
Xerox Universal Time",Sharing System (UTS)
Sigma 6/7/9 Compute,.

System and Memory Management . '

Technical Manual

90 19 86A-t\

Xerox Corporation
701 South Aviation Boulevard
EI Segundo. California 90245
213679-4511

Xerox Universal Time-Sharing System lUTS)

©1973. Xerox Corporation

Sigma 6/7/9 Computers

System and Memory Management

Technical Manual

FIRST EDITION

90 19 86AA

February 1973

Pri ce: $4. 25

XEROX

Printed in U.S.A.

NOTICE

This publication documents the system and memory management functions of the Universal Time-Sharing System (UTS)
for Sigma 6/7/9 computers. All material in this manual reflects the COl version of UTS.

RELATED PUBLICATIONS

Title

UTS Overview and Index Technical Manual
t

UTS Basic Control and Basic I/O Technical Manual

UTS Symbiont and Job Management Technical Manual

UTS Operator Communication and Monitor Services Technicol Manual

UTS File Management Technical Manual
t

UTS Reliability and Maintainability Technical Manual

UTS Interrupt Driven Tasks Technical Manual
t

UTS Initialization and Recovery Technical Manual

UTS Command Processors Technical Manual

UTS System Processors T echn i ca I Manua I

UTS Data Bases Technical Manual

Publication No.

90 19 84

90 1985

90 19 87

90 19 88

90 19 89

90 19 90

90 19 91

90 19 92

90 19 93

90 19 94

90 19 95

tNot published as of the publication date given on the title page of this manual. Refer to the PAL Manual for
current availabi I ity.

The specifications of the software system described in this publication are subject to change without notice. The availability or performance of some features
may depend on a specific configuration of equipment such as additional tape units or larger memory. Cust9mersshouldconsult their Xerox sales representqtive
for detai Is.

ii

CONTENTS

SSS-Scheduler __ _
Purpose __ _
Overview __ __

Example Table Structure--________________ _
S:SET, SB:SET and SB:ETT Tables --------------------------------______________ __

Data Bases--________________________ _

Event Handler - Event Reporting and State Changing __ _
Purpose __ __

Overview ---
Usage
Subroutines--____________________ ___
Errors---
Desc ri pti on __ __
Special Transition Event Routines ----__ __

Purpose--
Usage __ ___
Desc ri pt i on __ ___

State Change Sub rou ti nes ------------------------------------________________________ _

Purpose ---
Descri pt ion __ ___
Ent~ Points __ __

Execution Scheduler __ _

Overview ---
Usage --
Inte ract ion __ _
Desc ri pti on __ _

Subroutines

SwapScheduler---
Overview ___ _

Usage ---
Output---
Desc ri pti on __ _

Subroutines --

STE P - Job Step Contro I ---
Purpose
Overview __ _
Usage __ __
Input __ _
Flowchart of Paths through STEP __ ___
Output ___ _
Interac t ion ___ _
Subroutines ___ __
Errors __ ___
Restri c ti ons ______________________________ . ________________________________ _
Ent~ Points ___ _

Desc ri pti on ---
Diagram of the Logical Blocks of STEP ___________________ --------------------
STEP Exit Logic: T:EXIT, T:ERROR, T:ABORT, T:ABORTM, T:TELDELCCI __________________ _
Debugger Exit Control Logic: T:DEL ___________________________________ _
User Re i nit ia I i zati on Log i c: T : RU NDOW N _____________________________________ _
Load and Go Logic: XITLINK ___ ___
Assemb I e Unsha red Program Log i c:' X ITIO ______________________________________ __

Interpretive Exit Logic: STEPOO ---
Logof~ontinue Logic: STEP10 ___ _
Assoc iate Shared Processor Log i c: T :AS P _____________________________________ __

1
1
1
3
5
8

9
9
9
9
9

10
10
11
11
11
11
13
13
13
14

16
16
16
16
16
19

23
23
23
23
23
26

28
28
28
28
28
29
30
30
31
32
33
33
34
35
36
36
37
41
43
45
47
48

iii

Associate Unshared Processor Logic: FETCH ______________________ 51

Merge DCB Information Logic: ASP14 54

Overlays - Monitor, Shared Processor, User Program ______________________ 56
Overview 56
T :OY - Monitor and Shared Processor Overlays 57

Purpose 57
Usage 57
Data Bases 57
Errors 57
Description 57

Flowchart 58
MSEGLD - User Program Overlays 60

Purpose 60
Usage 60
~it 60
Subroutines 61
Error Codes 61
Description 61

RDSET 63
Purpose 63
Entry 63
Exit 63
Description 63

Flowchart 64

Swapper __ 65

Purpose 65
Overview 65
Usage 66
Interaction 67
Errors 67
Restrictions 67
Entry Points 68

SWAPOUT 68
Purpose 68
Input 68
Output 68
Data Bases 68
Subroutines 69
Description 70

SWAPIN 72
~~re n
Input 72
Output 72
Data Bases 73
Subroutines 73
Description 74

CLOCK4 --________________ n
Purpose 77
Usage n
Interactions 77
Subroutines 78
Description 78
T :BTSC HED 80

Purpose 80
Usage 80
Data Bases 80
Description 80

iv

~~ - ~emo~ ~anagement~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~_ 81
Purpose __ ~~~~~~~ __ ~~~ __ ~~~~ __ ~~~ __ ~~~~~~~~~~~~~~~_ 81
Overview ~~~ __ ~~~~~~~~~~~~ _______________________ ~~~~~~~~_ 81
Data Bases~~~~~~~ __ ~~~ __ ~~~ __ ~~~~ ____ ~~ __ ~~~~~~~~~~ ___ 83
Memo~ManagementTabIM~~~~~~~~~--~~~--~~~--~~~~~~~~--~~- 85

Job (Use0 ~ssociated Tables __ ~~~~~~~~~~~~~ __ ~~~~~~~~~~~~_ 85
Resident Tables ~~~ ____________ ~ ______ ~ __ ~ __________ ~~~~~~~~~~~_ 85

Routines ~~~ __ ~~~~~ __ ~~~~~~ __ ~~~ __ ~~~~~~~~ __ ~~~ __ ~~~ 86
User CAL Service ~utines ~~~--~~~--~~~~--~~--~~~----~~ ____ ~~~ ~
Set the Use~ ~cceH Image ~~~ __ ~~~~~~~~~~ __ ~~~ ______ ~~ ____ ~~~ 90
Load Hardware Map and ~ccess Registers ~ ____ ~~~ ______ ~ ________ ~~~~ ____ ~~_ 93
Get and Release N Virtual and Physical Pages ____ ~~ __________ ~~~ ______ ~~~~ ___ 95
Get and Release Virtual Pages Master/Internal __ ~~~ _____________________________ ~_ 97
Insert Virtual and Physical Page 100
Delete Virtual and Physical Page 100
Get and Free Physical Core Pages 101
Swap RAD Granule ~llocation and Release 102
Get ~J IT Page 104

ALLOC~T __ ~~~ __ ~~~~~~ ______ ~ __ ~~ __ ~~~ __ ~~ ______ ~ __ ~~_105
Purpose 105
General Description 108

~diust Stack Logic 108
Get n Contiguous Background Granu les 108
Release n Contiguous Background Granules 108
Get n Contiguous Background Cyl inders 109
Release n Contiguous Background Cy I inders 109
Re lease Buffer of Disk ~ddresses 109
Keep Count of Granu les 109
Emptying Stacks 110

Data Bases 110
Detai led Description 111
GR~NSUB 114

v

ID

SSS - Scheduler

PURPOSE

UTS TECHNICAL MANUAL

SECTION EA
PAGE 1

6/28/71

The Schedul er sel ects users for execution, those for swapping in and those for
swapping out.

OVERVIEW

The scheduling and swapping algorithms in UTS depend upon user states. Each user
in the system is in one and only one state at a time. The transition from state to state
is driven by events reported to the scheduler. I/O activity, time quanta, break
signals and other events are signal ed to the UTM schedul er by call s on the report
event routines (T:REG, T:RCE, T:RE and T:RUE) with an appropriate event code
describing what has happened, and the number of the user with whom the event is
associated.

Each state has a corresponding state number and a (possible empty) queue of users in
that state. Each state queue is doubly I inked, and is ordered by time of user arrival
in that state.

The state queue headers are contained in SB:HQ, a byte table, which is indexed by
state number and contai ns the user number of the fi rst user in the queue for that
state. SB:TQ is the corresponding table of queue tails. All queues ~lre linked
(forward and backward) through two user tables, UB:FL and UB:BL. UB:FL contains
the user number of the next (chronologically) user in the given state. UB:BL con
tai ns the user number of the previous user in the given state. A 0 i ndi cates the
end of a forward or backward chain.

The scheduler selects a user for execution by following the queues of users from head
to tail in a given order until it finds a user in core and ready to run. The order in
which the queues are searched is dictated by the table SB:EXU 'which contains the
queue numbers and is terminated by a O. It is currently:

SB:EXU DATA, 1 0, SNRRT, SON, SOFF, SERR, SEC, SBK, SIR, STOC, SC,

SCOM, SBAT, °
SB:EXU is also searched by the swap scheduler to determine which user to swap in
next (the first user encountered who is not ready to run).

1

l:!TS TeCHNICAL MAN UAL

SECTION EA
PAGE 2
12/6/71

SB:SWP is used in the same manner by the swap scheduler to determine the order in
which the queues are searched for users to swap out only the search through each
queue is from tail to head. SB:SWP currently is:

SB:SWP DATA, 1 0, SSYMF, SSYMD, SW, SQ EI, SQA, SDP, STI, STaB, SAB,
SlOW, SOCU, SBAT, SCaM, SIOC, SC, SBK, SEC, SERR,
SOFF, SON

Note that the queues SCU, SIOIP, SLS, STOBO and STIO do not appear on
either list and thus users in these states are not selected for either execution or
swap.

Exampl e: Users 6, 4, 2 and 8 hove all hi t the break key on thei r tel etypes in that
order. Meanwhile users 7 and 9 are compute bound. The break state
number is 4 and the compute state number is 8. The corresponding table
structures are shown in Figure EA-l.

2

SB:EXU

SB:HQ

UB:FL

UB:BL

UTS TECHNICAL MANUAL

SECTION EA
PAGE 3
6/28/71

[0 11 1211CL1Bl3 L4 15\6[71 121? 191 01 LENGTH ARBITRARY

·Ij
/

o 1 2 345 6 7 8 9 A
IT_IIJil ! I : ? __ L __ i _.~ LENGTH = NUMBER OF STATES

\)
-~ ~ /

to ""'- ~ ,
0123456789 ABC

[I 18[12\ i 419 i 0 I O! [L __ j I LENGTH = NUMBER
___ ~ /' ~jf~" OF USERS

~------------ -

: LENGTH = NUMBER
t

OF USERS

o 1 2 345 6 7 8 9 A

SB:TQ ell; 8 i I I 19 i ; ! LENGTH = NUMBER OF STATES

." " "---- ",--,
- - -- -- -","" ,

'\ "
SB:SWP

LEN GTH ARBITRARY

FIGURE EA-l - Example Table Structure

3

UTS TECHNICAL MANUAL

SECTION EA
PAGE 4

6/28/71

The tables which control the action to be taken, given an event on a user are S:SET,
SB: SET, and S8: ETT.

S:SET can be considered as a matrix with the bits in each row corresponding to
states. The number of rows (1 or more) corresponds to the possib! e ac tions for a
particular event given the variety of states in which a user may be when that
event is reported on him. SB:SET is a byte table with one entry corresponding to
each row in S:SET. SB:ETT is a byte table indexed by event number containing
a pointer to the first of the one or more rows in S:SET corresponding to that event.
If the first row in S:SET for the event reported (pointed to be SB:ETT) contains a 1
bit in the position corresponding to the current state of the user the event concerns,
the byte in SB:SET corresponding to that word tells the event handler what to do.
If that bit is zero, the next row of S:SET is tested. Theoretically there will be a
1 bit posted in one of the rows corresponding to the event in the bit position of the
user's state. S8:SET controls how far the search through S:SET can continue. If
the high order bit of the byte corresponding to a word in S:SET is 1, it is meaning
fu1 to look at the next word. If it is 0, the search should not continue. If no 1
bit is encountered in the correct position of S:SET, it is "impossible" to have that
event reported on a user in his current state. This condition resul ts in software
check O.

A schematic picture of the relation of the tables follows.

S8: ETT
indexed by

S:SET
state number
1 456 29 30 31 32

SB:SET

event # ...--... 0--c ac tio!1 1
for event 1 1 0

2 1
3 3
4 6
5
6

111 1
1 1 111

.11

1

4

11

action 1
for event 2
action 2

o for event 2

1 action 1
for event 3

UTS TECHNICAL MANUAL

SECTION EA
PAGE 5
6/28/71

Figure EA-2 shows the details of the current S:SET and SB:SET tables. The events
are listed at the left. The states are listed on top. The multiple rows possible for
a given event have been compressed into one row. The contents of SB:SET is
shown in those bit positions where a 1 bit is set in the row of S:SET corresponding
to the SB:SET entry. If a byte of SB:SET contains a number less than 40 (high
order bit ignored) it is the number of the state the user should be changed to
{indicated in the figure by the state name}. If the byte contains 40 or greater
it is the number of a special transition event (the event requires more than a
simple state change). An * is indicated instead of 40 since the special transition
40 means ignore the event. The bit positions containing nothing indicate that the
event is impossible for users in the corresponding state.

5

UTS TECHNICAL MANUAL

SECTION EA
PAGE 6

6/28/71

~~~~~~~f~~~~~~J~/~~~~~~~~~~J~ 
1 1 3 .q 5" ~ 1 g Gl ID II 12 13 , .. 15 \' 11 It '''' ~ ·Z.I z.z 2.3 Z.qZ5 Zr. 1.7.B2'f 

c. itt> 1 
C.l C. Z. 
c..eL 3 
c.\,) i3 ~ "I * ~ 1t ~ ~ 18:: • -« ¥t " if ~ .fI. *"* it..., 1k. If "'if "* ... 
~B\.C.. 5 JI ~ + ./r 4~4t34B4{3e"'E',l,4f4Sf"'4S~~f..e.l.{~'A.'" .. .>,t 4S B\'(A\t3I~+ it" 43 

c..fc.. r. -l( "* It- 4<.. "\C"1::. tc "\<.. £.c.. ""- 1(' E.c.. 4c... E.c.. E.c.. fc.. E.c. ~ .>f .... 4<:. tc. EC. 4<..14<.. ~ .\I -K-

tJc., Qt:. 1 C.M\ 

g 

.,.\C Cf of 
~? 10 

l.l f " 41 
Ie.. 12 4~ lk 

cJg 13 PIg 
vt>PI ,+ 44 ~ .. ~ 4'\ <K 4+ 44 ~1 41 "'t4 ,,4 .q., .. ~ .q1 "'1- ~4 44 4<1 ~ ~ 1t<1 <14"H ~ "'.,. 4"1 ~4 14 ~~ 

1(~--------+----------r--------~~--------4---------~---------
u>\) l\:' 
£1 17 

'SL I~ 

Q~ \Cf 

vi 

52 

c 

V Q P\ tc, " -- .. ~ ~ 4. .. ... -i/o 53 ~ " ... oil • l' ~1 ~3 *" 11 "'II ~ ... 'If • + .,,~ 

~~C 'ZI, I C1 

~kT ZZi+f 4f 4' -;1 .,.,../4f .... ' ~f l' ,,'I 4r'~1 4t 41 4g "tf 41'4f'f .. t 4't ~fit -1, +9 4a 4,48 4f"6 
11\9 Z.~I 4L 40 J1C '4v 41, 41) 4D 4t- 4/i "U <1/) 4/J "-1D 'f0 -tV 4D 4b 4t 4{) 4f) 

~ J:. T'-S i'f 

c.'/, '" zs-i'lt. ~ 'Ih "'" 'I" "" 4W '" ~~" 14 of" 14": l' <f(, ~ 1'-4(. ~ ~4i 9.' ~~ j£ .*-. __ 
FIr 2<.1 I c.. I· 

,loR. 2.11 #- 4E 4£ 4' 4~1":~ 4£ 4t= ~~:)O 4~ 50 50 ~t!" ~ -4£ ~.o -IE *" Jf 4{.4~ 50 4~1~ ~ ~c 
fol~)~ 2..g1 * 4f 4l= "11- 4f 4t- 4-f -f{ 4{ 51 # 4{ 51 4f 51 * :;1 4f" f 4~ 4t- 51 ~,.. 4f"-1f. ~ 11= 

~s '? H+ 2'f I '::'''1'1 

SY"1f= 3c [545' 54 5~ 54 54 5"4 54 <)4- ~~ ~4 ~4 54 54 54 5.,. 54 5~ 5,4 ~i 5"4 5~ 54 99- ~4 51-54 S-15Q _ 

tJs~~~o ~t: S'fl<l 

S~Hi) 32::5 55 55" 55" 5~ 55 ~5 S5 5S 55" 55" 55 S"5 c'; 5<; 55" 5S '5'; 5~ ~'!:" ::555"55 5$'"5"5" 5~ 55 5"5SS-

&C~ 33 5(.. 

tJs-:,t.3'+ C 

Figure EA-2 

6 



UTS TECHNICAL MANUAL 

SECTION EA 
PAGE 7 

6/28/71 

The special transition events are listed below for your convenience. Detailed 
explanation wi" be included in the description paragraph. 

Special Transition 
Mnemonic SB:SET Action Routine invoked 

STNOP 40 IGNORE none 
STSBK 41 SET BRK BIT SETBRK 
STSEC 42 SET EC BIT SETEC 
STIP 43 ASK 10 PERMISSION 10PER 
STDPA 44 DP-+C IF ANY USER IN DP DISCFREE 
STOFF 45 SPIN 
STBA 46 AB --TOC IF ANY USER IN AB COCBA 
STIIP 47 CU -+IOIP 10lNPRG 
START 48 SPIN 
STIC 49 SET 8000 FLAG 10CCU 
STCRD 4A CU ....... TI CHCRD 
STSBKC 4B SET BRK BIT, STATE-'BK SETBRKC 
STSECC 4C SET EC BIT, STATE--EC SETECC 
STKO 4D RESET FLAGS FOR OUT OF CORE=ADJUST KICKOUT 

STATE 
STSERRC 4E SET ERR BIT, STATE -+ ERR SETERC 
STSABRTC 4F STATE ~OFF, ADJUST GJOB & COC TABLES SETABRTC 

50 SET ERR BIT SETERR 
STSABRT 51 SET ABORT BIT, ADJUST GJOB & COC SETABRT 

TABLES 
STQA 52 IF QA, RETURN, IF NOT STATE ~QA QFORA 
STUQA 53 IF QA, QA -C, OTHERWISE SET 4000 UQFORA 
STSYMF 54 SYMF .... C IF ANY USER IN SYMF SFILEAV 
STSYMD 55 SYMD -'"C IF ANY USER IN SYMD SDISCAV 
STSIOC 56 STATE -- COtvVBAT IOIP -- C/IOC IOCOM 
STSOCU 57 IF ANY USER OPENING/CLOSING, 

CU ~OCU 

7 



UTS TECHNICAL MANUAL 

SECTION EA 
PAGE 8 
6/28/71 

DATA BASES (Summary) 

S:SET the state event transi tion tabl e 
SB:SET a byte table of opcodes associated with S:SET 
SB:ETT a byte table of indexes into S:SET and SB:SET 
SB: EXU a byte table of queues to search, in order, for users to execute or 

SB:SWP 
SB:HIR 

SB:HQ 

SB:TQ 

swap in 
a byte tabl e of queues to search for users to swap ou t 
a byte tabl e of queues of users who are to be given control after 
the current user has had a minimum quantum rather than waiting 
for quantum end. 
a byte table, indexed by state number containing the user number 
of the first user in a given state; 0 impl ies none 
a byte table, indexed by state number, containing the user number 
of the last user in that state 

The schedul er 01 so uses certai n of the user tabl es. They are: 

UB:F L a forward link poi nting to the next user in the same state 
UB:BL a backward link to the previous user in the same state 
UH:FLG a halfword table containing user flags 
U:MISC a miscellaneous word for each user 
UB:APR, APO, ASP, DB, OV - the users associated shared processors (root, 

UB:US 
UB:PCT 
UH:TS 

processor overlay, special shared processor, debugger and monitor 
overlay). 
the user1s current state 
the user1s page requirement 
the remainder of a user1s quantum 

8 



UTS TECHNICAL MANUAL 

ID 

SECTION EA.Ol 
Page 1 
6/28/71 

Event handler - Event reporting and state changing 

PURPOSE 

The event handler portion of the scheduler receives notification of events from 
various portions of the moni tor and changes the schedul ing states of the users 
accordingly. 

OVERVIEW 

The event handl er consists of three external entry poi nts to serve the rest of the 
monitor in reporting events. These entry points diagnose the reported event and 
ei ther call subroutines to perform simple state changes or they drive to the 
special transition event routines which eventually call the simple state changing 
subrou ti nes. 

USAGE 

Entry Poi nts 

T:RCE 

T:RUE 

T:RE 

Entry to report COC event on a specified I ine. Registers 6 and 
7 contain the event and line number, respec ti vel y. Onl y COCC 
uses this entry. 
Entry to report event on a specified user. Registers 5 and 6 con
tain the user number and event number. 
Entry to report event on the current user. Register 6 contains the 
even t number. 

All routines are called by a BAL, 11 

SUBROUTI N ES 

Special Transition Event Routines, Section EA. 01. 01 
State Change Routines, Section EA. 01. 02 

External: 
RECORD 
COCOFF 
RECOVER 

Event recorder, Section LF 
Initialize line for logging off, Section DC.Ol 

Initiate system recovery or single user abort, Section LD 

9 



UTS TECHNICAL MANUAL 

ERRORS 

SECTION EA.01 
Page 2 
6/28/71 

If an event is reported which is impossible for the user's current state, a software 
check 0 is reported to RECOVER. 

DESCRIPTION 

T:RC E, T: RE, T :RUE 

T :RC E is entered by C OCC to report C OC events. RC E ex trac ts the user number 
from LB:UN into register 4. If the user number is 0, meaning the user has not yet 
logged on, LOGON is called. At RCEO the event counter is incremented because 
an event has occurred. An event number greater than the number of events causes 
a software check O. The user's current state is extracted from UB:US. A 1 bit 
is shifted in register 12 to the bit position corresponding to the user's current state 
for comparison with S:SET. The index into S:SET. is extracted from SB:ETT indexed 
by the event number (R6). The byte from SB:SET corresponding to S:SET is placed 
into register 2. Now S:SET is checked to see if it has a 1 bit in the position corres
ponding to the user's state. If so, register 2 contains the action code. If not, 
SB:SET (R2) is checked to see if the searching can continue. If no~software check 
o resul ts. If so, the search conti nues. 

Assuming the correct byte in SB:SET is found, the high order bit is scrubbed off 
and an entry is made in the event recorder. If the code in SB:SET is 2 to X'40·, 
a branch is executed through the transition vector S:TRNSVEC to the appropriate 
routine. Otherwise T:CHS is called to change the user·s state to the state in 
register 2. 

T:RE is entered to report events on the current user so register 4 is loaded with 
the current user's number and control goes to RC EO. 

T:RUE is entered with the user number in register 5 so it is loaded into Register 4 
and control goes to RCEO. 

10 



UTS TECHNICAL MANUAL 

ID 

SECTION EA. 01. 01 
Page 1 
6/28/71 

Special Transition Event Routines 

PURPOSE 

When the event handler determines from the SB:SET table that more than just a 
simple state change is required, one of the special transition event routines is called 
to perform the more compl ex operation. 

USAGE 

The special event code from SB:SET, which is greater than or equal to X'40', 
is used to branch through a transfer vector. Each routine returns to the event 
reporter (caller of event handler). 

DESCRIPTION 

10INPRG/IOCCU 
are designed to handle the case in which the I/O interrupt occurs and reports 
I/O complete before IOQ has reported I/O in progress. If 10C is reportEd 
on the current user, post the 8000 flag in UH:FLG and return. When IOIP 
is reported the flag is checked. If it is set, 10C event has been received 
and the IOIP event is ignored. Otherwise the user's state is changed from CU 
to 10IP. 

SET ABRTC/S ET ABRT 
Both these routines set the abort flag. SETABRTC also changes the user's 
state to OFF. If the user is an on-line user, COC is informed through 
COCOFF that he is in the process of being logged off. The distinction 
between using these two routines is there are some cases in which the user's 
state cannot be changed to OFF because he would get scheduled out of that 
state and in fact the user is blocked waiting for something to occur. 

SET ERR-S ET ERRC 
These routines set the error flag for the user. If SETERRC is invoked, the user's 
state is changed to SERR. The discussion under SETABRT for the distinction 
appl i es here too. 

SETBRK-S ETBRKC 
SET EC-S ET ECC 

c 
Same as SETERR-SETERCC, except the flags set are break or Y and the state 
change is to SBK or SEC. 

11 



UTS TECHNICAL MANUAL 

DISCFREE-COCBA 

SECTION EA. 01. 01 
Page 2 
6/28/71 

these routines are invoked when swapping RAD granules orCOC buffers are 
available. All users in the SDP or SAB queues are changed to SC or STOC, 
respectively, to allow them to be scheduled to acquire the resource they 
were waiting for. ' 

QFORA/UQFORA 
QFORA is called to block a user while waiting for a tape mount. Normally 
it changes the user from SCU to SQA. QFORA changes his state from SQA 
to SC when the mount is done. In the case that the un-queue event occurs 
before the queueing event, the 4000 flag is posted in UH:FLG. When the 
E:QA event occurs, the flag is noticed, it is reset and the user is not 
blocked. 

SFILEA V-SDISCAV 
are called when a symbiont file entry or a symbiont disc granule become 
available. The state of the first user in SSYMF or SSYMD is changed to 
SC. 

KICKOUT 
is called when a user is going to be swapped out. First his state is checked 
to insure that it hasn't changed between the swap schedulers decision to swap 
him out and the reporting of the event. If so, the event is reissued. If not, 
his ready-to-run and JIT-in-core flags are reset. His state is checked. If 
it is STOB or STI, his state is changed to STOBO or STIO respectively. If 
hi s state is in SS: EX U, S:SI R, the number of users who are ou t of memory who 
could execute if they were in memory, is incremented. If his state is in the 
SB:HIR list, S:HIR, the ccunt of high priority users ready to run, is decremented. 

OCPRGM 
checks if there is a user doing an Open or Close. If not, it returns. If so, 

it changes the user's state to SOCU. 

10PER 
always grants permission to do I/O. 

IOCOM 
checks the user's ffags for the 4000 bit. If it is set, the user is at job step 
and his state is changed to SC to allow him to continue at a high priority. 
If the 4000 bit is reset, his state is changed to SIOC. 

12 



UTS TECHNICAL MANUAL 

ID 

SECTION EA.01.02 
PAGE 1 
6/28/71 

State Change Subroutines 

PURPOSE 

Once it has been determined that a user's state is to be changed and what it is to 
be changed to, the state change routines are called. They change the user's state, 
remove him from his present scheduling queue and add him to his new queue. 

DESCRIPTION 

T:CHS changes a user from a given queue to the bottom of a new queue. 

Input Reg 4 = user number 
Reg 3 = current state 
Reg 2 = new state 
Reg 0 = BAL register 
Reg 1 = is destroyed 

T :CHS first checks to insure that the user's state hasn't changed during the event 
handling process. If so the event is re-issued to determine what to do, given 
the user's new state. If not, the state change proceeds with interrupts inhibited 
to prevent user state changes. S:SIR and S:HIR are corrected next. If he is 
ready to run and his current state is not in SB:HIR and his new state is in SB:HIR, 
S:HIR is incremented. If he is not ready to run and his current state is not in 
SB:EXU and his new state is in SB:EXU, S:SIR is incremented. Next Performance 
Measurement is called if his new state is in SB:EXU. Next T:U NQ is called 
to remove him from his current state and T:QT is called to add him to his new 
queue. T :C HS ex its. 

T :CHST changes the user's state to the top of a new queue. It sets the high 
order byte of register 2 to non-zero to cause T :QT to turn control over to 
T :QH to queue the user to the top of the new queue instead of the bottom. 
T:CHST then transfers control into T:CHS. 

13 



UTS TECHNICAL MANUAL 

SECTION EA.Ol.02 
PAGE 2 
6/28/71 

HT is the routine called to determine whether to change a batch user's state to 
SCaM or SBAT, and to determine whether to change an on-line user to SC 
or SCaM. It is invoked at quantum end. If the user's flags have the 4000 
bit set, the user is on-line and at job step time and is changed to SC. If 
not, he is changed to SCaM unless he is a batch user and SL:BB, the batch 
bias, is 0, in which case he is changed to SBAT. 

T :U NQ removes a user from a queue. 

Reg 4 = user number 
Reg 3 = state number 
Reg 1 = BAL reg ister 
Reg 6-7 = are destroyed 

T:QT adds a user to the tail of a queue unless the high order byte of Reg 2 is non-zero 
in which case it calls T :QH. 

Reg 4 = user numbe r 
Reg 2 = new state number 
Reg 1 = BAL register 
Reg 0 = is destroyed 

T:QH is called by T:QT to add a user to the head of a queue. 

Registers same as T :QT. 

SHIRE checks to see if the user's state is in a given byte list (SB:HIR, SB:EXU, 
SB:SWP). It returns to +1 if so, otherwise +2. 

Reg 3 = state 
Reg 5 = pointer to byte table 
Reg 2 = BAL register 
0- 1 destroyed 

LOGON has five entry points and is called to add a user to the sys~·em. (Note this 
LOGON is not to be confused with the LOGON processor.) 

ENTRY POINTS 

1. LOGON is called by T :RCE when it has an event with 0 in the byte of LB:UN 
corresponding to the line number it was given. It logs on a user with an on
line JIT. 

2. ADD1 logs on a user whose number is in register 4. 

14 



UTS TECHNICAL MANUAL 

SECTION EA.Ol.02 
PAGE 3 
1/10;73 

At LOGON the event is checked to see if it is a break. If not, the event is 
ignored (on automatic dial up COC reports break). Next the zeroth byte of 
SB:HQ, i.e., the queue of available user slots is tested. If 0, the event is 
ignored. Next the number of on-line users in the system is compared to the 
number of on-line users allowed and the number of users in the system is com
pared with the number of users allowed. If either test indicates no new room for 
new users, the event is ignored. If the user is to be allowed, register 4 is loaded 
with a user number and control passes to ADD1. 

ADDl is called by MBS, T :GJOBSTART and LOGON to allocate a JIT granule 
on the swapper for the user whose number is in register 4. The current value of 
M:JITPAGE for this swapper is used as a target position for this user's JIT. The 
M:JITPAGE entry is then updated by a value obtained from MB:SPACEJIT - a 
number chosen to be relatively prime compared with the number of granules per 
track for this swapper. Next the number of users in the system is incremented. 
The granule acquired is placed in UH:AJIT. The swapper recognizes that UH:JIT, 
the disc address of the users JIl, is 0 only at logon time. It will swap the JIT 
in from the disc address in UH:TS and move the disc address from UH:AJIT to 
UH:JIT for use in the next swap-out. The user flags, special JIT access, and 
pure procedure swap are set. Special JIl access is posted so that the exit CAL 
pointed to by the environment assembled into the virgin JIT will be interpretively 
executed, i.e., so that the processor required (LOGON, CCI) will be associated. 
PPSWP is posted as a flag to the swapper. The user's page requirement, UB:PCT, 
is set to 1. The event flag S :EVF is incremented as an event has occurred and the 
user's state is changed from 0 to SON. LOGO N exits. 

15 



ID 

Execution Scheduler 

OVERVIEW 

UTS TECHNICAL MANUAL 

SECTION EA.02 
PAGE] 
12/6/71 

The scheduler has three maior entry points: T:REG, T:SSE, and T:SSEM. T:REG is 
called when it is determined that a user no longer requires the cpu. T:REG "blocks" 
the user by saving his environment, reporting the appropriate event, causing the user's 
state to be changed from current user to some other state, and causing some other user 
to be schedu led for execution (T :SE) • 

T:SSE and T:SSEM are called whenever the Monitor has been in execution, executing 
either synchronous or asynchronous processes. Control must come here to al low re
scheduling. If the process was asynchronous, it might have caused a change in the 
system requiring rescheduling (COC, Clock, or I/O interrupts). Synchronous processes 
(CALis primarily) must allow rescheduling since events such as break, yC or quantum 
end would only use flags to be set if the Monitor is performing some service for the user. 
These events are remembered unti I the Monitor completes its processing. They are 
checked for at T:SSEM to allow the appropriate rescheduling. 

USAGE 

T:REG is called with register 11 containing the address at which the user is to begin 
execution when he is rescheduled and register 6 containing the "blocking" event. 

T:SSEM is merely branched to. 

T :SSE is also branched to. 

INTERACTION 

T:ACCTOV - ACCT, Section IC 
T :ACCTEX - ACCT, Section IC 

DESCRIPTION - T:REG 

T :REG unloads the current user's PSD, puts register 11 (the address of the next instruc
tion to be executed for that user) into it and saves the envi ronment in the TST AC Kin 
the user's JIT. It calls T:RE to report the blocking event. If the event is not I/O in 
progress, it calls T:5S to cause a swap schedule if S:SIR, the number of users on the 
swapping RAD who could execute if they were in memory, is non-zero. It then 
branches to T :SE to give some other user the cpu. If the event was I/O in progress, 
the possib Ie swap-set has not changed so the swap schedu Ie is avoided. 

16 



UTS TECHNICAL MANUAL 

D ESCRIPTI ON - T :SSEtvVT :SSE 

SECTION EA. 02 
PAGE 2 
12/6/71 

T:SSEM is entered at the end of every monitor service for a user. It calls T:N\ASTER. 
T:MASTER causes the interrupted environment to be pulled if it was master mode. This 
software disable prevents the monitor from being interrupted out of a series of CAL's. 
It takes care of overhead accounting by calling T:ACCTOV. Control goes to SSEl. 

T:SSE is called by asynchronous routines like COC when it has reported an event, the 
clock 3 routine or the I/O routine handler. First, it sets the idle flag in case the system 
is currently idle. Next, if S:SIR is non-zero, it calls the swap scheduler. It then calls 
T:MASTER. This software disable results in the monitor never getting a process interrupted. 
It always exits cleanly. If the interrupted environment was slave, a test is made to find 
out if the monitor is currently mapped or unmapped by looking at the user ID in JIT. If 
it is 0, it is an unmapped JIT. If it is unmapped, the user environment in the unmapped 
stack is transferred to the user's mapped stack and the map is turned on. 

T:SSE and T:SSEM come together at SSEl. Clock 4's effective address is switched to 
J:DELTAT, the execution time counter. (If exiting the monitor, it was pointing to the 
overhead counter J :OVHTIM.) Next, tests are made in order for an operator X key-in, 
and ! E Key-i n, bad run status, a user yc, and a user break. If the user was executi ng 
in the Monitor at the time one of these events occurred, the system merely poisted a flag 
to be honored on the way back to the user, namely, here. 

N ext, quantum tests are made. If the user has quantum ended, hi s execution time is 
accounted for and his state is changed to SBAT or SCOM, depending upon the batch 
scheduling philosophy and whether he is batch or on-line. This happens at SSE6 and 
control goes to the execution scheduler. If the user has some time left, he is allowed 
to continue by going to T:PULLE unless S:HIR, the count of high priority users ready to 
run, is non-zero. If S:HIR is non-zero, the current user is checked for havi ng had a 
minimum quantum. If not, he is allowed to continue by going to T:PULLE. If he has had 
his minimum, how much time he has remaining is remembered in UH:TS and he is moved 
to the top of SCOMor SBAT unless he has less than 40 mils. left in which case accounting 
is done and his state is changed to bottom of SCOM or SBAT. 

T:SE is the execution scheduler. It turns off the map since there is no longer a current 
user and causes a swap schedul e if appropriate. It goes to SACT in Case a symbiont 
output device needs starting. It then runs through the queues looking for a user ready 
to execute. It searches the queues in the order listed in SB: EXU, searching each queue 
from head to tail until it finds some user with his ready-to-run flag set. If it finds 
someone, control goes to SEl. If there is no one ready to execute, the system goes idle. 
The idle routine goes to CHECK for a security check. It then tests to see if there are 
any users in the system (S:CUIS). If not, it checks to see if there are any symbionts 
active. If not, it tests to see if the system is already quiescent. If not, it writes the 
HGP tables to the system RAD, sets the QUIESCENT flag and types the quiescent message 
on the operator's console. Finally, it tests LOSTUSER to see if any users were deleted 

17 



UTS TECHNICAL MANUAL 

SECTION EA.02 
PAGE 3 
12/6/71 

without closing their DCB1s. If there were, fil es may still be open, so a software check 
1 E is forced to allow recovery to test the CFUls for open files and close them properly. 

The idle loop does performance measurements according to whether idleness is a" result of 
swapping in a user in the SCOM, SIOC, or SBAT state (idle swap in progress) or not and 
toggles the audio flip-flop at varying frequencies to keep the operator entertained. 

At SE1 the user to put into execution has been selected. T:XMMC loads the map from 
the user's CMAP. At T :SE, the event counter was saved in register O. Here it is 
checked to see if it has changed. If so, a reschedule takes place since an event has 
occurred which may have changed the queue structure while it was being run. If it 
hasn1t changed, the user's number is put into S:CUN, and this previous state is remembered. 
S:HIR is decremented if the user1s state is in S8:HIR and his state is changed to current 
user. The map is turned on. 

The fact that he is in execution is logged (RECORD). His total time in this shot is calcu
lated and if greater than or equal to SL:SQUAN, the don1t-swap flag is reset. His quantum 
is calculated (batch or on-line UH:TS). If he has just swapped in or is going into 
execution from one of the interactive user states (SIR, STOC), his previous execution time 
is accounted and he is given a new quantum. CLOC K4 is changed to overhead. If the 
environment in the user's JIT is master, control returns to the Monitor (T:MASTER). If 
the environment is slave, the accounting is switched to execution and his previous state 
is checked to see if he's been aborted or errored by the operator or has hi t yc or break. 
If not, T:PULLE is called to put him into execution, unless he has done a STIMER CAL in 
which case control is transferred to his specified address. 

If the operator aborted the user, his flags are reset. Then his account is checked to see if 
he has logged on yet. If not, blanks are put into his name and account as a signal 
to Logoff. J:RNST is set to X1IO' and an extra 19 words are pushed into his stack. 
Control transfers to T:RUNDOWN in STEP. 

If he has beEm errored, his flags are cleared, J :RNST is set to X'20', the error code is 
set to B403, a nd control transfers to T: T ELD ELC CI in ST EP. 

If he has hit yC, his flags are cleared and control transfers to T:ECB described later. 

If he has hit break, the break flag is reset. If TEL is in control, breaks are treated like 
yc. If DELTA is in control, control transfers to it (DELTAGO). If DELTA is associated 
DELTA in control is set. If there is no public library associated (UB:ASP), control 
transfers to DELTA (it's in his map). If there is a public library associated, it is dis
associated and DELTA is associated, then control transfers to it. If DELTA was not 
associated and the user has asked for break control (J:INTENT), control goes to him 
(ALTENT); otherwise, TEL is called (T:ECB). 

18 



UTS TECHNICAL MANUAL 

SUBROUTIN ES 

SECTION EA.02 
PAGE 4 

12/6/71 

ALTENT copies the user's environment from his TSTACK into his TCB if he has one with 

sufficient room (otherwise, error A300). 

Register 3 contains the entry address. It is called for STIMER CAL entries and break 

control entri es. 

ALTENT first checks to see if the user has a TCB. If so, T:UTSXTS is called to push the 
19 word environment into it. It puts the address of the PSD into register 1 and branches 
to T:PULLA to enter the user at the address contained in register 3 when ALTENT was 
called. If the TCB is not present or adequate, control transfers to ALTERR to give the 

user an A300 error message. 

DELTAGO enters DELTA at th; entry point specified by register 10. DELTA has three 
entry points which are in a transfer vector at words X'C', X'D', and XI E' of its context 
page. C i~ the normal entry, D is for break control, and E for traps. 

DELTAGO sets the DELTA-in-control flag and calls T:PAC to get the appropriate access 
image into the user's special processor area. It forces the user's TSTACK to 19 words. 
It calls T:UTSXTS to copy the user's environment into DELTA's stack located at SPDBASE, 
the fi rst word of DELTA context. I t puts the contents of J :RN ST into regi ster 8, zeroes 
J:RNST and enters DELTA at the address originally contained in register 10. 

T:UTSXTS copies the environment from the user's TSTACK into the stack pointed to by 
register 1. It pushes either 20 or 21 words depending upon whether the last word in 
the stack is even or odd. 

19 



UTS TECHNICAL MANUAL 

The format is: 

SECTION EA. 02 
Page 5 
6/28/71 

even word boundary 

1 or 2 words to ma ke 
the PSD on a doubl e- ( 
word boundary. / ---------PSO-----------------

If 1 word, it is a . 
If 2 words, the 
second is -1. 

( 
16 

Regi sters 

(trap typE.) 

Register 1 points to the stack into which the environment is to be . 
pushed. 

Register 4 is the BAL register. Return is to 
1,4 if the push won't work. 
2,4 if the push was O. K. 

Registers 0, 2, 3, 7, 8, 9, 11, and 15 are used. 

T:UTSXTS first calls CHKPROT three times to verify that the stack pointer double
word and the fi rst and I ast words to be pushed into belong to the user and are in 
00 protection type. Then, it makes sure there is sufficient room in the stack to 
push 20 or 21 words. It then pushes in the one or two words and rna kes the I ast one 0 
or -1, indicating how many more to pullout. Then, the PSO is pushed. The 16 
registers are transferred and one more word is pushed in afterward. I f the reason 
for the T:UBXTS call is a trap, the trap type will be put there. T:UTSXTS exits. 

CHKPROT checks a given page to see if it has 00 protection. 

Register 7 contains the word address of any word in the page. 
Register 8 contains the error return address. 
Regi ster 9 is the BAL regi ster. 

20 



UTS TECHNICAL Iv\ANUAL 

SECTION EA. 02 
Page 6 
1/10/73 

CHKPROT converts the contents of register 7 to a page number and calls T:IACU 
in MM. T:IACU returns the protection type in the condition codes. CHKPROT 
returns *8 if 1 or 2 are set; otherwi se, *9. 

T:CHGPSD changes the instruction address of the PSD in the last environment in 
TSTACK. 

Register 0 is the BAL register. 
Regi ster 1 contai ns the new instruction address. 
Regi sters 2, 3, and 4 are destroyed. 

T:PULLE pulls a 19 word environment out of TSTACK. If loads the registers and then 
loads the PSD. It is merely branched to. 

T:PULLA changes the address in the environment to the address in register 1, then 
goes to T :PULL E. It is branched to. 

T:MASTER checks the Master/Slave bit of the PSD in the last environment in TSTACK. 
If the environment is master, it pulls it by going to T:PULLE. If it is slave, it returns. 

Register 2 is the BAL register. 
Regi ster 0-1 are destroyed. 

T:ECB is the routine which goes to TEL on a break or yC. If the user has the TEL-in
control flag set, it ignores the event and returns to TEL. If not, it pushes 19 words 
into TSTACK so that when an environment is pulled to go to TEL, the user's environ
ment at the time of the event will remain in the stack in case of a CONTINUE 
command. It then posts a flag for TEL in J:TELFLGS so that TEL can know it is 
in control because of a break or yC. Control goes to T: EC. 

T: EC is the routine which invokes TEL, CCI or LOGOFF if J :RN ST is X '1 0' (operator 
abort or LOGOFF). If the user is a ghost job, SB:GJOBFLG is cleared (the ghost 
is not running since this must be a LOGOFF). If the user is batch, T:ASP is called 
to get CCI. Otherwise, the byte displacement in M:UC is cleared for TEL. If 
J:RNST is not X'10', T:ASP is called for TEL. Otherwise, it is called for LOGOFF 
(that is, LOGON since they are the same processor). 

CLOCK4 - The clock4 interrupt routine is entered at the counter 0 interrupt of 
clock 4. It rearms the clock. If the interrupt environment is master, it 

. returns to the point of interrupt since quantum end will be noticed at T:SSEM when 
the Monitor exits back to the user. If the interrupted environment is slave CLOCK4 
goes mapped and the interrupted environment is pushed into the user's TSTACK. 
Control goes to SSE1 to accomplish the quantum end and accounting. This is not 

21 



UTS TECHNICAL MANUAL 

SECTION EA. 02 
PAGE 7 
1/10/73 

to be confused with the module CLOCK4, Section EE, wh ich is the time of 
day clock and actually uses clock 3. 

22 



ID 

Swap Schedul er 

OVERVIEW 

UTS TECHNICAL MANUAL 

S ECTl ON EA. 03 
PAGE 1 
12/6/71 

The swap scheduler is called to select a user to swap in and, if necessary, a user or 
number of users to swap out to make room. It choses the user to swap in by running 
through the queues listed in SB:EXU until it finds the highest priority user who is not 
ready to run. 

It then acquires enough pages to swap him into. First it gets all the available pages from 
MB:PPUT. If this is not enough, it checks for any shared processors which are not in use. 
If it has enough pages now, it calls SWAPIN. If it still doesn't have enough pages, it 
starts running through the queues listed in SB:SWP, running the queues from tail to head 
to find a single user who is in memory who is big enough to make room. While it is trying 
to find one user who is big enough it makes a list of other users it finds who are in memory. 
Users are not considered for outswap if they are in an executable state, are ready to 
run and have not had SL:SQUAN mils since they were last swapped in. If it finds a 
single user, it causes an outswap. If not and it has found multiple users with enough 
pages it swaps them out. If not it has one last chance. It decrements the shared pro
cessor usage counts for the user in the outswap I ist and checks if any are now free so 
it ca n ta ke thei r pages. If th is is enough, the swap takes pi ace. If not, the users in 
memory must be the best set of users so no swap takes pi ace. 

USAGE 

T :S5 is the onl y entry poi nt. It is ca II ed whenever an event has occurred whi ch might 
result in a swap. Register 11 is the BAL register. 

OUTPUT 

S:ISUN 
SB:OSN 
SB:OSUL 
S:FPPH 
S:FPPT 
S:FPPC 

DESCRIPTION 

the in swap user # 
the # of our swap users 

the out swap user numbers 

the head tai I and count of pages acqui red by th e swap schedul er 

T:S5 first checks S:SIP, the swap-in-progress flag, to make sure there is not a swap in 
progress. The swapper and swap schedul er are not re-entrant si nce they both use resi
dent monitor tables. If there is a swap in progress, T:SS exits. Otherwise, it zeroes 
the out swap user list (SB:OSUL), and the swappers and action flag. It zeroes a perfor
mance measurement flag which is used to count types of swaps. It does an XPSD to go 

23 



UTS TECHNICAL MANUAL 

SECTION EA.03 
PAGE 2 
12/6/71 

unmapped and puts register 11 into the old PSD so that return will be to the call er in 
his mode (mapped, unmapped, etc.). RECORD is notified that a swap schedule is 
starti ng. 

T:SS next picks the user with highest priority who is not ready to run. It searches the 
state queues in the order specified in SB:EXU, running the queues from head to tail 
until it finds one with the ready-to-run flag reset. If there is none, it returns by 
19ading the PSD it saved (SSPSD). If it fi nds one, it checks the event flag to make 
sure no events have occurred during the search which might have altered the queue 
structure (the search loop is not disabled). When a user is successfully selected, control 
goes to SSIN. 

S:ISUN is established as the user to be swapped in. His required page count is picked up 
from U8:PCT into register 14. PRCAV is called to insure that the overlay he requires, if 
any, is in memory. If not, it is added to the list of shared processors required· (SB:PNL) 
and its size is added to register 14. If the users JIT is in core, the current number of 
pages he has (from JBPPC in his JIT) is subtracted from register 14. If his JIT was not 
in core, the processor usage counts (PB:UC) of all his requi red processors are incremented. 
Getting the counts right at this point will also hold in memory any processors which 
he requires which are in memory. This is not done if his JIT is in memory since the counts 
are al ready correct. (They were counted up when he came in or when a processor was 
associated.) Then PRCAV is called for all the shared processors required in order to add 
them to SB:PNL if they are not in and to add their page requirements to register 14, the 
number of pages requi red for the i nswap user. Control transfer to SWIP EPGS. 

SWIP EPGS is the routine whi ch acqui res enough memory for the i nswap user. Fi rst, it 
picks up all the free pages from MB:PPUT. If there are exactly enough, it goes to 
GOTEXAC. If there are too many, it goes to GOTNUF which relinks the extra ones 
to M8:PPUT and falls through to GOTEXAC. GOTEXAC calls aUTIN and control goes 
to the swapper. If there are not enough, it calls PRCFREE which looks for a free shared 
processor in memory. If it fi nds none, control goes to US ERSaUT to fi nd some out-swap 
users. If it finds one, GOTPRCPG is called to add the processor's pages to the swappers 
page chai n and control returns to check if there are enough pages. If not, it looks for 
another free shared processor and continues unti I there are enough pages or there are no 
mQre free processors in whi ch case control goes to USERSOUT. Any shared processors 
in memory which the inswap user requires are not free since their usage counts were 
incremented earl i er so that they would stay in memory. 

USERSOUT determines the out-swap set of users. First it zeroes SB:FPN, the list of 
shared processors which became free because users are being swapped out, SB:OSN 
the number of out-swap users, and S:OSS the number of pages gai ned from swappi ng 
users out. USERSOUT runs through the queues listed in SB:SWP, from tail to head 
looking for users with either the JIT in core or the ready-to\run flag set (users who 
are at I east partial! yin memory). When a user is found, co~trol transfers to USOUT5. 
If the user is the current open or close user, he is not swapped. If the user's don't-swap 

24 



UTS TECHNICAL MANUAL 

SECTION EA. 03 
PAGE 3 
12/6/71 

flag is set (he has had less than SL:SQUAN) and he's in an executable state and he's 
ready to run, he is not swapped. If not, he is checked to see if he is large enough. 
The user's number of pages is determined from his JIT (JBPPC). His shared processors 
usage counts are decrement and if any are free, the number of pages they are using 
are added to the number of pages he, the user, had. This number is compared with the 
number required and if there are now sufficient pages, this user is not large enough, his 
shared processor's usage counts are incremented and the user number is added to SB:05UL, 
the list of out swap users, unless SB:05UL already contains enough users to make room 
for the inswap user (5:055 > register 14). If the user number is added to 5B:OSUL, the 
number of pages is added to S:055. In either event, the search for one user who is large 
enough continues. 

If one user is found, a check is mad e at U50UT 6 to ensure no event occurred duri ng the 
running of the state queues which could have changed them (S:EVF must be same). If an 
event has been reported, the user's shared processor counts are rei ncremented and the 
swap schedul e starts over. A similar test is made at the end of runni ng all the queues 
if no single user is found. 

At USOUT11 the user number is put into 5B:OSUL and 5B:OSN, the nurrb er of out swap 
users is set to 1. Control transfers PROUT2 to get the pages from any shared processors 
he freed up. 

If there is a I ist of out swap users, anyone of which was not large enough, control goes 
to PROCSOUT. PROC50UT decrements the usage counts of all the shared processors 
of the users in the outswap user I i st. If there are enough pages avai labl e, control goes 
to PROUT2. Otherwise, an attempt is made to fi nd any processors whi ch are free as a 
resul t of swappi ng out the users in 5B:OSUL. If there are sti II not enough pages, the 
swap schedul er goes to GIV EUP. A swap is not possibl e. If some free processors are 
found, their numbers are put in SB:FPN, the numbers of shared processors whose pages 
are to be swiped. If there are enough pages, the page chains of all these shared 
processors are added to the swapper page chain at PROUT2 by calling GETPRCPG. At 
PROUT3, the kick out event E:KO is reported on all users in the out-swap list. OUTIN 
is called and control goes to the out swapper. 

GIVEUP returns the swapper page chain to MB:PPUT, and reincrements the processor 
usage counts of all users in the out-swap list. If the inswap user's JIT is not in core, 
his processor's usage counts were incremented so they are here decremented. The user's 
total size is calculated to make sure his is not larger than available memory. If he is, 
this is an impossibil ity and a software check 62 is reported to SCREECH. Otherwise, 
the swap-in-progress flag is cleared, the swapper's page chain is zeroed and the swap 
scheduler exits. 

25 



UTS TECHNICAL MANUAL 

SUBROUTINES 

SECTION EA03 
PAGE 4 
12/6/71 

T:TOTESZ adds up the size of the user and his shared processors (excluding special 
shared processors and overl ays). 

Regi ster 0 returns the si ze. 
Register 11 is the BAL register. 
Register 4 is the user number. 
Registers 15, 2, 10 and 1 are used. 

PRCFREE looks for the "next" shared processor (starting with the one pointed to by register 
3 and decrementing) which has zero usage count (PB:UC). If it finds one, it returns to 
BAL+2, otherwise BAL+ 1. 

Register 6 is the BAL register. 
Regi ster 3 is the starti ng shared processor number and returns the number of the 

next one found. 
Register 2 and 8 are used. 

PRCFREE checks PB:UC, 3 to see if it is, it checks to see if the processor is in memory 
(PB:HPP = 0). If it is, it checks the corresponding bit of PBT:LOCK to see if the pro
cessor is locked in memory (PBT:LOCK is currently not set by anybody). If not, return is 
to 1, 6 si nce it has found a free processor pointed to by register 3. If any of the above 
conditions is not met it continues searching. If it finds no free processors in memory, 
it returns to 0,6. 

G ETPRCPG takes the pages from a free shared processor and adds them to the swapper page 
chai n. It zeroes the head of the shared processors page chai n head (PB:HPP) to mark it 
not in core. 

Register 6 is the BAL register. 
Register 3 contains the processor number. 
Reg i ster a conta i ns a • 
Registers 7 and 8 are used. 

MISCELLAN EOUS ROUTIN ES 

DRTEL, DTEL, ISTEL, ITEL, DPROCS, DASP, DDB, DOV, RPROCS, RASP, ROV, 
DRPROCS, DROV, DRASP, IPROCS, IASP, IDB, IOV, DTORP, ITORP. 

These routi nes increment or decrement processor usage counts and/or set or reset the 
user's associated processor bytes (UB:OV, UB:APR, UB:APO, UB:ASP, UB:DB) or his 
T EL-in-control flag. I stands for increment, D for decrement, S for set and R for reset. 
They affect TEL, all PROCS, associated special processors (ASP), debuggers (DB) and 
monitor overlays (OV). Two affect TEL or all processors (TORP) "according to whether 
TEL is in cc;>ntroJ or nqt. Th~y use .regi~ter~ 0. through 3 .• Register 4 contains the user 
number and register 15 may be used to load the user's flags. 

26 



UTS TECHNICAL MANUAL 

S ECTI ON EA. 03 
Page 5 

6/28/71 

DRPROCS, DROV, DRASP, IPROCS, IASP, IDB, IOV, DTORP, ITORP 

These routines increment or decrement processor usage counts and/or set or reset 
the user's associated processor bytes (UB:OV, UB:APR, UB:APO, UB:ASP, UB:DB) 
or his TEL-in-control flag. I stands for increment, D for decrement, S for set and 
R for reset. They affect TEL, all PROCS, associated special processors (ASP), 
debuggers (DB) and monitor overlays (OV). Two affect TEL or all processors (TORP) 
according to whether TEL is in control or not. They use registers 0 through 3. 
Register 4 contains the user number and register 15 may be used to load the user's 
flags. 

27 



ID 

STEP - Job step control 

PURPOSE 

UTS TECHNICAL MANUAL 

SECTION EB 
PAGE 1 
7/20/71 

The STEP routines perform all monitor operations required to allow a user to pass from 
one job step to the next. A job step is defined here to be from the transfer of control 
to the starting address of a program to its exit, error, or abort. 

Command processors such as TEL and CCI provide the means by which a user specifies 
job steps, and their operation is considered part of the inter-job step process. 

OVERVIEW 

STEP recognizes two types of program exits: an exit CAL from a command processor 
(TEL, CCI, LOGON) and all other exit CALs. An exit CAL from a command proces
sor is called an interpretive exit, and connotes a request for a STEP service. Registers 
provided at the exit are examined to determine the action to be taken. If a program 
or shared processor name is provided, it is associated with the user and control trans
ferred to it. If none is specified, the exit is a request to delete the user from the 
system. 

An exit CAL from any program other than a command processor is a request to return 
to the appropriate command processor, to the associated debugger, or a request to 
transfer control to the user's program loaded into memory by LINK. 

Action taken on error and abort CALs, and aborts of a user with in the monitor depends 
on the associated debugger. If DELTA is associated with the user, control is given to 
DELTA. Otherwise, the user's current operation is terminated, appropriate error/abort 
messages given, all programs disassociated, and the appropriate command processor 
associated and given control. 

The overview flow chart illustrates the operation of the STEP routines. 

USAGE 

STEP usage varies from routine to routine. See the description of each logical segment 
to determine its usage. 

INPUT 

STEP uses numerous tables described in Section V. Input unique to a logical routine 
is detailed in the description of that routine. 

The most important input to STEP is the user's exit environment contain ing the PSD 
and the 16 registers at the time of the exit. This is detai led in Part F of the 
description. 

28 



en x= 
I m! 
m :;;OC 
m 0' -i xl 

i 
~ ~ 

c 

'" j 0 
W i 

:J 0 
T1 t'V 

'C) 

VI---of 
o-;r;r 
3 -. (1) -. 
('I) VI VI 

-. 3 0-
o.::J C -. 
('I) m 0·(0 
C :J '"" "0 
o a.."O o· ......., ('I) C _ 

a..- c 
TO ~ '"" 
('I):J (1) 

.......,..z T (') 
- '"" 0 o _ 0 :J 

~ 0 C -
VI co co e. 
• _.;r:J 

< Vl VI 
('I) -of C 

m -
-u-

STEP - Generalized Big Picture 

J 

m 
tp 



UTS TECHNICAL MANUAL 

OUTPUT 

SECTION EB 
PAGE 3 

7/20/71 

STEP supplies a user who is ready to run to the scheduler. Specific output is 
detailed in the routine descriptions. 

INTERACTION 
MM Routines: 

T:SGR 
T:RVPI 
T:GNVNPI 
T:GNVPI 
T:XMMC 
T:RVSPI 
T:GVGPI 
T:SNAC 
T:FPP 
T:PAC 
T:SAC 
T:GAJP 

SSS Routines: 
T:OFF 
T:BTSCHED 
T:REG 

Release a granule on the swapping rad 
Release a page - physical and virtual 
Get n virtual no physical for initial data and DCBs 

Get n virtual and phy.sical pages 
Load memory map from JB :CMAP 
Release virtual save physical for remapping LINK IS DCBs 
Get virtual given physical, for remapping LINK's DCBs 
Set access on n specified pages 
Free a physical page 
Load the access image 
Set access on a page 
Get an additional JIT page if necessary 

Remove the user from the system 
Schedule a batch job 
Report an event-associate processor E :AP - and give up 
control 

T :SSEM Schedu I e the current user 
T:SE Schedule with no current user 
T:CHS Change the userls state 
T:EC Associate TEL with the user 

DRASP, DRTELI, Keep track of associated processors 
IPROCS, ISTEL 1, I 
DRPROCS, RPROCS, 
DDB, IDB, DROV, DASP 
DELTAGO Transfer control to DELTA 

OTHER ROUTINES 
Entry point Module 
T:DSMT - T:DSMNT 
T:NAMECHK - UCAL 

T:OV 
T:GHOST 

ABORT1 

- T:OV 
- UCAL 

- ENTRY 

30 

Function 
Dismount all associated tapes 
Compare specified name with GJOB 
name table 
Associate an overlay 
Inform the operator of an aborting 
ghost job 
EQU to T:ABORTM 



UTS TECHNICAL MANUAL 
SUBROUTINES 

SECTION EB 
PAGE 4 
12/8/72 

ABN: 

BUFCHAIN: 

CHKDB: 

LINKLIMS: 

Routine to handle I/O errors occuring while reading 
FETCH load module. Lost data for all operations is 
ignored, otherwise the error code in R 10 is set into 
ERO in the JIT, M:XX is closed, if open after setting 
PMD flag in J :ASSIGN, and control passed to FETCH3, 
if LDOTRC was not active. Otherwise an error code of 
X' B5 1 os reported via TELLTEL. 

IN: RIO conta ins error code 
R8 contains CAL + 1 

Routine to chain the user's buffers. The buffers size 
in words is subtracted from the top of context area, its 
value stored in the pool location in JIT. Size again is 
subtracted from the first buffer address and the result 
saved in first word of previous buffer for all buffers 
specified in the JIT. Th is operation is performed for 
FPOOL and IPOOL then rehrns to the calling routine. 

Routine to check P:SA given the processor and abort the 
user via TELLTEL unless: 

a) Processor is a monitor overlay 
b) The processor is a debugger. 

IN: R4 contains users number 
R5 contains processors number 

Routine to set access on pages within a specified protection 
type. 

IN: R 1 = Relative word in head record for limits 
R2 = Address of head 
R3 = J:DLL or J:PLL 
RI3 = Protection type 

LINKLIMS obtains size in R6 and starting address in R7. 
If size = 0, control is returned. Otherwise size and location 
are converted to page count and number, combined, and 
the first page number and last page number stored using 
R3: 

LOWER LIMITS 
R3 ~ 1--------1 

UPPER LIMITS 

31 



OUTOFPGS: 

SPCON: 

TELL TEL: 

T:RSTLMS: 

XITCTRL: 

ERRORS 

UTS TECHNICAL MANUAL 

SECTION EB 
PAGE 5 
7/20/71 

Access is set on pages between the I imits via the MM 
routine T :SNAC and control returned. 

Error routine to supply on X' A5' error code to TELLTEL 
using the logic described in ABN. OUTOFPGS loads R 10 
with 0 and R8 with OUTOFPGS, then falls into the ABN 
logic. 

Routine to obtain the address of the special processor 
context page in R2. 

Out: R2 = J:EUP+ 1 

Routine to set the specified abort code in J :ABC, 
increment all associated processors via the SSS Routine 
IPROeS, and transfer control to T:EC in SSS which 
associates TE L to del iver the error message if the user 
is on-line. Otherwise R14 is loaded with the abort code 
and control passed to T:ABORTM 

In: R 1 contains ABC 

Routine to set all JIT memory limits to their initial 
values: 
J:CUL = J:PUL = J:DUL 
J:CUL+l = J:PLL = J:DU = J:DDLL 
J :EUP = J :DDUL 

All memory is thus set to dynamic data. The upper limit 
lower than the lower limit indicates no pages have been 
obtained within that particular protection type. 

Routine which supplys DELTA's exit control start location 
to the SSS routine DEL TAGO wh ich transfers control to 
DELTA. 

STEP error codes are I isted in the UTS Reference Manual, table B-5. These 
error codes are: 

AO 
Al 
A5 
A6 

Inval id debugger 
A ttempt to debug a shared processor 
Load modu I e (and context) exceed user lim i t 
Load module bad or does not exist 

32 



UTS TECHNICAL MANUAL 

SECTION EB 
PAGE 6 
12/8/72 

A6 30 .Bad DCBs or DCB Table 
31 Bad Head Record 
32 Load Module Bias Not on Page Boundary 
33 Pure Procedure Not on Page Boundary 
34 DCBs Not on Page Boundary 
35 Head Record in Incomplete 
36 Tree Record is Incompl ete 
37 No Debugs Allowed with Link-Bullt LMNs 
38 Program Too Big for User Area 
39 File Not Keyed, Not a LMN 
3A DCB Links Bad or circul.ar 
XX I/O Error Code on Load Module Open or Read 

AA Inva I id core I ibrary name 
B5 I/O error reading load module for LNKTRC 

Restrictions: Details in the routine descriptions 

Step entry points: 

ENTRY 
POINT 

T:EXIT 

T:ERROR 

T:ABORT 

REQUEST ENVIRONMENT 

Program request 
Logging on 
Logging off 

Exit with DELTA associated 
Ex it without DELTA assoc iated 

Exit from Ghost job 

Error with DELTA associated 

Error from Ghost job 

Abort with DELTA 
Abort without DELTA 

33 

FROM 
(ACP) 

Command Processor 
Logon 
Logon 

user program 
user program/ 
shared processor 

Ghost job 

user program/ 
shared processor 
Ghost job 

Uker program 
User program/ 
shared processor 

RESULTANT ACTION 

interpretive exit 
interpretive exit 
delete user 

return to Delta 
return to ACP after 
re-initializing user. 

delete user 

return to ACP aftEr 
re-initializing user 
delete user 

return control to DELTA 
return to AC P after 
re-i n itia liz ing user 



UTS TECHNICAL MANUAL 

ENTRY 
POINT REQUEST ENVIRONMENT FROM 

T:ABORT Abort from ghost iob Ghost iob 
Abort from TEL/CCI ACP 

T:ABORTM Abort for bad CAL ALTCP 

Abort for bad TRAP/CAL ENTRY 
Single user abort INITRCVR 
Bad segment abort SEGLD 
Bad TCB specified for traps SSS 
Bad buffer spec ified TIM 
Bad stack address specified TRAPC 
Bad buffer or size TYPR 

T:DELUS System de leting a user GHOST1D 
System deleting a user INITRCVR 
System deleting a user KEYN 

T:RUNDOWN System re-initializing a use'r SSS 

T:ASP ~sociate a processor SSS 
LNKTRC 

DESCRIPTION 

SECTION EB 
PAGE 7 
12/8/72 

RESULTANT ACTION 

delete user 
Re-initialize user and 
re-enter AC P 
Return to DE L TA or 
return to ACP 

delete GHOST1 
Single user abort 
DELETE Keyin 

Associate requested 
processor 

The following descriptions of the logical blocks comprising the UTS routine STE P are best 
read with the listing close at hand. STEP is a complicated routine which interfaces with 
a large number of other monitor routines and processors. The avid reader of this documen
tation should have a thorough knowledge of the scheduler, swapper, and memory manage
ment routines and tables before undertaking the task of understanding STEP. As many 
paths are explained as practical, implications of action to other routines pointed out, and 
processor interfaces discussed. The table documentation in Section V of the Technical 
Manual is relied upon heavily, particularly the section on the Job Information Table. 
For convenience, STEP has been broken into the following logical portions. 

90 19 86A-1 (4/73) 

A. 
B. 
C. 
D. 
E. 
F. 
G. 
H. 
I. 
J. 
K. 

STEP Exit Logic 
Debugger Exit Control Logic 
User Re-initial"ization Log ic 
Load and Go Logic 
Assemble Unshared Program Logic 
Interpretive Exit Logic 
Logoff/Continue Logic 
Associate Shared Processor Logic 
Associate Unshared Program Logic 
DCB Validity Checker. 
Merge DCB Information Logic 

34 

Th is arrangement is 
diagrammed in 
Figure EB-1. 
Good luck. 



-n -G'> 
c 
;::0 
m 
m 
c;I 
I -

e..~\\ (..t)tV\~&(-
\.....&b\(. 

C 
--I 
(/) 

-I 
m 
() 
I 
Z -() 
» 
r-

S » z 
c » 
r-



UTS TECHNICAL MANUAL 

SECTION EB 
PAGE 9 
12/8/72 

A. STEP Exit Logic: T:EXIT, T:ERROR, T:ABORT, T:ABORTM, T:TELDELCCI 

The routines comprising the STE P exit logic are entered at T :EXIT, T :ERROR, 
and T:ABORT from ALTCP, and T:ABORTM from a number of place s within 
it,e monitor. T:ABORTM expects R 14 to contain the abort code and its 
subcode ERO in the form I ERO I 00 100 I ABC I. The other entry points 
load R 14 with the appropriate code (see Reference Manual on error codes). 

T:EXIT reads the user's flags and determines what special shared processor the 
user is associated with. If RUNNER is exiting, control transfers to STEP003 
to handle this special case. If the TIC (TEL in control) bit is set in VH :FLG, 
a command processor is exiting and control passes to the interpretive exit logic 
at STEPOO. 

A normal exit and all other entry points load R 1 with an appropriate run 
status ( 0 = Normal Exit, 2 = Error CAL, 3 = Abort CAL, 4 = Monitor Abort) 
and enter common logic at SETRNST which sets run status in the high order 
byte of J:RNST. Common logic continues at T:TELDELCCI which stores 
the abort code J :ABC and its subcode ERO into the user's JIT, forces TSTACK 
to two environments as a precaution. Any ghost user, as determined by bit 1 
set in the first JIT word, is removed from the system by transferring to the 
logoff logic T:OFF, after first issuing an appropriate error message on all 
but a normal exit via the same mechanism as batch users - discussed in 
users reininitialization. A user with DELTA assocaited (DELA set in UH:FLG) 
is tranferred to DELTA via the debugger exit control logic T:DEL. 
On-I ine users without a command processor in control with non-zero run status 
are tranferred to the associated command processor (ACP) to be given an error 
message. Control is transferred to T:ECCP in SSS which uses the STEP associate 
shared processor logic to bring in TEL. This same SSS routine is called when a user 
types yc. * On-line users with TIC set in UH :FLG (TEL-in-control) or with 
J:RNST = 0 are transferred to the user reinitialization logic T:RUNDOWN along 
with all batch users, indicated by BAT set in UH:F LG. 

* after issu ing the error message, TE L wi II execute an Aoort CAL to force user 
re-in itial ization. 

B. Debugger Exit Control Logic: T:DEL 

When a debugger is discussed in conjunction with the UTS Monitor, DELTA 
is understood to be the subject, and is the only debugger special-cased in 
numerous Monitor routines. In T :DE L, if the exit, error, or abort was from 
DELTA (DIC set in UH:FLG) control is transferred to the user reinitialization 
logic. Otherwise, T:DEL guarantees the user to be associated with DELTA, 

as a core I ibrary may also be assocaited. Core I ibraries and DE LTA occupy 
the same virtual space - the special shared processor ar61. 

36 



UTS TECHNICAL MANUAL 

SECTION EB 
PAGE 10 
7/20;71 

as a core library may a I so be associ ated. Core Ii brarys and DE L T A occu py 
the same virtual space - the special shared processor area. 

If a core library is associated, recognized by a non-zero UB:ASP entry for this 
user, the I ibrary is removed and DELTA associated. The SSS routine DASP is 
used to decrement the core library use count. IDB in SSS is used to increment 
DELTA's use count, DELTA is set in control, and ready-to-run is reset in UH :FLG 
(DIC = 1, RTR = 0) as flags to the swap scheduler to indicate a request for 
association with Delta. An associate processor event E:AP is reported via the 
SSS entry point T :REG to associate DELTA. 

If a core library was not associated or when control returns from the "REG", 
control is transferred to the routine XITCTRL which sets up registers 1, 10, and 
11 for the SSS routine DELTAGO which will give control to DELTA. 

C. User Reinitialization Logic T:RUNDOWN 

JB:LMAP 

JX:CMAP 

Before entering user reinitialization, a typical user appears as shown below 
with an associated shared processor, data, DCB's buffers, pages obtained by 
the Change Virtual Map CAL, and a debugger. 

VLT 
..L 

-. ~.r--"..-+-.. 

I 1111.1111111 III 
IProcedure· 

INITIAL 
DATA 

FILE BUFFERS 

COOP BUFFERS 
DCBs 

JITS 

37 

T:SAD 
. PAGES 

DYNAMIC 
DATA 

VLH 

DEBUGGER 

. DEBUGGER 
DATA 

90 19 86A-1 (4/73) 



UTS TECHNICAL MANUAL 

SECTION EB 
PAGE 11 
7/20/71 

T:RUNDOWN first checks if the user being reinitialized is also going 
through the single-user abort process. If the current user S:CUN is not 
equal to S:CRASHUN, his user number replaces its current value. If equal, 
the current user has been aborted again while being reinitialized and is 
deleted from the system by transferring control to T:DELUS. This drastic 
action is deemed necessary as the user is too damaged to be gracefully 
returned to the command processor, and may result in files being left open 
and the attached CFU's busy. These files are closed and CFU's returned to 
the system at q~iescence, when a software check 1E is forced if any user has 
been deleted in this manner. 

Assuming the user has not been deleted, T:RUNDOWN sets the X'4000' flag 
in UH :FLG to signal the scheduler to speed the I/O process during STEP by 
placing the U$er in the special compute queue, rather than I/O complete or 
compute bound, upon completion of every physical I/O operation or quantum 
end. This action lowers the probabi I ity of the user being swapped out during 
the S TE P process. 

TSTACK is forced to the one exit environment to facilitate possible error 
messages, then any associated processors and overlays are disassociated by 
the SSS routines for that purpose-DROV, RPROCS, etc. A special check is 
made for an associated command processor (TIC in UH :FLG) as separate routines 
are required. Consult the SSS documentation for further details. 

If the user is on-line, his prompt character is reset in M:UC, and the monitor 
set runn.ing in J:RNST. If h is symbiont DCB is sti II open, the right halfword 
of MUPO in his JIT points to its location, and control transfers to CHKPMD 
along with all batch users. Otherwise, CHKPMD for the on-I ine user is bypassed. 
The open symbiont DCB is a very rare occurrance, possible only if the user 
were aborted from the middle of a T:JOBENT CAL. 

CHK PMD transfers control to the DEBUG overlay segment to give an error 
message to the batch user if the first byte of J:RNST is non-zero (see TELLUSR 
documentation, section LB), to perform a PMDI if requested (indicated by 'bit 14 
set in J :ASSIGN), or to close an open symbiont DCB. DEBUG is requested via the 
OVERLAY proc, whi ch loads the overlay number into R2, the entry point into RO, 
and branches to T:OY. (See T:OY, section EC). Upon return from the DEBUG 
segment, errored or aborted Ghost Jobs are removed from the system by trans
ferring control to the logoff logic T:OFF. Otherwise, the monitor is set running 
in J:RNST and normal reinitialization continues at CLOSEDCBS. 

38 



UTS· TECHNICAL MANUAL 

SECTION EB 
PAGE 12 
7/20/71 

As the exit environment is no longer required, TSTACK is emptied, and 
the first type of run status zeroed to avoid re-entering STEP at T:ABORTM 
from IOSPRTN in CALPROC. The DCB chain is used to locate and close 
all open DCBls except those assigned to a non-tape device. The DCB chain 
begins in the JIT by J:ADCBTBL and is of the following format: 

J:ADCBTBL J~DCBLlhlK 

I 04 M . U 
C 

M:UC ~M:UC 

04 M : X 
X 

M0<X -4 M:XX 
J:DCBLINK LOCl 

LOC1 
LOC2 

I /I D C B 
N A M E 
DCB LOCATION ---, DCB 

LOC2 ~ 0 

CLOSEDCB picks up the count of characters in the name, displaces past 
the name to get the address of the DCB, and tests the open bit (Y002) to 
determine the action to take. M:DO is closed with SAVE specified if open, 
others are closed with their default. Devices associated with open non-tape 
device DCBls are removed from diagnostic use at this time by resetting the 
diagnostic use flag in DCT3. These DCBls are not closed in order to avoid the 
unnecessary overhead required to close them. 

When the end of the DCB chain is encountered, the exit logic continues by 
resetting the activation character set for on-line users in the COC line table 
MOD2, then checks the name of the associated special processor in P:NAME 
to see if its name was LINK. The index R7 into the processor tables was 
established during the processor removal logic in T:RUNDOWN. If LINK 
was associated, control is transferred to the Load andGo Logic (D). 

39 



UTS TECHNICAL MANUAL 

SECTION EB 
PAGE 13 
7/20/71 

Otherwise all of the previously associated special processor or debugger pages 
are removed from the user's memory area by resetting the access on those pages 
to 11 (no access) and storing the free page map constant (FPMC) into the 
user's JX:CMAP at those page locations. Access is reset by submitting access 
in R4, first virtual page of the processor procedure from PB:PVA in R7, and 
number of pages from PB:PSZ in R6 to the MM rountine T:SNAC. Upon returning 
from MM, a 'simple BDR loop on R6 with the same information stores the FPMC 
into JX:CMAP. Following the operation, the user's memory appears as : 

~ ~ ... 

~ ~~3?: Buffers ~ Data 

I IIIIII rm ~ ITI 

T:SAO 

II 
Debugger Data Page 

I 
f' t 

8000 8cbo COOO 

User reinitialization continues at LDLNK, which checks for the existence 
of any temporary fi les bui It by the overlay LDTRC during a load-and-I ink 
operation. ··If the low order byte of J:RNST is non-zero (the counter for 
LOTRC files), LOTRC is called by transferring control· to T:OV with R 1 
containing the overlay entry and R2-R3 containing its name in TEXTC 
format. If the counter is zero and such fi les do not exist, or upon return 
from the overlay, the virtual I ink chain JB:LMAP is used to remove all 
corresponding pages in JX:CMAP except the symbiont buffers. , Each virtual 
page to release is determined by linki,ng. through JB:LMAP starting with 
JB:VLH. ~f the page obtained is not between JCOVP and JCOVP+ 1, the 
COOP buffer" limits, it is released via the MM rountine T:RVPI, and the next 
page obtained. Upon completion of this process, the user's memory area 

appears as: Shared 

Jits 

--

8COO 

90 19 86A-1 (4/73) 

Processor 
Procedure 

COCO 

T:SAD Pages 

40 



UTS TECHNICAL MANUAL 

SECTION EB 
PAGE 14 
12/8/72 

All JIT memory limits are reset to their initial values via a call to the subroutine 
T :RSTLMS. Other JIT cells referring to locations in the released memory area 
are zeroed. The results in the JIT appear as: 

from T :RSTLMS 
(All user memory set 
to Dynamic Data) 

Other resu I ts: 

J:CUL = J:PUL = J:DUL 
J:CUL+1 = J:PLL = J:DLL = JBTDP 
J:EUP = J:DDUL 

J:TCB = 0 
J:DCBLINK = 0 
J:INTENT = 0 
J:TIMENT = 0 
J:USENT = 0 
J:CLMN = 0 
J:IPOOL = 0 
J:FPOOL=O 

All of CMAP and LMAP ce lis between the beginn ing and the end of the user 
area, BUP and EUP, are initialized to FPMC and zero respecitvely, to 
reset shared processor procedure and release any pages obtained by the 
Change Virtual Map routine T:SAD in MM. The MM routine T:SAC is used 
on each page to insure access is set to 11. The user now consists only of his 
JIT, his additional JIT (if any), and his COOP buffers. 

Upon conpletion of the reinitialization of user memory, Tel-in-Control is 
reset in UH :FLG. 

An environment is bumped into TSTACK for T:ECCP, and S:CRASHUN and 
RCVUSER zeroed. Control is then transferred to T:ECCP in SSS to associate 
the appropriate command processor wi th the user. 

D. Load and Go Logic: XITLINK 

LINK specifies action to be taken by STEP in its data page, the first page 
of the special processor area. The interesting locations (the first 26) of 
that page are illustrated below: . 

41 



Head 0 

I 
~ .. 

2 ~ 

3 : 

4 

5 

6 

7 

8 

9 

A 

B 

C 

D 

E 

F 

Tree size 10 
Tree 

11 

12 

13 

14 

15 

16 

17 

18 

19 

1A 

UTS TECHNICAL MANUAL 

84 0 0 ff 30 

8 Start 

TCB BIAS 

00 Size 00 Loc 

01 Size 01 Loc 

/v\ax REFDEF Tree Size 

DCB Size DCB Loc 

GST Size GST Loc 

1ST Size 1ST Loc 

TEXTC 

CORE LIBRARY 

NAME 

TEXTC 

Debug Processor 

NAME 

X 'e' 

TEXTC 

Load Module 

NAME 

00 Size 00 Loc 

REFDEF Size 0 

01 Size 01 Loc 

0 0 

0 DeB Origin 

0 0 

42 

SECTION EB 
'PAGE 15 
7/20/7] 

Start address 

Data Size and Loc 
(Doubleword) 
Procedure size and 
Loc (Doubleword) 

Original DCB Loc (DW) 

Global Symbol Table 
(DW) 

Internal symbol table (OW) 

Tree Size/Load and Go 
Flag 



UTS TECHNICAL MANUAL 

SECTION EB 
PAGE 16 
7/20/71 

If LINK was associated with the exiting user (after being disassociated by the 
Reinitialization Logic) then control is given to the Load and Go Logic at 
XITLINK. This routine locates LINK's data area via the subroutine SPCON, 
saves the load module name from the first three words of the TREE in J:LMN, 
then checks the LINK run flag - the TREE size. If non-zero, control returns 
to the Reinitialization Logic at XITNRUN. A zero signals go; the first 
operation is to map the LINK-manufactured DeBs into the context area. 
The LINK-manufactured DCBs are those built by LINK to be associated 
with the user's program. LINK, on the other hand, had been using the 
context DCBs to perform it's own I/O. With LINK disassociated and IIGO" 
indicated, the manufactured DCBs are moved to the context area to be 
I inked to the user's program. This operation begins by locating the first 
virtual page containing LINK-built DCBs, pointed to by the DCB location 
in the HEAD. The corresponding physical page is obtained, and the virtual 
page released via the MM routine T:RVSPI (Release virtual save physical). 
The first page of the context DCB area is released using T:RVPI (Release 
virtual and physical), then T:GVGPI (get virtual given physica.l) is supplied 
with the physical page of link-built DCBs and the first virtual page of the 
context DCB area requested. If the request is successful, the physi cal page 
has been mapped into the context DCB virtual page. If not, the FPMC 
remaining in JX:CMAP indicates the user has exceeded his maximum page 
count and control given to the routine OUTOFPGS to abort the user. 
If there is a second page of LINK -bu i It DCBs, the re-mapping is repeated. 
After successfully completing this process, control is given to the assemble 
unshared program logic. 

E. Assemble Unshared Program Logic: XITIO 

The logic produces a user program arranged correctly in memory complete 
with any debugger or library requested. Beginning at XITIO TSTACK is 
forced to a single environment, J:ASSIGN reset, the user set running 
in J:RNST. The difference between the load module bias and the start 
of its data area is calculated; this value is usually zero, but FORTRAN 
leaves this space for blank common. If a difference exists, those pages are 
obtained via T:GNVPI (get m virtual and physical) by specifying the 
number of pages desired in R6. 

If a TCB exists, the location for DeB chain is obtained from its tenth word, other
wise the first word of the DCB area is assumed; one or the other is stored into 
J:DCBLINK unless the DCB size is zero. This link is checked to assure it is within 
the DCB area, and the DCB chain itself checked to assure it is complete. A failure 
results in the J.BC/ERO code A63A. The load module name from the tree is saved in 
J :CLMN for DELTA to use (if necessary) when readi ng symbol tabl es. The symbol 
table locations are also obtained and stored in the JIT: 

43 90 19 86A-1 (4/73) 



UTS TECHNICAL MANUAL 

GS T Size and Location 
1ST Size and Location 

J:GST 
J:IST 

SECTION EB 
PAGE 17 

7/20/71 

Access and JIT memory limits for the program are set for the user by 
specifying the JIT limit in R3, the relative location in the head in Rl, 
and the access (00,01) in R13 to the routine LINKLIMS. The dynamic data 
count is obtained at the start of this process, and the count of pages in each 
protection type from LINK LIMS subtracted. The remainder is common 
storage, and set back into the count of dynamic data pages. The dynamic 
data lower limit is set to either one page past data upper limit for a 
program built by LINK, or one page past procedure upper limit for a 
program built by LOADER. Because the loaders allocate user memory 
as in the following illustration they must be special-cased here. 

LINK ~XT I DATA Dynamic Data I Procedure 
Special 
Area 

LOADER leXT I DATA I Procedure Dynami c Data I Special 
Area 

r 1 i 
8COO COOO 1COOO 

Beginner user pages End user pages 

After storing the starting address and the TBC address from the HEAD into 
J:START and J:TCB, and the TeB location placed into RO of the 
environment, the core I ibrary and debugger names are saved in registers 
and the first page of the special area containing the head and tree records 
released via T:RVPI in MM. 

If the load module was built by the LOADER, the address of the first word 
of the procedure is set into JITREE in the JIT. 

44 



UTS TECHNICAL MANUAL 

SECTION EB 
PAGE 18 
7/20/71 

A series of tests to determine if the user specified a valid core library are 
made; if a I ibrary was specified (name saved in R 14-15), the name is 
found in the P:NAME table, and the bit set in its corresponding entry in 
P:SA indicatin,g "yes indeed, 11m a library, II then its number is stored into 
UB :ASP. R6 at th is point may contain zero or the name of a requested 
debugger. If zero, RTR is reset in UH :FlG, and an associate processor 
event reported via T :REG in SSS as a request to the swapper 'to bring in the 
library. If an invalid core library was specified, control is given to 
TELL TEL to abort the user. Upon return from the REG or if no core library 
was specified, the hardware memory map is loaded via the T:XMMC routine 
in MM to reflect the user's current memory layout, and control given to 
the merge DCB information logic. 

If R6 contained the name of a debugger, which is found in P:NAME, 
control is passed directly to the associate shared processor logic to 
bring it in. If not in P:NAME, control is passed directly to the associate 
shared processor logic to bring it in. If not in P:NAME, ACP is told. 

An odd path through the above logic results when R6 is loaded with zero if 
either of the two high-order bits of J:CFLGS was set: This occurs when the' 
overlay LDTRC is associated, and load-and-link/transfer control is taking 
place. The result is to bypass the tests for a debugger and library, to 
rejoin the common logic at XIT31 to 'load the map. . 

F. The Interpretive Exi t Logic: STEPOO 

The function of the Interpretive Exit Logic is to process the request of 
a command processor by interpreting its registers i'n the environment 
produced by the EXIT CAL. The environment is of the following form: 

45 



90 19 86A-1 (4/73) 

SECTION EB 
PAGE 19 

UTS TECHNICAL MANUAL 7/20/71 

o 
1 

2 

3 

4 

5 

6 

7 

8 

9 

A 

B 

C 

D 

E 

F 

THREE WORDS 

OF 

PSD 

DEBUGGER 

NAME (TEXTC) 

NAME 

NAME 

NAME (TEXTC) 

PASSWORD 

PASSWORD 

ACCOUNT 

ACCOUNT 

-15 Decimal displacement 

-14 from top of stack 

-13 

-12 

-11 

-10 

- 9 Or pointer to cel run table 

- 8 

- 7 

- 6 

- 5 

- 4 

- 3 

- 2 

- 1 
~ Top of stack 

Special JIT access is reset immediately at STEPOO, then the processor 
issuing the interpretive exit is identified and removed from JX:CMAP by 
obtaining its size from PB :PSZ and starting virtual page from PB:PVA, 
then running a simple loop to store the FPMC into the appropriate CMAP 
location. 

If the exiting processor was RUNNER, a CCI overlay which builds the debug 
and modify clobber tables, its DCB page is released via T:RVPI. Control 
is then given back to the Associate Unshared Program logic which 
requested RUNNER. 



UTS TECHNICAL MANUAL 

SECTION EB 
PAGE 20 
7/20/71 

If not RUNNER, then R6 of the exit environment is checked for a request. 
If zero, control is passed to the Logoff/Continue logic. Otherwise, 
the rest of the command processor - the context, DCB, and special context 
pages - is removed from the user. A" pages between JCOVP+2 and JBUPVP, the 
third page of the buffer area (above the COOP buffers) to the beginning of the 
user area, are released using the MM routine T:RVPI. JIT pointers into 
this area, J:FPOOL, J:IPOOL, J:ABUF, are zeroed. If the command processor 
lived in the special area, as determined by bit1 of P:SA, the first page 
of that area - the context - is released. DCB pages indicated by PB:DCBSZ 
are released via T:RVPI, and J :DCBLINK zeroed. T:RSTLMS is called to 
reset all memory limits to their initial values, as in the User Reinitialization 
Logic. At this point, the user is reinitialized except for common pages. 

R6-8 are loaded from the exit environment into R6-S. If a command processor 
performed the exit, as indicated by TIC set in UH:FLG, the processor is decre
mented and reset by the SSS routine DRTEL 1. . If the exiting command processor 
was LOGON, the P:NAME table is searched for TEL; if found, TELls index is 
put into UB:ACP and registers 4 and 5 in the userls stack are loaded with 
TEXTC TEL. This allows autocalled programs to return to TEL when they abort 

, or hit yc. Control then passes to T:ASP. 

R6 may contain one of two things: The first word of the T,EXTC name of the 
load module requested, if TEL performed the exit, or the address of the run 
table in the common area, built by CCI. If the first byte of 
R6, the count, is non-zero control is passed directly to the Associate Shared 
Program logic. Otherwise, words 3-5 from the run table, containing the 
requested load module, are obtained and stored into R6-Sin the exit 
environment. Similarly, the account and password are moved to the appropriate 
environment registers. After thus simulating a TEL exit for CCI, R6-S are 
re-Ioaded with the TEXTC name of the request and control passed to the 
Associate Shared Processor Logic. 

G. Logoff/Continue Logic STEP10 
If a special shared command processor, recognized by TIC set in 
an on-I ine user!s UH :FL G, and bit 1 of P:SA, issued an 
interpretive exit with nv request specified in R6, a continue operati'on is 
indicated. This logic at STEP10 sets TSTACK to one environment, resets 
ready to run in UH :FLG, increments all the user's associated processors 
and sets their access into the JIT access image J :AC via the SSS routine 
IPROCS and the MM routine T :PAC. An associate processor event is reported 
to T:REG as a request to re-associate all processors. Upon returning from 
the REG, control is passed to the scheduler at T :SSEM to transfer control to 
the userls program. ' 

47 90 19 86A-l (4/73) 



UTS TECHNICAL MANUAL 

SECTION EB 
PAGE 21 
7/20/71 

If LOGON or CCI issued the interpretive exit with zero in Ro, the interpretation 
is a logoff request, and the user is removed from the system. T :DELUS first 
insures all associated tapes are dismounted with the routine T:DSMT which 
removes them. All pages represented in JB:lMAP are released by repeatedly 
releasing the head of the chain JB:VLH unti I it becomes zero, using T:RVPI. 
The user1s additional JIT page is released via the MM routine T:FPP and the 
corresponding swapper granule from UH :JIT released by T:SGR in MM. 

If the user is a ghost with a name in the ghost job name table (verified by 
T:NAMECHK) all flags in SB:GJOBFLG are reset and the user number in 
SB:GJOBUN zeroed. The swapper granule for the user1s JIT is released via T:SGR, 
the count of batch users in system S:BUIS decremented if the user was batch, 
and the total number of users S:CUIS is decremented. If this user was opening or 
closing a fi Ie when deleted, OPNCLSUS is zeroed. All associated processors 
are decremented and reset via the SSS routine DRPROCS, any associated 
processor overl ay decremen ted, and the fo II ow i n9 tabl es zeroed: 

U8:0V 
UX:JIT 
UH:ID 
UH:FlG 

If the user was on-line, the line tables. 

L8:UN 
PROMPT 

are' zeroed. 

The user1s state is changed to zero via T:CHS in SSS, a batch job scheduled 
if the user was batch by T:BTSCHED, and control is transferred to the 
scheduler to schedule with no current user at T:SE. 

H. Associate Shared Processor Logic T:ASP 

Control comes to T:ASP with the user reinitialized and a program request in 
R6-8. If the program is identified as a shared processor, the processor 
tables are used to allocate user memory, otherwise control is passed to the 
Associate Unshared Program Logic. 

T:ASP first resets the INIT flag in UH:FLAG, possibly set during reinitialization 
by MM, and also sets the STEP I/O flag X14000'1 as in the Reinitialize 
User Logic to speed the I/O. 

90 19 86A-l (4/73) 48 . 



UTS TECHNICAL MANUAL 

SECTION EB 
PAGE 22 
12/8/72 

The P:NAME table is searched for the request and the processor number, ' 
if found, preserve in R5. 

The processor flags, P:SA, are checked to see if the request is for a 
command processor; if so, the user must be proper for the requested C~. P., 
ie. batch if requesting a batch C. P., or: line for an on-line C. P., etc. 
If the user does not match the requested C. P., he is aborted with error code' A2' . 

The run flags in J :RNST are checked, and if non-zero, the user is not 
at job step and may be calling for a debugger or library. CHKDB is used 
either to abort the user via TELLTEL if the request is not a debugger, or 
library, or to return in line at ASP23. Buffer pages are obtained for the 
user if he has none by consulting the specified number for each in the JIT, 
calculating the required pages, and requesting those pages via T:GNVPI in 
MM if the total requested is less than the buffer area available - 2 pages 
at the front are reserved for COOP buffers. The calculations are -

from J:NIPOOL and J:NFPOOL 

(Number of IPOOLS) * (IPOOL size) +X'IFF' shift .. Pages required 
for I POOL request 

(Pages of IPOOL's) + (Number of FPOOL's) = To ta I pages req u i rp.d 

(Total pages required) < JBUPVP - (JCOVP+2) 

If (Total pages required> JBUPVP - (JCOVP+2), the number of each buffer 
type in the JIT is set to two, and three pages requested. These buffers 
are sufficient to allow TE L or CCI to give the user an error message and to 
run him down. 

If the account specified in the exit environment is not :SYS, or the 
processor number in R5 is less than the greatest overlay number (to avoid an 
on-I ine user requesting OPEN, for example), or the processor size in 
PB:PSZ is zero, control is passed to the Associate Unshared Program Logic 
at FETCH. 

49 90 19 86A-1 (4/73) 



urs. TECHNICAL MANUAL 

SECTION EB 
PAGE 23 
7/20/71 

If this request is from LNKTRC, the extra environment is removed from TSTACK. 
If the requested processor has the special JIT access bi t set in PSA, SJAC is set into 
UH:FLG. 

If the processor lives in the special area, user memory limits are not changed, 
otherwise the access on the data and procedure pages is set via T :SNAC in MM 
as follows: 

J:DLL to J:DLL+PB:DSZ set to 0 for data 
PB :PVA to PB :HVA set to 1 for procedure 

and the following memory limits are established: 

J:DDLL = PB:HVA 
J :PUL = PB:HVA-l 
J:PLL = PB:PVA 
J:DUL = PB:PVA-l 

so the user's memory area now appears as: 

A 
J J Dynamic 
I I Buffers Data Procedure Data area T T 

4 .- 4~ 4~ 

J:L 
A ~~ 

JBUPVP 
J:DLL J :DDLL 

JCOVP+2 
J:PUL ( = J:TDP if n 

JCOVP J:DUL LDTRC) 

If no LDTRC action is taking place, J: TDP = J :DPUL + 1 . 

If the requested pro.cessor is a debugger or a core I ibrary and does not have 
special JIT access in P:SA, the user is set running in J :RNST. Otherwise 
processor running is set unless it is a ~ommcind processor in which case all 
run flags are reset to indicate command processor running. 

ot 

If the processor being associated requires DCB's as indicated by PB:DCBSZ, 
the pages of them are acquired via the MM routine T:GNVNPI (get n virtual 
no physical) and PPSWP and DCB's set in UH:FLG. 

50 



UTS TECHNICAL MANUAL 

SECTION EB 
PAGE 24 
7/20/71 

T:GNVNPI places the no-page map constant NPMC into the requested page 
locations of CMAP, indicating to the swapper to place the initial DCB pages 
there during swap in. Also in the above logic, the total size of the user area 
is submitted to the MM routine T:GAJP, to get an additional JIT if the user's 
total swap size exceeds the command list in the JIT. 

Initial data, indicated by PB:DSZ being non-zero, is obtained in a similar 
manner to the DCB pages: INIT and PPSWP are set in UH :FLG, the number 

. of pages from PB:DSZ and the first page from J:DLL (or J:EUP if a special 
processor) are presented to T:GNVNPI. If the pages are not obtained, as with 
the DCB pages, control is passed to OUTOFPGS to abort the user. 

Depending on the processor being associated, the following action is taken: 
a) If a command processor, the processor number is stored in UB :AC P, 

ISTEL 1 in SSS is used to increment and set the command processor. 
b) If a special processor, its number is set into UB:ASP. 
c) If DELTA, DIC and DELA are set into UH:FLG; the processor number 

set into UB :DB. -
d) I f a normal processor, its number is set into UB :APR, and its I ink if 

overlaid from PB:LNK set into UB:APO. If restoring a processor for 
LDTRC byte 1 of J :CFLGS contains the overlay I ink and it is set 
into UB :APO. 

In cases b-e, the SSS -routine IPROCS is used to count up the processors, 
then common logic continues at ASP12 which resets RTR in UH:FLG and reports 
an associate processor event via T:REG as a request to the swapper to associate 
all the newly incremented processor. Upon return from the REG, the user's 
buffers are linked via BUFCHAINI registers set up for the logic to merge 
DCB Information, and the DCB's linked to the JIT at J:DCBLINK if its previous 
va I ue was zero. 

If the processor being associated is GHOST1, R2-3 are loaded with a master/ 
mapped PSD - on I y the MAP bi t set. Otherwise both SLAVE and MAP are set. 
The registers are now set up as follows for the merge DCB information logic. 

R2-3 Master/Slave mapped PSD 
R4 User number 
R8 Starting address 
R9 First procedure page 
R 10 TeB address 

I. Associate Unshared Program Logic: FETCH 

The logic to associate a Unshared Program begins at FETCH. If debug commands 
were encountered, RUNNER is requested to process them. 

51 90 19 86A-1 (4/73) 



UTS TECHNICAL MANUAL 

SECTION EB 
PAGE 25 
12/6/71 

If not, or upon returning from RUNN ER, the requested load module is read into memory as 
specified in its head and tree records. Any debug or modify tables built by RUNNER are 
merged into the program, and control transferred to the link unshared program logic, 
part E. 

FETCH begins by setting up M:XX to read the requested load module. The STEP error/ 
abnormal return is set into M:XX and the DCB closed if open. The password, name, and 
account are taken from the exit environment and placed into M:XX in the appropriate 
locations in the variable parameter list. The DCB is set in the input mode and FILE set 
into the ASN field. If the user is on-line or LDTRC action taking place, control is 
given to FCH4. If CCI performed the exit, however, recognized by BAT and TIC set into 
UH:FLG, the following action is taken depending on specifications in the run table. 

a) If DEBUG commands were encountered (Byte 1 of run table,# 0), associate 
RUNNER. 

b) If MODIFY commands were encountered (Byte 2 of run tabl e,# 0), associate 
RUNNER. 

c) 'If the first byte of word XIAI in the run table is non-zero, a TEXTC start 
address symbol is specified, associate RUNN ER. 

d) If any PMD records exist, recognized by bit XI200001 set in J :ASSIGN, 
associate RUNN ER. 

RUNNER is associated by releasing the special area context page via T:RVPI, loading 
R13-14 with :SYS, loading R6-8 with "RUNNER II in TEXTC, forming an environment 
to look like an interpretive exit, and branching to the Associate Shared Processor Logic. 
Upon returning from RUNN ER, the run table page (last page of the userls data area) 
is released. 

Common logic continues at FCH4 which first obtains the first page of the special area is 
a buffer into which the HEAD and TREE records of the requested load module are read. 
The page, J:EUP+l, is obtained via T:GNVPI. The debugger name specified by the exit 
from TEL in RO-l is saved in words 12-13 of the buffer page, as onl y 12 words of head 
record will be read, then TSTACK is emptied to obtain as much space as possible for the 
registers pushed by fit e management. 

The' HEAD record is read via a CAL 1, 1 first resetting user running in J :RNST and setting 
Y4 in J:ASSIGN to avoid buffer limit checks in 10RT. On return from the CAL, security 
checks on the HEAD and TREE verify the following: 

a) The fi rst word of the head is of the proper format. 
b) Bias, procedure, and DCBs all start on a page boundary. 
c) The proper number of bytes (X I30·) was read for the head record 
d) The proper number of bytes (X 130 1

) was read for the Tree record 
e) The file is keyed 
f) RUN N ER is not associated wi th a LMN bui I t by LIN K. 

52 



___ UTS TECHNICAL MANUAL 

SECTION EB 
PAGE 26 

12/6/71 

If one of the above tests is fail ed, control is given to F ETCH3 to provide the specifi ed 
ABC/ERO to TELLTEL. If the tests pass, the file is assumed to be a valid load module, 
and the tree read into the buffer at word 15, avoiding the specified debugger name. 
Upon returning from the CAL, the size is again checked in ARS of M:XX to verify the 
TR E E record is the proper si ze - 8 words. 

With the HEAD and TREE records in the buffer (see Load and Go logic for illustration) 
the de a, procedure, and DCB's are read into their proper locations, this operation con
sists of specifying the following registers to FETCH1 to read in the requested record: 

RO = Pointer to key.- LMN name in TREE 
R7 = Word from TREE containing size and location 
R8 = RO 
R 10 = Key number (3 = Data, 5 = procedure, 7 = DCB's) 

FETCH1 calculates the pages required from the size and starting location in R7. If zero, 
control is returned. Otherwise the location specified in R7 is checked. If valid (within 
user limits or DCB's), the necessary pages are obtained via T:GNVNPI. A key is formed 
by concatenating the load module name in the tree with the specified key number in R10, 
and used to read the appropriate record, after setting Y4 in J:ASSIGN to avoid limit 
checks. Upon returning from the CAL, control is passed back to the F ETCH logic. 

This operation is performed for both data and procedure; any remaining DCB pages are 
released by T:RVPI, and the same routine called for the load module's DCB's. M:XX 
is then closed. 

Unless this is a load and link operation, an environment is bumped into TSTACK, to be 
removed by the Assemble Unshared Program Logic at XIT10. 

If the load module was built by LINK or is not overlaid, recognized by X'C' in the first 
word of the tree, no M:SEGLD DCB to be used by the SEGLD routine exists; otherwise 
the first 10 words of the variable parameter list from M:XX are set into the corresponding 
locations of M:SEGLD. 

If RUNN ER was not associated, control is given to the Assembl e Unshared Program Logic 
at XIT10. Otherwise, RUNNER is decremented via DRASP in SSS. The clobber table 
location is determined from the last word in the special data area where RUNNER left it. 
The clobber table values are set into the procedure, preserving the replaced instruction 
in the debug FPT if a debug table, or merely replacing it with the table value if a 
modify. Consult the RUNNER documentation for details of debug table formats. Upon 
compl etion of this operation, control is passed to the Assemble Unshared Program Logic at 
XIT10. 

53 



UTS TECHNICAL MANUAL 

SECTION EB 
PAGE 26-A 
7/13/73 

J. DCB Validity Checker: OCBCHK 

This subroutine will maintain a minimum standard for all DCBs used in UTS. 

When the user1s DCBs have been read into core, DCBCHK will be called and the 
DCBs wi II be checked to see that they meet the minimum specifi cations outlined 
here. If they do not, the error conditions are set and return is to the ca lIer. 

DCBCHK is called by the following instruction: 

BAl, 11 DCBCHK 

DCBCH K assumes that the DCBs to be checked are in core and that the caller 
has supplied a page-sized working buffer. Input registers are as follows: 

RO = begi nni ng address of the DCBs 

R1 = total size of the DCBs in words 

R2 = beginning of the DCB name chain 

R4 = address of the working buffer (one page) 

R5 = o if the DCBs are to be initialized 

If the DCBs meet minimum standards, the condition codes are set to 0 and byte 0 
of R11 is set to O. If the DCBs are not acceptable, the error byte is stored in Rl1. 

The DCB buffer is checked for the following: 

a) The DCB-name table must lie within the buffer, either at the beginning 
or the end. 

b) The DCB-name table must not be linked, i. e., only one set of DCB names 
. is allowed. 

c) The pages of the DCB buffer are checked for type 10 protection. 

d) All pages of the DCB buffer must be contiguous. 

The DCB addresses are then located and stored into the working buffer; they are 
sorted from lowest to highest as they are stored. If the name table is improperly 
formed, the error return is taken. If the M:SEG lO DCB is encountered its ad-, 
dress wi II be stored in R3 for return to caller. 

90 19 86A-1 (4/73) 53-1 



UTS TECHNICAL MANUAL 

SECTION EB 
PAGE 26~B 
7/13/73 

The individual DCBs are now checked; if any of the following conditions is found, 
the error return is taken. 

a) DCB is less than 22 words long. (DCB length is defined as the difference 
between the beginning of the DCB and the beginning of the next DCB.) 

b) The DCB crosses a page boundary. 

c) KBUF does not lie within the DCBls variable parameter area (the'space 
following the required 22 words, and continuing up to the beginning of 
the next DCB). 

d) KBUF overlaps the next DCB (i. e., there are not 8 words between KBUF 
and the beginning of the next DCB). 

e) FLP does not lie between the 22nd word and the beginning of KBUF. 

f) FLpis overlap KBUF. 

When all DCBs have been checked, return is to caller. 

Following is a list of DOs and DONITs which should be observed in the construc
tion of DCBs. 

DO 

DO 

DO 

DONIT 

DONIT 

DONIT 

DONIT 

DO 

DONIT 

DONIT 

put the DCB-name table in the DCB record, either as the first 
thing or the last. 

bui Id DCBs on contiguous pages (virtual). 

bui Id DCBs with protection type 10. 

bui Id linked name tables. 

cross a page boundary with a DCB. 

have more than 509 DCBs. 

point KBUF or FLP out of the DCB or into the first 22 words of 
the DCB. 

make KBUF the last thing in the DCB. 

allow less than 8 words for KBUF. 

overlap FLP into KBUF or KBUF into the next DCB. 

53-2 90 19 86A-l (4/73) 



UTS TECHNICAL MANUAL 

K. Merge DCB Information Logic: ASP14 

SECTION EB 
PAGE 27 

, 7/20/71 

The logic to merge DCB information completes the process of making a user 
ready to run for both the associate shared and unshared program logic. 

At ASP 14 the start address from R8 is stored into the PSD in R2-3 unl ess the 
processor is a core library in which case the start address is obtained from 
J :START. The PSD is then stored into the PSD of the TSTACK envi ronment un less 
LDTRC initiated the request. 

The user's access is loaded via the MM routine T:PAC and the following action 
taken depending on the processor: 

a) If TEL, bypass all merge DCB information logic by transferring control 
to ASM 167. 

b) If CCI, merge assigns without setting TCB and TREE addresses into 
the JIT by transferring control to ASP17. 

c) If a normal processor, recognized by P:SA, store the TCB address from 
R10 into RO of the environment and J:TCB, unless restoring a 
processor for LDTRC. 

The tree address - the first page of the procedure - is stored into JITREE. 
Consult the register information provided by the Associate Shared Processor 
Logic. If not performing a transfer control for LDTRC, R8 of the environment is 
zeroed, the register for I/O errors is passed to the user. 

The assign merge begins at ASP17, which runs the DCB table, matching its 
entrys with entrys n the assi gn merge record bu i I t by TE L or CCI, and 
issues the Adjust DCB CAL on each match. Certain defaults are set into 
M:GO, and M:OC and M:UC are avoided entirely. 

This operation begins by avoiding the assign merge logic entirely if a processor 
is being restored for LDTRC. The close bit is loaded in R9 as a flag to the 
OPEN logic to perform security checks at each Adjust DCB CAL. Start·ing with 
the J :ADCBTBL, the first byte of each entry is obtained and if zero, the link 
is made to the next portion of the DCB table (illustrated in the user 
reinitialization logic). Each name in the table is checked, .and the following 
action taken by name: 

a) M:OC, M:UC: Bypass and get next DCB in the chain. 
b) M:GO: Set the following defaults into the DCB: 

90 19 86A-1 (4/73) 

1) 
2) 
3) 

Fi Ie type 
Out 
o 

ASN 
FUN 
Open bit in 1st word 

54 



4) 
5) 

6) 

1 word name 
"id Gil 

o 

UTS TECHNICAL MANUAL 

Fi rst word of name entry 
Name entry 

SECTION EB 
PAGE 28 
12/6/71 

(id from the 1 st word of the J IT) 
Account entry 

c) All other DCB's: Reset the open bit in the word O. 

When the link to the next portion of the chain is zero, control is transferred to the 
second half of the assign merge logic at ASM3. 

If J:AMR is zero, no assign merge record exists, and control is passed to the exit 
assign merge logic at ASM167. Otherwise, the "Assigns merged" flag is set in the 
high order bit of J :ASSIGN, and J :ABUF accessed, which contains the buffer address 
of the assign merge record. I f zero, a buffer is unl inked from J :FPOOL, and its address 
stored into J:ABUF. If M:XX is open, it is closed, then the IIBypass limit check" flag 
(Y4 in J:ASSIGN) is set so the buffer limit check routines in 10RT will not check the 
next CAL. Then the read assign merge record (RAMR) CAL is issued specifying the buffer 
address in R7. Upon return from the CAL, common logic continues at ASMO. 

The assign merge record is fully documented in the UTS reference manual in the discus
sion of the Adjust DCB CAL. It contains a series of FPTS built by TEL or eCI in response 
to ASSlGN or SET commands. The first name in the record is compared with the DCB 
names in the DCB table until a match is found. When matched, the DCB address from 
the table is set into the PLIST of the Adjust DCB FPT for that DCB in the assign merge 
record. If the DCB matched is M:UC or M:OC in the JIT, however, the search for a 
match continues, allowing a user to have an M:UC DCB of his own. 

After the DCB location is set into the FPT, the Adjust DCB CAL is issued. Upon return 
from the CAL, the search begins again for a match in the DCB table with the next entry 
in the assign merge record. 

After all assigns have been merged, ASM167 resets the X'4000' flag in UH:FLG termi
nating STEP I/O operations, re-links the buffer used for the assign merge record (if 
any) back into J :FPOOL, moves sense switch settings from user's JIT to his TCB (if 
batch), zeros J:ABUF, then transfers control to T:SSEM with the l.6er completely ready 
to run. 

55 



UTS, TECHNICAL MANUAL 

ID 

Overlays - Monitor, Shared processor, user program 

OVERVIEW 

SECTION EC 
PAGE 1 
6/9/71 

Monitor and shared processor overlays are treated exactly as shared processors. There 
are two user tables UB:OV and UB:APO which contain the shared processor number of 
the associated mon itor over! ay and/ or the shared processor overl ay/ respecti vel y. 
The process of associating an overlay is simply a matter of establishing the number of the 
overlay in the appropriate table, increasing its usage count (PB:UC), resetting the 
ready-to-run flag in UH :fLG to force an in-swap, and doing an associate 

processor (E:AP) REG. The swap scheduler will set up the swap to include any 
overlays and the swapper will bring them in and fill them into the user's map. 

User overlays are loaded by calling M:SGLD to open the user's load module file and 
read the segment into the place indicated by the tree table as well as its backward 
path. 

56 



UTS TECHNICAL MANUAL 

ID 

T:OV - Monitor and Shared Processor Overlays 

PURPOSE 

T:OV associates all monitor and shared processor overlays. 

USAGE 

SECTION EC. 01 
PAGE 1 

6/9/71 

T:PROCOV is called to overlay shared processors. Register 4 contains the overlay 
number in the shared processor table, Register 1 contains the entry address. 

T:OVER is called to associate a monitor overlay. Register 2 contains the segment 
number. Register 0 contains the overlay segment entry point number (all monitor 
overlays begin with a transfer vector to the possible entry points). 

T:OVERLAY is called like T:OVER. It performs the same function except that it 
remembers the contents of register 11 and the current overlay segment number 
to allow return to the caller. 

T :REMEMBER is BAL1d to on register 14. It saves the current overlay number and 
the contents of register 11 in OSTACK in JIT for return from a future segment. 

DATA BASES 

T:OV uses the user tables and shared processor tables to locate segments and update 
user associated shared processor tables. 

ERRORS 

Software check Xil DI occurs if the specified segment cannot be located. 

DESCRIPTION 

See now chart. 

57 



I",·,t-~",-\; ~ -tt::> 

\.O~ \01' k cn-, 
.)~c....",eJ. (Ji-t!>e 

oJev*Ct..~~ 

()vz..o 

SECTION EC.01 
Page 2 

UTS TECHNICAL MANUAL 6/9/71 

G-e---t ~O'" ; -\-or 
sec:rVK.eV\...' 
V\a.~e. In 
0-:;' s+c...yi- JelL. 

/: e-v 

~ 

Figl're EC- 1 

6e,T ",,"0'" i 4tN-
5~V'h eA. "t 
V\(.l..WI e 
o -" ~ -tc...v 't ~J.. 

~~------+-------~ 

58 

I PLLSI-t .s~ WI€"'- t 
ti: CUI\ d. 12E'<f II 

-- e~:t 

,- V\ +0 c95 T)'\C I< 

?It.\\ ..... h..e~be .... e 

seC( 141 e'" \" It ~ 
~ ~t- u.f> '10 
~-e.loc:a.a ~ 

re.-fu..)., 



UTS TECHNICAL MANUAL 

'Loec:;...Te 011 e..vlc.t.~ 

lV\ ~hL\,-eJ. 
(h .. () c,ef::.SOl>- -b.101.es-
s .e- A'ii,' ,1' l'\uT 
-fo (..{..L"\c( 

cuceSS 

CC>~Ir~c..-+1 ~ 

~iK .!>\.U-"-4'~ 
;> ""c.> c. - c,.I...~ c;4..fr! 

Cl CH"( ... M t $ 

-r: £E(;. -+0 
c::c...5'sC:>C::-,-a-\-<-

1-n:><.. rt!,sSOV'" 

I 
-.J 

e'1t~lr O\l~lrlCL~ 
( 0\-1) 

59 

elt\+c...v 

over 10..'1 
(.t) 

SECTION EC.01 
Page 3 

6/9/71 



UTS TECHNICAL MANUAL 

10 

SECTION EC.02 
Page 1 
6/9/71 

MSEGLD - User program overlays 

PURPOSE 

To load a specified overlay segment into core storage. 

USAGE 

B MSEGLD 

(R5)= address of JIT. 
(R6}=word 0 of FPT. 
(R7}=address of word 1 of FPT. 

One of two FPT's may be associated with this CAL, a user FPT and a Monitor FPT. 

word 0 

word 1 

word 0 

word 1 

USER FPT 

0------------0 

i 
Address of segment nome I 

Segment name must be in TEXTC format. 

MONITOR FPT (Currently not used) 

0-- 0 Address 

o Address of segment name I 
The segment name must be in TEXTC format .. 

60 



UTS TECHNICAL MANUAL 

where 

.SW = 1 if the exit is to the debug overlay 
Address is the location whose first bit is to be set to zero. 

EXIT 

B TRAP EXIT of M:ENTRY if SW = o. 
Overlay debug segment if SW = 1. 

SUBROUTINES 

SECTION EC.02 
PAGE 2 
12/6/7l 

MEMSET: MEMSET gets all pages between the lower limit specified (either J:DLL or 
J:PLL) and the highest page required to contain the highest segment, releasing 
all pages between the highest page + 1 and the upper I imit (either J :DUL or 
J:PUL) in: R2 = number of the highest page of data or procedure required to 

contain the highest segment 
R3 = poi nter to lower and UppEr timits of memory area, J :PLL or 

J :DLL. 

MEM1: used by MEMSET to perform actual logic to get or free pages specified via T:GNVPI 
and T :RVPI. 

ERROR CODES 

B 1 00 cannot fi nd requ ested segment 
B 1 0 1 tree record is bad 
B102 tree is circular 
BI03 data will not fit 
BI04 procedure will not fit 
B 105 bad bias on segment 
BI06 cannot obtain page 
B 107 SAD page encountered in unallocated memory area 
B1XX I/O error reading segment, where XX is the error code 

Errors are reported via a branch to T:ABORTM in STEP after loading R14 with 

ABC 

DESCRIPTION 

MSEGLD first checks to see if the seg-Ioad CAL was issued by a shared processor. 
If it was, the name is verified in P:NAME and, if found, control goes to T:PROCOV 
in T:OV. If it is not found, the user is aborted with code X1BP. If a user requested 
the seg-Ioad, his DCB is verified. After checkinq whether or not the SEGLOAD DCB 

61 



UTS TECHNICAL MANUAL 

SECTION EC.02 
PAGE 3 
12/6/71 

is open and, if it is not, opening it, the rootine verifies that the opening was normal, 
aborting the job (or ABORT1 of 8'.lTRY) if i-t was not. Then it searches the Tree tables 
for segments previously in core, as indicated by the A bit (bit 0 of word 3 of each seg
ment:in the userls TREE) bein g set to 1. The routine resets this bit to 0 but stores the 
indication in the B bit (bit 1 of word 3). As a result all segments in the Tree table are 
marked as being out of core in bit A, whil e a record of segments actually in core is kept 
in bit B. This prevents having to reload these segments in case they are needed. This 
search also checks for a circular tree table, allowing only as many segments to be 
marked as there are in the tabl e. If circular, a B 101 ABC/ERO is returned. 

Next, the Tree table is searched for the requested segment. If the segment is found, 
and not in core, memory in both data and procedure is allocated via MEMSET for the 
segment and its backward path, which is then read into core. If the segment is already 
in core, the highest segment in core on the forward path is marked in, and MEMSET 
accessed to allocate memory accordingly. If the requested segment is not found, the 
job is aborted with a Bl00 ABC/ERO. 

MSEGLD normally exits by branching to TRAPEXIT of ENTRY. 

EXAMPLE: Assume segment B calls Segment C as shown below: 

B B 
A A 

c c 
DATA PROCEDURE 

Memory allocation before SEGLD is called is as follows: 

Unallocated 

B I 
DLL DUL PLL PUL 

Memory allocation after SEGLD is called is: 

Unallocated 

~A~ __ C~~_A ___ C ]~ 
DLL DUL PUL PUL 

62 



ID 

RDSET 

PURPOSE 

UJS TECHNICAL MANUAL 

To read in the appropriate segment. 

ENTRY 

(SR4)= return address. 
(SR2)= address of segment under consideration in Tree tables. 
(R 1)= 3 to read segment into data area (00 protection type). 

= 5 to read segment in procedure area (01 protecti on type). 

EXIT 

SECTION EC.02 

Page 4 
6/9/71 

*SR4 or EREXIT (which aborts to ABORTl of ENTRY) if the segment was not read 
in normally. 

DESCRIPTION 

RDSEG searches the Tree table for the protection type indicated by Rl. If the segment 
size is zero, RDSEG returns without reading a segment; otherwise, it prepares a PLIST 
in TSTACK and calls EPRDWT, ROOTSEG to read in the segment. RDSEG then checks 
the debug si ze of the segment and, if it is zero, returns to the call er. If the 
debug size is not zero, RDSEG replaces all the instructions indicated by CLTAB 
(Section LB.Ol, Clobber Table) with the appropriate debug CAL indicated by 
CLTAB. In case of an abnormal read-in or an error, RDSEG branches to EREXIT 
which eventually will abort the job at ABORTl of ENTRY with an abort code of 
XI B 11. 

63 



Open it 

Mark it in 

Find it in 
tree tabl es. 

UTS TECHNICAL MANUAL 

64 

Figure EC-2 

EPDBGX 
DEBUGSEG 
OB 

• 

SECTION EC.02 
Page 5 
6/9/71 



ID 

Swapper 

PURPOSE 

_ - UTS TECHNICAL MANUAL 
~-- . 

SECTION ED 
PAGE 1 
1/10/73 

The purpose of the Swapper is to insure that a user is in memory in- a form ready for 
execution. However, the Swap Scheduler rather than the Swapper determines what 
is needed to accomplish this. The Swapper and the Swap Schedul er try to keep 
memory filled with the users who are most likely to be chosen for execution. _ 

The Swap Scheduler decides who should be Swapped in, whether the user needs any 
processors brought in from the Swapping RAD, and how to satisfy the physical page 
requirements of the user. The Swap Scheduler then passes this information on as input 
to theSwapper. The Swapper does all of the actual work involved. This may be as 
extensive as swapping several users out and bringing one user in from the Swapping RAD 
or as simpl e as associating another physical page, _ previously unavai labl e, with a user 
already in core. 

The section on the Swap Scheduler indicates how the major decisions are made regarding 
what work is needed. This section describes what the work is that the Swapper is 
requested to do and why it is requested to do it. How this work is accomplished is 
detailed in the next two sections on SWAPOUT and SWAPIN. 

OVERVIEW 

Some memory management concepts are necessary for an understanding of th is section. 
For more detai I, see section F on Memory Management. 

A user's mapping image, contained in JIT and called JB:CMAP, is the byte table con
taining physical page numbers that are loaded into the mapping registers prior to user 
execution. 

A user is allocated a RAD granule whenever he is allocated a virtual page. Although 
these RAD granules are not necessari Iy sequential, they are ordered with the pure pro
cedure always last, i. e., last encountered as the RAD rotates. The command chain or 
list (J:CL) and the table containing these granule addresses (JH:DA), used for Swapping 
a user, are contained in his JIT. Each four word entry of the command list contains a 
seek lOCO pointing to a disc address table entry and a read/write IOCD containing the 
physi cal page byte address. 

A user is always swapped in and out in his entirety except when it can be determined by 
a bit in a user flag table, that a good copy of his pure procedure is already on the RAD, 
in which case it is not swapped out. 

65 



UTS TECHNICAL MANUAL 

Following are the situations in wh ich the Swapper is executed. 

SECTION ED 
PAGE 2 
2/2/71 

1) There is space in memory for a user presently on the RAD. The Swapper brings 
him into memory and further prepares him for execution. This ·Swapper prepara
tion consists of putting his physical page numbers and those of the processors he 
shares into his mapping image, contained in JIT, and linking his page numbers 
together to construct his physical page chain. 

2) There are one or more users in memory whose space is needed in order to bring in 
a user on the RAD who is more likely to be chosen for execution. In this situation, 
those users are Swapped out and the user on the RAD, more I ikely to be chosen for 
execution, is brought into the newly avai lable pages and prepared for execution. 

3) The system has associated a shared processor with a user by putting the processor's 
number into a user table. The Swapper must put the physical page numbers of 
those pages containing the processor into the user's mapping image. This can only 
be done if the processor is in memory. If it isn't, the Swapper must first bring it 
in from the Swapping RAD. These same actions for processors may also be required 
in conjunction with the first two situations mentioned above. Setting the processor 
into the user's mapping image, after swapping the processor in when necessary, 
must be done whenever a processor is initially associated with a user and also 
anytime a user is brought into core. 

4) Some shared processors also require initial DCBs or data or both to be allocated to 
a user. Once allocated they become part of the user and are swapped with him. 
However, they must be initially brought in from a home area on the swapping RAD 

at the same time the shared processor is initially being set up by the Swapper. 

5) A user has been allocated one or more virtual pages and at the same time there were 
no physical pages available. If a user requests virtual pages and no physical pages 
are available, Memory Management sets up the virtual pages, using for physical 
pages a monitor pure procedure page for identification, and allocates RAD granules 
for them. However, since Memory Management can't put good physical page 
numbers into the user's mapping irTlage, it temporarily gives up control to the 
system. The only way that physical pages can now be put into the mapping image 
is by the Swapper. When the Swap Scheduler determines that pages are avail-
able, the Swapper sets up the mapping image. Some time later, now that the 
user is again ready to run, the system returns control to Memory Management 
following the point of give up. Memory Management can continue execution 
knowing that the Swapper has replaced the No Page Map Constants (NPMC, the 
monitor pure procedure page) with physical pages. 

USAGE 

The Swap Scheduler transfers control to one of two Swapper entries. Input and output 
are contained in core and not in the registers upon entering and- exiting from the Swapper. 

66 



UTS~ TECHNICAL MANUAL 

SECTION ED 
PAGE 3 
1/10/73 

If users must be swapped out the Swap Scheduler branches to SWAPOUT which in turn 
goes to SWAPIN. Otherwise, the entry point is SWAPIN. 

INTERACTION 

T:SIO is used only by the Swapper and its function is to drive the I/O for the Swapping 
RAD. 

Two other routines are used in this module. T:SENSE returns to the Swapper the present 
position of the RAD head so that when several sorted command lists are chai~ed together, 
the chain can be broken such that the one closest to the present head position can be 
initiated first. T:SEXIT is used by both T:SIO and the Swapper to give up control either 
to wait for I/O completion or to exit. 

ERRORS 

Two methods of detecting RAD errors are used by the Swapper besides the normal hard-' 
ware error detection using I/O error status bits. 

The first is write checking. If a software switch (DOWTCK) is set, and it normally is, 
then the swapper's I/O module, T:SIO, performs the RAD hardware write checking 
function after all writes. If errors occur in write checking, T:SIO retires N times a 
sequence of write then write check. 

The second method is read checking which is also controlled by a software switch 
(DORDCK) which is always turned off (reset) because of problems recovering HGPs 
that have been read checked. If read checking were performed it would operate as 
follows. When a user is Swapped out, unique consecutive identifiers are placed in the 
next to the last halfword of each page. The two halfword identifiers for 1) the user's 
first page and 2) h is first page of pure procedure (needed since pure procedure is not 
swapped out every time), are saved in the user's JIT. When the user is swapped in, 
a software check is made by the Swapper of the identifiers in the user's pages to see that 
they start with the value saved in JIT and are consecutive. The halfword destroyed 
by an identifier is saved in the command chain for each page before it is swapped out and is 
restored during the read check. 

RESTRICTIONS 

The Swapper executes mas'-er, unmapped. 

67 



ID 

SWAPOUT 

PURPOSE 

UTS TECHNICAL M.6NUAL 

SECTION ED.01 
PAGE 1 
9/7/7] 

The purpose of SW.APOUT is to move one or more users from memory to the swapping 
RAD to provide core needed by SWAPI N. 

INPUT 

SB:OSN contains the number of users that are to be swapped out. 

SB:OSUL is a byte table containing the user numbers of the users to swap out. The 
first byte of this table indicates the number of entries presently in the table and is 
called SB :OSN. SB :OSUL and SB:OSN are equated to the same location. 

OUTPUT 

S:rPPH, S:F-PPT and S:FPPC are the Head, Tail and Count of the swapper's free 
page pool. They define the chain, linked in MB:PPUT, of the physical pages the 
Swap Scheduler is passing to the Swapper to be used for swapping in the user. 
SWAPOUT adds the page chains of each user being swapped out to the chain the 
Swap Scheduler has already created. 

S:SCL is a Shell or empty Command List in resident core. It is used to built the JIT 
C Ls for th e users be i ng swapped out and to bu i Id the processor C Ls for swappi ng in 
processors pure proced ure in SW ,~ PI N. 

SH:SDA is the area in resident core for the Disc Addresses needed by S:SCL. 

#SW.6P$DEV indicates to TSIO the number of interrupts it must receive before 
I/O is complete since that many requests were made of TSIO. 

DATA BASES 

JHSWPID is the displacement in JIT of the location containing the two half word 
identifiers used in software read checking. (Software read checking is explained 
in the SWAPPER section under errors. ) 

S:SWPCNT is used in connection with software read checking. It contains the next 
unique identifier and must be updated by SWAPOUT to be one greater than the value 
used in the last page to be swapped out. 

68 



UTS TECHNICAL MANUAL 

SECTION ED.01 
PAGE 2 

9/7/71 

S:BCL is a table containing the addresses of the beginning of the command lists for each 
user being Swapped out and each processor being Swapped in. It is used for I inking the 
CLs together after sorting for RAD optimization. 

S:ECL is a table containing the addresses of the locations following the CLs where a 
Transfer In Channel (TIC) is placed when linking the users' or processors' CLs 
together. 

S:BDA is a table containing the first Disc Address for each user being swapped out or 
processor being swapped in. The table is used to sort and order the CLs for RAD 
optimization. 

SH :EDA is a table containing the last DA of each user being swapped out or processor 
being swapped in. 

J:CLP is set to contain a pointer to the word in the user's CL that is destroyed by a 
TIC in swapping the user out. 

J :CLS contains the word foil owing the user's C L that is destroyed by a TIC during 
SWAPOUT. 

SB:OSULT is a temporary working table created identical to SB:05UL by SWAPOUT. 

SUBROUTINES 

T:PGCHK checks that a physical page chain, linked through MB:PPUT, is valid and 
consistent with its head, tai I and count. Input is the address of the head in register 7. 
If an error is detected, control is transferred to RECOVER with a screech code of 
01. 

T:RECORD creates a record of information in a wrap around recording buffer for use 
by ANLZ in case of a crash. Input is an identification code in register 1 as an 
indication of what information to collect. 

The following three routines are used when mu Itiple command I ists must be ordered 
and chained together. The 4 tables S:BCL, S:ECL, S:BDA, and SH:EDA are created 
for use by these routines. 

OSAC puts an index to the other 3 tables in to byte 0 of each entry of S :BDA. It then 
sorts this table of beginning disc addresses in ascending order with respect to sector 
position. Input is the number of table entri es in register 8. Output is the sorted S :BDA 
table. Control is transferred directly to CCLO. 

69 



UTS TECHNICAL MANUAL 

SECTION ED.Ol 
PAGE 3 

9/7/71 

CCLO orders the command lists. It determines which command list follows most closely 
after another command list by finding which BOA is closest but larger in sector 
position to another CL'sEDA. It starts w"th the first BOA, as sorted in OSAC, fJnd 
places its index (i. e. backward link) into byte 1 of the BOA entry which most closely 
follows in sector position the ED.A. of the first. It then places a TIC from the first 
CL to the CL it has just determined is second. It continues by finding which CL 
follows the second and so on until the last is chained to the first. Control is then 
transferred back to the routine which called OSpC. 

ULCLC is called after a sense of the RAD. Input is the RADs head's present sector 
position in register 10. ULCLC adds a delay (SDLAY) to this position and determines 
which BOA most nearly follows this. The corresponding BCL is set in register 6 and 
points to the beginning of the chain. The backward link, in byte 1 of S:BDA, points 
to the entries which more define the last CL. The ECL address of this last CL is set in 
register 5 and the routine exists. ULCLC provides the necessary information and 
the calling routine does the actual breaking of the chain. 

DESCRIPTION 

SWAPOUT sets up the command lists (chains of lOCOs) for all the users being swapped 
to one RAD, links these lists together and calls upon module TSIO to perform I/O to 
this RAD. If there is more than one swapping RAD, this process is repeated for each 
swapping RAD until all of the users in the out swap user list (SB:OSUL) have been 
swapped out. 

At the beginning of SW A,POUT, the out swap user list (SB :OSUL) is copied into 
a similar table called the out swap user list temporary (SB:OSULT). The number of 
different RADs for these users is recorded in #SWAP$DEV to indicate the number 
of times TSIO must receive interrupts before I/O is complete. As SWAPOUT chooses 
the users from SB:OSUL T that are on one RAD, it zeros their numbers in thi s list, 
sets up their chains and calls upon TSIO. When the list contains only zero, 
it exits. 

The following then describes the functions done for each RAD before calling upon TSIO 
to perform all I/O to a RAD. When more than one user is being swapped out, 
(to a particular RAD), the command list for each user is built and then the command 
lists are ordered and chained together to optimize output. This ordering for 
optimization is done between users but not within a user since optimization within 
a user is done during dynamic granule allocation. 

The following actions are executed for each user that must be swapped out. The 
user's physical page chain is added on the swapper's free page pool (chain). 
The two unique hal f word identifiers used in software read checking are set in JIT, 
unless pure procedure is not to be swapped out, in which case only the first is set up. 

70 



UTS TECHNICAL M.ANUAL 

SECTION ED.01 
PAGE 4 
9/7/71 

The command list contained in the user's JIT or AJIT is filled in with write orders. 
At the same time, the next to the last half word of each user page is saved in an 
unused part of the command list and the software read check identifier, incremented 
once per page, is placed in each page. The word following the user's CL (soon to be 
destroyed by a TIC) and the word's location are saved in JIT in J:CLS and J:CLP 
respectively so that the word may be restored when the user is swapped back in. 
The command lists for AJIT and JIT are built in that order in a resident area of core 
with a TIC to the user's CL. Setting up and connecting the CLs for the user and 
for his JIT is repeated for each user going to the same RAD in the out swap list. 

If there is more than one user, the C Ls are now ordered and chained together to 
optimize the RAD I/O. This ordering is accompl ished using four tables created as 
the command list was set up for each user. The four values entered into the tables 
for each user are the first and last DA, used for ordering, and the beginning and ending 
locations of the user's command list, used for chaining the users together. After 
the lists have been chained together, in the multiple user case, a sense of the RAD 
is made and the circular list broken so that the I/O can be started on that user whose 
area on the RAD is coming up next. 

Now SW P.·POUT calls on TSIO to swap the one or more users out to their RAD. When 
TSIO returns, SWAPOUT sets up the users for the next swapping RAD, if more than 
one, and drives again to TSIO. When TSIO has completed the I/O for all swapping 
RADs, as indicated by a counter (#SWAP$DEV), SWAPOUT passes control to 
SWAPIN. 

71 



UTS TECHNICAL MANUAL 

ID 

Swapping RAD I/O - T :SIO 

PURPOSE 

SECTION ED. 01. 01 
PAGE 1 
9/7/71 

When the swapper has set up a command chain, for which swapping RAD VO must be 
performed, it calls upon T:SIO. TSIO calls upon the I/O system (IOQ) to do the 
actual I/O and interrupt processing. The I/O system returns to TSIO for end action. 

OVERVIEW 

TSIO performs error checks on the CL chain, sets up information in registers and calls 
upon NEWQ to queue up the request. When the interrupt occurs and processing is 
complete, the I/O system transfers control to the end action routine in TSIO. If an 
error occurred, the Vo system entered a record in the error log fi Ie, output a message 
to the operator's console and passed information about the error to the end action 
routine. The end action routine wi II retry the call N times, and if that fai Is it wi II 
set a user flag indicating the error and continue. If the I/O was successful, TSIO 
returns to the SWAPPER sti lion end action. However, if the function performed was 
a write, the I/O system is called upon to do a check write. If the function was reading 
a user, then TSIO performs a software read check before returning to the SWAPPER. 

USAGE 

T:SIO 

ERRORS 

BAL, 11 T:SIO 

R6 = Address of beginning of command list. 

" R5 = Address of end of command list. 

R7 = Function code; 2 for read and 1 for write 

The screech codes reported by T :SIO are as follows: 

OA Read or write orders in command list are not consistently one or the other but 
a mixture or in analyzing N read errors order is inva'iid. 

OB Didn't find seek or sense order in command list when one or the other was 
expected. 

90 19 86A-1 (4/73) 71-1 



UTS TECHNICAL MANUAL 

SECTION ED. 01. 01 
PAGE 2 
12/6/71 

OC Physical page number from byte address in lOCO with read or write order is 
not between values contained in lOW and HIGH. 

00 Termination of command list doesn't agree with command list ending address 
input T :SIO or termination IOCD doesn't have flags of X' 1 E'. 

OE No I/O is needed as indicated by input beginning address of command list 
address being equaf to input ending address. 

OF· The function input parameter is not read or write. 

93 N write errors occurred and the offending command list can't be found. 

94 Discovered invalid order trying to continue write checking the rest of 
command list after N errors occurred. 

95 N read errors occurred and there is an invalid address pointi~g to the 
offending comman~ list. 

96 N errors occurred trying to read a processor. 

If a hardware error occurs, IOQ types a message, logs the error and returns to TSIO. 
After N errors occur, one of three flags is set in a user flag table (UH:FlG2) and 
TSIO continues, i. e., returns to the SWAPPER. Prior to execution of the user if one 
of these three flags is set, the error is logged and appropriate action taken. If the flag 
(bit 13) indicates that a write or write check fai led on any page of the user or a read 
or read check failed and it wasn't in the user's context area (JIT, DCBs, etc.) then the 
message "SYSTEM SWAPPING ERROR" is output to the user and execution continues as 
usual. If however the error was in reading or read checking the user's context (bit 14) 
or user's JIT (bit 15), then the user is deleted. 

INTERACTION 

T:SSE 

RECOVER 

T:SEXIT 

DOWTCK 

DORDCK 

Control is returned to the system following an interrupt. 

Is called as a result of fai ling consistency checks and unrecoverable 
Vo errors. 

Control is returned to the system to wait for I/O completion. 

Is a software switch, normally set, requesting write checking. 

Is a software switch, normally set, requesting read checking. 

71-2 90 19 86A-1 (4/73) 



UTS TECHNICAL MANUAL 

SUBROUTINES 

SECTION ED. 01. 01 
PAGE 3 
9/7/71 

SET$REG sets the arguments into registers that are required for the call to NEWQ. 
Input to SET$REG is the doubleword command list address in register 0 and the OCT 
index in register 14. 

DESCRIPTION 

If software checking is required as indicated by sense switch 4 being set, T:SIO 
ripples through the complete chain of command lists checking for errors. Each 
command list entry, consisting of 4 words i. e. 2 lOCOs, must have an lOCO with 
a seek order followed by an lOCO with a read or write order. In one command list 
there must be only reads or writes but not both. Each 4 word entry must have 
termination flags of X·4C· in the second lOCO, or be followed by another 4 word 
entry with a seek order in the 1st lOCO, or be followed by a transfer in Channel 
lOCO. Each TIC lOCO must be followed by an lOCO containing a seek or a 
sense order. The command list must be terminated by an lOCO with a sense order 
or with X·4C· flags and this termination point must agree with the address of the 
end of the command list specified as input to T :SIO. All physical page numbers 
contained in the byte addresses of lOCOs with read or write orders must be within 
the range of physical pages, not containing the monitor, used by the system as 
defined (the range) by the values contained in locations LOW and HIGH. If any 

. errors are found, T :SIO transfers to RECOVER with a screech code indicating the 
error. 

If there are no errors, the number of retries is initialized and SET$REG is called 
to set up the arguments in registers for NEWQ. NEWQ is cal fed upon to queue 
up the request. When it returns, T :SEXIT is executed. 

T :SEXIT pulls a return address from the stack and transfers control to that location. 
When the swap scheduler was entered, the address of the caller was pushed into the 
stack. The first time T:SEXIT is called, it will return to that caller. When the 
Vo system has finished processing a swapper interrupt, it transfers control to end 
action in TSIO. This end action routine pushes into the stack the return location 
of the VO system. End action transfers to the swapper, the swapper calls TSIO 
againand finally T:SEXIT gets executed again, which finally pulls and returns 
to the I/O system which returns to the point of interrupt. (See diagram OB-1.) 

When the VO system finishes the VO and processes the interrupt, it transfers to 
T :SIOEA, the end action routine in TSIO, with information about any errors. 
T :SIOEA pushes the return address into the stack. 

90 19 86A-1 (4/73) 71-3 



UTS TECHNICAL MANUAL 

SECTIO NED. 01. 01 
PAGE 4 
9/7/71 

If the Vo system detected any errors, TSIO retries (by calling NEWQ) N times. If 
these retries are all unsuccessful, a user flag is set as indicated in the error section 
and TSIO returns to the swapper. If the function was a write check, retry consists 
of re-writing and then retrying the write check. If software read checking fai Is, 
retry consists of rereading. 

All successful writes are write checked if DOWTCK is set. No matter how many CLs 
are in chain, it is executed at one time if the function is read or write. Write checking 
requires the chain to be partitioned and Va initiated separately for each part. The 
AJIT and JIT are write checked first. When this is completed, the JIT can be altered 
by setting write check orders in the user1s CL. If there is another user1s JIT Cl follow
ing, it can be done at the same time. So the routine ripples through the chain, 
changing write orders to write checks, unti I it finds a TIC from a JIT Cl to a user 
Cl, at which point it resets the chaining flag and sets the interrupt flag. After this 
I/O is completed, it continues where it left off unti I it finds the next user Cl, and so 
on, unti I everything written has been checked. An unsuccessful write check results 
in only that section iust checked, being rewritten and the rechecked. 

When the function was reading a user (n.ot processors, JIT or initial data and DCBs), 
a software read check is performed if DORDCK is set. Comparison is made to insure 
that halfword identifiers in the user1s page start with the value saved in JIT and are 
consecutive. The halfword destroyed by an identifier is saved in the command chain 
for each page before it is swapped out and restored during this read check. 

When all requested I/O has been completed, TSIO returns to the swapper. 

71-4 90 19 86A-1 (4/73) 



UTS TECHNICAL MANUAL 

SECTION ED. 01. 01 
PAGE 5 
9/7/71 

(PUSH 11 Branch to) 

SWAPPER 

Diagram DB-1: Relationship of SWAPPER, TSIO 
and 10Q. Illustration shows 

set up 
out swap 

TSIO 

1 set up for 10Q 
loa 

swappi ng out 1 user wi th one error: 
and swapping in a user (JIT in core) 
wi thout error. 

I start VO 
~--Pu-'-'-r-et-u-rn-(r-o-u""':tine T:SEXIT in TSIO) 

(return to caller of swap) 

end action I - I_NlE~~UI?T_ .G.\ 
.. process interrupt 

push return 
suppose error: 
set up for loa (retry) ---'--=='l 

I
-p~--i I return (return to 

interrupted at CD ) 
l~!E~~~P! _@ 

end action r process interrupt 

push return 
suppose I/O ok: 

...------' 
return to swapper 

set up in swap 

I set up for loa 
~start I/O 

,-~~--,-, -re-t-ur-n-(r-et-u-rn- to 

• interrupt at ®) -'~T_E~Rl}P! 0) 
process interrupt 

end action 

~ push return suppose 

____ *I/OOK 

lfi n i sh swap, pu II return 
(return to interrupt and at ® ) 

90 19 86A-1 (4/73) 71-5 



UTS TECHNICAL MANUAL 

10 

Swapping Disk Pack I/O - DPSIO 

PURPOSE 

SECTION ED. 01. 01 
PAGE 6 
7/16/73 

When the swapper has set up a command chain, for which swapping Disk Pack I/O must 
be performed, it calls upon DPSIO. DPSIO calls upon the I/O system (IQQ) to do 
the actual I/O and interrupt processing. The I/O system returns to DPSIO for end 
action. 

OVERVIEW 

DPSIO performs error checks on the CL chain, converts the CL for use on a Disk Pack, 
sets up information in registers and calls upon NEWQ to queue up the request. When 
the interrupt occurs and processing is complete, the I/O system transfers control to 
the end action routine in DPSIO. 10SERCK is called to check for and log errors, 
MSGOUT is called to type error messages on the OC. If an error has occurred DPSIO 
will retry the call N times, and if that fai Is it wi II set a user flag indicating the error 
and continue. If the VO was successful, DPSIO returns to the SWAPPER still on end 
action. However, if the function performed was a write, the I/O system is called 
upon to do a check write. 

USAGE 

DPSIO 

ERRORS 

BAL,11 T:SIO 

R6 = Address of beginni ng of command list. 

R7 = Function code; 2 for reading processors and JITs and 1 for write, 
4 for reading user data. 

The screech codes reported by DPSIO are as follows: 

OA Read or write orders in command list are not consistently one or the other 
but a mixture or in analyzing N read errors order is invalid. 

OB Didn't find seek or sense order in command list when one or the other was 
expected. 

71-6 90 19 86A-1 (4/73) 



UTS TECHNICAL MANUAL 

SECTION ED. 01. 0' 
PAGE 7 
7/16/73 

OC Physical page number from byte address in lOCO with read or write order is 
not between values contained in LOW and HIGH. 

00 Termination of command list doesn't agree with command list ending address 
input T:SIO or termination lOCO doesn't have flags of X'lE'. 

OE No I/O is needed as indicated by input beginning address of command list 
address being equal to input ending address. 

OF The function input parameter is not read or write. 

93 N write errors occurred and the offending command list can't be found. 

94 Discovered invalid order trying to continue write checking the rest of com
mand list after N errors occurred. 

95 N read errors occurred and there is an invalid address pointing to the offend
ing command list. 

96 N errors occurred trying to read a processor ~ 

If a hardware error occurs, DPSIO types a message, and logs the error. After N errors 
occur, one of three flags is set in a user flag table (UH:FLG2) and DPSIO continues, 
i. e., returns to the SWAPPER. Prior to execution of the user if one of these flags is 
set, the error is logged and appropriate action taken. If the flag indicates that a write 
or write check fai led on any page of the user or a read fai led and it wasn't in the user's 
context area (JIT, DCBs, etc.) then the message "SYSTEM SWAPPING ERROR" is output 
to the user and execution continues as usual. If however the error was in reading or 
read checking the user's context, then the user is deleted. 

INTERACTION 

T:SSE 

RECOVER 

T:SEXIT 

DOWTCK 

90 19 86A-l (4/73) 

Control is returned to the system following an interrupt. 

Is called as a result of fai ling consistency checks and unrecoverable 
I/O errors. 

Control is returned to the system to wait for I/O completion. 

Is a software switch, normally set, requesting write checking. 

71-7 



UTS TECHNICAL MANUAL 

SUBROUTINES 

SECTION EO. 01. 01 
PAGE 8 
7/16/73 

SET$REG sets the arguments into registers that are required for the call to NEWQ. 
Input to SET$REG is the doubleword command list address in register 0 and the OCT 
index in register 14. 

SSN - Set Sense Orders. 
SSN replaces all SEEK within the limits contained in R2 and R3 (R2 = lower limit, 
R3 = upper limit) with SENSE orders. The second word of each SENSW CPW inserted 
by SSN is set to have a byte count of 0 and the skip flag on. These COW·s when 
executed are effectively NOp·s. 

SET$SCL - Insert SEEK order (in S:SCC) and disc address. 
Inputs to SET$SCL are in RO and Rl. R1 contains an index into XTBL and RO contains 
a disc address. SET$SCL gets a beginning and ending CL address from S:BCL and 
S:ECL and inserts a halt TIC in the latter and SEEK order in the former. The OA in 
RO is placed in the two half words pointed to by the byte address in the aforementioned 
SEEK order. The byte count of the SEEK order is set to 4. 

SET$JCL - Insert SEEK order (in S:JCL) and disc address. 
Input to SET$JCL is a OA in RO. SET$JCL inserts a SEE K order in the first COW of 
S:JCL and puts the OA(RO) in SH:JAJOA. S:JCL is the address of the command list 
used for swapping in JIT·s/AJIT·s. 

SET$C L - Insert SEE K order and di sc address. 
Inputs to SET$CL is a DA in RO and the address of the first word of a CL. SET$CL puts 
a SEEK COW at the address specified in R4 and inserts the DA(RO) in the two half 
words pointed to by the SEEK order. 

OU - Outswap User. 
When DPSIO is entered with R7 = 1 a call on OU is made. OU first determines how 
much of S:SC L (commands for swapping out JITls and AJIPs for each user are located 
in S:SCL) has been used for this swap. All seek commands in the list are then changed 
to SENSE (See SSN) with the byte count set to 0 (this has the effect of NOP when 
the CDW is executed). Next, items in SB:OSUl are reversed in order and placed 
in SB:OSULT so that entries in SB:OSULT wi II be parallel to entries in S:BCL and 
S:ECl. If SB:OSN>l, REORDR is called to form tables 'TBL and XTBL (see Tables 1 
and 2). 

71-8 90 19 86A-1 (4/73) 



UTS TECHNICAL MANUAL 

SECTION ED. 01. 01 
PAGE 9 
7/16/73 

OU1 is the starting point for preparing individual user command lists for execution. 
User numbers are selected from #TBl in order of decreasing magnitude and a call is 
made to NEWQ for first writing then write-checking each user. When a number is 
selected from DTBl the corresponding command list in the user's JIT (or AJIT) is 
modified so that arr SEEKls are replaced by SENSE commands with byte count of 0 
(results in NOP). Then a SEEK command is inserted in the first COW for this user 
in S:SCl. The disc address pointed to by the above SEEK is computed as follows: 
cylinder number comes from entry in UB:C# (set at initialization); track number = 0; 
sector number = 0 if AJIT present, 2 if no AJIT. A command (M:HlTIC) which 
results in a halt is placed at the end of the users command list. Thus each user is 
written to the disc pack by the execution of one SEEK command, and N (N = number 
of pages for the user) wri te orders. 

Write checking is accomplished by first write-checking JIT and AJIT then placing a 
SEE K command (same as above except that sector number = 4) in the first COW in 
JIT (AJIT). Therefore each user outswapped requires 3 calls on NEWQ; write user; 
write-check user's JIT/AJIT; write check user. At the completion of the write 
checking sequence and if the number of users left to swap out is >0, OU1 is called 
to prepare the next user for swapping_ 

IP - Inswap Processor_ 
If DPSIO is entered with R7 = 2 and S:SCl$R6<SlC$END, and PB:HPP>O for one of 
the procs in SB:PN l then IP is called to swap in one or more processors. The largest 
value in S:ECl is found and is used as the upper limit for cal ling SSN (S:SCl is the 
lower limit). If SB:NP>l REORDR is cal led. Then orr the processor CllS are chained 
together, ordered by increasing magnitude of Processor number_If the JIT for 
user in S:ISUN is in core a halt is placed at the end of the Cl for the last processor in 
the chain. If the inswap user's JIT is out of core then a TIC to S:JCl is placed at the 
end of the processor Cl and IJ is called to setup S:JCL. 

IJ - Inswap JIT. 
IJ is called if DPSIO is entered with R6 = S:JCL. If the JIT for the inswap user has 
never been in core then the location of the skeleton JIT is used in a call to SET$JCl. 
If the user has been in core then the user disc address is used for the call to SET$JCL. 
(See SET$JC l. ) 

90 19 86A-1 (4/73) 71-9 



UTS TECHNICAL MANUAL 

IU - Inswap User 

SECTION ED. 01. 01 
PAGE 19 
7/16/73 

There are iwo sets of conditions that wi II result in a calion IU when DPSIO is entered. 
They are: 

1. R7 = 4 

2. a. R7 = 2 

b. S:SCL<R6<SCL$END. 

c. no processors to swap in. 

The second case implies that only initial data and/or DCB's are to be inswapped. If 
R7 = 4 there is read checki ng to be done and therefore some user data is to be swapped 
in. There may also be initio I data and/or DCB's to be swapped in the first case. If 
there is no initial/DCB data then IU does nothing. Otherwise IU calls SSN 
(R2 = (TSC3)+2 and R3 = SCL$END), computes the disc address of the initial/DCB data, 
and then calls SET$SCL. The swapper has already placed a TIC at the end of the 
user CL (if any) to the start,of the initial/DCB CL. 

REORDR - Reorder user or processor number tables. 
Input to reorder is the address of table SB:OSULT or SB:PNL. REORDR uses the entries 
in the argument table to form tables #TBL and XTBL. 

ACATDA - Determines disk address of ALLYCAT's JIT or data. 
Input is a condition code setting resulting from a test of table UB:C# and, in RO, the 
normal sector address of AJITS, JITS, or data (0, 2, or 4). If the condition code is 
nonzero, ACATDA exits •. Otherwise, ALL YCAT's bias of four sectors is added to RO 
and physical disk address is computed. 

If there are no errors in the construction of the command listt, the appropriate CL 
conversion routine is called, the number of retries is initialized and SET$REG is 
called to set up the arguments in registers for NEWQ. NEWQ is called upon to 
queue up the request. When it returns, T:SEXIT is executed. 

t For a description of how the command list is checked, see Section 08 (TSIO). 

71-10 90 19 86A-1 (4/73) 
.+.--.~-



UTS TECHNICAL MANUAL 

SECTION ED. 01. 01 
PAGE 11 
7/16/73 

T :SEXIT pulls a return address from the stack and transfers control to that location. 
When the swap scheduler was entered, the address of the caller was pushed into the 
stack. The first time T:SEXIT is called, it will return to that caller. When the I/O 
system has finished processing a swapper interrupt, it transfers control to end action 
in DPSIO. This end action routine pushes into the stack the return location of the 
Vo system. End action transfers to the swapper, the swapper calls DPSIO again and 
finally T:SEXIT gets executed again, which finally pulls and returns to the I/O system 
which returns to the point of interrupt. (See diagram D8-1.) 

When the I/O system finishes the I/O and processes the interrupt, it transfers to 
T:SIOEA, the end action routine in DPSIO with information about the errors. T:SIOEA 
pushes the return address into the stack. 

If the VO system detected any errors, DPSIO retries (by calling NEWQ) N times. 
If these retries are all unsuccessful, a user flag is set as indicated in the error section 
and DPSIO returns to the swapper. If the function was a write check, retry consists 
of re-writing and then retrying the write check. 

All successful writes are write checked if DOWTCK is set. The AJIT and JIT are 
write checked first. When this is completed, the JIT can be altered by setting write 
check orders and a SEEK order in the user's CL. The routine changes write orders 
to write checks, until it finds a TIC from a JIT CL to a user CL, or to a HALT, at 
which point it resets the chaining flag and sets the interrupt flag. An unsuccessful 
write check results in only that section iust checked, being rewritten and then 
rechecked. 

When all requested I/O has been completed, DPSIO returns to the swapper. 

90 19 86A-l(4/73) 71-11 



UTS TECHNICAL MANUAL 

SECTION ED. 01. 01 
PAGE 12 
7/16/73 

(PUSH 11 Branch to) 

SWAPPER 

Diagram 08-1: Relationship of SWAPPER, 
OPSIO and 10Q. Illustra
tion shows swapping out 1 
user with one error and 
swapping in a user (JIT in 
core) wi thout error. 

set up 
out swap OPSIO 

set up for 10Q 

10Q 
start I/O· 

Pull return (routine T :SEXIT in OPSIO) 
(return to caller of swap) 

INTERRUPT CD 
end action ~ --~o~e-ss-i~t~r~u~t 
push return 
suppose error: 
set up for 10Q (retry-) 

...--_____ ,l start I/O 

pu II return (return to interrupt 
at (2) ) 

_ J~!.E~R_U~TJ:~2. 
end action ~ process interrupt 

I push return suppose 
r I/O ok 

finish swap, pull return 
(return to interrupt at W ) 

71-12 . 90 19 86A-1 (4/73) 



UTS TECHNICAL MANUAL 

TABLES 

1. 'TBl 

SECTION ED. 01.01 
PAGE 13 
7/16/73 

'TBl is a table of user or processor numbers ordered by increasing magnitude. 
'TBL is bui It by REORDR. 

2. XTBl 

XTBl is a table of indi ces, bui It parallel to #TBL. Each index in XTBl is a 
byte offset in either SB:PN L (for processor numbers) or SB: OSUlT (user 
numbers) where the parallel entry in #TBl is located. XTBl is bui It by 
REORDR. 

3. S:SCl, S:BCL, S:ECl, S:JCl, SB:PNl, SB:OSUL, SB:OSULT 

See Section ED of UTS Technical Manual. 

90 19 86A-1 (4/73) 71-13 



ID 

SWAPIN 

PURPOSE 

UTS TECHNICAL MANUAL 

SECTION ED.02 
PAGE 1 
9/7/71 

SWAPIN sets 1) the numbers of any physi cal pages a user needs and 2) the numbers of 
the physical pages of any shared processors associated with him into JB:CN.AP, (his 
mapping image) and adds the page numbers of the physical pages he needs to the 
user's physical page chain. 

SWAPIN may also be required to bring the user and the shared processors associated 
with him into core from the swapping RAD. However this is not always necessary 
since the user and his shared processors may already be in core. This point is made 
in more details in the swapper section ED under overview. 

INPUT 

SB: PN L is a list of the processors that must be swapped in for the II i n swap user. II 

The maximum size of th is I ist is four--a shared processor, one of its overl ays (for 
our purposes considered a separate processor), a special shared processor such as 
TEL or DELTA, and a monitor overlay. 

SB:NP is the first byte of word SB:PNL and contains the number of processors that 
must be swapped in. 

S:PCT is the total page count required to swap in the user and processors. 

S :ISUN is the number of the user that SWAPIN is to set up in a form ready for 
execution. 

OUTPUT 

UB:JIT is a resident user table containing the JIT's physical page number set up by 
SWAPIN. 

S:SIP is a flag which is set by the swap scheduler whenever a Swap is In Progress so 
the swapper wi II not be reentered. When the swap has been completed SWAPIN 
resets it. 

72 



UTS TECHNICftL MANUAL 

SECTION ED.02 
PAGE 2 
9/7/71 

JAJ is the displacement in JIT of the location set to the physical page number of 
AJIT by SWAPIN. 

DATA BASE 

S:JCL is a resident area used to build the CLs for swapping in AJIT and JIT. 

SH:JAJDA is a resident table used for disc addresses tor S:JCL. 

SDLAY is a value equated to the sector delay required on the RAD between the granule 
for the user's JIT and the first user granule. 

S:AJP is a location used to save AJIT's physical page number between setting up to 
swap in JIT and AJIT and setting AJIT's physical page number in JIT. 

S:JSP is a location used the first time a JIT is brought into save JIT's Sector Position 
until the JIT has been swapped in. After a delay has been added to it, the value is 
set into JIT so that memory management will know at which position to attempt to 
obtain the user's first granule. 

UH:JIT is a resident user table containing JIT's disc address. 

UH:AJIT is a resident user table containing AJIT's disc address. The first time JIT 
is swapped in it must be brought from a home or initial area on the first swapping 
RAD. On this occasion UH:TS has been set up to temporarily contain the home disc 
address. UH:JIT has been set to zero to indicate that this is the first time and 
UH :AJIT contains the granule allocated for JIT. When the I/O is set up, the 
contents of UH:AJIT are moved to UH:JIT and UH :AJIT is zeroed. 

SUBROUTINES 

SPMAP puts the processor, whose number is specified in register 2, into the user's 
mapping image. 

Other routines are described in the SWAPOUT section ED.01 under subroutines. 

S:JITERR sets up the physical page head for any processors swapped in. It releases 
any unused physical pages back to the monitor free page pool and releases the 
user's AJIT page if he has one. The JIT page is left allocated to him until STEP 
deletes him. Then this routine goes to the end of the Swapper to exit. 

73 



UTS TECHNIC.A.L MANUAL 

DESCRIPTION 

SECTION ED.02 
PAGE 3 
9/7/71 

SWAPIN releases any extra unneeded pages, obtained as a result of swapping out 
users, to the monitor's free page pool. However, this is unnecessary if the swap 
scheduler transfers directly to SWAPIN since the scheduler provides the exact 
number when it can, i. e., when it doesn't have to swap users out to acquire them. 

If processors must be brought in from the swapping RAD, a set of functions are 
executed for each processor. The processor's command list is set up in a resident 
core area containing a shell or empty command list reserved for building processor 
Cls for SWAPIN and JIT CLs for SWAPOUT. As the physical page addresses are 
set in the Cl, their numbers are entered into the processor's physical page chain. 
The head of the processor's page chain is saved and set up after the processor is 
actually in core since the system determines whether a processor is out of core by 
testing the head for zero. During the building of the command list for each 
processor, the beginning and ending addresses of the command list and the first 
and last disc addresses are entered into four tables for use later in ordering and 
chaining the I ists together. 

Next, if the user is not in core, as indicated by a flag in a resident user table 
(UH:FLG), the command list for the user's JIT and AJIT are built in a resident 
area dedicated to that sole purpose. The AJIT, if allocated, is built first, 
followed by the JIT command list, since this is their ordering on the RAD. 

If there are more processors than one to bring in/their command lists are ordered 
and I inked together for I/O optimization using the information collected 
in the 4 tables as mentioned above. In order to start I/O on the processor 
which resides closest to where the RAD head presently is (plus a few sectors delay), 
the RAD is sensed and the circular command list appropriately broken. Then if both 
at I east one processor must be swapped in and the user must be swapped in and is 
on the same RAD as the processors, a TIC is placed from the processors' command 
lists to the AJIT and the JIT command lists. The commands for AJIT and JIT 
are always executed last so that upon I/O completion the user command I ist contained 
in his JIT may be set up and the I/O started during the delay between reading the 
JIT granule and approaching the first user granule. The I/O is initiated for the 
processors first, if both the user and at least one processor must be read and are 
contained on different swapping RADs. As soon as TSIO has initiated the 
processor I/O, it returns control to the swapper who calls it again to initiqte the 
I/O for the user's JITs. When all I/O is for one swapping RAD, there is only one 
call to TSI0, since all of the lists are linked together. In either case, once all I/O 
has been initiated, TSI0 waits until all I/O is completed, as indicated by the 
counter, #SWI"P~DEV, before it returns to the swapper. 

74 



UTS TECHNICAL W\,ANUAL 

SECTION ED. 02 
PAGE 4 
9/7/71 

If the JIT was not swapped in successfully, as indicated by a flag set by TSIO in 
UH:FlG2 or by the id in the 1st word of JIT not comparing with the user's id from 
UH:Iq then S:JITERR is called to handle this situation and exit from the swapper. 

Whenever the shell command list (where the processor lists were built) was destroyed 
by TICs, it is reinitialized for use next time. If the JIT has come in for the first 
time, i. e., if it is a clean JIT for a new user, it is initialized and the necessary 
user defaults set up. 

The heads of the physi cal page chains are set up for any processors swapped in. The 
physical page numbers for JIT and AJIT are set into the user's mapping image and into 
the user's physical page address, if any, and the user's physical command list address 
are set into JIT. If a TIC destroyed a word of the user's Cl when the user was swapped 
out, this word was saved in JIT and is now restored to the CL. The physical 
addresses in the command list pointing to the disc addresses are initialized to reflect 
the physical page now containing JIT. 

It is now possible to prepare the user's Cl, and to set physical pages in his CMAP 
and his physical page chain. lMAP, the user's virtual page chain, provides the 
means to ri ppl e backwards through the user's virtual pages in order to set up the 
Cl, CNIAP and the physical page chain. The process is completed either at the 
end of the chain or when the Virtual Link Chain Stop (J :VlCS) is reached, an 
indication that everything following is correct. If the user is in core, physical 
pages are entered into the tables only when there is a No Page W\ap Constant 
(N PMC) in CMAP, indi cating that when the virtual page was allocated there was 
no physicol page available. Now the swapper is supplying it. 

If the user is not in core, physical pages are set in all entries of each table. The 
presence of a NPMC in CMAP is ignored unless a processor's initial data or DCBs 
or both must be associated with the user. In this case, when a NPfV\C is observed, 
a separate command list is built in the shell command list area using the homing 
area disc addresses for the initial data and DCBs disc addresses. If the user also 
must be brought in (because he was swapped out) then the read commands (not seeks) 
in the user's list for the initial and DCB pages will be shipped as a result of SWAPOUT 
setting the skip bit in the command list flags when it observed NPMCs. 

If both the user is out of core and he requires initial data and DCBs, then there is 
a command list in his JIT (or AJIT) with skip bits set and a list in the shell command 
list area. If they are for different RADs, a halt is placed at the end of each and 
TSIO is called twice to start up each. When both are complete TSIO will return. 
If they are on the same RAD, a transfer in channel (TIC) wi II be placed from the user 

list to the shell list. In this case and when there is only one list required, TSIO 
is called once and returns when I/O is complete. 

75 



UTS TECHNICAL MANUAL 

SECTION ED.02 
PAGE 5 
12/6/71 

The pages of the processors associated with the user are set into his CMAP. The just
swapped-in and don't-swap flags are posted in UH:FlG2 to guarantee the user a new 
quantum and Sl:SQUAN mils before outswapping him again. The final swapper function 

is to reset the Swap In Progress (S:SIP) flag so that another swap may be started. 

76 



ID 

CLOCK4 

PURPOSE 

UTS TECHNICAL MANUAL 

SECTION EE 
PAGE 1 
7/7/72 

To process clock 3 counter zero interrupts including; update of date and 
time cells, report activation for sleeping users whose time has elapsed, 
periodic polling of COC lines for dial or hang-up, polling of busy I/O 
for time out, triggering the multi-batch scheduler (MBS) if a job can be 
started, triggering the remote batch scheduler if it is present, and com
putation of performance values. The code that performs these functions is 
located in the several appropriate modules (e. g. COC, IOQ). The clock 
routine simply adjusts counters and enters the special function code when 
the time comes. 

USAGE 

The clock routine is entered directly upon execution of the XPSD at clock 3 
counter zero interrupt location X' SA' . 

INTERACTIONS 

ENTRY - A procedure defined in module ENTRY (Section CA) which pushes 
a 19 word environment into the unmapped monitor temp stack. The PSD pushed 
is indicated in the argument field of the ENTRY statement. 

T:WAKEUP - a routine in module UCAL (Section IA) which decrements a 
counter for each user in the "sleep" queue. When the count goes to zero 
a wakeup event is reported on the user. 

T:COCHC - A subroutine in COC which polls all the COC lines to see if an 
active user has hung up his phone or if someone has dialed into an inactive line. 

RBSS - A subroutine in the remote batch modu les used to test remote batch 
lines for dialup or hangup and generally maintain control over remote batch 
operation. 

SGCQ - A subroutine in the module SACT used to trigger the RBBAT ghost 
to cause batch scheduling. The subroutine T:BTSCHED (used by KEYIN and 
others) is imbedded in-line in CLOCKP to allow quickest access in this the 
most frequent usage. If no partition modification is occuring (PL:LK, 0) the 

77 



UTS TECHNICAL MANUAL 

INTERACTIONS (cont'd.) 

f0110wing calculation is done: 

(S:BUAIS - S:BUIS)*S:BFIS 

SECTION EE 
PAGE 2 

7/7/72 

If th~ resu It of th i s ca I cu lation is positive then there ex ists a job in the system 
not yet started and the number of batch jobs executing is less than the number 
allowed so that if proper resources are available RBBAT should start another 
job. 

CTRIG - A subroutine in IOQ which results in busy devices being examined 
for device time out. 

T:SYSTEMLOAD - A subroutine in PM which computes a running average 900/0 
response point and the Execution Time Multiplication Factor (ETMF). 

T:SSEC - an entry point in the execution scheduler (SSS) which results in a 
transfer of control back to the point of interrupt after seeing if anything else 
needs scheduling. 

NEWQ - the non-DCB entry to 10Q. Used to output the time of day on the 
operator's console. 

SUBROUTINES 

DA TESTIME - updates the date and time and outputs the time on the operators 
console. This routine is invoked every minute. 

DESCRIPTION 

When the clock routi ne is entered a check is made to see if 1.2 seconds has 
elapsed. If not, the total clock count is incremented and the clock pulse 
counter is reinitialized. If the pulse counter went more than 60 mls. (30 tics) 
negative, the above test is repeated (this implies 60 mls of disabled code or 
the run switch in idle). If the counter was less than 59 mls. negative, exit 
is directly back to point of interrupt, clearing the interrupt level by the LPSD. 
If 1.2 seconds have e lapsed, the clock 4 pu I se counter address is saved, the 
clock 3 interrupt level is armed and disabled (a lIowing lower level interrupts 
to come in) and an ENTRY procedure is executed to push an environment. 
The ENTRY procedure also modifies the clock 4 pulse count address to point to 
the overhead time bucket (J:OVHTIM). At every 1.2 second interval T:WAKEUP 
is invoked to wake any "sleeping" users whose elapsed time sleep interval has 

78 



UTS TECHNICAL MANUAL 

DESCRIPTION (cont'd.) 

SECTION EE 
PAGE 3 
7/7/72 

expired. Also SS2 is tested and, if reset, the COC line polling routine 
T :COCHC is called. Every 4.8 seconds the I/O time out clock is in
cremented and the I/O activity schedu ler CTRIG (in 10Q) is entered to 
queue a device time out checking cycle. Every minute the date and time 
are updated and the time is output on the operator's console. Also, 
T :SYSTEMLOAD (in PM) is called to update the ETMF and 900/0 response 
point. The total tics and the clock pulse count are incremented. If an 
environment wasn't pushed (fast path above) an LPSD takes control back 
to point of interrupt. If one was pushed, the clock 3 counter zero interrupt 
is enabled, the address for the clock 4 pulse counter is restored and exit is 
to T :SSEC in SSS. 

79 



ID 
T:BTSCHED 

PURPOSE 

UTS TECHNICAL MANUAL 

To sel ect job for execu tion and initiate i ob if runabl e. 

USAGE 

Entry: 
Volatile Registers: 
Exi t: 

DATA BASES 

PL:LK 
PL:CHG 
S:BUAIS 
S:BUIS 
S:BFIS 

DESCRIPTION 

BAL, SR4 T:BTSCHED 
Rl-R4, R12-R15 
B *SR4 

Partition lock flag (Section VI. 02) 
Partition change flag (Section VI. 02) 
Batch users allowed in system. 
Batch users currently in sy·stem. 
Batch fi I es in system 

SECTION EE.01 
PAGE 1 
1/10/73 

T:BTSCHED is coded in-line in the module CLOCK4 for most efficient usage. It &s used 
by GHOSTl D, KEYN and STEP at system startup, operator signaled startup and batch job 
logoff to determine if another batch job may be started. If more batch users are allowed 
than are present (S:BUAIS greater than S:BUIS) and a job exists to start (S:BFIS non zero) 
MBS is ·signaled in the ghost job RBBA r to schedule one or as many as are startable. 

80 



UTS TECHNICAL MANUAL 

ID 

MM - Memory Management 

PURPOSE 

SECTION FA 
PAGE 1 
1/10/73 

The purpose of Memory Management (MM) is to handle allocation of virtual and physical 
memory and allocation of the swapping RAD. This includes the setting up and loading 
of the map (JX:CMAP) and access (J :AC) images and loading them into their respective 
registers. 

OVERVIEW 

Besides explaining memory and swapping RAD management and details of the numerous 
routines involved, this section also clarifies the relationship between MM and the 
swapper. This is an explanation of many separate but related concepts. The first is 
about virtual memory. A user always executes in the map~ d mode and addresses 
virtual memory. The hardware filters virtual addresses through the mapping registers, 
replacing the virtual page number portion of each address with a physical page 
number to obtain actual addresses. (In this section core memory pages are referred to 
as physical pages.) Virtual page numbers are used by the hardware as indexes to obtain 
the physical page numbers contained in the mapping registers. Prior to execution, these 
mapping registers are loaded with the user's mapping image, a byte table in JIT, JX:CMAP 
containing physical page numbers indexed by virtual page number. 

Virtual memory looks like this: 

For users loaded by the LOADER 
o 

Monitor Context 

For users loaded by LINK 

Monitor Context 

Pure Procedure 

1FFFF 
Specia'l Shared 

Processors 

Special Shared 
Pure Procedure Processors 

The Monitor root is mapped one-to-one so that in the mapped and unmapped modes the 
addresses are the same. 

Users context consists of JIT, AJIT, DeBs and buffers. Data is everyth ing loaded with 
00 protection type and may be altered at execution time. Dynamic data is obtained at 
execution time by a Get Page, Get Common Page or Get Virtual Page CAL and, when 
allocated, has 00 protection type. Pure procedure is everything loaded with 01 
protection type so it may be looked at and executed but not stored into. 

The virtual pages not allocated to the user have a free page map constant (FPMC) in 

81 90 19 86A-1 (4/73) 



UTS TECHNICAL MANUAL 

SECTION FA 
PAGE 2 
1/10/73 

their CMAP entries and a 11 protection type (no access). FPMC is the physical page 
number of a monitor pure procedure page. If the user attempts to address virtual pages 
not allocated to him, he traps due to the 11 access code associated with each of these 
pages. When virtual pages are allocated to the user and there are no physical pages 
avai lable, another monitor pure procedure page called no page map constant (NMPC) 
is set into CMAP as a flag for the swapper to put in a physical page. 

All physical pages not containing the Monitor and the Monitor JIT are chained in 
MB:PPUT (physical page usage table), a byte table conto ining physical page numbers 
indexed by physical page number. There are four types of chains in PPUT and each 
chain is defined by a head, tail, and count. M:FPPH, M:FPPT, and M:FPPC define 
the Monitor's free page pool chain which consists of all free physical pages, i. e., 
pages not presently in use. S:FPPH, S:FPPT and S:FPPC define the chain containing the 
pages the swapper will allocate to a user about to be swapped in. PX:HPP, PX:TPP 
define the chains for the processors which are in core. A nonzero value for PX:HPP 
indicates that the processor is in core. PB:PSZ indicates the number of pages required 
for the processor pure procedure whether the processor is in core or not. JX:PPH, 
JX:PPT, and.JB:PPC in JIT define the chain of physical pages allocated to a user 
in core. 

Swapping storage is ordered on the RAD, with respect to sector position, in the same 
way that LINK orders virtual memory. That is, context first, data second, dynamic 
data next, and pure procedure last. The pure procedure is always last to avoid swapping 
it out, if possible. The user's swapping RAD granules are not necessari Iy contiguous 
or on the same track, or band, but they are ordered sector-wise with increasing virtual 
pages occupying increasing sector positions around the RAD. Swapping storage is al
located in groups of four contiguous granules, and the sector address of the first granule 
of a group is added to the disk address table, JH: DA. 

A command list, J:CL, is maintained in the JIT for use in swapping the user's pages. If 
the user's size requires a larger command list than can be contained in the JIT, an ad
ditional JIT page, known as AJIT, is obtained and the command list is moved into it. 
Each allocated virtual page has an lOCO entry in the ~ommand list, ordered in the 
some way as the swapping storage .on the RAD. Since swapping storage is allocated in 
groups of four granules, the command list contains one seek command for every four page 
I/O commands. 

To maintain the ordered relationship between the user's command list, disk address table, 
and virtual pages, a chained list of allocated virtual pages is maintained in the byte 
table, JB: LMAP, containing and indexed by virtual page numbers. The chain is back
wards, with the head, JB:VLH, corresponding to the last of the user's pages on the RAD 
and the last command list entry. The tail of the chain, JB:VLT, corresponds to the first 
user page, excluding JIT and AJIT and the first command list entry. 

90 19 86A-1 (4/73) . 82 



UTS TECHNICAL MANUAL 

SECTION FA 
PAGE 3 
1/10/73 

Command list entries are not made for the JIT or AJIT pages. Instead, a small command 
list is bui It in resident Monitor tables at the time of the swap. 

As each virtual page is allocated, it must be inserted into the JB: LMAP chain and the 
command list in the proper order. It must also be given a granule of swapping storage 
at the correct sector position on the swapping RAD. The proper position in JB: LMAP 
and in the command list is found by simultaneously searching through both of the tables. 
When the proper position is"found, the page address is linked into the LMAP chain. 
During the search, each entry in the command list is moved down one slot by moving 
the' physical page address. When the proper position is found, the virtual page 
address is linked into LMAP and the physical page address of the new page is inserted 
into the command list entry. 

Seek commands in the command list are not altered as commands are moved down, and 
each page in the command list, beginning at the one iust inserted, is now being swapped 
onto the granule previously occupied by the command that follows it. The last entry 
in the command list has now been moved down and does not have a sw.apping granule 
assigned to it. There are two ways a granule may be obtained for this entry_ If any 
granules remain from a previously allocated group of four, one of these is used and the 
number of remaining granules, JB:NGG, is decremented by one. If there are no 
granules remaining, a group of four is allocated. The disk address of the first of these 
is added to the end of the disk address table, JH:DA, and a seek command is added to 
the command list preceding the last page 'IOCD. The number of remaining granules 
is set to three. To insure that swapping storage is allocated in the correct order on the 
RAD, a pointer is maintained containing the next sector position at which to allocate 
a granule. If a granule is not avai lable at this position on any track, the allocation 
routines continue searching around the RAD unti lone is found. 

82-1 90 19 86A-1 (4/73) 



UTS TECHNICAL MANUAL 

DATA BASES 

SECTION FA 
PAGE 3 
1/10/73 

MX:PPUT contains a byte for each physical page in the machine. Through it are 
linked all the chaJns of physical pages in the system as follows: 

M:FPPH, M:FPPT, and M:FPPC are the head, tai I, and count of the Monitor's 
free page pool. 

S:FPPH, S:FPPT, S:FPPC are the head, tai I, and count of the swapper's free 
page pool which is the chain used to- keep pages obtained by the Swap 
Scheduler or Swap-Out until they are allocated to the user being swapped in. 

JX:PPH, JX:PPT, and JB:PPC, in the user's JIT, are the head, tai I, and count 
of the user's physical page chain for users who are in core. 

PX:HPP and PX:TPP are tables which contain the heads and tails of physical 
page chai ns for each shared processor. They are indexed by processor number. 
If PX:HPP is non-zero, the processor is in memory. 

Monitor pages, the physical unmapped JIT and Exec Delta pages do not appear 
in any chain. 

JX:CMAP is a byte table (indexed by virtual page number) which contains the physical 
page number allocated to each virtual page. This image is loaded into the mapping 
registers when a user is in execution. Virtual pages which do not have a physical page 
allocated have a Monitor pure procedure page number, referred to as FPMC (currently 20, 
but any similar page will do), in that byte or halfword of CMAP. Access is not per
mitted to this Monitor page and the page is write locked. Virtual pages allocated to 
the user (a granule of swap storage is obtained) which do not yet have a corresponding 
physical page are mapped into another Monitor pure procedure page, referred to as 
NPMP (currently page 22). This occurs when the user requests a page and none is avai 1-
able; the virtual page is allocated, the tables are set up, and memory manage reports an 
event which causes the allocation to be made by the swapper directly if physical pages 
are available or through a swap if not. When control returns after the swap, the 
physical pages will have been assigned by the swapper. 

83 ---- 90 19 86A-1 (4/73) 



UTS TECHNICAL MANUAL 

SECTION FA 
PAGE 4 
1/10/73 

J:JAC contains two bits for each virtual page and is the image loaded into the access 
registers when a user is in execution. 

JB:LMAP has a byte for each virtual page through which the chain of virtual pages 
allocated to the user is linked. Pages in this chain are linked from high page number 
to low and divided into three segments: 1) pure procedure, 2) data, and 3) context, 
DCBs and buffers. A flag of 111 is set into LMAP to indicate pages acquired via the 
change virtual map CAL (T:SAD). 

J:CL is the command list for controlling the userls swap. It consists of a write lOCO 
for each page allocated to the user, and a seek lOCO for every four pages. It is con
tained in JIT unti I so many pages are allocated that it wonlt fit (currently 16). At 
that time the virtual page above JIl, J:AJIT (for additional JIT) is assigned to J:CL. 
JIT and AJIT are not swapped via this command list, but rather using command pairs 
in resident Monitor core. 

JH:DA is the table of disk addresses for the seek lOCOs in the command list. 

Note that the ordering of the users on the RAD is AJIT (if any), JIT, context, data, 
dynamic data, and, finally, procedure. The command list is also necessary in this 
order, excluding AJIT and JIT. The virtual page chain in LMAP is in the reverse 
order. This ordering on RAD is designed to minimize swap transfer time. Each of the 
elements is obtained in ascending sector order. If pure procedure has not changed, 
it is not necessary to write it as the user is swapped out, and the swap is cut short. 
When a new group of four granules is allocated, the DA obtained is put at the end 
of JH:DA. The virtual page chain is searched, the physical page addresses are 
moved down one entry each unti I the proper sort order posi ti on for the new vi rtua I 
page is found. Then the new physical page number is inserted in CMAP and the 
physical page address is placed in the command list entry made vacant by rippling 
down the physical page address. 

90 19 86A-1 (4/73) 84 



UTS TECHNICAL MANUAL 

SECTION FA 
PAGE 5 
1/10/73 

Table KG-1: Memory Management Tables 

Job (User) Associated Tables 

JB:PPH 
JB:PPT 
JB:PPC 

JB:CMAP 

J:JAC 

JB:LMAP 

J:CL 

J:DA 

Resident Tables 

MB:PPUT 

M:FPPM 
M:FPPT 
M:FPPC 

PB:HPP 
PB:TPP 

SB:FPPH 
SB:FPPT 
SB:FPPC 

head 
tail 
count 

} of physical pages associated with the user 

map image 

access control image 

link table through wh ich the virtual pages of the user are chained 

the I/O command I ist which controls swaps of all but JIT and AJIT 

I ist of disk addresses for each page associated with the user 

link table through which all physical pages are chained 

head 
tail 
count 

head 
tail 

head 
tail 
count 

} of free physical pages 

"} of physical pages assoicated with each shared processor 

} of free pages accu mu I ated between out and in 
phases of the swap 

85 



UTS TECHNICAL MANUAL 

ID-
User CAL Service Koutines 

SECTION FA. 01. 01 
PAGE 1 
3/23/71 

T:GP or T:GDP 

T:GCP 

Get Page or Get Dynamic Page 

Get Common Page 

T:GVP 

T:FP or T:FDP 

T:FCP 

T:FVP 

T:GL 

T:SMP 

T:SAD 

PURPOSE 

T:GP 

T:GCP 

T:GVP 

T:FP 

T:FCP 

T:FVP 

T:GL 

T:SMP 

T:SAD 

Get Virtual Page 

Free Page or Free Dynami c Page 

Free Common Page 

Free Virtual Page 

Get Common Limits 

Set Memory Protection 

Search and Display 

To acquire the next N available dynamic pages for a user from the bottom 
(lower addresses) of the user1s dynamic data area. 

To acquire the next N available Common pages for a user from the upper 
area (higher addresses) of his dynamic data area. 

To acquire a specific virtual page. 

To free the last N dynami c pages allocated. 

To free the last N Common pages allocated. 

To free a specific virtual page. 

To get the limits of Common storage already allocated to the user; i. e. 
address of first (low) word and address of last (high) word allocated in 
Common. 

To set memory protection; i. e. access, on the pages specified to the 
value (access code) specified. 

To set the page number of a specified physical page into the mapping 
image entry of a specified virtual page so that the physical page may 
be looked at or stored into as determined by the privilege level of the user. 

86 



UTS" TECHNICAL MANUAL 

USAGE 

CAL 1,8 FPT 

where FPT contains in 

T;GP 

T:GCP 

T:GVP 

T:FP 

T:FCP 

T:FVP 

T:GL 

T:SMP 

T:SAD 

word 1 
*X'08', N 

*X'OC', N 

*X'04',A 

*X 1091, N 

*X'OO', N 

*X'05', A 

X'OB',O 

X'OAI, A 

X'07 1
, P 

where N = Number of pages to all ocate 

word 2 

SECTION FA 01. 01 
PAGE 2 
3/23/71 

AC, B (8,24) 

A 

where A = Address of virtual page to allocate or release or 
start setting access on 

where P = Physical page address 
where B = Last page address 

Input at Entry Point 

Reg- 6 Reg- 7 
N 
N 
A 
N 
N 

Reg_ 8 
II allocated 
/I allocated 

/I a II ocated 
/I allocated 

Output to Caller 

Reg. 9 
Adr of lowest page allocated 
Adr of lowest page allocated 

Adr of lowest page allocated 
Adr of lowest page allocated 

T:GP 
T:GCP 
T:GVP 
T:FP 
T:FCP 
T:FVP 
T:GL 
T:SMP 
T:SAD 

A Adr oITowest com
mon word allocated Adr of lowest page allocated 

A 
P 

FPT+l adr 
FPT+ 1 adr 

If unabl e to accompl ish what was requested, CC 1 is set. 

Reg. 5-11 non-volatile. Rest volatile. 

87 



UTS: TECHNICAL MANUAL 

SUBROUTI NES 

SECTION FA. 01. 01 
PAGE 3 
10/22/71 

T:GP, T:GCP, and T:GVP use the general get page routine T:GVPM. 
T:FP, T:FCP, and T:FVP use the general release page routine T:FVPM. 
T:SMP uses T : SAC, the general set access into image routine. 
T:XMMC, used to load the access register. 
MAP and UNMAP used to go mapped and unmapped. 
T:SETCC is used by all to exit. Cel is set up in this routine. 
T:SAD uses T:SAC, T:SXAC which loads specified AC registers and T:SXMAP which 
loads specified mapping registers. 

ERRORS 

If a routine is unable to accompl ish its request, CC 1 is set by the exit routine, T :SETCC. 

RESTRICTIONS 

These routines execute mapped, master. 

DESCRIPTION 

T:GP, T:GCP, and T:GVP are the interfaces between the user and the generalized get 
page routine, T:GVPI, which does the work, common to both the user (CALs) and the 
Monitor get page routines. They set up the input registers, call T :GVPI for each page 
required, update the pointers to the next available dynamic or Common page (JB:TDP -
top of dynamic pages and JB:BCP - bottom of common pages) and set up the output 
registers in the stack to return to the user. 

T:FP, T:FCP, and T:FVP are the interfaces to the general free page routine T:FVPI. They 
set up the input registers, call T:FVPI for each page to release, update appropriately 
the next available page pointers and set up the output registers. 

T:GL gets the page number in JB:BCP, adds one to it, and makes it into a word address 
(by shifting left nine bits) and uses this value as the address of the lowest word allocated. 
It converts the contents of J:DDUL (dynamic data lower limit) to a word address and adds 
Xil FF' to it to obtain the address of the highest word allocated. If no common pages have 
been allocated yet (lowest word allocated - 1 = highest word allocated) the "address of 
highest word allocated ll is used for both values. 

T:SMP checks f:>r pages acquired via the T :SAD operation; if so, the error return is taken. 
Otherwise, T:SMP sets up the input registers and calls on T:SAC, the general set access 
code routine, for each allocated page for which access must be set. It then calls on 
T:XMMC to load the access registers with that part of the image (J:AC) which was changed. 

T:SAD first insures that the u~er has sufficient privi.l~ge (XIBOI) and that the virtual page 
to be used is not yet allocated. It then sets the physical page number into JB:CMAP 
(userls mapping image) and instead of linking the virtual page into LMAP, a flag of "1" 

88 



UTS- TECHNICAL MANUAL 

SECTION FA01.01 
PAGE 4 
3/23/71 

is set into JB:LMAP (a byte table containing a chain of the user's virtual pages). It sets 
the access to 00 for privilege X'BO ' and higher and to 10 for privilege X'80 ' to X'BO'. 
It finally loads the map and access registers where affected. 

89 



UTS TECHNICAL MANUAL 

ID 

SECTION FA. 01. 02 
PAGE 1 
3/23/71 

Routines to Set the Users Access Image 

T:SNAC 
T:IACU 
T:ZPUP 
T:SAC 

PURPOSE 

T:SNAC 
T:IACU 
T:ZPUP 
T:SAC 

USAGE 

Set N Access 
Interrogate Access Code in User Image 
Zero Pure Procedure Access Code 
Set AC 

To set a given Access Code (AC) on N pages starting at a given virtual page. 
To interrogate user's AC image to determine AC on a given page. 
To set AC to 00 on a given virtual page in pure procedure. 
Sets the specified AC, access code, into the user's image for the specified 
virtual page. 

Call ing Sequence Input Output 
Volatile 
Registers 

BAl, 11 T:SNAC 

BAL, 11 T:IACU 

BAL, 11 T:ZPUP 

BAL, 11 T:SAC 

SUBROUTINES 

6 = No. of pages 
7 = Starting virtual page no. 
4 = AC to set 

2, 3, 12, 13, 15 

7 = No. of virtual page to CC3 and CC4= None 
look at AC on given page 

7 = No. of virtual page 
whose AC is to be 
set = 00 

4 =AC 
7 = VplI 

13 = - 1 if ca II ed by T: SM P, 
otherwise set to O. 

None 

2-4, 12, 13, 15 

T:SAC, the routine that sets AC into the user's access image, is used by T:SNAC 

ERRORS 

If T:ZPUP is requested to zero access on a page which is not pure procedure, the action 
is not performed and the access code for that page is set into CC3 and CC4. 

90 



UTS TECHNICAL MANUAL 

SECTION FA. 01. 02 
PAGE 2 
3/23/71 

If T:SNAC is requested to set access on a page greater than X'FF', control is transferred 
to RECOVER with a X'21 1 screech code. 

DESCRIPTION 

T:SNAC is a driver consisting of a loop which calls upon T:SAC to set access on one 
virtual page. The loop first insures that the virtual page number is less than X' 100 ' 
otherwise, transfer is made to RECOVER with a X '21 1 screech code. The loop then BALs 
to T:SAC. Upon return, one is added to the virtual page number and if the number of 
pages specified on input has not been completed it transfers to the beginning of the loop, 
otherwise, it exits. 

T:ZPUP sets a flag (in a register), indicating the action to be accomplished is zeroing 
AC on a pure procedure page, and drives to an entry in T:IACU which performs this 
function. 

T:IACU goes immediately to IACU6, the terminating function with an AC of 3 if the 
virtual page is less than JOVVP, the virtual page number of the beginning of the monitor 
overlay area. Otherwise, it sets the flag register to indicate the requested function is 
to interrogate the AC and enters the common code used for both zeroing pure procedure 
and interrogating the access code image. 

The AC for the given virtual page is obtained from the image. If the function is inter
rogation, control is transferred to IACU6. If the function is to zero pure procedure it 
al so transfers there if the AC obtained was not 01; i. e. pure procedure access. Other
wise, it zeros the AC in a reproduction of the image setup in registers and loads this 
affected word from the image into the access registers and then falls into IACU6, the 
terminating function. IACU6 sets the AC to the requested virtual page into the top 
byte to the return address and into CC3 and CC4 and exits. 

T :SAC divides the virtual page number by four to obtain 1) a displacement of the appro
priate byte in the image and 2) the position of the double bit to be set within that byte. 
The position of the double bit is used as an index to get the appropriate mask containing 
ones in that double bit position. The AC to set is used as an index to get a byte contain
ing the AC in all double bit positions. The byte is pulled from the image. The AC is 
set into the byte by a selective store and the updated byte stored back into the image; 
e. g. to set 01 AC into VP #10 MOD 16: 

Even reg. 01 01 01 01 Appropriate AC in all double bits 
Odd reg. 00 00 11 00 Appropriate mask 

II selective store into 
xx xx 01 xx byte from image 

l store 

xx xx 01 xx word in image 

91 



UTS TECHNICAL MANUAL 

SECTION FA. 01. 02 
PAGE 3 
3/23/71 

Prior to storing the byte in the image if a register flag indicates this routine was called 
by T:SMP, a check is mode to insure that the AC to set is not less than the access allowed 
on this virtual page. If it is less the store is skipped. 

92 



UTS TECHNICAL MANUAL 

ID 

SECTION FA .01.03 
PAGE 1 
3/23/71 

Routine to Load the Hardware Map and Access Registers 

T:SXMAP 
T:SXAC 
T:SMMC 
T:XMMC 
T:PAC 

PURPOSE 

T:SXMAP 

T:SXAC 

T:SMMC 

T:XMMC 

T:PAC 

USAGE 

Execute MAP 
Execute AC 
Set up MMC 
Execute MMC 
Processor Access Control 

Executes an MMC instruction to load the mapping registers with the user's 
image starting with the specified virtual page for a specified number of 
pages. 

Does for access what T: SXMAP does for the map. 

Does the actual setting up of registers for the MMC instruction for T:SXMAP 
and T:SXAC which are just drivers. 

Sets up the entire user's mapping and access registers prior to user execution. 
This includes setting the access for a special shared processor when associated. 

Loads the AC registers with the access for a special shared processor. 

Call ing Sequence Input Output 
Volatile 
Registers 

BAL, 11 

BAL, 11 

BAL, 13 

BAL, 1 1 

BAL, 11 

T:SXMAP 

T:SXAC 

T:SMMC 

T:XMMC 

T:PAC 

12 = image adr 
14 = no. of pages 
15 = starting VP no. 

same as T :SXMAP 

same as T :SXMAP and 
T :SXAC plus their out
put in reg. 3 and 4. 

4 = user number 

93 

3 = index to executing 
MAP MMC inst. 

4 = sh ift code of -2 
for T:SMMC 

3 = index to execute 
AC MMC inst. 

4 = sh ift code of -4 
for T:SMMC routine 

3, 4, 12-15 

3,4,12-15 

3,4, 12-15 

0,2-4,12-15 

0-4, 14, 15 



UTS TECHNICAL MANUAL 

SUBROUTINES 

T:SXMAP and T:SXAC use T:SMMC 
T:XMMC uses T:SXMAP and T:SXAC 

DESCRIPTION 

SECTION FA. 01. 03 
PAGE 2 
3/23/71 

T :SXMAP and T :SXAC set up an index to be used to execute the appropriate MMC 
instruction; i.-e. MAP or AC. They set up a shift code used by T:SMMC and then 
they BAL to T:SMMC which sets up the registers required by the MMC instruction. 
After returning, the MMC is executed and they exit. 

T:SMMC sets up the registers required for the MMC instruction. Given A, the image 
address, N, the number of pages, P, the starting virtual page number, and X, the number 
of pages represented in an image word; i. e. 4 for MAP and 16 for AC, then the routine 
sets the registers to look like this: 

even reg. bits 0~----~0-------15-~A-+---:'(p-l"'7""x-.)---31 

odd reg. bits 0 78,---14 15 22 23i----31 

((N-1+P/X)-(P/X)+1 o (p/X)*X o 

T:XMMC sets up input and calls on T:SXMAP and then does the same for T:SXAC. Then 
if the user has a special shared processor associated, determined by the special JIT access 
flag being set in the user's flag table, it loads a canned access word which makes JIT 
access 00. 

T:PAC sets access into the user's image and loads the access registers for the appropriate 
processor of the current user. The appropriate processor is TEL if the TEL-in-control 
flag is set in the user's flag table. Or it is the associated debugger (contents of UB :ASP 
if the Debugger-in-Control flag is set, otherwise, it is the associated special shared 
processor (contents of UB:ASP). If nothing is set then default access is set up by using 
processor number O. Once the number of the processor is ascertai ned, its two words of 
access are obtained from P:AC and set into the user's image, J:JAC and then that part 
of the image loaded into the access registers. 

94 



UTS TECHNICAL MANUAL 

ID 

Get and Release N Virtual and Physical Pages 

T:GNVPI Get N Virtual and Physical Pages 
T:GNVNPI Get N Virtual, No Physical Pages 
T:GVGPI Get N VirtlJQI, Given the Physical Page 
T:RVSPI Release a Virtual Page, Save the Physical Page 

PURPOSE 

All of these routines are monitor requests: 

SECTION FA. 01.04 
PAGE 1 
3/23/71 

T:GNVPI Gets N virtual pages (swap granules and core memory) for the user. 
T:GNVNPI Gets N virtual pages (swap granule) but does not allocate physical core 

pages to them but rather puts the NPMC, No Page Map Constant, in the 
map. 

T:GVGPI Gets a virtual page (swap granule) and uses the physical core page provided 
as input. 

T:RVSPI Releases the specified virtual page (swap granule) but passes the physical 
core page back to the calling routine. 

STEP uses T:GVGPI and T:RVSPI to move a user's DCBs into the DCB virtual pages from 
where they were created by Link. 

USAGE 

Call ing Sequence Input Output Vol ati I e Registers 

BAL, 11 T:GNVPI 6 = # of pages 5 = 0 = indication 0-4, 12-15 
7 = 1st virtual to get phy pg 

page # 

BAL, 1 1 T:GNVNPI Same as T:GNVPI 5 = -1 indication to 0-4, 12-15 
not get phy pg 

BAL, 1 1 T:GVGPI 3 = physical pg 1/ 5 = -2 indication 0-4, 12-15 
7 = virtual pg # that phy pg is 

provided 

BAL, 11 T:RVSPI 7 = virtual pg # 5 = -1 indication to 0-4, 12-15 

save phy pg 
3 = physical pg # 

95 



UTS TECHNICAL MANUAL 

SUBROUTINES 

SECTION FA.01.04 
PAGE 2 
3/23/71 

T:GNVPI and T:GNVNPI use T:GAJP, if it is necessary to get an additional JIT page 
T:GVPI, the general get virtual page routine 
T:REG, if it is necessary to report No Pages and give up. 

T:GVGPI also uses T:GVPI. 

T :RVSPI uses T :RVPI, the general re I ease vi rtual page routi nee 

DESCRIPTION 

T:GNVPI and T:GNVNPI set a register indicating whether to get physical pages and then 
execute common code. If no physical pages are to be obtained, it is necessary to first 
get an additional JIT page (by calling on T:GAJP) now, if one will be required during 
this call. Since should no physical page be available for the AJIT page after some of 
the virtual pages had been obtained, the Swapper would give physical pages to those 
vi rtual pages and they aren I t supposed to have any. 

The general get virtual page routine, T:GVPI, is called N times. If the error return 
indicates the requested page was already obtained, the routine continues. However, 
if it indicates that the limit on the number of virtual pages allowed has been reached, 
it returns an error indication in the eels to the calling routine. Whenever T:GVPI in
dicates that no physical page was available and one was desired, a note is made. Before 
exi ting the routine, if this condition is noted, the routine reports a No Page event and 
gives up to T:REG. When control is returned, the physical pages wi II be allocated pro
perly and the routine returns to the call er with the appropriate error status in the con
dition codes. 

T:GVGPI sets an indication that the physical page is to be saved and calls on T:GVPI 
which does a" the work. Upon returning, this routine returns to the caller. 

T:RVSPI sets an indication to use the physical page provided and calls on T:RVPI which 
does all the work. Then it returns to the caller. 

96 



UTS TECHNICAL MANUAL 

10 

Get and Release Virtual Pages Master/Internal 

T:GVPM 
T:GVPI 
T:FVPM 
T:RVPI 

PURPOSE 

Get Virtual Page Master 
Get Virtual Page Internal 
Free Virtual Page Master 
Release Virtual Page Internal 

SECTION FA. a 1. a5 
PAGE 1 
12/6/71 

T:GVPM is the interface between the get page CALs and T:GVPI. Its only function is 
to insure that the requested virtual page is in a user's data area, otherwise it returns. 

T:GVPI is the general get virtual page routine. It does all the work for everybody. 

T:FVPM and T:RVPI are the same except they are for releasing instead of getting 
vi rtual pages. 

USAGE 

Call ing Sequence Input 

7 = VP # 

Output Volatile Registers 

BAL, 11 

BAL, 11 

T:GVPM 
T:GVPI 

T:FVPM 
T:RVPI 

SUBROUTINES 

5 = a get PP 
= 1 no PP 
= 2 PP provided 
= 3 PP provided 

7 = VP # 
5 = a release PP 

= - 1 return PP 3 = PP saved 

T:SGA and T:SGR are used to allocate and release swapper granules. 
T:GPP and T:FPP are used to get and release physical core pages. 

All 

All 

IVa and ova are used to insert and delete entries from J:CL, JH:DA, JB:CMAP and 
JB:LMAP. 

T : SAC to set access. 
T:SXMAP and T:SXAC to load the Map and Access Registers. 
T:REG is used to report No Disc event and give up control. 

DESCRIPTION 

T:GVPI checks that the virtual page, VP, is free and that the maximum number of pages 
allowed this user have not been allocated. The maximum number of pages allowed a user 

97 



UTS TECHNICAL MANUAL 

is determi ned by the fol oowi ng tests: 

UB:PCT < 128 

SECTION FA. 01. 05 
PAGE 2 

12/6/71 

UB:PCT+PB:PSZ(APR}+PB:PSZ(APO}+2(for COOP BUFs if allowed}. 
< limit supplied by SUPER or the default 

UB:PCT+PB:PSZ(APR}+PB:PSZ(APO}+2+PB:PSZ(TEl if on-I ine} 
< Sl:CORE and 

Sl:PCORE the physical core limit established at initialization. 

If these conditions are fulfilled, the requested page is allocated to the user. 

If the number of granules remaining from a previously allocated group of four granules 
{JBNRG} is zero, a swapper granule from the granule position specified in JB:NASP 
is requested from T :SGA. If none are avai lable, E: ND, event no disk is reported and 
control is given up to T :REG. When control is returned, another attempt is made to 
obtain a granule. When a granule is obtained JB:NASP is updated to reflect the 
next granule group position and the number of remaining granules {JBNRG} is ini
tia�ized to three. The disk address of the granule is placed in the next avai lable 
entry of JH: DA and a seek command, wi th the physi ca I address of the JH: DA entry, 
is added to the end of the command list. J:ClE is incremented by 2. If there is a 
granule remaining from a previously allocated group the granule allocation is not 
performed and no seek lOCO is constructed in the command list. 

If this is a normal get page request, T :GPP is called to get a physical page from the 
monitor free page pool {MB:PPUT}. If none were avai lab Ie or if this is a get virtual 
no physical request, NPMC, no page map constant is set up in place of the physical 
page and the Ready to Run flag in the user1s flag table, UH:FlG is reset. If this 
request is get virtual and the physical has been provided, this logic is skipped. 

The JX:LMAP chain is rippled down until the place is found where the new VP is to 
be linked. Each time a VP is passed in the chain; i. e., one ripple is done, the 
physical page address associated with that VP in Cl is moved down one entry. When 
the ripple stops, the address of the new PP is set in the Cl entry just vacated along 
with a Write order code. The J:VlCS, Virtual link Chain Stop, it set to this VP if 
this VP is farther down the chain than where VlCS presently points. 

If the PP is a NPMC, it is set in JX:CMAP. Otherwise, the PP is linked into the 
user1s chain in MX:PPUT in the same order as LMAP. The user1s page-count-needed 
total, UB:PCT, is incremented by one. The Pure-Procedure-must-be-Swapped flag 
in UH:FlG, is set since the rippling {we must assume} has resulted in the memory 
image becoming different from the swapping RAD image. 

90 19 86A-1 (4/73) 98 



UTS TECHNICAL MANUAL 

SECTION FA. 01. 05 
PAGE 3 
12/6/71 

Tests determine which area (context, data, dynamic data or pure procedure), the VP 
is in and the count for that area, JB:PCP is incremented. The access code appropriate 
for that area is set into the user's access image, J:AC, by T:SAC unless it is context 
in which case it is skipped. T:GAJP is called in case AJIT, additional JIT page, 
is necessary as a result of this request increasing J:CL, the user's command list, to a 
size unable to fit any longer in JIT. T:GAJP makes the test and when necessary gets 
the AJIT page and moves the C L. 

If a physical page, PP, was not obtained, the condition codes are all set and the 
routine exits. Otherwise T:SXMAP and T:SXAC are called to load the affected mapping 
and access registers. If however the Special-JIT -Access flag of UH:FLG is set and the 
VP is in the same area as JIT, then the special JIT access image word is loaded into 
the access/register instead of calling on T :SXAC. Then the condition codes are reset 
and the routine exi ts. 

T :RVPI does nearly the opposite of T :GVPI. It makes sure the page is in use, and then 
ripples down JX:LMAP until it finds the VP and moves the PP memory address up J:CL 
until the VP's entry is wiped out. It unlinks the VP from LMAP and picks up the PP 
from CMAP and sets NPMC into that entry of CMAP. It also takes the PP out of the 
user's PPUT chain. It sti II must set the pure-procedure-must-be-swapped flag. It 
calls on T:FPP to release the physical page, PP, back to MX:PPUT unless this is a 
save-the-PP request. It then increments the number of remaining granules and, if 
the result is equal to four, it picks up the last DA entry in JH:DA and calls T :SGR 
to release the group of four granules and update JB:NASP. If the number of re
maining granules is not four, or after the group of four has been returned, it 
decrements the appropriate area count and MB:PCT, calls on T:SAC to set the access 
to 11, calls on T:SXMAP and T:SXAC to load the map and access registers, and exits. 

99 ___ _ 90 19 86A-1 (4/73) 





UTS TECHNICAL MANUAL 

10 

Get and Free Physical Core Pages 

T:GPP Get Physical Page 
T:F PP Free Physical Page 

PURPOSE 

SECTION FA. 01. 07 
PAGE 1 
12/28/72 

T~GPP gets a free physical page, PP, by getting the head, M:F PPH, of the monitor1s 
free page pool and setting the next page in the chain into the head. If the head was 
o it returns that as an indican on that it could not get a page. 

T:F PP releases a PP back to the monitor1s free page pool by linking it onto the last 
page of the chain and updating the tail, M:F PPT. 

USAGE 

Calling Seguence Input Output Volatile Registers 

BAL, 11 T:GPP 3 = free pp# 3,4 

BAL, 11 T:FPP 3 = PP # 4 
to release 

101 
(Page 100 has been deleted) 



UTS TECHNICAL MANUAL 

ID 

SECTION FA. 01. 08 
PAGE 1 
9/24/71 

Swap RAD Granule Allocation and Release 

T:SGA 
T:SGAJIT 
T:SGR 
T:SGRNU 

PURPOSE 

T:SGA 

T:SGR 

Swapper Granule Allocation 
Swapper Granule Allocation with no associated user 
Swapper Granule Release 
Swapper Granule Release with no associated user 

Allocates a swapper granule from the swapper granule pool at the granule 
position specified if possible, or if not, the next higher position and so on 
until one is found. (The swapper granule pool is initialized with one of 
every four granules avai lable. ) 

Releases back to the free swapper granule pool the specified granule and 
returns its position. (The specified granule must be a multiple of four. ) 

T :SGAJIT and T :SGRNU are the same as SGA and SGR except that there is no relevant 
user to provide swap RAD index. This occurs when SYSMAK initialized the 
tables and when SSS obtains a granule for a user JIT. 

USAGE 

Calling Sequence Input Output Volatile Registers 

BAL, 11 T:SGA 1 = granul e posi- 15 = disk adr of 1, 2, 12-15 
ti on requested granul e allocated 

BAL, 1 J T:SGR 15 = disk adr of 1 = granule position 1, 2, 12, 13 
granul e to rei ease of released granule 

BAL, 11 T:SGAJIT 2 = swap RAD index 

BAL, 11 T:SGRNU 2 = swap RAD index 

DATA BASE 

The user's swap RAD index, from UB:SWAPI, is used to obtain the appropriate entries 
from the following tables which describe the RAD and are used in the allocation routines. 

NA,ME 

RAD TYPE 0 

MB:GAM1 X'3F ' 
MB:GAM2 1 
MB:GAM1 -1 
MB:GAM4 6 
MB:GAMS -7 
MB:GAfvi6 X'7F ' 
MB:GPT 41 

90 19 86A-1 (4/73) 

CONTENTS 

2 

7 7 
3 7 

-2 -3 
3 3 

-4 -4 
X'F ' X'F ' 

6 6 

102 

3 

7 
15 
-4 
3 

-4 
X'F ' 

6 

USAGE 

GRANULE ADDR. MASK 
(SGP Wds/Gran) 
Shift for SGP index to Gran. POSe 
Shift for track to Gran. Addr. 
Shift for Disc Add. to Track No. 
Sec tor Add r. Mask 
Gran. Per Track 



NAME 

RAD TYPE 

MB:SWAPS 
MB:DWT 

o 
o 

41 

Where RAD TYPES are 

DESCRIPTION 

TYPE 

o 
1 
2 
3 

SECTION FA. 0 1.08 
PAGE 2 

UTS TECHNICAL MANUAL 9/24/71 

CONTENTS 

1 
12 

RAD 

7212 
7232 
7232 
7232 

2 

2 
24 

USAGE 

3 

3 
48 

Shift for Gran. POSe to SGPX 
DW size of SGP 

PSA (HEX) 

0<PSA<80 
80<PSA<100 
100<PSA< 200 

The swapper granule pool, M:SGP, is initialized by SYSGEN or during system ini
tialization to indicate the availability of every fourth granule. T:SGA starts at the 
specified granule position (word in M:SGP), looking for an avai lable granule and 
increasing it unti lone is found. If there is none, CC4 is set and the routine exits. 
When one is found, the word (equivalent to a granule position) of the table con
taining it is exchanged with a zero. The least significant bit is extracted. Its 
position from the right is determined which becomes the band part of the address 
and the position of the word of the table indicates the sector part. The word is 
restored to the table with that least significant bit reset to indicate that it has been 
allocated. Its address is set up and the routine exits. 

T:SGR checks the input granule address to insure it is the first of a group of four 
granules. If it is not, it is not returned to M:SGP and the program returns with 
CC4 set to 1. If it is the first granule of a group, T:SGR breaks up the address 
into the band and sector parts. The band number is used to create a bit number 
from the least signifi cant bi t. 

This bit is selectively stored into the word specified by the sector position divided 
by 2. If there are any users in state DP (disk page), event E:DPA, disk page 
avai lab Ie, is reported. 

103 90 19 86A-1 (4/73) 



SECTION FA. 01.09 
PAGE 1 

UT5. TECHNICAL MANUAL 3/23/71 

ID 

T:GAJP 

PURPOSE 

Get AJIT Page 

T:GAJP determines whether an AJIT page is required and obtains it if it is. 

USAGE 

Calling Sequence 

SAL, 0 T:GAJP 

SUBROU TINE S 

Input 

12 = command 
list length 

T:S.G.A is used to get a swapper granule. 

Output Vol atil e Regi sters 

0-4, 6, 1 1- 15 

T:REG is used to report a no disk or no physical page event and give up. 
T:SGR is used to release a swapper granu Ie. 
T:GPP is used to get a physical page. 
T:SXMAP is used to load the mapping registers. 

DESCRIPTION 

T:GAJP immediately returns if the specified command list length is less than the maximum 
length in JIT called JCCL or if an AJIT page has already been obtained as indicated by 
J:AJ 10. If it is necessary to get an AJIT page, the JIT's disk address is changed to the 
second granule of the group allocated for the JIT, and the AJIT is assigned to the first 
granu Ie of the group. 

UB:PCT, the user's total-pages-needed count is incremented. A physical page is 
requested of T :GPP. If none is available, an NPMC, No Page Map Constant, is set in 
JB:CMAP, the Ready to Run flag is reset and an event no-core, E:NC is given to T:REG. 
When control is returned, the Swapper has set a physical page in CMAP and linked it in 
MB:PPUT in the user's PP chain, and the Ready to Run flag is set. If there was no 
physical page, the Swapper recognizes the condition by the CMAP entry = NPMC 
and J:AJ = O. 

If the PP was obtained, it is linked into MB:PPUT in the user's chain, set into JB:CMAP, 
and the mapping register loaded. 

In either case, the context area count is incremented by 1. The physical page number 
is set into J:AJ and its address set into J:CLPA. The disk address is set in UH:AJIT. 

90 19 86A-1 (4/73) 104 



ID 

ALLOCAT 

PURPOSE 

UTS TECHNICAL MANUAL 

SECTION FB 
PAGE 1 
3/27/72 

ALLOCAT controls the allocation of fi Ie and symbiont granu les through the use of 
in core granule and cyl inder stacks and non-resident HGP bit maps. 

ALLOCAT is master mod~ ghost program. It is loaded with the public HGPs, generated 
by PASS2 of SYSGEN, and with the Monitor1s REF/DEF stack. This allows it direct 
access to the Monitor and all its functions. 

Replacing public HGPs in memory are PUSH/PULL stacks of disk addresses. There 
are four stacks for public granule allocation: 

l. PFA on RAD 

2. PFA on Pack 

3. PER 

4. Public cylinders 

All GET and RELEASE granule routine call ing sequences are identical to previous 
versions. The GET and RELEASE background granule, symbiont granule, and public 
cylinder routines are replaced by PULLs and PUSHs, respectively, of disk addresses 
into the appropriate stacks. For each allocation stack, two values are kept to control 
the calling of ALLOCAT and its actions when called. They are as follows: 

1. A low and high threshold expressed as a single value: BUFTHRSH 

2. An optimum fill :BUFSOPT 

ALLOCAT is called if either the number of granules in any stack falls below the low 
end threshold for that stack or if the number of granules in the st~ck rises so that 
there remains less than the threshold space in the stack. After each PUSH and PULL, 
the space count and word count in the stack pointer doubleword are compared with 
threshold data values for that stack. When either is less T:GJOBSTRT will be called to wake 
ALLOCAT. When ALLOCAT is called, it adjusts all the stacks to their optimum fi II 
level. 

105 



UTS TECHNICAL MANUAL 

SE(:T10N fB 
PAGE 2 
3/27/72 

AllOCAT pulls disk addresses from the stacks and releases the corresponding granules 
to its HGPs or allocats granules from its HGPs and pushes their disk addresses. Other 
functions require the presence of the HGPs and thus ALlOCAT. These explicit tasks 
are communi'cated to ALLOCAT through two-word· communication buffers. The 
buffers are chained to one of three heads: CBFHD, the head of the free chain; 
CBAHD, the head of ALLOCA T's chain; and CBRHD, the head of the chain being 
used for releasing files. The buffers are linked through the first byte. A zero 
terminates a chain. (The zeroth buffer is not used as a buffer, but contains the 
headers themselves). 

The figure below shows a sample of communication buffer linking. 

COMBU 

.+1 

2 

3 

4 
5 

6 

7 

8 
9 

10 

1,1 

F CBFHD=2 

I CBAHD=4 
fJ 
~ 8 

~ 12 

I 
0 

~ 
. 

6 

0 

\ ~. 14 
12; 13 

ICBRHD=10 

~ 

In this example, buffers 2, 8, and 6 are free. Buffers 4, 12, 14 .•• contain 
messages for AlLOCAT and buffer 10 is being used to release file. 

When ALLOCATls services are required, the call ing routine gets a buffer and calls 
a subroutine, ALLOQ, which adds the buffer to ALLOCA T's chain and wakes it, 
if necessary. If the routine needs to wait for a response, it blocks the associated 
user program with an E:QFAC (queue for ALLOCAT) event. ALLOCAT is swapped 
in and reads the chain of messages. If there is no response necessary, ALLOCAT 
frees the buffer; otherwise, ALLOCA T unchains the buffer from its own chain 
and leaves the answer in the buffer. Users are unblocked when ALLOCAT has 

106 



UTS TECHNICAL MANUAL 

SECTION FB 
PAGE 3 
3/27/72 

been swapped out (E:UQFAC). The calling routine must have remembered any 
buffer addresses containing answers and rechain the buffers to the free chain. 

If no buffers are available, the user is blocked by ALLOQ until ALLOCAT makes 
some available, and will be unqueued when ALLOCAT is swapped. 

The format for each message bu ffer is as follows: 

1. Get n Contiguous Background Granules 

-------,---...---.....,.------, 

00 00 I user link 

dey type ~ granules 

'---------:-.----------' 
2. Release n Contiguous Background Granules 

link H granules 

D. A. 
_ _ _ _ _ _ ____ ---------1 

3. Get N Contiguous Background Cylinders 

link 02 I 00 I user I 
dey 
type HCyJs 

4. Release n Contiguous Background Cylinders 

link I 03 I 1/ Cyls 

d.a. 

5. Release Buffer or Disk Addresses 

link I 04 1 I 
phys i ca I page H 

107 



DESCRIPTION 

1. Adjust Stack logic 

UTS TECHNICAL MANUAL 

SECTION F8 
PAGE 4 
3/27/72 

Each stack has an associated threshold value (BUFTHRSH) which determines 
when to wake ALLOCAT. If the stack space count or word count are less 
than the given threshold ALLOCAT is called. 

I f no granules are available for a user, the event, E :QFAC, is issued 
causing the user to go to a queue, SQFAC, to wait until ALLOCAT has 
adjusted the stacks. If a symbiont requires a granule it must queue itself. 
SACT reactivates the symbiont periodically. 

When ALLOCAT finishes its tasks, it posts a flag whi ch causes the swap 
scheduler to swap it out next. At its next entry, the swap schedu ler sets 
up the necessary tables and drives directly to the outswapper. When the 
outswap is complete, an event is reported (E:UQFAC) causing the SQFAC 
queue to be emptied. 

Every time ALLOCA T is called it automatically adjusts all stacks to their 
optimal depths {no communication buffer reauired}. The stack pointer 
doublewords for the four public stacks begin at BUF S PD and are contiguous. 
BUFSOPT is a byte table telling their optimal depth. If granules are 
being added to the stack, they are put at the bottom causing granules 
already in the stack to be pulled first. All disk addresses added have the high 
order bit set to flag them as unusable until the HGP is updated on RAD (end 
of ALLOCATls outswap). This assures that a granule is never used until it 
has been recorded in the HGPs on RAD. After the outswap, the flag bits 
are reset, before SQFAC is emptied. 

2. Get n Contiguous Background Granules 

GNBG calls ALLOQ and blocks the user with the event E:QFAC. ALLOCAT 
attempts to allocate the requested granules. It then removes the communication 
buffer from its own chain (but does not add it to the free chain) and puts the 
disk address in the second word (d. a. = 0 implies could not allocate). The 
user is unblocked after the outswap. 

3. Release n Contiguous Background Granu les 

RNBG wi II call ALLOQ and continue. ALLOCAT releases the granules and 
frees the communication buffer. 

108 



SECTION fB 
PAGE 5 
3/27/72 

UTS TECHNICAL MANUAL 

4. Get n Contiguous Background Cylinders 

GNCYL parallels GNBG. 

5. Release n Contiguous Background Cylinders 

RNCYL parallels RNBG. 

6. Release Buffer of Disk Addresses 

CLOSE builds chains of buffers containing disk addresses to be released. When 
the chain is complete, the disk addresses are released to the stacks, if they 
wi II fit, {the fastest method for release of small files}. Otherwise, CLOSE 
acquires a communication buffer, frees the physical page, calls ALLOQ, 
and continues. If no communication buffer is free, it blocks with the 
E:QFAC event and retries when unblocked. 

ALLOCAT releases the granules and removes the buffer from its chain, 
placing it in the CBRHD chain of buffers of disk addresses being released. 
At the E :UQFAC event (end-of-outswap) a routi ne checks for buffers. If 
there is one, it releases the page and communication buffer if it is the end 
of the chain; otherwise, it reads in the next buffer full of disk addresses. 
At the end-action from the read it recalls ALLOQ and repeats the process 
until all buffers in the chain have been processed. This process causes 
a swap of ALLOCAT for every 508 granules released. This occurs in
frequently enought to be an insignificant addition to system overhead. 

7. Keep Count of Granules 

ALLOCAT, upon first entry (at boot and recovery), counts the number of 
avai lable public granules and records them in a table in memory called 
GRAVAIL, the permanent available granule counts. 

GRAVAIL 
+1 
+2 
+3 

# Granules 
# Granules 
# Granules 
# Cylinders 

PFA RAD 
PFA Pack {granule allocated} 
PER 
PFA Pack (cylinder allocated) 

These are updated every time ALLOCAT adiusts stacks. These counts are 
used for the DISPLAY DISC key-in and for triggering symbiont truncation. 
ALLOCAT also keeps the same counts in itself in AGRAVAIL. 

Two other counts GRANMIN and GRANRESET are modified to trigger 
automatic FPURGE. 

109 



UTS TECHNICAL MANUAL 

8. Emptying Stacks 

SECTION FB 
PAGE 6 
3/27/72 

The stacks are emptied for quiescence by setting the optimum stack size, 
BUFSOPT, to zero for all stacks and waking ALLOCAT to adiust them. 

DATA BASES 

ALLOCAT's data is loaded as follows to facil itate locating it, its size and the 
ACNCFU information: 

XICOOOI=~_~ I HGPSIZE 1 

track 0, l-----A-C-N-C-F-U-+--l ----1 
sector 8 L.- ! 

! ACNCFU+2 
~.--
! ACNCFU+3 

"I~ ------A-G-~--VA-IL------11 
AG~VAIL+l 

AG~VAIL+2 

AG~VAIL+3 
X'C008' 

HGPs HGPSIZE 

ACNTBL 
{account 
directory} 

~ , 
,..- Doubleword Boundary 

} 64 Words 

End of Sector ~~. ------------------~~---t 

ALLOCAT's Procedure 

110 



UTS-TECHNICAL MAN UAL 

Detai led Description ALLOCAT 

SECTION FB 
PAGE 7 
3/27/72 

ALLOINIT is ALLOCA T's start address. It executes a master mode CAL. It then 
releases any FPOOls and IPOOLs allocated to it by STEP. It next releases the 
swapper granules allocated for its outswap, sets its disc address table back to home base, 
forces its JIT to track 0 sector 4, its AJI T if any to track 0 sector 2 and sets 
its swap device index to 0 (system resident swapping rad). It next reinitializes 
the account FCU and sets up the granule counts through HGPCNT. 

ALLOCAT is where ALLOCAT begins execute in each time it is called. It saves 
the ACNCFU critical data and runs the chain of command buffers executing each 
special request. It sets up the registers as indicated. 

index 
[ Rl - COMPUF 

R5 1 R15 

When these requests are all honored control goes to ADJSTKS, the stack 
balancing logic. 

ADJSTKS cycles through the four stacks. For each stack it picks up the 
depth from BUFSOPT and subtracts the current number of words in the stack_ If 
the result is negative the stack is too full and control goes to EMPTYIT. If the 
result is 0 ALLOCAT moves to the next stack. If itls too full control falls through 
to FI LLI T. 

FILLIT adds BUFTHRSH, the threshold value to the number of disc address to be 
added. This biases the stacks toward fuller than BUFSOPT if it was getting empty. 
It then gets the required granules one at a time, flags them with a high order bit, 
exchange the new disc address with the one at the bottom of the stack and that 
old disc address at the top until enough granules have been added to the stack. 

111 



SECTION fB 

Before 

this full 

should be 
this full ~ 

old do 1 After 
2 
3 
4 
5 

~ this fu I ! ...... -. 

1 new do 1 
1 new do 2 
1 new do 3 

old do 4 
old do 5 
old do 1 
old do 2 
old do 3 

If the granules cannot be acquired and the stack is empty the high order bit of 
the stack pointer double word BUFSPD is posted to inform GRAN that none are 
available (LOCKSTK). 

EMPTYIT biases the stack depth by subtracting BUFTARSH from the number to 
take out. It then pulls the disc addresses from the stack and releases them. 

When all the stacks are adjusted ALLOCAT checks to see if FILL should be 
awakened. It then saves the in-core account directory in ALL YAC and goes to 
sleep after setti ng ALLOOUT to request an outswap. 

GETNCYLS and GETNBG get in contiguous cyl inders or background granules 
respectively. The COMBUF contained 

0 0 (BG) 
2 (Cyls) 

dev 
type ~dct} 

The registers are set up as follows: 

RO = 
R15 = 
R8 = 

dev type 
I 00 I {dctH 

R15 
# 

user 

# 

PAGE 8 
3/27/72 

GNCYL or GNBG is called. The returned d. a. is put into the COMBUF's second 
word and the COMBUF is unqueued from ALLOCATs chain but not freed· 

112 



UTS TECHNICAL MANUAL 

SECTION FB 
PAGE 9 
3/27/72 

RELNCYLS and RELNBG release n contiguous cylinders or background granules 
respectively. The COMBUF contains 

00 

Registr;rs are set up as follows: 

R8 = d. a. 
R15 = # 

1
01 (BG) 
03 (Cyls) 

d. a. 

RNCYL or RNBG is called. The COMBUF is released. 

If 

UCB unqueues a COMBUF from ALLOCAPs chain 

RCB unqueues it and chains it to CBRHD, the rad buffer chain 

FCB unqueues it and chains it to CBFHD, the free chain 

R 1 points to the next COMBUF upon exit. 

RELBUF releases a buffer full of disc addresses. The COMBUF contains 

o I 5 f 
physical page # of buffer 

RELBUF gets and releases a virtual page to locate an available virtual page. 
It then SAP CALiS the physical page into that virtual page. The granules are 
released and RCB is called to return the COMBUF to the buffer chain. 

HGPCNT runs through the chain of HGP's counting the number of each type of 
granule or public cylinders into AGRAVAIL, its copy of the counts. When there 
are no more HGP's the counts are ¢ transferred to GRAVAIL, the resident copy. 

GBPG, GSG, GBG, GNBG, GCYL, GNCYL, RSG, RBG, RNBG, RCYL and 
RNCYL set up registers and interface with GRANSUB to accomplish the task. 
See GRAN SUB documentation. 

113 



GRANSUB 

PURPOSE 

UTS TECHNICAL MANUAL 

SECTION F8 
PAGE 10 
3/27/72 

GRANSUB is loaded both with ALLOCAT for use on public devices and with the 
resident monitor for private devices and various necessary internal services. Its 
function is primarily to do the actual work with the HGPs {get 1 or more granules 
or cylinders or release them}. It also maintains the counts of available public 
storage. 

INTERFACE 

ENTRY 

CMNGG 

GPVCYL 

GNPVCYL 

GNNAT 

CMNRELA 

RPVCYL 

RNPVCYL 

RNVAT 

REGISTERS 

R15 = 0 dct 71 granules 
RO = device type 
R 2 = 5 for PER 

6 for PEA 

None 

R 15 = # granules 

None 

R 8 = d. a. 
R15 = # granules to release 

R 8 = d. a. 

R 8 = d. a. 
R15 = # cylinders 

R 8 = d. a. 

114 

FUNCTION 

Common get granu I e 

Get 1 private cyl inder 

Get n private cyl inders 

Get NVAT 

Common release granule 

Release private cyl inder 

Release private cylinders 

Release NVAT 



SECTION FE 
PAGE 11 
3/27/72 

DETAILED DESCRIPTION 

CMNGG checks R 15 for a DCT index. If specified it wi" start the search in 
the corresponding HGP. If not it starts with the first HGP. Each HGP is checked 
for the correct device type. If correct and not cylinder allocated control goes 
to CMNGGZ. If cyl inder allocated the number of granules requested gets 
contested to a number of cylinders. 

GTNIT moves through the HGP's and allows for the possibifity of more than one 
device type, which causes a re-search of the HGPs. 

CMNGG2 sets up 23 with the appropriate stack index for granule counting 
purposes. It then initiates a quick scan of the HGP word by word for the first 
non-zero word. If the HG P is empty it gets flagged as such. 

L 199 through GGB find the appropriate number of contiguous granules. Registers 
are 

R7 = HGP 
R5 = relative word in HGP 

SR 1 = number of bits left to look at in HGP 
D2 = Bit being checked 
R3 = Type of granule being seeked 

o = PFA rad 
1 = PFA rad 
2 = PER 
3 = public cylinder 
4 = private 

D4 = # granules required 
D4 - R4 = # acquired 

R 1 = # words x 32 remaining in HGP 

The logic searches for the n contiguous granules. If found the da. is returned. 
If less than n are found followed by one which is not free, RELCALL is called 
to release the ones acquired and the search continues. If a device boundary 
is reached the ones acquired are also released. 

CMNRELA releases n granules/cylinders. After error checks it converts the d. a. to 
a relative word and bit and sets up a pointer to the last bit to be released. 
At RECALL the registers are: 

D4 - R4 = to release 
R7 = HGP 
R5 = word to start releasing at ----.R6 
D2 = bit to release 1st ----.R3 -

R4 is incremented to D4. IThe number of granules/cylinders released is added to 
the appropriate available granule counter. 

115 


	0000
	0001
	0002
	0003
	0004
	0005
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053-0
	053-1
	053-2
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071-00
	071-01
	071-02
	071-03
	071-04
	071-05
	071-06
	071-07
	071-08
	071-09
	071-10
	071-11
	071-12
	071-13
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082-0
	082-1
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115

