n
-
2
5
=
2
»
o
=
B
©
£
o
@
=
=
@
=
=
=

Rank Xerox

Sigma 6/7/9 Computers

Basic Control and Basic 1/0

Technical Manual

@: S

BN

EGEEEE
ST T e T gy [Gy LS
= iasleaaies

a3
|
|
)
A e

hf»m\;_ e _.wHHmu B

|

|
i
rase] [

il b

NG

!
‘
=

G B A=A

Eee] {ial |

{ ;. , ,

— ﬂl\\‘\, —
\/y///\,u \4

IS S =l
V]

S, R

Universal Time-Sharing System (UTS)

Sigma 6/7/9 Computers

Basic Control and Basic 1/0
Technical Manual

First Edition
90 19 85A

February 1973

Price: $5.25

NOTICE

This publication documents the basic control and basic 1/O routines that operate under the Universal Time-
Sharing System (UTS) for Sigma 6/7/9 computers. With the exception of Section DA (Device 1/0 subsection), all
material in this manual reflects the CO1 version of the UTS operating system. Section DA reflects the BO1 version
of UTS.

RELATED PUBLICATIONS

Title Publication No.
UTS Overview and Index Technical Manual' 90 19 84
UTS System and Memory Management Technical Manual 90 19 86
UTS Symbiont and Job Management Technical Manual 90 19 87
UTS Operator Communication and Monitor Services Technical Manual 90 19 88
UTS File Management Technical Manual' 90 19 89
UTS Reliability and Maintainability Technical Manual 90 19 90
UTS Interrupt Driven Tasks Technical Mc;nuclr 90 19 91
UTS Initialization and Recovery Technical Manual 90 19 92
UTS Command Processors Technical Manual 90 19 93
UTS System Processors Technical Manual 90 19 94
UTS Data Bases Technical Manual 90 19 95

"Not published as of the publication date given on the title page of this manual. Refer to the PAL Manual for cur-
rent availability.

The specifications of the software system described in this publication are subject to change without notice. The availability or performance of some features
may depend on a specific configurction of equipment such as additional tape units or larger memory . Customersshould consult their Xerox sales representative
for details.

Basic Control - Traps and Interrupts

CONTENTS

Purpose

Overview

Tempstacks

The User Tempstack

Special CAL1 Processes
Traps

ENTRY

Purpose

Subroutines

ENTMAP

MAPUNMAP

ENTSUB

Execution Trap Entries
NOPPGM, FIXOVF, FITFLT, DECFLT
STKOVF

UNIMP

CAL2XXX, CAL3XXX, CALAXXX

CAL Trap Entry

CALIP

Monitor Exit From CAL Processing

TRAPEXIT

Unused Clock Entries

CLKIXXX, CLK2XXX

CALPROC - CAL]1 Dispatcher

Purpose

Usage

Input Registers
Output Registers

Interactions

T:OV (REMEMBER)

RECORD
Data Bases

cnmtv

C11CDS
DEVCDS

ciz2rv

C12CDS

Subroutines

ANLZB

CHECKCAL

CVREG

GTwD

ISEXU

Description

ALTCP - Alternate CAL Processor and Trap Handler

Purpose

Overview

Usage
Alternate CAL processor CALCK

Trap Processor 40TRAP

Undefined and Illegal Trap Entry BADCAL and CALBAD

Interactions

Alternate CAL Processor

CVREG

RECOVER

sy
i

O AW — - —

OO V00V VOOV V®WOwWOmOoow oo

— —

Trap Processor

RECOVER

T:REG

T:PAC

T:ABORTM

T:SSEM

T:UTSXTS

Descriptions

Alternate CAL Processor

Trap Processor

Flowchart for ALTCP

TABLES, S9TRAPS - Error Trap Handlers

Purpose . .

Usage
Interaction

Data Bases

JB:CMAP

J:JAC

HIGH

DCTS1Z

DCT1

DCT5

S:CUN

UBJIT = .

JBUP

Description
Introduction

Sigma 9 Parity Error Trap

Sigma ¢ Memory Fault Interrupt

Sigma 7 Memory Parity Interrupt
Watchdog Timer Runout Trap

Sigma 9 Instruction Exception Trap

Parity Error Trap Service Routine
Parity Error Logging Subroutine

Set Maximum Error Level Subroutine

Register Altered Flag Test Subroutine
PDF Double Trap Routine

Sigma 7 Memory Parity Interrupt Service Routine

Watchdog Timer Runout Trap Service Routine
Instruction Exception Trap Service

DEVICE 1/O
Functional Overview

Operational Overview

Procedures for Making Requests
Channel Concept

Separation of Priorities and Control Task

System Flow
System Tables

Description of Routines

NEWQ
QUEUE, QUEUET

GETQ

IOSERV, IOFORCE
SERDEV

Standard Register Setup

CTEST

CTRIG

STARTIO

IOINT
CLEANUP

16
16
16
16
16
16
16
16
16
18
20

21
21
21
22
22
22
22
22
22
22
22
22
22
22
22
22
23
26
26
27
28
29
35
36
37
38
41
44
46

47
47
47
51
54
54
54
54
57
57
57
57
58
58
60
60
60
61
63
63

REQCOM

OCINT

CTIOP

IOREC

MSGOUT

OCQUEUE

Handler Interface

COMLIST

IOSERCK

TOSEREC

RE:ENT

4CHAR

Handler Descriptions
Typewriter Handler

RAD Handler

9-Track Tape Handler
7-Track Tape Handler

Card Reader Handler

Line Printer Handler

Paper Tape Handler

Card Punch Handler

Disk Pack Handler

Flow Charts

Service Device

Start a Request
1/O Interrupt

Process Cleanup

Control Panel Interrupt

Swapping RAD 1/O - T:SIO

Purpose
Usage

Overview

Errors

Interaction

T:SSE

RECOVER

T:SEXIT

DOWTCK

DORDCK

Subroutines

Description

COC - Terminal 1/O
Introduction

Organization
Data Bases

Line Tables

Obtaining Terminal Line Table Information

Values in COC Line Tables
Buffers

Error Counts

Executive Message

Translate Tables

Control Functions

Size and Timing

COC - Control Routine
Purpose

Usage

65
65
66
66
67
68
68
70
71
72
72
73
73
73
73
74
75
75
76
76
77
78
78
83
88
91
95

97
97
97
97
97
98
98
98
98
98
98
99
99

102
102
102
102
102
105
106
107
109
109
109
122
134

136
136
136

Subroutines

COCWR

COCRD

WTMSGSIZ
Interaction

CcocC

SETTYC

Description

vi

136
136
136
136
136
136
136
137

SECTION C
PAGE 1
3/27/72

UTS TECHNICAL MANUAL

ID

BASIC CONTROL - TRAPS AND INTERRUPTS
PURPOSE

The primary function of the Monitor trap routines is to establish a means by which a
user program may communicate with the Monitor and vice-versa. For example, the
user may request the Monitor (via CAL instructions) to perform such operations as
building files, retrieving data, setting interrupts, loading program segments, and
providing debugging diagnostics. In addition to servicing these requests, the Monitor
may communicate to the user that he is attempting to execute non-allowed operations,
or perform unimplemented instructions, and the like. Trap and interrupt routines also
are activated by hardware error conditions which may result in a user abort or system
recovery.

The function of the interrupt routines is to provide service to the monitor itself for
processes which are not user associated, e.g., 1/O interrupt processing, symbiont
activity, polling of COC lines, etc. The modules discussed in this chapter provide

the means by which this two-way communication is effected. Basically the

mechanism is one of analyzing and servicing the hardware traps and interrupts when they
occur. (This section discusses only the processing of "internal" interrupts, i.e.,

clock interrupts, 1/O interrupts, etc. The use and processing of external interrupt
(e.g. X'60' and X'61') is discussed in COCINIT, section DC).

OVERVIEW

A trap or an interrupt occurs when conditions at the hardware level cause what may
be considered an unconditional hardware "branch"”. A number of conditions may
cause this branch to occur; e.g., an attempt to execute an unimplemented
instruction, to reference a nonexistent memory location, a hardware error, or a
value of zero in a clock interrupt counter. In addition, four instructions (CALI,
CAL2, CAL3, and CAL4) cause a trap condition and thus the hardware branch

when encouptered during the execution of a program. Hardware errors (Section CD)
also result in trap conditions and cause this unconditional hardware "branch".

When the branch takes place, control is transferred to one of the pre-defined
memory locations X'40' through X'5D', referred to collectively as the trap and
interrupt locations. Each of these locations contains an instruction stored there
at system initialization by INITIAL. The execution of these instructions is the
means by which communication is established between the Monitor and a user

SECTION C
PAGE 2
3/27/72

UTS TECHNICAL MANUAL

program or between the Monitor and the hardware or operator. The UTS modules
involved in establishing the communication are

TABLES, ENTRY, CALPROC, ALTCP, 10Q, PFSR, CLOCK4, SPTRAPS.

When writing his program, the UTS user requests Monitor services by coding a
Monitor procedure within his program.

SECTION C
PAGE 3
UTS TECHNICAL MANUAL 3/27/72

When a procedure call is encountered while the program is being assembled or
compiled, the processor responds by retrieving a symbolic calling sequence from
the procedure library, modifying it according to the parameters specified by the
user, and inserting this symbolic code into the program, Typically this symbolic
code begins with a CAL1 instruction and continues with a variable number of
words containing the user's parameter information, referred to collectively as the
Function Parameter Table (FPT). When a CAL1 instruction is encountered at
execution time, the hardware branches to trap location X'48'. The instruction
at X'48' is an exchange program status doubleword (XPSD) which, when executed,
transfers control to a subroutine in ENTRY. ENTRY saves a 19 word environment
(2 word PSD, odd word, 16 registers) and branches to CALPROC where decoding
of the CAL begins.

The XPSDs in the interrupt locations do not transfer control to ENTRY but go directly
~ to the appropriate interrupt routine.

TEMPSTACKS

In UTS there are three levels of tempstacks involved in CAL and trap processing;
the monitor tempstack (unmapped JIT), the users monitor tempstack (mapped JIT)
and the users tempstack (mapped user TCB). The users tempstack enters the picture
only if an illegal trap occurs for which the user has requested trap control.

User JIT User TCB
8000 8C00 (CO00 eg)

Mapped virtual memory

3 ~

Unmqpped Monitor
physical
memory 0 (7600 eg) 8C00= (A000) (B200)

Monitor JIT eg. eg.

SECTION C
PAGE 4
UTS TECHNICAL MANUAL 3/27/72

UTS monitor routines reference the monitor tempstack via the stack pointer
doubleword (SPD)* named TSTACK. The SPD and tempstack are located in JIT.
A crucial design feature of UTS is that user JITs have a fixed virtual address
which is the same as the real physical address of the monitor JIT. Thus all
monitor routines simply reference TSTACK and the setting of the map bit in the
current program status doubleword determines which JIT is affected. When a
trap occurs, the 19 word environment is pushed into the stack in the JIT in use
at the time of the trap. Interrupts always push into the unmapped JIT even if
the process interrupted is mapped.

THE USER TEMPSTACK

If the user has specified that he wants to process traps when they occur, the
Monitor saves the user's PSD, general registers, and the location of the trap

in the user tempstack before giving control to the user program. These 19 words of
information are saved on a doubleword boundary in the user tempstack.

The address of the user's tempstack and its size are saved in the first two words of the
Task Control Block (TCB). A description of how the Monitor uses these TCB entries

to save the PSD, registers and trap location is given in the discussion of ALTCP,
subroutine STKTOTMP.

SPECIAL CAL1 PROCESSES

For a CAL1, 1 which is executed itself, i.e. not executed as the result of execution
of an EXU instruction, a special accelerated path of code is provided in the ENTRY
module starting at symbolic location CAL1IN2. This code performs the jobs of
placing the PSD and registers into the stack, switching the clock to overhead, and
establishing the FPT and DCB addresses before entering the CALPROC module at
symbolic location CALTINZ,

*See XDS Sigma 7 Computer Reference Manual for a more detailed description of
a stack-pointer doubleword.

TRAPS

XPSD’s cssembled in
INITIAL, stored in 40-41

at system initialization

XPSD double
doublewords in
TABLES

Trap interrupt entry points.
Routine which contains the entry
point is named in parentheses

40 Non=allowed oo

41 Unimzlomented Instr,
42 Stack Trap

43 Fixed Overflow

44 Flocting Point Fault
45 Dacimal Fault

44 \Watchdeg Timer

43 CALI

4% CAL2

AA CAL3

43 Col4

4C SIG!A9Q Parity Error
4D SIGMAZ® Instruction

INTERRUPTS

50 Poweron

51 Poweroff

52 Clock 1 pulse

53 Clock 2 pulse

54 Clock 3 pulse

53 Clock 4 pulse

36 Memery Tarity

57 SIGMA? Memory Fault

58 Clock 1 counter zero
57 Clock 2 counter zero

5A Clock 3 counter zero
53 Clock 4 counter zero

¢ I/0

5D Console interrupt

60 COC input
61 CCC output

XPSD NOPPSD
XPSD UNIMPPSD
XPSD STKLPSD
XPSD FIXQVPSD
XPSD FLTFPSD
XPSD DECPSD
XPSD WDOGPSD

X0sC CALIPSD
XpSD CAL2PSD
XFSD CAL3PSD
XPSD CAL4PSD
XPSD PARERRPSD
XPSD INSTXPSD

XPSD POWERON
XPSD POWEROFF
MTW, 0 0

MTW, -1 M:RCLOCK2
MTW, -1 TINC
MTW, 1 J:DGLTAT
XPSD PERPSD
XPSD MEMFTPSD

XPSD CLKIPSD
XPSD CLK2PSD

XPSD CLK3PSD
XPSD CLX4PSD
XPSD 1OPSD

XPSD OCPSD

XPSD COCINI
XPSD COCOUTI

NOPBPSD
UNIMPPSD
STKLPSD
FIXOVPSD
FLTFPSD
DECPSD
WDOGPSD

PARERRPSD*
INSTXPSD*

POWERON both in
POWEROFF PFSR

PERPSD

MEMFTPSD*

CLK1PSD
CLK2PSD

CLK3PSD
CLK4PSD
10PSD

OCPsD

COCINI
COCOUTT,

* PSD Contained in SYDATA Module generated by SYSGEN PASS2

NOPPGM
UNIMP
STKOVF
FIXFLT
FLTFLT
DECFLT
WDOGPGM (TABLES)

CALIP

CAL2XXX
CAL3XXX
CALAXXX
PARITYER (S9TRAPS)
INSTXCPT (S9TRAPS)

(ENTRY) ALTCP

ALTCP

BEGINON

peGINOFF (PFSR)
(SSDAT)

(PMDAT)

(JIm

MEMPAR = (TABLES)
MEMFAULT(SITRAPS)

(Point of interrupt)
(Point of interrupt)

CLOCK(-;CLOCKQ
CLK4 -(55S)

IOINT oQ
OCINT aoq)
COCIP (CoQ)
Ccocor

winiRY) CALPROC CAL}, 1 or 2 SERVICE

MODULE

TIVANYW TYDINHOAL Sin

N woIw
o NZA
WSm3
O NwO
8] Z
0 0

TRAP IN LOCATION X'48'
CAL1: Call a monitor service
routine,

Monitor Segment Name

User Program
executes CALI1
instruction

I-

SECTION C
PAGES
3/27/72

- - -

TRAP to Location X'48'

Executes XPSD ave user's
TABLES instruction in PSD and
location X'48' ransfer control
o ENTRY
--------------- T C-ALIP i T
save user's PSD
ENTRY and registers in
TSTACK
Save 'R' field The lR' field iS
h[fhe condition used as a displacement
codes]from into CALPROC transfer
| new PS
CALIPI v
Decode CALI,
CALPROC 'R' instruction
and get FPT
Lcode
ive control to
yes AL1, 1; CALI, 2;
r CAL1, A monitor
outines according t
____________________ no [EPTL
CALCK
give control to
CAL), 3 -
ALTCP CALI, 5; CALI,
8 and CALLl, 9 service
routines '
- - . 2
Exit to T:SSEM
ENTRY (SSS) to

return to user

SECTION C

PAGE 7
A An external event triggers clock 'tick' occurs 3/27/72
the execution

Execute: Modify and test

instruction. If the contents [Decrement clock

of the location modified ltime cell (MTW)
B (time cell) becomes zero, T l

the hardware will 'branch’

to the interrupt location
connected to the time cell

©

Did cell time — » Continue normal

become execution
zero

yes

-------------------------------------- —Pp——

ranch to clock
nterrupt location an
xecute an XPSD

rocess fF;
interrupt and
reinitialize time
cell

PSD of PSD , ,
saved when executed (Return to point of interrupt)
PSD

SECTION CA

PAGE |
UTS TECHNICAL MANUAL 3/27/72
D
ENTRY
PURPOSE

This module contains the subroutines for entry to and exit from the Monitor when
processing CAL's and traps (except hardware error traps). Since it is
part of the root of the Monitor, it is always in core.

The subroutines for entry to the Monitor perform the functions of saving the current
environment (PSD and registers) and providing basic decoding routines whereby
control is transferred to the appropriate Monitor service or fault routines. Later,
when a given function has been processed, control is returned to this module
which then provides an exit route from the Monitor.

SUBROUTINES

ENTMAP - This procedure is invoked at the beginning of each entry point
in ENTRY except for the stack overflow and clock 1 and 2
entries. It saves the trap condition codes, sets the map bit in
the current PSD according to the map bit in the PSD at the
time of the trap, pushes the 19 word environment and changes
the scheduling clock, clock 4, to count in the service time
counter, J:OVHTIM,

MAPUNMAP - determines if trap PSD was mapped or unmapped. It sets the
current PSD map bit according to the trap PSD and checks if
there is room in the stack for a 19 word environment. If not,
branch to recovery entry point, RECOVER. Otherwise, push 7
registers and exit.

ENTSUB- pushes the remaining 12 locations of the 19 word environment.
It then does a store double of the trap PSD into the first
doubleword of the 19 word environment in the stack. Finally,
the clock 4 pulse location is modified to tick into the service
time counter, J:OVHTIM, in JIT.

EXECUTION TRAP ENTRIES

NOPPGM, FIXOVF, FLTFLT, DECFLT

These entries go through the ENTMAP procedure, load register 3 with a one bit
mask according to the type of trap and load register O with the physical address

SECTION CA
PAGE 2
UTS TECHNICAL MANUAL 3/27/72

of the trap XPSD (e.g., X'40' for NOPPGM). Exit is to 40TRAP, the execution
trap processing routine in ALTCP,

STKOVF

The stack overflow entry is basically the same as the above trap entries except

that special checks must be performed to determine which stack is involved. If

the stack is a user stack, then STKOVF proceeds as above. If the stack is a
monitor stack (mapped or unmapped) special action must be taken to prevent the
monitor from looping. If the PSD at the time of the trap was master mode/unmapped
then it was the monitor tempstack and exit is to RECOVER (software check 1C).

If master/mapped the users monitor tempstack is arbitrarily initialized to look

empty and exit is to RECOVER where the user will be aborted.

UNIMP

The unimplemented instruction trap entry does an ENTMAP procedure, stores an
error code of 5 in the error subcode field ERO in JIT and aborts the user with a
code of X'A4' via T:ABORTM in STEP.

CAL2XXX, CAL3XXX, CAL4XXX
The CAL2, CAL3, CAL4 instructions are treated as execution traps. The ENTMAP
procedure is executed, an error code of X'B2' is loaded in register 14 and control

passes to CALBAD in ALTCP.

CAL TRAP ENTRY

CALIP

The only legal CAL in UTS is CALI. This entry point does an ENTMAP procedure
and transfers control to CAL1P11 in CALPROC.

MONITOR EXIT FROM CAL PROCESSING

TRAPEXIT

This is the common exit routine for CAL service modules of the monitor. It
increments by 1 the instruction address portion of the PSD which was saved in the
users monitor tempstack at CAL entry. It then exits to the execution scheduler
(SSS) at T:SSEM which schedules the current, or some other, user for execution.

SECTION CA
PAGE 3
UTS_TECHNICAL MANUAL 3/27/72

UNUSED CLOCK ENTRIES

CLKIXXX, CLK2XXX
UTS does not make use of clocks 1 and 2. If an installation should have these

clocks and if the counter zero interrupts should be armed and triggered, the
entry points here will execute an LPSD back to the point of the interrupt.

10

SECTION CB
PAGE 1
UTS TECHNICAL MANUAL 3/27/72

1D

CALPROC - CALI1 Dispatcher
PURPOSE

The function of CALPROC is to perform the initial decoding of CAL1, 1 and CALI, 2
(I1/0O related) CAL's and transfer to the appropriate service module. All other
CAL1's are processed by ALTCP (CAL1, 3-9). CALPROC also contains a common
exit point for most I/O CAL's, IOSPRTN, which determines if an abnormal or

error condition occurred during the CAL. If yes, IOSPRTN stores information in the
users registers and modifies the PSD in the users monitor tempstack to enter the

user at an error or abnormal address. CAL2, CAL3 and CAL4 are illegal traps in
UTS and are handled at entry point CALBAD in ALTCP.

- USAGE

B CALIPI from CALIP in ENTRY or CALI1IN3 for accelerated CALIs.
INPUT REGISTERS:

(RO)
(R3)

address of CAL1 instruction which caused the trap
condition codes and floating control ofter execution of the CALI
instruction in Byte 3, i.e., the register field of the CAL in bits 24-27,

OUTPUT REGISTERS:
If not CAL1, 1

(R6)= " contents of the effective address of the CAL = usually the first word of the
FPT

(R7)= address of the second word (word 1) of the FPT

(R8)= Byte 3 of R8 contains byte O of the FPT, i.e., FPT code and optional
indirect bit,

(R11)= address of common, non-1/O CAL exit, TRAPEXIT in ENTRY.
If CAL1, 1 (1/O CAL's),

(R6)= DCB address specified directly or indirectly in the first word (word) of the
FPT

(R7)= address of second word of FPT

(R8)= FPT code (optional indirect bit zeroed)

(R11)= address of common 1/O CAL exit, IOSPRTN in CALPROC

11

SECTION CB
PAGE 2
UTS TECHNICAL MANUAL 3/27/72

INTERACTIONS

T:OV (REMEMBER) The procedure REMEMBER is defined in System UTS (Section UD)
used in assembling UTS monitor routines. The procedure consists only of a "BAL, 14
T:REMEMBER", an entry point in the monitor/shared processor overlay associating
routine T:OV (Section EC).

RECORD - a diagnostic recording routine. It records information in a wrap-around
buffer. What information is recorded is based on a code input in R1 (Section LF).

DATA BASES

Cl1Tv- CAL]l, 1 transfer vector, word table, contains instructions

C1ICDS- CALI, 1 codes, byte table, contains FPT codes

These two tables are organized in parallel. The instructions in C11TV are either
"LI, 15 module address” or "B module address" and serve as a transfer vector for
I/O CAL's other than device type. The use of the tables is described below
under CHECKCAL under SUBROUTINES.

DEVCDS~- CALIl, 1 device codes, byte table, containd device FPT codes

The use of this table is described under. CHECKCAL below.
Cl12TV- CAL]1, 2 transfer vector, word table, contains instructions
C12CDS- CAL], 2 code, byte table, contains FPT codes

These two tables are similar to C11TV and C11CDS except that they are for CAL]1, 2
traps.

SUBROUTINES

ANLZB- analyzes the instruction in R1 and returns its effective address in RO.

CHECKCAL- The function of this routine is to search the specified byte table for

the specified number of entries against the code value in SR1 (R8). If the code

is found in the table, the instruction in the same entry of the specified parallel

table is executed and return is to the link address (provided the instruction executed
is not a branch). If the code is not found and the CAL is not aCAL], 1, exit

is to the illegal trap entry CALBAD in ALTCP, If it is a CALI, 1, checking continues
against the device CAL type FPT codes. If found, a REMEMBER procedure is
executed to record the current overlay and control is transferred to the device CAL
processing module, IOD. If not found, control is transferred to CALBAD,

12

SECTION CB

PAGE 3
UTS TECHNICAL MANUAL 3/27/72
INPUT REGISTERS:
(R1) = number of bytes to search
(R2) = address of table of codes to search
(SR1) = code value being searched for
(D1) = address of transfer vector table and also link register
Exits: There are four ways CHECKCAL can be exited.
1) Executing a branch instruction in a transfer vector table.
2) Executing a "LI, 15 module address" instruction in the transfer vector and

exiting to the link address.
3) Unconditional branch to C11TV if a device FPT code is found and,
4) Unconditional branch to CALBAD if the FPT code is not in the table,

CVREG - This routine performs the conversion of RO mentioned under GTWD,

GTWD - The purpose of this routine is to load R1 with the contents of the address
pointed to by RO, If (RO) is a register (0<(RO)< 15), the location in the users monitor

tempstack that contains the contents of the register is loaded into RO by subroutine
CVREG.

ISEXU - This routine checks if the contents of R1 is an EXU instruction. If yes, it
exits to the link address; if no, it exits to link address plus one.

DESCRIPTION

At entry the total system CAL count (C:CAL) and the total CAL count for the current

user (J:CALCNT) are incremented. Preliminary decoding of the CAL is performed leaving
the R-field of the CAL, the first word of the FPT, address of FPT plus one, the FPT code
and the non-1/O exit address (TRAPEXIT) in registers. The CAL is recorded in the
diagnostic wrap around buffer via RECORD, A switch is then executed on the R-field

of the CAL. If it is not a CAL, 1 or CAL], 2 control goes to ALTCP for dispatching, If

it is a CAL]1, 2 the code is checked and control is transferred to the appropriate service
module.

If it is a CAL], 1 the FPT code byte is checked for the indirect bit. If set, the DCB
address is fetched indirectly through the first word of the FPT, The DCB address is checked
for validity by comparing the specified DCB address against the chained DCB table which
starts at ADCBTBL in JIT. If the specified DCB address is not found, the user is aborted
with a code of X'AF', If the DCB is M:UC, only read, write, and device operations are
allowed. If another operation is specified, no error is returned, but the request is ignor-
ed. Next the specified FPT code is checked against the table of legal CAL1, 1 FPT codes
by the routine CHECKCAL. Before entering CHECKCAL, R15 is loaded with the entry
address of 1OD (device CAL processor) and R11 is loaded with the common /O CAL exit

13

SECTION CB
PAGE 4
UTS TECHNICAL MANUAL 3/27/72

address IOSPRTN. Immediately following the BAL to CHECKCAL is a call on
T:REMEMBER in T:OV which remembers the current overlay and exit address

(R11) in the overlay tempstack and which causes the current overlay to be
reassociated upon exit from processing the incoming CAL, Following the BAL to
T:REMEMBER is a "B *R15". The effect of this sequence is to cause a "REMEMBER"
for those FPT codes that have a "LI, R15 module entry" in the parallel transfer
vector table. Those which have a "B module entry" go directly to the routine

from CHECKCAL.

The common [/O exit point, IOSPRTN, checks (R8 # 0) if return .is to be made to the
users error or abnormal address. If not, exit to TRAPEXIT in ENTRY which causes
control eventually to return to the user at CAL plus one. If control is to go to the
user's error/abnormal entry, check if run status abort bits are set (J:RNST). If yes,
exit to TRAPEXIT (SSS will catch the abort bits on the way out of the CAL at
T:SSEM). If no, set up the users registers 8 (address of CAL plus one) and 10

(error code and DCB address) and modify PSD in the users monitor tempstack to

point to the error or abnormal address specified in the DCB or in the FPT. Exit

is then to TRAPEXIT1 in ENTRY which stores the PSD back into the stack and exits
to T:SSEM which leads ultimately back to the user.

14

SECTION CC
PAGE 1
UTS TECHNICAL MANUAL 3/27/72

ID

ALTCP - Alternate CAL processor and trap handler

PURPOSE

To dispatch CAL1, 3 -CALI1, 9 requests to the appropriate service module. It also
processes traps 40~46, illegal CAL traps 49-4B, and undefined CAL] traps.

OVERVIEW

This module performs two logically distinct functions. One is alternate (to CAL1, 1
and CAL1, 2) CAL processing (entry CALCK); the other is trap handling (entries
40 TRAP, BADCAL and CALBAD). There will be two instances below of each

section devoted, respectively, to alternate CAL and trap processing.

USAGE

Alternate CAL processor CALCK:

B CALCK from CALPROC

(R3)= R-field of the CALl (e.g., if CALI, 8 then (R3)=8)

(R)= Contents of st word of the FPT pointed to by the CAL

(R7)= Address of FPT+1

(R8)= Byte O of the 1Ist word of the FPT, i.e., the FPT code and optional

indirect list
RYI)= address of common CAL exit point, TRAPEXIT, in ENTRY

Trap processor 40TRAP:

B 40TRAP from ENTRY

(RO)= address of trap location (X'40'-X'46)

(R2)= condition codes and floating controls after the trap in Byte O
(R3)= a 1 bit mask corresponding to the type of trap (trap location)

X'80' - illegal CAL (X'49'-X'4B', CAL2-CAL4) or undefined CAL
(invalid R-field or FPT code on a CALI)

X'20' Non-allowed operation trap (X'40')

8 Stack limit trap (X'42')

4 Floating point fault trap (X'44')

2 Decimal fault trap (X'45')

1 Fixed point arithmetic fault trap (X'43')

(R4)= address in users or monitor TSTACK which (when doubleword

accessed) points to the trap PSD, i.e. the address can be odd or
even.

15

SECTION CC

PAGE 2
UTS TECHNICAL MANUAL 3/27/72
Undefined and illegal trap entry BADCAL and CALBAD:
B BADCAL This entry is for undefined CAL's and simply loads

R14 with a monitor error code X'AE' and falls into
CALBAD (from CALPROC and ALTCP)
B CALBAD From ENTRY
(R14)= monitor error code
X'AE' - undefined CALI
X'B2' - illegal CAL2-CAL4

INTERACTIONS

Alternate CAL processor:

CVREG A subroutine in CALPROC is used to compute the true memory address
of the register address in RO, i. e., the address in TSTACK of the
users register specified in RO.

RECOVER The system recovery routine (Section LD)

Trap Processor:

RECOVER The system recovery routine (Section LD)

T:REG "Report event and give up control” entry in the execution
scheduler (5SS, Section EA). Used here to re-associate a
debugger when a user traps who has a core library and debugger
associated.

T:PAC Memory management set processor access routine (in MM, Section
GA). Used here to set the access register to allow the debugger
(DELTA) to store into its context page.

T:ABORTM "Monitor is aborting the user" entry point in the job step control
routine STEP, Section EB.

T:SSEM "mapped exit from monitor to user" entry point in the execution
scheduler (SSS).

T:UTSXTS A subroutine in the execution scheduler SSS which moves a 20

or 21 word environment from the users monitor temp stack, TSTACK,
to the user temp stack in the users TCB.

DESCRIPTION

Alternate CAL processor

The FPT code byte in byte 3of R8 is checked to see if the indirect bit is set. If it
is, R6 is loaded indirectly through word O of the FPT via CVREG. The routine then
switches on R3, which contains the R field of the CAL, to individual decoding
subroutines for each of the defined CALs, CAL1, 3-4-6-8-9.

16

SECTION CC
‘ PAGE 3
UTS TECHNICAL MANUAL 3/27/72

If the R field is greater than 9 orequal to 0, 5 or 7, exit is to the undefined CAL
entry, BADCAL, in ALTCP (described below). If the value is 1 or 2, then either
CALPROC is unable to detect CAL1, 1 or CAL], 2 because it is clobbered or
control has transferred to CALCK (ALTCP) from an unexpected source. In either
case recovery is called for (software check code X'7C'*).

CAL1L9

The effective address of CAL1, 9s determines which service module has been
requested. The defined values are 1-6. Since the preliminary CAL decoding in
CALPROC has computed the address of FPT plus one (in R7) as if it were a register,
R7 actually points to a location in TSTACK which corresponds to "effective address
of CAL plus one". The actual code is recomputed from that value. A switch on
the effective address is then executed which leads to BADCAL for undefined codes.

CALL3

This routine processes debug CAL's. The FPT code is verified and loaded into RO
via CHECKCAL. The shared monitor overlay, DEBUGSEG is invoked via the
procedure OVERLAY which BAL's to the module T:OV (section EC). All overlays
which have more than 1 entry assume that RO contains an index into a transfer
vector of entry points. Thus the FPT code is a transfer index.

CALl,4

This code performs a simple validity check on the FPT code and branches to the
appropriate entry point in UCAL (UTS specific CAL processor).

CAL16

_First a validity check is performed on the FPT code. Then the users privilege level
in his JIT (JB:PRIV) is checked. If it is X'AQ' or above, access to the service
module requested is allowed. If less than X'A0' and the TEL or CCI in control flag
(TIC) in the users flag (UH:FLG) is set, access is allowed. If TIC is not set, return
is to the user at CAL plus one with CC1 set to indicate the error.

CALI8

This routine performs a validity check on the FPT code via CHECKCAL and exits
to the appropriate service module.

* At the time of publication this "screech" code had never been seen.

17

SECTION CC
PAGE 4
UTS TECHNICAL MANUAL 3/27/72

DESCRIPTION

Trap Processor

The trap handler has two entry points: 40TRAP for traps to locations X'40' = X'45'
and BADCAL for undefined and illegal CAL traps. When a trap occurs, the action
taken depends on the following five decision points:

Sbhowbd=

Trap occurred in master mode

Trap occurred in TEL or CCI

Trap occurred in DELTA

DELTA is associated with trapping user
User has trap control of the particular trap

Correspondingly the following action is taken:

1.

2,
3.

If a trap occurs in master mode (in the monitor) or unmapped, system recovery is
invoked (section LD),

If TEL or CCI traps, recovery is invoked.

If the trap occurred while DELTA was in control, further special checks are
performed to determine if DELTA was attempting to modify the user's pure
procedure. If it was, the trap handler executes the store for DELTA, sets the
"pure procedure swap" bit in the users flags (UH:FLG) and exits via T:SSEM to
the trapped instruction plus one. The "pure procedure swap" bit is set to
insure that the now modified procedure portion of the users program is swapped
out the next time he is selected for outswap.

If DELTA is associated with a user who traps, control will be ultimately
transferred to DELTA's trap entry. A special check must be made first to
determine if the user was running with a shared core library. The reason for
this is that core libraries and DELTA both reside in the reserved special shared
processor area of virtual memory. Only one can be in the user's map at any
given time. If a core library was associated the processor use count (PB:UC)

is decremented for the library and incremented for DELTA. The "ready to run"
flag in UH:FLG is reset for this user to force a swap after the associate
processor event is reported via T:REG. The effect of this is to get DELTA

into the user's map. If DELTA is in core an 1/O-less swap results. An
associate processor event (E:AP) is then reported via T:REG (555). When SSS
returns to ALTCP the access protection registers are set up for DELTA via
T:PAC in MM, DELTA's stack and trap entry addresses are loaded in R1 and R2
and control falls in to common code for giving trap control to the user (TRAP40).

If none of the above conditions hold, the trap control flags (J:USENT) in the
user's JIT are checked to see if the user has requested control of the current
trap.

18

SECTION CC
PAGE 5
UTS TECHNICAL MANUAL 3/27/72

If no, the user is aborted via T:ABORTM in STEP with an error code of X'A4' and a
subcode which uniquely identifies the trap (table B-5, UTS Reference Manual). If
yes, a check is made to see if the user program was loaded with a TCB (J:TCB #0).

If not, the contents of user's RO are taken as a TCB address. R2 is loaded with the
user's trap entry point from J:USENT and control goes to the stack transfer code at
TRAP40. At TRAP40 the user's environment is transferred from the mapped monitor
stack, TSTACK, to the user's TCB pointed to by R1 via T:UTSXTS in SSS. If the user's
TCB can't be used because the stack pointer doubleword or the stack are not in a data
page or the stack is not big enough, the user is aborted via T:ABORTM with an error
code of X'A3'. After a successful transfer the trap location (X'40' - X'46') is stored
in the last word of the user's TCB stack. The stack transfer left the trap environment in
TSTACK. The condition codes immediately after the trap XPSD and the user's trap
entry address are stored in the PSD in the trap environment. The address of the TCB

is stored in the RO register in TSTACK and the address of the trap environment in

‘the TCB stack is stored in the R1 register in TSTACK. Exit to the user level trap
control routine is via T:SSEM in SSS which will ultimately pull the modified trap
environment from TSTACK.,

19

CItv:.

UTS TECHNICAL MANUAL SECTION CC

ALCK Enter from ‘CALPROC' when the 'R’ field of CALI FAGE 6
s 2 Y2r/72
Use R3 as Dis- | R3 = "R* fleld of the CAL Instruction
...... plocement into R5 = (CJOB) = JIT Address
Bronch Table R7 = Address of word | of FPT
“CI1TV", SR1 = FPT Code
FPT CODE
CAL1,0 00 snap
CAL), | or CALY, 2 m ESNAPC
2 Zp SR4 =
P3 ___AND ‘TRAPEXIT'
CAL), 3 CAL13 .
bs___count
0! BADCAL
T:SAVEGET
CALL 4 CALIL T:ASSOCIATE
5 T:DISASSOCIATE
CALY 5
Zuocu N,
L T:RDERLOG
CALLS 1 T:WTERLOG
| 2.3.4,5,7 BADCAL
- TANITGJOB
[8 T:SYS
CALL7 FPT CODE
o stetp
la_ unx
03 LDTRC
CAL18 cALIS 04 T:GVve
T:FVP
LDEESS (No FPT Generated) T:CHTBL
L) rexir 4 T:3AD
GALL9 2 T:ERROR Goe
| 3 T:ABORT FDP
| 4 MSTRAP SMPRT
| 5 MWRIN GCL
é ‘CCLOSE GCp
|z MCLCAR FCP
8 MTCRM MINT
T:WAIT
MTIME
MSTIMER
TTIMER
2‘7.’:.'32' é:::.ﬁ:.:., T1:SYSLOAD
MTRAP

20

SECTION CD
PAGE 1

3/27/72
UTS TECHNICAL MANUAL

ID

TABLES, S9TRAPS = Error trap handlers
PURPOSE

The purpose of the hardware error trap handlers in TABLES and S?TRAPS is to process
the following traps and interrupts on Sigma 7 and Sigma 9 computers,

Watchdog Timer Runout Trap, X'46'
Sigma 7 Memory Parity Interrupt, X'56'
Sigma 9 Memory Fault Interrupt, X'57'
Instruction Exception Trap, X'4D'
Parity Error Trap, X'4C'

USAGE

The trap handlers are entered as the result of a trap or interrupt to one of the designated
memory locations. An XPSD in that location transfers control to a unique entry point
for each handler. The handlers are entered in Master, unmapped mode with interrupts
inhibited, and use register block zero.

The service routines for these traps and interrupt perform error correction and recovery
based on the condition of the operating system, the user environment and the type of
error. Whenever possible, the service routines attempt to localize a problem to a
particular user and avoid entering the system RECOVERY program. The general steps
taken to service a hardware error include correcting the error, if possible, logging
the error in the system error log and choosing an appropriate return. The chocie of
return is based on the conditions at the time of the trap or interrupt and the type of
error. The possible choices, beginning with the most favorable, are:

1. Return to the point of the trap or interrupt and attempt to re-execute that
instruction or continue with the next instruction in sequence.

2. Abort the user's current job step.

3. Abort the user's job. The current terminal user will be logged off.

4. Call the system RECOVERY routines.

2]

SECTION CD
PAGE 2
3/27/72

UTS TECHNICAL MANUAL

INTERACTION

The following monitor subroutines contained in other modules are used.

MSROCTY

T:ABORTM

T:DELUS

RECOVER
DATA BASES

JB:CMAP is a byte table in JIT which contains the physical page number corresponding
to each virtual page.

J:JAC is a two bit table contained in JIT which contains the access protection
codes for each virtual page.

HIGH is the page number of the last page of physical memory.
DCTSIZ is the number of entries in each of the monitor DCT tables.
DCTI is a table of unit numbers of devices attached to the system,
DCT5 is a table containing a set of flags for each device.

S:CUN is the system identification number of the current user.
UB:JIT is a table containing the physical address of each users JIT.
JBUP is a word in JIT containing the beginning user page.

DESCRIPTION
Introduction

An XPSD instruction in the appropriate interrupt or trap location addresses a PSD
pair in TABLES which contains, as the new PSD, the address of the proper handler
routine. The XPSD instructions are coded with a register field value of X'A', which
causes subjective addressing to be used and the register pointer control to be loaded
from the new PSD. Each of the routines described in this section is entered in the
Master mode, unmapped and with register pointer control equal zero.

22

SECTION CD
PAGE 3
3/27/72

UTS TECHNICAL MANUAL

On Sigma 9 computers the Parity Error, Instruction Exception and Watchdog Timer Runout
traps all set the Processor Detected Fault flag. The routines to handle these traps call a
common trap entry subroutine, RESETPDF, to accomplish the following:

1. Save all registers in TSTACK
2. Save the trapped PSD in registers 12 and 13.

Reset the instruction address of the PSD, used for entry to the
trap routine, to an alternate trap handler.

4. Reset the PDF flag so that a subsequent PDF error cannot occur
and cause a CPU "hang-up".

The alternate trap handler recognizes when a subsequent trap has occurred at an
expected place, (i.e., at an LMS instruction), and allows the program to continue.
This method permits other types of traps that set PDF to occur and to be processed
correctly without interfering with the current trap, For example, a Watchdog Timer
Runout that occurs while processing a Data Bus Check will not interfere and proper re=-
covery will be made from each trap.

SIGMA9 PARITY ERROR TRAP

The Parity Error Trap routine used on Sigma 9 computers is composed of three sections to
process the three types of Sigma 9 parity errors. The main entry point, PARITYER, in

the SPTRAPS module, receives control from the XPSD instruction in location X'4C' and
immediately calls the trap entry subroutine SPRSTPSD. Following this call a branch is made tc
one of the three sections described below, based on the value of the Trap Condition

Code (TCC).

To process Data Bus Check errors the program forms an Error Log entry containing the
trapped instruction and the Real Effective Address computed for that instruction. To
compute the Real Effective Address the program restores the registers to their values
at the time of the trap and executes an Analyze instruction addressing the trapped
instruction. If the trapped program was in Mapped mode an LPSD is first executed
to enter the Mapped Mode and an LRA instruction is used to compute the Real Ef-
fective address obtained by the Analyze instruction. After the Error Log entry is
formed a call is made to ERRLOG to record it in the Error Log buffer.

23

SECTION CD
PAGE 4

3/27/72
UTS TECHNICAL MANUAL

To complete the processing of the Data Bus Check error the routine performs an exit
sequence which is also used when exiting from the Map Check error section of the
program. This code resets the instruction address of the PSD, (PARERPSD) used for
entry to the trap routine, by replacing the alternate trap routine address with the
address of PARITYER. Following this is a call to RAFTST, which tests the Register
Altered bit in the trapped PSD. If the Register Altered bit was not set, RAFTST

returns and the registers are restored and control returned to the trapped instruction.

If the Register Altered bit is set, and if the trapped program was in Master Mode,

the program branches directly to RECOVER with an error code of X'23'. Otherwise,

if the trapped program was in Slave mode, the users job step is aborted and the message;

job-id PARITY ERROR ~ STEP ABORTED

is typed on the operator's console. 'The RAFTST subroutine is also used by the Map
Register Check and Watchdog Timer Runout trap routines.

If the Parity Error was a Map Register Check error the program branches to MAPERR.
This section performs a search for Memory Map errors by exeucting an LRA instruction
addressing each of the 256 possible virtual pages. An entry is made in the Error Log
for each error found during the search and a correction attempted. However, if the
faulty Map Register corresponds to the virtual page number of the users JIT page a
correction cannot be done and the user is logged off the system. The message;

job-id PARITY ERROR - USER LOGGED OFF

is typed on the operator's console.

If the faulty Map Register does not correspond to the virtual page number of the users
JIT the program reloads the Memory Map Registers and Access Protection Codes for
the faulty page. To do this, the bad page number is used to compute the address of
the word in the users JB:CMAP and J:JAC tables which contains the physical page
address and access control codes to be restored. This address is then used in the ,
appropriate MMC instructions to reload the Memory Map and Access Protection Codes.
The Memory Map Register is tested again following the correction and, if the
correction was successful the search is continved. If the Map Register error was not
corrected the program branches to RECOVER with a code of X'23'.

24

SECTION CD
PAGE 5
3/27/72

UTS TECHNICAL MANUAL

After all the Map Registers have been tested the program performs the exit sequence
described above for the Data Bus Check errors. That is, the PSD is reset, the
Register Altered bit is tested and the appropriate return is taken.

If no errors are found during the search a null Error Log entry is made and the pro-
gram returns using the exit sequence described.

When the Parity Error Trap was caused by a Memory Parity error the program branches
to SPMEMERR in the TABLES module. This section performs a search of all memory
locations using an indexed Load Word instruction. When an error condition is detected
a Parity Error Trap occurs and a correction subroutine is called. This subroutine uses
the LMS instruction to load the three memory status registers for the bank in which the
error occurred and then clears them. The contents of the memory status registers are
placed in an Error Log entry exactly as they are obtained from the memory and the
eniry is added to the Error Log by a call to ERRLOG. The memory examination is
continued until all memory banks have been tested and an entry mode in the Error Log
for each bank in which an error is found. In addition to the memory status, the first
Error Log entry also includes a table of device addresses indicating what devices were
busy when the Parity Error occurred. Up to six busy devices can be noted in the
table. If the Memory Parity error was caused by a Loop check or Overtemperature
condition the program branches to RECOVER with an error code of X'27'. Otherwise,
the word which had the bad parity is stored back into memory in an attempt to correct
the bad parity. The bad word is loaded once again to test it. If the bad parity was
not corrected, the alternate trap routine will be called by a second Parity Error trap
and will branch to RECOVER with an error code of X'23',

It the parity error is corrected a call is made to SETMXERR. This routine searches
the current users JB:CMAP table for a physical page number which corresponds to
the physical page containing the faulty location. If the search is successful a
virtual page number is obtained and compared with the Beginning Users Page (BUP)
number. If the search is unsuccessful the physical page does not belong to the
current user. For each case an error code is set and compared with a maximum
error code, If the new code is larger it is stored as the maximum error code. The
possible error code values and their meanings are:

0 The error was in the users pages.
The error was in the monitor context pages.
2 The error was in the monitor or was not owned by the current user,

>2 The error was reported during a memory access by an IOP.

25

SECTION CD
PAGE 6
3/27/72

UTS TECHNICAL MANUAL

Following the call to SETMXERR the program returns to the memory test loop. After
all memory locations have been tested the Memory Fault Interrupt is cleared and
the PSD used for entering the trap routine is reset with the address of PARITYER.
The final step in processing the Memory Parity error is to analyze the maximum
error code saved during the bank testing. If the code is greater than two, in-
dicating that the error was detected by the memory during an IOP access, the
registers are restored and control is returned to the user. If the error code is

equal to two then the faulty location was found in the monitor and the program
branches to RECOVER with an error code of X'28'. If the maximum error code is
one the user is logged off or, if the code is zero, the users job step is aborted.

In the case where no memory errors can be found an Error Log entry with status words
of zero is logged and the exit procedure described above is performed with the
maximum error code set to zero.

SIGMA9 MEMORY FAULT INTERRUPT

The Simga 9 Memory Fault Interrupt (MFI) is triggered when a fault is detected by
the memory as the result of an IOP or CPU access. If the memory access was by

a CPU, and the fault is not a Loop Check or Overtemperature error, a Parity

Error Trap is also triggered. In this case the Parity Error trap inhibits the MFI
until the PDF flag is reset. Upon entering the Memory Fault Interrupt service
routine a check is made of the instruction address of the interrupt and if the
interrupt occurred immediately following the LPSD used to reset the PDF flag the
registers saved in the temp stack are removed and control returned to the Parity
Error Trap program. If the Memory Fault Interrupt did not occur after the LPSD
instruction it was caused by a Loop Check or Overtemperature error, (which do not
generate Pairty Error Traps) or by a memory access by an IOP, If the interrupt was
caused by a Loop Check or Overtemperature error the program will branch to
RECOVER with an error code of X'27' after logging the error. If the interrupt re-
sulted from an IOP access to memory the interrupt service routine initializes the
Parity Error Trap PSD to the alternate trap program, sets the maximum error code
to a value greater than two and loads the interrupt PSD into registers 12 and 13.
The program then branches to the Memory Parity Error section of the Parity Error
Trap program,

SIGMA7 MEMORY PARITY INTERRUPT

When a Memory Parity Error Interrupt occurs on a Sigma 7 computer an entry is made
to the interrupt service routine at MEMPAR, The registers are saved and the in-
terrupt PSD is loaded into registers 12, 13. The Memory Parity Interrupt is cleared,
armed and enabled and the Memory Fault Indicators are read with a RD instruction.

26

SECTION CD
PAGE 7
3/27/72

UTS TECHNICAL MANUAL

The address of an altemate interrupt service routine is stored into the interrupt service
PSD and portions of an Error Log entry are initialized. The program then branches to
SPMEMERR to perform the memory search described above. Upon completion of this
loop the Error Log entry is recorded by a call to ERRLOG. The Error Log entry is set
with the device addresses of any devices that were busy at the time of the interrupt.
The interrupt service PSD is then reset with the address of MEMPAR and the program
branches to the exit portion of the Sigma 9 Memory Parity Error Trap routine to de-
termine the kind of exit based on where the bad memory location occurred.

If a parity error occurs while exeucting the memory test loop a Memory Parity In-
terrupt is triggered and the alternate interrupt service routine is called. This al-
ternate routine stores up to two bad memory location addresses in the error log entry.
1t also calls SETMXERR for each bad location, no matter how many. After reseting
the Memory Fault indicators and clearing the interrupt level the alternate interrupt
service routine returns to the point of the interrupt in the test loop.

WATCHDOG TIMER RUN OUT TRAP

The Watchdog Timer Ruhout Trap routine is designed to operate on either Sigma 9 or
Sigma 7 computers. The program is entered at WDOGPGM and calls the trap entry
subroutine RESET PDF. Following this call is a test to determine if the trapped
program was in the mapped mode. If so, the registers saved while executing in the
unmapped mode are retrieved, and an LPSD is executed to enter the mapped mode to
facilitate analysis of the trapped instruction.

The Real Page Address of the trap is determined from information in JB:CMAP and it
and the TCC are stored in the first word of an Error Log entry. The instruction that
caused the trap is obtained and stored in the Error Log entry. The ERRLOG program
is then called to log the trap information.

If the trapped instruction was indirectly addressed its effective address is obtained

and bits 17 = 19 of this address are saved for analysis later in case the instruction was
a Read Direct or Write Direct. If the computer is a Sigma 9 and the time out was in
phase one, in which case the instruction completed correctly, the program returns to
the user. If the time out was not during phase one the Register Altered bit is tested
by a call to RAFTST. If the Register Altered bit is set the user's job step is aborted or,
if in Master Mode, a RECOVER exit is taken with an error code of X'IC'. If the Register
Altered bit is not set tests are made to determine if the trapped instruction was a Read
Direct or Write Direct. If it was, the mode code (bits 17 - 19 saved above) is tested.
If the mode code is 0 or 1 the instruction is retried, but if it is 2 or greater the in-
struction is skipped by incrementing the trapped PSD. Control is then returned to the
user.

27

SECTION CD
PAGE 8
3/27/72

UTS TECHNICAL MANUAL

If the computer is a Sigma 7 the phase tests are not performed but instead the trapped
instruction is tested to determine if it is a PSM or PLM, If it is, the program branches
to RECOVER with a code of X'IC'. If the instruction is not a PSM or PLM the tests
for Read Direct and Write Direct are performed as described above.

SIGMA9 INSTRUCTION EXCEPTION TRAP

The Instruction Exception Trap is processed by the section of code beginning at INSTXCPT,
The usual call to RESETPDF is made to initialize and reset the PDF, If the trap occurred
as the result of an invd id register designation and the program was in Slave Mode the
trapped PSD is incremented by one to skip the Load instruction, and control is returned

to the user. If the program was in Master mode or the reason for the trap was not invalid
register designation an Error Log entry is made followed by a branch to RECOVER with an
error code of X'24',

28

SECTION CD

PAGE 9
3/27/72
UTS TECHNICAL MANUAL
PARITYER
ENTER
RESETPDF
PE1 (PET)

PSD PSDTEMP

TRAP TYPE?
(TCC)

MEMORY PARITY @

MAP CHECK i

DATA BUS CHECK @

PARITY ERROR TRAP SERVICE ROUTINE

29

SECTION CD

UTS TECHNICAL MANUAL PAGE 10
DATA BUS CHECK ERRG¥ 3/27/72
(DB1)
DB2
Was Trapped (0B2)
PADG MAPPED ? Retrieve trapped
Mapped = - = INST and addres:
Get real address BUSERZS = DB5) (DBY)
of Trapped INST SETUP ERROR
LOG
4 ARGUMENTS
Get Trapped INS = [~
save I NST and BUSER26 D83 (DB3)
address
Restore regusfers < ERRLOG .
MAPPED?
() BUSER3 @ (DB4)
[YES
PARITYER—~
LPSD with PARERPSD+2
Map Bit x'23'—
BUSER 1 ['_-
RAFTST
Analyze trapped
INST.

Restore registers
and LPSD to
UNMAP RETURN
BUSER 2
MAPPED ? >
NO

Get real REF

Address
@ PARITY ERROR TRAP SERVICE ROUTINE (CONT.)

30

UTS TECHNICAL MANUAL

MAP CHECK ERROR @
MAPERR T

Initialize page
index= x '100'
High*2 % xiF *
—UPR
MAPERRT ¥=

Test MAP Reg
using LRA *Page
Index

HOMESPACE

or.
nonex:stag
me mol

YES

MP2

Increment page
index by x '200'

|

End o'; Memory,

YES NO

Error Logged?
(ARG #07?)

(MP1)

(MP2)

SECTION CD
PAGE 11
3/27/72

PARITY ERROR TRAP SERVICE ROUTINE (CONT.)

31

SECTION CD
UTS TECHNICAL MANUAL PAGE 12

3/27/72
(MP3)
Setup Error
Log Arguments

ERRLOG

\

Page Index =
JIT page No ?

. YES

Compute Address
of JB:CMAP word

map reiister

Compute Address
of J:JAC Word for
the page. Load

access code,

Test MAP Reg
using LRA * PAGE

Index

(Map PARITY ERJ?

MAPERR? § YES

MP5

(MP5)
\)
x'23+—SC

REC O{/E RY

PARITY ERROR TRAP SERVICE ROUTINE (CONT.)

32

SECTION CD
PAGE 13

3/27/72

UTS TECHNICAL MANUAL

FLT95

MXCODE?

<3 3 (ME6)

PSD—PSSTEMP
Restore Registers,. ME
ME5 LPSD to Return (MES)

FLT94 L—-—Refurn to point of interrupt

Clear TSTACK by
-16.

T DELUSR—SR4
LGOFFMSG+R9

MXCODE?

=2 |=1 |=0

x'A04C—R 14

RF1

RF2

&

PARITY ERROR TRAP SERVICE ROUTINE (CONT.)

33

SECTION CD
PAGE 14

3/27/72
UTS TECHNICAL MANUAL)

MEMORY PARITY ERROR TRAP,
CORRECTION ROUTINE @ (ME7)

Load Memory
Status registers
and clear

LOGFAULT

FLT31

Loop Check or
Overtemp?

NO

YES

Restore Bad Word
to Correct Error.

FIP.;I'_3§ Y
Test With LW

&

PARITY ERROR TRAP SERVICE ROUTINE (CONT.)

34

SECTION CD
PAGE 15
UTS TECHNICAL MANUAL 3/27/72

LOG FAULT
ENTER
ENTER WITH:
x'070A0000' in R10
Trapped PSD in 12, 13
status in 14, 15,0

Error Logged ?
(ARG#0?)

NO YES

]

Fetch DCT1 Entry Setup Entry
for each bus |Code = x'0C070000]"
device & Add to

Erro E

]
1 Store up to 6 :
! Device Entries

ISTORE O if less
y than 6 busy Dev.!

ERRLOG

RETURN

PARITY ERROR LOGGING SUBROUTINE

35

UTS TECHNICAL MANUAL SECTION ¢D

SETMXERR PAGE 16
T ENTER Y27/72
ENTER WITH:
Convert Fault RASd dress of Faulty LOC in
Address to e :
Nomber. pag Trapped PSD in 12, 13
MAPPED?
YES NO

Search JB:CMAP
of current user for

VIRT page.

FOUND?
1 YES |NO

, ‘

< VIRT. PG > BUP) 2—R6

| NO _§YES

MXCODE =
MAX(MXCODE, Ry

r
RETURN

SET MAXIMUM ERROR LEVEL SUBROUTINE

36

SECTION CD
PAGE 17
3/27/72

UTS TECHNICAL MANUAL

RAFTST ENTER WITH:

Trapped PSD in 12, 13
Message Address In 9

Step Abort Code in 14

Reg Altered

Tves [No

CLEAR TSTACK RETURN
(MSP =1¢)

MASTERMODE

RE) croaert 4 © LS RecOVER, x'23' (RF1)

T:ABORTM—SR4

@ RAFXIT | (RF2)

BRANCH *SR4 to Return

REGISTER ALTERED FLAG TEST SUBROUTINE

37

SECTION CD

PAGE 18
UTS TECHNICAL MANUAL 3/27/72

PARXXXX

ENTER

Reset PDF fetch
Trapped
PSD —TMP

< TMP=BUSER1?

x'23'—SC

RECOVER

PDF DOUBLE TRAP ROUTINE

38 -

RESET PDF

UTS TECHNICAL MANUAL

SECTION CD
PAGE .19
3/27/72

ENTER

Save Registers
Load Index with

PTR
!

Store DERATL
in PSD+2

|

Load Regs 12, 13
with trapped PSD

1

Reset PDF
and Return

39

ENTER USING

XPSD, 0 RSETPSD
DATA PTR

WHERE:

PTR DATA DFERR
DATA nnn
PSD SERVICE PROG

SECTION CD
PAGE 20

3/27/72
UTS TECHNICAL MANUAL

MEMFAULT

ENTER

Save registers
fetch interrupted
PSD

Interrupted af
PARRESET?

{ NO YES

Store Derail in Restore Registers
PARERPSD+2
n >3—MXCODE

T
Interrupted PSD @
—PSD “

0—ARG

40

MEMPAR

UTS TECHNICAL MANUAL

ENTER

Save Registers
interrupted PSD
——PSD
L__..___._'__,
ARM, enable

and clear the
Memory PAR Int.

B |

High*2? +x'1FF'

Initialize ERR Log
Entry

Setup Derail in
INT PSD+2 read

MEMFAULT
indicators

LW *R4

DEC R4 by 1

End of Memory

?
No YES

SIGMA7 Memory Parity In-
terrupt

Service Routine

LOGFAULT

RESET DERAIL

2

41

SECTION CD
PAGE 21
3/27/72

UTS TECHNICAL MANUAL

MEMORY PARITY ERROR
MEMERR

0—MXCODE
0—ARG
High*2? + x'IFF'

BNK (SEARC
F mﬁz"

Test Memory b
LW, 14 0;~BNK

FLT2 — 1

PARRSETI @

o

DEC SEARCH
Index

End of Memory

LOGFAULT

Error Logged?
(ARG #07?)
ES

Clear MF1
Reset PARE

RPSD
+2

42

@

SECTION CD
PAGE 22

3/27/72
(MET) .

(ME2)

(ME3)

SECTION CD
PAGE 23
3/27/72

UTS TECHNICAL MANUAL

MPR50

[nc. #BAD Locs.‘

#Bad LOCS

‘ <2 >2

Store Bad LOC
“in error Log

ENTRY

I

Restore Word
To Memory

Reset Fault
Indicators

]

SETMXERR

LPSD to Return

43

WDOGPGM UTS TECHNICAL MANUAL SECTION CD

ENTER PAGE 24
' 3/27/72
RESETPDF
MAPPED?

Retrieve Regs.
LPSD W/MAP
SAVE REGS

wDO1

Fetch Real Page
Address from

JB:CMAP, Insert
in ERRLOG Ent

| Get the Trapped |
: Instruction. L

— o —— —— ——r -

-— e ame — o w—-

, Determine if it |

¢ was an execute. !}
r-3

-— s e . - —m—

EXECUTE?

- -y w ew am e @ e —

[]
1 If it was, get its
! effective address
|

WATCHDOG TIMER RUNOUT TRAP SERVICE ROUTINE

A4

UTS TECHNICA

L MANUAL

D1

Inst Indirect ?

(WD)

| YES NO

T T Tt '

']

1 Get Eff, Address,

! of OPERAND 1=~ ANLZSB
_________ 1

Tt T

- e e > - - ‘-'

WD13
SIGMA 97
WD 15 ’NO { YES

Inst=PSM, PLM?) @ST Complete

YES |NO

Y

x'1C'—=SC

Recovery

WD06

ODE =0, 1?

M
[N« S

|

INST = RD, WD

INC PSD

WATCHDOG TIMER RUNOUT TRAP SERVICE]

45

SECTION CD
PAGE 25
3/27/72

SECTION CD
UTS TECHNICAL MANUAL PAGE 26
INSTXCPT 3/27/72

RESETPDF

nvalid Registe
Desigr)?afion
" YES
Master Mode ? ’

S NO
Setup Error Log Inc. PSD Reset
Arguments Derail in PSD+2

ERRLOG

Reset Derail
in PSD+2
x'24-.SC

REC O\’ER

INSTRUCTION EXCEPTION TRAP SERVICE

46

SECTION DA

PAGE 3
UTs TECHNICAL MANUAL 2/11/71
D
Device 1/0

FUNCTIONAL OVERVIEW

The BPM Basic Input/Output System provides a simple interface between all parts of
the operating system and the external peripheral devices. It stacks or "queues" the
requests for service rather than waiting for each operation to complete before return-
ing to the caller. When a request is completed the caller is notified via certain
parameters in the DCB. Or the caller may specify the address of a subroutine to be
executed at this time (called the "end-action" routine). It is capable of receiving
requests for input at any time or from any place in the system and dispatching them in
a manner which is virtually independent of other operations concurrently being exe-
cuted by the system, Error recovery procedures are invoked when necessary and do
not require any additional specifications from the caller.

Requests are normally serviced in the order in which they are received. In a real-time
system, requests are serviced by task priority. Precautions are taken to prevent any
major service to lower priority requests when a higher priority task is active.

Communication with peripherals is designed to afford the most complete recovery
possible from errors and device malfunctions. Operator intervention is enlisted only
after all other alternatives have been exhausted.

No restrictions are placed on buffer size or location. Facilities are included for
gather~write/scatter-read operations (data chaining), and provision is made to allow
construction of IOP command lists outside of the Basic 1/0.

The inherent differences between peripheral devices is accounted for by the insertion
of device-oriented code (handler) for each type of device in the system. A well-
defined handler interface allows addition of new handlers with a minimum of difficulty.
Also, a number of subroutines are available which perform common handler functions.

OPERATIONAL OVERVIEW

There are two major parts involved in the processing of an 1/O request: start (done by
STARTIO) and cleanup (done by CLEANUP). The start consists of building the IOP

command list and executing the SIO instruction, while the cleanup consists of testing
for errors and notifying the caller of the completion. For a given request, the time at

which a start or cleanup is done is determined by the 1/O scheduler (called Service
Device or SERDEV).

Service Device is a highly independent routine in the sense that it can be called at any
time from any where in the monitor. It is called whenever there is any chance that a
start or cleanup can be done for a given device. Some examples of when Service

47

SECTION DA

PAGE 4
UTS TECHNICAL MANUAL 2/11/71

Device is called are:

1. When a request is queued (start may be performed unless device is already
busy).

2. After an I/O interrupt has occurred (cleanup may be done).

3

After a cleanup has been done (a start may be performed for the next
request in the queue).

Device dependent routines are provided for building command lists and testing for
errors, STARTIO calls the "handler pre-processor" to do the former, while CLEANUP
calls the "handler post=processor” to do the latter, These two parts constitute the
device handler for any given peripheral and are provided in separate assembly modules.

48

SECTION DA

PAGE 5
1 UTS TECHNICAL MANUAL 2/11/71
Make a Request 1/O Interrupt Occurs
\QUEUE IOINT
QUEUE
\NEW:
\‘\ /'/

A 4
Change State
of device, clear
interrupt from

V. active state
SERVICE ;
DEVICE |

i SERVICE
DEVICE

49

SECTION DA
PAGE 6
UTS . TECHNICAL MANUAL 2/\1/71

Service Device

SERDEV

O

Get next request for channel

STARTIO —® @

/
/" Handler
gPre-Processor>

a start Yes

be done? ~ -
No

»

o
a cleanup Yes -

be done
? /No

Handler
3 Post=Processor
/ Return

CLEANUP

50

SECTION DA
PAGE 7
UTS TECHNICAL MANUAL 10/18/71

PROCEDURES FOR MAKING REQUESTS

Requests for input/output may be placed in one of two ways: with all arguments
contained in general registers or with most arguments residing in a DCB.

The caller may specify the address of a routine to be entered after the completion of
any request (successful or not). This "end-action" routine will be entered after
information pertinent to the outcome of the request has been loaded into registers or
stored in the DCB.

Register formats will be indicated by listing the parameters contains therein followed
by the field lengths of the respective parameters.

Register call:

BAL, R11 NEWQ
R12 FC, PRI, NRT, DCT (8,8,8,8)
R13 D, C, -, BUF (1,1,11,19
R14 -, SIZE (16, 16)
R15 SEEK (32
RO -, EA (15, 17)
R1 EAI . (32)

The normal return is to BAL+2. If the device is marked down the return is to BAL+1
(not currently implemented). Registers 5 through 11 are considered non-volatile.

FC New function code as described in DA, 03.

PRI Priority. Normally the current task priority (obtained from CJOB).
NRT Number of recovery tries to be attempted.

DCT Device control table index (described in Section VG).

D Data chaining flag.

C Command list flag.

BUF D=0, C=0: byte address of buffer.

D=1, C=0: doubleword address of data chain list.

D=0, C=1: doubleword address of complete command list.
SIZE D=0, C=0: length of buffer in bytes.

D=1, C=0: number of commands in data chain list.

D=0, C=1: time-out increment (see Service Device).

SEEK Seek address for random access devices, left justified.

EA Address of end-action routine. Zero indicates no end-action desired.

EAI End-action information. Supplied by caller and returned at end-action
time.

51

SECTION DA
PAGE 8
UTS. TECHNICAL MANUAL 10/18/71

The caller's end-action routine is entered with interrupts enabled and all registers
volatile:

BAL R11 EA
R7 -, DCT (24, 8)
R12 TYC, -, RBC 8, 8, 16)
R13 -, CCA (16, 16)
R14 EAI (32)
R15 -, BUF (13, 19)

The caller must return via register 11.

TYC Type of completion code returned by device handler (See BPM
reference manual).
RBC Remaining byte count (usually from TDV),

CCA Current IOP command address (from TDV).

Other parameters are as described above. BUF and SIZE are the values supplied by
the caller.

DCB call:
BAL, R11 QUEUE no end-action
BAL, R11 QUEUE1 end-action
R8 FC, -, DCB 8,7,17)
R? -, EA (15, 17)
R10 EAI (32)

Registers 9 and 10 are not necessary on a call to QUEUE. For DCB calls, FC refers
to the old handler function code as described in subsequent paragraph. The DCB
must contain NRT, DCT, BUF, SIZE and SEEK, Registers 5 through 11 are

considered non-volatile,

End~action is entered as above after the TYC and actual record size have been
entered into the DCB;

BAL, R11 EA
R6 -, BUF (15, 17)
R7 -, DCT (24, 8)
RS FC, -, DCB ®,7,17)
R14 EAI (32)

In this case BUF is a word address. The other parameters are as in the call.

52

UTS TECHNICAL MANUAL

The old handler function code is interpreted as follows:

Bits:

where

0 1 2 3 4 7

[0] DIR PKE(}F&&E"]”” ~ copE

CODE = 0 - read BCD

1 - read direct BCD

2 - read binary

3 - read direct binary

4 - write BCD

5 - write direct BCD

6 - write binary (write and format)
7 - write direct binary
A - skip record forward
B - skip record reverse
C - skip file forward

D - skip file reverse

E - rewind

F - write end-of-fiie

for these codes

FBCD = 0 - specifies no FORTRAN conversions

DIR

1 - specifies FORTRAN conversions

= 0 - specifies forward direction
1 - specifies reverse direction

SECTION DA
PAGE ¢
10/18/71

bits 0-3 are ignored

If the device is not 9T, 7T, or MT, only bits 5 thru 7 are meaningful.

53

SECTION DA
PAGE 10
UTS TECHNICAL MANUAL 2/11/71

CHANNEL CONCEPT

For the purposes of this specification let us define the term "channel” as: the highest
order data path connected to one or more devices, only one of which may be transmit-
ting data (to or from CPU. memory) at any time.

Thus a magnetic tape controller connected to an MIOP is a channel. But one connected
to an SIOP is not, for in this case the SIOP itself fits the definition. Other examples
of channels are a card reader on a MIOP, akeyboard/printer on an MIOP or a RAD
controller on an MIOP.

Input/Output requests made on the system are queued by channel. This method facili-
tates starting a new request on the channel when the previous one has completed. The
exception to this rule is the "off-line" type of operation such as rewinding of magnetic
tape or arm movement of certain moving arm devices. If this type of operation is
started, an attempt is always made to start a data transfer operation as well. Thus the
channel is always kept busy if possible.

SEPARATION OF PRIORITIES AND CONTROL TASK

All input/output functions are controlled with respect to time by a scheduler called
"Service Device". This routine is device-oriented as far as the calling program is
concerned, but in reality takes the necessary steps to keep the applicable channel
operating within the constraints of priority.

This means that no request will be started whose priority is lower than that of the
operating task, nor will an interrupt from a request be processed unless priority dictates.
It must be realized that some overhead is suffered from the scheduler itself, but this
overhead is considered to be small compared with starting a request or processing its
interrupt.

Since requests on a channel are normally "chained" by the 1/O interrupt, there must
be a means whereby any action on a request which is deferred by priority may be
resumed at a later time. This provision is the "Control Task", usually the lowest level
external interrupt in the system. When action is deferred, the device code is entered
into the Control Task stack and its interrupt is triggered. When it becomes active it
will call the scheduler for the device in question. In a system created with no Control
Task, the console interrupt will be triggered instead. The console interrupt receiver is
designed to perform Control Task Functions when there is no external interrupt assigned
for this purpose.

SYSTEM FLOW

As indicated above the center of I/O activity is the scheduler, Service Device. This
routine starts all operations and processes their interrupts (cleanup). Thus Service Device
must be calledwhenever certain key events occur or when other special conditions are

-54 -

SECTION DA
PAGE 11
UTS TECHNICAL MANUAL 2/1/71

present in the system. Figure 1 shows the downward flow of control from some of the
most important areas of the 1/0 system.

SYSTEM TABLES

Information pertaining to requests, devices and channels is maintained in a series of
parallel tables produced at System Generation Time. The format of these tables is
presented in Section VG and will be referenced throughout the remainder of this
specification. The first entry (index=0) in each table is reserved for special use by
the system.

a) I0Q, Request Intormation
These tables contain all information necessary to perform an input/output opera-
tion. When a request is made on the system, data is transferred from the con-
trolli ng DCB and/or registers into one element in each of the parallel IOQ
tables. This set of elements forms a "queue entry". The entry is then linked
into the channel queue below other requests of higher or the same priority.

b) DCT, Device Control
The device control tables contain fixed information about each system device
(unit level) and variable information about the operation currently being per-
formed on the device.

c) CIT, Channel Information
These tables are used primarily to define the "head" and "tail" of those entries
which represent the queue for a given channel at any time. A channel queuve
may have more than one entry active at anytime (such as several tapes rewinding
while another reads or writes).

55

SECTION DA

PAGE 12

- UTS TECHNICAL MANUAL 2/1/n

Request is Interrupt occurs Monitor waits for Control
made IOINT completion task
NEWQ IOSPIN CTIOP
QUEUE -
QUEUEI
|
 J y v
SERVICE DEVICE
v Y
6;::2;:: Process interrupt
STARTIO CLEANUP
r v
Handler Handler
pre-processor post-processor
FIGURE DA-1 SYSTEM FLOW

56

SECTION DA. 01
PAGE 1
UTS TECHNICAL MANUAL 2/ /71

DESCRIPTION OF ROUTINES

This section presents descriptions of the routines which comprise the 1/O System. Only
the most important functions of each routine are described. The listings should be
consulted for more detailed information.

The handlers and related subroutines are described in later sections.

NEWQ
Purpose: to receive requests for 1/O operations, register format,
Inputs: described in paragraph "Procedure for Making Requests".

Description: :

The index of an entry in the IOQ tables is obtained (See GETQ) and the arguments
passed in registers are properly formatted and stored into the respective tables. The
quevue entry is then linked (by priority) into the queue for the appropriate channel.
Then Service Device is called and control is returned to the caller,

QUEUE, QUEUE1

Purpose: to receive requests for 1/O operations, DCB format.
Inputs: described in paragraph "Procedures for Making Requests".
Description:

These routines are actually different entries to NEWQ. They differ only in the manner
in which they build the queue entry — most of the arguments are obtained from the
associated DCB, A set of byte tables is used to convert the old handler function code
to a new handler function code.

GETQ

Purpose: to obtain the index of a queue entry from the pool of free entries.
Call: BAL,R11 GETQ

Inputs: none

Outputs: R3 =0, 10Q index (24, 8)

Description:

The head of the free entry pool is contained in the byte QFREE. If QFREE is non-zero
its contents are loaded into R3 and the second entry in the pool becomes the head. The
free entries are linked forward by IOQ2, with the last entry having a forward link of
zero, If the head is zero, Service Device is called for each device in the system until
an operation completes causing an entry to be freed. This is done without regard for
priority and is considered to be an emergency measure. GETQ will not exit until

a free queue entry has been obtained.

There are two other constraints in GETQ. First, in a real-time system, a limit may be
placed on the number of queue entries to be used by the background. If this limit is
reached, all devices will be driven as above until the number of entries in use by the

57

SECTION DA. 01
PAGE 2
UTS TECHNICAL MANUAL 2/M/71

background is once again below the limit. Second, one queue entry is always reserved
for the Operator's Console typewriter to assure that the operator is not cut off from
communicating with the system,

IOSERV, TOFORCE

Purpose: to provide an entry to Service Device which does not destroy any registers.
Call: BAL, R11 IOSERV

BAL, R11 IOFORCE
Inputs: R12=0, DCT index (24, 8)

Description: (See Service Device)

IOSERYV is called when normal considerations are to be given to the priority of the
operations involved. If IOFORCE is called, the priority going into Service Device
will be set to FF (lowest).

SERDEV (Service Device)

Purpose: to determine the state of the device and/or channel in question and to
perform whatever action is possible within the constraint of priority.

Call: BAL,R2 SERDEV

Inputs: R1 =PRI, 0, DCT (8, 16, 8)

Description: (refer to flowchart)

The priority input (PRI) is normally the current task priority (from CJOB and should be

obtained by the caller just before entry. However, it may arbitrarily be set to other

values under special conditions.

The scheduler, Service Device is basically device-oriented but will always attempt to
"sequence" the channel (to which the device is assigned) before exiting. This means
that the queue (for the channel) is examined to determine if any action for any device
on the channel may be processed. In other words the scheduler will not exit until one
of the following is true:

1. Queve is empty. There are no more requests for this channel at this time.
Channel is busy. Data is being transferred to or from a device on this channel.

Channel is being held. Channel status from a previous operation must be preserved.

Wb

There are no requests in the queue for this channel for which an operation may
be started.

The fourth of these may be true even if the first three are not. Two example situations
are when the devices for which there are requests in the queue are all busy (e.g.
rewinding), or when the highest priority request which can be started has been deferred
to the Control Task.

As can be seen in Figure DA-1 there are two major functions which must be performed
for each 1/O operation — start and cleanup. For a given device these must always be

58

SECTION DA, 01
PAGE 3
UTS TECHNICAL MANUAL 2/11/

performed alternately. Thus a cleanup must be done for a previous operation before a
new operation can be started. To elaborate on this part of the scheduler's operation,
a number of device "states" will be defined, and the transitions into and out of each
state will be explained.

a)

d)

Free

The device is free when it is not actively linked to any request in the queue.
There is no specific condition for this which can be tested since the free state
is actually the lack of any of the conditions described below.

Busy

A device becomes busy upon the successful execution of an SIO instruction in
STARTIO. This is what has been referred to as a "start". If the SIO is not
accepted by the IOP, then the device will not be busy upon exit from STARTIO.

Cleanup Pending

"Cleanup pending" means that some event has occurred which has made it nec-
essary to remove the device from the busy state; normally this event is an [/O
interrupt from the device. Others are the failure of an SIO or an operation halted

for taking too much time. In any case it means a call must be made to the
CLEANUP routine.

Keyin Pending

This state exists when it has been determined that no further action can be taken
without a response from the system operator. The device remains in this state
until the operator gives his answer, with the "PLEASE RESPOND" message
periodically repeating itself on the typewriter. The transitions are cleanup
pending to keyin pending, then keyin pending to free.

Inter-operation

This is really a special version of the free state and it means that the request to
which the device is currently linked involves more than one operation (i.e. start
and cleanup). And furthermore that no other request is to be linked to this device
until they are all completed, regardless of priority. On a disk pack, for example,
a request usually involves a seek (moving the arm), followed by a read or write.

If a higher priority request were to intervene between the two operations it is
likely that the read or write would be from the wrong place on the pack.

The primary function then of STARTIO in conjunction with the handler per-pro-
cessor, is to change the state of the device from free to busy. And the main job

of CLEANUP is to change the state from cleanup pending to free. The link between
these two is the 1/O interrupt (busy to cleanup pending).

When any operation is started or when an error message which is to be repeated is
typed, a "time-out" is set up. A cell called IOCLOCK is continuously incremen-
ted every five seconds by the monitor's clock interrupt routine. When a time-out
is initiated, the current contents of IOCLOCK plus some increment are saved in

59

SECTION DA. 01
PAGE 4
UTS TECHNICAL MANUAL 2/11/71

DCTI1. When Service Device is entered and the device is busy or has a
keyin pending, this value is compared with the now current contents of
IOCLOCK. If the time is up, the operation is terminated with an HIO
instruction, or the "PLEASE RESPOND" message is repeated if a keyin was
pending. If an operation is halted, the timed-out bit in DCT3 is set and the
device is set waiting for cleanup.

STANDARD REGISTER SETUP

Reference will be made in later sections to a "standard register setup". This refers to
the way in which some registers are generally used in Service Device, and in particu-
lar to the contents of registers at the entry to STARTIO or CLEANUP. The standard
register setup is:

R1 PRI, -, DCT (8, 16, 8)
R2 0, Link to SERDEV (15, 17)
R3 0,10Q index (24, 8)
R4 0, CIT index (24, 8)
R14 0,DAC (16, 16)
R15 0, link (15,17)

The DAC in R14 is the "device activity count” used for making re-entrance tests
(see STARTIO). The link in R15 is the link to STARTIO or CLEANUP,

The remaining registers are normally available in STARTIO and CLEANUP and in the
handler pre-processor and post-processor, although some are used for handler communi-

cation (see STARTIO and CLEANUP).

CTEST

Purpose: to perform priority tests for Service Device

Call: BAL, R15 CTEST

Returns: BAL+1 if processing is to be deferred.
BAL+2 if processing may continue.

Description:

CTEST is called by Service Device whenever it is about to perform a start or cleanup.

If the priority of the request (IOQ14) is lower than the priority being carried by Service
Device (in R1), then the processing of the start or cleanup is deferred to the Control
Task.

Priorities X'FO' through X'FF' are all considered background priorities, and deferments
are never made when R1 is in this range.

CTRIG

Purpose: to trigger the Control Task interrupt after notifying the Control Task of
some impending action.

60

SECTION DA, 01

PAGE 5
UTS. TECHNICAL MANUAL 12/6/71
Call: BAL, R11 CTRIG
Inputs: R8 code, -, DCT (8, 16, 8)
Description:

A Control Task stack is established at Sysgen time by the formula: number of devices
plus number of tape drives plus two. This is the minimum number of entries required
to prevent overflow.

CTRIG pushes the contents of R8 into the stack and triggers the Control Task interrupt
or console interrupt in a non real-time system, The codes are:

0 (with DCT) defer start or cleanup for this device.

1 (no DCT) operator has pressed console interrupt.

2 (with DCT) operator has pressed attention on tape drive.

3 (no DCT) operator has completed input for an unsolicited keyin
4 (no DCT) call Service Device for all devices which are busy

or have cleanup pending (this entry is made by the
system clock routine every 5 seconds).

5 (no DCT) keyin is busy when console read is complete,
STARTIO
Purpose: to initiate all I/O operations.
Call: BAL, R15 STARTIO
Inputs: standard register setup.

Description: (flowchart included)

The primary function of the handler pre-processor is to build the IOP command list to
be used for a given operation. The handler is entered by a branch to the address in
DCT8 with the standard register setup. When the command list is built, the handler
returns to STARTIO by a branch to IOSST, passing the following information:

RO: doubleword address of command list.

R4(bit 0): a flag set o indicate that the channel is not to be set busy for
this operation. Usually this means that the operation does not
tie up the device controller which is free to be used by another
device attached to it. Examples are rewinding tape and disc
pack seeks.

R4(bit 1): a flag set to indicate that the DCB function count should be
decremented at start time rather than at cleanup time. This bit
is used only when bit O (above) is set and prevents the system
from having to wait for tape rewinds before proceeding to the
next job step.

R4(bit 2): Channel is to be held.

R10: word address of handler DOT table (see Handler Interface
section).

61

SECTION DA. 01
PAGE 6
UTS TECHNICAL MANUAL 2/1/71

When the handler returns to STARTIO at IOSST, all interrupts are inhibited. This is
called the Disable Point (there is a similar place in CLEANUP). The inhibits are not
removed until a number of critical actions have been performed. This is necessary to
prevent the device from taking on an undefined software state and then having an
interrupt occur. 1f I/O were attempted on the same device at the interrupt level the
scheduler might be confused by an abnormal combination of factors.

Following the Disable Point is a "re-entrance test". This is done to determine if the
device has been used by a program at a higher interrupt level. If it has, the start is
aborted, The interrupt may have occurred any time between the time the scheduler
decided to perform the start and the Disable Point. This concept is best illustrated
with an example listing the execution of key events with respect to time:

Low level request is made.

Scheduler decides to start request.

Current Device Activity Count (DAC, from DCTI0) is loaded into R14,

Scheduler calls STARTIO

Handler pre-processor begins building command list.

Interrupt occurs.

High level request is made by interrupt program (same device).

2 through 5 above are executed (for high level request).

Handler returns to Disable Point.

Re-entrance test. R14 is compared with value in DCT10. There is no

change, R14 = DCTI0.

11. Device is started (SIO etc.).

12. DAC is incremented by 1.

13. Interrupt program exits.

14, Control returns to 5 at the lower level.

15. ? and 10 are executed again, but this time R14 is one less than the contents
of DCTI0.

16. Start is aborted.

SOoRPN>UNEWN~

—

It would appear that at the higher level the scheduler was unaware of the activity at
the lower level. This is exactly the case. Until the Disable Point is reached, no
parameters in any of the tables may be changed in any way to indicate that a start is
in progress. And if it is necessary to store into scratch areas, such as storing command
doublewords, a re-entrance test must be made before the actual storing into core. This
is to prevent storing over information prepared at a higher level.

Thus the handler pre-processor must make a re-entrance test before it stores each
command doubleword into core. This is done by comparing R14 with DCT10 and
aborting the start if they are unequal.

In some handlers it may be absolutely necessary to modify some table parameter before
returning to IOSST. In this case the handler may extend the Disable Point backwards
by inhibiting interrupts and making a re-entrance test (aborting if reentrant), The

62

SECTION DA. 01
PAGE 7
UTS TECHNICAL MANUAL 2/11/71

handler must leave the interrupts inhibited when branching to IOSST. An abort is
accomplished by executing a: B *R15, with interrupt inhibits off.

There are three things that can happen after the Disable Point has been passed (and
the start is not aborted due to re-entrance).

1. SIO is accepted and device is automatic — a successful start.

2. SIO is accepted but device is in manual mode. A message is output to
the operator and repeated every 30 seconds until he starts the device.
The start is otherwise successful.

3. SIO is rejected. The SIO failures bit in DCT3 is set and the device is
set waiting for cleanup. When the scheduler calls CLEANUP the operator
will be notified and must decide whether the operation should be retried
or if it should be aborted (i. e., indicated as unrecoverable to the caller).

IOINT
Purpose: to process all 1/O interrupts
Call: entered via XPSD in location X'5C",

Description: (flowchart included)

The first portion of the 1/O interrupt receiver is executed with the interrupt in the
active state and is non re-entrant. (If the interrupt is from the swapping RAD, then
control passes to T:SIOEA, - the monitor swap end action handler.) The DCT index is
determined from the AlO data by searching DCT1. If the device was not busy and
AIO status bit 1 is set, then it is assumed that the interrupt was caused by the
operator pressing the attention switch on a tape drive. In this case, the Control Task
is notified to perform an "AVR" sequence. Otherwise the states of the device and
channel are appropriately modified and the AIO and TDV status information is saved
in DCT tables.

Afterthe interrupt is cleared the scheduler is called for the device in question. If the
priority in CJOB is background, then the Symbiont Activate routine (SACT) is called.

An error is reported in the System Error Log if the device was not busy and AIO status
bit 1 was not set. An error is also reported if the AIO indicates no interrupt recogni-
tion.

Exit is to T:SSE, the scheduler entry point for asynchronous events,

CLEANUP

Purpose: to perform the post-interrupt processing for any 1/O operation.
Call: BAL, R15 CLEANUP

Inputs: standard register setup

Description: (refer to flowchart)
CLEANUP enters the handler post-processor at the address specified in DCT9. The
handler must examine the information available (in the DCT tables primarily) and

63

SECTION DA. 01
PAGE 8
UTS TECHNICAL MANUAL 2/11/71

decide what action is to be taken by CLEANUP. The alternatives are:

1. Normal completion. Complete request and report completion to caller
via DCB and/or end-action.
2, Operation is in error, Decrement retry count and set request not busy

(in IOQJ). This prepares the request for another pass through the system
(start and cleanup). If the retry count is exhausted, the request is to be
completed. In any case a message is to be typed if requested.

3. There is "follow=on". The handler must perform another 1/O operation in
order to complete the request. The request is set not busy.

4. A keyin is required. The device is set to the keyin pending state and the
request is left hanging until the operator responds (see IOREC).

The handler communicates its wishes via registers:

R10 -, CCA (16, 16)
RIT -, RBC (16, 16)
R12 -, flags, TYC (16,8, 8)
R13 0, MSG (15, 17)

The flags are:

Bit 16: retry. Alternative 2 above is to be taken.

Bit 17: follow-on. Alternative 3.

Bit 18: inter-op. Ifbit 16 or 17 is set, set the inter-op bit in DCTS5 (see
Service Device).

Bit 19: keyin required. Alternative 4.

Bit 20: keyin required. This is the same as bit 19 except that the response
"C" is not allowed and will be taken to mean "R" (see IOREC).

MSG is the word address of a message to be typed following the device name. This is
used with alternatives 1, 2, and 4 (see MSGOUT). The other parameters are described
in "Procedure for Making Requests".

If the request is to be completed the subroutine REQCOM is called (see next section).

The re~entrance considerations mentioned in the section on STARTIO apply to the handler
post-processor as well. The handler returns to CLEANUP at the address IOSCU, the
Disable Point. The handler must make re-entrance tests whenever changing table
parameters or storing into scratch areas. It may push the Disable Point back as

described in STARTIO.

REQCOM
Purpose: to perform the final cleanup of a completed request.
Call: BAL,R5 REQCOM
Inputs: R10, -, CCA (16, 16)
R11, -, RBC (16, 16)
R12, - TYC (24,8)

64

SECTION DA. 01
PAGE 9
UTS TECHNICAL MANUAL 2/11/71

Description:
For a register call, REQCOM releases the queue entry back to the pool of free entries
and executes the end-action routine.

In addition, for a DCB call, it communicates a number of parameters to the caller via
the DCB:

TYC the type of completion, if greater than the current value in the DCB,
is stored.

FCN the function cqunt is decremented.

EGV the EGV bit is set to 0.

ARS the actual record size is computed by subtracting the RBC from the

caller's byte count (only if request was not for a RAD or tape file).
If a Monitor Buffer was used, it is released if the following are all true:

1. Request was not to perform a position operation,
2. Request was not for an input operation,
3. Request was not for a file operation (ASNET),

OCINT
Purpose: to process control panel interrupts.
Call: entered via XPSD in location X'5D'.

Description: (flowchart included)
If the interrupt was caused by triggering the Control Task (non real-time system) the
Control Task 1/O Processor is called after the interrupt lavel has been cleared (see

CTIOP).

If the operator has pressed the console interrupt switch the keyin sequence is initiated.
This sequence consists of the following steps:

1. Trigger Control Task for keyin (code 1 CTRIG).

2. Control Task becomes active, makes requests to output and to input up to
72 characters from the Operator's Console, the latter with end-action.
3. End~-action occurs for input. Trigger Control Task to process keyin
(code 3, CTRIG).
4. Control Task becomes active, calls KEYIN overlay to process keyin.
CTIOP
Purpose: to process Control Task 1/O functions.
Call: BAL, R11 CTIOP
Description:

Since the [/O and control panel interrupts are generally of higher priority than the
interrupts of real-time tasks, it is necessary to take steps to prevent the loss of CPU
processing time from these tasks for lower priority functions. These latter may be
listed as:

65

SECTION DA. 01

PAGE 10
UTS TECHNICAL MANUAL 2/11/71

1. Performing start or cleanup for requests of lower priority than the
currently operating task.

2, Processing unsolicited keyins from the operator.

3. Labeled Tape recognition (initiated by operator pressing attention
switch, also called AVR).

4. Periodic checking of all devices for time-out purposes.

CTIOP will operate until its stack (IOCTQ) is empty, at which time it will reset bit
31 of CTFLAGS (set by CTRIG). This flag is used by the main Control Task processor
(or OCINT in non real-time) to decide when to call CTIOP.

The functions performed by CTIOP are described in the sections on CTRIG and OCINT.

IOREC

Purpose: to handle operator communications for I/O devices.
Call: entered from main keyin processor.

Inputs: R7 0,DCT (24,8)

Description:

When the 1/O system requires operator assistance, it outputs the name of the device
in question followed by a message indicating the problem. Messages for which a
response is mandatory (via a keyin) are:

ERROR (non-automatic recovery devices only)
TIMED OUT

NOT OPERATIONAL

WRITE PROTECTED

The device name followed by PLEASE RESPOND is output periodically until a response
is received. The response is in the form: yyndd, X where X may be C,E,or R. The
UTS Operations Manual should be consulted for complete explanations of the messages
and responses.

IOKEC resets the keyin pending flag and sets up the registers as required for entry to
REQCOM. If the response is C or E it branches to KYIOT, if R it branches to KY102,
effecting a call to REQCOM and SERDEV or just SERDEV respectively.

MSGOUT
Purpose: to output 1/O System error messages.
Call: BAL,R5 MSGOUT
Inputs: R1 -,DCT (24, 8)
R3 0,10Q (24, 8)
R13 0, MSG (15,17)
Description:

Messages are output in the form: yyndd message. The message (MSG) should have a
blank as its first character.

66

SECTION DA, 01
PAGE 11
UTS TECHNICAL MANUAL 2/M /7

A request is made on NEWQ using the priority of the request associated with the error.
The DCT index is passed in R15 (normally a seek address) and thus gets placed in
IOQ12. A special function code of the typewriter handler (02) will chain the device
name from DCT16 to the message and output the entirety in one operation.

OCQUEUE
Purpose: to output typewriter messages for certain routines
Call: BAL, R11 OCQUEUE
Inputs: R1 Code (32)
R7 0,DCT (24, 8)

If the DCT index in R7 is zero the message is output alone with no device name.
Otherwise the message format is the same as for MSGOUT. The codes for messages
now available are:

KEYERR

AVRERR

LATER

EH?

AVAIL

SYMB NOT ACTIVE
SYMB ACTIVE

10. SYMB NOT SUSP
11. SYMB NOT AVAIL
12. SYMB SUSPENDED
13. SYMB TERMINATED

VIR W=

The last group, 8 through 13, is used by the symbiont routines.

67

SECTION DA, 02
PAGE 1
UTS TECHNICAL MANUAL 2/11/71

HANDLER INTERFACE

The handler has two primary functions:

1. build command list (pre-processor)
2. examine results after interrupt (post-processor)

The register inputs and outputs of these routines and the re-entrance restrictions placed
on them are described in detail in the sections on STARTIO and CLEANUP,

A number of subroutines are available in the Standard Handler Package to aid any
handler in performing its functions. These routines are discussed in the following
paragraphs.

COMLIST

Purpose: to build a command list using information contained in a set of special
tables.

Call: B COMLIST

Inputs: standard register setup plus:
R10 -, DOT (15,17)

Description:
Three tables are used on a call to COMLIST:

1. Device Operation Table (DOT).
2. Command List Table (CLIST).

3. Dummy commands.

The DOT table is an ordered word table containing one entry for each function code
allowed by the handler, beginning with zero. The first word in the DOT is usually
given a label and its value is the address passed in R10 on the call. This label will
subsequently be referred to as "DOT". Each word in the table is broken into four
8-bit fields as follows:

Byte O: The offset, in bytes, from DOT (first entry in DOT table) to
the first byte of a list of bytes describing the command list to
be built. (CLIST table)

Byte 1: The number of 5-second increments allowed to complete the
operation before it is timed-out by the scheduler.
Byte 2: a function code which becomes the current function step
(IOQ5) if retry is specified by the post-processor (see CLEANUP),
Byte 3: a function code which becomes the current function step if

follow-on is specified by the post-processor.

The two function codes are picked up by STARTIO and saved in DCTI17; they are
retrieved by CLEANUP after the return from the handler post-processor. The handler
may modify the contents of DCT17 if it deems necessary, but must extend the Disable
Point back so that it comes before the store into DCT17.

68

SECTION DA. 02
PAGE 2
UTS TECHNICAL MANUAL 2/11/71

The CLIST table consists of strings of bytes where each byte is the double-word offset
from DOT to a dummy command doubleword. The first byte of each string has a label
which is referenced by byte O of one of the DOT entries. Each string describes a
complete command list for some operation with the command doublewords replaced by
bytes to save space.

The dummy commands are used to build the actual commands and are very similar in
appearance:

word 0: order, 0, address (8, 5, 19)

word 1: flags, O, function, count (8, 8, 8, 8)

COMLIST assembles the commands specified in the CLIST table according to the function
specified (word 1) and stores them in order into the command list buffer designated for
the device (DCT7). A re-entrance test is made before storing. Each function will be
explained along with the required contents of the other parameters in the dummy com-
mand.

function 00:

Store command as is. The presence of the function byte restricts the count field,
but this function is usually used for tape spacing operations and the like which
have no byte count anyway.

function 01:

Build seek command. The order, flags and count must be correct for the particular
device. COMLIST computes the byte address of the IOQ12 entry and stores it
into the address field of the command.

function 0_2_:
Build data transfer command. The address and count fields are obtained from
IOQ8 and IOQY respectively. The order and flag fields are used as is.

If data chaining is specified (bit 0, IOQ8) the normal data transfer command is
not built. Instead a Transfer in Channel (TIC) command is inserted which will
transfer IOP control to the caller's data chain list. The doubleword address of
this list is found in IOQS8, while the number of commands in it is contained in
IOQ9. The byte address and count must be supplied by the caller in each
command, while COMLIST supplies the order and appropriate flags (the order
used is the one in the dummy command which initiated this function). Flag bit
7 (the skip flag) is left unmodified and must be supplied by the caller. This
feature of the IOP can be used to skip portions of an input record or to fill
portions of an output record with zeros. There is no provision for having more
commands after the data transfer (i.e., it should be the last item in the CLIST
table). Also the individual handler should be examined to determine if this
feature is usable. Some handlers do not use COMLIST at all.

function 03:
Build device name command. COMLIST computes the byte address of the DCT16

69

SECTION DA, 02

PAGE 3
UTS TECHNICAL MANUAL 2/11/71

entry for the proper device (the DCT index is found in IOQ12, see MSGOUT)
and stores it into the address field of the command. The order and flags are
used as is and the byte count should be 8. This command is normally followed
by a data transfer command to output the message part of an I/O System error
message.

function 04:

Return to handler. In this case the address portion of the dummy command specifies
a program address in the handler. When this command is encountered by COMLIST
it branches to the specified address, thereby enabling the handler to take some
special action (i. e., perform some function not provided by COMLIST). When

the handler is entered the registers contain the following information (except

for the command in R8 and R no register should be disturbed unless it is in the
"open" list below):

R6 current CLIST table offset

R7 current command list area pointer (where next command will be
stored).

R8 dummy command (word 0). The address field will have been set
to all zeros.

R? dummy command (word 1). The function byte will have been set
to zero.

R10 DOT address.

Open registers: R10, R5, R11, R12, R13. The remaining registers are as
in the standard register setup.

After the handler has done what it will with the command, it must return by
branching to one of three re-entry addresses in COMLIST:

USECOM: store command as is and go on to next.

DELCOM: do not use this command at all, go on to next.

DEPCOM: a new function byte has been placed in the command —
repeat the test of the function byte and act accordingly.

COMLIST is finished after it has processed a dummy command which has neither the
data chain flag nor the command chain flag set in the flag field. This means that all
commands but the last must have at least one of these flags set. At this point, the

doubleword address in DCT7 is loaded into RO and COMLIST branches to IOSST. Control
is not returned to the handler pre-processor.

Refer to the listings of existing handlers for examples of table structure and the use of
assembler features which facilitate the construction of the tables.

IOSERCK
Purpose: to test for and report common device error conditions.
Call: BAL,R9 IOSERCK

70

SECTION DA. 02

PAGE 4
UTS TECHNICAL MANUAL 2/ /71
Inputs: standard register setup.
Returns: BAL+1 if error detected.

BAL+2 if no error.
Description:
IOSERCK acts in one of four ways depending upon various status information:

1. SIO failure bit in DCT3 is set (see STARTIO). The condition is logged in the
System Error Log. Bits 18 and 20 in R12 are set and the address of the NOT
OPERATIONAL message is put in R13 (see CLEANUP). A branch is made
directly to IOSCU.

2. Timed-out bit in DCT3 is set. The same is done as for (1) except that the
message is TIMED OUT and bits 192 and 20 in R12 are set.

3. Any of TDV status bits 9 through 14 are set. These bits of the Operational
Status Byte are common to all devices and indicate that some sort of malfunction
occurred when transmission was attempted. A device error is logged. The
retry bit and TYC = 8 are set in R12; the address of the ERROR message is put
into R13. Return is to BAL+1.

4, None of the above. Return is to BAL+2 with the following in registers:

R5 -, TDV status (16, 16)
R6 -, AIO status (16, 16)
R10 -, CCA (16, 16)
R11 -, RBC (16, 16)

R12 1 if normal
2 if lost data

In R5 and Ré the status includes the Device Status Byte and the Operational Status
Byte. Lost data means that the remaining byte count was zero and the incorrect
length bit in the TDV status was set (i.e., the caller provided a buffer which was
shorter than the actual record).

IOSEREC

Purpose: to log an error detected by the handler.
Call: BAL, R? IOSEREC

Inputs: standard register setup.

Description:

For any device there may be device dependent conditions which are not detected by
IOSERCK. If the handler determines that any such condition should be classified as
an error, it calls IOSEREC to have the error entered into the System Error Log. The
return and registers are as for (3) in IOSERCK.

71

SECTION DA. 02

PAGE 5
UTS TECHNICAL MANUAL 2/11/71
RE:ENT
Purpose: to make a reentrance test.
Call: BAL, RO RE:ENT
Inputs: standard register setup.
Returns: BAL+1 Not reentered

B *R15 Reentered
Description:
The reentrance test consists of comparing R14 against the current Device Activity
Count in DCT10 (see STARTIO). If they are equal the return is to BAL+1 with all
interrupts inhibited. If not (i.e., reentrance has occurred), the start or cleanup is
aborted by returning on R15.

4CHAR

Purpose: to load the first four bytes from the caller's buffer into a register.
Call: BAL,R5 4CHAR

Description:

Starting at the byte address in IOQ8, the first four bytes are loaded into RO. This
routine is used when the caller's buffer is not necessarily on a word boundary.

72

SECTION DA.03
PAGE 1

UTS. TECHNICAL MANUAL 2/11/71

HANDLER DESCRIPTIONS

Typewriter Handler

Operation: The typewriter handler accepts the following function codes:
- read with editing

- write

- write with device name

read without editing

- read with editing and retry

- write new line character

- write with device name tabbed

The pre-processor loads R10 with the DOT address and branches to COMLIST. Only
the read-with-editing function has any special post-processing. When the post-pro-
cessor obtains control from CLEANUP, the last character typed is examined to see if
it isan EOM (X'08'). If so, a "new=line" character is output and the typewriter is
enabled for input again. This, in effect, erases what was typed previously and allows
the operator to start over again. If the maximum character count is reached, the
message is taken and processed as is. Finally a check is made for {EOD as the first
four characters. If present, the type completion code (TYC) is set to six. None of
the other functions have any special post-processing. In no case is error checking or
error recovery attempted for typewriter operations.

oA WN —-O
i

RAD Handler

Operation: The RAD handler accepts the following function codes:
0 - seek-read
1 - seek-write
2 - sense
3 - seek-checkwrite
4 - seek-write, seek-checkwrite

Error recovery on the RAD generally amounts to redoing the same operation when an
error has been detected. One exception is when a check=-write is being performed for
a write and an error is indicated. In this case the write is done over, followed by
another check-write. Check-writes are performed for all writes if sense switch 1 is set
on the operator's console. Special conditions checked for are write violation and
illegal seek address.

9 Track Tape Handler

Operation: The 9 track tape handler accepts the following function codes.
0 - read
1 - write
2 - read reverse

73

SECTION DA. 03

PAGE 2
UTS TECHNICAL MANUAL 2/11/71

3 - write tapemark

4 - backspace record

5 - forewardspace record

6 - backspace file

7 - forewardspace file

8 - rewind

9 - sense

10 - correctable read recovery
11 - non-correctable read recovery

12 - write recovery

13 - correctable read reverse recovery

14 - non-correctable read reverse recovery
15 - write tape mark recovery

Most operations are straightforward. A special feature allows the caller to space
multiple records (forward or reverse) on one forespace or backspace call. The high-
order halfword of the seek address field in the calling sequence (QUEUE or NEWQ)

is used to indicate the number of records to be spaced over (should be zero or one for

a single record). The spacing is always terminated when a tape mark is passed or the
load point is encountered. Correctable read recovery consists of rereading the offend-
ing record using the Sense, Set Correction, Read sequence of orders. Non-correctable
read recovery consists of re-reading the offending record. Write recovery is always
preceded by erasing a fixed amount of tape before writing the record again.

The following is a list of special conditions detected by the handler, and resulting

actions:

1. Write protect error. Operator is notified and must correct the problem (put in
write ring) or abort the operation (with "E" key-in).

2. Tape mark (EOF). Type of complete is set to six.

3. Beginning of tape. Type of complete is set to three.

4 End of tape. Type of complete is set to five.

7 Track Tape Handler

Operation: The 7 track tape handler accepts the following function codes:
- read packed

- write packed

- read reverse packed
- write tape mark

- backspace record
forewardspace record
- backspace file

- forewardspace file

- rewind

- read binary

NV ONOCOMWN-—=-O
1

74

SECTION DA. 03
PAGE 3
UTS TECHNICAL MANUAL 2/11/71

10 - write binary

11 - read reverse binary

12 - read decimal

13 - write decimal

14 - read reverse decimal

15 - read packed recovery

16 - write packed recovery

17 - write tape mark recovery

18 - read binary recovery

19 - write binary recovery

20 - read decimal recovery

21 - write decimal recovery

22 - final backspace record for reverse read
23 - final backspace record if unrecoverable error

The 7 track tape handler uses the existing 9 track tape handler code wherever
applicable. Refer to the 9 track tape handler writeup for a description of those items
that are applicable to 7 track tapes (e.g. recovery, spacing multiple records, etc.).

Cord Reader Handler

Operation: The card réader handler accepts the following function codes:
0 - read binary
2 - read automatic

When a call is made to read a card, the mode of the read (automatic or binary) is always
determined by the mode bit in DCT5. This bit can be changed directly in DCT5 by any
routine in the monitor. It is also changed by the presence of a IBIN or !BCD card. These
cards are used specifically for this purpose and are not passed to the caller. The IBIN
card must precede any deck of non=standard binary cards, and the |BCD card must fol-
low this deck to return the handler to the automatic mode.

A special check for the unusual end interrupt bit in the AIO operational status byte is
performed ond if set, a call to IOSEREC is made to log the error (TYPE = 05) and bit 19
of register 12 is set (see CLEANUP).

If a IEOD card is read in either mode, the TYC is set to six.

Line Printer Handler

Operation: The line printer handler accepts the following function codes:
1 - write without format
3 - write with format

The pre-processor tests for the following three conditions:
1. Is the function "print with format?"

75

SECTION DA.03

PAGE 4
UTS TECHNICAL MANUAL 2/1/71
2, Is the format byte a "top of form?"
3. Is the printer at top of form now?

If the answers are all "yes", the result will be a blank page in the listing. Therefore
the format byte, X'F1', is replaced with X'CO', to suppress the extra page.

If an error is detected during transmission, the recovery procedure is to re-transmit the
line. If the error occurs during printing, then an operator response is required to
resume printing.

A special check for the unusual end interrupt bit in the AIO operational status byte
is performed and if set, a call to IOSEREC is made to log the error (TYPE = 05) and bit
20 of register 12 is set (see CLEANUP).

Paper Tape Handler (PTAP)

Operation: The paper tape handler accepts the following function codes:
- read automatic

- write BCD

- read count

- write binary

read direct

- write direct

- read BCD

- read binary

NO O bW -0
|

The formatted write operations (write binary, write BCD) have two null characters
(X'00') appended via a data chain operation. In the case of write binary, the output
record is preceded by a one-byte indicator (X'11') and a two-byte record count.

On a read automatic operation, the indicator byte is first read into the caller's buffer
(obtained from IOQ8) ignoring leading null characters. If binary is indicated, the
record count is read into scratch space in the command list areq, and the entire record
is read into the caller's buffer. If BCD is indicated, the record is read in one byte at a
time until an EOM, NL, or null character is encountered. In the case of an EOM, the
follow=-on code is reset to read automatic which, in effect, erases the current record
and reschedules input of the next record. If the caller's buffer is not large enough to
contain the entire record, the excess position is skipped and the TYC code is set to
indicate lost data. Finally, a check is made for IEOD as the first four characters. If
present, the TYC code is set to indicate end of data.

Card Punch Handlers

Operation: The card punch handlers accept the following function codes:
0 - punch BCD
1 - punch binary

76

SECTION DA. 03
PAGE 5
UTS TECHNICAL MANUAL 2/11/71

For the high-speed card punch there are two buffers, located in the command list area
pointed to by DCT7. Thus the last two card images are available at all times. This is
necessary since the punch "read-checks" the last card punched while it is punching the
current card. If there is a read-check error, the bad card is directed to the error stacker,
where it is repunched, and the card that was being punched when the error was detected
is also directed to the error stacker to be repunched while the card originally in error

is once again read-checked. The net result of a read-check error recovery is a good
deck in the normal stacker and two cards in the error stacker.

A transmission error on the card being punched will result in that card being repunched,
with the bad card directed to the error stacker. This results in only one card appearing
in the error stacker.

The low-speed card punch handler does no special processing or recovery. In particular,
lost data is ignored.

Disk Pack Handler (DPAK)

Operation: The disk pack handler uses the following function codes:
0 - seek-read

- seek-write

- sense

- seek-checkwrite

- read

write

- checkwrite

- restore

- seek-read header

- read header

NVNOONOULTEWN —~
1

A restore carriage order is specified for follow-on in the event of an error on a seek
address or a header verify or parity error associated with a data transfer order. If a
flaw mark has been d::tected during a data transfer operation indicating a bad track,
a seek-read header sequence is initiated in order to pick up the alternate track, and
the caller's seek address in IOQ12 is altered. On a seek-write operation, a seek-
checkwrite follow-on sequence is performed if sense switch 1 is set.

A header verify or parity error on a read header command an.! three successive seek/
restore errors are considered fatal and the system recovery routines are invoked.

(Software Check - FF).

SD10

SD20

SERDEV

Disable

Device

busy or keyin
pending ?

Save

Current DAC

Cleanup
Pending ?

Enable
Disable

SECTION DA.04
PAGE 1
2/M/71

UTS TECHNICAL MANUAL

SD60

Get request index
from DCT6

Set request index
to top of queue

Is
channel
queue empty

channel
busy ?

SERVICE DEVICE

78

SD30

Is

request
busy ?

SD40

request be
started
(CTEST)

Get DCT index
from 10Q7

Device
busy or keyin
pending ?

nter-op
or cleanup
pending ?

UTS TECHNICAL MANUAL

SD34

yes

Set index to next
requesf

yes

Get request index
from DCT6

Save

Current DAC

70

PAGE 2
2/11/71

SERVICE DEVICE (cont.)

Is
cleanup
pending ?

SECTION DA.04
PAGE 3

UTS TECHNICAL MANUAL 2/11/71

SD46

Enable

| STARTIO {—

Enable

l

CLEANUP

Has

operation
timed out?

Is time

increment 0
?

as device

in manual
mode ?

SERVICE DEVICE (cont.)

80

SECTION DA.04
PAGE 4
UTS TECHNICAL MANUAL 2/11/71

Reset channel
busy flag

Save current DAC

Set up time-ouf »| Reset manual
for operation flag

Is device still

manual
?

SD86

Get address of
"MANUAL"

SD8s8 l

Set up time-out
for message

:

MSGOUT

Output message

° SERVICE DEVICE (cont.)

81

SD81

Is it
waiting for
keyin?

peration involve
data transfer

Give HIO for

device

l

Save HIO status
in DCT13

SD81A

l

Set timed out flag

l

Reset device busy

flag

Set cleanup
pending flag

UTS TECHNICAL MANUAL

Get address of
"PLEASE RESPOND"

82

SECTION DA.04
PAGE 5
2/11/71

SD88

SERVICE DEVICE (cont.)

UTS TECHNICAL MANUAL

START 10

caller supply
the command

Get time-out from

10Q9

l

Disable

83

SECTION DA.04
PAGE 6
2/11/71

©

HANDLER

Pre-processor

105ST l

Disable

START A REQUEST

UTS TECHNICAL MANUAL

Set TYC =0 if DCB
call and not disc

—

Save retry and
follow-on codes in

DCT17

l

Get time-out from
DOT table

SIO16
Is

device
pre-empted by
IOSTOP

Save request index
in DCT6

l

Save time-out in

DCT18

84

SECTION DA.04
PAGE 7

2/11/71

START A REQUEST (cont.)

UTS TECHNICAL MANUAL SECTION DA.04

PAGE 8
Channel busy ?
no

2/11/71
Set request busy

flag

Reset data
transfer, inter-op

flags

Give SIO for

device

SIO accepted ?

device in

manual mode
?

Set device manual
flag

START A REQUEST (cont.)

85

SECTION DA.04
PAGE 9

UTS TECHNICAL MANUAL 2/11/71

Get address of
"MANUAL"

l

Get time-out
for message

51020 l

Compute overdue
time and save in

DCTT1

Set device busy
flag

Decrement function
count if handler
indicates and call is

via DCB

Set data transfer

flag

Set channel busy
flag

START A REQUEST (cont.)

86

UTS TECHNICAL MANUAL SECTION DA.04
PAGE 10
2/11/71

Set cleanup pending

flag

Set data transfer

flag

Save SIO status
in DCT13

l

Set SIO failure
flag

S1040 l

Increment Device
Activity Count
(DAC)

51050 l

Enable

MSGOUT

Output message
if necessary

S1060 l

Enable

Q7

START A REQUEST (cont.)

SECTION DA.04
PAGE 11
UTS TECHNICAL MANUAL 2/11/71

IOINT

Save all registers

l

AIO

1060

Address

recognition Report error

Search for address

match in DCTI

108

Report unexpected
interrupt

)

1010

Is
device flag
set ?

/O INTERRUPT

88

UTS TECHNICAL MANUAL

device pre-
empted by

BAL to user

10STOP
?

1012

Is

CTRIG

AlO bit 1
set?

yes

Trigger Control
Task for AVR

Search for another

match in DCTI

89

’

Get TDV status,
store in DCT13

l

Reset device
busy flag

&

SECTION DA.04
PAGE 12
2/1 /71

1/O INTERRUPT (cont.)

SECTION DA.04
PAGE 13
UTS TECHNICAL MANUAL 2/11/71

Set cleanup pending
flag

Data transfer? > Reset channel
yes busy flag

1020
Save AIQ status in
DCT12
1022 l
Save PSD in
temp stack

l

Clear 1/O interrupt
from active state

l

Service
Device

l

If priority is back-
ground, call SACT

1/O INTERRUPT (cont.)

90

SECTION DA.04
PAGE 14

UTS TECHNICAL MANUAL 2/11/71

CLEANUP

1030
HANDLER

Restore all registers Post-Processor

l o

B T:SSE Disable

no

Increment Device
Activity Count

(DAC)

Restore all registers .
9 Reset Timed-out,

l SIO failure Flags

l

B T:SSE Reset cleanup
pending, manual
flags

CLEANUP

21

SECTION DA.04
PAGE 15
UTS TECHNICAL MANUAL 2/11/71

CP20

Follow=
on, retry or
keyin re-
quired ?

REQCOM

CP22

Keyin
required ?

Real-time
system ?

Set TYC = 8

(error)

CP24

Set keyin pending

flag

Save handler flags,
TYC with TDV info
(DCT13)

CLEANUP (cont.)

92

Set up time-out for
message to be output

Reset request busy
flag

Retry or
follow-on?

CP34

UTS TECHNICAL MANUAL

SECTION DA.04

Decrement retry

count

-t
Y

CP36

Set current function step
to retry or follow-on
function code

93

PAGE 16
2/11/71
CP33
REQCOM
CLEANUP (Cont)

SECTION DA.04
PAGE 17
UTS TECHNICAL MANUAL 2/11/71

inter-op

flag to be set Set inter-op flag

CP50

Enable

l

MSGOUT

Output message
if required

CP&0 l

Enable

CLEANUP (cont.)

94

SECTION DA.04

PAGE 18
UTS TECHNICAL MANUAL 2/11/71

OCT10
s a keyin Set keyin in

now being
processed 2

task triggered?

process flag

l

CTIRIG

OCT20

. Trigger Control
Clear trigger flag Task for keyin

OCT30 Y

Is
Control
Task already
active ?

B T:SSE

OCT40

Set Control Task
active flag

i

Clear control
panel interrupt
from active state

OCT50 l

SAVOVL

CONTROL PANEL INTERRUPT

95

CTiopP

Control Task

| O Processor

i

i

RESOVL

Ay
more for
Control Task
to do ?

'no

OCT60 ¥

Reset Control Task
active flag

v

B T:SSE

UTS TECHNICAL MANUAL

Enable

96

SECTION DA.04
PAGE 19
211771

CONTROL PANEL INTERRUPT (cont

SECTION DB
PAGE 1
UTS. TECHNICAL MANUAL 9/7/71

Swapping RAD 1/0 - T:SIO

PURPOSE

When the swapper has set up a command chain, for which swapping RAD /O must be
performed, it calls upon T:SIO. TSIO calls upon the I/O system (IOQ) to do the
actual 1/O and interrupt processing. The /O system returns to TSIO for end action.

OVERVIEW

TSIO performs error checks on the CL chain, sets up information in registers and calls
upon NEWQ to queue up the request. When the interrupt occurs and processing is
complete, the 1/O system transfers control to the end action rotuine in TSIO. It an
error occurred, the 1/O system entered a record in the error log file, output a message
to the operator's console and passed information about the error to the end action
routine. The end action routine will retry the call N times, and if that fails it will

set a user flag indicating the error and continue. If the I/O was successful, TSIO
returns to the SWAPPER still on end action. However, if the function performed was

a write, the 1/O system is called upon to do a check write. If the function was reading
a user, then TSIO performs a software read check before returning to the SWAPPER,

USAGE

T:SIO BAL, 11 T:SIO

Ré = Address of beginning of command list.

R5 = Address of end of command list.

R7 = Function code; 2 for read and 1 for write
ERRORS
The screech codes reported by T:SIO are as follows:

0A Read or write orders in command list are not consistently one or the other
but a mixture or in analyzing N read errors order is invalid.

0B Didn't find seek or sense order in command list when one or the other was
expected.

97

SECTION DB

PAGE 2
UTS. TECHNICAL MANUAL 12/6/71
ocC Physical page number from byte address in IOCD with read or write order
is not between values contained in LOW and HIGH,
oD Termination of command list doesn't agree with command list ending address

input T:SIO or termination IOCD doesn't have flags of X'1E',

OE No I/O is needed as indicated by input beginning address of command list
address being equal to input ending address.

OF The function input parameter is not read or write,

93 N write errors occurred and the offending command list can't be found

94 Discovered invalid order trying to continue write checking the rest of

command list after N errors occurred,

95 N read errors occurred and there is an invalid address pointing to the
offending command list,

96 N errors occurred trying to read a processor,

If a hardware error occurs, IOQ types a message, logs the error and returns to TSIO,
After N errors occur, one of three flags is set in a user flag table (UH:FLG2) and
TSIO continues, i.e., returns to the SWAPPER, Prior to execution of the user if one
of these three flags is set, the error is logged and appropriate action taken, If the flag
(bit 13) indicates that a write or write check failed on any page of the user or a read
or read check failed and it wasn't in the user's context area (JIT, DCBs, etc.) then the
message "SYSTEM SWAPPING ERROR" is output to the user and execution continues as
usual, If however the error was in reading or read checking the user's context (bit 14)
or user's JIT (bit 15), then the user is deleted.

INTERACTION

T:SSE Control is returned to the system following an interrupt,

RECOVR Is called as a result of failing consistency checks and unrecoverable 1/O errors,
T:SEXIT Control is returned to the system to wait for I/O completion,

DOWTCK Is a software switch, normally set, requesting write checking.

DORDCK Is a software switch, normally set, requesting read checking.

98

SECTION DB
PAGE 3
UTS_TECHNICAL MANUAL 9/7/71

SUBROUTINES

SET$REG sets the arguments into registers that are required for the call to NEWQ.
Input to SET$REG is the doubleword command list address in register 0 and the DCT
index in register 14.

DESCRIPTION

If software checking is required as indicated by sense switch 4 being set, T:SIO
ripples through the complete chain of command lists checking for errors. Each
command list entry, consisting of 4 words i.e. 2 IOCDs, must have an IOCD with
a seek order followed by an IOCD with a read or write order. In one command list
there must be only reads or writes but not both. Each 4 word entry must have
termination flags of X'4C" in the second IOCD, or be followed by another 4 word
entry with a seek order in the 1st IOCD, or be followed by a transfer In Channel
IOCD. Each TIC IOCD must be followed by an IOCD containing a seek or a
sense order. The command list must be terminated by an IOCD with a sense order
or with X'4C' flags and this termination point must agree with the address of the
end of the command list specified as input to T:SIO. All physical page numbers
contained in the byte addresses of IOCDs with read or write orders must be within
* the range of physical pages, not containing the monitor, used by the system,

as defined (the range) by the values contained in locations LOW and HIGH. If
any errors are found, T:SIO transfers to RECOVER with a screech code indicating
the error.

If there are no errors, the number of retries is initialized and SET$REG is called
to set up the arguments in registers for NEWQ. NEWQ is called upon to queue
up the request. When it retumns, T:SEXIT is executed.

T:SEXIT pulls a return address from the stack and transfers control to that location.
When the swap scheduler was entered, the address of the caller was pushed into the
stack. The first time T:SEXIT is called, it will return to that caller. When the
1/O system has finished processing a swapper interrupt, it transfers control to end
action in TSIO. This end action routine pushes into the stack the return location
of the 1/O system. End action transfers to the swapper, the swapper calls TSIO
again and finally T:SEXIT gets executed again, which finally pulls and returns

to the I/O system which returns to the point of interrupt. (See diagram DB-1)

When the 1/O system finishes the 1/O and processes the interrupt, it transfers to

T:SIOEA, the end action routine in TSIO, with information about any errors.
T:SIOEA pushes the return address into the stack.

99

SECTION DB
PAGE 4
UTS TECHNICAL MANUAL 9/7/71

If the 1/O system detected any errors, TSIO retries (by calling NEWQ) N times. If
these retries are all unsuccessful, a user flag is set as indicated in the error section
and TSIO returns to the swapper. If the function was a write check, retry consists
of re-writting and then retrying the write check. If software read checking fails,
retry consists of rereading.

All successful writes are write checked if DOWTCK is set. No matter how many CLs
are in chain, it is executed at one time if the function is read or write. Write checking
requires the chain to be partitioned and 1/O initiated separately for each part. The
AJIT and JIT are write checked first. When this is completed, the JIT can be altered
by setting write check orders in the user's CL. If there is another user's JIT CL
following, it can be done at the same time. So the routine ripples through the chain,
changing write orders to write checks, until it finds a TIC from a JIT CL to a user
CL, at which point it resets the chaining flag and sets the interrupt flag. After this
I/O is completed, it continues where it left off until it finds the next user CL, and so
on, until everything written has been checked. An unsuccessful write check results
in only that section just checked, being rewritten and the rechecked.

When the function was reading a user (not processors, JIT or initial data and DCBs),

a software read check is performed if DORDCK is set. Comparison is made to insure
that halfword identifiers in the user's page start with the value saved in JIT and are

consecutive. The halfword destroyed by an identifier is saved in the command chain
for each page before it is swapped out and restored during this read check.

When all requested 1/O has been completed, TSIO returns to the swapper.

100

SECTION DB
PAGE 5
UTS. TECHNICAL MANUAL 9/7/71

S Diagram DB-1: Relationship of SWAPPER, TSIO
(PUSH 11 Branch to) and IOQ. Illustration shows
WAPPER swapping out 1 user with one error
and swapping in a user (JIT in core)

without error,
set up

out swap 1S10

| set up for IOQ

10Q
‘ start 1/O

J Pull return (routine T:SEXIT in TSIO)
(return to caller of swap)
INTERRUPT (1)

end action ;
process interrupt

push return
uppose error:
I;et up for IOQ (retry)
o "

!

lpull return (return to
interrupted at(1))

INTERRUPT®

end action J process interrupt

push return
suppose 1/0 ok:

return to swapper

set up for |IOQ

lsfort I/0
';J” return (return to
interrupt at(2)) INTERRUPT @

. process interrupt
__.end o.cf,l_qn*.,J P P

v push return suppose

1/0 OK

finish swap, pull return
(return to interrupt and at(3))

101

SECTION DC
PAGE 2
3/27/72

UTS TECHNICAL MANUAL

1D

COC - Terminal 1/O

INTRODUCTION

The UTS COC routines provide 1/O operation between typewriter-like user terminals
and user programs issuing requests for read and write operations. Connections or
communications exist between the COC routines and |) user or processor programs
through CAL instructions which are requests for read, write, format control, and
other actions (in this capacity the COC routines are treated as the 1/O "handler"
for the 761l communications hardware); 2) the external interrupts from the 76lI
which report receipt of input characters and completion of transmission of output
characters; and 3) the UTS scheduler to which the significant events of the terminal
I/O are reported and to which control is given up for user scheduling when the
crucial events occur.

Operations of these routines from the point of view of the user at the terminal and
from the view of the user program are described in the UTS System Management
Reference Manual, Chapter 6 and the UTS Reference Manual, Chapter 8.

The major functions provided by these routines are:

) Terminal 1/Q Read and Write operations

2) Demultiplexing input characters

3) Buffering of input and output messages into l4=character linked blocks

4) Translation between internal EBCDIC characters and the external code
appropriate to the terminal

5) Generation and checking of parity for each character for those terminals
requiring it.

6) Recognition of end~of-message characters

7) Echoing CR for LF and LF for CR

8) Reporting of significant I/O events to the scheduler

9 Line=delete and character-delete editing commands

10) Echoplexing for nonlocal printing terminals

1) Sending of user "prompt" characters for each read CAL

12) Tab simulation

13) Splitting long lines to fit on the platen

I14) Vertical format control on first output message character

15) Formatting and issuing of page headings

102

SECTION DC
PAGE 3
3/27/72

UTS TECHNICAL MANUAL

ORGANIZATION

The COC routines may be divided into three groups:

1)

2)

3)

The read and write routines which service explicit user CAL instructions
to ship messages to and from user terminals. These routines operate in
the user map; the scheduler guarantees that the entire user's program is
in core during their brief execution. These routines include the control
program COC, the read routine COCRD, and the write routine COCWR.
A flow chart of the read and write routines is given in Section DC. 02.

The input and output interrupt routines which service external interrupts
from the COC hardware. These routines operate unmapped; the user's
program is not required to be in core, and the output routine makes use
of an extra register block for faster operation. For proper operation the
input external interrupt must be of higher hardware priority than the
output interrupt. The input interrupt routine is COCIP and the output
interrupt routine is COCOP. Flow charts for these routines are given

in Section DC, 02.

'Hybrid' routines such as COCMU, COCSENDI, and COCECHO which
operate mapped or unmapped as they are called from both read and write
routines and interrupt routines.

DATA BASES

The Line Tables:

The COC routines maintain information about each line in a series of tables which are
indexed by the COC line number.
line and contains:

This control information amounts to 23 bytes per

MODE, MODE2, MODE3, and COCTERM are bytes which record the operating

mode of the line (echoplex, tab simulate, space insertion, paper tape, parity
checking, break set characters, etc.), and the type of terminal connected.

b. Bytes containing counts of characters remaining for output, COCOC, and of
the maximum number of characters allowed in an input message, RSZ, and
of the current size of an input message, ARSZ.

103

SECTION DC

PAGE 4
3/27/72
UTS TECHNICAL MANUAL
c. In order to simulate physical tab stops the current carriage position is

maintained at all times in CPOS and the position at the start of a read in
CPI. A halfword, TL, contains the relative address of a buffer containing
the tab stop positions to be used during user typing.

d. COCOI, COCOR, COCII,. and COCIR record the current insertion and

removal points of input and output buffers for the line.
e. BUFCNT records the number of buffers currently occupied by the line.

f. Counts are also kept in JIT of the number of lines on the current page and
of the current page number.

COC LINE TABLES

Size

Label (Bytes)

LB:UN 1 User number associated with line.

COCTERM] Terminal Type (implies translation, etc.)

MODE 1 Various

MODE?2 1 Line

MODE3 1 Descriptors (see below)

COCOt 2 Byte pointer to current insertion point into output
stream for the line. Used by write routine,

COCOR 2 Byte pointer to current removal point from output
stream for the line. O##eno buffer. Used by output interrupt.

COCOC | I Current number of characters pending output including

current character being output. 0 — inactive.
1——=last character being output and thus COCOI and
COCOR are meaningless.

cocll 2 Byte pointer to current insertion point into input
stream for the line. 0—=no buffer. Used by input
interrupt routine.

COCIR 2 Byte pointer to current removal point from input stream
for the line, Used by user read routine

RSZ 1 Size of record requested by user if a read is pending

ARSZ 1 Current size of record being read (and echoed) while

read pending.

104

SECTION DC
PAGE 5

3/27/72

UTS TECHNICAL MANUAL

Size
Label (Bytes)
CPOS 1
CPI]
BUFCNT 1
TL 2

EOMTIME 2
23 bytey/line

Carriage position. Indicates the current column
number at which the terminal is (logically)
positioned.

Initial carriage position for a read.

Current number of buffers in use by the line.

Used for inforcement of maximum number of
buffers allocated to a line.

Pointer to tab buffer in use by the line while a
read is pending. A value of O indicates no tabs

in effect for the read. Byte 1 of tab buffer is reserved
for BS edit.

Contains zero if user read is on going while input
has been read ahead. Contains the time remaining
before the user will be timed out while a read is
pending. Contains the time that the current read
request was satisfied.

Obtaining Terminal Line Table Information

A CAL will be available that provides a requesting program a snapshot of the line
table information associated with the user's terminal.

The format of the CAL is:
CAL1,8 FPT

where FPT contains X'06400000'

The following information will be returned in registers 8 and 9.

Register 8

byte 0 = COCTERM
byte 1 = MODE
byte 2 = MODE2
byte 3 = MODE3

Register 9

byte 0, CPOS
byte 1 = COCOC
byte 2 = BUFCNT
byte 3 =LB:UN

105

UTS TECHNICAL MANUAL

VALUES IN COC LINE TABLES

MODE: Bit meanings are:

80 Echoplex (full duplex) Mode (esc E)

40 TTY - Escape Sequence Pending, 274l -
2741 - EOA Pending

20 Transparent Mode (DRC)

10 Reading Pending (0-#Read Ahead)

08 Tab Simulation Active (esc T)

04 Restrict Code to Upper Case (esc U)

02

01 } Break Count

MODE2: Bit meanings are:

80 Line Reported Off

40 Full Duplex Paper Tape Mode (X ON)

20 Space Insertion (esc S)

10 2741 Line

(8 Shift to Lower Case (esc (esc))

04 Check Parity Mode

02 } Break Set

ol

MODE3: Bit meanings are:

80 Tab Relative to Beginning of Input (esc C)

40 Half Duplex Paper Tape Mode (esc P)

20 Backspace Edit Flag (274l)

10 2741 Keyboard Locked

08 Lost Input (insufficient buffers)

04

02 Number of lines upspaced during input

01

Defaults are:

SECTION DC
PAGE 6

3/27/72

1 ——p Echoplex
I—ESC received
}|——Pending

| ——-Transparent
|— Read pending
| —Tab simulate

1 —Restricted

1— Line reported off
1— X ON

1 —Space insert

1 — 2741

1 —Shifted to lower case
1 —Check Parity

1 — Rel Tabbing

1 — Half Duplex Paper Tape
] —B. S. Edit mode

1 —» Locked

1 —Input Lost

TTY - Echoplex, Tab Simulate, Space Insert, all else off
274] -EOA pending, 274l line, check parity, keyboard locked all else off.

106

SECTION DC

PAGE 7
3/27/72
UTS TECHNICAL MANUAL
COCTERM
0 Model 33 TTY
1 Model 35 TTY
2 Model 37 TTY
3 XOS Model 7015
4-5 EBCD Standard 2741
6-7 EBCD APL 274l
8-9 Selectric Standard 274!
10-11 Selectric APL 274|
Buffers:

Input from and output to user terminals is buffered in resident core using linked chains
of four-word buffers containing 14 characters and a relative link in the first half-
word. For output, the message is translated to external form and placed in as many
buffers as are required. The output interrupt routine sends the characters one at a
time from the buffers, releasing those that are empty. On input, abuffer is not
assigned until the first input character is received.

Buffers as shown below are four words long and chained together by relative pointers
to the buffer pool carried in the first halfword of each buffer. A zero link terminates
the the chain. Fourteen characters are placed in the remaining space in each buffer.

A chain of free buffers are retained and pointed to by COCHPB. The free buffers
are chained through the first word of each buffer. Zero signifies the last buffer
in the free chain. '

Lines with input and/or output characters in the line tables have buffers linked as
follows:

Output:

COCOR [BA{a) - BA (COCBUF)~/ BA(5) - BA coceun; B T

———

a =Location of next byte to t a } etc. l

RN U,

be transmitted, by the Output
interrupt routine

B, ¥=Bytes already sent.

-
;

107

SECTION DC

PAGE 8
3/27/72
UTS TECHNICAL MANUAL
Last buffer
COCOI | BA (¢) ~BA(COCBUF) 0 5 | etc.
¢ is position of last character €
placed in buffer by COCSEND]1
Input:

a = Location of next byte to a etc.

be moved to user as a result

of read. ' 1

B, Y = Bytes that have already been moved.

Last Buffer

Cocl [BAT(<) = BA (COCRUF] — 0 8 | ete.

g is position of last character €

received and placed in buffer by

Input Interrupt, routine.

108

SECTION DC

PAGE ¢
3/27/72
UTS TECHNICAL MANUAL

Error Counts:

COCIPC Count of characters received with parity error.

COCIPL Line *for last parity error or untranslatable character received.

COCOEC = Count of input and output interrupts from lines not valid (out of

COCBLC COC table range).

COCOEL = Line * for last invalid interrupt.

COCBLN

Executive message:

COCMESS Administrative message buffer for page heading. (I6 words)

Translate Tables:
Associated with each type of terminal is a pair of translation tables which give the
correspondences between internal and external character codes. Special translation
codes trigger input functions such as character and line delete, tab simulation,
echoes for carriage return and line feed, and other special operations.
A single pair of translate tables which handles all ASCII coded terminals (types 0-3)
is provided in the standard UTS system. Additional translate tables are provided via
SYSGEN option for 274l,
The general format of translation tables is as follows:
a. Input (table indexed by device code yields EBCDIC code)

) TTY - 128 bytes in length (parity stripped before translation)

2) 274l (each code set) = 2 tables each 64 bytes in length (parity stripped
before translation); first table for lower case, second table for upper case.

109

SECTION DC
PAGE 10
3/27/72

UTS TECHNICAL MANUAL

b. Output (table indexed by EBCDIC code yields device code less parity). All are
256 bytes in length.

Device Code is formatted as follows:

0 device code-parity

Type Special Code
0o 1I2 34567

If bit 0 =0, remainder is device code minus parity. If 2741, bit 1= 1 for Upper
Case Character, bit 1=0 for Lower Case Character

If bit 0 = 1 remainder is further qualified by Type:
Type = O—Special Code Significance is:

- Form Feed

= HT (Tab)

- CR and LF must be sent (TTY only)

- NL must be sent (274l only)

- ESCF

- ESCX

- Destructive Rubout (Rubout, BS ATTN)

- Retype
Local Carriage Return

- ll] " (70]5), wpw (TTY 33_37)
- "' (7015), " 1" (TTY 33-37)
- 274) Backspace (2741)

- Local LF (TTY)

- LF must be sent

- Parity Error

MODOA®PBOVOONOCULEWN—O
1

110

SECTION DC
PAGE 11
3/27/72

UTS TECHNICAL MANUAL

Type = 1 —— Character is Delta Activation Character and bits 2-7
are EBCDIC code to use for true output translation.

Type =2 —— This is a mode setting operation (e.g., ESC E). Bits

5-7 determine the bit within a flag byte to be affected
O-»bit 7, F»bité, Z»bit 0).

Type =3 —— Ordinary Activation Character and bits 2-7 are EBCDIC code
to use for true output translation.

The exact action taken on all input and output characters is contained in this section
under CONTROL FUNCTIONS.

Sample Translate Tables for TTY and the selectric standard 2741 terminals follows:

111

300 13119 MAR 21, '72 ASCI] TRANSLATION TABLE 151

2960 . XD000020
2363 *
2962 * YYY AND K70 INPUT TRANSUATE TABLE «=-ASCTT Y8 ESTDIT
2963 L]
2964 .
2968 FR CYTYBUT EQU xDeuy
2966 01 00729 TTYIN EQU s
2367 01 00729 KDIN EQY %
2968 . EBCOTC EQUIVAVENY BF esvsee ASCTT CHARACTYERS
2969 . 0
2972 hd ;
2971 »
2972 01 00729 00010203 A DATA,8 X10001020304090607° NUL» SBH, STX, ETX, EOT, ENQ, ACK, BE{
E___Juuﬁoﬁ07
2973 oi 0072 08051503 A DATA,8 X'p80515030C0DQEQF ! Bs, HTs NLILF)s VT, T FF, CR, 3-N s
OCODOEOF
2974 L
2975 o1 00720 103C1230 A DATA,B Xx1403C123D140A1617+ DLE,DC1(XBN)»OC2,0C3(XBFFT,0Ca» NAK, SYNs ETH
140A1617
2976 0} 0Q7ef 32191230 A DATA,8 X132193A304CIDJIELFY CAN(CTLeX))EM(CTLeY),SUB,ESC,FSs GS» RS 4 US
— 1CiD4ELF
o 2977 . 2
2978 01 00734 405A7F73 A DATA,8 X'405A7F7B586CS07D' BLANK,EXCL MK,QUBT MK, 4, s, X .Y] '
586C5070
2979 o1 00733 425D5C4E A DATA,8 X14D5D5C4ELB6O4BEY Y (s)e *, * ’e Y Y /
68604361
2980 » 3 ;
2931 9! 00735 FUF{F2F3 A DATA,8 Xt'FQF1F2F 3F4FSF6F 71 09 1s 2, 3, 'Y S Y] b4
N F4FSF6F7
2982 QT 00737 FRFI7ASE A DATA, B XVFRFOTASE4CTEGESF T 84 Y L) I < L) >2UWUEST MK
WwC7E6E6F

aL/L2/¢

Z\ 39Vvd

24| NPILOgS

300 13i19 MAR 21, '72 ASCIT TRANSLATION TABLE 152
2954 - ‘
2985 0f 00739 7CC1£2C3 A DATA,8 X'2CC3C€2C3C«CsCeCy 'Y A, 8, ¢, 0, £, £y 8
CuC5C6(7
2986 01 00735 CBC?DIDZ A DAT‘,‘ ¥.CBC9010203°~0506' Hs x’ J‘ K' L' H‘ Ny
D3D4D50g
29R7 »
2939 01! 00732 575803%Ep A DATA,8 X'D708D9E2E3E4ESER! P, a, R, S, ', J, v, "
E3IE4ESEs
2990 01 0073F ETESEDWF A DATA,8 X'E7EBEINFBISFEASD Xs¥s207015'8R17BK/97015'N8T1s ARRGW » UP,BACKN
BiSFeA6)D 191NoT1s ARRew - CPRaBdCKN
2991 ® FOR TTY'S BTHER THAN 7015, ASCJ]1 5B & 'SDY(LEFT & ngHT BRACKETS)
Saoz ® ARE TRANSLATED RESPECTIVELY INTO « 1B&' & 'BS!
2993 ™
2334 »
2995 .
2994 11 007} 4AR18283 A DATA,B8 X'4AB182838B4R58687! CENTS'LC'A"LC'B"LC'C"'l:_c._'g'_ll-,c,'_g_!_l_l.g_'f_'i__gc’G'
K4R58587
2997 0l 00743 RE899192 A DATA,8 X1838991929394959%! LCYHILC T aLCodrslCoka,LCtL v ,LC1My L CINYILEYY? ‘
93949526
2998 Pa—
2999 o1 007‘5 97989942 A DATMB X1979899A2A3A8A5A4 ! LC.P.'LC'Q"LC.R"Lc's'lLC'T"LC’U’pLC'V"EC'H'
A3ANASA,
= 3000 01 00787 A7A8AJB2 KT DATA,B XTATABAIBEWFBISFFFT LCTXT;LCTVisLCIZT7BRACE (s BY,3RACE J; N8BT3 RUB
@ sFB35FFF
3002 01 00749 31181380 A ALTMODES DATA X'31181880" ACTIVE RUBs ALTeESCs ALTESC. RUBOYT

L

3OVd
23S

tLNE/E

i{hon

2a

390 13119 MAR g1» '72 ASCIT TRANSLATION TABLE 153
3004 -
3205 ’ TYY AND K/D BUTPUT TRANSLATE TABLE -« EBCDIC 18 asCIl
3006 - _
3007 01 00744 ({-LIV}) EQV . K/D BUTPUT TRANSLATE TABLE xD000600
3008 . 00 | - o
3009 01 007«A Ocm203 A DATA;B x‘oao[°203EA81°607’ NUL' sa“' memﬁtﬁ; ,B,_E_L
EAR10607
3 1 74C 3051503 A DATA,8 x'Q805150B80820E0QF ! BSs ENQ, NAK, VT, «FF, CR, $8, sl
80820E0OF
N s 01
3012 0l 0074E 10111213 A DATA,8 X'1011121314828617' OLEs X8N, DCa, X8FF, DC4,eNL(LF),SYNs ET8
14821617
3013 01 007%0 18ECBEI3 A DATA,8 X'iaECeE}BEIEEE3Eh' CANs «EM, oSUB, *ESC, <*FS, *GS, *RSs <US
E1E2F3Ee , - o N
3014 w02
3015 01 o0o752 leCl?:E A DATA,8 X'801C1D1ELIF292F5E! oLFs» FS, GS, RS, USs Yo /2UP=ARRBWN
—ye—— 1F292F 5
016 01 0075% 30pJghos A DATA,8 X13D0D040819090A23) =, CR, EOT, 8S, gMiWYs LF; ACERRA .
3 13C90A23 3
017 »
3018 o0l 00/>6 FeREBS0E K DATA, B X'84868506D2C3CBD3!' ESCeF,sRUB,ESCeX,ESCEP,ESCRU,ESCET,ESCETIESCET
D2£3C303
3019 01 00758 DsD7378C A DATA,8 X'DsD7D78CCEC48788! ESCES,ESCEESESCECIESCHLF) ®XON, *X8FF) ESCoRI ESCOCRN
— CEC52788 LA L0
N 3020 » 4
3023 01 0075A 2232323 A DATA,8 X12023232323232323' BLANKs SUB » SUB + SUR , SUB , SUB » SUB » SU3
23232323 ke
3022 01 0075C 23238026 A DATA,8 X12323602E3C282B891 SUB 5 SUB »CENTS) os <« (s 1 *OR
3C282389
3c23 . 5 .
3924 01 0075t 26232323 A DATA,8 X12623232323232323" & SUB » SUB » SUB , SUB , SUB s SUB #» SUB
23232323)
3025 01 00760 23232124 A DATA,8 Xi12323212%2AA5IB3AT 5UB 5 SUB JEXCL ™Ks s, 5T TeNaT
2AAS3884A
3026 » 6
3027 ol 00762 20K62323 A DATA, ¥ XT20A§2323232323237 »s ¢/, SUB , SUS , SUB , SUB , SUB 7 SU3
232323¢c3
g
Lyr
: N
Sm
%Y

14!
2d wOU J3S

G200 13319 MAR 21, '7? . ASCI! TRANSLATION TABLE

S
3028 01 00764 2323A;2§ A DATA,8 X12323A72C255F3E3F!' SUB , SUB »eUP=ARRONW, ,, g,aK-ARROa0.>oUUEST MK
2S5F3E3 ' '
3029 . 7 i
3030 01 00766 agg;agea A DATA,8 X'2323232323232323' SUB , suB , SuB , SyB , SuB , Sy , SUB » SUB
23232323
3031 0l 00768 23233423 A DATA,B X123233A234027A822! SyB » SuUB » [[T) 8 'y LT
4027A822 .
3032) 8
3033 01 0076A 23616263 A DATA28 X123616263646566677 SUB sLC'AlsLL B, LCTCI,LC' DT, LCTET, L CTFY/LTTET
546565667 - ,
303% 0} 0076C 65632223 A DATA,8 X16869232323232323' LC'H1,LCr]rs SUB » SUB » SUB , SUB » SYB ¢ SUs
23232323
39035 ‘ . 9
3036 01 0076E 236A36C A DATA,8 X1236A6B6CEDEEGFT0! - SUB 4LC1J1,LCIK,LCIL 1, LCM,LCINY,LCYBY,LEIP!Y
6DLELF T '
3037 01 00770 71732323 A DATA,8 X17172232323232323!' LG'Q'»LC*'RY, SUB » SUB 4 SUB » SUB » SUB » SUB
23232323 :
3038 . A
3039 0l 00772 23237374 A DATA,8 x'2323737475767778! SUB 4, SUB LCtS1sLCrTo,LC1Ys,LCave, L CoWtpLCryx
: 715262278 . .
3040 01 0077% 79742323 A~ DATA,8 X1797A232323232323¢1 LC'Y+,LCe12ys SUB » SUB , SUB , SUB, SUB 7 SUY
23232323
= 3061 . 8
o 3042 01 00776 23557‘373 A DATA,8 X'235C7B705B502323' SUB ,BK 177, {BRACE,BRACE), (BRACK, BRACKT,SUB,SUB
§8532323) ’ T
3043 ___al 00778 232§gggz A DATA,8 X1232323232323EF 23 SUB, SUB, SUB, SUB, SUB,SUB,+_BSTDATA,SUB
2323EF23 -
3044 » (o
3045 01 0077A 20414243 A DATA,B X12041426348454647' SPACE, A, 8, cs D, Es Fa G
Voa58647 .
3ce6 01 0077C 45692323 A DATA,8 X14849232323232323" Ha 1, SuB , SU8 , SyB , SuB , SUB » Sug
23232323 i
3047 . o}
3048 0i 0077t 23hk~:6C A DATA,8 X1234A8B4C4DGENFSD! SUB » Js Ko (W) M N L L4
4D4E4FS) A
3049 01 00780 51522323 A DATA,8 X1515223232353232 [+ s 0 ?)) ’ ?
23232323
Y

zL/Lefe
¢l 39Vd
D54 NOWDAS

oLl

390 13:19 MAR 21, '72 ASCI] TRANSLATI®N TABLE 155

3050 . 3

3251 ol 00782 22235354 A DATA,8 X12D23535455565758" e« , SUB, S, T, Vo \7) W X
55565758

3082 vl 00784 RG6A2323 A DATA,8 X1595A232323232323" Y 2o SUB » SUB , SUR , SUB » SUB ¢ SUB
23232323

3053 . F

3054 01 00786 30313233 A DATA,8 X13031323334353637! 0. 1, 2, 3 ') 5, 6s 4
343535637

3055 ol 00788 38392323 K DATA, B X1383923232323237F° 8 9, SUB » SUB , SUB , SUB » SUB 7 DEL
2323237F

3056 -

3087 -

3758 .

3959 s THE SYMBOL #, ¢, AND §, wHICW PRECEED OR ARE IMBEDDED IN CGN”EVYARY SyMmsoLs

3060 ¥ INOJCATE CATAGORIES 8F CHARACTERS WHICH REQUIRE SPECIAL RANDLING

3Cs1 # THE SPECIAL CATAGORIES ARE!

3562 .

3563 ' & o o o UNIQUE ACTIBN IS GEVERALLY REQUIRED,

3064 .

3c6% » +) THE CHARACTER WILL NOBRMALLY ACTIVATE, BR

3066 » IT IS A DELTA ACTlvATleN CHARACTER,

30s7 »

3048 » E « o s CHANGE APPRAPRIATE MBDE IN LINE TABLE.

3049 »

3079 .

307214 o —— ;

3072 « END BF K/D 3UTPUT TRANSLATE TASLE XD000950

3073 . X0000960

3974 00000784 COCMAINSIZE EQU 2% (ABSVAL(DA(se]))el) '

3078 ol 007rA USECY CICETRAB

3076 ' 0000078A CRC CBDE SIZE EQU COCMAINSIZE+2#(ABSVAL(DA(g=1))*])

3977 END XD000970

CANTRBL SECTION SUMMARY! 01 QO078A PT O 02 00000 PT O

D3S

DIL

2L/ L/t
dB‘E)Vd

9

20 N

3

oC

L1l

08:40
51
52
53
54
1¢
16
b
58
59
60
61
1+
63
64
65
1%
67
ie
69
i«
71
72
73
74
i+
2%
3«
1+
78
79
80
81
i
83
10
1+
o

MAR 22, '72
01 06020
_0gQdoec 3D3EQEQD
00021 £A81303D
00022 8837373
0oce3 80%3373D
00024 3C3%4C2C
0025 4FR3305¢
Vo026 R83D8E3)D
00027 303030E4
00028 2030393)
00029 30325758
00028 642F6ET7)
| ooceact B486853)D
0oued D2s3CKD3
voceE D532D705
ooceF 30308788
00030 407075872
00C31 6A4ATOT7(
00C32 66595811
coC33 B1745341
00034 68707046
00035 7052457
00C36 70700144
00037 73AC23670
00C38 37466577
voC39 72907562
0003A 70704733

> > > > >3>2> > > > > > > >» > > > > > > > > > >

> > >

2741 SELECZTRIC STANDARD BUTPUT TRANSLATISN TABLE

*

SSTD

*
*

0

QUTPUT TRANSLATION TABLE

EQU .

DATA
DATA
DATA
DATA

DATA
DATA
DATA
DATA

DATA
DATA
DATA
CATA

DATA
DATA
DATA
DATA

DATA
DATA
OATA
DATA

DATA
CATA
DATA
DATA

CATA
DATA
DATA

$

X' 3D3EQEQD!
XV'EAR13D3D!
X'3B83D303D!
X1'30833D3D"!

X130304C2C
X'4FR3305¢ "
X133308E3D"
X'323030€4!

X13D30303D!
X 130300758
X1136D305D"
X1 642FSE70"

X13486853D"
X10D2C3C803"
X1053DD7D5
X13D308788"

X1'40707670"
X16A4A7070"
X'66595811"
X1517453414"!

X'68707046"
X170524570"
X'70700144"
X'78AC2860"

X'37A66570"
X'72707%2"'
X'7070A738!

7
EBCDIC 18 SELECTYRIC STANDARD

NUL=*>IL2SBH*>PRE,STXee>BYIETXw>RES
VEBTY , tHT!t ,ACRae>]LsBELes>]L
1BS! JENGee>IL,NAKew>[LsVTewadIl
1FFY JCR=>'NL"'")S9%eed>[LsSlemad]|

DLEwwe»ILsDC1=w>ILsDC2ma3PNsDC3Imned>RS
DCy=ed>PF, 'NL' ,SYNea>]L/ETBe>EDB

CANe=>BS)EM=ee>]L,SUBa> o NE¢,ESCex1l
FS.-.)IL‘GSOO.)IL,RS'..)ILJSP ATTN

INDXe3LFsFSewadIsGSven>]LsRSe=ad]l

USee==>Ily SYN '/v sCRCMFLX
tsr , INL' LEBTe>IL s 'Bg!
U I "WYY , 'WF' 2 BEw»!'x!
F ATTN 4 BS ATTN) X ATTN ¢ SYN
U ATTN o (ATTN ,) ATTN 4o T ATTN
S ATIN , SYN , C ATIN 4 8 ATTN
SYN SYN , R ATTN » N ATYTN
SPACE SUB LAPL'DCD'» SyB
APLYMIN') APL'EPSY, SUB sy8
APL'DLYA') APL'NeGN', CENTS , te!
I<Crtediet) v) 1419)B0Reme>DE!
5 2 SuB sup ¢+ QUAD
SUB o ENCBDE ,CIRCULAR, syB
SUB » SUB LEXCL, MK, 's!
(K X N U N !‘1 'NGT.>'00
tet /Y HyMAXIMUMY SuUB
APL'DeARW?', SUB ,APL'8MG')APL'gPST
SUB 2 SUB , CRCMFXs !

zL/Le/e
£1 39Vd
D0 NOLLD3S

8Ll

ODRI40 MAR 22, '72 2741 SELECTRIC STANDARD INPUT TRANSLATIBN TABLE 5

2 PCC 0

i 0020009 2741ARU3 SET o

3 CEF SSTD,S3TNLLC,SSTOUC

: 1 odtvou SSTOLC EQU ¢ SELECTRIC STANDARD LBWER CASE T8 gBCDIC

5 .

6 » 0

8 01 00001 F4989364 A DATA X1F4969361 1 v4r 5 LC1BY 5, LCeLr 4 1y

9 ol ooz F5778597 A DATA X1FE7DR597 1 '5r 4 tit , LCYEr 4 LCIPY
10 0! voco3 12530214 A DATA X' 12030214 PNea>DC2sRES=>ETX)BY®e>STXsPFa=>DCh
11 . 1

12 01 00004 F243957¢ A DATA X1F248957E " 120 4 'a' 5, LCIN' s s
13 01 000C5 A9000000 A DATA X' A9000000 LC'2Z' 4 UNUSED » UNUSED » UNUSED
14 €1 00006 F&RII235 A DATA X'F8R99298 61 4 LCYIN 5, LK'K' 4 LCYQY
19 ¢l oocu7 00031700 A DATA X'00081700" UCesNeAss 1BS1 ,EBBe>ETBsLCadNeA
16 » 2

19 01 00C0A F793845E A CATA X'F799845E 1 v7v 5 LCWRY , LEIDY & 1,0
2l . 3

22 01 0000C F3ASA486 A DATA X'F3IAS5A4g6" Y30, LC'VY 5 LCryY 4 LCOFY
23 01 00002 FOA6R26) A DATA X'F9A68260! 191 4 LC'W' , LC'BY o o
¢4 01 00GOE FR818363 A DATA X1'F881836B1 81 4 LCrAv , LCiCr s 4y
25 0! 0000F 04160100 A DATA X'54162100" TEBT' 4 1Lev>SYN,PREe>S3HIDEL»>]GN

zL/Le/e
el 39vd
54 NOLLD3S

6l1

08:40
27
28
)
30
31
32
33
34
i+
36
1*
o
3
4»
38
1»
39
40
41
4“2
43
44

45
46
1.
48
49

MAR g2, '72

01 5001G
00010 404FE3DY
00011 5306736F
00012 6C7FC3D7
00C13 12030214
00G14 724CD54F
0QulS F200000)
U0G16 «AC9D208

00030000
00017 00081700
00C18 SFO4E7C7
00019 SDE2CRES
00C1A S0D9C474A
00018 13152008
00C1C 7BESE4Ce
0001D 43E6C26)
VOO1E SCC1C36E
0001F 04160100

>3 > >

> > >

> > >

> >»> >

SSTOUC

*
»

2741 SELECTRIC STANDARD INPUT TRANSLATION TABLE

v

EQU

DATA
CATA
DATA
DATA

DATA
DATA
DATA
De
DATA
ELSE
DATA
FIN

DATA
TEXT
TEXT
DATA

TEXT
DATA
DATA
DATA

$ SELECTRIC STANDARD UPPER CASE T8 EBCDIC

X' 404FE3DY! SPACE ,DGRee>8R, T 'J!
X15BD6D36F ! '$' 4 '8' 5, L' JQUEST MK
X'6C7FCSD7! r%xr » QUSTE , ‘g p!
X'12030214" PNew>DC2)RESe>ETX)BY=ad>STXsPFewyDC4
X1 7C4CD84E L I L L INY re!
X1E9000000" 'Zv », UNUSED , UNUSED » UNUSED
X'e«ACSD2DR! CENTS » LD S Ky 'Q!
27431 ARUBs=1 |

X'001817¢0' UCew>N/AsBSew>CAN,EBBe>ETBsLCauwdN/A
X'00081700' UCe>dNoAes 'Bg! oEB§->ETBJLC->Nvo
X'SFD4E7CY! te=1adNBT, ™y o, XY 'g!
1)SHY)y 1St L 1y
'SRD ! '8 ’ R, o, et
X1'12152005" RSwe>DC3s 'NL' LLFe>INDXs tHT!
YeVUF ! gy, ey, gy tg!
X'4DE6CR6D! o AT '8¢ »UNDERL INE
X'5CC1C36E"! ey AY cCr 1»?
X'04160100' tEBT' »1L>">SYN,)PRE=>g3HsDELe>]GN

zL/Lefe
61 19vd
a KOLDY

oct

08340 MAR 224

1e
AR
89
90
1
-1
93
9%
95
1+
97
98
99
100
101
102
103
104
108
106
107
108
i*
-3 4
111
112
113
i
115
1%

117
118
119
120
12l
122
123

0l

01
01
o1
01

cl
01
0l
0l

o1
0}
cl
o1

ol
(03}
01
Vi

(03}
o1l
0l
0l

cl
01
o1
¢l

cl
ol
cl
ol

00038

oou3scC
00032
00G3E
O0U3F

00C40
00C«1
coos42
00043

00044
Q045
00C«46
00G47

V0C48
0009
O00C&kA
Q00Cuu

0004C
00C4D
OQCUE
00Q4F

00CS3C
G0351
00052
00053

00L& 4
00085
Thle-Y
00uS7

'72

48777847

44605079
44705875
70746379
S009AB49

70333463A
2A0A3323
26197079
7070707¢C

7CG031A06
21120503
1R297170
7C70707)

70702502
32313522
27147079
70707070

70077464
74647070
737070970
7570EF 7

4073767A
6A4AT7363
66537270
707074079

7C435A46
61524543
586972790
76737079

> > > > > » > > > > > > > > > > > > >

> > >

> > > >

2744 SELECTRIC STANDARD BUTPUT TRANSLATION TABLE

7

DATA

DATA
DATA
DATA
DATA

DATA
DATA
DATA
DATA

DATA
DATA
DATA
CATA

DATA
DATA
DATA
DATA

DATA
DATA
CATA
DATA

DATA
UATA
DATA
CATA

UATA
CATA
DATA
DATA

X'4B8777847!

X'64605070"
X' 44705870
X'70746B70"
X'S5009A849!

X17039363A!
X12A0A3323"
X'26197070"
X'72707070!

X'70031A06!
X1211205q8"
X'1B297070"
X'70707070"

X'70702502!
X132313522"
X1'27147070"
X'70707070!

X'70077464'
X' 74647070
X170707070!
X'7¢70EF 70!

X14079767A"
X'6A4A7363"
X'66597070"
X'70707070"

X'70435446"
X'61524548"
X15869707¢C"
X'70707070"

8
"2QUEST MK

1% JUNDRLINE,!>'ed!,
AP_YAND! ,APL QUBT,APL, BVER, SuB
APLYLE! 4 SUB , APLI1GE's SUB
SUB s APL'BR! , UK U ta!
g, UL ‘st ,QUBTE MK
SUB o LCrArY , LCrBY » OO
LCDY » LCIEY » LCYFr o LCiGy
LC'MY , LCr DY, SUB syB
S8 » SUB , suB » SyB
SUB 2 LCrdr , LOIKY 2 LCeL!
LC'MY 5 LCINY , LCIBY 4 LCtP!
LC'G! » LCIRY , SUB syB
SUB syB SUB ¢ sy
sug SUB , LCts o LCT
LC'UY 2 LCIVY , LCIWe 2 LCHIX!
LE'Yr , LCrZ0 , SUB SU@
SUB SUB sUs sue
SUB +BK SLASH, (BRACE » BRACE)
(BRACK s BRACK) , syB » SyB
SUB SUB , syB » SyB
SUB , SUB ,_BSTDATA, sUB
SPACE TAY 1BY 2 e’
L L L L 'Fr 1GY
'He o 1Y, sYB 0 gyB
su8 » SUB , syB » SUB
suB 'yt Ky 0w
MY, N, 8, p!
G, RY SUB syB
suB » SuB , syB . 5B
W on
S35
N
::rnﬂ
N -0
232
O
0O

Goo

CONTROL SECTIBN SUMMARY;

et

08:40

1+
125
126
127
128
129
130
131
132
133

MAR 22,

00058
00259
CO0%A
000S8

00CSsC
000592
00C5F
00CSF

'72
37706542
72717562
67547070
70707279

24201030
c4081828

38341353.

4101707F

>>>» >

> > > >

01 00060

2741 SELECTRIC STANDARD BUTPUT TRANSLATION TABLE

DATA
DATA
DATA
DATA

DATA
DATA
DATA
DATA
END

PT O

X137706542!
X'72717%62"
X167547070!
X'70707070!

X'24201030!
X'04081828!
X1338341353!
X'4101707F!

let
'UO
1Y
suB

10
)
18

]

- & W

L

sye
"y
"2
syB

!1'
151
191

- % %%

’

'g
"
suBs
SUB

121
160

- - e w

’
L

) APL MULT»
APL’ARRQW' APL'BeARRBW!,5UB,

zL/Le/e

'
1x!
Sus
suB

13!

APL D1V
'DEL?

tZ .. 3I9vd
20 NOLLD3S

SECTION DC
PAGE 22
3/27/72

UTS TECHNICAL MANUAL

Contro! Functions

Terminology

qa,

e,

Input Char(s) - The graphic characters typed at the keyboard to invoke
the action. If d fferent invocation are available on the 2741 than on TTY,
the 274l is given on a second line.

Carriage Position = The (best estimate of the) physical position of the
carriage on the dev ce. This is maintained for three purposes: insertion

of local carriage returns, tabulation control, and insertion of idle characters
on 274l's for timing carriage returns. CPI indicates the position at the
beginning of the input message.

Record size = The number of characters transmitted to the user program as
the result of the Input.

EBCDIC code = The input code passed to the user program by the COC
Handler for a read request.

Echo = The resultant graphics appearing on the terminal printer as a
result of the input (if not echoplex part of the graphic is due to local
printing).

Activation = The condition under which the Input causes the outstanding
M:READ to be satisfied. The codes used have the following meanings:

) Always Activate

2) Never Activate

3) Activate if special activation 1 or 2 (See below), or Record Size
4) Activate if special activation 1 or Record Size

5) Activate if DELTA reading or special activation 1 or record size.

6) Activate only if Record Size reaches requested size.

122

SECTION DC
PAGE 23
3/27/72

UTS TECHNICAL MANUAL

Special activation 1 will activate for the special graphics and teletype
control characters defined below.

Special activation 2 will activate for the teletype control characters
defined below and for EOT activation on 27415, ~

The special graphics characters are:
][H\ "='@’«=?> __%, A
/= i) *$18&1+)<. £

The teletype control characters are:

SOH, STX, ETX, HT, ACK, BEL, BS, ENQ, NAK,
VT, SO, SI, DLE, DC2, DC4, SYN, ETB, CAN

g. Special Action = Any special action taken as a result of the input.
Where a toggle is indicated, the default is listed as the second action.

h. Immediate or Deferred - Indicates whether special action is taken when
the character is received or is deferred until echo time.

123

144}

CONTROL FUNCTIONS SECTION DC

PAGE 24
Input Char(s) Carriage Record EBCDIC Echo Activation Special (I)mmediate or
(First Set for TTY, Position Size Code Action (Deferred
Second Set for 2741)
break 0 N. A, N. A, CR LF N. A, 1
B ATTN, ATTN (if no NL
input)
ESCY, Y€, ESC ESC 0 N. A, N.A CR LF N. A. Escape I
Y ATTN NL to TEL
ESC Q +2 +0 N. A, I 2 None I
None
X € CPI 0 N.A. CR LF 2 Delete all input I
and output
X ATTN X NL
ESC X CPl 0 N. A, X CR LF 2 Delete current D
input line
None
Rubout, ESC Rubout +1 -1 N. A. \ 2 Delete previous D
BS ATTN -1 nothing character (also see
(also see *2) *2)
None
BS =1 +1 08 *2 3 *2 D
ESC P +2 +0 N. A, P \ 2 Set or Reset Half D
none Duplex Paper Tape

Mode

gel

UTS TECHNICAL MANUAL

CONTROL FUNCTIONS

SECTION DC
PAGE 25

3/27/72

Input Char(s) Carriage Record EBCDIC Echo Activation Special (I)mmediate or
(First Set for TTY, Position Size Code Action (Deferred
Second Set for 274l

ESCC +2 +0 N. A, c> 2 Set or Reset D
C ATTN +1 C Tab Relative

Mode
ESC CR, ESC LF 0 +0 N. A, CR LF 2 Issue Local D
N ATTN N NL Carriage

- Return

none Set or Reset
O ATTN +1 +0 N. A, je] 2 Overstrike D

Edit Mode
X ON +0 +0 N. A, 2 Set Full on Half D
none Duplex Paper

Tape Mode
X OFF +0 +0 N. A, 2 Reset Full or D
none Half Duplex

Paper Tape Mode
ESCF 0 +1 oD F\CR LF] Report
FATTN F NL End-of-File D
c
L°, ESCL 0 +] ocC None 1 Force Form to Top D
L ATTN L of Next Page

9cl

UTS TECHNICAL MANUAL

CONTROL FUNCTIONS

SECTION DC
PAGE 26
3/27/72

Input Char(s)
(First Set for TTY, Carriage Record EBCDIC Echo Activation Special (I)mmediate or
Second Set for 274l Position Size Code Action Deferred
Non-Printing Control +0 +1 XDS Input Code 3 D
Characters EBCDIC is echoed
Special Graphics +1 +1 XDS Input Code 4 D
(Non=-Alphanumerics) EBCDIC is echoed
Upper and Lower +1 +1 *4 *4 6 D
Case Alphabet
Numerics +1 +1 FO-F9 0-9 6 D

UTS TECHNICAL MANUAL SECTION DC

y24)

PAGE 2/
CONTROL FUNCTIONS 3/27/72
Input Char(s) Carriage Record EBCDIC Echo Activation Special (I)mmediate or
(First Set for TTY, Position Size Code Action (Deferred
Second Set for 274l
CR 0 +1 oD CR LF 1 D
NL NL
LF 0 +1 15 CR LF 1 D
Upper Case NL NL
Fs (L) +0 +1 C 1 D
none
c3 ,
GS M) +0 +1 1D 1 D
none
RS (N7°) 40 +1 1E 1 D
none
Us (£ +0 +1 IF 1 D
SPACE-ATTN
I°, HT, ESC1 *3 *3 *3 *3 5 *3 D
Tab
/=), ord + 4 XDS /v =)ot 5 D
EBCDIC
Must be followed by ATTN
+1 +1 B4 for TTY33 - 37 4 D
[£ for TTY 33-37
none 4F for 7015 1 for 7015
;] -
R | 85 B T°33%%; 4 D
none + 5F for 7015 = for 7015

CONTROL FUNCTIONS SECTION DC

8¢l

PAGE 28
Input Char(s) Carriage Record EBCDIC Echo Activation Special (I)mmediate
(First Set for TTY, Position Size Code Action ar

Second Set for 2741 g%ferred
ESC U +2 +0 N. A, U\ 2 Set or Reset D
U ATTN +1 U Restrict Alpha-

betics to Upper

Case Mode
ESC (+2 +0 N. A, (\ 2 Interpret Alpha- D
(ATTN +1 A betics Normally
ESC) +2 +0 N. A, JAN 2 Interpret Upper D
) ATTN +1) Case Alphabetics

as Lower
none Select Upper D
Upper Case Shift +0 +0 N, A. 2 Case Half of

Keyboard
none Select Lower Case D
Lower Case Shift + +0 N. A, 2 Half of Keyboard
ESCT +2 +0 N. A, T\ 2 Reset or Set Tabs D
T ATTN +1 , T Simulation Mode output

- only
ESC S +2 +0 N. A, SN 2 Reset or Set Space D
S ATTN +1 S Insertion Mode
ESCE +2 +0 N. A, EN 2 Reset or Set D
none Echoplex Mode
ESCR CPl +Re-
R ATTN +Current +0 N.A. RNtyping 2 Retype the effective D
Record R[of the Current Input Line
Size input line

SECTION DC
PAGE 29

3/27/72

UTS TECHNICAL MANUAL

NOTES

*] - The break signal causes one of several actions to take place in the following
hierarchy:
a. If four consecutive breaks have been received without other intervening

Input, treat as Y©.

b. If an M:INT has been issued by the running program, honor it.
c. 1f DELTA is in control, go to DELTA.

d. Escape to TEL.

*2 = If Overstrike Edit Mode (O ATTN) is in effect, BS is preempted as an editing
character. BS ATTN also takes on special meaning as does SPACE under certain
circumstances. In the Overstrike Edit Mode normal input is identical to that when
the mode is OFF. However, the BS character is merely treated as a cursor
positioner. After (one or more) BS characters has been received the following

rules apply:

a. The size of the record does not change (except by BS ATTN or X ATTN)
b. SPACE is treated as a forward cursor positioner.

c. Normal Characters are stored over the character at the current cursor
position.

d. BS ATTN is treated as a SPACE to replace the current character (i.e., the
character at the carriage position before the BS) and two spaces are echoed

to position the cursor properly.

e. All attention sequences are honored but also cause the cursor to move 1
position.

129

*3_

SECTION DC
PAGE 30

3/27/72
UTS TECHNICAL MANUAL

Normal rules continue to apply when the cursor reaches the position it
had before the first BS.

Any record delimiter causes the record to be accepted as it currently
exists.

Tab characters are treated as specified in *3 below, i.e., it isa tab
character to be stored or n SPACES for cursor positioning depending on
the state of the space insertion (ESC S) switch.

The tab character causes a variety of actions (upon output, echoing, and
the resultant input record) depending upon the device type, the state

of the Tab Relative Mode (ESC C), the Echoing Mode (ESC E), the Tab
Simulation Mode (ESC T), and the Space Insertion Mode (ESC).

The Tab Relative Mode is meaningless for output. For input the mode
specifies that tabs are to be considered relative to the beginning of the
input record. The tab stops (if present) are thus adjusted for each
operation by the amount of the initial carriage position. In further
discussion Tab Stops are defined as the effective tab stops after ad-
justment.

The remaining discussion is presented in tabular form with the following
parameters defined:

CPOS =~ Current Carriage Position
CPI - Carriage Position of the Beginning of an input message
ARSZ - Number of characters accumulated in current input message

TRSZ - Difference between Size of input message if space insertion were on

and ARSZ.

When no tab specifications are present, a value of one greater than
current carriage position is assumed, but if physical tabbing is involved
the carriage is assumed to move 10 positions. The following table il-

lustrates the results of a tab character when received as a function of affecting

modes of operation:

130

€1

Tabs EscCc ESCT ESCS Devices
N 0 0] TTY 33, 7015
N 0 0 0 TTY 33, 7015
N] 0 0 TTY 35 37
N 1 0] TTY 35, 37
N] 1 0 TTY 35 37
N 1 I] TTY 35, 37
N 0 0 0 TTY 35 37, 274l
N 0 0 1 TTY 35, 37, 274l
Y 0 0 0 TTY 33, 7015
Y 0 0 1 TTY 33, 7015
Y 0 1 0 TTY 33, 7015
Y 0]] TTY 33, 7015
Y 0 0 0 TTY 35, 37, 274l
Y 0 @] TTY 35, 37, 274l
Y 1 0 0 TTY 35, 37
Y 1 0 1 TTY 35, 37
Y 1 1 0 TTY 35, 37
Y 1 1 t TTY 35 37
N] 0 0 2741

UTS TECHNICAL MANUAL

ARSZ
¥
HT
HT
¥
HT
¥
HT
¥
HT
(TS=-CPI-
ARS Z) ¥
HT
(TS-CPI-
ARS Z)¥
HT
(TS-CPI-
ARS Z)¥
HT
(TS=CPI-
ARS Z)K
HT

(TS-CPOS) (TS-CPI-

Tab Stop (TS) Echo
N. A, ¥
N. A, ¥
N. A. HT
N. A. HT
N' A. K
N. A, ¥
N.A. nil
N. nil
Stop after K
CPI+ARS Z ¥
+TRS Z
(TS=CPOS)
¥
(TS-CPOS)
¥
Stop after nil
CPI+ARS Z nil
+1RS Z
Stop after HT
CPI+ARS Z HT
+TRS Z
(TS-CPOS)
¥
¥
Not Allowed

ARS Z)¥

SECTION DC
PAGE 31
3/27/72

TRSZ

z zzzZ %7

> @& »>

N. A,

TS-CPI-ARSZ~1
0

TS-CPI-ARSZ~-1

0

TS-CPI-ARSZ=1
0

TS=-CPI-ARSZ-1
0

TS-CPI-ARS Z-|

0

CPOS

CPOS+1
CPOS+I

CPOS*!
CPOS+1

CPOS+1
CPOS+1

CPOS+1
CPOS+I1

CPOS+1
CPOS+1

TS

TS

TS
TS

1)

TS

TS

SECTION DC
PAGE 32

3/27/72
UTS TECHNICAL MANUAL

*4 - Upon receiving an upper or lower case Alphabetic character (after
device shifts are accounted for, of course) two possible transformations
take place. First, if ESC) has been received, Upper Case Alphabetics
are transformed to Lower Case. Then, if 'Restrict Alphabetics to

Upper Case' is in effect (ESC U), all Lower Case Alphabetics are
transformed to Upper Case.

Output Action

When an M:WRITE is executed, presenting a record to the COC handler, the
following actions take place (unless DRC and BIN is specified):

a. If the DCB has VFC specified, the first character is examined. Then:

1) If the character is X'F1' a new page is issued.

2) If the character is X'CX', X upspaces are issued. If the bottom margin
is reached a new page is issued and no further upspacing is done.

3) If the character is X'60" or X'EQ' this fact is memorized. These
characters specify 'inhi bit upspace’.

4) If notl, 2, or 3 the first character is ignored.

b. If the record contains more than three trailing blanks, all are suppressed.
However, if the entire record consists of blanks, a single blank will be output.
c. The characters remaining are translated ard sent to the terminal except

where special action is indicated. The following characters invoke
special action:

Null 00 Terminate Character Processing

HT 05 See Below

FF 0C A new page is issued

CR 0D CR and NL are issued to TT 's

LF 15 CR and NL are issued to TTY's

CR oD NL followed by appropriate number of idles
LF 15 are sent to 274|'s

132

SECTION DC

PAGE 33
3/27/72
UTS TECHNICAL MANUAL
l[.F (specific) 20 Line feed only is issued
] B4 [on TTY's lon 7015
B5] on TTY's —on 7015
1 4F | on 7015 [on TTY's
L 5F = 0on 7015 Jon TTY's

Lower/case alphabetics send upper/case alphabetics on TTY33, 7015, and some
2741 terminals.

HT causes the following actions:

Tabs ESCT Device Transmitted CPOS

N 0 TTY 33, 7015 ¥ CPOS+1
Y 0 TTY 33, 7015 ¥ CPOS+1
Y 1 TTY 33, 7015 K to next stop Next Stop
N 0 TTY 35, 37, 2741 HT CPOS+10
N 1 TTY 35, 37, 2741 ¥ CPOS+1
Y 0 TTY 35, 37, 2741 HT Next Stop
Y 1 TTY 35, 37, 2741 K¥'s to Next Stop Next Stop

After all characters are processed (or Null is encountered), the calling DCB

is checked. IF M:UC or if the line terminates with CR, LF, SYN, or specific
LF (x '20") no further action takes place. Otherwise a CR, LF is sent to the
terminal unless the format control character was X'60' or X'EQ', in which case,
a CR only is sent (inhibit upspace.) '

Q.
.

e. In the course of the output, line length control and pagination control are
maintained.

If DRC and BIN is specified (indicating transparent text), the record as presented
by the user is transmitted exactly with no special functions performed and no
translation.

133

SECTION DC
PAGE 34

3/27.72

UTS TECHNICAL MANUAL

SIZE AND TIMING

Approximately 2000 words of memory are required for COC handling routines,
and are allocated as follows:

1. Input and output interrupt routines take up 500 instructions.
2. Read/write routines are comprised of 500 instructions.
3. Activation detection and echoing routines contain 400 instructions.

4, Get/put buffering routines have 200 instructions.

3. Line detection and intialization routines have 200 instructions,
6. The teletype translation table requires 65 words of memory.
7. Miscellaneous tables and constants comprise the remaining 135 words.

Additional storage is required for each communication line in the system; 23
bytes for control information and eight words (average) for buffering input and
output messages.

IBM 274|-type terminal translation tables are available via SYSGEN parameters
for EBCD and standard code sets.

Four translation tables are ava lable for 274|-like terminals, allowing translation
of EBCD and Selectric (r) code sets with either standard or APL keyboards. Each
translation table adds 96 words to storage requirements if incorporated in a system.

Assembly parameters have been defined to allow conditional assembling of the
procedure concerning 274l terminal logic, page headings, performance monitoring,
and buffer security checking. Assembling out all of these will reduce core re~
quirements by 760 words.

134

SECTION DC
PAGE 35
3/27/72

UTS TECHNICAL MANUAL

Approximate execution times in microseconds are:

Write processing = per write 250
additional per character 140
Read processing - per read 580
additional per character 220

Input interrupt processing -
per character 110

Output interrupt processing =
per character 80

Buffering routines - per 14
characters buffered 110

Assuming an average write size of 40 characters and an average read size of ten
characters, the per character execution time will be approximately 235 psec on
output and 399 ps on input. Average terminal 1/0 rates of one character input

and four characters output per second per user resuit in an overhead burden of
13. 4% of a SIGMA 7CPU per one hundred users.

135

SECTION DCo0l.0l
PAGE .1.
3/27/72

UTS TECHNICAL MANUAL

D
COC - Control Routine
PURPOSE

Provide common entry and exit for terminal 1/0O CAL] processing.

USAGE

Effective, BAL, 11 COC: Actually a branch to COC from the 1/O scheduler
which was originally called via R11.

INPUT PARAMETER:

R8 FCN, DCB address

FCN = function code in byte 0

0 - read BCD

1 - read direct BCD

2 - read BIN

3 - read direct BIN (transparent)

4 - write BCD

5 - write direct BCD

6 - write BIN

7 - write direct BIN (transparent)
SUBROUTINES
COCWR called if the function code is a write operation.
COCRD called if the function code is a read operation.
WTMSGSIZ called to record performance data.
INTERACTION
CcOocC called from the 1/O scheduler I0Q) for terminal 1/0.
SETTYC called to set up the type of completion code returned from

COCWR or COCRD in the user's DCB,

136

SECTION DC.0l.0l
PAGE 2
3/27/72

UTS TECHNICAL MANUAL

DESCRIPTION

The byte count is extracted from the DCB (BLK field) as is the buffer address
(QBUF field) which is then converted to a byte address with the HBTD field of
word O of the DCB added. The line number is extracted from the M:UC DCB.

Control is passed to COCRD or COCWR dependent upon a valid value for FCN.

If FCN is invalid, then control is returned to the caller (R11) after setting the
TYC field of the DCB to 3.

Upon return from COCRD or COCWR, SR1 contains the ARS value which is then

stored in that field of the DCB. D1 contains the TYC value which is put in the
DCB via a call to SETTYC before returning to the original CAL1 caller.

137

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137

