
R1 Xerox Universal Time-Sharing System (UTS)
Sigma 6/7/9 Computers

System Processors

Technic;:al Manual

__ ~~~~'e94A

Xerox Corporation
701 South Aviation Boulevard

Segundo, California 90245
3679-4511

Xerox Universal Time-Sharing System [UTS)

©1973, Xerox Corporation

Sigma 6/7/9 Computers

System Processors

Technical Manual

FIRST EDITION

90 19 94A

February, 1973

Price: $4.75

XEROX

Printed in U.S.A.

NOTICE

This publication documents the system processors of the Universal Time-Sharing System (UTS) for Sigma 6/7/9
computers. All material in this manual reflects the COl versi on of UTS.

RELATED PUBLICATIONS
Title

UTS Overview and Index Technical Manual
t

UTS Basic Control and Basic I/O Technical Manual

UTS System and Memory Management Technical Manual

UTS Symbiont and Job Management Technical Manual

UTS Operator Communication and Monitor Services Technical Manual

UTS File Management Technical Manual
t

UTS Reliability and Maintainability Technical Manual

UTS Interrupt Driven Tasks Technical Manual
t

UTS Initialization and Recovery Technical Manual

UTS Command Processors Technical Manual

UTS Data Bases Technical Manual

Publ ication No.

90 19 84

90 19 85

90 19 86

90 19 87

90 19 88

90 19 89

90 19 90

90 1991

90 19 92

90 19 93

90 1995

tNot published as of the publication date given on the title page of this manual. Refer to the PAL Manual for cur
rent availability.

The specifications of the software system described in this publication are subject to change without notice. The availability or performance of some features
may depend on a specific configuration of equipment such as additional tape units or larger memory. Customers should consult their Xerox sales representative
for detai Is.

ii

CONTENTS

~TES-Accounting RatesS~uctures~~~~~~~~~~~~~~~~~~~~~~~~~~~~_ 1
Purpose~~~~ ______________ ~ ______ ~ ________ ~ __ ~ ____ ~ __ ~ ____ ~ __ ~ __ ~ __ ___ 1
usage __ ~ __ ~ __ ~ ________ __ 1
Interactions _~~ ______________ ~ ________________ ~ ______ ~ ____ ~ ___ ~ ___ _ 1
Output ___ _ 1
Subroutines~ ___ ~ 2
Descri pti on ______ ~ ___ ~ ______ ~_ 2

SUP ER - Authorize Users ~ _______________________ ~ _______________ ~ __ _ 4
Purpose __ ~ ________ ~ __ ~~ __ ~ ______ ~~ __ ~~ __ ~~_~~~_~~~ ____ ~ ___ 4
Usage __ ~ __ ~ ____ ~ ______ ~ __ ~ ____ ~ ______ ~ ___ ~ _____ ~ ___ ~~~~~ __ 4
Output ______ ~~ __ ~ ______ ~ ________________________ ~ __ ~ ______ ~~~~ ___ 4
Interacti on ~ ____ ~~ __ ~~ __________ ~ ___________________ ~ __ ~~ ____ ~~~ 4
Data Bases ~ ____________________________________ ~ _________ ~ __ ~ __ ~ __ __ 5
Subroutines ____________________________________ ~~~ ____ ~ __ ~ ____ _ 5
Error Messages ________________________ ~ ______________ ~ __ ~ __ ~~ _____ ~_ 6
Descripti on ~ __ ~ ______________________ ~ _____________ ~ ____ ~ ___ ~_ 9

Initial ization Section ________ ~_~ __________________________ ~ __ ___ 9
Command InterpretationSection ______________________________ ~ _______ _ 9

UTSPM-UTS PeriocmanceMoni~r ________________________________ ~~ __ ~_~--~ __ __ 12
Purpose~ ___ ~~~~ _________ ___ 12
Reference ______________ ~ ____ ~ _____________ ~ __ ~ __ ~ ___ ~ ________ ~~ ______ ~_ 12
Usage ~ __ ~~ ____ ~~ _______________________ ~ ___________ ~ __ ~~~ ____ ~_ 12
Relationship of UTSPMand SUM~RY~ ___ ___ 13
Interactions 14
Data Bases 14
Dam Tables __ ~~~~~ ____________ ~~ __ ~ __ ~ _____ ~~ ____________ ~~~~ __ ~_ 16
Subroutines 16
Adding an Item to a Display Group 18
Record Format for History File ___ ~ ____ ~~ _____ ~~~ ____ ~ __ ~ ___ ~ __ ~ __ ~ __ ~~_ 18
Record Format for SNAPSHOT and SSNAPSHOT Files 19
Error Handli ng ___ _ 20
Restrictions __ ~ ____ _ 20
Command Handlers __ ~~~ ____ _ 20

SUM~~-U~~riocmaoceSumma~--- 21
Purpose __ ~ __ ~ ____ ~ ___ 21
Reference __ ~ ___ ~~ ___ 21
Program Subrouti nes _____________________________ ~ __ ~ ____ ~ __ ~ __ ~ __ ~ __ ~~~~_ 21
Usi ng M:SI, M:C 0, M: DO __ ~ ________ ~~ __ 24
Dam Tables ___ ~ ______ _ 24

LINK - UTS On-Line One-Pass Loader __ ~~~~~ ______________ ~~ __ ~ ___ ~ __ ~ __ ~ ____ ___ 26
Purpose~ __ ___ 26
Restri c ti ons ___ ~ __ _ 26
Descri pti on __ _ 26
Data Bases ____ ~ ______ ~ ___ ~ ______________________________ ~ ______________ __ 28

Stacks ____ ~ __ ~ __ __ 28
Symbol Tables ____ ~ ___ ~~ __ ~ ________ ~ _________ ~ __________________ ~ 34

Output _______________________________________ ~ _________ ~ ________ ~ __ _ 35
Load Module Fi Ie __ ~ _____ ~ _______________________________ ~~ __ ~ ___ _ 36

HEAD __ _ 36
TREE __ __ 37

Virtual Core Layout During Load ________________________________ ~ _____________ ~ 38
Virtual CoceLayoutD~ingRunTime _______________________________________ ~ ___ 39
Flowchart _______ ~ _______ ~ ___________________ ~ _____________ ~ _________ ___ 40

iii

Subroutines ___________________________________ 47

ADVNEFLE -Advance to Next Input File 47
BINTOHEX - Convert Binary to Hex (EBCDIC) 48
BIN2BCD - Convert Binary to Decimal (EBCDIC) 49
CHKDECLD - Search for Declaration 50
CHKFREFD - Search Forward Reference Stack 51
CHK2EOF - Check for Two Consecutive End of Files 52
COREABN - Abnormal Return Opening a Core Library 53
ENDECL - Enter New Entry into Declaration Stack 54
ENNAM - Search and Enter New Entries in the REF/DEF Stack 55
ENSYMTBL - Put an Entry in Symbol Table 56
EVEXP - Evaluate Designated Expression 57
EXPRIN - Read and Build an Expression 58
EXPTTB - Put Expression into Expression Stack 59
GBYTE - Get a ROM Control Byte 60
INCLOC - Increment Load Location Counter 61
CHKLOC - Check Load Location Counter Limits 61
INSERTLB - Insert Core Library Name 63
INTRNAME - Print Symbol Table Name _ 64
LINK ERR - LINK Command Error 65
LlNKERR2 - Print 'CANT FIND - RETYPE' Message 66
MMDA - Get Memory for Data Area 67
MMDCB - Get Memory for DCB Area 68
MMPP - Get Memory for Pure Procedure Area 69
MMSYMBTB - Get Memory for Symbol Tables and Core Library REF/DEF Stack 70
MMTBASE - Get Memory for the Stacks 71
PRESSTK - Remove Space from Stacks 72
PRINTQ - Pri nt Eh ? @ n Message 73
RAMRABN - Abnormal Return Reading ASSIGN/MERGE Record 74
READ BIll - Read a ROM Card 75
REFSATY - Satisfy REFs with Zero 76
RELSYM - Release Memory from Symbol Table Area n
RFDFCHN - Define a REF 78
SCAN - LINK/RUN Command Scan 79
STKOVF - Stack Overflow Handler 80
SYSLBABN - Abnormal Return Opening SYS Library 81
2BNUM - Get 2 ROM Control Bytes 82
3BNUM - Get 3 ROM Control Bytes 83
12BNUM - Get 1 or 2 Bytes of ROM Input 84

BATCH-T~minal ~~hEnkySub~~em __________________________ 85

~~~ ~ 
Usage 85 
Input 85 
Output 85 
Interactions 85 
Errors 86 
Restrictions 87 
Data Bases 88 
Subroutines 88 
Description 88 

Flowchart 90 

DEFCOM - Create Load Module Containing DEFs Only _____________________ 91 
Purpose 91 
Usage 91 
Input 91 
Output 91 
Interaction 91 
Da to Bases 92 
S ubrouti nes 92 

iv 



Errors 92 
Restrictions 92 
Description 92 

SYMCON - Symbol Table Control 94 
Purpose 94 
Usage 94 
SYMCON Commands 96 

LIST 96 
DELETE 96 
KEEP 96 
CHANGE 96 
BUILD 96 
DISCARD 96 
END 96 

Output 97 
Interaction 97 
Data Bases 98 
Subroutines 98 
Error Messages 99 
Restr i c ti ons 102 
Description 102 

DELETE 103 
"KEEP 104 
CHANGE 104 
LIST 104 
BUILD 104 
DISCARD 106 
END 106 

Flowchart 107 

ERRMWR - Error Message File Writer 108 
Purpose 108 
Usage 108 
Input 108 
Output 108 
Interactions 108 
Errors 109 
Description 109 

MAILBOX - System Messages to Users 110 
Purpose 110 
Usage 110 
Input 110 
Output 110 
Interacti on 111 
Data Base 111 
Subroutines 111 
Restrictions 111 
Description 112 

SYSTEM UTS 
Purpose 113 
Usage 113 
Content 113 

UTSPROC 113 
S69PROC 114 
ANSPROC 114 
MONPROC 114 

90 19 94A-1 (7/73) v 



vi 

Description ____________________________________________ 114 

BUMP, PUSH,PULL - Modify TSTAC K 114 
ENABLE, DISABLE - Reset and Set Interrupt Inhibit Bits 115 
H D, BD - Generate Ha I fword or Byte Addresses 115 
OVERLAY, OVERTO - Call Monitor Overlay and Enter it 115 
REMEMBER - Record Current Overlay Number and Contents of Register 11 115 
DESTRUCT - Generate Call Sequence to T:SELFDESTRUCT to Delete User1s Current 

Monitor Overlay ___________________________________ 116 

MAP, UNMAP - Turn Map On or Off 116 
OB, OBAL, OBSR4 - Implement Segloading 116 
SCREECH - Load Software Check Code Number and Call RECOVER 116 
SET, RSET - Set and Reset User Flags in UH:FLG 116 
T:PUSHE - Save an Interrupted Environment 117 
WORTAB, HAFTAB, BYTAB - Generate Word, Halfword, and Byte Tables 117 
LOAD, STORE, MODTST, COMPARE - Generate Byte or Halfword Type Instructions to 

Access Data _____________________________________ 117 

LDMAP - Load Memory Map 118 
BIL, BOL - Branch if Effective Word was Within or Outside limits 118 
ANSB, ANSNB, ANSNOP, ANSBAL - Generate Conditional Branches Depending on 

Whether System is ANS or Not ____________________________ ~ 118 
ERRABNCD - Produce Data Word for Generating Error Messages 118-1 
DAYS - Generate a Word Table of Jul ian Calendar Dates of First Day of Each Month 118-1 
SXP - Convert EBCDIC Character String Into a 32-Bit Binary Quantity 118-1 
CFU, DCB, Master Index - Define Major Fields by an EQU Directive 118-2 
CLEAR - Zero Registers 8 and 10 118-2 
LIF - Generate a Table as Part of Branch Vector Mechanism 118-2 

SYSTEM BPM (ForUTS) _______________________________________________________ __ 
Purpose _______________________________________________ _ 
Reference _________________________________________ __ 
Usage ______________________________________________ ~ 
Error Messages _________________________________________ _ 

119 
119 
119 
119 
119 

90 19 94A-1 (7/73) 



UTS TECHNICAL MANUAL 

ID 

SECTION QS 

PAGE 1 
1/ 5/73 

RA TE S - accounti ng rates structures 

PURPOSE 

The function of the RATES processor is to create and maintain the :RATE file. The 
:RA TE fi I e contains the charge rate structures, whi ch determi ne how much each user 
is assessed for various services (e.g. CPU TIME). A charge rate structure specifies 
how many charge units a user will be assessed for each unit of each type of service. 

USAGE 

The RATES subsystem can be accessed only by a user with the name LSE and the 
account :SYS. It is called on-line from TEL. 

!RATES @ 
Complete description of usage can be found in UTS System Management Guide, 
Chapter 4. 

INTERACTIONS - (CALs and FPTs are handwritten) 

M:PC 

M:WAIT 

M:INT 

M:TRNT 

M:READ 

M:WRITE 

M:OPEN 

M:READ 

M:WRITE 

M:CLOSE 

OUTPUT 

Set prompt character to - (for command) or = (for val ue). 

Dismiss program for specified interval (=1 second). Used to 
dismiss program while waiting for the :RATE file to become not 
busy. 

Set break control. 

Return from break control. 

Read input from terminal through M:UC. 

Write output to terminal through M:UC. 

Open :RATE file. 

Read :RATE file through M:EI. 

Write :RATE file through M:EI. 

Close :RATE file. 

The primary output of the program is a modified :RATE fi Ie. The structure and the 
default values of the :RATE fi Ie are described in section IC. If the :RA TE fi Ie does 
not exist when RATES is entered, the charge rate structures in the :RA TE fi Ie are 



UTS TECHNICAL MANUAL 

assigned their default values. 

SECTION QB 
PAGE 2 
1/13/71 

The format of the printed output resulting from the PRINT command and the error 
messages are shown in the UTS System Management Guide. 

SUBROUTINES 

SINPUT: 

SOUTPUT: 

SOUTPUP: 

SOPEN: 

STOBIN: 

STODEC: 

DESCRIPTION 

Input text from terminal 

Output TEXTC string plus new line to terminal 

Output TEXTC string to terminal 

Open :RA TE fi I e. The :RA TE fi I e is created if it does not 
already exist 

Convert decimal to binary 

Convert binary to decimal 

1. Break Control (BBREAK) 
Breaks come here once break control has been set at the end of Initial ization. 
When a break occurs the monitor pushes the user's registers and PSD into the 
user's TCB stack. 

If an END command has already been issued, an M:TRNT is issued which pulls 
the TCB stack ard retur ns control to where it was interrupted. In other words the 
break is ignored as far as the user is concerned. 

Otherwise the address of the main command loop (MLOOP) is inserted into the 
first word of the PSD in the TCB stack before the M:TRNT is issued. This 
results in control being transferred to the main command loop. 

2. Initialization (ISTART) 
Program execution begins here. The Initialization: 
a. issues the identification message (RATES HERE), 
b. checks to see if the user has the correct name (LBE) and account (:SYS), 

and 
c. reads in the :RATE file. 

3. Mai n Command Loop (MLOOP) 
The main command loop identifies the command and transfers control to the 
appropriate command handler. 

4. BUlL) Command Handler (CBUILD) 
Code common with the PRINT command checks to see that the last character is 

2 



UTS TECHNICAL MANUAL 

SECTION QB 
PAGE 3 
1/13;71 

a digit 0-7. If it is, the first address (in the :RATE file buffer) of the specified 
charge rate structure is calculated and control then goes to logic for PRINTing 
(CPRINT1) or BUILDing (CBUILD 1). 

Values are prompted for one at a time. Each value that is typed in is converted 
to binary and stored in the charge rate structure. If a lone carriage return is 
typed in for a \Olue, the value is left unchanged. 

When there are no more values to ;Jrompt for, control goes to the main command 
loop (MLOOP). 

5. PRINT Command Handler (CPRINn 
First, the common code described in the BUILD command handler is executed. 
The sidings and values for the specified charge rate structure are output one at 
a time. When there are no more, control goes to the main cOmmand loop 
(MLOOP). 

6. End Command Handler (CEND) 
A flag is set so that breaks will be ignored. The :RATE file is written out to the 
RAD and control goes to the Finalization. 

7 Finalization (FEXIT, FEXITE) 
On a normal exit (FEXIT), the final ization prints the message I RATES PROCESS
ING TERMINATED' and exits to the terminal executive. 

On an I/O error (FEXITE), the final ization first issues the messages 'UNEXPECTED 
I/O ERROR' and 'NO UPDATING TOOK PLACE'. 

3 



UTS TECHNICAL MANUAL 

ID 

SECTION QC 
PAGE 1 
1/16/73 

SUPER - Authorize Users 

PURPOSE 

The main purfX>se of SUPER is to create, modify, remove, and list the records of the file 
:USERS, the logon file of authorized UTS users. SUPER is also used to create, delete, 
and list the records of the file :RBLOG, the logon file of authorized work stations for 
remote batch. 

USAGE 

SUPER is accessible on-line and in a batch job stream. The detailed description of the 
usage can be found in the UTS System Management Guide, Chapter 3. 

OUTPUT 

SUPER creates records in the :USERS fi Ie and in the :RBLOG fi Ie. Section VN. 01 describes 
the :USERS file record format and contents; Section VN. 04 describes the :RBLOG fi Ie 
record format and contents. SUPER reads and writes the :USERS file through the F:EI DCB; 
it reads and writes the :RBLOG file through the M:EO DCB. 

On-line, SUPER writes messages and LIST output to the terminal through the M:UC 
DCB. In batch jobs, SUPER writes messages and LIST output through the M:LO DCB. 

INTERACTION 

SUPER is a processor which is called by TEL and CCI. SUPER uses the following 
monitor services: 

M:OPEN 

M:READ 

M:WRITE 

M:DELREC 
M:CLOSE 
M:EXIT 
M:WAIT 

M:DEVICE 

To open the :USERS file, the :RBLOG fi Ie, ar.d for batch, the 
M:LO device. 
To read records from the :USERS file or the :RBLOG file, input 
from the terminals, and for batch jobs, input from the M:SI device. 
To write records to the :USERS file or to the :RBLOG file, and to 
output text to the terminal and the M:LO deviceo 
To delete a record from the :USERS file or the :RBLOG file. 
To close the :USERS file, the :RBLOG file, and the M:LO device. 
To return control from SUPER to TEL or to CCL 
To put SUPER to sleep for one-second intervals while the :USERS 
file is busy and SUPER wishes to access it. 
To advance the M:LO device to a new page. 

4 



UTS TECHNICAL MANUAL 

DATA BASES 

SECTION QC 
PAGE 2 
1/16/73 

SUPER uses three internal tables. The first is a byte table labeled CMNDS used in 
determining what command was input. The second is a word table labeled OPTIONS 
used in deciding which options were selected. The third is a byte table called TERMS 
which contains characters SUPER regards as illegal when incorporated into a name or 
an account field of a CREATE, MODIFY, DEFAULT, REMOVE, or WOR KST ATION 
command, or in the value field of a PASSWORD option for a CREATE Or MODIFY 
command. 

SUPER reads the JIT words J:JIT, J:ACCN, and to determine whether the job was 
called from on-line or batch, and to verify the calling user is authorized to use 
SUPER (i. e., is logged on as :SYS, LBE). 

Section VN. 01 describes the record format of the :USERS fi Ie, which SUPER 
interrogates and updates. Section VN. 04 describes the record format of the :RBLOG 
file. 

SUBROUTINES 

SUPER uses the following subroutines: 

ADDBCERR 
ADDBUERR 
BCD2BIN 
BIN2BCD 
BIN2HEX 

BLK2 

CMOPTS 

HEX2BIN 
NAMEACT 

OPEN 
PRNTRT 

Updates batch command error counter u 

Updates batch :USERS file I/O error counter. 
Converts an EBCDIC number to a binary number. 
Converts a binary number to its printable decimal EBCDIC value. 
Converts a binary number to its printable hexadecimal EBCDIC 
value. 
Suppresses (blanks) leading zeroes in the number resulting from a 
BIN2BCD subroutine conversion. 
Handles the options for the CREATE, DEFAUl.T, MODIFY, and 
WOR KSTA TION commands. CMOPTS prompts for and reads the 
options, determines which options were selected, and stores the 
input option values in the appropriate fields in the :USERS or :RBLOG 
record buffer, INBUFF. 
Converts a hexadecimal EBCDIC number to its binary value. 
Scans the command buffer for the name and account fields of the 
CREATE, MODIFY, and REMOVE commands. After obtaining the 
name and account, NAMEACT forms a key wh ich SUPER uses to 
access the associated records in the :USERS file 
Opens the :USERS or :RBLOG fi Ie. 
The print routine for the LIST command. PRNTRT retrieves the 
selected LIST option fields from the :USERS fi Ie record{s), forms 
them for printout, and outputs them in line format to the terminal 
or M:LO device via the PRTREC subroutine. 

5 



PRTREC 

SCAN 

TEXTSUB 

TXCSUB 

ERRORS 

UTS TECHNICAL MANUAL 

SECTION QC 
PAGE 3 
1/16/73 

Writes a line of text for the LIST command output to the terminal or 
M:LO device. 
Extracts the next field from the input command. Field terminators are 
determined by the contents of table TERMS. Leading and trailing 
blanks are suppressed as well as serving as terminators. 
Prepares messages in TEXT format for output to the termi no I or M:LO 
device. 
Prepares messages in TEXTC format for output to the terminal or 
M:LO device. 

The following table I ists the error messages and describes the circumstances under 
which SUPER outputs them. On-line jobs receive the messages at terminals, batch 
iobs on the M:LO device. 

Message 

ACCOUNT, NAME? 

CALL ACCOUNT? 

WHO? 

MODIFY? 

**LOST AN OPTION: 
ADVISE LISTING USER** 

ERROR ON M:SI DEVICE, 
SUPER EXITING 

Description 

SUPER scanned to the end of the command buffer without 
detecting an account and/or name field for a CREATE, 
MODIFY, or REMOVE command. 

SUPER did not detect a delimiter (space, carriage return, 
period, nor semicolon) for a CALL Imn value. 

Request entered to MODIFY, REMOVE, or LIST the 
record(s} of a user(s} not in the :USERS file. 

Request entered to CREATE a user (record) which already 
exists in the :USERS file. SUPER issues this message, then 
(prompts and) awaits inpu't of options to modify the existing 
record. Null option input leaves the record as it was. 

This message should never be issued; however, should it 
be, it indicates a SUPER program failure, or a loss of bits 
in the system. SUPER outputs the message and continues 
processing any remaining options in the buffer. 

Abnormal return other than EOF or EOD on the batch 
M:SI device. 

6 



UTS TECHNICAL MANUAL 

Message Descri ption 

SECTION QC 
PAGE 4 

1/16/73 

----------------t---------------------------
NOT MAIN COMMAND Batch SUPER expected to read a command beginning in 

co lumn .one, but co lumn one of the card was nu II. 

ABNORMAL RETURN ON Abnorm~1 return other than "busy", "wrong keyll, or 
:USERS FILE -- value, value "file nonexistent" for I/O access of :USERS file. First 

value is hex abnormal code; second value is hex abnormal 
subcode. 

ERROR RETURN ON :USERS Error return other than "wrong key" for I/O access of 
FILE -- value, value :USERS file. First value is hex error code; second value 

is 'lex error subcode. 

SORRY YOU ARE NOT 
ALLOWED TO ACCESS 
SUPER 

=value? 

value? 

**THE :USERS FILE DOES 
NOT EXIST** 

INVALID WORK STATION 
ID 

OPTION VALID ONLY 
FOR WORK STATION 
COMMAND 

User trying to access SUPER is not logged on as :SYS, LBE. 

The given option value is too long, exceeds system 
limit for the option, or contains an illegal character. 
Input the option again. 

SUPER does not recognize the given command operator 
or option operator, or does recognize a too lengthy CALL 
field value. Input the information again. 

This message should never be issued, however, should it 
be, it indicates SUPER, in accessing the :USERS file, 
received an abnormal return indicating :USERS does not 
exist. SUPER outputs the message and exits to executive 
level (TEL or eCI). Call SUPER again. 

The specified work station ID is not an alphanumeric 
string of 1-8 characters with at least one alphabetic 
character. 

A work station option has been used on a CREATE, MODIFY, 
or DEFAULT command. 

7 



Message 

WORK STATION NOT 
PRESENT 

UNABLE TO OPEN 
:RBLOG FILE 

NO MORE RBIDS 

UTS TECHNICAL MANUAL 

Description 

SECTION QC 
PAGE 5 

1/16/73 

An attempt was made to delete a non-existent work 
station. 

The :RBLOG fi Ie exists but cannot be accessed by the 
user. 

An attempt was made to authorize more than 255 IDs for 
remote batch. 

At the end of the batch SUPER run, two messages summariz i ng the number of errors are 
printed. They have the following format: 

n COMMAND ERROR n USER FILE I/O ERRORS 

The first n indicates the number of syntax errors found in the input stream; the second 
n indicates the number of abnormal conditions found in accessing the :USERS file. In 
general, a syntax error found in an option for a main command will result in the 
command being executed as though the particular option were not present. 

RESTRICTIONS 

To use SUPER, the user logs in as :SYS, LBE. SUPER is not a shared processor; each 
user has his own copy of SUPER residing in his virtual memory. However, should more 
than one person be using SUPER and one have the :USERS file open, the others will 
experience a pause in response to their commands until the :USERS file is again 
closed. UTS users trying to log on while :USERS is open will experience a pause 
unti I the :USERS fi Ie is no longer busy. 

8 



UTS TECHNICAL MANUAL 

DESCRIPTION 

SUPER divides logically into the following parts: 

• procedures 
• messages 
• data and storage areas 
• option masks and command lists 
• I/O parameter lists (fpt1s) 
• program initia I ization 
• command interpretation' 
• command execution 
• subroutines; I/O error and abnormal returns routines 
• patch area 

SECTION QC 
PAGE 6 
1/16/73 

In the initialization section, label START, SUPER first checks the user1s JIT and 
determines whether the calling job is on-line or batch and resets X:JIT if the job is 
batch. SUPER then looks again at the JIT and ASSIGN-MERGE TABLE to determine 
whether the user is authorized to access SUPER, i. e., whether the. user is logged on 
as account :SYS. If the user is not logged on under this account-name, SUPER outputs 
a message via M:UC or M:LO saying the user may not access SUPER, and SUPER 
exits to the executive level TEL Or CCI. Otherwise, processi ng conti nues at labe I 
RESTART. 

The command interpretati:m section, label RESTART, determines whether there is a 

command in CMNDBUF. If there is not, SUPER clears the command buffer, reads 
a command, writes it to the M:LO device, and goes to label RST10. At RST10, 
SUPER determines what command was issued and branches to the command execution 
section to process (execute) it. Return fro'll processing any command other than +-he 

~ND command is to label RESTART; the END command exits to TEL or CCI. 

The command execution section has division for each of the SUPER command, i. e., major 
labels LIST, CREATE, MODIFY, DEFAULT, REMOVE, WORKSTATION, FAST, and 
END. 

At label LIST, SUPER first determines what the user wants to list and accordingly sets 
register 15 to 1, 2, or 3 for listing the entire :USERS file, listing all the records in a 
single account, or listing up to three specific records in a single account. Next, at 
label OPTNRT SUPER prompts the on-line user to specify which options (fields in a 
record) he wants listed. SUPER then reads an option for both batch and on-line jobs, 
interprets the option and sets a flag for it. SUPER conti nues to (prompt and) read and 
interpret options unti I it receives a null line for on-line jobs, or a new command for 
batch jobs. Super the n continues processing at label DETMLIST where it reads a 
selected record from the :USERS file into buffer INBUFF, places the selected option 
values in the print buffer LINE and outputs the listing one line at a time to the M:UC 

9 



UTS TECHNICAL MANUAL 

SECTION QC 
PAGE 7 
1/16;73 

or M:LO device. When SUPER has completed the listing, it branches back to label 
RESTART and initializes to read another command. SUPER uses subroutine PRNTRT to 
print each line of the listing from the LINE buffer. 

At label CREATE, SUPER forms a five-word key from the name and account fields of 
the input CREATE command. Next SUPER initializes the buffer INBUFF where it will 
build the new record. SUPER forms a key from the CREATE command account and 
name fields and attempts to read :USERS with the key. If a record with that key does 
indeed exist, SUPER continues processing under MODIFY, at label MLOOP20. If the 
record does not exist, SUPER continues processing at CLOOP20 where it prompts the 
on-line user for option input. For both the on-line and batch user SUPER reads the 
input option value, converts the value to its prescribed format, and stores it in the 
appropriate field in INBUFF. When the user signifies he has completed his option 
input, SUPER writes the record from INBUFF to the :USERS fi Ie under the key it 
previously formed. SUPER closes the :USERS file and returns to label RESTART. 
SUPER uses subroutine NAMEACT to form the key and subroutine CMOPTS to {prompt 
and} read, interpret, and store option values. 

At label MODIFY, SUPER forms a key from the specified name and account, and 
using that key it reads the requested record into INBUFF and closes the :USERS file 
if not in FAST mode. Next the subroutine CMOPTS, SUPER prompts the on-line user to 
specify which fields he wants to change. After interpreting the option input values and 
modifying the fields in INBUFF, SUPER reopens the :USERS file if not in FAST mode, 
writes the modified record in INBUFF to the file, closes the file, if not in FAST mode, 
and continues processing at label RESTART. 

At label REMOVE, SUPER forms a key from the specified name and account and opens 
the :USERS file, if not in FAST mode with the key. It then deletes the record associated 
with the key, closes the file if not in FAST mode, and continues processing at label 
RESTART. 

At label END, SUPER determines whether the job is on-line or batch. For on-line jobs 
SUPER exits immediately to TEL. Before a batch session exits to CeI, SUPER writes a line 
of the command error summary count and the :USERS fi Ie I/O error summary count to the 
M:LO device, advances to a new page, and closes the M:LOdevice. If the user was in 
FAST mode, the :USERS file is closed, and if the :RBLOG file is open it is also closed. 

At label DEFAULT, SUPER proceeds to process option inputs via subroutine CMOPTS, ane 
with specified values forms an image of the whole LOGON record {excluding the accoun' 
and name field}. This image table is hence used to simplify the usage of CREATE 
command, if so desired, and will remain prevalent until subsequently modified by anothe' 
DEFAULT command. The DEFAULT command causes no action with regard to the :USER 
FILE and contra I is returned to labe I RESTART after formi ng the appropriate image. 

10 



UTS TECHNICAL MANUAL 

SECTION QC 
PAGE 8 
1/16/73 

At label FAST, SUPER opens the :USERS file and sets a flag for FAST mode. The :USERS 
file (and :RBLOG file, if needed) will remain open throughout the job. 

At label WORKSTA, SUPER sets a switch to indicate a work station command has been 
received. Subroutine SCAN is called to scan the command. If :RBLOG is not open, it 
is opened and the record is read whose key is the work station 10 in TEXTC format. 
CMOPTS is called to process the options. If the record does not exist, a record is created 
with the next avai lable 10 in the RBID record. If the user is not in FAST moae, the 
:RBLOG file is closed and processing continues at label RESTART. 

11 



UTS TECHNICAL MANUAL 

ID 

UTSPM - UTS Performance Monitor 

PURPOSE 

The UTSPM processor performs the followi ng functi ons 

- Display performance statistics on line. 
- Create a base file as a time reference record of current statistics. 

SECTION QD 
PAGE 1 
3/27/72 

- Create a history file consisting of consecutive records of statistics created at inter-
vals specified by the user. 

- Report current statistics referencing the base file which defines the beginning of 
the sampl e interval. 

- Report history file statistics by processing one or more history files and creating two 
snapshot fi I es, SNAPSHOT and SSNAPSHOT. 

- Format control by setting, adding and dropping print flags. 

REF ERENCE 

This document presupposes familiarity with the UTSPM section in the UTS/SM Reference 
Manual (90 16 74) which gives a complete description of UTSPM from a user point of 
view. The usage, input, and output are adequately described there. 

USAGE 

UTSPM may be executed as a batch job, an on-line processor, (r as a ghost job. The 
input for a ghost job must be on file GHOSTSI. The output for a ghost job will be 
put in GHOSTLO and GHOSTDO. 

A privilege of 1801 is required whenever the desired function requires an access of the 
moni tor data tabl es. The privi lege is not requi red for other operations such as hi story 
fi I e processi ng. The on-I i ne use of a line pri nter is useful for I arge reports. The use of 0 

on-line tape allows the user to copy large history files to tape weekly and to process 
these tapes on-I i ne at a later ti me. 

The M:SI DCB is used for input of commands and user responses to interactive questions. 
M:DO is used to correspond with the user. M:LO is used for report output. F:l is used 
for history file creation and reading. F:2 and F:3 are used to create or read the 
'SNAPSHOT' and the SSNAPSHOT files respectively. The following diagram 
illustrates the relationship of UTSPM and SUMMARY. 

12 



tATS.pM 

t&)O~ LA,..~~N\ 
''Stv foW~H t)T' 

r; 'ce 
~------~ p------~ '0 w (f-II...E:' H) (RE.~O't<. I H) S\J "p 

(.0 1<,~ 

(~~ ~1j 14 c:::. ~"'~,,£) 

rtJc..~\A ~es. A~l. 

$l"t\ i I.S. i I C A c.. t7\.eL e.So 

• 
• 
• 

·~~,,-v 

"-\'~iO~'V ;:'ILe. 

S N f\~ 'to 

, 
• • 

......... ~t-JA.~ ~ 

I oS 5»tJ p.. PSt H 0, I 
l=' /(...t 

• • • 

W6'EKL'I COtJl)£fS,ON 

TO ~NA~t'\O"'.s 

C HKO~OLD\71tA 
SIAMMA~Y 

R.qsPoR' 
.~ 

"'""--

SORTE-O 

AVeRA'-'E's 

Ref>O f!T 

COR t(£L A'IO~ 

~NA\...'fs\S 
~€:po~T 

SkJ AfS HoT 

RepORT..s. 

C 
-f 
C/) 

-f 
m n 
::t: 
z -n » 
r-

~ 
Z 
c » 
r-



INTERACTIONS 

M:TIME 
M:WAIT 

M:INT 
M:EXIT 
M:DISPLAY 
M:TRAP 
M:PC 
CAL 1,8 
CAL 1,8 
CAL 1,9 
CAL 1, 1 
M:READ 

M:PFIL 
M:PRECORD 
M:DEVICE 
M:WRITE 

M:OPEN 

M:CLOSE 

UTS TECHNICAL MANUAL 

To get the ti mel date in T EXT for reports. 

SECTION QD 
PAGE 3 

To sleep while creating history files or to wait if the history 
file is in use by another user. 
To get break control. 
To return to TEL. 
To get monitor statistics as reported to user. 
To ignore fixed point overflow. 
To set the prompt characters. 
To map a monitor page. 
To get a virtual page to buffer the monitor data. 
Exi t from break control. 
Type an interactive message. 
To read inputs from the user, to read the hi story fj I e, to read 
the snapshot fi I es. 
To position the history file to BOF or EOF. 
To backspace one history file record. 
Top of Form and to return the number of lines. 
To pri nt all reports, wri te the base fi I e record, to wri te hi story 
records, to wri te snapshot fi I e records. 
To open M:SI, M:DO, M:LO to named fi I es when run as a ghost 
i ob, to open the hi story fi I e or base fj I e to test for exi stence, to 
create the history file or base file, to update the history file, 
to create the snapshot fi I es. 
To cI ose the base fi I e, the hi story fi I e, or to close the snapshot 
files. The SAVE options are important to assure that files are not 
lost. 

DATA BASE (IN MONITOR) 

The monitor data consists of the following areas: 

1. Performance Measurement Tables 

Referenced WORD Tabl es 

C:RT90 
C:SC 
C:TIC 
C:TINC 
C:ETMF 
C:CIT 
C:CITI 
C:CAL 

C:CTW 
C:CI 
C:CO 
C:RTRW 
C:CSC 
C:COS 
C:SCO 
C:MSO 

C:SCB 
C:MSB 
C:IDLE 
C:IDLES 
C:SIT 
C:SRT 
C:STT 
C:ST 
C:SCI 

14 

Referenced HALFWORD Tabl es 

CH:DIl 
CH:DI2 
CH:DI3 
CH;DOT 
CH:DOS 
CH:DRT 

CH:DIT 
CH:DTT 
CH:DT 
CH:DC 
CH:DLI 
CH:CLO 



UTS TECHNICAL MANUAL 

2. Referenced Processor Tabl es Constants 

PPROCS 
SMUIS 
P:NAME 
PBT:LOCK 
EOMTIME 
LNOL 
BGNPMPRC 
ENDPMPRC 

3. Referenced User T obi es 

UH:FLG 
UB:PCT 
UB:US 
UB:APR 
UB:ASP 
UB:DB 

4. Referenced Schedu I er T obi es 

SECTION QD 
PAGE4 
·1/5/73 

The indices correspondi ng to all state queues are REF' ed when possibl e or EQ U' ed 
in the program. 

S:OUAIS 
S:CUIS 
S :BUIS 
S:GUIS 
SB:CQ 
S:CAST 

5. Referenced System T obi es 

SL:TB 
SL:UB 
SL:QUAN 
SL:QMIN 
SL:BB 
SL:IOC 
SL:IOPC 
SL:OT 
SL:OC 
SL:OF 
SL:BC 
SL:BF 

15 



UTS TECHNICAL MANUAL 

SECTION QD 

PAGE 5 
3/27/72 

6. Monitor JIT references. 

OVHTIME 
TIMTMP 

7. User J IT references 

JB:PRIV 

DATA TABLES 

CONTROLD CONTROLP 
~ t 

DATA PURE 
TABLES PROCEDURE 

F=X'10000 ' 
! 

;<1 VIRTUAL 

~l BUFFER PAGES 
i' 

NOT USED 

£ 
G=X ' 12000' 

~t MAPPED 

I ~ MONITOR 
PAGES 

t 
NOT USED 

The monitor pcges '_ire not mapped unless required by the function requested by the user. 
The data in the mapped monitor pages must be transferred to the virtual buffer pages 
wi thi n 40 msecs. for use by the program. The vi rtua I buffer pages are used for hi story 
fi Ie wri ti ng and readi ng as well as for report generati on. The mapped moni tor pages 
do not require additional core since the resident monitor pages are simply mapped 
upward by IG I. 

All monitor constants are addressed in the program by an external reference plus the 
constant I Fl. The only references which are not buffered are th time references 
which are external references plus the constant IGI. All external references must be 
satisfied by the MONSTK element file in the :SYS account. 

SUBROUTINES 

SDEC 
SNAME 
SFIND 
SBINOUT 

SOUTA 
SOUT 
SBLANK 
SEND 

SPD 
SlIME 
R EADSI 

MPAGE 

Inputs an unsigned integer from the terminal and converts it to binary. 
Inputs a string (usually an item name) from the terminal. 
Finds a name in the table of item names (ATERM1 - ATERMS). 
Converts a number from binary to decimal. 
Appends a string to the output buffer. 
Same as SOUTA, but also outputs the buffer. 
Appends a specified number of blanks to the output buffer. 
Appends a new line character to the output buffer and outputs the 
buffer. 
Inserts a decimal point before the last character in the buffer. 
Returns the ti me in seconds, rounded, si nce system startup. 
Reads a line of input via M:SI printing the line only if M:SI is 
assi gned to a fi I e. 
New page if less than 18 lines remain. 

16 



SPAGE 
STIMES 
LWRITE 
LREAD 
LNAME 

DNAME 
OPENIN 
OPENOT 
OPENOT2 
OPENUP 
CLOSE 
LWAIT 

LVIR 

LMAP 

GDAT 

LOUTl 

UTS TECHNICAL MANUAL 

New page unl ess snapshots are bei ng suppressed. 
Gets time in milliseconds since system startup. 
Writes one history file record. 
Reads one hi story fi I e record. 

SECTION QD 

PAGE 6 

3/27/72 

Cracks file name syntax and fills the FPT's with appropriate 
data and control bytes. 
Gets time and date in T EXT and generates defaul t fi I e name. 
Opens history file to test for existence. 
Creats history file in dictionary. 
Creates fil es 'SNAPSHOT' and' SSNAPSHOT'. 
Opens the history file for update and positions to end of file. 
Closes hi story fi I e. 
Used during a history file creation in order to let the program sleep 
between updates. 
Gets virtual page for the buffer used to read and write history 
fi I e records and to buffer the monitor's data area. 
Maps the monitor's data area if needed for a particular function. 
This subroutine requires privilege level of 80 in the users account 
authori zati on. 
Transfers monitor data to the virtual buffer, processes the data by 
group to record old and new values for the statistics. 

Get Fragments 

LGETl 
LGET2 
LGET3 
LGET5 

Gets val ues of control parameters. 
Gets values of single user variables. 
Gets values of use groups. 
Gets values for use distributions. 

Processes the data in the tabl es and pri nts reports for the overall 
a nd for the sampl e interval. 

Outpu t Fragments 

LOUTl 

LOUT2 

LOUT3 
LOUT4 
LOUT5 

Outputs control parameters and thei r sidi ngs, two on a 
line. 
Outputs single use variables and their sidings, two on 
a line. 
Outputs use groups with theIr headings and sidings. 
Outputs headers for use distributions. 
Output use distributions and thei r sidi ngs. 

NOTE: The tables (see DATA BASE within CONTROL) used by 
LGETl and LOUTl end in 1 (e.g., ATERM1, APRIN1, 
AVALl)i those used by LGET2 and LOUT2 end in 2, etc. 

17 



UTS TECHNICAL MANUAL 

ADDING AN ITEM TO.A . .DISPLf\Y GROUP 

SECTION QD 
PAGE 7 
3/27/72 

1. Change the number of items in th"e group by redefi ni ng parameters D30 to D39 
wh i ch are equated to constants in the fi rst part of the program. 

2. Define the computation of the numerator and the denominator of the new statistic 
in terms of the pseudo op codes used in tables GROUP31 to GROUP39. Generally 
there are group divi sors computed at the end of each group and termi noted by 
a SAV ESUM pseudo OPe The group divisors are used for GROUP32 to GROUP39. 
Only GROUP31 computes unique divisors for each parameter. These divis<Jrs are 
referenced uniquely by the LOUT subroutine via two tables ASUMRYN and 
ASUMRYO. There are two tables to enable both an overall statistic and a 
snapshot sampl e statisti c to be computed. 

The snapshot statistic is computed by taking two sample points which define the 
beginning and end of the sample interval. Then the value of each numerator 
at the beginning of the sample is subtracted from the numerator at the end of 
the sample. (In most cases, the statistics are accumulative with time). Similarly 
the value of the denominators at the beginning of each sample is subtracted 
From the val ue of the denominator at the end of the snapshot interval. The 
computation of each numerator and divisor is executed in the GDAT subroutine 
in the LGET3 segment. The computation of the difference in statistics is also 
executed in the LGET3 segment of GDAT. This implies at least two passes to 
process one snapshot or one more pass through GDA T than the number of snapshots. 

The fi nal computati on of the pri nted group statisti cs is done in the LOUT3 segment 
of the LOUT subroutine. It is in LOUT that the numerators and denominators 
are selected for the OVERALL column and for the SAMPLE column. 

3. The last step is to define a siding to be printed beside the new statistic by adding 
an entry to the text strings pointed to by ASIDE3. 

4. Review data tables ADIV3, ASAM3, ADEC3, ALEN3, ADEPTH3 and ASCAL3 
to be sure that format control flags and group scal e factors are as desired. 

RECORD FORMAT FOR HISTORY FILE 

The history file is a consecutive file which contains a core image of the lower part of 
memory beginning with page zero and including up to 16 pages. The length of each 
record is determined at run time based upon the MONSTK references which were 
satisfied at load module time. The la:;t page of data in each history file record is the 
monitor's JIT in order to satisfy the need for certain JIT references. In addition the 
first five words of the core image are overwritten with the TEXTC string for the time 
and date. 

18 



UTS TECHNICAL MANUAL 

SECTION QD 
PAGE 8 
3/27/72 

History Fil e Record 

Word 0-5 ---) : -

TEXTC TIME, DATE 
~ First monitor page image 

~ Second moni tor page image 

,:..- Highest monitor page image 

~ Image of monitor JIT 
Last page of each record 

The history file record is always written from and read into the virtual pages beginning 
at :he symbol defined as IFI, the buffered monitor area. 

RECORD FORMAT FOR FILE 'SNAPSHOT ' AND 'SSNAPSHOT ' 

The snapshot records for SNAPSHOT and for SSNAPSHOT are identical. The only 
difference between these files is that the SNAPSHOT file is consecutive while the 
SSNAPSHOT file is keyed. The key is a 15 character code generated by using 
an i ntensi ty group number, the number of users logged on, and the ti me date to insure 
campi etel y uni que keys. 

Words 0-4 
Words 5-8 

T EXTC for ti me and date 
T EXT for fi I e name 

Word 9 Length of SNAPSHOT record in bytes 
Word 10-19 Lengths of Groups 30 + 39 
GROUP 30 DATA, CON TROL PARAMETERS 
GROUP 31 DATA, SUMMARY 
GROUP 32 DATA, CPU 
GROUP 33 DATA, ON-LINE 
GROUP 34 DATA, USERS 
GROUP 35 DATA, I/O 
GROUP 36 DATA, TASK 
GROUP 37 DATA, QUEUE 
GROUP 38 DATA, INTERACT 
GROUP 39 DATA, BA TC H 

19 



UTS TECHNICAL Iv\ANUAL 

12 SNAPSHOT DISTRIBUTION S (8 WORDS EACH) 

ERROR HANDLING 

SECTION QD 
PAGE 9 
3/27/72 

All error messages are described inthe UTS/SM Reference Manual (90 1674). 

RESTRICTIONS 

1. UTSPM must be loaded with element files MONSTK from the :SYS account to 
satisfy monitor references. Some unsatisfied PREFls may result due to MONSTK. 

2. The user must have a privi I ege I evel of 180' to run UTSPM. 

3. A special version of UTSF,V\ may be desired in order to process older history 
files with a MONSTK other than the current system MONSTK. 

COMMAND HANDLERS 

Command 

*(comment) 
END 
PROCEED 
NUMBER 
ADD 
DROP 
BUILD 
CONTROL! 
LIST 
TIME 
DISPLAY 
FILE 
REPORT 

Segment 

Treated as a null command. 
LEXIT 
LPRO 
LNLS 
LADD 
LDROP 
LS ETUP 
LCON 
LIST 
LTIME 
LUSE 
LFILE TO LBASE 
LRFILE TO LRBASE OR LRHIST 

20 



SECTION QE 
PAGE 1 
3/27/72 

UTS TECHNICAL MANUAL 

ID 

SUMMARY - UTS Performance Summary. 

PURPOSE 

The SUMMARY processor accesses the chronological SNAPSHOT file and keyed 
SSNAPSHOT files to provide the user with the following functions: 

o Report one or more display groups chronologically (CHRONOLOGICAL 
SUMMARIES). 

o Define a filter parameter list with high and low limits. (SPECIFY SORT 
FILTER). 

o Report one or more display groups after fi I tering and sorting. (SORTED 
SUMM SUMMARIES). 

o Report one or more display groups after filtering, sorting and averaging. 
(SORTED AVERAGES). 

o Report overall statistics after filtering. This includes the mean, standard 
deviation, minimum, maximum and correlation co-efficients. 

REFERENCE 

This document presupposes fami liarity with the UTSPM section and the SUMMARY 
section of the UTS/SM Reference Manual (90 16 74) which describes the use of 
UTSPM and SUMMARY from a user IS point of view. The usage input and output 
are adequately described there. Please refer also to the UTSPM section of the 
Technical Manual. 

PROGRAM SUBROUTINES 

MAIN PROGRAM 

SUBROUTINE ZERO 

21 

This portion controls the overall logrcal flow 
of SUMMARY. All labeled COMMON 
creates dummy sections, DSECPs which are all 
defined the main program. The dimensions 
of any array must remain consistent in all 
occurrences in other subroutines. This 
applies to· both Fortran subroutines and Meta
symbol subroutines. 

This subroutine sets the data in/XDATA/to 
zero for initialization purposes. 



SUBROUTINE COVAR 

SUBROUTIN E COVAR 1 

SUBROUTI N E LIST 

SUBROUTINE HEADER 

SUBROUTINE AVERAGE 

SUBROUTIN E SCAl E 

SUBROUTINE ALINE 

SUBROUTIN E REPLY 

UTS TECHNICAL MANUAL 

SECTION QE 
PAGE 2 
3/27/72 

.Jhi s subrouti ne computes and accumul ates mi ni mums, 
maximums, squares and cross products. This is 
done after each filtered snapshot if the CORRELATION 
ANALYSIS is demanded by the user. 

After all of the fi I tered snapshots have been processed 
the data in XDATA must be processed to compute the 
averages and correlation coefficients. It is in this 
routine that the double precision correlation matrix 
is needed for arithmetic precision. It should be noted 
that this matrix, YCOV is a symmetric diagonal 
matrix which is dimensioned only for non-redundant 
entri es due to symmetry. 

After the arithmetic is completed, this report is 
output if the user has requested a CORRELATION 
ANALYSIS. It is apparant that the matrix headings 
are dependent upon the stati sti ca I group si zes 
determi ned by UTSP M when the snapshot records are 
written. The si.dings are determined by the IHDR 
array which is also dependent upon synchronization 
with UTSPM. 

For chronological and sorted summaries and sorted 
averages the headers for each statistical group are 
printed here. These formats are dependent upon the 
synchroni zation of group si zes wi th UTSP M as in 
SUBROUTIN E lIST. 

The snapshots are averaged at the end of each chrono
logical listing of a file and at the end of each 
Sorted Summary i ntensi ty group. The snapshots wi th 
the same number of users are al so averaged when 
usi ng Sorted Averages. 

When each snapshot is read, thi s subrouti ne transfers, 
fI oats and scal es data from BUFF ER to vector X. 

If the snapshot is to be listed this subroutine selects 
the group format to be used. 

The responses to all interactive questions are decoded 
here. 

22 



SUBROUTINE CNAME 

SUBROUTINE CINTEN 

SUBROUTIN E PLOT 

FUNCTION ASUM 

SUBROUTINE APLOT 

READT 

PRTDO 

READSN 

READSS 

NEWLIN 

CPR OM, SPROM 

UTS TECHNICAL MANUAL 

SECTION QE 
PAGE 3 
3/27/72 

If listing snapshots chronologically, this subroutine 
tests for a history file name change to allow history 
file averages to be printed. 

If Ii sti ng sorted summari es or sorted averages thi s 
subroutine is used to detect a change in estimated 
user intensity. The detection of a change causes 
the last intensity group averages to be listed. 

If statistical group 10 is being listed, this routine 
computes histogram percentages, adjusts scale to 
suit and prints the one line with one or more histo
grams. 

Computes percent for histograms when called by 
APLOT. 

Prints titles, and entire line of print for one or more 
histograms via the PLOT subroutine. 

Metasymbol routine to read a line via M:SI into 
COMMON /IANS/, (a dummy section). If reading 
M:SI from a file, the line read is echoed via M:DO 
for user conveni ence. Usua" y the data is i nter
preted by a FORTRAN D ECODE statement. 

Metasymbol routine to print a line from COMMON 
/IANS/, (a dummy section). The data in IANS 
is filled by the FORTRAN ENCODE statement. 

Metasymbol routine to read a record via F:2 into a 
labeled common area COMMON /BUFF ER/, (a nummy 
section). 

Metasymbol routi ne to read a record via F:3 into 
a label ed common area, COMMON IBUFF ER/, 
a dummy section. 

Metasymbol routi ne to return the number of lines 
remaining via COMMON /LINES/. 

Metasymbol routines to set the prompt character for 
on line user convenience. 

23 



UTS TECHNICAL MANUAL 

SECTION QE 
PAGE 4 
3/27/72 

USING M:SI, M:CO, M:DO 
• 

The FORTRAN program utilizes monitor DCB's via METASYMBOL subroutines and the 
use of the ENCODE/DECODE statements in FORTRAN. 

DATA TABLES 

COMMON /BUFF ER/ 

COMMON /ABUF/ 

COMMON /BFILN/ 

COMMON /ISTAT/ 

COMMON/IANS/ 

COMMON /IALPHA/ 

COMMON /XLIMIT/ 

COMMON /XDATA/ 

This integer buffer is used to read snapshot records. 
The format of this buffer is defined by the UTSP,\'\ 
processor wh i ch creates snapshot records duri ng 
history file report writing (REPORT H command of 
UTSPM). The SCALE subroutine assumes the format 
of BUFFER via EQUIVALENCE statements. All 
statistics reported in SUMMARY are received in 
binary form in BUFFER. The INTEGER statement must 
appear in each subroutine using BUFF ER so that the 
statistics in BUFFER will be interpreted correctly. 

This buffer is used to record up to 8 characters. 

Thi s buffer is used to store the text for the fi I e name 
of the history file being reported chronologically. 

This buffer is used to return the status of a file 
manipulated in the METASYMBOL subroutines. 

This buffer is used with the ENCODE/DECODE state
ments to pass or recei ve data wri Hen or read by the 
MET ASY MBOL subrou ti nes. Usua II y the bu ffer reads 
from M:SI and wri tes to M:DO and M:LO. 

This area includes two double precision buffers used 
to spec i fy the stati sti cal group headers and the SI DRs 
for the reports. These text stri ngs must be synchroni zed 
with the format of the statistics as formatted by UTSPM. 

This array is used by the 'SPECIFY SORT FILTER' 
command to record the fi Iter item numbers and the 
low and high rejection criteria. The rejection count 
is also kept in this array. 

This area includes several data vectors. The XM ':]nd 
YCOV vectors are both double precision vectors in 
order to keep enough precision for the correlation 
coefficient computation. XM accumulates the sum of 
all data for the mean computation. XMlN and Xtv\AX 

24 



COMMON /LINES/ 

COMMON KDIM 

DIMENSION XOLD 

DIMENSION XAVE 

DIMENSION YM 

UTS TECHNICAL MANUAL 

SECTION QE 
PAGE 5 
3/27/72 

are used to record the mi nimums and maximums 
respectively for the correlation analysis. 

Thi sis used to transfer the number of lines remain i ng 
from the METASYMBOL subroutine to the FORTRAN 
subrou ti nee 

This unlabeled COMMON area is used to record the 
dimension of the statistical groups of data as read 
from the BUF FER snapshot record. 

This vector is used to reduce the number of I ines of 
print when listing 'Group a', the control para
meters chronologically. A new line is printed only 
when the parameters are changed. 

Thi s vec tor accumul ates snapshot averages for a given 
intensity group and a given number of users logged 
when using the ·SORTED AVERAGES· command. 

This vector is used to compute history file averages 
when using ·CHRONOLOGICAL SUMMARIES·. 
In addition this vector is used to compute intensity 
group averages for ·SORTED SUMMARIES' and with 
·SORTED AVERAGES·. 

DIMENSION SNTIME, SFILN, JDIM, ISNAP are all used with EQUIVALENCE statements 
to match the format of the snapshot fi les. 

25 



UTS TECHNICAL MANUAL 

ID 

LINK - UTS on-line one pass loader 

PURPOSE 

SECTION RA 
PAGE 1 
5/17/71 

LINK is used from on-line terminals to load from multiple input files that contain either 
single or multiple ROMs. In addition user ROM libraries can be loaded with a Core 
Library and the System Library. 

RESTRICTIONS 

LINK can only load ROM information. It cannot load Load Modules. Dummy Sections 
(DSECTS) must be defined at their largest size in the initial definition. Also, multiple 
use of the same Dummy Section must not involve the use of instructions that use external 
references either Secondary or Primary. If the definitions are loaded prior to the references 
the preceding restriction is not necessary. A reference to M:XX must be satisfied from 
the JIT (JO) core library. LINK will not build an M:XX DCB nor may the user build one. 

DESCRIPTION 

Upon entry to LINK, memory is obtained via the Get Virtual Page CAL for the loader 
stacks. The initial stack configuration is assembled into LINK. The ':' prompt character 
is set via the Set Prompt CAL. 

Each input element file name from the RUN or LINK command is translated into a Flag 
word and a variable length parameter list for an OPEN CAL. The Flag word has a bit 
for each input option. 

The output file is opened to perform the 'ON', 'OVER' checking. If 'ON' is specified 
for an already existing file an error message is given and LINK exits. 

Otherwise LINK continues and puts a DEF entry in the RF[1F stack for the JIT DCB M: UC .. 
A REF entry for M:DO is placed in the RFDF stack to insure the generation of a M:DO DCB 
so that snap shot debug output may be produced by the loaded program at execution time. 
In order to allow Fortran to use N as an I/O device indicator, the Assign Merge table 
is read. All F: numeric entries from the assign merge record are used to generate REF 
entries in the RFDF stack to cause the generation of a DCB from the F: numeric. SET 
command in TE L. 

The first input element file is opened. If this is the '$' file,the M:GO DCB is opened in 
INPUT mode. Otherwise the F:LINKIN DeB is opened with the fid of the first element 
fi Ie on the RUN of LINK command. 

-Each ROM control byte is processed by the appropriate routine. The core image of the 
program is built into each of the three program areas: Data, Pure Procedure, and DCBs. 

26 



UTS TECHNICAL MANUAL 

SECTION RA 
PAGE 2 
5/17/71 

When the Module End ROM control byte is encountered,an end of file check is made. 
If no end of file is found,it is assumed another ROM follows in the current file and ROM 
control byte processing continues. 

When an end of file is reached, the current input file is closed. If Internal Symbol Table 
ROM control bytes were encountered and an Internal Symbol Tabl e is wanted, it is 
written out as a keyed record as part of the output load module. 

A check is made to determine if any more input element files are present; if so the next 
input element file is opened and ROM control byte processing continues. When a 
library input element file is encountered, LINK goes into library mode and only ROMs 
that sati sfy Pri mary References are loaded. 

When the last input element has been processed, LINK goes into I ibrary mode. A search 
of the RFDF stack is made for Primary References. If none are found, control goes to 
ENDLOAD. Primary References cause searching first of the Core Library and second of 
the System Library. 

The Core Library is searched by reading its RFDF stack into the symbol table area of 
memory. All of the Pri mary and Secondary References in LIN K 's RFDF stack are searched 
for in the Core Library's RFDF stack. When a match occurs, LINK's RFDF chain is 
satisfied with the value from the Core Library RFDF stack. The System Library is treated 
like any other ROM library element file. Only those ROMs that satisfy Primary References 
are loaded. The Core Library is searched a second time after loading the System Library. 
This is to satisfy references into the Core Library from the System Library. Control goes 
to ENDLOAD after library searching. 

At ENDLOAD LINK's RFDF stack is searched for Primary References that start with 'F:' 
or'M:'. If found,these references are considered DCBs and a 48 word DCB is constructed 
for each reference. When the name of the DCB is recogn ized as one of the standard 
DCB~, assignment information is put into the DCB. It should be noted that the two JIT 
DCBs, M:UC and M:XX, are not constructed by LINK. 

LINK constructs a DCB table (DCBTAB) of all the entries in the RFDF stack that start 
with 'F:' or 'M:' except for M:UC and M:XX. 

At this point the size of the RFDF stack is saved. The additional entries added by LINK 
for MAP printout are not written out as part of the Load Module. The MAP is then 
printed. 

The RFDF stack is scanned and a Global Symbol is produced and written out as part of 
the Load Module. The user's TCB is constructed immediately after the user's Data area 
and is wri tten out as part of the Data area. 

In the writeout phase of LINK, the HEAD, TREE, RFDF stack, Data area, Pure Procedure 
area, DCB area, and Global Symbol table are written out as keyed records in the load 
module. 

27 



UTS TECHNICAL ,.."ANUAL , 
SECTION RA 
PAGE 3 

5/17/71 

From the LINK command, an exit (CAL 1,9 1) is executed. In the RUN command the 
stack memory is released, the symbol table memory is released, and HEAD+ 15 is set to 
zero before the exit CAL is executed. 

DATA BASES 

A. Stacks 
Probably the most important thing to understand about the loader is the make-up of each 
of the stacks and the nature and use of the entri es in them. 

There are 5 stacks. The size of the stacks may vary depending on the usage. The sub-
routi ne PRESSTK coil apses the stack space if poss i bl e, and the subrou ti ne S TK OVF 
expands the appropriate stack in the event of overflow. All subroutines using the stacks 
check for overflow at the completion of pushes and call STK OVF with the offending 
stack number as an argument for correction of the overflow problem. A certain amount 
of extra space is left in the temporary stack for non-recursive use. 

In general, the size of the loader stacks is variable. They expand as entries are added 
to them. The entries in the stacks are referenced indirectly through stack pointers. This 
allows the. actual position of the stack in core to be variable. This is used to move the 
stacks around to make more space available when correcting for stack overflow. Also, 
space (unused) may be squeezed out of stacks when trying to generate more space, when 
no more new space is available. That is, there may be enough space if it is distributed 
amoung the stacks in a more equitable manner. 

T:STACK: 
The temporary stack TSTACK is the simplest one to consider. The entries here are just 
temporary and are generally of little interest. A certain minimum fixed size is kept to 
allow for non-recursive use without checking for stack overflow. 

EXPRSTK: 
Refer to Figures 1 through 3. The expression stack is used to hold expressions which may 
or may not be evaluatable. In general, certain load items call for an expression to be 
input. When this occurs, the destination type of the expression is placed in R6 and a 
call made to EXPRIN (the expression input routine). This routine constructs an expression 
of the general form shown in Figure 1. Then EXPTTB is called to place the expression 
in the stack. Finally, EVEXP is called in an effort to evaluate the expression (if pos
sible). Sometimes expressions cannot be evaluated because of forward reference problems 
or REF problems. 

Refer to Figure 1. The word count is the total number of words in the expression. The 
next byte contains a pointer to the first value word. This is a number greater than 2. 
The next byte has a bit marked in it which gives the destination of the expression. A 
detailed picture of this byte is given in Figure 2. The last byte of word 0 and subsequent 
bytes form the lIexpression control string". This is somewhat like a string of operators. 

28 



UTS TECHNICAL MANUAL 

SECTION RA 
PAGE 4 
5/17/71 

These bytes determine what is to be done to the expression accumulator during evaluation. 
Possibl e operations are th ings I ike add constant, add declaration, change resolution. If 
the operation requires an largument l, this argument is available as the next val ue word. 
The value word contains either the value (when defined) or a chain pointer which may 
point to another expression in the stack or core location which needs the value. The 
pointer is of the form shown in Figure 3. Zero is used to indicate the termination of a 
chain. Note that the relative word in the expression stack chain wi II never be zero. 
When the relative word in the expression pointer is zero, this indicates that linking in 
the expression stack has terminated and indicates chaining into a core chain. 

The expression control string may be arbitrari I y long. There is a byte wh ich indi cates 
"end of expression". The next word following contains the address of the destination. 
The subsequent words are "value words" which contain values to be used as operands by 
the expression control bytes. In the case of values wh ich are not yet avai lable to the 
program (REFs or forward references) the value word contains a chain pointer. 

FREFSTK: 
The forward reference stack FREFSTK has two word entries (see Figure 5). The first word 
contains the forward reference number, and the second word contains a chain origin to 
the expression stack. This points to one of the value words of an expression requiring 
this forward reference value and there is a corresponding expression control byte indi
cating add or subtract a forward reference. These entries remain in the forward reference 
stack only while the forward reference is undefin~d. 

This is OK since forward references are not to be referred to after they have been defined. 
When the forward reference defini tion is encountered by the loader, the I ink to the 
expression stack is used to begin evaluating expressions if possible. If evaluation is 
possible, the link in the expression is removed and the value word now contains the 
value. The corresponding expression control byte is set = defined. 

There exists the ability for holding the value of forward references. This load item is 
called forward-reference-and-hold. In this case bit 0 of word 1 of the entry is marked 
in the forward reference stack. This designates the item as forward-reference-and-hold. 
Word 2 then contains the value. This item remains in the FREFSTK unti I the module end 
is reached. Ordinarily, forward references are deleted from the stack when they are 
defined. 

RFDFSTK: 
The entries in the RFDFSTK are variable length items. Refer to Figure 6. The first byte 
(byte 0) contains the word count of the entry. The second word contains the value (i f 
defined) or a chain origin to the expression stack. The nature of the I inkage here is the 
same as that of the forward reference stack. The third word is used for type and resolu
tion information in the Global Symbol Table entry. The length of the name may be up 
to 63 characters. The first byte of word 4 is a count of the number of bytes in the name; 
subsequent bytes comprise the name in EBCDIC. 

29 



UTS TECHNICAL MANUAL 

SECTION RA 
PAGE 5 
5/17/11 

There is additional information about the entry contained in byte 1. There is a bit 
marked to indicate the type of entry. A description of the function of each bit is 
'.hown in Figure 7. 

DECLSTK: 
The entries for the declaration stack (DECKSTK) are shown in Figure 4. Declarations 
'Jre used to provide information about control sections and DEF/REF situations to the 
loader. There is a two word entry for each such declaration. Byte 0 is flagged to indi
cate the type of declaration. For sections, a base address and the size is required. This 
information is in the remainder of word 0 and word 1. The base address and size are 
byte resolution. If the information is not available, a pointer to the RFDFSTK is placed 
in word 1. The protection code is placed in the upper two bits of byte 1, word O. These 
entries are retained in the stack for the'duration of the current ROM. 

30 



UTS TECHNICAL MANUAL 

FIGURE RA-l EXPRSTK - Expression Stack Entry 

0 8 16 
u 

I Number of words N Rei. first Type of u 
in entry 

Expression 

- - - - -
"oJ 
~ 

i 

I 
I 
I 

I - - - -
f 

.~ value word destination 

Control Bytes 

- ,.- -

~ T 
Destination of Expression 

First Value Word or Chain Pointer 

Value Words or Chain Pointers 

If bit 8 of the first word is set, the entry space is unused. 

24 

SECTION RA 
PAGE 6 

5/17/71 

I F· . I orst expresSIon 
control byte 

I r - - - - -

T 

Bit 0 of each expression control byte when set indicates that the associated value 
word is defined. 

FIGURE RA-2 Type of Destinati on Byte 

0 2 3 4 5 6 7 

~ '" 0 0 « 0 w 0 I: 0.: <{ '" .... ..... -' 
0 ::> w w w ..... t-

o 0 0.: 0 - w 
~ '" .... w (Y-

o.: ~ ~ ..... .... 
A. 

31 

1 
T 
I 

,L 
T 



UTS TECHNICAL MANUAL 

FIGURE RA-3 Value Word Chain Pointer 

o 8 

Rei Word 
in Expression 

Rei Expression Stack Pointer 

When relative word in expression is zero, the pointer refers to core. 

FIGURE RA-4 DECLSTK - Declaration Stack 

o 5 8 10 

~ z 
~ on 0 Size of Control Section or Size 
'" £ 

~ 

of Dummy Section u >- ILl 
U. .... ~ z )0-

IL. ILl ILl ~ 0 (Not Usedt ILl GIl: DC :::> 0 
Q Q. &I) 0 U DC 

Q. 

SA (Origin of Control Section or Dummy Section) 
Pointer to REF/DEF Stack Entry 

FIGURE RA-5 FREFSTK - Forward Reference Stack 

o 8 13 14 16 
z 

~ Q z 

SECTION RA 
PAGE 7 

5/17/71 

Module 
:t: <I( ~ 

Forward Reference Number ::::> 
Number 

~ 

0 IL. &I) 

ILl Z 
GIl: 0 

&I) .... ILl 
U DC 

Value of Forward Reference and Hold 
Chain Pointer for Forward Reference 

32 

I 
l 

j 
j 

I 



FIGURE RA-6 

o 
Number of words 

in entry 

UTS TECHNICAL MANUAL 

SECTION RA 
PAGE 8 
5/17/71 

RFDFSTK - REF/DEF Stack 

8 16 24 

Type of entry 
Double word size if 
dummy section entry 

Value of DEF or chain pointer origin (REF) 

Number of charac-
I 
I 

ters in name 
I- - - -
I 
f 

FIGURE RA-7 

o 2 

"-"- u.. 
w W 

IoU 

0 '" '" D-

FIGURE RA-8 

o 

- -

3 

U 
w 
I/) 

~ 
~ 
~ 
::> 
0 

Type of Symbol 

Name in EBCDIC 
- - - - - - - - -

< 

"Type of Entry" in RFDFSTK 

4 5 6 7 
"-
w Z 0 0 0 
t-

"- t-
w_ 

Z t-D-
oe( w ::> Zoe( 
t- o 0 ~-!. II) 

z I/) D-

0 IoU 

i u '" 

Global Symbol Table Information 

5 

Global symbol 
table info 

- - - - - - - -

Resolution 
byte 3 of third word 

33 

-

! 

,..., 
T 



B. Symbol Tables 

Global Symbols: 

UT5 TECHNICAL MANUAL 

SECTION RA 
PAGE 9 
5/17/71 

While performing the link process, a global symbol table is constructed,-- Thi"s table is 
a list of correspondences between symbolic identifiers (labels) used in the ~~iginal 
source program Qnd the values of virtual core addresses which have been assigned to 
them by LINK. The global symbols identify object (DEFs) within a module- v.,hich may 
be referred to (REFed) in other modules. This table is available to DELTA, for use in 
debugging. 

Internal Symbols: 
An internal symbol table is a -list of correspondences similar to the global but which 
applies solely within the module. Each internal symbol table constructed by LINK is 
associated with a specific input file and identified by its name. The internal as well 
as the global symbol tables are created for use by the debug processors, such as DELTA. 
The user has the ability under DELTA to define which set of internal symbols is to be 
used fQr specific debugging activities. 

Symbol Table Format: 
Both global and internar symbol tables, as formed by LINK and used by DELTA, consist 
of three word entri es. Symboli c identifi ers {label s) are Ii mited to seven (7) characters 
plus count. Symbols originally longer than seven are truncated leaving the initial 
characters, although the ori3inal character count is retained. Symbols wh ich are iden
tical in their first seven characters and are of equal length occupy one position in the 
symbol table. The value or definition for such multiply defined symbols is the first one 
encountered during the linking process. Each symbol entered into the table has a type 
and internal resolution classification. The internal resolution types are: byte, halfword, 
word, doublewrod, and constant. The following are the symbol types which are supplied 
by the oblect I-anguage and maintained in the symbol tabl e: instruction, integer, EBCDIC 
text short floating point, long floating point, decimal, packed decimal, and hexadecimal. 

Location Symbol - code = 01 

011 ~ Sl S2 53 

S4 S5 S6 57 

t I res I value 

where: 

CT is a six-bit field containing the character count of the original symbol. 

S i are the first seven (7) characters of the symbol. Symbols with fewer than 
seven characters are zero filled. 

34 



UTS TECHNICAL MANUAL 

is a five-bit field where the values are: 
00000 -
00001 

instruction 
integer 

00 111 
00010 
000 11 
00 110 
01001 
01010 
010 11 
01000 
10000 

- EBCDIC test (also for unpacked decimal) 
- short floating point 
- long floating point 

hexadecimal (also for packed decimal) 
- integer array 

short float ing poi nt array 
- long floating complex array 

logical array 
undefined symbol 

SECTION RA 
PAGE 10 

5/17/71 

res is a three-bit field representing the internal resolution. The values are: 
000 - byte 

value 

00 1 - hal fword 
010 - word 
all - doubleword 

location symbols are always represented as a 19-bit byte resolution value. 

Constants - code = 10 

10 I CT I 51 I S2 
I 

S3 

where: 

CT and Si 

value 

OUTPUT 

54 ! 55 
I 

i S6 57 

value 

have the same meaning as above. 

is the 32-bit value of the constant. 

The load module output from LINK is a KEYED file. There is a keyed record for the 
HEAD, TREE, RFDF stack, DCB area, DATA area, PURE PROCEDURE area, Internal 
Symbol Tables, and the Global Symbol table. The Key name for the head and tree 
records is HEAD and TREE respectively. The Key name for the RFDF stack, DCB, DATA, 
PURE PROCEDURE, and Global Symbol table is the output file name concatenated with 
an identifying key code. The Internal Symbol table records have Key names made up 
from the input fi Ie names concatenated with an identifying key code. 

35 



UTS TECHNICAL MANUAL 

FIGURE RA-9 Load Module File 

Keyname: HEAD 

o 8 16 24 
84 

, 
00 FF 

, 
30 

80 00 start address 
DA(TCB) 60 00 

o 
+1 
+2 
+3 
+4 
+5 
+.) 

+7 
+8 
+9 

DA (dara area size) D A(data area org. ) 
DA (PP area size) DA(PP area org. ) 
RFDF stack size (word) 00 DC 
DA(DCB+DCBT AB size) DA (DCB loader or~.) 
GST size (word) GST org. 
1ST size (word) 1ST ora· 

- ~X!.C ~C~e !lbr~ry ~a~ :~nn ~ - - - -
- - - - - - - - - - - - - - -

+12 - .!.EX]C ~De~ugyr~es~or ~a~el _ - - - -

- - (~d~ n~mel - - - - - - - - -

Keyname: Output File Name ' 

Followed by: 03 - Data area control sections 

-

-

-
-

05 - Pure procedure area con tro I sections 
07 - DCB+DCB TAB 
09 - Global symbol table 

Keyname: 'Input File Name ' 

Followed by: 10 - Internal symbol table 

36 

SECTION RA 
PAGE 11 
5/17/71 

Load Nlodule Code 

Module Bias 

Tree Size 

l Not part of 
~. output record 



UTS TECHNICAL MANUAL 

FIGURE RA-9 Load Module File (Cont1d) 

Keyname: TREE 

o 
-1 
o 

+3 
+4 
+5 
+6 
+7 
+8 
+9 

+10 

8 16 24 
00 I 00 I 00 

r 
OC 

- - TEXTC IOutput File Name l 

- - - - - - - - - - - -
- - - - - - - - - - - - - -

DA (Data Area Size) DA JData Area OrQ.) 
RFDF Stack Size (word) 
DA (PP Area Size) D A (PP Area Ora. ) 

DA (DCB+DCBTAB size) DAJDCB OriQin) 

37 

! 

- -

- -

SECTION RA 
PAGE 12 
5/17/71 

Tree Size 



11 -G) 
C 
AJ m 
AJ 
» 
I 

0 VLe VPP-X'400 ' VPP VOP 

L 
-IAJm110 

~ b 
VlI1XAJm 
-IO~mn .., 
»I1;;;o~r- 0 - C c r nVlVl-lV'l 

C A-I-IA-I e -I 
a AA A V'l 

n B Global Internal -I 
0 r 

S Symbol Symbol 
m .., Data pp n (1) 

r- y 
Area TeB + Area Tobie Table :J: 

c Z 
W '< 0 -00 0 e n 

c e » -0 0 r-
B ~ c n 

~. T » 
:J t Z (Q A 
r- e C 
0 B » 
c x r-
c.. 

t 



FIGURE RA-ll Run Time Virtual Core 

VLC VPP 

L 
i 
b 
r 
a Program Data 
r 
y 

D 
a 
t 
a 

DCBs are moved to 9000 

Program Pure Procedure Global Internal 
Symbol Symbol 
Table Table 

VDP 

C 
-i 
(/) 

-i 
m 
() 
I 
Z -() 
» .. 
~ » z 
c » .. 



5,,4C ff 
?'~N~ c .... K ",~~ \ 

s,c-r 
('~~ ~ HII' l' 

~I!AI' 

r{'!, e~.5s. LflV-"r 

c (JM"~~ .Hvr(/l 

,"" :J"sr 7-"'13~ L# 

f'1.£ { .41: Z( (, ,It' .::" 

If!:". J '" ;~,'II" /IIj(Il.J~ 
c,cj: J~ ;r."" ,{'lP/5Yf 

..{'L' A J) AAI!) 

fA'O c.'! .$ S 

UTS TECHNICAL MANUAL 

~-£~5L

:f. ,v'?J(, -r 
r fL. &oJ 

SECTION RA 
PAGE 15 
5/17/71 

Wlf $ -rE ('j'/tt"f'" 

:r /V." ~'A..'.v/f £ ) 

~f'fA/ A/E)'''

~NPU,"'" r-~,t.IC"-

40 

S/~B?L ~B~~'" 
I 

PRI'CE.5S 
c.,~ E L >3,.f-+.(~y 



UTS TECHNICAL MANUAL 

BtlJ.t..,1> :pti~ 

F ,',("> "D1(;l,l 

F:~,.: PK~F 

PIA -r P/f-T/f 4,A/'O 

fll..t'c ?,.fl CE.&PH~~ 
S;:i'2c-.,5 ~;t/ 

A'/':"1JF S IA 

IJ7 A PL tJCJ F 

;3t{~Ll> 

G£ tip A.L. oS /4IE/L 
.r/f.8L. L.-.-

SECTION RA 
PAGE 16 
5/17/71 



UTS TECHNICAL MANUAL 

SECTION RA 
PAGE 17 
5/17/71 

SJ!Vr 
i.. ::c8/f/l/7'/ /}f¢OcJ 

( ~ ~o AltI,,~) 

42 

f :51" L.~J? 

~ ~/~E JII"Ft-r 

"" J+I? f..,.~- ?Il...-r 
;t; ~ ..,--

o 



s~~~:~ : 
I?r'F S 1',f' 

l~L.;tf;r: 

S~/-!" ~ .s 

UTS TECHNICAL MANUAL 

-r ~ -r ..s -" t' .:!-

i 

yc s 

SECTION RA 
PAGE 18 
5/17/71 

r?f' .; 'f/r .' 
L-. :J~~ 'r~ if,. ~ 

( AI:' /(,/;;:-rL i! 
, ) 

I 
43 



1,IlffS TECHNICAL MANUAL 

sr-r' " 
AI,f /11 ~. l> ~ f~ 'fJI,<'j 

111 II" & ... 

yes 

j)L:~ FA?{ ~-r' 

(lJ.. 
.. ~7 l' ..: =- -/ 

44 

SECTION RA 
PAGE 19 
5/17/71 

~rL.-1f/ q; 

/?C.'/; 'D c. ftf~~ 
~..;,~ K /-'I:>F.$ -r A' 

PC.-/:- /rt:-r- '~ ! 

rTp,u e( f? ,--

L f;?r,tfl2/ 



UTS. TECHNICAL MANUAL 

SECTION RA 
PAGE 20 
5/17/71 

-------------,----------

45 



PI? .T~1 : 

'OerA!). J.-r A/I"
AI~~"···D 

UTS TECHNICAL MANUAL 

res 

46 

SECTION RA 
PAGE 21 
5/17/71 



UTS TECHNICAL MANUAL 

ID 

ADVNEFLE - Advance to next input file 

PURPOSE 

SECTION RA.Ol 
PAGE 1 
5/17/71 

To advance to the next input fj Ie from the I ist of input files on the LINK or RUN 
command. 

USAGE 

BAL, SR4 ADVNEFLE 
Secondary entry point 

BAL, SR4 FPTLOAD2 
to print name of current input file 

OUTPUT 

PLISTBUF 
PLISTORG -
FIRSTRD 
OPNIN 

INTERACTION 

Pointer within current file entry 
Pointer to current file flag word 
First read SWT {rewind if EOD} 
Open FPT for F:LINKIN DCB 

CAL 1, 1 
CAL 1, 1 
CAL 1, 1 

Set DCB {remove abnormal address} 
Open DCB (M:GO, F:LINKIN) 
Print message 

SUBROUTINES 

LINKERR2 Print ·CANT FIND - RETYPE· message 

47 



UTS TECHNICAL MANUAL 

ID 

BINTOHEX - Convert binary to Hex (EBCDIC) 

PURPOSE 

Convert a word of binary to printable (EBCDIC) Hexadecimal. 

USAGE 

BAL, SR4 BINTOHEX 
R7 - Binary number to convert 

Return 
D3, D4 - Printable (EBCDIC) Hexadecimal number. 

Leading blanks suppl ied for zeros. 

48 

SECTION RA. 01 
PAGE 2 
5/17/71 



UTS TECHNICAL MANUAL 

ID 

BIN2BCD - Convert binary to decimal (EBCDIC) 

PURPOSE 

Convert a word of binary to printable (EBCDIC) decimal. 

USAGE 

BAL, SR4 BIN2BCD 
R7 - Binary number fo convert 

Return 
D3, D4 - Printable (EBCDIC) decimal number. 

Leading blanks suppl ied for zeros. 

49 

SECTION RA.01 
PAGE 3 
5/17/71 



UTS TECHNICAL MANUAL 

ID 

CHKDfCLD - Search for Declaration 

PURPOSE 

SECTION RA. 01 
PAGE 4 
5/17/71 

Check the Declaration for definition or add to the REF/DEF stack chain. If the 
Declaration is defined, the val ue is returned. 

USAGE 

BAL, SR4 CHKDECLD 
Secondary en try point 

B HASVAL 
BUF2 byte 0 - Displacement into BUF2 of current value word. 

R5 - Expression control byte. 
R7 - Declaration number. 

Return • 
SR3 - number of addresses In TSTACK 

INPUT 

DECLBAS 
RFDFBAS 
EXPRSTK 

R2 - address of REF/DEF stack pointer word 
R7 - value or pointer for value word of Expression 
TSTACK - address of REF/DEF stack word that points to Expression stack 

value word 
R5 - Expression control byte - set defined if Declaration has a value. 

Base address of Declaration stack 
Base address of REF /DEF stack 
Expression stack pointer double word 

50 



UTS TECHNICAL MANUAL 

10 

CHKFREFD - Search Forward Reference stack 

PURPOSE 

SECTION RA.01 
PAGE 5 
5/17;71 

Search the Forward Reference stack and add to the Forward Reference chain or return 
the value of a Forward-Reference-and-hold item, or add an entry. 

USAGE 

BAL, SR4 
BUF2 

Return 

INPUT 

MODNUM 
FREFBAS 
FREFN 
EXPRSTK 

OUTPUT 

CHKFREFD .. 
byte 0 - Displacement into BUF2 of current value word. 
R5 - Expression control byte 
R7 - Forward Reference number 

SR3 - number of addresses in TSTACK 
R2 - address of Forward Reference stack pointer word 
R7 - value or pointer for value word of Expression 
TSTACK - address of FREF word that points to Expression stack value word 
R5 - Expression Control byte - set defined if Forward-·Reference-end-hold 

current modu I e number 
Forward Reference stack base 
Forward Reference stack number 
Expression steck pointer double word 

FREFSTK - Forward Reference stack pointer double word 

SUBROUTINES 

STKOVF 
HASVAL 

Expand designated stack 
Forward- Reference-end-hold exi t 

51 



UTS TECHNICAL MANUAL 

ID 

CHK2EOF - check for two consecutive end of files. 

PURPOSE 

SECTION RA.Ol 
PAGE 6 
5/17/71 

To determine when the end of an input element fi Ie has been reached. 

USAGE 

BAL, SR~ 

Return 
+1 
+2 

OUTPUT 

CHK2EOF 

end of input element file 
further data found on the file 

CURBYTE - current ROM byte 

SUBROUTINES 

READBILI - read a ROM card. 

52 



UTS TECHNICAL MANUAL 

10 

COREABN - Abnormal return opening a core library. 

PURPOSE 

SECTION RA.01 
PAGE 7 
5/17/71 

Get more memory for the core I ibrary buffer in the case of a 07 abnormal. Exit LINK 
after an error message in the case of any other abnormal. 

USAGE 

Abnormal return from a core I ibrary open or read CAL 1, 1. 
SR3 - Abnormal code from CAL 1, 1. 

INTERACTION 

CAL1,1 Print I/O error reading core library 
CAL 1, 9 1 Exit CAL 

OUTPUT 

SYMBOLTB 
ROCORELB+3 -
ROC ORE LB+4 -

SUBROUTINES 

address of core library OEF stack. 
address of core library DEF stack buffer 
size of core library OEF stack buffer 

MMSYMBTB _- Get memory for core library OEF stack. 

53 



UTS TECHNICAL MANUAL 

ID 

ENDECl - Enter new entry into Declaration stack. 

PURPOSE 

SECTION RA. O} 
PAGE 8 
5/17;71 

Place a new entry into the Declaration stack and check for stack overflow. 

USAGE 

BAl, SR4 ENDECl 
R5, R6 - contain Declaration stack entry. 

INPUT 

DEClN - Declaration stack number. 

OUTPUT 

DEClSTK - Declaration stack pointer double word. 

SUBROUTINES 

STK OVF - Expand designated stack. 

54 



UTS TECHNICAL MANUAL 

ID 

ENNAM - Search and enter new entries in the REF/DEF stack. 

PURPOSE 

SECTION RA.01 
PAGE 9 
5/17/71 

Search the REF/DEF stack for a matching entry; if none found, add a new REF/DEF stack 
entry. 

USAGE 

BAL, SR4 
Return 

ENNAM 

R6 - pointer to REF /DEF stack entry 
Secondary entry point 
BAL, SR4 ENNAM 11 

BUF2 - new REf/DEF stack entry. 
Put new entry from BUF2 into the REF/DEF stack. 

Return 
R6 - pointer to REF/DEF stack entry 

INPUT 

RFDFBAS 
RFDFN 

OUTPUT 

BUF2 
RFDFSTK -

SUBROUTINES 

GBYTE 
STKOVF -

Base address of RE F /OEF stack. 
REF/DEF stack number. 

REF/DEF stack entry. 
Stack pointer doubleword for REF/DEF stack. 

Get a ROM control byte 
Expand designated stack 

55 



UTS TECHNICAL MANUAL 

ID 

ENSYMTBL - Put an entry in symbol table. 

PURPOSE 

SECTION RA.01 
PAGE 10 
5/17/71 

Put an internal symbol or global symbol table entry into the correct symbol table. 

USAGE 

BAL, SR4 ENSYMTBL 
BUF2 - Contains symbol table entry. 

INPUT 

PLISTORG
VDP 

OUTPUT 

pointer to current file 
top of available memory +1 

SYMBOL TB - current symbol table origin 

INTERACTION 

CAL 1, 1 Print 'IDDEF' message 

SUBROUTINES 

INTRNAME 
MMSYMBTB 

print symbol table name 
obtain memory for symbol tables 

56 



10 

EVEXP 

PURPOSE 

UTS TECHNICAL MANUAL 

Evaluate designated expression. 

SECTION RA. 01 
PAGE 11 
5/17/71 

Evaluate the designated expression in the Expression stack. If the expression can be 
evaluated,satisfy all chains requiring the expression result. 

USAGE 

BAL, SR4 EVEXP . 
R6 - point within expression stack to designated expression 

Return 
+1 
+2 
R7 

normal return (error return for ORIGIN) 
normal return for ORIGIN 
value of expression for ORIGIN 

INPUT 

TEMPN 
EXPRBAS -

OUTPUT 

Temp stack number 
Base address of expressi on stack 

EXPRSTK - Expression stack pointer double word 

SUBROUTINES 

STKOVF 
RFOFCHN 

Expand designated stack. 
Define a REF 

57 



UTS TECHNICAL MANUAL 

10 

EXPRIN - Read and build an expression 

PURPOSE 

SECTION RA. 01 
PAGE 12 
5/17;71 

Read the expression control bytes from the ROM cards and build an expression in BUF2. 

USAGE 

BAL, SR4 EXPRIN 
R6 - Destination type (zero no destination - origin) 
R7 - Destination address 

If no destination/return as follows: 
+ 1 error return - expression not defined 
+2 R7 - value of expression 

INPUT 

BUF2SIZ 

OUTPUT 

Size of BUF2 

BUF2 - Build expression area 

SUBROUTINES 

EVEXP 
GBYTE 
CHKFREFD -
12BNUM -
CHKDECLD -
3BNUM 

Eval uate the expression 
Get a ROM byte 
Search Forward Reference stack 
Get a one or two byte declaration number 
Search for declaration 
Get 3 bytes of ROM data 

58 



urs TECHNICAL MANUAL 

ID 

EXPTTB - Put expression into expression stack 

PURPOSE 

SECTION RA.01 
PAGE 13 
5/17/71 

Move an expression from BUF2 into the expression stack. Expand the expression stack 
if necessary. 

USAGE 

BAL, SR4 EXPTTB 
BUF2 - The expression to go into the expression stack. 

Return 
R6 - pointer within expression stack to the expression 

INPUT 

EXPRBAS 
EXPRN 

OUTPUT 

EXPRSTK 

SUBROUTINES 

Base address of expression stack 
Expression stack number 

Expression stack pointer double word. 

STK OVF - Expand designated stack. 

59 



UTS TECHNICAL MANUAL 

ID 

GBYTE - Get a ROM control byte. 

PURPOSE 

Read a control byte from the ROM card. 
Sequence check and checksum each ROM card. 

USAGE 

BAL, SR4 
Return 

GBYTE 

R5 - ROM control byte in low order byte 

current ROM byte 

OUTPUT 

CURBYTE 
RCDSIZE 
LASTCARD 
SEQNUM 

current logical ROM record size 
last ROM card indicator 
ROM card sequence' number 

INPUT 

BUF - ROM card buffer 

SUBROUTINES 

READBILI - Read a ROM card 

ERRORS 

Internal error symbol 
(PAl) Illegal data format 
(P AS) Sequence error 
(PA6) Checksum error 

60 

SECTION RA.01 
PAGE 14 
5/17/71 



ID 

INCLOC -
CHKLOC -

PURPOSE 

UTS TECHNICAL MANUAL 

Increment load location counter 
Check load location counter limits 

SECTION RA.Ol 
PAGE 15 
5/17/11 

To increment the load location counter and then check the location counter to make 
sure it is within the DCB area, Data area, or Pure Procedure area. 

USAGE 

BAL, SR4 INCLOC 
R6 - Increment value or bytes. 

To onl y check load location limits (i. e. after ORIGIN evaluation) 
BAL, SR4 CHKLOC 

INPUT 

VPP 
MINSYMTL 
SYMBOLTB 
BACORE+l 
MXPP 
VLC 
BASES+ 1 
BACOREDA+ 1 -
DECLBAS 
VDCB 
BADCB 
DCBBIAS 
MAXLOC 

Pure Procedure origin. 
Origin of largest internal symbol table 
Origin of current symbol table 
Address + 1 of memory obtained for Pure Procedure area 
Maximum load address of Pure Procedure area 
Data origin 
Lowest stack address 
Address + 1 of memory obtai ned for Data area. 
Base address of Declaration stack 
Origin of DeB area 
Load location counter of DCB area 
Difference between DCB Execution address and load address 
Maximum load address of Data area 

OUTPUT 

LOC 
VIRTUAL -

Current load location counter 
Address for Get Vi rtual Page CAL. 

SUBROUTINES 

PRESSTK - Remove all space from stacks. 

INTERACTION 

CAL 1,8 - Get Virtual Page 

61 



UTS TECHNICAL MANUAL 

ERRORS 

Internal error symbol 
(PAS) current load loaation counter out of legal range. 
(PA4) stacks overflow into Data area. 

62 

SECTION RA.ul 
PAGE 16 
5/17/71 



UTS TECHNICAL MANUAL 

ID 

INSERTLB - Insert core I ibrary name 

PURPOSE 

SECTION RA.01 
PAGE 17 
5/17;71 

Insert the core library name into the OPEN and READ PLISTs in order to obtain the 
proper core library RFDFSTK. Also insert the core library name into the HEAD record. 

USAGE 

BAL, SR4 INSERTLB 
R3 - Upper ha I f word must be zero, 

lower half word - EBCDIC of core library 
J 0, J 1, ..• , J 9 , PO, P 1, ... , P9 

OUTPUT 

OPNCORL 1 
PNSIZE 
COREKEY 
CORENAME 
PLISTBUF 

Fi I e name for OPEN c~re library RFDF stack 
File name for OPEN core library HEAD 
Key name for READ core library RFD F stack 
Core I ibrary procedure name in HEAD record 
Pointer to next file Flag word 

63 



illS TECHNICAL MANUAL 

ID 

INTRNAME - Print symbol table name 

PURPOSE 

SECTION RA.01 
PAGE 18 
5/17/71 

Print the name of a symbol tabl e entry as part of the error or warning messages IDDE F 
and IUSAT 

USAGE 

BAL, R7 IN TRNAME 
BUF2 - Symbol table entry 

INTERACTION 

CAL 1, 1 - print the symbol table name 

RESTRICTIONS 

The symbol table entry in BUF2 is not restored after printing the name. 

64 



UTS TECHNICAL MANUAL 

ID 

LINKERR - LINK command error 

PURPOSE 

SECTION RA.01 
PAGE 19 
5/17;71 

Entry is made when an error has been detected during the scan of the LINK or RUN 
command. 

USAGE 

B LINKERR 
R2 - character position within LINK or RUN command where error was detected. 

Return 
CAL 1,9 1 EXIT back to TEL 

SUBROUTINES 

PRINTQ - Prints Eh ? @ n message on user1s terminal. 

65 



UTS TECHNICAL MANUAL 
ID 
LINKERR2 - Print 'CANT FIND - RETYPE' message 

PURPOSE 

This routine is entered when an input file can not be opened. 

USAGE 

Abnormal return on the CAL 1, 1 open ROM input. 

INTERACTION 

Print message on user's terminal. 

SECTION RA.01 
PAGE 20 
5/17/71 

CAL 1, 1 
CAL 1, 1 Read new file NAME. ACCOUNT. PASSWORD from user's terminal. 

SUBROUTINES 

SCAN 
PRINTQ 
FPTLOAD2 

Scan routine for commands 
Print Eh ? @ n message 
Print current input file name 

66 



10 

MMDA 

PURPOSE 

UTS TECHNICAL MANUAL 

Get memory for Data area 

To obtain the correct Virtual page(s) to load Data. 

USAGE 

BAL, SR4 

INPUT 

MMDA 

BACOREDA - Load Location Counter for the Data area. 

SECTION RA.Ol 
PAGE 21 
5/17/71 

OUTPUT 

BACOREDA+l 
VIRTUAL 

address + 1 of the memory obtained for Data area. 
address for Get Virtual Page CAL. 

INTERACTION 

CAL 1,8 - Get Virtual Page 

67 



UTS TECHNICAL MANUAL 

10 

MMDCB - Get memory for DCB area 

PURPOSE 

To obtain the correct Virtual Page(s) to load DCBs. 

USAGE 

BAL, SR4 
Return 

MMDCB 

SECTION RA.01 
PAGE 22 
5/17/71 

SR 1 - address of first word in previous page if new page obtained; otherwise 
current page. 

INPUT 

DCBBIAS 
BADCB 
VPP 

OUTPUT 

BADCB+1 -
VIRTUAL -

INTERACTION 

Di fference between DCB execution address and load address 
Load location counter of DCB area 
Pure Procedure origin 

address + 1 of memory obtained for DCB area 
address for Get Vi rtua I Page CAL 

CAL 1,8 - Get Virtual Page 

ERRORS 

Internal error symbol 
(P A9) - more than 2 pages for DCBs have been requ ested 

68 



UTS TECHNICAL MANUAL 

ID 

MMPP - Get memory for Pure Procedure area 

PURPOSE 

To obtain the correct virtual page(s) to load Pure Procedure. 

USAGE 

BAL, SR4 

INPUT 

MMPP 

BACORE - Load location counter for the Pure Procedure area 

SECTION RA.01 
PAGE 23 
5/17/71 

OUTPUT 

BACORE+1 
VIRTUAL 

address+ 1 of the memory obtained for Pure Procedure area. 
address for Get Vi rtual Page CAL. 

INTERACTION 

CAL 1, 8 - Get Virtual Page 

69 



UTS TECHNICAL MANUAL 

10 

SECTION RA.01 
PAGE 24 
5/17/71 

MMSYMBTB - Get memory for symbol tables and core library REF/DEF stack 

PURPOSE 

To obtain the correct virtual page(s) for the Internal and Global Symbol tables. Also 
obtain memory for the core library REF/DEF stack. 

USAGE 

BAl, RO MMSYMBTB 

INPUT 

SYMBOLTB - current symbol table origin 

OUTPUT 

SYMBASE - lowest address+3 of memory obtained for tables. 
VIRTUAL - address for Get Virtual page CAL. 

INTERACTION 

CAll,8 Get Virtual Page 

70 



UTS TECHNICAL MANUAL 

ID 

MM TBASE - Get memory for the stacks 

PURPOSE 

To obtain the correct virtual page(s) for the internal load stacks. 

USAGE 

BAL, RO MM TBASE 

INPUT 

BASES+ 1 - Lowest stack address 

OUTPUT 

STKBASE -
VIRTUAL -

lowest address of memory obtained for stacks 
address for Get Virtual Page CAL. 

INTERACTION 

CAL 1,8 - Get Virtual Page 

71 

SECTION RA.Ol 
PAGE 25 
5/17/71 



UTS TECHNICAL MANUAL 

ID 

PRE SSTK - Remove space from stacks 

PURPOSE 

SECTION RA.01 
PAGE 26 
5/17/71 

Remove all space from all the stacks. The only exception is the stack TSTACK. A 
minimum space is retained because TSTACK is used with no overflow logic. 

USAGE 

BAL, RO 

INPUT 

NSTKS 
TEMPN 

OUTPUT 

BASE 
BASES -

PRESSTK 

number of stacks 
temp stack number 

Table of stack pointer double words 
T obi e of stack base addresses 

72 



UTS TECHNICAL MANUAL 

ID 

PRI N TQ - Pri nt Eh ? @ n message 

PURPOSE 

To print one line Eh ? @ n message on user's terminal. 

USAGE 

BAL, SR2 PRINTQ 
R2 - V~lue of n 

INTERACTION 

CAL 1, 1 print a line on user's terminal 

SUBROUTINES 

BIN2BCD - Convert binary number to EBCDIC 

73 

SECTION RA.01 
PAGE 27 
5/17/71 



UTS TECHNICAL MANUAL 

ID 

RAMRABN - Abnormal return reading ASSIGN MERGE record. 

PURPOSE 

SECTION RA.01 
PAGE 28 
5/17/71 

To print 11/0 ERROR READING ASSIGN MERGE RECORDI message 

USAGE 

Abnormal return from the ASSIGN MERGE read CAL 1, 1. 

INTERACTION 

CAL 1, 1 - print 11/0 ERROR READING ASSIGN MERGE RECORDI 
CAL 1, 9 1 EXIT CAL 

74 



UTS TECHNICAL MANUAL 

ID 

READBILI - Read a ROM card 

PURPOSE 

Read a ROM card either through F:LINKIN DCB or the M:GO DeB. 

USAGE 

BAL, SR4 READBI LI 

INPUT 

PLISTORG -
M:GO 
F:LINKIN -

OUTPUT 

BUF 
FIRSTRD 

ERRORS 

Pointer to current fi Ie F lag word 
Input DCB 
Input DCB 

ROM card buffer 
First read SWT (rewind if EOD) 

Internal error symbol 
(PA7) - I~lEGAL DATA FORMAT 

75 

SECTION RA.Ol 
PAGE 29 
5/17/71 



UTS TECHNICAL MANUAL 

10 

REFSATY - Satisfy REFS with zero 

PURPOSE 

SECTION RA.01 
PAGE 30 
5/17/71 

After the MAP has been printed all remaining unsatisfied REFs are satisfied with zero. 
This removes the core chain addresses from the program thus cleaning up unsatisfied 
references to zero. 

INPUT 

RFOFBAS - Base address of REF/OEF stack 
RFOFSTK - Stack pointer double word for the REF/OEF stack 

SUBROUTINES 

RFDFCHN - Define a REF 

76 



UTS TECHNICAL MANUAL 

10 

RELSYM - Release memory from symbol table area 

PURPOSE 

SECTION RA. 01 
PAGE 31 
5/17/71 

To release the page(s) from the Internal and Global symbol table area. Also release 
memory for the core library REF/DEF stack area. 

USAGE 

BAL, SR4 RELSYM 

INPUT 

VDP - Top of available memory + 1. 

OUTPUT 

SYMBASE - Lowest address + 3 of memory obtained for tabl es. 
VIRTUAL - Address for Release Virtual Page CAL. 

INTERACTION 

CAL 1,8 - Release Virtual Page 

77 



UTS TECHNICAL MANUAL 

ID 

RFDFCHN - Define a REF 

PURPOSE 

Satisfy a REF chain through both the expression stack and program. 

USAGE 

BAL, SR4 RFDFCHN 
SR 1 - Value of definition 
SR3 - Pointer into REF/DEF stack of entry to define 
Top entry of TSTACK - resolution of value in SR1 

INPUT 

RFDFBAS - Base address of REF/DEF stack. 

SUBROUTINES 

EVEXP - Evaluate designated expression 

78 

SECTION RA.01 
PAGE 32 
5/17;71 



UTS TECHNICAL MANUAL 

ID 

SCAN - LI N K/RU N command scan 

PURPOSE 

SECTION RA.Ol 
PAGE 33 
5/17;71 

Scan command buffer unti I terminator or end of command is reached. 

USAGE 

BAL, SR4 SCAN 

INPUT 

RO - Address of command buffer 
R 1 - Remaining size of input command (ARS) 
R2 - Byte displacement into command of next field 
R3 - Address where field is to be moved 

OUTPUT 

R6 - Termination character in EBCDIC 
R7 - Number of characters in field - exclusive of terminator. 
R 1- R2 - Updated 

DATA BASES 

TERMS - Termination character set used by LINK/RUN commands. 

ERRORS 

LINKERR - a) 
b) 

no command characters remain. 
field length too long <greater than 10 characters) 

79 



UTS TECHNICAL MANUAL 

10 

STKOVF - Stack overflow handler 

PURPOSE 

SECTION RA.Ol 
PAGE 34 
5/17;71 

Expand the designated stack. If Data area overlaps stacks call PRESSTK to remove all 
excess space from all the stacks then expand designated stack. 

USAGE 

BAL, R4 STKOVF 
R 1 - Stack number of stack to expand 

INPUT 

ADONSIZ - Table of add.on stack sizes 
MAXLOC - Maximum load address of Data area 

OUTPUT 

BASE 
BASES 

Tab:e of stack pointer double words 
Table of stack base addresses 

SUBROUTINES 

MMTBASE 
PRESSTK 

ERRORS 

Get memory for the stacks 
Remove all space from stacks 

PA4 - Stack! overflow into Data area 

80 



UTS TECHNICAL MANUAL 

ID 

SYSLBABN - Abnormal return opening SYS library 

PURPOSE 

To print 11/0 ERROR LINKING SYSTEM LIBRARYI message 

USAGE 

Abnormal return from t~e system Li,brary (:BLIB. :SYS) open CAL 1, 1 

INTERACTION 

CAL 1, 1 print 11/0 ERROR LINKING SYSTEM LIBRARYI 
CAL 1,9 1 EXIT CAL 

81 

SECTION RA. 01 
PAGE 35 
5/17/71 



UTS TECHNICAL MANUAL 

ID 

2BNUM - Get 2 ROM control bytes 

PURPOSE 

Read and pack into one register 2 bytes from the ROM input. 

SUBROUTINE S 

GBYTE - Get a ROM control byte. 

USAGE 

BAl, SR4 2BNUM 
Return 

R7 - 2 bytes from ROM input in low order bytes. 

82 

SECTION RA.Ol 
PAGE 36 
5/17/71 



UTS TECHNICAL MANUAL 

ID 

3BNUM - Get 3 ROM control bytes 

PURPOSE 

Read and pack into one register 3 bytes from the ROM input. 

USAGE 

BAL, SR4 
Return 

3BNUM 

R7 -3bytes from ROM input in low order bytes. 

SUBROUTINES 

2BNUM - Get 2 ROM control bytes 

83 

SECTION RA.Ol 
PAGE 37 
5/17/71 



UTS TECHNICAL MANUAL 

ID 

~2BNUM - Get 1 or 2 bytes of ROM input. 

PURPOSE 

SECTION RA.01 
PAGE 38 
5/17/71 

Read 1 or 2 bytes of ROM input depending on the number of declarations in the 
declaration stack. 

USAGE 

BAl, SR4 12BNUM 
Return 

R7 - 1 or 2 bytes from ROM input in ION order bytes. 

INPUT 

DEClSTK - Declaration stack pointer doubleword. 

SUBROUTINES 

2BNUM - Get 2 ROM control bytes. 

84 



UTS TECHNICAL MANUAL 

ID 

I BATCH - Terminal Batch Entry Subsystem 
Allan Ramacher 

PURPOSE 

SECTION SC 
PAGE 1 
3/27/72 

The terminal batch entry subsystem controls the insertion of terminal iobs into the batch 
iob queue of a symbiont UTS system. 

USAGE 

The calling sequence is a TEL command: 

! BA TC H fid ,fid ,fid o. fid n 

fid = file name account • password 

If the BATCH command has no argument field, TEL responds: 

BATCH WHAT? 

Otherwi se, control is transferred to the BATCH subsystem with the TEL or CCI command 
line in J:CCBUF, the command ARS (Actual Record Size) in byte 0 of J:PUF and the 
index to the command argument field in byte 1 of J:PUF. 

INPUT 

The input for thh processor is the edit file{s) specified in the command line. The iob 
must conform to the requirements of any other batch iob as it is indistinguishable from 
card reader batch iob after its insertion in the input symbiont iob stream. More than one 
iob is permissible in a given file. 

OUTPUT 

The input symbiont buffer created by batch is described in Section VI. 04. 

INTERACTIONS 

Monitor services used: 

CAL 1,8 
CAL 1, 1 
CAL 1, 1 
CAL 1, 1 
CAL 1, 1 
CAL1,2 
CALl, 1 

GETPAGE 
OPEN 
READFILE 
CMDMSG 
BATCH 
ADDFMSG 
OUTLIST 

get 1 page of dynamic storage 
open edit file 
read edit fil e 
echo card image that has an error 
submit a batch iob 
type iob insertion message to OC 
type ID message to terminal 

85 



CAL 1, 1 
CAL 1, 1 
CAL 1, 1 
CALl,S 
CAL 1,9 

ERRORS 

JOBSTAT 
MSG 
CLOSFILE 
FRGEPAGE 
1 

UTS TECHNICAL MANUAL 

request iob status 
type iob status message to terminal 
close edit fi I e 
release page dynamic storage 
return to monitor 

SECTION SC 
PAGE 2 
1/5;73 

All error conditions except command rejected result in the iobs being ignored and not 
entered into the iob queue. 

Error conditions fall into 4 broad categories: 

Command errors 
Job errors 
System errors 
JOBENT errors 

Command errrors and corresponding diagnostics: 

EH?@n 
Structure of Command did not conform to requirements (at character n). 

Job errors and corresponding diagnostics: 

MISSING JOB COMMAND 
The first record of the terminal iob must be a JOB Control command. 

ILLEGAL ACCOUNT 
The account on the JOB Control Command must match the user1s logon 
account. 

ILLEGAL NAME 
The name on the JOB Control Command must also match the user1s logon name. 

ILLEGAL PRIORITY 
The terminal batch iob priority may not exceed the on-I ine priority. 

BLANK NOT ALLOWED IN }(ACCT FIELD 
The extended acctg. field on the JOB Control Command contains blanks. 

XACCT FIELD NOT TERM. By RT. PAREN. 
The extended acctg. field on the JOB Control Command is not 
terminated by a right parenthesis. 

86 



UTS TECHNICAL MANUAL 

COMMAND REJECTED 

SECTION SC 
PAGE 3 
3/27/72 

The fi Ie contains a BI N or FIN Control Command. 

DATA LOST 
Batch expects card i mages and longer records are truncated. 

System errors and corresponding diagnostics: 

FILE READ ERROR 
A fi Ie read error occurred and job must be restarted. 

JOBENT abnormal codes (Corresponding diagnostics found in error message file); 

3F3B 
3F3C 
3F3D 
3F3E 
3F3F 

RESTRICTIONS 

System Restri ctions: 
System must be symbiont. 

User Restrictions: 
A JOB Control Command must be the first record present and specify an account and 
name which match the user's logon account and name. (Found in J:ACCN and 
J:UNAME, respectively.) 

The priority specified must be legal, i. e., not higher than allowed the user (found 
in bits 8-11 J:ABC, currently 7), and a hex number (l-F). Optionally, the 
specification field of the JOB Command maybe left blank, in which 
case BATCH will supply default entries. 

87 



DATA BASES 

Internal tables include: 

UTS TECHNICAL MANUAL 

SECTION SC 
PAGE 4 
3/27/72 

CCS Control Command options 

External data bases (JIn See Section VA 

J:CCBUF 
J:ABC 
J:ACCN 
J:PUF 

SUBROUTINES 

BATCHCAL 
SYNTAX 
SCAN 
HEX2PRNT 
BIN2BCD 

DESCRIPTION 

Command line bu ffer 
Maximum on-line priority (bits 8-11) 
user account 
command ARS and argu men t index (byte zero and one, 

respectively) 

flag symbiont buffer complete and issue BATCH CAL 
report character position of syntax error 
return next argument field of a command 
convert hexadecimal to EBCDIC equivalent 
convert binary to EBCDIC equivalent 

BATCH opens and reads the file{s) specified in the command line argument field. 
JOB Control Commands are scanned and illegal commands result in error notifi
cation. BIN and FIN control commands are rejected with notification. Each 
legal record is formatted into an input symbiont block. When the data block is 
full, the block is flagged as continued and is submitted by a Monitor service 
procedure (M:JOB) to the input symbiont area of the RAD. Subsequent JOB 
Control Commands or end of file signify job completion (the continuation/com
pletion flag is in the M:-'OB PLIST). At that point, M:JOB returns the job ID in 
SR 1 and it is output through M:SL along with the time, date and relative queue 
position of the iob. 

88 



UTS TECHNICAL MANUAL 

Example: 

ID = 041C SUBMITTED 12:14 MAR 03, 170 

WAITING: 49 to RUN 

89 

SECTION SC 
PAGE 5 
3/27/72 



UTS TECHNICAL MANUAL 

START 

CONSTRUCT P LIST 
TO OPEN FILE FR 
TEL LINE 

OPENCAL t 
OPEN USER'S 
FILE 

READREC t 
READ A RECORD 

NO! 

ENTRY I ENTRY 2 

1 MOVE RECORD TO ~~Q 
_ SYMBUF !\..:.I 

YES PUT BUFFER INT 
SYMB IONT FILE 
(WITH A CALI,I) 

COLLECT FIRST 
FOUR CHARS: !XXX 

BINCC + !BIN 

ERROR, SEND 
ESSAGE TO USER 

90 

YES 

SECTION SC 
PAGE 6 
3/27/72 

CMHDL~ 

JOBCC 

CHECK ACCNT NO. 
& USER NAME 
AGAINST JIT. 
CHECK PRIORITY 

ERROR, SEND 
MESSAGE TO USER 
EXIT 

EODCC 

ENTER I INTO 
CONTROL BYTE' 
FOR EOD CARD 

!lMT 

!FIN 

FINCC 

ERROR, SEND 
MESSAGE TO 

USER 

G 



UTS TECHNICAL MANUAL 

ID 

DEFCOM - Create load module containing DEFs only. 
Frances Soskins 

PURPOSE 

SECTION SD 
PAGE 1 
1/13/71 

The purpose of DEFCOM is to make a new load module from an old one. The new 
load module consists only of the HEAD and TREE records (modified to reflect the new 
sizes and locations of the new load module segments), and a modified REF/DEF stack. 
The input load modules are usually core libraries. 

The new load module thus produced allows all the REFs of a ROM to be satisfied with
out having to load a whole core library load module, while making a load module of 
the ROM. Hence, DEFCOM makes the DEFs and their associated values in on~ load 
module available to another without the necessity of loading an entire core library. 

USAGE 

Before DEFCOM can be called, the old load module must be assigned to the element 
input DCB (M:EI) and the element output DCB (M:EO) must be designated for the 
output load module. Then DEFCOM is called by the following control command: 

!DEFCOM 

It is unlikely that DEFCOM will be used on,linei however, it can be used with SET 
commands and the ! DE FC OM command. 

INPUT 

The only input to DEFCOM consists of the load module assigned to the M:EI DCB, 
usually a core library. 

OUTPUT 

The output from DEFCOM consists of a load module containing only the HEAD and 
TREE records and the REF/DEF stack, modified as explained under program DESCRIPTION 
below. 

INTERACTION 

DEFCOM makes use of the followin.g monitor services: 

M:OPEN Used to open the M:EO DeB, preparing for keyed, direct, saved 
output. 

M:READ Used to read the HEAD and TREE records and REF/DEF stack of the 
load module assigned to the M:EI DCB. 

91 



UTS TECHNICAL MANUAL 

SECTION SD 
PAGE 2 
1/13/71 

M:GP Used to get page(s) for the reading in of the HEAD and TREE records 
and REF/DEF stack. 

M:WRITE Used to write the HEAD and TREE records and the REF/DEF stack 
forming the new load module. This is, of course, via the M:EO 
DCB. 

M:CLOSE Used to close both the M:EI and M:EO DCBt 
DEFCOM uses only the M:EI and M:EO DCBs. 

DATA BASES 

External: 
DEFCOM uses the HEAD and TREE tables and the REF/DEF stack produced by LOAD, 
usu a II y for a core library. 

Internal: 
DEFCOM uses the following data: 

TXHEAD The key for the HEAD table. 
TXTREE The key for the TREE tabl e. 
TX:PNDAT The words, in TEXTC format, :PnDATA and several 

arithmetic constants for masking. 

SUBROUTINES 

There are no subroutines in DEFCOM. 

ERRORS 

DEFCOM writes no error (or any other) messages, nor are there any error returns. Any 
I/O errors will be processed as indicated in the corresponding DCB and not by DEFCOM. 
No error checks are made within DEFCOM of any kind. 

RESTRICTIONS 

None. 

DESCRIPTION 

DEFCOM reads the HEAD table through the M:EI DCB and obtains from there the size 
of the TREE table. The TREE table is then read and the size of the REF/DEF stack 
obtained from there. In order to flag the new load module as a DEFCOM load module, 
the first byte of the HEAD table is set to hex 1831• A dynamic page is then obtained 
(M:GP) to start the REF/DEF stack buffer. If a core library is being created, a 
:PN DEF entry is put at the top of the REF/DEF stack buffer and the size of the stack 
in the TREE table image is increased to include this first entry. The maximum REF/DEF 
stack size in the HEAD table image is also modified if it is not already large enough to 
include the additional entry. In order to determine whether or not a core library is 

92 



UTS TECHNICAL MANUAL 

SECTION SO 
PAGE 3 
1/13;71 

being created, the account field in the output DCB (M:EO + 27) is checked for II :SYS II 

and the file name (M:EO + 23 and 24) is compared with IIPnDATA'. 

The segment name and size are copied from the TREE table into a buffer which is used 
as a key to read the REF/DEF stack. The TREE table image is altered now to now to 
show that the sizes of control sections with protection types 00, a 1, and 10, and the 
size of the expression stack are all zero. Additional pages are obtained to contain the 
entire REF/DEF stack and the REF/DEF stack is read in, starting at the first available 
page, and using the segment name as the key. 

Each entry of the REF/DEF stack is examined to determine if it is a CSECT (in which 
case the evaluated bit is set and the size is set to 0), or an 03:PN entry (in which case 
the core library data size is put, in byte resolution, into the low order bits of the 
eighth word of the HEAD table image.) All other entries are unmodified. 

DEFCOM then writes out (M:WRITE, via M:EO), the new, modified HEAD table, 
TREE table, and REF/DEF stack. The M:EO and M:EI DCBs are closed, (M:EO is 
closed with a SAVE instruction), and DEFCOM exits to the Monitor. 

93 



UTS. TECHNICAL MANUAL 

10 

SYMCON - Symbol Table Control 

PURPOSE 

SECTION SE 
PAGE 1 
9/29/71 

The purpose of SYMCON is to provide a user with a means to build a DELTA-format 
global symbol table, modify and/or list the external symbols of a load module. This 
load module must have been created by the overlay lo~der. SYMCON reads the REF/ 
o EF and expression stacks and the TREE record of a load modul e and allows a user to 
change external symbot names, to list and delete external symbols, and to build and 
discard a global symbol tabl e. 

Three of the more common uses of SYMCON are to reconcile any possible conflicts of 
external symbol names between two load modules which have been or will be combined 
into one, to reduce the number of external symbols in load modules which cannot be 
combined because their tables of control information are too large, and to provide the 
load module with a global symbol table in DELTA symbol table format for use by DELTA 
during module execution. 

USAGE 

Before SYMCON can be called via batch, the load module file must be assigned to the 
element input DCB as a Keyed file. Then SYMCON is called by the following control 
command: 

!SYMCON 

When SYMCON is used as an on-line processor, the load module must be assigned using 
a SET command and called by typing in SYMCON. 

As an on-line processor SYMCON does the following: 

1. types out ISYMCON HERE' initially. 
2. prompts all command inputs with a 1*1 character. 
3. understands the following characters as command terminators. 

Hex 
OC 
00 
15 
1C 
10 
1E 
IF 

Character 
FF 
CR 
NL/LF 
FS 
GS 
RS 
US 

Form Feed 
Carri er Return 
New Line/Line Feed 
Fi eld Separator 
Group Separator 
Record Separator 
Unit Separator 

4. responds to the 1 EN DI command by writing out the updated load modul e on 
M: EI and returning control to the monitor (via M: EXIT). 

94 



UTS TECHNICAL MANUAL 

SECTION SE 
PAGE 2 
9/29/71 

5. suppresses certain output to M:LO - namely, the copy of the command line, 
and various page-eiects. All diagnostic messages, as well as the map 
produced by the -LIST- command are di~ected to M:LO. 

There are seven SYMCON commands: LIST, DELETE, KEEP, CHANGE, BUILD, DISCARD 
and EN D. The functions of these commands are: 

1) LIST - produce a load map. 
2) DELETE - delete the specified symbols. 
3) KEEP - delete all symbols except those specified. 
4) CHANGE - rename a symbol.. 
5) BUILD [(LIB)] - build a Delta - format global symbol table with inclusion 

of library DEFS being optional. 
6) DISCARD - discard a Delta-format global symbol table. 
7) END - exit from SYMCON when running on-line. 

The formats of these commands are given in Table SE-l. Blanks may be used within com
mands but may not be imbedded withi n a command verb or symbol. A command is 
terminated by the end of the input record or by a period. In batch mode, a SYMCON 
command may be continued from record to record (card to card) by the use of a semi
colon, in which case the continuation record begins with the first character. 

95 



UTS TECHNICAL MANUAL 

SECTION SE 
PAGE 3 
9/29/71 

TABLE SE-1 SYtv\CON COMMANDS 

Command 
LIST 

DELETE name [, name] ••• 
(", name ... 

KEEP name [, name ••• 
[, name 

CHANGE name)/name2 

[, name) / name2] ••• 

[, name) /name1] 

BUILD, (LIB)] 

DISCARD 

8'lD 

Descri pti on 
Lists the external symbols of the load module in 
the same format as the load map. (The order may 
be different than that produced by a load map, 
and there may be some additional control sections 
listed corresponding to items (such as DCBs) 
obtained from the library. 

Del etes the spec i fi ed symbol s. Any D EF symbol 
in the module load map may be deleted unless it 
enters the definition of an item that is not com
pi etely defined and is either a D EF symbol or a 
forward reference. Forward references do not 
appear in the load map. 

Deletes all !iymbols except: 
1. D EFs listed in this command 
2. DEFs that help define symbols listed in this 

command. 
3. DEFs defined in terms of unsatisfied 

references (and used) 

Renames symbols. This command may be used to 
operate on any item with a name (DEF, SREF, 
PREF, DSEC). Name 1 is the name of the sym
bol to be changed and must be in the module. 
Name1 is the name to be given to the symbol 
identified by name 1 and must not already exist 
in the module. 

Builds a global symbol table which contains all 
of the names and values of DEFS in the load module's 
REF/DEF stack. Library DEFs are included if the 
(LIB) option is specified. Names will be necessarily 
truncated to DELTA's seven character format. If 
two or more names are found which are identical 
in the first seven characters and which qualify 
for inclusion in the symbol table, only the first 
is included. 

Del etes an existing global symbol table from the 
load module. 

Terminates SYMCON when used as an on-line 
processor. 

96 



UTS. TECHNICAL UAL 

OUTPUT 

Printed output from SYMCON (LIST command and 01 I informational and error messages) 

goes to the system LO device. 

SYMCON reads the TR EE record and the REF/DEF and expression stacks, processes each 

command independently, then rewrites these same records providing no maior errors 
are encountered. The old load modul e is always overwri Hen unl ess an abort occurred, 
in which case it is not .. The execution of each command is independent or any other 
command" Thus, the configuration of the load module after the execution of one com
mand is what is seen by the next command. 

Any alteration of the REF/DEF stack by the 'DELETP, 'KEEP' or 'CHANGE' commands 
is not reflected in the global symbol table, if one already exists, until another 'BUILD' 
command is executed. 

In addition to the updated load module and a load map, SYMCON also outputs the 
informational message, THESE SYMBOLS WERE DELETED name, name ••• name. This 
message includes all deleted symbols including deletions caused by other deletions • 

• 

INT ERACTI ON 

SYMCON uses the following monitor services: 

M:SETDCB 

M:READ 

M:DEVIC E 
M:WRITE 

M:EXIT 
M:XXX 

M:GP 
M:TRAP 
M:OP8\I 
M:DELREC 

M:CLOSE 

Used to set an error address in the user's DCB M:EI for SYMCON 
processi ng. 
Used to read the TR EE tabl e and the REF /D EF and expression 
stacks of the load module and to read the commands to SYMCON. 
Used to space on the M:LO DCB. 
Used to write the error and informational messages, the load map 
(from a LIST command), and the updated load module. 
Used to return to the tvAonitor after normal SYMCON completion. 
Used to return to the I\Aonitor after an unrecoverabl e error so 
that the job is aborted. 
Used to get memory pages for reading In the load module. 
Used to ignore fixed point arithmetic overflow. 
Used to verify that the specified load module exists. 
Used to delete the global symbol table record from the load 
module. 
Used to close the M:LO DeB after printing messages. 

SYMCON uses the DCBs M:SI, M:EI, and M:LO. 

97 



DATA BASES 

External: 

UTS TECHNICAL MANUAL 

SECTION SE 
PAGE 5 
9/29/71 

SYMCON uses the JIT, HEAD and TREE table and the REF/DEF and expression stacks 
produced by lOAD. 

Internal: 
SYMCON includes the following data: 

SYMTAB 

HEAD 
TREE 
HEXBCD9 

A 64-word table containing bytes which are picked up to deter
mine if an input character is an illegal character, a legal 
symbol character, a blank, a comma, a slash, a command ter
minator or a semicolon. 
The HEAD key for the HEAD record of the load module. 
The TREE key for the TREE record of the load module. 
A 16-character table used for character conversion of hex 
numbers by direct table lookup. 

and, in TEXTC format, 16 error and informational messages. 

SUBROUTINES 

SYMCON contains the following subroutines and modules: 

CBINT 

CHARNX 

EXN EXT 

HEXBCD 

PRINT 

PRINT1 

RDNEXT 

This routine interprets expression stack control bytes. It skips terms 
which do not point to the REF/DEF stack. 

This is character scanner for input commands. It gets the next 
character and its type and puts them in regi sters for use by SY MN EX 
(below). The table SYMTAB (described under DATA BASES, above) 
is used to determine the character's type. 

This routine sets a register to the next item in the expression stack 
or to the start of the expression stack, dependi ng on a particular 
register's contents at entry, and initializes the control byte inter
preter (CBINT, above). 

This routine converts a hex value to EBCDIC for output by table 
lookup. leading zeroes are suppressed. This routine uses the 
HEXBCD9 table described under the section on DATA BASES. 

This routine is used to print (using M:WRITE with the M:lO DCB) 
a symbol and a message on two lines. 

This routine is used to print a message only on one line, as in 
PRINT, above. 

This routine sets a register to the next item in the REF/De: stack 
or to the start of the REF/DEF stack, depending on a particular 
register's contents at entry. 

98 



RDSRCH 

RESCOfvli 

SPACE 

SYMNEX 

TEXCOM 

ERRORS 

UTS TECHNICAL UAL 9 J'jiO/-Y/l I .!.. i'/ l 

This routine locates a particular symbo! in the REF/Drr stack and 
returns with the address of the symbol in a given register or returns 
so as to i ndi cate the symbol was not in the stack., It call s T EXCON\ 
t·o compare two names to find a match. 

This routine determines the resolution of an item in the REF/DEF 
strack and stores the value and byte displacement upon returning. 

This routine upspaces a given number of lines by using the PRINTl 
routine to print blank lines (M:LO DCB). 

This routine scans the next symbol from the input command buffer and 
uses CHARNX, above, to obtain the character and type, which are 
returned in registers. 

Thi s routine compares two T EXTC names. The inputs are the addresses 
of the two names. The return from TEXCOM indicates whether the 
two names ~ere or were not equal. TEXCOM is called from RDSRCH. 

The error messages in Table SE-2 are produced by SYMCON. Those flagged with 
asterisks are printed through the M:LO DCB just prior to an M:XXX (Monitor, abort 
thi s job) exit. The other messages cause no unrecoverabl e probl ems and the job conti nues. 

99 



UTS TECHNICAL MANUAL 

SECTION SE 
PAGE 7 
9/29/71 

TABLE SE-2 SYMCON ERROR MESSAGES 

Messages 

name 
ALREADY IN STACK, CHANGE 

NOT MADE 

name 
APPEARS AS TYPE OTHER THAN 

DEF NO ACTION 

*COMMAND CONTAINS 
ILLEGAL CHARACTER 

*INCORRECT SYNTAX 

*INCOMPLETE COMMAND 
LOAD MODULE 
UNCHANGED 

NO DELETIONS RESULTED 
FROM THIS COMMAND 

name 
NOT FOUND IN REF/DEF 

STACK 

*REQUIRED CORE SPACE NOT 
AVAILABLE 

THESE SYMBOLS WERE 
DELETED 
name 
name ••• 
name 

Description 

An attempt was made to change the name 
of an item to a name currently used by 
another item. 

The symbol was a PREF, SREF, or DSEC and 
could not be deleted. 

The comma'1d contained a character not in 
the character set defined for METASYMBOL. 

Command syntax was incorrect. 

Th is me"ssage indicates that u continuation 
was specified {with a semicolon}, but the 
end of fi I e was encountered when an attemp 
was made to read another card. 

None of the symbols I isted caused any 
deletions. The load module is unchanged. 

The identified symbol did not exist as an 
external symbol in the load module. 

This message indicates that the M:GP 
procedure fai I ed to supply enough operating 
space for the processor. 

This message includes all deleted symbols, 
including deletions caused by other 
deletions. 

100 



UTS TECHNICAL MANUAL 

SECTION SE 
PAGE 8 
9/29/71 

Message 

name 
USED IN UNEVAULATED 

EXPRESSION, NOT 
DELETED 

*INPUT M:EI FILE NOT 
STANDARD LOAD MODULE 

DELTA SYMBOL TABLE 
ALREADY IN LOAD MODULE, 
NO ACTION TAKEN 

NO SYMBOLS FOR DELTA 
SYMBOL TABLE, TABLE 
NOT BUILT 

NO DELTA SYMBOL TABLE 
TO DISCARD, NO ACTION 
TAKEN 

ILLEGAL OPTION 

OVERLAY PROGRAM, 
DELTA SYMBOL TABLE 
BUILT FOR ROOT ONLY 

Description 

Th is message i ndi cates that the symbol was 
used to define an item that depended on 
an external reference. The item may have 
been a DE F, a forward reference, or a 
core location of the object code. 

101 

This message indicates that the file read 
(HEAD and TREE record) was not that of a 
LOAD-created keyed load module. 
SYMCON operates only on files which are 
such load modules. 

This message indicates that the global 
symbol table word of the load module's 
head record is non-zero. 

This message indi cates that after scanning 
the REF/DEF stack, there are no symbols 
which qualify for inclusion in the global 
symbol table. 

Th is message indi cates that the global 
symbol table word of the load module's 
head record is zero. 

An option other than LIB was specified on 
the BUILD command. 

This messages informs the user that a global 
symbol table was built for only the root 
of an overl ay program. 



UTS TECHNICAL MANUAL 

RESTRICTIONS 

SECTION SE 
PAGE 9 
9/29/71 

SYMCON language and terminal conventions are essentially the same as those for 
TEL. It might be valuable to reiterate here that SYMCON operates properly only 
on load modules and only as described in the paragraph on USAGE, above o DEFs 
are the only symbols that can be deleted. 

DESCRIPTION 

SYMCON fi rst uses M:SETDCB to set the M:EI DCB error address to the address 
"WRONG" (below), an error processing part of this program. The TREE re·cord 
of the load module is read (M:READ) into a 12-word buffer to det-ermine whether 
the file was keyed correctly as a load module. The HEAD record of the load 
module is read in and word 0 (byte 0) is checked to verify that the load module 
was formed by the Overlay Loader. If the fi Ie was not keyed correctl y or was not 
formed by the overlay loader, SYMCON braches to WRONG where the message 
"INPUT M:EI FILE NOT STANDARD LOAD MODULE" is printed via (PRINT1) 
and the monitor abo-t exit is taken. Otherwise, it is assumed to be a proper load 
module and the size of the REF/DEF stack is obtained from the TREE recordo 
This size is rounded, another page is added and this value comprises the PLIST 
to M:GP which is called to obtain memory pages for reading in the REF/DEF stack. 
If enough space was not avai lable, the message "REQUIRED CORE SPACE NOT 
AVAILABLE" is printed (via PRINT1) and the M:XXX abort exit is taken. 

Otherwise, the REF/DEF stack is read from the M:EI DCB (via M:READ) into the 
specified area, and a count of the number of items in it is made (using RDNEXT) 
and saved. The expression stack size from the TREE record is saved. The sum 
of thi s value and the number of i terns in the RE F /DE F stack, rounded to the 
next highest page, constitutes the PLIST to M:GP, called to get memory for the 
expression stack. If the expression stack is not void, it is read (via M:READ), the 
expression stack size is added to the start address, and this sum is saved. The 
M:DEVICE Cal is used to place the M:LO device at the top of the form, if user is 
not on-line and SYMCON branches to COMPROC which reads (M:READ from M:SI) 
o'ne control record, prints the command image (using ,PRINT1), and determines 
whether a DELETE, KEEP, CHANGE, BUILD, DISCARD, END, or LIST or other 
command was read by call ing SYMNEX to scan the command verb. The symbol 
scan flag and the command start flag are cleared, and control is transferred to 
DELETE, KEEP, CHANGE, BUILD, DISCARD, FINISH, or LIST below, if the command 
was one of these, or back to COMPROC if it was not. If an END command, end 
of file or a bad control record was encountered, control passes to IIFINISH". 

102 



UTS TECHNICAL MANUAL 

SECTION SE 
PAGE 10 
9/29/71 

If FINISH is entered because a bad control record was read, the message 
IIINCOMPLETE COMMAND, LOAD MODULE UNCHANGED II is printed (using 
PRINT1) and the Monitor abort exit M: XXX is taken. Otherwise, the new expression 
stack size is stored into the TREE record image in SYMCON's buffer, and the new 
expression stack is overwritten on the old one (using M:WRITE). Then the new 
REF/DEF stack size is entered in the TREE record image, and the new REF/DEF stack 
is overwritten (M:WRITE), followed by the overwrite of the TREE record. Then the 
normal exit to the Monitor (M:EXIT) is taken. 

DELETE A symbol is obtained from the command buffer (via SYMNEX). If 
there are no more (or none), a check is made to see if any deletions 
have been made. If not, the message "NO DELETIONS RESULTED 
FROM THIS COMMAND" is output (via PRINT1) and control is 
returned to COMPROC. If deletions have been made, the message 
"THESE SYMBOLS WERE DELETED ..• II is printed (via PRINT1), and 
the names of a" deleted DEFs follow. (A) Then new REF/DEF and 
expression stacks are built, according to whatever deletions were 
made (RDNEXT, EXNEXT, RDSTRT, CBINT, EXCNT, and EXSTRT 
are used to go through the stacks and create new ones), the sizes 
of the new stacks are saved, and a branch to COMPROC is made. 

If there is a symbol, RDSRCH is branched to determine if this 
symbol is in the REF/DEF stack. If it is not, the message "symbol 
NOT FOUND IN REF/DEF STACK" is output (PRINT), and processing 
continues at the beginning of DELETE again. If the symbol was 
found but is not a DEF, the message "symbol APPEARS AS TYPE 
OTHER THAN DEF, NO ACTION II is output (PRINT) and processing 
continues at the beginning of DELETE once again. 

If the symbol is a valid one to delete, it is entered into the 
deleted-symbols list (if not already there), and the expression stack 
is scanned for this symbol (using EXNEXT, and CBINT). If the 
symbol cannot be deleted (it does enter into the definition of an 
item that is not completely defined), the message IIsymbol USED IN 
UNEVALUATED EXPRESSION, NOT DELETEDII is output (PRINT), 
the symbol is removed from the list of deleted symbols, and processing 
resumes at the start of DELETE again. Otherwise, the symbol is saved 
(and delete at completion of this command) and control goes to the 
beginning of DELETE again. 

103 



KEEP 

CHANGE 

LIST 

UTS. TECHNICAL MANUAL 

SECTION SE 
PAGE 11 
9/29/71 

The REF/DEF stack is searched (using RDNEXT) and all DEFs and 
forward references items are flagged. (B) A symbol is obtained from 
the command buffer (via SYMNEX), and if there are no more (or 
none), the expression stack is gone through (using EXNEXT) to see 
if the flagged items can be deleted. Those items which can be 
deleted are left flagged, and the flags of those which cannot, are 
cleared. Then a branch into the DELETE portion of SYMCON is taken, 
if any deletions have been made, at point (A), above. If a symbol 
was obtained, it is checked (with RDSRCH) to see if it is in the 
REF/DEF stack and if it is not, the message "symbol NOT FOUND 
IN REF/DEF STACK II is output (PRINT), and processing resumes at 
(B), above. If the symbol is found, its flag (to-be-deleted flag) is 
reset, and the next symbol is pi cked up at (B), above. 

First,a correlation table is built from the REF/DEF stack using 
RDNEXT to get items one at a time. (C) Then a symbol is obtained 
from the command buffer (using SYMNEX) and checked for correct 
syntax (the name 1/name2 format described in the section IN PUT). 
If the delimiter in the command is not correct (a slash between two 
names, comma or period after), the message "INCORRECT SYNTAX" 
is output (PRINT1) and the Monitor abort exit is taken. RDSRCH is 
used to see if the first named symbol is in the REF/DEF stack. If not, 
the message "symbol NOT FOUND IN REF/DEF STACK II is output 
(PRINT), and scanning is restarted at (C), above, skipping to the 
next pair. Then RDSRCH is used to determine if the second specified 
name is in the REF/DEF stack; and if it is, the message "symbol 
ALREADY IN" STACK, CHANGE NOT MADE" is output (PRINT) 
and the processing continues at (C). If both names are all right, 
the change is made and the REF/DEF stack is altered and repacked, 
if necessary. After the last pair of names has been read and processed 
as above, the expressi on stack is then ad i usted according Iy, and a 
branch to COMPROC is taken. 

The M:LO DCB is advanced to the top of a new page (using M:DEVICE). 
The REF/DEF stack is processed from top to bottom using RDNEXT and 
each DEF, SREF, PREF, DSEC, and CSEC and its name and its r-esolution 
(from RESCOM) or byte displacement are output (PRINT1), one to a 
line, like a LOAD-produced load map. At the completion of the 
REF/DEF stack, the M:LO DeB is advanced to the top of a new page 
(M:DEVICE) and LIST branches to COMPROC . 

BUILD [(LIB)] A check is made to determine whether a global symbol table already 
exists. If one doesnlt, the remainder of the command image is scanned 
for the library option (LIB) and a flag is set accordingly to indicate 

104 



UTS TECHNICAL MANUAL 

SECTION SE 
PAGE 12 
1/5/73 

including or excluding of library DEFs. Two sweeps of the KEF/DEF 
stack are made: The first of which is to establish the size of the 
global symbol table by counting the number of all Dfr·s (if LIB 
option is specified) or just non-library DEFs. (Th,:; may result in an 
over-estimate since no attempt is made in this 5v,eep to exclude 
dupl i cate DE Fs). Three words are reserved for each item, and the 
resulting number of pages are obtained for the global symbol table. 
In the second sweep of the RE F /DE F stack, a II I ibrary DE Fs (if LIB 
option specified) or non-library DEFs are re-formatted into a 
Delta symbol table item, and included :n the global symbol table 
if it1s na"!'le is not a duplicate (to seven characters) if one already in 
the global symbol table. These item,; are three words long each, and 
divided into two categories, according to whether the value is a 
constant or relocatable address. fhe formats of these items are as 
follows: 

01 N 

Location item: C
4 

X1021 

10 \N 
I 

1 
Constan t item: 

C
4 

C
1 (2 

C
5 (6 

17-bit address 

C
1 

C
2 

I 
I 

C5 1 
C

6 , t 

. 
32-blt constant 

C
3 

C
7 

C
3 

C
7 

Name, with 
count, left 
justified, zero-
fi lied. 

I 
Name, with count, 
I eft justifi ed, zero
fi II ed. 

The load modu les head record (HEAD+7) is updated to reflect the size and location 
of the global symbol table 

o 14 15 31 

I SIZE I LOCATION 

The record key for the global symbol table is formed by appending a X'09' to the 
root name found in the tree. 

105 



UTS TECHNICAL MANUAL ---, 

SECTION SE 
PAGE 13 
9/29/71 

After all DE Fs are processed, the head and global symbol table records are written 
out. If the global symbol table bui I t was for an overlay program the user is informed 
that global symbol table was built for the root only. 

DISCARD 

END 

The global symbol table is deleted by deleting the global symbol 
table record (via M:DELETE) and setting the global symbol table 
head record to zero. 

A branch is made to the termination routine which sets up the key 
name for the expression stack record, updates the expression and 
REF/DEF stack size in the tree (TREE + 7, 9 respectively), writes 
out the expression and REF/DEF stacks and exits (M:EXIT). 

106 



UTS TECHNICAL MANUAL 

1_-

SECTION SE 
PAGE 14 
9/29/71 

~ {VYJffJ/JVD - ~\~e-: I~;; I _---------, 

I f ect-d tJAJD -7/J terpt~ i 12Jc)f1mf-J J.. £)( / r .;' 
I '()mrnt9~j) ;;1fJIlb~ ecaJ(l/f~ /}eaJ 

fJ-CO()£Di /US /...,y' oUd metJul e.J' reIu./\ 
7'0 mom / t. 

I 

I 
I 
I 
I 

___ J I - - - - -

~--------~.------~--------+---------~--------~----------~ 

----------------~---

107 



UTS TECHNICAL MANUAL 

ID 

SECTION UB 
PAGE 1 
3/27/72 

ERRMWR - Error Message Fi I e Writer 

PURPOSE 

ERRMWR creates and modifies the error message fi Ie ERRMSG (Section VM). 

USAGE 

! ERRMWR 

INPUT 

Input is read through the M: EI DCB and consists of error message cards and optional 
control cards as described in Chapter II of. the UTS S},stem Management Reference 
t-Aanual (90 16 74). . 

OUTPUT 

Output is the ERRMSG file containing a keyed record corresponding to each error 
message card. Trailing blanks are excluded and a new line character (X'15 1

) is 
appended. 

The key is one word long and has the form: 

f 

03 Bi nary val ues of col umns - 1-6 

Each error message card is I isted through the M:LO DCB. 

INTERACTIONS 

M:DEVICE (HEADER) 
M:DEVICE (PAGE) 
M:OPEN 
M:READ 
M:WRITE 

M:CLOSE 
M:WRITE 
M:WRITE 

establ ish a head i ng for list of error messages 
page eiect 
opem or create ERRMSG 
read (through M: EI) deck of error message cards. 
write (through M: EO) a keyed record corresponding to each 
error message card 
close ERRMSG 
write (through M:DO) error notification if card illegal 
write (through M:LO) I ist of error messages 

108 



UTS TECHNICAL MANUAL 

ERRORS 

SECTIG>N UB 
PAGE 2 
3/27/72 

Error notifications are printed immediately below the offending error message card 
image and the card is ignored. 

*** INVALID CONTROL 
*** INVALID HEX CODE 

*** ILLEGAL CONTINUATION 
*** UNABLE TO OPEN FILE 
IERRMSG I: JOB ABORTED 

DESCRIPTION 

a control card with an invalid code was detected. 
card column 1-6 was punched with a non-hex digit 
(except blanks). 
a second continuation was attempted. 

ERRMSG was unavai lable after 10 attempts to open. 

ERRMVvR attempts to open the ERMMSG file in IINOUP mode. If the file does not 
exist, the mode is changed to IOUI' and the file is created (in the userls account). 
If the fi Ie is busy, ERRMWR is put to sleep for one second and another attempt is 
made. Ten successive fai lures result in error notification and job abortion. 

Once the file is open, a page eject and heading are sent to the LO device unless 
LO is assigned to the terminal, in which case a prompt character (» is issued. Each 
error message card is read and printed unless LO is not assigned to the printer, In 

which case printing is suppressed. 

Columns 1-6 are interpreted as a hex number and converted to a three byte key. A 
record corresponding to the text of error message is written (with NEWKEY overriden) 
into ERRMSG. 

Processing is terminated by a ! EOD control command, end of fi Ie return or a carriage 
return. At this point ERRMSG is closed and saved. 

109 



UTS TECHNICAL MANUAL 

10 

MAILBOX - System Messages to Users 

PURPOSE 

SECTION UC 
PAGE 1 
11/19/70 

The mailbox subrouth~e may be called by any processor with JIT access to place 
a message in a file named MAILBOX in any specified account. Log-on detects 
the presence of that file and notifies the logging on user that he has messages 
waiting. 

USAGE 

LI,04 
LI, SR3 
BAL, SR4 

flag 
FPT 
MAILBOX 

If flag is zero the message is sent to the line printer only. If flag is nonzero, the 
message is sent to MAILBOX and the line printer. 

FPT is the aadress of a two-word parameter list. The first word (FPT) r:>ntains the 
address of the TEXTC messages to be sent. The message length may p". ~xceed 40 
characters. The second word (FPT+ 1) contains the address of the two-word account 
number of the recipient. 

All registers are saved and restored. 

INPUT 

The calling user's JIT is examined for the sender's account number which is included 
in the MAILBOX message. 

OUTPUT 

The message is formatted in J:CCBUF of JIT and then is added as a keyed record to 
MAILBOX (if 04 is nonzero) and is sent to the printer by M:PRINT. The key is the 
current iul ian date-time. 

110 



UTS TECHNICAL MANUAL SECTION UC 
PAGE 2 

1/10/73 

The message to the MAILBOX contains the sender's account number. The message 
to the line printer contains the recipient's account. 

The message format is 

hh:mm MON dd BY account Message text •••• 

hh:mm is the time in hours and minutes {24-hour clock}. 
MON dd is the month and day. 
BY account is either sender or recipient as just described. 
Message text is the message as sent. 

INTERACTION 

M:TIME is called to determine the current date-time. 
M:PRINT sends the message to the line printer. 
M:OPEN, M:WRITE, M:CLOSE add the message to the MAILBOX fi Ie. 
M:WAIT CAL is issued if the MAILBOX is busy. 

SUBROUTINES 

Julian is called to format the date/time to be used for a key. 

RESTRICTIONS 

The ca II i ng processor must have CO privelege to bui Id a fi I e in another 
accounto The caller must insure that a Super Close is finally issued. The 
message text may not exceed 40 characters. 

111 



UTS TECdNICAL MANUAL 

DESCRIPTION 

SECTION UC 
PAGE 3 
11/19/70 

MAILBOX calls M:TIME and Julian and formats the message in the buffer. If D4 
is nonzero, the MAILBOX file in the recipient account is opened in update mode. 
If it does not exist, it is opened in output mode. If it is busy, the M:WAIT CAL 
is executed to wait for one minute and try again. If the file is still busy after two 
minutes, the MAILBOX writing is skipped. When the file is opened, the record is 
written with a key of the current julian date. If the key already exists, the key is 
incremented in the rightmost bit of the second word and the M:WRITE is executed 
again. 

After the record is written in the MAILBOX file or if D4 is zero, the recipient's 
account is placed in the message and the message is sent to the printer via 
M:PRINT. 

The JIT account and the registers are restored and exit is taken. 

112 



ID 

SYSTEM UTS 

PURPOSE 

UTS TECHNICAL MANUAL 

SECTION UD 
PAGE 1 
1/9/73 

Under a single cover, SYSTEM UTS provides a set of frequently-used procs that 
have been found usefu I in UTS system development. Except for SYSTEM BPM, 
which is used in some processors, SYSTEM UTS is the only Meta-Symbol system 
proc used in UTS. 

USAGE 

SYSTEM UTS contains four subsets of procs that are selectively assembled by de
fining symbols prior to the call or SYSTEM UTS. The defining symbols and their 
default values are given below. A value of 1 for a symbol causes the correspond
ing set of procs to be assembled. A value of 0 causes it to be skipped. 

default value is 1. UTSPROC 
S69PROC 
ANSPROC 
MONPROC 

default value is equal to the value assigned to UTSPROC. 
default value is O. 
default value is O. 

Note that the value of S69PROC is dependent on UTSPROC. As an example, the 
INITIAL module contains code that conflicts with that generated by the UTSPROC 
portion of SYSTEM UTS but it requires the proc generated by S69PROC. Thus, 
INITIAL is coded as follows: 

UTSPROC 
S69PROC 

CONTENT 

SET 
SET 
SYSTEM 

o 
1 
UTS 

The following procs are described: 

UTSPROC 

BUMP, PUSH, PULL 
ENABLE, DISABLE 
HD, BD 
OVERLAY,OVERTO 
REMEMBER 
DESTRUCT 

113 90 19 94A-l (7 /73) 



MAP, UNMAP 
OB, OBAL, OBSR4 
SCREECH 
SET, RSET 
T:PUSHE 

UTS TECHNICAL MANUAL 

WORT AB, HAFT AS, BYT AB 

S69PROC 

LOAD, STORE, MODTST, COMPARE 
LDMAP 

ANSPROC 

BIL, BOL 
ANSB, ANSNB, ANSBAL 
ERRABNCD 
DAYS 
SXP 

MONPROC 

CFU, DCB, Master Index Definitions 
CLEAR 
LIF 

DESCRIPTION 

SECTION UD 
PAGE 2 
1/9/73 

Some of the procs in SYSTEM UTS were used in other SYSTEM proc decks in 
earlier versions of UTS. The procs generated when UTSPROC is set to 1 were 
formerly the complete SYSTEM UTS. The procs generated when MONPROC is 
set to 1 were formerly known as SYSTEM FOOMON or SYSTEM MON. The 
procs generated when S69PROC is set to 1 are new in DOO-UTS and are used 
to provide parameterized code for Sigma 7/9 compatabi lity. The procs gen
erated when A NSPROC is set to 1 provide parameterized code for ANS/ 
NONANS tape systems. 

The following procs are defined when UTSPROC is set to 1. 

BUMP, PUSH, PULL 

These procs are used to modify TSTACK. BUMP modifies the TSTACK SPD by 
the amount specified by the first argument, using the register specified by the 
second argument 

BUMP # R , 

90 19 94A-1 (7/73) 114 



UTS TECHNICAL MANUAL 

SECTION UD 
PAGE 3 
1/9/73 

PUSH and PULL push or pull N words into TSTACK, as specified by the first argument, I 
into or from registers starting at the second argument. Acceptab Ie forms are 

PUSH 
PUSH 
PUSH 

R 
1, R 
N, R 

ENABLE, DISABLE 

PULL 
PULL 
PULL 

R 
1, R 

N, R 

(defau It N=l) 

1<N<17 

ENABLE generates a Write Direct instruction to reset the interrupt inhibit bits 
(C,I, and E) in the current PSD. DISABLE sets the bits. 

HD, BD 

HD and BD are function type procs that return the halfword and byte address of the 
argument, respectively. The HD proc generates the address AF(l)+AF(l); the BD 
proc generates H D(AF( 1)) + H D(AF( 1)) • 

OVERLAY,OVERTO 

OVERLAY and OVERTO are used to call a Monitor overlay and enter it at a 
specified entry point. OVERLAY remembers the calling segment, if any, to allow 
returning to that segment. OVERTO assumes that the segment called wi II not re
turn, (BAL versus B). OVERLAY generates a BAL using register 11. Register 2 
is loaded with the segment number and, if two arguments are specified, register 0 
is used to contain an entry point index. Only one argument is required if reg
ister 0 is initialized by the calling program. 

OVERLAY 
OVERTO 

Segment #, entry point index 
Segment #, entry point index 

These procs use subroutines T :OVERLAY and T :OVER in the T :OV modu Ie (see the 
UTS System and Memory Management Technical Manual, 90 19 86, for a descrip
tion of these subroutines and a general overview of UTS Monitor overlays.) 

REMEMBER 

REMEMBER records the current overlay number and the contents of register 11 
for use in returning from an overlay, but does not cause an overlay to be asso
ciated. REMEMBER is called by 

REMEMBER 

and generates a BAL, 14 to T:REMEMBER. 

115 90 19 94A-1 (7/73) 



UTS TECHNICAL MANUAL 

DESTRUCT 

SECTION UD 
PAGE 4 

1/9/73 

The DESTRUCT proc generates a calling sequence to the T:SELFDESTRUCT subroutine, 
in the T :OV module, to delete the user1s current Monitor overlay. 

MAP,UNMAP 

The MAP and UNMAP procs generate calls to the MAP and UNMAP subroutine, which 
sets and resets the MAP bit in the current PSD by executing an LPSD. Register 1 is 
destroyed by the BAL to the subroutine. The MAP and UNMAP subroutines are con
tained in the ERHNDLR module. 

OB, OBAL, OBSR4 

These were the segload CALs for Monitor overlays in BPM/BTM. Segloading is no 
longer implemented in th is way. They now generate respectively a B, a BAL, 11, and 
a B * 11 • 

SCREECH 

The SCREECH proc is used to load register 15 with a specified software check code 
number and branch to RECOVER. Nearly all occurrences of SCREECH in UTS have 
been replaced by in-line code. The proc is called by 

SCREECH software check code number 

SET, RSET 

The SET and RSET procs encompass a large set of procs whose names are indicative of 
their function and which are used to manipulate user flag bits in the UH:FLG table. 
The general format of the SET, RESET proc is 

{
SET[R] } 

[L] RSET [S] EST] FLAG, FR, IR 

where 

L indicates that the flag is to be loaded first. 

SET assumes the flag is reset and sets. it with an AI instruction. 

SETR makes no assumption and sets the flag with an OR instruction. 

RSET assumes the flag is set and resets it with an AI instruction. 

RSETS makes no assumption and resets the flag with an AND instruction. 

ST causes the result to be stored back into UH:FLG. 

90 19 94A-1 (7 ;73) 116 



UTS TECHNICAL MANUAL 

SECTION UD 
PAGE 5 
1/9/73 

FLAG is the flag to be set or reset. Flag names are defined in section VD. 

FR is the register to contain the flag. The default value for FR is 15. 

IR is the index register containing the user number. The default value for 
IR is 4. 

An exception to the above is that the name SETT is used to generate the proc that, by 
convention, would normally be called SET. 

SYSTEM UTS also contains REFs to the necessary data words for setting and resetting 
flags with AND or OR i.e., 

Xl, X2, X4, X8, X 10, X20, ••. , X8000 

and 

XFFFE, XFFFD, XFFFB, XFFF7, XFFEF, •.• , X7FFF 

T:PUSHE 

This proc is used to save an interrupted environment. T :PUSHE pushes six registers, 
beginning with register 13, into TSTACK to develop work space. It then loads 0 
and 1 with the interrupted PSD and calls T:SAVE in the ERHNDLR module, using 
register 2, to complete the saving of the 19-word environment in TSTACK. The proc 
is called by 

T:PUSHE PSD address 

WORT AB, HAFT AB, BYT AB 

These procs generate word, halfword, and byte tables, respectively. The procs are 
called by 

WORTAB 
HAFTAB 
BYTAB 

H, data 
H, data 
#, data 

where the first argument is the table length and the second argument is the data value 
to initialize the table. 

The following procs are defined when S69PROC is set to 1: 

LOAD, STORE, MODTST, COMPARE 

These procs generate instructions for use in accessing data whose format is to be 
determined at load time. The instructions generated are of either byte or halfword 

117 90 19 94A-1(7/73) 



UTS TECHNICAL MANUAL 

SECTION UD 
PAGE 6 
1/9/73 

type, depend i ng on the va lue of :9, which is an externa I reference. The format of 
the proc reference call is identical to that of standard Sigma 7 machine instructions. 
The procs and the generated instructions are 

Proc reference :9 = 0 :9 = 1 

LOAD, r *a,x LB,r *a,x LH, r *a,x 

STORE, r *a,x STB, r *a,x STH,r *a,x 

MODTST, r *a,x MTB, r *a,x MTH, r *a,x 

COMPARE, r *a,x CB, r *a,x CH, r *a,x 

These procs are generally used in UTS assemblies to access tables that contain physical 
page numbers that may vary between byte or halfword format, depending on the type 
of system. The value of :9 is defined during PASS2 of SYSGEN as a function of the 
BIG9 option. 

LDMAP 

The LDMAP proc generates a Load Memory Map version of the MMC instruction to 
load the memory map in either the Sigma 7 (byte) or Sigma 9 (halfword) type map, 
depending on the value of :9. The value of :9 is used to set bit 14 of the MMC in
struction. The format of the LDMAP proc reference call is identical to the format of 
the MMC machine instruction. It is 

LDMAP, r a 

The following procs are defined when ANSPROC is set to 1: 

BIL, BOL 

Following a ClM or ClR instruction, BIl will branch if effective word was within 
limits, BOL will branch if effective word was out of limits. 

ANSB, A NS NB, A NS Nap, ANSBAl 

These procs provide conditional branches or BAls depending on whether the system is 
ANS or not. A branch or Nap type instruction is generated based on the value, at 
load time, of the value of ANS, which is an external reference generated by PASS2 
of SYSGEN. 

ANSB AF 
ANSNB AF 
ANSNOP AF 
ANSBAl, R AF 

90 19 94A-1 (7/73) 

Branch if system is ANS; NOP otherwise. 
Branch if system is not ANS; Nap otherwise. 
Branch if system is not ANS; Nap otherwise. 
BAl if system is ANS; Nap otherwise. 

118 



UTS TECHNICAL MANUAL 

ERRABNCD 

SECTION UD 
PAGE 7 
1/9/73 

The ERRABNCD proc produces a data word containing the specified error code and 
subcode for use in generating error messages. The proc reference ca" is 

ERRABNCD code, subcode 

The format of the generated data word is 

I Subcode I: : I Code I 
o 1 2 3145 6 7 8 9 10111121314151617181912021222324252627128293031 

DAYS 

The DAYS proc generates a word table containing the day of the year each month 
begins on (e.g., March begins on the 60th day of the year, April on the 92nd day, etc.). 

SXP 

The SXP function converts a string of up to six EBCDIC characters into a 32-bit binary 
quantity. SXP is a function type procedure called as below: 

DATA SXPCSTRING ') 

where STRING is any string of up to six EBCDIC characters. The SXP function ex
amines each of the six input characters as follows: Bits 0 and 1 of each character are 
discarded; bits 2 and 3 of each character are considered zone bits and are collected 
into the first 12 bits of the output value; bits 4 through 7 of each character are con
sidered digits and are packed into bits 12 through 31 of the output value. For example, 
consider 

DATA SXPCTAPE74 1
) 

The resu Itant data word wi II have the format 

8 9 

The EBCDIC representation of this character string is 

E3C 1 D7C5F7F4 

118-1 90 19 94A- 1 (7 /73) 



UTS TECHNICAL MANUAL 

SECTION UD 
PAGE 8 
1/9;73 

The right half of each byte is considered a decimal number and the DIGIT field 
formed by SXP is the binary representation of that number. 

DIGIT = 317574
10 

expressed in binary. 

The Zone field is formed by the two low-order bits of the leading half-byte of each 
character, 

E = 11/10 
C = 11/00 

and so on. 

Zone = 10 
Zone = 00 

In the example, the generated word wou Id be 

The following procs are defined when MONPROC is set to 1: 

CFU, DCB and Master Index definitions: 

Each major field item in these tables is defined by an EQU directive with the value 
of the items word displacement into the table. Additional selected items are defined 
with byte and halfword displacement by preceding the item name with BA or HA 
respectively. These field definitions are uti I ized by IOQ and the fi Ie management 
routines. 

CLEAR 

The CLEAR proc is used to zero registers 8 and 10. It generates the instructions 

LI,8 0 
LI, 10 0 

LlF 

LIF merely generates a LI, 15 AF( 1) This proc is used by CALPROC to generate a 
table which is the target of an EXU instruction as part of the branch vector mechanism. 

90 19 94A- 1 (7 ;73) 118-2 



10 

SYSTEM BPM (for UTS) 

PURPOSE 

UTS TECHNICAL MANUAL 

SECTION UE 
PAGE 1 
3/27/72 

BPM procedures enable the programmer to invoke a number of monitor functions 
without the necessity of hand coding CALs and PLISTs. 

System BPM for UTS was formed by merging E 02 SYSTEM BPM with the new PROCs 
required for UTS-specific monitor functions; BTM - specific PROCs were eliminated. 

REFERENCE 

All of the PROCs listed on the cover page of the UTS/BP Reference ~nual (901769) 
are included in SYSTEM BPM. Note that the PROC name begins with IM:I; this is a 
universal convention. 

USAGE 

The source fi I e must contain the Metasymbol directive SYSTEM BPM in addition to 
SYSTEM SIG7 [ F] [0] [Pl(or SYSTEM UTS which involves SYSTEM SIG7FDP). 

The general format for a procedure call is the following reference line: 

LABEL COMMAND ARGUMENT 

e.g. 
SLEEP, WAIT M:WAIT *7 

In this example the programmer requires the suspension of program execution for the 
number of 1. 2 second tics found in Register 7. SYSTEM BPM expands this reference 
I ine to generate: 

CAL1,8 ADD 

where ADD points to the FPT r-11~!-X-I-F-' .=-1 ~-_-._-._-_-zJ-· 
o 7 31 

Two symbol addresses are avai lable to reference the object code: SLEEP and WAIT. 
SLEEP references the instruction line (the CAL) and WAIT references the PLIST 
generated by the PROC (the ADD). 

119 



ERRORS 

UTS TECHNICAL MANUAL 

SECTION UE 
PAGE 2 
3/27/72 

Error messages are printed on the LO device immediately below the object line 
that resulted in error notification. 

M essage D ·f escnp'lon 

ILLEGAL BUF/PARAM - Invalid address expression specified in PROC referenc e 
RETURN AD DRESS line. (SL, 3) 

UNRECOGNIZED KEY Invalid Keyword specified in PROC reference line. (S L,3) 

IMPROPER # OF AFS The number of argument fields specified in the PROC 
reference I ine was out of range. (SL, 3) 

PARAMETER CONFLICT Conflicting parameter specified in PROC reference 
line, e. g. 2 different file modes. (SL, 1) 

ILLEGAL ARGUMENT An alternate form of 'IMPROPER # OF AFS'. (SL, 3) 

INDIRECT NOT ALLOWED Indirect addressing is specifi ed in PRCX:: reference 
line but is not implemented. (S L, 1) 

ILLEGAL AFA Alternate form of 'INDIRECT NOT ALLOWED'. ) (SL,3 

DCB MISSING DCB is required but not specified. (SL, 7) 

UNRECOGNIZED A relation other than G T, L T, EQ, GE, LE or NE 
RELATIONAL was specified. (SL, 3) 

TEXT PARAMETER ERROR The argument specified could not be used to generate 
a text string. (SL, 3) 

UNDEFINED OP LABEL An unrecognized system operation label was specified. 
(SL, 3) Reference: Table 2 and Table 3 UTS/BP Re-
ference Manual (90 17 64) 

IMPROPER DEVICE TYPE FILE or LABEL was specified but the device was incorr ect. 
(SL, 3) 

KEY CONFLICT A keyword is repeated in the PROe reference list 
(SL, 3) 

NOTE: SL = error severity level assignment to assembly if error encountered. 

120 



SECTION UE 
PAGE 3 
3/27/72 

UTS TECHNICAL MANUAL 

ERRORS (CONfld.) 

Message 

PACK SPECIFIED FOR FILE 

BIN SPECIFIED FOR FILE 

MAX RETENTION PERIOD> 
999 DAYS 

MAX. NO. OF DUMMY SNS 
EXCEEDED 

Descri pti on 

PACK option was specified for a fi Ie DCB (SL, 3) 

BIN option was specified for a file DCB (SL, 3) 

An improper specification was made for fi Ie 
retention period (SL,2) 

SN, n specified a value of n> 135 (SL, 3) 

121 
(Pages 122 and 123 deleted) 



Xerox Corporation 
701 South Aviation Boulevard 
EI Segundo, California 90245 

.Reader Comment Form 
We would appreciate your comments and suggestions for improving this publication. 

XEROX 

Publication No. I Rev. Letter I Title I Current Date 

How did you use this publication? Is the material presented effectively? 

o Learning o Installing 0 Sales o Fully Covered OWel1 o Well Organized o Clear III ustrated o Reference o Maintaining 0 Operating 

What is your overall rating of this publication? What is your occupation? 

0 Very Good 0 Fair o Very Poor 

o Good o Poor 

Your other comments may be entered here. Please be specific and give page, column, and line number references where 
applicable. To report errors, Please use the Xerox Software Improvement or Difficulty Report (1188) instead of this form. 

Your Name & Return Address 

2190(12172) 

Thank You For Your Interest. (fold & fasten as shown on back, no postage needed if mailed in U.S.A.) 



Staple 

Fold 

Attn: Programming Publications 

Fold 

BUSINESS REPLY MAIL 
No postage stamp necessary if mailed in the United States 

Postage will be paid by 

Xerox Corporation 
701 South Aviation Boulevard 
EI Segundo, California 90245 

Staple 

First Class 
Permit No. 229 

EI Segundo, 
California 



701 South Aviation Boulevard 
EI Segundo, California 90245 
213679-4511 XEROX® is a trademark of XEROX CORPORATION . 


	0000
	0001
	0002
	0003
	0004
	0005
	0006
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118.0
	118.1
	118.2
	119
	120
	121
	replyA
	replyB
	xBack

