
-
- J \J I \ I

L- REVISIONS 702·,·,j9

REV. DESCRIPTION CHK DATE APPROVED -

.

.

+' I

i
,I

'i
I

!

NO. DRAWING NO. DESCRIPTION REF ERE N C E· DES'IGNATION ITEM
R!;Q. NO.

/

MATERIAL LIST .,

[~(>'(",,~ff~;,J; ;,.(~'- -: /~ / / ,..-;

~1:ttj)ls
.

NOTES UNLESS SPECIFIED DRAWN /' "/<~~ '7
[

2>i~~b~ .. / t. TOLERANCES CHECK /.j:J//f-c; SCieNTIFIC DATA SYSTeMS
.xx ±.030 ANGULAR '/ .. Jl/ .. e SANTA MONICA. CALIFORNIA
.XXX ±.OtO ±Vz·

'"g ?~tG.fld(". / '. / ~
l

APPR. TITLE
2. BREAK ALL SHARP EDGES -);3;;/6' Y - II

.010 APPROX.

7" ' \ UNIVERSAL .TIME-SHARING SYSTEM (UTS)
I: - FUNCTIONAL SPECIFICATION 3. MACH. SURFACES u

I
,.

I ... ALL DIM. IN INCH.S , - < \

i'"
I

! .. \\ !
!

MODEL NO. SIZE DWG.NO. CHANG I
" LlTTII ~

(NEXT ASSY.
A 702489

I- .

/
1 SCALE 00 NOT SCALE DRAWING I S.HEET 1 OF '327~

UNIVERSAL TIME-SHARING SYSTEM (UTS)

FUNCTIONAL SPECIFICATION

VOL. 1 - PARTS I - VI

By

E. Bryan
B. Doeppel
J. Smith

31 March 1969

PREFACE TO TH·E MARCH REVISION

The March is sue of the UTS Functional Specification ~ncludes updates, reVISIons,
major additions, and minor editorial changes to bring. the spec .in line with changes
suggested by various SDS d~partments and with the current course of UTS imple­
mentation. It is i.ssued in two volumes, the first containing Parts I- VI which pro­
vide a general overview of UTS, and the second containing Parts VII-XIII which
include details of several of the UTS ·subsystems ..

Any errors or omissions which reviewers find in the current document should be
called to the attention of Programming Development through Ed Bryan.

Details of the revisions and additions are:

Part I

Part II

Part III

Part IV
. I.

Part V'

Part VI

Part VII

Part VIII -

Part IX

Part X

Part XI

Part XII

Part XIII -

Minor editorial changes

Major addition. Description of operation and sample outputs
for the performance control program.

Minor editorial changes

Addition of a description of UTS virtual memory layout

Minor editorial changes

Major revisions including the addition of SET Commands for
I/O as s ignments .

Replacement of the description of EDIT by reference to the
BTM version plus extensions and descriptions

Addition of several new DELTA commands and clarification of
the operation of others

Addition of a few new commands; clarification of others

Minor changes oQ,ly .

Expanded d~scription o,f the memory management routines;
addition of two new CALs

A new part describing I/O services for the terminal

A new part describing METASYMBOL operation

OVERALL TABLE OF CONTENTS

I. OVERALL SUMMARY OF UTS 5

II. PREDICTING, MEASURING, TUNING UTS 17

III. SYSTEM CAPACITY AND LOADS 59

IV. SCHEDULING AND MEMORY LAYOUT 79

V; SYSTEM REQUIREMENTS AND CONFIGURATION 93

VI. TERMINAL EXECUTIVE LANGUAGE (TEL) 105

VII. TEXT EDITING SUBSYSTEM (EDIT) 148

VIII. ASSEMBLY LANGUAGE DEBUGGING SUBSYSTEM {DELTA) 163

"
IX. PERIPHERAL CONVERSION LANGUAGE SUBSYSTEM (PCL) 210

X. LOADING OF PROGRAMS (LINK) 230

XI. MONITOR SERVICES FOR ON-LINE AND BATCH PROGRAMS 25&

XII. TERMINAL OPERATIONS AND SERVICES 284

XIII. MACHINE LANGUAGE ASSEMBLER (METASYMBOL) 302

--lo,;Jrl-~-~-J..-..:J-Q.I:~V-"'"

Part L OVERALL SUM:MARY OF- UTS

INTRODUCTION

UTS is a time-shared computing service consisting of a central computer complex

and a collection of re:r:note teletype and other typewriter-like terminals connected

to the central complex by full duplex communication lines. UTS gives its users

access to all the programming ·ser~ices of the Batch Processing Monitor (BPM),

including symbiont and real-time ser{yqces. These are augmented by tools speci-

fically tailored for remote-terminaI users engaged in the on-line creation, modi-

fication, debugging and use of programs. The on-line entry of jobs for batched

service, in the 'form of BPM control card programs, is permitted. Such programs

may b.e composed, filed away and entered in the Batch job stream from the terminal,

and on-line users may query UTS about the status of such jobs • ..
UTS is son, sibling, and parent to BPM, and will be derived from that system by a

set of specific changes and additions. For the first version of UTS, these fall into
•

three clas ses.

A. Processors and Associated Languages Primarily Related to On-line Users

1. An executive processor and language (T EL) for handling requests from

on-line users. To ~uch users UTS appears to be a single active agent

th~t responds to commands couched in TEL •. Most commonplace activities

associated with FORTRAN and assemblylanguage programming can be

carried out directly in TEL: file management, compilation and assembly,

loading, execution and debugging. Lengthier or more involved operations

and activities ~ssociated with other programming languages must be

-",.-,-",,,,--,--~o,,·~ -----\---------------

carried out by requesting the, services o{ a subsyst.em of UTS. Each

subsystem acts as an ind~pendent, active sub-agent of UTS, accepting

requests in a language tailored to its job an$l to the expected profile and

bents of its users ..

2. A compile-and-go processor for the extended Basic language, which in-

cludes provisions for direct operations on arrays ; an on-line subsystem

for creating, modifying, -running, and debugging Basic programs.

3. An editing proces sor and language for the on-line creation, modification

and management of programs and other bodies of text.

4. Debugging processors and languages appropriate to FORTRAN debugging

I
I,

(FDP) and to as s embly language debugging (DELTA). These processors

are always at hand for' the on-line user (who can calIon them at any

stage of execution), and are ideal for carrying out parameter studies.

5. Utility processors and languages for: a) managing files of information
, .

and transmitting information between different media (PCL); b) combining

and recombining compiled and assembled object programs (LINK, SYMCON)

B. Distinct bodies _of code that regulate and provide information about the

activities of' UTS and its users. These include routines for: 1) scheduling

activities; 2) managing time and storage; 3) measuring and displaying the

cumulative and individual behavior 'of UTS and its users; 4) handling in":

formation passing to and from remote terminals on an asynchronous basis;

and 5) fixes required to use the memory map.

C. Changes, and fixes to BPM and its component processors. These include:

1) modifying compilers and assemblers so that they p.roduce information

necessary for on-line debugging; 2) creating versions of. processors and

run-time packages (and all other public routines) that are reentrant and,

therefore, capable of being shared among more than one user; 3) simpli-,

fying input-output interfacing with BPM and speeding-up its ft1e-management

services; 4) changing BPM and its proces sors so that they can deal with

typewritten lines of information and files of such information produced at

a terminal as readily as they now handle card images and card decks; and'

5) fixes required to use the memory map.

BEHAVIOR AND RESPONSES

UTS is supposed to service real-time loads ~ batch loads and on-line loads simul-

taneously all without batting an eyelash. What these loads are and how they vary

from installation to installat'ion are an unknown. On the other hand, Some complete

statistics have been published for batch loads in' aerospace and university environ­

ments and for on-line loads in time-sharing systems. These figures share one

healthy attribute -- .they compute, they compa~e, they match. ,-, These figures and

their requirements in t,erms of UTS capacity. are des cribed ~n a succeeding section.

Application of straight-forward queue and traffic-theory techniques to these figures

shows that UTS .can be designed to strike a balance between on-line and batch require­

ments. Although Some of its facilities will be denied the batch user and others the

on-line user, the two classes of service will be complementary rather than antogo­

nistic. Under typical loads, on-line demands will rarely overwhelm batch proces sing

nor will batc~ throughput seriously hamper on-line negotiatio~s. The typical demands

of on-line users need less. than 50 mS. of processing and constitute 850/0 of on-line

requests. For 30 users, these can be handled comfortably at costs not exceeding

80/0 of main-frame time. This includes the overhead c.osts of scheduling, time­

sharing and transmitting information to and from consoles, but makes no allowance

for service to resident real-time programs -- an effect which can be catastrophic

to reasonable service. Delays to typical on-line requests of 30 us;ers should exceed

.4 seconds no more than 10% of the time and exceed four seconds no more than 0010/0

of the time. ,These figures are based on configurations matched to reasonable loads,

and should not be considered ~otally satisfying; they are simply better than anything

else· on the market, except for dedicated, single-language systems. Delays of .4

seconds are noticeable, particularly to people using processors that maintain intra­

line dialogues with their users, when delays cannot be blanketed by the carrier-:­

return times associated with typing requests. Although typical delays will be just

less than. 4 seconds, variations will occur frequently. However, users will hardly

ever .have to wait more than three or four se'conds for a response to a typical request,

nor should they observe any halting or stutter ing behavior during output situations.

For 60 users, main-frame degradation is doubl~d, but the distribution of response

times remains substantially the same -- delays greater than. 6 seconds still

occurring about 10% of the time. BPM itself makes demands on main-frame time

for symbiont, input-output, and file management services, for control card interpre­

tation and simply tooling up to do a batch job, and for processor and Monitor overlays

This service. cost is two to three times greater than that required to service the

typical demands of 30 on-line users. What is left of main-frame capacity (650/0 for

30 on-line users) must be devoted to "computing" -- processing batch programs and.

compute-bound on-line users. The more on-line users and/or the more compute­

bound on-line users, the greater the possible impact on raw batch computing power.

r-'

REQUIREMENTS

In terms of input-output throughput, the 7202-4 RAD is inadequate if used alone'

operating at 150%"of capacity for typical batch and on-line loads.' Under such cir-

cumstances, everyone waits. A single 7232 ~s. marginal, while a 7212, high-speed

RAD would operate at 500/0 capacity under typical loads -- a comfortable figure,

although an extra unit dedicated solely to handling user's files may be required for

many installations. Almost all UTS installatIons will require a 7212 and a 7232.

The costs and delays' mentioned above can b.e achieved only through use of the

memory map. On systems :-vithout this feature, the overh~ad costs of core manage-

ment and time-'sharing have reached 400/0 of CPU capacity; .this is an unconscionable

degra~ation of computing power and results in severe delays in both on-line response

and batch turnaround. With the feature, uncomplicated, low overhead management
.' ,

and scheduling disciplines· can be used, as can reentrant processors that may easily

be shared among many use~s.

'The frequency and exte.nt of variations from the norm are dependent on the hardware

configuration chosen and on how effectively an installation can control its own loading

patterns: by ad-hoc adjustment of dynamic allocation and scheduling parameters from

an on-site console, by education of its uS er ~ommunity, or by direct management

fiat. UTS is meant to be a large system - - large both in terms of configuration and

in term.s of its ability to handle variations in load. To this end, space will be traded

off to get good responses and to use CPU capacity efficientlyo Core residency re-

quirements will be approximately 16K; 'UTS will be designed for a basic 80Kcore

config~ration.

It must be clearly understood ·that large transient or installat~on-systematic

41 variations from the estimated loads around which UTS is built will inevitably

call for a retuning of the system, no matter what the configuration. This is an

operation that will be possib.le within reasonable, but fuzzy limits. Beyond these,

installation-management techniques must be brought to bear. To test the UTS de-

sign, to predict redesigns and to allo.w ~nstallations to tune their own systems, UTS

will devote a small portion of its time and other resources to measuring the cumu-

lative and individual behavior of itself and its users. Installations should be pre-

pared to do the same; it is therefore required that each installation dedicate an

on-site console to the job of displaying the results of these metering activities on a

minute-by-minute basis.

SERVICES AND FACILITIES
.! .

UTS provides its users three classes of service:

A. Real-Time Service

Preemptive access to the hardware is provided for programs engaged in

simulation, control and other "real-time" activities. Such programs may

be permanently resident in UTS' s (appropriately enlarged) cor.e store, or

may be made temporarily resident on a' demand basIs, at the user's option.

B. Batch Service

All facilities and processors of BPM are available. Access to, and control

over ,. these facilities is obtained th.rough "programs" written in the control

card language of BPM. Such control card programs may be submitted to

UTS through card readers or they may be composed, filed away and .sub-

mitted on-line. In addition, the status of previously submitted batch jobs

may be interrogated from remote terminals.~

·...,&.~~-..&.-,,-.-.,.~ v-- V

Although Some facilities and processors are reserved solely "for on-line.

use, while others are available only in batch, the two classes of servic~

are complementary. Generally speaking, any1;hing that can be done in

batch can be done on-line, albeit sometimes in a curtailed manner. Re-

mote batch operations from the 7670 will be available in UTS as. specified

for BPM. In particular, compilers and assemblers are compatible across

the,two class~s of service at both source and relocatable levels:

1. processors for SDS FORTRAN IV and' Meta-Symbol are avail-

able both in batch and on-line;

2. programs compiled or assembled in· batch can be linked with

those produced on-line, and' can be run and debugged on-line;

3. programs com'piled or assembled on-line can be linked and

run in batch.

C. On-Line Service

The summaries given below must be treated as such. Most details of syn-
•

tax and designation are glossed over or omitted completely; this is particularl)

t~ for s~bsystems ~uch as PCL and 'D~LTA, whose languages are highly

encoded or abbreviated. The names assigned to specific languages and

systems will often be used indifferently to refer to the language or to the

associated system or subsystem, whichever seemS appropriate in context.

I; Communicating with the us er

Control of each user's keyboard will be proprietary: either the user

has control for purpo ses of input or UTS has control while carrying

o'ut requests and for purposes of output. This holds whether the user

----- --,-""---"-----;--

is negotiating directly with UTS, one of its subsystems or' his own pro­

gram. ,Who has control will be made 'clear to the user at all times. ThIs

is particularly necessary in the case of err?r reports and task comple­

tion reports. In the' event of errors the user must know what the error

was, who reported it, and to whom 'he may direct any corrective actions

he may wish to take. IIi general, the, user ~ust know three things: when

he can type responses and_requests; to whom he is talking; and who last

talked to him. These are often clear in context so long as the system

adheres to' Some reasonable rules of behavior.

Teletyp es -- either SDS 7015 or ~eletype models' 33 a~d 35 ,-- are assumed

to be the most common on-line terminals used with the UTS system.

SDS 7550. and 7555 keyboard displays are compatible terminals for UTS

and special software is in pro gres·s which will capitalize on the special

capabilities of the keyboard display for editing. Later versions will pro­

vide for use of IBM 2741 and Model 37 teletypes as on-line terminals.

2. Terminal :g;iecutive Language and Processor (TEL)

Requests for the facilities and processors provided on-line users take

the form of single-line commands and declarations in UTS's Terminal

Executive Language (TEL). Most commonplace programming and

accounting activities can be carried out direc,tly in TEL. These include:

a) logging-in and out; b) simple file management; c) SDS FORTRAN com­

pilations: and Metal-Symbol assemblies; d) linking and loading of relo­

catable programs; e) controlling the execution of programs; f) saving

intermediate core status for later resumption;' and g) submitting batch jobs

and monitoring their status. Other" classes of operations; more in-

volvedoperations, and activities ass~cia~ed with other programming

languages must be carried out by calling (in TEL) for the services of

one of UTS' s subsystems.

3. Text-Editing Subsystem (EDIT)

EDIT is used to produce FORTRAN and assembly language programs,

control card programs for submiss"ion to the batch queue, and other

bodies of information. Each file produced under EDIT consists of a

set of lines of text. Each line is "uniquely nqmbered, and th.e set is

ordered by increa"sing magnitude" of the line numbers. " Such files are

retained on RAD storage in a format designed to expedite and facilitate

their production and updating by EDIT and their use by other processors.

4. J?eripheral and .Information Control Subsystem (PCL)

peL allows the~ser to move inform~ti~nbetween input-output devices

and storage media: card and paper tape devices, line printers, disc

files, labeled and free<""form tape reels • Conversion and re-representation

of data, selection of data, and record sequencing and resequencing are

allowed. The processor and its language are provided both on-line and

in batch. Single-li~e commands are used for the gross operations of

copying, deleting, positioning, and for other utility functions.

5. Assembly-Language Debugging (DELTA) .

1

'1.

DELTA is specifically de~igned for the debugging of programs at the

assembly-language level. It operates on o~ject programs accompanied

by tables of internal and global symbols used by the programs, but does

not demand that such tables be at hand. With or without such tables, it

recognizes machine instruction mnemonics and can assemble, on an

instruction-by-instruction basis, machine language programs. Its main

bus'ines s, however, is to facilitate the activities of debugging.

(a) The examination, insertion and modification of elements of
programs: instructions, numeric values, encoded information

. data in all its representations and formats.

(b) Control of execution,. including the insertion of breakpoints
into a program and requests for brea.ks on changes in ele­
ments of data.

(c) Tracing execution by displaying information at designated
points in a program.

(d) Searching 'programs and data for specific elements and sub­
elements.

To assist in the first activity, assemblers and compilers of UTS will

include in a program's table of symbols, information about. what type

of data each symbol represents: symbolic instruction, decimal integers,

floating point values, single' and double precision values, EBCDIC en-

coded information, and others.

6. FOR TRAN Debugging (FDP)

The language is easy to use, readable) and more powerful than the

current FORTRAN IV -H console debugging language. If program exe-

cution is started under FDP, keyboard control is passed to the user

with a notification that execution of the main program is a1(out to begin.

During execution, ·control reverts to t~e use"r whenever he interrupts',

whenever an error occurs and whenever FD.P reaches a stopping point.

When the user is in "control he can a·sk FDP to carry out execution in a

variety of modes and then ask FDP to continue execution. He can also

request that values as signed to identifiers· be displayed, and can re-

as sign ne\,\:" values. The complete specification for FDP is given in docu-

ment #702528.

7. Symbol-Control Subsystem (SYMCON)

SYMCON provides programmers the facilities for controlling the global
" " d

symbols associated with a load module; it may be us~ther on-line or

in batch. When relocatable object Illodules (R01V1) are combined into 'a

load module, the global symbols associated with the ROMs may be re-

quired to link the ROMs properly or to link the resulting load module·

with other ROMs and load modules. In the latter case, it may be neces-

sary to. change some of the symbols to avoid conflicts or to eliminate

many of them so that the global symb~ls used for linking the original·

ROMs become internal symbols for the resulting load module. In brief,

SYMCON allows programmers to link ROMs and load modules freely in

the face of conflicting naming conventions.

8: Object-Program Linking (LINK)

All operations that can be performed under the LINK executive command

can be performed under' the subsystem. The notation and conventions for

s"pecifying the retention, deletion, and merging"of internal symbols remain

the same. On the surface, the subsy~tem's main advantage over the

executive command is that it allows progJ;amm'ers to link more modules

than can be listed in a single executive command line. Its main reason

for existence, however, is as a vehicle for incorporating more compli-

cated linkages involving hierarchies of modules.

9. Subsystem for Basic Programmers (BASIC)

Under this subsystem, Basic programs may be composed, edited, exe-,

cuted, and, debugged. All the appropriate commands of the editing and

debugging subsystems are provided. In addition, users of BASIC can

indicate an insertion or replacement by typing the desired line number'

ahead of the line. Basic programs are compiled directly into executable

form, an? the entire process of compiling and initiating execution is re-

ferred to as "running".
.. ~

Detailed de s criptions of the subsystem I s language

and its responses are covered in complete functional specifications for

the subsystem (#702452)

The above list constitutes' a summary description of the initial UTS. Services

to on-line users may be expanded in later versions to include a conversational

algebraic language, a tutorial' service (HELP), etc. The remainder of this

specification is devoted to a detailed pr~sentation of the items mentioned in

this introductory overview. Any future services or processors will be de-

scribed in detail when they are authorized and assigned by appropriate de-

partments within SDS.

Part II. PREDICTING, MEASURING,. TUNING 'UTS

TABLE OF CONTENTS

PAGE

INTRODUCTION 18

A. De:mands of:l Capacity

B. Responses to On-Line De:mands

E:.. Resource Manage:ment

D. Installation Control

1. System. Perform.ance Manag'em.ent
2. Login Contro.1s
3. Use Accounting

E. Performance Control

1. Function in General
2. Summary of Performance Monitoring and Control

, 3. Key Concepts
4. Types of Items that can be Displ~yed
5. Items that can be Displayed
6. C~mmand Summary and Formats
7. Discussion of Individual Co'mm,ands
8. Approach to Implementation

~~~ ~rNYt ~k~~ + e~ 



INoTRODUCTION 
4 

The effectiveness and quality of eachoclass of service (batch~ real-time, on-line) 

depends on: a) the emphasis and degree of control placed on each class by the in..; 

stallation; transient and systemic variations of load within each clas s; b) the hard-

ware configuration chosen. Although few absolute assertions can be made, someo 

statements about capacity and reSponses to typiocal loads can be offered with rea-

sonable degrees of certitude. These are based on known figures for batch loads in 

an aerospace and a university environment, aond on-line loads for several time-

sharing systems comparoable too UTS. The effects of such loads on standard UTS 

configurations aroe presented in succeeding sections. 

A. Demands on Capacity 

00' 
Figures for on-line systems show that better than 85% of on-line interactions 

occur infrequently and make only modest demands on the hardware; average 

demands, however, are much greater than typical ones. The typical on-line 
" 

us er can be characterized as one who is editing, depugging or otherwis e inter-

acting wlth programs at a leisurely rate (in terms of computer speeds), or is 

observing the line-by-line output of a running program that is highly output-

bound by the slow speed of his terminal deviceo The drain on main-frame 

capacity for interactive service to 30 typical on -line users is about 80/0; for 60, 

oabout 160/0. ~hese figures include all processing time required to service re-

quests, including disc transmissions and the transmission of information to 

and from the terminals. Thus, the typical on-line user does not overwhelm 

th~ batch stream, aOnd handling such users .rnust be consider~d a service of the 

system for which some overhead is paid. By the same token, most activities 



associated withBPM must he considered services of that system: symbiont 

and cooperative processing; co:O:trol-card interpretation;w input, output and 

file management; fielding' and proces sing of interrupts and Monitor calls. 

It turns out that the overhead costs for such services in BPM are two to 

three times those needed to handie the typical on-line situation. The re-

maining capacity of the hardware is dedicated to processing batch programs 

and compute-bound (or average) on-line demands. The manner in which this 

remaining capacity is distributed can be controlled by the installation in two 

distinct ways. First, ad-hoc control can be exercised directly from the on-

site console; as described in the section o'n scheduling. Second, education 

and management control can be applied to the user community to ins ure that 

ac.tivities appropriate to on-line access (and to the processors provided on-
, I ' 

line users) be carried out on-line, while those activities that are best batched 

be dire'cted to the batch queue. To assist both attacks on the allocation pro-

blems, UTS will devote part of its time to measuring the cumulative and 
• 

individual'activities of itself and its users; these are described in the section 

on mete'ring and perfo rmance measures. It is required that installations dedi-

cate an extra on-site terminal to the job of displaying the minute-by-minute 

results of this metering.' Toas sist in the managerial approach, language 

processors and systems tuned.to the on-line user, and to the batch user who 

does not need the full power of the "1?ig" proces sors may be used effectively. 



-.--i:)r:r..t!,;~~! cCD-O~-'->-(/-b~-

, . 

B. Responses to On-Line Demands 

As will be discussed in the section on scheduling, typical on-line users will b~ 

handled hy a straightforward scheduling discipline .. In brief, high prio'rities 

are given to servicing users whose current behavior portends a short burst of 

processing followed by a relatively long period of withdrawal when no service 

at all will be required; users who h~ve just typed a request for service of any 

kind, users who are output-limited, users who are interrupting UTS or who are 

. entering or leaving'the system. The application of this discipline will, in the 

absence of real-time interference, result in average delays of less than 6/10 

seconds for up to sixty users. Delays exceeding 6/10 seconds should be ex-

perienced 10% of the time; delays greater than four seconds are expected to 

occur with probability. 0001. Many delays will be blanketed by the time re-

quired for the typewriter carrier to return to rest point after the user has 

typed his request and by the time required'to type a response. However, de-

lays greater than 2/10 seconds will be felt by users who are debugging, partic-
, . 

. ularly in ass,embly language. The system and language provided for this activity, 

are designed to carryon an intraline dialogue with its users, thus providing 

no carrier-return time for masking delays. This is contradictory, since de-. 

bugging is an impatient activity that may find stuttering responses a drag; how-

ever, lengthy periods of silence (delays greater than two seconds) will be infre-

quent. 



c. Resource Management 

In order to achieve the estimates given above for main-frame degradation and 

for response times, it is 'essential that UTS man~ge itself in such a way as to 

. 
minimize ~he overhead costs of time-sharing its activities among its batch and 

on-line users, arid organize things so that it can efficiently overlap input and 

output with main-frame processing. At the same time; it is equally essential 

that the installation manage its elf in such a way as to us e UTS mo st efficiently, 

and thereby reduce the wide variations that are inherent in the figures given 

above. UTS's job is complicated by the fact that its core store is not large 

~nough to accommodate simultaneously all pos sible on-line users. A secondary 

(High-Speed RAD) storage is used .to cache those users not of immediate concern, 

s~ that time-sharing overhead includes the cost of "swapping" users between core 
. 1 

sto-re and disc store. A broad-brush solution to UTS's problems can be char-

acterized by some woodsy-lore precepts: a) keep enough compute-bound users 

in core so that there is always something to do while swapping and other input/ 

output activities are going on; b) keep enough users in core so as to reduce the 

probability of swapping; and c) swap as. little as possible. In order to even begin 

to effect a solution, UTS must strike some .compromise in allocating resources, 

particularly to on-line users .. In particular, core and disc storage and input/ 

output devices that are guarant~e~ to real-time and batch service are de facto 

not available for. on~line ~se except ~y entries into the batch queue. Second, 

limits must be set on the amount of 90re storage to be allowed individual on-line 

users and on the amount of core storage tqbe given batch users (above that 

guarantee~); these limits will Qe controllable within re~son from the on-site 

console.' Heavy use will be made of reentrant processors capable of being 



--....... - ... -..a.J.,J.;J-..... cr--(7'-""-~-v-:-O 

shared among many ll:sers and residing, anywhere in ·core, thus effectively 

reducing the average us'er's core demands ~ Provisions for handling growing 

and contr'acting core requirements for users are ,provided. The Sigma 7 

mapping feature is absolutely vital to UTS's operation'. In the absence of such 

a feature, it is n~cessary at the very least that programs and data.reside in 

contiguous stretches of core store. In systems, without mapping features, the 

overhead involv~d in compacting, shuffling and swapping core blocks to satisfy 

. the contiguity requirements can reach 40%. By using mappings, this overhead 

becomes neglibile, even under conditions of high loading. 

Real-time programs can, of course, bring everything else to an effective halt; 

such matters are best left to the individual installation. Some real-time pro-

g~ams -- called "resident" -- will be given dedicated core sto~age and input/ 

output devices at system-generation. Core storage so guaranteed is never 

available for batch or on-line purposes. Other real-time programs will be 

given dedicated input/ output devices at system generation time and will be 
, 

.granted thei:r: core requirements on a demand basis. This core is available 
, , 

for batch or on-lin~ purposes until the o~-site operator demands it for a "non-

resident" re'al-time program. If released by the operator, it once again 

becomes generally available. Many programs commonly characterized as 

"real-time" ones, but who only demand interfaces with terminals, can be . 

operated satisfactorily as an on-line user's program ,-- one that may be linked 

to more, than one terminal. 



__ a -- --<7'-::::.'-- ---;::;;"--.-"-

. 
Beyond the "resident" real-time guarantee., no more core is frozen than is 

required to satisfy the residency requirements of UTS itself -- (18K words). 

No core is absolutely guaranteed batch programs: Instead, batch programs 

become "fixed" in core. only by virtue of their preferred treatment in the 

queue for "computation". The system operator may vary the level of this 

preferred treatment for batch and may, if desired, "fix" the batch job'into 

core permanently. 

Allocation of disc resources depends on whether the high-speed RAD is used 

alone or in consort with a slower .one for storage of user's files and system 

files. It is clear that the high- speed RAD' can easily handle swap storage, 

symbiont and cooperative files, as .well as dedicated storage for processors and 

other heavily used components of the Monitor. 
·1 

D. UTS Installation Control 

This section describes the parameters which the installation· manager may use 

to. control the overall operation of the UTS system.· Three broad areas are ., 

covered: 

• System Performance Management 

Includes tho se parameters which control system operation by 

limiting the number of on-line users, controlling batch se-

quencing, adjusting computing quantas, and. setting subproc-

essor use .. 

• Login Controls 

These controls limit the entry ?f on-line users into the system 

and limit their use of files, disc packs, tapes; and :3ystem 



peripherals. In addition, through this me·chanism the 

on-line user may get direct connection'to a particular 

processor or other standard 'software programs. 

c Use Accounting 

A variety of use parameters are separately measured 

and charged by reference to a rate schedule. Several 

rate schedules may be operative for different users at 

the same time and the schedules may be changed dynam­

ically to provide differential rates by time of day or other 

factors at installation option. 

1. Performance Management 

Certain dynamic parameters are stored in core memory 'and used to con­

trolUTS scheduling, accounting, and overall operation. These param­

eters are initialized at SYSGEN time to default values, but may be set 

during a SYSGEN within ce~tain ranges, by ! IMC (for Installation Manage­

ment Control) cards. Once the system is in operation, the parameters 

may be set through a user console via the control program described ,in 

Section E. Two error messages may result from the SYSGEN process:' 

"UNKNOWN" for, unrecognized, 'parameter names, and "INVALID" for 

values outside the allowable range, No change of value will be made in 

cases of error and the default will apply. The SYSGEN'command'form is.: 

!IMC name = value 

Names and allowable values are listed in Section E below. 



2. Login Controls 

During user login three items are requested from the user: a) name, 

b) account number, and 'c) password. In bo~h batch and on-line en-

vironments these items are used to reference a' "login" file which 

controls en~ry of the job into the system and, if the job is allowed, 

controls the type of usage and system priv~leges extended the user. 

e·,. (, C .. I 
This file is created by a specially authorized program sihrl-la-r-to-the--, 

,C;) 

,.....-B"I'-M SUPER px.og.ramwhich may be run in the batch stream or from 
I • .:::) ) ___ ._ \ r::o--......... 

I~ 
any user console. l.:,_ ..... .-,.,.~. ? 

The login file exists under the LOGINLBE account and has a name and' 

password known only to the processors dealing directly with the file, 

i. e., a) the logon .processor, and b) the system processor used to 

enter, delete, and update records 'within the login'file. Records within 

the file ar'e named by the concatenation of a) account number and b) the 

name of each valId user. The record contains the user's password 

(which he m~y change by using th.e Password Command) and other 

information which controls the system facilities granted to that us er. 

Other than password, this account control record may only be changed, 

deleted, or entered into the file, by running a specially authorized sys-

tern program under 'management control. One of the records of the 

login file is a special system record which is used by a system manager 

to prevent unauthorized meddling in the file. This record has the name 

"LOGINLBE" (formed by the concatenation of the account "LOGIN" and 

the name "LBE". Initially, the pas swo rd is blank. As long as the pas s-

word is blank, 'anyone may invoke the system update program to enter, 



change, or delete records in .the login file by loggi~g in with account 

LOGIN .and name LBE. Once a password has been entered (using 

Password:which runs under. account LOGIN, name LBE), 

only by supplying.this new password at logon time can the login file 

be altered. The password may be changed or reset to blanks any 

number of times. This mechanism is supplied to provide security 

to the list of accounts within the system. 

Contents of the login record are: 

LR:PW 

LR:PU 
LR:TU 
LR:DU 
LR:FU 

LR:CP 

'~ LR:CF 

LR:CS 

The user's password (0-8 characters) 

Are flags which allow (when set) use of a) 
peripheral devices (printer, punch, paper tape, 
card rea4er) via symbionts, b) magnetic tapes, i 

. cl disc packs, and d) RAD file space. These' J 
flags are transferredto iE!' and control user " 
I/O CALs. ". . 

Additional flags may be set or reset to control 
use of the various system processors. They 
will be defined as the need aris es. 

Eight-character name of the "automatically 
connected" processor .. Automatic connection 
to one of the system processors is controlled 
by this item which, if set, causes an automatic 
a.a.l}. -n~ \-'\,v-..... "~'.."'-O r. I />1·&~ " 

t "I....,.,' . 

If set, the user is automatical.ly connected to a 
SAVEd program as if he had given a GET com-
mand (eight-character file name). . 

Connects the user to a charge structure for 
~cco unting .. 



------- --~-I----------:/-"'-:-V-

3. Use Accounting 

At login time each job (user) is connected to a. charge class which 

, . . 
in turn connects to a charge rate table in much the same way that 

an I/O operational label connects to a device. Management may 

control usage by changing the rate tables used by different charge 

classes as a function of time of day or by type of usage. 
.' . 

Charges for each activity are accumulated dynamically as they 

occur in the user's context area so that the rate table may be 

switched or the charge .class changed during a job's execution. 

Initially, three rate schedules w'ill be supplied. One each for on-

line, batch, and real-time users. Two. charge rate tables will be 

supplied with initial rate parameters as outlined below. New rate 
~ 

tables may be ~dded by SYSGEN and the connection to charge classes 

established. 

Installation charge totals are accumulated in a special record in the 

, ' 

system accounting log as each batch job completes and as each on-

line user logs off. This record is output at system shut-down or on 

operator request (WRITELOG keyin) together with the other accounting 

records in the file. ' 

~ Charge Rates 

For each us'er, batch, on-line or real-time individual, counts are kept in his 

context block (JIT) of several activities: 

a) CPU us e time in 2 ms units 
b) Number of file I/O CALs 
c) Number of console input CALs (interactions) 



d 

d) Console time in 600 ms units (. 01 minutes) 
e) Number of tape r~els or disc packs' mounted 

These items are printed at the end of the job along with the clJrrent summary 

produced by BPM. A limited ~ubset is output automatically at the time an 

on-line user logs off. Other. details of use accounting are available through the 

TEL status command. At log-off the automatic report includes CPU time, 

console time, number 'of interactions, and total charge as follows: 

!OFF y/. (V/J2/'/ 
CPU=I~(~MM. MM~( CON=H:MM{ INT=N~( CHG=XXXX/ 

. -;- ... 

CPU time is in hours, minutes, and thousandths of minutes, CONsole .time in .. 

hours' and minutes, INTeraction count is an integer, and charges are in units 

as explained below. In all cases high order zeros are omitted except following 

the decimal point. 

The total charge for a job is computed by accumulating units at the rates shown 

in the rate table as each chargeable evei1.t occurs. Names of the rates for each 

item and default values are given below. This is the R T: 1 rate table 
I 

Charge for Name 

CPU time R:CUP 
CPU'Core size R:COR 
On-line transaction R :OT 
I/O CALs R:FIO 

. Console time 
Tape & Disc Pack 
File • Time U s'age 

R:CON 
R:TD 
R:FIL 

r 
value 

6 
1 
104 

103 

200 
105 
104 

unit· 
calculation 

r~ t . I 
r- t· s 

r·n 
r. D.P 

approx. char ge (105 units = $1) 

5~ per sec for a 4K progra~; 
s in lK blocks; t in 2 ms tics';, 
10¢ per interaction 
1 ~ per I/O command 
12f per console hour 
$1 per tape or pack mounted. 
10 f per page per day. 

The ~onetary values are for example only. The value of a c'harge unit is up to 

the installation as is" the makeup and assignment of charge classes. 

Rate tables are generated by SYSGEN and resident in core during system ope::'ation. 

Each is a half word table containing the six rates given above. Without SYSGEN 

instructions to the contrary three rate schedule header words will be generated 
~t. ~ e. Q.. t.. 

--ItS: 1 J RS:2, and RS:3 all connected to the standard rate table R T:1 above during 

prime shift. During non-prime shift the three schedules will be connected to 

R T:2, a second standard table, which arbitrarily contains half the values of RT:l. 



~ I' \! ~ . ..o~ 
'"" \' l/YI r ... 'J (o;~u:/" -
~ -,~ \,./ ~,......~ 

R~te tables, rate_schedules, and the initial connections between them may be 

established ,for a given installation through SYSqEN. , 
d AI t, \, •• ",A ' 

~\:\C\ \./~. \...,~ .. " \ .. : ... "'".;;~~ b 

R-a:t~C'he'dules are connected to rate tables by commands of the form: . c.c1-
!~:3. - RT:l 

A '~le header is created for each such entry. 
t, c.-..-. '. 

A rate table and its contents are defined by commands of the form: 

!RT:1" R:CPU = 6, R:COR = 1, R:OT' = 10000; 

! R:FIO = 1 ~OO, R :CON = 200, R :TD = 100000 

Val1l;.es rnust be in the range 0 -+ 217 -lor the message "VALUE OUT OF RANGE" 

message will be printed and value zero substituted. Zero values are used if 

rate table entries are not specified. 



-..-;..--.---.,------;----

V-I.. . ". C '~ T, / I) 
,I I 

~,t 'I', I \!" 

E. Performance Control 

Ability to measure the operati<?n of the system "is particularly important 

during .the initial debugging stages and increases 'in importaI?ce as the sys-

tem is tuned to meet the load of the users I particular environment. These 

performance measures are built directly into the system as a series of 

counters; a given area of executive storage will be devoted to counting 

actions and recording times for completion of various functions. Special 

code in the form of counting instructions are provided at critical points 

within the system to count these events'. As such the recording of perform-

ance ipformation will be on a routine-~y-routine basis·thr6ughout the entire 

system. A program with special executive privileges' will display this in-

formation. This program will use a dedicated console to print the contents 

of the tables which record system perfo.rmance meaSUl"1es. Appropriate for~ 

mats and appropriate time intervals for printing will be used. Through a 

standard Monitor feature this program is 11awakened", perhaps every minute, 

to print the current contents of the statistical counters. This mechanism pro-

vides a .relatively flexible scheme for adding new performance measures to the 

system and providing for their printo ut as the gathering of new statistics is in-

. dicated. Some items should be meas ured and displayed frequently, perhaps 

every minute; others should be measured a.nd displayed at a longer interval --

. . 

. perhaps every fifteen minutes or every hour. The display frequency is adjust-

able so that operational data can be displayed more often if special tests are 

to be made. 



------ --~·I-""'" --,..,-----:--

1. Function in General 

Performance measurements are important during the initial debugging 

stages, and their importance increases as ~he system is tuned to meet 

the load of the us~rls particular environment. In the debugging stages 

these measures are most relevant to the designers and implementers of 

the system. Later they are of primary interest to the installation man-

ager and the maintainers of the system. 

Some of the functions of performance meas urement are: 

a) To measure how well the system performs. 

b) To indicate weak points in the system. 

c) To suggest the caus,es of such weaknesses. 

d) To warn of immediate problems; e. g., permanent storage 
is filling up, response time is becoming noticeably slower, 
large numbers of console errors are occurring. 

e) To help tune the system for .both current and general load 
conditions. 

f) To measure the importance of various parts of the system; 
e. g., to measure the relative use 0-£ various processors in 
CPU and connect time. This might have implicatIons for 
whether a particular processor is' dropped or whether its 
~se justifies the effort to. add new capab,ilities. 

Having performance measures on~line means that tuning of the system 

can be done in response to the current state of the system. If there are 

problems in the sys,tem (e. g. , . an unusual number of disc errors), the 

installation manager will not be the last to know. Knowing now instead 

of later means that he can caus e action to be taken now instead of later. 



-....,- ... ---

On-line performance control is tl1.e ,capability to modify the basic 

system parameters (such as max cor'e size 'allowed on line users) 

-
in response to on-line performance measures and other information. 

2. Summary of Performance Monitoring and Control 

UTS combines on-line performance measurement and management 

in the CONTROL program. The user can display selected control param-

. -
eters and modify their values. He, can also caus e the display of values 

that measure the performance of the system. These values may be dis-

played periodically at a time interval specified by the user. The user 

~ay specify one of several cann~d displays by name or he .can build his 

own display. 

The following is an example of how the program can be used to modify 
~ 

control values ~nd display performance measures. 

!R UN CONTROL cr 

-SL:OU=40 cr 

-SET UP DISPLAY 4 cr 

-USE'ITEMS DISPLAY cr 

INTERVAL IS--60 cr 

The uS'er calls the CONTROL program. 

The user sets SL:OU (i. e~, the max 
, no. of on-line users) to 40. 

- is the prompt character for the pro~ 
gram 

crstands for a carriage return or line 
feed 

The user se~s up canned display number 
4 which gives a summary of the system 
performance. 

The user requests a use items display. 

The user is prompted for the time in­
terval. He indicates that the interval 
between ~isplays should be 60 seconds. 

FIRST 11 ME PERIOD HAS BEG UN 60 seconds later the first instance 
of the display occurs. 



Number of Users 
T asks per Minute per User 

----- --~~- ..... --........ -.." .. .,-_. 

Overall Sample' 

57 
3~7 

0/0 of Tasks which are In~eractive 
CPU msecs per Interactive Task 

87.~ 
15 

95.8 
5 
0.1 
5 

900/0 point for Response Time (in seconds) . 
Execution Multiplication Factor 

0 .• 2 
20 

Number of Users in Core 
RAD and Tape Reads and Writes per sec 31 

10 
25 

-EXIT cr 

EXIT. CR? --YES cr 
BYE. 

3. Key Concepts . 

The display is repeated several times 
at 60 second intervals. 

Then the us er hits the break key and is' 
prompted for another command. He 
decides to exit from the program. 

, . 
The us er is asked if he wants to exit. 
He indicates that he does •. 

The TEL prompt character appears indi­
cating control has been returned to TEL. 

=3. 1 Definitions for the Breakdown of Terminal Interaction 

Interaction time is the time between the completion of one input comma.nd 

and the co;mpletion of the next. Response time is the time between the 

completion of input and the first program activation. Task turnaround 

time is the time between the completion of input and the following terminal 

read. Compute time is the time spent in computing in one interaction 

period. Thinking and typing time is the time, between the terminal read 

by the -program and the end of the user response (input complete). Session 

time is the time between log-on and log-off. 



3. 2 Diagra:m Explaining Concepts Relating to Ter:minal Interaction. 

~------------ tas 

RT 
respon~e 

ti:me 

IT-

..fo.al< interaction ti:me 

TT Re:maining 

k turn-around ti:me ·I~ 
output 

C .... .... 
Intermittent CPU tinle 
------. --.. 

due to I/O wait and 
queue-for-service delay. .... 

~ 

Intermittent ter:minal 
:..tI -

• T 

thinking and typing ti:me 

user think I user typing 

-r ti:me time 

. . L First ti:me 

. 

output .- the user does 

am progr 
activatl on 

input 
complete 

'-1 L 
Character received at 
the computer which is 
terminal to the :message 
input by the user. 

Control of the CPU 
is turned over to 
the program servicing 
the message just 
received (The Reading 
program) 

, 

IF' tt' . irs une 
the user ~ay type 

READ 

L 
The service progra:m 
is sue s a READ to the 
terminal requesting 
input of the next 
comm.and from the 
user. 

type. 

.. 
po 

• 

• 

.. 
input 

complete 



--SH EET-:3)--O F---:;;-C;'-lj------------- " 

I 4. Types of Items That can be Displayed 

An item is a control parameter or a use "~tem." A control parameter is 

a parameter of the sysfem which can be modified to tune the system; e. g. , 

the maximum number of on-line users is a control parameter. Changing 

its value may change average response time, etc. 

A" use item is one of the following: 

a) A use distribution 
b) A use group 
c) A siding 

"A use distribution shows what percentage of. occurrences of. a particular 

kind of event falls within given r-anges on an appropriate scale. " An aver-

age is also included _with each distribution. For example, there is a dis-

tributio_n for the amount of compute time per interaction. The distribution 

". , 
shows the percent of interactions in which compute time is under one rililli-

second; the percent of inter'actions in wh.ich compute time ls,between one 

and two millis econds; etc. • 

A use group" is a group of related use values plus text in the form of 

sidings and headers to explain the values. 

A siding is text that appears to the left of a value and helps explain the 

value. 

5 ~ Items -That can be Displayed 

A list of items that can be displayed is given belo\v. The names are the 

names used in control commands to add or drop items from the list of 

items to be di~played. 



5. 1 Control Parameters 

Name 

SL:OC 

v'SL:OU 

J SL:TB 

J SL:UB 

SL:OF 

SL:OT 

j SL:BB 

J SL:BP 

J . SL:BL 

Description 

Max core size allowed on-line 
.users 

Max number of on-line users. 

Number of characters at which 
block terminal output. 

Number of characters at which 
unblock .terminal output. 

Max file space allowed on-line 
users. 

Max number of tapes allowed 
on-line users. 

. Batch Bias. The pe~cent ofJ 
execution time which. batch f 

computation receives in its I 
turn. ~: 

Batch Priority relative to on­
line users. (1 for equal; 0 for 
low). 

Batch Lock. If set (i.e., 1), 
enforces a partitioned system 
in which the batch job is never 
swapped. 

J SL:QMIN The amount of uninterrupted 
compl;lting guaranteed'a user 
after selection. 

J SL:QUAN The time slice by whic~ com-

Unit ·Low 

K words 1 

Users 1· 

Characters 1 

Characters 1 

K words o 

Tapes o 

o 

o 

o 

Milliseconds 0 

.Millis econds SL:QMIN 

Core Size 

128 

256 

SL:TB 

RAD Size 

No. of 
Drives 

100 

1 

1 

SL:QUAN 

2 31 - 1 

, 
Default 

8 

32 

40 

10 

100 

1 

50 . 

1 

o 

. 40 



5.2 Use Groups 

Name Description 

SUMMARY 

CPU 

CPU PROC 

USE PROC' 

Overview of the System 

Number of Users 
Tasks per Minute per User 
0/0 of Interactive Ihteractions 
Millis econds per Interactive Task 
9'00/0 Point for Response Time 
Execution Multiplier 
Users in Core 
RAD and Tape Read~ and Writes per Second 

Percent CPU Time (since the. system came up and 
du!ing the last time period) for: 

On-line User Programs 
. On-line Monitor Services 
Batch User Programs 
Batch Monitor Services 
Overhead, L e., scheduler, CpC and symbiont 
Idle; Le., no 'service request from any user 
Swap WAIT, L e., the only service request avail­
able is not yet in ·core. 

Percent CPU time by Processor (since the system cam~ 
up and during the last time period) for: 

Basic 
Delta 
Edit 
FORTRAN 
Metasymbol 
User Progra~s 

Current Number of Active Users by Processors for: 

Basic 
Delta 
Edit 
FORTRAN 
Metasymbol 
User Programs 



.4 Use Distributions (oj).. ~ l,\\~~) 

Name 

SYS RESP 

SYS INTE 

SYS THIN 

SYS TURN 

SYS COMP 

X TYPE 

X TURN, 

X COMpo 

SYS INPU 

SYS OUTP 

X INPU 

XOUTP 

SYS SWAP 

~:~where X = 

Description 

Distribution and average of response time 
for the whole system. 

Distribution and average of inter·action 
time for the whole system,. 

Distribution and average of thinking and 
typing time. 

Distribution and average of task turnaround 
time for the whole system. 

Distribution and average of compute time 
for the whole system. 

Analogous to SYS TYPE~:~ 

Analogous to SYS TURN~:~ 

Analogous to SYS COMP* 

Distribution and average of input length 

Distribution 'and average of output l~ngth 

Analogoll:s to SYS INPU~:~ 

Analogous to SYS OUTP~~ 

Distribution and average of users to swap 
out per swap. 

BAS for Basic, 
DEL for Delta, 
EDI for Editor 
FOR for Fortran, 
MET for Metasymbol, or 
USE for User 

Scale Unit 

Log Seconds 

Log Seconds 

Log . Seconds 

Log Seconds 

Log Milliseconds 

Log Seconds 

Log Seconds 

Log Millis econds 

Linear Characters 

Linear Characters. 

Linear Chara'cters 

Linear Characters 

Special Users 



Name 

I/O 

CON TIME 

USERS 

INTERACT 

OTHER 

----- --..,,-.-- ----:::;J-V-;--

. Description 

I/O Rates (per second since the system came up and . 
per second i~ the ~ample) for: 

Service Requests, i. e. ;. CALs 
Terminal Reads apd Writes 
Characters Input from Terminals 
Characters Output to Terminals 
RAD and Tape Reads and Writes 
Symbiont and coop Reads and Writes 
Out Swaps 

Timing Averages (average per interaction since the 
system came up and in the sample period) for: 

Interaction Time (in seconds) 
Think and Typing Time (in seconds) 
Turnaround Time (in. seconds) 
Response Time (in milliseconds) 
CPU Time (in milliseconds) 

. Current Number of Users for: 

All Active Users 
In Core 
Compute Bound 
Inputting 
Batch 

Number of IQ.teractions per minute by Proces sor for: 

Basic 
Delta 
Edit 
FORTRAN 
Metasymbol 
User Programs 

Miscellaneous Other Values 

Average Size of Program 
Core Time 
Ratio of Single to Multiple Swaps 
CPU % for Interactive Tasks 
Executable Users not in Core 
Executable Users' in Core with Priority above the 
Compute Queue. 



-..,;J.n -.l!i.c,,-~ -7-(.! - \:,)".1:: ---:;;; ", - v 

5.3 Use Sidings 

Name Expanded Name 

LOG SeAL Log Scale 

LIN SeAL Linear Scale 

SLI SeAL Special Linear Scale 

These sidings look as follows when displayed: 

SPECIAL 
LOG LINEAR LINEAR 

SCALE S'CALE SCALE 

. AVG AVG AVa 
<1 <5 <1 
<2 <10 '<2 
<5 <15 <3 

<10 <20 <4 
<20 <25 <5 
<50 -<30 <8 

<100 <35 <7 
<200 <40 <8 
<500 <45 <9 
'<IK <50 <10 
<2K < 55 <11 
<5K <60 <12 

<10K <65 <13 
& UP & UP .& UP 



6. Command Summary and Formats 

6. 1 . Command Summary 

6. 1. 1 Commands for Setting up Displays .' 
The' USE ITEMS DISPLAY Command displays those items 'that have 

their print flags on. The primary purpose of this group of commands 

is to allow the user to specify the display he desires by turning on the 

print flags for just those items he wishes to display. 

Command 

ADD 

DROP. 

SET UP 

LIST 

Function 

Turns. on the print flag for the specified items. 

Turns off the print flag for the specified items. 

Turns on the print flags for a numbered canned 
display. Turns off all other print flags •.. Can be 
u~ed to turn off all print flags. 

,Lists the name s of all items with their print flags on. 

6. 1.2 Commarids Relating to Control Parameters 

Name Function 

CONTROL PARAMETERS DISPLAY To display all control parameters with 
the~r print flags on. 

CONTROL PARAMETERS DISPLAY! 

SET 

To display all control parameters. 

To s'et the value of a specified control 
parameter. The set command 'can also 
be used to lock processors in core or to 
unlock them., 



6.1.3 Commands Relating to Use Items Display 

Name Function 

USE ITEMS DISPLAY Displays those use item·s .which have their ·print 
flags on at a specified time interval. 

PROCEED 

OFF 

Continues an interrupted us e items display. 

Turns off a use items display to allows adds and 
drops· •. 

. 6.1.40ther Commands 

Name Function 

EXIT Exits from the pr~gram. 

6. 2 Standard Command Formats 

Command 

ADD 

DROP 

SET UP 

LIST 

CONTROL 
PARAMETERS 

CONTROL. 
PARAMETERS 
DISPLAY! 

Format 

-ADD cr 
IT EMS TO BE ADDED 
--<Name> cr 
--<Name> cr 

-- cr 

Comment 

Where <Name> is one of the names 
listed in Section 5. 

-DROP cr ·Where <Name> is one of the names 
ITEMS TO BE DROPPED· listed in Section 5. 
--<Name>cr 
--<Name>cr 

-- cr 

-SET UP <Number> cr . Where <Number:> is 0, 1, 2, 3, or 4. 

-LIST cr 

-CONTROL DISPLAY. cr The display follows immediately 
after the command. 

-CONTROL DISPLAY! cr The display follows immediately 
after the command. 



Command 

SET 

USE ITEMS 

PROCEED 

OFF 

EXIT 

, I 

NOTATION: 

------ --'!~------=::;i-""-V-

Format Co~ment . 

-<Name> = <Number> cr Where' <Name> is one of the names 
listed in Sec~ion 5. 1 and <Number> 
is an unsigned integer in the range 
fo r the name . 

. 
or -<Name> = LOCK 
or -<Name> = UNLOCK 

Where <Name> is the four letter 
name by which some processor 
-is called. 

-,USE DISPLAY cr Where <Number> is the number of 
INTERVAL 15-- <Number> cr seconds between displays. The dis­

play occurs below at the specified 
time interval. 

-PROCEED cr 

-OFF cr 

-EXIT cr 
EXIT. OK? ~-cr 
BYE. 

(a) cr stands for carriage return or line feed. The blank before cr in the 
examples is for readability. The cr should come immediately after the 
preceding' nonblank character. 

(b) - &--' are prompts from the CONTRO.L program. 

(c) All lines not ending in cr are messages from the syste·m. 

6. 3 Remarks· about Command Formats 

(a) For all the commands' except the SET, SET UP, and CONTROL 
DISPLAY co~mands onlr the first letter is relevant in response 
to the - prompt; e. g., the. follOwing ar.e all equivalent: 

-ADD cr 
-A cr 
-ADD IT EMS TO PRINT' LIST cr 
-AXYZ cr 



-on -..ci".c,,-J. -::--:;:-:-- 0 ~-::> -v:-v 
. . ~~ ~ 

(b) No extra~eous blanks should be included" in a SET command. 

(c) The last digit occurring in a SET UP command is used to 
identify the canned display .. 

.' 
(d)' An initial C identifies' a command as a CONTROL DISPLAY 

command. If a! is present, all control p'arameters will be 
displayed. Otherwise, those control parameters with their 
print flags on will be dlsplayed. 

(e) X is an alternate initial' character for the EXIT command . 

. 7. Discus sion and Examples of Individual Commands 

'7 • 1 ADD Command 

The ADD Command is used to turn on the print flag of items so that 

they will be displayed when a use display (or control display) is in-

voked. Consider the following example: 

,-ADD cr 
ITEMS TO BE ADDED 
--CPU PROC cr 
--USE PROC cr 
--cr 

-USE DISPLAY cr 
INTERVAL IS--60 cr 

The print flags for CPU PROC and 
USE FROC are turned on. 

A use items display will be made every .-
60 seconds including all items with their 
print ,flags on. The use groups referred, 
to by C~U PROC and USE PROC will be 
included since the ADD command above, 
turned on their print flags. 

The items that may be added (or dropped) are those listed in Section 5. 

RESTRICTION: 

ADD (and DROP) commands are illegal during an interruption of a USE 

DISPLAY. However, if the display is not going to be continued, an OFF 

command may be used to turn off the display. Then adds and drops may 

be given. 



·--on".I:J.c.I.L .,;:;':';-Q",1:-.:/-(l-;(') 
. . . ~ 

7·.2 ·DROP Command 

The DROP Command is used to turn off the print flag of items so that 

they.will not be displayed when a~se display (o~ control display where 

all is not requested) is invoked. Cons.ider the following example: 

-DROP cr 
ITEMS 'TO BE DROPPED 
--CPU PROC cr 
--USE PEOC cr 
--cr 
-USE DISPLAY cr 
INTERVAL IS--120 cr 

·The print flags for CPU PROC and 
USE PROC are turned off. . 

A use items display will be made every 
two minutes ~ The use groups referred 
to by' C.PU PROC and USE PROG will not 
be included since their print flags are off. 

The items that may be dropped (or adde~) are those listed in Section 5. 

RESTRICTIONS: 

DROP (and ADD) Commands are illegal during an interruption of a USE 

DISPLAY. However, if the display is not going to be continued, an OFF 

Command may be used to turn off the display. Then adds and drops may 

be given. 

• 

'7 • 3 SET UP Command 

The BET UP Command may be us ed to turn off all the p-rint flags. A 

user would want to do this if he were going to specify his own display 

from scratch. T~e command .for this is: 

-SET UP 0 cr 

The SET UP Command can also be used to turn on just those flags re-

quired for a particular canned display. All other print flags are turned 

off. 



There are five canned displays at 'present:' 

o 

1 

Turns off all the print. flags 

Turns on the print flags .for:' 

LOG SIDE 
SYS RESP 
SYS INTE 
SYS THIN 
SYS TURN 
SYS COMP 

. LIN SIDE' 
SYS INPU 
SYS OUTP 

2 ' Turns on the same print flags as display 1 and 
then'turns on: 

3 

4 

X TYPE 
X TURN 
X COMP 
X INPU 
X OUTP 

Where X is a p'roces sor specifled by the us er 
in response to a prompt. 

Turns on the prin.t fl,ags for: 

CPU 
CPU PROC 
USE PROC 
I/O 
CON TIME 
USERS 

Turns on the print 'flag for: 

SUMMARY, 

E. g., in the following example the appropriate print flags are 
. set on (and off) for display 3: 

-SET UP 3 cr 



RESTRICTION: 

Commands which turn on and/or off print. flags are illegal during an 

interruption of a use items display. See th~ OFF Command. 

7. 4 LIST Command 

The LIST Command lists all items with their print flags on. It can be 

used to verify the items to be included in a canned display, or to make 

sure that a series of ADDs and DROPs had the desired effect; e.g. , 

-SET UP 3 cr 

-LIST cr 
CPU 
CPU PROe 
USE ·PROe 
I/O 
CON TIME 
USERS 

-SET UP 0 cr 

-LIST cr 
-ADD cr 
ITEMS TO BE ADDED. 
--SLI SIDE cr 
--SYS SWAP cr 
--cr 

-LIST cr 
SLI SIDE 
SYS SWAP 



------un -~ £,.,-J. ~ !lP~ O~ -.;;-v-'-v-

7.5 CONTROL PARAMETERS DISPLAY' Command 

The CONTROL PARAMETERS DISPLAY Command is used to displ~y 

all control parameters with their print f1ag~ on. A list of all control 

parameters is given in Section 5. 1; e. g. , 

-SET UP 0 cr 

-ADD 
IT·EMS TO BE ADDED 
--SL:OC cr 
--SL:OU cr 
--cr 

-CONTROL cr 
MaxK Core On-Line Users = . 8 Max Number On-Line Users = 32 

7.6 CONTROL PARAMETERS DISPLAY! Command 

The CONTROL PARAMETERS DISPLAY! Command is used to display 

all control parameters whether or not their print flags are on; e. g. , , 
-CONTROL! cr 
Max K Core On-Line Users = 8 Max Number On-Line Users 

No. Char at which Block = 40 No. Char at which Unblock 

Max File Spc On-Line User = 100 Max Tapes On-Line User 
0/0 Batch Bias = 50 Batch Priority. 
Batch Lock = 0 Msec without Interruption 

Millisec,s per Time Sli~e = 300 

= 
= 
= 
= 
= 

32 
10 

1 
- 1 
40 



7. 7 SET Command 

The SET Command is used to change the value of a control parameter'; 

e. g .. , 

-SET UP 0 cr 

-ADD cr 
ITEMS TO BE DISPLAYED 
--SL:QUAN cr 
--cr 

-CONTROL DISPLAY cr 
Milliseconds per Time Slice = 300 

-SL:QUAN = 450 cr 

-CONTROL DISPLAY· cr 
Milliseconds per Time Slice = 450 

.. 

The SET Command can also be used to lock or unlock a processor; e. g. , 

-BASIC = LOCK cr Basic is locked into core. 

-BASIC = UNLOCK cr Later Basic is unlocked. 

Special care should be taken not to lock a processor into core which is 

already locked or to unlock a processor which is not locked. 

7.8 USE IT EMS DISPLAY Command 

The USE ITEMS DISPLAY Command is used to display all items with their 

print flags on (including control para~eters). The displ~y takes place at 

·an. interval specified by the user; e~ g. , 

-SET UP 1 cr 

-USE ITEMS cr 
INTERVAL IS--180 cr 
FIRST TIME PERIOD HAS BEGUN Starting·3 minutes later, display 

number one will be displayed every 
3 minutes. 



7. 9 PROCEED Command 

. I 

The PROCEED Command :r:nay be used to continue a use items display 

which is in progress; e. g., 

-SET UP 0 cr 

-ADD cr 
ITEMS TO BE DISPLAYED' 
--USERS cr 
--cr 

-USE ITEMS DISPLAY cr 
INTERVAL IS--60 cr 
FIRST TIME PERIOD HAS BEGUN 

-CONTROL! 

-PROCEED c~ 

60 seconds later the number of 
active llsers, users in core, com­
pute-bound users, inputting users, 

, and batch users is displayed. 
The pro gram is interrupted. 

All control parameters are displayed. 

If less than 60 seconds have elapsed 
since the last time period began, the 
displays will continue at the next in-
,terval. 

7. 10 OFF Command 

ADD; DROP, and SET UP Commands are not allowed while a use items 

dis·play is in progress. However,. if the dis'play is not going, to be con,,;, 

tinued', the display may be turned off;e. g. , 

-ADD cr 
NO ADDS 'OR DROPS DURING USE ITEMS DISPLAY 
USE OFF COMMAND TO TURN OFF DISPLAY 

-OFF cr 

-ADD cr 
ITEMS TO BE ADDED 
--CPU PROC cr 
--cr 



7. 11 EXIT Command 

. The EXIT Command is used to exit from t~e perform program and re-

turn control to TEL; e.g".', 

-EXIT cr 
EXIT OK?--YES cr 
BYE. . A lone cr or any string beginning 

with Y means yes. 

! is th~ prompt character for TEL. 

If the user accidentally keys in an exit command or changes his mind 

after he typ'es it in, he need not exit; e. g~ , 

-EXIT cr 
EXIT OK?--NO Cr 

8. . Approach to Implementation 

Anything but 'alone cr or string 
beginning wi~h Y means no. 

There are four different kinds of code in the system which pertain to 

performance measurement: 

. . . 
(a) A user program .which displays the measurements in a format 

requested by the user and modifies control parameters for the .­
user. 

(b)' A Monitor page or pages containing the control parameters and 
use values and distributions on.which the displays are based. 

(c) Special code at critical points in the sy stem which modify the 
Monitor page{s) directly (e. g. , 'upping counts) or which report 

. an event to the special code' in the Monitor. 

(d) Special code in the Monitor which makes more complicated cal­
culations and changes to the values and distributions in the 
Monitor page(s). 

When a use display is being performed, the program is awakened 

periodically (at a time interval specified by the user) and produces a 

display. The program is implemented in such a fashion that it is rela-

tively easy to add .new measurements and construct new displays. 



F. System Error Detection and Recovery 

In addition to standard error recqvery normal to I/O devices, the UTS sys-

" 
tem will take special meas ures to provide reasoaable recovery for detectable 

machine malfunctions. Assuming that the normal failure mode will be that of 

intermittent error, the system will effect recovery by immediate restart of 

the user in question or the whole system if nece~sary after making records of 

machine status t? aid in error diagnosis. In this case recovery will be ~ccom-

plished without operator intervention. This technique will maximize the up 

time of the system while recording information useful to machine maintenance 

personnel. 

Errors, whether caused by hardware or software, are of concern in any com-

putter system. The consequences of fa"ilure in a time-shared system are 

multiplied because of its multi-programm~d operation. When a time-sharing 

system fails each of the concurrent users of the system is affected, perhaps 

fatally. The possibility of an operator re-trying a~ job that h~s run into a ma-

chine problem is no longer an available option. Even symbiont batch systems 

run into difficq.lt backup problems. 

This specification does not offer any complete solutions to the reliability pro-

blem. Rather, it suggests a n.umber of possibilities of various degress of 

implementation ,difficulty. for use in <;letecting or recovering from hardware 

. problems. Since truly adequate error recovery depends in large measure on 

the exact strain put on the hardware' by the mode, or modes of operation of the 

software"we must continually adjust our approaches to .the reliability problem 



as the effectiveness of the various techniques are proved or disproved 

. . 
through experience. We expect this experience to show both the common 

failure modes of the hardware and the effectiven~ss of recovery and detection 

techniques. 

The presumption is made that standard and adequate recovery measures have 

been taken wherever possible (if su.ch is not the .case in BPM, then changes 

. will be made). That is, tape and disc transfers are parity-checked. Critical 

. transfers are checksummed and/or address checked. Detected errors are re-

covered by reread or rewrite and operator assistance has been used where 

possible (say card problems). With these standard techniques out of the way, 

we are still left with errors. (For Some errors, such as memory parity, we 

are in trouble immediately and recovery ,by retrial is impossible.) The latter 

category is the one we need to attack. 

, 
At least six facets of error handling need ,to be considered for a comprehensive 

attack on system reliability: 

(I) Prevention 
(2) Detection 
(3) Recove'ry 

(4) Isolation 
(5) ,Recording 
(6) Restart 

Prevention of hardware errors is a matter of good machine design and good, 

maintenance. However, we must not eliminate the possibility of identifying 

weaknesses in the hardware and providing fixes for them. System software 

has a history of identifying hardware weaknesses. In many cases a hardware 

fix will be the correct solution. 



Detection is also often left to the hardwa~e thro ugh' parity checks, bounds 

checks, etc. Often, of course, only the software can tell that a certain 

signal.means a malfunction in one case and not in another. Many software 
.' 

checks are possible -- so many, in fact, that it i's often difficult to know 

where to s·top. The usual solution is to check very little and depend heavily 

on the hardware. This is not good enough in time-sharing systems. Errors 

must be detected quickly and recovery initiated before total chaos develops. 

Simple checks for consistency of data should be made when feasi.hle. More 

ela1;>orate checks should be developed in freqll:ently used codes such as the 

Scheduler, job control, check interrupt routines, and I/O handlers. A partial 

.list of software error detection techniques which are useful in various situa-

tions is listed below. It is certainly not complete and should be added to as 

we ;gain experience . 
• '1 

(1 ) 
(2) 
(3) 
(4) 
(5) 
( 6) 
(7)­
(8) 
(9) 

(10) 

Periodic consistency checks 
Checkrunning 
One word data comparisons on I/O transfers 
Self-addressed RAD records 
Range checks on internal data 
Double end loop tests in critical routines 
Read compare after RAD write 
Watchdog timer checks for' dropped I/O traps 
Software double checks on I/O action (for extraneous interrups) 
Checks for controller and device unusual end conditions 



Diagnostics have long been used to identify failing machine part's. With the 

use,of margins, weak components can someti~es be detected before they' 

cause trouble in the actual working machineo Wll-ile diagnostics of many 

types can be run in a time-shared system, their usefulness is limited because 

of the difficulty in margining; we have no' way of providing marginal voltages 

or frequencies for just the time slice in use by the diagnostic (and returning 

to normal after error dete,ction-to provide' automatic reporting of the error 

location and type). Certainly this difficulty should not be construed to limit 

efforts for time':"shared diagnostics or exercisors. 

Time .. shared diagnostic programs are, very useful for' exercising peripheral 

units (tapes, card equipment, paper tape equipment, discs, etc.) and 'their 

controllers since the equipment can be isolated and separately margined. UTS 

will provide for such diagnostics allowing them master'mode operation and pro­

viding for automatic execution of diagnostics during periods of light load. 

Recovery of I/O errors of various types is fairly standard practice althougn 

it is often a long and difficult task. Many main frame errors are not recov­

erable at all. In fact, in the case of parity errors in the Sigma 7 it is not even 

possible, in general, to recover, (although in most cases recovery can be accom­

plished). We may find th,at hardware help is needed in this and other cas es 0 



In certain cases known to the program th'eerror is of little consequenc~ 

(e. g., if it occurs while cycling in the idle loo.p) and the remedy will be to 

ignore the error. These cas'es will be relatively. few. In the time-shared 

situation, a machine error in a user's program may be "recovered" by re­

starting the job from the last swap image on RAD. This will work if no 

other I/O has occurred (a fact which can be recorded and if the accounting, 

information has been updated. -Whether it is worth doing depends on the fre­

quency with which we expect machine errors to occur. 

Isolation of the area of error is particularly important if recov~ry is not 

possible., (Of course, if isolation is complete enough' we can recover but 

this is rarely the case.) In the time-sharing environment, it is important 

to isolate the error to a single user if possible. If this can be done then the 

user and his data can be discarded without injury to ot~er users. 

Recording of all dete~ted errors, whethe:r r~covered or not, is vital to good 

system maintenance. Automatic recording is preferable since fewer errors 

are overlooked or ignored. ' (How many Sigma 'Z machine errors went unre­

ported last week?) In addition, the accumulation of records of intermittent 

failure is valuable in isolating problem areas of the machine, which will re­

quire both more maintenc:tnce attention an~ better diagnostic and error re­

covery ,procedures. It is required that a teletype console be dedicated to 

- r'ecording of errors detected and recoveries made. The console also serves 

as a performance meas urement log. 



-SffEET3-/-0-F-j;I-V,-O-
, . . 

. , , 

Total failures of the system should automatically record the vitals of the ma-

chine (registers J PSW,' etc.) on the log for later analysis and a total core 

dump of the machine on RAD will be made (in a circular buffer) to enable a 

very detailed analysis when warranted. Time and effort required to make 

this record is paid for on the first error found, hard or soft. 

A brief summary of the data which .should be recorded is: 

Recovered errors Catastrophic failures 

user console -' sta #; count ,type ot test which failed 

tape - unit #; count registers 

RAD - sector; count PSD 

AIO, TIO, T DV status special system temps 

I/O command used core dump (on RAD) 

Restart after a system failure in the, shortest possible time is of great im-

portance in a t~me-shared system. Users understand that machines fail 

occasionally and are happy if an automatic restart procedure is able tore-

start quickly from a total but intermittent failure. If all failures were sotid, 

ones, autoIrl:atic restart' would not help much but most failures ~ intermittent 

and restart serves to get the machine back up for the users quickly. 'The re-

cording of the failure directs the CE's in their efforts during the next normal 

maintenanc e period. 



-...,.. .. ... -...-...._-..J . ...,- .......... -'--~----------

Machine Modification may be necessary to achieve 'reliable system operation. 

Specific areas of concern are: 

(1) A register to report directly t~e address of a 
memory parity error 

(2) Direct connection of the reporting log to avoid 
~ependence on an lOP. 

In summary, the philosophy of UTS, for machine errors and failures is pre-

vention wherever possible, care in detection at the earliest possible time, 

. recovery from as many errors as pos sible, isolation of the failures to limit 

the bad effects, recording of both error and failure situations to aid mainte-

nance, and rapid restart in the event of failure to maximize up time. 



DRAWING NO. 702489 
SHEET SCJ OF 307 

Part III. SYSTEM CAPACITY AND LOADS 

TABLE,OF CONTENTS 

INTRODUCTION ' 

A. RAD Transfers 

B. RAD Transfer Times and Loads 

C. CPU Loads 

D. Interactive 'Delays 

60 



-.-:;)n-J!i..t!J-.l-6l./-0·~---,::>-lI-;-t;. 

. . . 

INTRODUCTION 

We have stated above that UTS is intended to handle batch processing operations 

and real-time· programs in addition to 'on-line terminal u·sers. Clearly the ability 

of a Sigma 7 to handle all these tasks adequately will depend on the total load sub-

mitted, the distribution of this load over the three broad categories of use, and the 

hardware configuration of the Sigma supJ?lied to the t~sk. Also, the user's satisfac-

tion will depend on his definition of "adequately" -- what job turnaround time is 

acceptable in batch and what response delays are tolerable in on-line service. 

UTS.achieves its responsiveness and efficiency through the application of several 

hardware and software techniques. The principal additions to the standard tech-

niques embodied in BPM, and the primary gain from their use, have been discussed 

previously but are listed below for reference: 

• Multiple users in core - increases CPU utilization by increasing 

the probability that an executable task is in core. We try to assure 

that, on the average, four or more executable tasks (on-line, batch, 

etc.) are in core. 

o Use of 'Sigma 7 memory map - provides execution time relocation 

of user programs by page, thus. simplifying bookkeeping and re-

ducing overhead in achieving multiple users in core. Since the page 

parts of a user's program may be placed anywhere in core, scheduling 

of ~asks may be made to depend only on task priority and not be ham-

pered by a need for contiguous memo~y allocation. Some· additional 

flexibility accrues to the programmer through the availability of a. 

large virtual address space. 



e Shared common pro'cessors -, Reentrant programming and 'use 

of the memory map allow ,users to share commonly used proces­

sors such as editor~, debuggers, libraries ,. and BASIC. Con­

siderable saving in core space is achieved in comparison to systems 

requiring a,processor copy, per user. 

But what will be the system's response under some typical loads? How effective 

will the above techniques be? In the paragraphs below we examine CPU and R,AD 

loads, on-line terminal response, and the division of the load among batch, on­

line, and real-time uses for various loads typical of the industry. The results 

are back-6f-the-envelope type calculations, but serve to give a general impres­

sion of expected UTS operation. 

Two cr~tical areas are examined: RAD usag'e and CPU usage. RAD is examiried 

for total time load; that is, the Sum of the time required to service all reques'ts 

for RAD transfers is estimated and compared with the time available to perform 

the requests. The calculations are made for three SDS'RADs and average delays· 

are estimate,d from standard queuing delay curves. The results show that for the 

"typical" load the 7204 RAD is inadequate,the,7232 is marginal, and the 7212 

quite satisfactory in any case. These result~ are for both fj.les and swap storage 

on a single RAD. We will discuss later the splitting of these functions onto more 

than one device. RAD size capacity is not discussed, but BPM capacity can be 

used as a guide by adding 20-30,000 words for new processors and 120,000 .. words 

for swap storage (4,000 words each for 30 users). This would put the UTS RAD 

size requirement at about 2 x 10 6 bytes exclusive of file space, including the mo st 

commonly us,ed processors but not all (e. g., COBOL is not i~cluded in this esti­

mate) . 



CPU utilization for all noncorripute-boun,d and'no'n-b'atch operations is estimated. 

d Under the assumptions used, 650/0 of, CPU capacity re~ains to be divided between 

compute-bound, batch, real-ti~e, and on-line users a:(ter allowing for file I/O, 

symbiont operation, and interactive service for thirty noncompute-bound terminal 

users. 

A. Number of RAD Transfers 

, Table 1 below summarizes in seven broad catagories the number of trans­

fers required of a RAD in a UTS system. In each category the underlying 

as s umptions are~ noted. It is ge'nerally as s umed that wr~te checking is not' 

done. If this is desirable,. additional RAD loads above that shown will 

occur. 



, 1) 

2) 

3) 

4) 

Table 1 

Pisc I/O Transfer.s 

.' 
Printer Symbiont & Co-op (SOO Ipm) . 

Card Reader Symbiont & Co-op (200 cpm) 

Batch execution I/O - (non-'peripheral) 

Terminal user I/O to file s '-- 3 No, ; not' for 
2 ' -

editing or debugging; 3/user /interaction; 

20 sec /interaction; N = 30 users. 

5) Swaps for interactive users -- N/IO 

2 transfers/interaction/user; 

20 sec/interaction; N = 30 users.' 

6) Swaps for time slicing -- 2/Q' 

2 transfers per time slice quanta; Q = ,300 ms. 

7) Monitor overlays --SOO per, batch job; 

500/j 'processor fetch~s, library loading etc; 

Transfers / sec 

3. 3 

. 5 

2. 0 . ,,,:.-

4.5 ' 

3. 0 

6. 7 

5.5 

job time j = 1. 5 min. 
---~\\----- TOTAL 25" 5 



Some notes on the values assumed i~ Table 1. are appropriate: 

1. We assume that the J?rint load generCI:ted by al! programs in the 

sy~tem will be sufficient to drive the pl:inter at it~ full speed of 

BOO lines per minute. This is probably a good as s umption for 

busy periods, but somewhat high as a full time rate. Student 

problems at a university produce BOO~IOOO lines of output per 

. -

minute of execution while scientific-aerospace environments have 

rates nearer 300 lines per minute. 

2. Average card input rates at university and aerospace' c'omputing 

centers seem to be in the range of 100 -300 cards per minute 

computing. 

3. File I/O necessary for problem execution nat-urally depends on 

the program, and ranges from zero to whatever rate the file de-

vice is capable of. Note that symbiont I/O has already been included 

in 1) and 2) above so this I/O is intermediate such as the files gene-
, . 

, . 
rated between pass 1 and 2 of Meta-Symbol. We guess that a con-

servative estimate would be repr'esented by a program which 

processed one logical record each 50 mS of computing. If the 
--~ -'-- ~ 

records were 100 bytes long, the.n 20 records would fit in a blocking 

buffer. Two I/O actions would be requir'ed each second (50 ms x 

20 records), one for the blo,J~ing buffer and one for the associated 

~("Jt ': tJ/~ 
index buffer. The 50 mSl\per intermediate I/O action is chosen to -

be representative of the range shown by SDS processors: BASIC 6 ms, 

META 65 ms, SDS FORTRAN 90 ms. (Assuming that one inter-

mediate record is read/written per source .line translated. ) 



4. File I/O generated by' terminal users is estimated from JOSS 

where program loading, JOSS's equivalent of chaining, and data 

. . 
I/O amount to about three physical rec<?rds transferred per 

terminal interaction. Three physical records transferred per 

interac~ion also seems to be ar'easonable rate for inquiry sys-

terns -- say two dictionary look-.ups and one data fetch. The 

assumed figure shoulq be conservative since we presume that 

most user time will be spent editing or debugging, and in both 

of these activities the I/O rates should be an order of magnitude 

smaller· than the assumed rate. 

5. In servicing terminal users' requests we as'sume that lor every 

request {interaction} the user's program must be brought into 

core from RAD. Space in core must be cleaI'ed by transfer to 

RAn; The assumed interaction rate of once each 20 seconds is 

conservative - most time-sharing systems measure an interaction 

rate of onee per 30 seconds. 

6. Compute-bound users are service in round-robin fashion. That 

is, each time quanta we shift CPU control from the currently exe-

cuting program to the next program in the compute queue. It is 

usual that 5-200/0 of the on-line users are. compute-bound {both 

JOSS and snc systems have 6% compute-bound} so it might often 

be the case that no swap is required to ready the next compute-

bound user for execution. We choose the conservative assumption, 

however, that a swap is always requ~red each compute quanta. 



(For instance,· the case 9f five .4; Dod word compute-bound pro­

grams operating in l?K of memory.) ,Note that if some of the 

users are compute-bound, then they sh.ould not be counted in the 

swap for inte.raction or the terminal file I/O categories. We can 

either count this as conservatism or say that the number of users 

served is 5-20% higher. 

7. Current measurements on "typical" batch jobs in BPM record 

about 500 RAD I/O actions. This includes fetches for all needed 

processors (FORTRAN, . SYMBOL, LOADER, CCI) overlays for 

the processors, overlays for the Monitor, file I/O for ASSIGNs, 

Debugs, processor intermediate data, programs fetched from the 

library, etc. The assumption of a constant number .of I/O actions 

per job is rather gross but we know of no better a~sumption. The 

average job time of 1. 5 minutes is representative of a university- . 

student environment. For scientific-aerospace shops, the job time 

is more like three minutes. We choose the conservative figure. 

B.. Number of RAD Transfer Times and ·Loads 

Transfer time ~epends on the amount .transferred, tp.e RAD used, and the 

access algorithm. Reasonable transfer amounts for the seven items above 

are: 1) and 2) - 256 words, 3) and 4) - 512 words, 5) and 6) - 4,000 vlords, 

and 7) - 512 words. 



RAD transfer times for three SDS RADs ·are 

7204 

723.2 

7312 

23~ 6 ms/l000 words 

11.3 ms/l000 words " 

1. 7 ms/l000 words 

Table 2 below repeats Table 1 but also lists the percent of RAD capacity., 

required for data transf~r on~y -- latency is a·ssumed to be zero. 



Table 2 

Percent of RAD Capacity -

Words 
Xfered 

Item :Kfers / sec 1000' s . 7204% 7232% 72120/0 

1 ) Print Symbiont 3. 3 1/4 2. -0 1. 0 · 1 

2) . Card Symbiont • 5 1/4 • 3 . 14 · 02 

3) Batch Execution 2. 0 1/2 2.4 1. 1 • 18 

4) Interactive File I/O 4. 5 1/2 5.4 2.5 .·4 

5) . Swaps for Interaction 3.0' 4 28.0 13. 5' 2. 1 

IV . 
63.0 6) Swaps for Time Slice 6. 7 ·4 30.2) 4. 7 

7) ~atch Overlays 5.5 1/2 6. 6 3~ L . 5 

TOTAL 25.5 107(/0 52% 8% 

I Latency @ l7rns/Xfer (25.5 Xfers) '. 43% 430/0 430/0 

GRAND TOTAL 150% 95% _- .51% 

The table shows clearly that swaps performed for titne slicing have a large 

effect. Since the quanta size is under our control, we change it froIn 300 ms to 1 " 

second and recalculate. This is "tuning" the system. 

Total load on the RAD's are now: 

7204 7232 7212, 

Transfe r Load 63 11 5 

Latency Load. 34 34 34 --
Total ~97% 65% t 39% 

// ~ 



t!I 

C. COlnpute Load on the CPU 

Table 3. shows the br,eakdown of the maJor components of load on the 

C?U not including execution of user programs or batch proce§sors • 

. ' 

:rable 3 

CPU Load 

Y/o of Sigma 7 CP U 

1) Printer Synlbiont & Co-op (800 lpm); 

2.0 rns/record for Co-op; 1 ms/record 

for symbiont; 

2) Card reader symbiont & Co-op (200 cpm), 

3) Cycle stealing - memory transfer 

interference of swap and file I/O with 

computing. Wors tease. 
L~lu ,:J 

4) Swap I/O management @'5-00,.,).(sec /transfer. 

5) File I/O management and transfer at 7 ms per 
logical record 

6) COC terminal I/O management and conversion ... 

100 ~sec/char; 30 users; 4 char/sec/user. 

4.0 

1.,,0 

5. a . 

. 5 

17 .. 0 

1. 2 

7) Computation for interactive response 30 users; 7.5 

1 interaction/20 sec; 59 ms average processing 

(enough for < 95% of all interactive requests) 

TOTAL 36.2 

Some notes on the assumptions used in co'mputing the various load,s are 

again in orde 1" ~ 



1) & 2) The loads assumed for the card and printer" symbiont are the 

same as those used for the RAD load. The difference in time 

r~quired between the symbiont and its <;:orresponding cooperative 

reflects the fact that the symbiont transfers data directly from 

buffer to device, while a move of the record core-to-core is re-

"q uired for the cooperative. 

3) Worst case interference between a computing program and I/O 

transfers occurs when both operations use the same memory box. 

In time-sharing systems" we are transferring data and programs 

between RAD and core a large fraction of time so there is usually 

a payoff in interference !eduction if core is organized into inter-

leaved boxes. A fi~st gues s "would be I/Nth interference if there 

are N core boxes 0" 

4) The estimate here of 250 instructions to control each swap should 

be conservative. 

5) Overhead of the BPM file I/O system is currently about 7 ms/ 

logical record of 100 bytes. Scheduled improvements will reduce 

the figur"e by about 2 ms/logical record and n"ew access methods 

may add to the impro.ve~ent. For the disc transfers of item 3) 

Table.!, the overhead is estimated at 7 ms for each of the 20 
" . 

records transferred or 140 mS per second. The disc transfers of 

item 4) Table 1, included the tr~nsfer of one record per user con~ 

sole interaction or 2IXN/20 ms .per second £~r N users. Thus, the 

total is 170 ms for 30 users. 



6) Terminal I/O includes tr.anslation be'tween internal and external 

form and buffering as. well as standard 'checking and facilities 

for several different kinds of consoles.
o 

The rate of four char­

acters per sacond per user is that measured in the JOSS system 

and others. We have no reason to believe that the rate will be any 

different in UTS. 

7) As before, the interactive rate of one message per user per 20 

seconds is a conservative one by standards set in current time­

sharing systems. The estimate that 50 ms of computing is the 

average required for over 95% of all requests again comes from 

JOSS. 850/0 of requests require less than 50 mS to complete. The 

figure is lower than that recorded in the SDC and MAC systems but 

only by amounts that may be explained by the difference in machines. 

A factor of two increase would not be surprising • 

. Thus, about 65% of CPU capacity remains to be divided among computing­

for batch jobs, compute-bound terminal controlled jobs, and real-time res­

ponses. Of .course a single compute-1?~und prograrr.t can use all of this time 

if allowed, and .if more than one is in. the system, d~lay must occur since 

the resource is overloaded. Scheduling of compute-bound jobs is controlled 

by installation. management through control parameters discussed in a pre­

vious' section. 



D. Interactive Delays 

Interactive response time is controlled by our ability~to fetch a user's 

program from the RAD in conflict with all otheT users wishing response. 

The situation is similar to single-server queue problems. Average de-

lays have been calculated and delay curves are shown in Figure 1. The 

delay is given as a function of th~ fraction of f,ull load~:~ and is plotted in 

terms of service time. 

The four solid curves are plotted according to four different assumptions 

about the nature of the source of the load. The upper pair of curves de-

picts results for assu'mption of exponential arrival and service times and 

a first-in-first-out service discipline. The lower curves assume expo-

nential arrivals and constant service times for the same service discipline. 

Our service times are neither constant nor exponential, but contai,n com-

ponents of each: The compute component an¢l. part of the data transfer time 

are pr~bably distributed exponentially; part of the transfer time and some 

overhead time is constant; and the RAD latency is uniformly distributed. 

We hope ~hat our composite case can be estimated to be between the two' 

curves shown. 

The upper and lower curves in each pair show the variation with the number 

of sources supplying the load -- in our case the number of users. Note care-

fully,- however, that the curves are normalized in such a way that the us ers 

whether 25 or infinite -- are generating, the same total load. However, the 

curves are still useful; when the number of users is, doubled, the load is also 

doubled. 
,t.~A general expression for calculating this load is given later in this sec'tion. 



M'\ 

III 
30 

< 
~ 
~ 

2l) 

1;,J -~ 
''-/ 

ttl 
VJ 

100--
ll.. 9 
() 

8 

V\ 7 

llJ 
6 -J 

Q 
-.. 5 
h. 
--.l 
~ 4 

:s:--
~ 

3 -

I 
I I 

, ' I I 
,~ 

I ;"'\~ -- ~ 
~-.....",-<: .. ......-,tr. 

,.-, '10'\ A ~~i~~-~4-r~-+4-~-r1-~'-r~r+-r+-r+-r+-r+-r+-r+-r+-r+-r+-r+-r+-r+-r~--rt-
r::.L. 01\: L. t.: "'/&';"" . .) 

IA I' I I~-+~+-,+~~~~t~-+~~~-+~'~L-~I~:~i-~+I-~~~-+~~~-+~~+--+~~~-+-t-~+-~-+4-+-~-r~-~+~-+~~~~~~+:-r4' 
II 1/, t" 11r.'~ 'I /I/V/~ 

! 
I 

r-f--

I ~Y:' 

., I 

j' '--'F+ H--r'i 
,-"/-+-

I' 

--+-

,~ ~ -'''\.', 

-J r+-r~-+4-r+-r~-+~~-r+--+~~-r+-~1-+4-~~-~4-~-+~~~~,'r~:r+-' ~~~'/-~~~~~+4-r+-r~-+4-'r4-++-~-r4 ~ 2 ~ I ~G;~I~-+I-,yl,,+-+-t.H-'+-~_t~~+-~-+~4-~+-~-+I-~,4 
<!: - s,;"J '/ ! II, I 
~< ~b1.r'~~+/-~+I-t-~~/-~/~~-+-r~~~-r4-+-~-+~!-+~-r-1 

VV' 'J'I'/ I' 

1 I 

l' II' 



Note that at a load of 1 (100%) that the average .delay is equafto the number 

of users multiplied by the se~vice time. The queue is full; each reqll:est 

finds all the other use~s already in the waiting.line, and the expected de-

lay is that required to service all users in the system~ 

The dashed curves give Some idea of the variation to be expected in delay. 

For the two assumptions of exponential and constant service times these 

curves mark a level of delay which will be exceeded in 10% of cases. The 

important thing to note here is that the expected will often .be observed to 

approach that required to service all users at RAD loads as low as 80%. 

Service time for interactive users is the time to swap his program into 

core (usually this requires transfer of a currently resident program to 

· . 

· ~AD to make room) plus the computation tim.e neces sary to service the 

request. An average computation time of 150 mS is sufficient for more 

than 95% of on-line interactions (those requests requiring less than one 

. quantum). The table below shows the service times for 4000 word· pro- " 

grCl:m.s on the three SDS RADs, including two way data transfer and 17 ms 

latency for each unit transferred. 

Here it is assumed that space on the ·swapping RAD is allocated in such a 

way that each RAD transfer ·for an individual user comes from a set of 

contiguous sectors. This is achie.ved by reserving a pool of sectors on 

· the RAD for swapping and assigning pages in such a way that available 

pages are evenly distributed over the circum.f~rence of the RAD. 



Service Times - - 4000 Word Full S\vap 

RAD Swap mS. Compo ms. Total..ms. 

7204 222 50 '272 

7232 124 50 174 

7212 48 50 98 

The curve indicates that loads of ,50% result i~ an average delay of one 

RAD service time. Thus, with the 7212 RAD, responses to interactive 

users (those with average compute ~equests of :s 50 ms) would average 

about 150 ms, including a reasonable amount of computing time. Clearly, 

this kind of response is good. 

On the other hand, the average delay curve rises very rapidly as load 

approaches 1000/0. At 1000/0 load the av~rage delay may be approximated 

by the number of users multiplied by the service time -- seven se~onds 

for the 7204 RAD. 

• 

The perce!lt RAD load can be calculated and the delay due to RAD load can 

be estimated for cases other than that given above in Table 1 from the fo1-

lowing ~9rmula: 

where 

d N 2 500) r N . 2S 250 
L = 10 (5.8+ 4"" + Q + j + 10 (2 + 10 (3/4 + S) + Q + -J-. -) 

N 
r 
d 
S 
j 
Q 

= 
= 
= 
= 
= 
= 

The number of interactive users. 
RAD transfer rat'e - ms/l000 words 
latency delay per transfer - m's 
average program size (interactive users) - 1000's of wo: 
average batch job 'time - seconds 
time 'slice quanta - seconds. 



----------;-"""'-----_--,-v-----

J. Shemer has made a more detailed study of expected response to an on-

. . 
line user's interactive requests. ~:~ His model include~ the effect on response 

of Monitor CPU overhead and waiting of intera.ctive users for each other as 

well as the RAD delays examined above. The user obtains his response. 

after waiting Cl:nd being s ~rviced in thr-e-e queues: 

1. a Monitor CPU overhead queue to receive the interrupt initiating. 
the interaction in conflict with all othe:r users; 

2. a RAD swap queue where he waits to enter core memory; and 

3. an interactive queue where he waits for first-in-first-out service 
with all other interactive requests. -

The model is used to- examine five Gases in which several load parameters 

are varied - - primarily that due to Monitor CPU overhead. His results are 

given in the -table below: 

CASE 1 -2 3 , 4 5 

users 30 60 30 60 60 
Monitor queue load PI .25 .39 .50 .78 .78 
RAD queue load P 2 .60 .73 .60 .73 • 73~:~ 
interactive queue load P3 .07 • 15 .07 .15 .15 
Average delay (ms.) . 162 212 202 450 575 

*on each of two 7212 RADs 

~~COniments on UTS Functional Specification, memo to R. Spinrad from J. Shemer, 
dated' -July 25, 1968 



The results for Case 1 are substanti~lly the ~ame as the case examined 

a?ove for the 7212 RAD and essentially the same result is obtained: 162nis. 

vs. 150 mS. average delay .. : RAD load param~ter .p 2: denotes the same 

parameter as L, above~ The fact that the .resultsare nearly the same i~ 

due to canceling of two opposing effects' which were neglected in the sim-

pIer model. First, delays due to RAD l~ad a~e over estimated by assu~ing 

that RAD service time i~ equ~l to that required by a swap when, in reality, 

the part of the load due to file I/O has a much shorter service time. 

Secondly, the . delay in the interactive queue waiting for other high priority 

users is not accounted for at all in the first model. For the case of 30 

users and the other parameters assumed, the two effects approximately 

cancel each other. Note that RAD load P 2 in these examples differs from 

the loads in the first ·model. . See below for a recalculation. 
~ 

Case' 2 increases the numbe'r of users to 60 while leaving other parameters 

the same. 

Cases 3 and 4 are modifications of cases 1 & 2 with the Monitor CPU over-

head doubled. Since much of the capacity of the CPU is now devoted to 

overhead (78% of the machine in case 4), substantial delays occur because 

little is left over for service in the interactive queue. This kind of effect 

is dangerous and must be avoided. It can come from only three places: 

. 1) resident real-time programs, 2) bad coding in the Monitor (which will 

be avoided)' and, what is more important, 3) inability to keep a sufficient 

number of computing users in core and .thus not being able to use avaIlable 

. CPU capacity. The study thus e'mphasizes t~e effect of trying to time-share 

with insufficient core memory. . 



I Since Shemer's study, the estimates of batch file I/O have been refined. 

The changes are reflected ab?ve primarily in a: reduction to two from 

five of the number of I/O actions generated by.batch programs 0 The table 

below repeats Sheme.;r's cases 1 and 2 with the hew data. Two more cases, 

numbered 6 and 7, are examined using his model. These are modifications 

of Case 2 but increasing the size of the average program from 4, 000 words 

to 8, 000 and then to 12, 000 words. (Still assuming contiguous sector map-

ping on swap RAD.) These cases may also be used to estimate the effect 

on a 4K program of not being able to achieve a swap mapping in contiguous 

sectors. 

CASE l' 2' 6 7 

users 30 60 60 60 
user size 4K 4K 8K 12K 

- Monitor queue load PI .29 .32 .32 .32 
RAD queue load P 2 .54 .71 .75 .79 
interactive queue load P 3 .07 .15 .15 .15 
Average delay (ms) 149 177 193 241 

-Based on these models and given that the assumptions are reasonable and-

that sufficient core memory is available we conclude that reasonable service 

can be obtained in UTS. 



Part IV. SCHEDULING AND M·EMORY MANAGEMENT 

TABLE OF CONTENTS 

Page 

INTRODUCTION 80 

A. Inputs to the ~ched~ler 

B. Scheduler Output 

C. User Status Queues 

D. Scheduler Operation 

E. Treatment of Batch Jobs 

F. Swap Hardware Organization 

G. Processor Manage.ment 

H. Memory. Layout 



d 

- ... -----",,- .... -:---

INTRODUCTION 

The routines described in this section control the overall op:ration of the system. 

They receive inputs from the I/O systems when certai.~ critical. events occur, from 

the user program when it re·quests Monitor services, and from the Executive lan­

guage processor reflecting requests of tl?e user. These inputs (or signals) coupled 

with the current status of the user ·as recorded by the Scheduler are used to change· 

the po~ition of the user in the scheduling status queues. It is from these queues 

that selections are made for both swapping and execution. Swaps are set up by 

selecting a: high priority user to come into core and pairing him with one or more· 

low priority user.s for transfer to RAD. Simila·rly, the highest priority user in core 

(and thus ready to run) is s elected for execution. 

A. . Ipputs to the Scheduler 

The list below records those system activities which must be reported to 

the Scheduler. The reporting is done variously through a .logical signaling 

table, through direct entry to the Scheduler, and through protected changes 

to the User Status queues. The Scheduler records the receipt of signals by 

a change in the user status queues pl':ls other information asso'ciated with the 

user. In general, a table driven technique is used with the received signal 

on one coorqinate and the current state on the other. The table ·entry thus 

defined names the routine to' be· executed in response to the given signal­

state combination. Since the numb~r of signals and states is large the table 

technique aids in debugging by for·cing complete specification of all the pos­

sibilities. 



Inputs from the COC routines (event. signals): 

1. . Input complete--activation character received 

2. . Output limit reached--sufficient output.£or 3-"5 seconds 

3. Output nearly empty--only 1/2-1 .second typing left 

4. Interrupt (BREAK) chara'cter received--request for alternate 
entry, 'usually for return of console control to the user. 

5. Request for executive control. 

6. Other'special signals as required 

Inputs. from the swap I/ a handler: -. 

1. Swap complete--rescheduling and/or another swap may be needed 

2. Swap error - -a RAD s ector cannot be written s ucces sfully. 
Action will b~ a report to the error log, lockout of the failing 
sector, and retrial at a different location 

3. Swap error-a RAD sector cannot be read successfully. The 
user cannot be continued; the error is logged and the user in­
formed. 

Inputs from th~ program (through Monitor Service Calls): 

1. Request console input 

2. Transmit output to the console 

3. Wait a specific time period 

4. Program exit (complete) 

5. Core request--both kinds provided by BPM plus request at. 
specified virtual address 

6.' Program overlay--Ioad and link, load and transfer 

7. Input-Ou~put service calls for file, disc pack, or tape 



Inputs from Executive Language Pro~essor: 

1. Name of system program to load"and enter. (Implies dele­
tion of any current F!ro gram) 

2. Continuation signal 
. " 

3. Special continuation addres s 

4. File name for submission to batch processing 

B. Scheduler Output 

The scheduling routine performs two major functions during the times it is" 

in control of the machine: First it sets 'up swaps between main core memory 

and secondary RAD in such a way that high prio"rity users are brought into 

core replacing low priority users who are transferred to RAD. The actual 

swap is controlled by an I/O handler for the swap RAD according to specifi-

cations prepared by the Sche¢luler. The Scheduler makes "up the specifica­
, 

tions for the swap ~ccording to the priority state queues described below. 

Given a suitably large ratio of available core to average user size (>4) the 

Scheduler can keep swaps "and compute 1000/0 overlapped. • 

Secondly, the" Scheduler selects a high priority user for execution, according 

to the single priority state queues and the rules for treating batch. The rule 

is extremely simple -- pick the highest priority user whose data is in core. 

C. User Status Queues 

. The status or state queues form a single priority structure from which selec-

tions for "swaps and selections for execution are made. The state queues form 

an ordered list with one and only one entry for each user. Position is an im-

. plied bid for the services of the computer. As the events occur which are 



-----.-~..,-~-----.......... -.-.... -

signaled to the Sch'eduler as described above individual users move up 

and down in the priority structu,re. When they are at .the high end they 

take high priority for swap into. core and execu.tion, and when at the low 

end they are prime candidates for removal to secondary storage. This 

latter feature ~- that of a definite priority order which selects users for 

removal to dis c - - is an important and often overlooked aid to efficient 

swap management. It avoids swaps by making an intelligent choice about 

outgoing as well.as incoming users. 

In addition to these primary functions, the queues are used for other 

purposes: synchronizing the presence in core of user data and program 

with the availability of I/O devices, waiting for "wake up" at a pre-

established time, queuing for entry and use of processors, and core manage-

ment problems. 

A partial list of the state queues in descending priority order is given below: 

NRRT 
INT 
IR 
TUB 
IO'C 
COM 
BAT 
CU 
IOIP 
TaB 
TI 
W 

Nonresident real-time interrupt received 
Interrupt or break received queue 
Input activation queue 

. Console Output unblocked queue 
File I/O complete queue 
The interactive compute queue 
The batch compute queue 
Current user in execution 
File I/O in pro gres s queue 
Console output blocked queue 
Waiting for console input queue 
Queue of users to be awakened 

The above list serves fo~ .. ~~~illustratio~o(the.operatic?!l of the Schec:ll!ler 

below. 



q' 

D. Scheduler Operation 

To select users for execution the Scheduler searches~ down the priority 
.. 

list for the first user in core memory. Thus" interrupting users will 

be served before those with an active input message, both will take 

precedence over users with unblocked console output, next will come 

compute users and finally, the batch job{s). Note that users in any 

lower states have no current requests for CPU res.ources. Note also 

that as each user is selected for execution his state queue is changed 

to GU, and when his quantum is' complete the highest priority queue he 

can enter' is the compute queue. Users who enter any of the three highest 

priority states receive rapid re.sponse, but only for the first quanta of 

service. Thereafter they share with others in the compute queue. 
I 

Two examples of typical interactive use .will be illustrative. 

The first follows a user with a simple short interactive request. As he 

types the request he is in the TI queue and his program probably has been 

swapped to RAD. It remains there until the eoe routines receive an acti-

vation character. This is reported to the Scheduler and caus es a state 

change to IR. The Scheduler finds a high priority user not in c~re and 

initiates a swap to kick out a low priority user (if necessary) and bring 

in the just activated on.e. On completion of the swap the Scheduler is 

again called and it now finds a high priority user ready to run. The user's 

state is changed to eu, the program is. entered, and examines the input 

command. The cycle may complete by preparation ~f a response line and 

a request to the Monitor for more input. This wo.uld reduce the user's 

state to TI again making him a prime candidate to kick out of core. 



---------::/ v-:·" 

The second example illustrates a console output-bound program. This 

program moves through the state cycle TOB..;,T·UB-CU as output is gene':' 

. -
rated by the program, the COC signals the reaching of the output limit, 

and finally, the output is drained onto th~ terminal.· If the operation is 

proper, four to six seconds of typing will be readied in buffers ~ach time 

the user program is brought into· core and executed. During this typing 

time the program is not required· in core· and the CPU resources can be 

given to other programs. No swaps occur unless a user who is out of 

core enters a high priority queue. 

Selection for swapping picks a use·r to bring into core and the lowest 

priority user to kick out. Priorities are arranged from high to low, in 

order of increasing expected time before next activation. This assures 

that the users who are least likely to be needed are swapped out first, 

retaining in core the set most likely to r.equire execution. The swap 

algorithm will operate so that: 1) if there is room in core for three user 

programs; 2) if two users are computing steadily; and 3) if many other 

users are doing short interactive tasks, then the compute users will re-. 

main in core and use all available compute time while the interactive users 

are swapped through the third core slot. Of course the non-uniformity of 

program sizes and request arrival times will cause different action from 

time to time but on the average it will be substantially as described. 



E. Treatment of Batch Jobs 

Two ways of scheduling batc;:h are reasonable in this Rriority structure. 

They result in quite different fractions of machine time devoted to batch. 

Both will be provided in UTS and the operator or installation manager wi 11 

be able -to select the desired mode of operation. The first treats the batch 

stream in a separate queue (BAT) of lower pr~ority than the interactive com-

pute queue as indicated in the queues of Section C. Thus, batch only gets 

service when no interactive user has a request. Crude estimates from 

current systems indicate that 10-20% of machin.e time would be available 

to batch on a system 'supporting bet~een 20 and 30 concurrent .users in prime 

shift. ~:~ That is, 10-20% of the time ~ on-line user is requesting time. 

During non-prime time 800/0 or more of CPU time would be available to 

batch. 

The second discipline cycles the batch user through the interactive compute 

queue where each job receives an equal fraction of the available time. It-is 

usual in on-li~e.· systems ~hat 5-200/~ of the on-line users are computing at 

anyone time; thus, as much as 1/2 of prime time could be devoted to batch 

background operation plus the 800/0 + on non-prime time. In this scheme, 

batch can be biased to get a different· quantum than on-line users . 

..... 

~:qn Part III we estimated that 65% of CPU capacity would be available to batch and 
on-line compute-bound combined. Here we estimate that on-line users will use 
50 or 60% of the total CPU leaving 5-150/0 for batch. 



-~·--·"'-';'·-I--""~·":-(/-

F. Swap Hardware Organization 

Users are saved in a dedicated area "of the RAD (or a.separate RAD in 

large configurations) during the periods betwe~n the turns for execution 

on the c~ntral processor. The minimum system will allocate a portion of 

file RAD to thIs purpose and d"edicate a special handler to the performance 

of the swaps. 

A bit table is used to keep track of the availability of each sector on the 

RAD, marking zero for in use (usually assigned to a user) and one for 

available. Users are assigned a sufficient number of page size sectors 

to accommodate their current use. The assignment is done in such a way 

that command chaining of the I/O can order the .sectox:s to be fetched for a 

. s'ingle user with minimum latency. That is, each user's pages ·are spread 

evenly over the set of available sectors so that when the user is swapped 

data will be transmitted in every sector passed over. 

The records of the disc sectors associated with each user will be kept in 

the" user's job information table (JIT) which is" kept on RAD when the user 

{is not in,core. The disc location ofthe"JIT table is 'kept in core by the 

Scheduler. The' RAD layout is such that sufficient time is available to 

set up I/O commands for th~ remainder of a user after his JIT arrives 

from RAD. 

The amount of RAD storage as signed to swapping will be a parameter of 

SYSGEN. The number of on-line users which the system can accommo­

date is limited by the size of RAD space allocated fo'r swapping and the 

total size of all active on-line users. 



G. Processor Management 

Processors will be considered time-sharing processo.rs when they are 

added in such·a way ·that the proces sor is read ·andexecute-orily. (It 

may have the user associated da~a area initialized in first pass only.) 

When these criteria are met the processor has the following special char-

acteristics: 

1. Its name is known to the executive (TEL); it may be called on 
by name. 

2. It will have dedicated residency on swap storage established at 
S-¥S-G-EN time. 
?I~t/lk(<; 

3. Its use will imply a particular virtual map for the user • 

4. A single copy. will be used byallreque~ting users. 

H. Memory Layout 

UTS makes full use of the Sigma 7 mapping hardware, access prot.ection, 

and write locks in order to allocate a·rbitrary available physical core pages 

to users according to the priority of their request without need for progrc{m 

relocation or physical moves. Full protection is provided· not only of one. 

user fro~ another but also protection of real-time programs from the 

Monitor and the Monitor from real-time. All programs including reai-tirne 

programs and· the Monitor itself are divided into procedure and data and the 

·procedure is protected against inadvert~nt stores by either. write-locks or 

access codes or both. 



Central features of the use of w:rite-locks to protect m.aster moc:lepro.-

grams are: 

1. The Monitor operate·s with a key of 01 .. It may store in 

(a) Its own data area (LOCK = 0 I) 

(b) .. Any batch, on-line user·, or shared processor core 
(LOCK = 01) 

(c) Resident real-time data area (~CK = 00) . 

It may not store in 

(a) Its own procedure (LOCK = 11) 

(b) Pure procedure of resident real-time (LqCK = 11) 

2. Resident real-tim.e operates with a key of 10. 

It may store only in its own data area (LOCK = 00) 

It may not store anywhere else (LOCKS of 01,' 11) 

3. Keys of 00 and 11 are never used nor is a lock of 10. 

4. Write-lo.cks are initialized only once at system start-up and 
not changed thereafter except when running under control of 
EXEC DELTA where they are used to enable data breakpoints. 

The access codes on virtual memory pages control references by slave 

mode programs - user programs and· shared processors. Two code 

imag~s are retained in JIT for each user, the first is loaded when the 

( , 

- . user is in"control and the second when one of the special shared proces-

sors gains control. In addition, under TEL and LOGON write access·to 

JIT and other job context areas is given. 

• 



The layout of virtual memory wh:ich applies to user pr.ograms and 

ordinary shared processors is shown in the figure below. Core addresses 

shown are those appropriate for a typical systEfm but more (or less) core 

may be established for the resident Monitor at SYSGEN time depending 

. on installation,needs {e. g., r~quirement for real-time options; desire 

to retain Monitor overlays. in residence for efficiency}. More (or less) 

area may also be desirable for the l~brary ~rea and for the job context 

area to accommodate more buffers. These bounds may also be adjusted 

at SYSGEN time. The bound at which the one pass loader LINK places 

· the user's program is adjustable at load time. 

Virtual pages not currently allocated to the user are mapped into a resident 

· Monitor page which is write-locked and have their access ,code set to no. 
t 

. . · . . 

access. Thus, slave mode programs are denied access· through the access 

code· and attempts to. store at these virtual addresses by a master mode pro-

gram are protected by the write-locks. 



o 18K 26K 
" 

120K' 
I 

128E 

r~r""". -M-..... -::~~----~:~~t:x==-· .·-·----·--:-v-a .... l-·1-a-b-l-e-.-A-r-.e-a----. i-----, .. -;-,o----,.---s-p-e-c-i-a-l-'~ 
, i ~ Area <------: 96K ~ ~ Area 

Data Area : Program '" Sytnb.ol 

. ~ . I . Unal-': Area Table 

~ ~~J:~~~~~~~~ .. ~~R.:.~~_~~'~~1.~~~e~-~~~L,----:, ....... -A-r-e.-a_-L.. _____ ~ 

user accessl~ none none write 1~.~xecut~ ... r__read~I.· none o,r 

special 
access 

MAP 

I<r- none ~ J readl~ ~one ~ I .... ~~--------­
,/ 
J 

write 

" . .. execute .... 
; . 

----------......... --.., ... r- exec:ute~ 

r: to allocated~\~ .... ~·------to allocated physical page or to a protected locked inonitor page 
'phys ical page 

CONTENTS Job information table 
DCBs 

User programs, data, ·and sytnbol tables 
Ordinary Shared proces sors including 

Root segment· 

SpecHt! share'd 
Proces sor and 
data: . File blocking buffers 

File index buffe rs 
Coop buffers 

1nitial data 
one overlay 

access codes: \\ none 
i()read 
ci execute 
(vwrite 

no acces s of any kind perrnitt~d 
. read access only 
execute or read access 
write, execute, and re'ad permitted 

Typical User '- Program Virtual Memory Layout (not to scale) 

LINK 
DELTA 
TEL.l'c..U 
FDP 
Libraries 
LOGON/OFF 



01 

Resident 

monitor 

data program 

Lock I' 01 '·1 11 

" 

:mapped or 
umnapped 

Mode master 

01 
' Sy:m.bionts 

and 
othe,r uIunapped 

m.onitor 

data program 

01 11 

f 
,umnapped 

I· master 

01 

On-line jobs 

Batch jobs 

Shared processors 

. 

I~ 01 

mapped 

slave 

·1 

I 

unus ed keys: 
unus ed lock: 

Typical Phys ical Memory Layout (not to scale) 

10 

Resident 
Real tiIne 
Program.s 
and data 

data program 

00 11 

umnapped 

.,maste.r, 

, oq, 11 
10 

I 



Part V. SYSTEM REQUIREMENTS and CONFIGURATION' 

TABLE OF CONTENTS 

INTRODUCTION 

BASIC 'UTS HARDWARE CONFIGURATION 

COMMENTS AND VARIATIONS 

CORE MEMORY 

94 

95 

99 

101 



INTRODUCTION 

Throughout this specification the assumption is made thatUT.S will be a system 

designed and built to service batch, real-time and on-line terminal users. Each 

installation will have to evaluate its requirements and desired service in order to 

arrive at a useful machine configuration., A reasonable selection of hardware can 

only be made with a good knowledge of the characteri~tics of its intended us e, ' in­

cluding the portions of computing devoted to real-time, batch, and on-line. Also, 

the number and usage profiles of on-line users, size of on-line programs, I/O 

characteristics, etc. must be evaluated. 

It is obviously impossible to list the infinite combinations of equipment which would 

support UT'S in Some manner. It is also difficult to de~ineate a minimum configura­

tion (different requirements will have differ'ent minimum configurations). There­

fore, we will describe a configuration for a set of requirements and indicate 

. possible downward and upward adjustments in equipment that could be made for 

varying requirements. • 

In, attempting to determine what a particular configuration should be, ,several things 

must be kept in ,mi~d: 

1. The UTS resident Monitor will require I6-I8K words. 

2. UTS is predicted on and reqqires a symbiont system. 

3. Since real-time req uir~ments are. preemptive and installation-dependent, 

no allowance is given here to thes,e demands on the machine. Users with 

real-time applications must add core to support the real-time programs 

and suffer interactive delays and batch, throughput 10,ss due to less CPU 

availability. 



References should be made to the sections of this 'specification dealing 

with loading, responses, and performance, since these factors will 

largely determine configuration requirements .~' 

BASIC UTS HARDWARE CONFIGURATION 

In order to support 32 on-line users (who are generally not compute-bound) and 

maintain a high rate of compute through~ut (about 80o/q of BPM rate), the following 

configuration is presented. It is considered the basic UTS configuration to which 

equipment may be added to satisfy additional requirements of particular installa­

tions. UTS design optimization will focus on this system level. The configura­

tion is shown graphically in Figure V-I. 



CPU --
Model 

.... 
8401 

8413 

8414 

8415 

8416 

8421 

8422 

8418 

Memory, ' 80K 

8451' 

8452 

Basic I/O 

8473 

-8475 

7012 

8485 

7211 

7212 

.8456 

7611 

. 7612 

7615 

7615 

7621 

7613 

7015 

Description 

Sigma 7 CPU 

Power Fa ii-Safe 

Memory Protect 

Memory Map 

1 Additional Register Block 

Interrupt Control Chassis 

Priority Int~rrupt, Two Levels 

Floating Point Arithmetic 

Memory Module, 5 each 

Memory Module, 15 each 

MIOP 

Keyboard Printer (2) 

Selector lOP 

Hi-Speed RAD Controller 

Hi-Speed RAD 

3 Way Access l 5 each 

Communications Con.troller 

Format Group Timing Unit 

Send Module, 32 each 

Receive Module, 32 each 

EIA Interface Modules 

Line Interface U,nit, 3 each 

Keyboard/Pri nt~r KSR/35, 32 each 

SHEET 7G OF '3 o1f 



Secondary Storage and Peripherals 

7122 Card Reader 

617160 Card Punch 

7440 '. Line Printer 

732tD . Magnetic Tape Controller 

7322 Magnetic Tape Units (2) 

7231" RAD Controller c(4 byte iAterfoce F017231} ~ 
7232 RAD Storage (6MB) 



I' J<. CO~f 

l- 'S'iS J 
,3-~I.fS~ 

d 

Ibk. ~Ofl.~ . 
, 

I 

'. 
Ib K. C01t.t: 

16K ~fl-e 
S - «gLJS('" 

9 W"'~ ~e~:!I 

IhK C!~~G 

t~ 1ft I ~-901~ gi./ gS 

LOP , ... . \/. 

2% ?Wo 
L"?le. PI'I"I\te.r 1~1 '1 'll..?. 

'IX> L PM H~~ Sre~ 
Ie:, - F-AD-

~J1B 
? '2.2-

1°,4, C.",rd Reo.d~',-

13 " 5 L c.. U T S ' r\ A \~ D w A ~ e: . C-C>}J j: I (1 IA rt A r J 011 

. FI6t.\rtE V-:L 



------- -.- ... -.-_.-.---.-.-_ .. -.-'(:/ .. --.-.--
S~EET rrOF 3d\" . 

COMMENTS AND VARIATIONS 

1. CPU 

sAil items listed except-Floating Point are minimum requirements for any system. Another option 

available is the Decimal package. 

2. Memory 

64K is a minimum core size, suitable for single language installations for example, but SDK is 

considered necessary to maintain a high level of performance for thi:s example. 

3. Basic I/O 

The abso lute requirements are an MIOP, 2 Keyboard Printers, one RAD (6MB) and controller,- and 

the Communications Controller and-associated terminal equipment. However, to maintain reasonable 

performance, separate RAD's for the system and file storage are recommended for ,all systems. For a 

32 uset system, the system RAD should be a Hi-Speed RAD with an SlOP. SmaLler systems, 16 users 

for example, might maintain acceptable performance with two 7232 _R~D's, f~r e~ampJe. I), j, j 
, . .' 1, + /' \ )o'~, , t 1 ; J I /' 'I / /! (j , I! I II 

. '( ,.t, • ,,',' , I J I 

. r~'11'1 i j- /' 1.1 ;t:!" :;~. - C\. ~o. pr ~v·c-' 
4. Secondary Storage and Periphera Is (~ .. l,.!l < \ '1 1

.,\ U<. (,\I.~/t '. \ I', l'\-t\~- ~~"~,, \ ;. I 

Th 
.. '!. d d . II d I :)i\~·I. •• ~ ',II;!: 

e mInImum requIrements are a car rea er, a tape contro er, an at east c~~c' tape Unlt,:i ,~ny i'/' < 

reasonable batch configuration can be expected to also include a line printer, additional ta~e units; 

RAD file storage, and a card punc~. An additiona I MIOP may be required, depending on the type 

and 'lumber of secondary storage devices and periph~rals. Variatio~s in the number and type of I~O 

devices will depend on insta lIation requirements, but the configuration I isted is reasonable for a 

batch system wit~ up to 32 on-line users. CRAM and disc pack units are supported and may be added 

as the customer requirem~nts dictate~ Band width requ,irements of the IOP's must of course be met. 

Heavy use of these devi ces may degrade system performance through CPU use and core buffer space 

required for I/O transfers. Generally speaking additio'n of core memory 'will improve performance 

in these larger systems. 



S. Terminals 
J 

~erminals are not restricted to SDS 701S's alone. The SOS7.5S0, 7SSS keyboard/ 

display operates compatibly with UTS~ Also supported aFe teletype models 33, 3S, 

and 37 including paper tape input and output, and IBM model '2741 selectric typewriter 

terminals. Software flexibility is present so that 'other terminals may be added with 

relatively little difficulty. 

More than 64 terminals may be added to the system with more 7611 equipment and the 

addition of two external interrupts for each group of 64 lir~es. However, except for 

special situations (sayan all BASIC system), more core,: RAD,etc. will be required 

and even then .response times may suffer. 

Remote batch terminals, SDS 7670, are supported in accordance with specifications 

in a separate document (Dwg. No. 702514). 

6. RAD Storage 

Requirements for RAD. storage may be divided into two categories: a) swap storage 

is used for on-lIne users,. for symbiont and~o-op buffers, and for absolute core 

imaOges of the UTS Monitor and the system processors (FORTRAN, LOADER, BASIC, 

etc.), and b) file storage for all users of the system including those system processors 

kept in 'ROM or LM form on file (usually SYSGEN, COBOL, Libraries, etc.). Swap 

storage will usually require one to three megabytes on the 7212 RAD. File storage is 

best estimated by the installation in question. For each on-line user, 2S-50, 000 words 

of file storage is often estimated. Thus, if 100 users have access to a 32-line system 

2 .. 5M-5M words of file storage would be needed requiring two or three additional 7232 

RADs. 



7. Resident Real-Time 

Gore and CPU requir.ements for resideI?-t real-time opera'tions must be satisfied over 

and above the basic configuration of this section. Among,the devices supported in the 

real-time mode is the graphic display, SDS 7580. 

CORE MEMORY 

Providing enough core memory is particularly crucial ip a time-sharing system. 

Operating with a memory of insufficient capacity for the installation IS typical load 

reduces the systems ability to keep core loaded with ready~to-run programs and 

increases the frequency and duration of times when I/O is' not overlapped with com-

puting. This applies both to on-line systems and Inultiprogrammed batch operation.' 

With enough core the system i.s able to keep several programs resident at once and 

thus obtain a very high probability of completely overlapping compute and I/O tasks. 
, 1 . 

The freque'ncy of swaps is reduced and so is the intendent system overhead thus re-

le,asing the CPU to execution of. users I tasks. On-line response is doubly affected 

being doubly reduced of the number of the number of swaps and indirectly affected 

by the lowering of CPU overhead load. 



~-.-.--.. ----,.-----. ~-.-.-..., .... ~- .....,-~------ .. --.--.. -

SHEET-/t.1;tOF 3/6 

-The following charts indicate what factors should be evaluated in deterrnining core 

size. They are presented as a guide and require .careful interpretation in deter- . 
~ 
m.ining systern core requirernents. 

I. Core Requirernents for other than 'on-line 

User Mernory Requirernents 

A. 

B. 

C. 

D. 

-E. 

.F. 

G. 

UTM Resident Systern 

Resident Foreground 

Rernote Batch 

Graphic Scope 

Other (Cal Cornp Plotter, 

allo.wance for future devices, etc) 

K/D 

Allowance for core .1/0 buffer s, 

DCBr s etc. which are locked in 

core while I/O is in process 

(This allowance is for user I/O, 

sy:m.bionts, rnonitor ove rIa ys, and 

swaps) 

18K 

variable 

lK . 

6-10K 

. variable 

Conse rvative' 

When in use 

If used 

1K per terrninal If message rnode option 
. is used 

10K Estirnated for average 
load as described 
.within this .spec. fo"r 
about 30 user 5 

• 
II. Core Requirements in order to have a high probability of keeping 4 users in core. 

A. 

B. 

Batch 

User r s program 

C. UTS Processors 

1. Fortran IV - pass 1 

- pass 2 

-2. Me ta-Symbol - pass 

- pass 

3. BASIC - Compile 

Execute 

1 

2 

variable 

variable 

Shared Copy 

11K 

11K 

11K 

11K 

iOK 

10K 

Core per User: User 
As s oc iate d Data 

6-7K 

6-7K 

4-6K(no BPM prod 

8-10K(with use of 

4-6K 

4-6K 

BPM procrs~ 



D. 

4. Editor 

5. Delta 

6. FDP 

7. PCL 

B. TEL 

9. LINK 

Core Library 

Shared Copy 

3K 
# ' 

3K '. 

2K 

2K 

4K 

4K 

variable (3~BK) 

Core per user: User 
Associated Data 

2K 

• 5K plus user 
program plu~ 
symbol table 

object program plus 
symbol table plus run­
time 

2K 

2K 

2K plus ROM SiZE 
plus local syrr. 
bol table plus 
REF/DEF/ 
Expression tal 
Estimated to 1: 
1. 75 times RO 
size. 

An installation which desires high rate of batch throughput and reasonable service 

for 32 on-line users doing a variety of work, mig~t make the following core estimate: 

1. Resident UTS lBK • 

2. Allowance·for I/O in progress' 10K 

3. ,Batch 12K 

4. On-line users 

a. A processor, say Fortran IV 1BK 

b. A debugging run (DELTA) 10K 

c. An EDIT process 5K 

d. User with core library and FDP' 7K 

BOK 



A 64K system could be expecte-d to often result in a condition· where less than 4 users 

are in core simultCl:neously, and this in turn can be expected to result in much lower 

G'PU utilization, longer response times, and less batch throughput. 

A: system which is essentially de~icated for one processo:. (BASIC, for example), 

or a system which uses only a f.ew processors, has small programs, and less users 

could run acceptably in 64K: 

1. Re sident UTS 

2. Allowance for I/O in progress 

3. Batch 

4. On-line users 

a. Edit 

b. BASIC shared processor 

i.. 

ii. 

iii. 

user compiling 

user de bugging 

user executing 

18K 

SK 

12K 

SK 

10K 

4K 

4K 

4K 
60K 

However, . systems with heavy I/O requirements and large executing programs will 

need more core to achieve . high CPU utilization, good on-line response, and 

ad_equate batch throughput: 

1. Resident UTS 

2. Allowance for I/O in progres s 

3. Batch 

4. On-line users 

a. A Fortran IV compilation 

b. A DELTA debug run 

c. An EDIT process 

d. A user with core library 
and FDP 

18K 

20K 

20K 

18K 

·10K 

5K 

12K 
103K 

Generally, since system performance is extremely sensitive to core size, it is 

strongly recommended that a generous approach tq providing core be taken. No 

system should be configured with less than 64K, and the Programming Division· 

requests~hat its approval be obtained for systems witp less tha·n 80K of core. 



Part ·VI. TERMINAL EXECUTIVE LANGUAGE (TEL) 

TABLE OF CONTENTS 

COMMUNICATION CONVENTIONS 

A 0 Keyboard Control 

1. 
2. 
3. 
4. 

TEL Prompt Character 
Subsystem Identification 
Subsystem Prompts 
User Prompts 

B. Typing Lines 

( 

1. Corre·cting Typing Errors 
2. Erasing Lines 
3. Blank Lines 
4~ End-of-Mes sage Signals 
5. Pagination, Lineation 
6. Tabbing 
7 . Echoing Characters 

C. Interrupting UTS 

1. Preemptive Returns to TEL 

4· 

2. Interrupt.ing Subsystems and .Rup,ning Programs 

D. Typing and Interpreting Commands 
E. Error De:tection and Reporting 

IDENTIFICATION AND NAMING CONVENTIONS 

A. Accounting Information and File Identification 
B. Device Identifications 

INITIATING AND ENDING ON-LINE SESSIONS 

\~') +- M.L~ . IV") 
fI~ 

Page 

106· 

116 

118 



TABLE OF CONTE~TS (continued) 

MAJOR OPERATIONS 

\ 

I 

A. Compilations and As semblies 

B. 

C. 

D. 

E. 

F. 

1. 
2. 
3. 
4. 
5. 
6. 
7. 

Inputs and Outputs 
Commands (FORT4, META) 
Controlling Error Commentary and Output 
Extention of Output Files 
Error -Handling and End-Actions 
Entering Programs From the Terminal 
Debugging Information 

Linking ROMs and LMs to Form LMs 

1. Simple Linkages (LINK) 
2. Load Module Symbol Tables 
3. Merging Internal Symbol Tables 
4. Searching Libraries 
5. End-Action 'and "Error Reporting 

Initiating Execution 

START 
RUN 

Initiating Debugging Operations 

DELTA, FDP 

File Mana.gement 

COpy 
DELETE 
PCL 

Editing" 

Page 

119 



TABLE OF CONTENTS (continued) 

G. Submitting Batch Job 5 

BATCH. 
R~questing Status 
Canceling Batch Jobs 

H. . Calling Subsystems. 

Answering Conventions 

I. Continuing and Quitting Major Operations 

CONTINUE 
QUIT 
Automatic QUIT 

MINOR OPERATIONS 

A~ 

B. 
C. 
D. 
E. 
F. 
G. 

Checkpointing .Programs (SAVE, GET) 
Assigni?g. I/O Unit and DCB Parameters .(SETl -) 
DetermInIng Status of Current 'User SessIons 
Listing System Load Parameters ,. 

. I 

Setting Simulated Terminal Tab Stops / 
Changing T er:minal Type j/ 

Reporting Terminal Platen Width C" 

INDEX OF COMMANDS - TEL' 
1\ .?c..d ·;('l···~. }'(."""'~' ~o 

\ 

1\ 1\ L.. I 
ogc. - L ... ·"t .~ 

JJ." 

136 

• 

t46 



COMMUNICATION CONVENTIONS 

A.. Keyboard Control 
4 • 

As previously mentioned, control- of each user 's~ keyboard is proprietary: 

either the user or the system has control. The assumption is made that" 

.all terminals in use are attended. Terminal communication conventions 

are as follows: 

1. Whenever the UTS executive proc:;essor returns control to th.e user after 

an error, an interruption by the u~e'r,- or after completing a request, it 

will type an exclamation mark (!) at the left margin of a fresh line before 

turning control of the keyboard over to the user. This notifies the user 

that he is talking to the UTS executive processor and must couch his re-

quest in that processor's language (T.EL). 

2. Whenever the services of a subsystem are first requested by the. user, 

. that subsystem will identify itself in plain-talk before turning control 

over to the us er. 

3. All subsystems that carryon line-by-line, rather than intraline, dialogues 

with the user will type an identifying mark at the left margin of the line 

before returning control to the user .. Subsystems for editing use an 

asterisk (~::); subsystems for combining object programs and manipulating 

their associateq symbol tables all use a colon (:); utility subsystems f~r 

file. management and information transfer use the nurnerical relation sign" 

«); all subsystems for working with other programming languages use the 

sign (». Thes e identifying marks notify the us er that one of a clas s of 



subsystems is awaiting a command from him.. Which subsystem it is 

. . 
. and which language must be used should b~ in the head of the user. This 

is possible, since no subsystem of UTS wil~.call on another one, or even 

on itself. However, Some commands in UTS's executive language (TEL) 

require the services of a succession' of distinct processors, as may some 

commands in other subsystems. Whenever.such "hidden" processors ·de-

, tect an error, they will, where neces'sary, precede error'messages by a 

single space followed by an identifying mark appropriate to the proces sor' s 

function. 

4. Users" programs that must return control to the user to allow him to input 

values and other information are left to their own devices. Such programs 

,should be written so that they display enough information for the user to 

determine what is expected of him in such situatio~s. One of the terminal 

services available to aid in this effort is the specification of a prompt 

character which is issued preceding each read command. See Section XII. 

B . Typing Line s 

The mechanisms for correcting characters, for erasing messages that maybe 

hopelessly mistyped, for signaling end-of-message, and for line spacing are 

uniform. These are give? below for us'ers with TTY terminals 0 Details for 

other terminal types are given in Section XII. 



1. The user can erase his ,last unerased token by depre'ssing the R UBOUT 

key. UTS responds by typing a slant-line (\) to indicate that it has 

effectively backspace,d and erased. On terminals that can backspace, 

backspacing will be nonerasive and users will be able to overstrike 

tokens as well as erase them. On such terminals, UTS's image of the 

line being typed by the user is identical to the one the user sees on his 

, printed page -- assuming that he can read his overstrikes and erasures ~ 

On SDS Keyboard displays the last typed character is erased' from the 

screen. 

z. The user can erase an entire message by depressing two keys sumul-

taneously, CONTROL and~. 'UTS types a back arrow (-), returns the 

I carrier to the beginning 6f a fresh line, and returns control to the u~er 

without further comment. The user may then retype the correct message. 

3. Blank lines are ignored by UTS's executive processor. The appropriate 

, . 
ident~fying mark will be typed at the left of a fresh line before control is 

returned to the us er. 

4. When talking to TEL or any subsystem that carries on line-by-line dia-

logues wit~ users, the user signals end-of-message by depressing the 

carrier RETURN or LINE' FEED key, or by simultaneously depressing 

the, CONTROL and L'keys to signal end-of-page (see 5. below) as well. 



5. Pagination and lineation are controlled by UTS so as to provide 8-"1/2 

" .. 
by 11 pages with one inch margins at the top and bottom of each "page". 

This' aSSumes a 9-1/2" platen, giving 85 ch,aracter"s to the line; 8" platens 

provide for 72 characters. UTS counts lines to give 54 lines per page . 

. In addition, the. ... user can request pagination directly by depres.sing the 

~~ys simultaneously. Pagination consists of: a) blank 

lines to page bottom; b) a heading line, con"taining date, time, user 

;/S-
identification, console identification, and page number; c) (sixi more 

,-/ . 

blank lines; and d) the us er I s heading line, if any. Thus, the heading 

line can be scissored off to obtain 11" pages. 

6. Some terminal dev:ices have readily adjustable and usable tabbing features, 

others can tab but make adjustments difficult, others )can It tab at all. "To 

handle the last two cases, UTS permits the users to request that tabs be 

simulated by successive spaces. Tabs are not normally ~imulated; to' 

. turn on tab s,imulation, depress the ESC key and then depress the T key. 

To turn off tab simulation, repeat the procedure. The setting and clearing 

of tab stops is provided via set commands for individual DCBs and via the 

TABs Command for overall control overall output to the user terminal. 

7. Echoing of characters back to the terminal is at the discretion of the user. 

Normally, UTS will echo; to request I?-0 echoing (for a local printing con-

"sole), the user must depress ESC and then depress the E key. To turn on' 

echoing again, the procedure is repeated. 

A complete list of these and other control functions is given in Part XII. 



--_.-.. - .-, ,-......... _-..... :-.-.-..... ~rl-"-· 
, SHEET 1/:;' 'OF 3d?; , 

C. Interrupting UTS 
d 

1. Whenever one of UTS' s subsystems is in control of the keyboard, the 
. ' 

user can interrupt and temporarily suspend' operations by simul-

taneously depressing the CONTROL, and E keys. UTS responds 

by stopping the current operations as soon as it reaches a conven-

ient breakpoint, and then turning the user over to the executive 

processor, TEL. 

2. 'Whenever UTS or one of its subsystems. is in .control of the keyboard, 

the user may: interrupt what is being done for him at the. moment by 

d'epre,ssing the BREA'K key which' gives control to that part of the sys-

tem currently in communication with the terminal (e. g., a subsystem). 

Since some actions can on~y be stopped at points of convenience and 

others have so much inertia that they cannot be stopped at all, and 

since machine or programming errors 'may have disabled the pro-

gram's response to BREAK, a succession of BREAK signals in excess" 

of three returns control directly to the UTS executive. It must be em-

phasized that depression of the BREAK key does not constitute a pre-

emptive request for the services of UT8's executive processor (see 1. 

above): the precise handling of inte.rruptions by SUbsystems will 

accompany the functional description of the su~system; handling of inter-

rupts by users' object programs is covered in the sections which describe 

the calls that programs can make on UTM services. Baldly speaking, 

however, interruptions of the system or any of its major subsystems 

will result in termination of the current op,eration as soon as possible 

and a return of keyboard control to the user after the appropriate 



identifying mark ha's been typ.ed. Since line noises· can generate 

spurious interrupts~ it is .also wise to have UTS say something first; 

e. g., "Stopped by iI?-terrupt." Interruptions of object programs will, 

in the absence of short-stopping actions by the programs themselves, 

always cause a backup to the executive processor. Prof-grams being 

run under control of debuggers or under control of a programming 

language sul?system like BASIC will identify the point of int~rruption 

as best they can (e. g., "Interrupted at statement 120. ") before re~ 

turning control to the user. By the same token, the execution of so­

called "stop" and "pause" commands. should result in' similar behavior; 

e. g., "Stopped by statement 120. " 

D. Typing and Interpreting Commands 

Except for a few declaratives, commands take the form of imperative sen­

tences: an imperative verb followed by a direct object or list' of objects; 

~direct objects usually follow a prepositionJ but may follow the verb (wit~ . 

elision of the implied direct objects). Minor variations on the major theme 

of a command are expres s ed as encode.d parentheticals following either the 

verb or one of the objects. Individual elements of a list of objects are set 

off from one a.nother by commas. Common rules of composition hold: 

words of the language J nU1I1erals, object identifiersJ and other textual entities 

may not be broken by spaces; otherw~se, spaces :r:nay be used freely. For 

purposes of scanning commands (both by machine and the hU1I1an eye), this 

rule has a simple interpretation: in a leff-to-right scan for the next syn-

tactic element of a command, skip over lead!ng sp~ces; treat a trailing 

space as a terminator for a wordJ nu.rreral or other' textual entity. In terms 



SHEET//f 'OF 5t!1~-' 

of machine scanning, tabs (which are represented by a unique encoding) 

are treated 'as spaces. In addition, a unique encoding that indicates "end-

of-command" must be recognized as a syntactic element; for TEL, this is 

either the new line or the carrier-return code. In other words, a legitimate 

command can't have any trailing garbage -- one could' never deten.n,ine whether 

it was a spoof on the part of the user or a' real error. 

E. Error Detection and Reporting 

-
UTS' s general philosophy in these areas is made up of two points:' 

'I. Don't mess up the user or his inform.ation by carrying out a 'command 

or an operation that can't, be carried through to completion. This rule 

must be tempered by considerations of efficiency and speed. For ex-

ample, in commands that ,refer to file storage, it may be' unfeasible 
~ 

to check for the, existence or nonexistence of the files mentioned; it is 

probably unwise to simulate an entire command to check for storage-

limit run-overs before 'actually carrying out the command, and impos Co 

sible to an~icipate hard,ware and 'device malfunctions. However, TEL 

and all its subsystems that carryon line-by-line dialogue with users 

will always pars e an entire command before starting an operation to 

insure that the command is, at the least, formally valid. 



SHEET I/§OF -"~6S "" .,;f 

2. The majority of errors are readily grasped by the user's eye and 

head once the fact of an error has been brought to_ his attention. 

Accordingly, error messages will be as terse as is possible within 

the constraints of readability. 

The error-messages themselves and the specific actions taken on errors 

will be covered in final UTS documentation. However, many errors and 

error reports ,are uniform throughout TEL and some of its subsystems,- -

and can be listed here: 

(a) Garbled, malformed or unintell~gible commands: 

EH? @ n (where n gives the character position at 
. which the confusion was first encountered) 

(b) Garbled or invalid file, device, reel, account identifications, 
and others: 

FILE. .. ? 
DEVICE... ? 
ACCOUNT .0 •• ? 
PASSWORD ? 
JOB... ? 

(c) References to (deleting, reading, overwriting) a nonexistent file: 

NO FILE ... 

(d) "Attempts to write ON rather OV-ER an existing file: 

ON FILE. .• ? 

(e) Errors, abnormalities, l3torage-limit overruns associated \vith an 
input-output action or with a specific file: 

FILE. ... : 
DEVICE ... 

followed by error mes sage 



IDENTIFICA TION AND NAMING CONVENTIONS 

" 
On-line users are provided a set of uniform conventions for representing informa-

tion for fiscal accounting, file identifiers, devices, and other' objects. 

A.. Accounting Information and File Identification 

An on-line user must identify himself before he can use TEL or any of its 

subsystems. Procedures for doing so are described in the next section. 

Three pieces of information are required: .. '1""" 

\ 

.,(,,,.f'" 

1 ) 
2) 
3) 

. L~ 

the us err s personal identification (id) (1 -:'8: char) 
the us er l s account identification (account) (1 -8 char) 
a password (password) (1-8 char) 

S (I'n'. L:J 
',) /1', I ' 
'/ I 
f) II' " 1: I::') 

These may be represe'nted by a string of no more than eight contiguous 

l~tters andlor decimal digits. Embedded underscores may be used as 
~.---.-,.--.-" .. ,.-~ .. -- ,- '" "-""-" .-",-",-.--".~-.- .. --",- -... ~.-. '.-

separators (they count as characters); these print as left-facing arrows 

(-) on Models 33 and 35 TTYs. 

Files are identified by name, account, and password; file identifications 

(fid) are represented by file name, accOunt, and password (in that order) 

separated by periods. ~~ In the abs ence of account andlor pas sword, UTS 

uses the log-on accounting identification. All identified files are permanent. 

*For the limitations on the lengths of the character strings for name, account, and 
password, see PCL:I' Part IX. Except that file names are limited to 10 characters. 



B. Device Identification 

Device identifications are represented by two-letter abbreviations for: 

card r.eader ·(CR); card punch (CP); line printer' (LP); on-line tenninal 

(ME); labeled tape (LT); and free-fonna~ tape (FT), 

Tape identifications must be followed by a· numb.er sign (#) and a reel 

number; e. g., LT#727. 



I 

·DRA WIN, G NO. 302489 
.SHEET/lff OF ,308. 

d 

INITIATING AND ENDING ON -LINE SESSIONS 

~ 

An on-line user must establish a 'connection with UTS and identify himself properly 

before he can use TEL or any of its subsystems. When a connection with UTS has 

first been established, UTS responds by 'typing: 

UTS A T YOUR SERVICE 
·eN'~·A:T- (time and ,date)' ' 
LOGON PLEASE: 

and then waiting (on the sam'e line) for the user to identify himself by typing his id, 

account, and password (separated by commas) on the remainder of the line and then 

depressing the RETURN key. If the identification is valid and consistent with UTS's 

records, TEL types an exclamation mark ,(! ) at the left margin of the top line of a 

new page and then awaits the user's first command. If the identification is garbled 
, I 

or otherwise invalid, UTS notifies the 'user and then repeats the initiation procedure. 

The messages are 

EH? 
ACCOUNT. •• ? 

\ ID • •• ? 
'''---_I?ASSWORD • •• ? 

(for Illalformed or indecipherable) 
'(filling in the garbled or invalid item.) 

The user may change tp.e password in his logon ,~i1e at anytime by typing PASSWORD xxx:: 

where xxxx is any 1-8 character string. Requirement for a pa~sword is reset if an, 

xxxx is not given. 

'\ ' /)\ 
\...,'" 

, I 
I i,',' , '((' , 



d 

DRAWING NO. 7\02489 
~J;IEET/lr' OF 3W". 

MAJOR OPERA TIONS 

. ' 

Most co:mm.onplace activities associated with FORTRAN and assembly-language 

progra:mm.ing can 'Qe carried out directly in TEL; others require calling for the 

services of one of TELls subsystems. Figure 3 indica'tes how such activites are 

carried out from the console; TE~ co:mm.ands are capit~lized, and subsystems in-

dicated. 

1. FORTRAN and METASYMBOL programs are created, filed away 

and changed through the EDIT subsystem either by explicitly calling 

for EDIT or by the EDIT and BUILD directives. 

2. Programs are compiled ,or assembled via the co:mm.ands FORT4 and 
I 

META from the files or from the terminal (line-at-a-time) into relo-

eatable modules (ROM). 

3. ROMs may be LINKed into load modules (LM). 

4. ROM's and LMs may be LINKed and may be modified by SYMCON. 

5. LMs can be LINKed into core and'execution STARTed. 

6. Linking, loading and ,starting of ROMs can be subsUllled under the 

single dir,ective, RUN. 

7. Object programs can be run or started under the control of one of the 

debugging systems DELTA or FDP. 

8. Executing programs that have been interrupted or stopped can be 

CONTINUEd after corrective actions ~ 

9. Core images can be SAVEd on the files, and a user may GET a saved 

core ima.ge at some later date for continuation., 



EDIT, BUILD 

filed 
copy of core 

module 

FORT4 

User's 
Console 

relocatable 
object 

modules 

LINK 
SYMCON 

-DIG\WIN-G-:NO-:-702~l89-

SHEET,bLO OF 3tP6 

EDIT, BUILD 

META 

START 

SA.VE 
START 

static 
core error~ A--------

module.. sto~ 

" "-------\ CONTINUE./ 
\ / 

\ debugging 
subsystelTIS 
FDP, DE~ 

--

/ 

/ 
/ 

/ 
/ 

Figure 3. FORTRAN and ASSEMBLY-LA.NGUAGE PROGRAMMING 



SHE"ET 1)./ OF 30~ 

10. Files of information can be managOek directly (COPY, DELETE) and 

through the PCL and EDIT subsystems. 

A. Compilations and As s emblies 

1. Inputs and Outputs 

One or more source programs can be compiled or as sembled into a 

single ROM. Input i~entif~cation (~) may "be either a file identifica­

tion (fid) or the device ide~tification, ME. Whenever it encounters the 

latter, UTS will request that the user type in his source program a line 

at a tim.e. ~ no input specification is given explicitly, TEL "assumes 

mputof~om the terminal (ME). To signal end of input via the end-of­

file signal, the user depresses ESC and then F. 

Listing output (list) may be direct~d to a file, the .terminal or a line 

printer (fid, ME,~ LP). ROM output (denoted ~)may be directed 

to a file or may be unspecified. In the latter case, UTS caches the 

ROM on a scratch file, which the user may subsequently refer to by a 

do~lar sign ($). 

2. Comm.ands 

FORT4 !E., !E., ... ,' ~ ON rom, list 

META ~,~, ... °,0 ~ ON rom,· list 

Li"sting~ commentary, and ROM output may be specified beforehand. 

LIST ON list 

OUTPUT ON rom 

COMMENT ON list 

or OVER an existing file) 



When'so specified, the cornrn.ands can be abbreviated; e. g. , 

FOR T4 filel, file2 

FOR T4'fi1el, file2 ON romfile3 

Listing specification hold over all subs equent operations -until changed 

or until specifications accoInpany a cOInpile or asseInble cOInInand. 

Output files specified via ON and OVER claus es hold froIn the time 

given throughout the s es s ion or until res et, and output to theIn is ex-

tended froIn job step to job s~ep (see Section 4 below). 

'3. Controlling Error COInInentary and Outputs 

I 

Error cornrn.entary is always' directed to the user's terIninal and 

always accoInpanies listing output if specified. During the coura e 

of a compilation or assembly, the user may interrupt the process to 

turn output on or off, or to turn on or off error cornrn.ents and listing 

output. 

, LIST 
OUTPUT 
COMMENT 

or 
or 
or 

DONT LIST 
DONT OUTPUT' 
DONT COMMENT 

The facility for turning off and redirecting error comInentary is one 

that can only be appreciated by assembly-language prograrmners and 

debuggers who have, sat at an on-line console, wringing their hands 

in desperation 'while the Inachine chatters on "and on about an error 

that they could either ignore or repair instantly once they began de-

bugging. Once the user has redirected things to. his satisfaction, he 

can request that processing continue by typing' 

CONTINUE 

• 



~"'''''''--:"'-4 -... -,-fT'- -:-...., .. -;:;;:; 0-U --------

In the event that things are hopelessly messed up, the user can tell 

'ill1TS to give up on 'the operation by typing 

QUIT .... -

4. Extension of Output Files 

File extension is a convention us ed when opening certain system out-

put DCBs by which a file (RAD,. tape, disc, pack, CRAM, etc) connected 

to a DCB i"s positioned to a point just following the last record in the file. 

Thus, when additional output is produced through the DCB it is added to 

the previous file contents thereby "extending" the file. File extension 

is necessary to shnulate output to physical devices such as line printers, 

punches, typewri~ers, etc., when output is actually directed to a file. 

It takes place on all opens of system-output DCBs and, in. particular, 

it takes effect between job steps (com.piles, assemblies, loads, and 

executions are all steps within the same job) when opening system out­

put DCBs, which were closed at the termination of the preceding job 

step, a!-ld which are normally connected to devices but have been 

assigned to files. The DCBs which are treated this way are M:LO, LL, 

DO, PO, BO, SL, SO, CO, AL, EO, and GO. 

File extensions do not apply, that'is a new file is created, on occurrence 

of a reassignment (SET) or when the file is opened with an OPEN Com.­

mand. giving an explicit file name.' Extension of the GO· file is termihated' 

following a LINK or R UN Command. 



5. Error-Handling and End-Actions 

"DRAWING NO. ·702489 
.S.HEET/~'1 OF -;;rft. 

Whenever UTS aborts an· action, either becaus e it cannot be 'continued 

or because the user has told it to quit, UTS will always clean up things 

before reporting and returning control to the user. In particular, 

aborts occurring outside of TEL, i. e., within compilers, assemblers, 

or user programs wi~l res:ult in all previous specifications for listings, 

commentary, etc. and/ or file assignments being restored to that in 

effect at the beginning of the job step. Source Input (81) specif~cations 

are res et to .the default, ME, for each job st'ep. On syntax errors in 

input messages, the input is erased and an: entirely new command must 

be entered. 

6. Entering Programs From the Terminal 

Whenever'the input designator, ME, is encountered, the carrier is re-

turned to the left'margin of a fresh line ·and a prompt is sent to await 

the user's first program statement. Each statement is terminated by 

, ' , 

a carriage return or line feed. Error commentary, if any, follows 

im.mediately to the user's terminal. To indicate the end of his source· 

text, the us er types the end-of-source command for the subsystem in 

use, normally "END". For purposes ,of formatting, print columns on . 

the terminal's platen are in one-to-one correspondence with card 

columns, and trailing blanks are assumed for short lines. To facilitate 

typing of commands and statements, TEL will assume that the ter:t?inal's 

tab stops are ,set to conform to the programming language bemg used, 

and will so simulate them if tab-stop simulation is in effect. For 

FORTRAN, a single tab stop at print column 7 is used; for assemblies, 



DRA WING NO. 702489 
SI-IEET/,?S OF 3 D rt 

tab stops are set at columns 10, 19, and 37. The general handling 

and 'siInulation of tab stops is covered completely in Part XII. Briefly, 

tabs are siInulated so that longer fields can be used: spaces are sent 

to the terminal to bring the carrier position to that indicated by the 

next tab position set. Tabs given when the carrier is beyond the last 

set position are simulated by a single space. On input, tab characters 

accompany the source statements literally, and assemblers and com-

pilers will treat them properly. 

7. Debugging Information 

ROM outputs of both compilations and "assemblies always contain in-

formation required for subsequent debugging at the assembly-language 

level under DELTA. To debug FORTRAN-produced programs under 

FDP, further information must accompany the compiled code. In the 

absence of other specifications, this information is not produced by the 

compiler. Such iniormation increases the size of object programs and 

slows them down. To turn on the production of this iniormation for a 

specific compilation, the user follows the verb FORT4 by a parenthe-

sized letter "D" or the parenthesized word "DEBUG". 

B. Linking ROMs and LMs to Form. LMs 

ROMs are representations (of program.s and data) that are specifically de-

signed for efficient combination with other ROMs; LMs are representations 

designed for efficient transl?-tion into executable programs and loading into 

core. Both may be pictured as bodies of potential m.achine code to which 



are appended so -called symbol tables. Symbol ,tables lis t the correspond-, 

ences between the synlbolic id,entifiers used in'the orig.inal source program' 

~ 

and th~ values or virtual core locations that have been assig.ned to them.. 

Many of thes e symbolic identifiers are us ed and xeferred to solely within 

the m.odule that 'm.ay be referred to in other m.odules (DEFs) or are used 

to refer to objects defined within other modules, (REFs). Functionally, these 

m.odules are black boxes with labeled connectors dangling from. them., som.e 

pointing out and others in. The labels are the global synlbols associated with 

the m.odule; the internal connections ha've all been, potted, and ar~ hidden. 

The p~ocess of linking m.odules togeth~r is one of "m.aking big ones out of 

little ones". In the process, internal symbols associated with new m.odule's 

c'onstituent par.ts are potted and hidden, but all global symbols are still 

visible. If the resultant m.odule is to be itself recom.bii\ed with other m.odules 

to form. yet larger pieces, it is often necessary that it be repotted in such a 

way that those global symbols used solely 'for' connecting its original constituentf 

either be renam.ed or be m.ade internal to its elf so that conflicts with external 

sy:rnbols of other m.odules be circumvented. The subsystem. SYMCON, de-

scribed in a separate document, ~~ provides users facilities for suchrenam.ing 

,and repotting. These facilities simplify the construction of large program.s, 

since they perm.it subprogram.s to be linked freely in the face of conflicting 

nam.ingconventions. 

*Drawing Number 702477. 



I 

DRAWING NO. ~02489 
~HEET IJ1 OF :3 0% 

Continuing the black-box analo~y, if a module is slit open, a jl.Unble of 

internal connections should be visible. If the Il}odule has been tested and 

deemed fit for production, thes e connections need not be labeled.· However, 

if the module is still in the debugging stage, the labels may be necessary. 

To this end, TEL permits users to specify when the internal synlbols 

associated with a module being linked are to be kept with the resulting load 

Illodule. 

1.. Simple Linkages 

Both ROMs and LMs may be linked .. Their identification mfl (for 

"modu,le for linking") may be, a fid (file identification) or the dollar 

sign ($) which refers to the ROM(s} produced on the M:GO file. 

The subsystem, LINK, is specifically designed for linking and is de-

scribed in Section X. However, most commonplace lfn~ages can be 

car~ied out directly in TEL. 

LINK mfl, rn.fl, ••. , mfl ON hn 
LINK mfl, rnfl, .•. , mfl aVE R hn 
LINK mfl, mfl, ... ; mfl 

(ON A NEW FILE) 
(OVER an existing file) 
(in a special file which 
rnay be STARTed) 

The resu~t of any linking operations is always available for subsequent 

execution whether specified ·or not (see C. below). 



___ ~~-, .-.. , """,-., ,-,.-,-"", .. -.v-/---

·SHEET/cJ9" OF '3 oq 

2. Load Module Syinbol Tables 

A load module can be pictured as being compris ed of three parts: 

a) a body of code; b} a table of global synlbols;. and c) a table or s.et 

of tables of internal~ synlbols, each associated with a specific input 

m.odule and identified by that module's file name. This identification 

permits users who are debugging under DELTA to define which set of 

internal sy.m.bols are to be brought into play for their debugging activities. 
. . . 

What happens to thes e subtables associated with a load module when the 

m.odule is relinked with other modules is described iIi 3. below. 

The mechanisms for specifying when an i.nput module':s internal symbols 

are to JJe kept with the resulting load module follow: 

(a) 

. (b) 

(c) 

The parenthesized letters "NF' preceding an input module's 
file identification in the LINK conunand specifies that internal 
sym.bols for that module are to be left out;. the parenthesized 
letter "I" indicates that internal synlbols are to be kept. . 

Once given, a specification holds for all subsequent Inodules 
mentioned in the cOInInand until the occurrence of a new speci­
fication. 

In the abs ence of any specifications at 'all, all internal synlbols 
are kept. 

3. Merging Internal Symbol Tables 

Keeping each constituent's internal symbol table distinct and uniquely 

identified in a load module makess ens e when common naming con-

. ventions have been repeated in progra:rnm.ing the constituent modules; 

i. e., when objects internal to distinct modules are frequently identi-

fied by the same symbolic identifier. When non-conflicting naming 

conventions have been used, the user .may give instructions to merge 



- _ _ ....- _-, ,-.... .,.- .. -'-41-.-.' '-" .-,-v ",-,-.1..-\,;.1-/-

'SHEET/d1oFj>O'6' 

~everal specified symbol tables into a single one in the resulting 

load module. This is do~e by enclosing the list of input modules 

named i.n the command in parentheses. Only one level. of parentheses 

nesting is allowed. Either all or none of the input modules may be 

merged on' a file. This convention was adopted in favor of, say, 

choosing a distinct command for the proce,ss, to maintain uniformity 

with the conventions of the LINK subsystem. Multiple us es of internal 

identifiers are resolved by assigning to them. the object that they identify 

in the first input module with which they wer.e as'sociated (r~ading from 

l.eft to right within parentheses). When a load module containing sepa-

rate internal symbol tables is itself linked in any way, its subtables 

are merg~d into a. single one before carrying out the linkage. 

4. Searching Libraries 

To resolve any dangling identifiers, users may indicate the order and 

identification of libraries to be searched after all input m.odules have ., 

been linke~. " Librarie~ are identified by account" and library identifi-

cation (lid) is identical to account. The list of lid's separated by com-

mas is appended to the list of mfl' s in'the LINK command, and is sepa-

, rated from that list by a semicolon. For example: 

LINK m.fl, mfl, ... , 



.DRA WIN. G NO •.. I02~8·9 
SHEET/JO OF {~O 

In the absence of any other specifications, .a special UTS library will 

be searched to resolve dangling identifiers, usua1-ly those associated 

with FORTRAN com.pilations. This is done after all Iibraries speci-

fied by the user have been searched. To turn off this final library 

search, the user follows the co:rnm.arid verb by the parenthesized letters 

"NL" . 

5. End-Action and Error Reporting 

Options governing error displays are gIven irn.Inediately after the verb, . 

LINK, as a parenthesized code or list of codes: 

ND or D Inean 
NC or C Inean 
NM or M Inean 

do not or do display dangling identifiers 
do not ar do display conflicting identifiers 
do not or do display com.plete loading m.ap 

The normal options are D, C, NM. After any displays, "DONE" is 

typed and then control is returned to the user. 

6'. Loading LMs Into Core 

It ~s possible to load any stored LM into co~e by presenting TEL with 

the LM naIne as a com.m.and verb .. ·A password m.ay be optionally 

present. If the LM exists under another account,· that account m.ay 

be specifled. If no account is specified, the :SYS account is as sumed. 

TEL will scan the rem.aining portion of the input line in an attem.pt to 

create assignments as is done for the META 'and FORT4 com.m.ands. 

If the line scan is not desired and there is m.ore line content, the us er 

may bracket the "no-scan" portion with parentheses. TEL will ignore 

all.data imbedded within the parentheses but will reject as a syntax 

error excessive close parens. For exam.ple: 



TESTOR 

DRAWING'N0'. 702J-89 
.SHEET/.3/ OF 3 00 

loads' the LM from the :SYS account 
TESTOR. loads the LM using the Logon account 
TESTOR.1234 loads the LM using the account '1234' 
TESTOR .. SECRET loads 'the LM under logon account and 

the password ''SECRET' 
TESTOR FILEA ON FILEB, FILEC' 

loads the 'LM and assigns FILEA as the 
source in (SI DCB). Any output through· 
the GO DCB is p~aced on FILEB,' and 
FILEC will contain any output through 
the LO DCB. 

TESTOR (ABC(DEF(GHI)JK» 

C. Initiating Execution 

loads the LMand passes the line image 
directly to the program. 

To start execution of the last LM formed by LINK, the user types 

START 

To load and s tart execution of an LM, the us er types 

START 1m 

To link, load, and start the result of the last major operation 

(assembly o.r compilation), the user types 

RUN 

To link, load, and start execution of a set of modules, the user types' 

RUN mfl, mfl, ... 

All options of the LINK command may be exercised in the RUN com-

mand, in exactly the same manner. Normal ,options are the same: 

RUN (I) filel, file2, (NI) file3 

requests that three files be linked, loaded, and started. Internal syrn-

boIs for the first two only are to be kept with the resulting load modu~e. 



D. Initiating Debugging OperatIons 
d 

Execution of progra:ms can be started under control of~ either of the two 

debugging subsyste:ms, DELTA or FDP: 

START 1 
DELTA 

UNDER ,FDP 
XXX 

"RUN (for asse:mbly-language debugging) 
(for ~ORTRAN debugging) 
(under special shared processor XX 

Once the progra:ms have been loaded into core, control passes to the desig-' 

nated debugging package which notifies the user and then awaits his orders. 

The DELTA debugging sUbsyste:m":may also be called when execution has been 

initiated without the:m, usually after an interruption by the us er or an error 

co:m:ment by the syste:m: 

DELTA 
" I 

E. File Manage:ment 

A few simple operations on disc files can be carried out dir'ectly in TEL. 

full file-management and information-transfer capabilities are provided by the 

PCL s~bsyste:m. In TEL, disc files :may be copied ON new files, the printer 

or the ter:minal; may be copied OVER an existing file; and may be deleted: 

COpy fid OVER fid 
COpy fid ON fid or LP or ME 
DELETE fid 

Once started, deletions cannot be interrupted by the user; copies to a printer 

or to the ter:minal will be aborted by"interruption; TEL will type 

REVOKED BY INTERRUPT 

in such cases. When an operation is carried through to cOInpletion, TEL 

prints " 

DONE 

" before returning control to the user. 



, DRAWW.G·NO.~ 7021;89 
.SH~ET /33. OF 3 rf 0 . 

F. Editing 
d 

. -
Line-at-a-time composition and editing of files .. of sequentially numbered 

lines is provided by the EDIT subsystem, ~hich can called in two ways: 

EDIT fid 

BUILD fid 

(an existing file) 

(a new file) 

In the first cas.e, EDIT has already been apprised of which file is to be 

. edited, and has opened that file for updating. In the second case, EDIT 

assumes that the user wishes to type in a ne'w file, a line-'at-a-time, be-

ginning with line number 1. 000 and continuing in steps of 1 ~ 

EDIT responds by printing each line's num.ber at the left margin and then 

waiting for the user to type in the line itself. Although EDIT is invisible 

to the user during this operation, it is explicitly available to him for cor-

rections and other editing operations. . To' end the operation of accepting 

a new file, the user'must depress the carriage return key as the first char--
, acter of the, line, and then type 

END 

G. Submitting Batch Jobs 

Control card programs destined for' submission to the batch queue can be 

compos ed and filed away on-line in the EDIT subsystem.' These rna y then 

be submitted to the batch queue: 

BATCH fid 

'UTS respond~s by a$ signing the batch Job an identification (Jid) and notifyirig 

tbe user: 

JOB jid SUBMITTED date-time 



DRA WING· NO,. ~024.e.9 
.SHEE'T/"?;OF f' O' 

. , 

The procedure for as signing priorities to 'remotely submitted batch jobs 

will be defined concurrent witl?- the development of the Remote Batch 

Functional Specification wh~ch is in process. The user can interrogate 

the status of remotely entered jobs by typing 

JOB jid? 

At the very least, UTS will be able to tell the user whether the job has 

completed or whether it is still in queue. The user can cancel an un-

finished or unstarted job: 

CANCEL ll2 

H. Calling Subsystems 

All subsystems are called by typing the subsystems identifications, e. g. , 

I PCL 

All subsystems respo~d by identifying themselves; e. g. , 

PCL HERE 

and then typing their identifying mark at the left margin of a fresh line 

before -returning control to the user. -All subsystems are described in 

separate parts of these specifications. The identifying marks are: 

EDIT (*) 
PCL « ) 
FDP (@) 
SYMCOM (:) 
LINK (:) . 
BASIC (> ) 
DELTA (bell) . 
TEL (! ) 
PM ( - ) 
FORTRANs (» . 

META (» -

w.tA ..... ~ (7) 



I. Continuing and Quitting Major Operations 

DRAW1NG·NG'. 702489 
.SH~ET/35 OF ) d~ 

Whenever a major operation,· a subsystem or an execllting user's program· 

has been stopped or interrupted in any way, the" user ·can 

1. Take any of the minolr actions described in the section below, 

and then request TEL to continue from the point of interruption 

by typing 

CONTINUE 

2. Give up completely on the operati?n by typing 

QUIT 

In the latter cas e, TEL cleans things up and then returns control 

to the user. 

3. Initiate a ~ew Il1ajor operation. In this cas e, the effect is as if he 

had told TEL to QUIT before giving the !).ew comIl1and. The sole 

exception to this rule of autoIl1atic QUITting occurs when the user 

calls one of the debugging systems (DELTA, FDP) during execution 

of his program. In this case, the user's prograIl1 will have to be 

initiated again under control of the debugging system. 



DRA WING,:NO. • .7.9.21.~9 . 
SHE~T lib··oF .J t col 

MINOR OPERA TIONS 
d 

A. Checkpointing Session-s (SAVE, GET) 

During interruptions of exception, core :ilnages'of program.s m.ay be 

saved on the disc files for subsequent recall and continuation. To 

save and file away a core image: 

SAVE ON fid 
SA VE OVER fid (over an existing file) 

The current status of the us er' s files is not copied, and the us er lTIust be 

aware of anyon-going but interrupted input-output activities. In brief, 

.checkpointing will work well so long as th·e user knows what he is doing. 

To recall a checkpointed core iInage for continuation, the us er types 

GET fid 

At this point, the user is - ~ to within file changes and input-out activities 

exactly where he was when he SAVEd. 

B. Assigning I/O Units and DCB Parameters (SET) 

Most o! the parameters carried in DCBs which :controf.I/O··.-in:-UTS ·may be 

set from the UTS terminal by use of the '.'SET" command. The SETable 

information includes that which may be. given in BPM ASSIGN commands and 

many of the parameters which are established using OPEN or DEVICE CAL 

instructions in a program. The complete list of SETable parameters are 

given below. 



DRAWING Ndai
.' 702489 

SHEET/37:oF 50''5 

UTS retains, for each. user, all the' information supplied by SET Commands 

in permanent tables (called assign-merge tables) associated with each user 

(on RAD). Each time a new program or proces.sor. is loaded for the u~er 

this stored information is merged into the 'DCBs associated with the program. 

SET Commands may not be given during the operation of a program. 

Information given by a SET Command is in effect from the time the command 

is given until revoked by the user, independent of whether one or many job 

steps are included in the session. A simpl~ example of the assignment of 

listing output is 

Set M:LO 7T # 123; TABS = 7, 12, 22., 37 

which makes a device 'assignment to the M:LO DCB indicating I/O to seven- . 

track tape on reel number 123 with processing to simulate tab stops at 

positions 7, 12, 22, and 37. 

As in BPM, assignments are one of two types: 

1) device like printer, punch, mag tape, or 
2) files on RAD, disc pack, CRAM, or labeled tape. 

If a file assignment is given for a DCBalready assigned to a device, then the 

new information replaces the old in the assign-merge tables. The s'ame pro-

cedure applies to device assignments for DCBs currently assigned to files. 

Changes of device parameters are added to DCBs assigned to devices 0 Change 

of d'evice parameters given for DCBs assigned to files yield an error message. 



DRA wtNq<N.O~ . .7.o24~9 
SHEET /# OF 3IJ1 \ 

DCBs must be named uSIng either·M: or F': followed by up to a maximum 

of five characters. 

. . 
The number of DCBs which may be as signed (and thus require an as sign-

merge table entry) is limited to 12, including a different entry for each 

chained SI specification. The user' may delete assign-merge entries by 

the conunand SET S~l O. . 

. If ~ i J &---"_._.. -
Syntax of the SET command is ~ 

{
M:X [{ device ~o.J 11 J [{ SPACE=n}] 

SET MT Elser. no.] /fid ; VFC 
F: i DC/fid . NOVFC 

op lcJh~ 
Spaces may be used arbitrarily between numbers, words, and identifiers 

~Ut may not appear within words or nUIrlerals. 

Some examples of its us e are 

SET M:LO DC/N. A. P 

SET'M:SI MT#403/fid 

The M:LO DCB is given a file assigrunent 
to file N under account A with password P. 

. -
The M:SI DCB is assigned to files on labeled 
tape reel number 403. 

SET M:LO; TAB=27, 38,47, 75; VFC;.SPACE=2 

Device. Options 

The TAB, VFG, and space parameters are 
added to the M:LO DeB. It must have had 
device assigmnent previously els'e an error. 
would have re suIted. 

Device options, like their program counterparts the M:DEVICE CALs, 

may be given between job steps but not during an interruption of an ex~-

.cuting program. They take effect on subseq!lent 1/.0 carried on through 

the DCB. The information is stored in the as.sign-merge ent,ry if they are 



DRAWINGNO~., .7·02489 
S~EE~/3r 'OF 3o~" 

of device rather than. file type. Thus ,the effect carries on over job 

steps until reset by the' user. If the DCB or A-M entry is currently 

assignedto a file, all device options are illegal.and result in an error 

message. 

The device options and the meaning of each is given in the table below. 

Not provided are commands corresponding to the M:DEVICE CALs: 

PAGE, FORM, SIZE, and HEADER. 



NAME 

TAB 

LINES 

SPACE 

DRC 
NODRC 

VFC 
NOVFC 

COUNT 

BCD 
BIN 

,FBCD 
NOFBCD 

PACK 
UNPACK 

DATA 

SEQ 

DEVICE OPTIONS 

DRAWING NO .. , ,7.0,2,4189 
S~EE~ /;/: OF :3 t1~ , 

RANGE OiT VALUES 

A list, separated by commas, of up to 16 decimal 
numbers giving the column position of simulated 
tab stops. If all 16 stops are not specified, the 
stops given are assigned to the first stops and the 
remainder are reset ,(to zero). 

A single decimal value giving the number of printable 
lines per page. Maximum is 255. 

A single decimal value giving the number of lines to 
space after printing. Values of 0 or 1 result in 
single spacing. Maximum value is 255. 

A switch which turns on or off special formatting 
of records.' 

A switch which controls formatting by the first cha'r­
acter of record. 

Turns on page counting and specifies column number 
at which to print the page number. 

Controls the binary-BCD mode for device reads and 
writes. 

Controls the automatic conversion between external 
hollerith code and internal EBCDIC code ,(so-called 
"FORTRAN BCD conversion"). 

Controls the packed or unpacked mode of writing 
s even track tape. 

A decimal value which controls the beginning column 
for printing or punching. Maximum is 144. 

Specifies that sequence numbers are to be punched in 
columns 77-80. Four characters of nonblank sequent 
id may be given for columns 73-76. Fewer than four 
characters are left-justified and blank-filled. 



DCB Assignment 

-DRAWING~Np~1b-248-9-

SHEET /I//'O-~' ?O~ 

Device assignment is effected whenever a set co'mmand contains an expres-

sion containing an Ope label o:r device code. 'An~ assign-merge table ent~y is 

built or an existing one is modified. DCB assignment is specified by giving 

one of the two -letter codes below. 

1. Ope Label 
BI, C, CI, EI, SI 1 u..t.. 
BO, CO, EO, SO, PO', DO, LO_ 

NO 

2. Device 

CP 
PP 
LP 

3. Tapes 

9T 
7T 
MT 

4. Files 

DC 

DP 
CM 

The DeB may, be as signed to one of the sys­
tern operatioI?-al labels. The actual device 
connected will be that specified by the Ope lab, 

No as signment. 

The following c?des may be us~d to obtain 
symbiont connection to t~e named device. 

Card Punch 
Paper Tape Punch 
Line Printer 

These codes may be used to specify nine­
track" seven-track, 6'r arbitrary tape drives. 

Nine -track tape 
Seven-track tape 
Any mag. tape 

These codes may be used to obtain specific 
file' connections. 

Any data file. This is the default as s umption 
if no code is given. 
Disc pack 
Cram file 



-JJL\.:n.-VY-~.L~O-.L~O-. -, V-G'":t07-

SHEET/1~6F'5'~~ 

File Option 

When an assign-~ergeentry is given for a file -(either disc or labeled tape), 

certain options may be given in addition to the name account password of the 

• -0 

. file id and the tape reel number (#x.xx.). T~ese options are listed below. Items 

from BPM ASSIGN commands which are not handled in UTS set commands are: 

Read/Write account numbers (default applies) 
Only one tape reel number 
Record length (RECL) 
"tries ,., specification (TRIES) 
Key max (KEY M) 
Volume number (VOL) 

They are not included primarily to reduce storage requirements in the assign-

. merge tables. 

File Option 

1. organization 

CONSEC 
KEYED 

2. access 

SEQUEN 
DIRECT 

3. function 

IN 
OUT 
INOUT 
OUTIN 

4. disposition 

REL 
SAVE 

Example: 

UTS SET Command File Options 

Meaning 

Consecutive record organization in the file. 
Keyed record organization in the file. 

./ 

Records will be accessed sequentially. -
Records ·will be accessed by key. 

File is read only. 
File is write only. 
File is to be updated. 
File is scratch. 

The file is to be released on closing. 
The file is to be saved on closing. 

SET M:SI DC/Name; KEYED; SEQUEN; IN 



-- -;- - .1JL'-~- YY~J.'" '-1' J. ... \J ;_ .. , u ~ ~ 07 

SHEET/¥3"e/i·' 3iJf'1 

C. Determining Status of Current User Ses s'ions 

lThe user may have the current accounting records applying to his session 

displayed for examination by typing the command 
~' 

STATUS 

The information displayed is as in t~e preceding section on user accounting, 

\'-ot:f 
namely: /t) 

J'" 1):> CPU time Tl'€,{"r- t -r-pc\lf + Tl.iE'xT "T '" ottT 
2) ./ Console time __ -'t-

3) /Number of interactions.. .:r~rIJTefl-
4) Number of Monitor CALs ~-~ 

5 5) Number of disc'packs or tapes mounted ~­
-6.)--Core size<l-" 
7) V" Total charge units _.'i 

,,·::r v 8) Disc reads and writes ~ 
.. ~.S 9) Tape reads and writes C 

lO)-I/0-r,e1:ries-.__ 4...:r--
" 

,I 

D.. Listing System Load Parameters 

The DISPLAY Command is used to request,printing of specific information 

about current system operation. The format is 

DISPLAY option 

where the option may be any of the fOllOWing:., f~ / 

DISC available disc space (in pages)~~ 
TAPES number of avai.lable tape dri:-es. 
PACKS number of avaIlable pack drIves . 
USERS number of users currently active /' j 
PERFORMANCE current values of interactive and 

compute r-esponse times. 

Other options for the DISPLAY Comin~nd will be a.dded as the need arises e 



E. Setting Simulated Tab Stops 

The positions of simulated tab. stops for the user's terI!1inal may be set via. 

the command. 

TABS a, b, c, .•• 

wherea,b,c, •..• are the character positions -on-line where simulated 

. . ~~ 
tab stops are to be placed. Up to sixteen may be set and they must o.c~ 

in ascending numerical sequence. They are acted on (enough spaces are 
\ 

sent to the terminal to position the carriage to the next higher positIon) 

when a tab character is to be· sent to the terminal or received from it and 

the sir.nulation control switch has been. set by the user·(ESCT). The setting 

applies until superseded by another TABS Command or by a program issued 

M:DEVICE TABS CAL. 

F. Changing Terminal Type 

The command TERMINAL may be used at any time to inform the system 

about the type of ASCII code terminal which is in use. The system uses 

this type code to, adjust char.acter translate tables, responses to line delete 

and character delete operations. The command form and. options are 

TERMINAL 

for SDS Keyboard display 
for Model 33 teletypes 
for Model 35 teletyp'es 
for Model 37 teletypes 



G. Reportipg Terminal Platen Width 

The user may change the effective widt~ of his termina} platen with the 

PLATEN· Command: 

P·LAT EN n le..... 
. ) 

When more thari n characters are written to the terminal without a new-

lin~ or carriage return character, a new line character sequence is in-

serted to break"up the output into segments no longer than the specified n. 



:~L 
)\0 BUILD 
~ META 

BATCH 
CANCEL 
COMMENT I 

CONTINUE, 
COPY 
DELETE, 
DISPLAY 
EDIT 
FOR'T4 
GET 
JOB 
LINK 
LIST 
OFF 
OUTPUT 
PASSWORD 
PLATEN 
QUIT 
RUN 
SAVE 
SET 
START 
STATUS 

TABS 
TERMINAL 

-.D~K,VV-11~crl~O-. -I Uc.4~"j 

SHEET iLJ6bP" :J.4ff 

INDEX OF COMMANDS -, TEL 

Calls E'DIT and accepts a new f.ile from. the terminal 
Assembles specified source program 
Enters specified file in Qatch job s~ream 
Cancels the designated batch job 
Directs error commentary to specified device 
Continues processing from point of interruption 
Copy a file to specified device 
Deletes the specified file 
Lists current values of various system parameters 
Calls the EDIT subsystem 
Compiles an SDS FORTRAN IV source program 
Restores previously saved core image 
Requests status of remotely entered jobs , 
Forms load module as specified 
Directs listing output to desired device 
Disconnects user from system -
Directs object output to specified device 
Assigns a new password to the user's login control reco} 
Sets value, of terminal platen width 
Terminates current operation 
Load!? specified load module and starts execution 
Saves current <;ore image on designated file 
Assigns file or device to a DCB; sets DCB parameters 
Begins execution of pro gram just loaded 
Displays the current values accumulated in the variol,ls 

. charge categories 

Sets override tab stops at the us er 's terminal 
Sets the terminal type for proper ~anslations 

~~"/J ~~ -1 a~,~ ~~~-ili 
~cl 0\v.M~ ~ 0~ 



JJl:{AWTNG-f\tO-:---7U2"4~<i-

SHEET ItfJ-OF 3.~7 

UNIVERSAL TIME-SHARING S~STEM (UTS) 

FUNCTIONAL SPECIFICATION 

VOL. 2 - PARTS VII - XIII 

By 

E. Bryan 
B. Doeppel 
J. Smith 

.31 March 1969 



DRAWING-NO~~--.--70-2':r8-9-

SHEET!i$ :OF"3 O}'1 

Part ,VII. TEXT EDITING SUBSYSTEM (EDIT) 

TABLE OF CONTENTS 

INTRODUCTION 149 

A. Calling EDIT 

B. Operation 

DESCRIPTION 1.52 

A. Common Extensions to the BTM Editor 

B. Characteristics of the UTS Editor-



-d 

INTRODUCTION 

DRAWING NO .. , 702489 
SH.EET~tjr'"~dF' ~ 0'·1' 

The UTS subsys'tem, EDIT, is a line-at-a-time context editor' designed for on-

line creation, modification, and' handling of programs and ot'her bodies of in-

formation. All EDIT data is stored on disc in a keyed file structure of sequence 

numbered variable length records. This structure permits EDIT to directly 

access each line or record of data. EDIT functions are controlled through single 

line commands supplied by the user. The command language provides for the in-

sertion, deletion, reordering, and replacement of lines or groups of lines of text. 

Selective printing and renumbering commands, and a series of commands to per-

form context editing operations of matching, 'moving,' and substitution line by line 

within a specified range of text lines. File maintenance commands are also pro-

vided to allow the user to build, copy, and delete whole. files of text lines. 

A. Calling EDIT 

An on-line user of UTS may call EDIT using one of two commands provided 
• 

. in the Terminal Executive Language (TEL). 

1. EDIT an existing file 

2. BUILD a new file 

In both cases, the EDIT subsystem is brought into play. The first case 

allows the user to call EDIT for the purpose of updating an existing file. 

EDIT first opens the specified file and then responds to the user by typing 

"EDIT HERE'~ and its identifying mark, the asterisk (~:~). 



DRAWING NO.~" 702489 
'SHEET /50 :OF ."~ tJ'1" 

The second case permits the user to call EDIT" for on-line creation of 

a text file. "EDIT opens the specified file and ""responds to the user by 

typing the first line number at the left ma"rgin of a fresh line. The user 

is then expected to enter the first line of the new file. "EDIT" and 

"BUILDII are included as part of the EDIT command language and are 

described further below. If the EDIT command is given at executive 

level without a file identifier, the editor will prompt for further com-

mand input with the I ~~. character. 

B. Operation 

EDIT", as a proces sor; operates in one of two states:" the command state 

or the active state. The command state is defined as the time in which 

EDIT is accepting or processing a command. This state is entered when 

EDIT types its identifying asterisk (~:~),- returns controt to the user, and 

awaits the next command. On the other hand, the active state is defined 

as that time in which EDIT is executing commands, processing text, or 

" accepting text from the user. This state is entered when a command 

starts "execution and terminates at the completion of the command. When 

carrying out a command, EDIT may be proces sing information while in 

control of the keyboard, or may have returned control to the user so that 

he may enter text data. Which of th:e two situations holds is always clear 

to the user. 



".LIn-~vv-.u~ Cr-l~q~( "!"t.-~-o\r 

SHEET /5/0F'~ ~.~.? 

The editing process is based on a seque.nce number ass~ciated with 

each line." These numbers may be automatically generated by the 

editor during insertions, or may be supplied b~the user. Unsequenced 

files of text lines may be sequenced using the copy command. 

EDIT files are stored on disc as keyed records with the sequence num-

ber used as a key. Thus, the file is always in key order and editing 

operations modify the records in place as the EDIT commands are exe-

cuted. Users may find it desirable to make their own back-up copies of 

EDIT files to protect against their own or machine errors. 



DESCRIPTION 

DRAWING NO.~, 702489 
SHEET /S;Z oif·S()··1· , 

. -.. . 

The UTS editor is an extension of the editor available in BT M. Thus J the details, 

of the language and its use are ~ontained in the BTM Manual (90 15 77A) as ex-

tended and modified in the following two ,sections. 

The first section describes extensions co:rp.mon to, both BTM and UTS versions, 

while the second section describes unique characteristics of the UTS version. 

A. Common Extensions to the BTM Editor 

1. a. The modified BTM editor will write variable length records. 

The byte count written will only be large enough to encompas s 

the last nonblank character in the record, followed by the Cr 

used to terminate the record. This format should double the 

effective record density in a given number of granules of file 

storage. 

The editor creates source output files with keyed organization. 

The keys are ?ne word binary representations of the sequence 

numbers seen at the terminal. The sequence number DDDD. DDD 

is taken as a seven digit integer, and converted to binary, giving 

a key with a maximum length of three bytes. 

For example, the following re'cord created in a BUILD operation 

would have key value 8000 10 and record length 20 bytes (including 

the Cr). 

8. a a a B 2 LI, 5 OCr 



-:-D.I\.-~YY-.l.L'IU-.l.'10-. --I UL.~-£O"'J-

·SHEET /SJ·O'F&·',j Ii f 

Should the Cr be preceded by, a ,numbe,r of blanks they will not 

be .carried in the output. The record terminator can be either 

carriage return ,or line feed (new line).,' It is carried in the 

record as X'IS'. 

b. The maximum record size in the editor has been increas ed to 

140 characters including the Cr. (In BTM, however, a single 

input line cannot' exceed the cac input buffer size which is set 

at SYSGEN. The default size is 100 characters. Therefore, 

the maximum record size under BTM is the minimum of 140 

and the input buffer size.) 

c. When a file created by EDIT is read by a processor, the records 

transmitted will appe~r in the format currently obtained when 

reading the TY device under BPM. That is, the Cr character 

will be in the record, and the byte' count transmitted will be 

given in the ARS field of the DCB. The processor must avoid 

produ~ing a synta:x: error due to the presence,.of the Cr, and it 

must not let short records pick up spurious characters from 

previous longer records. 

2.' Type commands· 

a.' The TY and TS commands have beenexte'nded to allow the user 

to display contents of records between specific column bounds. 

The syntax is now 

.... 
~. TY 'N 1 



·1 

DRAWING NO:.~., 70~'W9 
SHEET~)f ?F~6.·o , 

The editor displays recol;'ds in the range N 1 to .N2 • Only the 

portions between colu~ns c and d are typed. H N2 is omitted, 

only record N 1 .is displayed. 

Defaults: 

. Errors: 

c = 1 
d = 140 

-BAD COL. NO. PAIR 
,The columns specified are not in the 
range 1 through 1.40, with c :5 d. 

The intrarecord versions of TY and TS do not allow column' 

specification. 

b. A new record command, TC, ha's been added. This command 

has the same syntax and .display format as TY, except that when 

a portion of a record is displayed with the TC record, all blank 

fields are compressed to length one. This facilitates the display 

of as s embly language code. For' example, 

~~ TC 0-100 1, 36 

The TC command does not have an intrarecord counterpart. 

Under UTS, where blank fields may be carried internally as tab 

characte,rs, X'05', the tab wil~ be altered to one blank. 

3. Merge command 

A command has been added whi~h allows transfer of records between 

files. The syntax is 

* MERGE fid l LNI [-NZ]J INTO fidZ' N3 [-N4] ~i] 



-lJ.KKW1NG~Nq-.~ -7Ul4ts'j­
SHEET /.55 o~i·'.3· 6" ~.I 
. . .. 

fidl must exist, in keyed format,. or. the command will be aborted. 

If no range specification is attached to fidl"' all of its records are 

subject to the move. If a range specificat~on exists, . the editor 

checks that at least ·one record is contained in it. For example, 

* MERGE fid1 INTO merge all of fid 1 

* MERGE fidl' 10 INTO ... merge record 10.000 of fidl 

* MERGE fid1 , 10":12.5 INTO ... merge range 10.000 
through 12. 500 

After these validity checks on fid 1 , the . editor checks ,for the exist-

ence of fid2 •. The two possible cases are: 

a. fid2 do~s not existo In this case, the editor creates 

a file identified by fid2 . ~t then moves the appropriate 

record set from fid 1 into fid2 , res eq uencing from N 3 

and incrementing by i (in its absence, by 1). This is . 

roughly equivalent to· a CO'PY operation, except for the 

selection of records from fidl. 

b. When fid2 exists, the editor first deletes from it all 

records in the range N3~N4. Then the appropriate 

records from fid 1 are inserted into fid2 , starting at 

sequence N3 and incrementing by i (in its absnece, by 1) 0 

.' If an EDIT operation was in progress, it is halted with the message 

EDIT STOPPED 

The start of the MERGE operation is. noted by the message 

MERGE STARTED 



DRAWING NO,. ~ ,70.2.4~,9 
SH EET 1.5 5 eYF· :.3 0 r 

When the MERGE has been successfully· completed, the .editor prints 

the last sequence numbe~ assigned in fid2~ 

DONE AT' NS 

For example, 

~'c MERGE ALPHA. ACCT·l, 100-120 INTO BETA, 400-440 

EDIT STOPPED 

MERGE. STARTED 

DONE AT 420. 

In the event that, when fid2 exists ~ the numb~r of records to. be moved 

at the specified increment causes. the editor to equal or exceed the next 

highest existing sequence number above the destination range N ':'N , 

. the MERGE is stopped with the message 

where: = 
= 

last sequence number assigned in fid2 . 
s~qu~nce number of last record moved 
from fid 1 • 

The operation is terminated normally, and the user can investigate how 

to move the remaining records. 

Defaults: i = 1 

Messages: 

-- ·EOF HIT The range N
3

-N
4 

passed beyond the end of file in fid 2 . 

- PL:NO SUCH FILE fid 1 does not ·exist. 

- NOTHING TO MOVE the specified range in fid1 contains no reGords. 

- MERGE SOURCE NOT KEYED fidl must be a keyed file. 

- MERGE DESTINATION NOT KEYED fid 2 must be a keyed file~ 



4. CR command 

This command has the form 

! CR tg~F} 

DRAWING NO •. , 7Q~4§9 
SHEET/fl OF '..3 q1 

, . . 

and allows the us er to suppres s inclu~Hon of the X'15' terminator in 

his output file. Normally, it will always be carried along as -this is 

the standard format for teletype and typew'riter records. However, 

if the user, wishes to reproduce the file on cards or tape, for use by 

other than BPM/BTM/UTS software, he may not want the terminator 

to be present. 

After this command has been given, spec,ifying O~F, the terminal 

X'15' will not be included on any records written by the editor, and 

the user can copy the file producing one in the desired for'mat. 

* CR ON restores inclusion of the terminator and is the default 

setting. 



B. Characteristics of UTS Editor 

DRAWINGNO~, 70?1J39 
SHEET /51 OF' ~ (J. Y 

. ~ ~ 

The unique features of the UTS editor, apart from tho.se included in the 

extended BTM version, "fall into the following categories: " 

1. Calling sequence 
2. File identification (fid) format 
3. BREAK key 
4. The TA command for tab setting. 

1. Under UTS, the EDIT processor may be called at executive level 

in one of two ways. Following the executive prompt, the user may 

type: 

" EDIT [fid] , or 

BUILD fid ~ n G iJ] 

These commands are executive level equivalents of the corresponding 

EDIT commands. When they are given, the editor is entered, and it _ 

responds with 

EDIT HERE 

and the EDIT, or BUILD, command is executed. The editor will then 

prompt the user for the appropriate input. 

2. File Identification 

" The file identifier, or fid, is constructed by placing the character I. I 

between the file name, account, and password. The various cases are: 

filename 
filename . account 
filename . account . pas sword 
filename .. pas sword 

default log-on account 
specific account 
specific. account with password 
default account with pas sword 



filename is 1-31 
account is 1-8 
password is 1-8 

For example, 

} 

DRAWING-NO-. -702489-
..... ~ .. -

SHEETj.;(rO OF.:~ (} ~" 

characters from among the set 
A - Z. a - z .0 - 9 $ ~:~ % : # @ -

BUILD TEST.FIL .. PASS, 10, ~ Cr 

3. BREAK Key 

When the BREAK key is depressed it causes an immediate interrupt 

in EDIT activity. Any partially completed input is dis carded by the 

COC handler; any waiting output (already in the COC handler) is 

drained to the terminal. 

The editor stops any command in progress and reverts to accepting 

command input from the user. 

If a command was in the process of being executed, and the BREAK 

caused an interrupt in an I/O operation (READ, WRITE, OPEN; 

DELET E record), the I/O is completed. 

The user will be given the option of continuing the. execution of the 

command to the normal conclusion, or terminating it immediately. 

In the case of record or intrarecord commands, the current EDIT file 

will remain openo All other commands will terminate by closing all . 

files. 



-DRAWING-N9-::-7Q2i l89-
·SHEET 160 0F-.:E O~'I 

If the command in progress was o.f the display variety,for example 

TY, it will be obvious where the interruption took place. The display 

will stop within the next- several lines afte::. the interrupt is given. 

However, if the command produces no display while operating on a 

range of records, it will not be so clear-cut •. For this reason, the 

following com~ands will produce a messa~e similar to the --CUTOFF 

message of MERGE, denoting the sequence number{s) of the record{s) 

being processed at the time of the interrupt. 

COPY, MERGE, 

DE, FD, FT, MD, MI5-, 

SE 

4. The TA Command 

The UTS version of the editor contains an additional command for 

setting and resetting terminal tab stops. The command has the following 

syntax: 

The tabs are set as follows: 

F implies FORTRAN: tab at" col. 7 

M implies META-SYMBOL; t~bs at 10, 19, 37 

S implies META-SYMBOL, short form; tabs at 8, 16, 30 



DRAWING NO.~, 702489 
SHEET 16 /:OF"3 "·9 

These are logical tab settings corresponding to record col. numbers. 

They will be offs et to provide for the line number produced at the left 

margin of the user terminal. The command may be given while per-

forming an EDIT operation. It may not be us ed as an intrarecord 

command. 

Error: -NOT F/M/S The parameter supplied is not 
from the legal set. 

5. The UTS COC handler simulates input TAB stops at the.terininal by 

spacing the carriage (if the user has requested tab simulation). How-

ever, ~he actual TAB character, X'05', is passed to the proce~sor 

initiating the read, and will thus be included in files created by EDIT. 

Records will contain embedded tab characters rather than the blank 

strings they represent. 

Tabs for the terminal can be set with the executive TABS command, 

or with the TA command in the editor. 

l'~e editor contains a number of very useful commands which allow 

specification of column bounds during their operation. These column 

bounds could. correspond, for example, to opcode. - argument - comment 

fields in assembly language code, which the user identified with tab 

characters when building the file. When he is editing the file, the 

embedded tab characters must be made to represent the appropriate· 

number of blanks. In the current file management system, this tab 

information is not kept with the file. 



I 

DRAWING NO.~, 702489 
SHEET /6~OF·3Q?'· 

Therefore, the editor will expand each record it reads according to 

the c~rrent terminal tab s~ops contained in the M:UC DCB.· (This 

action will not be performed however, when the records are not 

subject to the EDIT command; a COpy or MERGE operation requires 

no such expansion.) In the.same way, each record written to the RAD 

will be checked against the current tab stops in the M:UC DCB and re-

compressed, if possible. 

Should the M:UC DCB not contain tab settings when the editor is ex-

panding a record and finds a tab character, the user is notified (only 

once) with the message: 

- TAB CHARACTER FOUND. NO TAB STOPS SET. 



d 

Part VIII. ,ASSEMBLY LANGUAGE DEBUGGER (DELTA) 

TABLE OF CONTENTS 

INTRODUCTION 

A. Calling DELTA 
B. Symbol Tables 
C. Command Summary 

DESCRIPTION 

A. Syntax, Symbols, and Such 

1. Command Delimiters 
2. Fixing Typing Errors 
3. Symbols 
4. Special Symbols 
5.' Input of Explicit C.onstant 
6. Expressions 

B. Memory Location Display: The / Command 
C. Expression Evaluation: The = Command ,. 
D. Memory Modification: The cr, If, t, and tab Commands 
E. Output Format Control 
F. Execution Con~rol: The ;G, ;P, ;X! a~d) Commands 
G. Breakpoints: The ;B,. ;D, and ;Y Commands 

1. Instru.ction breakpoints 
2. Data breakpoints 
'3. BREAK key breakpoints 
4. Transfer breakpoints and Interpretive execution 

Memory Searching and Modification: The ;W and ;N Commands 
Symbol Table Control: The ;U, ;K, ;S, !, and < >Commands 
Miscellaneous Commands: The ;A, ;R, and; Z Commands 
Printer Output: The ;0 and ;J Commands 

Page 

164. 

175 

H. 
I. 
J. 
K. 
L. Commands for the Executive Version: The ;V, ;H, and ;E Commands; 

Interrupts 
- 'M. 

N. 
Errc5rs and Error Messages 
Program Exits 

INDEX TO DELTA COMMANDS 208 



INTRODUCTION 

DRAWING No,r, .... 7024.89 
SHEET/6if pF 3 o~ 

DELTA is specifically de signed for the debugging of programs at the assembly-

language and machine-language level. . It operates on object programs and the 

. tables of internal and global sym.bols accompanying the-m, but does not·demand 

that the tables be at hand. With or without symbol tables, it recognizes machine 

instruction mnemonics and can assemble, on an instruction-by-instruction basis, 

machine language programs. Its main business, however,' is to facilitate the 

ac tivitie s of de bugging. The se are: 

1. The examination, insertion and modification of elements of 

programs: instructions, numeric values, encoded information 

data in all its representations and formats 0 

2. Control of execution, including a) the insertion of br.eakpoints into 

a program, and b) requests for breaks on changes in elements. of 

data. 

3. Tracing execution by displaying information at designated points 

.! in a program. 

4. Searching programs and data for specific elements and sub-elements. 

To assist in the first activity,' assemblers and compilers of UTS will include in a 

program.' s table of symbols information about what type o~ data each symbol 

represents: symbolic instructions, decimal integers, floating point values, 

single and douple precision values, EBCDIC encoded information, and others. 

The command language of DELTA is cryptic and .highly encoded, but easily 

learned and used by the ~rofessional program~er. It is subs~antially identical 

to the DDT language ~amily which has been in use on a variety of machines for 

the last decade. 



'-·--:'·-~.':'·'r"J~ .... ····> ....... 

DRAWINGNO~: 70i489 
SHEET/6b-:OF ,30!? 

Tw·o versions of DELTA will be produced: 

1. a user version.with codes and restricti.ons appropriate to m.ultiple 

on-line users operating in the slave m.ode from. t~letype consoles, 
~. 

and, 

2. an executive version for system. debugging which will operate in . 

executive m.ode under control of one of the operator's consoles o 

This will not norm.ally be resident when UTS is in service o 

A. Calling. DELTA 

DELTA m.ay be associated with the execution of a user's program. either at the 

tim.e the user load,s his program. into core for execution or by direct call after 

execution has begun. The two executive level com.m.C).nds are: 

1. To load the user's program. in association with DELTA: 

R UN program. nam.e UNDER DELTA or 

STAR T program name UNDER DELTA. 

Control goes to DELTA .and the user may examine and m.odify the 

program. before passing it contrpl. 

2. To bring in DELTA after a program. has been initiated, the user 

m.ust return to the executive level by the teletype console comm.and _ 

E C (control shift and E key depressed together), and give the 

executive command CALL DELTA • 

. DELTA also may be brought in and started without prior program loading for. 

writing and checking of short simple programs (optionally using the system 

library routines) and other purposes. 

To m.ake it possible to call DELTA in this way, a segment of virtual address 

spq.ce must and has been re,served for DELTA in high virtual addresses and 

space m.ust be· reserved in the users program. area for DELTA's context. A 

sim.ilar reserv'ation applies to the executive language processor. 



B. Syrn bol Table s 

. DRAWING NQ:!:'.' 7024,89 
. SHEET!66 oF3 ()1 

. A .program consists of one or more individually compiled or assembled units 
d 

(ROM's) which have been combined by the LINK proc es s into ~ load module (LM). 

During linking, a global symbol table consisting of all.symbols which have been 
. .. . 

so declared by a DEF dir.ective is created for the load module and an internal 

symbol table is created for each unit (mostly ROMr s but some LM's)o The 

loader language allows the user to specify which internal symbol tables should 

be retained. Internal symbol tab~e s are named by the file name of the source 

ROM; that is, LINK writes a sYln:bol t~ble for each inp'ut ROM under a key 

identical to the input ROM name. A simple Link Command is shown below: 

LINK A,B,C, (NS)D ON E 

In this case, the load module E is created for execution,. and symbol tables are 

retained for ~nits A, . B, and C., but not for D~ For further examples of linking 

operations and a complete list of options, see the loader specification. 

C. Command Summary 

, 
The following summary lists the DELTA commands and facilitie s in eleven broad 

groupings: 

1. Evaluating expres sions consisting of symbols, constants, special 

sympols, and the operators plus and minus (+-). 

2. Commands for printing the contents of memory cells and opening 

them in preparation for change. 

3. Format code s which enable the user to control the output format 

used in the evaluation and display commands of Group 1) and 2)0 

4. Commands for storing new contents in open memory cells o 

5. Format codes which control the conversion of input constants typed 

by the user. 



DRAWIN-G NO'.'·:" 702.4-89 
'SHE.ET/61 0F 3 0 R 

6. Special sym.bols used to exa.m.ine machine flags and to control 

operating bounds for 'DELT Ao 

7. Commands to insert in, delete from, change completely, and 

otherwise control the symbol table used by DELTAo . 

8. Commands to initiate and continue executiono 

9. Commands to insert, delete" and control instruction" data, and transfer 
breakpoints. 

10. Commands for searching memory. 

11. Miscellaneous commands. 

In outlining the commands, the following conventions are used in depicting the 

format of the order s typed by the user: 

• Special characters, numbers, and upper case letters stand for them-

selves. Thus in the command e;G the user actually types the semicolon and the 

G. 

~ Lower case letter s are placed where the user has a choice of things 

to type. ' The letter e alone or postcripted is used to stand for any expression 

consisting of sym.bols, special symbols, constants, and the operators plus and 

:r:ninus (+-)0 At times other lower case letters are used to stand for expressions 

when some additional mnemonic content seems desirable. Exa'mples are n, loc, 

val, m •. 

e The letter f stands for one of the format character s. 

• Abbrevi~tions' for user key strokes are: 

Letter s used in text User Keystroke EXEC Keystroke 

cr carriage return carriage return 

If line feed EOM 

t, shift and N & 

\ shift and L ¢ 

tab control and I tab 

bk BREAK Sigma 7 interrupt 



- .. ' •. ,...,}, .: ... :~. ;:::;''' :. I 

DRAWING NO~·"· 7024"S'9 
SHEET/6? OF 30"1' 

Most of the DELTA cOInInands are terIninated (and thus delivered froIn UTS I/O 

to DELTA) by the carriage return (cr) character; howe'ver, certain other characte~s 

d also delimit cOInInands to allow dialo g within a single.typed"line 0 The cOIllInand 

terIninating characters of DELTA are cr, If, t, tab, /!" and =0 (If and tare EOM " 

and & in the executive ver sion)o 

Whenever user DELTA gives control of .the terminal to the user for input, it sends 

its "prompt" character, the bell, to the console. The executive version of DELTA 

does not proInpt nor does the user version when connected to a keyboard display .. 

DELTA COInInands 

1. Expression Evaluation 

e= 

e(f= 

Evaluates and types the value of the ~xpression e in the IllOSt 

appr"opriate forInat. 

Evaluates and types the value of e in forInat f (see 4 below). 

2. Displaying and opening memory ce1ls 

e/ 

e (f/ 

el, e2/ 
el, e2 (f/ 

e\ 

/ 

tab 

Displays the contents of a cell e in the Inost appropriate 
" , 

forInato The cell is opened; that is, it may now be changed. 

Displays the contents ,of ce1l e "in forInat f. 

Displays the contents of ce1ls el through e2 in the most 

appropriate format or in the specified forInat. Cell e2 is 

opened. 

Opens but does not display cell eo (e i in the executive version) 

Slash alone fo1lowing a display displays, but does not open, the 

cell addressed by the display.. (Displays the cell addressed by 

the last quantity typed (;Q))o 

Tab alone following a display displays and ope"ns the cell 

addressed by the display. 

3. Storing in open IneInory cells 

e cr Stores the word specified by e in the currently open cell and 

close s the cell. 



elf 

e tab 

DRAWING N.O:;.' 702489 
SHEET/61':OF ~ 0 q 

Stores e'in the currently ope:n cell, closes it, and opens 

displays the next higher addressed'cello 

Stores e in the cUrrently open cell, clos.~s it, and opens and 

displays the next lower addressed-cello (e & in the executive 

version) 

Displays and opens the cell addre s sed by the last quantity 

typed (;Q). If an expression precedes the tab it is stored in 

the open celL 

4. Format code s for I and = commands 

F symbol table format type 

x hexadecimal word 

I signed dec imal inte ger 

C EBCDIC characters 

R symbolic instructions with symbolic· addresses 

. ,I 

A symbolic inst:ruc tions with hexadec imal addre sse s 

short floating point number 

} user version only 
L long floating point number 

. (f;1 sets the default format for I commands to f 

(f;=. sets the default format for = commands to f 

5. Input conversions and expressions 

Expressions·for evaluation, display, and storage are formed from the 

program symbols, explicit c'onstants, and special symbols using the 

operators plus and min~s (+-)0 

The conver sions that may be specified for explicit constants are: 1) 

hexadecimal when introduced by a period (0 BAD), 2) EBCDIC characters 

when surrounded by single quotes (rBADf), and 3} decimal when the 

constant consists of just numerics (1234}o 



6. Special Symbols 

-DRAWING-NQ~"~. 7Q2'l~9-

" SHEETI7t1~OF'"3~'1' 

Special symbols ar"e recognized by DELTA and may be used in" ex-

pressions. Used as commands, they set the value o~ the corres-

ponding symbol table entry. 

$ or . 

;1 

;C 

;F 

;3 

;4 

;M 

;1 

;2 

;0 

last opened" cell address 

instruction counter 

condition code 

floating controls 

As set by the last entry to DELTA 
or changed by the us er 

Master / slave, map and arithmetic mask bits 

Write Key 

search mask 

lower search bound 

upper search bo und 

last quantity typed 

7. Symbol Table Control 

;S 

;U 

e(f<s> 

s(f! 

"s;K 

:K 

;KI 

;KG" 

Select internal table s. 

load global symbol table. 

Display undefined symbols. 

The symbol s is assigned value e and format f. 

The symbol s is as signed the value of the currently open 
cell ($) and format code f. 

Symbol s is flagged in the symbol table. It will not be used 
in output expressions. It can still be used in input expressions". 

Removes all symbols except instruction mnemonics .and special 
symbols. 

Removes currep.t internal symbol table. 

Removes global symbol table and any symbols "defined from 
the console. 



c1 

DRAWING NOIt.~. 702489 
·SHEET /71 OF ":.J ~/I'1 

8. Exec ution Control 

e;G 

;G 

e;X. 

niP 

9. Breakpoints 

Begins execution at e. 

Begins execution at current locatipn counter value (;1). 

Executes the instruction e. 

Proceed with no output the' next n times the current 
instruction breakpoint is epcountered. 

Execute the current instruction and display the next one. 

e, n;B Set the nth i~stru~tion breakpoint at location e. 

e;B Set the next available breakpoint at location e. 

e, n, 10c;B Same as above 'but display contents of loc when the, 
e, ,10c;B break occurs. 

e, n, 10c;'BT Same as above but proceed from the break after printing 
(trace mode). 

niB Remove the nth instruction breakpoint. 

o;B Remove all instruction breakpoints. 

;B Display all active instruction breakpoints. 

e, n, val, m;Dr 
(e, n, val, m;DTr) 

Causes data break n to occur whenever the contents of 
cell e (masked by m) are in relation r to val. (T for 
trace mode_) 

e, ,val, m;Dr 
Same as above but pick the next available data breakpoint. 

The relations are: 

LS e < val 
EO e = val 
GR e > val 
GE e ~ val' 
NE e /:. val 
LE e!:: val 



n;D 

o;D 

;D 

n;P 

;T 

bk 

Remove the nth data breakpoint. 

Remove all data breakpoints 0 

Display all active data breakpoints. 

Proceed from the break. 

Proceed and do not break until the breakpoint has 
been pas s ed n tiIl'l:es (n applies to instruction break­
points only). 

Set 'trace mode' for the current break. 

Break at the current execution point (analogous to 
the m.achine' sidle switch). 

Output produced when a breakpoint is reached is niB loc (or n;D>loc) where n is 

the breakpoint number and loc its location (or the location of the instruction modi-

fying the data). If a display is specifieq (data breaks alway.s display), the output 

produced is 

;Y 

loc;Y 

;YT 
loc;YT 

o;Y 

loc,l;Y 

loc, , l;Y 

1,m,n,ojYS 

1m, n, o;YR 

n;B>loc addr / contents 

n;D>loc addr / contents 

start transfer breakpoint mode at contents of ;I. 
Do not display branches specified in~_ 

start transfer breakpoint mode at loc. 

Same as above but proceed automatically after 
printing (trace mode). 

turn off the. transfer hreakpoint mode. 

Same as aboye but trace only branches mentioned 
in SAT. 

Same as above but also trace BDR and BIR instruc­
tions. 

Set entries in SAT. 

Release entries in SAT._ 



I 

;YR 

;YD 

Release all entries in SAT. 

Dispiay SAT 

-J5RAWtNG-~·tO.,~, 7-Q-24~-9-

SH~ET~lj :OF" '3 Q"(/' 

Output on occurrence of a transfer breakpoint is loc 1 - > loc2 where loc 1 is the 

address of the branching branch and loc2 is its target address. 

10. Memory Searching and Modification 

\ "" 

Memory between the bounds specified" in ; 1 and ; 2 (initially set to the 

lower "and upper limits of as signed ~s er data memory) are searched 

under the mask in";M (initially all ones) . If field 2 is specified "in the 

search command, the" value in that field is s"tored through mask ;M 

into each location which meets the specified condition . 
. "i> 

f!;W 

el,e2;W 

e;N 

Search for and display words which match e under 
the mask ;M. 

Store e2 through mask ;M in locations which match 
el through the mask; 

Search for and display words that do not match e. 

r e; 1 Set the memory search lower bound to e. 

\1 
'I e;2 

el",e2;L 

e;M 
L-

Set the memory search upper b~und to e. 

Set ;1 to el and ;2 to e2. 

Set the search mask to e. 

II. Miscellaneous Commands 

;R 

e;R 

;RK" 

Display memory addresses as symbol plus relative hexa­
decimal offset. 

Same as above but set the hexadecimal offset to e. 

Display addresses as csect type symbol plus any hex 
offset. If the" value displayed is equal to that of any 
symbol, then display the symbol. If there is no csect 
type symbol, display as a hex constant. 



;A 

el,e2,v;Z. 

DRAWING NO.7024S-9 
. SHEET(?~:OF·j ~ r' 

Display location~ as hexadecimal num.bers. 

Store v in m~mory from el through e2 (memory 
pages must be. as signed). 



DESCRIPTION 

DRAWING NO .• :.7.0.24/89 
SHEET Iz(OF J~1 

" . 

d A. Syntax, Symbols, and Such 

The language of DELTA follows the DDT formula of s~mplified expressions and 

single (or few) letter commands, which holds the" number of keystrokes required 

of the user to a minimumo Because every keystroke counts, and users can find 

most errors easily by eye, only a few syntax error conditions are explicitly Com-

. mented. The most cqmmon commands have been assigned to lower case keys in 

order to simplify typing. 

1 .. Command Delimiters 

In order to interface1ficiently with the time-sharing system, DELTA has been 

made "message" oriented. That is, only certain characters are recognized as 

command line del,imiters (end-of-message cha~acters) and cause UTS to deliver 

the command line to DELTA for interpretation. The characters which are com-

mand line delimiters are: 

/ 
= 
cr 
If 
t 

tab 

The open and display command 
The expression evaluation command 
The store cOlllllland and delimiter of other comlllands 
The store and open next comllland (EOM in exec DELTA) 
The store and open previous command (& in exec DELTA) 
The store arid open indirect comllland 

With the exception of / and =, the commands above caus e a carrier returri and 

line feed. The slash and equal comlllands interact within a single typed line. 

More than" one comllland can be input on a command line. The command delimiter 

within a command line is the space character. For example: 

TAGl;B TAGS" .1500, . FFOO;DEQ ;B ;D Cr 



2. Fixing Typing-Errors 

. DRAWING.N~~, .. 7Q~1.-89 
SHEET / 760-F ~. D}I 

., 

d Before giving one of the command delimiters, the u~er may (in user DELTA only) 

repair ty~ing errorS by rubout (the' rubo_ut key prints a" at the console and erases 

the preceding character; N rubouts print N,\s and erases the preceding N charac­

ters), or he may delete the entire current command by using the cancel key (con-

trol shift and X keys pressed together). Note that the. current command may be·a 

full line ~ a partial line - - partial if. a == or / command is already complete on the 

line of the cancel character. In the executive version, the question mark cancels 

the command line. 

3. Symbols. 

The symbols used by DELTA for reference to memory locations, computing values, . 

and formatted displays are those supplied from the assembly or compilation of the 

program plus any added from the terminal by' the user. They are carried in 

DELTA's symbol table as seven characters plus code. Symbols longer than seven 

. . . 

characters are truncated to include only the first seven. Thus, symbols which 

were originally longer t~an seven character:s are indistinguishable from each 

other; only the last received definition is retained. 

The symbols used by DELTA follow similar rules to those for Symbol and Meta-

Symbol -- they are made up of .the alphabetic' ch~racters A- Z, the numerics 0 -9, 

and the specials $, @, #, :, ~ -; at least one must be non-numeric; and the num-

ber of characters "must be less than eight. For symbols supplied with eight or 

more characters, DELTA retains only the first seven characters. 



DRAWINO-NO-. -7024M~ 

SHEET/?!OP'o·p.f, 

Symbols have an associated type code which allows DELTA to use a conversion 

is for display that matches the symbols original use. Tlie types are at least the 

'-following and perhaps others as the need arises. Sy~~ols have either a) con-

stant value or b) are associated with a memory location. If the latter is the 

case, then the type code describes the contents of the location'. 

a) Instruction 
b) Integer 
c) EBCDIC Text 
d) Short floating point number 
e) Long floating point number 
f) Hexadecimal 

The default mode of the display command will be to examine the 'symbol table for 

a symbol at or with the next smaller location value than that requested and use the 

conversion type given. This means that a memory dump vfa the slash command of 

a machine language program would resemble. closely the original source symbolic. 

4. Special Symbols 

The initial contents of the symbol table include the mnemonic names of Sigma 7 

machine instructions and a list of special symbols associated with program de-

bugging. The special symbols may be used in expressions for values •. The spe-

cial symbols and values associated are given below. 



Symbol 

$ or . 

;1 

;C 

;F 

;M 

; 1 

;2 

;3 

;4 

.. 

DRAWING.NO. ·.702489 
SHEET 17fjCffF 3.0r . . . 

Memory location of the last opened cell. 

Instruction counter contents at program interrupt. 

Condition code contents at program interrupt. 

Floating control contents at program interrupt. 

The mask used in memory searches. 

The lower bound used in memory searches. 

The upper bound used in memory searches. 

Bits 8-11 of word one of user PSD at interrupt. 

First byte of word two of user PSD at interrupt •.. 

;3 and ;4 are not used 'to form the PSD for entry to user in user 

DELTA (they are used in EXEC DELTA). 

;0 The last quantity typed by DELTA, or the value 
stored by the user with the commands cr, If, 
and tab. 

The highest user data location loaded by LINK. 

The highest user program location loaded by LINK. 

Except for $, ., %D, %P, and ;Q, the value of these symbol table entries can be ' 

set using a special command form in which a defining expression is given followed' 

by the semi-symbol to be set and a carriage return: 

.46B;1 cr Set ;1 to hex 46B 

. FFF;'M cr Set ;Mto hex FFF 

100;1 .cr Set ; 1 to decimal 100 



DRA WThTGNO .. , .10.2 ... 4:89 
. SHEE~ /7~-·OF -3 ~y 

The value of all special symbols may be displayed using the = command: 

;C=4 

;I=.3BD 

;F=2 

The symbols $ and . always carry the location of the last opened cell as their 

common value. The shorthand is convenient in the same way as in symbolic 

assembly code: 

AI LW,4 K45 $(X=. 105 $1 LW,4 K45 

The ;0 shorthand for the last thing typed is similarly convenient.in special 

situations: 

ALPHAI AI, 5 7 

./AI,5 9 

;0+2 cr (Store contents of open cell plus two 
in the open cell.) 



5. Input of Explicit Constants 

-DRAWINC-NO~7-0-?4~~-9 

SHEET/SlO Q'F".d ~ ~ 

& When the user wishes to type in numbers he must specify the conversion that he 

wishes made on his input. Three conversion types ar~ provided by DELTA: 

hexadecimal obtained by introducing the constant with a period (.); E;BCDIC 

obtained by enclosing the characters in single quotes (I) -- note that a single q~ote 

may not be introduced using this conversion type - -; and decimal, the conversion 

. . 

used on strings of numerals. EBCDIC character strings follow the same rules 

as symbols used by DELTA (Section 3, Symbols), except that the maximum length 

is four characters. 

Sqme e.xamples of 'input' constants in various formats are 

.ACE 100 .100 14 .A 

IEBCDI lA' 

" Note that the single quote (I) is required to terminate the EBCDIC text string, and 

that it must consist of four or' fewer characters. If fewer than four, they are right-

justified. and zero filled. 



e 

6 .. Expressions 

· DRAWIl\fd NO~··'· '7624-89 
SH·EET/.tg / OF.~ d 9 

Expressions are typed by the user for location value, parameter value, and to 

be. as sem.bled into an instruction. Expre s sions are com.po sed- of a) sym.bols, 

b) explicit constants, and c) the operato:rs plus, m.inus~.·and space. Multiplication, 

division and other operations ar'e not allowed and. in fact the characters usually 

used to indicate them. ~re used for other things -- the asterisk to indica:t~ indirect 

addressing in instructions and the slash as the comm.and for display. 

The user will have little trouble construct~ng legitim.ate and correct expressions 

for the values he wishes as can be seen from. the exam.ples below: 

A 

A+3 

A+3-B 

AI, i 2 

STW, 7 ~~LOC 

LW,7 TAB,S 

CALI,3 LIST 

The space character, in addition to its use to introduce the address field in 

expressions to be assembled into instructions, is' also used to m.ean plus .(+). 

This convention is convenient for a lazy typist as space does not require the 

case shift that plus does. Thus som.e equivalent expressions and com.rnands 

are: 

A 3 and A+3 

LW,S ALPHA+3 and LW,S ALPHA' 3 

A+3,A+9;L and A 3, A 9;L 

Just exactly how DELTA accomplishes its expression evaluation is described in . 

the next 'section. 



DRAWING Nd;·.' 702489 
SHEET/g;Z OF S I) fI 

B.' Memory Location Display: . The I command 

The I character is a command to DELTA to open a memory cell and display its 
<9 . . 

contents. The cell is indicated by an expression preceding the I character . 

. The expression is evaluated and the word address port!on is used. as a memory 

address. If no format is given and the default is F (the normal case) then the 

symbol table is s"earched to find a symbol at or next smaller than the indicated 

address and the data type associated with the symbol found is used to control 

output formatting. 

I 00 I .34 

All BAL,6 ALPHA 

A+II STW,5 BETA 

BETAI ABCD 

The user may either temporarily or permanently override this output format 

control by the symbol table code. Temporary change is .accomplished by in";' 

dicating. fb.e desired format in the command .. The expression for the location 

is followed by a left par en character, then by one of the format codes (see 

section E for.a complete list), and finally by the command I. 

x(XI .CI hexadecimal conversion 

x(CI A EBCDIC character conversion 

X(II " 193 decimal int~ger conversion 

Permanent chang~ in 'output format is achieved by the command (f; I where f is 

the desired format code. See section E. 

xl ~CI 

(C ;1 xl A 

If slash is given without preceding typing by ·the user the "cell addressed by the 

last thing typed by the computer is examined but not opened. This allows the 

user to look at the indirect contents of a cell. In the example below ALPHA 



. -' .'~ .:. . ,:"J ..... ~ '. '. ..-.. . 

DRAWING NO>' 702489 
SHEETjff3~OF~of 

remains the open cell even though the contents of .cell DCT8 ar~ displayed. 

ALPHA/ LW,5 DCT8 / • 32 

A cell may be opened without displaying its contents b~.the us-e of the \ command . 

. (\is produced by pressing shift and L keys together or using the·i keyin executive 

DELTA). This m.ode is convenient when the user wishes to insert new contents 

in memory and is not interested in the current contents. DELTA rem.em.bers the 

mode of opening for cells and on If and t c~mmands opens them in the rem.embered 

mode . 

. ALPHA \ BAL,4 SUB If 

ALPHA + .1.+ STW,5 DCT2 1£ 

ALPHA + · 2l AI, 6 . 100 cr 

More than one cell m.ay be displayed using a single / com.mand. Two expressions 

separated by a comm.a define the lim.its ,?f display. They are the word address 

of the lower limit followed by that of the upper lim.it. Following display of the 

upper limit cell it is open for change. 

ALPHA,ALPHA +2/ BAL,4 SUB 

ALPHA+.1/ STW,5 DCT2 

.ALPHA+.2/ AI, 6 .100 

Format codes may be specified with ( as in the basic / command. 

100, 101 (X/ .58000100 

101/ .68000200 

If the user wishes to interrupt a too-long display he presses the break ke·y and 

and remaining output is discarded. The· last displayed cell is opened. 

c. Expression Evaluation: The = command 

Expressions consisting of program. symbols, explicit constants, special sym.bols 

(see Section A4), and the operators plu~, minus (+-), and space may be evaluated by Ul 



·DRAWING ·Nd~·.' 702489 
SHE~T/1 1- :OF Jog 

of the = corru:nand. The expression may be that just typed by the user or the 

last one typed by DELTA. 

2 + 2 = .4 
A' 

5+5 = .A 

ALPHAI BAL, 5 SUB = . 6A5006B3 

The format used for output is either the default format or an explicitly requested 

one •. ~he expres sion for evaluation is followed by a left paren, one of the format" 

code s given in Section E, and the. equal sign: 

5+5 = .A 

5+5(1 = 10' 

The default format type may be set by the user using the comman~ (f; =, where f 

is the desired fo:r:mat type. The initial default format is X for hexadecimal. 

5+5 = .A 

(1;5+ 5 = 10 

D. Memory Modification: The cr, If, t , and tab commat).ds 

Four commands allow the user to store a typed expression for word value into 

a_memory location -- the one opened by a I, \' or one of the modification 

commands If, t, or tab. If no expression p~ecedes the command character 

the action taken is as described except that nothing is stored in the open cell. 

e cr The expression e is assembled and stored in the open 

memory cell. Carriage return and new line are sent 

to the terminal. Temporary display modes are reset 

to default values. 

AI BAL,4 JWS BAL,4 .GEB cr 

AI BAL,4 GEB 

JEDI EXU LS (Xl .68000643 I .78C cr 

. I EXU LS 



e If 

et 

e tab 

~:. -: ' .. ' '"s..... . ~ . . ..... . 

-DRAWING NO~·' 702~89 
SHE~T/&~OF .3 of 

Note in the above that a t,emporary display format was 

extablished by the (Xl which 'carr~ed over until the cr 

command reset ito 

When the user terminates an expr'~ssion with ~he If cornrnand 

the value of the expression is stored in the currently open 

cell, that cell is closed,' a new line is produced at the terminal, 

and the cell with the next highest location value is opened. 

The mode of initial cell opening is' preserved ~nd carried 

fo.rward on succeeding openings (e.g., display contents or not) 

as is the display format. 

A (II 435 436 If 

A' + . 1 I 763 1£ 

A +'.21 7689 cr 

EM\ STM,4 ERS If 

EM+ . I \ BAL,6 LP If 

EM+ . 2\ BGE' BB cr , 
E:'or the executive version the EOM key' replaces If. 

Action i,s exactly the same C!-s l~ except that the cell within 

the next lower location value is opened. For the executive 

version &: is used for t. 
EM+41 B JHt 

EM+ .31 o AI, 3 1 cr 

The tab command causes the 'typed expression to be stored 

in a currently open cell. Fo~lowing output of a carriage 

return, the cell addressed by the just closed cell is opened 

and displayed. The effect is like that of a cr command 

followed by a ;01. The tab comrnand is useful for patches: 



· ',,', '~ , ,',I , .' ,;',;," I 

DRAWING NO~·' 702-t89 
~HEE'I:;;b;:OF .3 o&' 

AI SUB If 

A+.ll STW,6 BETA B PATCH tab 

PATCH/ .0 AI, 6 1 If 
~ . 

PATCHt. 1 I .0 STW,6 BETA If 

PATCH+.2! .. 0 B A+2 cr 

E. Output Format Control 

Displays of the contents of memory locations via the l command and expres sion 

evaluation via the = command have the output format controlled by codes given 

with the I or = command or by the default format as set using the (f; I and (f;= 

commands. The original default setting of the output conversion for:mat is 

hexadeci:mal (X) for = com:mands and under control of the ~earest sy:mbol table, 

type (F'),for I co:mmands. Temporary conversion types set by using 

e (fl or' e (f= are retained until the next ~r co:mmand is given. In particular 

the temporary conversion type is retained over successive If, t, I, =,' and' 

ta b c om:mand s . 

(I; I 

A(xl . C If 

At. 1 I . D If 

At.21 .E cr 

A+31 15 

The codes provided for directing output formatting and conversion are given below., 

In all conversions leading zeros in the printout are suppre ssed. 

x The word -- contents of mern.ory or expression -- is typed 

ou't as a hexadecirn.al nurn.ber. Hexadeci:mal numbers are 

always typed with a leading period (-.. ). X is the original 

default code for = command. 



-D.KAWING-:-~9~7Pl4~'1-

SHEET/9JOF'3~~" , 

F Conversion is according to the format code given in the sym­
bol table for the location displayed or that for the next· lower 
valued (within the specified hex offset) location symbol if no. 
symbol occurs at the locatiqn in question. .If no symbol is 
within range, default is to symbolic ;node. 

For = commands, F conversion is equivalent to X conversion. 
F conversion is the default code for / commands 0 

I The 'word is converted as a signed decimal integer. 

C The word is converted to EBCDIC characters; that is, it is 
sent to the terminal directly .. Non-printing characters may 
be output in this way, including the EOT (04) character, which 
will turn off some types of terminals. 

R The word is converted to a symbolic instruction: output has the 
form OF, R ADDR, X similar to assembler symbolic machine 
instruction format. OF is the symbol table value of the op code 
part of the word (bits ~-7) -- %XX is printed if the value XX of 
the field is not an instruction. R is the value of the regist~r 
field (bits 8-11) and is printed as a decimal integer, except if 
zero when it is suppressed along with the preceding comma. 
ADDR, the addr es s field, is printed with a leading ~:~ if bit 0 is a' 
1 and followed by the symbol obtained from lookup of value in 
bits 15-31 -- if no symbol corresponds to the value, then the 
next lower symbol plus a relative hexa.decimal offset is printed. 
Values less than 50 decimal are always printed in hexadecimal~ 
If the index field (bits 12-14) is nonzero, it is printed as a deci­
mal integer (1-7) following the address and a comma. 

A The word is converted in exactly the same way as R format ex­
c'ept that the address field is always given as a hexadecimal 
number. 



s 

L 

· DRAWING 'NO~:···'··704~r89 
SHEET/~~1:0F .j t:JCj 

Short floating point l1:umb.er.. The word is converted from' 

internal floating point format to th,e form. XXXXX E+ YY. 

Long floating point nwnber. Same as above except the curren.t 

word plus the next highest addres~ed word ar~ converted 

(same as S for = command). 

The final two conversion types Sand L are not available in the executive version 

of DELTA. 

F. Execution Control: The jG, ;P,,;X, and ). Commands 

The three commands described in this section allow the user to begin and continue 

execution of his program. Each of the commands is termin~ted by carrier return 

(or space if it is in a multi-command line). Execution is started by typing e;G 

where e is an expression for the starting or GO location. (The value of the 

expression is masked to form the word addres.s of the starting\ location. ) 

BEGIN;G 

Execution can be .stoppedin t~ree ways: 

1. encountering a breakpoint (see Section G), 

2. a user interruption via the BREAK key (interrupt button in exec DELTA), 

3. an error causing a machine trap (illegal instruction, memory protect 

violation, etc.) 

In each case the cause of the stop is reported by an appropriate message, the 
. . 

value s of ;1, ;C, ;F, are set, and terminal control returns to the user. 

BREAK AT .5C3 

PRIVILEGED INSTR A'T .77B 

;1= • 77B 



-D.RAWIN G-N9:'-~~-Zq 24B 9-­
. SHEET Is/.r OF~ ~ ~t, .. 

Proceeding from a stop condition is directed.by typing the ;P or the ;G command 

d without a .preceding address expression. The effect is to continue execution from 

. -
the location specified by the current value of ;1; i. e t , ,where execution left off or a 

location specified by adr;I input by the user. The user of ;P for instruction bre~k-

points is covered in Section G. For user interruptions via the BREAK key, execu-

tion continues as if the interruption had not occurred. 

BREAK AT. .68C 

;P 

Proceeding from a machine trap will in general cause re-execution of the violating 

instruction ~nd another trap.· 

MEMORY PROTECT FAULT AT .74B 

;G 

MEMORY PROTECT FAULT AT .. 74B 

(In either of the above cases any expression typed before the ;P is ignored.) 

The ;X command assembles and executes the expression just preceding the ;X. 

LH,3 TABLE+4;X 

STB,6 ~:~LOC;X 

If the expression does not result in a legitimate instruction, the illegal instruction 

message results and other error messages corr~spond to other illegal constructs 

just c:ts if the 'error had been an executing program. If the expression is a branch 

. instruction, control goes to the user's program .(or causes a memory violation). 

Thus, the commands B GO;X and GO;G are equivalent. If the expression is a 

subroutine jump, the subroutine is entered and if it returns normally (to the . calling 

locatio'n plus 1, 2, or 3), c'ontrol returns to DELTA and terminal control to the user, 



DRAWING .N.Q .•.. 'Z0248~ 
SHEE~ / 9.~ 'O-F'3 ()~.1. 

If the return is to other than 1; 2, or 3, . the res ults are unpredictable. 

The) command is the step mode execution command. It exe.cutes the instruction 

~ 

in the currently open register and opens and displays the next program step (i. e. , 

if the instruction executed by')' is a branch, the effective address is the location 

opened and dispJayed). By using' /' to open and display a location and repeatedly 

hitting ')', a user can step through portions of his pr<?gram. 



s 

.. : .-~-'':' -. ,:-J.,;,;. ... ;:- .~". 

'DRAWING NO-.' 7024'89 
SHEE T·/tj /:0 F, 3 tJ $ 

G. Breakpoints: The ;B, ;D, and ;Y Commands 

Delta provide s the use r with multiple breakpoints of two kinds: I} on ins truction 

execution, and 2} on a change in data value. Eight breakpoint-s of each kind are 

available to each user. As each: breakpoint is reached'; a sn:all a~ount of in-, 

formation is printed out giving the break location and an associated value. A 

s'pecial mode allows execution to continue automatically after the breakpoint 

report to provide a limited kind of trace of both the flow of execution control 

and of the variation of data value s. 

1. Instruction Breakpoints 

e, n;B 
e;B 

The nth breakpoint {there are eight,numbered 1-8} is set 

to stop execution and return control of the terminal to the 

use,r when the instruction at location e is reached. ' If n 

is not specified, DELTA will assign the' next available break 

number. If none are available, an errOr condition re suIts 

with the message "NONE". The user may then release one of 

the 8 breakpoint~ he has set and try again. The breakpoint 

stop occurs before execution of the instrJction at e. When 

the breakpoint is reached, DELTA prints the number and 

type of 1;>reakpoint and its lo.c at~on. 

A+3,l;B A;G 

1 ;,B> A+. 3 

A third field of the breakpoint command may be used to specify a location to be, 

displayed when the breakpoint is reached. Registers as well as core locations 

can be displayed in this way. 

A+3,1,R5;B A;G 

1 ;B>A+. 3 R5/ .54 

When stopped at a breakpoint, the user may examine and modify his program as 

appropriate and then .continue from the point of interruption by giving the command 

;P. A count may be given with the ;P command. If the count is n then the break­

point will be passed n times before this break occurs ~gain'. 



'0 

. - -', ":""', ,"-,J.~~~.' .'.;,- . 

DRAWING NO.," 702~9 
SHEETJr~OF ~o8 

PH+8, 2, R2;B PH;G 

2;B>PH+8 R2/ .4 ;1? or ;G 

2 ;B>PH+8 R2/ .5 jP or ;G 

2;B>PH+8 R2/ .6 ' 5;P 

2,B>PH+8 R2/ • 12 

The nth 'breakpoint may be removed by the comrn.and n;Bo 

All breakpoints can, be removed by the command O;B. 

If the user wishes to trace a particular instruction, he may give either of the forms 

above (~isplay or no display) and specify the T rn.'ode: e, n, loc; BT. In this mode, 

when the instruction at e is reached the breakpoint reporting information is printed 

and execution continue s. 

A+3, 4, 5;BT A;G 

4;B>A+3 5/ 54 

4;B>A+3 5/ -1 

4;B>A+3 5/ -175 

The trace mode may be set after a break occurs by specifying ;T which sets the 

trace mode at the current breakpoint. 

The currently operative instruction breakpoints may be listed 'for inspection with 

the command ; B. The list has the form: 

n {T} loc 

for each established b~eakpoint where n is the breakpoint number, a T is printed 

if the trace mode is set for that breakpoint, 'loc is the br'eak location, and display 

is the address to be displayed when the break occurs. 



DRAWING·NCr:·:' ·702489 
SHEET-/9J~OF ~(}f 

2. Data Breakpoints 

Data breakpoints allow the user to halt execution"when-any memory location 
d 

(n~t register) changes value in a specified way. The command has the form: 

e, n, val, tn;Dr 
~ . 

fu .. . . 
It causes the n data break to be set in such a way that execution halts and 

tertninal control returns to the us er whenever the contents of memory at location 

e when masked by the mask m is in relation r to val. The tnask for each data 

breakpoint is initially all ones o A T or trace parame·ter applies to data break­

points in the satne war and with· the satn~ effec ts as described above for instruction 

breakpoints. The letters used for r and the corresponding condition causing a 

break to occur are the following:· 

LS (e)c <val 

EO (e) . =val c 

GR (e)c >val 

GE (e)c >val 

NE (e)c IvaI 

LE (e)c' >val 

If no r specification is given a break occurs for a.ll changes in the data. The 

tnask, if specified, is ignored in this case. 

Some specific variants of data break insertion commands are: 

e,n;D 
e;D 

e;DT 

Set data break n 
Set next available data break 

Terminal control returns to the user imtnediately after 

each chang~ in the contents of e and printing of the data 

break m~s sageo 

Set next available dat break in trace mode 

Each time the contents of e change, the data break tne s sage 

is pri:r:ted and execution continues. 

e, ,val;Dr Set next available data break with value val and relation r. 

Terminal contro I returns to the user when the contents of e 

stand in retation r to the value val. 



DRAWING NO. 702489 
SHEET I [/~ l,J OF .~~~?) '1 

' •. .1 J 

e, ,val;DTr Print data break message and continue execution when 
the condition holds. 

e, n, val, m;Dr Set data break n with value val masked by m and rela­
tion r. 

The currently operative data breakpoints may be listed for inspection with the com-

mand ;D. The list has the form: 

. n ITllOC cond value mask. 

for each established breakpoint where n is the breakpoint number, a T is printed 

if the trace mode is set, loc is the break location, cond is the break condition re-

lation, value is the break value, and mask is the mask under whIch the data is 

tested. 

Any data breakpoint may be removed by the command n;D. All data breakpoints may 

be removed with the command o;D. The output resulting from a data break has the 

form n;D>loc e/ cont where n is the number of the breakpoint, loc is the location 

of the data modifying instruction, e is the data address in question, and Ilcont" is 

the new value as just modified. Some sample data breakpoint settings are given be-

low: 

A, 1, 3;DGR 
A+S, 2, . FF, . FF;J)EQ 
AB,3;D 
SDS,4, CSC;DGE 
4;D>PH SDS/ 

;P 
CSC+2 

The data breakpoint will not detect changes caused by direct hardware I/O transfers 

into the user's area. 

3. BREAK Key Breakpoints 

At any time during execution the user may cause the executionrof his program to 

-
halt by pressing the BREAK key. A message is printed for the user giving the 



DRAWll'JG NO. 702489 
SHEET/;7~OF -3D7 

location of the break. If the user hits the BREAK key while his program is in' 

execution, the message is 

BRK AT loc 

The ;P command will continue execution after such a break. If the break occurs 

while DELTA is executing, the message is 

BRK IN DELTA 

4. Transfer Breakpoints and InterpIretive Exe~ution 

Transfer breakpoints allow the user to halt. (or trace) execution when a branch in-

struction is encountered which branches when executed. The command has the form 

loc, do/don't, Bdr/Bir;Y 

This command differs from the two other breakpoint commands in that it initiates 

execution as soon as the command is decoded and processed. 

;Y 

o;Y 

10c;Y 

;YT or 
10c;YT 

Set transfer break mode (TBM) 
Starts interpretive execution at the current value of the 
location counter (;1). If no options are specified, execution 
will halt as soon as a branch instruction is encountered which 
branches. Output is 

locl-Ioc2 where locI is the address of the branch and loc2 
is the location branched to. To continue execu­
tion in Transfer Break mode, issue a ;P. The 
pr'oceed count is not meaningful for transfer 
breaks (s'ee Section F). 

Turns off Transfer Break mode. 

Start TBM execution at lac. 

Instead of halting at each branching branch, continue execu­
tion after outputting the Transfer Break message. 



DRKWING-NO-. -7U24~9 

SHEET/76 OF .3~.f' 

loc, DO/DON'T, BDR/BIR;Y 

DO/DON'T 

BDR/BIR 

'Special action options. 

o -
Do trace all branches except those specified in 
the special action tabli. (SAT). If the addres s-
,of this branching l;>ranch appears in the special 
-action table (see below), do not output message 
and continue execution. Honor all other branches. 
(Nominal setting) 

= 1 Do trace only tho s e branches specified in ,SAT. 

= 0 

If the addres s of this branching branch appears 
in the special action table, do output the TB 
mes sage and continue or not as specified by the 
trace mode flag., If the addres s does not appear, 
continue execution._ 

Do not trace BDR or BIR branches. (N"ominal 
setting) 

:: 1 Trace BDR and BIR branches. 

Special Action Table (SAT) set up 

loc l, 10cZ, 10c3, loc4;YS 

;YR 

Enter loc 1-4 in SAT if space is available (maximum of 
eight). These locations are meaningful only if their con­
tents are branch type instructions. The action to be 
taken depends o,n the setting of the DO/ DON'T option. 

Release all SAT entries. 

loc l, 10cZ, loc3, loc4;YR 

Release specified locations in SAT. 

;YD Display SA T ~ 

The) command interpretively executes the instr'uction at the current location 

counter (;1) a'nd displays the instruction at the new value of ;1. 

ALPHA / 
ALPHA+.l/ 
ALPHA+. Z/ 
TAGl / 

LW,3 
STW,3 
B 
LI,O 

.AOOO 
-.AZOI 

TAGl 
o 

executes instruction at $ 
displays the next instruction 
in pro gram flow 



DR-.AWING-NO-. -70·t~f8·9 
SHEET )17 of·~e·(i9''''} 

,H. Memory Searching and Modification: The ;W and ;N Com'mands 

.~J The two active search commands e;W and e;N sea'rch memory for a match or no 

~ 

match with the expres sion e. Display of all matchingc .. ells (bit for bit identical) 

occurs in the case of ;W and of all non-matching. cells in the case of ;N. If fields 

1 and 2, and no others, are specified, the value in field 2 will be stored th~ough 

the mask; M in all locations which meet the specified c.ondition (match or mis-

match). Display occurs after the substitution. The se'arch is carried out between 

limits. determined by the symbol table values of ; 1 and ;2; it runs between the lower 

limit ;1 and the upper limit ;2 inclusive. The initial value of ;1 iS,the lowest and of 

;2 the highest current user data ~ address. Before. the test for a match is made, 

the word from memory is masked with a work which is the symbol table value of 

;M. The initial value of ;M is all ones. 

The values of ;1, ;2, and ;M are set by the commands e;l, e;2, and e;M (followed 

by Cr). In addition, the limits may be setwith the single command el, e2;L which 

sets ; I to el, and e;2 to e2. 

A;l 
BB;2 
2;M 
2;W 

or 

A+.21 2 
A+.31 3 
A+.61 6 
A+. 7 I 7 
A+.AI .A 
BBI .B 

A, BB;L is equivalent 

Mask bit 30 of the word. Search for all words 
between A and BB which have a I in bit 30. 

.IFFFF:M L, L+.IOO;L ERR;W 



L+~.3/ BAL,4 ERR 
L+.A/ BAL,4 ERR 
L+..D/ BAL,4 ERR 
L+.6A/ AWM,l ERR 

ERR,.OUT;W 

L+.3/ ,BAL,4 OUT 
L+.A/ BAL, 4 OUT 
L+. D/ BAL,,4 OUT 
L+.6A/ AWM,l OUT 

· DRA WINC--NQ'J .. 702.489 
SHEET /9.fj OF' J () y: ... d 

All words between Land L+. 100 
with addresses 'equal to ERR. 

,,' 

Substitute ·OUT for ERR 

The user may interrupt an in-progress search by pressing the BREAK KEY. 

DELTA halts the search and returns terminal control to the user (rings the 

bell) . 

1. Symbol Table Control: The ;'U ;K,;5, ! < > Commands 

The symbol table available to DELTA after a load is completed consists of the 

global symbG-Is (those defined by DEF directives) and a set of internal symbol , 
tables, one for each RS:>M loaded (although some may be combined by LINK), 

which are filed under the nam.e of the file fro~ wl:ich the ROM was loaded. Each 

internal symbol table is a keyed record in the file created for DELTA by the 

Loader. If more than Qne RO M is contained in a load file, then the internal 

symbol tables are merged with the last instance of conflicting symbols being 

retained. 

During debugging, the user always has the global 'symbols of the load and he may 

select one of ther internal symbol tables by using the s;S commands, which causes 

DELTA to load the symbol table from record s (the internal symbols from the pro-

gramloaded from files). They replace ,for reference purposes, any previously 

selected internal symbol set. The;S command alone will reload the global _, 

symbol table (this implies that it was released via ;K or ;KG c.ommand - see below). 



DRAWING NO. 70?1.~9 
SHEET / ~1 O'F"3 1)% 

. B73/ LW,4 IOP+~A7 If 

IOP+. CB/ BAL, 610+. 17F IOPF;S t 

IOPT2+.6/ LW,4 K34 

The user may wish to release back to the system the pages used for the symbol 

. . 
tables. The command ;K releases the pages containing the global and internal 

symbol table; ;KG only pages containing the global symbol table; ;KI only pages 

containing the internal symbol table. 

s;K 

. ;K 

. ! 

Disables use of the symbol s in constructing output. 
They are still evaluated when typed in. Symbols re­
turn to use if the user reloads the symbol table. 

Is used to re~ove all symbols from the symbol table . 
Symbols defining instruction codes are not erased. 
Individual internal symbol tables are recoverable using 
s;S command. Global symbols. are restored by ;S.· 

Each of the loaded programs may ·have contained undefined symbols. DELTA 

.will print all undefined symbols when the ;U is given. Symbols which are un-

defined and within the range of an assembler LOCAL directive are lost. They 

are given value ·zero in the loaded code and do not appear when ;U is g~ven. 

Symbols may be defined by the user at any time .during his debugging session. 

Symbols so defined are added to the set of glo1;>al symbols associated with the 

program load. 

s(f! Adds the symbol s to the global symbol table with 
the location value. of the currently open cell ($ or .) 
and format type £. . If f is omitted, symbolic instruc­
tion (R) type is assumed. 

NOT E: if LOC(X/ .3250AOOO I .43 

format X holds till Cr. 

thus, LOC(X/ .3250AOOO . SYM! 

is the same as: SYM(Xl 



Single Line Macro s 

DRAWING NO; •. ~. 70.2AB,9 
SHEET cJ,tJ 0 OF 3 tJ %{-,. 

Adds the symbol. s to the' global symbol table with 
value defined by the expression e and format code' 
f. In addition to the codes of Section E, the letter K 
may be us ed to indicate constant value. If f is 
omitted, R is as s umed. If th~ final angle bracket is 
followed by a K, the symbol is flagged as a csect type 
symbol in the symbol table. If Kwas specified before 
the first angle bracket, an error is reported. 

Since the symbol table definition capability gives a 32-bit value to constant sym-

boIs, it may be as a macro definition facility for single word values. For example, 

using EXEC DELTA the interrupt inhibits may be reset via the sequence 

WD,O .25{K<RI> defines RI to have value of the Write direct. 
instruction which resets all inhibits. 

RI;X 

RI+.IO;X 
. I 

or, alternately 

RI+. IO{K<SI> 

SI;X 

executes the reset instruction 

executes a· set inhibit instruction 

J. Miscellaneous Commands: The ;A, ;R, and ;Z Commands 

The commands cover.ed in this section cause DELTA to change its normal or de-

fault modes for display ~nd to zero' areas of memory. All co.mmands in this sec-

tion are terminated by carriage return (or by spaces in a single line command). 

;R and ;A 



DRAWING-NO-. -?·o-Zi fS-9-
SHEET~V I OF·,S 0"<;;-"'1 

This pair of commands is complementary to one another; they control how DELTA 

,-!displays location values when typing the contents of cells. The mode of display is· 

either relative (;"R) or ·absolute (;A). When in relative :r:node, DELTA looks up the 

location value in the symbol table and displays the .symbol if one corresponds to the 

value; if not, it displays the symbol with the next smaller value and a wor9. offset in 

hexadecimal. If the mode is absolute (;A) then all location values are displayed as 

hexadecimal numbers .. Note that these commands control the display of location 

values and not the display of the address parts of instructions contained in those 

locations. 

;R 

A,A+S/ 
A+.I/ 
A+.2/ 
A+.3/ 
A+.4/ 
ZZZ/ 

;A 

A,A+S/ 
• SCD/ 
. 6CE/ 
• SCF/ 
· SDO/ 
• SDI/ 

LI; 1 . 10 
CW,1 K4S 
BGE ZZZ 
AI,I 1 
B AI? 
STW, Z BRI3 

LI,I • 10 
CW,I K4S . 
BGE ZZZ 
AI,I 1 
B AI? 
STW,Z BRI3 

;R may be preceded by a value - - n;R - - which sets the maximum· offs et to be us ed 

in address output. If no symbol lies within ·'offset' of the. value, tJ::1e address is 

printed as absolute hex. Thus, IO;R will caus e DELTA to display symbol plus rela-

tive offset only when a symbol lies within ten locations less than the display address. 



;RK 

DRAWING-NO~.-7024"89-

SHEETjj)..oi<3 (i?--': 

This command sets relative address output mode with tl?-e restriction that 

only location symbols flagged as control section type symbols (see Section 

I, ;S command for setting csect type) will be ou}put unless there is an exact. 

match between the symbol value and output value. If there are no csect type 

symbols, the output will be a hexadecimal value. Thus, output will be 

'csect symbol plus any hex offset', or 'symbol' or 'hex constant'. 

; Z The command for zeroing memory takes the form a, b; Z, where a is the 

"lower limit and b the upper limit of memory to be zeroed. Expressions 

may be used for a and b. An error results if the value of b is less than 

.that of a. 

A, A+5;Z 
100,1;Z 
? 7 
. I 

A third field may be added to the ; Z command. If so, it is a value to be 

sto red in the range a, b. 

If the memory is not assigned, a memory protect fault results. 

Zeroing, or otherwis~ modifying, the user's area may be used to erase the user's 

program and/or data, but not the Monitor's context area about the user or the user's 

I/O buffers. If I/O is in progress directly to or from the user's area, the results of 

the I/O transfer are unpredictable. 



.1 

K. Printer Output:· The ;0 and ; J Commands 

,DRAWING NO~· 70248·9 
SHEET~~3 9F-~~ oq, 

Two commands are provided which us e the line printer for output (via symbionts 

in UTS). They are ;0 to produce hexadecimal dumps on the line printer, and 

;J to direct DELTA output to the line printer (particularly useful in the cases of 

formatted displays and output from tracing'breakpoints). 

The printer and tape I/O routines are completely self-contained ~n the executive 

version with no dependence on system I/O routines. 'The executive version of 

DELTA operates with all interrupts disabled. 

a, b;O header Contents of memory from location a through location b 
are printed on the line printer single-spaced, eight' 
hexadecimal words' with initial hex location value per 
line. All zero lines are suppressed. If any input follo'ws 
the 0, it is printed as a header. Each dump starts 
printing at the top of a fresh page. 

;J Toggles the output location switch alternating between· 
the terminal and the line printer on each instance of the 
command. Output from the equal command, from non­
tracing breaks, from trap, abort and error returns, and 
from syntax and other error conditions in Delta are always 
directed to the typewriter. 

A,l;B 
'X, 2, 3;DTE ;J B;G' 

(output here from data break #2 goes to the line printer) 

l;B>A 

L. Commands for the Executive Version: The;V ;H ;E Commands; Interrupts. 

u;V This command saves' a core image on tape with a self­
loader to enable restoring at a later time. The parameter 
u gives the highest core location to be saved. If u is not 
specified, 32K words (an assembly parameter of DELTA) 
are dUlTIped. Before dUlTIping, DELTA· asks for confirma­
tion of a correctly mounted tape with the message: 

MOUNT ABO, TYPE CONFIRMING PERIOD 



;E 

;H 

TM;H 

TD;H 

DRAWING NO. 702489 
SHEETc2t1!/OF 3 L)1 

This command causes DELTA to display the current 
contents of all cells (exclusive of the general regis­
ters) into which the user has stored during his session. 
DELTA keeps a table of stored addresses (maximum of 
64) and displays them plus their contents when ;E is 
given. 

The ;H command has two options if Delta was given 
tr~p control at boot time. 

Sends traps directly to the Monitor trap routine. 

Control remains in Delta. If NL is input, control 
will go to the Monitor trap routine; any other input 
leaves control in DELTA. 

Control of Console Interrupts and Traps 

At System boot time, Delta types out 'TRAPS '. If the respo'nse is the letter 'U r , 

EXEC DELTA will take control of trap location X'40 '. Any other response leaves 

the trap location unaffected. When a trap occurs and Delta puts out the appropriate 

message, control is directed to the Monitor trap routine by typing new line (NL) , or 

to EXEC DELTA by typing anything else. Delta control of the console interrupt 10-

cation is obtained in the same way when DELTA types 'CONSOLE'. 

Interrupts 

Control may ,be given to the executive version of DELTA at any time. The system· 

programmer may get control at the operator's console by pressing the Sigma 7 

panel interrupt button. Typing a new line character following DELTA's response 

message sends control to the BPM Monitor interrupt routine. Typing anything else 

leaves control in DELTA and the programmer may examine or change memory 

registers or set breakpoints in the system. Return to the point of interrupt is 

via a ;P or ;G CDmmand. 



Limitations: 

DRAWING. NO~_ .. 7024§,9 
SHEETdCSOFJOg'. 

CAL's, XPSD's, or. LPSD.'s· which depend on following 

calling sequence,s will not operate properly if they have 

an instruction break on them. B~Lr s are interpreted 

and·OK. 

M. Errors and Error Messages 

Errors which result in machine traps are reported explicitly to the user and con-

sole control is returned to him to await further commands. Each message is 

accompanied by the location, symbolically if pos sible, of the offending instruc-

tiona The messages axe 

NONEXIT INSTR AT ----
NONEXIST MEMORY REF AT 

PRIVILEGED INST-R AT 

MEMORY PROTECT FAULT AT 

STACK LIMIT FAULT AT ---
UNIMP INSTR AT ---
FIXED OVFLW AT ---
FLOAT FAULT AT 

DECIMAL FAULT AT ---

Syntax errors are reported by the mes sage ? n where n is the number of the 

character in the command line that DELTA ,was processing when the error occurred. 

This message is sent to the user whenever DELTA cannot understand the user's com-

mand syntax. It is usually simpler for the user to ident~fy the error than for DELTA 

to be verbosely specific about it. Some errors and the reasoJ?,s for them are shown 

below: 



x, Y, Z; 2,7/ 
? 8 

'ABCDE'= 
? 6 

ABC;K­
? 5 

FF;M 100,XY;L .6B;W 
? 13 

A,5;E 
? 5 

LW-;'~5 ALPHA= 
? 3 . 

. 3ACR/ 
? 5 

{B;/ 
? 2 

LOC,,3;DNQ 
? 10 

;T 
? 2 

DRAWING Nq~~. 7024.89 \ 
SHEETdtJC.oFJa,( \ 

too many commas 

constant value -larger than one word 

symbol not in symbol table 

symbol value not found 
remainder of comman~ string ignored 

command unknown 

a_sterisk in a funny place 

illegal character in hex number 

illegal relation 

. illegal relation 

no break in effect to set trace mode on 



N. Program Exits 

DRAWING NO:.··. 7024.89 
SH~ET,:.?Gl'.? 9"F' j O$? 

When called, DELTA takes control of program exits via the M:SXC CAL. 

DELTA reports execution of exit" CALs with a message of the fO'rm 

EXIT n AT 19C 

where n is the exit code as defined in the table below and loc is the addres s 

of the CAL or instruction causing exit. 

Code Type of Exit Example 

0 Normal M:EXIT 
1 Trap Error decimal or floating tr~p 
2 I/O Error no error address 
4 Limits max tim~; max pages output 

10 operator aborted Job 
20 Termination operator errored job 
40 Abnormal M:XXX 
80 Job Errored M:ERR 



/ 

'\ 

cr 

1£ 

INDEX TO DELTA COMMANDS' 

open cell, print contents 

open cell, no print 

store in currently open, cell 

store in currently open cell, open next cell 

store in c'-.\rrently open cell, open previous 

DRAWING N6>', 70"248:9 
SHEE;TdO? OF :3 as' 

,,' 

tab store in currently open cell, open cell last named 

= evaluate and print expression 

< ... > define symbol 

define symbol 

introduce format code' 

execute current location and display next 

; 1 set lowe r limit 

;2 set upper lirJ?-it 

;3 bits 8-11 of word one of entry PSD 

;4 first byte of word two of entry PSD 

;/ set default display conversion mode 

;= set default display conversion mode 

;A display location values as hexadecimal 

;B set (or clear) instruction breakpoint; BT set trace mode; display break table 

;C set condition code 

;D set data breakpoint; DT set trace mode; display break table 

;E display patch table. (executive version only) 



;F 

"'G , 

;1 

;J 

;K 

;L 

;M 

;N 

;0 

;P 

;0 

;R 

;5 

;T 

;U 

;V 

; \\T 

;X 

;Y 

;Z 

set floating controls 

being executi(!)-n 

Trap control (execution version) 

set instruction counter 

divert output to line printer 

remove (kill) symbol table entry 

set upper and lower limits for search 

set the search mask 

search for word mis-match 

hexadecimal dump to line printer 

set proceed and proceed from breakpoint 

last quantity typed 

I 

DRAWING ~0_/_:'_70Z4&9 
SHEET/O.10F c..3 O? 

,," 

display location values as symbol plus hex offset 

select internal symbol table 

set trace mode and proceed 

. display undefined symbols 

save~ core on tape with a self-loader (executive version only) 

search for word match 

execute instruction 

set up ;for and begin execution in transfer break or transfer trace mode 

zero melTIOry 



DRAWING.I\[.Q~ ... 702489 
SHEETcJ/O"OF dp·51 

Part IX. PERIPHERAL CONVERSION LANGUAGE (PCL) 

TABLE OF CONTENTS 

'Page 

INTRODUCTION 212 

A. Batch Operation 
B. On-Line Operation 
C. Summa~y of Commands 

DESCRIPTION 
213 

A. Conventions and Terminal Operation· 
B. File Copy Command 

1. Device Identification Codes 
2. File Identification 
3. Data Encodings 
4. Data Formats 
5. Modes 
6. Record Sequencing 
7. Record Selection 
8. Valid Option Combinations 
9. Extensions Using ASSIGNs 

10. Examples 

C. Catalog Copy Command 
D. Other Commands 

1. DELET E (delete file) 
2. LIST (list directory) 
3. SPF (space file) 
4. SPE (space to end) 
5. WEOF (write end-of-file) 
6. REW (rewind) 
7. REMOVE (remove tapes) 
8. TABS (set tabs) 

E.- . Termination of PCL 
F. .Language Syntax 

INDEX TO peL COMMANDS 229 



SUMMARY 

DRAWING.,NQ •. 702489 ' 
SHEETd// "cri ~iJr? , 

This part of the UTS Functional Specification des crihes a periphe'ral utility 

subsystem designed for both on-line and batch operation. The Subsystem, PCL 

(Peripheral Conversion Language), provides for information movement between 

'card and paper tape devices, line printers, teletype devices, magnetic tapes, 

disc' files, and labeled magnetic tape files. The com,mand language allows for 

single or multiple file transfer with options for selection, sequencing, formatting, 

and conversion of data records. File maintenance and manipulation functions are 

also available to assist the user. 



INTRODUCTION 

DRAWING'-ftb.'> 7q248~ 
SHEE~'?~ OF...3 d ~ \ 

PCL is peripheral utility sub-system designed for operation in a batch enviromnent 

linder BPM, or on-line under UTS. It provides for informati0:r:, movement among 

card and paper tape devices, line printer, teletype deviGes, magnetic tape, disc files, 
.~ 

and labeled magnetic tape files. PCL is contro11ed by single line commands supplied 

from a user console in UTS, or by command cards in the BPM job stream. The com­

mand language provides for single or multi~le file transfer with options for selection, 

sequencing, formatting, and conversion of the data records .. File deletion and posi­

tioning commands, and a command to copy complete file catalogs between disc and 

labeled tape are included. Additional file maintenance and utility commands are also 

provided to assist the user. Actual input-output operations are carried out using stan­

dard BPM CALs; the restrictions and advantages of this I/O system therefore apply 

throughout. 

A. Batch Operation 

PCL is activated under BPM through an .! PCL control command card in the 

BPM job stream. Once active, PCL reads subsequent cornmand cards directly through 

the same ~o:ntrol (C) device until terminated by., an END command (see below) or by 

encounteririg another batch control card (! type). A11 user input and output is done 

through the M:EI and M:EO DCB's respectively. PCL diagnostic output is transmitt~d 

to -the device currently assigned to the DO operational label. 

B. On-Line Operation 

As a UTS sub-system, PCL is called by typing its name to the Terminal 

Executive (TEL).. PCL responds by typing "P~L HERE". and then typing its identifying 

rn.ark «) at the left margin of the next line indicating that it is ready to accept the 

first command. When accepting or processing a command, PCL is said to be in the 

command state. Entry to this state is always indicated by the display of the < as 

described above. Once a valid command begins execution, PCL exits the command' 

state and enters the active state. This stautus remains in effect until execution of the 

command terminates, at" whi_ch time the com~and state is ore-entered and the user may 

enter his next command. As in batch operation, user input and output is done through. 

M:EI and M:EO DCB's, diagnostics go to DO, and commands are received through C. 

C. Summary of Commands 

The following is a list of available functions in PCL described in terms of 

the actual command verbs. 



* COpy device{s) and/or fj le{s) TO device or new file 

COpy device{s) and/or fi le{s) OVER device or existing fi Ie 

d COpy ALL files on disc TO labeled tape(s) 

COPYALL files on labeled tape(s) TO disc 

DELETE an existing fi Ie 

LIST a file.·directory 

SPF (Space file) ± n files on designated device 

WEOF (Write cnd-of-file) on designated device 

REW (Rewind) designated tapes 

SPE (Space to end) of last fi Ie on labeled tape 

-REMOVE designated tapes 

TABS (Set tabs) for output device. 

* Wh,erever "Ta" is specified liON" may be substituted. 

DESCRIPTION 

"- . -'~ ,: :' •. ". (", fI,~:'" - 'f" •• '.... - . ..I 

DRAWING ·KrO.' 70~'489 
SHEETcJ/3 OE 30 ~ 

The fa Ilowing description of PCl is oriented toward the on-lirie user. Neverthe less, orily one 

explanation should be necessary to· include both on-line and most batch features. For the batch 

. user, communication is established with input through the BPM job stream and output through the 

DO device with no user interaction. Thus, a II user prompting (* etc.) and term ina I operations 

(Cr, Br, XC ••• ) given here do not apply. 

A. Conventions and Terminal Operat!ons 

For purposes of clarification, certain conventions cnd termi~al operations have been 

assumed throughout the ba lance of th is document. They i ncl ucle: 

1. Underlined copy ·in examples is that .generated by the computer. Copy not 

. underlined represents that typed by the user. 

2. Optional parameters within a given command are identified as such by 

enclosure within brackets, ·e. g .. [OPTION.] 

3. Control characters are represented in this document by an alp~abetic character 

and the supe~script c, e. g., E
C

.• The user simultaneously depresses the alphabetic key and the 

Control key (CTRL) to obtain this function. 

4. Cordage Return. The Cr no~ation following each line in the examples 

repre~ents a carriage return. Depression of this key informs the computer that 'an input line is 

terminated. A carriage return (Cr) will automatically cause the computer to give a line feed. The 

line feed key operates identically to the Cr within the PC~ processor. 



- . . ::-::.;.> .• :-.s, .. ~-.- '> ....... -: -. 

DRAWINGrlO .. 702489 
SHEET;lI¥70F· 3 0'9 

5. Escape (E1. Th is key enab les the user to temporari Iy escape to the executive 

command level. Escape may be applied at any time when- the u~er has control of the keyboard •. The 

(f} current status of PCl is retained and may be re-activated using the executive "CONTINUE" 

command. 

6., RUBOUT. The last input character may be 'ae leted with this key. A \ is 

echoed to the user. N RUBOUTS echo N "'S and delete the previous N characters. 

7. . Cancel'(X). This key cancels the current input line. A - is echoed 

to the user followed by a" Cr. 

8. BREAK. This key, indicated by Bk, .causes· an interrupt in current PCl 

.activities. When applied during the c~mma~d state, the current command is ignored as if XC had 

occurred. Application during the active state causes PCl to terminate what it is doing (like 

printing or copying), pass contro I to the user, and revert to -the command state. A Cr response 
. . 

is given if used during input. Effects of the interruption or the termination vary with the command 

being execute~ and are discussed in detail with the particular commands. If no mention is made, 

Bk is assumed to have no effect on the execution of that command. 



B. file Copy Command 

This command permits single or mult'iple file transfer,between peripheral devices and/or file 

storage. Op, tions are included for selection, sequencing,formatting, and conversion of the data 
d 

records. The format is of the genera I form:· 

or, , 

TO ,~.' 
COpy d(s)/fid(s); fid(s), ••• ;d (s)/fid (s) , fid(s), ••• i . •. OVER d{s}/fid{s) 

TO 
OVER d(s)/fid(s) 

COpy d(s)/fid(s}, fid(s), •.. ;d{s)/fid(s), fid(s), •.• ;. ~ • 

COpy d(s)/fid(s), fid(s), ••. ;d(s)/fid(s),-fid(s), •.• ;' ••• 

where, 

I 

COpy 

TO 

OVER 

d 

separates a device from the files on that device 

separates fnes on the same device 

separates devi ces' 

introduces a device or fi Ie identjfication for input 

introduces a device or fi Ie identification for output 

introdu~es a file identjfic~tion of an existing file to be overwritten 

represents devi ce identifi cation, has' the form: 

device c'ode [#reel no.][#reel nOo][#ieel no.] 

Reel numbers apply only for magnetic tqpes,. Absence of a reel number for a 

tape device implies scratch tape. Valid device codes are listed below. 

fid represents fJ Ie identification, has the form: 

s 

naine[lIaccount[.password] ] 

represents specifi cations for data encodi ngs, formats, modes, etc., has the 

form: 

[opti on H, opti on] ••• [, opti on] 

,Options may include any data encodings, data formats, device modes, record 

seq'Jencing, and record selection listed below. Specifications given at the device 

level. (d(s» apply for all files on that device. Those given ot the file level (fid(s» 

apply only for that fi Ie and have piecedence if a conflict occurs between the two 

levels. 



When given a conunand of this type, 

DRA WIN~,_~,<?, .:O?~8f 
SHEET~/6 OF ..:;,6$ I 

peL first checks for a deS~inat~ondeVice 01 
file introduced by the TO or OVER conunand verbs. If found, the current destination 

device or file (if any) is closed and the new one opened fqr output. Files, of course 

~re matched against the user's directory to insure OVER was ,":sed to introduce an 

existing file. The device(s} and/ or file(s>. introduced by ... the COpy command verb 

are then opened for input one at the time in the order given and copied to the destina­

tion. The destination device or file remains open until respecified (by TO or OVER) 

or PCL is terminated ;'(by END) so that mor~ inputs (by COpy) are added to it. 

If Bk is applied during execution of a COPY, PCL responds with identification of the 

last file completely copied. 

1. Device Identification Codes (d). These codes are used to' indicat'e the 

"to" and "from" devices. They include: 

CR card reader - files separated by two successive! EOD cards. (not available 
on-line) 

CP card punch 

LP ,line printer 

ME interactive users console -, input terITlinated by Bk from teletypes 

DC 'disc file storage 

LT labeled tape file storage 

FT free form tape - file~ separated by EOFmark 

PP paper tape punch -- standard BPM format paper tape 

PR 'paper tape - files are separated by two successive! EOD codes 

RB remote batch terminal 

2. File Identification (fid). Files 'are identified by name, account, and 

password in that order ·separated by periods (. ).' The name (1-31 characters) is 

required whereas the account (1-8 characters) Ctnd the password (1-8 characters) are 

optional. Thus, four forms of file id~ntification may be specified: name, 'name~ount 
name {f:ccount-Gas sword, and name~sword. Absence of the account iInplies the 

1\ 

~ current user's account. 

3. Data Encoding. These codes describe the source or destination data 

encodings to be expected or produced. 

E EBCDIC 

H Hollerith 

A. . ASCII 



-. ;.'~ :~. ' .. :"'J, ........ ' • :.. .~... 

", ,I' ' DRA WING·NO. 70z489 
SHEET,;1/7 OF ,,3 o"J? 

4. Data Formats. These codes describe source or aestination record 

form.atting to be expected or produced. 

C ',Metasynlbol compres s ed 

X hexadecimal-dump 

5., Modes. These codes dictate control mod~s for the files or devices 

BCD, BIN 

7T,9T 

PK,UPK 

indicated. BCD or binary mode - valid for card" paper tape" and 

magnetic tape 

seven track binary tape packing or unpacking 

SSP, DSP, VFC single, double, or variable format controlled spacing on line printer. 

FA"NFA 

DEOD 

Controls. whether or not the attributes of the source file are to be 

carried over to the destination file. If the file name remains the 

same from source to destinatiqn the attributes ~ copied if neither 

FA or NFA is specified e. g. 

COpy DC/A TO LT#4/A 

causes a copy of file A to Labeled tape with exactly the same attributes 

it had on disc. When the name on source and destination is different 

than the normal case is not to copy over attributes. But information 

specified in ASSIGN or SET commands takes effect. 

In this mode multiple files from the source are copied into a single 

output file. Thus while COpy FT c'opies upto and including the first' 

file mark, COpy FT (DEOD) copies files to a double end-of-file with­

out copying the single end ..:.of -file to the output. 

6. Record Sequencing Insertion or deletion of sequence identification for 

output data records (error if on input side) is accomplished using this specification; 

CS (id, n, k) 

NCS 

LN (n, k) 

NLN 

Options include: card sequencing in columns 73-80 where id is the 

identification (1 -4 characters), n is the initial value, and k is the 

increment. The id is left-justified' in the field (73-80) followed by the 

sequence number right, - justified in the same field. Precedence is . 

given to the sequence number if overlapping occurs. 

no card sequencing - strips columns 73 -80 from each output data record. 

riumber lines within a EDIT style. file starting at n in sequential 

steps of k. Line numbers must be between I and 99" 999. 

no line numbers. 



DRAWING NO.· 702.489 
SHE~Td/foF\o.' ,) 1 

7. Record Selection This specification permits s election of the logical 

reco·rds to be copied by giving their sequential position within th~ file. 

X-y 
o 

select all records whose position ·n· in the file satisfies the following 

condition X< n< Y. Multiple selections rnay be ~pecified, e. g. X- Y, 

U-V, W-Z. 

Selections do not have to be in sequential order. Maxirnum number of 

selections is 10 for each input file. 

8. Valid Option Cornbinations ·Not all cornbinations of frorn and to devices, 

data encodings, rnodes, etc. are valid. Table I shows the valid options, the disallowed 

cornbinations, and the default provisions for the pos sible cornbinations. If a disallowed 

combination is found, an appropriate error diagnostic is given to the user. Execution 

of the cornrnand rnay or rnay not continue depending on the severity of the error encoun­

tered (s ee Language Syntax). 

9. Extensions Using ASSIGNs Not all of the facilities available in the 

BPM I/O systern are rnade available through PCL. The user interested in rnore corn­

plicated d·ata transfers rnay specify them by using ASSIGN .car"ds in the batch rnode or 
SET comrnands if wo rking on-line . 

. ! 
PCL reads through M:EI and writes through M:EO 

so sp.ecial inforrnation (e. g. lists of. read account numbers and write account numbers 

for the output file) may be pre-specified by ASSIGNing either the input or output DCB. 



TABLE I 

. FROM DEVICE 

fC 1:> D L F M 

I IR R C T T E 

CODES E D X D D D D 

H X - X X X -
A ... D X X X ~~ 

FORMATS C X X X X X -

X - - - - - .. 

MODES None - D D ... - D 

BCD D .. ... - X .. -
BIN X .. .. D D .. 

7T .. .. .. X X .. 
9T - ... - D D .. 

PK .. - - X X -. 
UPK .. - .. - X .. 
SSP - - ". .. .. .. 
DSP .. ... - - - .. 
VFC .. .. .- - - -

SEQUENCING, N one .. - - - - -
CS - - .. .. - -

NCS .. .. - - - :/ LN - - ... ... - t 

NLN - - - - - _I 

wher~ 
D default. 
X optional 

error, not available, ridfcufous 

D L 
C T .. 

D D 
~ .. 

X X 

X X 

.. -

... .. 

D .-
- .. 

.. D 

- X 

- D 

- X 

- -
- -
.. -
- .. 

D D 

X X 

.X X 
X X 

·X X 

DRAWING ;~~~~: ... '7Q2~89 
SIoIEE~;J If OF J ~-5t' 

TO DEVICE 

F M L C P 
T E P P P 

D D·. D D X 

X - - X -
X ..I; D ", - --

- .. - - -
\ -

- X X - -

D 
, 

D - ... '. ... 

X .. .. D .. 

D .. .. X .. 
X .. .. .. -
D - .. .. -

X .. .. - .. 
X .. - - -
- .. D .. ... 

.. - X .. .. 

- - X ... .. 

D D D D D 

X .. X X X 
X .. X X X 
X .. X X X 
X - X X _X 

~c EBCDIC to ASCII conversion for t-.""1,,,tul"apc;: ;c rI .......... "".l ........ rr.r _.~ ...... : __ ... 



10. Examples 

~ COPY'CR TO DC/A .0986.PLEASg Cr 

< 

After receiving this com~and ~CL opens a ne~,disc fi I~ with name (A), 

account (0986), ,and pas'sword (PLEASE). Successive cards are then copied to th is fi I e from the 

card reader unti I a double I EOD is encountered. 

~ COpy IT#57/B,C TODe/B . PASS Cr 

< 

This example demonstrates a multiple fi Ie copy. Files Band C from labeled 

tape with reel number 57 are copied in that order to a new di~c file Bwith password PASS. Note 

that aU files must be under the user's account (as speci'fied at log 00 or on the IJOB ~ard). 

~ COpy DC/A(C) TO lP(PSP) Cr 

< 

The disc fi Ie A under the user's account is uncompressed and listed on the line , 
printer with double spacing. 

~ COpy FT#73 TO De/A (LN(5, 5 ))Cr­

< 

PCl reads successive records from free form tape #73, assigns line numbers 

starting at 5 ,in steps of 5, and writes them to fi Ie A on d1sc. 

~ COpy IT#205/S0URCE TO CP (CS (SRCE, 1, 1)) Cr . 

< 

'The label tape file named SOURCE on ree!" number 205 is sequenced and pLJnched. 
- . . 

The logical records were given sequence identification (SRCE0001, SRCE0002,. a .etc.) in columns 

73-80 



:: COP'.' PR;PR;PR OVER DC/ALPHA Cr 

.< 

• - •. ~-. 't '':':- ~'."J, .. :.".- ~. ~ :.' ....... -

DRAV/ING r'lO'~ 702.4t19 
SHEETeJdlOF Jo9 

Three consecutiv~ fi los on· the paoer taoe reader are cooicd over on existing 
I I I . 

fi Ie ALPHA under the user's account. Each fi Ie on paper tape te/mi noted by a double 1 EOD. 

~.COpy FT#6(BCD,7T, H) TO LP(X) Cr 

< 

In this case, free form tape #6 is a 7 track tape !n BCD containing Hollerith 

coded data. Each record is read, converted to EBCDIC, and dumped to the line printer in 

hexadecimal. 

~ COpy De/A TO FT(BIN, 7T, H)Cr 

< 

This example points out the us·e of a scratch tape. Line images are read froITl. 

disc file A, converted froITl EBCDID to Hollerith, and written on a 7 track scratch 
•. 1 

tape .in BIN ITlode. 

~ TO DC/N3 Cr 

~ COpy DC/N 1 (20-30, 40-100), N2 .1234. PASS (50-75)' Cr 

< 

. Sections of two fi les (N 1 and N2) are combined to form a third file N3. 

Records 20-30 and 40-100 of Nl followed by records 50-75 of N2 are copied in that order to N3. 

The user's account is assumed for fi les N 1 and N3, and. N2 is from account 1234 with 

password PASS. Note thqt the destination file was defined on a separate line. 



" "(j 

< COpy DC /SOURCE TO ME Cr 

1 QOl 0 START lW, Rl ALPHA 

10.020 

10!)30 

< 

• • • 
• 
f' 

• 

AI, R 1 5 

CW, Rl BETA 
• • • 

This command requested a Meta-Symbol source fi Ie on disc be 

dumped ot the user console. Note that the line numbers occupy the first seven characters of 

" .. < each line. 

< COpy FT#7236 TO PP Cr 

< COpy FT#7236 Cr 

< COpy FT#7236 Cr 

< 
" " 

Three successive fi les from free form tape #7236 are punched as one long fi Ie 

on paper "tape. "An end ~f fi Ie mark (two! EOD's) wi II not be written on th~ paper tape unti I the' 

devi ce is closed. 

~ COpy LT#S/A, B, Ci DC /D, E; FT#8" TO L T#6#7 /A Cr 

< 

This example demonstrates the multi-file multi-device capabilities of the 

fj Ie copy command. Fi les At B, and C from lobe led tape #5, fi les D and E from disc, and the 

next file on free form tape #S are copied respectively to Hie A on labeled tapes #6 and #7. 

Tape #7 is used only if #6 overflows. 

C. Catalog Copy Comrnand 

This command enables the user to copy his complete Hie catalog between disc and labeled 

tape • .the command is of the form: 

\COPYALL DC TO LT [#reel no.J[#reel no.J[#reel no.J 

or, 

COpy ALL LT [Ureel no.J [#reel no.] [#reel no.]TO DC 



h J DRA WING,.NO.' 70648~ 
. SHEE'ld,;130FJO·; \ 

PCL copies all files under the user's account from the input device (LT or DC) to the 

output device (LT or DC). Files 'protected ,by pas~words cannot be copied with this 

command. The Bk'key will term.inate execution of this com.m.and and cause PCL to 
e 
respond by typing the identification of the last file copied. Conpider the exam.ple: 

< COPYALL DC' TO LT#3#4 Cr 

< 

All of the files given in the user's catalog are copied to labeled tapes #3 and #4. Tape 

#4 is used only if #3 overflows. The disc space previously occupied by this catalog 

of files can now be released for other use. 

To restore his file catalog, the user m.ay enter the following: 

< COPYALL LT#3#4 TO DC Cr 

< 

This causes PCL to copy all the- files from. labeled tapes #3 and #4 to disc under the 

user I S account. 
·,. 

(/ The comrnard 

< COPYA·LL FT#3' TO FT #4 
:.\ 

.'":' ... ,. 

\ i''\ \ 

\' '"til 

< 

'i I: 

\,1.'1\ I -J 

I I, i first double end-of-file encountered on tape 3. The copy is unrestricted as to form.~t 

makes an exact coW of tape num.ber 3 onto tape num.ber 4 through and including the 

I . 
1\ except that record' size must fit in the allowable installation-set allocation of core to 

l.,,-._ .. c:t. single job. 

D. Other Com.m.ands 

This group of com.m.ands provides for file deletion, d.irectory listing, file 

positioning, and other r:nanipulation arid m.aintenance functions. 

1. DELETE 

Files m.ay be eras,ed using th~s comm.and, which is of the form.: 

DELETE fid 

where fid represents nam.et~'~count~i?~~··sword of an existing file. Following the entry 
t' , (' 

of this command, a confirm.ation m.essage of the form. "DELETE fid? II is typed. The 

user m.ay respond. by typing "YES" to confirm the .operation or with anything else to 

cancel it.' If YES is typed, the file is deleted and the -disc space ,released. For example: 



< DELETE SO.URCE .. PLEASE Cr 

DELETE SOURCE .. PLEASE? YES Cr 

< 

DM. WINC(NO: .. ···· 70Z48~ 
. SHEETJc?ljOF.J rJ 9 \ 

Upon receiving this com.m.and, EDIT locates the file in us err s directory and responds 

with the confirmation message. After the' YES reply, thl~ file SOURCE is deleted. 

DELETEALL .. acct-£.l---~~-·" J~'. \".',\ '\ It; 
~/l\.'''' \ \.. \, 

Deletes all files in the -indicated account,\ A confirmation similar to that for DELETE 

is required. 

2. LIST 

To list the account directory or labeled tape file names for a designated 

account, the us er enters a command of the form: 

LIST LT [#reel no. ] [#reel noJ l#reel no. ] ,[ account] 

or, 

. LIST DC, [account] 

PCL scans the directory (DC) or tape reel~ (LT) under the indicated account (defaults 

to the current user's account), lis\ting the nam~s of files encountered. Output is to 

the user's. terminal in UTS or the line printer in BPM. Printing may be interrupted 

and the LIST command terminated with the Bk key. Consider the example: 

~LIST LT#3#4, 0986 Cr 

A.LPHA 

SOURCE 

A 

B 

< 

Labeled tapes #3 and 4 und'er account 0986 are scanned for existing files. Four such 

files are located and their corresponding names printed at the user's console. 

3. SPF 

This com.m.and allows the user to position input peripheral devices for­

ward or backward a designated number of files. The command is 6f the form: 

SPF device id [#reel no. ] ' ±. n 

where device id represents one of the device identification codes LT, CR, FT, 'or PR, 

+ implies. direct~on and n is the number of files to be skipped. If: direction + is not 

given, forward (t) direction is assumed. 



For example: 

~SPF FT#2076, +2 Cr. 

< 

DRAwrN G~:-~l'lY~ ';ibi4B9 
. SHEETJdJDF 3o&, 

. Free fOim tape #2076 is positioned forward 2 files. If on end-of';reel is enco.untered prior to 

completion, an appropriate diagnostic is given to the user. 

4. SPE 

The user may skip to i ust followi ng the last fi Ie on lobe led ·tape through the 

following command: 

For example: 

SPE LT [#reel no.] 

<" SPE IT#5 Cr 

< 

pel positions labeled tape #5 to iust following the last fi Ie. The user may now add additional 

fa '.es ".to the tape • 

5. WEOF 

This command enables the user to write an end-of-fi Ie mark on output peripheral 

devices. The command has form: 

WEOF device id [llreel no.] 

where device id is any output device code excfuding tT and DC. PClwrites'an(EOF on 

magneti c tape and double I EOD records on card and paper tape. For example: 

.< WEOF CP Cr 

< 

t This example causes PCl to punch two successive 1 EOD cards. 

6. REW 

A user may request that designated magnetic tapes be· rewound using the following 



command: 

REW "rccl no.' [llreel no.] ••• [Hreel no~] 

PC,L rewinds each tope in the order specified. For example: 

< REW #205#206 Cr 

< 

DRAWING; N'O'.'?02489 

SHEET.cJv?6:0F -3o'$' 

Tape units currently identified with reels 205 and 706 are rewound. 

7. REMOVE 

This command permits the user to request removal of tapes no longer needed 

and thus, release the tape unit for other purposes. T~e format is as follows: 

REMOVE #reel no. [Hreel no.] ••• [#reel no,_] 

Each tope specified is rewound and,' upon completion, a:dismount message is given to the 

operator. For examp Ie: 

< REMOVE #2075#2076 Cr' 

< 

Tape units associated with reels 2075 and 2076 are rewound. Messages are given to the 

operator to dismount these tape reels. 

8. TABS 

Th is command sets I isti n9 tobs for the current output devi ce as defi ned by 

the latest TO or OVER command. It is of the form: 

TABS c; [, c2] · • • [, cn ] 

where c. repiesents col urnn 'numbers of desi red tab setH ngs. PC L merges the sett i ngs into the 
I 

current output dcb. For the ME device, settings are transmitted to the coe routines which 

perfoims the actual tab simuJation in this case. Consider the example: 



< TA3S 10, 19,37 Cr 

< 

~. -. .:. <.:.:- ... :.fJ.l'~·~_·- ;.;:'~ ..... ~ -.. J 

DRAWING ~ro'~ 702489 
SHEET)J7oF 30'9 

e Assuming Meta-Symbol source is being copied to a listing device, this command sets the 

appropriate tabs for this language. 

E. T ermi nation of PC l 

In order to close the current output file, it is necessary for the on-line user to indicate 

when he has finished with PCl functions. The command END fulfills this requirement and olso 

returns control to the UTS executive. Prior to exiting, a .termination message is given to 

the ·user. For example: 

< END Cr 

PCl PROCESSING TERMINATED 

1 

This command clostS; the current output fi Ie (if any) and causES pel to 'return to the executive 

corrimand ·Ievel. The Executive responds with its identifying rr.ark (J) indicating the command 

state. 

F. language Syntax 

The. PC l contro I language is ·des i gned to be free form wi th a few restri cti ons imposed 

for simplicity in implementation and use. These include: 

1. All commands must comply to the general format given in the definition.' 

2. . Blanks are allowed preceding or following an argument field. Imbedded 

blanks are not parmi tted. 

3. At least one blank must follow each comman'd verb and must precede an 

imbedded comrncmd verb (TO, OVER). 

4. Continuation between input records is not allowed. (One command per line.) 

5. End of command is indicated by a period (.) or by' end of the input record 

(colomn 80 for card input, Cr or If for TTY's) 

6. An output device or file (TO, OVER) r0~st be defined prior to or on the same 

line with 'COPY COi'iliilond. COpy ALL, END, TO, or OVER commands terminate 

the current ~utput specification. 



DRAWING '~f'6: 7024119 
SHEETJdJ$ OF..E )~/ 

Each command is edited for compliance to the above rures and is checked against Table 1. 

The user is not i fi ed of a II errors (i ncl udi ng I/O e,rrors) through 'appropri ate, di agnosti cs. 

A severity level of 1 ~ 2 or 3 is attached to each error and has the following effect on the 
a ' 

execution of the command in question. 

- ',warning, require "GO" confirmation from on-I~~e user, continues execution 

for batch user. 

2 - i nva Ii d syntax or I/O error, terminate execution of command, but conti nue 

syntax edit for both on-I i ne and batch users. 

3 - format error, terminate command, revert to command state for on-line user, 

read next command card for batch user. 

The maximum severity encountered for a command is displayed following diagnostic ,output. 

For example: , 

,I 

,~eoPY ee TO De/A Cr' 

INVALID DEVICE 

SEVERITY 2 

< 



DRAWING N .. q .. 702189 
SHEET.?-J;7bF 3~~ \ 

INDEX TO PCL COMMANDS 

cJ 

COpy 

COPYALL 

COPYCAT 

DELETE 

DE.LETEA.LL 

LIST 

REMOVE 

REW 

SPE 

SPF 

TABS 

WEOF 

copies dev~ce(s) and/orfiie(s) ~~;R device or file 

copies file catalogs between dis'c and labeled tape 

same as COPYALL 

. delete s a file 

deletes all files in an account 

lists file names from account directory or labeled tape 

removes reels from tape units 

rewinds tape reels 

spaces to end of last file on labeled tape 

spaces device forward or backward n files 

set tab stops for output 

write end-of-file 'on device 

*The word "ON" may be substituted for "TO". 



DRAWING NO .... : 7024.89 
SH;EET~O~6F· . 

Part X. LOADING OF PROGRAMS (LINK) 

TABLE OF CONTENTS 

Page 

INTRODUCTION 231 

LOAD MODULE STR UCTURE 233 

A. Program 

. 1. Pure Procedure 
2. Data or Program Context 
3. Common 
4. DCBs 
5. Public (core) Libraries 
6. System Library 

B. Global Symbols 
C. Internal Symbols 

SYMBOL TABLE FORMAT 237 

THE LINK COMMAND 

A. Load Module Symbol Tables 
B. Merging Internal Symbol Tables' 
C. Library Search 
D. Display Options 

COMMANDS WHICH INITIATE THE LINK SUBSYSTEM 244 . 

A. LINK (called as a subroutine) 
B. RUN 
C. LINK (called as' a processor) 

BREAK KEY 249 

-INDEX to LINK COMMANDS and OPTIONS 250 



INTRODUCTION 

DRAWING NQ~ ,7024§9 
SHEETd3/ OF3 O.~ 

LINK is designed to construct a single entity called a 19ad module (LM). A load 

module is an executable program formed from relocatable object modules (ROM's) 

and/or library load modules (LM's). ROM's are rep!esentations (of program and 

data) that are generated by a proces sor such as Meta-Symbol or FOR TRAN. The 

on-line user has, at the executive level his choice of constructing a load module 

(LINK), starting execution of the loaded LM (STAR T), or combining the above steps 

(R UN). A library load module is a single entity" for-med from reloc~table object 

modules which is constructed in such a manner that it may be combined with other 

ROM's or library load modules. LINK is a one-pas s 'linking loader (reads -each in-

put module once) making full use of the mapping hardware. 

LINK is not an overlay loader. If the need exists for overlays the user must call 

on the overlay loader by entering a job in the batch stream. At a later time a simple 

chaining feature will be .added to LINK to provide a simple form of overlay. 

In order to form a ioad module (LM) which may later be combined with other load 

modules or ROM's, the load module must be of one protection type. A LM program 

of mixed protections type may not be combined, however, ROM's of arbitrary pro-

tection type mixture and LM's of single type may be combined. The resulting memory 

layout is ,in two areas with protection for data an~ pure procedure. 



DRAWING NO,.~, 7021.§9 
SHEETd3d of"3a9' 

Object programs consist of one'or more program'sections. Sectioning is the 

d arbitrary grouping of areas of a prog~am into logical divisions, such as speci-

fying one section for the main p~ogram, .one for data, one for literals, etc. 

Furthermore, with memory map and/or write locks, program sectioning enables 

the programmer to designate the mode of protection he wishes to have for the 

program divisions. 

The acces s protection features are: 

-read, write, and access permitted (data) 

-read and access permitted (pure' procedure) 

·-read only permitted (static data) 

-:-no access, read, or write permitted (no access) 

Only two protection types result in the final program for execution: data and 

pure procedure. Static data and no access informatio:p., if specified, are loaded 

with pure procedure. 



& 

DRAWING 1'rO,~, 7Q2~§9 
SHEETc:l330F'j ~.S: . 

LOAD MODULE 8TR UCTURE 

A ~oad module (LM) formed by LINK may be thought of as being comprised of 

# 

three parts: A.· pr~gram, B. global symbols, and Co internal symbols. 

A. Program 

The program may be sectioned into the following parts: 

1. Pure pro.cedure - This section of code has read and access pro-

tection and is generated by the compilers and assemblers 

with protection type 01. . All sections with non-data pro-

tection type are also included here. 

2. Data or progra~ context - This section of code has read, write, and 

access protection and is generated by the compilers· and 

assemblers' with protection type 00. 

3. . Common - This is blank COMMON and is generated by compilers 

and assemble.rs as a dummy section with the name 

F4:COM. The sizeof blank COMMON is determined by 

the first size declared. All subsequent F4:COM declara-

tions must be less than or equal to that size. 

4. DCB's - A Data Control Block is a table containing the informa-

tion used by the Monitor in the performance of. an I/O 

operation. LINK will construct a DCB corresponding 

to each external refer~nce with names beginning with 

F: or M:, or it will satisfy these references from a 

standard set, allocated. autom.atically for each on-line 

user. 



DRAWING NO ...... 70?~§9 
SHEETc23·ioF36~ 

The standard set of DCB's is defined in a later section 

along with the information c·ontained in the job informa:-

tion table (JIT), fixed conte~ areas for the public library 

and standard proces sor.s, and other UTS standards. DCB' s 

, constructed by' LINK are 48 words long consisting of: 

22 word standard initial segment containing 

standard default op labels if the DCB is one of 

the Monitor DCB's (see Section XI). 

Five of the variable length items including a control 

word for each and space for: 

3 word file name 
2 word account number 
2 word pas sword 
3 words for 3 input serial numbers 
3 words for 3 output serial numbers 
8 word key buffer 

In those cases wher·e the DCB's constructed by the loader 

do not fit the user's needs, the user may define his own. 

While allocating, constructing, and combining DCB's, 

LINK guarantees that each DCB is contained within a 

page. This allows the operating system to acces s DCB' s 

in either mapped or unmapped mode. 

5. Public (core) ~ibraries - Each inst'allation has the ability to define 

a set of reentrant subroutines which together constitute 

a public core-library. , Via SYSGEN, the installation may 

specify several different core libraries containing collec-

tions of routines useful in different environments. REF / 

DEF stacks for these libraries stored under special n~mes 



DRA WING NO .•. , 7041§9 
SH.EET .cJ3"'?F ~ O~· . 

in the system account'are used to LINK programs. 

Only ~ core library may be associated with an exe-

cuting program. The reentr,ant portion of each core 

library is shared among users {on-line, batch, and 

real-time}, thus saving physical core memory- and 

allowing for more efficient system operation. The 

user-dependent data for each core library routine is 

allocated by LINK at a fixed virtual addres s. Thus,. 

each public library is constructed in two parts: re-

entrant procedure and direct access context data 

(i. e'., in fixed virtual memory). By forming the li-

brary in this manner, a speed advantage of from 5 to 

20 percent over push-down storage reentrancy can be 

obtained. 

6. System library - The system library, much the same as the public 

core-libraries, is constructed in two parts: reentrant 

procedure and direct access context data. Routines 

which are obtained from the system library become 

part of the user's program and are not shared. The 

speed advantage is still maintained by providing a li-

brary which accesses a data area in fixed virtual 

memory. 

., 



.. ~ 

B. Globa,l Symbols 

DRAWING NO ..•.. , 70.24~9 
SHEET c?36C?F J () ~ .... 

The difference between a puolic library and ,the sys-

. ~ 

tern library is ~hat every in~ividual user pays core for 

each system library routine used while only one instanc:;:e 

of the public library is required no matter how many are 

using it .. In the public library, however, use of just 

one ro~tine requires core for the whole package. The 

public library contents are specified and built at SYSGEN· 

time. 

While performing the link process, a global symbol table is constructed. 

This table is a,. list of correspondences between symbolic identifiers 

(labels) used in the original source program and the vaXues or virtual core 

addresses which have been assigned to them by LINK. The global symbols 

identify object (DEFfs·) within a module which may be referred to (REFfed) 

in other modules. This table is available to DELTA, for use in debugging. 

C. Internal Symbols 

An internal symbol table is a list of correspondences similar to the global 

but which applies solely within the module. Each internal symbol table 

constructed by LINK is associated with a 'specific ~nput file and identified 

- by it·s name" The internal as well as the global symbol tables are created 

for use by the debug processors, such as DELTA. The user has the ability 

under DELTA to define which set of internal symbols are to be used for 

specific debugging activities. 



un-.cI L-J. -O'.:..;J 1- ';J.r;;,---:~ -t;F2> ---
. .. '.. . -.., 

SYMBOL TABLE FORMAT 

eAs· has bee.n mentioned above, ~he main usage of symbol tables are by DELTA. 

DELTA allows the user to reference· both internal as w~ll as global symbols in 

the debugging of programs. The· user operates on his object programs as formed. 

by the loaders, together with the tables of internal and global symbols accompanying 

them in what appears to be assembly language symboli~. 

Both global and internal symbol tables, as formed by LINK and used by DELTA, 

consist of three word entries. Symbolic identifiers (labels) are limited to seven 

(7) characters plus count. Symbols originally· longer tha~ seven are truI?-cated 

leaving the i11:itial characters, ·although the o~iginal character count is retained. 

Symbols which are identical in their first seven characters a·nd are of equal length 

occupy one position in the symbol table. The value or definition for such multiply 

defined symbols is the first one encountered during the linking1kproces s. Each sym~ 

bol entered into the table has a type and interI?-al resolution classification. The in-

ternal resolution types are: byte, halfword, wora, doubleword, and constant. 

The following are the sy~bol types which are supplied by the object language and 

maintained in the symbol table: instruction, integer, EBCDIC text, short floating 

point, long floating point, decimal, packed decimal, and hexadecimal. 

In order to provide internal symbols definition together with internal resolution and 

type classification, the relocatable object language will b~ augmented. This means 

that th-e compilers and assemblers must be changed in order to provide this facility. 

In addition, existing loaders must be modified in order to process the changes in the 

object language. The required additions to the object language and the exact symbol 

table format are detailed below. 



SHEET ;J320F jo~ ... ,1 
- ... _. to • 

Location Symbol - code = 01, 

where 

011 ~ SI S S 
2 3 

S4 S5 S6 S7 

1; I res value 

CT is a six-bit field containing the character count of the 
original symbol. 

S. are the first seven (7) characters of the symbol. Sym-
1 

boIs with fewer than seven characters are zero filled. 

t is a five-bit field where the values are: 

00000 - instruction 
0000 1 - integer 
00 III - EB CDrC text (also for unpacked decimal) 
000 10 short floating point 
000 11 - long floating point 
00 110 - hexadecimal (also 'for packed decimal) 
a 100 1 - integer array 
010 10 - short floating point array 
010 11 long floating complex array 
01000 - logical array 
10000 - undefined symbol 

res is a three-bit field representing the internal resolution. 

value 

The values are: 

000 byte 
00 1 - halfword 
010 'word 
a II, doubleword 

Location symbols a're 'always represented as a 19-bit 
byte resolution value. 



DRAWING NO..... 70.2489 
SHEET r;)390F.i) 0 D': -..,J 

. CO.ristants - Code = 10 

where 

10 ~T 8 8 8 
1 2 3 

84 8 5 86 8 7 

value 

CT and 8. have the same meaning as above. 
1 

value is the 32-bit value of the constant. 

I' 

Object Language Extensions 

The following new object code control bytes are added in order to supply the in-

formation neces sary in the formation of symbol tables . 

. Object code control byte (HEX) Type of Load Item 

11 

12 

13 

Provides type information for external 
(global) symbol. 

'Provides type and EBCDIC for internal 
symbol. 

Provides EBCDIC, and forward reference 
number for undefined symbol. 

The details of these object code items are listed below. 

Contro 1 byte 11 - - Type info'rmation for external symbol 

The load' item is as follows: 

11 

t 

Contro 1 byte 

One byte which is a five-bit type field and a three-bit 
internal resolution field. The five-bit type field con­
tains a code which is the same as the type information 

specified above . 

. The three-bit internal resolution field is the same as 
the res field information specified above. 



DN 

SHEET c;;'1tfO OE-~ 0 'j/ . ".. ..... .. .. ~ 

peclaration number - One or two bytes (depending 
on the current' declaration -count)- which specifies 

_ the declaration number of the ext~rnal (global) defi­
nition. 

" . 

Control byte 12 - - 'Type and EBCDIC for Internal Symbol. 

This control item supplies type and EBCDIC for an internal symbol. The 

load item is as follows: 

12 

t 

n 

EXPR 

Control byte 

The type and resolution as above 

~ byte specifying the length of the EBCDIC 
name in character s 

name in EBCDIC 

Expression defining the internal symbol 

Control byte 13 -- EBCDIC for an undefined symbol , 
This control item is u?ed to, associate a symbol with a forward reference. 

The load item is as follows: 

13 

n 

FRN 

Control byte 

length of name in bytes as above 

name in EBCDIC 

Two bytes specifying the forward reference number 
with which the above syinbo 1 is to be as sociated. 



........, ..... ,....,. ... -, '-..L.L-' '-'41~.-"&''' '-' .-,*v '-4-.V-/-

SHEETcJtf/ O.F .. :j O· ~~'I 

THE LINK COMMAND 

.,::1 The LINK command· may appear both as an executive command (in TEL) or it 

,may appear as a direct command'to the LINK processo!. All operations that 

can be performed under the LINK executive command can be performed under 

the subsystem. The notation and conventions for specifying the retention, de-

letion, and merging of internal symbols are the same. 

The most commonplace LINK commands are of the form: 

LINK mfl, 

LINK mfl, 

·LINK mfl, 

where 

mfl 

1m 

mfl, ... ONlm (on a n~w file) 

mfl, .... OVERlm {over an existing file} 

mfl, ... (on a temporary file for sub-
sequent loading) 

specifies the load module or relocatable object module 
name and is represented by file name, account and 
password (in this order), s·eparated by periods. In the 
absence of account and/or password, the log-on accounting 
identification is used. A dollar sign, 1$', may be used toO 
designate linking of the most recent compilation or assembly. 
Its length must be 10 or fewer characters. 

specifies the name (file· identification) of the load· module 
. to be created by LINK. Its length must be 10 or fewer 
characters. 

Optional specifications on the LINK command control: 

A. Load module symbol tables 

(I) / (NI) The ·parenthesized lettOers "NI" preOceding an input module's 
file identification specifies that no internal symbol table is 
to be constructed; the parenthesized letter "I" specifies 
that an internal symbol table is to be constructed. The "I" 
or "NI" option holds for all subsequent modules mentioned 
in the command until the occurrence of. a new specification. 
In the absence of any specification, "I" is assumed. 



Example: 

DRAWING NO ..... 702489 
S HEET p?ijc~ OF .:3 () Y"") 

. . 
LINK A, (N~) B, C, (I) D ON E 

This command specifies that a IO,ad mod'ule E is to be 
created for execution from files A, B, C, ,and D. (By 
implication, public library, . PI, and system library 
are to be searched, in that order, to satisfy any external 

',references.) Internal symbol tables are to be created 
for file A and D but not for files Band C. The global sym­
bol table is always retained. 

B. Merging internal symbol tables 

(mfl, ... ) LIN·K may be instructed to merge the internal symbols 
of several files by enclosing the files in par.entheses. 
Only one level of parenthesized nesting is allowed. 

Example: 

.LINK (D, A) (NI) B, C, ON E 

This command specifies that no symbol table is .to be 
constructed for files Band C and the internal symbols 
for files D and A are to be merged. The internal sym­
bol table will be identified by A. The identification , 
given to the internal symbol table will be that of the last 
input module specified in the merge. 

When a load module containing separate internal symbol 
tables is itself linked, LINK will merge all the tables 
under that module's name. 

'c. Library search 

;lid, lid ... specifies the libraries which, are to be searched for pro­
gram references which have not yet been satisfied. Li­
braries are identified by account. The list of library 
accounts separated by commas is appended to the LINK 
comrpand following a semicolon. 'In the absence of any 
other specifications, the public library will be searched 
followed by the UTS system library, any user specifica­
tion eliminates these searches unless requested by the 
user. 



(L) 

(NL) 

(Pi) 

(NP) 

D. Displays 

(D) 

(ND) 

(C) 

(NC) 

(M) 

(NM) 

. . 

DRAWING NO~·· 70248·9 
SHEET o?L!39F'3lJ 5" . 

specifies that the system library' is to be searched 
. to satisfy external references which have not been 
satisfied by the program. 

specifies that a libr?ry search is,not requested. 

specifies that the ith public (core) library is to be 
associated with the program. Default is to PI if 
not specified. Only ~ public library may be 
associated with a given program. 

specifies that a public (core) library search or 
as sociation -is not requested. 

specifies that at the completion of the linking proces s 
(including searching libraries, if speci~ied), all un­
satisfied' internal and external symbols are to be dis­
played. The unsatisfied symbols are identified as to 
whether they are internal or external and to which 
module they belong. 

specifies that the unsatisfied internal and external sym-
bols are not to be displayed. ' . 

specifies that all conflicting internal and external sym­
bols ar~ to be displayed. Xhe .symbols are displayed 
with their source (module name) and type (internal or 
external) . 

specifies that· the conflicting symbols are not to be 
displayed. 

specifies that the loading map is to be displayed upon 
completion of the linking process. The symbols are 
displayed by source with type resolution and value. 

specifies that a load map is not to be displayed. 

-The default specificiations for the linking process are D, C, NM, and L. 

Any specifications stated or implied hold over subsequent commands to 

LINK so long as LINK is not recalled by TEL. 



DRAWING NO:. ~ , 702.4 ... S.9 
. SHEET <?llJI/9-F:.3 () rp 

COMMANDS WHICH INITIATE THE LINK SUBSYSTEM 

The LINK subsystem may be called as a subroutine or it may -be called directly 

as a proces sor. 

A. LINK 

LINK is called as a subroutine when TEL receives a LINK command. In 

this mode, the information and specifications supplied on the LINK com-

mand are assumed complete. Therefore, the subsystem will have little 

or no interaction with the user. 

The specified input modules are linked with or without library modules as 

specified, and, if specified, a map is displayed. The user is notified when 

the operation is complete by the executive system (TEL). The subsystem 
- I ' 

(LINK) returns control and'TEL requests further commands from the user. 

Example: 

.!.. LINK (ND) (NC) A, B, C 
DONE 

If, when called as a subroutine, LINK ha~ any need to request information 
/ 

from the user, it ,will identify itself, id,entify the problem, and then prompt 

for input as fotlows: 

LINK HERE 
(problem identified) 

In all subsequent requests from LINK, only the problem and prompt char-

acter are displayed. 

~~ is LINK r s pro~pt character 



·B. RUN 

DRAWING NQ ..... 702489 
SHEET c)'l(,.. .. OF '3 ~.~ ... 'J 

The LINK subsystem is called as, a subroutine when TEL receives a 
, . 

R UN command. In this mode, information and specifications supplied' 

on the R UN command are assume~ complete. The subsystem normally 

has no interaction with the user. 

The two forms of the R UN command that may be presented to the execu..;. 

tive system (T EL) are: 

RUN 
R UN mlf, mlf, ... 

The first form is used to link, load, and start the result of th~ last major 

operation (assembly), compilation or linkage). 

If the last major operation was a linkage, ·the subsystem (LINK) is not 

needed and will not be called. However, if it was an as s embly or com-

pilation, LINK is called as a subroutine. The second form is used to 

link, load, and start execution of a set of modules. All options of the 

LINK command may be exercised in the R UN command.; e. g. , 

R UN (I) A, B, (NI) C 

This example requests that files A, B, and C are to be linked, loaded, 

and started. Internal symbols for the first two only are to be kept with 

the res.ulting load module. 



DRAWING NO.,.... 70.2489 
. SHEETd.y6 OF jo9. -..,1 

c. LINK called as a processor 

The subsystem is called directly by using the command LINK without 

parameters., The notation and conventions for input files and reten-

tion, deletion, and merging of internal symbol tables remain the same. 

The main advantage as a processor is that of interaction. It allows the 

user to link more modules:; search more librar,ies and, in general, the 

user has more control over the linking proces s. In addition to the LINK 

command, the subsystem recognizes the commands: OUTPUT, SEARCH, 

. LIST, QUIT, and END. 

Specifications governing the d~splays and library searches are given' 

immediately following the LINK command verb in the form of a paren-

thesized code or list of codes.· 

(D) 

(ND) 

(C) 

(NC) 

(M) 

(NM) 

(NL) 

specifies display unsatisfied internal and external 
references 

signifies don It display internal and external refer­
ences 

$ignifies display all conflicting identifiers 

signifies don It display identifiers 

signifies display the loading map on completion 
of the linking process 

signifies don It display loading map on completion 
of the linking process 

signifies search the public and system libraries 
for unsatisfied program references 

signifies don It search the public and system li­
brary for unsatisfied program references. 



DRAWING NO.. 702489 
SHEETJ~7 OF··~3 ",1~/. -,} 

The default specifications are D, C, NM, L. 'Specifica~ions hold 

over subsequent LINK commands until changed. 

1. OUTPUT 

Specification of ,an output file instructs LINK to complete any pre-

vious link process and initiate a new one. The previous output 

module, if any, is closed and saved for future loading. 

As a proces sor, LINK will not initiate any linking until an output 

file has been identified. The us er may specify an output file by 

the LINK command. 

LINK mfl 
LINK mfl 

ONlm 
OVERlm 

(new file) 
(old file) 

All commands are analyzed for validity. If any d~screpancies appear', 

the user is informed and LINK request.s that corrective action be taken. ' 

2. LIST 

At any time prior to completing the linking process, the user may re-

quest optional displays to be listed on the printer, file, or terminal. 

The format of the LIST command is: 

LIST (loading map, et all 
LP (printer) 

ON file 
ME (terminal) 

The default specifications are .D, C, and M. 

3.. SEARCH 

At any time prior to the completion of the linking process, the user may 

request LINK to search his own and/or system and public libraries to re-

solve unsatisfied external program references. The format of the SEARCH 

command is: 



SEARCH 

!4. 'QUIT 

(L) 

(NL) 
lid, lid, -lid 

DRAWll'fG NO." .. 70.2489 
SHEET cJ490F ~O_~""J 

.. -

, At any tilne prior to the completion of the linking proces s, the us er 

may request LINK to terminate. Termination results in the release 

of all core and disc space allocated as the_ results of the linking process. 

5. END 

The linking process is terminated with the END command. This com-

mand instructs LINK to close and save the curre~t output file, if any, 

for fll,ture loading. 

Example: 

!LINK 

LINK HERE 

:LINK (ND).(NC) (NL) A, B ON JED 
:LINK C 
:SEARCH (L) 
:LIST (M) (C) (D) ON JOE 
:END 
DONE 

In this example, the output file is JED and input modules A and Bare 

linked. No display has been requested. Input module C is then combined 

with A and B and the system library is searched .. Then, the user requests 

- that the map, conflicting and unsatisfied symbols be listed on file JOE. The 

The LINK session is concluded by the command END and control is returned 

to the executive. 



BREAK KEY 

DRAWING NO'.· 70-248.9 
SHEET c?')99F".j 0 $?--

Depression of this key causes LINK to terminate whatever it has been doing as 

soon as it can; however, this signal is ignored if given by the user while he is 

typing in a command. Usually, LINK will type 

REVOKED 

as soon as it honors the break. However , if engaged in linking a module or 

s earchirig a library, LINK will finish that operation and then tell the us er how 

far it has gotten. For example, if working on the command 

LINK A, B, C, ·D 

and interrupted while working on file B, LINK will finish linking B and then 

type 

DONE THRU B 
·1 

If actually finished with a command before honoring the break, LINK will simply 

behave as it usually does after finishing a command. If called as a subsystem, 

LINK will return control to the user after typing its identifying mark; if called 

as a subroutine,· LINK will notify the exec that it has been interrupted, without 

typing anything at all {TEL will tell the user that the command has been revoked}. 



D1{AWING NO., 702489 
, .',.., . '(I .... "J 

SHEETO?~ OF-(3 t; j), 

INDEX TO LINK COMMANDS AND OPTIONS 

Default values for the options are underlined. 

COMMAND OPTIONS MEANING 

LINK Specify the linking process 

D/ND Display or don't display unsatisfied 
internal and external references 

CINe Display or don't display conflicting 
identifier s 

M/NM Display or don't display lQading map 

L/NL Search or don't" search the ,public and 
system libraries 

I/NI Construct or don't construct internal 
symbol tables 

Pi/NP PI As sociat'e or don't include the public 
library 

OUTPUT Specify the LM file. 

none 

LIST Specify di~play options, to be listed on 
printer, file, or terminal. 

ti/ND 

J 
C/NC Same as LINK. 
M/MN 

SEARCH' Specify which libraries are t? be us ed 
in satisfying unsatisfied refer ences 

L/NL l Same as LINK 
Pi/NP PI ~ 



END 
, . ~ 

RUN' 

None 

Pi/NP 
D/ND 
CINe 
M/NM 
L/NL 
IINI 

PI 

DRAWIN-G NO. 702489 
SHEET:JS! OFSO~: .... ,} 

Specifies the en.d of a linking process 

-' . 

Specifies to link, load, and start 
execution. 

Same as LINK. 



INTRODUCTION 

--DR-:';\V{ING-NO~----70-2L.r8-9 

SHEETc?S-3 oi"'36, ~d 

This document describes the calls for service by user, progra:rp.s, their opera-

tion and restrictions, in the UTS environment. All facilities and processors now 

available as BPM services remain available to the batch user in UTS. Some UTS 

facilities are provided solely for on-line use, while others are available only in 

batch. 

New and modified services allow the user to get and free core storage - - both in 

the old ways from just above his program area and from common storage, and in 

a new way by specifying the virtual address of the desired core. 

New services are provided to a) allow communication and memory protection 

changes 'whentransfer,ring between a user prograITl and system processors; b) 

set up a "prompt" character with the terminal I/O routines which will be typed 

whenever input is requ'ested; and c) control the character translation and end-of-

message indication tables in the terminal I/O routines. 

Some of the current CA,L','s behave 4ifferently: when called by an on-line us er. 

These differences are outlined. 

The Monitor service CAL's are listed by the restriction in usage -- on-line, batch, 

or real-time, and for convenience, in numerical order. 

The standard assignments to devices of the system operational labels are listed 

in the final section. 



DATA MEMORY MANAGEMENT 

DRAWING NO".- 70-24819 
SHEE'L~5LI 9"iT"JCJ tl" 

UTS provides the us er with two general ways of getting and releasing pages ·of 
... 

core memory in his data area: relative allocation and specific allocation. 

Relative allocation is exactly compatible with the BPM CALs for getting and re-

leasing pages: Pages may be obtained (allocated to the user program) from the 

lowest unallocated page address toward higher addressed pages. Pages obtained 

in this upward direction are called dynamic pages. Memory pages may· also be· 

obtained beginning with the highest addressed unallo'cated page toward lower 

addressed pages. Pages obtained in this downward direction are called common 

dynamic pages or simply common pages. Pages obtained in the dynamic and 

common area may not overlap and, if attempted, an erro·r indication results. 

Neither ~~y the relative allocation. CALs be used to allocate a page already allo-

cated by a specific allocation routine. 

Specific allocation allows the user to get or release any page in the user's data 

area by reference to the word address of the first word of the page. Errors result 

on attempts to get already allocated pages or to release already released pages. 

Pages allocated via the relative allocation routines may not be released by specific 

allocation routine reference. 

A limit applies to the number of physical pages which may be allocated to a us er 

for all purposes. This limit is initially set by SYSGEN and may be modified dy- . 

namically by the performance control program. 

Virtual memory available for allocation may be pictured as shown below. 



allocated 

dynamic, unallocated virtual memory allocated COrnITlon 
I pages I . pages 

t-J.I-J.-I ..L-.11 1......;..1-,--1 ___ 1'-+1 ......... 1 ...... ·' ..-1 .I1.-J ... ______ .-JJJJmL_,_.-...1-1 ~I l.-..J_»l 

top dynamic page (TDP) 

Bottom. COrnITlon page (BCP) 

first available virtual page last available virtual page 

~~---- data 'pages affected by memory management routines 
(available virtual memory. pages) 



-J.:}.t\-KVy-n\l 0-l\1CJ:--(·U-c..-"±-O 7 

SH EET:"~-,6 " OF"3 ~ ~'J 

A. Get Common Limits 

M:GL The GL routine returns the lowest and high~st word addresses 

within the data area presently allocated to the user by get common poage 

CALs. The lowest addre s s is returned in SR 1 and the highest addres s 

is returned in SR 2. 

The M:GL procedure call is of the form 

M:GL 

Calls generated by the M:GL procedure have the form 

CALI,8 FPT 

FPT is- the address of a word as shown below: 

X'OB' r-----------
o 7 8 31 

-B. Get Common Pages 

M:GCP The GCP routine allocates a specified number of pages at suc- , 

ceedingly lower address from the current lower "limit of common storage 

(BCB) and extends that limit downward. 

Pages are obtain"ed and allocated to the user at succeedingly lower addresses 

beginning just below BCP unt~l: 

1) the required number of pages are obtained, 

2) the installation set limit on the number of physical 
core pages is reached, or 

3) a page already allocated via M:GP or M:GVP is en­
countered. 



Returned information for the three cases is 

CASE CCI SRI SR2 
i 

1 0 No. of pages allocated New~BCP 

2 1 No. of pages allocated 
. 

New BCP 

3 1 No. 9f pages allocated New BCP 

Access codes for the allocated pages are set to 00 {Read, Write, or 

execute} • 

The M:GCP procedure call is of the form 

M:GCP pages 

Pages specifies the number of memory pages by which common storage 

is to be extended. 

I 

Calls generated by the M:GCP procedure have the form 

CALI,8 FPT 

FPT is the address of a word as shown below: 

I~' I X'OC' Number of pages required 

o 7 8' 14 IS' 31 

. C. Free Common Pages 

M:FCP The FCP routine releases a specified number of pages at suc-

ceedingly higher addres ses beginning at the current BCP and moves that 
. . 

limit upward. 



SHEETJ59 OF..] 0.)/ 
.... ...... fl:.o ~~.1 

Pages are released beginning at BCP toward succe~dingly higher ad-

dresses until: 

1) the requested number of pages have ~een released 

2) the last available virtual page~ is released 

In case 2), CCI is set to one. In case 1), CCI is set to zero. 

Pages released by FCP have acces.s codes set to 11 (no access) and any 

subsequent reference to these pages will result in a trap. 

The M:FCP procedure call is of the form 

M:FCP pages 

Pages specifies the number of pages to be freed. 

Calls generated by the M:FCP procedur~ have the form 

CALI,8 FPT 

FPT is the addres s of a word as shown below: 

X'OD' ----~ .. ol Number of pages to be freed I 
o 7 8 14 15 31 

D. Get Dynamic Pages 

M:GP The GP routine allocates .a specified number of pages beginning 

with the page just higher addres sed than T DP and extending that limit up_· 

ward until: 

1) the required number of pages are allocated, 

2) the installation set limit on the number of physical 
core pages is reached, or 

3) a page already allocated via M:GCP or M:GVP is 
encountered. 



Access codes for all allocated pages are set to 00 (Read, Write, or 

execute) • 

The M:GP procedure call is of the form 

M:GP pages 

-Pages specifies the number of additional pages requested. 

Calls generated by the M:GP procedure have the form 

CALI,8 FPT 

FPT is the address of a word as shown below: 

1*1 X'08' 
o 7 8 4 15 . 31 

E. Free Dynamic Pages 

M:FP The FP routine releases a specified numbe~ of pages at suc-

ceedingly lower addresses beginning with TDP and moves that limit down-

ward until: 

1) the requested number of pages have been released, 6 

2) the first available virtual page is released. :L 

In case 2), CC 1 is set to on~; in case 1) CC 1 is set to zero. 



Pages released have their a.ccess codes set to 11 (no access) and any 

subsequent reference to these pages will result. in a trap. 

The M:FP procedure call is' of the form I' 

M:FP pages 

Pages specifies the number of pages to be freed from USe by the user's 

program. 

Calls generated by the M:FP procedure have the form 

CALI,8 FPT 

FPT is the addres s of a word as shown below: 

H X'09' 01· Number of pages to be freed 

·0 7 8 14 15 31 

F. Get Virtual Page 

M:GVP The GVP routine allocates a specific page of virtual memory to 

the user. If the request is 'allowed, access for the page is set to 00 (Read,or 

Write, or execute) and CC 1 is set to' zero. The request is disallowed if 

1) the installation limit on number of pages allowed 
would be exceeded, 

2) the page has already been allocated, 

3) the page requested is outside the limits of unallo­
cated virtual memory. . 

In these cases CCI is set to one, and no page is allocated. 



DRAWING NO,,, ... 70248 .. 9 
SHEET()61 OF 3 ()S~-#, 

The M:GVP procedure call is of th.e forI'rl: 

M:GVP virtual address 

Virtual address specifies the address of the fir~t word in the virtual 

page desired. 

Calls generated by the M:GVP procedure have the form 

CALI,8 FPT 

FPT is the addres s of a word as shown below: 

XIO'~' '10-----.. 0 I Virtual Addr e s s 

o 7 8 14 15 31 

G. Free Virtual Page 

M:FVP The FVP routine is called to release a specific page of virtual 

memory. The indicated page is releas ed and C CIs et to zero unles s the 

request is for a page less than or equal to TDP or greater than or equal· 

to BCP,in which case CCI is set to one and·no page is released. 

M:FVP procedure call is of the form 

M:FVP virtual address 

Virtual address s1?ecifies the address o~ the first word. on the virtual page 

to be released~ 

Calls generated. by the M,:FVP proce,dure have the form 

CALI,8 FPT. 



DRAWING NO: .... 70.2489 
SHEET~~:5?? OF ~ (/ j ~,J 

FPT is the addres s of a word as shown below. 

1
0
--

0
1 

Virtual Addres s 

o 7 8 14,15 

NEW UTS SER VICE CALs 

31 

Two new calls have been added to UTS in order to provide setup of communication 

with the terminal I/O handler. They may be issued only by on-line userls program 

and are ignored if issued by a batch program. 

A. Set Prompt Character 

,The on-line user IS keyboard is proprietary: either he has control for purposes 

of input or UTS has control for carrying out requests and for purposes of out-

put. Who or what is c9ntrolling the keyboard must be made clear at 'all 

times. On-line processors are assigned a prompt character which is 

issued to the user whenever control of the terminal is returned to him 

for input. This allows the user to know at all times to whom he is talking; 

who talked to him last, and when he can type. A user program may set the 

, prompt cha:r:acter to key his input requests if he wishes. Ordinarily, when 

the control is turned over to the user, a null prompt is assigned. 

Current as signment of prompt characters is 

Monitor (TEL) 
EDIT ..J. 

',' 

PCL < 
LINK 
BASIC > 
META > 
FORTRAN >. 

DELTA bell 
SYMCON 
FDP @ 
user null 



DHAW INLT NU,. '{UZ';;~H:i1j 

51-JEET 1/ ., OF" 3 6S!...-J do:? . 

M:PC The Set prompt call allows the, us er' S pro gram to set the 

terminal prompt character (identification mark),. This prompt char-

. -
acter, if non-null, will be output (usually at the .. left margin) whenever 

input is requested from the user's terminal (UC device). 

batch mode, no operation results. S':) 11,.: :i,\ Er~,: (' 
. '\ 

..'''.\'\ ll\ ,(\ i I .' , n.\",lI:' I 1.1' "~' 1-.,','" cd ,), ;.:~,\'\ . II C) 

I' , "'\' \)\: \ --: I Ut-t.,,[l C C.1, >~X 
The procedure call is of the form 

M:PC character 

If given in 

i L..., Q (,. '\ .'1 

(I ft, 

I 
I. 

Character specifies the EBCDIC prompt character (identification mark) 

which is to be associated with the user. An EBCDIC 00 (Null) means no 

prompt character is desired. Calls &enerated by the 'M:PC procedure 

call have the form 

CALl,1 FPT 

FPT is the addres s of a word as shown below. 

X'2C' 

o 7 8 14 15 

EBCDIC 
Prompt Character 

B. . Change Terminal Activation and Translation Table 

I / ( . ~ 

Translation of characters appearing on the user terminal input lines to the 

EBCDIC internal Sigma 7 standard, translation of EBCDIC to the proper 

output form for the terminal, and the deteJ;"mination of which characters 

are to be considered end-of-message or activation characters when re-

ceived are,all controlled by tables resident in the COC I/O handling routines. 

A Monitor CAL allows the user to switch among the tables available in the 

system. 



-J,:;;,J.,\-"n..-YY-.L.l'lV-.l'lQ-. -'V c..I~u7-
SH_~ET J.6¥ OF ~ O[?-, _-J 

The procedure call is 6f the form 

M:CT n 

n specifies the number of the desired table 1 ~ n ~ 5. The procedure 

generates a 

CAL1,8 FPT 

FPT is the addre s s of a word as shown below. 

ii'; '( 
j 

t---------':-----_: r---, -~.Ii 
x'06' . ,tit i(i '1\ ~ ., 

o 7 8 31 

The current tables translate for Models 33 and 35 Teletypes, and SDS Key-

board Displays. Additional tables are contemplated' for Model 37 Teletypes, 

1 

~? ~ I.~ ,and Frieden 7100 's. Since transl~tion tables are assigned to lines at 

SYSGEN time, it is unnecessary for users of fixed location consoles to 'use 
I - , 

this command. Dial-:-1p lin~s are another matter. 

The cur'rent assignments for the n parameter are 

n 

o 
~---:;> 1 

~:s 

Meaning 

Use standard Mod, ... ~ 35 TTY table (cr If and ESC) 
Use the standard K/ D table (all cursor movements, 
hard copy signals, mode changes, and roll commands 
activate) . 

£.,,~ Res erved for Model 37 TTY 
4 Reserved for IBM 2741 
5 Reserved for F1.·ieden 7100 

\ 'I ; I 

" 



SH EET)h5 OF J 0.5:' ~,I 
•• •. • ........ L. • 

C. Suspend Program for N Seconds 

This CAL causes N seconds of real-time to, elapse before the next in-

struction in sequence is executed. It may be used by programs which 

wish to operate time periodically. They are said to Itsleepl.l during 

the suspend period. When they are awakened they begin execution at 

a priority just higher than the computer queue. 

The procedure has the form 

M:WAIT N 

Where N specifies the number of seconds to'wait. 

Wait is restricted to on-tine use. 

Code generated by this procedure is 

CALI,8 FPT 

FPT has the form , 

X'F' N 

o 7 8 14 15 31 

D. Change Virtual'Map 

This CAL is provided to allow special system processors and other 

specially privileged programs (e. g. , those of the system programmer) 

to see into and display or change portions, of the resident Monitor. 

~~t-.~ 
_ ~he ~e ~the form ~ 

. ~~ 
~~~ 

CALl,8 FPT

where FPT is t~e address of:

o 7 8

X'7'

./'"
"

..... -.-." .. ~"'~ ..•.. :.

." '" '....,',,~~\

I\\,

\.

14 15

to address = B

The real core page address A is placed in.his map at the "to" address.

Access for the page is set. to data, but write locks for the physical page

are not changed.
/.~

,. I

Restrictions.: J

............. -\ .'

'1-)"-" The pas s~yord·s lip'plied., must ch:eck with a syst.em pas sword k1?9yv:n
.to tl1:e··-M~nitor. '-,-_ , .' . "-..' .. -' .,'

\~{) The virtual "to" address must not be already assigned to the user.

1'·\ :'" . (')·1 ;, . . \, , :~ .
Tn·eithe'r ofthe--above"'c:a:s'es,l no map change is made and CC 1 is set.

E. Read and Write Assign Merge Record

31

Throughout a job or on-line session, I/O 'unit and file assignment informa-

tion is retained f~r merging into user or processor DCB's.at each job step.

This information is maintained in an Assign Merge record on RAD, with

one record location assigned to each user by the log-on procedure which

places the AM record disc address in JIT •.

Special CAL's are used to read (RAMR) and write.(WAMR) this record.

- They must reference a closed DCB at least eight words long.

DRA WIl\jG NQ.... 7Q2489
SH EE'ld,6 7 0 F j o9-"r1

RAMR and WAMR are. both CALI, I FPT instructions. The FPT code

for RAMR. is X'2D' and for'WAMR is X'2E'. Otherwise, the FPT formats

are similar and as follows:

,,~

Code DCB Address ~I'

PIIP~ P31 p41 r
p6/ present bits

,,~

address '1' error
,,~

abnormal address '1'

,I~ buffer address '1'

,,~

byte size '1'

,,~

byte displacement '1'

ON-LINE BATCH DIFFERENCES

The Monitor has different actions to certain CAL's depending on which they were

issued by an on-line or a batch program. The CAL's which depend on the calling

environment are described below. {See Part VIII for me.ssages when DELTA is. in

control}. i

A. E~it Return {M:EXIT}

Batch'

On-line

The Monitor performs any 'PMDI dumps that have been speci-'
fied for the program and then reads the C device ignoring
everything up to the next control card.

The Monitor returns control to the on-line executive program,
which prompts with an '!' at the terminal {UC device} for the
input message.

B. Error Return {M:ERR}

Batch The Monitor outputs the' message

! !JOB id ERRORED BY USER AT xxxxx

where xxxxx is the addres s of the last instruction executed in
the program. The message plus the contents of the current
register block and program status doubleword (PSD) are
listed on the LL and DO devices. The Monitor also lists the
message.

! !JOB id ERRORED

on the operator's console {OC device}. Postmorte:m dumps
are performed, and the C device is read ignoring everything

_____________=u'Q to the next control cOmrnCi}!<:!.

.;f

On-line The Monitor outputs the message M:ERR AT xxxxx where
xxxxx·is the address of the· last instruction executed in the
program on the UC and DO .devices, if different. The
Monitor then returns control to the on-line executive, which
prompts for the ne·xt user message with~.an ' ! '.

".

C. Abort Return (M:XXX)

Batch

On-line

The Monitor outputs the message

! !JOB id ABORTED BY USER AT xxxxx

where xxxxx is the address of the last instruction executed.
This message plus the contents of the current register block
and program status doubleword (PSD) are listed on the LL
and DO devices, if different. The Monitor also lists the mes­
sage

!!JOB id ABORTED

on the operator's console (OC device). ·The M:XXX procedure
call is of the form:

M:XXX

when a job is aborted, any specified postmortem dumps are
performed, but no further control com.mands are honored
until a JOB or FIN control com.mand is epcountered.

The Monitor outputs the message M:XXX AT xxxxx where
xxxxx is the address of. the last instruction executed in the
program.. This message is listed on the UC and DO devices,
if different. The Monitor then returns control to the on~line .
executiv~ which prom.pts for the next user action with an ' ! '.

D. Type a Message (M:TYPE)

Batch The Mo·nitor outputs the specified message on the OC device.

On-line The Monitor outputs the specified message on the UC device.

"'-.A", __&.,""""" .. ,_. • _ _,

E. Request a Key-in (M:KEYIN).·

Batch

On-line

. The Monitor outputs the specified· mes sage on the OC
device and enables the operator '·s reply to be returned
to the user's p:r·ogram. ~

The Monitor outputs the specified message on the UC
. device and enables the us er' s reply to be returned to
the program. A prompt character is sent if one was
specified by a M:PC.

F. Connect to Interrupt or BREAK Key (M:INT)

The purpose of this procedure is to allow execution of the program to be con~

trolled from the. terminal or console. When ,control is given to the INT routine,

the PSD and geneJ;"al registers are pushed into a 19-word block of user's

memory (on a doubleword boundary) and a pointer to the stack pointer

doubleword is placed in current general register 1. The TR TN routine may

be used to restore control froIl?- a console or terminal interrupt.

Batch

On-line

,
The Monitor enables the user's program to be connected'
to a console interrupt (key-in addres sing the program).
This enables the us er' s program to be controlled from the
operator's console.

The Monitor enables the us er r S pro gram to be connected
to a teletype interrupt (Break key). This enables the user's
program to he controlled from the terminal.

The Monitor INT routine is called by an on;..line program to set the address of

. a routine to be entered when the user presses the BREAK key on his terminal.

The execution of this procedure caus es the Monitor to store the PSD and

general registers into a 19-word block of user's rriemory (on a doubleword

boundary) and a pointer to word 0 of that block is placed in current register 1.

The TRTN routine (see M:TRTN) may be used to restore control to the user's

program.

,'j

The M:INT procedure call is of th~ form:

M:INT address

DRAWING NQ, ... 70.2489
SHEETc?70 OF "\0.'3 0'9/

1

Address specifies the location of the entry to th,e programfs BREAK res-

ponse routine. ·Calls generated by the M:INT procedure have the form:

CAL1,8 FPT

FPT is the address of a word as shown below.

address of BREAK routine

o 7 8 14 15 31

\ A zero address resets break control. If the address specified is in the

I ·range of virtual addres ses as signed to the Monitor, then zero is substituted
I

(break control is reset).

ERROR AND ABNORMAL MESSAGES
" • "I if ;',,:-

,"" ~ o),V"{ \:
All error or abnormal conditions which normally results in the batch Monitor con-

tinuing to the next job step will be processed for on-line users as follows:

The Monitor outputs two messages. The first message has the form:

mmmm .•.

where mmmm .•. is the specific rnessag.e identifying the error or

abnormal conditions. The messages r~side in the sys~em file (:MESS).

The keys to the error text records are the codes established by the

Monitor for the error or abnormal conditions.

The second message has the form: .

EXECUTION STOPPED AT xxxxx

where xxxxx is the location of the last instruction exe~uted.

DRAWING NO 702489
SHEETv~71 oi-3 dY"'"

, - .

These messages are listed on the UG and ·DO devices, if different.

The Monitor then returns control to the On-line Executive, which

prompts for the next us er action with an ' ! ' .

SUMMARY OF CAL's

There are four GAL instructions (GALl, GAL2, GAL3, and GAL4) provided by

the Sigma 5/7 hardware. GAL instruction~ are used for requesting Monitor

services. Execution of a GAL instruction causes the executing program to trap

to the Monitor where a validity check is made, and then the GAL is decoded to

determine the service requested and the requestor. The requestor may be a

user, processor, real-time task, or the Monitor. If valid, the requested service

is performed. If invalid in either type of GAL or type of service requested, the

~equest is not honored and the user is informed ~y a console message.

Of the four GALls provided by the Sigma 5/7, GAL3 and GAL4 are reserved, for the

installations or users; GAL2 is reserved for Monitor use, and GALl is divided into

user, real-time, and Monitor services ..

The GAL's currently assigned are listed below in five catagories:

1) On-line, Batch, and Real-Time,
2) Batch only,
3) On-line only,
4) Real-Time only, and
5) Monitor only.

A. On-line, Batch, Real-Time

CAL address FPT CODE FUNCTION

CALI, I FPT X'OI' M:REW
X'OZ' M:WEOF
X'03' M:CVOL
X~04' M:DEVICE (PAGE)
X'05' M:DEVICE (VFC/NOVFC)
X'06' M:SETDCB
X'07' 'M:ADFILE
X'Q8' ·M:CAT
X'09' M:UNCAT
X'OA' ·M:FEXT
X'OB' M:DEFICE (DRC/NODRC)
X'OC' M:RELEC
X'OD' M:DELREC
X'OE' M:UFILE
X'OF' 'M:TFILE
X'IO'. M:READ
XlIII M:WRITE
X'I3' M~T-RUNC
X'14 1 M:OPEN
X'I5' M:CLOSE
X'IC' M:PFIL
X'ID' M:PRECORD
X'ZO' M:DEVICE (LINES)
X'2I' M:DEFICE (FORM)
X'ZZ' M:DEVICE (SIZE)
X'Z3' M:DEVICE (DATA)
X'Z4' M:DEVICE (COUNT)
X'Z5' M:DEVICE (SPACE)
X'Z6' M:DEVICE (HEADER)
X'Z7' M:DEVICE (SEQ)
X'Z8' M:DEVICE (TAB)
X'Z9' M:CHECK
X'ZA' M:DEVICE (INLINES)
X'ZB' M:DEVICE (CORRES)
X'2D' M:RAMR'I /') I,
X'ZE'

..... '. M:WAMR\ " ':, i ': \

XI~F' Irt ~ SO is
: , .'l,,,.

.' ~ ~ "

CAL address .FPT CODE FUNCTION -!---'"
0 "T't~~'b Cf,r2ll 'lo·Wt.:

CALI,2 FPT X'OI' M~LL.. M: RINT (/

X'02' 11~tt.,U.L M:TYPE
X'04' . M:KEYIN
X'IO' M:MERC

CALI,3 FPT X'OO.' M:SNAP
X'OI' M:SNAPC
X'02' M:IF
X'03' M:AND
X'04' M:OR
X'05' M:COUNT

CALI,8 FPT X'Ol' M:SEGLD
X'04' M:GVP
X'05' M:FVP
X'O?' M:SAD
X'08' . M:GP
X'09' M:FP

X'OA' M:SMPRT
X'OB' M:GL
X'OC' M:GCP
X'OD' M:FCP ...

X'OE' M:INT
X'OF' M:WAY~

X'IO' M:TIME
X'll' M:STIMER

X' 12 ' X1p,1 M:TTIMER 1> /((JJ tr l
.,!

X'14' ~ M:TRAP ~~ .. ,I ,/ r"~ /

CALI,9 1 M:EXIT
.2 . M:ERR
3 M:XXX
4 M:STRAP
5 .M:TRTN

B. Batch Only

CAL address FPT CODE ;FUNCTION

CALI,4 FPT X'OO' . M:CHK:PT
X'OI' M:RESTART

CALI,8 FPT X'02' M:LINK 1 X'03' M:LDTRC

~ ~ 0 V c. On.:. Line Only
l.:J

CALI, I FPT X'2C' M:PC

. CALI,8 FPT x'o6' M:CT

D. Real-Time Only

CALI,5 FPT X'OO' M:TRIGGER
X'OI' M:DISABLE
X'02' M:ENABLE
X'03' M:DISARM
X'04' M:ARM
X'05' M:DCAL
X'06' M:CAL

/X'07' M:SLA VE) -----
(- X'08' M:MASTER

X'09' M:SBACK
X'OA' M:RBACK
X'OB' M:TERM·
X'OC' M:RXC
X'OD' M:SXC
X'OE' M:DED
X'OF' M:UNDED
X'IO' M:IOSTOP
X'll' M:IOSTART
X'12' M:IOEX SIO
X'13' M:IOEX TIO
X'14' M:IOEX TDV
X'15' M:IOEX HIO.
x'16' M:ABSLOAD

,

SHEETr;~i5' of:] of? . -.......

CAL address FPT CODE ·FUNCTION

CALI,9 7 X'07' M:CLEAR
8 X'08' . M:TER-M

9 -I } Reserved for
A . real-time ex-
B tensions .

CALI,A FPT X'OO' Save Monitor's interrupted
environment

X'Ol' Restore Monitor's interrupted
. environment

E. Monitor Only

CALI, I X'.16' Direct Disc Read
X'I7' Direct Disc Write

CALI,9 6 Close ·Cooperative File

CALI,B Event·Mark
CALI, C Event Count Reser..ved for
CALI; D Event Time generalized
CALI, E Event Auto- event measure-

Display'Control inents

CAL2, 0 Branch to overlay
segment (OB)

CAL2, I Branch and .save Used for
segment number internal
(OBAL) Monitor

overlays
CAL2, 2 Restore segment

and B~:~SR4 (OBSR4)

CAL2, 3 code~:~ System Recovery

CAL2,4 code~:~ Reserved for internal
debug routine

~:~The code appears in the address fields of the CAL instruction and is

internally assigned.

NUMERICAL LIST OF CAL's

The following list gives all UTS CAL's in numerical order with the M: proc

name for invoking the routine and a brief description of the function performed.

Restrictions on usage to on-line, 'batch, and real-time are given in the use code

co lumn on the left.

m restricted to Monitor use

o re'stricted to on-line use

r restricted to real-time use

b restricted to batch use'

usable in all environments

s use restricted by password :...~ .c' 1'(.~,\

If a CAL is given which is illegal for the current user, it is treated in the same

way as an illegal instruction.

CAL's marked with an asteris.k (~:~) are new to UTS OJ; have different or extended

functions relative to BPM.

I,

I

'USE,
CODE

m
m

o

s

CAL

CALI,l FPT

'M 'f

Numerical List of Monitor CAL's

FPT
hex code

0
1
2
3
4-
5
6
7
8,

9
A
B
C
D
E
F

"'- ..

10
11
12

14
15
16

-'

17
,)~- ... --,

IC"
ID

20
21
22
23
24
2'5

26
27
28
29
2A
2B
2C

2D
2EJ
9" r:::'

g~O'" . ,"',' I ._ ,,') ,

M:
NAME UTS

RE'W
WEOF
CVOL
DEVICE (PAGE)
DEVICE (VFC)
SETDCB
M:ADFILE
M:CAT,
M:UNCAT
M:FEXT
DEVICE (DRC)
RELEC
DELREC
UFILE
TFILE
READ
WR+TE
TRUNC

OPEN
CLOSE

PFIL
PRECORD

DEVICE (LINES)
DEVICE, (FOR M)
DEVICE (SIZE)
DEVICE (DATA)
DEVICE (COUNT)

, DEVICE (SPACE)
DEVICE (HEADER)
DEVICE (SEQ)
DEVICE (TAB)

CHECK
DEVICE (N) LINES}
DEVICE (.CORRES)
PC .. ~:~

RAMR ~:~

W1;:.MR ~:~

1/
/"
(

..I.,
,.\

I
/';.,;~\ 1,<

Description

Set prompt character
Read as sign merge recor(
Write assign merge recor

, (\ 1\ ! t \ I i J,' J
" /"t-'c). \'j'l~ ~I' .~\,;d.: ,: '-;,." ."." I<l

'S}fEET ~. "j~~-O-F.--;;-f}-JJ
. t, ;.1 ", . .,1 '; , .. _

USE FPT M:
CODE CAL hex code .NAME UTS Description

CALI,2 FPT 1 PRINT ,I-
'.'

2 TYPE ,I- Type message to opera-.,
.tor {or user}

4 . KEYIN "'- Type mes sage and await '.'

. response
10 MERC

CALl,3 FPT 0 SNAP
1 SNAPe
2 IF
3 AND
4 OR
5 COUNT

b CALI,4 FPT 0 CHKPT ·S(r'l <-..
b 1 RESTART /.~ G .. s.J-.

. . ". r::,
r CALl,5 FPT '0 TRIGGER
r 1 DISABLE
r 2 ENABLE
r 3 DISARM
r' 4 ARM
r 5 DCAL
r 6 CAL
r 7 SLAVE
r 8 MASTER
r 9 SBACK
r A RBACK
r B TERM

/;

0 e RXe
0 D sxe

'r
i.E DED

F UNDED
10 IOSTOR e
11 IOSTART
12 10 EX SIO
13 IOEX TIO
14 IOEX TDV
15 IOEX HIO (. !.-I

"'(./ 16 ABSLOAD \ "
.. ~;' I';:;'l/:"~/"'~ \/

, (~>I/'tt~n' !..,"\'\.1 \ ~, \

u·n·us·ed---··--· - .. __ .. - ... - --_ "._-_._._ > ... I, J~.,t.,., ko> <r J CALl',6 IClL
CALI,7 unused

USE
,CODE

\

~

)

b
b

o

s

o

-

m
r.
r

r

r

address

CALI,8 FPT

CALI,9 1
2

3
4
5

(6"1
.' ... ~'

7
8
9
A

FPT
hex code

ttL..
1
2
3
4
5
6
7
8

~d/A A
B
C
D
E
F

10
11

12·/t3
14' ,

/, I . v· __ ···---
-,.-- -

~ \1

M:
NAME

SEGLD
LINK
LD'I;'RC
GYP-
FYP ----
CT
SAD --
GP
FP

·-SMPRT
GL
GCP
FCP
INT
WAIT
TIME
STIMER

- __ .. __ ~ •• - ,.'-"- ,,-,-.-_··-.-v ""'-.LV-/--

SHEETJ71 O~·:'.::3 () 2)

UTS Description

Load overlay segment

Get 'virtual page
Free virtual page
Change COC Table
See and display
Get dynamic core page
Free dynamic core page
Set memory protect
Get available core limits
Get core page in common
Free core page in commo
Connect to BREAK key
Suspend program n secon

~.I ...
TTIMEL.Vrqpk
TRAP.~ J , .. ,. 11 (" . ,~. "" ., '.1"

EXIT
'ERR

XXX
STRAP
TRTN .

.---~- ~~
. .-/-~CLEAR

MtTERM

Normal program terminat:
Error termination of jch
step
Error termination of job

J
Closj1cooperative file}

Reserved for real-time
r B 1

,.-e.---------~---.~'----'-- --__ --'JlJ6.f,LAl \
,I !_~ ----... __ .. -v'. . . _~ .. --.-~ .. ~~F·~.--··".I""t p.,: t"",.--

r CALI,A FPT
r

/c
J:il

m CALI, 'It code
m CAL.I, C code

'm . CALI, D code
m CALI, E code

m CAL2,0
m CAL2,I

m CAL2, 2

° 1

Event marker
Event counter
Event timer
Display'

OB
OBAL

OBSR4

.'~ ,.-

Save Monitor environmen1
Restore Monitor environ­
ment

Monitor performance
measurement .

Branch to overlay segmer
Branch to overlay and sa\
return
.Restore segment and retu
:::~SR4

tiHEErl~;l~:~rUF.-~~cr~-
.,',r,".},.,.,. -; .••

.. "' ...

FPT" M:

_C~~O~D==E~ _____ a_d_d_r_e_s __ s _______ h_e~x __ c_o_d_e _______ N_A __ M __ E ________________ U_T_S __________ d_e_s_c_r~ip~t_i_o_n ____ ___

J
m CAL2, 3 code Reserved for error recovery and diagnosis

m CAL2,4 code Entry to executive DELTA

All remaining CAL2, x instructions are reserved to Monitor use.

All CAL3, x and CAL4, x instructions are available for installation as signrnent.

• ~I

OPERATIONAL LABELS FOR ON-LINE USE

An operational label is a name (and a set of Monitor records) used to identify a

logical input/output function. All I/O activity (Reads and Writ~s) take place

through the information in a DCB. One piece of information is the device addres s

or, alternately, an operational label whic1;l in turn is connected to the device. The

connection of devices to DCB I s through operational labels allows the installation the

capability of changing the device as signment of a particular I/O clas s. The batch

user may change the assignments for the duration of the job by using !STDLB

cards or the operation may make permanent changes using !SYST key-ins.

For on-line operation the operational label assignments are kept separately from

batch and are not changeable by the us er. Change by the operator is a po s sibility

and is left as an open question. Table 1 lists the assignments of op labels for on-line.

:f)
Label ,

BI

C

CI

EI

SI

BO

)
CO

EO

SO

PO

UC

DO

~

to

)
GO

..

DRAWING NO'~ _. 702l~89·:...
SHEETc2g ",- 'oF 3 0:;

TABLE 1. Monitor Operational Labels for On-Line User~"

Standard Use Assigned Device I/O Function

-
Binary Disc - ""file" Read nUf9.ber of bytes specified
,input no default ~

Control Terminal Read number of bytes specified
input (same or to message complete
as UC) UC
not assignable

Compressed Disc Read number of bytes specified
input no defauLt

Element Disc Read number of bytes specified
input no default

Source Terminal Read number of bytes specified
input

" Binary Symbiont Write number of bytes specified
output punch output-

CP

. Compressed Disc Write number of bytes specified
output Symbiont punch

output -"CP
'-

Element Disc Write number of bytes specified
output no default

Source "Disc Write number of bytes specified
output Symbiont punch

output - CP

Punch Disc Write number of bytes specified
output Symbiont punch

output - CP

Users Terminal Read or write number of bytes
Terminal specified
(console)
not assignable

".

Diagnostic
~

Terminal Break into. carriage-size records,
insert carriage returns, and type

'-,--.

to 132 characters.

Listing Line Printer Write number of bytes specified up
output LP to one line

Binary Disc Write number of bytes specified
output default $ ROM
for execution

~

up

DRAWING NO.:--.7024.8-JJ

,.,~ t . -'
SHEET~¢~10F

Part XII. TERMINAL OPERATIONS 'and SERVICES

TABLE OF CONTENTS

INTRODUCTION

USER PROGRAM AND TERMINAL USER OPERA TIONS

1 . Writing Records to the Terlninal

2. Reading Records from the Terminal

ProITIpt Characters

3. BREAI{ (bk) Character Action

4. Monitor Es cape

5. Device and Set DCB CALs

6. Page Control and Page Headings

7. Tabs

8. Paper Tape I/O

9. Uset-COC COITIITIunication Keystrokes (TTY)

10. TerITIinal Users Logon Procedures

Page

285

288

INT.RODUCTION

DRA.WING)'l.O~.; 7 o 24.S ... ?}
SHEETJ9" OF'3 cJ~? : '

,This section provides a detailed description of the 'UTS COC routines which handle'

input and output of messages to on-line users at typewri~er-like terminals. It is

intended that it provide source material for' users of the routines (both processors

and user programs writing and reading from the terminal), for the implementor

of the routines as a functional sub-specification.

The functions performed by the COC routines are primarily the following:

1. Device handling for the COC hardware

2. Character translation to and from internal EBCDIC codes and the
external codes of the various terminals which may be attached to
the COCo (TTY, 7015, 7550, 7555, 2741, and perhaps others),

3. Parity generation a~d detection by character for those terminals
requiring it.

4. Division of input character strings into messages as defined by
receipt of activation characters. (Usually Cr, and Lf, and FF
but other sets are specially available)

5. Communications with the UTS scheduler on break, read, read com­
plete, output blocked, output unblocked, and other events which
effect swap and execution scheduling.

6. Special interpretation of certain characters for intra-line editing
and COC control functions.

The COC routines enforce proprietary use of the console. That is, either the

user is typing an input mes sage (and no output is being delivered to the terminal

by the computer) or the computer is outputting and the user may not type input,

The cOlnmunic~tion !J.E~ is u'sed in full duplex mode however and the user may

always regain control of the terminal through use of the BREAK key or the

execu~ive escape key (E
c

on teletypes,).

The proprietary use is pest i1lustrat~d by the state diagram below. Each terminal

is in one and only one state at a time. The events which cause a line_' s state to

change are given on the arrows conn~cting the states:

WRITE

end of
output

'\ activate
character
received

/.
INA C /-,... .. -/ input

, :message delivered
to user

The states are:

INAC

OUT

. .
no current activity on the terminal line; all input characters except

BREAK, E
C

, and COC control character sequences are discarded.

Th~ current output m.es·sage from. the us err s program. is being typed.

More output m.ay be presented by the program. and if so it is queued

and buffered for output. When enough output to sustain the terminal

for some time (say 4 seconds) is queued the COC routines report to

the scheduler which suspends execution tem.porarily and m.ay swap the

program. to secondary storage. When thenurriber of characters

remaining to be typed falls below some threshold (say I second of

typing) the COC again reports ~o the scheduler which then requeues

the program for execution.

SI

IN

IC

DRAWING NO~' "702-489
SHEE TJ£' 7 OF } a'i;:

The state which "remembers" that" a' READ' command was given

. while output was still in progress. Ori completion of output the

COC routines will begin to accept user terminal input. On any

R~AD command COC reports to the scheduier which su~pends the

program until input is complete.

The state during which input characters are received by the COC

routines and packed into buffers. These buffers are resident in

Monitor memory and none of the users program or data is required

in core during input typing.

When an input end-of-mes sage (activation) character is received

the line is placed in this state and the scheduler is signalled to re­

queue the user for program. No further characters received are

accumulated until the program reads again.

Input and output is carried in four word blocks each containing 14 characters plus

a halfword link to the next related block. After a read is complete the input

message is moved from these buffers directly fo the user's are'a; actual number

of characters received is reported in ARS of the DCB. On WRITE the users out-

put mes sage is moved to COC buffers to await transmis s ion. Unus ed buffers are

held in an available pool. _ The program is blocked appropriately when needed

buffers are not 'available and restarted when they become available.

DRAWING NO.,: .. 70248.9,1
SHEETd97oF3'o~ .

USER PROGRAM AND TERMINAL USER OPERATIONS

1. Writing Records to the Te rn'linaJ

Records are written to the user's terminal using the write .CAL (CALI, 1

FPT). The nurnber of bytes specified are moved frbm the user specified

buffer to the COC's buffers. The operation is always effectively "wait" --

that is, the text has been removed frorrr the users area before return from the

CAL even though the transmis s ion to the te rminal is not yet cornplete. Keys,

if specified, are ignored.

The error return is taken in the following cases:'

Bad

Bad

DCB address

buffer address

(CAL error return)

(DCB error return)

If no error return is specified control returns to TEL and an erl'or message

is printed at the users console.,

Output in excess of 140 bytes from a single WRITE CAL is ignored; the first

140 bytes are transmitted, and the CA.L abnormal exit is taken if one exists.

If not, return is to TEL and an error message is printed.

If the specified record siz e is zero no action is taken and no characters are

transmitted.

If the write is through the UC dcb'the characters are transmitted exactly as

supplied except that th~ pair' (Cr, If) is '~upplied for ~oth Cr and If (NL) char-

acters. The user may therefore make up single lines through a series of writes

(without Cr characters) or may produce sevei'allines at the terminal with a

single write (by inserting several Cr's in the buffer).

lJ J:\...M. VV .Ll ~ U 1 ~ V. I V L. --:r 0 7

SHEET"7:IJ~OF 30'7
~~1

If the write is through a dcb other than UC (say La or DO) then the COC

routines supply a (Cr, If) pair at the end of the specified character string

(but see VFC for special format control in section 5). That is the nmnber

of bytes specified in the FPT is moved from the use.rs area to COC buffers

,and the pair (Cr, If) is appended in COC buffers.

Trailing blanks are suppres s ed from output lines for writes 'through all'dcbs

except UC but the programmer should set his record 'size to 'avoid this over­

head if at all possible.

If lower case letters are sent to a single case terminal they are translated

to the uppercase cognates.

For all writes to the user's terminal a count of characters on each line

(between carriage returns) is kept and if the line if t'oo long, as determined

at login, for the physical terminal in question then additional (Cr, 1 f) pairs

are inserted to break the line. Line length is a terminal specific paraIneter

supplied via a lo'gon dialog with the user and retained in JIT. (See console

comInands below.) A count is also maintained of lines on the page, and a

page heading line is supplied to the terminal as outlined below.

2. Reading Records froIn the Terminal

The read conunand M:REA.D (CALI, I FPT) causes the COC routines to

.
accept input characters from the terminal. (If a prompt character has been

specified by the program it is sent to the terIninal first, see below). The

operation is always "wait". That is, the input mes sage is cOInplete in the

users area before control passes to the next instruction following the M:READ.

Messages are terminated (coInpleted) on receipt of the nmnb 7r of characters

requested or one of the characters cr, If, forIn feed, or ESC ESC which will

DRA WING NO~·· 70248 .. 9
SH~ET~?()QF'jO~ ..

be the last character in the buffer. (Additional special ~erlllination (activa-

tion) characters are supplied in the case of a DELTA issued read. They are

. tab, ~, =, and /.) The actual nUlllber of ' characters, inc~uding the activa-
~ .

tion character, in the llles sage received is returned in A~S, word 4' of the

dcb. No lllore characters than specified in the M:READ FFT are trans-

ferred to the user. If there were lllore characters in the input lllessage than

specified, and an abnorlllal exit is spe~ified, then it is taken.

On receipt of either cr or 1 f the appropriate characters are sent to the ter-

lllinal to insure carrier return; however, only the actual character received

is placed in the buffer. When forlll feed is received, FF (EBCDIC OC) is

placed in the buffer, the pair (cr, If) is sent to th'e terlllinal, and the next

issu,ed read or write is preceded by page heading output. When the pair ESC

ESC is received the carrier is not llloved. When bk (the BREAK key character)

is received cr If is sent to the terlllinal the lllessage is deleted and the break

entry of the progralll (if any) is taken. If the ·character pair ESCF is received

the end of file exit frolll the READ CA L is taken.

Characters received with parity error are indicated by placing the FE code

(EBCDIC 2F) in the buffer, and the character # is sent to the terlninal. Lower

case letters, if received are translated to their proper EBCDIC forlll.

If the'user types lllore than 140 characters before giving an activation char-

acter the COC routines silllulate a line cancel -- that is the current line is

deleted, - c r and If ar e sent to the terlllinal and the read continue s. In

addition to the line cancel which the us er lllay' ,initiate by typing XC (control

shift and X) the user lTIay delete individual characters by typing R UBOUT in

DRAWING N6:- 70"248'9
SHEET~9/oF ...:50 .. '\1

which case the last character typed is rem.oved from. the COC buffer and the

character back slash (\) is sent to the term.inal. He m.ay rubout n characters'

'by typing n RUBOUT's and n\'s will be sent"to the term.inal~. On the keyboard

. c '. . ~ . . '
display X deletes the curren.t text line on the s.cope face and rubout backspaces

the cursor and erases the last character typed. As in the write CAL bad infor-

mation (character parity errors) is reported via lost data (07) code to the abnor-

m.al CAL exit if it exists. If no abnorm.·al exit is specified then the bad infor-

mation is not reported.

Other activation sets m.ay be provided via the CAL described in the Part X.

The num.ber of different activation sets m.ay be increased at SYSGEN tim.e

to' accom.m.odate special term.inals. They m.ay also be as sociated initially

with fixed line num.bers.

Error returns are also taken in the following cases:

Bad dcb address

Bad buffer address

(CAL error return)

(DCB error return)

Abnorm.al returns are taken for:

Parity errors in received message

Lost data -- message longer than read request

End of file - - ESC F character pair received

(CAL abnorm.al return)

(CAL abnorm.al· return)

(CAL abnorm.al return)

. Prompt Characters

DRAWING NO 702489
SHEET[J/J OF'dOff"" ~;J

The user progralYl or processor may set up a "proInpt" character to be

delivered to the console just prior to each read, Any valid EBCDIC

,. .
character may be specified, A null character (EBCDIC 0) turns off the

prompt action", The character is set by using a CALI, 1 FPT where the

one word FPT contains X'2C'· in the high order byte and the prompt character

in the low order byte.

Since the prompt character is carried in COC resident tables for each line,

the TEL and DELTA processors do not prompt via this mechanism but

rather by writing single character records before issuing a read.

3. BREAK (bk) Character Action

. I

~ction on receipt of the break .character depends on whether the console is

inputting or not. If inputting, cr and If are sent to the console, the mes sage,

if any, is deleted and the current read is terminated.·

Whether inputting or not,co±ltrol goes to an alternate address associated with

the users progralYl, with the users enviroTunent (PSD and registers)' as of the

point of interrupt placed in the users temp stack (pointed to by his TCB.) The

program lYlay be ~ontinued from the point 6f interrupt by giving a trap return

(M:TRTN or CALI, 9 5). The actual alternate address used depends on the

user program and associated processors in the following order:
. . .

SHEETv!130f~·.:~iO? -.,-} \ ..

(a)

\ .

If DELTA is associated with the prograITl. then control goes to DELTA.

(b)

(c)

If the user has given a M:INT CAL the addres s specified by that
CA.L is used. (CALl~ 8 FPT wh'ere FPT is ~:~xrOEr break address.)
A zero or invalid address resets break control.

Finally if neither I} nor 2) obtains then control goes to TEL, a
message is printed for the user, and TEL· issues a terITlinal read
for cOITlmands from the us er.

In any of the above cas es all current output is drained to the terminal - - none

is lost. Because of the blocking action of the COC. this output is not usually

longer than 4 seconds or 4 seconds plus one line.

In order to provide fail safe operation against prograITl errors in the user

break handling .routine, to at the saITle tiITle allow special sub-processor action.

on multiple break signals (priITlarily FDP), and to provide cOITlpatable operation

with future communication gear which does not have full duplex lines (ClOP),

BREA.K signals are counted by the COC handler. If four BREAK signals are

received without intervening characters from the us er terITlinal, then control

is given to the TEL executive as if an E
C

character had been received. See

below.

4. Monitor Escape

The console user ITlay always put hiITlself in cOITlITlinication with the UTS

executive, TEL by typing E
C

(control shift' and E keys pres s ed together).

No current output is lost, but if the console is in read status (IC or IN states)

the current input line i~ canceled -- <- ·c.r If are sent.to the console. If the

users prograITl is restarted froITl the point of escape to the executive - - via

the CONTINUE command - - and the console was pre'viously reading the read

is re-issued:

5. Device and Set DCB CALs

The M:SETDCB CAL may be used to set error and abnormal addresses in

one of the dcbs associated with the users console.' The abnormal return is

only taken. if an OPEN is attempted on' an open file."~ The, error exit is taken

when a read or write specifies an invalid buffer address. The error code

and other information cOlllmunicated to the us er program is as specified

in Appendix H of the BPM lllanual. If no error address is specified control

is transferred to TEL and an appropriate message is transmitted to the user.

The COC routines acknowledge the following CA.Ls with action as listed.

All other CALs if given for a DCB assigned to the users console are'ignored

without comment. In general CALs which set the DCB may be given and will

result in the indicated modifications to the dcb but the COC routines only

make use of certain of the 'parame~ers as defined below. On three CALs
,

the COC routines gain c?ntrol to carry out the requested action:

M:DEVICE CAL

~ PAGE

LINES'

NLINES

. --
FORM

COC Action

Page heading is typed at the user console.
See section 6.

The num.ber of print lines per page is saved'
in the CeCline tables :;Jj:::~~}:.::J' /T--' ,.

, ---
The nUlllber of lines relllaining on the current
page is returned in SRI. The user may at any time
examine the current number of lines on the console
page by looking at the JIT byte JB:LC.~., .

. - _ .. _~., ... '-
The mess~ge indicated by the FPT is typed at
the users console. ,COe suspends- operation
until a break character is received from the
terminal. This is taken to mean that the paper
has been changed appropriately and the program
is enqueued for resmnption.

.·r

DRA WING NO. 7024o~

SHEETJ?.i'OF <3-0 1. ~.~,J

Para:meters in the dcb which are recognized and acted on by the COC

routines are as follows:

Para:meter set by
M:DEVICE CAL

SIZE

SPACE

VFC

DRC/NODRC

COUNT·

HEADER

TABS

COC Action

This record size in bytes is used by reads
and writes for which no size is specified in
the CAL. If neither is specified no characters
are trans:mitted and return is i:m:mediate.

If this para:meter is set and VFC is not on, the
nu:mber of spaces indicated :minus one are
inserted before each write. Counts of 0 and
1 result in single spacing, that is, no spaces
are inserted before each write. Courits of 0 .
and 1 result in single spacing, that is, ~
spaces .are inserted before the test line.

If this flag is set the COQ routines si:mulate
the printers vertical for:mat control as speci­
fied in the first character of the text lines.
written. The s i:mulation is li:mited to the
following cas e s.

hex code

Cl - CF

Fl

60, EO

action

COC insert 1-15 spaces before
the print line. (Page check on
each insert.)

COC skips to "top of ·page" by
skipping lines to page top and
printing the heading infor:mation
followed by the print line.

COC does not insert (cr, If) after
.print line.

In all cases except the latter the print line is
followed by (cr If) with an appropriate check
for page overflow.

Us~d to inhibit auto:matic page heading

See page heading section

See page h.eading sectiqn

See tab section

7
<"I

SHEET ,)l'l./ OF'· .. "".) no.>! } -::rJ() ,~.;> ~ v .

6. Page Control and Page Headings

The COC routines count lines transmitted to, and received from, the users·

terminal in a line as sociated cell~ Whenever a read or a write operation is

given this .line count is compared to the maximum lines per pag.e carried in

the dcb through which the read or write was given, and if this maximum has

been exceeded, a new page heading set is produced. (The maximum may have

been exceeded by several1ines if several input lines were cancelled via XC at

the exact bottom of the page before the next ·read or write was issued. If so

an appropriate adjustment is made in the heading.) Also page headings are

produced whenever the device CAL PAGE ·is issued by the user prog~am, and

whenever. the terminal user types in the ~haracter FF (controi shift. and L keys).

The latter case is similar to page overflow in that the heading information is

not produced until. the associated user program or processor issues its next

read or write command. ,

Two kinds of page heading are produced:

(a) the standard, automatic, page heading, and

(b) a user heading as .specified·by HEADER and COUNT device CALs.

The automatic heading may be suppressed, if desired, by giving a NODRC

CAL. Heading information is taken from the dcb thrc.>ugh which the read or

write was given, thus if writes are given to the terminal through several dcbs

the heading printed will depend on the dc b through which the top line of the page

was written.

lJ .t\...t-~ VV .Ll'l \J l'l V. I V c.. ':t 0 7

SHEE Td17 o·F·:·3 () 1?~" ~d

The"autoITlatic page heading includes current time, date, user id and·

account nUITlber, user line nUITlber, page number, and possiblg an adITlin-

istrative ITlessage. It is intend~d for output on the top li~e of the forITl

just under. the fo~d (if any). The heading inforITla'tiop. is precede.d by 6

(cr, If) pairs (fewer if excess lines were printed on the preceding page)

and followed by 5 (cr, If) pairs. (The terITlinal is not assUITled to have a

forITl ejectITlechanism..) This spacing plus a standa'rd 54 printed lines per

page produces 11 inch pages with one inch margins at top and bottom.. The

standard heading line ITlay be sliced off these pages to produce clean copy if

desired.

Sam.ple heading forITl is shown below

12:01

a

12/12/67

b

IA-03

c

NAME ACCT [36]

d e f

AdITlinistrative ITlessage

g

..
a) Twenty four hour clock tiITle that the page heading was issued. '

b) Current date

c) Line nUITlber of COC line and us er nUITlber (the schedulers
job identification)

d) The .first four character,s of the login id

e) The 'first four ·characters of the login account nunl.ber

f) The page nUITlber, enclosed in brackets is centered for a
72 character wide terITlinal

g) The adITlinistrative ITles sage is supplied by the systeITl operator
via this ITlechanisITl to al1.users. It is limited to 32 characters.

If NODRC is specified in the dcb then the text of the heading is not produced

but the (cr, If) pairs for spacing are retained.

7.

LI J:'\...M. VV .l1'\1 U 1'\1 V. I V c.. ~ u 7

SHEETJ:1 8 O·F·~'·~3 0 ~ ..,,~

Headings specified in the clcb of the read or write a're produced following

the auto:matic J:eading with position, text, and page nu:mber as specified

in the BPM :manual. The page count in this heading is that~ carried in the

dcb, and is reset with each COUNT device CAL while page count for the

auto:matic hea~ing is carried in JIT and never reset.

Tabs

Tab stops as set in output dcbs by the device CAL TA~ or by SET co:m:mands

result in spaces inserted in the output stream to bring the current count on .

the typed line to the character position indicated- by the next higher tab stop

given in the dcb. Note that this is like typewriter tabbing action and is different

fro:m the BPM tabbing action in so:me cases -- it is not possible to overlay

infor:mation using tabs. The platen width test is stil1.in effect and (cr, If)

pairs ~i1l be ins erted if the count-on-line exceeds the carriage width. If

tab stops are not set the tab character is sent directly to the ter:minal.

Tabs for input (READs) are handled so:mewhat differently in that they are

si:miulated on input at the discression of the user. Tab locations specified by

the :most recent tab setting CAL for a dcb 'connected to the console are packed

into one of the' COC input buffers and associated with the COC line tables. Use

of this table for si:mulating tabs is controlled by a software flag turne.d on and

lu~"t~
off by the user via the character pair ESC T. T~B..e-characters are never

V!lt,~

placed in theJ\buffer. Each use of the pair toggles the tab si:mulation flag.

When the flag is on and a HT (ASCII 09) is received, enough blanks are sent

to the ter:minal to :move the carrier to the next higher tab position. The HT

character is. placed in the input buffer for the reading progra:m. Carriage

returns are not inserted to split extra long input lines.

DRAWING NO/· .. 70248.9,1
SHEET,J.71 o~- '3 D 9·

In addition to setting tabs via the CAL instruction the user rnay set thern by

the TEL comITland TABS a, b, c, ... where 'a, b, c, ... are the column

nurnbers at which tabs should be simulated. The column numbers rnust be

in ascending sequence. Tabs rnay also be turned off independent of the COC

flag by TA.BS O. Setting tabs via this rnechanism affects all output through

all DCBs. connected to the terrninal eveh if subsequent device CALs are

given, and applies throughout the user session until reset.

8. Paper Tape I/O

Paper tape is input and output by the COC routines via a special rnode entered

whelJ. the TAPE'{DC2) character is received and exited, when TAPE (DC4) is

received.

In this!rnode the usual functions 'of RUB0l!T, Xc, and tab are suppressed,

cr is echoed but not followed by If, and nothing is echoed for If. Tapes rnust

be produced with both the cr and If characters punched (as they would be if

they were produced directly frorn cornputer output by sirnply turning on the

tape punch during a listing, data output, etc.)

9. User - COC CO'mrnunication Keystrokes (TTY)

Certain user keystrokes are interpreted specially by the COC routines. Key-

strokes and the actions which they produce are dependent on terrninal type

and are controlled but of the. input character translation table. For lTIodel 33

and 35 Teletypes and SDS 7015, 7550, 7555 terlTIinals the following conventions

apply:

CAN (Xc) or

ESC X

RUBOUT or

ESC DEL

Cr or Lf

ESC ESC

ESC E

, ESC T

FF (L c) or

ESC L

ESC F.

"'DRA WING NO.J, .. 702489.
SHEET3?}OOF' ':3 tJ J~~'"''

When the character CAN (generated by pressing
both control shift and X keys) or 'the character
pair ESC X is received, the c,:!rrent partial input
message is erased. The charcter triplet (-, Cr,
If) is sent to the terminal. On the keyboard dis­
play cursor return plus eras~ are sent to remove
the current line from the scr-een~

When RUBOUT or the pair ESC DEL is received
the last receive'd character in the buffer is deleted
and the character" \" is sent to the terminal. If
the entire message is deleted by repeated used of
RUBOUT then t~e pair (Cr, 1f) is sent to the ter­
minal. On the keyboard display cursor left plus
erase are sent for each RUBOUT recieved until
the entire mes sa,ge is erased.

When either of these characters are received the ESc...-r
character pair (Cr, If) is sent to the terminal.
The message activation condition is set -(the COC
line state goes to IC) causing the program which
is sued the read to be restarted. On the keyboard
display NL is echoed for either.

The message activation condition is set. ESC
character is placed in the input buffer.

When the user presses the ESC key followed by t1?-e
E key the COC toggles the flag which controls echo­
plex output. Normally the terminal is assumed to
be local printing and echoplex is off.

When the user presses the ESC key followed by the
T key the COC routines toggle the tab simulation
switch. Normally tab simulation is off and no tab
stop's are set.

When the user presses control shift and L keys to­
gether or the pair ESC L the COC routines place a
FF (EBCDIC OC) character in the input buffer, echos
cr If to the console, and, on the next read or write
to the terminal, prod~lce page heading information at
the terminal. FF terminates the input line.

When the character pair ESC F is received from the
terminal the end-of-file abnormal exit is taken from
the current READ command.

~ ~-tu tLt(.t;"(I(~\J,)! .. (;ovA G'SQ.. ~\. G t-(((.. !r',u:l f}t:: '/ /:c ,
'\"(."\.~'.r> ... , •. ~-"I,(~\ 0- 4--1'c-<..{LQ, M .-;k,\- .'w\~(.).A. (l.~l"'.·.~,~;..rc (-IJ.l f.< ~.l: ,~,,:'r cI
J.Hu'e' Q..o.~.~ ~ ~o -t'L. \ -\\'-t.J_.~ o~ 'V'F('~ ()Q';'(!..'

tr/,'"1NJ ltt\o(J ~o Cv"'h"~

.', .• c

DRAWING NO.'-702'1~~·}
SHEET30/ OF 3 O~; .

10. 'TerITlinal Users Logon Procedures & Infol;ITlation

For login purposes terITlinals are divided into broad classes depending on

the character codes us ed fo r transITlis s ion. TerITlin.als of each clas s rna y .

only enter the sys teITl via line nUITlbers (telephone nUITlbers) as signed to

that class at SYSGEN tiITle. Otherwise the characters received would -

be indecipherable and the initial dialog could not take place at all. Opera-

tor keyins will be provided for changing terITlinal class after the systeITl is

in ·operation.

Most terITlinals will be of the ASCII clas s initially and during login the

following inforITlation is established via TEL cOITlITlands:

a) Type: a) TTY 33, 35, SDS 7015
b) TTY 37
c) SDS 7550, 7555

b) Carriage width: a) 72 for 33, 35
b) 86 for 7015, 7550, 7555
c) variable for 37

Default term.inal type is 33 with carriage width 72. 'Carriage width ITlay be

changed by a TEL cOITlITland any tiITle during the session.

Parity checking' on input is not done until the 755 ° or 7555 is established as

the type.

~ ,.~ ,,~,., ----.... -.... ~ ... ~

J
I. DRAWING'NO, •. 7~Z.48~

SHEET jO,;tOF \

Part XIII. MACHINE ~ANGUAGE A~SEMBLER (METASYMBOL)

·TABLE OF CONTENTS

Page

ON-LINE META-SYMBOL OPERATIONS 303

INPUTS TO META-SYMBOL 304

·OPTIONS 3.07

ON-LINE ME'TASYMBOL OPERATIONS

DRAWING 'NO".' '702-4'89
SH EET3 c>..3~ 0 F 3 05'

The Meta-Symbol assembler is invoked by the UTS terminal -user with the com-

mand

!META . sp ~ sp , ... , sp] O.N [rom] [, list]

As explained in the document on the terminal executive language, sp repres ents

a source program, and ~ and list designate the destination of binary and listing

output. Output specifications may be dispensed with if they have been pre-set ,with

LIST ON or OUTPUT ON executive commands.

The ~ list is entirely composed of file identifiers (f.id) or the user terminal name,

ME; ~ must be a file identifier. If unspecified, the binary output will be placed,

in a scratch file which the user may later reference with the symbol $.

List may represent the user's tenninal (ME), a disc file (fid), or the line printer

(LP). However, should the listing output be directed to a file or line printer any

errors encountered in the assembly will be displayed also on the user's terminal.

For example:

.! MET A ALPHA ON BIN, ME

Assembles the source progr~m from file ALPHA, putting binary in file BIN, and

producing a listing on the terminal.

.!. META' ALPHA, BETA, GAMMA ON BIN, LP

Assembles the source pro'grams contained in the files indicated, putting binary in

file BIN, producing listings on the line printer. '

DRAWING .NO .. , .7.0.21;89
SJ:IEE~30L/~ 'OF 3 ~.ff

_ The executive command META effectively replaces the foilowing control cards

-.
(if needed to perform the equivalent operations through batch processing:

JOB - etc.
ASSIGN M:SI - etc.
ASSIGN M:-LO - etc.
ASSIGN M:BO - etc.

! METASYM SI, LO, BO

Meta-Symbol has a number of optional as~embly featq.res which are not easily

specified on the META executive command. Therefore, immediately after it is

in control, the assembler will prompt the user for specialized options, in the.-

following manner:

! META ALPHA ON ,ME

WITH:

(Assemble ALPHA, binary on file $,
listing on terminal.) -

Typically, the casual user would terminate this request with a carriage return

(or new-line), and the assembly would take place. Alternatively, any or a~l of

the options described under OPTIONS can be specified, and when the carriage

return terminates the option request, they will be performed during the assembly.

INPUTS TO METASYMBOL

Each file mentioned in the input list will typically contain one source program,

created and maintained through use of the EDIT subsystem. If more than one

file is mentioned, the asseUlbler will proceed through them in order froUl left

to right, performing the a.ssemblies with the options indicated by the user.

Should an input file contain Ulore than one source program (more than one END

directive), all will be as sembled. -However, a file need not contain an END

DRAWING. NO •. 792j:B9
SHEETj'DS··OF.3 c?.p

directive since the Monitor automatically changes from file to file •. It may con-

tain only.a piece of code which has been selected for assembly into a larger pro-

gram.

For example:

META ALPHA, BETA, ME ON BIN
~ END START

·ESC F (the termi~al end-of-file code)

Files ALPHA and BETA may not have contained an END directiveo The user has

chosen to assemble them together, supplying the necessary END directive directly

from the terminal.

When input is from a keyed EDIT fil.e, a decimalized representation of the se-

quence number for each record will be placed in the assembly listing in the position

normally held by col. 73-BO of an input card.

It is possible, in addItion, to make use of Meta-Symbol's internal editor in con-

junction with compressed so·urce files while run"ning on-line. The editor and

source cOlTIpression facility are oriented toward card image batch processing

needs, but could be us eful where backup files must be kept on cards - - or where

work must be done in strictly BPM compatible fashion. These features of Meta-

Symbol are described in the reference manual (90 09 52), chapter 12.

If a program in compressed format exists on RAD, eithe.r as the output of the

asselnbler or as the result of a FMGE operation, the user can assemble it with

on-line Meta-Symbol simply by mention~ng it as input. For example, if the

name of such a file were CI-FILE, then it can be assembled with the following

command:

META CI-FILE ON BO-FILE, LP
WITI-I: Cr

DRAWING . NO ..• , .7.0.2189\
SHEET3t>b,OF J tJ? . \

Meta-Symbol distin'guishes between the keyed source format of the EDIT files

",i and the sequential binary format of c<;>mpressed files. Files of both types can

be given as input to the assembler in the same input command.

The on-line user can maintain a file of edit records which can be provided as

input to the assembler to modify a compressed file. For example:

BUILD

1.000

2.000

3.000

4.000

5.000

~:~ END

UPDATE-FILE

+4,6

+ 10, 10

+ END

Cr

BANZ EXIT Meta-Symbo 1 edit
commands

META UPDATE-FILE, CI-FILE . ON BIN, ME

WITH: Cr

The assembler'- in processing UPDATE-FILE, will recognize the editing notation

and will apply the update records to the next· file in the list, which must be in

compressed format.

'j

OPTIONS

DRAWING 'NO', '702.489
SHEE'"r361 OF .3 o·?

The complete set of options available iIi the batch version of -Meta-Symbol is

described in Chapter 12 of the referenc'e manual (90 09 52). The executive com-

mand for calling the as sembler covers options concerned with source or com-

pressed input and listing and binary output. The following options may also be

given the assembler when it prompts for them. Should more be given, only the

standard listing and binary will be produced 0

Option

CN

CO

LU

This option is used when the assembler must
access system ,files which are not logged
under the system account (:SYS). The ac are
the alternate accounts.

This option requests that a symbolic cross­
reference listing be included with the assembly
listing. When this option is given, the assembler

'will access the user terminal for the concordance
control records which indicate special con­
cordance options. The as s embler will prompt
with the character I>':, and the user may re~­
pond with the control record. For example:

.!. META SOURCE ON BO, LP
WITH: CN
~. SS Xl, X2
~. 10 CAL3
~·.END

(suppress Xl and X2)
{include op-code CAL3}
{terminate concordance control

This option causes the assembler to produce
a compressed version of the input program 'on
the file specified in the M:CO ,DCB. This DCB
must have been previously as signed with a SET
Command~ ,

This option requests that the assembler include
a listing of. Meta-Symbol update records with
the listing of the program.

NS

SD

SO

- -

. DRA WING.N~.~: ,7.0.2j89
SHEETJo9 OF .3 o~

This optio'n requests that no assembly sum­
maries be includ~d with the listing.

This option causes the assembler to produce
sy~bolic debugging object code for use with
the DELTA debugging program. This object
code is included with the standard binary out­
put ROM.

This option causes the assembler to create a
source output file corresponding to the input
program •. The input program may be EDIT -
source, compressed, or compressed with up­
dates. The M:SO DCB must have been previousl
assigned.

When the as sembler is creating source output
during an on-line assembly, the file will be
written in the keyed, short-:-record format used
by the editor. The new source file will be re-

, sequenced according t<:> the line numbers of the
assembly listing produced. For example, line
number 5 in the listing will correspond to the'
record with sequence number 5. 000.

This feature will ~llow t~e user to copy and re­
sequence a source file, obtain the listing and
binary (and perhaps even a compressed version
for extern~l b.ackup), in one operation with the
assembler. For example:

SET M:SO DC, SOURCEOUT
SET M:CO - CP
META SOURCE ON BIN, LP

WITH: SO, CO, CN, SD
::=. END

DR .. t\VIING NO. 702489
SHEET 3 gO:;';' !/;:;.1..

"li. DESIGN AND IMPLEMENTATION CONSIDERATIONS

Many systems like UTS have been designed so that most of the rnajor

operations must be carried out within sub-systems; only minol· ones ancl SOIT.:.C

limited file management and message processing being ~llowed 2.t the executive

level.

A. Organizational Questions

The precis e responsibilities of the sub- s ysten'ls and thei:.· hier-

archical relationships depend strongly on the programming langu2.ges and

facilities offered by the system. There are two general approaches:

1. Delineate sub-systems functionally, on the basis 0: '~h~ Tnore

common programming activities: editing, compiling, assernbling1 linkinZl de'-

buggingl file-managing, interactive ·calculating.

2. Delineate them "linguis~ically", on the basis of the program.r.ning

languages to be provided: FOR TRANi XSYMBOL, BASIC~~ . ' .. ; prov:de \;;;ithin each

sub- system the facilities for carrying out the activities as socia. ted with the pro­

gxamrning language the sub- system handles •

. A cornrnon at tack on the problem consists of: a) constructing the system. on a

functional basis; b) making the sub-systerns explicitly available to the user;

. c) designing things so that sub- systems can. calIon the services or othel· sub­

systems. Such systems can be linguistically colored by bu,ilding the ~ang-":'2..ge­

specific sub-systems so that they make use of the functional' oneSe UrAio:'<'L:.Ilately,
I

the architecture of current computers is a bit antithetical to such sys'ceril ciesigns

in terms of "production" efficiency; the systems turn out to be conceptually simple.

and amenable to growth, but at a serious cost in terms of space c.nd time. .A.n

initial design of UTS attempted to strike a compromise by basing itse~::: around what

might be called a "portmanteau" sub-system.: a shared sub-system fa:: editing,

simple file-management, compilation, controlled execution and debugging; one that

would be used by all the linguistic sub-systems. Essentially, this sub-system

would have been EDIT with sufficient advantages to allow it to becor.:le: 2.; d:e .

BASIC sub-system; b) a sub-system for FORTRAN prograIrlJ."TIing (2.-:2. T::L) and

debugging (a-la FDP); c) ditto for assembly-language prograrn..-r:ning; d) th-.;; EDIT

sub- system.

DRAWING NO. 702489
SHEE~ 3/ OF ?/ d-

The idea \vas attractive on many grounds, but it raised proble.rns of imple­

mentation (particularly in the areas of storage management) that could not

be resolved in the time allotted. It was therefore discarded by the invoca-

tion of Rubric 3 (see Part I, Introduction). An alternative to a single, port­

rnanteau sub-system lies in making separate versions of it,' each appropriate

for activities associated with a different prog14amming language. This system

would still be colored linguistically, in that the casual progra.tn--rner would

simply announce his programming language to UTS and then have at his disposal

the facilities appropriate to that language. This alternative is not ruled out by

the proposed design, since all major operations'will l in fact, be carried out by

sub-systems or by sub-process.ors that behave like sub-systems' (see Section C.

below). Indeed, the array of facilities provided at the executive level for cornrnon­

place FOR TRAN and assembly-language programming (ASSEMBLE, COMPILE,

LINK, and so on) can be viewed as being·incorporated within a hidden sub-system

for F.OR TRAN and assembly-language programm.ing.

B. Sub-System Prompting

Sub-systems designed from scratch for on-line use generally have,

reasonable rules for interfacing with their users. They us~ally do so on a

Iltransaction" or IIcommand-response ll basis: the user issues a directive, and the

system does what has to be done i responds appropriately and then \vaits for the

next directive. Interfacing traditional batch facilities -- and processors designed

for batch operations --with on-line users turns out t'o be a drag. iU.rnost every­

thing is wrong and hardly anything fits. In batch operations things run either to

abortion or to normal termination, so that batch I'corr...mands II must be preceded

or accompanied by a cloud of pre-planned specifications: to proces s in this mode

or that; to save or not to save; to give up or not to give up,' .and in what cases; to .

list or not to list, and where; to list all or part; and so on. ...t\lthough much of this

can be avoided by assuming SOIne reasonable speci£ications.~.:aefault of any; pro­

visions lnust he around for the on-line user to specify andrcopeciiy ~0'3 requb:ed.

Two tacks can be taken.

DRAWING NO. 702489
SHEET I/D OF .f/';i-

1. Specifications can be made on a "transaction ll basis.

The user states his specifications and choices at any stage of the game. Ii

anything vital is found to be missing during subsequent execution of a comrnand,

the sys~e:m notifies the user so that he may take corrective actions or any

other actions. This is really the essential difference between on-line and

,batch operations: the batcher must pre-plan everything~ sinc'e he won't be

around to take corrective actions or change things; the on-liner need not plan
, ,

,anything" since he can usually recover quickly and at little cost, and can even

abort operations that are really messed-up but which would go to completion

in batch.
, .

2. Specifications can be made on a "prompting ll basis. Before

any major operation is start'ed, the system notifies the user that specifications

:must be given, and then waits for the user to give them. (and nothing else).

Once given, the process is started and carried out as in batch (to within inter­

ruptions): it either aborts or runs to termination.

In addition to being a real 'mess to implement properly (with all the chit-chat,

and, counseling that may be required), prompting does not allow a user to change

his mind or respecify in the 'middle of an operation ~o take 'care of the uneA~ec'ted.

AccordinglYI neither TEL nor any of its sub-systems do any prompting except

during the log-on procedure and in a few other isolated cases, whel-e pronlpting

'takes the form of an error message (as a reminder,to take corrective action)

or of a request for a negative or affirmative answer to a question.

c. Sub-System Design

To the casual user, it appears that the major operations associated

with FORTRAN and assembly-language programming are being carried out

directly by TEL. Actually, all operations are being carried out, und~r the rug,

by sub-system.s. This activity nlay be clear ~or linking and editing~ 'whe:.·e the

TEL and sub- system commands overtly overlap; it is covert in the case or

assemblies and compilations, operations that are carried out by processors

that are built as sub-systems. The only difference. between these and other

DHA \VING NO. 'lO2.~'189

SHEET 'II OF l/ J--

sub-systems is that, in the initial version of UTS, the former never inter-

act directly 'with the user. However, they and most other sub-syst,eIDs of

UTS will be designed so that they recognize two different modes of invoka­

tions: one as a sub-system, the other as a sub-processor (usually called

by TEL). In the former case, the sub-systems must identify ther.o.selves

to the user before turning control over to him. In the second case~ the

sub-systems simply go to work on the TEL com:mand. Several cases

arise during processing.

1. The comlnand is garbled or in some manner invalid, or

an error -- frOJ."'n which the sub-system allows the user to .recover -- occurs

while carrying out the conunand.
I

2. The cO'mmand is carried out to completion, although minor

error messages may have been spit out by the sub-systenl during processing.

3. A disastrous error, froIn which there is no recove-;:y, occ:urs

while carrying out the com:mand.

4. The user interrupts processing by depressing the BREP..K

key. The actions taken by the sub- system. depend on how it was invoked.

The responses in each of the four cases follow ..

la) If called as. a sub-system,.t}:le error is reported and control

returned to the user.

Ib) Otherwise, the sub- system reports the error, changes its

invocation status, and then identifie~ itself to the user before returning con-

trol to him... This behavior may be changed to that of 3a below in some exceptional

cases; e. g .. I if EDIT, say, is us'ed to carry.out COpy and -DELETE corfu"'Uands.

2a) Ii called as a sub-system, control is l"eturned to the use:"

after "DONE,,',has been:,:t:yped.

2b) Otherwise, control is returned to TEL accompanied by a

report of IIsuccess".

DRj\VIING NO. 702·189
SHEET 7'.;2.. OF .!/-~

3a); Whether called as a sub-system or as a SUb-pl'ocessor j the,

error is reported, things are cleaned-up, and control is returned to TEL

accompanied by a report of "failure".

4a) If called as a sub-system., the sub-system. will v/ait for a

convenient stopping point, and then type "REVOKED BY INTERRUPT" or some

other appropriate mes sage before returning control to t~e use!".

4b) Otherwise, the sUb-system preserves context; and returns to

TEL," reporting "interrupted".

D. TELl s Implementation

Much of TEL's work, as a processor, is carried out by sub-system.s

and sub-processors -- all shared; little is permanently resident. Included am.ong

TEL's processors are:

a) an ON' sub-system (and ;U;TM state) that is invoked at session

initiation to handle the l~on dialogue;

b) an OFF sub-systelu (and UTM state) that is invd;!ked when the

user turns off (or re-identifies hiInself) to cleGl:n things up and print accounting

informatio~;

c) an ASSIGN processor to handle ASSIGN commands;

d) a RUN processor to supervise the Qusiness of linking,

loading and initiating execution;

e) an EXEC process:or for deter.rnining the form of commands,

for controlling the execution of commands; for coordinating the uses of sub­

s ystems and sub-proces sors, and for fielding returns from. tJ:1eIne

The organization and residencies of TEL's sub-co'mponents will be covered in

its implementation specifications. Topics and sub-processors cl'itical to TEL

and all of UTS, that will be covered in separate docUl.-nents are: a) virtuallUe'.i.TIOry

, layouts and sto-rage 'manageInenti b) users l ge'neral context areas; c) interfaces

with the monitor (UTM); d) CO C handler for comrrlunicating with r,emote console s;

e) sub-system conventions. The des~gn of TEL's executive and control processor

I, and its interfaces with sub ... systems proceeds in tandem with the first three topic s)"

both depending on them and influ~ncing them. "

	001
	002_Vol1_Parts1-6
	003
	004
	005_01_Summary
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017_02_Tuning
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059_03_System_Capacity
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079_04_Scheduler
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093_05_System_Requirements
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105_06_TEL
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147_Vol2_Parts7-13
	148_07_EDIT
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163_08_DELTA
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210_09_PCL
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230_10_LINK
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	253_11_CALs
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	283
	284_12_COC
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302_13_METASYMBOL
	303
	304
	305
	306
	307
	308
	_038
	_039
	_040
	_041
	_042

