
Rank Xerox Universal Time-Sharing System (UTS)
Sigma 617/9 Computer.

Basic Control and Basic 1/0

Technical Manual

Universal Time-Sharing System lUTS)

Sigma 6/7/9 Computers

Basic Control and Basic I/O

Technical Manual

Fi rst Edi ti on

90 19 85A

February 1973

Price: $5.25

NOTICE

This publication documents the basic control and basic I/o routines that operate under the Universal Time
Sharing System (UTS) for Sigma 6/7/9 computers. With the exception of Section DA (Device I/O subsection), all
material in this manual reflects the COl version of the UTS operating system. Section DA reflects the BOl version
of UT S.

RELATED PUBLICATIONS

Title

UTS Overview and Index Technical Manua I t

UTS System and Memory Management Technical Manua I

UTS Symbiont and Job Management Technical Manual

UTS Operator Communication and Monitor Services Technical Manual

UTS File Management Technical Manual
t

UTS Reliabi lity and Ma intainabi I ity Technical Manual

UTS Interrupt Driven Tasks Technical Manual
t

UTS Initialization and Recovery Technical Manual

UTS Command Processors Technical Manua I

UTS System Processors Technical Manual

UTS Data Bases Technical Manual

Publication No.

90 1984

90 1986

90 1987

90 19 88

90 1989

90 19 90

90 1991

90 19 92

90 1993

90 19 94

90 1995

tNot published as of the publication date given on the title page of this manual. Refer to the PAL Manual for cur
rent avai labi lity.

The specifications of the software system described in this publication are subject to change without notice. The availability or performance of some features
may depend on a specific configuration of equipment such as additional tape units or larger memory. Customers should consult their Xerox sales representative
for details.

ii

CONTENTS

Basic Control - Traps and Interrupts ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
furpose~~~~~~~ ________ ~~ __ ~~ __ ~ __________________________________ ~_
Overview~~ ________________________ ~~~~~~ ____ ~ __ ~~~~~~~~~~ __ ___
Tempstacks~~~ __ ~~ __ ~ __ ~ __ ~ ____________________________ ~~~~~ __ ~~~ __

The User Tempstack ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~_
Special CAL 1 Processes ~ ____ ~
Traps~~ ________________ ~ ______________ ___

1
1
1
3
4
4
5

ENTRy ______________________________________ 8
Purpose ___________________________ ~ __ ~ ____ ~ __________ ~ ________ ~ ______ ~ ______ 8
Subrout i n es _________________________ ___ 8

ENTMAP _________________________________ 8
MAPUNMAP __________________________________ 8
ENTSUB __ 8

Execut i on T rap En tri es __________________ ~ ______________________________________ ~_ 8
NOPPGM, FIXOVF, FITFLT, DECFLT _______________________ 8
STKOVF ___ 9
UNIMP ___ 9
CAL2XXX, CAL3XXX, CAL4XXX _______________________ 9

CA L T rap Entry ______________ ~ __________________________ ~ ____________________ ~~ 9
CALIP ___ 9

Monitor Exit From CAL Processing ~~~ __ ~~ ____ ~~~~ __ ~ ____ ~~_________________ 9
T RA PE X IT ______________ 9

Unused C loc k Entri es ~ __ ~ 10
CLK1XXX, CLK2XXX 10

CA L PROC - CA L 1 D i spatc he r __ ~ ________ ~ _____________________________________ ~ _________ 11
Purpose 11
Usage 11

Input Registers 11
Output Registers 11

Interactions 12
T :OV (REMEMBER) 12
RECORD 12

Data Bases 12
C1lTV 12
C11CDS 12
DEVCDS 12
C12TV 12
C12CDS 12

Subroutines 12
ANLZB 12
CHECKCAL 12
CVREG 12
GTWD- 12
ISEXU 12

Description 12

ALTCP - Alternate CAL Processor and Trap Handler~ ___________________________ ~~_15
furpose 15
Overview 15
Usage 15

Alternate CAL processor CALCK 15
Trap Processor 40TRAP 15
Undefined and Illegal Trap Entry BADCAL and CALBAD 16

Interactions 16
Alternate CAL Processor 16
CVREG 16
RECOVER 16

iii

Trap Processor ___________________________________ 16

RECOVER 16
T :REG 16
T:PAC 16
T:ABORTM 16
T:SSEM 16
T :UTSXTS 16

Descri ptions 16
Alternate CAL Processor 16
Trap Processor 18

Flowchart for A LTC P 20

TABLES, S9TRAPS - Error Trap Handlers ___________________________ ~ 21

Purpose 21
Usage 21
Interaction 22
Data Bases ____ 22

JB:CMA P 22
J:JAC 22
HIGH 22
DCTSIZ 22
DCT 1 22
DCT5 22
S:CUN 22
UB:JIT_ 22
JBUP 22

Description 22
Introduction 22
Sigma 9 Parity Error Trap 23
Sigma 9 Memory Fault Interrupt 26
Sigma 7 Memory Parity Interrupt 26
Watchdog Timer Runout Trap 27
Sigma 9 Instruction Exception Trap 28
Parity Error Trap Service Routine 29
Parity Error Logging Subroutine 35
Set Maximum Error Leve I Subroutine 36
Register Altered Flag Test Subroutine 37
PDF Double Trap Routine 38
Sigma 7 Memory Parity Interrupt Service Routine 41
Watchdog Timer Runout Trap Service Routine 44
Instructi on Exception Trap Service 46

DEVICE I/O 47
Functiona I Overview __________________________________ 47

Operational Overview 47
Procedures for Making Requests 51
Channel Concept 54
Separation of Priorities and Contro I Task 54
System Flow 54
System Tables 54
Descri ption of Routines 57

NEWQ 57
QUEUE, QUEUE1 57
GETQ 57
IOSERV, IOFORCE 58
SERDEV 58
Standard Register Setup 60
CTEST 60
CTRIG 60
STARTIO 61
IOINT 63
CLEANUP 63

iv

REQCOM __ __
OCINT __ __

CTIOP __ _
10REC __ __
MSGOUT __ __

OCQUEUE __ ___

Handler Interface ________________________________ _
COMLIST __ __
IOSERCK ___ __

IOSEREC
RE:ENT __ _

4CHAR
Hand ler Descriptions

Typewriter Handler _____________________________ _

RAD Handler
9-T rack Tape Handler ____________________________ _
7-T rack Tape Handler ____________________________ _
Card Reader Handler _____________________________ _
Line Printer Handler _____________________________ _
Paper Tape Handler ________________________________ __

Card Punch Handler ______________________________ _
Disk Pack Handler ______________________________ _

Flow Charts __________________________________ _
Service Device _______________________________ _
Start a Request __________________________________ _
I/O Interrupt ____________________________________ _
Process Cleanup _______________________________ _
Control Panel Interrupt _____________________________ _

Swapping RAD I/O - T :SIO
~rpose ___ __

Usage _____________________________________ _
Overview ____________________________________ ___
Errors _______________________________________ _

Interaction __________________________________ __

T :SSE
RECOVER __ _
T:SEXIT __ ___
DOWTCK __ _
DORDCK ___ _

Subroutines __________________________________ _

Description ___________________________________ _

64
65
65
66
66
67
68
68
70
71
72
72
73
73
73
73
74
75
75
76
76
77
78
78
83
88
91
95

97
97
97
97
97
98
98 .
98
98
98
98
99
99

COC - Terminal I/O 102
Introduction _____________________________________ 102

Organization 102
Data Bases 102

Line Tables 102
Obtaining Terminal Line Table Information 105
Values in COC Line Tables 106

Buffers 107
Error Counts 109
Executive Message 109
Trans late Tab les 109

Control Functions 122
Size and Timing 134

COC - Control Routine 136
Purpose ______________________________________ 136

Usage 136

v

Subroutines _________________________________ 136

COCWR 136
COCRD 136
WTMSGSIZ 136

Interaction 136
COC 1~
SETTYC 136

Descri ption 137

vi

UTS TECHNICAL MANUAL

10

BASIC CONTROL - TRAPS AND INTERRUPTS

PURPOSE

-

SECTION C
PAGE 1
3/27/72

The primary function of the Monitor trap routines is to establish a means by which a
user program may communicate with the Monitor and vice-versa. For example, the
user may request the MOr:'itor (via CAL instructions) to perform such operations as
bui Iding files, retrieving data, setting interrupts, loading program segments, and
providing debugging diagnostics. In addition to servicing these requests, the Monitor
may communicate to the user that he is attempting to execute non-allowed operations,
or perform unimplemented instructions, and the like. Trap and interrupt routines also
are activated by hardware error conditions which may result in a user abort or system
recovery.

The function of the interrupt routines is to provide service to the monitor itself for
processes which are not user associated, e. g., I/O interrupt processing, symbiont
activity, polling of cae lines, etc. The modules discussed in this chapter provide
the means by which this two-way communication is effected. Basically the
mechanism is one of analyzing and servicing the hardware traps and interrupts when they
occur. (This section discusses only the processing of "internal ll interrupts, i. e.,
clock interrupts, I/O interrupts, etc. The use and processing of external interrupt
(e. g. X I 601 and X1611) is discussed in COCINIT, section DC).

OVERVIEW

A trap or an interrupt occurs when conditions at the hardware level cause what may
be considered an unconditional hardware IIbranch II. A number of conditions may
cause this branch to occur; e. g., an attempt to execute an unimplemented
instruction, to reference a nonexistent memory location, a hardware error, or a
value of zero in a clock interrupt counter. In addition, four instructions (CAL 1,
CAL2, CAL3, and CAL4) cause a trap condition and thus the hardware branch
when encoul'tered during the execution of a program. Hardware errors (Section CD)
also result in trap conditions and cause this unconditional hardware IIbranch II.

When the branch takes place, control is transferred to one of the pre-defined
memory locations XI401 through XISOI, referred to collectively as the trap and
interrupt locations. Each of these locations contains an instruction stored there
at system initialization by INITIAL. The execution of these instructions is the
means by which communication is established between the Monitor and a user

UTS TECHNICAL MANUAL

SECTION C
PAGE 2
3/27/72

program or between the Monitor and the hardware or operator. The UTS modules
involved in establishing the communication are

TABLES, ENTRY, CALPROC, ALTCP, IOQ, PFSR, CLOCK4, S9TRAPS.

When writing his program, the UTS user requests Monitor services by coding a
Monitor procedure within his program.

2

u,rS TECHNICAL MANUAL

SECTION C
PAGE 3
3/27/72

When a procedure call is encountered while the program is being assembled or
compiled, the processor responds by retrieving a symbolic call ing sequence from
the procedure library, modifyil)g it according to the parameters specified by the
user, and inserting this symbolic code into the program. Typically this symbolic
code begins with a CAL 1 instruction and continues with a variable number of
words containing the user's parameter information, referred to collectively as the
Function Parameter Table (FPn. When a CAL 1 instruction is encountered at
execution time, the hardware branches to trap location X'48 1

• The instruction
at X'48 1 is an exchange program status doubleword (XPSD) which, when executed,
transfers control to a subroutine in ENTRY. ENTRY saves a 19 word environment
(2 word PSD, odd word, 16 registers) and branches to CALPROC where decoding
of the CAL begins.

The XPSDs in the interrupt locations do not transfer control to ENTRY but go directly
to the appropriate interrupt routine.

TEMPSTACKS

In UTS there are three levels of tempstacks involved in CAL and trap processing;
the monitor tempstack (unmapped JIT), the users monitor tempstack (mapped JIn
and the users tempsta~k (mapped user TCB). The users tempstack enters the pi cture
only if an illegal trap occurs for which the user has requested trap control.

8000

Mapped vi rtual memory

Unmapped Monitor
physical
memory 0 (7600 e~

User JIT
8Coo

I
I I
I

I I
8COO=

Monitor JIT

3

I

User TCB
(COOO ~9)

'''\

I I I
(AOOO) (B2oo)
~g. e.g.

UTS TECHNICAL MANUAL

SECTION C
PAGE 4
3/27/72

UTS monitor routines reference the monitor tempstack via the stack pointer
doubleword (SPD)* named TSTACK. The SPD and tempstack are located in JIT.
A crucial design feature of UTS is that user JITs have a fixed virtual address
which is the same as the real physical address of the monitor JIT. Thus all
monitor routines simply reference TSTACK and the setting of the map bit in the
current program status doubleword determines which JIT is affected. When a
trap occurs, the 19 word environment is pushed into the stack in the JIT in use
at the time of the trap. Interrupts always push into the unmapped JIT even if
the process interrupted is mapped.

THE USER TEMPSTACK

If the user has specified that he wants to process traps when they occur, the
Monitor saves the user's PSD, general registers, and the location of the trap
in the user tempstack before giving control to the user program. These 19 words of
information are saved on a doubleword boundary in the user tempstack.

The address of the user's tempstack and its size are saved in the first two words of the
Task Control Block (TeB). A description of how the Monitor uses these TCB entries
to save the PSD, registers and trap location is given in the discussion of AL TCP,
subroutine STKTOTMP.

SPECIAL CAL 1 PROCESSES

For a CAL 1, 1 which is executed itself, i. e. not executed as the result of execution
of an EXU instruction, a special accelerated path of code is provided in the ENTRY
module starting at symbolic location CAL 11 N2. This code performs the jobs of
placing the PSD and registers into the stack, switching the clock to overhead, and
establishing the FPT and DeB addresses before entering the CALPROe module at
symbolic location CAL 11N3.

*See XDS Sigma 7 Computer Referenc'e Manual for a more detai led descri ption of
a stack-pointer doubleword.

4

XPSD's cssembled in XPSD double Trap Intenupt entry points.
INITIAL,. stored in 40-61 doublewords In Routine which contains the entry

rr~ps at system initialization TABLES point is named In parentheses

40 Non-alf owed o!, XPSD NOPPSD NOPPSD NOPPGM
41 Un~m?!~~~nted Instr. XPSD UNIMPPSD UNIMPPSD UNIMP
42 Stac'< Trap XPSD STKLPSD STKlPSD STKOVF
43 Fix~j Overflo XPSO FIXOVPSO FIXOVPSD FJXFLT
44 Floc~ir~'J Point Fault XPSD FLTFPSD FLTFPSD FLTFLT (ENTRy) ALTCP
45 Dccirr.ol Fault XPSD DECPSD DECPSD DECFLT
46 \,/a~chdcg Timer XPSD WDOGPSD WDOGPSD WDOGPGM (TABLES)

4S CAll v .. rr'\ ~AllPSD CAtlP ;j~~'.') CAlPROC CAll, I or 2 SERVICE
"" .IV

49 CAl2 XPSD CAl2PSD CAl2XXX AlTCP MODULE
4A CAL3 XPSD CAL3PSD CAl3XXX
43 C;·14 XPSD CAl4PSD CAUXXX
4C SIG!IA9 Parity Error XPSD PARERRPSD PARERRPSD* PARI'TYER (S9TRAPS) c

-t
40 SIGI'AA9 Instruction XPSD INSTXPSD INSTXPSD* INSTXCPT (S9TRAPS) '" n1
INTERRUPTS n

%
Z

50 Poweron XPSD POWERON POWERON both in BEGINON n
(PFSR) > 51 Poweroff XPSD POWEROFF POWEROFF PFSR BEGINOFF r-

52 Clock 1 pulse MTW,O 0 ~
53 Clock 2 pulse MTW, -1 M:RCLOCK2 (SSDAl) Z
54 Clock J pulse MTW,-l nNC (PMDAl) c

>
55 Clock 4 pulse MTW,l J:DGlTAT (JIl)

,..
56 1'/.cr..CIY rarity XPSD PERPSD PERPSD MEMPAR - (TABLES)
57 51 G,'v\A9 Memory Fault XPSD MEMFTPSD MEMFTPSD* MEMFAUlT(S9TRAPS)

58 Clock 1 counter zero XPSD CLK 1PSD ClK 1PSO (Point of interrupt)
57 Clock 2 counter zero XPSD ClK2PSO ClK2PSO (Poi nt of i rt errupt)
5/\ Clock J counter zero XPSD CLKJPSO CLKJPSD CLOCKl-JCLOCK4)
53 Clock 4 counter zero XP5D ClK4P5D CLK4P50 ClK4 - 5 5)
5C I/O XPSD IOPSD IOPSD IOINT (I 00)
5D Console in~errupt XPSD OCPSD OCPSD OCINT

60 COC input XPSO COCINl COCINl COCIP (COC)
61 cac output XPSD COCOUTl COCOUTl' COCOP

* PSD Contained in S9DATA Module generated by SYSGEN PASS2

TRAP IN LOCATION X'48'
CAL 1: Call a monitor service
routine.
Monitor Segment Name

User Program
executes CAL 1
instruction

SECTION C
PAGE6
3/27/72

------- -------TRAP-t;lo~~tr;;X'48"j-----
TABLES

ENTRY

Executes XPSD
instruction in -
location X'48'

-------- -------
C AL1P

save user's PSD
and registers in
TSTACK

r

Save 'R' field
frhe condition
code~from
new PSD

CAL lPl1 ..

Decode CAL 1,
'R' instruction
and get FPT
ode

-------------------------------C~[CK--

give control to
CAL1,3 -
CAL 1, 5; CAL 1,

ALTCP

8 and CAL 1,9 service

Isave user's
PSD and
~ransfer control
to ENTRY

The 'R' field is
used as a displacement
into CALPROC transfer
\.IA,., rnr tis

ive control to
AL 1, 1; CAL 1,2;
r CAL 1, A monitor

routines ____________________________________ NN ____________ ~-------~---_________ _

ENTRY

6

Exit to T :SSEN,
(SSS) to
return to user

A An external event triggers
the execution

8

C

Execute: Modify and test
instruction. I f the contents
of the location modified
(time cell) becomes zero,
the hardware wi II 'branch'

to the interrupt location
connected to the time cell
(C)

cI ock 'tick I occurs

Decrement cI ock
time cell (MTW) ---"-r

r-----.. --.... --0. _ •. __ ._

ranch to clock
nterrupt location an
xecute an XPSD

7,

no

SECTION C
PAGE 7
3/27(72

Continue normal
execution

(Return to point of interrupt)

10

ENTRY

PURPOSE

UTS TECHNICAL MANUAL

!)I:CTION CA
PAGE 1

3/27/72

This module contains the subroutines for entry to and exit from the Monitor when
processing CALis and traps (except hardware error traps). Since it is
part of the root of the Monitor, it is always in core.

The subroutines for entry to the Monitor perform the functions of saving the current
environment (PSD and registers) and providing basic decoding routines whereby
control is transferred to the appropriate Monitor service or fault routines. Later,
when a given function has been processed, control is returned to this module
whi ch then provides an exit route from the Monitor.

SUBROUTINES

ENTMAP - This procedure is invoked at the beginning of each entry point
in ENTRY except for the stock overflow and clock 1 and 2
entries. It saves the trap condition codes, sets the mop bit in
the current PSD according to the mop bit in the PSD at the
time of the trap, pushes the 19 word environment and changes
the scheduling clock, clock 4, to count in the service time
counter, J :OVHTIM.

MAPUNMAP - determines if trap PSD was mapped or unmapped. It sets the
current PSD mop bi t according to the trap PSD and checks if
there is room in the stack for a 19 word environment. If not,
branch to recovery entry point, RECOVER. Otherwise, push 7
reg i s ters and ex it.

ENTSUB- pushes the remaining 12 locations of the 19 word environment.
It then does a store double of the trap PSD into the first
doubleword of the 19 word environment in the stack. Finally,
the clock 4 pulse location is modified to tick into the service
time counter, J :OVHTIM, in JIT.

EXECUTION TRAP ENTRIES

NOPPGM, FIXOVF, FLTFLT, DECFL T

These entries go through the ENTMAP procedure, load register 3 with a one bit
mask according to the type of trap and load register 0 with the physical address

8

UTS TECHNICAL MANUAL

SECTION CA
PAGE 2
3/27/72

of the trap XPSD (e. g., X '40 ' for NOPPGM). Exit is to 40TRAP, the execution
trap processing routine in AL TCP.

STKOVF

The stack overflow entry is basically the same as the above trap entries except
that special checks must be performed to determine which stack is involved. If
the stack is a user stack, then STK OVF proceeds as above. If the stack is a
monitor stack (mapped or unmapped) special action must be taken to prevent the
monitor from looping. If the PSD at the time of the trap was master mode/unmapped
then it was the monitor tempstack and exit is to RECOVER (software check 1C).
If master/mapped the users monitor tempstack is arbitrarily initialized to look
empty and exi tis to REC OVE R where the user will be aborted.

UNIMP

The unimplemented instruction trap entry does an ENTMAP procedure, stores an
error code of 5 in the error subcode field ERO in JIT and aborts the user with a
code of X'A4 1 via T:ABORTM in STEP.

CAL2XXX, CAL3XXX, CAL4XXX

The CAL2, CAL3, CAL4 instructions are treated as execution traps. The ENTMAP
procedure is executed, an error code of X 'B2 1 is loaded in register 14 and control
passes to CALBAD in AL TCP.

CAL TRAP ENTRY

CAL1P

The only legal CAL in UTS is CAL 1. This entry point does an ENTMAP procedure
and transfers control to CAL 1 P 11 in CALPROC.

MONITOR EXIT FROM CAL PROCESSING

TRAPEXIT

This is the common exit routine for CAL service modules of the monitor. It
increments by 1 the instruction address portion of the PSD which was saved in the
users monitor tempstack at CAL entry. It then exits to the execution scheduler
(SSS) at T:SSEM which schedules the current, or some other, user for execution.

9

UNUSED CLOCK ENTRIES

ClK lXXX, ClK2XXX

UTS TECHNICAL MANUAL

SECTION CA
PAGE 3
3/27/72

UTS does not make use of clocks 1 and 2. If an installation should have these
clocks and if the counter zero interrupts should be armed and triggered, the
entry points here will execute an LPSD back to the point of the interrupt.

10

UTS TECHNICAL MANUAL

ID

SECTION CB
PAGE 1
3/27/72

CALPROC - CAL 1 Dispatcher

PURPOSE

The function of CALPROC is to perform the initial decoding of CAL 1, 1 and CAL 1, 2
(I/O related) CAL's and transfer to the appropriate service module. All other
CAL l's are processed by ALTCP (CAL 1, 3-9). CALPROC also contains a common
exit point for most I/O CAL's, 10SPRTN, which determines if an abnormal or
error condition occurred durmg the CAL. If yes, 10SPRTN stores information in the

users registers and modifies the PSD in the users monitor tempstack to enter the
user at an error or abnormal address. CAL2, CAL3 and CAL4 are illegal traps in
UTS and are handled at entry point CALBAD in AL TCP.

USAGE

B CAL1Pll from CAL1P in ENTRY orCAL11N3 for accelerated CALls.

INPUT REGISTERS:

(RO) = address of CAL 1 instruction which caused the trap
(R3)= condition codes and floating control after execution of the CAL 1

instruction in Byte 3, i. e., the register field of the CAL in bits 24-27.

OUTPUT REGISTERS:

If not CAL 1, 1

(R6)=

(R7)=
(R8) =

(R 11)=

(R6) =

(R7)=
(R8) =
(R 11)=

contents of the effective address of the CAL - usually the first word of the
FPT
address of the second word (word 1) of the FPT
Byte 3 of R8 contains byte 0 of the FPT, i. e., FPT code and optional
indirect bit.
address of common, non-I/O CAL exit, TRAPEXIT in ENTRY.
If CAL 1, 1 (I/O CAL ·s),
DCB address specified directly or indirectly in the first word (word) of the
FPT
address of second word of FPT
FPT code (optional indirect bit zeroed)
address of common I/O CAL exit, 10SPRTN in CALPROC

11

UTS TECHNICAL MANUAL

SECTION CB
PAGE 2
3/27/72

IN TE RAC TI ON S

T:OV (REMEMBER) The procedure REMEMBER is defined in System UTS (Section UD)
used in assembling UTS monitor routines. The procedure consists only of a "BAl, 14
T:REMEMBER", an entry point in the monitor/shared processor overlay associating
routine T :OV (Section EC).

RECORD - a diagnostic recording routine. It records information in a wrap-around
buffer. What information is recorded is based on a code input in R 1 (Section LF).

DATA BASES

C11TV
C11CDS-

CAL 1, 1 transfer vector, word table, contains instructions
CAL 1, 1 codes, byte table, contains FPT codes

These two tables are organized in parallel. The instructions in C l1TV are either
"LI, 15 module address" or liB module address" and serve as a transfer vector for
I/O CAL's other than device type. The use of the tables is described below
under CHECK CAL under SUBROUTINES.

DEVCDS-

C12TV
C 12CDS-

CAL 1, 1 device codes, byte table, containd device FPT codes
The use of this table is described under. CHECKCAL below.
CAll,2 transfer vector, word table, contains instructions
CAL 1, 2 code, byte table, contains FPT codes

These two tables are similar to C 11 TV and C llCDS except that they are for CAL 1, 2
traps.

SUBROUTINES

ANLZB- analyzes the instruction in R 1 and returns its effective address in RO.

CHECKCAL- The function of this routine is to search the specified byte table for
the specified number of entries against the code value in SRl (R8). If the code
is found in the table, the instruction in the same entry of the specified parallel
table is executed and return is to the link address (provided the instruction executed
is not a branch). If the code is not found and the CAL is not a CAL 1, 1, exit
is to the illegal trap entry CALBAD in ALTCP. If it is a CAL 1, 1, checking continues
against the device CAL type FPT codes. If found, a REMEMBER procedure is
executed to record the current overlay and control is transferred to the device CAL
processing module, 100. If not found, control is transferred to CALBAD.

12

UTS TECHNICAL MANUAL

INPUT REGISTERS:

(R 1) = number of bytes to search
(R2) = address of tabl e of codes to search
(SR 1) = code value being searched for
(01) = address of transfer vector table and also link register

Exits: There are four ways CH ECKCAl can be exited.

1) Executing a branch instruction in a transfer vector table.

SECTION CB
PAGE 3
3/27/72

2) Executing a .. LI, 15 module address" instruction in the transfer vector and
exiting to the link address.

3) Unconditional branch to CllTV if a device FPT code is found and,
4) Unconditional branch to CALBAD if the FPT code is not in the table.

CVREG - This routine performs the conversion c:l RO mentioned under GTWD.

GTWD - The purpose of this routine is to load Rl with the contents of the address
pointed to by RO. If (RO) isa register (O«RO)<t5), the location in the users monitor
tempstack that contains the contents of the register is loaded into RO by subroutine
CVREG.

ISEXU - This routine checks if the contents of Rl is an EXU instruction. If yes, it
exits to the link address; if no, it exits to link address plus one.

DESCRIPTION

At entry the total system CAL count (C:CAL) and the total CAL count for the current
user (J:CALCNT) are incremented. Preliminary decoding of the CAL is performed leaving
the R-fi eld of the CAL, the fi rst word of the FPT, address of FPT pi us one, the FPT code
and the non-VO exit address (TRAP EXIT) in registers. The CAL is recorded in the
diagnostic wrap around buffer via RECORD. A switch is then executed on the R-field
of the CAL. If it is not a CAL, 1 or CAL 1,2 control goes to ALTCP for dispatching. If
it is a CAL 1,2 the code is checked and control is transferred to the appropriate service
module.

If it is a CALl, 1 the FPT code byte is checked for the indirect bit. If set, the DCB
address is fetched i ndi rectly through the fi rst word of the FPT. The DCB address is checked
for validity by comparing the specified DCB address against the chained DCB table which
starts at ADCBTBL in JIT. If the specified DCB address is not found, the user is aborted
with a code of X'AF'. If the DCB is M:UC, only read, write, and device operations are
allowed. If another operation is specified, no error is returned, but the request is ignor
ed. Next the specified FPT code is checked against the table of legal CALl, 1 FPT codes
by the routine CHECKCAL. Before entering CHECKCAL, R15 is loaded with the entry
~ddress of 100 (device CAL processor) and Rll is loaded with the common Vo CAL exit

13

UTS TECHNICAL MANUAL

SECTION CB
PAGE 4
3/27/72

address 10SPRTN. Immediately following the BAL to CHECKCAL is a call on
T:REMEMBER in T:OV which remembers the current overlay and exit address
(R 11) in the overlay tempstack and which causes the current overlay to be
reassociated upon exit from processing the incoming CAL. Following the BAL to
T:REMEMBER is a "B *R 15". The effect of this sequence is to cause a "REMEMBER"
for those FPT codes that have a II LI, R 15 module entry" in the parallel transfer
vector table. Those wbich have a liB module entry" go directly to the routine
from CHECKCAL.

The common I/O exit point, 10SPRTN, checks (R81 O) if return -is to be made to the
users error or abnormal address. If not, exit to TRAPEXIT in ENTRY which causes
control eventually to return to the user at CAL plus one. If control is to go to the
user's error/abnormal entry, check if run status abort bits are set (J:RNST). If yes,
exit to TRAPEXIT (SSS will catch the abort bits on the way out of the CAL at
T:SSEM). If no, set up the users registers 8 (address of CAL plus one) and 10
(error code and DCB address) and modify PSD in the users monitor tempstack to
point to the error or abnormal address specified in the DCB or in the FPT. Exit
is then to TRAPEXIT1 in ENTRY which stores the PSD back into the stack and exits
to T:SSEM which leads ultimately back to the user.

14

UTS TECHNICAL MANUAL

ID

SECTION CC
PAGE 1
3/27/72

Al TCP - AI ternate CAL processor and trap hat1dler

PURPOSE

To dispatch CAll, 3 -CAll, 9 requests to the appropriate service module. It also
processes traps 40-46, illegal CAL traps 49-48, and undefined CAll traps.

OVERVIEW

This module performs two logically distinct functions. One is alternate (to CAll, 1
and CAll, 2) CAL processing (entry CAlCK)i the other is trap handling (entries
40 TRAP, 8ADCAl and CAl8AD). There will be two instances below of each
section devoted, respectively, to alternate CAL and trap processing.

USAGE

Alternate CAL processor CAlCK:

B
(R3)=
(R6)=
(R7)=
(R8)=

(R 11)=

CAlCK from CAlPROC
R-field of the CAll {e. g., If CAll, 8 then (R3)=8)
Contents of 1st word of the FPT pointed to by the CAL
Address of FPT+ 1
Byte 0 of the 1st word of the FPT, i. e., the FPT code and optional
indirect list
address of common CAL exit point, TRAPEXIT, in ENTRY

Trap processor 40TRAP:

B 40TRAP from ENTRY
(RO) = address of trap location (X'40'-X'46)
(R2)= condition codes and floating controls after the trap in 8yte 0
(R3)= a 1 bit mask corresponding to the type of trap (trap location)

X'80' - illegal CAL (X'49'-X'4B', CAl2-CAl4) or undefined CAL
(inval id R-field or FPT code on a CAll)
X'20' Non-allowed operation trap (X'40')

8 Stack limit trap (X'42')
4 Floating point fault trap (X'441)
2 Decimal fault trap (X'451)
1 Fixed point arithmetic fault trap (X'431

)

(R4)= address in users or monitor TSTACK which (when doubleword
accessed) points to the trap PSD, i. e. the address can be odd or
even.

15

UTS TECHNICAL MANUAL

SECTION CC
PAGE 2

3/27/72

Undefined and illegal trap entry BADCAL and CALBAD:

B

B
(R14)=

BADCAL

CALBAD

This entry is for undefined CAL's and simply loads
R14 with a monitor error code X'AE' and falls into
CALBAD (from CALPROC and AL TCP)
From ENTRY

monitor error code
X'AE' - undefined CALl
X'B2' - illegal CAL2-CAL4

INTERACTIONS

AI ternate CAL processor:

CVREG

RECOVER

Trap Processor:

RECOVER
T:REG

T:PAC

T:ABORTM

T:SSEM

T:UTSXTS

DESCRIPTION

A subroutine in CALPROC is used to compute the true memory address
of the register address in RO, i. e., the address in TSTACK of the
users register specified in RO.
The system recovery routine (Section LD)

The system recovery routine (Section LD)
"Report event and give up control" entry in the execution
scheduler (SSS, Section EA). Used here to re-associate a
debugger when a user traps who has a core I ibrary and debugger
associated.
Memory management set processor access routine (in MM, Section
GA). Used here to set the access register to allow the debugger
(DELTA) to store into its context page.
"Monitor is aborting the user" entry point in the job step control
routine STEP, Section EB.
"mapped exit from monitor to user" entry point in the execution
scheduler (SSS).
A subroutine in the execution scheduler SSS which moves a 20
or 21 word environment from the users monitor temp stack, TSTACK,
to the user temp stack in the users TCB.

AI temate CAL processor

The FPT code byte in byte 30f R8 is checked to see if the indirect bit is set. If it
is, R6 is loaded indirectly through word 0 of the FPT via CVREG. The routine then
switches on R3, which contains the R field of the CAL, to individual decoding
subroutines for each of the defined CALs, CAL 1, 3-4-6-8-9.

16

UTS TECHNICAL MANUAL

SECTION CC
PAGE 3
3/27/72

I f the R field is greater than 9 or equal to 0, 5 or 7, exit is to the undefined CAL
entry, BADCAL, in ALTCP (described below). If the value is 1 or 2, then either
CALPROC is unable to detect CAL 1, 1 or CAL 1, 2 because it is clobbered or
control has transferred to CALCK (AL TCP) from an unexpected source. In ei ther
case recovery is called for (software check code X'7C'*).

CAL 1,9

The effective address of CAL 1, 9s determines which service module has been
requested. The defined values are 1-6. Since the preliminary CAL decoding in
CALPROC has computed the address of FPT plus one (in R7) as if it were a register,
R7 actually points to a location in TSTACK which corresponds to "effective address
of CAL plus oneil. The actual code is recomputed from that value. A switch on
the effective address is then executed wh ich leads to BADCAL for undefined codes.

CAL 1,3

This routine processes debug CAL's. The FPT code is verified and loaded into RO
via CHECKCAL. The shared monitor overlay, DEBUGSEG is invoked via the
procedure OVERLAY which BAL's to the module T:OV (section EC). All overlays
which have more than 1 entry assume that RO contains an index into a transfer
vector of entry points. Thus the FPT code is a transfer index.

CAL 1,4

This code performs a simple val idity check on the FPT code and branches to the
appropriate entry point in UCAL (UTS specific CAL processor).

CAL 1,6

. First a validity check is performed on the FPT code. Then the users privilege level
in his JIT (JB:PRIV) is checked. If it is X' AO' or above, access to the service
module requested is allowed. If less than X'AO' and the TEL or CCI in control flag
(TIC) in the users flag (UH :FLG) is set, access is allowed. I f TIC is not set, return
is to the user at CAL plus one with CC 1 set to indicate the error.

CAL 1,8

This routine performs a validity check on the FPT code via CHECKCAL and exits
to the appropriate service module.

* At the time of publication this "screech" code had never been seen.

17

UTS TECHNICAL MANUAL

DESCRIPTION

Trap Processor

SECTION CC
PAGE 4

3/27/72

The trap handler has two entry points: 40TRAP for traps to locations X'40 ' - X'45 1

and BADCAL for undefined and illegal CAL traps. When a trap occurs, the action
taken depends on the following five decision points:

1. Trap occurred in master mode
2. Trap occurred in TEL or CCI
3. Trap occurred in DELTA
4. DELTA is associated with trapping user
5. User has trap control of the particular trap

Correspondingly the following action is taken:

1. If a trap occurs in master mode (in the monitor) or unmapped, system recovery is
invoked (section LD).

2. If TEL or CCI traps, recovery is invoked.
3. I f the trap occurred while DELTA was in control, further special checks are

performed to determine if DELTA was attempting to modify the user's pure
procedure. If it was, the trap handler executes the store for DELTA, sets the
"pure procedure swap" bit in the users flags (UH :FLG) and exits via T:SSEM to
the trapped instruction plus one. The Ilpure procedure swap" bit is set to
insure that the now modified procedure portion of the users program is swapped
out the next time he is selected for outswap.

4. If DELTA is associated with a user who traps, control will be ultimately
transferred to DEL TA's trap entry. A special check must be made first to
determine if the user was running with a shared core library. The reason for
this is that core libraries and DELTA both reside in the reserved special shared
processor area of virtual memory. Only one can be in the user's map at any
given time. If a core library was associated the processor use count (PB:UC)
is decremented for the I ibrary and incremented for DELTA. The "ready to run II

flag in UH:FLG is reset for this user to force a swap after the associate
processor event is reported via T:REG. The effect of this is to get DELTA
into the user's map. If DELTA is in core an I/O-less swap results. An
associate processor event (E:AP) is then reported via T:REG (SSS). When SSS
returns to AL TCP the access protection registers are set up for DELTA via
T:PAC in MM. DELTA's stack and trap entry addresses are loaded in R 1 and R2
and control falls in to common code for giving trap control to the user (TRAP40).

5. If none of the above conditions hold, the trap control flags (J:USENT) in the
user's JIT are checked to see if the user has requested control of the current
trap.

18

UTS TECHNICAL MANUAL

SECTION CC
PAGE 5
3/27/72

If no, the user is aborted via T:ABORTM in STEP with an error code of X'A4' and a
subcode which uniquely identifies the trap (table B-5, UTS Reference Manual). If
yes, a check is made to see if the user program was loaded wi th a TeB (J: TeB -I 0).
If not, the contents of user's RO are taken as a TCB address. R2 is loaded with the
user's trap entry point from J :USENT and control goes to the stack transfer code at
TRAP40. At TRAP40 the user's environment is transferred from the mapped monitor
stack, TSTACK, to the user's TeB pointed to by R 1 via T:UT~TS in SSS. If the user's
TCB can't be used because the stack pointer doubleword or the stack are not in a data
page or the stack is not big enough, the user is aborted via T :ABORTM with an error
code of X'A3'. After a successful transfer the trap location (X'40' - X'46') is stored
in the last word of the user's TCB stack. The stack transfer left the trap environment in
TSTACK. The condi tion codes immediately after the trap XPSD and the user's trap
entry address are stored in the PSD in the trap environment. The address of the TCB
is stored in the RO register in TSTACK and the address of the trap environment in

-the TeB stack is stored in the R 1 register in TSTACK. Exit to the user level trap
control routine is via T:SSEM in SSS which will ultimately pull the modified trap
environment from TSTACK.

19

CITY:-

Use R3 as Ois
_____ • placement Into

CALI, 0

Branch Tobie
-CITV-

CALI, I or CALI, 2

CALI,3

UTS TECHNICAL MANUAL
Enter from ICALPROCI when the III field of CAL I
Instruction Is nat I or 2 or A.
to and R6 • FPT word 0
13 • -It- neld of the CAL Instruction
ItS • (CJOI) • JIT Address
R7 • Address of word I of FPT
Sit I • FPT Code

fPTCOOE

00

0,1 IAOCAL

:. SR
'TRAPEXlT'

~
T:SAVEGET

.'::C:::A~L.:&I''':'' __________ ...Iclo.;''''ul .. 4_-r__ T:ASSOCIATE

- T:OISASSOCIATE

I CAll,5

CAlJ.6

CALI, 7

CAlI,8

CALI 9

Flowchart f. AL TCP -
Alternate CAL Proceuor

T:RDERlOG

T:WTERLOG

IADCAL

T:INITGJOI

T:SYS

ADDRESS (No fPT Generated)

T:EXlT

T:ERROR

·T:AlORT

MSTRAP

MTRTN

'CCLOSE

MCLCAR

MTCRM

20

FPTCOOf

SEGLO

UNIC

LOTRC

T:GVP

.T:FVP

T:CHTIL

T:SAD

GOP

fOP

SMPRT

GCL

GCP

FeP

MINT

T:WAlT

MnME

MSnMER

mMEIt

T:SYSlOAD

MTRA'

SECTION CC
PAGE 6
3/27/72

UTS TECHNICAL MANUAL

10

SECTION CD
PAGE 1
3/27/72

TABLES, S9TRAPS - Error trap handlers

PURPOSE

The purpose of the hardware error trap handlers in TABLES and S9TRAPS is to process
the following traps and interrupts on Sigma 7 and Sigma 9 computers.

USAGE

Watchdog Timer Runout Trap, X'461

Sigma 7 Memory Parity Interrupt, X'561

Sigma 9 Memory Fault Interrupt, X'57 1

Instruction Exception Trap, X'4D '
Pari ty Error Trap, X '4C '

The trap handlers are entered as the result of a trap or interrupt to one of the designated
memory locations. An XPSD in that location transfers control to a unique entry point
for each handler. The handlers are entered in Master, unmapped mode with interrupts
inhibited, and use register block zero.

The service routines for these traps and interrupt perform error correction and recovery
based on the condition of the operating system, the user environment and the type of
error. Whenever possible, the service routines attempt to localize a problem to a
particular user and avoid entering the system RECOVERY program. The general steps
taken to service a hardware error include correcting the error, if possible, logging
the error in the system error log and choosing an appropriate return. The chocie of
return is based on the conditions at the time of the trap or interrupt and the type of
error. The possible choices, beginning with the most favorable, are:

1. Return to the point of the trap or interrupt and attempt to re-execute that
instruction or continue with the next instruction in sequence.

2. Abort the user's current iob step.

3. Abort the user's iob. The current terminal user wi" be logged off.

4. Call the system REC OVERY routines.

21

UTS TECHNICAL MANUAL

INTERACTION

SECTION CD
PAGE 2
3/27/72

The following monitor subroutines contained in other modules are used.

DATA BASES

MSROCTY
T:ABORTM
T:DELUS
RECOVER

JB :CMAP is a byte table in JIT which contains the physical page number corresponding
to each virtual page.

J :JAC is a two bit table contained in JIT which contains the access protection
codes for each virtual page.

HI GH is the page number of the last page of physical memory.

DCTSIZ is the number of entries in each of the monitor OCT tables.

DCTl is a table Qf unit numbers of devices attached to the system.

DCT5 is a table containing a set of flags for each device.

S:CUN is the system identification number of the current user.

UB:JIT is a table containing the physical address of each users JIT.

JBUP is a word in JIT containing the beginning user page.

DESCRIPTION

Introducti on

An XPSD instruction in the appropriate interrupt or trap location addresses a PSD
pair in TABLES which contains, as the new PSD, the address of the proper handler
routine. The XPSD instructions are coded with a register field value of XI AI, which
causes subiective addressing to be used and the register pointer control to be loaded
from the new PSD. Each of the routines described in this section is entered in the
N.aster mode, unmapped and with register pointer control equal zero.

22

UTS TECHNICAL MANUAL

SECTION CD
PAGE 3
3/27/72

On Sigma 9 computers the Parity Error, Instruction Exception and Watchdog Timer Runout
traps all set the Processor Detected Fault flag. The routines to handle these traps call a
common trap entry subroutine, RESETPDF, to accomplish the following:

1. Save all registers in TSTACK

2. Save the trapped PSD in registers 12 and 13.

3. Reset the instruction address of the PSD, used for entry to the
trap routine, to an alternate trap handler.

4. Reset the PDF flag so that a subsequent PDF error cannot occur
and cause a CPU "hang-up".

The alternate trap handler recognizes when a subsequent trap has occurred at an
expected place, (i. e., at an LMS instruction), and allows the program to continue.
Th is method permits other types of traps that set PDF to occur and to be processed
correctly without interfering with the current trap. For example, a Watchdog Timer
Runout that occurs while processing a Data Bus Check will not interfere and proper re
covery wi II be made from each trap.

SIGMA9 PARITY ERROR TRAP

The Parity Error Trap routine used on Sigma 9 computers is composed of three sections to
process the three types of Sigma 9 parity errors. The main entry point, PARITYER, in
the S9TRAPS module, receives control from the XPSD instruction in location X'4C' and
immediately calls the trap entry subroutine S9RSTPSD. Following th is call a branch is made to
one of the three sections described below, based on the value of the Trap Condition
Code (TCC).

To process Data Bus Check errors the program forms an Error Log entry containing the
trapped instruction and the Real Effective Address computed for that instruction. To
compute the Real Effective Address the program restores the registers to their values
at the time of the trap and executes an Analyze instruction addressing the trapped
instruction. If the trapped program was in Mapped mode an LPSD is first executed
to enter the Mapped Mode and an LRA instruction is used to compute the Real Ef
fective address obtained by the Analyze instruction. After the Error Log entry is
formed a call is made to ERRLOG to record it in the Error Log buffer.

23

SECTION CD
PAGE 4
3/27/72

UTS TECHNICAL MANUAL

To complete the processing of the Data Bus Check error the routine performs an exit
sequence which is also used when exiting from the ~p Check error section of the
program. This code resets the instruction address of the PSD, (PARERPSD) used for
entry to the trap routine, by replacing the alternate trap routine address with the
address of PARI'TYER. Following this is a call to RAFTST, which tests the Register
Altered bit in the trapped PSD. If the Register Altered bit was not set, RAFTST
returns and the registers are restored and control returned to the trapped instruction.
If the Register Altered bit is set, and if the trapped program was in Master Mode,
the program branches directly to RECOVER with an error code of X'231

• Otherwise,
if the trapped program was in Slave mode, the users job step is aborted and the message;

iob-id PARITY ERROR - STEP ABORTED

is typed on the operator's console. . The RAFTST subroutine is also used by the Map
Register Check and Watchdog Timer Runout trap routines.

If the Parity Error was a Map Register Check error the program branches to MAPERR.
This section performs a search for Memory ~p errors by exeucting an LRA instruction
addressing each of the 256 possible virtual pages. An entry is made in the Error Log
for each error found during the search and a correction attempted. However, if the
faulty Map Register corresponds to the virtual page number of the users JIT page a
correction cannot be done and the user is logged off the system. The message;

job-id PARITY ERROR - USER LOGGED OFF

is typed on the operator's console.

If the faulty Map Register does not correspond to the virtual page number of the users
JIT the program reloads the Memory tv\ap Registers and Access Protection Codes for
the faulty page. To do this, the bad page number is used to compute the address of
the word in the users JB:CMAP and J:JAC tables which contains the physical page
address and access control codes to be restored. This address is then used in the
appropriate MMC instructions to reload the Memory Map and Access Protection Codes.
The Memory tv\ap Register is tested again following the correction and, if the
correction was successful the search is continued. If the Map Register error was not
corrected the program branches to RECOVER with a code of X'231

•

24

UTS TECHNICAL MANUAL

SECTION CD
PAGE 5
3/27/72

After all the f..Aap Registers have been tested the program performs the exit sequence
described above for the Data Bus Check errors. That is, the PSD is reset, the
Register AI tered bit is tested and the appropriate return is taken.

I f no errors are found during the search a null Error Log entry is made and the pro
gram returns using the exit sequence described.

Vv'hen the Parity Error Trap was caused by a Memory Parity error the program branches
to S9MEMERR in the TABLES module. This section performs a search of all memory
locations using an indexed Load Word instruction. When an error condition is detected
a Parity Error Trap occurs and a correction subroutine is called. This subroutine uses
the LMS instruction to load the three memory status registers for the bank in which the
error occurred an~ then clears them. The contents of the memory status registers are
placed in an Error Log entry exactly as they are obtained from the memory and the
entry is added to the Error Log by a call to ERRLOG. The memory examination is
continued unti I all memory banks have been tested and an entry mode in the Error Log
for each bank in which an error is found. In addition to the memory status, the first
Error Log entry also includes a table of device addresses indicating what devices were
busy when the Parity Error occurred. Up to six busy devices can be noted in the
table. If the Iv\emory Parity error was caused by a Loop check or Overtemperature
condition the program branches to RECOVER with an error code of X'271. Otherwise,
the word which had the bad parity is stored back into memory in an attempt to correct
the bad parity. The bad word is loaded once again to test it. If the bad parity was
not corrected, the alternate trap routine will be called by a second Parity Error trap
and wi II branch to RECOVER with an error code of X'23 1

•

It the parity error is corrected a call is made to SETMXERR. This routine searches
the current users JB:CMAP table for a physical page number which corresponds to
the physical page containing the faulty location. If the search is successful a
virtual page number is obtained and compared with the Beginning Users Page (BUP)
number. If the search is unsuccessful the physical page does not belong to the
current user. For each case an error code is set and compared with a maximum
error code. If the new code is larger it is stored as the maximum error code. The
possible error code values and their meanings are:

o The error was in the users pages.

The error was in the monitor context pages.

2 The error was in the monitor or was not owned by the current user.

>2 The error was reported during a memory access by an lOP.

25

UTS TECHNICAL MANUAL

SECTION CD
PAGE 6
3/27/72

Following the call to SETMXERR the program returns to the memory test loop. After
all memory locations have been tested the Memory Fault Interrupt is cleared and
the PSD used for entering the trap routine is reset with the address of PARI'TYER.
The final step in processing the Memory Parity error is to analyze the maximum
error code saved during the bank testing. If the code is greater than two, in
dicating that the error was detected by the memory during an lOP access, the
registers are restored and control is returned to the user. If the error code is
equal to two then the faulty location was found in the monitor and the program
branches to RECOVER with an error code of X'28 1

• If the maximum error code is
one the user is logged off or, if the code is zero, the users iob step is aborted.

In the case where no memory errors can be found an Error Log entry with status words
of zero is logged and the exit procedure described above is performed with the
maxi mum error code set to zero.

SIGMA9 MEMORY FAULT INTERRUPT

The Simga 9 Memory Fault Interrupt (MFI) is triggered when a fault is detected by
the memory as the result of an lOP or CPU access. If the memory access was by
a CPU, and the fault is not a Loop Check or Overtemperature error, a Parity
Error Trap is also triggered. In this case the Parity Error trap inhibits the MFI
until the PDF flag is reset. Upon entering the Memory Fault Interrupt service
routine a check is made of the instruction address of the interrupt and if the
interrupt occurred immediately following the LPSD used to reset the PDF flag the
registers saved in the temp stack are removed and control returned to the Parity
Error Trap program. If the Memory Fault Interrupt did not occur after the LPSD
instruction it was caused by a Loop Check or Overtemperature error, (which do not
generate Pairty Error Traps) or by a memory access by an lOP. If the interrupt was
caused by a Loop Check or Overtemperature error the program wi II branch to
RECOVER with an error code of X'271 after logging the error. If the interrupt re
sulted from an lOP access to memory the interrupt service routine initializes the
Parity Error Tr~p PSD to the alternate trap program, sets the maximum error code
to a value greater than two and loads the interrupt PSD into registers 12 and 13.
The program then branches to the Memory Parity Error section of the Parity Error
Trap program.

SIGMA7 MEMORY PARITY INTERRUPT

When a Memory Parity Error Interrupt occurs on a Sigma 7 computer an entry is made
to the interrupt service routine at MEMPAR. The registers are saved and the in
terrupt PSD is loaded into registers 12, 13. The Memory Parity Interrupt is cleared,
armed and enabled and the Memory Fault Indicators are read with a RD instruction.

26

UTS TECH NICAl MANUAL

SECTION CD
PAGE 7
3/27/72

The address of an alternate interrupt service routine is stored into the interrupt service
PSD and portions of an Error log entry are initialized. The program then branches to
S9MEMERR to perform the memory search described above. Upon completion of this
loop the Error log entry is recorded by a call to ERRlOG. The Error log entry is set
with the device addresses of any devices that were busy at the time of the interrupt.
The interrupt service PSD is then reset with the address of MEMPAR and the program
branches to the exit portion of the Sigma 9 Memory Parity Error Trap routine to de
termine the kind of exit based on where the bad memory location occurred.

If a parity error occurs whi Ie exeucting the memory test loop a Memory Parity In
terrupt is triggered and the alternate interrupt service routine is called. This al
ternate routine stores up to two bad memory location addresses in the error log entry.
1t also calls SETMXERR for each bad location, no matter how many. After reseting
the Memory Fault indicators and clearing the interrupt level the alternate interrupt
service routine returns to the point of the interrupt in the test loop.

WATCHDOG TIMER RUN OUT TRAP

The Watchdog Timer Ruhout Trap routine is designed to operate on either Sigma 9 or
Sigma 7 computers. The program is entered at WDOGPGM and calls the trap entry
subroutine RESET PD F. Following this call is a test to determine if the trapped
program was in the mapped mode. If so, the registers saved while executing in the
unmapped mode are retrieved, and an lPSD is executed to enter the mapped mode to
facilitate analysis of the trapped instruction.

The Real Page Address of the trap is determined from information in JB:CMAP and it
and the Tec are stored in the first word of an Error Log entry. The instruction that
caused the trap is obtained and stored in the Error log entry. The ERRlOG program
is then ca lied to log the trap information.

If the trapped instruction was indirectly addressed its effective address is obtained
and bits 17 - 19 of this address are saved for analysis later in case the instruction was
a Read Direct or Write Direct. If the computer is a Sigma 9 and the time out was in
phase one, in which case the instruction completed correctly, the program returns to
the user. If the time out was not during phase one the Register Altered bit is tested
by a call to RAFTST. If the Register Altered bit is set the user1s job step is aborted or,
if in Master Mode, a RECOVER exit is taken with an error code of XI1CI. If the Register
Altered bit is not set tests are made to determine if the trapped instruction was a Read
Direct or Write Direct. If it was, the mode code (bits 17 - 19 saved above) is tested.
If the mode code is 0 or 1 the instruction is retried, but if it is 2 or greater the in
struction is skipped by incrementing the trapped PSD. Control is then returned to the
user.

27

UTS TECHNICAL MANUAL

SECTION CD
PAGE 8
3/27/72

If the computer is a Sigma 7 the phase tests are not performed but instead the trapped
instruction is tested to determine if it is a PSM or PLM. If it is, the program branches
to RECOVER with a code of X'1C'. If the instruction is not a PSM or PLM the tests
for Read Direct and Write Direct are performed as described above.

SIGMA9 INSTRUCTION EXCEPTION TRAP

The Instruction Exception Trap is processed by the section of code beginning at INSTXCPT.
The usual call to RESETPDF is made to initialize and reset the PDF. If the trap occurred
as the result of an inva id register designation and the program was in Slave Mode the
trapped PSD is incremented by one to skip the Load instruction, and control is returned
to the user. If the program was in Master mode or the reason for the trap was not invalid
register designation an Error Log entry is made followed by a branch to RECOVER with an
error code of X'241.

28

UTS TECHNICAL MANUAL

PARITYER

PSD PSDTEMP

MEMORY PARITY

MAP CHECK

DATA BUS CHECK

PARITY ERROR TRAP SERVICE ROUTINE

29

SECTION CD
PAGE 9
3/27/12

(PE 1)

Was Trapped
PADG'
Mapped - --

NO

Get real address
of Trapped INST

Get Trapped INS
save I NST and
address.
Restore registers

LPSD with
Map Bit

BUSER 1

Analyze trapped
INST.

Get real REF
Address

UTS TECHNICAL MANUAL

Retrieve trapped
IN ST and addres

BUSER p!-_-l===:=:;---1
SETUP ERROR
LOG
ARGUMENTS

PARI TYER--..
PARERPSD+2

x'23'-S

Restore registers
and LPSD to
RETURN

SECTION CD
PAGE 10
3/27/72

(DB 1)
(DB2)

(DB5)

(DB3)

(DB4)

PARITY ERROR TRAP SERVICE ROUTINE (CONT.)

30

MAP CHECK ERROR

MAPERR

UTS TECHNICAL MANUAL

In itial ize page
index;::) x 11001

High*2 ~ xiF 1
-UPR

Test MAP Reg
using LRA *Page

Index

YES

NO YES

Increment page
index by x 12001

YES NO

SECTION CD
PAGE 11

(MP1) 3/27/72

(MP2)

PARITY ERROR TRAP SERVICE ROUTINE (CONT.)

31

UTS TECHNICAL MANUAL

Setup Error
Log Arguments

Compute Address
of JB:CMAP \\Ord
for th is page. Load
"rna re ister

Compute Address
of J:JAC Word for
the pag~. Load
nccess code

Test MAP Reg
using LRA * PAGE

Index

,
Xl 23L-..SC

YES

l~MXCODE

SECTION CD
PAGE 12
3/27/72

(MP3)

(MP5)

PARITY ERROR TRAP SERVICE ROUTINE (CONT.)

32

UTS TECHNICAL MANUAL

PSD-PSSTEMP
Restore Reg isters"
LPSD to Return

SECTION CD
PAGE 13
3/27/72

(ME 4)

(ME6)

(ME5)

FLT94 -~Return to point of interrupt

Clear TSTACK by
-16.
T DELUSR SR4
LGOFFMSG-R9

=2 =1 =0

PARITY ERROR TRAP SERVICE ROUTINE (CONT.)

33

UTS TECHNICAL MANUAL

MEMORY PARITY ERROR TRAP
CORRECTION ROUTINE ME ...

Load Memory
Status registers
and clear

NO

Restore Bad VVord
to Correct Error.

FLT3

Test VVith LW

SECTION CD
PAGE 14
3/27/12

(ME7)

PARITY ERROR TRAP SERVICE ROUTINE (CONT.)

34

SECTION CD
PAGE 15

UTS TECHNICAL MANUAL 3/27/72

LOG FAULT

Time-TM

NO YES

I
, Store up to 6 I Fetch DCTl Entry Setup Entry
: Device Entries ' for each busy Code = x'OC070000 !
,STORE 0 if less , device & Add to
: than 6 busy Dev.! Erro Lo E

ENTER WITH:

x'070AOOOO' in R 10
Trapped PSD in 12, 13
status in 14, 15, 0

PARITY ERROR LOGGING SUBROUTINE

35

l-R6

SETMXERR
UTS TECHNICAL MANUAL

Convert Fau I t
Address to page
Number.

Search JB:CMAP
of current user for
V1RT page.

O-R6

2-.R6

MXCODE =

MAX(MXCODE, Rr

ENTER WITH:

SECTION CD
PAGE .16
3/27/72

Address of Faulty LOC in
R5.
Trapped PSD in 12, 13

SET MAXIMUM ERROR LEVEL SUBROUTINE

36

RAFTST

CLEAR TSTACK
(MSP -16)

UTS TECHNICAL MANUAL

ENTER WITH:

SECTION CD
PAGE 17
3/27/72

Trapped PSD in 12, 13
Message Address In 9
Step Abort Code in 14

(RF 1)

T:ABORTM-SR4

(RF2)

-----BRANCH ·SR4 to Return

REGISTER ALTERED FLAG TEST SUBROUTINE

37

PARXXXX

x1231-SC

RECOVER

UTS TECHNICAL MANUAL

Reset PDF fetch
Trapped
PSD-TMP

NO YES

PDF DOUBLE TRAP ROUTINE

38

SECTION CD
PAGE 18
3/27/72

RESET PDF

UTS TECHNICAL MANUAL

Save Registers
Load Index with
PTR.

Store DERA TL
in PSD+2

Load Regs 12, 13
with trapped PSD

Reset PDF
and Return

39

SECTION CD
PAGE .19
3/27/72

ENTER USING

XPSD, 0 RSETPSD
DATA PTR

WHERE:

PTR DATA DFERR
DATA nnn
PSD SERVICE pROG

UTS TECHNICAL MANUAL

MEMFAULT

Save registers
fetch interrupted
PSD

Store Derai I in
PARERPSD+2

n >3-MXCODE

Interrupted PSD
-PSD .

o--ARG

Restore Registers

40

SECTION CD
PAGE 20
3/27/72

MEMPAR

SIGMA7 Memory Parity In
terrupt

Service Routine

UTS TECHNICAL MANUAL

Save Reg isters
interrupted PSD

----..PSD

ARM, enable
and clear the

Memory PAR Int.

High*2 -tx1 1FF I

........ R4
Initialize ERR Log
Ent

Setup Derail in
INT PSD+2 read
MEMFAULT
indicators

LW *R4

DEC R4 by 1

RESET DERAIL

41

SECTION CD
PAGE 21
3/27/72

lJTS TECHNICAL MANUAL

MEMORY PARITY ERROR

MEMERR

O--.MXCODE
O-ARG
High*2~ + x'lFF'

8~K (SEARC

FLT2t:::=:::J:==:;----;

DEC SEARCH
Index

FLT97

No Yes

Clear MFI
Reset PARERPSD

+2

42

SECTION CD
PAGE 22
3/27/12

(ME 1) -.

(ME 2)

(ME 3)

MPR50

UTS TECHNICAL MANUAL

L_CO --r---

Store Bad LOC
. in error Log
ENTRY

Restore Word
To N\ernory

Reset Fault
Indicators

SETMXERR

LPSD to Return

43

SECTION CD
PAGE 23
3/27/72

WOOGPGM

Retrieve Regs.
LPSD W/w-AP
SAVE REGS

WOOl

UTS TECHNICAL MANUAL

Fetch Real Page
Address from
J8:Cw-AP, Insert
. Ent

'Getthe Trap~dl
, I · I I nstruchon. 1-.
- - -..-, ---'-

1- - - - - - - ,- -. - I

I If it was, get its :
: effective address ,

GlWD

SECTION CD
PAGE 24
3/27/72

WATCHDOG TIMER RUNOUT TRAP SERVICE ROUTINE

44

--~------ I ,
Get Eff. Address.

I of OPERAND ,- -
!... - - - - - __ 0'

,- - - - - -- - -. I
I Get OPERAND t---
I I - -- - - - -,.

UTS TECHNICAL MANUAL

SIGMA 91

x'lC'-SC

Recovery

INC PSD

WATCHDOG TIMER RUNOUT TRAP SERVICE

45

~Dl)

SECTION CD
PAGE 25
3/27/72

INSTXCPT

UTS TECHNICAL MANUAL

Setup Error Log
Arguments

Reset Derai I
in PSD+2
x'24 !..-..-SC

RECO ER

Inc. PSD Reset
Derail in PSD+2

INSTRUCTION EXCEPTION TRAP SERVICE

46

SECTION CD
PAGE 26
3/27/72

ID

Device I/O

FUNCTIONAL OVERVIEW

UTS TECHNICAL MANUAL

SECTION DA
PAGE 3
2/11;71

The BPM Basic Input/Output System provides a si mple interface between all parts of
the operating system and the external peripheral devices. It stacks or "queues" the
requests for servi ce rather than waiting for each operation to complete before return
ing to the caller. When a request is completed the caller is notified via certain
parameters in the DCB. Or the caller may specify the address of a subroutine to be
executed at this time (called the "end-action" routine). It is capable of receiving
requests for input at any time or from any place in the system and dispatching them in
a manner which is virtually independent of other operations concurrently being exe
cuted by the system. Error recovery procedures are invoked when necessary and do
not require any additional specifications from the caller.

Requests are normally serviced in the order in which they are received. In a real-time
system" requests are servi ced by task priority. Precauti ons are taken to preven t any
maior service to lower priority requests when a higher priority task is active.

Communication with peripherals is designed to afford the most complete recovery
possible from errors and device malfunctions. Operator intervention is enlisted only
after all other al ternatives have been exhausted.

No restrictions are placed on buffer size or location. Faci lities are included for
gather-wri te/scatter-read operations (data chain ing), and provision is made to allow
construction of lOP command lists outside of the Basic I/O.

The inherent differences between peripheral devices is accounted for by the insertion
of device-oriented code (handler) for each type of device in the system. A well
defined handler interface allows addition of new handlers with a minimum of difficulty.
Also, a number of subroutines are available which perform common handler functions.

OPERATIONAL OVERVIEW

There are two major parts involved in the processing of an I/O request: start (done by
STARTIO) and cleanup (done by CLEANUP). The start consists of building the lOP
command list and executing the SIO instruction, while the cleanup consists of testing
for errors and notifying the caller of the completion. For a given request, the time at
which a start or cleanup is done is determined by the I/O scheduler (called Service
Device or SERDEV).

Service Device is a highly independent routine in the sense that it can be called at any
time from any where in the monitor. It is called whenever there is any chance that a
start or cleanup can be done for a given device. Some examples of when Service

47

UTS TECHNICAL MANUAL

Device is called are:

SECTION DA
PAGE 4
2/11/11

1. When a request is queued (start may be performed unl ess device is already
busy).

2. After an I/O interrupt has occurred (cleanup may be done).
3. After a cleanup has been done (a start may be performed for the next

request in the queue).

Device dependent routines are provided for bui Iding command I ists and testing for
errors. STARTIO calls the "handler pre-processor II to do the former, while CLEANUP
calls the "handler post-processor" to do the latter. These two parts constitute the
device handler for any given peripheral and are provided in separate assembly modules.

48

I UTS TECHNICAL MANUAL

SECTION DA
PAGE 5
2/11;71

Make a Request

QUEUE
QUEUE
\~EW

\ I

l
y. __ ~

n:. SERVICE

~VICE

!
I

~

49

I/O Interrupt Occurs

y
•

Change State
of devi ce, c I ear

interrupt from
active state

I

SERVICE
DEVICE

I

~

Service Device

(0--

UTS J TECHNICAL MANUAL

Get next request for channel

Yes

--.

50

STARTIO

(Handler

\ Pre-Processor

CLEANUP

Handler

Post-Processor

SECTION DA
PAGE 6
2/11/71

UTS TECHNICAL MANUAL

PROCEDURES FOR MAKING REQUESTS

SECTIONDA
PAGE 7
10/18/71

Requests for input/output may be placed in one of two ways: with all arguments
contained in general registers or with most arguments residing in a DCB.

The caller may specify the address of a routine to be entered after the completion of
any request (successful or not). This lIend-action" routine will be entered after
information pertinent to the outcome of the request has been loaded into registers or
stored in the DCB.

Register formats will be indicated by listing the parameters contains therein followed
by the field lengths of the respective parameters.

Register call:
BAl, R 11 NEWQ

R12 FC, PRI, NRT, OCT
R13 D,C,-,BUF
R14 -, SIZE
R15 SEEK
RO -, EA
R1 EAI

(8,8, 8, 8)
(1 , 1, 11 , 19)
(16, 16)
(32)
(15, 17)
(32)

The normal return is to BAl +2. If the device is marked down the return is to BAl + 1
(not currently implemented). Registers 5 through 11 are considered non-volatile.

FC New function code as described in DA.03.
PRI Priority. Normally the current task priority (obtained from CJOB).
NRT Number of recovery tries to be attempted.
OCT Device control table index (described in Section VG).
o Data chaining flag.
C Command list flag.
BUF 0=0, C=O: byte address of buffer.

0=1, C=O: doubleword address of data chain list.
0=0, C=l: doubleword address of complete command list.

SIZE 0=0, C=O: length of buffer in bytes.
0=1, C=O: number of commands in data chain list.
0=0, C=l: time-out increment (see Service Device).

SEEK Seek address for random access devices, left justified.
EA Address of end-action routine. Zero indicates no end-action desired.
EAI End-action information. Suppl ied by caller and returned at end-action

time.

51

OTS. TECHNICAL MANUAL

SECTION DA
PAGE 8
10/18/71

The caller's end-action routine is entered with interrupts enabled and all registers
volatile:

R7
R12
R13
R14
R15

BAL, Rll EA
-, OCT
TYC, -, RBC
-,CCA
EAI
-, BUF

(24,8)
(8, 8, 16)
(16, 16)
(32)
(13, 19)

The caller must return via regis-ter 11.

ryc Type of completion code returned by device handler (See BPM
reference manual).

RBC Remaining byte count (usually from TDV).
CCA Current lOP command address (from TDV).

Other parameters are as described above. BUF and SIZE are the values supplied by
the caller.

DCB call:

R8
R9
R10

BAL, Rll
BAL, R 11
FC, -, DCB
-, EA
EAI

QUEUE no end-action
QUEUE 1 end-action

(8, 7, 17)
(15, 17)
(32)

Registers 9 and 10 are not necessary on a call to QUEUE. For DCB calls, FC refers
to the old handler function code as described in subsequent paragraph. The DCB
must contain NRT, OCT, BUF, SIZE and SEEK. Registers 5 through 11 are
considered non-volati Ie.

End-action is entered as above after the TYC and actual record size have been
entered into the DCB;

R6
R7
R8
R14

BAL, Rll
-, BUF
-, OCT
FC, -, DCB
EAI

EA
(15, 17)
(24,8)
(8, 7, 17)
(32)

In this case BUF is a word address. The other parameters are as in the call.

52

UTS TECHNICAL MANUAL

SECTION DA
PAGE 9
10/18/71

The old handler function code is interpreted as follows:

where

CODE =

FBCD =

DIR =

o - read BCD
1 - read direct BCD
2 - read binary
3 - read direct binary
4 - write BCD
5 - wri te direct BCD
6 - write binary (write and format)
7 - write direct binary
A - sk i p record forward
B - sk i p record reverse
C - skip fi Ie forward
D - skip file reverse
E - rewind
F - write end-of-file

bits 0-3 are ignored
for these codes

o - specifies no FORTRAN conversions
1 - specifies FORTRAN conversions

o - specifies forward direction
1 - specifies reverse direction

If the device is not 9T, 7T, or MT, only bits 5 thru 7 are meaningful.

53

UTS TECHNICAL MANUAL

CHANNEL CONCEPT

SECTION DA
PAGE 10
2/11/71

For the purposes of this specification let us define the term "channel" as: the highest
order data path connected to one or more devices, only one of which may be transmit
ting data {to or from CPU. memory} at any time.

Thus a magnetic tape controller connected to an MIOP is a channel. But one connected
to an SlOP is not, for in this case the SlOP itself fits the definition. Other examples
of channels are a card reader on a MIOP, a keyboard/printer on an MIOP or a RAD
controller on an MIOP.

Input/Output requests made on the system are queued by channel: This method faci I i
tates starting a new request on the channel when the previous one has completed. The
exception to this rule is the "off-I ine" type of operation such as rewinding of magnetic
tape or arm movement of certain moving arm devices. If this type of operation is
started, an attempt is always made to start a data transfer operation as well. Thus the
channel is always kept busy if possible.

SEPARATION OF PRIORITIES AND CONTROL TASK

All input/output functions are controlled with respect to time by a scheduler called
II Servi ce Device". This routine is device-oriented as far as the call ing program is
concerned, but in reality takes the necessary steps to keep the applicable channel
operating within the constraints of priority.

This means that no request will be started whose priority is lower than that of the
operating task, nor will an interrupt from a request be processed unless priority dictates.
It must be realized that some overhead is suffered from the scheduler itself, but this
overhead is considered to be small compared with starting a request or processing its
interrupt.

Since requests on a channel are normally "chained" by the I/O interrupt, there must
be a means whereby any action on a request which is deferred by priority may be
resumed at a later time. This provision is the "Control Task", usually the lowest level
external interrupt in the system. When action is deferred, the device code is entered
into the Control Task stack and its interrupt is triggered. When it becomes active it
will call the scheduler for the device in question. In a system created with no Control
Task, the console interrupt wi II be triggered instead. The console interrupt receiver is
designed to perform Control Task Functions when there is no external interrupt assigned
for this purpose.

SYSTEM FLOW

As indicated above the center of I/O activity is the scheduler, Service Device. This
routine starts all operations and processes their interrupts {cleanup}. Thus Service Device
must be called whenever certain key events occur or when other special conditions are

-54

UTS TECHNICAL MANUAL

SECTION DA
PAGE 11
2/11;71

present in the system. Figure 1 shows the downward flow of control from some of the
most important areas of the I/O system.

SYSTEM TABLES

Information pertaining to requests, devices and channels is maintained in a series of
parallel tables produced at System Generation Time. The format of these tables is
presented in Section VG and will be referenced throughout the remainder of this
specification. The first entry (index~) in each table is reserved for special use by
the system.

a) lOa, Request Intormation
These tables contain all information necessary to perform an input/output opera
tion. When a request is made on the system, data is transferred from the con
trolli ng DCB and/or registers into one element in each of the parallel loa
tables. This set of elements forms a "queue entry". The entry is then linked
in to the channel queue below other requests of higher or the same priori ty.

b) DC T, Devi ce Control
The device control tables contain fixed information about each system device
(unit level) and variable information about the operation currently being per
formed on the device.

c) CIT, Channel Information
These tables are used primarily to define the "head" and "tail" of those entries
which represent the queue for a given channel at any time. A channel queue
may have more than one entry active at anytime (such as several tapes rewinding
wh i I e another reads or wri tes).

55

Request is
made

NEWQ
QUEUE
QUEUE 1

~,

•

. UTS- TECHNICAL MANUAL

SECTION DA
PAGE 12
2/11/71

Interrupt occurs

IOINT

•
SERVICE

j

Monitor waits for
completion

IOSPIN

~,

DEVICE

Process interrupt
CLEANUP

•
Handler Handler

pre-processor pos t-processor

FIGURE DA-1 SYSTEM FLOW

56

Contro
task

CTIOP

I

•

UTS TECHNICAL MANUAL

DESCRIPTION OF ROUTINES

SECTION DA. 01
PAGE 1
2/11/71

This section presents descriptions of the routines which comprise the I/O System. Only
the most important functions of each routine are described. The listings should be
consulted for more detailed information.

The handlers and related subroutines are described in later sections.

NEWQ

Purpose: to receive requests-for I/O operations, register format.
Inputs: described in paragraph "Procedure for Making Requests".
Description:
The index of an entry in the 10Q tables is obtained (See GETQ) and the arguments
passed in registers are properly formatted and stored into the respective tables. The
queue entry is then linked (by priority) into the queue for the appropriate channel.
Then Service Device is called and control is returned to the caller.

QUEUE, QUEUE 1

Purpose: to receive requests for I/O operations, DCB format.
Inputs: described in paragraph "Procedures for Making Requests ".
Descri pti on:
These routines are actually different entries to NEWQ. They differ only in the manner
in which they build the queue entry - most of the arguments are obtained from the
associated DCB. A set of byte tables is used to convert the old handler function code
to a new handler function code.

GETQ

Purpose: to obtain the index of a queue entry from the pool of free entries.
Call: BAL,R11 GETQ
Inputs: none
Outputs: R3 = 0, IOQ index (24,8)
Descri ption:
The head of the free entry pool is contained in the byte QFREE. If QFREE is non-zero
its contents are loaded into R3 and the second entry in the pool becomes the head. The
free entries are linked forward by IOQ2, with the last entry having a forward link of
zero. If the head is zero, Service Device is called for each device in the system until
an operation completes causing an entry to be freed. This is done without regard for
priority and is considered to be an emergency measure. GETQ will not exit until
a free queue entry has been obtained.

There are two other constraints in GETQ. First, in a real-time system, a limit may be
placed on the number of queue entries to be used by the background. If th is I imit is
reached, all devices wi II be driven as above unti I the number of entri es in use by the

57

UTS TECHNICAL MANUAL

SECTION DA.01
PAGE 2
2/11;71

background is once again below the I imit. Second, one queue entry is always reserved
for the Operator's Console typewriter to assure that the operator is not cut off from
communicating with the system.

IOSERV, IOFORCE

Purpose: to provide an entry to Service Device which does not destroy any registers.
Call: BAL, R 11 IOSERV

BAL, R 11 IOFORCE
Inputs: R12=0, OCT index (24,8)
Description: {See Service Device}
IOSE~V is called when normal considerations are to be given to the priority of the
operations involved. If IOFORCE is called, the priority going into Service Device
wi II be set to FF (lowest).

SERDEV {Service Device}

Purpose: to determine the state of the device and/or channel in question and to
perform whatever action is possible within the constraint of priority.

Call: BAL, R2 SERDEV
Inputs: R 1 = PRJ, 0, DCT {8, 16,8}
Description: {refer to flowchart}
The priority input (PRI) is normally the current task priority {from CJOEt and should be
obtained by the caller just before entry. However, it may arbitrarily be set to other
values under special conditions.

The scheduler, Service Device is basically device-oriented but will always attempt to
"sequence" the channel (to which the device is assigned) before exiting. This means
that the queue (for the channel) is examined to determine if any action for any devi ce
on the channel may be processed. In other words the scheduler will not exit unti lone
of the following is true:

1. Queue is empty. There are no more requests for this channel at this time.

2. Channel is busy. Data is being transferred to or from a device on this channel.

3. Channel is being held. Channel status from a previous operation must be preserved.

4. There are no requests in the queue for this channel for which an operation may
be started.

The fourth of these may be true even if the first three are not. Two example situations
are when the devices for which there are requests in the queue are all busy (e. g.
rewinding), or when the highest priority request which can be started has been deferred
to the Control Task.

As can be seen in Figure DA-1 there are two major functions which must be performed
for each I/O operation - start and cleanup. For a given device these must always be

58

UTS· TECHNICAL MANUAL

SECTION DA.01
PAGE 3
2/11/71

performed alternately. Thus a cleanup must be done for a previous operation before a
new operation can be started. To elaborate on this part of the scheduler's operation,
a number of device "states" will be defined, and the transitions into and out of each
state wi II be explained.

a) Free
The device is free when it is not actively linked to any request in the queue.
There is no speci fic condition for this which can be tested since the free state
is actually the lack of any of the conditions described below.

b) Busy
A device becomes busy upon the successful execution of an SIO instruction in
STARTIO. This is what has been referred to as a "start". If the SIO is not
accepted by the lOP, then the device will not be busy upon exit from STARTIO.

c) Cleanup Pending
"Cleanup pending" means that some event has occurred wh ich has made it nec
essary to remove the device from the busy state; normally this event is an I/O
interrupt from the device. Others are the failure of an SIO or an operation hal ted
for taking too much time. In any case it means a call must be made to the
CLEANUP routine.

d) Keyin Pending
This state exists when it has been determined that no further action can be taken
without a response from the system operator. The devi ce remains in th is state
until the operator gives his answer, with the "PLEASE RESPOND" message
periodically repeating itself on the typewriter. The transitions are cleanup
pending to keyin pend ing, then key in pending to free.

e) In ter-operati on
This is really a special version of the free state and it means that the request to
which the device is currently linked involves more than one operation (i. e. start
and cleanup). And furthermore that no other request is to be linked to this device
until they are all completed, regardless of priority. On a disk pack, for example,
a request usually involves a seek (moving the arm), followed by a read or write.
If a higher priority request were to intervene between the two operations it is
likely that the read or write would be from the wrong place on the pack.

The primary function then of STARTIO in conjunction with the handler per-pro
cessor, is to change the state of the device from free to busy. And the main job
of CLEANUP is to change the state from cleanup pending to free. The I ink between
these two is the I/O interrupt (busy to cleanup pending).

When any operation is started or when an error message which is to be repeated is
typed, a "time-out" is set up. A cell called 10CLOCK is continuously incremen
ted every five seconds by the monitor's clock interrupt routine. When a time-out
is initiated, the current contents of 10CLOCK plus some increment are saved in

59

UTS TECHNICAL MANUAL

SECTION DA.01
PAGE 4
2/11;71

DCT11. When Service Device is entered and the device is busy or has a
keyin pending, this value is compared with the now current contents of
IOCLOCK. If the time is up, the operation is terminated with an HIO
instruction, or the "PLEASE RESPOND" message is repeated if a keyin was
pending. If an operation is halted, the timed-out bit in DCT3 is set and the
device is set waiting for claanup.

STANDARD REGISTER SETUP

Reference will be made in later sections to a "standard register setup". This refers to
the way in which some registers are generally used in Service Device, and in particu
lar to the contents of registers at the entry to STARTIO or CLEANUP. The standard
register setup is:

R1 PRI, -, DCT
R2 0, Link to SERDEV
R3 0, IOQ index
R4 0, CI r index
R14 0, DAC
R 15 0, I ink

(8, 16,8)
(15, 17)
(24,8)
(24,8)
(16, 16)
(15, 17)

The DAC in R 14 is the "device activity count" used for making re-entrance tests
(see STARTIO). The I;nk in R15 is the link to STARTIO or CLEANUP.

The remaining registers are normally available in STARTIO and CLEANUP and in the
handler pre-processor and post-processor, although some are used for handler communi
cation (see STARTI<) and CLEANUP).

CTEST

Purpose:
Call:
Returns:

Description:

to perform priority tests for Service Device
BAL, R15 CTEST
BAL+l if processing is to be deferred.
BAL+2 if processing may continue.

CTEST is called by Service Device whenever it is about to perform a start or cleanup.
If the priority of the request (IOQ 14) is lower than the priority being carried by Service
Device (in R 1), then the processing of the start or cleanup is deferred to the Control
Task.

Priorities X'FO' through X'FF' are all considered background priorities, and deferments
are never made when R 1 is in this range.

CTRIG

Purpose: to trigger the Control Task interrupt after notifying the Control Task of
some impending action.

60

UTS, TECHNICAL MANUAL

Call: BAL, R 11 CTRIG

SECTION DA.01
PAGE 5
12/6/71

Inputs: R8 code, -, OCT (8, 16,8)
Descri pti on:
A Control Task stack is established at Sysgen time by the formula: number of devices
plus number of tape drives plus two. This is the minimum number of entries required
to prevent overflow.

CTRIG pushes the contents of R8 into the stack and triggers the Control Task interrupt
or console interrupt in a non real-time system. The codes are:

STARTIO

Purpose:
Call :

o (with OCT)
1 (no OCT)
2 (with OCT)
3 (no OCT)
4 (no OCT)

5 (no OCT)

defer start or cleanup for this device.
operator has pressed console interrupt.
operator has pressed attention on tape drive.
operator has completed input for an unsolicited keyin
call Service Device for all devices which are busy
or have cleanup pending (this entry is made by the
system clock routine every 5 seconds).
keyin is busy when console read is complete.

to initiate all I/O operations.
BAL, R 15 ST ARTIO

Inputs: standard register setup.
Description: (flowchart included)
The primary function of the handler pre-processor is to build the lOP command list to
be used for a given operation. The handler is entered by a branch to the address in
DCT8 with the standard register setup. When the command list is built/the handler
returns to STARTIO by a branch to IOS5T, passing the following information:

RO:
R4(bit 0):

R4(bit 1):

R4(bit 2):
R10:

doubleword address of command list.
a flag set t:> indicate that the channel is not to be set busy for
this operation. Usually this means that the operation does not
tie up the device controller which is free to be used by another
device attached to it. Examples are rewinding tape and disc
pack seeks.
a flag set to indicate that the DCB function count should be
decremented at start ti me rather than at cI eanup ti me. Th is bi t
is used onl1 when bit 0 (above) is set and prevents the system
from having to wait for tape rewinds before proceeding to the
next job step.
Channel is to be held.
word address of handler DOT table (see Handler Interface
section).

61

UTS TECHNICAL MANUAL

SECTION DA.01
PAGE 6
2/11/71

When the handler returns to STARTIO at 10SST, all interrupts are inhibited. This is
called the Disable Point (there is a similar place in CLEANUP). The inhibits are not
removed un ti I a number of cri ti cal actions have been performed. Th is is necessary to
prevent the device from taking on an undefined software state and then having an
interrupt occur. If I/O were attempted on the same device at the interrupt level the
scheduler might be confused by an abnormal combination of factors.

Following the Disable Point is a lire-entrance test". This is done to determine if the
device has been used by a program at a higher interrupt level. If it has, the start is
aborted. The interrupt may have occurred any time between the time the scheduler
decided to perform the start and the Disable Point. This concept is best illustrated
with an example I isting the execution of key events with respect to time:

1. Low level request is made.
2. Schedul er decides to start request.
3. Current Device Activity Count {DAC, from DCT10} is loaded into R14.
4. Scheduler calls STARTIO
5. Handler pre-processor begins building command list.
6. Interrupt occurs.
7. High level request is made by interrupt program {same device}.
8. 2 through 5 above are executed {for high level request}.
9. Handler returns to Disable Point.

10. Re-entrance test. R14 is compared with value in DCT10. There is no
change, R14 = DCT10.

11. Device is started {SID etc.}.
12. DAC is incremented by 1.
13. Interrupt program exits.
14. Control returns to 5 at the lower level.
15. 9 and 10 are executed again, but this time R14 is one less than the contents

of DCT10.
16. Start is aborted.

It would appear that at the higher level the scheduler was unaware of the activity at
the lower level. This is exactly the case. Until the Disable Point is reached, no
parameters in any of the tables may be changed in any way to indicate that a start is
in progress. And if it is necessary to store into scratch areas, such as storing command
doublewords, a re-entrance test must be made before the actual storing into core. This
is t::> prevent storing over information prepared at a higher level.

Thus the handl er pre-processor must make a re-entrance test before it stores each
command doubleword into core. This is done by comparing R14 with DCT10 and
aborting the start if they are unequal.

In some handlers it may be absolutely necessary to modify some table parameter before
returning to 10SST. In this case the handler may extend the Disable Point backwards
by inhibiting interrupts and making a re-entrance test {aborting if reentrant}. The

62

UTS TECHNICAL MANUAL

SECTION DA.Ol
PAGE 7
2/11/71

handler must leave the interrupts inhibited when branching to 10SST. An abort is
accomplished by executing a: B *R15, with interrupt inhibits off.

There are three things that can happen after the Disable Point has been passed {and
the start is not aborted due to re-entrance}.

1. SIO is accepted and device is automatic - a successful start.
2. SIO is accepted but device is in manual mode. A message is output to

the operator and repeated every 30 seconds unti I he starts the devi ceo
The start is otherwise successful.

3. SIO is rejected. The SIO failures bit in DCT3 is set and the device is
set waiting for cleanup. When the scheduler calls CLEANUP the operator
wi II be notified and must decide whether the operation shou Id be retried
or if it should be aborted (i. e., indicated as unrecoverable to the caller).

10lNT

Purpose: to process all I/O interrupts
Call: entered via XPSD in location X'5CI.
Description: (flowchart included)
The first portion of the I/O interrupt receiver is executed with the interrupt in the
active state and is non re-entrant. (If the interrupt is from the swapping RAD, then
control passes to T:SIOEA,· the monitor swap end action handler.) The OCT index is
determined from the AIO data by searching OCT1. If the device was not busy and
AIO status bit 1 is set, then it is assumed that the interrupt was caused by the
operator pressing the attention swi tch on a tape drive. In this case, the Control Task
is notified to perform an "AVR" sequence. Otherwise the states of the device and
channel are appropriately modified and the AIO and TOV status information is saved
in DCT tables.

Afterthe interrupt is cleared the scheduler is called for the device in question. If the
priority in CJOB is background, then the Symbiont Activate routine (SACT) is called.

An error is reported in the System Error Log if the device was not busy and AlO status
bit 1 was not set. An error is also reported if the AIO indicates no interrupt recogni
tion.

Exit is to T:SSE, the scheduler entry point for asynchronous events.

CLEANUP

Purpose: to perform the post-interrupt processing for any I/O operation.
Call: BAL, R 15 CLEANUP
Inputs: standard register setup
Descri ption: (refer to flowchart)
CLEANUP enters the handler post-processor at the address specified in DCT9. The
handler must examine the information available (in the OCT tables primarily) and

63

UTS TECHNICAL MANUAL

SECTION DA.Ol
PAGE 8
2/11;71

decide what action is to be taken by CLEANUP. The alternatives are:

1. Normal completion. Complete request and report completion to caller
via DCB and/or end-action.

2. Operation is in error. Decrement retry count and set request not busy
(in IOQ3). This prepares the request for another pass through the system
(start and cleanup). If the retry count is exhausted" the request is to be
completed. In any case a message is to be typed if requested.

3. There is "follow-on". The handler must perform another I/O operation in
order to complete the request. The request is set not busy.

4. A keyin is required. The device is set to the keyin pending state and the
request is I eft hanging until the operator responds (see I OREC).

The handler communicates its wishes via registers:

Rl0 -, CCA (16, 16)
R 11 -, RBC (16, 16)
R 12 -, flags, TYC (16,8,8)
R13 0, MSG (15, 17)

The fl ags are:

Bit 16:
Bit 17:
Bit 18:

Bit 19:
Bit 20:

re try. AI terna t i ve 2 above is to be tak en.
follow-on. AI ternative 3.
inter-oPe If bit 16 or 17 is set, set the .inter-op bit in DCT5 (see
Service Device).
keyin required. Alternative 4.
keyin required. This is the same as bit 19 except that the response
"C" is not allowed and wi II be taken to mean "R" (see 10REC).

MSG is the word address of a message to be typed foil owing the devi ce name. Thi sis
used with alternatives 1, 2, and 4 (see MSGOUT). The other parameters are described
in II Procedure for Mak ing Requests It.

If the request is to be completed the subroutine REQCOM is called (see next section).

The re-entrance considerations mentioned in the section on STARTIO apply to the hand!er
post-processor as well. The handler returns to CLEANUP at the address 10SCU, the
Disable Point. The handler must make re-entrance tests whenever changing table
parameters or storing into scratch areas. It may push the Disable Point back as
described in STARTIO.

REQCOM

Purpose:
Call:
Inputs:

to perform the final cleanup of a completed request.
BAL, R5 REQCOM
R 10, -, CCA
R11, -, RBC
R 12, -, ryC

(16, 16)
(16, 16)
(24,8)

64

UTS. TECHNICAL MANUAL

Descri ption:

SECTION DA.01
PAGE 9
2/11;71

For a register call, REQCOM releases the queue entry back to the pool of free entries
and executes the end-action routine.

In addition, for a DCB call, it communicates a number of parameters to the caller via
the DCB:

TYC the type of completion, if greater than the current value in the DCB,
is stored.

FC N the function cQunt is decremented.
EGV the EGV bit is set to O.
ARS the actual record size is computed by subtracting the RBC from the

caller's byte count {only if request was not for a RAD or tape file}.

If a Monitor Buffer was used, it is released if the following are all true:

1. Request was not to perform a position operation.
2. Request was not for an input operation.
3. Request was not for a fil e operati on (ASNI= 1).

OCINT

Purpose: to process control panel interrupts.
Call: entered via XPSD in location X'5D'.
Description: (flowchart included)
If the interrupt was caused by triggering the Control Task (non real-time system) the
Control Task I/O Processor is called after the interrupt lavel has been cleared (see
CTIOP).

If the operator has pressed the console interrupt switch the keyin sequence is initiated.
This sequence consists of the following steps:

1. Trigger Control Task for keyin (code 1 CTRIG).
2. Control Task becomes active, makes requests to output and to input up to

72 characters from the Operator's Console, the latter wi th end-action.
3. End-action occurs for input. Trigger Control Task to process keyin

(code 3, CTRIG).
4. Control Task becomes active, calls KEYIN overlay to process keyin.

CTIOP

Purpose: to process Control Task I/O functions.
Call: BAL, R 11 CTIOP
Description:
Since the I/O and control panel interrupts are generally of higher priority than the
interrupts of real-time tasks, it is necessary to take steps to prevent the loss of CPU
processing time from these tasks for lower priority functions. These latter may be
listed as:

65

UTS TECHNICAL MANUAL

SECTION DA.01
PAGE 10
2/11;71

1. Performing start or cI eanup for requests of lower priority than the
currently operating task.

2. Processing unsolicited keyins from the operator.
3. Labeled Tape recognition (initiated by operator pressing attention

switch, also called AVR).
4. Periodic checking of all devices for time-out purposes.

CTIOP will operate until its stack (lOCTQ) is empty, at which time it will reset bit
31 of CTFLAGS (set by CTRIG). This flag is used by the main Control Task processor
(or OCINT in non real-time) to decide when to call CTIOP.

The functions performed by CTIOP are described in the sectioos on CTRIG and OCINT.

IOREC

Purpose:
Call:
Inputs:
Description:

to handle operator communications for I/O devices.
entered from main keyin processor.
R7 0, OCT (24,8)

When the I/O system requires operator assistance, it outputs the name of the device
in question followed by a message indicating the problem. Messages for which a
response is mandatory (via a keyin) are:

ERROR (non-automatic recovery devices only)
TIMED OUT
NOT OPERATIONAL
WRITE PROTECTED

The device name followed by PLEASE RESPOND is output periodically until a response
is received. The response is in the form: yyndd, X where X may be C, E, or R. The
UTS Operations Manual should be consulted for complete explanations of the messages
and responses.

IOKEC resets the keyin pending flag and sets up the registers as required for entry to
REQCOM. If the response is C or E it branches to KYIO 1, if R it branches to KYI02,
effecting a call to REQCOM and SERDEV or just SERDEV respectively.

MSGOUT

Purpose:
Call:
Inputs:

Descri ption:

to output I/O System error messages.
BAL, R5 MSGOUT
R1 -, OCT
R3 O,IOQ
R13 0, MSG

(24,8)
(24,8)
(15, 17)

Messages are output in the form: yyndd message. The message (MSG) should have a
blank as its first character.

66

UTS TECHNICAL MANUAL

SECTION DA.01
PAGE 11
2/11/71

A request is made on NEWQ using the priority of the request associated with the error.
The OCT index is passed in R15 (normally a seek address) and thus gets placed in
IOQ 12. A special function code of the typewriter handler (02) will chain the device
name from DCT16 to the message and output the entirety in one operation.

OCQUEUE

Purpose: to output typewriter messages for certain routines
Call: BAL, R11 OCQUEUE
Inputs: R1 Code

R7 0, OCT
(32)
{24, 8)

If the DCT index in R7 is zero the message is output alone with no device name.
Otherwise the message format is the same as for MSGOUT. The codes for messages
now available are:

1. KEYERR
2. AVRERR
3. LATER
4. EH?
5. AVAIL
8. SYMB NOT ACTIVE
9. SYMB ACnVE

10. SYMB NOT SUSP
11. SYMB NOT AVAIL
12. SYMB SUSPENDED
13. SYMB TERMINATED

The last group, 8 through 13, is used by the symbiont routines.

67

UTS TECHNICAL MANUAL

SECTION DA.02
PAGE 1
2/11/71

HANDLER INTERFACE

The handler has two primary functions:

1. build command list (pre-processor)
2. examine resul ts after interrupt (post-processor)

The register inputs and outputs of these routines and the re-entrance restrictions placed
on them are described in detail in the sections on STARTIO and CLEANUP.

A number of subroutines are available in the Standard Handler Package to aid any
handler in performing its functions. These routines are discussed in the following
paragraphs.

COMLIST

Purpose: to build a command list using information contained in a set of special
tables.

Call: S COMLIST
Inputs: standard register setup plus:

R 10 -, DOT (15, 17)
Oescri pt i on :
Three tables are used on a call to COMLIST:

1. Device Operation Table (DOn.
2. Command List Table (CLISn.
3. Dummy commands.

The DOT table is an ordered word table containing one entry for each function code
allowed by the handler, beginning with zero. The first word in the DOT is usually
given a label and its value is the address passed in Rl0 on the call. This label will
subsequently be referred to as "DOT". Each word in the table is broken into four
8-bit fields as follows:

Byte 0:

Byte 1:

Byte 2:

Byte 3:

The offset, in bytes, from DOT (first entry in DOT table) to
the first byte of a I ist of bytes describing the command I ist to
be built. (CLIST table)
The number of 5-second increments allowed to complete the
operation before it is timed-out by the scheduler.
a function code which becomes the current function step
(IOQ5) if retry is specified by the post-processor (see CLEANUP).
a function code which becomes the current function step if
follow-on is specified by the post-processor.

The two function codes are picked up by STARTIO and saved in DCT17; they are
retrieved by CLEANUP after the return from the handler post-processor. The handler
may modify the contents of DCT17 if it deems necessary, but must extend the Disable
Point back so that it comes before the store into OCT 17.

68

UTS TECHNICAL MANUAL

SECTION 0 A. 02
PAGE 2
2/11/71

The CLIST table consi sts of strings of bytes where each byte is the double-word offset
from DOT to a dummy command doubleword. The first byte of each string has a label
wh ich is referenced by byte 0 of one of the DOT entries. Each stri ng describes a
complete command list for some operation with the command doublewords replaced by
bytes to save space.

The dummy commands are used to build the actual commands and are very simi lor in
appearance:

word 0:
word 1:

order, 0, address
flags, 0, function, count

(8, 5, 19)
(8,8, 8, 8)

COMLIST assembles the commands specified in the CLIST table according to the function
specified (word 1) and stores them in order into the command list buffer designated for
the device (OCT?). A re-entrance test is made before storing. Each function will be
explained along with the required contents of the other parameters in the dummy com
mand.

function 00:
Store command as is. The presence of the function byte restricts the count field,
but this function is usually used for tape spacing operations and the like which
have no byte count anyway.

function 01:
Bui Id seekcommand. The order, flags and count must be correct for the particular
device. COMLIST computes the byte address of the IOQ12 entry and stores it
into the address field of the command.

function 02:
Build dat~ransfer command. The address and count fields are obtained from
IOQ8 and IOQ9 respectively. The order and flag fields are used as is.

H data chaining is specified (bit 0, IOQ8) the normal data transfer command is
not built. Instead a Transfer in Channel (TIC) command is inserted which will
transfer lOP control to the caller1s data chain list. The doubleword address of
this list is found in IOQ8, while the number of commands in it is contained in
IOQ9. The byte address and count must be supplied by the caller in each
command, while COMLIST supplies the order and appropriate flags (the order
used is the one in the dummy command which initiated this function). Flag bit
7 (the skip flag) is left unmodified and must be supplied by the caller. This
feature of the lOP can be used to skip portions of an input record or to fill
portions of an output record with zeros. There is no provision for having more
commands after the data transfer (i. e., it should be the last item in the CLIST
table). Also the individlJal handler should be examined to determine if this
feature is usable. Some handlers do not use COMLIST at all.

function 03:
Build device name command. COMLIST computes the byte address of the DCT16

69

UTS TECHNICAL MANUAL

SECTION DA.02
PAGE 3
2/11/71

entry for the proper device (the OCT index is found in IOQ 12, see MSGOUT)
and stores it into the address field of the command. The order and flags are
used as is and the byte count should be 8. This command is normally followed
by a data transfer command to output the message part of an I/O System error
message.

function 04:
Return tohandler. In this case the address portion of the dummy command specifies
a program address in the handler. When this command is encountered by COMLIST
it branches to the specified address, thereby enabling the handler to take some
special action {i. e., perform some function not provided by COMLISn. When
the handler is entered the registers contain the following information (except
for the command in R8 and R9 no register should be disturbed unless it is in the
"open II I ist below):

R6 current CLIST table offset
R7 current command I ist area pointer {where next command will be

stored}.
R8 dummy command (word 0). The address field will have been set

to a II zeros.
R9 dummy command (word 1). The function byte will have been set

to zero.
R 10 DOT address.

Open registers: R10, R5, Rll, R12, R13. The remaining registers are as
in the standard register setup.

After the handler has done what it wi II with the command, it must return by
branching to one of three re-entry addresses in COMLIST:

USECOM:
DELCOM:
OEPCOM:

store command as is and go on to next.
do not use th is command at all, go on to next.
a new function byte has been placed in the command -
repeat the test of the function byte and act accordingly.

COMLIST is finished after it has processed a dummy command which has neither the
data chain flag nor the command chain flag set in the flag field. This means that all
commands but the last must have at least one of these flags set. At this point, the
doubleword address in OCT7 is loaded into RO and COMLIST branches to IOSST. Control
is not returned to the handler pre-processor.

Refer to the listings of existing handlers for examples of table structure and the use of
assembler features which facilitate the construction of the tables.

IOSERCK

Purpose: to test for and report common device error conditions.
Call: BAL, R9 IOSERCK

70

Inputs:
Returns:

Descri ption:

UTS. TECHNICAL MANUAL

standard register setup.
BAL + 1 if error detected.
BAL +2 if no error.

SECTION DA.02
PAGE 4
2/11;71

IOSERCK acts in one of four ways depending upon various status information:

1. SIO fail ure bit in DCT3 is set (see ST ARTIO). The condi tion is logged in the
System Error Log. Bits 18 and 20 in R12 are set and the address of the NOT
OPERATIONAL message is put in R 13 (see CLEANUP). A branch is made
directl y to IOSCU.

2. Timed-out bit in DCT3 is set. The same is done as for (1) except that the
message is TIMED OUT and bits 19 and 20 in R12 are set.

3. Any of TDV status bits 9 through 14 are set. These bits of the Operational
Status Byte are common to all devices and indicate that some sort of malfunction
occurred when transmission was attampted. A device error is logged. The
retry bit and TYC = 8 are set in R12; the address of the ERROR message is put
into R 13. Return is to BAL + 1.

4. None of the above. Return is to BAL+2 with the following in registers:

R5
R6
R10
R 11
R12

-, TDV status
-, AIO status
-,CCA
-,RBC
1 if normal
2 if lost data

(16, 16)
(16, 16)
(16, 16)
(16, 16)

In R5 and R6 the status includes the Device Status Byte and the Operational Status
Byte. Lost data means that the remaining byte count was zero and the incorrect
length bi t in the TDV status was set (i. e., the caller provided a buffer wh ich was
shorter than the actual record).

IOSEREC

Purpose: to log an error detected by the handler.
Call: BAL, R9 IOSEREC
Inputs: standard register setup.
Descri ption:
For any device there may be device dependent conditions wh ich are not detected by
IOSERCK. If the handler determines that any such condition should be classified as
an error, it calls IOSEREC to have the error entered into the System Error Log. The
return and registers are as for (3) in IOSERCK.

71

RE:ENT

Purpose:
Call:
Inputs:
Returns:

Description:

UTS TECHNICAL MANUAL

to make a reentrance test.
BAL, RO RE :ENT
standard register setup.
BAL + 1 Not reentered
B *R15 Reentered

SECTION DA.02
PAGE 5
2/11/71

The reentrance test consists of comparing R 14 against the current Device Activity
Count in DCT10 (see STARTIO). If they are equal the return is ~o BAL+l with all
interrupts inhibited. If not (i. e., reentrance has occurred), the start or cleanup is
aborted by returning on R15.

4CHAR

Purpose: to load the first four bytes from the caller's buffer into a register.
Call: BAL, R5 4CHAR
Descr i pti on:
Starting at the byte address in IOQS, the first four bytes are loaded into RO. This
routine is used when the caller's buffer is not necessari lyon a word boundary.

72

UTS~ TECHNICAL MANUAL

HANDLER DESCRIPTIONS

T ypewri ter Hand I er

Operation: The typewriter handler accepts the following function codes:
o - read with editing
1 write
2 write with device name
3 read without editing
4 read with editing and retry
5 write new line character
6 write with device name tabbed

SECTION DA.03
PAGE 1
2/11;71

The pre-processor loads R10 with the DOT address and branches to COMLIST. Only
the read-with-editing function has any special post-processing. When the post-pro
cessor obtains control from CLEANUP, the last character typed is examined to see if
it is an EOM (X '08 1

). If so, a "new-line" character is output and the typewriter is
er1abled for input again. This, in effect, erases what was typed previously and allows
the operator to start over again. If the maximum character count is reached, the
message is taken and processed as is. Finally a check is made for lEaD as the first
four characters. If present, the type completion code (TYC) is set to six. None of
the other functions have any special post-processing. In no case is error checking or
error recovery attempted for typewriter operations.

RAD Handler

Operation: The RAD handler accepts the following function codes:
o - seek-read
1 - seek-write
2 - sense
3 - seek-checkwrite
4 - seek-write, seek-checkwrite

Error recovery on the RAD generally amounts to redoing the same operation when an
error has been detected. One exception is when a check-write is being performed for
a write and qn error is indicated. In this case the write is done over, followed by
another check-write. Check-writes are performed for all writes if sense switch 1 is set
on the operator's console. Special conditions checked for are write violation and
illegal seek address.

9 Track Tape Handler

Operation: The 9 track tape handler accepts the following function codes.
o - read
1 - write
2 - read reverse

73

UTS TECHNICAL MANUAL

3 - wr i te tape mark
4 - backspace record
5 - forewardspace record
6 - backspace fi I e
7 - forewardspace fi Ie
8 - rewind
9 - sense

10 - correctabl e read recovery
11 - non-correctable read r~covery
12 - write recovery
13 - correctable read reverse recovery
14 - non-correctable read reverse recovery
15 - wr i te tape mark recovery

SECTION DA.03
PAGE 2
2/11;71

Most operations are straightforward. A special feature allows the caller to space
multiple records (forward or reverse) on one forespace or backspace call. The h igh
order halfword of the seek address field in the calling sequence (QUEUE or NEWQ)
is used to indicate the number of records to be spaced over {should be zero or one for
a singl e record}. The spacing is always terminated when a tape mark is passed or the
load point is encountered. Correctable read recovery consists of rereading the offend
ing record using the Sense, Set Correction, Read sequence of orders. Non-correctable
read recovery consists of re-reading the offending record. Write recovery is always
preceded by erasing a fixed amount of tape before writing the record again.

The following is a list of special conditions detected by the handler, and resulting
actions:
1. Write protect error. Operator is notified and must correct the problem (put in

write ring) or abort the operation (with "E" key-in).
2. Tape mark (EOF). Type of complete is set to six.
3. Beginning of tape. Type of complete is set to three.
4. End of tape. Type of complete is set to five.

7 Track Tape Hand I er

Operation: The 7 track tape handler accepts the following function codes:
o - read packed
1 wr i te packed
2 read reverse packed
3 wri te tape mark
4 backspace record
5 forewardspace record
6 backspace fi I e
7 forewardspace fi I e
8 rewind
9 read binary

74

UTS TECHNICAL MANUAL

10 - write binary
11 - read reverse binary
12 - read decimal
13 - write decimal
14 - read reverse dec i ma I
15 - read packed recovery
16 - write packed recovery
17 - wri te tape mark recovery
18 - read binary recovery
19 - wr i te binary recovery
20 - read decimal recovery
21 - write decimal recovery
22 - final backspace record for reverse read
23 - final backspace record if unrecoverable error

SECTION DA.03
PAGE 3
2/11;71

"The 7 track tape hand ler uses the existing 9 track tape handl er code wherever
applicable. Refer to the 9 track tape handler writeup for a description of those items
that are applicable to 7 track tapes (e. g. recovery, spacing multiple records, etc.).

Card Reader Handler

Operation: The card reader handler accepts the following function codes:
o - read binary
2 - read automati c

When a call is made to read a card, the mode of the read (automatic or binary) is always
determined by the mode bit in DCT5. This bit can be changed directly in DCT5 by any
routine in the monitor. It is also changed by the presence of a IBIN or ! BCD card. These
cards are used specifically for this purpose and are not passed to the caller. The IBIN
card must precede any deck of non-standard binary cards, and the I BCD card must fol
low this deck to return the handler to the automatic mode.

A special check for the unusual end interrupt bit in the Ala operational status byte is
performed and if set, a call to IOSEREC is made to log the error (TYPE = 05) and bit 19
of register 12 is set (see CLEANUP).

If a lEaD card is read in either mode, the TYC is set to six.

Line Printer Handler

Operation: The line printer handler accepts the following function codes:
1 - write without format
3 - write with format

The pre-processor tests for the following three conditions:
1. Is the function "print with format? II

75

UTS TECHNICAL MANUAL

2. Is the format byte a "top of form?"
3. Is the printer at top of form now?

SECTION DA.03
PAGE 4
2/11;71

If the answers are all "yes", the result wi" be a blank page in the listing. Therefore
the format byte, X'F 11

, is replaced with XICOI, to suppress the extra page.

If an error is detected during transmission, the recovery procedure is to re-transmit the
line. If the error occurs during printing, then an operator response is required to
resume printing.

A special check for the unusual end interrupt bit in the Ala operational status byte
is performed and if set, a call to IOSEREC is made to log the error (TYPE = 05) and bit
20 of register 12 is set (see CLEANUP).

Paper Tape Hand I er (PT AP)

Operation: The paper tape handler accepts the following function codes:
0 - read automati c
1 - write BCD
2 - read count
3 - write binary
4 - read direct
5 - write direct
6 - read BCD
7 - read binary

The formatted write operations (write binary, write BCD) have two null characters
(XIOOI) appended via a data chain operation. In the case of write binary, the output
record is preceded by a one-byte indicator (X'lll) and a two-byte record count.

On a read automatic operation, the indicator byte is first read into the caller's buffer
(obtained from IOQa) ignoring leading null characters. If binary is indicated, the
record count is read into scratch space in the command I ist area, and the entire record
is read into the caller's buffer. If BCD is indicated, the record is read in one byte at a
time unti I an EOM, NL, or null character is encountered. In the case of an EOM, the
follow-on code is reset to read automatic which, in effect, erases the current record
and reschedules input of the next record. If the ca"er's buffer is not large enough to
contain the entire record, the excess position is skipped and the TYC code is set to
indicate lost data. Finally, a check is made for lEaD as the first four characters. If
present, the TYC code is set to indicate end of data.

Card Punch Hand I ers

Operation: The card punch handlers accept the following function codes:
o - punch BCD
1 - punch binary

76

UTS TECHNICAL MANUAL

SECTION DA. 03
PAGE 5
2/11/71

For the high-speed card punch there are two buffers, located in the command I ist area
pointed to by OCT7. Thus the last two card images are available at all times. This is
necessary since the punch "read-checks" the last card punched while it is punching the
current card. If there is a read-check error, the bad card is directed to the error stacker,
where it is repunched, and the card that was bei ng punched when the error was detected
is also directed to the error stacker to be repunched while the card originally in error
is once again read-checked. The net result of a read-check error recovery is a good
deck in the normal stacker and two cards in the error stacker.

A transmission error on the card being punched will result in that card being repunched,
with the bad card directed to the error stacker. This results in only one card appearing
in the error stacker.

The low-speed card punch handler does no special processing or recovery. In particular,
lost data is ignored.

Disk Pack Handler (DPAK)

Operation: The disk pack handler uses the following function codes:
0 - seek-read
1 - seek-write
2 - sense
3 - seek-checkwrite
4 - read
5 - write
6 - checkwrite
7 - restore
8 - seek-read header
9 - read header

A restore carriage order is specified for follow-on in the event of an error on a seek
address or a header verify or parity error associated with a data transfer order. If a
flaw mark has been d,~tected during a data transfer operation indicating a bad track,
a seek-read header sequence is initiated in order to pick up the alternate track, and
the caller's seek address in IOQ12 is altered. On a seek-write operation, a seek
checkwrite follow-on sequence is performed if sense switch 1 is set.

A header verify or parity error on a read header command an,; three successive seek/
restore errors are considered fatal and the system recovery routines are invoked.
(Software Check - FF).

77

SD10

SD20

SERDEV

Disable

Save
Current DAC

Enab Ie
Disable

UTS TECHNICAL MANUAL

Get request index

from DCT6

Set request index

to top of queue

78

Enable

SECTION DA .04
PAGE 1
2/11/71

Return

SERVICE DEVICE

SD30

SD40

Ge t DCT index
from IOQ7

Save
Current DAC

UTS TECHNICAL MANUAL

SD34

Set index to next
request

Get request index
from DCT6

70

PAGE 2
2/11/71

SERVICE DEVICE (cont.)

UTS TECHNICAL MANUAL

Enable STARTIO

Enable

CLEANUP

80

SECTION DA .04
PAGE 3
2/11/71

SERVICE DEVICE (cant.)

yes

Save current DAC

SECTION DA.04
PAGE 4

UTS TECHNICAL MANUAL 2/11/71

Reset channel
busy flag

Get address of
"MANUAL"

SD88

Set up time-out
for message

MSGOUT

Output message

>--------I~ Set up tim e- 0 u t t------t~
no for operation

Reset manua I
flag

SERVICE DEVICE (cont.)

81

SD81

SD81A

Give HIO for
device

Save HIO status
in DCT13

Set timed out flag

Reset device busy
flag

Set cleanup
pending flag

UTS TECHNICAL MANUAL

Get address of
"PLEASE RESPOND"

82

SECTION DA.04
PAGE 5
2/11/71

SERVICE DEVICE (cont.)

START 10

Get time-out from

IOQ9

UTS TECHNICAL MANUAL

83

SeCTION DA.04
PAGE 6
2/11/71

HANDLER

Pre-processor

Disab Ie

START A REQUEST

SI016

UTS TECHNICAL MANUAL

Set TYC = 0 if DCB
call and not disc
file

Save retry and
follow-on codes in
DCT17

Get time-out from
DOT table

Save request index
in DCT6

Save time-out in
DCT18

84

SECTION DA.04
PAGE 7
2/11/71

START A REQUEST (cant.)

UTS TECHNICAL MANUAL

Set request busy
flag

Reset data
transfer, i nter-op
flags

Give SIO for
device

Set device manual

flag

85

SECTION DA.04
PAGE 8
2/11/71

START A REQUEST (cont.)

SI020

Get address of
IIMANUAL II

Get ti me-out
for message

Compu te overdue
time and save in
D(T11

Set device busy
flag

Set data transfer
flag

Set channel busy
flag

UTS TECHNICAL MANUAL

Decrement function
count if handler

">----......
no indicates and call is

via DCB

86

SECTION DA.04
PAGE 9
2/11/71

START A REQUEST (cont.)

UTS TECHNICAL tv~ANUAL

51040

51050

51060

Set cleanup pending
flag

Set data transfer
flag

Save 510 status
in OCT13

Set 510 fai lure
flag

Increment Oevi ce
Activity Count
(OAC)

Enable

MSGOUT

Output message
if necessa

Return

A7

SECTION OA.04
PAGE 10
2/11/71

START A REQUEST (cont.)

108

1010

JOINT

Save a II reg isters

Ala

Search for address

match in DCTl

UTS TECHNICAL MANUAL

1060

no Report error

>--__ ~ Report unexpected

interrupt

88

SECTION DA.04
PAGE 11
2/11/71

I/O INTERRUPT

1012

Search for another
match in DCTl

UTS TECHNICAL MANUAL

yes BAL to user

CTRIG

yes Trigger Control
Task for AVR

89

Get TDV status,
store in DCT13

Reset device
busy flag

SECTION DA .04
PAGE 12
2/11/71

I/O INTERRUPT (cant.)

1020

1022

SECTION DA .04
PAGE 13

UTS TECHNICAL MANUAL 2/11/71

Set cleanup pending
flag

Save AIO status in
DCT12

Save PSD in
temp stack

C lear I/O interrupt
from active state

Service
Device

If pri or i ty is back
ground, co II SACT

yes

90

Reset channel
busy flag

I/O INTERRUPT (cant.)

1030

Restore all registers

B T :SSE

Restore a II reg isters

B T :SSE

UTS TECHNICAL MANUAL

CLEANUP

HANDLER

Post- Processor

IOSCU

91

Disable

Increment Device
Activity Count
(DAC)

Reset Timed-out,
SIO failure Flags

Reset cleanup
pending, manua I
flags

SECTION DA.04
PAGE 14
2/11;71

CLEANUP

CP20

CP22

CP24

Set keyin pending
flag

Save handler flags,
lYC with TDV info
(OCT 13)

UTS TECHNICAL MANUAL

SECTION DA.04
PAGE 15
2/11/71

REQCOM

Set TYC = 8
yes (error)

~~--.-..;----

CLEANUP (cant.)

92

Set up ti me-out for

message to be output

Reset request busy

flag

CP36

Set current function step

to retry or fo I low-on

function code

UTS TECHNICAL MANUAL

Decrement retry

count

93

yes

CP33

REQCOM

SECTION DA.04
PAGE 16
2/11/71

CLEANUP (Cor\\-)

CP50

CP60

UTS TECHNICAL MANUAL

Enable

MSGOUT

Output message
if required

Enable

Return

yes Set inter-ap flag

94

SECTION DA.04
PAGE 17
2/11/71

CLEANUP (cant.)

OCINT

OCT10

OCT20

Clear trigger flag

OCT40

OCT50

Set Contra I Task

active flag

C lear contra I

panel interrupt
from active state

SAVOVL

UTS TECHNICAL MANUAL

no

OCT30

B T :SSE

95

SECTION DA.04
PAGE 18
2/11/71

Set keyin in

process flag

CTRIG

Trigger Contro I

Task for keyin

CONTROL PANEL INTERRUPT

OCT

[GlOP

I C~ntro I Task
__ I 0 P:'(~Cl'550r

c=-, __ l-
~" "

_. RL,)uVL

I
I

r----'-
Dj~ub Ie

Ino

!
60 • Reset Control Task

active flag

,~

B T :SSE

yes

UTS TECHNICAL MANUAL

SECTION DA.04
PAGE 19
2/11 ':71

--------1 1 Enable ~~~~··-~-~B

CONTROL PANEL INTERRUPT (cont

96

ID

Swapping RAD I/O - T :SIO

PURPOSE

UTS. TECHNICAL MANUAL

SECTION DB
PAGE 1
9/7/71

When the swapper has set up a command chain, for which swapping RAD I/O must be
performed, it calls upon T :SIO. TSIO calls upon the I/O system (IOQ) to do the
actual I/O and interrupt processing. The I/O system returns to TSIO for end action.

OVERVIEW

TSIO performs error checks on the CL chain, sets up information in registers and calls
upon NEWQ to queue up the request. When the interrupt occurs and processing is
complete, the I/O system transfers control to the end action rotuine in TSIO. If an
error occurred, the 1/0 system entered a record in the error log fi Ie, output a message
to the operator1s console and passed information about the error to the end action
routine. The end action routine will retry the call N times, and if that fails it will
set a user flag indicating the error and continue. If the I/O was successful, TSIO
returns to the SWAPPER still on end action. However, if the function performed was
a write, the I/O system is called upon to do a check write. If the function was reading
a user, then TSIO performs a software read check before returning to the SWAPPER.

USAGE

T:SIO

ERRORS

BAl, 11 T:SIO

R6 = Address of beginning of command list.
R5 = Address of end of command list.
R7 = Function code; 2 for read and 1 for wri te

The screech codes reported by T :SI 0 are as follows:

OA Read or write orders in command I ist are not consistently one or the other
but a mixture or in analyzing N read errors order is invalid.

OB Didn't find seek or sense order in command list when one or the other was
expected.

97 '

UTS. TECHNICAL MANUAL

SECTION DB
PAGE 2
11/6/71

OC Physical page number from byte address in lOCO with read or write order
is not between values contained in LOW and HIGH.

00 T ermi nati on of command Ii st doesn't agree with command Ii st endi ng address
input T :SIO or t.ermination lOCO doesn't have flags of X'l E'.

OE No I/O is needed as indicated by input beginning address of command list
address being equal to input ending address.

OF The function input parameter is not read or write.

93 N write errors occurred and the offending command list can't be found

94 Discovered invalid order trying to continue write checking the rest of
command list after N errors occurred.

95 N read errors occurred and there is an invalid address pointing to the
offend i ng command list.

96 N errors occurred trying to read a processor.

If a hardware error occurs, 10Q types a message, logs the error and returns to TSIO.
After N errors occur, one of three flags is set in a user flag table (UH:FLG2) and
TSIO continues, i. e., returns to the SWAPPER. Prior to execution of the user if one
of these three flags is set, the error is logged and appropriate action taken. If the flag
(bi t 13) i nd i cates that a wri te or wri te check fa iI ed on any page of the user or a read
or read check failed and it wasn't in the user's context area (JIT, DCBs, etc.) then the
message II SYST EM SWAPPING ERROR" is output to the user and execution continues as
usual. If however the error was in reading or read checking the user's context (bit 14)
or user's JIT (bit 15), then the user is deleted.

IN TERACTION

T:SSE Control is returned to the system following an interrupt.

RECOV ER Is called as a result of failing consistency checks and unrecoverable I/O errors.

T:SEXIT Control is returned to the system to wait for Vo completion.

DOWTCK Is a software switch, normally set, requesting write checking.

DORDC K Is a software switch, normally set, requesting read checking.

98

UTS TECHNICAL MANUAL

SUBROUTINES

SECTION DB
PAGE 3
9/7 /71

SET$REG sets the arguments into registers that are required for the call to NEWQ.
Input to SET$REG is the doubleword command list address in register 0 and the OCT
index in register 14.

DESCRIPTION

If software checking is required as indicated by sense switch 4 being set, T:SIO
ri pples through the compl ete chain of command lists checking for errors. Each
command list entry, consisting of 4 words i. e. 2 lOCOs, must have an lOCO with
a seek order followed by an lOCO with a read or write order. In one command list
there must be only reads or writes but not both. Each 4 word entry must have
termination flags of X'4C' in the second lOCO, or be followed by another 4 word
entry with a seek order in the 1st lOCO, or be followed by a transfer In Channel
lOCO. Each TIC lOCO must be followed by an lOCO containing a seek or a
sense order. The command list must be terminated by an lOCO with a sense order
or with X'4C' flags and this termination point must agree with the address of the
end of the command list specified as input to T:SIO. All physical page numbers
contained in the byte addresses of lOCOs with read or write orders must be within
the range of physical" pages, not containing the monitor, used by the system,
as defined (the range) by the values contained in locations LOW and HIGH. If
any errors are found, T:SIO transfers to RECOVER with a screech code indicating
the error.

If there are no errors, the number of retries is initialized and SET$REG is called
to set up the arguments in registers for NEWQ. NEWQ is called upon to queue
up the request. When it returns, T :SEXIT is executed.

T :SEXIT pulls a return address from the stack and transfers control to that location.
When the swap scheduler was entered, the address of the caller was pushed into the
stack. The first time T:SEXIT is called, it will return to that caller. When the
I/O system has finished processing a swapper interrupt, it transfers control to end
action in TSIO. This end action routine pushes into the stack the return location
of the I/O system. End action transfers to the swapper, the swapper calls TSIO
again and finally T:SEXIT gets executed again, which finally pulls and returns
to the I/O system which returns to the point of interrupt. (See diagram 08-1)

When the I/O system finishes the I/O and processes the interrupt, it transfers to
T:SIOEA, the end action routine in TSIO, with information about any errors.
T:SIOEA pushes the return address into the stack.

99

UTS TECHNICAL MANUAL

SECTION DB
PAGE 4
9/7/71

If the I/O system detected any errors, TSIO retries (by call ing NEWQ) N times. If
these retries are all unsuccessful, a user flag is set as indicated in the error section
and TSIO returns to the swapper. If the function was a write check, retry consists
of re-writting and then retrying the write check. If software read checking fails,
retry consists of rereading.

All successful writes are write checked if DOWTCK is set. No matter how many Cls
are in chain, it is executed at one time if the function is read or write. Write checking
requires the chain to be partitioned and I/O initiated separately for each part. The
AJIT and JIT are write checked- first. When this is completed, the JIT can be altered
by setting write check orders in the user's CL. If there is another user's JIT Cl
following, it can be done at the same time. So the routine ripples through the chain,
changing write orders to write checks, until it finds a TIC from a JIT Cl to a user
Cl, at which point it resets the chaining flag and sets the interrupt flag. After this
I/O is completed, it continues where it left off until it finds the next user Cl, and so
on, until everything written has been checked. An unsuccessful write check resul ts
in only that section just checked, being rewritten and the rechecked.

When the function was reading a user (not processors, JIT or initial data and DCBs),
a software read check is performed if DORDCK is set. Comparison is made to insure
that halfword identifiers in the user's page start with the value saved in JIT and are
consecutive. The halfword destroyed by an identifier is saved in the command chain
for each page before it is swapped out and restored during this read check.

When all requested I/O has been completed, TSIO returns to the swapper.

100

UTS. TECHNICAL N,ANUAL

SECTION DB
PAGE 5
9/7/71

(PUSH 11 Branch to)

WAPPER

set up

out swap TSIO . ··-l
I set up for loa

Diagram DB-1:

~_ 10Q

Relationship of SWAPPER, TSIO
and 10Q. Illustration shows
swapping out 1 user with one ~rror
and swapping in a user (JIT in core)
without error.

I start I/O

J Pu" return (rou ti ne T :SEXIT in TSIO)
(return to caller of swap)

end action t~T_E~R~PT CD
process anterrupt

push return
ru ppose error:
~t _up for loa (retry)

- ~

1
---- ~

pu" return (return to
interrupted atCD)

INTERRUPT(2)

end action process interrupt

push return
su ppose 110 ok:

__ u_ ,return to swapper E up in swap

--- _. ~~~ for IOQ

lstart I/O

r::~r::~~:~t~rI~t;ERRUPT Q)

d
• J-process interrupt

en actIon
~p~~h ret~~~··~~ppose
j I/O OK

l
fi-~i~h-~~-a-p,-p-ul-1 ~return
(ret~rn to interrupt and at@)

101

UTS TECHNICAL MANUAL

ID

SECTION DC
PAGE 2
3/27/72

COC - Terminal I/O

INTRODUCTION

The UTS COC routines provide I/O operation between typewriter-I ike user terminals
and user programs issuing requests for read and write operations. Connections or
communications exist between the COC routines and I} user or processor programs
through CAL instructions which are requests for read, write, format control, and
other actions (in this capacity the COC routines are treated as the I/O "handler"
for the 7611 communications hardware); 2) the external interrupts from the 7611
which report receipt of input characters and completion of transmission of output
characters; and 3} the UTS scheduler to which the significant events of the terminal
I/O are reported and to which control is given up for user scheduling when the
crucial events occur.

Operations of these routines from the point of view of the user at the terminal and
from the view of the user program are described in the UTS System Management
Reference Manual, Chapter 6 and the UTS Reference Manual, Chapter 8.

The major functions provided by these routines are:

I} Terminal I/Q Read and Write operations
2} Demultiplexing input characters
3) Buffering of input and output messages into 14-character I inked blocks
4} Translation between internal EBCDIC characters and the external code

appropriate to the terminal
5} Generation and checking of parity for each character for those terminals

requiring it.
6) Recognition of end-of-message characters
7) Echoing CR for LF and LF for CR
8) Reporting of significant I/O events to the scheduler
.9) Line-delete and character-delete editing commands
10) Echoplexing for non local printing terminals
II) Sending of user "prompt" characters for each read CAL
12} Tab simulation
13) Splitting long lines to fit on the platen
14} Vertical format control on first output message character
15) Formatting and issuing of page headings

102

UTS TECHNICAL MANUAL

ORGANIZATION

The COC routines may be divided into three groups:

SECTION DC
PAGE 3
3/27/72

I) The read and write routines which service explicit user CAL instructions
to ship messages to and from user terminals. These routines operate in
the user map; the scheduler guarantees that the entire user's program is
in core during their brief execution. These routines include the control
program COC, the read routine COCRD, and the write routine COCWR.
A flow chart of the read and write routines is given in Section DC. 02.

2) The input and output interrupt routines which service external interrupts
from the COC hardware. These routines operate unmapped; the user's
program is not required to be in core, and the output routine makes use
of an extra register block for faster operation. For proper operation the
input external interrupt must be of higher hardware priority than the
output interrupt. The input interrupt routine is COCIP and the output
interrupt routine is COCOP. Flow charts for these routines are given
in Section DC. 02.

3) 'Hybrid ' routines such as COCMU, COCSENDI, and COCECHO which
operate mapped or unmapped as they are called from both read and write
routines and interrupt routines.

DATA BASES

The Line Tables:

The COC routines maintain information about each line in a series of tables which are
indexed by the COC line number. This control information amounts to 23 bytes per
line and contains:

a. MODE, MODE2, MODE3, and COCTERM are bytes which record the operating
mode of the line (echoplex, tab simulate, space insertion, paper tape, parity
checking, break set characters, etc.), and the type of terminal connected.

b. Bytes containing counts of characters remaining for output, COCOC, and of
the maximum number of characters allowed in an input message, RSZ, and
of the current size of an input messoge, ARSZ.

103

UTS TECHNICAL MANUAL

SECTION DC
PAGE 4
3/27/72

c. In order to simulate physical tab stops the current carriage position is
maintained at all times in CPOS and the position at the start of a read in
CPI. A halfword, TL, contains the relative address of a buffer containing
the tab stop positions to be used during user typing.

d. COCOI, COCOR, COCII,. and COCIR record the current insertion and
removal points of input and output buffers for the line.

e. BUFCNT records the number of buffers currently occupied by the line.

f. Counts are also kept in JIT of the number of lines on the current page and
of the current page number.

COC LINE TABLES

LaSel

LB:UN
COCTERM
MODE
MODE2
MODE3
COCOI

COCOR

COCOC

COCII

COCIR

RSZ
ARSZ

Size
(Bytes)

1
1
1
1
1
2

2

2

2

User number associated with line.
Terminal Type (implies translation, etc.)
Various
Line
Descriptors (see below)
Byte pointer to current insertion point into output
stream for the line. Used by write routine.
Byte pointer to current removal point from output
stream for the line. O ... no buffer. Used by output interrupt.
Current number of characters pending output including
current character being output. 0 - inactive.
1-last character being output and thus COCOI and
COCOR are meaningless.
Byte pointer to current insertion point into input
stream for the line. 0 - no bu Her. Used by in pu t
interrupt routine.
Byte pointer to current removal point from input stream
for the line. Used by user read routine
Size of record requested by user if a read is pending
Current size of record being read (and echoed) while
read pending.

104

SECTION DC
PAGE 5
3/27/72

UTS TECHNICAL MANUAL

Label

CPOS

CPI
BUFCNT

TL

EOMTIME

Size
(Bytes)

2

2
23 byte¥,line

Carriage position. Indi cates the current col umn
number at which the terminal is (logically)
positioned.
Initial carriage position for a read.
Current number of buffers in use by the line.
Used for inforcement of maximum number of
buffers allocated to a line.
Pointer to tab buffer in use by the line while a
read is pending. A value of 0 indicates no tabs
in effect for the read. Byte 1 of tab buffer is reserved
for BS edit.
Contains zero if user read is on going while input
has been read ahead. Contains the time remaining
before the user will be timed out while a read is
pend ing. Contains the ti me that the current read
request was satisfied.

Obtaining Terminal Line Table Information

A CAL will be available that provides a requesting program a snapshotC)fthe line
table information associated with the user's terminal.

The format of the CAL is:

CAL 1,8 FPT

where F PT contains X '06400000 ,

The foil owi n9 information wi" be returned in registers 8 and 9.

Register 8

byte 0 = COCTERM

byte 1 = MODE

byte 2 = MODE2

byte 3 = MODE3

Register 9

byte 0, CPOS

byte 1 = COCOC

byte 2 = BUFCNT

byte 3 = LB:U N

105

UTS TECHNICAL MANUAL

SECTION DC
PAGE 6
3/27/72

VALUES IN COC LINE TABLES

MODE:

80
40

20
10
08
04

02 }
01

MODE2:

80
40
20
10
(B

04

02 }
01

MODE3:

80
40
20
10
08
04

1
02
01

Bit meanings are:

Echoplex (full duplex) Mode (esc E)
TTY - Escape Sequence Pending, 2741 -
2741 - EOA Pending
Transparent Mode (DRC)
Reading Pending (O-.Read Ahead)
Tab Simulation Active (esc n
Restrict Code to Upper Case (esc U)

Break Count

Bit meanings are:

Li ne Reported Off
Full Duplex Paper Tape Mode (X ON)
Space Inserti on (esc S)
2741 Line
Sh i ft to Lower Case (esc (esc))
Check Pari ty Mode

Break Set

Bit meanings are:

Tab Relative to Beginning of Input (esc C)
Half Duplex Paper Tape Mode (esc P)
Backspace Edit Flag (2741)
2741 Keyboard Locked
Lost Input (insufficient buffers)

Number of lines upspaced during input

Defau I ts are:

1_--1 •• Echoplex
1 • ESC received
--1.~Pending

--1.~T ransparent
----t.~ Read pending
-""""" •• Tab simulate
--t •• Res tr i c ted

1 • Line reported off
1 .X ON
1 • Space insert
1 ---.2741
1 ---.Shifted to lower case
1 ---.Check Parity

1 ----. Rei Tabbing
1 ---. Half Duplex Paper Tape
1 --+B. S. Edit mode
1 ----. Locked
1 ---. Input Lost

TTY - Echoplex, Tab Simulate, Space Insert, all else off
2741 - EOA pending, 2741 line, check parity, keyboard locked a" else off.

106

SECTION DC
PAGE 7
3/27/72

UTS TECHNICAL MANUAL

COCTERM

o Model 33 TTY
1 Mode I 35 TTY
2 Mode I 37 TlY
3 XOS Model 7015

4-5 EBCD Standard 2741
6-7 EBCD APL 2741
8-9 Selectric Standard 2741
10-11 Selectric APL 2741

Buffers:

Input from and output to user terminals is buffered in resident core using linked chains
of four-word buffers containing 14 characters and a relative link in the fi rst hal f
word. For output, the message is translated to external form and placed in as many
buffers as are required. The output interrupt routine sends the characters one at a
time from the buffers, releasing those that are empty. On input, a buffer is not
assigned unti I the f: rst inp'ut character is received.

Buffers as shown below are four words long and chained together by relative pointers
to the buffer pool carried in the first hal fword of each buffer. A zero I ink terminates
the the chain. Fourteen characters are placed in the remaining space in each buffer.

A chain of free buffers are retained and pointed to by COCHPB. The free buffers
are chained through the first word of each buffer. Zero signifies the last buffer
in the free chain.

Lines with input and/or output characters in the line tables have buffers linked as
follows:

Output:

COCOR [SA _(a) ':'}A--(COCS~F~-{ BA (8) - SA (COCBUF) I,: f3 _l Y I
a ~ Locotion of next byte to r-- a I etc. . I -i

be transmitted, by the Output I
interrupt routine '!-i ---------------

p, Y = By tes a I ready sent.

107

UTS TECHNICAL MANUAL

COCOI r BA (f) - BA (COCBUF)"r

l is posit ion of last character

placed in buffer by COCSEND 1

Input:

COCIR IBA (a) - BA (COCBUF)~

a = Location of next byte to

be moved to user as a result

of read.

Last buffer

0

f

DA (8) - BA (COCBUF}

a Tete.

B, Y :c Bytes that have already been moved.

COCII I sA (l.): ~ BA {COCRl!f-
t is position of last .character

received and placed in buffer by

Input Interrupt, routine.

108

Last Buffer

0

I --.

8

SECTION DC
PAGE 8
3/27/72

etc.

(

--~-... - -----

f3 I y

!

8 etc.

l

Error Counts:

COCIPC

COCIPL

COCOEC =
COCBLC

COCOEL =
COCBLN

UTS TECHNICAL MANUAL

Count of characters received with parity error.

SECTION DC
PAGE,9
3/27/72

Line IIfor last parity error or untranslatable character received.

Count of input and output interrupts from lines not valid (out of
COC table range).

Li ne II for last i nva lid interrupt.

Executive message:

COCMESS .Administrative message buffer for page heading. (16 words)

Translate Tables:

Associated with each type of terminal is a pair of translation tables which give the
correspondences between internal and external character codes. Special translation
codes trigger input functions such as character and line delete, tab simulation,
echoes for carriage return and I ine feed, and other special operations.

A single pair of translate tables which handles all ASCII coded terminals (types 0-3)
is provided in the standard UTS system. Additional translate tables are provided via
SYSGEN option for 2741.

The general format of translation tables is as follows:

a. Input (table indexed by device code yields EBCDIC code)

I) TTY - 128 bytes in length (parity stripped before translation)

2) 2741 {each code set} - 2 tables each 64 bytes in length (parity stripped
before translation); first table for lower case, second table for upper case.

109

UTS TECHNICAL MANUAL

SECTION DC
PAGE 10
3/27/72

b. Output (table indexed by EBCDIC code yields device code less parity). All are
256 bytes in length.

Device Code is formatted as follows:

o device code-pari ty

o
If bit 0 =0, remainder is device code minus parity. If 2741, bit 1= 1 for Upper
Case Character, bit 1 = 0 for Lower Case Character

If bit 0 = 1 remainder is further qualified by Type:

Type = a-.Special Code Significance is: ..
o - Form Feed
I - HT (Tab)
2 - CR and LF must be sent (TTY only)
3 - NL must be sent (2741 only)
4 - ESCF
5 - ESCX
6 - Destructive Rubout (Rubout, BS ATTN)
7 - Retype
8 - Local Carriage Return
9 - 111" (70t5), II [II (TTY 33-37)
A - 1'-11 (7015), II] II (TTY 33-37)
B - 2741 Backspace (2741)
C - Local LF (TTY)
D - LF must be sent
E - Parity Error

110

SECTION DC
PAGE 11
3/27/72

UTS TECHNICAL MANUAL

Type = 1 ----t •• Character is Delta Activation Character and bits 2-7
are EBCDIC code to use for true output translation.

Type = 2 ----4.. Th is is a mode setting operation (e. 9., ESC E). Bits
5-7 determine the bit within a flag byte to be affected
(b-.bit 7, 1-+bit 6, ..•. ~bit 0).

Type = 3 ----4.~ Ordinary Activation Character and bits 2-7 are EBCDIC code
to use for true output translation.

The exact action taken on all input and output characters is contained in this section
under CONTROL FUNCTIONS.

Sample Translate Tables for TTY and the selectric standard 2741 terminals follows:

111

JOO 13119 "'A~ el, '72
2960 •
~;.6.1 •
2962 •
2~b3 •
2 Q61t •
296! F~ TTV8UT
2966 01 00729 TTVP~
2967 01 00729 (DIN
2968 •
2969 • 0
2~ZQ •
?97l •
2972 01 00129 00010203 A OATA,8

Q"~07
2973 01 00 726 0~051509 A OATA,8

OCOooEOF
29Zlt • 1
2975 01 00125 1 (l3C[23J ;"---D-AlA,j

2276 Ql QQ72F
14OA16 17
3?191~3Q A
lC1D1E1F

OATA,8

2977 • 2 tV 29Z1 01 00731 "05A]r.-7~ -A OATA,8
~B6C50'~

2919 01 00733 "'5~5C"E A OATA,8
6Bf.O"~61

29"0 • 3
2981 9. 1 00735 FuF1F2F3 A OATA,8

F.F5F6F7
2982 Ql 00737 F8F97A5E A OA1A,8

,.C7E:6E6F

ASCII TRANSLATI8N TABLE

TTY AMY- 1<70 INPUT TRANSLATE TABLE •• lSCII T! E~CO-IC

EQU i(OSUT
EQU •
~Q!.J • ESCOtC EQUIVAVENT oF' .",. ASCII CHA~AtTERS

~'OOO1020301t090607' NUL, SetH, STX, ETX, EeT,

~'080515090COOoEOF' 8S, HT, N~(~F), 'IT, ~F,

~'103C1~3DlItOA1617' O~E,OC1cxetN),OC2,OC3(XeFF),DC .. ,

~'32191A301Cl01E1F' CAN(CTL-X),EM(CTL.V),SUB,[SC,FS,

X'.05A1F785~6C5070' BLANK,EXCL MK,QueT I'll<, II, S,

X'It'505C4E6660"~61t e' II ., +, "
X'FOF1 F2F3FltF5F6F'7' 0' 1, 2, 3, It,

X'F!F9?ASE4C7E6E6F' 8, " I, II <I

ENQ,

CR,

NAK'

GS,

~,

.,

5,

.,

151
~~000020

ACI<, BE~

s8-, sl

Svw;--[T8

RS , US

&,

II I

61 7

>,(IIOE5f I'll(

o
n

---. ---- -~----.--.---

300 13 H!J f"'AR 21, '72
29~4

,9a5 al "0739 7CC1C2C~ A
C,C5C6C7

29"6 01 0073B C~C901D2 A
03)401:)06

~9~7
2q~8

~9a~ Ql OQ7J:> r)7'~;)9E2 A
E3E"ESE6

~990 01 O073F E7E8E~ .. F A
B15F'~A6~

2991
2992
2'~3
2~~ ..
2995
lli.6 ~1 00

'
''1 "~8;~3. A

~4~5B~81
2997 1.>1 00 7 .. 3 ~~S39t92 A

939~.26
299"
2999 01 007.5 979899A2 A

AlA"ASA~
..... 3000 01 0074' A7A8 AJu2A "
w 4FS351='FF

3002 311Bl~80 A

ASCII TRANSL.ATle~ TABL.e: 15~

• 4
DATA,8 X'1CC1C2C3C~C5C6C7· I' A, S, C, 0, E, F, G

DATA,S ~'C8C90102DJ04D506' M, I, .,J, 1(, \., 1'1, N, a

•
• 5

DATA,S X'OZD8D9E2E~E!E5E~' P, Q, ~, s, Tt J, v, w

OATA,8 X'E7E8E94rB15r6A60. X,y,Z,7015'aR"8K/,7015'~eT" ARRew .. UP'8ACKN

• F'f,R TTY'S eTHER THAN 7015, ASCII '58' , '50' (LEFT S R I ~~f·3~AtI(ETSl· --- -- -----------

• ARE TR~~SL.ATEO RESPECTIVEL.Y INTe .. '84' ~ '85'
•
•
• 6

OATA,8 X,,.A81828384858687' CENTS, L.C' A" LC' 8' I LC, r:, i 1,.£' ~~,.b-f_ '~_!~J~~-.!£_~C 'G'

DATA,8 X'8~89919~939"9596' LC'M',LCtI',LC'J"L.C'(',L.C'L"L.C'~"LC'N"~C"t

• 7
DATA,S X'979899A2A3A4A5A6' L.CtP',~C'Q',LC'RtILC'S',L.C'T"LC,U',L.C'V"~C'W'

DATA,8 X'A7A8A1e2~FB35FFFt LCTrtI~til:CtZTi"BR~-'! tr,~~ ACE r,NeTi"UB

)('31181880'

o n

3~0 13 119 "1AR el, '12 ASCII TRA~s~ATle~ TAB~E 153
300" •
3J()~ - TTY AND 1</0 eUTPUT TRA~SL.ATE TAB~E •• EBCDIC Te ASCII
3006 •
3007 01 001_A I(O"uT EQU • KID eUTPUT TRANS~ATE TA8~E ~~OO0600
3008 - 00
1009 01 007 .. A OCOi020l A OAIA,8 X'OOO10203£AaI0607' ~ U~.,.---s! ~, STX, ~~T, i H T-;---Ace ,-an:

EA~10607

3010 01 0074tC Q~O~5.9a A OATA,8 X'0805150880820EO~' 8S, ENQ, NAI<, vT, .FF, ·CR, 56, __ §I
80820!OF

3011 * 01
3012 01 007 .. £ 10111213 A OATA,8 X'101112131-S21617' O~E, xeN, DC2' xeF'F', DC"'~~L:.~F J, SVN, ET8

l'8~16T1
3013 01 007~O 18£CaE1S A DATA,S X'~EC~BE1E2E3E'" ~AN' .EM, -SUB, -ESC, ·,5, +GS, ·RS, ·us

E1E2r~.;"
3~1" - or ----------

3015 01 00752 801C1D1E A OATA,8 X'8'~Cl01E1F292F5E' *1." ,5, GS, RS, us,), l,u~·AR~ew~

3016 0075"
IF'2 921='5E

01 3t'OJO"Og x 'DATX,. X'30000"0819090A23' ., CR, EeT, BS, EM, ~T , ~F' , --~~p;r-
19090~23

3017 • 3
~18 01 00155 fl~"68506 A onr,-. X'S_86850602C3CB03' ESC." -RUB, ESC-X, ESC6:p, ESCiLr,[st&T,"£SC6:1-,ESC&T

02C3C~"3
3019 01 0075~ OS~7:)78C A OATA,8 X'OS07078CCEC6878S' ESC&S, E_SC 6:E, ESC 6:C, E SC .~F' , • X8N'~ !_~~.R ,_~ ~f.! CRN

C~t!;"!78~
-.. 3020 • ..
~ __ 3_Q?1 01 0075 A 2d23232l A OATA,8 X'2023232323232323' eI.ANI(, SUB , SUB , SU~ , SUB , SUB , SUB , SU~

23232-323 ---- .. --- .. - _. - -_._---
3022 01 COniC 2323602E A DATA,S ~'2323602E3C282B89' SUB , SUB ,CENTS, I, <, (, ., *9R

3C28~3a9
le23 • 5
30"" 01 Oo7SE 26232323 A OATA,8 X'2623232323232323' &, SUB , SUB , SUB , SUB , Sua , SUB , sua

23232323
3025 01 00760 23-23 2 -1~"

2AA5368A
A DA1A,8 X'2323212\2AA~aA' SUB , SUB 'E~CIII Mi(, s, ., .), I' ~~eT

3026 • 6
~O27 01 00762 20A62323 A DATl,S X'2DA6232323232323' ., +/, SUs , sua , SUe , SUs 1SOIf,---sijt1

232323c3

-0
~>~

1 ~G)n
~m~
~_O ·z

0 n

GOO 13119 MAR 21, '7'1 ASCII TAANSLATle~ TAB~E 15.
3028 01 'OO76~ 2323A72C A' OATA,I X'2323A72C25SF3E3F' SUB, SUB ,.UP.ARR8W, " ~,BK.ARReWI >I~UEST "I(

2~S~3E3~
3029 • 7
3030 01 00766 23232323 A OATA,I X'2323232323232323' SUB , SUB , SUB , SUB I SUB I SUB I SUB I sua

2illz123
10.31 01 007~8 23233A23 A OATA,. X'23233A23_027AI22' SUB , SUB I II II II ., ... , :,

-027A922
3032 • 8
3013 01 0076A 23616263 A DATA,8 X'23616~636~656667' SUB ,LC'4 t ,LC,g"LC'C',Lt'D'ILC'£fliCtTrTiLC'Gt

~4b5"667
3,a- Ql oQ76C f)1;63~323 A OATA,I X'6869232323232323' LC'H',LC"t, SUB' SUB, SUB , SUB I SUB' SU.

23e32323
3035 • 9
JOJ6 01 007bE 23~A6~6C A DATA,. X'236 A6B6C606E6F70' -SUB 'LC'Jt,~C,~,,~C'~',LCt~.,~C'Nt'Lcte"LC'p,

1037 01 00770
6')~E6~70
7172232~ A OATA,I Xt7172232323232323' LC'Q',LC'R" SUB I SUB I SUB I SUB , SUB , SUB
Ie :; ;!]? '3.?.J

3C3@ • A
3039 01 00772 2l2J737. A OATA,8 X'2323737_7576777" SUB , SUB ,~C'St'LC'T',LCtU"LCtVt'LC'W"~~tx'

75 lfll.l}e
30"0 01 00"- 797A2323 A OATr,i X'79,A232323232323' LC,y"LC,Z" SUB, SUB I ~08, Su~ -,-SUB , SUIJ

23232323
::: ----10" • 8
01]0"2 01 00776 2,~C79?' A OAlA,8 x'235t1B70s8SD2323 t SUB ,81('7" C~RAtE,BRACE), CeRAc~,B~ACK),SU~,su~

e;RS)2323
:Jolt} 01 g07?S 23?~_?1~~ A OATA,8 X'2j2323232323EF~3' SUB, SUB, sua, SU~, SUB,sUd,·LesT~~B

2323EF'23
]0._ • C
19.~ cl Qg77 A 20"1 .. 2"3 A DATA,S X'~0.1~2.l •• _S~6_7· SPACE, A, B, !;, 0, E, F', G

...... 5_6 .. '
3C.6 01 0077C .S.92~23 A DATA,S X, .. S_9232323?32321' H, I, SUB , SUS , SUB , SuB , su~ , SU~

ZJZ~23al -----_.
30 .. 7 • 0
10"S 01 0077E 23.A.~-C A DATA,8 X'23 .. A_B4tC40_£-F'50' SUB , J, 1(, ,-, P1, N, e, P

.0 .. E .. F'50
30·' 01 O07~O 51522323 A 'AlA,8 X'5t52~3~323~32323' Q, R, suB , sOB , SUB , SuB , sOB I sU!!

23232323

y. ~ ~~ tJ' n
~ ~::i
~ _0

<.AZ

0
n

~:)O 13:19 f":A~ 21, '12 155
3050
3051 01 00782 S, T, \J, V, W, X • E

2~2153S,+ A D~TA,8 X'2023535455565158' • , SUB,
55565758

30~2 u1 007S4 ~9SA2323 A OATA,8 X'595A232323232323' YI Z, SUB I SUij , SUB • SUB I SUB I SUS
-----~J2_!~!?3

f • 3053
3~s.. 01 00786]O113~33 A DATA,8 X'30313233J4353637' 0, 1, 2, 3, .. , 5, 6, 7

l~353~37
3055 01 00788 383~232~ A D.ATA, 8)(t 38'3'9n"Z3'Zn"3mF' 8, 9, SOB , 50S-,-stJS , 5 OS ---,-soe --, DECO

2323237F'
_____ 3~O_S_6 __________________________ • ______ _

3·J51 •
3')58 ..
Ju59 • TH~ SyMS6L ., ., AND &1 wHICH pRECEEO e~ ARE IMSEO'EO IN ceMME~TARY Sy~aeLS

~--~3~C~6~0--------------------------~'~IN~D~I~C~AT£ CATAG6RIES e~ CHARACTEQS WHICH ~EYUIRE SPECl~~l~~lNGi~~~~~~~~----------~-
lC61 • THE SPECI~L. C:AT~G9RIES AREI - .

----~-Q~~?------------ •
-~---

3063 t

•
•

3064
3C~~

---3066~--------------------------------•
3067 •

• •
• •

• • U~IQUE ACTIBN IS GE~EQAL~Y REQUI~D.

• • THE C~ARACTER WILL NeRM~LLY ACTIV~TE, eR
IT IS A OEL.TA ACTlvATIe~ CHARACT£R'---

____ 3~0~8~ __ ----~------__ --__ -------~--~~--------~~ • & • • • C~ANGE APPR~PRIATE MeOE I~ LINE TA6L.E,
lQ?9 •

3J10 •
____ 3QL1~1 ____________ ~ ______ ~ ____ • __ _

'3012 • E NJ...--,e".....F~~~/=D-~"'""" \J..,.,T:-op O..-:T.--f~AN S cn EfA~L E
3073 •

l{Ob00950
~0000960

__ ~~31~'~ .. ~ __ ~~=O~OT;0=O~0~1_8~~ ______ ~ ___ c~e_C_M_A_~I_~S~IZE EQU 2*(.BSVALCOAC$.1»+1) 3075 01 007~A ostCr~m~~B~~--'--~--:~---------------------------

3076 0000C7~4 c~c ceDE SIZE E~v ceC~AINSIZE.2.'ABSVAL(O.(.·1»+1)
__ ~3_0~7~7~ ________________________________ ~E~N~O~ ___ ~0009~7~O~ __ ~ __________ __

c~~TReL SECTIB~ SU~~~RYI 01 0078A PT 0 02 00000 PT 0

'oJ -f
~m-0---
t\J ~ Z

o
()

~oc 08:40 ~AR 22, '12 21~1 SE~E:TRIC ST4~DARD BUTPUT TRA~S~ATleN TAB~E ,
51 * eUTPUT TRANSLATle~ TABLE , , • EBCDIC TB SE~ECTRrC STANDARD
52 01 00020 SSTD EQU •
53 *
54 * 0

1* oJ J)OO20 3~3EOEO) A DATA X'3D3EOEOD' NU~··>ILISBH.>PREISTx·.>BVIETX.>RES

1* 01 00021 EA813')3' A DATA X'EAB13D3D' ,e:6T' I .HT' ,ACI< •• >IL,BEL-.>!L
2* 01 00022 883J3J3r) A DATA X'8B3D3D3D' 'BS' 'E~Q··>IL,NA~··>ILIVT ••• >IL

58 01_!)OO23 80833J3D A DATA X'80833D3D' 'FF' ICR·>'NL',Se-··>IL,SI·~.>I~
59 * 1
60 01 00024 3C3J~C2C A DATA Xt3~3DI+C2C' DLE·.>IL,DC1··>I~IDC2 •• >PNIDC3·.>RS
61 01 OOOc 5 ~f="~33J5E A DATA X'4f="P.33DSE' DC4. ->PF I 'NI. ' I SyN •• > ILl ETB.>EBB

1* 01 U0026 ~S3~8E3~ A DATA X'a93DdE3D' CAN •• >BSIEM···>ILISUB.>,~E"ESC.>t~
63 01 00027 3')303JE4 A DATA X'3'3D3 DE4' FS ••• >I~,GS.·.>I~,RS; •• >ILISP ATTN
64t * 2
65 01 OOOc8 eD3D3~3J A DATA X'BD3D3D3D' J~DX.>LF'IFS.··>t~IGS···>ILIRS.·.>l~

1* 01 00029 3D3J07S8 A OAT" X'3~3D0158' US .. ·,,>!!., SYN , ' I , ,CRCMF'L.X
67 01 0002" 136D3)5' A ()AT~ X'136D3D 5D' , ... , 'NL' ,ES!->IL. , tSs'

1* 01 00029 6"2~6E70 A OATA X'642F6E70' ,) , I 'HT' I , ~ F" , BE.) " * '
69 * 3

'l _1 * 01 OQC2C 8~86853;) A :)ATA X'84868530' F ATT~ , BS ATTN, X ATTN , SYN
71 oi 00u20 D2:3C9D3 A DATA x'D2C3CS03' U ATTN , (ATT~ ,) ATTN I T ATTN
12 . 01 OOC2E D53'D7D5 A DATA X'D530D70S' S ATTN , SYN I C ATT~ , e ATTN
Z3 01 0OO2F 3D3?8788 A DATA X'3~308188' SVN I SYN , R ATT~ , N ATTN
14 • 1+

1* 01 00030 40107~7'J A DATA X'4+0707670' SPACE , SUB 'AP~'DCD" SUB
2· 01 00031 6AI4,A1010 A DATA X'6"~A7070' APL'MIN'IAPL'EPS', SUB , su~
3* 01 OOC32 ~6595811 A DATA X'66S95811' APL'D~TA',APL'N.G~'I CENTS I , ..
1* 01 OOC33 5174534+1 A DATA X'517453~1' '<'.>"" ' (, I , + , , eR· ... >DEl

78 * 5
79 01 00034 68707:>46 A DATA X'68707046' , & ' I SUB , SUB I QUAD
80 01 00035 70S2451~ A C.ATA X'70S2 4 570' SUB , ENceDE ,CIRCU~AR, SU~
~1 01 v'JC36 70100144 A DATA X'7070014+4' SUB I SUB ,EXCl,.. ~~, '. ' 1* 01 00037 ?8"C2~6J A DATA X'78AC2860' t * , , ') , I t , ' 'NeT->'·-
83 .. C
1· 01 00038 37A6657C A DATA X'37A66570' , . , , ' I' ,MAXIMU:-1, SUB
1· 01 lJOC39 7270756~ A DATA X'72707~62' APL'D-ARW'I SUB IAP~'9MG"APL'SPST
2* 01 0OO3A 7070.733 A DATA X'7070A738' SUB I SUB I CRCMF~~I , , '

CAl '"'0 Vl

~»Pl
"G) '-. m ;j
'-I, 0

-, '" 'i z
" - 0

n

Goo O~:40

2
1*
3
4
5
6
7
8
9

10
. 11

12
13
11+
15
16
17
l~
19
20
21
22
Z=3
2~
25

Cl 0CJOu

~1 00000
V1 00001
01 OOG02
01 UOC0 3

01 00004
01 oooe5
('.1 00006
01 00007

01 00008
01 00009
01 OOOOA
01 00006

01 ooooc
01 0000')
01 ooooE
01 oooor

4CSAA391 A
r:1+969361 A
F57)8597 A
12:)3021" A

F243957E A
A 9000:)0'J A
F"689929S; A
0003171')0 A

F"191+A787 A
F,)A2BSA£, A
F'799845E A
13002005 A

F"3ASA486 A
F'9A68260 A
r:S81B363 A
0416010~ A

SSTDLC
*
.. 0

1

2

* J

SELECTRIC STA~DAR~ INPUT T~A~sLATleN TA~LE 5
PCC 0
SET C
CEF SSTD,SSTDLC,SSTDUC
tQU $ SELECTRIC STA~DARD Le~ER CASE re EBCDIC

DATA
DATA
DATA
DATA

DATA.
DATA
DAT~
DATA

DATA
DATA
CATA
DATA

l,)ATA
DATA
DATA
DATA

X'40SAA391'
x'F4CJ69361'
X'F~708597'
X'1203c211+'

X'F"24+9957E'
X'A9000000'
X'r6R9929B'
X'OOQ81'lOO'

X'F194 A787'
X'F'OA288A8'
X'F79984+5E'
X'13002005'

X'F3.5~~B6'
x'F9A68260'
X,F="S81836B,
X'041 60100'

SPACE 'EXC~. M~, ~C'T" LC'J'
'4' , Lc,e', ~C'L" 'I'
'5' , '" , ~C'E" LC,P'

P~ •• >DC2'RES·>ETX,BY~·>STX'PF.->DCI+

'2' I t.' I ~C'N" '.'
LC'Z' , UNUSED , U~USEJ , UNUSED

'6' , LC'I' I ~K'~" ~C'Q'
ue->N.A., 'BS' 'Ee~~>ETB,~C.>N.A.

'1' , LC'~' I ~e'x',
'0' I Le's' , LC'~"
." I LC.R., ~C'Dt'

RS •• >DC31~L ••• >C~,~F~>INDX,

LC,G'
LC'Y'

, I '
• ... T'

'3' , LC'V', ~C'U" ~CtF'
'9' , LCtW, , Le'B', '.'
'8. , ~C'A., Cc.e. I .,'

'EeT' ,!L •• >Sy~,PRE.>S9H'DEL.>lGN

Joe 08:"0 M~R 221 '72 27"1 SE~ECTRIC STA~OARD INPUT TRA~SLATleN TABLE 6
27 01 OOOio SSTOUC EQU • SELECTRIC STANDARD UPPE~ CAS£ T6 EBCDIc
28 •
('9 • 0
30 01 00010 ~a4+F='E3Dl A DAT~ X'40ltF'E3:>1' sPACE ,DGR·.>e~, , T , , , J'
31 01 00011 5S~()")'36~ A O.TA)('5B~6D36F' , . ' ,

' B '
, ,~ , IQUEST M~

32 01 00012 6C1F'C5D7 A DATA X'6C7FC5D7' , ~ , , QUeTE ,
• E ' 'p'

33 01 OOC13 12Q30?14 A DATA X'120l0214+' P~ •• >DC2IRES·>ETXIBY··>STXIPF •• >De~
34+ * 1

1* 01 OO~14 'C~C05~E A DATA X'7C4CD54E' , ~ , , ' < ' , 'N t , , .. t

36 01 OOu15 F.'9QOOOOO A DATA X'E9000000' , Z , , UNUSED , U~USEO I UNUsED
1· 01 U0016 ~AC9:>2~8 A bATA X'6 AC9D2DS' eENTS , ' I ' , t I(t , 'Q'
2· OOOClOOOO De 2741ARUS·l
3- *S* DATA X'OO181700' UC •• ~N/A'8S.·>CA~'Eee·>ETBI~e ••)N/A
4+. EL.SE

38 01 00017 OJ081?Oo A DATA X'oooa1700' ue.>,." ••• , '6S' ,Ee~.>ETBIL.C.>N.A.

i- F- IN
39 .. 2
~o 01 OOC1 R SF'::>4E7C1 A DATA X'SFD4E7C7' '.·.->NBT, ' "1 , , 'X' 1 'G'

'0 4tl 01 00019 5DE2C8E8 A TEXT •) S~y , ,) , , 'S' , 'H' I 'Y'
42 01 0OO1A 50D9C47A A TEXT '&RO:' '& , 'R' , '0 , I ' . , •
43 01 00019 13152005 A DATA X'lJ152005' RS.·>DC3, .~~, ,L.F'w>rNDX, 'HT'
.. 4t * 3
;5 01 OOC-1e 1BE5E~C6 A TEXT "VUF" , # , , ' v ' , 'U' I , F" '
"6 01 00010 4,E6C26, A DATA X'4DE6C260' , (, I ' W ' I 'e' IyNOER",INE

1* 01 0OO1E 5CCIC36E A DATA X'5CC1C36E' , .' , ' A ' 1 'C' I '>"
48 01 OQ01F' O~160100 A DATA X'04160100' 'EeT' '1~·~>SVN/PRE·>S9HIOEL·>IGN
~9 _ •

300 081~O MAR 22, '72 21~1 SE~ECTRtC STANDARD eUTPUT TRA~SLATleN TAB~E 8
1· 01 00038 ~8777B4+7 A DATA X'''8777B~7' , ~ , ,U~DR~INE,t>'.>""QUEST Mt<

E\R * 7
~9 01 OOU~C ~4+60507:J A UATA X'6~605070' API.'ANO' ,APL QUeT,AP~ evER, SUB
90 01 00030 ~4705870 A DATA X'4~70S870' AP~'~E' , SUB I APL'GEt, SU~
1· 01 0003E 10746970 A DAT~ X'70746B70' SUB ,APL'6R' , ' : ' , , , '
c- Ol OOU3F 5009A8"9 A DATA X'50Q9AS49' , ~ , , ' , , , ' .. ,QU8TE MK

93 8
94+ 01 0004+0 7039363A A DATA X'7039363A' SUB , ~C'A' , ","e'Bt , \..,e,e,
95 01 000"1 2AOA3323 A DATA)('2AOA3323' I.C'D' , L.C'E' , ~e'F' , LC,G'

1* 01 OOu 42 261 97070 A DATA X'2619 7070' '.C'~' , I.C' I ' , SUB , SUB
97 u1 0004+3 10707'J7C A DATA X'7~707010' SUB , SuB , SUB , SUB
98 * 9
99 01 0OO4~ 7Q031/&·06 A DATA X'70031 A06' SUB , L.C,'J' , I.e" K' , L.e,,-'

100 01 00045 211 20506 A DATA X'21120S0B' LC'I-1' , ,-C'N' , ~cn' ' , L.C'P'
101 01 OOC46 lR297070 A DATA X'lB297070' ,-C'Q' , L.C'R' , SVB I SUB
102 01 0004+7 7070707':) A C'ATA X'70707070' SUB , SUB , SUB , su~
103 •
104 01 000,+8 70702502 A DATA X'70702502' SUB , SUB , I.C'S' I ,-C'T'
105 01 000*9 32313522 A DATA X'3~313522' l,.C'U' , LCtVt , I.e'w· , ~c,x,

'" 106 01 0004A 271lt7070 A OATA X'27147Q70' ~C'Y' , '-C.Z' , SUB , SU~ 0
107 U.L OOC'+d 7:;707070 A DATA X'70107070' SUB , SUB , SUB , SUB
108 * 1* 01 UOvl+C 7u07746i+ • DATA X'70077"&4+' SUS ,eK S~AS~I (~RACE , BRACE)

2· 01 OOCi+D 1'+647070 A OAT. X'746,.7070' (BRACK, BRACK) , SUB , SUB
111 01 OOOi+E 7:;707070 A DATA X'70707070' SUB I SUB , SUB , sua
112 01 OOQ'+F 7n70Er:1~ A OATA X'7Q 70EF'70' SUB , SUB ,~eSTOATA, SUB
113 * C;

1* 01 OOC50 4J73767A A DATA X'4079767A' SPAcE , , A , , , B , , 'c'
115 01 00051 6~l+A7363 A fjATA X'bA4+A7363' , :> • I ' E ' , 'F , , t G,

1* 01 00052 66537~70 A DATA X'66597070' q.p I , I ' , SUB I SUB
117 01 00053 7 (J 7 07 CJ 7 'J A ClATA X'7Q707070' SUB I SUB , SUB I sUB
11~ ... D
119 01 OOLSlt 70435·~6 A DATA)('70*35 A46' SUB , 'J' , ' I(, , t L. '
120 01 OO~~5 615245"3 A CATA X'6152lt54B' 'M' , tN' , ' e , , 'p'
1~1 01 UJC:,6 58697J 70 A DATA X'5869707C' , Q, , , ~ , , SUB , SuB
122 01 00057 707070 70 A DATA)('7070707 0' sue , SuB , SUB , SuB
123 * t.

~""OV'
~>n
~ g;:i
~ -0
~Z
0

0
n

Goo 08:-0 MAR 22, '72 2741 SELECTRIC STA~DAqD 6UTPUT TRANSLATI!N TABLE ,
1* 01 OOO~8 377065"2 A DATA X'377065 .. 2' , • t , sue , 'S' , 'T'

125 01 OO·)5~ 72717562 A OAT" X'72117562' 'U' , ' v ' , ' ~p , , x '
126 01 CO:)~~ 075"7070 A DAT~ X'67S"7070' , Y , ,

' Z ' , SUB , SUB
121 01 00058 70707-)70 A IJATA X'70707070' SUB , SUB , SUB , SUB
128 • F'
129 01 OQase 24201030 A DATA X'2"201030' , 0 , , ' 1 ' , ' 2' , , 3'
130 01 0OO5~ 0"081828 A DATA X'04081828' , .. , , , 5 ' , ' 6 t , , 7'
131 01 ooose:- 38341353,A DATA X'383"1353' , 8 , , ' 9' ,APt.. MULoT, APL. DIY
132 01 OOC5r 4101707F' A DATA X' .. 101107F" APLtARR6W',APL'B.ARR6 w',SUB, • DEl,. 1

133 END

ceNTRBL. SECTI6N SUMMAQY: 01 00060 PT 0

Control Functions

Terminology

UTS TECHNICAL MANUAL

SECTION DC
PAGE 22
3/27/72

a. Input Char{s} - The graph i c characters typed at the keyboard to invoke
the action. If d fferent invocation are available on the 2741 than on TTY,
the 2741 is given on a second line.

b. Carriage Position - The (best estimate of the) physical position of the
carriage on the dev ceo This is maintained for three purposes: insertion
of local carriage returns, tabulation control, and insertion of idle characters
on 2741 IS for timing carriage returns. CPI indicates the position at the
beginning of the input message.

c. Record size - The number of characters transmitted to the u')er program as
the resu I t of the Input.

d. EBCDIC code - The input code passed to the user program by the coe
Handler for a read request.

e. Echo - The resultant graphics appearing on the terminal printer as a
result of the input (if not echoplex part of the graphic is due to local
printing).

f. Activation - The condition under which the Input causes the outstanding
M:READ to be satisfied. The codes used have the following meanings:

I) Always Activate

2) Never Activate

3) Activate if special activation 1 or 2 (See below), or Record Size

4) Activate if special activation 1 or Record Size

5) Activate if DELTA reading or special activation 1 or record size.

6) Activate only if Record Size reaches requested size.

122

UTS TECHNICAL MANUAL

SECTION DC
PAGE 24
3/27/72

Special activation 1 will activate for the special graphics and teletype
control characters defined below.

Special activation 2 will activate for the teletype control characters
defined below and for EOT activation on 27415.

The special graphics characters are:

](}1\ "=I@II:?> _%,,,

/- ;) *$J&1+)<.-'
The teletype control characters are:

SOH, STX, ETX, HT, ACK, BEL, BS, ENQ, NAK,
VT, SO, SI, OLE, DC2, DC4, SYN, ETB, CAN

g. ~cial Action - Any special action taken as a result of the input.
ere a toggle is indicated, the defaul t is listed as the second action.

h. Immediate 'or Deferred - Indicates whether special action is taken when
the character is received or is deferred unti I echo time.

123

UTS TECHNICAL MANUAL SECTION DC
PAGE 25

CONTROL FUNCTIONS 3/27/72

Input Char(s) Carriage Record EBCDIC Echo Activation Special (I)mmediate or
(First Set for TTY, Position Size Code Action Q1eferred

Second Set for 2741

ESC C +2 +0 N.A. C' 2 Set or Reset D
C ATTN +1 C Tab Relative

Mode

ESC CR, ESC LF 0 +0 N.A. CR LF 2 Issue Local 0
N ATTN N NL Carriage

Return

none Set or Reset o ATTN +1 N.A. 0 2 Overstrike 0 - Edit Mode

'" 01 XON +0 N.A. 2 Set Full on Half D
none Duplex Paper

Tape Mode

X OFF +0 N.A. 2 Reset Full or D
none Half Duplex

Paper Tape Mode

ESC F 0 +1 00 F'CR LF Report
F ATTN F NL End-of-File 0 -

c
None L , ESC L 0 +1 OC Force Form to Top 0

L ATTN L- of Next Page

SECTION DC
UTS TECHNICAL MANUAL PAGE 26

CONTROL FUNCTIONS
3/27/72

Input Char{s}
EBCDIC Echo {First Set for TTY, Carriage Record Activation Special (I)mmediate or

Second Set for 2741 Position Size Code Action {tjeferred

Non-Printing Control +0 +1 XDS Input Code 3 D
Characters EBCDIC is echoed

Special Graphics +1 +1 XDS Input Code 4 D

{Non-AI phanumeri cs} EBCDIC is echoed

Upper and Lower +1 +1 *4 *4 6 D

Case Alphabet

N
0-.

Numerics +1 +1 FO-F9 0-9 6 D

UTS TECHNICAL MANUAL SECTION DC
PAGE 'i.7

CONTROL FUNCTIONS 3/27/72

Input Char{s) Carriage Record EBCDIC Echo Activation Special (I) mrnediate or
{First Set for TTY, Position Size Code Action (~ferred

Second Set for 2741

CR 0 +1 OD CR LF D
NL NL

LF 0 +1 15 CR LF D
Upper Case NL NL

FS (L CS) +0 +1 x:: D
none

-GS (M cs) +0' +1 1D D
t-.) none

" RS (N
cs

) +1 lE D
none

US (cfs) +0 +1 1F D
SPACE-:AITN

Ie, HT, ESC I *3 *3 *3 *3 5 *3 D
Tab

/ , =,), or t +1 +1 XDS / , = ,~ort 5 D
EBCDIC

Must be followed by ATTN

[+1 +1 B4 for TTY33 - 37 4 D
t for TTY 33 .. 37

none 4F for 7015 1 for 7015

'J +1 +1
J5 ffcfr 1iW1j~37 4 D none 5F for 7015 -, for 7015

CONTROL FUNCTIONS SECTION DC
PAGE 28

Input Char{s) Carriage Record EBCDIC Echo Activation Special (I)mmediate
(F irst Set for TTY, Position Size Code Action or

Second Set for 2741 (~ferred

ESC U +2 N.A. U, 2 Set or Reset D
U ATTN +1 U Restrict AI pha-

betics to Upper
Case Mode

ESC { +2 +0 N.A. {\ 2 I nterpre t AI pha- D
{ ATTN +1 -(betics Normally

ESC) +2 N.A.), 2 Interpret Upper 0
) ATTN +1 -) Case AI phabetics

as Lower

none Select Upper 0
N Upper Case Sh i ft N.A. 2 Case Half of co

Keyboard

none Select Lower Case D
Lower Case Shift -+{) +0 N.A. 2 Hal f of Keyboard

ESC T +2 -+{) N. A. T\ 2 Reset or Set T cbs D
T ATTN +1 T Simulation Mode output

only

ESC S +2 +0 N. A. S' 2 Reset or Set Space D
S ATTN +1 S Insertion Mode

ESC E +2 -+{) N.A. E" 2 Reset or Set D
none Echoplex Mode

ESC R CPI +Re-
R ATTN + Current +0 N. A. ~tYPing 2 Retype the effective D

Record R of the Current Input Line
Size input Ii ne

UTS TECHNICAL MANUAL

NOTES

SECTION DC
PAGE 29

3/27/72

* 1 - The break signal causes one of several actions to take place in the following
hierarchy:

a. If four consecutive breaks have been received without other intervening
Input, treat as -YC.

b. If an M:INT has been issued by the running program, honor it.

c. 'If DELTA is in control, go to DELTA.

d. Escape to TEL.

*2 - If Overstrike Edit Mode (0 ATTN) is in effect, BS is preempted as an editing
character. 8S ATTN also takes on special meaning as does SPACE under certain
circumstances. In the Overstrike Edit Mode normal input is identical to that when
the mode is OFF. However, the 85 character is merely treated as a cursor
positioner. After (one or more) BS characters has been received the following
rules apply:

a. The size of the record does not change (except by BS ATTN or X ATTN)

b. SPACE is treated as a forward cursor posi ti oner.

c. Normal Characters are stored over the character at the current cursor
position.

d. BS ATTN is treated as a SPACE to replace the current character (i. e., the
character at the carriage position before the BS) and two spaces are echoed
to position the cursor properly.

e. All attention sequences are honored but also cause the cursor to move
position.

129

UTS TECHNICAL MANUAL

SECTION DC
PAGE 30
3/27/72

f. Normal rules continue to apply when the cursor reaches the position it
had before the first BS.

g. Any record delimiter causes the record to be accepted as it currently
exists.

h. Tab characters are treated as specified in *3 below, i. e., it is a tab
character to be stored or n SPACES for cursor posi tioning dependi ng on
the state of the space insertion (ESC S) switch.

*3 - The tab character causes a variety of actions (upon output, echoing, and
the resultant input record) depending upon the device type, the state
of the Tab Relative Mode (ESC C), the Echoing tv\ode (ESC E), the Tab
Simulation Mode (ESC T), and the Space Insertion Mode (ESC S).

The Tab Relative Mode is meaningless for output. For input the mode
specifies that tabs are to be considered relative to the beginning of the
input record. The tab stops (if present) are thus adjusted for each
operation by the amount of the initial carriage position. In further
discussion Tab Stops are defined as the effective tab stops after ad
justment.

The remaining discussion is presented in tabular form with the following
parameters defined:

CPOS - Current Carriage Position
CPI - Carriage Position of the Beginning of an input message
ARSZ - Number of characters accumulated in current input message
TRSZ - Difference between Size of input message if space insertion were on

and ARSZ.

When no tab specifications are present, a value of one greater than
current carriage position i:; assumed, but if physical tabbing is involved
the carriage is assumed to move 10 positi ons. The following table il-
lustrates the results of a tab character when received as a function of affecting
modes of operation:

130

SECTION DC

UTS TECHNICAL MANUAL
PAGE 31
3/27/72

Tabs ESCC ESCT ESCS Devices Tab Stop (TS) Echo ARSZ TRSZ CPOS -
N 0 0 1 TTY 33, 7015 N.A.)5)5 N. A. CPOS+1
N 0 0 0 TTY 33, 7015 N.A.)5 HT N°. A. CPOS+1

N 0 0 TTY 35, 37 N.A. HT HT N.A. CPOS+1
N 0 1 TTY 35, 37 N. A. HT W N.A. CP~S+l

N 1 0 TTY 35, 37 N.A.)5 HT N.A. CPOS+1
N 1- 1 TTY 35, 37 N.A. l{ W N.A. CPOS+1

N 0 0 0 TTY 35, 37, 2741 N.A. nil HT N.A. CPOS+1

N 0 0 1 TTY 35, 37, 2741 N.A. nil Jr{ N.A. CPOS+1

y 0 0 0 TTY 33, 7015 Stop after W HT TS-CPI-ARSZ-1 CPOS+1
y 0 0 1 TTY 33, 7015 CPI+ARS Z)5 (TS-CPI- 0 CPOS+1

+TRS Z ARS Z) W
w

y 0 0 TTY 33, 7015 (TS-CPOS) HT TS-CPI-ARSZ-l TS
W

y 0 TTY 33, 7015 (TS-CPOS) (TS-CPI- 0 TS
W ARS Z)W

Y 0 0 0 TTY 35, 37, 2741 Stop after ni I HT TS-C PI-ARSZ-1 TS

Y 0 0 1 TTY 35, 37, 2741 CPI+ARS Z nil (TS-CPI- 0 TS
+TRS Z ARS Z)W

Y 0 0 TTY 35, 37 Stop after HT HT TS-CPI-ARSZ-1 ts
Y 0 1 TTY 35, 37 CPI+ARS Z HT (TS-CPl- 0

+TRS Z ARS Z)~

Y 0 TTY 35, 37 (TS-CPOS) HT TS-CPI-ARS Z-I TS
~

Y • TTY 35, :r7 (TS-CPOS) (TS-CPl- 0 TS
~ ARS Z)W

N 0 0 2741 Not Allowed

SECTION DC
PAGE 32
3/27/72

UTS TECHNICAL MANUAL

*4 - Upon receiving an upper or lower case Alphabetic character {after
device shifts are accounted for, of course} two possible transformations
take place. First, if ESC) has been received, Upper Case AI phabetics
are transformed to Lower Case. Then, if IRestrict Alphabetics to
Upper Case l is in effect {ESC U}, all Lower Case Alphabetics are
transformed to Upper Case.

Output Action

When an M:WRITE is executed, presenting a record to the COC handler, the
following actions take place {unless DRC and BIN is specified}:

a. If the DCB has VFC specified, the first character is examined. Then:

1) If the character is XIF 11 a new page is issued.

2) If the character is XICXI, X upspaces are issued. If the bottom margin
is reached a new page is issued and no further upspac ing is done.

3) If the character is XI60 1 or XIEOI thh fact is memorized. These
characters specify linhibit upspace l.

4) If not I, 2, or 3 the fi rst character is ignored.

b. If the record contains more than three trai ling blanks, all are suppressed.
However, if the entire record consists of blanks, a single blank will be output.

c. The characters remaining are translated ard sent to the terminal except
where special action is indicated. The following characters invoke
special action:

Null
HT
FF
CR
LF
CR
LF

00
05
OC
OD
15
00
15

Terminate Character Processing
See Below
A new page is issued
CR and NL are issued to TT IS
CR and NL are issued to TTyis
NL followed by appropriate number of idles
are sent to 2741's

132

UTS TECHNICAL MANUAL

LF (specifia)
[
]

1
-,

20
84
85
4F
SF

SECTION DC
PAGE 33
3/27/72

Line feed 'only is issued
[on nYls ton 7015
] on TT'fs, on 7015
I on 7015 [on TTY's

-1 on 7015 Jon TTY's

Lower/case alphabetics send upper/case alphabetics on TTY33, 7015, and some
2741 terminals.

HT causes the following actions:

Tabs ESCT Device Transmitted CPOS

N
Y
Y
N
N
Y
Y

o
o
1
o
1
o
1

TTY 33, 7015
TTY 33, 7015
TTY 33, 7015
TTY 35, 37, 2741
TTY 35, 37, 2741
TTY 35, 37, 2741
TTY 35, 37, 2741

J6
J6
J6 to next stop
HT
J6
HT
J6ls to Next Stop

CPOS+1
CPOS+1
Next Stop
CPOS+10
CPOS+1
Next Stop
Next Stop

d. After all characters are processed (or Null is encountered), the calling DC8
is checked. IF M:UC or if the line terminates with CR, LF, SYN, or specific
LF (x 1201

) no further action takes place. Otherwise a CR, LF is sent to the
terminal unless the format control character was X'60' or X'EO', in which case,
a CR only is sent (inhibit upspace.) -

e. In the course of the output, line length control and pagination control are
maintained.

If DRC and BIN is specified (indicating transparent text), the record as presented
by the user is transmitted exactly with no special functions performed and no
translation.

133

UTS TECHNICAL MANUAL

SIZE AND TIMING

SECTION DC
PAGE 34

3/27,/72

Approximately 2000 words of memory are required for cac handl ing routines,
and are allocated as follows:

1. Input and output interrupt routines take up 500 instructions.

2. Read/write routines are comprised of 500 instructions.

3. Activation detection and echoing routines contain 400 instructions.

4. Get/put buffering routines have 200 instructions.

5. line detection and intialization routines have 200 instructions.

6. The teletype translation table requires 65 words of memory.

7. Miscellaneous tables and constants comprise the remaining 135 words.

Additional storage is required for each communication line in the system; 23
bytes for control information and eight words {average} for buffering input and
output messages.

IBM 2741-type terminal translation tables are available via SYSGEN parameters
for EBCD and standard code sets.

Four translation tables are ava lable for 2741-like terminals, allowing translation
of EBCD and Selectric {r} code sets with either standard or APL keyboards. Each
translation table adds 96 words to storage requirements if incorporated in a system.

Assembly parameters have been defined to allow conditional assembl ing of the
procedure concerning 2741 terminal logic, page headings, performance monitoring,
and buffer security checking. Assembl ing out all of these will reduce core re
quirements by 760 words.

134

UTS TECHNICAL MANUAL

Approximate execution times in microseconds are:

Write processing - per write 250
additional per character 140

Read processing - per read 580
additional per character 220

Input interrupt processing -
per character 110

Output interrupt processing -
per character 80

Buffering routines - per 14
characters buffered 110

SECTION DC
PAGE '35
3/27/72

Assuming an average write size of 40 characters and an average read size of ten
characters, the per characteF execution time will be approximately 235 J.lsec on
output and 399 J.lS on input. Average terminal I/O rates of one character input
and four characters output per second per user resuit in an ovemead burden of
13.4% of a SIGMA 7CPU per one hundred users.

135

UTS TECHNICAL MANUAL

ID

cac - Control Routine

PURPOSE

Provide common entry and exit for terminal I/O CAL 1 processing.

USAGE

SECTION DC. 01. 01
PAGE .J.
3/27/72

Effective, BAL, 11 COC: Actually a branch to COC from the I/O scheduler
which was originally called via R 11.

INPUT PARAMETER:

R8 FCN, DCB address
FCN - function code in byte 0
o - read BCD
1 - read direct BCD
2 - read BIN
3 - read direct BIN (transparent)
4 - write BCD
5 - write direct BCD
6 - write BIN
7 - write direct BIN (transparent)

SUBROUTINES

COCWR
COCRD
WTMSGSIZ

INTERACTION

COC
SETTYC

called if the function code is a write operation.
called if the function code is a read operati on.
called to record performance data.

called from the I/O scheduler (lOQ) for terminal I/O.
called to set up the type of completion code returned from
COCWR or COCRD in the user1s DCB.

136

DESCRIPTION

SECTION DC. 01. 01
PAGE 2
3/27/72

UTS TECHNICAL MANUAL

The byte count is extracted from the DCB (BLK field) as is the buffer address
(QBUF field) which is then converted to a byte address with the HBTD field of
word 0 of the DCB added. The line number is extracted from the M:UC DCB.

Control is passed to COCRD or COCWR dependent upon a valid value for FCN.
If FCN is inval id, then control is returned to the caller (R 11) after setting the
TYC field of the DCB to 3.

Upon return from COCRD or COCWR, SR 1 contains the ARS value which is then
stored in that field of the DCB. D 1 contains the TYC value which is put in the
DCB via a call to SETTYC before returning to the original CAL 1 caller.

137

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137

