7\ S 2 =)
s ; e v/
i ~—/ REVISIONS - 702-.59
REV. DESCRIPTION CHK | DATE |. APPROVED

No. "DRAWING NO. DESCRIPTION REFERENCE DESIGNATION A
MATERIAL LIST I ‘ .
NOTES UNLESS SPECIFIED DRAWN ‘ - o ' L
| =TS |
RE TOLERANCES CHECK v Y @ SQIENTIFIC bATA SYSTEMS . :
XX *.030 ANGULAR \ SANTA MONICA., CALIFORNIA |
XXX +.010 +Y2* L '\8 - -~ \ - /e /% TITLE .
APPR. "\g_cw ? ¢ 5/ .
2. BREAK ALL SMARP EDGES L&d LTk
.010 APPROX. y'(s (/ UNIVERSAL TIME-SHARING SYSTEM (UTS)
3. MACH. SURFACES ; : FUNCTIONAL SPECIFICATION o
4. ALL DIM. IN INCHES '
- W\ .
MODEL, NO. SIZE DWG. NQ. CHANGE
X : LETTER
. A 702489
NEXT ASSY. 5
SCALE DO NOT SCALE DRAWING | sHEET 1 OF 3¢

ol A Y D)

UNIVERSAL TIME-SHARING SYSTEM (UTS)

FUNCTIONAL SPECIFICATION

VOL. 1 - PARTSI- VI

By

E. Bryan
B. Doeppel
J. Smith

31 March 1969

PREFACE TO THE MARCH REVISION

—

The March issue of the UTS Functional Specification includes updates, revisions,

major additions, and minor editorial changes to bring the spec in line with changes

suggested by various SDS departments and with the current course of UTS imple-

mentation.

It is issued in two volumes, the first containing Parts I-VI which pro-

vide a general overview of UTS, and the second containing Parts VII- XIII which
include details of several of the UTS ‘subsystems.

Any errors or omissions which reviewers find in the current document should be
called to the attention of Programming Development through Ed Bryan.

Details of the revisions and additions are:

Part1

Part I1

Part III
Part IV
.

Part V-’

Part VI
Part VII

Part VIII

Part IX
Part X

Part XI

Part XII

Part XIII

Minor editorial changes

Major addition. Description of operation and sample outputs

" for the performance control program.

Minor editorial changes

‘Addition of a description of UTS virtual memory layout

Minor editorial changes

Major revisions including th'e‘addition of SET Commands for
I/O assignments. ‘
Replacement of the description of EDIT by reference to the

BTM version plus extensions and descriptions '

Addition of several new DELTA commands and c1ar1f1c:a1:10n of
the operation of others

Addition of a few new commands; clarification of others
Minor changes only

Expanded description of the memory management routines;
addition of two new CALs '

A new part describing I/O services for the terminal

A new part describing METASYMBOL operation

11,

II1,

IV.'

VI,
VII.

VIII.

IX.

XI.

XII,

XIII,

=] v WoPN N ‘-f orT Hv o

OVERALL TABLE OF CONTENTS

oirERALL SUMMARY OF uTS

PREDICTINC, MEASURING, TUNING UTS
SYSTEM CAPAGITY AND LOADS

SCHEDULING AND MEMORY LAYOUT .
SYSTEM REQUIREMENTS AND CONFIGURATION
TERMINAL EXECUTIVE LANGUAGE (TEL)

TEXT EDITING SUBSYSTEM (EDIT)

~ ASSEMBLY LANGUAGE DEBUGGING SUBSYSTEM {DELTA)

PERIPHERAL CONVERSION LANGUAGE SUBSYSTEM (PCL)
LOADING OF PROGRAMS (LINK)

MONITOR SERVICES FOR ON-LINE AND BATCH PROGRAMS

P

TERMINAL OPERATIONS AND SERVICES

MACHINE LANGUAGE ASSEMBLER (METASYMBOL)

Page

17
59
79
93

s

148

163

210

230

252

284

302

B S 3 X 7Y T v e W N g P
Part I. OVERALL SUMMARY OF UTS

INTRODUCTION

UTS is a tir.ne-sha_red computiﬁg service consisting of a central computer complex
and a collection of remote teletype and other tYpewriter-like terminals connected

to the central complex by full duplex communication lines. UTS giveé its users
access to all the programming services of the Batch Processing Monitor (BPM),
including symbiont and real-time ser{iﬂces. These are augmented b:y tools speci=
fically tailored for remote-terminal users gngaged in the on-line creation, modi-
£ication, debugging and use of programs. The on-line'entr;y of jobs for batched
service, iﬁ the'fofm of BPM control card’ érograms, is permitted. Such p_rograms
may be composed, filed away an& entered in the Batch job stream from the terminal,

and on-line users may query UTS about the status of such jobs.
R . °

UTS is son, sibling,‘ and parent to BPM, and will be derived from that system by a
set of specific changes andiadditions. For the first version of UTS, these fall into

three classes.

A. Processors and Associated Languages Primarily Related to On-line Users

1. An executive processor and language (.TEL) for handling requests from
on-line users. To such users UTSAa,Vppears to be a single active agent
that responds to commands couched i1;1 TEL. -Most corﬁmonplace activities
associated with FORTRAN and assembly language programming can be
carriéd out directly in TEL: file rﬁaﬁagement, compilation and assembly,
loading, execution and debugging. Lengthier or more involved opérations

and activities associated with other programming languages must be

TORLLIALANYT 5 LT T

carried out by requesting the services of a subsystem of UTS. Each
subsystem acts as an independent, active sdb-agent of UTS, accepting

requests in a languagé tailored to its job and to the expected profile and

bents of its users.

A compile—é.nd-go processor for the extended Basic language, which in-
cludes provisions for direct operations on arrays; an on-line subsystem

for creating, modifying, running, and debugging Basic programs.

An editing processor and language for the on-line creation, modification

and management of programs and other bodies of text.

Debugging processors and languages appropriate to FORTRAN debugging
(FDP) and to assembly language debugging“(DELTA). These proceés_ors
are always at hand for the on-line user (who can call on them at any

stage of execution), and are ideal for carrying out parameter studies.

Utility processors and languages for: a) managing files of information

[4

and transmitting information between different media (PCL); b) combining

and recombining compiled and assembled object programs (LINK,SYMCON)

Distinct bodies of code that regulate and provide information about the

activities of UTS and its users. These include routines for: 1) scheduling

activities; 2) managing time and storage; 3) measuring and displaying the

cumulative and individual behavior ‘of UTS and its users; 4) handling in-

formation passing to and from remote terminals on an asynchronous basis;

and 5) fixes required to use the memory map.

R w;aa—au—d'a.‘/__v'*i_/ L O e R

C. Changes, and fixes to BPM and 1ts corﬁponenf p';cocesso.rs. These include:
1) médifyihg compilers and assemblers so that they produce information
necessary for on-line debugging; 2) creating vérsi;)ns of-procgssors and
run-time packages (;.nd all othef public routines) that are reentrant and,.
therefore, capable of being shared among more than one user; 3) simpli-i
fying inbut-output interfacirﬁg with BPM anci»speeding-up its file-management
- services; 4) changing BPM and its processors so that they can deal with
typewritten lines of information and files of such information érodu;:ed at

a terminal as readily as they now handle card images and card decks; and

5) fixes required to use the memory map.

BEHAVIOR AND RESPONSES

UTS is supposed to service real-time loads, batch loads and on-line loads sirnul-
ta;r;eously -=- all without batting an eyelash. What these loads are énd how they vary

" from inétallation to installation are an unknoWﬁ; On the other hand, some comple?e
statistics have been published for batch loads in aerospace and univeféity envirorn-
ments and for on-line loads in time-sharing systems. VThese figures share one
héalthy attribute -- they compute, they.com.par_e, they match. ""These‘figures and
their requirements in terms of UTS capacityiaré described in a succeeding section.
Applilcation of straight-forward quleue'and tréfﬁc—theory techniques to these figures
shows that UTS can be designed to étrike a balance betv?reen on-line and bafch require-
ments. Although sor;ae of its facilifies will be denied the batch user an‘d others the
on-line user, the two classes of service §vi11 be complementary father than antogo-
nistic. Under typical loads, on-line demands \%/ill raréiy overwhelm batch processing

nor will batch vthroughput seriously hamper on;line negotiat:lops. The typical demands

T 3 V-FH Ty . Sl W s M

of on-line users need less than 50 ms. of processing and constitute 85% of on-line

requests. For 30 users, these can be handled éomfdrfably at costs not exceedfng

-

8% of main-»frame time. This includes the overhead costs of scheduling, time-

sharing and transmitting information to and from consoles, but makes no allowance

for service to resident real-time programs -- an effect which can be catastrophic

to reasonable service. Delays to typical on-line requests of 30 users should exceed
.4 séconds no more than 10% of the tin:;e' and exceed four seconds no more than .01%
of the time. -These figures are based on conf_igura.tié)ns matched to reasonable loads,
and should not be considered totally satis’fying;v.the‘y are simply better than anything
elé;é-on the market, except for dedicated, single-language systems. Delays of .4
seconds are noticeable, particularly to people using processors that maintain intra-
line dialogues with their usérs, when delays cafmot be blanketed by the cafri_er-;
return times associated with typing requests. ..Although typical delasrs will be just
less than .4 seconds, variations will occur frequent_ly. However, users will ha_rdly
ever have to wait more than three or four seconds for a response to a typical request,

nor should they observe any halting or stuttering behavior during output situations.

For 66 users, main-frame dggradation is doﬁbléd, but the di.stribution of re5pons'e
times remains sﬁbétantially the same -- delasrs greater than .6 seconds still
occurring about 10% of the time. BPM itself makes demands on main-frax;ne time

for symbiont, input-output, and file management services, for control card interpre-
tation and simply tooling up to do a batch job, and for processor aﬁd Monitor overlays
This service cost is two to three times éreate¥ than fhat required to service the
typic;al demands‘_of 30 on-line users. What is left of main-frame capacity (65% for

30 on-line users) must be devoted to '"computing' -- procgssing batch programs a‘nd‘

compute-bound on-line users. The more on-line users and/or the more compute-

:bound on-line u'sers, the 'greater the possible impact on raw batch computing power.

.+ .F_m .

-

oL 7—Of_j’u_0_

REQUIREMENTS

In terms of input-output throughpgt:, the 7202-4 RAﬁ is inadequate if used alone -
operating at 150% of capacity for typical batch and on-'"line_ loads.” Under such cir-
cumstances, everyoﬁe waits. A single 7232 is marginal, while a 7212, high-speed
RAD would operate at.‘SO% capacity under typical loads --a comfortable figure,
althbugh an extra unit dedicated solely to handlli.ng usér's files may be required for

many installations. Almost all UTS installations will require a 7212 and a 7232.

The costs and delays mentioned above can be achie‘v‘ed only through use of the"
membry map. On systems without this feature, the ov;erhead costs of' core manage-
ment and ti.me-}sharing have reached 40% of CPU capacity;.this is an uncohscionable
degradation of computing power and results in severe delayé in both on-line response
and batch turnaroqnd. With'the fegture, unc.omplicated, 10\&: overhead management
and scheduling disciplines can be used, as can reentrant processors that may easily

be shared among many users.

-

The frequency and extent of variations from the norm are dependent on the hardware
configuration chosen'and on how effectively an installatic’)n can control its own loading
patterns: by ad-hoc adjustment of dynamic alloc&étion and scheduling parameters fro.m
an on-site console, by education of ifs user _cobm'munit‘y, or by direct management
fiat. U'fS is r%leant to be a lafge system -- large both in terms of configuration and
in terms of its ab}lity to handle variations in load. To 1;his end, space will be traded
- off to get good responses and to use CPU capécity efficiently. Core residency re-
quirements will be approximately 16K; UTS will be designed for a basig 80K rcore.

configuration.

e e e

It must be clearly understoc.ad that large trans:i_ent or ‘instéllat_ion-systematic
variations from the estimated loéds around which UTS'is built will inevitably

call for a retuning of the system, no matter what the‘confi.g\‘lration. This is an
operation that will be possible within reasonable, but f.uzzy 1imifs. Beyond these,
installafion-mahagement techniques must be brought to bear. To test the UTS de-
sign, to predict redes'igns and to allow iﬁstall#tions to.tune their own systems, UTS
will devote a small portion of its time and other resources to measuring the cumu-
lative é,nd individual behavio:f of itself and its users. Installations should be p’fe-
pared to do the same; it is therefore required that each installation dedicate an
on-site console to the job of displaying ;che reéqlts of these metering activities on a

minute-by-minute basis.

SERVICES AND FACILITIES

UTS provides its users three classes of service:

A, A Real-Time Service

Preemptive access to the hardware is provided for prbgrams engaged in
simulation, control and other 'real-time' activities. Such programs may

be permanently resident in UTS's (appropriately enlarged) core store, or

may be made temporarily resident on a demand basis, at the user's option.,

B. Batch Service

1

All facilities and processoré of BPM are available. Access to, and control
over, these fécilities is obtained through "programs' written in the control
card language of BPM. Such confroi card programs may be submitted to
UTS through card readers or they may be composed, filed away and sub-
mitte@ on-line. In addition, the status of previously s'ubmitted batch jobs

may be interrogated from remote terminals,

Although some facilities and processors ai‘e reserved solely for on-line.
use, while others are available only in Batch; the two classes of service
are complementary. Generally; sPeai{ing, a.nyt,hii?g th.at can be done in
batch can be done on-li'_ne, albeit sometimes in' a curtailed manner. Re-
mote batch operations from the 7670 will be available in UTS as.specified
for BPM. In particular, compilers and assemblers are compatible across
the two classes of service at bofl’i squrcé and relocatable levels:

1. processors for SDS FORTRAN IV and" Meta-Symbol are avail-

" able both in batch and on-line; |
2. programs compiled or assembled in batch can be linked with
those produced on-line, and'cari be run and debugged on-line;

3. programs compiled or assembled on-line can be linked and

run in batch.

On-Line Service

The summaries given below must be treated as such. Most details of syn-

tax and designation are glossed over or omitted completely; this is particularly

t\iﬂe for subsystems such as PCL and DELTA, whose languages are highly}

encoded or abbreviated. The names assigned to specific languages and

‘systems will often be used indifferently to refer to the language or to the

associated system or subsystem, whichever seems appropriate in context.

1. Communicating with the user
Control of each user's keyboard will be proprietary: either the user
has control for purposes of input or UTS has control while carrying

out requests and for purposes of output. This holds whether the user

is negotiating directly with UTS, one of its subsystems or his own pro-
gram. Who has control will be made’cleaiur to the user at all ;cimes. This
is particularly necessa.r}.r in the case of efrpr repc;rts and task complé- '
tion reéorts. In the:event of errors the use.r muét knolw what the error
was, who reported it, and to whom he may direct any corrective actions
he méy wish to take. In general, the user must know three things: when
he can type responses ahd_reéuests; to whom he is talking;’ and vs'/ho last

talked to him. These are often clear in context so long as the system

adheres to some reasonable rules of behavior.

Teletypes --; either SDS 7015 or teletype models 33 and 35 -- are assumed
to be. the most common on-line terminals used with the UTS system.

SDS 7550.and 7555 keyboard displays are compatible terminals for UTS
and special software isv in. progress which will capita;lize on the special
capabilities of the keyboard display for editing. Later versions will pro-

vide for use of IBM 2741 and Model 37 teletypes as on-line terminals.

*

-

Terminal Executive Language and Processor (TEL)

Réquests for the facilities and processors provided on-line users take
the form of single-line commands apd declarations in UTS's Terminal
Executive Language~ (TEL). Most éommonplace programming and
accounting activities can bé carried o4ut directly in TEL., These include:
a) logging-in and out; b) simple file mana‘gement; c) SDS FORTRAN com-
pilatiéns; and Metal-Symbol assembiies; d) linking and loading of relo-
catable programs; e) controliing the execution of programs; f) saving

intermediate core status for later resumption; and g) submitting batch jobs

'D’ﬂ'hilbj'17__j_O'E'tJ'U ©

and monitoring their status. Other classes of operations, more in-
volved operations, and activities associated with other programming

languages must be carried out by calling (in TEL) for the services of

one of UTS's subsystems.

Text-EditirigSubsystem (EDIT)

EDIT is used to produce FORTRAN a;nd asisembly‘ language programs.,
control card progran;s foxl submission to the batch queue, and other
bodies of information. Each file produced under EDIT consists of a
set of lines of text. Each lineA is uniquely numbered, and the set is
ordered by increa’sing magnitude of the line numbers; “Such files are -
retained on RAD sﬁorage.in a format designed to expedite and facilitate

their production and updating by EDIT and their use by other processors.

°

. Peripheral and Information Control Subsystem (PCL)

PCL allows the user to move irﬁformation-between input—outpuf devices

and storage media: carAd and paper tape devices, line printers, disc

files, labeled and free-form tap'é.reels. Conversion and re-representation
of‘data, selection of data, and record sequencing and resequencing are
allowed. The processor and its language are provided both on-line and

in batch. Single-line commands a‘r‘e ‘used for the gross operafions of

copying, deleting, positioning, and for other utility functions.

=m1
!

50

'DI'.I’JLA'.LF.I._/'V*CI'.I'.‘_‘T/'“ T

Assemblnyangu;.ge Debugging (DELTA))
DELTA is specificallyb designed for the debugging bof programs at the
assembly~language leVel. it operates on object 1.3r.ogramsl accompanied
by tables of internal and global symbols used by the p'rogra‘m's, but does
not d-emand' that such tables be at hand. With or without such tables, it
recognizes machine instruction mnémonics and can assemble, on an
inétruction-By-instrﬁctibn basis, rmachine language programs. Its main
business, however, is to facilitate the acfivities of d‘et’)ugging.
(.a) The exaﬁination, insertion and modification of elements of
programs: instructions, numer1c values, encoded information ~-

“data in all its representations and formats.
(b) Control of execution,. Aincluding’the insertion of breakpoints

into a program and requests for breaks on changes in ele-

ments of data.

(c) Tracing execution by dlsplaylng information at des1gnated
points in a program.

(d) Searching programs and data for specific elements and sub-
elements.

To assist in the first activity, assemblers and compilers of UTS will
include in a program's table of symbols, 'information about what type

of data ea.,ch symbol _represents:.SSrmbolic i_nstruétion, decimal integers,
floating point values, single and double precision‘values, EBCDIC en-

coded information, and others.

FORTRAN Debugging (FDP)

The language is easy to use, readable, and more powerful than the
current FORTRAN IV-H console debugging Ianguage. If program exe-

cution is started under FDP, keyboard control is’p‘assed to the user

ooaLLLLr /= . L v
with a notification that execution of the main program is ahout to begin.
During execution, control reverts to i:hp user whenever hé interrupts,

whenever an error occurs and whenever FDP reaches a stopping point.

When the user is in control he can ask FDP to carry out execution in a

~ variety of modes and then ask FDP to continue execution. He can also

request that values assigned to identifiers be displayed, and can re- '
assign new values. The complete sp'e'cification for FDP is given in docu-

ment #702528.

Symbol-Control Subsysfem (SY MCON)

SYMCON provides.programmel"sl the faciiities for controlling the global
symbols associated with a load module; it may be usqﬁgi:/her on-line or
in batch. When relocatable object modules (ROM) alre combined into a
load module, the global symbols associated with the ROMs may be re-
quired to link the ROMs properly Q‘r to link the resulting load module’
with other ROMs and load modules. >In the latter case, it may be neces-
sary to change some of the symbols to avoid conflicts or to eliminate
many of them so that the global syrﬁbéls ‘used for l'inking‘the original - -
ROMs ‘become intefnal symbols fof the resulting load module.} In brit‘af,v

SYMCON allows programmers to link ROMs and load modules freely in

the face of conflicting naming conventions.

. Object-Program Linking [LINK)

All operations that can be performed under the LINK executive command

/

can be performed under the subsystem. The notation and conventions for

specifying the retention, dele’cidn, and merging of internal symbols remain

"SHEET/4 OF 59Y%
the same. On the surface, the subsystem's main adva.ntage over the
executive command is that it allows programmers to link more modules
than can be listed in a single executive command line. Its main reason

for existence, however, is as a vehicle for incorporating more compli-

cated linkages involving hierarchies of modules.

9. Subsystem for Basic Programmers (EASIC’ '

Under this subsystem, Ba-sic programs may be composed, edited, exe-
cuted, and_debuggved. All the appropriat_e commands of the editing and
debugging sqbsystems éQre prO;l'idéd. In addition, users of BASIC can
i;ndiqate an insertion or replacement by typing the deéired line number
ahead of the line. Basic programs are compilea directly il;xto executable

~ form, and the entire process of compiling and initiating execution is re-
ferred to as "running'. Detailed descriptions of the subsystem's language
and its reépopsés are covered in complete functionvall specifications for

the subsystem (#702452)

. The gbove list v;onstitutes a summary description of the initial UTS. Services
to on-line users may be expanded in later versions to include a conversational
algebraic language, a tutorial service (HELP), etc. The remaindér of this
specification is devoted to a detailed 'presentation of the items mentioned in
this introductory overview. Any future services or processors will be de-

" scribed in detail when they are authorized and assigned by aépropriate de-

partments within SDS.

DnLLL// QO HSv o

Part II. PREDICTING, MEASURING, ’fUNING UTS

TABLE OF CONTENTS

PAGE
INTRODUCTION S _ 18
A, Demands on Capacity ‘
B. Responses to On-Line Demands
c. Resource Ma.nz;gement

D. Installation Control

1. System Performance Management
2. Login Controls ———a..
3. Use Accounting
E. Performance Control
1. Function in General
2. Summary of Performance Momtormg and Control
3. Key Concepts :
4. Types of Items that can be Dlsplayed
5. Items that can be Displayed
6. Command Summary and Formats
7. Discussion of Individual Commands
8. Approach to Implementation

¥ S')aLnu CFM\DL\QQL\AM hE @M“g

SHEET /§ OF 50&

INTRODUCTION

P -

The effectiveness apd quality of gach'class of service (ba..tch”, real-time, on-line)
depends on: a) the emphasis and degree of control placed oﬁ each class by the in-
stallation; transient and systemic variations of ibad within each class; b) the hard-
ware ,configuration chosen. Although few absolute assertions can be made, some’
statements about capacity and responses to typi_cé.l load.s\ can be offered with rea-
sonable degrees of certitude. These are based on known figures for batch loads in A
an aerospace and a uniirersity environment, and on-line loads for several time-
sharing systems comparable to UTS. The effects of SL;CiI loads on standard UTS

configurations are presented in succeeding sections.

A, Démands on Capacity
Figures for on-line systems show that better than 85% of on-line interactions
occur infrequeni;ly and make only mbdest demands on théAhardware;-average
demands, however, aré much g’reateir than‘tyéical ones. The typical on-line,
user can be characterized as one who is editing, debugging or otherwise inter-
acting with programs at a leisurely rate (in_ terms of computer speeds)', or is
observing the line-by-line output of a runniﬁg program that is highly output-
bound by the slow speed of his tefminal dévice. The drain on main-frame
capa!cityI for interactive service tc;) 30 typicé.‘l on -line users is about 8%; for 60,
2about 16-%. These figures include all processing tir.ne required to service re-
que.sts, including disc transmissions and the tfansmission of information to
and from the terminals. Thus, the typical on-line user does not overwhelm
the batch stream, and handling such users .r'nust be considered a servicé of the

system for which some overhead is paid. By the same token, most activities

Toenooy T /oD Dvne

associated with BPM must be consi‘dered' éervices of that'; system: symbiont
and cooperative processing; control-card ihterpretation;. inpﬁt, c;utput and
ﬁlermanagement; fielding and processing of interl;upt:s and Monitor calls.

It turns out that the ove;'head costs for such services in BPM are two to

three times thos'e“‘needed to handle the tyﬁ)ical on-line situation. The re-
maining capacity of the hardware is dedicated to processing batch programs
and compute-bound (or average) on-line demands. ; ;.The manner iﬁ which this‘
remaining capacity is distributed can be controlled by the installation in two
distinct ways. First, ad-hoc control can be e%ercised direci;ly from the on-
site console, as described in the section oh scheduling. Secon.d, education
and management control can be appiied to the user community to insure that
activities appropriate to on-line access (and to the processors provided on-
line users) be carrvied out on-line, while those activities that are best batched
be directed to the batch queue. To assist‘both attacks on the allocation pro- -
blems, UTS will devote part of its time to measuring the cun;xulative and
in;iividual'aci;ivities of itself and its users; these é.re described in the section
on metering and performance measures. It is required that installations dedi-
. cate an extra oﬁ—site terminal to the jobA'o'f.displa,ying the minute-by-minute
results of this mefering.' To assist in the maﬁagerial épproach, language

processors and systems tuned to the on-line user, and to the batch user who

does not need the full power of the 'big' processors may be used effectively.

Responses to On-Line Demands

As will be discussed in the section on scheduling, typiqal on-line users will be
handled by a straightforward scheduling disciplin;z. In brief, high priorities

are given to servicing usérs ‘whose. current.—behavior portends a short burst of
proéessing followed by a relatively Along period of withdrawal when.no servv_icé

at all will be required: users who have just typed a request for service of any
kind, users who are outpﬁt-limited, u'sers.who are interrupting UTS or who are
ientering or leaving the system. The application of this discipline will, in the
absence of real-time interference, result in average delay;s of less than 6/10
‘.secor.lds for up to sixty users. Dela.}lrs‘ excéedirﬁg 6/10 seconds should be ex-
perienced 10% of theﬁtim.e; delays greater than four seconds are expect‘ed to
occur with probability .0001. Many delays will be blanketed by the time re-
qﬁired for the typewriter carrier to return to rest point after the user has

typed his requesf and by the time requix{ed'tov type a response. Howe.ver, de-
1ay=;> greater than 2/1\0 seconds will be felf by users who are debugging, partic-
ularly in assembly language. Th.e sYsterﬁ and language provided for this activity.
ai‘e designed to carry on an intraline diaiogue with its ugerS, thus providing |

no carrier-l"e.turn time for masking delasrs. This is contradictory, since de-.
bugging is an impatient activity that may find stuttering responses a cirag; how-
ever, lengthy pe;t'iods o-f silence (delays greater than two seconds) will be infre-

quent.

ARl Al AT T (Wl M7

Resource Management

In order to achieve the estimatés given above for main-frame degradation and
for response times, it is essential that UTS mané,ge itself in such a way as to
minimize f;he overhead costs of time-sharing its activities among its batch and
on-line users, and organize things so that it can efficiently overlap input and
output with main-frame proceb‘ssing. At the sém‘e time, it is equally essential
that the installation manage itself in such a way as to use UTS most efficiently,
and thereby reduce the wide variations that are inherent in the ﬁéures given
above. UTS's job is complicated by thevfact tﬁat its core store is not large
enough ;ﬁo accommodate simultaneously all possible on-liné usérs. A secondary
V(High-Speed RAD) storage is used _fo cache those users not of immediate concern,
so that time-sharing overhead includes the cost of ""'swapping'' users between core
.) :
store and disc store. A broad-brush sblution to UTS's problems can be char-
acterized by some woodsy-lore precebts: a.) keep enough compute-bound users
in core so that there is always something to do whﬂ.e swappiﬁg and other input/
ou'tput activities are going on; b) keep enough users' in core so as to reduce the
probability of swapping; and c) swap as.little as possible. In order to even begin
to effect a sollui-:ion, UTS must strike sofhe compromise in allocating resources,
particularly to on-line users.. In’partic.lilar, core and disc storage and input/
output devices i:hat are guaranteed to real-time and batch service are de facto
not available for on-=line use except by entries into the batch queue. Second,
limits rﬁust be set oﬁ the amount of c_:o‘re storage té be allowed individual c;n—line
users and on the amount of core storage to be given batch users (above that
guaranteed); these iimits wili be controllable within reason from the on-site

console. Heavy use will be made of reentrant processors capable of being

shared among many users and residing anywhere in core, thus effectively
reducing the average user's core demands. Provisions for handling growing
and contracting core req_uirementé for ﬁsers are .provid';:d. The Sigma 7
mapping feature is absolutely vita.'l to UTS's opere.ttion'. In the absence .of such
a feature, it is necessary at the very least that programs and data_resideA in
contiguous stretches of core store. In systems.without mapping features, the
‘overhead involved in compacting, .shufﬂing and swapping core blocks to satisfy

. the contiguity requirements can reach 40%. By- using mappings, this overhead

becomes neglibile, even under conditions of high loading.

‘Real-time programs can, of course, bring Aevéry‘thing else 1;0 an effective halt;
such matters are best léft to the individual i‘nstallation.. Some real-time pro-
grams -- called ''resident" -- will be given dedicated core storage and input/
output devices at system-generation. Core storage so guaranteed is never
available for batch or on-line purposes. Other real-time prc;grams will be
givén dedicated input/output devices at syétem generation time and will be
granted their core. requirements ;)n a demand basis. This core is available
fér batch or on-line purposes until the oﬁ-site operator aemands it for a '.'noh-
resident' real-time program. If releaséd by the operator, it once again
becomes generally available. Many programs commonly characterizved as
"real-time" oneé, but \.avho only demé.nd interfaées with terminals, can b_é

operated satisfactorily as an on-line user's program -- one that may be linked

to more than one terminal.

et T T AT T

Beyond the ”resident".real-time ggaranﬁge, no moré core is frozen than is
required to satisfy the residency requirements of UTS itself -- (18K words).
No core is absolutely guaranteed batch programs. Insféad, batch programs
become ''fixed'" in core only by virtue of their prc;,ferred tréatment in the
queue for ;'compgtation". The system operator may vary the level of this
preferred treatment for batch. and rﬁay, if desired, ''fix'' the batch job-'into

core permanently.

Allocation of disc resources depends on whether the high-speed RAD is ﬁsed

. alone or in consort with a slower .one for storé.ge of user's files ana system
files. It is clear that the high-speed RAD can easily handl.e s&ap storage,
symbiont and cooperative files, as Well as dedicated storage for processors and

other heavily used components of the Monitor.
A : '

UTS Installation Control

This section describes the parameters which the installation manager may use
to. control the overall operation of the UTS system. Three broad areas are .
covered:

e System Performance Management

Includes those parameters which control system operation by
limiting the number of on-line users, controlling batch se-
quencing, adjusting éorhputing quantas, and setting subproc-

€5S0r use,

e Login Controls

~These controls limit the entry of on-line users into the system

* and limit their use of files, disc pa:cks, tapes, and system

peripherals. In addition, thlrough this mechanism the
on-line user may get direct connection to a particular

. processor or other standard software programs.

e Use Accounting

A variet;r of use paraméters are separately measured
and charged by reference to a réte schedule. Several
rate schedules may be operativeb ‘for different users at
the same time and the schedul-es_ may be changed dynam-
ically to provide differentiai rates By time of day or other

factors at installation option.

Performance Management

Certain dynamic parameters are stored in core memory and used to con-
trol UTS scheduling, accounting, a.nd overall operation. These param-
eters are initialized at SYSGEN tim(.a‘ to default values, but may be sét
during a SYSGEN within certain ranges, by !IMC (for Installation Manage-
ment Control) cards. Once the system is in operation, the parameters
may be sét through a user console(via the control program describe/d.;in
Section E. Two error messages may result frofn the SYSGEN process:
"UNKNOWN!'" for unrecognized parameter names, and "INVALID" for

values outside the allowable range, No change of valuebwill bevmade.in

. cases of error and the default will apply. The SYSGEN command form is:

V!IMC name = value

Names and allowable values are listed in Section E below.

[S2 R PR Y - A vV e &

Login Controls

During user login three items are requested from the user: a) name,

b) account number,. and‘é) password. In Eo[:h batcl; and on-line en;

v'ironménts these ite:mé are used to reference é 'b'login'.’ file which

controls entry of the job into the system and, if the job is allowed,

controls the type of usage and system privileges extended the use;‘.

This file is created hy a specially authorized program mnnli'rt—(tc)“the“.a
(;;»BT*M SUPER in:og»r-amﬁwhich may be run in the batch stream or from

[T
v R

AN -
any user console. U

The login fiie exisf:s under the LOGINLBE account and has a name and-
pass;vord known only to the processors dealing directly with the file,
Cile., a) the logon processor, and b) the system processor used to
enter, delete, and update‘records -within the login®™ile. Records within
the file are narﬁed by the concatenation of a) account number and b) the
name of each valid user. The record contains the usér's password
(which he may change by using the Password Command) and other
information Which confrols the ~system facilities granted to that user.
Other than password, this account control record may only be changed,
deleted, or‘ entered into the file, by running a specially authorized sys-
tem program under management control. One of the records of the
login file is a special system reéord which is. used by a system 'manager
to prey:ent unauthorized mefldling in the file. This record has the name
"LOGINLBE" (formed by the concatenation of the account "LOGIN" and
the name "LBE'. Initially, the password 'is blank. As long as the pass-

word is blank, ‘anyone may invoke the system update program to enter,

e’{é

change, or delete records in the 1ojg_in file by logging in with account

LOGIN and name LBE. Once a password has been entered (using

Password -which runs undei‘. account LOGI_N’, nam;: LBE),

only by supplying this new password at logon time can the login file

be altered. The password may be changed or reset to blanks any

number of times.

This mechanism is supplied to provide security

to the list of accounts within the system.

Contents of the login record are:

LR:PW

LR:PU
LR:TU
LR:DU
LR:FU

LR:CF

LR:CS

The user's password (0-8 characters)

Are flags Whichvaillow (when set) use of a)
peripheral devices (printer, punch, paper tape,
card reader) via symbionts, b) magnetic tapes,

‘c) disc packs, and dm. These

flags are transferred to JIT and control user
I/O CALs.

Additional flags may be set or reset to control -
use of the various system processors. They
will be defined as the need arises. -

Eight-character name of the "automatically
connected' processor. . Automatic connection
to one of the system processors is controlled
by this item which, if set, causes an automatic

eadh fe Ve [TR

If set, the user is automatically connected to a
SAVEd program as if he had given a GET com-
mand (eight-character file name).

Connects the user to a charge structure for
accounting.

T T TTT T ey T

3. Use Accounting

At login time each job (user) is connécted to a charge class which
in turn connects to a cha;rge rate table in'rrfuch,thé same way that
an I/O 6perationa1 lé.bel connects 1:6 a devic.e. 'Managément may

control usage by changing the rate tables used by different charge

classes as a function of time of day or by type of usage.

Charges for each acfivity ‘are accumulated dynamically as they
occur in the user's context area so that the rate table may be

switched or the charge class changed during a job's execution.

1nitia11y, three rate schedules will be supplied. One each for on-

line, batch, and real-time users. Two_ché,rge rate tables will be

supplied with initial rate parameters as outlined below. New rate
<

tabies may be added by SYSGEN and the connection to charge classes

established.

Installation charge totals are aclcumulated in a special record in the
‘system accounting log as eagh batch job completes and as each onv-
line user logs fo. This record is oﬁtput at system shut-down or on
operator request (WRITELOG keyin) together with the other accounting

records in the file.-

.Charge Rates

For each user, batch, on-line or real-time individual, counts are kept in his
context block (JIT) of several activities:
a) CPU use time in 2 ms units

b) Number of file I/O CALs
c) Number of console input CALs (interactions)

e

SHEETRS OF 20%

d) Console time in 600 ms units (. 01 minutes)
e) Number of tape reels or disc packs mounted

These items are pi'inted at the end of the job along with the current summary
produced by BPM., A limited subset is output automati'cally at the time an
on-line user logs off. Other_details of use accounting are available through the
TEL status command. At log-off the automatic report includes CPU time,

console time, number of interactions, and total charge as follows:

{OFF v

- % -
CPU=H3jMM. MMM/ CON=H:MM/ INT=NN,// CHG=XXXX”

CPU time is in hours, minutes, and thousandths of minutes, CONsole time in. :
hours and minutes, INTeraction count is an integer, and charges are in units
as explained below. In all cases high order zeros are omitted except following

the decimal point.

The total charge for a job is computed by accumulating units at the rates shown
in the rate table as each chargeable event occurs. Names of the rates for each

item and default values are given below. This is the RT:1 rate table

| .
unit -

Charge for Name vafue calculation approx. charge(105 units = $1)
CPU time R:CUP 6 r-t - 5¢ per sec for a 4K program;
"CPU*Core size R:COR 1 retes s in 1K blo¢ks; t in 2 ms tics)
On-line transaction R:0T 104 r'n 10¢ per interaction o
I/O CALs R:FIO 103 r-n 1¢ per I/O command :
‘Console time - - R:CON 200 r«T 12¢ per console hour '
Tape & Disc Pack R:TD 10° ren $1 per tape or pack mounted.

File.Time Usage R:FIL 104 - r:iD.P - 10¢ per page per day.

The monetary values are for example only. The value of a charge unit is up to

the installation as is the makeup and aésignment of charge classes.

Rate tables are generated by SYSGEN and resident in core during system operation.
Each is a half word table cohtaining the six rates given above. Without SYSGEN
iél'tstrucgié)ns to tl&ea:or.ltrary three rate schedule header words will be generated
“RS:1, RS:2, and RS:3 all connected to the standard rate table RT:1 above during

prime shift. During non-prime shift the three schedules will be connected to

RT:2, a second standard table, which arbitrarily contains half the value_s of RT:1.

SHEET9Y OF 830%
V)
QJLL//\/ "(M/G
Rate tables, ra:te*sd}edules and the initial connections between them may be

estabhshed for a given installation through SYSGEN.

4 Q\\(\ e l\ g'-.‘. -V\t,?

R-a:te*schedules are connected to rate tables by commands of the form:

‘R\S3-RT1)

A rate-schedule header is created for each such entry.
e & .
A rate table and its contents are defined by commands of the form:
!RT:1, R:CPU = 6, R:COR = 1, R:OT = 10000;
‘R:FIO = 1000, R:CON = 200, R:TD = 100000
Values must be in the range 0 ~ 217 .1 or the message '""'VALUE OUT OF RANGE"

messlage will be printed and value zero subs»tii.:uted. Zero values are used if

rate table entries are not specified.

T T [l

Performance Control

Abiiity to me‘a;su\re the operation of the systeml’_is paliticglarlyvimportant
during the initial debugging st‘a;ges and increases in i;nportance as the sys-
tem is tuned to meet the load of the users' particular environment. These .
performance measures are built directly into the system as a series of
couknters; a given area of executive storagé will be devoted to counting
actions and recording times for‘completion of various functions. Special
code in the form of counting instructions ar‘e provided at critical points
within the systexﬁ to count these events. As s\uch the recording of perform-
ance infor’mation \;vill be on a routine-by-routine basis throughout the entire
system. A program with special executive privileges will display this in-
formation. This prografn will use a dedicated console to print the contents
of the tables which record systém performance measures. Appropriate for-
mats and appro'priate' time intervals .for’ printing will be used. Thr_ougl'; a
standard Monitor feature this program is "awakened", perhaps every minute,
to print the curregt contents of the statistical counters. This mechanism pr'o- »

vides arelativel'y flexible scheme for adding new performance measures to the

system and providing for their printout as the gathering of new statistics is in-

.dicated. Some items should be measured and displayed frequéntly, perhaps

eve.ry minute; others should be measured and displayed at a longer interval --

~perhaps every fifteen minutes or every hour. ~TheAdisp1ay frequency is a.djus-t-

able so that operational data can be displayed more often if special tests are

to be made.

Function in General

Perférmancélmeasuremepts are important during the initial debugging
stages, and their importance increases as the sys-tem is tuned to meet
the load of the user's particular environme;lt. In the. debugging stages
these measures are most relevant to the designers and implementers of

the system. Later they are of primary interest to the installation man-

ager and the maintainers of the system.

Some of the functions of performance measurement are:

a) To measure how well the syste;'n performs.

b) - To indicate weak points in the system.

c) To suggest the caus_és of such weaknesses.

d) " To warn of immediate problemsr; e.'g. » permanent storage

is filling up, response time is becoming noticeably slower,
large numbers of console errors are occurring.

e) To help tune the system for both current and general load
conditions. o -
f) - To measure the importance of various parts of the system; .

e.g., to measure the relative use of various processors in
CPU and connect time. This might have implications for
whether a particular processor is dropped or whether its
use justifies the effort to. add new capabilities.
Having performance measures on-line means that tuning of the system
can be done in response to the current state of the system. If there are
problems in the system (e.g., an unusual number of disc errors), the

installation manager will not be the last to know. Knowing now instead

of later means that he can cause action to be taken now instead of later.

On-line performance control is the .capability to modify the basic
system parameters (such as max core size allowed on line users)

in response to on-line performance measures and other information.

Summary of Performance Monitoring and Control

UTS combines on-line performance measﬁrement and management

in the CONT.RO.L program. The user can display selected control pa'.'ram-
eters and modify their values. He. c.:an also cause the display of values
that measure the performance of the system. These values may be dis-
played periodically at a time inferval séecif_ied by the user. The user
may Specify. one of several canned displays by name or he can build his
’own aisplay. |

The following is an example of how the program can be used to modify
A

control values and display performance measures.

!RUN CONTROL cr | The us’ef calls the CONTROL p‘rogram.

L 4

-S1.:0U=40 cr The user sets SL:OU (i.e,, the max
' "~ 'no. of on-line users) to 40.

- is the prompt character for the pro-
gram

cr stands for a carriage return or line

feed
-SET UP DISPLAY 4 cr The user sets up canned display number
' 4 which gives a summary of the system
performance.
-USE ITEMS DISPLAY cr The user requests a use items display.
INTERVAL IS--60 cr The user is prompted for the time in-

terval. He indicates that the interval
between displays should be 60 seconds.

FIRST TIME PERIOD HAS BEGUN 60 seconds later the first instance
: : : of the display accurs.

- — — e T,

T e T

(l
(

Overall o Sample
Number of Users : L 57
Tasks per Minute per User I 3.7
% of Tasks which are Interactive } 87.3 95.8
CPU msecs per Interactive Task 15 5
90% point for Response Time (in seconds) - 0.2 _) 0.1
Execution Multiplication Factor 20 , 5
Number of Users in Core ' v 10
RAD and Tape Reads and Writes per sec 31 : 25

The d1sp1ay is repeated several tlmes
at 60 second intervals.

Then the user hits the break key and is
prompted for another command. He

-EXIT cr ~ - decides to exit from the program.
EXIT CR?--YES cr The user is asked if he wants to exif..

BYE, 'He indicates that he does..

! . The TEL prompt character appears indi-
' cating control has been returned to TEL.

°

Key Concepts

Definitions for the Breakdown of Terrhinal Interaction

Interaction time is the time between the completion of one input command

and the completion of the next. Response time is the time between the

completion of input and the first program activation. Task turnaround

time is the time between the completion of input and the following terminal

read. Compute time is the time spent in computing in one interaction

period. Thinking and typing time is the time between the terminal read .
by the program and the end of the user response (input complete). Session

time is the time between log-on and log-off.

3.2 Diagram Explaining Concepts Rela

ting to Terminal Interaction.

T
- : ok interaction time »
TT Remaining |
< task turn-around time —p 1 output > T
C . < thinkirig and typing time g
Intermittent CPU time ‘
< —— — — — — — .
RT due to I/O wait and user think user typing
. o - - . 4’) >
<—resp?n9e queue-for-service delay. |a prae r‘ ime .
time —d
: _ Intermittent terminal ' t . .
t > First time
output ' the user does
t, type.
_ —First time
Program the user may type
activation
. READ LIRS .
input A input
complete complete
Character received at Control of the CPU The service program
the computer which is is turned over to issues a READ to the
terminal to the message the program servicing terminal requesting
input by the user. the message just input of the next
" received (The Reading command from the
program) user.

_gpg JO 7 LEFHS

MNT_DINTT_AA DT AT

AQFTN)

T SHEET 3" OF 5¢2

Types of Items That can be Displayed

An item is a control parameter or a use item. A control parametef is
a parameter of the system which can be modified to tune the system; e.g.,

the maximum number of on-line users is a control parameter. Changing

its value may change average response time, etc.

A use item is one of the following:
a) A use distribution
b) A use group
c) A siding

"A use distribution shows what pei'centage of occurrences of a partiéular

kind of event falls within given ranges on an appi’_opriate scale. An aver-
age is also included with each distribution. ForA example, there is a dis-
‘ tﬁbutio_n for the amount of compute time per interaction. The distribution
shows the percent of interactions in which comput‘e time is under one milli-
second; tﬁe percent of interactions in which cdmplife time is. betweén one

and two milliseconds; etc.

A use group'is a group of related use values plus text in the form of

sidings and headers to explain the va}blues.

A siding is text that appears to the 1eft of a value and helps explain the

value.

Items That can be Displayed
A list of items that can be displayed is given below. The names are the
names used in control commands to add or drop items from the list of

items to be displayed.

‘5.1 Control Parameters

Name

SL:0C
. SL:OU
/ SL:TB
/ SL:UB

. SL:OF

SL:OT
\/ SL:BB
J SL:BP
J sL:BL
J SL:QMIN
V SL:QUAN

- turn.

Description

Max core size allowed on-line

.users

—

Max number of on-line users.

Number of characters at which

block terminal output.

Number of characters at which
unblock terminal output.

Max file space allowed on-line
users.

Max number of tapes allowed
on-line users.

Batch Bias. The percent of/'
" execution time which batch

. -
computation receives in its;
\5

- Batch Priority relative to on-

line users. (1 for equal; O for
low). -

Batch Lock. If set (i.e., 1),
enforces a partitioned system
in which the batch job is never
swapped.

The amount of uninterrupted
computing guaranteed a user
after selection. _ .

'The time slice by which com-

Unit

K words

Users

Characters
Characters
K words

Tapes

Milliseconds

Milliseconds

SL:QMIN

Core Size

128

256
S1L:TB
RAD Size

No. of
Drives

- 100

SL:QUAN

231-1

Defavult

8

32

40

10

100

50 -

40

300

LY

e S AAR X1 XTI

" B

5.2 Use Groups

Name

SUMMARY

CPU

CPU PROC

USE PROC

Uard A ALy .I-";'):/'_"‘\'J-L" A]

Description

Overview of the System

Number of Users

Tasks per Minute per User

% of Interactive Interactions

Milliseconds per Interactive Task

90% Point for Response Time

Execution Multiplier

Users in Core

RAD and Tape Reads and Writes per Second

Percent CPU Time (since the. system came up and
during the last time period) for:

On-line User Programs

- On-line Monitor Services

Batch User Programs

Batch Monitor Services

Overhead, i. e., scheduler, COC and symbmnt
Idle, i.e., no service request from any user
Swap WAIT, i.e.) the only service request avail-
able is not yet in core.

Percent CPU time by Processor (since the system cameg
up and during the last time period) for:

Basic

Delta

Edit

FORTRAN
Metasymbol
User Programs

Current Number of Active Users by Processors for:

Basic

Delta

Edit

FORTRAN
Metasymbol
User Programs

.4 Use Distributions COJU\ [1MLV\LLQL’W>

*where X

Name Description

SYS RESP Distribution and average of response time
for the whole system.

SYS INTE Distribution and average of interaction
time for the whole system.,

'SYS THIN Distribution and average of thinking and
typing time.

SYS TURN Distribution and average of task turnaround
time for the whole system. '

SYS COMP Distribution and average of compute time
for the whole system.

X TYPE Analogous to SYS TYPE#*

X TURN, Analogous to SYS TURN*

X COMP Analogous to SYS COMP*

SYS INPU Distribution and average of input length

SYS OUTP Distribution and average of output length

- X INPU Analogous to SYS INPU*

X OUTP Analogous to SYS OUTP*

SYS SWAP Distribution and average of users to swap
out per swap.

BAS for Basic,

DEL for Delta,

EDI for Editor

FOR for Fortran, Y
MET for Metasymbol, oxr
USE for User

Scale

Linear

Linear
Linear
Linear

Special

Unit

Seconds

Seconds

- Seconds

Seconds
Millis econds

Seconds

Seconds

Milliseconds

Characters
Characters .
Characters

Characters

Users

Pl X o o X X 7 N

AoA T~

e e . e e T T T } T

Name Description °

i/0 I/O Rates (per second since the system came up and
per second in the sample) for:

Service Requests, i.e., CALs
Terminal Reads and Writes -
Characters Input from Terminals
Characters Output to Terminals
RAD and Tape Reads and Writes
Symbiont and coop Reads and Writes
Out Swaps

CON TIME ’ Timing Averages (average per interaction since the
system came up and in the sample period) for:

Interaction Time (in seconds) '
Think and Typing Time (in seconds)
Turnaround Time (in seconds)
Response Time (in milliseconds)

. CPU Time (in milliseconds)

USERS " Current Number of Users for:

All Active Users
In Core
Compute Bound
Inputting V
Batch

INTERACT ‘ Number of Interactions per minute by Processor for: -

Basic
Delta
- Edit
FORTRAN
Metasymboli
User Programs

OTHER Miscellaneous Other Values

Average Size of Program

Core Time

Ratio of Single to Multiple Swaps

CPU % for Interactive Tasks

Executable Users not in Core

Executable Users in Core with Priority above the
Compute Queue.

—an'.ninr.l.‘7 K2 W N Sl

Use Sidings

Name Expanded Name
LOG SCAL Log Scale

I;INVSC.'AL | Linear Scale
SLISCAL Special Linear Scale

These sidings look as follows when displayed:

SPECIAL
LOG ' LINEAR : LINEAR
SCALE SCALE . SCALE

. AVG ~ AVG _ AVG
<1 .<5 <l
<2 <10 o <2
<5 ' <15 <3
<10 - , <20 <4
<20 ' . <25 v <5
<50 ' <30 : <8
<100 : <35 ' <7
<200 <40 - <8
<500 - <45 , <9
<1K - <50 ' - <10
2K , <55 . <11
<5K _ <60 ‘ : <12
<10K o . <65 <13

& UP & UP | & UP

/_/

6. Command Summary and Formats

6.1 Command Summary

6.1.1 Commands for Setting ug'Displaysb
The USE ITEMS pISPLAY Command displays those items that have
their print ﬂags on. The primary purpose of this group of commands
is to allow the user to s.pe<':ify' the‘ displa,y he desires by turning on the

print flags for just those items he wishes to display.

Command ‘ Funcﬁon
~ ADD Turné.on the prini: flag for the specified items.
DROP. Turns off the print ﬂ;g for the specified items.
. SET UP Turns on the print flags for a numbered canned

display. Turns off all other print flags. .Can be
used to turn off all print flags.

LIST - Lists the names of all items with their print flags on.

6.1.2 Commands Relating to Control Parameters

Name Function .

CONTROL PARAMETERS DISPLAY To display all control parameters with
o their print flags on.

CONTROL PARAMETERS DISPLAY! To di5p1ay all control parameters.

SET ' . - To set the value of a specified control
' - parameter. The set command can also
be used to lock processors in core or to
unlock them..

TOSHEEL S O S ve

6.1.3 Commands Relating to Use Items Display

Name

USE ITEMS DISPLAY

PROCEED

OFF

Function

 Displays those use items which have their print

flags on at a specified time interval.

Continues an interrupted use items display.

Turns off a use items display to allows adds and

drops. .

* 6.1,40ther Commands

- Name

EXIT

Function

Exits from the program.

6.2 Standard Command Formats

Command v Format
ADD -ADD cr
ITEMS TO BE ADDED
--<Name> cr
--<Name> cr
--CcT
DROP -DROP cr
ITEMS TO BE DROPPED
--<Name>cr
--<Name>cr
--cr
SET UP -SET UP <Number> cr
LIST -LIST cr
CONTROL -CONTROL DISPLAY cr
PARAMETERS
CONTROL. -CONTROL DISPLAY! cr
PARAMETERS

DISPLAY!

Comment

Where <Name> is one of the names

listed in Section 5._

‘Where <Name> is one of the names

listed in Section 5.

'Where<Number>ié 0, 1, 2, 3, or 4.

The display follows immediately

"after the command.

The display follows immediately
after the command.

e T T T Ty

~ Command f‘ormat Comment -
SET e<Name> = <Number> cr Where <Name> is one of the names
' listed in Section 5.1 and <Number>
is an unsigned integer in the range
for the name.
_or -<Name; = LOCK Where <Name> is the four letter
or -<Name>= UNLOCK name by which some processor
‘ ' - 'is called. '
USE ITEMS’ ~USE DISPLAY cr . Where <Number> is the number of
INTERVAL IS-- <Number>cr seconds between displays. The dis-
play occurs below at the specified
time interval. -
PROCEED -PROCEED cr
OFF -OFF cr ’
EXIT -EXIT cr
EXIT. OK?=--cr
BYE. :

NOTATION:

(a) cr stands for carriage return or line feed. The blank before cr in the
examples is for readability. The cr should come immediately after the ‘
preceding nonblank character.

(b) - & -- are prompts from the CONTROL program.

(c) All lines not eﬁding in cr are messages from the system.

6.3 Remarks about Command Formats

(a)

For all the commat.lds’ except the SET, SET UP, and CONTROL
DISPLAY commands only the first letter is relevant in response
to the - prompt; e.g., the following are all equivalent:

=ADD cr
-A cr

-ADD ITEMS TO PRINT LIST cr

“AXYZ cr

=]y Wary oy J._;}’Z‘OI‘_)‘“-_ (4
. . ,’ 5 .

(b) No extraneous blanks should be included in a SET command.

(c) The last digit occurring in a SET UP command is used to
identify the canned display.. .

(d) An initial C identifies'a command as a CONTROL DISPLAY
command. If a ! is present, all control parameters will be
displayed. Otherwise, those control parameters with their
print flags on will be displayed.

(e) X is an alternate initial character for the EXIT command.

Discussion and Examples of Individual Colmmands

ADD Commal;;d |

The ADD Command ié used to turﬁ on the print flag of items so that
they will be displayed when a use display (or control display) is in-

voked. Consider the following example:

-ADD cr The print flags for CPU PROC and

ITEMS TO BE ADDED USE PROC are turned on.
--CPU PROC cr
--USE PROC cr

--cr
-USE DISPLAY cr - A use items display will be made every °
INTERVAL IS--60 cr 60 seconds including all items with their

print flags on. The use groups referred
to by CPU PROC and USE PROC will be
included since the ADD command above-
turned on their print flags.

The items that may be added (or dropped) are those listed in Section 5,

RESTRICTION:

" ADD (and DROP) commands are illegal during an interruption of a USE

DISPLAY. However, if the display is not going to be continued, an OFF
command may be used to turn off the display. Then adds and drops may

be given.

7.2

7.3

“ADH'HILT.LT":;‘— v Oyo

‘DROP Command

The DROP Command is used to turn off the print flag of items so that
they will not be displayed when a use display (or control display where

all is not requested) is invoked. Consider the following example:

. =DROP cr ‘The print flags for CPU PROC and

ITEMS TO BE DROPPED USE PROC are turned off.
--CPU PROC cr _ :
--USE PROC cr

--Cr : . -
-USE DISPLAY cr A use items display will be made every
INTERVAL IS--120 cr two minutes. The use groups referred

to by CPU PROC and USE PROC will not
" be included since their print flags are off.

The items that may be dropped (or added) are those listed in Section 5.

RESTRICTIONS:

DROP (and ADD) Commands are illegal during an interruption of a USE
DISPLAY. However, if the display is not going to be continued, an OFF
Command may be used to turn off the display. Then adds and drops may

be given.

SET UP Command
The SET UP Command may be used to turn off all the print flags. A
user would want to do this if he were going to specify his own display

from scratch. The command for this is:

-SET UP 0 cr

: T.he SET UP Command can also be used to turn on just those flags re-

quired for a pé.rticular canned display. All other print flags are turned

off.

TOHEWL G O 2O¢)

There are five canned displays at present:

Turns off all the pi‘int’ﬂa‘,gs

Turns on the print flags for:

LOG SIDE
SYS RESP
SYS INTE
SYS THIN
SYS TURN
SYS COMP
.LIN SIDE
SYS INPU
SYS OUTP

Turns on the same print flags as display 1 and
then turns on:’

X TYPE
X TURN.
X COMP
X INPU
X OUTP

Where X is a processor specified by the user
in response to a prompt.

Turns on thé print flags for:

CPU

CPU PROC
USE PROC
I/0

CON TIME
USERS

Turns on the print flag for:

SUMMARY.

E.g., in the following example the appropriate print flags are
set on (and off) for display 3:

-SET UP 3 cr

7.4

TUormmmy oo R e

RESTRICTION:

Commands which turn on and/or off p'rint_ ﬂé,gs are illegal during an

interruption of a use iterns display. See the OFF Command.

LIST Command

The LIST Command lists all items with their print flags on. It can be
used to verify the items to be include-d in aicanned display, or to make
sure that a series of-ADDs— and DROPs had the desire.d effect; e.g.,
-SET UP 3 cr

-LIST cr

CPU
CPU PROC

- USE PROC

I/0

- CON TIME

USERS
-SET UP 0 cr

-LIST cr

-ADD cr _
ITEMS TO BE ADDED
--SLI SIDE cr

--S5YS SWAP cr

-=CT .

-LIST cr
SLI SIDE
SYS SWAP

CONTROL PARAMETERS DISPLAY Command
. The CONTROL PARAMETERS DISPLAY Coinmand is used to display .
all control parameters with their print flags on. A list of all control

parameters is given in Section 5.1; e.g.,

-SET UP 0 cr

-ADD

ITEMS TO BE ADDED
-=-SL:0OC cr

-=SL:0U cr

-=Cr

-CONTROL cr

Max K Core On-Line Users

CONTROL PARAMETERS DISPLAY! Command
The CONTROL PARAMETERS DISPLAY! Command is used to display

all control parameters whether or not their print flags are on; e.g.,
. . Y

-CONTROL ! cr

Max K Core On-Line Users
No. Char at which Block
Max File Spc On-Line User

% Batch Bias
Batch Lock

Millisecs per Time Slice

———— TOnNmmL gy vrT vy

Max Number On-Line Users

H

Max Number On-Line Users
No. Char at which Unblock
" Max Tapes On-Line User
Batch Priority .
Msec without Interruption

Hw wnn
H oHon

32

32
10

-1
40

7.7 SET Command

7.

The SET Command is used to change the value of a control parameter;

e.g., o

-SET UP O cr

=<ADD cr

ITEMS TO BE DISPLAYED
--SI1:QUAN cr
--CT

-CONTROL DISPLAY cr

Milliseconds per Time Slice = 300
-SL:QUAN = 450 cr

-CONTROL DISPLAY cr
Milliseconds per Time Slice = 450

The SET Command can also be used to lock or unlock a processor; e.g.,

-BASIC = LOCK cr Basic is locked into core.

. =BASIC = UNLOCK cr Later Basic is unlocked.

8

*

Special care should be taken not to lock a processor into core which is

already locked or to unlock a proceésdr which is not locked.

~

USE ITEMS DISPLAY Command
The USE ITEMS DISPLAY Command is used to display all items with their

print flags on (including control parameters). The display takes place at

‘an interval specified by the user; e. g.,

-SET UP 1 cr

-USE ITEMS cr

INTERVAL IS--180 - cr , :

FIRST TIME PERIOD HAS BEGUN Starting 3 minutes later, display
number one will be displayed every
3 minutes. B

TR VT UL e

7. 9' PROCEED Comm.and
The PROCEED Command may be used to continue a use items display
‘which is in progress; e.g.,
-SET UP 0 cr

-ADD cr

ITEMS TO BE DISPLAYED
~ --USERS cr

-=CY

-USE ITEMS DISPLAY cr

INTERVAL IS--60 cr : C

FIRST TIME PERIOD HAS BEGUN 60 seconds later the number of

* : active users, users in core, com-
pute-bound users, inputting users,

~and batch users is displayed.

- The program is interrupted.

-CONTROL! . All control parameters are displayed.

-PROCEED cr - If less than 60 seconds have elapsed
- . . since the last time period began, the
’ displays will continue at the next in-

- terval. ‘

7.100FF Command
ADD, DROP, and SET UP Commands are not allowed while a use items
display is in progress. However, if the dis’play is not going to be con-
tinued, the display may be turned offj -e;g. ,
-ADD cr . : ‘ :
NO ADDS OR DROPS DURING USE ITEMS DISPLAY
USE OFF COMMAND TO TURN OFF DISPLAY
-OFF cr
-ADD cr
ITEMS TO BE ADDED

--CPU PROC cr
--CcT :

TR T T IR T v T

7.11 EXIT Command
. The EXIT Command is used to exit from the -perform program and re-

turn control to TEL; e. g\,

~-EXIT cr

EXIT OK?--YES cr
BYE. 'A lone cr or any string beginning

with Y means yes.

N ‘ ‘ ! is thé prompt character for TEL.

If the user accidentaliy keys in an exit command or changes his mind
after he types it in, he need not exit; e. g.,
<-EXIT cr

EXIT OK?--NO cr _ . Anything but a lone cr or string
Co beginning with Y means no.

8. Approach to Implementafion

There are four different kinds of code in the systerh which pertain to

performance measurement:

(a) A user prdgram which display-s the measurements in a format
requested by the user and modifies control parameters for the
user. '

(b)- A Monitor page or pages containing the control parameters and

use values and distributions on which the displays are based.

(c) Special code at critical points in the system which modify the
Monitor page(s) directly (e.g., upping counts) or which report

~an event to the special code in the Monitor.

(d) Special code in the Monitor which makes more complicated cal-
culations and changes to the values and distributions in the
Monitor page(s).

When a use display is being performed, the program is awakened

periodically (at a time interval specified by the user) and produces a

display. The program is implemented in such a fashion that it is rela-

tively easy to add.new measurements and construct new displays.

TN e T \Un T oo

System Error Detection and Recovéry

Iﬁ addition t6 standard error récqw}ery normal to I/O devices, the UTS sys-
tem will take special me'asures“to provide reasoﬁable recovery for detectable
machine malfunctions .. Assuming that the normal failure mode will be that of
intermittent errdlr, the system will effect recovery by immediate restart of
the user in question or the whole system if nécéssary after making records of
machine status to aid in error diagnosis. In this case recovery will be a_,ccém-

plished without operator intervention. This technique will maximize the up

time of the system while recording information useful to machine maintenance

personnel, -

Errors, whether caused by hardware or software, are of concern in any com-
puter system. The consequences of failure in a time-shared system are
multiplied because of its multi-programmed operation. When a time-sharing

system fails each of the concurrent users of the system is affected, perhaps

fatally. The possibility of an operator re-trying a job that has run into a mé-

chine problem is no longer an available option. Even symbiont batch systems

run into difficult backup problems.

This specification does not offer any co.fnplete solutions to the reliability pro-
blem. Rather, it suggests a number of possibilities of various degress of

implementation difficulty for use in detecting or recovering from hardware

"problems. Since truly adequate error recovery depends in large measure on

the exact strain put on the hardware by the mode or modes of operation of the

software, we must continually adjust our approaches to the reliability problem

TARIAAA AN)T VLT T T

as the effectiveness of the various techniques are proved or disproved
- through experience. We expect this expefiencé to show both the common

failure modes of the hardware and the effectiveness of recovery and detection

techniques.

Thé presumptioﬁ’is made that standard and adequate recovery meéSures 'have
been taken wherever possible (if sqch is not thé case in BPM, then changes
-will be made). That is, tape and disc transfers are parity-checked. Critical
‘transfers are éhecksummed and/or address checked. Detected errors are re-
covered by reread or rewrite and operator aésistance has .been used where
possible (say card problems). With tbeSe vsta-ndard techniques out of the way,
we are still left with errors. (For some errors, suchAas meméry parity, we
are in trouble immediately and recovery by retrial is impossible.) The latter

category is the one we need to attack.

At least six facets of error handling need to be considered for a comprehensi\;e

L 4

attack on systerﬁ reliability:

(1) Prevention (4) Isolation
(2) Detection (5) Recording

’(3) Recovery (6) Restart

Prevention of hardyware errors is a matter of good machine design é.nd good
maintenance. However, we must not eliminate the possibility of identifying
weaknesses in the hardware and providing fixe-s for them. Sy'stem software
has a History of identifying hardware Weai(nesses. In many cases a hardware

fix will be the correct solution.

Detection is also oftén left to the hardwar_e through par'ity checks, bounds
checks, etc. Often, of coui'se, only the éoftwaré can tell that a certain
signal means a malfunction in éne case and not in an9thér. Many software
checks are possible -- sé many, in fact, that it is often difficult to know
where to stop. The usual solution is to check very little and depend heavily
on the hardware. This is not goéd enough in time-shaf;mg systems. Errors
must be detected quickly and fecovery‘initiated .befor‘e total chaos develops.‘
Simiale checks for consistency of data should Bé made when feasible. ‘More
élaborate checks should be developed in frequently used codes such as the
Scheduler, job control, check inteArrupt routines, and I/O handlers. A partié.l
‘llist of software error detection techniqueé. which are useful in various situa-

tions is listed below. It is certainly not complete and should be added to as

we gain experience.
oot

(1) Periodic consistency checks

(2) Checkrunning 3 ‘ <
(3) One word data comparisons on I/O transfers 4

(4) Self-addressed RAD records .
(5) Range checks on internal data

(6) Double end loop tests in critical routines

(7). Read compare after RAD write ,

(8) Watchdog timer checks for dropped I/O traps

(9) Software double checks on I/O action (for extraneous interrups)

(10) - Checks for controller and device unusual end conditions

_QH‘ELT.L‘J:/—U’.E__:)“('/‘_U

Diagnostics have long been uéed to identify failing machine parts. With the
use-of marginé, weak components can sométirr_xes' be detected before they
cause trouble in the actual wo:j':king machine. While dia,-gnostics of manuy
types c;an be run in a time-shared system, their usefuiness is limited becaﬁse
of the difficulty in vmargining; we have no way of prpviding marginal voltages

- or frequencies for just the time slice in use by the diagnostic (and returning
to normal after error detection.to provide autorﬁatic reporting of the error

location and type). Certainly this difficulty should not be construed to limit

efforts for time-shared diagnostics or exercisors.

Time-shared diagnostic programs are very useful for exefcising per_ipheral
units (tapes, card equipment, .paper tape equipment, discs, etc.) and their
controllers since the equipment can be isolated and separately margined. UTS
will provide for such diagnosti;:s allowing them master‘mod(e operation and pro-

viding for automatic execution of diagnostics during periods of light load.

Recovery of I/O errors of vé.rious types is fairly standard practice although
it‘is often a long and difficult task. Many main frame errors are nét recov-;
erable at all. In fact, in the case of parity errors in the Sigma 7 it is not even
possible, in general, to recover. (although ip most cases recovery can be accom-

plished). We may find that hardware help is needed in this and other cases.

onLnLU Sy U .I'.'_’j_(/-Z)_

In certain cases known to theA program the error is of little con'sequence
(e.g., if it occurs while cycling in the idle loop) and the remedy will be to .
ignore the error. These cas‘és will be relativellyA few. ‘In the time-shar.ed
situati.on, a machine error in a user's prograrh ‘may'be "reéovered” by re-
starting the job from the last swap image on RAD. This wiil work if no
other I/O has occurred (a fact which can be recorded and if the accounting

information has been updatedb. ‘Whether it is worth doing depends on the fre-

quency with which we expect machine errors to occur.

_Isolatidn of the area of error is particularly important if recovery is not

possible. (Of course, if isolation is complete enough we can recover but

this is rarely the case.) In the time-sharing environment, it is important
C

to isolate the error to a single user if possible. If this can be done then the

user and his data can be discarded without injury to otRer users.

Recbrding of all detected errors; vﬁhethe? 'r’ecovered or not, is vital to good
system maintenance. Automatic recording is preferable since fewer errors
are overlooked or ignored. . (How makhy Sigma 7 machine errors went unre-
ported last? week?) In addition, the accumulation of records of intermittent
failure is valuable in isolating problem areas §£ the machine which will re-
quire both more maintenance attention ahq better diagnostic and error re-
covery procedures. It is required that a téletype console bé dedicated to
recording of errors detected and recoveries made. The console also serves

as a performance measurement log.

TSHEELS/ OF ¢ 0

Total failures of the system should automatically record the vitals of the ma-
chine (registers, PSW, etc.) on the log for latér'analysis and a total core
dump of j:he machine on RAD will be made (in a circular buffer) to enable a

very detailed analysis when warranted. Time and effort required to make

this record is paid for on the first error found, hard or soft.

A brief summary of the data which should be recorded is:

Recovered errors - Catastrophic failures
user console - sta #; count type of test which failed
tape - unit #; count registgrs |
RAD - sector; count | .PSD. |
AIO, TIO, TDV status special system temps
I/O command used core dump (on RAD)

<

Restart after a system failure in the shorj:est possible time is of great im~
portance in a time-shared system. Users understé,nd that. machines fail
occasionally and 'are happy if an automatic restart procedure is able to re-
.s‘tart quicklf from a total but intermittent failure. If all failures were solid.
ones, automatic restart would not help muéh but most failures are intermittent
and restart serves to get the machiné back up for the users quickly. The re-
cording of the failure directs the CEs in tfxéir efforts during the next normal

maintenance period.

C il g

[P P . 2t A S

Machine Modification may be necessary to achieve reliable system operation.

Specific areas of concern are:

(1) A register to report directly the address of a
memory parity errozr .

(2) Direct connection of the 1;eporting log to avoid
dependence on an IQP.

In summary, the philosophy of UTS_ for ma'chiné'errors and failures is pre-
vention wherever possible, caré in detection at the earliest ’possible time,
‘recovery from as many errors as pos;ible, isolation of the failures to limit
the bad éffects, recording of both error ar_ld f;.ilure situatigns to‘aid mainte-

nance, and rapid restart in the event of failure to maximize up time.

DRAWING NO. 702489
SHEET 59 OF 207

Part III. SYSTEM CAPACITY AND LOADS

TABLE OF CONTENTS

Page
INTRODUCTION 60
A, RAD Transfers
B. RAD Transfer Times and Loads

C. CPU Loads

D. Interactive Delays

TOnWWIrseT O TS

INTRODUCTION

We have stated above that UTS is intended to handle batch pfocessing operations

. aﬁd real—time'progr'ams in addition to on-line termina;l u's”eArs. Clearly the ability
of a Sigma 7 to handle all thesé tasks ad.equately. will depend on the total load sub-
mitted, the distribution of this load over the three broad categories of G.Se, anvdv the
hardware configuration of the Sigma supplied to the‘t'a.sk. Also,v the user's satisfac-
tion will depend on his definition of "adequa;tely"‘ -- what job turnaround time is

acceptable in batch and what response delays are tolerable in on-line service.

U'I"S,achieves its responsiveness and efficiency through the application of several
hardWare and software techniques. The principal additions to the standard tech-
niques embodied in BPM, and the primary gain.from their use, have beenvdis‘cu.sséd
previously but are listed below for reference: ‘
e Multiple users in core - increases CPU utilization by increasing |
the probab.bility that an executable task is in core. We try to assure
that, on the‘average, four or more executable tasks (on-~line, batch,

etc.) are in core.

e Use of Sigma 7 memory map - proﬁdes execution time relocation
of user programs by page, thus simplifying bookkeeping and re-
ducing over’head ix;x achieving m;lltiple users in core. Since the page -
parts of a user's program may be placed anywhere in cofe, scheduling
ofA tasks may be made to depend gil_y..on task priority and not be ham-
pered by a need for contiguous memory allocation. Some additional
flexibility accrues to the programmer through the availability of a.

large virtual address space.

DR 5T OrT 50T
e Shared common processors - Reentrant programming and use
of the memory map allow users to share cofnmonly used proces-
sors such as editors, debuggers, libraries, and BASIC. Con-

siderable saving in core space is achieved in comparison to systems

requiring a processor copy per user.

'But what will be the system's respénse under Some_ty_pical loads? How effective
will the above techniques be? Inthe paragraphs below we examine CPU and R_ADI
loads, on-line terminal response, and the division of the load among 't-)a.tch, on-
line, and real-time uses for various loads typiéal of the industry. 'The results
are back-é}f-the-'envelope type calculations, buf serve to give a general impres-

sion of expected UTS operation.

Two cﬁ't':ical areas are examined: i:'{AD usage and CPU usage. RAD is exa;miried
for total time load; that is, the sum of the time required to service all re‘ques'ts‘
for RAD transfers is estimated and compared With the time available to perform
the requests. 'The calculations are made for three SDS RADs and average delays‘v
are estimated from standard queuing delay curves. The results show that for the
”fy.pica.l" load the 7204 RAD is inadequate, i:hveA7232 is marginal, and ‘the 7212
quite sa;tisfacto;'y in any cése. | These resu}ts afe for both files and swap storage
on a single RAD. We will discussilater the .Splitting of these functions onto more
than one device. RAD size capacit)'r is not discussea, but BPM capacity can be
‘used as a guide by aading 20—30, 000 WOI‘d:S for new processors and 120,000 words
for swap storage (4,000 Words each for 30 l;sers). This would put the UTS RAD
size requirement at about 2 x 106 bytes exclusive of file space, including the most
commonly .us.ed processors but not all (e.g., COBOL is 'not. inclﬁded in this esti-

mate).

oAy e Oy D00

CPU utilization for all noncompute-bound and non-batch operations is estimated.
Under the assumptions used, 65% of CPU capacity remains to be divided between
compute-bound, batch, real-time, and on-line users after allowing for file I/0,

symbiont operation, and interactive service for thirty noncompute-bound terminal

users.

A. Number of RAD Transfers

" Table 1 below summarizes in seven broad Catagories the number of trans;
fers required of a RAD in a UTS system. In each category the underlying
assumptions are noted. It is generally assumed that write éhecking is E_o_t'
done. If this is desirable, additional RAD loads aboye that shown will

- occur.

1)

2
1)

4)

5)

6)

7)

‘—‘UA'I'QQ‘*““V'\J'—\J'J.'_'“T)'U'_U_

Table 1
‘Disc I/O Transfers

Printér Symbiont & Co-op (800 lpm) :
Card Reader Sy’mbiont & Co=-op (ZOQ cpm)
Batc};execution 1/0 - (nvon-'perivpherlal)
Terminal user I/O to files ‘-- %%1_; not for
editi‘ng or debugging; 3/user/interaction;
20 sec/interaction; N = 30 uslers. _

Swaps for interactive users -- N/}O

2 transfers/interagtion/user; |

20 sec/interaction; N = 30 users.

Swaps for time slicing -~ 2/Q-

2 transfers per time slice quanta; Q = 300 ms.

Monitor overlays == 500 per bafch job;

500/j processor fetches, library loading etc;

job time j = 1.5 min,

Y

Transfers/sec

TOTAL 25,

. 3'3
.5
2.0. v

405 ’

3.0

6.7 |

5.5

[$4)

Some notes on the values assumed in Table 1 are appropriate:

1.

We assume that the print load generé;ted by all programs in the
system will be safficient to drive the pi:‘intér at its full speed of
800 lines per minute. This is probably a good assumption for
busy périods, but somewhat hi;gl'q as a full time rate. Student
problems a;t a univérsity produce 800-4.1000 lines of output per
minute of execution while scientific-aerospace environments have

rates nearer 300 lines per minute.

'Average card input rates at university and aerospace computing

‘centers seem to be in the range of 100-300 cards per minute

computing.

File I/O necessary fér problem execution naturrally depeﬁds on

the program, and ranges from zero to whatever rate the file de-
vice is capable of.. Note that symbiont I/O has already been included
in 1) and 2) above so this I/,.O is intermediate such as the files ggn'e-
rated between pas's. 1 and 2 of Meta-Symbol. We guess that a cén—

servative estimate would be represented by a program which

processed one logical record each 50 ms of computing. If the
= L

records were 100 bytes long, then 20 records would {fit in a blocking

buffer. Two I/O actions would be requir-ed each second (50 ms x

20 records), one for the blocxking buffer and one for the associated
U]”,--UE'.' }"J/‘Oé/

index buffer. The 50 ms per intermediate I/O action is chosen to -

be representative of the range shown by SDS processors: BASIC 6 ms,

META 65 ms, SDS FORTRAN 90 ms. (Assuming that one inter-

mediate record is read/written per source line translated.)

»

_ \JL‘J‘H“'&'U'{/‘V'J{_)_UTU—

File I/O generated By_ terminal users is estimated f>ron1‘v JOSS
where program loading, JOSS's e"quiva.l'entv of chaining, and data
I/O amount to about three physical récqrds transferred per
ter;'ninal intera(*;tion. Three physical r;acords traﬁsferred per
interacj:ion also seems to be a reasonable rate for inquiry sys-
tems -- say two dictionary look-ups and one data fetch. The
assumed figure should be con‘servative' since we presume that

most user time will be spent editing or debugging, and in both

-of these activities the I/O rates should be an order of magnitude

smaller than the assumed rate.

In servicing terminal users' requests we assume that for every
request (interaction) the user's program must be brought into

core frém RAD. Spa.ce in core must be cleared by frénsfer to
RAD. The.assumed interaction rate qf once each 20 seconds is
consérvativé - most time-sharing systems measure an interaction
rate of once per 30 secvon.ds‘l. ’
Compute-bound users are service in round-robin fashion. That
is, each time quanta we shift CPU control from the currently exe-
cuting program to the next program in the compute queue. It is
usual that 5-20% of the on-line users are compute-bound (both
JOSS and SDC systems have 6% corﬁpute—bound) so it might often
be the case that no swap 1is required to ready the next compute-
bound user for eXecutioﬁ. We choose thé conservative assurription,

however, that a swap is always required each compute quanta.

TommmT e T OET SOTDT

(For _instanc‘e, ‘the case of five.f 4,000 erd compute-bound pro-
grams operating in 16K of memory.) Note that if some of the
users are compute-bound, then they should ﬁc;t be counted in the
swap for inte;ractioﬁ or the terminal file I/O categories. We can

either count this as conservatism or say that the number of users

served is 5-20% higher.

- 7. Current measurements on ''typical" batch jobs in BPM record

about 500 RAD I/O actions. This includes fetches for all needed
processors (FORTRAN, SYMBOL, LOADER, CCI) overlays for
the processors, overlays for thé Monitor, file I/O for ASSIGNSs,
Debugs, processor interfnediate data, programs fetched from the
library, etc. The assumptioln of a c;onsfant number of I/O actipns
per job is rather gross but W‘e know of no better assumption. 'I‘he
average job time of 1.5 minute_sv 1s representative of a university- -
student environment. For écientific-aefospace shops, the job tim.e

is more like three minutes. We choose the conservative figure.

Number of RAD Transfer Times and Loads

Transfer time depends bn the amount _transferi'ed, the RAD used, and the

access algorithm. Reasonable transfer amounts for the seven items above

are: 1) and 2) - 256 words, 3) and 4) - 512 words, 5) and 6) - 4,000 words,

and 7) - 512 words.

RAD transfer times for three SDS RADs are -

7204 23,6 ms/1000 words]
7232 . 11.3 ms/1000 words

7312 ’ 1.7 ms/1000 words

Table 2 below repeats Table 1 but also lists the percent of RAD capacity,

required for data transfer only -~ latency is assumed to be zero.

Table 2

Percenf of RAD Capacify -

Words . -
, - Xfered - :
Item Xfers/sec 1000's '7204% 7232% 7212%
1) Print Symbiont 3.3 1/4 2.0 1.0 1
2). Card Symbiont .5 1/4 .3 .14 .02
3) Batch Execution 2.0 1/2 - 2.4 1.1 .18
4) Interactive File I/O - 4.5 1/2 5.4 2.5 .4
5) Swaps for Interaction 3.0 4 _ 28.0 13 5 2.1
: | . » ‘ -
6) Swaps for Time Slice 6.7 4 63.0 .~ 30.2 4.7
7) Batch Overlays 5.5 1/2 6.6 3.1, .5
TOTAL 25.5 107% 52% 8%
- | Latency @ 17ms/Xfer (25.5 Xfers) . 43% 43% 43%

GRAND TOTAL 150% 95% - .51%

The table shows clearly that swaps performed for time slicing have a large
effect. Since the quanta size is under our control, we change it from 300 ms to 1 ~

second and recalculate. This is "tuning'' the system.
. Total load on the RAD's are now:

7204 7232 7212,

Transfer Load - 63 o33 5
Latencj Load ‘ 34 34 34
Total '97% 65%. 39%

L et)

o

CPU not including execution of user programs or baich processors,

1)

2)

3)

4)

5)

6)

.7)

Some notes on the assumptions used in computing the various loads are

Compute Load on the CPU

Table 3

CPU Load

Printer Symbiont & Co-op (800 lpm);

TOTAL

again in order. . .

% of Sigma 7 CPU

4.0

2.0 ms/record for Co-op; 1 ms/record

for symbiont; |

Card reader symbiont & Co=-op (200 cpin). 1.0
Cycle stealing - memory transfer 5.0
_interference of swap and file I/O with

computing. Worst case.

: oo ’

Swap I/O management @ 500 Msec/transfer, .5
File I/O management and transfer at 7 ms per 17,0
logical record :

COC terminal I/O management and conversion - 1.2
100 Msec/char; 30 uéers; 4 char/sec/user.
Cbmputation for interactive response 30 users; - 7.5
1 interaction/20 sec; 50 ms average processing --

(enough for < 95% of all interactive fequests)

\

e

SIEET 49 OF 34F

Table 3 shows the breakdown of the major components of load on the

1) & 2)

. 3)

4)

5)

““»‘UJ{J“-I;IJ-'J’J.”/.V_—P'J.'VJ'U._O_
The loads assumed for the éard and printer symbiont are the
same as those used for the RAD load. The difference in time
required between the symbiont and its corresponding cooperative

reflects the fact that the symbiont transfers data directly from

buffer to device, while a move of the record core-to-core is re-

quired for the cooperative.

Worst case interference between a computing program and I/O»
transfers occurs when both operations use the same mémory }.;ox.
In time-sharing systems we are tra;rxsferring data and programs
between RAD and core a large fraction of time so thére is usually -
a payoff in interference Ar.eduction if core is organized into inter-
leaved boxes. A first guess would be 1/Nth interference if £here_

are N core boxes..

The estimate here of 250 instructions to control each swap should

be conservative.

Overhead of thc; BPM file I/O system is currently about 7 ms/
logicé.l record of 100 bytes. S"ch'eduled improvements will reduce
the figure by about 2 ms/logical record and new access methods
may édd to the improvement. For the disc transfers of item 3)
Table ,I, the overhead is estimated at 7 ms for each of the 20
records tr.ansferred 6r 140 ﬁs per secoﬁd. The disc transfers of

item 4) Table 1, included the transfer Qf one record per user con~

sole interaction or 21xN/20 ms per second for N users. Thué, the

" total is 170 ms for 30 users.

6)

- 7)

BECITESPF iy A v e S
Terminal I/O includes translation between internal and external
form and buffering as well as standard checking and facilities
for several different kinds of consoles.. The rate of four char-
acters per second per user is that measured in the JOSS system

and others. We have no reason to believe that the rate will be any

different in UTS.

As before, the interactive rate of one message per user per 20
seconds is a conservative one by standards set in currént tifne-
sharing systems. The estimate that 50 ms of computing is the
average required for over 95% of all requests again .cémes from
JOSS. 85% of requests r-equire‘less than 50 ms to complete. The
figure is lower thg,n that recqrded in the SDC and MAC systems but
only by amounts that} may be éxplained by the difference in machines.

A factor of two increase would not be surprising.

-Thus, about 65% of CPU capacity remains to be divided among computing*

for batch jobs, compute-bound terminal controlled jobs, and real-time res-

ponses. Of course a single compute-bound program can use all of this time

if allowed, and if more than one is in"the system, delay must occur since

the resource is overloaded. S.cheduling of compute-bound jobs is controlled

by installation management thrbugh control parameters discussed in a pre-

vious section.

oL/ OY 500

Interactive Delays |

Interactive response time is controlled by 6u;- ability-to fetch a user's
program from theA RAD in conflict with all othér 'u;sl_ersb wishing response.
The situation is similar to single-server queue problefns. Average de-
lﬁys have been calculated and delay curves are shown in Figure .1. The

delay is given as a function of the fraction of full load* and is plotted in

terms of service time.

The four ‘solid curves are plotted accorrc.:ling to four different assumptions
about the nature of the source of the load. The upper pair of curves de-
picts results for assumption of exponential arrival and service times and

a first-in-first-out ée’rvice discipline. 'The lower curves assume éxpo-.
nential arrivals and constantv service times for the same ser.vice discipline.
Our service times are neither constant nor exponential, but contain co’m_-' '

ponents of each: The compute component and part of the data transfer time

are probably distributed exponentially; part of the transfer time and some

- overhead time is constant; and the RAD latency is uniformly distributed.

We hope that our composite case can be ‘estimated to be between the two -

curves shown.

The upper and lower curves in each pair show the variation with the number

of sources supplying the load -~ in our case the number of users. Note care-
fully, however, that the curves are normalized in such a way that the users --
whether 25 or infinite -- are generating the same total load. However, the

curves are still useful; when the number of users is doubled, the load is also.

-

doubled.

%A general expression for calculating this load is given later in this section.

.

TTOHBEEL

2]

10

vy

INNIRS IO ST (LTI N

VD 2FD AYTIQ ANIIAY

SNOISIAIQ OL X STTIDAD €
YIS N NI AGYK

14-85¢€

‘0D U3ASSI B 1FILNIN RN
SIRHLINYOOT-IWas)

4 | L R L {1 AN SREAN N It a.t | _
ity | il : i
s 14 (il | L L <71l
T an S \W
RES 1l nnd
NS
L n
{ RLERNNAE A
i ki |
I c,. 3 J N w
”yv H|1 1 I i b ,1” B N
1] Nwe Sy AN m,_ . e
i] gl uk n] nlvﬁ -~
N ™ At ST N 3
ivv slog =L I!H”er:in_i I I IERE1RRE ,(ty JEENY A L UL
L1 | v eds e !i; B! ™ L J,k “ A
I lacer N RESARN AR E D - L s Iy b, ©
K i » I g NITTITIN TR Al (> ¥y) N
LN v = \ N ™ML
SRUEIY : NS T R Y
L S SR NS Al] g
41‘ ,w\—\ 7. ”,:/ %J N N &a- L ol U
a1 L L [P ™N Mo DN \ AN s LI iy Ny, v
N N 3 4 N q % b ¥ o by
- ™ AR T ~
-+ +- H P ”n ‘nJv.l, I..Ir._ /. - <rlwn. Ni .v‘... S M 7 f»m
il -H- H F f O AR R AN SN SN,
i L = kN 2 N
H + HiH g ANJ‘ » .dr“ N "\ R] N - (i IS
i 1 I I 2D\, N A/V; AN 4 £
1 - ' N Y N &R 6nm
T
i 1 Hi 1l H KRR N >0 N M N) A
| i I N S N2 TN o M by
i it i AN XN &
{ : i I ..m; N I N
P ™ > M4 ~ N { a
! | i N > SN N
¥ IR G SN N lwéf Ly 9
i A NINE it a
i H I 11, N EANIN NP T
1 I s 3N N AN el :
z3 , N LN TSN ,,ﬂv) xQ
il 2 S S i P N '
i 3 TR ﬁu\“.,d,ﬁ/ D= axj;..,r = N
i L] o | Jiﬂﬁv M\&/// NS ~
| FTON AN 1S INNG N
_ 5] 1 tH O I s /Al+/ J by
| i ey N N W
i) o N llul N R %
LB at RN ~ >
! L1Rga L. n \J .
AR T NERS TR RS
i A H o NN o [§V] Qa
HIRH R | 15 I INNEY N
i i3 | 1 NS ~ <
i] Sl -~
HHITIN i 9 1] TS 3
I <y i . ~SS ~
£y 1 12X
H] I~ -d
TUHR T
2 1Y vLy .\\.rﬂ \] 1 1 N
T IR K 11 | ~
\‘
g o
3 |4
) BCH p; |
I -1 N | 1n
111 EQ UL
it i #
I L]
ST
X @ o N ®, w, =, o, L- -
o o g q a m do o N~ o 0 ~ ™

TOHEEL /YO 500

Note that at a load of I (100%) that the average delay is equal to the number
of users multiplied by the service time. The qﬁeue is full; each request

finds all the other users already in the Waiting,line, and the expected de-

lay is that required to service all users in the system.

The dashed cufves give some idea of the variation to be expected in delay.
For the two assumptions of‘exponential an‘d constant service times these

" curves mark a level of delay which will be exceeded in 10% of cases. The
important thing to note here is that the expected will often .be observed to

approach that required to service all users at RAD loads as low as 80%.

Service time for interactive users is the time to swap his program into
core (usua;lly this requires tranéfer of a currenﬂy resident pr&grafn to
: RAD to make room) plus .th'e computation time neces sai‘y to service the
request. An average computation time of 150 ms is sufficiént for more
than 95% of on-line interactions (those requests requiring less than one
'quantum). The table below shows the éervice times for 4000 \}v;ord' pro-
grams on the three SDS RADs, including two way data transfer and 17 ms

latency for each unit transferred.

Here it is a;sufned that space on the 'éwapping RAD is allocated in such a
Away that each RAD transfer for an individual user comes from a set of
contiguous se'c‘tors. This is achie:ved by reserving a pool of sectors on
.the RAD for swapping and assigning pages in su.ch a way that available

pages are evenly distributed over the circumference of the RAD.

TR L YT LT e

Service Times -- 4000 Word Full Swap

RAD Swap ms. . Comp. ms. 'Total..ms.-
7204 222 | 50 *éf/z
7232 124 : | 56 | 174
7212 48 50 98

The curve indicates that loads of_50% result in an average delay of oné

RAD service time. Thus, with the 7212 RAD, responses to interactive
users (those with average compute Ijequ_ests of =50 ms) would average
about 150 m.s, including a reasonable amount of computing time. Clearly,

this kind of response is good.

On the other hand, the average delay curve rises very rapidly as load
approaches 100%. At 100% load the average delay may be approximated
by the number of users multiplied by the service time -- seven secoﬁds

for the 7204 RAD.

The percent RAD load can be calculated and the delay due to RAD load can
be estimated for cases other than that vgifren above in Table 1 from the fol-

lowing formula:

a N , 2 , 500, r N 25 250
= Y R s + 25 . 250
5 8 U cul Yt3g 2+ 715 (3/4+8) + 5 +=

)

where

The number of interactive users.

RAD transfer rate - ms/1000 words

latency delay per transfer - ms

average program size (interactive users) - 1000's of wo:
average batch job time - seconds

time slice quanta - seconds.

0= na-n ‘24
n

e e T = e
10
J. Shemer has made a mofe detailed study of expected response to an on-
line user's interactive requests.* His ‘ndode’l includes the effect on res‘pdnse
of Monitor CPU overhead aﬁd waiting of intefaptive u;ers for each other Aas'
Well‘ as thé RAD delays-’examined above. ThenkuSei‘ ;)btain.s his response.

after waiting and being serviced in three queues:

1. a Monitor CPU overhead queue to receive the interrupt initiating.
the interaction in conflict with all other users;

2. a RAD swap quel;'le whére he waits to enter core memory; and
3. an interactive queue where he waits for first-in-first-out service
with all other interactive requests. -
The model is used to' examine five cases in which several load parameters
are varied -- primarily that due to Monitor CPU ox}'erhead.‘ His results atre
~ given in the table below:

CASE : 1. 2 3 v 4 5

users ' 30 60 30 60 60
Monitor queue load Pj .25 .39 .50 .78 .78

RAD queue load P, .60 .73 .60 .73 L T3%
interactive queue load P3 .07 .15 .07 .15 .15 ‘

Average delay (ms.) “162 212 202 450 575

*on each of two 7212 RADs

*Comments on UTS Functional Spec1f1cat10n, memo to R. Spinrad from J Shemer,
dated July 25, 1968

TSHEEL//TOF 50U

The results for Case 1 are'sqbstanti.ally ,thg same as the case examiqed
above for the 7212 RAD and essentially ti’le same result is obtained:l()AZ'rris.
vs. 150 ms. averé.ge delay.. RAD load pararhe'ter <P2: denotes the same 4
paraﬁmeter‘as L, above. Thé fact that the .-resw..lts are neérly the same is
due to canceling of two opposing effects which were neglected in the sim-
pler model. ‘First, delays due to RAD load are over estimated by assuming
that RAD service time is equal to that required by a swap when, in reality,
the part of the load due to file I/O has -a. much shorter service time.
Secondly, the.delay in the interactive queue waiting for other high priority
users is not accounted for 4a.t all in the first model. For the case of 30
users and the ot.her ﬁarameters assumed, the two e.ffectsrappr'oximately
cancel each other. Note that RAD load P, in fhese examples diff’erls from

the loads in fhe first model. See below for a recalculation.
A)

Case 2 increases the number of users to 60 while leaving other parameters

the same.

‘Cases 3 and 4 are modifications of cases 1 & 2 with the Monitor CPU over-
head doubled. Since much of the capacity of the CPU is now devoted to
overhead (78% of the machine in case 4); substantial delays occur because
little is left over for service in the int‘era;ctive queue. This kind of effect

is daﬁgerous and must be avoided. It Cé;.ﬁ come from only three places:

1) reéident real-time programs, 2) bad codiﬁg in the Monitoi- (which will

be avoided), and, what is more importaht, 3) inability to keep a sufficient
number of computing users in core and thus ﬁot beiflg able to use available

. CPU capacity. The study thus e’mphaéizés the effect of trying to time-share

with insufficient core memory.

MLLALLLT TN LT DUy

_’/ 1//’.
Since Shefnerfs stud;r, ‘the estimates o‘f_ batch ﬁ(lev i/O have been refined.
The chaﬁges are reﬂectec;l above primarily in a reduction to two from
five of the number of I/O actions generated by batch I;rograms. The table
below repéats Shemer's caées 1 and 2 with the "new da.ta..' Two more cases,
numberéd 6 and 7, are examined using his model. These are modifications
of Case 2 but increasing the size .of the average program from 4,000 words
to 8,000 and then to 12,‘000 words. (Still assdming contiguous sector map-

ping on swap RAD.) These cases may also be used to estimate the effect

on a 4K program of not being able to achieve a swap mapping in contiguous

sectors.

CASE_ | o2 6 1
users ' 30 60 60 60

user size . 4K 4K 8K 12K
- Monitor queue load P1 .29 .32 .32 .32

RAD queue load P, - .54 .71 .75 .79

interactive queue load P3 .07 .15 .15 .15

Average delay (ms) 149 177 - 193 241

‘Based on these models and given that the assumptions are reasonable and”
that sufficient core memory is available we conclude that reasonable service

can be obtained in UTS.

e Sy i

Part IV. SCHEDULING AND MEMORY MANAGEMENT

TABLE OF CONTENTS

INTRODUCTION

A. Inputs to the Scheduler

B. Scheduler Output

C. User Status Queues

D. Scheduler Operafion

E. Treatment.of Batqh Jobé '
F. Swap Hardware Organization
.G. PfocessorAManage‘ment

H.

Memory Layout

R

Pag e

80

INTRODUCTION

The routines described in this section control the overall operation of the system.
They receive inputs from the I/O systems when ce.rtai.h ci;itical,events occur, from
the user program when it requests Monitor services, and from the E#ecutive lan-
guage processor reflecting _‘req'uests of the user. These inputs (or signals) coupled
with the current status of the‘u..ser as recorded by the Scheduler are used to change:
the position of the user in the sAcheduling status queues. It is from these queues A
that selections are made for both swapping and execution. Swaps areAset up By
selecting a high priority usef to come into coré and pairing him with one or more-
low p?iority users for transfer to RAD, Similarly, thé highest ‘pribrity user in core

(and thus r.eady to run) is selected for execution.

A. - Inputs to the Scheduler

'Et'he list below records those system acj:ivities which must be reported to

the Scheduler. The reporting is done vériously_through a logical signaling-
‘table, through direct entry to the Scheduler, and through protected changes
to the User Status queues. The Scheduler records the receipt of signals by
a chaﬁge in the ﬁser status queues pigs other information associated with the
user. In general, a table driven techniéue is used with the received signal
on one coordina£e and the_cﬁrrént stai;e on the other. The table entry thus
defined names the routine to be executed in response to the given signal-
state vcombina'tion‘. Since the number of signals and states is large the table
technique aids in debugging by for'cin'g complete specification of all the pos-

sibilities.,

T A A s a1 _,_‘_\‘I'J."__/ U 74

Inputs from the COC routines (event. signais):

1. Input complete--activation character received

2. Output limit reached--sﬁfﬁciént output for 3-5 seconds

3. Output nearly empty- -oﬁly 1/2-1 .secon;i typing left

4, | interrupt (BREAK) character received--request for alternate

entry, usually for return of console control to the user.
5. Request for executive control.

6. Other special signals as required

Inputs- from the swap I/0O handler:
1. Swap complete--rescheduling and/or another swap may be needed
2. " Swap error--a RAD sector cannot be written successfully.

Action will be a report to the error log, lockout of the failing
sector, and retrial at a different location

3. Swap error-a RAD sector cannot be read Successfully. The
user cannot be continued; the error is logged and the user in-
formed.

Iﬁputs from the program (through Monitor Service Calls):

1. Request console input
2. Transmit output to the cons<'>1e.
3, Wait a specific time period
4. Program exit (complete) '
5. - Core réquest;-both kinds érovided by BPM plus request at.

specified virtual address
6. Program overlay--load and link, load and transfer

7. ~ Input-Output service calls for file, disc pack, or tape

Inputs from Executive Language Processor: .

1. Name of system program to load and enter. (Implies dele-
tion of any current program)

2. Continuation signal
3. Special continuation address
4. File name for submission to batch processing

S chedule r Output

The scheduling routine performs two rhajor functions during the times it is
in control of the machine: First it sets up swaps between main core memory
and secondary RAD in sucﬁ a way'tha'.t high priority us ers are brought into
core replacing 1(-)W pfiority users who are transferl;ed to ‘RAD'.‘ The actué,l
swap is controlled by an I/O handler for the s&vap RAD according toA specifi-
catiéns‘ érepéred by the Scheduler. The Scheduler makes up the specifica-
tions for the swap according to the pr'iorityr state quetles described below.

Given a suitably large ratio of available core to average user size (>4) the

Scheduler can keep swaps and compute 100% overlapped. -

Secondly, the Scheduler selects a high priority user for execution, according
to the single priority state queues and the rules for treating batch. The rule

is extremely simple -- pick the highest priority user whose data is in core.

User Status Queues

. The status or state queues form a single priority structure from which selec-

tions for swaps and selections for execution are made. The state queues form

an ordered list with one and only one entry for each user. Position is an im-

- plied bid for the services of the computer. As the events occur which are

—— e e T — 2

éignaled to the Scheduler as describéd a.a,.bove‘individua.l users move up
and down in the priority structure. When they are at the high end they
take hi:gh priority for swap into core and execALii':ionJ s é,nd when at the low
end they are prime caﬁdidates for femé\fal to secondary storage. This
létter feature -- that of a definite priority order which selects users fd:f
removal to disc -- is an importaﬁt é,nd o.ften 6_verlooked aid to efficient

swap management. It avoids swaps by making an intelligent choice about

outgoing as well as incoming users.

In addition to these pbrimary functidns, the queues are used for other
purposes: synchronizing the pi‘esenée in core of user data and program

with the availability of I/O devices, Waifing for "wake up'" at a pre-
established time, queuing for entry and use of processors, and core manage-

ment problems.

A partial list of the state queues in deséending priority order is given below:
NRRT Nonresident real-time interrupt received
INT Interrupt or break received queue
IR - Input activation queue

TUB - - Console Output unblocked queue
10C - File I/O complete queue

COM - The interactive compute queue
BAT - The batch compute queue

CU = - . Current user in execution

I01IP - File I/O in progress queue
TOB - Console output blocked queue
TI - Waiting for console input queue

w - Queue of users to be awakened

The above list serves for the illustration of the operation of the Scheduler

below.

u.r.r.u.ur.ru'7—‘0.r)‘U (¥4

Scheduler Operation

To select ‘users for execution the Schedulexf searches.down the priority
list for the first user in core memory. Thus,‘-’int;arrupting users will
be served before tho.se with an active input message, both will take
precedence over users with unblocked console output, next will come

compute users and finally,A'the batch job(s). Note that users in any

- lower states have no current requests for CPU resources. Note also

that as each user is selected for execution his state queue is changed
to CU, and when his quantum is' complete the highest priority queue he

can enter is the compute queue. Users who enter any of the three highest

. priority states receive rapid response, but only for the first quanta of

service. Thereafter they share with others in the compute queue.
Two examples of typical interactive use will be illustrative. |

The first follows a user with a simple short inté_ractive fequest. As he
types the request he is in the TI queue and his program probably has been'
swapped to RAD. It remains there until the COC roufines receive an acti-
vation chara'cter. This is reported té‘ the Schedulef and causes a state
change to IR. The Scheduler finds ahigh priority user not in core and
initiates a swap to kick out a low priority user (if necessary) and bring

in the just activated one. On completion of the swap the Scheduler is

again called and it now finds a high priority user ready to run. The user's

. state is changed to CU, the program is.entered, and examines the input

command. The cycle may complete by preparation of a response line and

a request to the Monitor for more input. This would reduce the user's,

state to TI again making him a prime candidate to kick out of core.

The second examp]_.e illustrates a console output-bound program. This
program moves thrqugh the state cycle TOB-TUB-CU as output is gene-
rated by the progré.m, the COC signé.ls the rea:ching of the output limit,
and fiﬁally, the output is drainéd onto the terrr;ina;l.' If the operation is
proper, four tg six sec'onds o.f typing will be readied in buffers each time
the user progfa.m is brought inté.core and ex_e'cuted. During this typing
time the program is not requiréd‘ in vcore‘ and the CPU resources can be
given to other programs. No swapé occur unless a user who is out of

core enters a high priority queue.

Selection for swapping picks a user to bring into core and the lowest
priority user to kick‘lout. Priorities are ar.ranged ffom high to low, in
order of increasing expected time before next activation. This assures
 that the users who are least likely to be needed are swapped out first,
retaining in core the set most likely to require execution. The swap
algorithm will operate so that: 1) if thefe is room in core for three user
programs; 2) if two users are éomputing steadily; and 3) if many other. ’
' users are doiﬁg short interactive tasks, then the compute users will ré-,
main in core and use .all available gorhpute time while the interactive usérs_
are swapped through the third core slot. Of course the non-uniforfnity of

program sizes and request arrival times will cause different action from

time to time but on the average it will be substantially as described.

ToonwELl Y Or DOvYT

E. Treatment of Batch Jobs

T~wo ways ‘of scheduling batch are reasonablé in tﬁis priority structure.

" They result in quite differc;t;t fra;tions of macﬁinheftime devoted to batch.
Both will be provided in UTS and the operator or installation Amanager wi.ll
be able to select the desired mode of operation. Ti:;e first treats the batch
stream in a separate queue (BAT) of IoWer priority than the interactive éom-
pute queue as indicated in the_ queues of Section C. Thus, batch only gets
service when no interactive user has a request. Crude ’estimat‘es' from
current systems indicate that 10-.20% of ma.chiqe time would be available
to batch on a system supporting between 20 and 30 concurrent users in prime
shift.* That is, 10-20% of the time no on-line user is requesting time.

'~ During non-prime time 80% or more of CPU time wouid be available to

batch. ‘ : ®

The second disciplipe cycles the batch user through the interactive compute
queue where each job receives an equal fraction of the available time. It<s
‘usual in on-line systems that 5-20% of the on-line users are computing at
any o’ne time; thus, as much as 1/2 of prime timé could be devoted to batch)
background operation plus the 80% + on non-prime time. In this scheme,

batch can be biased to get a different quantum than on-line users.

"~

*In Part III we estimated that 65% of CPU cakpac‘i‘ty would be available to batc:h and
on-line compute-bound combined. Here we estimate that on-line users will use
50 or 60% of the total CPU leaving 5-15% for batch. .

- —— T T T N

Swap Hardware Organizatioﬁ

Users are.saved in a dedicated area of the RAD (or a_separate RAD in
large configurations) during the periods between ~t};e turns for execution
on the central proces:sor. The minimum system will allocate a portion of
file RAD to this purpose and dedicate a special handler to the performance

of the swaps.

| A bit table is used to keep track of the availébility of each sector on thé
RAD, marking zero for in use (ﬁsually assigned to a user) and one for |
available. Users are assigned a sufficient number of page size sectors

to accommodate their current use. The assignment is done in such a way
' that command chaining of the I/O can order the.siector,s to be fetched for a
- single user with minimum iatency. That is, each user's pages.are spread
evenly over the set of available sectors so that when the user is swapped

data will be transmitted in every sector passed over.

'The records of the disc sectors associated with each user will be kept in
the user's job information table (J'I'I‘) which is kept on RAD when the user
/is not in core. The disc location of tﬂe’JIT téble is kept in core by the
Scheduler. The RAD layout is such that sufficient time is availgble to
set up I/O C(;mmands for the remainder of a user. after his JIT arrives

from RAD.

The amount of RAD storage assigned to swapping will be a parameter of
' SYSGEN. The number of on-line users which the systerh can accommo -
_ date is limited by the size of RAD space allocated for ‘swapping and the

total size of all active on-line users.

* Processor Management

Processors will be considered time-sharing processors when they are

K -
-

added in such a way that the processor is read-and execute-only. (It
may have the user associated data area initialized in first pass only.)

When these criteria are met the processor has the following special ché_r-

acteristics:

1. . Its nafne is known to the executive (TEL); it may be called on
by name. ' : '

2. © It will have dedicated resideﬁcy on swap storage established at

~ S¥S5GEN time. : : ‘

SISMKE : . . .

3. Its use will imply a particular virtual map for the user.

4. A single copy will be used by all. requesting users.

Memory Layout

UTS makes full use of the Sigma 7 mapping hardware, access protection,
and write locks in order to allocate arbitrary available ph}‘rsic':al cor‘e pages
to users accofdihg to the priority of their request Withdtit need for program
, relocation. or physical _mov‘es'. Full protection is provided not only of-'one—: _
user from another but also protecf:ion.of'real-time programs from the
Monitor and the Monitor from real;time. All programs including reai-timé
programs and the Monitor itself are div.ided into procedure and data and the
'pi‘ocedure is protected against inadvei‘te_:nt s;cores by either‘write-loc‘k‘s or

access codes or both.

Central features of the use of w.rite-lock; to protel:tl- master mode pro-
gréms, are: |
1. The Monitor operat'ejs "With a key of 01 LIt ma; store in.

| {a) T Its own d;a.ta area (LOCK =01) ! | |

(b) Any batch, on-line user, or shared proéessor core
" (LOCK = 01) -

(c) Resident real-time data area (LOCK = 00) -

It may not store in
- (a) " Its own procetiure (LOCK = 11) A _ -

(b) Pure ‘procedurevof resident real-time (LOCK = il)

2. Resident real-time o'perates with a key of 10.
It may store only in its own data area (LOCK = 00)

It may not store anywhere else (LOCKS of 01 11)

3. Keys of 00 and 11 are never used nor is a lock of 10.

. not changed thereafter except when running under control of
EXEC DELTA where they are used to enable data breakpoints.
The access codes on virtual memo‘fy pages control referénees by slave
mode programs - user programs and éh.ared processors. Two code
imagés are retained in JIT for each user., the first is loadéd when the
"user is in'control and the second when one of the special shared proces-
sors gaiﬁs control. 'In addition,‘ under 'i’EL and LOGON write access to

JIT and other job context areas is given.

- The layout of virtual memory which applies to user programs and
ordinary shared processors is shown in the figure below. Core addresses -

shown are those apprépriate for a typical system But more (or less) core
may be estabhshed for the resident Momtor a\..'SYSGEN time dependmg
‘on msta.llatmn .needs (e.g., requirement for real-tlrne options; desire
to retain Monitor overlays in re'sidencle for e_fficiency); Mére (or less)
‘area may also be desira!bleI fdrthe library aréa and for the job context
area to accomquate more buffers. 'I'helse Ilaoﬁndbs may also be‘ acijustéd

at SYSGEN time. The bound at Wthh the one pass loader LINK places '

the user's s program is adjustable at 1oad time.

. Virtual pages not currently allocated to the user are mapped into a resident
Monitor page which is write-locked and have their access code set to no_‘
access. Thus, slave mode programs are denied access through the access

code and attempts to store at these virtual addresses by a master mode pro-

‘gram are protected by the write-locks.

0 18K Lo 26K : , o 120K 128F
~ e e — ‘ A
. Monitor Context Area . Avallable Area | } Special
Area ‘ <__ 96K—>-’ §~ o " Area
Data Area . ~ , jProgram .[Symbol
v : : ‘ Tna — ’ Area - Table
Data [Program { JIT [DCBs|Buffers |Program {Dynamic loca%ed. Common ‘)
— e . Data | Pages | Pages Pages | Area
N - g S F L R T DRttt : . ;i) T*
: ’ ' : . , <,
cd el . ‘
user accessl@— none —->|Fead l\q—- rone«(—>]<———wr1te ——PI none I write !qexecuteyiq-read—bld- none or
_ . ' execute-p»
special ‘4—- none —>Iread’<— none —> l < : write - ; >}<-execute-*>,,
access i - ' . . C
MAP to allocatedt»‘:. —to allocated physical page or to a protected locked monitor page — —p
physwal page : ‘ . : : :
CONTENTS Job information table User programé, data, -and symbol ta;blés Special shared |
DCBs . Ordinary Shared processors including Processor and L
‘File blocking buffers Root segment" data: ; E
File index buffers : ‘nitial data : o LINK ' 5
Coop buffers one overlay . , . DELTA :'
_ TEL, LT |
o . . FDP ¢
access codes: \\ none - no access of any kind permitted . .
jnread - read access only - Libraries \
’ : LOGON/OFF N
cijexecute - execute or read access » : J
cuwrite - write, execute, and read permitted

Typical User*- Program Virtual Memory Layout (not to scale)

Lock

Mode

Typical Physicél Memory Layout (not to scale)

01 or - 01 10
Resident .Syn:gzonts On-line jobs Resident
monitor other unmapped Batch jobs Real time

T onitor . Programs
m Shared processors and data
data .| program | data| program N data pfogram
- o 11 01 11 01 > 00 11
mapped or ‘unmapped ° I mapped unmapped"'_ _
unmapped '
master master slave ., .master v
unused keys: 00,11
unused lock: 10

T 2 tererrren

]

TTenoLoLeyOT OrT Y
Part V. SYSTEM REQUIREMENTS and CONFIGURATION"

TABLE OF CONTENTS

Page
INTRODUCTION | | o 94
BASIC UTS HARDWARE CONFIGURATION | - 95

COMMENTS AND VARIATIONS ' 99

'CORE MEMORY | I 1ot

T ATA A A 'J.—I"’/'_\'l'.l.'_/_'_v

INTRODUCTION

Throughout this specification the assumption is rﬁadé that UTS will be a sys‘tem.
designed and built to service batch, real-time and on-'l’inea terminal users. Each
installation will have to eval]Jate its requirements and desired service in order to
arrive at a useful machine configuration. A reasonable selection of hardware can
only be made with a good knowledgé of the charactéri'stics of its intended use,’ in-
cluding the portions of computing devoted to real-time, batch, and on—iine. A.lso.,

the number and usage profiles of on-line users, size of on-line programs, AI/O

characteristics, etc. must be evaluated.

It is o.bviously impossible to list the infinite comioinations of equipment which would
sﬁppoft UTS in some manner. It is a,ls-o difficult to del_iheatgé a"mirfimum é-ohfigura-
tion (different requirements will hé.ve different minimum configuratiéns). Théfe-
fo.re, we will describe a configuration for a sei: of requirements and indicate -

" possible downward aﬁd upward adjustments in ééuipment that could rbe made for

varying requirements. '- , : -

In attempting to determine what a particular configuration should be, several things

must be kept in-fniqd:

1. The UTS resident Monitor will require 16-18K words.
2. UTS is predicted on and requires a symbiont system.
3. Since real-time requirements are preemptive and installation-dependent,

no allowance is given here to these demands on the machine. Users with
_real-time applications must add core to support the real-time programs

and suffer interactive delays and batch throughput loss due to less CPU

availability.

PALmL F5VUE D0

4. References should be made to the sections of this specification dealing

with loading, responses, and performanée, since these factors will

largely determine configuration requirements.,

BASIC UTS HARDWARE CONfIGURATIQN

In order to support 32 on-line users (whq are generally not computé-bov.-md) and_
maintain a high rate of compute throughput (abogt 80% olePM 'rate), the following
configufation is pres.ented. It is considered thé basic UTS configuration to which
equi‘?ment may be added to satisfy additional i’equirements of particular installa-

tions. UTS design optimization will focus on this system level. The configura-

tion is shown graphically in Figure V-1.

SHEET 7£ OF 34%

CPU

Model Description
e —_—

8401 Sigma 7 CPU

8413 Power Fail-Safe

8414 Memory Protect

8415 Memory Map

8416 1 AddiﬁonalﬁRegister Block
8421 Interrupt Control Chassis
8422 Priority Interrupt, Two Levels
8418 Floating Point Arithmetic

Memory, - 80K

8451 Memory Module, 5 each
8452 | Memory Module, 15 each
Basic I/O
8473 MIOP) I
8475 F@U%@h%
7012 Keyboard Printer (2) ' '
8485 Selector IOP |
7211 | Hi-Speed RAD Controller
7212 Hi-Speed RAD
. 8456 - 3 Way Accéss, 5 each
7611 Communications Controller
7612 ’ Format Group Timing Unit
7615 Send Module, 32 each
7615 Receive Module, 32 each
7621 _ EIA Interface Modules
7613 Line Interface Unit, 3 each

7015 Keyboard/Printer KSR/35, 32 each

———— - LS} T eI s

SHEET 77 OF 509

Secondary Storage and Peripherals

7122 Card Reader
7160 Card Punch | | |]
7440 . Line Printer - -
7320 Magnetic Tape Controller .. |
7322 Magnetic Tape Units (2)

7231 RAD Controller {4 byte-interfacefor 72315

7232 RAD Storage (6MB)

- Siiema 7 CPU
B3 - Power Fail Safe

Yi5- Mep
3 ber ploek

WY - Me'mprx Protect

‘ /6K QoeF
1-g45)
B-FHEAN

/6K ConF

32- KsR3§™ g

7015
Basic YT°S

Q

n'la.'a‘a;la;l‘a.—l_p"\:l'.l.'_“;u‘b“-' T T

W 71¢0 |
CAI‘A ?u’ac}\

"HarDwears.

“Flrawnee V-1

g:gz -R;\ IPsmon Y m"tm«,th /6 K Cory
T E
f[aﬂn\g N‘c
- | IbK CorE
. ' 5 - 345¢
o b' 3 Woy acess
% e‘ 70‘2‘ ; gY 85
L ' Selector TOP
o | 7440
2'_4 Line Prywter 72 722
el Hygh Speed
RAD»
: LMB
7122
"% Card Reaée;w

- ConFiGurATION

s'HEET'?% OF 30\?

COMMENTS AND VARIATIONS

1. . CcPU

sAll items listed except -Floating Point are minimum requirements for any system. Another option

‘available is the Decimal package.

)

2, Memory
64K is a minimum core size, suitable for single language installations for example, but 80K is

considered necessary to maintain a high level of performance for this sxample.

3. Basic 1/0 o .

The absolute requirements are an MIOP, 2 Keyboard Printers, one RAD (6MB) and controller, .cnd
the Communications Controller and associated terminal equipment. However, to maintain reasonable
performance, separate RAD's for the system and file storage are recommended for all systems. For a
32 user system, the system RAD should be a Hi-Speed RAD with an SIOP. Smo.ller systems, 16 users

for example, might maintain acceptable performance with two 7232 RAD s, for example. /
. ,[{j’/:“ I) .‘E‘. ll/\ /‘¢ (/f/
/v

: r—,ql |{; £y {'(?!’\."% AN t‘(’“ <L
4, Secondary Storage and Peripherals ‘ Al ;»ﬂ o i, \‘

v (R 1)"'-'

% wlpate

The minimum requirements are a card reader, a tape controller, and at least cnc “tape unit,, Any

Ly

.,:

reasonable batch configuration can be expected to also include a line printer, additional fcgé uni’rs;
RAD file storage, and a card punch. An additional MIOP may be Irequired, depending on the i'ype~
and number of secondary storage devices cnci peripherals. Variations in the number and type of 1/0
devices will depend on installation requirements, but the configuration listed is reasonable for a
batch system v’v,ii'h up to 32 on-line users. CRAM and disc pack units are supported and may be added
as the customer requirements dictate: Band width reqﬁ_i_remenfs of the IOP's must of course bé met.
Heavy use of these devices may degrade system performcnﬁ'e through CPU use and core buffer space
required for /O transfers. Generally speaking addition of core memory will improve performance

in these larger systems.

TTTONILLL Y T UL v

5. Terminals

: J
Terminals are not restricted to SDS 7015's alone. The SDS 7550, 7555 keyboard/
display operates compatibly with UTS. Also supf)orted are teletype models 33, 35,
and 37 including paper tape input and output, and IBM model 2741 selectric typewriter

terminals. Software flexibility is present so that other terminals may be added with

relatively little difficulty.

More than 64 terminals may be added to the system with more 7611 equipment and the
addition of two external interrupts for each group of 64 lines. However, except for
special situations (say an all BASIC system), more core,tRAD, etc. will be required

and even then response times may suffer.

" Remote batch terminals, SDS 7670, are supported in accordance with specifications

in a separate document (Dwg. No. 702514).

6. RAD Storage

Requiréments for RAD storage may be divided iptb tv'voi cate‘gories: a) swap storage
is usepl for on-line users, fqr symbiont and co-op buffers, and for absolute core
images of the UTS Monii:oi’ and the éystem processors (FORTRAN, LOADER, BASIC,
etc.), and b) file storage for all users of the s.ystel.—n including ‘those system processoré
kept in ROM or LM form on file (usuall;} SYSGEN, CO]_%OL, Libraries, etc.). Swap |
storage Wiﬂ. usually require one to three megabytés on the 7212 RAD. File storage is
best estimated by the installation in question. For eaéh oﬁ-line user, 25-50,000 words

of file storage is often estimated. Thus, if 100 users have access to a 32-line system

. 2.5M-5M words of file storage would be needed requiring two or three additional 7232

RADs.

TN T T T

7. Resident Real-Time

Gore and CPU requirements for resident real-time operations must be satisfied over

and above the basic configuration of this section. Among the devices supported in the

real-time mode is the graphic display, SDS 7580.

CORE MEMORY

ProvidingA enough core memory isparficularly .cruciai in a time~sharing system.
Operating with a memory of insufficient capacity for the installation's typical load
reduces the systems ability to keep core loaded with ready-to-run progréms a;nd
increases the frequency and duration of tirnes when I/b is not overlapped with com-
puting. This app‘lieS‘ both to on-line systems and ‘fnultiprogrammed ba;tch operation.’
With enough core the system is able to keeia several programs resident at once and
thus obtain]a very high probability of.rcompletely overlapping compute and I/O tasks.
The freque'ﬁcy of sv;/aps is reduced and so is thé intendent system overhead thus re-
leasing the CPU to execution of users' tasks. On;iine response is doubly affected
being doubly reduced of the number of the number of swapé and indirectly affected

L4

by the lowering of CPU overhead load.

e AT A T A Y 8T T A NSy

SHEET//AOF 248

The following charts indicate what factors should be evaluated in determining core

-4

mining system core requirements.

I.

size. They are presented as a guide and require.careful interpreAtation in deter-.

Core Requirements for other than on-line
User Memory Requirements

A. ~UTM Resident System ' 18K Conservative

B. Resident Foreground : variable

C. Remote Batch o 1K When. in use
D. Graphic Scope 6-10K : If used

‘E. Other (Cal Comp Plotter, ~variable

allowance for future devices, etc)

- F. K/D 1K per terminal If message mode option
' ' is used
G. Allowance for core.I/O buffers, - 10K - Estimated for average

load as described
within this spec. for
core while I1/O is in process _ about 30 users

DCB's etc. which are locked in

(This allowance is for user 1/0,
symbionts, monitor overlays, and
swaps)

L4

Core Requirements in order to have a high probability of keeping 4 users in core.

A. Batch - variable
B. User's program - ~ variable

C. UTS Processors
Core per User: User
Shared Copy Associated Data

1. Fortran IV- pass 1 » 11K 6-7K

- pass 2 - 11K - 6-TK
2. Meta-Symbdl - pass 1 - 11K 4-6K(no BPM proc
- pass 2 11K 8-10K(with use of
_ BPM proc's;
3. BASIC - Compile . 10K 4-6K

Execute : IOK‘ B - 4-6K

SHEET /030F 3¢9

Shared C opy

Core per user: User
Associated Data

4, Editor
5. Delta
6. FDP
7. PCL
8. TEL
9. LINK

D. Core Library

3K

3K -

2K

2K

4K
4K

variable (3-8K)

°

2K

. 5K plus user
program plu:
symbol table

object program plus
symbol table plus run-
time - ‘

2K
2K

2K plus ROM size
plus local sym
bol table plus
REF/DEF/
Expression tal
Estimated to t
1. 75 times R
size. :

An installation which desires high rate of batch throughput and reasonable service

for 32 on-line users doing a variety of work; might make the following core estimate: _

1.
2.
3.
4.

Resideht UTS

Allowance -for 1/O in progress
-Batch o |

On-line users

a. A processor, say Fortran IV

b. A debugging run (DELTA)

c. An EDIT process

d. User with core library and FDP’

18K
10K
12K

18K

10K

5K
7K
80K

L d

SHEET j#-OF 34F

A 64K system could be expected to often result in a condition where less than 4 users
are in core simultaneously, and this in turn can be expected to result in much lower

GPU utilization, longer response times, and less batch throughput.v

A system which is essentially dedicated for one processor (BASIC, for example),
or a system which uses only a few processors, has small programs, and less users -- ‘

could run acceptably in 64K:

Resident UTS - 18K

1.
2. Allowance for I/O in progress ~ BK
3. Batch 12K :
4.' On-line users _
a. Edit ' 5K
BASIC shared processor : 10K
i, ~user compiling ' ! 4K
- ii. user debugging _ 4K
iii. user executing ' _iK__
60K

However, systems with heavy I/O requirements and lai'gé executing programs will
need more core to achieve high CPU utilization, good on-line response, and

adequate batch throughput:

1. Resident UTS 18K R
2. Allowance for I/O in progress 20K
3. Batch 20K
4. On-line users _ '

a. A Fortran IV compilation ‘1 8K

b. A DELTA debug run 10K

c. An EDIT process | 5K R

d. A user with core library

and FDP 12K
' S 103K

Generally, since system performance is extremely sensitive to core size, it is
strongly recommended that a generous approach to providing core be taken. No
system should be configured with less than 64K, and the Programming Division-

requests that its épproval be obtained for systems' with less than 80K of core.

ORI/ eDTORT Yoy T

Part VI. TERMINAL EXECUTIVE LANGUAGE (TEL)

"TABLE OF CONTENTS

COMMUNICATION CONVENTIONS

A.

\

NOoO UL WN

D.
E

Keyboard Control

. TEL Prompt Character

. Subsystem Identification
. Subsystem Prompts)

. User Prompts

B W N

Typing Lines - ' -

Correcting Typing Errors
Erasing Lines

Blank Lines :
End-of-Message Signals
Pagination, Lineation
Tabbing

Echoing Characters

Interrupting UTS

1. Pfeemptive Returns to TEL -
2. Interrupting Subsystems and Running Programs

Typing and Interpreting Commands
Error Detection and Reporting

" IDENTIFICATION AND NAMING CONVENTIONS

A, Accounting Information and File Identification

B.

Device Identifications

INITIATING AND ENDING ON-LINE SESSIONS

116

118

MAJOR OPERATIONS

A,

T SHEEL/26O0F 520

TABLE OF CONTENTS (continued)

Co rﬁpilation s and Assemblies

N OO WY

.

Inputs and Outputs '

Commands (FORT 4, META) »
Controlling Error Commentary and Output
Extention of Output Files

Error-Handling and End-Actions

Entering Programs From the Terminal
Debugging Information - o ‘

Linking ROMs and LMs to Form LMs

1.
2‘0
3.
4,
5

Simple Linkages (LINK)

Load Module Symbol Tables
Merging Internal Symbol Tables
Searching Libraries

End-Action and Error Reporting

Initiating Execution

START
RUN

Initiating Debugging Operations

DELTA, FDP

File Management

COPY

. DELETE

PCL

Editing -

T SHEEL/0/ OF 50D

TABLE OF CONTENTS (continued)

G. Submitting Batch Jobs

BATCH. ,
Requesting Status
Canceling Batch Jobs

H. Calling Subsystems_ o v
Answering Convent1ons C Pr\mw{)\' (‘/\\Wm‘> l j174\/
I. Continuing and Quitting Major Operations

CONTINUE
QUIT
Automatic QUIT

MINOR OPERATIONS ' , S 136

. Checkpointing Programs (SAVE, GET)
Assighing I/O Unit and DCB Parameters (SET) —
Determining Status of Current User Sessmns *)
Listing System Load Parameters y
‘Setting Simulated Terminal Tab Stops S
Changing Terminal Type = //
Reporting Termmal Platen Width ‘

.

pmmpows.

. < 'h:‘f’.u() a’i)f“’ LO ¢
INDEX OF COMMANDS - TEL o e 32 AT An 146
: OMMANDS - TEL .~ = e

o

‘—““an'.ni.nﬂ.‘/y‘;“‘ () '.L"——)'U_v

COMMUNICATION CONVENTIONS

A,

Keyboard Control : . : ‘ -

As previously mentioned, control of each user's:keyboard is proprietary: -

either the user or the system has control. The assumption is made that

all terminals in use are attended. Terminal communication conventions

are as follows:

" Whenever the UTS executive processor returns control to the user after

an error, an interruption by the uée'r,- or after Vcorn‘p_lei’:ing a requesf:, it
will type an exclamation mark (!) at the left margin of.a fresh line‘befofe-
turning control of the keyboard 6yer to t_hé user. This nétiﬁes the user
thé.t he is talking to the UTS executive processor and must couch his re-

quest in that processor's language (TEL).

Whenever the services of a subsystem are first requested by the user,

. that subsystem will identify itself in plain-talk before turﬁing control

over to the user.

All éubsystéms that carry on livne-.by-l.ine, rather than i_ntraline,‘ dialogties
with‘ the :u.sver wiil t?pé an 1dent1fy1ngmark at -éhe ieft frié;rgiﬂ ;of:' the rline. o
before returning control to the user. Subsystems for editing usé an
asterisk (*); subsystems for combining objeét programs and manipulating
their associated symbol tables all use a colon (:); utility éubsystems for
filé, management and information traﬁsfer use the numerical relation sign
(<); all‘subsystems for working with other programming languages use the

sign (>). These identifying marks notify the user that one of a class of

\'J.I.“J'.BJ"JLF.I.‘/ v —l B _)._U .'_0

subsystems is awaiting a command from him. Which subsystem it is

- and Which'language must be used should be in the head of the user. This

is possible, since no subsystem of UTS wil] call on another one, or even 4

on itself. However, some commands in UTS's éxecutivve 1anguagé (TEL)

require the services of a succession of distinct processors, as may some

commands in other subsYstems. Whenever such '"hidden'' processors .de-

tect an error, they will, where necessary, precede error messages by a

single space followed by an identifying mark appropriate to the processor's

function.

Users' programs that must return control to the user to allow him to input

values and other information are left to their own devices. Such programs

-should be written so that they display enough information for the user to

determine what is expected of him in such situatior®s. One of the terminal

services available to aid in this effort-is the specification of a prompt

character which is issued preceding each read command. See Section XII.

Typing Lines

The mechanisms for correcting characters, for erasing messages that may be .

hopelessly mistyped, for signaling end-bfémessage, ‘and for line spacing are

uniform. These are given below for users with TTY terminals. Details for

other terminal types are given in Section XII.

T M AU A T Y TN LT e T e T T

The user can erase his last unerase& fbkeﬁ Ey depressing the RUBOUT
key. UTS responds by typing a slant-line (\) to indicate that it has
effectively backspaced é.nd erased. On térr;}inals that can backspace,

| backspacing will vbe no.ne:rasive and users will be able to overstrike
tokens as well as erase them. .On such terminals, UTS's image of the

- line being typed by thg user is identical to the one the user sees »o-n his

. printed page -- assuming tﬁat he can read hlS overstrikes é.nd erasures.
Cn SDS rKeyboard displayvs'the last typéd charécter is erased from thé

screen.

The user can erase an entire messagé by depressing two keys sumul-
taheously, CONTROL and X, 'UTS types a back arrow («), returns the
carrier to the beginning of a fresh line, and returns control to the user

without further comment. The user may then retype the correct message.

Blank lines are ignored by UTS's executive processor. The appropriate
identifying mark will be typed at the left of a fresh line before control i's

returned to fhe user.

When talking to TEL or any subsystem that carries on line-by-line dia-
logues with users, the user signals end—of—message by depressing the
carrier RETURN or LINE FEED key, or by simultaneously depressing

the CONTROL and I-keys to signal end-of-page (see 5. below) as well.

- OL‘.I'J‘-T.EJ'J-—/'/ ’/ '“‘O‘_L‘j'u-o

5. Pagination and lineation are controlled By UTS so as to provide 8-1/2
by 11 pages with one inch margins at the to'IS“and bottom of each "page.”.
This: assuzl'neé a9-1/2" platerﬂl, éiv.ing 85 ch‘ara.ctel:‘s to the line; 8" platens
provide for 72 characters. ﬁTS counts lines to give 54 lines per page.
-In addition, the_ péer can request pagination directly by depressing the

CONTROL and I.kéys simultaneously. Pagination consists of: a) blank

lines to page bottom; b) a heading line, containing date, time, user
identification, console identification, and page number; c) §ix more

blank lines; and d) thek user's heading line, if any. Thus; the heading

line can be scissored off to obtain 11" pages.

6. Some terminal devjces have readily adjustable and.usable tabbing features,:
others can tab but make adjustments _difficult, others,can't tab at all. 'i['o
handle fhe last two cases, UTS permits the users to request thé,t 1;abs be
sifnulated by successive spaces. Tabs are not normally simulafed; to’

.‘tur'r‘l on tab simuiation, depress the ESC key and then depress the T key.
To turn.off tab simulation, r;apeat the procedure. Thg sefting and clear'ing‘
of tab stops is provided via set commands for individual DCBs and via the

TABs Command for overall control over all output to the user terminal.

7. Eéhoing of characters back to the terfninal is at the discretion of the user.
Normally, UTS will echo; to request no echoing (for a local printing con-
‘sole), the user must depress ESC and then depress the E key. To turn on:

echbing again, the procedure is repeated.

A complete list of these and other control functions is g_ivenrin Part XII.

P e AT el Y NAT A N g T STV T Ty

. SHEET//Z OF 3J

Interrupting UTS

1.

» processor, TEL,

Whenever one of UTS's §gbsysterﬁs is in éontrol of the keybéard, the
user can interrupt and temporarily suspencl".opera.tions by simul-
taneously depressing the CONTROL and E keys. UTS responds

by stopping the current operations as soon as it reaches a conven-

ient breakpoint, and then turning the user over to the executive

~~

‘Whenever UTS or one of its subsystems.is in control of the keyboard,v
the user may interrupt What is being done for him at the_mori';eﬁt by
depressing the BREAK ke_yv which gives control tc; that part of the sys- |
‘tem currently in communication with the terfninal (e.’g. y 2 subsy;c;tem).
Since some actions can only be stopped at points of convenience and
others have so much inerﬁa that tHey cannot be st:ppéd at all, and
since macléaine or programming errors may have diéabled the pro-
gram's response to BREAK, a successioﬁ of BREAK signals in excess-
of three returns control directly to the UTS executive. It :fnust. be em-
phé.sized that depression of the BREAK kéy doés not constitute a pré-

émptive request for the services of UTS's executive processor (see 1.

above): the precise handling of interruptions by subsystems will

accompany the functi.onal description .o'f the subsystem; handling of inter-
ruéts by users' object programs is covere.d in the sections which describe
the calls that programs can make on UTM services. Baldly speaking,
however, interruptibns of the‘system or any of its ‘major subsystems - '
will result in termination of the current operation as soon as poésiblé

and a return of keyboard control to the user after the appropriate

) iﬁﬂ]:{hi'l'_//_s?_.(’)ﬂ"f‘-ﬂ"g_f

identifying mark ixa.'s been typed. SmCe lin'e‘ noises can generate

| spuriéus interrupts, it is also wise to have UTS‘say something first;
e. g., ''Stopped by ir.xtebriruptv. " Interruptions of oleect programs will,
in the absence of shbrt-stopping actions by the programs themselves,
always cause a Baékup to the executi%re processor. Programs i)eing
run under control of debugger; or under control of 2 programming
language subéystem iike BASIC bw.ill identify the point of intqrrpption
as best they can (e.g., "Interrupted at statement 120.") before re-
turning control to the user. 'By the same token, the exe‘cution of so-

called "'stop'' and '"pause' commands should result in similar behavior;

e.g., '"'Stopped by statement 120, "

Typing and Interpreting Commands

E:.‘:cept for a few declarativ.es, commands take the form of imperative sen-
tenceé: an imperative verb followed by a direct object or list of objects;
indirect objects usually follow a preposition, but may follow the verb (with '
elision of the implied direct objects). Minor variations on the major theme
of a éofnmand are expressed as encod'e.d parentheticals folloWing either the
verb or one of the objects. Individual elements of a list of objects are set
off from one another by commas. Co@on rules ofvcomposition hold:
words of the language, numerals, object identifiers, and other textual entities
may not be broken by spaces; otherwise, spaces may be used freely. For
purposes of scanning commands ‘(bo‘th by machine and the human eyé), this
rule has a simple 'inte‘rpretation: in a left-to-right scan for the next syn-
f;actic element of a command, skip over 1ead_ing sPacés;' treat a trailing

space as a terminator for a word, numeral or other textual entity. In terms

SHEET//4 OF 3%

of machine scanning, | tabs (which are represented by a unique'encoding),

are treated aé spaces. In addition, a uniqﬁe En'codi'ng that indicates "end- _.
of-command" must be re;oghjized as a syntacti;':' element; for TEL, this is
‘either‘ the new line or the‘ garrier-return code. In ofher words, a legitimate

command can't have any trailing garbage -- one could never determine whether

it was a spoof on the part of the user or a real error.

Error Detection and Reporting

UTS's general philosophy in these areas is made up of two péinfs:‘

‘1. Don't mess up the user ;)r\his infémation by carrying out a ‘command
or an operation thét can't be carried through to c;-omple.t‘ion.. This rule.
must be fempered by considerations of effiéiency and speed. For ex-

_‘ aﬁple, iﬂ commands that refer to file storage, it may be unfeasible
. . <
to check for the existence or nonexistence of the files mentioned; it is
probably unwise to simulate an éntire. command to check for svtorage-
limit run-overs before actually carrying out the command, and impos=
~sible to anticipate hardware and devicemalfunctions. However, TEL
an& all its subsystems that carry on lilne-by-li;n.e dialogue with users

will always parse an entire command before starting an operation to

insure that the command is, at the ieast, formally valid.

v

SHEET /4 OF 5085

2.. The majority of errors are readily graspéd by the user's eye and
head once the fact of an error has been brought to_his attention.
Accordingly, error messages will be as terse as is possible within

the constraints of readability.

The error messages themselves and the specific actions taken on errors
will be covered in final UTS documentation. However, many errors and
error reports -are uniform throughout TEL and some of its subsystems,

and can be listed here:

(a) Garbled, malformed or unintelligible commands:

EH? @ n (where n gives the character position at
' . which the confusion was first encountered)
(b) Garbled or invalid file, device, reel, account identificatiohs,
and others: : '

FILE... ?
DEVICE ... ?
ACCOUNT ... ?
PASSWORD ... ?
JOB ... ? '

[4

(c) References to (deleting, reading, overwriting) a n;onexistent file:
NO FILE ...

(d) 'Atte;mpts to write ON rather OVER an existing file:
ON FILE ... ? |

(e) Errors, abnormalities, storage-limit overruns associated with an
input-output action or with a specific file:

FILE ...

DEVICE ... : f°11°.v‘;ed by error message

~ IDENTIFICATION AND NAMING CONVENTIONS
T .

‘SHEET//6 OF 3¢

On-line users are provided a set of uniform conventions for representing informa-

tion for fiscal accounting, file identifiers, devices, and other objects.

A'.

. Three pieces of information are required:

Acéounting Information and File Identification . -

An on-line user must identify himself before he can use TEL or any of its

subsystems. Procedures for doing so are described in the next section.

1) the user's personal identification (id) (1-8& char) e

2) the user's account identification (account) (1-8 char) . NIy :
3) a password (password) (1-8 char) 9 I y;g’,;)

These may be represented by a string of no more than eight contiguous

letters and/or decimal digits. Embedded underscores may bg—"g:ggdﬁas

separators (they count as characters); these print as left-facing arrows

(+~) on Models 33 and 35 TTYs.

Files are identified by name, account, and password; file identifications

(fid) are represented by file name, account, and P_asswbrd (in that order)

separated by periods. * In the absence of account and/or password, UTS

uses the log~on accounting identification. All identified files are permanent.

*For the limitations on the lengths of the character strings for name, account, and
" password, see PCL, Part IX, Except that file names are limited to 10 characters.

A‘D’ﬂb'.hi VIO 500

Device Identiﬁcation

Device identifications are represented by two-letter abbreviations for:
card reader (CR); card punch (CP); line printer'(LP); on-line terminal

(ME); labeled tape (LT); and free-format tape (FT). -

Tape identifications must be followed by a. number sign (#) and a reel

number; e. g., LT#727.

DRAWING NO. 702489
SHEET //§ OF ﬁ(fg

s :
INITIATING AND ENDING ON-LINE SESSIONS -

An on-line user must establish a connection with UTS and identify himself properly

before he can use TEL or any of its subsystems. When a connection with UTS has

first been established, UTS responds by typing:
UTS AT YOUR SERVICE
"ON-AT-(time and date) -
LOGON PLEASE:

and then waiting (on the same line) for the user to identify himself by typing his id,

account, and password (separated by commas) on the‘ remainder of the line and then
depressing the RETURN key. If the identification is valid and consistént with UTS's
records, TEL types an exclamation mark ,(.1) at the left margin of the top line of a
new page and then awaits the user's first command. If the identification is garbl‘ed

R ’ :

or otherwise invalid, UTS notifies the user and then repeats the initiation procedure.

The messages are

Y EH? (for malformed or indecipherable) _
T/ : ACCOUNT ... ? (filling in the garbled or invalid itefn)
IS \\,v.. ‘ ’ ‘y) ! ID ? ¢
\\\’ " \ o o0

. PASSWORD ... ?
The user may change the password in his logon file at anytime by typing PASSWORD xxx:
where xxxx is any 1-8 character s‘tfing. Requirement for a password is reset if an

xxxx is not given,

Ovt -

A

DRAWING NO. 7‘\02489
SHEET//{ OF 3

] :
MAJOR OPERATIONS

-

Most cqmmonplace activities associated with FORTRAN‘z‘md“assembly-lé.nguage
programming can be carried out directly in TEL; others require célling for the
services of one of TEL's subsystems. | Figure 3 indicates how such activites ai'e
carried out from the console; TEL commands are capitalized, and subsystems in-

dicated.

1. FORTRAN and METASYMBOL progi‘ams are created, filed away
and changed through the EDIT subsystem either by explicitly caliing

for EDIT or by the EDIT and BUILD directives.

2. Programs are compiled or assembled via the commands FORT4 and »
META from the files or from the i:'erminal (line-at-a-time) into relo-

catable modules (ROM).

3-. ROMs may be LINKed into load modules (LM).

4. ROMs and LMs may be LINKed and may be modified by SYMCON.

5. LMs can be LINKed into core and’executiori STARTed.

6. Linking, ioading and starting of ROMS can be subsumed under the
single directive, RUN,

7. Object programs can be run or started under the control of one of the
debugging s‘ﬁrstems DELTA or FDP

8. Executing programs that have been interrupted or stopped can be
CONTINUEd ;fter corrgctive actions:.

9. Core images can be SAVEd on the file.s, and a user may GET a sa.ved

core image at some later date for continuation.

"DRAWING NO., 702489
SHEET/0 OF =%

User's y
Console

EDIT, BUILD

EDIT, BUILD
s :

filed
METASYM
programs

filed
Fortran
programs

META

relocatable

object
modules

LINK
SYMCON

load
modules

: | o V' executing
filed) A core »
copy of core SAVE ‘ START A module
module

‘ /
i . interrupts,” o
\ GET static P /-
core errorsy’ |
module N stops _ - /
. /
\ ' Y
\ , ~ CONTINUE A]
\ e .
\ - -

.output and réspons
to demandg for injg

User's
Console

Figure 3. FORTRAN and ASSEMBLY-LANGUAGE PROGRAMMING

debugging
subsystems
FDP, DELTA

.

SHEET /2/ OF 34§

10, Files of information can be managé'd &irecfly (COPY, DELETE) and

' throughv the PCL and EDIT subsystems.

Compilations and Ass emblies

1. Imnputs and Outputs
One or more source programs can be compiled or assembled into a
sihgle ROM. Input identifi_cation (EE) niay be either a file identifica-
tion (fid) or the device idez;tificatioﬁ, ME, Whenever it encounters the :
latter, UTS will request that the user typ_e in his source program a line
at a time. If no input specific‘:atioﬁ is given explicit‘ly, TEL assumes

~input from the terminal (ME). To signal end of input via the end-of-

file signal, the user depresses ESC and then F.

Listing output (list) may,b'e directed to a file, the {erminal or a line
printer (fid, ME, LP). ROM output (denoted rom) may be directed
to a file or may be unspecified. In the latter case, UTS caches the

ROM on a scratch file, which the user may subsequently refer to by a

dollar sign ($).

2. Commands
FORT4 ER sp, ..., Sp ON rom, list
META sp, sp, ... sp ON rom,’ list
Listing, commentary, and ROM output may bé specifieci beforehand.
LIST ON list
or OVER an existing file)

OUTPUT ON rom

COMMENT ON list -

TDOKAWING NO, (0248Y

SHEET/J& OF 30¢

When so specified, thé commands can be abbreviated; e. g.,
FORT4 filel, file2 -

-

FORT4 filel, file2 ON romfile3

Listing specification hold over all subsequent operations until chanéed
or until specifications accompany a compile or assemble command.
Output files specified via ON and OVER c‘l.auses hold frorﬁ the time
given throughout the session or until reset, and output to them is ex-

tended from job step to job step (see Section 4 below).

Con’croiling Error Commentary and butputs

Error commentary is always directed to the user's terminal and
always é.ccompanies listing output if specified. During the course
of a compilation or assembly, the user may interrupt the process to

turn output on or off, or to turn on or off error comments and listing

output. .
- LIST or DONT LIST
OUTPUT or DONT OUTPUT"

COMMENT or ~ DONT COMMENT

The facility for wrning fo and redirecting error commenta‘ry is one
that can only be appreciateci by assembly-language programrﬁers and
debuggers who have sat a£ aﬁ on-~line console, wringing their hands |
in desperation 'while' the machi.r;e' chatters on'and oﬁ about an error
that they could either ignore 01; repair instantly once they began de-
buggmg ’OﬁCe‘.th’é 1:15 er has re':dire.ctued i:hin'gs’tc')_rhis sﬂz;ﬁiisfa’cA:t;llon.,‘ he
can -request that processing continue by typing’

CONTINUE

T e e daend hd "L y\/Av.l._‘;vu_y

In the event that things are hopelessly messed up, the user can tell
WTS to give up on the operation by typing

QUIT o

Extension of Output Files

File extension is a convention used when opening certain system out-

put DCBs by which a file (RAD, -tape, 'disc: pack, CRAM, etc) connected
to a DCB is positioned to a point ’justAfoyllv;awing the last record in the file.
Thus, when additional output is p‘ro'duced through the DCB it is added to
t';he. previous file contents thereby "exte.nding” the file.. File extension

is necessary to simulate outpuf tp physic.al devices such as line printers,
punches, ty‘pevs}rit_ers, etc., when output is actu.aliy directed to a file,

It takes place on all opens of system-output DCBs and, in particular,

it takes effect between job steps (compiles, assemblies, loads, and
executions are all é_tgms_. within theA éame job) when opening systém out-
put DCBs, which were closed at the termination of the preceding job
step, and which are normaliy connected to devices but have been

assigned to files. The DCBs which are treated this way are M:LO, LL,

DO, PO, BO, SL, SO, CO, AL, EO, and GO.

File extensions do not apply, that'is a new file is created, on occurrence
of a reassignment (SET) or when the file is opened with an OPEN Com-

" mand. giving an explicit file name. Extension of the GO file is terminated-

foilowing a LINK or RUN Command.

'DRAWING NO. 702489
SHEET/44 OF 30%

Error-Handling and End-Actions

Whenever UTS aborts an?action, either béqause it- cannot be 'contimied.
or becaﬁse the user has told it to quit, UTé will é.lwayé clean up things
before repprting and returning control to the user. In p?jrticular,
aborts occurring outside of TEL, i.e., within compilers, assemblers,
of user programs will result in all previous specifications for listings,
commentary, etc. and/or file assignments being restored to that in
effect at the beginning of the job step. Source Input (SI) specifications
are reset to the default,. ME, for -each job step. On syntax errors in
input messages, £he input is erased and an: entix}ely‘n’ew colmmand must

be entered.

Entering Programs From.the Terminal ®

Whenever the iﬁput designator, .ME, is encountered, the carrier is re-
turned to the left'margin of a fresh line and a prompt is sent to await
the user's first program statement. Each statement is terminated by

a carriage"réturn or line feed. Error commerﬁ:ary, if any, follows
immediately to the user's terminal. >To indicate the end of his source
text, the user types the end-of-source command for the subsystem in
use, normally "END", For purpoées'of formatting, print columns on
the terminal's platen are in one-to-one cdrreépondence with card
column‘s, and trailing blanks are assumed for short lines. To facilitate
typing of commands and statements, TEL will assume that the terminal's
tab stops are set to conform to the programming language being used,
and will so simulate them if tab-—stop‘sirnﬁ.latiox.l is in effect. For

FORTRAN, a single tab stop at print column 7 is used; for assemblies,

DRAWING NO. 702489
SHEET/2S OF3 D&

tab stops are set at columns 10, 19, and 37. The general handling

and ‘simulation of tab stops is covered completely in Part XII. Briefly,
tabs are simulated so that longer fields can be used: spaces are sent
to the terminal to bring the carrier position to that‘indicated by the
next tab position set. Tabs given when the carrier is beyond the last
set position are simulated by a single space. On input, tab characters
accompany the source statement.s‘ literally, and assemblers and com-

pilers will treat them properly.

Debugging Information

ROM outputs of both compilations and ‘assemblies always contain in-
formation required for sﬁbsequent debugging at the assembly-language
level under DELTA. To debug FORTRAN-produced programs under
FDP, further information must accompany the compiled code. In the
absence of other specifications, this information is not produced by the
compiler. Such information increases the size of object programs and .
slows them down. To turn on the production of this information for a
specific coinpilation, thg user follows the verb FORT4 by a parénthe-

sized letter '"D' or the parenthesized word "DEBUG",

Linking ROMs and LMs to Form LMs

ROMs are representations (of programs and data) that are specifically de-

signed for efficient combination with other ROMs; LMs are representations

designed for efficient translation into executable programs and loading into

core. Both may be pictured as bodies of potential machine code to which

-

TDKAWING N O;ﬂl)() 2489
SHEET /46 oF 3¢

" are appended so-called symbol 'tables; S&;ﬁboi tables list the correspond-
encés betweén the symbolic identifiers used iﬁ'-the o‘rig.inal source program
and the values or virtual g:orchallocations that hav‘e' be've_n assigned to them.

‘Many of these symbolic identifiers are us gd and z:éférred to solelﬁr within
the module that 'may be refer;'ed tq in other modules (DEFs) or are used

" to refer to objects defineéd within other mq&ules_ '(REFs). Functioﬁaliy, the;se
modules are black boxes v(zith la;beled connectors dangiing from them, some
pointing out and others in. The labels are the global symbols associated with
the module; the ‘internal connectioné have allibeen_ potted, and are hidden.

The process of liﬁking modules together is one of ”ma’kingﬂbig ones out of
littlé ones;'. In the process, internal symbols associated with new module's
constituent parts are potted and hidden, but all global symbols are. still
visible. If the resultant moduie 1s to be itself recombifed with other modules
to form yet larger piéces, it is often necessary that it be repotted in such a
way that those global symbols used solely for c.onnevcting its Aoriginal constituents
either be ‘renamgd_ or be made internal to itself so that conflicts with external
symbols of other modules be circumventeq. The subsystem SYMCON, de-
scribed in a separate document, * provideé users facilities for such renaming .
.and repotting. These facilities éi:cnplify the construction of large programs,
since they permit subprograms to be linked freely in the face of conflicting

naming conventions.

*Drawing Number 702477.

|

DRAWING NO. 102489
SHEET/J/ OF 34%

Continuing the black-box analogy, if a module is slit open, a jumble of
internal connections shogld be visible. If the module .1:1as been tested and
deemed fit for production, thése connections neled not be lé.beled. - However,
if the modﬁle is still in the debu_ggihg stage, the labels may be necessary.
To this end, TEL permité users to’ specify when the internal symbols
associated with a module.being linked Iare to be ‘kept with the resulting load.

module.

1. Simple Linkages

Both ROMs and LMs may be linked. " Their identification mfl (for
""module for linking'') may be a fid (file identification) or the dollar

sign ($) which refers to the ROM(s) produced on the M:GO file.

The subsystem, LINK,. is specifically designed for linking and is de~

scribed in Section X. However, most commonplace linkages can be

carried out directly in TEL. ‘ : a .
LINK mfl, mfl, ..., mfl ON Im (ON A NEW FILE)
LINK mfl, mfl, ...) mfl OVER Im (OVER an existing file)
LINK mfl, mfl, ..., mfl (in a special file which

rnay be STARTed)

The result of any linking operations is always available for subsequent

execution whether specified or not (see C. below).

— e 2T ke Y Nl T VNS g VAT DY -

‘SHEET 2§ OF 374§

Load Module Symbol Tables

A load module can be pictured as being comprised of three parts:

-

a) ; body of code; b) a table of global symbols; and c) a table or set

of tables of internal symbols, each associated with a specific input

" module and identified by that module's file name. This identification

permits users who are debugging under DELTA to define which set of
internal symbols are to be broﬁght into play for their debugging activities.
What happens to these subtables associated with a load module when the

module is relinked with other mddules is described in 3. below.

The mechanisms for specifying when an input module's internal symbols
are to be kept with the resulting load module follow:

(2) The parenthesized letters "NI'" preceding an input module's

’ file identification in the LINK command specifies that internal
symbols for that module are to be left out;. the parenthesized
letter '"I'' indicates that internal symbols are to be kept.

(b) Once‘given, a specification holds for all subsequent modules
mentioned in the command until the occurrence of a new speci-
fication. ‘ k

(¢) Inthe absence of any specifications at-all, all internal symbols -

are kept.

Merging Internal Symbol Tables

Keeping each constituent's internal symbol table distinct and uniquely

identified in a load module makes sense when common naming con-

‘ventions have been repeated in programming the constituent modules;

i, e., when objects internal to distinct modules are frequently identi-
fied by the same symbolic identifier. When non-conflicting naming

conventions have been used, the user may give instructions to merge

— AT P ek VAT AN N g T e TA I T

SHEET/~9 OF 30%

several specified symbol tables iﬁtéé sing@.e one in the resulting

load médule. This is done by enclosing the lis.t of %.nput modules
named in the command 1n parentheses.. O:iiy 6pe level of parentheses
nesting is allowed. Either all or none of the input modules may be
merged on a file. This convention was adopted in favor of, say,
choosing a distinct command for the Ilaroce's.s, bto maintain unifonnity
with the conventions of the LINK subsystem. Multiple uses of internal
identifiers are resolved bykassigning to them the object that they identify
in the first' input module with which the';.r were associated (reading from
left to right Within parentheses). When a load module containing sepa-
rate internal symbol tables is itself linked in any way, its subtables

are merged into a single one before carrying out the linkage.

°
Searching Libraries

To resolve any dangling identifiers, ﬁéers may indic;ate the order and
identification of libraries to’ be searched after all input modules have
been linked. " Libraries are identified by account, and library .identifi-
cafion (1id) is identical to account. The list of_l_:'gi's separated by com-
mas is appended to the list of mfl's in the LINK command, and is sepa-
-rated from that list by a semicolon. f‘or example:

LINK mfl, mfl, ..., mfl; lid, lid, ...

DRAWING NO. 702489
SHEET/jd OF %

In the absence of any other séecifications, a special UTS library .Will

be searched to resolve daﬁgliﬁg identifiers, usually those associated

with FORTRAN corﬁpilations. This is don;'e after all libraries spec'i-

fied by the user have been searched. To turn off this final library

search, thé user follows thé command vgrb by the parenthesized lefters

HNLH'

End-Action and Error Reporting

Options governing error displays are given immediately after the verb,.

LINK, as a parenthesized code or list of codes:

ND or D mean do not or do display dangling identifiers '
NC or C mean do not ar do display conflicting identifiers
NM or M mean do not or do display complete loading map

The normal options are D, C, NM. After any displays, "DONE'" is

typed and then control is returned to the user.

Loading LMS Into Coré

It is possible to load ‘any stored LM into core by presenting TEL with
the LM name é.s a command verb. A ﬁas sword may be opti§na11y
present., If the LM exists under another acéount, -that account may
be specified. If no account .is specified, the :SYS account is éssumed.
TEL will scan the remain&ng~ portion of the input line in an attempt to
create assignments .as is done f'o'r thei META and FORT4 commands.
If the line scan is not desired a;nd there is more line content, the us er
may bracket the "ho-sCan" portion with parr.enthevses. TEL will ignore
all,ciata imbedded within the parenthé'ses- but will .reject as a syntax |

error excessive close parens. For example:

 DRAWING NO. 702489
.SHEET /3| OF 3a$

TESTOR - loads the LM from the :SYS account

TESTOR. loads the LM using the Logon account
TESTOR. 1234 - loads the LM using the account '] 234!

TESTOR..SECRET 1loads the LM under ldgon account and
the password "'SECRET! :
TESTOR FILEA ON FILEB, FILEC ~
' loads the LM and assigns FILEA as the
source in (SI DCB). Any output through -
the GO DCB is placed on FILEB, and
FILEC will contain any output through
the LO DCB.

TESTOR (ABC(DEF(GHI)JK))
' loads the LM and passes the line image
directly to the program.

Initiating Execution

To start execution of the last LM fofﬁ1ed by LINK, the; user types
| START |

To load and start exeAcution of an LM, the user types

START lm
To link, load, and start the result of the last major operation
(assembly or compilation), the user fypes

RUN
To link, load, and start execﬁtion of a set of moduies, the user types- A

RUN mfl, mfl, ...

All options ,Of the LINK command may be exercised in the RUN com-

mand, in exactly the same manner. Normal options are the same:
RUN (I) filel, fileZ2, (_NI‘) file3 |

requesté that three files be linked, loaded, and started. Intermnal éym-

bols for the first two only are to be kept with the resulting load module.

Q

DRAWING NO; j02489
SHEET /3. OF E 68

Initiating Debugging Operations

Execution of programs can be started under control of-either of the two

debugging subsystems, DELTA or FDP;

-RUN DELTA (for assembly-language debugging)
) UNDER ! FDP (for FORTRAN debugging)
START XXX (under special shared processor XX

Once the programs have been loaded into core, control passes to the desig-

nated debugging package which notifies the user and then awaits his orders.

The DELTA debugging subsystem may also be called when execution has been
initiated without them, usually after an interruption by the user or an error |
comment by the system:

DELTA

File Management

&

A few simple operatioﬁs on disc files ca.n‘ be carried 6ut directly in TEL,
full file-management and information-transfer capabilities are é?ovided b); the
PCL»su..bsystem. In TEL, disc files may be copied ON new files, the printer
or the terminal; may be copied OVER an existing file; and may Be deleted:
| COPY fid OVER fid

COPY fid ON fid or LP or ME

DELETE fid
Once started, deletions cannoAt bé interrupted by the user; copies to a printer
or to the termiﬁal will b;a aborted b"y'intefruption; TEL will type

REVOKED BY IN'i‘ERRUPT |

in such cases. When an operation is carried through to completion, TEL

prints

DONE

- hefore returnine control to the user.

e

DRAWINGNO: 702489
SHEET /33 OF 378

Editing
Line-at-a-time composition and 'éditinvg of files of seqi:.entially numbered

lines is provided by the EDIT subsystem, which can called in two ways:

EDIT fid (an existing file)
BUILD fid (a new file)

In the first case, EDIT has already; been apprised of which file is to be

~ edited, and has opened that file for updating. In the second case, EDIT

assumes that the user wishes to type in a new file, a line-at-a-time, be-

. ginning with line number 1. 000 and continuing in steps of 1.

EDIT responds by pfinting each line's number at the left margin and then

waiting for the user to type in the line itself. Although EDIT is invisible '
to the user during this operation, it is explicitly available to him for cor-
rections and other editing operations. To end'the operation of acceﬁting‘ '

a new file, the user must depress the carriage return key as the first chaz-

. acter of the line, and then type

END

Submitting Batch Jobs

Control card programs destined for"subm.ission to the batch queue can be
composed and filed away on-line in the EDIT subsystem. These may then
be Subrﬁitted to the ‘batch queue:

‘ ‘BATCH f{id
UTS responds by assigning the batch job ,é,n ideritiﬁc‘a{tion (jid) and notifyirig
the user: | | |

JOB jid SUBMITTED date-time

'DRAWING-NO.
SHEET /34 oF

024§9
K06

The procedure for assigning priorities to 'rerhdtely submitted batch jobs

will be defined concurrent with the deVelopmenf of the Remote Batch

Functional Specification which is in process. The user can interrogate

the status of remotely entered jobs by typing

JOB jid?

At the very least, UTS will be able to tell the user whether the job has

completed or whether it is still in queue. The user can cancel an un-

finished or unstarted job:

Calling Subsystems

CANCEL jid

All subsystems are called by typing the subsystems identifications, e.g.,

PCL

All subsystems respond by identifying themselves; e. g.,

PCL HERE

and then typing their identifying mark at the left margin of a fresh line

before returning control to the user.

‘All subsystems are described in

separate parts of these specifications, The identifying marks are:

EDIT
PCL
FDP

- SYMCOM (2)

LINK

BASIC
DELTA

TEL
PM

)
(<)
(@)

(:) .
>)

(*)
(-)

FORTRANs (>)-

META

>)-

(bell) -

DRAWING NO. 702489
SHEET/35 OF 309

Continuing and Quitting Major Operations .

Whenever a major operation,- a subsystem or an executing user's program

has been stopped or interrupted in any way, the user can

1.

Take any of the minor actions described in the section below,

and then requeé_t TEL to continue from the point of interruption

by typing

CONTINUE

Give up completely on the operation by typing

QUIT

In the latter case, TEL cleans things up and then returns control

to the user.

Initiate a new major operation. In this case, the effect is as if he
had told TEL to QUIT before gix}ing the‘ new command. The sole
exception to this rule of automatic QUITting occurs when the user
calls one of the debugging ‘systen’.ls (DELTA, FDP) during execuﬁon
of ilis program. In this case, the usér‘s program will have to be

initiated again under control of the debugging system.

DRAWING-NO. - 702489
SHEET /36 OF 30 |

MINOR OPERATIONS
=]

A, Checkpointing Sessions (SAVE; GET)

During interruptions of exception, core images‘of programs may be
saved on the disc files for subsequent recall and continuation. To
save and file away a core i.rnage-:

SAVE ON fid ‘ :
SAVE OVER f{id (over an existing file)

The current status of the user's files is not copied, and the usef must Be
aware of any on-going but interrupted input—.output activities. In brief,
checkpointing will work well so 10ng>as the ﬁser knows wh'at he is doing.
'I‘o récall a checkpointed core irna.ge for continuati‘on, the user types

GET fid

At this point, the user is -— to within file changes and input-out activities --

exactly where he was when he SAVEd.

B. Assigning I/O Units and DCB Parameters (SET)
Most of the parameters carried in DCBs which i'cohtrbllli/Ofr:-ih'r~UTS may be
set from the UTS terminai by use of the "SET" command. The SETable
information includes that which may be. given in BPM ASSIGN commands and
many of the parameters which afe established using OPEN or DEVICE CAL
instructions in a program. 'fhe -complete list of SETable parameters are

given below.

DRAWING NO.. 702489
SHEET/37 OF %0%

UTS retains, for each user, all the information supplied by SET Commands
in permanent tables (called assign-merge tables) associated with each user
(on RAD). Each time a new program or processor is loaded for the user

this stored information is merged into the DCBs associated with the program.

SET Commands may not be given during the operation of a prdgra’m.

Information given by a SET Command is in effect from the time the command
is given until r'evoked by the user, independent of whether one or many 50b'
~ steps are included in the session. A si.m'ple. example of the assignment' of
listing output is

Set M:LO 7T #123; TABS =. 7, 12, 22, 37
which makes a device assignment to the M:LO DCB indicating I/O to seven-.

track tape on reel number 123 with processing to simulate tab stops at

positions 7, 12, 22, and 37.

As in BPM, assignments are one of two types:

1) device like printer, punch, mag tape, or
- 2) " files on RAD, disc pack, CRAM, or labeled tape.

If a ﬁle assignment is given for a DCB already assigned to aAdevice, then ’theb A
new information replaces the old in the assign-merge tables. The same pro-
cedure applies to device assignmenfs for DCBs currently assigned to files.
Change_s of device parameters are added to DCBs assigned to devices. Change

of device parameters given for DCBs dsSigned to files yield an error messagé.

. DRAWING:NO. - 702489
' SHEET /38 OF 3J% \

DCBs must be named using either M: or F: followed by up to a maximum

of five characters.

The number of DCBs Which'may be assigned (and thus requirxe an assign-
merge table entry) is limited to 12, including a different entry for each
chained SI specification. The user may delete assign-merge entries by

the command SET B&® 0. : o
' M:x | \ (' @
Fic I BV YR

Syntax of the SET command is /é— P 4L qéu//
Mix {device mo.] } SPACE=n

SET MT [#ser. no.] /fid VFC

DC/fid NOVFEFC
op

Fri

Spaces may be used arbitrarily between numbers, words, and identifiers

but may not appear within words or numerals.

Some examples of its use are

SET M:LO DC/N.A.P The M:1LO DCB is given a file assignment
' to file N under account A with password P. .

SET M:SI MT#403/fid The M:SI DCB is assigned to files on labeled
tape reel number 403.

SET M:LO; TAB=27; 38,47,75; VFC; SPACE=2

The TAB, VFC, and space parameters are
added to the M:1.O DCB. It must have had
device assignment previously else an error
would have resulted. ‘

Device. Options'

Device opti;ns, like their program.coﬁnterparts the M:DEVICE CALs,
may be given between job steps but not dﬁring an interrui)tion of an exe-
cuting pfogram. They take effect on subsequent I/Obc'a'rr'led on through

the DCB. The information is stored in the assign-merge entry if they are

DRAWING NO.. 702489
SHEET/39 OF 349

of device rather than file type. Thus, the effect carries on over job
steps until reset by the user. If the DCB or A-M entry is currently

assignedfto a file, all device options are illegal.and result in an error

message. .

The device options and the meaning of each is given in the table below.
Not provided are commands corresponding to the M:DEVICE CALs:

PAGE, FORM, SIZE, and HEADER.

NAME

TAB

LINES

SPACE

DRC
NODRGC

VEFC
NOVEFC

COUNT
BCD

BIN
FBCD
NOFBCD
PACK

UNPACK

DATA

SEQ

DRAWING NO. 702489
SHEET /#/ OF 3(}%’

- DEVICE OPTIONS -

RANGE OF VALUES

- A list, separated by commas, of up to 16 decimal
" numbers giving the column position of simulated

tab stops. If all 16 stops are not specified, the
stops given are assigned to the first stops and the
remainder are reset (to zero).

A single decimal value giving the number of printable
lines per page. Maximum is 255,

A single decimal value giving the number of lines to
space after printing. Values of 0 or 1 result in
single spacing. Maximum value is 255,

A switch Wthh turns on or off spec1a.1 formatting-
of records.

A switch which controls formatting by the first char-
acter of record.

Turns on page counting and specifies column number
at which to print the page number.

Controls the binary-BCD rnode for device reads and

writes. :
Controls the automatic conversion between external
hollerith code and internal EBCDIC code.{so-called
"FORTRAN BCD conversmn”) ,

Controls the packed or unpacked mode of writing
seven track tape. '

A decimal value which controls the beginning column
for printing or punching. Maximum is 144,

Specifies that sequence numbers are to be punched in
columns 77-80. Four characters of nonblank sequenc
id may be given for columns 73-76. Fewer than four
characters are left-justified and blank-filled.

DCB Assignment

SHEET /#/ OF 349

Device assignment is effected whenever a set command contains an expres-

sion containing an op. label or device code. - An assign-merge table entfy is

built or an existing one is modified. DCB assignment is specified by giving

one of the two-~letter codes below.
1. Op. Label

BI C, CI, EL SI, wl

BO, CO, EO, SO, PO, DO, LO

NO
2. Device

CP
PP
LP

3. .Tapes
9T
7T
MT

4., Files

DC

DP
CM

The DCB may be assigned to one of the sys-
tem operational labels. The actual device
connected will be that specified by the op. lab:

No assignment.

The following codes may be used to obtain
symbiont connection to the named device.

Cara Punch
Paper Tape Punch
Line Printer

These codes may be used to specify nine-
track, seven-track, &r arbitrary tape drives.

Nine-track tape
Seven-track tape
Any mag. tape

These codes may be used to obtain specific
file connections.

Any data file. This is the default assumption
if no code is given. |
Disc pack

Cram file

TTIIINON VY LINOITINUY YT VL0 7

SHEET /A OF "'jjg,’v‘b'

File OEtion

When an assign-merge entry is given for a file (either disc or labeled tape),
certain o-pfions may be given in addition to the name account password of the
_ file id and the tape reel number (#xxx). These 6ptions are listed below. Items

from BPM ASSIGN commands which are not handled in UTS set commands are:
Read/Write account numbers (default applies)
Only one tape reel number
Record length (RECL)
"tries" specification (TRIES)
Key max (KEYM)
Volume number (VOL)

They are not included primarily to reduce storage requirel.'nents in the assign-

" merge tables.

UTS SET Command File Options

File Option : Meaning

1. organization

CONSEC Consecutive record organization in the file.
KEYED Keyed record organization in the file.

2. access ’ ' ’ .
SEQUEN | Records will be accessed sequentially.
DIRECT Records will be accessed by key.

3. function

IN File is read only.
OouT _ _ File is write only.
INOUT File is to be updated.

OUTIN . File is scratch.
4, disposition

REL ' The file is to be released on closing.

SAVE The file is to be saved on closing.
Example:

SET M:SI DC/Name; KEYED; SEQUEN; IN

C.

TTTTTTAJINSA W LN AN T T IV L0 T

SHEET/%3 OF 3J'%"

Determining Status of Current User Sessions

The user niay have the current accounting records applying to his session

displayed for examination by typing the command -

STATUS
The information displayed is as in the preceding section on user accounting,
y

namely:/

- ? . F e PAl - TUEKT +T EXT - 0‘/“71 1M

3 1) VY CPU time TPEAT + T PN +TUEXT +T U oUT + LEX
2) ¥ Console time —— _ . 25
3) v'Number of interactions. Jerwvicfi _ : l;“’%&

—~ 4) Number of Monitor CALs «—7, . o

3 5) - Number of disc packs or tapes mounted <- >
-6)—-Core size < ‘ '

) v Total charge units -4

:f v 8) Disc reads and writes* _

F 9) Tape reads and writes! ‘ ?

10)—T1/O-retries—. ... <& o
S .
Listing System Load Parameters

The DISPLAY Command is used to requesf_'printing of specific information
about current system operation. The format is
DISPLAY option

where the option may be any of the following:

DISC available disc space (in pages)

TAPES number of available tape drives

PACKS - number of available pack drives

USERS number of users currently active /

PERFORMANCE current values of interactive and
compute response times.

Other options for the DISPLAY Comrand will be added as the need arises.

DRAWING NQ, (U459
‘SHEET /¥4 OF 3J%"

Setting Simulated Tab Stops

The positions of simulated tab stops for the usér's terminal may be set via .
the command.
- TABS a,b,c, ...

where a,b,c, ... are the character positions-on-line where simulated

" tab stops are to be placed. Up to sixteen fnay bé set and they must M

in ascending numerical sequence. They are acted on (enough spaces are
|

sent to the terminal to position the carriage to the next higher position)

when a tab character is to be sent to the terminal or received from it and

the simulation control switch has been set by the user (ESC T). The setting

applies until superseded by another TABS Command or by a program issued

M:DEVICE TABS CAL,.

Changing Terminal Type

~

The command TERMINAL may be used at ahy time to inform the sysfern
about the type of ASCII code terminal which is in use. The system uses -
this type code to afdjust char.ac'ter translate tables, responses to line delete

and character delete operations. The command form and options are

KD for SDS Keyboard display
33 for Model 33 teletypes
TERMINAL 35 for Model 35 teletypes
' 371 for Model 37 teletypes

Fuhll 7

(o4

DKAWLNG NPT .u‘%&'ts‘/
SHEET/45 OF 307’

-Reportipg Terminal Platen Width
The user may change tﬁe effective width of his terminal platen with the
PLATEN‘I Command: |

PLATEN n ’)L
Whén more than n characters are written to the terminal without a new~
line or ¢éarriage return character, a new line character sequence is in-

serted to break up the output into segments no longer than the specified n.

BUILD
META
BATCH
CANCEL
COMMENT .
CONTINUE.
COPY
DELETE
DISPLAY
EDIT
FORT4
GET

JOB

LINK
LIST

OFF
OUTPUT
PASSWORD
PLATEN
QUIT

RUN

SAVE

SET

START
STAT US

TABS
TERMINAL

gt
e

TURKAWING NU, U448

. SHEET/L/éOF 24F

INDEX OF COMMANDS -

. TEL

Calls EDIT and accepts a new file from the terminal
Assembles specified source prf)gram

Enters specified file in batch job stream

Cancels the designated batch job

Directs error commentary to specified device
Continues processing from point of interruption

Copy a file to specified device

Deletes the specified file

Lists current values of various system parameters
Calls the EDIT subsystem

Complles an SDS FORTRAN IV source program
Restores previously saved core image -
Requests status of remotely entered jobs .

Forms load module as specified

Directs listing output to desired device

Disconnects user from system -

Directs object output to specified dev1ce

Assigns a new password to the user's login control reco:
Sets value of terminal platen width

Terminates current operation

Loads specified load module and starts execution
Saves current core image on designated file

Assigns file or device to a DCB; sets DCB parameters
Begins execution of program just loaded

Displays the current values accumulated in the various
‘charge categories

Sets override tab stops at the user's terminal .
Sets the terminal type for proper Qj{l\ﬁaicg]anslai:ions

frqmd Mgy \fwo

DRAWING NQ, 702489
SHEET /4#7OF 36%

UNIVERSAL TIME-SHARING SYSTEM (UTS)
FUNCTIONAL SPECIFICATION

VOL. 2 - PARTS VII - XIII

By

E. Bryan
B. Doeppel
J. Smith

.31 March 1969

DRAWING NOQ.., 702489

SHEET/4§ OF 344

Part VII. TEXT EDITING SUBSYSTEM (EDIT)

TABLE OF CONTENTS

INTRODUCTION
A, Calling EDIT

B. Operation

DESCRIPTION
A, Common Extensions to the BTM Editor

B. Characteristics of the UTS Editor.

Page
149

152

DRAWING NO.., 702489
SHEET/47 OF 308

INTRODUCTION

LI~

The UTS subsystem, EDIT, is a line-at-a~-time context‘ editor designed for on-
]‘.ine’creation, modification, a.nd; handling of programs :and other bodies »of in-
formation. All EDIT data is stored on disc in a keyed file structure of sequence
numbered variable length records. This structure permits EDIT to directly
access each line or record of data. EDI.T'functioﬁs are controlled through single
line commands supplied by the user. The command lénguage provides for the in-
‘'sertion, deletion, reordering, and replacement i:;f lines or groups of 1in§s of text.
Sele;cfive printing and renumbering commands, and a seriés of cormmands to per-
form context editing operations of mé,tching, ‘moving, and substitution line by line
within a specified range of te#t 1i'nes. File mainﬁenance commands are also pro-

Avided to allow the user to build, copy, and deleté whole. files of text lines.

A, Calling EDIT .
An. on-line user of UTS may call EDIT using one of two commands provideii
. in the Terminal Executive Langu.age (TEL).
1. EDIT an existing file

2. BUILD a new file

In both cases, the EDIT subsystem is brought into play. The first case
allows the user to call EDIT for the purpose of updating an existing file.
EDIT first op4ens the specified file and then responds to the user by typing

"EDIT HERE”, and its identifying mark, the asterisk (%*).

DRAWING NO... 702489
SHEET/50 OF 308

The second case permits the user to call EDIT for on-line éréatiop of

a text file. 'EDIT opens the specified file é.nd',résp;onds to the user by
typing the first line number 'a.tt the left margin of a fre-sh line. The usef
is the;l expected to enter ‘the first line of the neWAﬁlé.. "EbIT" and
"BUILD" are included as part of the EDIT command language and are
described further below. If the EDIT command is given at executive

level without a file identifier, the editor will prompt for further com-

mand input with the '*' character.

Operation

EDIT, as_a processor, operates in one of two states: the éommand state
or the active stafe. The com.mand state is defined aé the time in which
'EDIT'is accepting or procesvsing a cor;l'lrnand. This state is entered when
EDIT types its identifying asterisk (*), returns control to the user, and
awaits the nexf com;nand. On the other hand, the active state is ;}efined
as' that time in which.EDIT is executing cﬁndmands, processing fext, or
“accepting text from the user. This state is entered when a command
starts 'executioﬁ énd terminates at the completion of the command. When
carrying out a command, EDIT may be prbces sing information while in
"~ control of the keyboard, or ma& have :efufned céﬁtrol to the user so that

he may enter text data. ‘Which of the two situations holds is always clear

. to the user.

WIINLX VW LN G 1N q . (UZ40Y

SHEET /4/OF 32§

The editing process is based on a sequence number associated with
each line. These numbers may be automatically generated by the
editor during insertions, or may be supplied by the user. Unsequenced

files of text lines may be sequenced using the copy command.

EDIT files are stored on disc as keyed records with the sequence num-
ber used as a key. Thus, the file is always in key order and editing
operations modify the records in place as the EDIT commands are exe- _
cuted. Users may find it desirable to make their own back-up c-opies of

EDIT files to protect against their own or machine errors.

DESCRIPTION

g

DRAWING NO... 702489
SHEET /52 OF 305

The UTS editor?is an extension of the editor available in BTM; Thus, the details.

of the language and its use are contained in the BTM Manual (90 15 77A) as ex-~

tended and modified in the following two ,s‘ections.

The first section describes extensions common to both BTM and UTS versions,

while the second section describes unique characteristics of the UTS version.

A, Common Extensions to the BTM Editdr

1. a.

The modified BTM editor will write variable length records.
The byte count written will only be large enough to encompass
the last nonbiank character in thé record, followed by the Cr
used to terminate the record. ’fhis format should doﬁble the
effective record density in a givep number of granules of file

storage.

The editor creates source output files with keyed organization. |
The keys are one word binary :.:ei)resentations. of the sequence
nuﬁbers seen at the terminal.l The sequence number DDDD. DDD
is taken as a seven digit integer and converted to binary, giving

a key with a maximum length of three bytes.

For example, the following record created in a BUILD operation
would have key value 800010 and record length 20 bytes (including

the Cr).

8.000 B2 LI,5 0 Cr

TOINAWLINGOTINO T T (Ve40y

SHEET/53 OF ' 30 8

Should the Cr be preceded by a number of blanks they will not
be carried in the output. The record terminator can be either -
carriage return.or line feed (new 1iné)._' It is carried in the

record as X'15'.

b. The maximum record size in tﬁe editor has been increased to
140 characters inclﬁding the Cr. (In .BTM, however, a single
input line cannot exceed the COC input buffer size which is set
at SYSGEN. The default size is 100 characters. Therefore,
the mé.ximum record size under BTM is the minimum of 140

and the ;1nput buffer size.)

c. When a file created by EDIT is read bjr a processor, the reéords

| trar;s;mitted will appear in the format currently obtained when
reading the. TY deviée under BPM. That is, :he Cr character
will be in the record, and the byfe' count transfnitted will be
given in the ARS field of the DCB. ‘The processor must avoid
producing a syntax error du"ev to the presence of the Cr, and it

must not let short records pick up spurious characters from

previous longer records.

2. Type commands .

a.. The TY and TS commands have been extended to allow the user
to display contents of records between specific column bounds.

The syntax is now

£ TY N ['Nz] [,c Ed]]

DRAWING NO.., 702489
SHEET//# OF 34 g

The editor displays records in the rénge Nl to.N Only the

20

portions between columns c and d are fyped. If N‘2 is omittéd,

only record N, is .displayed.

Defaults: c=1
d = 140
"Errors: -BAD COL. NO. PAIR

The columns spec_ified are not in the
range 1 through 140, with ¢ < d.
The intrarecord versions of TY and TS do not allow column -

specification.

A new record command, TC, ha’é Been added. This command
has the same syntax and.aisplay format as TY, excep;: that when
a portion of a record is displayed with tﬁe TC record, all blank _
fields are compreSséd to lenéth one. This facilitates the disPIgy
of assembly language code. For'.example,

* TC 0-100 1, 36

The TC command does not have an intrarecord counterpart.

Under UTS, where blank fields_ may be carried internally as tab

characters, X'OS', the tab will be altered to one blank.

Merge command

A command has been added which allows transfer of records between

files. The syntax is

TDRAWING NQY 702489
SHEET 55 OF30 &

fidl must exist,v in keyed forrhat,, or.bthAe command will be aborted.
If no range specification is attached 156 fidi; all of its records are
subject to the move. If a réﬁge siaecificati’on exis:ts, .the editor
checks that at least one récérd is containe;l in‘it'. For example,

* MERdE fid; " INTO ... merge all of fid;

* MERGE fid;, 10 ' INTO ... merge record 10.000 of fid;

* MERGE fid,, 10-’12. 5 INTO...merge range 10.000
' through 12.500

After these validity checks on fid;, the editor checks for the exist-

ence of fid;. The two possible cases are:

a. :‘Eid2 dogé not exist. In this cas;e, the editor cre.ates’
a file identified by fidz. It then moves the appropriate
record set from fid; into fid,;, resequencing from N3
and incrementing by i (in its absence, bf 1). This is °
rpughly equivalent to a CO'PY operation, except for fhe
selection of records from fid;.

b. When i:'id2 exists, the editor first deletes from it all
records.in the range N34N4. Then the appropriate
records from fid1 are insgrted into ﬁdz, starting at |

éequence N, and incrementing by i (in its absnece, by 1).

- IE én EDIT operation was in progress, it is halted with the message

. . EDIT STOPPED

The start of the MERGE' operation is noted by the message

. . MERGE STARTED

DRAWING NO. . 702489
SHEET/S 6 0F . 30¢

When the MERGE has beén successfully ;:ompleted, the editor prints
. the last sequence number assigned in fidzr) |
-- DONE AT Ns L
Fc.:»r example, | :
* MERGE ALPHA, ACCT1, 100-120 INTO BETA, 400-440
.. EDIT STOPPED
.. MERGE STARTED

-- DONE AT 420.

In the event that, when fid; exists', the number of records to be moved
at the 5pecifi.ed increment causes the editor to equal or exceed the next
highest existing sequence.number above the destination range N -N ,
-the MERGE is stopped with the message

-- CUTOFF AT Ng (Ng)

last sequence number assigned in fidz.
sequence number of last record moved
from fid1 .

where: 4 N5
"N6

L 4

The operation is terminated norrﬁally, and the user can investigate how

to move the remaining records.

Defaults: i=1
Messages:
-- EOF HIT The range N,-N, passed beyond the end of file in fid,.

- PL:NO SUCH FILE fidl does not exist.

NOTHING TO MOVE the specified range in fid]; contains no records.

MERGE SOURCE NOT KEYED fid] must be a keyed file.

MERGE DESTINATION NOT KEYED fid, must be a keyed file.

DRAWING NQ., 702489
SHEET /' JOoF 30&

CR command

This command has the form

ON " ' ~
OFF

»"

icra%

and allows the user to suppress incluSion of the X'15' terminator in

~ his output file. Normally,‘ it will always be carried along as this is.

the standard format for teletype and typéw'riter records. However,
if the user. wishes to reproduce the file on cards or tape, for use by
other than BPM/BTM/UTS software, he may not want the terminator

to be present.

After this command has been given, specifying OFF, the terminal
X'15' will not be included on any records written by the editor, and

the user can copy the file producing one in the desired format.

* CR ON restores inclusion of the terminator and is the default

setting.

DRAWING NO., 702489
SHEET /55’ oF 3¢

Characteristics of UTS Editor

The unique features of the UTS editor, apart from those included in the

extended BTM version, fall into the following categories: -

1. Calling sequence

2. File 1dent1f1cat10n (f1d) format
3. BREAK key

4.

The TA command for tab setting.

Under UTS, the EDIT processor may be called at executive level
in one of two ways. Following the executive érompt, the uéer may
type: |

1 EDIT [fid] , or

! BUILD fid [,n[,i]

These commands are executive level equivalents of the corresponding

EDIT commands. When they are given, the editor is entered, and it _

responds with

EDIT HERE ; ’
and the EDIT, or BUILD, command is executed. The editor will then

prompt the user for the appropriate input.

File Identification

" The file identifier, or fid, is constructed by placing the character '.'

between the file name, account, and password. The various cases are:

filename | .- default log-on account

filename . account specific account
filename . account . password specific account with password

filename .. password default account with password

DRAWING NQ, 702489
SHEET/S7 OF- 345"

characters from among the set

A-Z. a-z 0-9 $*%:# @ -

account is 1-8

filename is 1-31]
password is 1-8

For example,

! BUILD TESTFIL..PASS, 10, 5 Ci‘

BREAK Key

When the BREAK key is depressed it causes an immediate interrupt
in EDIT activity. Any partially completed input is discarded by the
COC handler; any waiting output (already in the COC handler) is

drained to the terminal.

The editor stops any command in progress and reverts to accepting

command input from the user.

If a command was in the process of being executed, and the BREAK

caused an interrupt in an I/O operation (READ, WRITE, OPEN,

DELETE record), the I/O is completed.

The user will be given the option of continuing the execution of the

command to the normal conclusion, or terminating it immediately.

In the case of record or intrarecord commands, the current EDIT file
will remain openo' All other commands will terminate by closing all

files.

DRAWING NQ. 702489
SHEET /60 0F 3 6§~

If the command in progr'ess was of the display variety, for example
TY, it will be obvious where the interruption took place. The display

- will stop within the next: several lines after the interrupt is given.

However, if the command produces no display while operatin/g ona
range of records, it will not be so clear-cut. For this reasoﬁ, the
following commands will produée a rhessage similar to the -—CUTOFF
message of MERGE, .deno’.cing the sequence number(s) of the record(s)
being processed at the time of the interrupt. |

COPY, ‘MERGE,

DE, FD, FT, MD, MK,

SE

. ‘ The TA Command

‘ : Y .
The UTS version of the editor contains an additional command for

setting and resetting terminal tab stops. The command has the following

syntax: ‘ " -

F
* TA{M{ C_
S‘

The tabs are set as follows:
F implies FORTRAN: tab at col. 7
M implies META-SYMBOL; tabs at 10, 19, 37

S implies META-SYMBOL, short form; tabs at 8, 16, 30

DRAWING NO... 702489
SHEET /5 /‘:OF 30%

These are logical tab ;ettings correspondihg to record cél. numbers,
They .Will be offset to provide for the line n'uml;er produced at the ieft
margin of the user terminal. The command may 'be given while per-
forming an EDIT operation. It mé.y not be used as an intrarecord

command.

Error: -NOT F/M/S The parameter supplied is not
' ' from the legal set.

. The UTS COC handler simulates input TAB stops at the terminal by

spacing the carriage (if the user has requested tab simulation). How-
ever, the actual TAB character, X'05', is pé.ssed to the processor
initiating the read, and will thus be included in fiies created by EDIT,
Records \'avill contain embedd;ed tab characters réther than the Elank

strings they represent.

Tabs for the terminal can be set with the executive TABS command,

or with the TA command in the editor.

The editor contains a number of very useful commands which allow
specification of column bounds during their operation. These column
bounds could. corresi:ond, for example, to opcode - argument - comment
fields in assembly language. code, which the user identified Qith tab
characters when buildingvthé file. When he is editing the file, the
embedded tab ‘chara'cters must .b'e made to represent the appropriate'
number of blanks. In the currént file management system, this tab

information is not kept with the file.

- DRAWING NO... 702489
SHEET /6A0F 305

Therefore, the eéit‘or will éxpand éach récro.rd it reads accordiﬁg to
the cﬁrrent terminal tab stops contained in the M:UC DCB.' (This
action will not be performed however, when the f;acords are not
subject to the EDIT command; a COPY or i;AERGE opération requirés
no suich expansion.) in the same way, each record written to the RAD

will be checked against the current tab stops in the M:UC DCB and re-

compressed, if possible.

Should the M:UC DCB not contain tab settings when the editor is ex-
panding a record and finds a tab character, the user is notified (only

once) with the message:

- TAB CHARACTER FOUND. NO TAB STOPS SET.

DRAWING NQ. . 702489
SHEET/630F 3.9

Part VIII. ASSEMBLY LANGUAGE DEBUGGER (DELTA)

TABLE OF CONTENTS

INTRODUCTION A | ' | 164.

A,
B.
C.

Calling DELTA
Symbol Tables
Command Summary

DESCRIPTION . . ‘ ' 175

A.

oHampOw

SRR

Zx

o W

‘e

D W

Syntax, Symbols, and Such

Command Delimiters
Fixing Typing Errors
Symbols

Special Symbols

Input of Explicit Constant
Expressions

Memory Location Display: The / Command
Expression Evaluation: The = Command
Memory Modification: The cr, 1f, {, and tab Commands
Output Format Control

Execution Control: The ;G, ;P, X, and) Commands
Breakpoints: The ;B, ;D, and ;Y Commands

°

Instruction breakpoints

Data breakpoints

BREAK key breakpoints

. Transfer breakpoints and Interpretive execution

Memory Searching and Modification: The ;W and ;N Commands
Symbol Table Control: The ;U, ;K, ;S, !, and < >Commands
Miscellaneous Commands: The ;A, ;R, and ;Z Commands

Printer Output: The ;O and ;J Commands

Commands for the Executive Version: The ;V, ;H, and ;E Commands;

Interrupts

Errors and Error Messages
Program Exits

INDEX TO DELTA COMMANDS ' : 208

DRAWING NO.* 702489
SHEET/64 OF 30

INTRODUCTION

DELTA is specifically designed for the debugging of pr,o.g‘r'ams at the assembly-
’ language and machine -lariguage level. It operate s on object programs and the
‘tables of internal and global symbols accompanying fhem, but does not demand
that the tables be at hand. With or without symbol tabl.es, it recognizes machine
instruction mnemonics and can assemble, on an instruction-by-instruction basis,

machine language programs. Its main business, however, is to facilitate the

activities of debugging. These are:

1. The examination, insertion and modification of elements of
programs: instructions, numeric values, encoded information --

data in all its representations and formats,

2. Control of execution, iricluding a) the insertion of breakpoints into
a program, and b) requests for breaks on changes in elements. of

data.

3. Tracing execution by displaying information at designated pointé

! in a program,
4. Searching programs and data for specific elements and sub-elements,

To assist in the first activity, assemblers and cdmpilers of UTS will include in a
program's table of symbols information about what type of data each symbol
represents: symbolic instructions, decimal integers, floating point values,

single and double precision values, EBCDIC encoded information, and others,

The command language of DELTA is cryptic and highly encoded, but easily
learned and used by the professional programmer. It is substantially identical
to the DDT language family which has been in use on a variety of machines for

the last decade.

- DRAWING NO; " 702489
SHEET/44°OF 30§

- Two versions of DELTA will be produced:

1.

a user version with codes and restrictions appropriate to multiple
on-line users operating in the slave mode from teletype consoles,

and,

an executive version for system debugging which will operate in .
executive mode under control of one of the operator's consoles, -

This will not normally be resident when UTS is in service.

A, Calling DELTA

DELTA may be associated with the execution of a user's program either at the

time the user loads his program into core for execution or by diréct call after

execution has begun. The two executive level commands are:

1.

To load the user's program in as sociation with DELTA:

RUN program name UNDER DELTA or

START program name UNDER DELTA,

Control goes to DELTA .and the use\r may examine and modify the

program before passing it control.

To bring in DELTA after a program has been initiated, the user

- must return to the executive level by the teletype console command

E€ (control shift and E key depressed together), and give the
executive command CALL DELTA; :

DELTA also may be’brought in and started without prior program loading for.

- writing and chécking of short simple prografns (optionally using the system -

library routines) and other purposes,

To make it possible to call DELTA in this way, a segment of virtual address

space must and has been rgserved for DELTA in high virtual addressés and

space must be reserved in the users program area for DELTA's context. A

similar reservation applies to the executive language processor,

- DRAWING NO,*- 702489
| SHEET/44" OF 30

B. Symbol Tables

" A program consists of one or more individually compiled or assembled units

(ROM's) which have been combined by the LINK process into a load module (LM). .

During linking, a global symbol table consisting of all symbols which have been
so declared by a DEF directive is created for the load module and an internal

symbol table is created for each unit (mostly ROM's but some LM's), The

loader language allows the user to specify which internal symbol tables should
be retained. Internal symbbl table s are named by the file name of the source
ROM; that is, LINK writes a symbol table for each input ROM under a key

identical to the input ROM name. A simple Link Command is shown below:
LINK A,B,C,(NS)D ON E

In this case, the load module E is created for'executioﬁ,- and symbol fables are
retained for units A, B, and C, but not for D, For further examples of linking

operations and a complete list of options, see the loader specification.

C. Command Summary

The following summary lists the DELTA commands and facilities in eleven broad

groupings:

1. Evaluating expréssions consisting of symbols, constants, special

symbols, and the operators plus and minus (+-).

2, Commands for printing the contents of memory cells and opening

them in preparation for change.

3. Format codes which enable the user to control the output format

used in the evaluation and display commands of Group 1) and 2),
4, Commands for stor'ing new contents in open memory cells,

5. Format codes which control the conversion of input constants typed

by the user.

DRAWING NO;" 702489
'SHEET/4 JOF 308

6. Special symbols used to examine machine flags ar;d'to control

operating bounds for DELTA,

7. Commands to insert in, delete from, change completely, and

otherwise control the symbol table used by DELTA, .
8. Commands to initiate and continue execution,
9. Commands to insert, delete, and control instruction,. data, and transfer

breakpoihts .

10, Commands for searching memory.

11. Miscellaneous commands.

In outlining the commands, the following conventions are used in depicting the

format of the orders typed by the user:

° Special characters, numbers, andb upper casve letters stand for them-
sel{res.' Thus in the command e;G the user actually types the semicolon and the
G. _

© Lower case letters are placed where the user has a choice of things
to type.’ i‘he letter e alone or postcripted is used to stand for any expression ‘
cbnéisting of symbols, special symbols, constants, and the operators plus and - |
minus (+-). At times other lower case letters are used to stand for expressions
when some additional mnemonic content seems de sirable; Exa'rnplés are n, loc,

val, m, -

¢ The letter f stands for one of the format characters.

® Abbreviations'for user key strokes are:

Letters used in text User Keystroke _ EXEC Keystroke
cr B carriage return carriage return
1f _ line feed EOM
I- shift and N : &

\ ' shift and L _ ¢
tab control and I tab

bk BREAK Sigma 7 interrupt

AR S

' DRAWING NO." 702489
SHEET/éS’ oF 308

Most of the DELTA commands are terminated (and thus dehvered from UTS 1/0 -

to DELTA) by the carriage return (cr) character however certain other characters
”also delimit commands to allow dialog within a single typed line, The command

terminating characters of DELTA are cr, lf, t, tab, /, and =-. (1f and T are EOM.

and & in the executive version).

Whenever user DELTA gives control of the terminal to the user for input, it sends
its "prompt'" character, the bell, to the console. The executive version of DELTA

does not prompt nor does the user version when connected to a keyboard displa‘y. '

DELTA Commands

1. Expression Evaluation
e= Evaluates and types the value of the expression e in the most

appropriate format.
e(f= '~ Evaluates and types the value of e in format f (see 4 below).

2. Displaying and opemng memory cells
e/ Displays the contents of a ce11 e in the most appropriate

format. The cell is opened; that is, it may now be changed.

e(f/ Displays the contents of cell e in format f.
el,e2/ Displays the contents of cells el through e2 in the most .-
el e2(t/ appropriate format or in the specified format. Cell e2 is
opened,
e\ Opens but does not display cell e. (e ¢ in the executive ve_r_sioﬁ)
/ Slash alone following a displ_ay displays, but does not open, the

cell addressed by the dlsplay, (Displays the cell addressed by
the last quantlty typed (;Q)).

tab | Tab alone following a display displays and opens the cell
addressed by the display.

3. Storing in open memory cells

e cr Stores the word specified by e in the currentiy open cell and

»

closes the cell,

DRAWING NO;., 702489
' SHEET/49OF 30¢

e lf Stores e m the currently open cell, closes it, and opens

displays the next higher addressed cell,

et ~ Stores e in the currently open cell, closes it, and opens and

displays the next lower addressed-cell, (e & in the executive

version)

e tab Displays and opens the cell addressed by the last quantity
typed (;Q). If an expression precede's the tab it is stored in

the open cell,

4, Format codes for / and = commands

F symbol table format type
X hexadecimal word
I ~ signed decimal integer
- C EBCDIC characters
R - symbolic instructions with symbolic addresses
A symbolic instructions wifh hexadecimal addresses
s short floating point number }
. user version only
L long floating point number .
(£;/ ‘ sets the default format for / commar;ds to f
(£;= sets the default formai.: fqr = commands to f

5. Input conversions and expressions
Expressions for evaluation, display, and storage are formed from the
program symbols, explicit constants, and special symbols using the

operators plus'and minus (+=).

The conversions that may be specified for explicit constants are: 1)
hexadecimal when introduced by a period (. BAD), 2) EBCDIC characters
when surrounded by single quotes ('BAD"), and 3) decimal when the

constant consists of just numerics (1234).

6. Special Symbols

TDRAWING NQ, 702489
SHEET/7/OF 30§

Special symbols are recognized by DELTA and may be used in ex-

pressions. Used as commands, they set the value of the corres-

ponding symbol table entry.

$or.

last o'pened.- cell address

instruction counter ‘ ' o :
As set by the last entry to DELTA

condition code or changed by the user

floating controls
Master/slave, map and arithmetic mask bits
Write Key

search mask

lower seg.fch bound

upper search bound‘

last quantity typed

7. Symbol Table Control

s:S

Select internal table s.

load global symbol table.

Display undefined symbols.
The symbol s is assigned value e and format f.

The symbol s is assigned the value of the currently ope-n
cell ($) and format code f. :

Symbol s is flagged in the symbol table. It will not be used .
in output expressions. It can still be used in input expressions.

Removes all symbols excep’t instruction mnemonics.and special
symbols.,

Remowves current internal symbol table.

Removes g'lobal symbol table and any symbols defined from
the console.

G

DRAWING NO,. 702489
SHEET /J/ OF 3 0.¥

8. Execution Control

e;G - Begins execution at e.
;G Begins execution at current location counter value (;I).
e; X, Executes the instruction e.
n;P Proceed with no output the next n times the current
instruction breakpoint is encountered.
) Execute the current instruction and display the next one.
9. Breakpoints _ v '
e,n;B Set the nth instruction breakpoint at location e.
e;B Set the next available breakpoint at location e.

e,n,loc;B Same as above but display contents of loc when the .
e,,loc;B break occurs.

e,n,loc;BT Same as above but proceed from the break after printiﬁg_
‘ (trace mode). '

: th . . .
n;B Remove the n™" instruction breakpoint.
0;B Remove all instruction breakpoints.
;B Display all active instruction breakpoints.

e,n,val,m;Dr

(e,n,val, m;DTzr)
Causes data break n to occur whenever the contents of
cell e (masked by m) are in relation r to val. (T for
trace mode,) '

e,,val,m;Dr
Same as above but pick the next available data breakpoint.

The relations are:

LS e < val
EQ e = val
GR e > val
GE e zval’
NE e # val
LE e < val

bk

WIINLL VW LN G .INU L§ ‘4

SHEET//;L OF 3 4

Remove the ntP data breakpoint.

Remove all data breakpoints. -

Display all active data breakpoints. N

Proceed from the break.

Proceed and do not break until the breakpoint has
been passed n times (n applies to instruction break-
points only).

Set 'trace mode' for the current break.

Break at the current execution point {(analogous to
the machine's idle switch).

Output produced when a breakpoint is reached is n;B loc (or n;D>loc) where n is

the breakpoint number and loc its location (or the location of the instruction modi-

fying the data). If a display is specified A(data breaks always display), the output

produced is
A

loc;Y

YT
loc; YT

o;Y

loc, 1;Y
loc,, 1;Y

1,m,n,0;YS

Im,n,o0;YR

n;B>loc - addr/contents

n;D>loc addr/contents A Z P 'z;,v{#‘
- .) :f{_»;,ﬁ l/.-’

start transfer breakpoint mode at contents of ;I. ‘3 AT

Do not display branches specified in SAT, __‘ .

\/«-""M

start transfer breakpoint mode at loc.

Same as above but prb;eed automatically after
printing (trace mode).

turn off the transfer breakpoint mode.

Same as above but trace only branches mentloned

~in SAT.

Same as above but also trace BDR and BIR instruc-
tions.

Set entries in SAT.

Release entries in SAT.

| - DRAWING NO._, 702489
. - SHEET/73 OF 3 0¥

;YR Release all entries in SAT.

;YD Display SAT

Output on occurrence of a transfer brelakpoint is locl -> loc2 where locl is the

address of the branéhing branch and loc2 is its target address.

10. Memory Searching and Modification
* Memory between the bounds specified in ;1 aﬁd ;2 (initially set to the
lower and upper limits of assigned dsef._dit:.i memory) are searched
under the mask in ;M (initially all ones). If field 2 is specified in the
search command, the value in that field is stored through mask ;M

into each location which meets the specified condition.

#ZW Search for and display-words which match e .Vunder
the mask ;M. :

f el,e2; W Store e2 through mask ;M in locations which ‘match
‘ : el through the mask.
1\» e;N Search for and display words that do not match e. ‘
\:\ -(e;l ‘ Set the memory search lower bound to e.

\: e;2] Set the memdry search upper bound to e.

‘:‘ el,e2;L Set ;1 to el and ;2 to e2.

Le;M © Set the search mask to .e.

11, Miscellaneous Commands

;R Display memory addresses as symbol plus relative hexa-
decimal offset.

e;R ' Same as above but set the hexadecimal offset to e.

;RK Display addresses as csect type symbol plus any hex
offset. If the value displayed is equal fo that of any
symbol, then display the symbol. If there is no csect

. type symbol, display as a hex constant,

A

el,e2,v;Z.

'DRAWING NO., 702489
. SHEET/J4 OF 70§

Display locations as hexadecimal numbers.

Store v in memory from el through e2 (memory
pages must be assigned). -

DRAWING NO.. .702489
SHEET /75 OF 30§

- DESCRIPTION

A. Syntax, Symbols, and Such

The language of DELTA follows the DD'i‘ forrﬁula of simplifie-'d expressions and
single (or few) letter commands, which holds the: numimr of keystrokeé required
of the user to 2 minimum. Because every keystroke counts, and users caﬁ find
most errors easily by eye, only a few syntax error conditbions are explicitly com-
-mented. The most common commands ilé.VQ been ass'igned to lower case keys in

order to simplify typing.

1. .Command Delimiters

In oraer to interface %ﬁciently with the tinﬁe_-sharing system, DELTA has been
made ""message" oriented.v That is, only certain characters are recognized as
. command line del-imiters (end-of-message characters) and cause UTS to déliver'
the comﬁand line to DELTA for interpretation. The characters which ar_é com;

mand line delimiters are:

/ . The open and display command
= The expression evaluation command i
cr _ The store command and delimiter of other commands
1f The store and open next command (EOM in exec DELTA)
% The store and open previous command (& in exec DELTA)
tab , The store and open indirect command

With the exception of / and =, the commands above cause a carrier return and

line feed. The slash and equal commands interact within a single typed line.

More than one command can be input on a command line. The command delimiter
within a command line is the space character. For example:

TAGL;B TAGS5,,.1500,.FF00;DEQ ;B ;D Cr

- DRAWING NQ. - 702489
SHEET /76 OF 30

2. Fixing Typing Errors

Befqrf—: giving one of the command delimiters, the us_e&: may (in user DELTA only)
yrlfepa.ir tyﬁing errors by rubout (the .rubo,ut key printsv a\l at,‘ ti1e console and er.ase.s
thé precediné char‘a.cter; N rubouts print NYS and era;.ses tﬂe preo:;eding N charac-
ters), or he may delete the entire current conrirhé.nd by using the cancel key (con-
~trol shift and X keys pressed fogether). Note that the current command may b.e a
full line 9_:_::’3. partial line. -- partial if-a = or / cb.mma.nd is already complete on the

line of the cancel character. In the executive version, the question mark cancels

the command line.

3. S mbqls.
The symbols used by DELTA for reference to memory locations, computihg values, -
and formatted displays are those supplied from the assembly or compilation of the‘
program plus any added from the ter;'ninal by the user. They are carried in
DELTA'S symbol table as éeven characters plus code. Symbols loﬁger than seven
characters are truncated to include only the first s'e\}en. Thus, symbols which .

were originally longer than seven characters are indistinguishable from each

other; only the last received definition is retained.

The symbols used by DELTA follow similar ru]_.es to those for Symbol and Meta-
Symb§1 -- th¢y are made up of the alphébetic‘éh;ré,cters A-Z, the numerics 0-9,
and the specials $, @, #, :, _, «—; at least one ml-J.St be non-numeric; and the num-
| ber c§f characters ‘must be less than eight. For symbols supplied with eight or

more characters, DELTA retains only the first seven characters.

DRAWING NQ. 702489
SHEET/7/OF 30§

Symbols have an associated fype code which allows DELTA to :use a conversion
for display that matches the symbols original use. The types are at least the
following and perhaps others as the need arises. Symbols have either a) con-
stant value or b) are associated with a memory location. If the latter is the
case, then the tfrpe code describes the contents of the location.

a) Instruction

b) Integer A

c) EBCDIC Text

d) Short floating point number

e) Long floating point number

£) Hexadecimal
The default mode of the display command will ‘be_. to examine the ‘symbol table for
a symBol at or with the next smaller location value than that requested and use the

conversion type given. This means that a memory dump via the slash command of

a machine language program would.resemble_ closely the original source symbolic.

4. Special Symbols
The initial contents of the symbol table include the mnemonic names of Sigma 7
machine instructions and a list of special symbols associated with program de-

bugging. The special symbols may be used in expressions for values. The spe-

cial symbols and values associated are given below.

DRAWING NQ. 702489
SHEET /7§ OF 30¥

Symbol

$or . Memory location of the last opened cell.

;I Instruction counter contents at prpgr‘ém. interrupt.
;C Condition code contents at program'interrupt.

;F . Floating céntrol contents at program interrupt. -
M The mask used in memory searches.

;1 . The lower’bounc.l used in fnerﬁory searches.

2 The upper bound used in memory; searches.

;3 ' Bits 8-11 of word one of user PSD at interrupt.

4 First byte of word two of user PSD at interrupt.

;3 and ;4 are not used to form the PSD for entry to user in user
DELTA (they are uséd in EXEC DELTA).
;0 The last quantity typed By DELTA, or the value
stored by the user with the commands cr, 1f,

and tab.

The highest user data location loaded by LINK.

The highest user program location 1oadedrby LINK.

Except for $, ., %D, %P, and ;Q, the value of thése symbol té.ble entries can be’ |
set using a speciai command form in which a defining expression is given followed -
by the semi-symbol to be set and a carriage return: ‘

.46B;I cr Set ;I to hex 46B

. FFF,M cr Set ;M. to hex FFF

100;1I cr Set ;1 to decimal 100

. DRAWING NO.. 702489
SHEET /77 0F 3 08

The value of all special symbols may be displayed using the = command:
;C=4
;I=.3BD

;=2

The symbols $ and . always carry the location of the last opened cell as their
common value. The shorthand is convenient in the same way as in symbolic
assembly code:

A/ LW,4 K45 $(X=.105 $/ LW,4 K45

The ;Q shorthand for the last thing typed is similarly convenient in special
situations:
ALPHA/AL,5 7 ;Q+42 cr (Store contents of open cell plus two

: in the open cell.)
. /'AI’ 5 9)

‘DRAWING NO, 702489
SHEET /Y2 OF 309

5. Input of Explicit Constants

When the user wishes to type in numb‘ers he must specify the conversion that he
wishes made on his input. Tﬁree conversion types are provi;ied by DELTA:
hexadecimal obtained by introducing the constant with ;1 period (. 5; EBCDIC
obtained by encldsing the characters ip single quotes (') -- note that a single quote
may not be introduced using this conversic'm typé --; apd decimal, the conversion
used on strings of numerals. EBCDIC charaéter strihgs follow the same rules

as symbols used by DELTA (Section 3, Symbols), except that the maximum lengfh

is four characters.

Some examples of input constants in various formats are
.ACE 100 .100 14 .A

'EBCD! TA!

. Note that the single quote (') is required to terminate the EBCDIC text string, and

that it must consist of four or fewer characters. If fewer than four, they are right--

rd

justified. and zero filled.

'DRAWING NO:- 702489
SHEET/Y/OF 30%

6. . Expressions

Expressions are typed by the user for location value, parameter value, and to

be assembled into an instruc‘tion. Expressions are comAposed-Aof a) symbéls,

b) éxplicit constants, and c) the operators plus, minus’ and space. 'Mul_ti_pli'catién,
division and other operations are not allowed an‘clll in fact the characters usualiy
used to indicate them are used for other things -- the asterisk to indicate indirect

addressing in instructions and the slash as the command for display.

The user will have little trouble constructing legitimate and correct expressions

for the values he wishes as can be seen from the examples below:

A
A+3

A+3-B
Al,l 2

STW,7 *LOC
LW,7 TAB,5
~ CAL1,3 LIST

The space character, in addition to its use to introduce the address field in

expressions to be assembled into instructions, is also used to mean plus .(+.).
This convention is convenient for a lazy typist as space does not require the
case shift that plus does. Thus some equivalent expres sionvs and commands

are:
A 3 and A+3

LW,5 ALPHA+3 and LW,5 ALPHA 3
A+3,A+9;1. and A 3,A 9;L

Just exactly how DELTA accomplishes its expression evaluation is described in

the next section.

DRAWING NO." 702489
SHEET/JX OF J 0¥

B.” Memory Location Display: The / command

The / character is a command to DELTA to open a memory cell and display its
contents. The cell.is indicated by an 'expression preceding the / character.

. The expression is evaluated and the word address portion is used as a memory
address. If no format is given and the default is F (the normal case) then the
symbol table is searched to find a symbol at or next smaller than the indicated
address and the data type associated with the S'yrnbol found is used to control

output formatting.

100/ .34
Al/ BAL,6 ALPHA
A+1/ STW,5 BETA

BETA/ . ABCD

The user méy either temporarily or permanently override this output format
control bby the symbol table code. Temporary change is ,acéomplished by in=-
dicating the desired format in the command. - The expression for the location
ié followed by a left paren character, then by one of the format codes (see

section E for a complete list), and finally by the command /.

XX/ .Cl / hexadecimal conversion
‘X(C/ A EBCDIC character conversion

X@/ - 193 decimal integer conversion

Permanent change in output format is achieved'by the command (f;/ where f is

the desired format code. See section E.

X/ :C1
(C;/ X/ A

If slash is given without preceding typing by ‘the user the cell addressed by the
last thing typed by the computer is examined but not opened. This allows the

user to look at the indirect contents of a cell. In the example below ALPHA

DRAWING NOI- 702489
SHEET/{3.0F 30§

‘remains the open cell even though the contents of cell DCT8 are displayed.

ALPHA/ 1LW,5 DCTS8 / .32

A cell may be opened without displaying its contents b;{lrthe use of the \ command.

' (\is produced by pressing shift and L keys together o? using the ¢ key in executive
DELTA). Thbis mode is convenient when the user wishes to insert new contents

iﬁ memory and is not interested in the current contents. DELTA réme‘mbers the
mode of opening for cells and on 1f and t commands opens them in the remembered

mode.
“ALPHA \ BAL,4 SUB 1

ALPHA + .1\ STW,5 DCT2 1f

]

ALPHA + .2\ AL 6 .100 cr

More than one cell may be displayed using a single / command. Two expressions '
separated by a comma define the limits qf display. They are the word address
of the lower limit followed by that of the upper limit, Following display of the

upper limit cell it is open for changé.

ALPHA,ALPHA +2/ BAL,4 SUB

ALPHA+.1/ STW,5 DCT2

ALPHA+.2/ AI,6 .100 - ‘ ‘ ’ .

Format codes may be specified with (as in the basic / command.
100,101(X/ .58000100
101/ .68000200

If the user wishes to interrupt a too-long display he presses the break key and

and remaining output is discarded. The.last displayed cell is opened.

C. Expression Evaluation: The = command

Expressions consisting of program symbols, explicit constants, special symbols

(see Section A4), and the operators plué, minus (+-), and space may be evaluated by u:

DRAWING NO.. 702489

SHEET/§/ OF 408

of the = command. The expression may be that just typed by the user or the

last one typed by DELTA.

2+2 = .4 . .
5+5 = .A

ALPHA/ BAL,5 SUB = .6A5006B3

The format used for output is either the default format or an explicitly requested
one. The expression for evaluation is followed by a left paren, one of the format

codes given in Section E, and the equal sign:
5+5 = A
5+5(@0 = 10

The default format type may be set by the user using the command (f; =,' where f

is the desired format type. The initial default format is X for hexadecimal.
5+5 = A

1:5+5 = 10

D. Memory Modification: The cr, 1f, {, and tab commands

Four commands allow the user to store a typed expression for word value into
a-memory location -- the one opened by a /, \, or one of the modification
commands 1f, 1, or tab. If no expression pljecedes the command character

the action taken is as described except that ﬁothing is stored in the open cell,

ecr The expression e is assembled and stored in the open
memory cell. Carriage return and new line are sent
to the terminal. Temporary display modes are reset

to default values.

A/ BAL,4 JWS BAL,4 GEB cr

A/ BAL,4 GEB

JED/ EXU LS (X/ .68000643 / .78C cr

. . EXU LS

‘DRAWING NO:- 702489
SHEET/$4 OF 305

Note in the above that a temporary display format was
extablished by the (X/ which carried over until the cr

command reset it.

e lf - When the user .términates an expression with the 1f command

| the value of the expression is stored in the currently open
cell, that cell is closed, a new line is produced at the terminal,
and the cell with the next highest location value is opened.
The mode of initial cell opening is preserved and carried
forward on succeeding openings (é.g.,d’iSplay contents or not)
as is the display format.
A (1/ 435 436 1f
A+.1/ 763 1f.

A+.2/ 7689 cr
EM STM,4 ERS 1If
EM+ .1\ BAL,6 LP If

EM+.2\ BGE BB ecr

?

For the executive version the EOM key replaces 1f.

e1 Action is exactly the same as 1f except that the cell within
the next lower location value is opened. For the executive -

version & is used for 1 .
EM+4/ o0 B JH}
EM+.3/ 0 AL,3 1 er

e tab The tab command causes the typed expression to be stored
in a currently open cell. | Following output of a carriage
return, the cell addressed by the just closed cell is opened
and displayed. The effectis 1iké that of a cr command

followed by a ;Q/. The tab command is useful for patches:

DRAWING NO.~ 702489
SHEET/g4 OF 308

A/ BAL,5 SUB If

A+.1/ STW,6 BETA B PATCH tab

-

PATCH/ .0 AL, 6 1 If

PATCH+.1/ .0 STW,6 BETA If

PATCH+.2/ .0 B A+2 er

E. Output Format Control

Displays of the contents of memory locations via the / command and expression

evaluation via the = command have the output format controlled by codes given

with the / or = command or by the default format as set using the (f;/ and (f;v=

commands. The original default setting of the output conversion format is

hexadecimal (X) for = commands and under control of the nearest symbol table,

~ type (F),for / commands. Temporary conversion types set by using

e (f/ or'e (f= are retained until the next cr command is given. In particular

the temporary conversion type is retained over successive 1f, T, /, =, and

tab commands.

(1L;/

AX/ .C If

A+.1/ .D 1If - .
A+.2/ .E cr |

A+3/ 15

The codes provided for directing output formattirig and conversion are given below.

In all conversions leading zeros in the printout are suppressed.

X

The word ~- contents of memory or expression -- is typed
out as a hexadecimal number. Hexadecimal numbers are
always typed with a leading period (+). X is the original

default code for = command.

TODKAWING NQ, 7702489

SHEET/¢J OF 30§

Conversion is according to the format code given in the sym-
bol table for the location displayed or that for the next lower
valued (within the specified hex offset) location symbol if no.
symbol occurs at the location in question. If no symbol is
within range, default is to symbolic mode. -

For = commands, F conversion is equivalent to X conversion.
F conversion is the default code for / commands.

The word is converted as a signed decimal integer.

The word is converted to EBCDIC characters; that is, it is
sent to the terminal directly. Non-printing characters may
be output in this way, including the EOT (04) character, which
will turn off some types of terminals.

The word is converted to a symbolic instruction: output has the
form OP,R ADDR, X similar to assembler symbolic machine
instruction format. OP is the symbol table value of the op code
part of the word (bits #-7) -- %XX is printed if the value XX of
the field is not an instruction. R is the value of the register
field (bits 8-11) and is printed as a decimal integer, except if
zero when it is suppressed along with the preceding comma.
ADDR, the address field, is printed with a leading * if bit 0 is a
1 and followed by the symbol obtained from lookup of value in
bits 15-31 -- if no symbol corresponds to the value, then the
next lower symbol plus a relative hexadecimal offset is printed.
Values less than 50 decimal are always printed in hexadecimal.
If the index field (bits 12-14) is nonzero, it is printed as a deci-
mal integer (1-7) following the address and a comma.

The word is converted in exactly the same way as R format ex-
cept that the address field is always given as a hexadecimal
number. '

‘DRAWING NO:- 702289
SHEET/§.J OF 30Y

S Short floating point number. The word is converted from

internal floating point format to the form. XXXXX Ei-_YY,‘

L ‘Long floating point number. Same as above except the current a
- word plus the next highest addreséed word are converted

(same as S for = command).

 The final two conversion types S and L are not available in the executive version

of DELTA.

F. Execution Control: The ;G, ;P, ;X, and) Commands

The three commands described in this section allow the user to begin and continue.
execution of his program. Each of the commands is terminated by carrier ijeturn
(or space if it is in a multi-command line). Execution‘is started by typing e;G
where e is an expression for the starting or GO location. (The value of the

expression is masked to form the word address of the starting location.)

BEGIN;G

Execution can be .s.topped in three ways:
1. encountering a breakpoint (see Section G),
2. auser intefruption via the BREAK key (interrupt button in exec DELTA),

3. an error causing a machine trap (illegal instruction, memory protect

violation, etc.)

In each case the cause of the stop is reported by an appropriate messrage, the

values of ;I, ;C, ;F, are set, and terminal control returns to the user.

BREAK AT .5C3

PRIVILEGED INSTR AT .77B

1= .77B

DRAWING NQ, 702489
" SHEET /v§ OF 308"

Proceeding from a stop condition is directed by typing the ;P or the ;G command
without a preceding address expression. The effnectvié to continue execution from
the location specified by the current va.lqe of ;I; i. e, , ‘where-execution left off or é.
location speéified 5y adr;l inputA by the user. The usé;' of ,P for ihsfruction break-i
points is covered in Section G. For user interruptions via the BREAK key, execu-
tion continues as if the interruption had not occlu._rred.»

BREAK AT .68C

P

Proceeding from a machine trap will in géneral cause re-execution of the violating

instruction and another trap.-

MEMORY PROTECT FAULT AT .74B

G

MEMORY PROTECT FAULT AT ..74B)

(In either of the above cases any expression typed before the ;P is ignored.)
The ;X command assembles and executes the expression just preceding the ;X. -
LH,3 TABLE+4;X

STB, 6 *LOC;X

If the expression does not result in a 1egitimate‘ instruction, the illegal instruction
message'fesults and other error messages correspond to other illegal constructs
just as if the error had been an executing program. If the expression is a branch
, instruc.tion, control goes to the user's program (or causes a memorky violati‘on)..
Thus, the commands B GO;X and GO;G are equivalent. If the expression is_a
subroutine jump, the subroutine is entered and‘ if it returns normally (to the calling

location plus 1, 2, or 3),control returns to DELTA and terminal control to the user,

DRAWING.NO. 702489
SHEET/90 OF 30.§

If the return is to other than 1, 2, or 3, the ré_sults ‘are unpredictable.

The) command is .the step mode execution <-:6mmand. It executes the instruction

" in the currently open register and opens and displays '1;he next program 'step (i.e.,
if the instruction executed by ')! is a branch, the effective address is the location
opened and displayed). By using '/' to open and display a location and repeatedly

hitting ')', a user can step through portions of his program.

-DRAWING NO.~ 702289
SHEET /9/-OF 3¢

G. Breakpoints: The ;B, ;D, and ;Y Commapd_s

Delta proVides the user with multiple breakpoints of two kinds: 1) on instruction °
execution, and 2) on a change in data value. Eight bfeakpoines of each kind are
available to each user. As each bréakpoint is reachedj a small amount of in-.
formation is printed out giving the break location and an associated value. A
special mode allows execution to continue automatically after the breakpoint
report to provide a limited kind of tracé of both the flow of execution control

and of the variation of data values.

1. Instruction Breakpoinfs

e, n;B The nth breakpoint (there are eight,numbered 1-8) is set
e:B to stop execution and return control of the terminal to the
‘user when the ;1nstruct'10n at location e is reached. If n

is not specified, DELTA will assign the nexf available break
number., If none are available, an error cbndition results
with the message '"NONE'", The user may then release one of
the 8 breakpoints he has set and try again. The breakpoint
stop occurs before execution of the instrdction at e. When

the breakpoint is reached, DELTA prints the number and

type of breakpoint and its location,
A+3, 1;B A;G-
1;B> A+.3
A third field of the breakpoint command may be used to specify a location to be

displayed when the breakpoint is reached. Registers as well as core locations

can be displayed in this way.

1

A+3,1,R5:B A;G

1;B>A+.3 R5/ .54

When stopped at a breakpoint, the user may examine and modify his program as
appropriate and then continue from the point of interruption by giving the command
;P. A count may be given with the ;P command. If the count is n then the break-

point will be passed n times before this break occurs again.

N

DRAWING NO:~ 702489
SHEET/9A OF 208

PH+8,2,R2;:B PH;G '

 2;B>PH+8 R2/ .4 ;Por ;G -

2 ,B>PH+8 R2/ .5 ;P or;G

2;B>PH+8 R2/ .6 5P

2,B>PH+8 R2/ .12

The nth breakpoint may be removed by the command n; B,
All breakpoints can be removed by the command 0;B.

If the user wishes to trace a particular ihstrudtion, he may give either of the forms‘
above (display or no display) and specify the T mode: e,n,loc;BT. In this mode,
when the instruction at e is reached the breakpoint reporting information is printed

and execution continues.
) A+3,4,5;BT A;G

4:B>A+3 5/ 54

4;B>A+3 5/ -1

4;B>A+3 5/ =175 o . .

The trace mode may be set after a break occurs by specifying ;T which sets the

trace mode at the current breakpoint.

The currently operative instruction breakpoints may be listed for inspection with

the command ;B. The list has the form:
n {T} loc display ‘
for each established breakpoint where n is the breakpoint number, a T is printed

if the trace mode is set for that breakpoint, loc is the break location, and display

is the address to be displayed when the break occurs.

DRAWING NO.. 702489
SHEET./{30F 3208

2. Data Breakpoints

Data breakpoints allow the user to halt execution'when-any memory location

(not register) changes value in a specified way. The .cominand has the form:
' | e,n,val,m;Dr | ,',' | .

It causes the nth dafa break to be set in such a way that execution halts and

terminal control returns to the ;.15er whenever the contents of memory at location

€ when masked by the mask m is in relation r to val, The mask for each data

breakp(ﬁnt is initially all ones. A T or trace pAarame‘ter applies to data break-

points in the same way and with the same effects as déscribed above for instruction

breakpoints. The letters used for r and the corresponding condition causing a

break to occur are the following:

LS ~ (e), <val
EQ (e)c» =val ’
GR (e), >val /
GE - (e)c >val
NE (e), #val
LE (e)..>val

If no r specification is given a break occurs for all changes in the data. The
mask, if specified, is ignored in this case.
Some specific variants of data break insertion commands are:
e,n;D - " Set data break n ,
e;D Set next available data break
Terminal control returns to the user immediately after

each change in the contents of e and printing of the data

- break message.

e;DT Set next available dat break in trace mode
Each time the contents of e éhange, the data break message

is printed and execution continues.

e,,val;Dr Set next available data break with value val and relation r.
Terminal control returns to the user when the contents of e

stand in relation r to the value val.

DRAWING NO. 702489

e,,val;DTr Print data break mes sage and continue execution when
the condition holds.

e,n,val,m;Dr Set data break n with value val masked by m and rela-
tion r.

The currently operative data breakpoints may be listed for inspection with the com-
mand ;D. The list has the form:

_n{T loc cond value mask.

for each established breakpoint where n is the breakpoint number, a T is printed
if the trace mode is set, loc is the break location, cond is the break condition re-~
lation, value is the break value, and mask is the mask under which the data is

tested.

Any data breakpoint may be removed by the command n;D. All data breakpoints may
be removed with the command o;D. The output resulting from a data break has the
form n;D>loc e/con’c where n is the-n'umber of the breakpoint, loc is the location

of the data modifying instruction, e is the data address in question, and ''cont' is

the new value as just modified. Sofne sample data breakpoint seti:ings are given be-

low:

A,1,3;DGR
A+5,2,.FF, . FFDEQ -
AB, 3;D :
SDS,4,CSC;DGE ;P
4;D>PH SDS/ CSC+2

The data breakpoint will not detect changes caused by direct hardware I/O transfers

into the user's area.

3.BREAK Key Breakpoints

At any time during execution the user may cause the execution-of his program to

halt by pressing the BREAK key. A message is printed for the user giving the

DRAWING NO. 702489
SHEET,/95 OF 30f

location of the break. If the user hits the BREAK key while his program is in’

execution, the message is
BRK AT 1loc

The ;P command will continue execution after such a break. If the break occurs

while DELTA is executing, the message is

BRK IN DELTA

4. Transfer Breakpoints and Interpretive Execution

Transfer breakpoints allow the user to halt (or trace) execution when a branch in-

struction is encountered which branches when executed. The command has the form
loc,do/don't, Bdr/Bir;Y |

This command differs from the two other breakpoint commands in that it initiates

execution as soon as the command is decoded and processed.

Set transfer break mode (TBM)

;Y Starts interpretive execution at the current value of the
location counter (;I). If no options are specified, execution
will halt as soon as a branch instruction is encountered which
branches. Output is

locl—loc2 where locl is the address of the branch and loc2
is the location branched to. To continue execu-
tion in Transfer Break mode, issue a ;P. The
proceed count is not meaningful for transfer
breaks (see Section F).

o0;Y Turns off Transfer Break mode.
loc;Y Start TBM execution at loc.
;YT orx Instead of halting at each branching branch, continue execu-

loc; YT tion after outputting the Transfer Break message.

DRAWING NQ, 702489
SHEET/76 OF 3¢65%

loc, DO/DON'T, BDR/BIR;Y

- ‘Special action options.

DO/DON'T 0 Do trace all branches except those specified in
' the special action table (SAT). If the address
of this branching branch appears in the special
action table (see below), do not output message
and continue execution. Honor all other branches.

(Nominal setting)

= 1 Do trace only those branches specified in SAT.
If the address of this branching branch appears
in the special action table, do output the TB
message and continue or not as specified by the
trace mode flag. If the address does not appear,
continue execution.. ’

1
o

BDR/BIR Do not trace BDR or BIR branches. [Nominal

setting) :

= 1 Trace BDR and BIR branches.

Special Action Table (SAT) set up

locl ,loc2,lo0c3,l0c4;YS
Enter loc 1-4 in SAT if s.pacé is available (maximum of
eight). These locations are meaningful only if their con-
tents are branch type instructions. The action to be

" taken depends on the setting of the DO/DON'T option. .
;YR) Release all SAT entries.
locl,loc2,loc3,loc4; YR

Release specified locations in SAT.

;YD _ Display SAT.

The) command interpretively executes the instruction at the current location

counter (;I) and displays the instruction at the néw value of ;I.

ALPHA / LW,3 LA000) executes instruction at $
ALPHA+.1/ STW,3 .A201) displays the next instruction
ALPHA+.2/ B TAGI) in program flow

TAGL =/ Li,0 0

. DRAWING NO, 702489
SHEET /7 /OF 305~

H., Memory Searching and Modification: The ;W and ;N Commands

,The two active search commands e;W and e;N search rﬁemory for a match or no
match with the expression e. Display of all métching 'c‘ells (bi-t for bit identical)
occurs in fhe caée of ;W and of all non-n-latching.ceHs i;l'thé case of ;N. If fieids
1 and 2,and no others, are specified, the value in field 2 will be stored through
the mask; M in all locations which meet the specified condition (match or mis- |
match). Display occurs after the substitution. The search is carried out between
limits_determined by the symbol table values of ;1 and ;2; it runs between the lower
limit ;1 and the upper 1'1mi"c ;2 inclusive. The'inifial value of ;1 is,.the lowest and of
\;2 the highest current user data area address. Before the test for a match is made,

the word from memory is masked with a work which is the symbol table .value of

;M. The initial value of ;M is all ones.

The values of ;1, ;2, and ;M are set by the commands e;1, e;2, and e;M (followed
by Cr). In addition, the limits may be set with the single command el, e2;L which
sets ;1 to él, and e;2 to e2.
Al
BB;2

2;M - Mask bit 30 of the word. Search for all words
2; W ’ between A and BB which have a 1 in bit 30.

A, BB;L is equivalent

or

A+.2/ 2
A+.3/ 3
A+.6/ 6
A+.7/ 7
A+.A/ LA
BB/ =~ .B
IFFFF:M L, L+.100;L ERR;W

DRAWING NO., 702489
SHEET /9§ OF 305 .~

L+.3/ BAL,4 ERR . . :
1.+.A/ BAL,4 ERR All words between L and L+.100
L+.D/ BAL,4 ERR with addresses equal to ERR.
L+.6A/ AWM,l1 ERR . | .

ERR, OUT;W .. Substitute OUT for ERR

L+.3/ BAL,4 OUT
L+.A/ BAL,4 OUT
L+.D/ BAL,4 OUT
L+.6A/ AWM.1 OUT

The user may interrupt an in-progress search by pressing the BREAK KEY.
DELTA halts the search and returns terminal control to the user (rings the

bell).

I. Symbol Table Control: The ;U ;K ;S, ! <§ Commands

* The symbol table available to DELTA after a load is conépléted consists of the
global symbeols (those .defin'ed By DEF directives) and a set of internal symbol

: : .
tables, one for each ROM loaded (although some may be combined by LINK),
which are filed under the name of the file frbm Wthh the ROM was loaded. | Each
internal symbol table is a keyed record in the file created for DELTA by the ‘
Loader. If more than one ROM is contained 1n a load file, then the internai

symbol tables are merged with the last instance of conflicting symbols being

retained.

During deb.ugging, the user always has the global symbols of the load and he may
select one of ther internal ssrmbol tables by using the s;S c;ommands, which causes
DELTA t'o load thé, symbol table from record s (the internal symbols from the pro-
_gram loaded from file s). They replace, for reference purpose.s, any previously

- selected internal symbol set. The ;S command alone will reload the global . »

symbol table (this implies that it was released via ;K or ;KG command - see below).

DRAWING NO. 702489
SHEET /?70F 3 0.8

.B73/ LW,4 IOP+.A7 1f

IOP+.CB/ - BAL,6I0+.17F IOPF;S ¢

JOPT2+.6/ LW,4 K34

.

The user may wish to release back to the system the pages used for the symbol
tables. The command ;K releases the 'pages containing the global and internal
symbol table; ;KG only pages containing the global symbol table; ;KI only pages
containing the internal symbol table.
s;K Disables use of the symbol s in constructing output.
"They are still evaluated when typed in. Symbols re-
turn to use if the user reloads the symbol table.
5K 4 Is used to remove all symbols from the éymbol table.
Symbols defining instruction codes are not erased.

Individual internal symbol tables are recoverable using
s;S command. Global symbols.are restored by ;S.

| , .
Each of the loaded programs may have contained undefined symbols. DELTA
will print all undefined symbols when the ;U is given. Symbols which are un-
defined and within the range of an assembler LOCAL directive are lost. They

L4

are given value zero in the loaded code and do not appear when ;U is given.

Symbols may be defined by the user at any time .during his debugging session.
Symbols so defined are added to the set of global symbols associated with the
program load.
s(f! - Adds the symbol s to the global symbol table with
: - the location value, of the currently open cell ($ or .)
and format type f. If f is omitted, symbolic instruc-
tion (R) type is assumed.
NOTE: if LOC(X/ .3250A000 / .43

format X holds till Cr.

thus, LOC(X/ .3250A000 . SYM!
is the same as: SYM(X!

DRAWING NO., 702489
SHEETAJ0OF 394

e(f<s> Adds the symbol s to the global symbol table with
~ value defined by the expression e and format code

f. In addition to the codes of Section E, the letter K
may be used to indicate constant value. If f is
omitted, R is assumed. If the final angle bracket is
followed by a K, the symbol is flagged as a csect type
symbol in the symbol table. If K was specified before
the first angle bracket, an error is reported.

Single Line Macros

Since the symbol table definition. capability gi%res a 3‘2-'bit value to constant sym-
bols, it may be as a macro definition facility for single word values. f‘or example,
uéing EXEC DELTA the interrupt inhibits may be reset via the sequence

WD,0 .25(K<RI> defines RI to have value of the Write direct
: ' instruction which resets all inhibits.

RI;X executes the reset instruction
RI+,10;X executes a set inhibit instruction
o :

or, alternately

RI+. 10(K<SI>

SL; X

J. Miscellaneous Commands: The ;A, ;R, and ;Z Com&ands

The commands covered in this section cause DELTA to change its normal or de-
fault modes for display and to zero areas of memory. All commands in this sec-

tion are terminated by carriage return (or by spaces in a single line command).

;R and A

DRAWING NO, | 702489
SHEETZ)| OF 3 0¥ ™

This pair of commands is complementary to one andther; they control how DELTA
~displays location values when typing the contents of cells. The mode of display is’
either relative (;R) or'absoluteA(;A). Whén in :L'elative mode, bELTA looks up the
location vaiue in the symbol table and diéplays the .sym];ol if one corresi)onds t;,o the
vélue; if not, it displays the symbol with the next smallei' value and a wbrd fose‘_.: in
hexadecimal. If the mode is absolute (;A) then all location values are displayed as -

hexadecimal numbers. Note that these commands ‘control the display of location

values and not the display of the address parts of instructions contained in those

10;:ations.
;R
A,A+5/ LI, 1 .10
A+.1/ CW,1 K45
A+.2/ BGE 777
A+.3/ Al,l 1
A+.4/ B Al7
72727/ STW,2 BRI13
A
A,A+5/ 1,1 .10
.5CD/ Cw,1 K4b. : R
.6CE/ BGE ZZZ -
.5CF/ Al, 1 1 o ,
.5D0/ B Al7 .
.5D1/ STW,?2 BR13
;R may be preceded by a value -- n;R -- which sets the maximum offset to be used

in address output. If no symbol lies within Toffset! of the value, the address is
printed as absolute hex. Thus, 10;R will cause DELTA to display symbol plua.; rela-

tive offset only when a sym‘bol lies within ten locations less than the display address,

DRAWING NO, 702489~
SHEETAJAOF 30 ™

;RK This command sets relative address oufput mode wifh the restriction that
only Iocal.tion symbols 'ﬂagg’ed as control section type symbqls (see Section
I, ;S command for setting csect type) will be output ur;less there is an exact
match between the symbol value and output valu;a. If there; are no csect type

symbols, the output will be a hexadecimal value. Thus, output will be

'csect symbol plus any hex offset', or 'symbol' or 'hex constant'.

3 Z The command for zeroing memory takes the form a,b;Z, where a is the
lower limit and b the upper limit of memory to be zeroed. Expressions
may be used for a and b. An error results if the value of b is less than
that of a.

A, A+5;Z
100, 1;Z

? 7

<

A third field may be added to the ;2 command. If so, it is a value to be

stored in the range a,b.

v

If the memory is not assigned, a memory protect fault results.

Zeroing, or otherwise modifying, the user's area may be used to erase the user's
program and/or data, but not the Monitor's context area about the user or the user's
I/O buffers. If I/O is in progress directly to or from the user's area, the results of

the I/O transfer are unpredictable.

'DRAWING NO: - 702489
" SHEETZ/30F 0¥

K. Printer Output: The ;O and ;J Commands

Two commands are provided which use the line printer for output (via symbionts

-’

in UTS). They are ;O to producé hexadecimal dumps on the line printer, and
;J to direct DELTA output to the line printer (particularly useful in the cases of

formatted displays and output from tracing‘breakpoints).

The printer and tape I/O routines are completely self-contained in the executive
version with no dependence on system I/O routines. The executive version of

DELTA operates with all interrupts disabled.

a,b;0 header Contents of memory from location a through location b
are printed on the line printer single-spaced, eight’
hexadecimal words with initial hex location value per
line. All zero lines are suppressed. If any input follows
the O, it is printed as a header. Each dump starts '
printing at the top of a fresh page. -

) _ Toggles the output location switch alternating between
the terminal and the line printer on each instance of the
command. Output from the equal command, from non-
tracing breaks, from trap, abort and error returns, and
from syntax and other error conditions in Delta are always ’
directed to the typewriter.

A,1;B
-X,2,3;DTE 3 B;G

(output here from data break #2 goes to the line printer)

'1;B>A

L. Commands for the Executive Version: The ;V ;H ;E Commands; Interrupts.

u;V This command saves a core image on tape with a self-
loader to enable restoring at a later time. The parameter
»»»»» R u gives the highest core location to be saved. If uis not
’ specified, 32K words (an assembly parameter of DELTA)
are dumped. Before dumping, DELTA asks for confirma-
tion of a correctly mounted tape with the message:

MOUNT A80, TYPE CONFIRMING PERIOD

DRAWING NO. 702489
SHEET0//OF 3 07

JE This command causes DELTA to display the current
. contents of all cells (exclusive of the general regis-
ters) into which the user has stored during his session.
DELTA keeps a table of stored addresses (maximum of
64) and displays them plus their contents when ;E is
given.

'H The ;H command has two options if Delta was given
trap control at boot time.

TM;H Sends traps directly to the Monitor trap routine.
TD;H Control remains in Delta. If NL is input, control

will go to the Monitor'tra.p routine; any other input
leaves control in DELTA.,

Control of Console Interrupts and Traps

At System boot time, Delta types out 'TRAPS'., If the response is the. letter 'U",
EXEC DELTA 'w‘i.ll take control of trap location X'40'. Any other response leaves
the trap location unaffected. When a trap occurs and Delta puts out the appropriate
message, control is directed to the Monitor trap routine by typing new line (NL), or
to EXEC DELTA by typing anything else. Delta control of the console intérrupt lo-

cation is obtained in the same way when DELTA types 'CONSOLE'.

Interrugts

Control mé.y be given to the executive version of DELTA at any time. The system -
programmer may get control at the ope’ra.tor's console by pressing the Sigma 7
panel interrupt button. Typing a new line character following DELTA's response
message sends control to the BPM Monitor interrupt routine. Typing anything else
leaves control in DELTA and the progré.mmer may examine or change memory
registers or set breakpoints in the system. Return to the point of interrupt is

via a ;P or ;G command.

DRAWING NO.. 702489 \ |
. SHEET2050F 308 :

Limitations: _ CAL's, XPSD's, or LPSD's which depend on following

calling sequences will not operaté properly if they have

an instruction break on them. BAL's are interpreted

»

and OK.

M. Errors and Error Messages

Errors which result in machine traps are reporfed explicitly to the user and con-
sole control is returned to lj;im to await further commands. Eaéh message is
accompanied by tﬁe location, symbolicaliy if possible, of the offending instruc—
tion. The messagéé are |

NONEXIT INSTR AT

NONEXIST MEMORY REF AT

PRIVILEGED INSTR AT

MEMORY PROTECT FAULT AT

STACK LIMIT FAULT AT

UNIMP INSTR AT » '~ | -
FIXED OVFLW AT

FLOAT FAULT AT

DECIMAL FAULT AT

e

Syntax eriors .arei'reporfed by the message ? n where n is the number of the
character in the commaﬁd line that DELTA was p:éces sing when the error occurred.
This message is sent to the; user whenever D.EL'I_‘A cannot.: understand the user's com-
mand syntax. It is usually simpler for the user to identify the error than for DELTA
to be verbosely specific aiaoqt it. Some errors and the reas‘o'ns fof them are s’hown

below:

&

X, Y, 7,2,/
2 8 <
ABCDE'=
? 6

ABC;K
? 5

FF;M 100,XY;L .6B;W.

? 13
A5 E
?
ILW*5 ALPHA=
? 3.

.3ACR/
2 5

- (B;/

? 2

' LOC,, 3;DNQ

? 10

A
? 2

DRAWING NO.- 702489
SHEETJOS OF 308

too mariy commas

constant value larger than one word
symbol not in symbol table

symbol value not found

remainder of command string ignored
command unknown

asterisk in a funny place

illegal character in hex number

illegal relation

illegal relation

no break in effect to set trace mode on

|

|

Program Exits

DRAWING NO.- 702489
SHEET20-f OF F 05

When called, DELTA takes control of program exits via the M:SXC CAL,

E

DELTA feports execution of exit CALs with a message of the form

EXIT n AT loc

where n is the exit code as defined»in the table below and loc is the address

of the CAL or instruction causing exit.

Code Type of Exit
0 Normal
1 Trap Error
2 - I/O Error
4 Limits
10
20 Termination
40 Abnormal

80 Job Errored

Example
M:EXIT |
decimal or floating trap
no error address
max time; max pages output
operator aborted job
operator errored job
M:XXX
M:ERR

cr

1f

tab

DRAWING NO.". 702489

SHEET~)Y OF

INDEX TO DELTA COMMANDS

open cell, print contents

open cell, ;10 print

'stor.e in currently open cell

store in currently open cell, open neét cell

store in cerrently open cell, open previous

store in cur.rently open ceil, open c‘e11 last named
evaluate and print e#cpressipn

define symbol

define symbol

introduce format code

execute current location and display next

set lower limit

set upper limit

bits 8~11 of word one of entry PSD

first byte of word two of entry PSD

set default display conversion mode. '

set default display conversion mode

display location values as hexadecimal

308

set (or clear) instruction breakpoint; BT set trace mode; display break table

set condition code
set data breakpoint; DT set trace mode; display break table

display patch table (executive version only)

DRAWING NO."*702489
' SHEETS.9Y OF S 90F

set flbating controls

being execution

Trap control (execution version) .
set instrucﬁqn counter

divert output to line printer

remove (kill) symbol table entry

set upper and lower limits for search
set the search mask

search for word mis-match

hexadecimal dump to line printer

set proceeci and proceed from breakpoint

last quantity typed

' _tiisplay location values as symbol plﬁs hex offset

select internal symbol table

set trace mode and proceed

~display undefined symbols

saves core on tape with a self-loader (executive version only)

search for word match
execute instruction
set up:for and begin execution in transfer break or transfer trace mode

Z€ro memory -

DRAWING NQ. 702489
SHEETJ/O OF F45

Part IX, PERIPHERAL CONVERSION LANGUAGE (PCL)

TABLE OF CONTENTS

INTRODUGTION

A, Batch Operation
B. On-Line Operation

C. Summary of Commands
DESCRIPTION
A, Conventions and Terminal Operation-

B. File Copy Command

Device Identification Codes
File Identification

Data Encodings

Data Formats

Modes

Record Sequencing

Record Selection

Valid Option Combinations
Extensions Using ASSIGNs
Examples

.

OV OO0V b WN

[y

. Catalog Copy Command
Other Commands

oa

DELETE (delete file)
LIST (list directory)
SPF (space file)

SPE (space to end)
WEOF (write end-of-file)
REW (rewind)
REMOVE (remove tapes)
TABS (set tabs)

0N D WN -

E. . Termination' of PCL
F Language Syntax

INDEX TO PCL COMMANDS

‘Page
212
) ,. 213
Deed G
do = '9«“ A/)b+
va A(.éa.

229

DRAWING.NQ, = 702489
" SHEET.2/ OF J220%

SUMMARY

This parlé of the UTS Functional Specification describes a'periphe‘ral utility
subsystem designed for both on-line and batch opefat&m. ‘The Subsystem, PCL
(Peripheral Conversion Language), provides fq;' information movement between

‘ "card and paper tape devicgs, line printeré, teletype devices, magnetic tapes,

disc files, and labeled magnetic tape files‘. Thé corn_fnand language allows for
single or multiple file transfef ;;vith o—ptions for selection, sequencing, formatting,.

and conversion of data records. File maintenance and manipulation functions are

also available to assist the user.

DRAWING N0, 70248
'SHEETA OF 30§ \

INTRODUCTION

PCL is peripheral utility sub-system desighed for operation in a batch environment
finder BPM, or on-line under UTS. It provides for information movement among
card and paper tape devices, line printer,A teletype devices, magnetic tape, disc files,
aﬁd labeled magnetic tape files. PCL is controlled by si'ngle line commands supplied
from a user console in UTS, or by command cards in the BPM job stream. The com-
mand language provides for single or multiple file transfer with options for selection,
sequencing, formatting, and conversion of the data records." File deletion and posi- .
tioning commands, and a command to copy complete file catalogs between disc and
labeled tape areincluded. Additional file maintenance and utility commands are also
provided to assist the user. Actual input-output operations are carried out usvin‘g stan-
dard BPM CALs; the restrictions and advantages of this I/O system therefore apply
throughout. |

. A, Batch Operation

PCL is activated under BPM through an ! PCL control command card in the |
BPM job stream. Once active, PCL readé subsequent comnia;nd cards directly through
the same control (C) device until terminated by an END command (see below)‘or By
encounterirng another batch control card (! type). All use.r input and output is done '
through the M:EI and M:EO DCB's respectively. PCL diagnostic output is transmitted

_ to the device currently assigned to the DO operational label.

B. On-Line Operation ‘ ; S ' .

As a UTS sub-system, PCL is called by typing its name to the Terminal
Executive (TEL). PCL responds by typing "PCAL'HERE”Aand then typing its identifying
mark (<) at the left margin of the next line indicating that it is ready to accept the
first command. When accepting or processing a command, PCL is said to be in the
command state. Entry to this state is always indicated by the display of the < as
described above. Once a valid command begins execution, PCL exits the command
state and enters the active state. This. stautus remains in effect until execution of the
command terminates, at which time the command state is re-entered and the user may
enter his next command. As in batch operation, user input and output is done through. |
M:EI and M:EO DCB's, diagnostics go to DO, and commands are received through C.

C. Summary of Commands

The following is a list of available functions in PCL described in terms of

the actual command verbs.

DRAWING NO, 703489
| SHEET /3 OF 204
COPY device(s) ond/or file(s) TO device or new file B |
COPY device(s) and/or file(s) OVER device or existing file
" COPYALL files on disc TO labeled tape(s) ‘ ;
COPYALL files on labeled tape(s) TO disc
DELETE an existing file
LIST a file.directory
SPF (Space file) £ n files on desfgnated device
WEOF (Write end?of—file) on designated device
REW (Rewind) designated tapes | _
SPE (Space to end) of last file on labeled tape
REMOVE designated tapes |
v TABS (Set tabs) for output device.
* Wherever "TO" is specified "ON" may be substituted.
DESCRIPTION .

The following description of PCL is oriented toward the on-line user. Nevertheless, only one

explanation should be necessary to include both on-line and most batch features. For the batch
_user, communication is established with input through the BPM job stream and output through the
DO device with no user interaction. Thus, all user prompting (* etc.) and terminal operations

(Cr, Br, X© ...) given here do not apply.
Y

A. Conventions and Terminal Operations

For purposes of clarification, certain conventions and terminal operations have been
‘assumed throughout the balance of this document. They include:
1. Underlined copy in examples is that generated by the computer. Copy not
“underlined represents that typed by the user.
2. Optional parameters within a given command are identified as such by-
enclosure within brackets, e.g.[OPTION.]
3. Control characters are represented in this document by an alphabetic character |
and the superscript ¢, e.g., E. The user simuhaneou.sly. depresses the alphabetic key and the
Control key (CTR'L) to obtain this function, | |

4. Carricge Return. The Cr notation following each line in the examples

represents a carriage return, Depression of this key informs the computer that an input line is
terminated. A carriage return (Cr) will automatically cause the computer to give a line feed. The

line feed key operates identically to the Cr within the PCL processor.

. DRAWING N3, 707489
SHEET/4-OF -3 09

5. Escape_(Ec). This key enables the user to temporarily escape to the executive
command level. Escape may be applied at any time when- the user has control of the keyboard. The
current status of PCL is retained and may be re-activated using the executive "CONTINUE"

command. : , L
6. RUBOUT. The last input ch;:zrac%er may be deleted with this key. AN s
| echoed to the user. N RUBOUTS echo N \!s and delete the previous N characters. | |
7. Cancel.,(XC). This key cancels the current input line. A~ is echoed

to the user followed by o Cr. . _ A

| 8. BREAK. This key, indicated by Bk, causes an interrupt in current PCL
- activities. When applied during the command state, the current command is ignored as if X had
occurred, App“caﬁon durfng the active state causes PCL io terminate what it is doing (like |
printing or copying), pass conirol to the user, and revert to the command state. A Cr response
is givénvif used during input. Effects of fhe‘inferruptfon or the termination vary with the command
being executed and are discussed in detail with the particular commands. If no mention is made,

Bk is assumed to have no effect on the execution of that command.

DRAWING NO. 702489
SHEETS/S - OF B0 5

B. File Copy Command

This command permits single or multiple file transfer between peripheral devices and/or file

. storage. Options are included for selection, sequencing, formatting, and conversion of the data

records. The format is of the general form: ' -
| | o 0
COPY d(s)/fid(s), fid(s), . . . ;d(s) /Fid(s), fid(s), .. . ;. . . OVER d{s)Fid(s)
or, '
TO
OVER d(s)/fid(s) . _ _
COPY d(s)/fid(s), fid(s), .. . ;d(s) /Fid(s), Fid(s), .. . ;. ..
COPY d{s)/fid(s), fid(s), . . . ;d(s) /Fid(s), fid(s), . . . ;. ...
where,
i / separates a device from the files on that device o
;o separates files on the same device |
; . separates devices’
CcorY introduces a device or file identification for input B
TO introduces a device or file identification for output
OVER | introduces a file identification of an existing file to be overwritten
d represents device identification, has the form: *

device code [freel no.][#reel no.][#reel no.]
Reel numbers apply only for mcgheﬁc tapes. ‘Absence of a reel number for a
tape device implies scratch fqpe.‘ Valid device codes are listed below. -~
fid represents file identification, has the form:
name[s account[epassword]]
$ ' represents specifications for data éncodings, formats, modes, etc., has the
form: ‘
[option][, option]...[, option]
-Options may include any data encodings, data formats, device modes, record
‘sequencing, and record selection listed below. Specifications given at the device
level (d{s)) apply for all files on that device‘. Those given at the file level (fid(s))
apply only for that file and have p.fecédence if a conflict occurs between the two

levels.

DRAWING NO.: 70248?
SHEETZ/4 ‘OF 385
When giveh a .cornrnand of this type, PCL first checks for a destination device or
file introduced by the TO or OVER command ver'bs.' If found; the current destination
device or file (if any) is closed and the new' one oiaened for output. Files, of course
%re matched against the user's directory to insure OVER was used to introduce an
existing file, The device(s) and/or file(s) introduced by' the COPY command verb
are then opened for input one at the time in the order glven and copled to the destlna-
tion. The destination device or file remains open until respecified (by TO or OVER)

or PCL is terminated ‘(by END) so that more inputs (by COPY) are added to it.

If Bk is applied during execution of a COPY, PCL respohds with identification of the
last file completely copied. | ‘

1. Device Identification Codes (d). These codes are used to indicate the
"to'" and "from' devices. They include:

CR card reader - files separated by two successive ! EOD cards (not available
on-line)

CP card punch

LP line printer

ME interactive users console - input terminated by Bk from teletypeé
DC -disc file storage '

LT l.abeled tape file storage

FT free form tape - files separated by EOF fnark

PP paper tape punch -- standard BPM format paper' tape

PR paper tape - files are separated by two successive ! EOD codes
RB remote batch terminal

2. File Identification (fid). Files are identified by name, account, and

| password in that order separated by periods (.). The name (1-31 characters) is
required whereas the account (1-8 chat’racteré) and the password (1 -8 characters) are
optional. Thus,: four forms of file identification may be spec1£1ed name, name[.:ount

‘ name[(;count-/f)/assword and namefpassword. Absence of the account implies the

{ current user's account.

N

3. Data Encoding. These codes describe the source or destination data

encodings to be expected or produced.
E EBCDIC
H Hollerith
A ASCIT |

+ s DRAWING NO. 702489
| SHEETZ/] OF 3 0§

4. Data Formats. These codes describe source or destination record

formatting to be expected or produced.

C ~ Metasymbol compressed

&
. X hexadecimal-dump . : -
| 5. Modes. These codes dictate control modes for the files or devices
BCD, BIN indicated. BCD or binary mode - valid for card, paper tape, and
7T,9T magnetic tape '
PK, UPK seven track binary tape packing or unpacking

SSP,DSP, VFC single, double, or variable format contrblled spacing on line printer.

FA,NFA | Controls, whethe;' or not the éttributés of the source»file are to be
carried over to the destination file. If the file name rem;ins the
same from 'éource to destinatiqn' the attributes are copied if neither
FA or NFA is specified e. g. ‘ ’

COPY DC/A TO LT#4/A -
causes a copy of file A to Labeled tape with exactly the same attributes
it had on disc. When the name on source and destination is different
than the normal case is not to copy over attributes. But information
specified in ASSIGN or SET comménds takes effect.

DEOD In this mode multiple files from the source are copied into a single
output file. Thus while COPY F'T c'opies upto and including th'e first
file mark, COPY FT (DEOD) copies files to a double end-of-file with-
out copyiﬁg the single end-+of-file to the output.)

6. Record Sequencing Insertion or deletion of sequence identification for

output data records (error if on input side) is accomplished using this specification.

CS (id, n, k) ~ Options include: card sequencing in columns 73-80 where id is thek ,
identification (1 -4 characters), n is the initial value, and k is the
increment. The id is left-justified in the field (73-80) followed by the |
sequence number right - justified in the same.lfield. Precedence is -
given to the sequence number if overlapping occurs.

. NCS ~ no card sequéncing - strips columns 73-80 from each output data record.

LN (n, k) number lines within a EDIT style. file starting at n in sequential
steps of k. Line numbers must be between 1 and 99, 999.

NLN no line numbers,

" DRAWING NO. 702489
SHEETJ/JOF 305

7. Record Selection This specification permits selection of the logical

records to be copied by giving their sequential pdsition’ within the file. -

X-Y select all records whose position n’ in the file satisfies the following
s condition X<n<Y. Multiple selections may be specified, e.g. X-Y,
U-v, wW-Z. _ ;

Selections do not have to be in sequential order. Maximum number of

selections is 10 for each input file.

- 8. Valid Option Combinations ‘Not all combinations of from and to devices,

data encodings, modes, etc. are valid. Table I showé tjhe valid options, the disallowed
combinations, and the default provisions for the possible combinations. If a disallowed
combinatibn is found, an appropriate error diagnostic is given to the user. Execution

of the command may or may not continue depending on the severity of the error encoun-

tered (see Language Syntax).

- 9. Extensions Using ASSIGNs Not all of the facilities available in the

BPM I/O system are made available through PCL. The user interested in more com-
plicated data transfers may specify them By using ASSIGNVcar'ds in the batch mode or
SET commands if Woi'king on-line. PCL reads through M:EI and writes through M:EO

so special information (e. g. lists of read account numbers and write account numbers

for the output file) may be pre-specified by ASSIGNing either the input or output DCB.

DRAWING NQ.. 702489
SHEET2/70F 3 9.

TABLE 1
. FROM DEVICE '~ TO DEVICE
CPDLFM DL FMLCP
RRCTTGE C T E PPP
CODES , 'E|/D X D DDD ‘ DD DD DDX
HiX - X X X = X X X - =X -
Al- D X X X * X XX % - -D
FORMATS CiX X X X X - | I
Xle = o = o = - - =X X - =
MODES None |- _DD--D : D =« -« D <+« D
BCD |D « = = X w| - =X = aD -
BIN |[X =« « DD = ‘|- DD - - X -
7T |~ = =« X X = - X X A @ = =
9T |- = = D D = - DD = = = =
PK |~ = « X X - - X X m e om oA
SSP-"‘";'--- ‘----D--
DSP |= = = =« = | - . e 2 X e
VFC"""‘"—-—' i—-u--.X--
SEQUENCING None |[= = = = = '= DDDDDDTD
CSlme = a - - - X X X - X XX
NCS |« = o o « = [X X X = X X X
LN |- = « « = - X X X - X X X
NLN{= =« o o o . IX X X - X XX
where
D default.
X optional
- error, not available, ridiculous

b TERCDIC to ASCIT conveamaimn far +alatimme 3o T dmee NS e

- DRAWING NG 70248
SHEETR200F 305

10, Examples ,
< COPY-CR TO DC/A ,0986.PLEASE Cr
p |

—

After receiving this command PCL opens a ne.wfdisc file with name (A),
account (0986), and password (PLEASE). Successive cards are then copied to this file from the

card reader until a double IEOD is encountered.

COPY LT#57/8,C TO DC/B . PASS Cr

IANIA

This example demonstrates a multiple file copy. Files B and C from labeled
tape with reel number 57 are copied in that order to a new disc file B-with password PASS. Note

that all files must be under the user's account (as specified at log on or on the 1JOB card).

< COPY DC/A(C) TO LP(DSP) Cr
<

The disc file A under the user's account is uncompressed and listed on the line
. ® :

printer with double spacing.

COPY FT#73 TO DC/A (LN(5, 5))Cr

INIA

PCL reads successive records from free form tape #73, assigns line numbers

starting at 5 in steps of 5, and writes them to file A on disc.

<COoPY LT#205/SOURCE TO CP (CS (SRCE, 1, 1)) Cr .
<
The Icbel tape file named SOURCE on reel number 205 is sequenced and punched.

The logil:oll records were given sequence identification (SRCE0001, SRCE0002, ...etc.) in columns

73-80

DRAWING NO. 702489 ‘
R SHEET A OF _290Y \
< COPY PR;PR;PR OVER DC/ALPHA Cr -

<

—

g Threé consecutive files on-the paper tape reader are copied over an existing.

file ALPHA under the user's account. Each file on paper tape telrminatec-i by a double 1EQOD.

al

COPY FT#6(8CD, 7T, H) TO LP(X) Cr

IA A

In this case, free form tape #6 is a 7 track fcp>e in BCD containing Hollerit
coded data. Each record is read, converted to EBCDIC, and dumped to the line printer in

hexadecimal.

< COPY DC/A TO FT(BIN, 7T, H)Cr
< 3

This example points out the use of a scratch tape. Line images are read from.

disc file A, converted from EBCDID to Hollerith, and Vwri'tten on a 7 track scratch

-
tape in BIN mode.

~ <TO DC/N3Cr |
< COPY DC/N1(20-30, 40-100), N2.1234. PASS(50-75) Cr
< |

. " Sections of two files (N1 and N2) are combined to form a third file N3.
Records 20-30 and 40-100 of N1 followed by records 50-75 of N2 are copied in that order to N3.
The user's account is assumed for files N1 and N3, and N2 is from account 1234 with

password PASS. Note that the destination file was defined on a separate line.

. DRAWING NO. 702489
SHEELZIAOF 30!

< COPY DC /SOURCE TO ME Cr
10010 START LW, R1 ALPHA

10020 ALR1 5
10030 CW, R1 BETA

: . . B

. ¢ . . o
<"

This command requested a Meta=Symbol source file on disc be
dumped at the user console. Note that the line numbers occupy the first seven characters of

- each line,

< COPY FT#7236 TO PP Cr
< COPY FT#7236 Cr
< COPY FT#7236 Cr

B AN

Three successive files from free form tape #7236 are .punched as one long file
on paper tape. An end of file mark (two |EOD's) will not be written on the paper tape until the

device is closed.
¥

< COPY LT#5/A,8,C; DC /D, E; FT#8.TO LT#6#7/A Cr
<

This example demonstrates the multi-file multi-device capabilities of the
file copy command. Files' A, B, and C from labeled tape #5, files D and E from disc, and the

next file on free form tape 78 are copied respectively to fI‘Ale A on labeled tapes #6 and 17.

Tape #7 is used only if #6 overflows.

C. Catalog Copy Command -

This command enables the user to copy his complete file catalog between disc and labeled
tape. The command is of the form:
\COPYALL DC TO LT [*reel noJ[freel no][#reel no.]

or,

COPYALL LT [*reel no.][freel no.) [#reel no.JTO DC

. | DRAWING.NO. 70248}
" SHEET3O0F J30¥%

PCL copies all files under the user's account from the input device (LT or DC) to the

‘ outpﬁt device (LT or DC). Files protected by pa'sbs.wor'ds' cannot be copied with this

command. The Bk key will terminate execution of this command and cause PCL to
5 .

. respond by typing the. identification of the last file copied. Consider the example:

< COPYALL DC TO LT#3#4Cr .

<

All of the files given in the user's catalog are copied to labeled tapes #3 and #4. Tape
#4 is used only if #3 overflows. The disc space previously occupied by this catalog

of files can now be released for other use.

To restore his file catalog, the user may enter the folloWing:
< COPYALL LT#3#4 TO DC Cr

<

This causes PCL to copy all the files from labeled tapes #3 and #4 to disc under the

user's account,

Ao
.\‘/
© The command

< COPYA'»LL\ FT#3 TO FT #4

<

- makes an exact copy of tape number 3 onto tape number 4 through and including the

first double end-of-file encountered on tape 3. The copy is unrestricted as to format

except that record size must fit in the allowable installation-set allocation of core to

-...a single job.

D. Other Commands
This group of commands provides for file deletion, directory listing, file

positioning, and other manipulation and maintenance functions.

1. DELETE
Files may be erased using this command, which is of the form:
DELETE fid |
where fid represents name;«f(aipcc‘ount;g;ssword ovf an existing file. Following the entry
of this command, a confirmation message of the form "DELETE fid?" is typed. The
user may respond by typing "YES'" to confirm the operation or yvith anything else to

cancel it.. If YES is typed, the file is deleted and the disc space released. For example:

) N - -v;,v,t-,:,d,fz’:_._ PORSIPN ” .
- s+ + . DRAWINGNO. 70248(]9 .
| SHEET24/OF 3 ¢¢ k

< DELETE SOURCE. . PLEASE Cr
DELETE SOURCE.. PLEASE? YES Cr

<

& -
_ Upon receiving this command, EDIT locates the file in user's directory and responds
with the confirmation message. After the YES reply, the file SOURCE is deleted.

. /4:-,‘-""' ' : oo

DELETEALL -acct—A—"3" dity |
Deletes all files in the -indicated account/\ A confi;'mation similar to that for DELETE
is required.
2., LIST
To list the account directory oi‘ labeled ta;;e file names for a designa'ted
account, the user enters a command of the fo.rm': |
LIST LT [#reel no.] [#reel no.] '[#reel no.] , [account]
or, ' ‘

.LIST DC, [vaccount]

PCL scans the directory (DC) or tape reells' (LT) under the indicated account (defaults
to the current user's account), listing the names of files encountered. Output is to
the user's. terminal in UTS or the line printer in BPM. Printing may be interrupted

and the LIST command terminated with the Bk key. Consider the example:
< LIST LT#3#4, 0986 Cr
ALPHA
SOURCE

g 1>

IA

Labeled tapes #3 and 4 under account 0986 are scanned for existing files. Four such
files are located and their corresponding names printed at the user's console.

- 3. SPF

This command allows the user to position input peripheral devices for-

ward or backward a designat.ed number of fill_es..' The comrhand is of the form:
SPF device id [#reel no.]v , tn

where device id represents-one of the device identification codes_LT, CR, FT, or PR,
+ implies direction and n is the number of files to be skipped. If direction + is not

given, forward {f) direction is assumed.

.. DRAWING NO. 702289
: © SHEETQISOF J08

For example:

C SPF FT#2076,42 Cr

a
IA A

.Free form tape #2076 is positioned forward 2 files. If an end-of=reel is encountered prior to

completion, an appropriate diagnostic is given to the user.

4 SPE

The user may skip to just following the last file on labeled tape through the

following command: , L

SPE LT [*reel no.]

For example:

. SPE LT#5 Cr

IANIA

 PCL positions labeled tape #5 to just following the last file. The user may now add addit?onql

files to the tape.

5. WEOF

This command enables the user to write an end-of-file mark on output peripheral

- devices. The command has form:

WEOF device id [#reel no.]
where device id is any output device code excluding LT and DC. PCL writes aniEOF on

magnetic tape and double 1EOD records on card and papér tape. For example:
<WEOF CP Cr
<

" This example causes PCL to punch two successive 1EOD cards.

6. REW

A user may request that designated magnetic tapes be rewound using the following

DRAWING NO. 702489
SHEET4 OF Fo8

command:
REW #rcel no. [freel nol ... [*reel nol
PCL rewinds each tape in the order specified. For example: -

< REW #2057206 Cr
» _
Tape units currently identified with reels 205 and 205 are rewound.

7. REMOVE
This command permits the user to request removal of tapes no longer needed

and thus, release the tape unit for other purposes. The format is as follows:
REMOVE #reel no. [freel no.] ... [*reel no.]

Each tape specified is rewound and, upon completion, a.dismount message is given to the

operator. For example:

<REMOVE #2075%2076 Cr’
<

Tape units associated with reels 2075 and 2076 are rewound. Messages are given to the

operator to dismount these tape reels.

8. TABS

This command sets listing tabs for the current output device as defined by

‘the latest TO or OVER comimand. It is of the form:

TABS cl[, c2] ...[,cn) |
where e, represents column numbers of desired tab settings. PCL merges the settings into the
current output deb. For the ME device, settings are transmitted to the COC routines which

performs the actual tab simulation in this case. Consider the example:

DRAWING NO. 70348
SHEETRA7OF 30

<TASS 10,19,37 Cr

¢ Assuming Meta=Symbol source is being copied to a listing device, this command sets the

appropriate tabs for this language.

.

..

E. Termination of PCL

In order to close the current output file, it is necessary for the on-line user to indicate
when he has finished with PCL functions. The command END fulfills this requirement and also -
returns control to the UTS executive. Prior to exiting, a termination message is given to

the user. For example:

<END Cr
PCL PROCESSING TERMINATED
1 _

This command closes: the current output file (if any) and causes” PCL to return to the executive
corimand level.. The Executive responds with its identifying mark (1) indicating the command
state. |

A

F. Language Syntax

The PCL control language is-designed to be free form with a few restrictions imposed
for simplicity in implementation and use. These include:
1. All commands must comply to the general format given in the definition. -
2. Blanks ofe allowed preceding or following an argument field. Imbedded
blanks are not permitted. |
3. At least one blank must follow each cqmman'd verb and must precede an
imbedded command verb (TO, OVER).
4. Continuation between input records is not allowed. (One command per line.)
- End of command is indicated by a period (.) or by end of the input record
(column 80 for card input, Cr or Lf for TTY's)
4 6. Anoutput device or file (TO, OVER) must be defined prior to or on the same

line_with'COPY command. COPYALL, END,TO, or OVER comimands terminate

the current output specification.

DRAWING NO. 702499
| SHEET2S OF -2 0F
Each command is edited for compliance to the above rules and is checked against Teble I
The' usér is notified of all errors (iﬁcluding 1/O errors) fﬁrough’appropriate, diagnostics.
B A severity level of 1, 2 or 3 is attached to each error and has thei following effect on the

execution of the command in question.
1 = warning, require "GO" confirmation from on-line user, continues execution

for batch user.
2 - invalid syntax or I/O error, terminate execution of command, but continue

syntax edit for both on-line and batch users.

3 - format error, terminate command, revert to command state for on-line user,

read next command card for batch user.

The maximum severity encountered for a command is displayed following diagnostic output.

For example:

<COPY CCTO DC/ACr
INVALID DEVICE
SEVERITY 2
<

DRAWING NO.. 70248
SHEETRJ0F 3 2%

INDEX TO PCL COMMANDS

COPY
o COPYALL
COPYCAT
DELETE
DELETEALL
LIST ‘
REMOVE
REW
SPE
SPF
TABS
WEOF

als

c'opies device(s) a—nd/or"fiie(s) O deévice or file

OVER
copies file catalogs between disc and labeled tape
same as COPYALL T
‘deletes a file i

deletes all files in an account

lists file names from account directory or labeled tape

removes reels from tape units

rewinds f‘:ape‘reels

spaces to end of last file on labeled tape
spaces device forward or backward n files
set tab stops for output

write end-of-file on device

*The word NON!! may be substituted for nTQM,

DRAWING NQ. - 702489
SHEET230 OF

Part X. LOADING OF PROGRAMS (LINK)

¢ TABLE OF CONTENTS
Page
INTRODUCTION N ‘) 231
LOAD MODULE STRUCTURE : o : 233
A. Program
- 1. Pure Procedure
2. Data or Program Context
3. Common
4, DCBs
6. Public (core) Libraries
6. System Library
B. Global Symbols
C. Internal Symbols
SYMBOL TABLE FORMAT 237

THE LINK COMMAND o 241

A. Load Module Symbol Tables

B. Merging Internal Symbol Tables -
C. - Library Search

D. Display Options

COMMANDS WHICH INITIATE THE LINK SUBSYSTEM ‘ 244 -

‘A, LINK (called as a subroutine)
B. RUN
C. LINK (called as a processor)

BREAK KEY : , : 249

¥

INDEX to LINK COMMANDS and OPTIONS o 250

DRAWING NO.., 702489
SHEET 23/ OF 3 0,

INTRODUCTION

&

LINK is designed to construct a single éﬁtity c;alled a load mo.dule (LM). A load
module is 4an executable program form‘et.i from relocat;ble object moduies (ROM's)
and/or library load mo_dules (LM's). ROM!'s are representations (of program and
data) that are generated by a processor such as Meta-Symbol of FORTRAN. The
on-line user has, at the executive level hfs choice of éonstructing a load module
(LINK), starting execution of the loaded LM (S'IART),. or combining the above steps
(RUN). A library load médule is a single entity fofmed from relocatable object
mod‘ﬁles which is constructed in such a manner that it may be combined with other

ROM's or library load modules. LINK is a one-pass linking loader (reads each in-

put module once) making full use of the mapping hardware.

LINK is not an overlay loader. If the need exists for overlays the user must call
on the overlay loader by entering a job in the batch stream. At a later time a simple

chaining feature will be added to LINK to provide- a simple form of overlay.

In ordér to form a load module (LM) which may later be combined with other load
modules or ROM's{ the load module must be of one protection type. A LM program
of mixed protections type may not be combined, however, ROM's of arbitrary pro-
tection type mixture and LM's of single type may. bebcombined. The resulting memory

layout is in two areas with protection for data and pure procedure.

DRAWING NO... 702439

SHEETJ32 OF 30§

Object programs consist of one or more program sections. Sectioning is the
¢ arbitrary grouping of areas of a program into logical divisions, such as speci-

fying one section for the main program, one for data, one for literals, etc.
Furthermore, with memory map and/or write locks, program sectioning enables

the programmer to designate the mode of protection he wishes to have for the

program divisions.

The access protection features are:
-read, write, and access permitted (data)
-read and access permittved (pure procedure)
~read only permitted (static data)

-no access, read, or write permitted (no access)

Only two protection types result in the final program for execution: data and
pure procedure. Static data and no access information, if specified, are loaded

with pure procedure.

DRAWING NQ.., 702489
SHEETJ350F 408"

LOAD MODULE STRUCTURE

&

A load module (LM) formed by LINK may be thought of as being comprised of

three parts: A. program, B. global symbols, and C. -'internal symbols.

A. Program

The program may be sectioned into the following parts:

].c

2.'

4.

Pure procedure - This section of code has read and access pro-

tection and is generated by the compilers and assemblers
with protection type 0l. -All sections with non-data pro-

tection type are also included here.

- Data or program context - This section of code has read, write, and

Common

DCB's -

access protection and is generated by the compilers and

assemblers with protection type 00.

This is blank CCMMON and is generated by compilers
and assemblers as a dummy section with the name ‘

F4:COM. The size of blank COMMON is determined by
the first size declared. All subsequent F4:COM declafa—

tions must be less than or equal to that size.

A Data Control Block is a table containing the informa-
tion used by the Monitor in the perforrnanée of an I/O
operation. LINK willi construct a DCB corresponding
to each external reference with names beginning with
F: or M:,- or it will satisfy these references from a
standard set, allocated automatic‘ally for each Qn—line

user.

DRAWING NQ.., 702489
SHEETS34 OF 36%

The standard set of DCB's is defined in a later section
along with the information contained in the job informa-
tion table (JI’f), fix'ed context area-s for the public library
and standard f)rocessors, a;d other UTS staﬁdards. DCB's
- constructed by LINK are 48 words long consisting of:
22 word standard initial segment containing
standard déféult op labels if the DCB is one of

the Monitor DCB's (see Section XI).

Five of the variable length items including a control
word for each and spacé for:

word file name

word account number

word password

words for 3 input serial numbers
words for 3 output serial numbers
word key buffer

0 W W NW

In those cases Wher'e the DCB's constructed by the loader
do not fit the user's needs, the user may define his owd.
Whilé allocating, constructing, and combining DCB's,
LINK guarantees that each DCB is contained within a
page. This allows the operating system to access DCB's |

in either mapped or unmapped mode.

Public (core) libraries - Each installation has the abiiity to define
a set of reentrant sﬁbfoutines which together constitute
a public core-library. Via SYSGEN, the installation may
specify séveral different core libraries containing collec-
tions of routines useful in different environments. REF/

DEF stacks for these libraries stored under special names

DRAWING NO.., 702489
SHEET J350F 305

in the system account are used to LINK programs.
Only one core library hnay be associated with an exe- |

-

cuting program. The reentrant vpor'tion of each core
libra?y is shared among users (ori-line, batch, and
real-time), thus saving physical core memory-and
allowing for more efficient system operation. The
user-dependent.da.ta for eaéh core library routine is
allocated by LINK at a fixeci virtual address. Thus,
each public 1ibrary is 'co‘nstructed in two parts: re-
entrant procedure and direct access context data
(i.e., in fixed virtual memory). By forming the 1li-
bréry in this manner, ia speed advantage of froﬁ 5 to

20 percent over push-:down storage reentrancy can be

obtained.

6. System library - The system libré.ry, much the same as the public‘
core-librarie‘s, is constructed in two parts: reentrant?
proc;edure and directv aécess context. data. Routines
whic‘h are obtained from the system library become
part of the user's program and are not shared. The
speed advantage is still maintained by providing a li-
brary which accesses a data area in fixed.virtua.l

memory.

DRAWING NO.. 702489
SHEETJ340F 30 §

The difference between a public library and the sys-
tem 1ibrar.y is that every iﬁc}ividua]: user pays core for
each s;ystem library routine"us ed While 6n1y one instance
of thé public library is required no matter how many are
using it. " In the public library, however, use of just
one routine requires core for the whole package. The

public library contents are specified and built at SYSGEN

time.

Global Symbols

Whiie performing the link process, a global symbol table is constructed.
This table is a list of correspondences between symbolic identifiers
(labels) used in the original soﬁrce program and the values or virtual core
addresses which have been assigned to them by LINK. The global symbols
identify object (DEF's) Within a module which rhay be referred to (REF'ed)

L4

‘in other modules. This table is available to DELTA, for use in debugging.

Interna.l Syimbols

An internal symbol table is a list of correspondences similar to the global

| but which applies solely within the module. Each internal symbol table
constrﬁcted by LINK is associated with a “s'peciﬁc input file and identified

- by its name. The internal as well as the globél symbol tables are created
for use by the debug processors, such as DELTA. 'The user has the abilitsr
under DELTA to define which set Aof internal symbols are to be used for

specific debugging activities.

(=) = MR P e A e X 2V I
o 8 T e

SYMBOL TABLE FORMAT

o As has been men£ione'd above, the main usage of symbol tables are by DELTA,
DELTA allows the user to reference both 'internal as W'ell as élobal symbols in
the debuggingiof programs. Thejuser operates on his gbject i)rogré.ms as formed.
by the loaders, together with the tables of internal and global symbols accompanying

them in what appears to be assembly language symbolic.

Both global and internal symbol té.bles,- as formed by LINK and used by DELTA,
consist of three word entries. Symbolic identifiers (labels) are limited to sevén

(7) ché.:acters plus cou'nt. Symbols originally longe\r than seven are truncated
leaving the initial characfers, -’although the original character count is retained.
Symbols Wﬁich ar.e identical in their first seven characters and are of equal length
occupy one position in the symbol table. The value or definition for such multiply
defined symbols is the first one encouﬁtered during the linking*process. Each sym-
bol entered into the table has a type and internal resolution classification. The in-
ternal resolution types are: byté, halfword, word, doubleword, and constant.
The following are tf;e symbol types which are supplied by the object language and

maintained in thé symb'ol-table: insfruction, integer, EBCDIC text, short ﬂoating

point, long floating point, decimal, packed decimal, and hexadecimal.

In ordér to provide internal symbols definitionfogether with internal resolution and
type classification, the relocatable object languagé will be augmen’céd. This rﬁeans
that the compilers and assemblers must be changed iﬁ order to provide this facility.
In addition, existiﬁg loaders must be modified in 6rder to process the changes in the
object language. The required additions fo the object language and the exact s(jrmbol

table format are detailed below.

where

CT

res

value

SHEET 23J0F 30,

C
S S
01 ¢ 51 5 3 5
5S4 IS5 |5 |57 '
1 |res value
is a six-bit field containing the character count of the
original symbol. '
are the first seven (7) characters of the symbol. Syrh-
bols with fewer than seven characters are zero filled.
is a five-bit field where the values are:
00000 - instruction
00001 - integer A
00111 - EBCDIC text (also for unpacked decimal)
00010 - short floating point ’
00011 - 1long floating point:
00110 - hexadecimal (also for packed decimal)
01001 - integer array _
01010 - short floating point array
01011 - 1long floating complex array
01000 - 1logical array
10000 - undefined symbol
is a three-bit field representing the internal resolution.
The values are:
000 - byte
001 - halfword
010 - word ,
011 - doubleword
Location symbols are always represented as a 19-bit

byte resolution value.

DRAWING NO.. 702489
SHEET2390F 296.

.Constants - Code = 10

1

s |s_ s ' ' -
fokrls [s, |5 T

where
CT and Si have the same meaning as above.

value is the 32-bit value of the con'st_ant.

Object Language Extensions

The following new object code control bytes are added in order to supply the in-

formation necessary in the formation of symbol tables.

- Object code control byte (HEX) Type of Load Item

11 Provides ‘type‘ information for external
(global) symbol.

12 ’ Provides type and EBCDIC for internal
symbol. ,
13 Provides EBCDIC, and forward reference |

number for undefined symbol.
The details of these object code items are listed below.
Control byte 11 -- Type information for ekternal symbol
| The load item is as follows: |
11 Cont:rol byte
t ' _ One i)yte which is a five-bit type field and a three-bit

internal resolution field. The five-bit type field con-
tains a code which is the same as the type information

specified above.

"The three-bit internal resolution field is the same as
the res field information specified above.

SHEET/0OE 5 0%,

DN Declaration number - One or two bytes (depending
on the current declaration count) which specifies
. ! ‘the declaration number of the external (global) defi-
*’ ' ‘ © nition. : ‘

-

Control byte 12 -- Type and EBCDIC for Internal Symbol. -

This control item supplies type and EBCDIC for an internal symbol. The

load item is as follows:

12 ' Control byte
t The type and resolution as above
n a byte specifying the length of the EBCDIC

name in characters -

name in EBCDIC
EXPR Expression defining the internal Symbdl

Control byte 13 -- EBCDIC for an undefined symbol

L Y

This control item is used to.associate a s‘ymbol with a forward reference.
The load item is as follows:

| 13 Control byte |

n 1eﬁgth of name in byte'é as above
name in EBCDIC

" FRN Two bytes specifying the forward reference number
with which the above symbol is to be associated.

Al AN AT TTALNNA A NS TV ATy

SHEETJ#/ OF 30§+

THE LINK COMMAND

¥ The LINK command may appear both as an executive command (in TEL) or it
may appear as a direct command to the LINK processor. All operations that
can be performed under the LINK executive command can be performed under

the subsystem. The notation and conventions for specifying the retention, de-

letion, and merging of internal symbols are the same.

The most commonplace LINK commands are of the form:

LINK mfl, mfl,... ON I1m (on a new file)
LINK mfl, mfl,... OVER lm (over an existing file)
LINK mfl, mfl,... | (on é temporary file for sub-

sequent loading)

where

mfl specifies the load module or relocatable object module
name and is represented by file name, account and
password (in this order), separated by periods. In the
absence of account and/or password, the log-on accounting
identification is used. A dollar sign, '$', may be used to
designate linking of the most recent compilation or assembly.
Its length must be 10 or fewer characters.

Im specifies the name (file identification) of the load module
"to be created by LINK, Its length must be 10 or fewer
characters. ‘

Optional specificatioﬂs on the LINK command control:
A, Load module symbol tables

(1) / (NI) - The parenthesized letters "NI" preceding an input module's
file identification specifies that no internal symbol table is
to be constructed; the parenthesized letter '"I" specifies
that an internal symbol table is to be constructed. The "I"
or ""NI'" option holds for all subsequent modules mentioned
in the command until the occurrence of-a new specification.
In the absence of any specification, "I'" is assumed.

. (mfl,...)

DRAWING NO.. 702489
SHEET J420F .3 0§

Example:

"LINK A, (NI) B, C, (I) DON E
This command specifies that a load module E is to be
created for execution from files A, B, C, :and D.. (By -
implication, public library, P1l, and system library
are to be searched, in that order, to satisfy any external

‘references.) Internal symbol tables are to be created ‘
for file A and D but not for files B and C. The global sym-

bol table is always retained.

Merging internal symbol tables

LINK may be instructed to_.merge the internal symbols
of several files by enclosing the files in parentheses.
Only one level of parenthesized nesting is allowed.

Example:
LINK (D, A) (NI) B, C, ON E

This command specifies that no symbol table is to be
constructed for files B and C and the internal symbols
for files D and A are to be merged. The internal sym-
bol table will be identified by A. The identification
given to the internal symbol table will be that of the last
input module specified in the merge.

When a load module containing separate internal symbol
tables is itself linked, LINK will merge all the tables
under that module's name. .

C. Library search

;1id, 1id. ..

specifies the libraries which.are to be searched for pro-
gram references which have not yet been satisfied. Li-
braries are identified by account. The list of library
accounts separated by commas is appended to the LINK
command following a semicolon. In the absence of any
other specifications, the public library will be searched
followed by the UTS system library, any user specifica-
tion eliminates these searches unless requested by the
user.

(L)

(NL)

(Pi)

~(NP)

Displays

(D)

(ND)

(C)

(NC)

(M)

(NM)

DRAWING NO: - 702489
SHEET&JUJOF 50 -

épecifies that the system library is to be searched

to satisfy external references which have not been

satisfied by the program.

specifies that a 11brary search is.not requested.

IS

specifies that the ith public (core) libfary is to be

associated with the program. Default is to P1 if
not specified. Only one public library may be
associated with a given program.

specifies that a public (core) library search or
association-is not requested.

specifies that at the completion of the linking process
(including searching libraries, if specified), all un-
satisfied internal and external symbols are to be dis-
played. The unsatisfied symbols are identified as to
whether they are internal or external and to which
module they belong.

speC1f1es that the unsatisfied internal and external sym-
bols are not to be displayed.

specifies that all conflicting internal and external sym-
bols are to be displayed. The symbols are displayed
with their source (module name) and type (internal or
external).

spec1£1es that-the conﬂlc’cmg 5ymbols are not to be
displayed.

specifies that the loading map is to be displayed upon
completion of the linking process. The symbols are

displayed by source with type resolution and value.

specifies that a load map is not to be displayed.

"The default specificiations for the linking process are D, C, NM, and L.
Any specifications stated or implied hold over subsequent commands to

LINK so long as LINK is not recalled by TEL.

DRAWING NO... 702489
SHEET 244 OF 30§

COMMANDS WHICH INITIATE THE LINK SUBSYSTEM

The LINK subsystem may be called as a subroutine or it may be called directly

'as a processor.

Au

-

..

LINK

LINK is called as a subroutine when TEL receives a LINK command. In
this mode, the information and specifications s.upplied on the LINK com-
rﬁand are assumed complete. Therefore, the subsystem will have littlé.

or no interaction with the user.

The specified input modules are linked with or without library modules as
specified, and, if specified, a map is displayed. The user is notified when
the: operation is complete by the executive system (TEL). The subsystem

(LINK) returns control and TEL requests further commands from the user.

‘Example :

1 LINK (ND) (NC) A, B, C
DONE
i

If, when called as a subroutine, LINK has any need to request information

from the user, it will identify its‘elf, identify the problem, and then prompt

for input as follows:

LINK HERE
(problem identified) .

.
ok

In all subsequent requests from LINK, only the problem and prompt char-

acter are displayed.

is LINK's prompt character

DRAWING NO.. 702489
SHEET 245°0F 3 0¥

RUN
The LINK subsystem is called as-a subroutine when TEL receives a
RUN command. In this mode, information and specifications supplied

on the RUN command are assumed complete. The subsystem normally

has no interaction with the user.

 The two forms of the RUN command that may be presented to the execu-

tive system (TEL) are:

RUN
RUN mlf, mlf, ...

The first form is used to link, load, and start the result of the last major

operation (assembly), compilation or linkage).

If the last major operation was a linkage, the subsystem (LINK) is not

needed and will not be called. However, if it was an assembly or com-

. pilation, LINK is called as a subroutine. The second form is used to

link, load, and start exgcu’cion of a set of fnodules. Ali optiqns of the
LINK command may be exercised in thé RUN command; e.g.,

RUN (I) A, B, (NI) C
This example réquests that files A, B, and C are to be linked, loaded,
and'started. Internal symbols for the first two only are to bé kept with

the resulting load module.

DRAWING NO,, 702489
' SHEETS4S OF 2097

LINK called as a processor

Th“e subsystém is ’called directly by using the ‘i:omrr:;an‘d LINK without
parameters. The notation a.1.1d conventions for i:hputvfiles and reten-
tion, deletion, and merging of internal symbol tables remain the same.
The main advantage as a processor is that of interaction. It allows the
user to link more modules; search rﬁore iibrar_ies and, in general, the
user has more control ovér the‘ linking process. In addition to the LINK
command, the subsystem recognizes the commands: OUTPUT, SEARCH,

LIST, QUIT, and END.

Specifications governing the displays and libraryy searches are given’
immediately following the LINK command verb in the form of a parén—

thesized code or list of codes..
L Y

(D) specifies display unsatisfied internal and external
references
(ND) signifies don't display internal and external refer-
ences ‘

(C) signifies display all conflicting identifiers
(NCQ) signifies don't display identifiers

(M) signifies display the loading map on completion
of the linking process o

(NM) signifies don't display loading map on completion
of the linking process

(L)- signifies search the public and system libraries
for unsatisfied program references

(NL) signifies don't search the public and system 1li-
brary for unsatisfied program references.

DRAWING NO,, 702489
SHEETR47 OF Jo¥.~

The default specifications are D, C, NM? L. Specifications hold
over subséquent LINK commands until changed.

1. OUTPUT

z

>

Specification of an output file instructs LINK to complete any pre-
vious link process and initiate a new one. The previous output

module, if any, is closed and saved for future loading.

As a processor, LINK will not initiate any linking until an output
file has been identified. The user may specify an output file by
the LINK command.

LINK mfl ON lm (new file)
LINK mfl OVER lm (old file)

All commands are analyzed for validity. If any diséfepancies appeér*,

the user is informed and LINK requests that corrective action be taken."

2. LIiST
At any time prior to completing the linking proceés, the uéer may re-
quest optional displays to be listed on the printer, .ﬁle, or terminal.
The for‘ma.t of the LIST command is:

‘ _ LP (printer)

LIST (1oading map, et al) ON file

ME (terminal)

The default specifications are D, G, and M.

3. SEARCH |

At any time prior to the completionrof fhe linking process, the user may
request LINK to search his own and/or S}.rstem and public libraries to re-
solve upéatisfied external program refer'ence__s. The'f'orlmat of the SEARCH

command is:

DRAWING NO, . 702489
SHEETat/QOF 0§

' . L)
SEARCH (. lid, lid, .d ...
(NL) :

4, ‘QUIT :

Y

" At any time prior to the completion of the linking process, the user
may request LINK to terminate. Termination results in the release

of all core and disc space allocated as the results of the linking process.

5. END
The linking process is terminated with the END command. This com-
‘mand instructs LINK to close and save the current output file, if any,

for future loading.

Example:
! LINK

LINK HERE

:LINK (ND) (NC) (NL) A, B ON JED
:LINK C .

‘SEARCH (L)

“LIST (M) (C) (D) ON JOE

:END | :

DONE

i

In this example, the output file is JED and input modules A and B are
linked. No display has been requestedv.' Ir;put module C is then combined
with Avand B and the system library is seAa..rched. ~Then, the user requests.

-~ that the map, conflicting and unsatisfied symbAols be listed on file JOE. The
The LINK session is concluded by the command END and control is returned

to the executive.

&

DRAWING NO. - 702489
SHEET2490F 0¥

BREAK KEY

Depression of this key causes LINK to terminate whatever it has been doing as

‘soon as it can; however, this signal is ignored if given by the user while he is

typing in 2 command. Usually, LINK will type

REVOKED
as soon as it honors the break. Howlever, if engaged in linking a module or
searching a library, LINK will finish that operation and then tell the user how -
far it has gotten. For example, if Vworking on the command

LINK A, B, C, D
and interrupted while working on file B, LINK will finish li.nking B and then

type

, DONE THRU B
If aétuallﬁr finished with a command before honoring the break, LINK will simply
behave as it usually does after finishing a commé.‘ﬁd. If called as a subsystem,
LINK will return control to the user after typing its identjlfying rnérk; if called

as a subroutine, LINK will notify the exec that it has been interrupted, without

typing anything at all (TEL will tell the user that the command has been revoked).

DRAWING NO, 702?48:;
SHEETOU'O OF Bd /

INDEX TO LINK COMMANDS AND OPTIONS

2

Default values for the options are underlined. . -

COMMAND

LINK

OUTPUT .

LIST

SEARCH-

OPTIONS

D/ND

GING

M/NM

L/NL

/NI

Pi/NP Pl

none

D/ND

C/INC

M/ MN

L/NL

Pi/NP Pl

MEANING

Specify the linking process

Display or don't display unsatisfied
internal and external references

Display or don't display conflicting
identifiers

Display or don't display loading map

Search or don't search the public and
system libraries

Construct or don't construct internal
symbol tables

Associat&e or don't include the‘public
library

Specify the LM file.

Specify display options to be listed on
printer, file, or terminal.

Same as LINK.

Specify which libraries are té be used
in satisfying unsatisfied references

Same as LINK

END

RUN -

None

Pi/NP
D/ND
C/NC
M/NM
L/NL

e

Pl

DRAWING NO, , 702489
SHEET2.5/ OF 30%.~

Specifies the end of a linking process

.

.

Specifies to link, load, and starf
execution.

Same as LINK.

A

“DRAWING NO, 702489
SHEETJIS3OF 36§~

INTRODUCTION

" This document describes the calls for service by user programs, their opera-

tion and restrictions in the UTS environment. All facilities and processors now
available as BPM services remain available to the batch user in UTS. Some UTS
facilities are provided solely for on-line use, while others are available only in

batch.

New and modified services allow the user to get and free core storage -- both in
the old ways from just above his program area and from common storage, and in

a new way by specifying the virtual address of the desired core.

New services are.provided to a) allow communication and memory protection’
changes when transferring between a user program and system processors; b)
set up a "prompt'' character with the.términal I/O routines which will be typed
whenever input is requ’estedi and c) control the character translation and end—of-.

message indication tables in the terminal I/O routinés.

Some of the current CAL's behave differently when called by an on-line user.

These differences are outlined.

The Monitor service CAL's are listed by the restriction in usage -- on-line, batch,

or real-time, and for convenience, in numerical order.

The standard assignments to devices of the system operational labels are listed

in the final section.

DRAWING NO;- 702489
SHEET?#% OF Jd&"

DATA MEMORY MANAGEMENT

UTS provides the user with two general ways of getting and releasing pages of

»

‘core memory in his data area: relative allocation and specific allocation.

Relative allocation is exactly compatible with the BPM CALs for getting and re-
leasing pages: Pages may be obtained (allocated to the user program) from the
lowest unallocated page address toward higher addressed pages. Pages obtained

in this upward direction are called dynamic pages. Memory pages may also be

obtained beginning with the highest addressed unallocated page toward lower

addressed pages. Pages obtained in this downward direction are called common

dynamic pages or simply common pages. Pages obtained in the dynamic and
common area may not overlap and, if attempted, an error indication results.
Neither ma‘y the relative allocation CALs be used to allocate a page already allo-

cated by a specific allocation routine.

Specific allocation allows the user to get or release any page in the user's data
area by reference to the word addfess of the first word of the page. Errors result
on attempts to -getk already allocated pages or to release already released pages.
Pages allocated via th-e relative allocation routines may not be released by specific

allocation routine reference.

A limit applies to the number of physical pages which may be allocated to a user
for all purposes. This limit is initially set by SYSGEN and may be modified dy-

namically by the performance control program.

Virtual memory available for allocation rﬁay be pictured as shown below.

allocated

<————— data pages affected by memory management routines >

_ first available virtual page

top dynamic page (TDP)

Bottom common page (BCP) /

(available virtual memory pages)

f

dynamic, unallocated virtual memory éllocated common
bages pages
RRRER AR ERA JLLL AR
: x :

last available virtual page -/

805 I0QLFCLAUHS
68%20L- ;ON DNIM VYA

DA WING NOT T (VL4407

SHEET5% OF 305~

Get Common Limits

M:GL | The GL routine returns the lowest and highest word addresses
within the data area presently é.llocated to the gser by get common page
CALs. The lowest address is returned in SR1 and the highest é.ddress

is returned in SR2.

The M:GL procedure call is of the form
M:GL

Calls generated by the M:GL procedure have the form
CALl,S8 FPT |

FPT is the address of a word as shown below:

X'0B! 0 - _ 0

0 78 . ' 31

Get Common Pages
- M:GCP The GCP routine allocates a specified number of pages at suc- - |
ceedingly lower address from the current lower limit of common storage

(BCP) and extends that limit downward.'

Pages are obtained and allocated to the user at succeedingly lower addresses
beginning just below BCP until:
1) the required number of pages are obtained,

2) the installation set 1imit on the number of physical
core pages is reached, or

3) a page already allocated via M:GP or M:GVP is en-
countered. :

SHEET.2S7 OF-3 & Y-

Returned information for the three cases is

CASE ccl " SR1 ‘ . SR2

1 0 No. of pages allocated New-BCP
2 1 No. of pagés allocated ° New BCP
3 1 No. of pages allocated New BCP

Access codes for the allocated pages are set to 00 (Read, Write, or

execute).

The M:GCP procedure call is of the form
M:GCP pag.es
Pages specifies the number of memory péges by which common storage

is to be extended.

C‘a.l“ls generated by the M:GCP procedui‘e have the form
CAL1,8 FPT

FPT is the address of é, word as shown below:

*1 X'0C! 0 0 Number of pages required

0 7 8 14 15 : 31

Free Common Pages

M:FCP The FCP routine releases a specified number of pages at suc-

ceedingly higher addresses beginning at the current BCP and moves that

limit upward.

SHEETSSY OF3 25,

Pages are released beginning at BCP toward succee;din'gly higher ad-
dresses until:
1) the requested number of pages have been released

-

2) the last available virtual page is released

In case 2), CCl is set to one. In case 1), CCl is set to zero.

Pages released by FCP have access codes set to 11 (no access) and any

subsequent reference to these pages will result in a trap.

' The M:FCP proc;edure call is of the form
M:FCP pages

Pages specifies the number of pages to be freed.

Calls generated by the M:FCP procedure have the form
CALl,8 FPT

FPT is the address of a word as shown below:

% X1oD! 0 0 Number of pages to be freed

0 7 8 14 15 = . : 31

Get Dynamic Pages

M:GP The GP routine allocates‘.a specified number of pages beginning
with the page just higher addressed than TDP and extending that limit up-
ward until:

1) the required number of pages are allocated,

2) the installation set limit on the number of physical
core pages is reached, or

3) a page already allocated via M:GCP or M:GVP is
‘ encountered.

SHEET2S | OF._ 345 _,

Returned information for the three cases is

CASE CCl " SR1 ; . sm2
1 0 Number of pages allocated . New TDP
2 | 1 Number of'pages allocatel‘d New TDP
3 -1 | Number of pages allocated New TDP

Access codes for all allocated.pages are set to 00 (Read, Write, or

execute).

The M:GP procedure call is of the form

M:GP pages

‘Pages specifies the number of additional pages requested.

Calls generated by the M:GP procedure have the form
CALl,8 FPT

FPT is the address of a word as shown below:

X108! 10 0} Number of pages required

: N

0 , T8 17 15 ' 31

Free Dynamic Pages

M:FP ‘The FP routiné releasgs a specified number of pages at suc-
ceedingly lower addresses bégihning With TDP and moves that limit down-
ward until:

1) the reciuested number of pages have been released, O
| 1

2) the first available virtual page is released. -

In case 2), CC1 is set to one; in case 1) CCl is set to zero.

.SHEET 42 OF. 3 08

Pages released have their access codes set to 11 (no access) and any

subsequent reference to these pages will result in a trap.

The M:FP procedure call is of the form
M:FP pages
Pages specifies the number of pages to be freed from use by the user's

program.

Calls generated by the M:FP procedure have the form
CALl,8 FPT

FPT is the address of a word as shown below:

X'09! 0 ' 0f{ - Number of pages to be freed

*

0 : 78 14 15 : ‘ 31

Get Virtual Page

M:GVP - The GVP routine allocates a specific page of virtual memory to
the user. If the request is allowed,access for the page is set to 00 (Read,,
Write, or execute) and CC1 is set to zero. The request is disallowed if

1) the installation limit on number of pages allowed
would be exceeded,

2) the page has already been allocated,
3) the page requested is outside the limits of unallo-

cated virtual memory.

In these cases CCl is set to one, and no page is allocated.

DRAWING NO., 702489
SHEET,;) OF 30§

The M:GVP procedure' call is of the forriq '
M:GVP virtual address

Virtual address specifies the address of the first word in the virtual

- page desired.

Calls generated by the M:GVP procedure have the form
CAL1l,8 FPT

FPT is the address of a word as shown below:

X105! 0 0 _ Virtual Address
A .
0 ' 7 8 14 15 . . ' 31

S
"

Free Virtual Page

M:FVP The FVP routine is called to release a -specific page of virtual
meémory. The indicated page is released and CC1 set to zero unless the

request is for a page less than or equal to TDP or greater than or equal -

to BCP,in which case CCl is set to one and ' no page is released.

M:FVP procedure call is of the form
M:FVP virtual address
Virtual address specifies the address of the first word on the virtual page

to be released.

Calls generated. by the M:FVP procedure have the form

CALl,8 FPT

DRAWING NO.. 702489
SHEET, } OF 305"

FPT is the address of a word as shown below.

e

“ 1 X'05! 0 - 0 - Virtual Address

0 7 8 14.15 . - 31

NEW UTS SERVICE CALs

Two new calls have been added to UTS in order to provide setup of communication

with the terminal I/O handler. They may be issued only by on-line user's program

and are ignored if issued by a batch program.

A,

Set Prompt Character

The on-line user's keyboard is proprietary: either he has control for purposes

of input or UTS has control for carrying ouf r.equests and for purposes of out-
put. Who or what is controlling the keyboard must be ;fnade clear atall
times. On-line processors are assigned”a prompt character which is

J;.ssued to the ‘user whenever control of the terminal is returned to him

for input. This allows the user to know at all times to whom he is té.lking;

who talked to him last, and when he can tjrpe. A user program may set the

-

_prompt character to key his input requests if he wishes. Ordinarily, when

the control is turned over to the user, a null prompt is assigned.

Current assignment of prompt characters is

Monitor (TEL) !
EDIT %*

PCL <
LINK :
BASIC >
META . >
FORTRAN >
DELTA bell
SYMCON T
FDP G

user . null

DRAWING NU 10L4E0Y
SHEETJ43 OF 3 6.5

M:PC The Set prompt call allows the user's program to set the
terminal prompt character (identification ;nark)'. This prompt char-
acter, if nén-null, will be outi)ut (usually at th.eileft rné,rgin) whenever
input is requ‘ested from tﬁe user's terminal (UC’ devic.e). If.given in

. @) . =TS N iy P e
batch mode, no operation results. - H g m\ C], ¢ 0 (b '
e .0 Loty ’ _ (1\ VT ‘L\H” ~7r"'"\'\ S R T P S S S N AR

S T anl Gc_i X

The procedure ca11 is of the form

M:PC ‘character
Character specifies the EBCDIC prompt character (identification mark)
which is to be a‘ssociated with the user. An.EBC'DIC 00 (Null) means no
prompt charactef is desired. Calls generated by the M:PC procedure
call have i:he form |

CALl,1 FPT

FPT is the address of a word as shown below. RS
X12C!1 0— 0 ‘ EBCDIC
Prompt Character

0 7 8 ' 14 15 31

Change Terminal Activation and Translation Table

Translation of characters appearing on the user terminal input lines to the
- EBCDIC internal Sigma 7 standard, translation of EBCDIC to the proper
ouf.put form for the terminal, and the ciete‘rmination of which characters
~are to be considered end-of-message or act’ivatioﬂ characters whAen re-
ceived are_a;tll controlled by tables resident in the COC I/O handling routines.
A Monitor CAL allows the user to switch among the tables available in the

system.

TASANLON VY LLN T T AN, TVvGTO 7

SHEET Q64 OF30 5

The procedure call is of the form

M:CT n
n specifies the nu.mber of the deSired table 1< ns 5. The procedure
generates a |) QUVTE’ me (1!

CAL1,8 FPT /

FPT is the address of 2 word as shown below.

X106' . , i TR

0 7 8 | R —31
The current tables translate for Models 33 and 35 Teletypes, and SDS Key-
board Displays. Additional tables are contemplated for Model 37 Teletypes,
ﬁ’)‘” and Frieden 7100's. Since translation tables are assigned to lines at
SYSGEN time, it is unnecessary for users of fixed 10eation consoles to use

this command. Dial-up lines are another matter.

The current assignments for the n parameter are

n Meaning : .
0 33
S 1 Use standard Mod,.28, 35 TTY table (cr 1f and ESC)
. 2= Use the standard K/D table (all cursor movements,
hard copy signals, mode changes, and roll commands
activate)
'b‘é Reserved for Model 37 TTY
4 Reserved for IBM 2741

5 Reserved for Frieden 7100

3 . f o T

B, g/ 4W B

SHEET 45 OF.5 0 _,

Suspend Program for N Seconds

This CAL causes N seconds of real-time tfo,eiapse before the next in-
struction in sequenée is executed. It may be used by programs which
wish to operate time peri’odically.. They are salid to "'sleep" during
the suspend period. When they are awakeﬁed they begin execution at

a priority just higher than the computer queue.

The procedure has the form
M:WAIT N
Where N specifies the humber of seconds to wait.
vWait is restricted to on-line use.
Code genérated by this procedure is
CALl,8 FPT

FPT has the form

KD
"

XIFI ' . N

0 7 8 .. 14 15

Change Virtual Map

This CAL is provided to allow special sySteni processors and other
specially privileged programs (e.g., those of the system programmer)

to see into and display or change portidnsb of the resident Monitor.

- The proeedure lag the form §

W e followjngT<ode: :

CALl,8 FPT

31

SHEET 44 OF 305 _,

where FPT is the address of:

0 7 8 ' 14 15 - - 31

X! T " A

to a:ddres.s =B

e\ PASSWORD_= P T

The real core page address A is placed in his map at the 'to' address.
Access for the page is set. to data, but write locks for the physical page

are not changed.
. e}
i/ g

Restrictions:

TN '

) The password supplied, must check Wlth a system password known
to thé Monitor. - S :

\2);} The virtual "to" address must not be already assigned to the user.

R)
(AR R
. <)§ P A S
- i ¥ e - .
In either of the-above cases, no map change is made and CClis set.
) \ /«

Read and Write Assign Merge Record

Throughout a job or on-line session, I/O unit and file assignment informa-
tion is retained for merging into user or processor DCB's.at each job step.
This information is maintained in an Assign Merge record on RAD, with

one record location assigned to each user by the log-on procedure which

- places the AM record disc address in JIT.

Special CAL's are used to read (RAMR) and write (WAMR) this record.

- They must reference a closed DCB at least eight words long.

DRAWING NO., 702489
SHEE /OFqu

RAMR and WAMR are both CALIL,1 F‘P‘T instructions.’ ‘The FPT code

for RAMR is X'2D! and for-WAMR is X'2E!, ‘Otherwisei, the FPT formats

are similar and as follows: ' .

% Code DCB Address

P1 Pa P3 P4 P6 present bits
Py *® error address
PZ 3 abnormal address
P3 * buffer address
Py o) byte size
Py |* byte dlsplacement : ,

W /{,“ . ;o : ;% i ‘,1.47 /)/ /'; ;/“'
ON-LINE BATCH DIFFERENGES Col 7 e

The Monitor has different actions to certain CAL's depending on which they were

issued by an on-line or a batch program. The CAL's which depend on the calling

environment ai'e described below. (See‘ Part VIII for messages when DELTA is, in

control).
A, Exit Return (M:EXIT)

Batch The Monitor performs any PMDI dumps that have been speci-
fied for the program and then reads the C device ignoring
everything up to the next control card.

On-line The Monitor returns control to the on-line executive program,
which prompts with an '!' at the termmal (UC device) for the
input message.

B. Error Return (M:ERR)
Batch The Monitor outputs the»'message

11JOB id ERRORED BY USER AT xxxxx

where xxxxx is the address of the last instruction executed in
the program. The message plus the contents of the current
register block and program status doubleword (PSD) are
listed on the LL and DO devices. The Monitor also lists the
message .

11JOB id ERRORED
on the operator's console (OC device). ?ostmortem dumps

are performed, and the C device is read ignoring everythlng
up to the next control command.

On-line

SHEET2$5 OF -3 0§/

The Monitor outputs the message M:ERR AT xxxxx where
xxxxx1s the address of the last instruction executed in the
‘program on the UC and DO devices, if different. The
Monitor then returns control to the on-line executive, which
prompts for the next usér message with'an '!',

,

>

C. Abort Return (M:XXX)

Batch

On-line

The Monitor outputs the message
11JOB id ABORTED BY USER AT xxxXx

where xxxxx is the address of the last instruction executed.
This message plus the contents of the current register block
and program status doubleword (PSD) are listed on the LL
and DO devices, if different. The Monitor also lists the mes-
sage

11JOB id ABORTED

" on the operator s console (OoC dev1ce) The M:XXX procedure

call is of the form:
M: XXX

when a job is aborted, any specified postmortem dumps are
performed, but no further control commands are honored
until a JOB or FIN control command is encountered

The Monitor outputs the message M:XXX AT xxxxx where
xxxxx is the address of the last instruction executed in the
program. This message is listed on the UC and DO devices,
if different. The Monitor then returns control to the on-line -
executive which prompts for the next user action with an '!"',

Type a Message (M:TYPE)

Batch

On-line

The Monitor outputs the specified message on the OC device.

The Monitor outputs the specified message on the UC device.

SHEETJ 4] OF 3 0 §-

Request a Key-in (M:KEYIN)

Batch ‘The Monitor outputs the specified-message on the OC
device and enables the operator's reply to be returned
to the user's program.)

On-line '~ The Monitor outputs the specified’ message on the UC
‘device and enables the user's reply to be returned to
the program. A prompt character is sent if one was
specified by a M:PC.

Connect to Interrupt or BREAK Key (M:INT)

The purpose of this procedure is to allovs} execution of the program to be con-
trolleci from the terminal or console. When control is given to the INT routine,
the PSD and general registeré are pushed into a 19—wordk block of user's
memory (on a doublewo‘rd boundary) and a pointér to ti'le stack pointer
doubleword is placed in current general registef 1. ".fhe TRTN routiné may

be used to restore control from a console or terminal interrupt.
. . A Y .

Batch The Monitor enables the user's program to be connected"
to a console interrupt (key-in addressing the program).
This enables the user's program to be controlled from the
operator's console.

On-line The Monitor enables the user's program to be connected

\ to a teletype interrupt (Break key). This enables the user's

program to be controlled from the terminal.

The Monitor INT routine is called by an on-line program to set the address of

_a routine to be entered when the user presses the BREAK key on his terminal.

The execution of this procedure causes the Monitor to store the PSD and -

general registers into a 19-word block of user's memory (on a doubleword

boundary) and a pointer to word 0 of that block is placed in current register 1.

The TRTN routine (see M:TRTN) may be used to restore control to the user's

program.

DRAWING NO.. 702489
SHEET2 /70 OF "% 0§

The M:INT procedure.ca;ll is of the forrﬁ: '
M:INT address
Address speciﬁes‘ the location of .the entry to the prog;am’s BREAK res-
ponse routine. -Calls generated by the M:INT p;ocedure hé.ve the form:
| CALl,8 FPT

FPT is the address of a word as shown below.

% XIOE! 0 -0 address of BREAK routine

0 7 8 14 15 31
\ A zero address resets break control. If the address specified is in the

| range of virtual addresses assigned to the Monitor, then zero is substituted

(break control is reset).

ERROR AND ABNORMAL MESSAGES L
' ’ v /\"w‘,“" A\

All error or abnormal conditions which normally results in the batch Monitor con-
éinuing to the next job step will be processed for on-line users as follows:

The Monitor outputs two messages. The first message has the form: ‘

mmmm. ..
where mmmm ... is the specific message identifying the error or
abnormal conditions. The messages reside in the system file (:MESS).

The keys to the error text records are the codes established by the

Monitor for the error or abnormal conditions.

The second message has the form: .
EXECUTION STOPPED AT xxxxx

where xxxxx is the location of the last instruction executed.

e

DRAWING NO. , 702489
SHEETZ?)/ OF 305

These messages are listed on the UC and DO devices, if different.

The Monitor then returns control to the On'-line"Executive, which

prompts for the next user action with an '!",

S>U1\/V[MARY OF CAL's

There are four CAL instructions (CALl, CAL2, CAL3, and CAL4) pfovidéd by
the Sigma 5/7 hardware. CAL instructions are used fér requesting Monitor
services. Execution of a CAL instruction causes the executing program to trap
to the.Monitor where a validity chéck is made, and then the CAL is decoded to
determine the service requested and thev requestor. The requestor may be a
user, érocessor, real-time task, or the Mdn_itor. If.valid, the requested service
is performed. If invalid in either type of CAL or type of service requested, the

request is not honored and the user is informed by a console message.

Of the four CAL's provided by the Sigma 5/7, CAL3 and CAL4 are reserved for the

installations or users; CAL2 is reserved for Monitor use, and CALl is divided into

L4

user, real-time, and Monitor services. -

The CAL's currently assigned are listed below in five catagories:

1) On-line, Batch, and Real-Time,
2) Batch only,

3) On-line only,

4) Real-Time only, and

5) Monitor only.

On-line, Batch, Real-Time

CAL

CAL1,1

addressi

FPT

FPT CODE

X'01!
X102!
X'03!
X104!
X105!
X106!
X107!
X108!
X109!
X10A!
X'0B!
X10C!
X'0D!
X10E!
X10F!
X110
X111t
X113t
X114!
X115¢
X'1C!
X'1D!
X120!
X121
X221
X123!
K124t
X125!
X126!
X127!
X128
X129!
X12A!
X12B!
X12D!
X12E!

- XaFE!

SHEET 73 OF 7 047

FUNCTION

M:REW

M:WEOF

M:CVOL

M:DEVICE (PAGE)
M:DEVICE (VFC/NOVFC)
M:SETDCB

M:ADFILE
M:CAT

M:UNCAT

‘M:FEXT

M:DEFICE (DRC/NODRC)
M:RELEC ' ‘
M:DELREC

M:UFILE

M:TFILE

~ M:READ

M:WRITE
M:TRUNC
M:OPEN

M:CLOSE
M:PFIL

M:PRECORD
M:DEVICE (LINES)
M:DEFICE (FORM)
M:DEVICE (SIZE)
M:DEVICE (DATA)
M:DEVICE (COUNT)
M:DEVICE (SPACE)
M:DEVICE (HEADER)
M:DEVICE (SEQ)
M:DEVICE (TAB)
M:CHECK

M:DEVICE (INLINES)
M:DEVICE (CORRES)
M:RAMR g)
M:WAMR ¢ ~— [

MiToE

f

(IR

CAL
CALlL,2

CALL,3

CALL, S8

CAL1l,9

address

FPT

FPT

FPT

Ol b WV =

FPT CODE

B

O .

X0l M5,

Xro2!
X'04!
X'10!

X100!
Xl
Xro2!
X103
X'04!
X105

X101
X'04!
X105
X107!
X'08' -
X'09!

X'0A!
X'0B!
XtcC!
X1oD!
X'0E!

SHEETJ730E 305

FUNCTION L
M:PRINT ¢

M3V M: TYPE

X‘IOFI .

Xro!

X't

X121 _
- X114t

X'

M:KEYIN
M:MERC

M:SNAP
M:SNAPC
M:IF
M:AND
M:OR

~ M:COUNT

M:SEGLD
M:GVP
M:FVP
M:SAD —
M:GP

M:FP

M:SMPRT

M:GL

M:GCP
M:FCP -
M:INT
M:WAIE
M: TIME
M:STIMER
M:TTIMER . 5V
M:TRAP & P 5Pk P)/

M:EXIT
M:ERR
M:XXX
M:STRAP

M:TRTN

Batch Only

CAL address
CALl,4 FPT
CALIL, 8 FPT

On-=Line Only

CALI1,1 FPT

- CALI1,S8 FPT

Real-Time Only

CALI1,5 FPT

FPT CODE |

X100! -
X'01!

X102"
X103

X'2C!

X106!

X1'00!
X1
X'02!
X'03!
X'04!
X105
X'06!

/X107

~ X'08!
X'09'
X'0A!
X'0B!
X'0C!
X'0D!
X'0E!
X10F!
X'10!
X111
X112!
X113!
X114
X115
X'16!

SHEETA 7/ OF- 30§,

FUNCTION

M:CHK—PT
M:RESTART

M:LINK
M:LDTRC

M:PC

M:CT

M:TRIGGER

" M:DISABLE

M:ENABLE
M:DISARM
M:ARM
M:DCAL
M:CAL
M:SLAVED/’
M:MASTER
M:SBACK
M:RBACK
M:TERM -
M:RXC

M:SXC -

M:DED
M:UNDED
M:IOSTOP
M:IOSTART
M:IOEX SIO
M:IOEX TIO
M:IOEX TDV
M:IOEX HIO.
M:ABSLOAD

SHEET75 OF.30%

CAL address FPT CODE' FUNCTION

CALIL,9 7 X'07' . M:CLEAR
8 X108 "M:TERM
9 . . Reserved for
A ' * o -3 real-time ex-
B tensions
CALL,A FPT X100 Save Monitor's interrupted
environment
X0l : Restore Monitor's interrupted
.environment
Monitor Only
CALl,1 - - X'16! - Direct Disc Read
| S X Direct Disc Write
CALlL,9 6 : ——— Close ‘Coopérative File
CALl1l,B [Event Mark .
CALlL,C ———— Event Count Resernved for
CALL1,D - v -——- Event Time generalized
CALL,E e Event Auto- event measure-
Display*Control ments
CAL2,0 ' . O . Branch to overlay
segment (0B)
CAL2,1 ' . - " Branch and save Used for
segment number internal
(OBAL) Monitor
. 4 overlays
CAL2,2 —-——— Restore segment
and B#*SR4 (OBSR4)
CAL2,3 code* —— System Recovery
CAL2,4 code*® ——— Reserved for internal

debug routine

*The code appears in the address fields of the CAL instruction and is
internally assigned. : : :

SHEET 274 OF.5 05

NUMERICAL LIST OF CAL's

The following list gives all UTS CAL's in numerical order with the M: proc
name for invoking the routine and a brief description of the function performed.
Restrictions on usage to on-line, batch, and real-time dre given in the use code

column on the left.

m ~ restricted to Monitor use -

o restricted to on-liné use

r restricted to real-time ﬁse

b restricted to batch use

- usable in all environments

s use restricted b‘y passwbrd ool

If a CAL is given which is illegal for the current user, it is treated in the same

way as an illegal instruction.

CAL's marked with an asterisk (*) are new to UTS or have different or extended

functions relative to BPM.

SHEET77 OF 3¢ § |

Numerical List of Monitor CAL's

USE . : ' FPT M:

CODE CAL hex code NAME uTsS Description
. 5 — -
- . CAL1,1 FPT 1 : REW , .
- 2 WEOF
- 3 CVOL
- 4 DEVICE (PAGE)
- 5 DEVICE (VFC)
- 6 SETDCB
- 7 'M:ADFILE
- 8. M:CAT .
- 9 M:UNCAT
- A M:FEXT
- B DEVICE (DRC)
- C RELEC
- D DELREC
E UFILE
- F TFILE
- 10~ READ
- 11 WRITE
- 12 TRUNC
- 14 OPEN
- 15 CLOSE
m 16 - v Direct disc read
‘m 17 _—— o Direct disc write :
1 ot S o
- 1c§ PFIL s ona N
- - 1D PRECORD Y Y- .
- 20 DEVICE (LINES)
i} - 21 DEVICE (FORM) -
. | 22 DEVICE (SIZE)
- . 23 DEVICE (DATA)
- 24 - DEVICE (COUNT)
- 25 DEVICE (SPACE)
- . 26 DEVICE (HEADER)
- 27 DEVICE (SEQ)
- 28 DEVICE (TAB)
- .29 . CHECK
- 2A. DEVICE (N'LINES) .
- 2B DEVICE (CORRES)
o 2C PC . L% Set prompt character
~“n\ 2D RAMR ok Read assign merge recorc
< 2B WAMR * Write assign merge recor
s : NS ’ :l‘f;B . X Add #\’“«".f"“’ ',zv’;:i"-‘;': Ry _*;’{‘i';' en
3()— 35 Pl ud {l, Posen !' / /f/‘Mt \,z} e

SHEET/y OE 545

USE FPT M: _
CODE CAL hex code NAME UTS Description
- CALL,2 FPT 1 PRINT * A
- : 2 TYPE % Type message to opera-
. tor (or user)
- 4 "KEYIN , % Type message and await
- - response
- 10 MERC
- CAL1,3 FPT 0 SNAP
- 1 SNAPC
- 2 IF
- 3 . AND
- 4 OR
- 5 COUNT
b CALl,4 FPT 0 CHKPT ' S et
b 1 RESTART / -
| ~ X o
r CALl,5 FPT 0 TRIGGER
r : 1 DISABLE
r 2 ENABLE
r 3 DISARM
T 4 ARM
r 5 DCAL
r 6 CAL
r 7 SLAVE .
r 8 . MASTER
T 9 SBACK
r A RBACK
r B TERM ¢
o C RXC ‘
o D SXC
v T E DED
F UNDED
10 IOSTOK ¢
11 JIOSTART
12 IOEX SIO
| 13 IOEX TIO
l 14 IOEX TDV
‘ 15 IOEX HIO " oL
% 16 ABSLOAD ' BT
. , L s
CALL, 6 unus-ed-—--- T e |t)"*Z"'PL\FO w0
CALl1l,7 unused

B

AL VAT A VN e TV M TA T

SHEET97/ OF“:30)?- -

USE . FPT M:
§QODE address hex code NAME UTs Description
/ o< .
- CALl1,8 FPT 1 SEGLD Load overlay segment
b 2 LINK -
b 3 LDTRC .
- 4 GVP — T % Get virtual page
- 5 FVvp — * Free virtual page
o 6 . CT * Change COC Table
s 7 SAD -~ * See and display
- 8 GP * Get dynamic core page
- 9%/& FP * Free dynamic core page
- A . —SMPRT ~ Set memory protect
- B GL * Get available core limits
- C GCP * Get core page in common
- D FCP * Free core page in commo
- E INT * Connect to BREAK key
o F WAIT - * Suspend program n secon
- 10 TIME
- 11 STIMER - ' .
-]
= o<ls D IT{LI‘IQER VEphy ks syl L) i
- CAL1,9 1 -——— EXIT % Normal programterminat
) - 2 ——— "ERR % Error termination of job
‘ step
- 3 =y XXX * Error termination of job
- 4 N STRAP
- 5 - . TRTN
m 6\‘ N T LT éu?w\(l,bﬁﬂ&/ Close,cooperative files
r, 7 7 __/M:CLEAR /]
r 8 8 K . MITERM
r 9 ——— T ww"‘" =
T A - Reserved for real-time
il B T | ! L
e —— N u i o
”C"‘ —— R - ‘311/“? L T T ““*‘*N..Z.‘,\Mrax '{, Sy i =
T CALl,A FPT o —e-—- ' Save Monitor environment
r I et Restore Monitor environ-
ment
‘l”}
m CALIl, # code ———— Event marker *
S m CAL1l, C code -——— Event counter *
‘m "CALI, D code -———— Event timer * Monitor performance
m CALI, E code ——- Display’ % measurement
m CAL2,0 -- OB Branch to overlay segmer
m CAL2,1 -- OBAL Branch to overlay and sav
I return
m CAL2,2 -~ . , ‘OBSR4 . Restore segment and retu

*SR 4

SHEELZY 0 0,505

W I i S TN
_ ' FPT M: . : :
CODE address - hex code - NAME ‘ -~ UTS description
m: CAL2,3 code -~ Reserved for error recovery and diagnosis
m CAL2,4 code Entry to executive DELTA ’

All remaining CALZ2,x instructions are reserved to Monitor use.

All CAL3,x and CAL4, x instructions are available for installation as signment.

OPERATIONAL LABELS FOR ON-LINE USE |
ﬁAnboperational label is a nar-ne,(an‘d a set of Monitor records) used to identify a
logical input/output function. All I/O activity (Reads and Writes) take place
through the information in a DCB. One piece of vinform"atioh is the device address
or, alternately; an operational label which in turn is connected to the device. The
connection of devices to DCB's through operational labels allows the instaliation.the
capability of changing the device assignment of a particular I/O class. The batch
user may change the aésignments for the duration of the job by using !ISTDLB

cards or the operation may make permanent changes using !SYST key-ins.

For on-line operation the operational label assignments are kept séparately from
batch and are not changeable by the user. Change by the operator is a possibility

and is left as an open question. Table 1 lists the assignments of op labels for on-line.

DRAWING NO' - 702489,
SHEETIY 3 OF 3 0¥

TABLE 1, Monitor Operational Labels for.On-Line Users .

:> Label Standard Use Assigned Device : 1/0 Function
BI Binary Disc - '"file" Read number of bytes specified
Anput . no default >
(¢ Control Terminal Read number of bytes specified
input (same ' or to message complete
as UC) UcC
not assignable]
cI Compressed Disc Read number of bytes specified
input no default
EI Element Disc Read number of bytes specified
. input no default
s . Source Terminal ~ Read number of bytes specified
input '
BO . Binary Symbiont . Write number of bytes specified
output punch output-
CP
Cco . .Compressed Disc Write number of bytes specified
<:> output Symbiont punch
output - CP
EO Element . Disc Write number of bytes specified
output no default '
SO Source ‘Disc Write number of bytes specified
output Symbiont punch - .
output - CP
PO Punch o Disc . Write number of bytes specified
’ output Symbiont punch
output - CP
Uc Users Terminal Read or write number of bytes
Terminal ‘ ' specified
(console) .
not assignable
DO Diagnocstic . Terminal Break into.carriage-size records,
‘ ' K\\\ 4 insert carriage returns, and type up
- . R to 132 characters.
. 10 Listing Line Printer Write number of bytes specified up
N output LP to one line
C‘) GO Binary Disc .~ Write number of bytes specified
output : default $ROM ‘
for execution

DRAWING NO; 702489,

" SHEETA®{OF

Part XII. TERMINAL OPERATIONS and SERVICES

TABLE OF CONTENTS

INTRODUCTION

USER PROGRAM AND TERMINAL USER OPERATIONS

1.
2.

o

o Y % N oW

Writing Records to the Terminal

Reading Records from the Terminal

Prbmpt Characters

BREAK (bk) Character Action

Monitor Escape

Device and Sgt DCB CALs

Page Control and Page Headings

Tabs

Paper Tape I/0 '

Us'ef-COC Communication Keystrokes (TTY)

Terminal Users Logon Procedures

DRAWING NO, 702489
SHEET2940F 50§ .-

INTRODUCTION

_This section provides a detailed description of the UTS COC routines which handle’

inplit and output of messages to on-line users at typewriter-like terminals, It is
intended that it provide source material for users of the routines (both processors

and user programs writing and reading from the terminal), for the implementor

of the routines as a functional sub-specification.

The functions performed by the COC routines are primarily the following:
1. Device handling for the COC hardware
2. Character translation to and from internal EBCDIC codes and the
external codes of the various terminals which may be attached to

the COC. (TTY, 7015, 7550, 7555, 2741, and perhaps others).

3. Parity generation and detection by character for those terminals
requiring it,

4, Division of input character strings into messages as defined by
receipt of activation characters. (Usually Cr, and Lf, and FF
but other sets are specially available)

5. Communications with the UTS scheduler on break, read, read com-
plete, output blocked, output unblocked, and other events which
effect swap and execution scheduling.

6. Special interpretation of certain characters for intra-line editing
and COC control functions.

The COC routines enforce proprietary use of the console. That is, either the
user is typing an input message (and no output is being delivered to the terminal
by the computer) or the computer is outputting and the user may not type input.
The communication line is used in full duplex mode however and the user may

always regain control of the terminal through use of the BREAK key or the

executive escape key (ES on teletypes).

SHEETJIYEOF" % 05 L

The proprietary use is best illustrated by the state diagram below. Each terminal
is in one and only one state at a time. The events which cause a line's state to
change are given on the arrows connecting the states: -

of- output

-

eﬂd_f v

activate
character
received
-~ input
message delivered
to user
-
The states are:
INAC - no current activity on the terminal line; all input characters except

BREAK, EC, and COC control character sequences are discarded. »
ouT - The current output message from the user's program is being typed.

More output may be presented by the program and if so it is queued
and buffered for output. When enough output to sustain the terminal
for some time (say 4 seconds) is queued the COC routines report to
the scheduler which suspends execution temporarily and may swap the
program to secondary storage. When the number of characters
remaining to be typed falls below some threshold (say 1 second of
typing) the COC again reports to the scheduler which then requeues

the program for execution.

DRAWING NO: -702489
SHEET Y JOF 34§

SI - The state w}hich "remembers'" that a READ command was given
. while output was still in progress. On completion of output the
COC routines will begin to accept userlter'minal input. On any

READ command COC. reports to the scheduler Which suspends the

program until input is complete.

IN - The state during which input characters are received by the COC
routines and packed into buffers. These buffers are resident in
Monitor memory and none of the users program or data is required

in core during input typing._

IC - When an input end-of-message (activation) character is received
the line is placed in this state and the scheduler is signalled to re-
queue the user for program. No further characters received are

accumulated until the program reads again.

 Input and output is carried in four wora blocks each containing 14 characters plus
a halfwofd link to the next related block. After a read is complete the inpuf
message is moved from these buffers directly to the user's area; actual number
of characters received.is reéorted in ARS of the DCB. On WRITE the users out-
put message is moved to COC .buffers to await. traﬁsnﬁssion. Unused buffers are
held in an available pool. . The program is blocked appropriately when needed

buffers are not available and restarted when they become available.

DRAWING NO. .702489,
" SHEETSHJOF 305 -

USER PROGRAM AND TERMINAL USER OPERATIONS

1. Writing Records to the Terminal

Records are Wriften to the user's terminal using the write .CAL (CALI1,1
FPT).‘ The number of bytes specified are moved fr'Om the user specified
buffer to the COC's iouffers. The operation is always effectively "wait' --
that is, the text has been removed from the users area before return from the
CAL even though the transmission to the terminal is not yet complete. Keys,

if specified, are ignored.

The error return is taken in the following cases:

Bad DCB address (CAL error return)
Bad buffer address (DCB error return)

If no error return is specified control returns to TEL and an error message

is printed at the users console..

Output in excess of 140 bytes from a single WRITE CAL is ignored; the first

140 bytes are transmitted, and the CAL abnormal exit is taken if one exists.

-

If not, return is to TEL and an error message is ,printed.

If the specified record size is zero no action is taken and no characters are

transmitted.

If the write is through the UC dcb the characters are transmitted exactly as
supplied except that the pair (Cr, 1f) is'supplied for both Cr and 1f (NL) char-
acters. The user may therefore make up .single lines through a series of writes
(without Cr characters) oi‘ may produce several lines at the terminal with a

single write (by inserting several Cr's in the buffer).

LI VY LINGT N, (VL TO07
SHEETs4%0F 50 7
2€1

If the write is through a dcb other than UC (say L.O or DO) then the COC
routines supply a (Cr, 1lf) pair at the end of the specified ’charaéter string
(but see VFC for special format control in section 5). That is the number
- of bytes specified in the FPT is moved from the users area to COC buffers
.and the pair (Cr, 1f) is appended in COC buffers. .
Trailing blanks are suppressed from output lines for writes through all dcbs
except UC but the programmer should set his record ‘size to avoid this over-
head if at all possible.

If lower case letters are sent to a single case terminal they are translated

to the upper case cognates.

For all writes to the user's terminal a coﬁnt of characters on each line
(between carriage returns) is kept and if the line if too long, as determined
at login, for the physical terminal in question then additional (Cr, 1f) pairs
are inserted to break the line; Line length is a terminal specific parameter
supplied via a logon dialog with the user and retained in JIT. (See console
commands below.) A count is also maintained of lir;es 01;1 the page, and a

page heading line is supplied to the terminal as outlined below.

Reading Records from the Terminal

The read command M:READ (CALl,1 FPT) causes the COC routines to
accept input‘c‘harAacters from the terminal. (If a prompt character has been
specified by the program it is sent to the terminal first, see below). The
operation is always "'Wait". That is; the input message is complete in the
users area before control passes to the next instruction following the M:READ.
Messages are terminated (completed) on receipt of the number of characters

requested or one of the characters cr, 1f, form feed, or ESC ESC which will

DRAWING NO; -702489
SHEET2900F 305
be the last character in the buffer. (Additional special j:erl;nination (activa-
tion) characters are supﬁlied in the case of a DELTA issued read. They are ,
_tab, $, = and /.) The actual number of characters, including the activa-
tion character, in the mes sage l;ecei"\red is rgturnec’I in ARS, word 4 of the
dcb., No more characters than specified in the. M:READ FPT are trans-

ferred to the user. If there were more characters in the input message than

specified, and an abnormal exit is specified, then it is taken.

On receipt of either cr or 1f the appropriate charactekrs are sent to the ter-
minal to insure carrier return; however, only the actual character received

i.s placed in the buffer. When form feed is received, FF (EBCDIC OC) is
placed in> the buffer, the pair (cr, 1f) is sent (;o the termina'.l, and the next
issu.ed‘read or write is préceded by page heading output. When the pair ESC .
ESC is received the carrier is not moved. When bk (the BREAK kéy chaita;:ter)
is received cr 1f is sent to the terminal the message is deleted and the break
entry of the program (if any) is takén. | If the character pair ESCF is recéived

L 4

the end of file exit from the READ CAL is taken.

Characters received with parity error are indicated by placing the PE code
(EBCDIC 2F) in the buffer, and the character # is sent to the terminal. Lower

case letters, if received are translated to their proper EBCDIC form.

If the'user types more than 140 characters before giving an activation char-
acter the CbC routines 'simulate a line cancel -- that is the current line is
deleted, <« ‘c_r and 1f are sent to the terminal and the read continues. In
addition to the line cancel which the user may‘ initiate by typing x© (control

shift and X) the user may delete individual characters by typing RUBOUT in

DRAWING NO.. 702489

SHEETZ)]OF 20%
which case the last character typed is removed from the COC buffer and the
character back slash (\) is sent to the terminal. He may rubout n characters:
‘by typing n RUBOUT's and n\'s will be sent to the terminal.. On the keyboard
c_lisplay‘XC délétes the current text line on the s'cope,facé and rubout 'backslsaces
the cursor and erases the last character typed. As in the write CAL b_ad infor-
mation (character parity errors) is reported via lost data (07) code té the abnér-
mal CAL exit if it exists. If no abnormal exit is specified then the bad infor-

mation is not reported.

Other activation sets may be provided via the CAL described in the Part X.
The number of different activation sets may be increased at SYSGEN time
to accommodate special'terfninals. They may also be as sociated initially

with fixed line numbers.

Error returns are also taken in the following cases:

Bad dcb address (CAL error return)
Bad buffer address (DCB error return) , .

Abnormal returns are taken for:

Parity errors in received message ' (CAL abnormal return)
Lost data -- message longer than read request (CAL abnormal return)

End of file -~ ESC F character pair received (CAL abnormal return)

@

DRAWING NO 702489
SHEET} %) OF 7 05 -

. Prompt Characters

The user prog"ralm or pfocessof may set up a “promi)t“ character to be
delivered to the console just prior .to each read. Any valid EBCDIC
character may be specified. | A null c;haracter .(EBC’DIC 0) turns off the
prompt action. The character is set by using a CALl, 1 FPT where the

one word FPT contains X'2C' in the high order byte and the prompt character

in the low order byte.

Since the prompt character is carried in COC resident tables for each line,>
the TEL and DELTA processors do not prompt via this mechanism but

rather by writing single character records before issuing a read.

BREAK (bk) Character Action

» : ' ' :
on receipt of the break character depends on whether the console is

Action
inputting or not. If inputting, cr and If are sent to the console, the message,

if any, is deleted and the current read is terminated.

Whether inpufting or not,control goes to an alternate address associated with
the useré brogram, with the users envirohment (PSD and registers) as of the
point of interrupt placed in the users temp stéck (pointed to by his TCB.) The
program may be c_ontinued from the point_d;f interrupt by gviving a trap return
(M:TRTN or CALl, 9 5). The actual alternate address used depends on the

user program and associated processors in the following order:

SHEETS 930F 70§ .. \ B

(a) If DELTA is associated with the pr-ogram‘ then control goeé to DELTA.
(b) If the user has given a M:INT CAL the a‘ddress specified by that

CAL is used. (CALl, 8 FPT where FPT is *X'OE' break address.)
A zero or invalid address resets break control.

(c) Finally if neither 1) nor 2) obtains then control goes to TEL, a
message is printed for the user, and TEL issues a terminal read
for commands from the user. '

In any of the above cases all current output is drained to the terminal -- none

is lost. Because of the blocking action of the COC this output is hot usually

longer than 4 seconds or 4 seconds plus one line,

In order to provide fail safe operation against program errors in the user
break handling routine, to at the same time allow special sub¥processor action
on rl;lultiple break signals (primarily FDP), and to provide compatable operation
With‘future communication gear Whicl.l does not have full .duplex lines (CIOP),
BREA.K signals are counted by'the COC handler. If four BREAK signals are |
received without intervening characters from the user terminal, then control

is given to the TEL executive as if an EC character had been received. See

below.

Monitor Escape

The console user may always put himself in cbmminicatiop with the UTS
executive, TEL by typing ES (cohtro'l shift and E keys pressed together).

No current output isv lost, but if the console is in fead status (IC or IN states)
the current input line is canceled -- < cr lf are sent to the console. If the
users program is restarted from the pdinf of escape to the executive -- via
the CONTINUE command -- and the console was previously reading the re_ad

is re-issued.

g
SHEET23y OF: 8 0 P -~

Device and Set DCB CALs

The M:SETDCB CAL may be use;d to set ei‘l‘érI and“abnormal addresses in
one of the dcbs associated with the users console.- The‘ ab_norfnal return is -
only taken if an OPEN is attempt.ed on'an open file.| The error exit is taken
when a read or write specifies an invalid buffer address. The error code
and other information communicated to the user program is as specified
in Appendix H of the BPM manuél. If no error addi-ess is specified control

is transferred to TEL and an .apprdpriate message is transmitted to the user.

The COC‘routines acknowledge the following CALs with action as listed.

All other CALs if given for a DCB assignéd to the users console are’ignored
without comment. In gene'ral CALS which set the DCB m.ay be giveh and v;izill.
result in the indicated modifications to the dcb but the COC routines only-
make use‘ of certain of the parameters as defined below. On three CALs

. - °
the COC routines gain control to carry out the requested action:

M:DEVICE CAL .~ COC Action
— PAGE Page heading is typed at the user console. :

See section 6.

_ LINES The number of print lines per page is saved’
in the COC line tables. JJsZ 1y 77 '

NLINES The number of lines remaining on the current

page is returned in SR1. The user may at any time
examine the current number of lines on the console
page by looking at the JIT byte JB:LC. .

' FORM The message indicated by the FPT is typed at

. the users console. . COC suspends. operation

- ' . until a break character is received from the
terminal. This is taken to mean that the paper
has been changed appropriately and the program
is enqueued for resumption.

DRAWING NO, 702489
. SHEET950F 305 "~

Parameters in the dcb which are recognized and acted on by the COC

routines are as follows:

Parameter set by

M:DEVICE CAL A _ COC Action
L SIZE . This record size in bytes is used by reads

and writes for which no size is specified in
the CAL. If neither is specified no characters
are transmitted and return is immediate.

SPACE If this parameter is set and VFC is not on, the
number of spaces indicated minus one are
—5 inserted before each write. Counts of 0 and
1 result in single spacing, that is, no spaces .
are inserted before each write, Counts of 0
and 1 result in single spacing, that is, no
spaces are inserted before the test line.

L VEC If this flag is set the COC routines simulate
' the printers vertical format control as speci-
fied in the first character of the text lines.
written, The simulation is limited to the
following cases, ’

hex code _ action

Cl - CF ‘COC insert 1-15 spaces before
the print line. (Page check on
each insert.)

Fl COC skips to '"top of page' by
skipping lines to page top and
printing the heading information
followed by the print line.

60, EO . COC does not insert (cr, 1f) after
,print line. .

- In all cases exéept the latter the print line is
followed by (cr 1f) with an appropriate check
for page overflow.

DRC/NODRC Used to inhibit automatic page heading
COUNT - See page heading section
HEADER ‘ '~ See page heading section
TABS See tab section

G

SHEET 44 OF' 3 65 v

Page Control and Page Headings

The COC routines‘ count lines transmitted i:o, and l;y'eceived from, the users
terminé.l in a line associated cell, Whenever a read or. a write operation is
given this line count is compared to the maximum lines per page carried in
the dcb through which the read or write was given, and if this maximum has
been exceeded, a new page heading set is produced. (The maximum may have
been exceeded by several lines if severé.l inpuf lineé wére cancelled via X* atb
the exact bottom of th.e page b‘efore- the next read or write was issued. If so
an appropriate adjustment is made in the heading.) Also page headings are
produced whenever‘the device CAL PAGE is iss;J.ed by the user program, and
whenéver, the termine;.l user types iﬁ the character FF (control shift and L keys).
The latter caée is similar to pagé overflow in that the heading information is

not produced until the associated user program or processor issues its next

‘read or write command. » _ . ‘ .

Two kinds of page heading are produced:

L4

(a) the standard, automatic, page heading, and

(b) a user heading as .specified”by HEADER and COUNT device CALs.

The automatic heading may be suppressed, if desired, by giving a NODRC
CAL. Heading information is taken from the dcb through which the read or
write was given, thus if writes are given to fhé terminal through several dcbs
the heading printed will depend on the dcb through which the top line of the page

was written.

@

DAV LIING NV, (VLs07

SHEET2)7OF 30§ =
The automatic page heading includes current tiie, date, user id and-
account number, u;er line number, page nﬁnﬁber,’ and pos siblg an admin-
istrative message. It is vintenvde.d for output on the top 1i{1e of the form
just under the fold (if any). The .heading informatioh is.pzjecede_d by 6
(cr, 1f) pairs (fewer if excess lines were printed on the.preceding page)
and followed by 5 (cr, lf) pairs. (The termiﬁél is not assumed to have a
form eject mechanism.)V This séacing’ pius a standard 54 printed lines per
page produces 11 inch pages with ohé inch ma.rgins at top and bottom. The
standard heading line may be sliced off these pages to produce clean copy if

desired.
Sample heading form is shown below

12:01 12/12/67 1A-03 NAME ACCT [36] Administrative message
a b ‘ c - d e f g

. . ®
a) Twenty four hour clock time that the page heading was issued.

b) Current date

c) Line number of COC line and user number (the schedulers
job identification) ‘ o v

d) The first four characters of the login id
e) The first four characters of the login account number

f) The page number, enclosed in brackets is centered for a
72 character wide terminal

g) The administrative message is supplied by the system operator
via this mechanism to all users. It is limited to 32 characters.

If NODRC is specified in the dcb then the text of the heading is not produced

but the (cr, 1f) pairs for spacing are retained.

w

1.

LJINLY VY LINGT N, TvoTO 7

. SHEET.} g OF - ~3o \gﬁ -t

'Headingsv specified in the dcb of the read or write are produced following

the automatic heading with position, text, and page number as specified

in the BPM manual. The page count in this heading is that carried in the

dcb, and is reset with each COUNT device CAL while_ page count for the

‘automatic heading is carried in JIT and never reset. .

: Hin
%c"’ ©

Tabs ’ | ‘ D TAES -
' ‘ L 3) tub>

- —

Tab gtops as set in output dcbs by the devi'ce CAL TAB or by SET commands
reéult in spaces inserted in the output stream to bring the current count on |
the typed line to the character position indicated by the next higher tab stop

given in the dcb. Note‘that this is like typéw:_riter tabbing action and is different
fron‘l the BPM tabbing action in some cases -- it is not possible to overlay
infofmation using tabs. The platen width test is still.i.nbe.:ffect and (cr, 1f)
pairs' y!vill be inserted if the coqn£-on-line exceeds the cafriage width., If

tab stops are not set the tab character is sent directly to the terminal.

.

Tabs for input (READs) are handled somewhat differently in that they are

simiulated on input at the discression of the user. Tab locations specified by

the most recent tab setting CAL for a dcb connected to the console are packed
into one of the COC input buffers and associated with the COC line tables. Use
of this table for simulating tabs is controlled by a software flag turned on and

whida

off by the user via the character pair ESC T. These characters are never
V-’lf‘f‘b/)

placed in the buffer. Each use of the pair toggles the tab simulation flag.

When the flag is on and a HT (ASCII 09) is received, enough blanks are sent

to the terminal to move the carrier to the next higher tab position. The HT

character is.placed in the input buffer for the reading program. Carriage

returns are not inserted to split extra long input lines. .

DRAWING NO 702489, ‘

" SHEETJ7]OF J 0§ \
In addition to setting taBs via the CAL instructipn tﬁe user r.n-ay set them by
the TEL command TABS a, b, ¢, ... \';vhere'.a, b, c,. ... are the column
numbers at Whicil tabs should be sir.nulated. The column numbers must be
in ascending sequence. Tabs may also be turned of% independent of the COC
flag by TABS 0. Setting tabs via this mechanism affects vall output through
all DCBs. connected to the terminal even if subsequent device CALs are

given, and applies throughout the user session until reset.

Paper Tape I/O

Paper tape is input and output By the COC routines via a special mode entered
when the TAPE (DC2) character is received and exited,iwhen TAPE (DC4) is

received,

In this'mode the usual functions of RUBOUT, XC, and tab are suppressed,

cr is echoed but not followed bf 1f, and nothing is echoed for 1f. Tapes must
be producéd with both the cr énd 1f characters punched (as they would be if
they were produced directly from computer output by simply turning on the .

tape punch during a listing, data output, etc.)

User - COC Communication Keystrokes (TTY)

Certain user keystrokes are interpreted specially by the COC routines. Key-
strokes and the actions which they produce are dependent on terminal type
and are controlled out of the input character translation table. For model 33

and 35 Teletypes and SDS 7015, 7550, 7555 terminals the following conventions

apply:

L+

CAN (X°) or
ESC X

RUBOUT or
ESC DEL

Cr or Lf

ESC ESC

ESC E

- ESC T

FF (LS) or
ESC L

ESC F.

£se UL

"DRAWING NO...702489,
SHEET7200F 2%

When the character CAN (generated By pressing
both control shift and X keys) or the character

pair ESC X is received the current partial input
message is erased, The charcter triplet (+, Cr,
1f) is sent to the terminal. On the keyboard dis-
play cursor return plus erase are sent to remove
the current line from the screen,

When RUBOUT or the pair ESC DEL is received
the last received character in the buffer is deleted
and the character "\" is sent to the terminal. If
the entire message is deleted by repeated used of
RUBOUT then the pair (Cr, 1f) is sent to the ter-
minal. On the keyboard display cursor left plus
erase are sent for each RUBOUT recieved until

the entire message is erased. '

When either of these characters are received the Eéc,I
character pair (Cr, lf) is sent to the terminal.

The message activation condition is set (the COC

line state goes to IC) causing the program which

issued the read to be restarted. On the keyboard

display NL is echoed for either.

The message activation condition is set. ESC
character is placed in the input buffer.

When the user presses the ESC key followed by the
E key the COC toggles the flag which controls echo-
plex output. Normally the terminal is assumed to
be local printing and echoplex is off.

When the user presses the ESC key followed by the
T key the COC routines toggle the tab simulation
switch., Normally tab simulation is off and no tab
stops are set.

When the user presses control shift and L keys to-
gether or the pair ESC L the COC routines place a
FF (EBCDIC OC) character in the input buffer, echos
cr 1f to the console, and, on the next read or write
to the terminal, produce page heading information at
the terminal. FF terminates the input line.

When the character pair ESC F is received from the
terminal the end-of-file abnormal exit is taken from
the current READ command.

i1

e e QL\O,'\II(.?EJ% {‘“"A EEC W b moeeded from (i
‘\"ﬁ"m«w«le:t‘ o uede 4p /.L\,\\ v*w\'&f.u«\ darvasq l (RSt ﬁxif-'.f}

_hmﬂ-\ Lol ,Q,oﬁfw ‘\:'O VQ,&(,. A \ l,wu&«& iy bv }Jm Qoo

trera la\-c c‘~. *50 wmQ

10.

. . ~ et s e e AT AT N

(.)
s et

DRAWING No."'fo'z-ss-i
SHEET30{ OF 30%

Terminal Users Logon Procedures & Information

For login purposes terminals are divided into 'broaci. classes depending on
the characte;& codes used for transmi;sion. Termipals of each class may
only enter the system via line numbers (telephone numbefs) assigned to
that class at SYSGEN time. Otherwise the characters received would -

be indecipherable and the initial dialog could not take place at all. Opera-

tor keyins will be provided for changing terminal class after the system is

in ‘operation.

Most terminals will be of the ASCII class initially and during login the
following information is established via TEL commands:
a) Type: a) TTY 33, 35, SDS 7015

b) TTY 37 .
¢) SDS 7550, 7555

b) Carriage width: a) 72 for 33, 35
b) 86 for 7015, 7550, 7555
c) variable for 37

Default terminal type is 33 with carriage width 72. ‘Carriage width may be

changed by a TEL command any time during the session.

Parity checking on input is not done until the 7550 or 7555 is established as

the type.

DRAWING NO. 702489
SHEET 39A0F ° k

Part XIII. MACHINE LANGUAGE ASSEMBLER (METASYMBOL)

"TABLE OF CONTENTS -

Page
ON-LINE META-SYMBOL OPERATIONS) 303
INPUTS TO META-SYMBOL ~ 304

'OPTIONS | . 307

oY

DRAWING NO. 702489
SHEET303 OF 2 0¥

-ON-LINE METASYMBOL OPERATIONS

The Meta-Symbol assembler is invoked by the UTS terminal user with the com-

.
Rl

mand

IMETA sp [sp, ..., sp] ON [rom] [, list]

As explained in the document on the terminal executive language, sp represents

'a source program, and rom and list designate the destination of binary and listing

output. Output specifications may be dispensed with if they have been pre-set with

LIST ON or OUTPUT ON executive commands.

The sp list is entirely composed of file identifiers (fid) or the user terminal name,

ME; rom must be a file identifier. If unspecified, the binary output will be placed .

- in a scratch file which the user may later reference with the symbol $.

List may represent the user's terminal (ME), a disc file (fid), or the line printer
(LP). However, should the listing output be directed to a file or line printer any

errors encountered in the assembly will be displayed also on the user's terminal.

For example:

41 META ALPEA ON BIN,ME

Assembles the source program from file ALPHA, putting binary in file BIN, and
producing a listing on the terminal.

! META- ALPHA, BETA, GA’MMA ON BIN, LP
Assembles the source programs contained in the files indicated, putting binary in

file BIN, producing listings on the line printer. -

DRAWING NO., .702489
SHEET 304 OF 30 Pd

.. The executive command META effectively replaces the following control cards

¢ needed to perform the equivalent operations thrc;ugh batch processing:

! JOB - etc. . .
I ASSIGN M:SI - etc. -
! ASSIGN M:LO - etc.

! ASSIGN M:BO - etc.

! METASYM SI, LO, BO

Meta~Symbol has a number of optional assembly features which are not easily
specified on the META executive command. _ Therefore, immediately after it is
in control, the assembler will prompt the user for specialized options, in the."

following manner:

! META ALPHA ON ,ME (Aésemble AL PHA, binary on file $,
: ‘ listing on terminal.) "

WITH:

A Typically, the casual user would terminate this request with a carriage return
(or new-line), and the assembly would take place. Alternatively, any or all of
the options described under OPTIONS can be specified, and when the carriage

return terminates the option request, they will be performed during the assembly.

INPUTS TO METASYMBOL

' Each file mentioned in the input list will typically contain one source program,
created and maintained through use of the EDIT subsystem. If more than one
file is mentioned, the assembler will proceed through them in order from left

to right, performing the assemblies with the options indicated by the user.

Should an input file contain more than one source program (more than one END

directive), all will be assembled. However, a file need not contain an END

DRAWING.NO. . 702489
" SHEET 505 6F 305

directive since the Monitor automatically changes from file to file. It may con-
tain only a piece of code which has been selected for assembly into a larger pro-.

gram.

For example:
! META ALPHA, BETA, ME ON BIN
= END START : : . ,
2 -ESC F (the terminal end-of-file code)
Files ALPHA and BETA may not have contained an END directive. The user has

chosen to assemble them together, supplying the necessary END directive directly -

from 1_:he termainal.

When input is from a keyed EDIT file, a deéimalized representation of the se-
quence number for each record will be placed in the assembly listing in the position

normally held by col. 73-80 6f an input card.

L)

It is possible, in addition, -to make use of Meta~-Symbol's internal editor in con-
junction with compressed source files while running on-line. The editor and
source compression fac_ility are oriented toward card image batch processing
needs, but could be uéeful where Backup files must be kept on cards -- or where
work must be done in strictly BPM compatible fashion. These features of Met‘a-

Symbol are described in the reference manual (90 09 52), chapter 12.

If a program .in compressed format exists on RAD_, either as the oﬁtput of the
asserhbler or as the result of a FMGE operation, the user can assemble it with
.on-line Meta-Synﬁbol simﬁly by mentioning it as Vinput. For example, if the
name of such a file were CI-FILE, thenlit can be assembled with the following

command:

i META CI-FILE ON BO-FILE, LP
WITH: Cr

DRAWING NO., ‘7.0_24;89%
SHEET304 OF 30 §

Meta-Symbol distinguishes between the keyed source fqrmat of the EDIT files
and the sequential binary format of compressed files.” Files of both types can

-

be given as input to the assembler in the same input command.

-

The on-line user can maintain a file of édit records which can be provided as
input to the assemblei' to modify a corhpressed file. For example:
! BUILD UPDATE-FILE
1.000 +4,6
2.000 _ BANZ EXIT Mefa-Symbol edit

> commands
3.000 + 10, 10

4,000 + END

5,000 Cr

!

% END
! META UPDATE-FILE, CI-FILE ON BIN, ME

WITH: Cr

The assembler, in pfocessing UPDATE-FILE, will recognize the editing notation
and will apply the update records to the next file in the list, which must be in

compressed forrat.

4

OPTIONS

DRAWING NO, 702489
SHEETZ57 OF 30°¢

The complete set of options available in the batch version of ‘Meta~Symbol is

.

described in Chapter 12 of the reference manual (90 09 52)._ The executive com-~

mand for calling the assembler covers options concerned with source or com-

pressed input and listing and binary output. The following options may also be

given the assembler when it prompts for them. Should more be given, only the

standard listing and binary will be producedv.,

Option ‘

AC (acys «vvs ’acn)

CN

CO

LU

This option is used when the assembler must
access system files which are not logged
under the system account (:8YS). The ac are
the alternate accounts. '

This option requests‘ that a symbolic cross-
reference listing be included with the assembly
listing. When this option is given, the assemblex

‘'will access the user terminal for the concordance

control records which indicate special con-
cordance options. The assembler will prompt
with the character '>", and the user may res-
pond with the control record. For example:

! META SOURCE ON BO, LP

WITH: CN
>, SS X1,X2 (suppress X1 and X2)
>.1I0 CAL3 (include op-code CAL3)

>. END (terminate concordance control

This option causes the assembler to produce

a compressed version of the input program on
the file specified in the M:CO -DCB. This DCB |
must have been previously assigned with a SET
Command. '

This option requests that the assembler include
a listing of Meta-Symbol update records with
the listing of the program.

NS

SD

SO

. DRAWING NO.. 702489
SHEET3J§ OF 3 ¢,

This option requests that no assembly sum-
maries be included with the listing.

- This option causes the assembler to produce

symbolic debugging object code for use with
the DELTA debugging program. This object
code is included with the standard binary out-
put ROM. '

This option causes the assembler to create a
source output file corresponding to the input
program. The input program may be EDIT -
source, cokmpressed, or compressed with up-
dates. The M:SO DCB must have been previousl
assigned. .

When the assémbler is creating source output
during an on-line assembly, the file will be
written in the keyed, short-record format used
by the editor. The new source file will be re-

. sequenced according to the line numbers of the

assembly listing produced. For example, line
number 5 in the listing will correspond to the

record with sequence number 5.000.

This feature will allow the user to copy and re-
sequence a source file, obtain the listing and
binary (and perhaps even a compressed version
for external backup), in one operation with the
assembler. For example:

-

! SET M:SO DC, SOURCEOUT
! SET M:CO CP

META SOURCE ON BIN, LP
WITH: SO, CO, CN, SD

>. END

T

Ruds_~ DRAWING NO. 702489
SHEET 2& O 2/\

Vil DESIGN AND IMPLEMENTATION CONSIDERATIONS

Many systems like UTS have been designed so that most of the major
operations must be carried out within sub-systems; only minor ones and some
limited file management and message processing being 'a‘llvowed a2t the executive
level. .

A, Organizational Questions

The precise responsibilities of the sub-systems and their hier-

archical relationships depend strongly on the programming languages and
facilities offered by the system. There are two general approaches:
1. Delineate sub-sysiems functionally, on the basis of the more

common programming activities: editing, compiling, assembling, linking, de-
bugging, file-managing, interactive calculating.

2. Delineate them 'linguistically', on the basis of the programming
languages to be provided: FORTRAN, XSYMBOL, BASIC{: ...; provide within each

sub-system the facilities for carrying out the activities associated with the pro-

gramming language the sub-system handles.

" A common attack on the problem consists of: a) constructing the system on a
functional basis; b) making the sub-systems explicitly available to the user;

- c) designing things so that sub-systems can call on the services of other sub-

- systems. Such systems can be linguistically colored by building the language-
specific sub-systems so that they make use of the functional ones. Unicriunately,
the architecture of current computers is a bit antithetical to such sysiem designs
in terms of ”productioh“ efficiency; the systems turn out to be conceptually simple.
and amenable to growth, but at a serious cost in terms of space and time. An
initial design of UTS attempted to strike a compromise by basing itself around what
might be called a 'portmanteau' sub-system: a shared sub-system or editiag,
simple file-management, compilation, controlled execution and debugging; one that
would be used by all the linguistic sub-systems. Essentially, this sub-system
would have been EDIT with sufficient advantages to allow it to become: 2; the "
BASIC .s_ub-sy'stem; b) a sub-system for FORTRAN programming (a-la TZIL) and
debugging (a?la FDP); c) ditto for assembly-langﬁage programming; d) the ZDIT

sub-system.

DRAWING NO. 702489
SHEET 27 OF 4.

The idea was attractive on many grounds, but it raised problems of imple-
mentation (particularly in the areas of storé.ge‘management) that could not

be resolved in the time allotted. It was therefore discarded by the invoca-

tion of Rubric 3 (see Part I, Introduction). An alternative to a single,‘ port-
mafxteau sub-system lies in making separate versions of it, each appropriate

for activities associated with a different programming language. This system
would still be colored linguistically, in that the casual programmer would

simply announce his programmaing language to UTS and then have at his disposal

- .the facilities appropriate to that language. This alternative is not ruled out by
the proposed design, since all major operations will, in fact; be carried out by
sub-systems or by sub-processors that behave like sub-systems (see Section C.
below). Indeed, the array of facilities provided at the executive level for common-
place FORTRAN and assembly-language programming (ASSEMBLE, COMPILE,
LINK, and so on) can be viewed as being -incorporated within a hidden sub-system

for FORTRAN and assembly-language programming,

B. Sub-System Prompting

“Sub-systems designed from scratch for on-line use generally have.
;'easonable rules for interfacing with their usérs. They usually do so on a
""{ransaction!' or '"command-response' basis: the user issues a directive, and the
system does what has to be done, responds appropriately and then waits for the
next directive. Interfacing traditional batch facilities -- and processors designed
fo.r batch operations -- with on-line users turns out to be a drag. Almost every-
thing is wrong and hardly anything fits. In batch operations things run either to
abortion or to normal termination, so that batch ""commands!' must be preceded
or accompanied by a cloud of pre-planned speciﬁ'cationsz' to process in this mode
or that; to save or not to save; to give up or not to-give up, .and in what cases; to -
list or not to list, and where; to list all or part; and so on. Although much of this
can be avoided by assuming some reasonable speciﬁcations‘:}n.ﬁﬂefault of any, pro-
visions must be around for the on-line user to specify and Arespe.cify 235 required.

Two tacks can be taken.

DRAWING NO. 702489
SHEET 9 OF 4/

1. Specifications can be made on a ''transaction' basis.
The user states his specifications and choices at any stage of the game. If
anything' vital is found to be missing during subsequent execution of a command,
the system notifies the user so that he may take corrective actions or any .
other actions. This is really the essential difference between on-line and
-batch operations: the batcher must pre-plan everything, since he won't be
around to take corrective actions or change things; the on-liner need not plan
~anything, since he can usually recover quickly and at little cost, and can even
abort operations that are really messed-up but ﬁvhich would go to comipletion

. in batch.

2. Specifications can be made on a ”promp‘ting'.‘ basis. Before
any major operation is started, the system notifies the user that specifications
must be given, and then waits for the user to give them (and nothing else).
Once given, the process is started and carried out as in baich (to within inter-

ruptions): it either aborts or runs to termination.

In dddition to being é real mess to implement properly (with a1l the chit-chat

and counseling that may be required), prompting does not allow a user to change
his mind or respecify in the middle of an Voperation to take care of the unexpected.
Accordingly, neither TEL nor any of its sub—systeﬁs do any prompting except
during the log-on proéedure and in a few other isolated cases, where prompting
takes the form of an error message (as a reminder.-to take corrective action)

. or of a request for a negative oxr affirmative answer to a question.

C. Sub-System Design

To the casual user, it appears that the major operations associated
with FORTRAN and assembly-language programming aré being carried out
directly by TEL. Actually, all operations are being carried out, under the rug,
by sub-system"s. 'I‘hié activity may be clear .for linking and editing, where the
TEL and sub-system commands overtly overlap; it is covert in the case of
assem'blie's and compilations,A operations that are carried oul by processzors

that are built as sub-systems. The only difference between these and other

DRAWING NO. 702489
SHEET 4/ OF ¢ A

sub-systems is that, in the initial version of UTS, the former never inter-
act directly with the user. However, they and most other sub-systems of
UTS will be designed so that they recognize two different modes of invoka~
tions: one as a sub-system, the other as a sub-processor (usually called
" by TEL). In the former case, the sub-systems must identify themselves .
to the user before turning control over to him. In the second case, the
sub-systems simply go to work on the TEL command. Several cases
arise during processing. \

1. .The command is garbled or in some fnanner invalid, or
an error -- from which the sub-system allows the user to recover -- occurs
while carrying out the command. |

2. The command is carried out to completibn, although minor
error messages may have been spit out by the sub-sys‘tém during processing.

3. A disastrous error, from which there is no recovery, occurs
while .carrying out the command.

4. The user interrupts processing by depressing the BREAK
kéy‘. The actions taken by the sub-system depend on how it was invoked.
The respénses in each of the four cases follow. |

la) If called as a sub-system, the error is reported and control
returned to the user. |

| 1b) | Otherwise, the sub-system rep_orfs the ez;ror, changes its

~ invocation 4status, and then identifies itself to the user before returning con-
trol to him. This behavior may be changed to that of 3a below in some exceptional

cases; e.g., if EDIT, say, is used to carry out COPY and DELETE cormmands.

i

2a) If called as a sub-system, control is returned to the usex
after "DONE' has been:fyped.
2b) - Otherwise, control is returned to TEL accompanied by a

report of "success'',

- ~with the monitor (UTM); d) COC handler for communicating with i“ei'r.xoteﬁcohsoles;"

DRAWING NO,

702489 |
SHEET 42 OF L2

3a) Whether called as a sub-system or as a sub-processor, the.
" error is reported, things are cleaned-up, and control is returned to TEL

accompanied by a report of Nfailure'.

4a) If called as a sub-system, the sub-system will wait for a
~convenient stopping point, and then type "REVOKED BY INTERRUPT" or some
other appropriate message before returning control to the user.

4b) Otherwise, the sub-system preserves context, and returns to

TEL,. reporting "interrupted".

D. TEL's Implementation

Much of TEL's work as a processor, is carried out by sub-systems
and sub-processors -~ all shared; little is permanently resident. Included among
TEL's pr‘ocessors are: |

' a) an ON sub-system (and UTM state) that is invoked at session
initiation to handle the lo®§-on dialogue;

b) an OFF sub-system (and UTM state) that is inwdked when the
user turns off (or re-identifies himself) to clea‘n.things up and print accounting
information; |

c) an ASSIGN processor to handle ASSIGN commands;

d) a RUN processdr‘ to supervise the business of linking,

- loading and initiating execution;

e) | an EXEC processor for determining the form of commands,

for controlling the execution of commands, for coordinating the uses of sub-

systems and sub-processors, and for fielding returns from them.

The organization and residencies of TEL's sub-components will be covered in
its implementation specifications. Topics and sub-processors critical to TEL
"and all of UTS, that will be covered in separate documents are: a) virtual memory

‘layouts and storage management; b) users' general context areas; c) interfaces

e) sub-system conventions. The design of TEL's executive and control processor
and its interfaces with sub~systems proceeds in tandem with the first three topics,”

. both depending on them and influenc_ing them. .

	001
	002_Vol1_Parts1-6
	003
	004
	005_01_Summary
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017_02_Tuning
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059_03_System_Capacity
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079_04_Scheduler
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093_05_System_Requirements
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105_06_TEL
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147_Vol2_Parts7-13
	148_07_EDIT
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163_08_DELTA
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210_09_PCL
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230_10_LINK
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	253_11_CALs
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	283
	284_12_COC
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302_13_METASYMBOL
	303
	304
	305
	306
	307
	308
	_038
	_039
	_040
	_041
	_042

