
Xerox BTM/BPM/UTS
Sigma 5-9 Computers

Overlay Loader

Technical Manual

_~ ___ ~ _________________ ~ ________ 9018038

701 South Aviation Boulevard
EI Segundo, California 90245
213679-4511

© 1971, 1972, Xerox Corporation

Xerox BTM/BPM/UTS
Sigma 5-9 Computers

Overlay Loader

Technical Malual

90 18 038

June 1972

Price: $5.00

XEROX

Printed in U.S.A.

REVISION

The Overlay Loader described in this manual operates under the BOO version of UTS and the F01 version of BPM/BTM.
Changes in the text marked by revision bars apply only to UTS. The previous (A) edition of this manual completely
describes the loader operating under the F01 version of BPM/BTM.

RELATED PUBLICATIONS

Title

Xerox Sigma 5 Computer/Reference Manual

Xerox Sigma 6 Computer/Reference Manual

Xerox Sigma 7 Computer/Reference Manual

Xerox Sigma 8 Computer/Reference Manual

Xerox Sigma 9 Computer/Reference Manual

Xerox Universal Time-Sharing System (UTS)/TS Reference Manual

Xerox Universal Time-Sharing System (UTS)/SM Reference Manual

Xerox Universal Time-Sharing System (UTS)/OPS Reference Manual

Xerox Batch Processing Monitor (BPM)/System Technical Manual

Xerox Batch Time-Sharing Monitor (BTM}/Edit Subsystem Technical Manual

Xerox Batch Time-Sharing Monitor (BTM}/Delta Subsystem Technical Manual

Xerox BPM/BTM/UTS/System Generation Technical Manual

Xerox Batch Processing Mon itor (BPM)/BP, RT Reference Manual

Xerox Batch Processing Monitor (BPM) and Batch Time-Sharing Monitor (BTM}/OPS
Reference Manual

Xerox Batch Time-Sharing Monitor (BTM)/TS Reference Manual

Publ ication No.

900959

90 17 13

900950

90 17 49

90 17 33

900907

90 1674

90 1675

90 15 28

90 19 11

90 1879

90 1877

900954

90 11 98

90 15 77

Manual Content Codes: BP - batch processing, LN - language, OPS - operations, RBP - remote batch processing,
RT - real-time, SM - system management, TS - time-sharing, UT - uti I ities.

The specifications of the software system described in this publication are subject to change without notice. The availability or performance of some features
may depend on a specific configuration of equipment such as additional tape units or larger memory. Customers should consult their Xerox sales representative
for details.

ii

CONTENTS

PREFACE v 3.3 Loader-Generated Tables 58
3.3.1 Formats for the TCB and

GLOSSARY vi DCB Name Table 58
3.3.2 TREE 58
3.3.3 REF/BREF Tables 58

1.0 ENVIRONMENT 3.3.4 DCBs 60
3.4 Examples 62

1.1 Introduction 3.4.1 A Sample Program 62
1.2 System Interface and Genera I Operati ng 3.4.2 The ROM 62

Charac teri sti cs 3 3.4.3 The Load Modu Ie 65
1.2.1 Loader Operation Under BPM 3.4.4 The Relationship Between the

or UTS 3 Expression Stack and the
1.2.2 Loader Entry/Exit 3 REF/DEF stack 66
1.2.3 What the System Does with the

Loader's Output 3
4.0 DESCRIPTION OF THE FIRST PASS 68

2.0 GENERAL OPERATING CHARACTERISTICS 6 4.1 INITl - Initialization for the First Pass __ 68
4.2 PASSl 72

2.1 Functional Overview 6 4.2.1 The Ma i n Loop 72
2.1.1 Loader Terminology 6 4.2.2 Object Module Processor
2.1.2 The First Pass 9 (LP1-Pass One) 72
2.1.3 The Second Pass 13 4.2.3 Load Modu I e Processor
2.1.4 Advantages of a Two-Pass Loader_ 16 (ADLDMD-Pass One) 78

2.2 Structure: The Major Pieces 16 4.2.4 The Librarian (SA TREF) 82
2.2.1 LDR 17
2.2.2 The First Pass 19
2.2.3 The Second Pass 19 5.0 PREPARING TO FORM THE CORE IMAGE 86
2.2.4 Forming the Loader 20

2.3 How the Loader Uses Memory 20 5.1 IN2 86
2.3.1 Partitioning Core for the 5.2 PS2 - The Dr i ver for the Second Pass __ 88

First Pass 20 5.3 ALL - Memory Allocation 88
2.3.2 Partitioning Core for the

Second Pass 21
2.4 How the Loader Obtains Memory 27 6.0 FORMING THE CORE IMAGE (EVL) 91

2.4.1 Loader Runn i ng Under BPM 27
2.4.2 Loader Running Under UTS 27 6.1 EVEXPRS 91

2.5. Maintaining the Loader, DEBUG Mode _ 27 6.2 LOADSEG 92
6.2.1 The Main Loop 92
6.2.2 Object Module Processor

3.0 INPUT, OUTPUT, LOADER-GENERA TED (LP1-Pass Two) 93
TABLES 29 6.2.3 Load Modu I e Processor

(ADLDMD-Pass Two) 105
3.1 Input 29

3.1.1 LOCCT, ROM, Tree Tables 29
3.1.2 Files (ROMs and Load Modules) __ 37
3.1.3 Registers and JIT Input 38 7.0 WRITING THE LOAD MODULE (WRT) 108
3.1.4 ASSIGN Record 39
3.1.5 Error Message File (ERRMSG) __ 39
3.1.6 Modify Fi Ie (idD) 41
3.1.7 Core Libraries (UTS only) 41 8.0 FINISHING UP (FIN) 119

3.2 Output 42
3.2.1 Load Modules, Overall Format __ 42
3.2.2 Library Load Modules 44

APPENDIX A. LOADER-GENERATED
3.2.3 REF/DEF Stack 45
3.2.4 Expression Stack 50

INTERNAL SYMBOL TABLES (UTS Only) 126

3.2.5 Relocation Dictionary 52
3.2.6 Miscellaneous (Map, Diagnostics, APPENDIX B. STORAGE LAYOUT

Severity Level) 53 OF STUFF 134

iii

FIGURES 17. The Loader Driver (in LDR)
Flow Chart 70

1. Load Modu Ie Layout at Run-Time 5
18. INITl Flow Chart 71

2. Segment Processing Sequence, Pass One 11
19. Declaration Stack Format 73

3. The First Pass - General Flow 12
20a. PASSl Object Module Processor (LP1)

4. Segment Processing Sequence, Pass Two 14 Flow Chart 76

5. The Second Pass - Genera I F I ow 15 20b. PASS 1 Load Modu Ie Processor
(ADLDMD) Flow Chart 81

6. Loaderls DATA (00) Area (Within LDR) 18
2l. Core Library Association Flow Chart 85

7. How the Loader Uses Memory: Pass One 21
22. INIT2 Flow Chart 87

8. How the Loader Uses Memory: Pass Two -
Nonex tended Memory Mode 23 23. ALLOCATE Flow Chart 90

9a. How the Loader Uses Memory: Pass Two - 24. Format of the Keys of idX
Extended Memory Mode, Construction (Extended Memory File for
of Core Image Records 25 Standard Load Modu Ie) 93

9b. How the Loader Uses Memory: Pass Two - 25. Snapshot of Core Usage During EVL 94
Extended Memory Mode, Concatena-
tion of Core Image Records 26 26. PASS2 Object Module Processor

Flow Chart 101
10. Loader Control Command Table (LOCCT) 30

27a. Field and Expression Logic Flow Chart 102
11. ROM Tables 32

27b. EXPRIN Flow Chart 103
12. Tree Tables 33

27c. GETVAL Flow Chart 104
13. TREE Table Link ing - in Relation to

the Overlay Structure 35 28. PASS2 Load Module Processor Flow Chart 106

14. LOCCT, TREE, and ROM Table 29. WRITESEG - Overall Flow 109
Relationships 36

30. WRITELIB Flow Chart 114
15. ERRMSG File 40

3l. FINISH Flow Chart 121
15b. Variable Diagnostic Information 55

32. Memory Layout During MAPER
16. Recogn ized DCBs and Their Defau Its 61 Routine 123

iv

PREFACE

This document describes the purpose and architecture of the Overlay Loader within the environment of BPM or UTS.
It is assumed that the reader is fami I iar with the usage of BPM/UTS Monitor services as well as the Sigma Standard
Object Language (see the BPM/BTM/SM Reference Manual, 90 17 41).

v

GLOSSARY

CCI {Control Command Interpreter}: a processor (brought
into core by the Monitor) which reads the J LOAD card
and records the information in an LOCCT Table.

core image: that part of a load module which is laid into
core at execution time.

core library: for UTS, a special collection of files under
the :SYS account for association with FORTRAN
programs.

DCB {Device Control Block}: a table for use by the Monitor
in performing an I/O operation.

DCB Name Table: a loader-built table which directs the
Monitor to the location of a particular DCB within a
program.

declaration stack: a Loader stack which serves to keep track
of the declarations made in a given ROM.

DEFCOM: a processor which outputs a special type of load
module.

expression stack: for any segment, a collection of expres
sions defining DEFs and forward references and expres
sions whose values are to be placed in the segment's
core image.

extended memory mode: a mode in which the Loader bui Ids
core images and relocation dictionaries in page-sized
records within a file on the RAD.

HEAD: a key to one of the records of a load module file,
the record containing basic size and source information.

idB: a CCI-built table containing information from the SI
device (when BI is specified on the LOAD card).

idD: a file built by CCI on the basis of JMODIFY cards
following the I LOAD card.

idG: the fi Ie name the Loader uses to access information
specified by the GO option.

idL: the file name assigned to a load module if no name is
specified via the LMN option.

idX: the name of the intermediate fi Ie used during the ex
tended memory mode to bu i Id standard (i. e., nonpaged)
core image and relocation dictionary records {BPM only}.

vi

JIT {Job Information Table}: a Monitor table of information
pertinent to the job currently in execution.

library: the term ascribed to two files, :LIB and :DIC, which
are constructed by the Loader.

load item: a string of bytes representing a "clause" in ob
ject language.

load module: a keyed file which is output by the Loader
(and several other processors).

LOCCT (Load Control Command Table): a table which the
Loader must access for its own control card input.

object language: the language generated by assemblers and
compilers to convey information to the Loader.

PASS3: a processor which calls the Loader to form a load
module.

path: a collection of segments of a program which can re
side in core at the same time.

REF/DEF Stack: a Loader-built stack for each segment whose
entries contain values for control sections, external
names (DEFs, REFs, SREFs), and forward references.

relocation dictionary: a record constructed by the Loader
which indicates how to relocate each word of a corres
ponding core image record.

ROM (Relocatable Object Module): a type of input compo
nent to the Loader which was generated by an assembler
or compi ler.

segment: a piece of a program which may be replaced in
core by another piece of the program.

stack path: the collection of REF/DEF or expression stacks
belonging to the segments on a given path.

system id: a job-oriented identification number determined
by the Monitor and supplied to the Loader via the
LOCCT Table.

TCB {Task Control Block}: a Loader-built table containing
the user's temp stack and areas for system use.

TREE: a collection of tables reflecting the overlay structure
of a program.

1. a ENVIRONMENT

1. 1 INTRODUCTION

The purpose of any loader is to translate and unite its input {ROMs and libraries} into such a form

that the output {a load module} may be executed under the target operating system. Accordingly,

the Overlay Loader performs those functions which might be expected of any loader operating

under BPM or UTS:

a. Process ROMs producing continuous sections of data, procedure, and DCBs

{or static data if BPM}, insuring a page boundary for the three protection

types (OO, 01, 10, respectively).

b. Satisfy REFs among the ROMs.

c. Access III ibraries ll to satisfy PREFs.

d. Build DCBs.

e. Build a DCB Name Table for Monitor use.

f. Sui Id a TCB.

The special characteristics of the Overlay Loader are identified as follows:

a" Create Overlay Programs

An overlay program is one which has only one piece (segment) resident in core

permanently. The other segments are called by the M:SEGLD procedure and

brought into core as needed. These segments may reside {at different times} in

the same core area, thus reducing the amount of core required to house the

enti re program.

Since, in general, a program may consist of three areas (one per protection type),

each begi nning on a page boundary, the Overlay Loader must have the abi I i ty to

create the three trees, each beginning on a page boundary.

b. Reference Loadi ng

If the user does not choose to maintain responsibility for calling the segments

of an overlay program (by explicitly using M:SEGLD), he may direct the

Loader to insert the M:SEGLD code into his program by specifying REF or BREF

on the! LOAD card. This code is buil t, in the BREF mode, wherever there is

a branch type instruction involving a REF to a higher segment. In the REF mode,

it is built wherever there is any expression whatsoever involving a REF to a

higher segment.

c. Load Module Libraries

It is desirable to maintain libraries of frequently used routines which are themselves

already in load module form, since subsequent inclusion of a library module would

be faster than processing the original ROM language.

d. Relocatable Load Modules

The Loader creates a relocation dictionary which allows subsequent placement of

the load module into a core area other than the one at which it was originally

biased. Relocation is accompl ished via a BIAS option on the! RUN command for

BPM. (NOTE: UTS does not allow a BIAS on the! RUN card; hence for UTS,

the only use of the relocation dictionary is in the case of merging a library load

modu lei nto another program.)

e. Dummy Sections

The Loader has the abil ity to recognize dummy sections of the same name in

various modul es and to allocate on the basis of the largest one encountered.

This feature is generally used in large FORTRAN programs which rely heavily

on COMMON (COMMON is a form of dummy sectioning).

2

1.2 SYSTEM INTERFACE AND GENERAL OPERATING CHARACTERISTICS

1. 2. 1 Loader Operation Under BP M or UTS

The Loader operates under BPM or UTS and produces either BPM or UTS load modules. These

load modules are not interchangeable due to differences in the format of the HEAD record and

in the allocation of the DCB area (see Section 3.2.1). Neither are the Loaders themselves

interchangeable. That is, the UTS Loader will not operate under BPM and vice versa, due to

differences in obtaining memory (see Section 2.4). An assembly parameter will select those

areas of loader code which are unique to BPM or UTS. The parameter is MODE. At assembly

time, in each source module except the last, this parameter must be set to 0 for BPM and 1 for

UTS.

1.2.2 Loader Entry/Exi t

Loader entry/exit is via CCI or the SYSGE N PASS3 processor (as a resul t of ! LOAD or ! PASS3).

If the Loader is entered via CCI, the! LOAD and ! TREE cards and (optionally) the BI device are

read by CCI and packaged into tables (see Tables, Section 3. 1. 1) prior to entry. If entry is

through PASS3, these tables are accessed from a previously existing file (created by the !LOCCT

processor) and presented to the Loader in the same form that CCI would have presented them.

The Loader decides which return to execute (an M:EXIT to CCI or an M:LDTRC to PASS3) on the

basis of register or J IT input. AI so, for UTS, if the Loader is to exit to PASS3, it m'ust fi rst

"release" all memory which it obtained (via M:GP or M:GCP or M:GVP).

1. 2. 3 What the System Does With the Loader's Output

A ! RUN command will cause the "Program Loader" (in BPM-PRGMLDR, in UTS-FETCH) to

access the load module file, modify and/or relocate it, lay it into core per the dictates of its

HEAD and TREE records and transfer control to the START address (whereupon the program is

"in execution"). Figure 1 shows the user program as it sits in core during execution.

3

If the program is overlaid, at some point it will issue an M:SEGLD call. (This was part of the

user1s code or was inserted by the Loader per the REF/BREF option.) Since a copy of the TREE

is always a permanent part of the root segment (protection type 01), the segment loader has all

the information it needs to access the desired segment, deposit it in its destination, and record

the fact that the segment is now in core (to avoid unnecessary reloading in the future).

Branching between segments is the user1s responsibility if he issued an explicit M:SEGLD. If

REF or BREF is in effect, the branching is automated by the Loader-buil t table entry.

4

....0
0

00

0
W
0'
I

~
'J
~

Da ta (00) Procedure(Ol)

BPM Monitor Root(OO) Overlay(OO) Root(Ol) Overlay(Ol)

t
Page Boundary Background Lower Limit

~-------

DCB(10) Data(OO)

User's
DCBs

UTS Monitor JIT Root(OO) Overlay(OO) Monitor

General Picture

Static Data(10)**

Root(10) Overlay(10)

Procedure(Ol)

Root(Ol) Overlay(Ol)

Run-time
debug
tables

..... (1 page)

Dynamic Data

M:GP M:GCP --- ---

Dynamic Data

Run-time
debug
tables M:GP M:GCP
(1 page)

Monitor
usage

Monitor,

* Shaded areas are unused.
**

Static Data is generally
empty.

shared processors,
core library procedure

Background Lower Limit Page Boundary Page Boundary Next Page End of User Pages (J:EUP in JIT)

BPM Blank
common

Data (00)

TCB
Control
secti ons

Background Lower Limit or
LOAD BIAS or
RUN BIAS

UTS

Data (00)

Core library's Blank
context area common

TCB

Background Lower Limit Next doubleword
or LOAD BIAS

Control
sections

Detai I of Root

Tree table

Tree table

DCB name
table

Procedure(Ol)

REF/BREF
tables

Procedure(Ol)

REF/BREF
tables

Control
secti ons

Figure 1. Load Module Layout at Run-Time

DCBs Control secti ons

DCB(lO)

DCB name
table

---- -

DCBs

Notice that the 10 area is actually
placed below background.

2.0

2. 1

2. 1. 1

GENERAL OPERATING CHARACTERISTICS

FUNCTIONAL OVERVIEW

Loader Terminology

At this point, it might be well to review some fundamentals of the object language and

define some terminology relative to the Loader.

a. Declaration Numbers

Within a given ROM, all control sections, DEFs, PREFs, SREFs are declared; that is

to say, each is assigned a "declaration number". {The ROM assigns declaration

numbers consecutively.} In an expression which involves any of these items, the

ROM refers to them via their dec laration number. The Loader, therefore, must

remember these numbers; it does so by building a declaration stack as the numbers

are encountered within the module. {The stack is destroyed at module end since it

has no meaning for the next module.} An entry in the declaration stack is simply a

pointer to the proper entry in the segment's REF /DEF stack {which wi II eventual I y

contain the complete story about that declaration}.

b. Dummy Sections

Within a ROM, a dummy control section is treated as both a DEF and a control

section. In particular, the ROM must first declare the dummy section's name {the

label that is to be associated with the first location of the section} as an ordinary

external definition. Subsequently, the ROM declares the dummy section itself as

a control section (via I Declare Dummy Section '). This declaration refers to the

previously declared label, thereby associating the name with the dummy control

section.

6

c. Expressions

The value of a DEF, Origin, Start or forward reference is given to the Loader from the

ROM via an expression. Load items to be placed in the core image also involve expres

sions. An expression consists of operators (control bytes) which operate on constants,

declarations, and forward reference numbers. Thus, an expression might say "add the

value of declaration 5 with the constant X'10'II. When the Loader wants to calculate

the result of (llevaluate") this expression, it first looks in the fifth entry of the declaration

stack to get a pointer to the proper REF/DEF stack entry. Next it adds the value word of

that REF/DEF entry to the expression accumulator and then adds the value X'10 ' to the

expression accumulator.

d. Forward Reference Numbers

Wi thi n a ROM we wi II encounter expressions i nvol vi ng forward references. These are

referred to via random numbers. Therefore, the Loader must keep track of them in a

similar way that it keeps track of declaration numbers. This is done by creating an entry

in the REF/DEF stack containing the reference number. When a forward reference number

is encountered in an expression, the Loader searches the REF/DEF stack for a match. If

none is found, a new entry is created. Since the numbers are meaningless for the next

module, the Loader "releases" them at module end.

Forward references are of two types: those whi ch can be resol ved by modul e end or sooner,

and those which cannot be so resol ved. The I atter type consists of forward references

whose defini"ng expressions contain REFs or DSECTs. When the expression to define the

forward reference is encountered, it will indicate which of the above was meant (define

forward reference (DFREF) or define forward reference and hold (DFREFH)). A DFREF

expression implies that the corresponding forward number is now closed and invalid;

7

a new expression involving that number refers to a new forward reference. The Loader

must mark its REF/DEF entry as such ("release ll it). On the other hand, a ·DFREFH expres-

sion impl ies that the number may occur within another expression. Therefore, it is sti"

valid and cannot be released until module end. Notice that the number is always released

at module end, even though the forward reference itself may not be resolved yet.

e. Files, Segments, and Paths

A segment is made up of files (ROMs or load modules) and is a piece of the target load

module. A segment may be overlaid by another segment. A path of an overlay structure

is a set of segments which reside in core at the same time. The root is the segment which

is al ways in core. In Figure 2, there are three paths: SO-S 1-S3, SO-51-S4, and SO-S2.

Given a segment we may speak of its back-link, forward-link, and overlay-link. (The

forward-link is also called the "sublink".)

Referring again to Figure 2:

Segment Back-Link Forward-Li nk Overl ay-Li nk

SO None Sl None
Sl SO S3 S2
52 SO None None
S3 Sl None S4
S4 Sl None None

8

f. Loader Stacks

The Loader forms three stacks: the declaration stack, REF/DEF stack, and expression stack.

The declaration stack is created and destroyed for each ROM. An entry in the declaration

stack is simply a pointer to that entry in the REF/DEF stack which describes the declaratior"l.

The REF/DEF stack is really a misnomer since it includes an entry for every declaration

{control section, DEF, REF, SREF} as welt as for forward references.

The expression stack contains defining expressions for DEFs and forward references, as

well as expressions whose value is to be added to a word in the core image itself {core

expressions}.

The components of an expression are operators {control bytes} acting on dec laration

numbers, forward reference numbers, and constants. The value {result of performing the

operations, e.g., add value of declaration, add constant, etc.} is either placed in the

VALUE word of the REF/DEF stack or in the core image if it is a core expression.

The Loader creates a REF/DEF and expression stack for each segment. These stacks are

created along a path. The Loader's stack area will develop in the same way that the seg-

ments are overlaid. In Figure 2, if we are working on S4, then the stacks for SO and S 1

and S4 are in core. If stack 54 is in core, stack 53 will not be, since they are on

different paths. (This implies, incidentally, that if one segment is to communicate with

another via REFs and DEFs, they must I ie on the same path.) We refer to a "stack path"

as the set of stacks belonging to a given path.

2.1.2 The First Pass

The first pass gathers all information relative to the sizes of major pieces of the load module

(i. e., the size of each protection type per segment and the stack sizes). Additionally, the first

pass provides the second pass with an efficient means of developing the core image by constructing

the REF/DEF and expression stacks. As it scans each input component (ROM or load module),

9

Pass One examines only that information necessary to accomplish these two functions; viz.

size computation and stack construction. Any information not relevant to these functions

is ignored unti I Pass Two.

If the component is a ROM, the sizes are to be found in the "declare control section"

load items. Pass One accumulates each control section size in the appropriate protection

type of the TREE. A REF/DEF entry is also built for each "declare control section" load

item, as well as for load items which declare names as forward references. {For each

name declarati on, either a new entry is added to the REF /DEF stack or an old one is

modified.} Expression stack entries result from load items which define external DEFs or

forward references. (When a new entry is made in either the REF/DEF or expression stack,

the size of that stack is updated in the TREE.) All load items dealing with the content of

the core image (e. g., II load relocatable") are ignored.

If the component is a load module, the HEAD and TREE records contain the sizes of the

core image and the stacks. These are added to the TREE. The load module's stacks are

then merged with the ones being constructed. The core image and relocation dictionary

records are ignored unti I Pass Two.

At the end of processing each segment's explicit element files, the REF/DEF stack is

scanned for all PREFs except those having names starting with M: or F: {for which the

Loader will build DeBs}. For each PREF found, Pass One searches those libraries specified

on the! LOAD card for a load module which will satisfy the PREF. If it finds one, the load

module's name is added to the list of input files {ROM Tables}, the size is recorded in the

TREE and its stacks are merged with the ones being bui It.

10

The sequence of processing the overlay structure is from the root segment outward, as shown in

Figure 2. Figure 3 shows the general flow during Pass One.

CD
53

~\

Sl

Q) CD
54

SO C?)
S2

Figure 2. Segment Processing Sequence, Pass One

At the end of the first pass we have:

a. sizes of the segments per protection type, including the sizes of modules obtained

from the library. These sizes are in the Tree Tables.

b. a REF/DEF and expression st~ck for each segment written to the RAD. The stacks

are structurally complete. They include the merged library stacks. The value and

resolution for each REF/DEF entry is not determined until the second pass.

c. defining expressions for DEFs and FREFs in the appropriate expression stacks.

The expression stacks also include expression stacks from library load modules.

d. sizes for the REF/DEF and expression stacks in the Tree Tables.

e. ROM Tables augmented by the names of library load modules pulled in as a

resul t of satisfying PREFs.

11

STANDARD

Flag DCBs to be built

Allocate work space for
PASSl.

PASSl

Set Current Segment
(CSEG) to ROOT.

LPl or ADLDMD

Process input files
(ROMs or load mod
ules). Building stacks
and accumulating sizes.

SATREF

Satisfy any PREFs except
M: or F: from Libraries.

yes

Write CSEGs Expr.
Stack, adjust stack
pointer to remove
this stack.

by Loader. yes

Write CSEGs REF/DEF
Stack, adjust stack
pointer to remove this
stack.

Set CSEG to
Back-Link.

yes

Set CSEG to Sublink.

Set CSEG 10 Overlay
Link.

Figure 3. The First Pass - General Flow

12

2. 1.3 The Second Pass

This pass develops the actual core images and relocation dictionaries and writes the load module

to the RAD.

Based on the sizes known from PASS1, core is partitioned into the stack area and buffers for the

core images and relocation dictionaries. If this partitioning is not possible, Pass Two goes

into "extended memory mode", meaning that the core images and dictionaries will be developed

within an intermediate RAD file, page by page.

The expression and REF/DEF stacks for an entire path are brought into core and, from the size

and protection type of every control section, locations are assigned to all of the sections (the

control sec tions are II allocated") along thi spath.

After evaluating and defining all possible DEFs and FREFs, Pass Two is now in a position to

reread the input files (proceeding backwards along a path). As it reads, it places data in the

core and relocation buffers (or into the extended memory mode file, as the case may be) as per

the dictates of the load items. When a segment is complete, its REF/DEF stack, expression stack,

core images, and relocation dictionaries are written out (unless we are in extended memory mode,

in which case processing of the paged core image and relocation dictionary records

is deferred unti I the root segment has been constructed).

The sequence of forming the core images for an overlay structure proceeds from the sublinks

back toward the root, but, as mentioned, allocation occurs forward along a path (see

Figure 4).

13

S3 ®

®
Sl

0)

CD S4

® so S2

Sequence of Core Image Allocation
Per Segment

so

S3
CD

CD
Sl

S4 ®
®

CD
S2

Sequence of Forming Core Image
Per Segment

Figure 4. Segment Processing Sequence, Pass Two

Special attention comes into play when we reach the root segment at the end of the second pass.

If extended memory mode is in effect, the load module must be reconstructed from the page rec-

ords of the extended memory mode file which were created during the formation of the core image

I n any case, the TeB and DeBs are bui I t, the HEAD and TREE records are wri tten, necessary

modifications per! MODIFY cards are made, the severity level is printed, and the Loader

returns contr'ol to eCI or PASS3.

Figure 5 shows the general flow of Pass Two.

14

Set eSEG to sublink.

Set eSEG to overlay
link.

Process input files (ROMs
or load modules) forming
core images and reloca
tion dictionaries within
buffers or XMEM file.

Pull eSEG's stocks, and
location counters (OLOC,
PLOe, and SLOe) back
to the beginning of this
segment.

Reconstruct load module
from XMEM file or clean
up paged load module.
Write load module.

>----.... Set eSEG to Bock Link.

Figure 5. The Second Pass - General Flow

15

2. 1.4 Advantages of a Two-Pass Loader

a. The primary advantage is accorded to FORTRAN programs which use Bldnk COMMON.

A two-pass Loader has the abil ity to discover the largest dummy section of the same name

(dummy sections are intrinsically externally defined) and to allocate accordingly. This

would be, if not impossible, an extremely difficult matter for a one-pass Loader.

b. A one-pass Loader has difficul ty with overlaid load modules having more than one

protection type. The problem arises in determining how many pages of memory should be

allocated for the 00 protection type before allocating for the C1 protection type. A two-

pass Loader can compute, in its first pass, the size each protection type requires and can

allocate memory accordingly for the second pass.

2.2 STRUCTURE: THE MAJOR PIECES

The Overlay Loader is a two-pass Loader; that is, the ROMs and load modules from which the

target load module is constructed are read two distinct times. The Loader is composed of nine

ROMs. These ROMs may be grouped according to their usage in the first or second pass.

When Used File Name Entry Poi nts Catalog No.

Throughout LOR LOADER 704724
both passes

Fi rst Pass IN1 INIT1 704725
PS1 PASSl 704726

Second Pass IN2 INIT2 704727
PS2 PASS2 704728
ALL ALLOCATE 704729
EVL LOADSEG, EVEXPRS 704730
WRT WRITESEG 704731
FIN FINISH 706258
MOD MODIFY 705396

16

2.2. 1 LDR

This ROM is a collection of frequently used subroutines, temp space, variable data,

DeBs and a driver which contains the start address (LOADER) and which subsequently

BALs to the first and second passes and exits.

The LDR module contains the Loader's only DATA area (one page). This area is

composed of two parts: a temp stack (pointer in RO) and a collection of variable data

(stack pointer, doubleword buffer pointers, location counters, etc.). See

Appendix B for a description of the use of the variable data cells in the loader's

STUFF stack.

Figure 6 illustrates the format of this area.

17 90 18 03-1 (8/72)

DEClSTK-[:::> Declaration. stack pointer
~--D~~~;md------------

RFDFSTK-[> ___ ~EY'p~F_S.!.a~~ ~o~n~!:.. ______ _
Doubleword

EXPRSTK-(> ~ __ .!~~~~~ ~~~ ~o.!.n.!.e.!. _____ _
Doubleword

~-

Decl arat i on Base

REF/DEF Base

Expressi on Base

Mi scell aneous Vari abl e data such
as OPEN I ists, cord and

;--:. pri nter buffers, buffer pOI nters, etc. >.

RO points here---I~ • .!-~a~el~ t~r:!!p_s~ask.. fojnJe! ______ _
Doubleword

Temp stack begins~--'''''-_______________ --1

here

DECLSTK+X'l00'~-~~---------------------------------~

A couple of subroutines placed
here to fill up the Loader's
Data page.

DEClSTK+X'IFF_' ~'''P''--e:-' ---------------.

Figure 6. Loader's DATA (00) Area (With i n LDR)

18

2.2.2 The First Pass

IN1

PS1

2.2.3 The Second Pass

IN2

PS2

ALL

EVL

WRT

FIN

MOD

entry/exit from LOR.
a 1I0cates the work space for PS 1 .
reads the LOCCT, ROM, TREE Tables.
reads and processes the A SSIG N record.

entry/exit from LOR.
reads and processes ROMs and load modu les, collecting the
information necessary to ascertain sizes of control sections
and max imum stacks.
satisfies PREFs from libraries.
writes out interim stacks.

entry/exit from LDR.
a II oca tes the work space for the second pass, determ in i ng
if extended memory mode is necessary.

entry/exit from LOR.
a dr i ver for the secon d pass.
calls ALL, EVL, and WRT.
reads current segment's stacks.

entry/exit from PS2.
assigns locations to a II control sections.
prints load module allocation summary.

has two entry points, EVEXPRS and LOADSEG, both from PS2.
evaluates expressions from PASS1 and core expressions from load modules.
forms core image and relocation dictionary going through extended
memory mode log i c •
builds reference loading table.

entry/exit from PS2.
creates TCB and DCBs, and the DCB Name Table.
concatenates the pages of the extended memory mode fi Ie for a
standard load modu Ie.
cleans up the paged core image records for a paged load module.
writes the load module to the file.

entry/exit from LDR.
updates and prints severity level.
reads idD and calls MOD.
generates load map.

entry/exit from FIN.
performs the modifications per !MODIFY cards which followed
the! LOAD.

19 90 18 03B-1 (8/72)

2 . 2.4 Form i ng the Loader

If the Loader is overlaid, it bears the following TREE structure:

!TREE LDR-(IN1, PS1, IN2, PS2-(ALL, EVL, WRT), FIN-MOD)

IN1

PS1

IN2

LDR ALL

PS2

EVL

WRT

FIN-MOD

The UTS Loader is overlaid according to the following TREE structure:

!TREE LDR-PS2-:JO-(IN1, PS 1, IN2, ALL, EVL, WRT, FIN-MOD)

IN1

PS1

IN2

LDR-PS2-:JO ALL

EVL

WRT

FIN-MOD

The tree structure is such for the UTS Loader because, as a shared processor, the Loader is
a 1I0wed on Iy one level of overlay. Note a Iso that the fi Ie : JO (i n : SYS) must be I isted as
the last element file 'when forming the UTS version:

! LOAD (LMN, LOADER), (NOTCB), (NOSYSLIB), (SL, F), ;
! (EF, (LOR), (IN1), (PS1), (IN2), (PS2), (ALL), (EVL), (WRT), (FIN), (MOD), (JO, :SYS))

2.3 HOW THE LOADER USES MEMORY

2.3.1 Partitioning Core for the First Pass

Recall that the first pass, after it has read the LOCCT, ROM, and TREE Tables, constructs the

REF/DEF and expression stacks. (The declaration stack is volati Ie for each ROM.) Accordingly

the partition concerns itself with only these areas. (Partitioning for the first pass is done by IN 1.)

20

LOADER
DATA

__ UE~~ ___
LOADER

PROCEDURE

LOCCT

ROMlctles
TREE ales

Declaration
Stack

1
REF/DEF
STACK
Growth

J. ,.
A~

EXPRESSION
STACK

rBOCkground Lower Limit

See Figure 6 for Detail.

J

.. -First Available Page

l Initially 64 Words, E:xpanded up if necessary.

~ ..-REF/DE~ Begins Here

:..."

/EXPRESSION Stack Begins Here
Growth r _____ -'~TOPOMEM

Figure 7. How the Loader Uses Memory: Pass One

If the REF/DEF and EXPRESSION Stacks meet during Pass One, processing is discontinued

(J OB aborts).

2.3.2 Partitioning Core for the Second Pass

The second pass is concerned with developing the core images and relocation dictionaries (unless

ASS was specified, in which case there are no relocation dictionaries). Buffers are needed to

house these.

There must a Iso be room to hold the REF /DEF and EXPRESSION stacks for the largest path. The

size of the REF /DEF stack is known from PASS 1, but the expressi on stack can grow (due to

unevaluatable core expressions). Maximum declaration stack size was also retained in PASSl.

21

There are two partitioning schemes: nonextended memory mode and extended memory mode.

IN2 (which performs the partitioning) wi II select the former, if space permits.

a. Nonextended Memory Mode (Fig. 8)

Two buffers are reserved for each protection type; one for the core image and one for the

relocation di ctionary. Such buffers are reserved for the root and for the current segment.

Hence, in a full-blown relocatable TREE, tnere would be 12 buffers. (The reason for

the double buffers is to permit a higher segment with load items in a DSECT belonging

to the root to store those items into the root.)

Since the expression stack can grow, the buffer allocation begins from TOPOMEM

down. (Notice that the expression stack is growing in the opposite direction than it did

in the first pass.)

22

Current Segment
Rel~ca'tion Dictionar

(Room allowed for
largest of each type.)

Current Seyment
Core Images

(Room a! lowed for
largest of each type.)

*

Root Relocation
Dictionaries

Root Core
Images

i §

.

'"

{
r-

"-

. Background Lower Limit ~

Loader's
DATA Area

1----------
Loader"s

PROCEDURE I
I

Area I
I
'..-
f

First Available Page
LOCCT
ROM Tables I
TREE Tables

I

Declaration
Stack

REF/DEF
Stack

EXPRESSION
Stack

~ {can grow due
to core expres-
sions}

*

OO

01

10*

1

,--.... -----
..... -
--
.--
.----
+--

..... -

..--
--

Room allowed for the largest
REF/DEF stack path.

CRELOO
CREL01
CREL 10
CSEGOO

CSEG01

CSEG 10

RRELOO
RREL01
RREL10
RSEGOO

RSEG01

RSEG10

TOPOMEM

I CIISEGII~~} R IREL \10
are byte pointers to
the buffers. They
are kept in the
Loader's DATA Area.

For UTS, these buffers can grow due to rounding to prevent DCBs from overlapping page bound-
aries. If this occurs, all buffer pointers are shifted down accordinglYe See Section 5.3.

Figure 8. How the Loader Uses Memory: Pass Two - Nonextended Memory Mode

23 90 18 03B-1 (8/72)

b. Extended Memory Mode (Figures 9a and 9b)

If the above partition is not possible, IN2 enters extended memory mode which

consists of replacing the 12 buffers with page buffers (one if ABS is specified, two

if not) at TOPOMEM down. All segments, including the root, are built within

these buffers. The EVL module uses these buffers to construct page records of the

core images and relocation dictionaries. The file used to develop these records is

either a temporary (idX) file (for a standard load module) or the load module file

itself (for a paged load module). Only one page buffer is required in the latter

case since a paged load module is forced ABS. Figure 9a illustrates the use of

memory duri ng the construction of the page records.

If a standard load modu Ie is to be constructed in extended memory, memory is

partitioned differently at the end of the second pass (in the module WRT). Six

buffers (or three if ABS) are used to concatenate the page records, one segment

at a time. Figure 9b illustrates memory usage duri ng the concatenation (some

times called II put-together" phase) of extended memory mode.

The above partition is not required for the paged load module; instead, room is

needed only for those core image records belonging to the root which are to

contain loader-built tables. These records are read in successive order above

DECLBAS according to protection type.

24

Loader"s
DATA Area

Loader's
PROCEDURE Area

LOCCT
ROM Tables
TREE Tables
Declaration
Stack

REF/DEF
stack

EXPRESSION
Stack
(Can grow due to-

core expressions.)

t
1 page

Relocation
Dictionary

Control
Secti ons

1 page

.--Background Lower limit

--

l ,

l ,

I: irst Avai lable Page

R
R

oom allocated for the longest
EF /DEF stack' path.

E stablish this page if not ABS

0 .ll POMEM

Figure 9a. How the Loader Uses Memory: Pass Two - Extended
Memory Mode, Construction of Core Image Records

25

Relocation
Dictionary
Buffers

Core
Image
Buffers

..c

..... h

~"'

{
r

\io.

Loader's DATA
Area

Loader's PROCEDURE
Area

LOCeT, ROM and
TREE Tables ... DE CLBAS -

\....~

--.-...

00
01
10

00

01

10

~TOPOMEM --
Figure 9b. How the Loader Uses Memory: Pass Two - Extended

Memory Mode, Concatenation of Core Image Records

26

2.4 HOW THE LOADER OBTAINS MEMORY

2.4. 1 Loader Running Under BPM

IN 1 simply does a M:GP requesting the maximum (256) number of pages.

2.4.2 Loader Running Under UTS

Si nce memory must be obtai ned from both ends of the dynami c page area, and si nce UTS

restricts the number of pages obtained, the above BPM technique does not suffice. IN 1

initially gets four pages via M:GP. It then takes memory trap control (M:TRAP) such that

"demand paging" is in effect. That is, whenever a memory violation occurs due to access of

an unauthorized page, the Loader's TRAP routine (in the LOR module) is entered. TRAP com-

putes the virtual page address requested and obtains the page via M:GVP.

2.5 MAINTAINING THE LOADER, DEBUG MODE

The Loader program, as a processor, cannot be executed as a user's program since it does not

read its own control card. However, a special version of the Loader (call ed the IIdebug

version ll
) can run as a user's program, thus making Loader maintenance and modification an

easier task. The debug version of the Loaderisobtainedbyassembling LOR, IN1, and PS2 with

the assembly parameter DEBUG EQUid to 1. This causes code to be assembled which will read

the LOCCT, ROM, and Tree Tables from a file (created by the LOCCT processor). It also

causes the M:BlandM:DO DCBs tobebuiltforreading the LOCCT and for handling !SNAPs,

! MODIFYs, and! PMDs. A debug Loader can be assembled for either UTS or BPM, as

determined by the parameter MODE.

Example:

1 !ASSIGN M: BI,(FILE,LOCCTTEST)
2 ! RUN (LMN,DELOAD),(XSL,F)
3 IMODIFY ••••••••••••••••••

! S NA P ME.SSAGE,MSG ,(DEC LS TK,DEC LS TK + 100) ,(+E200, +E600)

n ! PMD (00)

27 90 18 03B-1 (8/72)

Card 1.

Card 2.

Card 3-n

The file must have been created by the LOCCT processor
(see BPM Reference tv\anual, 90 09 54).

The Loader (DELOAD in this example) must have been
formed with LDR, IN1, and PS2 assembled in the DEBUG
EQU 1 mode.

MODIFYs and debug commands.

In this mode the Loader may also be executed from the terminal under the RUN

subsystem for BPM.

90 18 03B-1 (8/72) 28

3.0 INPUT, OUTPUT, LOADER-GENERATED TABLES

3. 1 INPUT

3. 1. 1 LOCCT, ROM, Tree Tabl es

Based on the !LOAD and! TREE cards, three related and contiguous tables are presented to the

Loader upon entry: the Load Control Command Table (LOCCT), the Tree Table, and the ROM

Table. If BPM is operating, the tables reside on sector 36 of the absolute area of the disk.

Total size is contained in R6 upon entry to the Loader. If UTS is operating, the tables are left

in core preceded by a word containing the size. A pointer to this area is in word JB:BCP of the

JIT.

In either case, the Loader moves these tables into its first dynamic page (M:GP) during

initial ization.

29

~ ______________________ S·_'z_e_o_f_t_he __ th_r_ee __ ro_b_l_es_t_o_f_o_1I_0_w ______________________ ~1 (UTSonly)

LOCCT 0

2

3

4

5

6

7

8

012

RIQI

7 8 1112 15 16 17 18 19 2021 22 23 2425262728293031 * I

I
SL P/OINIMI LIKIJ 1 I IHIGIFI EIDI CIBIA

Displacement from LOCCT to ROMT

Displacement from LOCCT to TREET

° SYSid

REF or BREF count (default = 0) 1 LOAD BIAS 0NA) **

**

FCOM size FCOM (DA) ***

ERSTACK size (default = XIAI) ERTABLE size (default = XIAI)

TSS size (default = X140 1
)

Number of UNSAT accounts
(default = 0 if NOSYSLIB;=l (:SYS) if not)

9 Number of READ accounts (default = 1) Number of WRITE accounts (default = 1)

10
11
12

13
14

15
16

17
18

19
20

8 max.

8 max.

{
I
1
~

I

TREET -----.

ROMT -----. 1
~

Load Module Name,
TEXTC followed by blanks.
(default = three characters SYSid L)

User account number

Load Module Password
(default = 0,0)

EXPIRE date; 'mmddb1Jyy' or 'NEVER' (BPM)
0,0 (UTS)

Library password, i. e., (PERM, LIB, password)
(default = 0,0)

READ account numbers
2 words per acct. #, (default = IALLbbooo l)

WRITE account numbers
2 words per acct. #, (default = I NO NEt>t>ool)

UNSAT account numbers and passwords
4 words per (acct # ,pass). (default password = 0,0)

Total number of words in Tree Tables

Tree Tables 1 Table per Segment
11 words per table (see Figure 12 for format)

ROM Tables 1 Table per ROM
7 words per table (see Figure 11 for format)

Figure 10. Loader Control Command Table (LOCCT)

90 18 038-1 (8/72) 30

{

I.

{

Tree Tables

Overall l)icture for M segments (SO, ... SM)

TREE

S

Sl

n 1
+---------------~O

1
2

10
-------~11

n = total size of the tables

Tree Table Format (one 11-word Table per Segment)

Di sp lacement

from the beg inn
of the ROM Tab
to the first ROM
Table for this

~
les

segment

Segment Name in -------------------------------TEXTC Format -------------------------------
ROM Pointer Back Link **
Forward Link** Overlay Link**
00 Size * 00 Loc*
REF /DEF Size REF /DEF Loc*
01 Size* 01 Loc*
Expr. Size Expr. Loc*
10 Size* 10 Loc*

Figure 12. Tree Tables

0
1
2
3
4
5

Init
6

iall y
7
8

Clear'"

9
ed

10

Segment name is determined by the name of the first file in the segment. {If the load

module has only one segment, i.e., the root, the keys begin with load module name. If

no load module name was supplied, the name is idle

33

Words 5-10 of each Tree Table are computed by the Loader.

Word 10 of the ROOT Tree Table is used to monitor the size of the REF/BREF Tables.

*Doubleword address or # of doublewords

** Displacements from TREE

34

r--

Tree Tables

o

0

~ Sl 0

1

SO

- S3 S2

2

SO

1- S5 0

3

Sl

0 S4

4

Sl

0 0

5

S2

0 S6

6

S2

0 0

0 -

I--

-

--- - -

~

I--

I--

Tree Structure

3

1
4

5

2

6

Tree Table Link Pointers

back

sub (fwd) overlay

3

4

.Figure 13. TREE Table Linking - in Relation to the Overlay Structure

35

Tree Structure
SEG 3
, .. J\ J ..

SEG 1
ROM6 ROM7

ROMl ROM2 , ,. ,
SEG 0 , .. I

ROM8

_--.., ___ --'1"-_ .. ---">--_ .. --
ROM3

LOCCT

o

ROM Table

2 TREE Table

v---

ROM4 ROM5

TREE Tables

I
I

SEGO
TT

SEGl
TT

SEG2
TT

SEG3
TT

SEG4
TT

fJ ROM Tables

~ RT 1 (last) J I I I 'T
I I I I
I

I I I I
~ RT 2 (last) 1 I I I I

I I
RT 3

I RT 4

I RT 5 (last)

RT 6

I RT 7 (last)

RT 8 (last)

Figure 14. lOCCT, TREE, and ROM Table Relationships

36

3.1.2 Files (ROMs and Load Modules)

The Loader wi II access ROM fi les and load module fi les. All fi Ie names specified on the

! LOAD card under the EF option appear in the ROM Table. Additionally, the files idB

and idG may appear in the ROM Table if the user specified (BI) or (GO), respectively.

During Pass One processing, the Loader augments the ROM Table by those library load

modules which are to be included. Note that the Loader is entirely file-oriented. That is,

ROMs coming from cards on BI will be read by eCI which :::reates a fi Ie by the name of idB.

(Exception: M:EF may be assigned to labeled tape.)

a. ROM Files

A ROM fi Ie consists of one or more ROMs produced by an assembler or compi ler (see

the BPM Reference Manual (90 09 54) for a description of the ROM language). ROM

files are accessed either from the accounts specified in the EF list (which the Loader

sees in the ROM Table) or from the files idB and idG. (If a !TREE card has been

included, idB and idG would appear in the ROM Tables for the root segment.)

b. Load Module Files

Load modules acceptable for combination with ROMs to form a new load module are

built either by

1) the Loader itself, in which case they are library load modules (see Output Section,
3.2, for format);

2) PASS2 of SYSGEN; or

3) DEFCOM processor.

The HEAD of the input load module indicates one of the above sources in order that

any attributes may be handled correctly. Any such load module must be of one

protection type, relocatable, and not overlaid. Furthermore, if such a load module

contains a DSECT, then the entire load module consists of that DSECT alone.

37

3. 1. 3 Regi sters and J IT Input

BPM

R6 = word size of LOCCT, ROM, and Tree Tables

R7 = .1...-[_...-.4-1 _x_x--,--I _-.1...-1 _id_

SR 1 = information needed by CCI or PASS3. This is
simply stored and restored upon exit.

04 = foreground COMMON bias

J:EUP =

J:JIT, byte 3 =

UTS

page number of the I ast user page

id

JB:BCP, byte 1 = page pointer to LOCCT Table -l.

SR 1,04

This word contains:

I XX n

which is followed by the LOCCT, ROM,
and Tree Tables.

= same as BPM

XX =. 0, if CCI called the Loader.
"I 0, if PASS3 call ed the Loader.

n = size of LOCCT, ROM, and Tree Tables

id = system id (see Glossary)

38

3. 1.4 ASSIGN Record

CCI bui Ids a record of all ASSIGN information encountered during a job. The Loader

examines this record to see if any F: number DCBs have been entered and, if so, wi" gen

erate those DCBs with default entries (if they are PREFs within the user program). In UTS

this record is read via an FPT code = X'2D'. In BPM the record is in section 35 of absolute

area of the RAD and is read with an FPT code of X'16 1
• (See Section 16 of the Faa BPM

Technical Manual for formats.)

3. 1. 5 Error Message Fi I e (ERRMSG)

This is a keyed file under the :SYS account. Its keys are of the form:

03 02 I error number

The records are the text error messages. To alter the file, one uses the programs ERROM

(Cat. No. CN706106) and ERRDATA {Cat. No. S1706107} for BPM, and the program ERRMWR

for UTS.

When an error occurs, the Loader transfers control to MESSAGE (in LDR) with the error number

in R3. MESSAGE builds the key, reads and prints the associated record.

Figure 15 is a I isting of ERRMSG {to date}.

39 90 18 038-1 (8/72)

KEY

020001
020002
020003
020004
020005
020006
020007
020008
020009
02oo0A
02000B
02000C
02000D
02000E
02000F
020010
020011
020012
020013
020014
020015
020016
020017
020018
020019
02001A
02001B
02001C
02001 D
02001E
02001F
020020
020021
020022
020023
020024
020025
020026
020027
020028
020029
02oo2A

MESSAGE

UNEXPECTED EOF
ILLEGAL RECORD I. D.
SEQUENCE ERROR
ILLEGAL RECORD SIZE
CHECKSUM ERROR
ABNORMAL I/O
CANNOT OPEN E. F.
STACK OVERFLOW
BIAS TOO LARGE
ILL. ROM LANGUAGE
BAD START ADDRESS
UNEXPECTED ROM END
REPEAT LOAD IS ZERO
IMPROPER BOUND
ILLEGAL ORG
BAD I/O RETURN FROM M: LM DCB
SEV. LEV. EXCEEDED
ILL. LIB. LOAD MOD.
NO ROOM TO ROUND DCBS TO PAGE BOUNDARIES. TRY FORCING XMEM
ILL. DSECT
ROOT SEGMENT TOO LARGE TO LOAD IN2
NEW UTS ERR FROM XMEM IN2
CANNOT ENTER XMEM. STACKS TOO LARGE. IN2
NOT ENOUGH ROOM TO CONCATENATE XMEM PAGES IN2
NO ROOM TO READ LIBRARY CORE IMAGE EVL
NO ROOM TO READ LIBRARY RELOCATION DICTIONARY WRT
NO ROOM FOR NEW EXPRESSION WRT
NO ROOM TO BUILD DCB TABLE. TRY FORCING XMEM WRT
NO ROOM TO BUILD DCB TABLE WRT
LIBRARY LOAD MODULE REF/DEF STACK TOO LARGE TO UPDATE WRT
INSUFFICIENT PHYSICAL MEMORY
BAD ASSIGN/MERGE RECORD
NO ROOM T'O ADD LIBRARY LOAD MODULE TO ROM TABLE
NO ROOM TO READ LIBRARY REF/DEF STACK
NO ROOM TO UPDATE LIBRARY
INVALID KEY SUPPLIED FOR DELETE RECORD ON M:DIC
I/O ERROR ON M:DIC IN WRITESEG
ILLEGAL LIBRARY LOAD MODULE NAME
ABNORMAL I/O ON OPEN OR READ TO CORE LIBRARY
INVALID DECLARATION NUMBER REFERENCE (BAD ROM).
INVALID KEY SUPPLIED FOR WRITE RECORD ON M:DIC
ILLE GAL LOADER TRAP

Figure 15. ERRMSG File

90 18 03B-1 (8/72) 40

KEY

02002B
02002C
02002D
02002E

MESSAGE

ABNORMAL I/O IN WRITELIB
CANNOT FIND REF/DEF NAME IN STACK
LIB LOAD MODULE TOO BIG - CANNOT USE EXTENDED MEMORY
LIB LMN IS NOT ALLOWED ON A PRIVATE VOLUME

Figure 15. ERRMSG File (cont.)

3.1.6 Modify Fi Ie (idD)

This keyed file is built by CCI in the user's account on the basis of the !MODIFY cards.

Its keys are of the form:

TEXTC segment name concatenated with xx, where 0 S. xx S. nand

n = the hexadecimal number of !MODIFY cards.

See Section 16 of the FOO BPM Technical Manual for a more detailed format.

3.1.7 Core Libraries (UTS only)

Core I ibraries ex ist on Iy under the: SYS account. An abso lute copy of a core library's

procedure area exists on swap storage assoc iated with the name: Pnnn and is placed at

run-time into a fixed area. The DEFs for :Pnn which relate the core library's context

area (preceding the user's blank COMMON) with the user and the library procedure are

contained in a load module (formed by DEFCOM) named :Pn. The Loader's job is to read

:Pn, merge the DEFs into the REF/DEF stack of the target load module, and signal the

! RUN processor that it is to associate :Pnn with this program. The signal consists of

plac i ng the text : Pnnn in the HEAD record of the load modu Ie.

:PO is the name of the FORTRAN core I ibrary with debug.

:P1 is the name of the FORTRAN core I ibrary without debug.

See Chapter 6 of the UTS System Management Guide for details on core libraries.

41 90 18 03B-1 (8/72)

3.2 OUTPUT

3.2. 1 Load Modul es, Overall Format

A load module is a keyed file whose name was supplied on the !LOAD card (default = idL). The

a.

keys and records are as follows:

Key =
HEAD

0

2

3

4

5

o

2

·3

4

5

6

7

8

9

A

B

o a
ax 00

AlB I SL

TCB*

DA T A (00) Base*

STATIC DATA (10) Base*

MAX RF/DF SIZE

ax 00

AI B J SL

TCB*

DATA Size*

PROCEDURE SIZE *

MAX RF /DF Si ze

DCB Size*

Record

BPM

16

r

UTS

I

0

0

0

0

0

(Footnotes are on next page.)

42

24 31

FF I n

ST ART address

Module Bias*

PROCEDURE (01) Base*

Next Available Page*

TREE Size
. _.

FF 1 n

ST ART address

Module Bias*

DA TA (00) Base*

PROCEDURE (01) Base*

TREE Size

DCB Base (10)*

0 **

0

0

0 ***

0

b.

Footnotes to keys and records shown on previous page:

*Doubl eword address

In byte 0, word 0 x = 0, load module produced by Loader.
= 1, load module produced by SYSGEN.
= 2, library load module produced by Loader.
= 3, load module produced by DEFCOM (con-

sists of HEAD, TREE, and REF/DEF (Stack).
= 5, pages load module produced by Loader.

n = number of bytes in the HEAD record. For UTS, n = X-30' ; for BPM, n = X'181
•

A = 1, abs module
B = 1, NOTCB

SL = Final Severity Level

** Word 7
*** Words 9, A, B

Key = TREE

If DEFCOM output, this word = byte size of DATA area.
If the LMN is associated with a core library, these words
are :Pnnn in TEXTC format.

Record is the Tree Tables (see Figure 12).

c. Segment Components - Standard Load Module

For each segment, the following records are buil t:

1
00
01
02
03

Segment Name l 04
Concatenated with: 05

06
07

Record

-----:-1 .• ~REF/DEF stack
---+EXPR stack

----1.~OO REL DICT
-----I .. ~OO Control Sections
------+01 REL DICT
-----1.~Ol Control Sections

--.~10 REL DICT
-----t.~ 10 Control Sections

rf. Segment Components - Paged Load Modu Ie

For each segment, the expression stack and REF/DEF stack records have the same

format as those for the standard load modu Ie. Relocation dictionary records are

not constructed.

43

The core images are partitioned into records of at most 512 words in length with

3-byte keys of the following format:

SEG 00 PAGE

where SEG = the TREE segment number of the segment containing the core image.

PAGE = the page number of the virtual page that will contain this record at

execution time.

All core image records are one page in length except for the first record of an overlay

segment's 00, 01, and 10 areas. The length of this record satisfies the following: at

execution time, the record begins at the execution bias for this protection type and

ends at the next page boundary.

3.2.2 Library Load Modules

A I ibrary constructed by the Overlay Loader consists of two keyed fi les, :LIB and :DIC.

The library load modules actually reside in one file (:LIB). :DIC is a dictionary whose

keys are the text names of DEFs. The record assoc iated wi th a dictionary key is the text

name of the load module (within :LIB) in which that DEF is defined. Thus, in order to lo

cate the unique group of records within :LIB which pertain to a given PREF, the Loader

does a keyed READ to :DIC, the key being the PREF which is being satisfied. Th is keyed

READ returns the library load module name within :UB. With this information the Loader

can then read the I ibrary load module records into core and merge them with the target

load module.

The keys and records in :LIB are identical to those of non-I ibrary load modu les (see above)

except that the keys "HEADII and "TREE" are concatenated with the TEXT load module

name (to kee.p them unique). Each individual library load module name is IIsynonymous"

(in a file sense) with the name :LIB.

A slight difference also exists in the REF/DEF and expression stack formats. The VALUE

word of an entry in the REF/DEF stack is actually the head of a chain through the expres

sion stack of all those entries which involve that REF/DEF. (This expedites subsequent

merging of the stacks when the library is included in a user program.)

44

3.2.3 REF/DEF Stack

There is one REF/DEF stack for each segment. A REF/DEF stack is composed of entries for

every control section and forward reference in the segnent. It also contains an entry for every

name (DEF, REF, SREF) in the segment which does not occur in this segment1s backward path.

Before a name is added to a segment1s REF/DEF stack, the segment1s stack and the REF/DEF

stacks for this segment1s backward path are searched. If the name is not in these stacks, a new

entry is added to the segment1s stack. If the name already exists, the entry in which the name

appears is treated as follows:

Type of Exi sti ng Modification of
New Name REF/DEF Entry Existing REF/DEF Entry

DEF DEF Double DEF
DEF REF DEF
DEF SREF DEF
REF DEF Used DEF
REF REF No change
REF SREF REF
SREF DEF Used DEF
SREF REF No change
SREF SREF No change

45

2

3

o

GENERAL REF/DEF STACK FORMAT

7 1112' 15 31

n I IEITYPEI

VALUE

RESOLUTION

,..., ,.-

where:

n = number of words in this entry.
E = 1, if the entry has a VAlUE,

TYPE = o or 8 DEF
1 SREF
2 PREF
3 or B Dummy Section
4 or 6 Control Section
5 or 7 Forward Reference

VALUE = constant .or address if the load module is not a library
or

head of a chain in the expression stack if the load module
is a library (see SQZ, Section 7.0).

RESOLUTION = the resolution in which the VALUE is expressed. Resolution
is of the form:

o 16 31

, I byte half I word I double I
If the VALUE is a constant, the RESOLUTION word is O.

If the VALUE is an address, one and only one byte of the
RESOLUTION word is nonzero (viz., the appropriate byte = X'011).

If the RESOLUTION assumes a form different from either of the above j

the VALUE is of mixed resolution. (In this case the load module
cannot be relocated and is forced ABS.)

46

f TYPE = 0 or 8 (DEF) ,

I TYPE

o 7 1112 1516 29 3)31

n DISP UL

VALUE

RESOLUTION

Name in TEXTC

T T
where:

TYPE = 0, this entry is a DEF.
= 8, this entry is a double DEF.

E = 1, the DEF has a value.
DISP = Displacement to the segment in the Tree Table where the

DEF is located.
U = 1, used D EF (the D EF has been referenced).
L = 1, the DEF was defined in a library.

= 1,2 (SREF or REF) I

a 7 12 15 16 31
? "

n

"
>:/:.

,

/ /

Name in TEXTC

T T

TYPE = 1, SREF
= 2, PREF

47

, TYPE = 4 or 6 (Control Section) I

o 891112 1516 31

03 ,ppfl E 14 or 6f SIZE

VALUE

RESOLUTION

where:

TYPE = 4, when first declared in PASS1 (LP1).
= 6, after rereading the declaration in PASS2 (LP1 of EVL).

E = protection type
SIZE = size of the control section in doublewords.

NOTE: A special entry is created by the Loader and inserted in front
of a I ibrary load module's REF/DEF stack. It has a TYPE = 4,
but can be detected (in PASS2) because all previous control
sections would have been changed to 6 by this time.

o 8 9 11 12 15 16 31

03 (pp [I E(4 I SIZE

VALUE

EXP SIZE l EXP DISP

where:

SIZE =
VALUE =

EXP SIZE=
EXP DISP=

Size of the load module's core image in doublewords.
Location of this load module's core image (within
the target load module).
Word size of the load module's expression stack.
Displacement of load module's expression stack
within this segment's expression stack.

48

I TYPE = 3 or B (Dummy Control Section) l

o 7 8. 9 10 11 12 15 16 31

n pP f/ , EI30rBI SIZE

VALUE

RESOLUTION

Name of DSECT

(or DCB) in TEXTC

where:

TYPE = 3, Dummy Control Section
= B, At the end of PASS 1, all PREFs (TYPE2) with names

beginning with M: or F: are changed to TYPE B,
indicating that the Loader is to build them at the
end of the second pass.

I TYPE = 5 or 7 {Forward Reference} ,

o 7 8 10 11 1 2 15 16 31

04

VALUE

RESOLUTION

K Forward Reference Number

where:

TYPE = 5, Forward Reference.
= 7, Forward Reference is defined from a library.

K = 0, Until the forward reference is defi ned.
=FF, Defi ne forward REF and II re I ease" the reference number.
=FO, Define forward REF and hold the reference number until

module end.
F = 1, the forward reference is used in a "Define forward reference

and hold II expression.

49

3.2.4 Expression Stack

The Loader builds an entry in the expression stack by re-formatti ng a ROM expression. This

re-formatti ng process consists of groupi ng all of the control by tes together in one part of the

entry, and all of the operands in another. If the ROM operand is a constant, it is transferred

verbatim from the ROM to the operand portion of the entry. If the ROM operand is a declara

tion number, the REF/DEF stack pointer is accessed from the declaration stack and placed in

the operand portion of the expression entry. If the ROM operand is a forward reference number,

the corresponding REF/DEF stack pointer is transferred to the operand portion of the entry.

Some control bytes have no operands (viz., expression end or change resol ution) and therefore,

have no corresponding item in the operand portion. Thus, the control byte portion of the entry

is related sequentially to the operand portion, except in the case where no operand exists.

The value of an expression is deposited either in a REF/DEF stack entry or in a field in the core

image of the target load module. (See Section 2. 1. 1f). In the first case, the destination of

the expression's value is described by a pointer to the entry in the REF/DEF stack. In the

second case, the destination is described by a core expression. A core expression contains the

field size, in bits (which can cross up to eight words of the core image); the address of the last

word in the core image to be changed; and the terminal bit position of the field.

50

IfC=O

If C = 1

GENERAL EXPRESSION STACK ENTRY

o 7 8 9 10 15 24 31

n Elel DISP CB
1 I CB

2

2 CB
3

CB
4

...

Desti nation

Resolution

Word 1

Word
2
· · ·

Word
m n

where:

n = number of words in entry

E = 1,
= 0,

C = 0,
= 1,

DISP =

this entry has been evaluated.
this entrl has not been evaluated.

this entry's Destination is a pointer to the REF/DEF stack.
this entry's Destination is a core expression.

number of words to Word 1.

Destination: (where the value of the entry is to be deposited) =

o

one of the following forms, depending upon the value of C.

REF /DEF Poi nter

15 16 31
Segment's Displacement

in Tree Table
Displacement within
segment's REF/DEF stack

o
Field Size

Resol uti on:

CB. =
I

Word. =
I

7 8

Core Expression

14 15
Terminal
Bit Posi tion

Word Address

Same as REF/DEF stack.

31

a control byte of the expression.

is referenced by a control byte and is a constant
or pointer to the segment's REF/DEF stack (same
form as Destination where C=O).

51

3.2.5 Relocation Dictionary

If ABS is not specified on the ! LOAD card, each segment will have records of relocation

dictionaries (one per protection type). One relocation digit is developed for each word in

the protection area.

Relocation Dictionary Digits

Digit Type of Relocation

o relocate the word at byte resolution.
1 relocate the word at halfword resolution.
2 relocate the word at word resolution.
3 relocate the word at doubleword resolution.
8 relocate the left half of the word at doubleword resolution.
9 relocate the right half of the word at doubleword resolution.
A relocate both halves of the word at doubleword resolution.
E absolute.

Notice that relocation digits exist only for items that terminate on halfword boundaries.

A load module which has an item not amenable to one of these digits is set to ABS.
Example:

BOUND 4
ZAP EQU DA($)

GEN,8, 16, 8 0, ZAP, 0

or
BOUND 4

ZAP EQU $
GEN,3, 17, 12 0, ZAP, 0

Either of these would cause the module to be set ABS since ZAP does not terminate on

a hal fword boundary.

52

3.2.6 Miscellaneous (Map, Diagnostics, Severity Level)

The map, diagnostics, and the severity level of the load module are output via the

M:LL DCB (normally the printer):

a. Load Map

The load map is generated at the end of the load process. For each segment, the

map includes:

i} A header consisting of the segment name and size. For the root segment, the

load module name, account number, start address, and bias are also listed.

i i} A summary of the segment's protection type boundaries and sizes of the format:

****PROTECTION TYPES: 00 DATA

SEGHI-O valhi
SEGLO-O vallo
OOSIZE=size

01 PROCEDURE 10 STATIC

SEGHI-O valhi
SEGLO-1 vallo
01 SIZE=size

where valhi = the high word address for this protection type.

SEGHI-2 valhi
SEGLO-2 vallo
10 SIZE=size

vallo = the start address (word resolution) for this protection type.

size = the size, in words, of the protection type area.

iii} A list of any unsatisfied primary references (PREFs).

iv} A I ist of any unsatisfied secondary references (SREFs).

v} A I ist of any mu I tiply-defined defin itions (DDEFs).

vi} A list of definitions with absolute values (ADEFs).

vii) A list of relocatable definitions and control sections for this segment, sorted

either by value or by name. A va lue sort produces a list of the DEFs and

control sections in increasing value, with a new line started for a CSECT or

DSECT. The control section's address and protection type is noted in the left

hand margin of this line and its size is noted in the right-hand margin.

A name sort really produces two lists. The first list, entitled 'SECT-PROGRAM

SECTIONS MAP' contains the control sections (in increasing value) and the

first DEF in each section. One (lowest in value) control section, its first

DEF, and the control section size is printed on a single line. The second

list, entitled 'RELOCATABLE DEFINITIONS SORTED BY NAME', lists the

DEFs, sorted alphanumerically by name over the entire segment.

53

In both the va lue and name type of DEF I ists, the control sections are printed

in the format:

{
CSECT}

value DSECT p

where p = the protection type of the control section.

value = the word address at which this section begins.

The relocatable DEFs have the format:

value r symbol

where value = the value of the definition, expressed as a word address.

r = the byte displacement (i.e., the two high order bits of the value if
it were expressed as a byte address).

symbol = the symbol ic name of the item.

The following flags can precede the symbol ic name of a DEF (or ADEF).

* = unused definition.

+ = multiply defined definition.

- = definition satisfied from a library.

The map for each segment,starts on a new page. For the lists (iii)-(vii),

four symbols are listed on a line unless there is a large symbol which cannot

fit in one column .. In this case the symbol is printed on a single line. Lists

(iii)-(vi) are always sorted by name.

b. Diagnostics

The diagnostic consists of the pertinent record obtained from the ERRMSG fi Ie and

the following information: the name of the element file currently being processe~,

the sequence number of the record most recently read, and a third field of data

pertinent to the particular error that occurred. (See Figure 15b for a list of the

error message keys and the corresponding data printed in this field.)

c. Severity Level

A nonzero severity level is printed at the end of the load process immediately before

the map is printed. The final severity level is actually the maximum of any severity

levels inherited from the ROMs and those generated internally by the loader.

54.

Internal Loader-generated Severity Levels:

Type of Error

PREF
ODEF
REF load tab Ie exceeded
BREF load table exceeded

Severity

7
4
F
6

(After printing the final severity level, it is compared with the maximum specified

by the user (for CCI). If it is greater loading is aborted).

d. Register Output for PASS3

04 = 0 if norma I return.

= -1 if abnormal return.

SR1 = original contents upon entry to the Loader.

ERROR KEY

020001
020002
020003
020004
020005
020006
020007
020008
020009
02000A
02000B
02000C
020000
02000E
02000F
020010
020011
020012
020013
020014
020015
020016
020017
020018
020019

Diagnostic Information Output

SR3
Record I. D.
(none)
Record Size
(none)
SR3
SR3
SR3
Bias
Object Module Control Byte
Start Address
(none)
(none)
Byte addr of load relocatable destination
SR4 (for debugging purposes)
SR3
Computed Severity Level
(none)
No. of words to be added to 10 area
1 st 4 characters of D SECT name
No. of words exceeding available background
(none)
No. of words that stacks exceed avai lable background
No. of words exceeding avai lable background
No. of words in I ibrary's core image and rei. dict.

Figure 15b. Variable Diagnostic Information

55 90 18 03B-1 (8/72)

ERROR KEY

02001A
02001B
02001C
02001D
02001E
02001F
020020
020021
020022
020023
020024
020025
020026
020027
020028
020029
02002A
02002B
02002C
02002D
02002E

Diagnostic Information Output

Size of relocation dictionary
(none)
(none)
No. of words in DCB Name Table and its rei. dict.
(none)
Register 0
SR3
High addr. of REF/DEF stack (which would overwrite exprstk)
Size of library load module's REF/DEF stack
Size of REF/DEF stack corresponding to old version of library Imn
Key Size .
SR3
No. of characters in load modu I e name
SR3
Invalid Declaration Number
Key Size
Register 0
SR3
1 st 3 characters and byte count of name
(none)
(none)

Figure 15b. Variable Diagnostic Information (cont.)

DESCRIPTION OF COMMON LOADER ERROR MESSAGES

UNEXPECTED EOF

I LLEGA L RECORD I. D.

SEQUENCE ERROR

ILLEGAL RECORD SIZE

CHECKSUM ERROR

ABNORMAL I/O

CANNOT OPEN E. F.

90 18 03B-1{8/72)

An end-of-fi Ie was encountered before the end of an ob ject
module was reached (incomplete object module).

The type of record read was neither X '3C ' nor X'1C' (object
module), nor X '81 1

, X '82 1
, or X '83 1 (Load Module).

The cards of an ob ject modu Ie were out of sequence.

The number of bytes in an object module card was less than
four or greater than X '6C I.

A bit (or bits) was dropped in punching or reading the object
module.

An abnormal return was encountered wh i Ie reading a library
load module.

An element file-·could not be opened. (It does not exist, it
has a password, etc.)

56

STACK OVERFLOW (BPM)

BIAS TOO LARGE

ILL. ROM LANGUAGE

BAD START ADDRESS

. UNEXPECTED ROM END

REPEAT LOAD IS ZERO

IMPROPER BOUND

ILLEGAL ORG

BAD I/O RETURN FROM
M:LM DCB

SEV. LEV. EXC EEDED

ILL. LIB. LOAD MOD.

ILL. DSECT

INSUFFICIENT PHYSICAL
MEMORY (UTS ONLY)

Insufficient memory in which to load. If no map has been
partia lIy printed, the module is too large. If a map has been
partially printed, some unsatisfied primary references have
caused the stacks to grow to excessive size.

At the given bias, the load module will exceed 131 K of
memory.

The object language in a relocatable object module was not
translatable (assembler or compiler error).

A start address was given wh i ch is either not on a word
boundary or is not within the load module.

Module end was given on some card of the object module
other than the last card (assemb ler or compi ler error).

An assembler or compi ler generated a repeat load item with
a 0 count (assembler or compi ler error).

A short- or long-form relocatable item was not on a word
boundary.

An origin was generated having no resolution or was not within
load module (assembler or compiler error).

The load modu Ie fi Ie cou Id not be opened.

The severity level specified in the LOAD card was less than
that encountered in some object module or that generated by
the Loader (a DDEF yields a severity level of 4, a PREF
yields 7).

(PERM, LIB) was specified and the load module had one of the
following:

1. More than one protection type.

2. No relocation dictionary (ABS was specified or forced
by the Loader due to nonstandard relocatable fields).

3. More than one segment.

Two dummy sections having the same name but different pro
tection types were encountered.

This message can only occur running under UTS and has the
same meaning as STACK OVERFLOW for BPM.

57

3.3 LOADER-GENERATED TABLES

All Loader-generated tables reside in the root segment of the load module in the

order indicated by Figure 1. Loader-generated tables are the TCB, Tree Tables,

DCB Name Table, REF/BREF Tables, and DCBs.

3.3. 1 Formats for the TCB and DCB Name Table are in the BPM Reference Manuo.l.

The TCB resides in 00. The DCB Name Table resides in 01 for BPM and 10 for UTS.

3.3.2 TREE. A copy of the Tree Tables (see Figure 12) is placed at the beginning of the

01 area (as well as being separately recorded in the TREE record).

3.3.3 REF/BREF Tables

REF mode

An entry is created for every load item involving a REF defined in a higher segment.

The load item is replaced by a CAL 1,8 X where X is the REF Table entry address

(a PLIST for the CAL).

X- o 1 8 0 0
I SEG

Replaced load item.

B load item + 1

BREF

0 0 0
SEG = 17 bit address of higher

segment name in Tree Table.

An entry is created for every branch type instruction involving a REF to a higher

segment. The branch type instruction is replaced by a branch (of the same type) to the

BREF entry.

58

BAL, RO S:OVRL Y

* [SEG 1 x I ADDR

where: S:OVRLY is a system library routine

SEG = segment number {Tree Table displacement/ll}

ADDR = address field of replaced instruction

*,x = indirect and index fields from replaced instruction

EXAMPLE:

Assume that a segment S references ZAP {defined in a "higher segment}:

Segment S

REF ZAP

C1 BAL,7 *ZAP

If REF loading mode:

a CALl,S ~

59

If BREF loading mode:

3.3.4 DCBs

0 1 80 000 0 ,
SEG

BAL,7 *ZAP

B Cl + 1

a BAL, 7 11

S:OVRLY
ZAP

SEG is as defined for
REF above.

SEG is as defined for
BREF above.

The Loader will build a DCB if, at the end of PASS1, there exist any PREFs which begin

with M: or F:. This can occur if: 1) CClis ASSIGN record contained F: number

entries; 2) the user had a REF DCB name and had no ROMs or libraries which satisfied

this REF; 3) the NOTCB option is absent, whereupon an M:DO is generated; 4) a !TREE

card i s present, whereupon an M:SE GLD is generated.

All Loader-generated DCBs are DSECTs whose allocation is forced to the root. The

standard 22 words are allocated for the fixed portion of the DCB. In the variable length

parameter portion of the DCB, three words are a I located for fi Ie name, two words for

account, two words for password, three words for INSN numbers, and three words for

OUTSN. Two additional words are allocated for an EXPIRE date for UTS DCBs. The

60

total DCB size is 48 words for BPM, 51 words for UTS. Default information is placed

into recognized DCB names. The recognized DCB names and their defaults are shown

in F i gu re 16.

DCB
NAME
M:c
M:OC
M:LO
M:LL
M:DO
M:PO
M:BO
M:LI
M:SI
M:BI
M:SL
M:SO
M:CI
M:CO
M:Al
M:EI
M:EO
M:GO
F: 1 01
F: 102
F: 103
F: 104
F: 105
F: 106
F: 108

FUNCTION

Input
Input/Output
Output
Output
Output
Output
Output
Input
Input
Input
Output
Output
Input
Output
Output
Input
Output
Output
Input
Output
Input
Output
Input
Output
Output

RECORD
BYTE SIZE

120
85

132
132
132
80

120
120
80

120
1~2
80

120
120
80

120
120
120

o
o
o
o

80
120
132

Figure 16. Recognized DCBs and their Defaults

OPERATIONAL
LEVEL

C
OC
LO
LL
DO
PO
BO
II
SI
BI
SL
SO
CI
CO
AL
EI
EO
NO
OC
oe
PR
PP
51
BO
LO

For UTS, nonstandard DeBs (i. e., those not listed in Fi gure 16) are assi gned to 'ME "
whi ch goes to the termi na I for an on-I i ne user or to devi ce 'NO' for batch.

61 90 18 03B-1 (8/72)

3.4 EXAMPLES

The following example is designed to illustrate: 1) a load module's expression stack

in relation to its REF /DEF stack, and 2) the correspondence of these two stacks to

the ROM from which they were derived. This example should also clarify many of the

.files and tables discussed in this chapter.

3.4. 1 A Sample Program

The following program was assembled under the METASYM processor.

1 SYSTEM SIG7FDP
2 DEF ABl
3 REF AB2
4 01 00000 6A900000 X START BAL, 9 AB2
5 01 00001 00000008 02 DATA ZAP+2
6 02 00000 CSECT 0
7 02 00000 RES 5
8 02 00005 OOOOOOFF A ABl DATA X'FF '
9 02 00006 ZAP EQU $
10 01 00000 END START

CONTROL SECTION SUMMARY: 01 00002 PT 0 02 00006 PT 0

3.4. 2 The ROM

Following is a load-1tem-by-load-item interpretation (known as a ROMBUST) of the ROM

for this program. The load items are interpreted in the order that they were output by

the METASYM processor. Note that each load item is listed, in hexadecimal, on the line

immediately above its verbal description.

62

ROMBUST OF SAMPLE PROGRAM
RECORD NUMBER: 0

RECORD TYPE: LAST, MODE: BINARY, FORMAT: OBJECT LANGUAGE.
SEQUENCE NUMBER 0
CHECKSUM: 200
RECORD SIZE: 66

0303C1C2F1
DECLARE EXTERNAL DEFINITION NAME (3 BYTES) NAME: AB 1 DECLARATION

NUMBER: 1

0503C1C2F2
DECLARE PRIMARY REFERENCE NAME (3 BYTES) NAME: AB2 DECLARATION NUMBER

2

OCOOOO08
DECLARE NONSTANDARD CONTROL SECTION DECLARATION NUMBER: 3
ACCESS CODE: FULL ACCESS. SIZE 8 X'8'

OC000018
DECLARE NONSTANDARD CONTROL SECTION DECLARATION NUMBER: 4
ACCESS CODE: FULL ACCESS. SIZE 24 X'18'

OA01 01 OOOQ001~20b402
DEFINE EXTERNAL DEFIN ITION
NUMBER 1
ADD CONSTANT: 20 X'14'
ADD VALUE OF DECLARATION (BYTE RESOLUTION)
NUMBER 4
EXPRESSIGJ END

04200302
ORIGIN
ADD VALUE OF DECLARATION (BYTE RESOLUTION)
NUMBER 3
EXPRESSION EN D

826A900000
LOAD RELOCATABLE (SHORT FORM). RELOCATE ADDRESS FIELD (WORD RESOLUTION)
RELATIVE TO DECLARATION NUMBER 2
THE FOLLOWING 4 BYTES: X'6A900000'

63

8400000008
LOAD RELOCATABLE (SHORT FORM), RELOCATE ADDRESS FIELD (WORD RESOLUTION)
RELATIVE TO DECLARATION NUMBER 4
THE FOLLOWING 4 BYTES: X'8'

040100000014200402
ORIGIN
ADD CONSTANT: 20 X '14'
ADD VALUE OF DECLARATION (BYTE RESOLUTION)
NUMBER 4

EXPRESSION END

44000000FF
LOAD ABSOLUTE THE FOLLOWING 4 BYTES: X'OOOOOOFF'

OD220302
DEFINE START
ADD VALUE OF DECLARATION (WORD RESOLUTION)
NUMBER 3
EXPRESSION EN D

OEOO
MODULE END
SEVERITY LEVEL: X'O'

64

3.4.3 The Load Module

The following load card was used to form a load module for this program:

!LOAD (EF, (SAMPLE)), (NOTCB), (SL,A), (LMN,TARGET)

(Where the ROM was located in the fj Ie with name SAMPLE).

The resultant load module is listed below.

TARGET LOAD MODULE

HEAD

00 8000FF 18 47006FOO 00003700 37003800 ~9003900 0011000C

07E3C1D9C7C5E300
00 03160000 00006EOO 00000100 04100000 0001 B81 C 01000000 03C 1 C2F 1 04020000
08 00000000 00000000 03C1C2F203160001 00006EOO 00000100 03160003 00006F02
10 00000100

07E3C1 D9C7C5E301
00 06840120 02000003 00000003 01000000 00000014 OOOOOOOE 04432202 113E6FOO
08 00000000 00000007

07E3Cl D9C75E302
00000 E2EEEEEE

07E3Cl D9C7C5E303
00 6A 900000 00006EOA 00000000 00000000 00000000 00000000 00000000 OOOOOOF F

07E3C1 D9C5E304
00 2EEEEEEE 9E9E99EE EEEEEE

07E3C 1 D9C7C5E305
00 00000000 00000000 OOOOOOOC 06E3C1 D9 C7C5E301 40404040 00000000 00000000
08 00043700 00113E38 000B3800 000A3E53 00003900 00000000 00000000 00000000
1 0 00000000 06040120 02000003 00000003 00000000 00000014

TREE
00 OOOOOOOC 06E3Cl D9 C7C5E305 40404040 00000000 00000000 00043700 00113E38
08 00083800 000A3E53 00003900 00000000

65

3.4.4 The Relationship Between the Expression Stack and the REF/DEF Stack

The REF /DEF stack of the preceding load module (the second record I isted) has entries

as follows:

TYPE

Control Section
DEF (of AB1)
PREF (of AB2)
Control Section
Control Section

DISPLACEMENT
FROM STACK BASE

Word 0
Word 3
Word 7
Word B
Word E

The first REF/DEF entry is a special control section and corresponds to Declaration

Number 0 (for one-pass assemblers and compi lers). The subsequent four entries reflect

Declaration Numbers 1, 2, 3, and 4 made in the ROM.

The expression stack (the third record of the load module) contains two entries. The loader

reads the first entry as follows: 1) Add the constant 14 to the expression accumulator;

2) Get the value word of that REF/DEF entry which begins at Word E of the REF/DEF Stack

(a control section); 3) Change the value word, if necessary, to byte resolution and add it

to the expression accumulator; 4) Store the result in that REF /DEF entry whi ch begins 3

words into the stack (the DEF). The "result" signifies both the sum in expression

accumulator, which goes into the value word of the DEF, and the resolution of the expression

which goes into the resolution word of the DEF. Notice that a similar expression appears

in a load item of the ROM, and that the loader bui It its expression entry by re-formatting

the ROMl s expression.

Looking at the second expression, the fact that Bit 90f its first word is set indicates that

this is a core expression. The expression says to add the value of that REF/DEF entry

66

begi nni ng at word 7 of the Stack (the PREF), at word resol uti on, to a word in the core

image. (In fact, the core image word is Word 0 of the fifth load module record.)

This expression was constructed because the Loader could not completely satisfy the

first "load relocable" load item in the ROM (which involves a PREF in the address field).

4. 0 DESCRIPTION OF THE FIRST PASS

Overall execution of the Loader is controlled by the driver within the LDR segment beginning

at location LOADER. Exit from the Loader back to CCI or PASS3 always occurs at

location LEAVE within the driver~ If an error occurs during processing, control is

transferred to MESSAGE with the error number. MESSAGE bui Ids the key, reads the

ERRMSG fi Ie, prints the offending error (and the key) and transfers to LEAVE.

4. 1 INIT1-INITIALIZATION FOR THE FIRST PASS

IN1 obtains memory by the method described in Section 2.4. I t then zeroes

its own data page (in LDR) and reads the LOCCT, ROM, and Tree Tables. Knowing the

size of these tables, the declaration, REF /DEF, and expression stack pointers are now

initialized. Sixty-four words are set aside for the declaration stack. The REF/DEF Stack

follows. TOPOMEM is computed (from J :EUP in the JIT if UTS or on the basis of the

number of pages given to the Loader if BPN\), and the expression stack pointers are set.

Dynamic PLISTS are moved into dedicated areas of the DATA page for future use and,

since CCI did not clear the last six words of each Tree Table, INITl does

so now.

The ASSIGN record is scanned for F:number DCB names and these are entered as

PREFs in the REF/DEF stack for future building by the Loader (if they do not get satisfied

during PASS 1). Unless NOTCB was specified, M:DO is also primary-referenced to allow

for SNAPs and PMDs. If the load module is overlaid, M:SEGLD is primary-referenced for use

by the segment loader. If BREF was specified, the I ibrary routine S:OVR L Y is also

pri mary-referenced. The load modu Ie fj Ie is opened and the i nformati on in the LOCCT

90 18 038-1 (8/72) 68

is moved into the OPENlM PlIST. In UTS, if the first word of the EXPIRE field

is zero, the number of significant words in the EXPIRE control word of the OPEN

VlP is set to zero. The system library is opened to prevent the alteration of the

library whi Ie the loader is using it.

If M:EF was assigned to labeled tape, the M:EF DCB has a 2 in the ASN fie'd.

All ROMs in the ROM Tables are then assumed to be on the labeled tape and are

flagged by a 1 in bit position 30 in the third word of each ROM name. Load

modules added from libraries are recognized as coming from disk, not tape, by not

having this bit set.

For BPM, if M: LM has been assigned to a private volume, the (PERM, lIB) bit in

the LOCeT is checked; the Loader wi II abort at thi s poi nt if it is set.

Fino-lIy, the known sizes not associated with CSECTs or DSECTs are added to the TREE.

These inc~ude the TREE size and the TCB size in 01 and 00 of the root. (For BPM,

an obsolete feature is unfortunate Iy sti II retained for compatibi lity - two words at

the beginning of the rooes 01 area are reserved and never used.)

The relationship of the LOCeT to the Tree Tables and ROM Tables are shown in

Figure 14 and the linking among the Tree Tables is shown in Figure 13.

69 90 18 03B-1 (8/72)

I

LOADER

LEAVE

_e!LoL.·~

I

I
·1

error I
---~

error I - .. ~-.

I
I
I

MESSAGE

Read the error
record from
ERRMSG and pri nt

Figure 17. The Loader Driver (in LDR) Flow Chart

70

INIT 1

Obtain Memory.

If

Read LOCCT, ROM, and
TREE tables.

Initialize stack pointers.

,
Set up open I ist for
M :LM with param-
eters from L aCCT.

~

Read A 551 GN/ME R GE
record, if any. PREF
the F: number DCBs.

~

PREF M:DO if no
NOTCB. PREF M:SEGLD
if an overlay.

If M:EF assigned to labeled
tape, mark every entry in
ROM table.

INITSIZE
,

Account for TREE size and
TCB size in root segment
tree table.

EXIT

Figure 18. INITl Flow Chart

71

4.2 PASS 1

4.2.1

We can think of PASSl as consisting of four major parts: the main loop, the object

module decoder (lPl), the load moduJe processor (ADlDMD), and the librarian

(SATREF).

The Main loop

Starting with the root segment and proceeding along a path, the HEAD record of each

input file named in the ROM Table for this segment is read and control directed to

ADlDMD or LP1, depending upon whether the file is keyed or not (ROMs are

sequential, load modules are keyed). At segment end, SATREF is called to augment

the ROM Tables by library module names needed to satisfy PREFs (except PREFs to M:

or F: DCBs). When there are no more forward links, PASS 1 wri tes the current

segment's stacks on the RAD, updates SEVLEV if there are PREFs (other than M: or F:

names), and proceeds to the overlay links, then to the back links. See Fi gure 2 for

processing sequence. When all of the segments have been processed and their stacks

written, we wi II be sitting at the root segment. (Its REF/DEF stack is not written

since PASS2 needs it immediately anyway).

At this point, all references to DCBs have been forced to the root. The root's REF/DEF

stack is scanned for PREF DeBs and they are marked as Type B. FCOUNT contains the

number of words needed for the DCB Name Table and is also accumulated during the

DCB scan. In UTS, REFs to M:XX and M: UC ("special" DCBs not to be bui It by the

90 18 03B-1 (8/72) 72

Loader) are satisfied from the corresponding values in the JIT. The entry is changed

to a library DEF. Figure 3 illustrates the flow of the main loop.

4.2.2 Object Module Processor (LP1-Pass One)

A II names (DEF, PREF, SREF) and control sections are "declared II by the ROM. Reference

72-1 90 18 038-1 (8/72)

to these items is by declaration number. This requires that the Loader associate

a "declaration number II with every name and every control section.

Inherently, this number is a position in the declaration stack, every entry being a

pointer to the entry in the REF/DEF stack which contains either the name or the

protection type and size (if a control section). See Figure 19.

0 15 16 31

I Segment's Tree To Displacement to Entry in
Displacement this segment's REF /DEF ·Stack

Figure 19. Dec laration Stack Format

LPl looks at all declarations {control sections and names} and all definitions {DEFs

and forward references}. It ignores all other load items. Every declaration results

in creating an entry in the REF/DEF stack and an entry in the declaration stack which

points to it. Every definition results in creating an entry in the expression stack

whose destination is the REF/DEF stack entry which is being defined. The REF/DEF

stack may gain one or more entries as a result of a definition whose defining expression

i nvol ves an unknown forWlrd reference.

a. Declarations - Declarations identify either control sections or names.

1. Control Sections

As control sections are encountered, the size is added to the appropriate protection

type and in the segment's Tree Table for use by INIT2 in allocating buffers.

Declaration number 0 is special, being dedicated to a standard control section

{DCSO} for use by one-pass compilers and assemblers. The Loader initially

generates this declaration for expression reference; the processor wi II declare

its size and protection type at the end of the compilation when it finally has this

information.

73

\

2. Names

When a name is declared, LP1 makes an entry in the DECL stack. The name

may have been previously entered in the REF/DEF stack via an object module

or may now be added to the segment's stack. The appropriate type entry, i. e.

DEF, PREF, or SREF, is added to the REF/DEF stack if the name is not found.

In either case, the declaration will point to the segment in whose REF/DEF stack

the name is stored and will indicate the relative position within that REF/DEF stack.

A later module may change a PREF or an SREF to a DEF.

The routine which searches for names and adds them if necessary is ENNAM.

Incidentally, all names beginning with M:, F: or F4:COM are forced to the root

segment's REF /DEF stock.

NOTE: A dummy section falls into both of the above categories. (See Section

2. 1. 1 b.) Names that have been dec lared as DEF names may be redec lared as

dummy sections, with the object language indicating size and protection type.

Given dummy sections with the same name in different ROMs, LP1 wi II determine

the maximum of the section sizes and accumulate it in the appropriate protection

type and segment in the Tree Tables.

74

b. Definitions

Eventually, the ROM will define a DEF or a forward reference. That is, it will

present an expression in terms of other dec larati on numbers (other names, contr:>1

sections or forward references) which, when evaluated in the second pass, will

yield the definition or VALUE (in the REF/DEF entry). For now, the Loader

simply decodes the expression (in EXPRIN) and bui Ids an entry in the expression

stack whose DESTINATION is that entry in the REF/DEF stack indicated by the

declaration number of the DEF or forward reference number. Declarations

involved in the expression are converted to their REF/DEF pointers {picked up

from the declaration stack entry} and st:>red in the appropriate WORD of the

expression entry. If a Define Forward Reference and Hold expression mentions a

forward reference number (add FREF), bit 10 of the corresponding REF/DEF entry

is set for use by SQZ in WRITESEG.

References to FREF numbers that are not known cause these to be added to the

REF/DEF stack. These FREFs will later be defined similar to DEFs (see Terminology,

Section 2. 1 • 1 d.) •

At module end, the forward reference numbers are released, severity level is ac

cumulated, and control returns to the main loop of PASS1. Figure 20 illustrates

the flow of LP1.

75

LPl

Process Declaration 0 (declore
ond enter in REF/DEF).

<Declare a
control
section?

l
<Define

dummy
~ection?

yes

yes

Update severity level
(SEVLEV). Release for
ward reference numbers
which were held
(marked FO).

LPl to main loop of PASSl

ENNAM

Search REF/DEF stack
for name. Add it if
not present. Return
poi nter to name.

Set up 3-word
REF/DEF entry.

Get declaration
number of this
DSECT's DEF.

ENDECL

Enter pointer in
declaration stack.

FIXSIZE

Get size, accumu
late size in tree.

Mark the forward number
~-----'~ release (FF) or hold (FO). t-----~

Figure 200. PASSl Obiect Module Processor (LP1) Flow Chart

76

EXPRIN -

Purpose:

Input:

Output:

Comment:

Flow:

Expression Decodi ng Routi ne (i n PS 1)

To decode a ROM expression which defines a DEF or forward

reference and place a corresponding expression in the expression

stack.

(R7) = pointer to REF/DEF entry which is to become
the destination of this expression.

(D2) = Declaration Stack Base

(D3) = Tree Table Pointer

(SR4) = return address

(SR2) -I 0 if expression is to be skipped.

A new entry in the expressi on stack consi sti ng of decoded

expression.

The destination is from R7, and resolution = O.

Expressions are decoded if they follow a Define DEF, Define

Forward Reference or Define Forward Reference and Hold.

Hence, this routine is entered for the purpose of decoding only

from those three points in LP1. All other expressions are skipped

in PASS 1. The expression skip mode is determined by SR2

(SR2/ 0 means skip.)

A skeletal entry is appended to the expression stack with resolution

set to 0 and destination set with R7.

77

03030000
Top of expressi on stack.

(R7)
00000000

An expression control byte is gotten {CBi} and inserted into its

slot and the appropriate decoding routine is entered.

The decoding routine gets the itt1m (constant, forward

reference number, declaration entry, etc) which is to be

stored in WORD i and branches to PTWRD which pu.ts it in the

new expression entry. If a forward reference is mentioned in the

expression {add FREF} and this forward reference is new, it is

added to the REF /DEF stack.

When the expression end control byte (02) is encountered, EXPREND 1

updates the expression stack pointer, adds the size of the entry

to the TREE and exi ts.

4.2.3 load Module Processor {ADlDMD - PASS ONE}

A load module may be encountered as a result of either an EF specification or satisfying

a PREF from a library. In either case, ADlDMD has at its disposal a header, a TREE, a

REF /DEF stack, an expressi on stack, and the core i mage and re locati on dictionary for

one (and only one) protection type.

Usi n9 the space just above the REF /DEF stack, PASS 1 reads the TREE record to determi ne

78

the REF /DEF stack size. The expression stack is read in just below the current

expression stack and inverted, since the stack is being bui It upside down. All the

expressions must be marked as unevaluated {bit 8=0} so that PASS2 logic can recognize

the expression as such.

All core expressions in the load module {e. g., an expression that defines the address

of an instruction in terms of an unsatisfied reference} have their destinations changed

to be relative to the base of the load module. These will later{in EVL} have the control

section base added to yield the correct destination word.

The REF /DEF stack is read in below the expression stack. An additional control section

is added at the start which reflects the size of the entire load mcrlule {potentially

many control sections} {See Sec. 3. 2 3} The other control sections wi JI be type 6 instead

of type 4 and wi II hence be ignored by PASS2. The special control section also contains

as the third word {normally, resolution} the relative position {within the expression

stack being bui It} and size of the load module's expression stack so that the core

expressions can be located and evaluated.

Each entry in the load module's REF/DEF stack is merged into the large REF/DEF stack.

Control sections a re added, and all named entries {PREFs, SREFs, and DEFs} are

passed through CHKRFDF and are either added or not added according to whether the

name had previously been encountered.

Forward REFs are flagged as "used" so that they will be ignored. Dummy sections are

flagged as "defined". Space wi II be allocated for the entire module; reallocation of any

79

individual dummy section within the module is undesirable.

If the Loader generated the load module (as distinct from PASS2 of SYSGEN which

also generates load modules), each entry in the REF/OEF stack has, as its value, the

header of a chain (through the expression stack) of all words that pointed to that

REF/DEF entry. The values are relative positions within the expression stack.

These values are replaced by the actual location of the REF/OEF entry. If PASS2

of SYSGEN generated the load module (indicated by the header, 81 being SYSGEN's

PASS2 and 82 being the Loader), then each expression must be decoded control byte

by control byte to find out which words are pointers to the REF/OEF stack. These are

changed as above.

Figure 20b.

Mark Expressions
Unevoluated.

Adjust destination WDS
of core expressions.

Add special control
section to front of
Imn RF OF stock.

AORFOF

Mave entry to top of major
RF OF stock. Mark forward
REFs used. If a OEF from
library, set Bit 31,WDO.

yes na

PASSl load Module Processor (ADlDMD) Flow Chart

81

4. 2.4 The Librarian (SATRE F)

a. Load Module Libraries

The satisfy-reference logic works as follows: after each segment's element files

have been read and its REF/DEF stack built, SATREF is called to satisfy the segment's

PREF' S by searching the specified libraries. Thus we attempt to satisfy all the PREF' S

we can in a lower segment before starting to build the REF/DEF stack for a higher

segment.

The purpose of this approach is to handle the situation where a high segment contains

a PREF which is also contained in a lower segment and the corresponding DEF is in a

library. It is certainly desirable to have the library routine containing the DEF in the

lower segment (otherwise the high segment and all of its backward path would have to

be in core every time the lower segment needs this DEF). Note that this method

produces the following result: if a low segment has a PREF whose corresponding DEF

is located in both a higher segment and one of the specified libraries, the library DEF

wi II be used.

SATREF initiates the library search by checking the LOCCT for UNSATaccount numbers.

The first dictionary (:DIC) is opened and the segment's REF /DEF stack is searched for

the lowest (alphanumerically) PREF. This name is used as the key for reading the

dictionary. If the response is "no such key, II the alphanumeric search continues through

the stack for the next lowest PREF. If the read is successful, the record read contains

the name of the load module with the DEF corresponding to the PREF key, and the

load module is merged with the other input files in the manner described below.

82

In either case, the search continues unti I all of the segment's PREFs have been checked

against this dictionary. Then the first dictionary is closed and the next dictionary is

opened.

Each time a library load module is to be merged with other input files, room is made

for inserting an entry in tro ROM table at the end of the entries for the given segment.

The last ROM bit is set on the previous entry, and reset on this entry. It is also flagged

as coming from a library to save unnecessary opens and closes later. (See Figure 8.)

All other tables are moved up eight words in memory to make room for the insertion

(the extra word maintains even-word boundaries on the REF /DEF stacks). Pointers from

the TREE to higher parts of the ROM Table are adjusted up by eight words.

The name is transferred to the ROM Table and to the open element file PLIST. If not

already open, : LIB is opened. The header is read into BUF with the key LMN concat

enated with HEAD. Control goes to CHECKROM which verifies the header and calls

the load module processor ADLDMD to form the appropriate stack entries. The routine

then returns for the next PREF.

When there are no more PREFs and no more accounts, control returns to the main loop

of PASS 1.

b. Core Libraries (UTS only)

The association of core library is triggered by one of two conditions:

a. A PREF to 9INITIAL (FORTRAN) or 9DBINIT (FORTRAN DEBUG)

b. The presence of a :Pn in the UNSAT list on the! LOAD card.

In ENNAM, a record is kept in word CORELIB if 9INITIAL or 9DBINIT is encountered

83

as a PREF.

In the SATREF loop, CORELIB is checked as is the UNSAT list (fora :Pn).

If either condition dictates a core library, the :Pn HEAD is read to determine the

core I ibrary's context size. This is retained in COREUB for future use by ALLOCATE

in PASS2, which must bump the DATA location counter (DLOC) accordingly. Control

is transferred to ADLDMD (via CHECKROM) in order to merge the DEFs of :Pn in

wi th the REF /DEF stack.

The association of core library is inhibited if (PERM, UB) is specified or if the load

module name begins with the characters :P. This is done by setting COREUB to -1

in IN 1.

Process ROMs or LMs
from named files and/
or from BI or GO.

no

REFs to
9DBINIT or>

9~?

Is :SYS the
no only entry?/

yes

REFs to

ex
<Has any :Pn >-__ ----,

been loaded? yes

Get the requested :Pn
(from :SYS) and asso
ciate it wi th the load
module being built.

If NOSYSLIB is presented the
ILOAD card, the UNSAT list is
empty or consists of those sources
(accounts and/or :Pn) mentioned
under the UNSAT option.

If NOSYSLIB is not present, the
UNSAT list consists of the above
plus the :SYS account (which
occurs last).

< 9DBINIT or >----....,
9INITIAL? no

Figure 21. Core Library Association Flow Chart

85

5. 0 PREPARING TO FORM THE CORE IMAGE

5. 1 IN2

INIT2 contains the logic which partitions memory for PASS2 usage. It also determines

the size of each protection type area for the final load module. First, the size of the

TCB and library error tables is accounted for, the necessary information being in the

LOCCT. The DCB I'bme Table size is calculated from FCOUNT which was computed

at the end of PASS 1 (two is added for the top and bottom of the table).

Then each path of the TREE is followed, and the sums of 00, 01, and 10 segment sizes

are accumulated in D1, D2, and D3. When a segment has no sublink, these sums are

compared with SR1, SR2, and SR3, respectively to determine the maximum path for

each protection type. Also, the large protection type for a single overlay segment is retained

in MAXOO, 01 and 10. This is done in order to allow for CSEG buffers of the maximum

size.

ALLMEM is called once to allocate buffers for the core image and relocation dictionary

(unless absolute) of the root segment, and again with the values MAXOO, 01 and 10 for

current segment loading. The double buffering permits dummy sections in the root and

higher segments all to store into the section in the root. The byte addresses of these

buffers are in RSEGOO through CREL10. The buffers are allocated from the top of memory

(TOPOMEM), down.

The load module's location counters are held in DLOC, PLOC, and SLOC (00, 01

and 10 respectively). They initially represent the beginning of each of the three TREES.

The bias or background lower limit is used as the beginning value of DLOC, and the

86

INIT2

CALCSIZE

Save TCB size for
future use.

CALCSIZE2

Add DCB name table
size to 01 (BPM) or
10 (UTS).

FINDLGTPATH

Find beg inning of each
protection type.

ALLMEM

Allocate core buffers
and relocation
dictionaries.

CALCSIZ4

yes

Initialize DLOC, PLOC,
SLOC. Save 00, 01 and 10
area sizes for ALLOCATE

Allocate stacks.

Is there enough room

<for the stacks and 1-2 >~'---____,
pages for extended no 1
memory buffers. ,

C __ Ab_ort _)

Set extended memory mode
bit in LOCCT. Find max
imum buffer sizes and re
compute RSEGOO .
CRELOO.

Figure 22. INIT2 Flow Chart

87 90 18 038-1 (8/72)

PLOC and SLOC are computed. These values plus the total sizes of the 00, 01, and 10

areas, respectfully, are saved in BUF-BUF+5 for generation of the allocation summary

by ALLOCATE.

We now have to allow space for the maximum stock paths.

In PASS1, the maximum REF/DEF and expression stack size was saved. It is known that

the REF /DEF stack wi II not grow and al so that the dec laration stack is sti II at its

maximum size. The expression stack is allocated immediately above the REF/DEF stack,

and the top of it is compared to the bottom of the buffers. If there is enough room,

PASS2 begins with memory partitioned as shown in Figure 8; otherwise we determine whether

extended memory mode can be entered. If so, the maximums of

are computed and

the buffer poi nters for the current segment and the root are set equa I. Hence for the

concatenation phase of id there will be six (or three) buffers to work with. See

Figure 9B.

5. 2 PS2 - THE DRIVER FOR THE SECOND PASS

PS2 is real I yo driver for the second pass. It calls ALL, EVL, and WRT as it proceeds

along the segments. Figure 5 illustrates the overall sequence for this pass.

5.3 ALL - MEMORY ALLOCATION

Refer to Figure 1 for memory layout of the load module being formed. DLOC, PLOC,

and SLOe -- the three location counters for 00, 01, and 1 ° -- have been establ ished

90 18 03B-l (8/72) 88

at their beginning values by INIT2. If the segment being allocated is the root segment,

we save a pointer to the TREE and increment the PLOC location counter by the TREE size.

We save a pointer to the DCB Table and ire rement PLOC (or SLOC if UTS) by the

DCB Table size. If REF or BREF was specified, we increment PLOC by the number

specified by the user, or supply the default.

PLOC now has the location of the first control or dummy section. Control goes to

LOADFO and LOADM to allocate the F: and M: DeBs (Still only for the root segment).

For UTS, if rounding has occurred to prevent DeBs from overlapping page boundaries and

the adjustment did not fit in the RSEG10 buffer, it must be taken into account at this time

by readjusting the Loader's buffers for protection type 10 (refer to Figure 8). The additional

size is accounted for in the root's tree and, if the load module is relocatable, in the

root's relocation dictionary. Buffers are moved down for the root's and current segment's

core image buffers and for their corresponding relocation dictionary buffers if the load

module is relocatable. If in nonextended memory mode the buffer shifts result in a

collision with the expression stack, the Loader will abort at this point.

Next all 01 protection type sections are allocated by putting PLOC into the value word,

setting the resolution, and adding the size to PLOC. Then we go to work on the 00

protection area, first accounti ng for Blank COMMO N*, then establ ishi ng the TeB pointer,

and then appropri :Jtel y i ncrementi ng DLOC (root segment onl y). All 00 protection

type control and dummy sections are then allocated.

protection type sections are allocated.

89

Finally, using SLOC, all 10

90 18 03B-1 (8/72)

A final run is made through the REF/DEF stack to put values in the control sections

read from the library. Since these are all type 6 entries, they were not allocated;

therefore, the value of the last type 4 entry is put in the first type 6 entry encountered;

that section size is added and put in the next type 6 entry, and so on unti I a new type

4 entry is encountered.

If the segment just allocated is the root, the allocation summary is output, including a

possible adiustment in the 10 size for UTS as a result of rounding DeBs to prevent

overlap on a page boundary.

*If UTS, we first account for the core librory·s context area.

89-1 90 18 03B-1 (8/72)

UTS

BPM

~

BPM

~
----,

library
load yes

<modUle? UTS_ ~
no l

I

I BPM

I
I

I
I
I
I
I
I

~

Root?

I UTS

6

Figure 23. ALLOCATE Flow Chart

90 18 03B-1 (8/72) 90

I

6.0 FORMING THE CORE IMAGE (EVL)

EVL is entered from PS2 once for each segment, beginning with the sublinks, to the

overlay links, and back down toward the root (see Figure 4). It has two entry poi nts,

EVEXPRS and LOADSEG. PS2 first calls EVEXPRS to evaluate all expressions for this

segment which were formed during the first pass. It then calls LOADSEG to actually

form the core image and relocation dictionary by reprocessing the object language

of a ROM or reading in and relocating the core image of a load module.

6.1 EVEXPRS

Since all control and dummy sections for a given segment have been allocated at this

point, we are in a position to evaluate the expressions which are typically in terms of

these values plus constants. Because some expressions will be in terms of other DEFs,

every expression in the stack must be evaluated repeatedly unti lone complete pass

has been made during which no expressions were evaluated. Evaluating an expression

consists of decoding the expression 's control bytes. (Note that we are "decoding" those

expressions which are already in the expression stack from the first pass. Since we are not

forming the stack entry, EVEXPRS is a much simpler version of expression evaluat.ion

than the EXPRIN routines found in PASSl and LOADSEG.)

If t~e byte is either an add or subtract declaration or a forward reference, the corresponding

entry in the REF/DEF stack is picked up if it is defined. If it is not defined, the expression

cannot yet be eva I uated. The other contro I bytes add constants or affect the resol uti on.

When the expression is successfully defined, the value and resolution are put into the

REF !DEF entry poi nted to by the destination word of the expression. Core expressi ons

91

(which come from load module expression stacks in PASS1) are ignored at this point.

(This routine may also be entered (later) from ADLDMD for the purpose of evaluating

core expressions which come from load modules.)

6.2 LOADSEG

6.2. 1

LOADSEG can re viewed as consisting of three major parts: the main loop, the object

module processor (LP1) and the load module processor (ADLDMD). (Notice the similarity _

between LOADSE G and PASS 1.)

The Main Loop

The main loop begins by initializing the relocation dictionary buffers if XMEM is inot

in effect. The buffer is filled with E's or O's for the current or root segment, respectively.

The segment name is printed at top-of-form if a map was requested and a !TREE card was

present. LOADSEG now begins to reprocess the input files by running through this

segment's ROM table. Control is directed to LP1 if the module is a ROM or to ADlDMD

if it is a load module.

Both LPl and ADLDMD are concerned with developing the core image. The logic of

extended memory mode (XMEM) will come into play for every word of the core image

and every relocation digit which is constructed. When information is about to be stored

into a buffer (core or relocation) and extended memory mode is in effect, a three-byte

key is created consisting of the segment number and a page number. (For a standard

load module, this number corresponds to the page address of the buffer this record will

go into during the concatenation process. For the paged load module, this number cor

responds to the page containing this record at execution time.) The key is compared to

the key of the page currently in memory. (RecaJ I that there are only one or two buffer

92

pages at TOPOMEM.) If the keys are not the same, the page in memory is written out

and the new key is used to read in the desired page.

o 8 16 24 31

00 I SEG I PAGE I

SEG = Displacement within TREE Table of this segment's entry

PAGE = Page number of the concatenation buffer.

Figure 24. Format of the Keys of idX (Extended Memory File
for Standard Load Module)

6. 2. 2 Object Module Processor {LP1-PASS TWO}

An object module is processed through straightforward decoding of the load items.

The main loop of LPl is at LDRl which contains a jump table to the individual routines.

A control byte of Module End terminates LPl and control returns to the main loop of

LOADSEG {at NEXTROM}. The load items fall into two categories: those which

were handled in pass One {declarations and definitions} and those which were ignored

in Pass One {start address, origins and iten s which result in words or bytes in core}.

Of the first category, LPl handles declarations and de finitions as follows: A declaration

stack is formed again so that expressions can be related to their REF/DEF components.

Name declarations are handled by looking up the name in the REF/DEF stack, forming

a pointer to it and entering the pointer in the declaration stack.

93

Current SEG's Buffers
Dynamic
Core

{S3} ~ Root Buffers

OECL Stock

L R T
0 o R c
c M E
T E

Loader

t
ing of Beginn

availab Ie space

\

Executable Location Layout

Tree Tables BLL

SO

5

REF/DEF
S k toc

EXPR
St k ac

, . ,~,
1 I I I

SISI S SiS I S
011 13 01 11 3

I I I I

CRELOO

Locations
CREL01

determined CREL10

by INIT2

DLOC

\ .
"

REC
D1CTS
~,.--

Cad ..

00 01

" REC
e D1CTS

"
.

'I

10
00 00 01 10 {Static. 00 01 10 {Data} (Proced.)

Data}
{Data}

aEGoom RRE~~lJ RRELOI

RREL10
RSEGoo

CSEG01 RSEG01

CSEG10 RSEGI0

PLOC SLOC
I Area 2 t - -- - - --1 r- -_A~!. --1

Protection Type = > Protection Type = > Read Only
'I'---'I'--...... - ... T'----"'---""' ... -----'~r-_.--"~ · -,,---

ROOT I ROOT I
7 ~--------~----I----~ I

9
I

Sl

5

7

9

S3

5

7

9

Conditions: 1. BPM.
2. Nonextended Memory Mode.
3. CSEG = S3 (see Figure 2).

Figure 25. Snapshot of Core Usage During EVL

94 .

Cad e .
01

(Proced.)

,
10

{Static.
Data}

t
TOPOMEM

Control sections are handled by looking through the REF/DEF stack for the first TYPE 4

entry. The type is then changed to a 6 to prevent its being used again, the pointer is

formed and entered into the declaration stack. Expressions which define DEFs and for

ward references are sk i pped. Defi ne forward marks the FREF entry in the REF /DEF stack

with an FO and FF (depending on Define Forward Reference or Define Forward Reference

and Hold, respectively). Forwards with FO are marked with FF at module end to prevent

their being used again.

We now consider load items of the second category, and these are, of course, the heart

of L P1.

Define Start is handled by evaluating the expression (EXPRIN), shifting the obtained

value to word resolution and storing it in START (for later placement in the HEAD record).

LPl switches from one control or dummy section to another by an origin. The ORIGIN

control byte (from the ROM) is the only means by which the loader determines where

data is to be placed within a cortrol section. (Note: It is the responsibility of the ROM to

present at least one ORI GIN cortro I byte for every control or rummy section.) The expressi on

defining the origin is evaluated (it must be evaluatable and have resolution) and the value

obtained is shifted to byte resolution. The value is then compared with the bounds of three

protection types of the current segment and of the root segment. It must be within one of

those segments. Once the appropriate segment and type are discovered, the base of that

section is subtracted and the base of the corresponding buffer is added, yielding the

appropriate byte address at which to place the next load item. This value is put into the

location counter, LOC. The segment base and buffer base are remembered in BIAS and

FBIAS, respectfully, for possible use by XMEM.

95

Basically, LPl is concerned with load items that result in words or bytes in core {that is,

from a Loader perspective, they result in words being placed in the segment buffers

or the XMEM file}. These items are Load Absolute, Field, Load Long Relocatable, and

Load Short Relocatable {see Sigma Object Language}. These items are either

absolute or contain expressions involving the base of a control section, a forward reference

or some combination of externals. The expression evaluator, EXPRIN, is used to decode

and evaluate the expressions. Unless the load module has unsatisfied references, values

are obtained and the load item is placed in the core image buffer. The relocation digit

is calculated and placed in the relocation buffer.

If there is an unsatisfied reference where an instruction references external data, the

abs:>lute part of the instruction is put in the core image and a "core expression" is

added to the expression stack.

Core expressions left in the expression stack in this manner are, in general, meaningful

when the load module being formed is to become part of the library. In this case, the

core expression would be evaluatable when the load module is combined with other

ROMs since the PREFs would presumably have been satisfied. ADLDMD {which would be

handling the module} would do the evaluating and would insert the value into the field

part of the abs:>lute instruction in the core image.

a. Load Absol ute

The simplest item is Load Absolute. This load item contains a byte count followed

by the number of bytes that are to be placed sequentially into the core image,

96

beginning at the current value of the location counter. The relocation digit for

these absolute load items is X'E'.

b. Field

The field allows an expression to be evaluated end added to any width and any

position in a word or words. Since this logic handles all relocatable items, it

includes the development of the relocation digit.

Before the expression is read, the relocation digit is initialized. If the field

terminates at the end of a word, the relocation digit will be 0, 1, 2, or 3,

according to whether resolution is byte, halfword, word, or doubleword. If the

field does not terminate at the end of a word, left-half doubleword resolution

or both-halves doubleword resolution is checked for. If none of these criteria are

met, then the item is absolute.

Next a core expression destination word is constructed (See Section 3. 2.4).

The expression is evaluated (EXPRIN) and, if it is not absolute, the relocation

digit is calculated. If it is not evaluatable, FIELD exits. (At this point, a

core expression has been added to the expression stack; a stack overflow may

have been encountered if there was no room for the expression.)

For expressions that have resolution, the relocation digit is the resolution control

(0 for byte, 1 for halfword, etc.), if the field is right-adjusted. Resolution

control is the output from WHATRES in R2. In the case of doubleword resolutions

in halfwords, the resolution digit already present is checked for the case where both

97

halves must be relocated.

Next, the destination word is used to add the value of the expression to the

appropriate field in the core image. Remember that this field may extend

backward across as many as 8 words.

Finally, if reference loading has been specified (REF or BREF), the CAL and

PLIST must be constructed. During the expression evaluation, the highest

segment above the current segment referenced in the expression was remembered

in RFLDSG (0 means that no REF - loading is required). A pointer to the next

avai lable location for bui Iding the PLIST is kept in the last word of the root

segment of the TREE Table. The PLIST is constructed in SR1 through SR4 with

the call formed in SR3, and exchanged with the word in memory requiring REF

loading. The PLIST is put away in the area saved in the 01 root segment and

the field logic finally exits.

c. Load Long/Short Relocatable

Both of these load items contain a four-byte word and a declaration or FREF number

to be added to the word ot a given resolution. (Short form assumes word resolution

and a six-bit declaration number.) Fo r these forms, a byte string that looks like

a ROM field expression is created in BUF2. (See Define Field in Object Language,

BPM Reference Manual.) It has the form:

98

BUF 2 K l expression

~ ... ~(A

0 7 15 23 31 15

I I FF II width I add I number I 02

where:

FF determines the location of the field.
Rightmost bit is location minus 1 bit.

width is 19 bits less specified res:>lution: 0 bit for byte; 1 bit for
halfword; 2 bits for word; 3 bits for doubleword.

add is 20 bits for add declaration, 24 bits for add constant at
the appropriate resolution.

number is the two-byte forward reference or the two-byte
de claration number if there are over 100

16
declarations;

or the one-byte dec laration number followed by an 00
(padding) if there are fewer than 101

16
declarations.

02 is expressi on end.

23 '\

I

The four absol ute bytes are then placed in memory at the location poi nted to

by the location counter that is incremented to the next word. (The location

counter must begin at a word boundary or we have an ILLEGAL BOUND.)

Certain pointers are then switched so that the field logic will get the expression

from BUF2 rather than from the standard input buffer (BUF) and the FIE LD logic is

called.

Figure 26 illustrates the general flow of LPl. Two important subroutines of LP1

are EXPRIN and FIELD, illustrated in Figures 27a, 27b, and 27c.

99

LPl Routines

DDNAM

DPNAM

DSNAM

ORG (Origin)

DFREFH I or

DFREF

DDSECT

Deso, DCS

DSTART

MODEND

FIELD

LABS

LSREL\

LLREL

(Declare DEF name) - Locate the name (LOCRFDF) and declare
it (ENDECL).

(Dec lare REF name) - Locate the name (LOCRF DF) and dec lare
it (ENDECL).

(Declare SREF name) - Locate the name (LOCRFDF) and declare
it (ENDECL).

Evaluate the expression which follows (EXPRIN). Shift to byte
resolution and store value in RLOC. Determine which segment and
protection type the ORG val ue is in, then compute the Loader's
location counter, LOC (=ORG value - SEG base + buffer address.)

Define forward - Locate entry in stack and mark it with FO and FF.
Skip defi.1ing expression.

Declaration # is fetched and DSECT declared.

Locate next control section in stack. Change type from 4 to 6 and
declare.

Evaluate the expression which follows EXPRIN. Shift value to word
resolution and save in START.

Update severity level, release all forward REF numbers, exit LPl.

Form the destination word stack. Evaluate the expression which
follows (EXPRIN). If a value is obtained, calculate reloc. digit,
store in buffer and store va I ue in buffer. If no va I ue, I eave

expression stack and exit.

Fetch bytes and place in buffer.

Create a field type expression BUF2. Store the four-byte item in
buffer.
Call FIELD to evaluate the expression and store in buff(~rs.

100

Is it declare DEF, delcare REF,
<declare SREF, delcare DEF,

define forward, define control
section, define dummy section?

load short
< or long

relocatable?
yes

>-__ ~ Miscellaneous simple func-t-_________ -,
tions (see description). yes

Translate value into a
buffer location counter
(lOC).

Save value for later
placement in HEAD
record.

Get the bytes and store
in loading buffer.

Place the 4-byte item
which follows in the
loading buffer.

Create a field-type
expression in BUF2.

FIElDFB Set control byte pointer
to BUF2.

Roeset control byte
pointers to their
normal position (BUF).

Figure 26. PASS2 OJiect Module Processor Flow Chart

101

Form core destination
word for the expression
which is about to be
evaluated.

Absolute
.-------::--<.Ioad module?>

<Absolute
load module. yes

Adjust value per desired
resolution and set into
proper core buffer.

no

Can the item
..-----~n..,..o<stored induce)

an overlay?

FIELDEX
Did we enter

<from load >>-n=-o::--------.
relocatable?

yes
FIELDFBI

Reset the control
byte pointers.

(LDRI)

Figure 270. Field and Expression Logic Flow Chart

102

EXPRIN

Initialize a new expres
sion at top of expression
stack.

Add declar-< ation or add ~-----'
forward? yes

yes

yes

<Does the expres
sion have a value
(SRx

r------< Is this a core>
no expression?

Adjust destination to be
relative to module base.

Retain expression in
stack. (Modify stack
pointer and augment
size in tree.)

Register Output: SR1 = value (SR1 is expression
accumulator).

GETVAL

Get value (if any), add
to expression accumula
tor (see Figure 27c).

Add it to expression
accumulator.

Determine current
resolution and shift to
desired one.

Pick up resolution
-- SR2.

SR2 = resolution.

SR3 {I 0 if no value obtained.
= 0 if value obtained.

PTWRD

Save constant or
declaration in WORD.
of new expression. I

Figure 27b. EXPRIN Flow Chart

103

no

Save the highest segment
involved in RFLDSG.

no

GETVAL4

Pick up value.

GETVAL3

Shift value to resolu
tion desired and change
accordi ngly in ex
pression stack.

GETVAL2

PTWRD

Figure 27c. GETVAL Flow Chart

104

SR3iO. The
expression cannot
be eva I uated.

PTWRD

6.2 .. 3 Load Module Processor (ADLDMD - PASS TWO)

When a load module is encountered, ADLDMD is called. The special control section

inserted in PASS 1 in the REF/DEF stack containing the address and size of the module

is located. The buffer address for the core image in the appropriate Loader buffer is

ca leu lated (i n extended memory mode, the i'Tlage is read in above the expressi on stack).

Next, the relocation dictionary is read into its buffer if the mode is not ASS or extended

memory. In ASS mode, the relocation dictionary is read in above the expression stack.

In the extended memory (XMEM) mooe, it is read in above the core image which is then

relocated by interpreting each relocation digit and adding the appropriate bias to the

corresponding word. Next, if we are in XMEM mode, each word of the relocated

image is stored through the XMEM logic and the same is done for the relocation dictionary

if the module is not ASS.

Since we know the relative beginning and size of the module's expression stack from the

special control section, we can now evaluate the core expressions in the module's stack

and resolve any words whose addresses were in terms of PREFs that are now satisfied by

other mooules. The evaluation is performed in the EVEXPRS section of EVL. The

relocation digit for each word must also be corrected. The value and relocation digit

for the core expression is then stored (through XMEM logic, if necessary).

105

ADLDMD

Find dummy control section
for this module.

Calculate relocation bias
MBJAS=CSEC value-module
bias (in HEAD).

Calculate address within
buffer for the module's core
image MODBAS=Buffer
+(CSEC value-segment base).

If XMEM, address is
changed to above expres
sion stack (if there is room).

Read core image.

no

Read relocation dictionary
above core image.

Read relocation dictionary
into its buffer.

no

RELOCATE
Relocate the
core image per

MBIAS.

XMEM

Move eac h word of core
image and relocation dic
tionary into XMEM buffers.

ADXM3X

Get the bounds of the
module's expression stack.

Begin core expression scan

COREXP.

page 107

Figure 28. PASS2 Load Module Processor Flow Chart

106

COREXPO

Get next one.

from page 106

COREXP

<Is this a core ~ ________ ----,
expression? no

Evaluate it through the
EVEXPRS logic.

<Is the load
module ABS? yes

Adiust relocation dig it
and store in reI. dic.
(XMEM if necessary).

STOREFLDN
Store val ue in
core buffer (XMEM
if necessary).

yes

COREXP2

Figure 28: PASS2 Load Module Processor Flow Chart (cont.)

107

7.0 WRITING THE LOAD MODULE (WRT)

WRT is entered at WRITESEG from PS2. If this is a library load module, it updates the

library dictionary (WRITELIB), makes a copy of the REF/DEF stack for mapping purposes

(LIBCPY), and eliminates forward references from the just copied stack (SQZ). The

segment's stacks are written (WSEGL) as are the segment's core images and relocation

dictionaries (WSEG 1).

WRT performs severa I addi tiona I tasks after the root has been constructed. If extended

memory mode is in effect and a standard load module is to be constructed, the pages of

all of the segments are put together and written out (XMEM). If a paged load module

is to be constructed, the first record of each overlay segment's 00, 01, and 10 areas are

shortened and the first few records of the root are read into core to insert the appropriate

tables (SUPMEM). In any case, once the root has been processed, the DCB Name Table

is built (SAVEROOT) as well as the DCBs and TCB(FIXROOT). The HEAD and TREE

records are constructed and written to the load module file.

See Figure 29 for an overa II view of the flow of WRT •

108

Library

load module

WSEGL

Write
and EXPR stacks

BPM
NO

d
'~

Paged '.

load module
',- '!

CSE(;

root ';

lI}=-S _____ l

I ,

F1XI{OOT

Library

load module

NO

Sui ld DCBs

and TCB.

YES

NO

YES

WRITELIS

Update and write

1 ibrary

dictionary.

YES

EXIT)

WSEGl

Write
images and

relocation
dictionaries.

Write out

XMBOF

Pos ition to be
ginning of file
and beg in read
ing sequent ially
(put together
one segment).

XMEMl

Read a page into
the buffer it
would have gone
into if non
extended memory.

Do "e have all

~ this segment (com-<the pages for

NO

pare newkey with
one previuusly
read)?

CSEG = //~ root ?

/

/

""
CSEG Library NO

load ~OdUl/ ------..-(

". ~
/~ root

I YES YES
UTS

LIBCPY
,------

I BPM
I

FIXROOT

EXIT

)

YES

Insert tables
in root via
FIXROOT.

Shorten firs t

records of
overlay to start
at execution

bias.

)

Move copy

of REF/DEF
stack above
EXPR stack.

Extended '. YES
memory mode '>--=-==-----------,

WSEGI __)

UTS

TREE3

lJrite out TREE.

Concatenate key
if library.

HEAD 1
Build and write
HEAD. Concate

nate key if
library.

BPM

Figure 29. WRITESEG - Overall Flow

109

YES

YES

Root

just put
together

NO

LIBCPY:

SQZ:

The MAP routine in FIN must have an unchained, expendable copy of the

library load module1s REF/DEF stack. For this reason UBCPY makes a

copy of the REF/DEF stack above the expression stack before the SQZ

routine is entered. In order to provide as much room as possible for this

copy, the library load module1s core image and relocation dictionary

records are written out immediately prior to entering UBCPY.

After UBCPY has moved the REF/DEF stack above the expression stack,

memory layout is as follows:

LOCCT I DECL LOADER ROM
Stack

I TREE !

Original
Expr.

REF/DEF
Stack

Stack

I Copy of
REF/DEF
Stack

TOPOMEM

""

A TREE pointer is adjusted so that the new copy of the REF/DEF stack is

squeezed, chained, and written out by WRITESEG, and the original REF/

DEF stack is used by the MAP routine (which needs the area above the

REF/DEF stack for sorting names). The start of the original REF/DEF stack

is remembered in MBIAS.

Entry is made to UBCPY from the WSEG 1 routine. After call in9 SQZ,

UBCPY ex its to WSEGL, whereupon the proper stacks are written out.

This routine streamlines a library load module1s REF/DEF stack in order to

expedite subsequent adding of a library to a user1s load module. Two

functions are performed:

a. at RFDFLOOP - all evaluated forward reference entries in the REF/DEF

stack with bit 10, word 0 reset are removed from the stack. All

110

eva luated expressions are removed wh ich involve that entry. If

bit 10 is set, the FREF entry is retained (so that an unevaluated

DFREFH expression in the library load module involving this FREF

(add FREF) can be evaluated when it is merged into another program).

b. At SQZDN - chaining is installed. The VALUE word of every REF/

DEF entry becomes the head of a chain withi!1 the expression stack

which replaces pointers to the REF/DEF entry; the tai I of the

chain =0. That is, the VALUE word of each REF/DEF entry is re

placed by a pointer to the word in the expression stack that formerly

pointed to that REF /DEF entry. (The pointer is a displacement

relative to the base of the expression stack.) Th is expression stack

word is replaced by a pointer to the next user of the REF/DEF entry.

This process continues until a zero terminates the chain.

For example, consider a DEF entry which has a displacement of X'B'

111

WRITELIS:

Word

words into the root's REF/DEF stack. Then any expression involving

the DEF refers to it by means of a pointer of the form X'S'. Assume

there are three such pointers in the root's expression stack: PT1,

PT2, and PT3, with displacements X'F', X'lA', and X'22', respectively,

relative to the base of the expression stack. Then the chaining process

with respect to this DEF entry is outlined as follows:

Displacement
Contents Before

Chaining
Contents After

Chaining

Value of
DEF entry

XIS' (Into R/D stk) Constant or Addr X'F'

PT 1

PT 2

PT 3

X'F' (into expr. stk) XIS' X'lA'

X'lA' (into expr. stk) XIS' X122'

X '22' (into expr. stk) XIS' o

The benefit is that the expressions do not have to be relocated (with

respect to the new REF /DEF stack) each ti me the library I'Xld module

is added to another.

Writes the dictionary for the library. This entails three cases.

The three cases are distinguished via abnormal or nomal returns. In

any case, a ROM of the same name as the LMN is deleted to insure

proper handling.

Case 1 - The library (:LIS and :DIC) do not exist. Here we create them
by opening in the OUT mode.

Case 2- The library exists but this new load module is not within it.

112

Case 3 - The library exists and this new load module is to replace

one with the same name which already exists within it.

In general, WRITELIB does the following:

Step 1. Opens the :DIC file; and then it opens the library file

with the load module name synonymous to :LIB. The only

anti c i pated abnormal return wou Id be that the fi Ie : LIB

does not exist (Case 1) and we go to FIRSTLIB. The fj Ie

:LIB is created and the opening is reattempted with the load

module name, and we proceed to Step 3.

Step 2. (RDRFDF) If :LIB alreaq" existed, an attempt is made to read

the REF /DEF stack from: LIB for a module with the same name

as our module. An error return implies that the desired load

module is not within :LIB and we proceed to Step 3. If the

read is successful, a delete CAL is made to the :DIC file,

with each DEF serving as a key to remove the old module's

dictionary entries. (A delete CAL is also made for

each DDEF and DSECT entry in the old REF/DEF stack).

Step 3. (WRITEDEF) Then, we run through our module's REF/DEF

stack. Every DEF, DDEF, and DSECT of our module is

used as a key to write the: DIC fj Ie, the record being the

module name. The dictionary is closed and we exit to

WSEGL of WRITESEG.

113 90 18 038-1 (8/72)

Error
1- !return

I
This m~dule
doesn ' t exi st
within Jhe library

WRITELIB

in rmctionarY doesn ': tl
abnormal; exist. Reopen withl
r;tu-;;-" MODE = OUT

i I
~-"1iii===-----1 ____ J

Set up open PLIST to M:LM
for INOUT mode
File name = LMN

ynonym = :LIB

MN" to avoid confusion if
ROM name = LMN.

Open the M:LM INOUT
filename = LMN
Synonym = :LIB

RDRFDF

Read the REF/DEF Stack for
this module above the

buffers.

Run through the REF/DEF
stack iust read and delete
the corresponding record in

·D

Run through this modul e's
EF/DEF stack, writing the

corresponding record in :DIC.

FIRSTLIB
I. rary oesn"l eXist,... I eopen

WI tl1 mode = OUT, TI e name
= :LIB.

Reopen with mode = INOUT.
Fi In..lWme = LMN, Synonym =

Figure 30. WRITELIB Flow Chart

114

In i ti a II y:

Decl.
Stack

SAVEROOT constructs the DeB I'bme T.Jble and its relocation

dictionary. Entries are put in this table for every DSEeT

with a name beginning with M: or F: in the REF/DEF

stack. The DeB f'.bme Table is initially built above

the REF/DEF stack (beginning at the expression stack).

Because the DeB Nlme Table was the only item requiring

the REF /DEF stack after mappi ng the stack can now be

destroyed and we move the DeB f'bme Table dow n to the

declaration stack (at TAMOV). This is done to make as

much room as possible for the recons1ruction of XMEM

files, if necessary. (If there is no room to build the

table, i. e., we would collide with the buffers, loading

is aborted).

or

EXPRBAS X MEM BUFFERS

/
I REF /DEF

Stack
Build DeBl'bmei'lble and I eSEG
its relocation dictionary Buffers

Root Ii,
Buffersl:

after T AMOV : DEeLBAS TOPOMEM

DeB I\.bme T'lble and
its relocation dictionary

eSEG I Root J'
Buffers Buffer:

Recall that at the end of PASS 1, all PREF DeBs were set to

type B. During the building of the DeB I'bme Table, SAVE-

115

90 18 03B-1 (8/72)

FIXROOT:

XMEM:
(BPM only)

ROOT flags the location word (bit 8) of

each table entry which resulted from a type B REF/DEF

entry, as a signal for DeB building in FIXROOT.

Moves the TREE into the 01 buffer.- Then it moves the

DeB NOlle Table and its relocation digits to the buffers

(01 for BPM, 10 for UTS). The TeB and its relocation

dictionary are built in the 00 buffers. The DeB Ntme

bble is scanned for those DeBs which are to be built by

the Loader. If one is to be bui It (we know this from the

hi-order flag bit in the location word of the entry),

FIXROOT buil ts it (in 01 for BPM or 10 for UTS) then

checks whether it has a standard name. If so, default

information is inserted. The proper relocation dictionary

is built. In BPM, if the load module is being

written to private disk pack, the serial number(s}

is inserted in the M:SEGLD DCB.

This routine is entered only if eSEG =root segment and

extended memory mode is in effect, and a standard load

module is being constructed. Its function is to recon-

struct the load module from the XMEM file into the form

necessary for writing it out as a keyed file in load module

format. Th is requ ires that the pages be placed in the

core image and relocation buffers, (see Figure 9b). Re-

116

call that the keys of idXindicate the page number of

the buffers (see Figure 24).

The last core buffer is forced out and, if the module is not

ASS, the last relocation dictionary buffer is forced out.

The file is positioned to its beginning and is read sequentially,

first with 0 byte count to get the next key from which the

buffer address is calculated and again to read the page in.

Th i s process conti nues unti I an end -of-fi lei s encountered

or the segment number in the key changes. If the segment

read is the root segment, FIXROOT is co lied. The segment

is then written out into the normal load module fi Ie. This

process conti nues unti I a II segments are reconstructed.

Notice that the advantage afforded to large load modules

by XMEM during this concatenation process is that the area

of core otherwise dedicated to the stack can now be part of

the 6 buffers.

A final constraint on the size of the load module that can be

concatenated is that the DCB Name Table and its relocation

dictionary (which have been temporarily placed at DECLBAS

and up by SAVEROOT) are co-resident with the largest

segment.

117

SUPMEM: If extended memory mode is in effect and a paged load mocjule is being con

structed, SUPMEM is entered immediately, after the current segment's stacks

are written. If the segment is not the root, return is made to ENDWRT1 where

upon WRITESEG exits. If CSEG is the root, the following functions are performed.

The last core image record (from EVL) is written out and SAVEROOT is called

to build the DCB Name Table. Upon returning from SAVEROOT, the size of

the root's tables are determined and, in the order of protection types, GETRECS

is called to read in the records which are to contain these tables (if the records

a Iready exist).

GETRECS reads in the first such record into the first available page above the

DCB Name Table. The next record is read just above this page, and so on. If

GETRECS tries to read a record which does not exist, it still reserves space for

this record in the next available page. Finally, the buffer pointer corresponding

to the protection type of the records being read in (RSEGOO, RSEG01, or RSEG 10)

is adjusted to point to the beginning of these records as they sit in core.

After these records have been collected, FIXROOT is called to build and insert

the table. The updated records are then written out.

Next the first record of the 00,01, and 10 areas of each overlay segment if it

does not begin on a page boundary (and the root's 00 area, if it is a core

library, has been associated) must be shortened to start at the first word of

code. This is done by reading each record into the page at the top of memory

(as a 512-word record). The size of the record to be output is computed from

90 18 03B-1 (8/72) 118

the execution bias in the segment's TREE. The buffer pointer is moved accordingly

and the truncated record is written out.

118-1 90 18 03B-1 (8/72)

When this process is complete, SUPMEM exits and the HEAD and TREE records

are constructed.

8.0 FINISHING UP (FIN)

The FIN segment comprises the final stage of the Loader. By now the entire load modu Ie

has been written out. All that remains is to output the severity level, perform any mod-

ifications per !MODIFY cards, and generate the load map.

FIN is entered from LDR at FINISH. FINISH computes and outputs the severity level.

At this point the user sees the general allocation summary and the severity level. Next

the MOD routine is called. This routine establishes the environment for both the MODIFY

(Catalog Number 705396) and MAPER routines. If the severity level is less than or equal

to the maximum (suppl ied by the user or CCI in the LOCCT), modifications are performed

per the !MODIFY cards which have been packaged into the idD file by CCI. In any case

MOD calls MAPER to generate the load map.

MOD first checks to see if: 1) a library load module is being formed; 2) extended memory

mode is in effect; or 3) the severity level is greater than the allowable maximum. If any

of these conditions are true, a flag (N01 DD) is set to inhibit modifications. Otherwise

the idD file is opened (if the file doesn't exist, N01 DD is set). The REF/DEF stack for

the first segment is read (except for a library load module, whose stack is already in core).

Now if NO 1 DD f 0, this segment is mapped and the next seg-ment's REF/DEF stack is read.

If NO 1 DD = 0, the core images and relocation dictionaries for th is segment are read, the

idD fi Ie is read, the MODIFY routine is called to perform the modifications, the segment

is rewritten, and the load map is generated by MAPER. This processing continu~s until

there are no segments, whereupon MOD exits to the main FINISH program.

119

At this point, if the severity level is greater than the maximum allowable, the loader

aborts. Otherwise FIN closes M:LM and M:LL (load module and map DCBs) ·with SAVE

and returns normally to the driver in LDR (which exits to CCI or PASS3).

See Figure 31 for a flow of the FIN segment.

MAPER: The MAPER routine works mostly within the framework of the REF/DEF stack

itself in order to generate a segment's load map. The routine does, however,

use the core above the REF/DEF stack for two purposes: 1) to save "displaced"

DEF entries (a DEF whose defining expression is located in another segment) so

they can be included in the map of the segment in which they are defined;

2) to collect sort keys (a pointer to a REF /DEF entry) of all the names of a

particular type (e.g., SREF, DEF, PREF) in order to produce an alphanumerically

sorted name list. The displaced DEF stack is saved throughout the entire load

modu Ie mapping process and is constructed from TOPOMEM down. The sort keys

are destroyed after each name I ist is wri tten (the keys are bu i I t just above the

REF/DEF stack). Any possible collision between these areas results in halting

the addition of more sort keys/displaced DEF entries. See Figure 32 for mem-

ory layout during MAPER.

MAPER first outputs several lines of preliminary information which it obtains

from this segment's TREE (and the LOCCT table, if this is the root segment).

The boundaries and sizes of the protection type areas are computed by the

SEGEVAL routine and translated and output by VALMOVE. Then four maior

routines - PREPROC, PSMALIST, SORTMAP, and MAPUST - are called in

succession to generate the name lists.

120

Update SEVLEV;
if REF/BREF
errors & print
if :/: 0

MOD

O R7
(current seg
ment counter)

idD file

MOD 8

Build tab Ie in
PBUF for
MODIFY routine

Head segment's
core images &
relocation
dictionaries

YES
Set

NOIDD:/:O

Move pointer to
REF/DEF stack

~-----~ from MBIAS to

tree

Set ~t)
L-_____ ---'

NOIDD:/:O

Set

NOIDD:/:O

MODS No More
Mod ify Rec- ~M_O_D_O ___ --.

Read next record
from idD for
this segment

ords For
T~i~~e~~

Figure 31. FINISH Flow Chart

121

Rewrite
this
segment

Update R7
to point to
next segment

More segments

NO

SEVLEV ~

severity level
in LOCCT

CLOSEIT

Close & save

N: LM and M: LL

NOIDD=O

Figure 31. FINISH Flow Chart (cont.)

122

Loader

LOCCT
ROMS
TREE

REF /DEF stack for th is segment

SORT AREA

DISPLACED DEFS

...

Figure 32. Memory Layout During MAPER Routine

123

Backround Lower
Limit

RFDFBAS

TOPOMEM

PREPROC runs through the REF/DEF stack, deleting unnecessary REF/DEF

entries (FREFs and control sections with zero size), clearing the resolution word

of each entry (used for chaining the stack in SORTMAP), flagging ADEFs, and

resolving relocatable values to word resolution with a byte displacement (of the

form X IOBOAAAAA I). In add ition, each displaced DEF entry in th is stack is

moved to the displaced DEF stack and deleted from this stack. After the entire

REF/DEF stack has been scanned, the displaced DEF stack is examined for any

entries belonging to this segment. If any are found, they are appended to this

segment1s REF/DEF stack.

MAPER calls PSMALIST four times - each time to generate a list of a specific

type of REF /DEF entry. In th is way PSMA LIST produces the PREF, SREF, DDEF,

and ADEF I ists (no I ist is generated if the stack is void of that type of entry) •

PSMALIST scans the REF/DEF stack for a given type of entry, building sort keys

for all the entries of this type it finds. Then SSSUBR is called (via SRTEXIT2)

to perform the sort and MAPFIN3 is called to I ist the names.

SORTMAP uses the resolution words to chain (in order of ascending value)

either: 1) all CSECTS, DSECTS, and relocatable DEFs if (MAP, VALUE) was

specified on the LOAD card, or 2) all CSECTs, the first relocatable DEF in

each CSECT, and all DSECTs if (MAP, NAME) was specified. Also, if NAME

was specified, SORTMAP builds the sort keys for the relocatable DEFs in the

sort area and calls SSSUBR to sort them.

MAPLIST directs the generation of the relocatable DEF list. After the correct

heading is printed, the chain through the REF/DEF stack is followed to move each

124

entry to the output buffer. Whenever MAP LIST encounters a control section

as the next I ink, it ca lis NUSECT to write out the current I ine and move the

control section's information to the buffer. If the NAME option was specified,

MAPFIN3 must be called to sort and output the DEF names.

Note: The sort routine implemented is that described in a "A High-Speed

Sorting Procedure", D. L. Shell, Communications of the ACM, Vol. II,

July, 1959.

125

APPENDIX A

LOADER-GENERATED INTERNAL SYMBOL TABLES (UTS ONLY)

PURPOSE:

DEFINITIONS:

USAGE:

COMMENTS:

INPUT:

To output internal symbol table (1ST) records as a part of a load modu Ie.

A source program can contain both internal and external symbols. An

external (or global) symbol is one which is declared as a DEF in this

program and which may be referenced in other, separately assembled

programs as a REF or SREF. An internal symbol is one which appl ies only

within the given source program (and hence is not REF'd or DEF'd). A

symbol table consists of a I ist of correspondences between symbols used

in a source program and the values or virtual core addresses assigned to

them by the Overlay Loader (or LINK).

The association of internal and external symbol tables with a user's pro

gram enables the user to reference such symbols under various debugging

processors (in particular, under DELTA). Under DELTA, the user can

operate on his programs in what appears to be assembly language sym

bolic; with regard to internal symbol tables, he has the ability to define

which set of internal symbols are to be used for specific debugging

activities.

The Loader bu i Ids i nterna I sym bo I tab I es on I y • (G I oba I symbo I tab I es

can be generated by the SYMCOM processor.) Each 1ST corresponds to

one particular ROM. If more than one ROM is contained in an element

file, an 1ST is generated for only the last ROM in the file. 1ST genera

tion is suppressed for I ibrary load modu les and core libraries (i. e., load

modu I es whose name beg i ns with : P) •

The Loader generates an internal symbol table entry when it encounters

a IIType and EBCDIC for Internal Symbol ll load item (control byte X'121)

in a ROM. See BPM Reference Manual, Appendix A, for the format of

this load item.

126.

OUTPUT: The loader outputs one 1ST record for each element file (specified in

the EF list) wh ich contains a ROM with 1ST load items. The record is

a keyed record, the key consisting of the element fi Ie name concatenated

with X'10'. The internal symbol table has two types of entries - symbols

whose values are constants and symbols whose values are addresses.

SYMBOL TABLE FORMAT-ADDRESS TYPE

a 1 2 78 31

SYMBOL IN TEXT
I VALUE

a 45 7 12 13 31

where

CT = Character count of the original symbol.

SYMBOL = The first 7 characters of the symbol. Symbols with fewer

than 7 characters are zero-fi lied. Longer symbols are

truncated to 7 characters, though the original character

count is retai ned.

TYPE 00000
00001
00010
00011
00110
00111
01000
01001
01010
01011
10000

Instruction
Integer
Short floating point
Long Hoating point
Hexadecimal (or packed decimal)
EBCDIC text (or unpacked decimal)
Log i ca I array
Integer array
Short floati ng point array
Long floating complex array
Undefined symbol

RES is a 3-bit field indicating the internal resolution.

000 Byte
001 Ha I fword
010 Word
all Doub I eword

127

FLOW:

VALUE is the address corresponding to this symbol, in byte

resolution.

SYMBOL TABLE FORMAT -CONSTANT TYPE

012 78

CT J
SYMBOL IN TEXT

VALUE

where

CT and SYMBOL are the same as above.

VALUE is the 32-b it constant va lue.

31

INIT1 checks to see if the (PERM, LIB) option is specified or if the

LMN name starts with :P. Either of these conditions results in setting

SYMBOL TB to -1 •

Initial ization of the 1ST buffer (to be used for 1ST generation duri ng

PASS2) occurs in INIT2. Space is allotted for the buffer between the

expression stack and the core image/re locati on buffers. Refer to

Figures 8 and 9a for the Loader's memory layout duri ng PASS2. (The

tab Ie is constructed from the top end of the buffer down.)

Internal symbol tables are constructed in the LP1 section of LOA05EG.

When a X ' 12 1 control byte is encountered at LOR1, a branch is made to

5012. If SYMBOLTB is non-negative, LPT checks the 1ST buffer limits

to determine if the expression stack has grown into the 1ST being constructed

(by the addition of core expressions) or if the addition of a new 1ST entry

would cause a collision with the expression stack. If either of these events

occur, 1ST generation is suppressed (SYM BO L TB is set to -1). 0 therwise,

the new entry is constructed and added to the 1ST, and SYMBOL TB is

updated to point to the base of the new entry.

128

At module end the current 1ST is written out. If this is the largest 1ST

output so far, its base address (in SYMBOL TB) is remembered in BSEG2.

In any case SYMBOLTB is reinitialized to the first word above the 1ST

buffer (kept in SYMTOP).

In WRITESEG, the size of the largest 1ST is stored in Word 8 of the

HEAD record (as well as its future location under DELTA).

129

SUMMARY OF LOADER RESTRICTIONS

1. Load Module Size

The primary constraint with regard to the largest standard load module that can be con-

structed by the Loader concerns the number (Background size - Loader size file buffers -

LOCCT, ROM and TREE Tables.) This represents the maximum size of that area

which must contain the DCB Name Table and its relocation dictionary plus the

largest core i mage of each protection type (00, 01, and 10) of any segment and

their respective relocation dictionaries.

--------------~Background--

LOCCT DCB Name 00 01 10 00 01 10
Loader ROM Table and its rei dic rei dic rei dic core core core fi Ie

TREE reI. dic. imag ~ image image buffers
~~ ~-.~ \TOPOMEM

largest for any segment

An additional constraint for a standard load module -and the main constraint for a

paged load module - is that there must be enough room (in Pass Two) to accommodate

the Loader, the LOCCT, ROM, and Tree Tables, the maximum declaration, REF/DEF and

expression stacks, plus 2 pages for building the load module (or 1 page if the module is to

be ASS.)

2. The name of an input file must be ~ 10 characters (see ROM Tables).

3. The name of a load module must be < 11 characters (see LOCCT Table).

4. If a DEF in a I ibrary load module is > 11 characters, the corresponding entry in the
:DIC file is forced to 11 characters. (The DEF entry in the library load module
itself is not changed.)

5. A load module acceptable for the combination with ROMs to form a new load module
must be of one protection type, relocatable, and not overlaid. DSECTs in such a
load module are allowed only if the entire load module consists of one DSEeT.

130

6. A load module wi II be set ABS if any of the following conditions exist:

a) It contains a relocatable field not ending on a half word boundary.

b) It contains an expression of mixed resolution.

c) REF or BREF has been specified on the ! LOAD card.

7. Segments may communicate with each other via REFs and DEFs only if they lie

in the same path.

8. Load items of a DSECT are always placed in the corres;:>onding DSECT of the root
segment. That is to say, there must be a DSECT by the same name in the roo-t.
The following case is not permitted.

A DSECT 0
RES 3

--~R~o-ot----~·I~ ______ _

A DSECT 0
DATA 1,2 3,

9. The loader cannot perform modifications (! MODIFY) on a library load module.
That is, a ! MODIFY following a ! LOAD (PERM, LIB) wi II be ignored.

10. The loader wi II ignore modifications (! MODIFY) if extended memory mode has
been entered.

11. If a low segment references a DEF name which is both in a higher segment and a
library, the library DEF will be used.

131

COMI\~ON QUESTIONS ABOUT THE LOADER

1. Why is the expression stack retained as a permanent part of the load module?

The expression stack is retained for only one reason: that is, for the purpose of

combining the load module with other ROMs. At the time of combination, we

must process the unevaluated core expressions to complete the load items which

involve PREFs. The PREFs wi II presumably have been satisfied and the expressions

involving them wi II not be evaluatable.

2. What are the final contents of the expression stack?

The fi na I contents consi st of:

a. Defi ning expressions for DEFs and forward references. (I f this is a library

load module, only those expressions involving unsatisfied forwards are

retai ned. The others are squeezed out as are the REF /DEF entries wh i ch

identified the forward rumbers.)

b. All unevaluated core expressions (core expressions are unevaluatable if they

involve PREFs).

3. Load modules whi ch are combinable with ROMs can have onl y one protection type.

Why is this so?

Generally speaking, load modules are relocated by computing a relocation factor

(=new bias-module bias). This relocation factor is added to all relocatable items

in the"module. (The relocation factor is actually modified via the relocation digit

to the proper resolution but this is irrelevant for the current discussion.)

Consider a load module with two protection types.

If we try to combine this load module with other ROMs we must also relocate the

132

core images (00 and 01) with respect to their newly acquired position in the

target load module. Having detached the 00 and 01 areas we have of course

changed the relative distance from one to another and now cannot compute a

relocation factor since "module bias ll is meaningless.

Example: Consider a load module, X, with two protection types 00 and 01.

The instructions at Q' are in 01 and ZAP is in 00.

a LW,1 ZAP

LI,1 $

Assume that in X, 00 begins at relative location 0 and 01 begins at relative

location 500. Assume that ZAP is relative location 100 and Q' is relative 550.

Now assume that for the new module, XI, the new positions for 00 and 01 are to

begin at 2000 and 4000, res?ectivel y.

The Loader sees onl y the core image from X:

(4050)
(4051)

LW,l
LI, 1

100
551

It has no way knowing that it should relocate for XI by adding 2000 to or but 3500 to

or + 1.

133

APPENDIX B

STORAGE LAYOUT OF STUFF

NAME DISPLACEMENT., CONTENTS

DECL5TK ,+0 Declaration stack pointer doubleword.

DECLSTK1 +1 Declarati on stack pointer doubleword.

RFDFSTK +2 REF/DEF stack pointer doubleword.

RFDFSTK1 +3 REF/DEF stack pointer doubleword.

EXPRSTK +4 Expression stack pointer doubleword.

EXPRSTK1 +5 Expression stack poi nter doubleword.

DECL8AS +6 Base of declarati on stack; see Fi gure 9b.

RFDFBAS +7 Base of REF/DEF stack.

EXPRBAS +8 Base of expressi on stack.

BSEG1 +9 Temporary segment number; used for sma II subrouti nes
as in INITl.

BSEG2 +10 Base address of largest internal symbol table.

CSEG1 +11 Displacement from beginning of tree tables to be-
gi nni ng of tree for current segment.

CSEG2 +12 Temporary storage for renumbering current segment
number; used in PS 1 for temporary sequence number
in the name routi nes.

CROM1 +13 Current ROM pointer in ROM table; displacement
from start of ROM table to current ROM; used in
PS1 and EVl.

CROM2 +14 Temporary storage for current ROM pointer; used in
PSl.

CRFDF1 +15 Pointer to the current REF/DEF entry being looked at.

CRFDF2 +16 Top of REF/DEF stack being looked at.

CURBYTE +17 Displacement into card image now being read in
GBYTE; contains last byte read in ROM record.

RECDSIZE +18 Size of ROM record just read by GBYTE.

90 18 038-1 (8/72) 134

NAME DISPLACEMENT CONTENTS

SEQNUM +19 Actual sequence number of record just read in GBYTE
routine.

SEVLEV +20 Severity level of load module; starts out with that of
ROMs; Jets raised if need be; see WRT and FIN.

XSL +21 Maximum severity level from! LOAD card; now in
LOCCT.

LASTCARD +22 Flag that this is last card of this ROM; see GBYTE.

BUF +23 Used in PS1 and EVL as input buffer for reading ROMs;
used as output buffer by FI N; used as buffer for the
map; some of its words are used by WRT.

BUF2 +53 Used to construct an expression from load relocatable
type load item; see pages 98 and 99; used in WRT.

TEMPPTR +57 Used to keep track of temp stack in user's TCB; see
I NIT2, ALL, WRT.

TREEPTR +58 Pointer {execution type address} to loader - bui It tree
table; used in WRT.

ERRPTR +59 Pointer {execution type address} to loader - built
ERTABLE; used in WRT.

FCOUNT +60 Size of DCB name table; used in PSl.

FTABLE +61 Starting address of DCB name table at execution time.

ERRTAB +62 ERT AB LE si ze from the LOCCT.

ERRSTK +63 ERSTACK size from the LOCCT.

TCBSIZE +64 Total size of target TCB including ERSTACK and
ERT AS LE si zes; see WRT and I N2.

TCBPTR +65 Execution starting address of target TCB; see ALL
and WRT.

FTAB +66 Starting address of DCB name table at execution time;
set in ALL; used in WRT.

RSEGOO +67 Pointer to root segment for protection type 00; see
Figure 8.

RSEG01 +68 Poi nter to root segment for protection type 01; see
Figure 8.

RSEG10 +69 Poi nter to root segment for protecti on type 10; see
Figure 8.

135 90 18 038-1 (8/72)

NAME DISPLACEMENT CONTENTS

RRELOO +70 Pointer to root segment's relocation dictionary for
protecti on type 00; see Fi gure 8.

RRELOl +71 Poi nter to root segment's relocati on di ctionary for
protecti on type 01; see Fi gure 8.

RREL10 +72 Poi nter to root segment's re I ocati on di cti onary for
protection type 10; see Fi gure 8.

CSEGOO +73 Poi nter to current segment for protecti on type 00;
see Fi gure 8.

CSEGOl +74 Pointer to current segment for protection type 01;
see Fi gure 8.

CSEG10 +75 Poi nter to current segment for protecti on type 10;
see Fi gure 8.

CRELOO +76 Pointer to current segment's relocation dictionary for
protecti on type 00; see Fi gure 8.

CRELOl +77 Pointer to current segment's relocation dictionary for
protecti on type 01; see Fi gure 8.

CREL10 +78 Pointer to current segment's relocation dictionary for
protecti on type 10; see Fi gure 8.

MAXOO +79 Largest protection type areas which have to be allo-
cated for each segment; see INIT2, FINDLGSTPATH.

MAX01 +80 Largest protection type areas which have to be allo-
cated for each segment; see INIT2, FINDLGSTPATH.

MAX10 +81 Largest protection type areas which have to be allo-
cated for each segment; see INIT2, FINDLGSTPATH.

DLOC +82 Execution location counter for 00.

PLOC +83 Execution location counter for Ol.

SLOC +84 Execution location counter for 10.

LOC +85 Load location counter; see EVL.

START +86 Starting address; gets put in HEAD; see DSTART in EVL.

LOCCT +87 Address of LOCeT, first avai lable page above loader's
procedure.

LOADBAS +88 Actual load bias; either from LOCCT or defaults to
BGLL; see INIT2.

90 18 038-1 (8/72) 136

NAME DISPLACEMENT CONTENTS

MODBAS +89 Used for merging core image record into XMEM buffers;
see EVL.

RELDBAS +90 Base of relocation dictionary for core image library;
used in EVL.

MBIAS +91 In WRT, start of ori gina I REF/DEF stack.

FBIAS +92 Used for paged load modules; address pointing into
loader's core image buffers; see ORG in EVL; see
also WRT's old XMEM code.

BIAS +93 Equivalent of ORG to execution address of start of ROM.

RDIG +94 Relocation digit; see ADLDMD.

MODSIZ +95 ARS from M: EF after reading relocation di ctionary;
see ADLDMD in EVL.

NOTLLM +96 Flag in WRT for not a library load module.

MAXRFDF +97 Computed dynami ca lIy in PS 1 to fj nd longest REF /DEF
path needed by PS2.

MAXEXPR +98 Computed dynamically in PS1 to find longest expres-
sion path needed by PS2.

TOPOMEM +99 Last avai lable address (ends in E).

OPENEF +100 Contai ns the open PLIST for M: EF.

OPENDIC +117 Contains the open PLIST for :DIC.

PBUF +132 Print buffer for loader diagnosti cs.

CSECFLG +153 Flag for special CSECT used in merging library Imns;
see ADLDMD in PS 1.

PLIB +154 Flag which gets set if addition of a core expression
would cause expression stack to overwrite a core image
buffer above it; see EXPRIN routine in EVL.

LIB +155 1 if a library Imn is being added; see ADLDMD ..

XMKEY +156 Extended memory mode key used to write core image
records; initialized in INIT2; used in EVL and WRT.

LOCWD +157 First word of the LOCCT, containi ng parameter bits.

USID +158 User ID number passed in register by Monitor; used in
IN1 and IN2 to open temporary file.

137 90 18 03B-1 (8/72)

NAME DISPLACEME NT CONTENTS

RFLDSG +159 See REF/BREF option; segment number of where DEF is
defined in the branch referencing mode.

ERFLAG +160 Message key; see MESSAGE.

MXRFDFSG +161 Contains segment number; aid in determining path
having largest REF/DEF stack; see PS 1.

NXTAVPG +162 Execution address of page iust above the load module;
gets put in HEAD; computed in IN1; picked up in WRT.

RLOC +163 Loader's load location counter for relocation dic-
tionaries; goes with LOC.

01SIZ +164 For special CSECT in merging library Imns; see ALL.

TRESIZ +165 Size of the loader to see if it must do SEGLOADs or
can i ust branch; see LDR.

FCOMSIZ +166 Size of blank COMMON from the lOCCT; set up in
PS1 when loader finds ROM defining F4COM; takes
largest size for any DSECT declaration with name or
F4COM.

XMRKEY +167 Extended memory mode key for reading the relocation
di cti onary •

04LOC +168 In All pointer to remember last control section when
searching for special library control sections; in
SPECDSEC location of an 04 entry.

DOREFPTR +169 In BREF mode pointer to name S:OVRLY in REF/DEF
stack; see IN 1.

RFlDTBSZ +170 REF count from LOCCT, word 4.

BREFERR +171 Count of REF's overflowing table; if in BREF mode,
count of nonbranching REF's overflowing table; BREF
error in EVL is pi cked up in FINo

PASS3RET +172 Information saved for PASS3/CCI if must return to it;
see INIT1 and LDR.

ENTFLAG +173 Type of en try we are maki ng: PASS3 or CCI; see
INITl and LDR.

CORELIB +174 UTS only; used in PS 1 to show whether REF to
9DBINIT or 91NITIAL set; see INIT2 and WRT; also
used to turn off tri gger .

90 18 03B-1 (8/72) 138

NAME DISPLACEMENT

BFR +175

FIRSTF +176

LASTF +177

XCSEG1 +178

SYMBOLTB +179

SYMTOP +180

TRAPCC +181

CODE +182

CONTENTS

Pointer into BUF; storage for checksum in GBYTE;
also in FIELDEX routine of EVL used in switching
logi c for define field.

Pointer into REF/DEF stack for first forward reference.

Pointer into REF/DEF stack for last forward reference.

See XMEM logi c of EVLi retains current segment to
permit alternate use of CSEG1 for XMEM.

Base of current internal symbol table.

Top of current internal symbol table.

For UTS; retains condition codes when loader enters
its trap hand ler for trap 40; see LDR.

New field of information output with diagnostics;
part of QUIT procedure.

139 90 18 03B-1 (8/72)

Footnotes for Figure 10:

*NOTE: A 1, MAP specified
B 1 , NOSVSLIB specified
C 1, REF specified
D 1, PERM specified
E = 1 , LIB specified
F 1, M 10 specified
G 1, M 100 specified
H 1, FCOM specified
I 1, ABS specified
J = 1, Ass igns Read

SL Sev. Level (default = 4)

**BPM-UTS differences in the LOCCT Tables:

Word

4

5

*** 6

BPM

LOAD BIAS field
Defau It = 0

Background lower
limit

Passed to the Loader
in Reg. D4 (D4) =

FCOM size

31

K = 1, GO spec i fi ed
L 1, BI specified
M = 1, (SEC1 was specified
N 1, NOTCB specified
0 1, XM EM in effect (set by the

Loader in I N2)
P = 1, MAP, VALUE specified

0, MAP, NAME specified
Q 1, BREF specified
R 1, EF specified

UTS

LOAD BIAS
Default = background lower limit WA

ROM Tables

The ROM Tables contain an entry for every input file (ROM or load module).

Below is on overall picture for M segments (SO, Sl, ... SM). Each box is a seven

word entry.

50

51

5M ·11------~

ROM Table Entry

o
1
2
3
4
5
6

TEXTC of ROM name (EF name, or SYSid B -----------------------. for BI, or SY5id G for GO). -----------------------o XLO OOTO
Account number

~ - - - - - (dafcruli" ~ c~rre~ ac~tD) - - - - - -

Password
~ - - - - - (defcruit" ~ 0, 0) - - - - - - - - -

x = 1, if this is not the last ROM file in the segment.
L, T are initially 0 but set by the Loader.
L = 1, if fi Ie came from a library.
T = 1, if file is on labeled tape.

Figure 11. ROM Tables

32

XEROX Publication Revision Sheet

August 1972

CORRECTIONS TO XEROX BTM/BPM/UTS OVERLAY LOADER TECHNICAL MANUAL (Sigma 5-9 Computers)

PUBLICATION NO. 90 18 03B, JUNE 1972

The attached pages contain changes that update the manual to the COO version of UTS and the GOO version of BPM/
BTM. Pages in the B edition of the manual that are to be replaced are: iii, iv, 5, 6, 17-20, 23, 24, 27-30, 39-
42, 55, 56, 61, 62, 67-72, 87-90, 113-118. New pages to be inserted are: 133-139.

These changes will be incorporated into the next edition.

Revision bars in the margins of replacement pages identify changes. Pages without the publication number
90 18 03B-1(8/72) at the bottom are included only as backup pages; revision bars appearing on such pages identify
changes made in a previous revision.

KEROX8 is a trademark of XEROX CORPORATION. 90 18 03B-1 (8/72)

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072-0
	072-1
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089-0
	089-1
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118-0
	118-1
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	31
	32
	_01

