
Xerox Corporation

701 South AViation Boulevard
EI Segundo, California 90245

213679-4511

Xerox Real-Time Batch Monitor (RBM)

't Xerox Corporation 1973,1975

~igma ~-Q r.ompllter~ _. v - ow

System

Technical Manual

90 17 OOE

May 1975

Price: $8.25

XEROX

Printed in U.S.A.

REVISION

This publ ication is a revision of the Xerox Rea 1-Time Batch Monitor (RBM)/System Techni cal Manua I for Sigma 5-9
Computers, Publication Number 90 17000 (dated October 1973). The revision reflects the C04 version of the sys­
tem. Changes in the text for C04 are indicated by a vertical line in the margin of the page.

RELATED PUBLICATIONS

Title

Xerox Sigma 5 Computer/Reference Manual

Xerox Sigma 6 Computer/Reference Manual

Xerox Sigma 7 Computer/Reference Manual

Xerox Sigma 8 Computer/Reference Manual

Xerox Sigma 9 Computer/Reference Manual

Xerox Real-Time Batch Monitor (RBM)/RT,BP Reference Manual

Xerox Real-Time Batch Monitor (RBM)/OPS Reference Manual

Xerox Real-Time Batch Monitor (RBM)/RT,BP User's Guide

Xerox Availability Features (CP-R) Reference Manual

Xerox Sigma Character-Oriented Communications Equipment/Reference Manual
(Models 7611-7616;7620-7623)

Xerox Sigma Multipurpose Keyboard Display/Reference Manual (Models 7550;7555)

Xerox Mathematical Routines/Technical Manual

Xerox Assembly Program (AP)/LN,OPS Reference Manual

Xerox S L-1/Reference Manual

Xerox Extended FORTRAN IV-H/LN Reference Manual

Xerox Extended FORTRAN IV-H/OPS Reference Manual

Xerox Extended FORTRAN/Library Technical Manual

Publication No.

9009 59

90 17 13

90 09 50

90 1749

90 17 33

90 15 81

90 1647

90 16 53

9031 10

90 09 81

9009 82

90 09 06

90 30 00

90 16 76

90 09 66

90 11 44

90 15 24

Manual Content Codes: BP - batch processing, LN - language, OPS - operations, RP - remote processing,
RT - real-time, SM - system management, TS - time-sharing, UT - utilities.

The specifications of the softwore system described in this publication are subject to change without notice. The availability or performance of some features

may depend on a specific configurat ion of equipment such as additiona I tape uni ts or larger memory. Customers shou Id consul t their Xerox so I es representative

for details.

ii

CONTENTS

PREFACE viii

1. RBM INITIALIZATION ROUTINE

2. RBM CONTROL TASK

Structure ----_________ _
Function and Implementation ______ _

Resident Control Task ________ _
Key-In Processor _________ _
Load Module Control (Formerly

"Foreground Loader") ______ _
Background Sequencing _______ _
Checkpoint Restart (CKPT) ______ _
Control Task Dump _________ _

3. I/o HANDLING METHODS

3

3
3
3
4

4
5
6
7

8

Channe I Concept 8
Handling Devices 8

Single Interrupt Mode 8
Interrupt-to- Interrupt Mode 8

System Tables 8
10Q (Request Information) 8
DCT (Device Control) . 9
CIT (Channel Information) 9

Handler Tables 9
I/o Control System Overview 10

Interfaces 10
Interfaces into the 10CS 10
Interfaces out of the 10CS 12
10CS Control Sequence/Example 12

Register Conventions 32
QUEUE 32
CALLSD 32
SERDEV 32
RIPOFF 32
STARTIO 33
CLEANUP/IOSCU 33
REQCOM 33

I/O Error Logging 34
I/o Statistics 34
Side Buffering 34
Output Side Buffering 34
Input Side Buffering 34
10EX 35

Queued 10EX 35
Dedicated 10EX 35

Disk Pack Track-by-Track Logic 35
Disk Pack Seek Separation 35
Disk Pack Arm-Position Queue Optimization __ 35
Disk Angular-Position Queue Optimization __ 36
User I/o Services 36

OPEN 36
CLOSE 36
READ/WRITE 37

PRINT _____________ 38

TYPE 38
DFM 38
DVF 38
DEVICE 38
CORRES 38
REWIND 39
WEOF ~

PREC 39
PFILE 39
ALLOT 40
DELETE 40
TRUNCATE 40

4. JOB CONTROL PROCESSOR 41

Overview ______________ 41

ASSIGN Command Processing 41
JCP Loader 55
job Accounting 57
Background TEMP Area Allocation 57

5. FOREGROUND SERVICES 60

Implementation 60
RUN 60
RLS 60
MASTER/SLAVE 60
STOPIO/STARTIO 60
DEACTIVATE/ACTIVATE 61
IOEX 61
TRIGGER, DISABLE, ENABLE; ARM

DISARM, CONNECT, DISCONNECT __ 61
Task Control Block (TCB) 61

6. MONITOR INTERNAL SERVICES 64

RBM Overlays 64
Entry and Exit Point Inventory (EPI) 66
Overlay Inventory (OVI) 66

Event Control Block and Event Control Servi ces _ 67
Overview of ECB Usage 67

CAL Processor Usage 67
Task-Termination Usage 68

ECB and Data-Area Formats 68
ECBDATA (Word 0) 69
ECBFPT (Word 1) 69
ECBSECB (Word 2) 70
ECBRECB (Word 3) 70
ECBPC (Word 4) 71
ECBENDAC (Word 5) 71
ECBTIME/ECBCOMPL (Word 6) 71
ECBCTLS (Word 7) 71

iii

Dynamic Space 72 STIRTSB 97
Dynamic-Space Service Calls 72 STUID 97

GETTEMP 72 STILMID 97
RELTEMP 72 STIPRIO 97

SYSGEN Considerations 73 STITCB 98
Dispatcher 73 STIOVID 98

STICOUNT 98
STITIME 98
STISTAT 98

7. MISCELLANEOUS SERVICES 74 STIDNXT 98
Task Control Block (TCB) 99

SEGLOAD 74 Purpose 99
Trap Handling 74 Type and Location 99

Trap CAL and JTRAP CAL 74 Log i ca I Access 99
Trap Processing 74 Overview of Usage 99
TRTN (Trap Return) 76 Task Control Block (TCB) Format 100
TRTY (Trap Retry) 76 Secondary Task Control Block (STCB) 101
TEXIT (Trap Exit) 76 Purpose 101

Location and Type 101
Log i ca I Access 101
Overview of Usage 101

8. RBM TABLE FORMATS 77 Secondary Task Control Block (STCB)
Format 102

General System Tables 77 Job-Controlled Tables 104
Disk File Table (RFT) 77 System Job Inventory (SJ I) Table 104
Device Control Table (DCT) 78 Purpose 104

DCT Format 78 Type 104
SYSGEN DCT Consideration 81 Log i ca I Access 104

Channel Information Table (CIT) 81 Overview of Usage 104
I/o Queue Table (lOQ) 82 System Job Inventory (SJ I) Tab Ie
Blocking Buffers 84 Format 106
Master Dictionary 86 Job Control Block (JCB) 106
Operational Label Table (OPLBS) 87 Purpose 106
OVLOAD Table (for RBM Overlays Only) __ 87 Type 106
Write Lock Table (WLOCK) 87 Log i co I Access 106
RBM Dispatcher Level Inventory (RDLI) 88 Overview of Usage 107
Associative Enqueue Table (AET) 89 Job Control Block Format 107

Purpose 89 Job Program Table (J PT) 108
Type 89 Purpose 108
Logical Access 89 Type 108
Overview of Usage 89 Logical Access 108
Associative Enqueue Table (AET) Format _ 90 Overview of Usage 108

Task-Controlled Tab les 90 J PT Tab Ie Format 109
Load Modu Ie Inventory (LMI) 90 Enqueue Definition Table (EDT) 109

LMINAME (LMIl) 93 Purpose 109
LMIPCB, LMIFWA (LMI2) 93 Type and Location 109
LMUID, LMILWA (LMI3) 93 Logical Access 109
LMIPL, LMICTXT (LMI4) 94 Overview of Usage 109
LIMSTAT (LMI5) 94 Enqueue Definition Table (EDT) Format __ 111
LMISTD (LMI6) 94 rr.Tt..IAljl: cu II M'V\I;; 111
LMIRTS (LMI7) 94 EDTEDT 111
LMIMAXS (LMI8) 94 EDTRECB 111
LMIMAXR (LMI9) 94 Load-Modu Ie Data Structures 111
LMIAET 95 Load Modu Ie Headers 112
LMISECB 95 Task Load Modu Ie Header 112
LMIRECB 95 PUBLIB Load Modu Ie Header 113

System Task Inventory (STI) 95 OVLOAD Table (for Load Modules) 114
Purpose 95
Type 95
Logical Access 95 9. OVERLAY LOADER 115
Overview of Usage 96

STISPCE 97 Overlay Structure 115
STIXRTS 97 Overlay Loader Execution 115

iv

Dynamic Table Area 116 Library Fi Ie Maintenance 153
Dynamic Table Order 117 Algorithms for Computing Library File
T:SYMBOL and T:VALUE 117 Lengths 153

T:VALUE Entry Formats 118 Library Fi Ie Formats 155
T:SYMBOL Entry Formats 119 MODIR File 156

T:PUBVAL and T:PUBSYM 119 MODULE File 156
T:PUBVAL Entry Formats 119 EBCDIC File 156
T:PUBSYM Entry Formats 120 DEFREF File 157

T:VALX 120 Command Execution 157
T:DCB 121 :ALLOT 158
T:SEG 122 :COPY 158
B~MT __ 124 :DELETE 158
T:DECL 124 :SQUEEZE 158
i:CSECi 124 Bad Track Handiing 158
T:FWD 125 Command Execution 158
T:FWDX 125 :BDTRACK 158
T:MODULE 126 :GDTRACK 159
T:ROMI 126 Utility Functions 159
T:DCBV 127 :MAP 159
T:MODIFY 127 :LMAP 161
Use of the Dynamic Table Area During :SMAP 161

LIB 128 :CLEAR 162
T:LDtF 129 :COPY 162
T:LROM 129 :DPCOPY 162
MODULE File 130 :DUMP 162
EBCDiC Fiie i30 :SAVE 163
MODIR File 130 :RESTORE 164
DEFREF File 130
Use of Dynamic Table Area During

PASSTWO 131 11. SYSTEM GENERATION 176
T:GRAN 131
T:ASSN 132 Overview 176
MAP Use of Dynamic Table Area 132 SYSGEN/SYSLOAD Flow 177
DIAG Use of Dynamic Table Area 133 Loading Simulation Routines, RBM, and RBM
Root Tables 133 Overlays 177
T:PL 134 SYSGEN I/o 185
T:DCBF 134 Rebootable Deck Formaf 185

Scratch Fi les 135 Stand-Alone SYSGEN Loader 186
Program Fi Ie Format 136

Logical Flow of the Overlay Loader 137
Logical Flow of CCI 137
Logical Flow of PASSONE 137
Logical Flow of LIB 138
Logical Flow of PASSTWO 138
Logical Flow of MAP 138 APPENDIXES
Logical Flow of DIAG 139

Loader-Generated Table Formats 139 A. RBM SYSTEM FLAGS AND POINTERS 187
PCB 139
DCBTAB 140 B. PAPER TAPE STANDARD FORMAT 192
OVLOAD 140

Loading Overlay Loader 140 C. ERROR LOGGING 193

D. XEROX STANDARD OBJECT LANGUAGE 201
10. RADEDIT 150

Introduction 201
Functional Flow 150 General 201
Permanent Disk Area Maintenance 150 Source Code Translation 201

Permanent File Directory 150 Object Language Format 202
Control Commands 152 Record Control Information 202

:ALLOT 152 Load Items 203
:DELETE 153 Declarations 203
:TRUNCATE 153 Definitions 205
:SQUEEZE 153 Expression Evaluation 206

v

Formation of Internal Symbol Tables 209 25. CC Command Flow 47
Looding 210
Miscellaneous Load Items 211 26. LIMIT Command Flow 47
Object Module Example 211

27. STDLB Command Flow 48
E. XEROX STANDARD COMPRESSED

LANGUAGE 217 28. NAME Command Flow 49

F. SYSTEM OVERLAY ENTRY POINTS 218 29. RUN Command Flow 51

30. ROV Command Flow 51

3l. POOL Command Flow 51

FIGURES 32. ALLOBT Command Flow 52

l. Initialize Routine Core Layout 33. LOAD Command Flow 53

2. RBM Initialize Routine Overall Flow 2 34. PMD Command Flow 54

3. Overall IOCS Organization 11 35. PFIL, PREC, SFIL, REWIND, and
UNLOAD Command Flows 54

4. IOCS: QUEUE Routine 13
36. WEOF Command Flow 54

5. IOCS: SERDEV Routine 15
37. Core Layout During JCP Execution 55

6. IOCS: CLOCKIO Routine 17
38. Pre-PASS 1 Core Layout 56

7. 10CS: RIPOFF Subroutine 18
39. ARM, DISARM, and CONNECT Function

8. IOCS: STARTIO Routine 19 Flow 62

9. IOCS: IOINT Routine 21 40. Arrangement of SYSLOAD Input ROMs 65

10. IOCS: IOALT Routine 23 41. ECB Format and Chained Data Areas 68

1l. IOCS: CLEANUP Routine 24 42. Relationship of Task Controlled Data 91

12. IOCS: REQCOM Routine 26 43. Relationship Between a Primary
Task Control Block and Other

13. IOCS: ENDAC Subroutine 28 Control Blocks 99

14. IOCS: IOERROR Subroutine 29 44. Relationship Between Secondary Task
Control Block and Other System

15. IOCS: IOLOG Subroutine 30 Control Data 102

16. IOCS: PUSHLOG Subroutine 31 45. Relationship of Job Associated Control
Tables 105

17. JCP General Flow 42
46. Enqueue/Dequeue Table Relationship 110

18. JOB Command Flow 44
47. Overlay Structure of the Overlay Loader ___ 115

19. FIN Command Flow 45
48. Overlay Loader Core Layout 116

20. ASSIGN Command Flow 45
49. LIB Reorganization of Dynamic Table Area __ 128

21. DAL Command Flow 46
50. PASSTWO Reorganization of Dynamic

22. ATTEND Command F!o'." 46 Table Area 131

23. MESSAG E Command Flow 46 51. MAP Table Reference 133

24. PAUSE Command Flow 47 52. Program Fi Ie Format 136

vi

53. Overlay Loader Flow, ! OLOAD 141 68. SYSGEN and SYSLOAD Layout Before
Execution 176

54. Overlay Loader Flow, CCI 141
69. SYSGEN and SYSLOAD Layout After

55. Overlay Loader Flow, PASSONE 142 Execution 177

56. Overlay Loader Flow, PASSTWO 145 70. SYSGEN/SYSLOAD Flow 178

57. Overlay Loader Flow, MAP 147

58. Overlay Loader Flow, RDIAG 148 TABLES

59. Overlay Loader Flow, RDIAGX 148 l. ASSIGN Table 41

60. Overlay Loader Flow, DIAG 149 2. Disk File Table Allocation 78

6l. RADEDIT Functional Flow 151 3. DCT Subtable Formats 79

62. Permanent Disk Area 154 4. IOQ Allocation and Initialization 82

63. RADEDIT Flow, ALLOT 165 5. Overlay Loader Segment Functions 115

64. RADEDIT Fiow, COPy 166 6. T:DCBF Entries 134

65. RADEDIT Flow, SQUEEZE 171 7. Background Scratch Fi les 135

66. RADEDIT Flow, SAVE 173 8. Standard SYSLOAD DEFs 183

67. RADEDIT Flow, RESTORE 175 A-l. RBM System Flags and Pointers_ 187

vii

viii

PREFACE

The primary purpose of this manual is to provide a guide for better comprehension of the program listings supplied
with the Xerox Real-Time Batch Monitor (RBM) operating system. The programs and processors included are the
System Generation program, the Monitor and its associated tasks and subprocessors such as the Job Control
Processor, Overlay Loader, and RADEDIT.

The manual is intended for Sigma RBM users who require an in-depth knowledge of the structure and internal
functions of the RBM operating system for system maintenance purposes. Since the RBM Technical Manual and pro­
gram listings are complementary, it is recommended that the listings be readily available when this manual is used.

1. RBM INITIALIZATION ROUTINE

The RBM Initialize routine is entered from the disk bootstrap every time the system is booted from the disk, and it
sets up core prior to the execution of RBM. It also modifies the resident RBM system (including all system tables),
the RBM overlays, and the Job Contro I Processor. Modi fj cations may be made from the C, OC, or 51 devi ce that
is selected by a corresponding sense switch setting (1, 2, or 3). If sense switch 4 is reset, the Initialize routine loads
all programs on the FParea of the disk designated as resident foreground into the foreground area. The Initializeroutine
extends into the backgiOund and can be oVeiwdtten by background programs, since it eXecutes only once. In Fig­
ure 1 below, the background first word address is the first page boundary after RBMEND (the end of resident RBM).
The Initialize routine terminates by triggering the RBM Control Task.

The general flow of the Initialize routine, from entry from disk bootstrap to triggering the Controi Task interrupt, is
illustrated in Figure 2.

RBM
Initialize

Routine

o r------------,.-I.R ... "'n r .. ·· .-
~~~~~~~~~~~~~~~~~~~~~~~~ 

Resident RBM 

6K 

! 

Figure 1. Initialize Routine Core Layout 

RBM Initialize Routine 



2 RBM Initialize Routine 

Change to secondary task, i. e. , 
continue under control of 
dispatcher. 

~------------~ 

~ 
~ 

If sense swi tch 4 is reset, 
do RUN CAL to load in 
any resident foreground 
program. 

Figure 2. RBM Initialize Routine Overall Flow 



2. RBM CONTROL TASK 

The RBM Control Task is connected to the lowest priority system interrupt. Among the functions performed by the 
Control Task are 

• Key-in processing • Background Wait 

• Foreground program "RUN" and "INIT" • Background Postmortem Dump 

• Foreground program "RELEASE" and "EXTM" • Keyin initiated dumps 

• Background program Load • Deferred I/o processing 

• Background Checkpoint • Periodic service of all devices 

• Background Restart • Crash data handling 

• Background Exit • I/o error log handling 

• Background Abort 

In facilities where there are no system interrupts, the Control Task is connected to the Control Panel interrupt (see 
HKey-in Processor;; iater in this chapter). 

Structure 

The Control Task consists of a resident portion and a number of monitor overlay~. The overlays are 

• Load module "RELEASE" (FGL 1) • Seven-Part Key-in Processor (KEY1-KEY7) 

• Load module "RUN" (FGL2) • Error logger (LOG) 

• Load modu Ie loader (FG L3) • Error summary (ESUM) 

• Background program initiation (BKU) • Crash saver (CRS) 

• Checkpoint/Restart (CKPT) • Crash-save dumper (CRD) 

• Background Abort/Exit (ABEX) • Direct crash dumper part 1 (CKD1) 

• Postmortem and Keyin Dumps • Direct crash dumper part 2 (CKD2) 

Function and Implementation 

Re.ident Control TISk 

The resident portion of the Control Task functions as a scheduler for the various subtasks. The priority of the subtasks 
is determined by the order in which the resident Control Task tests the sig.nal bits. 

RBM Control Task 3 



Key-In Processor 

When the control panel interrupt is triggered, its handler sets the flag in K:CTST to run KEY1, and triggers the in­
terrupt for the control task dispatcher. 

When KEYl is entered, it determines whether an operator key-in must be read or has just been read. If the key-in 
has not yet been read, KEYl prompts the OC device with a ':::." and ueues a read request to the same device. It 
then sets a flag indicating that key-in input is in process, and exits to the ontro as Without clearing its run flag 
in K:CTST. ----

The combination of the flags mentioned forces the Control Task to skip KEYl but to continue cycling through its scan 
until the key-in input is complete. It then enters KEY1. 

When KEYl is entered after a key-in has been read, it analyzes the input and branches to the appropriate processor 
in one of the four key-in overlays. If the key-in is unrecognized, KEYl outputs the message 

! !KEY ERR 

and repeats the attempt to read a key-in. 

Load Module Control (Formerly "Foreground Loader") 

Load Module Control consists of three monitor overlays: FG Ll (Load Module Release), FG L2 (Load Module Run), 
and FGL3 (Load Module Loader). Monitor services that require a load module to be initiated or released set the 
appropriate status indicators in the LMI entry, set the flag for Load Module Control in K:CTST, and trigger the 
Control Task dispatcher interrupt. 

Load Module Control is entered in the FGLl overlay, which first searches the Load Module Inventory (LMI) for load 
modules to be released. If a releasable load module is found, FGLl releases it. The STI is searched for entries 
identifying tasks in the load module. If any are found, they are released, and the associated interrupts are disarmed 
and set to MTW, 0 O. For clock-connected tasks, both the clock pulse and the corresponding count-equals-zero 
interrupts are ireated. If the load module used PUBLlBs, their use counts are decremented, and the PUBLIB LMI 
entry is released if the use count becomes zero. 

While searching for releasable load modules, FGLl also finds all load modules that are waiting on memory in order 
to run ("run queued") and sets flags indicating that their loading is to be attempted again. 

When all load module releases have been performed, FG Ll calls FG L2. 

FG L2 searches the LMI for an entry flagged for loading. If the "run-queueing" option is not specified, the first 
loadable entry is selected. Otherwise, the loadable entry with the highest priority is chosen. (If there is none, 
FG L2 returns to the control task, clearing the Load Module Control flag from K:CTST.) 

When an entry is found, the Job Program Table (JPT) for the job in which the load module will run is searched. If 
the task name from the LMI entry matches a task name in a JPT entry, the load module file name is provided by the 
JPT entry. If no such match is found, the task name is used as the fi Ie name. FG L2 calls FG L3 to load the load 
module. If FGL3 is successful, FGL2 sets up certain LMI entry values which are obtained from the load module 
header, and allots Associative Enqueue Table (AET) space from the monitor's dynamic memory pool. If the load 
module is foreground, its initialization sequence is executed. Normal completion posting is effected for the 
originating RUN or INIT request. 

If FGL3 is unsuccessful at loading a foreground program because the required memory was in use, FGL2 leaves the 
LMI entry for a later attempt ot looding. If the load fai led for another reason, or the task was background, its 
tables are deleted, and the originating request is posted as abnormally completed. 

FGL3 acquires dynamic memory for load module header input, and for background load modules reserves a blocking 
buffer as well (background headers may be as large as a full sector). The header is read, and it is determined 

4 Function and Implementation 



whether the memory between the program bounds is free of foreground programs. If it is not, the load terminates 
unsuccessfully. If it is, the module must also load into the correct area of memory (background or foreground). If 
it does not, the load is again terminated unsuccessfully, but if a foreground load module is concerned, checkpoint is 
requested. The root segments of the load module are read into their execution locations. If any PUBLIB is required, 
the WI is searched. If the PUBLIB has no WI entry, it must be loaded. Its header is read. From header data, it 
is determined if the PUBLIB loads into the foreground area, and does not overlap an existing program or PUBLIB. If 
these conditions are met, the PUBLIB is loaded and given an WI entry. If not, the loading of the original program 
load module is terminated unsuccessfully. If a PUBLIB is already loaded, its use count is incremented. 

When the root segments and PUBLIBs for a load module are all loaded, FGL3 returns successfully to FGL2. 

Background Sequencing 

Background sequencing is provided by two monitor overlays: Background Program Initiation (BKU, formerly IIBack­
ground Loader part 111) and Background Abort/Exit (ABEX). 

Background sequencing is begun by a lie' keyin received while the background is inactive. The key-in causes flags 
to be set in K:CTST indicating that BKU must run and the Job Control Processor (JCP) is to be loaded. 

There are three main paths through BKU: one for initiating JCP: one for initiating n prot::essor or user progrc!'!'!, c:1d 
one for completing the initiation process after Load Module Control has loaded the background. BKLl may also exit 
without doing anything, if it is entered without the indicator set for any of its three functions, or if the background 
is checkpointed. In the former case, the flag in K:CTST for BKU execution is cleared. At this point, Background 
Sequencing has terminated. In the latter case, the flag is not cleared so that the Control Task wi II continue to enter 
BKU unti I the checkpoint condition is cleared allowing BKU to proceed. 

When BKU is called to initiate either JCP or another background program, the general process is to de lete the back­
ground blocking buffer pool, reset the background-foreground boundary, reallocate the background buffers, associate 
the task name IIBKG II with the load module fi Ie name using a SETNAME CAL, and request task initiation with a no­
wait INIT CAL. BKU then exits to the Control Task, to allow Load Module Control to do the task initiation. 

The resetting of the background-foreground boundary is done if an FMEM key-in has been received that changes the 
boundary, and no foreground program or PUBLIB would lie in background as a result of the change. The change is 
effected by altering the boundary address pointer (K:FGDBG 1) and resetting the write locks. If the change cannot 
be made because of existing programs in the foreground, the FMEM request is deieted and a message is sent to the 
OC device, but background initiation is attempted anyway. 

The reallocation of buffers before initiating the background task piOvides 0 fixed number of blocking buffers (two) 
for use during initiation processing. Additionally, if a load module other than JCP is being initiated, the contents 
of the control command buffer and the ASSIG N buffer are moved from the locations they occupied when the prior 
background task (JCP) terminated. Note that if the background-foreground boundary is changed, BKL1 must not 
exit until it has performed these buffer moves, or Load Module Control could load over the old buffers, destroying 
the data needed. 

The final path through BKL1 is taken after completion of the INIT service requested in either of the first two paths. 
Load Module Control, on completing a background INIT request, sets the flag in K:CTST for BKU execution. When 
BKU is entered, it performs a CHECK on the INIT request. If an abnormal completion code is returned, flags are 
set to run ABEX to abort the background. BKU notifies the operator and exits. If the completion is normal, ASSIGNs 
are done as indicated in the ASSIGN table. If the background program was not JCP, blocking buffers are reallocated 
either according to a POOL command if one was received; or to the number of blocked fi les indicated in the pro­
gram's DCBs, if possible; or as few as one, if memory space is not adequate for the default number. If JCP is being 
initiated, it keeps the two blocking buffers allocated before the INIT request. BKLl then zeros unused background 
memory, clears flags that block background execution, and exits. Background can then run. 

When a service requests that the background task be terminated (e. g., EXIT or ABORT CALs, trap processing abort), 
task termination is deferred. Instead, a flag is set in K:CTST indicating that ABEX must run, and another in K:JCP 
indicating whether the termination is an exit or an abort. The Control Task is then triggered. 

If ABEX is entered whi Ie the background is checkpointed, it exits immediately, so that - Ii ke BKL1 - it is reentered 
at each pass through the Control Task until the checkpoint is cleared. 

Function and Implementation 5 



ABEX first determines what is to be run next in the background sequence on the basis of what was just run, and how 
it terminated. If a normal termination occurred, there are three alternatives: If a program other than JCP was 
running, ABEX indicates that JCP wi" run next. If JCP was running, and a IFIN command was received, nothing 
is to follow. If JCP was running and exited without !FIN, it was the result of some variety of IRUN command, 
and the next program to run is indicated by a fi Ie area and name in K:BAREA and K:BFILE, respectively. ABEX 
indicates that a user program is to be loaded next. If the previous background program aborted, ABEX indicates 
that JCP wi" run next. Additiona"y, ABEX sends an abort notification to the OC and LL devices, and sets a flag 
which forces JCP to skip control cards until a !JOB or !FIN is encountered. 

If a postmortem dump is required, ABEX sets the flag in K:CTST to run the PMD overlay, resets its own flag, and 
exits. When the dump is complete, PMD wi" set the ABEX flag to allow ABEX to finish. If there is no dump, or 
upon reentry after a dump, ABEX calls the TMLM monitor routine, which forces the background to execute termina­
tion. ABEX then exits, clearing its execution flag-. 

The background task then executes Task Termination, which closes files, waits out or stops I/o (the former in an 
EXIT, the latter in an ABORT), and releases table space. Termination ends by setting the K:CTST flag to run 
BKL1, and triggering the Control Task. 

When BKU runs, as described earlier, it initiates the next load module, or, if there is none, terminates background 
sequenci ng. 

Checkpoint/Restart (CKPT) 

This overlay performs both the Checkpoint and Restart functions. Checkpoint is accomplished by waiting for out­
standing background I/O requests to run to completion and then writing the entire background portion of core to 
the CK area of the RAD. When the background has been successfully written to the RAD, the message 

! !BCKG CKPT 

is output on OC. At concl usion of the checkpoint, the background portion of memory is given to the foreground by 
setting the boundary pointers K:FGDBG 1 and K:BCKEND and setting the Write locks appropriately. 

The following self-explanatory messages may be output during checkpoint: 

! !CKPT ABORT, I/o HUNG 

! ! BCKG USED BY FGD 
·1 

! ! CK AREA TOO SMALL 

!! I/O ERR ON CKPT 

Restart is accomplished by resetting the boundary pointers K:FDGBGl and K:BCKEND, and by resetting the Write 
locks to thei r precheckpoi nt setti ngs. The message 

! !BCKG RESTART 

is output on the OC device and the control bits indicating that the background is checkpointed are reset (K:JCPl 
bits 2, 3). Control is then transferred to the resident Control Task, and when a" specified subtasks are completed, 
the Control Task will exit to the proper point in the background. 

6 Function and Implementation 



Control T ... D.p 

This overlay performs core dumps. Any Dump key-in requests in effect at entry are performed-first, and when these 
are exhausted, the background PMD requests are satisfied {maximum of four ranges}. K:JCPl bit 6 is set prior to 
completing the ABORT /EXIT, and the PMD is then done. After the PMD is completed, the Control Task returns to 
the ABORT/EXIT overlay and completes background cleanup. 

The dump format is either hexadecimal or optionally both hexadecimal and EBCDIC, with the registers being re­
trieved from the ir storage area and dumped as locations 0 through XI Fl. Subroutines are inc iuded in the overlay 
that perform hexadecimal to EBCDIC conversion and move bytes into the print image. 

After printing each line, -controi is returned to the resident Controi Task to enable other subtasks to be performed 
without waiting for total completion of the dump. The resident Control Task returns control to PMD after performing 
any higher priority subtasks. 

Function and Implementation 7 



3. I/O HANDLING METHODS 

Channel Concept 

A "channel" is defined as a data path connecting one or more devices to memory. Only one of the devices may be 
transmitting data to or from memory at any given time. 

Thus a magnetic tape controller connected to an MIOP is a channel, but one connected to an SlOP is not, since in 
this case, the SlOP itself fits the definition. Other examples of channels are a card reader on an MIOP, a 
keyboard/printer on an MIOP, or a disk controller on an MIOP. 

Input/output requests made on the system wi II be queued by channel to faci litate starting a new request on the chan­
nel when the previous one has completed. The single exception to this rule is the "off-line ll type of operation, 
such as the rewinding of magnetic tape or the arm movement of certain moving arm devices. For this type of opera­
tion, an attempt is always made to also start a data transfer operation to keep the channel busy if possible. 

Handlinl Devices 

The RBM system offers the capability of multiple-step operations by providing an interrupt-to-interrupt mode in 
addition to the standard single interrupt mode. 

Single Interrupt Mode 

On the lowest level the I/O handler is supplied a function code and device type. These coordinates are used to 
access information from tables used by the handler to construct the list of command doublewords necessary to per­
form the indicated operation. Included wi! I be a dummy (nonexecuted) command containing information pertinent 
to device identification, recovery procedure, and folfow-on operations (see below). 

Interrupt-to-Interrupt Mode 

A function code for a follow-on operation may be included in the dummy command. This causes the request to be 
reactivated and resume its normal position in the channel queue, but with a different operation to be performed. It 
will be started by the scheduler in the normal manner as if it were any other request in the queue. The process may 
be cascaded indefinitely. 

Error recovery may be specified at any point within a series of follow-on operations and will be itself treated by the 
system as a type of follow-on operation. It should be noted that follow-ons may be intermixed with other operations 
on the same channel or even on the same device if the situation warrants. Thus, a series ofrecovery trieson a RAD 
may be interrupted to honor higher priority requests, or on a tape for higher priority requests on other drives (but not 
on the same drive). 

System Tables 

Information pertaining to requests, devices, and channels is maintained in a series of parallel tables produced at 
System Generation time. A definition of these tables is presented here as reference for the remainder of this man­
ual. The first entry {index =0) in each table is reserved for special use by the s~(step.:!. See Chapter 10 for a more 
complete description of these tables. 

Ion (Request Information) 

These tables contain all information necessary to perform an input/output opeiOtion on a device. VI/hen a request is 
made on the system, a queue entry is built that completely describes the request. The entry is then linked into the 
channel queue below other requests of either higher or the same priority. 

8 I/O Handling Methods 



OCT (Device Control) 

The device control tables contain fixed information about each system device (unit level) and variable information 
about the operation currently being performed on the device. 

CIT (Channellnfonnation) 

These tables are used primarily to define the "head" and "tail" of entries that represent the queue for given channel 
at any time, A channel queue may have more than one entry active at any time (e, g, j several tapes rewinding whi Ie 

another entry reads or writes). 

Handler Tables 

Associated with each handler are two tables: the Devi ce Offset Table (DOT), and the Command List Pointer Table 
(CLST). 

The DOT table is a word table that begins on a doubleword boundary and contains: 

Byte 0 

Byre i 

Byte 2 

Byte 3 

A byte offset from the beginning of the DOT table to the corresponding CLST entry. 

ihe rime-our vaiue, which is an inreger rhar represenrs rhe number or rive-second intervais that 
are allowed to pass between the SIO and the I/O interrupt before the interrupt is considered 
lost. The value X'FF' indicates the operation should not be timed out. 

The retry function code. This is the function code to be used for automatic error recovery. 

The continuation function code. This is the function code to be used for multiple interrupt re­
quests. For example, a forward space record on magnetic tape can be performed n times by 
the basic I/O using the same queued request. Zero is used for no continuation. 

The function code is used as the index to reference this table. 

The CLST table is a byte table containing the doubleword displacement from the beginning of the corresponding DOT 
table to the appropriate skeletal command doubleword. 

The general method for constructing the command doublewords for an I/O request is to access the DOT table using 
the function code as index, and then find the skeletal command doubleword offset by using the contents of byte 0 
of the DOT entry as index to the CLST table. The skeletal command doubleword has the form 

Order x 
Flags o y z 

o 78 31 

where 

Y =0 if the command is complete and to be used as is. This implies X is the address and Z is the byte count. 

Y = 1 if a seek address contained in IOQ 12 is to be placed in the first word. In this case, the vafue of X 
is irrelevant. 

Y = 2 if a regular data transfer is to be performed. In this case, the buffer address is taken from IOQ8 and 
placed in the first word, and the byte count is taken from IOQ9 and placed in the second word (byte 1). 

Y = 3 if the request represents an I/O error message. This wi /I cause the proper NIL! ! yyndd to be chai ned 
to the pointed message. 

Y = 4 if a special handler function is to be performed. In this case, X is the address of the entry to 
the function. 

Handler Tables 9 



When the bui Iding of the command doubleword is completed, a test is performed for command-chaining (command 
doubleword flag field bits 0 or 2 are on). If another command doubleword is to be chained, it is accomplished by 
accessing the next successive entry in the CLST table to find the offset of the skeletal command doubleword that is 
to be used to create the next command doubleword. This command doubleword is constructed in the same fashion as 
the first, and the process may continue to the limits imposed by the size of the command list area allocated at 
SYSGEN. 

I/O Control System Overview 

The I/o Control System (laCS) is based around three major concepts. They are device dependent variables, channel 
dependent variables, and request dependent variables. The device dependent variables include the device address, 
device state flags, pointers to channel and request variables, pointers to pre- and post-handlers and storage for 
hardware I/O status. The channels are software logical channels defined by the SYSGEN process. Only one dato 
transmission can occur on a channel at any given time (two in the case of device pooling hardware). Channel vari­
ables include the state of the channel (busy, held, etc.) and queue head and tai I pointers for the request queues. 
Request variables contain the information supplied by the lacs user (fi Ie management, overlay manager, uti lity 
routines, etc.), indicating which I/o operation is to be performed and how completion is to be signaled. Request 
variables include buffer address, byte count, function code, maximum error retry count, end-action information, 
device pointer, priority, and others. There are also entries for forwards and backwards pointers in the channel 
queues. 

All device-dependent code is in device pre- and post-handlers that are called before the I/o is started and after 
the I/O interrupt is received, respectively. They are dependent not only on the gross device type (i. e., card reader 
or magnetic tape unit), but also on the exact model of device and controller. 

Figue 3 shows the overall organization of the lacs. 

Interfaces 

There are only two program interfaces into the laCS- The first isgUEUE which is called with the request param­
eters in order to add a request to the proper queue. It identifies the proper channel and adds the entry in priority 

,position. The second is SE~DEV (Service Device) which, while called with a device pointer, identifies the asso­
ciated channel and checks it for a possible state change. 

The only Interface out of the lacs is 10SCU. When any I/o is finally terminated, 10SCU calls REQCOM which 
signals the requestor based on the clean-up code and/or end-action control word supplied with the original request. 

The lacs interfaces are described in further detail below, together with an I/o control sequence example for a 
simple case. 

Figures 4 through 16 show the detai Jed control flow for the individual lacs routines and subroutines. 

Interfaces into the lacs 

QUEUE. This subroutine is called by the monitQt to enter an I/O request into the lacs. It must be supplied with 
many parameters such as: 

• Byte address of the buffer 

• Byte count 

• Logical function code (read, write, rewind, etc.) 

• Priority 

• Device ID 

• End-action control data 

• Maximum number of recovery attempts 

10 I/o Control System Overview 



HCRERO 
PHRHHETERS IN 
fPT AN) DCB 

CONTRl1 TASk 
OffERED ClEANJP 

EVERY 30 !:EC 

5 T1 
START IID 
PICk LP 

PHRRMETERS fROM 
100 RN) CRLL 

PRE tffiOLER 

PKE-HffiOLEi( 
~ lNlTIHl 

SETUP RND GET 
PTR TO RIGHT 

1/0 TfI3lE 

C~LtST 
ButLD COW'S 

BHSED ON 1/0 
THBLE 

SIO 
SETUP TI MEDUT 

SET fLRGS 
CHECk HHNURL 

M:WRITE 
PRRRMETERS IN 
fPT AN) DCB 

I 
fILE ~O DEVICE 

HRNHCiEHENT 
CONVERT TO RERL 

PRRRMETERS 

CHlL ClJEUE 
PUT PffiAHETERS 

IN REGISTERS 
fOR OlEUE 

QUEUE 
BUILD roo ENTRY 

AND PUT IT ON 
RIGHT CIT 

V 
SERVICE DEVICE 

TRY TO START 
1/0 OR OD 

CLERNLP 

BUHP RETRY • 
SETUP fOR kEYIN 

RETRY, OR 
fOlLOW ON 
LOG ERRORS 

" 

M:CHECI< 
PRRRMETERS IN 
fPT FIN) DCB 

INTSIH 
1/0 TIMEOUT 

HIO DEVICE AN) 
COlLECT STRTUS 

1/0 INTERRUPT 
AIO DEVICE RN) 
COlLECT STRTUS 

CLEAN 
CLfRNLP 

INTERfACE TO 
POST tflNDlER 
ERROR LOG 
RETRY COUNT 

POST-tflNDlER 
EXAH HE STRTUS 

AND RETURN 
CODES RND flfGS 

Figure 3. Overall 10CS Organization 

fPT 
fUNCTION 

PRRRMETER TRfl.E 
CRlL ffiRRHETERS 

AND Dce PTR 

DCB 
OflTR CONTROl 

BLOCk 
OfITR SET 

PRRRMETERS 

RfT 
RHO fILE THBlE 

OPlBl 
lrx;lCfl. LABEL 

TRBLE 

100 
1/0 OLEUE 

fNNTRY 
REAL CRlL 

PRRHHETERS 

CIT 
CHRNNEL INfO 

TRBLE 
OUEUE PTRS RN) 

CHANNEL FLHGS 

OCT 
DEVICE CONTRl1 

TRBLES 
DEVICE 

PHRHHETERS 

REOUEST 
COMPLETE 

POST STATUS IN 
DCB 0" END ACTION 

I/o Control System Overview 11 



"-" 
,; 

Interfaces out of the 10CS 

10SCU. This routine, when final completion of an I/O request occurs, can signal that completion in a number 
of ways: 

c A data control block (DCB) may be posted with the actual record size (ARS) and type-of-completion code. 

A post word may be posted with the ARS and type-of-completion code. 

o An external interrupt level may be triggered. 

o A user subroutine may be entered with the ARS and type-of-completion code in registers. 

The last two options are only avai lable for privi leged, foreground, real-time tasks. 

10CS Control Sequence/Example 

The sequence followed when a single I/O request is made to 10CS for an idle channel is as follows: 

1. The monitor makes a call on QUEUE with the request parameters. QUEUE places the request on the proper 
channel queue in the proper priority order. 

2. The monitor calls SERDEV to start the channel. 

3. SERDEV finds the channel idle and a startable entry in the queue. It calls STARTIO for that queue entry. 

4. STARTIO calls a devi ce dependent pre-handler which bui Ids the proper channel program based on the queue 
entries. The I/O is started on the device and STARTIO returns through SERDEV to the monitor. 

-=-=-. 

5. While the I/O is proceeding, the task for which the I/O is being done may get blocked and be waiting 
for the I/O to complete. The monitor then makes successive calls on SERDEV while it is waiting for the 
task. If SERDEV finds the device busy, it checks the elapsed time for the I/O in progress to see if it is 
taking too long. 

6. 

7. 

8. 

9. 

(SERDEV is also called every 30 seconds for all devices. This makes sure the system doesn't hang up. ) 

When the I/O operation completes, or errors, an I/O interrupt is generated. IOINT is entered. 

10lNT collects all the status about the I/O operation and marks the device as needing clean-up. 10INT 
then either calls SERDEV itself or stacks the device ID and triggers another interrupt level which will call 
SERDEV for all the device IDs in the stack. 

SERDEV finds the channel blocked by a device requiring clean-up and thus calls IOSCU. 

IOSCU calls a device-dependent post-handler which analyzes the status saved by IOINT. The post-handler 
returns to IOSCU with parameters indicating what action to take. The possibilities are: 

Output an operator message. 

Request an operator key-in. 

Follow-on to a new function. 

Decrement the retry count. 

Post some type of completion code. 

10. IOSCU then re-enters SERDEV in order to get the channel started again (step 3). 

11. This sequence goes on, round and round, unti I some type of I/O completion is posted. 

12 I/O Control System Overview 



Ol£UE 
~UEUE 

ENTER AN I/Ct 
REQUEST 

J 

INIHfLHE R1 
m MAX OCT 
INDEX AND 

BACKGRClUNO 
PRIORITY 

f-S_E_RD_E_V __ ~ 

ATTEMPT Tll I' 

DR I VE A REOUEST 
m CCtMPLETICtN 

eND FREE A 0 

I 
! 

I 1 NCREMENT I 

l
_BACKGRClUNO roo 1.1 mUNT 

I 
I 

~---' 
I 
I 

!f0040 W 
I c'~TE:y:A}!:. ~~L I 
I

LI'II\ I I "un I "LL I 
:> CHAIN 

L-----r-~ 

Figure 4. 10CS: QUEUE Routine 

~CDt 9 ---,\V~_----, 

[rSABLE 

I 

~ 
// IS ~. 

<CHANNEL 0 1ES 
EMPTY 

~ .,// 07 
YN13 

I 
~0053 ~ 
~ "~n~ 
~ HrGHER YES 

PRIClRHY 

~ 

r GET NEXT 0 
ENTRY 

I/O Control System Overview 13 



PUT REOUEST ~ 
END l1f 0 

14 I/o Control System Overview 

PUT REOUEST IN 
o HERE 

ENABLE 

~Cfl..LSIJ 

PUT REOUEST OCT 
INDEX AND 

PRIORITY IN Rl 

SERDEV 
ATTEMPT TI) 

START A REOUEST 
F~ TH[S DEVICE 

Figure 4. IOCS: QUEUE Routine (cont.) 



j 

~GET PRr~RI7Y I 
fR~N p.19 BYTE [1 

OCT [t{)fX 1 S 
SnE ]-3 

~ ~rroc~:S!BLE 

1 ~rLE~~~~ Net. 11 PENO[NG !S 
CTS-Bt /~I 

I I YES , ' II ~~r--I -
I 

teTTEST, I I it -4 
CHECK II \! /~ 

PRlrnlITY OF I I IS 
REQUEST CHANNEL 0 

EHF7Y 

rHFrl< <- C~~NNjk '> 
~7/ 

'1 

5 STLF 
LL FLAG SET YES 

~. 

~/@ 
ret 
I 

Net 

Figure 5. 10CS: SERDEV Routine 

r::::-.. 

~~"'-
/" ARE ""­

~EOU [RED S-( 
FREE 

I/O Control System Overview 15 



@------,-, 
GET 0 PTR [Jf 

INTER-[JF 
REOUEST 

16 I/o Control System Overview 

! 
! 

I 

J 

/~ 
~ ~ H!lJJFY CHAN 

WAS ~ AVAILABJL lTY I 
SCHEDrLD , ~S FLACrS I 

~
LAG:£T IN/~--~>~I ! 

IT ./ : 
D ~----~--~~I 

L;@ 
06 Nr""-'-'-"'-"""--oZ--__ -, 

[ 

~ 
,(XII L'lN' L] NK 

( 
Ri1S 

\ 
"-

\ 
'\ 

IN,\ 

/ 
/ 

:::;t:T FT~ T~ 
rl:lL.2 ING f\'EGLJEST 

SE T S=HE~H':'t..J 
F:..A:: 

Figure 5. IOCS: SERDEV Routine (cont. ) 



@f---~ 
CLOC~lCl" 

CL~CKI~ 
CHECK F~R 

HME~U T 9 nCe 

I 

/~ 
~HMED 
~UT ALLClWEO 

SERDEV I YES 

t 
~~. 

<~~1 
~ ."~ SERDEV 

~ 
CLOCKCUT 

SET TIME-~UT 
FLAG 

/ DEVICE NlJ 
MARKED ----~ 

MANUAL 

1YPEHI15G C['jNSTRUCT NEW l 
TrME~T VALUE I 

AND Tm OEV rCE 
/ TYPEMMSG 

~TYPE MANUAL MSG 

L----r-J 
~ I 

./ IS ~ , __ I 
,(1lEV]Cf STILL ,>Y~ 
"" MANUAL ___ 

~fn 
~-

I RESET DEY, CE l 
MANUAL FLAG 

L_~ 
SERDEV 

~ / 

SERDEV 

A!D1Tl(), 
/,.~ HtjOt\ I 10 ""\ 

STOP AN ACT rVE 
Ill'} 

SET [/l'} AB~T I 
FLAC· 

I 
CLOCKx171 

[

NTS[M --1 

S.[.MULA. TEIIL1f INTERRlJPT~ 

u __ .~ 

"-./ 

SERDEV 

Figure 6. 10CS: CLOCKIO Routine 

INT5tH 

/' INTS [M 
~"- SrMUL.ATE 

I 

1 
RESET OEV1CE 

BUSY 
SET CLEAN-UP 

PENO[f'.(;. 

Iloe , 

) 

~T~~fE 'DATA" NlJ 

~NSFER/~ 

~t I 

RESET PR[jp~~P' I CHANNEL BUSY 
FLAGS 

I i 

~r--'! I I 
~~<--.~ 

INT5EX17 ~ 
(lIE TURN ClN LINK""') 

~ j 

I/o Control System Overview 17 



R[POFf 
RIPOfF 

REMOVES ANY [j 
ENTRY 

SAVE LINK 
DISABLE 

HIO DEVICE 

RESET CHANNEL 
BUSY 

R[POffOS 
RESET CHANNEL 

HrJlO IF n WAS 
C'C""T 
..JI:.I 

CLEAR DCT5 
CLEAR BITS 3't. 

49 nR 5 Of DCr3 

18 I/o Control System Overview 

GET FIRST/NEXT 
ENTRY FROM FREE 

100 OfHN 

ENABLE 

Figure 7. 10CS: RIPOFF Subroutine 

SET UP 
REGISTERS FGR 

REQUEST 
COMPLETE 

REQCClM 
REQUEST 

COMPLETE 

EXII 

~-------) 



@ I 
STARTle! t 
,/' START1~ "" '\ 

"----~--) 
i 

'V 
::NA8LE 
SET UP 

REGISTER::' 

15fT IJP TrME-!l..;T 
VA~:~E 

~T == PTP 
ZfRt! RE7R'!' 

cooe: 

WS7RT W 
r- :::r::AEL.E 

. DEvICE 
i I PRE -HANDLER 
I i SETS UP 
I I C::l1MMANO 
I I CHAIN 

~T T1ME-~UT 
INCREMENT 

LlrV' ..,." ::-r'T .... rn 
"'~ I I,.J L. I rH~'" 

FREE S-=: 

@FOOCES: V 

i F~fC~ AC:ESS 
I KEY T0 S< P 

t 

I 

1 

10SJRTl '¥ 
I SET UP DEVICE 
I TABLES 
I GET DEVICE 
I ADDRESS 

PUT ACTII'El 

I 
DEVICE ADDRESS I 

IN DCTl I 
t : 
! I 

L_ I 

YES 

15 "-YES 
REOUEST S 

-'Z~yEGRClUNO 
A6 

NC} 

Figure 8. 10CS: STARTIO Routine 

SET T1ME-~UT 
VALUE 

SET DE\! 1 Cf BUS '1' 

I 

~, 
,EU~A:i FLAG'""" YES 

SET 

IS S-C~ 

N~~~/ 

I 

SET HCLD FLAGS 
IN U13 

SAVE rnLO a FTR 
., ld ('fTC Ie 
.II' L liJ/ U 

L-__ _ 

STORE ALL FLFGS 
IN CI13:!. D[T5 9 

AND UCT6 
SET Ioo BUSY 

I/O Control System Overview 19 



20 I/o Control System Overview 

SAVE S[O S1fHUS 
IN OCTt3 

H[O DEVICE 

CHFINGE FlCCESS 
KEY TO USE 
OTHER S-C 

STORE [003 
FLFlGS 

BUMP REgEN1 eTR 
ENFIBLE 

OUTPUT 
MESSAGE 

SERDEV 

SET Slet FFlIL 
FLFlG 

SET CLERN-UP 
RND DRTFI 

TRRNSFER FLFlGS 

Figure 8. 10CS: STARTIO Routine (cont. ) 



l~lNT 

HUNT 
I/C [NTERRUPT 

RECEIVER 

PUSH Fl.L 
REGISTERS INTet 

I 
TSTRCK 

SHI1CH K:RIS 

I 

",."""H 
AIC 

""H"H" SRVE AIO CC 

fl1Jl(] >@ 
~ -~ 

~ Ie 

~ 111100 

~DEVICE~ES ~~-lOEX lOEX END u 

DCT5 BIT7 ACTl~ 
SET 

Yo ~ ~ 

SAVE AID SIATUS 
AND PICK UP 
END-ACTIUN 

COLLECT OEV ICE 
STAiUS 

RESET DEVICE 
MRNUAL AND BUSY 

RESET PRCWER 
S-C BUSY FLAGS 

STORE OCT 
SHITCHES ~ITH 
NEW SETTINGS 

Figure 9. 10CS: 10lNT Routine 

ENDRC 

Oct END ACTlCtN 
BASED CtN DCT12 

I/o Control System Overview 21 



1 

PULL A WctRD 
fROM CTIl'lSTK 

SERDEV 
SERV [CE DEV [CE 

22 I/o Control System Overview 

'1ES 

l 

PUSH ~ROEV 
CrJN1RIl... HORD 
I NTll en OS1K 

preK IF It:: lOGL 
z OS 

TRIGGER 
CrJN1RIl.. TASK 

LEVEL 

Figure 9. 10CS: 10lNT Routine (cont.) 

TR 1 GGER OEFERED 
1/0 LEVEL 

"'--------_/ 



/' lffiL T " 
ALTERI\fITE liD 

LEVEL 

PUSH Fl.L 
REGISTERS INTet 

TSTRCK 
SHITCH K:RTS 

PULL A WORD 
&:"~I"II;I rT11'K:71.' 
, " ....... I '-' I J. U.,J 11,\ 

I SERDEV 

SERV [CE DEV [CE 

RESTCtRE 
REGISTERS AND 

STACK 

Figure 10. 10CS: 10AlT Routine 

I/O Control System Overview 23 



@-----r 
CLEANUP W 
// CLEAN UP "-\, 
i 00' PCJST - \ 
~ PRr':lCE5S 1 NCo / 

I 
t 

, SO-UP 
I REGISTERS 

! ENABLE I 
'-___ --;-__ -J 

I BUMP I I 
I Rf ~fNTRANCE I 
I CCUNT i 

l-l-: 

I Re_EASE ~j(1LO 
F~A~S 

! 

I L-.-_. __ ~ __ 

II o[SABL.E 
I i C[1MPUTE RBC IF 
i : ---~ DATA CHA[N;NG I 

iJlJ DEVfCE 
P05i-

1 PR~CESS J NG 
! I 

II Ii 

Figure 11. 10CS: CLEANUP Routine 

24 I/o Control System Overview 

[ RESET :~'J ~LSY 
! GET PE 1:\ y AN: 
f~ _:JW- Jr~ :3 ~ TS 

, 
I L-____ -.--__ 

II !, :::PEAE ANJ I 

I' =:lL~E:::T 
I! SF17!_:: f3R 
i : ~:1 E:RR:'f. _X 

I : 

y 
I JECR'E:ME'..;i RETFY 

':::JLNT 



SET Tye T(1 4 

REQCOM 

~ 
~ 

~OUNT 2ER(1",>ES 

1 

SAVE 
RETRY/FOLLOW 
fUNCTllJN AS 

NEXT fUNCTIClN 

10:; 

REQCOM 

<: Jt~ER1fn ~o 
~ES/I 

YES 

SET fNTER-OF 
fLAG 

CLEAR ANY 
MESSAGE PTR 

Figure 11. IOCS: CLEANUP Routine (cont.) 

DUTPUT 
MESSAGE 

ENABLE 

RESTC}RE Rl 

SERDEV 

I/O Control System Overview 25 



SET TYC T(1 
ERRDR 

REQIERH 
RE tHERM 
REOUEST 

TERM INATr(1N 

CLERR MSG- FTR 

t::I:T r~ITt:"c 1'10 
-'I... I 11" I 1...1\ UI 

FLRG- IN DC15 

SRVE CEVICE 
SH17CHES 

SET RETURN LIN'" 
Tet JOCUEXll 

26 I/o Control System Overview 

LCJG RNY [(1 
ERRORS HERE 

DECHAIN [00 
ENTRY AND ROD 

1 T 7et FREE 
CHRIN 

DECREI'ENT 
BRCKGRCJUND 10 

CmJNT 

CLERR [OQ3 

PUSH 99Rt3 
C)IIT ~~ rLI n-t ...... 
[- U I [U)L.. l'~ "J..:::1 

PICK LP END 
ACTICJN + ECB 

Figure 12. 10CS: REQCOM Routine 

ENRBLE 

ENDAC 

Det END RCTlCJN 
FrJR [0 BASED CJN 

10013 



~-cso-~ 

MOVE RECrlRD TO 
CC BUfFER 
SET [FLAG 

RESET [FLAG 

CC!MPUTE fiRS 
fRDM IBC IN 
P~1 ~D fiND 

RB[ FRCtM III 

POST STATUS IN I fFT W~D 

I 

COMPUTE fiRS 
fRDM IBC IN OCB 
AND ROC FROM [0 

P~T ARS IN OCB 
RESET DCB BUSY 
PUT Tye [N DCB 

• BAL9R14' TO 
END-RCTICJN 

(ENDAC) 

PULL 9,R13 

CLEANUP 

Figure 12. IOCS: REQCOM Routine (cont.) 

I/O Control System Overview 27 



28 I/O Control System Overview 

ENDAC 
END ACTION 

END-ACTION 
TR T GGER LEVEL 1 INDICATED 1N 

SET BIT 0 IN 
WORD 6 OF TCB 

SAVE Fl.L REGS 
EXECUTE BAL 

TYPE END ACTlC1N 
RESTrJRE ftLL 

REGS 

SHiRE AIrt 
-STATUS IN 
S[GNAL ADDR 

Figure 13. IOCS: ENDAC Subroutine 



IOCRRrfi 
I/O ERR STATUS 

BUMP a::V[CE 
ERR DR COUNT 

GET BLFFER PTR 
FRc)M lOOfRR 

GET A SPflCE 
BL~CI< FOR 

BUffER 

BUMP LOST LOG 
CmJNT 

RETURN ON L[NI< 

PUT BLFFER PTR 
IN ICJt:ERR 9 

GflTHER 
EVANESCENT 

STATUS 

r:FTIIRIIJ "N I r I\Ik' ""\ \,,_._ .... _ .. ~~'fl') 

Figure 14. IOCS: IOERROR Subroutine 

I/o Control System Overview 29 



30 I/o Control System Overview 

1I1.OG 
I/O ERR LOGGING 

START A NEW 
1/0 ERROR 

LctG 

P[CK UP BUFFER F[LL IN FIXED 
PTR FRrtM 1000RR 110 Lex;. STRTUS 
AND ZERO I OOERR I----~ 

RETURN ON L[~ 

Figure 15. 10CS: 10LOG Subroutine 



( PUSHLr& ) TO LOG STACK ADD A LOG BUFFER 

1 
f[LL IN TIME 

STAMP 

PUSH LCtG BUFfER 
PTR [NTO UlG 

STACK 

PULL AN EN7RY 
fROM LCtG S7ACK LSE 

BUMP LOST LCtG 
Cl"JUNT 

RELEA:£ LOG 
BUffER SPACE 

BUMP GOOD LCtG 
C~NTER 

RETURN ON L [NK 

Figure 16. 10CS: PUSH LOG Subroutine 

I/o Control System Overview 31 



Register Conventions 

QUEUE 

Routine returns +1 if device IOEX, +2 otherwise 

At entry: 

R2 ECB ID 

R4 I/o Function code 

R5 Link 

R6 Number of retri es 

R7 DCT index 

R8 CLEANUP Information Word 1 

R9 CLEANUP Information Word 2 

RIO I/o buffer address (byte address) 

R 11 I/O length (in bytes) 

R 12 RAD seek address or number of records to pass (M T) 

R 13 Priority 

Registers RO - R7 preserved; R8 - R15 clobbered 

CALLSD 

At entry: 

Rl FPI code 

R2 DCB address 

R3 FPI address 

R5 Link 

R 1 - R7 preserved; RO, R8 - R 15 clobbered 

SERDEV 

At entry: 

R 1 Bits 0-7 = priority 
Bits 8-31 = DCT index 

R2 Link 

All clobbered 

RIPOFF 

At entry: 

R2 Task priority 

R3 IOQ pointer for Q entry to be removed 

R5 Link 

All registers are clobbered. 

32 I/O Control System Overview 



5TARTI0 

At entry: There is a startable request in R3. The device activity counter is set in R14 and interrupts are enabled. 
The I/O handler preprocessor is called unless user command list is specified. Handler return is to 'IOSST'. 

Registers, after pre-handler return: 

RO Doubleword address of command list 

R 1 Priority, CIT check mask, DCT index (8, 4, 20) 

R2 Flags, SERDEVexit, CIT index (3, 10, 19) 

R3 Request IOQ index 

R4 Handler flags, subchannel allocation code (8, 24) 

RlO Device operation table ('DOT') for 'JOSST' 

R14 Device activity count for re-entrancy check 

R 15 Link for service de vi ce 

CLEANUP/I05CU 

Normal register usage: 

R1 Priority, DCT index (8, 24) 

R2 Fiags, SERDEVexit, CiT index (3, iO, i9) 

R3 Scratch, loa index (8, 24) 

R11 Remaining byte count (RBC) from post-handler 

R 12 FI ags returned from post-hand ler: 

Bit 16 Retry sequence 

Bit 17 Follow-on sequence 

Bit 18 In ter-operati ve request 

Bit 19 Key-in pending (normal) 

Bit 20 Key-in pending (special) 

Bit 21 Contrinue channel hold 

Bit 22 Force message pri nt 

Byte 3 Type of completion 

R 13 Message to be typed (0 if none) 

R 14 Device activity count 

R 15 Not used - reserved for future systems 

REQCOM 

At entry (Rl, R3, R4 set as for CLEANUP): 

Rl DCT and priority 

R3 IOQ pointer 

R4 CIT pointer 

R5 Link 

Rll RBC 

R12 TYC 

R 13 - R 15, RO - R4 preserved; R5 - R12 clobbered. 

I/O Control System Overview 33 



I/O Error logging 

Optionally, an I/O error-logging capabi lity is provided. Whenever an I/O error is indicated by the device 
post-handler (by requesting a retry), 10SCU gets space for an error-log record, saves all evanescent I/O status, 
and puts the space pointer in IOQERR. Subsequent retries use the same space again. 

In REQCOM, when the I/O completion is done, 10QERR is checked. If a log was started, the error-log record is 
completed and the pointer is stacked for later fi ling. Also, if an error completion code is indicated and no error­
log record had been started, i. e., no retries were done, one is started and treated as above. 

This assures that for any I/O request, no more than one error log wi II be generated. The error log wi II always in­
dicate the status of the last error in a retry sequence. 

The error log records relating to I/o errors are as follows: 

• SIO failure 

• Device timeout 

• Unexpected interrupt 

• Device error 

• Secondary record for device sense data 

The formats for these error logging records are given in Appendix C IIError Logging II. 

I/O Statistics 

Optionally, with error logging, I/o statistics are maintained. These may be displayed using the ESUM key-in. 

The total number of SIOs issued for each device since system boot is kept in DCT#IO (word). The total number of 
I/o errors, counted when I/o error-log status is collected, for each device since system boot is kept in DCT#ERR 
(word). • 

The number of Log records successfully fi led since system boot is kept in GOODLOGS (word). The number of Log 
records lost, because of space or time overruns, since system boot is kept in LOSTLOGS. 

Side Buffering 

Both input and output side-buffering are optiona Ily avai lable for certain unit record devices. These allow effective 
double-buffered I/o for processors which do not themselves do double buffering. 

DCTSDBUF is a word entry for all devices which points to a post word followed by a buffer space for each side buf­
fered devi ceo 

Output Side Buffering 

Output side buffering is done for all line printer, card punch and teletype output except for PRINT and TYPE CALs. 
The WRITE CAL waits for previous I/O to complete and the side buffer to be free. It then copies the users data into 
the side buffer. A request is made to output the side buffer. The caller is posted with the completion code of the 
previous output and all appropriate posting and end-action done. 

I nput Side Buffering 

Input side Buffering is done only for the card reader. If the side buffer is free and a Iwaitl READ CAL is issued, a 
side buffer read is started. Then this or any other READ CAL wi II wait for the side buffer read to complete. The 
input data will be copied into the userls buffer and posting/end-action will be done. If the record read is not a 
I II or 1:1 card and the read was lautomatic l, not binary, another side buffer read will be started before returning 
to the user. 

34 I/o Error Logging/I/O Statistics/Side Buffering 



IOEX 

Two forms of 10EX are supported by the 10CS. 

Queued IOEX 

Queued 10EX allows 10EX requests to be added to the queues just as any other request. They will be performed 
like any other request, but will not invoke either the pre- or post-device handier. Both queued iOEX requests and 
normal requests may be made on a device at the same time. 

Dedicated 10 EX 

Dedicated 10EX requires that all I/o management for the channel must be done by the user himself. The device 
must be dedicated ei ther at SYSGEN or by a STOPIO call to 10EX, and no normal (queued) requests wi II be honored 
while it is dedicated. 

Disk Pack Track-by-Track logic 

All disk-pack requests which cause an I/o transfer to cross one or more track boundaries will be broken into single­
track operations. This is done within the disk pack pre- and post-device handier, and does not generate muitipie 
10Q entries. 

There are three advantages to this method: 

1. Long disk transfers by a lower priority task do not block a higher priority request more than one track time. 

2. Flawed-track recovery is feasable, allowing alternate tracks to be assigned to damaged tracks. 

3. Data transfers which cross cylinder boundaries are not allowed by the hardware. This problem is avoided 
by making only single-track transfers. 

There is one disadvantage: 

Because of processing time, the next-track operation cannot be begun in time not to lose a revolution between 
tracks. 

Therefore, there is no time advantage in requesting more than one track of data per transfer. 

Disk Pack Seek Separation 

For all disk-pack operations, a separate seek order is issued without adata transfer. This takes advantage of two hard­
ware features available on all disk packs. First, such seek operations do not tie up the channel and all disk packs 
may be seeking and therefore arm-moving at the same time. Second, the disk pack interrupts only when its arm 
motion is complete and when it is rotationally positioned in the sector previous to the indicated seek address. 

This allows both arm-motion time as well as rotational-latency time to be overlapped with data transfers when disk­
pack I/O traffic gets high. 

Disk Pack Arm-Position Queue Optimization 

Optionally, an arm-positioning optimizer is used to minimize arm positioning time on all disk packs. No rotational­
position optimization is intended or performed except that achieved on a multipack controller by virtue of multiseek 
operations which interrupt at a minimum rotational latency time. 

10EX/Disk Pack Track-by-Track Logi c/Disk Pack Seek Separation/Disk Pack Arm-Position Queue Optimization 35 



The optimizing algorithm is intended to minimize disk arm-movement time by ordering disk-I/O-queue requests by 
arm position. No account is taken of request priority or order of time of request. The only guarantee is that two or 
more requests with the same seek address wi II be run in FIFO order. 

The algorithm is as follows: At the end of any disk I/O operation, the current seek address is noted. The disk I/O 
queue is searched, in priority order, for the request which has the closest seek address in a forward direction. 
Requests which have seek addresses before the current position have their seek address biased so as to be forward, 
beyond any normal forward position. A queue entry wi th the same seek address is considered to be the farthest-away 
seek address. This guarantees that all requests will be eventually reached. 

The result of this algorithm is to guarantee service to all requests. The arm motion tends to sweep from low to high 
arm position and then snap back to a low position. 

This snap-back or cyclic sweeping was chosen over an 'elevator ' algorithm; i. e., two-way sweep, to minimize 
wait-time dispersion. 

The code required for implementation of this a Igorithm is wholly contained in one piece at the logical end of the 
disk post-handler. It is 38 words long and is conditional on the assembly switch #OISQING. 

Disk Angular-Position Queue Optimization 

Optionally, an angular-position queue optimizer is used to select the II best" disk-I/O-queue entry to run. This is 
done to minimize rotational latency time without precluding priority queuing considerations. 

At the end of any disk I/O option, the current rotational position is computed from the I/O start seek address and 
the byte count transferred. A tolerance is allowed for I/O-interrupt processing time, on the order of 1 ms. 

The disk I/O queue is searched, in priority order, to determine if any lower priority request can be run entirely 
(including interrupt processing time) ahead of the normally selected high-priority request. As each one is found, 
it becomes the selected high-priority request. When the end of the queue is reached or when a request is elected 
which starts in the next available rotational position, I/O system flags are set to cause that request to be the next 
one started. 

The code required for implementation of this algorithm is wholly contained in one piece at the logical end of the 
disk post-handler. It is 73 words long and is conditional on the assembly switch #RAOQING. 

User I/O Serv ices 

OPEN This function opens a DCB that results in opening a disk file when the DCB is assigned to a disk file. If 
the Error and/or Abnormal address is given in the function call, the addresses are set in the DCB. 

Opening a disk file involves constructing an RFT (RAD File Table) entry for the file. If the file is a permanent file, 
the area fi Ie directory is searched to locate the parameters that describe the file. These parameters are formatted 
and entered into the RFT. If the II fi le" is an entire area, the parameters used to construct the RFT entry are taken 
from the Master Dictionary. If the file is a background temporary file, the RFT entry must already have been con­
structed by the' JCP. If the file is on a disk pack and a DED DPndd,R key-in is in effect, an abnormal code (X'2F') 
is posted in the DCB. 

Blocking buffers or user-provided buffers are used for the directory search. Background requests use background buf­
fers; foreground requests use foreground buffers. 

CLOSE This function closes a DCB that may result in the closing of a disk file. Closing a permanent disk file 
involves updating the file directory if any of the directory parameters have been changed by accessing the Hie. 
Among such parameters that may change are file size (adding records to the file), record size (by Device File Mode 
call), etc. 

36 Disk Angular-Position Queue Optimization/User I/O Services 



Disk fi les are closed only when (1) the DCB being closed is the last open DCB assigned to the fi Ie and (2) no 
operational labels are assigned to the file. Blocking buffers or user-provided buffers are used for the directory up­
date as in the case of OPEN. If the file being closed is on a disk pack, a DED DPndd,R key-in is in effect, and this 
is the last open file on device ndd, the message! !DPndd IDLE will be output. 

READ/WRITE A READ or WRITE function call will cause the addressed DCB to be opened if it is closed. READ/ 
WRITE checks for legitimacy of the request by determining whether or not the following conditions are present: 

1 • For type i requests, the DCB is not busy wi th a nother type i request. 

2. The assigned device or op label exists. 

3. The user buffer i ies in a iegitimate region of core memory. 

4. The type of operation (input or output) is legitimate on the device (e.g., output to the card reader is not 
allowed .) 

For device I/O, READ/WRITE builds a partial QUEUE calling sequence and calls a device routine that performs 
device-dependent testing such as: 

1. Mode flag in DCB (BIN,AUTO) for devices that recognize it. 

2. Testing byte count against physical record size for fixed-record-Iength devices. 

3. Testing for PACK bit in DCB for 7T magnetic tape. 

4. Testing for VFC for line printer or keyboard/printer. 

The device routines set up the proper function code in the QUEUE calling sequence and transfer control to a routine 
called GETNRT. GETNRT completes the QUEUE calling sequence by obtaining the number of retries, setting up the 
user's end-action and building an ECB. GETNRT then calls QUEUE. When the request has been queued, control is 
transferred to the TESTWAIT routine which checks the wait indicator for the request. No-wait requests transfer to 
CALEXIT. Otherwise, requests transfer control to the CHECK logic at FMCK1 which waits for the I/O to complete. 

For disk file I/o, RE,~D/WRITE calls the routine labeled RWFILE. RWFILE tests for write protection violation on 
write requests, end-of-file on sequential read requests, and end-of-tape on all requests. The different types of re­
qu;sts are handled as follows. 

Direct Access. The disk seek address is computed from the granule number provided in the FPT, and a QUEUE 
calling sequence is constructed that will queue up the request. Control then transfers to the CHECK logic. 

Device Access. When the DCB associated with the READ/WRITE call is assigned directly to a disk, the disk device 
routine is entered. The disk device routine computes the disk seek address from the sector number provided in the 
FPT (Key parameter), obtains the proper function code and completes the queue calling sequence by branching 
to GETNRT. 

Sequential Access (Unblocked). The disk seek address is computed from the file position parameters and a QUEUE 
call is made. Control then transfers to the CHECK logic. 

Sequential Access (Blocked). The next record is moved from/to the blocking buffer and blocks are read/written as 
required to allow the record transfer. For example, the first read request resu Its in the first block being read and 
the first record in the block being deblocked into the user buffer. Successive read requests will not require actual 
input from the disk until all records in the blocking buffer have been read. The blocks are always 256 words long 
and contain an integral number of fixed length records; that is, no record crosses a block boundary. 

Background Blocking Buffers are handled dynamically. If a blocked I/o request is made and all allocated Back­
ground Blocking Buffers are in use by other files, one of the blocking buffers wi II be taken from its associated fi Ie 

User I/O Services 37 



(after writing the block to the fi Ie, if necessary) and used for the current request. This blocking buffer is now 
associated with the fi Ie that most recently used it. When a request is made for I/o on the original fi Ie, the system 
recognizes that no Background Blocking Buffer is associated with the file and it will locate a buffer for this file by 
borrowing one from another fi Ie if necessary. One Background Blocking Buffer is sufficient for any background 
program. 

Foreground Blocking Buffers are not handled dynamically. 

Sequential Access (Compressed Fi les). Compressed fi les are treated in a manner simi lar to blocked files with the 
following exceptions: 

1. The records are compressed/decompressed on the way to/from the blocking buffer. 

2. The buffer does not contain a fixed number of records since the records are no longer of fixed length after 
compression. However, no compressed record crosses a block boundary. 

To compress a record, the following EBCDIC codes are used: 

X'FA' 

X'FB' 

X'FC' 

End-of-Block code 

End-of-Record code 

Blank Flag code 

All occurrences of two or more successive blank codes (X'40') are replaced by a Blank Flag code (X'FC') followed 
by a byte containing the length of the blank string. An End-of-Record code follows each record, and an End-of­
Block code appears after the last record in a block. 

When compressing records into the blocking buffer, a length of the compressed record is first computed and a test 
performed to determine whether the record will fit in the block. If so, it is placed in the buffer. If not, an End­
of-Block code is written in the buffer and the buffer is written to the file. 

At the conclusion of the file access, the status is posted in the user DCB or FPT and control is transferred to 
the CHECK logic. 

PRINT This function builds the QUEUE calling sequence to perform the output on LL. After calling QUEUE, the 
routine either waits for completion, if wait was requested in the system call, or returns control to the user. 

TYPE This function builds the QUEUE calling sequence by using code contained in the PRINT function. As 
in PRINT, a wait or return is performed as requested by the user. 

DFM This function sets the MOD and PACK indicator in the addressed DCB to values given in the system call. 
If the DCB is assigned to a disk file, the record size (RFT5), the organization (RFT7), and/or the granule size (RFT4) 
are set if requested by the user. The corresponding parameters on the file directory are updated when the file is 
closed. 

DVF This function sets the DVF bit in the addressed DCB to the value (0 or 1) specified by the user. 

DEVICE (Set Device/File/Oplb Index.) This function assigns a DCB to the specified device or file. The assign-
ment is accomplished by setting one or more of the following parameters in the addressed DCB: ASN, DEVF, TYPE, 
DEY /OPLB/RFILE, or RAD fi Ie name. 

DEVICE (Get Device/File/Oplb Name.) This function returns requested information regarding the assignment 
of a DCB. The information is in EBCDIC form. The request is fulfilled when it is consistent with the actual assign­
ment of the DCB. Otherwise, a word, or words, of zero wi II be substituted for the EBCDIC information. 

CORRES This function determines if the two specified DCBs have corresponding assignments. If the assignments 
are the same, upon return to the user, register 8 will contain a value of 1. Otherwise, register 8 will contain a 
value of O. 

38 User I/o Services 



REWIND This function rewinds magnetic tapes and disk files. No action is taken if the addressed DCB is 
assigned to any other type of device. 

Magnetic tapes are rewound by building a QUEUE calling sequence with the Rewind function code and calling 
QUEUE. 

Disk files are rewound by zeroing the file position (RFTll), current record number (RFTl2), blocking buffer position 
(RFTlO), and blocking buffer control word address (RFTl7) parameters. 

WEOF This function writes an "end-of-file" on paper tape punch, card punch, magnetic tape, and disk files. 
A request addressing a DCB assigned to some other type of device results in no action. 

An "end-of-file" is written on paper tape by calling QUEUE with a request to write an EBCDIC'! EOD' record. 

An !!end-of-file!! is written on a card by calling QUEUE with a request to write an EBCDIC! !EOD! record. 

An "end-of-file" is written on magnetic tape by calling QUEUE with a request to write a tape mark. 

An "end-of-fi Ie" on a disk file is "written II by copying the current record number minus 1 (RFTl2) to the file size 
(RFT6) and setting an indicator so that the file directory will be updated when the file is closed. 

PREC This function positions magnetic tapes and disk files by moving some specified number of records either 
backward or forward. It does not affect other devices. Positioning is performed as follows: 

1. A magnetic tape QUEUE call is constructed that specifies through the function code the direction of the 
motion, and through the "seek-address" parameter the number of records to move. The basic I/O system 
then moves the tape. 

2. The new position within the file of on unblocked disk file is computed as a function of the record size and 
the sector size. File position (RFTll) and current record number (RFTl2) parameters are ~et to indicate 
the new position. 

3. The new position of a blocked disk file is computed as a function of the current record number, record size, 
block size, current blocking buffer position, current file position, and disk sector size. The blocking buf­
fer position (RFTlO), file position (RFTll), and current record number (RFTl2) are set to indicate the new 
position. 

4. The new current record number of a compressed disk file is computed and subroutine PCFIL is called. This 
subroutine positions a compressed disk fiole at the specified rec~rd by counting records from the beginning 
of the file until the desired position is found. PCFIL sets the blocking buffer position (RFTlO), file position 
(RFTll), and current record number (RFTl2) parameters to indicate the new position. 

PFILE This function positions magnetic tape and disk files at the beginning or end of files. It does not affect 
other devices. Positioning is performed as follows: 

1. A magnetic tape QUEUE call is constructed with function code to "space file" either backwards or forwards. 
This results in the tape being positioned past the tape mark in the specified direction. If a skip was not re­
quested, the tape is positioned on the other side (near side) of the tape mark through a QUEUE call for a 
position one record opposite in direction to the space file. 

2. Disk Fi Ie Backward. Fi Ie position (RFTll) is set to zero; the blocking buffer position (RFTl 0) is set to zero; 
the current record number is set to 1; and the blocking buffer control word address (RFTl7) is set to zero. 

3. Unblocked Disk Fi Ie Forward. Current fi Ie position is computed as a function of the fi Ie size, the record 
size, and the disk sector size. The current file position (RFT11) and the current record number (RFTl2) are 
set to indicate the new position. 

4. Blocked Disk Fi Ie Forward. Current fi Ie position (RFTll) and the Blocking Buffer Position (RFTlO) are com­
puted as a function of the file size, record size, block size, and disk sector size. These parameters and 
the current record number (RFTl2) are set to indicate the new position. 

User I/o Services 39 



5. Compressed Disk File Forward. Subroutine PCFIL is called with file size plus one as the record number. 
This subroutine positions the file at the start of the specified record. 

ALLOT This function defines a fi Ie in a permanent disk area. The input parameters are used to form a new file 
directory entt'Y' 

The new entry is added to the current sector of the directory (identification entry with A = 0) at the location speci­
fied by "address" in the identification entry. The BOT of the new entry is set equal to the "next available sector". 
The EaT is computed, using the FSIZE, RSIZE, and FORf\AA T parameters. The identification entry is updated to 
reflect the new entry. The "next available sector" is set = EaT of the new entry + 1, and "address" is incremented 
by 5. 

If there is insufficient space in the current sector of the directory for another entry, "A" in the identification entry 
is set to 1; "address" is set = "next available sector" and that sector address is used for the new sector of the direc­
tory. A new identification entry is built by setting "A" = 0; "address" = 6; and "next available sector" = EaT of 
the new entry + 1. 

If there is insufficient space to allocate to the file, the file directory is searched for deleted entries (file name = 0). 
The smallest deleted entry that frees sufficient space is selected for the new entry. Disk space is lost if the deleted 
entry frees more space than is required by the new entry. (This space can subsequently be made available for al­
location by executing a RADEDIT :SQUEEZE command.) 

The number of sectors to allocate for a file is calculated using the formulas 

C= 

B= ( ( FSIZE/ 256 ) + ) * ~ 
RSIZE r s 

U= ((RSIZE/s)+r) *FSIZE 

where 

= 1 if remainder I 0, and 0 if remainder = O. 

equal disk sector size in words. 

DELETE This function deletes a file in the specified permanent disk area. The input file name is used to search 
the fi Ie directory for the entry to be deleted. When the entry has been located, the first four words of the fi Ie di­
rectory entry are zeroed out. The last word of the entry (BOT and EaT) remains unaltered. The space formerly al­
located by the entry becomes unused unti I either a RADEDIT :SQ UEEZE command is executed, or an ALLOT command 
or call is executed with insufficient space at the end of the specified area. Space is then allocated by using a 
deleted entry. 

TRUNCATE This function uses the specified area and file name to search the file directory for the entry to be 
truncated. The actual size of the file is calculated and the EaT of the file directory entry is updated accordingly. 

The actual file size for blocked and unblocked files is determined by using the FSIZE and RSIZE of an entry; for com­
pressed fi les, an RFT entry (RFTl1) containing the current record number is used. The space formerly allocated be­
tween the EaT of an entry and the BOT of the next entry becomes unused and is not rea I located unti I a RADEDIT 
:SQUEEZE command is executed. 

40 User I/o Services 



4. JOB CONTROL PROCESSOR 

Overview 
The Job Control Processor (JCP) is assembled as a Relocatable Object Module (ROM) and is loaded at SYSGEN time by the 
SYSlOAD phase of SYSGEN. The JCP isabsolutized to execute at the startof background and is loaded into the JCP fi Ie 
on the RAD. The JCP is loaded from RAD for execution by the Background loader upon the initiallC" key-in; and there­
after, is loaded following the termination of execution of each processor or user program in background memory. 

The JCP executes with special privileges since it runs in N\aster Mode with a skeleton key. N\aster Mode rather than 
Slnvp. Moop. ic; ec;c;ential to the JCP since. at aoorooriate times. it executes a Write Direct instruction to triaaer the 
RBM-Co~tr~I·T~s-k:·A skel-eton k~y instea'd of th~ ~ckground key is also essential to the JCP since it sets fl~~s for 
itseif and the Monitor in the resident Monitor portion of memory. Bit zero of system cell K:JCPl is set to 1 to inform 
the Monitor that the JCP is executing. 

The JCP controls the execution of background jobs by reading and interpreting control commands. All cards read 
from the "(" device that contain an exclamation mark in column one (except for an ! EOD command), are defined as 
JCP control commands. The I/O portion of the Monitor wi II not allow any background program except the JCP to 
read a JCP control command. The JCP runs until a command is read that requires the execution of a processor or 
user program, or until a ! FI N command is encountered. 

The JCP presently requires a minimum of about 5K of core to execute, which means that the smallest possible core 
space allocated to the background must be at I east 5K. Approximately one third of the JCP code consists of the 
JCP Loader, which is used to load the Overlay loader at System Generation time. 

The flowchart illustrated in Figure 17 depicts theoveral! flow of the JCP; and Figures 18 through 36 illustrate the 
JCP commands. The labels used in the flowcharts correspond to the labels in the program listing. 

ASSIGN Command Processing 

The !ASSIG N commands are read from the "C II device by the JCP, and are primari Iy used to define or change the I/O de-
vi ces used by a program. The !ASSI GN command can also be used to change parameters in a DCB. Si nce all ! ASSIGN 
commands must be input prior to the RUN or Name command {where Name is the name of a processor or user program fi Ie in 
the SP area} to wh ich they apply, the informati on from each !ASSIG N command is saved in core by the JCP. The JCP bui ids 
an ASSIG N table containing the information from each !ASSIG N command. This table consists of ten words for each 
!ASSIGN, plusonewordspecifyingthenumberoften-wordentries. Thetableremainsin background memory and is 
passed to the Background loader. After the Background Loader initiates the program, itmakestheappropriate changes 
to the program's DCBs from the information in the ASSIGN table. The ASSIGN table can then be destroyed as the 
program executes; therefore, !ASSIGN commands take effect only for a job step and not an entire job. The ASSIGN 
table has the format shown in Table 1. 

Words 

2,3 

4 

5 

6 

7 

8 

9 

10,11 

Table 1. ASSIGN Table 

Contents 

Number of entries in table (each entry of ten words contains data from one !ASSIGN command). 
Thisword is always on an odd boundary; K:ASSIGN contains the address of word l. 

Name of DCB to change in EBCDIC. This pair of words and the next four pairs of words are on 
a doubleword boundary. 

This word contains changes to the items in word 0 of the DCB. 

Mask for items being changed in word O. The Background Loader does an STS instruction (using 
words 4 and 5) to change the items in word 0 of the DCB. 

Changes for word 1 of DCB. 

Mask for items being changed in word 1. 

Changes for word 3 of DCB. 

Mask for items being changed in word 3. 

Fi Ie name in EBCDIC if DCB is assigned to a RAD fi Ie; otherwise, these words equal zero. 

Words 2 through 11 contain one entry in the ASSIGN table and are repeated for each !ASSIGN command. 

Job Control Processor 41 



reset" system proces­
sor" flag in K:JPl. 

Purge all Background 
Temp Files (Xl-X9) 
not saved for 
entire job. 

no 

yes 

Go type "SCHING 
FOR JOB CMO". 

Enter proper 
region to process 
control command. 

Control Command 

11 Busy 11 return 

LIST 
JOB 
FIN 
ASS 
OAL 
ATT 
MES 
PAU 
CC 
LIM 
STO 
RUN 
ROV 
POO 
ALL 
LOA 
PMO 
PFI 
PRE 
SFI 
REW 
UNL 
WEO 

Region 

A03 
BOl 
COl 
001 
EOl 
FOl 
GOl 
HOl 
JOl 
LOl 
MOl 
POl 
P10 
QOl 
ROl 
SOl 
TOl 
UOl 
VOl 
WOl 
XOl 
YOl 
ZOl 

42 ASSIGN Command Processing 

Error on cmd. 

Output alarm and 
control cmd, if 
appropriate. 

Figure 17. JCP General Flow 

cmd. was input. 



OutpUt alarm. 
Wait if in attend 
mode; abort if not. 

Wait a short time 
for command 
inpUt 10 complete. 

Do a DELFPT on 
the read request 
to the old "C II 
device. 

Figure 17. JCP General Flow (cont.) 

ASSIG N Command Processing 43 



Reset all current op 
label assignments to 
permanent assign. , 
except "C" label. 

Release system 
resources in u. 
by prior iob. 

Save name and acct. 
off card for job 
accounting. Set 
priority and job id 
number if specified. 

Clear "SY" key-in 
flag. Clear assign 
table. Set bckg. job 
limit to zero. 

44 ASSIGN Command Processing 

Figure 18. JOB Command Flow 

Set curren t si zes of 
GO, OV fi les to 
permanent sizes. 

Purge all Bckg. Temp 
Fi les by clear-name 
(Xl-X9). 

Initial ize tables 
used for ALLOBT 
command. 

Output break I 
pages. 



Clear bckg. job limit. 
Clear JOBcmd.Read flag. 

Figure 19. FIN Command Flow 

Get data from AS­
SIGN card and save 
in ASSIGN table. 

Step no. entries in 
ASSIGN table and save 
FWA of ASSIGN table. 

Exit from ASSIGN command 

Figure 20. ASSIGN Command Flow 

ASSIGN Command Processing 45 



46 ASSIGN Command Processing 

Format and pri nt 
accounting log 
on LO device. 

8 : Enter here when 
E10 f------t.~: EOF returned from 

Accounti ng Log 

If purge option, 
purge AL file by 
rewinding ALand 
write an EOF. 

Exi t from DA L command 

Figure 21. DAL Command Flow 

Set attend 
mode flag. 

Exit from ATTEND command 

Figure 22. ATTEND Command Flow 

Set flag not to 
Wei ita ftei mes= 
sage is output. 

Output message 
on "OC" devi ceo 

Set idle bit. I 
Trigger Control Task. I 

Figure 23. MESSAGE Command Flow 

Exit if 



Set flag to wait 
after message 
is output. 

Figure 24. PAUSE Command Flow 

Set "C" op label 
to previous 
assignment. 

Clear flag that 
TY key-in was 
active. 

Figure 25. CC Command Flow 

Set limit time 
for BCKG job 
into K: LIMIT. 

Exi t from LIMIT command 

Figure 26. LIMIT Command Flow 

ASSIG N Command Processing 47 



Error if C, OC assigned to 
zero. Error if OC 
assigned to nontypewriter 
device. 

assigned to assigned to 

r--____ -L ____ ...:a~nother op label a device 

Get assignment of op 
label this label is being 
assigned to. 

48 ASSIGN Command Processing 

Do OPEN CAL for 
RAD fi Ie or area and 
save RFT index. 

previous assignment. 

no 

Figure 27. STDLB Command Flow 

Get DCT index of device 
op label isassigned to. 



Set area to SP. Go to SCAN 
to rescan name from com­
mand. Set "system 
processor" flag in K:JCP1. 

I Set up DeB and save fi Ie 
. name in alarm message. 

Do READ CA L to read in 
fi I e header of program to 
execute. 

Output "file nonexist" 
alarm and take error exi t 
if first word of fi Ie 
header = zero. 

public library foreground 

Output error alarm since 
i II ega I to execu te a 
publ i c library. 

~ake error exi t 

(;..08~ 
'---/ 

Go through tables set by 
ALLOBT command and 
set up a" Bckg. Temp 
Files input on ALLOBT. 

Go through all DCBs and 
set flag in N93 table to 
show which Bckg. Temp 
Files need defau It alloca­
tion. (If DCB was input 
on assign card, take as­
signment from ASSIGN 
card value.) 

Figure 28. NAME Command Flow 

Error if no"FG" key-in. 
Error if program not on FP 
area or not on OV fi Ie. 

ASSIGN Command Processing 49 



Go to N80 SBR to 
do special check 
and allocation for 
MAC RSYM. 

and area for 
Bckg. Loader 

50 ASSIG N Command Processing 

Output 
IIBT OVERFLOWII 
alarm. 

Figure 28. NAME Command Flow (cont.) 

Do RUN CAL so 
foreground program 
wi II be loaded and 
started. 

Inspect status posted 
and outputan alarm 
if appropriate. 



Set II system processor" flag 
in K:JCPl jf area is SP. 

go process same 
as NAME command 

Figure 29. RU N Command Flow 

Set area to Bckg. Tempandfilename 
to OV. ~et "system processor" flag 
if SY key-in is in effect. 

go process same 
as NAME command 

Figure 30. ROV Command Flow 

Save number of blocking buffers for 
Bckg. Loader in K:BPOOL. 

Figure 31. POOL Command Flow 

ASSIGN Command Processing 51 



52 ASSIGN Command Processing 

Scan command and 
save all parameters 
in temporary cells. 

If format not i npu t by 
user, set to un­
blocked. If GO 
fi Ie, set to blocked. 

If file size not in­
put, set default to 
1000 records. 

Calculate number 
sectors needed for 
fi I e based on for­
mat of file. 

Save info. about file 
in perm. JCP tables 
(CFORM, RSIZE, 
GSIZE, SAVE). 

Output alarm 
"CC ERR, BT 
OVERFLOW" 

Figure 32. ALLOBT Command Flow 



Initialize flags. Pro­
cess all parameters 
on LOAD command. 

Set up I imits for sym­
bol table so all un­
used core is used. 

Set P:END as first 
entry in symbol 
table. SetupXl file 
as a blocked fi Ie. 

n ~ _ rass one 
of loader 

Build symbol tableof 
DEFsandgetvalue 
for every DEF. Write 
ROMS on Xl. 

Read ROMs from 
Xl and do actual 
loading of ob­
ject modules. 

Write program in 
core image format 
onto appropriate 
file. 

Where appropriate, 
write out M:S L 
DCB, DCB table, 
and OVLOAD table. 

14------t~e 

output the map, if 
requested. 

no 

Figure 33. LOAD Command Flow 

ASSIG N Command Processing 53 



Set up cells to dump 
in K:PMD for Post­
mortem Dump 
routine. 

Figure 34. PMD Command Flow 

Do proper CA L 
to position device 
to proper place. 

Figure 35. PFIL, PREC, SFIL, REWIND, and UNLOAD Command Flows 

54 ASSIGN Command Processing 

Do Write E OF CAL 
to wri te proper n um­
ber of EOFs. 

Figure 36. WEOF Command Flow 



The diagram in Figure 37 depicts the core layout as the JCP executes. 

K: BACKBG 
JCP AREA 
(About 5K) 

En d of JCP Code 

Dynam i c Area Used 
By JCP Loader 

ASSIGN Table K: ASSIGN 
(expands this direction) 

t 
Fixed 20 words for 

K: CCBUF 

control card image 

K: BPOOL 
::J14 Words 

(2 Blocking Buffers) 

K:FGDBG1 

Note that there is one extra word left immediately before K:CCBUF that is used to store the printer format 
code for logging the control command. 

Figure 37. Core Layout During JCP Execution 

JCP Loader 

The JCP Loader loads Relocatable Object Modules (ROMs) or groups of object modules that use a subset of the Xerox 
Sigma 5/9 Object Language. In itially, the Loader processes all parameters on the ! LOAD command and sets up the 
appropriate DCBs and flags. If the program being loaded has overlays, space is reserved for the program's OVLOAD 
table at the end of the JCP. The OVLOAD table contains 11 words for each overlay; the firstword ofOVLOAD con­
tains the number of entries in the table. The exact format of the OVLOAD table is given later in this chapter. 
Note that words 2 through 10 of the OVLOAD table have the same format as the Read FPT that is needed to read an 
overlay into core. Next, the first word addresses of the Symbol table (SYMTl and SYMT2) are set up. The diagram 
in Figure 38 depi cts the core layout before PASS 1 of the JCP Loader. 

The JCP Loader is a two-pass loader. In Pass 1, the ROMs are input from the BI op label and copied onto the X 1 file 
on the disk. The Xl file is set up to use all of the Background Temp area of the disk that is available for scratch 
storage. The main function of PASS 1 is to build the symbol table (SYMTl and SYMT2) containing all DEF items, and 
to assign a value to each DEF. The symbol table has the following format: 

SYMT1 

SYMT2 

a doubleword-entry table containing the names, in EBCDIC, of each DEF item in the program being 
loaded. The first entry is not used. 

a doubleword-entry table. The first word of the table contains the total number ofDEFs in the table. 
The subsequent entries have the following format: 

where bit 8 = 1 if this is a duplicate DEF. 

JCP Loader 55 



K:BACKGD 

JCP Code 

En d of JCP 

OVLOAD 
(Space for OVLOAD Table 
if program has overlays) 

SM T1 

SYMTl 

l 
SYMT2 

K:ASSIGN 

Figure 38. Pre-PASS1 Core Layout 

At the end of PASS 1, the size of the symbol table is fixed so the remainder of core can be used as a load area in 
PASS2. After loading the program root in PASS1, space is allocated for the M:SL DCB (if the program has overlays), 
the DCB table, and the OVLOAD table (if the program has overlays). These items are allocated in the following 
order: 

Program Root M:SL DCB DCB Table 

7 words 3 words/DCB 

OVLOAD Table 

11 words/overlay A~ 

Start of Program 
Over I ay Area 

The DCB table is bui It in an internal table in the JCP in PASS 1 after loading the program root. The DCB table is 
made up of all M: and F: DEFs in the root, including the value of each DEF. The complete OVLOAD table is also 
built during PASS1; each overlay1s entry being made after the overlay is loaded. Hence, PASS1 completely allo­
cates all space for the program. 

After the last ROM is loaded at the end of PASS1, the file header is written to the appropriate disk file. The re­
mainder of core not used by the Symbol table is then rounded down to an even multiple of disk granules and set up 
as the load area for PASS2. There must be enough room to hold at least one disk granule, plus 12 extra words, or 
the load will be aborted at this point. The Xl file is then rewound and PASS2 commences. The following diagram 
depi cts the core setup at the start of PASS2: 

JCP Code OVLOAD SYMTl Load Area for SYMT2 

Pass Two 
K:BACKBG End of JCP K:ASSIGN 

PASS2 inputs the ROMs from the Xl file, satisfies all external REFs by finding the value of the corresponding DEF in 
the Symbol table, and then writes the program in core image format to the proper disk fi Ie in a multiple of granules 
at a time. Between 8 and 12 extra words are ioaded each time at the end of the load area in case a define field load 
item requires that the load location be backed up a maximum of 8 words. This prevents having to read a granule 
back into core after it has been written in the event a word has to be changed because of a define field item. 

56 JCP Loader 



These 12 words are copi ed from the bottom of the load area to the top of the load area after the granu les are 
written on the disk. The previous 8 words are therefore always available in core to satisfy a define field item. 

After the root has been loaded in PASS2, the M:S L DCB (if appropriate), the DCB table, and the OVLOAD tables are 
attached in that order to the end of the root and written on the disk. After all ROMs have been loaded, the JCP 
Loader outputs the map if requested, closes all files, and exits to read the next control command. The format of the 
OVLOAD table is described in the "RBM Table Formats" chapter. 

Job Accounting 

Job accounting is an option selected at SYSGEN time. An accounting file will be kept on the RAD by the J(P if 
the accounting option was chosen. The file must be defined by the user; must have the name "AL"; and must be in 
the D 1 area of the disk. 

Whenever a !JOB or ! FIN command is read by the JCP, the JCP will update the AL file for the previous job. The 
format and record size of the AL file is automatically set by the JCP via a File Mode CAL. The JCP defines the AL 
file as a blocked file with a record size of 32 bytes. The AL file on the RAD consists of a series of eight-word rec­
ords, where a new eight-word record is added for each job. The first record in the file is reserved for the IDLE ac­
count and is the only record that is ever rewritten. The elapsed time in the IDLE account is incremented by the ap­
propriate amount anytime a !JOB command is input after a prior! FIN command, and the IDLE entry is then rewritten 
on the disk. The format of each record in the AL file is as follows: 

Word Description 

1,2 Account number in EBCDIC 

3,4,5 Name in EBCDIC 

6 Left halfword = (year - 1900) in binary, Right halfword = date as day of year (1 - 365) 

7 Start time of job in seconds (0 - 86399) 

8 Elapsed time of iob in seconds 

The IDLE account has an account number of "IDLE II and a name consisting of a!! EBCDIC blanks. 

Whenever an entry is added to the AL file, the file is opened and a file skip performed so that the new entry can be 
made at the end of the existing entries. No attempt is made to combine entries in any way. The contents of the AL 
fi Ie can be I isted via the! DAL command, (Dump Accounting Log), and the option exists for the user to purge the fi Ie 
after the dump is completed. The AL file is purged by rewinding it and writing an EOF. 

Background TEMP Area Allocation 

The JCP allocates and sets up the fi les in the Background Temp (BT) area (X l-X9, GO, OV) before exiting to the 
Background Loader to load a processor or user program. The BT files needed by the user are defined either via 
!ALLOBT commands or through default by the JCP from inspection of the user's DCBs. The GO and OV files are 
set up at the start of each job and remain intact for an entire job; the required files Xl through X9 are normally set 
up for each job step only. 

Information for files XI-X9 read in from !ALLOBT commands is stored in tables (GSIZE, FSIZE, FORM, SAVE, 
RSIZE) that are internal to the JCP. If the GO or OV fi Ie is changed vi a an !A LLOBT command, the fi Ie is re­
defined at the time the command is processed. 

Job Accounting/Background TEMP Area Allocation 57 



The files in the BT area are allocated so that fi les remaining intact only for that job step are allocated at the front 
of the BT area. Fi les that remain intact for the entire job are allocated at the back of the BT area. Normally, this 
means that Xl through X9 are allocated at the front of the BT area, and GO and OV at the opposite end. If the 
SAVE option is used on an !ALLOBT command for an Xi file, the Xi file will be allocated at the opposite end of the 
BT area, as will GO and OV. The following diagram illustrate the BT allocation: 

BT allocation without !ALLOBT Commands: 

OV GO 

J 
Intact only for a job step Intact for enti re job 

The proper Xi fi Ie is allocated for each M:Xi DCB in the user program. The remainder of the BT area after GO and 
OV have been allocated is evenly divided among the Xi files. 

BT allocation with !ALLOBT Command: 

X21 Xl 1 X3 OV GO 

J 
Intact only for a job step Intact fo; enti re job 

The above diagram illustrates how BT would be allocated if an ! ALLOBT command was input to save the X3 fi Ie. 
Note that X3 is allocated at the opposite end of the area with OV and GO. 

Allocation of the Xi (l:s i :s9) files is performed in the following sequence: First, any files input on an ALLOBT 
command are allocated at the proper end of the BT area. Next a search is made of all user M:Xi DCBs, and any Xi 
files that were not input on an ALLOBT command are allocated by default in the remaining area. Note that if the 
"ALL" option is used for file size in the ALLOBT command, there will be no room remaining for default allocations 
and if a M:Xi DCB is found for which a file has not been allocated, a "BT OVERFLOW" alarm will be output and 
the job aborted. 

The following examples depict the allocation of BT as previously described: 

Example 1: 

1. An !ALLOBT command for Xl file with SAVE option. 

2. An !ALLOBT command for X2 file. 

3. A user program with M:X1, M:X2, M:X3, M:X4, and M:X5 DCBs. 

In this case, the BT area would be allocated as 

X2 X5 X4 X3 1 Xl OV 

• T 

Intact only for a job step Intact for entire job 

In this example, the Xl and X2 files would receive the sizes input on the !ALLOBT command, while the X3, X4, and 
X5 fi les would be even Iy distributed over the remaining area. 

58 Background TEMP Area Allocation 



3. A user program with M:Xl, M:X2, M:X3, and M:X4 DCBs. 

The BT area in this case would be allocated as 

Xl X3 OV GO 

T 

Intact only for a job step Input for entire job, if job was not aborted 

In this example, the job would be aborted because there is no remaining room to allocate the M:X4 DCB, since the 
"ALL" option was used for the X2 file. If the "ALL" option is used for file size, all Xi files used by the program 
must be allocated via the !ALLOBT command. 

The JCP does special allocation of the BT area for the AP processor, since the scratch space requirements of this pro­
cessor depend on the parameters of its calls and the space is unevenly divided among files involved. This special 
allocation is done by the use of nonstandard allocation-control tables when JCP is invoked to run the AP processor 
in the background. Other special allocation tables cou Id be added for other processors requiring nonstandard 

allocations. 

Background TEMP Area Allocation 59 



5. FOREGROUND SERVICES 

Foreground services are those service functions restricted to foreground utilization. In general, they are associated 
with the control of system interrupts, the handling of foreground tasks, and direct I/O (lOEX). The following ser­
vi ce functions fall in this category: 

RUN/INIT 

RLS/EXTM 

MASTER/SLAVE 

STOPIO/ST ARTIO 

IOEX 

TRIGGER 

ENABLE/DISABLE 

ARM/DISARM 

CONNECT/DISCONN ECT 

In terms of the functions as port of the resident RBM, the resident function sets indicators for RUN and RLS, and the 
Control Task actually performs the function . 

. Implementation 

RUN If on entry for the specified program does not already exist in the LMI table, on entry is built. The LMlsub-
tables are set as follows: 

LMIl Program nome 

LMI2 Group code for interrupt to be triggered at conclusion of initialization by Control Task 

LMI3 Group level for said interrupt 

LMl4 Signal address and (optionally) priority 

LMI5 Swi tches 

K: FGLD is set nonzero, the Control Task is triggered and control is returned to the user program. 

If an entry does exist in the table for the program, a code is placed in the signal address. The codes used are 

3 

4 

Program already loaded 

Program waiting to be loaded 

If no entry exists for the program and there are no free entries in the LMItable, a code of 5 is placed in the signa I 
address. Sufficient reentrance testing is performed (for details, see the program listing). 

RLS If an LMI entry does not exist for the specified program, control is returned to the user. 

If an entry exists and the program is not loaded, LMIl and LMI5 are zeroed, and control is returned to the user. 

If an entry exists and the program is loaded, a flog in LMl5 is set, K:FGLD is set nonzero, the Control Task is trig­
gered, and control is returned to the user (for detai Is of reentrance testing, see the program listing). 

MASTER/SLAVE The mode bit in the PSD saved in the user Temp Stack is set to the proper state and control is re-
turned to the user. When returning control, CALEXIT executes on LPSD that establishes the proper modeforthe user. 

STOPIO/STARTIO The specified device is determined and aii other devices associated with it (all other devices 
on a multidevice controller or all devices on the lOP if the call so requests) have their proper STOPIO counts in­
cremented or decremented. The count is either in DCT14 or DC1l5 as specified by the call. 

60 Foreground Services 



An HIO is performed on these devices if requested by the call. 

If a DCT15 count goes to zero as a result of a decrement, the IOEX busy bit in DCT5 (bit 7)is reset for the device. 

DEACTIVATE/ ACTIVATE The specified device is determined, and it and all other devices associated with it 
(all other devices on a multidevice controller, or all devices on the lOP if the call so requests) are marked "down" 
(Deactivate) or marked operational (Activate). An HIOis always performed on these devices for a Deactivate request. 

IOEX For TIO and TDV instructions, the instruction is executed and the status is placed in the copies of R8 and 
R9. The condition code field of the saved PSD is placed in the Temp Stack. ihen at CALEXIT, these copies are 
placed in R8, R9, and the PSD, and returned to the user. 

For 510, the IOEX bit (DCT5, bit 7) is tested. if the IOEX bit is set the SIO is executed and status and condition 
codes are returned to the user. If the IOEX bit is not set, the request is queued and status is returned to the user 
indicating that the SIO was accepted. The user obtains actual status by specifying end-action. Various registers 
contain pertinent status at that time. 

For HIO, the IOEX bit (DCT5, bit 7) is tested. If the bit is set, the HIO is executed and status and condition codes 
are returned to the user. If the IOEX bit is not set, the monitor routine RIPOFF is called which will eliminate any 
ongoing or queued requests for the device. The user receives status and condition code settings which indicate the 
HIO request was accepted. 

TRIGGER, DISABLE, ENABLE, ARM, DISARM, CONNECT, DISCONNECT These functi ons are si mi lar in that 
they invoi ve the executi on of a Write Direct after determining the group code and grou p level of the specifi ed interrupt. 

In addition, a task connection is performed if requested by ARM, DISARM, and CONNECT requests. Note that the 
CONNECT call is a special case of the ARM call. The logic for ARM, DISARM; and for CONNECT functions is 
illustrated in Figure 39. 

Tlsk Control Block (TCB) 

The CONNECT function initializes words 2-9 of the user-allocated TCB for interrupts and CALs that are to be cen­
trally connected. The format of the TCB is shown below: 

o 
--------- Saved PSD ---------

2 
Intennediate PSD to transfer ------ -----

3 
to TCB+4 with skeleton key 

4 STM,O TCB+ 10 

5 BAL,R1 RBMSAVE 

6 rio 0 PCB address 

7 Priority 
1
0 0 TCB address 

r- ___ PSD to transfer to task entry in proper ____ 
state {mode, write key, etc.}. 

8 

9 

10 

7 7 
16 words for register saving 

25 

o 1 78 1516 31 

Implementation 61 



Get group code and 
level bit. 

Set up words 2-9 of TCB. 

Store XPSD in interrupt 
or trap cell and make 
INTTAB entry. 

Store clock counter values 
andIMTW,-l" instruction. 

Issue proper "WD" instruc­
tion to count pulse interrupt. 

Set index to enable or 
disable as appropriate. 

Issue "WO" instruction 
to interrupt. 

Figure 39. ARM, DISARM, and CONNECT Function Flow 

62 Implementation 



Make INTTAB entry 
for direct connection. 

Get" MTW" instruction 
from FPT and store in 
count pulse location. 

Store the 'XPSD' 

no 

Figure 39. ARM, DISARM, and CONNECT Function Flow {cont.} 

Implementation 63 



6. MONITOR INTERNAL SERVICES 

RBM Overlays 

All RBM overlays may be declared to be resident or nonresident at SYSGEN time, in order to increase performance 
of a particular function or to reduce monitor size, respectively. This is done by means of the :MONITOR control 
command. 

The overlay technique allows a user call for such functions as OPEN and REWIND to bring in an overlay to perform 
the function. The structure is reentrant (allows multiple users at different priorities to use the overlay area), recur­
sive (allows an overlay to call an overlay), and usable for any monitor function {allows overlays at the control-task 
level to use the same area as those for user services}. The overlay technique employed requires no explicit calls for 
overlays. When an overlay is needed all that is necessary is a branch to a REF: 

REF OEP (overlay ENTRYpoint) 

B OEP 

SYS LOAD wi II fu lfi II these references by having them branch to the Overlay Manager (OMAN) which wi II load the 
overlay. 

In order to create an overlay the programmer must include DEF's in the overlay ROM for all possible ENTRY points 
and all possible EXIT points. An ENTRY point is defined as a point at which one would enter the overlay via any 
type of branching instruction (BAL, BCR, BCS, LPSD, etc.). An EXIT point is defined as a point at which one 
would exit the overlay with no intention of returning to this overlay without first going through an ENTRY point. 
For instance, a BA L to a resident subroutine from the overlay wou Id not be considered an EXIT point since a return 
to the overlay will take place. All EXIT point instructions must be unconditional branch instructions, either B*Rx 
or B address. This is due to the fact that the EXIT point instructions will be replaced by unconditional branches to 
the Overlay Manager which may replace the overlay with a previously active overlay and then execute the EXIT 
point instruction. 

An overlay wi II be named by the first DEF in the modu Ie, which must be the first BO-generative statement. As the 
RBM ROM and the overlay ROMs are read by SYS LOAD all unsatisfi ed REFs are assumed to be overlay-load requests 
and thus are satisfi ed by creating an entry in the Entry Point Inventory (EPI), described below, and using that address 
to sati sfy the REF. 

As the overlays are read, all DEFs are checked for possible ENTRY points or EXIT points. A DEF will be considered 
an ENTRY point if a previous REF for that name has been located. If a previous REF has not been encountered the 
DEF will be considered an EXIT point. This algorithm implies that the order of the overlay ROMs as read by SYS­
LOAD is significant. All overlays which call overlays should do so with forward references. 

As each overlay is encountered, its name (the first DEF) is compared against the list of resident or nonresident over­
lays as defined by the user on the :MONITOR SYSGEN command. If found to be nonresident, the overlayis linked 
to run in the overlay area and written out to the SP area. If found to be resident, it is linked at the end of the pre­
sent monitor end and, of course, is written out with the monitor. The last two ROMs on the SYSLOAD input device 
must be INIT (presently assembled with the monitor) and JCP in that order. Figure 40 shows the general arrange­
ment of the SYSLOAD-input ROMs. 

OMAN uses the EPI and OVI tables to make sure the proper overlay is in core at all times. OMAN is activated by 
a reference to the EPIEP as set up by SYSLOAD. EPIEP contains a CAL 1 instruction. OMAN is entered from the 
CAll processor with inhibits set, and examines the address of the CAll to calculate the index for EPI if it is an 
OMAN call. If the address is in the EPIEP table this is a request for an overlay load. If it is in the overlay area 
and of the form 

o 4 I Address in EPIEP 
1 2 314 5 -. t 8 10 11112 1: 14 15 , 1~ 17 18 '912': 2' 22 2::' 24 ;~ 2~ ;- 28 29 J: 3' 

then it is an EXIT. 

64 Monitor Interna I Services 



Simulators 

Figure 40. Arrangement of SYSLOAD Input ROMs 

For entries, the previously overlay information is stacked, the new overlay is loaded, and control is transferred to 
the ENTRY address. For an EXIT; previous overlay information is unstacked, the last overlay is reloaded if neces­
sary, and the instruction in EPIEP is executed. 

After every activation the active overlay ID (OVI index) is placed in the SHOV field. When an exit takes place 
the STIOV field is cleared. EXIT checks STIOV to see if the task to which it is exiting has an active overlay. If it 
does and the presently active overlay for the system is not the same, EXIT forces an entry to OMAN to reload the 
active overlay for the task. (This is done at the level of the task which is being exited to.) 

This overlay technique has several unique aspects which should be noted: 

• Any reentrant piece of code which is entered via a branching type instruction and exited via an uncondi­
tional branch may be converted to an overlay simply by 

• Assembling it as a separate ROM. 

• Placing a REF where a branch to it takes place. 

• Placing a DEF for the ENTRY point in the ROM (first DEF also used as overlay name). 

• Placing a DEF for the EXIT points in the ROM. 

The system overhead incurred by this conversion is only one instruction when the resultant overlay is de­
c lared resident. 

• No registers are destroyed in loading and transferring control. 

• Many such pieces of code may be placed into one overlay. 

RBM Overlays 65 



Entry and Exit Point Inventory (EPI) 

Purpose: 

Type: 

Logical 
Access: 

EPIEP: 

The EPI is used to intercept all entries to overlays and to save all exit instructions from overlays in 
order that the Overlay Manager (OMAN) can load the proper overlay. 

Parallel in RBM table space with a fixed number of entries. Generated by SYSLOAD. 

The EPI index is, in essence, generated by SYSLOAD. When SYSLOAD encounters a reference to an 
entry point the address is replaced by the address of an EPI entry (EPIEP). When an exit point is en­
countered the entire instruction is replaced by a CAL 1 instruction. 

An EPI table entry can have one of three forms. If the entry is an ENTRY point to a resident overlay: 

If the entry is an ENTRY point to a nonresident overlay: 

o 4 

If the entry is an exit point: 

(This is the actual instruction that was in the overlay and has been replaced by a CAL 1 with an effec­
tive address of the replaced instruction.) 

Overlay Inventory (OVI) 

Purpose: 

Type: 

Logical 
Access: 

Entri es: 

The OVI replaces the table previously defined as OVLOAD. It is used by OMAN to load overlays 
for both primary and secondary tasks. For each overlay it contains the sector address, length, and 
name. 

Para"el in RBM table space with a fixed number of entries. Generated by SYS LOAD. 

The EPI (Entry and Exit Point Inventory) has a subfield of EPIEP which indexes the proper overlay for 
that Entry Point. 

OVISK 

OVILG 
(OVLOAD1) 

OVINM 
(OVLOAD2) 

Seek address 
10 II 12 13 14 15 16 17 18 I 

I Numbe,:o! bytes I 
o I 2 3 14 5 6 7 8 9 10 11112 13 14 15 

OVISK is the seek address of the overlay on the device containing the SP area. 

OVILG is the length of this overlay in bytes (~512). 

OVINM is a 4-character EBCDIC name representing the first DEF in the overlay. This is the name used 
in the SYSLOAD map and the name to be used for all communications about the overlay. 

66 RBM Overlays 



Event Control Block and Event Control Services 

Purpose: 

Type and 
Location: 

Logical 
Access: 

Event Control Blocks (ECBs) provide task management and CAL processors with the mechanism for con­
trolling system services explicitly requested by tasks or invoked by RBM. 

ECBs are eight-word serial control blocks in TSPACE, with chained data areas also in TSPACE. 

ECBs are members of two chai ns and can be located on Iy via one or the other of these chains. The 
chains are as follows: 

Solicited EeB chain = A chain headed in the LMI entry corresponding to the task for which the 
event is being performed. The chain head is in LMIS ECB. 

Request ECB chain - A chain generally headed in the LMI entry corresponding to the task per­
forming the service. If no one specific task is responsible for posting, the R-chain is either not 
used or is headed elsewhere. 

Overview of ECB Usage 

Asynchronous or synchronous (vs. immediate) service requests must create ECBs to control the event processing. 
Asynchronous or synchronous service caiis are those pertorming tunctions which require waits tor some other logic 
within the processor or external event to complete prior to completing the original request. They are as follows: 

nl II--I 
!'.VI" 

r. r"'\('"r-
I.... LV')C DEViCE 

INIT READ PRINT 
ENQ WRITE TYPE 
SIGNAL REW ALLOT 
STIMER UNLOAD TRUNCATE 

POLL WEOF DELETE 
SEGLOAD PFIL STDLB 

OPEN PREC 

In addition to the above CAL processors, RBM tasks may create and use ECBs to control their own scheduling and 
communicate with other modules. These tasks are as follows: 

Task Initiation 

Task Termination 

Key-in Processors 

CA L Processor Usage 

The CAL processor wi II create and initialize the ECB. If the service is requested with wait, the CAL processor wi II 
loop waiting for the ECB to be posted if the caller is primary, or set the ECB and dispatcher controls for secondary 
tasks and return to the di spatcher. A posting phase is executed when the ECB is posted. A checking phase is per­
formed following the post. The completion data is returned to the user and the ECB deleted. The CAL processor 
then exits. 

If services are requested without wait by the user, the CAL processor creates and initializes the ECB and starts the 
service to the extent possible until a wait would occur. The CAL then returns to the caller. Some time latera post­
ing phase is executed. The caller must eventually issue a CHECK on the service. Failure to do so would cause the 
ECB to remain lactive l until task termination. When the CHECK call is performed, the service is processed until a 
roadblocked condition occurs or the service is done. If the service completes, the cleanup is done as above 0I1d 
control returned to the caller. If the service is still not complete, the busy exit will be taken if it was provided. 
If no busy exit was provided, the system waits for the service to complete as described above, then does the cleanup 
and exits. 

Note that the order of posting and checking is variable. A post may precede the execution of a check. 

Event Control Block and Event Control Servi ces 67 



Task-Termination Usage 

Task termination keys on the ECBs during its initial phases. Each ECB must be posted before the task is allowed to 
terminate and release its core resources. The termination routines drive the ECBs to completion as rapidly as pos­
sible by calling special subroutines for each ECB type. It then does a WAITALL on the ECBs. 

EeB and Data-Are. Formats 

Figure 41 shows the detai led format of an ECB and gives an example of chained data areas. 

Word 0 0 Length Data area address -

B 
Iw 

C P 

o ~ o H o T FPT/DCB address ~ 0 P K 5 0 
y T 

2 S-task ID S-ECB chain next 

3 R-task ID R-ECB chain next 

4 Priority Class 

EA Type/ End action address (BAL or Signal) -------
Group Address-X 14F' Level bits 

5 

Timeout 
----TBT-- - -- -- ---

Type compl. B Completion status 
6 

7 0 0 ECB type 

0'1 12'3'4 15 16'78'9 1516 31 

~o Length Data area address !--

Newest data area 

0'1 718 31 

, I 

Lo 0 

Oldest data area 

.1 o 1 31 

Figure 41. ECB Format and Chained Data Areas 

68 Event Control Block and Event Control Services 



Description of the individual data elements follow. 

ECBDATA 0f./ord 0) 

Length: The length of the first data area in the chain, in words. 

Data area address: The address of the first data area. Initially, this word is set to zero. If a data area is added to 
the ECB, the length and address (as returned from the GETTEMP) are stored here, and the first word of the data area 
is zeroed. Subsequent data area additions continue to store this word into the first word of the newest data area and 
put the new control in the first word of the ECB. Data area deietions do the inverse, nameiy, move the first word of 
the data area being deleted (always the first in the chain) into this word • 

.-,-.,...-nT I\AI I' \ 
L\..Drr I \vvora I J 

Flag bits as follows: 

Bit 0 Reserved 

BUSY (bit 1) = 1 if the ECB has not been posted. This means that word 6 contains the timeout threshold, if 
any. 

IN P (bit 2) 

WD (bit 3) 

DP (bit 4) 

= 0 if the ECB has beer. po~ted. Thl:; mean:; that the type of completion ond (;ornpletion staTus 
have been stored over the timeout threshold in word 6. 

= 1 if the ECB is lin-process I. This bit is set during a POLL, check phase, to avoid subse­
quent polls from acquiring the same ECB. 

= 0 if the ECB activity has not been initiated. 

In-process may be set by internal RBM tasks which do not use a poll to indicate that the 
ECB is being operated upon. 

= 1 The wait count in the S TI entry of the S-task is to be decremented by one (if it is not al­
ready zero) when the ECB is posted. If the count becomes zero due to the post, the dis­
patcher should be triggered and the task entered if the S-task is a higher priority than the 
posting task. If it is lower, the dispatching is deferred. 

= 0 Do not alter any dispatch controls at posting. The task is not waiting for the ECB. 

WD is set by the EMWAIT subroutine and WAITANY, and WAIT ALL calls. It is reset by 
posting. It is also reset by WAIT ANY after gaining control on a multivalued wait. 

= 1 Delete the ECB as soon as the posting logic is complete. The user does not expect to 
check the FPT nor does he require feedback of the type of completion. 

= 0 Do not delete the ECB unti I after the checking/cleanup phase is complete. 

DP is set on service calls with Delete-on-Post set (F8 = 1). On all other ECBs, it is reset. 

CHK (bit 5) = 1 Checking is in process on this ECB by some task, and other checking phases are not to be 
allowed. This bit is set by service call processors when requested with wait. It is set by 
CHECK CAL entry before going to the ECB-type-dependent checking routine. It is set by 
TEST, WAIT ANY and WAITALL when processing the ECB through checking phases. It is 
reset by EMWAIT when taking a busy exit. CHECK tests the bit prior to setting it. If non­
zero, the CHECK is rejected as invalid and the busy exit is taken if provided. If not pro­
vided, the calling task wi II be trapped. TEST, WAIT ANY and WAIT A LL ignore ECBs in 
the S-chain with the CH K bit set. 

POST (bit 6) = 1 Posting is in process on this ECB. Other posting operations are not allowed. This bit is 
set by the posting subroutine entry prior to entering the ECB type-dependent logic. If 
POST is already set, an error exit is given to the caller. POST is reset by checking 
phases if the ECB is 'unposted I to allow additional processing phases. 

Note that if POST = 1 when an ECB is created, no posting operati on wi If be allowed. If CH K = 1 when an 
ECB is created, no checking operations wi II be allowed. 

Event Control Block and Event Control Services 69 



TO (bit 7) Timeout of the ECB is in process and other timeout operations are not allowed. The proper 
ECB posting routine wi II be called. 

FPT/DCB address: This is the address of the caller's original FPT (or DCB in the case of Type-I I/O). On all check 
or delete service calls, this serves as the control field to locate the ECB which represents the service being checked. 
It also allows the WAITANY, WAITALL and TEST calls to know the location of the original FPT or DCB in order to 
build an internal check FPT. An FPT/DCB address must be stored in all ECBs at creation. If the FPT was in regis­
ters, the register address (O-F) is stored. 

ECBSECB ~ord 2) 

S-Task ID: The task-ID of the task that solicited the service or that is checking the service. 

S-ECB Chain Next: The address of the next ECB in the solicited-ECB chain of the S-task. 

As a task requests asynchronous services, the ECBs created are added to the end of a chain which is headed in the 
LMI entry corresponding to the task. This provides· the system with knowledge of all the outstanding service requests 
for a load modu Ie. On checks or deletes, this chain is used to search the S-ECBs. It is also used by Task Termina­
tion, WAITANY, WAIT ALL and TEST to define all the services in process. The S-chain is maintained as ECBs are 
created and deleted. The S-task ID tells the chaining logic, indirectly, in which LMI S-chain to place the ECB. 
More importantly, at posting time, it tells the EMPOSTYC subroutine, whose task controls, to update if wait de­
crement is set. 

ECBRECB ~ord 3) 

R-Task ID: The task ID of the task that is to provide the requested service and that will post the ECB, if any. 

R-ECB Chain Next: The address of the next ECB in the request-ECB chain of the R-task. 

Some events are directed to one RBM task or user load module that is to provide the service and post the ECB. This 
task is called the responsible task and has a chain (R-chain) through all ECBs currently directed to him, which is 
headed in the LMI entry corresponding to the task. RBM tasks wi II have a load-module-inventory entry to head these 
chains. The chain is in priority order, with the oldest requests at the beginning of their priority group. The chain is 
used by POLL to locate requests and give them to the task for processing. It is also used by POST to validate the 
ECB identification in the FPT. Internal RBM tasks may use the R-chain directly to locate and operate on request 
ECBs. The R-chain is maintained as ECBs are created and posted. The R-task ID tells the standard R-chain main­
tenance routine, indirectly, in which R-chain the ECB is to be placed, or removed. 

In the following cases, an R-task can be identified: 

• INIT requests - Task Initiation on behalf of the initiated task. 

• SIGNAL requests - The task signalled. 

In some cases, the service is provided in such a way that a specific task cannot be identified which provides the 
service. In these cases, the R-chain is either not used, or is headed in some other control data, not an LMI. The 
following ECBs are this type: 

• ENQ requests - Service provided by the DEQ CAL processor. The R-chain is headed in an EDT. 

• STIMER requests - Service provided by the clock-4 interrupt processing. No R-chain is used. 

• POLL requests - Service provided by the SIGNAL CAL processor. The R-chain is not used. 

• I/O requests - Service provided by the I/O interrupt processing. Instead of containing R-task informa­
tion, bits 0-7 contain the service-ca II FPT code and bits 15-31 contain the byte count. 

70 Event Control Block and Event Control Services 



ECBPC 0f./ord 4) 

Priority: The priority of the ECB as requested by the caller. Generally it will default to the caller's priority. Pri­
ority is used to determine the order of the R-chain. It also will become the execution priority of tasks which poll for 
the R-ECBs according to the description in the POLL specification. Priority is set when the ECB is created. 

Class: The class mask that is set when the ECB is created. Generally the class wi II be the defau It value of X 'FFFF I. 
On polls, this field is logically ANDed with the class specified in the POLL (default is also X'FFFF'). If the result 
is nonzero, the ECB qualifies for the poll. 

Note that for I/o requests, word 4 instead contains clean-up information (see 10013, word 1). 

ECBENDAC 0Nord 5) 

The end action for posting, as follows: 

Word = 0 No end action for service. 

Byte 0 = ~O-OF End action contains interrupt-trigger data. The interrupt group is the value in byte o. 

Byte 0 = 7F End action contains a completion signal address (I/O only). 

Byte 0 = FF End action contains an address to be BALed to at post time. 

End-Action Address: The entry location for BA L-type end acti on or signal address. 

End-Action Address and Level: The address of the interrupt - X '4F ' - and level bits for a write direct on trigger­
type end act ion. 

ECBTIME/ECBCOMPL 0/Vord 6) 

Timeout: The timeout threshold for busy ECBs. When the value (K:UTIME - timeout) is greater than or equal to 
zero, the ECB has 'timed out l and RBM will do a post with the timeout code (X '671). The posting logic which is a 
function of ECB type will be entered. If timeouts require special logic, the posting routines must test for the X '67 1 

type of completion and take the appropriate action. 

Type Compl.: The type-of-completion code set by the caller posting. 

B(Busy): This bit wi II always be zero after posting. 

Completion Status: Actual record size (ARS) for READ/WRITE requests. 

ECBCT LS 0f./ord 7) 

ECB Type: An integer which represents the type of service which is being provided. This value is set symbolically 
(for flexibility) by the creator of the ECB and can be altered by the processing logic during the life of the ECB. The 
system uses the ECB type to control the service-dependent logic as follows: 

• When an ECB is to be posted, the routine that wishes to do the post wi II BAL, R8 EMPOST with the ECB 
identification in R2. EMPOST will use the ECB type as an index into the byte-table EMPOSTX which pro­
vides an index into the word table EMPOSTB. The EMPOSTB entry thus located is a branch to the posting 
logic for that ECB type, and wi II be executed. EMPOST uses R7 for the indexing. 

• When a CHECK call or DELFPT call is issued, the check service call branches to the check processing for 
the service type. This entry is derived as above, with EMCH KX + ECB type providing an index to the 
EMCH KB branch table to the entry point. The ECB identification is in R2. R8 is the return register. 

• When a wait occurs for a primary task on an event control block, the ECB type is used as an index to the 
bit-table EMWAITF. If the bit thus located is 1, the primary-task wait is illegal on the ECB, and the task 
wi II be aborted. A zero indicates that the wait is valid and the waiting routine wi II loop, calling SERDEV 
and waiting for the Busy bit in the ECB to be reset. 

Event Control Block and Event Control Services 71 



• When DELFPT or termination occurs, the ECB type will again be used as an index into the byte-table 
EMABNX which will provide an index into the word-table EMABNB. The word thus located contains a 
branch to the logic to handle abnormal conditions for the ECB type. 

Dynamic Space 

Such routines as error logging and monitor crash analysis as we II as the reentrant overlays require temporary space, 
whi ch they may obtain, hold for a period of time and then release. 

The space is managed by use of an algorithm that requires space to'be parcelled out in powers of two (2, 4, 6, 16, 
32, 64, 128, 256) only. Thus if a user asks for 19 words he will be given 32. The reason for chosing this method is 
its minimal processing time for obtaining and releasing space. 

The algorithm is as follows: 

1. When obtaining space, if the smallest power of two needed is not avai lable the next higher power of two 
will be examined. If space is available at that level the block is split into two blocks of the size needed. 
This is a recursive technique which may be repeated until the maximum power (8) is reached. 

2. When releasing space, an attempt is made to find the released block's complement (the other half of the 
original split block) and if found they are joined and the procedure repeated for the next higher power of 2 
unt it 8 is reached. 

Dynamic-Space Service Calls 

GETTEMP Get Space 

Inputs: 

R7 = number of words (1 through 255) 
R8 = link 

Output if space avai lable: 

R7 = byte l/number of words 
byte 2,3,4/ address of space 

R8 = link 
Return to link + 1. 

Output if no space: 

RELTEMP 

R7 = number of words 
R8 = link 
R 15 = X '66' (no-space TYC) 
Return to link. 

Release Space 

Input: 

R7 = byte l/number of words 
byte 2, 3, 4/ address of space 

R8 = link 

Output: 

R7 = number of words 
R8 = link 
Return to link. 

72 Dynamic Space 



SYSG E N Considerations 

The number of words needed may be specified at SYSGEN by use of the TSPACE option on the :RESERVE card: 

:RESERVE (option), (TSPACE, n), •.• 

where n is number of words for temporary space (a default is provided by SYSGEN). 

Dispatcher 

The dispatcher in RBM is used to schedu!e secondary tasks. These include Background and the RBM Control Task, both 
of which actually run at the null priority level, and any other foreground tasks linked as secondary tasks. The level 
specified at SYSGEN time on the :CTINT control command is used to give control to the dispatcher when a change 
of scheduling may be desired. This may occur when a secondary task does an asynchronous operation with wait, or 
exits, traps, or aborts; or when a timeout occurs, an asynchronous operation completes, or a 30-second hardware time­
check occurs. 

When the dispatcher receives control, it searches the STI (from bottom up) for any secondary tasks that are not stopped 
and have an STICOUNT of zero. When one is found its STCB (Secondary Task Control Block) is set up and control is 
transferred to RBMEXIT. This causes control to be given to the secondary task, or to the Overlay Manager if an over­
lay reload is necessary. 

If the dispatcher has nothing to do, it WAITs at the null priority level. 

Dispatcher 73 



7. MISCELLANEOUS SERVICES 

Miscellan~ous services are functions available to both foreground and background programs but which do not directly 
involve I/o services. 

SEGLOAD 

This function loads explicitly requested overlay segments of a program into memory for execution. The user's M:SL 
DCB {allocated by the Overlay Loader} is used to perform the input operation. 

For an FPT for READWRIT, the system uses the entry in the program OY LOAD table that corresponds to the segment. 
The OYLOAD table is constructed by the Overlay Loader. 

The function locates the proper entry in the OY LOAD table and places the user-provided error address in both the 
OYLOAD entry (FPT) and in the M:SL DCB. If end-action was requested, the FPT is set to cause end-action at 
conclusion of the segment input. 

If the calling program has requested that the segment be entered (at its entry point), the PSD at the top of the user 
Temp Stack is altered so that upon CALEXIT, control goes to the segment entry address. 

The function then sets RO to point at the FPT in the OVLOAD table and transfers to READWRIT. The segment input 
is then treated as a READ request with possible end-action, and at the user's option, control is returned either fol­
lowing the SEG LOAD CAll, or to the segment entry address. 

Trap Handling 

Trap CAL and JTrap CAL 

The Trap function sets up the trap control field and TRAPADD field in a user's PCB and sets the Decimal Mask (DM) 
and Arithmetic Mask (AM) bits in the user PSD to mask out occurrences of these traps. PSD bits are modified by 
changing them in the user PSD at the top of the Temp Stack and in the PSD contained in the user's TCB. 

The JTRAP function has the same effect on the DM and AM bits, but stores the trap controls and trap address in the 
Job Control Block. 

If the user-provided trap address is inval id (not in background for background program, or in foreground for fore­
ground user), or if the user specifies that he is to receive occurrences of some trap and no trap address is provided, 
control is transferred to TRAPX. This results in the message 

ERR, xx ON CAL tpJyyyyy 1D = task name 

being output on OC and LL 

where 

xx is the Error Code in hexadecimal (00 if none). 

yyyyy is the address of the CAL. 

Trap Processing 

Traps are either handled by the user, cause simulation of the instruction where possible, or result in an abort 
condition. If the user is to handle traps, task-level trap handling takes precedence over job-level trap handling. 

74 Miscellaneous Services 



The registers and PSD are saved in the user Temp Stack in the following format: 

x 

0 

1 

PSD Word 0 

PSD Word 1 

Register 0 

(Registers 1 through 

Register 15 

Working Cell 

X 

0 

1 

14) 

Top of stack before trap 

{

This word appears only if the 
above zeros are in an even 
word address. 

Top of stack after trap 

If the trap is either a nonexistent instruction or unimplemented instruction, the instruction causing the trap is 
analyzed to determine whether the proper simulation package (if any) is in the system. If so, the simulation is 
called; if not, it is treated like any other trap. 

A test is performed to determine whether the user is to process this particular trap. If so, the trap address (X '40 ' , 
X'41 1

, etc.) is placed in the top word of the stack and the user's trap handling routine is entered by LPSD, eight of 
the user PSD, with the trap handler substituted for the address where the trap occurred. 

Traps not handled by instruction simulation or by the user result in one of the following messages being output 

to OC and LL: 

MEM. PROT. ERR AT xxxxx 

PRIVILEGE INST. AT xxxxx 

NONEXIST. ADD. AT xxxxx 

NONEXIST. INST. AT xxxxx 

UNIMPLE. INST. AT xxxxx 

Trap Handling 75 



STACK OVERFLOW AT xxxxx 

ARITH. FAULT AT xxxxx 

WDOG TIMER RNOUT AT xxxxx 

MEM. PARITY ERR AT xxxxx 

ERRxx ON CAL !(L yyyyy ID = task name 

Note that the last message results from the simulation of a trap (called Trap X'50'). This is done by the system 
when a system call cannot be processed due to incorrect parameters being input. After the message is output, the 
task will be aborted unless the user has provided a trap handler for this trap. If a trap handler is provided, the mes­
sage will not be output and the trap handler will be entered. 

TRTN (Trap Return) 

This function returns control following the instruction which caused a trap and is employed by the user to return 
control after processing a trap. 

At the time of the TRTN call, the user Temp Stack is set as described previously under "Trap Processing". The 
TRTN function strips the stack of the context placed there by the CAL processing (from the TRTN CAL). It then 
clears the stack by the Trap processor and returns control to the instruction that follows the one causing the trap. 

TRTY (Trap Retry) 

This function is simi lar to TRTN, but returns to the instruction causing the trap. 

TEXIT (Trap Exit) 

This function removes the trap information from the user Temp Stack and exits the trapped task. Note that an EXIT 
CAL if executed from a user trap hand ler wou Id leave this data in the user Temp Stack. 

76 Trap Handling 



8. RBM TABLE FORMATS 

General System Tables 

The tables shown in the subsection either are not job or task controlled, or relate equally to both jobs and tasks. The 
index 0 entries are not used as true table entries unless otherwise specified. 

Disk File Table (RFT) 

Parameters describing the file are taken fiOm the directory entry for the fi Ie. These parameters include: 

Fi Ie name 

Beginning sector address (reiative to beginning of the area) 

Ending sector address (relative to beginning of the area) 

Granule size 

Record size 

Fi Ie size (number of records) 

Organization (blocked, unblocked, compressed) 

The parameters specifying the physical characteristics of the disk, the boundaries of the disk area, and the Write 
Protection key are in the Master Dictionary. To enable access to these, the RFT contains a Master Dictionary Index 
(specifying the area). 

For manipulation of the fi Ie, the RFT contains the following items: 

Blocking buffer control word address 

Blocking buffer position 

Position within the fi Ie (sector last accessed - used for blocked and unblocked) 

Current record number 

Number of DCBs open to the file. 

These parameters are entered in the RFT by the OPEN function. The parallel table concept is used for the RFT, and 
the tables are allocated and initialized as given in Table 2. 

In Table 2: 

File name all 0 Signifies entry not in use. 

RFT2 index 0 Entry contains the total number of RFT entries. 

RFT3 index 0 Entry contains the maximum number of RFT entries allowed for background use. 

RFT4 index 0 Entry contains the current number of background file entries. 

RFT5 index 0 Entry is used as the RFT activity count for reentrance tests. 

RFTll index 0 Entry contains the number of temp files allocated. 

Other index 0 Entries are not used. 

The Job Control Processor bui Ids the RFT entries for the Background Temp Fi les. These entries are the first n + 2 in 
the table (n is the number of Xi files), where entry 1 is for the OV file, entry 2 is for the GO file, entry 3 is 
for the Xl fi Ie, etc. 

RBM Table Formats n 



Table 2. Disk File Table Allocation 

Address Contents Initial Value Length 

RFTl File Name 0 Doubleword 

RFT2 Beginning Sector Address (Relative to Area) X Halfword 

RFT3 Ending Sector Address (Relative to Area) X Halfword 

RFT4 Granule size (in bytes) X Halfword 

RFT5 Record size (in bytes) X Halfword 

RFT6 Fi I e Size (i n records) X Word 

RFT7 Switches X Byte 

where 

Bit 0 = 1 means sequentially written 

Bit 1 = 1 means directly written 

Bit 3 = 1 means compressed 

Bit 7 = 1 means blocked 

RFT8 Master Dictionary Index X Byte 

RFT9 Job Identification X Byte 

RFTlO Blocking Buffer Position (in bytes) X Halfword 

RFTll File Position {in sectors} X Halfword 

RFTl2 Current Record Number X Word 

RFTl3 Number of Open DCBs (total) X Byte 

RFT14 Not used X Byte 

RFT15 Number of BG ND DCBs X Byte 

RFT16 Status (bit 0 on for sequential write, bit 1 on X Byte 
for direct access write) 

RFT17 Blocking Buffer Control Word Address X Word 

Device Control Table (OCT) 

OCT Format 

The Device Control Table (OCT) is composed of several parallel subtables (see Table 3). The various entries associated 
with a given device are accessed using the DCT indexof the device and addressing the tables DCTl through DCTl9. 
For example OCT 1 would be accessed by 

LH, R DCTl, X 

DCT2 would be accessed by 

LB, R DeT2, X 

where Register X contains the DCT index val ue for the device. 

78 General System Tables 



Subtable 
Address 

DCTl 

DCTlP 

DeT1A 

DCT2 

DCT3 

DCT4 

DCT5 

Table 3. DCT Subtable Formats 

41.11: r I 1 \ '\ \ ~ \:'''\ ~ \ 0 r= u , 
Contents j L''''tf.L.. Tf'f tt.A.O~, T ... ,....., P~I f ",'"",-

" . 

Active I/o address for device / 

} 
, 1- , , .r =' I",,,rt..l( 

l>t.T 

Primary (P) device address 10- 0\ lOP \0\ Device 

0 45 789 15 
Alternate (A) device address 

Channel Information Table Index - A p 
I channel associated with the device. 

ointer to the CIT entr" for the 

Bit 0 = 1 means output is legal for this device. 

Bit 1 = 1 means input is legal for this device. 

Bit 2 = 1 means device has been marked down and is inoperative. 

Bit 3 = 1 means device timed out. 

Bit 4 = 1 means SIO has fai led. 

I Bi t 5 - 1 means the 1110 has oboited. 

I 
Bits 6/7 = 00 - II Busy II both subchannels. 

= 01 - Use the P subchannel only. 

= 10 - Use the A subchannel only. 

= 11 - Use either subchannel. 

Device Type 1 Ye /?c:\ i?tL, St1~ A-S D ~ r i:wP S l( 

o = NO (IOEX) 
o ~t~~"'.t." f1l''' ""' ~ e. ~ ~1'(Pf) 

1 = TY T~ ~BM \l.~ )1' ~ ~ -------2 = PR 

3 = PP .II., , ).. .. 1..' 2.,\,tI ~ - i~ U~· v \" I 1\., r , 
4 = CR 

i~~ 

5 = CP . ~ 1" • 

\.: 

I 6 = LP I 
, i" 1 .t-tviy.,..-

7 = DC 2.. 'i (~ ~. ~.~"" 

8 = 9T ') ~ Lr L -- ~.\.-

9 = 7T 1...1 '1 \) ~ .... ~"i... 

10 = CP (Low Cost) 
r L 

11 = LP (Low Cost) 

12 = DP 

13 = PL 

Status Switches 

Bit 0 = device busy. 

Bit 1 = waiting for cleanup. 

Bit 2 = between inseparable operations. 

Bit 3 = data being transferred. 

I 

Length 

Halfword 

Halfword 

Haifword 

Il .... ~ 
u IC 1 

Byte 

I 

I 
I 

Byte 

I 

Byte 

General System Tables 79 



Table 3. DCT Subtable Formats (cont.) 

Subtable 
Address Contents Length 

DCT5 Bit 4 = error message given (key-in pending). 
(cont. ) 

Bit 5 = unused 

Bit 6 = SIO was given while device was in manual mode. 

Bit? -= Unqueued 10EX on this device. 

DCT6 Pointer to queue entry representing current request. Byte 

DCT? Command list doubleword address. Halfword 

DCT8 Handler start address. Word 

DCT9 Handler cleanup address. Word 
• 

DCTlO Device activity count (used for I/o Service reentrance testing). ~~_t~u .. 7 Word 
i 

DCTll Timeout value (used to abort request when no interrupt occurs). Word 

DCT12 Ala status (or end action control word for unqueued 10E~. ,.....,..0 ,,,,\? Word 
007 0,_,-,._., 

/'. ') ~~:~ ,,"?0 / 

DCTl3 TDV status. 
4 iYL, ~! ~} ~t) (" 

~ , Doubleword 
f 

DCTl4 STOPIO (background only) count. Byte 

DCTl5 STOPIO (all system I/O) count. Byte 

DCTl6 The five-character device name (e. g., CRA03) preceded by the three Doubleword 
characters "e!!". 

DCT1? Retry function code (for error recovery) and continuation code. Halfword 

DCT19 Ala condition codes. Byte 

DCT20 TDV condition codes. Byte 

DCT20A TIO condition codes. Byte 

DCT2l TIO status. Halfword 

DCTSDBUF Side-buffer address. Word 

DCTMOD Device model number, EBCDIC. Word 

DCTMODX Device model number, decimal. Halfword 

DCT#ERR Number of I/O errors. Word 

DCT#IO Number of I/o starts. Word 

OCT JID Job 10 for reserved devices. Byte 

DCTRBM Bit 6 = 1 means DED DPndd, R keyin is in effect. Byte 

80 General System Tables 



SYSGEN DCT Consideration 

System Generation allocates the space for the DCT subtables. Initial values are defined for the following entries 
{all other entries are initially zero}: 

DCTl As specified by :DEVICE command 

DCT1 P As specified by :DEVICE and :CHAN commands. 

DCTlA As specified by :DEVICE and :CHAN commands. 

DCT2 As specified by :DEVICE and :CHAN commands. 

DCT3 As specified by :DEVICE command. 

DCT4 As specified by :DEVICE command. 

DCT7 Pointer to SYSGEN allocated space for command list. 

DCTl4 1 if (DEDICATE, F); otherwise, zero. 

DCTl5 1 if (DEDICATE, X); otherwise, zero. 

DCTl6 II e! !yyndd" where yyndd comes from the :DEVICE command. 

DCTSDBUF Pointer to side buffer ~ 

DCTMOD EBCDIC model number. 

DCTMODX Decimal model number. 

DCT JID X'FF' if reserved device; otherwise O. 

The index 0 entry of each subtable is not used as a true table entry because of the nature of the BDR instruction. 

DCT7 points to the space allocated by SYSGEN for the command list for the device. The area must begin on a 
doubleword boundary and have a word length as follows: 

Magnetic Tape (7T and 9T) 8 words 

Keyboard/Pri nter 

Card Reader 

Card Punch (7160) 

Card Punch (7165) 

Disk 

Disk Pack 

Paper Tape 

Other Devices 

Line Printer 

Plotter 

10 words 

2 words 

74 words 

2 words 

4 words 

6 words 

8 words 

8 words 

4 words 

2 words 

Halfword 0 of DCTl is set by SYSGEN to contain the number of devices (DCT entries) in the DCT table. 

Channel Information Table (CIT) 

The Channel Information Table consists of parallel subtables, each with an entry per channel. There is one channel 
per controller connected to a MIOP, and one channel per SlOP. The "channel" concept is used since there cannot 
be more than one data transfer operation in process per channel. I/o device requests are queued on a per-channel 
basis. System Generation allocates these subtables as shown below: 

Address Usage Size 

CIT1 Queue head Byte 

CIT2 Queue tail Byte 

CIT3 Switches: Byte 

Bit 0 - Subchannel P busy 
Bi.t 1 - Subchannel A busy 

General System Tables 81 



Address 

CIT3 
(cont .. ) 

CIT5 

CIT6 

Usage 

Bit 2 - Subchannel P held 
Bit 3 - Subchannel A held 
Bit 4 - Dual-access channel 
Bit 5 - Preferred channel (0 = Pi 1 = A) 

Holding Request 0 pointer for subchannel P 

Holding Request 0 pointer for subchannel A 

The CIT subtable entries are accessed by using 

LB, R CITN, X 

where Register X contains the index (l-N). 

Size 

Byte 

Byte 

The index 0 entry is not used because of the nature of the BDR instruction. 

110 Oueue Table (100) 

The VO Oueue Table consists of parallel subtables each with an entry per queue entry. These tables are accessed 
in the same manner as OCT and CIT by using an index. As is true for OCT and CIT, the index 0 entry of each sub­
table is not used as a true queue entry. 

System Generation allocates and initializes the 100 tables as given in Table 4. 

Notice that 1002 index 0 is initialized by SYSGEN. This byte is used and maintained by the I/o system as the 
IIfree entry pool II pointer. By initializing 1002 as shown, SYSGEN links all entries into this pool. 

1001 index 0 is initialized by SYSGEN to the maximum number of queue entries allowed to the background. 

1003 index 0 is initialized to 0, since this byte is used and maintained by the I/o system as the current number of 
queue entries in use by background. 1004 (index 0) is the total number of 100 entries. 

Table 4. 100 Allocation and Initialization 

Address 

1001 

1002 

1003 

1004 

1005 

IOQ7 

IOQ8 

Contents 

Backward Link 

Forward Li nk 

Switches 

Bit 0 = 1 - request busy. 

Bits 5-7: 
= 000 - Both subchannels required. 
= 001 - Subchannel P only. 
= 010 - Subchannel A only. 
= 100 - Use either subchannel. 

Function Code (:DOT table index) 

Current Function Step 

Devi ce Index 

Bi t 1 = 0 - byte add ress of buffer. 

Bi t 1 ::::: 1 - DVI address of command 
chain (Queued 10EX). 

82 General System Tables 

Initial Value 

0 

Entry M conta ins M + 1 for 
N > M~O. Entry N contains O. 
N is the number of queue entries. 

0 

0 

0 

0 

0 

Length 

Byte 

Byte 

Byte 

Byte 

Byte 

Byte 

Word 



Table 4. IOQ Allocation and Initialization (cont.) 

Address Contents Initial Value Length 

IOQ9 If IOQ8 bit 1 = a - byte count of 
buffer. 

If IOQ8 bit 1 = 1 - time-out value 
for command chain. 

IOQ10 Maxi mum retry Count a Byte 

,r"\r"\" Retry count 0 Byte IV'->lll 

IOQ12 Seek Address a Word 

IOQ13 End-Action data a Doubleword 

Word 1 

Byte a is cleanup code where value: 

I 
1 = POc;t c;tatU5 !!"! FPT. 

I 

I 
2 = Post status in DCB. 

I 3 = Transfer to address specified 
in bits15- 31. 

4 = No end action (only available 
to the monitor). 

Bi t 8 = control devi ce read. 

Bit 9 = el'ld action data in word 2. 

Bit 15-31 = FPT completion-status 
word address for cleanup-code 1; 
DCB address for cleanup-code 2. 

Word 2 

If word 2 = 0, parameter not present. 

If byte 0 = X'7F ', bits 15-31 are 
user IS signal address. 

If byte 0 = X'FF ', bits 15-31 are 
user's endaction address. 

If word 21 0, and byte 01 X'FF ' or 
X'7F ', byte a = end-action interrupt 
group code, byte 1 = interrupt address 
minus X'4F', bits 15-31 contain level 
bit for interrupt. 

IOQ14 Priority a Byte 

IOQECB ECB pointer in an ECB system (i.e., a Word 
when the #ECBassembly option is set). 

Otherwise (#ECB option not set) it has 
the following format: 

Bi ts 0-7 Load module ID. 

Bits 8-11 Cleanup code. 

Bit 12 = 1 if original request was a 
PFIL. 

General System Tables 83 



Table 4. 100 Allocation and Initialization (cont.) 

Address Contents Initial Value Length 

IOQECB Bit 13 = 1 if bits 15-31 contain a 
(cont. ) pointer to a completion 

status word. 

=0 if bits 15-31 contain an 
FPT address (cleanup 
code = 1) or a DCB address 
(cleanup code = 2). 

Bit 14 Not used. 

Bits 15-31 DCB/FPT address or 
pointer to completion 
status word. 

IOOERROR Error-log buffer pointer 0 Word 

Since the Oth entry is never used in subtables whose entries are words or doublewords, it is not necessary to allocate 
space for this entry. If the 2N words for 10013 are allocated beginning at location ALPHA, 10013 is given value 
ALPHA-2. Thus, 10013 may actually point into another table but presents no problem because IOQ13 will never 
be accessed with index O. 

It should be noted that none of the subtables need be positioned in any particular relationship to each other. They 
may be allocated anywhere in core with the restriction that Doubleword Tables begin on doubleword boundaries. 

Blocking Buffers 

Blocking buffers are 256-word buffers that are directly accessible only by the monitor. They are primarily used for 
blocked and compressed file I/o and for accessing file directories in OPEN/CLOSE service calls. 

Each blocking buffer pool is controlled by means of a Blocking Buffer Control Word Table (BBCWT) that contains a 
one-word entry for each blocking buffer. The BBCWT has the format shown below. 

Number of blocking buffers 

Blocking buffer 1 entry 

Blocking buffer 2 entry 

· · · 

Each entry is of the form 

RFT IWIO----O Blocking buffer start address 

o 7 8 9 14 15 31 

where 

RFT is the index of the RFT entry for the fi Ie currently using this buffer. 0 signifies that the buffer is not 
in use. X'FF i means the buffer is in use, but not by any particular file. 

W is set if the blocking buffer has been written in 

84 General System Tables 



Foreground and background tasks have different blocking buffer pools and, therefore, have different BBCW tables. 
K:FPOOL contains an address pointer to the BBCW table used by all foreground tasks in the system. The number and 
location of blocking buffers avai lable to foreground tasks is determined at SYSGEN by the FFPOOL parameter and 
cannot be changed except by SYSGEN. 

K:BPOOL contains a pointer to the BBCW table used by background tasks. The number and location of the back­
ground blocking buffers may vary from job step to job step. 

The foreground/background blocking buffer structure is shown below: 

K:FPOOL} ___ 
K:BPOOL 

N 

Entry 1 

1:- .. _-- ") 
L.lllly 4 

Entry N 

Blocking 
L __ ££ __ 1 
UUIICI I 

Blocking 
buffer 2 

Blocking 
buffer n 

BBCWT 

General System Tables 85 



Master Dictionary 

K:MASTD (location X' 14A' ), contains the address of the Master Dictionary. This serial table is indexed by area 
number where: 

Area DW Index Value Write Protect Code (WP shown below) 

SP 0 4 

FP 4 

BP 2 4 

BT 3 2 

XA 4 5 

CK 5 3 

D1 6 1 or 2 (specified during SYSGEN) 

D2 7 1 or 2 

DF 20 1 or 2 

The format of the t.Aaster Dictionary (2 words/entry) is 

No. sectors No. words 
A 0--0 WP DCT Index per track per sector 

2 Starting disk Address 
t Ending disk Address 

t 

o 

where 

A 0 - area is not allocated. 

1 -area is allocated. 

,r 
67 

1 .. 1, 
15161718 

NO-directory for this area is not in use; may be updated. 

1 - directory for this area is in use; may not be updated. 

,I, .. I, 20212324 

WP 1 - (F) only foreground can write in this area (unless SY key-in). 

2 - (B) only background can write in this area (unless SY key-in). 

3 - (M) only the Monitor can write in this area. 

= 4 - (N) no one can write in this area unless SY key-in. 

= 5 - (X) only IOEX can write in this area. 

31 

If the system is assembled to include large capacity disks (#MDSHIFT>O), the sector numbers will be shifted one or 
more bit positions as determined by the assembly parameter #MDSHIFT. 

tStarting and ending disk address is given as a sector number (relative to start of the disk). 

86 Genera I System Tables 



Operational Label Table (OPLBS) 

The Operational Label Table is a parallel table with the format 

OPLBS 1 z z halfword 

o 78 15 

where ZZ is the operational label in EBCDIC 

OPLBS2 y Byte 

o 7 

where Y is the DeT or RFT index of the permanent assignment (bit 0 = 0 if DCT index; bit 0 = 1 if RFT index). 
There is an OPLBS2 table for each active job, which is accessed by an address pointer in the associated job's JCB. 
The OPLBS2 tabie for the RBM job contains the permanent assignment of each operational label. When a new job 
is activated, the OPLBS2 table it receives is a copy of the OPLBS2 table for the RBM job at that time. 

OVLOAD Table (for RBM Overlays Only) 

The OVLOAD Tabie is a parai iei tabie with the format 

OVLOAD1 I Byte Si ze of Overlay I halfword 
I J 
0 15 

OVLOAD2 I Z Z Z Z I word 

0 31 

where ZZ = first four characters of name of overlay in EBCDIC 

OVLOAD3 I Granule Number I byte 

o 7 

where the specified Granule Number is in the file RBM. 

The number of entries in OVLOAD is in first halfword of OVLOAD 1. 

Write Lock Table (WLOCK) 

Assuming no checkpoint, WLOCK contains write locks for the current core allocation. After a checkpoint the write 
locks wi II be restored from this tabie. 

WLOCK ,0 

t 1 

-+2 

16 

WL WL 

WL WL 

WL WL 

o 1 234 

I No. entries for allocated core 

I 
t 

15 16 31 

WLOCK + 1 always contains the write locks for the first 8K of memory. The table is always 17 words in length but 
the first word reflects the number of registers that must be output following a checkpoint. 

General System Tables 87 



RBM Dispatcher Level Inventory (ROll) 

RDLIPRIO Priori ty 

0 7 

RDLISTI STI Index 

0 7 

RDLITCB STI Index TCB Address 

0 78 31 

RDLIADD RDL Interrupt I ocati on 

0 15 

RDLILVLl Level Bits (RDL) 

0 15 

RDLIGRP1 1000010 01 Group I 
0 15 

RDLILVL2 Level Bits (STL) Zero if null 

0 15 

RDLIGRP2 1000010 01 GRP 
1 

Zero if null 

0 15 

where 

RDLIPRIO is the priority, in internal byte format, to which RDL is connected. This is the RDL interrupt 
location -X'4F'. All tasks with RDLIPRIO + n < Priority < RDLIPRIO + n + 1 fall within level n. Legal 
secondary priority levels are C(RDLIPRIO) + 1. Entry 0 or RDLIPRIO is O. Priority is set by SYSGEN and 
is not altered during execution. 

RDLISTI is the task ID of the highest priority task operating within the leveL Entry zero contains the over-
all STI head of the dispatcher chain. Each subsequent entry contains the subchain head that enters the 
dispatcher chain at the first task within the level. All entries are set to the first permanent CP-R 
task STI by SYSGEN. 

RDLlTCB is the STI index and TCB address for the dispatcher level. 

RDLIADD is the core address of the RDL interrupt location in which to store the XPSD. It is set by 
SYSGEN and is not altered during execution. RDLIADD entry 0 contains the number of RDLI entries. 

RDLILV Ll are the level bits for the RDL to be used on Write Direct commands. 

88 General System Tables 



RDLlGRP1 is the address fie Id for a Write Direct interrupt control to trigger the RDL, including the trigger 
and group codes. 

RDLlLV L2, RDLlGRP2 are the level and group codes to trigger STL in the same format as RDLlLV Ll and 
RDLlGRPl. All level and group codes are set by SYSGEN and are not altered during execution. 

Associative Enqueue Tabie (AET) 

Purpose 

The AET provides a record of the enqueues done for controlled items by system services. It is used in conjunction 
with the Enqueue Definition Table to access controlled items. 

Serial in the JCB or linked from the JCB depending on space requirements or linked from the LMI. Monitor cell 
K:JAET contains the maximum flumbt::i- uf [~~Qs allowed rur each job on system-level controiled items. The system 
value S:TENQ is equated to the maximum number of ENQs allowed for each load module on job-level controlled 
items. 

Logical Access 

The AET is located via a pointer in a fixed position in the JCB or through a pointer in the LMI. Byte zero of the 
pointer word contains the number of words in AET. 

Overvi ew of Usage 

The AET table may be included in the JCB fixed portion or may be acquired separately from TSPACE and linked from 
the JCB or LMI depending on space requirements at the time the JCB is created. Byte zero of the pointer word con­
tains the number of words in the AET and bytes 1-3 contain the address of the start of the table. 

At task or job termination, a flag in the JCB will indicate which usage applies and will release space appropriately. 

Associative Enqueue Table (AET) Format 

word 0 

word 1 

where 

Flags: bit 0 = 1 
=0 

bit 1 = 1 
=0 

Flags I 
0 78 

Job ID I 
0 78 

Job level AET 
Task level AET 

System level EDT 
Job level EDT 

EDT Address 

31 

ECB Address 

31 

General System Tables 89 



bit 2 = 1 
=0 

. bit 3 = 1 
=0 

bit 4 = 1 
=0 

bit 5 = 1 
=0 

bit 6 = 1 

bit 7 = 1 

ECB is for immediate enqueue 
ECB is for an asynchronous enqueue 

Sharable enqueue 
Exclusive enqueue 

Enqueue granted 
Enqueue pending 

AET entry in use 
AET entry free 

Dequeue CAL in progress 

Enqueue CAL in progress 

ECB Address: The location of the ECB created to wait for an ENQ. At check time, this address is set to 
zero. ENQ is set to 1 if the post is normal. The AET is freed if the post is not normal. 

EDT Address: The location of the EDT of the controlled item which was enqueued. 

Job ID The identification of the job in which the item was enqueued. 

la*-Controlled Tables 

The tables shown in the subsection are task controlled, i. e., contain task related data. Figure 42 shows the over­
all relationship of the task-controlled tables and data. 

Load Module Inventory (LMI) 

Usage for a Program Usage for Ci PUBUB 

LMINAME (LMIl) 

name 

(Doubleword) I 
Load module 

o 31 

Publib 

name 

o 31 

90 General System Tables 



PCBPOINT 

UTS 
PCB 

Flags 
OVLOAD 

M:SL 

~ I ~ll _CC_B ----J11 Lr-----_~ rl_DC_B ----' - ! DCBTAB ~ 
......... ----..... etcoW,---D-C-B-----. 

I 

Interrupt L OC I-------.-----L--.I 
TCB 

TCBPOINT 

STCB 

·1 ACI 

1 1 OVI 

STI Overlay entry 
in monitor 

Task entry 
TSPACE 

AET F EDT, 
ECBs 

~ 
JC etc. h . 

K:RTS S-ECB ~-caon 

I J J I LMI 
sir tasks 

A' ~ etc. 

I I 
r-chain R-ECB 

[I> Interrupt loc 

~ 
Load s-tasks 
module 

E> CAL trap loc entry 

~ Address of PCB 

L 
or Si or 0 

G> Address of STCB 
- --

G> STI index (Task 10) 

Q> SJI index (Job ID) 
Publib entry 

~ LMI index (Load Module 10) 

[ec> LMI index (Publib 10) 

[B> JC B Address EDT's 
ECB's 

'on an arrow indicates an entry other than the one shown 

Figure 42. Relationship of Task Controlled Data 

General System Tables 91 



Usage for a Program Usage for a PUBLIB 

LMIPCB, LMIFWA (LMI2) (Word) 

1
0 ~Is PCB Address (fwa) I 

0 31 

1
0 ~Is fwa 

0 31 

LMIJID, LMILWA (LMI3) (Word) 

I Job 10 )s Iwa I 
0 31 

10 01 Iwa 

0 7 8 31 

LMlPL, LMICTXT (LMI4) (Word) 

I PLl 

7 1s PL2 

J16 
PL3 

2)24 
PL4 I 

0 31 

1
0 01 
0 31 

LMISTAT (LMI5) (Halfword) 

I Flags I 
0 15 

Flag 
1
0 01 

0 7 8 15 

LMISDT (LMI6) (Word) 

I Task 10 )~ 01 
0 31 

1
0 01 
0 31 

LMIRTS (LMI7) (Doubleword) 

I 

RTS Stack Control DW 

I I 
I 

15
1

16 
I 

0 31 

I: :1 
0 31 

LMlMAXS (LMI8) (Byte) 

I S-ECB 1 
0 7 

1
0 01 
0 7 

92 General System Tables 



Usage for a Program Usage for a PUBLIB 

LMltv\AXR, LMIUSE (LMI9) (Byte) 

I R-ECB I 

I 

I 

0 7 

Users 

0 7 
LMIAET (Word) 

I I 

AETS I AET Address I 
0 7'8 31 

1
0 ----------01 
0 31 

LMISECB (Word) 

Count Ja S-ECB Head 
1 

0 31 

1
0 
f\ v 31 

LMIRECB (Word) 

Count )a R-ECB Head 
1 

0 31 

1
0 ------01 
0 31 

LMINAME (LMIl) 

For user load modules - Task Name: User load module name, as received on the INIT or RUN call. 

For Publibs - Publib Name: The file name of the Publib load module. The task or publib name is stored by task 
initiation and remains unaltered during task execution. 

LMIPCB, LMIFWA (LMI2) 

For user load modules - PCB Address: The location of the load module's PCB. This is also the first word address of 
the load module. The PCB address is stored by task initialization and remains unaltered during the task's execution. 
When central CONNECTs are requested to a primary load module, the PCB address and flags in the LMI entry are 
used for the TCB. The fwa is used for memory management during later task loads. 

For Publibs - fwa: The first word address of the Publib load module. Fwa is set by task initiation when the Publib 
is loaded and remains unaltered during the Publib life. 

LMIJID, LMILWA (LMI3) 

For user load modules - Job ID: The identification of the job to which the load module belongs; also the index of the 
job's entry in SJI. Load modules can only exist once within a job. This value is set by task initiation and remains 
unaltered during task execution. 

For both User and Publib Load Modules -Iwa: The last location used. The Iwa is set by task initiation and remains 
unaltered during task execution. It is used to manage memory during later task loads. 

General System Tables 93 



LMIPL, LMICTXT (LMI4) 

For user load modules - PL 1, PL2, PL3, and PL4: These bytes each contain a load module 10 (index into LMI) of 
the Publibs being used by the load module. A zero indicates that the byte is not used. They are set by task initia­
tion, remain unaltered during task execution, and are used by task termination to decrement Publib use counts and 
eventua Ily release Publ ibs. 

lMISTAT (lMI5) 

Status Flags: 

Bit Meaning if Set (1) 

o Termination has begun (TTFINAL entered). 

Connected to CAL2. 

2 Connected to CAL3. 

3 Connected to CA L4. 

4 Background load module. 

5 Secondary (dispatcher scheduled) load module. 

6 Abnormal termination requested. 

7 For a module being loaded, load was requested by INIT, not RUN. 

8 Load module is to be loaded. 

9 PUBLIB that may be used by foreground. 

10 PUBLIB that may be used by background. 

11 Termination (normal or not) requested. 

12 PUB LIB that is to be released. 

13 Load module that is running. 

14 load module that is waiting for memory to load (RUN queued). 

LMISOT (LMI6) 

For user load modules - Task 10: STl index for the task if it is attached to a dispatcher. (This is the case for back­
ground, the RBM task, and foreground tasks during initiation.) Otherwise, zero. 

LMIRTS (LMI7) 

For user load modules - RTS Stack Control OW: The stack control doubleword for the load module1s RBM temp stack. 
Set up during loading, from information in the load module header. Used as a stack control doubleword by monitor 
services executing in the task1s context. Accessed indirectly through K:RTS for dispatched and centrally connected 
tasks. 

LMlMAXS (LMI8) 

For user load modules - S-ECB: The maximum number of solicited ECBs to allow any single task running in the load 
module to have simultaneously. This is set at task initiation from the program header. As new S-ECBs are created, 
and the current S-ECB count incremented, it is compared to this limit and the load module aborted if the maximum 
is exceeded. 

LMlMAXR (LMI9) 

For user load modules - R-ECB: The maximum number of request ECBs to allow any single task running in the load 
moduie to queue. Used as S-ECB maximum above. 

LMI9, entry zero, contains the number of entries in LMI. 

94 General System Tables 



LMIAET 

AETS (byte 0): The length of the Associative Enqueue Table, in entries. 

AET Address: The first word address of the Associative Enqueue Table for task-level controlled items. The AET 
space is reserved as each load module is initialized. Enough space is acquired to hold the maximum number of 
ENQs as specified in the task's load module header. This control word does not change during task executions. At 
task termination, the AET space is released. 

LMISECB 

Count (byte 0): Current count of the number of ECBs in the solicited ECB chain. 

S-ECB chain head: Address of the oldest solicited ECB in the S-chain. When a load module is initially loaded, 
the solicited ECB chain is empty. As service requests are made which create $-ECBs, they are added to the S-chain, 
and the count is incremented. If the current count exceeds the maximum allowed as specified in LMIMAXS, ex­
ecution of a II the tasks in the load module is immediately suspended (primary tasks are disconnected), and the load 
module is abnormally terminated. As services are checked, the S-ECB is de-linked from the chain and the count is 
decremented. 

I ~ATDC"'D 
L.IVU'H ... '-U 

Count (byte 0): Current count of the number of ECBs in the request ECB chain. 

R-ECB chain head: Address of the highest-priority request ECB in the R-chain. When a load module is initially 
loaded, the request ECB chain is empty. As service requests are made of the load module (signals if user load 
module), they are added to the request chain in priority sequence, with the last request being placed at the end 
of its priority group. The current R-ECB count is incremented and compared to the maximum allowed in LMlMAXR. 
If it is greater, all member tasks are suspended and the load module is abnormally terminated. As the R-ECBs are 
posted by the R-task, they are delinked from the R-chain and the current count is decremented. 

System Task Inventory (STI) 

Purpose 

The System Task Inventory is the key to all controls for tasks. It contains an entry for all primary and secondary 
user and RBM tasks currently defined. For each task, it contains the identification of the ta'sk's job and load module, 
priority, and linkage to other control blocks. 

Parallel in monitor TSPACE 

Logical Access 

An STI entry is addressed using the task 10 as an STI index into each of the parallel subtables. 

If a task is in execution, the task ID is in byte 0 of TCB POINT. 

If a task is not in execution and the task 10 is not known, then: 

Primary tasks can be uniquely identified by a search for equality on the interrupt priority to which they are 
connected. 

Secondary tasks must be located by searching the LMI for a task name/job 10 match. The LMISOT contains the 
secondary task 10. 

General System Tables 95 



Overview of Usage 

The STI table space is allocated by SYSGEN, reserving enough entries in each subtable to satisfy the TASKS option 
on the :RESERVE command, plus a fixed number for internal RBM tasks. The RBM task entries are initally set by 
SYSGEN/IPl. The user entries are all zero. 

STILMID entry 0 contains the number of entries in the STI. 

STISPCE 

STIXRTS 

STIRTSB 

STIJID 

STILMID 

STIPRIO 

STITCB 

STIOVID 

Length 

0 

0 

0 

I 
32 

SJI index 

0 

LMI index 

0 

o 

)8 Li nk to fi rst temp space area 

Interrupted tasks K:RTS pointer 

7 

7 

7 8 

K:RTS of last CAL 

for nested CALs 

Software 
priority 

rCB/STCB Address 

o 1 2 6 7 8 

Active OVID 

012 15 

STICOUNT Wait count 

o 7 

STITIME Critical timeout threshold 

31 

31 

31 

63 

31 

o 31 

STISTAT 

STIDNXT Display chain 

96 General System Tables 



STISPCE 

Head of the TSPACE chain. The chain represents all of the temp space that has been obtained by the task. 

STIXRTS 

Location in which the task's RTS pointer is saved when interrupted by a higher-priority centra Ily connected task. 

STIRTSB 

RTS Control Doubleword at the last entry to a CAll processor. This address is the STIRTS value after CAll entry 
has stored the caller's RO- R15, PSD and context. It is used by the monitor to quickiy iocate the register vaiues for 
effective address resolution or error value setting, and by CAll EXIT to ignore residual data in RTS. STIRTSB is set 
to 0 at task initiation and should always be 0 except when the task is within CAll processing. 

STIJID 

Identification of the job to which the task belongs, and index into the SJI. This is set when the task is defined, 
and is not altered during execution. 

STILMID 

Identification of the load module to which the task belongs, and index into the LMI. This is set when the task is 
defined, and is not a Itered during execution. 

STIPRIO 

Priorities (bits 0-15): 

If the task is primary: 

Byte 0 is the address corresponding to the interrupt level, -XI4F'i byte 1 = X'OO'. 

If the task is secondary: 

Byte 0 is the address -XI4F' of the CP-R dispatcher level at which the task is dispatched and executed. 
Byte 1 is the software priority within the dispatcher level (X'Ol' through X' FfI, where X'FE I = control 
task and X'FF' = background). 

This value is set when the task is defined. If the task is secondary, it will be altered as the task's priority is altered 
by MODIFY calls or internal RBM priority-changing logic. 

START (start pending on task): 

The secondary task has been STARTed, and the start has not been honored. This bit is set by the START CAL 
processor and reset by the dispatcher when it causes the reversing of the STOP bit in STISTAT. 

All (Dispatch using the alternate PSD): 

The secondary task wi II be dispatched using an alternate PSD the next time. The current PSD wi II be found 
in the Alternate PSD after dispatch and Alt wi II be reset. 

RDLlDX (ROll index): Dispatcher ID. 

General System Tables 97 



STlTCS 

Used bit (bit 1) 1 - entry is being used. 
o - entry is free. 

Term (bit 6) = 1 - the task is executing in the Task Termination phase. 

TCB/STCB address is TCB address if task is primary, STCB address if task is secondary. 

Task initiation and CONNECT acquire STI entries and store the TCB address or STCB address. These fields are con­
stant throughout the task's life. The remaining indicator bits are initialized to zero and are modified during execu­
tion by service calls. Task termination resets STlTCB to zero, releasing all task control information. 

STIOVID 

Active OVID is the index into the Monitor Overlay Inventory. 

STICOUNT 

Wait count: The number of ECBs in the S-ECB chain, which must be posted prior to the task leaving the wait state. 
Only ECBs with the WD (Wait Decrement) bit set wi II decrement the wait count at posting time. If the wait count 
is nonzero, the task is roadblocked. STICOUNT is zeroed at task initialization, is set nonzero by the CALs that 
cause waits and task termination, and is decremented by the ECB posting logic. 

STITIME 

Critical Timeout Threshold: When placing any task into a roadblocked or wait state, the ECBs being checked 
(WD = 1) are scanned and the most critical time threshold is extracted and placed in STlTlME. On subsequent 
timeout passes, the threshold is compared to the value of K:UTIME to detect timeouts. If a timeout has oc­
curred, the ECB chain is scanned again to locate any or all timed-out events, and the posting is done with a com­
pletion code of X'671. If wait count is sti II not zero, the setting of the critica I time is repeated. 

STISTAT 

Status flags that inhibit dispatching of the task, as described below. 

The dispatcher examines the status of all tasks in the dispatch chain. If the content is nonzero, the task is con­
sidered ineligible for dispatching. 

Primary tasks always have a status of X'80 ' , as set by CONNECT. Secondary tasks will have an initial status of 
XIOO I or X'20'. The secondary task status bits are altered during execution as described below: 

Status Bit 

Primary 0 

Stopped 2 

In execution 3 

In initialization 4 

STIDNXT 

Connect CAL 

STOP, EXIT task initiation 
without execution 

Dispatcher when dispatching, 
loading PSD and registers 

Task initiation 

Reset by 

Task Termination 

ST ART, task initiation with execution 

Dispatcher when returning PSD and registers 

Task initiation 

Dispatcher Chain - the STI index of the next task in the dispatch chain. Entry 0 contains the chain head to the 
highest priority task in the system, primary or secondary. 

98 General System Tables 



This chain continues through all tasks in the system. It is used by the dispatcher to locate the next secondary task 
to execute and the timeout routines to locate those primary services that need timeout. 

As each task is created, it is added to the dispatcher chain and remains as a member of the chain until termination. 
Its position within the chain is changed as it changes priority or enters a wait state. A value of X'OO' is the end 
of the chain. 

Task Control Block (TCB) 

Purpose 

The TCB provides the context save area, system pointers, partial entry linkage and entry PSD for centrally connected 
primary tasks. Each primary task has its own TCB. 

Type and Location 

A TCB is a serial table in the users memory at a location provided by the user in the connect call. 

logical Accp.<;<; 

The TCB for a primary task is pointed to by: 

• The XPSD in the interrupt location. 

• TCBPOINT during the task's execution. 

• The STI entry corresponding to the primary task. 

Figure 43 illustrates the logical links between the TCB and other system control data. 

Overview of Usage 

The TCB content is initialized by the CONNECT service routine. When the primary task is entered, the context of 
the interrupt task is saved in the TCB, including the interrupted-tasks TCB and PCB pointers which are swapped with 
those of the primary task that is being entered. When exiting the level, the central exit logic swaps the TCB and 
PCB pointers which restores the reB to the original values. The registers and P5D are also restored. 

TCBPOINT 
TCB PCB 

STI 

Tasks Entry 

Interrupt location 

Figure 43. Relationship Between a Primary Task Control Block and Other Control Blocks 

General System Tables 99 



Task Control Block (TCB) Formlt 

Word 0 
Saved PSD 

~------------------~~ 

2 
Intermediate PSD 

3 

4 STM,O 7CB t 10 

5 BAl, R1 RBMSAVE 

6 Flags PCB Address (real) 

7 Task ID TC B Address (rea I) 

8 
Entry PSD 

9 

10 

11 Register Save Area 

25 

Saved PSD (words 0, 1) is the PSD of the task the primary task interrupted at its last entry. 

Intermediate PSD (words 2,3) is the PSD loaded by the XPSD command at entry. The contents of this PSD 
are set by CONNECT to all zeros with these exceptions: 

Instruction address - TCB + 4 

Condition Code = the number of registers to be saved with the STM command in TCB + 4. CC = 0 if the 
CONNECT command specified that all 16 registers be saved via the central connection. 

Since the XPSD does not alter the register block value in the PSD but leaves that of the interrupted 
task (LP = 0), the Register Block Pointer = 0, 

STM, BAL commands (words 4,5) are commands executed as part of the central connection entry logic. 
STM causes the number of registers requested to be saved, and BAL enters the remainder of the central con­
nection logic (RBMSAVE). 

Flags (word 6) have the following meaning: 

Bi t 0 = 0 for user task 
= 1 for RBM task 

1 = 0 for foreground task 
= 1 for background task 

2 = 0 for primary task 
= 1 for secondary task 

3 reserved 

4 reserved 

5 = i if the task is to be reentered instead of exited at EXiT. This bit is transient. It is set when end­
action triggers are performed, and reset during RBMSAVE and when reentry occurs. It can exist 
only in TCB + 6, 

100 General System Tables 



PCB Address (word 6) is the address of the PCB in the load module to which the task belongs. 

Task ID (word 7) is the index into STI of the task's entry. 

TCB Address is the address of the first word of the TCB. 

Note: When a task is active, flags, PCB address, task ID and TCB address contain the values for the inter­
rupted task versus the primary task corresponding to the TCB. 

Entry PSD (words 8,9) is the PSD to be loaded when entering the primary task. All bits are zero exce-pt 
those specified otherwise on the CONNECT call as follows: 

Master/Slave - as specified 

Decima I and Arithmetic Masks - as specified 

Instruction Address - callers start address 

Write Key - 10 (foreground) 

CI, II, EI - inhibits as specified 

Register Save Area (words 10 through 25) are the save area for the registers of the interrupted task. 

Secondary Task Control Block (STCB) 

Purpose 

The STCB contains all controls for software scheduled secondary tasks which reflect the execution status and memory 
usage of the task. 

Location and Type 

The STCB is a serial control block in TSPACE. 

Log i ca I Ac cess 

The STCB is pointed to by the following: 

TCBPOINT (during task's execution only) 

STI entry corresponding to the secondary task 

The XPSD in the interrupt location corresponding to the RBM Dispatcher Level (RDL) immediately above the Task 
Level (STD) (during execution only). 

Figure 44 illustrates the logical links between the STCB and other system control data. 

Overview of Usage 

A user STCB is created by task initiation if the load module requested is secondary. RBM task STCBs are included 
in the resident portion of the task's code, as are all control blocks "lower than II the STCB. The initial STCB con­
tent set by task initiation is described for each data element, as is the element usage. The STCB is used by the RBM 
control functions and dispatcher during the life of the task. STCB space is released by task termination. 

General System Tables 101 



J TCBPOINT 
STCB PCB 

STI t---

'-- AST 

,..- Tasks Entry -

............. ~ ACI 

XPSD of Dispatch Level r 
Figure 44. Relationship between Secondary Task Control Block and Other System Control Data 

Secondary Task Control Block (STCB) Format 
-- --

o 
r--- Current PSD, Secondary Task -

2 
t-- Intermediate PSD -

3 

4 STM, 0 STCB + 10 

5 BAL, Rl RBMSAYE 

6 

7 

~-- , 
Flags PCB Address 

c------ j . 
Task ID STCB Address 

1------- -----

8 
r--- Entry PSD to Post Dispatch Processing -

9 

10 
",,'7' Current Registers, Secondary Task "",7 

25 

26 -

27 -

28 RDL Group Code I RDL Level Bit 

29 -

30 
r-- Alternate PSD -

31 

where 

Current PSD of the secondary task (words 0, 1) either the PSD to be loaded on the next dispatch (if not 
in execution), or that loaded on the last dispatch (if in execution). 

102 General System Tables 



Task initiation resets the initial PSD to all zeros except: 

MS = 0 if master mode. 
= 1 if slave mode. 

IA load module entry address. 

Write Key = 10 if foreground secondary task. 

Entries to RDL subsequent to dispatching the task save the current PSD. 

Intermediate PSD (words 2,3) a PSD to transfer control to real address STCB + 4. All other intermediate 
PSD bits are zero. Task initiation sets the intermediate PSD address which remains unaltered. 

STM and BAL commands (words 4,5) stored by task initiation to cause context saving and swapping via 
RBMSAVE after a task has been executing. These commands are set by task initiation and are not 
altered. 

Flag .. (word 6) thp tnc;k flooe; c;pt hv tne;k initintinn nc: fnllnwc:· 
- -- ....,- -- ,--- - -----._ .. --. -- ----- .. _-

Bit 0 = 0 for user task 
= 1 for RBM task 

1 = 0 for foreground task 
= 1 for background task 

2 = 1 for secondary task 

3 reserved 

4 reserved 

5 reserved 

The flags are not altered during the task's life. 

PCB Address 
altered. 

the address of the task's Program Control Block, which is set by task initiation and not 

Task ID (word 7) the identification of the secondary task and index into the task's STI entry. This ID is 
set by task initiation and not altered. 

STCB Address the 1-1 address of the STCB, set by task initiation and not altered. 

Note: Words 6 and 7 are swapped with PCBPOINT and TCBPOINT when a task is executing, as is done with 
primary tasks. Therefore, between the time a task is dispatched {in execution} and its status is returned 
to the STCB by an RDL entry, words 6 and 7 contain the dispatchers PCBPOINT and TCBPOINT values. 
When a task is not dispatched, its own values appear. "In-execution II is equivalent to a hardware level 
being active. The task is either executing, or waiting for higher task to drop its interrupt level and 
return to the lower priority task. 

Entry PSD (words 8,9) a PSD to transfer control to clean-up processing for tasks returning from an "in-
execution" state. After RDL is triggered and has saved context via RBMSAVE this PSD is loaded. It is 
all zeros except for IA which is the real address of RDLRTRN, is set by task initiation, and remains 
unaltered. 

General System Tables 103 



Current Registers (words 10-25) the registers to be loaded on the next dispatch (if not in execution), or those 
loaded on the last dispatch (if in execution). They are set randomly by task initiation and saved on all 
entries to RDl subsequent to the task being dispatched. 

Words 26,27 spare. 

RDl Group and level (word 28) the group and level bits of the RDL level under which the secondary task 
is currently queued. Set by the dispatcher queue maintenance routines. 

Word 29 spare. 

Words 30,31 alternate Program Status Doubleword or alternate PSD to be used the next time the task is dis-
patched if AL T is in the STI=l. When AL T is honored by the dispatcher, th is PSD and the current PSD in 
words 0 and 1 are swapped. 

Job-Controlled Tables 
The tables shown in this subsection are job controlled, i. e., contain data associated with the job level of control. 
Figure 45 shows the overall relationship of the job-associated tables and data. (Note that the OPLBS and AET tables 
were described in the "General System Tables" subsection, being both job and task related.) 

System Job Inventory (SJI) Table 

Purpose 

All jobs are known to the system by means of the SJI. It contains one permanent entry for the RBM job, one per­
manent entry for the background and one temporary entry for each foreground job active at a given time. For each 
job, it contains the EBCDIC job name, the JCB address, a bit indicating whether the SJI entry is in the process of 
being created, and length of the Job Control Block (fixed portion) in words. 

Parallel; in RBM system table space with a fixed number of entries. 

Logical Access 

The SJI table location is known via a DEF on the subtable names. The job ID is the SJI index into each of the par­
allel subtables. If the job ID is known, job name and JCB location are obtained by using the job ID as an index 
into the appropriate subtable. If job name is known, table lookup wi II produce the job ID and JCB location. The 
SJI entry for RBM is the first entry. The SJI entry for the background is the second entry (i. e., the RBM SJI index 
is 1; the background SJI index is 2). 

Overvi ew of Usage 

The SJI space is allocated by SYSGEN from RBM system table space. Space is reserved for the maximum length 
specified by a SYSGEN parameter that limits the total number of jobs that con exist at anyone time. This limit is 
some number less than 31, where one of the number is for background. In addition; one entry is made for the RBM 
system job (not one of the number specified). The background entry is also always made and is the default (1 entry 
plus the RBM entry) if no I imit is specified. 

104 Job-Controlled Tables 



SJI 

JCB address 

JCB 

L-....- Job 10 j 

AET Pointer 
----E {option of job initiat ion} 

JPT Pointer ~---0 (option) 

;--- BBCT Pointer 

OPLB 1 Pointer -~ OPLBS 11 (System table) 

- OPLB2 Pointer 

~ EDT 1----- EDT 1 EDT Pointers 
~ 

SOT Pointer I SOT I SOT - -
l J 

etc. 

-- OPLB2 Table 

~ BBCT Table 

JPT Table 

AET Table 

Figure 45. Relationship of Job-Associated Control Tables 

Job-Controlled Tables 105 



The RBM and background entries are initialized by RBM INIT. All other entries are initialized to zero. SJOB 
requests cause job management to make new entries for foreground jobs. KJOB requests and requests from task man­
agement cause job management to delete entries. The JOBS option of the SYSGEN:RESERVE command specifies 
the number of user (background plus foreground) SJI entries. 

System Job Inventory (SJI) Table Format 

Name Content 

SJIl JCB Address 

o 1 7 8 

o 

SJI2 
EBCDIC job name 

32 

SJI3 

o 1 2 7 

where L = 1 indicates job-initiation is in progress. 

31 

31 

63 

(SJI3, index 0 contains the maximum number of jobs allowed to be active at a given time, i. e., length 
of SJI.) 

Job Control Block (JCB) 

Purpose 

The JCB contains information sharable or common to all tasks in the job. Each job has one JCB pointed to from the 
SJI. It contains job 10, trap controls, pointers to JCB tables, chain headers for job-related chained tables, and 
JCB tables. The JCB is comprised of a fixed length portion and two variable length subtcbles: The JPT and theAET. 
The JPT length is a SYSGEN parameter and may be long, and the AET length is dynamic. Therefore, at job 
creation, the job initiation routines may elect to exclude one or both of these two tables (which are themselves 
serial tables) from the fixed portion of the JCB. Two JCB flags are provided to indicate their presence in the fixed 
portion or linking from the JCB. If present in the fixed portion of the JCB, the respective flag is zero and the table 
pointer contains the number of words in the table in byte zero and the address in the JCB in bytes 1-3. If linked 
from the JCB, the respective flag is set to one and the table pointer contains the number of words of TSPACE in byte 
zero and the address of the table in bytes 1-3. 

Serial; in RBM TSPACE wi th consecutive entries and I inked entries. 

Logical Access 

JCBs are pointed to from the SJI. Job ID is the index into the SJI. JCB data elements occupy fixed positions in 
the JCB or are linked from pointers in fixed positions in the JCB. The Job Operational Label Table (OPLB), and 
the Biocking Buffer Controi Tobie (BBCT) are part of the fixed portion of the JCB and are located by pointers in 
fixed locations in the JCB. The Enqueue Definition Table (EDT) and the Segment Descriptor Table (SOT) are tables 
whose entries are acquired as needed by tasks in the job. They are linked from pointers in fixed positions in the 

106 Job-Controlled Tables 



JCB. The Job Program Table (JPT) and the Associative Enqueue Table (AET) may be in the fixed portion of the 
JCB or may be linked from the JCB. 

Overvi ew of Usage 

The JCBs are allocated by job management from RBM TSPACE. Space is acquired when the job is initiated and 
released when the job is terminated. The JeBs for the RBM job and the background are estabiished in RBM INIT 
and are never released. The EDT and SDT entries are each linked in a chain from the JCB. EDT entries are ac­
quired and released by resource monogement. 

Job Control Block Format 

o 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

36 

37 

N 

N+1 

M 
M+1 

L 

Content 

o 1 2 3 4 5 6 7 8 131415 16 23 24 3 1 

rlags J JTrap Aaaress 

0 

01 No. Entries OPLB 1 Pointer 

°r No
. 

Entries OPLB2 Pointer 
j 

Entries 01 No. I BBCT Pointer 
I 

! 

0: Max. length JPT Pointer 

01 Max. length AET Pointer 

EDT Pointer - head 

EDT Pointer - tail 

0 

BBCT Blocking Buffer Control Table 
(25 words) 

OPLB2 Operational Label RFT or DCT 
index byte tabl e 

JPT Job Program Table 
(quadruple-word entries, DW bound) 

0 

0 

~ 

-

r---

OPLBSl 
system table 

These tables may not 
be contiguous to the 
J PT or to each other, 
in order that dynamic 
space may be more 1 J efficiently used. 

~0-------------------------------------------3~1 

Job-Controlled Tables 107 



Word 0 

A (bi t 2) 

J (bi t 3) 

Indicator of whether AET is contained in fixed portion of JCB or is external to JCB: 

= 0 AET in fixed portion of JCB. 
= 1 AET linked from JCB. 

Indicator of whether JPT is contained in fixed portion of JCB or is external to JCB: 

= 0 JPT in fixed portion of JCB. 
= 1 JPT linked from JCB. 

T (bit 14) Job-being-terminated bit. 

S (bit 15) Job-being-initiated bit. 

Job Progrlm T •• II (JPT) 

Purpose 

The JPT allows the user to specify the name of a load module to be used for execution of a task. 

Serial; in the JCB or linked from the JCB (depending on space requirements) with the maximum number of entries 
fixed at SYSGEN by the JPT option of the :RESERVE command. Default is zero entries. S:JPT contains the maxi-' 
mum number of entries specified. (The maximum that may be specified is 63 entries.) 

Logica I Access 

The JPT is located from a pointer in a fixed position in the JCB. It is composed of doubleword pairs of EBCDIC 
task-name/load-module-name equivalences. Table lookup on task name is used to determine which load module 
is to be used for the task. (Byte 0 of the pointer, JCBJPT, contains the total number of words in the JPT table.) 

Overview of Usage 

Space may be provided in the JCB for the JPT, or the JPT may be linked from the JCB, depending on space require­
ments at the time the JCB is created. If it is included in the fixed portion of the JeB, it wi jibe on a doubieword 
boundary pointed to from a fixed location in the JCB. If it is I inked from the JCB, it wi II be on a doubleword 
boundary and will contain the number of entries specified at SYSGEN (space acquired as a power of 2). In either 
case, byte zero of the pointer word contains the number of words in the table and bytes 1-3 contain the address of 
the start of the table. On job termination, a flag (J) in the JCB will indicate which linkage appl ies and wi II re­
lease space appropriately. S:J PT contains the maximum number of entries a I lowed in the J PT. 

Entries are made by tasks via the SETNAME system function call. SETNAME may be used across jobs. The default 
JCB is the calling task's job. SETNAME specifies a task-name/load-module-name pair of doublewords which are 
entered in the JPT. Task initiation uses table lookup on task name to determine if any entry exists for the specified 
task name. If no entry exists, the task name is assumed to be the desired load module name. If an entry exists, task 
initiation uses the corresponding load module for task execution. SETNAME is also used to delete JPT entries by 
providing a task name and blanks in place of the load module name. Duplicate task names are not allowed, so a 
replacement will occur if a SETNAME call uses a task name which is already represented in the JPT. 

108 Job-Controlled Tables 



J PT Table Format 

Name 

JPT 

Content 

EBCDIC 

Task Name 1 

EBCDIC Load-Module 

Name 1 

-

Size 

} lst doubl eword 

12nd doubleword 

i-~~~~~~~~~~_E_B_C_D_I_C~~~~~~~~~~~~~~~ll J ],1 doubleword Task Name 2 

EBCDIC Load-Module 1 
I---------------------------------------------------------~~ 2nd doubleword 

Name 2 

(etc. ) 

where the EBCDIC Task Name characters and EBCDIC Load-Module Name characters are left-justified and 
blank fi lied. 

Enqueue Definition Table (EDT) 

Purpose 

The Enqueue Definition Table defines the current controlled items and resources in the system, and provides a 
mechanism for queuing outstanding requests for the item. 

Type and Location 

Each EDT is a serial table in TSPACE. 

Logica I Access 

Each EDT is a member of a chain whose head is either in RBM location S:EDT (system level ENQs and all device re­
sources) or in the JCB (job level ENQs). Figure 46 shows the overall relationship between system tables that indi­

rectly or directly affect the EDT. 

Overview of Usage 

The first acquisition of any resource causes a new EDT to be created and added to the appropriate chain. This al­
lows later ENQs to know that the item is in use and check for conflicts. When conflicts do occur, ECBs are created 
to provide a waiting mechanism. The R-chain in the ECBs are used to connect the ECBs to the EDT for which they 
are waiting. This chain is in order of time within priority as are normal R-chains. When DEQ updates the EDT and 
detects that the item has been freed, it checks for the existence of waiting ECBs. If none exist, the EDT is re­
moved from the EDT chain and deleted. If ECBs do exist, the DEQ assigns access to the item to the highest prior­
ity ECB in the chain and all lower priority ECBs which do not conflict, posting the ECBs as it does so. 

Job-Controlled Tables 109 



E 0 fj 
S:EDT t- nqueue e mition Tab es (EDT's) 

AET (System level) 

I JCBAET 1 AETEDT ECB I 
AETECB 

----- Item 

EDTEDT 

EDTEeB ~ 

ECB 

I I JCBEDT r ~ 
Item 

,....-- EDT EDT .!: 
EDTECB ~ 0 

~ 

U 
I 

a:: 

ECB 

~ 

- 1---
Item 

AET (Job level) 
L...,.. 

[ LMIAET 1 AETEDT EDTEDT 
I --- ..--

AETECB EDTECB - - i--

ECB 

AETEDT '-- - [- ~ 

AETECB r-- - -- - -
~ 1-- Item 

~ EDTEDT 

EDTECB 

~-llECB ~ -
AET (Job leve I) 

r LMIAET I 
I AETEDT 

AETECB 

AETEDT 

AETECB 

Figure 46. Enqueue/Dequeue Table Relationship 

110 Job-Controlled Tables 



Enqueue Definition Table (EDT) Format 

o 31 

word 0 Resource name EDTNAME 
f----------- ---- -- ----

word 1 (8 EBCDIC characters) 

32 63 

word 2 EDT forward link address EDT EDT 

0 8 31 

I 
word 3 Use count 

I 
Waiting ECB chain head EDTRECB 

0 7'8 31 

EDTNAME 

Name: The name of the coni'roiied item from the originai Ei'>iQ caii, or the device index, right-justified in the 
first word of the doubleword. 

EDTEDT 

Flags: 

bit 0 = 1 This EDT is held by a job-level AET. 
= 0 This EDT is held by a task-level AET. 

bit 1 CO- 1 This is a system-level EDT. 
= 0 This is a job-level EDT. 

bi t 2 Unused. 

hit 3 = 1 This EDT is held by a sharable enqueue. 
= 0 This EDT is held by an exclusive enqueue. 

EDT forward link address: A pointer to the next EDT in the system or job level chain. Zero signifies the end of the 
chain. 

EDTRECB 

Use Count: The number of tasks that currently have acquired use of the item. If the enqueue is exclusive, this count 
wi II be 1. If the enqueue is sharable, the count wi II be ~ 1. 

Waiting ECB Chain Head: The address of the ECB representing the highest priority outstanding ENQ for the item. 
'R-ECB' of zero indicates no ENQs are waiting. 

load-Module Data Structures 

The control blocks and table shown in this subsection relate to load-module fi les. 

Load-Module Data Structures 111 



Load Module Headers 

The first sector of a load module file contains a block of information used to control the loading of the module and 
the allocation of system table space to it. This block is the load module header, and is written by the JCP Loader 
or Overlay Loader when the load module is created. A similar header is associated with each PUBLIB file. 

Task Load Module Header 

Word byte 0 2 3 
I 

o FlolOI LI ~ 1010 Task First Word Address 

MSECB Task Last Word Address 

2 MRECB Task Entry Word Address 

3 MENQ Root Part one Y M BL 

4 NSEGS Root Part one Y M WO 

5 0 Root Part one LM BL 

6 Root Part two Y M BL 

7 Root Part two YM WO 

8 Root Part two LM BL 

9 Root Part two LM GO 

A 0 0 

B 0 0 0 

c Stack control doubleword prototype 
~-- - -- -- - - -- -- - ---

D for the RBM temp stack 

Names of PUBLIB load modules re uired q 
E 

(up to 5 at 8 bytes each) 

0-----------------------------------------0 

where 

F=O 
= 1 

L=O 

P = 01 
=10 

1 

for a background task. 
for a foreground task. 

Remainder of granule 0 
is unused 

for a task module (not a PUBLIB load module). 

for a secondary task. 
for a primary task. 

112 Load-Module Data Structures 

J 



MSECB = maximum permitted number of solicited ECBsi 
X'FF ' if system default is to be supplied. 

MRECB = maximum permitted number of received ECBsi 
XfFF f if system default is to be supplied. 

MENQ = maximum permitted number of resource enqueuesi 
XfFF' if system default is to be supplied. 

NSEGS = number of segments in task, to include both parts of root, PUBLIBs and DEBUG. 

Legend: 

BL Byte length 

GO Granule origin 

LM Load module 

VM Vi rtua i memory 

WO Word origin 

PUBLIB Load Module Header 

byte 0 2 '-

o F!O!O!L 0101010 PUBLIB First Word Address (FWA) 

0 0 PUBLIB Last Word Address (LWA) 

2 0 0 0 0 

3 0 0 PUBLIB VM BL 
~ ~-~---~~-~ 

4 NSEGS 

5 
0 

6 

I 

7 

8 

9 

A 

B 0 

C 

D 

E 0 

I 
where 

F ::: 1 for a foreground load module. 

PUBLIB VM WO 

PUBLIB LM BL 

Context V M BL 

Context VM WO 

Context LM BL 

Context LM GO 

T:SYMBOL LM BL 

T:SYMBOL LM GO 

T:VALUE LM BL 

T:VALUE LM GO 

Remainder of ranule 0 g 
is unused 

L =- 1 for a PUBLIB load module (not a task load module). 

NSEGS =- 1 for PUBLIB onlYi = 2 for PUBLIB with context segment. 

I 

0 

J 

Load-Module Data Structures 113 



Legend: 

B L Byte length 

GO Granule origin 

LM Load module 

V M Virtual memory 

WO Word origin 

Notes: FWA-LWA refers only to the PUBUB segment, not the context. 

FWA = PUBUB VM WOo 

OVLOAD Table (for Load Modules) 

In the root of every load module (root part 2 if there is one) is the OVLOAD table for that module. This table 
provides information about the size and nature of each segment, its segment identification number, and the READ 
FPT to load it. 

There is one entry for each segment, except for the root, PUBUB, and PUBUB-context segments, which are omitted. 

o 

(l1n)-lO 

(11n)-9 

(l1n)-5 

(11 n)-4 

(11 n)-3 

11n 

byte 0 2 3 

I 
Number of entries 

0 0 VM PL I Segment number 

X ' lO ' 0 01 Word address of M:SL 

0 

j 
VM WO for segment 

LM BL for segment 

LM GO for segment 

0 

Word address of segment entry, or zero 

1 

VM = Virtuai Memory 

BL = Byte Length 

WO = Word Origin 

LM = Load Module 

PL = Page Length 

GO = Granule Origin 

114 Load-Module Data Structures 

1 

0 

r 

Entry 
n 

(11 words) 



9. OVERLAY LOADER 

Overlay Structure 

The Overlay Loader is itself an overlayed program, with a root and the six segments illustrated in Figure 47. 

CCI 

PASSONE 

LIB 

ROOT PASSTWO 

MAP 

DIAG 

Figure 47. Overlay Structure of the Overlay Loader 

The functions of the Root and segments ore given in Table 5. 

Table 5. Overlay Loader Segment Functions 

Segment Function 

ROOT Calls,in the first segment (CCI) but thereafter, the segments call in other segments. 
ROOT is a collection of subroutines, tables, buffers, FPTs, DCBs, flags, pointers, 
variables, and temp storage cells. Root is resident at all times. 

---~-.. r---------· --- ---- .------.-- .. -_ .. -.- _.--- -- ... 
CCI Reads and interprets all Loader control commands. 

PASSONE Makes the first pass over the Relocatable Object Modules, satisfies DEF/REF linkages be-
tween ROMs in the same path, links references to Public Li brary rou tines, and allo-
cates the loaded program IS control and dummy sections (e. g., assigns absolute core 
addresses). 

LIB Searches the library tables for routines to satisfy primary references left unsatisfied 
at segment end. 

PASSTWO Makes the second pass over the ROMs, creates absolute core images of segments, 
provides the necessary RBM interface (PCB, Temp Stack, REFd DCBs, DCBT AB, INITT AB, 
and OVLOAD), and writes the absolute load module on the output file. 

--- -- ---

MAP Outputs the requested information about the loaded program. 

DIAG Outputs all Loader diagnostic messages. 

Overlay Loader Execution 

The Root of the Overlay Loader is read into the background when the Job Control Processor (JCP) encounters 
an ! OLOAD control command on the "(" Device. The JCP allocates six scratch files (X 1, X2, X3, X4, X5, and X6) 
in the Background Temp area of the RAD unless otherwise specified on a Monitor !ALLOBT command, and three 
blocking buffers unless otherwise specified on a Monitor! POOL command. The core layout of the Overlay Loader 
is illustrated in Figure 48. 

Overlay loader 115 



Root 
Segment 

Dynamic Table Area 

FWA of Background (K:BACKBG) 

PCB 

Temp Stacks 

Root Code 

DCBTAB 

OVLOAD 

Segment Overlay Area 

LWA+l of Overlay Loader (P:END) 

Dynamic Table Area 

LWA of Background (K:BCKEND) 

Background Blocking Buffer Pool 

FWA of Foreground (K:FGDGB 1) 

Figure 48. Overlay Loader Core Layout 

The Dynamic Table Area is an area of core beginning at the LWA+l of the Overlay Loader's code and extending to 
the beginning of the background blocking buffer pool. That is, the Loader uses the remaining core in background 
for a work area. 

The Dynamic T able Area is divided into 16 table areas with boundaries that can change; subject to the length of the 
tables. The tables are built by CCI and PASSONE from information on the control commands and ROMs, and are 
therefore only dynamic unti I the beginning of PASSTWO, when the table areas are fixed. Since these tables are an 
essential part of the load process, it is important to understand the function of the tables. 

116 Dynamic Table Area 



Dynamic Table Order 

During the first pass over the object modules, the 16 table areas have a fixed order as follows: 

-- FWA of Dynamic Table Area (P:END) 
T:PUBVAL , 
T:PUBSYM , 
LVALUE , 
T:SEG 

• T:DCBV 

• T:DCB , 
T:ROMI , 
T:MODIFY 

• T:MODULE , 
B:MT 

• T:DECL 

• T:CSECT , 
T:FWD 

I 
T:FWDX , 
T:SYMBOL 

I 
T:VALX 

'----------- LWA+1 of the Dynamic Table Area (K:BCKEND) 

For better reader comprehension, the table area descriptions given below are given in a logical order rather than 
the program I isting sequence. 

T:SYMBOL and T:VALUE 

The program's external table is a collection of DEFs, PREFs, SREFs, and DSECTs (excluding DCBs). The external 
table is divided into two parts: one containing the EBCDIC name of the external (T:SYMBOL), and the other 
containing the vaiue (T:VALUE). Each tabie is divided into segment subtabies that overiay each other in core 
in the same way that the segments themselves are overlayed. For example, the external tables of a program with 
the overl ay struc ture 

2 

3 
o 

4 

would exist in core (for both PASSONE and PASSTWO) as follows: 

For For For For For 
Root Seg 1 Seg 2 Seg 3 Seg 4 

10 ~ ~ ~ -t 
Dynamic Table Area 117 



Segments in different paths cannot communicate (i. e., the subtables of segments in different paths are never in core 
at the same time). A segment's T:SYMBOL and T:VALUE subtables are built by CCl and PASSONE and saved on a 
RAD scratch file at path end (i.e., when the next segment starts a new path). However, only tables overlayed by 
the new segment at path end get written out. For example, at the end of path (0, 1,2), segment 2 would be written 
out; at the end of path 0, 1,3), segments 3 and 1 wou Id get wri tten out; and at the end of the program, segments 4 
and 0 wou Id get wri tten out. 

A segment's subtable consists of all DEFs in the segment, DSECTs not allocated in a previous segment of the path, 
and any REFs not satisfied by DEFs in a previous segment of the path. Since the DEF/REF links are all satisfied by 
PASSONE, T:SYMBOL is not used by PASSTWO. 

T:VALUE ENTRY FORMATS 

T :VALUE entries are numbered from 1 to n and have a fixed size of 5 bytes, with the format 

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 

012345678 1516 2324 3132 39 

where 

TY is the entry type 

TY = 00 DEF 

TY = 01 DSECT 

TY = 10 SREF 

TY = 11 PREF 

D is a flag specifying whether or not the external is defined/allocated/satisfied. 

D = 1 external has been defined/allocated/satisfied. 

D=O external is undefined/unallocated/unsatisfied. 

V is a flag specifying the type of value (meaningful only if D = 1). 

v = 1 

V=O 

value is the value of the external. 

value is the byte address of the expression defining or satisfying the external in T:VALX. 

C is a constant (meaningful only if V = 1). 

C = 1 

C=O 

value is a 32-bit constant. 

value is a positive or negative address with byte resolution. 

F is a flag specifying whether the external is a duplicate or an original. 

F = 1 external is a duplicate. 

F = 0 external is an original. 

LB specifies source of external. 

LB = 00 external from input ROM or CC. 

LB = 01 external from System Library. 

LB = 10 externai from User Library. 

Value is initially set to zero; usage is dependent upon D, V, and C flags. 

118 Dynamic Table Area 



Since the T:VALUE entries are kept as small as possible, unused bit combinations are reserved todefine the following 
two i ntermedi ate externa I types: 

1. If TY = PREF, C = 0, and V = 1, the external is an" excluded preP' whi ch means that the PREF wi II cause neither 
library loading nor linkage (including the Public Library). Instead, the PREF will be satisfied by a DEF in a 
segment further up the path. 

2. If TY = DSECT, D = 1, and V =0, the external was input from the :RES control command and is to be allocated 
at the end of the segment. 

T:SYMBOL ENTRY FORMATS 

T :SYMBOL is a byte table with variable sized entries that are numbered from 1 to n. There are three types of 
entiies; EBCDIC, "continuation", and "pseudo". The EBCDIC entry contains the name of the external. The 
"continuation" entry contains the size of a DSECT and only follows a DSECT entry. The "pseudo" entry is a FWD 
or CSECT entry that has been added to T :SYMBOL because the entry was referenced in a T :VALX expression that 
could not be resolved at "module end". The entry formats are as follows: 

EBCDIC entry: byte a 01 
...-L.-------i 

N + 1 

EBCDIC Char1 
~ 

a 1 7 

n I EBCDIC Char n 

a 7 

"Continuati on" 
entry: byte a 110 a a a 1 a a 

" Pseudo" 
entry: byte 

2 

3 

() 
v 

I 
I 

Byte 

size of 

DSECT 

a 1010 a a a a a 
a 1 

7 
I 

1 I 
7 

(Range = X' 02 ' to X '40') 

=X'84' 

= X'Ol' 

Note that the first byte contains the byte count of the entry (in bits 1-7). 

T:PUBVAL and T:PUBSYM 

Each Public Library file has an external table of DEFs (there are no DSECTs or unsatisfied REFs in a Public Library) 
that is divided into two parts; VALUE and SYMBOL. T:PUBVAL contains the VALUE tables for each public library 
specified in the PUBLIB option of the! OLOAD control command, and T: PUBSYM contai ns the corresponding SYMBOL 
tables. Since the si zes of the table areas are fixed once T :PUBVAL and T: PUBSYM have been input, there are onl y 
14 dynamic table areas. 

T:PUBVAL ENTRY FORMATS 

T:PUBVALentries are numbered from 1 to n and have a fixed size of five bytes. Since the size of T:PUBVALdoes not 
change, T: PUBSYM is located at the next doubleword boundary followi ng T :PUBVAL. T :PUBVAL entries have the format 

Byte a Byte 1 Byte 2 Byte 3 Byte 4 

where 

TY = 00 = DEF 

D = 1 the DEF has been defi ned. 

Dynamic Table Area 119 



V=1 

C=1 

C=O 

F=O 

LB = 11 

value is the value of the DEF. 

value is a 32-bit constant. 

value is a positive or negative address with byte resolution. 

not a duplicate DEF. 

PUBLIB 

Note that the T:VALUE and T:PUBVAL entries have the same formats even though the T:PUBVAL entries are a subset 
of the T :VALUE format. 

T:PUBSYM ENTRY FORMATS 

T :PUBSYM is a byte table with variable si zed entries that are numbered from 1 to n. Si nce the si ze of T: PUBSYM 
does not change, the table following is located at the next doubleword boundary after T: PUBSYM. T :PUBSYM entries 
have the format 

T:VALX 

byte 0 

byte 1 

byte n 

N + 1 

EBCDIC CharI 

o 7 

EBCDIC Char n 

o 7 

External definitions are defined with expressions. If the expression can be resolved, its value is stored in the DEFs 
T :VALUE entry. If the expression cannot be resolved, it is saved in T :VALX and the byte address of the expressi on 
is stored in the DEFs T:VALUE entry. 

Once an expressi on is resolved, its entry is zeroed out. The T:V ALX entri es cannot be packed to regai n space, si nce 
the T:VALUE entries contain address pointers, however, empty entries are reused where possible. 

Expressions have a variable size and are made up of expression bytes, combined in any order. The formats for the 
T:VALX expression bytes (slightly different than the object language) are 

Add Constant (X'O 1') 

Byte 0 Byte 1 

: 

Byte 2 Byte 3 

: 

Byte 4 

\0 000000 11 32-b;t: val ue 

0 78 15 16 2324 3132 39 

This item causes the specified four-byte constant to be added to the Loader's expression accumulator. Negative con­
stants are represented in two's compl ement form: 

Add/Subt Value (X'2N') 

Byte 0 Byte 1 
I 

Byte 2 

FWD Number 
00 10 S F RR 

TB I ,Entry , 
012345678910 15 16 23 

where 

S == subtra ct va I ue. 

S = 0 add value. 

120 Dynamic Table Area 



F = 1 add/subtract value of T:FWD entry where the FWD number is in bytes 1 and 2. 

F = 0 add/subtract value of TABLE entry where 

TB = 00 

TB = 01 

TB = 10 

TB = 11 

Entry poi nts to T :DCB. 

Entry points to T:VALUE/T:SYMBOL. 

Entry points to T:CSECT. 

Entry poi nts to T: PUB V AL/T : PU BSY M. 

RR = 00 byte address resolution, 

R R = 01 ha I fword address reso I ut ion. 

RR = 10 word address resolution. 

RR = II doubleword address resolution. 

This item causes the value of the FWD or TABLE entry to be converted to the specified address resolution (only if the 
value is an address) and added to the Loader's expression accumulator. Note that expressions involving T:FWD and 
T:CSECT entries point to the current ROMI S FWD and CSECT tables. If these expressions are not resolved at module 
end, the Loader createsdummyT:SYMBOLandT:VALUEentriesfrom the FWDorCSECTentry and changes the pointer 
in the expression to point to the dummy entry in T:VALUE. However, unresolved expressions rarely happen. 

Address Resolution (XI3NI) 

Byte 0 

I 00 I 11 I I D I RR I 
01234567 

where 

ID = 00 changes the partially resolved expression (if an address) to the specified resolution. 

ID = 01 identifies the expression as a positive absolute address with the specified resolution (add absolute 
section). 

ID -= 10 identifies the expression as a negative absolute address with the specified resolution (subtract abso­
I ute section). 

RR = 00 byte address resolution. 

RR = 01 halfword address resolution. 

RR = 10 word address resolution. 

RR = 11 doubleword address resoluti on. 

Expressi on End (XI 02' ) 

Byte 0 

1010\0101 010 11 \01 

o 7 

This item identifies the end of an expression (the value of which is contained in the Loader's expression accumulator). 

T:DCB 

T:DCB contains the DEFs and REFs that are recognized as either system (M:) or user (F:) DCBs. DCBs declared as 
external definitions must exist in the Root segment. The Loader allocates space in part two of the Root for DCBs 

Dynamic TabJe Area 121 



that are declared external references, and supplies default copies of system DCBs. T:DCB is resident at all times. 
Entries have a fixed size of three words and have the format 

Word 0 TY IDIV ICiF I LB ~ Byte Address 

E1 E2 E3 E4 

2 E5 E6, E7 E8 

012345678 12131516 2324 31 
where 

Word 0 

TV = 00 DEF (coded in the Root by the user). 

TY = 11 PREF (allocated in Root part 2 by Loader). 

D = 1 defined or allocated. 

D = 0 undefined/unallocated. 

V = 1 address is the byte value of the DCB, on Iy meaningfu I if D = 1. 

V = 0 address points to an expression in T:VALX, only meaningful if D = 1. 

C = 1 the DCB 'was defined with a value that is either a constant or an illegal address (i. e., negative or 
mixed resolution), only meaningful if V = 1. 

C = 0 the value of the DCB is an address, only meaningful if V = 1. 

F = 0 DCB cannot be a duplicate (duplicates are put in T:SYMBOL/T:VALUE). 

LB = 00 the DCB was input from a non library ROM. 

LB = 01 the DCB was input from the System Library. 

LB = 10 the DCB was input from the User library. 

Word 1,2 

E1 - E8 is the EBCDIC name of the DCB, padded with blanks if necessary. 

T:SEG 

T:SEG contains information about the program's segments and is resident at all times. One entry is allocated per 
segment. Entries have a fixed size of ten words and have the format 

where 

Gran no. 

Word 0 

2 

3 

4 

5 

6 

7 

8 

9 

Segment Ident link Ident 

Gran no. of T: VALUE (I) on X4 Gran no. of T:MODIFY/ 
T :MODULE on X3 

Gran no. of T :SYMBOL (I) on Gran no. of core image on 
X5 Program Fi I e 

BDof T:VALUE(I)in T:VALUE Byte length of T:VALUE{I) 

BDof T:SYMBOL(I) in Byte length of T:SVMBOL (I) 
T:SYMBOL 

Byte length of T :tv\OD!FY Byte length of T:MODULE 

DW EXLOC of SEG DW length of SEG 

R /L H F / I I MiS I P I IE AI Entry Address 

Byte Length of library Routines in SEG 

Byte length of load-module image of segment 
111 ,11 .,' 01234567891213141516 31 

the granule number in the RAD file where the table begins. If the RAD file overflows, Gran No. 
will equal X'FFFF'. Granules are numbered from 0 to n. 

122 Dynamic Table Area 



(I) 

BD 

EXLOC 

DW 

R = 1 

= a 

L = 1 

= a 

W= 1 

segment's subtable. 

byte displacement. 

execution location. 

doubleword. 

error severity ievei set on at ieast one ROM fn the segment. 

error severity level reset on every ~OM in the segment. 

load error (duplicate DEFs, unsatisfied REFs, etc.). 

no loading errors in SEG. 

T:V ALUE (I) and T :SYMBOL (I) output on X4, X5. 

- 0 T:,! /\LUE (!) ~nd T:SYMBOL m net e~tp~t en X-1, X5. 

F = 1 

=0 

1= 1 

= a 

M = 00 

= Oi 

= 10 

= 11 

S = 00 

= aT 

=10 

=11 

P = 1 

=0 

EA = 00 

= 01 

segment is fixed in real memory (FIX option). 

segment may be mapped on any available real memory. 

segment is to be initially loaded with the root (I LOAD option). 

segment will be loaded only on explicit request. 

segment is any-access. 

segment is read -and -execute. 

segment is read-only. 

segment is no-access. 

segment is nonsharab Ie. 

segment is job-Ieve I sharable. 

segment is system-level sharable. 

unused. 

segment must be pre-loaded sharable (PRE LOAD option). 

segment may be loaded from the load module being built. 

value in bits 15-31 (if nonzero) is last entry address (in words) encountered on non-Lib ROM. 

unused. 

Dynamic Table Area 123 



EA = 10 

=11 

B:MT 

SEG's entry address input from CC and value in bits 15-31 is the entry address {in words}. 

SEG's entry address input from CC and value in bits 15-31 is the entry number of the T:5YMBOL/ 
T:VALUE DEF specified on the CC. 

There are four tables associated with each ROM loaded (including library ROMs): T:DECL, T:CSECT, T:FWD, and 
T:FDX. The size of these tables can be extremely large or small, depending uponwhichprocessorproduced the ROM 
and the content of the program. To conserve time and space, these tables are packed into the Module Tables buffer 
{B:MT} at module end, and output to the X2 TempFile on the RAD onlywhen either the buffer is full or at segment 
end. The size allocated for B:MT is dependent upon the size of the Dynamic Tables area and is madea multiple of 
the sector size of the X2 RAD file. 

T:DECL 

DEFs, PREFs, SREFs, DSECTs, and CSECTs are referenced in the object language bydeclaration number. Therefore, 
associated with each ROM is a table of declarations whose entries point to DEF, REF, DSECT, and CSECT entries in 
other tables. 

According to the object language convention, entry zero points to the standard control section declaration. Entries 
are numbered from 0 to n; have a fixed size of two bytes; and have the format 

Entry 

012 15 

where 

TB = 00 Entry points to T:DCB. 

TB = 01 Entry points to T:SYMBOL/T:VALUE. 

TB = 10 Entry points to T :CSECT {associated with current ROM}. 

TB = 11 Entry points to T:PUBSYM/T:PUBVAL 

Entry Table entry number. The range is 1 through 16,383. 

T:CSECT 

Associated with each ROM is a table of standard and nonstandard control sections. A nonstandard control section 
is allocated by the Loader when the declaration is encountered. The standard control section is allocated when the 

124 Dynamic Table Area 



first reference to declaration 0 is encountered in an expression defining the origin load item. T:(SE(T entries are 
numbered from 1 to n; have a fixed size of two words; and have the format 

where 

Word 0 

D=l 

V=l 

(=0 

Word 0 

Word 1 

012345 

allocated. 

value. 

address. 

1213 

Byte address first byte address of the control section. 

Word 1 

Size Number of bytes in the control secti on. 

T:FWD 

Byte address 

Size 

31 

Associated with each ROM is a table of forward reference definitions (forwards). Each forward is identified by a 
random two-byte reference number. Thus, when a forward is referenced in an expression, the T:FWD table for that 
ROM must be searched for a matching number. T:FWD entries have a fixed size of two words with the format 

where 

D=1 

V=1 

V=o 

( = 1 

(=0 

T:FWDX 

Word 0 

Word 1 

defined. 

o 

Forward number 

1516 

value is the value of the resolved expression. 

262728 31 

value is a byte displacement pointer to the expression in T:FWDX. 

value is a constant (only meaningful if V = 1). 

value is a positive or negative address with byte resolution (only meaningful if V = 1). 

Forwards are defined with expressions and are of two types: the first is defined with an expression that can be re­
solved by module end; the second type is defined with an expression that involves an external DEF, REF, or DSE(T 
{many of these cannot be resolved at module end}. Associated with each ROM is a table containing all unresolved 
expressions defining FWDs. When a T:FWDX expression is resolved, its entry is zeroed out and the space reused, if 
possible. T:FWDX entries have the same format as T:VALX entries. 

Dynamic Table Area 125 



T:MODULE 

Each segment has a T:MODULE table. T:MODULE contains information about a segmentls Relocatable Object 
Modules (RO.V\s). One entry is allocated per ROM. Entries have a fixed size of five words and have the format 

where 

v = 1 

V=O 

Word 0 

2 

3 

4 

vi Entry no. jG~LB 
Gran no. of B:MT on X2, or 
BD of T :DECL (J) in B:MT 

BD of T:CSECT (J) in B:MT 

BD of T:FWD (J) in B:MT 

BD of T:FWDX (J) in B:MT 
I I 'I 1 

" 

01 789 13141516 

Entry no. in bits 1-7 points to T:DCBV. 

Entry no. in bits 1-7 points to T:DCBF. 

Record displacement in fi Ie 

Byte length of T:DECL (J) 

Byte length of T:CSECT (J) 

Byte length of T :FWD (J) 

Byte length of T:FWDX (J) 

31 

Entry no. the entry number of the DCB (in either T:DCBV or T:DCBF) that points to the RAD file where the 
ROM is located. 

G = 1 T:DECL (J) begins at byte zero in B:MT and HWO (halfword zero) in word 1 contains the granule no. 
of B:MT on X2. If the Granule no. equals XI FFFF', X2 has overflowed and B:MT did not get saved on the 
RAD. 

G = 0 T :DECL (J) is located in B:MT at the byte displacement specified in HWO of word 1. 

LB = 00 not Library ROM. 

LB = 01 ROM from System Library (SP area of RAD). 

LB = 10 ROM from User Library (FP area of RAD). 

Record displacement in the MODULE file (only meaningful for library ROMs.) 

T:ROMI 

T:ROMI contains the information necessary for PASSONE to load a segment's ROMs. T:ROMI is built by CCI from 
the input options specified on the segment's :ROOT, :SEG, or :PUBLIB control command, or by :LIB to point to the 
library routines required for the segment. At the beginning of PASSTWO, the area size for T:ROMI is set to zero. 
There are three types of T:ROMI entries, as illustrated below, and entries have a fixed size of one word. 

Entry for ROMs input from RAD files (built by CCI): 

NROM 10 -----0 I V I Entry no. 

o 15 16 232425 31 

where 

NROM is the number of ROMs to input or contains -5, which means to input until IEOD is encountered. 
This halfword is used as a decreasing counter by PASSONE and eventually equals zero. 

Bits 16-23 always equal zero to specify entry type. 

V = 1 Entry no. in bits 25-31 points to T:DCBV. 

V = 0 Entry no. in bits 25-31 points to T:DCBF. 

Entry no. is the entry number of the DCB (in either T:DCBV or T:DCBF) that points to the RAD file where 
the ROM is located. 

126 Dynamic Table Area 



Entry for ROMs input from a specified device or OPLB (built by CCI): 

NROM ~\I TYPE I DCT index 

o 15161718 2324 31 

where 

Bits 16-23 always equal nonzero to specify entry type. 

NROM is described above. 

PACK is the PACK flag (bit 22 of word 0) in DCB. 

TYPE is the device type code (bits 18-23 of word 1) in DCB. 

OCT index is the OCT index of the device (bits 24-31 of 'Nord 1) in DCB. 

PASSONE will store the information in F:DEVICE and input the ROMs via that DCB. Note that OPLBs are 
converted to their assigned devices. 

Entry for ROMs input from the System or User Library (built by LIB): 

NROM Record displacement 

o 1516 ~l 

where 

NROM is described above. 

Record displacement is the record displacement of the ROM in the MODULE fi Ie of the area specified by FL: LBLD. 

Library ROM entries are distinguished from the other two entry types by the Loaderflag FL: LBLD. The flag is always 
reset when the other entry types are in T: ROMI. 

T:DCBV 

T:DCBV is a table of DCBs assigned to the various RAD files specified (other than GO) on the input options of the 
:ROOT and :SEG, or :PUBLIB control commands. One DCB is created for each unique file name specified. T:DCB 
is resident at all times. T :DCBV entries are numbered from 1 to n, and have the standard seven-word DCB format. 

T:MODIFY 

Each segment's :MODIFY commands are translated into object language load items and stored in the segment's 
T:MODIFY table, and each :MODIFY command is translated into a T:MODULE entry. Entries begin with an 
"origin" load item and are terminated by either the next "origin" load item or a "module end" load item. Entries 
are made up of the load items described below and expressions in the T:VALX/T:FWDX format: 

Origin (X'04') 

This one-byte item sets the load-location counter to the value designated by the expression (in T:VALX format) 
immediately ff)llowing the origin control byte. The value of the expression equals the location specified on the 
:MODIFY command. 

Load Absolute (X'44') 

This one-byte item causes the next four bytes to be loaded absolutely and the load-location counter advanced 
appropriatel y. 

Defi ne Field (X'07') 
(X' FF') 
(field length) 

This three-byte item defines an expression value to be added to the address field of the previously loaded four­
byte word. The expression is in T:VALX format and immediately follows the 'field length' byte. 

Dynamic Table Area 127 



Load Expression (X'60' ) 

This one-byte item causes an expression value to be loaded absoutely and the load-location counter advanced 
appropriately. The expression to be loaded is in T :VALX format and immediately follows the I load expression ' 
control byte. 

Module End (X'OE ' ) 

This one-byte item terminates the load items in T:MODIFY. 

Use of the Dynamic Table Area During LIB 

During the library search, LIB temporarily reorganizes the Dynamic Table area by packing the 16 tables together at 
the top of the area. LIB uses the remaining space for its tables. The core layout of these tables and their formats 
are illustrated in Figure 49. 

Packed 
Dynamic 
Tables 
(tables 
listed are 
used by 
LIB) 

T:PUBVAL 

• T:PUBSYM 

• T:VALUE 

f 
T:SYMBOL 

f 
T:LDEF 

I 
1 

TLROM 

EBCDIC 

DEFREF 

MODIR 

files' buffer 
! 

Core I ayout of the Area if the 
packed tables remain in core. 

FWA of 
Dynamic Table Area 

LWA+1ofthe 
Dynamic Table Area 

T:PUBVAL 
• T:PUBSYM , 

T :LDEF 

I 
T:SYMBOL 

T:LROM 

EBCDIC 

DEFREF 

MODIR 

fi les' buffer 
! 

} 

Overlays 
T:VALUE 

} 

Moved to 
the end of 
T:LDEF, if 
necessary. 

Core layout of the Area if the 
packed tables are saved on X6. 

Figure 49. LIB Reorganization of Dynami c Table Area 

128 Dynamic Table Area 



T:LDEF 

T:LDEF is located in the Dynamic Table area only when the LIB segment is executing and is used by LIB to satisfy 
REFs to library routines. Initially, T:LDEF contains the following items: 

1. All unsatisfied REFs from the current segment's T:VALUE subtable. 

2. All excluded PREFs from the current segment's T:VALUE subtable. 

3. All DEFs and DSECTs in the path T:VALUE table that are from the same library as the one being searched. 

4. All Public Library (T:PUBVAL) DEFs. 

The Library DEFs are included so that library routines loaded in previous segments of the Public Library will not be 
duplicated. The excluded PREFs(that inhibit iibrary loading)are treated as DEFs. Since library routines may them­
selves reference other library routines, the set of DEFs and REFs associated with a library routine are included in 
T:LDEF if, and only if, at least one of the DEFs satisfies a REF in T:LDEF. When a REF is satisfied it is changed 
to a DEF. Eventually, T:LDEF contains library DEFs, any REFs that cannot be satisfied in the Library, andthe 
excl uded PREFs. 

T:LDEF has a variable number of entries with the count kept in entry O. Entries have a fixed size of two bytes with 
the format 

entry 0 T: LD EF entry count 

o 15 

entry n '"'1_D_R...j,I _____ V_a_l_u_e ____ ~ 
012 15 

where 

DR=OO null entry. 

DR = 01 DEF or excluded PREF. 

DR = 10 unsatisfied PREF. 

DR = 11 DSECT. 

Va lue entry number in T :SYMBOL, that is later changed to the correspondi ng entry's byte offset I n the 

T • "ft •• I:Lnum 

EBCDIC file. 

T:LROM is located in the Dynamic Table area only when the LIB segment is executing and contains pointers to li­
brary routines whose DEFs have satisfied REFs in T:LDEF. That is, T:LROM points to the library routines that are to 
be loaded a long with the segment. 

T:LROM entries initially point to a library ROM's entry in the MODIR file and then get changed to point to the cor­
responding ROM's location in the MODULE file. T:LROM has a variable number of entries, with the count kept in 
entry O. T:LROM is built backwards but has forward entries. Entries have a fixed size of two bytes with the format 

entry n Value 

t o t 15 

entry 0 T: LROM entry count 

o 15 

where 

value halfword offset of the library ROM's entry in the MODIR file, which is later changed to the starting 
record number of the ROM in the MODULE file. 

Dynamic Table Area 129 

I· 



MODULE File 

The MODULE file is a blocked sequential file, with 120 bytes per record, that contains the library's ROMs. 

EBCDIC File 

The EBCDIC file is an unblocked sequential file consisting of one variable length record. The EBCDIC file contains 
the unique EBCDIC names of all DEFs and REFs declared in the ROMs in the MODULE file. Entries have a variable 
number of bytes with the format 

MODIR File 

byte 0 

1 

N + 1 

EBCDIC Char1 

o 7 

n I EBCDIC Char n I 
o 7 

The MODIR file is an unblocked sequential file consisting of one variable length record. Each MODIR file entry 
corresponds to a ROM on the MODULE fi Ie and contains the name of the ROM, its location on the MODULE fi Ie, 
and the number of records in the ROM. Entries have a fixed size of three words with the format 

DEFREF File 

word 0 

word 1 

word 2 

o 

MODULE file record no. I ROM's no. of records 

First four bytes of EBCDIC name 

Last four bytes of EBCDIC name 

15 16 31 

The DEFREF file is an unblocked sequential file consisting of one variable length record. Each entry in the DEFREF 
file corresponds to a ROM in the MODULE file and contains all the external DEFs and REFs declared in the ROM, 
plus a pointer to the ROMls entry in the MODIR file. Entries have a variable number of halfwords with the format 

where 

halfword 0 

halfword 1 

halfword 2 

halfword n 

DR\ 

o 12 

012 

Entry size 

MODIR file index 

EBCDIC file index 

EBCDIC file index 

15 } 

I 
15 

Entry size number of halfwords in the entry (including itself). 

MODIR file index relative halfword of the ROM's corresponding entry in the MODIR file. X'FFFF' means 
that the entry has been deleted. 

DR = 00 not used. 

DR = 01 DEF. 

DR = 10 PREF. 

DR = 11 DSECT. 

EBCDIC fi Ie index 

130 Dynamic Table Area 

relative byte of the external name entry in the EBCDIC file. 



Use of Dynamic Table Area During PASSTWO 

PASSTWO reorganizes the Dynamic Table area by moving the resident tables T:SEG, T:DCBV, and T:DCB to the 
end of T:PUBVAL. PASSTWOuses the remaining space to read in the necessarytablesbuiltduringPASSONEto build 
its own tables and to create the core image of the segment. The core layout of these tables and their format 
is illustrated in Figure 50. 

T:GRAN 

Since the Work area has a finite size that varies according to the size of B:MT, it may not be large enough to con­
tain 0 segmentls total core imoge ot oil times. Therefore; before a segment is created, its core image length is 

divided into granule size partitions, where the granule size equals the sector size of the program file. T:GRAN 

T:PUBVAL 
+ 

T:SEG 
~ 

T:DCBV 
~ 

T:DCB 
l 

T:VALUE , 
T:GRAN 

+ . 

Wor~ Area 

B:MT 
~ 

T:MODIFY 
~ 

T:MODULE 

I 

T:VALX 

Core layout of the Area while 
the segments are being loadE:.J. 

FWA of 

Dynamic Table Area 

LWA+lofthe 
Dynamic Table Area 

T:PUBVAL 
• 

T:SEP 

T:DCBV 
+ 

T:DCB , 
T:GRAN 

+ 
T:ASSN 

~ 
Work Area 

T:VALX 

Core layout of the Area while 
part two of the Root is being built. 

Figure 50. PASSTWO Reorganization of Dynamic Table Area 

Dynamic Table Area 131 



entries point to the location of a segment's partition (if created) either in core or on the program file. T:GRAN 
has the following format: 

entry 0 n = No. of granule partitions in the seg. 
~-------------------------------------------------~ 

Granule partition 

o 31 

n 1~ __________________ G_r_a_n_u_le __ pa_r_t_it_io_n __ n ________________ ~ 
o 31 

T:GRAN entries have a fixed size of one word with three different formats. 

If the granule partition exists in the Work Area: 

0-------0 

o 12131415 

WA of granule partition in the 
Work area 

31 

If the granule partition exists on its corresponding granule in the Program Fi Ie: 

11------110 ---------- 0 I = X' FFF800OQ' 

o 1213 31 

If the granule partition has not been allocated; and data has not yet been loaded into that area of the segment: 

10-------------0 1 

o 31 

T:ASSN 

T:ASSN contains the information necessary to reassign DCBs as specified on :ASSIGN commands. T:ASSN is located 
in the Dynamic Table area during PASSTWO (after all the segments have been loaded) and is built by CCI. Each 
:ASSIGN command is translated into a T:ASSN entry. Entries have a fixed size of ten words with the format 

Word 0 

2 

3 

4 

5 

6 

7 

8 

9 

o 

MAP Use of Dynamic Table Area 

Byte address of DCB's execution location 

Word address of DCB's entry in T:DCB 

Changes for word 0 of DCB 

Mask for word 0 of DCB 

Changes for word 1 of DCB 

Mask for word 1 of DCB 

Changes for word 3 of DCB 

Mask for word 3 of DCB 

Fi rst four E BC D I C bytes of fi I e name or zero 

Last four EBCDIC bytes of fi Ie name or zero 

31 

MAP moves the resident tables T:SEG andT:DCB to the top of the area, and uses the remaining space to read in and 
reference the tables necessary for the MAP output. MAP does not bui Id any tables. The core layout of the tabl e 
referenced by MAP is illustrated in Figure 51. 

132 Dynamic Table Area 



T:SEG , 
T:DCB 

• T:Iv"~DIFY 

I 

I 

B:MT 
I 

Core I ayout of the Area wh i Ie 
the program's control sections 
are being listed. 

DIAG Use of Dynamic Table Area 

FWA of 
Dynamic Table Area 

LWA+1 of the 

Dynamic Table Area 

Figure 51. MAP Table Reference 

T:SEG 
~ 

T:DCP 

T:SYMBOL 

I 

I 
I 

T:VALUE 

I 
I 

Core layout of the Area while 
the externals are being listed. 

DIAG only uses the Dynamic Table area to reference T:SEG and T:MODULE. 

ROOT TABL 

Two tables in the Root, T:PL and T:DCBF, have a fixed size and are referenced by other tables. Their format and 
use is given below. The usage and format of other tables in the Root are well documented in the Overlay Loader's 
listing and are not detailed in this manual. 

Dynamic Table Area 133 



T:PL 

T:PL contains the information necessary to create T:PUBSYM and T:PUBVAL and to load the Public Libraries speci­
fied on the !OLOAD control command. T:PL exists in the Root and has a maximum of three entries. Table end is 
indicated by a word of zeros. Entries have a fixed size of eight words with the format 

Word a 

2 

3 

4 

5 

6 

7 

a 

First four EBCDIC bytes of PUBLIB name 

Last four EBCDIC bytes of PUBLIB name 

Word address of PUBLIB's execution location 

Number of bytes in the PUBLIB 

Granule no. of PUBLlB's symbol table 

Number of bytes in PUBLIB's symbol table 

Granule no. of PUBLlB's value table 

Number of bytes in PUBLIB's value table 

31 

Word at I Zeros last '__ _______________________ --J 

entry + 1 a 31 

T:DCBF 

T:DCBF contains the set of fixed DCBs that are required by the Loader. Each entry contains one DCB. T:DCBF has 
a fixed number of entries and exists in the Root. T:DCBF entries are numbered from 1 to 18, and have the fixed 
order given in Table 6. 

Table 6. T:DCBF Entries 

Entry Mnemonic Pointer To 

1 F:PUBL Files specified in the PUBLIB option of !OLOAD. 

2 F:DEVICE Devices specified in the DEVICE and OPLB input options. 

3 M:GO GO file in the Background Temp area. 

4 M:OV Either OV or the file specified in the FILE option of ! OLOAD. 

5 M:X1 Xl in the Background Temp area. 

6 M:X2 X2 in the Background Temp arm. 

7 M:X3 X3 in the Background Temp area. 

8 M:X4 X4 in the Background Temp area. 

9 M:X5 X5 in the Background Temp area. 

1a M:X6 X6 in the Background Temp area. 

11 F:MODIR MODIR file in either the SP or FP area. 

12 F:EBCDIC EBCDIC file in either the SP or FP area. 

13 F:DEFREF DEFREF file in either the SP or FP area. 

14 F:MODULE MODULE file in either the SP or FP area. 

15 M:C C operational label. 

16 M:LL LL onerati ona! !abe!. 

17 M:OC OC operational label. 

18 M:LO LO operational label. 

134 Dynamic Table Area 



All T:DCBF entries have the standard seven-word DCB format, with two exceptions: OFLOW and NIO, that are 
used only for the M:OV, M:X1, M:X2, M:X3, M:X4, M:X5, and M:X6 DCBs. The seven-word DCB format is 

Word 0 TTL = 7 

where 

OFLOW ~ 0 

OFLOW = 1 

"~IO 

Scratch Files 

0 7 10 14 19 2223 

L NRT .°1\\01 TYPE 1 
0 78 1415161718 2324 

2 OFLOW ~ BUF 

0 7 1415 

3 RSZ ERA 

0 1415 

4 NIO ABA 

,... , A , L 

V l<t I,,} 

5 E1 E2 E3 

0 78 1516 2324 

6 E5 E6 E7 

0 78 1516 2324 

EOT not encountered. 

EOT encountered. 

number of records (for Xl) or gianules required. 

262728 31 

I DEV/OPLB/ 
RFILE 

31 

31 

31 

3. 

E4 

31 

E8 

31 

The six scratch files in the Background Temp area of the RAD are used by the Loader as temporary storage and are 
written during the first pass over the object modules. The number of granules required by each scratch file is cal­
culated (whether the file overflows or not)and saved in the DCB assigned to the file. If any of these files overflows 
(e.g., if the EOT is encountered during a Write operation), the Loader continues PASSONE, skips PASSTWO, then 
calls the MAP to communicate the number of granules required for each scratch file to the user. The Loader's use 
of these files is defined in Table 7. 

File Name 

Xl 

Table 7. Background Scratch Files 

Loader Use 

A sequential file with blocked record format. Record size equals 120 bytes; granule 
size equals 256 words. ROMs input from non-RAD devices are copied onto Xl. 

~---~-------- ----~-----~---- ---- ---------- --------------1 

X2 

~----

X3 

A direct access file with the granule size set equal to the sector size. The module's 
tables (T:DECL, T:CSECT, T:FWD, and T:WDX) are output on X2 when either B:MT is 
fu II or at segment end. 

-----

A direct access file with the granule size set equal to the sector size. A segment's 
T:MODIFY and T:MODULE tables are packed together at segment end and output 
on X3. 

Scratch Files 135 



Table 7. Background Scratch Fi les (cont.) 

File Name Loader Use 

X4 A direct access file with the granule size set equal to the sector size. A segment's 
T :VALUE subtable is output on X4 when the end of a path is encountered and the seg-
ment is being overlayed by another segment. 

X5 A direct access file with the granule size set equal to the sector size. A segment's 
T:SYMBOL subtable is output on X5 when the end of a path is encountered and the 
segment is being overlayed by another segment. 

X6 A direct access file with the granule size set equal to the sector size. The LI B over-
lay packs the 16 Dynamic Tables at the top of the Dynamic Table area and outputs the 
"pack" on X6 only if the remaining area will not contain the tables required for the 
library search. 

Program File Format 

The format for the Program File is illustrated in Figure 52. 

GRANULE Order in which written 

o Program Header last 

Root Part 1 1st 

2 Root Part 1 (continued) 

/\ 

/\ 
v 

End of Root Part 1 

Segment 1 2nd 

k Segment 2 3rd 

Segment n last-2 

m Root Part 2 last-l 

Unused 

EaT 

Figure 52. Program Fi Ie Format 

136 Scratch Files 



The foreground/background program-header format is described in the "RBM Tables Format II chapter. The Publ ic 
Library (PUBLIB) header format is also described in that chapter. 

Logical Flow of the Overlay Loader 

After the Root segment has been loaded by the JCP, the Root calls the Monitor SEGLOAD function to read CCI into 
the overlay area and then transfers control to CCI to process the ! OLOAD control command. 

Logical Flow of eel 

When CCI is called; there is usually a control command in the control command buffer (B:C). If not, CCI reads the 

next command into B:C and logs it onto LO. If the command terminates a :ROOT, :SEG, or :MODIFY substack, 
PASSOt"-lE is caiied; if it terminates an :ASSIGN substack, PASSTWO is called. If the command does not terminate 
a substack, CCI scans the options specified and performs the following functions for the different control commands. 

! OLOAD Command. CCI sets flags; puts the program fi Ie name in M:OV DCB; bui Ids T :PL, T :PUBVAL, and 
T: PUBSYM from fi les specified in the PUBLIB opti on; a 1I0cates the 14 remai ni ng Dynami c Tabl e areas; and if the 
GO opti on has been specified, bui Ids T :ROMI. 

:ROOT, :SEG, and :PUBLIB Commands. CCI creates an entry in T:SEG; bui Ids T:ROMI and T:DCBV entries from 
the specified input options; allocates space for the PCB in the Root segment; and for the :SEG command, calls the 

PATHEND subroutine. PATHEND determines if the segment starts a different path; if so, writes out the T:SYMBOL 
and T:VALUE subtables for the overlaid part of the prior path on the RAD scratch files; and sets the byte displace­
ment pointers for the new segment's T:SYMBOL and T:VALUE subtables. 

Logical Flow of PASSONE 

PASSONE branches to process T:MODIFY if CCI has just been previously called by PASSONE to input :MODIFY 
commands. Otherwise, PASSONE processes T:ROMI which has been built by either CCI or LIB. PASSONE inputs 
the ROMs from the devi ces specified in T :ROMI; bui Ids T :MODU LE entries for each ROM input; saves ROMs input 
from non-RAD devices onto the Xl scratch file; and scans the ROMs for pass-one type load items. It then builds the 
following entries: 

1. Parallel T:SYMBOL and T:VALUE entries from external DEF, PREF, SREF, and DSECT declarations. Entries in 
T:VALX are built vv'hen expressions defining DEFs cannot be resolved. Except for blank COMMON, a DSEeT 
is allocated when first encountered, and its address is stored in the T:VALUE entry. 

2. T:DCB entries from external DEF and REF dec!arations that begin with either ,V,: ur F:. The address of the DCB 
is either defined with an expression (for DEFs), or allocated by PASSTWO (for REFs) and stored in the T:DCB entry. 

3. T:CSECT entries and allocates CSECTs when encountered. 

4. T:FWD entries when FWDs are defined. Entries in T:FWDX are built when expressions defining FWDs cannot be 
resolved. 

5. Entries in T:DECL whenever a DEF, REF, SREF, CSECT, or DSECT declaration is encountered. 

At module end, the four module tables (T:DECL, T:CSECT, T:FWD, and T:FWDX)are packed together and moved to 
B:MT. If the buffer is full, the tables are output on X2. 

When all the entries in T:ROMI have been processed, PASSONE determines whether the libraries specified have been 
searched. If not, PASSONE calls LIB to search the library specified. Note that the library is searched and the 
ROMs from the library are loaded before the next library is searched. 

If there are any :MODIFY commands for the segment, PASSONE calls CCI. After CCI recalls PASSONE, control is 
returned to this point where T:MODIFY and T:MODULE are packed together and output on X3. 

If there is a :SEG command in B:C, PASSONE calls CCI. Otherwise, the end of PASSO~E is signaled. Blank 
COMMON is allocated at the end of the longest path (if not allocated previously) and the remaining T:SYMBOL, 
T:VALUE subtables are output. The resident table areas (T:DCB, T:SEG, T:DCBV, T:VALX) are set equal to the 

Logical Flow of the Overlay Loader 137 



actual lengths of the data in the tables. The T :ROMI area length is set to zero (since it is not used by PASSTWO}and an 
end-of-file is written on Xl. If any of the six scratch files overflowed, MAP is called; otherwise, PASSTWO is called. 

Logical Flow of LI B 

The LIB segment first packs the 16 Dynamic Tables together at the top of the Dynamic Table area. The remaining 
space wi II be used for the LIB's tables. {Whenever enough room does not exist for the LIB's tables, the II pack" is 
written on the RAD scratch file, X6.} LIB then creates T:LDEF, starting from the end of the "pack". 

The FWA of the EBCDIC, DEFREF, and MODIR files ' buffer is calculated bysubtracting the length of the longest file 
from the end of the Dynamic Table area. The EBCDIC file is read into the buffer and the entries in T:LDEF are con­
verted to point from T:SYMBOL to entries in the EBCDIC file. T:LDEF entries not having corresponding EBCDIC 
entries are changed to null entries. 

The DEFREF file is then read into the buffer. LIB uses the DEFREF file to satisfy PREFs in T:LDEF. AlitheDEFs and 
REFs from an entry in the DEFREF file are added to T:LDEF if at least one of the DEFs satisfies a PREF in T:LDEF 
The pointer to the ROM' S MODIR file entry is saved in T:LROM, which is built backwards, beginning from the top 
of the DEFREF buffer. The DEFREF search is finished when all the PREFs in T:LDEF, that can be, are satisfied. 
T:LROM now contains pointers to all the library ROMs, and T:LDEF is no longer required. 

The MODIR file is read into the buffer and the T:LROM entries are changed to point to the ROM's starting record 
number in the MODULE file. 

The packed tables are read from the RAD (if they were saved in X6), and T:LROM is moved to the temporary buffer 
(TEMPBUF) inside the LIB overlay while the Dynamic Tables are being unpacked. Note that if the DIAG segment 
were to be called at this point, TEMPBUF would be destroyed. T:LROM entries are converted into T:ROMI format 
and added to T:ROMI in the Dynamic Table area. PASSONE is then called to input the ROMs specified in T:ROMI. 

Logical Flow of PASSTWO 

PASSTWO branches to process T:ASSIGN if CCI has just been previously called by PASSTWO to input :ASSIGN 
commands. Otherwise, it reorganizes the Dynamic Table area and moves the resident tables T:SEG, T:DCBV, and 
T:DCB to the end of T:PUBVAL and locates T:VALUE at the end of T:DCB. PASSTWO then allocates part two of the 
Root either at the end of the longest path or where specified on a :ROOT card. 

PASSTWO is now ready to process the segments. It points to the first/next T:SEGentry; reads the segment's T:VALUE 
subtable into T:VALUEi calculates the number of granules required for the segment on the Program File; creates 
T:GRAN at the end of T:VALUE; reads the segment's T:MODIFY and T:MODULE tables at the top of T:VALX; and 
allocates the Work area (which is divided into granule partitions and contains all or part of the segment'spartitioned 
core image}at the end of T:GRAN. The Work area extends to the Module Tables Buffer (B:MT), which varies insize, 
and is allocated backwards from the top of T:MODIFY. The Work area is dynamic and changes in size either when 
tables in B:MT are no longer required, or when another set of Module Tables is input. 

PASSTWO is now ready to process the segment's ROMs. It points to the first/next T:MODULE entry; reads in the 
first/next set of Module Tables into B:MT if necessary; points to the current module's T:DECL, T:CSECT, T:FWD, 
and T:FWDX table; inputs the ROM; scans the load items; creates the absolute core image in the Work area using 
T:GRAN to locate the granules; and if the Work area gets full, outputs the necessary granules to the Program File. 

PASSTWO repeats this cycle unti I all the modules in the segment have been input and then writes the granules re­
maining in core onto the program file. It then points to the next T:SEG entry and repeats the outer cycle until all 
the segments in the program have been created. 

If a Public Library is not being created, PASSTWO builds T:GRAN for part two of the Root, located at the end of 
T:DCB. If there is an :ASSIGN command in B:C, PASSTWO allocates T:ASSN from the end of T:GRAN to the be­
ginning of T:VALX and calls CCI to build T:ASSN. After eCi recalls PASS TWO, control is returned to this point. 
PASSTWO allocates the Work area at the end of T:ASSN (which may be of zero length); creates OVLOAD, DCBTAB, 
I NTTAB, and the referenced DCBs; reassigns DCBs referenced in T:ASSN; writes part two of the Root on the Program 
File; creates the program header; and writes it on the Program File. If a Public Library is being created, T:SYMBOL 
and T:VALUE are output on the Program File. PASSTWO then exits by calling the MAP. 

Logical Flow of MAP 

MAP moves T:SEG and T:DCB to the top of the Dynamic Table area, and unless "no MAP" was specified, outputs the 
program header information. 

138 Logical Flow of the Overlay Loader 



MAP points to the first/next T:SEG entry, and unless "no MAP" was specified, outputs the segment's header informa­
tion. If either the PROGRAM or ALL option was specified, MAP reads the segment's T:MODIFY and T:MODULE 
tables into core at the end of T:DCB; locates B:MT at the end of T:MODULEi uses T:MODULE to read in the Module 
Tables associated with the segment; maps the segment's control sections (including Library CSECTs if ALL specified); 
and if this is the Root segment, lists T:DCB. 

Regardless of the option specified, MAP reads the segment's T:SYMgOL and T:VALUE subtables into core at the end 
of T:DCB. If the ALL option was specified, MAP reads T:PUBSYM and T:PUBVAL in as part of the root's external 
table and lists all the symbols in the external table. If the PROGRAM option was specified, MAP lists all the non­
library symbols in the external table. If either the SHORT or "no MAP" option was specified, MAP lists only the 
duplicate DEFs, undefined DEFs, unsatisfied REFs, and duplicate REFs. 

This cycle is repeated until all the entries in T:SEG have been mapped. IfaRADfileusedbytheLoaderoverflowed! 
the number of granules used or needed for all files is listed. Otherwise, this information is output only if either the 
PROGRAM :x ALL option was specified. 

MAP terminates the Overlay Loader by either calling the Monitor EXIT function or ABORT function. MAP aborts 
and destroys the Program Fi Ie if either a RAD fi Ie overflowed or there were loading errors when a Public Library 
was bei ng created. 

Logical Flow of DIAG 

When the DIAG overlay is called, the environment of the calling program is unchanged. Since the DIAG segment 
overlays the calling segment, all the temporary and permanent storage cells used by the callinq segment are located 
in either the Root or the Dynamic Table area. DIAG is called by the RDIAG subroutine which exists in the Root. 
When RDIAG is called, it saves the 16 registers and then calls in DIAG via the Monitor SEGLOAD function. DIAG 
outputs the specified diagnostic and depending upon the exit code associated with the diagnostic, either aborts, re­
turns to RDiAG, or cai is the Monitor WAIT function. If control is returned from the WAIT function, DIAG returns 
to RDIAG. RDIAG then reloads the calling segment via the Monitor SEGLOAD function, restores the 16 registers, 
and returns to the calling segment at the address following the RDIAG call. 

Loader-Generated Table Formats 

The Loader creates the pr~gram's Program Control Block (PCB), DCB Table (DCBTAB), and Segment Loading 
Table (OVLOAD). 

PCB 

The PCB exists as part of the Root segment and is initialized as shovm below by PASSTWO, when the Root segment is 
cre~ted. 

where 

TSTACK 

TSS 

Word 0 10--------01 i TSTArK-l .'- .. -_ .. 

2 

3 

4 

5 

6 

10 

11 

12 

0 

f----

0 

0 
o 

1° 

TSS 

0 

0 
78 

\0 

01 OVLOAD 

Unused 

Unused 

MSLADD 

En try Address 
.1 ,1 1415 16 

Unu·sed 

01 DCBTAB 

Unused 

Unused 
I 

0 

31 

I 
0 141516 2526 31 

is the address of the current top of the user's Temp Stack. 

i ndi cates the si ze, in words, of the user's Temp Stack. 

Loader-Generated Table Formats 139 



OVLOAD is the address of the table used by the SEGLOAD function to read in overlay segments or zero. 

MSLADD is the address of the M:S L DCB used to load overlay segments. 

DCBTAB is the address of a table of names and addresses of a" of the user's DCBs. This table has the form 
given below. 

DeITAI 

DCBTAB is bui It from T :DCB, and is located in part two of the Root. DCBT AB has the format 

Word 0 Total number of entries 

{~
1 

Entry n 

E1 E2 E3 E4 

E5 E6 E7 E8 

FWA of DCB's execution location , , 
o 78 1516 2324 31 

where 

El-E8 is the EBCDIC name of the DCB (left-justified with trailing blanks). 

OVLOAD 

The OVLOAD table contains the information necessary for the Monitor SEGLOAD function to read in overlay seg­
ments at execution time. One entry is created for each overlay segment. Thus, a program consisting only of a Root 
would not have an OVLOAD Table. 

OVLOAD is located in part two of the Root. The format of an entry is such that it can be used as an F PT by SEG LOAD to 
read inthe requestedsegment. OVLOADis formatted as described inthe "RBM Tables Format" chapter. 

Loading Overlay Loader 

Before the Overlay Loader can be loaded, the OLOAD file in the SP area must be previously allocated by the RAD 
Editor. It is loaded by the JCP Loader with the! LOAD command. It is critical that the ROMs of the Overlay 
Loader's segments be ordered correctly, so that the segment's idents assigned by the JCP Loader coincide with the 
idents used within the program. The segment idents are listed below: 

SEG IDENT 

ROOT 0 

CCi i 

PASSONE 2 

PASSTWO 3 

MAP 4 

DIAG 5 

LIB I 6 I 
The overa" flow of the Overlay Loader is illustrated in Figures 53 through 60. 

140 Loading Overlay Loader 



LOADSEG 

Load CCI to process 
the !OLOAD Cc. 

Figure 53. Overlay Loader Flow, !OLOAD 

Process control command. 

RDCC 

Read next CC 
into B:C. 

LOADSEG 

Load PASSONE to 
process T: ROMI. 

LOADSEG 

Load PASSTWO to 
process T :ASSN. 

Figure 54. Overlay Loader Flow, CCI 

Loading Overlay Loader 141 



142 Loading Overlay Loader 

Get fi rst/ next entry 
in T:ROMI. 

Build T:MODULE 
entry for ROM. 

Input ROM and scan for 
PASSONE type load items. 

Allocate C SECTS and 
D SECTS when encountered 

Build Module tables 
(T:DECL, T:CSECT, 
T:FWD, and T:FWDX). 

Either link or add DEFs, 
REFs, DSECTS to 
T:PUBSYM, T:DCB or 
T:SYMBOL or T:VALUE 

Add DEF definitions to 
T:VALUE and T:VALX. 

Move Module Tables to 
B:MT and write on X2 
if the buffer is full. 

Fi gure 55. Over! ay Loader F I ow, PASS ON E 



Pack T :MODI FY and 
T :M OD U lE togethe r 
and output on X3. 

create the load 
module. 

yes 

yes 

yes 

next segment's 
substack. 

yes 

Figure 55. Overlay Looder Flow, PASSONE (cont.) 

specified library. I 

~ 
~ 

Loading Overlay loader 143 



144 

Bui Id T: LDEF at the end 
of the packed tables. 

Allocate EBCDIC, DEFREF, 
and MODIR files' buffer. 

no 

Change T: LDEF entries to 
point from T:SYMBOL and 
T:PUBSYM entries to 
EBCDIC entries. 

Read DEFREF file 
into buffer. 

Allocate T:LROMtobegin 
at the end of the buffer. 

Use DEFREF entries to 
satisfy REFs in T:LDEF. 

Built T:LROM to point to 
I ibrary ROMs that satisfy 
T: LDEF REFs. 

Read MODIR fi Ie 
into the buffer. 

Convert T: LROM entri es 
to point from MODIR 
file entries to MODULE 
fi Ie record numbers. 

no 

Move T:LROM to TEMPBUF 
(inside LIB overlay). 

Unpack the 16 
Dynamic Tables. 

Convert T: LROM entri es 
to T :ROMI entries and 
add to T: ROMI. 

Figure 55. Overlay Loader Flow, PASSON E (cont.) 

Loading Overlay Loader 



Move T:SEG, T:DCBV, 
and T :DCB to the end of 
T: PUBVAL and allocate 
T :VALUE at the end of 
T:DCB. 

Allocate part two 
of the Root. 

yes 

Read segment's T:VALUE 
subtable into T:VALUE. 

Create T:GRAN at 
the end of T: VALUE. 

Read segment1s T :MODiFY 
and T:MODULE at top of 
T:VALX. 

Allocate Work area 
at end of T:GRAN. 

Allocate B:I'AT at 

top of T:MODIFY. 

Read in the segment's 
ROMs and associated 
Module Tables. 

Scan PASSTWO type load 
items and create absolute 
core image. 

yes 

Write segment's core~ I 
imoge on Progrom Fi=.J 

Figure 56. Overlay Loader Flow, PASSTWO 

Loading Overlay Loader 145 



Create T:G RAN at 
end of T: DCB for 
part 2 of the Root and 
allocate T:ASSN at 
end of T:GRAN. 

yes 

Write T :SYMBOL 
and T :VALUE on 
load modu Ie file. 

Allocate Work 
a rea at the end 
of T:ASSN. 

Create part 2 of the 
Root and reassign 
DCBs referenced in 
T:ASSN. 

Write part 2 of 
the Root on 
Program File. 

Create program 
header and write 
it on Program Fi Ie. 

Figure 56. Overlay Loader Flow, PASSTWO (cont.) 

146 Loading Overlay Loader 



List program, Root, 
and segment header 
information. 

List DCBs, program 
CS~CTS, and 
program DEFs. 

List library CSECTS, 
library DEFs, and 
Public Library DEFs. 

List unsatisfied REFs, 
dupl i cate DEFs, 
dupl i cate REFs, and 
undefined DEFs. 

yes 

Li st i nformati on 
about RAD fi I e 
usage. 

yes 

yes 

Figure 57. Overlay Loader Flow, MAP 

Loading Overlay Loader 147 



148 Loading Overlay Loader 

Save the 16 
registers in the 
Temp Stack. 

Figure 58. Overlay Loader Flow, RDIAG 

Restore the 16 
registers. 

Figure 59. Overlay Loader Flow, RDIAGX 



Create text and 
output diagnostic 
on LO and Oc. 

Figure 60. Overlay Loader F!o..,.., DIAG 

Loading Overlay Loader 149 





RBM 

! RADEDIT control 
command. Load and 
transfer control to 

RAD Editor. 

Initialize DeBs and the 
c __ .. _ n _ _ L ~._ _ , 

J\..UII l'UUllllt:: pUlurrlt::lt::r~. I 

~ 
Read next command 

from e device. 

yes 

Load appropriate segment 
if not a I ready in core and 
branch to routine. 

Figure 61. RADEDIT Functiona I Flow 

Return to Monitor. 

Permanent RAD Area Maintenance 151 



C If C = 1, compressed records. 

B If B = 1, blocked records. 

RF If RF = 0, background or nonresident foreground program; if RF = 1, resident foreground program. 

GSIZE is the granule size, in bytes, to be used for direct accessing. 

FSIZE is the current number of records in file. 

RSIZE ,is the number of bytes per logical record. 

BOT is the relative disk address of first sector defi ned for the fi Ie. 

EaT is the relative disk address of last sector defined for the fi Ie. 

No entry extends over a sector boundary. After a sector of directory is filled, the next available sector within the 
permanent disk area is allocated as a continuation of the directory. Sectors of a directory are linked by means of a 
one-word identification entry which is the first word of every sector of the directory. It has the form 

Address Next available sector 

01 1516 31 

where 

A If A = 0, the directory ends in this sector; if A = 1, the directory is continued on another sector. 

Address If A = 0, "Address" contains the relative location within the sector available for the next entry; if 
A = 1, "Address" is the relative disk address of the sector where the directory is continued. 

Next available sector is the relative disk address of the first unused sector in the area. This word is mean-
ingful only for the last sector of directory. 

Space within the permanent disk area is allocated sequentially. The first file in an area, which corresponds to the 
first entry in the sector of directory, begins in the second sector and extends over an integral number of sectors. 
Every file begins and ends on a sector boundary. 

Control Commands 

The permanent disk areas are maintained through the execution of :ALLOT, :DELETE, : TRU NCATE, and: SQUEEZE 
commands. 

The permanent file directories are maintained so that the directory entry defining a file is always contained in a 
sector of directory that has a lower sector address than the file it defines. To facilitate maintenance, files always 
appear in the same order as the entries in the file directory. 

:ALLOT The permanent disk area specified on the command determines the area in whichafile isto beallocated. 
The FILE, FORMAT, FSIZE, RSIZE, GSIZE, and RF parameters are used to form a new directory entry. 

The new entry is added to the current sector of directory (identification entry with A = 0) at the location specified 
by "Address" in the identification entry. The BOT of the new entry is set equal to the "Next available sector". 
The EaT is computed, using the FSIZE, RSIZE, and FORMAT parameters. The identification entry is updated 
to reflect the new entry. The" Next avai lable sector" is set = EaT of the new entry + 1, and the "Address" 
is incremented by 5. 

If there is insufficient space in the current sector of directory for another entry, ;;A;; in the identification entry is 
set to 1; flAddress" is set = "l'..Jext available sectOjll and that sector address ;s used for the nevv sector of directory. 
A new identification entry is built by setting "A" = 0; "Address" = 6; and "Next available sector" = EaT of the 
new entry + 1. 

152 Permanent RAD Area Maintenance 



If there is insufficient space to allocate for a file, the file directory is searched for deleted entries (file name = 0). 
The deleted entry that allocates sufficient space and the least amount of space is selected for the new entry. Disk 
space is lost if the deleted entry allocates more area than is required by the entry. This space can be made avail­
able for allocating by executing a :SQUEEZE command. The area allocated by a new entry is zeroed out. 

The number of sectors to allocate for a file is calculated using the formulas 

c = (F;ISZE + r) * (2:6 + r ) 

B = 
I I "',.., \ \ _,.., 

{(FSIZE/ L:JO )+ ) * L:JO 
\ RSIZE r s 

U = ((RSIZE/s)+r) *FSIZE 

where 

= 1 if remainder f 0, and 0 if remainder = O. 

= disk sector size in words. 

:DELETE The DELETE system call is used to delete a disk fi Ie. The call is bui It from the area and fi Ie 
name parameters on the :DELETE command. The space formerly allocated by the entry becomes unused until either 
a :SQUEEZE command is executed, or an :ALLOT command is executed with insufficient space on the end of an area 
to allocate. Space is then allocated by using a deleted entry. 

:TRUNCATE The permanent disk area specified on the command determ ines the area in which a fi le(s) is to be 
truncated, with the file name specified being used to search the file directory for the entry to be truncated. The 
actual size of the file is calculated and the EOT of the file directory entry is updated accordingly. 

The actual file size for blocked and unblocked files is determined by using the FSIZE and RSIZE of an entry; for 
compressed files, an RFT entry (K:RFTll) containing the current record number is used. The space formerly allo­
cated between the EOT of an entry and the BOT of the next entry becomes unused and is not reallocated 
until a :SQUEEZE command is executed. 

:SQ.UEEZE The parameters on the :SQUEEZE cornmand deterrnine which permanent disk area to squeeze. Trun-

cating or deleting a file that is subsequently reallocated may cause a loss of space that cannot then be allocated. 
That is, the current permanent fi Ie directory entry allocates less space than allocated by the original entry. Exe­
cuting a :SQUEEZE regains all unused space. The directories are compacted and the files themselves are moved to 

regain the unused space. The BOT and EOT entries (of the permanent file directory) are updated as they are com­
pacted to indicate the area occupied by the moved fi Ie. Figure 62 illustrates the permanent disk area before and 
after squeezi ng. 

Library File Maintenance 

Both the System Library files residing in the SP area and the User Library files residing in the FP area have the same 
file structure. Each library consists of one blocked Module File (MODULE) and three unblocked files: the Module 
Directory File (MODIR), EBCDIC File (EBCDIC), and DEFREF File (DEFREF). 

The MODIR File contains general information about each library module, including its name, where in the MODULE 
File it is located, and its size. The MODULE File contains the object modules. The EBCDIC File contains only the 
DEFs and REFs of the library modules. The DEFREF File contains indices to the DEFs and REFs in the EBCDIC File for 
each module. These files must be defined via the :ALLOT command before attempting to generate them via the 
:COpy command. 

Algorithms for Computing Library File Lengths 

The following algorithms may be used to determine the approximate lengths of the four files in a library. It 
is not crucial that the file lengths be exact, since any unused space can be recovered via the :TRUNCATE 

Library File Maintenance 153 



Identification 
Entry 

oj 31f 

file 1 

1f 
deleted 

1d 

fi Ie 2 (truncated) 

16\ 

fi Ie 3 (truncated) 

231 

bad track 

32\ 

file 4 

48/ 

a l 26\ 

fi Ie 1 

11 

fi Ie 2 

111 
file 3 

16\ 

file 4 

221 

bad track 

32 1 

unused 

154 Library File Maintenance 

Permanent RAD Area Before Squeezing 

51 

fi Ie 1 

10 

.. unallocated 

14 

--"" file 2 -
20 

... file 3 

28 

--. bad track . 

47 

--"" file 4 -
50 

Permanent RAD Area After Squeezing 

48 

. file 1 

10 

- fi Ie 2 

15 

--. file 3 -
21 

- file 4 

24 
unused .. 

47 bad track 

Figure 62. Permanent Disk Area 



command. The approximate number of sectors (nMODIR) required in the MODIR Fi Ie is 

3(i) 
nMODIR = -s-

where 

3 is the length of a MODIR File entry, in words. 

is the number of modules to be placed in the library. 

is the disk sector size, in words. 

_ 2(d) 
The approximate number of sectors (nEBCDIC) 

where 

2 is the average length of an EBCDIC Fi Ie entry, in words. 

d is the unique number of DEFs in the library. 

is the disk sector size in words. 

The approximate number of records (nMODULE) required in the MODULE File is 

n 

nMODULE =.L 
I c= 1 

where 

C. 
I 

n is the total number of modules in the library. 

C. is the number of card images in the ith library routine. 
I 

The approximate number of sectors (n~ ........ ~ ........ ) required in the DEFREF File is 
. . UtrKtr . 

n 

L 
i = 1 

d. + r. 
I I +---

2 

nDEF REF 

where 

n is the total number of routines in the library. 

d is the number of DEFs in the ith I ibrary routine. 

is the number of REFs in the ith library routine. 

is the RAD sector size in words. 

Library File Formats 

The library file formats are described below. These files are generated from object modules read in via the 
:COPY command. 

Library File Maintenance 155 



MODIR File 

The MODIR File is an unblocked, sequential access file and acts as a directory to the MODULE File. The file al-
ways consists of one variable length record that increases in size as object modules are added to the library. There 
is one entry in the MODIR File for each object module, with each entry consisting of three words. 

MODULE File record no. I Records per module .. Words 0 

Module name (first DEF) 
----

2 Module name 
--

3 MODULE Fi Ie record no. I Records per module 

4 Module name 

5 Module name 

6 

7 

8 

9 

10 

11 

12 

o 1516 31 

where 

MODULE File record no. is the relative record within the MODULE File where the object module (corres-
ponding to this entry) begins. 

records per module is the number of records in the object module. 

module name is the name of the object module that is the first DEF in an object module. 

A deleted entry contains zeros in all three words. 

MODULE File 

The MODULE File is a blocked, sequential access file and contains the object modules. The location of the object 
module within the file and the size is indicated by the MODIR File entry. 

EBCDIC File 

The EBCDIC File is an unblocked, sequential access file. The file clvvays consists of one variable length record that 
increases in size as object modules are added to the I ibrary. The EBCDIC Fi Ie contains all the unique DEFs and REFs 
in the library object modules. 

156 Library File Maintenance 



o n e e e 

e n e e 

2 e e e e 

3 e e 

where 

n is the number of bytes in entry (including itself). 

e is an external definition or reference in EBCDIC. 

DEFREF Fi Ie 

The DEFREF File is an unblocked, sequential access file. The file always consists of one variable length record that 
increases in size as object modules are added to the library. For each module there is one entry that varies in size 
according to the number of DEFs, DSECTs, and REFs. DEFs and DSECTs always precede the REFs in the entry. 

Entry size (no. 1) MODIR Fi Ie index 

d DEF 1 d DEF 2 

r d DSECT 1 r REF 1 

r REF 2 Entry size (no. 2) 

MODIR File index d DEF 1 

r REF 1 r REF 2 

o 1 15161718 31 

where 

entry size is the number of halfword entries (including itself) for the object module. 3 5entry size 532,767. 

MODIR File index is the relative halfword in the MODIR Fi Ie that identifies the object module. 05 MODIR 

d 

File index 532,767. -1 means a deleted entry. 

if d = 1, the entry is a DEF I 
if d and r both = 1, the entry is a DSECT. 

if r = 1, the entry is a REF 

DEF n is the byte index of an external definition in the EBCDIC File. 

REF n is the byte index of an external reference in the EBCDIC File. 

DSECT n is the byte index of a DSECT in the EBCDIC file. 

A deleted DEFREF entry contains a MODIR Fi Ie index of -1, with the rest of the entry remaining the same. 

Command Execution 

The library files are maintained through the execution of :ALLOT, :COPY, :DELETE, and :SQUEEZE commands. The 
entries in the MODIR File, MODULE File, and DEFREF File are in the same sequential order. The ith entry in the 
MODIR File identifies the ith object module in the MODULE File, and corresponds to the ith entry in the DEFREF 
File. The ordering of these fi les is always preserved. 

Library File Maintenance 157 



:ALLOT Library fi les are allocated in the same general manner as other fi les described previously, but with 
certain specific differences. When area SP or FP is specified, a check is made to determine if the file name is 
MODIR, MODULE, DEFREF, or EBCDIC. If MODULE is specified, RSIZE is required to be 30 words and FORMAT 
must be blocked. If MODIR, DEFREF or EBCDIC is specified, FORMAT must be unblocked. RSIZE can beanyvalue 
for the unblocked files and is used solely for calculating the amount of space to allocate for the file. The record 
size for these three files is set to 0 when allocated. GSIZE on all library files is ignored, and is always set equal 
to disk sector size by RADEDIT. 

:COpy' The permanent disk area specified on the :COPY command determines which library a module(s) is to be 
added to. For each object module added, the following procedure is followed: 

1. An object module is read from the input device specified on the command. The module is added to the end 
of the MODULE File as it is being scanned for external definitions and references. The MODULE File 
record number for the MODIR File is obta ined from RFT12 (current record no. of fi Ie). The MODIR File 
index is obtained from RFTS (record length). 

2. As DEFs and REFs are encountered, they are added as entries to the end of the EBCDIC File. The first DEF 
encountered is used as the MODULE Fi Ie name. However, REFs are added to the EBCDIC File if they are 
not in duplicate. 

3. The indices to the EBCDIC File entries are saved to create the DEF n and REF n words of the entry to the 
DEFREF File. 

4. The addition of the object module to the library is completed by updating the "records per module" in the 
MODIR File entry; "entry size" in the DEFREF File entry; and writing the MODULE, DEFREF, and EBCDIC 
Fi les to the disk. 

:DELETE The permanent disk area on the :DELETE command is used to determine which area contains the library 
object module to be deleted. The MODIR File entry containing the same module name as that appearing on the com­
mand is zeroed out. The corresponding DEFREF File entry is located and the halfword containing the MODIR File 
index is set to -1. No other changes are made to the EBCDIC and MODULE Fi les as a result of the :DELETE 
command. 

All unused space resulting from a module deletion is recovered when a : SQUEEZE command is executed. 

:SQUEEZE The permanent disk area on the :SQUEEZE command is used to determine the library to be squeezed. 
Permanent disk areas containing libraries are squeezed in the same way as other areas with the following excep­
tion: after the permanent file directories are compacted and files are moved to regain the unused space, a search 
is made of the MODIR File. All existing modules are copied from the MODULE File to the Temporary File Xl. 
Using Xl as the source of input, the library files MODIR, EBCDIC, and DEFREF are regenerated. 

Bad Track Handlinl' 

Bad tracks within permanent file areas on a disk are removed from use by making special entries to the appropriate 
fi Ie directory. All bad tracks can be handled in this manner except those that contain a sector of the fi Ie directory. 
These cannot be removed from use as it would make accessing of certain fi les impossible. 

Command Execution 

Bad tracks are handled through execution of B:DTRACK and :GDTRACK commands. The :BDTRACK command re­
moves the track from use by allocating the track. The :GDTRACK command returns the track for use by deleting 
the entry made by :BDTRACK. 

:BDTRACK The permanent file area that encompasses the bad track is determined by the disk or disk pack (DP) 
and bad track specified on the command. A check is made to determ ine if a sector of directory falls within the bad 
track. If it does, the bad track is not eliminated from use. A search of the file directory is made to determine if 
the bad track is allocated. If it is, the entry(s) that allocates the track is eliminated and replaced by a bad track 
entry. If it is not ailocated, a bad track entry is added to the end of the Hie directory. A bad track entry consists 
of the "fi Ie name II being set to -1, and the BOT and EOT being set to the starting and ending sector of the bad 
track. The appearance of files in the same order as the entries in the file directory is maintained. 

158 Bad Track Handling 



:GDTRACK The permanent fi Ie area that encompasses the good track is determined by the RAD or disk pack 
(DP) and bad track specified on the command. A search of the fi Ie directory is made for the entry that allocates 
the track specified on the command. The entry is deleted (file name set = 0), making the track available for 

allocating. 

Utility Functions 

The following uti I ity functions are performed by the RADEDIT: 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

Maps permanent disk areas. 

IV~laps libraries. 

Clears permanent disk areas. 

Enters data onto permanent disk fi les. 

Appends records to the end of an existing permanent disk fi Ie. 

Copies permanent disk fi les. 

Copies library object modules. 

Copies the contents of a disk to another disk. 

"'" ____ LL _ _ __ I I _ r _I- I r· fl· .- I 
UUllif-/:' 1I1~ I.,;UIII~III:' UI UI:iK. Illes ur enrlre UISK. areas. 

Saves the contents of disk areas in self-reloadable form. 

Restores disk arees previously saved. 

:MAP The permanent disk area(s) to be mapped is indicated on the :MAP Command, with the map information 
being output to the device assigned to the M:LO DCB. 

Each map consists of up to three sections: one section when disk areas CK, XA, or BT are mapped; three sections 
if any other areas are mapped. The three sections of the map are as follows: 

1. Information from the Master Directory identifying the permanent disk area, starting and ending disk ad­
dresses, write protection, and device number of the disk from the Device Control Tables. 

2. Information obtained from the permanent file directories concerning each file in the area; its name, format, 
granule size, record size, fi Ie size, beginning of fi Ie, and ending of fi Ie. 

3. Information about the space remaining in the area. 

Section 1 of the map has the format 

AREA 

zz 

where 

DEVICE­
ADDRESS 

yyndd 

WORDS/ 
SECTOR 

sssss 

SECTORS/ 
TRACK 

ttttt 

zz identifies the permanent disk area. 

BEGIN 
SECTOR 

bbbbb 

yyndd is the disk that contains the permanent disk area. 

sssss is the number of words per sector, in decimal. 

ttttt is the number of sectors per track, in decimal. 

END 
SECTOR 

eeeee 

WRITE 
PROTECT 

w 

bbbbb is the absolute disk address of the first sector of the area in decimal. 

eeeee is the absolute disk address of the last sector of the area in decimal. 

Utility Functions 159 



w is the write protection for the fi Ie. 

F is write-permitted by foreground only unless SY key-in. 

B is write-permitted by background only unless SY key-in. 

M is write-permitted by the monitor only. 

N is write-permitted only if SY key-in. 

X is write-permitted by IOEX only. 

Section 2 of the map has the format 

FILENAME 

nnnnnnnn 

where 

ORG 

f 

(AREA RELATNE) 
BEGIN END 
SECTOR SECTOR 

sssss ttttt 

GRANULE 
SIZE 
(BYTES) 

ggggg 

RECORD 
SIZE 
(BYTES) 

rrrrr 

nnnnnnnn is the name of a file in the permanent disk area. 

f is the file organization: 

U specifies unblocked. 

B specifies blocked. 

C specifies compressed. 

ggggg is the granule size in bytes in decimal. 

rrrrr is the record size in bytes in decimal. 

UI.H is the number of records in file in decimal. 

FILE 
SIZE 
(RECS) 

£££££ 

APPROX 
RECORDS 
REMAINING 

aaaaa 

sssss is the relative disk address of the first sector defined for the fi Ie in decimal. 

ttttt is the relative disk address of the last sector defined for the file in decimal. 

aaaaa is the approximate number of additional records the file can contain. 

Section 3 of the map gives statistics on the uti lization of the area and has the format 

REMAIN ING SECTORS: xxxxx 
SECTORS RECOVERABLE: yyyyy 

where 

xxx xx is the number of unused sectors in the area, i. e., the sectors between the end of the last allocated 
fi Ie and the end of the area. 

yyyyy is the number of additional sectors that wi" become avai lable if a SQUEEZE is done. 

The mapping of an area is performed as follows: 

1. Information is obtained from the Master Directory for Section 1 of the map and output to the LO device. 
If an area is not allocated, the mapping of that area is ignored. 

2. Information is then obtained from the permanent fi Ie directory for Section 2 and otuput to the LO device. 
If an area other than CK, XA, or BT does not contain files, a message will be output to that effect. When 
a bad track entry is encountered, "BADTRACK" is printed as the name of the file. 

3. As the information for each fi Ie is printed, sectors contained in de leted fi les or between the end of one 
fi Ie and the beginning of the next (truncated areas) are counted for reporting in Section 3. 

160 Uti lity Functions 



The information on the Master Directory is unpacked by the subroutine UN PKMASD into a table. All subsequent 
references to MASTD information during a MAP operation then use this table. UNPKMASD also computes the num­
ber of sectors in the area and initializes values used in accounting for free space, used space, and lost space for 
Section 3 output. 

Each file's entry in the directory is unpacked into a table as it is scanned by the subroutine UNPKDIRE. This table, 
rather than the actual entry in the directory, is used to print the information for Section 2. 

As each area's map is produced, checks are made for a valid directory. Error conditions tested are 

1. The "Address" portion of the last directory sector is larger than a sector. 

2. The "Next Avai lable Sector" portion of a directory sector points out of the area. 

3. The End sector of a fi Ie entry is beyond the end of the area. 

4. The size of a fi Ie (EOF-BOF) < O. 

Whenever any of these conditions are found, the processing of the area is terminated by the message 

"AREA CONTAINS NO FILES. II 

The period is used to indicate that the directory is not valid. 

:LMAP This command functions exactly as the :MAP function with the following exceptions: 

• SP and FP are the only areas allowed with this command. 

• The map consists of up to four sections. The first three sections are as shown in the :MAP description. The 
additional fourth section gives information about object modules in the library fj les. 

Section 4 of the map has the format 

MAP OF LIBRARY IN AREA aa 

MODULE NAME LOCATION DEFS REFS 

mmmmmmmm HH dddddddd dddddddd rrrrrrrr rrrrrrrr 

\A/here 

aa is the permanent disk area that contains the library. 

mmmmmmmm is the object module name. 

HH. is the relative sector address of the first sector of the object module. 

dddddddd is the name of an external definition. (Up to 3 per line. ) 

rrrrrrrr is the name of an external reference. (Up to 3 per line.) 

:SMAP This command is similar to the :MAP function except that the output is greatly abbreviated for output 
to a terminal. 

Section 1 of the map has the format: 

AREA: ZZ 

Section 2 of the map has the format: 

FILEN AME RECORDS 

nnnnnnnn ££££1 

The mapping of the areas is performed in the same steps as under MAP. 

Utility Functions 161 



:CLEAR The permanent RAD area on the :C LEAR command is used to determine the area to be cleared (set to 
zero). The area is cleared using the direct access method. The granule size is set equal to the amount of unused 
background space avai lable, which is zeroed out and written to the RAD. 

:COPV The parameters on the :COPY command are used to set up the F:SI and F:SO DCBs. Files are copied 
sequentially. When an ! EOD, :EOD, or EOT is encountered, the number of fi les to copy is decremented. If there 
are no more fi les to copy, the request is terminated; otherwise, the next fi Ie-copy is started. When an object 
module is copied to an output device, the COPY is terminated when the module end load item is encountered. 

:DPCOPV The parameters in the :DPCOPY command are used to set up input and output DCBs which are assigned 
directly to the specified disk packs. The copy is double buffered on input and output using buffers that are as large 
as the background work space will allow. The copy continues until the specified number of sectors have been 
copied. 

:DUMP The permanent RAD area or file to be dumped is indicated on the :DUMP command. The information is 
dumped to the device assigned to the M:LO DCB. The file dump has the format 

DUMP OF FILE nnnnnnnn IN AREA AA 

RECORD rrrr 

WD 0000 dddddddd dddddddd ..• dddddddd 

WDOOO8 

WD 0016 

where 

nnnnnnnn is the name of the file. 

AA identifies the permanent RAD area (area BT inclusive). 

rrrr is the relative record number and begins with 1 • 

dddddddd is a data word in hexadecimal. 

The area dump has the format 

DUMP OF AREA ZZ 

SECTOR ssss 

WOOOOO dddddddd dddddddd .•• dddddddd 

WD0008 

WD0016 

where 

ZZ identifies the RAD area. 

ssss is the re!ative sector number, and begins with O. 

dddddddd is a data word in hexadecimal. 

162 Uti lity Functions 



The dumping of an area or file is performed as follows: 

1. The directive is scanned to determine whether an area or file is to be dumped. If a value for SREC is not speci­
fi ed, a is assumed. If a value for EREC is not specifi ed, the last record of the fi Ie or area is assumed. 

2. The record{s) to be dumped is accessed sequentially. Within a record, if a word is dupl icated more than sixteen 
times in order, it is output onl yonce in the message 

'WDxxx THRU xxx CONTAIN xxxxxxxx' 

If records are duplicated, the message 

'RECORDxxx THRU xxx CONTAIN xxxxxxxx' 

is output. 

If sectors are dupl icated, the message 

'SECTOR xxx THRU xxx CONTAIN xxxxxxxx' 

is output. 

3. The dump is terminated when the specified number of records have been dumped or when a complete file orarea 
has been dumped. 

:SAVE The area{s) to be saved is specified on the :SAVE command. The data is dumped to the device assigned to 
the M:BO DCB, and consist's of the following: 

1. A small 88-byte bootstrap that loads the large bootstrap when booted from the console. 

2. A large bootstrap that restores the disk from magnetic or paper tape. 

3. An 88-byte RBM bootstrap used for booting the disk. 

4. Records containing data to be restored. 

Each record to be restored is preceded by a five-word header with the format 

No. words per sector L\I \10 -- a I~I Area ident. 

No. sectors in record Device number 

First-word address of area 

No. sectors per track No. sectors (zero) to write 

CKSM (2's complement form) 

o 15161718 2324 31 

where 

No. words per sec tor is the size of the sector. 

LRA is a flag to indicate the last record of an area if LRA = 1, last record. 

LRT is a flag to indicate the last record of the tape if LRT = 1, last record. 

Uti lity Functions 163 



DP indicates that the device is a disk pack if DP = 1. 

Area ident. is the area to which the record belongs. 

No. sectors in record is the size of record (in sectors). 

Device number is the physical device number of the RAD or disk pack. 

FWA of area is the absolute address where the data records should begin being restored. 

No. sectors per track/No. sectors (zero) to write 
nonzero data in the record. 

is the number of sectors containing all zeros preceding 

CKSM is the checksum of this record in the 2's complement form. 

The saving of an area for subsequent restoration is performed as follows: 

1. A small and large bootstrap are written with their checksums. 

2. A header for the RBM RAD bootstrap is written. The FWA and device number for the header is obtained 
from K:RDBOOT. 

3. The image of the RBM RAD bootstrap is read from the file RADBOOT in the SP area, and written. 

4. Data records are written with each record being preceded by a header and followed by a checksum. Lead­
ing and trailing zeros of a record are not written. Size of the data records depends upon the amount of 
available background space used as a buffer. 

5. After all the specified areas are saved, the tape is verified by using the checksum word of each header and 
data record. 

:RESTORE The area{s) to be restored is specified on the :RESTORE command. The data is read using the device 
assigned to the M: BI DCB. The small bootstrap, large bootstrap, and RBM disk bootstrap are ski pped. Data records 
are read and restored using the headers that precede them with all leading and trailing zeros of a record also being 
restored. Restoration has to be made to the same type of disk as that from which the records were saved. 

The overall flow of the RAD Editor is illustrated in Figures 63 through 67. 

164 Utility Functions 



Set defau it va lues 
for FSIZE, GSIZE, 
RSIZE. 

Calculate numberof 
sectors to allocate 
for fi Ie. 

Bui Id new sector 
of directory. 

Use a deleted entry 
that allocates 
sufficient space. 

Add entry to 
Fi Ie Directory. 

Zero out area 
allocated. 

Figure 63. RADEDIT Flow, ALLOT 

Utility Functions 165 



166 Uti lity Functions 

Initialize COpy 
routine. 

Scan command 
(from field). 

Input From File 

Setup F:SI DCB 
and FPT (area, file 
name, ASN record 
size). 

Scan command 
(to field). 

Illegal useofCOPY. 
Return to Moni tor 
or EXEC 1. 

Figure 64. RADEDIT Flow, COPY 



I 
Setup F:SI DCB and 
FPT (area, record 
size, fi ie name = 
Module). 

Scan command 
(to field). 

Setup F:SO DCB 
(ASN, DCT Index, 
op Label Table 
Index). 

Read MODIR file 
into Background 
Buffer. 

Get location of 
module in MODULE 
fi Ie by searching 
MODIR file. 

Skipout tomodule 
on MODULE fi Ie. 

Copy modu Ie to 
output device. 

no 

Illegal use of COPY. 
Return to Monitor I 
or EXEC 1. . 

Figure 64. RADEDIT Flow, COpy (cont.) 

Utility Functions 167 



168 Utility Functions 

Setup F:SI DeB (ASN, 
DeT Index, Op Label 
Table Index.) 

Setup F:SO DeB and FPT 
(area, fi Ie name, ASN, 
record size). 

If add option, skip to EOF 
on output fi Ie. 

Reassign e device to 
standard assign. 

Figure 64. RADEDIT Flow, COpy (cont.) 



Setup F: 51, F: SO 
DCBs and FPTs. 

Read EBCDIC file 
into Background 
Buffer. 

Invert EBCDIC in 
Background Buffer 
starting at highest 
core location. 

no 

Read DEFREF Fi Ie 
into Background 
Buffer storti ng at 
Lowest Core Locat. 

Scan module for 
DEFs and REFs. 

Set record 
length = 0 for 
all library fi les. 

Figure 64. RADEDIT Flow, COpy (cont. ) 

fi Ie with new entry 
to DEFREF fi Ie. 

Write out EBCDIC 
fi I e wi th new entry 
to EBCDIC file. 

Read MODIR 
file into 
background. 

Write out MODIR 
fiie inciuding 
entry for th is 
module. 

Uti lity Functions 169 



170 Utility Functions 

Set up F:SO DCB 
(area, fj Ie name, 
ASN). 

Process options 
if any. 

If add option, skip 
to EOF on output 
file. 

Copy input fi Ie 
to output file. 

Write EOF on 
output fi Ie. 

Setup F: SO DCB 
(ASN, DCT Index, 
Op Label Table, 
Index). 

Figure 64. RADEDIT Flow, COpy (cont. ) 



Scan command for 

Read ali of file 

Squeeze file 

Current fi Ie 
directory entry = 1 

Y ~ 
~"""'-----lL...-------' 

Move file and 
update directory. 

yes 

If gap between EOT 
and badtrack BOT, 
insert largest file 
that will fit and 

u date directory. 

Figure 65. RADEDIT Flow, SQUEEZE 

Utility Functions 171 



172 Uti lity Functions 

for existing modules 
and copy modu les 
from MODULE fj Ie 
to Temp. file (Xl). 

Create new library 
files (MODIR, 
DEFREF, EBCDIC) 
using file Xl as input. 

Figure 65. RADEDIT Flow, SQUEEZE (cant. ) 



Setup to write out 
small boot. (a) size 
of large boot in 
small boot. (b) bui Id 
C KSM for small boot 

C"_ ..... _~_ •.. _!.&. ____ LI ______ _ 
..... CI utJ IU VVIIIC UUI lUI ~c 

boot. (a) put read order 
in large boot (MT or PT). 
(b) build CKSM for 
large boot. 

Write out large 
boot to BO. 

write to BO. 

Get RADBOOT from 
SP fi Ie RADBOOT 

Bui Id header for 
data record. 

Read data from 
spec i fi ed area. 

Figure 66. RADEDIT Flow, SAVE 

Uti Ii ty Functions 173 



174 Utility Functions 

Calculate numberof 
sec tors of zeros at 
front end of record if 
any save in header. 

Bui Id C KSM and 
write out header. 

Write data record 
to BO. 

Verify tape 
generated. 

Figure 66. RADEDIT Flow, SAVE (cont.) 



Skip first four rec­
ords (bootstraps) 
and read first data 
header. 

Verify disk being 
restored has same 

I • .1. 
st:!cror SIZt:! as rnar 

saved. 

CKSM data 

® 
header. 

REST 

27 

Write leading 
zeros if any 

®-EST _ 
34 

precede data. 

~------~----~ 

Read data record 
_~..J rVCAA 
UIIU ,-.,J,V, 

(a) Write data rec­
ord on disk and 
(b) Read new data 
header. 

Figure 67. RADEDIT Flow, RESTORE 

Uti Ii ty Functions 175 



11. SYSTEM GENERATION 

Overview 
The System Generation program is assembled in absolute, using the ASECT directive, and is ORG'd (origined) at 

two locations: 

1. The first ORG at location X ' 140' allocates and defines the system flags and pointers. It is the first location 
that cannot be used for an external interrupt. The system flags and pointers are a group of cells that pro­
vide communication between SYSGEN, all portions of the Monitor, and the system processors and service 
routines. Since these cells are in fixed, predetermined locations, they are defined via the EQU directive 
in all programs that reference them. Note that these cells must not be changed, deleted, or altered in any 
way in the SYSGEN listing unless the EQU directives are also changed in all programs that reference the 
cells. The system flags and poi nters are followed by a skeleton of the Master Dictionary. The Master 
Dictionary is not necessarily fixed at its assembled location since it may be moved to the unused interrupt 
cells if sufficient space exists. 

2. The next ORG (based on assembly parameters) fixes the start of the SYSGEN program. SYSGEN is ORG 'd 
such that the program wi II occupy the highest address portion in memory. This provides the SYSGEN 
Loader with the maximum amount of room to load the Monitor and its overlays in the lower adciress portion 
of memory. If a user adds a significant amount of code to the Monitor, this ORG may have to be moved 
to a higher location to prevent the Monitor from overflowing SYSGEN during the load. 

The System Generation program is divided into two sections designated as SYSGEN and SYSLOAD. SYSGEN pro­
cesses all the SYSGEN control commands and allocates and initializes all the Monitor tables from the information 
on the control commands. It also builds a symbol table for SYSLOAD that contains the name and absolute address 
of all the Monitor tables. Optionally, SYSGEN will output on a rebootable deck containing the Monitor tables 
and SYSLOAD on cards, paper tape, or magnetic tape. The SYSGEN phase can be overwritten during the loading 
of the Monitor, and terminates by exiting to SYS LOAD. 

SYSLOAD loads the Monitor, all optional resident routines, the RBM overlays, the Job Control Processor, and then 
writes these in to the RBM file in the SP area. A map containing the RBM table allocation and RAD allocation is 
output upon request. SYSLOAD terminates by reading in the disk Bootstrap and exiting to it, simulating a booting 
of the system from the disk. 

Figure 68 illustrates the core layout of SYSGEN and SYSLOAD after the absolute object module is loaded by the 
Stand-Alone SYSGEN Loader. 

Unchanged 

System Flags and Pointers 

Skeleton of Master Dictionary 

Unchanged 

Stand-Alone SYSGEN Loader 

Unchanged 

SYSGEN Processing Routines 

Subroutines Unique to SYSGEN 

SYSLOAD 

Subroutines Used by SYSGEN and SYSLOAD 

Note: #MEMSIZE and #SYSGEN are assembly parameters. 

X ' 140 ' 

X'208 1 

X '236 1 

X'400 ' 

# MEMSIZE-#SYSGEN 

#MEMSIZE 

Figure 68. SYSGEN and SYSLOAD Layout Before Execution 

176 Uti Ii ty Functions 



Figure 69 depicts a typical core layout after SYSGEN and SYSLOAD have executed. 

Unchanged 
1---------'-----------------+--X '40' 

MTW,O Instruction Stored in all Used 
Interrupt Locations 

I-----------------------+--Control task Int. I __ 
LV\""_ 

Unused Interrupt Locati ons Used for 
Monitor Tables 

t-----------------------+-- X'140' 
c t 1:1 ..Iys em I lags an d D ... IOinierS 

Remainder of Monitor Tables 

RBM Overlay Area 

Floating Point, Decimal Byte-String, and Conversion 
Instruction Simulation Packages, if Required 

.... _, ..... 
KIjM Koot 

Resident RBM Overlays 

RBM Initialize Routine 
(Extends into Background Area) 

Area Used by SYSLOAD to Load JCP 

SYSLOAD 

-I 
X'216' 

512 Locations 

-Patch Area 

- Background FWA (starts on first page 
boundary after Resident RBM) 

I About 4600 Locati ons 

#MEMSIZE 

Figure 69. SYSGEt-.J and SYSLOAD Layout After Execution 

SYSGEN/SYSLOAD Flow 

The flowcharts in Figure 70 depict the overall flow of SYSGEN and SYSLOAD. The labels used correspond to the 
labels in the program listing. 

Loading Simulation Routines, RBM, and RBM Overlays 

The S region of the SYSLOAD I isting contains a loader that loads the instruction simulation packages, RBM, the 
RBM overlays, and the Job Control Processor (JCP). Each object module loaded must have one DEF directive that 
identifies the object module to the loader. t The DEFs listed in Table 8 are recognized by the Loader. 

t 
This DEF must be the first load item in the ROM. 

SYSGEN/SYSLOAD Flow/Loading Simulation Routines, RBM, and RBM Overlays 177 



Figure 70. SYSGEN/SYSLOAD Flow 

178 Loading Simulation Routines, RBM, and RBM Overlays 



Set up group code and level 
bit for Control Task into 

Set all used interrupt 
locations to MTW, O. 

Change no. TRKS for GO, 
,.......,. ,,..1. . I uv Tiles TO seCTor numoer. 

Move Master Dict. to 
unused into cells if room. 

Allocate and preset all 
RBM tables. OCT, 10Q, 
RFT, etc. Set OLAFWA to 
XI 100 1 boundary if all 
SEN SE switches are set. 

Save FWA of tables in 
Symbol Table for SYS LOAD. 

Set FGD FWA, BCKG 
FWA, FPOOL FWA, etc. 

Figure 70. SYSGEN/SYSLOAD Flow (cont.) 

Loading Simulation Routines, RBM, and RBM Overlays 179 



Output rebootable 
deck of SYS LOAD, 

8~:P~T OPTiONS", 
Process :SYS LD cmd 

Zero out a II defi ned 
RAD areas (first sec­
tor on Iy if fast 
option). 

Figure 70. SYSGEN/SYS LOAD Flow (cont. ) 

180 loading Simulation Routines, RBM, and RBM Overlays 



Read In RAD Boot­
strap from existing 
RBM. 

Get RAD address 
for existing RBM, 
and read in fi rst 
400 words of RBM. 

Compare old Master 
Diet. with new Mas­
ter Diet. to see 
which areas moved. 

Type Reload alarms 
for ai i areas that 
moved. 

Zero out fi rst sector 
of a II a reas that 

Initialize cells for 
loading of RBM 
object modules. 

Load FPSIM and 
DECSIM routines, if 
required, to core. 

Load RBM to core and 
write to RBM file on 
RAD. Load the RBM 

Set background FW A 
and Simulation 
routine's FWA. 

Figure 70. SYSGEN/SYS LOAD Flow (cont. ) 

Loading Simulation Routines, RBM, and RBM Overlays 181 



~ Move RBM OVLOAD 
table to its 

Type "RELOADSPAREA" 
and "RELOAD BCKG 
PROGRAMS", if 
appropriate. 

Write out SP 

strap onto sector 0 
of RAD. 

Punch hard copy 
of RAD Bootstrap Gi ___ if_r_e_qU-li~red' 

Figure 70. SYSGEN/SYSLOAD Flow (cont.) 

182 Loading Simulation Routines, RBM, and RBM Overlays 



Table 8. Standard SYS LOAD DEFs 

DEF Name Program 

ABEX Background abort/exit 

ALLOT ALLOT Service Calls 

ARM ARM/DISARM/CONN ECT/DISCONNECT 

I 
BKLl Background Loader 

I BYTSIM 
I 

Byte String Instruction Simulation Routine 

CHECK I CHECK Service Calls 

CKD Crash Dump to LP 

CKD2 Crash Dump to LP 

CKPT Checkpoint 

r I r"\C'cv '" "",, 
'- L.'-'JL./\ '-lose a U'-D 

CRD Crash Dump to BI 

CRS Crash Save 

CVSIM Convert Instruction Simulation Routine 

DECSIM Decimal Instruction Simulation Routine 

DELETE Service Call 

DEVI DEVICE Service Calls 

ENQ Enqueue/Dequeue 

ESU Error Summary 

EXTM Termination Service Calls 

FGLl Run-time Loader 

FGL2 Run-time Loader 

FGL3 Run-time Loader 

FPSIM Floating Point Simulation Routine 

GETNRT I/o Subroutines 

IN IT Boot time initialization 

IOEX IOEX Service Calls 

KEY 1 Keyi n Processor 

KEY2 Keyin Processor 

KEY3 Keyin Processor 

Loading Simulation Routines, RBM, and RBM Overlays 183 



Table 8. Standard SYSLOAD DEFs (cont.) 

DEF Name 

KEY4 

KEY5 

KEY6 

KEY7 

LOG 

LP 

OPENX 

PINIT 

PRINT 

READWRIT 

REWIND 

RUN 

RWBFILE 

RWDEVF 

SDBUF 

SIGNAL 

SJOB 

SNAM 

STDLB 

TAPE 

TERM 

TMGETP 

TMTYC 

TRAPS 

TT 

WAIT 

184 Loading Simulation Routines, RBM, and RBM Overlays 

Program 

Keyi n Processor 

Keyi n Processor 

Keyin Processor 

Keyin Processor 

Error Logger 

Line Printer Hand lers 

Open a DCB 

INIT Service Calls 

PRINT Service Calls 

READ/WRITE Service Calls 

REWIND Service Calls 

RUN Service Calls 

Blocked Fi Ie I/O 

Unblocked Fi Ie I/O 

Side Suffering Routines 

Signal Hand ler 

SJOB/KJOB Service Calls 

SETN AME Service Calls 

STDLB Service Calls 

Magnetic Tape Hand lers 

Task Termination 

Task/ECB Subroutines 

Task/ECB Subroutines 

Trap Handling 

Task Termination 

WAIT Service Calls 



The loader satisfies references to any of the RBM tables and RBM DEFs in the object modules it loads. References 
that can be satisfied are contained in the RBM Symbol Table. The address of each RBM table is stored in the Symbol 
Table by SYSGEN when the table is allocated. The address of each RBM DEF is stored when it is encountered during 
loading of the RBM object module. 

All other references are treated as overlay entry-point references, and saved in the RBM Program Table. A more 
detailed discussion is given in the "Monitor Internal Services" chapter. 

SYSGEN I/O 
SYSGEN and SYSLOAD perform all of their own I/O via the READ/WRITE routine except for the typing of alarms 
performed by TYPE. The READ/WRITE routine wi II hand Ie a II standard SIGMA periphera I devices. 

The READ/,vVRiTE routine makes extensive use of tabies (caiied iOTO through IOTi8) that fuiiy describe the charac­
teristics of each peripheral device. (See the comments in the program listing for descriptions of the READ/WRITE 
routine and the tables.) The paper tape format used by SYSGEN on read operations is identical to the format used 
by RB"Y~ described in Appendix B. 

Rebootable Deck Format 

If a :PUNCH control command is read by SYSGEN, a rebootable deck is output that includes the RBM tables with 
their initialized values, SYSLOAD, and the RBM Symbol Table. t This deck can be used to load a new version of 
RBM without re-inputting aii the SYSGEN controi commands. 

The first card in the rebootable deck consists of a one-card bootstrap program that loads the next two cards in the 
deck. These nexT two cards consisT of a progrom that loads the remainder or the deck, consisting essentially or the 
RBM Table, SYSLOAD, and the RBM Symbol Table in core image format. 

The two cards containing the Core Image Loader have the following format: 

Byte No. 

o 
1,2,3 

4,5,6,7 

8,9 

10,11 

12-119 

Contents 

XI FFI (for card 1) 

Unused (all zeros) 

XI9P (for card 2) 

Complement checksum of entire card (carry out 
of bit 0 is ignored in computing checksum) 

Unused (all zeros) 

Load address, minus one, for following data 

Loader in absolute core image format 

tlf the rebootable deck is output to paper tape, there are no special additional characters. That is, the paper tape 
contains an exact card image. 

SYSGEN I/O/Rebootable Deck Format 185 



Th~ core image format of the Two-Card Loader is 

X'FF' or X'9F' I word 1 

word 2 

word 3 

word 4 

Complement checksum of entire 29 words on card 

(words 4-30 
contain the 
Two-Card 
Loader in abso­
lute core image 
format. ) 

word 30 

o 
I 
I 

78 

I Load add ress - 1 

b 16 31 

The RBM Tables, SYSLOAD, and the RBM Symbol Table are output in the core image format 

word 1 

word 2 

word 3 

(words 3-30 
contain the 
above-mentioned 
data in core 
i mage format. ) 

word 30 

X'FF' or X'9F' I 
Load address - 1 

I 

o 78 

Sequence number (O-n) 

Compl ement checksum 
(not incl. halfword 0) 

15 16 31 

All cards contain an XI FFI in byte 0 except the last card. The last card contains an XI 9FI in byte 0 and the 
SYS LOAD entry address in place of the load address in word 1. The last card contains no data other that the 
SYS LOAD entry address, the sequence number, and checksum. 

Stand-Alone SYSGEN loader 

The Stand-Alone SYSGEN Loader is a small loader specifically created to load the SYSGEN absolute object module. 
Since SYSGEN is assembled in absolute, the SYSGEN Loader will only load absolute load items and handles only 
the small subset of the Sigma Object Language requi red to load SYSGEN. 

The SYSGEN Loader I/O routine is similar to the SYSGEN I/O, with the code performing the actual loading being 
simi lor to the code in the SYSGEN Loader. 

186 Stand-Alone SYSGEN Loader 



APPENDIX A. RBM SYSTEM FLAGS AND POINTERS 

Table A-l. RBM System Flags and Pointers 

Name Location Description 

K:SYSTEM X'2B' Monitor Identification (RBMIDENT) have the following 

I I 
meaning: 

Bits 0-7 System-identification (X '30' = RBM). 

I I 
Bits 8-11 Version (C = 3, D = 4, etc.). 
Bits 12-15 Update (1, 2, 3, etc. ). 

I I Bits 16-23 Reserved. 
Bits 24-25 00 - Sigma 5. 

01 - Sigma 6/7. 
10 - Sigma 9. 
11 - Reserved. 

Bit 26 Reserved. 
Bit 27 Reserved. 
Bit 28 Reserved. 
D:~ ')0 Real-Time Routl"es. 

I 
uri L./ 

I 

Bit 30 Reserved • 
Bit 31 Reserved. 

K:BACKBG X'140' Beginning address of background. 

K:BCKEND X'141' Ending address of background. 

K:FGDBG 1 X'142' Current beginning address of FGD. 

K:FGDEND X'143' Ending address of FGD. 

K:CCBUF X'144' Address of Contro I Card Buffer. 

K:BPOOL X'145' Start address of BCKG Blocking Buffer Pool. 

K:FGDBG2 X'146' Beginning address of FGD set at SYSGE N. 

K:FMBOX X'147' Start address of FGD Mailboxes. 

K:FPOOL X'148' Start address of FGD Blocking Buffer Pool. 

K:UNAVBG X'149' Start address of unavailab!e memory. 

K:MASTD X'14A' Start address of Master Dictionary. 

K:NUMDA X'14B' Highest valid DW index for MASTD. 

K:VRSION X'14C' RBM version. 

K:ACCNT X'14D' Job Accounting flag. 

K:OV X'14E' Permanent and current sizes of OV. 

K:KEYST X'14F' Post status of key-in here. 

K:JCP1 X'150' JCP and Control Task. 

Bits have the following meaning: 

Bit 0= 1, JC P is executing. 
Bit 1 = 1, Background is active. 
Bit 2 = 1, Background is checkpointed on the RAD. 
Bit 3 = 1, Background is being used by Foreground 

but was not checkpointed. 
Bit 4 = 1, Waiting for key-in response. 
Bit 5 = 1, Skip to next JOB card. 
Bit 6 = 1, Set by ABORT for CA LEXIT. 
Bit 7 = 1, Set by CALEXIT for ABORT. 

Appendix A 187 



Name 

K:JCP1 (cont.) 

K:CTST 

K:SY 

K:BPEND 

K:CTWD 

K:CTGL 

K:BLOAD 

K~BAREA 

K:ASSIGN 

K:RUNF 

K:HIINT 

188 Appendix A 

Table A-l. RBM System Flags and Pointers (cont.) 

Location 

X ' 151 1 

X ' 152 1 

X' 154 1 

X ' 155 1 

X' 156 1 

X ' 158 1 

X' 1591 

X ' 15A ' 

X' 15B ' 

Desc ri pt ion 

Bits 8 - 15, 

Bits 16 - 21, 
Bit 22= 1, 
Bit 23= I, 
Bits 24 - 25, 

Bit 26, 
Bit 27 = 1, 
Bit 28= 1, 
Bit 29= 1, 
Bit 30 = 1, 
Bit 31 c:: 1, 

Previous assign. of C device (for TY 
key-in). 

Unused. 
System processor executing. 
Execute BKGD Debug. 
o means no PMD requested. 
1 means conditional PMD. 
2 means unconditional PMD. 
Flag for CKPT that alarm typed. 
RBM Initialize routine is running. 
FG key-in active. 
TY key-in active. 
Attend command was input. 
JOB command was input. 

Flags to execute Control Task subtask. Bits have the 
following meaning: 

Bit 0= 1, 
Bit 1 = 1, 
Bit 2 = 1, 
Bit 3= 1, 
Bit 4= 1, 
Bit 5= 1, 
Bit 6= 1, 
Bit 7= 1, 
Bit 8= 1, 
Bit 9= 1, 
Bit 10= 1, 
Bit 11= 1, 

Bit 12= 1, 
Bit 13= I, 
Bit 14= 1, 
Bit 15= 1, 

Bit 26 = 1, 

Bit 27 = 1, 
Bit 28= 1, 
Bit 29 = 0, 
Bit 29 = 1, 
Bit 30= 1, 
Bit 31 = 1, 

Execute CHECKPOINT. 
Execute FGD Loader/Releaser. 
Execute Restart. 
Time to service all devices. 
Execute ABORT/EXIT. 
Execute key-in. 
Execute PMD. 
BCKG is IDLE. 
Execute BCKG load. 
Load JCP. 
Load BCKG (Program not JCP). 
Key-in required by higher priority 

subtask. 
Recycle FG Ll/2 to FG L 1 for possible RLS. 
Execute error logger. 
CK PT deferred during BCKG abort. 
BKG in WAIT following attended mode 

abort. 
KEY2 doing STDLB disk file 

OPEN/CLOSE. 
FGLl called from FGL2. 
Control Task is operating. 
Execute ABORT part of ABORT/EXIT. 
Execute EXIT part of ABORT/EXIT. 
PMD from key-in request. 
PMD from PMD command. 

Nonzero if SY key-in active. 

End of ioad area for Be KG program. 

WD code for Control Task. Byte 0 nonzero means CT 
was triggered. 

Group level for Control Task. 

Name in BCD of BC K program to load two words. 

Area to load BC K program from. 

Address of ASSIGN table. 

Post run status here for FGD load. 

HWO = Control task interrupt number. 
HW1 = Highest address used for interrupt. 



Name 

K:FGDBG3 

K:PMD 

K:DCB 

K:KEYIN 

I K:FGDBG4 

I 
K:DELTA I 
K:QUEUE 

K:BTFI LE 

K:GO 

K:PAGE 

K:RDBOOT 

K:DCT1 

K:DCT16 

K:OPLBS 1 

K:OPLBS3 

K:RFT4 

K:RFT5 

K:SERDEV 

K:REQCOM 

K:INITX 

K:FGLD 

K:PMD1 

K:CTDR7 

K:DBTS 

K:KEYDCB 

K:CLK1 

K:CLK2 

K:CLK3 

Table A-l. RBM System Flags and Pointers (cont.) 

Location 

X'15C' 

X'15D' 

X'162' 

X'169' 

X'16F' 

X'170' 

X'171' 

X'172' 

X'173' 

X'174' 

X'175' 

X'176' 

X'177' 

X'178' 

X'179' 

X'17A' 

X'17B' 

X'17C' 

X'17D' 

X'17E' 

X'17F' 

X'180' 

X'181' 

X'182' 

X' 183' - X' 187' 

X'188' 

X'18A' 

X'18C' 

Descri ption 

Begin address of FGD from FMEM key-in. 

Cells to dump for PMD as DW address (5 words), 

DCB for Control Task to load in overlays (7 words). 
A Iways assigned to RBM Fi Ie. 

Key-in Response Buffer (6 words). 

Byte 0 = FWA of FGD prior to CKPT (Page Bits 15-31 = 
K:BCKEND prior to CKPT). 

Entry point for Delta. 

Address of Queue routine. Byte 0 = Nonzero, Stop I/o 
on BCKG. 

Status of BT Fi les 

Bits 0 - 8, 1 bit for each Xl file. Bit set to 
1 means SAVE fi Ie. 

Bits 16 - 31, LWA to use for non-SAVE files. 

Permanent and current sizes of GO. 

Byte 0 = Number of lines per page. 

FWA and device Number of RADBOOT. 

Addresses of tables. 

Address of SERDEV. 

Address of REQCOM. 

Address to return to after INIT runs. 

Byte 0 = Nonzero, X EQ FG D Load/RLS. 

F lags for dumps. 

Location to save context pointer during Control Task 
dump. 

Context pointer for Background PMD. 

DC B to read opera tor key ins. 

Clock cells must start on a DW boundary: there are 
counters for 4 clocks - 2 words/clock. t 

Word 2 gets stored into word 1 when Counter = O. 

t 
The user never needs to access Clock 4. 

Appendix A 189 



Table A-1. RBM System Flags and Pointers (cont.) 

Name Location Description 

K:ABTLOC X'18E' Abort location. 

K:MSG 1 X'190' KEY-IN. 

K:MSG2 X'193 1 KEY ERR. 

K:MSG3 X'1961 RLS NAME NA. 

K:MSG4 X' 19A' FILE NAME ERR. 

K:MSG5 X' 19E' FGD AREA ACTIVE. 

K:MSG6 X' 1A31 NOT ENUF BCKG SPACE. 

K:MSG7 X'lA91 UNABLE TO DO ASSIGN. 

K:MSG8 X'lAF' BCKG CKPT. 

K:MSG9 X'lB2' BCKG IN USE BY FGD. 

K:MSG 10 X'lB71 BCKG RESTART. 

K:MSG 11 X'lBB' CK AREA TOO SMALL. 

K:MSG 12 X'lCO' I/o ERR ON C KPT. 

K:MSG 13 X'lC51 JOB ABORTED AT xxxxx. 

K:MSG14 X'lCB' LOADED PROG NAME. 

K:MSG 15 X'lCF' UNABLE TO LOAD BCKG PUB LIB. 

K:MSG 16 X'lD7' CKPT ABORT, I/O HUNG. 

K:XITSIM X'lE61 Unimplemented instruction normal return. 

K:TRPSIM X '1E71 Unimplemented instruction trap return. 

K:PPGMOT X'lE8' Unimplemented instruction memory-protection error return. 

K:MONTH X'lEA' Table of days/month and BCD names. 

K:DATE 1 X' 1F61 Number days in current year; current year - 1900. 

K:DATE2 X'lF7' Day of year. 

K:TIME X'lF8' Ti me of day in seconds. 

K:ELTIM1 X'lF9' FGD saves BCKG elapsed time here. 

K:LIMIT X'lFA' Maximum execution time for BCKG. 

K:ACCNAM X'lFB' Account entry for AL fi Ie {8 words}. 

K:ELTIM2 X'202' Last word of account entry {elapsed time}. 

K:PTCH X'2071 Beginning address of patch area. 

K:PTCHND X'208' Ending address of patch area. 

K:IOWD X'2091 I/o trigger values. 

K:IOGL X'20A' 

K:CPWD X'20B' CP trigger values. 

K:CPGL X'20C' 

K:IOLOCK X'20D' 

K:RMPT X'20E' RMPT location and length. 

K:BMEM 

I 

X'20F' 

I 

Maximum number of BCKG pages. 

K:JAET v 1'"11'" I"~umber of allocatable OCT entri es. /\ L IV 

K:RTS X'211' RBM stack pointer. 

190 Appendix A 



Table A-l. RBM System Flags and Pointers (cont.) 

Name Location Description 

K:MDNAME X'2121 Address of MDNAME table. 

K:DCTlX X'2131 Address of DCTl table. 

K:RBMEND X'2141 LWA of resident RBM. 

K:RUNJ X'2151 Status from JCP run CAL. 

I 
K:DEBUG 

I 
X'216 1 

I 
Debug communication LOC. 

K:FSMM X '217 1 Pages, end address for foreground SMM. 

Appendix A 191 



APPENDIX B. PAPER TAPE STANDARD FORMAT 

A binary record is signaled by an Xilli as the first character, and the two bytes following are the record sizes. 
The specified number of data bytes follow the count. 

An EBCDIC record is one whose first character is not an Xilli. An EBCDIC record is terminated by an NL code 
(15

16
), or a blank frame (00). 

192 Appendix B 



APPENDIX C. ERROR LOGGING 

The detection of a system, device, or software error will cause RBM to acquire information about the error, generate 
a log record, post the log record, and perform some form of recovery. Upon finding a stacked error-log record 
pointer, the Control Task wi II call the LOG overlay to file the log. 

The LOG overlay unstcu:ks the log record and writes it to the ER oplabel in 16-word records. Normally, the ER op­
label should be directed to a file in the sP area named ERRFILE with a record size of 16 words and blocked format, 
However, the ER oplabel can also be directed to a card or tape device. 

It should be noted that if ERRFILE does exist in the SP area, the ER oplabel will be connected to it by default at sys­

tem boot time. 

Error Log Record Formats 

The following error logs can be generated by RBM: 

Code 

11 510 Fail ure 

12 Device Timeout 

13 Unexpected Interrupt 

15 Devi ce Error 

16 Secondary Record for Device Sense Data 

17 Hardware Error 

18 System Startup 

19 Watchdog Timer 

1D Instruction Exception 

21 Configuration Record 

Code 

22 

23 

27 

28 

30 

31 

32 

41 

42 

43 

The formats for these error log records are given below consecutively: 

510 FAILURE 

Xl 11 1 Count = 6 Model Number 

Milliseconds Since Midnight 

510 Status 

MFI if 
~6 or~7 

Subchannel 
Status 

510 
CC 

TDV Status 

I/O Address 

TDV 
CC 

TDV Current 
Command DA 

Bytes Remaining 

The I/O sequence is 510, TDV. 

System Identification 

Time Stamp 

Operator "'~essage 

I/O Activity Count 

PFI Pri mary Record 

MFI Primary Record 

Processor Poll Record 

550 Processor Configuration 

550 Memory Parity Secondary Record 

Memory Poll Record 

The SIO failure is emitted when the 
following 510 CC are returned: 

DCTMODX 

DCT21, DCll 

-DCT 19, DCT20 

DCT13 

010x 
lOOx 
110x 

Appendix C 193 



DEVICE TIMEOUT 

X'12' Count = 0 Model Number 

Milliseconds Since Midnight 

HIO Status I/O Address 

HIO 
CC 

TDV Status 

TDV 
CC 

TDV Current 
Command DA 

no 
CC 

Bytes Remaining 

Current Command Doubleword 

no Status 
Retry 
Request 

I/O Count 

Seek Address 

Retries 
Remaining 

UNEXPECTED INTERRUPT 

194 Appendix C 

X'13' Count = 4 
Model Number 
(0 if unknown) 

Mi IIiseconds Since Midnight 

AIO Status I/O Address 

DCTMODX 

DCT12 

-, DCTl9, DCT20, DCT20A 

DCT13 

DCT21, 10010, 10011 

DCT25 

10012 

DCTMODX 

DCT12 

-, D CT 19, -, -



DEVICE ERROR 

X'15' Model Number 

t 

Milliseconds Since Midnight 

AIO Status 

AIO 
CC 

TDV Status 

I/O Address 

TDV 
CC 

TDV Current 
Command DA 

no 
CC 

Bytes Remaining 

Current Command Doubleword j 
Retry Retries 
Request Remaining 

TI 0 Status 

I/O Count 

Seek Address 

SECONDARY RECORD FOR DEVICE SENSE DATA 

X'16' 
Count as I/O Address 
Needed 

Milliseconds Since Midnight 

Sense 
(Up to 16 bytes) 

DCTMODX 

DCT12 

-, DCTi9, DCT20, DCT20A 

DCT13 

DCT21, 10010, 10011 

DCT25 

10012 

Note: The I/O address links the 
secondary record to the cor­
responding device error entry. 

Appendix C 195 



SYSTEM STARTUP 

o 

HARDWARE ERROR 

o 

WATCHDOG TIMER 

o 

23 24 31 

X' 18 1 

Milliseconds Since Midnight 

78 1516 23 24 31 

Code Trap CC 

Milliseconds Since Midnight 

PSD Word 1 

PSD Word 2 

o (reserved) 

o (reserved) 

Real Address of Trapped Instruction 

Trapped Instruct ion 

78 1516 23 24 31 

Code I Count = 10 10 o I Trap CC 

Milliseconds Since Midnight 

PSD Word 1 

PSD Word 2 

o (reserved) 

o (reserved) 

Real Address of Trapped Instruction 

I Trapped Instruction I 

-
196 Appendix C 

Generated by trap 4C. 

Generated by Trap 46. 



INSTRUCTION EXCEPTION 

o 78 15 16 23 24 31 

Code I Count c 101 0--0 I Trap CC 

Milliseconds Since Midnight 

PSD Word 1 

PSD Word 2 

o (reserved) 

o (reserved) 

Real Address of Trapped Instruction 

Trapped Instruction 

"""""""""""""""""'" 

CONFIGURATION RECORD 

X' 21 1 

Milliseconds Since Midnight 

Model Number DCT Index 

Alternate I/O Address Primary I/O Address 

SYSTEM IDE NTIFICA nON 

r--.' 

X' 22 1 Count= 5 
Core Size in Relative 
8K Word Time 
Blocks Resolution 

Mi II iseconds Since Midn ight 

System Version Flags 

Site Identification 

Generated by Trap 4D 

Entered at system STARTUP 

(')no ",.,;r I"\t \A/I"\rrlc nor rlo\l;ro ;n nrr 
~,,~ t-'~" ~. .. ~. ~ ~ t-' ~. ~ ~ •• ~ ~ ... - ~ • 

order; multiple records may occur 
(maximum five devices per record). 

Recorded at system STARTUP 

Relative Time Resolution is expressed 
as a value of n such that actua I rela­
tive time resolution c 2n msec. The 
va lue of n for the most I ike Iy reso lu­
tions are 

n = 0 when the timing space is 
supplied by a frequency ~ 1 KHZ 

n = 1 500 HZ 

n = 4 60 HZ 

For CP-R, n = 1. 

Appendix C 197 



198 

The format of system, version, flags and site identification is operating system specific. For the RBM system, version 
and flags are formatted at location X'2B'. 

15 16 31 

2B Version I Parameters 

Location 2B contains three items: 

1. Monitor - This field contains the code number of the monitor. The codes are as follows: 

Code Monitor 

o None or indeterminate 

BCM 

2 16 Bit RBM 

3 32 Bit RBM 

4 BPM 

5 BTM/BPM 

6 UTS 

7 CP-V 

8 CP-R 

9- F Reserved for future use 

2. Version - This is the version code of the monitor and is coded to correspond to the common designation for 
versions. The alphabetic count of the version designation is the high-order part of the code and the version 
number is the low-order part. For example, AOO is coded X'10' and D02 is coded X'42'. 

3. Parameters - The bits in this field are used to indicate suboptions of the monitor. 

Bit Meanins if Set 

31 Symbiont routines included. 

29 Real-time routines included. 

28 Unused. 

27 Reserved. 

26 Reserved. 

24-25 Field defin ing CPU. 

Bit 24 Bit 25 Meaning 

0 Sigma 5-7 

0 Sigma 9 

Appendix C 



TIME STAMP 

X'23' 

Milliseconds Since Midnight 

Year - i900 juiian Day 

OPERA TOR MESSAGE 

X'27' 

TEXTC 
Count 

I/o ACTIVITY COUNT 

28 

Icountos~ 
Needed 

Mi" iseconds Since Midnight 

TEXTC Message 

Max Size = 56 characters (CP-R) 

Count as 
needed 

Relative Time 

1/ 0 Address 1 
~_. ___ ---------"'--"....>.....>......>.....>..~.Joo.....>o.l ____ __1 

I/O Count} 

I/O Address2 DCT Index2 

I/O Count2 

Th is record entered once each hour on the 
hour. 

Binary integers 

A facility is provided to inject messages 
from the computer operator (or diagnosti c 

___________ \ • __ l- _ .1_ _ _ _______ 1__ Tf_ _ _ _ __ L _ 

1-.)JU~fUII'1 flfIU flit:: t::ffUf f\.J8. lilt:: Upt::fUfUI 

may enter these messages from the operator 
console via the ERRSEND key-in. 

Recorded once per hour and at recovery. 
Maximum of 5 entries per record. Counts 
are reset to zero at Boot. 

Appendix C 199 



PFI PRIMARY RECORD 

X'30 ' 

Milliseconds Since Midnight 

MFI PRIMARY RECORD 

X'31 1 Count = 2 

Mi II iseconds Since Midnight 

PROCESSOR POLL RECORD 

X'321 

Milliseconds Since Midnight 

Poll Status 

o 1 2 7 8 1112 15 16 

550 PROCESSOR CONFIGURATION 

41 Count as 
needed 

Relative Time 

POLR Results 

One entry for each unit in 
the cluster (maximum 8). 

550 MEMORY PARITY SECON DARY RECORD 

42 Count = 4 

Relative Time 

Memory Status Word 0 

Memory Status Word 1 

200 Appendix C 

One record produced per nonzero poll 
status received. 

One record per cluster defined in SYSGEN. 

CL 
UN 
TYPE 

Type Code 

1 
2 
3 
4 
7 

cluster # 
unit # 
unit type 

Unit Name 

CPU 
MI 
PI 
MIOP 
SU 



MEMORY POLL RECORD 

X'43' 

Milliseconds Since Midnight 

Memory Status Word 0 

Memory Status Word 1 

Memory Status Word 2 

Appendix C 201 



APPENDIX D. XEROX STANDARD OBJECT LANGUAGE 

INTRODUCTION 
GENERAL 

The Xerox standard object language provides a means of 
expressi ng the output of any Xerox processor in standard 
format. All programs and subprograms in this object format 
can be loaded by the Monitor's relocating loader. t Such a 
loader is capable of providing the program linkages needed 
to form an executable program in core storage. The object 
language is designed to be both computer-independent and 
medium-independent; i. e., it is applicable to any Xerox 
computer having a 32-bit word length, and the same format 
is used for both cards and paper tape. 

SOURCE CODE TRANSLATION 

Before a program can be executed by the computer, it must 
be translated from symbolic form to binary data words and 
machine instructions. The primary stages of source program 
translation are accompl ished by a processor. However, under 
certa i n ci rcu mstances, the processor may not be abl e to trans­
late the entire source program directly into machine language 
form. 

If a source program contains symbolic forward references, a 
sing I e -pass processor such as the Xerox Symbo I assembl er can 
not resolve such references into machine language. This is be­
cause the machine language value for the referenced symbol 
is not established by a one-pass processor until after the state­
ment containing the forward reference has been processed. 

A two-pass processor, such as the Xerox Meta-Symbol assem­
bler, is capable of making IIretroactive li changes in the 
object program before the object code is output. Therefore, 
a two-pass processor does not have to output any special 
object codes for forward references. An example of a for­
ward reference in a Symbol source program is given below. 

y EQU $ + 3 

CI,5 z 

LI, R z 

z EQU 2 

BG z 

R EQU Z + 1 

t A!though a discussion of the object language is not directly 
pertinent to CP-V, it is included in this manual because it 
appli es to some of the processors operating under CP-V. 

202 Appendix D 

In this example the operand $ + 3 is not a forward reference 
because the assembler can evaluate it when processing the 
source statement in which it appears. However, the oper­
and Z in the statement 

CI,S Z 

is a forward reference because it appears before Z has been 
defined. In processing the statement, the assembler outputs 
the machine-language code for CI,S, assigns a forward ref­
erence number (e. g., 12) to the symbol Z, and outputs that 
forward reference number. The forward reference number 
and the symbol Z are also retained in the assembler's symbol 
table. 

When the assembl er processes the source statement 

LI, R Z 

it outputs the machine-language code for LI, assigns a for­
ward reference number (e. g., 18) to the symbol R, outputs 
that number, and again outputs forward reference number 
12 for symbol Z. 

On processing the source statement 

Z EQU 2 

the assembler again outputs symbol Z's forward reference 
number and also outputs the val ue, which defines symbol Z, 
so that the relocating loader will be able to satisfy refer­
ences to Z in statements CI, S Z and LI, R Z. At this time, 
symbol Z's forward reference number (i. e., 12) may be 
deleted from the assembler's symbol table and the defined 
value of Z equated with the symbol Z {in the symbol table}. 
Then, subsequent references to Z, as in source statement 

BG Z 

would not constitute forward references, since the assembler 
could resolve them immediately by consulting its symbol 
table. 

If a program contains symbol ic references to externally 
defined symbols in one or more separately processed subpro-
grams or librar, routines, the processor will be unable to 
generate the necessary prog ram linkages. 

An example of an external reference in a Symbol source pro­
gram is shown below. 

REF ALPH 

LI,3 ALPH 

When the assembler processes the source statement 

REF ALPH 



it outputs the symbol ALPH, in symbolic (EBCDIC) form, in 
a declaration specifying that the symbol is an external ref­
erence. At this time, the assembler also assigns a declara­
tion name number to the symbol ALPH but does not output 
the number. The symbol and name number are retained in 
the assembler's symbol table. 

A fter a symbol has been dec lared an external reference, it 
may appear any number of times in the symbolic subprogram 
in which it was declared. Thus, the use of the symbol 
ALPH in the source statement 

ALPH 

in the above example, is val id even though ALPH is not 
defined in the subprogram in which it is referenced. 

The relocating loader is able to generate interprogram link­
ages for any symbol that is declared an external definition 
in the subprogram in which that symbol is defined. Shown 
below is an example of an external definition in a Symbol 

source program. 

DEF ALPH 

LI,3 ALPH 

ALPH AI,4 X'F2 1 

When the assembler processes the source statement 

DEF ALPH 

it outputs the symbol ALPH, in symbolic (EBCDIC) form, in 
a declaration specifying that the symbol is an external defi­
nition. At this time, the assembler also assigns a declaration 
name number to the symbol ALPH but does riot output the 
number. The symbol and name number are retained in the 

assembler's symbol table. 

After a symbol has been declared an external definition it 
may be ~sed (in the subprogram in which it was declared) in 
the same way as any other symbol. Thus, if ALPH is used as 

a forward referente, as in the source statement 

LI,3 ALPH 

above, the assembl er assigns a forward reference number to 
ALPH, in addition to the declaration name number assigned 

previousl y. (A symbol may be both a forward reference and 
an external definition.) 

On processing the source statement 

ALPH Al,4 X'F2 1 

the assembler outputsthedeclaration name numberofthe 

label ALPH (and an expression for its value) and also outputs 
the machine-language code for AI,4 and the constant X'F21. 

OBJECT LANGUAGE FORMAT 

An object language program generated by a processor is out­
put as a string of bytes representing "Ioad items". A load 

item consists of an item type code followed by the specific 
load information pertaining to that item. (The detailed format 

of each type of I cad item is given later in this appendix.) 
The individual load items require varying numbers of bytes 

for their representation, depending on the type and specific 
content of each item. A group of 108 bytes, or fewer, com­
prises a logical record. A load item may be continued from 
one logical record to the next. 

The ordered set of logical records that a processor generates 
for a program or subprogram is termed an "object module". 
The end of an object module is indicated by a module-end 
type code followed by the error severity level assigned to 

the modu I e by the processor. 

RECORD CONTROL INFORMATION 

Each record of an object module consists of 4 bytes of con­
trol information followed by a maximum of 104 bytes of load 

information. That is, each record, with the possible excep­
tion of the end record, normally consists of 108 bytes of 
information (i.e., 72 card columns). 

The four bytes of contra I i nformati on for each record have 
the form and sequence shown be low. 

Byte a 

Record Ttpe Mode Format 

01 1 a 
a 2 3 4 5 6 7 

Byte 

Sequence Number 

a 7 

Byte 2 

Checksum 

a 7 

Byte 3 

Record Size 

a 7 
Rec ord Type spec i fi es whether th is record is the last 

record of the modu Ie: 

000 means last 
001 means not last 

Mode specifies that the loader is to read binary infor-

mation. This code is always 11. 

Format specifies object language format. This code is 

always 100. 

Sequence Number is a for the first record of the module 
and is incremented by 1 for each record thereafter, 

until it recycles to a after reaching 255. 

Checksum is the computed sum of the bytes comprising 
the record. Carries out of the most significant bit 

position of the sum are ignored. 

Record Size is the number of bytes (including the record 
control bytes) comprising the logical record (5 ~ record 

Appendix D 203 



size ~ 108). The record size will normally be 108 bytes 
for all records except the last one, which may be fewer. 
Any excess bytes in a physical record are ignored. 

LOAD ITEMS 

Each load item begins with a control byte that indicates the 
item type. In some instances, certain parameters are also 
provided in the load item control byte. In the following dis­
cussion, load items are categorized according to their function: 

1. Declarations identify to the loader the external and 
control section labels that are to be defined in the 
ob ject module being loaded. 

2. Definitions define the value of forward references, 
external definitions, the origin of the subprogram being 
loaded, and the starting address (e. g., as provided in 
a Symbol/Meta-Symbol END directive). 

3. Expression evaluation load items within a definition 
provide the val ues (such as constants, forward refer­
ences, etc.) that are to be combined to form the final 
value of the definition. 

4. Loading items cause specified information to be stored 
into core memory. 

5. Miscellaneous items comprise padding bytes and the 
module-end indicator. 

DECLARATIONS 

In order for the loader to provide the I inkage between subpro­
grams, the processor must generate for each external refer­
ence ordefinition a load item, referred to as a IIdeclaration ll

, 

containing the EBC,?IC code representation of the symbol 
and the information that the symbol is either an external ref­
erence or a definition (thus, the loader will have access to 
the actual symbolic name). 

Forward references are always internal references within an 
object module. (External references are never considered 
forward references.) The processor does not generate a dec-
1aration for a forward reference as it does for externals; how­
ever, it does assign name numbers to the symbols referenced. 

Declaration name numbers (for control sections and external 
labels) and forward reference name numbers apply only within 
the object module in which they are assigned. They have no 
significance in establ ishi ng interprogram I inkages, since 
external references and definitions are correlated by match­
ing symbol ic names. Hence, name numbers used in any 
expressions in a given object module always refer to symbols 
that have been declared within that module. 

The processor must generate a declaration for each symbol 
that identifies a program section. Each object module pro­
duced by an assembler is considered to consist of at least 
one control section. If no section is explicitly identified 
in the source program, the assembler assumes it to be a 
standard control section ~alscussea below). The standard 
control section is always assigned a dec laration name 

204 Appendix D 

number of O. All other control sections (i. e., produced by 
a processor capable of declaring other control sections) are 
assigned declaration name numbers (1, 2, 3, etc.) in the 
order of their appearance in the source program. 

In the load items discussed below, the access code, pp, des­
ignates the memory protection class that is to be assoc iated 
with the control section. The meaning of this code is given 
below. 

pp Memory Protection Feature t 

00 Read, write, or access instructions from. 

01 Read or access ins tructi ons from. 

10 Read only. 

11 No access. 

Control sections are always allocated on a doubleword 
boundary. The size specification designates the number of 
bytes to be allocated for the section. 

Declare Standord Control Section 

Byte 0 

I 0 0 0 
Control byte 

o 1 o 
0 2 3 4 5 6 

Byte 

I ~ccess cpode i 
0 

Size (bits 1 through 4) 
o 

0 1 2 3 4 5 6 

Byte 2 

Size (bits 5 through 12) 

o 

Byte 3 

Size (bits 13 through 20) 

o 

7 

7 

7 

7 

This item declares the standard control section for the object 
module. There may be no more than one standard control 
section in each object module. The origin of the standard 
control section is effectively defined when the first reference 
to the standard control section occurs, although the declara­
tion item might not occur until much later in the object 
module. 

tllR d ll b . . f . f h ea means a program can 0 taln In ormation rom t e 
protected area; "write" means a program can store informa­
tion into a protected area; and, "access II means the compu­
ter can execute instructions stored in the protected area. 



I 

I 

I 

This capability is required by one-pass processors, since 
the size of a section cannot be determined until all of 
the load information for that section has been generated by 

the processor. 

Declare Nonstandard Control Section 

Byte 0 

Control byte 

o o o 1 o 
o 2 3 4 5 6 7 

Byte 1 

I ~ccess c~e I 
Size. (bits 1 through 4) 

o o 
o 2 3 4 7 

Byte 2 

Size (bits 5 through 12) 

o 7 

Byte 3 

Size (bits 13 through 20) 

o 7 

This item declares a control section other than standard con­
trol section (see above). 

Declare Page Boundary Control Section 

Byte 0 

Con tro I Byte 

o o o 1 1 

o 2 3 4 

Byte 

5 6 

Access code Size (bi ts 1 through 4) 

P p o 0 

0 2 3 4 5 6 

Byte 2 

Size (bits 5 through 12) 

0 

Byte 3 

Size (bits 13 through 20) 

0 

o 
7 

7 

7 

7 

This item declares a nonstandard control section beginning 

on a memory page boundary. 

Declare Dummi: Section 

Byte 0 

10 
Control blte 

11 0 0 0 1 0 0 

0 2 3 4 5 6 7 

Byte 1 

First byte of name number 

0 7 

Rvtp ? -,.- -

Second byte of name numbert 

0 7 

Byte 3 

Access code I Size (bits 1 through 4) I 
p p 0 0 I ! 
0 2 3 4 7 

D .... _ A 
uyn:: ~ 

Size (bits 5 through 12) 

o 7 

Byte 5 

Size (bits 13 through 20) 
--------1 

o 7 

This item comprises a declaration for a dummy control sec­

tion. It results in the allocation of the specified dummy 
section, if that section has not been allocated previousl y 
by another object module. The label that is to be a:i:ioci­
ated with the fi rst location of the allocated section must be 
a previously declared external definition name. (Even 

though the source program may not be required to explicitly 
designate the label as an external definition, the processor 
must generate an external definition name declaration for 
that label prior to generating this load item.) 

Declare External Definition Name 

Byte 0 

ro- Control blte 

11 0 0 0 0 0 

0 2 3 4 5 6 7 

Byte 1 

Name length, in bytes (K) 

o 7 

tlf the module has fewer than 256 previously assigned name 

numbers, this byte is absent. 

Appendix D 205 



Byte 2 

First byte of name 

0 7 

Byte K + 1 

I Last byte of name 

0 7 

This item declares a label (in EBCDIC code) that is an exter­
nal definition within the current object module. The name 
may not exceed 63 bytes in length. 

Declare Primary External Reference Name 

Byte 0 

10 
Control byte 

11 0 0 0 0 1 0 

0 2 3 4 5 6 7 

Byte 1 

Name length (K), in bytes 

0 7 

Byte 2 

First byte of name 

0 7 

Byte K+l 

I 
Last byte of name 

0 7 

This item declares a symbol {in EBCDIC code} that is a pri­
mary external reference within the current object module. 
The name may not exceed 63 bytes in length. 

A primary external reference is capable of causing the loader 
to search the system I ibrary for a correspondi ng external 
definition. If a corresponding external definition is not 
found in another load module of the program or in the system 
library, a load error message is output and the job is errored. 

Declare Secondary External Reference Name 

Byte 0 

10 
Control b~te 

01 0 0 0 0 

0 2 3 4 5 6 7 

~\.I"'O 
..... " .... 
I Name length, in bytes (K) 

I 
0 7 

206 Appendix D 

Byte 2 

I First byte of name 

0 7 

Byte K+l 

Last byte of name 

0 7 

This item declares a symbol (in EBCDIC code) that is a sec­
ondary external reference within the current object module. 
The name may not exceed 63 bytes in length. 

A secondary external reference is not capable of causing the 
loader to search the system library fora corresponding exter­
nal definition. If a corresponding external definition is not 
found in another load module of the program, the job is not 
errored and no error or abnormal message is output. 

Secondary external references often appear in I ibrary routines 
that contain optional or al ternative subroutines, some of which 
may not be required by the user's program. By the use of pri­
mary external references in the user's program, the user can 
spec ify that only those subroutines that are actuall y required by 
the current job are to be loaded. AI though secondary external 
references do not cause loading from the I ibrary, they do cause 
I inkages to be made between routines that are loaded. 

DEFINITIONS 
When a source language symbol is to be defined (i .e., equa­
ted with a value), the processor provides for such a value by 
generating an object language expression to be evaluated by 
the loader. Expressions are of variable length, and terminate 
with an expression-end control byte (see "Expression Evalua­
tion" in this appendix). An expression is evaluated by the ad­
dition or subtraction of values specified by the expression. 

Since the loader must derive values for the origin and start­
ing address of a program, these also require definition. 

Origin 

Byte 0 

10 
Control b}::te 

0 0 0 0 0 
I 

0 2 3 4 5 6 

This item sets the loader's load-location counter to the 
value designated by the expression immediately following 
the origin control byte. This expression must not contain 
any elements that cannot be evaluated by the loader (see 
"Expression Evaluation" which follows). 

Forward Reference Definition 

Byte 0 

10 
Control b}::te 

0 0 0 1 0 0 

0 2 3 4 5 6 

01 
I 

7 

01 
7 



Byte 1 

o 
Byte 2 

o 

First byte of reference number 

7 

Second byte of reference number 

7 

This item defines the value (expression) for a forward refer­
ence. The referenced expression is the one immediately 
follo\-ving byte 2 of this load item, and must not contain 

any elements that cannot be evaluated by the loader (see 
IIExpression Evaiuation ll which follows). 

Forward Reference Definition and Hold 

Byte 0 

I ~ Control blte 
0 0 " " IU v v 

0 2 3 4 5 
Byte 1 

Fi rst byte of reference number 
~------------~----

o 
Byte 2 

o 

Second byte of reference number 

f'\ 
v 

6 

J vI 
7 

7 

7 

This item defines the value (expression) for a forward refer­
ence and notifies the loader that this value is to be retained 

in the loader's symbol table until the module end is encoun­
tered. The referenced expression is the one immediately 
'_11_, .. : __ .L.. ____ ~ _ .. _L.._~ T. __ " ___ ._:_ ,,_I.._~ .L.._. L.._ .. _ 
IVIIV"III~ lilt; 'IYIII'::; IIUIIIU't;I. 11 IIIY1 \..VIIIUIII VUIU"c;.7) IIIUI IIUVIlt; 

not been defined previously, but all such values must be 
available to the loader prior to the module end. 

After generating this load item, the processor need not retain 
the value for the forward reference, since that responsibility 
is then assumed by the loader. However, the processor must 
retain the symbol ic name and forward reference number 
assigned to the forward reference (until modure end). 

External Definition 

Byte 0 

10 
Control blte 

01 0 0 0 1 0 

0 2 3 4 5 6 7 

Byte 

First byte of name number 
.----------------~ 

o 7 

Byte 2 

Second byte of name numbert 

o 7 

This item defines the value (expression) for an external 
definition name. The name number refers to a previously 
declared deJinition name. The referenced expression is 
the one immediately following the name number. 

Define Start 

Byte 0 

10 
Control blte 

0 0 0 1 0 

0 2 3 4 5 6 7 

This item defines the startinq address (expression) to be used 
at the completion of loading. The referenced expression is 
the one immediately following the control byte. 

EXPRESSION EVALUATION 

A processor must generate an ob ject language expression 
whenever it needs to communicate to the loader one of 
the following: 

1. A program load origin. 

2. A program starting address. 

3. An external definition value. 

4. A forward reference value. 

5. A fie Id definition val ue. 

Such expressions may inc lude sums and differences of con­
stants, addresses, and external or forward reference values 
that, when defined, wi II themselves be constants or addresses. 

After initiation of the expression mode, by the use of a con­
trol byte designating one of the five items described above, 
the value of an expression is expressed as follows: 

1. An address value is represented by an offset from the 
control section base plus the value of the control sec­
tion base. 

tlf the module has fewer than 256 previously assigned name 
numbers, thi s byte is absent. 

Appendix D 207 



2. The value of a constant is added to the accumu lated 
sum by generating an Add Constant (see be low) control 
byte followed by the value, right- justified in four 
bytes. 

The offset from the control section base is given as a 
constant representing the number of uni ts of disp lace­
ment from the control section base, at the resolution 
of the address of the item. That is, a word address 
would have its. constant portion expressed as a count 
of the number of words offset from the base, whi Ie the 
constant portion of a byte address would be expressed 
as the number of bytes offset from the base. 

The control section base value is accumulated by means 
of an Add Value of Dec laration (see be low) or Subtract 
Value of Declaration load item specifying the desired 
resolution and the declaration number of the control 
section base. The loader adjusts the base value to the 
specified address resolution before adding it to the cur­
rent partial sum for the expression. 

In the case of an absolute address, an Add Absolute 
Section (see below) or Subtract Absolute Section con­
trol byte must be included in the expression to identify 
the value as an address and to specify its resolution. 

3. An external definition of forward reference value is 
included in an expression by means of a load i tern add­
ing or subtracting the appropriate declaration or for­
ward reference value. If the value is an address, 
the resolution specified in the control byte is used to 
align the value before adding it to the current partial 
sum for the expression. If the value is a constant, no 
alignment is necessary. 

Expressions are not evaluated by the loader until all re­
qui red va lues are avai lable. In evaluating an expression, 
the loader maintains a count of the number of values added 
or subtracted at each of the four possible resolutions. A 
separate counter is used for each resolution, and each 
counter is incremented or decremented by 1 whenever a 
value of the corresponding resolution is added to or sub­
tracted from the loader's expression accumu lator. The fi nal 
accumulated sum is a constant, rather than an address 
value, if the final count in all four counters is equal to O. 
If the final count in one (and only one}of the four counters 
is equal to +1 or -1, the accumulated sum is a "simple ad­
ress II having the resolution of the nonzero counter. If 
more than one of the four counters hava a nonzero final 
count, the accumulated sum is termed a "mixed-resolution 
expression II and is treated as a constant rather than an 
address. 

The resolution of a simple address may be altered by 
means of a Change Expression Resolution (see below) 
control byte. However, if the current partial sum is 
either a constant or a mixed-resolution value when the 

208 Appendix 0 

Change Expression Resolution control byte occurs, then 
the expression resolution is unaffected. 

Note that the expression for a program load origin or 
starting address must resolve to a simple address, and the 
single nonzero resolution counter must have a final count 
of + 1 when such expressions are eva luated. 

In converting a byte address to a word address, the two least 
significant bits of the address are truncated. Thus, if the 
resulting word address is later changed back to byte resolu­
ti on, the referenced byte location wi II then be the first byte 
(byte 0) of the word. 

After an expression has been evaluated, its final value is 
associated with the appropriate load item. 

In the following diagrams of load item formats, RR refers to 
the address resolution code. The meaning of this code is 
given in the table below. 

RR Address Resolution 

00 Byte 

01 Halfword 

10 Word 

11 Doubleword 

The load item discussed in this appendix, "Expression 
Evaluation", may appear only in expressions. 

Add Constant 

Byte a 
Control byte 

a a a a a a 
a 2 3 4 5 6 

Byte 

First byte of constant 

a 

Byte 2 

Second byte of constant 

a 

7 

7 

7 



Byte 3 

Third byte of constant 

o 7 

Byte 4 

Fourth byte of constant 

o 7 

This item causes the specified four-byte constant to be added 

to the loader!s expression accumulator. Negative constants 
are represented in two's complement form. 

Add Absolute Section 

Byte 0 

Control byte 

o 1 0 R 

a 2 3 4 5 6 7 

This item identifies the associated value (expression) as a 
positive absoi ute address. The address resoi ution code, RR, 
designates the desired resolution. 

Subtract Absol ute Section 

Byte 0 

Control byte 
o 1 1 o R 

o 2 3 4 5 6 

This item identifies the associated value (expression) as a 

negative absolute address. The address resolution code, 
RR, designates the desired resolution. 

Add Value of Declaration 

Byte 0 

10 0 

0 

Byte 1 

o 

Byte 2 

F 
o 

Contral blte 
0 0 0 

2 3 4 5 

First byte of name number 

f 
___ S_econd byte ofn()I11_~ ~umber 

R 

6 

7 

RI 

7 

7 

7 

t 
If the module has fewer than 256 previously assigned name 
numbers, th is byte is absent. 

This item causes the value of the specified declaration to be 
added to the loader's expression accumulator. The address 
resolution code, RR, designates the desired resolution, and 
the name number refers to a previously declared definition 

name that is to be associated with the first location of the 
allocated section. 

One such item must appear in each expression for a reloca­
table address occurring within a control section, adding the 

value of the specified control section declaration (i. e., 

adding the byte address of the first location of the control 
section). 

Add Value of Forward Reference 

Byte 0 

10 
Control byte 

0 0 0 R 

0 2 3 4 5 6 7 

Byte 1 

First byte of forwar-d_r~~e~~~~umber _~ __ ----I 

o 7 

Byte 2 

Second byte of forward reference number 

o 7 
This item causes the value of the specified forward reference 

to be added to the loader's expression accumulator. The 

address resolution code, RR, designates the desired resolu­

tion, and the designated forward reference must not have 

been defined previously. 

Subtract Value of Declaration 

Byte 0 

10 
0 

Byte 

o 
Byte 2 

0 
Control 

0 

2 3 

blte 

R I 1 0 R 

4 5 6 7 

7 

Second byte of name numbert 

This item causes the value of the specified declaration to 
be subtracted from the loader's expression accumulator. 

The address resolution code, RR, designates the desired 
resolution, and the name number refers to a previously de­

clared definition name that is to be associated with the 
first location of the allocated section. 

Appendix D 209 



Subtract Value of Forward Reference 

Byte 0 

10 
Control byte 

0 0 1 R 

0 2 3 4 5 6 7 

Byte 1 

First byte of forward reference number 

o 7 

Byte 2 

Second byte of forward reference number 
-----------4 

o 7 

This item causes the value of the specified forward reference 
to be subtracted from the loader's expression accumulator. 
The address resolution code, RR, designates the desired reso­
I ution, and the designated forward reference must not have 
been defined previously. 

Change Expression Resolution 

Byte 0 

Control byte 
o 1 0 o R 

o 2 3 4 5 6 7 

This item causes the address resol ution in the expression to 
be changed to that designated by RR. 

Expression End 

Byte 0 

Control byte 
o o o 0 o 

o 2 3 4 5 6 7 

This item identifies the end of an expression (the value of 
which is contained in the loader's expression accumulator). 

FORMATION OF INTERNAL SYMBOL TABLES 
The three ob ject code control bytes described below are re­
quired to supply the information necessary in the formation 
of Internal Symbol Tables. 

In the following diagrams of load item formats, Type refers 
to the symbol types suppl ied by the object language and 
maintained in the symbol table. IR refers to the internal 
resolution code. Type and resolution are meaningful only 
when the value of a symbol is an address. In this case, it 
is highly likely that the processor knows the type of value 
that is in the associated memory location, and the type field 
identifies it. The resolution field indicates the resolution 
of the location counter at the time the symbol was defined. 
The following tables summarize the combinations of value 
and mean ing. 

210 Appendix D 

Symbol Types 

Type Meaning of 5-Bit Code 

00000 Instruction 
00001 Integer 
00010 Short floating point 
00011 Long floating point 
00110 Hexadecimol (also for packed decimal) 
00111 EBCDIC text (also for unpacked decimal) 
01001 Integer array 
01010 Short fl oati ng-poi nt array 
01011 Long floating-complex array 
01000 Logical array 
10000 Undefined symbol 

Internal Resolution 

IR Address Reso I ut ion 

000 Byte 
00.1 Halfword 
OlD Word 
011 Doub1eword 
100 Constant 

Type Information for External Symbol 

Byte 0 

10 
Contro I byte 

11 0 0 1 0 0 0 

0 2 3 4 5 6 7 

Byte 1 

Tz:pe field IR field 

0 4 5 7 

Byte 2 

Name number 

o 7 

Byte 3 (if required) 

Name number (continued) 

o 7 

This item provides type information for external symbols. 
The Type and IR fields are defined above. The name 
number fi eld consists of one or two bytes (depending on the 
current declaration count) which specifies the declaration 
number of the external definition. 

Type and EBCDIC for Internal Symbol 

Byte 0 

I I Control byte 

10 0 0 0 0 01 

0 2 3 4 5 6 7 



Byte 

Type field IR field 

o 4 5 7 

Byte 2 

Length of name (EBCD IC characters) 

o 7 
Byte 3 

First byte of name in EBCD IC 

o 7 
Byte n 

Last byte of name in EBCDIC 

o 7 
Byte n ~ 1, ... 

Expression defining value of internal s mbol 

o 7 

This itemsuppliestypeand EBCDIC.foran internal symbol. The 
ioad items for Typeand iRareasabove. Length of namespeci­
fi es the I ength of the E BCD IC name in characters. The name, in 
E BCD I C, is speci fi ed in the requ i red number of bytes, followed 
by the expression defin ing the internal symbol. 

EBCD IC for an Undefined Symbol 

Byte 0 

10 
Control byte 

0 0 1 0 0 

0 2 3 4 5 6 7 
Rvtp -, .-

Length of name (EBCDIC characters) 

0 7 
Byte 2 

First byte of name in EBCDIC 

0 7 
Byte n 

Last byte of name in EBCDIC 

0 7 

Byte n ~ 1, n - 2 

Two bytes of symbol associated forward reference number 

o 7 

Th is item is used to associate a symbol with a forward reference. 
The I ength of name and name in EBCD IC are the same as in the 
above item. The last two bytes specify the forward reference 
number with which the above symbol is to be associated. 

LOADING 
Load Absol ute 

Byte 0 

10 
Control byte 

0 0 N N N 

0 2 3 4 5 6 7 

R\lt-o V! ,'-

First byte to be loaded 

o 7 

Byte NNNN 

Last byte to be loaded 

o 7 

This item causes the next NNNN bytes to be loaded abso-
i ..• ~I .. '1\.11\.11\.11\.1 :. ~,,~.~.r~.J : ___ .... _1 k: ___ .. c ___ _ .. ___ < 
lUi ...... ' \1"""" I~ '-At"'I\"'~')\;;;U III IIUIUIUI UIIIUlr IUIIII, t:;A\..C;,...,' 

that 0000 is interpreted as 16 rather than O}. The load loca­
tion counter is advanced appropriatel y. 

Load Relocatable (Long Form) 

Byte 0 

10 
Control btte 

RI 0 1 0 C R 

0 2 3 4 5 6 7 

Byte 

First btte of name number 

o 7 

Byte 2 

Second btte of name numbert 

o 7 

Thi s item causes a four-byte word (i mmedi ate Iy followi ng thi s 
load item) to be loaded, and relocates the address field 
according to the address resolution code, RR. Control bit 
C designates whether relocation is to be relative to a for­
ward reference (C = 1) or relative to a declaration (C = 0). 
Control bit Q designates whether a l-byte (0 = 1) or a 
2-byte (0 = 0) name number follows the control byte of 
this load item. 

tIf the module has fewer than 256 previously assigned name 
numbers, this byte is absent. 

Appendix D 211 



If relocation is to be relative to a forward reference, the 
forward reference must not have been defined previously. 
When this load item is encountered by the loader, the load 
location counter can be aligned with a word boundary by 
loading the appropriate number of bytes containing all 
zeros (e.g., by means of a load absolute item). 

Load Relocatable (Short Form) 

Byte 0 

Control byte 
C D D D D D 

o 2 3 4 5 6 7 

This item causes a four-byte word (immediately following 
this load item) to be loaded, and re locates the address fi eld 
{word resolution}. Control bitC designates whether reloca­
tion is to be relative to a forward reference (C = 1) or rela­
tive to a declaration (C = 0). The binary number DDDDDD 
is the forward reference number or declaration number by 
which relocation is to be accomplished. 

If relocation is to be re lative to a forward reference, the 
forward reference must not have been defined previously. 
When this load item is encountered by the loader, the load 
location counter must be on a word boundary (see "Load 
Relocatable (Long Form)", above). 

Repeat Load 

Byte 0 

o 
Byte 1 

o 
Byte 2 

o 

o 
Control byte 

o o 1 

2 3 4 5 6 7 

First byte of repeat count 

7 

Second byte of repeat count 

7 

This item causes the loader to repeat (i. e., perform) the 
subsequent load item a specified number of times. The 
repeat count must be greater than 0, and the load item to 
be repeated must follow the repeat load item immediately. 

Define Field 

Byte 0 

Control blte I L 
IV 0 0 0 0 11 
0 2 3 4 5 6 7 

212 Appendix D 

Byte 1 

o 7 
Byte 2 I __ ~ ____ ~ _~i~_length, ~~ bits (L) 

o 7 

This item defines a value (expression) to be added to a field 
in previously loaded information. The field is of length L 
(1 ~ L ~ 255) and terminates in bit position T, where: 

T :c- current load bit position -256 +;<. 

The field location constant, K, may have any value from 
1 to 255. The expression to be added to the specified 
field is the one immediately following byte 2 of this load 
item. 

MISCELLANEOUS LOAD ITEMS 

Padding 

Byte 0 

I a 
Control blte 

01 0 0 0 0 0 0 

0 2 3 4 5 6 7 

Padding bytes are ignored by the loader. The object lan­
guage allows padding as a convenience for processors. 

Module End 

Byte 0 

10 
Control blte 

0 0 0 1 1 

0 2 3 4 5 6 

Byte 1 

10 
Severi tl level 

0 0 0 E E E 

0 2 3 4 5 6 

This item identifies the end of the object module. The 
val ue EEEE is the error severity level assigned to the 
module by the processor. 

OBJECT MODULE EXAMPLE 

01 
7 

E 1 
7 

The following example shows the correspondence between 
the statements of a Meta-Symbol source program and the 
stri ng of ob ject bytes output for that program by the assem­
bler. The program, listed below, has no significance other 
than illustrating typical object code sequences. 



Example 

DEF AA, BB,CC CC IS UNDEFINED BUT CAUSES NO 
ERROR 

2 REF RZ, RTN EXTERNAL REFERENCES DECLARED 

3 00000 ALPHA CSECT DEFINE CONTROL SECTION ALPHA 

4 00OC8 ORG 200 DEFINE ORGIN 

t;; OOOC8 22000000 N AA LI, CNT " DEFINES EXTER~~AL AA; c~,n IS A ..J v 

FWD REF 

6 00OC9 32000000 t---J L'vV, R RZ { R IS A FORWARD REFERENCE; 
*7 * n"'7 1(" A ..... VT n ..... tAI nrr-rnrlrrt..r,... AS I I\L 1..) 1-\1'1 E", 1 EI\I'II-\L KcrCKCI"jL C, 

8 * DECLARED IN Lit'-JE 2 

9 OOOCA 50000000 N RPT AH,R KON { DEFINES RPT; RAND KON ARE 

10 * FORWARD REFERENCES 

11 OOOCB 69200000 F BCS,2 BB { BB IS AN EXTERNAL DEFINITION 

12 * USED AS A FORWARD REFERENCE 

i3 OOO:C 2000000i N Al,eNI CNl I) A FURWARD REFERENCE 

14 OOOCD 680000CA B RPT RPT IS A BACKWARD REFERENCE 

lC:: ",,(V"" C L n""rv,,,,, v B RTN RTN is AN EXTERi",AL REFERENCE IJ VVv....L oovvvvvv '" 
16 OOOCF 0001 A KON DATA, 2 DEFINES KON 

17 00000003 R EQU 3 DEFINES R 

18 00000004 CNT EQU 4 DEFINES CNT 

19 OOODO 224FFFFF A BB LI, CNT -1 { DEFINES EXTERNAL BB THAT HAS 

20 * ALSO BEEN USED AS A FORWARD 

21 * REFERENCE 

22 00OC8 END AA EN D OF PROGRAM 

CONTROL BYTES (In Binary) 

Begin Record Record number: 0 

00111100 } 
00000000 
01100011 
01101100 

00000011 

00000011 

00000011 

00000101 

00000101 

Record type: not last, Mode binary, Format: object language. 
Sequence number 0 
Checksum: 99 
Record size: 108 

0302C 1C 1 (hexadecimal code comprising the load item) 
Declare external definition name (2 bytes) Name:AA Declaration number: 1 

0302C2C2 
Declare external definition name (2 bytes) Name: BB Declaration number: 2 

0302C3C3 
Declare external definition name (2 bytes) Name:CC Declaration number: 3 

0502D9E9 
Declare primary reference name (2 bytes) Name RZ Declaration number: 4 

0503D9E3D5 
Declare primary reference name (3 bytes) Name: RTN Decl oration number: 5 

} Record control 
information not 
part of load item 

Source li ne 1 

} Source Line 2 

Appendix D 213 



Begin Record Record number: 0 

00001010 

00000001 
00100000 

00000010 

00000100 } 
00000001 
00100000 

00000010 

01000100 

00000111 

00100110 

00000010 

10000100 

00000111 

00100110 

00000010 

11001100 

00000111 

00100110 

00000010 

OA0101OO000320200002 
Define external definition 
Number 1 
Add constant: 800 X' 320' 
Add value of declaration {byte resolution} 
Number 0 
Expression end 

040~00000320200002 

Origin 
Add constant: 800 X' 320 ' 
Add value of declaration {byte resolution} 
Number 0 
Expression end 

4422000000 
Load absolute the following 4 bytes: XI 22000000 1 

07EB0426000002 
Define field 
Field location constant: 235 bits 
Field length: 4 bits 
Add the following expression to the above field: 
Add value of forward reference {word resolution} 
Number 0 
Express i on end 

8432000000 
Load relocatable {short form}. Relocate address field {word resolution} 
Relative to declaration number 4 
The following 4 bytes: XI 32000000 1 

07EB0426000602 
Define field 
Field location constant: 235 bits 
Field length: 4 bits 
Add the following expression to the above field: 
Add value of forward reference {word resolution} 
Number 6 
Expression end 

CC50000000 
Load relocatable {short form}. Relocate address field {word resolution} 
Relative to forward reference number 12 
The following 4 bytes: XI 50000000 1 

07EB0426000602 
Define field 
Field location constant: 235 bits 
Field length: 4 bits 
Add the following expression to the above field: 
Add value of forward reference {word resolution} 
Number 6 
Expression end 

Source Line 5
t 

} Source Li ne 4 

Source Li ne 5 

Source li ne 6 

Source Line 9 

t No object code is generated for source lines 3 {define control section} or 4 {define origin} at the time they are encountered. 
The control section is declared at the end of the program after Symbol has determined the number of bytes the program requires. 
The origin definition is generated prior to the first instruction. 

214 Appendix D 



Begin Record Record number: 0 

11010010 

01000100 

00000111 

00100110 

00000010 

10000000 

iOOOOiO i 

00001000 

Begin Record 

00011100 
00000001 
1110 1100 
01010001 

00000001 
00100000 

00000010 

01000010 

00001000 

00000001 
00000010 

00001000 

00000001 
00000010 

D269200000 
Load relocatable {short form}. Relocate address field {word resolution} 
Relative to forward reference number 18 
The following 4 bytes: X'69200000' 

4420000001 
Load absolute the following 4 bytes: X'20000001' 

07EB0426000002 
Define field 
Field location constant: 235 bits 
Field length: 4 bits 
Add the following expression to the above field: 
Add value of forward reference {word resolution} 
Number 0 
Expression end 

8G680000CA 
Load relocatable {short form}. Relocate address field {word resolution} 
Relative to declaration number 0 
The following 4 bytes: X'680000CA' 

8568000000 
Load reiocatable ~short form). Reiocate address fieid (word resoiution) 
Relative to declaration number 5 
The following 4 bytes: X'68000000' 

08 
Define forward reference {conti nued in record I} 

Record number: 1 

Record type: last, Mode: binary, Format: object language. 
Sequence number 1 
Checksum: 236 
Record size: 81 

000C010000033C200002 {continued from record O} 
Number 12 
Add constant: 828 X'33C' 
Add value of declaration (byte resolution) 
Number 0 
Expression end 

42001 
Load absolute the following 2 bytes: X'OOO I' 

080006010000000302 
Define forward reference 
Number 6 
Add constant: 3 X'3' 
Expression end 

080000010000000402 
Defi ne forward reference 
Number 0 
Add constant: 4 X'4' 
Expression end 

} 

} 
} 

1 
J 

} 

} 

Source Li ne 11 

Source Line 13 

Source Li ne 14 

Source Li ne 15 

Source Line 16 

Record Control 
Information 

Source Line 16 

Source Line 17 

Source Li ne 18 

Appendix D 215 



Beg in Record Record number: 1 

00001111 

01000001 

00001000 

00000001 

00000010 

00001010 

00000001 
00100000 

00000010 

01000100 

00001101 
00000001 
00100000 

00000010 

00001011 

00001110 

OFOOO241oo 
Repeat load 
Repeat count: 2 
load absolute the following 1 bytes: X'OO' 

0800120100000340200002 
Define forward reference 
Number 18 
Add' constant: 832 X'340' 
Add value of declaration (byte resolution) 
Number 0 
Expression end 

OA0201oo0oo340200002 
Define external definition 
Number 2 
Add constant: 832 X' 340' 
Add value of declaration (byte resolution) 
Number 0 
Expression end 

44224FFFFF 
load absolute the following 4 bytes: X'224FFFFF' 

000100000320200002 
Define start 
Add constant: 800 X' 320' 
Add value of declaration (byte resolution) 
Number 0 
Express i on end 

OB000344 
Declare standard control section declaration number: 0 
Access code: Full access. Size 836 X '344' 

OEOO 
Module end 

Severity level: X '0' 

A table summarizing control byte codes for object language load items is given below. 

Object Code Control Byte Type of Load Item 

0 0 0 0 0 0 0 0 Padding 

0 0 0 0 0 0 0 Add constant 

0 0 0 0 0 0 0 Expression end 

0 0 0 0 0 0 Declare external definition name 

0 0 0 0 0 0 0 Origin 

0 0 0 0 0 0 1 Declare primary reference name 

0 0 0 0 0 0 Dec lore secondary reference name 

0 0 0 0 0 Define field 

" " " " " " " Defi ne forward reference v v v v v v v I 

0 0 0 0 0 0 

I 

Deciare dummy section 

0 0 0 0 0 0 Define external definition 

216 Appendix 0 

} Advance to Word 
Boundary 

Source Line 19 

Source Line 22 

I 



Object Code Control Byte Type of Load Item 

0 0 0 0 1 0 1 1 Declare standard control section 

0 0 0 0 1 1 0 0 Dec lare nonstandard control section 

0 0 0 0 1 1 0 1 Defi ne start 

0 0 0 0 1 1 1 0 tv\odule end 

0 0 0 0 1 1 1 1 Repeat load 

0 0 0 1 0 0 0 0 

I 
Define forward reference and hold 

f\ f\ f\ 1 f\ f\ f\ 1 Provide type information for external symbol v v v I V V V I 

I 0 0 0 1 0 0 1 0 Provide type and EBCDIC for internal symbol 

I I 0 0 0 1 0 0 1 1 EBCDIC and forward reference number for undefined symbol 

0 0 0 1 1 1 1 0 Declare page boundary control section 

0 0 1 0 0 0 R R Add value of declaration 

0 0 1 0 0 1 R R Add value of forward reference 

0 0 1 0 1 0 R R Subtract value of declaration 

0 0 i 0 i i R R Subtract va i ue of forward reference 

0 0 1 1 0 0 R R Change expression resolution 

f\ f\ , , f\ , n n A-I-I _L __ 1. ~ ____ ~~ __ 
V V I I V I 1\ 1\ MUU UU)UIUI~ )~~IIU" 

0 0 1 1 1 0 R R Subtract absolute section 

0 1 0 0 N N N N Load absolute 

0 1 0 1 Q C R R Load relocatable (long form) 

1 C D D D D D D Load relocatable (short form) 

Appendix D 217 



\ 

APPENDIX E. XEROX STANDARD COMPRESSED LANGUAGE 

The Xerox Standard Compressed Language is used to represent 
source EBCDIC information in a highly compressed form. 

Several Xerox processors wi II accept this form as input or 
output, will accept updates to the compressed input, and 
wi II regenerate source when requested. No information is 
destroyed in the compression or decompression. 

Records may not exceed 108 bytes in length. Compressed 
records are punched in the binary mode when represented on 
card media. Therefore, on cards, columns 73 through 80 
are not used and are available for commentoridentification 
information. This form of compressed language should not 
be output to "compressed" files since the I/O compression 
may cause loss of data. 

The first four bytes of each record are for checking purposes. 
They are as follows: 

Byte 1 

Byte 2 

Byte 3 

Byte 4 

Identification (OOL 11000). L = 1 for each 
record except the last record, in which case 
L = O. 

Sequence number (0 to 255 and recycles). 

Checksum, which is the least significant 
eight bits of the sum of all bytes in the rec­
ord except the checksum byte itself. Carries 
out of the most significant bit are ignored. 
If the checksum byte is all lis, do not 
checksum the record. 

Number of bytes comprising the record, in­
cluding the checking bytes (~108). 

The rest of the record consists of a string of six -bi t and 
eight-bit items. Any partial item at the end of a record 
is ignored. 

The following six-iJit items (decimal number assigned) com­
pri se the stri ng contro I: 

Six-Bit 
Decimal 
Item Function 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Ignore. 
Not currentl y assigned. 
End of line. 
End of file. 
Use eight-bit character which follows. 
Use n + 1 blanks, next six-bit item is n. 
Use n + 65 blanks, next six-bit item is n. 
Blank. 
o 
1 
2 

218 Appendix E 

Six-Bit 
Decimal 
Item 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 

Function 

3 
4 
5 
6 
7 
8 
9 
A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 
L 
M 
N 
o 
P 
Q 

R 
S 
T 
U 
V 
W 
X 
Y 
Z 

< 
( 
+ 
I 
& 
S 
* 

0/0 

LJ 

> 



::NTRY 
P3I"'T 
\J A I\A~ 

,,8r)( 
Id9c(T 
ACTV 
~LLf<T 
AR"'I 

-3KLASS" 
.~ I( L 1 
~ALL~ 
~ALL1P 
~Hr-Co(' 

CHfC<'A 
CHIo(RAL 
Ct.jlt'~ Al .\ 

C() 
C< ..... 2 
C<[\;A(,T 
c(nAcre; 
CI(E\ArTl 
CI(~"~A(T? 

Ci(I"'TA"'~ 
CI(It-...TL,\r 
C'(PT 

CL9S~ 
Cl'~sn~r: l~ 
CLqs~:X 

CL'lSQFIL 
:n~~l=s 

cQ') 

----: R r- I l. l. 
c~s 

CRt)? 
)f;o(~ 

JCg~usy 

JEACTV 
)~L[TF: 
JELF"PT 
,)EI"J 
')EvI 
'JEV"J 
,)FGn 
)FG09AL 
')F''''1 

')ISA~~ 

)ISC 
,)ISCCU 
')IsrI8 
,)PAI( 
JPAI(CG 
JRC 
')u...,p 

)VF 
E"1ARrCg 
EMAREC=3X 
EMBLDECg 
EMDATAI 
EMDATA~ 

EM'"i[ TF CR 
EM~ETEM 

EMGETFPT 
--rMSETR3 

EMSETR1A 

(·VE;~LAY 

"-AM~ 

AdF.x 
1 ER''! 
I 8t. x: 
ALL"11 
ARM 
61(Ll 
:jI(Ll 
"t~B~ I L 
;~L-.~F I L 
CHECr( 
Cl1tCI( 
Ci.1EC< 
Chc.ro( 
(Ke 
(~:.) 

j,-qyC 
P':TVC 
pqy( 

T '''TYC 
TM1YC 
T'-1TYC 
CI<.PT 
~FA'hR 

~r.A'"'\ sR 

~Le:)F x 
CLfj~Ex 

r.;F.'vr 
CRD 
CLfi[)( 
C~S 

CRS:') 
ABE"­
~E.A'I ... ~ 
ItlF\( 
~'EL~ T E 
CME("~ 

n\~ 

vlVI 
~~E V I 
~:UMP 

:JUMP 
')[V I 
ARM 
~ I SC 

DEVI 
DUMP 
DEvY 
TMGETP 
TMGF.:T~ 

TMGETP 
TMGETP 
TMGETP 
TMTYC 
TMTY( 
TMTYC 
CHECK 
(HECI( 

APPENDIX F. SYSTEM OVERLAY ENTRY POINTS 

DE.SCRIPTIfiN 

~~RCESS A~qRT AND EXIT CA~S F~R BACKG~eU~D 
fJ R ~ C ~ C; S A Ll A :~ n ~ T CAL S 
~R~CE~S A[TIV\TE CA~S 
~~~CESS ALLBT (ALS 
P~~CESS (~NNECT'A~~,DISCeN~ECT,DISARM CALS
UHES ~ACo(G~~UND DCR ASSIG~~ENTS
~F~FeQ~ BACKtl~A.U,..,.r; LBACI~ll FUNCTlbNS
SUR Ttl CALL QL.;[U[Ar..() v.AIl FBJ:<' lIB C8P-"PLE"TIttN
t~T~Y TA (ALL; ~ITH p~FSEr PRIBQITY
fJ~5CESS CH~(K CALS
S~(eNn.CH~CK ~qUTI~~

t~~T~Y H~ O~E:.:CI(1/ I A ~AL

ALTE~~AT~ I~TF~N~L t:NT~Y f~ C~[CK, VIA A ~AL
l h' ,. S H i' l J M fJ F R '11" (< A ~ ~_ A
lL.'A ~~. [I W~ ~ Rr.,..- Co(AkEA, L9~H H.UED
IJ F T A " ~ F_ S T t. r',IJ. A ell rH,
ll~T A'r TEST p,D.ArTIH/\ I'\i STA~:DARD FPT
fE.ST 4V' Cf'NVH,H t:""~'IJ.ACTlt1~ PARAMETER
SA"'-f AS (~fNACT1(T~TYr)

Tr-ST A\n lB\Jv~.~T P~fE~FiUPl AO,..,RESS
T ~ ~ T A ~ , n 01 ",j V ~ R T p: r E ~ ~ uP f LA H r L
c.H[CKYAlr..T I1A(KGR'lLI!'IID (!\i61 IN ""AP~t:D sYSTP")
P~ACESS CL~SE (ALS
E:. 'J T q Y T n C L ~ S [V I A HAL
po(~uT I '·t T':1 CLrH,E :)CHS
R ~ II T I ': r T L1 (L A ~ E II l' C ;,~A S ~ I G t\ H) TeA ~ A [) F- r L F:
fJ h' ACE:. r. S C 4 R R f, '.3 P tl t-...~' r I\; C 1:. CAL S
lh'At;h Jlif":P FR:w sr, 'jP-LAt\tL
SU~. TB CLPSE A Rflf; f ILF
C~ASh SAVE:. T6 S~ ~P-LABFL rR6~ CK AREA

b .A,CI(Gc~~U"'!) m; p CQ r VE ~

SUF TA (H~[K r~~ A~ lIB RtQUE:.:ST TV A ~USY DLB
P~BCESS DEACTIVATE LALS
PR~CESS DELETE CALS
SAME AS CHECK(SlG~AL) E"-THY PHINT
fJ~~CESS r.EQLEU~ CALS
PRRCESS 'Sll' peRTI~~ BF urvICE CALS
PR~CfSS 'GET' Ptl~TI~N eF UEvICr CALS
IT RETUR1\ Te CT DU~P .\FTEt-< HR[AK
DUMP ~REAI(Ttl CHECK FBR BIHER CT ~BRK
PR~CESS DEVICE FILE M~DE ~ALS
SAME ~~TRY P6fNT AS A~M(AH~)

else rEVICf HA~DLERS
~lXED A~M OISC P8ST-h.~OL~R
~ IxED A~M DISC PRE-HA~DLEt-<
M~VABLF A~M DISC PR~·~AND~fR
MBvABl.r A~'-1 DISC PBST-HANULER
PReCESS DE~IC~ DIP. ~FC~RU F~RMAT CALS
PERF8R S A MEMARY DUMfJ
PRPCESS DlVICE VERTICAL fURMAT CALS
SUI3. T~} CHAIN AN (CH Tft THf. R-TASK

sus. T5 ~UILD A~ ECb FRBM A STANDARD FPT
SUB. Tr p~eCESS A DATA ARl.A INTtl AN ECB
SU8. TA REMRVE A ~ATA AREA TB USERS R(CEIVING ARtA
SUB. TA C~[ATE A ~EW rCB LINKED T6 THE CU~~~~T TASK
SUB. T(3 CREATE A "'FW EC~ LINKfD T8 ANY TASK
SUB. T8 GET AN BRIGINAL F~T ADDRESS
SET R3 Tft AN FPT ADUR BAS~D eN FPT ADOP 1/\ AN EeB
SET R, T8 AN FPT ADON BAStD eN FPT ADOR IN ~3

Appendix F 219

ENTRY
~6INT
~A"1E

EMWAIT
ENQ
ENQABNf'o1
ENQCHI<
ERRSEND
ESU
EXTM
~GL1
~GL2
FGL2BO~
F'GL2B3~
F"GL3
r:"GL3BB1
F'It..JDBB
F"INDDIR
P1BLDECB
F'MCHECK
~MCKWP
F"MCKl
F'MCI(2
FMCK3
FMJCL
FMMASTX
F"M6PL2AD
F"PTBSY
GENCHARS
GETDCBAD
'3ETDCTX
GETNRT

. GETe·PT
3ETTIHE
~6URUHi

IBBPARAM
INIT
INITL8G
INSDBUF
IBEX
JHTE"NQ
JMTERH
JTQAP
KEYl
KEY1A04'
<EY2
KEY3
KEY4t
KEY5
KEY6
KEY7
;(J6B
LBG
LP
"1eDIF"Y
"1TTYPE
BPEN
~PENDCB
BPENX
6UTSDBUF
~FIL

_~!.'lrT
Plt..JTABNH
PMD
P6LL
PBLLABNM
P6LLCHK
ppeST

220 Appendix F

eVERLAY
NAME

TMTYC
ENQ
ENQ
~NQ

L.BG
ESU
EXTM
FGLl
FGL2
FGL?
FGL~
F"GL3
FGL1
RWBFIL
BPE"lX
GET'~RT

CHECK
REA[)wR
CHECK
CHECK
CHECK
TTJ8B
READ~R
GET'lRT
READWR
PRPJT
GET~RT
GET'lRT
GET"JRT

SIGNAL
LaG
RWBFIL

LeG
SDBUF
IBEX
TTJ6B
TTJSB
TRAPS
KEYt
KEY1
KEY2
KEY1
KEY4
KEY!:)
KEY"
KEY7
[XT""
LaG
L.P
EXT""
REWIND
READWR
READWR
6PE'lX
SDBUF
REWIND
PINIT
PINIT
ABEX
SIGNAL
S I G"JAL
SIG\JAL
s I G~~AL

DESCR t PT I H"J

sus, T8 C~NTReL W~IT STATtS
~ReCfSS E~~Uf.UE (hLS
ABN6Rf'o1AL ceND I T I 0'" SUH. Ft1R E\JQUEUE. ECBS
SUB. T8 CHECK ENQUEUE ECB~
RtlUTI"IE T9 PUT AN a~E~ATe~ ""rSSA(i(It..JTf' T~E EkRBR LttG
~RRCESS ERRBR SU~~A~Y KEY-IN
~ReCESS EXTERMINATE CALS
~RtMAP.Y P~8(iRAM RfLEA~E

~RtMARY P~~GRAM LAAU (I~I1IALIZE TABLES)
INT~R\JAL r~TRY T8 F~L?

INTERNAL E.\JTRY T6 F~L?
~RIMARY PR6GRAM LOAD (REAU IN R~6T AND PU~Ll~S)

SEE IF SPACE IS AVAIL. F6H L~~ ~R PUBLJ~ L~AD

uET A BLBCKING HUrF~~
FINO THF SPECTFIEO ~IL~ E~T~Y
~UrLD AN lIB FeU
~.~ ~ C E 5 5 I I 0 o~ E C K CAL S
CHECK F8R WRITE PQBT~CTI6N VI~LATI6NS
1 NTER~IAL F. t\ITRY T~ F'MCHECK
l~TER~AL E~T~Y Te F"MCHECK
INTER~AL fNTRY TO F'MCHECK
CLEAN UP ~FT A~D OCT [NTRIFS AT JB~ T~RMI~ATIHN
DETFR~INE MASTD I~D~X F~R AN AREA
GET CALLER'S APLBS2 TABLE ADDRESS
CHECK FaR AN 1/6 QE~UEST r~ A BUSY FPT
~~rNT EXPA~DEn TEXT FHR B~EAK PA(i~S

GET DC8 AODRESS FP~M FPT
GET DFVIC~ INDEX rR~M DCB
INT~RNAL ENTRY T8 RfAD/WRITE PRBCESSING
GET 6PTI8NS FAR KFY-I'JS, IN KEY3 - KEY7
~R~CESS GETTIME CALS
L6G H8URLY TI~FSTAM~

SUB T9 INCREMENT THE FILE P~SITIAN IN A ~LHlK~D FJLE
~ERFBP~ B8BT-TIME INITIALIZATIBN ~F CPR
RaUTI~E T~ INITIALllE THE [RR~R LRG FIL[wHl~ DT K~Yr~ IS D6Nr
INPUT SIDE BUFFERTt..J~ L6SIL
PReCESS ALL I~EX r.ALS
CLEAN UP JAB LEVEL fN]S
L>ESTRBY A JeB WHpJ LAST TASK HAS TERM I NATED
~RBCESS J~H TqAP CAL
DECBDF KEY.IN KEY~S~D, gRA~CH T6 PRBPER B~ERLAY FRR pReCESSING
~ReCESS KEY-EqR MESSAGE TYPEBUTS
~ReCESS KEY-INS I~ KEY2 eVERLAY
~RBCESS KEY-I~S IN KE Y3 6vERLAY
PR6CESS KEY-I~S IN KEY4 6vERLAY
~ReCESS KEY-I~S IN KEY5 BVERLAY
~RBCESS KEY- It,S PI KEY6 6VERLAY
PReCESS KEY-INS I~ KEY7 BVERLAY
PRRCESS KJB8 CALS
M~VE ERR6R LBG ~ECBRDS rRt1M LHG STACK T6 E~ B~ LABEL
LINE PRINTER ~ANDLE~ PR~LAY DUMMY ENTRY P~INT
SAME ENTRY AS STATUS
TEST F6R MAG TA~E
PReCESS HPEN CALS
~8UTINE T8 6PEN A DCB
lNTER~AL E~TRY T6 ePE~DCB
6UTPUT SIDE BUVFEQING L8GIC
PReCESS ALL PFIL CALS
~R6CESS INIT CALS
SUB. T8 PReCESS A8N6RMAL tCB EXITS
DISPATCH ~KGD T6 [)UMP ITS~LF
~RBCESS ALL PBLL CALS
R6UTI~E Te PR~CESS ~BLL ELR ABR8RMAL C6NDITI6NS
R6UTI~E T~ PRBCESS CHECKS 6N P~LL SERVICES
PRBCESS P~ST CALS

ENTRY
P61NT
NAME

C)RECBRD
C)RINT
PR8MPT
~BLACK
~EADDIQ

~EADWR
~EWIND
~LS

~U"
~WBF'IL
~W~EVF'
~WRF'JLr
~WlJrILf
SCAN
SD!3UF'
SEGLBAD
SETNAME
SETBVR
SETUP
SIGABN~
SIt3CHK
SIGNAL
c f r::1I.1" I 4
,J.'UI~"~J...

~J98
SNA~

SNAP
START
STATue;
STDLB
ST I MAf:)r-~M
STr~ER
STLBCHK'
ST8P

. STPIB1
STPI92
STRTJRt
ST~TIe~
TAPE
TE~M

TEST
TESTBUF'
TESTwT4
TEXIT
TIME
TMABBRT
TMABRTT
TMCKADP
TMCKADR
P1DC!3F I~R
TMDELAr::T
TMDEQ
TMENQ
TMF'INDJ
TMF'JNDT
TMGETIDS
TMGETJID
TMGETP
TMGETTID
TMGRA
TMLM
TMSETE
TMSETP5D
TMSrTREG
TMSTep

eVERLAY
NAME

RE~I'lD
PR I t~T
DEVI
R~BrIL
BPENX
READwR
REWIND
EXTM
RUN
RWBrIL
RWDEVF
RwDE.VF
RWD~VF
KEY]
SDBIJF
EXTi1
SNA'1
GET'JRT
REwIND
S I G~JAL
S I G~JAL
SIG~"AL
C f r::. I A I
-..J.l.U""'-

SJBl!
SNA~

CRS
S I G'JAL
EXT'1
~TOL8

SIG\lAL
SIG'JAL
STDU3
SIGr-JAL
IBEX
I8EX
I8Ex
IBEX
TAPe::
Tt.RfJ.
~AIT

GET\jRT
GEP-JRT
TRAPS
WAIT
TERM
TER""
TMTYC
TMTYC
EXTt1
[NQ
ENQ
ENQ
TMGETP
TMGETP
TMGETP
TMGETP
TMGETP
TMGETP
TMTYC
TER~

E:XP1
CHECI(
CHECK
SIGNAL

()ESeR I PT It,N

~R~CESS P~FC6R~ (ALS
~~eCESS PRl~T CALS
PRACESS SET P~AMPT lH~RACTEH CALS
SUB T~ R~AD A BLe~K I~TH A BLNCKI~G BUFFl~
SUB T8 REAQ A DIRECTBRY S~CTBR

PReCESS REA()/~~ITE lALS
~R6tESS RE~INO CALS
PReCESS RELEASE CALS
~R~CESS ALL RLN CALS
~EAD/wRJTE ~LR(KE"n ttR C~M~RE.SSF!) ':<AD FIl.lS
INTER~AL ENTRY T6 R~AD/~R'TE PRHClSSI~G
~[AD/~RJTE RA~Df:tM RAD FIL~S
RFA() 'oJRITE UNbL~(KEU ~AD ,. ILF R{tUT INE
t8M"'1BN c;CA"J R~UT I \I~ H~R ALL KFV. I r~ FHH;T I N~ ~
SIDE ~UFFE.~ING PR~rfsseR ~RHLAV DJMMV r~T~Y pHJ~T

~RRCESS SEGLBAO ChLS
~ReCESC; S~TNA~E CALS
SUBR T~ T~ST/SET A~~RT ~V~QRIDl I' I/~ (ALS
SUB T~ APF~ A nCR AND GF'T ITS ASSIGNMF~l
~fjUTIN[T~ PR~CESS Sl:H-lAL ECB A~RP~""AL U'~,DITlf't\S
~BUTJN[TH P~~CES~ LH(CKS AN SIGNAL SEPVIC~S

~~6CESS SIG~AL CALS
1 NTER~~AL S T r.i~AL CAL p~eCE~SfjR r"JTqy p" I NT
~R~CESS SJ~D (ALS
~R~CE~S SF.T~A~~ (ALS
S~AP KEY·I~ PROCESSING
~~~(ESS SlA~T (AL~ 
~RA(tSS STATU~ CALS 
P~6CESS STDL~ CAL~ 

~B~TINE T~ PR~Ct.SS STl~ER FCH A~NJ~~Al CH~OlTl~~S 
PRRCESS S T U1E i~ CALS 
ReUT I NE TH PR~(ES~ CH[(t(S Or-J STDL:\ SERV 1 (FS 

PRf-'CESS ST~P CALS 
PReCESS STf'PIH/ST~RTI~ CA~S 
~AME (NTRY AS STPIB1(IrEX) 
SAME ENTRY AS STpj91( IeEX> 
SAME ENTRY AS STPT~l(rBEX) 
TAPE HANDLER PRBLAY DUMMY ENTRY PBINT 
PKACEc;S TERM CALS 
PReCESS T[ST CALS 
SUA Te TEST T~E VALIDITY ~F CALLE~'S ~EAD/W~I'E B~F~E~' 
RSUT U!F T~ TEST F ,~R DFLETt..fiN-P~ST I/f~ RE r~UE.Sl 
PRACESS T~~P EXIT CALS 
PRACE~S TI~E CALS 
SUA. TB A~~RT A F9PEGRBUNU TASK 
SUA. T~ A~eRT A LAAO M8DU~E 

SUB. T~ CHFCK A RA~GE BF' AnORESSES 
SUB. T8 CHECK AN ADOHESS AND CeNV~RT TA kFAL IF VIRTUAL 
SU8 T~ PReCESS DC9 t:.RRBRS 
SUB. T~ FREE AN ArT AND THE EDT IF IDLF 
SUB. TB DEQUELE AN ITEM 
SUB, TB ENQUELE A~ ITERM 
SUB. Te GET JAB ID ~y JBB~AME 

SUB. T~ GET TASK JD ~Y TA~K NA~E 
SUB. T8 GET Je~ A~D TASK IDENTIFICATIBN 
SUA T8 GET J6B ID F~eM Pl1 AND P12 IN FPT 
SUB. Te FETCH PRIBRITY FROM AN FPT 
SUg. TB GET TASK Ie ~Qe~ ~3 AND P4 IN FPT 
GET THE REAL ADURESS A~D ~RHTECTION F~R A VIR1UAL ADD~ESS 

SUBRT'UTINE T~ TF~MINATE aR AHART eNE L6AQ MBUULE 
~UA. TB SET Rs AND ~10 I~ RTS IF CAL PRBtESSING ERR6R 
SUA. TO ALTER PSD IN ~TS 
SUR, TB ALTER R8 A~D R10 1~' RTS 
INTERNAL (r-JTRY INTB STep ~AL PROCESSBR 

Appendix F 221 



THTER~ 
Tr-1TR'1J 
p1TJ:<"1T 
T'1TVC 
T'1TVC8 
THTV(S 
TMTVC1; 
TMTV(1:;S 
TMV"~R 
T'1WALL 
TRAPCRSH 
TRAPS 
TR~I-'') 

T~AP70 
T1T~ 
TRTV 
TRUNCATE 
rT 
TLlf'9 
TTPRIM 
TYF'F 
~AJT 

..JAliALL 
,01" t T At'-; V 

,~BU~CI< 

.-JEeF" 
oILf3L ~C K: 
tJRYTDIR 

222 Appendix F 

T~R'" 
TERr-l 
T ER'~ 
TMTVC 
TMTYC 
TMTvC 
TMTYC 
TMTvC 
TMTV( 
voAIT 
TRAPS 
TRAPS 
TRAPS 
TRAPS 
TRAoS 
n~AI-'S 

DEL[TE 
TT 
TTJ~B 
TT 
I-'RI~T 

"AIT 
,..jAIl 
·~A I T 
RWBFIL 
REWINt) 
RWBF I L 
OPpJX 

SU8. T~ TERMINATF A FFjREGtotBUNO TASK 
SUBj,lel'T I NE TB TE:.RM T NA TE AL..L LtiAO MBOULES J N A J6B 
SU~. l~ TERMI~ATE A L~AD MROULE 
SUR. T~ SFT FPT TVPE Ce~pL..rTI~N WeRD PARAMETEtot 
SUB. TS SET FPT TYPE C~"1PLtTIRN WaRn ~USY 
SHRMUTtNE T6 SET FPT TYPE (RMPLETI6N IN STAND. FPT 
SU~. T~ SET TYC IN j,llS INfB FPT Tye WHRD 
~U6. Te SET Tve IN ~1~ INrn TYC WeRO IN STAND. FPT 
SG~. TS CHECK A vyRTUAL AUDRESS CNB CRNVERSIBN) 
su~. T8 DR WAIT ALL BN QEL8S 
T~AP CRASH ENTRY 
n~~p HANDLER ENTRY 
INTER~AL ~NTRY F8Q TN AI-' HANDLING 
~~~c~ss TRAP CAL 
~kACESS T~AP ~ETUQ~ CAL
P~eCFSS TRAP RETRV LALS
~~~CESS T~UNCATE CALS 
sue. TU DA SEC~NDA~Y TASK TERMINATlftNS 
SUR. T8 CLEAN J6B C~NTR~Ls FeR TASK TERHINATI~N 
Slm. fA DH MISC. TASK CLEANUP F"fiR PRI~A~Y TE:.RMlt'-tATIBNS 
P~A,CE~S ALL TyPE CALS 
~~MCE~S WAIT CALS 
~RACESS WAITALL CALS 
~RACESS wAITANY CALS 
SUB TA ~'R I H. F~UT A tjLHCI( I NG BUFFER 
~RACESS WEftF CALS 
SU8 T~ WRITE THE CURRF.NT ~L~CK ~F A RAD FILE 
sue TA WRITE A DIRECT9RY ~ECTftR 


	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222

