Xerox Corporaticn

701 South Aviation Boulevard X ‘DX
El Segundo. California 90245

213 679-4511

Xerox Real-Time Batch Monitor (RBM)

System

Technical Manual

90 17 OOE

May 1975

Price: $8.25

© Xerox Corporation. 1973, 1975 Printed in U.S.A.

REVISION

This publication is a revision of the Xerox Real-Time Batch Monitor (RBM)/System Technical Manual for Sigma 5-9
Computers, Publication Number 90 17 00D (dated October 1973). The revision reflects the C04 version of the sys-
tem. Changes in the text for CO4 are indicated by a vertical line in the margin of the page.

RELATED PUBLICATIONS

Title Publication No.
Xerox Sigma 5 Computer/Reference Manual 90 09 59
Xerox Sigma 6 Computer/Reference Manual 9017 13
Xerox Sigma 7 Computer/Reference Manual 90 09 50
Xerox Sigma 8 Computer/Reference Manual 90 17 49
Xerox Sigma 9 Computer/Reference Manual 90 17 33
Xerox Real=Time Batch Monitor (RBM)/RT,BP Reference Manual 90 15 81
Xerox Real-Time Batch Monitor (RBM)/OPS Reference Manual 90 16 47
Xerox Real=Time Batch Monitor (RBM)/RT,BP User's Guide 90 16 53
Xerox Availability Features (CP=R) Reference Manual 903110
Xerox Sigma Character-Oriented Communications Equipment/Reference Manual

(Models 7611-7616,/7620-7623) 90 09 81
Xerox Sigma Multipurpose Keyboard Display/Reference Manual (Models 7550,/7555) 90 09 82
Xerox Mathematical Routines/Technical Manual 90 09 06
Xerox Assembly Program (AP)/LN,OPS Reference Manual 90 30 00
Xerox SL-1/Reference Manual 90 16 76
Xerox Extended FORTRAN 1V-H/LN Reference Manual 90 09 66
Xerox Extended FORTRAN 1V-H/OPS Reference Manual 90 11 44
Kerox Extended FORTRAN /Library Technical Manual 90 15 24

Manual Content Codes: BP — batch processing, LN — language, OPS — operations, RP — remote processing,
RT — real-time, SM —system management, TS — time=sharing, UT — utilities.

The specifications of the software system described in this publication are subject to change without notice. The availability or performance of some features

may depend on a specific configuration of equipment such as additional tape units or larger memory. Customersshould consult their Xerox sales representative
for details.

PREFACE

1.

2.

3.

RBM INITIALIZATION ROUTINE

CONTENTS

viii

RBM CONTROL TASK 3
Structure 3
Function and Implementation 3
Resident Control Task 3
Key=In Processor 4
Load Module Control (Formerly
"Foreground Loader") 4
Background Sequencing 5
Checkpoint Restart (CKPT) 6
Control Task Dump 7
1/O HANDLING METHODS 8
Channel Concept 8
Handling Devices 8
Single Interrupt Mode 8
Interrupt=to=Interrupt Mode 8
System Tables 8
10Q (Request Information) 8
DCT (Device Control) — 9
CIT (Channel Information) 9
Handler Tables 9
1/O Control System Overview 10
Interfaces 10
Interfaces into the IOCS 10
Interfaces out of the 10CS 12
I0CS Control Sequence/Example 12
Register Conventions 32
QUEUE 32
CALLSD 32
SERDEV 32
RIPOFF 32
STARTIO 33
CLEANUP/IOSCU 33
REQCOM 33
1/O Error Logging 34
1/O Statistics 34
Side Buffering 34
Qutput Side Buffering 34
Input Side Buffering 34
IOEX 35
Queved 10EX 35
Dedicated 10EX 35
Disk Pack Track=by-Track Logic 35
Disk Pack Seek Separation 35
Disk Pack Arm=Position Queue Optimization 35
Disk Angular-Position Queue Optimization 36
User 1/0 Services 36
OPEN 36
CLOSE 36
READ/WRITE 37

6.

PRINT 38
TYPE 38
DFM 38
DVF 38
DEVICE 38
CORRES 38
REWIND 39
WEOF 39
PREC 39
PFILE 39
ALLOT 40
DELETE 40
TRUNCATE - 40
JOB CONTROL PROCESSOR 41
Overview 41
ASSIGN Command Processing 41
JCP Loader 55
Job Accounting 57
Background TEMP Area Allocation 57
FOREGROUND SERVICES 60
Implementation 60
RUN 60
RLS 60
MASTER/SLAVE 60
STOPIO/STARTIO 60
DEACTIVATE/ACTIVATE 61
I0EX 61
TRIGGER, DISABLE, ENABLE, ARM
DISARM, CONNECT, DISCONNECT_ 61
Task Control Block (TCB) 61
MONITOR INTERNAL SERVICES 64
RBM Overlays 64
Entry and Exit Point Inventory (EPI) 66
Overlay Inventory (OVI) 66
Event Control Block and Event Control Services . 67
Overview of ECB Usage 67
CAL Processor Usage 67
Task=Termination Usage 68
ECB and Data-Area Formats 68
ECBDATA (Word 0) 69
ECBFPT (Word 1) 69
ECBSECB (Word 2) 70
ECBRECB (Word 3) 70
ECBPC (Word 4) 71
ECBENDAC (Word 5) 71
ECBTIME/ECBCOMPL (Word 6) 71
ECBCTLS (Word 7) 71

Dynamic Space
Dynamic=Space Service Calls

GETTEMP

RELTEMP

SYSGEN Considerations

Dispatcher

MISCELLANEOUS SERVICES

SEGLOAD

Trap Handling

Trap CAL and JTRAP CAL

Trap Processing

TRTN (Trap Return)
TRTY (Trap Retry)

TEXIT (Trap Exit)

RBM TABLE FORMATS

General System Tables
Disk File Table (RFT)

Device Control Table (DCT)

DCT Format
SYSGEN DCT Consideration
Channel Information Table (CIT)
I/O Queue Table (I10Q)
Blocking Buffers
Master Dictionary
Operational Label Table (OPLBS)
OVLOAD Table (for RBM Overlays Only)
Write Lock Table (WLOCK)
RBM Dispatcher Level Inventory (RDLI)
Associative Enqueue Table (AET)
Purpose
Type
Logical Access
Overview of Usage
Associative Enqueue Table (AET) Format ___
Task=Controlled Tables
Load Module Inventory (LMI)
LMINAME (LMIT)
LMIPCB, LMIFWA (LMI2)
LMUID, LMILWA (LMI3)
LMIPL, LMICTXT (LMI4)
LIMSTAT (LMI5)
LMISTD (LMI6)
LMIRTS (LMI7)
LMIMAXS (LMI8)
LMIMAXR (LMI9)
LMIAET
LMISECB
LMIRECB
System Task Inventory (STI)
Purpose
Type
Logical Access
Overview of Usage
STISPCE
STIXRTS

72
72
72
72
73
73

74

74
74
74
74
76
76
76

77

78
78
81
81
82

87
87

88
89
89
89
89
89
90
90
90
93
93
23
94
94
94
94
94
94
95
95
95
95
95
95
95

97
97

9.

Job=Controlled Tables

Load-Module Data Structures

Overlay Structure
Overlay Loader Execution

STIRTSB

STUID

STILMID

STIPRIO

STITCB

STIOVID

STICOUNT

STITIME

STISTAT

STIDNXT

Task Control Block (TCB)

Purpose

Type and Location

Logical Access

Overview of Usage

Task Control Block (TCB) Format
Secondary Task Control Block (STCB)

Purpose

Location and Type

Logical Access

Overview of Usage

Secondary Task Control Block (STCB)
Format

System Job Inventory (SJ1) Table
Purpose

Type
Logical Access

Overview of Usage

System Job Inventory (SJI) Table
Format

Job Control Block (JCB)

Purpose

Type
Logical Access

Overview of Usage

Job Control Block Format

Job Program Table (JPT)

Purpose

Type

logical Access
Overview of Usage

JPT Table Format

Enqueue Definition Table (EDT)

Purpose
Type and Location

Logical Access

Overview of Usage

Enqueve Definition Table (EDT) Format

EDTINAME

EDTEDT

EDTRECB

Load Module Headers

Task Load Module Header
PUBLIB Load Module Header
OVLOAD Table (for Load Modules)

OVERLAY LOADER

97
97
97
97
98
98
98
98
98
98
99
99
99
99
99
100
101
101
101
101
101

102
104
104
104
104
104
104

106
106
106
106
106
107
107
108
108
108
108
108
109
109
109
109
109
109
m
m
m
m
m
112
112
13
114

115

115
115

Dynamic Table Area

Dynamic Table Order

T:SYMBOL and T:VALUE

T:VALUE Entry Formats
T:SYMBOL Entry Formats

T:PUBVAL and T:PUBSYM

T:PUBVAL Entry Formats

T:PUBSYM Entry Formats
T:VALX

T:DCB

T:SEG

B:-MT

T:DECL

T:CSECT

T:FWD

T:FWDX

T:MODULE

T:ROMI

T:DCBV

T:MODIFY

Use of the Dynamic Table Area During
LB

T:LDEF

T:LROM

MODULE File

EBCDIC File

MODIR File

DEFREF File
Use of Dynamic Table Area During
PASSTWO

T:GRAN

T:ASSN

MAP Use of Dynamic Table Area
DIAG Use of Dynamic Table Area
Root Tables

T:PL

T:DCBF

Scratch Files

Program File Format

Logical Flow of the Overlay Loader

Logical Flow of CCI
Logical Flow of PASSONE

Logical Flow of LIB

Logical Flow of PASSTWO

Logical Flow of MAP

Logical Flow of DIAG

Loader-Generated Table Formats
PCB

DCBTAB

OVLOAD

Loading Overlay Loader

10. RADEDIT

Functional Flow

Permanent Disk Area Maintenance
Permanent File Directory

Control Commands

:ALLOT

:DELETE

:TRUNCATE

:SQUEEZE

116
17
117
118
119
119
119
120
120
121
122
124
124
124
125
125
126
126
127
127

128
129
129
130
130
130
130

131
131
132
132
133
133
134
134
135
136
137
137
137
138
138
138
139
139
139
140
140
140

150

150
150
150
152
152
153
153
153

11,

Library File Maintenance

Algorithms for Computing Library File
Lengths

Library File Formats
MODIR File

MODULE File

EBCDIC File

DEFREF File

Command Execution

:ALLOT

:COPY

:DELETE

:SQUEEZE

Bad Track Handling

Command Execution

:BDTRACK

:GDTRACK

Utility Functions

:MAP

:LMAP

:SMAP

:CLEAR

:COPY

:DPCOPY

:DUMP

:SAVE

:RESTORE

SYSTEM GENERATION

Overview

SYSGEN/SYSLOAD Flow

Loading Simulation Routines, RBM, and RBM

Overlays

SYSGEN 1/O

Rebootable Deck Format

Stand-Alone SYSGEN Loader

APPENDIXES
RBM SYSTEM FLAGS AND POINTERS

PAPER TAPE STANDARD FORMAT
ERROR LOGGING
XEROX STANDARD OBJECT LANGUAGE

Introduction

General

Source Code Translation

Object Language Format

Record Control Information

Load ltems

Declarations

Definitions

Expression Evaluation

153

153
155
156
156
156
157
157
158
158
15

158
158
158
158
159
159
159
161
161
162
162
162
162
163
164

176

176
177

177
185
185
186

187
192
193
201

201
201
201
202
202
203
203
205
206

12.

13.

4.

15.

17.

18.

19.

20.

21.

23.

24,

vi

Formation of Internal Symbol Tables
Loading

Miscellaneous Load Items

Object Module Example

XEROX STANDARD COMPRESSED
LANGUAGE

SYSTEM OVERLAY ENTRY POINTS

FIGURES

Initialize Routine Core Layout

209
210
2n
211

217

218

RBM Initialize Routine Overall Flow

Overall 10CS Organization

1

10CS: QUEUE Routine

13

IOCS: SERDEV Routine

15

1I0CS: CLOCKIO Routine

10CS: RIPOFF Subroutine

IOCS: STARTIO Routine

10CS: IOINT Routine

2]

IOCS: IOALT Routine

23

IOCS: CLEANUP Routine

IOCS: REQCOM Routine

24

26

IOCS: ENDAC Subroutine

28

IOCS: IOERROR Subroutine

10CS: IOLOG Subroutine

10CS: PUSHLOG Subroutine

29

31

JCP General Flow

JOB Command Flow

FIN Command Flow

ASSIGN Command Flow

DAL Command Flow

ATTEND Command Flow

MESSAGE Command Flow

PAUSE Command Flow

42

45

45

&

47

25.
26,
27.
28.
29.
30.
31.
32.

33.

3.
38.

39.

40.
41.
42.

43.

45.

47.
48.
49.

50.

51,

52,

CC Command Flow 47
LIMIT Command Flow 47
STDLB Command Flow 48
NAME Command Flow 49
RUN Command Flow 51
ROV Command Flow 51
POOL Command Flow 51
ALLOBT Command Flow 52
LOAD Command Flow 53
PMD Command Flow 54
PFIL, PREC, SFIL, REWIND, and

UNLOAD Command Flows 54
WEOF Command Flow 54
Core Layout During JCP Execution 55
Pre~PASS1 Core Layout 56
ARM, DISARM, and CONNECT Function

Flow 62
Arrangement of SYSLOAD Input ROMs 65
ECB Format and Chained Data Areas 68
Relationship of Task Controlled Data 91

Relationship Between a Primary
Task Control Block and Other
Control Blocks 99

Relationship Between Secondary Task
Control Block and Other System

Control Data 102
Relationship of Job Associated Control

Tables 105
Enqueue/Dequeue Table Relationship___ 110
Overlay Structure of the Overlay Loader 115
Overlay Loader Core Layout 116
LIB Reorganization of Dynamic Table Area 128
PASSTWO Reorganization of Dynamic

Table Area 131
MAP Table Reference 133

Program File Format 136

53.

54.

55.

57.

58.

59.

60.

61.

62.

63.

64,

65.

66.

67.

Overlay Loader Flow, !|OLOAD

Overlay Loader Flow, CCI

Overlay Loader Flow, PASSONE
Overlay Loader Flow, PASSTWO

Overlay Loader Flow, MAP

Overlay Loader Flow, RDIAG
Overlay Loader Flow, RDIAGX

Overlay Loader Flow, DIAG

RADEDIT Functional Flow

Permanent Disk Area

RADEDIT Flow, ALLOT

RADEDIT Fiow, COPY

RADEDIT Flow, SQUEEZE

RADEDIT Flow, SAVE

RADEDIT Flow, RESTORE

141

141

142

145

147

148

148

149

151

154

165

166

171

173

175

68.

69.

70.

SYSGEN and SYSLOAD Layout Before
Execution 176

SYSGEN and SYSLOAD Layout After

Execution 177

SYSGEN/SYSLOAD Flow 178
TABLES

ASSIGN Table 41
Disk File Table Allocation 78
DCT Subtable Formats 79
IOQ Allocation and Initialization 82
Overlay Loader Segment Functions 115
T:DCBF Entries 134
Background Scratch Files 135
Standard SYSLOAD DEFs 183

. RBM System Flags and Pointers 187

vii

viii

PREFACE

The primary purpose of this manual is to provide a guide for better comprehension of the program listings supplied
with the Xerox Real-Time Batch Monitor (RBM) operating system. The programs and processors included are the
System Generation program, the Monitor and its associated tasks and subprocessors such as the Job Control
Processor, Overlay Loader, and RADEDIT.

The manual is intended for Sigma RBM users who require an in-depth knowledge of the structure and internal
functions of the RBM operating system for system maintenance purposes. Since the RBM Technical Manual and pro-
gram listings are complementary, it is recommended that the listings be readily available when this manual is used.

1. RBM INITIALIZATION ROUTINE

The RBM Initialize routine is entered from the disk bootstrap every time the system is booted from the disk, and it
sets up core prior to the execution of RBM. It also modifies the resident RBM system (including all system tables),
the RBM overlays, and the Job Control Processor. Modifications may be made from the C, OC, or SI device that
is selected by a corresponding sense switch setting (1, 2, or 3). If sense switch 4is reset, the Initialize routine loads
all programs on the FP area of the disk designatedas resident foreground into the foreground area. The Initializeroutine
extends into the background and can be overwritten by background programs, since it executes only once. In Fig-
ure 1 below, the background first word address is the first page boundary after RBMEND (the end of resident RBM).
The Initialize routine terminates by triggering the RBM Control Task.

The general flow of the Initialize routine, from entry from disk bootstrap to triggering the Conirol Task interrupt, is
illustrated in Figure 2.

Resident RBM l '
5
|

RBM , \ \ \\Q\C\\\\\\\\\\\R\\\\\\\\\\

ik \\\ \ .

Figure 1. Initialize Routine Core Layout

RBM Initialize Routine

1

Process quick patches. I

Set up FGD and BCKG
blocking buffer pools.

—

Set up DCB and RFT entries
used to read in RBM overlays.

r Set write locks. J

— —»
A

Set 1/O handler's start and
cleanup addresses.

Set up and ARM/ENABLE 1/0,

Control Panel, Control Task,

and Counter 4 interrupts.
T

Y

Set up task and job control
tables for RBM task and job.

v

Change to secondary task, i.e.,
continue under control of
dispatcher.

i

Type "XEROX 5/7 RBM
VERSION XXXX".

¥

Process | MODIFY commands
if SSW1-C, SSW2 - OC,
SSW3 - Sl are set.

—
y

Set up simulator
control locations.

y

If sense switch 4 is reset,
do RUN CAL to load in
any resident foreground
program.

P

Type DT key~in
request message.

:

Trigger Control Task Interrupt
exiting to Control Task.

Y

Type alarm if cannot trigger
Control Task interrupt.

Wait

A

Figure 2. RBM Initialize Routine Overall Flow

2 RBM Initialize Routine

2. RBM CONTROL TASK

The RBM Control Tosk is connected to the lowest priority system interrupt. Among the functions performed by the
Control Task are

Key=in processing

Foreground program "RUN" and "INIT"
Foreground program "RELEASE" and "EXTM"
Background program Load

Background Checkpoint

Background Restart

Background Exit

Background Abort

Background Wait

Background Postmortem Dump
Keyin initiated dumps
Deferred 1/O processing
Periodic service of all devices
Crash data handling

1/0 error log handling

In facilities where there are no system interrupts, the Control Task is connected to the Control Panel interrupt (see
"Key=In Processor” later in this chapter).

Structure

The Control Task consists of a resident portion and a number of monitor overlays. The overlays are

Load module "RELEASE" (FGL1)
Load module "RUN" (FGL2)

Load module loader (FGL3)
Background program initiation (BKLI1)
Checkpoint/Restart (CKPT)
Background Abort/Exit (ABEX)

Postmortem and Keyin Dumps

Function and Implementation

Resident Control Task

Seven=Part Key=in Processor (KEY1-KEY7)
Error logger (LOG)

Error summary (ESUM)

Crash saver (CRS)

Crash-save dumper (CRD)

Direct crash dumper part 1 (CKD1)

Direct crash dumper part 2 (CKD2)

The resident portion of the Control Task functions as a scheduler for the various subtasks. The priority of the subtasks
is determined by the order in which the resident Control Task tests the signal bits.

RBM Control Task

3

4

Key-In Processor

When the control panel interrupt is triggered, its handler sets the flag in K:CTST to run KEY1, and triggers the in-
terrupt for the control task dispatcher.

When KEY1 is entered, it determines whether an operator key=-in must be read or has just been read. If the key=in

n_m

has not yet been read, KEY1 prompts the OC device with a "=" and queues a read request to the same device. It

then sets a flag indicating that key=in input is in process, and exits To the Control Task without clearing its run flag
M

in K:CTST.

The combination of the flags mentioned forces the Control Task to skip KEY1 but to continue cycling through its scan
until the key=in input is complete. It then enters KEY1.

When KEY1 is entered after a key=in has been read, it analyzes the input and branches to the appropriate processor
in one of the four key=in overlays. If the key=in is unrecognized, KEY1 outputs the message

1IKEY ERR

and repeats the attempt to read a key=-in.

Load Module Control (Formerly “Foreground Loader")

Load Module Control consists of three monitor overlays: FGL1 (Load Module Release), FGL2 (Load Module Run),
and FGL3 (Load Module Loader). Monitor services that require a load module to be initiated or released set the
appropriate status indicators in the LMI entry, set the flag for Load Module Control in K:CTST, and trigger the
Control Task dispatcher interrupt.

Load Module Control is entered in the FGLI overlay, which first searches the Load Module Inventory (LMI) for load
modules to be released. If areleasable load module is found, FGLI releases it. The STI is searched for entries
identifying tasks in the load module. If any are found, they are released, and the associated interrupts are disarmed
and set to MTW, 0 0. For clock-connected tasks, both the clock pulse and the corresponding count-equals-zero
interrupts are ireated. If the load module used PUBLIBs, their use counts are decremented, and the PUBLIB LMI
entry is released if the use count becomes zero.

While searching for releasable load modules, FGL1 aiso finds all load modules that are waiting on memory in order
to run ("run queued") and sets flags indicating that their loading is to be attempted again.

When all load module releases have been performed, FGLI calls FGL2.

FGL2 searches the LMI for an entry flagged for loading. If the "run-queueing" option is not specified, the first
loadable entry is selected. Otherwise, the loadable entry with the highest priority is chosen. (If there is none,
FG L2 returns to the control task, clearing the Load Module Control flag from K:CTST.)

When an entry is found, the Job Program Table (JPT) for the job in which the load module will run is searched. If
the task name from the LMI entry matches a task name in o JPT entry, the load module file name is provided by the
JPT entry. If no such match is found, the task name is used as the file name., FGL2 calls FGL3 to load the load
module. If FGL3 is successful, FGL2 sets up certain LMI entry values which are obtained from the load module
header, and allots Associative Enqueue Table (AET) space from the monitor's dynamic memory pool. If the load
module is foreground, its initialization sequence is executed, Normal completion posting is effected for the
originating RUN or INIT request.

If FGL3 is unsuccessful at loading a foreground program because the required memory was in use, FGL2 leaves the
LMI entry for a later attempt at loading, If the lood failed for another reason, or the task was background, its

tables are deleted, and the originating request is posted as abnormally completed.

FGL3 acquires dynamic memory for load module header input, and for background load modules reserves a blocking
buffer as well (background headers may be as large as a full sector). The header is read, and it is determined

Function and Implementation

whether the memory between the program bounds is free of foreground programs. If it is not, the load terminates
unsuccessfully. If it is, the module must also load into the correct area of memory (background or foreground). If
it does not, the load is again terminated unsuccessfully, but if a foreground load module is concerned, checkpoint is
requested. The root segments of the load module are read into their execution locations. If any PUBLIB is required,
the LMI is searched. If the PUBLIB has no LMI entry, it must be loaded. Its header is read. From header data, it
is determined if the PUBLIB loads into the foreground area, and does not overlap an existing program or PUBLIB, If
these conditions are met, the PUBLIB is loaded and given an LMI entry. If not, the loading of the original program
load module is terminated unsuccessfully.. If a PUBLIB is already loaded, its use count is incremented.

When the root segments and PUBLIBs for o load module are all loaded, FGL3 returns successfully to FGL2.

Background Sequencing

Background sequencing is provided by two monitor overlays: Background Program Initiation (BKL1, formerly "Back-
ground Loader part 1") and Background Abort/Exit (ABEX),

Background sequencing is begun by a "C" keyin received while the background is inactive. The key=-in causes flags
to be set in K:CTST indicating that BKL1 must run and the Job Control Processor (JCP) is to be loaded.,

There are three main paths through BKL1: one for initiating JCP. one for initiating a processor or user progrem, and
one for completing the initiation process after Load Module Control has loaded the background. BKL1 may also exit
without doing anything, if it is entered without the indicator set for any of its three functions, or if the background
is checkpointed. In the former case, the flag in K:CTST for BKL1 execution is cleared. At this point, Background
Sequencing has terminated. In the latter case, the flag is not cleared so that the Control Task will continue to enter
BKLY until the checkpoint condition is cleared allowing BKLI to proceed.

When BKL1 is called to initiate either JCP or another background program, the general process is to delete the back-
ground blocking buffer pool, reset the background-foreground boundary, reallocate the background buffers, associate
the task name "BKG" with the load module file name using a SETNAME CAL, and request task initiation with a no-
wait INIT CAL. BKL1 then exits to the Control Task, to allow Load Module Control to do the task initiation.

The resetting of the background-foreground boundary is done if an FMEM key=in has been received that changes the
boundary, and no foreground program or PUBLIB would lie in background as a result of the change. The change is
effected by altering the boundary address pointer (K:FGDBG1) and resetting the write locks. [f the change cannot
be made because of existing programs in the foreground, the FMEM request is deleted and a message is sent fo the
OC device, but background initiation is attempted anyway.

The reallocation of buffers before initiating the background task provides a fixed number of blocking buffers (two)
for use during initiation processing. Additionally, if a load module other than JCP is being initiated, the contents
of the control command buffer and the ASSIGN buffer are moved from the locations they occupied when the prior
background task (JCP) terminated. Note that if the background-foreground boundary is changed, BKL1 must not
exit until it has performed these buffer moves, or Load Module Control could load over the old buffers, destroying
the data needed.

The final path through BKL1 is taken after completion of the INIT service requested in either of the first two paths.
Load Module Control, on completing a background INIT request, sets the flag in K:CTST for BKLT execution. When
BKLT is entered, it performs a CHECK on the INIT request. If an abnormal completion code is returned, flags are

set to run ABEX to abort the background. BKLI notifies the operator and exits. If the completion is normal, ASSIGNs
are done as indicated in the ASSIGN table. If the background program was not JCP, blocking buffers are reallocated
either according to a POOL commoand if one wos received; or to the number of blocked files indicated in the pro-
gram's DCBs, if possible; or as few as one, if memory space is not adequate for the default number. If JCP is being
initiated, it keeps the two blocking buffers allocated before the INIT request. BKL1 then zeros unused background
memory, clears flags that block background execution, and exits. Background can then run.

When a service requests that the background task be terminated (e.g., EXIT or ABORT CALs, trap processing abort),
task termination is deferred. Instead, o flag is set in K:CTST indicating that ABEX must run, and another in K: JCP
indicating whether the termination is an exit or an abort, The Control Task is then triggered.

If ABEX is entered while the background is checkpointed, it exits immediately, so that — like BKL1 — it is reentered
at each pass through the Control Task until the checkpoint is cleared.

Function and Implementation

6

ABEX first determines what is to be run next in the background sequence on the basis of what was just run, and how
it terminated. If @ normal termination occurred, there are three alternatives: If a program other than JCP was
running, ABEX indicates that JCP will run next. If JCP was running, and a IFIN command was received, nothing
is to follow. If JCP was running and exited without !FIN, it was the result of some variety of IRUN command,
and the next program to run is indicated by a file area and name in K:BAREA and K:BFILE, respectively. ABEX
indicates that a user program is to be loaded next. If the previous background program aborted, ABEX indicates
that JCP will run next. Additionally, ABEX sends an abort notification to the OC and LL devices, and sets a flag
which forces JCP to skip control cards until a 1JOB or !FIN is encountered.

If a postmortem dump is required, ABEX sets the flag in K:CTST to run the PMD overlay, resets its own flag, and
exits, When the dump is complete, PMD will set the ABEX flag to allow ABEX to finish. If there is no dump, or
upon reentry after a dump, ABEX calls the TMLM monitor routine, which forces the background to execute termina-
tion. ABEX then exits, clearing its execution flag.

The background task then executes Task Termination, which closes files, waits out or stops I/O (the former in an
EXIT, the latter in an ABORT), and releases table space. Termination ends by setting the K:CTST flag to run
BKLI, and triggering the Control Task.

When BKL1 runs, as described earlier, it initiates the next load module, or, if there is none, terminates background
sequencing.

Checkpoint/Restart (CKPT)

This overlay performs both the Checkpoint and Restart functions. Checkpoint is accomplished by waiting for out-
standing background 1/O requests to run to completion and then writing the entire background portion of core to
the CK area of the RAD. When the background has been successfully written to the RAD, the message

HIBCKG CKPT

is output on OC. At conclusion of the checkpoint, the background portion of memory is given to the foreground by
setting the boundary pointers K:FGDBG1 and K:BCKEND and setting the Write locks appropriately.

The following self-explanatory messages may be output during checkpoint:

11CKPT ABORT, 1/O HUNG

11BCKG USED BY FGD

11CK AREA TOO SMALL

111/0 ERR ON CKPT

Restart is accomplished by resetting the boundary pointers K:FDGBG1 and K:BCKEND, and by resetting the Write
iocks to their precheckpoint settings. The message

I1BCKG RESTART

is output on the OC device and the control bits indicating that the background is checkpointed are reset (K:JCP1
bits 2, 3). Control is then transferred to the resident Control Task, and when al! specified subtasks are completed,
the Control Task will exit to the proper point in the background.

Function and Implementation

Control Task Dump

This overlay performs core dumps. Any Dump key-in requests in effect at entry are performed-first, and when these
are exhausted, the background PMD requests are satisfied (maximum of four ranges). K:JCPI bit 6 is set prior to

completing the ABORT/EXIT, and the PMD is then done. After the PMD is completed, the Control Task returns to
the ABORT/EXIT overlay and completes background cleanup.

The dump format is either hexadecimal or optionally both hexadecimal and EBCDIC, with the registers being re-
trieved from their storage area and dumped as locations O through X'F'. Subroutines are inciuded in the overlay
that perform hexadecimal to EBCDIC conversion and move bytes into the print image.

After printing each line, - control is returned to the resident Controi Task to enable other subtasks to be performed
without waiting for total completion of the dump. The resident Control Task returns control to PMD after performing
any higher priority subtasks,

Function and Implementation

7

3. 1/0 HANDLING METHODS

Channel Concept

A "channel" is defined as a data path connecting one or more devices to memory. Only one of the devices may be
transmitting data to or from memory at any given time.

Thus a magnetic tape controller connected to an MIOP is a channel, but one connected to an SIOP is not, since in
this case, the SIOP itself fits the definition. Other examples of channels are a card reader on an MIOP, a
keyboard/printer on an MIOP, or a disk controller on an MIOP.

Input/output requests made on the system will be queued by channel to facilitate starting anew request on the chan-
nel when the previous one has completed. The single exception to this rule is the "off-line" type of operation,
such as the rewinding of magnetic tape or the arm movement of certain moving arm devices. For this type of opera-
tion, an attempt is always made to also start a data transfer operation to keep the channel busy if possible.

Handling Devices

The RBM system offers the capability of multiple-step operations by providing an interrupt-to-interrupt mode in
addition to the standard single interrupt mode.

Single Interrupt Mode

On the lowest fevel the 1/O handler is supplied a function code and device type. These coordinates are used to
access information from tables used by the handler to construct the list of command doublewords necessary to per-
form the indicated operation. Included will be a dummy (nonexecuted) command containing information pertinent
to device identification, recovery procedure, and follow-on operations (see below).

Interrupt-to-Interrupt Mode

A function code for a follow-on operation may be included in the dummy command. This causes the request to be
reactivated and resume its normal position in the channel queue, but with a different operation to be performed. It
will be started by the scheduler in the normal manner as if it were any other request in the queuve. The process may
be cascaded indefinitely.

Error recovery may be specified at any point within a series of follow-on operations and will be itself treated by the
system as a type of follow-on operation. It should be noted that follow-ons may be intermixed with other operations
on the same channel or even on the same device if the situation warrants. Thus, a series of recovery trieson a RAD
may be interrupted to honor higher priority requests, or on a tape for higher priority requests on other drives (but not
on the same drive).

System Tables

Information pertaining to requests, devices, and channels is maintained in a series of parallel tables produced at
System Generation time. A definition of these tables is presented here as reference for the remainder of this man-
val. The first entry (index=0) in each table is reserved for special use by the system. See Chapter 10 for a more

complete description of these tables.

10Q (Request Information)
These tables contain all information necessary to perform an input/output operation device. When a request is

on a
made on the system, a queue entry is built that completely describes the request. The entry is then linked into the
channel queue below other requests of either higher or the same priority.

I/O Handling Methods

DCT (Device Control)

The device control tables contain fixed information about each system device (unit level) and variable information
about the operation currently being performed on the device.

CIT (Channel Information)
These tables are used primarily to define the "head" and "tail" of entries that represent the queue for given channel

another entry reads or writes).

Handler Tables

Associated with each handler are two tables: the Device Offset Table (DOT), and the Command List Pointer Tabie
(CLST).

The DOT table is a word table that begins on a doubleword boundary and contains:

Byte O A byte offset from the beginning of the DOT table to the corresponding CLST entry.

Byfe i The time-out vaiue, which is an infeger that represenis the number of five-second intervais that
are allowed to pass between the SIO and the 1/0O interrupt before the interrupt is considered
lost. The value X'FF' indicates the operation should not be timed out.

Byte 2 The retry function code. This is the function code to be used for automatic error recovery.

Byte 3 The continuation function code. This is the function code to be used for multiple interrupt re-
quests. For example, a forward space record on magnetic tape can be performed n times by
the basic 1/O using the same queued request. Zero is used for no continuation.

The function code is used as the index to reference this table.

The CLST table is a byte table containing the doubleword displacement from the beginning of the corresponding DOT
table to the appropriate skeletal command doubleword.

The general method for constructing the command doublewords for an 1/0 request is to access the DOT table using
the function code as index, and then find the skeletal command doubleword offset by using the contents of byte 0
of the DOT entry as index to the CLST table. The skeletal command doubleword has the form

Order X
Flags 0 Y [z

where
Y =0 if the command is complete and to be used as is. This implies X is the address and Z is the byte count.

Y =1 if a seek address contained in IOQ12 is to be placed in the first word. In this case, the valfue of X
is irrelevant.

Y =2 if a regular data transfer is to be performed. In this case, the buffer address is taken from IOQ8 and
placed in the first word, and the byte count is taken from IOQ9 and placed in the second word (byte 1).

Y =3 if the request represents an 1/O error message. This will cause the proper N/L Ilyyndd to be chained
to the pointed message.

Y =4 if a special handler function is to be performed. In this case, X is the address of the entry to
the function.

Handler Tables

10

When the building of the command doubleword is completed, a test is performed for command-chaining (command

doubleword flag field bits 0 or 2 are on). If another command doubleword is to be chained, it is accomplished by
accessing the next successive entry in the CLST table to find the offset of the skeletal command doubleword that is
to be used to create the next command doubleword. This command doubleword is constructed in the same fashion as

the first, and the process may continue to the limits imposed by the size of the command list area allocated at
SYSGEN.

1/0 Control System Overview

The 1/O Control System (IOCS) is based around three major concepts. They are device dependent variables, channel
dependent variables, ond request dependent variables. The device dependent variables include the device address,
device state flags, pointers to channel and request variables, pointers to pre- and post-handlers and storage for
hardware 1/O status, The channels are software logical channels defined by the SYSGEN process. Only one data
transmission can occur on a channel at any given time (two in the case of device pooling hardware). Channel vari-
ables include the state of the channel (busy, held, etc.) and queue head and tail pointers for the request queues.
Request variables contain the information supplied by the 10CS user (file management, overlay manager, utility
routines, etc.), indicating which 1/O operation is to be performed and how completion is to be signaled. Request
variables include buffer address, byte count, function code, maximum error retry count, end-action information,
device pointer, priority, and others. There are also entries for forwards and backwards pointers in the channel
queves,

All device-dependent code is in device pre~ and post-handlers that are called before the 1/O is started and after
the 1/O interrupt is received, respectively. They are dependent not only on the gross device type (i.e., cardreader

or magnetic tape unit), but also on the exact model of device and controller.

Figue 3 shows the overall organization of the 10CS.

Interfaces

There are only fwo program interfaces into the 10CS., The first is QUEUE which is called with the request param-
eters in order to add a request to the proper queue. It identifies the proper channel and adds the entry in priority

.position. The second is SERDEV (Service Device) which, while called with a device pointer, identifies the asso-

ciated channel and checks it for a possible state change.

The only Interface out of the IOCS is IOSCU, When any 1/O is finally terminated, 10SCU calls REQCOM which
signals the requestor based on the clean-up code and/or end-action control word supplied with the original request.

The 10CS interfaces are described in further detail below, together with an I/O control sequence example for a
simple case.

Figures 4 through 16 show the detailed control flow for the individual 1OCS routines and subroutines.

Interfaces into the 10CS

QUEUE. This subroutine is called by the monitgg to enter an 1/O request into the IOCS, It must be supplied with

many parameters such as:
e Byte address of the buffer
e Byte count
e Logical function code (read, write, rewind, etc.)
e Priority
e Device ID
e End-action control data

e Maximum number of recovery attempts

/O Control System Overview

MEREAD

STARTIO

.

MEWRITE MECHECK
PARAMETERS IN PARAMETERS IN PARAMETERS [N
FPT AND OCB FPT AND OCB FPT AND OCB
FILE AND DEVICE
MANAGEMENT
CONVERT TO REAL
PARAMETERS
CALL QUEUE INTSIH
PUT PPRAMETERS 1/0 TIMEBUT
IN REGISTERS HIO DEVICE AND
FOR QUEUE COLLECT STATUS
- Oueue
CONTROL TASK BUILD [DQ ENTRY 1/0 INTERRUPT
DEFERED CLEANUP AND PUT IT ON AIO DEVICE AND
EVERY 30 SEC RIGHT CIT

COLLECT STRTUS

FPT

FUNCTION

PARAMETER TABLE
CALL PARAMETERS
AND OCB PTR

OCcB
DATA CONTROL

BLOCK
DATA SET
PARAMETERS

RFT
RAD FILE TABLE
opPLBL
LOGICAL LABEL

TABLE

10Q
1/0 QUEUE
ENNTRY
REAL CALL
PARAMETERS

cIT
CHANNEL INFO

TRBLE
QUEUE PTRS AND
CHANNEL FLAGS

ocT
DEVICE CONTROL
TABLES
DEVICE
PARAMETERS

ECOM

CLEANUP
START 1/0 SERVICE DEVICE CLEANUP
A Y R S o
PARA
100 AND CALL CLEANUP ERROR LOG
PRE HANDLER RETRY COUNT
PRE-HANDLER
DO INITIAL
SETUP AND GET
PTR TO_ RIGHT
1/0 TRELE
COML ST l ascy '
COMLIST BUMP RETRY = POST-HANDLER
BUILD CON'S SETUP FOR KEYIN MoRk EXAHINE STATUS by
BASED ON 1/0 RETRYy OR le "N AND RETURN
TABLE FOLLOW ON CODES AND FLAGS
LOG ERRORS
T l
SI0
SETUP TIHEOUT
SET FLAGS
CHECK MANUAL

REQUEST
COMPLETE
POST STATUS IN

DCB
DO END ACTION

Figure 3. Overall IOCS Organization

I/O Control System Overview

1

Interfaces out of the 10CS

105CU.

of ways:

(o]

This routine, when final completion of an /O request occurs, can signal that completion in a number

A data control block (DCB) may be posted with the actual record size (ARS) and type-of-completion code.
A post word may be posted with the ARS and type-of-completion code.
An external interrupt level may be triggered.

A user subroutine may be entered with the ARS and type-of-completion code in registers.

The last two options are only available for privileged, foreground, real-time tasks,

10CS Control Sequence/Example

The sequence followed when a single 1/O request is made to 1OCS for an idle channel is as follows:

1.

10.

11.

The monitor mokes a call on QUEUE with the request parameters. QUEUE places the request on the proper
channel queue in the proper priority order.

The monitor calls SERDEV to start the channel.
SERDEV finds the channel idle and a startable entry in the queuve. It calls STARTIO for that queue entry.

STARTIO calls o device dependent pre-handler which builds the proper channel program based on the queuve
entries. The 1/O is started on the device and STARTIO returns through SERDEV to the monitor.

While the 1/O is proceeding, the task for which the 1/O is being done may get blocked and be waiting
for the I/O to complete. The monitor then makes successive calls on SERDEV while it is waiting for the
task. If SERDEV finds the device busy, it checks the elapsed time for the I/O in progress to see if it is
taking too long.

(SERDEV is also called every 30 seconds for all devices. This makes sure the system doesn't hang up.)
When the 1/0 operation completes, or errors, an /O interrupt is generated. IOINT is entered.

IOINT collects all the status about the 1/O operation and marks the device as needing clean-up, 1OINT
then either calls SERDEV itself or stacks the device ID and triggers another interrupt level which will call
SERDEV for all the device IDs in the stack.

SERDEV finds the channel blocked by a device requiring clean-up and thus calls IOSCU.

IOSCU calls a device-dependent post-handler which analyzes the status saved by IOINT. The post-handler
returns to IOSCU with parameters indicating what action to take. The possibilities are:

Qutput an operator message.
Request an operator key=-in.
Follow-on to a new function.
Decrement the retry count,

Post some type of completion code.

IOSCU then re-enters SERDEV in order to get the channel started again (step 3).

This sequence goes on, round and round, until some type of 1/O completion is posted.

12 1/O Control System Overview

OUEUE

OQUEUE
ENTER AN 1/0
REQUEST

S_THIS

YES AN I0EX O
RS)

ND

T

v amm—

INITIALIZE R1

0 MAX DCT
INDEX AND
BRCKGROBUND
PRIORITY
E§;$ﬂﬁ42 [
DISABLE

/

DCT3 BIT2
SEV

NG

$0047
PUSH B5RD

X1T FROM QUEUE
{ERRGR)

¥
<:§;j PTR 7ERB
~.
T YES
I |
| v
S THIS i ?H
NS THE LAST :f‘\> o
\\\\\E#TRY -
YES
$0045 YV
A INCREMENT
1 BACKGROUND (00
AN OMAN
REQUEST LOUNT
P e
“ | b
| !
_H i
$0042R $0040
- DE-CHAIN 100
REGUEST "~ D LIVIRT P RUT T RLL
BACKGROUND g > CARIN
Es , e]
i :
1 S A
; ENRBLE ,
1S % i
BKGRND 150 D ;
ENT MRXIMUM - ;
P | i
R T
ENABLE

\

“_I‘;QEJ

!
PUSH 15gR4 r
|
|

SERDEY ™
ATTEMPT TO
DRIVE A REQUEST

78 COMPLETION
AND FREE A 0 }

PULL 1SgR4
DECREMENT R1

Y

o ——————————

K4V
FILL-IN [O0
ENTRY FROM

REGISTERS SET

INTTAL ACCESS
KEY [N 10603

PUT BYTE CNT [N
POST WORD IF
FPT POSTING R
IN OCB-ARS IF
OCB FOSTING
I

$0049\
DISABLE
i

I

EHHNNEL 0 NES
EMPTY

GET NEXT Q
ENTRY

Figure 4. 10CS:

QUEUE Routine

/O Control System Overview

14

PUT REQUEST ON
END OF Q

PUT REQUEST IN
0 HERE

50054

ENABLE

$CALLSD

PUT REQUEST DCT
INDEX AND
PRIDRITY IN R1

40057
SERDEY

ATTEMPT T0
START A REQUEST
FBR THIS DEVICE

$0059
PULL 85RO

K1P EXIT FROM
QUEUE (NORNAL)

ADD REQUEST TO
FRONT OF Q

1/0 Control System Overview

IOCS: QUEUE Routine (cont.)

A

&
SERDEV

SERDEV N

{ SERVICE DEVICE |

GET PRIDRITY
ERDM Rl BYTE 0
DCT INJEX IS
BYTE 1-3

y
PUT LINK IN RIS
GET CIT INDEX
IN R2

Oy

DISABLE

YES |

VETTEST K

CHECK v

PRIDRITY OF
REQUEST

02 10SCHED

ENABLE L
e

[I1mscHEII Y

DISABLE
S ,
“/*§ ‘

" CHECK
CHANNEL
STRTUS

N
—_—
! F7

ANYELD =7

ELSE 5'4

%
y
5%'

@gglﬁstﬂEDS
15// ﬁﬁé\if\ o
EQUIRED $-C

FREE

?EOSTRT

SAVE 0 ENTRY

DT ra DIy
e Uy Ly |

CHECK
DEVICE
STRTUS

CLEPN-UP () lj)
_CLEANUP

INTER-OP > (B 5)
._gui______;4éza

Figure 5.

IOCS: SERDEV Routine

I/O Control System Overview

15

16

GET Q PTR OF GET 00 ENTRY
INTER-GP SAVED [N R10
REQUEST !

!

l
s ‘
BN

PUT ACCESS KEY |

NEXTOUE

GET NEXT Q
ENTRY

NP sTARTIO }
|

NCLL

<

e

MDIFY CHAN
AVAILABILITY
FLAGS

CHONBLYK

E—

S
~._.7 ‘/3\§
TYES ~
SCHEDXI TV Gbsufmmjyg\
ENRSLE : g
' ES S-C BUSY ™~
\ > ~
~. ~a e
o __/"
. Ty
| !
i e . IBINC
n - g =V N
EXIT ONCLINK IRN L ES T e N CRASH :
{ , , EITRER S N0 / .
! RLS BTN — 173 X
\ : / LS . _INCONSISTANCY /
~ - y
Y Sries
- N
tOGET PTR TQ
HBLZ ING REDQUEST
SET SCHESHILD
‘ FLAS
L
Figure 5. 10OCS: SERDEV Routine (cont.)

/O Control System Overview

B

CLOCK

C

TIMEND ™~
Ve

fUT YET :
\/ ;D?}
0 \(E":

~
<

i)

|
v

CLOCKIG
HECK FOR

TIMERUT, E£7Cs

INTSIM
/ INTSIM

K SIMULATE 1 ’
~——

RESET DEVICE
BUSY
SET CLEAN-UP
PENDING

,,,,,,, ac N\
il

’ HBOK 1 10 i
THERE DATA N8
((570F ™ ACTove HERE DAT >_

-

\L = SERDEV
CLOCKOUT
/\ SET TIME-DUT SET [/0 ABORT RESET PROPER
S WAS NG FLAG FLAC CHANNEL BUSY
X FLAGS
l YES I
\ L
'3 HALTI0
CONSTRUCT NEW TYPEMMSG HIO DEVICE INTSEXIT \
TIMEGUT VALUE /" TYPEMMSG 70V DEVICE /RETURN ON LINK
AND TIO DEVICE TYPE MANUAL MSG CONSTRUCT {)
\ J STRIUS \ J
| |
‘1/ \lIMSGDUT CLOCKX1T
TN BUTPUT INTSIN
SEVICE ST YES MESSACE SIMULATE 1/0
MANUAL - INTERRUFT
y{ I
(2 —>{0D
SERDEV SERDEV
RESET DEVICE
MANUAL FLAG
D2
SERDEV
Figure 6. 10CS: CLOCKIO Routine

I/O Control System Overview

17

18

RIPDFE
RIPOFF
REMBVES ANY U
ENTRY

SAVE LINK
DISABLE

DBES
DETB = THIS
18Q INDEX

k

HIO DEVICE

RESET CHANNEL
BUSY

RIPDFEDS

RESET CHANNEL
HBLD IF IT WAS

SET

CLEAR OCTS
CLEAR BITS 3
4, DR 5 OF OCT3

1

RIPOFE LT

GET FIRST/NEXT
ENTRY FROM FREE
180 CHARIN

13 17
ND Of CHRIN

1S 0
NTRY = FREENNG
CHRAIN ENTRY

ENRBLE

RIPDFE30

YES

SET UP
REGISTERS FOR
3 REQUEST
COMPLETE

REQCOM

REQUEST
COMPLETE

RIPTOEF

RESTORE LINK

EX17

1I/O Control System Overview

Figure 7.

10CS: RIPOFF Subroutine

(A1
STARTIC \
STOSTRRTIO N
v |
N~
AU anam_y__,,, ISSTRTL ¥
ENRBLE o DEVICE i SET UP DEVICE
| SET UP b | | PRE-HANDLER | | TABLES
| REGISTERS i || SETS UP ~ GET DEVICE
: i || CowmAND ‘ ADDRESS
I . i N CHAIN !
! ; L L
L_...——'_‘_—_ H._———r————i
| ! f i
' sst Y | OSTRIZ V.
p | | GfT TimE-OLT wumn SIO wou SET TIME-OUT
// S IHIS ‘ ! INCREMENT | VALUE
&R 323‘2”3 >; ; SET DEVICE BUSY
“SgEQUEST - i
SEs _ * e
: A3} | i
—] B ToNe Y !
ISST P TIME-OLT ASSISN ATESS |
: VALLE ‘ | KEY T3 EITHER |
| : FREE S-2 !
{
L
> A
18s7RT e v o
[oremee X | FokcE Access | PUT ACTIVE
g S kETTaSTE | DEVICE ADDRESS
, i ; { IN OCTL
5 i L |
| ; S |
n__.__r_—d l_____,_-__...__. : L.__ EEE—
X X
SN g SET HOLD FLAGS
% ENTRANCE “JES FREE AND NB 1 DEVICE NJES SﬁVEIgm[_:D[TS PTR
o TN ~_ R Ty AUTOMATIC -~ I CLTS/6
LT ﬁL) ~._ 6}
~ b ~ 4 08
"ND creatvp S map -
=2 10STRT4
- s\ s SET CHANNEL (S)
HAS S-C co BUSY
< RSSISNMENT JES REQUEST JES SET DATA
S CHRNGED "~ OREGROUND TRANSFER BIT
\\\ // G7) \/
] ['NG CLEANUP
] - Orsmm
SET DEVICE STORE ALL FLAGS
e 62) MANUAL IN CIT3, OCTS,
| SET MANUAL MSG AND OCTB
FoRce 2 ’ FLAG SET 100 BUSY
|SET LS SEC TIME
@) —cry

Figure 8. 10OCS: STARTIO Routine

1/O Control System Overview 19

20

b6

SAVE SID STATUS
IN DCTL3
HIO DEVICE

CHANGE ACCESS
KEY 70 USE
OTHER S-C

18STEX3

STORE [DO3
FLAGS
BUMP RESENT CTR
ENABLE

YES

MSGOUT

QuTPUT
MESSAGE

[OFATL

SET 310 FAIL
FLAG

SET CLEAN-UP
AND DATA
TRANSFER FLAGS

A

S
CLERN-UP

@

I/O Control System Overview

Figure 8.

IOCS: STARTIO Routine (cont.)

I0INT

I8INT
1/0 INTERRUPT

RECE [VER

18100

PUSH ALL /1,//“\\E\\

REGISTERS INTO ~DEVICE S THER)
TSTACK 10EX IBEX END O
SNITCH K2RTS DCT%E$[T7 ACTIGN

E8

NG YES

2PN ENDRC
ALD NG
PEXHIOME NN
SAVE AL CC DB END ACTION

BASED ON DCT12

fEs
|
v
SAVE AL STATUS

AND PICK UP
END-ACTION

@181 1 1814

COLLECT DEVICE

BOK FO STATUS
DEVICE
ATIDRESS RESET DEVICE

MANUAL AND BUSY

-0 X

- Y TRANSFER
"o <5 FLAG SET

RESET PROPER
S-C BUSY FLAGS

1017

STORE DCT
SNITCHES WITH
NEW SETTINGS

Figure 9. 10CS: IOINT Routine

/0 Control System Overview 21

22

PUSH SERDEY
CONTROL HORD
INTD CTIOSTK

STACK

YES 7 DVERFLOW
& 9
PULL A WBRD PICK UP K5IGGL
FROM CTIBSTK ZERD Aos
<]
NEG
LTRIG 00
TRk) TRIGGER TRIGGER DEFERED
TROL T
UNDERFL OW YES CoN LE%EL ASK 1/0 LEVEL
NG
1038 I~ 10540 4/
SERDEV E8 RESTORE
SERVICE DEVICE REGISTERS AND
STACK
L1
X17 AND CLERR
INTERRUPT
NS
Figure 9. 1OCS: IOINT Routine (cont.)

/0O Control System Overview

LT

10A
RALTERNATE 1/0
LEVEL

PUSH ALL
REGISTERS INTO
TSTACK
SHITCH K8RTS

PULL A WORD
FROM CTIGSTK
1050
STACK
UNDERFLOW JES REC ST AND
STACK
SERDEV V]
EXIT AND
SERVICE DEVICE CLEAR
INTERRUPT
|

Figure 10. IOCS: IOALT Routine

1/O Control System Overview 23

CLERANUP
CLEANUP \
! B8 POST-

_ PROCESSING /v

_ Y

[_ SET-UP 1

REGISTERS }
ENRBLE

DR DEVICE
POST-
PROCESSING

> RBC =3

L RBC =13 !

ABORTCU

SET UP N3
MESSAGE, TYC =
LABORT, RBC = O

10EXEU
SETUP TYC XK
AND RBC

V-

BADSLOCY
SET UP MSG44
KEY-IN N3 C,

S

e

TIMOUTCL

SET UP MSG3,
KEY-IN N3 C,

10SCU

DISA3LE
COMPUTE RBC IF
i DATA CHAINING

N

4NTRHNC

<

\\\\QHﬂNuED //:>
*| NI

. 2

BUMP

RESENTRANCE

|
COUNT |
i

- .
1S 5o

LREADY rE. 0™ MO

17 BE N

<l FeLene) -
-

71 YES

RELERSE HOLO
FLAGS

' JAGS
|

|

\

————

YES

X

&)

IDSErH(V

~

HN"

\
ETRY FOLLOH
OF yfﬂr\)

\L ES REQCO\I
/ S
ANY
ATOREV-ING NTES
< P

TERRN
{ i FFHT:_ ANG
PlSLLEST
! | STRTLT FIK
|1 I3 ERROF UG
o ‘
I_L______.___T_——l—A
N
DECREMENT RETFY
ZDUNT

=
|
i

24 /O Control System Overview

Figure 11.

1OCS: CLEANUP Routine

B(EYIN

13

PRIORITY NG

KEYINGK

SET-UP DEVICE
ENTRIES FOR
TIME-OUT

FBREGRBUND

J/YES

SET 7YC 10 4

REQCOM

£6

C

POSITION RETRY
FUNCTION AS

IEYT R1INCT TR

DA AN] uNul ESViAS

OFOLLOW

SAVE
RETRY/FOLLDW
FUNCTION AS
NEXT FUNCTION

1S
INTER-OP 0O
REQUESTED .~ |

Ives

SET INTER-OP
FLAG

CLEAR ANY
MESSAGE PTR

D7

G7

1MFX!TEJ’

STORE DEVICE
SN1TCHES

I0CUEXTT
ENABLE

OuTPUT
MESSAGE

RESCHED
ENABLE

RESTPRI
RESTORE R1

SERDEV

Figure 11,

IOCS: CLEANUP Routine (cont.)

/O Control System Overview

25

26

GI}________

REQERR

REQERR
‘ REQUEST ERROR

SET TYC 7O
ERROR

L

<:>_______

REQTERM
RE UTERM
REQUEST
TERMINATION

YES
—>

¢

@ REQCTGM

REQCOM
REQUEST
COMPLETE

1106

LBG ANY [0
ERRORS HERE

RC22

DECHAIN [00
ENTRY AND ADD
1T 70 FREE
CHAIN

15

REQUEST NG

BACKGROUND

[

L ——

CLEAR MSG PTR DECREMENT
BACKGROUND 10
COUNT
CLEAR 003
RC2?
PUSH 9gR13
SET INTER OP PUT RBC IN R13
FLAG IN DCTS PICK UP END
ACTION + E£CB
RCIS
SAVE DEVICE
SWITCHES
SET RETURN LINK
T8 IGCUEXTT

15 10
CLEANUP
DEFERED

YES

ENABLE

i)

YES

ANY
END-ACTION N0
78

A5
PRGE 15

ENDAC

DB END ACTION
FOBR [0 BASED ON
18Q13

1I/O Control System Overview

Figure 12,

IOCS: REQCOM Routine

D v

COMPUTE ARS
1S 1T A \g FRON IBC IN

£ RERD pul PEST WORD AND
RBC FRGM IO

{ YES

56)= o
PBST STATUS IN
FPT WORD

| IR
CUPDCBX
COMPUTE ARS

FRON IBC IN DCB
AND RBC FROM [D

Y CUPDCE
MBVE RECBRD TO POST ARS IN DCB
CC BUFFER RESET OCB BUSY
SET CFLAG PUT TYC IN DCB
RC2S Y

RESET CFLAG

7N
£ v
"BALgRL4" 10
END-ACTION
(ENDAC)

TYPEL S ‘
TYPER2 @

TYFES
>@ @ e
e D) PULL 94R13

TYPEB }_@

CLEANUP

Figure 12. 10CS: REQCOM Routine (cont.)

I/O Control System Overview

28

ENDAC
END ACTION

- YES

. BAL ,
~_END-ACTION -~
\\ '/.

~.JES

TRIGGER LEVEL
INDICATED 1IN
END-PCT 10N

1S 17
CENTRALY
CONNECTED

RC4B
SAVE ALL REGS
EXECUTE BAL
TYPE END ACTION
RESTORE ALL
REGS

RV

STORE AIB
-STATUS IN
SIGNAL ADDR

SET BIT O IN
WORD 6 DF TCB

-

RETURN ON LINK

Figure 13. 10OCS: ENDAC Subroutine

1/O Control System Overview

~ IGERROR
I/0 ERR STATUS

BUMP DEVICE
ERROR COUNT

GET BUFFER PTR
FROM IB0ERR

[ZERD
\LETTEMP

GET A SPACE

BUFFER

NUINC

10ERRORS

POS

BLOCK FOR | uk
AR § GATHER

BUMP LOST LOG
COUNT

RETURN ON LINK

I0ERROR]

PUT BUFFER PTR
IN IGERR,

EVANESCENT
STATUS

Figure 14, 10CS:

IOERROR Subroutine

/O Control System Overview

29

30

18L0G
- \\I/0 ERR LOGGING

S ITAH
ABORT TYC

18
IBQERR
PBSITIVE

YES

NB

10ERROR

START A NEW
1/0 ERROR
LOG

100610

PICK UP BUFFER
PTR FROM IDQERR g
AND ZERD T10QERR

Er=

LANAIR)

RETURN BN LINK

FILL IN FIXED
1/0 LDG STATUS

PUSHLOG

/O Control System Overview

Figure 15. I0OCS: IOLOG Subroutine

FILL IN TINE
STAMP

P E— —

SHSHLGT) P USHL OGS

PUSH LOG BUFFER BUMP GODD LOG
PTR INTO LDG COUNTER
STARCK

£

ot

PUSHL 0G2

PULL PN ENTRY
FRON LOG STACK ¢ o

RETURN ON LINK

BUMP LBST LOG
COUNT

RELTEMP

RELEASE LOG
BUFFER SPACE

I

Figure 16. 10CS: PUSHLOG Subroufine

I/O Control System Overview 31

Register Conventions
QUEUE

Routine returns +1 if device IOEX, +2 otherwise

At entry:
R2 ECB ID
R4 1/0 Function code
R5 Link
R6 Number of retries
R7 DCT index
R8 CLEANUP Information Word 1
R? CLEANUP Information Word 2

R10 1/O buffer address (byte address)

R11 I/O length (in bytes)

R12 RAD seek address or number of records to pass (MT)
R13 Priority

Registers RO - R7 preserved; R8 - R15 clobbered

CALLSD

At entry:
R1 FPI code
R2 DCB address
R3 FPI oddress
R5 Link

R1 - R7 preserved; RO, R8 - R15 clobbered

SERDEV
At entry:
R1 Bits 0-7 = priority
Bits 8-31 = DCT index
R2 Link
All clobbered
RIPOFF
At entry:
R2 Task priority
R3 10Q pointer for Q entry to be removed
R5 Link

All registers are clobbered,

32 /O Control System Overview

STARTIO

At entry: There is a startable request in R3. The device activity counter is set in R14 and interrupts are enabled,
The 1/O handler preprocessor is called unless user command list is specified. Handlier return is to 'TOSST'.

Registers, after pre-handler return:

RO Doubleword address of command list

R1 Priority, CIT check mask, DCT index (8, 4, 20)
R2 Flags, SERDEV exit, CIT index (3, 10, 19)

R3 Request IOQ index

R4 Handler flags, subchannel allocation code (8, 24)

R10 Device operation table ('DOT') for '1OSST'

R14 Device activity count for re-entrancy check
R15 Link for service device
CLEANUP/IOSCU

Normal register usage:

R1 Priority, DCT index (8, 24)
R2 Fiags, SERDEV exit, CIT index (3, 10, 19)
R3 Scratch, 10Q index (8, 24)

R11 Remaining byte count (RBC) from post-handler
R12 Flags returned from post-handler:
Bit 16 Retry sequence
Bit 17 Follow-on sequence
Bit 18 Inter-operative request
Bit 19 Key-in pending (normal)
Bit 20 Key~in pending (special)
Bit 21 Contrinue channel hold
Bit 22 Force message print
Byte 3 Type of completion
R13 Message to be typed (0 if none)

R14 Device activity count
R15 Not used - reserved for future systems
REQCOM

At entry (R1, R3, R4 set as for CLEANUP):

R1 DCT and priority
R3 1I0Q pointer

R4 CIT pointer

RS Link

R11 RBC

R12 TYC

R13 - R15, RO - R4 preserved; R5 - R12 clobbered.

/0 Control System Overview

33

34

1/0 Error Logging

Optionally, an 1/O error-logging capability is provided. Whenever an 1/O error is indicated by the device
post-handler (by requesting a retry), 10SCU gets space for an error-log record, saves all evanescent 1/O status,
and puts the space pointer in IOQERR. Subsequent retries use the same space again.

In REQCOM, when the 1/O completion is done, IOQERR is checked. If a log was started, the error-log record is
completed and the pointer is stacked for later filing. Also, if an error completion code is indicated and no error-

log record had been started, i.e., no retries were done, one is started and treated as above.

This assures that for any 1/O request, no more than one error log will be generated. The error log will always in-
dicate the status of the last error in o retry sequence.

The error log records relating to 1/O errors are as follows:

e SIO failure

e Device timeout

o Unexpected interrupt
e Device error

e Secondary record for device sense data

The formats for these error logging records are given in Appendix C "Error Logging".

1/0 Statistics
Optionally, with error logging, 1/O statistics are maintained. These may be displayed using the ESUM key-in.

The total number of S1Os issued for each device since system boot is kept in DCT#1O (word). The total number of
1/O errors, counted when 1/O error-log status is collected, for each device since system boot is kept in DCTERR
(word).

The number of Log records successfully filed since system boot is kept in GOODLOGS (word). The number of Log
records lost, because of space or time overruns, since system boot is kept in LOSTLOGS.

Side Buffering

Both input and output side-buffering are optionally available for certain unit record devices. These allow effective
double-buffered 1/0O for processors which do not themselves do double buffering.

DCTSDBUF is a word entry for all devices which points to a post word followed by a buffer space for each side buf-
fered device.

Output Side Buffering

Output side buffering is done for all fine printer, card punch and teletype output except for PRINT and TYPE CALs,
The WRITE CAL waits for previous 1/O to complete and the side buffer to be free. It then copies the users data into
the side buffer, A request is made to output the side buffer., The caller is posted with the completion code of the
previous output and all appropriate posting and end-action done.

Input Side Buffering

Input side Buffering is done only for the card reader. If the side buffer is free and a 'wait' READ CAL is issued, a
side buffer read is started. Then this or any other READ CAL will wait for the side buffer read to complete. The
input data will be copied into the user's buffer and posting/end-action will be done. If the record read is not a

"I"or ':' card and the read was 'automatic’, not binary, another side buffer read will be started before returning
to the user.

1/0 Error Logging/1/O Statistics/Side Buffering

10EX
Two forms of IOEX are supported by the 10CS.

Queued I10EX

Queved IOEX allows IOEX requests to be added to the queues just as any other request. They will be performed
like any other request, bui will not invoke either the pre= or posi=device handler. Both queved IOEX requests and
normal requests may be made on a device at the same time.

Dedicated 10EX

Dedicated IOEX requires that all /O management for the channel must be done by the user himself. The device
must be dedicated either at SYSGEN or by a STOPIO call to IOEX, and no normal (queued) requests will be honored
while it is dedicated.

Disk Pack Track-by-Track Logic
All disk-pack requests which cause an 1/O transfer to cross one or more track boundaries will be broken into single-
track operations. This is done within the disk pack pre- and post-device handler, and does not generate muitiple
10Q entries.
There are three advantages to this method:

1. Long disk transfers by a Jower priority task do not block a higher priority request more than one track time.

2, Flawed-track recovery is feasable, allowing alternate tracks to be assigned to damaged tracks.

3. Data transfers which cross cylinder boundaries are not allowed by the hardware. This problem is avoided
by making only single-track transfers.

There is one disadvantage:

Because of processing time, the next-track operation cannot be begun in time not to lose a revolution between
tracks.

Therefore, there is no time advantage in requesting more than one track of data per transfer,

Disk Pack Seek Separation

For all disk-pack operations, a separate seek order is issued without adata transfer. This takes advantage of two hard-
ware features available on all disk packs. First, such seek operations do not tie up the channel and all disk packs
may be seeking and therefore arm-moving at the same time. Second, the disk pack interrupts only when its arm
motion is complete and when it is rotationally positioned in the sector previous to the indicated seek address.

This allows both arm-motion time as well as rotational-latency time to be overlapped with data transfers when disk-
pack /O traffic gets high.

Disk Pack Arm-Position Queue Optimization
Optionally, an arm-positioning optimizer is used to minimize arm positioning time on all disk packs. No rotational-

position optimization is intended or performed except that achieved on a multipack controller by virtue of multiseek
operations which interrupt at a minimum rotational latency time.

IOEX/Disk Pack Track-by-Track Logic/Disk Pack Seek Separation/Disk Pack Arm-Position Queue Optimization

35

36

The optimizing algorithm is intended to minimize disk arm-movement time by ordering disk-1/O-queue requests by
arm position. No account is taken of request priority or order of time of request. The only guarantee is thot two or
more requests with the same seek address will be run in FIFO order.

The algorithm is as follows: At the end of any disk 1/O operation, the current seek address is noted. The disk 1/0O
queve is searched, in priority order, for the request which has the closest seek address in a forward direction.
Requests which have seek addresses before the current position have their seek address biased so as to be forward,
beyond any normal forward position. A queue entry with the same seek address is considered to be the farthest-away
seek address. This guarantees that all requests will be eventually reached.

The result of this algorithm is to guarantee service to all requests. The arm motion tends to sweep from low to high
arm position and then snop back to a low position.

This snap-back or cyclic sweeping was chosen over an 'elevator’ algorithm; i.e., two-way sweep, to minimize
wait-time dispersion.

The code required for implementation of this algorithm is wholly contained in one piece at the logical end of the
disk post-handler. It is 38 words long and is conditional on the assembly switch #DISQING.

Disk Angular-Position Queue Optimization

Optionally, an angular-position queue optimizer is used to select the "best" disk=1/O-queue entry to run. This is
done to minimize rotational latency time without precluding priority queuing considerations.

At the end of any disk 1/O option, the current rotational position is computed from the 1/O start seek address and
the byte count transferred. A tolerance is allowed for I/O-interrupt processing time, on the order of 1 ms.

The disk 1/O queue is searched, in priority order, to determine if any lower priority request can be run entirely
(including interrupt processing time) ahead of the normally selected high-priority request. As each one is found,
it becomes the selected high=priority request. When the end of the queue is reached or when a request is elected
which starts in the next available rotational position, 1/O system flags are set to cause that request to be the next
one started.

The code required for implementation of this algorithm is wholly contained in one piece at the logical end of the
disk post-handler. It is 73 words long and is conditional on the assembly switch fRADQING.

User 1/0 Services

OPEN This function opens a DCB that results in opening a disk file when the DCB is assigned to a disk file. If
the Error and/or Abnormal address is given in the function call, the addresses are set in the DCB.

Opening a disk file involves constructing an RFT (RAD File Table) entry for the file. If the file is a permanent file,
the area file directory is searched to locate the parameters that describe the file. These parameters are formatted
and entered into the RFT. If the "file" is an entire area, the parameters used to construct the RFT entry are taken
from the Master Dictionary. If the file is a background temporary file, the RFT entry must already have been con-
structed by the’ JCP. If the file is on a disk pack and a DED DPndd,R key-in is in effect, an abnormal code (X'2F')
is posted in the DCB.

Blocking buffers or user-provided buffers are used for the directory search. Background requests use background buf-
fers; foreground requests use foreground buffers.

CLOSE This function closes a DCB that may result in the closing of a disk file. Closing a permanent disk file
involves updating the file directory if any of the directory parameters have been changed by accessing the fiie,
Among such parameters that may change are file size (adding records to the file), record size (by Device File Mode
call), etc.

Disk Angular-Position Queue Optimization/User 1/O Services

Disk files are closed only when (1) the DCB being closed is the last open DCB assigned to the file and (2) no
operational labels are assigned to the file. Blocking buffers or user-provided buffers are used for the directory up-
date as in the case of OPEN, If the file being closed is on a disk pack, a DED DPndd,R key=in is in effect, and this
is the last open file on device ndd, the message !!DPndd IDLE will be output.

READ/WRITE A READ or WRITE function call will cause the addressed DCB to be opened if it is closed. READ/
WRITE checks for legitimacy of the request by determining whether or not the following conditions are present:

1. For type 1 requests, the DCB is not busy with another type 1 request.
2. The assigned device or op label exists.

3. The user buffer lies in a legitimate region of core memory.

4. The type of operation (input or output) is legitimate on the device (e.g., output to the card reader is not
allowed.)

For device 1/0, READ/WRITE builds a partial QUEUE calling sequence and calls a device routine that performs
device-dependent testing such as:

1. Mode flag in DCB (BIN,AUTO) for devices that recognize it.
2. Testing byte count against physical record size for fixed-record-length devices.
3. Testing for PACK bit in DCB for 7T magnetic tape.

4, Testing for VFC for line printer or keyboard/printer.

The device routines set up the proper function code in the QUEUE calling sequence and transfer control to a routine
called GETNRT. GETNRT completes the QUEUE calling sequence by obtaining the number of retries, setting up the
user's end=action and building an ECB. GETNRT then calls QUEUE. When the request has been queued, control is
transferred to the TESTWAIT routine which checks the wait indicator for the request. No=wait requests transfer to
CALEXIT. Otherwise, requests transfer control to the CHECK logic at FMCK1 which waits for the 1/O to complete.

For disk file 1/0, READ/WRITE calls the routine labeled RWFILE. RWFILE tests for write protection viclation on
write requests, end-of-file on sequential read requests, and end-of-tape on all requests. The different types of re-

quests are handled as follows.

Direct Access. The disk seek address is computed from the granule number provided in the FPT, and a QUEUE
calling sequence is constructed that will queue up the request. Control then transfers to the CHECK logic.

Device Access. When the DCB associated with the READ/WRITE call is assigned directly to a disk, the disk device
routine is entered. The disk device routine computes the disk seek address from the sector number provided in the
FPT (Key parameter), obtains the proper function code and completes the queue calling sequence by branching

to GETNRT.

Sequential Access (Unblocked). The disk seek address is computed from the file position parameters and a QUEUE
call is made. Control then transfers to the CHECK logic.

Sequential Access (Blocked). The next record is moved from/to the blocking buffer and blocks are read/written as
required to allow the record transfer. For example, the first read request results in the first block being read and
the first record in the block being deblocked into the user buffer. Successive read requests will not require actual
input from the disk until all records in the blocking buffer have been read. The blocks are always 256 words long
and contain an integral number of fixed length records; that is, no record crosses a block boundary.

Background Blocking Buffers are handled dynamically. If a blocked 1/O request is made and all allocated Back-
ground Blocking Buffers are in use by other files, one of the blocking buffers will be taken from its associated file

User 1/O Services

37

38

(after writing the block to the file, if necessary) and used for the current request. This blocking buffer is now
associated with the file that most recently used it. When a request is made for 1/O on the original file, the system
recognizes that no Background Blocking Buffer is associated with the file and it will locate a buffer for this file by
borrowing one from another file if necessary. One Background Blocking Buffer is sufficient for any background
program.

Foreground Blocking Buffers are not handled dynamically.

Sequential Access (Compressed Files). Compressed files are treated in a manner similar to blocked files with the
following exceptions:

1. The records are compressed/decompressed on the way to/from the blocking buffer.

2. The buffer does not contain a fixed number of records since the records are no longer of fixed length after
compression. However, no compressed record crosses a block boundary .

To compress a record, the following EBCDIC codes are used:
X'FA' End-of-Block code '
X'FB! End-of-Record code
X'FC' Blank Flag code

All occurrences of two or more successive blank codes (X'40') are replaced by a Blank Flag code (X'FC') followed
by a byte containing the length of the blank string. An End-of-Record code follows each record, and an End-of-
Block code appears after the last record in a block.

When compressing records into the blocking buffer, a length of the compressed record is first computed and a test
performed to determine whether the record will fit in the block. If so, it is placed in the buffer. If not, an End-
of-Block code is written in the buffer and the buffer is written to the file.

At the conclusion of the file access, the status is posted in the user DCB or FPT and control is transferred to

the CHECK logic.

PRINT This function builds the QUEUE calling sequence to perform the output on LL. After calling QUEUE, the
routine either waits for completion, if wait was requested in the system call, or returns control to the user.

TYPE This function builds the QUEUE calling sequence by using code contained in the PRINT function. As
in PRINT, a wait or return is performed as requested by the user.

DFM This function sets the MOD and PACK indicator in the addressed DCB to values given in the system call.

If the DCB is assigned to a disk file, the record size (RFT5), the organization (RFT7), and/or the granule size (RFT4)
are set if requested by the user. The corresponding parameters on the file directory are updated when the file is
closed.

DVF This function sets the DVF bit in the addressed DCB to the value (0 or 1) specified by the user.

DEVICE (Set Device/File/Oplb Index.) This function assigns a DCB to the specified device or file. The assign-

ment is accomplished by setting one or more of the following parameters in the addressed DCB: ASN, DEVF, TYPE,
DEV/OPLB/RFILE, or RAD file name.

DEVICE (Get Device/File/Oplb Name.) This function returns requested information regarding the assignment
of a DCB. The information is in EBCDIC form. The request is fulfilled when it is consistent with the actual assign-
ment of the DCB. Otherwise, a word, or words, of zero will be substituted for the EBCDIC information.

CORRES This function determines if the two specified DCBs have corresponding assignments. If the assignments

are the same, upon return to the user, register 8 will contain a value of 1. Otherwise, register 8 will contain a
value of 0.

User 1/O Services

REWIND This function rewinds magnetic tapes and disk files. No action is taken if the addressed DCB is
assigned to any other type of device.

Magnetic tapes are rewound by building a QUEUE calling sequence with the Rewind function code and calling
QUEUE,

Disk files are rewound by zeroing the file position (RFT11), current record number (RFT12), blocking buffer position
(RFT10), and blocking buffer control word address (RFT17) parameters.

WEOF This function writes an "end-of-file" on paper tape punch, card punch, magnetic tape, and disk files.
A request addressing a DCB assigned to some other type of device results in no action.

An "end-of-file" is written on paper tape by calling QUEUE with a request to write an EBCDIC '!EOD' record.
An “end=-of-file" is written on a card by cailing QUEUE with a request o write an EBCDIC *1EOD’ record.
An "end-of-file" is written on magnetic tape by calling QUEUE with a request to write a tape mark.

An “end-of-file" on a disk file is "written" by copying the current record number minus 1 (RFT12) to the file size
(RFT6) and setting an indicator so that the file directory will be updated when the file is closed.

PREC This function positions magnetic tapes and disk files by moving some specified number of records either
backward or forward. It does not affect other devices. Positioning is performed as fol lows:

1. A magnetic tape QUEUE call is constructed that specifies through the function code the direction of the
motion, and through the "seek-address" parameter the number of records to move. The basic 1/O system
then moves the tape.

2. The new position within the file of an unblocked disk file is computed as a function of the record size and
the sector size. File position (RFT11) and current record number (RFT12) parameters are set to indicate
the new position.

3. The new position of a blocked disk file is computed as a function of the current record number, record size,
block size, current blocking buffer position, current file position, and disk sector size. The blocking buf-
fer position (RFT10), file position (RFT11), and current record number (RFT12) are set to indicate the new
position.

4. The new current record number of a compressed disk file is computed and subroutine PCFIL is called. This
subroutine positions a compressed disk file at the specified record by counting records from the beginning
of the file until the desired position is found. PCFIL sets the blocking buffer position (RFT10), file position
(RFT11), and current record number (RFT12) parameters to indicate the new position.

PFILE This function positions magnetic tape and disk files at the beginning or end of files. It does not affect
other devices. Positioning is performed as follows:

1. A magnetic tape QUEUE call is constructed with function code to"space file" either backwards or forwards.
This results in the tape being positioned past the tape mark in the specified direction. If a skip was not re~
quested, the tape is positioned on the other side (near side) of the tape mark through a QUEUE call for a
position one record opposite in direction to the space file.

2. Disk File Backward. File position (RFT11)is set to zero; the blocking buffer position (RFT10) is set to zero;
the current record number is set to 1; and the blocking buffer control word address (RFT17) is set to zero.

3. Unblocked Disk File Forward. Current file position is computed as a function of the file size, the record
size, and the disk sector size. The current file position (RFT11) and the current record number (RFT12) are
set to indicate the new position.

4. Blocked Disk File Forward. Current file position (RFT11) and the Blocking Buffer Position (RFT10) are com-
puted as a function of the file size, record size, block size, and disk sector size. These parameters and
the current record number (RFT12) are set to indicate the new position.

User 1/O Services 39

40

5. Compressed Disk File Forward. Subroutine PCFIL is called with file size plus one as the record number.
This subroutine positions the file at the start of the specified record.

ALLOT This function defines a file in a permanent disk area. The input parameters are used to form a new file
directory entry.

The new entry is added to the current sector of the directory (identification entry with A = 0) at the location speci-
fied by "address" in the identification entry. The BOT of the new entry is set equal to the "next available sector".
The EOT is computed, using the FSIZE, RSIZE, and FORMAT parameters. The identification entry is updated to

reflect the new entry. The "next available sector" is set = EOT of the new entry + 1, and "address" is incremented

by 5.

If there is insufficient space in the current sector of the directory for another entry, "A" in the identification entry
is set to 1; "address" is set = "next available sector" and that sector address is used for the new sector of the direc-
tory. A new identification entry is built by setting "A" = 0; "address" = 6; and "next available sector" = EOT of
the new entry + 1.

If there is insufficient space to allocate to the file, the file directory is searched for deleted entries (file name = 0).
The smallest deleted entry that frees sufficient space is selected for the new entry. Disk space is lost if the deleted
entry frees more space than is required by the new entry. (This space can subsequently be made available for al-
location by executing a RADEDIT :SQUEEZE command.)

The number of sectors to allocate for a file is calculated using the formulas

. FSIZE _ \ , (256
c- () (B)
B 256 . 256
B= ((FSIZE/ RSIZE)+)2
U= ((RSIZE/s)+r)*FSIZE
where
r =1 if remainder # 0, and O if remainder = 0.
s equal disk sector size in words.

DELETE This function deletes a file in the specified permanent disk area. The input file name is used to search
the file directory for the entry to be deleted. When the entry has been located, the first four words of the file di-
rectory entry are zeroed out. The last word of the entry (BOT and EOT) remains unaltered. The space formerly al-
located by the entry becomes unused until either a RADEDIT :SQUEEZE command is executed, or an ALLOTcommand
or call is executed with insufficient space at the end of the specified area. Space is then allocated by using a
deleted entry.

TRUNCATE This function uses the specified area and file name to search the file directory for the entry to be
truncated. The actual size of the file is calculated and the EOT of the file directory entry is updated accordingly.

The actual file sizefor blocked and unblocked files is determined by using the FSIZE and RSIZE of an entry; for com-
pressed files, an RFT entry (RFT11) containing the current record number is used. The space formerly allocated be-
tween the EOT of an entry and the BOT of the next entry becomes unused and is not reallocated until a RADEDIT
:SQUEEZE command is executed.

User 1/O Services

4. JOB CONTROL PROCESSOR

Overview

The Job Control Processor (JCP) is assembled as a Relocatable Object Module (ROM) and is loaded at SYS GEN time by the
SYSLOAD phase of SYSGEN. The JCP isabsolutized to execute at the start of background and is loaded into the JCP file
onthe RAD. The JCP isloaded from RAD for execution by the Background Loader upon the initial "C" key-in; and there-
after, is loaded following the termination of execution of each processor or user program in background memory.

The JCP executes with special privileges since it runs in Master Mode with a skeleton key. Master Mode rather than
Slave Mode is essential to the JCP since, at appropriate times, it executes a Write Direct instruction to trigger the
RBM Control Task. A skeleton key instead of the background key is also essential to the JCP since it sets flags for
itself and the Monitor in the resident Monitor portion of memory. Bit zero of system cell K:JCP1 is set to 1 to inform
the Monitor that the JCP is executing.

The JCP controls the execution of background jobs by reading and interpreting control commands. All cards read
from the "C" device that contain an exclamation mark in column one (except for an |EOD command), are defined as
JCP control commands. The 1/O portion of the Monitor will not allow any background program except the JCP to
read a JCP control command. The JCP runs until a command is read that requires the execution of a processor or
user program, or until a IFIN command is encountered.

The JCP presently requires a minimum of about 5K of core to execute, which means that the smallest possible core
space allocated to the background must be at least 5K. Approximately one third of the JCP code consists of the
JCP Loader, which is used to load the Overlay Loader at System Generation time.

The flowchart illustrated in Figure 17 depicts theoverall flow of the JCP, and Figures 18 through 36 illustrate the

gures 1t

JCP commands. The labels used in the flowcharts correspond to the labels in the program listing.

ASSIGN Command Processing

The ASSIGN commands are read from the "C" device by the JCP, and are primarily used to define or change the 1/O de-
vices used by a program. The !ASSIGN command can also be used to change parametersina DCB. Sinceall 'ASSIGN
commands must be input prior to the RUN or Name command (where Name is the name of a processor or user program file in
the SParea) to which they apply, the information from each !ASSIGN command is saved in core by the JCP. The JCPbuilds
an ASSIG N table containing the information from each ! ASSIGN command. This table consists of ten words for each
IASSIG N, plusone word specifying the number of ten-word entries. The table remainsin background memory and is
passed to the Background Loader. After the Background Loader initiates the program, it makes the appropriate changes
to the program's DCBs from the information in the ASSIGN table. The ASSIGN table can then be destroyed as the
program executes; therefore, IASSIGN commands take effect only for a job step and not an entire job. The ASSIGN
table has the format shown in Table 1.

Table 1. ASSIGN Table

Words Contents

1 Number of enfriesin table (each entry of ten words contains data from one IASSIGN command).
Thisword is always on an odd boundary; K:ASSIGN contains the address of word 1.

2,3 Name of DCB to change in EBCDIC. This pair of words and the next four pairs of words are on
a doubleword boundary. .

4 This word contains changes to the items in word 0 of the DCB.

5 Mask for items being changed in word 0. The Background Loader does an STS instruction (using

words 4 and 5) to change the items in word O of the DCB.
Changes for word 1 of DCB.

6

7 Mask for items being changed in word 1.
8 Changes for word 3 of DCB.

9

Mask for items being changed in word 3.

10,11 File name in EBCDIC if DCB is assigned o a RAD file; otherwise, these words equal zero.

Words 2 through 11 contain one entry in the ASSIGN table and are repeated for each !ASSIGN command.

Job Control Processor

41

42

JCP
Entry
Point

() —

Initialize DCBs and
reset " system proces-|
sor" flaginK:JP1,

A

Purge all Background
Temp Files (X1-X9)
not saved for
entire job.

(o)—

Should
the nextjob card
be skipped

?

yes
)

Next control card
from "C" device

AO3B

e

Check CAL

no Go type "SCHING
FOR JOB CMD",
. Y { A03
CAL read 5
"Busy " return

Seeif Read is
completed.

T

from Check CAL
Readis comﬁ!efed
SCAN \

Error on ecmd.

Decode first fiel

- PR |

\ O! Ccommanda. /

1

A

No error
on cmd.

Output alarm and
control emd, if
appropriate.

®

Is it
a JOB com-
mand

command and
search table for

control c¢cmd.

Control cmd.
found in table.
Device
Control
Command

Acting on
permanent
file

Enter proper
region to process
control command.

v

Y

control card

Not a proper

Go to seeifa Iname
cmd. was input.

Control Command Region
LIST A03
JOos 801
FIN co1
ASS DO1
DAL EO1
ATT FO1
MES GOl
PAU HO1
cC Joi
LIM LO1
STD MO1
RUN PO1
ROV P10
POO Qo1
ALL RO1
LOA SOl
PMD T01
PF1 uo1
PRE Vo1
SFI WO1
REW Xo01
UNL Y01
WEO Z01

ASSIGN Command Processing

Figure 17. JCP General Flow

'

Wait a short time
for command

Output alarm,
Wait if in attend
mode; abort if not,

input o complete,

A
@

Command

input
complete ?

Was
'‘C" assignmenf
changed via a
keyin ?

yes

Was
o card read
from old "C"

device ?

Do a DELFPT on
the read request
to the old "C"
device.

Figure 17. JCP General Flow (cont.)

ASSIGN Command Processing

43

44

Write accounting
for prior job,

Reset all current op
label assignments to
permanent assign. ,
except "C" label.

/

Release system
resources in use
by prior job.

accounton
the card and is there
job accounting

Save name and acct,
off card for job
accounting, Set
priority and job id
number if specified,

BO5 ' >
y

Clear "SY" key-in

flag. Cleor assign

table. Setbckg. job

limit to zero.

B16

Set currentsizesof

GO, QV files to

permanent sizes.

Y

Purge oll Bckg.Temp
Files by clear-name

(X1-X9).

DOGOOV

Set up RFT for
GO and OV.

Initialize tables
used for ALLOBT

command.

A03

Output break
pages.

ASSIGN Command Processing

Figure 18, JOB Command Flow

to write acctg..
log for
previous job.

/
Set "IDLE" as name
in accounting log.

/ LOGALM \
\ "BEGIN lDLE"

A\ 4

Clear bckg. job limit.
Clear JOBcmd.Read flag.

Figure 19. FIN Command Flow

DOt

Get data from AS-
SIGN card and save
in ASSIGN table.

Y

Step no. entries in
ASSIGN table and save
FWA of ASSIGN table.

Exit from ASSIGN command

Figure 20. ASSIGN Command Flow

ASSIGN Command Processing 45

Format and print
accounting log
on LO device.

E Enter here when
i EOF returned from
yAccounting Log

If purge option,
purge Al file by
rewinding AL and
write an EOF.

’ Exit from DAL command

Figure 21. DAL Command Flow

?

Set attend
mode flag.

Exit from ATTEND command

Figure 22. ATTEND Command Flow

46

’

Set flag not to
gftar mas_

sy
wair Girer meés—

sage is output.

©—

Output message

Exit if

on "OC"device.

PAUSE command

\

Set idle bit.
Trigger Control Task.

MESSAGE

command

A03
—

ASSIGN Command Processing

Figure 23. MESSAGE Command Flow

Set flag to wait
after message
is output.

G02

—/

Figure 24. PAUSE Command Flow

TN

Joi1
Set "C" op label
to previous
assignment.

Y

Clear flag that
TY key~in was
active.

Exit from CC command

A03

Figure 25. CC Command Flow

Set limit time
for BCKG job
into K:LIMIT.

Exit from LIMIT command

Figure 26. LIMIT Command Flow

ASSIGN Command Processing

47

yes, exit

/ SCAN
Get op label to
change assngnmenf
/ SCAN \
Get new assignment
for op lqbel

Error if C, OC assigned to
zero. Error if OC
assigned to nontypewriter

device.
M10
Y
Gef .
assigned to fype of new assigned to .
* another op label assngnmenf a device
?

Get assignment of op . .
label this label is being assigned to a RAD Get DCT. md?x of device
assigned fo. file or area. op label isassigned to.

Do OPEN CAL for
RAD file or area and
@ save RFT index.

Was

previousassign-
ment toa RAD no
file ?

yes

Close RAD file of
previous assignment,

<

Set new assignment
for op label.

Figure 27. STDLB Command Fiow

48 ASSIGN Command Processing

)

(o)

N

-

Setareato SP. Goto SCAN
to rescan name from com-
mand. Set "system
processor” flag in K:JCP1.

“{name in alarm message.

public library type of foreground

>

Setup DCB and save file

v

Do READ CAL to read in
file header of program to
execute.

Output "file nonexist"
alarm and taoke error exit
if first word of file
header = zero.

Get

-

\

Output error alarm since
illegal to execute a
public library.

take error exit
AQ8A

N

program

background

\
Go through tables set by

@
ALLOBT command and
set up all Bckg. Temp
Filesinputon ALLOBT.
< 1
@ N30

N

\
Error if no"FG" key~-in.
Error if program not on FP
areaor noton OV file.

Does

program have

any DCBs
?

Go through all DCBs and
set flag in N93 table to
show which Bckg., Temp
Files need default alloca-
tion, (If DCB was input
on assign card, take as-
signment from ASSIGN
card value.)

Figure 28. NAME Command Flow

ASSIGN Command Processing 49

50

Is

program
MACRSYM
?

no

Go to N80 SBR to
do special check
and allocation for

MACRSYM.

Are
there any
Background Temp Files
to get default
allocation

there enough
space left to
allocate files
?

yes

Y

N22C

Setupall Bckg. Temp
Files that get default
allocation.

\

Save file name
and area for
Bckg. Loader

no

4

Output
"BT OVERFLOW"

alarm.

take error exit

A08C

Do RUN CAL so
foreground program
will be loaded and
started.

Was
program loaded
OK or already
loaded

Inspect status posted
and output an alarm
if appropriate.

take error exit

AO8BA

ASSIGN Command Processing

Figure 28. NAME Command Flow (cont.)

SCAN

Get area and
file name.

\

Set "system processor" flag
in K:JCP1 if area is SP.

go process same
as NAME command

‘

Figure 29. RUN Command Flow

-~

Set area to Bckg. Tempandfilename
to OV. Set "system processor" flag
if SY key-in is in effect.

go process same
as NAME command

02

@

Figure 30. ROV Command Flow

()

Save number of blocking buffers for
Bckg. Loader in K:BPOOL.

exit

&

Figure 31. POOL Command Flow

ASSIGN Command Processing

51

52

Scan command and
save all parameters
in temporary cells.

RO4

®

>

If format not input by
user, set to un-
blocked. If GO
file, set to blocked.

ROS

)

\

If file size not in-
put, set defaultto
1000 records.

y

Calculate number
sectors needed for
file based on for-
mat of file.

R21

there enough
room in BT area for
file
?

\

\

{ DOGOOV

Set up GO or
OV file

Save info. about file
inperm. JCP tables
(CFORM, RSIZE,

GSIZE, SAVE).

Output alarm
"CC ERR, BT
OVERFLOW?"

error
exit

AO8BA

ASSIGN Command Processing

Figure 32. ALLOBT Command Flow

\

Read ROMs from
X1 and do actual

()y—

507

Initialize flags. Pro-

cess all parameters
on LOAD command.

Set up limits for sym-
bol table so all un-
used core is used.

A

Set P:END as first
entry in symbol
table. Set up X1 file

as a blocked file.

Read next

loading of ob-
ject modules.

\

file.

Write program in
core image format
onto appropriate

After reading
an EOF

root just
loaded
?

yes

write out M:SL
DCB, DCB table,

Where apbropriote,

and OVLOAD table.

. P (<
binary card. ass 4
two of \
n L | (PR T
rass one ogger 1)
of loader

Build symbol table of
DEFsand get value
for every DEF. Write
ROMS on X1.

]

yes

4

this the lasf\
ROV no
?

requested.

Close all files and
output the map, if

exit

Figure 33.

LOAD Command Flow

ASSIGN Command Processing

53

Set up cells to dump
in K:PMD for Post-
mortem Dump
routine.

Figure 34. PMD Command Flow

©000¢

Do proper CAL
to position device
to proper place.

Figure 35. PFIL, PREC, SFIL, REWIND, and UNLOAD Command Flows

Do Write EOF CAL
to write proper num-
ber of EOFs.

exit

Figure 35. WEOF Command Flow

54 ASSIGN Command Processing

The diagram in Figure 37 depicts the core layout as the JCP executes.

K:BACKBG
JCP AREA

(About 5K)
End of JCP Code

Dynamic Area Used
By JCP Loader

ASSIGN Table K:ASSIGN
(expands this direction)

Fixed 20 words for K:CCBUF
control card image
K:BPOOL
514 Words
(2 Blocking Buffers)
K:FGDBGI1

Note that there is one extra word left immediately before K:CCBUF that is used to store the printer format
code for logging the control command.

Figure 37. Core Layout During JCP Execution

JCP Loader

The JCP Loader loads Relocatable Object Modules (ROMs) or groups of object modules that use a subset of the Xerox
Sigma 5/9 Object Language. Initially, the Loader processes all parameters on the !LOAD command and sets up the
appropriate DCBs and flags. If the program being loaded has overlays, space is reserved for the program's OVLOAD
table at the end of the JCP. The OVLOAD table contains 11 words for each overlay; the first word of OVLOAD con-
tains the number of entries in the table. The exact format of the OVLOAD table is given later in this chapter.
Note that words 2 through 10 of the OVLOAD table have the same format as the Read FPT that is needed to read an
overlay into core. Next, the first word addresses of the Symbol table (SYMT1 and SYMT2) are set up. The diagram
in Figure 38 depicts the core layout before PASS1 of the JCP Loader.

The JCP Loader is a two-pass loader. In Pass1, the ROMs are input from the BI op label and copied onto the X1 file
on the disk. The X1 file is set up to use all of the Background Temp area of the disk that is available for scratch
storage. The main function of PASS1 is to build the symbol table (SYMTY and SYMT2) containing all DEF items, and
to assign a value to each DEF. The symbol table has the following format:

SYMTI a doubleword-entry table containing the names, in EBCDIC, of each DEF item in the program being
loaded. The first entry is not used.

SYMT2 a doubleword-entry table. The first word of the table contains the total number of DEFs in the table.
The subsequent entries have the following format:

E\\\\\\\\\F DN Declarofi;;n number

12 34 s 8 9 10 YTH12 13 14 15T16 17 18 197120 21 22 23124725 26 27128 29 30 3)

Value of DEF as a byte address

32 33 34 35136 37 38 39 41 €2 3T44 45 46 47748 49 50 51752 53 54 55156 57 58 59160 61 62 63

where bit 8 = 1if this is a duplicate DEF.

JCP Loader 55

56

K:BACKGD
JCP Code
End of JCP
OVLOAD
(Space for OVLOAD Table
if program has overlays)
SMT1
SYMTI
SYMT2
K:ASSIGN

Figure 38. Pre-PASS1 Core Layout

At the end of PASSI, the size of the symbol table is fixed so the remainder of core can be used as a load area in
PASS2. After loading the program root in PASS1, space is allocated for the M:SL DCB (if the program has overlays),
the DCB table, and the OVLOAD table (if the program has overlays). These items are allocated in the following
order:

| Program Root | M:SL DCB | DCB Table | OVLOAD Table |
I I 7 words i 3 words/DCB | 11 words/overlay

Start of Program
Overlay Area

The DCB table is built in an internal table in the JCP in PASS1 after loading the program root. The DCB table is
made up of all M: and F: DEFs in the root, including the value of each DEF. The complete OVLOAD table is also
built during PASS1; each overlay's entry being made after the overlay is loaded. Hence, PASS1 completely allo-
cates all space for the program.

After the last ROM is loaded at the end of PASS1, the file header is written to the appropriate disk file. The re-
mainder of core not used by the Symbol table is then rounded down to an even multiple of disk granules and set up
as the load area for PASS2. There must be enough room to hold at least one disk granule, plus 12 extra words, or

the load will be aborted at this point. The X1 file is then rewound and PASS2 commences. The following diagram
depicts the core setup at the start of PASS2:

| JCP Code | ovioab | sYMT1 | loadAreafor | SYMT2 |

‘ ‘ l l Pass Two | ‘

K:BACKBG End of JCP K:ASSIGN

PASS2 inputs the ROMs from the X1 file, satisfies all external REFs by finding the value of the corresponding DEF in
the Symbol table, and then writes the program in core image format to the proper disk file in a multiple of granules
at a time. Between 8 and 12 extra words are loaded each time at the end of the load area in case a define field foad
item requires that the load location be backed up a maximum of 8 words. This prevents having to read a granule
back into core after it has been written in the event a word has to be changed because of a define field item.

JCP Loader

These 12 words are copied from the bottom of the load area to the top of the load area after the granules are
written on the disk. The previous 8 words are therefore always available in core to satisfy a define field item.

After the root has been loaded in PASS2, the M:SL DCB (if appropriate), the DCB table, and the OVLOAD tables are
attached in that order to the end of the root and written on the disk. After all ROMs have been loaded, the JCP
Loader outputs the map if requested, closes all files, and exits to read the next control command. The format of the
OVLOAD table is described in the "RBM Table Formats" chapter.

Job Accounting

toms er

Job accounting is an option selected at SYSGEN time. An accounting file will be kept on the RAD by the JCP if
the accounting option was chosen. The file must be defined by the user; must have the name "AL"; and must be in
the D1 area of the disk.

Whenever a 1 JOB or |FIN command is read by the JCP, the JCP will update the AL file for the previous job. The
format and record size of the AL file is automatically set by the JCP via a File Mode CAL. The JCP defines the AL
file as a blocked file with a record size of 32 bytes. The AL file on the RAD consists of a series of eight-word rec-
ords, where a new eight-word record is added for each job. The first record in the file is reserved for the IDLE ac-
count and is the only record that is ever rewritten. The elapsed time in the IDLE account is incremented by the ap-
propriate amount anytime a !JOB command is input after a prior | FIN command, and the IDLE entry is thenrewritten
on the disk. The format of each record in the AL file is as follows:

Word Description

1,2 Account number in EBCDIC

3,4,5 Name in EBCDIC

6 Left hulfword&: (year - 1900) in binary, Right halfword = date as day of year (1 - 365)
7 Start time of job in seconds (0 - 86399)

(0]

Elapsed time of job in seconds

The IDLE account has an account number of "IDLE" and o name consist ing of all EBCDIC blanks

L unr has an A R e li 4 n nam Cr G O U OiGnKS.

Whenever an entry is added to the AL file, the file is opened and a file skip performed so that the new entry can be
made at the end of the existing entries. No attempt is made to combine entries in any way. The contents of the AL
file can be listed via the DAL command, (Dump Accounting Log), and the option exists for the user to purge the file
after the dump is completed. The AL file is purged by rewinding it and writing an EOF.

Background TEMP Area Allocation

The JCP allocates and sets up the files in the Background Temp (BT) area (X1-X9, GO, OV) before exiting to the
Background Loader to load a processor or user program. The BT files needed by the user are defined either via
IALLOBT commands or through default by the JCP from inspection of the user's DCBs. The GO and OV files are
set up at the start of each job and remain intact for an entire job; the required files X1 through X9 are normally set
up for each job step only.

Information for files X1-X9 read in from IALLOBT commands is stored in tables (GSIZE, FSIZE, FORM, SAVE,
RSIZE) that are internal to the JCP. If the GO or OV file is changed via an IALLOBT command, the file is re-
defined at the time the command is processed.

Job Accounting/Background TEMP Area Allocation

57

58

The files in the BT area are allocated so that files remaining intact only for that job step are allocated at the front
of the BT area. Files that remain intact for the entire job are allocated at the back of the BT area. Nommally, this
means that X1 through X9 are allocated ot the front of the BT area, and GO and OV at the opposite end. If the
SAVE option is used on an ALLOBT command for an Xi file, the Xi file will be allocated at the opposite end of the
BT area, as will GO and OV. The following diagrams illustrate the BT allocation:

BT allocation without ! ALLOBT Commands:

|xn|....|x4|x3|x2|x1| ov GO |
C | ! ! ! J 1T |)

Intact only for a job step Intact for entire job

The proper Xi file is allocated for each M:Xi DCB in the user program. The remainder of the BT area after GO and
OV have been allocated is evenly divided among the Xi files.

BT allocation with IALLOBT Command:

I Xn I | X4| X2| X1 X3 I ov GO
C] 1 1 J 1 1

Intact only for a job step Intact for entire job

o -

The above diagram illustrates how BT would be allocated if an IALLOBT command was input to save the X3 file.
Note that X3 is allocated at the opposite end of the area with OV and GO.

Allocation of the Xi (1=i<9) files is performed in the following sequence: First, any files input on an ALLOBT

command are allocated at the proper end of the BT area. Next a search is made of all user M:Xi DCBs, andany Xi
files that were not input on an ALLOBT command are allocated by default in the remaining area. Note that if the
"ALL" option is used for file size in the ALLOBT command, there will be no room remaining for default allocations

and if a M:Xi DCB is found for which a file has not been allocated, a "BT OVERFLOW" alarm will be output and
the job aborted.

The following examples depict the allocation of BT as previously described:

Example 1:

1. An IALLOBT command for X1 file with SAVE option.
2. An IALLOBT command for X2 file.

3. A user program with M:X1, M:X2, M:X3, M:X4, and M:X5 DCBs.

In this case, the BT area would be allocated as

| x2 | X5 X4 X3 | x1 | ov | co]
C 1 1 T — T 1]
Intact only for a job step Intact for entire job

In this example, the X1 and X2 files would receive the sizes input on the | ALLOBT command, while the X3, X4, and
X5 files would be evenly distributed over the remaining area.

Background TEMP Area Allocation

3. A user program with M:X1, M:X2, M:X3, and M:X4 DCBs.

The BT area in this case would be allocated as

| x| x3 | X2 | ov | co |
L ‘ | <«— ALL Option > | i J
Intactonly forajob step Input for entire job, if job was not aborted

In this example, the job would be aborted because there is no remaining room to allocate the M:X4 DCB, since the
"ALL" option was used for the X2 file. If the "ALL" option is used for file size, all Xi files used by the program
must be allocated via the |ALLOBT command.

The JCP does special allocation of the BT area for the AP processor, since the scratch space requirements of this pro-
cessor depend on the parameters of its calls and the space is unevenly divided among files involved. This special
allocation is done by the use of nonstandard allocation=control tables when JCP is invoked to run the AP processor
in the background. Other special allocation tables could be added for other processors requiring nonstandard

allocations.

Background TEMP Area Allocation

59

60

9. FOREGROUND SERVICES

Foreground services are those service functions restricted to foreground utilization. In general, they are associated
with the control of system interrupts, the handling of foreground tasks, and direct I/O (IOEX). The following ser-
vice functions fall in this category:

RUN/INIT

RLS/EXTM

MASTER/SLAVE

STOPIO/STARTIO

IOEX

TRIGGER

ENABLE/DISABLE

ARM/DISARM

CONNECT/DISCONNECT

In terms of the functions as part of the resident RBM, the resident function sets indicators for RUN and RLS, and the
Control Task actually performs the function.

.Implementation

RUN If an entry for the specified program does not already exist in the LMI table, an entry is built. The LMIsub-
tables are set as follows:

LMI1 Program name

LMI2 Group code for interrupt to be triggered at conclusion of initialization by Control Task
LMI3 Group level for said interrupt

LMI4 Signal address and (optionally) priority

LMIS Switches

K:FGLD is set nonzero, the Control Task istriggered and control is returned to the user program.
If an entry does exist in the table for the program, a code is placed in the signal address. The codes used are

3 Program already loaded

4 Program waiting to be loaded

If no entry exists for the program and there are no free entries in the LMItable, a code of 5 is placed in the signal
address. Sufficient reentrance testing is performed (for details, see the program listing).

RLS If an LMI entry does not exist for the specified program, control is returned to the user.
If an entry exists and the program is not loaded, LMI1 and LMI5 are zeroed, and control is returned to the user.

If an entry exists and the program is loaded, a flag in LMI5 is set, K:FGLD is set nonzero, the Control Task is trig-
gered, and control is returned to the user (for details of reentrance testing, see the program listing).

MASTER/SLAVE The mode bit in the PSD saved in the user Temp Stack is set to the proper state and control is re-
turned to the user. When returning control, CALEXIT executes an LPSD that establishes the proper mode for the user.

STOPIO/STARTIO The specified device is determined and all other devices associated with it (all other devices

on a multidevice controller or all devices on the IOP if the call so requests) have their proper STOPIO counts in-
cremented or decremented. The count is either in DCT14 or DCT15 as specified by the call.

Foreground Services

An HIO is performed on these devices if requested by the call.
If a DCT15 count goes to zero as a result of a decrement, the IOEX busy bit in DCT5 (bit 7)is reset for the device.

DEACTIVATE/ACTIVATE The specified device is determined, and it and all other devices associated with it
(all other devices on a multidevice controller, or all devices on the IOP if the call so requests) are marked "down"
{Deactivate) or marked operational (Activate). An HIOis always performed on these devices for a Deactivate request.

10EX For TIO and TDV instructions, the instruction is executed and the status is placed in the copies of R8 and
R9. The condition code field of the saved PSD is placed in the Temp Stack. Then at CALEXIT, these copies are
placed in R8, R9, and the PSD, and retured to the user.

For SIO, the IOEX bit (DCT5, bit 7) is tested. if the IOEX bit is set the SIO is executed and status and condition
codes are returned to the user. If the IOEX bit is not set, the request is queued and status is returned to the user
indicating that the SIO was accepted. The user obtains actual status by specifying end-action. Various registers
contain pertinent status at that time.

For HIO, the IOEX bit (DCT5, bit 7) is tested. If the bit is set, the HIO is executed and status and condition codes
are returned to the user. If the IOEX bit is not set, the monitor routine RIPOFF is called which will eliminate any
ongoing or queued requests for the device. The user receives status and condition code settings which indicate the
HIO request was accepted.

TRIGGER, DISABLE, ENABLE, ARM, DISARM, CONNECT, DISCONNECT These functions are similar in that
they invoive the execution of aWrite Direct atter determining the group code andgroup level of the specified interrupt.

In addition, a task connection is performed if requested by ARM, DISARM, and CONNECT requests. Note that the
CONNECT call is a special case of the ARM call. The logic for ARM, DISARM, and for CONNECT functions is
illustrated in Figure 39.

Task Control Block (TCB)

The CONNECT function initializes words 2=9 of the user-allocated TCB for interrupts and CALs that are to be cen-
trally connected. The format of the TCB is shown below:

0
————————— Saved PSD — — ——— — — —
1
2y Intermediate PSD to transfer _ _ |
3 to TCB+4 with skeleton key
4 STM,0 TCB+10
5 BAL,RI1 RBMSAVE
6 |T|0 0 PCB address
7 Priority |0———O0 TCB address
8 .
_____PSD to transfer to task entry in proper _ |
9 state (mode, write key, etc.).
10
/ 16 words for register saving /
25

01 78 1516 31

Implementation

61

62

Get group code and
level bit.

ARM

or DISARM
?

Is
start address

present? no

Is
start address
valid?

Is
it central

connection
2

Is
TCB address
OK?

no

Disable the interrupt.

©
S
S
@
S
Q

Set up words 2-9 of TCB.

Store XPSD in interrupt

or trap cell and make
INTTAB entry.

Is it
a clock
interrupt?

Store clock counter values
and "MTW, -1" instruction.

Issue proper "WD" instruc-
tion to count pulse interrupt.

Y

Set index to enable or
disable as appropriate.

Y

Issue "WO" instruction
to interrupt.

Figure 39. ARM, DISARM, and CONNECT Function Flow

Implementation

CON
N10

Make INTTAB entry
for direct connection.

Is it\
a CAL2, 3,
or4? / yes ‘}

Store the 'XPSD!'

Store the 'XPSD'

Is it
a clock

inferrupty no

yes CON
N10

Get "MTW" instruction
from FPT and store in
count pulse location.

Figure 39. ARM, DISARM, and CONNECT Function Flow (cont.)

Implementation 63

64

6. MONITOR INTERNAL SERVICES

RBM Overlays

All RBM overlays may be declared to be resident or nonresident at SYSGEN time, in order to increase performance
of a particular function or to reduce monitor size, respectively. This is done by means of the :MONITOR control
command.

The overlay technique allows a user call for such functions as OPEN and REWIND to bring in an overlay to perform
the function. The structure is reentrant (allows multiple users at different priorities to use the overlay area), recur-
sive (allows an overlay to call an overlay), and usable for any monitor function (allows overlays at the control-task
level to use the same area as those for user services). The overlay technique employed requires no explicit calls for
overlays. When an overlay is needed all that is necessary is a branch to a REF:

REF OEP (overlay ENTRY point)

B OEP

SYSLOAD will fulfill these references by having them branch to the Overlay Manager (OMAN) which will load the
overlay.

In order to create an overlay the programmer must include DEF's in the overlay ROM for all possible ENTRY points
and all possible EXIT points. An ENTRY point is defined as a point at which one would enter the overlay via any
type of branching instruction (BAL, BCR, BCS, LPSD, etc.). An EXIT point is defined as a point at which one
would exit the overlay with no intention of returning to this overlay without first going through an ENTRY point.
For instance, a BAL to a resident subroutine from the overlay would not be considered an EXIT point since a return
to the overlay will take place. All EXIT point instructions must be unconditional branch instructions, either B*Rx
or B address. This is due to the fact that the EXIT point instructions will be replaced by unconditional branches to
the Overlay Manager which may replace the overlay with a previously active overlay and then execute the EXIT
point instruction.

An overlay will be named by the first DEF in the module, which must be the first BO~generative statement. As the
RBM ROM and the overlay ROMs are read by SYSLOAD all unsatisfied REFs are assumed to be overlay-load requests
and thus are satisfied by creating an entry in the Entry Point Inventory (EPI), described below, and using that address
to satisfy the REF.

As the overlays are read, all DEFs are checked for possible ENTRY points or EXIT points. A DEF will be considered
an ENTRY point if a previous REF for that name has been located. If a previous REF has not been encountered the
DEF will be considered an EXIT point. This algorithm implies that the order of the overlay ROMs as read by SYS-
LOAD is significant. All overlays which call overlays should do so with forward references.

As each overlay is encountered, its name (the first DEF) is compared against the list of resident or nonresident over=
lays as defined by the user on the :MONITOR SYSGEN command. If found to be nonresident, the overlayis linked
to run in the overlay area and written out to the SP area. If found to be resident, it is linked ot the end of the pre-
sent monitor end and, of course, is written out with the monitor. The last two ROMs on the SYSLOAD input device
must be INIT (presently assembled with the monitor) and JCP in that order. Figure 40 shows the general arrange-
ment of the SYSLOAD-input ROMs.

OMAN uses the EPI and OVI tables to make sure the proper overlay is in core at all times. OMAN Js activated by
a reference to the EPIEP as set up by SYSLOAD. EPIEP contains a CAL1 instruction. OMAN is entered from the
CAL1 processor with inhibits set, and examines the address of the CAL1 to calculate the index for EPI if it is an
OMAN call. If the address is in the EPIEP table this is a request for an overlay load. If it is in the overlay area
and of the form

04 Address in EPIEP

0) 2 314 § & 18§ © 10 11112 12 18 16115 17 18 9120 2° 22 23 24 i 25 77 28 29 30 3

then it is an EXIT.

Monitor Internal Services

Simulators

I IIIHHHHIMTIHHn

RBM resident

Al

Overloys (other than INIT and JCP)

INIT

r W\\W
\\\\\\\\\\\\\ NHTHIHHN

\\\\\\3\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \

Direction of read

Figure 40. Arrangement of SYSLOAD Input ROMs

For entries, the previously overlay information is stacked, the new overlay is loaded, and control is transferred to
the ENTRY address. For an EXIT, previous overlay information is unstacked, the last overlay is reloaded if neces~
sary, and the instruction in EPIEP is executed.

After every activation the active overlay ID (OVI index) is placed in the STIOV field. When an exit takes plac
the STIOV field is cleared. EXIT checks STIOV to see if the task to which it is exiting has an active overlay. I
does and the presently active overlay for the system is not the same, EXIT forces an entry to OMAN to reload the
active overlay for the task. (This is done at the level of the task which is being exited to.)

- a

This overlay technique has several unique aspects which should be noted:

e Any reentrant piece of code which is entered via a branching type instruction and exited via an uncondi-
tional branch may be converted to an overlay simply by

e Assembling it as a separate ROM.

e Placing a REF where a branch to it takes place.

o Placing a DEF for the ENTRY point in the ROM (first DEF also used as overlay name).
e Placing a DEF for the EXIT points in the ROM.

The system overhead incurred by this conversion is only one instruction when the resultant overlay is de-
clared resident.

e No registers are destroyed in loading and transferring control.

e Many such pieces of code may be placed into one overlay.

RBM Overlays

it

65

66

Entry and Exit Point Inventory (EPI)

Purpose:

Type:

Logical
Access:

EPIEP:

The EPI is used to intercept all entries to overlays and to save all exit instructions from overlays in
order that the Overlay Manager (OMAN) can load the proper overlay.

Parallel in RBM table space with a fixed number of entries. Generated by SYSLOAD.
The EPI index is, in essence, generated by SYSLOAD. When SYSLOAD encounters a reference to an

entry point the address is replaced by the address of an EPI entry (EPIEP). When an exit point is en-
countered the entire instruction is replaced by a CAL1 instruction.

An EPI table entry can have one of three forms. If the entry is an ENTRY point to a resident overlay:

68 Address of entry

0 1 2 374 5 6 718 9 10 11112 13 14 15116 17 18 19120 2) 22 23724 25 26 27128 29 30 J1

If the entry is an ENTRY point to a nonresident overlay:

04 OVI index Address of entry

N R
0 1 2 374 5 6 718 9 10 11112 13 14 15116 17 18 19720 21 22 23124 25 26 27128 29 30 3}

If the entry is an exit point:

Replaced instruction

0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

(This is the actual instruction that was in the overlay and has been replaced by a CAL1 with an effec-
tive address of the replaced instruction.)

Overlay Inventory (OVI)

Purpose:

Type:

Logical
Access:

Entries:

OVILG

Number of bytes
(OVLOAD]) R LA L AR
(%;(/[LN(;/,\ADZ) 4-Character EBCDIC name

The OVI replaces the table previously defined as OVLOAD. It is used by OMAN to load overlays
for both primary and secondary tasks. For each overlay it contains the sector address, length, and
name,

Parallel in RBM table space with a fixed number of entries. Generated by SYSLOAD.

The EPI (Entry and Exit Point Inventory) has a subfield of EPIEP which indexes the proper overlay for
that Entry Point.

OVISK Seek address

L R B O S - N N RPN T SN BT VA R I R A) TR TR AN LR I O 1

¢ 1 2 374 5 6 778 § 10 ||i12 13 14 15116 17 ‘8ﬁ20 21 22 23124 25 26 27128 29 30 31
OVISK is the seek address of the overlay on the device containing the SP area.
OVILG is the length of this overlay in bytes (£512).

OVINM is a 4-character EBCDIC name representing the first DEF in the overlay. This is the name used
in the SYSLOAD map and the name to be used for all communications about the overlay.

RBM Overlays

Event Control Block and Event Control Services

Purpose: Event Control Blocks (ECBs) provide task management and CAL processors with the mechanism for con-
trolling system services explicitly requested by tasks or invoked by RBM.

Type and ECBs are eight-word serial control blocks in TSPACE, with chained data areas also in TSPACE.
Location:

Logical ECBs are members of two chains and can be located only via one or the other of these chains. The
Access: chains are as follows:
Solicited ECB chain = A chain headed in the LMI entry corresponding fo the task for which the

event is being performed. The chain head is in LMISECB.

forming the service. If no one specific task is responsible for posting, the R=chain is either not
used or is headed elsewhere.

Overview of ECB Usage
Asynchronous or synchronous (vs. immediate) service requests must create ECBs to control the event processing.

Asynchronous or synchronous service calis are those pertorming tunctions which require waits tor some other logic
within the processor or external event to complete prior to completing the original request. They are as follows:

RUN CLOSE DEVICE
INIT READ PRINT
ENQ WRITE TYPE
SIGNAL - REW ALLOT
STIMER UNLOAD TRUNCATE
POLL WEOF DELETE
SEGLOAD . PFIL STDLB
OPEN PREC

communicate with other modules. These tasks are as follows:

Task Initiation
Task Termination

Key-in Processors

CAL Processor Usage

The CAL processor will create and initialize the ECB. If the service is requested with wait, the CAL processor will
loop waiting for the ECB to be posted if the caller is primary, or set the ECB and dispatcher controls for secondary
tasks and return to the dispatcher. A posting phase is executed when the ECB is posted. A checking phase is per-
formed following the post. The completion data is returned to the user and the ECB deleted. The CAL processor
then exits.

If services are requested without wait by the user, the CAL processor creates and initializes the ECB and starts the
service to the extent possible until a wait would occur. The CAL then returns to the caller. Some time latera post=
ing phase is executed. The caller must eventually issue a CHECK on the service. Failure to do so would cause the
ECB to remain 'active' until task termination. When the CHECK call is performed, the service is processed until a
roadblocked condition occurs or the service is done. If the service completes, the cleanup is done as above and
control returned to the caller. If the service is still not complete, the busy exit will be taken if it was provided.

If no busy exit was provided, the system waits for the service to complete as described above, then does the cleanup
and exits.

Note that the order of posting and checking is variable. A post may precede the execution of a check.

Event Control Block and Event Control Services

67

Task=Termination Usage

Task termination keys on the ECBs during its initial phases. Each ECB must be posted before the task is allowed to
terminate and release its core resources. The termination routines drive the ECBs to completion as rapidly as pos-
sible by calling special subroutines for each ECB type. It then does a WAITALL on the ECBs.

ECB and Data-Area Formats

Figure 41 shows the detailed format of an ECB and gives an example of chained data areas.

Word 0 |0 Length Data area address —
5 ! lwlo (,:,, 5 7
1 |0 s Nio|e [k slo FPT/DCB address
2 S-task ID S-ECB chain next
3 R-task ID R-ECB chain next
4 Priority Class
5 EA Type/ End action address (BAL or Signal) |
Group Address-X'4F'[Level bits
Timeout
6 I J— —_— e — — e
Type compl. TBT Completion status
7 |0 0 ECB type
0'1'2'3'4'5'¢'7'8'9 1516 31
LO Length Data area address —

Newest data area

on 7'8 31

r_—T
o
o

Oldest data area

Figure 41. ECB Format and Chained Data Areas

68 Event Control Block and Event Control Services

Description of the individual data elements follow.

ECBDATA (Word 0)

Length: The length of the first data area in the chain, in words.

Data area address: The address of the first data area. Initially, this word is set to zero. If a data area is added to

the ECB, the length and address (as returned from the GETTEMP) are stored here, and the first word of the data area

is zeroed. Subsequent data area additions continue to store this word into the first word of the newest data area and
put the new control in the first word of the ECB. Data area deietions do the inverse, namely, move the first word of
the data area being deleted (always the first in the chain) into this word.

ECBFPT (Word 1)

Flag bits as follows:

Bit 0
BUSY (it 1) =1
=0
INP bit2) =1
=0
WD (bit 3) =1
=0
DP (it 4) =1
=0

CHK (it 5) =1

POST (it 6) =1

Reserved

if the ECB has not been posted. This means that word 6 contains the timeout threshold, if
any.
if the ECB has been posted. This mcans that th

e type etion aind completion siafus
have been stored over the timeout threshold in word 6.

Coiiip

if the ECB is 'in-process'. This bit is set during a POLL, check phase, tc avoid subse-
quent polls from acquiring the same ECB.

if the ECB activity has not been initiated.

In-process may be set by internal RBM tasks which do not use a poll to indicate that the
ECB is being operated upon.

The wait count in the STI entry of the S-task is to be decremented by one (if it is not al-

ready zero) when the ECB is posted. If the count becomes zero due to the post, the dis-

patcher should be triggered and the task entered if the S-task is a higher priority than the
posting task. If it is lower, the dispatching is deferred.

Do not alter any dispatch controls at posting. The task is not waiting for the ECB.

WD is set by the EMWAIT subroutine and WAITANY, and WAITALL calls. It is reset by
posting. It is also reset by WAITANY after gaining control on a multivalued wait.

Delete the ECB as soon as the posting logic is complete. The user does not expect to
check the FPT nor does he require feedback of the type of completion.

Do not delete the ECB until after the checking/cleanup phase is complete.

DP is set on service calls with Delete-on-Post set (F8 = 1). On all other ECBs, it is reset.

Checking is in process on this ECB by some task, and other checking phases are not to be
allowed. This bit is set by service call processors when requested with wait. It is set by
CHECK CAL entry before going to the ECB=-type-dependent checking routine. It is setby
TEST, WAITANY and WAITALL when processing the ECB through checking phases. It is
reset by EMWAIT when taking a busy exit. CHECK tests the bit prior to setting it. If non-
zero, the CHECK is rejected as invalid and the busy exit is taken if provided. If not pro-
vided, the calling task will be trapped. TEST, WAITANY and WAITALL ignore ECBs in
the S-chain with the CHK bit set.

Posting is in process on this ECB. Other posting operations are not allowed. This bit is
set by the posting subroutine entry prior to entering the ECB type-dependent logic. If
POST is already set, an error exit is given to the caller. POST is reset by checking
phases if the ECB is 'unposted' to allow additional processing phases.

Note that if POST = 1 when an ECB is created, no posting operation will be allowed. If CHK = 1 when an
ECB is created, no checking operations will be allowed.

Event Control Block and Event Control Services

69

70

TO (bit 7) =1 Timeout of the ECB is in process and other timeout operations are not allowed. The proper
ECB posting routine will be called.

FPT/DCB address: This is the address of the caller's original FPT (or DCB in the case of Type=1 1/O). On all check
or delete service calls, this serves as the control field to locate the ECB which represents the service being checked.
It also allows the WAITANY, WAITALL and TEST calls to know the location of the original FPT or DCB in order to
build an internal check FPT. An FPT/DCB address must be stored in all ECBs at creation. If the FPT was in regis-
ters, the register address (0-F) is stored.

ECBSECB (Word 2)

S~Task ID: The task=ID of the task that solicited the service or that is checking the service.
S-ECB Chain Next: The address of the next ECB in the solicited—-ECB chain of the S-task.

As a task requests asynchronous services, the ECBs created are added to the end of a chain which is headed in the
LMI entry corresponding to the task. This provides the system with knowledge of all the outstanding service requests
for a load module. On checks or deletes, this chain is used to search the S-ECBs. It is also used by Task Termina-
tion, WAITANY, WAITALL and TEST to define all the services in process. The S-chain is maintained as ECBs are
created and deleted. The S-task ID tells the chaining logic, indirectly, in which LMI S-chain to place the ECB.
More importantly, at posting time, it tells the EMPOSTYC subroutine, whose task controls, to update if wait de-
crement is set.

ECBRECB (Word 3)

R-Task ID: The task ID of the task that is to provide the requested service and that will post the ECB, if any.

R-ECB Chain Next: The address of the next ECB in the request=ECB chain of the R-task.

Some events are directed to one RBM task or user load module that is to provide the service and post the ECB. This
task is called the responsible task and has a chain (R-chain) through all ECBs currently directed to him, which is
headed in the LMI entry corresponding to the task. RBM tasks will have a load-module=~inventory entry to head these
chains. The chain is in priority order, with the oldest requests at the beginning of their priority group. The chainis
used by POLL to locate requests and give them to the task for processing. It is also used by POST to validate the
ECB identification in the FPT. Internal RBM tasks may use the R-chain directly to locate and operate on request
ECBs. The R-chain is maintained as ECBs are created and posted. The R-task ID tells the standard R-chain main-
tenance routine, indirectly, in which R-chain the ECB is to be placed, or removed.

In the following cases, an R-task can be identified:

e INIT requests — Task Initiation on behalf of the initiated task.

e SIGNAL requests — The task signalled.

In some cases, the service is provided in such a way that a specific task cannot be identified which provides the
service. In these cases, the R-chain is either not used, or is headed in some other control data, not an LMI. The
following ECBs are this type:

e ENQ requests — Service provided by the DEQ CAL processor. The R~chain is headed in an EDT.
e STIMER requests — Service provided by the clock-4 interrupt processing. No R-chain is used.
e POLL requests — Service provided by the SIGNAL CAL processor. The R-chain is not used.

e 1/0 requests — Service provided by the 1/O interrupt processing. Instead of containing R-task informa-
tion, bits 0-7 contain the service=call FPT code and bits 15=31 contain the byte count.

Event Control Block and Event Control Services

ECBPC (Word 4)

Priority: The priority of the ECB as requested by the caller. Generally it will default to the caller's priority. Pri-
ority is used to determine the order of the R~chain. It also will become the execution priority of tasks which poll for
the R-ECBs according to the description in the POLL specification. Priority is set when the ECB is created.

Class: The class mask that is set when the ECB is created. Generally the class will be the default value of X 'FFFF'.
On polls, this field is logically ANDed with the class specified in the POLL (default is also X'FFFF'), If the result

is nonzero, the ECB qualifies for the poll.

Note that for I/Orequests, word 4 instead contains clean-up information (see IOQ13, word 1).

ECBENDAC (Word 5)

The end action for posting, as follows:

Word = 0 No end action for service.

Byte O = 00-OF End action contains interrupt-trigger data. The interrupt group is the value in byte O.
Byte 0 = 7F End action contains a completion signal address (I/O only).

Byte 0 = FF End action contains an address to be BALed to at post time.

End-Action Address: The entry location for BAL-type end action or signal address.

End-Action Address and Level: The address of the interrupt — X'4F' —and level bits for a write direct on trigger-
type end action.

ECBTIME/ECBCOMPL (Word 6)

Timeout: The timeout threshold for busy ECBs. When the value (K:UTIME — timeout) is greater than or equal to
zero, the ECB has 'timed out' and RBM will do a post with the timeout code (X'67'). The posting logic which is a
function of ECB type will be entered. If timeouts require special logic, the posting routines must test for the X'67"
type of completion and toke the appropriate action.

Type Compl.: The type-of-completion code set by the caller posting.
B(Busy): This bit will always be zero after posting.
Completion Status: Actual record size (ARS) for READ/WRITE requests.

ECBCTLS (Word 7)

ECB Type: An integer which represents the type of service which is being provided. This value is set symbolically
(for flexibility) by the creator of the ECB and can be altered by the processing logic during the life of the ECB. The
system uses the ECB type to control the service-dependent logic as follows:

e When an ECB is to be posted, the routine that wishes to do the post will BAL,R8 EMPOST with the ECB
identification in R2. EMPOST will use the ECB type as an index into the byte-table EMPOSTX which pro-
vides an index into the word table EMPOSTB. The EMPOSTB entry thus located is a branch to the posting
logic for that ECB type, and will be executed. EMPOST uses R7 for the indexing.

o When a CHECK call or DELFPT call is issued, the check service call branches to the check processing for
the service type. This entry is derived as above, with EMCHKX + ECB type providing an index to the
EMCHKB branch table to the entry point. The ECB identification is in R2. R8 is the return register.

e When a wait occurs for a primary task on an event control block, the ECB type is used as an index to the
bit-table EMWAITF. If the bit thus located is 1, the primary-task wait is illegal on the ECB, and the task
will be aborted. A zero indicates that the wait is valid and the waiting routine will loop, calling SERDEV
and waiting for the Busy bit in the ECB to be reset.

Event Control Block and Event Control Services 71

o When DELFPT or termination occurs, the ECB type will again be used as an index into the byte=table
EMABNX which will provide an index into the word-table EMABNB. The word thus located contains a
branch to the logic to handle abnormal conditions for the ECB type.

Dynamic Space

Such routines as error logging and monitor crash analysis as well as the reentrant overlays require temporary space,
which they may obtain, hold for a period of time and then release.

The space is managed by use of an algorithm that requires space to-be parcelled out in powers of two (2, 4, 6, 16,
32, 64, 128, 256) only. Thus if a user asks for 19 words he will be given 32. The reason for chosing this method is
its minimal processing time for obtaining and releasing space.

The algorithm is as follows:
1. When obtaining space, if the smallest power of two needed is not available the next higher power of two
will be examined. If space is available at that level the block is split into two blocks of the size needed.
This is a recursive technique which may be repeated until the maximum power (8) is reached.
2. When releasing space, an attempt is made to find the released block's complement (the other half of the

original split block) and if found they are joined and the procedure repeated for the next higher power of 2
until 8 is reached.

Dynamic-Space Service Calls

GETTEMP Get Space

Inputs:
R7 = number of words (1 through 255)
R8 = link

Output if space available:

R7 = byte 1/number of words
byte 2, 3, 4/address of space

R8 = link

Return to link + 1.

Output if no space:

R7 = number of words

R8 = link

R15 = X'66' (no-space TYC)
Return to link.

RELTEMP Release Space

Input:

R7 =byte 1/number of words
byte 2, 3, 4/address of space
R8 = link

Output:

R7 = number of words
R8 = link
Return to link.

72 Dynamic Space

SYSGEN Considerations

The number of words needed may be specified at SYSGEN by use of the TSPACE option on the :RESERVE card:
:RESERVE (option), (TSPACE,n),. . .
where n is number of words for temporary space (a default is provided by SYSGEN).

Dispatcher

The dispatcher in RBM is used to schedule secondary tasks. These include Background and the RBM Control Task, both
of which actually run at the null priority level, and any other foreground tasks linked as secondary tasks. The level
specified at SYSGEN time on the :CTINT control command is used to give control to the dispatcher when a change
of scheduling may be desired. This may occur when a secondary task does an asynchronous operation with wait, or
exits, traps, or aborts; or when a timeout cccurs, an asynchronous operation completes, or a 30-second hardware time-
check occurs.

When the dispatcher receives control, it searches the STI (from bottom up) for any secondary tasks that are not stopped
and have an STICOUNT of zero. When one is found its STCB (Secondary Task Control Block) is set up and control is
transferred o RBMEXIT. This causes control to be given to the secondary task, or to the Overlay Manager if an over-

lay reload is necessary.

If the dispatcher has nothing to do, it WAITs at the null priority level.

Dispatcher

73

74

1. MISCELLANEQUS SERVICES

Miscellaneous services are functions available to both foreground and background programs but which do not directly
involve 1/O services.

SEGLOAD

This function loads explicitly requested overlay segments of a program into memory for execution. The user's M:SL
DCB (allocated by the Overlay Loader) is used to perform the input operation.

For an FPT for READWRIT, the system uses the entry in the program OV LOAD table that corresponds to the segment.
The OVLOAD table is constructed by the Overlay Loader.

The function locates the proper entry in the OVLOAD table and places the user-provided error address in both the
OVLOAD entry (FPT) and in the M:SL DCB. If end-action was requested, the FPT is set to cause end-action at
conclusion of the segment input,

If the calling program has requested that the segment be entered (at its entry point), the PSD at the top of the user
Temp Stack is altered so that upon CALEXIT, control goes to the segment entry address.

The function then sets RO to point at the FPT in the OVLOAD table and transfers to READWRIT. The segment input

is then treated as a READ request with possible end-action, and at the user's option, control is returned either fol-
lowing the SEGLOAD CALI, or to the segment entry address.

Trap Handling

Trap CAL and JTrap CAL

The Trap function sets up the trap control field and TRAPADD field in a user's PCB and sets the Decimal Mask (DM)
and Arithmetic Mask (AM) bits in the user PSD to mask out occurrences of these traps. PSD bits are modified by
changing them in the user PSD at the top of the Temp Stack and in the PSD contained in the user's TCB.

The JTRAP function has the same effect on the DM and AM bits, but stores the trap controls and trap address in the
Job Control Block.

If the user-provided trap address is invalid (not in background for background program, or in foreground for fore-
ground user), or if the user specifies that he is to receive occurrences of some trap and no trap address is provided,
control is transferred to TRAPX. This results in the message

ERR,xx ON CAL @yyyyy ID =task nome
being output on OC and LL

where

XX is the Error Code in hexadecimal (00 if none).

yyyyy is the oddress of the CAL.

Trap Processing

Traps are either handled by the user, cause simulation of the instruction where possible, or result in an abort
condition. If the user is to handle traps, task-level trap handling takes precedence over job-level trap handling.

Miscellaneous Services

The registers and PSD are saved in the user Temp Stack in the following format:

X X] Top of stack before trap

above zeros are in an even

{This word appears only if the
word address.

PSD Word 0

PSD Word 1

Register O

(Registers 1 through 14)

Register 15

Working Cell Top of stack after trap

If the trap is either a nonexistent instruction or unimplemented instruction, the instruction causing the trap is
analyzed to determine whether the proper simulation package (if any) is in the system. If so, the simulation is
called; if not, it is treated like any other trap.

A test is performed to determine whether the user is fo process this particular trap. If so, the trap address (X'40',
X'41', etc.) is placed in the top word of the stack and the user's trap handling routine is entered by LPSD, eight of
the user PSD, with the trap handler substituted for the address where the trap occurred.

Traps not handled by instruction simulation or by the user result in one of the following messages being output
to OC and LL:

MEM. PROT. ERR AT xxxxx

PRIVILEGE INST. AT xxxxx

NONEXIST. ADD. AT xxxxx

NONEXIST. INST. AT xxxxx

UNIMPLE. INST. AT xxxxx

Trap Handling 75

76

STACK OVERFLOW AT xxxxx

ARITH. FAULT AT xxxxx

WDOG TIMER RNOUT AT xxxxx

MEM. PARITY ERR AT xxxxx

ERRxx ON CAL @ yyyyy ID = task name

Note that the last message results from the simulation of a trap (called Trap X'50'). This is done by the system
when a system call cannot be processed due to incorrect parameters being input. After the message is output, the
task will be aborted unless the user has provided a trap handler for this trap. If a trap handler is provided, the mes-
sage will not be output and the trap handler will be entered.

TRTN (Trap Return)

This function returns control following the instruction which caused a trap and is employed by the user to return
control after processing a trap.

At the time of the TRTN call, the user Temp Stack is set as described previously under "Trap Processing”. The
TRTN function strips the stack of the context placed there by the CAL processing (from the TRTN CAL). It then
clears the stack by the Trap processor and returns control to the instruction that follows the one causing the trap.

TRTY (Trap Retry)

This function is similar to TRTN, but returns to the instruction causing the trap.
TEXIT (Trap Exit)

This function removes the trap information from the user Temp Stack and exits the trapped task. Note that an EXIT
CAL if executed from a user trap handler would leave this data in the user Temp Stack.

Trap Handling

8. RBM TABLE FORMATS

General System Tables

The tables shown in the subsection either are not job or task controlled, or relate equally to both jobs and tasks, The
index 0 entries are not used as true table entries unless otherwise specified.

Disk File Table (RFT)

Parameters describing the file are taken from the directory entry for the file, These parameters include:

File name

Beginning sector address (relative to beginning of the area)
Ending sector address (relative to beginning of the area)
Granule size

Record size

File size (number of records)

Organization (blocked, unblocked, compressed)
The parameters specifying the physical characteristics of the disk, the boundaries of the disk area, and the Write
Protection key are in the Master Dictionary. To enable access to these, the RFT contains a Master Dictionary Index
(specifying the area).
For manipulation of the file, the RFT contains the following items:

Blocking buffer control word address

Blocking buffer position

Position within the file (sector last accessed - used for blocked and unblocked)

Current record number

Number of DCBs open to the file,

These parameters are entered in the RFT by the OPEN function. The parallel table concept is used for the RFT, and
the tables are allocated and initialized as given in Table 2.

In Table 2:
File name all 0 Signifies entry not in use,
RFT2 index O En.try contains the total number of RFT entries.
RFT3 index 0 Entry contains the maximum number of RFT entries allowed for background use.
RFT4 index 0 Entry contains the current number of background file entries.
RFT5 index 0 Entry is used as the RFT activity count for reentrance tests.
RFTII index O Entry contains the number of temp files allocated.
Other index 0 Entries are not used,

The Job Control Processor builds the RFT entries for the Background Temp Files, These entries are the first n + 2 in
the table (n is the number of Xi files), where entry 1 is for the OV file, entry 2 is for the GO file, entry 3 is
for the X1 file, etc.

RBM Table Formats

77

Table 2. Disk File Table Allocation

Address Contents Initial Value Length
RFT1 File Name 0 Doubleword
RFT2 Beginning Sector Address (Relative to Area) X Halfword
RFT3 Ending Sector Address (Relative to Area) X Halfword
RFT4 Granule size (in bytes) X Halfword
RFTS5 Record size (in bytes) X Halfword
RFT6 File Size (in records) X Word
RFT7 Switches X Byte

where

Bit 0 = 1 means sequentially written
Bit 1 = 1 means directly written
Bit 3 = 1 means compressed

Bit 7 = 1 means blocked

RFT8 Master Dictionary Index X Byte
RFT9 Job Identification X Byte
RFT10 Blocking Buffer Position (in bytes) X Halfword
RFTT File Position (in se.cfors) X Halfword
RFT12 Current Record Number . X Word
RFT13 Number of Open DCBs (total) X Byte
RFT14 Not used X Byte
RFT15 Number of BGND DCBs X Byte
RFT16 Status (bit 0 on for sequential write, bit 1 on X Byte

for direct access write)

RFT17 Blocking Buffer Control Word Address X Word

Device Control Table (DCT)
DCT Format
The Device Control Table (DCT) is composed of several parallel subtables (see Table 3). The various entriesassociated
with a given device are accessed using the DCT index of the device and addressing the tables DCT1 through DCT19.
For example DCT1 would be accessed by

LH, R DCT1, X
DCT2 would be accessed by

LB, R DCT72, X

where Register X contains the DCT index value for the device.

78 General System Tables

Table 3. DCT Subtable Formats

Subtable Hw: 'r‘! ‘y\a&a\lloco
Address Contents / Lengtl, \TTY, Cehoy, T..,.‘_’ "’/ | K . Length
/) = E3 S 5 = jndex
DCTI Active 1/O address for device deT Halfword
DCTIP Primary (P) device address 0——0] IOP 0 Device Halfword
0 45 789 15) _
DCTIA Alternate {A) device address ' Halfword
DCT2 Channel Information Table Index - A pointer to the CIT entry for the Byte
channel associated with the device,
DCT3 Bit 0 = 1 means output is legal for this device. Byte
Bit 1 = 1 means input is legal for this device.
Bit 2 = 1 means device has been marked down and is inoperative.
Bit 3 = 1 means device timed out.
Bit 4 = 1 means SIO has failed.
Bit 5 — 1 means the /0 has aborted.
Bits 6/7 = 00 = "Busy " both subchannels.
=01 - Use the P subchannel only,
= 10 = Use the A subchannel only.
= 11 = Use either subchannel.
DCT4 Device Type Vvebvale 17 Sam as DLTHWDEX Byte
0 =NO (10EX) thiatneat fu w HeR (T‘(I’E)
JzTY Tetdppe RBM RM 3 Y
2=PR
3 =PP -~ L =
pR+ dtTui. LW by s Iy
4 =CR .
[VN
5=CP B G
6 =LP i \ T \{ “‘ x.{&/w
7 =DC L N R Loty o
8=9T % 6 (W SR A e
10 = CP (Low Cost)
o ' 2
11 = LP (Low Cost) ”
12 =DP
13 =PL
DCT5 Status Switches Byte
Bit O = device busy.
Bit 1 = waiting for cleanup.
Bit 2 = between inseparable operations.
Bit 3 = data being transferred.

General System Tables 79

80

Table 3, DCT Subtable Formats (cont.)

Subtable
Address Contents Length
DCTS Bit 4 = error message given (key-in pending).
(cont.)

Bit 5 = unused

Bit 6 = SIO was given while device was in manual mode.

Bit 7 = Unqueued IOEX on this device.
DCT6 Pointer to queue entry representing current request. Byte
DCT17 Command list doubleword address. Halfword
DCT8 Handler start address. Word
DCT? Handler cleanup address. Word

4
DCTI10 Device activity count (used for 1/O Service reentrance testing). \T“l;’u}*rj\ Word
DCTI11 Timeout value (used to abort request when no interrupt occurs). Word
DCT12 AIO status (or end action control word for unqueued /I}O(%)g Coon: jWord
Q07 QO8I ,

DCTI3 DV status, - ” Doubleword
DCT14 STOPIO (background only) count, Byte
DCT15 STOPIOQ (all system [/O) count. Byte
DCT16 The five-character device name (e.g., CRAO3) preceded by the three Doubleword

characters "@!1",
DCT17 Retry function code (for error recovery) and continuation code. Halfword
DCT19 AIO condition codes. Byte
DCT20 TDV condition codes, Byte
DCT20A TIO condition codes. Byte
DCT21 TIO status. Halfword
DCTSDBUF Side-buffer address. Word
DCTMOD Device model number, EBCDIC. Word
DCTMODX Device model number, decimal. Halfword
DCT#ERR Number of 1/0 errors. Word
DCT#IO Number of 1/0 starts. Word
DCTJID Job IO for reserved devices. Byte
DCTRBM Bit 6 = 1 means DED DPndd, R keyin is in effect. Byte

General System Tables

SYSGEN DCT Consideration

System Generation allocates the space for the DCT subtables. Initial values are defined for the following entries
(all other entries are initially zero):

DCTI
DCT1P
DCTI1A
DCT2
DCT3
DCT4
DCT7
DCTI4
DCTi5
DCTI6
DCTSDBUF
DCTMOD
DCTMODX
DCTJID

As specified by
As specified by
As specified by
As specified by
As specified by
As specified by

:DEVICE command
:DEVICE and :CHAN commands.
:DEVICE and :CHAN commands,
:DEVICE and :CHAN commands,
:DEVICE command,
:DEVICE command,

Pointer to SYSGEN allocated space for command list.
1 if (DEDICATE, F); otherwise, zero.
1 if (DEDICATE, X); otherwise, zero.

" @ llyyndd" where yyndd comes from the :DEVICE command.

Pointer to side buffer.

EBCDIC model number,

Decimal model number.

X'FF' if reserved device; otherwise 0.

The index 0 entry of each subtable is not used as a true table entry because of the nature of the BDR instruction.

DCT7 points to the space allocated by SYSGEN for the command list for the device. The area must begin on a
doubleword boundary and have a word fength as follows:

Magnetic Tape (7T and 97)
Keyboard/Printer

Card Reader

Card Punch
Card Punch
Disk

Disk Pack
Paper Tape

(7160)
(7165)

Other Devices

Line Printer

Plotter

8 words
10 words
2 words
74 words
2 words
4 words
6 words
8 words
8 words
4 words

2 words

Halfword 0 of DCTI is set by SYSGEN to contain the number of devices (DCT entries) in the DCT table.

Channel Information Table (CIT)

The Channel Information Table consists of parallel subtables, each with an entry per channel. There is one channel
per controller connected to a MIOP, and one channel per SIOP. The "channel " concept is used since there cannot
be more than one data transfer operation in process per channel. /O device requests are queued on a per~channel

basis. System Generation allocates these subtables as shown below:

Address Usage

cm Quevue head
CIT2 Quevue tail
CIT3 Switches:

Bit O = Subchannel P busy
Bit 1 - Subchannel A busy

Size

Byte
Byte
Byte

General System Tables

81

82

Address Usage Size

CIT3 Bit 2 - Subchannel P held
(cont.) Bit 3 - Subchannel A held
Bit 4 - Dual-access channel
Bit 5 - Preferred channel (0 =P; 1 = A)

CITS Holding Request Q pointer for subchannel P Byte

CITé Holding Request Q pointer for subchannel A Byte
The CIT subtable entries are accessed by using

LB,R CITN, X

where Register X contains the index (1-N),

The index 0 entry is not used because of the nature of the BDR instruction.

1/0 Queue Table (100Q)

The 1/O Queue Table consists of parallel subtables each with an entry per queue entry. These tables are accessed

in the same manner as DCT and CIT by using an index. As is true for DCT and CIT, the index 0 entry of each sub-
table is not used as a true queue entry.

System Generation allocates and initializes the IOQ tables as given in Table 4,

Notice that IOQ2 index O is initialized by SYSGEN, This byte is used and maintained by the /O system as the
"free entry pool " pointer. By initializing [OQ2 as shown, SYSGEN links all entries into this pool.

IOQ1 index 0 is initialized by SYSGEN to the maximum number of queue entries allowed to the background.
IOQ3 index 0 is initialized to 0, since this byte is used and maintained by the 1/O system as the current number of

queue entries in use by background. 10Q4 (index 0) is the total number of IOQ entries.

Table 4, 10Q Allocation and Initialization

Address Contents Initial Value Length
10Q1 Backward Link 0 Byte
10Q2 Forward Link Entry M contains M + 1 for Byte

N >M=20, Entry N contains 0.
N is the number of queue entries,

10Q3 Switches ' 0 Byte
Bit 0 = 1 —request busy,
Bits 5-7:

= 000 — Both subchannels required.
001 — Subchannel P only,

010 — Subchannel A only.
= 100 — Use either subchannel.

10Q4 Function Code (:DOT table index) 0 Byte
I0Q5 Current Function Step 0 Byte
10Q7 Device Index 0 Byte
10Q8 Bit 1 = 0 —byte address of buffer, 0 Word

Bit 1 = 1 — DW address of command

chain (Queuved 10EX).

General System Tables

Table 4. 10Q Allocation and Initialization (cont.)

Address

Contents

Initial Value

Length

10Q9

If IOQ8 bit T =0 —byte count of
buffer,

If IOQ8 bit 1 =1 —time-out value
for command chain.

10Q10

Maximum retry Count

Byte

1oQn

Retry count

Byte

10Q12

Seek Address

Word

10Q13

End-Action data

Word 1

Byte O is cleanup code where value:
1 = Past status in FPT,

2 = Post status in DCB.

3 = Transfer to address specified
in bits15- 31,

4 = No end action (only available
to the monitor).

Bit 8 = control device read.
Bit 9 = end action data in word 2.

Bit 15-31 = FPT completion-status
word address for cleanup-code 1;
DCB address for cleanup-code 2.

Word 2

If word 2 = 0, parameter not present,
If byte 0 = X'7F', bits 15-31 are
user's signal address,

If byte 0 = X'FF', bits 15-31 are
user's endaction address.

If word 2 # 0, and byte 0 # X'FF' or
X'7F', byte 0 = end-action interrupt
group code, byte 1 = interrupt address
minus X'4F', bits 15-31 contain level
bit for interrupt.

Doubleword

10Q 14

Priority

Byte

IOQECB

ECB pointer in an ECB system (i.e.,
when the #ECBassembly option isset).

Otherwise (fECB option not set) it has
the following format:

Bits 0-7 Load module ID.
Bits 8-11 Cleanup code,

Bit 12 =1 if original request was a
PFIL.

Word

General System Tables

83

Table 4, 10Q Allocation and Initialization (cont.)

Address Contents Initial Value Length
IOQECB Bit 13 =1 if bits 15-31 contain o
{cont.) pointer to a completion

status word.

=0 if bits 15-31 contain an
FPT address (cleanup
code = 1) or a DCB address
(cleanup code = 2),

Bit 14 Not used.
Bits 15-31 DCB/FPT address or

pointer to completion
status word.

IOQERROR | Error-log buffer pointer 0 Word

Since the Oth entry is never used in subtables whose entries are words or doublewords, it is not necessary to allocate
space for this entry. If the 2N words for IOQ13 are allocated beginning at location ALPHA, 10Q13 is given value
ALPHA-2., Thus, IOQ13 may actually point into another table but presents no problem because 10Q13 will never
be accessed with index 0.

It should be noted that none of the subtables need be positioned in any particular relationship to each other. They
may be allocated anywhere in core with the restriction that Doubleword Tables begin on doubleword boundaries.

Blocking Buffers

Blocking buffers are 256-word buffers that are directly accessible only by the monitor. They are primarily used for
blocked and compressed file 1/0 and for accessing file directories in OPEN/CLOSE service calls.

Each blocking buffer pool is controlled by means of a Blocking Buffer Control Word Table (BBCWT) that contains a
one-word entry for each blocking buffer. The BBCWT has the format shown below.

Number of blocking buffers

Blocking buffer 1 entry

Blocking buffer 2 entry

Each entry is of the form

RFT W[0——————0 | Blocking buffer start address
0 789 14 15 31

where

RFT is the index of the RFT entry for the file currently using this buffer. 0 signifies that the buffer is not
in use. X'FF' means the buffer is in use, but not by any particular file.

w is set if the blocking buffer has been written in

General System Tables

Foreground and background tasks have different blocking buffer pools and, therefore, have different BBCW tables.

K:FPOOL contains an address pointer to the BBCW table used by all foreground tasks in the system. The number and

location of blocking buffers available to foreground tasks is determined at SYSGEN by the FFPOOL parameter and

cannot be changed except by SYSGEN.,

K:BPOOL contains a pointer to the BBCW table used by background tasks. The number and focation of the back-
ground blocking buffers may vary from job step to job step.

The foreground/background blocking buffer structure is shown below:

K:FPOOL
K:BPOOL

}

Entry N

Blocking

L. 1
DUTTET 1

Blocking
buffer 2

Blocking
buffer n

BBCWT

General System Tables

85

86

Master Dictionary

K:MASTD (location X'14A'), contains the address of the Master Dictionary. This serial table is indexed by area
number where:

Area DW Index Value Write Protect Code (WP shown below)
SP 0 4

FP i 4

BP 2 4

BT 3 2

XA 4 5

CK 5 3

D1 6 1 or 2 (specified during SYSGEN)

D2 7 Tor2

DF 20 Tor2

The format of the Master Dictionary (2 words/entry) is

| :'e‘:’"f;:m ::S:'c‘:::s Ao ——0|[WP| DCT Index
2 Starting disk Address' Ending disk Address'
0 67 15161718 20212324 31
where
A = 0 —area is not allocated.
= 1 —area is allocated,
N = 0 ~directory for this area is not in use; may be updated,
= 1 —directory for this area is in use; may not be updated.
WP = 1 —(F) only foreground can write in this area (unless SY key-in).

(
(B) only background can write in this area (unless SY key=in).
(

M) only the Monitor can write in this area.

2 _
3
4 — (N) no one can write in this area unless SY key-in.
5 _

(
(X) only IOEX can write in this area,

It

If the system is assembled to include large capacity disks (#MDSHIFT>O), the sector numbers will be shifted one or
more bit positions as determined by the assembly parameter MDSHIFT,

Starting and ending disk address is given as a sector number (relative to start of the disk).

General System Tables

Operational Label Table (OPLBS)

The Operational Label Table is a parallel table with the format

OPLBS1 z z halfword
0 78 15
where ZZ is the operational label in EBCDIC
OPLBS2 Y Byte
0 7

where Y is the DCT or RFT index of the permanent assignment (bit 0 =0 if DCT index; bit 0 = 1 if RFT index).
There is an OPLBS2 table for each active job, which is accessed by an address pointer in the associated job's JCB.
The OPLBS2 table for the RBM job contains the permanent assignment of each operational label. When a new job
is activated, the OPLBS2 table it receives is a copy of the OPLBS2 table for the RBM job at that time.

OVLOAD Table (for RBM Overlays Only)

The OVLOAD Tabie is a paraiiel tabie with the format

OVLOADI Byte Size of Overlay halfword

OVLOAD2 VA Z Z Z word
0 31

where ZZ = first four characters of name of overlay in EBCDIC

OVLOAD3 Granule Number | byte
0 7
where the specified Granule Number is in the file RBM.

The number of entries in OVLOAD is in first halfword of OVLOADI.

Write Lock Table (WLOCK)

Assuming no checkpoint, WLOCK contains write locks for the current core allocation. After a checkpoint the write
iocks wiil be restored from this tabie.

WLOCK +0 No. entries for allocated core
+1 IWLWL]- - -
12 IWLIWL[* - -

16 |wiwi] |
I
01234 1516 3l

WLOCK + 1 always contains the write locks for the first 8K of memory. The table is always 17 words in length but
the first word reflects the number of registers that must be output following a checkpoint.

General System Tables 87

88

RBM Dispatcher Level Inventory (RDLI)

RDLIPRIO Priority
0 7

RDLIST! STI Index
0 7

RDLITCB STI Index TCB Address
0 78 31

RDLIADD RDL Interrupt location
0 15

RDLILVLI Level Bits (RDL)
0 15

RDLIGRPI1 000010———— 0] Group
0 15

RDLILVL2 Level Bits (STL) Zero if null
0 15

RDLIGRP2 000010——————0f GRP Zero if null
0 15

where

RDLIPRIO is the priority, in internal byte format, to which RDL is connected. This is the RDL interrupt
location -X'4F'. All tasks with RDLIPRIO + n < Priority < RDLIPRIO + n + 1 fall within level n. Legal
secondary priority levels are C(RDLIPRIO) + 1. Entry 0 or RDLIPRIO is 0. Priority is set by SYSGEN and
is not altered during execution.

RDLISTI is the task ID of the highest priority task operating within the level. Eniry zero contains the over-
all STI head of the dispatcher chain. Each subsequent entry contains the subchain head that enters the
dispatcher chain at the first task within the level. All entries are set to the first permanent CP-R
task STI by SYSGEN,

RDLITCB is the STl index and TCB address for the dispatcher level.

RDLIADD is the core address of the RDL interrupt location in which to store the XPSD. It is set by
SYSGEN and is not altered during execution. RDLIADD entry O contains the number of RDLI entries,

RDLILVLY are the level bits for the RDL to be used on Write Direct commands.

General System Tables

RDLIGRP1 is the address field for a Write Direct interrupt control to trigger the RDL, including the trigger
and group codes.

RDLILV L2, RDLIGRP2 are the level and group codes to trigger STL in the same format as RDLILVLT and
RDLIGRP1. All level and group codes are set by SYSGEN and are not altered during execution.

Associative Enqueue Tabie (AET)

Purpose

The AET provides a record of the enqueues done for controlled items by system services. It is used in conjunction
with the Enqueue Definition Table to access controlled items.

Type

Serial in the JCB or linked from the JCB depending on space requirements or linked from the LMI. Monitor cell
K:JAET contains the maximum number of INGs allowed for each job on system=~ievei coniroiied items. The system
value $:TENQ is equated to the maximum number of ENQs allowed for each load module on job-level controlled
items,

Logical Access

The AET is located via a pointer in a fixed position in the JCB or through a pointer in the LMI. Byte zero of the
pointer word contains the number of words in AET,

Overview of Usage

The AET table may be included in the JCB fixed portion or may be acquired separately from TSPACE and linked from
the JCB or LMI depending on space requirements at the time the JCB is created. Byte zero of the pointer word con-
tains the number of words in the AET and bytes 1-3 contain the address of the start of the table.

At task or job termination, a flag in the JCB will indicate which usage applies and will release space appropriately.

Associative Enqueue Table (AET) Format

word 0 Flags EDT Address
0 78 31
word 1 Job ID ECB Address
0 78 31
where
Flags: bit0 =1 Job level AET

=0 Task level AET

bit 1

[Jup—

System level EDT
Job level EDT

General System Tables

89

bit 2=1 ECB is for immediate enqueue
= ECB is for an asynchronous enqueue

bit 3 =1 Sharable enqueuve
=0 Exclusive enqueuve

bit4=1 Enqueue granted
=0 Enqueue pending

bit 5=1 AET entry in use
=0 AET entry free

bit 6 =1 Dequeue CAL in progress

bit 7=1 Enqueue CAL in progress

ECB Address: The location of the ECB created to wait for an ENQ. At check time, this address is set to
zero. ENQ is set to 1 if the post is normal. The AET is freed if the post is not normal.

EDT Address: The location of the EDT of the controlled item which was enqueued.

Job ID The identification of the job in which the item was enqueued.

Task-Controlled Tables

The tables shown in the subsection are task controlled, i.e., contain task related data. Figure 42 shows the over-
all relationship of the task=controlled tables and data.

Load Module Inventory (LM1)

Usage for a Program Usage for a PUBLIB
LMINAME (LMIT) (Doubleword)
Load module
name

0 31
Publib
name

0 31

90 General System Tables

PCBPOINT [P>—
-
— PCB
Flags L| OvLoaD |
M:SL
[>*' CAL LOC - ccs ‘ L - [bcB]
DCBTAB -
—
etc. DCB
i Interrupt LOC ; - ICB J
TCBPOINT] *{>
[S\T/ STCB [
ACI
I OVl
STI Overlay entry
> 1 1 r in monitor
L
Task entry
TSPACE TSPACE |- ——
‘ D task
chains -
— > AET =T
ECBs
/—\
[T

—i>> etc. hai
K:RTS S-ECB — — s=chain
| I | LMI] b r tasks
+

Ve
— r=chain

A
>N
S

Load R-ECB
Interrupt loc D—' m(::lule » s—tasks
m

[> CAL trap loc entry

P Address of PCB

l

=

ors'or0
Address of STCB B>> primary publibs
RTS
v LI

STl index (Task ID)

J

-

l
o

i C
$J1 index (Job ID) 3> JCB ——-
>—‘ Publib entry
LM index (Load Module ID) “—“
H-im

BB
J
e
EDT

LMI index (Publib ID) D—L SJI
JCB Address Job entry b

ECB's

VA7AVAVAVAVAV,

ic

"on an arrow indicates an entry other than the one shown

Figure 42, Relationship of Task Controlled Data

General System Tables N

Usage for a Program

Usage for a PUBLIB

LMIPCB, LMIFWA (LMI2) (Word)
0 0 PCB Address (fwa)
0 78 31
0 0 fwa
0 78 31
LMLJID, LMILWA (LMI3) (Word)
Job ID lwa
0 78 31
0 lwa
0 78 31
LMIPL, LMICTXT (LMI4) (Word)
PL1 PL2 PL3 PL4
0 7'8 1516 2324 31
0 0
0 31
LMISTAT (LMI5) (Halfword)
Flags
0 15
Flag 0 0
0 7 8 15
LMISDT (LMI6) (Word)
Task ID 0 0
0 7 31
0 0
0 31
LMIRTS (MI7) (Doubleword)
RTS Stack Control DW
0 1516 31
0 0
0 0
0 31
LMIMAXS (LMI8) (Byte)
S-ECB
0 7
0 0
0 7

92 General System Tables

Usage for a Program Usage for a PUBLIB

LMIMAXR, LMIUSE (LMI9) (Byte)

R-ECB
0 7
Users
0 7
LMIAET (Word)
AETS AET Address
0 7'8 31
0 0
0 31
LMISECB (Word)
Count S-ECB Head
0 7'8 31
0 0
0 31
LMIRECB (Word)
Count R-ECB Head
0 7'8 31
0 0
0 31

LMINAME (LMI1)

For user load modules — Task Name: User load module name, as received on the INIT or RUN call.

For Publibs — Publib Name: The file name of the Publib load module. The task or publib name is stored by task
initiation and remains unaltered during task execution.

LMIPCB, LMIFWA (LMI2)

For user ioad moduies — PCB Address: The iocation of the load module's PCB. This is also the first word address of

the load module. The PCB address is stored by task initialization and remains unaltered during the task's execution.

When central CONNECTs are requested to a primary load module, the PCB address and flags in the LMI entry are
used for the TCB. The fwa is used for memory management during later task loads.

For Publibs — fwa: The first word address of the Publib load module. Fwa is set by task initiation when the Publib
is loaded and remains unaltered during the Publib life.

LMUID, LMILWA (LMI3)

For user load modules — Job ID: The identification of the job to which the load module belongs; alsothe index of the
job's entry in SJI. Load modules can only exist once within a job. This value is set by task initiation and remains
unaltered during task execution.

For both User and Publib Load Modules — lwa: The last location used. The lwa is set by task initiation and remains
unaltered during task execution. It is used to manage memory during later task loads.

General System Tables

93

LMIPL, LMICTXT (LMI4)

For user load modules — PL1, PL2, PL3, and PL4: These bytes each contain a load module ID (index into LMI) of
the Publibs being used by the load module. A zero indicates that the byte is not used. They are set by task initia-
tion, remain unaltered during task execution, and are used by task termination to decrement Publib use counts and
eventually release Publibs.

LMISTAT (LMIS5)

Status Flags:

Bit Meaning if Set (1)

0 Termination has begun (TTFINAL entered).
Connected to CAL2.

—

2 Connected to CAL3.

3 Connected to CAL4.

4 Background load module.

5 Secondary (dispatcher scheduled) load module.

6 Abnormal termination requested.

7 For a module being loaded, load was requested by INIT, not RUN.
8 Load module is to be loaded.

9 PUBLIB that may be used by foreground.

10 PUBLIB that may be used by background.

1 Termination (normal or not) requested.

12 PUBLIB that is to be released.

13 Load module that is running.

14 Load module that is waiting for memory to load (RUN queued).

LMISDT (LMI6)

For user load modules — Task ID: STI index for the task if it is attached to a dispatcher. (This is the case for back-
ground, the RBM task, and foreground tasks during initiation.) Otherwise, zero.

LMIRTS (LMI7)

For user load modules — RTS Stack Control DW: The stack control doubleword for the load module's RBM temp stack.
Set up during loading, from information in the load module header. Used as a stack control doubleword by monitor
services executing in the task's context. Accessed indirectly through K:RTS for dispatched and centrally connected
tasks.

LMIMAXS (LMIS)

For user load modules — S-ECB: The maximum number of solicited ECBs to allow any single task running in the load
madule to have simultaneously. This is set at task initiation from the program header. As new S-ECBs are created,
and the current S=ECB count incremented, it is compared to this limit and the load module aborted if the maximum
is exceeded.

LMIMAXR (LMI9)

For user load modules — R=ECB: The maximum number of request ECBs to allow any single task running in the load
module to queve. Used as S-ECB maximum above.

LMI9, entry zero, contains the number of entries in LMI.

94 General System Tables

LMIAET
AETS (byte 0): The length of the Associative Enqueue Table, in entries,

AET Address: The first word address of the Associative Enqueue Table for task-level controlled items. The AET
space is reserved as each load module is initialized. Enough space is acquired to hold the maximum number of
ENQs as specified in the task's load module header. This control word does not change during task executions. At
task termination, the AET space is released.

LMISECB
Count (byte 0): Current count of the number of ECBs in the solicited ECB chain.

S-ECB chain head: Address of the oldest solicited ECB in the S—chain. When a load module is initially loaded,
the solicited ECB chain is empty. As service requests are made which create S=ECBs, they are added to the S-chain,
and the count is incremented. If the current count exceeds the maximum allowed as specified in LMIMAXS, ex-
ecution of all the tasks in the load module is immediately suspended (primary tasks are disconnected), and the load
module is abnormally terminated. As services are checked, the S=ECB is de=linked from the chain and the count is
decremented.

i AAIDC/D
LIVURL\L U

Count (byte 0): Current count of the number of ECBs in the request ECB chain.

R-ECB chain head: Address of the highest-priority request ECB in the R-chain. When a load module is initially
loaded, the request ECB chain is empty. As service requests are made of the load module (signals if user load
module), they are added to the request chain in priority sequence, with the last request being placed at the end
of its priority group. The current R=ECB count is incremented and compared to the maximum allowed in LMIMAXR,

If it is greater, all member tasks are suspended and the load module is abnormally terminated. As the R-ECBs are
posted by the R-task, they are delinked from the R~chain and the current count is decremented.

System Task Inventory (STI)

Purpose
The System Task Inventory is the key to all controls for tasks. It contains an entry for all primary and secondary

user and RBM tasks currently defined. For each task, it contains the identification of the tdsk's job and load module,
priority, and linkage to other control blocks.

Type

Parallel in monitor TSPACE

Logical Access

An STl entry is addressed using the task ID as an STI index into each of the parallel subtables.
If a task is in execution, the task ID is in byte O of TCB POINT,

If a task is not in execution and the task ID is not known, then:

Primary tasks can be uniquely identified by a search for equality on the interrupt priority to which they are
connected,

Secondary tasks must be located by searching the LMI for a task name/job ID match, The LMISDT contains the
secondary task ID.

General System Tables

95

Overview of Usage

The STI table space is allocated by SYSGEN, reserving enough entries in each subtable to satisfy the TASKS option
on the :RESERVE command, plus a fixed number for internal RBM tasks., The RBM task entries are initally set by
SYSGEN/IPL. The user entries are all zero,

STILMID entry O contains the number of entries in the STI.

96

STISPCE Length Link to first temp space area
0 78 31
STIXRTS Interrupted tasks K:RTS pointer
0 31
0 31
STIRTSB K:RTS of last CAL
for nested CALs
32 63
STLIID SJI index
0 7
STILMID LMI index
0 7
Hardware Software A
STIPRIO priority priority 0 L{0—0 RDLIDX
0 78 1516171819 2324 31
] T
STITCB 0 g 0——0 5 TCB/STCB Address
012 678 31
STIOVID 0i0 Active OVID
012 15
STICOUNT Wait count
0 7
STITIME Critical timeout threshold
0 31
ABEHE
STISTAT R101&|E (1|0~
01234
STIDNXT Display chain

0

General System Tables

7

STISPCE

Head of the TSPACE chain. The chain represents all of the temp space that has been obtained by the task,

STIXRTS

Location in which the task's RTS pointer is saved when interrupted by a higher—priority centrally connected task.

STIRTSB

RTS Control Doubleword at the last entry to a CAL! processor. This address is the STIRTS value after CAL1 entry
has stored the caller's RO-R15, PSD and context. It is used by the monifor to quickly locate the register values for
effective address resolution or error value setting, and by CALIEXIT to ignore residual data in RTS. STIRTSB is set
to O at task initiation and should aiways be 0 except when the task is within CALI processing.

STIID

Identification of the job to which the task belongs, and index into the SJI. This is set when the task is defined,
and is not altered during execution,

STILMID

Identification of the load module to which the task belongs, and index into the LMI. This is set when the task is
defined, and is not altered during execution.

STIPRIO
Priorities (bits 0-15):
If the task is primary:
Byte 0 is the address corresponding to the interrupt level, -X'4F'; byte 1 = X'00',
If the task is secondary:
Byte O is the address -X'4F' of the CP-R dispatcher level at which the task is dispatched and executed.
Byte 1 is the software priority within the dispatcher level {X'01' through X'FF', where X'FE' = control

task and X'FF' = background),

This value is set when the task is defined. If the task is secondary, it will be altered as the task's priority is altered
by MODIFY calls or internal RBM priority-changing logic.

START (start pending on task):

The secondary task has been STARTed, and the start has not been honored. This bit is set by the START CAL
processor and reset by the dispatcher when it causes the reversing of the STOP bit in STISTAT.

ALT (Dispatch using the alternate PSD):

The secondary task will be dispatched using an alternate PSD the next time. The current PSD will be found
in the Alternate PSD after dispatch and Alt will be reset.

ROLIDX (RDLI index): Dispatcher ID,

General System Tables

97

98

STITCB

Used bit (bit 1) = 1 ~ entry is being used.
0 — entry is free,

Term (bit 6) = 1 — the task is executing in the Task Termination phase.
TCB/STCB address is TCB address if task is primary, STCB address if task is secondary.
Task initiation and CONNECT acquire STI entries and store the TCB address or STCB address. These fields are con-

stant throughout the task's life. The remaining indicator bits are initialized to zero and are modified during execu-
tion by service calls. Task termination resets STITCB to zero, releasing all task control information.

STiovID

Active OVID is the index into the Monitor Overlay Inventory.

STICOUNT

Wait count: The number of ECBs in the S-ECB chain, which must be posted prior to the task leaving the wait state.
Only ECBs with the WD (Wait Decrement) bit set will decrement the wait count at posting time. If the wait count
is nonzero, the task is roadblocked. STICOUNT is zeroed at task initialization, is set nonzero by the CALs that
cause waits and task termination, and is decremented by the ECB posting logic.

STITIME

Critical Timeout Threshold: When placing any task into a roadblocked or wait state, the ECBs being checked
(WD = 1) are scanned and the most critical time threshold is extracted and placed in STITIME. On subsequent
timeout passes, the threshold is compared to the value of K:UTIME to detect timeouts, If a timeout has oc-

curred, the ECB chain is scanned again to locate any or all timed-out events, and the posting is done with a com=
pletion code of X'67'. If wait count is still not zero, the setting of the critical time is repeated.

STISTAT
Status flags that inhibit dispatching of the task, as described below.

The dispatcher examines the status of all tasks in the dispatch chain. If the content is nonzero, the task is con-
sidered ineligible for dispatching.

Primary tasks always have a status of X'80', as set by CONNECT. Secondary tasks will have an initial status of
X'00" or X'20'. The secondary task status bits are altered during execution as described below:

Status Bit Set by Reset by
Primary 0 Connect CAL Task Termination
Stopped 2 STOP, EXIT task initiation START, task initiation with execution

without execution

In execution 3 Dispatcher when dispatching, Dispatcher when returning PSD and registers
loading PSD and registers

In initialization 4 Task initiation Task initiation

STIDNXT

Dispatcher Chain —the STI index of the next task in the dispatch chain. Entry 0 contains the chain head to the
highest priority task in the system, primary or secondary,

General System Tables

This chain continues through all tasks in the system. It is used by the dispatcher to locate the next secondary task
to execute and the timeout routines to locate those primary services that need timeout.

As each task is created, it is added to the dispatcher chain and remains as a member of the chain until termination.
Its position within the chain is changed as it changes priority or enters a wait state. A value of X'00' is the end

of the chain.

Task Control Block (TCB)
Purpose

The TCB provides the context save area, system pointers, partial entry linkage and entry PSD for centrally connected
primary tasks. Each primary task has its own TCB.

Type and Location

A TCB is a serial table in the users memory at a location provided by the user in the connect call.

logical Access
The TCB for a primary task is pointed to by:
o The XPSD in the interrupt location,
e TCBPOINT during the task's execution.
e The STl entry corresponding to the primary task.

Figure 43 illustrates the logical links between the TCB and other system control data.

Overview of Usage

The TCB content is initialized by the CONNECT service routine. When the primary task is entered, the context of
the interrupt task is saved in the TCB, including the interrupted-tasks TCB and PCB pointers which are swapped with
those of the primary task that is being entered. When exiting the level, the central exit logic swaps the TCB and

ne~]

PCB pointers which restores the TCB to ihe original values. The registers and FSD are aiso resiored.

TCBPOINT 1C8

STI

= Tasks Entry

L —

Interrupt location

Figure 43. Relationship Between a Primary Task Control Block and Other Control Blocks

General System Tables 99

100

Task Control Block (TCB) Format

Word 0
— Saved PSD —
1
2
— Intermediate PSD —
3
4 STM, 0 7CB + 10
5 BAL, R1 RBMSAVE
6 Flags PCB Address (real)
7 Task ID TCB Address (real)
8
r——' Entry PSD —
9
10
1 Register Save Area

Saved PSD (words 0, 1) is the PSD of the task the primary task interrupted at its last entry.

Intermediate PSD (words 2, 3) is the PSD loaded by the XPSD command at entry. The contents of this PSD
are set by CONNECT to all zeros with these exceptions:

Instruction address — TCB + 4

Condition Code = the number of registers to be saved with the STM command in TCB + 4. CC = 0 if the
CONNECT command specified that all 16 registers be saved via the central connection,

Since the XPSD does not alter the register block value in the PSD but leaves that of the interrupted
task (LP = 0), the Register Block Pointer = 0,

STM, BAL commands (words 4, 5) are commands executed as part of the central connection entry logic.
STM causes the number of registers requested to be saved, and BAL enters the remainder of the central con-
nection logic (RBMSAVE).

Flags (word 6) have the following meaning:

Bit 0 = 0 for user task
= | for RBM task

—
t

= 0 for foreground task
1 for background task

1

2 = 0 for primary task
= 1 for secondary task

3 reserved
4 reserved
5 =1 if the task is to be reentered instead of exited at EXIT. This bit is transient. It is set when end-

action triggers are performed, and reset during RBMSAVE and when reentry occurs. It can exist
only in TCB + 6,

General System Tables

PCB Address (word 6) is the address of the PCB in the load module to which the task belongs.
Task ID (word 7) is the index into STI of the task's entry.
TCB Address is the address of the first word of the TCB.

Note: When a task is active, flags, PCB address, task ID and TCB address contain the values for the inter-
rupted task versus the primary task corresponding to the TCB,

Entry PSD (words 8, 9) is the PSD to be loaded when entering the primary task. All bits are zero except
those specified otherwise on the CONNECT call as follows:

Master/Slave — as specified

Decimal and Arithmetic Masks — as specified
Instruction Address — callers start address
Write Key — 10 (foreground)

Cl, 11, EI — inhibits as specified

Register Save Area (words 10 through 25) are the save area for the registers of the interrupted task.

Secondary Task Control Block (STCB)

Purpose

The STCB contains all controls for software scheduled secondary tasks which reflect the execution status and memory
usage of the task.

Location and Type

The STCB is a serial control block in TSPACE.

Logical Access
The STCB is pointed to by the following:
TCBPOINT (during task's execution only)

STI entry corresponding to the secondary task

The XPSD in the interrupt location corresponding to the RBM Dispatcher Level (RDL) immediately above the Task
Level (STD) (during execution only).

Figure 44 illustrates the logical links between the STCB and other system control data.

Overview of Usage

A user STCB is created by task initiation if the load module requested is secondary. RBM task STCBs are included

in the resident portion of the task's code, as are all control blocks "lower than" the STCB. The initial STCB con~
tent set by task initiation is described for each data element, as is the element usage. The STCB is used by the RBM
control functions and dispatcher during the life of the task. STCB space is released by task termination.

General System Tables 101

TCBPOINT STCB PCB
STI
AST
Tasks Entry

w ACI

XPSD of Dispatch Level

Figure 44, Relationship between Secondary Task Control Block and Other System Control Data

Secondary Task Control Block (STCB) Format

0
— Current PSD, Secondary Task]
]
2
-— Intermediate PSD —
3
4 STM, 0 STCB + 10
5 BAL, R1 RBMSAVE
6 Flags PCB Address
7 Task 1D STCB Address
8
— Entry PSD to Post Dispatch Processing —
9
10
. Current Registers, Secondary Task W}
25
26 -
27 -
28 RDL Group Code RDL Level Bit
29 -
30
_— Alternate PSD —‘
31

where

Current PSD of the secondary task (words 0, 1) either the PSD to be loaded on the next dispatch (if not
in execution), or that loaded on the last dispatch (if in execution).

102 General System Tables

Task initiation resets the initial PSD to all zeros except:

MS = 0 if master mode.
= 1 if slave mode.

IA load module entry address.

Write Key = 10 if foreground secondary task.
Entries to RDL subsequent to dispatching the task save the current PSD.

Intermediate PSD (words 2, 3) a PSD to transfer control to real address STCB + 4. All other intermediate
PSD bits are zero. Task initiation sets the intermediate PSD address which remains unaltered.

STM and BAL commands (words 4, 5) stored by task initiation to cause context saving and swapping via
RBMSAVE after a task has been executing. These commands are set by task initiation and are not

altered.
Flags (word 6) the task flags set hy task initiation as fallows:

Bit O = O for user task
= 1 for RBM task

1 = 0 for foreground task
1 for background task

2 = 1 for secondary task

3 reserved
4 reserved
5 reserved

The flags are not altered during the task's life.

PCB Address the address of the task's Program Control Block, which is set by task initiation and not
altered.

Task ID (word 7) the identification of the secondary task and index into the task's STl entry. This ID is
set by task initiation and not altered.

STCB Address the 1-1 address of the STCB, set by task initiation and not altered.

Note: Words 6 and 7 are swapped with PCBPOINT and TCBPOINT when a task is executing, as is done with
primary tasks. Therefore, between the time a task is dispatched (in execution) and its status is returned
to the STCB by an RDL entry, words 6 and 7 contain the dispatchers PCBPOINT and TCBPOINT values.
When a task is not dispatched, its own values appear. "In-execution" is equivalent to a hardware level
being active. The task is either executing, or waiting for higher task to drop its interrupt level and
return to the lower priority task,

Entry PSD (words 8, 9) a PSD to transfer control to clean-up processing for tasks returning from an "in-
execution" state, After RDL is triggered and has saved context via RBMSAVE this PSD is loaded. It is
all zeros except for IA which is the real address of RDLRTRN, is set by task initiation, and remains

unaltered,

General System Tables

103

Current Registers (words 10-25) the registers to be loaded on the next dispatch (if not in execution), or those
loaded on the last dispatch (if in execution). They are set randomly by task initiation and saved on all
entries to RDL subsequent to the task being dispatched.

Words 26, 27 spare .

RDL Group and Level (word 28) the group and level bits of the RDL Level under which the secondary task
is currently queued. Set by the dispatcher queue maintenance routines.

Word 29 spare.

Words 30, 31 alternate Program Status Doubleword or alternate PSD to be used the next time the task is dis=
patched if ALT is in the STI=1. When ALT is honored by the dispatcher, this PSD and the current PSD in
words 0 and 1 are swapped.

Job-Controlied Tables

The tables shown in this subsection are job controlled, i.e., contain data associated with the job level of control.
Figure 45 shows the overall relationship of the job-associated tables and data. (Note that the OPLBS and AET tables
were described in the "General System Tables" subsection, being both job and task related.)

System Job Inventory (SJ1) Table

Purpose

Al! jobs are known to the system by means of the SJI. It contains one permanent entry for the RBM job, one per-
manent entry for the background and one temporary entry for each foreground job active at a given time. For each
job, it contains the EBCDIC job name, the JCB address, a bit indicating whether the SJI entry is in the process of
being created, and length of the Job Control Block (fixed portion) in words.

Type

Parallel; in RBM system table space with a fixed number of entries.

Logical Access

The SJ1 table location is known via a DEF on the subtable names. The job ID is the SJI index into each of the par-
allel subtables. If the job ID is known, job name and JCB location are obtained by using the job ID as an index
into the appropriate subtable. If job name is known, table lookup will produce the job ID and JCB location. The
SJI entry for RBM is the first entry. The SJI entry for the background is the second entry (i.e., the RBM SJI index
is 1; the background SJI index is 2).

Overview of Usage

The SJI space is allocated by SYSGEN from RBM system table space. Space is reserved for the maximum length
specified by a SYSGEN parameter that Iimits the total number of jobs that can exist at any one time. This limit is
some number less than 31, where one of the number is for background. 1In addition, one entry is made for the RBM
system job (not one of the number specified). The background entry is also always made and is the default (1 entry
plus the RBM entry) if no limit is specified.

104 Job=Controlled Tables

SJ1

JCB address

L\/

JCB

Job ID _"‘>

--——={ AET | (option of job initiation)

AET Pointer

JPT Pointer - —— = JpT | (option)

BBCT Pointer

OPLB1 Pointer OPLBS1|{ (System table)
OPLB2 Pointer
i EDT [~ —- EDT
EDT Pointers r
—
L SDT Pointer DT DT | — —ete.

OPLB2 Table

BBCT Table

JPT Table

AET Table

Figure 45, Relationship of Job-Associated Control Tables

Job-Controlled Tables 105

106

The RBM and background entries are initialized by RBM INIT. All other entries are initialized to zero. SJOB
requests cause job management to make new entries for foreground jobs. KJOB requests and requests from task man-
agement cause job management to delete entries. The JOBS option of the SYSGEN :RESERVE command specifies
the number of user (background plus foreground) SJI entries.

System Job Inventory (SJ1) Table Format

Name Content
No. of words
SJ” 0 in JCB JCB Address
01 78 31
31
SJI2
EBCDIC job name —
32 63
SJI3 ojL |0 0
012 7

where L = 1 indicates job-initiation is in progress.

(SJI3, index 0 contains the maximum number of jobs allowed to be active at a given time, i.e., length

of SJ1.)

Job Control Block (JCB)

Purpose

The JCB contains information sharable or common to all tasks in the job. Each job has one JCB pointed to from the
SJI. It contains job ID, trap controls, pointers to JCB tables, chain headers for job-related chained tables, and
JCB tables. The JCB is comprised of a fixed length portion and two variable length subtables: The JPT and the AET.
The JPT length is a SYSGEN parameter and may be long, and the AET length is dynamic. Therefore, at job
creation, the job initiation routines may elect to exclude one or both of these two tables {(which are themselves
serial tables) from the fixed portion of the JCB. Two JCB flags are provided to indicate their presence in the fixed
portion or linking from the JCB. If present in the fixed portion of the JCB, the respective flag is zero and the table
pointer contains the number of words in the table in byte zero and the address in the JCB in bytes 1-3. If linked
from the JCB, the respective flag is set to one and the table pointer contains the number of words of TSPACE in byte
zero and the address of the table in bytes 1-3.

Type

Serial; in RBM TSPACE with consecutive entries and linked entries.

Logical Access

JCBs are pointed to from the SJI. Job ID is the index into the SJI. JCB data elements occupy fixed positions in
the JCB or are linked from pointers in fixed positions in the JCB. The Job Operational Label Table (OPLB), and
the Blocking Buffer Control Tabie (BBCT) are part of the fixed portion of the JCB and are located by pointers in
fixed locations in the JCB. The Enqueue Definition Table (EDT) and the Segment Descriptor Table (SDT) are tables
whose entries are acquired as needed by tasks in the job. They are linked from pointers in fixed positions in the

Job~Controlled Tables

JCB. The Job Program Table (JPT) and the Associative Enqueuve Table (AET) may be in the fixed portion of the
JCB or may be linked from the JCB,

Overview of Usage

The JCBs are allocated by job management from RBM TSPACE. Space is acquired when the job is initiated and
released when the job is terminated. The JCBs for the RBM job and the background are estabiished in RBM INIT
and are never released. The EDT and SDT entries are each linked in a chain from the JCB. EDT entries are ac-
quired and released by resource management.

Job Control Block Format

Word Content
012345678 13141516 23 24 31
f
0 OiOLA‘J [O 0 TIS| Job Priority Job ID
1 0 0
2 Flags JTrap Address
3 0 0
OPLBSI
4 0| No. Entries OPLB1 Pointer ' ’ system table
5 0, No. Entries OPLB2 Pointer
6 01 No. Entries BBCT Pointer
7 0! Max. length JPT Pointer
8 0| Max. length AET Pointer
9 EDT Pointer — head
10 EDT Pointer — tail
1 0 0
12
BBCT Blocking Buffer Control Table
(25 words)
36
37 J OPLB2 Operational Label RFT or DCT
. 1 index byte table
N
N+1)
.) JPT Job Program Table | | These tables may not
. (quadruple-word entries, DW bound) 1 | be contiguous to the
M JPT or to each other,
M+1 fin order that dynamic
: AET Enqueue Table for job level 2 | space may be more
) enqueues (DW entries, DW bound) efficiently used.
L P
0 31

Job-Controlled Tables 107

108

Word 0 Flags

A (bit 2) Indicator of whether AET is contained in fixed portion of JCB or is external to JCB:

=0 AET in fixed portion of JCB.
= 1 AET linked from JCB.

J (bit 3) Indicator of whether JPT is contained in fixed portion of JCB or is external to JCB:

=0 JPT in fixed portion of JCB.
=1 JPT linked from JCB.

T (bit 14) Job-being-terminated bit.
S (bit 15) Job-being-initiated bit.
Job Program Table (JPT)
Purpose

The JPT allows the user to specify the name of a load module to be used for execution of a task.

Type

Serial; in the JCB or linked from the JCB (depending on space requirements) with the maximum number of entries
fixed at SYSGEN by the JPT option of the :RESERVE command. Default is zero entries. 5:JPT contains the maxi-
mum number of entries specified. (The maximum that may be specified is 63 entries.)

Logical Access

The JPT is located from a pointer in a fixed position in the JCB. It is composed of doubleword pairs of EBCDIC
task-name/load-module-name equivalences. Table lookup on task name is used to determine which load module
is to be used for the task. (Byte O of the pointer, JCBJPT, contains the total number of words in the JPT table.)

Overview of Usage

Space may be provided in the JCB for the JPT, or the JPT may be linked from the JCB, depending on space require-
ments at the time the JCB is created. If it is included in the fixed portion of the JCB, it will be on a doubleword
boundary pointed to from a fixed location in the JCB. If it is linked from the JCB, it will be on a doubleword
boundary and will contain the number of entries specified at SYSGEN (space acquired as a power of 2). In either
case, byte zero of the pointer word contains the number of words in the table and bytes 1-3 contain the address of
the start of the table. On job termination, a flag (J) in the JCB will indicate which linkage applies and will re-
lease space appropriately. S:JPT contains the maximum number of entries allowed in the JPT.

Entries are made by tasks via the SETNAME system function call. SETNAME may be used across jobs. The default
JCB is the calling task's job. SETNAME specifies a task-name/load-module-name pair of doublewords which are
entered in the JPT. Task initiation uses table lookup on task name to determine if any entry exists for the specified
task name. If no entry exists, the task name is assumed to be the desired load module name. If an entry exists, task
initiation uses the corresponding load module for task execution. SETNAME is also used to delete JPT entries by
providing a task name and blanks in place of the load module name. Duplicate task names are not allowed, soa
replacement will occur if a SETNAME call uses a task name which is already represented in the JPT.

Job~Controlled Tables

JPT Table Format

Name Content Size

JPT EBCDIC 1
——— —— 1 t 1st doubleword

Task Name 1

EBCDIC Load-Module
— ———— 1 2nd doubleword
Name 1

EBCDIC

Task Name 2

EBCDIC Load-Module
2nd doubleword

Name 2

(etc.)

where the EBCDIC Task Name characters and EBCDIC Load-Module Name characters are left-justified and
blank filled.

Enqueue Definition Table (EDT)

Purpose

The Enqueue Definition Table defines the current controlled items and resources in the system, and provides a

mechanism for queuing outstanding requests for the item.

Type and Location

Each EDT is a serial table in TSPACE.

Logical Access

Each EDT is a member of a chain whose head is either in RBM location S:EDT (system level ENQs and all device re-
sources) or in the JCB (job level ENQs), Figure 46 shows the overall relationship between system tables that indi-
rectly or directly affect the EDT.

Overview of Usage

The first acquisition of any resource causes a new EDT to be created and added to the appropriate chain. This al-
lows later ENQs to know that the item is in use and check for conflicts. When conflicts do occur, ECBs are created
to provide a waiting mechanism. The R-chain in the ECBs are used to connect the ECBs to the EDT for which they
are waiting. This chain is in order of time within priority as are normal R-chains. When DEQ updates the EDT and
detects that the item has been freed, it checks for the existence of waiting ECBs. If none exist, the EDT is re-
moved from the EDT chain and deleted. If ECBs do exist, the DEQ assigns access to the item to the highest prior-
ity ECB in the chain and all lower priority ECBs which do not conflict, posting the ECBs as it does so.

Job-Controlled Tables 109

Enqueue Definition Tables (EDT's
S:EDT " e €0

AET (System level)

JCBAET AETEDT ECB
AETECB —
Item
EDTEDT
EDTECB
ECB
[JCBEDT } .
Item
—1 EDTEDT c
o
EDTECB (cl)
[-*4
ECB
‘ [] Item
AET (Job level)
L
LMIAET | AETEDT |— —] EDTEDT
AETECB | EDTECB [——|—
ECB
AETEDT |—|—|—
AETECB |}—|— I
— ™ Item
L ! EDTEDT
EDTECB |——|—
AET (Job level) | fca
LMIAET AETEDT L
AETECB
AETEDT
AETECB

Figure 46. Enqueue/Dequeue Table Relationship

110 Job=Controlled Tables

Enqueue Definition Table (EDT) Format

0 31
word 0 Resource name EDTNAME
word 1 (8 EBCDIC characters)
32 63
word 2 Flags |esc covn EDT forward link address EDTEDT
) 34 7'8 21
word 3 Use count Waiting ECB chain head EDTRECB
0 78 31

EDTNAME

iName: The name of the coniroiied item from the originai EINQ caii, or the device index, right-justified in the
first word of the doubleword.

EDTEDT
Flags:

bit 0 =1 This EDT is held by a job-level AET.
=0 This EDT is held by a task-level AET.

bit 1 =1 This is a system-level EDT.
=0 This is a job-level EDT.

bit 2 Unused.

bit 3 =1 This EDT is held by a sharable enqueue.
=0 This EDT is held by an exclusive enqueue.

EDT forward link address: A pointer to the next EDT in the system or job level chain. Zero signifies the end of the
chain,

EDTRECB

Use Count: The number of tasks that currently have acquired use of the item, If the enqueue is exclusive, this count
will be 1. If the enqueue is sharable, the count will be > 1,

Waiting ECB Chain Head: The address of the ECB representing the highest priority outstanding ENQ for the item.
'R-ECB' of zero indicates no ENQs are waiting.

Load-Module Data Structures

The control blocks and table shown in this subsection relate to load-module files.

Load-Module Data Structures m

Load Module Headers

The first sector of a load module file contains a block of information used to control the loading of the module and
the allocation of system table space to it. This block is the load module header, and is written by the JCP Loader
or Overlay Loader when the load module is created. A similar header is associated with each PUBLIB file.

Task Load Module Header

Word

0

]

o O

m

where

F=0
1

o

L=0

P =01
=10

byte 0 1 | 2 .
Flojo|L II’ 0|0 Task First Word Address
MSECB Task Last Word Address
MRECB Task Entry Word Address
MENQ Root Part one VM BL
NSEGS Root Part one VM WO
0 Root Part one LM BL
Root Part two VM BL
Root Part two VM WO
Root Part two LM BL
Root Part two LM GO
0
0 0
Stack control doubleword prototype
[the®Mmempsack |
) Names of PUBLIB load modules required
1 (up to 5 at 8 bytes each)
0
- Remainder of granule 0
is unused

for a background task.
for a foreground task.

for a task module (not a PUBLIB load module).

for a secondary task.
for a primary task.

112 Load-Module Data Structures

MSECB =

maximum permitted number of solicited ECBs;

X'FF' if system default is to be supplied.

MRECB =

maximum permitted number of received ECBs;

X'FF' if system default is to be supplied.

MENQ =

maximum permitted number of resource enqueues;

X'FF' if system default is to be supplied.

NSEGS =

Legend:
BL Byte length
GO Granule origin
LM Load module
VM Virtual memory
WO Word origin

PUBLIB Load Module Header

number of segments in task, to include both parts of root, PUBLIBs and DEBUG.

Word byte 0 1 . 2 1 3
0 Flojo|L[0|O PUBLIB First Word Address (FWA)
i 0 PUBLIB Last Word Address (LWA)
2 0 0
3 0 PUBLIB VM BL)
4 NSEGS PUBLIB VM WO
5 0 PUBLIB LM BL
6 Context VM BL
7 Context VM WO
8 Context LM BL
9 Context LM GO
A T:SYMBOL LM BL
B 0 T:SYMBOL LM GO
C T:VALUE LM BL
D T:VALUE LM GO
E 0 0
Remainder of granule 0
is unused “
where
F=1 for a foreground load module.
L=1 for a PUBLIB load module (not a task load module).
NSEGS =1 for PUBLIB only; = 2 for PUBLIB with context segment,

Load=Module Data Structures

113

Legend:

BL Byte length

GO Granule origin

LM Load module

VM Virtual memory

WO Word origin

Notes: FWA-LWA refers only to the PUBLIB segment, not the context,
FWA = PUBLIB VM WO.

OVLOAD Table (for Load Modules)

In the root of every load module (root part 2 if there is one) is the OVLOAD table for that module. This table
provides information about the size and nature of each segment, its segment identification number, and the READ

FPT to load it.

There is one entry for each segment, except for the root, PUBLIB, and PUBLIB~context segments, which are omitted.

Word_
0

(11n)-10

(11n)=9

(11n)-5
(11n)-4

(11n)-3

11n

byte 0) 1 2 3

Number of entries

0——0 VM PL Segment number

X'10' 0——0 Word address of M:SL

0

VM WO for segment

LM BL for segment

LM GO for segment

Word address of segment entry, or zero

\ Y

VM = Virtual Memory LM = Load Moduie
BL = Byte Length PL = Page Length
WO = Word Origin GO = Granule Origin

114 Load=Module Data Structures

Entry
n
(11 words)

9. OVERLAY LOADER

Overlay Structure

The Overlay Loader is itself an overlayed program, with a root and the six segments illustrated in Figure 47,

CCl

PASSONE

LIB

ROOT PASSTWO

MAP

DIAG

Figure 47. Overlay Structure of the Overlay Loader
The functions of the Root and segments are given in Table 5.

Table 5. Overlay Loader Segment Functions

Segment Function

ROCT Calls_in the first segment (CCI) but thereafter, the segments call in other segments.
ROOT is a collection of subroutines, tables, buffers, FPTs, DCBs, flags, pointers,
variables, and temp storage cells. Root is resident at all times.

CCI Reads and interprets all Loader control commands.

PASSONE Makes the first pass over the Relocatable Object Modules, satisfies DEF/REF linkages be-
tween ROMs in the same path, links references to Public Library routines, and allo-
cates the loaded program's control and dummy sections (e.g., assigns absolute core
addresses).

LIB Searches the library tables for routines to satisfy primary references left unsatisfied
at segment end.

PASSTWO Makes the second pass over the ROMs, creates absolute core images of segments,
provides the necessary RBM interface (PCB, Temp Stack, REFd DCBs, DCBTAB, INITTAB,
and OVLOAD), and writes the absolute load module on the output file.

MAP Outputs the requested information about the loaded program.

DIAG Qutputs all Loader diagnostic messages.

Overlay Loader Execution

The Root of the Overlay Loader is read into the background when the Job Control Processor (JCP) encounters
an ! OLOAD control command on the "C" Device. The JCP allocates six scratch files (X1, X2, X3, X4, X5, and X6)
in the Background Temp area of the RAD unless otherwise specified on a Monitor | ALLOBT command, and three
blocking buffers unless otherwise specified on a Monitor IPOOL command. The core layout of the Overlay Loader
is illustrated in Figure 48.

Overlay Loader 115

116

FWA of Background (K:BACKBG)

r
PCB
Temp Stacks
Root {
Segment
Root Code
DCBTAB
L OVLOAD

Segment Overlay Area

LWA+1 of Overlay Loader (P:END)

Dynamic Table Area

LWA of Background (K:BCKEND)

Background Blocking Buffer Pool

FWA of Foreground (K:FGDGB1)

Figure 48. Overlay Loader Core Layout

Dynamic Table Area

The Dynamic Table Area is an area of core beginning at the LWA+1 of the Overlay Loader's code and extending to
the beginning of the background blocking buffer pool. That is, the Loader uses the remaining core in background
for a work area.

The Dynamic Table Area is divided into 16 table areas with boundaries that can change, subject to the length of the
tables. The tables are built by CCI and PASSONE from information on the control commands and ROMs, and are
therefore only dynamic until the beginning of PASSTWO, when the table areas are fixed. Since these tables are an
essential part of the load process, it is important to understand the function of the tables.

Dynamic Table Area

Dynamic Table Order

During the first pass over the object modules, the 16 table areas have « fixed order as follows:

FWA of Dynamic Table Area (P:END)

T:PUBVAL
T:PUI;SYM
T;VAtUE
T:SEé
T:DC!BV
T:DCE
T:RO;‘/\]
T:M(SDIFY
T:M(SDULE
B:MT:
T:DEC‘ZL
T:CSECT
T:FW:J
T:FWI‘)X
T:SYI\‘ABOL

l
|

T:VALX

LWA+1 of the Dynamic Table Area (K:BCKEND)

For better reader comprehension, the table area descriptions given below are given in a logical order rather than
the program listing sequence.

T:SYMBOL and T:VALUE

The program's external table is a collection of DEFs, PREFs, SREFs, and DSECTs (excluding DCBs). The external
table is divided into two parts: one containing the EBCDIC name of the external (T:SYMBOL), and the other

containing the value (T:VALUE). Each tabie is divided into segment subtabies that overiay each other in core
in the same way that the segments themselves are overlayed. For example, the external tables of a program with
the overlay structure

2
1
3
0
4
would exist in core (for both PASSONE and PASSTWOQO) as follows:
For For For For For
Root Seg 1 Seg 2 Seg 3 Seg 4

0 0 0 0 0
i 1 1 4
2 3

Dynamic Table Area

117

118

Segments in different paths cannot communicate (i.e., the subtables of segments in different paths are never in core
at the same time). A segment's T:SYMBOL and T:VALUE subtables are built by CCl and PASSONE and saved on a
RAD scratch file at path end (i.e., when the next segment starts a new path). However, only tables overlayed by
the new segment at path end get written out. For example, at the end of path (0,1,2), segment 2 would be written
out; at the end of path 0,1,3), segments 3 and 1 would get written out; and at the end of the program, segments 4
and 0 would get written out.

A segment's subtable consists of all DEFs in the segment, DSECTs not allocated in a previous segment of the path,

and any REFs not satisfied by DEFs in a previous segment of the path. Since the DEF/REF links are all satisfied by
PASSONE, T:SYMBOL is not used by PASSTWO.,

T:VALUE ENTRY FORMATS

T:VALUE entries are numbered from 1 to n and have a fixed size of 5 bytes, with the format

Byte 0 Byte | Byte 2 Byte 3 Byte 4
1Y |D|V|C|F|LB ' Value
012345678 1516 2324 3132 39

where

TY is the entry type

TY =00 DEF
TY =01 DSECT
TY =10 SREF
TY =11 PREF

D is a flag specifying whether or not the external is defined/allocated/satisfied.
D=1 external has been defined/allocated/satisfied.

D=0 external is undefined/unallocated/unsatisfied.

\% is a flag specifying the type of value (meaningful only if D = 1).
V=1 value is the value of the external.

V =0 value is the byte oddress of the expression defining or satisfying the external in T:VALX.

Cc is a constant (meaningful only if V =1).
C=1 value is a 32-bit constant.

C =0 value is a positive or negative address with byte resolution.

F is a flag specifying whether the external is a duplicate or an original.
F=1 external is a duplicate.
F=0 external is an original.

LB specifies source of external.
LB =00 external from input ROM or CC.
LB =01 external from System Library.

LB =10 external from User Library.

Value is initially set to zero; usage is dependent upon D, V, and C flags.

Dynamic Table Area

Since the T:VALUE entries are kept as small as possible, unused bit combinations are reserved todefine the following
two intermediate external types:

1. If TY =PREF, C=0, and V =1, the external is an"excluded pref" which means that the PREF will cause neither
library loading nor linkage (including the Public Library). Instead, the PREF will be satisfied by a DEF in a
segment further up the path.

2. IfTY=DSECT, D=1, and V =0, the external was input from the :RES control command and is to be allocated
at the end of the segment.

T:SYMBOL ENTRY FORMATS

T:SYMBOL is a byte table with variable sized entries that are numbered from 1 ton. There are three types of
entries: EBCDIC, "continuation", and "pseudo". The EBCDIC entry contuins the name of the external. The
"continuation" entry contains the size of a DSECT and only follows a DSECT entry. The "pseudo” entry is a FWD
or CSECT entry that has been added to T:SYMBOL because the entry was referenced in a T:VALX expression that

could not be resolved at "module end". The entry formats are as follows:

EBCDIC entry: byte 0|0 N+ 1 (Range = X'02' to X'40")
1| EBCDIC Chary

|
01 7

n| EBCDIC Char,

0 7
"Continuation"
entry: byte 0[1]0000100 = X'84'
1 Byte
2 size of
3 DSECT
01 7
"Pseudo"
entry: byte 000000001 = X0l
01 7

Note that the first byte contains the byte count of the entry (in bits 1-7).

T:PUBVAL and T:PUBSYM

Each Public Library file has an external table of DEFs (there are no DSECTs or unsatisfied REFs in a Public Library)
that is divided into two parts; VALUE and SYMBOL. T:PUBVAL contains the VALUE tables for each public library
specified in the PUBLIB option of the |OLOAD control command, and T:PUBSYM contains the corresponding SYMBOL
tables. Since the sizes of the table areas are fixed once T:PUBVAL and T:PUBSYM have been input, there are only
14 dynamic table areas.

T:PUBVAL ENTRY FORMATS

T:PUBVAL entries are numbered from 1 to n and have a fixed size of five bytes. Since the size of T:PUBVALdoes not
change, T:PUBSYM is located at the next doubleword boundary following T:PUBVAL. T:PUBVAL entries have the format

Byte O Byte 1 . Byte 2 . Byte 3 | Byte 4
TY {D|VI|C| F|LB Value
012345678 15716 2324 3132 39
where
TY =00 = DEF

D=1 the DEF has been defined.

Dynamic Table Area 119

I
—

value is the value of the DEF.

value is a 32-bit constant.

0 value is a positive or negative address with byte resolution.
=0 not a duplicate DEF,
LB=11 PUBLIB

m N 0 <
1]

Note that the T:VALUE and T:PUBVAL entries have the same formats even though the T:PUBVAL entries are a subset
of the T:VALUE format.

T:PUBSYM ENTRY FORMATS

T:PUBSYM is a byte table with variable sized entries that are numbered from 1 to n, Since the size of T:PUBSYM
does not change, the table following is located at the next doubleword boundary after T:PUBSYM. T:PUBSYMentries
have the format

byte 0 N+ 1
byte 1 EBCDIC Charj
0 7

byte n EBCDIC Char,,
0 7

T:VAIX

External definitions are defined with expressions. If the expression can be resolved, its value is stored in the DEFs
T:VALUE entry, If the expression cannot be resolved, it is saved in T:VALX and the byte address of the expression
is stored in the DEFs T:VALUE entry,

Once an expression is resolved, its entry is zeroed out, The T:VALXentries cannot be packed toregain space, since
the T:VALUE entries contain address pointers, however, empty entries are reused where possible.

Expressions have a variable size and are made up of expression bytes, combined in any order. The formats for the
T:VALX expression bytes (slightly different than the object language) are

Add Constant (X'01')

Byte 0 Byte 1 . Byte 2 . Byte 3 | Byte 4
00000001 ' 32-bit value '

|

i
0 78 1516 2324 3132 39

This item causes the specified four-byte constant to be added to the Loader's expression accumulator, Negative con-
stants are represented in two's complement form:

Add/Subt Value (X'2N")

Byte O Byte 1 . Byte 2
FWD l'\lumber
00| 10 |S|F|RR T8 Entry
1
012345678910 1516 23
where
S=1 subtract value,

S=0 add value,

120 Dynamic Table Area

F=1 add/subtract value of T:FWD entry where the FWD number is in bytes 1 and 2.

F=0 add/subtract value of TABLE entry where
T8 =00 Entry points to T:DCB,
T8 =01 Entry points to T:VALUE/T:SYMBOL.
TB=10 Entry points to T:CSECT.
TB=11 Entry points to T:PUBVAL/T:PUBSYM.

RR=00 byte address resolution.
RR =01 halfword address resolution.

RR =10 word address resolution.

RR =11 doubleword address resolution.

This item causes the value of the FWD or TABLE entry to be converted to the specified address resolution (only if the
value is an address) and added to the Loader's expression accumulator. Note that expressions involving T:FWD and
T:CSECT entries point to the current ROM's FWD and CSECT tables. If these expressions are not resolved at module
end, the Loader createsdummy T:SYMBOL and T:VALUE entries from the FWD or CSECT entry and changes the pointer
in the expression to point to the dummy entry in T:VALUE. However, unresolved expressions rarely happen.

Address Resolution (X'3N')

01234567
where
ID =00 changes the partially resolved expression (if an address) to the specified resolution,

ID =01 identifies the expression as a positive absolute address with the specified resolution (add absolute
section).

ID =10 identifies the expression as a negative absolute address with the specified resolution (subtract abso-
lute section).

RR =00 byte address resolution.
RR =01 halfword address resolution.
RR=10 word address resolution.

RR=11 doubleword address resoiution.

Expression End (X'02')

This item identifies the end of an expression (the value of which is contained in the Loader's expression accumulator).

T:DCB

T:DCB contains the DEFs and REFs that are recognized as either system (M:) or user (F:) DCBs. DCBs declared as
external definitions must exist in the Root segment. The Loader allocates space in part two of the Root for DCBs

Dynamic Table Area 121

that are declared external references, and supplies default copies of system DCBs. T:DCB is resident at all times.
Entries have a fixed size of three words and have the format

Word 0 [TY [DIVICF | LB RN Byte Address
1 El E2 E3 E4
2 E5 E6, E7 E8
012345678 1213 1516 2324 31
where
Word 0

TY =00 DEF (coded in the Root by the user).

TY = 11 PREF (allocated in Root part 2 by Loader).

D= defined or allocated.

D=0 undefined/unallocated.

V=1 address is the byte value of the DCB, only meaningful if D =1,
V=0 address points to an expression in T:VALX, only meaningful if D = 1.
C

=1 the DCB was defined with a value that is either a constant or an illegal address (i.e., negative or
mixed resolution), only meaningful if V = 1.

Cc=0 the value of the DCB is an address, only meaningful if V = 1.

F=0 DCB cannot be a duplicate (duplicates are put in T:SYMBOL/T:VALUE).
LB =00 the DCB was input from a nonlibrary ROM.

LB = 01 the DCB was input from the System Library.

LB =10 the DCB was input from the User Library.

Word 1,2
E1 - E8 is the EBCDIC name of the DCB, padded with blanks if necessary.

T:SEG

T:SEG contains information about the program's segments and is resident at all times. One entry is allocated per
segment. Entries have a fixed size of ten words and have the format

Word 0 Segment Ident Link Ident
1 |Gran no. of T:VALUE(I)on X4 | Gran no. of T:MODIFY/
T:MODULE on X3
2 |Gran no. of T:SYMBOL (I) on Gran no. of core image on
X5 Program File
BD of T:VALUE (I)in T:VALUE Byte length of T:VALUE (I)
4 1BDof T:SYMBOL(I) in Byte length of T:SYMBOL (1)
T:SYMBOL
5 |Byte length of T:MODIFY Byte length of T:MODULE
6 IDW EXLOC of SEG DW length of SEG
7 REMFDIM] s o] e A] Entry Address
8 Byte Length of Library Routines in SEG
9 Byte length of load=module image of segment

0123456789 1213141516 31

where

Gran no. the granule number in the RAD file where the table begins. If the RAD file overflows, GranNo.
will equal X'FFFF'. Granules are numbered from O to n.

122 Dynamic Table Area

) segment's subtable.

BD byte displacement.
EXLOC execution location.
DW doubleword.
R=1 error severity level set on at least one ROM in the segment,
=0 error severity level reset on every ROM in the segment.
L=1 load error (duplicate DEFs, unsatisfied REFs, etc.).
=0 no loading errors in SEG,
W= T:VALUE (I) and T:SYMBOL (I) output on X4, X5.
-0 TVALUE (1) and T:SYMBOL (1) not cutput on X4, X3

F=1 segment is fixed in real memory (FIX option).
=0 segment may be mapped on any available real memory.
=1 segment is to be initially loaded with the root (ILOAD option).
=0 segment :/vill be loaded only on explicit request.
M =00 segment is any-access.
=01 segment is read-and-execute,
=10 segment is read-only.
=11 segment is no-access.
S =00 segment is nonsharable.
=01 segment is job-level sharable.
=10 segment is system=-level sharable.
=11 unused.,
P=1 segment must be pre-loaded sharable (PRELOAD option).
=0 segment may be loaded from the load module being built,
EA =00 value in bits 15-31 (if nonzero) is last entry address (in words) encountered on non-Lib ROM,
=01 unused.

Dynamic Table Area 123

EA=10 SEG's entry address input from CC and value in bits 15-31 is the entry address (in words).

=11 SEG's entry address input from CC and value in bits 15-31 is the entry number of the T:5YMBOL/
T:VALUE DEF specified on the CC.

B:MT

There are four tables associated with each ROM loaded (including library ROMs): T:DECL, T:CSECT, T:FWD, and
T:FDX. The size of these tables can be extremely large or small, depending upon which processor produced the ROM
and the content of the program. To conserve time and space, these tables are packed into the Module Tables buffer
(B:MT) at module end, and output to the X2 TempFile on the RAD only when either the buffer is full or at segment
end, The size allocated for B:MT is dependent upon the size of the Dynamic Tables area and is made a multiple of
the sector size of the X2 RAD file.

T:DECL

DEFs, PREFs, SREFs, DSECTs, and CSECTs are referenced in the object language bydeclaration number, Therefore,
associated with each ROM is a table of declarations whose entries point to DEF, REF, DSECT, and CSECT entries in
other tables.

According to the object language convention, entry zero points to the standard control section declaration. Entries
are numbered from 0 to n; have a fixed size of two bytes; and have the format

TB Entry
012 15
where
TB = 00 Entry points to T:DCB.
T8 = 01 Entry points fo T:SYMBOL/T:VALUE.
T8=10 Entry points to T:CSECT (associated with current ROM),
TB=11 Entry points to T:PUBSYM/T:PUBVAL
Entry Table entry number. The range is 1 through 16,383,
T:CSECT

Associated with each ROM is a table of standard and nonstandard control sections. A nonstandard control section
is allocated by the Loader when the declaration is encountered. The standard control section is allocated when the

124 Dynamic Table Area

first reference to declaration 0 is encountered in an expression defining the origin load item.

numbered from 1 to n; have a fixed size of two words; and have the format

word 0 RV AR Byte address
2 7 MMnimimiimag Size
012345 1213
where
Word 0
D=1 allocated.
V=1 value.
C=0 address.
Byte address first byte address of the control section.
Word 1
Size Number of bytes in the control section.
T:FWD

Associated with each ROM is a table of forward reference definitions (forwards), Each forward is identified by a
random two-byte reference number. Thus, when a forward is referenced in an expression, the T:FWD table for that

31

T:CSECT entries are

ROM must be searched for a matching number. T:FWD entries have a fixed size of two words with the format

Word 0 Forward number Ay |V e

NN

Word 1 Value Ll
0]5]]6]26127I23 31

where

D=1 defined.

V=1 value is the value of the resolved expression.

V=0 value is a byte displacement pointer to the expression in T:FWDX.

C=1 value is a constant (only meaningful if V = 1),

Cc=0 value is a positive or negative address with byte resolution (only meaningful if V = 1),
T:FWDX

Forwards are defined with expressions and are of two types: the first is defined with an expression that can be re-

solved by module end; the second type is defined with an expression that involves an external DEF, REF, or DSECT
(many of these cannot be resolved at module end). Associated with each ROM is a table containing all unresolved
expressions defining FWDs. When a T:FWDX expression is resolved, its entry is zeroed out and the space reused, if

possible. T:FWDX entries have the same format as T:VALX entries.

Dynamic Table Area

125

126

T:MODULE

Each segment has a T:MODULE table. T:MODULE contains information about a segment's Relocatable Object
Modules (ROMs). One entry is allocated per ROM. Entries have a fixed size of five words and have the format

Word 0 Vl Entry no. lGN\\ LB Record displacement in file
Gran no. of B:MT on X2, or
"1 BD of T:DECL (J) in B:MT Byte length of T:DECL ()
2 BD of T:CSECT (J) in B:MT Byte length of T:CSECT (J)
3 BD of T:FWD (J) in B:MT Byte length of T:FWD (J)
4 LBD of T:FWD)(l (IJ) in B:MT Byte length of T:FWDX (J)
01 789 13141516 31
where
V=1 Entry no. in bits 1-7 points to T:DCBV.

V=0 Entry no. in bits 1-7 points to T:DCBF,

Entry no. the entry number of the DCB (in either T:DCBV or T:DCBF) that points to the RAD file where the
ROM is located.

G=1 T:DECL (J) begins at byte zero in B:MT and HWO (halfword zero) in word 1 contains the granule no.

of B:MT on X2. If the Granule no. equals X'FFFF', X2 has overflowed and B:MT did not get saved on the
RAD.

G=0 T:DECL (J) is located in B:MT at the byte displacement specified in HWO of word 1.
LB=00 not Library ROM.

LB=01 ROM from System Library (SP area of RAD).

LB=10 ROM from User Library (FP area of RAD).

Record displacement in the MODULE file (only meaningful for library ROMs.)

T:ROMI

T:ROMI contains the information necessary for PASSONE to load a segment's ROMs. T:ROMI is built by CCI from
the input options specified on the segment's :ROOT, :SEG, or :PUBLIB control command, or by :LIB to point to the
library routines required for the segment. At the beginning of PASSTWO, the area size for T:ROMI is set to zero.
There are three types of T:ROMI entries, as illustrated below, and entries have a fixed size of one word,

Entry for ROMs input from RAD files (built by CCI):

NROM 0————0|V| Entry no.
0 1516 232425 31

where

NROM is the number of ROMs to input or contains -5, which means to input until IEOD is encountered.
This halfword is used as a decreasing counter by PASSONE and eventually equals zero.

Bits 16-23 always equal zero to specify entry type.
V=1 Entry no. in bits 25-31 points to T:DCBV,
V=0 Entry no. in bits 25-31 points to T:DCBF,

Entry no. is the entry number of the DCB (in either T:DCBV or T:DCBF) that points to the RAD file where
the ROM is located,

Dynamic Table Area

Entry for ROMs input from a specified device or OPLB (built by CCI):

P
NROM \ AcK TYPE DCT index
0 15161718 2324 31

where
Bits 16-23 always equal nonzero to specify entry type.
NROM is described above.
PACK is the PACK flag (bit 22 of word 0) in DCB.
TYPE is the device type code (bits 18-23 of word 1) in DCB.
DCT index is the DCT index of the device (bits 24-31 of word 1) in DCB,
PASSONE will store the information in F:DEVICE and input the ROMs via that DCB. Note that OPLBs are

converted to their assigned devices.

Entry for ROMs input from the System or User Library (built by LIB):

NROM Record displacement
0 1516 31

where

NROM is described above.

Record displacement is the record displacement of the ROM inthe MODULE file of the area specified by FL: LBLD.

Library ROM entries are distinguished from the other two entry types by the Loader flag FL:LBLD. The flag is always
reset when the other entry types are in T:ROMI.

T:DCBV

T:DCBV is a table of DCBs assigned to the various RAD files specified (other than GO) on the input options of the
:ROOT and :SEG, or :PUBLIB control commands. One DCB is created for each unique file name specified, T:DCB
is resident at all times, T:DCBV entries are numbered from 1 to n, and have the standard seven-word DCB format.

T:MODIFY

Each segment's :MODIFY commands are translated into object language load items and stored in the segment's
T:MODIFY table, and each :MODIFY command is translated into a T:MODULE entry. Entries begin with an
"origin" load item and are terminated by either the next "origin" load item or @ "module end" load item, Entries
are made up of the load items described below and expressions in the T:VALX/T:FWDX format:

Origin (X'04')
This one-byte item sets the load-location counter to the value designated by the expression (in T:VALX format)

immediately following the origin control byte. The value of the expression equals the location specified on the
:MODIFY command.

Load Absolute (X'44')

This one-byte item causes the next four bytes to be loaded absolutely and the load-location counter advanced
appropriately.

Define Field (X'07')
T (X'FFY)
(field length)

This three-byte item defines an expression value to be added to the address field of the previously loaded four-
byte word. The expression is in T:VALX format and immediately follows the 'field length' byte.

Dynamic Table Area

127

Load Expression (X'60')
This one-byte item causes an expression value to be loaded absoutely and the load-location counter advanced

appropriately. The expression to be loaded is in T:VALX format and immediately follows the 'load expression'
control byte.

Module End (X'OE')

This one-byte item terminates the load items in T:MODIFY,

Use of the Dynamic Table Area During LIB

During the library search, LIB temporarily reorganizes the Dynamic Table area by packing the 16 tables together at
the top of the area. LIB uses the remaining space for its tables. The core layout of these tables and their formats
are illustrated in Figure 49,

FWA of
r .
T:PUBVAL Dynamic Toble Area T:PUBVAL
T:PUBSYM T:PU‘BSYM
+
T:VALUE T:LDEF
Overlays
Packed T:VALUE
Dynamic
Tables g
(tables <]
listed are T:SYMBOL
used by :
LIB)
T:SYMBOL
L T:LDEF
Moved to
the end of
T:LDEF, if
necessary.
TLROM T:LROM
EBCDIC EBCDIC
DEFREF DEFREF
MODIR MODIR
files' buffer files' buffer
| LWA+1 of the {
Dynamic Table Area
Core layout of the Area if the Core layout of the Area if the
packed tables remain in core, packed tables are saved on Xé.

Figure 49. LIB Reorganization of Dynamic Table Area

128 Dynamic Table Area

T:LDEF

T:LDEF is located in the Dynamic Table area only when the LIB segment is executing and is used by LIB to satisfy
REFs to library routines. Initially, T:LDEF contains the following items:

1. All unsatisfied REFs from the current segment's T:VALUE subtable.

2. All excluded PREFs from the current segment's T:VALUE subtable.

3. All DEFs and DSECTs in the path T:VALUE table that are from the same library as the one being searched.
4. All Public Library (T:PUBVAL) DEFs.

The Library DEFs are included so that library routines loaded in previous segments of the Public Library will not be
duplicated. The excluded PREFs (that inhibit Iibrary loading)are treated as DEFs. Since library routines may them-
selves reference other library routines, the set of DEFs and REFs associated with a library routine are included in
T:LDEF if, and only if, at least one of the DEFs satisfies a REF in T:LDEF. When a REF is satisfied it is changed
to a DEF. Eventually, T:LDEF contains library DEFs, any REFs that cannot be satisfied in the Library, andthe
excluded PREFs,

T:LDEF has a variable number of entries with the count kept in entry 0. Entries have a fixed size of two bytes with
the format

entry O L T:LDEF entry count
0

15
entry n | DR| Value |
012 15
where
DR =00 null entry.
DR =01 DEF or excluded PREF,
DR = 10 unsatisfied PREF.
DR =11 DSECT.
Value entry number in T:SYMBOL, that is later changed to the corresponding entry's byte offset in the

EBCDIC file.
T:LROM
T:LROM is located in the Dynamic Table area only when the LIB segment is executing and contains pointers to li-
brary routines whose DEFs have satisfied REFs in T:LDEF. That is, T:LROM points to the library routines that are to
be loaded along with the segment,
T:LROM entries initially point to a library ROM's entry in the MODIR file and then get changed to point to the cor-

responding ROM's location in the MODULE file. T:LROM has a variable number of entries, with the count kept in
entry 0. T:LROM is built backwards but has forward entries. Entries have a fixed size of two bytes with the format

entry n L Value
f 0 f 15

entry 0 L T:LROM entry count 1
0 15

where

value halfword offset of the library ROM's entry in the MODIR file, which is later changed to the starting
record number of the ROM in the MODULE file.

Dynamic Table Area

129

130

MODULE File
The MODULE file is a blocked sequential file, with 120 bytes per record, that contains the Library's ROMs.
EBCDIC File

The EBCDIC file is an unblocked sequential file consisting of one variable length record. The EBCDIC file contains

the unique EBCDIC names of all DEFs and REFs declared in the ROMs in the MODULE file. Entries have a variable
number of bytes with the format

ool byte 0 N+ 1
' 1 EBCDIC Char)
0 7

n EBCDIC Char,,
0 7

MODIR File

The MODIR file is an unblocked sequential file consisting of one variable length record. Each MODIR file entry
corresponds to a ROM on the MODULE file and contains the name of the ROM, its location on the MODULE file,
and the number of records in the ROM. Entries have a fixed size of three words with the format

word 0 MODULE file record no. ROM's no. of records
word 1 First four bytes of EBCDIC name
word 2 Last four bytes of EBCDIC name

0]5516 31

DEFREF File

The DEFREF file is an unblocked sequential file consisting of one variable length record. Each entry in the DEFREF
file corresponds to a ROM in the MODULE file and contains all the external DEFs and REFs declared in the ROM,
plus a pointer to the ROM's entry in the MODIR file. Entries have a variable number of halfwords with the format

halfword 0 Entry size (DEFy
halfword 1 MODIR file index DEF3
halfword 2 DR] EBCDIC file index DEF,
012 : 15
: REF;
4

REF

halfword n [DR| EBCDIC file index J :
012 15 L REF,

where
Entry size number of halfwords in the entry (including itself),

MODIR file index relative halfword of the ROM's corresponding entry in the MODIR file. X'FFFF' means
that the entry has been deleted.

DR =00 not used.

DR =01 DEF,

DR =10 PREF.

DR=11 DSECT.

EBCDIC file index relative byte of the external name entry in the EBCDIC file.

Dynamic Table Area

Use of Dynamic Table Area During PASSTWO

PASSTWO reorganizes the Dynamic Table area by moving the resident tables T:SEG, T:DCBV, and T:DCB to the
end of T:PUBVAL. PASSTWOuses the remaining space to read in the necessary tables built during PASSONE to build
its own tables and to create the core image of the segment. The core layout of these tables and their format
is illustrated in Figure 50.

T:GRAN

Since the Work area has a finite size that varies according to the size of B:MT, it may not be large enough to con-
tain a segment's tatal core image at all times. Therefore, before a segment is created, its core image length is

divided into granule size partitions, where the granule size equals the sector size of the program file. T:GRAN

FWA of

T:PU‘BVAL Dynamic Table Area T:PU‘BVAL

T:SEP T:SEP

T:DCiB\/ T:D\’."BV

T:DCtB T:D(‘ZB

T:VA‘\LUE T:GF:AN

T:GI}A!}J T:AS?N

Work Area Work Area

B:M]l

T:M?DIFY

T:MODULE

T:VALX LWA+1 of the T:VALX

Dynamic Table Area

Core layout of the Area while Core layout of the Area while
the segments are being loaded. part two of the Root is being built.

Figure 50. PASSTWO Reorganization of Dynamic Table Area

Dynamic Table Area

131

entries point to the location of a segment's partition (if created) either in core or on the program file. T:GRAN
has the following format:

entry 0 n = No. of granule partitions in the seg.
1 Granule partition 1
0 31
n Granule partition n
0 3

T:GRAN entries have a fixed size of one word with three different formats.

If the granule partition exists in the Work Area:

Work area

0 0 \\ WA of granule partition in the
N

N

0 12131415 31

If the granule partition exists on its corresponding granule in the Program File:

[1 1]0 0] = x'FFF8o0o0"
0 1213 31

If the granule partition has not been allocated; and data has not yet been loaded into that area of the segment:

[o- 0

0 31

T:ASSN

T:ASSN contains the information necessary to reassign DCBs as specified on :ASSIGN commands, T:ASSN is located
in the Dynamic Table area during PASSTWO (after all the segments have been loaded) and is built by CCI. Each
:ASSIGN command is translated into a T:ASSN entry, Entries have a fixed size of ten words with the format

Word 0 Byte address of DCB's execution location
1 Word address of DCB's entry in T:DCB

Changes for word 0 of DCB

Mask for word 0 of DCB

Changes for word 1 of DCB

Mask for word 1 of DCB

Changes for word 3 of DCB

Mask for word 3 of DCB

First four EBCDIC bytes of file name or zero

NV 0y AN

Last four EBCDIC bytes of file name or zero

MAP Use of Dynamic Table Area

MAP moves the resident tables T:SEG andT:DCB to the top of the area, and uses the remaining space to read in and
reference the tables necessary for the MAP output. MAP does not build any tables. The core layout of the table
referenced by MAP is illustrated in Figure 51,

132 Dynamic Table Area

FWA of
Dynamic Table Area

T:SEG T:SEC;
T:DC‘B T:DC§
T:MQDIFY T:SYMBOL
B:MT T:VALUE

LWA+1 of the
Dynamic Table Area

Core layout of the Area while Core layout of the Area while
the program's control sections

the externals are being listed.
are being listed.

Figure 51. MAP Table Reference

DIAG Use of Dynamic Table Area

DIAG only uses the Dynamic Table area to reference T:SEG and T:MODULE,

ROOT TABL

Two tables in the Root, T:PL and T:DCBF, have a fixed size and are referenced by other tables. Their format and

use is given below. The usage and format of other tables in the Root are well documented in the Overlay Loader's
listing and are not detailed in this manual.

Dynamic Table Area 133

T:PL

T:PL contains the information necessary to create T:PUBSYM and T:PUBVAL and to load the Public Libraries speci-
fied on the !OLOAD control command. T:PL exists in the Root and has a maximum of three entries. Table end is
indicated by a word of zeros, Entries have a fixed size of eight words with the format

Word 0 First four EBCDIC bytes of PUBLIB name

1 Last four EBCDIC bytes of PUBLIB name

2 Word address of PUBLIB's execution location

3 Number of bytes in the PUBLIB

4 Granule no. of PUBLIB's symbol table

5 Number of bytes in PUBLIB's symbol table

6 Granule no. of PUBLIB's value table

7 Number of bytes in PUBLIB's value table

0 31

YZ::d at Zeros j
entry+1 0 31

T:DCBF

T:DCBF contains the set of fixed DCBs that are required by the Loader. Each entry contains one DCB. T:DCBF has
a fixed number of entries and exists in the Root. T:DCBF entries are numbered from 1 to 18, and have the fixed
order given in Table 6.

Table 6. T:DCBF Entries

Entry Mnemonic Pointer To
1 F:PUBL Files specified in the PUBLIB option of !OLOAD.
2 F:DEVICE Devices specified in the DEVICE and OPLB input options.
3 M:GO GO file in the Background Temp area.
4 M:0OV Either OV or the file specified in the FILE option of |OLOAD.
5 M: X1 X1 in the Background Temp area.
6 M:X2 X2 in the Background Temp area.
7 M: X3 X3 in the Background Temp area.
8 M: X4 X4 in the Background Temp area.
9 M:X5 X5 in the Background Temp area.
10 M: X6 Xé in the Background Temp area.
H F:MODIR MODIR file in either the SP or FP area.
12 F:EBCDIC EBCDIC file in either the SP or FP area.
13 F:DEFREF DEFREF file in either the SP or FP area.
14 F:MODULE MODULE file in either the SP or FP area.
15 M:C C operational label.
16 M:LL LL operational label,
17 M:OC OC operational label.
18 M:LO LO operational label.

134 Dynamic Table Area

All T:DCBF entries have the standard seven-word DCB format, with two exceptions: OFLOW and NIO, that are

used only for the M:OV, M:X1, M:X2, M:X3, M:X4, M:X5, and M:X6 DCBs,

The seven-word DCB format is

. T
Word0 | TTL=7 §\ N NN AN | N 870 [Assn
0 7 10 14 19 2223 262728 31
D
I NRT \\Qo elo| TYPE DE\Q/F?LZLB/
N i
0 78 1415161718 2324 31
2 OFLOW \\\\\ BUF
0 7 1415 31
3 RSZ ERA
0 1415 31
4 NIO ABA
0 1415 3
5 El E2 E3 E4
0 78 1516 2324 31
6 E5 E6 E7 E8
0 78 1516 2324 31
where
OFLOW - 0 EOT not encountered.
OFLOW =1 EOT encountered.
NIO number of records {for X1) or granules required

Scratch Files

The six scratch files in the Background Temp area of the RAD are used by the Loader as temporary storage and are
written during the first pass over the object modules. The number of granules required by each scratch file is cal-
culated (whether the file overflows or not)and saved in the DCB assigned to the file. If any of these files overflows
(e.g., if the EOT is encountered during a Write operation), the Loader continues PASSONE, skips PASSTWO, then

calls the MAP to communicate the number of granules required for each scratch file to the user.

The Loader's use

of these files is defined in Table 7.

Table 7. Background Scratch Files

File Name Loader Use

X1 A sequential file with blocked record format. Record size equals 120 bytes; granule
size equals 256 words., ROMs input from non-RAD devices are copied onto X1.

X2 A direct access file with the granule size set equal to the sector size. The module's
tables (T:DECL, T:CSECT, T:FWD, and T:WDX) are output on X2 when either B:MT is
full or at segment end.

X3 A direct access file with the granule size set equal to the sector size. A segment's

T:MODIFY and T:MODULE tables are packed together at segment end and output
on X3,

Scratch Files

135

136

Table 7. Background Scratch Files (cont,)

File Name Loader Use

X4 A direct access file with the granule size set equal to the sector size. A segment's
T:VALUE subtable is output on X4 when the end of a path is encountered and the seg-
ment is being overlayed by another segment,

X5 A direct access file with the granule size set equal to the sector size. A segment's
T:SYMBOL subtable is output on X5 when the end of a path is encountered and the
segment is being overlayed by another segment,

X6 A direct access file with the granule size set equal to the sector size. The LIB over-

lay packs the 16 Dynamic Tables ot the top of the Dynamic Table area and outputs the
"pack" on X6 only if the remaining area will not contain the tables required for the
library search.

Program File Format

The format for the Program File is illustrated in Figure 52.

GRANULE Order in which written
0 Program Header last
1 Root Part 1 1st
2 Root Part 1 (continued)

A

Vv

s

End of Root Part 1
i Segment 1 2nd
k Segment 2 3rd
I Segment n last-2
m Root Part 2 last=1
Unused

EOT

Scratch Files

Figure 52. Program File Format

The foreground/background program-header format is described in the "RBM Tables Format " chapter. The Public
Library (PUBLIB) header format is also described in that chapter.

Logical Flow of the Overlay Loader

After the Root segment has been loaded by the JCP, the Root calls the Monitor SEGLOAD function to read CCI into
the overlay area and then transfers control to CCI to process the !OLOAD control command.

Logica! Flow of CC!

When CCI is called, there is usually a control command in the contro! command buffer (B:C). If not, CCl reads ihe
next command into B:C and logs it onto LO. If the command terminates a :ROOT, :SEG, or :MODIFY substack,
PASSONE is calied; if it terminates an :ASSIGN substack, PASSTWO is called. If the command does not terminate
a substack, CCI scans the options specified and performs the following functions for the different control commands.

!OLOAD Command. CCI sets flags; puts the program file name in M:OV DCB; builds T:PL, T:PUBVAL, and
T:PUBSYM from files specified in the PUBLIB option; allocates the 14 remaining Dynamic Table areas; and if the
GO option has been specified, builds T:ROMI,

:ROOT, :SEG, and :PUBLIB Commands. CCI creates an entry in T:SEG; builds T:ROMI and T:DCBV entries from
the specified input options; allocates space for the PCB in the Root segment; and for the :SEG command, calls the
PATHEND subroutine., PATHEND determines if the segment starts a different path; if so, writes out the T:SYMBOL
and T:VALUE subtables for the overlaid part of the prior path on the RAD scratch files; and sets the byte displace~
ment pointers for the new segment's T:SYMBOL and T:VALUE subtables.

Logical Flow of PASSONE

PASSONE branches to process T:MODIFY if CCl has just been previously called by PASSONE to input :MODIFY
commands, Otherwise, PASSONE processes T:ROMI which has been built by either CCI or LIB, PASSONE inputs
the ROMs from the devices specified in T:ROMI; builds T:MODULE entries for each ROM input; saves ROMs input
from non-RAD devices onto the X1 scratch file; and scans the ROMs for pass—one type load items. It then builds the
following entries:

1. Parallel T:SYMBOL and T:VALUE entries from external DEF, PREF, SREF, and DSECT declarations. Entries in
T:VALX are built when expressions defining DEFs cannot be resolved. Except for biank COMMON, a DSECT
is allocated when first encountered, and its address is stored in the T:VALUE entry,

2. T:DCB entries from externc! DEF and REF d gin with either M: or F:. The address of the DCB

Le

T v]
is either defined with an expression (for DEFs), or allocated by PASSTWO (for REFs) andstored in the T:DCBentry.
3. T:CSECT entries and allocates CSECTs when encountered.

4, T:FWD entries when FWDs are defined. Entries in T:FWDX are built when expressions defining FWDs cannot be
resolved.

5. Entries in T:DECL whenever a DEF, REF, SREF, CSECT, or DSECT declaration is encountered.

At module end, the four module tables (T:DECL, T:CSECT, T:FWD, and T:FWDX)are packed together and moved to
B:MT. If the buffer is full, the tables are output on X2.

When all the entries in T:ROMI have been processed, PASSONE determines whether the librariesspecified have been
searched, If not, PASSONE calls LIB to search the library specified. Note that the library is searched and the
ROMs from the library are loaded before the next library is searched.

If there are any :MODIFY commands for the segment, PASSONE calls CCI. After CCI recalls PASSONE, control is
returned to this point where T:MODIFY and T:MODULE are packed together and output on X3.

If there is a :SEG command in B:C, PASSONE calls CCI, Otherwise, the end of PASSONE is signaled. Blank

COMMON s allocated at the end of the longest path (if not allocated previously) and the remaining T:SYMBOL,
T:VALUE subtables are output. The resident table areas (T:DCB, T:SEG, T:DCBV, T:VALX) are set equal to the

Logical Flow of the Overlay Loader

137

138

actual lengths of the data in the tables. The T:ROMIarea length is set to zero (since it is not used by PASSTWO)and an
end-of-file iswritten on X1, If any of the six scratch files overflowed, MAPis called; otherwise, PASSTWO is called.

Logical Flow of LIB

The LIB segment first packs the 16 Dynamic Tables together at the top of the Dynamic Table area. The remaining
space will be used for the LIB's tables. (Whenever enough room does not exist for the LIB's tables, the "pack" is
written on the RAD scratch file, X6.) LIB then creates T:LDEF, starting from the end of the "pack".

The FWA of the EBCDIC, DEFREF, and MODIR files' buffer is calculated by subtracting the length of the longest file
from the end of the Dynamic Table area. The EBCDIC file is read into the buffer and the entries in T:LDEF are con-
verted to point from T:SYMBOL to entries in the EBCDIC file. T:LDEF entries not having corresponding EBCDIC
entries are changed to null entries.

The DEFREF file is then read into the buffer. LIB uses the DEFREF file to satisfy PREFs in T:LDEF. Allthe DEFs and
REFs from an entry in the DEFREF file are added to T:LDEF if at least one of the DEFs satisfies a PREF in T:LDEF
The pointer to the ROM's MODIR file entry is saved in T:LROM, which is built backwards, beginning from the top
of the DEFREF buffer. The DEFREF search is finished when all the PREFs in T:LDEF, that can be, are satisfied.
T:LROM now contains pointers to all the library ROMs, and T:LDEF is no longer required.

The MODIR file is read into the buffer and the T:LROM entries are changed to point to the ROM's starting record
number in the MODULE file.

The packed tables are read from the RAD (if they were saved in X6), and T:LROM is moved to the temporary buffer
(TEMPBUF) inside the LIB overlay while the Dynamic Tables are being unpacked. Note that if the DIAG segment
were to be called at this point, TEMPBUF would be destroyed. T:LROM entries are converted into T:ROMI format
and added to T:ROMI in the Dynamic Table area. PASSONE s then called to input the ROMs specified in T:ROMI,

Logical Flow of PASSTWO

PASSTWO branches to process T:ASSIGN if CCI has just been previously called by PASSTWO to input :ASSIGN
commands, Otherwise, it reorganizes the Dynamic Table area and moves the resident tables T:SEG, T:DCBV, and
T:DCB to the end of T:PUBVAL and locates T:VALUE at the end of T:DCB, PASSTWO then allocates part two of the
Root either at the end of the longest path or where specified on a :ROOT card.

PASSTWO is now ready to process the segments. It points to the first/next T:SEG entry; reads the segment's T:VALUE
subtable into T:VALUE; calculates the number of granules required for the segment on the Program File; creates
T:GRAN at the end of T:VALUE; reads the segment's T:MODIFY and T:MODULE tables at the top of T:VALX; and
allocates the Work area (which is divided into granule partitions and contains all or part of the segment's partitioned
core image)at the end of T:GRAN. The Work area extends to the Module Tables Buffer (B:MT), which varies insize,
and is allocated backwards from the top of T:MODIFY, The Work area is dynamic and changes in size either when
tables in B:MT are no longer required, or when another set of Module Tables is input,

PASSTWO is now ready to process the segment's ROMs. It points to the first/next T:MODULE entry; reads in the
first/next set of Module Tables into B:MT if necessary; points to the current module's T:DECL, T:CSECT, T:FWD,
and T:FWDX table; inputs the ROM; scans the load items; creates the absolute core image in the Work area using
T:GRAN to locate the granules; and if the Work area gets full, outputs the necessary granules to the Program File,

PASSTWO repeats this cycle until all the modules in the segment have been input and then writes the granules re-
maining in core onto the program file. It then points to the next T:SEG entry and repeats the outer cycle until all
the segments in the program have been created,

If a Public Library is not being created, PASSTWO builds T: GRAN for part two of the Root, located at the end of
T:DCB. If there is an :ASSIGN command in B:C, PASSTWO allocates T:ASSN from the end of T: GRAN to the be-
ginning of T:VALX and calls CCI to build T:ASSN. After CCI recalls PASSTWO, control is returned to this point,
PASSTWO allocates the Work area at the end of T:ASSN (which may be of zero length); creates OVLOAD, DCBTAB,
INTTAB, and the referenced DCBs; reassigns DCBs referenced in T:ASSN; writes part two of the Root on the Program
File; creates the program header; and writes it on the Program File. If a Public Library is being created, T:SYMBOL
and T:VALUE are output on the Program File. PASSTWO then exits by calling the MAP,

Logical Flow of MAP
MAP moves T:SEG and T:DCB to the top of the Dynamic Table area, and unless "no MAP" was specified, outputs the

program header information,

Logical Flow of the Overlay Loader

MAP points to the first/next T:SEG entry, and unless "no MAP" was specified, outputs the segment's header informa-
tion. If either the PROGRAM or ALL option was specified, MAP reads the segment's T:MODIFY and T:MODULE
tables into core at the end of T:DCB; locates B:MT at the end of T:MODULE; uses T:MODULE to read in the Module
Tables associated with the segment; maps the segment's control sections (including Library CSECTs if ALL specified);
and if this is the Root segment, lists T:DCB.

Regardless of the option specified, MAP reads the segment's T:SYM3OL and T:VALUE subtables into core at the end
of T:DCB. If the ALL option was specified, MAP reads T:PUBSYM and T:PUBVAL in as part of the root's external
table and lists all the symbols in the external table. 1f the PROGRAM option was specified, MAP lists all the non-
library symbols in the external table. If either the SHORT or "no MAP" option was specified, MAP lists only the
duplicate DEFs, undefined DEFs, unsatisfied REFs, and duplicate REFs.

This cycle is repeated until all the entries in T:SEG have been mapped. If a RADfile used by the Loader overflowed,
the number of granules used or needed for all files is listed. Otherwise, this information is output only if either the
PROGRAM or ALL option was specified,

MAP terminates the Overlay Loader by either calling the Monitor EXIT function or ABORT function. MAP aborts
and destroys the Program File if either a RAD file overflowed or there were loading errors when a Public Library
was being created,

Logical Flow of DIAG

When the DIAG overlay is called, the environment of the calling program is unchanged. Since the DIAG segment
overlays the calling segment, all the temporary and permanent storage cells used by the calling segment are located
in either the Root or the Dynamic Table area. DIAG is called by the RDIAG subroutine which exists in the Root.
When RDIAG is called, it saves the 16 registers and then calls in DIAG via the Monitor SEGLOAD function. DIAG
outputs the specified diagnostic and depending upon the exit code associated with the diagnostic, either aborts, re-
turns to RDIAG, or caiis the Monitor WAIT function. If control is returned from the WAIT function, DIAG returns
to RDIAG. RDIAG then reloads the calling segment via the Monitor SEGLOAD function, restores the 16 registers,
and returns to the calling segment at the address following the RDIAG call.

Loader-Generated Table Formats

The Loader creates the program's Program Control Block (PCB), DCB Table (DCBTAB), ond Segment Loading
Table (OVLOAD).

PCB
The PCB exists as part of the Root segment and is initialized as shown below by PASSTWO, when the Root segment is
credted.
Word 0 |0 0] TSTACK-1
1 1SS ‘O 0
2 |o o] OVLOAD
3 Unused
4 Unused
510 0 MSLADD
6 |0——0 Entry Address
0 7'8 1415'16 31
Unused
10 |0 0 DCBTAB
11 Unused
12 Unused .
L]]
0 141516 2526 31
where

TSTACK is the address of the current top of the user's Temp Stack.

TSS indicates the size, in words, of the user's Temp Stack.

Loader-Generated Table Formats 139

140

OVLOAD is the address of the table used by the SEGLOAD function to read in overlay segments or zero.
MSLADD is the address of the M:SL DCB used to load overlay segments.
DCBTAB is the address of a table of names and addresses of all of the user's DCBs. This table has the form
given below.
DCBTAB

DCBTAB is built from T:DCB, and is located in part two of the Root. DCBTAB has the format

Word 0 Total number of entries
1 El E2 E3 E4
Entry n (2 E5 E6 E7 E8
3 FWA of DCB's execution location

0 78 1516 2324 31

where

E1-E8 is the EBCDIC name of the DCB (left-justified with trailing blanks).

OVLOAD

The OVLOAD table contains the information necessary for the Monitor SEGLOAD function to read in overlay seg-
ments at execution time. One entry is created for each overlay segment. Thus, a program consisting only of a Root

would not have an OVLOAD Table.

OVLOAD islocatedin part two of the Root. The format of an entry is such that it canbe used as an FPT by SEGLOAD to
read in the requestedsegment. OVLOAD is formatted asdescribed inthe "RBM Tables Format" chapter.

Loading Overlay Loader

Before the Overlay Loader can be loaded, the OLOAD file in the SP area must be previously allocated by the RAD
Editor. It is loaded by the JCP Loader with the ILOAD command. It is critical that the ROMs of the Overlay
Loader's segments be ordered correctly, so that the segment's idents assigned by the JCP Loader coincide with the
idents used within the program. The segment idents are listed below:

SEG IDENT
ROOT 0
CCi i
PASSONE 2
PASSTWO 3
MAP 4
DIAG 5
LIB 6

The overall flow of the Overlay Loader is illustrated in Figures 53 through 60.

Loading Overlay Loader

Overlay
Loader

Z LOADSEG \
Load CCI to process
the !OLOAD CC,

Figure 53. Overlay Loader Fiow, IOLOAD

CcClI

Is
there an
unprocessed CC
in B:C

no ‘

2 RDCC

AN

Read next CC
into B:C.

/

/

CC terminate a
:ROOT, :SEG, or
:MODIFY sub-

stack?

LOADSEG

Load PASSONE to
process T:ROML.

CC terminate an

:ASSIGN substack
?

R

LOADSEG

\Load PASSTWO to

process T:ASSN.

Process control command.

~L

\

Figure 54. Overlay Loader Flow, CCI

Loading Overlay Loader

141

142

Was
CC just called
to input :MODIFY
commands ?

End

of T:ROMI
?

Get first/next entry
in T:ROMI.

Have
ROMs spec. in

Input ROM and scan for
PASSONE type load items.

A

Allocate CSECTS and
D SECTS when encountered

Build Module tables
(T:DECL, T:CSECT,
T:FWD, and T:FWDX).

\

Either link or add DEFs,
REFs, DSECTS to
T:PUBSYM, T:DCB or
T:SYMBOL or T:VALUE

Add DEF definitions to
T:VALUE and T:VALX.

T:ROMI entry been
input
?

no

Build T:MODULE
entry for ROM,

Move Module Tables to
B:MT and write on X2
if the buffer is full.

Loading Overlay Loader

Figure 55.

Overlay Loader Flow, PASSONE

Wasa

library search
specified

yes

no

Is
there a
:MODIFY command
in B:C?

yes y

first library
been searched
' 2

none
specified

second library
been searched

v no
LOADSEG

yes

\

[

LOADSEG

Load LIB to search
\ specified library.

/ LOADSEG \
{ A

3

ONE
760

Call CCl to build /
T:MODIFY.

Load LIB to search
specified library.

- -

Pack T:MODIFY and
T:MODULE together
and output on X3.

ONE
720

there a :SEG

command in

/ LOADSEG \

Load CCI to process

Write B:MT on X2.

next segment's
substack.

v

/ PATHEND j

Write remaining
T:SYMBOL, T:VALUE
subtables onto X4
and X5.

Did
any RAD scratch
files over-
flow?

no

yes }

Z LOADSEG \

/ LOADSEG

\ Load MAP to output
partial map.

Load PASSTWO to
create the load
module.

Figure 55. Overlay Loader Flow, PASSONE (cont.)

Loading Overlay Loader

143

Pack the 16 Dynamic Tables
at the top of the area.

v

Build T:LDEF at the end
of the packed tables.

v

Allocate EBCDIC, DEFREF,
and MODIR files' buffer.

Will
buffer overlap

T:LDEF
?

WRITE

Write packed
tables on X6.

A

Read EBCDIC file
into the buffer.

¥

Change T:LDEF entries to
point from T:SYMBOL and
T:PUBSYM entries to
EBCDIC entries.

Y

Read DEFREF file
into buffer,

Y

Allocate T:LROMtobegin
at the end of the buffer,
T

Y

Use DEFREF entries to
satisfy REFs in T:LDEF,

©

Built T:LROM to point to
library ROMs that satisfy
T:LDEF REFs.

"

Read MODIR file
into the buffer.

!

Convert T:LROM entries
to point from MODIR
file entries to MODULE
file record numbers.

Read packed
tables from

X6.

Bad

y

Move T:LROM to TEMPBUF
{inside LIB overlay).

'

Unpack the 16
Dynamic Tables.

v

Convert T:LROM entries
to T:ROMI entries and
add to T:ROMI.

/ L0ADSEG \

Load PASSONE to
process T:ROMI.

Figure 55. Overlay Loader Flow, PASSONE (cont.)

144 Loading Overlay Loader

Cljustcalledto
input :ASSIGN

Move T:SEG, T:DCBV,
and T:DCB to the end of
T:PUBVAL and allocate
T:VALUE at the end of
T:DCB.

Y

Allocate part two
of the Root.

Point to first/next
T:SEG entry.

\

Read segment's T:VALUE
subtable into T:VALUE.

Create T:GRAN at
the end of T:VALUE.

\

Read segment’s T:MODIFY
and T:MODULE at top of
T:VALX.

A J

Allocate Work area
at end of T:GRAN.

Allagcate R:-MT ot
Allccate B5:M 1 at

top of T:MODIFY.

Read in the segment's
ROMs and associated
Module Tables.

\

Scan PASSTWO type load
items and create absolute

core image.

Is
segment
preloaded

?

Write segment's core
image on Program File,

<

Figure 56. Overlay Loader Flow, PASSTWO

Loading Overlay Loader

145

Is
a PUBLIB being

Allocate Work
area at the end
of T:ASSN.

created
?

yes

Create T:GRAN at
end of T:DCB for
part 2 of the Root and
allocate T:ASSN at
end of T:GRAN,

Is
there an
:ASSIGN cmd.
in B:C?

LOADSEG

Load CCI to
build T:ASSN.

y

Create part 2 of the
Root and reassign
DCBs referenced in
T:ASSN.

y
Write part 2 of
the Root on
Program File.

\

Create program
header and write
it on Program File.

Is a
PUBLIB being
created

Write T:SYMBOL
and T:VALUE on
load medule file.

I |

LOADSEG 5
Load MAP to
output map.

Figure 56. Overlay Loader Flow, PASSTWO (cont.)

146 Loading Overlay Loader

List program, Root,
and segment header
information.

map speci-

List DCBs, program
CSECTS, and
program DEFs.

specified
?

no

yes

List library CSECTS,
library DEFs, and
Public Library DEFs,

A
List unsatisfied REFs,
duplicate DEFs,
duplicate REFs, and
undefined DEFs.

Any
RAD files

overflow

ves
/

List information
about RAD file
usage.

4

Any
RAD file over=
flow?

Is
a PUBLIBbeing

created

no

loading errors

2 yes

no

y

RABORT

EXIT \
Take normal
Monitorexit

Bl

Destroy ProgramFile
and take Monitor
ABORT exit.

Figure 57.

Overlay Loader Flow, MAP

Loading Overlay Loader

147

c

Save the 16
registers in the
Temp Stack.

Y

(SEGLOAD \

Load DIAG
overlay.

Figure 58. Overlay Loader Flow, RDIAG

SEGLOAD

Load callingover
lay segment

Y

Restore the 16
registers.

Figure 59. Overlay Loader Flow, RDIAGX

148 Loading Overlay Loader

Create text and
output diagnostic

on LO and OC.

Take
the exit asso=-
ciated with the
diagnostic.

RDIAGX

-

RABORT

N

/ : \
WALII L
\Wait for operarW

response.

'C' response

Figure 60. Overlay Loader Flow, DIAG

Loading Overlay Loader

149

[\

/ Read RADEDIT control
command. lLoad and
transfer control to
Editor.

RAD
. \
Initialize DCBs and the
c

Scain Routine purameiers.

<%

\ i

Read next command
from C device.

control comman

yes

IEOD
following

Load appropriate segment :COPY yes

if notalready in core and
branch to routine.

Return to Monitor.

Y

FERRE)

DPCOPY

Figure 61. RADEDIT Functional Flow

Permanent RAD Area Maintenance 151

152

C If C =1, compressed records.

B If B =1, blocked records.

RF If RF =0, background or nonresident foreground program; if RF = 1, resident foreground program.
GSIZE is the granule size, in bytes, to be used for direct accessing.
FSIZE is the current number of records in file.

RSIZE .is the number of bytes per logical record.
BOT is the relative disk address of first sector defined for the file.
EOT is the relative disk address of last sector defined for the file.
No entry extends over a sector boundary. After a sector of directory is filled, the next available sector within the

permanent disk area is allocated as a continuation of the directory. Sectors of a directory are linked by means of a
one-word identification entry which is the first word of every sector of the directory. It has the form

A Address Next available sector
01 1516 31
where
A If A =0, the directory ends in this sector; if A =1, the directory is continued on another sector.
Address If A =0, "Address" contains the relative location within the sector available for the next entry; if
A =1, "Address" is the relative disk address of the sector where the directory is continued.
Next available sector is the relative disk address of the first unused sector in the area. This word is mean-

ingful only for the last sector of directory.

Space within the permanent disk area is allocated sequentially. The first file in an area, which corresponds to the
first entry in the sector of directory, begins in the second sector and extends over an integral number of sectors.
Every file begins and ends on a sector boundary.

Control Commands

The permanent disk areas are maintained through the execution of :ALLOT, :DELETE, :TRUNCATE, and : SQUEEZE
commands.

The permanent file directories are maintained so that the directory entry defining a file is always contained in a
sector of directory that has a lower sector address than the file it defines. To facilitate maintenance, files always
appear in the same order as the entries in the file directory.

!AALLOT The permanent disk area specified on the command determines the area in whichafile isto be allocated.
The FILE, FORMAT, FSIZE, RSIZE, GSIZE, and RF parameters are used fo form a new directory entry.

The new entry is added to the current sector of directory (identification entry with A =0) at the location specified
by "Address" in the identification entry. The BOT of the new entry is set equal to the "Next available sector".
The EOT is computed, using the FSIZE, RSIZE, and FORMAT parameters. The identification entry is updated
to reflect the new entry. The "Next available sector” is set = EOT of the new entry +1, and the "Address"
is incremented by 5.

If there is insufficient space in the current sector of directory for another entry, "A" in the identification entry is
set fo 1; "Address" is set = "Next available sector" and that sector address is used for the new sector of directory.
A new identification entry is built by setting "A" =0; "Address" = 6; and "Next available sector" = EOT of the
new entry +1.

Permanent RAD Area Maintenance

If there is insufficient space to allocate for a file, the file directory is searched for deleted entries (file name = 0).
The deleted entry that allocates sufficient space and the least amount of space is selected for the new entry. Disk
space is lost if the deleted entry allocates more area than is required by the entry. This space can be made avail-
able for allocating by executing a :SQUEEZE command. The area allocated by a new entry is zeroed out.

The number of sectors to allocate for a file is calculated using the formulas

)
B- ((FS]ZE/R;D;E)“)*@
u-= ((RSIZE/s)+r)*FSIZE
where
r =1 if remainder #0, and 0 if remainder = 0.
s = disk sector size in words.

‘DELETE The DELETE system call is used to delete a disk file. The call is built from the area and file
name parameters on the :DELETE command. The space formerly allocated by the entry becomes unused until either

a :SQUEEZE command is executed, or an :ALLOT command is executed with insufficient space on the end of an area
to allocate. Space is then allocated by using a deleted entry.

:TRUNCATE The permanent disk area specified on the command determines the area in which a file(s) is to be
truncated, with the file name specified being used to search the file directory for the entry to be truncated. The
actual size of the file is calculated and the EOT of the file directory entry is updated accordingly.

The actual file size for blocked and unblocked files is determined by using the FSIZE and RSIZE of an entry; for
compressed files, an RFT entry (K:RFT11) containing the current record number is used. The space formerly allo-
cated between the EOT of an entry and the BOT of the next entry becomes unused and is not reallocated
until a :SQUEEZE command is executed.

:SQUEEZE The parameters on the :SQUEEZE command determine which permanent disk area to squeeze. Trun-
cating or deleting a file that is subsequently reallocated may cause a loss of space that cannot then be allocated.
That is, the current permanent file directory entry allocates less space than aliocated by the original entry. Exe-
cufing a :SQUEEZE regﬁins at! unused space. The directories are uuf‘updx‘.lcd and the files themselves aie moved to
regain the unused space. The BOT and EOT entries (of the permanent file directory) are updated as they are com-
pacted to indicate the area occupied by the moved file. Figure 62 illustrates the permanent disk area before and

after squeezing.

Library File Maintenance

Both the System Library files residing in the SP area and the User Library files residing in the FP area have the same
file structure. Each library consists of one blocked Module File (MODULE) and three unblocked files: the Module
Directory File (MODIR), EBCDIC File (EBCDIC), and DEFREF File (DEFREF).

The MODIR File contains general information about each library module, including its name, where inthe MODULE
File it is located, and its size. The MODULE File contains the object modules. The EBCDIC File contains only the
DEFs and REFs of the library modules. The DEFREF File contains indices to the DEFs and REFs in the EBCDIC File for

each module. These files must be defined via the :ALLOT command before attempting to generate them via the
:COPY command.

Algorithms for Computing Library File Lengths

The following algorithms may be used to determine the approximate lengths of the four files in a library. It
is not crucial that the file lengths be exact, since any unused space can be recovered via the :TRUNCATE

Library File Maintenance

153

Identification
Entry

Permanent RAD Area Before Squeezing

0 31| 51
file 1 > file]
1] 10

deleted unallocated
1| 14

file 2 (truncated) > file 2
16 20

file 3 (truncated) > file 3
23] 28

bad track > bad track
32| 47

file 4 > filed
48] 50

Permanent RAD Area After Squeezing
0| 26 | 48
file 1 > file]
1] 10

file 2 file 2
1] 15

file 3 > file3
16 | 21

file 4 > file 4
22| 24

bad track unused
32 l 27 - bad track

unused

154 Library File Maintenance

Figure 62. Permanent Disk Area

command. The approximate number of sectors (nMODIR) required in the MODIR File is

_3()
"MODIR 5

where
3 is the length of a MODIR File entry, in words.
i is the number of modules to be placed in the library.

s is the disk sector size, in words.

2 is the average length of an EBCDIC File entry, in words.
d is the unique number of DEFs in the library.

s is the disk sector size in words.

The approximate number of records (nMODULE) required in the MODULE File is

n
"MODULE ~ EZ] 5

where
n is the total number of modules in the library.
C is the number of card images in the ith library routine.

The approximate number of sectors (n) required in the DEFREF File is

DEFREF

] i 2
DEFREF s
where
n is the total number of routines in the library.
d is the number of DEFs in the ith library routine.
r is the number of REFs in the ith library routine.
s is the RAD sector size in words.

Library File Formats

The library file formats are described below. These files are generated from object modules read in via the

:COPY command.

Library File Maintenance

155

156

MODIR File

The MODIR File is an unblocked, sequential access file and acts as a directory to the MODULE File. The file al-
ways consists of one variable length record that increases in size as object modules are added to the library. There
is one entry in the MODIR File for each object module, with each entry consisting of three words.

Words 0 MODULE File record no. Records per module
1 Module name (first DEF)
2 Module name
3 MODULE File record no. Records per module
4 Module name
5 Module name
6
7
8
9
10
n
12
0 15516 31
where
MODULE File record no. is the relative record within the MODULE File where the object module (corres-

ponding to this entry) begins.
records per module is the number of records in the object module.

module name is the name of the object module that is the first DEF in an object module.

A deleted entry contains zeros in all three words.

MODULE File

The MODULE File is a blocked, sequential access file and contains the object modules. The location of the object
module within the file and the size is indicated by the MODIR File entry.

EBCDIC File

The EBCDIC File is an unblocked, sequential access file. The file always consists of one variablelength record that
increases in size as object modules are added to the library. The EBCDIC File contains all the unique DEFs and REFs
in the library object modules.

Library File Maintenance

0 n e e e
1 e n e e
2 e e e e
3 e e

where
n is the number of bytes in entry (including itself).
e is an external definition or reference in EBCDIC.

DEFREF File

The DEFREF File is an unblocked, sequential access file. The file always consists of one variable length record that
increases in size as object modules are added to the library. For each module there is one entry that varies in size
according to the number of DEFs, DSECTs, and REFs. DEFs and DSECTs always precede the REFs in the entry.

i Entry size {no. 1) MODIR File index

d DEF 1 d DEF 2
rid DSECT 1 r REF 1
r REF 2 Entry size (no. 2)

MODIRFile index d DEF 1
r REF 1 r REF 2
01 : 15161718 . 31
where
entry size is the number of halfword entries (including itself) for the object module. 3 sentry size <32,767.

MODIR File index is the relative halfword in the MODIR File that identifies the object module. 0=<MODIR
File index<32,767. -1 means a deleted entry.

d if d = 1, the entry is a DEF
if d and r both = 1, the entry is a DSECT.
r if r =1, the entry is a REF
DEF n is the byte index of an external definition in the EBCDIC File.
REF n is the byte index of an external reference in the EBCDIC File.

DSECT n is the byte index of a DSECT in the EBCDIC file.

A deleted DEFREF entry contains a MODIR File index of -1, with the rest of the entry remaining the same.

Command Execution

The library files are maintained through the execution of :ALLOT, :COPY, :DELETE, and :SQUEEZE commands. The
entries in the MODIR File, MODULE File, and DEFREF File are in the same sequential order. The ith entry in the

MODIR File identifies the ith object module in the MODULE File, and corresponds to the ith entry in the DEFREF

File. The ordering of these files is always preserved.

Library File Maintenance

157

158

ALLOT Library files are allocated in the same general manner as other files described previously, but with
certain specific differences. When area SP or FP is specified, a check is made to determine if the file name is
MODIR, MODULE, DEFREF, or EBCDIC. If MODULE is specified, RSIZE is required to be 30 words and FORMAT
must be blocked. If MODIR, DEFREF or EBCDIC is specified, FORMAT must be unblocked. RSIZE can be any value
for the unblocked files and is used solely for calculating the amount of space to allocate for the file. The record

size for these three files is set to 0 when allocated. GSIZE on all library files is ignored, and is always set equal
to disk sector size by RADEDIT.

:COPY The permanent disk area specified on the :COPY command determines which library a module(s) is to be
added to. For each object module added, the following procedure is followed:

1. An object module is read from the input device specified on the command. The module is added to the end
of the MODULE File as it is being scanned for external definitions and references. The MODULE File
record number for the MODIR File is obtained from RFT12 (current record no. of file). The MODIR File
index is obtained from RFTS (record length).

2. As DEFs and REFs are encountered, they are added as entries to the end of the EBCDIC File. The first DEF
encountered is used as the MODULE File name. However, REFs are added to the EBCDIC File if they are
not in duplicate.

3. The indices to the EBCDIC File entries are saved to create the DEF n and REF n words of the entry to the
DEFREF File.

4. The addition of the object module to the library is completed by updating the "records per module" in the

MODIR File entry; "entry size" in the DEFREF File entry; and writing the MODULE, DEFREF, and EBCDIC
Files to the disk.

‘DELETE The permanent disk area on the :DELETE command is used to determine which area contains the library
object module to be deleted. The MODIR File entry containing the same module name as that appearingon the com-
mand is zeroed out. The corresponding DEFREF File entry is located and the halfword containing the MODIR File
index is set to -1. No other changes are made to the EBCDIC and MODULE Files as a result of the :DELETE
command. -

All unused space resulting from a module deletion is recovered when a : SQUEEZE command is executed.

:SQUEEZE The permanent disk area on the :SQUEEZE command is used to determine the library to be squeezed.
Permanent disk areas containing libraries are squeezed in the same way as other areas with the following excep-
tion: after the permanent file directories are compacted and files are moved to regain the unused space, a search
is made of the MODIR File. All existing modules are copied from the MODULE File to the Temporary File XI.
Using X1 as the source of input, the library files MODIR, EBCDIC, and DEFREF are regenerated.

Bad Track Handling

Bad tracks within permanent file areas on a disk are removed from use by making special entries to the appropriate
file directory. All bad tracks can be handled in this manner except those that contain a sector of the file directory,
These cannot be removed from use as it would make accessing of certain files impossible.

Command Execution

Bad tracks are handled through execution of B:DTRACK and :GDTRACK commands. The :BDTRACK command re-
moves the track from use by allocating the track. The :GDTRACK command returns the track for use by deleting
the entry made by :BDTRACK.

:BDTRACK The permanent file area that encompasses the bad track is determined by the disk or disk pack (DP)
and bad track specified on the command. A check is made to determine if a sector of directory falls within the bad
track. [If it does, the bad track is not eliminated from use. A search of the file directory is made to determine if
the bad track is allocated. If it is, the entry(s) that allocates the track is eliminated and replaced by a bad track
entry. If it is not allocated, a bad track entry is added to the end of the file directory. A bad track entry consists
of the "file name" being set to -1, and the BOT and EOT being set to the starting and ending sector of the bad
track. The appearance of files in the same order as the entries in the file directory is maintained.

Bad Track Handling

:GDTRACK The permanent file area that encompasses the good track is determined by the RAD or disk pack
(DP) and bad track specified on the command. A search of the file directory is made for the entry that allocates
the track specified on the command. The entry is deleted (file name set =0), making the track available for

allocating.

Utility Functions
The following utility functions are performed by the RADEDIT:

e Maps permanent disk areas.

e Maps libraries,

e Clears permanent disk areas.

e Enters data onto permanent disk files.

e Appends records to the end of an existing permanent disk file.
e Copies permanent disk files.

e Copies library object modules.

e Copies the contents of a disk to another disk,

Nl ' o O R o}
L] wuimps e conienis ol aisk 11

iles or enfire disk areas.
e Saves the contents of disk areas in self-reloadable form.

e Restores disk areas previously saved.
MAP The permanent disk area(s) to be mapped is indicated on the :MAP Command, with the map information
being output to the device assigned to the M:LO DCB,

Each map consists of up to three sections: one section when disk areas CK, XA, or BT are mapped; three sections
if any other areas are mapped. The three sections of the map are as follows:

1. Information from the Master Directory identifying the permanent disk area, starting and ending disk ad-
dresses, write protection, and device number of the disk from the Device Control Tables.

2. Information obtained from the permanent file directories concerning each file in the area; its name, format,

granule size, record size, file size, beginning of file, and ending of file.

3. Information about the space remaining in the area.
Section 1 of the map has the format

AREA DEVICE- WORDS/ SECTORS/ BEGIN END WRITE

ADDRESS SECTOR TRACK SECTOR SECTOR PROTECT
zz yyndd $5555 ttttt bbbbb eeeee w
where
zz identifies the permanent disk area.

yyndd is the disk that contains the permanent disk area.

$5555 is the number of words per sector, in decimal.

Htt is the number of sectors per track, in decimal.

bbbbb is the absolute disk address of the first sector of the area in decimal.

eeeee is the absolute disk address of the last sector of the area in decimal.

Utility Functions

159

160

w is the write protection for the file.

is write~permitted by foreground only unless SY key~-in.
is write-permitted by background only unless SY key-in.

F

B

M is write—permitted by the monitor only.
N is write-permitted only if SY key-in.
X

is write-permitted by 1OEX only.

Section 2 of the map has the format

(AREA RELATIVE) GRANULE RECORD FILE APPROX
FILEN AME BEGIN END SIZE SIZE SIZE RECORDS
ORG SECTOR SECTOR (BYTES) (BYTES) (RECS) REMAINING
nnnnnnnn f $5SSS tHitt 99999 rreer 20044 aaaaa
where

nnnnnnnn is the name of a file in the permanent disk area.
f is the file organization:

U specifies unblocked,

B specifies blocked.

C specifies compressed.
99999 is the granule size in bytes in decimal.
rrreee is the record size in bytes in decimal.
20024 is the number of records in file in decimal.
$555§ is the relative disk address of the first sector defined for the file in decimal.
ttt is the relative disk address of the last sector defined for the file in decimal.
aaaaa is the approximate number of additional records the file can contain.

Section 3 of the map gives statistics on the utilization of the area and has the format

REMAINING SECTORS: XXXXX
SECTORS RECOVERABLE: yyyyy

where

XXXXX is the number of unused sectors in the area, i.e., the sectors between the end of the last allocated
file and the end of the area.

yyyyy is the number of additional sectors that will become available if a SQUEEZE is done.
The mapping of an area is performed as follows:

T. Information is obtained from the Master Directory for Section 1 of the map and output to the LO device.
If an area is not allocated, the mapping of that area is ignored.

2. Information is then obtained from the permanent file directory for Section 2 and otuput to the LO device.
If an area other than CK, XA, or BT does not contain files, a message will be output to that effect. When
a bad track entry is encountered, "BADTRACK" is printed as the name of the file.

3. As the information for each file is printed, sectors contained in deleted files or between the end of one

file and the beginning of the next (truncated areas) are counted for reporting in Section 3,

Utility Functions

The information on the Master Directory is unpacked by the subroutine UNPKMASD into a table. All subsequent
references to MASTD information during a MAP operation then use this table, UNPKMASD also computes the num-
ber of sectors in the area and initializes values used in accounting for free space, used space, and lost space for
Section 3 output.

Each file's entry in the directory is unpacked into a table as it is scanned by the subroutine UNPKDIRE. This table,
rather than the actual entry in the directory, is used fo print the information for Section 2,

As each area's map is produced, checks are made for a valid directory. Error conditions tested are

1. The "Address" portion of the last directory sector is larger than a sector.

2. The "Next Available Sector" portion of a directory sector points out of the area.
3. The End sector of a file entry is beyond the end of the area.

4, The size of a file (EOF-BOF) <0,

Whenever any of these conditions are found, the processing of the area is terminated by the message
"AREA CONTAINS NO FILES. "

The period is used to indicate that the directory is not valid.

'LMAP This command functions exactly as the :MAP function with the following exceptions:

e SPand FP are the only areas allowed with this command.

o The map consists of up to four sections, The first three sections are as shown in the :MAP description. The
additional fourth section gives information about object modules in the library files.

Section 4 of the map has the format

MAP OF LIBRARY IN AREA aa

MODULE NAME LOCATION DEFS REFS

mmmmmmmm 2900 dddddddd dddddddd rrrrrerr rrrereeer
where

aa is the permanent disk area that contains the library.

mmmmmmmm is the object module name.

2242 s the relative sector address of the first sector of the object module.
dddddddd is the name of an external definition. (Up to 3 per line.)
rerereer is the name of an external reference. (Up to 3 per line.)
{SMAP This command is similar to the :MAP function except that the output is greatly abbreviated for output
to a terminal.
Section 1 of the map has the format:
AREA: ZZ
Section 2 of the map has the format:

FILENAME RECORDS

nnnnnnnn 20000

The mapping of the areas is performed in the same steps as under MAP.

Utility Functions

161

162

:CLEAR The permanent RAD area on the :CLEAR command is used to determine the area to be cleared (set to
zero). The area is cleared using the direct access method. The granule size is set equal to the amount of unused
background space available, which is zeroed out and written to the RAD.

:COPY The parameters on the :COPY command are used to set up the F:S1 and F:SO DCBs. Files are copied
sequentially. When an 1EOD, :EOD, or EOT is encountered, the number of files to copy is decremented. If there
are no more files to copy, the request is terminated; otherwise, the next file-copy is started. When an object
module is copied to an output device, the COPY is terminated when the module end load item is encountered.

:DPCOPY The parameters in the :DPCOPY command are used to set up input and output DCBs which are assigned
directly to the specified disk packs. The copy is double buffered on input and output using buffers that are as large
as the background work space will allow. The copy continues until the specified number of sectors have been
copied.

:DUMP The permanent RAD area or file to be dumped is indicated on the :DUMP command. The information is
dumped to the device assigned to the M:LO DCB. The file dump has the format

DUMP OF FILE nnnnnnnn IN AREA AA
RECORD rrrr

WD 0000 dddddddd dddddddd .. .dddddddd

WD 0008
WD 0016
where
nnnannnnn is the name of the file.
AA identifies the permanent RAD area (area BT inclusive).
reer is the relative record number and begins with 1.

dddddddd is a data word in hexadecimal.

The area dump has the format
DUMP OF AREA ZZ
SECTOR ssss
WD0000 dddddddd dddddddd ...dddddddd
wDO0008
WD0016
where
zz identifies the RAD area.
sSSS is the relative sector number, and begins with 0.

dddddddd is a data word in hexadecimal.

Utility Functions

The dumping of an area or file is performed as follows:

1.

The directive is scanned to determine whether an area or file is to be dumped. If a value for SREC is not speci-
fied, 0is assumed. If o value for EREC is not specified, the last record of the file or area is assumed.

The record(s) to be dumped is accessed sequentially. Within a record, if a word is duplicated more than sixteen
times in order, it is output only once in the message

"WDxxx THRU xxx CONTAIN xxxxxxxx'

If records are duplicated, the message

'"RECORDxxx THRU xxx CONTAIN xxxxxxxx'

is output.

If sectors are duplicated, the message

'SECTOR xxx THRU xxx CONTAIN xxxxxxxx'

is output.

The dump is terminated when the specified number of records have been dumped or when a complete file or area
has been dumped.

'SAVE The area(s) to be saved is specified on the :SAVE command. The data is dumped to the device assigned to
the M:BO DCB, and consisfs of the following:

1.

2.

3.

4.

A small 88-byte bootstrap that loads the large bootstrap when booted from the console.
A large bootstrap that restores the disk from magnetic or paper tape.
An 88-byte RBM bootstrap used for booting the disk.

Records containing data to be restored.

Each record to be restored is preceded by a five-word header with the format

No. words per sector R LRI 0——0 E Area ident.

No. sectorsinrecord Device number

First=word address of area

No. sectors per track No. sectors (zero) to write

CKSM (2's complement form)

where

1 '3 1
0 15161718 2324 31
No. words per sector is the size of the sector.
LRA is a flag to indicate the last record of an area if LRA =1, last record.
LRT is a flag to indicate the last record of the tape if LRT =1, last record.

Utility Functions

163

DP indicates that the device is a disk pack if DP = 1.

Area ident. is the area to which the record belongs.

No. sectors in record is the size of record (in sectors).

Device number is the physical device number of the RAD or disk pack.

FWA of area is the absolute address where the data records should begin being restored.

No. sectors per track/No. sectors (zero) to write is the number of sectors containing all zeros preceding
nonzero data in the record.

CKSM is the checksum of this record in the 2's complement form.

The saving of an area for subsequent restoration is performed as follows:
1. A small and large bootstrap are written with their checksums.

2. A header for the RBM RAD bootstrap is written. The FWA and device number for the header is obtained
from K:RDBOOT.

3. The image of the RBM RAD boofstrap is read from the file RADBOOT in the SP area, and written.

4. Data records are written with each record being preceded by a header and followed by a checksum. Lead-
ing and trailing zeros of a record are not written. Size of the data records depends upon the amount of
available background space used as a buffer.

5. After all the specified areas are saved, the tape is verified by using the checksum word of each header and

data record.

‘RESTORE The area(s) to be restored is specified on the :RESTORE command. The data is read using the device
assigned to the M:BI DCB. The small bootstrap, large bootstrap, and RBM disk bootstrap are skipped. Data records
are read and restored using the headers that precede them with all leading and trailing zeros of a record also being
restored. Restoration has to be made to the same type of disk as that from which the records were saved.

The overall flow of the RAD Editor is illustrated in Figures 63 through 67,

164 Utility Functions

[Allot
8A

Allot

Scan command and
save contents.

Set default vaiues
for FSIZE, GSIZE,
RSIZE.

A

Calculate number of
sectors to allocate
for file.

Py

Allot y

1

Mcienf
space to add entry

to current sector of
directory?

Build new sector
of directory.

20

Allot

yes

>

4
/ﬁfi-
cient space

toallocate on end
of area
?

ino

Use adeleted entry
that allocates
sufficient space.

23

Add entry to
File Directory.

Zero out area
allocated.

Figure 63.

RADEDIT Flow, ALLOT

Uti]ity Functions

165

166

CoprY

Initialize COPY

routine.

y

Scan command
(from field).

input from

device or op

label
?

Input From File

Setup F:SI DCB
and FPT (areq, file
name, ASN record
size).

y

Scan command
(to field).

Copying
to another RAD
file
?

Copying
to output device

rop label yes

no

Y

Illegal use of COPY.
Return to Monitor
or EXEC1.

Utility Functions

Figure 64, RADEDIT Flow, COPY

COoPY
58

COPY
65

COPY
68

Setup F:SI DCB and
FPT (area, record
size, file name =
Module).

Scan command

(to field).

)

Copying
to output device
or op label

yes

IHegal use of COPY |
Return to Monitor
or EXECI.

4

Setup F:SO DCB
(ASN, DCT Index,
op Label Table
Index).

y

Read MODIR file
into Background
Buffer.

\

Get location of
module in MODULE
file by searching
MODIR file.

!

Skipout tomodule
on MODULE file.

T

Copy module to
output device.

Figure 64, RADEDIT Flow, COPY (cont.)

Utility Functions

167

168

Setup F:SI DCB (ASN,
DCT Index, Op Label
Table Index.)

'

Scan command (to field).

Copying
to a library ?_~yes

Copying
to a file?

Setup F:SO DCB and FPT
(area, file name, ASN,
record size).

4

Process options if any.

CopPY >
22
If add option, skip to EOF
on output file,
standard binary
cory
22

Assign C device to 0.

v

Copy to disk file,

¥

Reassign C device to
standard assign.

EXECI
N

Utility Functions

Figure 64, RADEDIT Flow, COPY (cont.)

\

?

COPY

(s

.

Setup F:SI, F:SO
DCBs and FPTs.

(YU

ves
/

ivioduie add
2 no
\

Read EBCDIC file
into Background
Buffer.

Set record
length =0 for

all library files.

Invert EBCDIC in
Background Buffer
starting at highest
core location.

<l

Read DEFREF File
into Background
Buffer starting at
Lowest Core Locat.

l

Scan module for

DEFs and REFs.

COPY
38

CcOoprY
38

COPY
4]

Write out DEFREF
file withnew entry
to DEFREF file.

A\

Invert EBCDIC
in background.

Y

Write out EBCDIC
file with new entry
to EBCDIC file.

Read MODIR
file into
background.

Write out MODIR
file inciuding
entry for this
module.

Figure 64. RADEDIT Flow, COPY (cont.)

Utility Functions

169

Set up F:SO DCB
(area, file name,

ASN).

Process options
if any.

\

If add option, skip
to EOF on output
file.

Setup F:SO DCB
(ASN, DCT Index,
Op Label Table,
Index).

\

&)—

Process options
if any.

Copy input file
to output file.

v

Write EOF on
output file.

Figure 64. RADEDIT Flow, COPY (cont.)

170 Utility Functions

SQUEZ

. deleted entries.

Scan command for
area to squeeze.

Read ali of file
directory forarea
into background.

Arem
specified areas
squeeze

Squeeze file
directory, removing

.

Current file
directory entry =1 ?
(BADTRACK)

If gap between EOT
no and badtrack BOT,
insert largest file
that will fit and
update directory.

Move file and

update directory.

All
permanent
disk filesmoved
?

Figure 65. RADEDIT Flow, SQUEEZE

Utility Functions

171

172

Write out

. file directory.

brary
in SP or FP

area
?

yes
y
Search MODIR file

for existing modules
and copy modules
from MODULE file

. to Temp. file (X1).
‘

Create new library

files (MODIR,

DEFREF, EBCDIC)
using file X1 as input.

SQUEZ

Utility Functions

Figure 65, RADEDIT Flow, SQUEEZE (cont.)

SAVE

Setup to write out
small boot. (a) size
of large boot in
small boot. (b) build
CKSM for small boot

y

Write out small
boot to BO.

Y

T

C_ s e tho b
YETUpP TO Wiife Our idilge

boot. (a) putread order
in large boot (MT or PT).

(b) build CKSM for
large boot.

v

Write out large
boot to BO.

y
Build header for
disk boot and
write to BO.

Y

Get RADBOOT from
SP file RADBOOT

and write to BO.

Build header for
data record.

Read data from
specified area.

Figure 66. RADEDIT Flow, SAVE

Utility Functions

173

Calculate number of
sectors of zeros at

frontend of record if
“lany save in header.

'

Remove trailing
zeros if any.

y

Build CKSM and
write out header.

v

Write data record
to BO.

All

specified areas

dumped
?

yes

Verify tape
generated.

Figure 66. RADEDIT Flow, SAVE (cont.)

174 Utility Functions

REST

REST

Scan directive for
area to restore.

r

Skip first four rec-
ords (bootstraps)
and read first data

header.

Verify disk being
restored has same
secfor size as fhaf
saved.

CKSM data
header.

—_—

Write leading
zeros if any
precede data.

Read data record
A

S

(a) Write data rec-
ord on disk and
(b) Read new data
header.

areas restored
2

Figure 67. RADEDIT Flow, RESTORE

Utility Functions

175

11. SYSTEM GENERATION

Overview

The System Generation program is assembled in absolute, using the ASECT directive, and is ORG'd (origined) at
two locations:

1. The first ORG at location X'140' allocates and defines the system flags and pointers. 1t is the first location
that cannot be used for an external interrupt. The system flags and pointers are a group of cells that pro-
vide communication between SYSGEN, all portions of the Monitor, and the system processors and service
routines. Since these cells are in fixed, predetermined locations, they are defined via the EQU directive
in all programs that reference them. Note that these cells must not be changed, deleted, or altered in any
way in the SYSGEN listing unless the EQU directives are also changed in all programs that reference the
cells. The system flags and pointers are followed by a skeleton of the Master Dictionary. The Master
Dictionary is not necessarily fixed at its assembled location since it may be moved to the unused interrupt
cells if sufficient space exists.

2. The next ORG (based on assembly parameters) fixes the start of the SYSGEN program. SYSGEN is ORG'd
such that the program will occupy the highest address portion in memory. This provides the SYSGEN
Loader with the maximum amount of room to load the Monitor and its overlays in the lower address portion
of memory. If a user adds a significant amount of code to the Monitor, this ORG may have to be moved
to a higher location to prevent the Monitor from overflowing SYSGEN during the load.

The System Generation program is divided into two sections designated as SYSGEN and SYSLOAD. SYSGEN pro-
cesses all the SYSGEN control commands and allocates and initializes all the Monitor tables from the information
on the control commands. It also builds a symbol table for SYSLOAD that contains the name and absolute address
of all the Monitor tables., Optionally, SYSGEN will output on a rebootable deck containing the Monitor tables
and SYSLOAD on cards, paper tape, or magnetic tape. The SYSGEN phase can be overwritten during the loading
of the Monitor, and terminates by exiting to SYSLOAD.,

SYSLOAD loads the Monitor, all optional resident routines, the RBM overlays, the Job Control Processor, and then
writes these in to the RBM file in the SP area. A map containing the RBM table allocation and RAD allocation is
output upon request. SYSLOAD terminates by reading in the disk Bootstrap and exiting to it, simulating a booting
of the system from the disk.

Figure 68 illustrates the core layout of SYSGEN and SYSLOAD after the absolute object module is loaded by the
Stand-Alone SYSGEN Loader.

Unchanged X' 140"

System Flags and Pointers X1208"
Skeleton of Master Dictionary X'236'
Unchanged X'400"

Stand-Alone SYSGEN Loader

Unchanged
SYSGEN Processing Routines
Subroutines Unique to SYSGEN
SYSLOAD
Subroutines Used by SYSGEN and SYSLOAD

#MEMSIZE

Note: #MEMSIZE and #SYSGEN are assembly parameters.

Figure 68. SYSGEN and SYSLOAD Layout Before Execution

176 Utility Functions

Figure 69 depicts a typical core layout after SYSGEN and SYSLOAD have executed.

Unchanged

MTW, O Instruction Stored in all Used
Interrupt Locations

Unused Interrupt Locations Used for
Monitor Tables

X'140!
System Flags and Pointers
X'216'
Remainder of Monitor Tables
RBM Overlay Area Tt 512 Locations

~—Patch Area
Floating Point, Decimal Byte=String, and Conversion

Instruction Simulation Packages, if Required

RBM Root

Resident RBM Overlays

RBM Initialize Routine +— Background FWA (starts on first page
(Extends into Background Area) boundary after Resident RBM)
Area Used by SYSLOAD to Load JCP About 4600 Locations
SYSLOAD #MEMSIZE

Figure 69. SYSGEN and SYSLOAD Layout After Execution

SYSGEN/SYSLOAD Flow

The flowcharts in Figure 70 depict the overall flow of SYSGEN and SYSLOAD. The labels used correspond to the
labels in the program listing.

Loading Simulation Routines, RBM, and RBM Overlays

The S region of the SYSLOAD listing contains a loader that loads the instruction simulation packages, RBM, the
RBM overlays, and the Job Control Processor (JCP). Each object module loaded must have one DEF directive that
identifies the object module to the loader.! The DEFs listed in Table 8 are recognized by the Loader.

fThis DEF must be the first load item in the ROM.

SYSGEN/SYSLOAD Flow/Loading Simulation Routines, RBM, and RBM Overlays

177

Initialize SYSGEN flags.

sense switches

Go type "RBM SYSGEN"
"IN, OUT DEVICES".

'

Assume input of :SYS
CRAO03, LPACF.

%

Store input, output devices
for Read/Write routine.

/ READ \

Go to READ for input
of next control command,

k)

Decode control cmd and go
to proper processing region.

DO1
STDLB
cmd

BO1
CHAN

cmd

EOl

cmd

Monitor

HO1
INTLB
cmd
Nt von

ALLOT SYSLD
cmd cmd

Figure 70. SYSGEN/SYSLOAD Flow

178 Loading Simulation Routines, RBM, and RBM Overlays

Set up group code and level
bit for Control Task int.

K60

Set all used interrupt
locations to MTW, 0.

f

Change no. TRKS for GO,

A~y el . . '
UV Tiies TO secror numoer,

i

Move Master Dict. to
unused int. cells if room.

I

A

Allocate and preset all
RBM tables. DCT, 10Q,
RFT, etc. Set OLAFWA to
X'100' boundary if all
SENSE switches are set,

\

Save FWA of tables in
Symboi Tabie for SYSLOAD.

ad

I

Set FGD FWA, BCKG
FWA, FPOOL FWA, etc.

Go output map
if requested.

Figure 70. SYSGEN/SYSLOAD Flow (cont.)

Loading Simulation Routines, RBM, and RBM Overlays 179

Output rebootable
deck of SYSLOAD,

if requested.

Was
a :SYSLD emd
input?

Go Type "RBM
SYSLOAD".
"INPUT OPTIONS".

e

®

Process :SYSLD emd
and set up flags and
1/0O devices.

Update
or All option
?

Y

All or
Fast

Zero out all defined
RAD areas (first sec-
tor only if fast
option).

Figure 70. SYSGEN/SYSLOAD Flow (cont.)

180 Loading Simulation Routines, RBM, and RBM Overlays

Read In RAD Boot-
strap from existing

RBM.

R19

A
Get RAD address
for existing RBM,

and read in first
400 words of RBM,

Y

Compare old Master
Dict. with new Mas-
ter Dict. to see
which areas moved.

v

Type Reload alarms
for all areas that
moved.

I

Zero out first sector
of all areas that
moved,

<

Initialize cells for
loading of RBM
object modules,

)

on

AVI=

599 v

Load FPSIM and
DECSIMroutines, if
required, to core.

y

Load RBM to core and
write to RBM file on
RAD. Loadthe RBM
overlays and the JCP

to the RBM RADfile.
. \i

Set background FWA
and Simulation
routine's FWA,

Figure 70. SYSGEN/SYSLOAD Flow (cont.)

Loading Simulation Routines, RBM, and RBM Overlays 181

Adjust size of
checkpoint area
if necessary.

SR
A
Move RBM OVLOAD
table to its

resident location.

Y

Output map
if requested.

®

A

Write RBM tables
onto RBM file.

Y

Write RAD Boot
onto BOOT file.

/
Type "RELOAD SP AREA™"
and "RELOAD BCKG
PROGRAMS", if
appropriate.

Write out SP

directory if
appropriate.

\
Write RAD Boot-

strap onto sector0
of RAD.

Y
Punch hard copy
of RAD Bootstrap
if required.

—

Exit
to RAD
Boot

Figure 70. SYSGEN/SYSLOAD Flow (cont.)

182 Loading Simulation Routines, RBM, and RBM Overlays

Table 8. Standard SYSLOAD DEFs

DEF Name Program

ABEX Background abort/exit

ALLOT ALLOT Service Calls

ARM ARM/DISARM/CONNECT/DISCONNECT
BKLI Background Loader

BYTSIM Byte String Instruction Simulation Routine
CHECK CHECK Service Calls

CKD Crash Dump to LP

CKD2 Crash Dump to LP

CKPT Checkpoint

CLOSEX Ciose a DCB

CRD Crash Dump to Bl

CRS Crash Save

CVSIM Convert Instruction Simulation Routine
DECSIM Decimal Instruction Simulation Routine
DELETE Service Call

DEVI DEVICE Service Calls

ENQ Enqueve/Dequeue

ESU Error Summary

EXTM Termination Service Calls

FGL1 Run-time Loader

FGL2 Run-time Loader

FGL3 Run-time Loader

FPSIM Floating Point Simulation Routine
GETNRT 1/O Subroutines

INIT Boot time initialization

IOEX I0EX Service Calls

KEY 1 Keyin Processor

KEY2 Keyin Processor

KEY3 Keyin Processor

Loading Simulation Routines, RBM, and RBM Overlays 183

184

Table 8. Standard SYSLOAD DEFs (cont.)

DEF Name Program

KEY4 Keyin Processor

KEY5 Keyin Processor

KEYé6 Keyin Processor

KEY7 Keyin Processor

LOG Error Logger

LP Line Printer Handlers
OPENX Open a DCB

PINIT INIT Service Calls
PRINT PRINT Service Calls
READWRIT READ/WRITE Service Calls
REWIND REWIND Service Calls
RUN RUN Service Calls
RWBFILE Blocked File 1/O
RWDEVF Unblocked File 1/0O
SDBUF Side Suffering Routines
SIGN AL Signal Handler

SJOB SJOB/KJOB Service Calls
SN AM SETN AME Service Calls
STDLB STDLB Service Calls
TAPE Magnetic Tape Handlers
TERM Task Termination
TMGETP Task/ECB Subroutines
TMTYC Task/ECB Subroutines
TRAPS Trap Handling

T Task Termination

WAIT WAIT Service Calls

Loading Simulation Routines, RBM, and RBM Overlays

The loader satisfies references to any of the RBM tables and RBM DEFs in the object modules it loads. References
that can be satisfied are contained in the RBM Symbol Table. The address of each RBM table is stored in the Symbol
Table by SYSGEN when the table is allocated. The address of each RBM DEF is stored when it is encountered during
loading of the RBM object module.

All other references are treated as overlay entry-point references, and saved in the RBM Program Table. A more
detailed discussion is given in the "Monitor Internal Services" chapter.

SYSGEN 1/0

SYSGEN and SYSLOAD perform all of their own 1/O via the READ/WRITE routine except for the typing of alarms
performed by TYPE, The READ/WRITE routine will handle all standard SIGMA peripheral devices.

The READ/WRITE rouiine makes exiensive use of tabies {caiied IOTO through 10T18) that fuily describe the charac-
teristics of each peripheral device. (See the comments in the program listing for descriptions of the READ/WRITE
routine and the tables.) The paper tape format used by SYSGEN on read operations is identical to the format used
by RBM described in Appendix B.

Rebootable Deck Format

If a :PUNCH control command is read by SYSGEN, a rebootable deck is output that includes the RBM tables with
their initialized values, SYSLOAD, and the RBM Symboi Table.t This deck can be used to load a new version of
RBM without re-inputting ali the SYSGEN control commands.

The first card in the rebootable deck consists of a one-card bootstrap program that loads the next two cards in the
deck. These next fwo cards consist of a program that loads the remainder of the deck, consisting essentiaiiy of ihe

RBM Table, SYSLOAD, and the RBM Symbol Table in core image format.

The two cards containing the Core Image Loader have the following format:

Byte No. Contents

0 X'FF' (for card 1) X'9F' (for card 2)

1,2,3 Unused (all zeros)

4,5,6,7 Complement checksum of entire card (carry out
of bit 0 is ignored in computing checksum)

8,9 Unused (all zeros)

10, 11 Load address, minus one, for following data

12-119 Loader in absolute core image format

f
If the rebootable deck is output to paper tape, there are no special additional characters. That is, the paper tape
contains an exact card image.

SYSGEN 1/O/Rebootable Deck Format 185

186

The core image format of the Two-Card Loader is

word 1 X'FF' or X'9F'

word 2 Complement checksum of entire 29 words on card

word 3 Load address - 1
word 4

(words 4-30
contain the
Two-Card
Loader in abso-
lute core image
format,)

word 30

0 78 1516 3]

The RBM Tables, SYSLOAD, and the RBM Symbol Table are output in the core image format

word 1 X'FF' or X'9F! Sequence number (0-n)
Complement checksum

word 2 Load address - 1 (not incl. halfword 0)

word 3

(words 3-30

contain the

above-mentioned
data in core
image format.)

word 30

{ +
0 78 1516 31

All cards contain an X'FF' in byte 0 except the last card. The last card contains an X'9F' in byte 0 and the
SYSLOAD entry address in place of the load address in word 1. The last card contains no data other that the
SYSLOAD entry address, the sequence number, and checksum,

Stand-Alone SYSGEN Loader

The Stand-Alone SYSGEN Loader is a small loader specifically created to load the SYSGEN absolute object module.
Since SYSGEN is assembled in absolute, the SYSGEN Loader will only load absolute load items and handles only
the small subset of the Sigma Object Language required to load SYSGEN,

The SYSGEN Loader 1/O routine is similar to the SYSGEN 1/O, with the code performing the actual loading being
similar to the code in the SYSGEN Loader.

Stand-Alone SYSGEN Loader

APPENDIX A. RBM SYSTEM FLAGS AND POINTERS

Table A-1. RBM System Flags and Pointers

Name Location Description
K:SYSTEM X'28’ Monitor Identification (RBMIDENT) have the following
meaning:
Bits 0-7 System-identification (X'30' = RBM).
Bits 8-11 Version (C=3, D=4, etc.).
Bits 12-15 Update (1, 2, 3, etc.).
Bits 16-23 Reserved.
Bits 24-25 00 - Sigma 5.
01 - Sigma 6/7.
10 - Sigma 9.
11 - Reserved.
Bit 26 Reserved.
Bit 27 Reserved.
Bit 28 Reserved.
Bi+ 29 Real-Time Routines
Bit 30 Reserved.
Bit 31 Reserved.
K:BACKBG X'140' Beginning address of background.
K:BCKEND X141 Ending address of background.
K:FGDBG1 X'142' Current beginning address of FGD.
K:FGDEND X'143' Ending address of FGD.
K:CCBUF " X144 Address of Control Card Buffer.
K:BPOOL X'145' Start address of BCKG Blocking Buffer Pool.
K:FGDBG?2 X'146' Beginning address of FGD set at SYSGEN.
K:FMBOX X'147' Start address of FGD Mailboxes.
K:FPOOL X'148' Start address of FGD Blocking Buffer Pool.
K:UNAVBG X'149 Start address of unavailable memory.
K:MASTD X'14A" Start address of Master Dictionary.
K:NUMDA X'148' Highest valid DW index for MASTD.
K:VRSION X'14C! RBM version.
K:ACCNT X*'14D" Job Accounting flag.
K:0OV X'14E' Permanent and current sizes of OV.
K:KEYST X'14F' Post status of key=in here.
K:JCPI1 X'150' JCP and Control Task.
Bits have the following meaning:
Bit 0=1, JCPis executing.
Bit 1=1, Background is active.
Bit 2=1, Background is checkpointedonthe RAD.
Bit 3=1, Background is being used by Foreground
but was not checkpointed.
Bit 4=1, Waiting for key=in response.
Bit 5=1, Skip to next JOB card.
Bit 6=1, Set by ABORT for CALEXIT.
Bit 7=1, Set by CALEXIT for ABORT.

Appendix A

187

188

Table A-1.

RBM System Flags and Pointers (cont.)

Name Location Description
K:JCP1 (cont.) Bits 8-15, Previous assign. of C device (for TY
key=in).
Bits 16-21, Unused.
Bit 22= 1, System processor executing.
Bit 23= 1, Execute BKGD Debug.
Bits 24-25, 0 means no PMD requested.
1 means conditional PMD.
2 means unconditional PMD.
Bit 26, Flag for CKPT that alarm typed.
Bit 27= 1, RBM Initialize routine is running.
Bit 28= 1, FG key-in active.
Bit 29= 1, TY key-in active.
Bit 30= 1, Attend command was input.
Bit 31= 1, JOB command was input.
K:CTST X'151 Flags to execute Control Task subtask. Bits have the
following meaning:
Bit 0= 1, Execute CHECKPOINT.
Bit 1= 1, Execute FGD Loader/Releaser.
Bit 2= 1, Execute Restart.
Bit = 1, Time to service all devices.
Bit 4= 1, Execute ABORT/EXIT.
Bit 5= 1, Execute key=in,
Bit 6= 1, Execute PMD.
Bit 7= 1, BCKG is IDLE.
Bit 8= 1, Execute BCKG load.
Bit =1, Load JCP.
Bit 10= 1, Load BCKG (Program not JCP).
Bit 11= 1, Key=~in required by higher priority
subtask .
Bit 12= 1, RecycleFGL1/2to FGL1 for possible RLS.
Bit 13= 1, Execute error logger.
Bit 14= 1, CKPT deferred during BCKG abort.
Bit 15= 1, BKG in WAIT following attended mode
abort.
Bit 26= 1, KEY2 doing STDLB disk file
OPEN/CLOSE.
Bit 27=1, FGLI called from FGL2,
Bit 28= 1, Control Task is operating.
Bit 29= 0, Execute ABORTpart of ABORT/EXIT,
Bit 29= 1, Execute EXIT part of ABORT/EXIT.
Bit 30= 1, PMD from key=in request.
Bit 31= 1, PMD from PMD command.
KsSY X'152' Nonzero if SY key-in active.
K:BPEND X153 End of ioad area for BCKG program.
K:CTWD X'154! WD code for Control Task. Byte 0 nonzero means CT
’ was triggered.
K:CTGL X'155' Group level for Control Task. a7
K:BLOAD X'156' Name in BCD of BCK program to load two words.
K:BAREA X'158' Area to load BCK program from.
K:ASSIGN X159 Address of ASSIGN table.
K:RUNF X'15A" Post run status here for FGD load.
K:HIINT X'158" HWO = Control task interrupt number.

HW1 = Highest address used for interrupt. o

<~

Appendix A

Table A-1. RBM System Flags and Pointers (cont.)

Name Location Description

K:FGDBG3 X'15C" Begin address of FGD from FMEM key-in.

K:PMD X'15D" Cells to dump for PMD as DW address (5 words).

K:DCB X'62' DCB for Control Task to load in overlays (7 words).
Always assigned to RBM File.

K:KEYIN X'169" Key-in Response Buffer (6 words).

K:FGDBG4 X'16F! Byte 0 = FWA of FGD prior to CKPT (Page Bits 15-31 =
K:BCKEND prior to CKPT).

K:DELTA X"170' Entry point for Delta.

K:QUEUE X7 Address of Queue routine. Byte 0 = Nonzero, Stop I/O
on BCKG.

K:BTFILE X"172 Status of BT Files

Bits 0- 8, 1bit for each X1 file. Bitsetto
1 means SAVE file.
Bits 16 - 31, LWA to use for non-SAVE files.

K:GO X'173! Permanent and current sizes of GO.

K:PAGE X'174' Byte 0 = Number of lines per page.

K:RDBOOT X'175' FWA and device Number of RADBOOT.

K:DCT1 X'176' Addresses of tables.

K:DCT16 X177

K:OPLBS1 X'178'

K:OPLBS3 X179

K:RFT4 X"17A!

K:RFT5 X'178'

K:SERDEV X"7¢! Address of SERDEV.

K:REQCOM X"17D' Address of REQCOM.

K:INITX X'17E! Address to return to after INIT runs.

K:FGLD X"17F' Byte 0 = Nonzero, XEQ FGD Load/RLS.

K:PMD1 X'180' Flags for dumps.

K:CTDR7 X181 Location to save context pointer during Control Task
dump.

K:DBTS X'182' Context pointer for Background PMD.,

K:KEYDCB X'183' — X'187' DCB to read operator keyins.

K:CLK1 X'188' Clock cells must start on a DW boundary: there are
counters for 4 clocks — 2 words/clock .t

K:CLK2 X'18A' Word 2 gets stored into word 1 when Counter =0.

K:CLK3 X'18cC’

t
The user never needs to access Clock 4.

Appendix A

189

190

Table A-1. RBM System Flags and Pointers (cont.)

Name Location Description

K:ABTLOC X'18E' Abort location.

K:MSG1 X'190' KEY-IN.

K:MSG2 X'193' KEY ERR.

K:MSG3 X'196! RLS NAME NA.

K:MSG4 X'19A! FILE NAME ERR.

K:MSG5 X'19¢" FGD AREA ACTIVE.

K:MSGé X'1A3 NOT ENUF BCKG SPACE.

K:MSG7 X"A9 UNABLE TO DO ASSIGN.

K:MSG8 X'1AF! BCKG CKPT.

K:MSG?9 X'12' BCKG IN USE BY FGD.

K:MSG 10 X'IB7" BCKG RESTART.

K:MSG11 X'1BB’ CK AREA TOO SMALL.

K:MSG12 X'1co’ 1/O ERR ON CKPT.

K:MSG13 X"1C5! JOB ABORTED AT xxxxx.

K:MSG 14 X'1CB! LOADED PROG NAME.

K:MSG15 X'"1CF! UNABLE TO LOAD BCKG PUB LIB.
K:MSG16 X'1D7! CKPT ABORT, 1/O HUNG.

K:XITSIM X'1E6 Unimplemented instruction normal return.
K:TRPSIM X'1E7" Unimplemented instruction trap retum.
K:PPGMOT X'1E8' Unimplemented instruction memory-protection error return.
K:MONTH X'IEA! Table of days/month and BCD names.
K:DATE1 X'1Fé' Number days in current year; current year - 1900.
K:DATE2 X'1F7 Day of year.

K:TIME X'1F8' Time of day in seconds.

K:ELTIM1 X'IF9" FGD saves BCKG elapsed time here.
K:LIMIT X'IFA! Maximum execution time for BCKG.
K:ACCNAM X'1FB* Account entry for AL file (8 words).
K:ELTIM2 X'202 Last word of account entry (elapsed time).
K:PTCH X'207' Beginning address of patch area.
K:PTCHND X'208' Ending address of patch area.

K:1OWD X209 I/O trigger values.

K:1OGL X'20A'

K:CPWD X'20B' CP trigger values.

K:CPGL X'20C'

K:IOLOCK X'20D'

K:RMPT X'20E' RMPT location and length.

K:BMEM X'20F! Maximum number of BCKG pages.
K:JAET X'210' Number of allocatable DCT entries.
K:RTS X211 RBM stack pointer.

Appendix A

Table A-1,

RBM System Flags and Pointers (cont.)

Name Location Description

K:MDNAME X'212 Address of MDNAME table.

K:DCTIX X213 Address of DCT1 table.

K:RBMEND X'214 LWA of resident RBM.

K:RUNJ X'215! Status from JCP run CAL.

K:DEBUG X'216' Debug communication LOC.

K:FSMM X'217! Pages, end address for foreground SMM.

Appendix A

191

APPENDIX B. PAPER TAPE STANDARD FORMAT

A binary record is signaled by an X'11' as the first character, and the two bytes following are the record sizes.
The specified number of data bytes follow the count.

An EBCDIC record is one whose first character is not an X'11'. An EBCDIC record is terminated by an NL code
(]5]6)' or a blank frame (00).

192 Appendix B

APPENDIX C. ERROR LOGGING

The detection of a system, device, or software error will cause RBM to acquire information about the error, generate
a log record, post the log record, and perform some form of recovery. Upon finding a stacked error-log record
pointer, the Control Task will call the LOG overlay to file the log.

The LOG overlay unstacks the log record and writes it to the ER oplabel in 16-word records. Normally, the ER op-
labe! should be directed to a file in the SP area named ERRFILE with a record size of 16 words and blocked format.

However, the ER oplabel can also be directed to a card or tape device.

1t should be noted that if ERRFILE does exist in the SP area, the ER oplabel will be connected to it by default at sys-
tem boot time.

Error Log Record Formats

The following error logs can be generated by RBM:

Code Code

11 SIO Failure 22 System Identification

12 Device Timeout 23 Time Stamp

13 Unexpected Interrupt 27 Operator Message

15 Device Error 28 /O Activity Count

16 Secondary Record for Device Sense Data 30 PFI Primary Record

17 Hardware Error 31 MFI Primary Record

18 System Startup 32 Processor Poll Record

19 Watchdog Timer 41 550 Processor Configuration
1D Instruction Exception 42 550 Memory Parity Secondary Record
21 Configuration Record 43 Memory Poll Record

The formats for these error log records are given below consecutively:

510 FAILURE The SIO failure is emitted when the

following SIO CC are returned:

X Count=6 Mode!l Number DCTMODX 010x
100x
110x

Milliseconds Since Midnight

SIO Status 1/O Address DCT21,DCTI

MFI if SIO TDV x -DCT19, DCT20
S6orE7 cC & '

CcC
Subchannel \\' TDV Current
Status N Command DA

p.

DCT13
TDV Status Bytes Remaining

The 1/O sequence is SIO, TDV.

Appendix C

194

DEVICE TIMEOUT

X112 Count =D Mode! Number
Milliseconds Since Midnight
HIO Status 1/O Address
\\\\ HIO DV TIO
& CC CC CcC
Subchannel TDV Current
Status \ Command DA

TDV Status

Bytes Remaining

Current Comma

nd Doubleword

TIO Status Retry Retrle.s .
Request | Remaining
1/0 Count

L

T

Seek Address

UNEXPECTED INTERRUPT

Appendix C

X'13' Count = 4

Model Number
(0 if unknown)

Milliseconds Since Midnight

AlO Status 1/0O Address
LB

DCTMODX

DCT12

-, DCT19, DCT20, DCT20A

DCTI3

DCT21, I0Q10, 10Q11

DCT25

10Q12

DCTMODX

DCTI12

-, bCney, -, -

DEVICE ERROR

X'15! Count=D Model Number DCTMODX
Milliseconds Since Midnight
AlO Status I/0 Address DCT12
\\\\Qi AlO oV Tio -, DCT19, DCT20, DCT20A
& cc cc cc
N
Subchannel \ TDV Current
Status N Command DA
4 DCT13
TDV Status Bytes Remaining
—— Current Command Doubleword —
TIO Status Retry | Retries DCT21, I0Q10, IOQ11
Request | Remaining
1/0 Count DCT25
\ Q
&\\
Seek Address 10Q12
SECONDARY RECORD FOR DEVICE SENSE DATA
X'16¢ Count as 1/0 Address Note: The 1/O address links the

ded
Neede secondary record to the cor-

responding device error entry,

Milliseconds Since Midnight

Sense
(Up to 16 bytes)

Appendix C 195

196

SYSTEM STARTUP

0 78 1516 23 24 31
Startup Type| Recover
X'18' Count = 4 :p3 Yp Count ;ﬁyo

Milliseconds Since Midnight

Year - 1900 Julian Day

AMUIMIMINNNR

HARDWARE ERROR

0 78 1516 23 24 31

Code Count=10 |0

0| Trap CC

Milliseconds Since Midnight

PSD Word 1

PSD Word 2

0 (reserved)

0 (reserved)

Real Address of Trapped Instruction

Trapped Instruction

AMMMMOMN

WATCHDOG TIMER

Appendix C

0 78 1516 23 24 31

Code Count=10 {0 0] Trap CC

Milliseconds Since Midnight

PSD Word 1

PSD Word 2

0 (reserved)

0 (reserved)

Real Address of Trapped Instruction

Trapped Instruction

AMMMIMIMUIIdMDIN

Generated by trap 4C,

Generated by Trap 46,

INSTRUCTION EXCEPTION

0

78 15 16

23 24 31

Code

Count=10{0

0

Trap CC

Milliseconds Since Midnight

PSD

Word 1

PSD

Word 2

0 (reserved)

0 (reserved)

Real Address of Trapped Instruction

Trapped

Instruction

ARRRRRARR RN RN RN N)) Y §))) 5 N R)) R

CONFIGURATION RECORD

X210

Count
as needed

DA\

Milliseconds Since Midnight

Model Number

Alternate 1/O Address

Primary 1/0

Address

SYSTEM IDENTIFICATION

X'22

Count=5

Core Size in | Relative
8K Word Time
Blocks Resolution

Milliseconds Since Midnight

System Version Flags

Site Identification

Generated by Trap 4D

Entered at system STARTUP

One pair of words per device

€ pal VOrgs per ce

in DCT

order; multiple records may occur
(maximum five devices per record].

Recorded at system STARTUP

Relative Time Resolution is expressed
as a value of n such that actual rela-
tive time resolution = 2" msec, The

value of n for the most likely resolu-

tions are

n=20 when the timing space is

supplied by a frequency 21 KHZ

n=1 500 HZ
n=4 60 HZ
For CP-R, n=1.

Appendix C

197

System, Version, Flags

The format of system, version, flags and site identification is operating system specific. For the RBM system, version
and flags are formatted at location X'2B'.

0 34 78 1516 31

28 [Monitor \\\: Versi Paramet:
nl ersion ra ors
N

Location 2B contains three items:

1. Monitor - This field contains the code number of the monitor. The codes are as follows:

Code Menitor

0 None or indeterminate
1 BCM

2 16 Bit RBM

3 32 Bit RBM

4 BPM

5 BTM/BPM

6 uTs

7 CpP-v

8 CP-R

9-F Reserved for future use

2. Version - This is the version code of the monitor and is coded to correspond to the common designation for
versions, The alphabetic count of the version designation is the high-order part of the code and the version
number is the low-order part. For example, A0O is coded X'10' and D02 is coded X'42'.

3. Parameters = The bits in this field are used to indicate suboptions of the monitor,

Bit Meaning if Set

31 Symbiont routines included.
29 Real-time routines included.
28 Unused.

27 Reserved.

26 Reserved.,

24-25 Field defining CPU.

Bit 24 Bit 25 Meaning

0 1 Sigma 5-7

1 0 Sigma 9

198 Appendix C

TIME STAMP

X'23' Count = 3

AN\

Milliseconds Since Midnight

Year = 1900

Juiian Day

OPERATOR MESSAGE

Count as

X127 Needed

A\

Milliseconds Since Midnight

TEXTC
Count

/

TEXTC Message

Max Size = 56 characters (CP=R) /

I

1/0 ACTIVITY COUNT

Count as \ DCT Index
28 f
needed &\ First ?Jevice:
Relative Time
N
/O Address, \\\ DCT Index |
I/O Count,
B o W
/0 Addressz NDCT lndex2
1/0 County

This record entered once each hour on the

hour.

Binary integers

A facility is provided to inject messages
from the computer operator (or diagnostic

pi‘ngGi’ﬂ) info the eror log. The opeiaion
may enter these messages from the operator
console via the ERRSEND key-in.

Recorded once per hour and at recovery.
Maximum of 5 entries per record, Counts

are reset to zero at Boot,

Appendix C

199

PFI PRIMARY RECORD

EEEEN NN

Milliseconds Since Midnight

MFI PRIMARY RECORD

eor | coor =2 NN

Milliseconds Since Midnight

PROCESSOR POLL RECORD

x| corr-3 NNONNONNN

Milliseconds Since Midnight

Unit Poll | Unit One record produced per nonzero poll
b\Address cc | Type Poll Status status received.

012 78 1112 1516

550 PROCESSOR CONFIG URATION

41 Count as W One record per cluster defined in SYSGEN,
needed
i\ CL = cluster *
Relative Time UN = U”f' i
TYPE = unit type
23 |3
Type Code ¥~ CL|UN POLR Results Type Code Unit Name
S 1 CPU
One entry for each unit in Z g ml
the cluster (maximum 8), 4 MIOP
7 SuU

550 MEMORY PARITY SECONDARY RECORD

@ | Cour =4 &\\\\\\\\\\%

Relative Time

Memory Status Word 0

Memory Status Word 1

200 Appendix C

MEMORY POLL RECORD

e | comr-s NNONMONON

Milliseconds Since Midnight

Memory Status Word 0

Memory Status Word 1

Memory Status Word 2

Appendix C 201

APPENDIX D. XEROX STANDARD OBJECT LANGUAGE

INTRODUCTION
GENERAL

The Xerox standard object language provides a means of
expressing the output of any Xerox processor in standard
format, All programs and subprograms in this object format
can be loaded by the Monitor's relocating loader.t Such o
loader is capable of providing the program linkages needed
to form an executable program in core storage. The object
language is designed to be both computer-independent and
medium-independent; i.e., it is applicable to any Xerox
computer having a 32-bit word length, and the same format
is used for both cards and paper tape,

SOURCE CODE TRANSLATION

Before a program can be executed by the computer, it must
be translated from symbolic form to binary data words and
machine instructions, The primary stages of source program
translation are accomplished by a processor. However, under
certain circumstances, the processor may not be able to trans-
late the entire source programdirectly into machine language
form.

If a source program contains symbolic forward references, a
single-pass processor such as the Xerox Symbol assembler can
not resolve suchreferences into machine language. Thisisbe-
cause the machine language value for the referenced symbol
is not established by a one-pass processor until after the state-
ment containing the forward reference has been processed.

A two-pass processor, such as the Xerox Meta=Symbol assem-
bler, is capable of making "retroactive" changes in the
object program before the object code is output. Therefore,
a two-pass processor does not have to output any special
object codes for forward references. An example of a for-
ward reference in a Symbol source program is given below,

Y EQU §+43

BG Z
R EQU Z+1
t.l\.!!'!n.r.\-“-g!'\. a discussion of the object language isnot directly

pertinent to CP-V, it is included in this manual because it
applies to some of the processors operating under CP-V.

202 Appendix D

In this example the operand $ + 3 is not a forward reference
because the assembler can evaluate it when processing the
source statement in which it appears. However, the oper-
ond Z in the statement

cLs z

is a forward reference because it appears before Z has been
defined. In processing the statement, the assembler outputs
the machine-language code for Cl,5, assigns a forward ref-
erence number (e.g., 12) to the symbol Z, and outputs that
forward reference number. The forward reference number
and the symbol Z are also retained in the assembler's symbol
table.

When the assembler processes the source statement
LI, R z

it outputs the machine-language code for LI, assigns a for-
ward reference number (e.g., 18) to the symbol R, outputs

that number, and again outputs forward reference number
12 for symbol Z.

On processing the source statement
Z EQU 2

the assembler again outputs symbol Z's forward reference
number and also outputs the value, which defines symbol Z,
so that the relocating loader will be able to satisfy refer-
ences to Z in statements CI,5 Z and LI,R Z, At this time,
symbol Z's forward reference number (i.e., 12) may be
deleted from the assembler's symbol table and the defined
value of Z equated with the symbol Z (in the symbol table).
Then, subsequent references to Z, as in source statement

BG Z

would not constitute forward references, since the assembler
could resolve them immediately by consulting its symbol
table,

If a program contains symbolic references to externally
defined symbols in one or more separately processed subpro-
grams or library routines, the processor will be unable to
generate the necessary program linkages.

An example of an external reference in a Symbol source pro-
gram is shown below,

REF ALPH

.

LI,3 ALPH

When the assembler processes the source statement

REF ALPH

it outputs the symbol ALPH, in symbolic (EBCDIC) form, in
a declaration specifying that the symbol is an external ref-
erence. At this time, the assembler also assigns a declara-
tion name number to the symbol ALPH but does not output
the number, The symbol and name number are retained in
the assembler's symbol table.

After o symbol has been declared an external reference, it
may appear any number of times in the symbolic subprogram
in which it was declared. Thus, the use of the symbol
ALPH in the source statement

LI, 3 ALPH

in the above example, is valid even though ALPH is not
defined in the subprogram in which it is referenced.

The relocating loader is able to generate interprogram link-
ages for any symbol that is declared an external definition
in the subprogram in which that symbol is defined. Shown
below is an example of an external definition in a Symbol
source program,

DEF ALPH
LI,3 ALPH

ALPH AL4 X'F2'

When the assembler processes the source statement
DEF ALPH

it outputs the symbol ALPH, in symbolic (EBCDIC) form, in
a declaration specifying that the symbol is an external defi-
nition. At this time, the assembler also assigns a declaration
name number to the symbol ALPH but does not output the
number, The symbol and name number are retained in the
assembler's symbol table.

After a symbol has been declared an external definition it
may be used (in the subprogram in which it was declared) in
the same way as any other symbol. Thus, if ALPH is used as
a forward referente, as in the source statement

LI, 3 ALPH

above, the assembler assigns a forward reference number to
ALPH, in addition to the declaration name number assigned
previously. (A symbol may be both a forward reference and
an external definition,)

On processing the source statement
ALPH Al 4 X'F2'

the assembler outputs the declaration name number of the
label ALPH (and an expression for its value) and also outputs
the machine-language code for Al,4 and the constant X'F2',

OBJECT LANGUAGE FORMAT

An object language program generated by a processor is out-
put as a string of bytes representing "load items”. A load
item consists of an item type code followed by the specific
foad information pertaining to that item. (The detailed format
of each type of load item is given later in this appendix.)
The individual load items require varying numbers of bytes

for their representation, depending on the type and specific
content of each item. A group of 108 bytes, or fewer, com-
prises a logical record. A load item may be continued from
one logical record to the next.

The ordered set of logical records that a processor generates
for a program or subprogram is termed an "object module",
The end of an object module is indicated by a module-end
type code followed by the error severity level assigned to
the module by the processor.

RECORD CONTROL INFORMATION

Each record of an object module consists of 4 bytes of con-
trol information followed by a maximum of 104 bytes of load
information. That is, each record, with the possible excep-
tion of the end record, normally consists of 108 bytes of
information (i.e., 72 card columns).

The four bytes of control information for each record have
the form and sequence shown below.

Byte O
Record Type Mode Format
1 1 1 0
0 1 2 3 4 5 6 7
Byte 1
Sequence Number
0 7
Byte 2
Checksum
0 7
Byte 3
Record Size
0 7

Record Type specifies whether this record is the last
record of the module:

000 means last
001 means not last

Mode specifies that the loader is to read binary infor-
mation. This code is always 11.

Format specifies object language format. This code is
always 100,

Sequence Number is O for the first record of the module
and is incremented by 1 for each record thereafter,
until it recycles to O after reaching 255.

Checksum is the computed sum of the bytes comprising
the record. Carries out of the most significant bit
position of the sum are ignored.

Record Size is the number of bytes (including the record
control bytes) comprising the logical record (5 < record

Appendix D 203

size < 108). The recordsize will normally be 108 bytes
for all records except the last one, which may be fewer,
Any excess bytes in a physical record are ignored.

LOAD ITEMS

Each load item begins with a control byte that indicates the
item type. In some instances, certain parameters are also
provided in the load item control byte. Inthe following dis-

cussion, load items are categorized according to their function:

1. Declarations identify to the loader the external and
control section labels that are to be defined in the
object module being loaded.

2. Definitions define the value of forward references,
external definitions, the origin of the subprogram being
loaded, and the starting address (e.g., as provided in
a Symbol /Meta-Symbol END directive).

3. Expression evaluation load items within a definition
provide the values (such as constants, forward refer-
ences, etc.) that are to be combined to form the final
value of the definition.

4, Loading items cause specified information to be stored
into core memory.

5. Miscellaneous items comprise padding bytes and the
module-end indicator,

DECLARATIONS

In order for the loader to provide the linkage between subpro-
grams, the processor must generate for each external refer-
ence ordefinition aload item, referred to as a "declaration",
containing the EBCDIC code representation of the symbol
and the information that the symbol is either an external ref-
erence or a definition (thus, the loader will have access to
the actual symbolic name).

Forward references are always internal references within an
object module. (External references are never considered
forward references.) The processor does not generate a dec-
laration for a forward reference as it does for externals; how-
ever, it does assign name numbers to the symbols referenced.

Declaration name numbers (for control sections and external
labels) and forward reference name numbers apply only within
the object module in which they are assigned. They have no
significance in establishing interprogram linkages, since
external references and definitions are correlated by match-
ing symbolic names. Hence, name numbers used in any
expressions in a given object module always refer to symbols
that have been declared within that module.

The processor must generate a declaration for each symbol
that identifies a program section. Each object module pro-
duced by an assembler is considered to consist of at least
one control section, If no section is explicitly identified
in the source program, the assembler assumes it to be a
standard control section (discussed below). The standard
control section is always assigned a declaration name

204 Appendix D

number of 0. All other control sections (i.e., produced by
a processor capable of declaring other control sections) are
assigned declaration name numbers (1, 2, 3, etc.) in the
order of their appearance in the source program.

In the load items discussed below, the access code, pp, des-
ignates the memory protection class that is to be associated
with the control section. The meaning of this code is given
below.

PP Memory Protection Feature!

00 Read, write, or access instructions from.
01 Read or access instructions from,

10 Read only.

11 No access.

Control sections are always allocated on a doubleword
boundary. The size specification designates the number of
bytes to be allocated for the section.

Declare Standard Control Section

Byte O
Control byte

0 0 0 0 1 0 ! i

0 1 2 3 4 5 6 7
Byte 1

Access code Size (bits 1 through 4)

P P 0 0

0 1 2 3 4 5 6 7
Byte 2

Size (bits 5 through 12)

Byte 3

Size (bits 13 through 20)

0 7

This item declares the standard control section for the object
module. There may be no more than one standard control
secfion in each object module. The origin of the standard
control section is effectively defined when the first reference
to the standard control section occurs, although the declara-
tion item might not occur until much later in the object
module.

"1Read" means a program can obtain information from the
protected area; "write" means a program can store informa-
tion into a protected area; and, "access" means the compu-
ter can execute instructions stored in the protected area.

This capability is required by one=-pass processors, since
the size of a section cannot be determined until all of
the load information for that section has been generated by
the processor.

Declare Nonstandard Control Section

Byte O
Control byte
0 0 0 0 1 1 0 0
1 2 3 4 5 6

Byte 1

Access code Size (bits 1 through 4)

P P 0 0

0 1 2 3 4 7
Byte 2

Size (bits 5 through 12)

Byte 3

Size (bits 13 through 20)

This item declares a control section other than standard con-
trol section (see above).

Declare Page Boundary Control Section

Byte O

Control Byte)
0 0 0 1 1 1 1 0
0 1 2 3 4 5 6 7
Byte 1
Access code Size (bits 1 through 4)
P P 0 0
0 1 2 3 4 5 6 7
Byte 2

Size (bits 5 through 12)

Byte 3

Size (bits 13 through 20)

0 7

This item declares a nonstandard control section beginning
on a memory page boundary.

Declare Dummy Section

Byte O
Control byte

0 0 0 1 0 0 1

1 2 3 4 5 6 7
Byte 1

First byte of name number
0 7
Byte 2
Second byte of name number!
0 7
Byte 3
Access code Size (bits 1 through 4)

p P 0 0
0 1 2 3 4 7
Byte 4

Size (bits 5 through 12)

Byte 5

Size (bits 13 through 20)

0 7

This item comprises a declaration for a dummy control sec-
tion. It results in the allocation of the specified dummy
section, if that section has not been allocated previously
by another object module. The labe! that is to be associ-
ated with the first location of the allocated section must be
a previously declared external definition name. (Even
though the source program may not be required to explicitly
designate the label as an external definition, the processor
must generate an external definition name declaration for
that label prior to generating this load item.)

Declare External Definition Name

Byte O
Control byte
0 0 0 0 0 0 1 1
0 1 2 3 4 5 6 7
Byte 1
Name length, in bytes (K)
0 7

"IF the module has fewer than 256 previously assigned name
numbers, this byte is absent,

Appendix D 205

Byte 2 Byte 2
First byte of name First byte of name
0 7 0 . 7
Byte K+1 Byte K+1
Last byte of name Last byte of name
0 7 0 7

This item declares a label (in EBCDIC code) that is an exter-
nal definition within the current object module. The name
may not exceed 63 bytes in length.

Declare Primary External Reference Name

Byte O
Control byte
0 0 0 0 0 1 0]
0 1 2 3 4 5 6 7
Byte 1
Name length (K), in bytes
0 7
Byte 2
First byte of name
0 . 7
Byte K+1
Last byte of name
0 7

This item declares a symbol (in EBCDIC code) that is a pri-
mary external reference within the current object module.
The name may not exceed 63 bytes in length.

A primary external reference is capable of causing the loader
to search the system library for a corresponding external
definition. If o corresponding external definition is not
found in another load module of the program or in the system
library, a load error message is output and the job is errored.

Declare Secondary External Reference Name

This item declares a symbol (in EBCDIC code) that is a sec-
ondary external reference within the current object module.
The name may not exceed 63 bytes in length,

A secondary external reference is not capable of causing the
loader to search the system library fora corresponding exter-
nal definition. If a corresponding external definition is not
found in another load module of the program, the job is not
errored and no error or abnormal message is output,

Secondary external references often appear in library routines
that contain optional or alternative subroutines, some of which
may not be required by the user's program. By the use of pri-
mary external references in the user's program, the user can
specify that only those subroutines that are actually required by
the current job are to be loaded. Althoughsecondary external
references do not cause loading from the library, they do cause
linkages to be made between routines that are loaded.

DEFINITIONS

When a source language symbol is to be defined (i.e., equa-
ted with a value), the processor provides for such a value by
generating an object language expression to be evaluated by
the loader. Expressions are of variable length, and terminate
with an expression-end control byte (see "Expression Evalua-
tion" in this appendix). An expression is evaluated by the ad-
dition or subtraction of values specified by the expression.

Since the loader must derive values for the origin and start-
ing address of a program, these also require definition.

Byte 0

Control byte
0 0 0 0 0 1 0 0
0 1 2 3 4 5 6 7

This item sets the loader's load-location counter to the

Byte 0 value designated by the expression immediately following
the origin control byte. This expression must not contain

Control byte any elements that cannot be evaluated by the loader (see
0 0 0 0 0 1 1 0 "Expression Evaluation" which follows).
0] 2 3 4 > 6 7 Forward Reference Definition
Byte 1 Byte 0

Name length, in bytes (K) Control byte
0 0 0 1 0 0

0 7 1 2 3 4 5 6 7

206 Appendix D

Byte 1
First byte of reference number
0 7
Byte 2
Second byte of reference number
0 7

This item defines the value (expression) for a forward refer-

ence, The referenced expression is the one immediately
t not contain

10T CON

following byte 2 of this load item, and mu

any elements that cannot be evaluated by the loader (see
“"Expression Evaiuation” which follows).

Forward Reference Definition and Hold

Byte O
Control byte

v 0 G i 0 0 0 ¢
0 1 2 3 4 5 6 7
Byte 1

First byte of reference number
0 7
Byte 2

Second byte of reference number
0 7

Thisitem defines the value (expression) for a forward refer-
ence and notifies the loader that this value is to be retained
in the loader's symbol table until the module end is encoun-
tered. The referenced expression is the one immediately
Eallawime dhn e nimbne To o mnmbnin mliiae thnd haua
|UI|U"IIIB THT IUNC Hivinuvci 13l IIIU’ LUTHIUITE YVUIUTD iU 1iuveoe
not been defined previously, but all such values must be
available to the loader prior to the module end.

After generating this load item, the processor need not retain
the value for the forward reference, since that responsibility
is then assumed by the loader. However, the processor must
retain the symbolic name and forward reference number
assigned to the forward reference (until module end).

External Definition

Byte O
Control byte
0 0 0 0 1 0 1 0
0] 2 3 4 5 6 7
Byte 1
First byte of name number
0 7

Byte 2

Second byte of name number!

0 7

This item defines the value (expression) for an external
definition name. The name number refers to a previously
declared definition name. The referenced expression is
the one immediately following the name number.

Define Start

Byte O
Control byte
0 0 0 0 i i 0 i
0 1 2 3 4 5 6 7

This item defines the starting address (expression) to be used
at the completion of loading. The referenced expression is
the one immediately following the control byte.

EXPRESSION EVALUATION

A processor must generate an object language expression
whenever it needs to communicate to the loader one of
the following:

1. A program load origin.

2. A program starting address.

3. An external definition value.

4. A forward reference value.

5. A field definition value.

Such expressions may include sums and differences of con-

stants, addresses, and external or forward reference values
that, when defined, will themselvesbe constants or addresses.

After initiation of the expression mode, by the use of a con-
trol byte designating one of the five items described above,
the value of an expression is expressed as follows:

1. An address value is represented by an offset from the

control section base plus the value of the control sec-
tion base.

"If the module has fewer than 256 previously assigned name
numbers, this byte is absent.

Appendix D 207

2. The value of a constant is added to the accumulated
sum by generating an Add Constant (see below) control
byte followed by the value, right-justified in four
bytes.

The offset from the control section base is given as a

constant representing the number of units of displace-
ment from the control section base, at the resolution

of the address of the item. That is, a word address

would have its constant portion expressed as a count
of the number of words offset from the base, while the
constant portion of a byte address would be expressed
as the number of bytes offset from the base.

The control sectionbase value is accumulated by means
of an Add Value of Declaration (see below)or Subtract
Value of Declaration load item specifying the desired
resolution and the declaration number of the control
section base. The loader adjusts the base value to the
specified address resolution before adding it to the cur-
rent partial sum for the expression.

In the case of an absolute address, an Add Absolute
Section (see below) or Subtract Absolute Section con-
trol byte must be included in the expression to identify
the value as an address and to specify its resolution.

3. An external definition of forward reference value is
included in an expression by means of a load item add-
ing or subtracting the appropriate declaration or for-
ward reference value. If the value is an address,
the resolution specified in the control byte is used to
align the value before adding it to the current partial
sum for the expression. If the value is a constant, no
alignment is necessary.

Expressions are not evaluated by the loader until all re-
quired values are available. In evaluating an expression,
the loader maintains a count of the number of values added
or subtracted at each of the four possible resolutions. A
separate counter is used for each resolution, and each
counter is incremented or decremented by 1 whenever a
value of the corresponding resolution is added to or sub-
tracted from the loader's expression accumulator. The final
accumulated sum is a constant, rather than an address
value, if the final count in all four counters is equal to O.
If the final count in one (and only one)of the four counters
is equal to +1 or =1, the accumulated sum is a "simple ad-
ress" having the resolution of the nonzero counter. If
more than one of the four counters hava a nonzero final
count, the accumulated sum is termed a "mixed-resolution
expression" and is treated as a constant rather than an
address.

The resolution of a simple address may be altered by
means of a Change Expression Resolution (see below)
control byte. However, if the current partial sum is
either a constant or a mixed-resolution value when the

208 Appendix D

Change Expression Resolution control byte occurs, then
the expression resolution is unaffected.

Note that the expression for a program load origin or
starting address must resolve to a simple address, and the
single nonzero resolution counter must have a final count
of +1 when such expressions are evaluated.

In converting a byte address to a word address, the two least
significant bits of the address are truncated. Thus, if the
resulting word address is later changed back to byte resolu-
tion, the referenced byte location will then be the first byte
(byte 0) of the word.

After an expression has been evaluated, its final value is
associated with the appropriate load item.

In the following diagrams of load item formats, RR refers to
the address resolution code. The meaning of this code is
given in the table below.

RR Address Resolution
00 Byte

01 Halfword

10 Word

11 Doubleword

The load item discussed in this appendix, "Expression
Evaluation", may appear only in expressions.

Add Constant

Byte O
Control byte
0 0 0 0 0 0 0 |
0 1 2 3 4 5 6 7
Byte 1
First byte of constant
0 7
Byte 2
Second byte of constant
0 7

Byte 3

Third byte of constant

Byte 4

Fourth byte of constant

0 7

This item causes the specified four-byte constant to be added
to the loader's expression accumulator. Negative constants
are represented in two's complement form,

Add Absolute Section

Byte O

Control byte
0 0 1 1 0 1 R R
0 1 2 3 4 5 6 7

This item identifies the associated value (expression) as a
positive absolute address. The address resoiution code, RR,
designates the desired resolution.

Subtract Absolute Section

Byte O

Control byte
0 0 1 i] 0 R R
0 1 2 3 4 5 6 7

This item identifies the associated value (expression) as o
negative absolute address. The address resolution code,
RR, designates the desired resolution.

Add Value of Declaration

Byte O
Control byte
0 0 1 0 0 0 R R
0 1 2 3 4 5 6 7
Byte 1
First byte of name number

0 7
Byte 2

| Secondbyte of name number’

0 7

t
If the module has fewer than 256 previously assigned name
numbers, this byte is absent.

This item causes the value of the specified declaration tobe
added to the loader's expression accumulator. The address
resolution code, RR, designates the desired resolution, and
the name number refers to a previously declared definition
name that is to be associated with the first location of the
allocated section.

One such item must appear in each expression for a reloca-
table address occurring within a control section, adding the
value of the specified control section declaration (i.e.,
adding the byte address of the first location of the control
section).

Add Value of Forward Reference

Byte O
Control byte
0 0 1 0 0 | R R
0 1 2 3 4 5 6 7
Byte 1
First byte of forward reference number
0 7
Byte 2

Second byte of forward reference number

0 7
This item causes the value of the specified forward reference
to be added to the loader's expression accumulator. The
address resolution code, RR, designates the desired resolu-
tion, and the designated forward reference must not have

been defined previously.,

Subtract Value of Declaration

Byte O
Control byte
0 0 1 0 i 0 R R
0 1 2 3 4 5 6 7
Byte 1
First byte of name number
0 7
Byte 2
Second byte of name number!

This item causes the value of the specified declaration to
be subtracted from the loader's expression accumulator.
The address resolution code, RR, designates the desired
resolution, and the name number refers to a previously de-
clared definition name that is to be associated with the
first location of the allocated section.

Appendix D 209

Subtract Value of Forward Reference

Byte O
Control byte
0 0 i 0 1 1 R R
0 1 2 3 4 5 6 7
Byte 1
First byte of forward reference number
0 7
Byte 2

Second byte of forward reference number

0 7

This item causes the value of the specified forward reference
to be subtracted from the loader's expression accumulator,
The address resolution code, RR, designates the desired reso-
lution, and the designated forward reference must not have
been defined previously,

Change Expression Resolution

Byte O

Control byte
0 0 1 1 0 0 R R
0 1 2 3 4 5 6 7

This item causes the address resolution in the expression to
be changed to that designated by RR.

Expression End

Byte O

Control byte
0 0 0 0 0 0 1 0
0 1 2 3 4 5 6 7

This item identifies the end of an expression (the value of
which is contained in the loader's expression accumulator).

FORMATION OF INTERNAL SYMBOL TABLES

The three object code control bytes described below are re-
quired to supply the information necessary in the formation
of Internal Symbol Tables.

In the following diagrams of load item formats, Type refers
to the symbol types supplied by the object language and
maintained in the symbol table. IR refers to the internal
resolution code. Type and resolution are meaningful only
when the value of a symbol is an address. In this case, it
is highly likely that the processor knows the type of value
that is in the associated memory location, and the type field
identifies it. The resolution field indicates the resolution
of the location counter at the time the symbol was defined.
The following tables summarize the combinations of value
and meaning.

210 Appendix D

Symbol Types

Type Meaning of 5-Bit Code

00000 Instruction

00001 Integer

00010 Short floating point

00011 Long floating point

00110 Hexadecimal (also for packed decimal)
00111 EBCDIC text (also for unpacked decimal)
01001 Integer array

01010 Short floating-point array

01011 Long floating-complex array

01000 Logical array

10000 Undefined symbol

Internal Resolution

IR Address Resolution
000 Byte

001 Halfword

010 Word

on Doubleword

100 Constant

Type Information for External Symbol

Byte O

Control byte
0 0 0 | 0 0 0 1
0 1 2 3 4 5 6 7
Byte 1

Type field | IR field

0 4 5 7
Byte 2

Name number
0 7

Byte 3 (if required)

Name number (continued)

U

~N

This item provides type information for external symbols.
The Type and IR fields are defined above. The name
number field consists of one or two bytes (depending on the
current declaration count) which specifies the declaration
number of the external definition.

Type and EBCDIC for Internal Symbol

Byte O

Control byte
0 0 0 1 0 0 1 0
0 1 3 4 5 6 7

Byte 1
Type field | IR field
0 4 5 7
Byte 2
Length of name (EBCDIC characters)
0 7
Byte 3
First byte of name in EBCDIC
0 7
Byte n
Last byte of name in EBCDIC
0 7
Byten~-1,...
Expression defining value of internal symbol
0 : 7

This itemsupplies type and EBCDIC for an internal symbol . The
ioad items for Type and IR are as above . Length of name speci -
fies the length of the EBCDIC name in characters. The name, in
EBCDIC, isspecified in the required number of bytes, followed
by the expression defining the internal symbol.

EBCDIC for an Undefined Symbol

Byte O
Control byte
0 0 0 1 0 0 1 1
0 1 2 3 4 5 6 7
Byte 1
Length of name (EBCDIC characters)

0 7
Byte 2

First byte of name in EBCDIC
0 7
Byte n

Last byte of name in EBCDIC
0 7
Byten-1, n-2

Two bytes of symbol associated forward reference number

0 7

This item is used to associate a symbol with a forward reference.
The length of name and name in EBCDIC are the same asin the
above item. The last two bytes specify the forward reference
number with which the above symbol is to be associated.

LOADING

Load Absolute

Byte O
Control byte

0 1 0 0 N N N N
0 1 2 3 4 5 6 7
Byte }

First byte to be loaded
0 : 7
Byte NNNN

Last byte to be loaded

0 7
This item causes the next NNNN bytes to be loaded abso-
futely (INNNN s expressed in natural binary form, except

that 0000 is interpreted as 16 rather than 0). The load loca-
tion counter is advanced appropriately.

Load Relocatable (Long Form)

Byte O
Control byte
0 1 0 1 Q C R R
0 ! 2 3 4 5 6 7
Byte 1
First byte of name number
0 7
Byte 2
Second byte of name numbert

0 7

Thisitem causes afour-byte word (immediately following this
load item) to be loaded, and relocates the address field
according to the address resolution code, RR. Control bit
C designates whether relocation is to be relative to a for-
ward reference (C = 1) or relative to a declaration (C = 0).
Control bit Q designates whether a 1-byte (Q = 1) or a
2-byte (Q = 0) name number follows the control byte of
this load item,

rIf the module has fewer than 256 previously assigned name
numbers, this byte is absent,

Appendix D 211

If relocation is to be relative to a forward reference, the

forward reference must not have been defined previously.

When this load item is encountered by the loader, the load
location counter can be aligned with a word boundary by
loading the appropriate number of bytes containing all
zeros (e.g., by means of a load absolute item).

Load Relocatable (Short Form)

Byte O
Control byte
1 C D D D D D D
0 [2 3 4 5 6 7

This item causes a four-byte word (immediately following
this load item) to be loaded, and relocates the address field
{word resolution). Control bitC designates whether reloca-
tion is to be relative to a forward reference (C=1) or rela-
tive to a declaration (C=0). The binary number DDDDDD
is the forward reference number or declaration number by
which relocation is to be accomplished.

If relocation is to be relative to a forward reference, the
forward reference must not have been defined previously.
When this load item is encountered by the loader, the load
location counter must be on a word boundary (see "Load
Relocatable (Long Form)", above).

Repeat Load

Byte 1

Field location constant, in bits (K)

Field length, in bits (L)

S

0 7

This item defines o value (expression) to be added to a field
in previously loaded information. The field is of length L
(1 < L = 255) and terminates in bit position T, where:

T = current load bit position -256 +K,

The field location constant, K, may have any value from

1 to 255. The expression to be added to the specified
field is the one immediately following byte 2 of this load
item.

MISCELLANEOUS LOAD ITEMS

Padding
Byte O
Control byte
0 0 0 0 0 0 0 0
0 1 2 3 4 5 6 7

Padding bytes are ignored by the loader. The object lan-

Byte 0 guage allows padding as a convenience for processors.
Control byte Module End
0 0 0 0 1 1 1 1 Byte 0
0] 2 3 4 > é 7 Control byte
Byte ! 00 0 0 1 i 0
First byte of repeat count 0 1 2 3 4 5 6 7
Byte 1
0 7 4
Byte 2 Severity level
0 0 0 0 E E E E
Second byte of repeat count
0 1 2 3 4 5 6 7
0 7

This item causes the loader to repeat (i.e., perform) the

subsequent load item a specified number of times. The
repeat count must be greater than 0, and the load item to
be repeated must follow the repeat load item immediately.

Define Field

Byte O
Control byte
0 0 0 0 0 | |]
1 2 3 4 5 6 7

212 Appendix D

This item identifies the end of the object module. The
value EEEE is the error severity level assigned to the
module by the processor.

OBJECT MODULE EXAMPLE

The following example shows the correspondence between
the statements of a Meta=Symbol source program and the
string of object bytes output for that program by the assem-
bler. The program, listed below, has no significance other
than illustrating typical object code sequences.

Example

1

2
3 00000
4 000C8
5 000C8
6 000C9
7
8
9 000CA
10
11 000CB
12
i3 000CC
14 000CD
15 00CCE
16 000CF
17
18
19 000DO
20
21
22 000C8

50000000

69200000
20000001
680000CA
68000000
0001
00000003
00000004
224FFFFF

z

-r

x

ALPHA

AA

KON

CNT
BB

DEF

REF
CSECT
ORG

LI, CNT

(s~}

DATA, 2
EQU
EQU
LI, CNT

END

AA,BB,CC

RZ,RTN

200

(o]

=
N

KON

BB

AA

CC IS UNDEFINED BUT CAUSES NO
ERROR

EXTERNAL REFERENCES DECLARED
DEFINE CONTROL SECTION ALPHA
DEFINE ORGIN

DEFINES EXTERNAL AA; CNT IS A
FWD REF

{4 RZ IS AN EXTERNAL REFERENCE, AS

(DECLARED IN LINE 2

DEFINES RPT; R AND KON ARE
| FORWARD REFERENCES
BB IS AN EXTERNAL DEFINITION
| USED AS A FORWARD REFERENCE
CNT IS A FORWARD REFERENCE
RPT IS A BACKWARD REFERENCE

RTN IS AN EXTERNAL REFERENCE
DEFINES KON

DEFINES R

DEFINES CNT

DEFINES EXTERNAL BB THAT HAS
ALSO BEEN USED AS A FORWARD
REFERENCE

END OF PROGRAM

CONTROL BYT

Begin Record

ES (In Binary)

Record number: 0

00111100
00000000
01100011
01101100

00000011

00000011

00000011

00000101

00000101

Record type: not last, Mode binary, Format: object language.

Sequence number 0
Checksum: 99
Record size: 108

0302C1C1 (hexadecimal code comprising the load item)

Declare external definition name (2 bytes) Name: AA

0302C2C2

Declare external definition name (2 bytes) Name: BB

0302C3C3

Declare external definition name (2 bytes) Name: CC

0502D9E9

Declare primary reference name (2 bytes) Name RZ

0503D9E3D5

Declare primary reference name (3 bytes) Name: RTN

Declaration number: 2

Declaration number: 4

Declaration number: 1

Declaration number: 3 J

Declaration number: 5

Record control
information not
part of load item

> Source Line 1

} Source Line 2

Appendix D

Begin Record Record number: O

0A010100000320200002 A
00001010) Define external definition
Number 1 '
00000001 | Add constant: 800 X'320° > Source Line 5
00100000 Add value of declaration (byte resolution)
Number 0
00000010 J Expression end J
. 040100000320200002 R
00000100 Origin
00000001 Add constant: 800 X'320'
00100000 ¢ Add value of declaration (byte resolution) b Source Line 4
Number 0
00000010 J Expression end J
4422000000 A

01000100 Load absolute the following 4 bytes: X'22000000*

07EB0426000002
00000111 Y Define field
Field location constant: 235 bits
Field length: 4 bits
} Add the following expression to the above field:

v~

Source Line 5

00100110 Add value of forward reference (word resolution)
Number 0
00000010 J Expression end J
8432000000 i A
10000100 Load relocatable (short form). Relocate address field (word resolution)
Relative to declaration number 4
The following 4 bytes: X'32000000'
07EB0426000602
00000111 Define field > Source Line 6
Field location constant: 235 bits
Field length: 4 bits
Add the following expression to the above field:
00100110 Add value of forward reference (word resolution)
Number 6
00000010 Expression end J
CC50000000)
11001100 Load relocatable (short form). Relocate address field (word resolution)
Relative to forward reference number 12
The following 4 bytes: X'50000000'
07EB0426000602
00000111 Define field S Source Line 9
Field location constant: 235 bits
Field length: 4 bits
Add the following expression to the above field:
00100110 Add value of forward reference (word resolution)
Number 6
00000010 Expression end)

No object code is generated for source lines 3 (define control section) or 4 (define origin) at the time they are encountered.

The control section is declared at the end of the program after Symbol has determined the number of bytes the program requires.
The origin definition is generated prior to the first instruction.

214 Appendix D

Begin Record

Record number: O

11010010

01000100

00000111

00100110

00000010

10000000

00001000

Begin Record

D 269200000
Load relocatable (short form). Relocate address field (word resolution)
Relative to forward reference number 18

The following 4 bytes: X'69200000'

4420000001
Load absolute the following 4 bytes: X'20000001"

07EB0426000002

Define field

Field location constant: 235 bits

Field length: 4 bits

Add the following expression to the above field:
Add value of forward reference (word resolution)
Number 0

Expression end

80680000CA
Load relocatable (short form). Relocate address field (word resolution)

Relative to declaration number 0
The following 4 bytes: X'680000CA'

8568000000
Load refocatable (short form). Relocate address field (word resolution)
Relative to declaration number 5

The following 4 bytes: X'68000000'

08

Define forward reference {continued in record 1)

Record number: 1

00011100
00000001
11101100
01010001

00000001
00100000

00000010

01000010

00001000

00000001

00000010

00001000

00000001
00000010

Record type: last, Mode: binary, Format: object language.
Sequence number |
Checksum: 236

Record size: 81

000C010000033C200002 (continued from record 0)
Number 12

Add constant: 828 X'33C'

Add value of declaration (byte resolution)
Number 0

Expression end

42001
Load absolute the following 2 bytes: X'0001"

080006010000000302
Define forward reference
Number 6

Add constant: 3 X'3'
Expression end

080000010000000402
Define forward reference
Number 0

Add constant: 4 X'4'
Expression end

Source Line 11

Source Line 13

Source Line 14

Source Line 15

Source Line 16

Record Control
Information

Source Line 16

Source Line 17

Source Line 18

Appendix D

215

Begin Record Record number: 1

0F00024100
00001111 Repeat load
Repeat count: 2

01000001 Load absolute the following 1 bytes: X'00'

0800120100000340200002
00001000 Define forward reference
Number 18

00000001 Add constant: 832 X'340'
Add value of declaration (byte resolution)

Number 0
00000010 Expression end
0A020100000340200002
00001010 Define external definition
Number 2

00000001 Add constant: 832 X'340'
00100000 Add value of declaration (byte resolution)

Number 0

00000010 Expression end
44224FFFFF

01000100 Load absolute the following 4 bytes: X'224FFFFF' J
0D0100000320200002 A

00001101 Define start

00000001 Add constant: 800 X'320'
00100000 Add value of declaration (byte resolution)

Number 0

00000010 Expression end J
08000344

00001011 Declare standard control section declaration number: 0

Access code: Full access.

0E00
00001110 Module end
Severity level: X'0'

Size 836 X'344'

A table summarizing control byte codes for object language load items is given below.

Advance to Word
Boundary

Source Line 19

Source Line 22

Type of Load Item

Object Code Control Byte

0 0 0 0 0 0 0 O
0 0 0 0 0 O 1
o 0 0 0 0 O 1 O
0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 O
0o 0 0 0 0 1 0 1
0 0o 0 0 0 1 1 0
0 0 0 0 0 1V 1 1
0o 0o 0 0 1 o0 0 O
0 0 0 0 1 0 0 1
0 0 0 0 1 0 1 O

Padding

Add constant

Expression end

Declare external definition name
Origin

Declare primary reference name
Declare secondary reference name
Define field

Define forward reference

Declare dummy section

Define external definition

216 Appendix D

Object Code Control Byte

Type of Load Item

0 0 0 o0 1 0
o o 0o 0 1 1
c 0o 0 o0 1 1
o o 0 0 1 1
0 0 0 o0 1 1
0O 0 0 1 0 O
¢ ¢ ¢ 1 ¢ ¢
0o 0 0 1 0 O
o 0o ¢ 1 0 O
c o o 1 1 1
c 0o 1 0o 0 O
6 0o 1 0o 0 1
0o o 1 o 1 0

[BN -]
o o
o
o

6 ¢ 1 1 o 1
0o 0o 1 1 1 0
0 1 0 0 N N
o 1 0 1 Q@ C
1 ¢ D D D D

2 o A o~ x” =N

o~ 7z =

D X X W X O

O ® 7 =

Declare standard control section

Declare nonstandard control section

Define start

Module end

Repeat load

Define forward reference and hold

Provide type information for external symbol
Provide type and EBCDIC for internal symbol
EBCDIC and forward reference number for undefined symbol
Declare page boundary control section

Add value of declaration

Add value of forward reference

Subtract value of declaration

Subtract vaiuve of forward reference

Change expression resolution

Subtract absolute section
Load absolute
Load relocatable (long form)

Load relocatable (short form)

Appendix D

217

APPENDIX E. XEROX STANDARD COMPRESSED LANGUAGE

The Xerox Standard Compressed Language is used to represent
source EBCDIC information in a highly compressed form,

Several Xerox processors will accept this form as input or
output, will accept updates to the compressed input, and
will regenerate source when requested, No information is
destroyed in the compression or decompression,

Records may not exceed 108 bytes in length. Compressed
records are punched in the binary mode when represented on
card media. Therefore, on cards, columns 73 through 80
are not used and are available for commentor identification
information. This form of compressed language should not
be output to "compressed" files since the 1/O compression
may cause loss of data.

The firstfour bytes of each record are for checking purposes.
They are as follows:

Byte 1 Identification (OOL11000). L =1 for each
record except the last record, in which case

L =0.
Byte 2 Sequence number (0 to 255 and recycles).

Byte 3 Checksum, which is the least significant
eight bits of the sum of all bytes in the rec-
ord exceptthe checksumbyte itself. Carries
out of the most significant bit are ignored.
If the checksum byte is all 1's, do not
checksum the record.

Byte 4 Number of bytes comprising the record, in-
cluding the checking bytes (<108).

The rest of the record consists of a string of six-bit and
eight-bit items. Any partial item at the end of a record
is ignored.

The following six-bit items (decimal number assigned) com-
prise the string control:

Six-Bit

Decimal

Item Function

0 Ignore.

1 Not currently assigned.

2 End of line.

3 End of file.

4 Use eight-bit character which follows.
5 Use n + 1 blanks, next six-bit item is n.
6 Use n + 65 blanks, next six-bit item is n.
7 Blank.

8 0

9 1

10 2

218 Appendix E

Six-Bit
Decimal
Item

Function

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

N<XXSET<CHVRODOIOZITrAC—IOMMUO®PH>O®O®NOCOGAW

— U Qgo— + —~ A

INTRY
DY INT
NAME

ABr X
A39RT
ACTV
ALLFT
ARM
3KLASSY
KL
CALLY
CALLAP
THECK
CTHECKA
CHXRAL
CHKRAL A
CKD
cX2
CXENADT
CKEMACTS
CXKENACTY
CXKENACTY
CXINTADR
CKINTLAR
cKpY
cLAase
cLaserry
ZLageXx
ZLASKRFIL
ZHRRESG
ZR9

T ZRF L4
CRs
CRsp
pl-T.¢¢
2CRAYSY
JEACTV
JELETE
JELFPT
DEN
DEV]
DEVN
IFGNH
JFGD3AL
bl
"JISARM
1sc
DISCCU
J1sCl1B
DPAK
JPAKCU
DRC
JUMP
JVF
EMARECR
EMARECS3X
EMBLDECH
EMDATAL
EMDATAAR
EMGETECS
EMSETEM
EMGETFPT
EMSETR3
EMSETR3A

BVERLAY
NAME

AdE X
TER™
168 X
ALLAT
ARM
BxLy
SKLY
~wBF 1L
RwWBFIL
CHETK
CHECK
CHECK
CheCK
ke
Crl2 .
TETYC
TMTYC
TMTYC
TMTYC
TMIYC
TMTYC
CxPTY
REANAR
REAY AR
TLesEX
CLBSEX
ZEV]I
RD
cLesex
CRS
CRS»
ABE x
READAR
168F ¥
?ELETE
CHECK
ENG
CEV]
CEVI
CUMP
SUMP
DEV]
ARM
T1scC

DEVI
CumMpP
DEVI
TMGETP
TMGETP
TMGE TP
TMGE TR
TMGETF
TMTYC
TMTYC
TMTYC
CHECK
CHECK

APPENDIX F. SYSTEM OVERLAY ENTRY POINTS

DESCRIPTIAN

PRACESS A39RT AND EXIT CALS FOR BACKGRAUND
PRACESS ALL AXBRT CALS

PRACESS ACTIVATE CALS

FACESS ALLBT CALS

PRARCESS CHNNECT,AIMsDISCBNNECT,DISARM CALS
DBES “ACKGROUND DCR ASSIGNMENTS

PFRFERY BACKGKAUND LBACING FUNCTIHNS

SUR To CALL QUEUE AND wAll FBR 1/8 COMPLETION
ENTRY TR CALL. WITH PRFSET! PRIBRITY
PRECESS CHFCK CALS

SECENNCHECK RAUTINE

ENTRY T8 CHECK VIA HAL

ALTERNATE INTERNAL ENTRY 19 CHECK, VIA A RaL
CRASH NUMP FRAM (< AREA

CLARE [CliMP FRRM (C« ARKEA, LANTINUED

OFT A%g TREST ErbDeACHLIAN

GET AN TEST FRDeACTIHN IN STAMDARD FPTY
TEST AND CANVEKT CMDUeACTION PARAMETER

SAME AS CKENACTL(TMTYC)

TEQT AND CANVEKRT INTERRUPT ADDRESS

TEST ARD (ANVERT IMTERRUPI LABEL
CHECKPAINT BACKGRAUND (NBI1 IN MAPPED SYSTEM)
FRACESS CLASE CALS

ENTRY T/ CLBSE VIa HAL

RpgTINe Ty CLASE HCHS

REUTINE T9 CLRSE A DGR ASSIGNED TH A RAD FILFE
PRACEGS CoRRESFONCENCE CALS

CRASH DUMP FRAM g7 HPe| ABEL

SURe T5 CLOSE A RAD FILF

CraSk SAVE TB St APeLAEFL FRBM CK AREA
CONTINUATIAN &F (RS

BACKGRAUND DUMP [RTVER

SUR 1A CHECK FRKR AN /8 REQUEST T A 4USY DLB
PRACESS DEACTIVATE CALS

PRACESS DELETE CALS

SAME AS CHECK(SIGMAL) ENTHRY PBINT

PRRCESS DEQUEUE CALS

PRACESS 'SET! PERTION 8F UEVICE CALS
PRECESS 'GET' PURTIBN B8F UVEVICE CALS

CT RETURN T8 CT DUMP AFTEX BREAK

DUMP RKREAK T8 CHECK FHYR BIHER CT wBRK
PRACESS DEVICE FILF MADFE CALS

SAME ENTRY PBINT AS ARM{ARM)

CIsC DEVICE HANNDLERS

FIXED ARKM DISC PBST=hANDLER

FIXED ARM DISC PRE=HANDLENR

MAVABLF ARM DISC PRE=HANDLFR

MBVABLF AR™ DISC PBST=HANULER

PRECESS DEVICE DIr, RFECARL FBRMAT CALS
PERFBRYS A MEMBRY DUMP

PRRCESS DEVICE VERTICAL FURMAT CALS

SURe TH CHAIN AN ECH TR TRHE R=TASK

SUBe TH BUILD AN FECb FRHM A STANDARD FPT

SURe TP PRBCESS A DATA ARLA INTB AN ECB

SURe TH REMBVE A NDATA AREA T8 USERS RECEIVING ARFA
SURe T8 CREATE A NFW ECB LINKED T8 THFE CURRENT TASK
SUBe TA CREATE A NFW ECR LINKFD TB ANY TASK

SURe T8 GET AN BRIGINAL FPY ADDRESS

SET R3 T8 AN FPT aDUR BASED BN FPT ADDR [N AN ECB
SET R3 T8 AN FPT ADDR BASED BN FPT ADDR IN R3

Appendix F

219

s

ENTRY
POINT
NAME

EMWALT
ENG
ENGABNM
ENQCHK
ERRSEND
ESU

EXTM
FGL1
FGL2
FGL2BO&
FGL2B3N
FGL3
FGL3B81
FINDBB
FINDDIR
FMBLDECB
FMCHECK
FMCKWP
FMCK1
FMCK?2
FMCK3
FMJCL
FMMASTX
FMBPL2AD
FPTBSY
GENCHARS
GETDCBAD
FETDCTX
GETNRT

—

220

SETTIME
HBURLEBA
IBBPARAM
INITY
INITLBG
INSDBUF
I8EX
JMTENQ
JMTERM
JTRAP
KEY{
KEY1AQ4 -
<EY?
KEY3
KEY4
KEYS
XEY6
KEY?7
KJoB

LB8G

LP
MODIFY
MTTYPE
8PEN
9PENDCB
BPENX
BUTSDBUF
PFIL
PINIT
PINTABNM
PMD

PBLL
POLLABNM
PBLLCHK
PPBST

Appendix F

OVERLAY
NAME

TMTYC
ENQ
ENQ
ENG
L8G
ESU
EXTH
FGL1
FGL2
FGL?
FGL»
FGL3
FGL3
RWBFIL
BPENX
GETHRT
CHECK
REANDWR
CHECK
CHECK
CHECK
77TJ88
READWR
GETNRT
READWR
PRINT
GE TNRT
GETNRT
GETNRT

SIGNAL
L8G
RWBF 1L

LeG
SDBUF
IBEX
TTJ88B
TTJOB
TRAPS
KEY1
KEY1
KEY?
KEY3
KEY4
KEYy
KEY4
KEY7?
EXTM
LBG

LP
EXTM
REWIND
READWR
READWR
BPENX
SDBUF
REWIND
PINIT
PINIT
ABE X
SIGNAL
SIGNAL
SIGNAL
SIGNAL

DESCRIPTIAN

SUBe TB CHNTRBL WAIT STATES

PRBCESS ENQUEUE CALS

ABNBRMAL CBNDITIBY SUH, FUR ENGUEUE ECBS

SUBRs TO CHECK ENQUEVE ECBS

RBUTINE T8 PUT AN BPERATBR MESSAGE INTR THE E~ROR LBG
PRACESS ERROR SUMMARY KEY=IN

PRBCESS EXTERMINATE CALS

PRIMARY PRAGRAM RELEASE

PRIMARY PRAGRAM | RAD (INIVIALIZE TABLES)
INTERNAL ENTRY T§ FGL2

INTERNAL ENTRY TP FGLP

PRIMARY PRBGRAM LAAD (REAU IN RBBT AND PURLIBS)
SEE IF SPACE 1S AVAIL. FBR LMN AR PUBLIH LBAD
GET A BLBCKING BUFFER

FIND THF SPECIFIEND FILE ENTRY

BUILD AN 1/8 gCH

PROCESS [/0 CHECK CALS

CHECK FBR WRITE PRBTECTION VIBLATIHONS

INTERMAL ENTRY TR FMCHECK

INTERNAL ENTRY T® FMCHECK

INTERNAL ENTRY TB FMCHECK

CLEAN UP RFT AND DCT ENTRIFS AT JBB TERMINATIHN
DETERMINE MASTD INDEX FAR AN AREA

GET CALLER'S APLBS2 TABLE ADDRESS

CHECK FBR AN 1/8 RENUEST T8 A BUSY FPT

PRINT EXPANDEDN TEXT FHR BREAK PAGES

GET DCB ADNRESS FRAM FPT

GET DFVICE INDEX FRUM DCB

INTERNAL ENTRY T8 REAND/WRITE PRBCESSING

GEY BPTIBNS FBR KFY=INS, IN KEY3 - KEY7?

PRACESS GETTIME CALS

LBG HBURLY TIMESTAMP

SUB T8 INCREMENT THE FILE PHSITIBN IN A BLYUCKED FILE
PERFAPM BBBT=TIME INITIALIZATIBN BF CPR

RBUTINE T4 INITIALIZE THE FRRAR LAG FILE WHEN DT KeYIN IS DONE
INPUT SIDE BUFFERING (B3]C

PRBCESS ALL ISEX CALS

CLEAN UP JBB LEVEL ENIS

VESTRBY A UBB WHEMN LAST TAGSK KAS TERMINATED
PRECESS JBB TRAP (AL

DECBDF KEY«IN KEYWHBKRD, BRANCH TB PROPER BVERLAY FAR PRBCESSING
PRACESS KEY-ERR MESSAfNE TYPEBUTS

PRBCESS KEY=INS IN KEY2 BVERLAY

PRBCESS KEYeINS IN KEY3 BVERLAY

PRBCESS KEY=INS IN KEY4 OVERLAY

PRBCESS KEY=INS [N KEY5 BVERLAY

PRACESS KEY=INS 1M KEYg BVERLAY

PRBCESS KEY=INS IN KEY7? BVERLAY

PRACESS KJAB CALS

MBVE ERRBR LBG RECHRDS FROUM LHG STACK T8O ER B8P LABEL
LINE PRINTER HANDLER PRSBLAY DUMMY ENTRY PRINT
SAME ENTRY AS STATUS

TEST FBR MAG TAPE

PRBCESS HPEN CALS

RBUTINE TO HPEN A DCB

INTERNAL ENTRY T8 8PENDCB

BUTPUT SIDE BUFFERING LBGIC

PRACESS ALL PFIL CALS

PRBCESS INIT CALS

SUBe TB PRBCESS ARNURMAL ECB EXITS

DISPATCH BKGD T8 NDUMP [TSELF

PRBCESS ALL PBLL CALS

REBUTINE T8 PRSCESS PBLL ELBR ABRORMAL CONDITIONS
RBUTINE TH PRBCESS CHECKS 8N PALL SERVICES
PRACESS PHST CALS

ENTRY
POINT
NAME

PRECBRD
PRINT
PRAMPT
RBLACK
READDIR
READWR
REWIND
RLS
UN
JWBFIL
RWNEVF
NRFILF
NUFILF
SCAN
SDBUF
SEGLBAD
SETNAME
SETBVR
SETUP
SIGABNM
S1GCHK
SIGNAL
SIGNALY

__SJsB
SNAM
SNAP
START
STATUS
STDLB
STIMABNM
STIMER
STLBCHK
STAP

- 8TP181
STP182
STRTIAY
STRTIB>
TAPE
TER]M
TEST
TESTBUF
TESTWT4
TEXTT
TIME
TMABART
TMABRTT
TMCKADP
TMCKADR
TMDCBERR
TMDELAET
TMDEQ
TMENG
TMF INDJ
TMFINDT
TMGET10DS
TMGETJID
TMGETP
TMGETTID
TMGRA
TMLM
TMSETE
TMSETPSD
TMSETREG
TMSTEP

BVERLAY
NAME

REWIND
PRINT
DEV!
RWBFIL
BPENX
READWR
REWIND
EXTM
RUN
RWBFIL
RWDE VF
RWDE VF
RWDF VF
KEY3
SDBUF
EXTM
SNAM
GETNRT
REWIND
SIGNAL
SIGNAL
SIGNAL

CrRial
AN VA

SJBn
SNA™
CRS
SIGNAL
EXT™
STDLR
SIGNAL
SIGMAL
STOLB
SIGNAL
I18EX
18X
18EX
I10EX
TAPE
TERM™
WATT
GETNRT
GETNRT
TRAPS
WALTY
TERM
TERM
TMTYC
TMTYC
EXTH
ENG
ENQG
ENG
TMGETP
TMGE TP
TMGETP
TMGETP
TMGETP
TMGE TP
TMTYC
TERM
EXTM
CHECK
CHECK
SIGNAL

DESCRIPTINN

PRRCESS PRECHRD CALS

PRACESS PRINT CALS

PRACESS SET PKAMPT UHARACTER CALS

SUB TR READ A BLACK INTH A BLACKING BUFFER

SUB T8 READ A DIRECTBRY SECTBR

PRACESS READ/wRITE CALS

PRBCESS REWIND CALS

PRACESS RELEASFE CALS

PRACESS ALL RUN CaLS

READ/WRITE BLRCKEN BR CAMFRESSFED RAD FILES
INTERNAL ENTRY T8 REAND/WRITE PRACESSING
READ/WRITE RANDBM RAD FILES

RFAD WRITE UNBLBCKED RAD FILE ROUTINE

COMMBN SCAN RAUTINE FBR ALL KFYell RABUTINES
SIDE BUFFERING PRACESSOR FRHLAY DUMMY FNTRY PRINT
PRACESS SEGLBAD CALS

PRGCESS SETNAME CALS

SUBR T9 TEST/SET ARURT AVERRIDE IN [/2 CALS
SUR TH APFN A NDCR AND GFT 1TS ASSIGNMFNT
REUTINE TH PReCESS SIHNAL ECB ABRARMAL CENDITIONS
ROUTINE TH PRACESS CHECKS AN STGNAL SEPVICES
PRACESS SIGNAL CALS
INTERNAL STGNaL Cal. Prec
PRACESS SJRB CALS
FRACESS SETNAMF CALS
SNAP KEYeIN PROCESSING
PRACESS ST1ART CALS
PRACESS STATUS CALS
PRABCESS STOLB CALR
ROUTINE TR PRACESS STIMER FCB ASNAIKMAL CHBNDITIAONS
PRACESS STIMER CALS

RBUTINE T8 PRACESS CHECKS BN STDL:L SERVICFS

PRACESS STHP CALS

PRRCESS STRPIH/STARTIA CALS

SAME ENTRY AS STPIB1(IPEX)

SAME ENTRY AS STp[Ai(I18EX)

SAME ENTRY AS STPIQ1(IBEX)

TAPE HANDLER PRBLAY DUMMY ENTRY PBINT

PRBCESS TERM CALS

PRBCESRS TEST CALS

SUB TR TEST ThE VALIDITY YF CALLER'S READ/WRITE BUFFER"
ROBUTIME T8 TEST FAR DFLETE<ANPYST [/68 REJUEST

PRBCESS TRAP EXIT CALS

PRRCESS TIME CALS

SUBe TH AHBART A FAREGRAUNL TASK

SURs TH AYBRT A LRAD MgDULE

SUBs THA CHFCK A KANGE B8F ADDRESSES

SUBe TH CHECK AN ADDRESS AND CBNVERT TR KEAL IF VIRTUAL
SUR T# PRACESS DCR ERRARS

SUBRe TB FREE AN AFT AND THE EDT IF IDLF

SUR« T8 DEQUELE AN ITEM

SUBe TB ENJQUEUFE AN ITERM

SUBe TH GET JRB N BY JABNAME

SUBs TR GET TASK 1D BY TASK NAME

SUBe T8 GET JBB AND TASK IDENTIFICATIBN

SUR 1B GET JBB ID FRBM P11l AND P12 IN FPT

SURe TB FETCH PRIBRITY FRUM AN FPY

SURe TH GET TASK [0 FRBM P3 AND P4 IN FPT

GET THE REAL ADDRESS AND PRHTECTIUN FHR A VIRIUAL ADDRESS
SUBRYBUTINE TH TERMINATE OR ARART BNE LHAD MBUULE

SURe T8 SET R8 AND R10 IN RTS [F CAL PROBCESSING ERROR
SURs TO ALTER PSD IN RTS

SURe THB ALTER R8 AND R1g IN RTS

INTERNAL ENTRY INTB STHP LAL PRBCESSHR

Appendix F

221

222

THMTERM
TMTRMY
TMTRMT
T™IYC
TMTYCR
TMTYCS
TMTYC1S
TMTYC15S8
TMVADR
TMWALL
TRAPCRSH
TRAPS
TRAPS
TRAP70D
TRTN
TRTY
TRUNCATE
TT

TT.URA
TTPRIM
TYPE
WNATT
WATTALL
AATTANY
ABLBCK
NEBF
ALBLACK
ARTTDIR

Appendix F

TER™
TERM
TER™
TMTYC
TMTYC
TMTYC
TMTYC
TMYYC
TMYYC
WALT
TRAPS
TRAPS
TRAPS
TRAPS
TRAPS
TRAPS
DELETE

TTUA8
17
PRINT
AALT
WAIT
~NATT
RWBF 1L
REWIND
RwWBF 1L
BPENX

SUBs 19 TERMINATE A FAREGHRAUND TASK

SUBRBUTINE T8O TERMINATE ALL LHAD MHDULES IN A JBB
SURs T9 TERMINATE A LRBAD MBDULE

SURes TH SFT FPT TYPE COBMPLETIAN WBRD PARAMETER
SUBe TH SET FOT TYPE CAMPLETIAN WBRD BUSY
SHBROBUTINE T8 SET FPT TYPE CRMPLETIYUN IN STANDs FPT
SU3s T9 SET TYC IN R15 [NTFB FPT TYC WHRD

3UBs T SET TYC IN R15 INIB TYC WBRD IN STANDs FPT
SURe TH CHECK A VIRTUAL AUDRESS (NB CHNVERSIBN)
SU%e T DA WAIT ALL BN SEURS

THAP CRASH ENTRY

TRAP HANDLER ENTRY

INTERMAL ENTRY FBR TRAP HANDLING

PRACESS TRAP CAL

PRACESS TRAP RETURN CAL

PRACFSS TKAP RETRY CALS

PRRCESS TRUNCATE CALS

SUBe T8 DB SECBNDARY TASK TERMINATIONS

SUBe TO CLEAN JBB CUNTROLS FBR TASK TERMINATIGN
SUBs TA DB MISCe TASK CLEANUP FHR PRIMARY TERMINATIONS
PRACESS ALL TYPE CALS

PRACESS WAIT CALS

PRACESS WAITALL CALS

PRACESS WAITANY CALS

SUB TR WRITE AUT A BLACKING BUFFER

PRACESS WEHBF CALS

SUB TR WRITE THE CURRENT BLHCK AF A RAD FILE

SUR TR WRITE A DIRECTARY SECTAR

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222

