
Xerox SIGMA 9 Computers

Reference Manual

90 17 33C

SIGMA 9 INSTRUCTION LIST (MNEMONICS]

Mnemonic Code Instruction Nome Page Mnemonic Code Instruction Nome Page

AD 10 Add Doubleword 59 LCF 70 Load Conditions and Floating Control 53
AH 50 Add Halfword 58 LCFI 02 Load Conditions and Floating Control Immediate 52
AI 20 Add Immediate 58 LCH SA Load Complement Halfword 49
AIO 6E Acknowledge Input/Output Interrupt (privileged) 127 LCW 3A Load Complement Word 49
AND 4B AND Word 67 LD 12 Load Doubleword 49
ANLZ 44 Analyze 55 LH 52 Load Hal fword 48
AW 30 Add Word 58 LI 22 Load Immediate 48
AWM 66 Add Word to Memory 62 LM 2A Load Multiple 52

LMS 20 Load Memory Status (privileged) 108
BAL 6A Branch and Link 99 LPSD OE Load Program Status Doubleward (privileged) 101
BCR 68 Branch on Conditions Reset 99 LRA 2C Load Real Address (privileged) 107
8CS 69 Branch on Conditions Set 98 LRP 2F Load Register Pointer (privileged) 104
8DR 64 8ranch on Decrementing Register 99 LS 4A Load Selective , 51
BIR 65 Branch on Incrementing Register 99 LW 32 Load Ward 48

CAll 04 Call 1 100
MBS 61 ' Move Byte String 84

CAL2 05 Call 2 100
CAL3 06 Call 3 100

MH 57 Multiply Halfword 61

CAL4 07 Call 4 100
MI 23 Multiply Immediate 60

C8 71 Compare Byte 64
MMC 6F Move to Memory Control (privileged) 104

CBS. 60 Compare Byte Stri ng 85
MSP 13 Modify Stock Pointer 96

CD 11 Compare Doubleword 65
MTB 73 Modify ond Test Byte 62

CH 51 Compore Halfword 65
MTH 53 Modify and Test Halfword 63

CI 21 Compare Immediate 64
MTW 33 Modify and Test Word 63

CLM 19 Compare with Limits in Memory 66
MW 37 Multiply Word 61

CLR 39 Compare with Limits in Register 66
OR 49 OR Word 66

CS 45 Compare Selective 66
CVA 29 Convert by Addition 71

PACK 76 Pack Decimal Digits 81
CVS 28 Convert by Subtroction 71
CW 31 Compare Word 65

PLM OA Pull Multiple 95
PLW 08 Pull Word 94

DA 79 Decimal Add 79
POLP 4F Poll Processor (privileged) 127

DC 70 Decimal Compare 81
POLR 4F Pall and Reset Processor (privileged) 127

DO 7A Decimal Divide 80
PSM OB Push Multiple 94

DH 56 Divide Holfword 61
PSW 09 Push Word 94

DL 7E Decimal Load 79
RD 6C Read Direct (privileged)

OM 78 Decimal Multiply 80
110

OS 78 Decimal Subtract 79
RIO 4F Reset Input/Output (pri v i I eged) 126

DSA 7C Decimal Shift Arithmetic 81
S 25 Shift

DST 7F Decimal Store 79
67

OW 36 Divide Word 62
SO 18 Subtract Doubleword 60
SF 24 Shift Floating 69

E8S 63 Edit 8yte String 88
SH 58 Subtract Holfword 59

EOR 48 Exclusive OR Word 67
SIO 4C Stort Input/Output (privileged) 123

EXU 67 Execute 98
STB 75 Store Byte 53
STCF 74 Stare Conditions and Floating Control 54

FAL 10 Floating Add Long 75
STD IS Store Doubleword 54
STH 55 Store Halfword 53 FAS 3D Floating Add Short 74
STM 28 Store Multiple

FDL IE Floating Divide Long 76
54

FDS 3E Floating Divide Short 76
STS 47 Store Selective 54

FML IF Floating Mult:ply Long 76
STW 35 Store Word 53

FMS 3F Floating Multiply Short 76
SW 38 Subtract Word 59

FSL lC Floating Subtract Long 76
FSS 3C Floating Subtract Short 75 TBS 41 Translate Byte String 86

TDV 4E Test Device (privileged) 125
HIO 4F Holt Input/Output (privileged) 126 TlO 4D Test Input/Output (privileged) 124

HBS 40 Translate and Test Byte String 87
INT 6B Interpret 57

UNPK 77 Unpack Decimal Digits 82
LAD lB Load Absolute Doubleword 51
LAH 5B Load Absolute Halfward 49 WAIT 2E Wait (privileged) 110
LAS 26 Load and Set 51 WD 6D Write Direct (privileged) 112
LAW 38 Load Absolute Word 50
L8 72 Load Byte 48 XPSD OF Exchange Program Status Doubleword (privileged) 102
LCD 1A Load Complement Doubleword 50 XW 46 Exchange Word 53

701 South Aviation Boulevard
EI Segundo, California 90245
213679-4511

Xerox SIGMA 9 Computers

Reference Manual

90 17 33C

June 1972

Price: $7.00

XEROX

Printed in U.S.A.

ii

REVISION

The major change made in this revision to the Xerox SIGMA 9 Computer/Reference Manual, Publ ication Number
901733 B (October 1971), is the inclusion of the previously published Revision Package, 9017 33B-1(4/72}.
Technical changes from that of the previous manual are indicated by a vertical line in the margin of the page.

RELATED PUBLICATIONS

Publ ication No.

Xerox Sigma Glossary of Computer Terminology 900957

Xerox Meta-Symbol/LN, OPS Reference Manual 900952

Xerox Symbol/LN,OPS Reference Manual 90 1790

Manual Content Code: BP - batch processing, LN - language, OPS - operations, RBP - remote batch processing,
RT - real-time, SM - system management, TS - time-sharing, UT - utilities.

ALL SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

CONTENTS

l. SIGMA 9 COMPUTER SYSTEMS Trap Condition Code 34
T rap Addressing 34

Introduction 1 Nonallowed Operation Trap 36

The Basi c Systems 1 Unimplemented Instruction Trap 37

Central Processing Unit 2 Push-Down Stack Limit Trap 38

Main Memory 3 Fixed-Point Overflow Trap 38

Multiplexor Input/Output Processor 4 Floating-Point Arithmetic Fault Trap 39

Motor Generator Set 4 Decimal Arithmetic Fault Trap 40

Optional Equipment 4 Call Instruction Trap 40

Additional Register Blocks 4 Processor Detected Fau I ts 40

Additiona I Real-Time Clocks 4 Trap Conditions During "Anticipate"

Priority Interrupt System 4 Operations 43

Alternate Buses 4 Register Altered Bit 43

Memory Reconfiguration Control Unit 4
Memory Expansion 4
Memory Access Port Expansion 5
Memory-to-Memory Move 5 3. INSTRUCTION REPERTOIRE 45
MIOP Channel A Expansion 5
MIOP Channel B Addition 5 Load/Store Instructions 47
High-Speed RAD Input/Output Processor __ 5 Ana Iyze/Interpret Instructions 55
Four-Byte Interface Feature 5 Fixed-Point Arithmetic Instructions 57

Genera I Characteristi cs 5 Comparison Instructions 64
Genera I Purpose Features 8 Logical Instructions 66
Mu Itiprocessing Features 8 Shift Instructions 67
Time-Sharing Features 8-1 Floating-Point Shift 69
Real-Time Features 8-2 Conversion Instructions 70
Multiusage Features 8-3 Floating-Point Arithmeti c Instructions 72

Floating-Point Numbers 72
Floating-Point Add and Subtract 73
Floating-Point Multiply and Divide 74

2. SIGMA 9 SYSTEM ORGANIZATION 9 Condition Codes for Floating-Point
Instructions 74

Central Processing Unit 9 Decima I Instructions 77
General Register 9 Packed Decimal Numbers 77
Memory Control Storage 9 Zoned Decimal Numbers 77
Computer Modes 12 Decimal Accumulator 77
Information Format 12 Decimal Instruction Format 77
Information Boundaries 13 Illegal Digit and Sign Detection 77
Inst·ruction Register 13 Overflow Detection 78

Main Memory 14 Decimal Instruction Nomenclature 78
Memory Unit 14 Condition Code Settings 78
Virtual and Real Memory 15 Byte-String Instructions 83
Homespace 15 Push-Down Instructions 92
Memory Reference Address 15 Stack Pointer Doubleword (SPD) 92
Types of Addressi ng 18 Push-Down Condition Code Settings 93
Address Modification Examples 21 Execute/Branch Instructions 97
Memory Address Contro I 23 Branches in Real Extended Addressing Mode_ 97
Program Status Doubleword 27 Nonallowed Operation Trap During

Interrupt System 29 Execution of Branch Instruction 97
Interna I Interrupts 30 CALL Instructions 100
External Interrupts 31 Control Instructions 100
States of an Interrupt Level 31 Program Status Doubleword 101
Con tro I of the In terrupt System 33 Loading the Memory Map 105
Time of Interrupt Occurrences 33 Loading the Access Protection Controls 106
Single-Instruction Interrupts 33 Loadi ng the Memory Write Protection Locks_ 106

Trap System 34 In terrupti on of MMC 106
Trap 34 Memory Access Traps by MMC Instruction __ 107
Trap Entry Sequence 34 Read Direct, Internal Computer Control
Trap Masks 34 (Mode 0) 111

90 17 33C-l (4/74) iii

4.

5.

iv

Read Direct, Interrupt Control (Mode 1)-- 112
Write Direct, Internal Computer Control

(Mode 0) 112
Write Direct, Interrupt Control (Mode 1) _ 114

Input/Output Instructions 114
Overa" Characteristics 114
I/o Status Information 118

INPUT/OUTPUT OPERATIONS 129

Operational Command Doublewords 130
Order 130
Memory Byte Address 130
Flags 130
Byte Count 132

Control Command Doublewords 132

OPERA TOR CONTROLS 134

Processor Control Panel 134
Control Mode 134
POWER 135
MEMORY CLEAR 135
SYS RESET 135
I/O RESET 135
LOAD 135
UNIT ADDRESS 135
SENSE 135
NOT NORMAL 135
HALT 135
WAIT 136
RUN 136
Program Status Doubleword Indicators ___ 136
INSERT 137
CPU RESET 137
INTERRUPT 137
ADDRESS STOP 137
SELECT ADDRESS 138
STORE 138
INSTR ADDR 138
DISPLAY (Indicators) 139
DISPLA Y FORMAT 139
FORMAT SEL 139
DATA 139
DISPLA Y (Switch) 139
COMPUTE 140

Maintenance Controls 140
ALARM 140
PDF 140
CLOCK MARGINS 140
PHASES 140
CLOCK MODE 141
SNAP 141
MEMORY MODE 141
OVERRIDE MODE 141
SCAN 141
EXT DIO 142

Operating Procedures _________ _
Loading Operation _________ _
Fetching and Storing Data ______ _

INDEX

APPENDIXES

A. REFERENCE TABLES

Standard Symbols and Codes
Standard Character Sets
Control Codes
Specia I Code Properties
Standard 8-Bit Computer Codes (EBCDIC)
Standard 7-Bit Communication Codes (ANSCII)_
Standard Symbol-Code Correspondences
Hexadecimal Arithmetic

Addition Table
Multiplication Table
Table of Powers of Si xteen 10
Table of Powers of Ten16

Hexadecimal-Decimal Integer Conversion
Table

Hexadecimal-Decimal Fraction Conversion
Table

Table of Powers of Two
Mathematical Constants

B. SIGMA 9 INSTRUCTION LIST

c. INSTRUCTION TIMING

Timing Considerations
Effects of Memory Interference
Effects of Indexing
Effects of Indirect Addressing
Effects of Register-to-Register Operations __
Other SIGMA 9 Performance Factors

D. SYSTEM RELIABILITY AND MAINTAINABILITY

System Maintainabi lity Features
CPU Features
Main Memory Features
MJJltiplexor Input/Output Processor (MIOP)

Features
High-Speed RAD I/O Processor (HSRIOP)

Features

E. GLOSSARY OF SYMBOLIC TERMS

143
143
144

183

145

145
145
145
145
146
146
147
151
151
151
152
152

153

159
163
163

164

165

165
165
165
165
166
166

175

175
176
178

178

179

180

AGURES 6. SIGMA 9 Interrupt Locations 29

Frontispiece - SIGMA 9 Computer System __ vi 7. Summary of SIGMA 9 Trap Locations 35

l. A Typical SIGMA 9 System 10 8. TeC Setting for Instruction Exception
Trap X'4D ' 42

2. Central Processing Unit 11
9. Registers Changed at Time of a Trap Due to

3. Information Boundaries 13 an Operand Access 43

4. Addressing Logic 17 10. ANALYZE Table for SIGMA 9 Operation
Codes 56

5. Index Displacement Alignment (Real and
Virutal Addressing Mode) 22 1l. Floating-Point Number Representation 73

6. Index Displacement Alignment (Real Extended 12. Condition Code Settings for Floating-Point
Addressing) 23 Instructi ons 75

7. General of Actual Memory Addresses, Virtual 13. Status Word 0 109
Addressing (SIGMA 9 Mode) 24

14. Sta tus Word 1 109
8. Generation of Effective Virtua I Address, Real

Extended Addressing 25 15. Status Word 2 110

9. Typica I Interrupt Priority Chain 30 16. Description of I/O Instructions 115

10. Operational States of an Interrupt Level 32 17. I/o Status Information (Register R) 118

11. Formats of I/O Instructions 117 18. Devi ce Status Byte (Register R or Ru 1)
(SIO, TIO, and HIO On Iy) 118

12. Processor Control Panel 134
19. Operationa I Status Byte (Regi ster Ru 1) 120

20. Status Response Bits for I/O Instructions ___ 121

TABLES 21. Processor Fault Status 122

l. Basic SIGMA 9 System 22. lOP Status Byte 122

2. Basic SIGMA 9 Model 2 System 23. Status Response Bits for AIO Instruction ___ 123

3. Basic SIGMA 9 Model 3 System 24. I/O Address (AIO Response) 123

4. Homespace Layout 16 25. Program Status Doubleword (PSD) Indicators_ 136

5. Computer Operating and Addressing Modes __ 29 C-l. Basic Instruction Timing 167

90 17 33C-1 (4/74) v

1. SIGMA 9 COMPUTER SYSTEMS

. INTRODUCTION

SIGMA 9, SIGMA 9 Model 2, and SIGMA 9 Model 3 are
high-speed, general-purpose, digital computer systems de
signed for multiuse environments. SIGMA 9, the most
powerful of the three systems, is universally applicable to
all data processing applications. SIGMA 9 Model 2 pro
vides for effi cient processing in mul tiprogrammed batch
mode, remote batch mode, conversational time-sharing
mode, real-time mode, and transaction processing mode.
SIGMA 9 Model 3 is designed specifically for the multiuse
environment of the scientific real-time community. Each
computer system is complete, its design based on proven
architecture and field-proven operating systems. The
architectures allow independent memory access by the cen
tral processing unit (CPU) and peripherals for maximum
throughput and minimum response time. The CPU, main
memory subsystem, and independent I/O system perform
asynchronously with respect to each other. The operating
systems complement the hardware by providing a wide
variety of subsystems, task management, virtual memory
management, resource allocation, and installation ac
counting. SIGMA 9 Model 2 and SIGMA 9 Model 3
derive from extremely sophisticated trimodal operational
concepts; the SIGMA 9 derives from the most sophisticated
trimodal operational concept in the industry. AI I three
systems additionally have advanced design characterictics
and features that provide reliable operation and efficient
ma i ntenan ce.

THE BASIC SYSTEMS

Tables 1, 2, and ~ list the equipment and features that con
stitute the basic systems for SIGMA 9, SIGMA 9 Model 2,
and SIGMA 9 Model 3.

Table 1. Basic SIGMA 9 System

Central processing unit (CPU) with these features:

• Decimal arithmetic unit.

• Floating-point arithmetic unit.

• Memory map with access protection.

• Memory write protection.

• Two 16-register general purpose register
blocks.

• Two real-time clocks.

• Powe r fa i I -safe.

• External interface.

Table 1. Basic SIGMA 9 System (cont.)

• Ten internal interrupt levels.

• Interrupt control chassis with eight external
interrupt levels.

• Memory reconfiguration control unit.

Main memory of 64K words.

Multiplexor input/output processor (MIOP):

• Channel A with eight subchannels.

Motor generator set.

Table 2. Basic SIGMA 9 Model 2 System

Central processing unit (CPU) with these features:

• Decimal arit\'metic unit.

• Floating-point arit\'metic unit.

• Memory map with access protection.

• Memory write protection.

• Two 16-register general purpose register
blocks.

• Two real-time clocks

• Power fai I-safe.

• External interface.

• Ten internal interrupt levels.

• Interrupt control chassis wit\' two external
interrupt levels.

Main memory of 32K words.

Multiplexor input/output processor (MIOP):

• Channel A with eight subchannels.

Table 3. Basic SIGMA 9 Model 3 System

Central processing unit (CPU) with these features:

• Floating-point arithmetic unit.

• Memory map with access protection.

• Memory write protection.

• One 16-register general purpose register
block.

• Two real-time clocks.

90 17 33-C1(4/74) SIGMA 9 Computer Systems

Table 3. Basic SIGMA 9 Model 3 System (cant.)

• Power fail-safe.

• Extemal interface.

• Ten internal interrupt levels.

• Interrupt control chassis with two external
interrupt levels.

Main memory of 32K words.

Multiplexor input/output processor (MIOP):

• Channel A with eight subchannels.

CENTRAL PROCESSING UNIT

The CPU includes a 32-bit, binary, word-parallel, arith
metic and logic unit. The CPU has the ability to operate
on data in various formats including doublewords (64 bits),
words (32 bits), halfwords (16 bits) and bytes (8 bits). Data
may be represented as binary, floating-point, or logi cal;
in SIGMA 9 systems and SIGMA 9 Model 2 systems, data
may also be represented as decimal. The CPU can perform
double precision as well as single precision arithmetic. The
interleaving and overlapping of memory cycles speeds com
putation and reduces I/O interference.

Each CPU has a large instruction set that includes floating
point, decimal and byte-string instructions. (SIGMA 9
Model 3, designed primarily for scientific applications,
has the same instruction set less the decimal arithmeti c and
byte-string capabil ities.) A special feature called "Iook
ahead II enables the CPUs to overlap instruction execution
with memory access, thereby reducing program execution
time.

SIGMA 9 Model 3 has an instruction execution rate perform
ance level equal to that of the more powerful SIGMA 9.
The SIGMA 9 Model 2 instruction execution rate perform
ance level is equivalent to that of SIGMA 6/7 computers.

DECIMAL ARITHMETIC UNIT

(This unit is available only on the SIG MA 9 system and the
SIGMA 9 Model 2 system.) This unit performs high-speed
arithmetic and logical operations on binary coded decimal
(4-bit) data and editing operations on byte-sized (8-bit)
data.

The decimal arithmetic unit implements the following deci
mal ~nstructions: decimal add, subtract, multiply, divide,
compare, and shift arithmetic instructions; and decimal
load, store, pack, and unpack logical instructions. Stor
age is highly efficient - decimal digits and signs are packed
two per 8-bit byte. The unit can process decimal fields

2 The Basic Systems

as long as 31 digits plus sign. Because of the variance in
decimal field length, instruction execution time is reduced
to the minimum for any operation. The decimal arithmetic
unit eliminates the rounding and conversion problems of
business-type arithmetic that occur when binary coding
is used.

The decimal arithmetic unit also performs editing operations
on a field or group of fields as long as 256 bytes. The in
struction set includes these byte string instructions imple
mented by the decimal arithmetic unit: move byte string,
compare byte string, translate byte string, translate and
test byte string, and a comprehensive edit byte string
instruction.

FLOATING-POINT ARITHMETIC UNIT

This unit performs high-speed floating-point arithmetic,
provides automatic scaling, and permits a wide dynamic
range of individual problem parameters. It uses both long
and short floating-point formats. Short precision is useful
for intermediate calculations and for the arithmetic manip
ulation of low precision data (real-time data generally fit
in this category). long precision is useful for matrix in
version, integration, and for problems in which sums and
differences of large numbers are key problem variables.
Programs can select normalized or unnormalized modes for
floating-point addition and subtraction. The unit detects
imminent loss of significance and can optionally cause an
arithmetic fault. When the unit detects a floating exponent
underflow, it can alternatively cause a trap or produce a
zero result, depending on the state of the program status
doubleword.

MEMORY MAP WITH ACCESS PROTECTION

This feature eliminates the possibility of memoryfragmenta
tion by allowing economi c relocation of programs. Regard
less of which addresses the executing program uses (virtual
addresses), the memory map permits the program to reside
anywhere in main memory in noncontiguous areas. User
memory is logically divided into 256 pages of 512 words
each (2048 bytes per page). Thus several user programs
with identical virtual addressing can be resident at the same
time, scattered over the full 512K words(two million bytes)
of memory available. The memory map feature automati
cally translates all virtual addresses of the program into ac
tual addresses in memory when the CPU is operating in the
mapping mode.

The memory map facilitates the sharing of software pro
cessors by several user programs, each with its own virtual
memory; only one copy of each software processor is re
quired in core. The result is increased efficiency in the
use of rea I memory.

As part of the memory map feature is another level of pro
tection - memory access protection. The memory access

90 17 33C-1(4/74)

protection feature subjects virtual addresses to an access
validity check. Any page of 512 words can be specified
as being available for

• No access for any purpose.

• Read access for operands only - no write.

• Read access for operands and instructions - no write.

• All access for any read, write, or execution.

MEMORY WRITE PROTECTION

This feature provides individual memory write protection
for each page of the first 128K words (256 pages) of real
memory. Three classes of programs can be simultaneously
resident in memory, and all can be guaranteed that their
data cannot be destroyed by any other class of program.

REGISTER BLOCKS

The CPUs in the basic SIGMA 9 and SIGMA 9 Model 2
systems include two, 16-register, general purpose register
blocks (SIGMA 9 Model 3 has one register block standard).
Any register can be used as an arithmetic or high-speed
scratchpad. Seven registers in each 16-register block are
available for use as index registers. A registerpointerfield
in the current program status doubleword selects the current
register block. All register references made by an ongoing
program are then directed to the single block designated by
the register pointer.

Use of multiple register blocks facilitates high-speed con
text switching by el iminating the overhead time and space
associated with saving, loading, and restoring CPU registers.

REAL-TIME CLOCKS

Each basic system includes two real-time clocks (called
counters 3 and 4). Multiple real-time clocks permit several
programs to be timed out and initiated independently of each
other, and eliminate the overhead processing associated
with a scheduling program. Time-critical operations can be
easily monitored on an elapsed time basis - the program is
automatically notified by a priority interrupt as needed.

Counter 4 has a constant frequen~y of 500 Hz. Counter 3
can be individually set to one of four manually switchable
frequencies: the commercial line frequency, 500 Hz,
2000 Hz, or a user-suppl ied external system.

POWER FAIL-SAFE

This feature detects an imminent failure of primary power
and diverts the computer to a special interrupt routine that
preserves the state of all volatile registers and brings the
computer system to an orderly halt before power drops

90 17 33C-1(4/74)

below acceptable, safe limits. Thus, no vital data are
lost, and operations can later resume at the point of inter
ruption without the further loss of data and time associated
with having to reinitiate a possibly lengthy computation.
Similarly after a shutdown, this feature automatically senses
when power has returned to a normal level and causes the
machine to resume computation at the point of prior inter
ruption. All volatile registers are saved in nonvolatile
magneti c core before shutdown occurs; they are restored
as part of the startup routine.

EXTERNAL INTERFACE

This feature provides an external interface for the attach
ment of external equipment to the computer via the direct
input/output (DIO) system. External equipment may be
Xerox external interrupts, Xerox system interface units, or
nonstandard special equipment.

The external interface allows the transfer of a 32-bit data
word between an affected register and an external devi ce
and the transfer of a 16-bit address for selection and con
trol purposes. Each transfer is underdirectprogram control.

INTERNAL INTERRUPT LEVELS

Each basic system provides 10 internal interrupt levels, ex
pandable to 14, associated with signals generated as a re
sult of these conditions: power on, power off, pulsing and
monitoring of the two real-time clocks, processor fault,
memory fault, input/output operation, and operator inter
rupt from the control panel. The four optional internal
interrupts are associated with the pulsing and monitoring of
two additional real-time clocks.

INTERRUPT CONTROL CHASSIS

Each basi c system includes an interrupt control chasis that
provides control and mounting space for as many as 16 ex
ternal priority interrupt levels. Eight of these interrupt
levels are supplied with the basic SIGMA 9 (2 levels each
are supplied with the basic SIGMA 9 Model 2 and SIGMA 9
Model 3). The external priority interrupt levels allow the
CPU to immediately recognize special external conditions
on a priority basis, thereby providing a means for schedul
ing real-time processes as well as a means for efficient I/O
control.

MAIN MEMORY

The main memory for each basic system comprises a group of
memory units. A memory unit is the smallest, logically
complete part of the memory subsystem that can be logically
isolated from the rest of the memory subsystem. Each mem
ory unit consists of two physical memory banks. The memory
banks in a memory unit operate independently and asynchro
nously with respect to each other. Each memory unit has a
set of memory access ports that is common to both banks

The Basi c Systems 3

within the unit; that is, all ports in a giyen memory unit
give access to the banks within that unit. A basic system is
provided with two ports per memory unit, expandable to 12.

The memory subsystem has 2-way interleaving capabil ity
within a unit and 4-way interleaving capability between
two adjacent units. Interleaving increases the probabil ity
that successive memory accesses wi II be overlapped. In
combination, these two features provide the system with
effective cycle times of a fraction of the individual bank
cycle times. Each individual bank has a cycle time of
900 nan ose conds.

The basic SIGMA 9 system includes a memory size of 64K
words. The basic SIGMA 9 Model 2 and SIGMA 9
Model 3 systems include a memory size of32K words. Mem
ory is word, halfword, and byte addressable for both read
ing and writing. All of memory can be directlyaddressed
(real extended mode).

MULTIPLEXOR INPUT/OUTPUT PROCESSOR

The Multiplexor Input/Output Processor (MIOP) provides
the control necessary to simultaneously operate many low
to-medium-speed peripheral devices, and offers both com
mand chaining and data chaining. The MIOP in each
basic system includes channel A with eight subchannels;
one subchannel is required for each device controller.

Transfers between memory and the MIOP are 33 bits wide
including a parity bit • Transfers between the MIOP and
the peripheral device are on a byte-wide path, oroptionally
on a four-byte-wide path if the optional Four-Byte Inter
face Feature is installed on the system.

MOTOR GENERATOR SET

A motor generator set is standard with a basic SIGMA 9
system and available where necessary for SIGMA 9 Model 2
and SIGMA 9 Model 3 systems.

OPTIONAL EQUIPMENT

Each basi c system can be readily expanded to accommodate
the user's requirements. The main memories have addressing
space for four million words. Memory access paths can be
increased from the basic two ports to a maximum of 12 ports.
Input/output capability can be increased by adding more
input/output processors (lOPs), device controllers, and
peripheral I/O devices. The aggregate of lOPs and CPUs
is restri cted by the maximum memory access port I imita
ti on of 12 ports.

ADDITIONAL REGISTER BLOCKS

One or more additional blocks of 16 general purpose reg
isters may be added to a basic system: two additional
blocks for SIGMA 9 and SIGMA 9 Model 2, and three

4 Optional Equipment

additional blocks for SIGMA 9 Model 3, for a total of
four register blocks per system.

ADDITIONAL REAL-TIME CLOCKS

Two additional real-time clocks (called counters 1 and 2)
can be added to any basi c system giving a total of four,
independent, real-time clocks. Counters 1 and 2 can be
individually set to one of four manually switchable fre
quencies: the commercial line frequency, 500 Hz, 2000 Hz,
or a user-supplied extemal system that may be different for
each counter.

PRIORITY INTERRUPT SYSTEM

When fully expanded by the addition of one or more inter
rupt control chassis, this system provides 224 external prior
ity interrupt levels. Each level can be individually armed
or disarmed and enabled or disabled under program control.

ALTERNATE BUS

In a given system, the CPU and Input/Output Processors
(lOPs) are linked by one trunk-tail control bus (processor
bus). See Figure 1 in Chapter 2. The alternate bus pro
vides a duplication of that processor bus for multi-CPU
configurations, and allows all system resources to be di
vided among the CPUs. Moreover, the alternate bus al
lows the system to be manually partitioned so that a faulty
unit can be diagnosed and repaired while the rest of the
system continues normal operation or a separate operation.

MEMORY RECONFIGURATION CONTROL UNIT

This option (standard on SIGMA 9) provides the capability
of remotely controlling memory unit starting addresses, in
terleave modes, and port inhibit for each of the ports in any
memory unit. These actions are accomplished via toggle
switches on a memory reconfiguration control panel mounted
in the CPU cabinet.

MEMORY EXPANSION

SIGMA 9 memory size is expandable in a specific manner
to a maximum of 512K words. Expansion proceeds in
16K word increments from 64K words to 128-1< words, in
32K word increments from 128K words to 256K words, and
in 64K word increments from 256K words to 512K words
(where K = 1024).

SIGMA 9 Model 2 and SIGMA 9 Model 3 memories are ex
pandable in increments of 32K words (one memory unit) to a
maximum of 256K words for SIGMA 9 Model 2 and 512K words
for SIGMA 9 Model 3. Each added memory unit includes
two memory access ports.

90 17 33C-1 (4/74)

MEMORY ACCESS PORT EXPANSION

This option provides additional access paths to each memory
unit in the system. Each processor (CPU, MIOP, HSRIOP,
or other) requires its own bus to memory, and each memory
unit requires a unique access path for each bus. One to
10 memory access ports can be added to each memory unit
to enable the multiple-access memory to accept additional
memory buses.

MEMORY-TO-MEMORY MOVE

This option permits information in main memory to be relo
cated to another area in main memory at high data rates.
The move operation is initiated by the CPU and then pro
ceeds independently. Data chaining may be used; thus the
informati on involved in the move need not be in contiguous
areas. The move operation proceedsautomaticallyata prior
ity lower than that of any peripheral device attached to the
MIOP (channel A). The move operation is controlled on the
basis of a word count, that when reduced to zero, can by pro
gram decision cause an interrupt signal to be sent to the CPU.

This option uses dedicated subchannels 8 and 9. Thus chan
nel A must haveat least 16 subchannels as a prerequisite.

MIOP CHANNEL A EXPANSION

MIOP Channel A can be expanded in increments of eight
subchannels to comprise a maximum of 24 subchannels.

MIOP CHANNEL B ADDITION

Channel B is an optional addition to an MIOP. Channel B
is intended for use in applications where the peripheral de
vices to be attached to a system exceed 100 percent of the
available data transfer capabil ity of the MIOP with chan
nel A only. Channel B includes conflict-resolving circuitry
that allows it to share both the basic control circuitry of
the MIOP as well as the memory bus.

Channel B provides the control necessary to operate eight
peripheral devices simultaneously; that is, Channel B in
cludes eightsubchannels and is notexpandable. Multiple
device controllers may be attached to these subchannels.
Channel B provides full capability for data and command
chaining.

HIGH-SPEED RAD INPUT/OUTPUT PROCESSOR

This option combines the functions of an IOPand controller
to provide sequencing control and I/O data transmissions
for as many as four Model 7212 High-Speed Rapid Access
Data (RAD) units. I/O transmissions are fully buffered and
checked for parity. All I/O operations proceed independ
ently of the CPU once initiated by the CPU. The HSRIOP
can handle very high data rates. Transmission at the rate
of one 32-bit (plus one parity bit) word per microsecond
is obtainable.

90 17 33C-l{4/74)

When more than one Model 7212 high-speed RAD is attached
to a HSRIOP, they are treated as distinct units and are not
considered contiguous in the programming sense. Xerox
standard software assumes all lOPs go to all of memory.

Dedicated space in a basic system is available for one
HSRIOP. Additional HSRIOPs can be provided in cabinets
adjacent to memory.

FOUR-BYTE INTERFACE FEATURE

This option expands the bandwidth capability of the MIOP
channels (A and B); one Four-Byte Interface Feature is re
quired for each channel. This option also reduces the
bandwidth consumed by some high-speed peripherals. It
can also be used in systems applications where high-speed,
word-oriented data are to be handled, and CPU performance
and economy are important.

External peripheral devices capable of transferring four
bytes at a time can, by program decision, sense that this
feature is installed in the channels and request that data be
transmitted four bytes in parallel. The operation of byte
oriented devices is not affected by the installation of this
feature.

GENERAL CHARACTERISTICS

(In the remainder of this manual, "SIGMA 9" refers to all
three systems: SIGMA 9, SIGMA 9 Model 2, and SIGMA 9
Model 3. When the three systems differ in respect to a par
ticular feature or capability, the discrepancy is noted.)

A SIGMA 9 computer system has features and operating
characteristics that permit efficient functioning in general
purpose, multiprocessing, time-sharing, real-time, and
multiusage environments:

• Word-oriented memory (32-bit word plus parity bit)
that can be addressed and altered as byte (a-bit),
halfword (2-byte), word (4-byte), and doubleword
(a-byte) quantities.

• Memory expandable to 512K words for SIGMA 9 and
SIGMA 9 Model 3, and to 256K words for SIGMA 9
Model 2 (where K = 1024).

• Direct addressing capabi/ ity (real extended mode) of
entire memory.

• Indirect addressing with or without postindexing.

• Displacement index registers, automatically self
adjusting for all data sizes.

• Immediate operand instructions for greater storage
effi ci en cy and increased speed.

General Characteristics 5

• General-purpose registers, expandable to 64 (in
blocks of 16) for addressing, indexing, and accumu
lating. Multiple registers permit effective use of small,
high-speed memories.

• Hardware memory mapping that virtually eliminates
memory fragmentation and provides dynami c program
relocation.

• Four modes of memory access protection for system and
information security and protection.

• Memory write protection to prevent inadvertent de
struction of critical areas of memory.

• Watchdog timer to assure nonstop operation.

• Rea I-time priority interrupt system with automati c
identifi cation and priority assignment, fast response
time, and as many as 224 extemal interrupt levels
that can be individually armed, enabled, and trig
gered by program control.

• Instructions with long execution times can be inter
rupted to guarantee response to interrupts.

• Automatic traps for error or fault conditions, with mask
ing capability and maximum recoverabil ity, under
program control.

• Power fail-safe for automatic shutdown and resumption
of processing in event of power failure.

•

•

•

6

Multiple interval timers with a choice of resolutions
for independent time bases.

Privileged instruction logic for program integrity in
mul tiusage environments.

Complete instruction set that includes:

• Byte, halfword, word, and doubleword operations.

• Use of all memory-referencing instructions for
register-to-register operations, with or without
indirect addressing and postindexing, and within
normal instruction format.

• Multiple register operations.

• Fixed-point integer arithmetic operations in
halfword, word, and doubleword modes.

• Floating-point hardware operations in short and
long formats with signifi cance, zero, and nor
malization control and checking, all under full
program control.

• Full complement of logical operations (AND, OR,
exclusive OR).

• Comparison operations, including compare be
tween limits (with limits in memory or in registers).

General Characteristics

• Call instructions that permit up to 64 dynamically
variable, user-defined instructions, and allow a
program access to operating system functions with
out operating system intervention.

• Decimal hardware operations, including arith
metic, edit, and pack/unpack (not available on
SIGMA 9 Model 3).

• Push-down stack operations (hardware imple
mented) of single or multiple words, with auto
matic limit checking, for dynamic space allo
cation, subroutine communication, and recursive
routine capability.

• Automatic conversion operations, including binary/
BCD and any other we ighted-number systems.

• Analyze instruction that facilitates effective ad
dress computation.

• Interpret instruction that increases speed of inter
pretive programs.

• Shift operations (left and right) of word or double
word, including logical, circular, arithmetic,
searching shift, and floating-point modes.

• Built-in reliability and maintainability features (see
Appendix D) that include:

• Extensive error logging. When a fault is detected,
system status and fault information are available
for program retrieval and logging for subsequent
analysis.

• Full- parity checking on all data and addresses com
municated in either direction on buses between
memory units and processors, providing fault de
tection and location capabil ity to permit the op
erating system or diagnostic program to quickly
determine a faulty unit.

• Address stop feature that permits operator or main
tenance personne I to:

Stop on any instruction address.

Stop on any memory reference address.

Stop when any word in a selected page of
memory is referenced.

• Programmable "snapshot" registers that enable
diagnostic routines to compare contents of a snap- \
shot register with known correct information, thus
accurately determining system fault conditions.

• CPU traps that provide for detection of a variety
of CPU and system fault conditions and are designed
to enable a high degree of system recoverability.

90 17 33C-1 (4/74)

• Partitioning features that enable system recon
figuration. SIGMA 9 units can be partitioned
from the system by selectively disabling them
from buses. Thus, faulty units or an entire sub
system, consisting of a CPU, memory unit, input/
output processor(IOP), and attached peripherals,
can be isolated from the operational system to
enable diagnosis and repair of a faulty unit while
the primary system continues operation.

• Independently operating I/O system with the following
features:

• Direct input/output (READ DIRECT, WRITE DIRECT)
for transfer of 32-bit words between the specified
general register and an external device; a 16-bit
address is transferred for selection and control pur
poses; and each transfer is under direct program
control.

• Up to eleven I/O processors (restricted only by
memory access port I imitations).

• Multiplexor I/O processors (MIOP) with dual chan
nel capabil ity, providing for simultaneous oper
ation of up to 24 devices on one channel, and
concurrently, simultaneous operation of eight de
vices on the other channel.

• High-speed Rapid Access Data I/O Processor
(HSRIOP) for use with high-speed RAD storage
units, allowing data transfer rates of up to three
mill ion bytes per second.

• Both data and command chaining, for gather-read
and scatter-write operations.

• Comprehensive arrayof modular software that is upward
program compatible with SIGMA 5-9 computers:

• Expands in capability and speed as system grows.

• Operating systems: Control Program Five (CP-V) -
available only on SIGMA 9 and SIGMA 9 Model 2,
and Control Program Real-Time (CP-R). The
Batch Processing Monitor (BPM), and Batch Time
Sharing Monitor (8TM) are available upon user
request.

• Language processors on CP-V that include: Ex
tended FORTRAN IV, ANS COBOL, BASIC,
FLAG, APL, and Meta-Symbol; also, utilities
and applications software for both commercial and
scientific users, e.g., Transaction Processing (TP),
Extended Data Management system (EDMS), Gen
eralized Sort and Merge, Manage, Simulation
Language (SL-l), General Purpose Discrete Sim
ulation package (GPDS), Circuit Analysis Systems
(CIRC-AC and CIRC-DC), and Document Creation
and Editing System (TEXT).

90 1733C-1(4/74)

• Language translators on CP-R that include: Symbol,
Ma cro-Symbol, Xerox Assembl y Program (A P), Ex
tended FORTRAN IV-H, Extended FORTRAN IV,
and Simulation Language (SL-l).

• Standard and special-purpose peripheral equipment
including:

• Rapid Access Data (RAD) files: Capacities to
6.2 million bytes per unit; transfer rates of three
million bytes per second; average access time of
17 milliseconds.

• Magnetic tape units: 7-track and 9-track systems,
IBM-compatible; high-speed units operating at
150 inches per second with transfer rates up to
240,000 bytes per second; and other units oper
ating at 75 inches per second with transfer rates
up to 120,000 bytes per second andat 37.5 inches
per second with transfer rates up to 20,800 bytes
per second.

• Displays: Graphic display has standard character
generator, vector generator, and closeups, as well
as light pen, and alphanumeric/function keyboard.

• Card equipment: Reading speeds up to 1500 cards
per minute; punching speeds up to 300 cards per
minute; intermixed binary and EBCDIC card codes.

• Line printers: Fully buffered with speeds up to
1500 I ines per minute; 132 print positions with
64 characters.

• Keyboard/printers: 10 characters per second; also
available with paper tape reader (20 characters
per second) and punch (10 characters per second).

• Paper tape equipment: Readers, punches, and
spoolers.

• Graph plotters: Digital incremental, providing drift
free plotting in two axes in up to 300 steps per second
at speeds from 30 mi II imeters to 3 inches per second.

• Data communications equipment: Complete line of
character-oriented and message-oriented equipment
to connect remote user terminals (including remote
batch) to the computer system via common carrier
lines and local terminals directly.

• Removable disk units: Capacities to 1290 million
bytes of storage; transfer rates of 806K bytes per
second; average seek access time of 30 micro
seconds; average rotational latency time of 8.6
microseconds.

• Cartridge disk units: Capacities to 18.4 million
bytes; effective bit transfer rates of 2,500,000
bits per second; average seek access time of 38
microseconds; average rotational latency of
12.5 microseconds.

General Characteristics 7

GENERAL -PURPOSE FEATURES

General-purpose computing applications are characterized
by emphasis on computation and intemal data handling.
Many operations are performed in floating-point format and
on strings of characters. Other typical characteristics in
clude decimal arithmetic operations, binary to decimal
number conversion (for printing or display), and high system
input/output transfer rates. The SIGMA 9 computer systems
include the following general-purpose features.

Floating-Point Hardware. Floating-point instructions are
available in both short (32-bit) and long (64-bits) formats.
Under program control, the user may select optional zero
checking, normalization, and significance checking (which
causes a trap when a post-operation shift of more than two
hexadecimal places occurs in the fraction of a floating
point number). Significance checking permits use of the
short floating-point format for high processing speed and
storage economy and of the long format when loss of signifi
cance is detected.

Decimal Arithmetic Hardware. (Not available on SIGMA 9
Model 3.) Decimal arithmeti c instructions operate on up
to 31 digits plus sign. This instruction set includes pack/
unpack instructions for converting to/from the packed format
of two digits per byte, and a general ized edit instruction
for zero suppression, check protection, and formatting,
with punctuation to display or print it.

Indirect Addressing. Indirect addressing facilitates table
linkages and permits keeping data sections of a program
separate from procedure sections for ease of maintenance.

Displacement Indexing. Indexing by means of a flfloatingfl
displacement permits accessing a desired unit of data with
out considering its size. The index registers automatically
align themselves appropriately; thus, the same index register
may be used on arrays with different data sizes. For ex
ample, in a matrix multiplication of any array of full word,
single-precision, fixed-point numbers, the results may be
stored in a second array as double-precision numbers, using
the same index quantity for both arrays. If an index register
contains the value of k, then the user always accesses the
kth element, whether it is a byte, halfword, word, or
doubleword. Incrementing by various quantities according
to data size is not required; instead, incrementing is always
by units in a continuous array table regardless of the size of
data element used.

Instruction Set. More than 100 major instructions permit
short, highly optimized programs to be written, which are
rapidly assembled and minimize both program space and ex
ecution time.

Translate Instruction. (Not available on SIGMA 9 Model 3.)
The translate instruction permits rapid translation between

a General-Purpose Features/Mu I tiprocessing Featu res

any two a-bit codes; thus data from a variety of input
sources can be handled and reconverted easily for output.

Conversion Instructions. Two generalized conversion in
structions provide for bidirectional conversions between
internal binary and any other weighted number system,
including BCD.

Call Instructions. These four instructions permit handling
up to 64 user-defined subroutines, as if they were built-in
machine instructions, and gaining access to specified op
erating system services without requiring its intervention.

Interpret Instruction. The Interpret instruction simplifies
and speeds interpretive operations such as compilation,
thus reducing space and time requirements for compilers
and other interpretive systems.

Four-Bit Condition Code. This simplifies the checking of
results by automatically providing information on almost
every instruction execution, including indicators for over
flow, underflow, zero, minus, and plus, as appropriate,
without requiring an extra instruction execution.

Multi lexor In ut/Out ut Processor (MIOP). Once initial
ized, I 0 processors operate independently of the CPU,
leaving it free to provide faster response to system needs.
The MIOP requires minimal interaction with the CPU by using
I/O command doublewords that permit both command chain
ing and data chaining without intervening CPU control. I/O
equipment speeds range from slow rates involving human in
teraction (teletypewriter, for example) to transfer rates of
rotatingmemorydevices of up to one miflion bytes per sec
ond. Manydevices can be operated simultaneously.

High-Speed RAD Input/Output Processor (HSRIOP). The
HSRIOP is similar to the MIOP in regard to interaction with
the CPU. Once initiated, I/O operations proceed inde
pendently of the CPU. This I/O processor sustains data
transfer rates of up to three million bytes per second. As
many as four Model 7212 high-speed RAD units may be con
nected to an HSRIOP, with one unit operating at a time.

Direct Input/Output (DIO). DIO facilitates in-line pro
gram control of asynchronous or special-purpose devices.
This feature permits information to be transmitted directly
to or from general-purpose registers so that an I/O channel
need not be used for relatively infrequent transmissions.

MULTIPROCESSING FEATURES

SIGMA 9 is designed to function as a shared-memory multi
processor system. It can contain as many as four central
processing units and as many as 11 input/output processors

90 17 33C-1 (4/74)

(the sum of both types of processors is restri cted by the
maximum memory access port limitation of 12). All pro
cessors in a SIGMA 9 system address memory uniformly.

This section describes the major features of SIGMA 9 that
allow expansion from a monoprocessor to a multiprocessor
system.

Multiprocessor Interlock. In a multiprocessor system, the
central processing units (CPUs) often need exclusive con
trol of a system resource. This resource may be a region
of memory, a particular peripheral device or, in some
cases, a specific software process. SIGMA 9 has a spe
cial instruction to provide this required multiprocessor
interlock. The special instruction, LOAD AND SET, un
conditionally sets a "1" bit in the sign position of the ref
erenced memory location during the restore cycle of the
memory operation. If this bit had been previously set by
another processor, the interlock is said to be "set" and the
testing program proceeds to another task. On the other
hand, if the sign bit of the tested location is a zero, the
resource is allocated to the testing processor, and simul
taneously the interlock is set for any other processor.

Homespace. Since all processors in a multiprocessor system
address memory in a uniform manner, it is necessary to re
tain a private memory that is unique to each processor for
its trap and interrupt locations, I/O communication loca
tions, and other dedicated locations. This private memory
is called Homespace and consists of 1,024 words for each
CPU. Each Homespace region begins with real address
zero. The implicitly assigned trap locations, interrupt lo
cations, and lOP communication locations, plus the 16 lo
cations that are reserved for the registers, occupy the first
320 locations of Homespace. The remaining words in the
Homespace region can be used as private, independent
storage by the CPU.

Multiport Memory System. SIGMA 9has growth capability
of up to 12 ports per memory unit. A basic memory unit con
sists of two banks of 16K words each, in which each bank
can be concurrently operating when addressed by two of the
possible 12 ports.

The system architecture allows flexibil ity in growth pattems
and provides large amounts of memory bandwidth, essential
to multiprocessor systems.

Manual Partitioning Capability. SIGMA 9 has manual
partitioning capability for all system units. Thus, be
sides its primary advantage of increased throughput capa
bility, a secondary advantage of a multiprocessor system
is its fail-soft ability. Any SIGMA 9 unit can be par
titioned by selectively disabling it from the system buses.
Faulty units are thus isolated from the operational system.
Reenabling the connection altows repaired units to be re
tumed to service.

90 17 33C-l(4/74)

Multiprocessor Control Function. A multiprocessor control
function is provided on all multiprocessor systems. This
function provides three basi c features:

1. Control of the External Direct Input/Output bus (ex
ternal DIO), used for controlling system maintenance
and special purpose units such as A/D converters.

2. Central control of system partitioning.

3. Interprocessor interrupt connection, allowing one pro
cessor to directly signal anotherprocessor that an action
is to be taken.

Shared Input/Output. Provisions have been made in a
SIGMA 9 multiprocessor system for any CPU to direct I/O
actions to any I/O processor. That is, any CPU can issue an
SIO, no, TDV, or HIO instruction to begin, stop, or test
any I/O process. The end-action sequence of the I/O pro
cess however is directed to one of the possible four CPUs.
That feature (accomplished by setting a pair of configura
tion control switches) allows dedicating I/O end-action
tasks to a single processor and avoids conflict resolution
problems.

TIME -SHARING FEATURES

Time-sharing is the ability of a system to share its total
resources among many users at the same time. Each user
may be performing a different task (requiring a different
share of the available resources). Some users maybe on-line
in an interactive, "conversational" mode with the computer
while other users may be entering work to be processed that
requires only final output.

SIGMA 9 computer systems provide the time-sharing fea
tures described below.

Rapid Context Saving. When changing from one user to
another, the operating environment can be switched quickly
and easily. Stack-manipulating instructions permit storing
in a push-down stack of 1 to 16 general-purpose registers
by a single instruction. Stack status is updated automat
ically and information in the stack can be retrieved when
needed (also, by a single instruction). The current pro
gram status doubleword (PSD), which contains the entire
description of the current user's environment and mode of
operation, can be stored anywhere in memory and a new
PSD loaded, all with a single instruction.

Multiple Register Blocks. The optional availability of as
many as four blocks of 16 general-purpose registers improves
response time by reducing the need to store and load regis
ter blocks. A distinct block can be assigned for different
functions as needed; the program status doubleword auto
matically selects the applicable reg ister block.

Time-Sharing Features 8-1

User Protection. The slave mode feature restricts each
user to his own set of instructions while reserving for the
operating system certain "privi leged" (master mode) in
structions that could destroy another user's program if used
incorrectly. Also, a memory access-protection system pre
vents a user from accessing any storage areas other than
those assigned to him. It permits him to access certain
areas for reading only, such as those containing public
subroutines, while preventing him from reading, writing,
or accessing instructions in areas set aside for other users.

Storage Management. SIGMA 9 memory is available in
sizes from 64K (65,536) words to 512K (524,288) words,
SIGMA 9 Model 2 from 32K (32,768) words to 256K
(262,144) words, and SIGMA 9 Model 3 from 32K words
to 512K words to provide the capacity needed while as
suring the potential for expansion. To make effi cient use of
available memory, the memory map hardware permits storing
a user's program in fragments as small as a page of 512 words
wherever space is available; yet all fragments appear as a
single, contiguous block of storage at execution time. The
memory map also automatically handles dynamic program
relocation so that the program appears to be stored in a
standard wayat execution time, even though it mayactually
be stored in a different set of locations each time it is brought
into memory. The memory map for SIGMA 9 can operate
in a compatible SIGMA 6 or 7 mode in addition to pro
viding the abil ity to locate any 128K-word (131 ,072) virtual
program in the SIGMA 9's logical addressing space of four
million words. Thus, the system can always address a vir
tual memory of 128K words regardless of physical memory
size.

Input/Output Capability. Time-sharing input/output re
quirements are handled by the same general-purpose input/
output capabilities described under "General-Purpose
Features" .

Nonstop Operation. A "watchdog" timer assures that the
system continues to operate even in case of halts or delays
due to failure of special I/O devices. Multiple real-time
clocks with varying resolutions permit independent time
bases for flexible allocation of time sl ices to each user.

REAL-TIME FEATURES

Real-time applications are characterized by a need for
(1) hardware that provides quick response to an external
environment, (2) speed great enough to keep up with the
real-time process itself, and (3) sufficient input/output
flexibility to handle a wide variety of data types at vary
ing speeds. The SIGMA 9 systems include provisions for
the following real-time computing features.

Multilevel, Priority Interrupt System. The real-time
oriented SIGMA 9 system provides quick response to inter
rupts by means of as many as 224 external interrupt levels.

8-2 Real-Time Features

The source of each interrupt is automatically identified
and responded to according to its priority. For further
flexibil ity, each I evel can be individually disarmed (to
discontinue input acceptance) and disabled (to defer re
sponses). Use of the disarm/disable feature makes pro
grammed dynami c reassignment of priorities quick and easy,
even while a real-time process is in progress. In estab
I ishing a configuration for the system, each group of as
many as 16 interrupt levels can have its priority assigned in
different ways to meet the specific needs of a problem; the
way interrupt levels are programmed is not affected by the
pri ori ty assignment.

Programs that deal with interrupts from specially designed
equipment often require checkout before the equipment is
actually available. To permit simulating this special equip
ment, any extemal SIGMA 9 interrupt level can be "trig
gered" by the CPU through execution of a single instruction.
This capability is also useful in establishing a modified
hierarchy of responses. For example, in responding to a
high-priority interrupt, after the urgent processing is com
pleted, it may be desirable to assign a lower priority to the
remaining portion so that the interrupt routine is free to
respond to other critical stimuli. The interrupt routine can
accomplish this by triggering a lower-priority level, which
processes the remaining data only after other interrupts have
been handled.

READ DIRECT and WRITE DIRECT instructions {described in
Chapter 3) allow the program to completely interrogate the
condition of the interrupt system at any time and to restore
that system at a later time.

Nonstop Operation. When connected to special devices
(on a ready/resume basis), the computer may be excessively
delayed If the specific device does not respond quickly. A
built-in watchdog timer assures that a SIGMA 9 computer
cannot be delayed for an excessive length of time.

Real-Time Clocks. Many real-time functions must be timed
to occur at specific instants. Other timing information is
also needed - for example, elapsed time since a given
event, or the current time of day. SIGMA 9 can contain
as many as four real-time clocks with varying degrees of
resolution to meet these needs. These clocks also al low
easy handl ing of separate time bases and relative time
priorities.

Rapid Context Switching. When responding to a new set
of interrupt-initiated circumstances, a computer system
must preserve the current operating environment for con
tinuance later while setting up the new environment. This
changing of environments must be done quickly with a
minimum of "overhead" time costs. In the SIGMA 9
system, each one of as many as four blocks of general
purpose arithmetic registers can be assigned to a specific
environment. All relevant information about the current
environment (instruction address, current general register

90 17 33C-l{4/74)

block, memory-protection key, etc.) is kept in a 64-bit
program status doubleword (PSD). A single instruction
stores the current PSD anywhere in memory and loads a new
one from memory to establish a new environment, which
includes information identifying a new block of general
purpose registers. A SIGMA 9 system can thus preserve
and change its operating environment completely through
the execution of a single instruction.

Memory Protection. Both foreground (real-time) and back
ground programs can be run concurrently in a SIGMA 9
system because.a foreground program is protected against
destruction by an unchecked background program. Under
operating system control, the memory access-protection
feature prevents memory access for specified combina
tions of reading, writing, and instruction acquisition.

Variallie Precision Arithmetic. Much of the data encoun
tered in real-time systems are 16 bits or less in size. To
process that data effi ciently, SIGMA 9 provides halfword
arithmeti c operations in addition to fullword operations.
Doubleword arithmetic operations (for extended precision)
are also included.

Direct Data Input/Output. For handling asynchronous I/O,
a 32-bit word can be transferred directly to or from a
general-purpose register so that an I/O channel need not
be occupied with relatively infrequent andnonperiodic
transmissions.

MULTIUSAGE FEATURES

As implemented in the SIGMA 9 system, "multiusage" com
bines two or more computer application areas. The most
difficult general cornpu.ting problem is the real-time appli
cation because of its severe requirements. Similarly, the

. most difficult multiusage problem isa time-sharing applica
tionthat includes one or more real-time processes. Because

90 17 33C"; 1(4/74)

the SIGMA 9 systems have been designed on a real-time
base, they are uniquely qualified for a mixture of applica
tions in a multiusage environment. Many hardware features
that prove valuable for certain application areas are equally
useful in others, although in different ways. This multiple
capability mokes SIGMA 9 systems particularly effective in
multiusage applications. The major SIGMA 9 multiusage
computer features are described below.

Priority Interrupt. In a multiusage environment, many
elements operate simultaneously and asynchronously. Thus,
an efficie~t priority interrupt system is essential. The
priority interrupt system allows the computer system to
respond quickly and in proper order to the many demands
made on it, with attendant savings in improved resource
effi ci ency.

Quick Response. The many features that combine to pro
duce a quick-response system (multiple register blocks,
rapid context saving, multiple push-pull operations) bene
fit all users because more of the system1s resources are
available at any instant for useful work.

Memory Protection. The memory protection features that
protect each user from every other user also guarantee the
integrity of programs essential to critical real-time
applications.

Input/Output. Because of the wide range of capacities and
speeds,the SIGMA 9 I/O system simultaneously satisfies the
needs of many different application areas economi cally,
both in terms of equipment and programming.

Instruction Set. The large SIGMA 9 instruction set provides
the computational and data-handling capabilities required
for widely differing application areas; therefore, each
user1s program length and running time is decreased, and
the speed of obto i n i ng resu Its is in creased.

Multiusage Features 8-3

2. SIGMA 9 SYSTEM ORGANIZATION

The primary elements of a typical SIGMA 9 computer
system, as illustrated in Fi gure 1, are central processor
units, memory units, and input/output processors. These
elements permit the total computer system to be viewed
as a group of program-control I eel subsystems communi
cating with a common memory. Each subsystem operates
asynchronously and semi-independently, automatically
overlapping the operation of the other subsystems for
greater speed (when circumstances permit). A CPU sub
system primarily performs overall control and data re
duction tasks while each lOP (MIOP or HSRIOP)
subsystem performs the tasks associated with the exchange
of digital information between the main memory and
selected peripheral devices. A basic system may be
expanded by increasing the number of memory units (up
to 16), increasing the number of lOPs (up to 11, in
cluding MIOPs and HSRIOPs), or by increasing the num
ber of central processors (up to 4) ..

CENTRAL PROCESSING UNIT

This section describes the organization and operation of the
SIGMA 9 central processing unit in terms of instruction
and data formats, information processing, and program
control. Basically, a SIGMA 9 CPU consists of two or more
fast memories and an arithmetic and control unit as illustrated
in Figure 2.

GENERAL REGISTERS

An integrated-circuit memory, consisting of sixteen 32-bit
general-purpose registers, is used within the SIGMA 9
CPU. These 16 registers of fast memory are referred to as
a register block. A SIGMA 9 system may contain up to
4 register blocks. A 4-bit control field (called the reg
ister block pointer) in the Program Status Doubleword (PSD)
selects the block currently available to a program. The
16 general registers selected by the register block pointer
are referred to as the current register block. The register
block pointer can be changed when the computer is in the
master or· master-protected mode.

Each general register in the current register block is identi
fied by a 4-bit code in the range 0000 through 1111
(0 through 15 in decimal, or X'D' through X'F' in hexa
decimal notation). Any general register may be used as a
fixed-point accumulator, floating-point accumulator,
temporary data storage location, or to contain control in
formation such as a data address, count, pointer, etc.
General registers 1 through 7 may be used as index regis
ters, and regi sters 12 through 15 may be used as a dec imal
accumulator capable of containing a decimal number of
31 digits plus sign. Registers 12 through 15 are always
used when a decimal instruction is executed.

MEMORY CONTROL STORAGE

The CPU has three high-speed integrated-circuit memories
for storage of a memory map, memory access protection
codes associated with the memory map, and memory write
protection codes. The contents of these memories can only
be changed when the computer is in the master or master
protected mode.

Memory Map. Two terms are essential to a proper under
standing of the memory mapping concept: virtual address
and actual address.

A virtual address is a value pertaining to the logical space
used by a machine-level program, and which designates
the location of an instruction, the location of an element
of data, or the location of a data address (indirect address).
It may also be an explicit quantity. Normally, virtual
addresses are derived from programmer-supplied labels
through an assembly (or compilation) process followed by a
loading process. Virtual addresses may also be computed
during a program's execution. Thus, virtual addresses in
clude all instruction addresses, data addresses, indirect
addresses, and addresses used as counts within a stored pro
gram, as well as those addresses computed by the program.

An actual address is the address a processor sends to the
memory unit (memory address register) to access a specific
memory location for storage or retrievQI of information.
Thus, actual addresses are fixed and dependent on the
wired-in hardware. (See "Main Memory" for furtherdetails.)

The memory map feature provides for dynamic program re
location into discontinuous segments of memory. When the
memory map is in effect, any program may be segmented
.into an integral number of 512-word pages and distributed
throughout memory in whatever pages of space are avai lable.
Thus the memory map transforms virtual addresses, as seen
by the individual program, into actual addresses, as seen
by the memory system.

When the memory map is not in effect, as determined by
the memory map control bit in the program status double
word, all virtual address values above 15 are used by the
memory as actual addresses. Virtual addresses in the range
o through 15 are always used by the CPU as general register
addresses rather than as memory addresses. Thus, for exam
ple, if an instruction uses a virtual address of 5 as the
address where a result is to be stored, the result is stored
in general register 5 in the current register block instead
of in memory location 5.

When the computer is operating with memory map, virtual
addresses in the range 0 through 15 are still used as general
register addre~ses. However, all virtual addresses above 15
are transformed into actual addresses, by replacing the high
order eight bits of the virtual address with a value obtained
from the memory map. (The memory map replacement pro
cess is described in the section "Memory Address Control".)

SIGMA 9 System Organization 9

Memory Unit

• 32,768 words
.900 ns
• Dual banks
• Up to 12 ports

t Memory bus

Memory Unit

• 32,768 words
• 900 ns
• Dual banks
• Up to 12 ports

Processor bus

r---------,
I Memory Unit I

: • 32, 768 words ~
1.900ns I
: • Dual banks :
I • Up to 12 ports •
L ____ I"- __ "..~

I~ j ~

Memory bus

Memory bus

Separate memory bus 3.
,~ ,

~-""''''''-C-PU----'''' .- -~- ... ~-, r--- -----,
MIOP

8 sub- 8 sub- ~ 8 sub- I 8 sub
channels channels channels I channels

(option) (option) ~
~ ____ ~ ______ -L ______ ~I-_~ __

Channel At Chan
nel BIt

-
t4 byte interfacej~

I/O bus
r

.-- i.---l
I Multi- I
~ device I
i controller I i __ ... __ J

I~

option

'. l

r
'- --""'! ~....-J~-.

1./0 device; i I/O device I
•...• I __ ~_J ! __ 1:. __ ..

I/O bus

__ ,--1 __ ,
: Single I
I device I

l~:'Itr:I:J

..-- ---.
• I/O devi ce I L..: _____ "

• Decimal arithmetic unit
• Memory protect
• Memory map
• Memory access protect
• 2 register blocks
• 2 clocks
• Power fa ii-safe
• Floating-point arithmetic
• External interface
• 8 interrupt levels
• Direct I/O

, .--------.
I, Single I

d • I I eVlce I

1. ~C:ltro~:!

1-- --.,

!Y3_d=.v:j
.. __ .i .. _

I Removable •
disk unit I

. • 2 spindles L ___ -=---:.1

Figure 1. A Typical SIGMA 9 System

10 Central Processing Unit

I ... I I
• I I

• I ! • I High-Speed
I I RAD lOP

•• • i I •
I I •

MIOP

... ---r---- J L __ --:_J
+ I/O bus

To associated I/O
device controllers

•• r--- - --=---,
I Disk unit I
• control I er I
I I
• • 4 byte I
I interface. L_-X-_.J
.. ----- ---J • Removable

disk unit

l~~

7212 14-

CPU FAST MEMORY

GENERAL REGISTER BLOCK (TYPICAL)

o~I ______________ ~
1 ItI1flI1Il1IltII1Il1l1lll~~ll:1:l~lfIl1l1l1ll1~\lMII1lll\Ill\~\llIIItItl~lll~~1

2 IIII1l\ll~\~lIItJJIl\tl1l1~lllIl1l1JIlI1lII1IllIl1lI11I1Il1IIIlIIli

3 [llllI!I1JIIljlIjJ~jItJlj!j!lIlI1l:lfjIIIIl:Il:l:IIl:IIl\l\i\:lI:\:\:I]
Index
Registers

ARITHMETIC AND CONTROL UNIT

INSTRUCTION REGISTER

o Indirect Address,Flag
o

III 1111 I Operation Code Field
1 7

OJ]] General Register Designator
8 11

[IIJ Index Register Designator
12 14

Reference Address Field

I1111111111I11111111
15 31

4 [111~111\\1\1~111\::1!11:11111I1IIfl::l:::::\11\11111:11!111\I:I11l1111IiI1l11I1l1ll\111111\lI1\11\\11Il:I1\i1i11

5 Ij11l1I\lliljjj\~jjilllj\jjjjjljjjjjjjj!j1\\\\j\\jl~11\~\~11111111~1111ijlljjl1jjjl1Ijlll111j\11\111\jlilIj11:11I\11\\1\1\i\111il1il

6 Ij1jllll11\\11Hl1~j~11\jl1\\i1i11I1!!ll!I\ljl\~ll1illIjllll111I1Irrl\!lrrljll\iI\!1!1~1!lIIljr:1

7 l!ljl~l~lll~l~lllII1!lIll1l~l\rlI1l1Jtl1l1l~llllIl1l1lllll~ll!llIll1lI~IIJl1ll1IIllIllI~L

~.,..---~
Memory

•

8~1 ______________ ~
91~ ______________ ~
10~1 ______________ ~
11 ~I ________________ ~

121~ ________________ __

131~ ________________ ~
14LI __________________ ~

15
~------------________ IJ

MEMORY CONTROL STORAGE

Memory Map

J-256 13-bit page addresses -J

Memory Access Protection

II I I J II I I I 1/ 111 $ ~"'-+-I""""II""""'II
1-- 256 2-bit access codes --I
Memory Write Protection

111111111 fIll I IS illIIJ
1- 256 2-bit write locks --I

31-digit
Decimal
Accumu
lator

II 0 Processors I
• I

I
Read/Write Direct

• I

I
~----------------tl Interrupts •

Priority Interrupt System I Write Direct
I

PROGRAM STATUS DOUBLEWORD

[ill Condition Code
o 3

ITO Floating-point Mode Control
5 7

o Master/Slave Mode Control
8

o Memory Map Control
9

OJ Arithmetic Trap Masks
1011 o ANSell Control
12 Instruction

................ .,.............-................. ..,....,...,.....,-.-.,....., Address

Id 1111 I II II 1111 I I I or
15 . 31 Extended

OJ Write Key
3435

ITJJ Interrupt Inhibits
37 39 o Mode Altered Control

40

III III I Extension Address
42 47

Displacement

IIIII1III Trapped Status Field
48 55

o:IIJ Register Block Pointer
56 59 o Register AI tered
GO

I

Figure 2. Central Processing Unit

Central Processing Unit 11

Memory Access Protection. When the computer is operating
in the slave or master-protected mode with the memory map,
the access-protection codes determine whether or not the
program may access instructions from, read from, or write
.into specific pages of the virtual address continuum (vir
tual memory). If the slave or master-protected mode pro
gram attempts to access a page of virtual memory that is
so protected, a trap occurs. (The access-protection codes
are described in the section" Memory Address Control".)

Memory Write Protection. The memory write-protection
feature operates independently of the memory map and ac
cess protection. The memory write-protection feature in
cludes the necessary integrated-circuit memory to provide
256 2-bit memory write locks. These locks operate in con
junction with a 2-bit field, called the write key, in the
program status doubleword. The locks and the keydetermine
whether any program may alter any word located within the
first 128K words (256 pages) of main memory. The write key
can be changed when the computer is in the master or master
protected mode. (The functions of the locks and key are
described in the section" Memory Address Control".)

COMPUTER MODES

A SIGMA 9 computer operates in either master, slave, or
master-protected mode. The mode of operation is deter-'
mined by three control bits in the program status double
word. (See "Program Status Doubleword".)

MASTER MODE

In this mode, the CPU can perform all of its control func'
tions and can modify any part of the system. The only re
strictions placed upon the CPUls operation in this mode
is that imposed by the wri te locks on protected pages
of memory. The Mode Altered control bit (PSD bit po
sition 40) must also be zero for the computer to operate
in a SIGMA 7-compatible master mode. It is assumed that
there is a resident operating system (operating in the master
mode) that controls and supports the operation of other pro
grams (which may be in the master, slave, or master
protected mode).

'SLAVE MODE

The slave mode of operation is the problem-solving mode of
the computer. In this mode, access protection codes applt
to the slave mode program if mapping is in effect, and all
IIprivileged li operations are prohibited. Privileged opera-

. tions are those relating to input/output and to changes in
the basic control state of the computer. AII:privileged
operations are performed in the master or master-protected
mode by a group of privileged instructions. Any attempt by
a program to execute a privileged instruction while the
computer is in the slave mode results in a trap. The mcister/
·slave mode control bit can be changed when the computer
is in the master or master-protected mode. However, a

'slave mode program can gain direct access to certain ex
ecutive program operations by means of call instructions

12 Central·Processing Unit

without requi ring executive program intervention. The
operations avai lable through call instructions are estab
I ished by the resident operating system.

MASTER-PROTECTED MODE

The master-protected mode of operation is a modification of
the master mode designed to provide additional protection
for programs that operate in the master mode. The master
protected mode can only occur when the CPU is operating
in the master mode with the memory mop in effect. In this
mode, a trap will occur to the memory protection violation
trap (Homespace location X1401

, with CC4 = 1), as it does
in all mapped slave programs, if a program makes a reference
to a virtual page to which access is prohibited by the cur
rent setting of the access protection codes.

INFORMAnON FORMAT

Nomenclature associated with digital information within the
SIGMA 9 computer system is based on functional and/or
physical attributes. A "word" of digital· information may
be either an instruction word or a data word.

The basic element of SIGMA 9 information is a 32-bit word,
in which the bit positions are numbered from 0 through 31,
as follows:

I : w~rd : I
0.1 2 314 5 6 78 9 10 1111213141516171819120 2122232425262)'12829 3031

A SIGMA 9 word can be divided into two halfwords (16 bits
each) in which the bit positions are numbered from 0 through
15, as follows:

A SIGMA 9 word can also be divided into four bytes (8 bits
each) in which the bit positions are numbered from 0 through
7, as follows:

Byte 1 Byte 2
2 3 4 5 2 3 4 5

Two S'IGMA 9 words can be combined to form a doubleword
(64 bits) in whi ch the bit positions are numbered from 0
through 63, as follows:

: Most Signif~~ant word: I
1 2 3 14 5 6 7 8 9 10 11 h2 13 14 15 16 17 18 19120 21 22 23 24 25 26 27128 29 30 31

I .: Least Significant word: I
3233 3435136 37 38 39 40 41 4243144 45 46 47 48 49 50 5ti52 53 54 55 56 57 58 59160 61 62 63

For fixed-point binary arithmetic, each element of
information represents numerical data as a signed integer
(bit 0 represents the sign, remaining bits represent the mag
nitude, and the'binary point is assumed to be just to the
right of the I east significant or rightmost bit). Negative
values are represented in two's complement form. Other
formats required for floating-point and decimal instructions
are described in Chapter 3.

INfORMATION BOUNDARIES

SIGMA 9 instructions assume that bytes, halfwords, and
doublewords are located in main memory according to the
following boundary conventions:

1. A byte is located in bit positions 0 through 7,
8 through 15, 16 through 23, or 24 through 31 of a
word.

2. A halfword is located in bit positions 0 through 15
or 16 through 31 of a word.

3. A doubleword is located so that bits 0 through 31 are'
contained within an even-numbered word, and bits 32
through 63 are contained within the next consecutive
(odd-numbered) word.

The various information boundaries are ill ustrated in
Figure 3.

INSTRUCTION REGISTER

The instruction register contains the instruction that is cur
rently being executed by the CPU. The format and fields
of the two general types of instructions (immediate operand
and memory-reference) are described below.

MEMORY-REFERENCING INSTRUCTIONS

Most SIGMA 9 CPU instructions make reference to an
operand located in main memory. The format for this type
of instruction i-s

i
Doubleword I

I

I Word {even address} Word (odd address) !
i Halfword 0 Halfword 1 Halfword 0 Halfword 1
I

: Byte 0 I Byte 1 Byte 21 Byte 3 Byte 0 I Byte 1 Byte 21 Byte 3

Bits

o

1-7

8-11

Description

Indirect addressing. Indirect addressing (one level
only) is performed if this bit position contains a 1 and
is not performed if this bit position contains a O.

Operation Code. This 7-bit field contains the
code that designates the operation to be per
formed. See the inside front and back covers
as well as Appendix B for complete listings of
operation codes.

R field. For most instructions this 4-bit field des
ignates one of 16 general registers of the current
register block as an operand source, result destina
tion, or both.

12-14 X field. This 3-bit field designates anyone of
general registers 1-7 of the current register block
as an index register. If X is equal to 0, indexing
will"not be performed; hence, register 0 cannot be
used as an index register. (See II Address Modifi
cation Examples" for a more complete description
of the SIGMA 9 indexing process.)

15-31 Reference Address. This 17-bit field normally
contains the reference address of the instruction
operand. Depending on the type of addressing
(real, real extended, or virtual) and address mod i
fication (direct/indirect or indexing) required,
the reference address is translated into an effec
tive virtual address. (See "Memory Reference
Addresses" for further details.)

IMMEDIATE OPERAND INSTRUCTIONS

Some SIGMA 9 CPU instructions are of the immediate
operand type, which is particularly efficient because the
required operand is contained within the instruction word.
Hence, memory reference, indirect addressing, and index
ing are not required.

Doubleword i
I
• .

Word {even address} Word (odd address) I
I

Halfword 0 Halfword 1 Halfword 0 Halfword 1 i
I

Byte oj Byte 1 Byte 2 J Byte 3 Byte 01 Byte 1 Byte 21 Byte 3 j

Figure 3. Information Boundaries

Central Processing Unit 13

Bits

o

1-7

8-11

12-31

Description

This bit position must be coded with a O. If this
bit is coded with a 1, the instruction is inter
preted as be ing nonex istent. (See "Trap System".)

Operation Code. This 7-bit field contains a code
that designates the operation that will be per
formed. When any immediate operand operation
code is encountered, the CPU interprets the con
tents of bits 12-31 of the instruction word as an
operand. Immediate operand operation codes are
as follows:

Operation
Code

X'02'

X'20'

X'21'

X'22'

X'23'

Instruction
Name

Load Cond itions and
Floating Control
Immediate

Add Immediate

Compare Immediate

Load Immed iate

Multiply Immediate

Mnemonic

LCFI

AI

CI

LI

MI

R field. This 4-bit field designates one of 16 gen
eral registers of the current register block. This
register may contain another operand and/or be
designated as the register in which the results of
th is operation will be stored or accumulated.

Operand. This 20-bit field contains the immedi
ate operand. Negative numbers are represented
in two's complement form. For arithmetic opera
tions, bit 12 (the sign bit) is extended (dupl i
cated) to the left through position 0 to form a
32-bit operand.

The byte-string instructions (described in Chapter 3) are
similar to immediate operand instructions in that they can
not be modified by indexing. However, the operand field
of byte string instructions contains a byte address displace
ment {or a byte address} that is a virtual address subject to
modification by the memory map. If a byte-string instruc
tion has a 1 in bit position 0, it is treated as a nonexistent
instruction by the computer.

MAIN MEMORY
This section describes the organization and operation of the
main memory and the various modes and types of addressing,
including indexing.

MEMORY UNIT

The main memory for SIGMA 9 is physically organized as a
group of "units". A memory un it is the smallest, logically

14 Main Memory

complete part of the system, and the smallest part that can
be logically isolated from the r~st of the memory system.
A memory unit always consists of two physical memory banks.
Both memory banks may be concurrently and asynchronously
operating. Each memory unit has a set of from 2 to 12
"ports" or access points that are common to both banks
within the unit; that is, all ports in a given memory unit
provide access to both banks within that unit.

MEMORY BANK

A memory bank is the basic functionally independent ele
ment of the memory system. It consists of magnetic storage
elements, drive and sense electron ics, control timing, and
data registers. A bank consistsof 16,384 memory locations.
Each location stores a 32-bit information word (instruction
or data), plus a parity bit. Associated with each memory
location (or word) is an "actual address".

MEMORY INTERLEAVING

Memory interleaving is a built-in hardware feature that
distributes sequential addresses into independently operating
memory banks. Interleaving increases the probability that
a processor can gain access to a given memory location with
out encountering interference from other processors.

Both banks within a unit may be interleaved two ways. For
example, in two-way interleaving, even addresses are
ass igned to bank A and odd addresses to bank B. Four-way
interleaving (the assignment of every fourth address to its
respective bank) may occur between two adjacent units.

MEMORY UNIT STARTING ADDRESS

Each memory unit in the SIGMA 9 system is provided its
individual identity by means of starting address switches.
These switches define the range of addresses to which the
unit responds when servicing memory requests. All ad
dresses, including the starting address, for a given unit are
the same for all ports in that un it; that is, the address of a
given word remains the same regardless of the port used to
access the word. The starting address of a unit must be on
a boundary equal to a multiple of the size of the unit. In
the event that the unit is interleaved with another unit, the
starting address for the combined units must be on a bound
ary equal to a multiple of the total size of the interleaved
assembly.

MEMORY PORTS

The memory ports of a memory unit are the connecting points
between processors (lOPs and CPUs) and memory banks, and
they permit the processors to access memory locations. Each
memory un it may have from 2 to 12 independent access
ports .. A memory unit port is effectively a switch between
all the busses entering that un it and the two banks that
make up the unit. As an example, a unit that has four
busses connected to it and two banks within it would have
a port structure designated as a 4 x 2 switch. The ports
examine incoming addresses to determine if the request is

for a bank within the memory unit. They also determine
the priority of memory requests received simultaneously.

The minimum number of ports for a SIGMA 9 system is two,
one for the CPU and one for an lOP. The number of ports
may be expanded, in increments of one, to a maximum of 12.

PORT PRIORITY

The multiport structure and the dual-bank memory (within
each unit) allow two simultaneous requests for memory to be
processed immed iately, providing that the requests are re
ce ived on different ports, for different banks, and ne ither
bank is busy. If a requested bank i s busy, or if simul
taneous requests are received for the same bank, the
memory port logic selects the highest priority request first.

Normally, all ports in a memory unit operate on a priority
basis, with port numb.er 0 having the highest priority and
port number IIn ll having the lowest. In general, CPUs are
connected to the higher priority ports and lOPs are con
nected to the lower priority ports. If simultaneous requests
are rece ived for a single bank on port 2 and port 4, port 2
has access to the memory bank first.

In addition to the normal priority that prevails among the
ports, as described above, each port has a high priority
level. A processor usually requests the normal priority
level; however, under certain conditions a processor may
request high priority access to a given port (e. g., an lOP
wi II wait wi th a low priority memory request unti I ha If of
its avai lable buffering has been fi lied on input or emptied
on output; it then requests a high priority memory reference).
If one port receives a high priority request, that portis pri
ority is then higher than the normal priority of all other
ports. If more than one port is on a high priority at the
same time, the normal sequence of priority wi II prevai I
among those ports on high priority.

CPU PORT

When the memory is quiescent, the port selection logic is
set to a condition that automatically selects port o. The
el imination- of switching time (to select a port) results in a
timing preferential for the processor connected to port O.
This is particularly advantageous for a monoprocessing sys
tem where the CPU is normally connected to port 0 of each
memory u~it.

VIRTUAL AND REAL MEMORY

Virtual memory is logical memory as seen by an individual
program. The maximum size of virtual memory is 128K
(131,072) words. A virtual memory for a given program may
consist of up to 256 pages of 512 words each distributed
throughout the available pages of real memory.

Real memory corresponds to the physical memory, and its
size is equal to the total number of words contained within

90 17 33C-1(4/74)

all memory units. The size of real memory ranges from a
minimum of 128K words to 512K words. The 512K maximum
size limitation is' physical (i. e. , based on maximum cable
length considerations) rather than lo~cal. Real memory
addressing space is over 4 million (22) words.

HOMESPACE

In a SIGMA 9 mul tiprocessing system, all processors address
memory in the same manner. However, since, the CPUs do
not share the same interrupt or trap systems, it is necessary
to provide private storage for each CPU to contain its trap
and interrupt locations, I/O communication locations, and
general registers. Th is private storage is called Homespace.

Determining the location of Homespace for a CPU is I ike
second-level mapping. Each CPU contains a Homespace
bias. The Homespace bias is the actual address of a 16K
region of the first 1 million words of main memory, of which
the first 1,024 words is Homespace. After an effective real
address is generated by a CPU by whatever method, and
just before it is sent to memory, the most significant 12 bits
are tested. If these bits are all equal to zero, then a 6-bit
Homespace bias plus two leading zeros are inserted in place
of the most significant eight of these bits. This means that
any time a CPU makes a reference to the first 1,024 words
of real memory that reference may be relocated by means of
the Homespace bias.

The 6-bit Homespace bias is supplied by a set of six switches
in a SIGMA 9 CPU. They can be changed manually to
move the Homespace region from one area to another within
the 64 possible areas.

When multiprocessors are used, a given CPU may reference
the Homespace region of other processors by using the nor
mal memory addresses for that region. The only exception
to th is is that the Homespace of a CPU that is set at real
memory location zero, cannot be referenced by any other
CPU. However, the CPU that has its Homespace at real
location zero may reference the Homespace of all other
CPUs.

Each Homespace region contains all the trap locations,
interrupt locations, and lOP communication locations for
a given CPU (see Table 4). These implicitly assigned mem
ory locations plus the 16 locations that are reserved for the
general registers, occupy the first 320 locations of Home
space. The remaining words in the Homespace region can
be used as private, independent storage by the CPU.

MEMORY REFERENCE ADDRESS

Homespace memory locationsO through 15 are not normally
accessible to the programmer because their memory addresses
are reserved as register designators for II reg ister-to-register ll

operations. However, an instruction can treat any register
of the current register block as if it were a location in
main memory. Furthermore, the register block can be used
to hold an instruction (or a series of up to 16 instructions)
for execution just as if the instruction (or instructions) were

Main Memory 15

Table 4. Homespace Layout

Dec. Hex. Function

000 000
Addresses of general.registers
(see Figure 2)

015 OOF

016 010
Reserved for future use

·
031 01F

032 020
CPU/lOP communication locations

033 021

034 022
· load routi ne or reset recovery routi ne ·

063 03F

064 040
· Trap locations (see Table 4)

079 04F

080 050
· Override group ·
085 055

086 056 Processor fau I t

087 057 Memory fau I t
Internal
Interrupts,
group X'O'

088 058 (see Table 5)
· Counter group ·

091 05B

092 05C
· I/O group ·

095 05F

096 060

· · Externa I Interrupts, group X'2'
· · (see Table 5)
111 06F

· · · · ·

304 130
External Interrupts, group X'P

· (see Tab Ie 5)
319 13F

320 140
· · Reserved locations · · ·
1023 3FF

16 Mai n Memory

in main memory. The only restriction upon the use of the
register block for instruction storage is:

If an instruction accessed from a general register uses
the R field of the instruction word to designate the
next higher-numbered register, and execution of the
instruction would alter the contents of the register so
designated, the contents of that register should not be
used as the next instruction in sequence because the
operation of the instruction in the affected register
would be unpredictable.

Description of the various types of addressing used in the
SIGMA 9 are based upon terms and concepts defined below.
References are made to Figure 4, which illustrates the con
trol flow and data flow during address generation.

Instruction Address. This is the address of the next instruc
tion to be executed., For real and virtual addressing, the
17-bit instruction address is contained within bits 15-31 of
the program status doubleword. For real extended address
ing, the 22-bit instruction address is comprised of bits 16-31
concatenated with bits 42-47 of the program status
doubleword.

Reference Address. This is the 17- or 22-bit address
associated with any instruction except a trap or interrupt
instruction that has bit position 10 equal to O. (See 20-Bit
Reference Address, below.) For real and virtual addressing,
the reference address is the address contained within
bits 15-31 of the instruction itself. For real extended ad
dressing, the reference address is comprised of bits 16-31
of the instruction concatenated with bits 42-47 of the pro
gram status doubleword. The reference address may be
modified by using indirect addressing, indexing, and mem
ory mapping. A reference address becomes an effective
virtual address after the indirect addressing and/or post
indexing (if required) is performed. (See Figure 4.)

20-Bit Reference Address. If bit position 10 of any trap or
interrupt instruction is a 0, bits 12-31 of that instruction
are used as a 20-bit reference address. A 20-bit reference
address may be modified only by using indirect addressing.
A 20-bit reference address can not be indexed or mapped.

Direct Reference Address. If neither indirect addressing
nor indexing is called for by the instruction (i. e., if bit
position 0 and the X field of the instruction are 0), the
reference address of the instruction (as defined above) be
comes the effective virtual address. Direct addressing may
be used during all addressing modes, including trap and
interrupt operations. Direct addressing during virtual
addressing does not preclude memory mapping.

Indirect Reference Address. The 7-bit operation code field
of the SIGMA 9 instruction word format provides up to
128 instruction operation codes, nearly all of which can
use indirect addressing {except immediate operand and byte
string instructions}. If indirect addressing is called for by
the instruction (when bit position 0 contains 1) the refer
ence address (as defined above) is used to access a word
location that contains the direct reference address in bit
positions 15-31, or bit positions 10-31 for certain real

90 17 33C-1(4/74)

Add Homespace
(if required)

CONTROL FLOW

Displacement

yes

no

Figure 4. Addressing logic

I

J
i
I
i
I
I

!

DATA FLOW

Reference}
Address

Instruction
Word

Address

Write Locks
{lst 128K
words only}

Index
Register

Actual },_"'-__
Address, ...-_.-...1 __ ---,

Memory
Address
Register

Main Memory

Main Memory 17

extended addressing operations. The indirect addressing
operation is limited to one level. Indirect addressing does
not proceed to further levels, regardless of the contents of
the word location pointed to by the reference address field
of the instruction. Indirect addressing occurs before index
ing; that is, the 17-bit reference address field of the
instruction is used to obtain a word, and the 17 or 22 low
order bits of the word thus obtained effectively replace the
initial reference address field; then, indexing is carried out
according to the operation code of the instruction. (See
JI Address Modification Examples".)

Index Reference Address. If indexing is oalled for by the
instruction '(0 nonzero value in bit positions 12-14 of the
instruction), the direct or indirect reference address is
modified by addition of the displacement value in the gen
eral register (index) called for by the instruction (after
scaling the displacement according to the instruction type).
This final reference address value (after indirect addressing,
indexing, or both) is defined as the effective virtual ad
dress of the instruction. Indexing afterindirecf addressing
is called postindexing. (See "Address Modification Exam
ples" for further details.)

Displacements. Displacements are the 16- to 24-bit values
used in index registers and by byte string instructions to
generate effective addresses of the appropriate size (byte,
halfword, word, or doubleword).

Register Address. If any instruction produces a virtual ad
dress that is a memory reference (i.e., a direct, indirect,
or indexed reference .address) in the range 0 through 15,
the CPU does not attempt to read from or write into main
memory. Instead, the four low-order bits of the reference
address are used as a general register address, and the gen
eral register (of the current register block) corresponding to
this address is used as the operand location or result destina
tion. Thus, the instruction can use any register in the cur
rent register block as the source of an operand, the location
of a direct address, or the destination of a result. Such
usage is referred to' as a "register-to-register" operation.

Actual Address. An actual address is the address value
actually used by the CPU to access main memory via the
memory address register (see Figure 4). If the effective
virtual address is X10I - X1P, one of the general registers
is addressed. If the computer is operating in virtual address
ing mode, all virtual addresses above 15 are transformed
(usually into addresses in a different memory page) by the
memory map, and these then become actual addresses. How
ever, if the computer is operating in either real or real
extended mode, no transformation via the memory map takes
place. All actual addresses are 21, 22, 23, or 24 bits, as
required to address a doubleword, word, halfword, or byte.

effective Address. The effective address is defined as the
final virtual address computed for an instruction (output
ffom the address generator in Figure 4). The effective
address is usually used as the virtual address of on operand
location or result destination. However, some instructions

18 Main Memory

do not use the effective address as a location reference;
instead, the effective address is used to control the opera
tion of the instruction (as in a shift instruction), to desig
nate the address of an input/output device (as in an input/
output instruction), or to designate a specific element of the
system (as in a READ DIRECT or WRITE DIRECT instruction).

Effective Location. An effective location is defined as
the actual location (in main memory or in the current regis
ter block) that is to receive the result of a memory
referenci ng instruction, and is referenced by means of an
effective address. Because an effective address may be
either an actual address or a virtual address, this definition
of an effective location assumes, where applicable, the
transformation of a virtual address into an actual address.

Effective Operand. An effective operand is defined as the
contents of an actual location (in main memory or in the
current register block) that is to be used as an operand by a
memory-referencing instruction, and is referred to by means
of an effective address. This definition of an effective
operand also presupposes the transformation of a virtual
address into an actual address.

TYPES OF ADDRESSING

Except for the special type 9faddressing that is performed
only by.some interrupt and trap instructions, all addressing
within the computer system is real, ~eal extended, or virtual.

REAL ADDRESSING

Real addressing is a type of addressing where a one-to-one
relationship prevails between the effective virtual address
of each instruction and the actual address used to access'
main memory. Characteristics of real ad~ressing are:

1. Each reference address is a 17-bit word address.

2. The reference address may be direct or indirect, with
or wi thout posti ndexi ng.

3. Displacements associated with index,ing are automat
ically al igned, as required, for doubleword, word,
halfword, or byte operations; and' the effective virtual
address is either a 16-bit doubleword address, 17-bit
word address, 18-bit halfword address, or a 19-bit byte
address.

4. Memory mapping and memory access protection are
never invoked.

5. Memory write protection is automatically invoked be- :
cause the reference word will ol:Ways be located within
the first 128K words of real memory. Memory locations
outside the first 128K words of real memory are not ac";
cessible with real addressing.

6. Leading zeros are automatically appended to the effec
tive address to generate an actual word address as
required by the main memory.

7. Real addressing may be used in master or slave mode
and is specified when bits 9 and 40 of the Program
Status Doubl eword (PSD 9 and PSD 40) are both O.

VIRTUAL ADDRESSING

Virtual addressing is a type of addressing that uses a memory
map to determine the actual address to be associated with a
particular reference address of each instruction. Virtual
addressing differs from real addressing in that there is
normally no exact relationship between the effective virtual
address and the actual address. Characteristics of virtual
addressing are:

1. Each reference address is a 17-bit address.

2. The reference address may be direct or indirect, with
or without postindexing.

3. Displacements associated with indexing are automat
ically aligned, as required, for doubleword, word,
halfword, or byte operation; and the effective virtual
address is either a 16-bit doubleword address, 17-bit
word address, 18-bit halfword address, or a 19-bit
byte address.

4. Virtual memory access protection is always invoked.
If the access protection code is invalid, the instruc
tion aborts and traps to Homespace location X'40'.
(See "Trap Systems".)

5. Memory mapping translates the 8 most significant bits
of the effective virtual address (the page portion) into
a 13-bit page address. This page address is concate
nated with the 9 least significant bits of the reference
address. The resultant 22-bit word address is the
actual address used to access memory. This feature
permits anyone user at any given time to have a vir
tual memory of up to 128K words (256 pages) located
throughout a real oractual memory of up to four million
words (8192 pages). AI though the virtual memory is
physically fragmented, logically it is contiguous.

In addition, a special SIGMA 7 compatible mapping
mode is provided. In this mode, the memory map is
loaded with 8-bit page addresses. The most significant
8 bits of the effective virtual address are then trans
lated into the designated 8-bit page address. This com
patibility feature allows all SIGMA 7 programs to run
on SIGMA 9 computers with no change to the mapping
structure required.

6. If the actual address is within the first 128K words of
real memory, the memory write protection feature is
also invoked.

7. Virtual addressing may be used in all modes and is
specified when PSD 9 is a 1.

REAL EXTENDED ADDRESSING

Real extended addressing is similar to real addressing in
that there is a direct relationship between the effective
virtual address of each instruction and the actual address.
Real extended addressing facilitates operating with mem
ories larger than 128K words. It permits the operating

system to communicate with any user directly via real mem
ory rather than through a part of the user's map. In addition,
it provides a method for the operating system to control
channel control word chains that work in real memory space.
Characteristics of real extended addressing are:

1. Memory mapping and access protection are not invoked.

2. Memory write protection is invoked only if the actual
address is within the first 128K words of real memory.

3. Real extended addressing is specified whenever PSD 9
is a 0 and PSD 40 is a 1.

Further descriptions of real extended addressing is provided
in three parts:

1. Instruction and reference addresses in instructions.

2. Other addresses and displacements.

3. Branching and branch addresses.

Note: The extended address fields and displacements
described below are applicable only when real
extended addressing is used. --

Instruction and Reference Addresses in Instructions.

General Instruction Format:

PSD

The instruction address field of the PSD and the reference
address field of each instruction is 17 bits. The address
field in both places is divided into two parts. Bit posi
tion 15 is used as a flag and bit positions 16-31 are used as
a displacement. The displacement field is 16 bits allowing
direct resolution to 64K words. The flag (bit 15) is call ed
the Extension Selector and indicates which of two regions
is addressed by the 16-bit displacement.

If the Extension Selector equals 0 then the displacement
address is to a word within the first 64K of real memory.
If the Extension Selector equals 1, then the displacement
addresses a word within the 64K region that is identified
by bits 42-47 of the PSD, called the Extension Address.
When bit position 15 equals 1, a full memory addresst is
formed by concatenating PSD 42-47 with bits 16-31 of the
address field.

tFull memory address consists of 21 bits for a doubleword
address, 22 bits for a word address, 23 bits for a halfword
address, and 24 bits for a byte address.

Main Memory 19

The logic treats bits 16-31 of the PSD as a 16-bit counter.
The Extension Address (PSD bits 42-47) does not have asso··
ciated count logic. This means, for example, that if the
program is in the real extended addressing mode and the
flag bit in position 15 is a 1 and if the location of the in
struction presently being executed is X'02FFFF' I the next
instruction executed will be X'020000'. This occurs be
cause the count logic on bits 16-31 of the PSD does not
change bit 15 to a 0 and the Extension Address is still in
effect. The Extension Address (PSD bits 42-47) remained at
the value X'021.

Other Addresses and Displacements. Except for reference
address fields and the instruction address of the PSD, all
address and displacement fields are extended into adjacent
(previously undefined) fields to address all memory directly.
The places affected are as follows:

1. An indirect address location contains either a 22-bit
word address or a 16-bit region address and an Exten
sion Selector (ES) flag.

Indirect Address Location Formats:

\0 I : I : Indirect addre~S I
o 1 2 3 14 5 6 7 8 9 10 11 112 13 14 15 16 17 18 19120 21 22 23 24 25 26 27128 29 30 31

2. An index register contains an extended displacement
of from 21 to 24 bits, depending on the size of the
unit being referenced.

Index Register Formats:

E
~ Doubleword }

VVord •
Halfword DIsplacement

Byte

3. The stack pointer for push/pull instructions contains
a 22-bit word address for the top of stack address field.

Stack Pointer Format for Push/purr Instructions:

20 Main Memory

4. The sign in bit position 12 of byte string instructions is
extended before the displacement is added to the des
tination address. In addition, the registers that
describe the source byte address and the destination
byte address for a byte string instruction are 24-bit
byte addresses.

Register Formats for Byte-String Instructions:

When any of the addresses mentioned above are used, they
reference memory fully without the use of the extended
address field in the PSD. The only exception is the 22-bit
word address used for indirect addressing.

Branch i ng and Branch Addresses. The Extension Address
field of the program status doubleword (PSD bits 42-47) may
be loaded at the time a new PSD is loaded by an XPSD or
LPSD instruction. This field is modified automatically by
branch instructions.

If the effective address of a branch instruction is outside
the first 64K of real memory, the high-order 6 bits of this
full effective address are loaded into the Extension Address
field of the PSD. The remaining part of the effective
branch address is loaded into positions 16-31 of the PSD.
In addition, bit position 15 of the PSD, the Extension
Sel ector, is set to 1.

If the effective branch address is to a location within the
first 64K of memory, the extension address field of the PSD
will not be modified. The effective address is loaded into
the 16 low-order positions of the instruction address field
and the Extension Selector (bit 15) is set to O. This means
that once the Extension Address is set it remains set until it
is either changed by the loading of a new PSD or by the
actual branching into another 64K word region of memory.

A BRANCH AND LINK instruction in real extended address
ing stores the full address of the next instruction in the link
register. If the Extension Selector in the PSD at the time
BRANCH AND LINK is executed is equal to 0, the address
stored in the link register will be the incremented 16-bit
displacement from positions 16-31 of the PSD. Zeros will
be placed in the high-order address positions. If the
Extension Selector is equal to 1 in the PSD, the address
stored will be the incremented 16-bit displacement (PSD
16-31) plus the contents of the Extension Address (PSD
42-47) which will be placed into bit positions 10-15 of the
I ink register. In both cases, bit positions 0-9 of the I ink
register are set to O's.

INTERRUPT AND TRAP ENTRY ADDRESSING

An interrupt instruction is defined as one that is in an
interrupt location and is executed as the direct result of
an interrupt. Both elements of the definition must be
satisfied simultaneously for it to be an interrupt instruction.
An instruction is not an interrupt instruction even though
it may be in an interrupt location if, for example, it is
executed as the result of the program branching to the
interrupt location under normal program control. Similarly,
a trap instruction is defined as one. that is in a trap location
and is executed as the direct result of a trap. The only
valid interrupt instructions are XPSD, MTW, MTH, and
MTB. The only valid trap instruction is XPSD.

Interrupt and Trap Instructi on Format:

The address of the instruction executed as a result of an
interrupt or trap depends on bit 10 of the XPSD

If bit 10 of the XPSD in an interrupt or trap location is a 0,
a real address is generated independently of the addressing
mode specified by the current PSD. If bit 0 (the indirect
bit) of the XPSD instruction is a 0, bits 12-31 of the XPSD
instruction are used as a 20-bit reference address, which
permits direct addressing of the first one mi II ion words of
memory. If bit 0 of the XPSD instruction is a 1, indirect
addressing is invoked, and bits 12-31 of the XPSD instruc
tion point to a word in memory that contains the reference
address in bit positions 10-31. Note that the indirect word
must be programmed with bit 0 containing a 0 and bits 10-31
containing the reference address (so called long form).
This 22-bit reference address allows addressing a 4 million
word memory.

If bit 10 of the XPSD in a trap or interrupt location is a 1,
the address will be generated as prescribed by the current
PSD (i. e., real, real extended, or virtual addressing).

Any modify and test instruction encountered in an interrupt
location uses the 20-bit reference address in the same man
ner as described above for the XPSD.

Any XPSD, MTW, MTH, orMTB instruction that is exe
cuted as a normal instruction, not an interrupt or trap in
st~uction, uses the 17-bit reference address in the same
manner as any other memory reference instruction. Bit 10
has no effect on the execution of an XPSD instruction that
is executed as a normal instruction.

ADDRESS MODlflCAnON EXAMPLES

INDEXING (REAL AND VIRTUAL ADDRESSING)

Figure 5 shows how the indexing operation takes place
during real and virtual addressing operations. As the in
struction is brought from memory, it is loaded into a 34-bi t
instruction register that initia11y contains O's in the two

low-order bit positions (32 and 33). The displacement value
from the index register is then aligned with the instruction
register (as an integer) according to the addressing type of
the instruction; that is, if it is a byte operation, the dis
placement is I ined up so that its low-order bit is 01 igned
with the least significant bit of the 34-bit instruction reg
ister. The displacement is shifted one bit to the left of
this positi on for a halfword operation, two bits to the left
for a word operation, and three bits to the left for a double
word operation. An addition process then takes place to
develop a 19-bit address, which is referred to as the effec
tive address of the instruction. High-order bits of the
32-bit displacement field are ignored in the development
of this effective address (i. e., the 15 high-order bits are
ignored for word operations, the 25 high-order bits are
ignored for shift operations, and the 16 high-order bits are
ignored for doubleword operations). However, the displace
ment value can cause the effective address to be less than
the initial reference address within the instruction if the
displacement value contains a sufficient number of high
order lis {i. e., if the displacement is a negative integer
in twols complement form.

The effective virtual address of an instruction is always a
19-bit byte address value. However, this value is auto
matically adjusted to the SIGMA 9 information boundary
conventions. Thus, for halfword operations, the low-order
bit of the effective halfword address is 0; for word opera
tions, the two low-order bits of the effective word address
are OIS; and for doubfeword operations, the 3 low-order
bits of the effective doubleword address are O's.

If no indexing is used with a byte operation, the effective
byte is the first byte (bit positions 0-7) of a word location;
if no indexing is used with a haffword operation, the effec
tive halfword is the first halfword (bit positions 0-15) of a
word location. A doubleword operation always involves a
word at an even-numbered word address and the word at the
next sequentia I (odd-numbered) word address. If an odd
numbered word location is specified for a doubleword operation,
the low-order bit of the effecti ve address fi e I d (hi t posi ti on 31)
isautomaticallyforced toO. Thus, an odd-numbered word ad
dress desi gnates the same doubl eword as an even-numbered
word address, when used for a doubleword operation.

If the addressing mode is real, the 19-bit effective virtual
address is concatentated with 5 leading zeros to form a
24-bit actual address. If the addressing mode is virtual,
the 8 most significant bits of the 19-bit effective virtual
address (SIGMA 7 page address) are transformed into a
13-bit SIGMA 9 page address. The new page address and
the 11 least significant bits of the 19-bit effective virtual
address are combined to form a 24-bit actual address.

INDEXING (REAL EXTENDED ADDRESSING)

Fi gure 6 ill ustrates that the index ing process for real ex
tended addressing is similar to that performed for real and
virtual addressing. The differences are:

1. Bit 15 of the instruction word is not a part of the refer
ence address. It is used as a control flag. If bit 15 is
a 1" the contents of the Extension Register(bits 42-47
of the PSD) are concatenated to bits 16-31 of the in
struction register to form a 22"'bit reference address.

Main Memory 21

Instruction in memory:

Instruction in instruction register:

IIIII
Byte operation indexing alignment:

Halfword operation indexing alignment:

Word operation indexing alignment:

Shift operation indexing alignment:

Doubleword operation indexing alignment:

Effective virtual address:

Figure 5. Index Displacement Alignment (Real and Virtual Addressing Modes)

If bit 15 is a zero, six leading zeros are concatenated
to the 16 bits of the instruction word. In either case,
the 22-bit word address is converted into an equivalent
byte address by appending two zeros on the right.

2. Displacement values have an extended number of bits,
24 bits for byte displacements, 23 bits for halfword
displacements, 22 bits for word displacements, and
21 bits for doubleword displacements.

INDIRECT, INDEXED HALFWORD (VIRTUAL ADDRESSING
SIGMA 9 MODE)

Figure 7 illustrates the address modification and mapping
process for an indirectly addressed, indexed, halfword
operation.' As ·the figure shows, reference- address 1 is the
content of the reference address field in the instruction
stored in memory. The instruction is brought j'nto-the instruc
tion register, and if the value of the reference address field

22 Main Memory

is greater than 15, it is converted from a 19-bit reference
address to a 24-bit actual address by the memory map. The
17 low-order bits of the main memory location pointed to
by the actual address, labeled reference address 2, then
replaces reference address 1 in the instruction register.
The Index register designated in the X field of the instruc
tion is then aligned for incrementing at the halfword
address level. The final effective vir.tual address is formed
by the address generator and if the value of the reference
address is greater than 15, it is transformed through the
memory map into an actual address. The final 24-bit main
memory address, which automatically contains a low-order 0,
is then used to access the haHword to be used as the oper
and for the instruction.

Note that for 'the real addressing mode, the modifica
tions requ ired for i ndi rect, indexed hal fword operation
are exactly the same except that the reference address
and th~ final effective address are concatenated with
5 leading ze~os rather than being transformed by the
memory map.

Instruction in memory:

Informati on used by address
generator:

Byte operation indexing alignment:

Halfword operation indexing alignment:

Word operation indexing alignment:

Shift operation indexing alignment:

Bit 15 = 1
Bit 15 = 0

Doubleword operation indexing alignment:

24-bit effective address:

I IIII
I 24-bi~ displacement ~alue

I I

Figure 6. Index Displacement Alignment (Real Extended Addressing)

INDIRECT, INDEX HALFWORD (REAL EXTENDED
ADDRESSING)

Figure 8 ill ustrates the address modification process for
real extended, indirect, indexed addressing.

Bit 15 of the instruction word is used as a control flag.
When bit 15 equals 1, the 16-bit reference address of the
instruction is concatenated with the 6 bits contained
within the Extension Register (PSD 42.:..47). When bit 15
equals 0, the 16-bit reference address of the instruction
is concatenated with 6 leading zeros and the contents of
the Extension Register are not used nor changed.

The word in memory pointed to by the indirect reference
address may be one of three types, differentiated by bit 0
and bi t 15 of the di rect address.

If bit 0 is a 0, bits 10 to 31 are used as the 22-bit direct
address. If bit 0 is a 1 and bit 15 is a 0, then bits 16-31
are concatenated with 6 leading zeros to form a 22-bit

direct address. When bit 0 is a 1 and bit 15 is a 1, bits
16-31 are concatenated with the contents of the Extension
Register to form a 22-bit direct address.

In either case, the 22-bit direct address is then modified
by 23-bit displacement value (halfword alignment of index)
to produce a 24-bit effective virtual address that has a 0 in
the feast significant position. Since real extended addresses
are not subjected to mapping, the final effective address is
equivalent to the actual address.

MEMORY ADDRESS CONTROL

In a SIGMA 9 computer, two methods are avaitable for
controlling the use of main memory by a program; they are
the memory map and the memory lock. The memory map
provides for dynamic relocatability of programs and for
access protection through inhibitions imposed on slave or
master-protected mode programs. The memory lock pro
vides memory write protection for all modes of programs
within the first 131,072 words of memory.

Main Memory 23

Instruction in memory:

Instruction in instruction registers:

The 8 high-order bits of the reference address are
replaced with 13-bit page address Z from memory map:

Actual address of memory location that contains
the di rect address:

,17-bit direct address in memory:

Indirect addressing replaces reference address
with direct address:

Halfword operation indexing alignment:

Effective virtual address:

The 8 high-order bits of the effective address are
replaced with 13-bit page address N from memory map:

Final memory address, which is the actual address of
halfword location containing the effective halfword:

Figure 7. Generation of Actual Memory Addresses, Virtual Addressing (SIGMA 9 Mode)

24 Main Memory

III

til

1111

Initial conditions:

Instruction in instruction register:

Indi rect reference addresses:

PSD

Ie e e e e ei
42 43 4" 4S 46 47

Contents of indirect reference address:

Address used if bit 0 = 0:

Address used if bit 0 = 1 and bit 15 = 0:

Address used if bit 0 = 1 and bit 15 = 1:

Displacement aligned for halfword indexing!

Final effective address:

0123145

If bit 15 = 1
If bit 15 = 0

Figure 8. Generation of Effective Virtual Address, Real Extended Addressing

Main Memory 25

MEMORY MAP AND ACCESS PROTECTION

The SIGMA 9 memory map is physically an array of 256
. registers, each containing 13 bits. The array is stored in
the CPU's fast memory. Each register has an 8-bit address
and contains a 13-bit actual memory page address code for
a specific 512-word page of virtual addresses.

The memory page address codes are ass igned to pages of
virtual addresses as follows:

Memory page X Memory page K Memory page N
(13 bits) (13 bits) (13 bits)

Virtual 8-bit Virtual a-bit Virtual 8-bit
addresses addresses addresses
X'10'-X'1FF' X'200'-X'3FF' X'lFEOO'-X'lFFFF'
(virtual page 0) (virtual page 1) (virtual page 255)

The most significant a bits of a 17-bit virtual address is con
sidered to be the virtual page number. Just prior to a mem
ory reference, the virtual page num,ber is used as an address
of an element of the map. The 13 bits contained within
that element are then used in conjunction with the low
order 9 bits of the 17-bit virtual address.

When SIGMA 9 is operating in the SIGMA 7-compatible
mode, the map appears identi'col to the SIGMA 7 map.
This is occomplished by retaining the SIGMA 7 version of
the MOVE TO MEMORY CONTROL (MMC) instruction to

. load the map in a compatible manner. In this form of the
instruction, 8-bit quantities from memory are transmitted

. into the map. The a bits are stored in the low-order a bits
: of each map element and the upper 5 bit positions are set
to zero. This means that the map wi II always relocate to
some address in the first 12aK of real memory, which is
compatibl e for SIGMA 7 programs.

Associated with the memory map feature is another series of
256 2,...bit registers, also located in CPU fast memory. Each
of these registers contains a 2-bit access control code for a
specific 512-word page of virtual addresses. The access
protection code indicates the allowed use or availability
of the corresponding page of virtual memory.

The access control codes are assigned as follows:

Virtual addresses
X'600'-X'7FF'

Virtual addresses
X'400'-X· 5FF'

Virtual addresses
X'200'-X'3FF'

Virtual addresses
X'10'-X'1FF'
(Virtual page O)

Virtual
addresses
X'1FEOO'
X'1FFFF'
(virtual
page 255)

Virtual
addresses
X'lFCOO'
X'lFDFF'

, The memory page address and access control codes can be
changed only by means of the privileged instruction MOVE
TO MEMORY CONTROL (see. "Control Instructions").

26 Main Memory

Access protection is in effect whenever the memory map is
in effect (PSD 9 = 1) and the computer is operating in the
slave mode (PSD a = 1) or in the master-protected mode
(PSD 40 = 1). Access protection is not in effect when the
computer is operating in the master mode.

When the memory map is in effect, all memory references
used by the program (including instruction addresses)
whether direct, indirect, or indexed, are referred to as vir ...
tual addresses. Virtual addresses in the range 0 through 15
are not used to address main memory; instead, the 410w
order bits of the virtual address comprise a general register
address. However, if an instruction produces a virtual ad
dress greater than 15, the 8 high-order bits of the virtual
,address are used to obtai n the appropriate memory page ad
dress and access control codes. For example, if the 8 high
order bits of the virtual address are 0000 0000, the first page
address code and the first access control code are used; if
the 8 high-order bits of the virtual address are 0000 0001,
the second page address and access control codes are used,
etc., through the 256th page address and control codes.
Thus, each 512-word page of virtual addresses is associated
with its own memory page address and access control codes.

When the memory mop is accessed, the CPU performs a test to
determine whether there are any inhibitions on using the vir
tual address by a slave or master-protected mode program.
(If the CPU isinthemastermode, this test is not performed.)

The four types of access protection are as follows:

00 A slave or master-protected program can write into,
read from, or access instructions from this page of
virtual addresses.

01 A slave or master-protected program cannot write into,
but can read from or access instructions from th is page
of virtual addresses.

lOA slave or moster-protected program cannot write into
or access instructions from, but can read from this page
of virtual addresses.

11 A slave or moster-protected program is denied any ac
cess to this page of virtual addresses.

If the instruction being executed by the slave or master
protected mode program fails this test, the instruction execu
tion is aborted and the computer traps toHomespace location
X'40', the "nonallowed operation" trap (see "Trap System ").

If the instruction being executed by the slave or master
protected mode program passes this test (or the CPU is in
the master mode), the page address bits in the accessed
element of the memory mop replace the 8 high-order bits '
of the virtual address to produce the actual address of the
main memory location to be used by the instruction (22-bit
word address which is automatically adjusted as required for
doubleword, word, halfword, or byte operation).

If the page address bits in the accessed element of the mem
ory map are all O's, and on actual address is produced that
corre~ponds to a word address in the range 0 through 15,
when the page address is combined with 9 low-order bits of
the virtual address, the corresponding general register in the

current register block is not accessed. In thi s one particular
instance, a word address in the range o through 15 corresponds
to actual main memory locations rather than general registers.

REAL MEMORY WRITE LOCKS

An additional memory protection feature, independent of
the access protection, is provided by a lock and key tech
nique. A 2-bit write protect lock (WL) is provided for each
512-word page of the first 128K words of actual memory
addresses. The write-protect locks consist of 256 2-bit
write locks, each assigned to a 512-word page of actual
addresses as follows:

Actual addresses
X 1600 I_X 1 7F F'

Actual addresses
X'400'-X'5FF'

Actua I addresses
X'200'-X '3FF'

Actual addresses
O-X'l FF'
(memory page 0)

Actual
addresses
X1l FEOO'
X'l FFFF'
(memory
page 255)

Actual
addresses
XllFCOO'
X'l FDFF'

The write-protect locks can be changed only by executing
the privileged instruction MOVE TO MEMORY CONTROL
(see "Control Instruction").

The write key (a 2-bit field in PSD for any operating program)
works in conjunction with the lock storage to determine
whether any program (sl ave, master-protected, or master
mode) can write into a specific page of main memory loca
tions. The keys and locks control access for writing, ac
cording to the following rules:

1. A lock value of 00 means that the corresponding mem
ory page is "unlocked"; write access to that page is
permitted independent of the key value.

2. A key value of 00 is a "skeleton" key that will open
any lock; thus, write access to any memory page is
permitted independent of its lock value.

3. A lock value other than 00 for a memory page permits
write access to that page only if the key value is
identical to the lock value.

Thus, a program can write into a given memory page if the
lock value is 00, if the key value is 00, or if the key value
matches the lock value.

Note that the memory access protection feature is used
during virtual addressing modes and operates on virtual
addresses, whereas the memory write protection feature
operates a Iways on the fi rst 128 K words of actua I memory
addresses. Thus, if the access protection feature is invoked
(that is, the CPU is in the master-protected or slave mode
and is using the memory map), the access protection codes
are examined at the time the virtual address is converted
into an actual address. Then, the locks and keys are
examined to determine whether the program (master,

master-protected or slave mode) is allowed to alter the con
tents of the main memory location corresponding to the fi nal
actua I address. If an instruction attempts to write into a
write-protected memory page, the computer aborts the in
struction, and traps to Homespace location X'40 ', which is
the "nonallowed operation" trap (see "Trap System").

All pages of main memory beyond address 128K are con
sidered to have a lock of 00, and are open for writing by
any program. Adding Homespace bias to the address does
not affect the write lock selection; write locks for page 0
or 1 continue to be used.

PROGRAM STATUS DOUBLEWORD

The criti cal control conditions of a SIGMA 9 CPU are
defined within 64 bits of information. These 64 bits are
collectively referred to as the current program status doubl e
word (PSD). The current PSD may be considered as a 64-bit
internal CPU register, although it actually exists as a col
lection of separate registers and fl ip-flops. When stored in
memory, the PSD has the following format:

Desig
nation

CC

FS

FZ

Function

Condition code. This generalized 4-bit code
indicates the nature of the results of an instruc
tion. The significance of the condition code bits
depends on the particular instruction just exe
cuted. After an instruction is executed, the
instructions BRANCH ON CONDITIONS SET
(BCS) and BRANCH ON CON DITIONS RESET
(BCR) can be used singly or in combination, to
test for a particular condition code setting (these
instructions are described in Chapter 3, "Execute/
Branch Instructions").

In some operations, only a portion of the condi
tion code is involved; thus, the term CCl refers
to the first bit of the condition code, CC2 to the
second bit, CC3 to the third bit, and CC4 to the
fourth bit. Any program can change the current
value of the condition code by executing either
the instruction LOAD CONDITIONS AND
FLOATING CONTROL IMMEDIATE (LCFI) or the
instruction LOAD CONDITIONS AND FLOATING
CONTROL (LCF). Any program can store the
current condition code by executing STORE
CONDITIONS AND FLOATING CONTROL
(STCF). These instructions are described in
Chapter 3, II Load/Store Instructions ".

Floating significance mode control.

Floating zero mode control.

Main Memory 27

Desig
nation

FN

MS

MM

DM

AM

AS

28

Function

Floating normal ize mode control. The three
floating-point mode bits (FS, FZ, and FN) con
trol the operation of the computer with respect
to floating-point significance checking, the
generation of zero results, and the normalization
of the results of floating-point additions and
subtractions, respectively. (The floating-point
mode controls are described in Chapter 3,
IIFloating-point Instruction ".) Any program can
change the state of the current floating-point
mode controls by executing either the instruction
LCFI or the instruction. LCF. Any program can
store the current state of the current floating
point mode controls by executing the instruction
STCF.

Master/slave mode control. The computer is in
the master mode when this bit and the Mode
Altered bit are both 0; it is in the slave mode
when this bit is a 1. (See description of MA for
master-protected mode.) A master or master
protected mode program can change the mode
control by executing either the instruction
LOAD PROGRAM STATUS DOUBLEWORP (LPSD)
or the instruction EXCHANGE PROGRAM
STATUS DOUBLEWORD (XPSD). These two
privi leged instructions are described in Chapter 3,
"Control Instructions".

Memory map control. The memory map is in
effect when this bit is a 1. A master or master
protected mode program can change the memory
map control, by executing either the instruction
LPSD or the instruction XPSD.

Decimal mask. The decimal arithmetic trap (see
"Trap System ") is in effect when this bit is a l.
The conditions that cause a decimal arithmetic
trap are described in Chapter 3, II Decimal
Instructions ll

• The decimal trap mask can be
changed by a master or a master-protected mode
program executing either the instruction LPSD or
the instruction XPSD.

Arithmetic mask. The fixed-point arithmetic
overflow trap is in effect when this bit is a 1.
The instructions that can cause fixed-point over
flow are described in the section IITrap System ll

•

The arithmetic trap mask can be changed by a
master or master-protected mode program exe
cuting either the instruction LPSD or the instruc
tion XPSD.

ANSCII Control. This bit controls a feature that
faci Iitates the generation of ANSCII character
codes. When this bit is a 1, ANSCIl codes are
generated. When this bit is a 0, EBCDIC codes
are genera ted.

Main Memory

Desig
nation

IA

ES

ED

WK

CI

II

EI

MA

EA

TSF

RP

Function

Instruction address. This 17-bit field contains
the virtual address of the next instruction to be
executed.

Extension selector. In real extended type of
addressing this bit indicates whether the region
that is addressed by bits 16-31 of the instruction
address field is the zero region or another 64K
word region, as defined by the Extension Address
(bits 42-47 of the PSD).

Extended displacement. Bits 16-31 of the in
struction address specify the displacement within
the region defined by EA (extension address
bits 42-47) and ES (bit 15).

Write key. This field contains the 2-bit key used
in conjunction with the memory protection fea
ture. A master or master-protected mode program
can change the write key by executing either the
instruction LPSD or the instruction XPSD.

Counter interrupt group inhibit.

Input/output interrupt group inhibit.

External interrupt group inhibit. The three
inhibit bits (CI, II, and EI) determine whether
certain interrupts may occur. The functions of
the interrupt inhibits are described in the section
1\ Interrupt System II. A master or master-protected
mode program can change the interrupt inhibits
by executing LPSD, XPSD, or the instruction
WRITE DIRECT 0ND). The WD instruction is
described in Chapter 3, "Control Instructions ll

•

Mode altered. This bit is used to invoke both
the master-protected mode of operation and the
real extended type of addressing. Table 5 indi
cates the function of this bit used in conjunction
with MS (bit 8) and MM (bit 9).

Extension address. This field is used in real
extended addressing to define the alternate region
of 64K words that can be referenced by a given
16-bit address field (ED). It is used when ES
(bit 15) is equal to l.

Trapped status field. This field is reserved for
fault tracing during trap conditions. It is used
for an access protection or write lock violation
that results in a nonallowed operation trap to
Homespace location X'40', condition code set
ti ng CC4 equa I to 1. Th i s trap occurs due to
violating memory protection as a result of an
instruction, indirect address access, or operand
access. (See IIMemory Protection Violation ll

,

IITrap Condition Code ll
, and. Table 5.)

Register pointer. This 4-bit field selects one of
the four possible blocks of general-purpose regis
ters as the current register block. Unused codes
within this field are reserved for future use. A
master or master-protected mode program can

90 17 33C-1(4/74)

Desig
nation Function

INTERRUPT SYSTEM

When a condition that will result in an interrupt is sensed,
RP
(cont.)

change the register pointer by executing LPSD,
XPSD, or the instruction LOAD REGISTER
POINTER (LRP). The LRP instruction is described
in Chapter 3, "Control Instructions".

a signal is sent to an interrupt level. If that level is
"armed ", it advances to the waiting state. When all the
conditions for its acknowledgment have been achieved, the
interrupt level advances to the active state, where it causes
the computer to take an instruction from a specific location
in memory. The computer may execute many instructions
between the time that the interrupt-requesting condition is
sensed and the time that the actual interrupt acknowledg
ment occurs.

RA Register altered bit. In the event of a trap
entry, this bit is set to 1 when any general
register or location in memory has been altered
in the execution or partial execution of the
instruction that caused the trap.

Table 5. Computer Operating and Addressing Modes

Up to 238 interrupt levels are normally available, each

MS MM MA State

with a unique location (see Table 6) assigned in main mem
ory, with a unique priority, and capable of being selectively
armed and/or enabled by the CPU. Also, any interrupt
level can be "triggered" by the CPU (suppl ied with a signal

0

0

0

0

1

1

1

0 0

0 1

1 0

1 1

0 0

0 1

1 -

location
Dec. Hex.

80 50
81 51

82 52
83 53

84 54
85 55
86 56
87 57

88 58
89 59

90 5A
91 58

Master, real addressing (l28K
words, maximum).

Master, real extended addressing.

Master, virtual addressing.

Mas te r-protected, virtual
addressing.

Slave, real addressing (128K
words, maximum).

Slave, real extended addressing.

Slave, virtual addressing (MA may
be 1 or 0).

at the same physical point where the signal from the external
source would enter the interrupt leve!). The triggering of
an interrupt permits the testing of special systems programs
before the special systems equipment is actually attached
to the computer, and also permits an interrupt-servicing
routine to defer a portion of the processing associated with
an interrupt level by processing the urgent portion of an
interrupt-servicing routine, triggering a lower-priority level
(for a routine that handles the less-urgent part), then clearing
the high-priority interrupt level so that other interrupts may
occur before the deferred interrupt response is processed.

SIGMA 9 interrupts are arranged in groups that are con
nected in a predetermined priority chain by groups of levels.
The priority of each level within a group is fixed; the first
level has the highest priority and the last level has the low
est. The user has the option of ordering a machine with a
priority chain starting with the override group and connecting
all remaining groups in any sequence. This allows the user

Table 6. SIGMA 9 Interrupt Locations

WRITE DIRECT PSD WRITE DIRECT
Register bitt Function Availabil ity Inhibit Group codett

none Power onttt standard none
Power ofP'tt

16 Counter 1 count pulse optional
17 Counter 2 count pul se (as a set) none

18 Counter 3 count pulse
19 Counter 4 count pul se standard
20 Processor faul t X·O·
21 Memory fault

22 Counter 1 zero optional
23 Counter 2 zero (as a set)

CI
24 Counter 3 zero standard
25 Counter 4 zero

tWhen the privileged instruction WRITE DIRECT is used in the interrupt control mode to operate on interrupt levels, the
interrupt levels are selected by specific bit positions in register R. The numbers in this column indicate the bit position
in register R that corresponds to the various interrupt levels.

ttThe numbers in this column indicate the group codes (for use with WRITE DIRECT) of the various interrupt levels.

tttThese interrupts cannot be disarmed, disabled, or inhibited.

90 17 33C-1(4/74) Interrupt System 29

Table 6. SIGMA 9 Interrupt locations (cont.)

location WRITE DIRECT PSD WRITE DIRECT
Dec. Hex. Register bitt Function Availability Inhibit Group codett

92 5C 26 " Input/Output
93 5D 27 Control Panel

standard II

X'O'
94 5E Reserved for future use
95 5F Reserved for future use

96 60 16
· · External Group 2 X'2'

· 111 6F 31

112 70 16

· . External Group 3 X'3'
· 127 7F 31

· · optional EI · ·
288 120 16

· External Group 14 X'E'

303 12F 31

304 130 16 . External Group 15 X'F'
· ·

319 13F 31

tWhen the privileged instruction WRITE DIRECT is used in the interrupt control mode to operate on interrupt levels, the
interrupt levels are selected by specific bit positions in register R. The numbers in this column indicate the bit position
in register R that corresponds to the various interrupt levels.

ttThe numbers in this column indicate.the group codes (for use with WRITE DIRECT) of the various interrupt levels.

to establ ish external interrupts above, between, or below
the counter and input/output groups of internal interrupts.
Figure 9 illustrates this with a configuration that a user
might establ ish, where (after the override group) the counter
group of internal interrupts is given the second-highest
priority, followed by the first group of external interrupts,
then the input/output group of internal interrupts, and
finally all succeeding groups of external interrupts.

INTE~L INTERRUPTS

Internal interrupts include those standard interrupts that are
normally suppl ied with a SIGMA 9 system, as well as the
additional counter interrupts.

OVERRIDE GROUP (lOCATIONS X'50' TO X'57')

The eight interrupt levels of this group always have the
highest priority in a SIGMA 9 system. The power fail-safe
feature includes the power on and power off interrupt levels.
A system can contain 2 or 4 count-pulse interrupt levels
that are triggered by pulses from clock sources. Counter 4
has a constant frequency of 500 Hz. Counters 1, 2, and 3
can be individually set to any of fOlJr manually switchable

30 Interrupt System

1 st Priority 2nd Priority

Override Counter
~

Interrupts Interrupts

3rd Priority

y External Interrupts Group 2 ~

4th Priority

Input/Output
Interrupts

5th Priority

--1 External Interrupts Group 3

Figure 9. Typical Interrupt Priority Chain

90 17 33C-l(4/74)

frequencies - the commercial line frequency, 500 Hz,
2 kHz, or a user-suppl ied external signal - that may be
different for each counter. (All counter frequencies are
synchronous except for the line frequency and the signal
supplied by the user.) Each of the count-pulse interrupt
locations must contain one of the modify and test instruc
tions (MTB, MTH, or MTW) or an XPSD instruction. When
the modification (of the effective byte, halfword, or word)
causes a zero result, the appropriate counter-equals-zero
interrupt (see "Counter-Equals-Zero Group") is triggered.

The override group also includes a processor fault and a
memory fault interrupt location. Both of these locations
normally contain an XPSD instruction. The processor fault
interrupt level is triggered by a signal from an input/output
processor (lOP) or another CPU when these devices detect
certain fault conditions. A POlR instruction must be used to
reset the fault. The memory fault interrupt level is triggered
by a signal that the memory generates when it detects certain
fault conditions. An lMS instruction must be used to reset
the fault (see" Trap System" for further detai Is on processor
and memory faults).

COUNTER-EQUALS-ZERO GROUP (lOCATIONS X'581

TO X'5B')

Each interrupt I eve lin the counter-equa I s-zero group
(called a counter-equals-zero interrupt) is associated with
a count-pulse interrupt in the override group. When the
execution of a modify and test instruction in the count
pulse interrupt location causes a zero result in the effective
byte, halfowrd, or word location, the corresponding counter
equals-zero interrupt is triggered. The counter-equals-zero
interrupt locations normally contain an XPSD instruction and
they can be inhibited or permitted asa.group. If bit position 37
(CI) of the current program status doub I eword conta i ns a 0, the
counter-equa Is-zero interrupts are a I lowed to interrupt the
program being executed. However, if the CI bit is a 1, the
counter-equals-zero interrupts are not allowed to interrupt
the program. These interrupts wait until the CI bit is reset
to 0 and then interrupt the program according to priority.

INPUT/OUTPUT GROUP (lOCA nONS X'5C AND X '5D')

This interrupt group includes two standard interrupts: the I/O
interrupt and the control panel interrupt. The I/O interrupt
level accepts interrupt signals from the standard I/O system.
The I/O interrupt location is assumed to contain an
EXCHANGE PROGRAM STATUS DOUBlEWORD (XPSD)
instruction that transfers program control to a routine for
servicing all I/O interrupts. The I/O routine then contains
an ACKNOWLEDGE I/O INTERRUPT (AIO) instruction that
identifies the source and reason for the interrupt.

The control panel interrupt level is connected to the INTER
RUPT button on the processor control panel. The control
panel interrupt location normally contains an XPSD instruc
tion and can thus be triggered by the computer operator,
allowing him to initiate a specific routine.

The interrupts in the input/output group can be inhibited or
permitted by means of bit position 38 (II) of the program
status doubieword. If II is a 0, the interrupts in the I/O

group are allowed to interrupt the program being executed.
However, if the II bit is a 1, the interrupts are inhibited
from interrupting the program.

EXTERNAL INTERRUPTS

A SIGMA 9 system can contain up to 14 groups of optional
interrupt levels, with 16 levels in each group. As shown in
Figure 9, the groups can be connected in any priority sequence.

All external interrupt locations normally contain XPSD in
structions and can be inhibited or permitted by means of
bit position 39 (EI) of the program status doubleword. If
EI is a 0, external interrupts are allowed to interrupt the
program. However, if EI is a 1, all external interrupts are
inhibited from interrupting the program.

STATES OF AN INTERRUPT LEVEL

A SIGMA 9 interrupt level is mechanized by means of three
fl ip-flops. Two of the fl ip-flops are used to define any of
four mutually exclusive states: disarmed, armed, waiting,
and active. The third flip-flop is used as a level-enable.
The various states and the conditions causing them to change
state are described in the following paragraphs. A con
ceptual diagram of the operational states of the interrupt
system is shown in Figure 10.

DISARMED

When an interrupt level is in the disarmed state, no signal
to that interrupt level is admitted; that is, no record is
retained of the existence of the signal, nor is any program
interrupt caused by it at any time.

ARMED

When an interrupt level is in the armed state, it caQ accept
and remember an interrupt signal. The receipt of such a
signal advances the interrupt level to the waiting state. (If
the level is already in a waiting or active state, the signal
has no effect.)

WAITING

When an interrupt level in the armed state receives an
interrupt signal, it advances to the waiting state, and
remains in the waiting state until it is allowed to advance
to the active state. If the level-enable flip-flop is off, the
interrupt level can undergo all state changes except that of
moving from the waiting to the active state. Furthermore,
if this flip-flop is off, the interrupt level is completely
removed from the chain that determines the priority of access
to the CPU. Thus, an interrupt level in the waiting state
with its level-enable in the off condition does not prevent
an enabled, waiting interrupt of lower priority from moving
to the active state. Any signals received by an interrupt
level in the waiting state are ignored.

Interrupt System 31

WAITING STATE
External I --
Input Active, waiting,

or disarmed state
I

Disabled state
I

I
I
I
I Trigger

Input

Anned state

I
I
I
I
L

Remember
interrupt Enabled state = 0

I
I
~

Figure 10. Operational States of an Interrupt level

When an interrupt level is in the waiting state, the fortowing
conditions must a" exist simultaneously before the level
advances to the active state.

1. The level must be enabled (i. e., its level-enable flip
flop must be set to 1).

2. The group inhibit (CI, II, or EI, if applicable) must be a O.

3. No higher-priority interrupt level is in the active state
or is in the waiting state and totally enabled (i. e. ,
enabled and not inhibited).

4. The CPU must be at an interruptable point in the exe
cution of a program.

ACTIVE

When an interrupt meets all of the conditions necessary to
permit it to move from the waiting state to the active state,
it is permitted to do so by being acknowledged by the com
puter, which then executes the contents of the assigned
interrupt location as the next instruction. The instruction
address portion of the program status doubleword remains
unchanged unti I the i nstructi on in the interrupt I ocati on is
executed.

The instruction in the interrupt location must be one of the
following: XPSD, MTB, MTH, or MTW. If the execution
of any other instruction in an interrupt location is attempted
as the result of an interrupt level advancing to the active
state, an instruction exception trap occurs.

If the instruction in the interrupt location is an XPSD instruc
tion with bit 10 set to 1, or if a modify and test instruction
in the Counter 4 count-pu fse location (see II Si ngle-Instructi on

32 Interrupt System

Interrupts"), the effective address is generated subject to
the current active addressing mode (real, real extended, or
virtual). If, for XPSD, bit 10 and bit Oare equal to 0,
bits 12-31 of the instruction unconditionally specify a direct
address within the first 1 mi Ilion (220) words of real memory.
Since the index field is used for addressing, indexing is not
possible. If bit 10 is equal to 0 and indirect addressing is
specified (bit 0 = 1), the indirect address (interpreted as in
real extended addressing) is found in the word specified by
bits 12-31.

The use of the privileged instruction XPSD in an interrupt
location permits an interrupt-servicing routine to save the
entire current machine environment and establish a new
envi ronment. If worki ng regi sters are needed by the routi ne
and additional register blocks are avai lable, the contents
of the current register block can be saved automatically
with no time loss. This is accomplished by changing the
value of the register pointer, which results in the assign
ment of a new block of 16 registers to the routine. It is
also accomplished by setting bit 8 of the XPSD instruction
to 1.

An interrupt level remains in the active state unti I it is
cleared (removed from the active state) by the execution
of the LPSD instruction or the WD instruction. An interrupt
servicing routine can itself be interrupted (whenever a
higher priority interrupt level meets all of the conditions
for becoming active) and then continued (after the higher
priority interrupt is cleared). However, an interrupt
servicing routine cannot be interrupted by a lower priority
interrupt as longas the higher priority interrupt level remains
in the active state. Any signals received by an interrupt
level in the active state are ignored. Normally, the
interrupt-servicing routine clears its interrupt level and

transfers program control back to the point of interrupt by
means of an LPSD instruction with the same effective address
as the XPSD instruction in the interrupt location.

CONTROL OF THE INTERRUPT SYSTEM

The SIGMA 9 system has two points of interrupt control.
One point of interrupt control is at the individual interrupt
level. The WD instruction can be used to individually arm,
disarm, enable, disable, or trigger any interrupt level
except for the power fail-safe interrupts (which are always
armed, always enabled, and cannot be triggered).

The second point of interrupt control is achieved by means
of the interrupt inhibits (CI, II, and EI) in the program
status doubleword. If an interrupt inhibit is set to 1, all
interrupt levels in the corresponding group are effectively
disabled, i. e., no interrupt in the group may advance from
the waiting state to the active state and the group is
removed from the interrupt recognition priority chain. Thus,
a waiting, enabled interrupt level (in a group that is not
inhibited) is not prevented from interrupting the program by
a higher priority, waiting, enabled interrupt level in a
group that is inhibited. However, if an interrupt group is
inhibited while a level in that group is in the active state,
no lower priority interrupt level may advance to the active
state.

The RD instruction may be used to determine which interrupt
levels in a selected group are in the armed orwaiting state,
in the waiting or active state, or enabled. Chapter 3 con
tains a description of the RD instruction.

TIME OF INTERRUPT OCCURRENCES

The SIGMA 9 CPU permits an interrupt to occur during the
following time intervals (related to the execution cycle of
an instruction) provided that the control panel COMPUTE
switch is in the RUN position and no "halt" condition exists:

L Between instructions: an interrupt is permitted between
the completion of any instruction and the initiation of
the next instruction.

.2. Between instruction it.erations: an interrupt is also
permitted to <;>ccur during the execution of the following
multi pie-operand instructions:

Move Byte String (MBS)

Compare Byte String (CBS)

Translate Byte String (TBS)

Translate and Test Byte String (TTBS)

Edit Byte String (EBS)

Decimal Multiply (DM)

Decimal Divide (DD)

Move to Memory Control (MMC)

The control and intermediate results of these instructions
reside in registers and memory; thus, the instruction can be
interrupted between the completion of one iteration (oper
and execution cycle) and the point in time (during the next
iteration) when a memory location or register is modified.
If an interrupt occurs during this time, the current iteration
is aborted and the instruction address portion of the program
status doubleword remains pointing to the interrupted instruc
tion. After the interrupt-servicing routine is completed, the
instruction continues from the point at which it was inter
rupted and does not begi n anew.

SINGLE-INSTRUCTION INTERRUPTS

A single-instruction interrupt occurs in a situation where an
interrupt level is activated, the current program is inter
rupted~ the single instruction in the interrupt location is
executed, the interrupt level is automatically cleared and
armed, and the interrupted program continues without being
disturbed or delayed (except for the time required for the
single instruction).

If any of the following instructions is executed in any inter
rupt location, then that interrupt automatically becomes a
single-instruction interrupt:

Modify and Test Byte (MTB)

Modify and Test Halfword (MTH)

Modify and Test Word (MTW)

A modify and test instruction modifies the effective byte,
halfword, or word (as described in the section "Fixed-point
Arithmeti c Instructions") but the current condition code
remains unchanged (even if overflow occurs). The effective
address of a modify and test instruction in an interrupt loca
tion (except counter 4) is always treated as an actual
address, regard·less of whether or not the memory map is
currently being used. Counter 4 uses the mapped location
ifmapping is currently invoked in the PSD. The execution
of a modify and test instruction in an interrupt location,
rncl uding mapped and unmapped counter 4, is independent
of the memory access protection codes and the write
protection locks; thus, a memory protection violation trap
cannot occur (a nonexistent memory address wi II cause an
instruction exception trap). Also, the fixed-point overflow
trap cannot occur as. the result of overflow caused by exe
cuting MTH or MTW in an interrupt location.

The execution of a modify and test instruction in an interrupt
location automatically clears and arms the corresponding
interrupt level, allowing the interrupted program to continue.

When a modify and test instruction is executed in a count
pulse interrupt location, all of the above conditions apply,
in addItion to the following: if the resultant value in the
effective location is zero, the corresponding counter
equals-zero interrupt is triggered.

Interrupt System 33

TRAP SYSTEM

TRAP

A trap is similar to an interrupt in that program execution
automatically branches to a predesignated location when a
trap condition occurs. A trap differs from an interrupt in
that a trap location must contain an XPSD instruction.
Depending on the type of trap, the trap instruction is
either executed immediately (i. e., current instruction
is aborted) or upon completion of the current instruction.
The trap instruction is not held in abeyance by higher
priority traps. Interrupts on the other hand may have
an entire sequence of instructions executed before actual
interupt action occurs.

TRAP ENTRY SE~UENCE

A trap entry sequence begins when the CPU detects the
trap condition and ends when the new PSD has successfully
replaced the old PSD. Detection of any condition listed
in Table 7, which summarizes the trap system, results in a
trap to a unique location in memory. When a trap condition
occurs, the CPU sets the trap state. The operation cur
rently being performed by the CPU mayor may not be
carried to completion, depending on the type of trap. In
any event, the instruction is terminated with a trap sequence.
In this sequence, the program counter is not advanced;
instead, the XPSD instruction in the location associated
with the trap is executed. If any interrupt level is ready
to enter the active state at the same time that an XPSD
trap instruction is in process, the interrupt acknowl edge
ment will not occur until the XPSD trap instruction is com
pleted. If the trap location does not contain an XPSD
instruction, a second trap sequence is immediately invoked.
(See "Instructi on Excepti on Trap II .) The operati on of the
XPSD instruction is described in Chapter 3, under "Control
Instructions ".

TRAP MASKS

The programmer may mask the four trap conditions described
below. Other traps can not be masked.

1. The push-down stack limit trap is masked within the
stack pointer doubleword for each individual stack.

2. The fixed-point overflow trap is masked in bit position
11 (AM) of the PSD. If bit position 11 (AM) of the
PSD contains a 1, the trap is allowed to occur. If bit
position 11 contains a 0, the trap is not allowed to
occur. AM can be masked by operator intervention or
by execution of either of the privileged instructions
XPSD or LPSD.

3. The floating-point significance check trap is masked
by a combination of the floating significance (FS),
floating zero (FZ), and floating normalize (FN) mode
control bits (see "Floating-Point Arithmetic FaultTrap").

34 T rap System

FS, FZ, and FN can be set or cI eared by the execution
of any of the following instructions:

LOAD CONDITIONS AND FLOATING CON
TROL (LCF)

LOAD CONDITIONS AND FLOATING CON
TROL IMMEDIATE (LCFI)

EXCHANGE PROGRAM STATUS DOUBLEWORD
(XPSD)

LOAD PROG RAM STATUS DOUBLEWORD (LPSD)

4. The decimal arithmetic fault trap is masked by bit
position 10 (OM) of the PSD. If bit position 10 (OM)
of the PSD contains a 1, the trap is allowed. If OM
is a 0, the trap is not allowed. OM can be masked by
execution of either of the privileged XPSD or LPSD
instructions.

TRAP CONDITION CODE

For the traps push-down stack limit, fixed-point overflow,
floating-point fault, and decimal fault, the normal condi
tion code register, CC1-CC4, is loaded with more detailed
information about the trap condition just before the trap
occurs. This condition code is saved as part of the old PSD
when the XPSD instruction is executed in response to the
trap.

For the traps nona II owed operation, watchdog ti mer runout,
memory parity error, instruction exception, and calls, a
special register, the trap condition code TCC1-TCC4, is
loaded just before the trap occurs. When the XPSD instruc
tion is executed in response to the trap, this register is
added to the new program address if bit 9 of the XPSD is
set to 1; TCC1-TCC4 is also logically ORed with the con
dition code bits of the new PSD when loading CC1-CC4.

TRAP ADDRESSING

During the trap entry sequence, the XPSD instruction in the
trap location is accessed without mapping, regardless of the
current addressing mode.

If bit 10 of the XPSD is a 1, the effective address is gen
erated subject to the current active addressing mode (real,
real extended, or virtual). If, however, bit 10 and bit 0
are equal to a zero, bits 12-31 of the instruction uncondi
tionally specify a direct address within the first 220 words
of real memory. Since the index field is used for addressing,
indexing is not possible. If bit 10 is equal to a zero and
indirect addressing is specified (bit 0 = 1), the indirect
address (interpreted as in real extended addressing) is found
in the word specified by bits 12-31. Bit 10 of the XPSD
has no effect when the XPSD is executed as a nontrap
instruction.

90 17 33C-1(4/74)

Table 7. Summary of SIGMA 9 Trap locations

location- PSD
Dec. Hex. Function Mask Bit Ti me of Dccurren ce Trap Condi ti on Code

64 40 Nonallowed operation

1. Nonexi stent None At instruction decode. Set TCCl
instruction

2. Nonexi stent None Prior to memory access. Set TCC2
memory address

3. Privileged instruc- None At instruction decode. Set TCC3
tion in slave mode

4. Memory protec- None Prior to memory access. Set TCC4
tion violation

65 41 Unimplemented None At instruction decode. None
i nstructi on

66 42 Push-down stack TW, TSt At the time of stack limit None
limit reached detection. (The aborted

push-down instruction does
not change memory, regis-
ters, or the condition code.)

67 43 Fixed-point AM For all instructions except None
ari thmeti c overflow DW and DH, trap occurs

after completion of in-
struction. For DWand
DH, instruction is aborted
with memory, registers,
CC1, CC3, and CC4
unchanged.

68 44 Floating-point At detection.
arithmetic fault

1. Characteristi c None (The floating-point None
overflow instruction is aborted

without changing any
2. Divide by zero None registers. The condi ti on None

code is set to indicate
3. Significance check FS, FZ, FN the reason for the trap.) None

69 45 Decimal arithmetic DM At detection. (The aborted None
fault decimal instruction does

not change memory, reg-
isters, CC3, or CC4.)

70 46 Watchdog Timer None At runout. (The Processor Set TCCl if instruction successfully
Runout Detected Fault or PDF flag completed (TCC2-4 reset).

wi II be set.)
Set TCC2 if processor bus hang-up.

Set TCC3 if memory bus hang-up.

Set TCC4 if DID bus hang-up.

71 47 Reserved

72 48 CAlll None At instruction decode. Equal to R field of CAll instruction.

tThe TW and TS mask bits are contained within the Stack Pointer Doubleword for each push-down stack.

90 17 33C-l(4/74) Trap System 35

Table 7. Summary of SIGMA 9 Trap Locations (cont.)

Location PSD
Dec. Hex. Function Mask Bit Time of Occurrence Trap Condition Code

73 49 CALL2 None At instruction decode. Equal to R field of CALL instruction.

74 4A CALL3 None At instruction decode. Equal to R field of CALL instruction.

75 4B CALL4 None At instruction decode. Equal to R field of CALL instruction.

76 4C Parity Error None (The PDF flag wi II be set.) Set TCC2 if map parity error.

Set TCC3 if data bus parity error
detected by CPU.

Reset TCCl-4 if memory parity error.

77 4D . Instruction Exception None (The PDF flag wi" be set.) Set TCCl if trap or interrupt se-
Trap

78 4E Reserved

79 4F Reserved

NONALLOWED OPERATION TRAP

The occurrence of a nona"owed operation always causes the
computer to abort the instruction being executed at the time
that the nonallowed operation is detected and to immediately
execute the XPSD instruction in Homespace trap location
X'40'. A nonallowed operation trap cannot be masked.

NONEXISTENT INSTRUCTION

Any instruction that is not standard on SIGMA 9 is defined
as nonexistent. This inC! udes immediate operand instructions
that are indirectly addressed (l in bit position Oof instruc
tion). If a nonexistent instruction is detected, the computer
traps to Homespace location X'40' at the time the nonexis
tent instruction is decoded. No general registers or memory
locations are changed, and the PSD points to the instruction
trapped. The operation of the XPSD in Homespace trap

36 Trap System

quence and register pointer set to
nonexistent register block.

Set TCC = 0 if an XPSD, LPSD, or
LRP instruction not in a trap or inter-
rupt sequence tries to set register
pointer to nonexistent register block.

Set TCC3 if MMC configuration
i liege I.

Set TeC = X'C if trap or interrupt
sequence with illegal instruction.

Set TCC = X'F' if trap or interrupt
sequence and processor detected fault.

Set TCC4 if invalid register desig-
nation (odd register on AD, SD,
FAL, FSL, FML, FDL, TBS, TTBS,
EBS, and register 0 on EBS).

location X'40' (with respect to the condition code and
instruction address portions of the PSD) is as follows:

1. Store the current PSD. The condition codes stored are
those that existed at the end of the last instruction
prior to the nonexistent instruction.

2. Load the new PSD. The current PSD is replaced by the
contents of the doubleword location following the
doubleword location in which the current PSD was
stored.

3. Modify the new PSD.

a. Set CCl to 1. The other condition code bits
remain unchanged from the values loaded from
memory.

90 17 33C-1(4/14)

b. If bitposition90f XPSDcontainsa 1, theprogram
counter is incremented by B. If bit position 9 of
XPSD contains a 0, the program counter remains
unchanged from the value loaded from memory.

NONEXISTENT MEMORY ADDRESS

Any attempt to access a nonexistent memory address causes
a trap to Homespace location X'40' at the time of the
request for memory service. A nonexistent memory address
condition is detected when an actual address is presented
to the memory system. If the CPU is in the map mode, the
program address will already have been modified by the
memory map to generate an actual (but nonexistent) address.
(Refer to Table 6 for possible changes to registers and mem
ory locations.) The operation of the XPSD in Homespace
trop location X'40' is as follows:

1. Store the current PSD.

2. Load the new PSD.

3. Modify the new PSD.

a. Set CC2 to 1. The other condition code bits re
main unchanged from the values loaded from memory.

b. If bit position 9 of XPSD contains a 1, the pro
gram counter is incremented by 4. If bit position 9
of XPSD contains a 0, the program counter remains
unchanged from the value loaded from memory.

PRIVILEGED INSTRUCTION IN SLAVE MODE

An attempt to execute a privi leged instruction whi Je the
CPU is in the slave mode causes a trap to Homespace loca
tion X'40' before the privileged operation is performed. No
general registers or memory locations are changed, and the
PSD points to the instruction trapped. The operation of the
XPSD in Homespace trap location X'40' is as follows:

1. Store the current PSD.

2. Load the new PS D.

3. Modify the new PSD.

a. Set CC3 to 1. The other condition code bits re
main unchanged from the values loaded from memory.

b. If bit position 9 of XPSD contains a 1, the program
counter is incremented by 2. If bit position 9 of
XPSD contains a 0, the program counter remains
unchanged from the values loaded from memory.

The operation codes OC and OD, and their indirectlyad
dressed forms, BC and 8D, are both nonexistent and priv
ileged. If anyone of these operation codes is used while
the CPU is in the slave mode, both CCl and CC3 are set
to lis after the current PSD is modified, and if bit position 9
of XPSD contains a 1, the program counter is incremented
by 10. All other nonexistent operation codes are treated as
nonprivi leged and, if used, wi II trap with CC1 set to 1.

MEMORY PROTECTION VIOLATION

A memory protection violation occurs either because of a
memory map access control bit violation {by a program
executed in the slave or master-protected mode using the
memory map), or because of a memory write-lock violation
(by any program) within the first 12BK words of real memory.
When either type of memory protection violation occurs,
the CPU aborts execution of the current instruction without
changing protected memory and traps to Homespace location
X'40'. (Refer to Table 6 for possible changes to registers
and memory locations.) The operation of the XPSD in
Homespace trap location X'40' is as follows:

1. Store the current PSD. Set trapped status field to vir
tual page address of protected page.

2. Load the new PSD.

3. Modify the new PS D.

a. Set CC4to 1. The other condition code bHs remain
unchanged from the values loaded from memory.

b. If bit position 9 of XPSD contains a-1, the program
counter is incremented by 1. If bit position 9 of
XPSD contains a 0, the program counter remains
unchanged from the value loaded from memory.

An attempt to access a memory location that is both pro
tected and nonexistent causes both CC2 and CC4 to be set

- to lis after the current PSD has been modified, and -if bit
position 9 of XPSD contains a 1, the program counter is
incremented by 5.

When the memory protection violation trap occurs, an
XPSD instruction is executed that stores the current PSD in
the doubleword pointed to by the effective address of the
instruction. If this trap condition (CC4 = 1) occurs, the
particular virtual page address that caused the trap wi" be
stored in the trapped status field, bit positions 4B-55, of
the same doubleword. This information only appears in
memory and only at the time of the trap. Subsequent
XPSD instructions that are not executed as a result of this
trap wi II not store information in bit positions 4B-55.

UNIMPLEMENTED IISTRUCnOI TRAP

When the DECIMAL switch on the processor control panel
is in the OVERRIDE position, the decimal unit is disabled.
The decimal unit includes the following instructions.

Operation
Instruction Name Mnemonic Code

Decimal Load DL X'7E'

Decimal Store DST X'7F'

Decimal Add DA X'79'

Decimal Subtract DS X'7B'

Decimal MultipJy DM X'7B'

Decimal Divide DD X'7A'

Trap System 37

Operation
Instruction Mnemonic Code

Decimal Compare DC X'7D'

Decimal Shift Arithmetic DSA X'7C'

Pack Decimal Digits PACK X'76'

Unpack Decimal Digits UNPK X'77'

Edit Byte String EBS X'63'

If an attempt is made to execute a decimal instruction
(directly or indirectly addressed) when the DECIMAL switch
is in the OVERRIDE position, the computer traps to Home
space location X'41 " the unimplemented instruction trap~
An indirectly addressed EBS instruction is always treated
as a nonexistent instructi on rather than as an unimpl emented
instruction.

The operation of the XPSD in trap Homespace location
X'41' is as follows:

1. Store the current PSD. The condition code stored is
that which existed at the end of the instruction imme
diately prior to the unimplemented instruction.

2. Load the new PSD. The condition code and the in
struction address portions of the PSD remain at the
values loaded from memory.

PUSH-DOWN STACK UMIT TRAP

Push-down stack overflow or underflow can occur during
execution of any of the following instructions:

Operation
Instruction Mnemonic Code

Push Word PSW X'09'

Pull Word PLW X'08'

Push Multiple PSM X'OB'

Pull Multiple PLM X'OA'

Modify Stack Pointer MSP X'13'

During the execution of any stack-manipulating instruction
(see II Push':'down Instructions"), the stack is either pushed
(words added to stack) or pul led (words removed from stack).
In either case, the space (S) and words (W) fields of the
stack pointer doubleword are tested prior to moving any
words. If execution of the instruction would cause the
space (S) field to become less than 0 or greater than 215_1,
the instruction is aborted with memory and registers
unchanged. If TS (bit 32) of the stack pointer doubleword
is set to 0, the CPU traps to Homespace location X'42'. If
TS is set to 1, the trap is inhibited and the CPU processes

38 T rap System

the next instruction. If execution of the instruction would
cause the words (W) field to become less than 0 or greater
than 215-1, the instruction is aborted with memory and
registers unchanged. If TW (bit 48) of the stack pointer
doubleword is set to 0, the CPU traps to Homespace loca
tion X'42'. If TW is set to 1, the trap is inhibited and the
CPU processes the next instruction. If trapping is inhibited,
CCl or CC3 is set to 1 to indicate the reason for aborting
the instruction. The stack pointer doubleword, memory,
and registers are modified only if the instruction is success
fully executed.

If a push-down instruction traps, the execution of XPSD in
Homespace trap location X'42' is as follows:

1. Store the current PSD. The condition codes that are
stored are those that existed prior to execution of the
aborted push-down instruction.

2. Load the new PSD. The condition code and instruction
address portions of the PSD remain at the varues loaded
from memory.

FIXED-POIITOVERFLOW TRAP

Overflow can occur for any of the fol lowing instructions:

Operation
Instruction Mnemonic Code

Load Absol ute Word LAW X'3B'

Load Absolute Doubleword LAD X'1B'

Load Complement Word LCW X'3A'

Load Complement Doubleword LCD X'1A'

Add Ha I fword AH X'50'

Subtract Halfword SH X t 5S'

Divide Haffword DH X'56'

Add Immediate AI X'20'

Add Word AW X'30'

Subtract Word SW X'3S'

Divide Word DW X'36'

Add Doubl eword AD X'lO'

Subtract Doubl eword SD X'lS'

Modify and Test Halfword MTH X'53 1

Modify and Test Word MTW X'33'

Add Word to Memory AWM X'66'

Except for the instructions DIVIDE HALFWORD (DH) and
DIVIDE WORD (DW), the instruction execution is allowed
to proceed to completion. CC2 is set to 1 and CC3 and
CC4 represent the actual result (0, -, or +) after overflow.

If the fixed-point arithmetic trap mask (bit 11 of PSD) is a
1, the CPU traps to Homespace location X'43 1 instead of
executing the next instruction in sequence.

For DW and DH, the instruction execution is Qoorted with
out changing any register, and CC2 is set to 1; but CC1,
CC3, and CC4 remain unchanged from their values at the
end of the instruction immediately prior to the DW or DH.
If the fixed-point arithmetic trap mask is a 1, the CPU
traps to location X'43 1 instead of executing the next instruc
tion in sequence.

The execution of XPSD in Homespace trap location X'43 1

is as follows:

1. Store the current PSD. If the instruction trapped was
any instruction other than DW or DH, the stored con
dition code is interpreted as follows:

CC1 t CC2 CC3

tt o

o

o

CC4 Meaning

o Result after overflow is
zero.

Resu I t after overflow is
negative.

o Result after overflow is
positive.

No carry out of bit 0
of the adder (add and
subtract instructions
only).

Carry out of bit 0 of
the adder {add and
subtract instructions
only}.

If the instruction trapped was a DW or DH, the stored
condition code is interpreted as follows:

CC1 CC2 CC3 CC4 Meaning

tt
Overflow

tCCl remains unchanged for instructions LCW~ LAW, LCD,
and LAD.

ttAhyphen indicates that the condition code bitsarenot af
fected by the condition given under the "Meaning" heading.

2. Load the new PS D. The conditi on code and instruction
address portions of the PSD remain at the value loaded
from memory.

FlOATING-POINT ARITHMETIC FAULT TRAP

Floating-point fault detection is performed after the opera
tion called for by the instruction code is performed, but
before any results are loaded into the general registers.
Thus, the floating-point operation that causes an arithmetic
fault is not carried to completion in that the original con
tents of the general registers are unchanged.

Instead, the computer traps to Homespace location X'441

with the current condition code indicating the reason for
the trap. A characteristic overflow or an attempt to divide
by zero always results in a trap condition. A significance
check or a characteristic underflow results in a trap condi
tion only if the floating-point mode controls {FS, FZ, and
FN} in the current program status doubleword are set to the
appropriate state.

If a floating-point instruction traps, the execution of XPSD
in Homespace trap location X'441 is as follows:

1. Store the current PSD. If division is attempted with a
zero divisor or if characteristic overflow occurs, the
stored condition code is interpreted as follows:

CCl CC2 CC3 CC4 Meaning

0 0 0 Zero divisor.

0 0 Characteristic overflow,
negative result.

0 0 Characteristic overflow,
positive result.

If none of the above conditions occurred but charac
teristic underflow occurs with floating zero mode bit
(FZ) = 1, the stored condition code is interpreted as
follows:

CCl CC2 CC3 CC4 Meaning

o Characteri sti c under
flow, negative result.

o Characteristic under
ffow, positive result.

If none of the above conditions occurred but an addition
or subtraction results in either a zero result (with
FS = 1 and FN = 0), or a postnormalization shift of more
than two hexadecimal places {with FS = 1 and FN = O},
the stored condition code is interpreted as follows:

CCl CC2 CC3 CC4 Meaning

o o o Zero result of addition
or subtraction.

T rap System 39

CCl ee2 CC3 CC4 Meaning

1 o o

o

1

o

More than two post
normal i zing shifts,
negative result.

More than two post
normatizing. shifts,
positive result.

2. load the new PSD. The condition code and instruc
tion address portions of the PSD remain at the values
loaded from memory.

DECIMAL ARITHMEnc FAUll TRAP

When either of two decimal fault conditions occurs (see
II Decimal Instructions ll

), the normal sequencing of instruc
tion execution is hafted, ec land CC2 are set according
to the reason for the fault condition, and CeJ, CC4, mem
ory, and the decimal accumulator remain unchanged by the
instruction. If the decimal arithmetic trap mask (bit posi
tion 10 of PSWl) -is a 0, the instruction execution sequence
continues with the next instruction in sequence at the time
of fault detection; however, if the decimal arithmetic trap
mask contains a 1, the computer traps to Homespace loca
tion Xf45f at the time of fault detection. The following
are the fault conditions for decimal instructions:

Instruction Name Mnemonic Fault

Decimal load Dl Illegal digit

Decimal Store OS Illegal digit

Decimal Add DA Overflow, illegal
digit

Decimal Subtract DS Overflow, Hlegal
digit

Decimal Multiply OM IHegal digit

Decimal Divide DO Overflow, illegal
digit

Decimal Compare DC fUegal digit

Dec imol Shift DSA II legal digit
Arithmetic

Pock Decimal PACK Illegal digit
Digits

Unpack Decimal UNPK IUegal digit
Digits

Edit Byte String EBS Illegal digit

40 Trap System

The execution of XPSD in Homespace trap location X'451

is as follows:

1. Store the current PSD. The stored condition code is
interpreted as follows:

CCI Ce2 CC3 CC4 Meaning

0
t

AU digits legal and
overflow.

1" 0 Illegal digit detected.

2. Load the new PSD. The condition code and instruction
address portions of the PSD remain at the values loaded
from memory.

CALL IISTRUCllOl TRAP

The four CAll instructions (CAll, CAl2, CAl3, and
CAL4) cause the computer to trap to Homespace location
X'48' (for CAll), X'491 (for CAl2), Xf4Af (for CAl3), or
X'4Bf (for CAl4). Execution of XPSD in the trap location
is as foJ lows:

1. Store the current PSD. The stored condition code bits
are those that existed prior to the CAll instruction.

2. Load the new PSD.

3. Modify the new PSD.

a. The R Field of the CAll instruction is logically
ORed with the condition code register as loaded
from memory.

b. If bit 9 of XPSD contains a 1, the R field of the
CALL instruction is added to the program counter.
If bit 9 of XPSD contains a 0, the program counter
remains unchanged from the value loaded from
memory.

Note: Return from a CAll trap will be to the trapping
instruction + 1.

PROCESSOR DmClED fAULlS

The Processor Detected Fault (PDF) flag is ahardware
flog used in the SIGMA 9 system to aid in solving the mul
tiple error problem. Most traps occur because of some
dynamic programming consideration (i. e., overflow, at
tempted division by zero, incorrect use of an instruction
or address, etc.) and recovery is easify handled by another
software subroutine. However, with certain classes of
errors, if a second error occurs white the computer is

t A hyphen indicates that the condition code bit is not
affected by the condition given under the "Meaning"
heading.

attempting to recover from the first error, unpredictable
results occur. Included in this class of traps is the parity
error trap, some cases of the instruction exception trap,
and the watchdog timer runout trap. Upon the first occur
rence of this type of trap, the PDF flag is set. At the same
time, a bit in the fault status register is set indicating the
type of fault.

)
When the PDF flag is set, the processor fault interrupt, the
memory fault interrupt, and count pulse interrupts are auto
matically inhibited. The other interrupts, with the excep
tion of power fai I-safe, mayor may not be inhibited as
specified by the PSD, which is loaded when the trap entry
XPSD is executed. The PDF flag is normally reset by the
last instruction of a trap routine, which is an LPSD instruc
tion having bit 10 equal to 0 and bit 11 equal to 1. At
the same time, the fault status register is also cleared.

If a second PDF is d~tected before the PDF flag is reset,
the CPU becomes "hung-up" just prior to executing the
XPSD associated with the last trap condition. This condi
tion can be recognized by the operator observing that the
PDF, HALT lights are on but not the PCP or CPU phase
lights. This condition can be cleared by the operator
pressing the CPU RESET or the SYS RESET switches on the
processor control panel; or, in a multiprocessor system, by
another CPU executing an RIO instruction.

If the operator wants to resume operation without recovery,
or to stop and exami ne the current state of the system, he
sets the COMPUTE switch to the IDLE position. The CPU
will then complete execution of the XPSD (with the excep
tion noted below) associated with the last trap to occur and
then return to the IDLE state with the PDF flag sti II set.
In the special case, the last trap was an instruction excep
tion trap and an invalid instruction is situated in the as
sociated memory location; the CPU cannot reach the IDLE
state (PCP1) when the COMPUTE switch is returned to
IDLE but repetitively reenters the trap sequence attempting
to execute the invalid instruction. For this case, the
operator must press CPU RESET or SYS RESET to clear this
state and enter the IDLE state.

The reset (RIO) function on a processor bus addressing a
CPU wi II cause a reset of that CPU. If the CPU is "hung
Up", this reset will cause the following actions:

1. The processor fault status register is cleared.

2. The PDF flag is cleared and the processor fault inter
rupt generated flag is cleared.

3. The PSD is cleared to zero except that the instruction
address is set to Homespace location X'26 1

• This is the
same condition for the PSD that results from pressing
the SYS RESET switch on the processor control panel.

4. The CPU wi" begin execution with the instruction con
tained in Homespace location X'26 1

•

WATCHDOG TIMER RUNOUT TRAP

The watchdog timer is a two-phase timer that monitors and
controls the maximum amount of CPU time each instruction

can take. The timer is normally in operation at all times
and is initialized at the beginning of each instruction.

If the instruction is completed before the end of phase I,
the timer is reset. If the instruction is completed after
phase 1 but before the end of phase 2, a trap to Homespace
location X'46 1 occurs immediately after the instruction is
completed. TCC1 is set to indicate successful completion
of the instruction, and TCC2, 3, and 4 are set to zero.
TCC1 is set only if no other trap is pending at the end of
the completed instruction, and indicates that the return
address stored by the XPSD should point to the next instruc
tion to be executed.

If the instruction is not completed by the time the watchdog
timer has advanced through phase 2, the instruction is
aborted, TCC1 is set to 0, and a trap occurs immediately
to Homespace location X'46 1

• TCC2 is set if the CPU was
using the processor bus, TCC3 is set if the CPU was using the
memory bus, or TCC4 is set if the CPU was using the DIO
bus. The return address stored by the XPSD is valid only if
TCC2 or TCC4 are set, and points to the trapped instruction.
The register altered flag of the PSD is also set if any reg
ister or main memory location had been changed when the
trap occurred.

A watchdog timer runout is considered a CPU fault and the
PDF flag is set. The first stage watchdog timer trap, how
ever, is inhibited during the time the PDF flag is set, or
the Power On/Off interrupt level is in the waiting and
enabled or active state, to avoid entering a double fault
hang-up state.

INSTRUCTION EXCEPTION TRAP

The instruction exception trap occurs whenever the CPU
detects a set of operations that are co lied for in an i nstruc
tion but can not be executed because of either a hardware
restriction or a previous event.

The different conditions that cause the instruction exception
trap are:

1. A processor-detected fault that occurs during the exe
cution of an interrupt or trap entry sequence. An
interrupt or trap entry sequence is defined as the
sequence of events that consists of: (a) initiating on
interrupt or trap; (b) accessing the instruction in the
interrupt or trap location; and (c) executing that in
struction, including the exchange of the PSD, if
required. Note that instructions executed as a result
of the interrupt or trap other than the instruction lo
cated at the interrupt or trap location are not consid
ered part of the entry sequence.

2. An illegal instruction is found in the trap (not XPSD)
or interrupt (not XPSD, MTB, MTH, MTW) location
when executing a trap or interrupt sequence.

3. The register pointer (bits 56-59) of the PSD is set to a
nonexistent register block as a result of an LRP, LPSD,
or XPSD.

Trap System 41

4. Bit positions 12-14 of the MOVE TO MEMORY
CONTROL (MMC) instruction are interpreted as an
illegal configuration. That is, any configuration
other than 100, 010, 001, or 101.

5. The set of operations, primari Iy doubleword and byte
string instructions, that yield an unpredictable result
when an incorrect register is specified; this type of
fault is called lIinvalid register designation ll and
includes the following instructions: t

Register 0 Specified

Edit Byte String (EBS)

Odd Register Specified

Add Doubleword (AD)

Subtract Doubleword (SD)

Floating Add Long (FAL)

Floating Subtract Long (FSL)

Floating Multiply Long (FMl)

Floating Divide Long (FDL)

Translate Byte String (TBS)

Translate and Test Byte String (TTBS)

Edit Byte String (EBS)

Move to Memory Control (MMC)

Trap Condition Code. The Trap Condition Code (TCC)
differentiates between the different fault types. Some of
the fault conditions (as listed in Table 8) may occur and/or
be detected during a trap or interrupt entry sequence. In
this case, the trapped status field, bits 48-55 of the PSD,
are set to equal the least significant eight bits of the ad
dress of the trap or interrupt instruction in whi ch the trap
occurred; that is, the trapped status field wi" point to the
trap or interrupt location that was in effect when the fault
occurred. In the event that the fault occurs in a normal
program instruction, the trapped status field has no meaning.

Table 5 shows the settings of the TCC and trapped status
field for the various fault types.

PARITY ERROR TRAP

Three types of parity errors may be detected in the ad
dressing and memory logic.

1. Map Check. When the CPU is operating with the
memory map, a parity check is made on the page

t"lnvalid register designation" faults do not set the PDF Hag.

42 Trap System

Table 8. TCC Setting for Instruction Exception Trap X'4D' I

T rapped Status
TCC Field (PSD bits

Fault Type 1 234 48-55)

XPSD in trap or 1 000 8 least significant
interrupt location tries bits of trap or
to set register pointer interrupt address.
to nonexistent register
block.

XPSD, LPSD, or LRP 0000 No meaning.
not in a trap or inter-
rupt sequence tries to
set register pointer to
nonexistent register
block.

Trap or interrupt 1 1 1 1 8 least significant
sequence and pro- b its of trap or
cessor detected fault. interrupt address.

Trap or interrupt 1 1 00 8 least significant
sequence with bits of trap or
inval id instruction. interrupt address.

MMC configuration 001 a No meaning.
invalid.

Invalid register 0001 No meaning.
designation.

addresses retrieved from the map. If an error is found,
this fault occurs. The CPU aborts the memory request,
traps to Homespace location X'4C' and sets TCC2 to 1.

2. Data Bus Check. If the CPU detects t a parity error
on data received from memory and the memory does
not also indicate a parity error on the information sent,
a data bus check occurs. The data bus check causes
the CPU to trap to Homespace location X'4C', and sets
TCC3 to 1.

3. Memory Parity Error. When a CPU receivest a signal
from the memory indicating memory parity error, this
fault occurs. The CPU traps to Homespace location
X'4C'. In addition, on a memory-detected parity
error trap, the memory bank wi II "snapshot II the address
causing the trap.

The memory parity error signal is generated:

1. When the memory is performing a read operation and
a parity error is detected in the data as read from the
memory elements.

t Note exceptions in IITrap Conditions During 'Anticipate'
Operations ll

•

90 17 33C-1(4/74)

2. When the memory is performing a partial write
operation and a parity error is detected when reading
the word to be changed. This is done before the new
information is inserted and the data restored to memory;
memory is not changed.

3. When a parity error is detected in the memory on an
address received on the memory bus. If the address bus
check occurs on a write request, the memory is not
accessed. On a read request, dummy data with incor
rect parity is sent to the processor.

4. When a parity error is detected on data received by
the memory from the memory bus. The memory is not
accessed and the data is not used.

5. If the memory has a port selection error in attempting
to establish priority for requests received on two or
more ports. The memory parity error signal is generated
on the busses for a II ports affected by the se I ecti on
error.

6. If the LOAD MEMORY STATUS instruction is used and
the condition code set prior to execution of the instruc
tion is reserved (i. e., not implemented in the memory
logic), the memory will interpret it as a read-type
instruction, send back a parity error signal and all
zeros on the data bus, and "snapshot" the address in
the Memory Status Register.

In addition, any of these six conditions will always cause a
Memory Fault Interrupt to occur.

TRAP CONDITIONS DURING "ANnCIPATE"
OPERAnONS

During the time that the SIGMA 9 is executing a current
instruction, it is also performing operations in anticipation
of the next instruction, as specified by the instruction ad
dress. These operations (accessing the next instruction, the
associated operand, and/or indirect address, etc.) may
encounter trapping conditions. Whether a corresponding
trap wi II occur is contingent on the current instruction.
Traps due to the current instruction and traps due to branch
operations wi II inhibit traps due to operations performed
in anticipation of the next instruction.

If the current instruction is a successful branch instruction,
the instruction sequence is changed. Therefore, operations
performed in anticipation of the next instruction are no
longer valid, and any traps associated with these operations
are disregarded.

If the current instruction encounters a trap, it takes prece
dence over the next instruction and any anticipated trap.
At the end of the trap routine these operations 'wi II be reper
formed and the proper trap action wi II occur at this time.

At the end of the execution of current (nonbranching) in
structions, trap conditions detected during "anticipate"
operations have priority over an interrupt. These trap con
ditions include nonexistent memory, access protection vio
lation, nonexistent instruction, privi leged instruction in
slave mode, and parity error.

REGISTER ALTERED BIT

Complete recoverability after a trap may require that no
main memory location, no fast memory register, and no
part (or flags) of the PSD be changed when the trap occurs.
If any of these registers or flags are changed, the Register
Altered bit (60) of the old PSD is set to 1 and is saved by
the trap XPSD.

Changes to CCl-4 cause the Register Altered bit to be set
only if the instruction requires these condition code bits as
subsequent inputs.

T raps caused by condi ti ons detected duri ng operand fetch
and store memory cycles, such as nonexistent memory,
access protection violation, and memory parity error may
or may not leave registers, memory, and PSD unchanged,
depending on when they occur during instruction execu
tion. Generally, these traps are recoverable. This is
done by checking for protection violations and nonexis
tent memory at the beginning of execution in case of a
multiple operand access instruction, restoring the original
register contents if execution cannot be completed because
of a trap, and not loading the first half of the PSD unti I
a possible trap condition due to access of the second half
could have been detected. Table 9 contains a list of I
SIGMA 9 instructions and indicates for these instructions
what registers, memory locations, and PSD bits, if any,
have been changed when a trap due to an operand access
memory cycl e occurs.

Table 9. Registers Changed at Time of a Trap Due to an Operand Access

Instructions Changes

AI, CI, LCFI, LI, MI Immedi ate type, no operand access.

CALl-CAL4, SF, S, WAIT, RD, WD, RIO, No operand access.
POLR, POLP, DSA

LRA Has operand access but traps are suppressed; register bits and
condition codes are set instead.

90 17 33C-1(4;74) Trap System 43

44

Table 9. Registers Changed at Time of a Trap Due to an Operand Access (cont.)

Instructions

LB, LCF, LRP, CB
LH, LAH, LCH, AH, SH, MH, DH, CH
LW, LAW, LCW, AW, SW, MW, DW, CW
LD, LAD, LCD, AD, SD, CD, CLM, CLR
EOR, OR, AND, LS, INT, CS
FAS, FSS, FMS, FDS, FAL, FSL, FML, FDL

AWM, XW, STS, MTB, MTH, MTW
STB, STCF, STH, STW, LAS

STD

EXU, BCR, BCS
BAL, BDR, BIR

MBS, CBS, TBS, TTBS, ESS, MMC
DA, DS, DL, DST, DC, DM, DD, PACK,
UNPK, LM, STM, PLM, PSM

CYA, CYS

XPSD, LPSD

SIO, no, TDY, HIO, AIO

Trap System

Changes

No operand store, registers and PSD unchanged when trap due to
operand fetch. CC 1-4 may be changed but are not used as input
to any of these instructions.

Registers and memory are preserved, condition codes may be changed
but are not used as input to these instructions.

If a trap occurs, the first word (odd address) may have been stored
already. The Register Altered bit is set in this case.

If the branch condition is true (always for EXU and SAL) and a trap
occurs due to access of the indirect address or of the next (branched
to or executed) instruction, the register used is left unchanged and
the program address saved in the PSD is the address of the branch or
execute instruction.

These instructions check for protection violations and nonexistent
memory at both ends of the data area at the beginning of execution
(see individual instruction descriptions). If any traps occur during
execution, e. g., because of parity errors, the instruction is aborted,
indicating in the registers at which point. In general, memory will
be altered and the Register Altered bit set.

If a trap occurs, the instruction wHI be aborted before altering
registers. CC1-4 may be changed but not used as input to any of
these instructions.

If a trap occurs due to storing the old PSD or fetching the new PSD,
the instruction is aborted before changing the old PSD.

Operand access protection violations are not possible during execu
tion of these instructions; therefore, a trap wi II only occur due to a
parity error when accessing the CPU/lOP communication locations
(Homespace location X'20' or X'211). If a parity error trap does
occur when accessing these locations (either by the CPU or lOP),
the i nstructi on wi II abort wi th CC3 set to 1. (See" Input/Output
Instructions", Chapter 3.)

90 1733C-1(4/74)

3. INSTRUCTION REPERTOIRE

This chapter describes all SIGMA 9 instructions, grouped
in the following functional classes:

1. Load and Store

2. Analyze and Interpret

3. Fi xed-Poi nt Ari thmeti c

4. Comparison

5. Logical

6. Shift

7. Conversion

8. Floating-Point Arithmetic

9. Decimal

10. Byte String

1l. Push Down

12. Execute and Branch

13. Call

14. Control (privileged)

15. Input/Output (privileged)

SIGMA 9 instructions are described in the following format:

MNEMONIC CD INSTRUCTION NAMEQ)

(Addressing Type~ Privileged~
CD Interrupt Action)

D
•. Q)

escrlptlon

Affected (!)

Symbolic Notation@

Condition Code Settings@

Trap Action@

Example
@

Trap®

1. MNEMONIC is the code used by the SIGMA 9 assem
blers to produce the instruction's basi c operation code.

2. INSTRUCTION NAME is the instruction's descriptive
title.

3. The instruction's addressing type isoneofthefollowing:

a. Byte index alignment: the reference address field
of the instruction (plus the displacement value)
can be used to address a byte in main memory or
in the current block of general registers.

b. Halfword index alignment: the reference address
field of the instruction (plus the displacement
value) can be used to address a halfword in main
memory or in the current block of general registers.

c. Word index alignment: the reference address field
of the instruction (plus the displacement value)
can be used to. address any word in main memory
or in the current block of general registers.

d. Doubleword index alignment: the reference ad
dress fi eld of the instruction {p1us the displacement
value} can be used to address any doubleword in
main memory or in the current hlock of general
registers. The addressed doubleword is auto
matically located within doubleword storage
boundaries.

e. Immediate operand: the instruction word contains
an operand value used as part of the instruction
execution. If indirect addressing is attempted
with this type of instruction (i. e., bit 0 of the
instruction word is a 1), the instruction is treated
as a nonexistent instructi on, and the computer
unconditionally aborts execution of the instruction
(at the time of operation code decoding) and traps
to Homespace location X'40' , the "nona II owed
operation" trap. Indexing does not apply to this
type of instruction.

f. Immediate displacement: the instruction word
contains an address displacement used as part of
the instruction execution. If indirect addressing
is attempted with this type of instruction, the com
puter treats the i nstructi on as a nonexi stent i n
struction, and the computer unconditionally aborts
execution of the instruction (at the time of opera
tion code decoding) and traps to Homespace loca
tion X'40'. Indexing does not apply to this type
of instrudion.

4. If the instruction is not executable while the computer
is in the slave mode, it is labeled "privileged". If
execution of a privileged instruction is attempted
while the computer is in the slave mode, the computer
unconditionally aborts execution of the instruction (at
the time of operation code decoding) and traps to
Homespa ce I ocati on X '40' •

Instruction Repertoire 45

5. If the instruction can be successfully resumed after its
execution sequence has been interrupted by an inter
rupt acknowledgment, the instruction is labeled "con
tinue after interrupt". In the case of the "continue
after interruptll instructions, certain general registers
contain intermediate results or control information that
alfows the instruction to continue properly.

6. Instruction format:

o. Indirect addressing - If bit position 0 of the in
struction format contains an asterisk (*), the in
struction can use indi rect addressing; however,
if bit position 0 of the instruction format contains
a 0, the instruction is of the immediate operand
type, which is treated as a nonexistent instruction
if indirect addressing is attempted (resulting in a
trap to Homespace location X'40 J

).

b. Operation code - The operation code field (bit
positions 1-7) of the instruction is shown in hexa
decimal notation.

c. R field - If the register address field (bit posi
tions 8-11) of the instruction format contains the
character "R", the instruction can specify any
register in the current block of general registers
as an operand source, result destination, or both;
otherwise, the function of this field is determined
hy the instruction.

d. X field - If the index register address field (bit
positions 12-14) of the instruction format contains
the character "X", the instruction specifies in
dexing withony one of registers 1 through 7 in
the current block of general registers; otherwise,
the function of this field is determined by the
instruction.

e. Reference address field - Normally, the address
field (bit positions 15-31) of the instruction for
mat is used as the reference address va I ue for rea I,
real extended, and virtual addresses (see Chap
ter 2). This reference address field is also used
to address I/O systems (see I/O instructions later
in this chapter and also Chapter 4). For immedi
ate operand instructions, this field is augmented
with the contents of the X field, as illustrated,
to form a 20-bit operand.

f. Value field - In some fixed-point arithmetic in
structions, bit positions 12-31 of the instruction
format contain the word "value ll . This field is
treated as a 20-bit integer, with negative inte
gers represented in two's complement form.

g. Displacement field - In the byte string instruc
tions, bit positions 12-31 of the instruction for
mat contain the word "displacement"". In the
execution of the instruction, this field is used to
modify the source address of an operand, the
destination address of a result, or both.

46 Instruction Repertoire

h. Reserved fields - In any format diagram that de
picts system inputs (i .e., instruction, data word),
a shaded area represents a field that is ignored by
the computer (i .e., the content of the shaded field
has no effect on instruction execution). It should
not be used or must be coded with O's to preclude
conflict with possible future modifications.

In any format diagram that depicts system outputs
(i.e., general register, memory word modified by
an instruction, or I/O status word), a shaded area
represents a field whose content is indeterminate
and must not be used (i .e., masked).

7. The description of the instruction defines the operations
performed by the computer in response to the instruc
tion configuration depicted by the instruction format
diagram. Any instruction configuration that causes an
unpredictable result is so specified in the description.

8. All programmable registers and storage areas that can
be affected by the instruction are listed (symbolically)
after the word "Affected". The instruction .address
portion of the program status doubleword is considered
to be affected only if a branch condition can occur as
a result of the instruction execution, since the instruc
tion address is incremented by 1 as part of every in
struction execution.

9. All trap conditions that may be invoked by the execu
tion of the instruction are listed after the word "Trap".
SIGMA 9 trap locations are summarized in the section
"T rap System" in Chapter 2.

10. The symboli c notation presents the instruction opera
tion as a series of generalized symbolic statements.
The symbolic terms used in the notation are defined in
Appendix E, "Glossary of Symbol ic Terms".

11. Condition Code settings are given for each instruction
that affects the condition code. A 0 or a 1 under any
of columns 1, 2, 3, or 4 indicates that the instruction
causes a 0 or 1 to be placed in CC1, CC2, CC3, or
CC4, respectively I for the reasons given. If a hyphen
(-) appears in columns 1, 2, 3, or 4, that .portion of
the condition code is not affected by the reason given
for the condition code bites) containing a 0 or 1. For
example, the following condition code settings are
given for a comparison instruction:

2 3 4 Result of comparison

o 0 Equal.

o

o

Register operand is arithmetically less
than effective operand.

o Register operand is arithmetically greater
than effective operand.

The logical product of the two operands
is nonzero.

The logical product (AND) of the two
operands is zero.

CCl is unchanged by the instruction. CC2 indicates
whether or not the two operands have 11 sin corre
sponding bit positions, regardless of their arithmetic
relationship. CC3 and CC4 are set according to the
arithmetic relationship of the two operands, regardless
of whether or not the two operands have 1's in corre
sponding bit positions. For example, if the register
operand is arithmetically less than the effective oper
and and the two operands both have lis in at least one
corresponding bit position, the condition code setting
for the comparison instruction is:

234

o

The above statements about the condi tion code are
valid only if no trap occurs before the successful com
pletion of the instruction execution cycle. If a trap
does occur during the instruction execution, the con
dition code is normally reset to the value it contained
before the instruction was started and the register
altered bit (PSD 60) is set to 1 if a register has been
altered. Then the appropriate trap location is
activated.

12. Actions taken by the computer for those trap conditions
that may be invoked by the execution of the instruc
tion are described. The description includes the cri
teria for the trap condition, any controlling trap mask
or inhibit bits, and the action taken by the computer.
In order to avoid unnecessary repetiti on, the three trap
conditions that apply to all instructions (i. e., non
allowed operations, parity error, and watchdog timer
runout) are not described for each instruction.

13. Some instruction descriptions provide one or more ex
amples to illustrate the results of the instruction.
These examples are intended onl y to show how the in
structi ons operate, and not to demonstrate thei r fu II
capability. Within the examples, hexadecimal nota
tion is used to represent the contents of general registers
and storage locations. Condition code settings are
shown in binary notation. Th~ character "X" is used
to indicate irrelevant or ignored information.

LOAD /STORE INSTRUCTIONS

The following load/store instructions are implemented in
SIGMA 9 computers:

Instruction Name Mnemonic

Load Immediate LI

Load Byte LB

load Ha Ifword LH

Load Word LW

Load Doubl eword LD

Instruction Name Mnemonic

Load Complement Halfword LCH

Load Absolute Halfword LAH

Load Complement Word LCW

Load Absol ute Word LAW

Load Compl ement Doubl eword LCD

Load Absolute Doubleword LAD

Load Real Address (see "Control Instructions") LRA

Load and Set LAS

Load Memory Status (see "Control Instructions") LMS

Load Sel ective LS

Load Multiple LM

Load Conditions and Floating Control
Immediate LCFI

Load Conditions and Floating Control LCF

Exchange Word XW

Store Byte STB

Store Hal fword STH

Store Word STW

Store Doubleword STD

Store Selective STS

Store Multiple STM

Store Conditions and Floating Control STCF

SIGMA 9 load and store instructions operate with informa
tion fields of byte, halfword, word, and doubleword lengths.
Load instructions load the information indicated into one or
more of the general registers in the current register block.
Load instructions do not affect the source of information;
however, nearly all load instructions provide a condition
code setting that indicates the following information about
the contents of the affected general register(s) after the
instruction is successfully completed:

Condition code settings:

2 3 4 Result

- 0 0 Zero - the result in the affected register(s)
is all O's.

- 0 Negative - register R contains a 1 in bit
position O.

Load/Store Instructions 47

2 3 4 Result

o Positive - register R contains a 0 in bit posi
tion 0, and at least one 1 appears in the
remainder of the affected registers(s} (or
appeared during execution of the current
instruction.)

o - - No fixed-point overflow - the result in the
affected register(s} is arithmetically correct.

Fixed-point overflow - the result in the
affected register(s) is arithmetically
incorrect.

Store instructions affect only that portion of memory stor
age that corresponds to the length of the information field
specified by the operation cOde of the instruction; thus,
register bytes are stored in memory byte locations, register
halfwords in memory halfword locations, register words in
memory word locations, and register doublewords in mem
ory doubleword locations. Store instructions do not affect
the contents of the general register specified by the R field
of the instruction, unless the same register is also specified
by the effective virtual address of the instruction.

LI lOAD IMMEDIA:rE
(Immediate operand)

LOAD IMMEDIATE extends the sign of the value field (bit
position 12 of the instruction word) 12 bit positions to the
left and then loads the 32-bit result into register R.

Affected: (R), CC3, CC4

(I}12-31SE -R

Condition code settings:

2 3 4 Resul tin R

- 0 0 Zero

- 0 Negative

o Positive

Trap: Nonexistent instruction,
if bit 0 is a 1.

If LI is indirectly addressed, it is treated as a nonexistent
instruction, in which case the computer unconditionally
aborts execution of the instruction (at the time of opera
tion code decoding) and traps to Homespace location X'40'
with the contents of register R and the condition code
unchanged.

LB LOAD BYTE
(Byte index alignment)

48 Load/Store" Instructions

LOAD BYTE loads the effective byte into bit positions 24-31
of register R and clears bit positions 0-23 of the register to
all O's.

Affected: (R),CC3,CC4
EB-R24_31; 0-RO"';23

Condi ti on code setti ngs:

2 3 4 Result in R

o 0 Zero

o Nonzero

LH LOAD HALFWORD
(Halfword index alignment)

LOAD HALFWORD extends the sign of the effective half
word 16 bit positions to the left and then loads the 32-bit
result into register R.

Affected: (R), CC3, CC4
EHSE -R

Condition code settings:

2 3 4 Result in R

o 0 Zero

o Negative

o Positive

LW LOAD WORD
(Word index alignment)

LOAD WORD loads the effective word into register R.

Affected: (R), CC3, CC4
EW-R

Condition code settings:

2 3 4 Result in R

- 0 0 Zero

- 0 Negative

0 Positive

LO LOAD DOUBLEWORD
(Doubleword index alignment)

LOAD DOUBLEWORD loads the 32 low-order bits of the ef
fective doubleword into register Ru 1 and then loads the 32
hi gh-order bits of the effective doubleword into register R.

If R is an odd value, the result in register R is the 32 high
order bits of the effective doubleword. The condition code
settings are based on the effective doubleword, rather than
the final result in register R (see example 3, below).

Affected: (R), (Rul), CC3,CC4
ED

32
_

63
-Ru1; ED

O
_

31
-R

Condition code settings:

2 3 4 Effective doubleword

o 0 Zero

o Negative

o Positive

Example 1, even R field value:

Before execution

ED X·0123456789ABCDEP

(R)

(Ru1)

CC

xxxxxxxx

xxxxxxxx

xxxx

Example 2, odd R field value:

ED

(R)

CC

Before execution

X·0123456789ABCDEP

xxxxxxxx

xxxx

Example 3, odd R field value:

ED

(R)

CC

Before execution

X·0000000012345678·

xxxxxxxx

xxxx

After execution

X·0123456789ABCDEF·

X·01234567·

X·89ABCDEP

xx10

After execution

X· 0 123456789A BCD EF·

X·01234567·

xxl0

After executi on

X·OOOOOO0012345678·

X·OOOOOOOO·

xxlO

LCH LOAD COMPLEMENT HALFWORD
(Halfword index alignment)

LOAD COMPLEMENT HALFWORD extends the sign of the
effective halfword 16 bit positions to the left and then loads
the 32-bit two·s complement of the result into register R.
(Overflow cannot occur.)

Affected: (R),CC3, CC4

-[EHSE] -R

Condition code settings:

2 3 4 Result in R

0 0 Zero

0 Negative

0 Positive

LAH LOAD ABSOLUTE HALFWORD
(Halfword index alignment)

If the effective halfword is positive, LOAD ABSOLUTE
HALFWORD extends the sign of the effective halfword
16 bit positions to the left and then loads the 32-bit result
in register R. If the effective halfword. is negative, LAH
extends the sign of the effective halfword 16 bit positions
to the left and then loads the 32-bit two·s complement of
the result into register R. (Overflow cannot occur.)

Affected: (R), CC3, CC4

IEHSE\-R

Condition code settings:

2 3 4 Resu It in R

- 0 0 Zero

o Nonzero

LCW LOAD COMPLEMENT WORD
(Word index alignment)

LOAD COMPLEMENT WORD loads the 32-bit two·s com
plement of the effective word jnto register R. Fixed-point
overflow occurs if the effective word is -231 (X·80000000·),
in which case the result in register R is _231 and CC2 is set
to 1; otherwise, CC2 is reset to O.

Affected: (R),CC2,CC3,CC4 Trap: Fixed-point overflow.
-EW-R

Load/Store Instructions 49

Condition code settings:

2 3 4 Result in R

0 0 0 Zero

0 Negative

0 0 Positive

o - No fixed-point overflow

o Fixed-point overflow

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the computer traps to Homespace location
X'43' after execution of LOAD COMPLEMENT WORD;
otherwise, the computer executes the next instruction in
sequence.

LAW LOAD ABSOLUTE WORD
(Word index alignment)

If the effective word is positive, LOAD ABSOLUTE WORD
loads the effective word into register R. If the effective
word is negative, LAW loads the 32-bit two's compiement
of the effective word into register R. Fixed-point overflow
occurs if the effective word'is -231~X'800()()OOO')' in which
case the result in register R is -23 and CC2 is set to 1;
otherwise, CC2 is reset to O.

Affected: (R), CC2, CC3, CC4 Trap: Fixed-point overflow
IEWI-R

Condition code settings:

2 3 4 Result in R

o 0 0 Zero

o Nonzero

o No fixed-point overflow

o Fixed-point overflow {sign bit on}

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the computer traps to Homespace location X'43'
after execution of LOAD ABSOLUTE WORD; otherwise, the
computer executes the next instruction in sequence.

LCD LOAD COMPLEMENT DOUBLEWORD
(Doubleword index alignment)

LOAD COMPLEMENT DOUBLEWORD forms the 64-bit
two's complement of the effective doubleword, loads the

50 Load/Store Instructions

32 low-order bits of the result into register Ru 1, and then
loads the 32 high-order bits of the result into register R.

If R is an odd value, the result in register R is the 32 hi gh
order bits of the two's complemented doubleword. The con
dition code settings are based on the two's complement of
the effective doubleword, rather than the final result in
register R.

Fixed-point overflow occurs if the effective doubleword is
_~3 (X'8000000000000000'), in which case the result in
registers Rand Rul is _263 and CC2 is set to 1; otherwise,
CC2 is reset to O.

Affected: (R), (Ru 1), CC2, Trap: Fixed-point overflow
CC3, CC4

[-ED]32_63 -Rul; [-ED]0_31- R

Condition code settings:

2 3 4 Two's complement of effective doubleword

- 0 0 0 Zero

o Negative

o 0 Positive

- 0 - No fixed-point overflow

o Fixed-point overflow

If CC2 is set to 1 and the fixed-point arithmetic trap
mask (AM) is a 1, the computer traps to Homespace loca
tion X'43' after execution of LOAD COMPLEMENT
DOUBLEWORD; otherwise, the computer executes the next
instruction in sequence.

Example 1, even R field value:

Before execution After execution

ED X'O 123456789ABCD EP X'0123456789ABCDEP

(R) xxxxxxxx X'FEDCBA98'

(Ru 1) xxxxxxxx X'76543211,

CC xxxx xOO1

Example 2, odd R field value:

Before execution After execution

ED X'0123456789ABCDEP X'0123456789ABCDEP

(R) xxxxxxxx X'FEDCBA98'

CC xxxx x 001

LAD LOAD ABSOLUTE DOU BLEWORD
(Doubleword index al ignment)

If the effective doubleword is positive, LOAD ABSOLUTE
DOUBLEWORD loads the 32 low-order bits of the effective
doubleword into register Ru 1, and then loads the 32 high
order bits of the effective doubleword into register R. If R
is an odd value, the result in register R is the 32 high-order
bits of the effective doubleword. The condition code set
tings are based on the effective doubleword, rather than
the final result in register R.

If the effective doubleword is negative, LAD forms the
64-bit twols complement of the effective doubleword, loads
the 32 low-order bits of the twol s complemented double
word into register Ru 1, and then loads the 32 high-order
bits of the twols complemented doubleword into register R.
If R is an odd value, the result in register R is the 32 high
order bits of the twols complementeddoubleword. The con
dition code settings are based on the twols complement of
the effective doubleword, rather than the final result in
register R.

Fixed-point overflow occurs if the effective doubleword is
-263 (X'8000000000000000'), in which case the result in
registers Rand Ru1 is _263 and CC2 is set to 1; otherwise,
CC2 is reset to O.

Affected: (R), (Ru 1), CC2, T rap: Fixed-point overflow
CC3,CC4

I ED 132- 63 - Ru1; 1ED10_31 --R

Condition code settings:

2 3 4 Absolute value of effective doubleword

- 0 0 0 Zero

o Nonzero

- 0 - No fixed-point overflow

o Fixed-poi nt overflow (sign bit on)

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the computer traps to Homespace location
X'431 after execution of LOAD ABSOLUTE DOUBLEWORD;
otherwise, the computer executes the next instruction in
sequence.

Example 1, even R field value:

ED

(R)

(Ru 1)

CC

Before execution

X'0123456789ABCDEF'

xxxxxxxx

xxxxxxxx

xxxx

After execution

X 10123456789 A BCD EF I

X'012345671

XI 89ABCDEF'

x010

Example 2, even R field value:

Before execution After execution

ED XI FEDCBA98765432101 XI FEDCBA987654321 o'

(R) xxxxxxxx X'012345671

(Ru 1) xxxxxxxx X'89ABCDFO'

CC xxxx x010

Example 3, odd R field value:

Before execution After execution

ED X'0123456789ABCDEF' X'0123456789ABCDEF'

(R) xxxxxxxx X'012345671

CC xxx x x010

LAS LOAD AND SET
(Word index al ignment)

o 1 2

LOAD AND SET loads the effective word into R and un
conditionally sets bit 0 of the effective word location in
memory to 1. Register R contains the previous contents of
the effective word location (i.e., before being modified,
if required). The effective address always references mem
oryeven if it is less than 16.

Affected: (R) CC3, CC4
EW-R
l-EWO

Condition code settings:

2 3 4 Result in R

0 0 Zero

0 Negative

0 Positive

Note: Write locks protect memory and traps are not in
hibited during the execution of LAS.

LS LOAD SELECTIVE
(Word index al ignment)

o 1 2

Register Ru1 contains a 32-bit mask. If R is an even value,
LOAD SELECTIVE loads the effective word into_ register R
in those bit positions selected by a 1 in corresponding bit
positions of register Ru 1. The contents of register R are not
affected in those bit positions selected by a 0 in corre
sponding bit positions of register Ru 1.

Load/Store Instructions 51

If R is an odd value, LS logically ANDs the contents of
register R with the effective word and loads the result into
register R. If corresponding bit positions of register Rand
the effective word both contain 1 IS, a 1 remains in reg
ister R; otherwise, a 0 is placed in the corresponding bit
position of register R.

Affected: (R), CC3, CC4

If R is even, [EWn(Ru1)]u[(R)n(Ru1)] -R]

If R is odd, EWn(R)-R

. Condition code settings:

2 3 4 Resu I tin R

o 0 Zero.

OBit 0 of register R is a 1.

OBit 0 of register R is a 0 and bit positions 1-31
of register R contain at least one 1.

Example 1, even R field value:

Before execution

EW X'01234567'

(Ru 1) X'FFOOFFOO'

(R) xxxxxxxx

CC xxxx

Example 2, odd R field value:

Before execution

EW X'89ABCDEF'

(R)

CC

LM

X' FOFOFOFO'

xxxx

LOAD MULTIPLE
(Word index alignment)

After execution

X'01234567'

X'FFOOFFOO'

X'01xx45xx'

xx10

After execution

X'89ABCDEF'

X' 80AOCOEO'

xx01

LOAD MULTIPLE loads a sequential set of words into a
sequential set of registers, The set of words to be loaded
begins with the word pointed to by the effective address of
LM, and the set of registers begins with register R. The
set of registers is treated modulo 16 (i.e., the next register
loaded after register 15 is register 0 in the current register
block).

The number of words to be loaded into the general reg
isters is determined by the setting of the condition code

52 Load/Store Instructions

immediately before the execution of LM. (The desired
value of the condition code can be set with LCF or LCFI.)
An initial value of 0000 for the condition code causes
16 consecutive words to be loaded into the register block.

Affected: (R) to (R+CC-l)

(EWL - R;(EWL + 1) - R+ 1), ... ,(EWL +CC- 1) - R+CC-1

The lM instruction may cause a trap if its operation ex
tends into a page of memory that is protedted by the access
protection codes. A trap may also occur if the operation
extends into a nonexistent memory region. In either case,
it will be detected before the actual operation begins and
the trap will occur immediately .

If the effective virtual address of the LM instruction is in
the range 0 through 15, then the words to be loaded are
taken from the genera I reg isters rather than from core mem
ory. In this case the results will be unpredictable if any of
the source registers are also used as destination registers.

LCFI LOAD CONDITIONS AND FLOATING
CONTROL IMMEDIATE
(Immediate operand)

If bit position 10 of the instruction word contains a 1, LOAD
CONDITIONS AND FLOATING CONTROL IMMEDIATE
loads the contents of bit positions 24 through 27 of the in
struction word into the condition code; however, if bit 10
is 0, the condition code is not affected.

If bit position 11 of the instruction word contains a 1, LCFI
loads the contents of bit positions 29 through 31 of the in
struction word into the floating significance (FS), floating
zero (FZ), and floating normal ize (FN) mode control bits, re
spectively (in the program status doubfeword); however, if
bit 11 is 0, the FS, FZ, and FN control bits are not affected.
The functions of the floating-point control bits are described
in the section "Floating-Point Arithmetic Instructions".

Affected: CC, FS, FZ,FN Trap: Nonexistent instruction,
if bit 0 is a 1.

If (1)10 = 1, {I)24_27- CC

If (1)10 = 0, CC is not affected.

If (1)11 = 1, (1)29-31- FS, FZ, FN

If (1)11 = 0, FS, FZ, and FN not affected.

Condition code settings,

2 3

if (1)10 = 1:

4

If LCFI is indirectly addressed, it is treated as a nonexistent
instruction, in which case the computer unconditionally
aborts execution of the instruction {at the time of operation

code decoding) and traps to Homespace location X'40' with
the condition code unchanged.

LCF LOAD CONDITIONS AND FLOATING
CONTROL
(Byte index al ignment)

If bit position 10 of the instruction word contains a 1,
LOAD CONDITIONS AND FLOATING CONTROL loads
bits 0 through 3 of the effective byte into the location
code; however, if bit 10 is 0, the condition code is not
affected.

If bit position 11 of the instruction word contains a 1, LCF
loads bits 5 through 7 of the effective byte into the floating
significance (FS), floating zero (FZ), and floating normal
ize (FN)mode control bits, respectively; however, if bit 11
is 0, the FS, FZ, and FN control bits are not affected.
The functions of the floating- point mode control bits
are described in the section "Floating-Point Arithmetic
Instructi ons ".

Affected: CC, FS, FZ, FN

If (1)10 = 1, EB
O

_3 -CC

If (I) 10 = 0, CC not affected

If (I) 11 =1, EB
5

_
7

-FS,FZ,FN

If (I) 11 = 0, FS, FZ, FN not affected

Condition code settings, if (1)10 = 1:

2 3 4

(EB)l

XW EXCHANGE WORD
(Word index al ignment)

EXCHANGE WORD exchanges the contents of register R
with the contents of the effective word location.

Affected: (R), (EWL) , CC3, CC4
(R) --- (EWL)

Condition code settings:

2 3 4 Result in R

0 0 Zero

0 Negative

0 Positive

\ST8 STORE BYTE
(Byte index al ignment)

STORE BYTE stores the contents of bit positions 24-31 of
register R into the effective byte location.

Affected: (EBL)

(R)24-31 - EBL

STH STORE HALFWORD
(Halfword index alignment)

STORE HALFWORD stores the contents of bit positions 16-31
of register R into the effective halfword location. If the
information in register R exceeds halfword data limits, CC2
is set to 1; otherwise, CC2 is reset to o.

Affected: (EHL), CC2

(R)16-31 -EHL

Condition code settings:

2 3 4 Information in R

o (R)0-16 = all OIS or all lis.

(R)0-16 I all OIS or all lis.

STW STORE WORD
(Word index al ignment)

o I 2

STORE WORD stores the contents of register R into the ef
fective word location.

Affected: (EWL)
(R) -EWL

Load/Store Instructions 53

STO STORE DOUBLEWORD
(Doubleword index alignment)

STORE DOUBLEWORD stores the contents of register R into
the 32 high-order bit positions of the effective doubleword
location and then stores the contents of register Ru 1 into
the 32 low-order bit positions of the effective doubleword
location.

Affected: (EDL)
(R)- EDL

O
_

31
; (Ru1) -EDL

32
_
63

Example 1, even R field value:

Before execution

(R) X'01234567'

(Rul) = X'89ABCDEF'

(EDL) = xxxxxxxxxxxxxxxx

Example 2, odd R field value:

Before execution

(R) X'89ABCDEF'

(EDL) = xxxxxxxxxxxxxxxx

STS STORE SELECTIVE
(Word index al ignment)

After execution

X'01234567'

X'89ABCDEF'

X' 0123456789ABCDEF'

After execution

X'89ABCDEF'

X'89ABCDEF89ABCDEF'

Register Ru 1 contains a 32-bit mask. If R is an even value,
STORE SELECTIVE stores the contents of register R into the
effective word location in those bit positions selected by a
1 in corresponding bit positions of register Ru 1; the effec
tive word remains unchanged in those bit positions selected
by a 0 in corresponding bit positions of register Ru 1.

If R is an odd value, STS logically inclusive ORs the con
tents of register R with the effective word and stores the
result into the effective word location. The contents of
register R are not affected.

Affected: (EWL)

If R is even, [(R)n(Ru1)1 u [EW (Ru1)1-EWL

If R is odd, (R) u EW-EWL

54 Load/Store Instructions

Example 1, even R field value:

Before execution

(R) X' 12345678'

(Ru 1) X'FOFOFOFO'

EW xxxxxxxx

Example 2, odd R field va lue:

(R)

EW

STM

Before execution

X'OOFFOOFF'

X' 12345678'

STORE MULTIPLE
(Word index alignment)

After execution

X'12345678'

X' FOFOFOFO'

X'1x3x5x7x'

After execution

X'OOFFOOFF'

C'12FF56FF'

I: I, , ;~. , , J . Roo ..I,,: ..I.,:" " " ~~e;,e~~~"a::::t~ u "I
STORE MULTIPLE stores the contents of a sequential set of
registers into a sequential set of word locations. The set of
locations begins with the location pointed to by the effec
tive word address ofSTM, and the set of registers begins
with register R. The set of registers is treated modulo 16
(i .e., the next sequential register after register 15 is reg
ister 0). The number of registers to be stored is determined
by the value of the condition code immediately before exe
cution of STM. (The condition code can be set to the de
sired value before execution of STM with LCF or LCFI.) An
initial value of 0000 for the condition code causes 16 gen
eral registers to be stored.

Affected: (EWL) to (EWL+CC-l)
(R) -EWL,(R+ 1)-EWL + 1 , ... ,(R+CC-1) - EWL +CC-1

The STM instruction may cause a trap if its operation ex
tends into a page of memory that is protected by the access
protection codes or the write locks. A trap may also occur
if the operation extends into a nonexistent memory region.
Jf any of these cases, the trap wi" be detected before the
actual operation begins and it will occur immediately.

If the effective virtual address of the STM instruction is in
the range 0 through 15, then the registers indicated by the
R field of the STM instruction are stored in the general reg
isters rather than in core memory. In this case, the results
will be unpredictable if any of the source registers are also
used as destination registers.

STCF STORE CONDITIONS AND FLOATING
CONTROL
(Byte index alignment)

STORE CONDITIONS,AND FLOATING CONTROL stores
the current condition code and the current values of the
floating significance (FS), floating zero (FZ), and floating

normalize (FN) mode control bits of the program status
doubleword into the effective byte location as follows:

Affected: (EBL)
(PSD)O_7 -EBL

ANAL VZE/INTERPRET INSTRUCTIONS

ANLZ ANALYZE
(Word index al ignment)

The ANALYZE instruction evaluates the effective word as
a SIGMA 9 instruction. The ANALYZE instruction always
sets the condition codes to indicate the addressing type of
the analyzed instruction {see condition code settings and
Table 7, below}. Except when the analyzed instruction is
an immediate operand instruction, an effective virtual ad
dress for the analyzed instruction is also calculated and
loaded into register R.

The nonexistent instruction, the privileged instruction vio
lation, and the unimplemented instruction trap conditions
can never occur during execution of the ANLZ instruction.
However, either the nonexistent memory address condition
or the memory protection violation trap condition (or both)
can occur as a result of any memory access initiated by the
ANLZ instruction. If either of these trap conditions occurs,
the instruction address stored by an XPSD in trap Homespace
location X'40' is always the virtual address of the ANLZ
instruct ion.

The detailed operation of ANALYZE is as follows:

1. The contents of the location pointed to by the
effective virtual address of the ANLZ instruction is
obtained. This effective word is the instruction to be
analyzed. From a memory-protection viewpoint, the
instruction (to be analyzed) is treated as an operand
of the ANLZ instruction; that is, the analyzed in
struction may be obtained from any memory area to
which the program has read access.

2. If the operation code portion of the effective word
spec ifies an immediate-addressing instruction type,
the condition code is set to indicate the addressing
type, and instruction execution proceeds to the next
instruction in sequence after ANLZ. The original
contents of reg ister R are not changed when the ana
lyzed instruction is of the immediate-addressing type.

If the operation code portion of the effective word
specifies a reference-addressing instruction type,
the condition code is set to indicate the addressing
type of the ana Iyzed instruction and the effective

Byte

address of the analyzed instruction is computed {using
all of the normal address computation rules}. If bit 0
of the effective word is a 1, the contents of the mem
ory location specified by bits 15-31 of the effective
word are obta ined and then used as a direct address.
The nonallowed operation trap (memory protection
violation or nonexistent memory address) can occur as
a result of the memory access. Indexing is always
performed {with an index register in the current regis
ter block} if bits 12-14 of the analyzed instruction are
nonzero. During real extended addressing, the
effective virtual address of the analyzed instruction
is al igned as an integer displacement value and
loaded into register R, according to the instruction
addressing type, as foil ows:

Halfword

Word

Doubleword

When the ANALYZE instruction is executed in the master
protected mode and a trap condition occurs, it never traps.
Instead of trapping it completes its execution by storing in
reg ister R the address that would have caused the instruc
tion to trap. Since the mode is master-protected, the
access protection codes will apply to the interpretation of
addresses. If a slave mode program is trapped because an
instruction has referenced protected memory, the ANALYZE
instruction in the master-protected mode can determine
which address actually caused the trap.

To aid the interpreting program, when operating in the
master-protected mode, the ANLZ instruction uses bits 5, 6,
and 7 of register R to indicate which memory access

t Note that for real or virtual addressing, byte displacement
is 19 bits, halfword displacement is 18 bits, word displace
ment is 17 bits, and doubleword displacement is 16 bits.

Analyze/Interpret Instructions 55

initiated by the ANLZ would have trapped. The meaning
of the possible codes in R5-R7 is as follows:

R5 R6

o o

o o

o

R7

o

Meaning

Successful generation of the effective
virtual address of the analyzed instruc
tion. The CCs are set to the addressing
type of the analyzed instruction and
R8-R31 contain the effective virtual ad
dress of the analyzed instruction aligned
as an integer displacement value accord
ing to the instruction addressing type.

The indirect reference of the analyzed
instruction would have trapped because
it was either nonexistent, memory pro
tected, or had a parity error. The CCs
are set to the addressing type of the
analyzed instruction and R8-R31 contain
the virtual address of the indirect ref
erence of the ana Iyzed instruction
aligned as a word displacement.

The effective virtual address of the
ANlZ instruction would have trapped
because it was either nonexistent, mem
ory protected, or had a parity error. The
CCs are indeterminate since the instruc
tion to be analyzed may not have been
fetched {nonexistent memory}. R8-R31
contain the effective virtual address of
the ANLZ instruction aligned as a word
displacement.

An indirect ANLZ instruction where the
indirect reference would have trapped
because it was either nonexistent, mem
ory protected, or had a parity error. The
CCs are indeterminate since the instruc
tion to be analyzed may not be fetched
(nonexistent memory). R8-R31 contain
the virtual address of the indirect ref
erence of the ANLZ instruction aligned
as a word displacement.

If no trap condition occurs, ANLZ wi II execute nor
ma IIy and return the effective address of the instruction
analyzed'.

T obi e 10 shows the SIGMA 9 instruction set as a 4 by 32
matrix {arranged as a function of the operation code}.
This table also shows how the instruction set is divided
into six groups as a function of the addressing type
{delineated by heavy I ines}. For example, if the oper
ation code of the analyzed instruction is either X'02',
X'20', X'21', X'22', or X'23', then CC1 is set to 1,
CC2 is set to 0, CC3 is set to 0 (when analyzed in
struction specifies direct addressing), and CC4 is set to 1.
The decimal equiva lent of the condition code setting

56 Analyze/Interpret Instructions

X'n'

00
01
02
03

04
05
06
07

08
09
OA
OB

OC
OD
OE
OF

10
11
12
13

14
15
16
17

18
19
1A
1B

1C
1D
lE
1F

Table 10. ANALYZE Table for SIGMA 9
Operation Codes

X'OO'+n X'20'+n X'40'+n X'60'+n

- AI TTBS
TSS - tt CI

LCFI CD LI
- MI

CAll
CAL2
CAL3
CAL4

PLW
PSW
PLM
PSM

tt

~PSDt ®
XPSDt

AD
CD
LD
MSP

srD

SD
ClM
LCD
LAD

FSL
FAL
FDL
FML

SF
S
LAS

ANLZ
CS
XW
STS

CVS EaR
CVA tt OR
LM CD LS
STM AND

LRAt SlOt
LMSt TIot
WAITt TDVt
LRPt HIOt

AW
CW
LW
MTW

STW
DW
MW

SW
CLR
LCW
LAW

FSS
FAS
FDS
FMS

AH
CH
LH
MTH

STH
DH
MH

SH

LCH
LAH

CBS
tt MBS

(D-
EBS

BDR
BIR
AWM
EXU

BCR
BCS
BAL
INT

LCF
CB
LB
MTB

STCF
tt STB tt

CD PACK CD
UNPK

DS
DA
DD
DM

DSA
DC
DL
DST

tp ··1 d· . rivi ege instructions.

ttDecimal value of condition code settings when
analyzed instruction calls for direct addressing. If
analyzed instruction calls for indirect addressing,
add 2 to the value shown.

for this group of immediate, word addressing type of
instructions is shown as a 9 within a circle. The dec
imal equivalents of the condition code settings for the
other five groups are shown in the same manner. If
the analyzed instruction calls for indirect addressing,
CC3 is always set to a 1 and the decimal value of the
condition code setting shown in Table 7 should be in
creased by 2.

Affected: (R), CC

90 17 33C-1 (4/74)

Condition code settings:

2 3 4 Instruction addressing type

0 0 0 Byte

0 0 Immediate, byte

0 0 Halfword

0 0 Word

0 Immediate, word

0 Doubleword

0 Direct addressing (EW 0 = 0)

Indirect addressing (EWO = 1)

INT INTERPRET
(Word index alignment)

INTERPRET loads bits 0-3 of the effective word into the
condition code, loads bits 16-31 of the effective word into
bit positions 16-31 of register Ru 1 (and loads OIS into bit
positions 0-15 of register Ru1, loads bits 4-15 of the effec
tive word into bit positions 20-31 of register R (and clears
the remaining bits of register R). If R is an odd value, INT
loads bits 0-3 of the effective word into the condition code,
loads bits 16-31 of the effective word into bit positions
16-31 of register R, and loads OIS into bit positions 0-15 of
register R (bits 4 ... 15 of the effective word are ignored in
this case).

Affected: (R), (Ru1), CC

EW
O

_
3
-CC

EW4_15 -R20- 31 ; 0 -RO- 19

EW
16

_
31

-Rul
16

_
31

; 0 -Ru1
0

_
15

Condition code settings:

2 3 4

Example 1, even R field value:

Before execution After execution

EW XI 123456781 XI 123456781

(R) xxxxxxxx X 1000002341

(Ru 1) xxxxxxxx X 1000056781

CC xxxx 0001

FIXED-POINT ARITHMETIC INSTRUCTIONS

The following fixed-point arithmetic instructions are
included as a standard feature of the SIGMA 9 computer.

Instruction Name Mnemonic

Add Immediate AI

Add Ha I fword AH

Add Word AW

Add Doubl eword AD

Subtract Halfword SH

Subtract Word SW

Subtract Doubleword SD

Multiply Immediate MI

Multiply Halfword MH

Multiply Word MW

Divide Halfword DH

Divide Word DW

Add Word to Memory AWM

Modify and Test Byte MTB

Modify and Test Halfword MTH

Modify and Test Word MTW

The fixed-point arithmetic instruction set performs binary
addition, subtraction, multiplication, and division with
integer operands that may be data, addresses, index values,
or counts. One operand may be either in the instruction
word itself or may be in one or two of the current general
registers; the second operand may be either in main memory
or in one or two of the current general registers. For most
of these instructions, both operands may be in the same
general register, thus permitting the doubling, squaring,
or clearing the contents of a register by using a reference
address value equal to the R field value.

All fixed-point arithmetic instructions provide a condition
code setting that indicates the following information about
the result of the operation called for by the instruction:

Condition code settings:

2 3 4 Result

o 0 Zero - the result in the specified general
register{s) is all zeros.

Fixed-Point Arithmetic Instructions 57

2 3 4 Result

o Negative - the instruction has produced a
fixed-point negative result.

o Positive - the instruction has produced a
fixed-point positive result.

o - Fixed-point overflow has not occurred during
execution of an add, subtract, or divide in
struction, and the result is correct.

o -

Fixed-point overflow has occurred during
execution of an add, subtract, or divide in
struction. For addition and subtraction, the
incorrect result is loaded into the designated
register(s). For a divide instruction, the
designated register(s), and CC 1, CC3, and
CC4 are not affected.

No carry - for an add or subtract instruction,
there was no carry of a I-b it out of the hi gh
order (sign) bit position of the result.

Carry - for an add or subtract instruction,
there was a 1-bit carry out of the sign bit
position of the result. (Subtracting zero will
a I ways produce carry.)

AI ADD IMMEDIATE
{Immediate operand)

The value field (bit positions 12-31 of the instruction word)
is treated as a 20-bit, two's complement integer. ADD
IMMEDIATE extends the sign of the value field (bit posi
tion 12 of the instruction word) 12 bit positions to the left,
adds the resulting 32-bit value to the contents of register R,
and loads the sum into register R.

Affected: (R), cc
(R) + (I)12-31SE-R

Condition code settings:

2 3 4 Result in R

0 0 Zero

- 0 Negative

0 Positive

Trap: Fixed-point overflow;
or nonexistent instruc
tion if bit 0 is a 1.

- 0 - No fixed-point overflow

- - Fixed-point overflow

o - No carry from bit position 0

- - Carry from bit position 0

58 Fixed-Point Arithmetic Instructions

If AI is indirectly addressed, it is treated as a nonexistent
instruction, in which case the computer unconditionally
aborts execution of the instruction (at the time of operation
code decoding) and traps to Homespoce location X'40' with
the contents of register R and the condition code unchanged.

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM). is a 1, the computer traps to Homespace location
X'43' after loading the sum into register R; otherwise, the
computer executes the next instruction in sequence.

AH ADD HALFWORD
(Halfword index alignment)

ADD HALFWORD extends the sign of the effective halfword
16 bit positions to the left (to form a 32-bit word in which
bit positions 0-15 contain the sign of the effective half
word), adds the 32-bit result to the contents of register R,
and loads the sum into register R.

Affected: (R), cc
(R) +EH -R

SE

Condition code settings:

2 3 4 Result in R

0 0 Zero

0 Negative

0 Positive

Trap: Fixed-point overflow

- 0 No fixed-point overflow

Fixed-point overflow

o - No carry from bit position 0

Carry from bit position 0

If CC2 is set to 1 and the fixed-point arithmetic trap mask
is 1, the computer traps to Homespace location X'43' after
loading the sum into register R; otherwise, the computer
executes the next instruction in sequence.

AW ADD WORD
0I/ord index alignment)

ADD WORD adds the effective word to the contents of reg
siter R and loads the sum into register R.

Affected: (R), CC
(R)+EW -R

Trap: Fixed-point overflow

Condition code settings:

2 3 4 Resu It in R

o 0 Zero

- 0 Negative

o Positive

o - No fixed-point overflow

- Fixed-point overflow

o - No carry from bit position 0

Carry from bit position 0

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the computer traps to Homespace location
X'43' after loading the sum into register R; otherwise, the
computer executes the next instruction in sequence.

AD ADD DOUBLEWORD
(Doubleword index alignment)

ADD DOU BLEWORD adds the effective doubleword to the
contents of registers Rand Rul (treated as a single, 64-bit
register); loads the 32 low-order bits of the sum into reg
ister Ru 1 and then loads the 32 high-order bits of the sum
into register R. R must be an even value; if R is an odd
value, the computer traps with the contents in register R
unchanged.

Affected: (R), (Ru 1), CC
(R, Rul) + ED -R, Rul

Condition code settings:

2 3 4 Result in R, Rul

- 0 0 Zero

- 0 Negative

o Positive

Trap: Fixed-point overflow,
instruction exception

o No fixed-point overflow

Fixed-point overflow

o - No carry from bit position 0

Carry from bit position 0

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the computer traps to Homespace location
X'43' after loading the sum into registers Rand Ru 1; other
wise, the computer executes the next instruction in sequence.

The R field of the AD instruction must be an even value for
proper operation of the instruction; if the R field of AD is
an odd value, the instruction traps .. to Homespace location
X'4D', instruction exception trap.

Example 1, even R field value:

ED

(R)

(Ru 1)

CC

SH

Before execution After execution

X'33333333EEEEEEEE' X'33333333EEEEEEEE'

X'l1111111' X'44444445,

X '33333333' X'22222221'

xxxx 0010

SUBTRACT HALFWORD
(Halfword index alignment)

SUBTRACT HALFWORD extends the sign of the effective
halfword-16 bit positions to the left (to form a 32-bit word
in which bit positions 0-15 contain the sign of the effec
tive halfword), forms the two's complement of the resulting
word, adds the complemented word to the contents of reg
ister R, and loads the sum into register R.

Affected: (R), CC
-EH + (R)-R

SE

Trap: Fixed-point overflow

Condition code settings:

2 3 4 Result in R

- 0 0 Zero

- 0 Negative

0 Positive

- 0 - No fixed-point overflow

Fixed-point overflow

0-- No carry from bit position 0

Carry from bit position 0

If CC2 is set to 1 and the' fixed-point arithmetic trap mask
(AM) is a 1, the computer traps to Homespace location
X'43'after loading the sum into register R; otherwise, the
computer executes the next instruction in sequence.

SW SUBTRACT WORD
(Word index alignment)

Fixed-Point Arithmetic Instructions 59

SUBTRACT WORD forms the two's complement of the effee
tive word, adds that complement to the contents of regis
ter R, and loads the sum into register R.

Affected: (R), CC
-EW + (R) -R

Condition code settings:

2 3 4 Result in R

- 0 0 Zero

o Negative

o Positive

Trap: Fixed-point overflow

- 0 - No fixed-point overflow

Fixed-point overflow

o - No carry from bit position 0

Carry from bit position 0

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the computer traps to Homespace location
X'43' after loading the sum into register R; otherwise, the
computer executes the next instruction in sequence.

SO SUBTRACT DOUBLEWORD
(D~ubleword index alignment)

SUBTRACT DOUBLEWORD forms the 64-bit two's comple
ment of the effective doubleword, adds the complemented
doubleword to the contents of registers Rand Ru 1 (treated
as a single, 64-bit register), loads the 32 low-order bits
of the-sum into register Ru 1 and loads the 32 high-order bits
of the sum into register R. R must be an even value; if R is
an odd value, the computer traps with the contents in reg
ister R unchanged.

Affected: (R),(Ru1),CC
-ED + (R, Ru1) -R, Rul

Trap: Fixed-point overflow,
instruction exception

Condition code settings:

1· 2 3 4 Result in R, Ru1

0

- 0

0 -

0 -

0

1

0

Zero

Negative

Positive

No fixed-point overflow

Fixed-point overflow

No carry from bit position 0

Carry from bit position 0

60 - Fixed-Point Arithmetic Instructions

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the computer traps to Homespace location
X'43' after the result is loaded into registers Rand Ru 1;
otherwise, the computer executes the next instruction in
sequence.

The R field of the SO instruction must be an even value for
proper operation of the instruction; if the R field of SO is
an odd value, the instruction traps to Homespace location
X'4D', instruction exception trap.

MI MULTIPLY IMMED.JA TE
(Immediate operand)

The value field (bit positions 12-31 of the instruction word)
is treated as a 20-bit, two's complement integer. MULTI
PLY IMMEDIATE extends the sign of the value field (bit
position 12) of the instruction word 12 bit positions to the
left and multiplies the resulting 32-bit value by the con
tents of register Ru 1, then loads the 32 high-order bits of
the product into register R, and then loads the 32 low
order bits of the product into register Ru 1.

If R is an odd value, the result in register R is the 32 low
order bits of the product. Thus, in order to generate a
64-bit product, the R field of the instruction must be even
and the multiplicand must be in register R+1. The condi
tion code settings are based on the 64-bit product formed
during instruction execution, rather than on the final con
tents of register R. Overflow cannot occur.

Affected: (R),(Ru1),CC2,CC3,CC4
(Ru1) x (I)12_31SE-R,Rul

Trap: Nonexistent
instruction if
bit 0 is a 1.

Condition code settings:

2 3 4

0 0

0

0

o -

64-bit product

Zero.

Negative.

Positive.

Resul t is correct, as represented in regis
ter Rul.

Result is not correctly representable in reg
ister Ru 1 alone.

If MI is indirectly addressed, it is treated as a nonexistent
instruction,_ in which case the computer unconditionally
aborts execution of the instruction (at the time of opera
tion code decoding) and traps to Homespace location X'40'
with the contents of register R, register Ru 1, and the con
diti.on code unchanged; otherwise, the computer executes
the next instruction in sequence.

Example 1, even R field va1ue:

(1)12-31

(R)

(Ru 1)

CC

Before execution

X'700001

xxxxxxxx

X'10001000'

xxxx

Example 2, odd R field value:

(I) 12-31

(R)

CC

Before execution

X'012341

X'00030002'

xxxx

After execution

X'70000'

X' 00007000'

X'70000oo0'

x110

After executi on

X'01234'

X'369C2468'

x010

MH MULTIPLY HAlFWORD
(Halfword index al ignment)

MULTIPLY HAlFWORD multiplies the contents of bit posi
tions 16-31 of register R by the effective halfword (with
both halfwords treated as signed, two's complement inte
gers) and stores the product in register Ru 1 (overflow can
not occur). If R is an even value, the original multiplier
in register R is preserved, allowing repetitive halfword
multipl ication with a constant multipl ier; however, if R is
an odd value, the product is loaded into the same register.
Overflow cannot occur.

Affected: (Ru 1), CC3, CC4
(R)16-31 x EH --Ru1

Condition code settings:

2 3 4 Result in Ru 1

0 0 Zero

0 Negative

0 Positive

Example 1, even R field value:

Before execution

EH X'FFFF'

(R) X' xxxxOOOA'

(Ru 1) xxx xxx xx

CC xxxx

After execution

X'FFFF'

X' xxxxOooA'

X' FFFFFFF6'

xx01

Example 2, odd R field value:

Before execution After execution

EH X'FFFF' X'FFFfi

(R) X' xxxxOOOA' X'FFFFFFF6'

CC xxxx xx01

MW MUl TIPl Y WORD
(Word index alignment)

MULTIPLY WORD multipl ies the contents of register Ru 1 by
the effective word, loads the 32 high-order bits of the
product into register R and then loads the 32 low-order bits
of the product into register Ru 1 (overflow cannot occur).

If R is an odd value, the result in register R is the 32 low
order bits of the product. Thus, in order to generate a
64-bit product, the R field of the instruction must be even
and the multiplicand must be in register R + 1. The condi
tion code settings are based on the 64-bit product formed
during instruction execution, rather than on the final con
tents of register R.

Affected: (R), (Ru 1), CC
(Ru 1) x EW -R, Ru1

Condition code settings:

DH

2 3 4 64-bit product

- 0 0 Zero.

- 0 Negative.

0 Positive.

o - Result is correct, as represented in regis
ter Ru 1.

o 0 Result is not correctly representable in reg
ister Ru 1 alone.

DIVIDE HAlFWORD
(Halfword index alignment)

DIVIDE HAlFWORD divides the contents of register R
(treated as a 32-bit fixed-point integer) by the effective
halfword and loads the quotient into register R. If the
absolute value of the quptient cannot be correctly repre
sented in 32 bits, fixed-point overflow occurs; in which

Fixed-Point Arithmetic Instructions 61

case CC2 is set to 1 and the contents of register R, and
CCl, CC3, and CC4 are unchanged.

Affected: (R), CC2, CC3,
CC4

Trap: Fixed-point overflow

(R)';' EH - R

Condition code settings:

2 3 4 Resu It in R

o 0 0 Zero quotient, no overflow.

o 0 Negative quotient, no overflow.

o 0 Positive quotient, no overflow.

- Fixed-point overflow.

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the computer traps to Homespace location
X'43' with the contents of register R, CC1, CC3, and
CC4 unchanged.

ow DIVIDE WORD
(Word index alignment)

DIVIDE WORD divides the contents of registers Rand Ru 1
(treated as a 64-bit fixed-point integer) by the effective
word, loads the integer remainder into register R and then
loads the integer quotient into register Ru 1. If a nonzero
remainder occurs, the remainder has the same sign as the
dividend (original contents of register R). If R is an odd
value, DW forms a 64-bit register operand by extending
the sign of the contents of register R 32 bit positions to the
left, then divides the 64-bit register operand by the effec
tive word, and loads the quotient into register R. In this
case, the remainder is lost and only the contents of reg
ister R are affected.

If the absolute value of the quotient cannot be correctly
represented in 32 bits, fixed-point overflow occurs; in
which case CC2 is set to 1 and the contents of register R,
regrster Rul, CC1, CC3, and CC4 remain unchanged;
otherwise, CC2 is reset to 0, CC3 and CC4 reflect the
quotient in register Ru 1, and CC 1 is unchanged.

Affected: (R),(Rul),CC2 Trap: Fixed-point overflow
CC3,CC4

(R, Ru 1) .;. EW -R (remainder), Ru 1 (quotient)

Condition code settings:

2 3 4 Resu It in Ru 1

o 0 0 Zero quotient, no overflow.

o 0 Negative quotient, no overflow.

62 Fixed-Point Arithmetic Instructions

2 3 4 Resu It in Ru 1

- 0 o Positive quotient, no overflow.

Fixed-point overflow.

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is a l, the computer traps to Homespace location
X'43' with the original contents of registerR, register Rul,
CCl, CC3, and CC4 unchanged; otherwise, the computer
executes the next instruction in sequence.

AWM ADD WORD TO MEMORY
(Word index al ignment)

ADD WORD TO MEMORY adds the contents of register R
to the effective word and stores the sum in the effective
word location. The sum is stored regardless of whether or
not overflow occurs.

Affected: (EWL), CC
EW+ (R) -EWL

Condition code settings:

2 3 4 Result in EWl

o 0 Zero

o Negative

o Positive

Trap: Fixed-point overflow

- 0 No fixed-point overflow

Fixed-point overflow

o - No carry from bit position 0

Carry from bit position 0

If CC2 is set to 1 and fixed-point arithmetic trap mask
(AM) is a 1, the computer traps to Homespace location
X'43' after the result is stored in the effective word loca
tion; otherwise, the computer executes the next instruction
in sequence.

MTS MODIFY AND TEST BYTE
(Byte index al ignment)

If the value of the R field is nonzero, the high-order bit of
the R field (bit position 8 of the instruction word) is ex
tended 4 bit positions to the left, to form a byte with bit
positions 0-4 of that byte equal to the high-order bit of
the R field. This byte is added to the effective byte and
then (if no memory. protection violation occurs) the sum is

stored in the effective byte location and the condition code
is set according to the value of the resultant byte. This
process allows modification of a byte by any number in the
range -8 through +7, followed by a test.

If the value of the R field is zero, the effective byte is
tested for being a zero or nonzero value. The condition
code is set according to the result of the test, but the
effective byte is not affected. A memory write-protection
violation cannot occur in this case; however, a memory
read-protection violation can occur.

Affected: CC if (1)8-11 = 0;

(EBL) and CC if (1)8_ 11 f 0

If (1)8-11 f 0, EB + (1)8-11 SE -EBL and set CC

If {I)8-11 = 0, test byte and set CC

Condition code settings:

2 3 4 Result in EBL

o 0 0 Zero

o o Nonzero

o - No carry from byte

Carry from byte

If MTB is executed in an interrupt locationt , the condition
code is not affected (see Chapter 2, "Single-Instruction
Interrupts ll

).

MTH MODIFY AND TEST HALFWORD
(Halfword index alignment)

If the value of the R field is nonzero, the high-order bit of
the R field (bit position 8 of the instruction word) is ex
tended 12 bit positions to the left, to form a halfword with
bit positions 0-11 of that halfword equal to the high-order
bit of the R field. This halfword is added to the effective
halfword and then (if no memory protection violation oc
curs) the sum is stored in the effective halfword location
and the condition code is set according to the value of the
resultant halfword. The sum is stored regardless of whether
or not overflow occurs. This process allows modification of
a halfword by any number in "the range -8 through +7, fol
lowed by a test.

If the value of the R field is zero, the effective halfword
is tested for being a zero, negative, or positive value.
The condition code is set, according to the result of the
test, but the effective halfword is not affected. A memory

write-protection violation cannot occur in this case; how
ever, a memory read-protection violation can occur.

Affected: CC if (1)8-11 = 0; Trap: Fixed-point overflow

(EHL) and CC if (1)8-11 f 0

If {I)8-11 = 0, test halfword and set CC

If (1)8_11 to, EH + (1)8-11 SE -EHL and set CC

Condition code settings:

2 3 4 Result in EHL

- 0 0 Zero

- 0 Negative

o Positive

o - No fixed-point overflow

Fixed-point overflow

o - No carry from halfword

Carry from halfword

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the computer traps to Homespace location
X'43 1 after the result is stored in the effective halfword
location; otherwise, the computer executes the next in
struction in sequence. However, if MTH is executed in
an interrupt locationt , the condition code is not affected
(see Chapter 2, IISingle-Instruction Interrupts".

MTW MODIFY AND TEST WORD
(Word index alignment)

If the value of the R field is nonzero, the high-order bit
of the R field (bit position 8 of the instruction word) is
extended 28 bit positions to the left, to form a word with
bit positions 0-27 of that word equal to the high-order bit
of the R field. This word is added to the effective word
and then (if no memory protection violation occurs) the
sum is stored in the effective word location and the con
dition code is set according to the value of the resultant

t Other than counter 4, which uses the current active
addressing mode (real, real extended, or virtual).

Fixed~Point Arithmetic Instructions 63

word. The sum is stored regardless of whether or not over
flow occurs. This process allows modification of a word by
any number in the range -8 through +7, followed by a test.

If the value of the R field is zero, the effective word is
tested for being a zero, negative, or positive value. The
condition code is set according to the result of the test,
but the effective word is not affected. A memory write
protection violation cannot occur in this case; however,
a memory read-protection violation can occur.

Affected: CC if (1)8-11 = 0; Trap: Fixed-point overflow

(EWL) and CC if (1)8_11 /0

If (1)8-11 = 0, test word and set CC

If (1)8-11 1 0, EW + IS-llSE -EWL and set CC

Condition code settings:

2 3 4 Resu It in EWl

0 0 Zero

- 0 Negative

0 Positive

o No fixed-point overflow

- Fixed-point overflow

o - No carry from word

Carry from word

If CC2 is set to 1 and the fixed-point arithmetic trap mask
(AM) is a 1, the computer traps to Homespace location
X'43' after the result is stored in the effective word loca
tion; otherwise, the computer executes the next instruction
in sequence. However, if MTW is executed in an interrupt
locationt , the condition code is not affected (see Chap-
ter 2, "Single-Instruction Interrupts".

COMPARISON INSTRUCTIONS

The following comparison instructions are available to
SIGMA 9 computer.s:

Instruction Name Mnemonic

Compare Immediate CI

Compare Byte CB

Compare Halfword CH

Compare Word cw

64 Comparison Instructions

Instruction Name Mnemonic

Compare Doubleword CD

Compare Selective CS

Compare With Limits in Register CLR

Compare With Limits in Memory ClM

All SIGMA 9 comparison instructions produce a condition
code setting which is indicative of the results of the
comparison, without affecting the effective operand in
memory and without affecting the contents of the des
ignated register.

CI COMPARE IMMEDIATE
(Immediate operand)

COMPARE IMMEDIATE extends the sign of the value field
(bit position 12) of the instruction word 12 bit positions to
the Jeft, compares the 32-bit result with the contents of
register R (with both operands treated as signed fixed-point
quantities), and then sets the condition code according to
the results of the comparison.

Affected: CC2, CC3,CC4

(R) : (1)12-31SE

Condition code settings:

2 3 4 Result of Comparison

o 0 Equal.

- 0 Register value less than immediate value.

o Register value greater than immediate
value.

o - No 1-bits compare, (R) n (I)12-32SE = O.

- One or more l-bits compare,

(R) n (I) 12-32SE 10.

If CI is indirectly addressed, it is treated as a nonexistent
instruction, in which case the computer unconditionally
aborts execution of the instruction (at the time of operation
code decoding) and then traps to Homespace location X'40'
with the condition code unchanged.

CB COMPARE BYTE
(Byte index alignment)

COMPARE BYTE compares the contents of bit positions 24-31
of register R with the effective byte (with both bytes
treated as positive integer magnitudes) and sets the condi
tion code according to the results of the comparison.

Affected: CC2, CC3, CC4

(R)24-31 : EB

Condition code settings:

2 3 4 Resul t of Comparison

- 0 0 Equal.

- 0

- 0 -

Register byte less than effective byte.

o Register byte greater than effective byte.

No 1-bits compare, (R)24-31 n EB = O.

One or more 1-bits compare,

(R)24-31 nEB I O.

CH COMPARE HALFWORD
(Halfword index al ignment)

COMPARE HALFWORD extends the sign of the effective
halfword 16 bit positions to the left, then compares the
resultant 32-bit word with the contents of register R (with
both words treated as signed, fixed-point quantities) and
sets the condition code according to the results of the
comparison.

Affected: CC2, CC3, CC4
(R) : EHSE

Condition code settings:

2 3 4 Result of Comparison

o 0 Equal.

o Register word less than effective halfword
with sign extended.

o -

o Register word greater than effective
halfword with sign extended.

No l-bits compare, (R) n EHSE = O.

One or more 1-bits compare,
(R) n EHSE I O.

COMPARE WORD
(Word index al ignment)

COMPARE WORD compares the contents of register R with
the effective word, with both words treated as signed fixed
point quc;mtities, and sets the condition code according to
the results of the comparison.

Affected: CC2,CC3,CC4
(R) : EW

Condition code settings:

2 3 4 Result of Comparison

o 0 Equal.

o Register word less than effective word.

o Register word greater than effective word.

o - No 1-bits compare, (R) n EW = O.

One or more 1-bits compare, (R) n EW I o.

CD COMPARE DOUBLEWORD
(Doubleword index al ignment)

COMPARE DOUBLEWORD compares the effective double
word with the contents of registers Rand Ru 1 (with both
doubl ewords treated as signed, fixed-point quantities)
and sets the condition code according to the results of the
comparison. If the R field of CD is an odd value, CD forms
a 64-bit register operand (by dupl icating the contents of
register R for both the 32 high-order bits and the 32 low
order bits) and compares the effective doubleword with the
64-bit register operand. The condition code settings are
based on the 64-bit comparison.

Affected: CC3, CC4
(R, Ru 1) : ED

Condition code settings:

2 3 4 Result of Comparison

- 0 0 Equal.

- 0 Register doubleword less than effective
doubl eword.

o Register doubleword greater than effective
doubleword,

Comparison Instructions 65

cs COMPARE SELECTIVE
(Word index alignment)

COMPARE SELECTIVE compares the contents of register R
with the effective word in only those bit positions selected
by a 1 in corresponding bit positions of register Ru 1 (mask).
The contents of register R and the effective word are ignored
in those bit positiofls designated by a 0 in corresponding bit
positions of register Ru L The seJected contents of register R
and the effective word are treated as positive integer
magnitudes, and the condition code is set according to
the result of the comparison. If the R field of CS is
an odd value; CS compares the contents of register R
with the logical product (AND) of the effective word
and the contents of register R.

Affected: CC3, C C4
If R is even: (R) n (Rul) : EW n (Rul)
If R is odd: (R): EW n (R)

Condition code settings:

2 3 4 Results of Comparison under Mask in Ru 1

- 0 0 Equal.

o Register word less than effective word.

o Register word greater than effective word.
(if R is even)

elK COMPARE WITH LIMITS IN REGISTERS
(Word index al ignment)

COMPARE WITH LIMITS IN REGISTERS simultaneously
compares the effective word with the contents of register R
and with the contents of register Ru 1 (with all three words
treated as signed fixed-point quantities), and sets the con
dition code according to the results of the comparisons.

Affected: CC
(R) : EW, (Ru 1) : EW

Condition code settings:

2 3 4 Result of Comparison

- 0 0 Contents of R equal to effective word.

- 0 Contents of R less than effective word.

o Contents of Rgreater than effective word.

o 0 Contents of Ru 1 equal to effective word.

o - Contents of Ru 1 less than effective word.

o - - Contents of Ru 1 greater than effective word.

66 Logical Instructions

ClM COMPARE WITH LIMITS IN MEMORY
(Doubleword index alignment)

COMPARE-WITH LIMITS IN MEMORY simultaneously com
pares the contents of register R with the 32 high-order bits
of the effective doubleword and with the 32 low-order bits
of the effective doubleword, with all three words treated
as 32-bit signed quantities, and sets the condition code
accordi-ng to the results of the comparisons.

Affected: CC
(R) : E00-31; (R): E032_63

Condition code settings:

1 . 2 3 4 Result of Comparison

- 0 0 Contents of R equal to most significant
word, (R) = EO

O
_
3

1"

- 0 Contents of R less than most significant
word, (R) < EO

O
_

31
'

o Contents of R greater than most signficant
word, (R) > EOO_31"

o 0 - - Contents of R equal to least significant word,
(R) = ID32- 63•

o - Contents of R less than least significant word,
(R) < E0

32
_
63

•

o - Contents ·of R greater than least significant
word, (R) > E032_63•

LOGICAL INSTRUCTIONS

All logical operations are performed bit by corresponding
bit between two operands; one operand is in register Rand
the other operand is the effective word. The result of the
logical operation is loaded into register R.

OR OR WORD
N/ord index aJ ignment)

OR WORD logically ORs the effective word into register R.
If corresponding bits of register R and the effective word
are both 0, a 0 remains in reg.ister R; otherwise, a 1 is
placed in the corresponding bit position of register R. The
effective word is not affected.

Affected: (R), CC3, CC4
(R) u EW - R, where 0 u 0 = 0, 0 u 1 = 1, 1 u 0 = 1,

1 u 1 = 1

Condition code settings:

2 3 4 Resu It in R

- 0 0 Zero.

- 0 Bit 0 of register R is a 1.

OBit 0 of register R is a 0 and bit positions 1-31
of register R contain at least one 1.

EOR EXCLUSIVE OR WORD
(Word index al ignment)

EXCLUSIVE OR WORD logically exclusive ORs the effec
tive word into register R. If corresponding bits of regis
ter R and the effective word are different, a 1 is placed in
the corresponding bit position of register R; if the contents
of the corresponding bit positions are alike, a 0 is placed
in the corresponding bit position of register R. The effec
tive word is not affected.

Affected: (R), CC3, CC4
(R)@ EW -R, where O@O = 0, O@ 1 = 1,

1 @ 0 = 1, 1 @ 1 = 0

Condition code settings:

2 3 4 Result in R

- 0 0 Zero.

- 0 Bit 0 of register R is a 1.

OBit 0 of register R is a 0 and bit positions 1-31
of register R contain at least one 1.

AND AND WORD
(Word index alignment)

AND WORD logically ANDs the effective word into reg
ister R. If corresponding bits of register R and the effec
tive word are both 1, a 1 remains in register R; otherwise,
a 0 is placed in the corresponding bit position of register R.
The effective word is not affected.

Affected: (R), CC3, CC4
(R) n EW - R, where 0 n 0 = 0, 0 n 1 = 0,

1 n 0 = 0, 1 () 1 = 1

Condition code settings:

2 3 4 Result in R

o 0 Zero.

o Bit 0 of register R is a 1.

o Bit 0 of registerR is a 0 and bit positions 1-31
of register R contain at least one 1.

SHIFT INSTRUCTIONS

The instruction format for logical, circular, arithmetic,
and searching shift operations is:

S SHIFT
(Word index al ignment)

If neither indirect addressing nor indexing is called for in
the instruction SHIFT, bit positions 21-23 of the reference
address field determine the type, and bit positions 25-31
determine the direction and amount of the shift.

If only indirect addressing is called for in the instruction,
bits 15-31 of the instruction are used to access the indirect
word and then bits 21-23 and 25-31 of the indirect word
determine the type, direction, and amount of the shift.

If only inde)(ing is called for in the instruction, bits21-230f
the instruction word determine the type of shift; the direc
tion and amount of shift are determined by bits 25-31 of the
instruction plus bits 25-31 of the specified index register.

If both indirect addressing and indexing are called for in
the instruction, bits 15-31 of the instruction are used to
access the indirect word and then bits 21-23 of the in
direct word determine the type of shift; the direction and
amount of the shift are determined by bits 25-31 of the in
direct word plus bits 25-31 of the specified index register.

The effective address does not reference memory. Bit
positions 15-20 and 24 of the effective virtual address are
ignored. Bit positions 21, 22, and 23 of the effective
virtual address determine the type of shift, as follows:

21 22 23 Shift Type

0 0 0 Logical, single register

0 0 Logical, double register

0 0 Circular, single register

0 Circular, double register

0 0 Arithmetic, single register

0 Arithmetic, double register

0 Searching, single register

Searching, double register

Shift Instructions 67

Bit positions 25 through 31 of the effective virtual address
are a shift count that-determines the direction and amount
of the shift. The shift count (C) is treated as a 7-bit
signed binary integer, with the high-order bit (bit posi
tion 25) as the sign (negative integers are represented in
two's complement form). A positive shift count causes
a left shift of C bit positions. A negative shift count
causes a right shift of Ici bit positions. The value of C is
within the range: -64 ~ C ~ +63.

All double-register shift operations require an even value
for the R field of the instruction, and treat registers Rand
Ru 1 as a 64-b.it register with the high-order bit (bit posi
tion 0 of register R) as the sign for the entire register. If
the R field of SHIFT is an odd value and a double-register
shift operation is specified, a register doubleword is
f.armed by dupl icating the contents of register R for both the
32 high-order bits and the 32 low-order bits of the double
word. The shift operation is then performed and the 32 high
order bits of the result are loaded into register R.

Overflow occurs (on left shifts only) whenever the value of
the sign bit (bit position 0 of register R) changes. At the
completion of logical left, circular Jeft, arithmetic left,
and searching left shifts, the condition code ;s set as
follows:

2 3 4 Result of Shift

o - Even number of l's shifted off left end of
register R.

- Odd number of l' s sh if ted off I eft end of
register Rt.

- 0 - No overflow on left shift.

Overflow on left shift.

Searching shift terminated with RO
equal 1.

At the completion of right shifts, the condition code is set
as follows:

234

00- -

Logical Shift, Single Register

If the shift count, C, is positive, the contents of register R
are shifted left C places, with O's copied into vacated bit

t Not -Oppl i cabl e for searching shift.

68 Shift InstruCtions

positions on the right. (Bits shifted past Ro are lost.) If C
is negative, the contents of register R are shifted right Ici
places, with.O's copied into vacatedbit positions on the
left. (Bits shifted past ~1 are lost.)

Affected: (R), CC1, CC2

Logical Shift, Double Register

If the shift count, C, is positive, the contents of regis
ters Rand Ru 1 are shifted left C places, with -o's copied
into vacated bit positions on the right. Bits shifted past
bit position 0 of register Ru 1 are copied into bit position 31
of register R. (Bits shifted past RO are tost.) If C is nega
tive, the contents of registers Rand Ru 1 are shifted right
lei places with O's copied into vacated bit positions on the
left. Bits shifted past bit position 31 of register Rare
copied into bit position 0 of register Rul. (Bits shifted
past Ru1

31
are lost.)

Affected: (R), (Rul), CC1,CC2

Circufar Shift, Single Register

If the shift count, C, is positive, the contents of regis-
ter R are shifted left C pfaces. Bits shifted past bit posi
tion 0 are copied into bi t position 31. (No bi ts are lost.)
If C is negative, the contents of register R are shifted right
rCI places. Bits shifted past bit position 31 are copied into
bit position O. (No bits are lost.)

Affected: (R), eCl ,eC2

Circular Shift, Double Register

If the shift count, C, is positive, the contents of regis
ters Rand Ru lore shifted left C places. Bits shifted past
bit position 0 of register R are copied into bit position 31
of register Ru1. (No bits are lost.) If C is negative, the
contents of registers Rand Ru 1 are shifted right Ici places.
~its shifted past bit position 31 of register Ru 1 are copied
into bit position 0 of register R. (No bits are lost.)

Affected: (R), (Ru 1), Cel, Ce2

Arithmetic Shift, Single Register

If the shift count, C, is positive, the contents of regis
ter R are shifted left C places, with O's copied into

vacated bit positions on the right. (Bits shifted past RO are
lost.) If C is negative, the contents of register Rare
shifted right Ic I places, with the contents of bit position 0
copied into vacated bit positions on the left. (Bits shifted
past R31 are lost.)

Affected: (R),CC1,CC2

Arithmetic Shift, Double Register

If the shift count, C, is positive, the contents of registers R
and Ru 1 are shifted left C places, with O's copied into va
cated bit positions on the right. Bits shifted past bit posi
tion 0 of register Ru1 are copied into bit position 31 of
register R. (Bits shifted past Rn are lost.) If C is negative,
the contents of registers Rand 'Ru1 are shifted right Ici
places, with the contents of bit position 0 of register R
copied into vacated bit positions on the left. Bits shifted
past bit position 31 of register R are copied into bit posi
tion 0 of register Ru 1. (Bits shifted past Ru 131 are lost.)

Affected: (R), (Rul), CC1, CC2

Searching Shift, Single Register

The searching shift is circular in either direction. If the
shift count, C, is positive, the contents of register Rare
shifted left C bit positions or unti I a 1 appears in bit posi
tion O. If C is negative, the contents are shifted right
\C\ positions or unti I a 1 appears in bit position O. When
the shift is terminated, the remaining count is stored in
register 1, which is dedicated to the searching shift in
struction. Bits 0-24 of register 1 are cleared and the re
maining count is loaded into bits 25-31. If the initial
contents of bit 0 is equal to 1, then no bits are shifted by
the instruction. In this case the original count in the
instruction is stored in register 1.

Searching shift causing a change in bit position 0 causes
CC2 to be set to 1. If bit position 0 is not changed during
a searching shift, CC2 is cleared. CC4 is set to 1 if the
shift is terminated with a 1 in bit position O.

Affected: (R), (Rl), CC2, CC4

Searching Shift, Double Register

The searching shift is circular in either direction. If the
shift count, C, is positive, the .contents of registers Rand
Rul are shifted left C bit positions or until a 1 appears in
bit position 0 of register R. If C is negative, the contents
are shifted right C positions or until a 1 appears in bit
position O. When the shift is terminated, the remaining
count is stored in register 1, which is dedicated to the
searching shift instruction. Bits 0-24 of register 1 are
cleared and the remaining count is loaded into bits 25-31.

Searching shift causing a change in bit position 0 causes
CC2 to be set to 1. If bit position 0 is not changed during

a searching shift, CC2 is cfeared. CC4 is set to 1 if the
shift is terminated with a 1 in bit position O.

Affected: (R), (Rul), CC2, CC4

flOATING·POINT SHIFT

Floating-point numbers are defined in the IIFloating-Point
Arithmetic Instructions ll section. The format for the
floating-point shift instruction is:

SF SHIFT FLOA lING
(Word index alignment)

If direct addressing and no indexing is called for in the in
struction SHIFT FLOATING, bit position 230f the reference
address field determines the type of shift and bit positions
25-31 determine the direction and amount of the shift.

If indirect addressing and no indexing is called for in the
instruction, bit positions 15-31 of the instruction are used
to access the ind irect word and then bit position 23 and
25-31 of the indirect word determine the type, direction,
and amount of the shift.

If direct addressing and indexing are called for in the in
struction, bi t 23 of the reference address {not affected by sub
sequent indexing) determines the type of shift. Bits25-31 of
the reference address plus bits 25-31 of the specified indexed
register determine the direction and amount of the shift.

If indirect addressing and indexing are called for in the in
struction, bits 15-31 of the reference address are used to
access the indirect word. Bit 23 of the indirect word (not
affected by subsequent indexing) determines the type of
shift. Bits 25-31 of the indirect address plus bits 25-31 of
the specified index register determine the direction and
amount of the shift.

The shift count, C, in bit positions 25-31 of the effective
virtual address determines the amount and direction of the
shift. The shift count is treated as a7-bit signed binary in
teger, with the high-order bit {bit position 25)as the sign
(negative integers are represented in two's complement form).

The absolute value of the shift count determines the number
of hexadecimal digit positions the floating-point number is
to be shifted. If the shift count is positive, the floating
point number is shifted left; if the count is negative, the
number is shifted right.

SHIFT FLOATING loads the floating-point number from the
register{s)specified by the R field of the instruction into a set
of internal registers. If the number is negative, it is two's
complemented. A record of the original sign is retained.
The floating-point number is then separated into a charac
teristic and a fraction, and CCl and CC2areboth reset to O's.

A positive shift count produces the following left shift
operations:

1. If the fraction is normalized (i.e., is less than 1 and is
equal to or greater than 1/16), or the fraction is all O's,
CC1 is set to 1.

Shi ft Instructions 69

2. If the fraction field is all OIS, the entire floating-point
number is set to all OIS (true zero), regardless of the
sign and the characteristic of the original number.

3. If the fraction is not nonnalized, the fraction field is
shifted 1 hexadecimal digit position (4 bit positions) to
the left and the characteristic field is decremented
by 1. Vacated digit positions at the right of the frac
tion are filled with hexadecimal O's.

If the characteristic field underflows (i. e., is all l's
as the result of being decremented), CC2 is set to 1.
However, if the characteristic field does not under
flow, the shift process (shift fraction, and decrement
characteristic) continues until the fraction is normal
ized, until the characteristic field underflows, or
until the fraction is shifted left C hexadecimal digit
positions, whichever occurs first. (Any two, or
all three, of the terminating conditions can occur
simultaneously.)

4. At the completion of the left shift operation, the
floating-point result is loaded back into the general
register{s). If the number was originally negative, the
twols complement of the resultant number is loaded
into the general registers(s).

5. The condition code settings following a floating-point
left shift are as follows:

2 3 4 Result

o 0 True zero (all OIS).

o Negative.

00-

o Positive.

C digits shifted (fraction unnormal ized,
no characteristic underflow).

Fract ion norma I i zed (i ncl udes true zero).

Characteristic underflow.

A negative shift count produces the following right shift
operations (again assuming that negative numbers are twols
complemented before and after the shift operation):

1. The fraction field is shifted 1 hexadecimal digit posi
tion to the right and the characteristic field is incre
mented by 1. Vacated digit positions at the left are
filled with hexadecimal OIS.

2. If the characteristic field overflows {i. e., is all OIS as
the result of being incremented}, CC2 is set to 1.
However, if the characteristic field does not overflow,
the shift process (shift fraction, and increment char
acteristic) continues until the characteristic field over
flows or until the fraction is shifted right IC/ hexadeci
mal digit positions, whichever occurs first. (Both
terminating conditions can occur simultaneously.)

3. If the resultant fraction field is all OIS, the entire
floating-point number is set to all OIS (true zero),
regardless of the sign and the characteristic of the
original number.

70 Conversion Instructions

4. At the completion of the right shift operation, the
floating-point result is loaded back into the general
register(s}. If the number was originally negative,
the twols complement of the resultant number is loaded
into the general register{s).

5. The condition code settings following a floating-point
right shift are as follows:

2 3 4 Result

- 0 0 T rue zero {all zeros}.

- 0 Negative.

o Positive.

00- lei digits shifted (no characteristic
overflow).

o Characteristic overflow.

Floating Shift, Single Register

The short-format floating-point number in register R is
shifted according to the rules established above for floating
point shift operations.

Affected: (R), CC

Floating Shift, Double Register

The long-format floating-point number in registers Rand
Ru 1 is shifted according to the rules established above for
floating-point shift operations. (If the R field of the in
struction word is an odd value, a long-fonnat floating
point number is generated by duplicating the contents of
register R, and the 32 high-order bits of the result are
loaded into register R.)

Affected: (R), {Ru1),CC

CONVERSION INSTRUCTIONS

The following two conversion instructions are provided by
the SIGMA 9 computer:

Instructi on Name Mnemonic

Convert by Addition CVA

Convert by Subtraction CVS

These two conversion instructions can be used to accom
plish bidirectional translation between binary code and any
other weighted binary code, such as BCD.

The effective addresses of the instructions CONVERT BY
ADDITION and CONVERT BY SUBTRACTION each point
to the starting location of a conversion table of 32 words,
containing weighted values for each bit position of regis
ter Ru 1. The 32 words of the conversion table are con
sidered to be 32-bit positive quantities, and are referred
to as conversion values. The intermediate results of these
instructions are accumulated in internal CPU registers until
the instruction is completed; the result is then loaded into
the appropriate general register. Both instructions use a
counter {n} that is set to 0 at the beginning of the instruc
tion execution and is incremented by 1 with each iteration,
until a total of 32 iterations have been performed.

If a memory parity or protection violation trap occurs dur
ing the execution of either instruction, the instruction se
quence is aborted {without having changed the contents of
register R or Ru 1} and may be restarted {at the beginning of
the instruction sequence} after the trap routine is processed.

eVA CONVERT BY ADDITION
(Word index alignment)

CONVERT BY ADDITION initially clears the internal A
register and sets an internal counter {n} to o. If bit posi
tion n of register Ru1 contains a 1, CVA adds the nth con
version value {contents of the word location pointed to by
the effective address plus n} to the contents of the A reg
ister, accumulates the sum in the A register, and incre
ments n by 1. If bit position n of register Ru 1 contains a 0,
CVA only increments n. If n is less than 32 after being
incremented, the next bit position of register Ru 1 is ex
amined, and the addition process continues through n equal
to 31; the result is then loaded into register R. If, on any
iteration, the sum has exceeded the value 232- 1, CC1 is
set to 1; otherwise, eel is reset to O.

Affected: (R), CC1, eC3, CC4
O-A,O-n

If {Ru1} = 1, then {EWL + n} + {A} -A, n + 1 -n
n

If {Ru1} = 0, then n + 1-- n
n

If n < 32, repeat; otherwise, {A} -R and continue to
next instruction.

Condition code settings:

2 3 4 Resu It in R

o 0 Zero.

o Bit 0 of register R is a 1.

o

evs

2 3 4 Result in R

OBit 0 of register R is a 0 and bit positions 1-31
of register R contain at least one 1.

Sum is correct {I ess than 2
32

}.

Sum is greater than 2
32

_1.

CONVERT BY SUBTRACTION
{Word index alignment}

CONVERT BY SUBTRACTION loads the internal A register
with the contents of register R, clears the internal B regis
ter, and sets an interna I counter {n} to O. All conversion
values are considered to be 32-bit positive quantities. If
the nth conversion value {the contents of the word location
pointed to by the effective address plus n} is equal to or
less than the current contents of the A register, CVS incre
ments n by 1, adds the two's complement of the nth con
version value to the contents of the A register, stores the
sum in the A register, and stores a 1 in bit position n of the
B register. If the nth conversion value is greater than the
current contents of the A register, CVS onl y increments n
by 1. If n is less than 32 after being incremented, the
next conversion value is compared and the process con
tinues through n equal to 31; the remainder in the A reg
ister is loaded into register R, and the converted quantity
in the B register is loaded into register Ru 1.

Affected: {R}, {Ru 1}, CC3, CC4

{R} -A, 0 -B, 0 -n

If {EWL + n} $ (A) then A - (EWL + n) -A,
1-B n+1-n

n'

If {EWL + n} > (A) then n + 1 -n

If n < 32, repeat; otherwise, (A) - R, {B} - Ru 1 and
continue to the next instruction.

Condition code settings:

2 3 4 Resu I tin Ru 1

o 0 Zer~.

o Bit 0 of register Ru1 is a 1.

OBit 0 of register Ru1 is a 0 and bit posi
tions 1-31 of register Ru1 contain at
least one 1.

Conversion Instructions 71

FLOATING-POINT ARITHMETIC INSTRUCTIONS

The following floating-point arithmetic instructions are
available to SIGMA 9 computers:

Instruction Name Mnemonic

Floating Add Short FAS

Floating Add Long FAL

Floating Subtract Short FSS

Floating Subtract Long FSL

Floating Multiply Short FMS

Floating Multiply Long FML

Floating Divide Short FDS

Floating Divide Long FDL

flOATING-POINT NUMBERS

SIGMA 9 accommodates two number formats for floating
point arithmetic: short and long. A short-formatfloating
point number consists of a sign (bit 0), a biasedt , base 16
exponent, which is called a characteristic (bits 1-7), and
a six-digit hexadecimal fraction (bits 8-31). A long-format
floating-point number followed by an additional eight
hexadecimal digits of fractional significance and occupies
a doubleword memory location or an even-odd pair of
general registers.

A SIGMA 9 floating-point number (N) has the following
format:

I~ I ~~i:(~r I : Fraction (F) : I
o 1 2 3 14 5 6 7 8 9 10 11112 13 14 15 16 17 18 19120 21 22 23 24 25 26 27128 29 30 31

A floating-point number (N) has the following formal
definition:

1. N = F x 16 C-64 where F = 0 or

16 -6 :s I FI:s l{short format) or

16-
14

:s IFI:s 1 (long format)

and O:s C :5 127.

tThe bias value of 4016 is added to the exponent for the
purpose of making it possible to compare the absolute mag
nitude of two numbers, i. e., without reference to a sign
bit. This manipu~ation effectively removes the sign bit,
making each characteristic a 7-bit positive number.

72 Floating-Point Arithmetic Instructions

2. A positive floating-point number with a fraction of
zero and a characteristic of zero is a Jltrue Jl zero.
A positive floating-point number with a fraction of
zero and a nonzero characteristic is an Jlabnormal"
zero. For floating-point multiplication and division,
an abnormal zero is treated as a true zero. However,
for addition and subtraction, an abnormal zero is
treated the same as any nonzero operand.

3. A positive floating-point number is normalized if and
only if the fraction is contained in the interval

1/16:5 F < 1

4. A negative floating-point number is the two's comple
ment of its positive representation.

5. A negative floating-point number is normalized if and
only if its two's complement is a normal ized positive
number.

By this definition, a floating-point number of the form

1 xxx xxxx 1111 0000 . .. 0000

is normalized, and a floating-point number of the form

1 xxx xxxx 0000 0000 . .. 0000

is illegal and, whenever generated by floating-point in
structions, is converted to the form

1 yyy yyyy 1111 0000 • .. 0000

where yy .•. y is 1 less than xx ... x. Table 11 contains
examples of floating-point numbers.

Modes of Operation

SIGMA 9 contains three mode control bits that are used to
qualify floating-point operations. These mode control bits

are identified as FS (floating significance), FZ (floating
zero), and FN (floating normalize), and are contained
in bit positions 5, 6, and 7, respectively, of the program
status doubleword (PSD 5-7)'

The floating-point mode is establ ished by setting the three
floating-point mode control bits. This can be performed by
any of the following instructions:

Instruction Name

Load Conditions and Floating Control

Load Conditions and Floating Control
Immediate

Load Program Status Doubl eword

Exchange Program Status Doubleword

Mnemonic

LCF

LCFI

LPSD

XPSD

90 17 33C-1(4/74)

Table 11. Floating-Point Number Representation

Short Floating-Point Format

Decimal Number ± C

+(16 +63)(1_2-24) a 111 1111 1111 1111

+(16+3)(5/16) a 100 0011 0101 0000

+(16 -3) (209/256) 0 011 1101 1101 0001

+(16-
63

)(2047/4096) a 000 0001 0111 1111

+(16-64)(1/16) a 000 0000 0001 0000

a (cai led true zero) a 000 0000 0000 0000

_(16-64)(1/16) 1 111 1111 1111 0000

-(16-63)(2047/4096) 1 111 1110 1000 0000

-(16-3)(209/256) 1 100 0010 0010 1111

-(16+3)(5/16) 1 011 1100 1011 0000

-(16 +63)(1_224) 1 000 0000 0000 0000

Speci a I Case

-(16e)(l) 1 -
e 0000 0000

is cha nged to

-(16e+1)(1/16) 1 e + 1 1111 0000

whenever generated as the result of a floating-point instruction.

The floating-point mode control bits are stored by exe
cuting either of the following instructions:

Instruction Name

Store Cond i ti ons and Float i ng Contro I

Exchange Program Status Doubleword

FLOATING-POINT ADD AND SUBTRACT

Mnemonic

STCF

XPSD

The floating normalize (FN), floating zero (FZ), and
floating significance (FS) mode control bits determine the
operation of floating-point addition and subtraction (if
characteristic overflow does not occur) as follows:

FN Floating normalize:

F N = a The results of additions and subtractions
are to be postnormalized. If characteristic

90 17 33C-l(4/74)

F

1111

0000

0000

1111

0000

0000

0000

0001

0000

0000

0000

0000

0000

Hexadecimal Value

1111 1111 1111 7F FFFFFF

0000 0000 0000 43 500000

0000 0000 0000 3D Dl0000

0000 0000 0000 01 7FFOOO

0000 0000 0000 00 100000

0000 0000 0000 00 000000

0000 0000 0000 FF FOOOOO

0000 0000 0000 FE 801000

0000 0000 0000 C2 2FOOOO

0000 0000 0000 BC BOOOOO

0000 0000 0001 80 000001

0000 0000 0000

0000 0000 0000

underflow occurs, if the result is zero, or if
more than two postnormalization hexadeci
mal shifts are required, the settings for FZ
and FS determine the resultant action. If
none of the above conditions occurs, the
condition code is set to 0010 if the result
is positive or to 0001 if the result is
negative.

FN = 1 Inhibit postnormalization of the result of ad
ditions and subtractions. The settings of FZ
and FS have no effect on the instruction op
eration. If the result is zero, the result
is set to true zero and the condition code
is set to 0000. If the result is positive,
the condition code is set to 0010. If the
result is negative, the condition code is
set to 0001.

Floating -Point Arithmetic Instructions 73

FZ Floating zero: (appl ies only if FN :::: 0)

FZ = 0 If the final result of an addition or subtrac
tion operation cannot be expressed in normal
ized form because of the characteristic being
reduced below zero, underflow has occurred,
in wh ich case the result is set equal to true
zero and the condition cooe is set to 1100.
(Exception: if a trap results from significance
checking with FS = 1 and FZ = 0, an under
flow generated in the process of postnormal
izing is ignored.)

FZ = 1 Characteristic underflow causes the computer
to trap to Homespace location X'44' with the
contents of the genera I registers unchanged.
If the result is positive, the condition code is
set to 1110. If the result is negative, the
condition code is set to 1101.

FS Floating sign ificance: (appl ies only if FN = 0)

FS = 0 Inhibit significance trap. If the result of an
addition or subtraction is zero, the result is
set equal to true zero, the condition code
is set to 1000, and the computer executes
the next instruction in sequence. If more
than two hexadecimal places of postnormal
ization shifting are required and character
istic underftow does not occur, the condition
code is set to 1010 if the result is positive, or
to 1001 if the result is negative; then, the
computer executes the next instruction in se
quence. (Exception: if characteristic under
flow occurs with FS = 0, FZ determines the
resul tant action.)

FS = 1 The computer traps to Homespace location
X'44' if more than two hexadecimal places
of postnormal ization shifting are required
or if the result is zero. The condition
code is set to 1000 if the result is zero,
to 1010 if the result is positive, or to 1001
if the result is negative; however, the con
tents of the general registers are not changed.
(Exception: if a trap results from character
istic underflow with FZ = I, the results of
significance testing are ignored.)

If characteristic overflow occurs, the CPU always traps
to Homespace location X'44' with the general registers
unchanged and the condition code set to 0110 if the
result is positive, or to 0101 if the result is negative.

FlOAnNG-POINT MULTIPLY AND DIVIDE

The floating zero (FZ) mode control bit alone determines
the operation of floating-point multiplication and division

74 Floating-Point Arithmetic Instructions

(if characteristic overflow does not occur and division by
zero is not attempted) as follows:

FZ Floating zero:

FZ = 0 If the final result of a multiplication or divi
sion operation cannot be expressed in normal
ized form because of the characteristic being
reduced below zero, underflow has occurred.
If underflow occurs, the result is set equal to
true zero and the condition code is set to
1100. If underflow does not occur, the
condition code is set to 0010 if the result is
positive, to 0001 if the result is negative, or
to 0000 if the result is zero.

FZ = 1 Underflow causes the computer to trap to
Homespace location X'44' with the contents
of the general registers unchanged. The con
dition code is set to 1110 if the result is posi
tive, or to 1101 if the result is negative. If
underflow does not occur, the resultant
action is the same as that for FZ = O.

If the divisor is zero in a floating-point division, the com
puter always traps to Homespace location X'44' with the
general registers unchanged and the condition code set to
0100. If characteristic overflow occurs, the computer al
ways traps to Homespace location X'44' with the general
registers unchanged and the condition code set to 0110 if
the result is positive, or to 0101 if the result is negative.

CONDlnON CODES III_R
'FLOATING-POINT INSTRUCnONS

The condition code settings for floating-point instructions
are summarized in Table 12. The following provisions apply
to all floating-point instructions:

1. Underflow and overflow detection apply to the final
cl,aracteristic, not to any "intermediate" value.

2. If a floating-point operation results in a trap, the
original contents of all general registers remain
unchanged.

3. All shifting and truncation are performed on absolute
magnitudes. If the fraction is negative, then the two's
complement is formed after shifting or truncation.

FAS FLOATING ADD SHORT
(Word index a Ii gnment)

The effective word and the contents of register Rare
loaded into a set of internal registers and a low-order hexa
decimal zero (guard digit) is appended to both fractions,

90 17 33C-l(4/74}

Table 12. Condition Code Settings for Floating-Point Instructions

Condition Code
Meaning If No Trap to Homespace Meaning If Trap to Homespace

1 2 3 4 Location X'441 Location X'441 Occurs

0 0 0 0 A x 0, *0

0 0 0 1 N <0

O/A, or -A+A
0 wi~ FN;l}

Nonnal
* . results

0 0 1 0 N >0

0 1 0 0
0
*

0 1 0 1 *
0 1 1 0 *

1 0 0 0 o } -A +A FS=O,

01 0 0 1 N < 0 > 2 Postnormal- FN=O, and

J 0 1 0 N > o} izing shifts no underflow

1 1 0 0 Ut:lderflow with FZ=O and no trap by FS= 1

1 1 0 1 *
1 1 1 0 *

Notes: 0) Result set to true zero

0 indicates impossible configurations

0) Appl ies to add and subtract only where FN=O

extending them to seven hexadecimal digits each. FAS
then forms the floating-point sum of the two numbers. If no
floating-point arithmetic fault occurs, the sum is loaded
into register R as a short-format floating-point number.

Affected: (R), CC
(R) + EW-R

Trap: Floating-point arith
metic fault

FAL FLOATING ADD LONG
(Doubleword index alignment)

The effective doubleword and contents of registers R
and Ru 1 are loaded into a set of internal registers.

The operation of FAL is identical to that of FLOATING
ADD SHORT (FAS) except that the fractions to be added
are each 14 hexadeCimal digits long, guard digits are not
appended to the fractions, and R must be an even value for
correct results. If no floating-point arithmetic fault occurs,
the sum is loaded into registers Rand Ru 1 as a long-format
floating-point number.

90 17 33C-1(4/74)

*

Divide by zero }

Overflow, N < 0 Always trapped

Overflow, N > 0

-A+A

N < 0 } > 2 Postnormol-
N > 0 izing shifts

} FS= 1, FN=O, and no
underflow with FZ= 1

0 •
Underflow, N <0

} FZ;l
Underflow, N >0

Affected: (R), (Ru 1), CC
(R, Rul) + ED -R, Ru1

Trap: Floating-point arith
metic fault, instruc
tion exception

The R field of the FAL instruction must be an even value
for proper operation of the instruction; if the R field of FAL
is an odd value, the instruction traps to Homespace location
X' 4D ' , instruction exception trap.

FSS FLOATING SUBTRACT SHORT
(Word index a Ii gnment)

The effective word and the contents of register R are loaded
into a set of internal registers.

FLOATING SUBTRACT SHORT forms the two's complement
of the effective word and then operates identically to
FLOATING ADD SHORT (FAS). If no floating-point

Floating-Point Arithmetic Instructions 75

arithmetic faul t occurs, the difference is loaded into reg
ister R as a short-format floating-point number ..

Affected: (R), CC
(R)-EW-R

Trap: Floating-point arith
metic fault

FSL FLOATING SUBTRACT LONG
(Doubleword index al ignment)

The effective doubl eword and the contents of registers R
and Ru1 are loaded into a set of internal registers.

FLOATING SU BTRACT LONG forms the two1s comple
ment of the effective doubleword and then operates iden
tically to FLOATING ADD LONG (FAL). If no floating
point arithmetic fault occurs, the difference is loaded into
registers Rand Ru 1 as a long-format floating-point number.

Affected: (R), (Ry 1), CC
(R, Ru 1) - ED -R, Ru 1

Trap: Floating-point arith
metic fault, instruc
tion exception

The R field of the FSL instruction must be an even value for
proper operation of the instruction; if the R field of FSL is
an odd value, the instruction traps to Homespace location
X'4D', instruction exception trap.

FMS FLOATING MULTIPLY SHORT
(Word index al ignment)

The effective word (multiplier) and the contents of regis
ter R (multiplicand) are loaded into a set of internal
registers, and both numbers are then prenormalized (if
necessary). The product of the fractions contains 12 hexa
decimal digits. If no floating-point arithmetic fault occurs,
the product is loaded into register R as a properly truncated
short-format floating-point number.

The result of floating-multiply is always postnormalized. At
most, one place of postnormal izing shift may be required.
Truncation takes place after postnormal ization.

Affected: (R), CC
(R) x EW -R

Trap: Floating-point arith
metic fault

FML FLOA TIN G MULTIPLY LONG
(Doubleword index al ignment)

The effective doubleword (multiplier) and the contents of
registers Rand Ru 1 (multipl icand) are loaded into a set of
internal registers. FLOATING MULTIPLY LONG then

76 . Floating-Point Arithmetic Instructions

operates identically to FLOATING MULTIPLY SHORT
(FMS), except that the multiplier and the multiplicand
fractions are each 14 hexadecimal digits long, the product
fraction is 28 hexadecimal digits long, and R must be an
even value for correct results. If no floating-point arith
metic fault occors, the postnormalized product is truncated
to a long-format floating-point number and loaded into
registers Rand Ru 1.

Affected: (R), (Ru 1), CC
(R, Ru1) x ED -R, Ru 1

Trap: Floating-point arith
metic fault, instruc
tion exception

The R field of the FML instruction must be an even value
for proper operation of the instruction; if the R field of
FML is an odd value, the instruction traps to Homespace
location X'4D ' , instruction exception trap.

FDS FLOATING DIVIDE SHORT
(Word index al ignment)

o 1 2

3E I R I X I: Reference: address I
3145 6 78 9 10 111213141516171819120212223;>4252627128293031

The effective word (divisor) and the contents of register R
(dividend) are loaded into a set of internal registers and
both numbers are then prenormalized (if necessary).
FLOATING DIVIDE SHORT then forms a floating-point
quotient with a 6-digit, normal ized hexadecimal fraction.
If no floating-point arithmetic faul t occurs, the quotient is
loaded into register R as a short-format floating-point
number.

Affected: (R), CC
(R)';' EW -R

Trap: Floating-point arith
metic fault

FDL FLOATING DIVIDE LONG
(Doubleword index alignment)

The effective doubleword (divisor) and the contents of
registers Rand Ru 1 (dividend) are loaded into a set of
internal registers. FLOATING DIVIDE LONG then oper
ates identically to FLOATING DIVIDE SHORT (FDS), ex
cept that the ·divisor, dividend, and quotient fractions are
each 14 hexadecimal digits long, and R must be an even
value for correct results. If no floating-point arithmetic
fault occurs, the quotient is loaded into registers Rand Ru1
as a long-format floating-point number.

Affected: (R),(Ru1),CC
(R, Ru1).;. ED -R, Rul

Trap: Floating-point arith
metic fault, instruc
tion exception

The R field of the FDL instruction must be an even value
for proper operation of the instruction; if the R field of FDL
is an odd value, the instruction traps to Homespace location
X'4D', instruction exception trap.

DECIMAL INSTRUCTIONS

The following instructions comprise the decimal instruction
sett: -

Instruction Name

Decimal Load

Decimal Store

Decimal Add

Decimal Subtract

Decimal Mul~iply

Decimal Divide

Decimal Compare

Decimal Shift Arithmetic

Pack Decimal Digits

Unpack Decimal Digits

Edit Byte String (described under
"Byte- Stri ng Instructions")

PACKED DECIMAL NUMBERS

Mnemonic

DL

DST

DA

DS

DM

DD

DC

DSA

PACK

UNPK

EBS

All SIGMA 9 decimal arithmetic instructions operate on
packed decima I numbers, each consisting of from 1 to 31
decima~ digitstt (in absolute form) plus a decimal ~ign. A
decimal digit is a 4-bit code in the range 0000 through
1001, where 0000 = 0, 0001 = 1, 0010 = 2, 0011 = 3,
0100 = 4, 0101 = 5, 0110 = 6, 0111 = 7; 1000 = 8, and
1001 = 9. A positive decimal sign is a 4-bit code of the
form: 1010(X'A'), 1l00(X'C), 1110(X'E'), or 1111(X'F').
A negative decimal sign is a 4-bit code of the form:
1011(X'B') or 1l01(X'D'). However, the decimal sign codes
generated for the result of a decimal instruction are: 1100
(EBCDIC) and 1010 (ANSCII) for positive results, and 1101
(EBCDIC) and 1011 (ANSCII) for negative results. The for
mat of packed decimal numbers is:

For the decimal arithmetic instructions, a packed decimal
number must occupy an integral number (1 through 16) of
consecutive bytes. Thus, a decimal number must contain an
odd number of decimal digits, the high-order digit (zero or
nonzero) of the number must be in bit positions 0-3 of the
first byte, the decimal sign must be in bit positions 4-7 of
the last byte, and all decimal digits and the decimal sign.
must be 4-bit codes of the form described above.

tFor disabling of decimal instructions, see "Unimplemented
Instruction Trap", Chapter 2.

ttExcept EDIT BYTE STRING (EBS), which has no limit on
the si ze of numbers.

ZONED DECIMAL NUMBERS

In zoned decimal format, a single decimal digit is contained
within bit positions 4-7 of a byte, and bit positions 0-3 of
the byte are referred to as the "zone" of the decimal digit.
A zoned decimal number consists of from 1 to 31 bytes, with
the decimal sign appearing as the zone for the last byte, as
follows:

I zone I digit I zone I digit I ::: I sign I digit I
0123456701234567 01134567

The sign and zones are determined by bit 12 of the PSD.
If bit 12 is zero, the sign format is EBCDIC and the zones
are 1111. If it is one, the sign format is ASCII and zones
are 0011.

A decimal number can be converted from zoned to packed
format by means of the instruction PACK DECIMAL DIGITS.
A dec ima I number can be converted from packed to zoned
format by means of the instruction UNPACK DECIMAL
DIGITS.

DECIMAL ACCUMULATOR

All decimal arithmetic instructions imply the use of reg
isters 12 through 15 of the current register block as the deci
mal accumulator, and registers 12 through 15 are treated as
a single 16-byte register. The entire decimal accumulator
is used in every decimal arithmetic instruction.

DECIMAL INSTRUCTION fORMAT

The general format of a decimal instruction is as follows:

The indirect address bit (position 0), the operation code
(positions 1-7), the index field (12-14), and the reference
address field (15-31) all have the same functions for the
decimal instructions as they do for any other SIGMA 9 byte
addressing instruction . However, bit positions 8-11 of the
instruction word do not refer to a general register; instead,
the contents of this field (designated by the character "L ")
designate the length, in bytes, of a packed decimal num
ber. (If L = 0, a length of 16 bytes is assumed.)

ILLEGAL DIGIT AND SIGN DETECTION

Prior to executing any decimal instruction, the computer
checks all decimal operands for the presence of illegal
decimal digits or illegal decimal signs. For all decimal
arithmetic instructions except DECIMAL MULTIPLY and
DECIMAL DIVIDE, an illegal decimal digit is a sign code
(i. e., in the range X'A I through X'F') that appears any
where except in bit positions 4-7 of the least significant
byte (the sign position) of the packed dec imal number; an
illegal decimal sign is a digit code (i. e., in the range X101

Decimal Instructions 77

through X'9') that appears in the sign position of the packed
decimal number.

For the instructions DECIMAL MULTIPLY and DECIMAL
DIVIDE, the effective decimal operand is checked for
illegal digits or signs as above. However, the operand in
the decimal accumulator is checked to verify that there is
at least one legal decimal sign code somewhere in the num
ber. (This type of check is a result of the interruptibility
of these instructions, which may leave the decimal accumu
lator with a partially-completed result containing an
intemal code.) For these two instructions, the illegal sign
and digit check also includes a check for an illegal L field
in the instruction. Illegal L fields are X'O' and the range
X'9' to X'F'.

For the instructions DECIMAL ADD, DECIMAL COMPARE,
and DECIMAL SUBTRACT, the decima I accumulator may
not be fully checked for illegal signs.

If an illegal digit or sign is detected, the computer un
conditionally aborts the execution of the instruction (at
the time that the illegal digit or sign is detected), sets
CCl to 1 and resets CC2 to O. If the decimal arithmetic
fault trap mask (bit position 10 of the program status
doubleword) is a 0, the computer then executes the next
instruction in sequence; however, if the decimal arithmetic
fault trap mask (PSDI0) is a 1, the computer traps to
Homespace location X'45'. In either case, the contents
of the decimal accumulator, the effective decimal operand,
CC3, and CC4 remain unchanged.

OVERFLOW DETECnON

Arithmetic overflow can occur during execution of the fol
lowing decimal instructions:

DECIMAL ADD: overflow occurs when the sum of the two
decimal numbers exceeds the 31-digit capacity of the
decimal accumulator (+103 1 -1 to -1031 +1).

DECIMAL SUBTRACT: overflow occurs when the difference
between the two decimal numbers exceeds the 31-digit ca
pacity of the decimal accumulator.

DECIMAL DIVIDE: overflow occurs either when the divisor
is zero, or when the dividend is greater than 14 digits
in length and the absolute value of the significant digits
to the left of the 15th digit position (counting from the
right) is greater than or equal to the absolute value of
the divisor.

If arithmetic overflow occurs during execution of DECIMAL
ADD, DECIMAL SUBTRACT, or DECIMAL DIVIDE, the com
puter unconditionally aborts execution of the ,instruction (at
the time of overflow detection), resets CCl to 0, and sets
CC2 to 1. Then, if the decimal arithmetic fault trap mask
(PSD10) is a 1, the computer traps to Homespoce location
X'45'; if the decimal arithmetic fault trap mask is a 0, the

78 Decimal Instructions

computer executes the next instruction in sequence. In
either case, the contents of the decimal accumulator, mem
ory storage, CC3, and eC4 remain unchanged.

DECIMAL INSTRUCnON NOMENCLATURE

For the purpose of abbreviating the instruction descriptions
to follow, the symbolic term "DECA" is used to represent
the decimal accumulator, and the symbolic term "EDO" is
used to represent the effective decimal operand of the in
struction. For the instructions DECIMAL LOAD, DECIMAL
ADD, DECIMAL SUBTRACT, DECIMAL MULTIPLY, DECI
MAL DIVIDE, and DECIMAL COMPARE, the effective
decimal operand is a packed decimal number that is "l"
bytes in length, where L is the numeric value of bit posi
tions 8-11 of the instruction word, and a value of 0 for
L designates 16 bytes. The effective byte addresses of
these instructions point to the byte location that contains
the most significant byte (high-order -digits) of the decimal
number, and the effective byte address plus L-l (where
L = 0 = 16) points to the least significant byte (low-order
digit and sign) of the decimal number. Thus, for these in
structions, the effective decimal operand (EDO) is the con
tents of the byte string that begins with the effective byte
location, is L bytes in length and ends with the effective
byte location plus l-l.

CONDlnON CODE SEmNGS

All decimal instructions provide condition code settings,
using eel to indicate whether or not an illegal digit or
sign has been detected, and CC2 to indicate whether or
not overfl ow has occurred. Most (bu t not a \I) of the deci
mol-instructions provide condition code settings, using CC3
and CC4 to indicate whether the decimal number in th~
decimal accumulator is zero, negative, or positive, as
follows:

CC3 CC4 Result in DECA

o o

o

o

Zero - the decimal accumulator contains
a positive or negative decimal sign code
in the four low-order bit positions; the
remainder of the decimal accumulator con
tains all O's.

Negative - the decimal accumulator con
tains a negative decimal sign code in the
four low-order bit positions; the remainder
of the decimal accumulator conta ins at
least one nonzero decimal digit.

Positive - the decimal accumulator contains
a positive decimal sign code in the four low
order bit positions; the remainder of the deci
mal accumulator contains at least one nonzero
decimal digit.

OL DECIMAL LOAD
(Byte index alignment)

If no illegal digit or illegal sign is detected in the effective
decimal operand, DECIMAL LOAD expands the effective
decimal operand to 16 bytes (31 digits + sign) by appending
high-order O·s, and then loads the expanded decimal num
ber into the de<;:imal accumulator. If the result in the deci
mal accumulator is zero, the converted sign remains
unchanged.

Affected: (DECA), CC Trap: Decimal arithmetic
(EBL to EBL + L -l)-DECA

Condition code settings:

2 3 4 Result in DECA

o -

000

000

o 0

o

Illegal digit or sign detected, instruction
aborted

No illegal digit or illegal
sign detected, instruction
completed

:::ative}
o Positive

OST DECIMAL STORE
(Byte index alignment)

If no illegal digit or sign is detected in the decimal ac
cumulator, DECIMAL STORE stores the low-order L bytes
of the decimal accumulator into memory from the effec
tive byte location to the effective byte location plus L-1.
If the decimal accumulator contains more significant in
formation than is actually stored (i. e. , at least one non
zero digit was not stored), CC2 is set to 1; otherwise,
CC2 is reset to O. If the result in memory is zero, the
converted sign remains unchanged.

Affected: (EBL to EBL + L-1), Trap: Decimal arithmetic
CC1, CC2

(DECA) low-order bytes --EBL to EBL + L - 1

Condition code settings:

2 3 4 Result of DST

o

o 0

o

Illegal digit or sign detected, instruction
aborted

All significant in_}
formation stored

Some significant
information not
stored

No illegal digit or
illegal sign detected,
instruction
completed

OA DECIMAL ADD
(Byte index alignment)

If no illegal digit or sign is detected in the effective deci
mal operand or in the decimal accumulator, DECIMAL ADD
algebraically adds the decimal number to the contents of the
decimal accumulator. If the result in the decimal accumu
lator is zero, the resulting sign is forced to the positive
form.

Overflow occurs if the sum exceeds the capacity of the
decimal accumulator (i. e., if the absolute value of the sum
is equa I to or greater than 1031), in wh i ch case CC 1 is reset
to 0, CC2 is set to 1, and the instruction aborted with the
previous contents of the decimal accumulator, CC3 and
CC4 unchanged.

Affected: (DECA), CC
(DECA) + EDO --DECA

Trap: Decimal arithmetic

Condition code settings:

o

2 3 4 Result in DECA

o Illegal digit or }
sign detected

Overflow

Instruction aborted

o 0 o 0

o 0 o

o 0 o

Zero } No illegal digit or sign
Negati ve detected, no overflow,

instruction completed
Positive

OS DECIMAL SUBTRACT
(Byte index al ignment)

o I 2

If no illegal digit or sign is detected in the effective deci
mal operand or in the decimal accumulator, DECIMAL SUB
TRACT algebraically subtracts the decimal number from the
contents of the decimal accumulator, and then loads the
difference into the decimal accumulator. If the result in
the decimal accumulator is zero, the resulting sign is
forced to the positive form.

Overflow occurs if the difference exceeds the capacity of
the decimal accumulator (i. e., if the absolute value of the
difference is equal to or greater then 1031), in which case
CC 1 is reset to 0, CC2 is set to 1, and the instruction is
aborted with the contents of the previous decimal accumu
lator, CC3 and CC4 unchanged.

Affected: (DECA), CC Trap: Decimal arithmetic
(DECA) - EDO -DECA

Dec ima I Instructions 79

Condition code settings:

o

2 3 4- Result in OECA

o - Illegal digit or}
sign detected

Overflow

o 0 0 0 Zero

Instruction aborted

No illegal digit or sign
0 0 0 Negative detected, no overflow,

instruction completed

0 0 1 0 Positive

OM DECIMAL MULTIPLY
(Byte index alignment, continue after interrupt)

If no illegal digit or sign is detected in the effective
decimal operand and there is at least one decimal sign
in the decimal accumulator, DECIMAL MULTIPLY multi
plies the effective decimal operand (multiplicand) by
the entire contents of the decimal accumulator (multi
plier) and then loads the product into the decimal
accumulator. If the result in the decimal accumulator
is zero, the resulting sign is forced to the positive
form.

No overflow can occur; however, an indeterminate result
occurs (with an incorrect condition code indication, and
with no trap activation) if any of the following conditions
are not satisfied before the initial execution of DECIMAL
MUlTIPl Y:

1. The four low-order bit positions of the decimal accumu
lator must contain the sign of the multiplier.

2. The 16 high-order digit positions of the decimal accu
mulator (i.e., general registers 12 and 13) must con
tain aft O's.

This instruction can be interrupted during the course of its
execution, and then be resumed, without producing an
erroneous product (provided that the contents of the deci
mal accumulator are not a Itered between the interruption
and continuation). Actually, the instruction is reexecuted,
but since there is no initializing phase, it begins with the
same iteration that was started prior to the interrupt.

Affected: (DECA), CC
(DECA) x EDO -DECA

80 Decimal Instructions

Trap: Decimal arithmetic

Condition code settings:

2 3 4 Result in OECA

0 - Illegal digit or sign detected, instruction
aborted

0 0 0 0 Zero

} No illegal digit or sign

0 0 0 Negative detected, instruction
completed

0 0 0 Positive

DO DECIMAL DIVIDE
(Byte index alignment, continue after interrupt)

If there is no illegal digit or sign in the effective decimal
operand and if there is at least one decimal sign in the
decimal accumulator, DECIMAL DIVIDE divides the con
tents of the decimal accumulator (dividend) by the effec
tive decimal operand (divisor). Then, if no overflow has
occurred, the computer loads the quotient (15 decimal
digits plus sign) into the eight low-order bytes of the deci
mal accumulator (registers 14 and 15), and loads the
remainder (also 15 decimal digits plus sign) into the eight
high-order bytes of the decimal accumulator (registers 12
and 13). The sign of the remainder is the same as that of
the original dividend. If the quotient is zero, the sign of
-the quotient is forced to the positive form.

Overflow can occur if any of the following conditions
are not satisfied before the initial execution of DECIMAL
DIVIDE:

1. The divisor must not be zero.

2. If the length of the dividend is greater than 15 decimal
digits, the absolute value of the significant digits to
the left of the 15th digit position (i. e., those digits in
registers 12 and 13) must be less than the absolute value
of the divisor.

This instruction can be interrupted during the course of its
execution, and can then be resumed without producing
an erroneous result (provided that the contents of the
decimal accumulator are not altered between interrup
tion and continuation). Actually, the instruction is
reexecuted, but since there' is no initializing phase, it
begins with the same iteration that was started prior to
the interrupt.

Affected: (DECA), CC
(DECA) -;. EDO -DECA

Trap: Decimal arithmetic

Condition code settings:

2 3 4 Result in DECA

0 Illegal digit or

} Instruction aborted
sign detected

0 Overflow

0 0 0 0 Zero quotient
} No illegal digit or

0 0 0 Negative quotient
sign detected, no
overflow, instruc-

0 0 0 Positive quotient tion completed

'DC DECIMAL COMPARE
(Byte index alignment)

If there is no illegal digit or illegal sign in the effective
decimal operand or in the decimal accumulator, DECIMAL
COMPARE expands the effective decimal operand to
16 bytes (31 digits plus sign) by appending high-order OIS,
algebraically compares the expanded decimal number to the
contents of the entire decimal accumulator, and sets CC3
and CC4 according to the result of the comparison (a posi
tive zero compares equal to a negative zero).

Affected: CC Trap: Decimal arithmetic
(DECA) : EDO

Condition code settings:

2 3

0

0 0 0

0 0 0

0 0

DSA

4 Result of comparison

Illegal digit or sign detected, i nstruc t ion
aborted

0 (DECA) equals EDO

} No illegal digit or
(DECA) less than EDO sign detected,

instruction
0 (DECA) greater than completed

EDO

DECIMAL SHIFT ARITHMETIC
(Byte index alignment)

If no illegal digit or sign is detected in the decimal accu
mulator, DECIMAL SHIFT ARITHMETIC arithmetically shifts
the contents of the decimal accumulator (excluding the
decimal sign), with the direction and amount of the shift
determined by the effective virtual address of the instruc
tion. If the result in the decimal accumulator is zero, the
resulting sign remains unchanged.

If no indirect addressing or indexing is used with DSA, the
shift count C is the contents of bit positions 16-31 of the
instruction word. If only indirect addressing is used with
DSA, the shift count is the contents of bit positions 16-31
of the word pointed to by the indirect address in the in
struction word. If indexing only is used with DSA, the
shift count is the contents of bit positions 16-31 of the
instruction word plus the contents of bit positions 14-29 of
the designated index register (bits 0-13, 30, and 31 of the
index are ignored). If indirect addressing and indexing are
both used with DSA, the shift count is the sum of the con
tents of bit positions 16-31 of the word pointed to by the
indirect address and the contents of bit positions 14-29 of
the designated index register.

The shift count, C, is treated as a 16-bit signed binary
integer, with negative integers in twols complement form.
If the shift count is positive, the contents of the decimal
accumulator are shifted left C decimal digit positions; if
the shift count is negative, the contents of the decimal
accumulator are shifted right -C decimal digit positions.
In either case, the decimal sign is not shifted, vacated
decimal digit positions are filled with OIS, and any digits
shifted out of the decimal accumulator are lost. Although
the range of possible values for C is 2-15 $ C ~ 215_1,
a shift count greater than +31 or less than -31 is interpreted
as a shift count of exactly +31 or -31.

If any nonzero decimal digit is shifted out of the decimal
accumulator during a left shift, CC2 is set to 1; otherwise,
CC2 is reset to O. CC2 is unconditionally reset to 0 at the
completion of a right shift.

Affected: (DECA), CC Trap: Decimal arithmetic

Condition code settings:

2 3 4 Result in DECA

o - Illegal digit or sign detected, instruction
aborted

o - 0 0 Zero

o - 0 Negative

o 0 Positive

o 0 - Right shift or no non
zero digit shifted out
of DECA on left shift

o

PACK

One or more nonzero
digit(s) shifted outof
DECA on left shift

PACK DECIMAL DIGITS
(Byte index al ignment)

No illegal digit
or sign detected,
instruction
completed

Decimal Instructions 81

PACK DECIMAL DIGITS converts the effective decimal
operand (assumed to be in zoned format) into a packed
decimal number and, if necessary, appends sufficient high
order O's to produce a decimal number that is 16 bytes
(31 decimal digits plus sign) in length. The zone (bits 0-3)
of the low-order digit of the effective decimal operand is
used to select the sign code for the packed decimal number;
all other zones are ignored in forming the packed decimal
number. If no illegal digit or sign appears in the packed
decimal number, it is then loaded into the decimal accu
mulator. If tbe result in the decimal accumulator is zero,
the resulting sign remains unchanged.

The L field of this instruction specifies the length, in bytes,
of the resultant packed decimal number in the decimal ac ...
cumulator; therefore, the length of the effective decimal
operand is 2L-1 bytes (¥lhere L = 0 implies a length of
31 bytes for the effective decimal operand).

Affected: (DECA), CC Trap: Decimal arithmetic

packed (EBL to EBL + 2L - 2) --DECA

Condition code settings:

2 3 4 Result in DECA

0 - - Illegal digit or sign detected, instruction
aborted

0 0 0 0
Zero } No illegal digit or sign

0 0 0 Negative detected, instruction

0 0 0 Positive
completed

Example 1, L = 6:

Before execution After execution

EDO X'FOF1F2F3 X'FOF1F2F3
F4F5F6F7 F4F5F6F7
F8F9FO' F8F9FO'

(DECA) xxxxxxxx X'ooOOOOOO
xxx xxx xx 00000000
xxxxxxxx 00000123
xxxxxxxx 4567890C'

CC xxxx 0010

Example 2, L = 6:

Before execution After execution

EDO X'OOO938F7 X'000938F7
E655B483 E655B483
02F1 BO' 02F1BO'

(DECA) xxxxxxxx X '00000000
xxxxxxxx 00000000
xxxxxxxx 00000987
xxxxxxxx 65432100'

CC xxxx 0001

82 Decimal Instructions

UNPK UNPACK DECIMAL DIGITS
(Byte index alignment, continue after interrupt)

If no illegal digit or sign is detected in the decimal accu
mulator (assumed to be in packed decimal format), UNPACK
DECIMAL DIGITS converts the contents of the low-order
L bytes of the decimal accumulator to zoned decimal format
and stores the result, as a byte string, from the effective
byte location to the effective byte location plus 2L-2.
The contents of the four low-order bit positions of the deci
mal accumulator are used to select the sign code for the
last digit of the string; for all other digits, if bit 12 of the
PSD is zero, the zones are 1111 (EBCDIC), and if bit 12 is
one, the zones are 0011 (ASCII). The contents of the deci
mal accumulator remain unchanged, and only 2L-l bytes
of memory are altered. If the decimal accumulator con
tains more significant information than is actually unpacked
and stored, CC2 is set to 1; otherwise, CC2 is reset to O.
If the result in memory is zero, the resulting sign remains
unchanged.

Affected: (EBL to EBL + 2L -2), Trap: Decimal arithmetic
CC1, CC2

zoned (DECA) -EBL to EBL + 2L - 2

Condition code settings:

2 3 4 Result of UNPK

o Illegal digit or sign detected, instruction
aborted

o 0 - - All significant infor
mation zoned and
stored

o Some significant
information not
zoned and stored

Example 1, L = 10:

Before executi on

(DECA) X'ooOOOOOO
00000001
23456789
01234560'

EDO xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxx

CC xxxx

No illegal digit
or sign detected,
instruction
completed

After execution

X'OooOOOOO
00000001
23456789
01234560'

X'FOFOFOFl
F2F3F4F5
F6F7F8F9
FOF1F2F3
F4F5D6 1

OOxx

Example 2, L = 8:

(DECA)

EDO

Before execution

XI 00000000
23000000
10001234
0012345C'

xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxx

CC xxxx

Example 3, L = 4:

(DECA)

EDO

CC

Before execution

X'00001001
00001002
00001003
0001004F'

xxxxxxxx
xxxxxxxx

xxxx

After execution

XI 00000000
23000000
10001234
0012345(1

X'F1FOFOFO
F1F2F3F4
FOFOF1F2
F3F4C5 1

01xx

After execution

X' 00001001
00001002
00001003
00001004 1

X'"FOFOFOF 1
FOFOC4 1

01xx

BYTE-STRING INSTRUCTIONS

Five instructions provide for the manipulation of strings of
consecutive bytes". The byte-string instructions and their
mnemonic codes are as follows:

Instruction Name Mnemonic

Move Byte String MBS

Compare Byte String CBS

Translate Byte String TBS

Translate and Test Byte String TTBS

Edit Byte String EBS

These instructions are in the immediate displacement class
and are memory-to-memory operations. These operations
are under the control of information that must be loaded
into certain general registers before the instruction is exe
cuted. These instructions may be interrupted at various
stages of their execution; upon return, execution continues
from the point of interruption.

The general format for the information in the instruction
word and in the general registers is as follows:

Instruction word:

101 ~~:ation I I: : I
o 1 2 314 5 6 7 8 9 RIO 1112 13 14 1516 17 18 ~9il::~~:~~:~: 262712829 30 31

Contents of reg ister R:

Contents of register Ru 1:

Designation

Operation

R

Displacement

Mask/Fill

Source Address

Count

Destination
Address

Function

The 7-bit operation code of the instruc
tion. (If any byte-string instruction is
indirectly addressed, the computer traps
to Homespace location X' 40' at the time
of operation code decoding.)

The 4-bit field that identifies register R
of the current general register block.

A 20-bit field that contains a signed
byte displacement value, used to form an
effective byte address. The displacement
value is right-justified in the 20-bit
field, and negative values are in twols
comp I ement form.

An 8-bit field used only with TRANSLATE
AND TEST BYTE STRING and EDIT BYTE
STRING. The purpose of this field is
explained in the detailed discussion of
the TTBS and EBS instructions.

A 19- or 24-bit fieldt that normally con
tains the byte address of the first (most
significant) byte of the source byte
string operand. The effective source
address is the source address in register R
plus the displacement value in the in
struction word.

An 8-bit field that contains the true
count (from 0 to 255) of the number of
bytes involved in the operation. This
field is decremented by 1 as each byte
in the destination byte string is processed.
A 0 count means "no operation II with re
spect to the registers and main memory.

A 19- or 24-bit fieldt that contains the
byte address of the fi rst (most sign i ficant)
byte of the destination byte-string oper
and. This field is incremented by 1 as
each byte in. the destination byte string
is processed.

tFor real extended addressing mode, this is a 24-bit field
(bits 8-31); for real and virtual addressing modes it is a
19-bit field (13-31).

Byte-String Instructions 83

In any byte-string instruction, any portion of register R
or .Ru1 that is not explicitly defined (i.e., bit positions
8-12), should be coded with zeros for real and virtual
addressing.

Since the value Ru 1 is obtained by performing a logical
inclusive OR with the value 0001 and the value of the
R field of the instruction word, the two control registers
are Rand R+ 1 if R is even. However, if R is an odd value,
register R contains an address value that functions both as a
source operand address and as a destination operand address.
Also, if register 0 is designated in any byte-string instruc
tion (except for TRANSLATE AND TEST BYTE STRING and
EDIT BYTE STRING), its contents are ignored and a zero
source address value is obtained. Thus, the following three
cases exist for most byte string instructions, depending on
whether the value of the R field of the instruction word is
even and nonzero, odd, or zero:

Case I: R is even and nonzero

The effective source address is the address in register R plus
the displacement in the instruction word; the destination
address is the address in register R + 1, but without the dis
placement added.

Case II: R is odd

The effective source address is the address in register R plus
the displacement in the instruction word; the destination
address is also the address in register R, but without the
displacement added.

Case III: R is zero

The effective source address is the displacement value in
the instruction word; the destination address is the address
in register 1. In this case, the source byte-string operand
is always a single byte.

In the descriptions of the ,byte-string instructions, the fol
lowing abbreviations and terms are used:

D Displacement, (1)12-31'

SA Source address, (R)13-3l'

ESA

C

DA

t
Effective source address, ~R) 13-31 + (1)12-31]13-31.

The contents of bit posifions 13-31 t of register R
are added (right al igned) to the contents of bit
positions 12-31 of the instruction word; the 19 or
24 low order bitst of the result are used as the
effective source address.

Count, (Ru 1)0-T

Destination address, {Ru 1)13-31 t.

84 Byte-String Instru.ctions

SBS Source byte string, the byte string that begins
with the byte location pointed to by the 19- or
24-bjtt effective source address and is C bytes in
length (if R is nonzero) or is 1 byte in length
if R is 0).

DBS Destination byte string, the byte string that begins
with the byte location pointed to by the destina
tion address and is always C bytes in length.

TRAPS BY BYTE-STRING INSTRUCTIONS

Byte-string instructions cause a trap if either of the byte
strings addressed come from pages of memory that are pro
tected either through access protection or through write
locks. A trap also occurs if either byte string is fully or
partly contained with in pages of memory that are physically
not present. A check for these access trap conditions are
made prior to initiation of any byte relocation or general
register change. These tests are performed for MOVE
BYTE STRING and COMPARE BYTE STRING. These tests
are performed only for the source byte string for TRANSLATE
BYTE STRING, TRANSLATE AND TEST BYTE STRING, and
EDIT BYTE STRING, since there is no assurance that the
translate table or decimal digit bytes will be accessed in
their entirety in the course of execution. If an access pro
tection violation were to occur in trying to reach a byte in
the translate table or decimal digit strings during the course
of execution, then the instruction would trap and result in
a partially executed condition. The registers would be re
stored, however, in such a manner that the instruction
could be resumed after the protection violation had been
corrected. When a trap occurs resulting. in a partially exe
cuted instruction, the Register Altered indicator will be
set.

MBS MOVE BYTE STRING
(Immediate displacement, continue after interrupt)

MOVE BYTE STRING copies the contents of the source byte
string (left to right) into the destination byte string. The
previous contents of the destination byte string are de
stroyed, but the contents of the source byte string are not
affected unless the destination byte string overlaps the
source byte string.

When the destination byte string overlaps the source byte
string, the resulting destination byte string contains one or
more r«;:petitions of bytes from the source byte string. Thus,
if a destination byte string of C bytes begins with the kth
byte of a source byte string (numbering from 1), the first

tFor real extended addressing mOde, this is a 24-bit field
(bits 8-31); for real and virtual addressing modes it is a
19-bit field (13-31).

k-1 bytes of the source byte string are dupt icated in
the destination byte string x number of times, where
x = C/(k-1). For example, if the destination byte string
begins with the second byte of the source byte string, the
first byte of the source byte string is duplicated throughout
the destination byte string.

If both byte strings begin with the same byte (i. e., k = 1)
and the R field of MBS is nonzero, the destination byte
string is read and replaced into the same memory locations.
However, if both byte strings begin with the same byte and
the R field of MBS is zero, the first byte of the byte string
is duplicated throughout the remainder of the byte string
(see "Case III", below).

Affected: (DBS),(R),(Ru1)
(SBS) -DBS

If MBS is indirectly addressed, it is treated as a non
existent instruction, in which case the computer uncondi
tionall y aborts executi on of the instruction (at the time of
operation code decoding) and traps to Homespace location
X'40' with the contents of register R and the destination
byte string unchanged. See "Traps by Byte String Instruc
tions" (in this section) for other trap conditions.

Case I: even, nonzero R field (Ru 1 = R+ 1)

Contents of register R:

Contents of register R+1:

The source byte string begins with the byte location pointed
to by the source address in register R plus the displacement
in MBS; the destination byte string begins with the byte lo
cation pointed to by the destination address in register R+1.
Both byte strings are C bytes in length. When the instruc
tion is completed, the destination and source addresses are
each incremented by C, and C is set to zero.

Case II: odd R field (Ru 1 = R)

Conten ts of reg ister R:

The source byte string begins with the byte location
pointed to by the address in register R plus the displacement
in MBS; the destination byte string begins with the byte lo
cation pointed to by the destination address in register R.
Both byte strings are C bytes in length. When the instruc
tion is completed, the destination address is incremented
by C, and C is set to zero.

Case III: zero R field (Ru1=1)

Contents of register 1

The source byte string consists of a single byte, the con
tents of the byte location pointed to by the displacement in
MBS; the destination byte string begins with the byte loca
tion pointed to by the destination address in register 1 and
is C bytes in length. In this case, the source byte is dupl i
cated throughout the destination byte string. When the
instruction is completed, the destination address is incre
mented by C and C is set to zero.

CBS COMPARE BYTE STRING
(Immediate displacement, continue after interrupt)

COMPARE BYTE STRING compares, as magnitudes, the
contents of the source byte stri ng with the contents of the
destination byte string, byte by corresponding byte, begin
ning with the first byte of each string. The comparison
continues until the specified numberof bytes have been com
pared or until an inequality is found. When CBS is termi
nated, CC3 and CC4 are set to indicate the result of the
last comparison. If the CBS instruction terminates due to
inequal ity, the count in register Ru 1 is one greater than the
number of bytes remaining to be compared; the source ad
dress in register R and the destination address in register Ru 1
indicate the locations of the unequal bytes.

Affected: (R), (Ru 1), CC3, CC4
(SBS) : (DBS)

Condition code settings:

2 3 4 Result of CBS.

o 0 Source byte string equals destination byte
string.

o Source byte string less than destination byte
string.

o Source byte string greater than destination
byte string.

If CBS is indirectly addressed, it is treated as a nonexistent
instruction, in which case the computer unconditionally
aborts execution of the instruction (at the time of operation
code decoding) and traps to Homespace location X'40' with
the contents of register R and the destination byte string
unchanged. See "Traps By Byte String Instructions" (in this
section) for other trap conditions.

tFor real extended addressing mode, this is a 24-bit field
(b i ts 8-31); for rea I and vi rtua I addressing modes it is a
19-bit field (13-31).

Byte-String Instructions 85

Case J: even, nonzero R field (Ru 1= R+1)

Contents of reg ister R

Contents of reg ister R+ 1

The source byte string begins with the byte location
pointed to by the source address in register R plus the dis
placement in CBS; the destination byte string begins with
the byte location pointed to by the destination address in
register R+1. Both byte strings are C bytes in length.

Case II: odd R field (Ru1=R)

Contents of register R:

The source byte string begins with the byte location
pointed to by the address in register R plus the displace
ment in CBS; the destination byte string begins with the
byte location pointed to by the destination address in
register R. Both byte strings are C bytes in length.

Case III: zero R field (Rul=l)

Contents of register 1:

The source byte string consists of a single byte, the con
tents of the location pointed to by the displacement in CBS;
the destination byte string begins with the byte location
pointed to by the destination address in register 1 and is
C bytes in length. In this case, the source byte is com
pared with each byte of the destination byte string until
an inequality is found.

lBS TRANSLATE BYTE STRING
(Immediate displacement, continue after interrupt)

TRANSLA TE BYTE STRING replaces each byte of the des
tination byte string with a source byte located in a transla
tion table. The destination byte string begins with the
byte location pointed to by the destination address in reg
ister Ru 1, and is C bytes in length. The translation table
consists of up to 256 consecutive byte locations, with the
first byte location of the table pointed to by the displace
ment in TBS plus the source address in register R. A source

86 Byte-String Instructions

byte is defined as that which is in the byte location pointed
to by the 19 low-order bitst of the sum of the following
values.

1. The displacement in bit positions 12-31 of the TSS
instruction.

2. The current contents of bit positions 13-31 t of register R
(source address).

3. The numeric value of the current destination byte, the
8-bit contents of the byte location pointed to by the
current destination address in bit positions 13-31 t of
register (Ru 1).

Affected: (DBS),(Rul)
translated (DBS) -DSS

T rap: Instruction exception

The R field of the TSS instruction must be an even value for
proper operation of the instruction; if the R field of TSS is
an odd value, the instruction traps to Homespace location
X'4D', instruction exception trap.

If TSS is indirectly addressed, it is treated as a nonexistent
instruction, in which case the computer unconditionally
aborts execution of the instruction (at the time of operation
code decoding) and traps to Homespace location X'40' with
the contents of register R and the destination byte string
unchanged.

See "Traps By Byte String Instructions" (in this section) for
other trap conditions. Note that the check for access trap
conditions is done only for the source byte string.

Case I: even, nonzero R field (Ru l=R+ 1

Contents of register R

Contents of register R+ 1

The destination byte string begins with the byte location
pointed to by the destination address in register R + 1 and
is C bytes in length. The source byte string (translation
table) begins with the byte location pointed to by the dis
placement in TBS plus the source address in register R.
When the instruction is completed, the destination address
is incremented by C, C is set to zero, and the source ad
dress remains unchanged.

t For real extended addressing mode, this is a 24-bit field
(bits 8-31); for real and virtual addressing modes it is a
19-bit field (13-31).

Case II: odd R HeM (Rul=R)

Because of the interruptible nature of TRANSLATE BYTE
STRING, the instruction traps with the contents of register R
unchanged when an odd-numbered general register is speci
fied by the R field of the instruction word.

Case III: zero R field (Ru 1= 1)

Contents of register 1

The destination byte string begins with the byte location
pointed to by the destination address in register 1 and is
C bytes in length. The source byte string (translation table)
begins with the location pointed to by the displacement in
TBS. When the instruction is completed, the destination
address is incremented by C and C is set to zero.

TTBS TRANSLATE AND TEST BYTE STRING
(Immediate displacement, continue after interrupt)

TRANSLATE AND TEST BYTE STRING compares the mask
in bit positions 0-7 of register R with source bytes in a byte
translation table. The destination byte string begins with
the byte location pointed to by the destination address in
register Ru 1, and is C bytes in length. The byte translation
table and the translation bytes themselves are identical to
that described for the instruction TRANSLATE BYTE STRING.
The destination byte string is examined (without being
changed) until a translation byte (source byte) is found that
contains a 1 in any of the bit positions selected by a 1 in
the mask. When such a translation byte is found, TTBS re
places the mask with the logical product (AND) of the trans
lation byte and the mask, and terminates with CC4 set to 1.
If the TTBS instruction terminates due to the above condi
tion, the count (C) in register Ru1 is one greater than
the number of bytes remaining to be compared and the
destination address in register Ru 1 indicates the location
of the destination byte that caused the instruction to
terminate. If no translation byte is found that satisfies
the above condition after the specified number of destina
tion bytes have been compared, TTBS terminates with CC4
reset to O. In no case does the TTB5 instruction change
the source byte string.

Affected: (R), (Rul), CC4 Trap: Instruction exception

If translated (SBS) n mask "I 0, translated (SBS) n mask -
mask and stop

If translated (SBS) n mask = 0, continue

Condition code settings:

2 3 4 Result of TTBS

o Translation bytes and the mask do not com
pare ones any place.

The last translation byte compared with the
mask contained at least one 1 corresponding
to a 1 in the mask.

The R field of the TTBS instruction must be an even value
for proper operation of the instruction; if the R field of TTBS
is an odd value, the instruction traps to Homespace loca
tion X'4D', instruction exception trap.

If TTBS is indirectly addressed, it is treated as a nonexistent
instruction, in which case the computer unconditionally
aborts execution of the instruction (at the time of operation
code decoding) and traps to Homespace location X'40' with
the contents of register R and the destination byte string
unchanged.

See liT raps By Byte String Instructions" (in th is section) for
other trap conditions. Note that the check for access trap
'conditions is done only for the source byte string.

Case I: even, nonzero R field (Ru1=R+1)

Contents of register R

Contents of regi ster R+ 1

The destination byte string begins with the byte location
pointed to by the destination address in register R + 1 and
is C bytes in length. The source byte string (translation
table) begins with the byte location pointed to by the dis
placement in TTBS plus the source address in register R.

Case II: odd R field

Because of the interruptable nature of TRANSLATE AND
TEST BYTE STRING the instruction traps with the contents
of register R unchanged when an odd-numbered general reg
ister is specified by the R field of the instruction word.

tFor real extended addressing mode, this is a 24-bit field
(bits 8-31); for real and virtual addressing modes it is a
19-bit field (13-31).

Byte-String Instructions 87

Case III. zero R field (Ru 1= 1)

Contents of register 1

The destination byte string begins with the byte location
pointed to by the destination address in register 1 and is
C bytes in length. The source byte string (translation table)
begins with the location pointed to by the displacement in
TTBS. In this case, the instruction automatically provides
a mask of eight lIs. (This is an exception to the general
rule, used in the other byte-string instructions, that reg
ister 0 provides all OIS as its contents.)

EBS EDIT BYTE STRING
{Immediate displacement, continue after interrupt)

EDIT BYTE STRING converts a decimaJ information field
from packed decimal format to zoned decimal format, under
control of the editing pattern in the destination byte string,
and replaces the destination byte string with the edited,
zoned result. The decimal formats on which EBS operates
are governed by bit 12 of the PSD (ANSCII/EBCDIC) mask
bit). If PSD 12 is zero, EBCDIC codes are used; if it is
one, ANSCII codes are used. (See IIDecimal Instructions",
"Pac.ked Decimal Numbers ll

, and "Zoned Decimal Numbers ll

for a description of packed and zoned decimal formats.)
EBS proceeds one byte at a time, starting with the first
(most significant) byte of the editing pattern, and continues
until all bytes in the editing pattern have been processed.
The fill character, contained in bit position 0-7 of regis
ter R, replaces the pattern byte under specified conditions.
More than one decimal number field can be edited by a
single EBS instruction if the pattern in memory is, in fact,
a series of patterns corresponding to a series of number fields.
In such cases, however, after the EBS instruction is com
pleted, the condition code indicates the result of the last
decimal number field processed and register 1 contains the
byte address (or the byte address plus 1) of the last signifi
cance indicator in the edited destination byte string. (This
aJlows the insertion of a floating dollar sign, etc., with a
subsequent instruction.)

R must ~e an even value (excluding 0) for proper operation
of the instruction; if R is an odd value or equal to zero, the
computer traps to Homespace location XI4D', instruction
exception trap, with the contents in register R unchanged.

Contents of register R

t For real extended addressing mode, this is a 24-bit field
(bits 8-31); for real and virtual addressing modes it is a
19-bit field (13-31).

88 Byte-String InstructiOns

Contents of register R+ 1

The destination byte string is an editing pattern that begins
in the byte location pointed to by the destination address
in register R+ 1, and is C bytes in length. The decimal in
formation field, which must be in packed decimal format,
begins with the byte location pointed to by the displace
ment in EBS plus the source address in register R. The deci
mal information field must contain I egal decimal digit and
sign codes (packed format) and must begin with a decimal
digit.

The destination byte string (the editing pattern) may con
tain any 8-bit codes desired. However, four byte codes
in the editing pattern have special meanings. These codes
are as follows:

Binary value Function Abbreviation

00)00000 (X'20') Digit selector ds

00100001 (X121') Significance start ss

00100010 (X'22') Field separation fs

0010 0011 (X'231
) Immediate signifi- si

cance start

Before executing EBS, the condition code should be set
to 0000 if the high-order digit of the decimal number is in
the left half of a byte, and should be set to 0100 if the
high-order digit is in the right half of a byte.

The editing operation performed on each pattern byte of
the destination byte string is determined by the following
conditions:

1. The pattern byte obtained from the destination byte
string.

2. The decimal digit obtained from the decimal number
field.

3. The current state of the condition code.

Depending upon various combinations of these conditions,
the instruction EDIT BYTE STRING performs one (and only
one) of the following actions with the pattern byte and the
decimal dfgit:

1. The fill character (coatents of bit positions 0-7 of
register R) or a blank character replac~ the byte in
the destination byte string.

2. The decimal digit is expanded" to zoned decimal
format and replaces the pattern byte in the destina
tion byte string.

3. The pattern byte remains unchanged.

In general, the normal editing process is as follows:

1. Each byte of the destination byte string is replaced by
a fill character until significance is present, either in
the destination byte string or in the decimal informa
tion field. Significance is indicated by any of the
following:

a. The pattern byte is X' 231 {jmmediate significance
start), which begins significance with the current
decimal digit.

b. The pattern byte is X' 21 1 (significance start),
which begins significance with the following pat
tern byte.

c. The current decimal digit is nonzero, which begins
significance with the current pattern byte.

2. After significance is encountered, each pattern byte
that is X'20' (digit selector), X' 21 1 (significance start),
X' 221 (field separator), or X' 231 (immediate signifi
cance start) is replaced by a zoned decimal number
from the decimal field and all other pattern bytes are
unchanged. This process continues until any of the
following conditions occur:

a. A positive sign is encountered in the decimal field,
in which case subsequent pattern bytes are re
placed by blank characters until significance is
again present, until a field separator is encoun
tered, or until the destination byte string is en
tirely processed, whichever occurs first.

b. A negative sign is encountered in the decimal
field, in which case subsequent pattern bytes are
unchanged until significance is again present,
until a field separator is encountered, or until the
destination byte string is entirely processed, which
ever occurs first.

c. A pattern byte of X' 221 (field separator) is encoun
tered, in which case the field separator is replaced
by a fi II character; subsequent pattern bytes are
replaced by the fill character u~til significance is
again present, until a positive or negative sign is
encountered, or until the destination byte string is
entirely processed, whichever occurs first.

d. The destination byte string is entirely processed,
in which case the computer executes the next in
struction in sequence.

The detailed operation of EDIT BYTE STRING is as given
below.

The explanation is necessarily quite detailed due to the
high degree of flexibility inherent in EBS. Condition code
settings are made continuously during the editing process
and these settings help determine how each subsequent pat
tern byte will be edited. The summarY'of condition code
settings given on the next page will help clarify the discus
sion below.

1. If the count in bit position 0-7 of register R+1 is a
nonzero, a pattern byte is obtained from the destina
tion byte string; if the count in register R+1 is 0, the
computer executes the next instruction in sequence.

2. If the pattern byte is a digit selector (X' 20'), a sig
nificance start (X'211), or immediate significance
start (X' 231), a digit is accessed from the decimal
information field as follows:

a. Adecimal byte is obtained from the byte location
pointed to by the displacement in EBS plus the
source address in register R.

b. If bits 0-3 of the decimal byte are a sign code,
the computer automatically aborts execution of
EBS and traps to Homespace location X'451, with
the contents of register R, register R+ 1, the con
dition code, and the destination byte string un
changed from thei r current contents.

c. If CC2 is currently set to 0, the digit to be used
for editing is the left digit (bits 0-3) of the
decimal byte; however, if CC2 is currently
set to 1, the digit to be used is the right
digit (bits 4-7) of the dec imal byte. In
either case, CC3 is set to 1 if the digit is
nonzero. If CC2 is set to 1 and the right
digit (bits 4-7) of the decimal byte is a
sign code, the computer automatically
aborts execution of EBS and traps to Home
space location X' 451, as described above.

d. One of the following editing actions is performed.

Conditions

Pattern byte= SI{X 1231)

Pattern byte=SS(X'211)
CC4=1

Pattern byte = SS
CC4=0
non:?:ero digit

Pattern byte = SS
CC4=0
digit =0

Action

Expand digit to zoned
fo rmat, store in pattern
byte location, and set
CC4 to 1 (start
significance).

Expand digit to zoned
format and store in
pattern byte location
(because CC4= 1 means
significance already
encountered) .

Expand digit to zoned
format, store in pat
tern byte location
(because nonzero digit
begi ns si gn i fi cance),
and set CC4 to 1.

Store fill character in
pattern byte location
(because significance
starts wi th next pattern
byte) and set CO' "-to 1 .

Mode 1

None

Mode 1

Mode 2

Byte-String Instructions 89

Conditions Action

Pattern byte=DS(X'20') Expand digit to zoned None
CC4 = 1 format, and store digit

in pattem byte location.

Pattern byte = DS
CC4=0

Expand digit to zoned
format, store digit in
pattern byte location,
and set CC4 to 1 to.
signal significance

Mode 1

nonzero digit

Pattern byte= OS
CC4=0

Store fi II character in
pattern byte location
(because significance
not encountered yet).

None

digit=O

e. If CC2 is currently reset to 0 and if bits 4-7 of the
decimal byte are a positive decimal sign code,
CCl is set to 1, CC4 is reset to 0, and the source
address in register R is incremented by 1. If CC2
is currently reset to 0 and if bits 4-7 of the deci
mal byte are a negative decimal sign code, CC 1
and CC4 are both set to 1, and the sou ree address
is incremented by 1. Otherwise, CC2 is added to
the source address and then CC2 is inverted.

f. If marking is invoked at set d, above, one of the
two fol lowing marking operations are performed:

Mode 1: Load bits 13-31 of register R+1 into bit
positions 13-31 of register 1; bit posi
tions 0-12 of register are unpredictable.

Mode 2: Load bits 13-31 of register R+l into bit
positions 13-31 of register 1 and then
increment the contents of register 1 by 1;
bit positions 0-12 of register 1 are
unpredictable.

If marking is not appl icable (i. e., significance has
not been encountered), the contents of reg ister 1
are not affected.

3. If the pattern byte is a field separator (X'22I), the fill
character is stored in the pattern byte location. CC1,
CC3, and CC4 are all reset to OIS, and CC2 remains
unchanged.

4. If the pattern byte is not a digit selector, significance
start, immediate significance start, or field separator,
one of the following actions are performed:

Conditions Action

CC1-=0}
CC4=0

CCl = 1 }
CC4=0

CC4=1

Store fiJI character in pattern byte
location.

Store blank character (X'40 ' if EBCD IC or
X'20 ' if ANSCII) in pattern byte location.

None (pattern byte remains unchanged).

90 Byte-String Instructions

5. Increment the destination address in register Ru 1 and
decrement the count in register Ru 1. If the count is
sti If nonzero, process the next pattern byte as above;
otherwise, execute the next instruction in sequence.

Affected: (R), (Ru 1)

(register 1),
(OBS), CC

edited (SBS) -OBS

Traps: Nonexistent instruc
tion, decimal arith
metic, instruction
exception

Condition code settings:

2 3 4 Result of EBS

o 0 Significance is not present, no sign digit

o

o

o

has been encountered.

Significance is present, no sign digit has
been encountered.

o A positive sign has been encountered.

A negative sign has been encountered.

Next digit to be processed is left digit of
byte.

Next digit to be processed is right digit of
byte.

No nonzero digit has been encountered.

A nonzero digit has been encountered.

If EBS is indirectly addressed, it is treated as a nonexistent
instruction, in which case the computer unconditionally
aborts execution of the instruction (at the time of operation
code decoding) and traps to Homespace location X' 40' with
the contents of register R, register Ru 1, register 1, the
destination byte string, and the condition code unchanged.

The R field of the EBS instruction must be an even value
(excluding 0) for proper operation of the instruction; if the
R field of EBS is an odd value or equal to zero, the instruc
tion traps to Homespace location X'4D', instruction excep
tion trap.

If an illegal digit or sign is detected in the decimal infor
mation field, the computer unconditionally aborts execu
tion of the instruction (at the time the illegal digit or sign
is encountered) and traps to Homespace location X'451 with
the contents of register R, register Ru 1, register 1, the
destination byte string, and the condition code containing
the results of the last editing operation performed before
the illegal digit or sign was encountered.

See" Traps By Byte-String Instructions" (in this section) for
other trap conditions. Note that the check for access
trap conditions is done only for the source byte string.

In the following examples, the hexadecimal codes for the
digit selector (X'20'), the significance start (X'211), the
field separation (X'221), and the immediate significance

start (X'23 1
) are represented by the character groups ds, ss,

fs, and si, respectively. Also, the symbol 15 is used to
represent the character blank (X'40').

Exampl e 1, before execution:

The instruction word is:

X 163600000 I

The contents of reg i ster 6 are:

X'5C000100 '

The contents of register 7 are:

X'OC001000'

The contents of the decimal information field beginning at
byte location X' l00 ' are:

000000 0+

The contents of the destination byte string beginning at
byte location XI 10001 are:

ds ds , ds ds ss . ds ds 15 C R

The condition code is:

0000

Example 1, after execution:

The instruction word is unchanged.

The new contents of register 6 are:

X'5C0001041

The new contents of regi ster 7 are:

X 100001 DOC'

The contents of the decimal information field are unchanged.

The new contents of the destination byte string are:

* * * * * *.001'>151'>

The new condition code is:

1000

The contents of register 1 are:

X' xxxOl0061

By subsequent programming, a floating dollar sign can be
inserted in front of the first significant character of the
edited byte stri ng by usi ng the contents of regi ster 1,

minus 1, as the address of the byte location where the
dollar sign is to be inserted.

Example 2, before execution:

The initial conditions are identi cal to example 1, except
that the contents of the decimal information field are:

065432 1-

Example 2, after execution:

The instruction word and the decimal field are unchanged.

The new contents of registers 6 and 7 are identical to those
given for example 1.

The new contents of the destination byte string are:

*6,543.211SCR

The new condition code is:

1011

The new contents of regi ster 1 are:

X' xxx01001 1

Example 3, before execution:

The initial conditions are identical to example 1, except
that the contents of the decimal field are:

00 54 32 1+

Example 3, after execution:

The instruction word and the decimal field are
unchanged.

The new contents of registers 6 and 7 are identical to that
given for example 1.

The new contents of the desti nati on byte stri ng are:

***543.21151'>1'>

The new condition code is:

1010

The new contents of register 1 are:

X' xxx010031

Byte-String Instructions 91

Example 4, before execution:

The instruction word is:

X'63400100'

The contents of register 4 are:

X'7B001000'

The contents of register 5 are:

X' 19002000'

The contents of the decimal information field beginning at
byte location X'1100' are:

06 12 50 0+ 01 23 4+ 03 5-

The contents of the destination byte string beginning at
byte location X'2000' are:

A ds ds s i . ds ds ds fs B ds ds ss . ds ds C fs D

si ds ds END

The condition code is:

0100

Example 4, after execution:

The instruction word is unchanged.

The new contents of register 4 are:

X' 7B001 009'

The new contents of register 5 are:

X'00OO2019'

The decimal information field is unchanged.

The new contents of the destination byte string are:

6 1 2 . 5 0 0 # # # 1 2 . 3 415 # # 035 END

The new condition code is:

1011

The new contents of register 1 are:

X'xxx02013'

PUSH-DOWN INSTRUCTIONS

The term "push-down processing" refers to the programming
technique (used extensively in recursive routines) of storing
the context of a calculation in memory, proceeding with a
new set of information, and then activating the previously

92 Push-Down Instructions

stored i nformati on. T yp i call y, th is process i nvo I ves a
reserved area of memory (stack) into which operands are
pushed (stored) and from which operands are pulled (loaded)
on a last-in, first-out basis. The SIGMA 9 computer pro
vides for simpl ified and efficient programming of push-down
processing by means of the following instructions:

Instruction Name Mnemonic

Push Word PSW

Pull Word PLW

Push Multiple PSM

Pull Multiple PLM

Modify Stack Pointer MSP

STACK POINTER DOUBLEWORO (SPO)

Each of these instructions operates with respect to a
memory stack that is defined by a doubleword located at
the effective address of the instruction. This doubleword,
referred to as a stack pointer doubleword (SPD), has the
following structure:

Bit positions 15 through 31 t of the SPD contain a 17-bit
address fieldt that points to the location of the word cur
rently at the top (highest-numbered address) of the operand
stack. In a push operation, the top-of-stack address is in
cremented by 1 and then an operand in a general register
is pushed (stored) into that location, thus becoming the
contents of the new top of the stack; the contents of the
previous top of the stack remain unchanged. In a pull
operation, the contents of the current top of the stack are
pulled (loaded) into a general register and then the top-of
stack address is decremented by 1; the contents of the
stack remain unchanged.

Bit positions 33 through 47 of the SPD, referred to as the
space count, contain a 15-bit count (0 to 32,767) of the
number of word locations currently available in the region
of memory allocated to the stack. Bit positions 49 through
63 of the SPD, referred to as the word count, contain a
15-bit count (0 to 32,767) of the number of words currently
in the stack. In a push operation, the space count is decre
mented by 1 and the word count is incremented by 1; in a

tFor real extended mode of addressing this is a 22-bit field
(10-31); for real and virtual addressing modes it is a
17-bit field (15-31).

pull operation, the space count is incremented by 1 and the
word count is decremented by 1. At the beginning of all
push-down instructions, the space count and the word count
are each tested to determine whether the instruction would
cause either count field to be incremented above the upper
I imit of 215- 1 (32,767), or to be decremented below the
lower I imi t of O. If execution of the push-down instruc
tion would cause either count I imit to be exceeded, the
computer unconditionally aborts execution of the instruc
tion, with the stack, the stack pointer doubleword, and the
contents of general registers unchanged. Ordinarily, the
computer traps to Homespace location X'421 after aborting
a push-down instruction because of impending stack limit
overflow or underflow, and with the condition code un
changed from the value it contained before execution of
the instruction.

However, this trap action can be selectively inhibited by
setting either (or both) of the trap inhibit bits in the
SPD to 1.

Bit position 32 of the SPD, referred to as the trap-on-space
(TS) inhibit bit, determines whether the computer will trap
to Homespace location X'421 as a result of impending over
flow or underflow of the space count (SPD33-47)' as
follows:

TS Space count overflow/underflow action

o If the execution of a pull instruction would cause the
space count to exceed 215- 1, or if the execution of a
push instruction would cause the space count to be
less than 0, the computer traps to Homespace location
X' 421 with the condition code unchanged.

Instead of trapping to Homespace location X'421, the
computer sets CC1 to 1 and then executes the next in
struction in sequence.

Bit position 48 of the SPD, referred to as the trap-on-word
(TW) inhibit bit, determines whether the computer will
trap to Homespace location X'42' as a result of impending
overflow or underflow of the word count (SPD 49-63)' as
follows:

TW Word count overflow/underflow action

o If the execution of a push instruction would cause the
word count to exceed 215- 1, or if the executi on of a
pull instruction would cause the word count to be less
than 0, the computer traps to Homespace location
X'421 with the condition code unchanged.

Instead of trapping to Homespace location X'421, the
computer sets CC3 to 1 and then executes the next
instruction in sequence.

PUSH-DOWN CONDITION CODE SEtnNGS

If the execution of a push-down instruction is attempted
and the computer traps to Homespace location X'42', the
condition code remains unchanged from the value it con
tained immediately before the instruction was executed.

If the execution of a push-down instruction is attempted
and the instruction is aborted because of impending stack
I imit overflow or underflow (or both) but the push-down
stack limit trap is inhibited by one (or both) of the inhibits
(TS and TW), then, CC1 or CC3 is set to 1 (or both are
set to lis) to indicate the reason for aborting the push
down instruction, as follows:

o

2 3 4 Reason for abort

o

Impending overflow of word count on a push
operation or impending underflow of word
count on a pull operation. The push-down
stack I imit trap was inhibited by the TW
bit (SPD 48).

Impending overflow of space count on a pull
operation or impending underflow of space
count on a push operation. The push-down
stack I imit trap was inhibited by the TS bit
(SPD

32
)·

Impending overflow of word count and under
flow of space count on a push operation or
impending overflow of space count and under
flow of word count on a pull operation. The
push-down stack limit trap was inhibited by
both the TW and the TS bits.

If a push-down instruction is successfully executed, CCl
and CC3 are reset to 0 at the completion of the instruction.
Also, CC2 and CC4 are independently set to indicate the
current status of the space count and the word count, re
spectively, as follows:

2 3 4 Status of space and word counts

o 0 The current space count and the current word
count are both greater than zero.

o The current space count is greater than zero,
but the current word count is zero, indicating
that the stack is now empty. If the next
operation on the stack is a pull instruction,_
the instruction will be aborted.

o The current word count is greater than zero,
but the current space count is zero, indicating
that the stack is now full. If the next opera
tion on the stack is a push instruction, the
instruction will be aborted.

If the computer does not trap to Homespace location
X'421 as a result of impending stack limit overflow/
underflow, CC2 and CC4 indicate the status of the space
and word counts at the termination of the push-down
instruction, regardless of whether the space and word
counts were actually modified by the instruction. In the
following descriptions of the push-down instructions, only
those condition code configurations are given that can
actually be produced by the instruction, provided that the
computer does not trap to Homespace location X'421.

Push-Down Instructions 93

PSW PUSH WORD
(Doubleword index alignment)

PUSH WORD stores the contents of register R into the push
down stack defined by the stack pointer doubleword lo
cated at the effective doubl eword address of PSW. If the
push operation can be successfully performed, the instruc
tion operates as fol lows:

1. The current top-of-stack address (SPD15_31)t is incre
mented by 1 to point to the new top-of-stack location.

2. The contents of register R are stored in the location
pointed to by the new top-of-stack address.

3. The space count (SPD33-47) is decremented by 1 and
the word count (SPD 49-63) is incremented by 1.

4. The condition code is set to reflect the new status of
the space count.

Affected: (SPD),(TSA+l),
CC

Trap: Push-down stack limit

(SPD)I5-31 + 1 ~SPDI5_31t

(R) - (SPD
15

_
31

) t

(SPD)33_47-1 -SPD33_47

(SPD) 49-63 + 1 ---SPD 49-63

Condition code settings:

2

0 0

0

0 0

3 4

0 0

0 0

0

0 0

o 1

Resu I t of PSW

Space count is greater
thon O.

Space count is now O.

15
Word count = 2 - I,
TW= 1.

Space count = 0,
TS = 1.

Space count = 0,· word
count = 0, TS = 1.

1 0 Word count = 215_1,
space count = 0,
TW = 1, and TS = 1.

} Instruction
completed

Instructi on
aborted

tFor real extended mode of addressing this is a 22-bit field
(10-31); for real 'and virtual addressing modes it is a
17-bit field (15-31).

94 Push-Down Instructions

PLW PUll WORD
(Doubleword index alignment)

PUll WORD loads register R with the word currently at the
top of the push-down stack defined by the stack pointer
doubfeword located at the effective doubleword address of
PlW. If the pull operation can be performed successfully,
the instruction operates as follows:

1.

2.

3.

Register R is loaded with the contents of the location
pointed to by the current top-of-stack address
(SPD 15_31)t.

The current top-of-stack address is decremented by 1,
to point to the new top-of-stack location.

The space count (SPD33- 47) is incremented by 1 and
the word count (SPD49-63) is decremented by 1.

4. The condition code is set to reflect the status of the
new word count.

Affected: (SPD), (R), CC Trap: Push-down stack limit

«SPD)15_31) -R; (SPD)15_31 -1 -SPDI5_31 t

(SPD)33_47 + 1 -SPD33_47

(SPD)49-63- 1- SPD 49-63

Condition code settings:

0

0

0

o

2 3 4 Result of PlW

0 0 0

0 0

0

000

o 1

Word count is greater
than o.

Word count is now O.

Word count = 0, TW = 1.

Space count = 0,
word count = 0, TW = 1.

15
Space count = 2 -1,
TS = 1.

15
Space count = 2 - 1 ,
word count = 0, TS = 1,
and TW = 1.

PSM PUSH MULTIPLE

} Instruction
completed

Instruction
aborted

(Doubleword index alignment)

PUSH MULTIPLE stores the contents of a sequential set of
general registers into the push-down stack defined by the
stack pointer doubleword located at the effective double
word address of PSM. The condition code is assumed to
contain a count of the number of registers to be pushed
into the stack. (An initial value of 0000 for the condition
code specifies that all 16 general registers are to be pushed
into the stack.) The registers are treated as a circular set
(with register 0 following register 15) and the first register
to be pushed into the stack is register R. The last register
to be pushed into the stack is register R + CC -1, and the
contents of this register become the contents of the new
top-of-stack location.

if there is sufficient space in the stack for all of the speci
fied registers, PSM operates as follows:

1. The contents of registers R to R + CC - 1 are stored in
ascending sequence, beginning with the location
pointed to by the current top-of-stack address
(SPD15_31)t plus 1 and ending with the current top
of-stack address plus CC.

2. The current top-of-stack address is incremented by
the value of CC, to point to the new top-of-stack
location.

3. The space count (sPD33-47) is decremented by the
value of CC and the word count is incremented by the
value of Cc.

4. The condition code is set to reflect the new status of
the space count.

Affected: (sPD), (TSA+1) to
(TSA+CC), CC

Trap: Push-down stack limit

(R) - (SPD)15-31 + 1 ... (R+CC-l) - (sPD)t15_31 + CC

(SPD) 15-31 +CC ---.--sPD 15_31 t

(sPD)33_47- CC --SPD33_47

(sPD 49-63 + CC -sPD 49-63

Condition code settings:

2 3 4 Resul t of PsM

0 0 0 0 Space count> O.

0 0 0 Space count = O. J
Instruction
completed

tFor real extended mode of addressing this is a 22-bit
field (10-31); for real and virtual addressing modes it is
a 17-bit field (15-31).

2 3 4 Result of PsM

00 0 Word count +CC>215_1,
TW = 1.

o 0 0 Space count < CC, TS = 1.

o 0 Space count < CC, word
count = 0, TS = 1.

o 0 Space count < CC, word
count + CC > 2 15_1
TS= 1, and TW = 1.

o 0 Space count = 0, TS = 1.

o Space count = 0, word
count = 0, TS = l.

o Space count = 0, word
count + CC > 2 15-1,
Ts = 1, and TW = 1.

Instructi on
aborted

If the instruction operation extends into a page of memory
that is protected either by the access protection codes or
write locks, the memory protection trap can occur. If the
operation extends into a memory region that is physically
not present, the nonexistent memory address trap can occur.
.In either case, if a trap is to occur during the execution of
this instruction, it will be detected before the actual oper
ation beg ins and the trap will occur immediately.

If the address of the elements within the stack (pointed to
by the top-of-stack address) is in the range 0 through 15,
then the reg isters indicated by the R field of the PSM in
struction are stored in the general registers rather than in
core memory. In this case the results will be unpredictable
if any source registers are also used as destination registers.

PLM PULL MULTIPLE
(Doubleword index al ignment)

PULL MULTIPLE loads a sequential set of general regis
ters from the push-down stack defined by the stack
pointer doubleword located at the effective doubleword
address of PLM. The condition code is assumed to con.;.
tain a count of the number of words to be pulled from
the stack. (An initial value of 0000 for the condition
code specifies that 16 words are to be pulled from the
stack.) The registers are treated as a circular set (with
register 0 following register 15), the first register to be
loaded from the stack is register R+CC-l, and the contents
of the current top-of-stack location becomes the contents of
this register. The last register to be loaded is register R.

If there is a sufficient number of words in the stack to load
all of the specified registers, PLM operates as follows:

1. Registers R+CC-l to register R are loaded in de
scending sequence, beg inn ing with the contents of
the location pointed to by the current top-oF-stack

Push-Down Instructions 95

address (SPD15-31)t and ending with the contents of
the location pointed to by the current top-of-stack
address minus CC-l.

2. The current top-of-stack address is decremented by
the votue of CC, to point to the new top-of-stack
location.

3. The space count (SPD33-47) is incremented by the
value of CC and the word count is decremented by the
value of Cc.

4. The condition code is set to reflect the new status of
the word count.

Affected: (SPD), (R+ee-l) Trap: Push-down stack limit
to (R), ce

t
«SPD)15_31) - R + CC -1, ... ,

«SPD)15_31 - Ice - 11) - Rt

(SPD)15_31 - ee - SPD15_31 t

(SPD)33_47 + ce - SPD33_47

(SPD) 49-63 - ec -S.PD 49-63

Condition code settings:

2 3 4 Result of PLM

0 0 0 a Word count > 0] 0 0 0 1 Word count = 0

0 0 0 Word count < ce,
TW= 1

0 0 Word count = 0,
TW= 1

a 0 Space count = 0,
word count < ee,
TW= 1

0 Space count = 0,
word count = 0,
TW = 1

a 0 0
15

Space count + CC > 2 -1,
TS = 1

0 a 15
Space count + ce > 2 -1 ,
word count < CC, IS = 1,
and TW = 1

0 Space count + CC > 215_1,
word count = 0, TS = 1,
and TW = 1

Instruction
completed

Instruction
aborted

t For real extended mode of addressing th is is a 22-bit field
(10-3l); for real and virtual addressing modes it is a 17-bit
field (15-31).

96 Push-Down InstrUctions

If the instruction operation extends into a poge of memory
that is protected either by the access protection codes or
write rocks, the memory protection can occur. If the oper
ation extends into a memory region that is physically not
present, the nonexistent memory address trap can occur. In
either case, if a trap is to occur during the execution of
this instruction, it will be detected before the actuat oper
ation begins and the trap will occur immediately.

If the address of the elements within the stack (pointed to
by the top-of-stack address) is in the range 0 through 15,
then the words to be loaded are taken from the general reg
isters rather thon from core memory. In this case, the re
surts will be unpredictable if any of the source registers
are also used as destination registers.

MSP MODIFY STACK POINTER
(Doubleword index alignment)

MODIFY STACK POINTER modifies the stack pointer
doubI eword, located at the effective doubleword address
of MSP by the contents of register .R. Register R is assumed
to have the following format:

Bit positions 16 through 31 of register R are treated as a
signed integer, with negative integers in two's complement
form (i.e., a fixed-point halfword). The modifier is alge
braically added to the top-of-stack address, subtracted
from the space count, and added to the word count in the
stack pointer doubleword. If, as a result of MSP, either
the space count or the word count would be decreased
below 0 or increased above 2 15_1, the instruction is
aborted. Then, the computer either traps to Homespoce
location X'421 or sets the condition code to reflect the
reason for aborting, depending on the stack limit trap
inhibits.

If the modification of the stack pointer doubleword can be
successfully performed, MSP operates as follows:

1. The modifier in register R is algebraically added to the
current top-of-stack address (SPDI5-30t, to point to
a new top-of-stack location. (If the modifier is nega
tive, it is extended to 17 bits by appending a high
order 1.)

2. The modifier is algebmically subtracted from the cur
rent space count (SPD33- 47) and the result becomes
the new space count.

3. The modifier is algebraically added to the current
word count (SPD49-63) and the result becomes the
new word count.

4. The condition code is set to reflect the new status of
the new space count and new word count.

Affected: (SPD), CC T rap: Push-down stack limit

(SPD)15_31 + (R)16-31SE- SPD 15_31 t

(SPD)33_47 - (R)16-31- SPD33_47

(SPD) 49-63 + (R) 16-31- SPD 49-63

Condition code settings:

2 3 4 Result of MSP

o 0 0 0

000

000

o 0

Space count> 0,
word count > O.

Space count> 0,
word count = O.

Space count = 0,
word count> O.

Space count = 0,
word count = 0,
modifier = O.

Instruction
completed

If CC1, or CC3, or both CCl and CC3 are lis after exe
cution of MSP, the instruction was aborted but the push
down stack I imit trap was inhibited by the trap-on-space
inhibit (SPD32), by the trap-on-word inhibit (SPD4S)' or
both. The condition code is set to reflect the reason for
aborting as follows:

2 3 4 Status of space and word counts

o Word count :> O.

Word count = O.

- - 0 - o ~ word count + modifier ~ 215
_1.

- Word count + modifier < 0, and TW = 1 or
word count + modifi er > 215_1, and TW = 1.

- 0 - - Space count> O.

Space count = O.

o - - - 0 ~ space count - modifier:S 215_1.

- - Space count - modifier < 0, and TS = 1 or
space count - modifier> 215 -1, and TS = 1.

EXECUTE/BRANCH INSTRUCTIONS
The EXECUTE instruction can be used to insert another in
struction into the program sequence, and the branch instruc
tions can be used to al ter the program sequence, either

tFor real extended mode of addressing this is a 22-bit field
(10-31); for real and virtual addressing modes it is a 17-bit
field (15-31).

unconditionally or conditionally. If a branch is uncondi
tional (or conditiona I and the branch condition is satisfied),
the instruction pointed to by the effective address of the
branch instruction is normally the next instruction to be exe
cuted. If a branch is conditional and the condition for the
branch is not satisfied, the next instruction is normally taken
from the next location, in ascending sequence, after the
branch instruction.

BRANCHES IN REAL EXTENDED ADDRESSING MODE

The extension address field of the PSD wiil be modified
automatically by branch instructions. If the effective
address of a branch instruction is outside the first 64K of
real memory (region 0 is defined as the first 64K of real
memory), the high-order bits of this full effective address
will automatically be loaded into the Extension Address
field of the PSD if the branch is taken. The remaining part
of the effective branch address will, of course, be loaded
into bit positions 16-31 of the PSD. In addition, bit posi
tion 15 of the PSD, the Extension Selector, will be set to 1.

If the effective branch address is to a location within the
first 64K of memory, then the Extension Address field of
the'PSD will not be modified. The effective address will be
loaded into the 16 low-order positions of the instruction
address field and the Extension Selector (bit 15) will be
cleared (set equal to zero). This means that once the
Extension Address field has been set, it will remain set
until it is either changed by the loading of a new PSD or
by actually branching into another 64K region of memory
(excluding region 0).

A BRANCH AND LINK instruction in real extended ad
dressing wi II store the full address of the next instruction
in the link register. If the Extension Selector in the PSD
at the time BRANCH AND LINK is executed is zero,
then the address stored in the link register will be the in
cremented 16-bit displacement from positions 16-31 of the
PSD and zeros in the high-order address positions. If the
Extension Selector in the PSD is one, then the address
stored will be the incremented 16-bit displacement (PSD
16-31) concatenated with the contents of the Extension
Address field (PSD 42-47), which are loaded into bit posi
tions 10-15 of the link register. In both cases, posi-
tions 0-9 of the I ink register will be cleared.

NONALLOWED OPERATION TRAP DURING EXECUTION
-OF BRANCH INSTRUCTION

A branch instruction has two possible places from which the
next instruction may be taken: the location following the
branch instruction or the location that may be branched to.
It is possible that either of these two locations may be in a
protected memory region or in a region that is physi cally
nonexistent. The execution of the branch does not cause
a trap unless the instruction that is actually to follow the
branch instruction is in a protected or nonexistent memory
region. Traps do not occur because of any anticipation on
the part of the hardware.

Execute/Branch Instructions 97

A nonaUowed operation trap condition during execution of
a branch instruction will occur for the following reasons:

1. The branch instruction is indirectly addressed and the
branch conditions are satisfied, but the address of the
location containing the direct address is either non
existent or unava i lable for read access to the program
in the slave mode.

2. The branch instruction is unconditional (or the branch
is conditionar and the condition for the branch is sat
isfied), but the effective address of the branch instruc
tion is either nonexistent or unavailable for instruction
or read access to the program (in slave or master
protected mode).

If either of the above situations occurs, the computer aborts
execution of the branch instruction and executes a non
aHowed operation trap.

Prior to the time that an instruction is accessed from mem
ory for execution, bit positions 15-31 of the program status
doubleword contain the virtual address of the instruction,
referred to as the instruction address. At this time, the
computer traps to Homespace location X'40' if the actual
address of the instruction is nonexistent or instruction
access protected. If the instruction address is existent and
is not instruction-access protected, the instruction is ac
cessed and the instruction address portion of the program
status doubleword is incremented by 1, so that it now
contains the virtual address of the next instruction in
sequence (referred to as the updated instruction address).

If a trap condition occurs during the execution sequence of
any instruction, the computer decrements the updated in
struction address by 1 and then traps to the location
assigned to the trap condition. If neither a trap condition
nor a satisfied branch condition occurs during the execution
of an instruction, the next instruction' is accessed from the
location pointed to by the updated instruction address. If
a satisfied branch condition occurs during the execution of
a branch instruction (and no trap condition occurs), the
next instruction is accessed from the location pointed to by
the effective address of the branch instruction.

EXU EXECUTE
(Word index alignment)

EXECUTE causes the computer to access the instruction in
the location pointed to by the effective address of EXU and
execute the subject instruction. The execution of the sub
ject instruction, including the processing of trap and in
terrupt conditions, is performed exactly as if the subject
instruction were initially accessed instead of the EXU
instruction. If the subject instruction is another EXU, the
computer executes the subject instruction pointed to by the
effective address of the second EXU as described above.
Such "chains" of EXECUTE instructions may be of any
length, and are processed (without affecting the updated
instruction address) until an instruction other than EXU is

98 Execute/Branch Instructions

encountered. After the final subject instruction is executed,
instruction execution proceeds with the next instruct:on in
sequence after the initial EXU (unless the subject instruction
is an LPSD or XPSD instruction, or is a branch instruction
and the branch condition is satisfied).

If an interrupt activation occurs between the beginning of
an EXU instruction (or chain of EXU instructions) and the
last interruptible point in the subject instruction, the com
puter processes the interrupt-servicing routine for the active
interrupt level and then returns program control to the EXU
instruction (or the initial instruction of a chain of EXU
instructions), which is started anew. Note that a program
is interruptible after every instruction access, including
accesses made with the EXU instruction, and the inter
ruptibility of the subject instruction is the same as the nor
mal interruptibility for that instruction.

If a trap condition occurs betwe~n the beginning of an EXU
instruction (or chain of EXU instructions) and the completion
of the subject instructi on, the computer traps to the appro
priate trap location. The instruction address stored by the
XPSD instruction in the trap location is the address of the
EXU instruction (or the initial instruction of a chain of EXU
instructions).

Affected: Determ i ned by
subject instruction

Traps: Determined by
subject instruction

Condition code settings: Determined by subject instruction

BCS BRANCH ON CONDITIONS SET
(Word index alignment)

o 1 2

BRANCH ON CONDITIONS SET forms the logical product
(AND) of the R field of the instruction word and the cur
rent condition code. If the logical product is nonzero, the
branch condition is satisfied and instruction execution pro
ceeds with the instruction pointed to by the effective ad
dresst of the BCS instruction. However, if the logical
product is zero, the branch condition is unsatisfied and
instruction execution then proceeds with the next instruc
tion in normal sequence.

Affected: (IA) if CC n R f 0

If CC n (1)8-11 f 0, EVA15_31-IA

If CC n (1)8-11 = 0, IA not affected

If the R field of BCS is 0, the next instruction to be exe
cuted after BCS is always the next instruction in ascending
sequence, thus effectively producing a IIno operation"
instruction.

t See" Branches in Rea I Extended Addressing Mode" in the in
troductory description under "Execute/Branch Instructions ll

•

8eR BRANCH ON CONDITIONS RESET
(Word index alignment)

BRANCH ON CONDITIONS RESET forms the logical pro
duct (AND) of the R field of the instruction word and the
current condition code. If the logi cal product is zero, the
branch condition is satisfied and instruction execution then
proceeds with the instruction pointed to by the effective
addresst of the BCR instruction. However, if the logical
product is non:z:ero, the branch condition is unsatisfied and
instruction execution then proceeds with the next instruc
tion in normal sequence.

Affected: (lA) if CC n R = °
If CC n (1)8-11 = 0, EVA15_31 - IA

If CC n (1)8-11 10, IA not affected

If the R field of BCR is 0, the next instruction to be exe
cuted after BCR is always the instruction located at the
effective address of BeR, thus effectively producing a
"branch unconditional Iii instruction.

BIR BRANCH ON INCREMENTING REGISTER
(Word index al ignment)

BRANCH ON INCREMENTING REGISTER computes the
effective virtual address and then increments the contents
of general register R by 1. If the result is a negative value,
the branch condition is satisfied and instruction execution
then proceeds with the instruction pointed to by the effec
tive addresst of the BIR instruction. However, if the result
is zero or a positive value, the branch condition is not
satisfied and instruction execution proceeds with the next
instruction in normal sequence.

Affected: (R), (IA)

(R) + 1 - R

If (R)O = 1, EVA
15

_
31
-- IA

If (R)O --, 0, I~ not affected

If the branch condition is satisfied and if the effective ad
dress of BIR is either unavailable to the program (slave or
master-protected mode) for instruct i on access or is non
existent, the computer aborts execution of the BIR instruc
tion and traps to Homespace location X'40 ' . In this case,
the instruction address stored by the XPSD instruction in
location X'40 ' is the virtual address of the aborted BIR in
struction. If the computer traps because of instruction access
protection, register R will contain the value that existed just
before the BIR execution (i .e., updated instruction address).

If a memory parity error occurs due to the accessing of
the instruction to which the program is branching, the
computer aborts execution of the SIR and traps to Home
space location X' 4C with reg ister R unchanged.

BDR BRANCH ON DECREMENTING REGISTER
(Word index al ignment)

o 1 2

BRANCH ON DECREMENTING REGISTER computes the
effective virtual address and then decrements the contents
of general register R by 1. If the result is a positive value,
the branch condition is satisfied and instruction execution
then proceeds with the instruction pointed to by the effec
tive addresst of the BDR instruction. - However, if the result
is zero or a negotive va I ue, the branch condition is unsatis
fied and instruction execution proceeds with the next in
struction in norma I sequence.

Affected: (R), (IA)

(R) - 1 -R

If (R)O =0 and (R)1-31 10, EVA 15_31 --IA

If (R)O = 1 or (R) = 0, IA not affected

If the effective address of BDR is unavai lable to the pro
gram (sl ave or master-protected mode) for i nstructi on access
and the branch condition is satisfied, or if the effective
address of BDR is nonexistent, the computer aborts execu
tion of the BDR instruction and traps to Homespace location
X'40 ' . In this case, the instruction address stored by the
XPSD instruction in location X'40 ' is the virtual address of
the aborted BDR instruction. If the computer traps because
of instruction access protection, register R will contain the
value that existed just before the BDR instruction. If a
memory parity error occurs due to the accessing of the in
struction to which the program is branching, the computer
aborts execution of the BDR and traps to Homespace loca
tion X'4C with register R unchanged.

BAL

o 1 2

BRANCH AND LINK
(Word index alignment)

BRANCH AND LINK determines the effective virtual ad
dress, loads the updated instruction address (the virtual
address of the next instruction in normal sequence after the
BAL instruction) into bit positions 15-31 of general reg
ister R, clears bit positions 0-14 of register R to OIS and
then replaces the updated instruction address with the ef
fective virtual address. Instruction execution proceeds
with the instruction pointed to by the effective address
of the BAL instruction.

t See II Branches in Real Extended Addressing Mode" in the in
troductory description under "Execute/Branch Instructions ll

•

Execute/Branch Instructions 99

The SAL instruction in real extended addressing wi" store
the full address of the next instruction in the specified
R register. If the Extension Selector in the PSD at the time
SAL is executed is equal to zero, then the address stored in
the specified R register will be the incremented 16-bit dis
placement from positions 16-31 of the PSD, and zeros in
the high-order address positions. If the Extension Selector
in the PSD is equal to one, then the address stored wi II be
the incremented 16-bit displacement (PSD 16-31) concate
nated with the contents of the Extension Address (PSD 42-47).
In both cases, positions 0-9 of the specified R register will
be set equal to zero.

Affected: (R), (IA)

IA - R15- 31 ; 0 -- RO- 14; EVA15_31 -IA

If the effective address of SAL is unavai labre to the program
(slave or master-protected mode) for instruction access and
the branch condition is satisfied, or if the effective address
of BAL is nonexistent, the computer aborts execution of the
SAL instruction and traps to Homespace location X'40' (non
allowed operation trap). In this case, the instruction address
stored by the XPSD instruction in location X'40' is the virtual
address of the aborted SAL instruction. If the computer traps
because of instruction access protection, register R will con
tain the updated instruction address. If a memory parity
error occurs due to the accessing of the instruction to which
the program is branching, the computer aborts execution of
the BAL and traps to Homespace location X'4C' with regis
ter R changed to the updated instruction address.

CALL INSTRUCTIONS
Each of the four CALL instructions causes the computer to
trap to a specific location for the next instruction in se
quence. The four CALL instructions, their mnemonics,
and the locations to which the computer traps are:

Instruction Trap Home-
Name Mnemonic space Location

CALL 1 CAll X'48'

CALL 2 CAL2 X' 49'

CALL 3 CAL3 X'4A'

CALL 4 CAL4 X'4B'

Each of these four trap locations must conta in an EXCHANGE
PROGRAM STATUS DOUBLEWORD (XPSD) instruction.
Execution of XPSD in the trap location for a CALL instruc
tion is described under "Control Instructions, XPSD Exchange
Program Status Doubleword". If the XPSD instruction is
coded with bit position 9 set to 1, the next instruction
(executed after the XPSD) is taken from one of 16 possible
locations, as designated by the value in the Rfield of the
CALL instruction. Each of the 16 locations may contain an
instruction that causes the computer to branch to a specific
routine; thus, the four CALL instructions can be used to
enter any of as many as 64 unique routines.

100 CAll Instructions/ Control Instructions

If an indirect address in nonexistent memory is specified, the
computer traps to Homespoce location X'40'. The effective
address of a CALL instruction is not used for a memory ref
erence and, therefore, can not cause a trap.

CAU CALL 1
(Word index alignment)

CALL 1 causes the computer to trap to Homespace loca
tion X'48'.

CAU CALL 2
(Word index alignment)

CALL 2 causes the computer to trap to Homespace loca
tion X'49 1

•

CAL3 CALL 3
(Word index al ignment)

CALL 3 causes the computer to trap to Homespace loca
tion X'4A'.

CAL4 CALL 4
(Word index alignment)

CALL 4 causes the computer to trap to Homespace loca
tion X'4B'.

CONTROL INSTRUCTIONS
The following privileged instructions are used to control the
basic operating conditions of the SIGMA 9 computer:

Instruct ion Name

load Program Status Doubleword

Exchange Program Status Doubleword

Load Register Pointer

Move to Memory Control

Load Rea I Address

Load Memory Status

Wait

Read Direct

Write Direct

Mnemonic

LPSD

XPSD

lRP

MMC

lRA

LMS

WAIT

RD

WD

If execution of any control instruction is attempted while
the computer is in the slave mode (i .e., while bit S of the
current program status doubleword is a 1), the computer
unconditionally traps to Homespace location XI 401 prior
to executing the instruction.

PROGRAM STATUS DOUBLEWORD

The SIGMA 9 program status doubleword has the following
structure when stored in memory:

i l I

Bit Desig-
Position nation Function

0-3 CC Condition code

5 FS Floating significance mask

6 FZ Floating zero mask

7 FN Floating normalize mask

8 MS Master/slave mode control

9 MM Memory map mQde control

10 DM Decima I arithmetic trap mask

11 AM Fixed-point arithmetic overflow trap
mask

12 AS ANSCII mask

15 ES Extension selector

16-31 IA Instruction address

34,35 WK Write key

37 CI Counter interrupt group inhibit

38 II I/O interrupt group inhibit

39 EI External interrupt inhibit

40 MA Mode _a Itered

42-47 EA Extension address

48-55 TSF Trap status field

56-59· RP Register pointer

60 RA Reg i ster a I tered

The detailed functions of the various portions of the
SIGMA 9 program status doubleword are described in
Chapter 2, IIProgram Status Doubleword ll

•

LPSD LOAD PROGRAM STATUS DOUBLEWORD
(Doubleword index alignment, privileged)

LOAD PROGRAM STATUS DOUBLEWORD replaces bits 0
through 39 of the current program status doubleword with
bits 0 through 39 of the effective doubleword.

Control bits used in the LPSD instruction are:

Bit Desig- Control
Position nation Function

S LP load pointer control

10 CL Clearing of interrupt level

11 AD Armed/disarmed state

The following conditional operations are performed:

1. If bit position S (LP)of LPSD contains a 1, bits56 through
59 of the current program status doubleword (register
pointer) are replaced by bits 56 through 59 of the effec
tive doubleword; if bit S of LPSD is a 0, the current
register pointer val ue remains unchanged.

2. If bit position 10 (CL)of LPSD contains a 1, the highest
priority interrupt level currently in the active state is
cleared (i .e., reset to either the armed state or the dis
armed state); the interrupt level is armed if bit 11 (AD)
of LPSD is a 1.., or is disarmed if bit 11 of LPSD is a O. If
bit 100f LPSD is a 0, no interrupt level is affected in
any way, regardless of whether bit 11 of LPSD is 1 or O. If
bit 10 of the LPSD is a Oand bit 11 of LPSD is 1, the PDF
flog is cleared. (Interrupt levels are described in de
tail in Chapter 2, IIInterrupt System ll

.)

Bit position
10 (CL) 11 (AD) Function

o
o

o Clear and disarm interrupt level.

Clear and .arm interrupt level.

Clear PDF flog.

o No control action. /

3. The PDF flag is normally reset by the last instruction
of a trap routine, which is an LPSD instruction having
bit 10 equal to 0 and bit 11 equal to 1.

Those portions of the effective doubleword that correspond
to undefined fields in the program status doubleword are
ignored.

Affected: (PSD), interrupt system if (1)10 = 1

ED
O

_
3
-CC; ED

5
_

7
-FS,FZ,FN

EDS -MS; ED9 - MM

ED
10

-DM; ED
11

-AM

ED
15

-ES

ED
16

_
31
-IA; ED

34
_
35

-WK

ED37_39 - CI, II, Eli if (I)S = i, ED 56-59 -RP

If (1)10 = 1 and (1)11 = 1, clear and arm interrupt

If (1)10 = 1 and {I)l1 = 0, clear and disarm interrupt

Control Instructions 101

XPSO EXCHANGE PROGRAM STATUS DOUBlEWORD
(Doubleword index alignment, privileged)

EXCHANGE PROGRAM STATUS DOUBlEWORD stores the
currently active PSD in the doubleword location addressed
by the effective address of the XPSD instruction. The fol
lowing doubfeword is then accessed from memory and loaded
into the active PSD registers.

The XPSD instruction is used for three distinct types of
operations: as a normal instruction in an ongoing program;
as an interrupt instruction; and as a trap instruction.

Control bits used in the XPSD instructions are:

Bit Desig- Control
Position notion Function Where Used

8 lP load poi nter All XPSDs
control

9 AI Address increment Trap XPSD

10 AT Addressing type Trap XPSD or
interrupt XPSD

The effective address of an XPSD instruction is generated
in one of the following ways:

XPSD (normal instruction)

When on XPSD instruction is encountered in the course of
execution of normal programs, the effective address is gen
erated according to the rules for addressing then in effect
as described by the currently active PSD; that is, the CPU
is operating in real, reaf extended, or virtual addressing
mode. The flags in bit positions 9 and 10 have no effect
and must be coded as zeros.

XPSD (interrupt instruction)

An XPSD instruction (in an interrupt location) executed as
a result of an interrupt is called an interrupt instruction.
Bit position 10 determines the type of addressing to be used
by the XPSD. If bit positions 10 and 0 are equal to zero,
bit positions 12-31 of the instruction unconditionally specify
a direct address within the first 1,048,576 words of real
memory. Since the index field is used for addressing, index
ing is not possible. If bit 10 is equal to zero an? indirect
addressing is specified (bit 0 = 1), the indirect address, in
terpreted as in real extended addressing, is found in the
word specified by bits 12-31. (In brief, the current type
of addressing has no bearing on the execution of this instruc
tion.) Bit position 9 is not effective during an interrupt
instruct i on and must be a zero.

If bit 10 is a 1, the effective address of the XPSD is gener
ated subject to the current active addressing mode (reaf,
real extended, or virtual), and indexing is permitted.

102 Control Instructions

XPSD (trap instruction)

An XPSD instruction (in a trap location) executed asa
result of a trap entry operation is caJleda trap instruction.
Bit positions 9 and 10 are both effective in this instruction.
Bit position 10 determines the type of addressing to be used
by the XPSD. If bit positions 10 and 0 are equal to zero,
bits 12-31 of the instruction unconditional ry specify a
direct address within the first 1,048,576 words of real
memory. Since the index field is used for addressingt

indexing is not possible. If bit 10 is equal to zero and
indirect addressing is specified (bit 0 = 1), the indirect
address, interpreted as in real extended addressing, is
found in the word specified by bits 12-31. (In brief, the
effective address is generated independently of the type of
addressing being used by the program that was trapped.)

If bit position 10 is aI, the effective address ;s generated
subject to the same current active addressing mode (real,
real extended, or vi rtual) as the program that was trapped,
and indexing is permitted.

The following additional operations are performed on the
new program status doubleword if, and only if, the XPSD is
being executed as the result of a nonalJowed operation (trap
to Homespace location X'40')or a CAll instruction (trap to
Homespace location X'48', X'49', X'4A', or X'4B'):

1. Nonallowed operations - the following additional
functions are performed when XPSD is being executed
as a result of a trap to Homespace location X'40':

a. Nonexistent instruction - if the reason for the trap
condition is an attempt to execute a nonexistent
instruction, bit position Oof the new program status
doubleword (CCI) is set to 1. Then, if bit 9 {AI)of
XPSD is a 1, bit positions 15-31 of the new program
status doubleword (next instruction address) are in
cremented by 8. t

b. Nonexistent memory address - if the reason for the
trap condition is an attempt to access 'or write into
a nonexistent memory region, bit position 1 of the
new program status doubfeword (CC2) is set to 1.
Then, if bit 9 of XPSD is a 1, the instruction ad
dress portion of the new program status doubleword
is incremented by 4.t

c. Privileged instruction violation - if the reason for
the trap condition is an attempt to execute a priv
ileged instruction while the computer is in the slave
mode, bit position 2 of the new program status
doubleword (CC3) is set to I. Then, if bit posiHon 9
of XPSD is 1, the instruction address portion of the
new program status doubleword is incremented by2.t

tIf the CPU is in a reaf extended addressing mode and the ef
fective address of the trap XPSD instruction is generated sub
ject to that current mode, 'the addition of the condition code
is restricted to bits 16to 31 of the Instruction Address. The Ex
tension Selector (bit 15) and Extension Address {bits 42-47)
will not be affected if a corry should result.

d. Memory protection violation - if the reason for
the trap condition is an attempt to read from or
write into a memory region to which the program
does not have proper access, bit position 3 of the
new program status doubleword (CC4) is set to 1.
Then, if bit 9 of XPSD is a 1, the instruction ad
dress portion of the new program status doubleword
is incremented by 1.t

There are certain circumstances under which two of the
above nonallowed operations can occur simultaneously.
The following operation codes (including their counter
parts) are considered to be both nonexistent and privi
leged: X'OC' and X'OD'. If either of these operation
codes is used as an instruction while the computer is in
the slave or master-protected mode, CCl and CC3 are
both set to l's; if bit 90f XPSD is a 1, the instruction ad
dress portion of the new program status doubleword is
incremented by 10. If an attempt is made to access or
write into a memory region that is both nonexistent and
prohibited to the program by means of the memory con
trol feature, CC2 and CC4are both set to l's; if bit 9 of
XPSD is a 1, the instruction address of the new program
status doubleword is incremented by 5.

2. CALL instructions-the following additional functions are
performed when XPSD is being executed as a result of a
trap to Homespace location X'48', X'49', X'4N, or X'4B'.

a. The R field of the CALL instruction causing the
trap is logically inclusively ORed into bit posi
tions 0-3 (CC) of the new PSD.

b. If bit position 9 of XPSD conta ins a 1, the R field
of the CALL instruction causing the trap is added
to the instruction address portion of the new PSD.

3. Watchdog timer, parity error, or instruction exception
trap - the following additional functions are performed
when XPSD is being executed as a result of a trap to
Homespace location X'46', X'4C', or X'4D', respectively.

a. The contents of TCC 1-4 are logically inclusively
ORed into bit positionsO-3 (CC) of the new PSD.

b. If bit position 9 of XPSD contains a 1, the contents
of TCC 1-4 are added to the instruction address
portion of the new PSD.

If bit position90fXPSDcontains aO, the instruction address
portion of the newPSDalways remains at the value estab
lished by the second effective doubleword. Bit position 9 of
XPSD is effective only if the instruction is being executed as
the result of a nonallowed operation, CALL instruction,
watchdog timer, parity error, or instruction exception trap.
Bit position 9 of XPSD must be coded with a ° in all other
cases; otherwise, the results of the XPSD instruction are
undefined.

tIf theCPUis in a real extended addressing mode and the ef
fective address of the trap XPSD instruction is generated sub
ject to that current mode, the addition of the condition code
is restricted to bits 16 to 31 of the Instruction Address. The
Extension Selector (bit 15) and Extension Address (bits 42-47)
will not be affected if a carry should result.

The current program status doubleword is stored in the
doubleword location pointed to by the effective address of
XPSD in the following form:

Program status doubleword

The current program status doubleword (as illustrated above)
is replaced by a new program status doubleword as de
scribed below.

1. The effective address of XPSD is incremented by 2 so
that it points to the next doubleword location. The
contents of the next doubleword location are referred
to as the second effective doubleword, or ED2.

2. Bits 0-35, 40, and 42-47 of the current program status
doubleword are unconditionally replaced by bitsO-35,40,
and 42-470f the second effective doubleword. The af
fected portions of the program status doubleword are:

Bit Desig-
Position nation Function

0-3 CC Condition code

5-7 FS, FZ, Floating control
FN

.:,8 MS Master/slave mode control

9 MM Mapping mode control

10 DM Decimal arithmetic trap mask

11 AM Fixed-point arithmetic trap mask

15 ES Extension selector}
(real extended)

16-31 IA x Instruction address

or

15-31 IA Instruction address (real or virtual)

34-35 WK Write key

40 MA Mode altered

42-47 EA Extension address

3. A logical inclusive OR is performed between bits 37
through 39 of the current program status doubleword
and bits 37 through 39 of the second effective
doubleword.

Bit Desig-
Position nation Function

37 CI Counter interrupt inhibit

38 II I/O interrupt inhibit

39 EI External interrupt inhibit

Control Instructions 103

If any (or all) of bits 37, 38, or 39 of the second
effeCtive doubleword are O's, the corresponding bits
in the current program status doubleword remain un
changed; if any (or all) of bits 37, 38, or 39 of the
second effective doubleword are lis, the corresponding
bits in the current program status doubleword are set
to lis. See IIInterrupt System", Chapter 2, for a de
tailed discussion of the interrupt inhibits.

4. If bit position 8 (LP) of XPSD contains a 1, bits 56
through 59 of the current program status doubleword
(register pointer) are replaced by bits 56 through 59
of the second effective doubleword; if bit 8 of XPSD
is a 0, the current register pointer value remains
unchanged.

Affected: (EDL), (PSD)

If (1)10 = 1, trap or interrupt instructions only, effective
address is subject to current active addressing mode.

If (Iho = 0, trap or interrupt instructions only, effec
tive address is independent of current active addressing
mode.

PSD -EDL

ED2
0

_
3

- CC; ED2
5

_
7

- FS, FZ, FN

ED2 - MS· ED2 - MM
8 ' 9·

ED2
10

- DM; ED211 -AM; ED
15

_31 - IA

or

ED2
15

-ES

ED2
16

_
31
-I~ ED2

34
_
35

-WK

E D237 -39 u CI, II, EI -- CI, II, EI; ED240 --MA

If (1)8 = 1, ED2
56

_
59

- RP

If (1)8 = 0, RP not affected

If nonexistent instruction, 1 --CC1 then, if (1)9 = 1,
IA+8-IA

If nonexistent memory address, 1 --CC2 then, if
(1)9 = 1, IA + 4 -IA

If privileged instruction violation, 1 -- CC3 then, if
(1)9 = 1, IA + 2 --IA

104 Control Instructions

If memory protection violation, 1-CC4 then, if (I~ = 1,
IA + l-IA

If CALL instruction, CC u CALL8_11- CC then, if (1)9 = 1,
IA + CALL8_11 -IA

If (1)9 = 0, IA not affected

If watchdog timer, parity error, or instruction exception
trap, ED20-3 u TCCl-4 -CCl-4 then, if (1)9 = 1,
IA + TCCl-4 - IA

LRP LOAD REGISTER POINTER
0t/ord index alignment, privileged)

LOAD REGISTER POINTER loads bits 26 and 27 of the
effective word into the register pointer (RP) portion of the
current program status doubleword. Bit positions 0 through
25 and 28 through 31 of the effective word are ignored,
and no other portion of the program status doubleword is
affected. If the LOAD REGISTER POINTER instruction
attempts to load the register pointer with a value that points
to a nonexistent block of general registers, the computer
traps to Homespace location XI4DI.

Affected: RP Trap: Instructi on exception

EW
26

_
27

-RP

MMe MOVE TO MEMORY CONTROL
(Word index alignment, privileged, continue
after interrupt)

MOVE TO MEMORY CONTROL loads a string of one or
more words into one of the three blocks of memory control
registers {memory control registers are described in Chapter 2,
under II Memory Address Control" • Bi t posi ti ons 12- 14 of
MMC are not used as an index register address; instead,
they are used to specify which block of memory control
registers is to be loaded, as follows:

Bit Position

12 13 14 Function

0 0 Load memory write protection locks.

0 0 Load access protection.

0 0 Load memory map (8-bit format).

0 load memory map (13-bit format).

An attempt to execute an MMC instruction wi th any code
other than the four above causes the instruction to trap to
Homespace location X'4DI, instruction exception trap.

Bit positions 15-31 of MMC are ignored insofar as the
operation of the instruction is concerned, and the results
of the instruction are the same whether MMC is indirectly
addressed or not.

The R field of MMC designates an even-odd pair of general
registers (R and Rul) that are used to control the loading of
the specified bank of memory control registers. Registers R
and Ru 1 are assumed to contain the following information:

Register R:

Register Ru 1:

Register R contains the address of the first word of the con
trol image to be loaded into the specified block of memory
control registers. Bit positions 0 through 7 of register Ru 1
contain a count of the number of words to be loaded. (If
bits 0-7 of register Rul are initially all OIS, a word count
of 256 is implied.)

Bit positions 15 through 22 of register Ru 1 point to the be
ginning of the memory region controlled by the registers
to be loaded. The significance of this field is different for
the four modes of MMC.

The R field of the MMC instruction must be an even value
for proper operation of the instruction; if the R field of
MMC is an odd value, the instruction traps to Homespace
location XI4DI, instruction exception trap.

If MMC is indirectly addressed and the indirect reference
address is nonexistent, the nonallowed operation trap
(Homespace locationXl 401

) is not activated. The effective
virtual address of the MMC instruction, however, is not
used as a memory reference (thus does not affect the normal
operation of the instruction).

Affected: (R),(Ru1),
memory control storage

T rap: Instruction
exception

LOADING THE MEMORY MAP

The following diagrams represent the configuration of MMC,
register R, and register Ru 1 that are required to load the
memory map in either the 8-bit or 13-bit format:

The 8-bit instruction format is:

lne 13-bit instruction format is:

In the following description, the top of the diagram
depicts the 8-bit format and the bottom the 13-bit format.

The contents of register Rare:

The contents of register Ru 1 are:

MEMORY MAP CONTROL IMAG E

The initial address value in bit positions 15-31
t

of reg
ister R is the virtual address of the first word of the memory
map control image. The word length of the control image
to be loaded is specified by the initial count in bit posi
tions 0-7 of register Ru 1. A word count of 64 is suffi cient
to load the entire block of memory map control registers.
The memory map control registers are treated as a circular
set, with the first register following the last; thus, a word
count greater than 64 causes the first registers loaded to be
overwritten.

Each word of the memory map control image is assumed to
be in the following 8- or 13-bit format:

MEMORY MAP LOADING PROCESS

Bit positions 15-22 of register Ru1 initially point to the
first 512-word page of virtual addresses that is to be con
trolled by the map image being loaded. MMC moves the
map image into the memory map control registers one word
at a time, thus loading the page address for four (two if
13-bit format selected) consecutive memory map registers
with each image word. As each word is loaded into the
memory map, the virtual address of the image area is in
cremented by 1, the word count is decremented by 1, and
the value in bit positions lS-22 of register Ru 1 is incre
mented by 4 (by 2 if 13-bit format selected); this process
continu~s until the word count is reduced to O.

When the loading process is completed, bit positions lS-31
t

of register R contain a value equal to the sum of the initial
map image address plus the initial word count. Also, bit
positions 0-7 of register Ru 1 contain all OIS, and bit posi
tions 15-22 of register Rul contain a value equal to the
sum of the initial contents plus four times the initial word
count (two tim~s the initial' word count if 13-bit format
selected).

tFor real extended mode, bits 10-31.

Control Instructions lOS

LOADING THE ACCESS PROTECTION CONTROLS

The following diagrams represent the configurations of
MMC, register R, and register Ru 1 that are required to
load the access protection controls:

The instruction format" is:

The contents of register Rare:

The contents of register Ru 1 are:

i!!i~:
ACCESS PROTECTION CONTROL IMAGE

The initial address value in register R is the virtual address
of the first word of the access control image, and the word
length of the first control image is specified by the initial
count in register Ru 1. A word count of 16 is sufficient to
load the entire block of access protection control registers.
The access protection control registers are treated as a cir
cular set, with the first register following the last; thus, a
word count greater than 16 causes the first registers loaded
to be overwritten. Each word of the access control image
is assumed to be in the following format:

ACCESS CONTROL LOADING PROCESS

Bit positions 15-20 of register Ru1 initially point to the
first 512-word page of virtual addresses that is to be con
trolled by the access control image. MMC moves the ac
cess control image into the access control registers one
word at a time, thus loading the controls for 16 consecutive
512-word pages with each image word. As each word is
loaded, the virtual address of the control image is incre
mented by 1, the word count is decremented by 1, and the
value in bit positions 15-20 of register Ru 1 is incremented
by 4; this process continues until the word count is reduced
to O. When the loading process is completed, register R
contains a value equal to the sum of the initial control
image address plus the initial word count. Also, the final
word count is 0, and bit positions 15-20 of register Ru 1
contain a value equal to the sum of the initial contents
plus four times the initial word count.

LOADING THE MEMORY WRITE PROTECnON LOCKS

The following diagrams represent the configurations of
MMC, register R, and register Ru 1 that are required to
load the memory write protection locks:

106 Control Instructions

The contents of register Rare:

The contents of register Ru 1 are:

MEMORY LOCK CONTROL IMAGE

The initial address value in register R is the virtual address
of the first word of the memory lock control image, and
word length of the image is specified by the initial count
in register Ru 1. A word count of 16 is sufficient to load
the entire block of memory locks. The memory lock reg
isters are treated as a circular set, with the register for
memory addresses 0 through X'lFF' immediately following
the register for memory addresses X'l FEOO' through
Xi 1FFFF'; thus, a word count greater than 16 causes the
first registers loaded to be overwritten. Each word of the
lock image is assumed to be in the following format:

MEMORY LOCK LOADING PROCESS

Bit positions 15-20 of register Ru 1 initially point to the
fi rst 512-word page of actual memory addresses that wi II be
controlled by the memory lock image. MMC moves the
lock image into the lock registers one word at a time, thus
loading the locks for 16 consecutive 512-word pages with
each image word. As each word is loaded, the virtual
address of the lock image is incremented by 1, the word
count is decremented by 1, and the value in bit posi-
tions 15-20 of register Ru 1 is incremented by 4; this pro
cess continues until the word count is reduced to o. When
the loading process is completed, register R contains a
value equal to the sum of the initial lock image address
plus the initial word count. -Also, the final word count
is 0, and bit positions 15-20 of register Ru 1 contain a
value equal to the sum of the initial contents plus four
times the initial word count.

INTERRUPTION OF MMC

The execution of MMC can be interruptedafter each word of
the control image has been moved into the specified control
register. Immediately prior to the time that the instruction
in the interrupt location is executed, the instruction address
portion of the program status doubleword contains the virtual
address of the MMC instruction, register Rcontains the vi rtual
address of the next word of the control image tobe loaded, and
register Ru1 containsacount of the number of control image
words remaining tobe moved and avalue pointing to the next
memory control reg ister to be loaded. After interrupt, the MMC
instruction maybe resumed from the point itwas interrupted.

MEMORY ACCESS TRAPS BY MMC INSTRUCTION

A trap during execution of the MMC instruction can occur
if the pages containing the control images are nonexistent

: or are protected in the master-protected mode. A check of
these access trap conditions is made prior to initiation of
any memory control changes. The reg isters Rand Ru 1 wi II
be unaltered for either of the above cases. If a parity error
shou Id occur during access of a control image word, the
MMC instruction will trap with the Reg ister Altered indicator
set indicating that a change has been made to the memory
control registers. The reg isters Rand Ru 1 will be unchanged
from their initial values.

LRA LOAD REAL ADDRESS
(Word index alignment, privileged)

o 1 2 314 5 6 18 9 1011 12 13 14 15 16 17 181912021222324252627128293031

LOAD REAL ADDRESS takes the effective word, treats the
address portion of it as a virtual address, and loads register R
with the corresponding real address and additional control
information. The current addressing mode of the CPU is in
voked in obtaining the effective word.. All standard trappi ng
conditions are in effect during the process of obtaining the
effective word. The address portion of the effective word is
then treated as a virtual address. This virtual address is then
converted to a real address through the map. The addressing
type is determined according to the settings of CCl and CC2
immediately before the execution of LRA:

CCl CC2 Addressing Type

o o Byte

o Halfword

o Word

Doubleword

Note that in order to take this address through the map, it is
shifted to a word address alignment (i. e., two bits to the
right if it is a byte address, one bit to the right if it is a
halfwordaddress, and one bit to the left if it is a doubleword
address). This mapping takes place independently of the
state of the map bit in the current PSD. If the result of the
mappi ng is an address on page 0 or 1, Homespace bias wi II
also be added. The resulting actual word address is then
shifted back to the alignment designated by the condition
code setting and the original low order one or two bit(s} of
the virtual address (in the byte and halfword cases) are
inserted in their appropriate places. This final 21- to 24-
bit address is then loaded into the low order 21, 22, 23, or
24 bits of the register designated by the R field of the in
struction. Note that this structure exactly matches the re
sults obtained by an ANALYZE instruction.

Register R is loaded with the following information:

Bit
Position Contents

o

2

3-5

Always zero.

Set to one if Homespace bias is used in resul
tant real address calculation.

Parity error in map.

Always zero.

6,7

8-31

Write lock codes.

Contents of effective address aligned as indi
cated above.

The condition code is set as a result of the execution of this
instruction according to the following rules:

Condition Code Result in R

234

o 0 - No abnormal condition.

o Not possible.

o Not possible.

Final actual address not in implemented
memory.

o 0 Final virtual address is a register address.

(Note: If the virtual address is a register
address, the effective word of the LRA
will be the result in register R.)

- 0 0

- 0

o Access Protect codes on the page.

During determination of the final actual address, certain
traps are inhibited even if events which would normally in
voke them occur. The specific events that do not result in
traps are as follows:

1. Parity error in map.

2. Access-protect violation (since LRA is privi leged, this
could only occur in the master-protected mode).

3. Final actual address not in implemented memory.

The above conditions are reported in the condition code and
specified R register after completion of the instruction.
However, if a bus check error or memory parity error is
detected during the access of the final actual address, a
parity error trap wi II occur.

Affected: (R), CC

Control Instructions 107

LMS LOAD MEMORY STATUS
(Word index alignment, privileged)

LOAD MEMORY STATUS is used to determine memory bank
status and/or to perform diagnostic action on a memory bank
The effective address is used to determine the memory bank.
The condition code setting immediately before execution de
termines the diagnostic action to be performed. The effec
tive address always references memory even if it is less than
16. The condition code can be set to the desired value be
fore execution of LMS with the LCF or LCFI instructions.
Register R is loaded with the result of the action. The con
dition code is set at the concl usion of execution to reflect
the status of the word loaded (if any).

Affected: (R), CC Trap: See "Trap System",
Chapter 2.

Initial condition code settings:

234

o 0 0 0

000

000

o 0

o
1

o 0

LMS Action

Load and set - causes the same action as the
LOAD AND SET (LAS) instruction, except for
condition code settings. Normal traps are
allowed including write protect.

Read and inhibit parity -loads the effective
word into R. If a memory parity error is de
tected, the memory does not take a "snap-
shot" or generate a Memory Fault Interrupt
(MFI). It does, however, generate the Mem
ory Parity Error signal. The CPU inhibits the
trap that would ordinarily occur for the mem
ory parity error.

Read and set bad parity - loads the effective
word into R. The memory reads the location
and unconditionally restores the word with
the inval id parity bit. The parity bit trans
mitted to the processor is the original parity
bit. Parity error traps and memory fault in
terrupts are not inhibited by this instruction.

Reserved.

Reserved.

o o 1 Reserved.

o
o

108

o Reserved.

Set memory clock margin - transfers the ef
fective word from R to memory. The memory
bank will interpret the word and change its
own timing as follows:

Word Bits

8 9 10 11 12 Interpretati on

o 0 0 0 Set clock margin 0, early
write half cycle.

Control Instructions

000

o 0

Word Bits

8 9 10 11

0 0 0

0 0 0

000

o 0 0 0

12 Interpretat i on

0 Set clock margin 1, late
write half cycle.

0 Set clock margin 2, early
strobe.

o Set clock margin 3, late
strobe.

Set clock margin 4, early
data release parity error,
parity o.k. (read cycle).

Read status word ot - loads status word 0
into R (see Table 13).

Read stat.us word 1 t - loads status word
into R (see Table 14).

o 0 Read status word 2t - loads status word 2
into R (see Table 15).

o Reserved.

o 0 Read status word 0 and clear status bits of
words 0, 1, and 2. tt

o Reserved.

o Read status word 2t and clear all status bits.tt

Clear memory - clears the effective word.
All traps are allowed including write protect
violation.

Condition code settings after execution:

For "read and inhibit parity II operations, the status of the
word loaded (if any) is stored in the condition code bits at
the conclusion of execution as follows:

CC1: Memory Par i ty Error (from memory)

CC2: Data Bus Check (from CPU)

CC3: Parity Bit (from memory)

CC4: 0

tp " '1 f d" " rlmar! y 0 lagnostlc concern.
tt Memory Fault Interrupt signal is also cleared
implicitly.

90 17 33C-1(4/74)

Table 13. Status Word 0 Table 13. Status Word 0 (cont.)
.

Field Bits Comments Field Bits Comments
.,

Memory fault 0 Reserved. Port number 24 Port 5
types

1 Data parity error detected
on read.

(cont.)
25 Port 6

Group 2
2 Data parity error detected 26 Port 7

on partial write.

3 Address bus parity error.
27 Port 8

~

4 Data bus parity error on 28 Port 9
full or partial write.

5 Loop check data par ity
29 Port 10

Group 3
error. 30 Port 11

6 Port selection error.

7 Basic memory unit over-
31 Port 12 ...

temperature or power
supply failures.

Note: Ports are installed
in groups as shown.

8 A prior LMS instruction with
a IIreserved II initial condition
code setting was detected.

9-11 Reserved.

Table 14. Status Word 1

Subsequent 12 After a snapshot is taken, Field Bits Comments
faults this bit is a 1 if one or

more subsequent memory
faults occur before status

Interleave 0,1 0 1
mode

--
register is cleared. 0 0 No interleave

Last parity 13 When initial snapshot was 0 1 Two-way interleave

bit written taken, the value of the
last parity bit written into
main memory is stored in

1 0 Four-way interleave

th is position.
1 1 Reserved

Bank number 14 Bit 14is the most signifi-
cant bit of bank number
in the unit. Bank size 2,3 2 3

--

15 Bit 15 is the least signifi- 0 0 8K
cant bit of bank number
in the unit. 0 1 16K -'1..--

16-19 Reserved. 1 0 Reserved

... 1 1 Reserved
Port number 20 Port 1

21 Port 2 Memory unit 4-7 This field specifies the
Group 1 number memory unit number, as

22 Port 3 follows: bit 4 is the
most significant bit;

23 Port 4 bit 7 is the least sig-
~ nificant bit.

90 17 33C-1(4/74) Control Instructions 109

Table 14. Status Word 1 (cont.)

Field Bits Comments

Unit size 8,9 .L:l.

0 0 8K

0 1 16K

1 0 24K

1 1 32K ...

10-12 Reserved

13 Power norma I

Clock margin 14 Clock margin 0, early
write half cycle.

15 Clock margin 1, late write
half cycle.

16 Clock margin 2, early
strobe.

17 Clock margin 3, late strobe.

18 Clock margin 4, earfy data
release, parity error, parity
o.k. (read cycle).

19-31 Reserved

Table 15. Status Word 2

Field Bits Comments

0-9 Reserved

Interl eaved 10-31
address of
fault

WAIT WAIT
(Word index alignment, privileged)

WAIT causes the CPU to cease all operations until an inter
rupt activation occurs, or unti I the computer operator manu
ally moves the COMPUTE switch on the processor control
panel from the RUN position to IDLE and then back to RUN.
The instruction address portion of the PSD is updated before
the computer begins waiting; therefore, while the CPU is

110 Control Instruc tions

waiting, the INSTRUCTION ADDRESS indicators contain
the virtual address of the next location in ascending se
quence after WAIT and the contents of the next location
are displayed in the DISPLAY indicators on the processor
control panel. If any input/output operations are being
performed when WAIT is executed, the operations proceed
to their normal termination.

When an interrupt activation occurs while the CPU is wait
ing, the computer processes the interrupt-servicing routine.
Normally, the interrupt-servicing routine begins with an
XPSD instruction in the interrupt location, and ends with
an LPSD instruction at the end of the routine. After the
LPSD instruction is executed, the next instruction to be
executed in the interrupted program is the next instruction
in sequence after the WAIT instruction. If the interrupt is
to a single-instruction interrupt location, the instruction
in the interrupt location is executed and then instruction
execution proceeds with the next instruction in sequence
after the WAIT instruction. When the COMPUTE switch is
moved from RUN to IDLE and back to RUN while the CPU
is waiting, instruction execution proceeds with the next
instruction in sequence after the WAIT instruction.

Affected: PC

If WAIT is indirectly addressed and the indirect reference
address is nonexistent, the nona II owed operation trap to
Homespace location X'40' will not occur. The effective
virtual address of the WAIT instruction, however, is not used
as a memory reference (thus does not affect the normal
operation of the instruction).

RD READ DIRECT
(Word index alignment, privileged)

The CPU is capable of directly communicating with other
elements of the SIGMA 9 system, as well as performing in
ternal control operations, by means of the READ DIRECT/
WRITE DIRECT (RD/vVD) lines. The RD/WD lines consist of
16 address lines, 32 data lines, two condition code lines,
and various control lines that are connected to various CPU
circuits and to special systems equipment.

READ DIRECT causes the CPU to present bits 16 through 31
of the effective virtual address to other elements of the
SIGMA 9 system on the RD/WD address lines. Bits 16-31 of
the effective virtual address identify a specific element of
the SIGMA 9 system that is expected to return information
(two condition code bits plus a maximum of 32 data bits) to
the CPU. The significance and number of data bits returned
to the CPU depend on the selected element. If the R field
of RD is nonzero, up to 32 bits of the returned data are
loaded into general register R; however, if the R field of
RD is 0, the returned data is ignored and general register 0
is not changed. The specified element may return informa
tion to set the condition code.

90 17 33C-1(4/74)

Bits 16-19 of the effective virtual address of RD determine
the mode of the RD instruction, as follows:

Bit Position

16 17 18 19 ~ode

0 0 0 0 Internal computer control. '

0 0 0 Interrupt control.

0 0 0 XDS testers.

0 0

1
Assigned to various groups of
standard XD S products

0

Special systems control (for customer use
with specially designed equipment).

If bits 16-19select mode 2 through mode F, CC1 and CC2 are
set to zero and CC3and CC4are set according to the state of
the two condition code lines from the external device.

READ DIRECT.
INTERNAL COMPUTER CONTROL (MODE 0)

In this mode, the computer is able to read the sense
switches, the CPU clock margin controls, the interrupt in
hibit bits of the PSD, and the IIsnapshot ll register, as follows:

READ SENSE SWITCHES

The following configuration of RD can be used to read the
four SENSE switches on the control panel.

If a particular SE NSE switch is set, the corresponding bit
of the condition code is set to 1; if a SENSE switch is zero,
the corresponding bit of the condition code is set to 0 (see
"SENSE" in Chapter 5).

In this case, only the condition code is affected.

READ INTERNAL CONTROLS

Each CPU in a system is provided with local switch modules
that are set at system installation time. The setting of these
modules can be read with this internal READ DIRECT. Also,
this instruction provides the system with information per
taining to the clock margin controls and power supply status.

The following RD configuration is used to read the CPU in
ternal controls:

Bits 6 and 7 of the specified R register are a 2-bit number
representing the CPU number.

90 17 33C-1(4/74)

The internal CPU margin controls are read into bits 8 and 9
of the specified R register, as follows:

Bit 8 Bit 9 Clock ~argins

o o Norm

o Hi

o Lo

Unused

Bit 10 of the specified R register is always zero.

The power supply status is read into bit 11 of the specified
R register as follows:

Bit 11 Status

o Power not normal

Power normal

Bits 12-17 of the specified R register represent the Home
space bias for this CPU.

Bits 18, 19 Status

00 SIGMA 9

01 SIGMA 9 Model 2

10 SIGMA 9 Model 3

All other bits of the specified R register are zero.

Affected: (R)

CPU number-~, R7

Clock margins - R
8

, R9

Power supply status - R11

Homespace bias - R
12

-
17

~odel identifier- R
18

, R
19

Control Instructions 111

READ INTERRUPT INHIBITS

The following configuration of RD can be used to read the
contents of the interrupt inhibit field:

If the R field of RD is nonzero, the contents of the interrupt
inhibit field (bits 37, 38, 39) of the program status double
word are transferred to the least significant 3 bits of the
specified R register (bits 29, 30, 31). The remainder of the
R register bits (0-28) is cleared to zeros.

111-1 Control Instructions

Affected: (R)

(PSD)37_39 - R29- 31

O-R
O

_
28

READ SNAPSHOT SAMPLE REGISTER

Each CPU will contain an internal snapshot sample regis
ter to aid in diagnostic programming. The following con
figuration of RD is used to record the snapshot sample

90 17 33C-1(4/74)

register and disarm the snapshot feature if a snapshot
has not yet occurred:

If the R field of RD is nonzero, the contents of the snapshot
sample reg ister are transferred to the specified R register.

Affected: (R), CC

(Sample Register) - R

Condition code settings:

2 3 4 Result

0 0 Clock Counter = 0, end of instruction not
reached.

0 Clock Counter = 0, end of instruction.

0 Armed but not "snapped".

READ DIRECT. INTERRUPT CONTROL (MODE 1)

The following configuration of RD is used to control the
sensing of the various states of the individual interrupt
levels within the CPU interrupt system:

Bits 28 through 31 of the effective address specify the iden
tification number of the group of interrupt levels to be con
trolled by the READ DIRECT instruction.

The R field of the RD instruction specifies a general register
that will contain the bits sensed from the individual inter
rupt levels within a specified group. For external interrupt
groups, bit position 16 of register R contains the appropriate
indicator bit for the highest priority (lowest number) inter
rupt level within the group and bit position 31 of reg ister R
contains the indicator bit for the lowest priority interrupt
level within the group. For assignments in Group X'O', see
Table 3. Each interrupt level in the designated group is
sensed according to the function code specified by bits 21
through 23 of the effective address of RD. The codes and
their associated functions are as follows:

Code Function

001

010

100

Read Armed or Waiting State. Set to 1 the bits in
the selected register which correspond to interrupt
levels in this group that are in either the armed or
the waiting state. Reset all other bits to zero.

Read Waiting or Active State. Set to 1 the bits
in the selected register which correspond to each
interrupt level in this group that is in either
the waiting or the active state. All other bits
are reset to zero.

Read Enabled. Set to 1 the bits in the selected
register which correspond to each interrupt level
in this group which is enabled. Reset all other
bits to zero.

112 Control Instructions

WD WRITE DIRECT
(Word index al ignment, privileged)

WRJTE DIRECT causes the CPU to present bits 16-31 of the
effective virtual address to other elements of the SIGMA 9
system on the RD/'ND address I ines (see READ DIRECT).
Bits 16-31 of the effective virtual address identify a spe
cific element of the SIGMA 9 system that is to receive
control information from the CPU. If the R field of WD is
nonzero, the 32-bit contents of register R are transmitted
to the specified element on the RD/'ND data lines. If the
R field of WD is 0, 32 O's are transmitted to the specified
element (instead of the contents of register 0). The spec ified
element may return information to set the condition code.

Bits 16-19 of the effective virtual address determine the
mode of the WD instruction, as follows:

Bit Position

16 17 18 19 Mode

0 0 0 0 Internal computer control.

0 0 0 Interrupt control.

0 0 0 Xerox computer testers.

0 0

}
Assigned to various groups
of Xerox computer products.

0

Special systems control (for customer
use with specially designed equipment).

If bits 16-19 sel ect mode 2 through mode F, CC 1 and CC2 are
set to zero and CC3and CC4are set according to the state
of the two condition code lines from the external device.

WRITE DIRECT. INTERNAL COMPUTER CONTROL (MODE 0)

SET INTERRUPT INHIBITS

The following configuration of WD can be used to set the
interrupt inhibits (bit positions 37-39 of the PSD):

A logical inclusive OR is performed between bits 29-31 of the
effective virtual address and bits 37-39 of the PSD. If any (or
all)of bits29-31 of the effective virtual address are l's, the
corresponding inhibit bits in the PSD are set to l's; the cur
rent state of an inhibit bit is not affected if a corresponding
bit position of the effective virtual address contains a O.

RESET INTERRUPT INHIBITS

The following configuration of WD can be used to reset the
interrupt inhibits:

If any (or all) of bits 29-31 of the effective virtua I address
are lis, the corresponding inhibit bits in the PSD are reset
to O's; the current state of an inhibit bit is not affected if
a corresponding bit position of the effective virtual address
contains a O.

SET ALARM INDICATOR

The following configuration of WD is used to set the ALARM
indicator on the maintenance section of the processor con
trol panel:

If the COMPUTE switch on the processor control panel is in
the RUN position and the AUDIO switch on the maintenance
section of the processor control panel is in the ON position,
a 1000-Hz signal is transmitted to the computer speaker. The
signal maybe interrupted by moving the COMPUTE switch to
the IDLE position, by moving the AUDIO switch to the OFF
position, or by resetting the ALARM indicator.

RESET ALARM INDICATOR

The following configuration of WD is used to reset the
ALARM indicator:

The ALARM indicator is also reset by means of either the
CPU RESET/CLEAR switch or the SYS RESET/CLEAR switch
on the processor control panel.

TOGGLE PROGRAM-CONTROLLED-FREQUENCY
FLIP-FLOP

The following configuration of WD is used to set and reset
the CPU program-control led-frequency (PCF) fl ip-flop:

The output of the PCF flip-flop is transmitted to the computer
speaker through the AUDIO switch on the maintenance sec
tion of the processor control panel. if the PCF flip-flop is re
set when the above configuration ofWD is executed, the WD
instruction sets the PCF flip-flop; if the PCF flip-flop was
previously set, the WD instruction resets it. A program can
thus generate a desired frequency by setting and resetting
the PCF flip-flop at the appropriate rate. Execution of the
above configuration of WD also resets the ALARM indicator.

LOAD INTERRUPT INHIBITS

The following configuration of WD can be used to transfer
the contents of the specified R register (R29- 31) to the
Interrupt Inhibit field (PSD37- 39).

Affected: (PSD37- 39)

(R29-31) - PSD37-39

LOAD SNAPSHOT CONTROL REGISTER

The following configuration of WD is used to arm the
snapshot feature:

The contents of the specified R register are transferred to
the snapshot control register with the following format:

Bit Desig-
Position nation Function

0-7 CC

8 IF

10-14 CS

15-31 IA

Clock Counter. Contains the number of
clock pulses, which determine the time
the snapshot sample register is strobed
after instruction address recognition.

Interrupt Flag. If this bit is a 1, the
PCP interrupt is triggered at the time
the snapshot occurs.

Condition Select. Determines which of
several possible interna I states of the
hardware to record. t

Instruction Address. The address used
by the snapshot feature is the 17-bit
address in positions 15-31 of the PSD,
regardless of the mode of operation.

Affected: (Snapshot Control Register)

(R) - Snapshot Control Register

TURN ON MODE ALTERED FLAG

The following configuration of WD is used to set the Mode
AI tered Flag (PSD 40) to 1:

TURN OFF MODE ALTERED FLAG

The following configuration of WD is used to reset the
Mode Altered Flag (PSD '40) to 0:

SET INTERNAL CONTROLS

The following configuration of WD is used to set the CPU
clock margin controls:

tA separate document, Xerox SIGMA 9 Engineering Sup
port Manual wi II contain this information.

Control Instructions 113

The contents of the specified R register, bits 8 and 9, are
used to set the internal CPU margin controls as follows:

Bit 8 Bit 9 Clock Margins

o
o

o

o

Norm

Hi

Lo

Unused

All unused bits of the specified R register are disregarded.

WRITE DIRECT. INTERRUPT CONTROL (MODE 1)

The following configuration of WD is used to set and reset
the various states of the individual interrupt levels within
the CPU interrupt system:

INPUT /OUTPUT INSTRUCTIONS

The I/O instruction set for the SIGMA 9 CPU is comprised
of eight instructions, as listed below.

Instruction Name Mnemonic

Start Input/Output SIO

Test Input/Output TIO

Test Device TDY

Halt Input/Output HIO

Reset Input/Output RIO

J
() 1Il()/~ Poll Processor POLP

h--~:y...:.;..~=-'-::=~T---V 'l t~L"';-\o -D" •

Bits 28-31 of the effective address specify the identification
number (see Tab I e 3) of the g roup of interrupt I eve I s to be
controlled by the WD instruction.

The R field of the WD instruction specifies a general register
that contains the selection bits for the individual interrupt
levels within the specified group. For extemal interrupt
groups, bit 16 of register R contains the selection bit for the
highest-priority (Iowest-n~mbered) interrupt level within the
group, and bit 31 of register R contains the selection bit for
the lowest-priority (highest-numbered) interrupt level within
the group. For assignments in Group X'O., see Table ~.;

Except for Power on/Power off interrupt levels, which can
not be disabled, disarmed, or inhibited, each level in the
designated group is operated on according to the function
code specified bybits21-230f the effective address of WD.
The codes and their associated functions are as follows:

Code

000 --

,100

101

110

111

Function

Set active all selected levels currently in the
armed or waiting states.

Disarm all levels selected by a 1; all levels
selected by a 0 are not affected.

Arm and enable all levels sel ected by a 1; all
levels selected by a 0 are not affected.

Arm and disable all levels selected by a 1; all
leve Is selected by a 0 are not affected.

Enable all levels selected by a 1; all levels
serected by a 0 are not affected.

Disable all levels selected by a 1; all levels
selected by a 0 are not affected.

Enable all levels selected by a 1 and disable
all levels selected by a O.

Trigger all levels selected by a 1. All such levels
that are currently armed advance to waiting state.

tThese codes clear the current interrupts, i.e., remove from
the active or waiting state all levels selected by a 1 (see
Figure 10).

114 Input/Output Instructions

Poll Processor and Reset POlR

Acknowledge Input/Output Interrupt AIO

OVERALL CHARACTERISTICS

All I/O instructions are privi leged and can be performed only
when the CPU is in either the master or master-protected
mode. If the CPU attempts to execute an I/O instruction
when it is in the slave mode (bit 8 of the current PSD is a 1),
the instruction is aborted at the time the operation code is

decoded and the CPU traps to Homespace location X'40 ' .
Programs operating in the slave mode must request I/O ser
vices from the System Monitor.

At the end of every I/O instruction, the condition code bits
(CC1-CC3) represent a summary description of the I/O op
eration and conditions within the addressed I/O subsystem.
Specific condition code settings and meanings (unique for
each I/O instruction) are contained in the detailed descrip
tion for each I/O instruction.

All I/O instructions, except RIO, may request detai led I/O
status information. The type and amount of I/O status in
formation that may be requested is determined by the opera
tion code and the R field of the I/O instruction. The R field
also designates which general register{s) is to be loaded with
the requested information. (Refer to I/O Status Information
for further detai Is.) The presence (or absence) and validi ty
of the requested I/O status information is indicated by con
dition code bits CCl and CC3, respectively.

I/O instructions are similar to other word-addressing instruc
tions in that bits 15-31 may be modified by indirect address
ing and/or indexing. However, the final value of these bits
is not used as an effective virtual address for memory refer
ence. Instead, depending upon the I/O instruction, these
bits are used as an extension to the operation code field, as
an I/O address to select a particular I/O subsystem, or they
may be reserved. Further detai Is of I/O instructions are
described in Table 16 and illustrated in Figure 11.

90 17 33C-l(4/74)

Bit Applicable Instructions
Position (Mnemonics)

o All I/O instructions

1-7 SIO, TIO, TDV,
and AIO

HIO, RIO, POLP,
and POLR

8-11 SIO, TIO, TDV,
and HIO

12-14

15~17

18

RIO

POLP and POLR

Ala

All I/O instructions

SIO, TIO, TDV,
and AIO

HIO , RIO, PQLP,
and POLR

All I/O instructions

90 1733C-1(4/74)

Table 16. Description of I/O Instructions

Function and/or Description

If this bit is a 1, bits 15-31 of the initial I/O instruction are modified by indirect
addressing.

Fo~""these four instructions, the operation code uniquely defines the I/O operation
that is t()'-h.~erformed.

'\
Within bit positi'o.,rs 1-7, these four instructions all have the same operation code
(XI4FI). The inst;bctions are differentiated by using bits 15, 16, and 17 as an ex
tension of the operation code field.

The value of the R field specifies how much status information is requested from the
addressed I/O subsystem (lOP, device controller, and device) and into which general
register(s) the status information is to be loaded. If the value of the R field is 0, no
status information is requested. If the value of the R field is even and not 0, two
words of status information are requested to be loaded into registers Rand Rul. If the
value of the R field is odd, one word of status information is requested to be loaded
into register R.

AI though the R field is not used by the RIO instruction, the R field may be coded with
any value as required by the program. For example: by indirect addressing and/or
indexing, the RIO instruction may be changed into an HIO, POLP, or POLR instruc
tion. Thus, the R field of the RIO instruction must be coded with a value as required
by the subsequent H 10, POLP, or POLR instruction.

This field specifies which general register (including register 0) is to receive processor
(MIOP, HSRIOP, or CPU) fault information.

If the R field is 0, no status information is requested. If the R field is not 0, the
ctesignated general register is to be loaded with the requested status information.

The X field may be used to specify indexing.

After the I/O address is generated, these bits are reserved and must be coded
with zeros.

These bits are an extension to the operation code field (bits 1-7) and permit each of
these instructions to be uniquely defi ned.

Note that these bits are subject to modifications due to indirect addressing or
indexing. The final configuration of these bits must be as shown below:

HIO = 000

RIO = 001

POLP = 010

POLR = 011

After the I/O address is generated, this bit is reserved and must be coded with
a zero.

Input/Output Instructions 115

Bit Applicable Instructions
Position (Mnemonics)

19-31 All I/O instructions
(except AIO)

f-- - -- - - - - -

19-23 All I/O instructions
(except AIO)

Table 16. Description of I/O Instructions (cont.)

Function and/or Description

The I/O address (after any indirect addressing and/or indexing) is contained within
these bits. Depending upon the I/O instruction, the required I/O address may be
comprised of (1) a processor address only; (2) a processor address and a device con
troller address; or (3) a processor address, a device controller address, and a device
address.

Subfields of the final I/O address field are described below.

These bits constitute the processor address (PA) field of an I/O instruction. The
32 processor addresses may be assigned in the following manner:

--

1. The assignment of addresses is mutually exclusive, that is, no two processors may
have the same address.

2. The four highest addresses (X' 1C - X' 1F') are reserved for addressing CPUs in a
multiprocessor system.

3. The remaining 28 addresses may be assigned to MIOPs, HSRIOPs, or to any other
lOP that is compatible with the SIGMA 9 computer system.

a. SIGMA 9 MIOPs require an even-odd pair of addresses. The even address
(bit 23 is a 0) selects Channel A and the next odd address (bit 23 is a 1) se
lects Channel B. If the MIOP only has Channel A, the next odd address is
preempted and reserved. An RIO instruction resets both Channel A and
Channel B of an MIOP regardless of bit 23.

b. A SIGMA 9 HSRIOP must be assigned an even address.
f-- - - - - - -- - .- - - - - - - - - - - - - - - - - - - -

--
24

AIO
1"------

510, TIO, TOY,
and HIO

After the I/O address is generated, these bits are reserved and must be coded with zeros.

If the I/O instruction is addressed to a single-unit device controller, this bit must be
coded as a O. If the I/O instruction is addressed to a multiunit device controller,
this bit must be coded as a 1. Note that bit 24 is not considered as part of the
device controller address.

f---- - - -- - ------ -------------
RIO, POLP, POLR,
and AIO

After the I/O address is generated, this bit is reserved and must be coded with
a zero.

!-- - -I-- - - - - -- -- -- -- -- -- -- -- -- -- -- - - - - -

25-31 510, TIO, TOY,
and HIO

If the I/O instruction is addressed to a single-unit device controller (bit 24 is a 0),
bits 25-31 represent one of 24 possible device controller addresses (X'OO' - X'17').
There is no need to specify a device address.

If the I/O instruction is addressed to a multiunit (e. g., magnetic tape) device con
troller (bit 24 is a 1), bits 25-27 represent one of eight possible device controller
addresses (X'O' - X'7') and bits 28-31 represent one of 16 possible device addresses
(X'O' - X'F').

Device controller addresses assigned to controllers within the same I/O channel (e. g.,
Channel A of MIOP), must be mutually exclusive. Note that bit 24, which must be
a 0 when addressing a single-unit device controller and a 1 when addressing a multi
unit device controller is not considered a part of the device controller address. Thus,
for example, if the device controller address X'O' is assigned to a multiunit device
controller within Channel A of an MIOP, no other device controller (single or multi
unit) within Channel A may have an address of X'O'. This does not preclude using
X'O' as a device controller address for either a single or multiunit device controller
within Channel B or any other I/O channel.

r- - - - - -I- - - - - - - - - - - - - - - - - - -- - - - -

116

RIO, POlP, POLR,
and AIO

Input/Output Instructions

After the I/O address is generated, these bits are reserved and must be coded
with zeros.

90 17 33C-l{4/14)

5"
."
C

"-0 c
-0
S.
5"
III,
c
&.
0
:J
III

""-I

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

I * I Operation Code I R I X I Reference Address I Initial I/O
Instruct Ion

8
Iln,truction after

I * I Operation Code R X I:::/::gg::::/!:::::::::I I/O Address indirect addressing

0
and/or indexing

Operation Code

SIO * 4 C R X

TIO

TDV

HIO

RIO

POLP

POLR

AIO

8

G)

0)

8
0)

* 4 D R X
0

* 4 E R X

* 4 F R X

* 4 F R X

* 4 F R X

* 4 F R X

* 6 E R X

Portions of a word format that are shaded represent bits that are reserved (after the I/O address is generated) and must be coded with zeros to
ensure program compatibility with possible enhancements to software and/or hardware.

OCE = operation code field extension; PA = processor address; DCA = device controller address; DA = device address.

To address Channel A of an MIOP, bit 23 must be a 0; to address Channel B of an MIOP, bit 23 must be a 1.

To address a single unit device controller, bit 24 must be a 0; to address a multiunit device controller, bit 24 must be a 1.

When RIO instruction is addressed to an MIOP, both Channels A and B are reset (regardless of bit 23).

Figure 11. Formats of I/O Instructions

1/0 STATUS INFORMATION

SIO, TIO, TDY, AND HIO INSTRUCTIONS

If the R field is coded with a 0, no status information is re
quested nor loaded. If the R field is odd, one word of status
information is requested to be loaded into register R as spec
ified by the R field. If the R field is even (not zero), two
words of status information are requested to be loaded into
registers Rand Ru1.

The following I/O status information may be loaded into
register R only when the R field is coded with an even (non
zero) value.

The significance of each bit within register R is described
in Table 17.

Table 17. I/O Status Information (Register R)

Bit
Position Significance

o

3-10

11-31

Reserved t

Bus Check Fault. This bit is set to 1 if a dis
crepancy exists between the parity error status
in the memory unit and the lOP when an lOP
is performing a main memory read cycle. If
the erroroccurswhile accessing data then the
device halt is controlled by the Halt-on
Transmission-Error flag (bit position 36 of an
I/O command doubleword). If the error occurs
while fetching a command, the operation is
terminated immediately withan II unusual end ll

•

Control Check Fault. This bit is set to 1 when
a parity error occurs during a subchannel read
operation within the MIOP. The operation
termi nates immediately wi th an II unusua I end ll

•

For HSRIOP operations, this bit is always set
to O.

Reservedt

Current Command Doubleword Address. The
21 high-order bits of the main memory address
from which the command doubleword for the
I/O operation currently being processed by
the addressed I/O subsystem is fetched.

tTo ensure program compatibility with possible software
and/or hardware enhancements, it is recommended that
reserved bits be treated as indeterminate and not used
0. e., masked).

tt The lOP unconditionally sets the Processor Fault Indi
cator{PFI) whenever a Bus Check or Control Check fault
occurs. The lOP fault status register is set with status in
formation as listed under the POLPor POLR instructions.

118 Input/Output Instructions

The following I/O status information may be loaded into
register R if the R field is odd or into register Rul if the
R field is even and not zero.

The format of information within the specified general
register (R or Rul) is shown below.

Device Status Byte. These eight bits (0-7) when loaded
into the specified general register provide status information
pertaining to the addressed device and device controller or
lOP. The significance of each bit when requested by an
SIO, TIO, and HIO instruction is described in Table 18.
The significance of these bits when requested by a TDY in
struction is different and is described in the applicable, pe
ripheral device reference manual.

Bit

Table 18. Device Status Byte (Register R or Rul)
(SIO, TIO, and HIO only)

Position Significance

o Interrupt Pending. This bit is set to a 1 if the
addressed device has requested an interrupt
that has not been acknowledged by the CPU
with an AIO instruction. Ifthisbitisa 1, the
current SIO instruction is not accepted. Con
dition code bits are set to reflect this action
and any requested status information is loaded
into the designated general register(s). SIO
instructions will not be accepted until the
interrupt pending condition is cleared.

Normally, before a device can request an in
terrupt, the following conditions must prevail:

1. Appropriate flag{s) (IZC, ICE, and/or IUEi
bit positions 33, 35, and 37, respectively)
within the lOP command doubleword must
be set to 1.

2. The flagged event (byte count reduced to
zero for the IZC flag, channel end condi
tion for the ICE flag, or unusual end con
dition for the IUE flag) must occur.

An I/O interrupt mayalsobe requested by cer
tain devices via M modifier bits within the
basic order for that device (see Operational
Command Doublewords).

A CPU wi II respond to an interrupt request from
a particular I/O subsystem if (1) the I/O in
terrupt level (X '5C') is armed, enabled, and
not inhibited; and (2) that there is no higher
priority interrupt level in the active or wait
ing state.

90 17 33C-l(4/74}

Bit

Table 18. Device Status Byte (Register R or Ru1)
(SIO, TIO, and HIO only) (cont.)

Position Significance

1,2 Device Condition. If bits 1 and 2 are 00 (de
vice ready), all device conditions required for
proper operation are satisfied. If bits 1 and 2
are 01 (devi ce II not operationa I"), the ad
dressed device has developed some condition
that wi II not allow it to proceed; in either
case, operator intervention is usually required.
If bits 1 and 2 are 10(device l unavailable"),
the device has more than one channel of com
munication available and it is engaged in an
operation controlled by a controller other
than the one specified by the I/O address. If
bits 1 and 2 are 11 (device II busyll), the de
vice has accepted a previous SIO instruction
and is already engaged in an I/O operation.

3 Device Mode. If this bit is 1, the device is
in the "automatic ll mode; if this bit is 0, the
device is in the IImanual" mode and requires
operator intervention. This bit can be used in
conjunction with bits 1 and 2 to determine the
type of action required. For example, assume
that a card reader is able to operate, but no
cards are in the hopper. The card reader
would be in state 000 (device IIready", but
manual intervention required), where the
state is indicated by bits 1, 2, and 3 of the
I/O status response. If the operator subse
quently loads the card hopper and presses the
card reader START switch, the reader would
advance to state 001 (device" ready" and in
automatic operation). If the card reader is
in state 000 when an SIO instruction is exe
cuted, the SIO wou Id be accepted by the
reader and the reader would advance to
state 110 (device II busy", but operator inter
vention required). Should the operator then
place cards in the hopper and press the START
switch, the card reader state would advance
to 111 (device "busi' and in lIautomatic li

mode), and the input operation would pro
ceed. Should the card reader subsequently
become empty (or the operator press ;·he
STOP switch) and command chaining is being
used to read a number of cards, the card
reader would return to state 110. If the card
reader is in state 001 when an SIO instruction
is executed, the reader advances to state 111,
and the input operation continues as normal.
Should the hopper subsequently become empty
(or should the operator press the card reader
STOP switch) and command chaining is being
used to read a number of cards, the reader
would go to state 110 until the operator cor
rected the situation.

90 17 33C-1(4/74)

Bit

Table 18. Device Status Byte (Register R or Rul)
(SIO, TIO, and HIO only) (cont.)

Position Significance

4 Unusual End. If this bit is a 1, the previous
I/O operation terminated inan II unusual end ll .
Unusua I end condi tions occur for various rea
sons that are unique to each device (refer to
applicable peripheral reference manual for
further detai Is.)

5,6 Device Controlleror lOP Condition. The func
tion of these two bits is dependent upon the
type of lOP (MIOP or HSRIOP) addressed by
the I/O instruction.

MIOP Operations: If bits 5 and 6 are 00 (de
vice controller IIreadyll), all device controller
conditions required for its properoperationare
satisfied. If bits 5 and 6 are 01 (device con
troller II not operational ll), some condition has
developed that does not allow it to operate
properly. Operator intervention is usually
required. If bits 5 and 6 are 10 (device con
troller lIunavailable"), the device controller
is currently engaged inan operation controlled
by an lOP other than the one addressed by the
I/O instruction. If bits 5 and 6 are 11 (device
controller IIbusyll), the device controller has
accepted a previousSIO instruction and iscur
rently engaged in performing an operation for
the addressed lOP.

HSRIOP Operations: If bits 5 and 6 are 00
(lOP IIready"), all HSRIOP conditions re
quired for its proper operation are satisfied.
If bits 5 and 6 are 11 (lOP IIbusy"), the lOP
has accepted a previous SIO instruction and
is currently engaged in performing that I/O
operation. If bits 5 and 6 are either 01 or 10,
the lOP is in an undefined state.

7 Reserved. To ensure program compatibility
with possible software and/or hardware en
hancements, it is recommended that this bit
be treated as indeterminate and not used
0. e., masked}.

Operational Status Byte. Bits 8-14 of the specified general
register (R or Rul) indicate either the presence (1) or ab
sence (0) of various errors wh ich may have occurred duri ng
an I/O operation. Bit 15 indicates the status of the HSRIOP.
The significance of the individual bits within the operational
status byte are described in Table 19. I

Table 20 is the summary description of the Device Status
Byte and the Operational Status Byte.

Input/Output Instructions 119

Table 19. Operational Status Byte {Register Rul}

Bit
Position Significance

8 Incorrect Length. This bit is set to 1 if an in
correct length condition occurred within the
responding subchannel since its last accepted
SIO instruction. An incorrect length condition
is caused by a channel end (or end of record)
condition occurring before the device control
ler has a II count done" signal from the lOP (in
dicating that the byte count has been reduced
to zero), or is caused by the device controller
receiving a count done signal before channel
end {or end of record}: e. g., count done be
fore 80 columns have been read from a card.

9

10

11

120

When set to a 1, the incorrect length bit, by
itself, always signifies that an incorrect
length condition has occurred. If the SIL flag
{bit 38 of the I/O command doubleword} is
coded with a 0, the detected incorrect length
condition is to be interpreted as an error con
dition. If the SIL flag is coded with a 1, the
detected incorrect length condition is to be
interpreted as a nonerror condition. If an in
correct length condition is to result in a de
vice halt, the SIL flag must be coded with a 0
and the HTE flag (bit 36 of the I/O command
doubleword) must be coded with a 1.

Transmission Data Error. This bit is set to 1
if, since the last accepted SIO instruction
addressed to this subchannel, the device con
troller or lOP detected a parity error or data
overrun in the transmitted information. A
device halt occurs as a result of a transmission
data error only if the HTE flag of the I/O
command doubleword is coded with a 1.

Transmission Memory Error. This bit is set to 1
if, since the last accepted SIO instruction
addressed to this subchannel, a memory parity
error was detected during a data input/output
operation. A device halt occurs as a result
of a transmission memory error only if the HTE
flag of the I/O command doubleword is coded
with a 1.

Memory Address Error. This bit is set to 1 if a
nonexistent memory address is detected during
a chaining operation or a data input/output
operation. The I/O operation is terminated
with an "unusual end".

Input/Output Instructions

Table 19. Operational Status Byte (Register Rul) {cont.}

Bit
Position Significance

12 lOP Memory Error. This bit is set to 1 if the
lOP detects a memory parity error whi Ie fetch
ing a command. The I/O operation is termi
nated with an II unusual end".

13 lOP Control Error. This bit is set to 1 if the
lOP detects two successive Transfer in Chan
nel commands. Operation is terminated with
II unusua I end".

14 lOP Halt. This bit is set to 1 if an error con
dition is detected which causes the lOP to
issue a halt order to the addressed I/O device.
Error conditions which may cause an lOP halt
(independent of the HTE flag within the I/O
command doubleword) are:

15

1. Bus check fault that occurs while fetch
ing a command

2. Control check fault

3. Memory address error

4. lOP memory error

5. lOP control error

Error conditions which may cause an lOP halt
only if the HTE flag is coded with a 1 are:

1. Bus check fault that occurs while fetching
data

2. Transmission memory error

3. Transmission data error

4. Incorrect length condition occurring
while the SIL flag is coded with a 0

An lOP halt condition causes the current
operation to terminate immediately as an
II unusual end".

lOP Busy. For I/O instructions addressed to
an MIOP, this bit is always set to a O. For
I/O instructions addressed to an HSRIOP, this
bit is set to a 1 if an HIO instruction is ad
dressed to a busy HSRIOP. If a busy HSRIOP
is addressedwithan SIO, TIO, or TDY instruc
tion, the status information {as requested by
the R field of the I/O instruction} is not re
turned (see Condition Code Bits).

90 17 33C-1(4/74)

Table 20. Status Response Bits for I/O Instructions

Position and State in Register Ru1 -Devi ce Status Byte Operational Status Byte
Signifi cance for Significance

0 1 2 3 4 5 t 6 t 7 8 9 10 11 12 13 14 15 SIO, HIO, and TIO for TDV

1 - - - - - - - - - - - - - - - interrupt pending
- 0 0 - - - - - - - - - - - - - devi ce ready
- 0 1 - - - - - - - - - - - - - device not operational
- 1 0 - - - - - - - - - - - - - device unavailable
- 1 1 - - - - - - - - - - - - - device busy
- - - 0 - - - - - - - - - - - - device manual
- - - 1 - - - - - - - - - - - - device automatic

unique to the

1 device unusual end
device and the - - - - - - - - - - - - - - - device controller

- - - - - 0 0 - - - - - - - - - devi ce control I er ready
- - - - - 0 1 - - - - - - - - - device controller not operational
- - - - - 1 0 - - - - - - - - - device controller unavailable
- - - - - 1 1 - - - - - - - - device controller busy
- - - - - - - - - - - - - - - reserved

- - - - - - - - 1 - - - - - - - incorrect length

1 - - - - - - - - - 1 - - - - - - transmi ssi on data error
- - - - - - - - - - 1 - - - - - transmission memory error
- - - - - - - - - - - 1 - - - - memory address error same as for

SIO, HIO, and
- - - - - - - - - - - - 1 - - - lOP memory error TIO
- - - - - - - - - - - - - 1 - - lOP control error

j - - - - - - - - - - - - - - 1 - lOP halt
- - - - - - - - - - - - - - - 1tt HSRIOP busy

t The significance of bits 5 and 6 when response is from an HSRIOP is as follows:

Bit 5 Bit 6 Function

0 0 HSRIOP ready

1 0 reserved

0 1 reserved

1 1 HSRIOP busy

tt
For responses from MIOP, bit 15 is always a O.

Byte Count. Bits 16-31 of register Rul indicate the num
ber of bytes that have to be transmitted to or from mem
ory in the operation called for by the current command
doubleword.

RIO lNSTRUCTION

No status information is returned to the general regis
ters for an RIO instruction (the R field is ignored). Only
condition code bits (CCl - CC3) are set to reflect the
I/O conditions.

POLP and POLR INSTRUCTIONS

The R field of these two instructions always specifies a gen
eral register (including register 0) that may receive up to
six bits of fault status information from an addressed CPU,
MIOP, or HSRIOP. Each bit indicates the presence (1) or
absence (0) of a specific faul t condition within the polled
processor, as I isted in'Table 21. Note that the information
represented by a particular bit is also dependent upon the
type of processor polled (e. g., bit 26 may indicate a
memory parity error in the CPU or a Control Check fault
within an MIOP).

Input/Output Instructions 121

Table 21. Processor Fault Status

Fault Status
Bit
Position CPU MIOP HSRIOP

24 Instruction Reserved Reserved
exception trap

25 Data bus Data bus Data bus
check check check

26 Memory Control Reserved
pari ty error check

27 Watchdog Reserved Reserved
timer runout

28 Map pari ty error Reserved Reserved

29 Reserved Reserved Reserved

AIO INSTRUCTION

For this instruction, if the R field has a value of 0, no
status information is requested nor loaded. If the R field
has a value of Xl l 1 through X'F', the specified register
may receive one word of I/O information pertaining to an
I/O interrupt.

Device and Device Controller Status Byte. Bits 0-7 of the
status word obtained by an AIO instruction from a respond
ing I/O subsystem are unique to the device and device con
troller. These bits are described in theapplicableperipheral
device reference manual.

lOP Status Byte. Bits 8-15 indicate the presence (1) or
absence (0) of various operation errors and interrupts that
may have occurred during an I/O operation. The func
tion of individual bits within the lOP Status Byte are
described in Table 22.

Table 23 is a summary description of the Device/Device
Controller Status Byte and the lOP Status Byte.

Table 22. lOP Status Byte

Bit
Position Significance

8 Incorrect Lenath. This bit is set to 1 if an in-
correct length condition occurred within the
responding subchannel since its last accepted
SIO instruction. An incorrect length condition
is caused by a channel end (or end of record)

122 Input/Output Instructions

Bit -
Position

8
(cont.)

9

10

11

12

13-15

Table 22. lOP Status Byte (cont.)

Significance

condition occurring before the device control
ler has a "countdone" signal from the lOP (in
dicating that the byte count has been reduced
to zero), or is caused by the device controller
receiving a count done signal before channel
end (or end of record): e. g., count done be
fore 80 columns have been read from a card.

When set to a 1, the incorrect length bit, by
itself, always signifies that an incorrect
length condition has occurred. If the SIL flag
(bit 38 of the I/O command doubleword) is
coded with a 0, the detected incorrect length
condition is to be interpreted as an error con
dition. If the SIL flag is coded with a 1, the
detected incorrect length condition is to be
interpreted as a nonerror condition. If an in
correct length condition is to result in a de
vice halt, the SIL flag must be coded with a 0
and the HTE flag (bit 36 of the I/O command
doubl eword) must be coded wi th a 1.

Transmission Data Error. This bit is set to 1
if, since the last accepted SIO instruction
addressed to this subchannel, the device con
troller or lOP detected a parity error or data
overrun in the transmitted information. A
device halt occurs as a result of a transmission
data error only if the HTE flag of the I/O
command doubleword is coded with a 1.

Zero Byte Count Interrupt. This bit is set to 1
if the interrupt on zero byte count flag is 1
and zero byte count is detected.

Channel End Interrupt. This bit is set to 1 if
the interrupt at channel end flag is 1 and chan
nel end is reported by the device to the lOP.

Unusual End Interrupt. This bit is set to 1 if
the interrupt at unusual end flag is 1 and un
usual end is reported by the device to the
lOP, or if the lOP halt is signaled to the de
vice controller by the lOP.

Reserved. To ensure program compatibility
with future enhancements, it is recommended
that these bits be treated as indeterminate and
not used (i. e., masked).

Bits 16-18. These bits of the AIO response are reserved. To
ensure program compatibility with any enhancements (soft
ware and/or hardware), it is recommended that these bits be
treated as indeterminate and not used 0. e., masked).

90 17 33C-1 (4/74)

,
I

Table 23. Status Response Bits for Ala Instruction

Position and State in Register R

Devi ce Status Byte Operational Status Byte

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Significance

I/O Address. Depending upon the type of device controller
responding to the Ala instruction, the I/O address may be
comprised either of a processor address and a single-unit
device controller address or a processor address, a multiunit
device controller address, and a device address. The sub
fields of the I/O address are described in Table 24.

Table 24. I/O Address (Ala Response)

Bit
Position

19-23

24

25-31

Significance

Processor Address. These bits contai n the
address of the processor within the responding
I/O subsystem (operation with the highest
priority).

Type of Device Controller. This bit is set to 0
if response is from a single-unit device con
troller, or set to a 1 if response is from an
HSRIOP or from a multiunit device controller.
Note that the device controller function is
performed by the HSRIOP.

Device Controller/Device Address. These bits
may represent either the address of a respond
ing single-unit device controller (bits 25-31,
with values of XIOI- X'171)or the address of
a multiunit device controller (bits 25-27, with
values of XIOI - X'71) concatenated with the
device address (bits 28-31, with va lues of
XIOI - XIF'). The device controller address
from a responding HSRIOP is always X'71.

unique to the devi ce and
the device controller

incorrect length
transmission data error
zero byte count interrupt
channel end interrupt

unusual end interrupt

} reserved

SID START INPUT/OUTPUT
(Word index alignment, privileged)

Instruction Register

1*1 4C
_, I,

General Register 0

1
0 --,-,---, s-ol F;rs~ c~mm~n.~dOU.bl.e~~rd. od~r~ss

START INPUT/OUTPUT performs the following:

1.

2.

3.

!~A.

5.

Attempts to initiate an input or output operation
whether an I/O operation is started or not is dependent
upon condi tions wi th in the addressed I/O subsystem
(see meani ngs of condi tion code setti ngs).

Specifies which lOP, channel, device controller, and
input/output device is to be selected (bits 19-31 of
the effective virtual address of the instruction word).

Specifies the addre.ss of the first command doubleword
for the subsequent I/O operation (bits 11-31 of genera I
register 0).

Speci fies how much additiona I status information is to
be returned from the I/O system (R fi eld, bits 8-11, of
instruction word).

Specifies which general registers are to be loaded with
the requested status information (R field, bits 8-11, of
instruction word).

Input/Output Instructions 123

General register 0 is temporari Iy dedicated during SIO in
struction execution and must contain the doubleword mem
ory address of the first command doubleword specifying the
operation to be started. The required address information
must be in genera I register 0 when the SIO is executed.

Status information for an SIO instruction is always returned
via condition code bits (CC1-CC3). Additional information
may be requested and returned via the general registers as
specified by the R field of the SIO instruction. However,
the return of the additional information is dependent upon
conditions encountered within the addressed I/O subsystem
(see meanings of condition code settings).

If the R field is coded with a 0, no additional status infor
mation is requested.

If the R field is coded with an odd value, one word of status
information is requested to be loaded into register R. The
format of this information is as follows:

Byte Count

If the R field is coded with an even (nonzero) value, two
words of status information are requested. The format of
information within register Ru 1 is as shown above. The
format of information within register R is as follows:

These responses provide the program with information neces
sary to determine the current status of the addressed I/O
subsystem. The byte count field indicates the number of
bytes that are to be transmitted to or from memory in the
operation called for by the current command doubleword.
The other fields are described in Tables 14-17.

Affected: (R), (Ru1), CC1, CC2, CC3

The meaning of the condition code bits during an SIO in
struction is:

2 3 4 Meaning

o 0 0 - I/O address recognized, SIO accepted,
and status information in general registers
is correct.

o 0 I/O address recognized and SIO accepted;
however, status information in general reg
i sters may be incorrect.

o 0 - I/O address recognized, SIO not accepted,

124

and status information in general registers is
correct.

I/O address recognized, SIO not accepted
because device controller or device is busy,
and status information in general registers may
be incorrect.

Input/Output Instructions

\- TIO

2 3 4 Meaning

o 0 - I/Oaddresspartially recognized but SIO is not I
accepted because device controller is attached
to a busy HSRIOP, or for specific device con
trollers, is currently busy with anotherdevice.
No status information is returned to general
registers.

o Not possible.

o - I/O address not recognized, SIO not accepted,
and no status information returned to general
registers.

No I/O address recognized and SIO was aborted '
because an error was detected when the lOP
attempted to read and transfer the SIO pa
rameters (device/device controller address,
R field information, and first command double
word address) from the CPU to the lOP via main
memory. No status information returned to
general registers.

TEST INPUT/OUTPUT
(Word index alignment, privileged)

TEST INPUT/OUTPUT is used to make an inquiry on the
status of data transmission. The operation of the selected
lOP, device controller, and device are not affected, and
no operations are initiated or terminated by this instruction.
The responses to no provide the program with the informa
tion necessary to determi ne the current status of the device,
device controller, and lOP, the number of bytes remaining
to be transmitted into or from main memory in the operation,
and the present point at which the lOP is operating in the
command list.

If the R field of the TIO instruction is 0, no general registers
are affected, but the condition code is set.

If the R field of no is an odd value, the condition code is
set and the I/O status and byte count are loaded into
register R as follows:

If the R field of the TIO instruction is an even value and
not 0, the condition code is set, register Ru1 is loaded as
shown above, and register R is loaded as follows:

Refer to Tables 14-17 for functions of individual bits within
status words.

Affected: (R), (Rul), CC1, CC2, CC3

90 17 33C-l(4;74)

The meaning of the condition code during a TIO is:

2 3 4 Result of TIO

000

o 0

o 0

o

I 1 0 0

o

o

I/O address recognized, acceptable SIO is
currently possible, and status information in
general registers is correct.

I/O address recognized, acceptable SIO is
currently possible; however, status information
in the general registers may be incorrect.

I/O address recognized but acceptable SIO
is not currently possible because device con- ..,
troller or device is busy. Status information
in general registers is correct. II

I/O address recognized but acceptable SIO
is not currently possible because device con
troller or device is busy. Status information
in general registers may be incorrect.

I/O address partially recognized but an ac
ceptable SIO is not currently possible be
cause device controller is attached to a
busy HSRIOP, or for specific device con
trollers, is currently busy with another de
vice. No status information is returned
to genera I registers.

Not possible.

I/O address not recognized, TIO not accepted,
and no status information is returned to gen
eral registers.

No I/O address recognized and TIO was
aborted because an error was detected when
the lOP attempted to read and transfer the TIO
parameters (device/device controller address
and R field information) from the CPU to the
lOP via main memory. No status information
returned to general registers.

TOV TEST DEYICE ~
(Word index alignment, privileged)

TEST DEYICE is used to provide information about a device
other than that obtainable by means of the TIO instruction.
The operation of the selected lOP, device controller, and
device are not affected, and no operations are initiated or
terminated. The responses to TDY provide the program with
information giving detai Is on the condition of the selected
device, the number of bytes remaining to be transmitted in
the current operation, and the present point at which the
lOP is operating in the command list.

If the R field of the TDY instruction is 0, the condition code
is set, but no general registers are affected.

90 17 33C-l{4/74)

It the R field of TDY is an odd value, the condition code is
set and the device status and byte count are loaded into
register R as follows:

If the value of the R field of TDY is an even value and not 0,
the condition code is set, register Rul is loaded as shown
above, and register R is loaded as follows:

Refer to applicable peripheral reference manual for descrip
tion of Device Status Byte. Refere to Tables 16 and 17 for
functions of other bits within status words.

Affected: (R), (Rul), CC1, CC2, CC3

The meaning of the condition code during a TDY is:

2 3 4 Result of TDY

o 0 0 I/O address recognized, no device-dependent
condition present, and status information in
general registers is correct.

o 0

o 0

o

o 0

I/O address recognized and no device
dependent condition present; however, sta
tus information in general registers may be
incorrect.

I/O address recognized and device-dependent
condition is present or device controller is in
test mode.

I/O address recognized, device-dependent
condition is present or device controller is in
test mode but status information in the general
registers may be incorrect.

I/O address partially recognized butdevice
controller is attached to a busy HSRIOP,
or for specific device controllers, is cur
rently busy with another device. No
status information is retumed to general
registers.

o Not possible.

o I/O address not recognized, TOY not ac
cepted, and no status information is returned
to the general registers.

No I/O address recognized and TOY was
aborted because an error was detected when
the lOP attempted to read and transfer the
TOY parameters (device/device controller ad
dress and R fi eld information) from the CPU to
the lOP via main memory. No status informa
tion returned to general registers.

Input/Output Instructions 125

HID HALT INPUT/OUTPUT
(Word index alignment! privileged)

HAL T INPUT/OUTPUT cquses the addressed device to im
mediately halt its current operation (perhaps improperly,
in the case of magnetic tape units, when the device is
forced to stop at other than an interrecord gap). If the
device is in an interrupt-pending condition, the condition
is cleared.

If the R field of the HIO instruction is 0, the condition code
is set, but no general registers are affected.

If the R field is an odd value, the condition code is set and
the following information is loaded into register R.

If the R field of HIO is an even value and not 0, the con
dition code is set, register Rulis loaded as shown above,
and register R contains the following information:

This information shows the status of the addressed I/O sub
system at the time of the halt. The byte count field shows
the number of bytes remaining to be transmitted to or from
memory. Other fields are described in Tables 14-17.

The HIO instruction must have zeros in bit positions 15, 16
and 17 to differentiate it from the RIO, POLP, and POLR
instructions, which also have XI4FI as an operation code
(bits 1-7).

Affected: (R), (Ru1), CCl, CC2, CC3

The meaning of the condition code during an HIO instruc
tion is:

2 3 4 Result of HIO

o 0 0 - I/Oaddressrecognized, HIOaccepted, device
controller not busy attimeof HIO and status in
formation in general registers is correct.

o 0 I/O address recognized, HIO accepted~ and
device controller not busy at time of HIO but
status information in general registers may be
correct.

tWhen indexing operation code 4F instructions (HIO, RIO,
POLP, POLR), the programmer must make certain that the
summation of the contents of the index register and the I/O
address (bi ts 19-31 of the instruction word) does not affect
bits 15-17. When indirect addressing is used, the contents
of the indirect address location (bits 15, 16, and 17) must
specify the desired operation code extension.

126 Input/Output Instructions

2 3 4 Result of HIO

o 0 - I/O address recognized, HIO accepted and
device controller was busy at the time of the
HIO, and status information is correct.

o - I/O address recognized, HIO accepted, and

RIO

device controller was busy at the time of the
HIO but the status information in the general
registers may be incorrect.

o 0 - Not possible.

o Not possible.

o - I/O address not recognized, HIO not ac
cepted, and no status information returned
to general registers.

No I/O address recognized and HIO was
aborted because an error was detected when
the lOP attempted to read and transfer the
HIO parameters (device/device controller ad
dress and R field information) from the CPU to
the lOP via main memory. No status informa
tion returned to general registers.

RESET INPUT/OUTPUT
{Word index alignment} privileged)

An RIO instruction resets the selected lOP in the some man
ner as the I/O RESET switch on the Processor Control Panel
(PCP). However, unlike the switch, the RIO instruction
resets only the addressed lOP and may be controlled by the
executing program. An RIO instruction, when addressed to
an MIOP, resets both channels (A and B).

Processor addresses (bits 19-23) having values of XI1 C,
XII 0 1, XII EI, and XII FI are reserved for CPUs in a multi
processor system. Addresses between XIOOI - XII BI may be
assigned to other processors in the system. An RIO instruc
tion addressed to a CPU is used to reset that CPU only
in a special case. This special case is the result of a
double fault (described in the "Trap System", Chapter 2).
When the double fault occurs, the CPU raises the Processor
Fault Interrupt (PFI), loads the error status register, and the
CPU hangs up (PDF indicator on and none of the PHASE in
dicators on). The CPU that responds to the PFI will use the
POLP or POLR instruction to determine the source of the
PFI. The error status may be logged (as programmed). The
responding CPU may then issue an RIO instruction to the
"faulted" CPU, which resets and forces execution to start
at location X1261•

The result of a CPU executing an RIO instruction addressed
to itself is undefined and should not be coded.

Status information is returned only in the condition code
bits. The R field is not used.

Affected: CC1, CC2, CC3

Condition code settings are as shown below:

2 3 4 Result of RIO

000 I/O address recognized.

o I/O address not recognized.

POLP POLL PROCESSOR
(Word index alignment,t privileged)

POLL PROCESSOR causes the addressed processor to return
processor fault status in bits 24 to 29 of register R. This
status information is processor dependent, as follows:

Fault Status
Bit
Position CPU MIOP HSRIOP

24 Instruction Reserved Reserved
exception trap

25 Data bus Data bus Data bus
check check check

26 Memory Control Reserved
pari ty error check

27 Watchdog Reserved Reserved
timer runout

28 Map parity Reserved Reserved
error

29 Reserved Reserved Reserved

In addition to the operation code of X'4F ', bits 15, 16,
and 17 must be coded as 010, respectively.

The result of a CPU executing a POLP instruction addressed
to itself is undefined and should not be coded.

Affected: (R), CC 1, CC2, CC3

Condition code settings are as shown below:

2 3 4 Result of POLP

o 0 0 Processor fault interrupt not pending.

o o Processor fault interrupt pending.

o - Processor address not recognized.

t See footnote to HIO instruction.

POLR POLL AND RESET PROCESSOR
(Word index alignment,t privileged)

POLL AND RESET PROCESSOR causes the selected proces
sor to return processor fault status in bits 24 to 29 of
register R. This status information is processor dependent,
as follows:

Fault Status
Bit
Position CPU MIOP HSRIOP

24 Instruction Reserved Reserved
exception trap

25 Data bus Data bus Data bus
check check check

26 Memory Control Reserved
parity error check

27 Watchdog Reserved Reserved
timer runout

28 Map parity Reserved Reserved
error

29 Reserved Reserved Reserved

The POLR also resets and clears the Processor Fault Interrupt
signal and the error status register. In addition to the oper
ation code of X'4F ', bits 15, 16, and 17 must be coded
as 011, respectively.

The result of a CPU executing a POLR instruction addressed
to itself is undefined and should not be coded.

Affected: (R), CC 1, CC2, CC3

Condition code settings for the POLR instruction are:

2 3 4 Result of POLR

000

o 0

Processor fault interrupt not pending.

Processor fault interrupt pending.

o Processor address not recognized.

AIO ACKNOWLEDGE INPUT/OUTPUT INTERRUPT
(Word index alignment, privileged)

ACKNOWLEDGE INPUT/OUTPUT INTERRUPT is used to
acknowledge an input/output interrupt and to identify the
I/O subsystem (processor, device controller, device) that
is causing the interrupt and why. If more than one I/O
subsystem has an interrupt pending, only the subsystem
with the highest priority wi II respond to the AIO. Bits 19

Input/Output Instructions 127

through 23 of the effective virtual address of the Ala in
struction (normally used to specify the processor portion of
the I/o address field) must be coded 00000 to specify the
standard Va system interrupt acknowledgment {other coding
of these bits are reserved for use with special I/o systems}.
The remainder of the I/O selection code field (bit posi
tions 24-31) are not used in the standard I/o interrupt ac
knowledgment (the address of the interrupt source is a part
of the response from the standard I/O system to the Ala
i nstructi on).

Standard I/o interrupts are program controlled via the con
trol flags (IZC, ICE, IUE, HTE, and SIL) within the Va
command doublewords (lOCO) that comprise the command
list for the I/O operation. If a particular flag is coded as
a 1 and if the corresponding condition occurs within the
I/O operation, then an I/o interrupt is requested (e.g., if
the IZC flag is set to 1 and if the byte count for the I/O
operation has been decremented to zero, then an I/o inter
rupt is requested by that I/o subsystem to indicate the end
of that I/O operation. If the IZC flag is coded as a 0, no
I/o interrupt will be requested as a result of the byte count
being decremented to zero).

If two or more flags are coded to cause an interrupt for two
or more conditions, an interrupt is requested whenever any
of the tlflagged" conditions is detected.

For some conditions (transmission errors, incorrect length),
two or more flags must be properly coded (see Chapter 4 for
further details on lOCOs).

The various conditions which may result in an I/O interrupt,
the coding of the corresponding control flags within the
lOCO, and the bit position within the status word (returned
to register R) that indicate the presence (1) or absence (0) of
that interrupt condition are I isted below:

Condition

Zero byte count

Channel end

Transmission memory error

Incorrect length

Memory address error,
lOP memory error, or
lOP control error

T ransmissi on data error

Unusual. end

lOP halt

Control Flags
Coding

IZC = 1

ICE = 1

IUE = 1, HTE = 1

IUE = 1, HTE = 1,
and SIL = 0

IUE = 1

rUE = 1, HTE = 1

IUE = 1

IUE = 1

Status
Bit Set

10"-

11

12

8, 12

12

9, 12

12

12, 14

Interrupts may also be requested by certain I/o devices
when they execute specific orders (e.g., when a magnetic
tape unit executes a Rewind and Interrupt order). Refer to
applicable peripheral reference manual for further details.

128 Input/Output Instructions

When a device interrupt condition occurs, the lOP forwards
the request to the CPU interrupt system Va interrupt level.
If this interrupt level is armed, enabled, and not inhibited,
the CPU eventually acknowledges the interrupt request and
executes the XPSO instruction in main memory location
X'5C', which leads to the execution of an Ala instruction.

For the purpose of acknowledging standard I/O interrupts,
the lOPs, device controllers, and devices are connected in
a preestablished priority sequence that is customer-assigned
and is independent of the physical locations of the portions
of the I/O system in a particular installation.

If the R field of the Ala instruction is 0, the condition code
is set but the general register is not affected.

If the R field of Ala is not 0, the condition code is set and
register R is loaded with the following information.

;
The function of bits within the DC status byte (which are
unique to the device and device controller) are described
in applicable peripheral reference manuals. The functions
of other bits in the Ala response word are described in
Tables 19, 20, and 21.

The Ala instruction resets the interrupt request signal
for the I/O subsystem responding to the AIO (i.e., I/O
subsystem identified by bits 19-31 of register R).

Affected: (R), CCl, CC2, CC3

Condition code settings for AIO are shown below:

2 3 4 Result of Ala

o 0 0 - Normal interrupt recognized and reset. Status
information in general register is correct.

o 0 - Normal interrupt recognized and reset. Status
information in the general register may be
incorrect.

o

o

o - Unusual condition interrupt recognized and
reset. Status information in general register
is correct.

- Unusual condition interrupt recognized and
reset. Status information in the general
register may be incorrect.

o - - Interrupt recognized and reset but lOP
detected a parity error in the address received
from device controller. No status information
returned to the general register.

o - No VO device requesting an interrupt and
no status information returned to the general
register.

Not possible.

4. INPUT jOUTPUT OPERATIONS

Ina SIGMA9 system, input/outputoperationsareprimarily
under control of one or more input/output processors (lOPs).
This allows the CPU to concentrate on program execution,
free from the time-consuming details of I/O operations.
Any I/O event that requires CPU intervention is brought to
its attention by means of the interrupt system (see Chapter 2).
For a detai I ed description of SIGMA 9 I/O instructions, see
Chapter 3.

In the following discussion, the terminology conventions
used are: The CPU executes instructions, the lOP exe
cutes commands, and the device controllers and I/O
devi ces execute orders. To illustrate, the CPU wi" exe
cute the START INPUT/OUTPUT (SIO) instruction to initi
ate an I/O operation. During the course of an I/O
operation, the lOP might issue a command called Control,
to transmit a byte to a device controller or I/O device that
interprets the byte as an order, such as Rewind.

Each SIGMA 9 lOP operates independently after being
started by a CPU. An lOP automatically picks up a chain
of one or more commands from memory and executes these
commands until the chain is completed or truncated as the
result of an "unusual end" condition.

A multiplexor lOP can simultaneously operate up to 32
device controllers using both Channels A and B. Each
device controller is assigned its own subchannel and chain
of I/O commands. A high-speed RAD lOP (HSRIOP) can
communicate with up to four Model 7212 RAD storage units.
However, due to its high transfer rate capability, the
HSRIOP remains connected until termination of the data
in/data out sequence.

The flexible SIGMA 9 I/O structure permits both command
chaining (making possible multiple-record operations) and
data chain ing (making possible scatter-read and gather
write operations) without intervening CPU control. Com
mand chaining refers to the execution of a sequence of I/O
commands, under control of an lOP, on more than one
physical record. Thus, a new command must be issued for
each physical record even if the operation to be performed
for a record is the same as that performed for the previous
record. Data chaining refers to the execution of a sequence
of I/O commands, under control of an lOP, that gather (or
scatter) information within one physical record from (or to)
more than one region of memory. Thus, a new command
must be issued for each portion of a physical record when
the data associated with that physical record appears (or is
to appear) in noncontiguous locations in memory. For
example, if information in specific columns of two cards in
a file are to be stored in specific regions of memory, the
I/O command I ist might appear as follows:

1. Read ca rd, store col umns 1-10, data chai n.

2. Store columns 11-60, data chain.

3. Store columns 61-80, command chain.

4. Read card, store columns 1-40, data chain.

5. Store col umns 41-80.

The SIGMA 9 CPU plays a minor role in the execution of
an I/O operation. The CPU-executed program is respon
sible for creating and storing the command I ist (prepared
prior to the initiation of any I/O operation) and for
supplying the lOP with a pointer to the fi rst command in
the I/O command list. Most of the communication between
the CPU and the I/O system is carried out through memory.

The foil owi ng is an exampl e of the sequence of events that
occurs during an I/O operation:

1. A CPU-executed program writes a sequence of I/O
commands (doublewords) in memory.

2. The CPU executes the START IN PUT/OUTPUT (SIO)
instruction and furnishes the lOP with a 13-bit I/o
address (designating the device to be started) and a
21-bit first command address (designating the actual
memory doubleword location where the first command
for this device is located). At this point, either the
device is started (if in the "read/' condition with no
device interrupt pending) or an instruction reject occurs.
The CPU is informed by condition code settings which
of the two alternatives has occurred. If the SIO
instruction is accepted, the command counter portion
of the lOP register associated with the designated
device controller is loaded with the first command
address. From this time unti I the full sequence of I/O
commands has been executed, the main program of the
CPU need play no role in the I/O operation. At any
time, however, the CPU may obtain status information
on the progress of the I/O operation without interfering
with it.

3. The device is now in the "busy" condition. When the
device determines that it has the highest priority for
access to the lOP, it requests service from the lOP
with a service call. The lOP obtains the address of
the first command doubleword of the I/O sequence
(from the command counter associated with this
device). The lOP then fetches the I/O command dou
bleword from memory, loads the doubleword into another
register associated with the device, and transmits the
first order (extracted from the command doubleword)
to it.

4. Each command counter contains the memory address of
the current I/O command in the sequence for its
device. When the device requires further servicing,
it makes a request to the lOP, which then repeats a
process simi lar to that of step 3.

5. If a data transmission order has been sent to a device,
control of the transmission resides in it. As each char
acter is obtained by the I/Odevice, the lOP issignaled

Input/Output Operations 129

that data is available. The lOP uses the information
stored in its own registers to control the information
interchange between the I/O device and the memory,
on either a word-by-word or character-by-character
basis, depending on the nature of the device.

6. When all information exchanges called for by a single
I/O command doubleword have been completed, the
lOP uses the command counter to obtain the next com
mand doubleword for execution. This process continues
until all such command doublewords associated with the
I/O sequence have been executed.

OPERATIONAL COMMAND DOUBLEWORDS
Operational command doublewords have the following
format:

ORDER

Bit positions 0 through 7 of the command doubleword con
tain the I/O order for the device controller or device. The
I/O orders are shown belowt. Bits represented by the letter
"M" specify orders or special conditions to the device and
are unique for each type of device.

Bit posi tions
0 1 2 3 4 5 6 7 Order

M M M M M M 0 1 Write

M M M M M M 1 0 Read

M M M M M M Control

M M M M 0 0 0 Sense

M M M M 0 0 Read Backward

Write. The Write order causes certain device controllers
to initiate on output operation. Bytes are read in ascending
sequence from the memory location specified by. the memory
byte address field of the command doubleword. The output
operation continues until the device signals "channel end ll

,

Of until the byte count is reduced to 0 and no further data
chaining is specified. Channel end occurs when the device
has received a) I information associated with the output
operation, completed all checks, and no longer requires the
use of lOP facilities for the operation. Data chaining is
described later in this chapter.

tNot all I/O devices recognize all the orders shown. See
the particular Xerox SIGMA peripheral reference manual
for orders applicable to that device.

130 Operational Command Doublewords

Read. The Read order causes certain device controllers to
initiate an input operation. Bytes are stored in memory in
ascending sequence, beginning at theJocation specified by
the memory byte address field of the command doubleword.
The input operation continues until the device signals chan
nel end, or until the byte count is reduced to 0 and no data
chaining is specified. Channel end occurs when the device
has transmitted all information associated with the input
operation and no longer requires the use of lOP facilities
for the operation.

Control. The Control order is used to initiate special oper
ations by certain devices. For magnetic tape, it is used to
issue orders such as Rewind, Backspace Record, Backspace
File, etc. Most orders can be specified by the M bits of
the Control order; however, if additional information is
required for a particular operation (e. g., the starting address
of a disk seek), the memory byte address field of the com
mand doubleword specifies the starting address of the bytes
that are to be transmitted to the device controller for the
additional information. When all bytes necessary for the
operation have been transmitted, the device controller sig
nals channel end.

Sense. The Sense order causes certain devices to transmit
~ more bytes of information, describing its current
state. The bytes are stored in memory in ascending sequence,
beginning with the address specified by the memory byte
address field of the command doubleword. The number of
bytes transmitted is a function of the device and the condi
tion it describes. The Sense order can be used to obtain the
current sector address from a disk or RAD storage unit.

Read Backward. The Read Backward order causes certain
devices (at present, 9-track magnetic tape units) to be
started in reverse, and bytes to be transmitted to the lOP
for storage into memory in descending sequence, beginning
at the location specified by the memory byte address field
of the command doubleword. In all other respects, Read
Backward is identical to Read, inc! uding reducing the byte
count with each byte transmitted.

MEMORY am ADDRESS

For all operational I/O command doublewords, bit positions
8-31 of the doubleword provide a 24-bit memory byte
address, designating the memory location for the next byte
of data. For all orders other than Read Backward, this field
(as stored in an lOP register) is incremented by 1 for each
byte transmitted in the I/O operation; for the Read Back
ward order, the field is decremented by 1 for each byte
transmitted.

flAGS

For all operational I/O command doublewords, bit positions
32-39 of the doubleword provide the lOP with eight flogs
that specify how to handle chaining, error, and interrupt
situations.

T11e three flogs (lZC, ICE, and fU£) pertaining to lOP
interrupt action control whether the lOP will request an
I/O interrupt to be triggered when a specified condition
occurs during an I/O operation. These flags do not affect
the I/O interrupt levels. Furthermore, in order for the
flags to be effective, the I/O interrupt level (X I 5C') must
first be placed in the desired state (i. e. , armed and en
abled) via interrupt write control instructions (mode 1).

The functions of the eight flags are explained below.

Bit
Position Function

32 (DC) Data chain. If this flag is 1, data chaining is
called for when the current byte count is
reduced to O. The next command doubleword is
fetched and loaded into the lOP register asso
ciated with the device controller, but the new
order code is not passed out to the device con
troller; thus, the operation called for by the
previous order is continued. (Except for Transfer
in Channel command doublewords, which are
explained later in this chapter, the new command
doubleword is used only to supply a new memory
address, a new count, and new flags.) If the
data chain flag is 0, no further data chaining is
called for. Channel end is initiated either by
the device running out of information, or by the
byte count being reduced to O. At channel end,
the device may accept a new 510 instruction,
provided that a devi ce interrupt is not pending
and no "unusual end" condition exists.

33 (lZC) Interrupt at zero byte count. If this flag is],
the lOP requests the I/O interrupt (location
X I 5C') to be triggered when the byte count of
this command doubleword (as stored in the lOP
register) is reduced to O. An AIO instruction
executed after the interrupt is acknowledged
results in a 1 in bit position 10 of register R
(status information) to indicate the reason for
the interrupt.

34 (CC) Command chain. If this flag is 1, command
chaining is called for when channel end occurs.
If the previous operation did not terminate with
an "unusual end" condition, the next command
doubleword is fetched and loaded into the lOP
register associated with the device controller,
and the new order code is passed out to the
device controller. If the CC flag is 0, no
further command chaining is called for. If both
data and command chaining are called for in
the same command doubl eword, data chaining
occurs if the byte count is reduced to 0 before
channel end, and command chaining occurs if
channel end occurs before the byte count is
reduced to O.

Bit
Position Function

35 (ICE) Interrupt at channel end. If this flag is 1, the
lOP requests the I/O interrupt (location X I 5C')
to be triggered when channel end occurs for the
operation being controlled by this command
doubl eword. An AIO instruction executed after
the interrupt is acknowledged results in a 1 in
bit position 11 of register R (status information)
to indicate the reason for the interrupt. If the
ICE flag is 0, no interrupt is requested.

36 (HTE) Halt on transmission error. If this flag is 1, any
error condition associated with data transmission
(transmission data error, transmission memory
error, incorrect length error) detected in the
device controller or lOP results in halting the
I/O operation being controlled by this command
doubleword. If the HTE flag is 0, an error con
dition does not cause the I/O operation to halt,
although the error conditions are recorded in the
lOP register and returned as part of the status
information for the instructions 510, HIO, and
TIO.

The HTE flag must be coded identically in every
command doubleword associated with the same
physical record. This means that when data
chaining occurs, the HTE flag in the new lOP
command doubl eword must be the same as the
HTE flag in the previous lOP command double
word. This restriction applies to data chaining
only, and not to command chaining.

37 (IUE) Interrupt on unusual end. If this flag is 1,
the device controller requests the I/O inter
rupt (location X I 5C') to be triggered when an
"unusual end" condition is encountered. When
an "unusual end" condition is detected, further
servicing of the commands for that device is
suspended. An Ala instruction executed after
the interrupt is acknowledged results in a 1 in bit
position 12 of register R (status information) to
indicate the reason for the interrupt. If the IUE
flag is 0, no interrupt is requested.

38 (SIL) lrSuppress incorrect length. If this flag is 1, an
incorrect length indication by the device con
troller is not to be classified as an error by the
lOP, although the lOP retains the incorrect
length indication and provides an indicator (bit 8
of register Rul, the status response for 510, HIO,
Ala, and TIO) to the program. If the Sll flag
is 0, an incorrect length is considered an error
and the lOP performs as specified by the HTE
and IUE flags. Incorrect length is caused by a
"channel end" condition occurring before the
device controller has received a "count done"

Operational Command Doublewords 131

Bit
Position

38 (Sll)
(coot.)

39 (S)

Function

signal from the lOP, Of" is caused by the device
controller receiving a count done signal before
end of record, e. g., count done before 80 col
umns have been read frama card. Normally, a
count done signal is sent to the device controJ
ler by the lOP to indicate that aU data tronsfer
a'ssociated with the current operation has been
compjeted. The lOP is capable.of suppressing
an error condition on incorrect length, since
there are situations in which incorrect length
is not on error.

Skip.. If this flog is ., the input operation (Read
or Read Bockward) controlled by this command
doubJeworo continues normaUy,except that no
information is stored in memory. When used in
conjunction with data chaining, the skip opera
tion provides the capability for selective reQding
of portions of a record.

If the S ftag is 1 for an output {Write) operation,
the lOP does not access memory, but transmits
zeros os data instead (L e., the lOP transmits
the number of X100I bytes specified in the byte
count of the command doubleword). This allows
Q program to punch a blank card (by using the
S bit 'OOd 0 Punch Binary order with Q byte count
of 120) without requiring memory access for
data. Jfthe SAag is '0, the I/O operation
proceeds normally.

1m C8UIIT

Foran operotionaJ I/O command doublewonh, bit positions
<48-63 ·of the doublewom provide for (] 16 ... bit count of the
number of bytes to be transmitted in :the va operation;
thus, 1 to 65,536 bytes (16,384 words) con be specified
for tronsfer before command Of' data chaining is required.
This field (as stored in an lOP register) is decremented by
1 for each byte tronsmitted; thus, it always contains a
count of the number of bytes yet to be transmitted 10 or
·from memG'Y, and this count is returned as part of the
response information for the instructions, 510, HIO, no,
and TOV. An initial byte count of 0 is interpreted as
65,536 bytes.

In addition to the operational command doubJeword, there
(Ire two control command doublewords with different formats
that provlde control information for the lOP.

132 c.o.moJ Command Doublewonts

The Transfer in Channel command doubfeword has the
following fonnat:

T fander in Channel. The Transfer in Channel command is
executed within the lOP cnd has no direct effect on any of
the I/O system elements external to the addressed lOP. The
primary purpose of this command is to permit branching
within the command I ist so that the lOP can, for exampJe,
repeatedly transmit the same s·et of info.rmofiona number of
times. When the lOP executes the Transfer 1n Channel
command, it loads the command counter for the device
controller it is currently servicing with the next command
address fiefdof the Transfer in Channel command, loads
the new command doubleword specified by this address into
the lOP registers associated with the device controller, and
then executes the new command. (Bit positions 0-3, 8-10,
and 32-63 of the command doubleword for Transfer in Chan
nel are ignored.) Transfer in Channel thus allows a com
mand Jist to be broken into noncontiguous groups of
commands. When used in conjunction with command chain
ing, Transfer in Channel fad lita tes thecontroJ of devices
such as unbuffered card punches or unbuffered line printers.
)he current flags are not altered during this command; thus,
the type of chaining caHed for in the previous command
doubJeword is retained until changed by a command doubfe
word following Transfer in Channel.

For exompfe, assume that it is desired to present the same
cord image twelve times to an unbuffered card punch. The
punch counts the number of times that a record is presented
to it and, when twel ve rows have been punched, causes
the lOP to skip the -command it wouJd be e~ecuting next~
Thus, a command Hst for punching two cards might look
like the following example:

l.ocation

A

8

Command

Punch row for card 1, command chain.

Transfer in Channel to A.

Punch row for card 2, command chain.

T mnsfer in Diannel to B.

Stop.

The Tronsfer in Channel command abo cao be used in con
lunction with data chaining. As one example, consider a
situation often encountered in data acquisition appl ications,
where data is hunsmitted in extremely long, continuous
streams. In this case, the data can be stored altemately in
two or more buffer stora'geareas so that computer processing

can be carried out on the data in one bufferwhileadditional
data is being input into the other buffer. The command list
for such an application might look like the following
example:

Location

A

Command

Read data, store into buffer 1, data chai n.

Store into buffer 2, data chain.

Transfer in Channel to A.

If the lOP encounters two successive Transfer in Channel
commands, this is considered an lOP control error, resulting
in the lOP setting the lOP control error status bit (bit 13
of register Rul) and issuing an 1I10P Halt" signal to the
device controller. The lOP then halts further servicing of
this command list.

The Stop command doubl eword has the following formats:

Stop. The Stop command causes certain devi ces to stop,
generate a IIchannel end" condition, and also request the
I/O interrupt (location X'5C') to be triggered if bit 0 in
the Stop command is a 1. An Ala instruction executed
aftedhe interrupt is acknowledged results ina 1 in bit posi
tion 7 of register R (status information) to indicate the rea
son for the interrupt. (Bit positions 32-39 of the command
doubleword for Stop must be zero; bit positions 8-31 and
40-63 are ignored). The Stop command is primarily used
to terminate a command chain for an unbuffered device,
as illustrated in the first example given for the Transfer in
Channel command.

Control Command Doublewords 133

5. OPERATOR CONTROLS·

PROCESSOR CONTROL PANEL

The SIGMA 9 processo r control panel (PC P) is shown in
Figure 12 . The controls and indicators are divided into two
sections. The upper section, which is labeled MAINTE
NANCE SECTION, contains most of the controls and indi
ca tors used by maintenance personnel. The DISPLAY
FORMAT indicator and FORMAT SEL switch located in. the
lower secti on are a lso prima ril y used by maintenance per
sonnel. All other controls and indicators located in the
lower section of the PCP are normally used by operating
personnel to load, e xe cute, and t roubleshoot programs.

A three -positi on rotary sw itch, located in the upper left
ha nd corner and labeled EXT CONT/ LOCAL NORM/ LOCAL
MAINT, is a control mode selector for the PCP. It is set

Xerox Data Systems

either to the LOCAL NORM position for normal operations
or to the LOCAL MAJNT position for ma'intenance operations.
The EXT CONT position is reserved for future use. Hereafter,
this switch will be referred to as the Control' Mode switch.

CONTROL MODE

When the Control Mode switch is in the LOCAL MAINT
position, all switches on the control panel are enabl ed.
When the Control Mode switch is in the LOCAL NORM
position, all switches are enabled except the following:

1. The FORMAT SEL switch is disabled and forced to
appear in the NORMAL pos ition, regardless of the
position of that switch.

________________ >.,t .$ f1 ~!· .. Jl:kl'>H':{'''i----------------. ,,) v ...• U (IXXXXX"»XIX»"'X)

\) ... -'.

•• •••• ••••••• ••
(X I fa I Xx i'l {i IIIIIXXXIXIXIXIX)

i I

I I I I I v I I·· I .. '"

li lt I IX lUll XX I II IIX II XX II ~XI nx II ~
''''' , I I ' I

J I
' . '. .. • I . . : .~.:-

. .
-f.c(~~~ .. . 't~~" ~. • .. " • ,.. • :. •

Figure 12. Processor Control Panel

134 Operator Controls

2. The SNAP switches are disabled.

3. The EXT DIO switch is disabled.

4. The CLOCK MARGINS switch is disabled and forced
to appear in the NORM position.

5. The CLOCK MODE switch is disabled and forced to
appear in the CONT position.

6. The SCAN switches are disabled.

POWER

The POWER switch controls ac power to the central pro
cessor and to units under its direct control. The POWER
indicator is I ighted when ac power is on.

MEMORY CLEAR

The MEMORY CLEAR switch clears all CPU memory. When
this switch is pressed, the SCAN light illuminates and
remains on until all memory is cleared. The contents of
the general registers remain unaltered during the operation.
It is recommended that CPU RESET be pressed before using
the MEMORY CLEAR switch. Homespace bias is automati
cally suppressed during the clear operation.

SYS RESET

The SYS RESET (system reset) switch performs the combined
functions of the CPU RESET switch and the I/O RESET switch.
The SYS RESET switch also initial izes all memories con
nected to the system. The initialization of memories does
not change the contents of any memory locations; onl y
memory port logic is reset.

UNIT ADDRESS

Four UNIT ADDRESS switches select the peripheral unit to
be used in the loading process. The two switches on the
left designate an input/output processor (lOP). The left
most switch has two positions, numbered 0 and 1. The next
switch has 16 positions, numbered hexadecimally 0 through F.
The two rightmost switches each have 16 positions, num
bered hexadecimally 0 through F, which designate the
device controller/device that is under control of the
selected lOP.

SENSE

The four SENSE switches and indi cators are monitored under
program control to set the condition code portion of the
program status doubl eword (PSD). When a READ DIRECT
instruction is executed in the internal control mode, the
condition code is set according to the state of the four
SENSE switches. If a SENSE switch is in the set (1) position
(indicator lighted), the corresponding bit of the condition
code is set to 1; if a SENSE switch is in the reset (0) posi
tion (indicator unl ighted), the corresponding bit of the con
dition code is reset to O.

NOT NORMAL

The NOT NORMAL indicator informs the user that normal
program execution may be inhibited by the PCP. The NOT
NORMAL indicator is lighted when any of the following
occurs:

1. The Control Mode switch is in the LOCAL MAINT
position.

2. The DECIMAL OVERRIDE switch is in the OVERRIDE
position.

3. The INTERLEAVE SE L switch is in the DISABLE
1/0 RESET position.

The I/O RESET switch initial izes the standard input/output
system. When the switch is pressed, all peripheral devices
under control of the centra I processor are reset to the
"ready" condition, and all status, interrupt, and control
indicators in the input/output system are reset. The I/O
RESET switch does not affect the central processor.

LOAD

The LOAD switch is active only when the COMPUTE switch
is in the IDLE position. When this momentary action switch
is pressed, a load program is written into memory locations
X'22 1 through X' 2B ' for an input operation that uses the
peripheral unit selected by the UNIT ADDRESS switches.
CPU RESET or SYSTEM RESET must be performed before
using this switch.

Detailed loading operation is described in the section
"Loading Operation".

4. The W.D. TIMER switch is in the OVERRIDE
posi tion.

5. The MEMORY FAULT switch is in the HALT
position.

6. The CPU power supply voltage is not normal.

When the NOT NORMAL momentary action switch is
depressed, a control panel lamp test is performed. This
test turns on all indicators in the MAINTENANCE section,
the DISPLAY lights, and the STOP and NOT HERE lights,
without affecting machine operation.

HALT

The HALT indicator is lighted when the CPU is in the IDLE
state.

Processor Control Panel 135

WAIT

The WAIT indicator is lighted when any of the following
halt conditions exists:

1. The computer has executed a WAIT instruction.

2. The CPU RESET or SYS RESET switch is pressed when
the COMPUTE switch is in the IDLE position.

3. The COMPUTE switch is in the IDLE position and the
SYSTEM POWER switch turns power on or power is
applied to the CPU. •

RUN

The RUN indicator is lighted when the COMPUTE switch is
in the RUN position.

PROGRAM STATUS DOUBLEWORD INDICATORS

Two rows of binary indicators display the current PSD.
For convenience, the second portion of the PSD, labeled
PSW2, is arranged above the first portion, labeled PSW1.
The PSD display consists of the indicators shown in
Table 25.

Table 25. Program Status Doubleword (PSD) Indicators

PSD PSD Bit PSD
Portion Indicator Function Position Designation

PSW2 WRITE KEY Write key status 34,35 WK

INTRPT INHIB Interrupt inhibits status

CI Counter interrupt group inhibit 37 CI

II Input/output interrupt group inhibit 38 II

EI External interrupt inhibit 39 EI

MA Mode altered 40 MA

EXT ADDR Extension address 42-47 EA

POINTER Register block pointer 58-59 RP

PSW1 COND CODE Condition code

1 Condition code 1 0 CC1

2 Condition code 2 1 CC2

3 Condition code 3 2 CC3

4 Condition code 4 3 CC4

FLOAT MODE Floating-point mode controls

SIG Significance trap mask 5 FS

ZERO Zero trap mask 6 FZ

NRMZ No rma Ii ze mask 7 FN

MODE Computer mode and memory map controls
(

SLY Master/slave mode control 8 MS

MAP Memory map control 9 MM

136 Processor Control Panel 90 17 33C- T{4/74)

T~ble25. Program Status Doubleword (PSD) Indicators (cont.)

PSD PSD Bit PSD
Portion Indicator Function Position Designation

PSW1 TRAP Arithmetic trap mask
(cont.)

DEC Decimal arithmetic fault trap mask ·10 DM

AR Fixed-point arithmetic overflow trap mask 11 AM

ASCI ANSCII mask 12 AS

INSTRUCTION Instruction address or extension selector/displacement 15-31 IA
ADDRESS

Extension selector

Displacement

INSERT

The INSERT switch permits manual changes to the PSD. The
switch is stationary and inactive in the center (normal)
position and momentary in the upper (PSW2) and lower
(PSWl) positions. When the INSERT switch is moved to the
PSW1 or PSW2 position, the corresponding half of the PSD
is changed, as necessary, and the corresponding indicators
display the information that has been entered from the 32
DATA switches located at the bottom of the control panel.
The INSERT switch is active only when the COMPUTE
switch is in the IDLE position.

CPU RESET

The CPU RESET switch initializes the central processor.
When this switch is pressed, the following operations are
performed:

1. All interrupt levels are reset to the disarmed and dis
abled state.

2. The ALARM indicators (visual and audio) are reset.

3. All PSD bits are reset except for the INSTRUCTION
ADDRESS.

4. The INSTRUCTION ADDRESS indicators are set to
X'26 1

•

5. The WAIT indicator is set, indicating the CPU is in
the WAIT state.

The CPU RESET switch does not affect any operation that
may be in process in the standard input/output system and
is active only if the COMPUTE switch is in the IDLE
position.

90 17 33C-1(4/74)

15 ES

16-31 D

INTERRUPT

The operator uses the INTERRUPT switch to activate the
control panel interrupt. If the control panel interrupt
(level X'5D') is armed when the INTERRUPT switch is
pressed, a single pulse is transmitted to the interrupt level,
advancing it to the waiting state. The INTERRUPT indica
tor is lighted when the control panel interrupt level is in
the waiting or active state. If the control panel interrupt
level is disarmed (or already in the active state) when the
INTERRUPT switch is pressed, no computer or control panel
action occurs. The INTERRUPT indicator goes off only when
the level leaves these states and the switch is released.
Thus, the light indicates that pushing the switch triggered
the interrupt and that no new interrupt can be triggered unti I
the switch is released and the level is cleared. The INTER
RUPT switch is always operative.

ADDRESS STOP

The ADDRESS STOP section of the control panel consists of
two switches, a STOP indicator, and a NOT HERE indicator.

The two ADDRESS STOP switches latch in all positions and
are labeled INSTR/NORM/MEM REF and PAGE/WORD/WD/
WRT. They are used in conjunction with the SE LECT AD
DRESS switches and the COMPUTE switch to cause the CPU
to establish a halt condition and turn on the ADDRESS STOP
indicator whenever the CPU accesses a selected instruction
or a rea I memory address.

PAGEjWORD/WD/WRT

When the PAGE/WORD/WD/WRT switch is in the PAGE
position, it causes the address stop feature to ignore the
nine least significant SELECT ADDRESS switches. In effect,
this enables the address stop feature when any word in a
selected page is addressed.

Processor Control Panel 137

When the PAGE/WORD/WD/WRT switch is in the WORD
position, 22 SELECT ADDRESS switches specify an address.
Note that although there are 24 SE LEeT ADDRESS switches,
the two leftmost switches are not used during address stop
operations.

When the PAGE/WORD/WD/WRT switch is in the WD/WRT
position (word write), al I actions of the WORD positions
of the switch apply. However, memory reference address
stops are enabled only for memory write cycles.

INSTR/NORM/MEM REF

When the INSTR/NORM/MEM REF (instruction/normal/
memory reference) switch is in the NORM position, it is
inactive and the address stop feature is inhibited.

When this switch is in the MEM REF position and the COM
PUTE switch is in the RUN position, a halt condition occurs
when the CPU accesses a real memory reference address
equal to the address contained by the 22 SELECT ADDRESS
switches, subject to the constraints of the PAGE/WORD/
WD/WRT switch, as described above. The value of the
INSTRUCTION ADDRESS indicators at the time of the halt
is determined by the sequence of instructions being exe
cuted at the time of memory reference.

When the INSTR/NORM/MEM REF switch is in the INSTR
position and the COMPUTE switch is in the RUN position,
a halt condition occurs when the CPU accesses an instruc
tion whose virtual address is equal to that contained in the
17 least significant SE LECT ADDRESS switches, subject to
the constraints of the PAGE/WORD/WD/WRT switch. The
INSTRUCTION ADDRESS indicators at the time of the halt
normally will equal the SE LECT ADDRESS value, and the
instruction pointed to by the INSTRUCTION ADDRESS will
appear on the DISPLAY indicators.

The ADDRESS STOP halt condition is reset when the
COMPUTE switch is moved from RUN to IDLE; if the
COMPUTE switch is then moved back to RUN (or to STEP),
the instruction shown in the DISPLAY indicators is the next
instruction executed. No interrupt is allowed to proceed
from the waiting to the active state whi Ie the ADDRESS
STOP halt condition exists.

The ADDRESS STOP function is disabled during the time
that the S NAP is armed.

STOP

The STOP indicator lights to indicate that the machine has
halted due to either an INSTR-ADDRESS STOP or MEM REF
ADDRESS STOP. The STOP indicator is turned off when
the COMPUTE switch is moved from RUN to IDLE.

NOT HERE

The NOT HERE indicator is lighted whenever a nonexistent
memory location is referenced. It is automatically reset at
the end of each memory cycle, or when the RESET switch is
depressed.

138 Processor Control Panel

SELECT ADDRESS

The SE LECT ADDRESS switches are used in conjunction
with

1. The ADDRESS STOP switches (INSTR/NORM/MEM
REF and PAGE/WORD/WD/WRT) to select the virtual
or real address at which a program wi" be halted.

2. The STORE switch to select the location to be altered.

3. The DISPLAY switch to select the word to be displayed.

4. The SCAN MODE switches to establish an upper bound
ary of the memory scan operation.

5. The SCAN-START ADDR switch to enter a starting
address of the memory scan operation.

6. The EXT DIO switch to determine the DIO address lines.

Each SE LECT ADDRESS switch represents a 1 in the upper
position or a 0 in the lower position.

STORE

The STORE switch alters the contents of a general register
or a memory location. The switch is stationary and inactive
in the center (unmarked) position and momentary in the
INSTR ADDR and SE LECT ADDR positions. When the switch
is moved to the INSTR ADDR position, the current value of
the DATA switches is stored in the location pointed to by
the INSTRUCTION ADDRESS indicators; when the switch is
moved to the SELECT ADDR position, the current value of
the DATA switches is stored in the location pointed to by
the SE LEeT ADDRESS switches. The address is modified by
the computer mode bits of the PSD. The contents of the
addressed location are altered regardless of write protection.
The STORE switch is active only when the COMPUTE switch
is in the IDLE position.

INSTR ADDR

The INSTR ADDR (instruction address) switch is latching and
inactive in the NORM position, latching in the HOLD posi
tion, and momentary in the INCRM position.

When the INSTR ADDR switch is in the HOLD position, the
normal process of incrementing the INSTRUCTION ADDRESS
portion of the PSD with each instruction execution is inhib
ited. With the INSTR ADDR switch in the HOLD position
and the COMPUTE switch in the RUN position, the instruc
tion in the location pointed to by the value of the INSTRUC
TION ADDRESS indicators is executed repeatedly, with the
INSTRUCTION ADDRESS indicators remaining unchanged.
Moving the COMPUTE switch to the momentary STEP posi
tion whi Ie the INSTR ADDR switch is in the HOLD position
causes the instruction in the location pointed to by the value
of the INSTRUCTION ADDRESS indicators to be executed
once each time the COMPUTE switch is moved to the STEP
position. The INSTRUCTION ADDRESS indicators normally

remain unchanged. During HOLD operations, the
INSTRUCTION ADDRESS may be altered as a result of a
trap, interrupt, LPSD, XPSD, or branch instruction.

Each time the INSTR ADDR switch is moved from the NORM
position to the INCRM position, the following operations
are performed:

1. The current value of the INSTRUCTION ADDRESS
indicators is incremented by 1.

2. Using the new value of the INSTRUCTION ADDRESS
indicators as a virtual address value (i. e., subject to
the current memory map if the MAP mode indicator is
lighted), the contents of the location pointed to by
the INSTRUCTION ADDRESS are displayed in the
DISPLAY indicators.

If the final memory address is nonexistent, the CPU does
not trap and the DISPLAY indicators are indeterminate.
The access protection status of the virtual address does not
affect the operation of the INSTR ADDR switch.

DISPLAY (INDICATORS)

The 32 DISPLAY indicators may display an instruction, data
word, or maintenance data. When the Control Mode switch
is in the LOCAL NORM position, the FORMAT SEL switch
is forced into the NORMAL mode and the DISPLAY switch,
COMPUTE switch, and INSTR ADDR switch can be used to
display the contents of a memory location or the current
contents of the internal CPU instruction register.

When the DISPLAY switch is placed in the INSTR ADDR
position, the contents of the location indicated by the
INSTRUCTION ADDRESS indicators are displayed in the
DISPLAY indicators. When the DISPLAY switch is placed
in the SE LECT ADDR position, the contents of the location
selected by the SE LECT ADDRESS switches is displayed in
the DISPLAY indicators. When the INSTR ADDR switch is
placed in the INCRM position, the INSTRUCTION ADDRESS
is incremented by one and the contents of the location is
displayed in the DISPLAY indicators.

When the COMPUTE switch is placed in the STEP position,
the contents of the location displayed in the INSTRUCTION
ADD'RESS will be executed and the next instruction in the
sequence in the internal CPU instruction register will be
displayed in the DISPLAY indicators.

To display maintenance data, the Control Mode switch must
be in the LOCAL MAINT position, and the FORMAT SEL
switch may be placed in either the CONTROL position or
the RE GISTER position to have control words or internal
register contents displayed in the DISPLAY indicators. The
specific control word or internal register selected is con
trolled by the thumbwhee I adjacent to the roll chart on the
DISPLAY FORMAT.

DISPLAY FORMAT

The DISPLAY FORMAT feature, which is used by mainte
nance personnel, is inactive whenever the Control Mode
switch is in the LOCAL NORM position. A chart comprised
of 16 lines of printed information is mounted on a roller lo
cated directly behind the slot in the panel labeled DISPLAY
FORMAT. Associated with the chart is a 16-position switch
(thumbwheel-actuated) and a 3-position FORMAT SEL
switch, which selects various internal registers of the CPU
for display.

FORMAT SEt

The 3-position FORMAT SEL (format select) switch is labeled
CONTROL/NORMAL/REGISTER. In the NORMAL position,
the DISPLAY I ights show the CPU internal instruction regis
ter, and the DISPLAY FORMAT and FORMAT SEL features
are inactive. When the Control Mode switch is not in the
LOCAL MAINT position, the FORMAT SE L switch is over
ridden and the DISPLAY indicators always show the CPU
internal instruction register (NORMAL position). When the
FORMAT SE L switch is in either the RE GISTER position or
the CONTROL position, and the Control Mode switch is in
the LOCAL MAINT position, the DISPLAY indicators are
used primarily for maintenance and/or diagnostic operations.
In the RE GISTER position, the contents of the selected in
ternal register (indicated by the line on the panel that is
drawn from the legend "REGISTER" to the display window)
will appear in the DISPLAY indicators. In the CONTROL
position, specific control information (indicated by the line
on the panel that is drawn from the legend "CONTROL" to
the display window), as indicated by the display format
labels, appears in the DISPLAY indicators. The definitions
of the individual labels on the display format chart are
found in the glossary for the appropriate SIGMA 9 Engi
neering Support Manual (CPU, Publication 90 24 35;
Decimal, Publication 90 2436).

DATA

The 32 DATA switches alter the contents of the PSD when
used in conjunction with the INSERT switch, or alter the
contents of memory or a general register when used in con
junction with the STORE switch. Each DATA switch is
latching in both the upper and center positions. In the
center position, a DATA switch represents a 0; in the upper
position, a 1.

DISPLAY (SWITCH)

The DISPLAY switch displays the contents of a general regis
ter or a memory location. The DISPLAY switch is stationary
and inactive in the center (unmarked) position and momen
tary in the INSTR ADDR and SELECT ADDR positions. When
the switch is moved to the INSTR ADDR or SELECT ADDR
position, the contents of the location pointed to by the
INSTRUCTION ADDRESS indicators or the SELECT ADDRESS
switches, respectively, are shown in the DISPLAY indicators.

Processor Control Panel 139

The real memory address is modified according to the CPU
mode bits of the PSD.

If the final memory address is nonexistent, the CPU does
not trap and the DISPLAY indicators are indeterminate.
The access protection status of the virtual memory does not
affect the operation of the DISPLA Yswitch. The DISPLAY
switch is active only when the COMPUTE switch is in the
IDLE posi tion.

COMPUlE

The COMPUTE switch controls the execution of instruc
tions. The IDLE and RUN positions are both latching; the
STEP position is momentary. When the COMPUTE switch
is in the IDLE position, all other control panel switches
are operative and the ADDRESS STOP halt and the WAIT
instruction halt conditions are reset (cleared). No inter
rupts are allowed in this mode.

When the COMPUTE switch is moved from IDLE to RUN,
the RUN indicator is lighted and the current setting of the
INSTRUCTION ADDRESS indicators is taken as the address
of the next instruction to be executed, regardless of the
contents of the DISPLAY indicators.

When the COMPUTE switch is in the RUN position, the
only operative switches are POWER, INTERRUPT, ADDRESS
STOP, INSTR ADDR (in the HOLD position), and the
switches in the maintenance section except SCAN, EXT
DIO, and SNAP ENTER.

Each time the COMPUTE switch is moved from IDLE to
STEP, the following operations occur:

1. The instruction pointed to by the current value of the
INSTRUCTION ADDRESS indicators is executed.

2. The current value of the INSTRUCTION ADDRESS
indicators is incremented by 1. If the "stepped ll in
struction (executed by moving the COMPUTE switch
from IDLE to STEP) is a branch instruction and the
branch should occur, the INSTRUCTION ADDRESS
indicators are set to the value of the effective address
of the branch instruction.

3. The instruction in the location pointed to by the new
value of the INSTRUCTION ADDRESS indicators is
displayed in the DISPLAY indicators.

If an instruction is being stepped, all interrupt levels are
temporarily inhibited while the instruction is being exe
cuted; however, a trap condition can occur while the
instruction is being executed. In this case, the XPSD
instruction in the appropriate trap location is executed as
if the COMPUTE switch were in the RUN position. Thus,
if a trap condition occurs during a stepped instruction, the
PSD display automatically reflects the effects of the XPSD
instruction, and the DISPLAY indicators then contain the
first instruction of the trap routine.

140 Maintenance Controls

MAINTENANCE CONTROLS

The controls and indicators located in the MAINTENANCE
SECTION of the PCP, as well as the DISPLAY FORMAT and
FORMAT SE L switches (described previously), are used pri
mari Iy duri n9 computer maintenance and diagnosfi c operations.

AlARM

Audio and visual alarms mey be used toattract the computer
operator1s attention. The alarms are turned on and off
(under program control) by executing a properly coded
WRITE DIRECT instruction. When the visual ALARM indi
cator is lighted and the AUDIO switch is ON, a lOOO-Hz
signal is sent to the computer speaker; when the AUDIO
switch is not in the ON position, the speaker is discon
nected. (The AUDIO switch does not affect the state of
the visual ALARM indicator.) The ALARM indicator is
reset (turned off) whenever either the CPU RESET or the
SYS RESET switch is pressed or a properly coded WRITE
DIRECT instruction is executed.

The AUDIO switch controls all signals to the computer
speaker, whether from the lOOO-Hz signal or program
controlled frequency fl ip-flop.

PDF

The PDF (processor detected fault) indicator is on when the
PDF flag is set (see Chapter 2, Trap System, Processor
Detected Faults).

CLOCK MARGINS

The CPU clock frequency may be changed to values above
and below the normal operating values by manually setting
the CLOCK MARGIN switch or by programming via an
appropriate internal WRITE DIRECT instruction. The CLOCK
MARGIN switch overrides program control when set to the
FAST or SLOW position. When set to the NORMAL posi
tion, clock margins are under program control. The NOT
NORM clock indicator will be lighted whenever the clock
frequency is not normal due to programming or switch set
tings of FAST or SLOW.

PHASES

The PHASES indicators disp1ay certain internal operating
phases of the computer. The PREPARATION indicators dis
play computer phases during preparation sequences. The
PCP indicators display computer phases during processor con
trol panel operations. The EXECUTION indicators display
computer phases during the execution portlon of an instruc
tion cycle. The INT/TRAP {interrupt/trap} indicators are
individually lighted when an interrupt or a trap condition
occurs. When the COMPUTE switch is in the IDLE position,
all PHASES indicators are normally off except for the right
most PCP indicator (indicating the idle phase for processor
control panel functions).

CLOCK MOOt

The CLOCK MODE switch controls the internal computer
clock. When the switch is in the CONT (continuous) posi
tion, the clock operates at normal speed. However, when
the CLOCK MODE switch is in the inactive {center} posi
tion, the c lock enters an idle state and can be made to
generate one clock pulse each time the switch is moved to
the SINGLE- STEP position. When the clock is pulsed by
the CLOCK MODE switch, the PHASES indicators reflect
the computer phase during each pulse of the clock.

SNAP

All logic that is displayable on the PCP can be monitored
with the snapshot control logic. Snapshot control logic is
preset {armed} by executing a WRITE DIRECT (Load Snap
shot Control Register) instruction or, when the COM PUTE
switch is in the IDLE position, by moving the SNAP ENTER
switch to the ENTER position. Moving the ENTER switch
from the latching and inactive center position selects the
following conditions {duplicates the function performed by
the appropriate internal WRITE DIRECT instruction}:

loA c lock count number{obtained from DATA switches 0-7).

2. An interrupt flag (obtained from DATA switch 8). If
this bit is equal to 1, the PCP interrupt is triggered at
the time the snapshot occurs.

3. DAT A swi tch 9 must be set to 0 {down position}.

4. A register or group of control elements to be recorded
(obtained from DATA switches 10-14).

5. A virtual instruction address (obtained from DATA
switches 15-31).

When the COMPUTE switch is in the RUN position and the
selected virtual address matches the instruction address of
the PSD, the clock counter is decremented by each CPU
clock pulse, starting with the first phase of execution.
When the clock counter reaches a value of one, the
selected logic is clocked by the current selected CPU
clock into a 32-bit "snap" register and the snap condition
is reset. The contents of the "snap" register can then be
recorded by a READ DIRECT instruction under program con
trol or visually displayed with the use of FORMAT SEL and
DISPLAY FORMAT switches. The SNAP STOP switch can
be used to stop the clock at time of the snap condition by
setting it to the ON position. This switch is inactive in the
NORM position. The halt condition, resulting from the
SNAP STOP switch stoppi ng clock at snap time, can be re
set by placing the STOP switch to the NORM position,
which disables the STOP switch, or by placing the CLOCK
MODE switch to center (unmarked) position, which keeps
the clock stopped, then moving the 'SNAP STOP switch to
the NORM position and SINGLE STEP the CLOCK MODE
switch to reset the stop on snap condition, and then set the
CLOCK MODE switch to CONT position.

SNAP MODE

The SNAP MODE indicator shows that the snap feature is
armed and waiting to "snap", and is reset only if the snap
has occurred or CPU RESET, SYS RESET, or a READ DIRECT
for the SNAP register has been performed.

MEMORY MODE

MEMORY MODE switches and indicator are comprised of
an INTERLEAVE SE L switch, a MEMORY FAULT switch,
and a MEMORY FAULT indicator.

INTERLEAVE SE L

When the INTERLEAVE SE L (interleave select) switch is in
the NORM position, memory address interleaving occurs
normally depending on the interleave switches of the mem
ory; however, when the switch is in the DISABLE position,
memory addresses are not interleaved between memory banks.

MEMORY FAULT

The MEMORY FAULT switch in the CONT position has no
effect on the CPU operation, but enables the MEMORY
FAULT light to display the state of the Memory Fault Inter
rupt I ine in addition to momentari Iy displaying a CPU
detected bus or core parity error condition. When it is set
to the HALT position, a CPU-detected parity error {core
or bus} resulting from a memory operation wi II establish a
CPU halt condition by stopping the CPU clock at the time
of detection. At this time the MEMORY FAULT light is
on, but the sta te of the Memory Fau rt In terrupt line is not
displayed. The halt condition is cleared by CPU RESET,
SYS RESET, or by setting the MEMORY FAULT switch to
the CONT position.

OVERRIDE MODE

The OVERRIDE MODE portion of the control panel consists
of the W. D. TIMER switch and the DECIMAL switch.

W. D. TIMER

When the W. D. TIMER (watchdog timer) switch is in the
NORM position, the watchdog timer is operative; when
the switch is in the OVERRIDE position, the watchdog timer
is inactive.

DECIMAL

When the DECIMAL switch is in the OVERRIDE position,
the decimal unit appears nonexistent to the CPU. When
the DECIMAL switch is in the NORM position, the switch
is inactive. The switch is latching in both positions.

SCAN

The SCAN portion of the control panel consists of the
MODE switch, SCAN light, MEMORY MODE switch, and
START AD DR switch. These controls enable the operator to
continuously cycle memory between selected lower and
upper addresses at a rate s'imutating the faster CPU operation
with memory. Only memory is affected. All the switches

Maintenance Controls 141

are active only when the COMPUTE switch is in the IDLE
position. Homespace bias is suppressed during the scan
operation.

Prior to using this feature, the MAP mode bit of the PSD
must be reset.

The starting address (first address read or modified by the
scan operation) is entered by using the START ADDR
switch in conjunction with the SELECT ADDRESS switches,
which are active only when the COMPUTE switch is in the
IDLE position.. Placing the START ADDR switch in the
ENTER position enters the contents of the SELECT ADDRESS
switches into an internal CPU register (P), which designates
a starti ng address.

The upper address (the last address read or modified by the
scan operation) is then set into the SELECT ADDRESS
switches, and the ADDRESS STOP switch set to the MEM
REF position.

The memory scan operation can be initiated by first
placing the MEMORY MODE switch to DATA (for a store
or display) or CLEAR (only for a store operation), then the
MODE switch to STORE or DISPLAY. When this is per
formed, the scan operation starts continuously reading
from or storing into consecutive memory locations, as a
function of whether the MODE switch was set to DISPLAY
or STORE, respectively. The scan operation begins with
the starting address (set into P), and continues until the
real memory address equals the value of the SELECT AD
DRESS switches. Then, if the ADDRESS STOP switch is
set to MEM REF, the scan continues again from the starting
address. If the ADDRESS STOP switch is in the NORM
position, all memory will be scanned. The scan operation
continues indefinitely in this manner until the MEMORY
MODE switch is set to the NORM position, which forces
the CPU to the IDLE state. The SCAN light is on during
the memory scan operation.

During a store scan, if the MEMORY MODE switch is set
to DATA, the contents of the DATA swi tches are wri tten
into memory. If the MEMORY MODE switch is set to
CLEAR, the memory is cleared in the "operational" mode.

During a display scan, the MEMORY MODE switch must
be in the DATA position. Data from memory is displayed
on the DISPLAY lights when the display is selecting the
CPU bus.

The MEMORY FAULT switch can be used during the scan
to halt the operation on a memory parity error. At the time
of the haft, the memory parity error light is on and the
DISPLAY lights indicate the failing data when the display
is selecting the CPU bus. CPU RESET will reset this
condition.

MODE

The MODE switch is effective only when the COMPUTE
switch is in the IDLE position and the Control Mode switch is
in the LOCAL MAINT position. This is a three-position

142 Maintenance Controls

switch, latching in the inactive center position and mo
mentary in the DISPLAY and STORE positions where it
initiates a memory scan operation in conjunction with the
MEMORY MODE switch.

MEMORY MODE

The MEMORY MODE switch isa three-position (all latching)
switch, which must be set to either the DATA or CLEAR po
sition, prior to setting the MODE switch to STORE or DIS
PLAY to start a scan operation. The memory scan operation
is terminated when the MEMORY MODE switch is returned
to NORM.

START ADDR - LMS

The START AD DR switch is effective only when the COM
PUTE switch is in the IDLE position and the Control Mode
switch is in the LOCAL MAINT position. This is a three
position switch, latching in the center position where it is
inactive. In the momentary ENTER position, it enters the
state of the SE LECT ADDRESS switches into an internal CPU
register (P), which designates the starting address of the
scan. In the momentary STAT 0 position, the contents of
the SE LECT ADDRESS switches determi ne the memory address
of an LMS operation that performs a read status word zero
without changing the memory status bits. The status word
is returned to the DISPLAY indicators.

SCAN

The SCAN indicator is on during memory scan operations
initiated by the MODE switch or the MEMORY CLEAR
switch.

EXT DID

The EXT 010 {external direct input/output) switch controls
the DIO interface directly from the PCP switches. This switch
isactive onlywhen the COMPUTE switch is in the IDLE position.

When the EXT 010 switch is in the momentary RD (read
direct) position, the least significant 16 switches of the
SELECT ADDRESS switches directly control the DIO address
lines. The read/write direct line on the DIO interface is
set to indicate a read direct operation. The read direct
operation is completed with the data response returned to
the SNAP register.

The WD (write direct) position is also momentary. Opera
tions in the WD position are the same as described above for
the RD position, except that the contents of the DATA
switches are .sent on the DIO data lines, and the read/write
direct line indicates a write direct operation.

The EXT 010 switch is inactive in the center position
(latching).

OPERATING PROCEDURES

LOADING OPERATION

This section describes the procedures for initially loading
programs into memory from certain peripheral units attached
to an input/output processor (lOP) in the SIGMA 9 system.
The computer operator may initiate a loading program from
the processor control panel (with the Control Mode switch
in the LOCAL MAINT or LOCAL NORM position).

BOOTSTRAP LOADIN G PROGRAM

The LOAD switch and the UNIT ADDRESS switches prepare
a SIGMA 9 computer for a load operation. When the
LOAD switch is pressed, the following bootstrap program
is stored in memory locations Xl221 through XI2BI:

Location
(Hex.) (Dec.)

22 34

23 35

24 36

25 37

> 26 38

27 39

28 40

29 41

2A 42

2B 43

Contents
(Hexadeci ma I)

221 J0029

64100023

68000028

OOOOxxxx.

22Oyy01S
tt

CCOOOO25

CDOOOO25

69COO022

02yyOOA8
tt

OEOOO058

Symbolic Form
of Instructi on

LI, 1

BDR, 1

BCR, 0 40

LI,O

SIO, 0 *37

TIO,O *37

BCS, 12 34

When the LOAD switch is pressed, the selected peripheral
device is not activated and no other indicators or controls
are affected; only memory is altered.

tThe XiS in location XI251 represent the value of the UNIT
ADDRESS switches at the time the LOAD switch is pressed.
The values can range from XI 0000 I to Xl1 FFP.

ttThe yls in locations XI261 and XI2AI represent the value
of the Homespace bias at the time the LOAD switch is
pressed. Homespace bias is loaded automatically (from
Hoinespace bias switches) into bit positions 13 through 18
in Xl261 and bit posi'tions 10 through 15 in XI2AI.

LOAD PROCE DURE

To ensure correct loading operation, the following sequence
should always be used to initiate the loading process:

1. Place the COMPUTE switch in the IDLE position.

2. Press the SYS RESET switch.

3. Set the UNIT ADDRESS switches to the address of the
desired peripheral unit.

4. Press the LOAD switch.

5. Place the COMPUTE swi'tch in the RUN position.

After the COMPUTE switch is placed in the RUN position,
in step 5, the following actions occur:

1. The first record on the selected peripheral device is
read into memory locations XI2N through XI3P. (The
previous contents of general register 0 are destroyed
as a result of executing the bootstrap program in loca
tions XI261 through XI291.)

2. After the record has been read, the next instruction is
taken from location XI2AI (provided that no error con
dition has been detected by the device or the lOP).

3.

4.

When the instruction in location XI2AI is executed,
the unit device and device controller selected for
loading can accept a new SIO instruction.

Further I/O operations from the load unit may be
accomplished by coding subsequent I/O instructions
to indirectly address location X1251.

LOAD OPERATION DETAILS

The first executed instruction of the bootstrap program (in
location X1261) loads general register 0 with the double
word address of the first I/O command doubleword. The
I/O address for the SIO instruction in location XI271 is the
13 low-order bits of location XI251 (which have been set
equal to the load unit address as a result of pressing the
LOAD switch). During execution of the SIO instruction,
general register 0 points to locations XI2AI and XI2BI as
the first I/O command doubleword for the" selected device.
This command doubleword contains an order that instructs
the selected peripheral devic~ to read 88 (XI581) bytes into
consecutive memory locations starting at word location
XI2AI (byte location .XIA81). At the completion of the
read operation, neither data chaining .nor command chaining
is called for in the I/O command doubleword. Also, the
Suppress Incorrect Length flag is set to 1 so that an incor
rect length indication will not be consfdered an error. (This
means that no transmission error halt will result if the first
record is either less than or greater than 88 bytes. If the
record is greater than 88 bytes, only the first 88 bytes will
be stored in memory.)

Operati ng Procedures 143

After the SIO instruction has been executed, the computer
executes a TlO instruction with the same effective address
as the SID instruction. The no instruction is coded to
accept only condition code data from the lOP. The BCS
instruction in location X'29' will cause a branch to X'22'
(a LOAD IMMEDIATE instruction), if either CCI or CC2
(or both) is set to 1. Execution of the 1I instruction at
X'22' foods a count of X'l0029' into register 1. The fol
lowing BDR instruction at X'23' uses this as a "delay" count
before execution of the BCR instruction in X'24', which
unconditionally branches to the no in X'28'. Sufficient
defay is introduced between execution of consecutive TlO
instructions when testing the lOP so that excessive inter
ference with the lOP cannot occur. In normal operation,
CCl is reset to 0 and CC2 remains set to 1 until the device
can accept another SIO instruction, at which time the next
instruction will be taken from location X'2A'.

If a transmission error or equipment malfunction is detected
by either the device or the lOP, the lOP instructs the
device to halt and initiate an "unusual end" interrupt sig
nal (as specified by the appropriate flags in the I/O com
mand doubleword). The "unusual end ll interrupt will be
ignored, however, since all interrupt levels have been dis
armed by pressing the SYS RESET/CLEAR switch prior to
loading. Thedevicewill notacceptanotherSIOwhilethe
device interrupt is pending and, therefore, the BCS instruc
tion in location X'29' will continue to branch to location
X'22'. The correct operator action at this point is to repeat
the load procedure. If there is no I/O address recognition of
the toad unit, the SIO instruction will not cause any I/O
action and CCl will continue to be set to 1 by the SIOand TID
instructions thus causing the BCS instruction to branch.

FETCHING AND STORING DATA

Note: In the following operations, it is assumed that con
trol bits PSD 9 and PSD 40 are both O. This ensures
that the address designated by the SELECT ADDRESS

144 Operating Procedures

switches will be the actual address of a memory
location and not a virtual address

To fetch data from a memory location and display it:

1. Set COMPUTE switch to IDLE.

2. Set SE LECT ADDRESS switches to desired address.

3. Depress DISPLAY switch to SELECT ADDR.

Contents of designated memory location will be dis
played in the DISPLAY indicators.

To fetch and display data from successive memory locations:

1. Set COMPUTE switch to IDLE.

2. Set DATA switches to desired address.

3. Depress INSERT switch to PSW1.

4. Depress DISPLAY switch to INSTR ADDR.

Contents of first memory location wi II be displayed in
the DISPLAY indicators.

5. Depress INSTR ADDR switch to INCRM.

Contents of successive memory locations will be dis
played in the DISPLAY indicators for each depression
of the INSTR ADDR switch.

To store data in a designated memory location:

1. Set COMPUTE switch to IDLE.

2. Set SE LECT ADDRESS switches to desired address.

3. Set DATA switches to desired storage value.

4. Depress STORE switch to SE LECT ADDR.

APPENDIX A. REFERENCE TABLES

This appendix contains the following reference material:

Title

Standard Symbols and Codes

Standard 8-Bit Computer Codes (EBCDIC)

Standard 7-Bit Communication Codes (ANSCII)

Standard Symbol-Code Correspondences

Hexadecimal Arithmetic

Addition Table
Multiplication Table
Table of Powers of Sixteenl0
Table of Powers of Ten16

Hexadecimal-Decimal Integer Conversion Table

Hexadecimal-Decimal Fraction Conversion Table

Table of Powers of Two

Mathematica I Constants

STANDARD SYMBOLS AND CODES
The symbol and code standards described in this publication
are applicable to all Xerox computer products, both hard
ware and software. They may be expanded or altered from
time to time to meet changing requirements.

The symbols listed here include two types: graphic symbols
and control characters. Graphic symbols are displayable
and printable; control characters are not. Hybrids are SP,
the symbol for a blank space; and DEL, the delete code,
which is not considered a control command.

Three types of code are shown: (1) the 8-bit Xerox Standard
Computer Code, i.e., the Extended Binary-Coded-Decimal
Interchange Code (EBCDIC); (2) the 7-bit American National
Standard Code for Information Interchange (ANSCII); and
(3) the Xerox standard card code.

STANDARD CHARACTER SETS

1. EBCDIC

57-character set: uppercase letters, numerals, space,
and & / < > () + I $ *

% # @

63-character set: same as above plus i
--,

89-character set: same as 63-character set plus
lowercase letters

2. ANSCII

?

64-character set: uppercase letters, numerals, space,
and! " $ % & I () * + ,

/ \ < >? @ [J
/\ #

95-character set: same as above plus lowercase letters
and t }

CONTROL CODES
In addition to the standard character sets I isted above, the
symbol repertoire includes 37 control codes and the hybrid
code DEL (hybrid code SP is considered part of all charac
ter sets). These are listed in the table titled Standard
Symbo I-Code Correspondences.

SPECIAL CODE PROPERTIES
The following two properties of all standard codes wi II be
retained for future standard code extensions:

1. All control codes, and only the control codes, have
their two high-order bits equal to 1100 11 . DEL is not
considered a control code.

2. No two graphic EBCDIC codes have their seven low
order bi ts equa I.

Appendix A 145

Hexadec imal a 1

Binary 10000 0001

0 0000 NUL OLE

1 0001 SOH DCl

2 0010 SIX DC2

3 0011
i
ETX De3

4 0100 IEOT DC4

5 0101 HT
IF

.-; Nl

It 6 0110 ACK SYN

3 7 0111 BEL ETB

~ 8 1000 !E~ leAN
I"~

] 9 1001 IENQ EM

A 1010 INAK SUB

B 1011 VT ESC

C 1100 FF FS

0 1101 CR GS

E 1110 SO RS

F 1111 SI US
. ,

Decimal
rows) (col's.)- 0 1 , Binary

I
xooo xOOl

0 0000 NUL OLE

1 0001 SOH DCI

2 0010 STX De2

3 0011 ETX De3

4 0100 EOT DC4

5 0101 ENQ NAK

m
0 6 0110 ACK SYN

C
0 7 0111 BEL ETB
~
'c 8 1000 BS CAN (J)

Vi

C; 9 1001 HT EM
ta
-' IF

10 1010 SUB
NL

11 1011 VT ESC

12 1100 FF FS

13 1101 CR GS

14 1110 SO RS

15 1111 SI US
.

"

146 Appendix A

STANDARD 8-BIT COMPUTER CODES (EBCDIC)

Most" -,. Digits

2 3 4 5 6 7 8 9 A B C 0 E F

0010 0011 0100 101 0110 :01 1000 1001 1010 1011 1100 1101 1110 1111

cis SP & - ~ a

55 ~ ~ / ~ a j
-.

A J I

fs ~ ~ ~ ~ ~ b k s t I B K S 2

si ~ ~ ~ ~ c I t ~ I C l T 3

~ ~ ~ ~ d m u [I 0 M U 4

/'." "'"' '~i'~;/] 1 E N V 5 e n v , , " ;,

~ ~ ~ ~ f a w F 0 W 6

~ ~ ~ ~ g p x G P X 7

~ ~ ~ ~ h q Y H Q Y 8

~ ~ ~ ~ i r z I R Z 9

,2 ~l ~ ~ ~ ~ ! :

$, , ~ ~ ~ ~
< * % @

~/"/ '/// ."'" "'.''.
~", ''', be" ~.ii I~e;t/~

()
, ~ ~ ~ ~ -

+ ; > = ~ ~ ~ ~
I 2 2

? ~ ~ ~ DEL

4

STANDARD 7-81T COMMUNICATION CODES (ANSCII) 1

NOTES:

The characters ~ \ t ~ [] are ANSCII
characters that do nat appear in ony of the
EBCDIC -based character sets, though they
are shown in the EBCDIC table.

The characters t 1-, appear in the 63- and
89-character EBCDIC sets but not in either
of the ANSCII-bosed sets. However, Xerox
software translates the characters c
into ANSClr characters as follows:

EBCDIC

I
1

..,

ANSCII

, (6-0)

: (7-12)

- (7-14)

The EBCDIC control codes in columns a
and 1 and their binary representation are
exactly the same as those in the' ANSCII
table, except for two interchanges: LF/NL
with NAK, and HT with ENQ.

Characters enclosed in heavy lines are
included only in the standard 63- and
89-character EBCDIC sets.

These characters are included only in the
standard 89-character EBCDIC set.

Most Significant Digits

2 3 4 5

xOlO xOll xl00 x101

SP a @ P

!
5

1 A Q

" 2 B R

, 3 C S

$ 4 0 T

% 5 E U

& 6 F Y

,
7 G W

(8 H X

) 9 I Y

* : J Z

+ ; K [5

, < L \

- = M)5

> N
4 5

/ ? 0
4

-
3

6 7

xlJO xlll

\ P

a q

b r

c s

d t

e u

f v

g w

h x

i Y

j z

k t
I I

I

m l
4

n -
0 DEL

,

1 Most significant bit, odded for 8-bit format, is either 0 or even parity.

Columns 0- I are control codes.

Columns 2-5 correspond to the 64-.character ANSCII set.
Columns 2-7 correspond to the 95-character ANSCII set.

On many current teletypes, the symbol

is (5-14)

is (5-15)

is ESC or ALTMODE control (7-14)

and none of the symbols appearing in columns 6-7 are provided. Except for the three
symbol differences noted above, therefore, such teletypes provide all the characters in
the 64-charocter ANSCII set. (The Xerox 7015 Remote Keyboard Printer provides the
64-character ANSCII set also, but prints A as 1\.)

On the Xerox 7670 Remote Batch Terminal, the symbol

[
)

is

is

is

is

I
I

-,

(2-1)

(5-11)

(5-13)

(5-14)

and none of the symbols appearing in columns 6-7 are provided. Except for the four symbol
differences noted above, therefore, this terminal provides all the characters in the 64-
character ANSCII set.

STANDARD SYMBOL-CODE CORRESPONDENCES

EacDICt
ANScntt

Hex. Dec. Symbol Card Code Meaning Remarks

00 0 NUL 12-0-9-8-1 0-0 null 00 through 23 and 2F are control codes.
01 1 SOH 12-9-1 0-1 start of header
02 2 STX 12-9-2 0-2 start of text
03 3 ETX 12-9-3 0-3 end of text
04 4 EOT 12-9-4 0-4 end of transmission
05 5 HT 12-9-5 0-9 horizontal tab
06 6 ACK 12-9-6 0-6 acknowledge (positive)
07 7 BEL 12-9-7 0-7 bell
08 8 BSorEOM 12-9-8 0-8 backspace or end of message EOM is used only on Xerox Keyboard/
09 9 ENQ 12-9-8-1 0-5 enquiry Printers Models 7012, 7020, 8091,
OA 10 NAK 12-9-8-2 1-5 negative acknowledge and 8092.
OB 11 VT 12-9-8-3 0-11 vertical tab
OC 12 FF 12-9-8-4 0-12 form feed
00 13 CR 12-9-8-5 0-13 carriage return
OE 14 SO 12-9-8-6 0-14 shift out
OF 15 51 12-9-8-7 0-15 shift in

10 16 DLE 12-11-9-8-1 1-0 data Ii nk escape
11 17 DCl 11-9-1 1-1 device control 1
12 18 DC2 11-9-2 1-2 device control 2
13 19 DC3 11-9-3 1-3 device control 3
14 20 DC4 11-9-4 1-4 device control 4
15 21 LF or NL 11-9-5 0-10 line feed or new line
16 22 SYN 11-9-6 1-6 sync
17 23 ETB 11-9-7 1-7 end of transmission block
18 24 CAN 11-9-8 1-8 cancel
19 25 EM 11-9-8-1 1-9 end of medium
lA 26 SUB 11-9-8-2 1-10 substitute Replaces characters with parity error.
lB 27 ESC 11-9-8-3 1-1\ escape
1C 28 FS 11-9-8-4 1-12 fj Ie separator
10 29 GS 11-9-8-5 1-13 group separator
lE 30 RS 11-9-8-6 1-14 record separator
IF 31 US 11-9-8-7 1-15 unit separator

20 32 ds 11-0-9-8-1 digit selector 20 through 23 are used with
21 33 ss 0-9-1 significance start Sigma EDIT BYTE STRING (EBS)
22 34 fs 0-9-2 field separation instruction - not input/output con-
23 35 si 0-9-3 immediate significance start trol codes.
24 36 0-9-4 24 through 2E are unassigned.
25 37 0-9-5
26 38 0-9-6
2] 39 0-9-7
28 40 0-9-8
29 41 0-9-8-1
2A 42 0-9-8-2
28 43 0-9-8-3
2C 44 0-9-8-4
20 45 0-9-8-5
2£ 46 0-9-8-6
2F 47 0-9-8-7

30 48 12-11-0-9-8-1 30 through 3F are unassigned.
31 49 9-1
32 50 9-2
33 51 9-3
34 52 9-4
35 53 9-5
36 54 9-6
37 55 9-7
38 56 9-8
39 57 9-8-1
3A 58 9-8-2
38 59 9-8-3
3C 60 9-8-4
30 61 9-8-5
3£ ·62 9-8-6
3F 63 9-8-7

tHexodecimol and decimal notation.

ttOecimal notation (column-row).

Append ix A 147

STANDARD SYMBOL-CODE CORRESPONDENCES (cont.)

EBCDICt Symbol Card Code ANSClltt Meaning Remarks
Hex. Dec.

40 64 SP blank 2-0 b'ank
41 65 12-0-9-1 41 through 49 will not be assigned.
42 66 12-0-9-2
43 67 12-0-9-3
44 68 12...,0-9-4
45 69 12-0-9-5
46 70 12-0-9-6
4.7 71 12-0-9-7
48 n 12-0-9-8
49 73 12-8-1
4A 74 lor' 12-8-2 6"'() cent or accent grove Accent grave used for left single
4B 75 12-8-3 2-14 period quote. On model 7670, \ nat
4C 76 < 12-8-4 3-12 less thon available, and 1= ANSCII 5-11.
40 n (12-8-5 2-8 left parenthesis
4E 78 + 12-8-6 2-11 plus
4F 79 I or I 12-8-7 7-12 vertical bar or broken bar On Model 7670, : not available, I

and I = ANSal 2-1.

50 80 & 12 2-6 ampersand
51 81 12-11-9-1 51 through 59 will not be assigned.
52 B2 12-11-9-2
53 83 12-11-9-3
54 84 12-11-9-4
55 85 12-11-9-5
56 86 12-11-9-6
57 87 12-11-9-7
58 88 12-11-9-8
59 89 11-8-1
5A 90 ! 11-8-2 2-1 exclamation point On Model 7670, ! is I.
58 91 $ 11-8-3 2-4 dollars
5C 92 * 11-8-4 2-10 asterisk
50 93) 11-8-5 2-9 right parenthesis
5E 94 ; 11-8-6 3-11 semicolon
Sf 95 - or .., 11-8-7 .7-14 tilde or logical not On Model 7670,-i5 not available,

and"" = ANSCII 5-14.

60 96 - 11 2-13 minus, dash, hyphen
61 97 / 0-1 2-15 slash
62 98 1T-0-9-2 62 through 69 wi II not be assigned.
63 99 11-0-9-3
64 100 11-0-9-4
65 101 11-0-9-5
66 102 11-0-9-6
67 103 11-0-9-7
68 104- 11-0-9-8
69 lOS 0-8-1
6A 106

.... 12-11 5-14 circumflex On Model 7670 ~ is '. On Model
68 107 . 0-8-3 2-12 comma 7015 ~ is 1\ (caret).

t£ 108 % 0-8-4 2-5 percent
60 109 - 0-8-5 5-15 underline Underline is sometimes called "break

, 6E 110 > 0-8-6 3-14 greater than character"; may be printed along
6F 111 ? 0-8-7 3-15 question mark bottom of character line.

70 112 12-H-O 70 through 79 will not be assigned.
71 113 12-11-0-9-1
n 114 12-11-0-9-2
73 115 12-11-0-9-3

'74 116 12-11-0-9-4
·75 117 12-11-0-9-5
.76 118 12-11-0-9-6
n 119 12-11-0-9-7
78 120 12-11-0-9-8
79 121 8-1

'lA 122 8-2 3-10 colon
7B 123 I 8-3 2-3 number
7C 124 @ 8-4 4-0 at
7D 125 . 8-5 2-7 apostrophe (right single quote)
7£ 126 = 8-6 3-13 equals
7F 127 II 8-7 2-2 quotation mark

tHexodecimal and decimal notation.

tfOecimot notation {column-row}.

148 Appendix A

STANDARD SYMBOL-CODE CORRESPONDENCES (cont.)

EBCDIC t

ANSClItt Remarks Hex. Dec. Symbol Card Code Meaning

80 128 12-0-8-1 80 is unassigned.
81 129 a 12-0-1 6-1 81-89, 91-99, A2-A9 comprise the
82 130 b 12-0-2 6-2 lowercase alphabet. Available
83 131 c 12-0-3 6-3 only in standard 89- and 95-
84 132 d 12-0-4 6-4 character sets.
85 133 e 12-0-5 6-5
86 134 f 12-0-6 6-6
87 135 I

g 12-0-7 6-7
88 136 h 12-0-8 6-8
89 137 i 12-0-9 6-9
8A 138 12-0-8-2 8A through 90 are unassigned.
88 139 12-0-8-3
Be 140 12-0-8-4
80 141 12-0-8-5
8E 142 12-0-8-6
8F 143 12-0-8-7

90 144 12-11-8-1
91 145 j 12-11-1 6-10
92 146 k 12-11-2 6-11
93 147 I 12-11-3 6-12
94 148 !1"1 12-11-4 6-13
95 149 n 12-11-5 6-14
96 150 0 12-11-6 6-15
97 151 p 12-11-7 7-0
98 152 q 12-11-8 7-1
99 153 r 12-11-9 7-2
9A 154 12-11-8-2 9A through Al are unassigned.
9B 155 12-11-8-3
9C 156 12-11-8-4
90 157 12-11-8-5
9E 158 12-11-8-6
9F 159 12-11-8-7

AO 160 11-0-8-1
Al 161 11-0-1
A2 162 s 11-0-2 7-3
A3 163 t 11-0-3 7-4
A4 164 u 11-0-4 7-5
A5 165 v 11-0-5 7-6
A6 166 w 11-0-6 7-7
A7 167 x 11-0-7 7-8
A8 168 y 11-0-8 7-9
A9 169 z 11-0-9 7-10
AA 170 11-0-8-2 AA through 80 are unassigned.
AB 171 11-0-8-3
AC 172 11-0-8-4
AD 173 11-0-8-5
AE 174 11-0-8-6
AF 175 11-0-8-7

BO 176 12-11-0-8-1
81 177 \ 12-11-0-1 5-12 backs lash
82 178 { 12-11-0-2 7-11 left brace
83 179 J 12-11-0-3 7-13 right brace
B4 180 [12-11-0-4 5-11 left bracket On Model 7670, ~ is i.
85 181] 12-11-0-5 5-13 right bracket On Model 7670, is!.
86 182 12-11-0-6 B6 through 8F are unassigned.
87 183 12-11-0-7
88 184 12-11-0-8
89 185 12-11-0-9
BA 186 12-11-0-8-2
88 187 12-11-0-8-3
8C 188 12-11-0-8-4
80 189 12-11-0-8-5
8E 190 12-11-0-8-6
SF 191 12-11-0-8-7

tHexadecimal and decimal notation.

ttOecimal notation (column-row).

Appendix A 149

STANDARD SYMBOl-CODE CORRESPONDENCES (cont.)

ESCorC t
Syl'!'bol Card Code ANSCntt Meaning Remarks

Hex. Dec.

CO 192 12-0 CO is unassigned.
CI 193 A 12-1 4-1 CI-C9, 01-09, E2-E9 comprise the
C2 194 B 12-2 4-2 uppercase alphabet.
C3 195 C 12-3 4-3
C4 196 D 12-4 4-4
C5 197 E 12-5 4-5
C6 198 F 12-6 4-6
C7 199 G 12-7 4-7
C8 200 H 12-8 4-8

'C9 201 I 12-9 4-9
CA 202 12-0-9-8-2 CA through CF will not be assigned.
CB 203 12-0-9-8-3
CC 204 12-0-9-8-4
CO 205 12-0-9-8-5
CE 206 12-0-9-8-6
CF 207 12-0-9-8-7

DO 208 11-0 DO is unassigned.
01 209 J 11-1 4-10
02 210 K 11-2 4-11
03 211 L 11-3 4-12
04 212 M 11-4 4-13
05 213 N 11-5 4-14
D6 214 0 11-6 4-15
07 215 P 11-7 5-0
08 216 Q 11-8 5-1
09 217 R 11-9 5-2
OA 218 12-11-9-8-2 OA through OF wi" nat be assigned.
DB 219 12-11-9-8-3
DC 220 12-11-9-8-4
DO 221 12-11-9-8-5
DE 222 12-11-9-8-6
Of 223 12-11-9-8-7

EO 224 0-8-2 EO, E 1 are unassigned.
El 225 11-0-9-1
E2 226 S 0-2 5-3
E3 227 T 0-3 5-4
E4 228 U 0-4 5-5
E5 229 V 0-5 5-6
E6 230 W 0-6 5-7
E7 231 X 0-7 5-8
E8 232 y 0-8 5-9
E9 233 Z 0-9 5-10
EA 234 11-0-9-8-2 EA through EF will not be assigned.
f8 .235 11-0-9-8-3
EC 236 11-0-9-8-4
ED 2.37 11-0-9-8-5
EE 238 11-0-9-8-6
EF 239 11-0-9-8-7

FO 240 0 0 3-0
Fl 241 1 1 3-1
F2 242 2 2 3-2
F3 243 3 3 3-3
F4 244 4 4 3-4
F5 245 5 5 3-5
F6 246 6 6 3-6
F7 247 7 7 3-7
F8 248 8 8 3-8
F9 249 9 9 3-9
FA 250 12-11-0-9-8-2 FA through FE will not be assigned.
FB 251 12-11-0-9-8-3
FC 252 12-11-0-9-8-4
FO 253 12-11-0-9-8-5
Ff 254 12-11-0-9-8-6
f.F 255 DEL 12-11-0-9-8-7 delete Special - neither graphic nor con-

trol symbol.

tHexadecimal and decimal notation.

ttOecimal notation (column-row).

150 Appendix A

HEXADECIMAL ARITHMETIC

ADDITION TABLE

0 1 2 3 4 5 6 7 8 9 A B C D E F

1 02 03 04 05 06 07 08 09 OA DB OC OD OE OF 10

2 03 04 05 06 07 08 09 OA OB OC OD OE OF 10 11

3 04 05 06 07 08 09 OA OB DC 00 OE OF 10 11 12

4 05 06 07 08 09 OA OB OC OD OE OF 10 11 12 13

5 06 07 08 09 OA OB OC OD OE OF 10 11 12 13 14

6 07 08 09 OA OB OC OD OE OF 10 11 12 13 14 15

7 08 09 OA OB OC OD OE OF 10 11 12 13 14 15 16

8 09 OA OB DC OD OE OF 10 11 12 13 14 15 16 17

9 OA OB OC 00 OE OF 10 11 12 ; 13 14 15 16 17 18

A OB OC OD DE OF 10 11 12 13 14 15 16 17 18 19

B OC OD OE OF 10 11 12 13 14 15 16 17 18 19 1A

C OD OE OF 10 11 12 13 14 15 16 17 18 19 1A 1B

D OE OF 10 11 12 13 14 15 16 17 18 19 1A 1B 1C

E OF 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 10

F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 10 1E

MULTIPLICATION TABLE

1 2 3 4 5 6 7 8 9 A B C D E F

2 04 06 08 OA OC OE 10 12 14 16 18 1A 1C 1E

3 06 09 OC OF 12 15 18 1B 1E 21 24 27 2A 2D

4 08 OC 10 14 18 1C 20 24 28 2C 30 34 38 3C

5 OA OF 14 19 1E 23 28 20 32 37 3C 41 46 4B

6 OC 12 18 1E 24 2A 30 36 3C 42 48 4E 54 5A

7 OE 15 1C 23 2A 31 38 3F 46 4D 54 58 62 69

8 10 18 20 28 30 38 40 48 50 58 60 68 70 78

9 12 1B 24 2D 36 3F 48 51 5A 63 6C 75 7E 87

A 14 lE 28 32 3C 46 50 5A 64 6E 78 82 Be 96

B 16 21 2C 37 42 4D 58 63 6E 79 84 8F 9A A5

C 18 24 30 3C 48 54 60 6C 78 84 90 9C A8 B4

D 1A 27 34 41 4E 5B 68 75 82 8F 9C A9 B6 C3

E 1C 2A 38 46 54 62 70 7E 8C 9A A8 B6 C4 D2

F 1E 2D 3C 4B 5A 69 78 87 96 A5 B4 C3 02 E1

Appendix A 151

16

256

4 096

65 536

048 576

16 777 216

268 435 456

4 294 967 296

68 719 476 736

1 099 511 627 776

17 592 186 044 416

281 474 976 710 656

4 503 599 627 370 496

72 057 594 037 927 936

1 152 921 504 606 846 976

3

23

163

OEO

8AC7

152 Appendix A

2

17

E8

918

5AF3

807E

86F2

4578

B6B3

2304

A

64

3E8

2710

86AO

F 4240

98 9680

5F5 El00

3B9A CAOO

540B E400

4876 E800

04A5 1000

4E72 AOOO

l07A 4000

A4C6 8000

6FC1 0000

508A 0000

A764 0000

89E8 0000

TABLE OF POWERS OF SIXTEEN 11

n

o

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0.10000 00000 00000 00000 x 10

0.62500 00000 00000 00000 x 10- 1

0.39062 50000 00000 00000 x 10-2

0.24414 06250 00000 00000 x 10-3

0.15258 78906 25000 00000 x 10-4

0.95367 43164 06250 00000 x 10-6

0.59604 64477 53906 25000 x 10-7

0.37252 90298 46191 40625 x 10-8

0.23283 06436 53869 62891 x 10-9

0.14551 91522 83668 51807 x 10- 10

0.90949 47017 72928 23792 x 10- 12

0.56843 41886 08080 14870 x 10- 13

0.35527 13678 80050 09294 x 10- 14

0.22204 46049 25031 30808 x 10- 15

0.13877 78780 78144 56755 x 10- 16

0.86736 17379 88403 54721 x 10- 18

. TABLE OF POWERS OF TEN 1&

o

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

1.0000 0000 0000 0000

0.1999 9999 9999 999A

0.28F 5 C28F

0.4189 374B

0.680B 8BAC

0.A7C5 AC47

0.10C6 F7AO

0.1 AD7 F 29 A

0.2AF 3 10C4

0.44B8 2FAO

0.6 OF 3 7F67

O.AFE B F FOB

0.1197 9981

0.lC25 C268

0.2 D09 3700

0.480E BE7B

0.734A CA5 F

0.B877 AA32

0.1272 5DDl

0.1 D83 C94F

5C28

C6A7

710C

1B47

B5E D

BCAF

6118

9B5A

5EF6

CB24

20EA

4976

4257

9D58

6226

36A4

0243

B6D2

F5C3

EF9E

B296

8423

8D37

4858

73BF

52CC

EAOF

AAFF

1 1 19

81C2

3604

566D

FOAE

B449

ABAl

AC35

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

16-1

16-2

16-3

16-4

16-4

16-5

16-6

16-7

16-8

16-9

16-9

16- 10

16 -11

16- 12

16- 13

16- 14

16- 14

16- 15

HEXADECIMAL-DECIMAL INTEGER CONVERSION TABLE

The table below provides for direct conversions between hexa
decimal integers in the range O-FFF and decimal integers in
the range 0-4095. For conversion of larger integers, the
table values may be added to the following figures:

Hexadecimal

01 000
02000
03000
04000
05000
06 000
07000
08000
09000
OA 000
OB 000
DC 000
00000
OE 000
OF 000
10000
11000
12 000
13000
14000
15000
16000
17 000
18000
19000
lA 000
lB 000
lC 000
10000
lE 000
lF 000

000
010
020
030

040
050
060
070

080
090
OAO
OBO

OCO
000
OED
OFO

0

0000
0016
0032
0048

0064
0080
0096
0112

0128
0144
0160
0176

0192
0208
0224
0240

Decimal

4096
8 192

12 288
16384
20480
24576
28672
32768
36 864
40960
45056
49 152
53 248
57344
61440
65536
69632
73728
77 824
81 920
86 016
90 112
94208
98304

102400
106496
110592
114688
118784
122 880
126 976

1 2

0001 0002
0017 0018
0033 0034
0049 0050

0065 0066
0081 0082
0097 0098
0113 0114

0129 0130
0145 0146
0161 0162
0177 0178

0193 0194
0209 0210
0225 0226
0241 0242

Hexadecimal

20000
30000
40000
50000
60000
70000
80000
90000

AO 000
BO 000

CO 000
DO 000
EO 000
FO 000

100000
200000
300000
400000
500000
600000
700000
800000
900000

AOO 000
BOO 000

COO 000
000000
EOO 000
FOO 000

1 000000
2000000

3 4

0003 0004
0019 0020
0035 0036
0051 0052

0067 0068

Decimal

131 072
196608
262 144
327680
393 216
458752
524 288
589824
655 360
720896
786 432
851 968
917 504
983 040

1 048576
2 097 152
3 145 728
4 194304
5 242 880
6 291 456
7 340 032
8 388 608
9437 184

10485 760
11 534336
12582 912
13 631 488
14680064
15 728640
16 777 216
33554432

5 6

0005 0006
0021 0022
0037 0038
0053 0054

0069 0070
0083 0084- 0085 0086
0099 0100 0101 0102
0115 0116 0117 0118

0131 0132 0133 0134
0147 0148 0149 0150
0163 0164 0165 0166
0179 0180 0181 0182

0195 0196 0197 0198
0211 0212 0213 0214
0227 0228 0229 0230
0243 0244 0245 0246

7

0007
0023
·0039
0055

0071
0087
0103
0119

0135
0151
0167
0183

0199
0215
0231
0247

Hexadecimal fractions may be converted to decimal fractions
as follows:

1. Express the hexadecimal fraction as an integer times
16 -n, where n is the number of significant hexadecimal
places to the right of the hexadecimal point.

O. CA9SF3 16 = CA9 BF3 16 x 16-6

2. Find the decimal equivalent of the hexadecimal integer

CA 9 SF 3
16

= 13 278 195
10

3. Multiply the decimal equivalent by 16-n

13 278 195
x 596046 448 x 10-16

0.791 442 09610

Decimal fractions may be converted to hexadecimal fractions
by successively multiplying the decimal fraction by 16 10.
After each multiplication, the integer portion is removea to
form a hexadecimal fraction by building to the right of the
hexadecimal point. However, since decimal arithmetic is
used in this conversion, the integer portion of each product
must be converted to hexadecimal numbers.

Example: Convert 0.89510 to its hexadecimal equivalent

0.895
16

,------ Q3) .320
-.-l.Q.

,.----- @.120

/1/ ~ 'If 16
0.E51 E16------!&) .720

8 9 A B C

0008 0009 0010 0011 0012
0024 0025 0026 0027 0028
0040 0041 0042 0043 0044
0056 0057 0058 0059 0060

0072 0073 0074 0075 0076
0088 0089 0090 .0091 0092
0104 0105 0106 0107 0108
0120 0121 0122 0123 0124

0136 0137 0138 0139 0140
0152 0153 0154 0155 0156
0168 0169 0170 0171 0172
0184 0185 0186 0187 0188

0200 0201 0202 0203 0204
0216 0217 0218 0219 0220
0232 0233 0234 0235 0236
0248 0249 0250 0251 0252

0 E F

0013 0014 0015
0029 0030 0031
0045 0046 0047
0061 0062 0063

0077 0078 0079
0093 0094 0095
0109 0110 0111
0125 0126 0127

0141 0142 0143
0157 0158 0159
0173 0174 0175
0189 0190 0191

0205 0206 0207
0221 0222 0223
0237 0238 0239
0253 0254 0255

Appendix A 153

HEXADECIMAL-DECIMAL INTEGER CONVERSION TABLE (cont.)

0 1 2 3- 4 5 6 7 8 9 A B C 0 E F

100 0256 0257 0258 0259 0260 0261 0262 0263 0264 0265 0266 0267 0268 0269 0270 0271
110 0272 0273 0274 0275 0276 0277 0278 0279 0280 0281 0282 0283 0284 0285 0286 0287
120 0288 0289 0290 0291 0292 0293 0294 0295 0296 02W 0298 0299 0300 0301 0302 0303
130 0304 0305 0306 0307 0308 0309 0310 0311 0312 0313 0314 0315 0316 0317 0318 0319

140 0320 0321 0322 0323 0324 0325 0326 0327 0328 0329 0330 0331 0332 0333 0334 0335
150 0336 0337 0338 0339 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0350 0351
160 0352 0353 0354 0355 0356 0357 0358 0359 0360 0361 0362 0363 0364 0365 0366 0367
170 0368 0369 0370 0371 0372 0373 0374 0375 0376 03n 0378 0379 0380 0381 0382 0383

180 0384 0385 0386 0387 0388 0389 0390 0391 0392 0393 0394 0395 0396 0397 0398 0399
190 0400 0401 0402 0403 0404 0405 0406 0407 0408 0409 0410 0411 0412 0413 0414 0415
lAO 0416 0417 0418 0419 0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 0430 0431
ISO 0432 0433 0434 0435 0436 0437 0438 0439 0440 0441 0442 0443 0444 0445 0446 0447

lCO 0448 0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0459 0460 0461 0462 0463
IDO 0464 0465 0466 0467 0468 0469 0470 0471 0472 0473 0474 0475 0476 0477 0478 0479
lEO 0480 0481 0482 0483 0484 0485 0486 0487 0488 0489 0490 0491 0492 0493 0494 0495
1FO 0496 0497 0498 0499 0500 0501 0502 0503 0504 0505 0506 0507 0508 0509 0510 0511

200 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527
210 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543
220 0544 0545 0546 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559
230 0560 0561 0562 0563 0564 0565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575

240 0576 0577 0578 0579 0580 0581 0582 0583 0584 0585 0586 0587 0588 0589 0590 0591
250 0592 0593 0594 0595 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607
260 0608 0609 0610 0611 0612 0613 0614 0615 0616 0617 0618 0619 0620 0621 0622 0623
270 0624 0625 0626 0627 0628 0629 0630 0631 0632 0633 0634 0635 0636 0637 0638 0639

280 0640 0641 0642 0643 0644 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655
290 0656 0657 0658 0659 0660 0661 0662 0663 0664 0665 0666 0667 0668 0669 0670 0671
2AO 0672 0673 0674 0675 0676 0677 0678 0679 0680 0681 0682 0683 0684 0685 0686 0687
2BO 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703

2CO 0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719
2DO 0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735
2EO 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0750 0751
2FO 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767

300 0768 0769 0770 0771 0772 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 0783
310 0784 0785 0786 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799
320 0800 0801 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815
330 0816 0817 0818 0819 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831

340 0832 0833 0834 0835 0836 0837 0838 0839 0840 0841 0842 0843 0844 0845 0846 0847
350 0848 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 0860 0861 0862 0863
360 0864 0865 0866 0867 0868 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879
370 0880 0881 0882 0883 0884 0885 0886 0887 0888 0889 0890 0891 0892 0893 0894 0895

380 0896 0897 0898 0899 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 0911
390 0912 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927
3AO 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943
3BO 0944 0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959

3CO 0960 0961 0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 0973 0974 0975
3DO 0976 0977 0978 0979 0980 0981 0982 0983 0984 0985 0986 0987 0988 0989 0990 0991
3EO 0992 0993 0994 0995 0996 0997 0998 0999 1000 1001 1002 1003 1004 1005 1006 1007
3FO 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023

154 Appendix A

HEXADECIMAL-DECIMAL INTEGER CONVERSION TABLE (cont.)

0 1 2 3 4 5 6 7 8 9 A B C D E F

400 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
410 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
420 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
430 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087

440 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
450 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
460 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
470 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151

480 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
490 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
4AO 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
4BO 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215

4CO 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
4DO 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
4EO 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
4FO 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279

500 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
510 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
520 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
530 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343

540 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
550 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
560 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
570 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407

580 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
590 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
5AO 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
5BO 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471

5CO 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
5DO 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
5EO 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
5FO 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535

600 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
610 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
620 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
630 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599

640 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
650 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
660 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
670 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663

680 1664 1665 1666 1667 1668 1669 1670 1671 1672. 1673 1674 1675 1676 1677 1678 1679
690 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
6AO 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
6BO 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727

6CO 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
6DO 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
6EO 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
6FO 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791

Appendix A 155

HEXADECIMAL-DECIMAL INTEGER CONVERSION TABlE (corlf.)

0 I 2 3 4 5 6 7 8 9 A B C 0 E F

700 1792 1793 1794 1795 1796 1797 1798 1799 1800 I SOl 1802 1803 J804 1805 1806 1807
710 1808 1809 1810 1811 1812 1813 1814 18J5 1816 1817 1818 1819 1820 1821 1822 1823
720 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
730 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849)850 J851 1852 1853 1854 1855

740 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
750 1872 1873)874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
760 1888 1889 1890 1891 1892 1893)894 1895 1896 . 1897 1898 1899 1900 1901 1902 1903
770 1904 1905 1906 1907)908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919

780 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
790 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
7AO 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 J964 1965 1966 1967
780 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983

7eo 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
700 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
7EO 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
]f0 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047

800 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
810 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
820 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
830 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111

840 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
850 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
860 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2J59
870 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175

880 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
890 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
8A0 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
8BO 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239

aco . 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
800 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
8EO 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
BfO 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303

900 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
910 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
920 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
930 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367

940 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
950 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395. 2396 2397 2398 2399
960 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
970 24)6 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431

980 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
990 2448 2449 2450 2451 2452 2453 2454 2455 2459 2457 2458 2459 2460 2461 2462 2463
9AO 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
980 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495

9CO 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
900 2512 25t3 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
9EO ' 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 "2540 2541 2542 2543
9fO 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559

J56 Appendix A

HEXADECIMAL-DECIMAL INTEGER CONVERSION TABLE (cont.)

0 1 2 3 4 5 6 7 8 9 A B C 0 E F

AOO 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
A10 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
A20 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
A30 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623

A40 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
A50 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
A60 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
A70 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687

A80 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
A90 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
AAO 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
ABO 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751

ACO 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
ADO 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
AEO 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
AFO 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815

BOO 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
BI0 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
B20 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
B30 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879

B40 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
B50 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
B60 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
B70 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943

B80 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
B90 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
BAO 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
BSO 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007

BCO 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
BOO 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
BEO 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
BFO 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071

COO 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
CI0 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
C20 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
C30 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135

C40 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
C50 3152 3153 3154 3155 3156 3t57 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
C60 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
C70 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199

C80 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
C90 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
CAO 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
CBO 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263

CCO 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
COO 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
CEO 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
CFO 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327

Appendi x A 157

HEXADECIMAL-DECIMAL INTEGER CONVERSION TABLE (cont.)

0 1 2 3 4 5 6 7 8 9 A 8 C D E F

DOO 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
D10 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
D2Q 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
D30 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391

D40 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
D50 3408 3409 34.10 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
D60 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
D70 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455

D80 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
D90 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
DAO 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
D80 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519

DCO 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
000 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
DEO 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
DFO 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583

EOO 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
ElO 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
E20 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
E30 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647

E40 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
E50 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
E60 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
f70 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711

E80 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
E90 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
EAO 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
EBO 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775

ECO 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
EDO 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
EEO 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
EFO 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839

FOO 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
FlO 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
F20 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
F30 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903

F40 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
F50 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
F60 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
F70 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967

F80 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
F90 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
FAO 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
FBO 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031

FCO 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
FDO 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
FEO 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
FFO 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095

158 Appendix A

HEXADECIMAL ·DECIMAL FRACTION CONVERSION TABLE

Hexadec imal Decimal Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal

.00000000 .00000 00000 .00000040 .0000000149 .00000080 .00000 00298 .000000 CO .0000000447

.00000001 .00000 00002 .00000041 .0000000151 .00000081 .00000 00300 .000000 C1 .00000 0044 9

.00000002 .00000 00004 .00000042 .0000000153 .00000082 .0000000302 .000000 C2 .00000 0045 1

.00000003 .00000 00006 .00000043 .00000 00155 .00000083 .00000 00305 .000000 C3 .0000000454

.00000004 .0000000009 .00000044 .0000000158 .00000084 .00000 00307 .0000 00 C4 .00000 00456

.00000005 .0000000011 .00000045 .00000 00160 .00000085 .00000 00309 .000000 C5 .00000 00458

.00000006 .00000 0001 3 .00000046 .0000000162 .00000086 .0000000311 .000000 C6 .00000 0046 1

.00000007 .00000 00016 .00000047 .0000000165 .00000087 .00000 00314 .000000 C7 .00000 00463

.00000008 .00000 00018 .00000048 .0000000167 .00000088 .00000 00316 .000000 C8 .00000 00465

.00000009 .00000 00020 .00000049 .0000000169 .00000089 .00000 00318 .000000 C9 .00000 00467

.00 0000 OA .00000 00023 .0000004A .00000 001 72 .0000008A .00000 00321 .000000 CA .00000 00470

.OOOOOOOB .00000 00025 .0000004B .00000 00174 .00 00 0o-8B .00000 00323 .000000 CB .00000 00472

.0000 00 OC .0000000027 .00 00 004C .0000000176 .0000008C .00000 00325 .000000 CC .00000 00474

.OOOOOOOD .00000 00030 .0000004D .00000 00179 .0000008D .00000 00328 .000000 CD .00000 00477

.OOOOOOOE .00000 00032 .00 00 004E .0000000181 .0000008E .00000 00330 .000000 CE .00000 00479

.000000 OF .00000 00034 .0000004F .00000 00183 .0000008F .00000 00332 .000000 CF .00000 00481

.00000010 .00000 00037 .00000050 .00000 00186 .00000090 .00000 00335 .000000 DO .00000 00484

.000000 11 .0000000039 .00000051 .00000 00188 .00000091 .00000 00337 .000000 D1 .00000 00486

.000000 12 .00000 00041 .00000052 .00000 001 90 .00000092 .00000 00339 .000000 D2 .0000000488

.000000 13 .0000000044 .00000053 .00000 001 93 .00000093 .0000000342 .000000 D3 .00000 00491

.000000 14 .00000 00046 .00000054 .00000 00195 .00000094 .00000 00344 .000000 D4 .00000 00493

.000000 15 .00000 00048 .00000055 .0000000197 .00000095 .00000 00346 .000000 D5 .00000 00495

.000000 16 .00000 00051 .00000056 .00000 00200 .00000096 .00000 00349 .000000 D6 .00000 00498

.000000 17 .00000 00053 .00000057 .0000000202 .00000097 .00000 00351 .000000 D7 .00000 00500

.000000 18 .0000000055 .00000058 .00000 00204 .00000098 .00000 00353 .000000 D8 .00000 00502

.000000 19 .00000 00058 .00000059 .00000 00207 .00000099 .00000 00356 .000000 D9 .00000 00505

.000000 lA .00000 00060 .0000005A .00000 00209 .0000009A .0000000358 .000000 DA .00000 00507

.000000 1 B .00000 0006 2 .0000005B .00000 00211 .00 00 009B .00000 00360 .000000 DB .00000 00509

.0000001C .00000 00065 .0000005C .00000 00214 .0000 00 9C .00000 00363 .000000 DC .00000 0051 2

.000000 1 D .00000 00067 .0000005D .00000 00216 .00 00 00 9D .0000000365 .000000 DD .00000 00514

.000000 1 E .00000 0006 9 .0000005E .00000 00218 .0000 00 9E .00000 00367 .000000 DE .00000 00516

.000000 1 F .00000 00072 .00 00 00 5F .00000 00221 .0000009F .00000 00370 .000000 DF .00000 0051 9

.000000 20 .00000 00074 .00000060 .00000 00223 .000000 AO .00000 00372 .000000 EO .00000 00521

.000000 21 .00000 00076 .00000061 .00000 00225 .000000 A1 .00000 00374 .000000 El .00000 00523

.00000022 .00000 00079 .00000062 .00000 00228 .000000 A2 .00000 00377 .000000 E2 .0000000526

.00000023 .00000 00081 .00000063 .00000 00230 .000000 A3 .00000 00379 .000000 E3 .00000 00528

.00000024 .0000000083 .00000064 .00000 00232 .000000 A4 .00000 00381 .000000 E4 .00000 00530

.000000 25 .00000 00086 .00000065 .00000 00235 .000000 A5 .00000 00384 .000000 E5 .00000 00533

.000000 26 .00000 00088 .00000066 .00000 00237 .000000 A6 .00000 00386 .000000 E6 .0000000535

.00000027 .00000 00090 .00000067 .00000 00239 .000000 A7 .00000 00388 .000000 E7 .00000 00537

.00000028 .00000 00093 .00000068 .00000 00242 .000000 A8 .00000 00391 .000000 E8 .00000 00540

.00000029 .00000 00095 .00000069 .00000 00244 .000000 A9 .0000000393 .000000 E9 .00000 00542

.0000002A .00000 00097 .0000006A .00000 00246 .000000 AA .00000 00395 .000000 EA .00000 00544

.0000002B .00000 00100 .0000006B .00000 00249 .00 00 00 AB .00000 00398 .000000 EB .0000000547

.0000002C .0000000102 .0000006C .00000 00251 .000000 AC .00000 00400 .000000 EC .0000000549

.0000002D .00000 00104 .0000006D .00000 00253 .000000 AD .00000 00402 .000000 ED .00000 00551

.0000002E .00000 00107 .0000006E .0000000256 .000000 AE .00000 00405 .000000 EE .00000 00554

.0000002F .0000000109 .0000006F .00000 00258 .000000 AF .0000000407 .000000 EF .00000 00556

.000000 30 .00000 00111 .00000070 .00000 00260 .000000 BO .00000 00409 .000000 FO .00000 00558

.000000 31 .00000 00114 .00000071 .00000 00263 .000000 B1 .00000 0041 2 .000000 Fl .00000 00561

.00000032 .0000000116 .00000072 .0000000265 .000000 B2 .00000 00414 .000000 F2 .00000 00563

.00000033 .00000 00118 .00000073 .00000 00267 .000000 B3 .00000 00416 .000000 F3 .00000 00565

.00000034 .00000 00121 .00000074 .00000 00270 .000000 B4 .00000 0041 9 .000000 F4 .00000 00568

.00000035 .00000 001 23 .00000075 .00000 00272 .000000 B5 .00000 00421 .000000 F5 .00000 00570

.00000036 .00000 001 25 .00000076 .00000 00274 .000000 B6 .00000 00423 .000000 F6 .00000 00572

.00000037 .00000 00 128 .00000077 .00000 00277 .000000 B7 .00000 00426 .000000 F7 .00000 00575

.00000038 .00000 00130 .00000078 .00000 00279 .0000 00 B8 .0000000428 .00 0000 F8 .00000 00577

.00000039 .0000000132 .00000079 .00000 00281 .000000 B9 .00000 00430 .000000 F9 .00000 00579

.0000 00 3A .00000 00135 .00 00 00 7A .00000 00284 .000000 BA .00000 00433 .000000 FA .00000 00582

.0000003B . 00000 001 37 .00 00 00 7B .00000 00286 .000000 BB .00000 00435 .00 00 00 FB .00000 00584

.0000003C .00000 00139 .00 00 00 7C .00000 00288 .000000 BC .00000 00437 .000000 Fe .00000 00586

.00 00 00 3D .0000000142 .00 00 00 7D .00000 00 291 .000000 BD .00000 00440 .000000 FD .00000 00589

.0000003E .00000 00144 .00 00 00 7E .0000000293 .00 00 00 BE .00000 0044 2 .000000 FE .00000 00591

.0000003F .00000 00146 .00 00 00 7F .00000 00295 .000000 BF .00000 00444 .000000 FF .00000 00593

Appendix A 159

HEXADECIMAL-DECIMAL FRACTION CONVERSION TABLE (cont.)

Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal

.00 00 00 00 .00000 00000 .00 00 40 00 .00000 38146 .000080 00 .00000 76293 .00 00 CO 00 .00001 14440

.00 00 01 00 .00000 00596 .00 00 41 00 .00000 38743 .00 00 81 00 .00000 76889 .0000 C1 00 .00001 15036

.000002 00 .00000 01192 .00 0042 00 .00000 39339 .000082 00 .00000 77486 .0000 C2 00 .00001 15633

.000003 00 .00000 01788 .000043 00 .00000 39935 .00 0083 00 .00000 78082 .0000 C3 00 .00001 16229

.00 00 04 00 .00000 02384 .000044 00 .00000 40531 .00 00 84 00 .00000 78678 .0000 C4 00 .00001 16825

.000005 00 .00000 02980 .000045 00 .00000 41127 .00 00 85 00 .00000 79274 .00 00 C5 00 .00001 17421

.00 00 06 00 .00000 03576 .000046 00 .00000 41723 .000086 00 .00000 79870 .00 00 C6 00 .00001 18017

.000007 00 .00000 04172 .000047 00 .00000 42319 .00 0087 00 .00000 80466 .00 00 C7 00 .00001 18613

.000008 00 .00000 04768 .00 0048 00 .00000 42915 .000088 00 .00000 81062 .00 00 C8 00 .00001 19209

.00 00 09 00 .00000 05364 .000049 00 .00000 43511 .00 00 89 00 .00000 81658 .0000 C9 00 .00001 19805

.0000 OA 00 · 00000 05960 .00004A 00 .00000 44107 .00008A 00 .00000 82254 .0000 CA 00 .00001 20401

.0000 DB 00 · 00000 06556 .00 00 4B 00 .00000 44703 .00008B 00 .00000 82850 .00 00 CB 00 .00001 20997

.00 00 DC 00 .00000 07152 .0000 4C 00 .00000 45299 .00008C 00 .00000 83446 .0000 CC 00 .00001 21593

.OOOOOD 00 .00000 07748 .00004D 00 .00000 45895 .00008D 00 .00000 84042 .0000 CD 00 .00001 22189

.0000 DE 00 .00000 08344 .0000 4E 00 .00000 46491 .00 00 8E 00 .00000 84638 .0000 CE 00 .00001 22785

.0000 OF 00 .00000 08940 .00 00 4F 00 .00000 47087 .00008F 00 .00000 85234 .0000 CF 00 .00001 23381

.000010 00 .00000 09536 .00 0050 00 .00000 47683 .000090 00 .00000 85830 .0000 DO 00 .0000i 23977

.000011 00 .00000 10132 .00 0051 00 .00000 48279 .00 0091 00 .00000 86426 .0000 DIDO .00001 24573

.00 00 12 00 .00000 10728 .00 0052 00 .00000 48875 .00 00 92 00 .00000 87022 .0000 D2 00 .00001 25169

.0000 13 00 .00000 11324 .000053 00 .0000049471 .00 0093 00 .0000087618 .0000 D3 00 .00001 25765

.0000 14 00 .00000 1 1920 .00 0054 00 .00000 50067 .00 0094 00 .00000 88214 .0000 D4 00 .00001 26361

.0000 15 00 .00000 12516 .000055 00 .00000 50663 .000095 00 .00000 88810 .0000 D5 00 .00001 26957

.000016 00 .00000 13113 .000056 00 .00000 51259 .00 00 96 00 .00000 89406 .0000 D6 00 .00001 27553

.000017 00 .00000 13709 .000057 00 .00000 51856 .00 0097 00 .00000 90003 .00 00 D7 00 .00001 28149

.000018 00 · 00000 14305 .000058 00 .00000 52452 .000098 00 .00000 90599 .00 00 D8 00 .00001 28746

.00 00 19 00 .00000 14901 .00 0059 00 .00000 53048 .000099 00 .00000 91195 .0000 D9 00 .00001 29342

.0000 1A 00 .00000 15497 .00 00 5A 00 .00000 53644 .00 009A 00 .00000 91791 .00 00 DA 00 .00001 29938

.0000 1 B 00 .00000 16093 .00005B 00 .00000 54240 .00 00 98 00 .00000 92387 .0000 DB 00 .00001 30534

.0000 lC 00 .00000 16689 .00005C 00 .00000 54836 .00 00 9C 00 .00000 92983 .0000 DC 00 .00001 31130

.0000 1 D 00 .00000 17285 .00005D 00 .00000 55432 .00 00 9D 00 .00000 93579 .0000 DD 00 .00001 31726

.00 00 1 E 00 .00000 17881 .00 00 5E 00 .00000 56028 .0000 9E 00 .00000 94175 .00 00 DE 00 .00001 32322

.0000 1 F 00 .00000 18477 .00005F 00 .00000 56624 .00009F 00 .00000 94771 .0000 DF 00 .00001 32918

.000020 00 .00000 19073 .00 00 60 00 .00000 57220 .0000 AD 00 .00000 95367 .0000 EO 00 .00001 33514

.000021 00 .00000 19669 .000061 00 .00000 57816 .0000 Al 00 .00000 95963 .OOOOEI 00 .0000 1 34110

.00 0022 00 .00000 20265 .00 0062 00 .00000 58412 .0000 A2 00 .00000 96559 .0000 E2 00 .00001 34706

.000023 00 .00000 20861 .000063 00 .00000 59008 .00 00 A3 00 .00000 97155 .0000 E3 00 .00001 35302

.000024 00 .00000 21457 .000064 00 .00000 59604 .0000 A4 00 .00000 97751 .0000 E4 00 .00001 35898

.000025 00 .00000 22053 .00 00 65 00 .0000060200 .0000 A5 00 .00000 98347 .0000 E5 00 .00001 36494

.000026 00 .00000 22649 .000066 00 .00000 60796 .0000 A6 00 .00000 98943 .0000 E6 00 .00001 37090

.0000 27 00 .00000 23245 .00 00 67 00 .00000 61392 .0000 A7 00 .00000 99539 .0000 E7 00 .00001 37686

.0000 28 00 .0000023841 .000068 00 .00000 61 988 .0000 A8 00 .00001 00135 .0000 E8 00 .00001 38282

.000029 00 .00000 24437 .000069 00 .0000062584 .0000 A9 00 .00001 00731 .0000 E9 00 .00001 38878

.00 00 2A 00 .00000 25033 .00 00 6A 00 .00000 63180 .0000 AA 00 .00001 01327 .0000 EA 00 .00001 39474

.00 00 2B 00 .00000 25629 .00006B 00 .0000063776 .0000 AB 00 .00001 01923 .0000 EB 00 .00001 40070

.00002C 00 .00000 26226 .00006C 00 .00000 64373 .0000 AC 00 .00001 02519 .00 00 EC 00 .00001 40666

.0000 2D 00 .00000 26822 .00006D 00 .00000 64969 .0000 AD 00 .00001 03116 .0000 ED 00 .00001 41263

.0000 2E 00 .00000 27418 .00006E 00 .00000 65565 .0000 AE 00 .00001 03712 .00 00 EE 00 .00001 41859

.00 00 2F 00 .00000 28014 .0000 6F 00 .00000 66161 .00 00 AF 00 .00001 04308 .00 00 Ef 00 .00001 42455

.000030 00 .00000 2861 a .000070 00 .00000 66757 .0000 BO 00 .00001 04904 .0000 FO 00 .00001 43051

.000031 00 .00000 29206 .000071 00 .00000 67353 .OOOOBI 00 .00001 05500 .00 00 Fl 00 .00001 43647

.000032 00 .00000 29802 .0000 72 00 .00000 67949 .0000 B2 00 .00001 06096 .0000 F2 00 .00001 44243

.000033 00 .00000 30398 .000073 00 .00000 68545 .0000 B3 00 .0000 1 06692 .0000 F3 00 .00001 44839

.000034 00 .0000030994 .00 00 74 00 .00000 69141 .0000 B4 00 .00001 07288 .00 00 F4 00 .0000 1 45435

.000035 00 .0000031590 .000075 00 .00000 69737 .0000 B5 00 .00001 07884 .0000 F5 00 .0000 I 46031

.000036 00 .0000032186 .00 00 76 00 .0000070333 .0000 B6 00 .00001 08480 .00 00 F6 00 .00001 46627

.00 0037 00 .00000 32782 .00 00 77 00 .00000 70929 .0000 B7 00 .00001 09076 .00 00 F7 00 .00001 47223

.000038 00 .0000033378 .000078 00 .0000071525 .0000 B8 00 .0000 1 09672 .00 00 F8 00 .00001 47819

.00 00 39 00 .0000033974 .000079 00 .0000072121 .00 00 B9 00 .00001 10268 .0000 F9 00 .00001 48415

.00003A 00 .00000 34570 .00007A 00 .00000 72717 .0000 BA 00 .0000 1 10864 .0000 FA 00 .00001 49011

.00003B 00 .00000 35166 .00007B 00 .00000 73313 .00 00 BB 00 .0000 1 11460 .0000 FB 00 .00001 49607

.00003C 00 .00000 35762 .00 00 7C 00 .00000 73909 .00 00 BC 00 .00001 12056 .0000 FC 00 .00001 50203

.0000 3D 00 .00000 36358 .00 00 7D 00 .00000 74505 .0000 BD 00 .00001 12652 .00 00 FD 00 .00001 50799

.00 00 3E 00 .0000036954 .00007E 00 .00000 75101 .00 00 BE 00 .00001 13248 .00 00 FE 00 .00001 51395

.00003F 00 .00000 37550 .00 00 7F 00 .00000 75697 .00 00 BF 00 .00001 13844 .00 00 FF 00 .00001 51991

160 Appendix A

HEXADECIMAL-DECIMAL FRACTION CONVERSION TABLE (cont.)

Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal

.0000 0000 .00000 00000 .0040 0000 .00097 65625 .0080 0000 .00195 31250 .00 CO 0000 .00292 96875

.0001 0000 .00001 52587 .0041 0001) .00099 18212 .0081 0000 .00196 83837 .00 C1 0000 .00294 49462

.0002 0000 .00003 05175 .0042 0000 .00100 70800 .0082 0000 .00198 36425 .00 C2 0000 .00296 02050

.0003 0000 .00004 57763 .0043 0000 .00102 23388 .0083 0000 .0019989013 .00 C3 0000 .00297 54638

.0004 0000 .00006 10351 .0044 0000 .00103 75976 .0084 0000 .00201 41601 .00 C4 0000 .00299 07226

.0005 0000 .00007 62939 .0045 0000 .00105 28564 .0085 0000 .00202 94189 .00 C5 0000 .0030059814

.0006 0000 .00009 15527 .0046 0000 .00106 81152 .0086 0000 .00204 46777 .00 C6 0000 .00302 12402

.0007 0000 .0001068115 .0047 0000 .00108 33740 .0087 0000 .00205 99365 .00 C7 0000 .00303 64990

.00 08 0000 .00012 20703 .0048 0000 .0010986328 .0088 0000 .0020751953 .00 C8 0000 .00305 17578

.0009 0000 .0001373291 .0049 0000 .00111 38916 .0089 00 00 .00209 04541 .00 C9 0000 .00306 70166

.OOOA 0000 .00015 25878 .004A 0000 .0011291503 .008A 0000 .0021057128 .00 CA 0000 .00308 22753

.OOOB 0000 .00016 78466 .004B 0000 .00114 44091 .008B 0000 .0021209716 .00 CB 0000 .00309 75341

.OOOC 0000 .0001831054 .004C 0000 .00115 96679 .008C 0000 .00213 62304 .00 CC 0000 .00311 27929

.00 OD 0000 .0001983642 .004D 0000 .0011749267 .008D 00 00 .00215 14892 .00 CD 0000 .0031280517

.OOOE 0000 .00021 36230 .004E 0000 .0011901855 .008E 00 00 .0021667480 .00 CE 0000 .0031433105

.00 OF 0000 .00022 88818 .004F 0000 .0012054443 .008F 0000 .00218 20068 .00 CF 0000 .00315 85693

.00 10 0000 .0002441406 .0050 0000 .00122 07031 .0090 0000 .0021972656 .00 DO 0000 .00317 38281

.00 11 0000 .00025 93994 .0051 0000 .00123 59619 .0091 0000 .00221 25244 .00 D1 0000 .00318 90869

.00 12 0000 .00027 46582 .0052 0000 .00125 12207 .0092 0000 .00222 77832 .00 D2 0000 .0032043457

.00 13 0000 .00028 99169 .0053 0000 .00126 64794 .0093 0000 .0022430419 .00 D3 0000 .00321 96044

.00 14 0000 .00030 51757 .0054 0000 .001 28 17382 .0094 0000 .00225 83007 .00 D4 0000 .00323 48632

.00 15 0000 .00032 04345 .0055 0000 .0012969970 .0095 0000 .00227 35595 .00 D5 0000 .00325 01220

.00 16 0000 .00033 56933 .0056 0000 .00131 22558 .0096 0000 .00228 88183 .00 D6 0000 .00326 53808

.00 17 0000 .00035 09521 .0057 0000 .0013275146 .0097 0000 .00230 40771 .00 D7 0000 .00328 06396

.00 18 0000 .00036 62109 .0058 0000 .00134 27734 .0098 0000 .00231 93359 .00 D8 0000 .00329 58984

.00 19 0000 .00038 14697 .0059 0000 .00135 80322 .0099 0000 .00233 45947 .00 D9 0000 .00331 11572

.00 lA 0000 .00039 67285 .005A 0000 .00137 32910 .009A 00 00 .00234 98535 .00 DA 00 00 .00332 64160

.00 1 B 0000 .00041 19873 .005B 0000 .0013885498 .009B 00 00 .00236 51123 .00 DB 0000 .00334 16748

.00 1C 0000 .00042 72460 .005C 0000 .00140 38085 .009C 0000 .00238 03710 .00 DC 0000 .00335 69335

.00 1 D 0000 .00044 25048 .00 5D 0000 .00141 90673 .00 9D 0000 .0023956298 .00 DD 00 00 .00337 21923

.00 1 E 0000 .00045 77636 .005E 0000 .00143 43261 .009E 0000 .00241 08886 .00 DE 0000 .00338 74511

.00 1 F 0000 .00047 30224 .005F 0000 .00144 95849 .009F 0000 .0024261474 .00 DF 0000 .00340 27099

.0020 0000 .0004a 82812 .0060 0000 .00146 48437 .00 AO 0000 .00244 14062 .00 EO 0000 .00341 79687

.0021 0000 .00050 35400 .0061 0000 .00148 01025 .00 A1 0000 .00245 66650 .00 El 0000 .00343 32275

.0022 0000 .00051 87988 .0062 0000 .0014953613 .00 A2 0000 .00247 19238 .00 E2 0000 .00344 84863

.0023 0000 .00053 40576 .0063 0000 .00151 06201 .00 A3 0000 .00248 71826 .00 E3 0000 .00346 37451

.00 24 0000 .00054 93164 .0064 0000 .00152 58789 .00 A4 0000 .00250 24414 .00 E4 0000 .00347 90039

.0025 0000 .00056 45751 .0065 0000 .00154 11376 .00 A5 0000 .00251 77001 .00 E5 0000 .00349 42626

.0026 0000 .00057 98339 .0066 0000 .00155 63964 .00 A6 00 00 .00253 29589 .00 E6 0000 .00350 95214

.00 27 0000 .00059 50927 .0067 0000 .00157 16552 .00 A7 0000 .0025482177 .00 E7 0000 .00352 47802

.00 28 00 00 .00061 03515 .0068 0000 .0015869140 .00 A8 0000 .00256 34765 .00 E8 0000 .00354 00390

.00 29 0000 .00062 56103 .0069 0000 .00160 21728 .00 A9 00 00 .00257 87353 .00 E9 0000 .00355 52978

.00 2A 0000 .00064 08691 .006A 0000 .00161 74316 .00 AA 00 00 .00259 39941 .00 EA 0000 .00357 05566

.002B 0000 .00065 61279 .006B 0000 .00163 26904 .00 AB 0000 .00260 92529 .00 EB 0000 .00358 58154

.002C 0000 .00067 13867 .006C 0000 .0016479492 .00 AC 0000 .00262 45117 .00 EC 0000 .00360 10742

.00 2D 0000 .00068 66455 .006D 0000 .00166 32080 .00 AD 00 00 .00263 97705 .00 ED 0000 .00361 63330

.002E 0000 .00070 19042 .006E 0000 .00167 84667 .00 AE 00 00 .00265 50292 .00 EE 0000 .00363 15917

.002F 0000 .00071 71630 .006F 0000 .00169 37255 .00 AF 0000 .00267 02880 .00 EF 0000 .00364 68505

.0030 0000 .00073 24218 .0070 0000 .00170 89843 .00 BO 0000 .00268 55468 .00 FO 0000 .00366 21093

.0031 0000 .00074 76806 .0071 0000 .00172 42431 .00 B1 0000 .00270 08056 .00 Fl 0000 .00367 73681

.0032 0000 .00076 29394 .0072 0000 .00173 95019 .00 B2 0000 .00271 60644 .00 F2 0000 .00369 26269

.0033 0000 .0007781982 .0073 0000 .00175 47607 .00 B3 0000 .00273 13232 .00 F3 0000 .00370 78857

.0034 0000 .00079 34570 .0074 0000 .00177 00195 .00 B4 0000 .0027465820 .00 F4 0000 .00372 31445

.0035 0000 .00080 87158 .0075 0000 .00178 52783 .00 B5 0000 .00276 18408 .00 F5 0000 .00373 84033

.0036 0000 .00082 39746 .0076 0000 .00180 05371 .00 B6 0000 .00277 70996 .00 F6 0000 .00375 36621

.0037 0000 .00083 92333 .0077 0000 .00181 57958 .00 B7 0000 .00279 23583 .00 F7 0000 .00376 89208

.0038 0000 .00085 44921 .001'8 0000 .00183 10546 .00 B8 0000 .00280 76171 .00 F8 0000 .00378 41796

.0039 0000 .00086 97509 .0079 0000 .0018463134 .00 B9 0000 .00282 28759 .00 F9 0000 .00379 94384

.003A 0000 .00088 50097 .007A 0000 .00186 15722 .00 BA 0000 .00283 81347 .00 FA 0000 .00381 46972

.003B 0000 .0009002685 .007B 0000 .00187 68310 .00 BB 0000 .00285 33935 .00 FB 0000 .00382 99560

.003C 0000 .00091 55273 .007C 0000 .00189 20898 .00 BC 0000 .00286 86523 .00 FC 0000 .0038452148

.00 3D 0000 .00093 07861 .007D 0000 .001 90 73486 .00 BD 0000 .00288 39111 .00 FD 0000 .00386 04736

.003E 0000 .00094 60449 .007E 0000 .00192 26074 .00 BE 00 00 .00289 91699 .00 FE 0000 .00387 57324

.003F 0000 .00096 13037 .007F 0000 .001 93 78662 .00 BF 0000 .00291 44287 .00 FF 0000 .00389 09912

Appendix A 161

HEXADECIMAL-DECIMAL FRACTION CONVERSION TABLE (cont.)

Hexodecimal Decimal Hexadecimal Decimal Hexadecimal Decimal Hexodecimal Decimal

.00 00 00 00 .00000 00000 .40 000000 .25000 00000 .80 00 00 00 .50000 00000 .CO 000000 .75000 00000

.01 000000 .00390 62500 .41 000000 .25390 62500 .81 00 00 00 .50390 62500 .Cl 00 00 00 .75390 62500

.02 000000 .00781 25000 .42 00 00 00 .25781 25000 .82 000000 .50781 25000 .C2 000000 .75781 25000

.03 000000 .01171 87500 .43 000000 .26171 87500 .83 00 00 00 .51171 87500 .C3 00 00 00 .76171 87500

.04 00 0000 .0156250000 .44 000000 .26562 50000 .84 00 00 00 .5156250000 .C4 00 00 00 .7656250000

.05 00 00 00 .01953 12500 .45 000000 .26953 12500 .85 00 00 00 .51953 12500 .C5 000000 .76953 12500

.06 000000 .02343 75000 .46 000000 .27343 75000 .86 00 00 00 .52343 75000 .C6 000000 .77343 75000

.07 000000 .02734 37500 .47 000000 .27734 37500 .87 000000 .52734 37500 .C7 00 00 00 .77734 37500

.08 000000 .03125 00000 .48 000000 .281 25 00000 .88 000000 .53125 00000 .C8 00 00 00 .78125 00000

.09 000000 .0351562500 049 000000 .28515 62500 .89 000000 .53515 62500 .C9 000000 .78515 62500

.OA 000000 .03906 25000 AA 000000 .28906 25000 .8A 00 00 00 .53906 25000 .CA 00 00 00 .78906 25000

.OB 000000 .04296 87500 AB 000000 .29296 87500 .8B 000000 .5429687500 .CB 000000 .79296 87500

.OC 000000 .04687 50000 .4C 000000 .29687 50000 .8C 000000 .54687 50000 .CC 00 00 00 .79687 50000

.00 000000 .05078 12500 .40 00 00 00 .30078 12500 .80 000000 .55078 12500 .CD 00 00 00 .80078 1 2500

.OE 000000 .05468 75000 .4E 000000 .30468 75000 :8E 00 00 00 .55468 75000 .CE 000000 .80468 75000

.OF 000000 .05859 37500 .4F 000000 .30859 37500 .8F 00 00 00 .5585937500 .CF 000000 .80859 37500

.10 000000 .0625000000 .50 000000 .3125000000 .90 000000 .56250 00000 .00 000000 .8125000000

.11 000000 .06640 62500 .51 000000 .31640 62500 .91 000000 .56640 62500 .01 000000 .81640 62500

.12 000000 .07031 25000 .52 000000 .32031 25000 .92 000000 .57031 25000 .02 000000 .82031 25000

.13 000000 .07421 87500 .53 000000 .32421 87500 .93 000000 .57421 87500 .03 000000 .82421 87500

.14 000000 .07812 50000 .54 000000 .3281250000 .94 000000 .57812 50000 .04 000000 .8281 2 50000

.15 000000 .08203 12500 .55 000000 .33203 12500 .95 000000 .58203 12500 .05 000000 .83203 12500

.16 000000 .08593 75000 .56 000000 .33593 75000 .96 000000 .58593 75000 .06 000000 .8359375000

.17 000000 .08984 37500 .57 000000 .33984 37500 .97 000000 .58984 37500 .07 000000 .83984 37500

.18 000000 .09375 00000 .58 000000 .34375 00000 .98 000000 .59375 00000 .08 00 00 00 .84375 00000

.19 00 00 00 .09765 62500 .59 000000 .34765 62500 .99 00 00 00 .59765 62500 .09 000000 .84765 62500

.IA 000000 · 10 156 25000 .5A 000000 .35156 25000 .9A 000000 .60156 25000 .DA 00 00 00 .85156 25000

.IB 000000 .10546 87500 .5B 000000 .35546 87500 .9B 000000 .60546 87500 .DB 000000 .85546 87500

.1C 000000 · 10937 50000 .5C 000000 .35937 50000 .9C 00 00 00 .60937 50000 .DC 000000 .85937 50000

.ID 000000 .11328 12500 .50 000000 .36328 12500 .90 000000 .61 328 12500 .DD 000000 .86328 12500

.1 E 000000 .11718 75000 .5E 000000 .36718 75000 .9E 000000 .6171875000 .DE 000000 .8671875000

.IF 000000 · 1 21 09 37500 .5F 00 00 00 .3710937500 .9F 000000 .6210937500 .DF 000000 .8710937500

.20 000000 · 1 2500 00000 .60 000000 .3750000000 .AO 000000 .62500 00000 .EO 000000 .87500 00000

.21 000000 · I 2890 62500 .61 000000 .37890 62500 .Al 000000 .62890 62500 .El 000000 .87890 62500

.22 000000 .1328125000 .62 000000 .38281 25000 .A2 000000 .63281 25000 .E2 000000 .88281 25000

.23 000000 .13671 87500 .63 000000 .38671 87500 .A3 000000 .63671 87500 .E3 000000 :88671 87500

.24 000000 .1406250000 .64 000000 .39062 50000 .A4 000000 .64062 50000 .E4 000000 .89062 50000

.25 000000 · 14453 I 2500 .65 000000 .39453 12500 .A5 00 00 00 .64453 1 2500 .E5 000000 .89453 12500

.26 000000 .1484375000 .66 000000 .3984375000 .A6 000000 .6484375000 .E6 000000 .89843 75000

.27 00 00 00 .15234 37500 .67 000000 .40234 37500 .A7 000000 .65234 37500 .E7 000000 .9023437500

.28 000000 .15625 00000 .68 000000 .406 25 00000 .A8 000000 .65625 00000 .E8 000000 .90625 00000

.29 000000 .16015 62500 .69 000000 .410 15 62500 .A9 000000 .66015 62500 .E9 000000 .9101562500

.2A 000000 .16406 25000 .6A 000000 .41406 25000 .AA 00 00 00 .66406 25000 .EA 000000 .91406 25000

.2B 000000 .167-1687500 .6B 000000 .41796 87500 .AB 000000 .66796 87500 .EB 000000 .9179687500

.2C 000000 .17187 50000 .6C 000000 .42187 50000 .AC 000000 .67 I 87 50000 .EC 000000 .92187 50000

.20 000000 .17578 12500 .60 000000 .42578 12500 .AO 00 0000 .67578 12500 .ED 00 00 00 .92578 1 2500

.2E 000000 · 17968 75000 .6E 000000 .42968 75000 .AE 000000 .67968 75000 .EE 00 00 00 .92968 75000

.2F 000000 · I 8359 37500 .6F 0000 00 .43359 37500 .AF 000000 .68359 37500 .EF 000000 .93359 37500

.30 000000 .18750 00000 .70 000000 .43750 00000 .BO 000000 .68750 00000 .FO 000000 .93750 00000

.31 00 00 00 .1914062500 .71 000000 .44140 62500 .Bl 00 0000 .6914062500 .FI 000000 .9414062500

.32 000000 .19531 25000 .72 000000 .44531 25000 .B2 000000 .69531 25000 .F2 000000 .9453 I 25000

.33 000000 .19921 87500 .73 0000 00 .44921 87500 .B3 00 00 00 .69921 87500 .F3 00 0000 .94921 87500

.34 000000 .2031 2 50000 .74 000000 .453 I 2 50000 .84 000000 .7031 2 50000 .F4 000000 .95312 50000

.35 000000 .20703 12500 .75 00 00 00 .45703 12500 .B5 000000 .70703 12500 .F5 000000 .95703 I 2500

.36 000000 .21093 75000 .76 000000 .46093 75000 .86 000000 .7 1093 75000 .F6 000000 .96093 75000

.37 000000 .21484 37500 .77 000000 .46484 37500 .B7 000000 .71484 37500 .F7 000000 .96484 37500

.38 000000 .21875 00000 .78 000000 .46875 00000 .B8 000000 .71875 00000 .F8 000000 .96875 00000

.39 000000 .22265 62500 .79 000000 .47265 62500 .B9 000000 .72265 62500 .F9 000000 .97265 62500

.3A 000000 .22656 25000 .7A 00 0000 .47656 25000 .BA 00 00 00 .72656 25000 .FA 000000 .97656 25000

.3B 000000 .23046 87500 .7B 000000 .48046 87500 .BB 00 00 00 .73046 87500 .FB 000000 .98046 87500

.3C 000000 .23437 50000 .7C 000000 .48437 50000 .BC 000000 .73437 50000 .FC 000000 .98437 50000

.30 000000 .23828 12500 .70 0000 00 .48828 12500 .BD 000000 .73828 12500 .FD 000000 .98828 I 2500

.3E 000000 .24218 75000 .7E 000000 .49218 75000 .BE 000000 .74218 75000 .FE 000000 .99218 75000

.3F 000000 .2460937500 .7F 000000 .49609 37500 .BF 000000 .74609 37500 .FF 000000 .9960937500

162 Appendix A

TABLE OF POWERS OF TWO MATHEMATICAL CONSTANTS

L.!!.i:.
1 0 1.0
2 1 0.5
4 2 0.25
8 3 0.125

16 4 0.062 5
32 5 0.031 25
64 6 0.015 625

128 7 0.007 812 5

256 8 0.003 906 25
512 9 0.001 953 125

1 024 10 0.000 976 562 5
2 048 11 0.000 488 281 25

4096 12 0.000 244 140 625
8 192 13 0.000 122 070 312 5

16 384 14 0.000 061 035 156 25
32 768 15 0.000 030 517 578 125

65 536 16 0.000 015 258 789 062 5
131 072 17 0.000 007 629 394 531 25
262 144 18 0.000 003 814 697 265 625
524 288 19 0.000 001 907 348 632 812 5

1 048 576 20 0.000 000 953 674 316 406 25
2 097 152 21 0.000 000 476 837 158 203 125
4 194 304 22 0.000 000 238 418 579 101 562 5
8 388 608 23 0.000 000 119 209 289 550 781 25

16 777 216 24 0.000 000 059 604 644 775 390 625
33 554 432 25 0.000 000 029 802 322 387 695 312 5
67 108 864 26 0.000 000 014 901 161 193 847 656 25

134 217 728 27 0.000 000 007 450 580 596 923 828 125

268 435 456 28 0.000 000 003 725 290 298 461 914 062 5
536 870 912 29 0.000 000 001 862 645 149 230 957 031 25

1 073 741 824 30 0.000 000 000 931 322 574 615 478 515 625
2 147 483 648 31 0.000 000 000 465 661 287 307 739 257 812 5

4 294 967 296 32 0.000 000 000 232 830 643 653 869 628 906 25
8 589 934 592 33 0.000 000 000 116 415 321 826 934 814 453 125

17 179 869 184 34 0.000 000 000 058 207 660 913 467 407 226 562 5
34 359 738 368 35 0.000 000 000 029 103 830 456 733 703 613 281 25

68 719 476 736 36 0.000 000 000 014 551 915 228 366 851 806 640 625
137 438 953 472 37 0.000 000 000 007 275 957 614 183 425 903 320 312 5
274 877 906 944 38 0.000 000 000 003 637 978 807 091 712 951 660 156 25
549 755 813 888 39 0.000 000 000 001 818 989 403 545 856 475 830 078 125

1 099 511 627 776 40 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5
2 199 023 255 552 41 0.000 000 000 000 454 747 350 886 464 118 957 519 531 25
4 398 046 511 104 42 0.000 000 000 000 227 373 675 443 232 059 478 759 765 625
8 796 093 022 208 43 0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5

17 592 186 044 416 44 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25
35 184 372 088 832 45 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125
70 368 744 177 664 46 0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5

140 737 488 355 328 47 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25

281 474 976 710 656 48 0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625
562 949 953 421 312 49 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668945 312 5

1 125 899 906 842 624 50 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25
2 251 799 813 685 248 51 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667236 328 125

Constant

11'-1

oJ;

Inn

e
-1

e

..Je
loglOe

log2 e

'i

In'i

.J2

In2

log10 2

.JTO
In 10

4 503 599 627 370 496 52 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5
9 007 199 254 740 992 53 0.000 000 000 000 000 111 022 302 462 515 654 042 363 166 809 082 031 25

18 014 398 509 481 984 54 0.000 000 000 000 000 055 511 151 231 257 827 021 181 583404 541 015 625
36 028 797 018 963 968 55 0.000 000 000 000 000 027 755 575 615 628 913 510 590 791 702 270 507 812 5

72 057 594 037 927 936 56 0.000 000 000 000 000 013 877 787 807 814 456 755 295 395851 135 253 906 25

Decimal Value

3.14159 26535 89793

0.31830 98861 83790

1.77245 38509 05516

I .14472 98858 49400

2.71828 18284 59045

0.36787 94411 71442

1.64872 12707 00128

0.43429 44819 03252

1 .44269 50408 88963

0.57721 56649 01533

-0.54953 93129 81645

1.41421 35623 73095

0.69314 71805 59945

0.30102 99956 63981

3.16227 76601 68379

2.30258 40929 94046

144 115 188 075 855 872 57 0.000 000 000 000 000 006 938 893 903 907 228 377 647 697 925 567 626 953 125
288 230 376 151 711 744 58 0.000 000 000 000 000 003 469 446 951 953 614 188 823 848 962 783 813 476 562 5
576 460 752 303 423 488 59 0.000 000 000 000 000 001 734 723 475 976 807 094 411 924481 391 906 738 281 25

1 152 921 504 606 846 976 60 0.000 000 000 000 000 000 867 361 737 988 403 547 205 962 240 695 953 369 140 625
2 305 843 009 213 693 952 61 0.000 000 000 000 000 000 433 680 868 994 201 773 602 981 120 347 976 684 570 312 5
4 611 686 018 427 387 904 62 0.000 000 000 000 000 000 216 840 434 497 100 886 801 490 560 173 988 342 285 156 25
9 223 372 036 854 775 808 63 0.000 000 000 000 000 000 108 420 217 248 550 443 400 745 280 086 994 171 142 578 125

Hexadecimal Value

3.243F 6A89

0.517C C187

I.C58F 891C

1.2500 048F

2.87El 5163

0.5E20 5809

1.A612 98E2

0.6F20 EC55

1.7154 7653

0.93C4 67E4

-0.8CAE 98Cl

1.6A09 E668

0.8172 17F8

0.4010 4042

3.2988 075C

2.4076 3777

Appendix A 163

APPENDIX B. SIGMA 9 INSTRUCTION LIST

Mnemonic Code Instruction Name Page Mnemonic Code Instruction Nome Page

LOAD/STORE flOATING-POINT ARITHMETIC

1I 22 load 1mmediate 48 FAS 3D Floating Add Short 7-4
LB n Load Byte 48 FAL ID Floating Add long 75
LH 52 load Halfword 48 FSS 3C Floating Subtract Short 75
LW 32 Load Word 48 FSl lC Floating Subtract Long 76
to 12 load Doubleword 49 fMS 3F Floating Multiply Short 76
lCH SA Load Complement Halfword 49 FMl IF floating Multiply Long 76
LAM 58 load Absolute Hal fword 49 FDS 3E Floating Divide Short 76
lCW 3A load Complement Word 49 FDL IE Floating Divide long 76
LAW 3B Load Absolute Word 50
LCD lA Load Complement Doubleword 50 DEQMAl
LAD lB load Absolute Doubleword 51
LAS 26 Load ond Set 51 Dl 7E Decimal Load 79
lS .fA Load Selective 51 05T 7F Decimal" Store 79
LM 2A load Multiple 52 DA 79 Decimal Add 79
LCFI 02 load Conditions and Floating Control Immediote 52 DS 78 Decimal Subtract 79
lCF 70 Load Conditions ond Floating Control 53 OM 7B Decimal Multiply 80
XW 46 Exchange Word 53 DD 7A Decimal Divide 80
STB 75 Store Byte 53 DC 7D Decimal Compare 81
SfH 55 Store Halfword 53 DSA 7C Decimal Shift Arithmetic 81
STW 35 Store Word 53 PACK 76 Pack Decimal Digits 81
STD 15 Store Doubleword 54
STS 47 Store Selective 54

UNPK 77 Unpack Decimal Digits 82

STM 2B Store Multiple 54
STCF 74 Store Conditions and Floating Control 54 BYTE STRING

ANAL YZE/INTERPRET MBS 61 Move Byte String 84
CBS 60 Compare Byte String 85

ANLZ « Analyze 55 TBS 41 Translate Byte String 86

INT 6B Interpret 57 TTBS 40 Translate and Test Byte String 87
EBS 63 Edit Byte StrilJg 88

FIXED-POINT ARITHMETIC
PUSH DOWN

Al 20 Add Immediate 58
PSW 09 Push Word 94 AH 50 Add Halfward 58

AW 30 Add Word 58 PLW 08 Pull Word 94

AD TO Add Doubleword 59 PSM 08 Push Multiple 94

SH 58 Subtract Halfword 59 PLM OA Pull Mul.tiple 9S

SW 38 Subtract Word S9 MSP 13 Modify Stock Pointer 96

SD 18 Subtract Doubleword 60
MI 23 Multiply Immediate 60 EXECUTE/BRANCH
MH 57 Multiply Halfward 61
MW 37 Multiply Word 61 EXU 67 Execute 98
DH 56 Divide Halfword 61 BCS 69 Branch on Conditions Set 98
OW 36 Divide Word 62 BCR 68 Branch on Conditions Reset 99
AWM 66 Add Word to Memory 62 BIR 65 Branch on Incrementing Register 99
MTB 73 Modify and Test Byte 62 BDR 64 Branch on Decrementing Register 99
MTH 53 Modify and Test Halfword 63 BAL 6A Branch and li nk 99
MTW 33 Modify and Test Word 63

CALL
COMPARISON

CAll 04 Call 1 100
a 21 Compare Immediate 64 CAL2 05 Call 2 100
CB 71 Compare Byte 64 CAL3 06 Call 3 100
CH 51 Compare Halfword 65 CAL. 07 Call. 100
CN 31 Compare Word 65
CD 11 Compare Doubleword 65 CONTROL (privileged)
CS 4S Compare Selective 66
elR 39 Compare with limits in Register 66 lPSD Of Lood Program Status Doubleword 101
ClM 19 Compare with limits in Memory 66 XPSD OF Exchange Program Status Doubleword 102

LRP 2F load Register Pointer 104
MMC 6F Move to Memory Control 104

LOGICAL LRA 2C load Reol Addres 107
lMS 20 load Memory Status 108

OR 49 OR Word 66 WAIT 2£ Wait 110
EOR 48 Exclusive OR Word 61 RD 6C Read Direct 110
AND 4B AND Word 67 WD 6D Write Direct 112

SHIFT INPUT/OUTPUT (privileged)

S 25 Shift 67 SIO 4C Start Input/Output 123

SF 24 Shift floating 69 TIO 40 Test Input/Output 124
TDV 4E Test Device 125
HIO 4f Halt Input/Output 126

CONVERSION RIO 4F Reset Input/Output 126
POlP .F Poll Processor 127

OIA 29 Convert by Addition 71 POlR 4F Poll and Reset Processor 127
OIS 28 Convert by Subtraction 71 AIO 6E Acknowledge Input/Output Interrupt 127

164 Appendix 8

APPENDIX C. INSTRUCTION TIMING

TIMING CONSIDERATIONS

In less complex computers it was quite simple to express the
exact times or timing formulas for the execution of each op
eration. To determine the total time to execute a program
it was necessary only to add the times required for each in
struction. Simple timing formulas cannot exactly express
SIGMA 9 central processor operations because the timing of
each operation is dependent in varying degrees upon the
previous instruction, the amount of address modification
required, and the configuration of the memory system. The
degree of overlap depends on the type of problem (i. e. ,
the instruction mix); it varies widely among problems that
require predominantly floating-point, decimal, or byte
string arithmetic, and is also affected by the number of in
structions between branches and by input/output activity.
To be accurate, it. is necessary to examine the exact timing
relationships of the instructions inconsiderable detail.
Even then, the effect of system configurations on perfor
mance is not included in that examination. The best method
is to program a problem and time its execution under actual
system operating environments.

Timings and formulas in Table C-l are based on the assump
tion that, whenever the CPU requests a service cycle from
a particular memory bank, it never waits for such service
due to other devices (such as lOPs), which are connected
to that memory bank.

Execution times depend not only on the nature of the spe
cific instructions and the configuration of memory banks in
the system but also on the placement of instructions and
operands in memory. These basic execution times must be
increased to account for the effects of memory interference,
indexing, indirect addressing, and register-to-register
operations, These effects are discussed below.

Note that formulas given in Table C-l for long instructions
such as shift, decimal, floating, byte string, and multiples
are linearaverages of nonlinearfunctions. Programsheavily
dependent on the times of these instructions should be
benchmarked.

EFFECTS OF MEMORY INTERFERENCE

Memory interference wi II affect centra I processor speed,
which varies with the memory cycle time, the number of
memory banks capable of running in parallel, and the func
tion being executed. Interference is minimized by inter
leaving memory banks to allow maximum memory overlap.

90 17 33C-1{4/74)

In a typical instruction mix used in scientific/engineering
applications, the percentages of the instructions executed
might be as follows:

Type of Instructi on

Floating-point

Fixed-point
(including loads and stores)

Branch

Miscellaneous

Percent

8.5

53.0

27.5

11. 0

The effect of memory interference on the above instruction
mix in an 8-bank system for 100 instructions is an increase
of approximately 7. 4 microseconds or an average of 74 nano
s.econds per instruction. Changing the mix to a commercial
application that uses decimal and byte-string instructions
does not signifrcantly change the effect of memory inter
ference on the average instruction. Over a wide range of
mixes, the effect of memory interference in an 8-bank sys
tem changed by less than 10 percent.

EFFECTS OF INDEXING

Indexing causes a maximum increase of .260 microsecond
(.440 microsecond for SIGMA 9, Model 2) in the execution
time of an instruction. Many instructions are I imited in
speed due to memory access time. Indexing is often per
formed in conjunction with memory accesses. This over
lapping of indexing with memory time allows the effective
time due to indexing to be .260 microsecond (.440 micro
second for SIGMA 9, Model 2) less the memory overlap
time. For a typical scientific mix of instructions, the aver
age memory overlap is .120 microsecond. The typical in
dexing time would then be .140 microsecond (.320 micro
second for SIGMA 9, Model 2).

EFFECTS OF INDIRECT ADDRESSING

Indirect addressing requires a memory access. This access
may be from the general registers or the main memory.

1. Indirect addressing from general registers requires a
maximum time of .960 microsecond (1. 98 microseconds
for SIGMA 9 Model 2).

2. Indirect addressing from main memory requires a maxi
mum time of 1. 050 microseconds (1. 32 microseconds
for SIGMA 9 Model 2).

The maximum time required for indirect addressing is re
duced when the indirect memory request is overlapped with
instruction execution. This effect is instruction dependent.

Appendix C 165

EFFECTS OF REGISTER-TO-REGISTER OPERATIONS

If the reference address is X'OI through XIP, the operand
is accessed from the appropriate general register rather
than from main memory. The additional time required for
this operation varies from 155 to 445 nanoseconds, depend
ing on the sequence of instructions being executed.

The major factors determining the additional time required
for register-to-register operations are the type of instruction
(multiple operands versus single-operand instructions) be
ing executed and the type of instruction preceding the
instruction in question.

For multiple operand type of instructions (load and store
multiples, push/pul Is, byte strings, etc.), the average de
lay for operands other than the first of the string is approxi
mately 260 nanoseconds for load-type instructions and
155 nanoseconds for store-type instructions.

For all initial operands pointed to by the effective address
of the instruction, the delay due to register-to-register
operations is dependent on the preceding instruction as
follows:

1. If the preceding instruction is generally greater
than 1 microsecond, then the typical delay is
445 na noseconds.

2. If the preceding instruction isgenerally less than 1 micro
second, then the typical delay is 235 nanoseconds.

OTHER SIGMA 9 PERFORMANCE FACTORS

"To achieve improved system performance, SIGMA 9 uses
"anticipation logic". By anticipating the access of the next
few memory words (i. e., guessi ng the location of the next
words to be obtained from memory) certain machine func
tions can be overlapped. Factors that affect this capability,
and thus machine performance, are outlined below.

1. If instruction n + 1 is altered by instruction n, the
machine's anticipation logic is cleared (aborted), caus
ing an extra delay of approximately 1. 3 microseconds.

2. If instruction n + 1 or n + 2 is located in main memory,
and if either is modified by instruction n, the anticipa
tion logi c is cleared (aborted). Due to hardware con
siderations this abort occurs if instruction n stores not
only into location n +] or n + 2 but also into locations
128 + (n +"1 or n + 2), 256 + (n + 1 or n + 2), and
384 + (n + 1 or n + 2). The delay caused by this abort
is approximately 1.6 microseconds.

166 Appendix C

A special case is excluded from this type of abort.
This case occurs when the location being modified is
the one following the location of an unconditional
bronch, as in the following example:

Instruction Location:

n STORE WORD INTO n + 2
n + 1 UNCONDITIONAL BRANCH
n+2 X

Note: The special case occurs only when the uncondi
tional branch branches to the next location.
This case works normally (i. e., without an
abort) due to n + 2 being accessed with operand
timing.

3. If the index register being used for operand n+ 1 is
modified by instruction n, then a preparation abort
occurs. The indexing for instruction n+ 1 is performed
at the start of execution of n. This is to allow time to
overlap the n+ 1 operand memory access with the exe
cution of instruction n. The delay caused by this type
of abort is approximately .89 microsecond.

4. Instructions that cause a change in sequentia I accessing
of instructions cause partial aborts of the anticipation
logic. These instructions are branches, calls, XPSD,
and LPSD.

5. Instructions that change the state of the machine cause
a complete abort. This is necessary due to the fact that
any anticipate operation may have been invalidated.
The instructions causing this are: MMC, LRP, XPSD,
and LPSD. The times shown in this appendix for these
instructions include the extra time due to the anticipa
tion restart.

6. Faults that cause traps, if detected for an instruction
access (Memory Not Present, Access Protect, Map Parity
Error, Memory Parity Error, and Bus Check Fault), cause
the anticipation to be aborted. If the fault occurs dur
ing restart of the anticipation, the appropriate trap
action will then occur.

7. Interrupts cause a change in the address from normal
sequencing and therefore cause the anticipation to be
aborted.

8. Instructions accessed from scratchpad cause a delay of
from 0 to .355 microsecond.

9. SIGMA 9 performance is affected by the amount of
memory overlap between instructions and operands. A
performance gain will be realized if operands and in
structions are located indifferent memory uni ts. Inter
leaving will allow overlap between instructions with
instructions and operands with operands.

Table C-1. Basic Instruction Timing

Time in Microseconds

Instruction SIGMA 9 SIGMA 9
Mnemonic SIGMA 9 Model 2 Model 3 Notes

AD 1.66 2.5 1.66

AH 0.73 1.1 0.73

AI 0.73 1.0 0.73

AIO 6.78 + D 8.8 + D 6.78 + D Rj O.
5.96 + D 8.0 + D 5.96 + D R = O.

Includes 3 tJSec to claim the
processor bus. D = tu rna round
time on the interface.

AND 0.73 1.0 0.73

ANlZ 4.00 5.8 4.00

AW 0.73 1.1 0.73

AWM 1.53 2.5 1.53

BAl 0.84- 1.6 0.84

BCR 0.83 1.5 0.83 Branch occurs.
1.57 1.9 1.57 No branch occurs.

BCS 0.83 1.7 0.83 Branch occurs.
1.57 1.9 1.57 No branch occurs.

BDR 1.08 2.4 1.08 Branch occurs.
1.57 2.4 1. 57 No branch occurs.

BIR 1.08 2.4 1.08 Branch occurs.
1.57 2.4 1.57 No branch occurs.

CALl...;4 8. 15 11.6 8.15 Includes trap entry and XPSD.

CB .82 1.5 N/A

CBS 7.60 + 0.6N 8.60+1.1N N/A R is even.
5.60 + 0.6N 6.60 + 1.1N N/A R is odd.

N =number of destination bytes
processed.

CD 1. 41 2. 1 1. 41

CH 0.82 1.5 0.82

CI 0.84- 1.5 0.84

ClM 1.41 2. 1 1.41

ClR 0.94 1.6 0.94

90 17 33C-l(4/74) Appendix C 167

Table C-1. Basic Instruction Timing (cont.)

Time in Microseconds

Instruction SIGMA 9 SIGMA 9
Mnemonic SIGMA 9 Model 2 Model 3 Notes

CS 1.33 2.4 1.33

OIA 9.16+0.58N 17.0+0.5N 9.16+0.58N N =number of bits in the word
converted.

OIS 27.43 33.0 27.43

CW 0.82 1.5 0.82

DA 5.80+0.4D 7.3 +0. 7D N/A D =number of digits, including
the sign, in the effective deci-
rna I operand.

DC 4.70+0.3D 12.8+0.3D N/A D =number of digits, including
the sign, in the effective deci-
mal operand.

DD 18.50+0.5K 25.4+0.6K N/A K = (D+6)(16-Q); D =number of
digits, including the sign, in
the effective decimal operand;
Q =number of leading zeros in
the quotient.

DH 9. 17 17.2 9.17

DL 3.80+0.2D 5.5+0.30 N/A D =number of digits, including
the sign, in the effective deci-
mal operand.

DM 38.20+0.28DN 57.2+0.4DN N/A D =number of digits, including
the sign, in the effective deci-
rna I operand; N = number of
nonzero decimal digits in the
decimal accumulator.

DS 5.80+0.4D 7.7+0.5D N/A D =number of digits, including
the sign, in the effective deci-
mal operand.

DSA 11.90 21.0 N/A

DST 5.40+0.5D 9.0+0.5D N/A D =number of digits, including
the sign, to be stored.

DW 9.48 17.8 9.48

EBS 8.00+3.8N 10.0+ 7.5N N/A N =number of bytes in the edit-
ing pattern.

EOR 0.73 1.0 0.73

EXU 0.71 2.3 0.71 Add execution time for subiect
instruction.

FAL 2.72 4. 1 2.72 Minimum time. No preal ignment
or post normalization required.

168 Appendix C 90 17 33C-l(4/74)

Table C-1. Basic Instruction Timing (cont.)

Time in Microseconds

Instruction SIGMA 9 SIGMA 9
Mnemonic SIGMA 9 Model 2 Model 3 Notes

FAL{cont.) 3.93 5.2 3.93 T l~i cal time. Assumes one
hexadecimal prealignment
digit on either operand and
one hexadecimal postnor-
malization digiton the result.

9.57 16.4 9.57 Maximum time. Assumes 14
hexadecimal preal ignment
digits on either operand and
13 hexadecimal postnormal-
ization digits on the result.

FAS 2.25 4.0 2.25 Minimum time. No preal ignment
or postnormalization required.

3.06 5.0 3.06 T~~ical time. Assumes one
hexadecimal prealignment
digit on either operand and
one hexadecimal postnormal-
ization digit on the result.

5.00 9. 1 5.00 Maximum time. Assumes six
hexadecimal prealignment
digits on either operand and
five hexadecimal postnormal-
ization digits on the result.

FDL 17.40 30.5 17.40 Minimum time. Nonzero, nor-
malized operands.

Tl~ical time. Is usuallymini-
mum plus O. 13 microsecond.

25.00 42.8 25.00 Maximum time. Assumes 13 hex-
adecimal prenormal ization digits
on both operands.

FDS 7.69 15.0 7.69 Minimum time. Nonzero, nor-
malized operands.

Typical time. Is usually mini-
mum time plus O. 13 microsecond.

10.96 20.5 10.96 Maximum time. Assumes five
hexadecimal prenormal ization
digits on both operands.

FML 6.96 8.6 6.96 Minimum time. Nonzero, nor-
malized operands; no postnor-
malization required.

T~~ical time. Is usually mini-
mum time plus O. 13 microsecond.

90 17 33C-1(4/74) Appendix C 169

Table C-1. Basic Instruction Timing (cont.)

Time in Mi croseconds

Instruction SIGMA 9 SIGMA 9
Mnemonic SIGMA 9 Model 2 Model 3 Notes -,

FML (cont.) 10.5 18.5 10.5 Maximum time. Assumes 13
hexadecimal digits on both
operands and one hexadecimal
digit of postnormalization on
the result.

FMS 3.97 5.5 3.97 Minimum time. Nonzero, nor-
mal ized operands; no postnor-
malization required.

Typical time. Is usually mini-
mum time plus O. 13 microsecond.

6.00 11. 1 6.00 Maximum time. Assumes five
hexadecimal prenormalization
dig i ts on both operands and one
hexadecimal digitof postnormal-
ization on the result.

FSL 2.72 4. 1 2.72 Minimum time. No prea I i gnment
on postnormalization required.

3.93 5.2 3.93 T~ical time. Assumes one
hexadecimal prealignment digit
on either operand and one hexa-
decimal postnormalization digit
on the result.

9.57 16.4 9.57 Maximum time. Assumes 14 hex-
adecimal prealignment digits on
either operand and 13 hexadeci-
mal postnormalization digits on
the result.

FSS 2.25 4.0 2.25 Minimum time. Noprealignment
on postnorma I i zat i on requ ired.

3.06 5.0 3.06 T~eical time. Assumes one
hexadecimal prealignment digit
on either operand and one hex-
adecimal postnormalization digit
on the result.

5.00 9. 1 5.00 Maximum time. Assumes six
hexadecimal prealignmentdigits
on either operand and five hex-
adecimal postnormalization digits
on the result.

HIO 7.37+D 9.4+D 7.37+D R is even, I- o.
6.78+D 8.8+D 6.78+D R is odd.
5.96+D 8.0+D 5.96+D R = O.

Includes 3 tJSec to claim the pro-
cessor bus. D = turnaround time
on the interface.

170 Appendix C 90 1733C-l{4/74)

Table C-1. Basic Instruction Timing (cont.)

Time in Mi croseconds

Instruction SIGMA 9 SIGMA 9
Mnemonic SIGMA 9 Model 2 Model 3 Notes

INT 0.73 1.4 0.73 R is odd.
0.75 1.4 0.75 R is even.

LAD 1.66 2.4 1.66

LAH 0.73 1.4 0.73

LAS 2.22 2.6 2.22

LAW 9.73 1.4 0.73
(.82 ifnegative) (1.5 if negative) (.82 if negative)

LB 0.73 1.0 N/A

LCD 1.66 2.5 1.66

LCF 0.73 1.1 0.73

LCFI 0.73 1.0 0.73

LCH 0.73 1.1 0.73

LCW 0.73 1.1 0.73

LD 1.58 2.4 1.58

LH 0.73 1.0 0.73

LI 0.73 1.0 0.73

LM 2.54 +0.83 (N-l) 3. 9 + 1. 0 (N - 1) 2.54+0.83 (N-l, N =number of words moved.

LMS 2.22 2.9 2.22

LPSD 3.70 5.3 3.70

LRA 4.40 5.7 4.40

LRP 2.15 3.0 2.15

LS 1.00 1.9 1.00

LW 0.73 1.0 0.73

MBS 7.60+0.6N 8.6+1.1N N/A R is even.
5.60+0.6N 6.6+1.1N N/A R is odd.

N =number of destination bytes
processed regardless of word or
byte boundaries.

MH 2.78 4.2 2.78

MI 3.78 5.2 3.78

90 17 33C-l(4/74) Appendix C 171

Table C-1. Basic Instruction Timing (cont.)

Time in Microseconds

Instruction SIGMA 9 SIGMA 9
Mnemonic SIGMA 9 Model 2 Model 3 Notes

MMC 3.60 + 2.65N 6.9 + 3.6N 3.60 + 2.65N N =number of words moved. For
(l: 7map) (l:7 map) (l: 7 map) SIGMA 7 compatible mode,

maximum N is 64, because each
3.60 + 1. 96N 6.9 + 2.6N 3.60 + 1.96N page is one byte. For SIGMA 9
(l: 9 map) (l:9 map) (l:9 map) mode, maximum N is 128, be-

cause each page is 13 bits or
approximately a halfword.

MSP 4.70 9.5 4.70

MTB 1.80 2.7 1. 80
(1. 20 if R =0) (2.0 if R=O) (1. 20 if R =0)

MTH 1.80 2.7 1.80
(1. 20 if R =0) (2.0 if R=O) (1. 20 if R = 0)

MTW 1.53 2.5 1.53
(1. 20 if R =0) (2.0 if R=O) (1.20 if R=O)

MW 3.78 5.2 3.78

OR 0.73 J.O 0.73

PACK 3.50+0.55N 5.6+0.8N N/A N =number of bytes in zoned
number in memory.

PLM S. 40 + O. 42(N-1) 13.4 +0. 5(N-1) 8.4O+0.42(N-1) I N =number of words moved.

PLW 6.20 9.6 6.20

PSM 7.80 +0. 57(N-l) 11.6 +0. 7(N-l) 7. SO +0. 57(N-1) N =number of words moved.

PSW 5.70 9.0 5.70

RD 1.44 2.7 1.44 Internal.
2.07+0.24N 3.5+0.44N 2.07+0.24N External.

N = integer (0,1,2, •..) de-
pendent on delay in external
device.

S 1. 90+0.06N 2.3+0.1N 1. 90+0.06N
2.9 + O.06N 2.7+0.2N 2.9+0.06N Searching left.
2.90+0.12N 2.7+0.3N 2.90+0.12N Searching right.

N = number of bit positions
shifted.

SO 1.66 2.6 1.66

SF 2. 16+0.24N 3.S+0.44N 2. 16+0.24N N = number of hexadecimal
positions shifted.

SH 0.73 1.1 0.73

172 Appendix C 90 1733C-1(4/74)

Table C-1. Basic Instruction Timing (cont.)

Instruction
Mnemonic Time (fJsec) Notes

STB 1.80

STCF 1.80

STD 2.10

STH 1.92

STM 3.08 + .57 (N-1) N = number of words moved.

STS 1.76

STW 1.53

SW .73

T~S 6.10 + 2.3N N = number of destination bytes processed.

TDV 7.37 + D R = even, I- O.

Includes 3 fJsec to claim the processor bus.

D = turnaround time on the interface.

TDV 6.78 + D R = odd.

Includes 3 fJsec to claim the processor bus.

D = turnaround time on the interface.

TDV 5.96 + D R = O.

Includes 3 fJsec to claim the processor bus.

D = turnaround time on the interface.

no 7.37 + D R = even, I- O.

Includes 3 fJsec to claim the processor bus.

D = turnaround time on the interface.

no 6.78 + D R = odd.

Includes 3 fJsec to claim the processor bus.

D = turnaround time on the interface.

no 5.96 + D R = O.

Includes 3 fJsec to claim the processor bus.

D = turnaround time on the interface.

Appendix C 173

Table C-l. Basic Instruction Timing (cont.)

Time in Microseconds

Instruction SIGMA 9 SIGMA 9
Mnemonic SIGMA 9 Model 2 Model 3 Notes

SIO 7.37 + D 9.4 = D 7.37 + D R is even, f O.
6.78 + D 8.8 + D 6.78 + D R is odd.
5.96 + D 8.0 + D 5.96 + D R = O.

Includes 3 lJSec to claim the
processor bus. D = turnaround
on the interface.

STB 1. 80 2.5 N/A

STCF 1. 80 2.5 1. 80

STD 2. 10 4.9 2. 10

STH 1. 92 2.6 1. 92

STM 3.08 +0. 57(N-1) 6.3+0.7(N-l) 3.08 +0. 57(N-1) N = number of words moved.

STS 1. 76 3.3 1. 76

STW 1.53 2.3 1. 53

SW 0.73 1.1 0.73

TBS 6.10+2.3N 10.5 +3. 6N N/A N = number of destination
bytes processed.

TDV 7.37 + D 9.4 + D 7.37 + D R is even, f O.
6.78 + D 8.8 + D 6.78 + D R is odd.
5.96 + D 8.0 + D 5.96 + D R = O.

Includes 3 J.lsec to claim the
processor bus. D = turnaround
time on the interface.

TIO 7.37 + D 9.4 + D 7.37 + D R is even, f O.
6.78 + D 8.8 + D 6.78 + D R is odd.
5.96 + D 8.0 + D 5.96 + D R =0.

Includes 3 lJSec to claim the
processor bus. D = turnaround
time on the interface.

TTBS 6.10+2.4N 10.5 +3. 6N N/A N = number of destination
bytes processed.

UNPK 7.40+ LON 11.6+ LON N/A N = number of bytes to be
stored in memory.

WAIT 0.73 1.0 0.73 Minimum time.

WD 1.44 2.7 1.44 Internal.
2. 07+0. 24N 3.5+0.44N 2.07+0.24N External.

N = integer (0, 1, 2, ...) de-
pendent on delay in external
device.

90 17 33C-1 (4/74) Appendix C 173

Table C-l. Basic Instruction Timing (cont.)

Instruction
Mnemonic Time {J.asec) Notes

rrBS 6.10 + 2.4N N = number of destination bytes processed.

UNPK 7.40 + l.ON N = number of bytes to be stored in memory.

WAIT .73 Minimum time.

WD 1.44 Internal

'NO 2.07 + .24N External

N = integer (0, 1, 2, •••), dependent on delay in external
device.

XPSD 5.43

XW 1.53

174 Appendix C

Table C-1. Basic Instruction Timing (cont.)

Time in Microseconds

Instruction SIGMA 9 SIGMA 9
Mnemonic SIGMA 9 Model 2 Model 3 Notes

XPSD 5.43 7. 1 5.43

XW 1. 53 2.4 1.53

174 Appendix C 90 17 33C-l(4/74)

APPENDIX D. SYSTEM RELIABILITY AND MAINTAINABILITY

The SIGMA 9 computer system has many new design features
that provide the user with reliable operation and efficient
maintenance. For example, the extent to which a system
can be partitioned into separate un its for either checkout
or maintenance is a "fail-soft" feature (i. e., ability to
keep remainder of a system operational in case of failure
of any given unit), which was a major design goal for
SIGMA 9 development.

The new design features are outl ined in the following
sections:

System t-ilaintainabi I ity Features

CPU Features

Main Memory Features

Multiplexor Input/Output Processor Features

High-Speed RAD I/O Processor Features

SYSTEM MAINTAINABILITY FEATURES
SIGMA 9 computer systems are maintained by means of the
following:

1. Diagnostic Programs

Diagnostic programs for centralized SIGMA 9 units
(CPUs, memory units, and lOPs) use special hard
ware to detect and isolate system faults. Interface
with maintenance personnel is provided through a
local keyboard-printer or a remote keyboard-printer
connected via a telephone line. Diagnostic programs
are designed with a multilevel structure consisting of
the following capabilities.

a. System verification and testing to determine which
unit is faulty.

b. Unit functional testing to determine the specific
function that is faulty.

c. Fault location diagnosis to analyze which compo
nent is malfunctioning.

2. Snapshot Log i c

Snapshot logic enables diagnostic programs to retrieve
control fl i p-fl ops and i nterna I reg i ster contents that are
not otherwise "visible" to a program. This feature
makes it possible to determine system status at the time
a fault occurs and to locate the source of a fault con
dition down to the level of a small set of replaceable
elements. (See "CPU Features".)

3. Status and Fault Retrieval

When a fault is detected, system status and fault infor
mation is available for program retrieval and error
logging for subsequent analysis.

4. Partitioning Feature

A SIGMA 9 system can be reconfigured through the use
of reconfiguration controls. SIGMA 9 units can be
partitioned out of the system by selectively disabling
them from the busses. Thus, faultyunitscanbe isolated
from the system, or an entire subsystem (including a
CPU in a multiprocessing environment) can be parti
tioned from the primary system to permit diagnosis and
repair of a faulty unit. Repaired units can be returned
to service by reenabl ing the connections.

5. RESET I/O (RIO) Instruction

This instruction provides programmed I/O Reset that
operates exactly as though the I/O Reset had been
initiated with the switch on the processor control
panel (PCP). The addressed lOP and all peripheral
devices connected to it are initialized. Special
coding of RIO will reset a CPU (see RIO instruction,
Chapter 3.)

6. Parity Checking

Parity on all data and addresses communicated in either
direction on busses between memory units and pro
cessors (CPUs, MIOPs, and HSRIOPs) is checked. This
feature provides fault detection and location capa
bilities that enhance the ability of an operating system
or diagnostic program to quickly determine which
unit is faulty.

7. Clock and Voltage Margins

Centralized units are provided with clock and voltage
margin capabil ities that assist maintenance personnel
or diagnostic programs to quickly Locate the source of
an intermittent fault. Programmable clock margin
control is provided and status is avai lable for program
retrieval. NOT NORMAL conditions are indicated on
the PCP.

8. Alternate Processor Bus (optional)

This feature provides a redundant connection of the
lOPs and CPUs in a system. It is used in partitioning
centralized units for diagnostic or reconfiguration
purposes.

Appendix 0 175

9. Unique Processor Numbers

All processors have unique numbers so that they can be
identified in communications on the processor bus.

10. Processor Fau I t Interrupt

A processor fault interrupt (PFI) signal is generated by
processors (CPUs, MIOPs, and HSRIOPs) when certain
fault conditions are detected. The interrupt signal is
transmitted via the processor bus to all CPUs in the
system (except to the CPU generating the PFI) for
special fault handl ing.

11.. Status Instructions

The two instructions, POLL PROCESSOR (POLP) and
POLL AND RESET PROCESSOR (POLR), are used to
determine status. All processors in a SIGMA 9 system
retain the status of faults, internal conditions, and pro
cessor identification. When a Processor Fault Interrupt
(PFI) occurs, the CPU(s) that receives the interrupt
must determine which processor caused the PFI and
the nature of the fault.

The POLP instruction causes the addressed processor to
return the contents of its fault status register and, in
the condition code bits, indicate whether the processor
had detected a fault and generated PFI. (See POLP
instruction, Chapter 3.)

The POLR instruction performs the same functions as
POLP but, in addition, causes the addressed processor
to reset the contents of the processor fault register and
resetthe PFI signal. (See POLR instruction, Chapter 3.)

CPU FEATURES

1. Processor Control Panel (PCP)

The PCP (see Chapter 5) is divided into two sections.
The upper portion (MAINTENANCE SECTION) con
tains controls and indicators used exclusively by main
tenance personneL The lower portion is used primarily
by operating personnel to load, execute, and trouble
shoot progf"Oms. A Control Mode switch disables cer
tain maintenance functions during normal operation.

2. Maintenance Display

Various phases, control flip-flops, and registers of the
CPU and decimal unit can be displayed on the PCP.
A 16-position thumbwheel switch identifies and selects
display information during maintenance activities.

3. Snapshot Log i c

All CPU logic that can be displayed on the PCP can be
monitored by a program with the snapshot logic. At a

176 Appendix 0

preselected dock time of a given instruction execution,
selected logic is stored into a 3~-bit snapshot register.
The contents of the snapshot register are then retrieved
by a specially coded READ DIRECT instruction. By com
paring the "snapped" information with known correct
information, the diagnostic program can accurately
determine a specific fault. The failing component can
then be identified. Snapshot action can also be initi
ated at the PCP, and the contents of the snapshot reg
ister displayed.

4. Clock and Voltage Margins

Clock margin control is accomplished manually at the
PCPwith the CLOCK MARGIN switch or under program
control with a properly coded WRITE DIRECT instruction.
Three c lock rates are provided:

• NORMAL

• FAST

• SLOW

Voltage margin controls are also provided at each
local d. c. power supply within a unit.

5. Memory Clear and Scan

Manual memory clear and scan capabilities are pro
vided to enable operators or maintenance personnel
to rapidly clear or read selected data from, or store
selected data into, any or all consecutive CPU main
memory locations. During the read scan operation,
the CPU can be made to halt on a memory parity
error, at which time the address and data of the
indicated memory location can be displayed.

6. Address Stop Feature

This feature (see Chapter 5) allows the operator or
maintenance personnel to:

a. Stop on any instruction whose virtual address equals
the SELECT ADDRESS switch value. At the time
of the halt, the instruction pointed to by the
SELECT ADDRESS appears in the DISPLAY indicators.

b. Stop on any rea I memory (read or wri te) reference
indicated by the SELECT ADDRESS switches.

c. Stop on any real memory write reference indicated
by the SELECT ADDRESS switches.

d. Stop when any word ina selected page is referenced.

7. PCP M.anual Instruction Execution

The PCP allows manual execution of READ/WRITE
DIRECT instructions while the CPU is in the IDLE mode.
This feature is in addition to the programmable interro
gation provided via the READ/WRITE DIRECT instruc
tions (see Chapter 3). Thus, all devices connected to
the direct I/O or maintenance interface may be ex
amined manually by maintenance personnel.

Memory status word zero can be manually displayed on
the PCP without clearing memory fault status while the
CPU is in the IDLE mode. This action is similar to the

programmed LMS instruction with initial condition code
setting 1000 (see Chapter 5).

8. Single Clock Mode

The CPU has a single clock mode of operation that
enables maintenance personnel to execute an instruc
tion from the PCP, one internal phase at a time.

9. Timer and Decimal Override

The operation of the watchdog timer and decimal unit
can be selectively overridden to aid maintenance
personnel in diagnosing related machine faults (see
Chapter 5).

10. CPU Traps

CPU traps are provided for a variety of detected CPU
and system fault conditions. The trap system (see
Chapter 2) provides a high degree of system recovera
bi lity. Indicators and audit trails enable the system
programmer to accurately determine the status of the
machine at the time of the trap. CPU fault conditions
are:

a. Memory Parity Error - When a CPU receives a
signal from the memory indicating a memory parity
error, the CPU traps. The condition code identi
fies the memory parity error trap condition.

b. Data Bus Check - If the CPU detects a parity error
on data received from memory, and the memory
does not also indicate a parity error on the infor
mation sent, then a data bus check occurs. Oc
currence of the data bus check condition causes
the CPU to trap.

c. Map Check - When the CPU is operating with the
memory map, a parity check is made on the page
address retrieved from the map. If an error is
found, the CPU aborts the memory request and
traps.

d. Watch Dog Timer - The watch dog timer prevents
the CPU from being "hung Up" due to internal
faults or faults in other units. When the timer
times out, the CPU traps and sets the condition
code indicating which fault .has occurred.

e. Instruction Exceptions - If a CPU encounters an
illegal condition in certain CPU operations, an
instruction exception fault is detected and causes
a trap. Included as instruction exceptions are:

• A processor-detected fault occurring during
the execution of an interrupt or trap entry
sequence.

• An illegal instruction in a trap (not XPSD)
or interrupt (not XPSD, MTB, MTH, MTW)
location when operating a trap or interrupt
sequence.

• The setting of the register pointer of the PSD
to a nonexistent register block as a result of
an LRP, LPSD, or XPSD instruction.

• An illegal MMC instruction.

• An invalid register (odd) for an instruction
(doubleword and byte string) that would yield
an unpredictable result.

11. Processor Fault Interrupt

Whenever a CPU fault is detected, a Processor Detected
Fault (PDF) flag is set in that CPU. If a second fault is
detected (with PDF set), the CPU will generate and
transmit the Processor Fault Interrupt (PFI) to any other
CPUs in the system and enter a WAIT state that requires
a Reset function to clear. Another CPU (in a multi
processor system) may issue an RIO instruction to the
malfunctioning CPU, which will clear the machine {in
the same way as a CPU RESET or SYS RESET and cause
it to resume execution at a predetermined instruction
location. For a monoprocessor, operator action is
required.

12. Automatic Instruction Fetch Retry

When fault conditions are detected on overlapped in
struction fetch operations, the fetch is aborted and an
automatic instruction fetch retry is attempted. If the
fau I t recurs on the second attempt, the CPU traps in
the normal manner.

13. Partitioning Feature

Various partitioning features in the SIGMA 9 CPU en
able system reconfiguration. These features are locally
controlled by switches and are readable by specially
coded READ DIRECT instructions (see Chapter 3).

a. Homespace bias switches enable placing the Home
space for each CPU in different physical locations
of memory (see "Homespace", Chapter 2).

b. CPU-lOP control bus selection is provided for the
purpose of switching the CPU from primary to alter
nate processor busses. Thus, a failed CPU may
be effectively partitioned out of the system; also,
an entire subsystem consisting of an lOP, including
attached peripherals, CPU, and memory unit can
be partitioned from the primary system via this
switch and the memory port disable switches, to
allow diagnosis of any unit in the subsystem while
the primary system continues operation.

Appendix D 177

c. The direct VO bus and the maintenance interface
bus may be sel ectively disabled from the CPU.

MAIN MEMORY FEATURES

1 • Snapshot Logic

Each memory bank contains snapshot logic that is auto
matically activated when a memory fault occurs to
record the nature and environment of the fault. The
contents of the memory snapshot words (each 32 bits in
size) can be retrieved by the use of the instruction,
LOAD MEMORY STATUS (see Chapter 3). This feature
may be used by the operating system for error logging,
or by a diagnostic program to assist in fault locating.
Notification of a fault occurrence is via the Memory
Fault Interrupt.

2. Memory Fault Detection

Memory fault detection covers the following types of
faults:

a. Parity errors detected on information read out of
the memory bank.

b. Parity errors detected on addresses received from
processors.

c. Parity errors detected on data received from
processors.

d. Port selection errors detected if more than one port
is simultaneously selected for one bank. Under
this condition, the memory aborts the requested
operation without modifying the contents of any
memory locot i on.

e. Memory bank operational status, e. g., overtem
perature, d. c. voltages out of tolerance, etc.

f. Data loop checks that provide additional fault de
tection on read operations. As data is gated onto
the memorybusfortransmission to a processor, itis
also gated from the bus back through the input path,
clocked into a register, and checked for parity.
Thus, the integrity of the I inedrivers/receivers at
the memory is tested on every read cycle.

3. Memory Interleave Switch

The interleaved mode of memory operation may be dis
abled for certain diagnostic purposes with a switch
located on the PCP (see Chapter 5).

4. ctock Mlrgin Switches

Clock margins are controlled manually by means of
switches or by use of the LOAD MEMORY STATUS in
struction. Voltage margin control is also provided at
each local d.c. power supply within a unit.

l78 Appendix 0

5. Partitioning of Iv\emory

Partitioning of memory units is allowed on a memory
port basis where each memory bus connection may se
lectively be disabled. Starting address switches allow
the memory system to remain a contiguous unit after
partitioning. A centrally located reconfiguration con
trol panel for each memory I:Jnit is provided for this
purpose.

6. Memory M:>de Feature

Two additional memory modes of operation are provided
for testing memory units. These modes are called Read
and Inhibit Parity and Read and Change Parity (see
Chapter 3).

a. During the Read and Inhibit Parity operation, a
word is read from memory and transmitted to the
requesting processor. If a parity error is detected
in the memory bank, the memory is prohibited from
taking any snapshot and does not generate the
Memory Fault Interrupt. It does transmit the Parity
Error signal, however. The CPU recognizes this
mode of operation and inhibits the trap that might
occur for memory parity error and data bus check
and, instead, records these attributes in the con
dition code at the conclusion of the instruction.
If there is no parity error, the instruction is treated
as a normal LOAD WORD instruction, except for
the setting of the condition code.

b. During the Read and Change Parity operation, a
word is read from memory and transmitted to the
requesting processor. In the write half cycle, the
word is restored to memory, and the word with an
invalid parity bit is unconditionally restored. This
allows the parity generation and checking logic of
the memory to be tested.

MUL nPLEXOR INPUT/OUTPUT PROCESSOR
(MIOP) FEATURES

1. Maintenance Interface Bus

The maintenance interface bus (a special mode of the
direct VO bus) is connected to each MIOP from the
CPU for maintenance purposes. The MIOP responds
in the following way to special WRITE DIRECT and
READ DIRECT instructions executed by the CPU.

a. Under RD control, monitors one of 32 selectable
groups of MIOP logic.

b. Under WD control, steps the clock control of the
MIOP in a single-phase mode.

c. Under WD control, a snapshot mode of operation
selects a display group and stores it in a snapshot
register at the end of a preset countdown for later
monitoring by an RD instruction.

d. Under WD control, writes directly into an
addressed subchannel.

e. Under RD control, reads directly from an addressed
subchanne I.

f. Under WD control, sets the clock margins to fast,
normal, or slow rates.

2. Parity Checking

Parity is checked on information brought out of the
MIOp·s local memory for each subchannel. A fault is
reported to the system via the Processor Fault Interrupt.

3. Maintenance Subcontroller

A maintenance subcontroller feature on each I/o chan
nel assists in diagnosing the I/O system. A diagnostic
program controls and monitors the maintenance sub
controller via the maintenance interface and the I/O
bus. The following functions can be accomplished:

a. Simulation of a device controller that responds to
commands sent to it by the MIOPand receives and
sends strings of data bytes.

b. Monitoring of lOP bus during diagnostic
operations.

c. Exercising of the lOP at variable rates up to and
including its maximum rate.

d. Self-testing of the maintenance subcontroller
logic.

4. Clock and Voltage Margins

Clock margins are programmatically controlled by a
specially coded WRITE DIRECT instruction (see Chap
ter 3). Voltage margin controls are provided at each
d. c. power supply.

5. Partitioning of MIOPs

Partitioning of MIOPs is accomplished by disabling the
primary (or alternate) processor bus connection and
disabl i ng the appropriate memory port(s).

HIGH-SPEED RAD 110 PROCESSOR (HSRIOP) FEATURES

1. tv\aintenance Interface Bus

The maintenance interface bus (a special mode of the
direct I/O bus) is connected to the HSRIOP from the
CPU for maintenance purposes. The HSRIOP responds

in the following way to special WRITE DIRECT and
READ DIRECT instructions executed by the CPU:

a. Under WD control, selects a phase that causes the
HSRIOP to halt when entered during execution of
any HSRIOP operation. At this time, the HSRIOP
may be IIsnapped ll for diagnosti c purposes, via RD
control.

b. Under RD control, IIsnapsll one of seven selectable
groups of internal HSRIOP logic.

c. Under WD control, steps the clock control of the
HSRIOP in a single-phase mode.

d. Under WD control, selectively sets various fault
indicators (e.g., device and memory faults) to
simulate actual fault occurrence. This feature
allows the diagnostic to test for correct HSRIOP
response under these fault conditions.

e. Under WD control, selectively initiates Test
Mode 1 or Test Mode 2 of the HSRIOP in which
the HSRIOP responds to normal I/O instructions
whi Ie simulating action of the storage units. In
this way, major portions of the HSRIOP logic can
be diagnosed separately from the storage units.

2. Test Mode 1.

This mode permits the diagnostic program to check the
data paths, control logic, and byte alignment logic
from memory to the buffer (with a write operation) and
from the buffer to memory (with a read operation).

3. Test Mode 2.

This mode permits the diagnostic program to check most
of the RIOP functions without using a RAD. Data pat
terns for read and check-write operations are simulated
and applied to the cable receivers in lieu of RAD out
put. In addition to the normal functions, the error
detection logic is also tested. Although a write op
eration can not check data paths, all the vital control
functions can be tested.

4. Clock and Voltage Margins

Clock margins for the HSRIOP are not applicable be
cause of its unique design. Voltage margin controls
are provided at each local d. c. power supply.

5. Partitioning of HSRIOPs

Partitioning of HSRIOPs is accomplished by disabling
the primary (or alternate) processor bus connection and
inhibiting the appropriate memory port(s).

Appendix 0 179

APPENDIX E. GLOSSARY OF SYMBOLIC TERMS

Term

()

o

u

AM

AS

CC

CI

DA

DBS

DECA

DM

Meaning

Contents of.

AND (logical product, where 0 n 0 = 0,
o n 1 = 0, 1 n 0 = 0, and 1 n 1 = 1).

OR (logical inclusive OR, where 0 u 0 = 0,
o u 1 = 1, 1 u 0 = 1, and 1 u 1 = 1).

EOR (logical exclusive OR, where
o @ 0 = 0, 0 @ 1 = 1, 1 @ 0 = 1,
and 1 @ 1 = 0).

Fixed-point arithmetic trap mask - bit posi
tion 11 of PSD. If set (=1), computer traps
to Homespace location X'43' after executing
an instruction causing fixed-point overflow;
if not set, computer does not trap.

A NSCII control-bit position 12 of PSD. When
set (=1), ANSCll codes are generated; when
not set, EBCDIC codes are generated.

Condition code - 4-bit value (bit positions
labeled CC1, CC2, CC3, and CC4), estab
I ished as part of the execution of most
SIGMA 9 instructions.

Counter interrupt group inhibit - bit posi
tion 37 of PSD. If set (=1), all interrupt
levels within this group are inhibited.

Destination address - in byte string instruc
tions, address of the destination byte string.

Destination byte string - operand specified by
byte string instruction.

Decimal accumulator - general registers 12,
13, 14, and 15 in decimal instructions.

Decimal arithmetic trap mask - bit posi
tion 10 of PSD. When set (=1), decimal
arithmetic fault trap is in effect.

180 Appendix E

Term

EA

EB

EBL

Meaning

Extension address - 6-bit field concatenated
to 16-bit extended displacement field to
form 22-bit real extended address.

Effective byte - 8-bit contents of effective
byte location (EBL).

Effective byte location - byte location
pointed to by effective virtual address of an
instruction for byte operation.

ED Effective doubleword - 64-bit contents of
effective doubleword location (EDL).

EDL

EDO

Effective doubleword location - doubleword
location pointed to by effective virtual ad
dress of an instruction for a doubleword
operation. If odd-numbered word location is
specified, low-order bit of effective address
field (bit position 31) is automatically forced
to O. Hence, odd-numbered word address (re
ferring to middle of doubleword) designates
same doubleword as even-numbered word
address when used for a doubleword operation.

Effective decimal operand.

EH Effective halfword - 16-bit contents of
effective halfword location, or (EHL).

EHL Effective halfword location - halfword loca
tion pointed to by effective virtual address of
an instruction for halfword operation.

EI

ES

fSA

External interrupt group inhibit - bit posi
tion 39 of PSD. If set (= 1), all interrupt
levels within this group are inhibited.

Extension selector - I-bit flag used during
real extended addressing.

Effective source address - in byte string in
structions, address of the source byte
string.

Term

EVA

EW

EWL

FN

FS

FZ

IA

II

L

Meaning

Effective virtual address - virtual address
value obtained as result af indirect addressing
and/or indexing. This address value is inde
pendent of the program's actual location in
main memory, and is final address value be
fore memory mapping is performed.

Effective word - 32-bit contents of effective
word location (EWL).

Effective word location - word location
pointed to by effective virtual address of an
instruction for a word operation.

Floating normalize mode control - bit posi
tion 7 of PSD. If not set, results of floating
point additions and subtractions ore to be
normalized; if set (=1), results are not
norma I i zed.

Floating significance mode control - bit posi
tion 5 of PSD. If set (=1), computer traps to
location X'441 when more than two hexa
decimal places of postnormalization sh ifting
are required for a floating-point addition or
subtraction; if not set, no significance
checking is performed.

Floating zero mode control - bit position 6
of the PSD. If set (=1), computer traps to
location X'441 when either characteristic
underflow or zero result occurs for a floating
point multiplication or division; if not set,
characteristic underflow and zero result are
treated as normal conditions.

Instruction register - internal CPU register
that holds instructions obtained from memory
while they are being decoded.

Instruction address - 17-bit value that defines
virtual address of instruction immediately
prior to the time that it is executed.

I/O interrupt group inhibit - bit position 38
of the PSD. If set (=1), all interrupt levels
within this group are inhibited.

Numeric value of bits 8-11 of decimal in~
struction word (value of ° is 16 bytes).

Term

MA

MM

MS

PSD

R

RA

RP

Ru1

SA

Meaning

Mode altered - bit position 40 of PSD. This
bit is set (=1) during master-protected mode
of operation and during real extended type
of addressing.

Memory map mode control - bit position 9 of
PSD. When set (=1), the memory map is in
effect.

Master/slave mode control - bit position 8 of
PSD. When set (=1), computer is in slave
mode; when not set, computer may be in
master or master-protected mode as deter
mined by bit 40.

Program status doubleword - collection of
separate registers and flip-flops treated as a
64-bit internal CPU register to store and
display critical control information.

General register address value - 4-bit con
tents of bit positions 8-11 (R field) of instruc
tion word, also expressed symbolically as
(1)8-11. In instruction descriptions, register R
is general register (of current register block)
that corresponds to R field address value.

Reference address - contents of bit posi
tions 15-31 of instruction word, a 17-bit
field capable of directly addressing any
general register in current register block (by
using a value in range 0-15) or any word in
main memory in address range 16 through
131,071. This address value is initial ad
dress value for any subsequent address com
putations, memory mapping, or both
computation and mapping.

Register pointer - bit positions 56-59 of PSD;
bits 58 and 59 select one of four possible reg
ister blocks; bits 56 and 57 are reserved.

Odd register address value - register Ru 1 is
general register pointed to by value obtained
by logically ORing 0001 into address for
register R. Thus, if R field of instruction
contains even value, Ru1 = R + 1 and if R
field contains odd value, Ru 1 = R.

Source address - in byte string instructions,
contents of specified R register.

Appendix E 181

Term

SBS

SE

SPD

Tce

TS

Meaning

Source byte string - operand specified by
byte string instruction.

Sign extension - some instructions operate on
two operands of different lengths; they are
mode equal in rength by extending sign of
shorter operand by required number of bit
positions. For positive operands, result of
sign extension is high-order O's prefixed to
the operand; for negative operands, high
order 1 IS are prefixed to operand. Sign
extension process is performed after operand
accessed from memory and before operation
called for by instruction code is performed.

Stack pointer doubleword - contains the
context (TSA, space count, word count, and
TS, TW inhibit bas) of the push-down
instruct ions.

Trap condition code - 4-bit value (bit
positions labeled TCCI, TCC2, TCO, and
TCC4), established as port of trap operations.

Trap-on-space inhibit bit - conditions push
down stock tim.it trap for impending overflow
or underflow of space count.

Term

TSA

TW

WK

x

Meaning

Top-of-stock address - pointer that points to
highest-numbered address of operand stack in
push-down instructions.

Trap-an-word inhibit bit - conditions push
down stock limit trap for impending overflow
or underflow of word count.

Write key - bit positions 34 and 35 of PSD;
they are evaluated by the memory write
protect feature to determine accessibi tify of
real memory by current program.

Index register address varue - 3-bit contents
of bit positions 12-14 (X field) of instruction
word. In instruction word, if X = 0, no
indexing is performed; if X I 0, i~dexin9 is
performed (after indirect addressing if indi ...
rect addressing is called for) with general
register X in current register block.

Hexadecimal qualifier - hexadecimal value
(n) is unsigned string of hexadecimal digits
(0 through 9 and A through F) surrounded by
s.ingle quotation marks and preceded by the
qualifier II XU {for example, 78016 is written
XI7BOt.

Note: For additional definition of terms, see IIXerox Sigma Glossary of Computer Tenninologyll, Publication
No. 900957.

182 Appendix E

INDEX

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numerical sequence.

A

access
control codes, 26
control loading process, 106
protection, 26
protection control image, 106

accumulator, decimal, 77
active interrupt, 32
address

actual, 9, 18
branch, 20
direct reference, 16
effective, 18
index reference, 18
indirect reference, 16,5
input/output, 18
instruction, 18
memory byte, 130
memory control, 23
memory reference, 15
memory unit starting, 14
modifi cation examples, 21
nonexistent memory (trap), 37
reference, 16
reg i ste r, 18
twenty-bit reference, 16
virtual, 9

addressing
indirect, 5, 16
interrupt, 21
logic, 17
modes, 29
real, 18,21
real extended, 19,21,23,97,102
trap, 33
trap entry, 21
virtual, 19,21,22

altemate bus, 4, 175
Analyze/Interpret instructions, 55-57
ANSCII communication codes, 146, 147-150
armed interrupt, 31
arithmetic, hexadecimal, 151,152

B
basic systems, equipment and features,
block pointer, register, 27,9
bootstrap loading program, 143
boundaries, information, 13
branches in real extended addressing mode, 97
branching and branch addresses, 20
bus, alternate, 4, 175
byte coun t, 132

90 17 33C-l(4/74)

byte format, 11
byte-string instructions, 83-88, 14
byte-string register format, 20

c
Call

instruction trap, 40
instructions, 100,4

card codes, 147-150
central processing unit (CPU), 2,9-14, 176
channel A, 5
Channel B, 5
channel end, 131
character sets, standard, 145
characteristi cs, genera I, 1
check

map, 42
data bus, 42

circular shift, 68
clock and voltage margins, 175-179
clocks, real-time, 30,3,6
command chaining, 131
command doubleword, input/output, 130
comparison instructions, 64-66
compute r modes, 11
condition code, 27

Analyze/Interpret instructions, 57
decimal arithmetic fault, 40
decimal arithmetic instructions, 78
fixed-point arithmeti c instructions, 57,39
floating-point arithmetic instructions, 74,39
load/store, 47
push-down, 93
shift instructions, 68

constants, mathematical, 163
context switching (PSD, XPSD, LPSD), 8-1,8-2,27,

101-109
control

command doublewords, 132
instructions, 100-114
of the interrupt system, 32
panel interrupt (see input/output group

interrupt)
Control order, 130
conversion instructions, 70,71,4
counter-equals-zero group interrupts, 31
conversion tables, 153-162
CP~R, 7
CPU, 9-14

features, 176
port, 15

CP-V, 7

Index 183

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numerical sequence.

o
data bus check, 177
data chaining, 131
decimal

accumulator, 77
arithmetic fault trap, 40
arithmetic unit, 2
illegal digits, 77
-hexadecimal conversion tables, 153-162
instruction format, 77
instruction nomencfature, 78
instruction timing, basic, 165-174
instructions, 72-82
overflow, 78
pa.cked format, 77
zoned fonnat, 77

device and device controller status byte (AIO instruc-
tion), 122

device interrupt, 127
device status byte, 118-119
direct

data input/output, 8-2
input/output (010), 3,8, 110-114
reference address, 16

disabled interrupt, 32,33
disanned interrupt, 31
displacement indexing, 8
displacements, 18
doubleword

E

format, 11
I/O command, 130
program status, 27
stack pointer, 92

EBCDIC computer cades, 146, 147-150
effective

address, 18
location, 18
operand, 18

enabled interrupt (see states of interrupts)
Execute/8ranch instructions, 97-99
extemal interface, 3,8, 110-114
extemal interrupts, 31

F
fault

CPU traps, 177
decimal arithmetic trap, 40
floating-point arithmetic (trap), 39
processor-detected, 40

features
central processing unit (C PlJ), 176,2,9-14

184 Index

genera I-purpose, 8
high-speed RAD lOP (HSRIOP), 179,5,8
main memory, 178
multiplexor lOP (MIOP), 178,5
multiprocessing, 8
multiusage, 8-3
real-time, 8-2
standard and optional, 3
system maintainability, 175
time-sharing, 8-1

fetching and storing data, 144
fixed-point

arithmetic instructions, 57-63
overflow trap, 38

flags
lOCO, 130-132
PDF, 40, 101
PSD, 27,43, 101

floating-point
add and subtract, 73
arithmetic fault trap, 39
arithmetic instructions, 72-76
arithmetic unit, 2
condition code settings, 74
multiply and divide, 74
normalize control, 73
numbers, 72,73
shift, 69
significance control, 74
zero control, 74

format
byte, 11
byte-string instruction, 83,20
decimal instruction, 77
doubleword, 11
general instruction, 19
general registers, 118
halfword, 11
immediate operand, 13
input/output instruction, 114
instruction, 45
interrupt instruction, 21
memory referencing, 13
operational command doubleword, 130
program status doubleword, 27
Stop command, 133
Transfer in Channel command, 132
trap instruction, 21
word, 11

four-byte interface feature, 5

G
general

characteristics, 5
instruction format, 19
reg i sters, 9

general-purpose features, 8

90 17 33C-l(4/74)

Note: For each entry in this index, the number of the most significant page is listed first. Any p<?ges thereafter are listed in
numerical sequence.

generation
of actual memory addresses, 24
of effective virtual address, 25

glossary of symbolic terms, 180

H
hal fword format, 11
hardware map, 26,2,9,23,105
hexadecimal arithmetic, 151, 152
hexadecimal-decimal conversion tables, 153-162
high-speed

RAD input/output processor (HSRIOP), 5,8, 179
Homespace, 15,7, 16

bias, 15

illegal digit and sign detection (decimal), 77
immediate operand instruction format, 13
index

displacement al ignment (real and virtual), 22
displacement alignment (real extended addressing), 23
reference address, 18
register, 20

indexing
(real and virtual addressing), 21,22
(real extended addressing), 21,23
displacement, 4

indicators (on PCP)
ADDRESS STOP, 137, 138, 140
ALARM, 140, 137
DISPLAY, 139,138,140, 142, 144
DISPLAY FORMAT, 134
EXECUTION, 140
HALT, 135
INSTRUCTION ADDRESS, 137,138,139,140
INT/TRAP, 140
INTERRUPT, 137
MEMORY FAULT, 141
NOT HERE, 137
NOT NORM (clock), 140
NOT NORMAL, 135
PCP, 140
PDF, 140
PHASES, 140, 141
POWER, 135
PREPARATION, 140
PROGRAM STATUS DOUBLEWORD, 136
RUN, 136
SCAN, 142,135
SNAP MODE, 141
STOP (ADDRESS), 137, 138, 140
WAIT, 136, 137,140

indirect
address location, 20
addressing, 5, 16

90 17 33C-l(4/74)

index halfword (real extended addressing) example, 23
indexed halfword (virtual addressing) example, 22
reference address, 16 "

information boundaries, 13
inhibits

interrupt, 32
push-down traps, 93

input/output
capability, 8-2
command doublewords (lOCD), 129-133
group interrupts, 31
instructions, 114-128
interrupts, 31,127,131
multiusage, 8-3
operations, 129-133
processors (lOPs), 129,4,5,178, 179
status information, 117

instruction
address, 16
branch, 97
exception trap, 41
format, 45
Interpret, 57,8
register, 13
set, 8,8-3,45-128, 164
timing, 165-174
unimplemented (trap), 37

instructions
Anal yze/Interpret, 55-57
byte-string, 83-88
Call, "100,8
comparison, 64-66
control, 100-114
conversion, 70,71,8
dec imal, n -82
Execute~ranch, 97-99

fixed-point, 57-63
floating-point, 72-76
immediate operand, 13
input/output, 114-128
load/store, 47-54
logical, 66,67
memory-referencing, 13
nonexistent (trap), 36
privileged in slave mode (trap), 37
push-down, 92-96
Shift, 67-70
translate, 86,87,8

interleaving, memory, 14
internal

computer control, Read Direct, 111
computer control, Write Direct, 112
interrupts, 30

Interpret instructi on, 57,8
interrupt

active, 32
and trap entry addressing, 21
and trap instruction format, 21
channel end, 131

Index 185

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numerical sequence~

control (Read Direct), 112
control (Write Direct), 114
control chassis, 3
control panel, 31
device, 127
inhibits, 32
locations, 29
multilevel priority system, 8-2
operations, 28
priority chain, 30
system, 29
system control of, 32
trigger, 29
unusual end, 131
zero byte count, 131

interruption of Move to Memory Control, 106
interrupts, 29

active, 32
armed, 31
control of, 33
counter-equals-zero group, 31
disabled, 32,33
disarmed, 31
enabled, 32,33
extemal, 31,3
input/output group, 31
intemal, 30,3
override group, 30
single-instruction, 33
states of (level), 31
time of occurrences, 33
waiting, 31

lOP status byte (Ala instruction), 122

L
I anguage processors 7
load

interrupt inhibits, 113
operation details, 143
procedure, 143
snapshot control register, 113

load/store instructions, 47-54
loading

operation, 143
the access protection controls, 106
the memory map, 105
the memory write protection locks, 106

logical

M

instructions, 66,67
shift, 68

main memory, 14-29,3
main memory features, 178
manual partition-ing capability, 8

186 Index

maintainability, system reliability and, 175-179,6,7
map check, ln
map, hardware, 26,2,9,23, 105
margins, clock and voltage, 175, 176
master mode, 12 (see also user protection)
master-protected mode, 12,26
mathematical constants, 163
memory

access protection, 11
access traps (move to memory control), 107
address control, 23
bank, 14
byte address, 130
control storage, 9
expansion, 4
fault detection, 178
interleaving, 14, 178
lock, 23,27
lock control image, 106
lock loading process, 106
map, 26,2,9,23,105
map control image, 105
map loading process, 105
nonexistent addresses, 37
nonexistent addresses (trap), 37
page address codes, 26
parity error, 42,ln
ports, 14,4,5
protection, 2,3,8-3, 12
protection violation (trap), 37
real, 15
reconfiguration control unit, 4
reference address, 15
referencing instructions format, 13
sizes, 1,4
unit, 14
unit starting address, 14
virtual, 15
write protection, 12,3
write protection locks, loading the, 106

memory partitioning, In, 178
memory-to-memory move, 104,5, 106, 107
motor generator set, 4 .-
multilevel priority interrupt system, 29-34,8-2
multiple register blocks, 4,8-1
multiplexor input/output processor (MIOP), 4,5, 178
multiport memory system, 14,4,5
multiprocessing features, 8
multiprocessor control function, 8-3
multiprocessor interlock, 8-1
multiusage features, 8-3

N

nona II owed operation trap, 36
nonallowed operation trap during execution (branch), 97
nonexistent instruction (trap), 36
nonexistent memory address' (trap), 37

90 17 33C-1(4/74)

Note: For ea.ch entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numerical sequence.

nonstop operation, 8-2,ln
normal ize control, floating-point, 73
numbers

o

decimal, n
floating-point, 72
packed decimal, 77
zoned decimal, n

operating and addressing modes, 29
operating procedures, 143
operating systems, 7
operational command doublewords, 130
operational status byte, 119-120
operator controls, 134-144
optional equipment, 4
overflow

detection (decimal), 78
fixed-point, 38
floating-point, 39

override group interrupts, 30

p

packed
decimal format, n
decimal numbers, n

parity checking, 175, 179
parity error, memory, 42
parity error trap, 42
partitioning, memory, 8-1, 177, 178
PCP, 134
PDF, 40, 101
peripheral equipment, 7
PFI (processor fault interrupt), 176, 177
port priority, 15
power fail safe, 1,2,3
priority interrupt, 29-34
privileged instruction in slave mode (trap), 37
processor control panel (PCP), 134
processor-detected faults (PDF), 40, 101
processor fault interrupt, 176, 177
processor fault status, 122
program status doubleword, 27,43, 101, 136
program status doubleword (PSD) indicators, 136
push-down

R

condition settings, 93
instructions, 92-96
stack limit trap, 38

rapid context saving, 8-1,8-2,27,101-109
rapid context switching, 8-2,27, 101-109

90 1733C-1(4/74)

Read
order, 130
Backward order, 130
Direct, internal computer control, 111
Direct, interrupt control, 112

read
internal controls, 111
interrupt inhibits, 111
sense switches, 111
snapshot sample register, 111

real
addressing, 19
memory, 15
memory write locks, 27

real extended addressing, 19,21,23,97,102
real-time clocks, 30,3,6,8-2
real-time features, 8-2
reference address, 16
reference tables, 145-163
register

address, 18
altered bit (trap), 43
block pointer, 27,9
general, 9,3
instruction, 13

reliability and maintenance, system, 175-179,6-7
reset alarm indicator, 113
reset interrupt inhibits, 112

s
Sense order, 130
sense switches, 135, 111
set

alarm indicator, 113
internal controls, 113
interrupt inhibits, 112

shared input/output, 8-1
Shift instructions, 67-70
significance control, floating-point, 74
single-instruction interrupts, 33
slave- mode, 12,26 (see also user protection)
SNAP, 141
snapshot, 113,2,111,141,175,176,178
stack pointer doubleword (SPD), 92
stack pointer for push-pull instructions, 20
stack-manipulating instructions (see rapid context saving)
states of an interrupt leve I, 31
status response for I/O instructions, 121
status response for AIO instruction, 123
Stop order, 133
storage management, 8-2
switches (on PC P)

ADDRESS STOP, 137, 138, 142
AUDIO, 140
CLOCK MARGIN, 140,135, 178
CLOCK MODE, 141, 135

Index 187

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numerical sequence.

COMPUTE, 140, 135-139, 141-144
CONTROL MODE (EXT CONT/LOCAL NORM/LOCAL

MAINT), 135, 143
CPU RESET, 137,136,142
DATA, 139,137,138,144
DECIMAL, 141, 135
DISPLAY, 139,138,144
EXT DIO, 142, 135
FORMAT SEL, 139, 134
INSERT, 137, 144
INSTR ADDR, 138,139,144
INTERLEAVE SEL, 141, 135
INTERRUPT, 137
I/O RESET, 135
LOAD, 135, 143
MEMORY CLEAR, 135
MEMORY FAULT, 141,135,142
MEMORY MODE, 142
MODE, 142, 138
NOT NORMAL, 135
PDF, 140
POWER, 135
SCAN, 135
SELECT ADDRESS 138, 142, 144
SENSE, 135, 111
SNAP, 135
SNAP ENTER, 141
SNAP STOP, 141
START ADDR-LMS, 142, 138
STORE, 138, 144
SYS RESET, 135,136, 143, 144
UNIT ADDRESS, 135, 143
W. D. TIMER, 141, 135

symbol-code correspondence, standard, 147-150
symbol i c terms, glossary, 180
system

T

maintainability features, 175-179,6,7
organization, 9
reliabil ity and maintainabil ity, 175-179,6,7

time of interrupt occurrences, 33
time-sharing features, 8-1
timing, basic instruction, 165-174
toggle program-controlled frequency (PCF), 113
Transfer in Channel, 132
translate instructions, 86,87,8
trap, 34, 177

addressing, 34
by byte-string instructions, 84
Call instruction, 40
condition code, 34,42
conditions during anticipate operations, 43
decimal arithmetic fault, 40
entry sequence, 34
fixed-point overflow, 38
floating-point arithmetic fault, 39

188 Index

instruction exception, 41
locations, 35
masks, 34
memory protection violation, 37
nonallowed operation, 36
nona"owed operation (branch), 97
nonexistent instruction, 36
nonexistent memory address, 37
parity error, 42
privileged instruction (slave mode), 37
processor detected faults, 40
push-down stack I im it, 38
register altered bit, 43
system, 34
unimplemented instruction, 37
watchdog timer runout, 41

turn off mode altered flag, 113
turn on mode altered flag, 113
twenty-bit reference address, 16
types of addressing, 18

u
unimplemented instructions, 37
unusual end, 131
user protection, 82,26, 106

v
variable precision arithmetic, 8-3
virtual

address, 9
addressing, 19
memory, 15

w
waiting interrupt, 31
watchdog timer runout trap, 41
watchdog timer (see nonstop operation)
word format, 11
Write

Direct (internal computer control), 112
Direct (interrupt controf), 114
order, 130

write key, 27
write locks, real memory, 27
write-protection locks, 27, 106

z
zero

byte count, 131
byte count interrupt, 131, 122
control, floating-point, 74
zoned decimal numbers, 77

90 17 33C-1(4/74)

Xerox Corporation
701 South Aviation Boulevard
EI Segundo, California 90245

.Reader Comment Form
We would appreciate your comments and suggestions for improving this publication.

XEROX

Publ ication No. I Rev. Letter I Title I Current Date

How did you use this publication? Is the material presented effectively?

o Learning o Installing 0 Sales o Fully Covered DWell o Well Organized o Clear Illustrated o Reference o Maintaining 0 Operating

What is your overall rating of this publication? What is your occupation?

o Very Good o Fair o Very Poor

o Good o Poor

Your other comments may be entered here. Please be specific and give page, column, and line number references where
applicable. To report errors, Please use the Xerox Software Improvement or Difficulty Report (1188) instead of this form.

Your Name & Return Address

2190(lV72)
Thank You For Your Interest. (fold & fasten as shown on back, no postage needed if mailed in U.S.A.)

Fold

Attn: Programming Publications

Fold

BUSINESS REPLY MAIL
No postage stamp necessary if mailed in the United States

Postage will be paid by

Xerox Corporation
701 South Aviation Boulevard
EI Segundo, California 90245

First Class
Permit No. 229

EI Segundo.
California

SIGMA 9 INSTRUCTION LIST [OPERATION CODES)

Code Mnemonic Instruction Name Page Code Mnemonic Instruction Name Page

02 LCFI Load Conditions and Floating Control Immediate 52 40 HBS Translate and Test Byte String 87
04 CALI Call I 100 41 TBS Translate Byte String 86
05 CAL2 Call 2 100 44 ANLZ Analyze 55
06 CAL3 Call 3 100 45 CS Compare Selective 66
07 CAL4 Call 4 100 46 XW Exchange Word 53
08 PLW Pull Word 94 47 STS Store Selective 54
09 PSW Push Word 94 48 EOR Exclusive OR Word 67
OA PLM Pull Multiple 95 49 OR OR Word 66
OB PSM Push Multiple 94 4A LS Load Selective 51
OE LPSD Load Program Status Doubleword (privileged) 101 4B AND AND Ward 67
OF XPSD Exchange Program Status Doubleword (privileged) 102 4C SIO

Stoc' 'op,'/O,'p" I 123
40 TIO Test Input/Output 124
4E TOV Test Device 125

10 AD Add Doubleword 59 4F HIO Halt Input/Output privileged 126
11 CD Compare Doubleword 65 4F RIO Reset Input/Output 126
12 LD Load Doubleword 49 ~F POLP Poll Processor 127
13 MSP Modify Stack Pointer 96 ~F POLR Poll and Reset Processor 127
IS STD Store Doubleword 54
18 SO Subtract Doubleword 60

50 AH Add Ha I fword 58
19 ClM Compare with Limits in Memory 66

51 CH Compare Halfword 65
IA LCD Load Complement Doubleword 50

52 LH Load Ha I fward 48
IB LAD Load Absolute Doubleword 51

53 MTH Modify and Test Halfword 63
IC FSL Floating Subtract Long 76

55 STH Stare Halfword 53
10 FAL Floating Add Long 75

56 DH Divide Halfword 61
IE FDL Floating Divide Long 76 -7 MH Multiply Halfword 61
IF FML Floating Multiply Long 76

SH Subtract Halfword 59
SA LCH Load Complement Halfward 49
5B LAH Load Absolute Halfward 49

58
60 CBS Compare Byte String 85

20 AI Add Immediate
61 MBS Move Byte Stri ng 84

21 CI Compare Immediate 64
63 EBS Edit Byte String 88

22 LI Load Immediate 48
64 BDR Branch on Decrementing Register 99

23 MI Multiply Immediate 60
65 BIR Branch on Incrementing Register 99

24 SF Shift Floating 69
66 AWM Add Word to Memory 62

25 S Shift 67
26 LAS Load and Set 51

67 EXU Execute 98
68 BCR Branch on Conditions Reset 99

28 CVS Convert by Subtraction 71
69 BCS Branch on Conditions Set 98

29 CVA Convert by Addition 71
6A BAL Branch and Link 99

2A LM Load Multiple 52
6B INT Interpret 57

2B STM Store Multiple 54
6C RD Rood D;md } 110

2C LRA Lood lleol Addc~, } 107
60 WD Write Direct privileged 112

20 LMS Load Memory Status privileged 108
6E AIO 127

2E WAIT Wait 110
Acknowledge Input/Output Interrupt

2F LRP Load Register Pointer 104
6F MMC Move to Memory Control 104

70 LCF load Conditions and Flooting Control 53
30 AW Add Word 58 71 CB Compare Byte 64
31 CW Compare Word 65 72 LB Load Byte 48
32 LW Load Word 48 73 MTB Modi fy and Test Byte 62
33 MTW Modify and Test Word 63 74 STCF Store Conditions and Floating Control 54
35 STW Store Word 53 75 STB Store Byte 53
36 OW Divide Word 62 76 PACK Pack Decimal Digits 81
37 MW Multiply Word 61 77 UNPK Unpack Decimal Digits 82
38 SW Subtract Word 59 78 OS Decimal Subtract 79
39 CLR Compare with Limits in Register 66 79 DA Decimal Add 79
3A LCW Load Complement Word 49 7A DO Decimal Divide 80
3B LAW Load Absolute Word 50 7B OM Decimal Multiply 80
3C FSS Floating Subtract Short 75 7C DSA Decimal Shift Arithmetic 81
3D FAS Floating Add Short 74 70 DC Decimal Compare 81
3E FDS Floating Divide Short 76 7E DL Decimal Load 79
3F FMS Floating Multiply Short 76 7F DST Decimal Store 79

701 South Aviation Boulevard
EI Segundo, California 90245
213679-4511

XE

XEROX® is a trademark of XEROX CORPORATiON .

"

',.

,.

f ~

:'
\.

~ , ..
..

•

• " •

~ •
.. '

	00001
	00002
	0001
	0002
	0003
	0004
	0005
	0006
	001
	002
	003
	004
	005
	006
	007
	008-0
	008-1
	008-2
	008-3
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111-0
	111-1
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	173a
	174
	174a
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	replyA
	replyB
	xBackA
	xBackB

