuing an SIO. This entry point checks for 
asynchronous attention interrupts on the read subaddress while a write is in progress for 
half duplex devices. If this is true, a break is issued to the task and the interrupt routine 
is exited. 

16.1.7 SYSGEN Initialization Processor (SG.) 

This entry point creates DCA's at assembly time and initializes them at SYSGEN time. 
In order to implement the full duplex capabilities of H.F810P, it is necessary to have two 
Unit Definition Table (UDT) entries per port (i.e., one UDT for read, one UDT for 
write). To accomplish this, SYSGEN d.irectives must specify both the read subaddresses 
configured (0 through 7) and the write subaddresses configured (8 through F). If half 
duplex operation is desired, only the read subaddresses need to be specified in the 
SYSGEN directives.1SM terminals must have only the read subaddresses specified. 

Note that devices SYSGENed as half duplex can still be initialized as full duplex in order 
to make use of full duplex commands such as read echoplex. 

16.2 Options 

The following options can be requested for reads. 

16-2 

o 



( 

16.2.1 Read Echoplex 

This option causes a "read" command (02) to be issued if bit 1 is set in FCB.SCFG. If the 
bit is not set, a "read echoplex" command (06) is issued. 

16.2.2 ASCH Control Character Detect 

This option allows input to terminate whenever a control character (X'OO' through X'IF') 
or a delete (X'7F') is detected. This option can be selected by setting bit 0 in FCB.SCFG 
before issuing the read. This option is implied in the read echoplex command. 

16.2.3 Special Character Detect 

This option allows input to terminate whenever a predefined 8 bit character is detected. 
This option can be selected by setting bit 3 in FCB.SCFG before issuing the read. 

16.2.4 Purge Input Buffer 

This option specifies any input data held in the "type ahead" buffer is to be purged before 
any new incoming data. This option can be selected by setting bit 4. in FCB.SCFG before 
issuing the read. This option is forced following a ring or break interrupt. 

16.3 Subroutines 

16.3.1 NORMAL 

This subroutine is called by XIO.SUB when an I/O operation completes normally or when 
error processing is inhibited. Special processing is not performed unless the operation is 
a formatted read. 

For formatted reads that are not on a TSM device, a check is made for an ETX 
character. If one is found, the end of file indicator is set. 

For formatted reads that are on a TS~~ device, in addition to ETX, a check is made for a 
carriage return, backspace, tab, or delete. Appropriate actions are taken if any of these 
are found. 

16.3.2 UNEXPT 

This subroutine is called by XIO.SUB when an unexpected interrupt occurs. A sense 
status command is issued in order to determine the reason for the interrupt and the 
interrupt routine is exited. 

16.3.3 SNSNOIOQ 

This subroutine is called by XIO.S1JR in response to an interrupt generated by a sense 
command issued by the UNEXPT subroutine. The sense data is examined to determine 
whether the unexpected interrupt was due either to a ring, break, or DSR or RLSD 
failure. If none of these is true, the routine is exited. If the interrupt was due to a ring, 
bit UDT.LOGO is set in the urn. If the interrupt was due to DSR or RLSD failure, bit 

1 h- ':I. 



UDT .DEAD is set in the UDT. A break is then issued to the task which has the device 
allocated. If another ring is expected, the task must reset UDT.LOGO. 

16.3.4 SENSE 

This subroutine is called by XIO.SUB when a I/O operation completes in error. A sense 
status command is executed prior to calling this subroutine. This subroutine examines 
the status to determine if the error was due to DSR or RLSD failure. If so, bit 
UDT.DEAD is set in the UDT and an error flag is set in the 10Q. 

Next, the status is tested for attention, unit check or unit exception. If any of these 
occurred, a break is issued to the task and the error bit is set. Status is then tested for 
channel errors. If errors are found, the error bit is set in the 100. 

16.3.5 CENODE 

This subroutine is called by XIO.SUB when channel end but no device end is found in the 
status. This condition does not occur with the eight-line asynch. 

16.3.6 TIMEO. 

This subroutine is called by XIO.SUB when an I/O operation does not complete and times 
out. An HIO (halt I/O) is issued prior to calling this subroutine. TIMEO processing 
consists of setting the error processing inhibit bit in the IOQ and returning to XIO.SUB. 

l6-4 



MACRO NAME 

M.ACTV 

M.ADRS 

M.ALOC 

M.ANYW 

M.ASYNCH 

M.BACK 

M.BORT 

M.BRK 

M.BRKXIT 

M.CALL 

M.CDJS 

M.CLSE 

M.CONADB 

M.CONAHB 

M.CONBAD 

M.CONBAH 

M.CONN 

M.CREATE 

M.CWAT 

APPENDIX A 

MPX-32 MACRO CROSS REFERENCE 

USAGE 

Activate Task 

Memory Address Inquiry 

Allocate File or Peripheral Device 

Wait for any No-Wait Operation 
Complete; Message Interrupt or Break 

Set Asynchronous Task Interrupt 

Backspace File or Record 

Abort Specified Task 

Abort Self 

Abort with Extended Message 

Break/Task Interrupt Link 

Exit from Task Interrupt Level 

Call to System Module 

Submit Job from Disc File 

Close File 

Convert ASCII Decimal to Binary 

Convert ASCII Hexadecimal 
to Binary 

Convert Binary to ASCII Decimal 

Convert Binary to ASCII 
Hexadecimal 

Connect Task to Interrupt 

Create Permanent File 

System Console Wait 

SECTION 

3.2.15, 3.2.53 

3.2.3 

3.2.21, 3.2.55 

3.2.37 

3.2.68 

1.12.1, 3.4.9, 
3.4.19 

3.2.19 

3.2.20 

3.2.28 

3.2.46 

3.2.48 

1.12.2 

3.2.27 

1.12.3,3.4.23 

3.6.7 

3.6.8 

3.6.9 

3.6.10 

3.2.10 

3.7.12 

3.4.26 

A-I 



MACRO NAME USAGE SECTION ;::~'l 
"ly 

M.DALC Deallocate File or Peripheral Device 3.2.22 

M.DATE Date and Time Inquiry 3.2.70 

M.DEBUG Load and Execute Interactive Debugger 3.2.29 

M.DELETE Delete Permanent File or Non-SYSGEN 3.7.14 
Memory Partition 

M.DELTSK Delete Task 3.2.31 

M.DEVID Get Device Mnemonic or Type Code 3.2.71 

M.DFCB Create a File Control Block (FCB) 1.12.4 

M.DFCBE Create an Expanded File Control 1.12.5 
Block (FCB) 

M.DISCON Disconnect Task from Interrupt 3.2.38 

M.DLTT Delete Timer Entry 3.2.6 

M.DSMI Disable Message Task Interrupt 3.2.57 

M.DSUB Disable User Break Interrupt 3.2.73 

M.DUMP Memory Dump Request 3.2.12 

M.EAWAIT End Action Wait 3.1.40 

M.EIR Resident System Module 1.12.6 
Initialization Entry Macro 

M.ENMI Enable Message Task Interrupt 3.2.58 

M.ENUB Enable User Break Interrupt 3.2.72 

M.EXCL Free Shared Memory (EXCLUDE) 3.5.14 

M.EXIT Terminate Task Execution 3.2.18, 3.2.52 

M.FADD Permanent File Address Inquiry 3.2.2 

M.FD Free Dynamic Extended Indexed 3.5.9 
Data Space 

M.FE Free Dynamic Task Execution Space 3.5.11 

M.FILE Open File 3.4.1 Ci 
M.FSLR Release Synchronization File Lock 3.7.25 

i ~ 

A-2 



(' MACRO NAME USAGE SECTION 

M.FSLS Set Synchronization File Lock 3.7.24 

M.FWRD Advance File or Record 1.12.7, 3.4.7, 
3.4.8 

M.FXLR Release Exclusive File Lock 3.7.23 

M.FXLS Set Exclusive File Lock 3.7.22 

M.GADRL Get Address Limits 3.2.41 

M.GD Get Dynamic Extended Indexed Data Space 3.5.8 

M.GE Get Dynamic Task Execution Space 3.5.10 

M.GMSGP Get Message Parameters 3.2.35 

M.GRUNP Get Run Parameters 3.2.36 

M.HOLD Program Hold Request 3.2.25 

M.ID Get Task Number 3.2.32 

( M.INCL Get Shared Memory (INCLUDE) 3.5.13 
I 

M.INIT Initialize Device Handler Parameters 1.12.8 f 
M.INITX Initialize Device Handler Parameters 1.12.9 

II 
M.INT Activate Task Interrupt 3.2.47 :1 

'I 
I' 

M.IOFF Inhibi t Interrupt Signals 1.12.10 I: 
I 

M.IONN Allow Interrupt Signals 1.12.11 

M.IVC Connect Entry Point to Interrupt 1.12.12 
Vector Location 

M.KILL Halt Computer 1.12.13 

M.LOG Permanent File Log 3.2.33, 3.2.61 

M.MODT Build Module Address Table Entry 1.12.14 

M.OLAY Load Overlay Segment 3.2.13 

Load and Execute Overlay Segment 3.2.14 

M.OPEN Allow Context Switching 1.12.15 
(' 

M.PDEV Physical Device Inquiry 3.2.1, 3.2.56 

A-3 



MACRO NAME USAGE SECTION 

M.PERM Change Temporary File to Permanent 3.7.13 

M.PGOW Task Option Word Inquiry 3.2.24 

M.PRIL Change Priority Level 3.2.9 

M.PTSK Parameter Task Activation 3.2.40 

M.RCVR Receive Message Link Address 3.2.43 

M.READ Read Record 3.4.3 

M.RELP Release Dual Ported Disc/Release 3.4.27 
FHD Port 

M.RESP Reserve Dual Ported Disc/Reserve 3.4.24 
FHD Port 

M.RRES Releas~ Channel Reservation 3.4.13 

M.RSML Resourcemark Lock 3.2.62 

M.RSMU Resourcemark Unlock 3.2.63 
"~.:" 

M.RSRV Reserve Channel 3.4.12 

M.RTNA Return to Specified Address 1.12.16 

M.RTRN Return In-Line 1.12.17 

M.RWND Rewind File 3.4.2 

M.SETS Set User Status Word 3.2.7 

M.SETT Create Timer Entry 3.2.4 

M.SHARE Share Memory with Another Task 3.5.12 

M.SHUT Inhibit Context Switching 1.12.18 

M.SMSGR Send Message to Specified Task 3.2.44 

M.SMULK Unlock and Dequeue Shared Memory 3.5.19 

M.SPAD Scratchpad Reference 1.12.19 

M.SRUNR Send Run Request to Specified Task 3.2.45 

M.SUAR Set User Abort Receiver Address 3.2.26 C j 
M.SUME Resume Task Execution 3.2.16 

A-4 



(/: 
MACRO NAME USAGE SECTION 

M.SUSP Suspend Task Execution 3.2.17, 3.2.54 

M.SVCT Build SVC Table Entry 1.12.20 

M.SYNCH Set Synchronous Task Interrupt 3.2.67 

M.TBRKON Break Processing Entry 3.6.6 

M.TDAY Time-of-Day Inquiry 3.2.11 

M.TRAC System Trace 1.12.21 

M.TSCAN Syntax Scanner 3.6.2 

M.TSTE Arithmetic Exception Inquiry 3.2.23 

M.TSTS Test User Status Word 3.2.8 

M.TSTT Test Timer Entry 3.2.5 

M.TURNON . Activate Program at Given Time-of-Day 3.2.66 

( 
M.TYPE OPCOM Console Type 1.12.22, 

3.4.14 

M.UPSP Upspace 3.4.20 

M.USER Username Specification 3.2.34 

M.USHUT Inhibit User Task Context Switching 1.12.23 .. ' 

M.WAIT Wait I/O 3.4.25 

M.WEOF Write End-of-File (EOF) 3.4.5 

M.WRIT Write Record 3.4.4 

M.XBRKR Exit from Task Interrupt Level 3.2.48 

M.XIEA No-Wait I/O End Action Return 3.4.34 

M.XIR Resident System Module 1.12.24 
Initialization Exit Macro 

M.XMEA Exit from Message End Action Routine 3.2.50 

M.XMSGR Exit from Message Receiver 3.2.39 

(" M.XREA Exit from Run Request End Action Routine 3.2.51 
/ 

M.XRUNR Exit Run Receiver 3.2.49 

A-5 



MACRO NAME USAGE 

M.XTIME Task CPU Execution Time 

HMP .INIT MIOP Initialization 

IB.INIT MIOP Initialization 

A-6 

SECTION 

3.2.65 

1.12.25 

1.12.26 

G 



(' 

APPENDIX B 

COMPRESSED SOURCE FORMAT 

Compressed source files are blocked files that consist of 120 byte records. The last 
record may be less than 120 bytes and has a Data Type Code of 9F. The structure of a 
compressed record is described below. 

Each record contains 6 control bytes: 

I byte 
1 byte 
2 bytes 
2 bytes 

Data Type Code, BF (9F indicates last record) 
Byte Count, number of data bytes in record 
Checksum, half word sum of data bytes 
Sequence Number, record sequence number starting at zero 

Data is recorded as follows: 

I byte 
I byte 
n-bytes 

I byte 

Blank Count, number of blanks before data 
Data Count, number of data bytes 
Actual ASCII data 

(this sequence is repeated until the end of a line is reached) 

EOL character, FF 

B-l/B-2 




