
MEMORY MANAGEMENT, RESOURCE MANAGEMENT,

,

AND COMMUNICATIONS MANAGEMENT

IN THE

XEROX OPERATING SYSTEH

I. MEHORY MANAGEHENT

1.0 Core Layout

1.1 Resident Monitor

o Characteristics
o Size
o Location

1.2 Non-resident Monitor

o Characteristics
c Size
o Location

. 1.3 User Space

o Context
.. Program Area
o Local Dynamic Area
o Common Dynamic Area
o Blocking Buffers, etc.

2.0 Memory Allocation

2.1 User Services

-

1.0 Core Layout

XOS uses the capabilities of the SIG}~ Memory Map and Access Protection
features to define a resident and a non-resident portion of the monitor.
These are depicted in Figure 1.

1.1 Resident Monitor - The resident portion of the monitor resides at the
low end of core memory and is mapped 1:1 (ie., the virtual address is
the physical address). This resident portion is itself divided into 3
parts: (1) that portion below module ITCBBST ("Internal !ask fontrol
Block for the liasic~~stem Iask") which executes either mapped or un
mapped; (2) that portion above module ITCBBST which executes only
unmapped; and (3) the INITIALIZATION and DEBUG module portion of the
resident monitor which is only physically resident at system initialization
(boot) time. This portion is "clobber code", needed only for
initialization and patching purposes, which is subsequently overlaid in
real and virtual memory by user programs. This technique allows user
programs which always execute using the memory map, to effectively
"overlay" a large portion of the resident monitor. Thus, user programs
are not penalized virtually fora portion of the memory occupied by
the resident monitor .. ' The resident monitor will vary in size from
12K (a batch-only system) to 19.5K (full timesharing plus TAM character
and message mode support) •

1.2 Non-Resident Monitor"- The non-resident monitor (NRM) executes at the
high end of virtual memory, uses the memory map, and consists of several
user-specified segments or overlays. Each overlay is made up of one or
more elements. Each element is made up of one or more assembly modules.
A user is associated with an NRM element by requesting a monitor service
via the CALI trap mechanism. A resident monitor module handles the trap,
decodes the request and transfers control to the appropriate NRM module.
All inter-module branching is accomplished via a call to a resident
nNon-Resident-Monitor Handler" module. This module either verifies that
the element (of which the requested module is a part) is already loaded
into memory or causes this element to be loaded into memory (of course,
refe~ences to resident monitor modules require no such loading). The
memory map is then loaded to reflect the location of the NRM element and
the call is complete. When one of these elements that was loaded into
memory is no longer in use, it remains in memory, but is marked "disengaged".
The resident monitor maintains statistics on the frequency of use of
these "disengaged" elements, and when additional memory is required, the
least frequently used element(s) are overlaid by the program or element
that requires. space. USing this technique, XOS is able to make use of any
"unusedtl memory (even if it had been allocated as a resource but had not
been "gotten" yet by the various active tasks). This will reduce the
number of requests for loading NRM elements.· Note in the above discussion
that the unit of loading is the element not the segment. Although the

Resident Monitor Resident Monitor

(Mapped/Unmapped) (Unmapped)

r
V ,
I I
R , I • I

_
User

'f I
u Programs

I (Mapped) A I
L I

- I. ~ If!!!! =- .-

Initia1iza ion f
Debug

(Unmapped)

f
J ,

,
•

Non Resident
Monitor Over
lays (Mapped)

\

-------tr \
I
i

I (>1 Longest
~'~I f--LyJ---I--+-j --f-J---I

I .

I

NRM
Element

J f ?------.--.--., -_. -. I

r t~--------------~ !
~--~~--------------~----~----------------~~ .~~ ~------------------~J------------------'

~ I

Resident only durin
S stern initializati n

fnitializatt on
& Debug

This address 'determined
By Longest NRM overlay

[Fi~:re 1 (XOS Virtual&Physical Memory)

. ~-"-' -.~~~-~-~-~. ----....,.,..----t

128 KI

>-

I

I

II
f\
I'
i

f
I
!
t
I

f
\

i I
I

1.2 Non~Resident Monito~ continued •••••

NRM segments will normally begin virtually at·~l6K and extend to l28K,
XOS needs only to reserve physical memory equal to the largest element
(lo5K in XOS-AOI; lK in.XOS-BOO) in ord~r to insure that physical
memory wi.ll always be available for loading the NRM.

1.3 User Space - Figure 2 depicts the portrait of an XOS user. A user
is located virtually beginning at the monitor's ITCB address. Approximately
l05K of virtual memory is available to user programs (ie., any user
may execute a program whose size is l05K assuming physical memory is
available). This mgy be increased at system generation by shortening
the longest NR}1 overlay thereby giving the users more virtual memory.
A user's ITCB page is his context page; among other things it contain s .. ,'
the user's memory map i~age and access control image. A user is
allocated core based upon the value stated on a control command. To
this value the system adds 2 pages: an ITCB page and a common page
(see Figure 2) which is reserved as a work page for monitor services.
The user's program is loaded into core starting at the virtual page
address above the ITCB page. Pages not loaded with the user's program,
but logically allocated to the job, are available to the user via the
memory management user services (see Section 2.1 below). Also, until
these pages are physically allocated to the job, they are available for
loading NRM elements.

In XOS, all monitor s·ervice work space (such as access method blocking
buffers,IIO tables, etc.) is obtained from the user's virtual memory
with read-only access. For instance, when a user opens a file using
an assisted access method, the system will obtain the space for the
blocking buffers from the user's Common are~(based upon the DCB parameters
at OPEN-time: ie., number of buffers, size of buffers). This eliminates
the need for the monitor to maintain its own pool of blocking buffers
for allocation to users.

2.0 Memory Allocation

2.1 User Services

2.1.1 Memory Management -' XOS provides the user with the capability of
managing the core memory that has been logically allocated to the
task. The user may:

• Get Limits of Dynamic Space:· Obtain the
number of contiguous unallocated virtual
pages between the highest address in the
Local Dynamic and the lowest address in
the Common Dynamic areas.

FIGURE 2. (XOS VIRTUAL USER PROFILE) ______ ~ __ ~ ____ ~_=~~~~~~~~z~._.~==~~~====~~~===_==~~~~~~==~ ____ ~~~ __ ~_=~

. ITCB

PAGE

LOCAL
<.l!o---~PROGRAM ARRA-----£)aorl----=.;::;;~*--~;>

~ DYNAHIC DYNAMIC

2.1.1 Nemory Nanagement continued ••••

o Get/Free Pages in the Local Dynamic Area:
request· (or free) virtual pages in the Local
Dynamic area (ie., allocate/deallocate a
physical page to a virtual page in the users
memory map) 0

c Get/Free Space in the Common Dynamic Area:
obtain (or free) a block of ftall-accessu memory
from the Common Dynamic Area. As blocks are
freed they are chained into either of two chains
(pointed to by two entries in the 1TCB) depending
upon access type ("all access" or "read-only
access lt

) for subsequent re-allocation to the
user. As an entire page is freed it is returned
back to the system.

• Dynamically create a DCB at Execution Time:
In order to avoid having to build and allocate all
DCB's' at assembly time, 1 skeletal DCB may be
coded into a user program or compiler, filled in
at execution-time and moved to read-only Common
Dynamic storage as needed.

2.1.2 Program Overlays - User programs may have an overlay structure.
Overlay segments will be loaded into memory either automatically
by one segment's referencing another segment (REFERENCE loading)
or under direct program control whereby a user explicitly loads
an overlay segment via a monitor service (SEGMENT loading).

2.1.3 Program Loading ~ User programs may completely overlay themselves
with another program by calling on either of two monitor services:

• LINK - allows an executing program to dynamically
request the loading into memory of, and
transferring control to, another program
while preserving the state of the calling
program for a later return. Common dynamic
storage is unmodified.thereby permitting
program~to-program communication.

• LDTRC - "load and transfer control" functions exactly
like LINK (above) except that the calling program
is not preserved.

2.2 Swapping

The basic XOS Batch Multiprogramming System does not require a swapping
mechanism in order to support its multiprogramming operations. The core
memory resources are allocated to as many tasks as possible. These
tasks are then maintained in the same physical core and executed on a
prioritized demand basis based upon the SIG~~ Priority External
Interrupt System. Swapping is a logical extension of the basic multi
progranuning system used to support timesharing user tasks. Swapping
occurs between central memory and a standard file which may be located
on any system RAn or disk pack. The installation allocates this file
via a System Utility Program which uses normal file management facilities.
When the Timesharing'Task is not active, this file space may be deleted

,.'

.and its space allocated to user or system files. In addition, when the
timesharing task is initiated by the operator, this ,file is dynamically
sub-divided into contiguous user sections such that when swapping for a -Crx..ed.. ct\loe
user does occur, the channel program need only contain one SEEK command.K tn)'"Y'-? '}Jot

The swapper achieves priority over other I/O operations by virtue of ~ ~l~
its direct interface with the I/O Supervisor and the fact that the Time- ~vJ~k
sharing Standard System Task operates at a hardware priority interrupt r:lo.ww 'h""~
level (specified at System Generation) higher than that of batch or ~i~l;-\-
timesharing user tasks. The Timesharing Task allocates all timesharing
user tables dynamically (in its own Cornmon Dynamic Area) at the time it
is activated by,the opera~or, thereby eliminating the need for keeping
these tables in core when the Timesharing Task is not active. The
swapping of timesharing users allows the simultaneous operation of a
large number of users whose combined virtual memories exceed l28K words.
The timesharing user's core image is identical to that of a batch user
and is managed by the user in the same way.

2.3 Shared Processors

In xos the NRM elements function as a type of shared processor. Any
NRM element in core memory may be associated with any number of executing
tasks. There will never be more than one copy,of anNRM element in core
although $everal users may be associated with (or mapped into) that element
thereby conserving physical me~ory pages.

II. RESOURCE NANAGEHENT

1.0 Resource Types

2.0 Allocation at Job Initialization

3.0 Allocation at Job Step

q

II. RESOURCE :t-1ANAGEMENT

The management of the XOS system resources provides the basis for
the scheduling of the various tasks s~ppor~ed by XOS:

• Standard System Tasks such as the Symbionts,
Telesymbionts and Timesharing Task

8 Foreground User Tasks such as the Control Command
Interpreter (CCI) and user real-time programs

o User Tasks such as compilers, user programs and
utilities

1.0 Resource Types - The Scheduler, Job Management and Task Management
provide a generalized method of resource allocation and control. A
resource is defined to be anything that has an associated Resource
Control Block (RCB). It may be a table, program data file, peripheral
device, or any other entity that requires controlled access. An
RCB describes a resource quantitatively (by indicating the maximum
number of units of the resource that are simultaneously allocatable
and the actual ~umber of units that are currently available). An
RCB also indicates the queue of tasks at aiting access to the
resource. There are RCB's associated with the following allocatable
resources in XOS:

• Sharable files
• Input symbiont entries
• Output cooperative entries
• System disk space for input symbionts
• Global space on system disks
• Core memory
• Temporary disk space
• Pseudo disk" volumes (account volumes) on the system disk
• Card Readers
• Card punches
• Line printers
• 1600 bpi tape drives
• 800 bpi tape drives
• 7-track tape drives
• Private disk pack drives
• Telesymbiont transmission lines
" Message mode transmission lines

-
••• lcontinued

o Character mode transmission lines
e Groups of transmission lines

.-

c Any of the system tables that are dynamically
changed (ie., I/O device tables, scheduler tables, etc.)

2.0 A1location at Job Initiation - A job is normally entered into the system
by the input syrnbionts. There'are other methods of entering jobs and/or
tasks such as operator keyins, but regardless of the method of introduction,
all incoming job or tasks are processed by the scheduler task to
allocate the required resources. The symbiont method is presented here
because it is the most common and most comprehensive.

A symbiont task will read the job and place it on the symbiont chain
for that class (there are seven possible classes with their priorities
and limits established at System generation). "The Command Card
Interpreter (eel) is invoked and executes as a Foreground (privileged)

[

User Task. eel performs a pre-process of the job just entered by the
symbiont task to check the job control cards (JCL) for errors, build
the resource profile., and compare the requested types and amounts of
resources for the job against the System generated maximums allowed for
that class to see if the job should even be considered for scheduling.
If JCL errors are detected or class limits are exceeded then the job
is only scanned for notification of further errors and removed from
the system by CCI. An errored job is not presented to the scheduler
task. eel p1aces verified jobs on the scheduler chain after appending
to the source image a series of tables defining the resources required
and defining the actions to be taken by job management and job step
management. The same, images are not read again by job or job step
management; the tables created by CCl are used to manage the job. The
scheduler task is then activated to attempt to initiate the job. CCl
and the scheduler operate together to maintain the class scheduling
priority established at System generation. The scheduling philosophy
of the classes is as follows:

Class Internal Class Priority Multiprogrammed

p* Yes

,:'f

T
0-7 priority for each job
0-15 priority for 'each job

First in-First out

No (only one of this
class active at a timE
No (only one of each
of these classes act~
at a time)

* ~e priority order of the classes is specified at System gene3ation, the
classes are stated in thia order for ease of-presentation.

I(

The Schedu1er maintains a quantitive table of estimated usage
of all _types of available resources. There a~e entries in this
table for real core pages, temporary 4isk space and device types.
l~ is from this table that the Scheduler determines whether a job
may be initiated. A job selected by the Scheduler is initiated only
if (1) the number of units for each resource req~ired to start the
job (as determined by CCl and recorded in the jo~ entry on the
scheduling chain) does not exceed the corresponding number of units
of that resource assumed to be available and (2) any devices
explicitly requested by symbolic address required to start the job
are available for allocation. If conditions (1) and (2) are both
satisfied, the Scheduler decrements the corresponding entries in the
resource availability table. Note that this is used as a mechanism
to inhibit initiation of multiple jobs whose resources in combination
exceeg the total available for allocation; in this way, the Scheduler
insures that, should multiple jobs request their maximum number of
resources simultaneously such resources will be available.

When the Scheduler determines that the maximum number of units of any
resource needed by anyone step is available, it initiates the job.
The actual allocation of these resources is performed by job step
management: core memory is allocated and MOUNT messages are sent to
the operator; logical disk space for temporary files was allocated via
the Scheduler's decrementing the estimated resource availability table
while physical disk space for temporary files is allocated at the time
the files are OPEN'ed and as they are being built.

The release of any resource is left to the user through the manner in
which he constructs his ASSIGN control commands and the manner in which
he closes DCBs. Resources may be released during a job step (by closing
a DCB)~ at the end of a job step (when the system closes any open DCBts),
or ~t the end of a job (when all resources are returned to the system).

3.0 Allocation at Job Step - Normally, the resource profile produced by CCl
reflects, for any particular resource, th~ maximum number of units of that
resource needed by any one step. However ,by using the RESOURCE and/or
hhe SLIMlT control commands, the user can cause a resource profile to
be constructed which allows the job to be initiated with the Scheduler
having verified the availability of the resources needed only for the
first step_ In this event, the job step management routines activate the
Scheduler to verify that any resource in excess of those originally verified
as available at the time the job was initiated are in fact available
for the job step. The event control block ~CB) mechanism is used

-
•••••• /continued

l 1./

beoveen the Scheduler and the job step manage~ent routines to ensure
that the user task associated with the job step must wait until the
availability of the supplementary resources is verified. Should
a~ task be required to wait on the availability of some resource,
all currently allocated resources are returned to the system for th~ .. 'r

l duration of the wait, thus avoiding the possibility of a deadly
embrace situation. The operator is notified \vhen a task is placed \V
in a 1;<1ait state mvaiting a resource and reminded of this fact f\. y-l

.x:P~ .
periodically. 9 0It,\- ~\ ~ J?

t\QUJ 9...<J (j (Y1' /-~
\-t~~V1 ~f 4 r J Ol-i/\

a"t;.- "'1V1 t J t f o? (c~
To-pM ~ 7

• f)0 tS\~_/'l':'J I

~

P~J o..Ho~~ .t-I N4HvlU/.) .f..o
\~ot .. ~:k).,0.,,/I/,il,-/'\1
~A • ., ~(j' ()-. ~~b -vJ l(,~) -

\)}~l~ C:ttI.MO-;\.~,"').h ~ ~ f
~ \l_L,-_· n 1(1, . r'\r·:.) €,,"V-VI cyds

,.tAG,) . ~ c::'rv.I.¥~' t,4~C 1"+"';~1"" , J .\. IIJ
.. ... L/.A I. ~I, ""h ",f.'!) (\.~ - \-v \~t"" O-(~.Pl"""" ~ - - (-t. ,~." -.,~, .' ... -

. "\ r..:;: • I . - 0.., l- .J'.Ao.o l.l,\\lA .}<J
~t-'N,{·"y..d _ d('\u ~ '\ ~
fV-t-"'~ ~_ .J./...'-t Ut.lt ~,

III. CONMUNICATIONS NANA~.r?1ENI..

1.0 Introduction

2.0 System Generation Interface

2.1 Network Definitions

2.2 Line Protocol

2.3 Translation Specification

2.4 Monitor Struc~ure Definitions for Communications Management

3.0 Connnunications Management Interface

3.1 User Interface

3.2 -Honitor Interface

4.0 Operating Modes

4 .• 1 Message Mode

• Line Support
e Termipal Support
• Remote Batch Interface

4.2 Character Mode

• Line Support
• Terminal Support
• Timesharing Interface

If

III. CO~~lUNICATIONS HANAGENENT

1. INTRODUCTION

Connnunications Management is an opti.onal modular component of XOS;
it includes the Telecommunications Ac<;es~ Method (TAM), supporting
monitor. level functions and parametric System Generation user
specifications.

Since TAM is a logical interfac'e to corrnnunicatiQns input/output, the
same communications capabilities are extended to all users. The
user may be a normal user task or a system task .such as telesymbiont
control or timeshqring control. The Con~unications Management option
is used by XOS itself to provide for communications control for
telesymbionts and timesharing.

The supporting monitor level functions consist of such items as
resource allocation allowing the specification of groups of lines or
linking of lines as allocation units; clock routines allowing for
character mode buffer size optimization and line timeout processing
for both character mode and message mode and the Input/Output Supervisor
allowing message mode post processing to occur at a specific priority
.interrupt level.

System Generation provides parametric support for Communications
Management by allowing the definition of communications networks;
allowing information to be supplied regarding line protocol; enabling
the specification of translation tables and allowing monitor structure
definition and interface for TAM modules.

2. SYSTEM GENER-~TION INTERFACE

The user may define a collection of lines and stations to be a single
logical network. A single user Data Control Block (DCB) may be used
to control a network or group of\networks. The network is specifiable
to the line/terminal/component level. All four combinations of nonswitched
switched and bipoint/multipoint lines are supported. The implicit
polling/selection order is established by the network definition.
However, the polling order may be explicitly stated or dynamically
changed by the user. . CtrJr ",.,t~~Ar pl'O\.eoI 0 . .
Supervisory sequence ~s for line yrotocol Cha~may be specified
at System generation. Default values are provided on a device type
-basis. For message mode the presence or absence of longitudinal parity
is specified. For character mode the definition of special function
characters is allowed and the desired echoplex procedure is established.

The translation tables are defined by the user at System generation.
Standard translation tables may be selected and then partially altered
or totally changed by the user. The user specifies the translation
procedure to be selected for each line specification.

The structure of the XOS Monitor is controlled by the user at System
generation. This philosophy is extended to the selection and placement
of the Communications Management modules. In add:f.tion, the message
mode and character mode portions of the Communications Management component
are distinct and ~ay be separately selected or rejected for incorporation
into the XOS·Monitor.

The required residency of the interrupt handlers for Communications
Management does not decrease the user virtual size. Since the interrupt
handlers operate in real mode they may exist in real memory that coincides

. with user virtual memory. The connection between the interrupt locations
for char~cter mode input/output interrupts and the interrupt location
for message mode post processing priority is parametrically stated at system
generation.

3. COMMUNICATIONS ~MNAGEMENT INTERFACE

Communications Management services via TAM are requested by the user by
standard XOS system procedures in a Metas~bol program, the same as any
other access method. The XOS system procedures that pertain to TAM are
listed at the end of this section. The network or networks are allocated:
by user supplied assignments to a line or group of lines. Line groups
may be defined at System generation or by user assignment. The network(s)
polling list may be open-ended (linear) or wrapped (circular) and it is
attached to one DeB by tpe open procedure. TAM will manage the allocated
lines in .a Ifmultip?:-.exing" ~ashion that ~s tra~sparel1t to the user.

Communications Management module interface with the XOS Monitor conforms to
the standard Non-Resident Monitor procedures. The priority interrupt
level of message mode post processing is established at System generation.

TAM System Procedures

- M:DCB

- 1-1: MOVE,DCB

- M:SETDCB

- M:OPEN

Enables user at assembly time to introduce any or all
of the DCB parameters applicable to TAM

Allows dynamic creation of a DCB in the common area by
replication o~ an existing DCB.

A110ws modification of DeB parameters during program execution

Establishes the connection between the program DCB and the
network by

- verification of the explicit user
defined lists and the lines assigned
as resources

- initialization of the network; initialization
of the transmission device controllers god
the line adapters (character mode)

}b

.'
,.~' ,

TAM Syste~Procedures continued •••••••••
•

- M:CLOSE

I - M:LIST

- M:MDFLST

- M:WRITE,
M:READ

- M:CHECK

- M:DEVICE

4. OPERATING MODES

.-

- verification of the operational status
of the intermediate telecommunications
equipment

~ creation in the user program of the list of
components or terminals if an implicit list
is required

- creation of the required Icommunications tables
between the access method and the I/O supervisor

Closes-the DCB and, optionally, the network. The close may
be either temporary or definite.

Requests at assembly time an explicit component or terminal
polling or selection list. Lists ~ay be linear or circular.

Requests at execution time modification of a component or
terminal list.

Requests a transmission of data to or from a terminal,
respectively. A user may also read in survey mode to
detect any attention characters a terminal may have sent.

Requests a test for successful completion of a specific
I/O operation

Enables- the users to specify a transmission code change or
to perform a device specific operation such as:

BEL send an alarm to a component
SUS suspend transmission from a component
ABO abort transmission from a component
IND identify by index into a list the component on

which the operation is to be performed
MOD redefine working mode to EBCDIC or binary

The Teleconununications Access Method (TAM). provides support for two operating
modes:

• Message Mode
• Character Mode

Message mode operation is characterized by block transmission and the use
of Input/Output Processors (lOP's). Character mode uses character transmission
and the Direct Input/Output (DIO) interface.

-

\1

4.1 Message Mode

The message mode portion of TAM (TMM) is designed to provide access
to terminals requiring high transfer rates, bl?ck transmission or
multidrop connection.

:: 'BJ-~ /lJ
TMM provides "framing" of user output messages by attaching control ~ u1eM+
sequences' peculiar to the terminal type. On input, all such control ,~ ~~
sequences are removed and the user receives only the data portion ~ ~~'~f~'

' \)(}.\)..Q, U"tM of a message. \.~ I
e;w}-'\r.u..~ , \'

. Di~"'''~'f\~
Hessage mode operation is available to any user program observ~ng THM Mt "'ItO''\-,

protocol. Message mode is also used by the Telesymbionts for sUbmiss ion ~LA/rl
of jobs from remote "batch stations and reporting of output to those ~"\, r~

stations. \3.~\-:~ ... e...)
• e.t'C--

Remote batch operation is supported for the 7670 Remote Batch Term~nal.

4.2 Character Mode

TAM Character Hode (TCM) provides access to contention terminals
operating on the Character-Oriented Communications controller. Tc}I

, supports terminals operating with ASCII transmission code such as
teletype-compatible visual display terminals. TCM also provides support
for 2741-1ike terminals using Correspondence or Extended Binary Coded
Decimal (EBCD) transmission code. p>PL l~bo~~,

TCM provides a number of functions to facilitate program-terminal
cOIIllIlunication, including:

• Normal and abnormal input termination •• reporting
of end-of-text, tabulation, attention and BREAK
conditions via anoma~y returns to the user program

• Input editing functions: character erasure and line
cancellation

• Output formatting: TCM attaches carriage control sequences,
upon demand of the user program, to user output messages.

• Paper tape control: Tc}I starts and stops the terminal ~
paper tape reader and punch, uPq~ demand, to facilitate
paper tape I/O. ~~iJA \-L-t-L\ ~~ ~1

• Upper/lower case input (2741) with the ability to force
all lower' case input letters to upper case

• Type-ahead processing (teletype) on a line-by-line basis
as selected at SYSGEN. Type-ahead buffers are not part
of TCM proper but are allocated from user space when a
type-ahead line is op,.ened. . .11. II '* J

(J-V\ ~Lf L. t-"-e.... ~'~f'i '11'\ a..[W ecrMn... ~ -
o~~ ~.~~

Type-ahead processing and 2741 support are provided in a modular
fashion.' Type-ahead processing is centralized. in one system module,
2741 support in anothero A module need not be' included in the system
if the corresponding function is not desired.

TCH is used by the timesharing subsystem to provide the communication
link with user terminals.

Timesharing user programs use the Timesharing Access Method (TSAM)
which provides an ASAM-compatib1e terminal interface - TSAM, in turn,
communicates the user requests to the timesharing manager task which
communicates directly with TCM.

t9

