Xerox‘ Real-Time Batch Monitor (RBM)

mmmmmmmmmmmmmmmmm

System
Technical Manual

EROXEROXEROXEROXEROXEROXEROX
OXEROXEROXEROXEROXEROXEROXERC
ROXEROXEROXEROXEROXEROXEROXER

ROXEROXEROXEROXEROXEROXEROXE
EROXEROXEROXEROXEROXEROXEROXE
IXEROXEROXEROXEROXEROXEROXERO)
OXEROXEROXEROXEROXEROXEROXERC

OXEROXEROXEROXEROXEROXEROXER

ROXEROXEROXEROXEROXEROXEROXE
KEROXEROXEROXEROXEROXEROXEROX
DXEROXEROXEROXEROXEROXEROXERO)
\OXEROXEROXEROXEROXEROXEROXER(
EROXEROXEROXEROXEROXEROXEROXE |
EROXEROXEROXEROXEROXEROXEROXE
XEROXEROXEROXEROXEROXEROXEROX
OXEROXEROXEROXEROXEROXEROXERC
ROXEROXEROXEROXEROXEROXEROXER

ROXEROXEROXEROXEROXEROXEROXE
EROXEROXEROXEROXEROXEROXEROXE

701 South Aviation Boulevard
El Segundo, California 90245 X Ox

213 679-4511

Xerox Real-Time Batch Monitor (RBM)

Sigma 5-9 Computers

System

Technical Manual

90 17 00C

March 1971

Price: $6.25

Printed in U.S.A.

REVISION

This publication is a revision of the Xerox Real-Time Batch Monitor (RBM)/System Technical Manual for Sigma 5-9
Computers, Publication Number 90 17 00B (dated March 1971). The manual incorporates changes from the
90 17 00B-1(10/71) revision package, which reflects version CO1 of the RBM operating system. No other changes
beyond those in the 90 17 00B-1(10/71) revision package are included. A change in the text from that of the pre-
vious manual is indicated by a vertical line in the margin of the page.

RELATED PUBLICATIONS

Title Publication No.
Xerox Sigma 5 Computer/Reference Manual 90 09 59
Xerox Sigma 6 Computer/Reference Manual 901713
Xerox Sigma 7 Computer/Reference Manual 90 09 50
Xerox Sigma 8 Computer/Reference Manual 90 17 49
Xerox Sigma 9 Computer/Reference Manual 9017 33
Xerox Real=Time Batch Monitor (RBM)/RT,BP Reference Manual 90 15 81
Xerox Real-Time Batch Monitor (RBM)/OPS Reference Manual 90 16 47
Xerox Real-Time Batch Monitor (RBM)/RT,BP User's Guide 90 16 53

Manual Type Codes: BP - batch processing, LN - language, OPS - operations, RBP - remote batch processing,
RT - real-time, SM - system management, TS - fime-sharing, UT - utilities.

The specifications of the software system described in this publication are subject to change without notice. The availability or performance of some features

may depend on a specific configuration of equipment such as additional tape units or larger memory. Customersshould consult their Xerox sales representative
for details,

PREFACE

RBM INITIALIZATION ROUTINE

RBM CONTROL TASK

Structure

Function and Implementation

Resident Control Task

Key-In Processor

Foreground Release (FGL1)

Foreground Loader (FGL2)

Background Loader (BKL1)
Background Loader (BKL2)

Checkpoint Restart (CKPT)

Abort/Exit
Postmortem Dump (PMD)

1/0 HANDLING METHODS

Channel Concept
Handling Devices

Single Interrupt Mode

Interrupt-to-Interrupt Mode
System Tables

I0Q (Request Information)

DCT (Device Control)

CIT (Channel Information)
Handler Tables

Separation of Priorities and Control Task
INTSIM Routine

CTTEST Routine

Initiating 1/O Requests

1/O Interrupt Processing
1/0 Cleanup

Miscellaneous Basic 1/O Subroutines
REQCOM (Request Complete)
CUPCORE, CUPDCB Cleanup, End-Action

Routines

MSGOUT (Message Out)

QUEUE
User 1/O Services

OPEN

CLOSE

READ/WRITE

PRINT

TYPE

DFM

DVF

REWIND

WEOF
PREC

PFILE

JOB CONTROL PROCESSOR

Overview

ASSIGN Command Processing

CONTENTS

o www

22
24
24
25
25
26

27

kel
L

27
27
27
27
27
28
28
28
29
30
30
30
36
36
41
41

45
45
46
46
46

49
49
49
49
49
49
49
50

51

51
51

JCP Loader

Job Accounting

Background TEMP Area Allocation
FOREGROUND SERVICES

Implementation

RUN

RLS

MASTER/SLAVE
STOPIO/STARTIO

IOEX

TRIGGER, DISABLE, ENABLE, ARM,
DISARM, CONNECT

Task Control Block (TCB)

MISCELLANEQUS SERVICES

SEGLOAD

Trap Handling

Trap CAL o

Trap Processing

TRTN (Trap Return) .

65
68
68

71

71
71
71
71
71
71

71
72

75

75

- 75

RBM SIZES

RBM TABLE FORMATS

RAD File Table (RFT)
Device Control Table (DCT)

DCT Format

SYSGEN DCT Consideration

Channel Information Table (CIT)

I/O Queue Table (1I0Q)

Blocking Buffers
Foreground Program Table (FGT)

Master Dictionary

Operational Label Table (OPLBS)
Interrupt Label Table (INTLB)

OVLOAD Table (for RBM Overlays Only)
Write Lock Table (WLOCK)

OVERLAY LOADER

Overlay Structure

Overlay Loader Execution
Dynamic Table Area

Dynamic Table Order

T:SYMBOL and T:VALUE

T:VALUE Entry Formats

T:SYMBOL Entry Formats

T:PUBVAL and T:PUBSYM

T:PUBVAL Entry Formats

T:PUBSYM Eniry Formats

T:VALX

T:DCB

T:SEG

B:MT

75

.75

78

79

79
80
80
82

86
86
87
88
88
89
89

90

90
920
21
92
92
93
94
94
94
25
25
96
97
98

10.

T:DECL

T:CSECT

T:FWD

T:FWDX

T:MODULE

T:ROMI

T:DCBV

T:MODIFY

Use of the Dynamic Table Area During LIB ___

T:LDEF

T:LROM

MODULE File

EBCDIC File

MODIR File

DEFREF File

Use of Dynamic Table Area During PASSTWO ___

T:GRAN

T:ASSN

MAP Use of Dynamic Table Area
DIAG Use of Dynamic Table Area
Root Tables

T:PL
T:DCBF

Scratch Files

Program File Format
Foreground/Background Program Header
Public Library Header

Logical Flow of the Overlay Loader
Logical Flow of CCI

Logical Flow of PASSONE

Logical Flow of LIB

Logical Flow of PASSTWO
Logical Flow of MAP

Logical Flow of DIAG

Loader-Generated Table Formats
PCB

DCBTAB

INTTAB

OVLOAD

Loading Overlay Loader

RAD EDITOR

Functional Flow

Permanent RAD Area Maintenance
Permanent File Directory

Control Commands

:ALLOT

:DELETE

:TRUNCATE

:SQUEEZE

Library File Maintenance

Algorithms for Computing Library File Lengths __

Library File Formats

MODIR File

MODULE File

EBCDIC File

DEFREF File

Command Execution

:ALLOT

:COPY

:DELETE

:SQUEEZE

928

99
100
100
101
101
102
103
103
104
104
104
104
105
105
106
106
107
107
108
108
109
110
111
111
112
112
112
113
113
113
114
114
114
115
115
115
116

126

126
126
126
128
128
129
129
129
129
129
131
132
132
132
133
133
134
134

134

11.

VONO AW

Bad Track Handling

Command Execution

:BDTRACK

:GDTRACK

Use of IOEX for Disk Pack

Utility Functions

:MAP

:CLEAR

:COPY

:DUMP

:SAVE

:RESTORE

SYSTEM GENERATION

Overview

SYSGEN/SYSLOAD Flow

Loading Simulation Routines, RBM, and RBM

Overlays
SYSGEN 1/0

Rebootable Deck Format

Stand-Alone SYSGEN Loader

APPENDIXES
RBM SYSTEM FLAGS AND POINTERS

PAPER TAPE STANDARD FORMAT

FIGURES

Initialize Routine Core Layout

RBM Initialize Routine Overall Flow
Resident Control Task Flow

Key-In Processor Flow

Operator Key-In Flow "C"

. INTSIM Routine Flow

. STARTIO Routine Flow
. 10INT Routine Flow
. CLEANUP Routine Flow
. QUEUE Subroutine Flow
. JCP Generol Flow
. JOB Command Flow

Operator Key-In Flow,
Operator Key-In Flow,
Operator Key-In Flow,
Operator Key-In Flow,
Operator Key-In Flow,

. Operator Key-In Flow,
. Operator Key-In Flow,

and "SFC"

I|Wll
IIXH
"TY" and "TC"
IICCII
"DT" and "DE"

IISYu 0ﬂd "SYC" N

IIFG!I, "FGC", "FSC",

. Operator Key-In Flow,
. Operator Key-In Flow,
. Operator Key-In Flow,
. Operator Key-In Flow,
. Operator Key-In Flow,
. Operator Key-In Flow,
. Operator Key-In Flow,
. Operator Key-In Flow,
- Operator Key-In Flow,
. SERDEV Routine Flow

"RUN"
"RLS"
“INTLB"
n yynddil
"STDLB"
"FMEM"
"CINT"
"DM", "BB", and "DF"_
"DED" and "UND"

CTTEST Routine Flow

134
134
134
135
135
135
135
137
137
137
138
139

151

151
152

152
159

159
160

161

166

[20,

31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44,
45.
46.
47.

48.
49.
50.
51.

52.
53.
54.
55.

56.
57.
58.
59.
60.
61.
62.
63.
64.

FIN Command Flow

ASSIGN Command Flow

DAL Command Flow

ATTEND Command Flow

MESSAGE Command Flow

PAUSE Command Flow

CC Command Flow

LIMIT Command Flow

STDLB Command Flow

NAME Command Flow

RUN Command Flow

ROV Command Flow

POOL Command Flow

ALLOBT Command Flow

LOAD Command Flow

PMD Command Flow

PFIL, PREC, SFIL, REWIND, and UNLOAD
Command Flows

WEOF Command Flow

Core Layout During JCP Execution
Pre-PASS1 Core Layout

ARM, DISARM, and CONNECT Function

Flow

Overlay Structure of the Overlay Loader
Overlay Loader Core Layout

LIB Reorganization of Dynamic Table Area
PASSTWO Reorganization of Dynamic Table
Area

MAP Table Reference
Program File Format

Overlay Loader Flow, OLOAD
Overlay Loader Flow, CCl

Overlay Loader Flow, PASSONE
Overlay Loader Flow, PASSTWO
Overlay Loader Flow, MAP

Overlay Loader Flow, RDIAG

Overlay Loader Flow, RDIAGX

73
90
91
102

105
107
110
116
117
118
121
123
124
124

65.
66.
67.
68.
69.
70.
71.
72.
73.

74.

75.

A-1.

Overlay Loader Flow, DIAG

RAD Editor Functional Flow

Permanent RAD Area

RAD Editor Flow, ALLOT

RAD Editor Flow, COPY
RAD Editor Flow, SQUEEZE

RAD Editor Flow, SAVE

RAD Editor Flow, RESTORE

SYSGEN and SYSLOAD Layout Before

Execution

SYSGEN and SYSLOAD Layout After

Execution

SYSGEN/SYSLOAD Flow

TABLES

ASSIGN Table

RAD File Table Allocation

DCT Subtable Formats

10Q Allocation and Initialization

Foreground Program Subtables

Overlay Loader Segment Functions

T:DCBF Entries

Background Scratch Files

Standard SYSLOAD DEFs

RBM System Flags and Pointers

125
127
130
140
141
146
148
150
151

152
153

51

81

87
90
108
109
158

161

vi

PREFACE

The primary purpose of this manual is to provide a guide for better comprehension of the program listings supplied
with the Xerox Real-Time Botch Monitor (RBM) operating system. The programs and processors included are the
System Generation program, the Monitor and its associated tasks and subprocessors such as the Job Control
Processor, Overlay Loader, and RAD Editor.

The manual is intended for Sigma RBM users who require an in-depth knowledge of the structure and internal
functions of the RBM operating system for system maintenance purposes. Since the RBM Technical Manual and pro-
gram listings are complementary, it is recommended that the listings be readily available when referencing this
manual.

The Delta Debug package referenced in this manual is an internal Xerox development and maintenance tool and is
not suitable or available for customer use,

1. RBM INITIALIZATION ROUTINE

The RBM Initialize routine is entered from the RAD Bootstrap every time the system is booted from the RAD, and it
sefs up core prior to the execution of RBM. It also modifies the resident RBM system (including all system tables),
the RBM overlays, and the Job Control Processor. Meodifications may be made from the C, OC, or SI device that
is selected by a corresponding sense switch setting (1, 2, or 3). If sense switch41is reset, the Initialize routine loads
all programs on the FParea of the RAD designatedas resident foreground into the foregroundarea. The Initializeroutine
extends into the background and can be overwritien by background programs, since it executes only once. In Fig-
ure 1 below, the background first word address is the first page boundary after RBMEND (the end of resident RBM).
The Initialize routine terminates by setting the idle subtask bit and triggering the RBM Control Task.

The general flow of the Initialize routine from entry from RAD Bootstrap fo triggering the Control Task interrupt is
illustrated in Figure 2.

RBMEND
Resident RBM

Q ?.SK— BCKG FWA

RBM -
Initialize
Routine 6K

N 1

Figure 1. Initialize Routine Core Layout

RBM Initialize Routine

Set up FGD and BCKG
blocking buffer pools.

v

Set up DCB and RFT entries
used to read in RBM overlays.

v

Set write locks.

INIT

20 Y
Set 1/O handler's start and
cleanup addresses.

v

Set up and ARM/ENABLE 1/0,
Control Panel, Control Task,
and Counter 4 interrupts.

Y

If Delta is included, type
TRAPS?, CONSOLE?

()

Type "SIGMA 5/7 RBM
VERSION XXXX".

y
Process ! MODIFY commands
if SSW1=C, SSw2=0¢C,
SSW3 =Sl are set.

4
If sense switch 4 is reset,

do RUN CAL to load in any
resident foreground program.

/

Trigger Control Task Interrupt
exiting to Control Task.

Y

Type alarm if cannot trigger
Control Task interrupt.

Wait

Figure 2. RBM Initialize Routine Overall Flow

2 RBM Initialize Routine

2. RBM CONTROL TASK

The RBM Control Task is connected to the lowest priority system interrupt. Among the functions performed by the
Control Task are

e Key-in processing

e Foreground program "RUN"

e Foreground program "RELEASE"
e Background program Load

o Background Checkpoint

e Background Restart

o Background Exit

e Background Abort

e Background Wait

e Postmortem Dump

e Deferred I/O processing

e Periodic service of all devices.

In facilities where there are no system interrupts, the Control Task is connected to the Control Panel interrupt (see
"Key~-In Processor" latfer in this chapter).

Structure

The Control Task consists of a resident portion and a number of nonresident portions that overlay each other in a
single area of core. The overlays are

e Foreground program "RELEASE" (FGLI)
e Foreground program "RUN" (FGL2)

e Background program Loader part 1 (BKLI)
e Background program Loader part 2 (BKL2)
e Checkpoint/Restart (CKPT)

e Abort/Exit (ABEX)

e Postmortem Dump (PMD)

e Key-in Processor part 1 (KEY1)

e Key-in Processor part 2 (KEY2)

These overlays are reloadable from the RAD after being partially executed. Memory locations X'22' to X'3F' are
used for the necessary temporary storage.

Function and Implementation
Resident Control Task

The resident portion of the Control Task functions as a scheduler for the various subtasks. The priority of the subtasks
is determined by the order that the resident Control Task tests the signal bits, with Checkpoint (bit 0)being the highest
priority of the tasks represented. The logic is depicted in Figure 3.

RBM Control Task

4

Entry is at label
CT1in listing.

Any deferred
1/O processing
?

yes

A

no

Call SERDEV to perform
deferred processing.

Was RUN
or RELEASE call
made ?

no

Set bit to run FG RUN/
RELEASE (K:CTST bit 1).

Any subtasks
to run?

yes

is BG

yes checkpointed
2
e no Yves
Is it
RESTART? =

Is it
Service All
Devices2” /% l
no Call SERDEV for all

system devices.

Figure 3. Resident Control Task Flow

Function and Implementation

Is overlay

i re? P
n core we waiting for

KEYIN?

Wait.

Enter overlay

(BAL, R15).

Overlay
returns?

Overlay is calling
another overlay.

Is
key-in subtask bit
set?

Need
key-in for I/O

rundown ?

Is the
ABORT/EXIT subtask
to be run?

Is
previous line
done?

A
Wait

Is BKGD

CKPT'ed or in use

by FRGD
?

Figure 3. Resident Control Task Flow (éon'r.)

Function and Implementation

Key-In Processor

The key-in processor portion of the Control Task processes all operator key=-ins that are initiated when the operator
depresses the console interrupt. When the console interrupt becomes active, the key=-in bit (bit 5) is set in K:CTST
and the Control Task interrupt is triggered if the Control Task is connected to a system interrupt. Figure 4 illustrates
the Key-In Processor flow, where CPINT is the label used in the code.

The key=-in request is recognized in the Control Task, and if the system is not waiting for key-in or if a key=in input
has been completed, the key-in overlay is entered. In the key-in overlay, the message

k! IKEY-IN

is typed on the OC device, the OC device is enabled for input, and control is returned to the resident Control Task.
The resident Control Task periodically tests for completion of the key=in input, and when this occurs, the key-in
overlay is again entered.” At this entry to the key~in overlay, illegal inputs are diagnosed and if any occurred,

VIKEY ERR

is typed on the OC device.

Legal key-ins are processed as illustrated in Figures 5 through 21.

Control Task
interrupt (same as con-
trol panel) triggered
internally ?

no (K:CTWD byte 0

not zero)

Set key~in bit
(K:CTST bit 5),

Control
Task running when

console interrupt was
depressed ?

Y
Set CTPSD so that
Control Task exists
to point of interrupt.

Return to point
of interrupt.

Figure 4. Key-In Processor Flow

Function and Implementation

Reset INLE bit
(bit 7) in K:CTST.

bit set (K:CTST
bit 8)?

Set bits to execute BG
load and JCP load
(K:CTST bits 8, 9).

-
<

Retumn

Figure 5. Operator Key-In Flow, "C"

Set IDLE bit
(K:CTST bit 7).

Figure 6. Operator Key-In Flow, "W"

Function and Implementation

7

8

Is
PMD in progress ?

dump.

Terminate appropriate

Has
ABORT already been
requested ?

~yes

ABORT/EXIT bit set
in K:CTST?

Set K:CTST for ABORT
(bit 4 on, bit 29 off),

4
Reset IDLE (K:CTST bit 7).

Figure 7. Operator Key=In Flow, "X"

Function and Implementation

Is TY
key~in in
effect?

Set TY in effect bit
(K:JCP1 bit 29). -

A

Save current
assignment of C.

\
Assign C to per-
manent OC device.

Process
C key~-in

Q) N—
eturn

Figure 8. Operator Key=In Flow, "TY" and "TYC"

Function and Implementation

10

effect?

Was TY in

no

Reset TY in effect
(K:JCPT bit 29 off).

Y

Restore previous
assignment of C.

Return

Figure 9.

Operator Key-In Flow, "CC"

Set up system cells.

K:MONTH
K:DATE1
K:DATE2
K:TIME

Is
Delta in
core?

Execute Delta
initialization
routine.

\

Return

Figure 10. Operator Key=In Flow, "DT" and "DE"

Function and Implementation

Set K:SY nonzero.

Set K:SY nonzero.

Process
Ckey-in

Figure 11. Operator Key~In Flow, "SY" and “SYC"

Set FG bit
(K:JCP1 bit 28).

Set FG bit
(K:JCP1 bit 28).

FSC

v _

Process

Ckey-in

Set FG bit
(K:JCPI1 bit 28).

Figure 12. Operator Key-In Flow, "FG", "FGC", "FSC", and "SFC"

Function and Implementation

11

(Request passed to
FG Loader)

Was name
input?

Scan name.

i

Build RUN

system call,

Y

Execute RUN
system call.

Was
previous requesf
made for same

program ?

yesy

EXIT

S

Figure 13. Operator Key=In Flow, "RUN"

Function and Implementation

Was
name input?

Scan name.

Is
name in FP
table?

Type 'RLS
NAME NA'.

Do release
system call.

Return

Figure 14, Operator Key-In Flow. "RLS"

Function and Implementation

13

i

Scan label.

Was
label input 2
chars. ?

Is label in
INTLB?

Scan location.

no
KEY yes
ERR
Set INTLB
assignment.

Function and Implementation

Figure 15. Operator Key-In Flow, "INTLB"

Continue
(C input)
?

cont, legal

Set up error TYC.

Set normal TYC
RBC = 0. Setup.

REQCOM

Finish cleanup

SERDEV

ANER
T

start channel

of

Reset key-in
pending, reset
request busy.

Y
Set up regs. for

REQCOM and
C SERDEV.
yyndd {R (1/O device error recovery).
E

Figure 16. Operafor Key-In Flow, "yyndd"

Function and Implementation 15

Get label

from key-in,

\

Find entry in
table.

\

Get device, op
label or RAD area.

Device

? yes

Is assignment
to 0°?

no

y

Set up for new

DC Device
?

Find DCT entry
and index.

assignment call.

Function and Impiementation

Figure 17. Operator Key-In Flow, "STDLB"

Get current
assignment.

no
assignment to
yes RAD file
2 Close old file.
\
Set new
Jes assignment,
y
Get old
assignment,
Null ?
yes
no
Close old file,

,
Set new assign-
ment (permanent),

() ——
Is
itC? no
: yes

Set temporary
assignment too.

@

Figure 17. Operator Key-In Flow, "STDLB" (cont.)

Function and Implementation

17

assignment to

Legal area?

KEY
ERR

assignment to

an op label yes
?
A

Get permanent
assignment of

Is this op label.

it OC op
label ? @
yes

file specified
at SYSGEN

current assign=
ment null

Ciose oid file.

entire area yes ‘A P12
Open file.
A
Scan to get Zero file name.
file name. Set permanent
assignment.
<
P12 @
Figure 17. Operator Key-In Flow, "STDLB" (cont.)

Function and Implementation

of pages in
range ?

Compute beginning
of FGRND address .

/

Use SYSGEN
value of beginning

of FGRND.

address > old
address?

Any
FGND program
in area to be
released

Save new address
in K:FGDB3.

yes

Type "FGD
AREA ACTIVE",

\

Return

Figure 18. Operator Key~In Flow, "FMEM"

Function and Implementation

19

20

Scan first field.

Label ?

no

yes

Get location,

v

Scan first field
again for location.

Location in

range ? no

Scan for action
code (D, A, T).

Valid code?

Compute group
no., group level.

v

Get first
control code.

v

Write direct.

there asecond

control word ‘no

Do second
write direct.

KEY
ERR

Return

Function and Implementation

Figure 19. Operator Key-In Flow, "CINT"

Set default
FWA=X'10'
LWA=(K:BACKBG).

-

y

Insure that range is
within core limits.

A

Set bits to run PMD
(K:CTST bits 6, 30),

uoé

Range input

Set default
FWA=(K:BACKBG)

LWA=(K:FGDBG1).

uoé

Set default
FWA=(K:FGDBG1)

LWA=(K:UNAVBG).

uoé

Figure 20. Operator Key-In Flow, "DM", "BB", and "DF"

Function and Implementation

21

9

Set code for stop
background 1/0.

A

Scan device name.

A
Search DCT for device.

Endof input ?

Scan for I.

Found? o
yes

Scan for F, X, or R.

Change code to

Set IOP bit in call.

Y

Do STOP/START 1/O call.

KEYERR

stop all 1/0.

no

Y

Clear replace flag in DCT3,.

A
O Set replaceflag in DCT3.
A ,

Any open files?

yes

Type 'IDLE'

Return

Figure 21. Operator Key-In Flow, "DED" and UND"

22 Function and Impiementation

Foreground Release (FGL1)

The primary purpose of this overlay is to release any Public Libraries or foreground programs that are marked "to be
released" in FP5 (bit 3). In addition, it tests if the "queue" bit (bit 6 in FP5) is set for any entries; if so, it also sets
the "load to be performed" bit (bit 0 in FP5). This overlay also handles the output of operator messages for both
FGL1 and FGL2, After performing these functions it returns to the resident Control Task such that FGL2 is loaded
and called.

For Public Libraries, a test is performed to ensure that the Public Library is not also in use by the foreground. If
not, the FP entry is deleted. For regular foreground programs, the FP entry is deleted, all interrupts in use by the
program (identified in the INTTAB) are disarmed and disconnected (MTW, 0 O is set in interrupt location), and all
DCBs are closed. If any Public Libraries were used by the released foreground program, they are released if this is
the only foreground program using them. The message

HTUNABLE TO CLOSE DCB XXXXXXXX

is output o OC if the named DCB (XXXXXXXX) cannot be closed. The message

HPROG XXXXXXXX RELEASED

is output to OC after the named program is released.

Foreground Loader (FGL2)

Run queuing is an optional feature in RBM. If the feature was assembled into RBM, both "load to be performed" and
"queued" bits in FP5 will be set after a RUN request has been made for a particular program. If the feature is not
assembled into RBM, only the "load to be performed" bit is set. In the former case, FP4 also contains a priority field
in bits 0-14. FGL2 uses this field to determine which queued program it should attempt to load first. In the latter
case, FGL2 makes a search only on FP5 to find a program to be loaded. At the conclusion of the attempt to load and
initialize all such programs, control is returned to the resident Control Task.

Tests are performed to ensure that the space required for the program is not already in use. If some of the required
space is in use by the background, the bit is ser (K:CTST bir O) ro cause a checkpoint of the background. Aii back-
ground 1/O is then stopped and control is returned to the resident Control Task. At conclusion of the checkpoint,
control returns to the Foreground Loader for loading and initialization of the program.

Tests are performed to ensure that the space required for the program is not already in use. If some of the required
space is in use by another foreground program, an alarm is printed on OC; furthermore, if the queued bit is not set,
the entry will be removed from the FP table. If the queued bit is set, an attempt to load the program will again be
made after the next release of any foreground program.

Initialization is accomplished by transferring control to the start address of the program. At conclusion of initializa-
tion, the program must perform an EXIT system call. The EXIT processor will recognize that a foreground program
initialization was in progress and will return control to the Control Task without performing the other usual functions.
As each foreground program is successfully loaded, the message

HHLOADED PROG

is output fo OC and LO, followed by the program name of the next line.

The following error alarms are output by the Foreground Loader:

HFPT FULL, CAN'T LOAD XXXXXXXX

IHCORE USED, CAN'T LOAD XXXXXXXX

111/0 ERR, CAN'T LOAD XXXXXXXX

Function and Implementation

23

24

FINONEXIST. CAN'T LOAD XXXXXXXX

After loading all or any specified foreground programs, a test is performed to determine whether the background may
be restarted if it was checkpointed. A restart could occur when one or more programs are released in FGL1 and no
program was loaded in FGL2 that used any background space. If the background is to be restarted, the bit is set
(K:CTST bit 2) to restart.

Background loader (BKL1)

The Background Loader controls the loading of all background programs including the JCP, system processors (RAD
Editor, language processors, etc.), and user background programs.

The Background Loader tests to determine that the background is to be loaded (K:CTST bits 9 or 10 are on).

If a FMEM key=-in has occurred since the last execution of the Background Loader, the background/foreground
boundary is moved by setting the proper system cell (K:FGDBG1) and setting the Write locks. This change is made
only if no foreground programs are running in any of the core area to be allocated to the bakcground. Should a
foreground program be running in this space, the message

IFGD STILL ACTIVE

is output on OC.

The background program header is read to determine the amount of core memory required. If sufficient core is not
available, the message

INOT ENUF BCKG SPACE

is output on OC.

If the JCP is to be loaded, the load module is read into core, the Control Task TCB is modified so that rhe JCP is
entered upon exit from the Control Task, and control is returned to the resident Control Task.

If a background program (except the JCP) is to be loaded, the program root is read into core. This may be done
with several READ requests if the root is fonger than 8191 words. The user's M:SL DCB is then set up if the program
is segmented. The user DCBs assignments are made using the data from !ASSIGN control commands (if any) pro-
cessed by the JCP since the last job step. If any such assignment cannot be performed, the message

HUNABLE TO DO ASSIGN

is output on OC and LO.

If o 1POOL control command was input, the specified number of buffers is determined. If no |POOL control com-
mand was input, the number of DCBs assigned to a blocked or compressed file is determined. This number (the num
ber of desired blocking buffers) is passed to the second overlay (BKL2) of the Background Loader. A maximim of
two blocking buffers is allocated for all DCBs assigned to scratch files (X1-X9).

Background Loader (BKL2)

This overlay allocates the background blocking buffers, sets up the loading of any needed Public Libraries, moves
the control command (IRADEDIT, IPROGRAM, eic.) to the high end of available background, and sets the Control
Task TCB so that the background program is entered upon exit from the Control Task.

If the user specified a number of blocking buffers via the IPOOL command and there is insufficient space, the
message

IINOT ENUF BCKG SPACE

is output to OC and control is returned to the resident Control Task. If no !POOL control command was input, the
desired number are allocated if sufficient space is available. If there is not sufficient space but space for at least
one blocking buffer is available, the maximum possible number is allocated.

A RUN system call is built and executed for background programs that use Public Libraries.

Function and Implementation

Checkpoint/Restart (CKPT)

This overlay performs both the Checkpoint and Restart functions. Checkpoint is accomplished by waiting for out-
standing background 1/O requests to run to completion and then writing the entire background portion of core to
the CK area of the RAD. When the background has been successfully written to the RAD, the message

11BCKG CKPT

is output on OC. At conclusion of the checkpoint, the background portion of memory is given to the foreground by
sefting the boundary pointers K:FGDBG1 and K:BCKEND and setting the Write locks appropriately.

The following self-explanatory messages may be output during checkpoint:

JICKPT WAITING FOR BCKG 1/O RUNDOWN

11BCKG IN USE BY FGD

11CK AREA TOO SMALL

111/0 ERR ON CKPT

Restart is accomplished by resetting the boundary pointers K:FDGBG1 and K:BCKEND, and by resetting the Write
locks to their precheckpoint settings. The message

IBCKG RESTART

is output on the OC device and the control bits indicating that the background is checkpointed are reset (K:JCP1
bits 2, 3). Control is then transferred to the resident Control Task, and when all specified subtasks are completed,
the Control Task will exit to the proper point in the background. :

Abort/Exit

This overlay performs the background Exit and Abort functions. Exit is accomplished by waiting for background 1/0
rundown, closing all DCBs, and setting the proper indicators so that the next program will be loaded into the back-
ground by the Background Loader. If the Exit is from the JCP and no 1JOB control command has been read, it is
assumed that a IFIN caused the Exit request. The idle indicator (K:CTST bit 7) is set, the Exit/Abort indicator
(K:CTST bits 4, 29) are reset, and control is returned to the resident Control Task.

If the Exit is from a background program other than the JCP after I/O rundown and closing the DCBs, the indicators
are set to load and execute the JCP (K:CTST bits 8, 9). Control is then returned to the resident Control Task. While
waiting for 1/O rundown, control is also returned to the resident Control Task whenever the 1/0 rundown test fails,
to permit other higher priority subtasks fo be performed in the interim.

Background Abort requests may originate from operator "X" key-in or from a system function call. If the request was
from a key-in, a test is performed to determine whether the background was executing when the interrupt occurred.
If so, the Abort must be postponed until the background exits from the Monitor. This is accomplished by signaling
the system CAL Exit routine that an Abort request was made. The Abort indicators are then reset and control is
returned to the resident Control Task. Control eventually returns to the background and when the background exits
the Monitor, the CAL Exit routine sets the proper indicators to cause a background Abort and trigger the Control
Task. At this execution of the Control Task, conditions 1 and 2 will not be true and the Abort proceeds as it would
the first time.

Function and Implementation

25

6

A test for background 1/O rundown is made. Any active background requests for devices that are manual and those
waiting for operator key-in are dequeved and cleared from the system tables. Eventually, I/O must run down with
no further action by the operator. The appropriate message

11JOB ABORTED AT [xxxxx}

LIMIT

where XXXXX (a hex location) is then output on OC and LO.

If a PMD (Postmortem Dump) was requested, K:CTST bit 6 is set. K:JCP1 bit 5 is set to cause control commands to

be skipped until the next 1JOB command is encountered. K:CTST bits 3 and 29 are reset and control is returned to
the resident Control Task.

Postmortem Dump (PMD)

This overlay performs core dumps. Any Dump key=-in requests in effect at entry are performed first, and when these
are exhausted, the background PMD requests are satisfied (maximum of four ranges).

The dump format is either hexadecimal or optionally both hexadecimal and EBCDIC, with the registers being re-
trieved from their storage area and dumped as locations 0 through X'F'. Subroutines are included in the overlay
that perform hexadecimal to EBCDIC conversion and move bytes into the print image,

After queuing each print line, control is returned to the resident Control Task o enable other subtasks to be per-

formed without waiting for total completion of the dump. The resident Control Task returns control to PMD after
each line is printed.

Function and Implementation

3. 1/0 HANDLING METHODS

Channel Concept

A "channel" isdefined as the highest order data path connected to one or more devices, only one of which may be
transmitting data (to or from CPU memory) at any given time.

Thus, a magnetic tape controller connected to an MIOP is a channel but one connected to an SIOP is not, since
in this case, the SIOP itself fits the definition. Other examples of channels are a card reader on an MIOP, a
keyboard/printer on an MIOP, or a RAD controller on an MIOP.

Input/output requests made on the system will be queued by channel to facilitate starting anew request on the chan-
nel when the previous one has completed. The single exception to this rule is the "off-line" type of operation,
such as the rewinding of magnetic tape or the arm movement of certain moving arm devices. For this type of opera-
tion, an attempt is always made to also start a data transfer operation to keep the channel busy if possible.

Handling Devices

The RBM system offers the capability of multiple-step operations by providing an inferrupt-to-interrupt mode in
addition to the standard single interrupt mode.

Single Interrupt Mode

On the lowest level the I/O handler is supplied a function code and device type. These coordinates are used to
access information from tables used by the handler to construct the list of command doublewords necessary to per-
form the indicated operation. Included will be a dummy (nonexecuted) command containing information perfinent
to device identification, recovery procedure, and follow-on operations (see below).

Interrupt-to-interrupt Mode

A function code for a follow-on operation may be included in the dummy command. This causes the request to be
reactivated and resume its normal position in the channel queue, but with o different operation to be performed. It
will be started by the scheduler in the normal manner as if it were any other request in the queue. The process may
be cascaded indefinitely.

Error recovery may be specified af any point within a series of follow-on operations and will be itself treated by the
system as a type of follow-on operation. It should be noted that follow-ons may be intermixed with other operations
on the same channel or even on the same device if the situation warrants. Thus, a series of recovery trieson a RAD
may be interrupted to honor higher priority requests, or on a tape for higher priority requests on other drives (but not
on the same drive).

Note that only one of the follow-on operations may transfer data unless all other parameters are to remain the same
(buffer address, byte count, seek address, etc.).

System Tables

Information pertaining to requests, devices, and channels is maintained in a series of parallel tables produced at
System Generatfion time. A definition of these tables is presented here as reference for the remainder of this man-
val. The first entry (index=0) in each table is reserved for special use by the system. See Chapter 10 for a more

complete description of these tables.

10Q (Request information)
These tables contain all information necessary to perform an input/output operation on a device. When a request is

made on the system, a queue entry is built that completely describes the request. The entry is then linked into the
channel queue below other requests of either higher or the same priority.

I/O Handling Methods

27

28

DCT (Device Control)

The device control tables contain fixed information about each system device (unit level) and variable information
about the operation currently being performed on the device.

CIT (Channel Information)

These tables are used primarily to define the "head" and "tail" of entries that represent the queue for given channel

at any time. ~ A channel queue may have more than one entry active at any time (e.g., several tapesrewinding while
another entry reads or writes).

Handler Tables

Associated with each handler are two tables: the Device Offset Table (DOT), and the Command List Pointer Table
(CLST).

The DOT table is a word table that begins on a doubleword boundary and contains:

Byte O A byte offset from the beginning of the DOT table to the corresponding CLST entry.

Byte 1 The time-out value, which is an integer that represents the number of five-second intervals that
are allowed to pass between the SIO and the 1/O interrupt before the interrupt is considered
fost. The value X'FF' indicates the operation should not be timed out.

Byte 2 The retry function code. This is the function code to be used for automatic error recovery.

Byte 3 The continuation function code. This is the function code to be used for multiple interrupt re-
quests. For example, a forward space record on magnetic tape can be performed n times by
the basic 1/0 using the same queued request. Zero is used for no continuation.

The function code is used as the index to reference this table.

The CLST table is a byte table containing the doubleword displacement from the beginning of the corresponding DOT
table to the appropriate skeletal command doubleword.

The general method for constructing the command doublewords for an [/O request is to access the DOT table using
the function code as index, and then find the skeletal command doubleword offset by using the contents of byte 0
of the DOT entry as index to the CLST table. The skeletal command doubleword has the form

Order X
Flags o | v | z

where
Y =0 if the command is complete and to be used as is. This implies X is the address and Z is the byte count.

Y =1 if a seek oddress contained in [OQ12 is to be placed in the first word. In this case, the value of X
is irrelevant.

Y =2 if a regular data transfer is to be performed. In this case, the buffer address is taken from IOQ8 and
placed in the first word, and the byte countis taken from IOQ9 and placed in the second word (byte 1).

Y =3 if the request represents an I/'O error message. This wiil cause the proper N/L 11yyndd to be chained
to the pointed message.

Y =4 if a special handler function is to be performed. In this case, X is the address of the entry to
the function.

Handler Tables

When the building of the command doubleword is completed, a test is performed for command-chaining (command

doubleword flag field bits 0 or 2 are on). If another command doubleword is to be chained, it is accomplished by
accessing the next successive entry in the CLST table to find the offset of the skeletal command doubleword that is
to be used to create the next command doubleword. This command doubleword is constructed in the same fashion as

the first, and the process may continue fo the limits imposed by the size of the command list area allocated at
SYSGEN.

Separation of Priorities and Control Task

All input/output functions are controlled with respect to time by a scheduler called "Service Device" (SERDEV).
This routine is considered device-oriented by the calling program, but in reality, theroutine takes the necessary steps
to keep the applicable channel operating within the constraints of priority.

Every 1/O request has a priority associated with it that is the priority of the task making the request. SERDEV causes
"I/O Start" and "1/O Cleanup" operations under the following circumstances:

1/0 Cleanup
1. When the device is marked as "waiting for cleanup".

2. When either the priority of the request to be cleaned up or the highest priority request in the queue for the chan-
nel is not lower than that of the currently active task.

/O Start

1. The device is marked "not busy".

2. The highest priority request in the queue is of priority not less than that of the currently active task.
Whenever a call to Service Device is made and no processing is performed because of priority considerations, the
Control Task is triggered and the device code is entered in the Control Task 1/O queue. When the Control Task
becomes active it will initiate the deferred processing by calling Service Device.

Service Device is caiied by

BAL,R2 SERDEV

R1 must contain:

PRI 0 0 DCT
o - 78 2324 31
where
PRI is the priority of the currently active program. The lowest priority is FF and the highest is zero.

DCT is the device index.

When SERDEV has determined that some action can be performed, it will either process an interrupt (cleanup) for a
completed operation or start a new operation. On a given device the cleanup must be performed before a new op-
eration can be started. Thus, if a cleanup for a lower priority task is outstanding when a request for the current
level is to be started, that cleanup will be performed at the higher level. Follow-on operations will also be pro-
cessed at a higher level, if necessary, to free the device for higher priority requests.

Generally, Service Device is called whenever an event occurs that may change the status of a given device and/or
channel. These events and the reasons for the change of status are as follows:

1. When an 1/O request is queued: The device or channel may be stopped either because there were no previous
entries in the queue at the time of the request or because of priority consideration. Service Device will make
the necessary tests and, if necessary, either start or perform cleanup and then start the device.

Separation of Priorities and Control Task

29

2. When an 1/O check is requested: Cleanup may be outstanding or the request may have been deferred for priority
reasons. In any case, Service Device will perform the necessary action.

3., When an I/O interrupt occurs: The device involved will have cleanup outstanding that may or may not be pro-

cessed for priority reasons. The channel may be driven if there are requests in the channel queue for the current
level or any higher levels.

4. When the Control Task becomes active: The Control Task will call Service Device for each entry in its queue.
In effect, it will ignore priority and all deferred operations will be performed.

The general flow of the SERDEV scheduler is illustrated in Figure 22.

INTSIM Routine

This routine simulates the occurrence of the 1/O interrupt in cases where an 1/O operation has timed out. The logic
is illustrated in Figure 23.

CTTEST Routine

This routine tests to determine whether 1/O processing must be deferred to the Control Task because of priority con-
siderations. If so, the Control Task interrupt is triggered and return is +1. If not triggered, return is +2. The logic
is illustrated in Figure 24.

Initiating 1/0 Requests
When Service Device has determined that a request may be initiated, it will make the call

BAL,R15 STARTIO

with registers set as follows:

R1 PRI 0 0 DCT
0 78 23 24 31
R2 Nonvolatile
0 31
R3 0 0 10Q
0 23 24 31
R4 0 0 CIT
23 24 3

R14 70///////////////////////// DAC

1516 31

30 Initiating I/O Requests

IOEX
in progress on
device ?

Waiting
for Cleanup
?

3

Get highest
priority request.

Is
channel queue

empty yes

request’
busy ?

Get next highest
priority request.

|

Was
there one

Figure 22. SERDEV Routine Flow

Initiating 1/O Requests

31

32

Deferred ?

"Get DCT index
from request.

device busy
or waiting for

device between
operations or waiting
for cleanup
?

Get active request.

>

1

Waiting
for cleanup

es
5 y

no

initiating 1/O Requests

Figure 22. SERDEV Routine Flow (cont.)

Hos
device timed
out?

Halt device.

INTSIM

Get request.

sD82

Compute new time-
out velue and set
for device.

Is
device still
manual

Reset manual status.

Figure 22. SERDEV Routine Flow (cont.)

Initiating 1/O Requests

33

Reset device busy.
Set cleanup pending.

“"Was
there data
transfer

Set channel
not busy.

4

Return

Figure 23. INTSIM Routine Flow

34 Initiating I/O Requests

urrent task Con-
trol Task or BGRND,

current task
higher than
request ?

Return +2

Control Task
triggered indicator
(DCT5 bit 5)
set?

yes

Set Control Task
triggered indicator

(DCT5 bit 5).

Y
Push DCT index info
Control Task /O

queue.

i

CTTRIG

Return +1

Figure 24. CTTEST Routine Flow

Initiating 1/O Requests

35

R15 ;//////////////////% Refurn

15 16 3]‘
where

PRI is the operating priority.

DCT is the device index.

10Q is the request index.

CIT is the channel index.

DAC is the Device Activity Counter.

STARTIO will branch to the start address in DCT8 to perform any functions peculiar to the device.

After the command list is created in temporary sforage,liall i ferruEfsore dlsabied sand a check ismade forreentrance.

This consists of testing the Device Activity Count (DCT 10) for change. The DAC is incremented when either an op-
eration is started on a device or a cleanup is performed. If no reentrance is in evidence and the channel is notbusy,
an attempt is made to start the device.

If the SIO is rejected, the request will be treated as if an unrecoverable error condition was present. The cleanup
will be performed and the type of complete will be set to indicate the SIO failure. If the SIO is accepted but the
status information indicates that the device is in manual mode, an "empty" message is output and no response will
be expected from the operator other than setting the device to "automatic". If the operation is timed out by the
Watchdog Timer and the device is still manual, the message will be repeated. The flow of the STARTIO routine is
illustrated in Figure 25.

A

1/0 Interrupt Processing

When the 1/O interrupt occurs, it is necessary to perform certain functions before clearing the level from the active
state. The IOINT routine in the 1/O interrupt processor is not reentrant. The device that caused the interrupt is
determined by searching the hardware address in DCT1.

The device (and channel if applicable) is set to the "not busy" state, and the device is set waiting for cleanup. A
check is made to determine whether or not an external interrupt should be triggered. At this point, the 1/O inter-
rupt level can be cleared. The system will then be at the priority level of the interrupted task and is subject to
interrupt by higher level tasks.

A call is made on the Service Device routine that decides if the cleanup for the just completed operation should be

performed now or deferred to the Control Task. The interrupted task suffers only a minimal amount of overhead if
the cleanup is deferred. The flow of the IOINT routine is illustrated in Figure 26.

1/0 Cleanup

The call to process an -ini‘erfur;\t for an 1/0O request is
BAL,R15 CLEANUP

with registers set as follows:

Rl PRI 0 0 DCT

R2 Nonvolatile

36 I/ Interrupt Processing/Cleanup

STOPIO
on this device

° yes
Before return, the
Handler front end. f———=— command list is
constructed.

Set retry and

continue func-
tional codes.

v

Set time-out value.

Channel
busy ?

Set request busy.

failure

Paper
fape reader
?

Figure 25. STARTIO Routine Flow

1/O Cleanup 37

DV

Is
desired unit
manual

Set manual bit

in DCT5.

-l

Set up to print
manual messcge,

A 4

Set device busy.

Data
transfer
?

Set channel busy.
Set data transfer.

SI04

Set cleanup
pending.

y
Save SI1O status.

A

Set SIO failure
bit to DCT3.

Is

there a

message fo

output
?

3

Return

Figure 25. STARTIO Routine Flow (cont.)

38 1/O Cleanup

Save all registers.

\

AIO

4

Set N =number
of devices.

1011 IOEX
on device

Nth
device
/ves)\
no 7\

Y

N-~N -1

Figure 26. 1OINT Routine Flow

1/0 Cleanup 39

TDV save status
in DCT13.

Y
Reset device

busy manual.

A

Set cleanup
pending.

Data

transfer
?

Set channel
not busy.
1020 >
y

End
action
?

no

I

J
Clear 1/0

yes

interrupt. Trigger interrupt.

\ BAL to user
end-action.

SERDEV @

i

Restore registers.

y

LPSD to return to
pointof interrupt.

Figure 26. IOINT Routine Flow (cont.)

40 10 Cleanup

2324 31
R4 0 0 CIT
2324 31

R14 7///////////////////// DAC

0 1516 31

RIS ://////////////////////% Return

15 16 31

where the parameters are the same as for STARTIO.
Before the reentrance test is made, CLEANUP must determine if any errors have occurred, what follow-on action

is to be taken, and what error messages are to be typed. This must be done prior to disturbing any tables in case the
program was actually reentered.

When it has been determined that no reentrance has occurred, the information set up previously will be used to make
the necessary changes to the tables. Inferrupts will then be enabled so that end-action and error messages may be
processed. The general flow of the CLEANUP routine is illustrated in Figure 27.

Miscellaneous Basic 1/0 Subroutines
REGCOM (Request Complete)

This routine dequeues an entry that has been completed. The routine also performs the testing necessary to intercept
control commands from the C device. The call to process a cleanup request is

BAL,R15 REQCOM

with registers set as follows:

R1 PRI 0 0 DCT

0 78 2324 31
R3 0 0 10Q

0 23 24 31
R4 0 0 CIt

0 23 24 31

Miscellaneous Basic 1/O Subroutines

41

42

Handler back-end.

Y
Reset timed-out
and S10 failure
in DCT3.

A

Reset cleanup
pending in DCT5.

Is
there con-
finuation

Reset request busy.

REQCOM

Miscellaneous Basic 140 Subroutines

Figure 27. CLEANUP Routine Flow

key-inrequired

Retry
count zero
?

Decrement retry
count.

A

Cet retry,
continuation codes.

Set key-in
pending in DCT5.

\
[REQGCOM

i

Set retry code.

Set continua-
fion code.

Set request
not busy.

CUP6

Is

message to be

output
?

Return

Figure 27. CLEANUP Routine Flow (cont.)

Miscellaneous Basic 1/O Subroutines

43

R5 0 0 Return

0 1516 31
R10 0 0 CCA

0 1516 31
RN 0 0 RBC

0 1516 31
R12 0 0 TYC

0 2324 31

CUPCORE, CUPDCB Cleanup, End-Action Routines

These routines post the TYC and ARS in either a DCB or memory location. When posted in a memory location, the
parameters have the format of the FPT status word. The call to perform clean-up end-action is

BAL, R14 CUPCORE
BAL, R14 CUPDCB

with registers set as follows:

R10 End Action Data
0 31
R11 End Action Data
0 31
R12 0 0 TYC
23 24 31
R13 0 0 ARS
15 16 31
R14 0 0 Return
1516 31

Miscellaneous Basic 1/O Subroutines

R15

0

Buffer Address

MSGOUT (Message Out)

1516

31

This routine outputs an I/O error message to OC. The call to output an I/O error message is

BAL, RS MSGOUT

with registers set as follows:

R1 0 0 DCT

0 2324 31
R3 0 10Q

2324 31

R5 0 0 Return

0 15 16 31
R13 0 0 MSG ADDR

0 i5 % 33

QUEUE

The subroutine labeled QUEUE enqueues 1/O requests on a priority basis. A queue entry is constructed that com-
pletely defines the 1/O operation, and this entry is entered in the channel queue behind (lower in priority) all queved
entries of the same or higher priority. The call to enqueue an 1/O request is

BAL, RS QUEUE

with registers set as follows:

I/OFunction
R4 0 0 Code
0 2324 31
R5 0 0 Return
0 1516 31
R6 0| No. Refries
0 23 24 31

Miscellaneous Basic /O Subroutines

45

46

R7 0 0 DCT

0 23 24 31
R8 End Action Data (word 1)

0 31
R9 End Action Data (word 2)

0 31
R10 00— 0 Buffer Byte Address

0 1213 31
R11 0 0 Byte Count

0 1516 31
R12 RAD Seek Address

0 31
R13 0 0 Priority

0 23 24 31

The flow of the QUEUE subroutine is illustrated in Figure 28,

User 1/0 Services

OPEN This function opens a DCB that results in opening a RAD file when the DCB is assigned to a RAD file. If
the Error and/or Abnormal address is given in the function call, the addresses are set in the DCB.

Opening a RAD file involves constructing an RFT (RAD File Table) entry for the file. If the file is a permanent file,
the area file directory is searched to locate the parameters that describe the file. These parameters are formatted
and entered into the RFT. If the "file" is an entire area, the parameters used to construct the RFT entry are taken
from the Master Dictionary. If the file is a background temporary file, the RFT entry must already have been con-
structed by the JCP. If the file is on.a disk pack and a DED DPndd,R key~in is in effect, an abnormal code (X'2F')
is posted in the DCB.

Blocking buffers or user-provided buffers are used for the directory search. Background requests use background buf-
fers; foreground requests use foreground buffers.

CLOSE This function closes a DCB that may result in the closing of a RAD file. Closing a permanent RAD file
involves updating the file directory if any of the directory parameters have been changed by accessing the file.
Among such parameters that may change are file size (adding records to the file), record size (by Device File
Mode call), etc.

User 1/0 Services

Device

marked down
?

yes

STOPIO
in effect for all
system 1/O?

Background

request ? no

Any
free entries

as
4 ?

no

Device 1/O system
until anentry frees.

Background
request ?

Max.
no. of BGRND
entries in
use?

yes

Increment no. of
BGRND entries.

v

\

Break out a free entry.

A

Fill in enfry.

Data
transfer over
track ?

Limit /O to next
boundary. Set
continve flag.

!‘

\

Place entry in queue.

SERDEV

Continue
flag set?

Wait for completion.

Return
+2

Figure 28. QUEUE Subroutine Flow

User 1/O Services

47

48

RAD files are only closed when the DCB being closed is the last DCB open and assigned to the file. Blocking buffers
or user-provided buffers are used for the directory update as in the case of OPEN. If the file being closed is on a
disk pack, a DED DPndd,R key-in is in effect, and this is the last open file ondevice ndd, the message ! ! DPndd IDLE
will be output.

READ/WRITE A READ or WRITE function call will cause the addressed DCB to be opened if it is closed. READ/
WRITE checks for legitimacy of the request by determining whether or not the following conditions are present:

1. For type I requests, the DCB is not busy with another type 1 request.

2. The assigned device or op label exists.

3. The user buffer lies in a legitimate region of core memory.

4

The type of operation (input or output) is legitimate on the device (e.g., output to the card reader is not
allowed.)

For device 1/0, READ/WRITE builds a partial QUEUE calling sequence and calls a device routine that performs
device-dependent testing such as:

1. Mode flog in DCB (BIN,AUTOQ) for devices that recognize it.

2. Testing byte count against carriage size for keyboard/printer.

3. Testing for PACK bit in DCB for 7T magnetic tape.

4. Testing for VFC for line printer or keyboard/printer.

The device routines set up the proper function code in the QUEUE calling sequence and are labeled: RWKP, RW9T,
RW7T, WCP, WLP, RCR, RPR, and WPP. These routines transfer control to a routine called GETNRT, which com-

pletes the QUEUE calling sequence by setting the number of retries. GETNRT then calls QUEUE. After queueing
up the request (and the implicit call on SERDEV), control transfers to the CHECK logic.

For RAD file 1/O, READ/WRITE calls the routine labeled RWFILE. RWFILE tests for write protection violation on
write requests, end-of-file on sequential read requests, and end-of-tape on all requests. The different types of re-
quests are handled as follows.

Direct Access. The RAD seek address is computed from the granule number provided in the FPT, and a QUEUE
calling sequence is constructed that will queue up the request. Control then transfers to the CHECK logic.

Sequential Access (Unblocked). The RAD seek address is computed from the file position parameters and a QUEUE
call is made. Control then transfers to the CHECK logic.

Sequential Access (Blocked). The next record is moved from/to the blocking buffer and blocks are read/written as
required to allow the record transfer. For example, the first read request results in the first block being read and
the first record in the block being deblocked into the user buffer. Successive read requests will not require actual
input from the RAD until all records in the blocking buffer have been read. The blocks are always 256 words long
and contain an integral number of fixed length records; that is, no record crosses a block boundary.

Background Blocking Buffers are handled dynamically. If a blocked I/O request is made and all allocated Back-
ground Blocking Buffers are in use by other files, one of the blocking buffers will be taken from its associated file
{after writing the block to the file, if necessary) and used for the current request. This file is now associated with
the file that most recently used it. When a request is made for I/O on the original file, the system recognizes that
no Background Blocking Buffer is associated with the file and it will locate a buffer for this file by borrowing one
from another file if necessary. One Background Blocking Buffer is sufficient for any background program.

Foreground Blocking Buffers are not handled dynamically.

(s

- e 3 e A ~] .tl . Lt 1 . | L))
Sequential Access (Compressed Files). Compressed files are freated in a manner similar fo biocked files with the
following exceptions:

1. The records are compressed/decompressed on the way to/from the blocking buffer.

2. The buffer does not contain a fixed number of records since the records are no longer of fixed length after com-
pression. However, no compressed record crosses a block boundary.

User 1/O Services

To compress a record, the following EBCDIC codes are used:

X'FA’ End-of-Block code
X'FB' End-of-Record code
X'FC Blank Flag code

All occurrences of two or more successive blank codes (X'40') are replaced by a Blank Flag code (X'FC') followed
by a byte containing the length of the blank string. An End-of-Record code follows each record, and an End-of-
Block code appears after the last record in a block.

When compressing records into the blocking buffer, a length of the compressed record is first computed and a test
performed to determine whether the record will fit in the block. If so, it is placed in the buffer. If not, an End-of-
Block code is written in the buffer and the buffer is written to the file. '

At the conclusion of the file access, the status is posted in the user DCB or FPT and control is transferred to
the CHECK logic.

PRINT This function builds the QUEUE calling sequence to perform the output on LL. After calling QUEUE, the
routine either waits for completion, if wait was requested in the system call, or returns control to the user.

TYPE This function builds the QUEUE calling sequence by using code contained in the PRINT function. As in
PRINT, a wait or return is performed as requested by the user.

DFM This function sefs the MOD and PACK indicator in the addressed DCB to values given in the system call.
If the DCB is assigned to a RAD file, the record size (RFT5), the organization (RFT7), and/or the granule size (RFT4)
are set if requested by the user. The corresponding parameters on the file directory are updated when the file is
closed.

DVF This function sets the DVF bit in the addressed DCB fo the value (0 or 1) specified by the user.

REWIND This function rewinds magnetic fapes and RAD files. No acfion is taken if the addressed DCB is as-
signed to any other type of device.

ind he hodldina ~ LIFLIE ~nlling cannance with tha Rawind finetian coda and callina
o oy outiain Q sequence with the kewing tunchion gode and calling

Ak~ + A rALAr
v S TCWoLn ¥ i g & KuUalD Cannan S]

AA erin ~mn e
GGHTHT TGRS Giie

QUEUE.

RAD files are rewound by zeroing the file position (RFT11), current record number (RFT12), blocking buffer position
(RFT10), and blocking buffer control word address (RFT17) parameters.

WEOF This function writes an "end-of-file" on paper tape punch, card punch, magnetic tape, and RAD files.
A request addressing a DCB assigned to some other type of device results in no action,

An "end-of-file" is written on paper tape by calling QUEUE with a request to write an EBCDIC ' IEOD' record,

An "end-of-file" is written on a card by calling QUEUE with a request to write an EBCDIC ' EOD' record.

An "end-of-file" is written on magnetic tape by calling QUEUE with a request to write a tape mark.

An "end-of-file" on a RAD file is "written" by copying the current record number minus 1 (RFT12) to the file size

(RFT6) and setting an indicator so that the file directory will be updated when the file is closed.

PREC This function positions magnetic tapes and RAD files by moving some specified number of recordseither
backward or forward. It does not affect other devices. Positioning is performed as follows:

1. A magnetic tape QUEUE call is constructed that specifies through the function code the directionof the motion,
and through the "seek-address" parameter the number of records to move. The basic I/O system then moves the tape.

2. The new positionwithin the file of an unblocked RAD file is computed as a function of the record size and the sec-
torsize. File position (RFT11)and current record number (RFT12) parameters are set to indicate the new position.

3. The new position of a blocked RAD file is computed as a function of the current record number, recordsize, block

size, current blocking buffer position, current file position, and RAD sector size. The blocking buffer position
(RFT10), file position (RFT11), and current record number (RFT12) are set to indicate the new position.

User 1/O Services 49

50

The new current record number of a compressed RAD file is computed and subroutine PCFIL is called. This sub-
routine positions a compressed RAD file at the specified record by counting records from the beginning of the
file until the desired position is found. PCFIL sets the blocking buffer position (RFT10), file position (RFT11),
and current record number (RFT12) parameters to indicate the new position.

PFILE This function positions magentic tape and RAD files ot the beginning or end of files. It does not affect
other devices. Positioning is performed as follows:

1.

A magnetic tape QUEUE call is constructed with function code to "space file" either backwards or forwards.
This results in the tape being positioned past the tape mark in the specified direction. If a skip was not re-
quested, the tape is positioned on the other side (near side) of the tape mark through o QUEUE call for a posi-
tion one record opposite in direction to the space file.

The RAD Files Backward file position (RFT11) is set to zero; the blocking buffer position (RFT10) is set to zero;
the current record number is set to 1; and the blocking buffer control word address (RFT17) is set to zero.

The Unblocked RAD File Forward current file position is computed as a functionof the file size, therecordsize,
and the RAD sector size. The current file position (RFT11) and the current record number (RFT12) are set to in-
dicate the new position.

The Blocked RAD File Forward current file position (RFT11)and the Blocking Buffer Position (RFT10) are computed
as a function of the file size, record size, block size, and RAD sector size. These parameters and the current

record number (RFT12) are set to indicate the new position.

The Compressed RAD File Forward subroutine PCFIL is called with file size plus one as the record number. This
subroutine positions the file at the start of the specified record.

/o

User I/C Services

4. JOB CONTROL PROCESSOR

Overview

The Job Control Processor (JCP) is assembled as a Relocatable Object Module (ROM) and is loaded at SYSGEN time by the
SYSLOAD phase of SYSGEN. The JCP isabsolutized to execute at the start of background and is loaded onto the RBM file
onthe RAD. The JCPisloaded from RAD for execution by the Background Loader upon the initial "C" key-in; and there-
after, is loaded following the termination of execution of each processor or user program in background memory.

The JCP executes with special privilegessince it runs in Master Mode with askeletonkey. Master Mode rather than Slave
Mode isessential to the JCP since, at appropriate times, it executesa Write Direct instruction to trigger the RBM Control
Task; italso issues an HIO instruction to the "C" device when the "C" device assignment is changed. A skeleton key
instead of the background key isalso essential to the JCP since it sets flags for itself and the Monitor in the resident
Monitor portion of memory. Bit zero of system cell K;JCP1is set to 1to inform the Monitor that the JCP is executing.

The JCP controls the execution of background jobs by reading and interpreting control commands. All cards read
from the "C" device that confain an exclamation mark in column one (except for an |EOD command), are definedas
JCP control commands. The 1/O portion of the Monitor will not allow any background program except the JCP to
read a JCP conirol command. The JCP runs until a command is read that requires the execution of a processor or
user program, or until a }FIN command is encountered.

The JCP presently requires a minimum of about 5K of core to execute, which means that the smallest possible core
space allocated to the background must be at least 5K. Approximately one third of the JCP code consists of the
JCP Loader, which is used to load the Overlay Loader at System Generation time.

The flowchart illustrated in Figure 29 depicts theoverall flow of the JCP, and Figures 30 through 48 illustrate the
JCP commands. The labels used in the flowcharts correspond to the labels in the program listing.

ASSIGN Command Processing

The ! ASSIGN commands are read from the "C" device by the JCP, and are primarily used to define or change the I/O de-
vicesused by a program. The !ASSIGN command can also be used to change parametersina DCB. Sinceall IASSIGN
commands must be input prior to the RUN or Name command (where Name is the name of a processor or user program file in
the SParea) to which they apply, the information from each !ASSIGN command is saved in core by the JCP. The JCPbuilds
an A551G N iabie coniaining ihe informaiion from cach ASSIGN command. This table consists of tenwords for cach
1ASSIGN, plusone word specifying the number of ten-word entries. The table remainsin background memory and is
passed to the Background Loader (an RBM overlay that loads a program'sroot for execution by the JCP). After the
Background Loader reads in the program's root, it makes the appropriate changes to the program's DCBs from the infor-
mation in the ASSIGN table. The ASSIGN table can then be destroyed as the program executes; therefore, ' ASSIGN
commands take effectonly for a job step and not an entire job. The ASSIGN table has the formai shown in Table 1.

Table 1. ASSIGN Table

Words Contents

1 Number of entriesin table (each entry of ten words contains data from one IASSIGN command).
Thisword is always on an odd boundary; K:ASSIGN contains the address of word 1.

2,3 Name of DCB to change in EBCDIC. This pair of words and the next four pairs of words are on
a doubleword boundary.

4 This word contains changes to the items in word 0 of the DCB.

5 Mask for items being changed in word 0. The Background Loader does an STS instruction (using

words 4 and 5) to change the items in word O of the DCB.
6 Changes for word 1 of DCB.

7 Mask for items being changed in word 1.

8 Changes for word 3 of DCB.

9 Mask for items being changed in word 3.

10,11 File name in EBCDIC if DCB is assigned to a RAD file; otherwise, these words equal zero.

Words 2 through 11 contain one eniry in the ASSIGN table and are repeated for each !ASSIGN command.

Job Control Processor

51

(=) —

Initialize DCBs and
reset " system proces-
sor" flaginK:JP1.

\

Purge all Background
Temp Files (X1-X9)
not saved for
entfire job.

‘_.

Should
the nextjob card
be skipped

2

no

yes

Y

Go type "SCHING
FOR JOB CMD",

Go type "JCP".

A

AD3

Bl

CAL read S

Next control card
from "C" device

AO3B

/

Check CAL

"Busy " refurn

). m?m

SeeifRead is ffrom Check CAL
completed.
Read is completed
SCAN \

Error on emd.

Decode first field
of command.
No error
on cmd.

Output alarm and
control cmd, if
appropriate.

Is it
a JOB com-
mand

command and
search table for

control cmd.

Found control
cmd. intable

Enter proper
region to process

control command.

'

Control Command Region
JOB BO1
FIN Col1
ASS DO!
DAL EO1
ATT FO1
MES GO1
PAU Ho1
cC Jo1
LIM Lo}
STD MO1
RUN PO1
ROV P10
POO Q01
ALL RO1
LOA 501
PMD TO1
PFI uol1
PRE VOl
SFI WOl
REW X01
UNL YO!
WEO Z01

control card

Not a proper

Go to seeifa Iname
cmd. was input.

ASSIGN Command Processing

Figure 29. JCP

General Flow

Go to C20

SBR to write
Accounting

Was a

date keyed
in?

yes

Do TIME CAL
and then log
date and time.

A21 P

Put version into end
of JOB card.

Was
'C" assignment
changed via a
keyin ?

yes

Was
a card read
from old "C"
device ?

Do "HIO" on

Dequeue old
Read request.

old "C" device.

Figure 29. JCP General Flow (cont.)

ASSIGN Command Processing

53

accounton
the card and is there
job accounting

Save name and
acct. off card for
job accounting.

y
Clear "SY" key-in
flag. Clear assign
table. Setbckg. job
limit to zero.

y

Reset all current op

label assignments to
permanent assign. ,
except "C" label.

Set current sizesof

GO, OV files to

permanent sizes.

Y

Purge all Bckg.Temp
Files by clear-name
(X1-X9).

DOGCOV

Set up RFT for
GO and OV.

Initialize tables

used for ALLOBT
command.

Exit JOB card

()
W

Figure 30. JOB Command Flow

54 ASSIGN Command Processing

Go to C205BR

to write acctg.
log for
previous job.

y
Set "IDLE" as name
in accounting fog.

{ LOGALM |\

\ "BEGIN IDLE" /

4

Clear bekg. job limit.
Clear JOBcmd.Read flag.

Get data from AS-
SIGN card and save
in ASSIGN table,

Y

Step no. entries in
ASSIGN table and save
FWA of ASSIGN table.

Exit from ASSIGN command

(-

Figure 32. ASSIGN Command Flow

ASSIGN Command Processing

55

56

Format and print
accounting log
on LO device.

i EOF returned from

. E Enter here when

yAccounting Log

If purge option,
purge ALfile by
rewinding ALand
write an EOF.

7 Exit from DAL command

Figure 33. DAL Command Flow

’

Set attend
mode flag.

@

Exit from ATTEND command

Output message
on "OC" device.

Set idle bit.

Trigger Control Task.

Figure 34. ATTEND Command Flow
Set flag not to Exit if
wait after mes-
sage is output. MESSAGE

command

PAUSE command

ASSIGN Command Processing

Figure 35. MESSAGE Command Flow

Set flag to wait
after message
is output.

Figure 36. PAUSE Command Flow

Set "C" op label
to previous
assignment.

Y

Clear flag that
TY key-in was
active.

LExit from CC command

Figure 37. CC Command Flow

Set limit time
for BCKG job
info K:LIMIT.

"Exit from LIMIT command

Figure 38. LIMIT Command Flow

ASSIGN Command Processing

57

58

Last
op label on
cord 7

/ SCAN \
Get op label to
change assignment.

yes, exit

Y
SCAN S\

Get new assignment
for op label.

Y

Error if C, OCassigned to

zero. Error if OC
assigned to nontypewriter
device.

(=)

assigned to

Get
type om assigned to

M10

»

assignment a device

?

assigned to a RAD
Vf”e or areaq.

Do OPEN CAL for
RAD file or area and
save RFT index.

L another op label

Get assignment of op
label this iabei is being
assigned fo.

Y

Get DCT index of device
op label isassigned to.

<

Was
previousassign-
ment to a RAD no
file ?

yes

Close RAD file of
previous assignment.

le

F

Set new assignment
for op label.

Figure 39. STDLB Command Flow

ASSIGN Command Processing

SetareatoSP. Goto SCANY}
to rescan name from com-
mand. Set "system

@ i_processor" flagin K:JCP1.
. 4

Setup DCB and save file
name in alarm message.

v

Do READ CAL to read in
file header of program to

execute.

Output "file nonexist"
alarm and take error exit
if first word of file
header = zero.

NO3
Get
public library type of foreground
- program
background
- NO05
| A Y
Output error alarm since ?,o, f,}lrSUgh tables set by Error if no "FG" key-in.

b PR R |
ALLVUDI COLTHHUINU Ul .
! Error if program not on FP

illegal to execute a
areaor noton OV file.

public library. set up all Bckg. Temp

Filesinputon ALLOBT.

take error exit

> N15
AOBA

Does

program have

any DCBs
?

Go through all DCBs and set
flag in N93 table to show
which Bckg. Temp Files
need default allocation.

v

If DCB was input on assign
card, take assignment from

ASSIGN card value.

Figure 40. NAME Command Flow

ASSIGN Command Processing 59

60

Is
program
MACRSYM
?

Go to N80 SBR to
do special check
and allocation for

MACRSYM.

Are
there any
Background Temp Files
to get default
allocation

there enough
space left to

allocate files
' ?

yes

Y
Setupall Bekg. Temp!
Files that get defaul t
allocation.

A
Save file name
and area for
Bckg. Loader

no

N22C

Y
Output
"BT OVERFLOW"

alarm.

take error exit

AQ8C

Do RUN CAL so
foreground program
will be loaded and
started.

Was

program loaded

OK or already

loaded
?

no

Inspect status posted
and output an alarm
if appropriate.

| take error exit

AO8BA

ASSIGN Command Processing

Figure 40. NAME Command Flow (cont.)

SCAN

K

Get area and
file name.

Set "system processor" flag
in K:JCP1 if area is SP.

go process same
as NAME command

.,

Figure 41. RUN Command Flow

-

Set area to Bckg. Temp andfilename
to OV. Set "system processor" flag
if SY key-in is in effect.

go process same
as NAME command

Or

Figure 42. ROV Command Flow

()

Save number of blocking buffers for
Bckg. Loader in K:BPOOL.

exit

.‘_

Figure 43. POOL Command Flow

ASSIGN Command Processing 61

62

RO4

Scan command and
save all parameters
in temporary cells.

>

Y

If format not input by
user, set to un=-
blocked. If GO
file, set to blocked.

RO5

f
|

If file size not in-
put, set defaulfto
1000 records.

y

Calculate number
sectors needed for
file based on for-
mat of file.

®-
+1

R21

there enough
room in BT area for
file
?

Save info. about file
inperm. JCP tables
(CFORM, RSIZE,
GSIZE, SAVE).

AO3
N

\

/ DOGOOV

Set up GO or /
OV file

Output alarm
"CC ERR, BT
OVERFLOW"

error
exit

AQOBA

ASSIGN Command Processing

Figure 44. ALLOBT Command Flow

Initialize flags. Pro-.

cess all parameters
on LOAD command.

y

Read ROMs from
X1 and do actual
loading of ob-
ject modules.

A

Write program in
core image format
onto appropriate
file.

_.

used core

Set up limits for sym-
bol table so all un-

is used.

After reading
an EOF
from BI.

507)

(

A

Set P:END as first
eniry in symbol
table. Setup X1 file
as a blocked file.

{ >
1>

Read next

Was

root just

loaded
?

Where appropriate,
write out M:SL
DCR, DCRtable,
and OVLOAD table.

binary card. Pess
two of
Pass one loader
of loader

Build symbol table of
DEFs and get value
forevery DEF. Write

ROMS on XI1.

I

this the last
ROV no

Is

)

T

Close all

output the map, if
requested.

files and

exit

Figure 45.

LOAD Comman

d Flow

ASSIGN Command Processing

63

Set up cells to dump
in K:PMD forPost-
mortem Dump
routine.

Figure 46. PMD Command Flow

©090¢

Do proper CAL
to positionfile
to proper place.

Figure 47. PFIL, PREC, SFIL, REWIND, and UNLOAD Command Flows

Do write EOF CAL
to write proper num-
ber of EOFs.

exit

A03

Figure 48. WEOF Command Flow

ASSIGN Command Processing

The diagram in Figure 49 depicts the core layout as the JCP executes.

K:BACKBG
JCP AREA

(About 5K)
End of JCP Code

Dynamic Area Used
By JCP Loader

ASSIGN Table K:ASSIGN
(expands this direction)

fixed 20 words K.CCBUF
(K:BCKEND =K:BPOOL -1) K:BCKEND
K:BPOOL
514 Words

(2 Blocking Buffers)

K:FGDBGI1 or K:UNAVBG

Note that there is one extra word left immediately before K:CCBUF that is used to store the printer format
code for logging the conirol command.

Figure 49. Core Layout During JCP Execution

JCP Loader

The JCP Loader loads Relocatable Object Modules (ROMs) or groups of object modules that use a subset of the XDS
Sigma 5/7 Object Language. Initially, the Loader processes all parameters on the | LOAD command and sets up the
appropriate DCBs and flags. If the program being loaded has overlays, space is reserved for the program's OVLOAD
table at the end of the JCP. The OVLOAD table contains 11 words for each overlay; the first word of OVLOAD con-
tains the number of entries in the table. The exact format of the OVLOAD table is given later in this chapter.

Note that words 2 through 10 of the OVLOAD table have the same format as the Read FPT that is needed to read an
overlay into core. Next, the first word addresses of the Symbol table (SYMT1 and SYMT2) are set up. The diagram
in Figure 50 depicts the core layout before PASS1 of the JCP Loader.

The JCP Loader is a two~pass loader. In Passl, the ROMs are input from the Bl op label and copied onto the Xl file
on the RAD. The X1 file is set up to use all of the Background Temp area of the RAD that is available for scratch
storage. The main function of PASS1 is to build the symbol table (SYMT1 and SYMT2) containing all DEF items, and
to assign a value to each DEF. The symbol table has the following format:

SYMTI a doubleword table containing the name, in EBCDIC, of each DEF item in the program being loaded.
The first entry is not used.

SYMT2 a word table in the format shownbelow. The first entry contains the total number of DEFs in the table as

i %
De:j:}crl‘:g;on D % Value of DEF as a byte address

0 789 1213 31

where bit 8 = 1 if this is a duplicate DEF.

JCP Loader

65

66

K:BACKGD
JCP Code
End of JCP
OVLOAD
(Space for OVLOAD Table
if progrom has overlays)
SMTI
SYMT1
SYMT2
K:ASSIGN

Figure 50. Pre-PASS1 Core Layout

At the end of PASS1, the size of the symbol table is fixed so the remainder of core can be used as a load area in
PASS2. After loading the program root in PASS], space is allocated for the M:SL DCB (if the program has overlays),

the DCB table, and the OVLOAD table (if the program has overlays). These items are allocated in the following
order:

Program Root] M:SL DCB | DCB Table | OVLOAD Table |
l 7 words I 3 words/DCB I 11 words/overlay

Start of Program
Overlay Area

The DCB table is built in an internal table in the JCP in PASSI after loading the program root. The DCB table is
made up of all M: and F: DEFs in the root, including the value of each DEF. The complete OVLOAD table is also
built during PASS1; each overlay's entry being made after the overlay is loaded. Hence, PASS1 completely allo-
cates all space for the program.

After the last ROM is loaded at the end of PASSI1, the file header is written fo the appropriate RAD file. The re-
mainder of core not used by the Symbol table is then rounded down to an even multiple of RAD granules and set up
as the load area for PASS2. There must be enough room to hold at least one RAD granule, plus 12 extra words, or
the load will be aborted at this point. The X1 file is then rewound and PASS2 commences. The following diagram
depicts the core setup af the start of PASS2:

| JCP Code | ovioap | SYMTI | Load Area for | SYMT2 |

‘ ‘ | | Pass Two | ‘

K:BACKBG End of JCP K:ASSIGN

PASS2 inputs the ROMs from the X1 file, satisfies all external REFs by finding the value of the corresponding DEF in
the Symbol table, and then writes the program in core image format to the proper RAD file in a multiple of granules
at a time. Between 8 and 12 extra words are loaded each time at the end of the load area in case a define field load
item requires that the load location be backed up a maximum of 8 words. This prevents having fo read a granule
back into core after it has been written in the event a word has to be changed because of a define field item.

JCP Loader

These 12 words are copied from the bottom of the load area to the top of the load area after the granules are

written on the RAD.
item.

After the root has been loaded in PASS2, the M:SL DCB (if appropriate), the DCB table, and the OVLOAD table are
attached in that order to the end of the root and written on the RAD. After all ROMs have been loaded, the JCP
Loader outputs the map if requested, closes all files, and exits to read the next control command. The format of

the OVLOAD table is

The previous 8 words are therefore always available in core to satisfy a define filed

Number of entries

0 31

0 0 Segment Ident

0 1516 31
X110 0 0 DCB Address

0 78 14 15 31

0 0

0 31

0 0

0 31

0 0

0 31

0 0 Buffer Address

0 1415 31

0 0 Byte Count

0 1415 31

0 0 Key Address

0 1516 31

JCP Loader

67

68

0 31
10 0 0

0 31
11 0 0 Entry Address

0 1415 31

Job Accounting

Job accounting is an option selected at SYSGEN time. An accounting file will be kept on the RAD by the JCP if

the accounting option was chosen. The file must be defined by the user; must have the name "AL"; and must be in
the D1 area of the RAD.

Whenever a 1JOB or |FIN command is read by the JCP, the JCP will update the AL file for the previous job. The
format and record size of the AL file is automatically set by the JCP vio a File Mode CAL. The JCP defines the AL
file as a blocked file with a record size of 32 bytes. The AL file on the RAD consists of a series of eight-word rec-
ords, where a new eight-word record is added for each job. The first record in the file is reserved for the IDLE ac-
count and is the only record that is ever rewritten. The elapsed time in the IDLE account is incremented by the ap-
propriate amount anytime a ! JOB command is input after a prior !FIN command, and the IDLE entry is thenrewritten
on the RAD. The format of each record in the AL file is as follows:

Word Description

1,2 Account number in EBCDIC

3,4,5 Name in EBCDIC

6 Left halfword = (year - 1900) in binary, Right halfword = date as day of year (1 - 365)
7 Start time of job in seconds (0 - 86399)

8 Elapsed time of job in seconds

The IDLE account has an account number of "IDLE" and a name consisting of all EBCDIC blanks.

Whenever an entry is added to the AL file, the file is opened and a file skip performed so that the new entry can be

made at the end of the existing entries. No attempt is made to combine entries in any way. The contents of the AL
file can be listed via the IDAL command, (Dump Accounting Log), and the option exists for the user to purge the file
ofter the dump is completed. The AL file is purged by rewinding it and writing an EOF.

Background TEMP Area Allocation

The JCP allocates and sets up the files in the Background Temp (BT) area (X1-X9, GO, OV) before exiting to the
Background Loader to load a processor or user program. The BT files needed by the user are defined either via
IALLOBT commands or through default by the JCP from inspection of the user's DCBs. The GO and OV files are
set up at the start of each job and remcin intact for an entire job; the required files X1 through X9 are normally sef
up for each job step only.

Information for files X1-X9 read in from !ALLOBT commands is stored in tables (GSIZE, FSIZE, FORM, SAVE,

RSIZE) that are internal to the JCP. If the GO or OV file is changed via an | ALLOBT command, the file is redefined
at the time the command is processed.

Job Accounting/Background Temp Area Allocation

The files in the BT area are allocated so that files remaining intact only for that job step are allocated at the front
of the BT area. Files that remain intact for the entire job are allocated at the back of the BT area. Normally, this
means that X1 through X9 are allocated at the front of the BT area, and GO and OV at the opposite end. If the
SAVE option is used on an IALLOBT command for an Xi file, the Xi file will be allocated at the opposite end of the
BT area, as will GO and OV. The following diagrams illustrate the BT allocation:

BT allocation without IALLOBT Commands:

x4|x3|x2|x1| oV GO |
| | 1 T ! —]

Intact only for a job step Intact for entire job

x
5

The proper Xi file is allocated for each M:Xi DCB in the user program. The remainder of the BT area after GO and
OV have been allocated is evenly divided among the Xi files.

BT allocation with !ALLOBT Command:

l Xn | l X4 l XZl X1 X3 ov GO I
C | I ! I 1 T —)

Intact only for a job step Intact for entire job

The above diagram illustrates how BT would be allocated if an TALLOBT command was input to save the X3 file.
Note that X3 is allocated at the opposite end of the area with OV and GO.

Allocation of the Xi (1=i<9) files is performed in the following sequence: First, any files input on an ALLOBT
command are allocated at the proper end of the BT area. Next a search is made of all user M:Xi DCBs, andany Xi

files that were not input on an ALLOBT command are allocated by default in the remaining area. Note that if the

AL e . R I oy £o0_ et al_ AVLLADT] N PRS- & [M JUG SRR R DR R R (f DR K R
ALL UPIIUII IS UDEU 10U 1T JI1LC 1 1HT ALLW/UE LUIIHUNIU, THITIC WL DS TIU TOUITE TSIV HITINYG 101 Qv ainocanivinn

and if a M:Xi DCB is found for which a file has not been allocated, a "B8T OVERFLOW" alarm will be output and
the job aborted.

The following examples depict the allocation of BT as previously described:

Example 1:

1. An 'ALLOBT command for X1 file with SAVE option.
2. An IALLOBT command for X2 file.

" 3. A user program with M:X1, M:X2, M:X3, M:X4, and M:X5 DCBs.

In this case, the BT area would be allocated as

| x2 | X5 X4 X3 | x1 | ov | co|
- ! 1 | 1 1 ! B,
Intact only for a job step Intact for entire job

In this example, the X1 and X2 files would receive the sizes input on the | ALLOBT command, while the X3, X4, and

X5 files would be evenly distributed over the remaining area.

Background Temp Area Allocation

69

70

3. A user program with M:X1, M:X2, M:X3, and M:X4 DCBs.

The BT area in this case would be allocated as

| x| x| X2 | ov | co |
L l /E—ALL Option > l | J
Intactonly forajob step Input for entire job, if job was not aborted

In this example, the job would be aborted because there is no remaining room to allocate the M:X4 DCB, since the
"ALL" option was used for the X2 file. If the "ALL" option is used for file size, all Xi files used by the program
must be allocated via the ALLOBT command.

The JCP does special allocation of the BT area for MACRSYM, since MACRSYM may or may not need an X2 file,
depending upon the parameters on the IMACRSYM control command. Also, MACRSYM requires that the area for
its BT files be divided unevenly between the X1, X2, and X3 files. The N95 table in the JCP contains the ratios
to use in dividing the BT area for MACRSYM. If special allocation had to be done for another processor, it would
only require the addition of another table similar to N95 and a special check for that processor's name. The N96
table is used for all processors with no special allocation requirements.

Background Temp Area Allocation

9. FOREGROUND SERVICES

Foreground services are those service functions restricted to foreground utilization. In general, they are associated
with the control of system interrupts, the handling of foreground tasks, and direct I/O (IOEX). The following ser-
vice functions fall in this category:

RUN

RLS

MASTER/SLAVE

STOPIO/STARTIO

I0EX

TRIGGER

ENABLE/DISABLE

ARM/DISARM

CONNECT

In terms of the functions as part of the resident RBM, the resident function sets indicators for RUN and RLS, and the
Control Task actually performs the function.

Implementation

RUN If an entry for the specified program does not already exist in the FP table, an entry is built. The FP sub-
tables are set as follows:

FP1 Program name

FP2 Group code for interrupt to be triggered at conclusion of initialization by Control Task
FP3 Group level i"‘or said interrupt

FP4 Signal address and (optionally) priority

FP5 Switches

K:FGLD is set nonzero, the Control Task is entered, and control is returned to the user program.
If an entry does exist in the table for the program, a code is placed in the signal address. The codes used are

3 Program already loaded

4 Program waiting to be loaded

If no eniry exists for the program and there are no free eniries in the FP table, a code of 5 is placed in the signal
address. Sufficient reentrance testing is performed (for details, see the program [isting).

RLS If an FP entry does not exist for the specified program, control is returned to the user.
If an entry exists and the program is not foaded, FP1 and FP5 are zeroed, and control is returned to the user.

If an entry exists and the program is loaded, bit 3 in FP5 is set, K:FGLD is set nonzero, the Control Task is triggered,
and control is returned fo the user (for details of reentrance testing, see the program listing).

MASTER/SLAVE The mode bit in the PSD saved in the user Temp Stack is set to the proper state and control is re-
turned to the user. When returning control, CALEXIT executes an LPSD that establishes the proper mode for the user.

STOPIO/STARTIO The specified device is determined and all other devices associated with it (all other devices

on a multidevice controller or all devices on the IOP if the call so requests) have their proper STOPIO counts in-
cremented or decremented. The count is either in DCT14 or DCT15 as specified by the call,

Foreground Services 71

An HIO is performed on these devices if requested by the call.
If a DCT15 count goes to zero as a result of a decrement, the IOEX busy bit in DCT5 (bit 7) is reset for the device.

10EX For HIO, TIO, and TDV instructions, the instruction is executed and the status is placed in the copies of
R8, and R9. The condition code field of the saved PSD is placed in the Temp Stack. Then at CALEXIT, these copies
are placed in R8, R9, and the PSD, and returned to the user.

For SIO, the system waits until the device is not busy with regular system 1/O (DCT5, bit 0); it then sets the IOEX
busy bit (DCT5, bit 1), executes the SIO, and returns the status to the user.

TRIGGER, DISABLE, ENABLE, ARM, DISARM, CONNECT These functions are similar in that they involve the
execution of a Write Direct after determining the group code and group level of the specified interrupt.

In addition, a task connection is performed if requested by ARM, DISARM, and CONNECT requests. Note that the

CONNECT call is a special case of the ARM call. The logic for ARM, DISARM, and for CONNECT functions is
illustrated in Figure 51.

Task Control Block (TCB)

The CONNECT function initializes words 2-9 of the user-allocated TCB for interrupts and CALs that are to be cen=-
trally connected. The format of the TCB is shown below:

0
————————— Saved PSD — — ——— — — — —
1
2 Intermediate PSD to transfer _ __ |
3 to TCB+4 with skeleton key
4 STM,0 TCB+10
5 BAL,R1 RBMSAVE
6 |Ti0 0 PCB address
7 Priority [0——0 TCB address
8 | ___PSD to transfer to task entry in proper _
9 state (mode, write key, etc.).
10
/ 16 words for register saving Z
25
01 78 1518 3

72 Implementation

Get group code and
level bit.

ARM

or DISARM
?

Is
start address
present?

Is
start address
valid?

Is
it central
connection
?

Is
TCB address
oK?

Disable the interrupt.

)
d

Set up words 2-9 of TCB.

CON

!

Store XPSD in interrupt

or trap cell and make
INTTAB entry.

Is it
a clock
interrupt?

Store clock counter values
and " MTW,-1" instruction.

N41

CON

A

/

Issue proper"WD" instruc-
tion to count pulse interrupt.

.

N5

.

CON

\ 4

Set index to enable or
disable as appropriate.

N7

A

Issue "WO" instruction
to interrupt.

Figure 51. ARM, DISARM, and CONNECT Function Flow

Implementation

Make INTTAB entry

for direct connection.

yes

Y
Store the 'XPSD!

Store the 'XPSD'

Is it
a clock
interrupt?

no

@

Get "MTW" instruction
from FPT and store in
count pulse location,

Implementaiion

Figure 51. ARM, DISARM, and CONNECT Function Flow (cont.)

6. MISCELLANEOUS SERVICES

Miscellaneous services are functions available to both foreground and background programs but which do not directly
involve 1/O services.

SEGLOAD

This function loads explicitly requested overlay segments of a program into memory for execution. The user's M:SL
DCB (allocated by the Overlay Loader) is used to perform the input operation.

For an EPT for READWRIT, the system uses the entry in the program OVLOAD table that corresponds to the segment.
The OVLOAD table is constructed by the Overlay Loader.

The function locates the proper entry in the OVLOAD table and places the user-provided error address in both the
OVLOAD entry (FPT) and in the M:SL DCB. If end-action was requested, the FPT is set to cause end-action at
conclusion of the segment input.

If the calling program has requested that the segment be entered (at its entry point), the PSD af the top of the user
Temp Stack is altered so that upon CALEXIT, control goes to the segment entry address.

The function then sets RO to point at the FPT in the OVLOAD table and transfers to READWRIT. The segment input
is then treated as a READ request with possible end-action, and at the user's option, control is returned either fol-
lowing the SEGLOAD CALI, or to the segment entry address.

Trap CAL

This function sets up the trap control field and TRAPADD field in a user's PCB and sets the Decimal Mask (DM) and
Arithmetic Mask (AM) bits in the user PSD to mask out occurrences of these traps. PSD bits are modified by chang-
ing them in the user PSD at the top of the Temp Stack and in the PSD contained in the user's TCB.

If the user-provided trap address is invalid (not in background for background program, or in foreground for fore-
ground user), or if the user specifies that he is to receive occurrences of some trap and no trap address is provided,
control is transferred to TRAPX. This results in the message

ILL PARAM., CAL AT XXXXX

being output on OC and LL.

Trap Processing

Traps are either handled by the user, cause simulation of the instruction where possible, or result in an abort
condition. :

Miscellaneous Services

75

76

The registers and PSD are saved in the user Temp Stack in the following format:

X

Top of stack before trap

—

This word appears only if the
above zeros are in an even

PSD Word 0

word address.

PSD Word 1

RO

(Registers 2 through 14)

R15

Working Cell

If the trap is either a nonexistent instruction or unimplemented instruction, the instruction causing the trap is
analyzed to determine whether the proper simulation package (if any) is in the system. If so, the simulation is

called; if not, it is treated like any other trap.

A test is performed to determine whether the user is to process this particular trap.
X'41', etc.) is placed in the top word of the stack and the user's trap handling routine is entered by LPSD, eight of

Top of stack after trap

the user PSD, with the trap handler substituted for the address where the trap occurred.

Traps not handled by instruction simulation or by the user result in one of the following messages being output

to OC and LL:

If so, the trap address (X'40',

Trap Handling

MEM. PROT. ERR AT XXXXX

' PRIVILEGE INST. AT XXXXX

NONEXIST. ADD. AT XXXXX

NONEXIST. INST. AT XXXXX

UNIMPLE. INST. AT XXXXX

STACK OVERFLOW AT XXXXX

ARITH. FAULT AT XXXXX

WDOG TIMER RUNOUT AT XXXXX

MEM. PARITY ERR AT XXXXX

ILL. PARAM., CAT AT XXXXX

Note that the last message results from the simulation of a trap (called Trap X'50'). This is done by the system
when a system call cannot be processed due to incorrect parameters being input. After the message is output, a
test is performed to determine whether the trap occurred in the background or foreground. If background, an ABORT
function is performed; if foreground, the current task is exited.

TRTN (Trap Return)

This function returns control following the instruction which caused a frap and is employed by the user to return
control after processing a trap.

At the time of the TRTN call, the user Temp Stack is set as described previously under "Trap Processing”. The
TRTN function strips the stack of the context placed there by the CAL processing (from the TRTN CAL). 1t then
clears the stack by the Trap processor and returns control to the instruction that follows the one causing the trap.

Trap Handling

77

1. RBM SIZES

The total size of RBM, including all handlers and excluding the initialization routine, is 5170 words. The size of
the minimum RBM (card reader and RAD handler options only) is 3823 words. The length of the RBM overlay arec
is 512 words.

The space required for each optional feature and optional routine is:

Option Words Required
Patch 0
Compressed Files 158
10EX ‘ 54
Job Accounting 65
Card Reader 23
Card Punch 82
Card Punch (Low Cost) 21
Magnetic Tape 240
Paper Tape 225
Line Printer’ 18
Line Printer (Low Cost) 24
Plotter 13
RAD 43
Disk Pack 278
SYSPROC ' 66
Run Queving 35
Sigma 9 Compatibility 25
GDL Compatibility 30
Instruction Simulator Interface 121
Floating Point Simulator 246
Decimal Simulator 538
Byte String Simulator 102
Convert Simulator 56
Delta 3196

78 RBM Sizes

RAD File Table (RFT)

8. RBM TABLE FORMATS

Parameters describing the file are taken from the directory entry for the file. These parameters include:

File name

Beginning sector address (relative to beginning of the area)

Ending sector address (relative to beginning of the area)

Granule size

Record size

File size (number of records)

Organization (blocked, unblocked, compressed)

The parameters specifying the physical characteristics of the RAD, the boundaries of the RAD area, and the Write
Protection key are in the Master Dictionary. To enable access to these, the RFT contains a Master Dictionary Index
(specifying the area).

For manipulation of the file, the RFT contains the following items:

Blocking buffer control word address

Blocking buffer position

Position within the file (sector last accessed - used for blocked and unblocked)

Current record number

Number of DCBs open to the file.

These parameters are entered in the RFT by the OPEN function. The parallel table concept is used for the RFT, and

the tables are allocated and initialized as given in Table 2.

In Table 2, below

File name all O

RFT2 index 0
RFT3 index O
RFT4 index O
RFT5 index 0
RFTé index 0

Other index 0

Signifies enfry not in use.

Entry contains the total number of RFT entries.

Entry contains the maximum number of RFT entries allowed for background use.
Entry contains the current number of background file enfries.

Entry is used as the RFT activity count for reentrance tests.

Entry contains the number of temp files allocated.

Entries are not used.

The Job Control Processor builds the RFT entries for the Background Temp Files. These entries are the first n + 2
in the table (n is the number of Xi files), where entry 1 is for the OV file, entry 2 is for the GO file, entry 3 is

for the X1 file, etc.

RBM Table Formats

79

Table 2. RAD File Table Allocation

Address Contents Initial Value Length
RFTI File Name 0 Doubleword
RFT2 Beginning Sector Add.ress X Halfword
RFT3 Ending Sector Address X Halfword

" RFT4 Granule size (in bytes) X Halfword
RFT5 Record size (in bytes) X Halfword
RFT6 File Size (in records) X Halfword
RFT7 Switches X Byte

where

Bit 0 = 1 means sequentially written
Bit 1 =1 means directly written
Bit 3 = 1 means compressed

Bit 7 = 1 means blocked

RFT8 Master Dictionary Index X Byte
RFT9 . Not used X Byte
RFT10 Blocking Buffer Position (in bytes) X Halfword
RFTII File Position (in sectors) X Halfword
RFT12 Current Record Number X Halfword
RFT13 Number of Open DCBs (total) X Byte
RFT];l Function X Byte
RFT15 Number of BGND DCBs ‘ X Byte
RFT16 Status (bit 0 on for sequential write, bit 1 on X Byte

for direct access write)

RFT17 Blocking Buffer Control Word Address X Word

Device Control Table (DCT)
DCT Format
The Device Control Table (DCT) is composed of several parallel subtables (see Table 3, below). The various entries
associated with a given device are accessed using the DCT index of the device and addressing the tables DCT1
through DCT19. For example, DCT1 would be accessed by

LH, R DCT1, X
DCT2 would be accessed by

LB, R DCT2, X

where Register X contains the DCT index value for the device.

80 Device Control Table (DCT)

Table 3. DCT Subtable Formats

Subtable Address

Contents

Length

DCT1

1/O Address of the device

0——0¢{ 10P |0 Device
0 45 789 15

Halfword

DCT2

Channel Information Table Index - A pointer to the CIT entry for
the channe! associated with the device.

Byte

DCT3

Bit 0 = 1 means output is legal for this device.

Bit 1 = 1 means input is legal for this device.

Bit 2 = 1 means device has been marked down and is inoperative.
Bit 3 = 1 means device timed out.

Bit 4 = 1 means SIO has failed.

Bit 5 = unused

Bit 6 = DED DPndd, R key-in in effect

Bit 7 = unused

Byte

DCT4

Device Type

0= NO (I0EX)

10 = CP (Low Cost)
11 = LP (Low Cost)
12=DP

13=PL

Byte

DCT5

Status Switches

Bit O = device busy.

Bit 1 = waiting for cleanup.

Bit 2 = between inseparable operations.

Bit 3 = data being transferred.

Byte

Device Control Table (DCT)

81

Table 3. DCT Subtable Formats (cont.)

Subtable Address Contents Length

DCT5 (cont.) Bit 4 = error message given (key~-in pending).

Bit 5 = control task notified of deferral of processing for this
device.

Bit 6 = SIO was given while device was in manual mode.

Bit 7 = I1OEX on this device.

DCTé6 Pointer to queue entry representing current request. Byte

DCT7 Command list doubleword address. Halfword

DCT8 Handler start c:ddre;ss. Word

DCT9 Handler cleanup address. Word

DCT10 Device activity count (used for 1/O Service reentrance testing). Halfword

DCT11 Time-out value (used to abort request when no interrupt occurs). Word

DCT12 Cleanup word 2 before 1/0 inferrupt, AIO status after the Word
interrupt.

DCT13 TDV status. (Halfword 2 has type completion if cleanup Doubleword
reqt.Jires key=in.)

DCT14 STOPIO (background only) count. Byte

DCT15 STOPIO (all system 1/0) count. Byte

DCT16 The firsi eight characters of the operator message. It contains Doubieword

the five-character device name (CRAO3) preceded by the three
characters "N/L! ", '

DCT17 Retry function code (for error recovery) and continuation. Halfword
DCTI8 Open DCB count (total). Byte
DCT19 Open DCB count (background). Byte
SYSGEN DCT Consideration
System Generation allocates the space for the subtables DCT1-DCT19. Initial values are defined for these entries
as follows:
DCTI As specified by :DEVICE command
DCT2 As specified by :DEVICE and :51OP commands
DCT3 As specified by :DEVICE command
DCT4 As specified by :DEVICE command
DCT5 Zero
DCTé Zero

2 Device Control Table {DCT)

DCT7 Pointer to SYSGEN allocated space for command list

DCT8 Zero

DCT® Zero

BCT10 Zero

DCTH Zero

DCTI2 Zero

DCT13 Zero

DCT14 1 if (DEDICATE, F); otherwise, zero
DCTI15 1 if (DEDICATE, X); otherwise, zero
DCT16 “N/LHIYYNDD" where YYNDD came from the :DEVICE command
DCT17 Zero

DCTI8 Zero

DCT19 Zero

The index O entry of each subtable is not used as a true table entry because of the nature of the BDR instruction.

DCT7 points to the space allocated by SYSGEN for the command list for the device. The area must begin on a
doubleword boundary and have a word length as follows:

Magnetic Tape (7T and 9T) 6 words
Keyboard/ Printer 4 words
Card Reader 2 words
Card Punch (7160) 74 words
Card Punch (7165) 2 words
RAD 4 words
Disk Pack 4 worde
Paper Tape 8 words
Other Devices 8 waords
Line Printer (7440, 7445) 2 words
Line Printer (7450) 4 words
Plotter 2 words

Halfword 0 of DCT1 is set by SYSGEN to contain the number of devices (DCT entries) in the DCT table.

Channel Information Table (CIT)

The Channel Information Table consists of parallel subtables, each with an entry per channel. There is one channel
per controller connected to a MIOP, and one channel per SIOP. The "channel" concept is used since there cannot
be more than one data transfer operation in process per channel. 1/O device requests are queued on a per-channel
basis. System Generation allocates and initializes these subtables as shown below:

Address
CIT1

CIt2

CIT3

Contents
Queue Head set to 0
by SYSGEN

Queve Tail set to 0
by SYSGEN

Switches set to 0 by SYSGEN;
Bit O Channel busy

Size

Byte

Byte

Byte

Channel Information Table (CIT) 83

The CIT subtable entries are accessed by using
LB, R CITN, X

where Register X contains the index (1-N),

The index O entry is not used because of the nature of the BDR instruction.

1/0 Queue Table {10Q)

The 1/O Queue Table consists of parallel subtables each with an entry per queue entry. These tables are accessed
in the same manner as DCT and CIT by using an index. As is true for DCT and CIT, the index 0 entry of each sub-
table is not used as a true queue entry.

System Generation allocates and initializes the IOQ tables as given in Table 4.

Notice that IOQ2 index O is initialized by SYSGEN, This byte is used and maintained by the 1/O system as the
"free entry pool" pointer. By initializing IOQ2 as shown, SYSGEN links all entries into this pool.

10Q1 index 0 is initialized by SYSGEN to the maximum number of queue entries allowed to the background.

10Q3 index O is initialized to 0, since this byte is used and maintained by the 1/O system as the current number of
queve entries in use by background. 10Q4 (index 0) is the total number of IOQ entries.

Table 4. 10Q Allocation and Initialization

Address Contents Initial Value Length
10Q1 Backward Link 0 Byte
10Q2 Forward Link Entry M contains M + 1 for Byte

N >M=20. Entry N contains 0,
N is the number of queue entries.

10Q3 Switches 0 Byte
Bit 0 = 1 means request busy

Bit 5 = 1 means continued operation
Bit 6 = 1 means reuse queue entry

Bit 7 = 1 means operation complete

10Q4 Function Code (:DOT table index) 0 Byte
10Q5 Current Function Step 0 Byte
10Q6é Not used 0 Word
10Q7 Device Index 0 Byte
10Q8 Byte Address of Buffer 0 Word

84 I/O Queue Table (IOQ)

Table 4. 10Q Allocation and Initialization (cont.)

Address Contents Initial Value Length

10Q9 Byte Count 0 Halfword

10Q10 Maximum reiry counf 0 Byte

10Q11 Retry count 0 Byte

10Q12 Seek Address 0 Word

10Q13 End-Action data 0 Doubleword
Word 1

byte 0 is cleanup code where value:
1 = Post status in FPT
2 = Post status in DCB

3 = Not used

4 = No end action (only available
to the monitor)

bit 8 = control device read
bit 9 = end action data in word 2

bit 15-31 = FPT or DCB address for
cleanup code 1 or 2

Word 2
If word 2 = 0, parameter not present

If byte 0=X'FF', bits 15-31 are user's end-
action address.

If word 2 =0, and byte 0 = X'FF', byte 0
= end-action interrupt group code,
byte 1 = interrupt address - X'4F',

bits 15-31 contain level bit for interrupt.

10Q14 Priority .0 Byte

Since the Oth entry is never used in subtables whose entries are words or doublewords, it is not necessary to allocate
space for this entry. If the 2N words for IOQ13 are allocated beginning at location ALPHA, 10Q13 is given value
ALPHA-2. Thus, 10Q13 may actually point into another table but presents no problem because IOQ13 will never
be accessed with index 0.

1t should be noted that none of the subtables need be positioned in any particular relationship to each other. They
may be allocated anywhere in core with the restriction that Doubleword Tables begin on doubleword boundaries.

1/0 Queue Table (IOQ)

85

86

Blocking Buffers

To facilitate control of blocking buffers, a control table is generated by the buffer allocation mechanism, This
table will contain a word entry for each blocking buffer and has the format

(K:BPOOL) or

(K:FPOOL) }

(K:FGDBG1) or (K:UNAVBG)

Number of Blocking Buffers

Blocking Buffer 1 he

Blocking Buffer 2 >

Blocking Buffer n

Blocking Buffer 1 entry

Blocking Buffer 2 entry

Blocking Buffer N entry

>
where each entry is of the form
RET wlo 0 Blocking Buffer start
address
0 789 14 15 31

RFT is the index of the RFT entry for the file currently using this buffer,

0 signifies that the buffer is not in use.

w is set if the blocking buffer has been written in.

Foreground Program Table (FGT)

The Foreground Program Table contains an entry for each foreground program in memory at a given time. This table
consists of parallel subtables allocated by System Generation and is maintained by the system RUN and RELEASE
functions (system calls and/or key-ins). The format of the subtables is given in Table 5.

Blocking Buffers/Foreground Program Tohle (FGT)

Table 5. Foreground Program Subtables

Subtable Address

Contents

Initial Value

Size

FPI

Program Name.

Doubleword

FP2

?The interrupt group code and interrupt address for
7

_interrupt to be triggered (before the program is loaded,

¥ The first core location (DW addressi{after Toa hg-
Entry O contains the number of table entries.

Halfword

FP3

The group level for the interrupt to be triggered before
the program is loaded.

The last core location (DW address) after loading.

Halfword

FP4

Before the program is loaded, bits 0-14 contain the
priority=sequence field, and bits 15-31 contain the
signal address. After the program is loaded, this
word contains up to three indexes (into the FGT table)
of public libraries used. For public libraries, this
word contains the number of programs using the fibrary
(when O, library is unloaded).

Word

FP5

Status Flags

Bit 0 = 1 Load is to be performed

Bit 1 =1 Public Library used by FGRND
Bit 2 = 1 Public Library used by BGRND
Bit 3 = | Release is to be performed

1 D_l____ i e D de_ 1. __ . __1L_.DBADNIN
P RSICUST 1S FURHIC LIDIdily USSu Uy bwUnivw

Bit 5 = 1 Program is loaded

Bit 6 = 1 Program run request queued

Bit 7 = 1 Run with Delta

Byte

Master Dictionary

K:MASTD (focation X'14A'), contains the address of the Master Dictionary. This serial table is indexed by area

number where:

Area DW Index Value Write Protect Code (WP shown below)
SP 0 4

FP 1 4

BP 2 4

BT 3 2

XA 4 5

CK 5 3

D1 6 1 or 2 (specified during SYSGEN)

D2 7 1or2

DF 20 1or2

Master Dictionary

87

The format of the Master Dictionary (2 words/entry) is

1 No. sectors No. words Alo—olwpP! DCT Index
per track per sector
2 Starting RAD Address’ Ending RAD Address'
0 67 15 16 17 20212324 31

where
A = 0 this area is not allocated.

A =1 area is allocated.

WP = 1 only foreground can write in this area (unless SY key-in).
WP = 2 only background can write in this area (unless SY key-in).
WP = 3 only the Monitor can write in this area.

WP = 4 no one con write in this area unless SY key-in.

WP = 5 only IOEX can write in this area

Operational Label Table (OPLBS)

The Operational Label Table is a parallel tabie with the format

OPLBS1 A Z halfword
0 78 15

where ZZ is the operational label in EBCDIC

OPLBS2 Y byte
0 7

where Y is DCT or RFT index of the permanent assignment (bit 0 = 0 if DCT index; bit 0 = 1 if RFT index).

OPLBS3 X byte
0 7

where X is DCT or RFT index of current assignment.

Number of entries in OPLBS is in first halfword of first entry in OPLBS1.

Interrupt Label Table (INTLB)

The Interrupt Label table is a parallel table with the format

INTLBI z z halfword
0 78 15
where ZZ is the interrupt label in EBCDIC,

fStarﬁng and ending RAD address is given as a sector number,

Operational Label Table (OPLBS)/Interrupt Label Table (INTLB)

INTLB2 Address of Interrupt halfword
0 15 |

The number of entries in INTLB is in the first halfword of the first entry in INTLBI.

OVLOAD Table (for RBM Overlays Only)

The OVLOAD Table is a parallel table with the format

OVLOADI1 Byte Size of Overlay halfword
0 15
OVLOAD2 pA z z z word
0 3t
where ZZ = first four characters of name of overlay in EBCDIC
OVLOAD3 Granule Number | byte
0 7

where the specified Granule Number is in the file RBM,

The number of entries in OVLOAD is in first halfword of OVLOAD].

Write Lock Table (WLOCK)

Assuming no checkpoint, WLOCK contains write locks for the current core allocation. After a checkpoint the
write locks will be restored from this table.

WLOCK +0 No. entries for allocated core
+1 |WL|WL]- - -
+2 |WL|WLj- - -

16 |wLwi| J
01234 15 16 31

WLOCK + 1 always contains the write locks for the first 8K of memory. The table is always 17 words in length but
the first word reflects the number of registers that must be output following a checkpoint.

OVLOAD Table/Write Lock Table (WLOCK)

89

9. OVERLAY LOADER

Overlay Structure

The Overlay Loader is itself an overlayed program, with a root and the six segments illustrated in Figure 52.

CCl

PASSONE

LIB

ROOT PASSTWO

MAP

DIAG

Figure 52. Overlay Structure of the Overlay Loader

The functions of the Root and segments is given in Table 6.

Table 6. Overlay Loader Segment Functions

Segment Function

ROOT Calls in the first segment (CCI) but thereafter, the segments call in other segments.
ROOT is a collection of subroutines, tables, buffers, FPTs, DCBs, flags, pointers,
variables, and temp storage cells. Root is resident at all times.

CCI Reads and interprets all Loader control commands.

PASSONE Makes the first pass over the Relocatable Object Modules, satisfies DEF/REF linkages be-
tween ROMs in the same path, links references to Public Library routines, and allo-

cates the loaded program's control and dummy sections (e.g., assigns absolute core
addresses).

LIB Searches the library tables for routines to satisfy primary references left unsatisfied
at segment end. :

PASSTWO Makes the second pass over the ROMs, creates absolute core images of segments,
provides the necessary RBM interface (PCB, Temp Stack, REFd DCBs, DCBTAB, INITTAB,
and OVLOAD), and writes the absolute load module on the output file.

MAP v Outputs the requested information about the loaded program.

DIAG Outputs all Loader diagnostic messages.

Overlay Loader Execution

The Root of the Overlay Loader is read into the background when the Job Conirol Processor (JCP) encounters
an ! OLOAD control command on the "C" Device. The JCP allocates six scratch files (X1, X2, X3, X4, X5, and Xé)
in the Background Temp area of the RAD unless otherwise specified on a Monitor | ALLOBT command, and three
blocking buffers unless otherwise specified on a Monitor IPOOL command. The core layout of the Overlay Loader
is illustrated in Figure 53.

90 Overlay Loader

% FWA of Background (K:BACKBG)
PCB
Temp Stack
Root *
Segment
Root Code
DCBTAB
L OVLOAD
Segment Overlay Area
LWA+1 of Overlay Loader (P:END)
Dynamic Table Area
LWA of Background {K:BCKEND)
Background Blocking Buffer Pool
FWA of Foreground (K:FGDGB1)
Figure 53. Overlay Loader Core Layout
Dynamic Table Area

The Dynamic Table Area is an area of core beginning at the LWA+1 of the Overlay Loader's code and extending to
the beginning of the background blocking buffer pool. That is, the Loader uses the remaining core in background
for a work area.

The Dynamic Table Area is divided into 16 table areas with boundaries that can change, subject to the length of the
tables. The tables are built by CCI and PASSONE from information on the control commands and ROMs, and are
therefore only dynamic until the beginning of PASSTWO, when the table areas are fixed. Since these tables are an
essential part of the load process, it is important to understand the function of the tables.

Dynamic Table Area 2

Dynamic Table Order

During the first pass over the object modules, the 16 fable areas have a fixed order as follows:

FWA of Dynamic Table Area (P:END)

T:PUBVAL
T:PUI%SYM
T:VA?.UE
T:SE(‘S
T;DC’BV
T:DC:B
T:RO;\AI
T:MO'DIFY
T:MC;DULE
B:MT:
T:DECL
T:CSF!CT
T:FWI‘D
TLWDX
T:SYf:ABOL

T:VALX

LWA+1 of the Dynamic Table Area (K:BCKEND)

For better reader comprehension, the table area descriptions given below are given in a logical order rather than
the program listing sequence.

T:SYMBOL and T:-VALUE

The program's external table is a collection of DEFs, PREFs, SREFs, and DSECTs (excluding DCBs). The external
table is divided into two parts: one containing the EBCDIC name of the external (T:SYMBOL), and the other

containing the value (T:VALUE). Each table is divided into segment subtables that overlay each other in core
in the same way that the segments themselves are overlayed. For example, the external tables of a program with
the overlay structure

2
1
3
0
4
would exist in core (for both PASSONE and PASSTWO) as follows:
For For For For For
Root Seg | Seg 2 Seg 3 Seg 4

0 0 0
2

Dynamic Table Area

|
wl—]o
++=

Segments in different paths cannot communicate (i.e., the subtables of segments in different paths are never in core
at the same time), A segment's T:SYMBOL and T:VALUE subtables are built by CCI and PASSONE and saved on a
RAD scratch file at path end (i.e., when the next segment starts a new path). However, only tables overlayed by
the new segment at path end get written out. For example, at the end of path (0,1,2), segment 2 would be written
out; at the end of path 0, 1,3), segments 3 and 1 would get written out; and at the end of the program, segments 4
and 0 would get written out.

A segment's subtable consists of all DEFs in the segment, DSECTs not allocated in a previous segment of the path,

and any REFs not satisfied by DEFs in a previous segment of the path. Since the DEF/REF links are all satisfied by
PASSONE, T:SYMBOL is not used by PASSTWO.

T:VALUE ENTRY FORMATS

T:VALUE entries are numbered from 1 to n and have a fixed size of bytes, with the format

Byte O Byte 1 Byte 2 Byte 3 Byte 4
Ty |D|ViC|F|LB ' Valve
012345678 1516 2324 3132 39

where

TY is the entry type

TY =00 DEF
TY =01 DSECT
TY =10 SREF
TY =11 PREF
D s a flag specifying whether or not the external is defined/allocated/satisfied.
D=1 externai has been defined/aiiocared/sarisfied.
D=0 external is undefined/unallocated/unsatisfied.

\ is a flag specifying the type of value (meaningful only if D = 1).
V=1 value is the value of the external.

V =0 value is the byte address of the expression defining or satisfying the external in T:VALX.

C is a constant (meaningful only if V =1).
C =1 value is a 32-bit constant.

C=0 value is a positive or negative address with byte resolution.

F is a flag specifying whether the external is a duplicate or an original.
F=1 external is a duplicate.

F=0 external is an original.

LB specifies source of external.
LB =00 external from input ROM or CC.
LB =01 external from System Library.
LB =10 external from User Library.

Value is initially set to zero; usage is dependent upon D, V, and C flags.

Dynamic Table Area

94

Since the T:VALUE entries are kept as small as possible, unused bit combinations are reserved todefine the following
two intermediate external types:

1. If TY =PREF, C=0, and V =1, the external is an"excluded pref" which means that the PREF will cause neither

library loading nor linkage (including the Public Library). Instead, the PREF will be satisfied by a DEF in a
segment further up the path.

2, If TY=DSECT, D=1, and V =0, the external was input from the :RES control command and is to be allocated
at the end of the segment.

T:SYMBOL ENTRY FORMATS

T:SYMBOL is a byte table with variable sized entries that are numbered from 1to n. There are three types of
entries: EBCDIC, "continuation", and "pseudo”. The EBCDIC entry contains the name of the external. The

" contfinuation" entry contains the size of a DSECT and only follows a DSECT entry. The "pseudo" entry is a FWD
or CSECT entry that has been added to T:SYMBOL because the entry was referenced in a T:VALX expression that

could not be resolved at "module end". The entry formats are as follows:

EBCDIC entry: byte 0|0 N+1 (Range = X'02' to X'40)
1 IEBCDIC Chary
o1 7
n| EBCDIC Char,
0 7
"Continuation"
entry: byte 0]110000100 =X'84'
1 Byte
2 size of
DSECT
01 7
"Pseudo"
entry: byte 0]0/000000 1 = X'or
01 7

Note that the first byte contains the byte count of the entry (in bits 1-7).

T:PUBVAL and T:PUBSYM

Each Public Library file has an external table of DEFs (there are no DSECTs or unsatisfied REFs in a Public Library)
that is divided into two parts; VALUE and SYMBOL. T:PUBVAL contains the VALUE tables for each public library
specified in the PUBLIB option of the IOLOAD control command, and T:PUBSYM contains the corresponding SYMBOL
tables. Since the sizes of the table areas are fixed once T:PUBVAL and T:PUBSYM have been input, there are only
14 dynamic table areas.

T:PUBVAL ENTRY FORMATS

* T:PUBVALentries are numbered from 1 to n and have a fixed size of fivebytes. Since the size of T:PUBVALdoes not

change, T:PUBSYM is located at the next doubleword boundary following T:PUBVAL. T:PUBVALentries have the format

Byte O Byte 1 . Byte 2 , Byte 3 . Byte 4
TY IDIVICI FILB Value
012345678 15i16 23724 31:32 39
where
TY =00 = DEF

D=1 the DEF has been defined.

Dynamic Table Area

It

value is the value of the DEF,

value is a 32-bit constant.

1

value is a positive or negative address with byte resolution.

m 0 N0 <
1l

0
=0 not a duplicate DEF,
LB=11 PUBLIB

Note that the T:VALUE and T:PUBVAL entries have the same formats even though the T:PUBVAL entries are a subset
of the T:VALUE format,

T:PUBSYM ENTRY FORMATS

T:PUBSYM is a byte table with variable sized entries that are numbered from 1 to n. Since the size of T:PUBSYM
does not change, the table following is located at the next doubleword boundaryafter T:PUBSYM. T:PUBSYMentries
have the format .

byte 0 N+ 1
byte 1 EBCDIC Char
0 7

byte n EBCDIC Char,
0 7

T:VALX

External definitions are defined with expressions. If the expression can be resolved, its value is stored in the DEFs
T:VALUE entry. If the expression cannot be resolved, it is saved in T:VALX and the byte address of the expression
is stored in the DEFs T:VALUE entry.

Once an expression is resolved, its entry is zeroed out, The T:VALXentries cannot be packed toregain space, since
the T:VALUE entries contain address pointers, however, empty entries are reused where possible.

Expressions have a variable size and are made up of expression bytes, combined in any order. The formats for the
T:VALX expression bytes (slightly different than the object language) are

Add Constant (X'01')

Byte O Byte 1 . Byte 2 . Byte 3 1 Byte 4
00000001 ' 32-bit valuve '

1
0 78 15 16 2324 3132 39

This item causes the specified four-byte constant to be added to the Loader's expression accumulator. Negative con-
stants are represented in fwo's complement form:

Add/Subt Value (X'2N")

Byte O Byte 1 , Byte 2
FWD ll\lumber
00| 10{S|F|RR 18 Enfry
012345678910 1516 23
where
S=1 subtract value,

$=0 add value.

Dynamic Table Area

96

F=1 add/subtract value of T:FWD entry where the FWD number is in bytes 1 and 2.

F=0 add/subtract value of TABLE entry where
T8 =00 Entry points to T:DCB.
TB =01 Entry points to T:VALUE/T:SYMBOL.
TB =10 Entry points to T:CSECT.
=11 Entry points to T:PUBVAL/T:PUBSYM.
" RR=00 byte address resolution.
RR=01 halfword address resolution.
RR =10 word address resolution.
RR =11 doubleword address resolution.
This item causes the value of the FWD or TABLE entry to be converted to the specified address resolution (only if the
value is an address) and added to the Loader's expression accumulator, Note that expressions involving T:FWD and
T:CSECT entfries point to the current ROM's FWD and CSECT tables. If these expressions are not resolved at module
end, the Loader createsdummy T:SYMBOL and T:VALUE entries from the FWD or CSECT entry and changes the pointer

in the expression to point to the dummy entry in T:VALUE. However, unresolved expressions rarely happen.

Address Resolution (X'3N')

Byte O
|oo| 1 llD |RR|
01234567

where
ID =00 changes the partially resolved expression (if an address) to the specified resolution.

identifies the expression as a positive absoiute address with the specified resoiution (add absoiute
section).

o
li
(=]

ID =10 identifies the expression as a negative absolute address with the specified resolution (subtract abso-
lute section).

RR =00 byte address resolution.
RR =01 halfword address resolution.
RR=10 word address resolution.

RR=11 doubleword address resolution.

Expression End (X'02')

This item identifies the end of an expression (the value of which is contained in the Loader’s expression accumuiator).

T:DCB

T:DCB contains the DEFs and REFs that are recognized as either system (M:) or user (F:) DCBs, DCBs declared as
external definitions must exist in the Root segment., The Looder allocates space in part two of the Root for DCBs

Dynamic Table Area

that are declared external references, and supplies default copies of system DCBs. T:DCB is resident at all times,
Entries have a fixed size of three words and have the format '

Word 0 [TY [D]VICF | 1B RN\ _Byte Address
E2

1 El E3 : E4
2 E5 E6‘ E7 ES
012345678 12I13 1516 2324 31
where
Ward 0

TY =00 DEF (coded in the Root by the user).

TY =11 PREF (allocated in Root part 2 by Loader)

D= defined or allocated.

D=0 undefined/unallocated.

V=1 address is the byte value of the DCB, only meaningful ifD=1,
v=0 address points to an expression in T:VALX, only meaningful if D =1,
c=1

the DCB was defined with a value that is either a constant or an illegal address (i.e., negative or
mixed resolution), only meaningful if V=1,

c=0 the value of the DCB is an address, only medningful if V =1,

F=0 DCB cannot be a duplicate (duplicates are put in T:SYMBOL/T:VALUE).
LB=00 the DCB was input from a nonlibrary ROM.

LB=01 the DCB was input from the System Library.

LB=10 the DCB was input from the User Library,

ro P T ~on

~1 L ok LY¥alatfal o 15) .1 e) .e
£t - EO 15 ine CDLUIL name of The UL D, paaaea with pDlanks iT necessary.

T:SEG

T:SEG contains information about the program's segments and is resident at all times. One entry is allocated per
segment. Entries have a fixed size of nine words and have the format

Word 0 Segment Ident Link Ident
1 {Gran no. of T:VALUE(I)on X4 | Gran no. of T:MODIFY/
' T:MODULE on X3
2 |Gran no. of T:SYMBOL (I) on Gran no. of core image on
X5 Program File
BD of T:VALUE (I)in T:VALUE Byte length of T:VALUE (I)
4 1BDof T:SYMBOL(]) in Byte length of T:SYMBOL(I)
T:SYMBOL .
5 |Byte length of T:MODIFY Byte length of T:MODULE
6 |DW EXLOC of SEG DW length of SEG
7 [R]|w] HED Entry Address
8 1,, Byte Length of Library Routines in SEG
0 11;3]2113]4|15I16 31
where '
Gran no. the granule number in the RAD file where the table begins. If the RAD file overflows, Gran no.

will equal X'FFFF'. Granules are numbered from 0 to n.

Dynamic Table Area 97

98

M segment's subtable.
8D byte displacement,

EXLOC execution location.

DW doubleword,

R=1 error severity level set on at least one ROM in the segment,
R=0 error severity level reset on every ROM in the segment.
L=1 load error (duplicate DEFs, unsatisfied REFs, etc.).

L=0 no loading errors in SEG.

W= T:VALUE (I} and T:SYMBOL (I)-output on X4, X5.

W=0 T:VALUE (I) and T:SYMBOL (I) not output on X4, X5,

EA=00 value in bits 15-31 (if nonzero) is last entry address (in words) encountered on non-Lib ROM,
EA =01 unused.

EA =10 SEG's entry address input from CC and value in bits 15-31 is the entry address (in words).

EA=11 SEG's entry address input from CC and value in bits 15-31 is the entry number of the T:SYMBOL/
T:VALUE DEF specified on the CC.

B:MT

There are four tables associated with each ROM loaded (including library ROMs): T:DECL, T:CSECT, T:FWD, and
T:FDX. The size of these tables can be extremely large or small, depending upon which processor produced the ROM
and the content of the program,. To conserve time and space, these tables are packed into the Module Tables buffer
(B:MT) at module end, and output to the X2 TempFile on the RAD only when either the buffer is full or at segment
end. The size allocated for B:MT is dependent upon the size of the Dynamic Tables area and is made a multiple of
the sector size of the X2 RAD file.

T:DECL

DEFs, PREFs, SREFs, DSECTs, and CSECTs are referenced in the object language bydeclaration number. Therefore,
associated with each ROM is a table of declarations whose entries point to DEF, REF, DSECT, and CSECT entries in
other tables.

According to the object language convention, entry zero points to the standard control section declaration. Entries
are numbered from 0 to n; have a fixed size of two bytes; and have the format

8 Entry
012 15

where

T8 =00 Entry points to T:DCB.

TB=01 Entry points to T:SYMBOL/T:VALUE.

TB=10 Entry points to T:CSECT (associated with current ROM).
TB=11 Entry points to T:PUBSYM/T:PUBVAL

Entry Table entry number. The range is 1 through 16,383,

Dynamic Table Area

T:CSECT

Associated with each ROM is a table of standard and nonstandard control sections. A nonstandard control section
is allocated by the Loader when the declaration is encountered. The standard control section is allocated when the
first reference to declaration 0 is encountered in an expression defining the origin load item. T:CSECT entries are
numbered from 1 to n; have a fixed size of two words; and have the format

Word 0 %{ \\\‘\\\\\\ Byte address
Prd 7 Alinmmni Size

012345 1213 31

where

Word 0

D=1 allocated,
v=1 value,

C=0 address.

Byte address first byte address of the control section.

Word 1

Size Number of bytes in the control section,
T:FWD

Associated with each ROM is a table of forward reference definitions (forwards). Each forward is identified by a
randam oo bvie refs sbor This when o famvar d 1z reforenced in an oxprossion, the T-EWD iable for that

QIS G 1Yo w, te reierencc numser, TOUs, WAESH G TGTWGTG 15 FSYSISRTCa in Gn TR S35 Siny

ROM must be searched for a matching number. T:FWD entries have a fixed size of two words with the format

Word 0 Forward number &\\\\\QS&:\S‘S;:SQ\\ D|ViC B§$§

Word 1 Value ,
0]5]6 , 262728 31

D=1 defined.
V=1 value is the value of the resolved expression.

V=0 value is a byte displacement pointer to the expression in T:FWDX.

Cc=1 value is a constant (only meaningful if V = 1),
Cc=0 value is a positive or negative address with byte resoiution {(only meaningful if V = 1),
T:FWDX

Forwards are defined with expressions and are of two types: the first is defined with an expression that can be re-
solved by module end; the second type is defined with an expression that involves an external DEF, REF, or DSECT
{many of these cannot be resolved at module end). Associated with each ROM is a table containing all unresolved
expressions defining FWDs. When a T:FWDX expression is resolved, its entry is zeroed out and the space reused, if
possible. T:FWDX entries have the same format as T:VALX entries.

Dynamic Table Area 99

T:MODULE

Each segment has a T:MODULE table. T:MODULE contains information about a segment's Relocatable Object
Modules (ROMs). One entry is allocated per ROM. Entries have a fixed size of five words and have the format

Word 0 VL Entry no. TGN LIB Record displacement in file

1 Gran no. of B:MT on X2, or

BD of T:DECL (J) in B:MT Byte length of T:DECL (J)
2 BD of T:CSECT (J) in B:MT Byte length of T:CSECT (J)
BD of T:FWD (J) in B:MT Byte length of T:FWD (J)
4| BD of T:FWDX (J) in B:MT | Byte length of T:FWDX (J)
01 78 141516 31

where
V=1 Entry no. in bits 1-7 points to T:DCBV,
V=0 Entry no. in bits 1-7 points to T:DCBF.

Entry no. the entry number of the DCB (in either T:DCBV or T:DCBF) that points to the RAD file where the
ROM is located,

G=1 T:DECL (J) begins at byte zero in B:MT and HWO (halfword zero) in word 1 contains the granule no.

of B:MT on X2. If the Granule no. equals X'FFFF', X2 has overflowed and B:MT did not get saved on the
RAD.

G=0 T:DECL (J) is located in B:MT at the byte displacement specified in HWO of word 1.
LB=00 not Library ROM.

LB=01 ROM from System Library (SP area of RAD),

LB=10 ROM from User Library (FP area of RAD),

Record displacement in the MODULE file (only meaningful for library ROMs.)

T-ROMI

T:ROMI contains the information necessary for PASSONE to load a segment's ROMs, T:ROMI is built by CCI from
the input options specified on the segment's :ROOT, :SEG, or :PUBLIB control command, or by :LIB to point to the
library routines required for the segment. At the beginning of PASSTWO, the area size for T:ROMI is set to zero.
There are three types of T:ROMI entries, as illustrated below, and entries have a fixed size of one word.

Entry for ROMs input from RAD files (built by CCI):

NROM 0————0|V| Entry no.
0 1516 232425 31

where

NROM is the number of ROMs to input or contains -5, which means to input until IEOD is encountered.
This halfword is used as a decreasing counter by PASSONE and eventually equals zero.

Bits 16-23 always equal zero to specify entry type.
V=1 Entry no. in bits 25-31 points to T:DCBV.
V=0 Entry no. in bits 25-31 points to T:DCBF,

Entry no, is the entry number of the DCB (in either T:DCBV or T:DCBF) that points to the RAD file where
the ROM is located.

Entry for ROMs input from a specified device or OPLB (built by CCI):

K

N\
0 15161718 2324 31

= :
NROM & | TYPE DCT index

where
Bits 16-23 always equal nonzero to specify entry type.
NROM is described above.
PACK is the PACK flag (bit 22 of word 0) in DCB.
TYPE is the device type code (bits 18-23 of word 1) in DCB.
DCT index is the DCT index of the device (bits 24-31 of word 1) in DCB. »
PASSONE will store the information in F:DEVICE and input the ROMs via that DCB. Note that OPLBs are

converted to their assigned devices.

Entry for ROMs input from the System or User Library (built by LIB):

NROM Record displacement
0 1516 31

where

NROM is described above.,

Record displacement is the record displacement of the ROM in the MODULE file of the area specified by FL:LBLD.

Library ROM entries are distinguished from the other two entry types by the Loader flag FL:LBLD. The flag is always
reset when the other entry types are in T:ROMIL.

T:DCBV

T:DCBV is a table of DCBs assigned fo the various RAD files specified (other than GO) on the input options of the
:ROOT and :5EG, or :PUBLIB controi commands. One DCB is created tor each unique file name specified. T:DCB
is resident at all times. T:DCBV entries are numbered from 1 to n, and have the standard seven-word DCB format.

T:MODIFY

Each segment's :MODIFY commands are translated into object language load items and stored in the segment's
T:MODIFY table, and each :MODIFY command is translated into a T:MODULE entry. Entries begin with an
"origin" load item and are terminated by either the next "origin" load item or a "module end" load item. Entries
are made up of the load items described below and expressions in the T:VALX/T:FWDX format:

Origin (X'04')
This one-byte item sets the load-location counter to the value designated by the expression (in T:VALX format)

immediately following the origin control byte. The value of the expression equals the location specified on the
:MODIFY command. '

Load Absolute (X'44')

This one-byte item causes the next four bytes to be loaded absolutely and the load-location counter advanced
appropriately.

Define Field (X'07')
T (X'FFY)
(field length)

This three-byte item defines an expression value to be added to the address field of the previously loaded four-
byte word. The expression is in T:VALX format and immediately follows the 'field length' byte.

Dynamic Table Area

101

Load Expression (X'60')

This one-byte item causes an expression value to be loaded absoutely and the load~location counter advanced
appropriately, The expression to be loaded is in T:VALX format and immediately follows the 'load expression'
control byte.

Module End (X'OE')

This one-byte item terminates the load items in T:MODIFY.

Use of the Dynamic Table Area During LIB

During the library search, LIB temporarily reorganizes the Dynamic Table area by packing the 16 tables together at
the top of the area. LIB uses the remaining space for its tables. The core layout of these tables and their formats
are illustrated in Figure 54,

FWA of
- .
T:PUBVAL Dynamic Table Area T:PUBVAL
T:PUBSYM T:PUPSYM
: .
T:VALUE T:LDEF
Overlays
Packed T:VALUE
Dynamic
Tables
(tables ¢
listed are T:SYMBOL
used by
LIB)
T:SYMBOL
L T:LDEF
Moved to
the end of
T:LDEF, if
necessary.
TLROM T:LROM
EBCDIC EBCDIC
DEFREF DEFREF
MODIR MODIR
files' buffer files' buffer
} LWA+] of the |
Dynamic Table Area
Core layout of the Area if the Core layout of the Area if the
packed tables remain in core, packed tables are saved on Xé.

Figure 54, LIB Reorganization of Dynamic Table Area

102 Dynamic Table Area

T:LDEF

T:LDEF is located in the Dynamic Table area only when the LIB segment is executing and is used by LIB to satisfy
REFs to library routines. Initially, T:LDEF contains the following items:

1. All unsatisfied REFs from the current segment's T:VALUE subtable.

2. All excluded PREFs from the current segment's T:VALUE subtable.

3. All DEFs in the path T:VALUE table that are from the same library as the one being searched.
4, All Public Library (T:PUBVAL) DEFs.

The Library DEFs are included so that library routines loaded in previous segments of the Public Library will not be
duplicated. The excluded PREFs (that inhibit library loading)are treated as DEFs. Since library routines may them-
selves reference other library routines, the set of DEFs and REFs associated with a library routine are included in
T:LDEF if, and only if, at least one of the DEFs satisfies a REF in T:LDEF. When a REF is satisfied it is changed
to a DEF. Eventually, T:LDEF contains library DEFs, any REFs that cannot be satisfied in the Library, andthe
excluded PREFs,

T:LDEF has a variable number of entries with the count kept in entry 0. Entries have a fixed size of two bytes with
the format

entry 0 l T:LDEF entry count
0 15

entry n LDR] Value 1

012 15

where
DR =00 null entry.
DR =01 DEF.
DR =10 unsatisfied PREF.
DR=11 excluded PREF,

Value entry number in T:SYMBOL, that is later changed to the corresponding entry's byte offset in the
EBCDIC file.

T:LROM

T:LROM is located in the Dynamic Table area only when the LIB segment is executing and contains pointers to li-
brary routines whose DEFs have satisfied REFs in T:LDEF. That is, T:LROM points to the library routines that are to
be loaded along with the segment.

T:LROM entries initially point to a library ROM!'s entry in the MODIR file and then get changed to point to the cor-

‘responding ROM's location in the MODULE file. T:LROM has a variable number of entries, with the count kept in
entry 0. T:LROM is built backwards but has forward entries. Entries have a fixed size of two bytes with the format

entry n L Value J
* 0 ? 15

entry O [T:LROM eniry count J
0 15

where

value halfword offset of the library ROM's entry in the MODIR file, which is later changed to the starting
record number of the ROM in the MODULE file.

Dynamic Table Area

103

104

MODULE File
The MODULE file is a blocked sequential file, with 120 bytes per record, that contains the Library's ROM:s.
EBCDIC File

The EBCDIC file is an unblocked sequential file consisting of one variable length record. The EBCDIC file contains
the unique EBCDIC names of all DEFs and REFs declared in the ROMs in the MODULE file. Entries have a variable
number of bytes with the format

byte 0 N +1
1 EBCDIC Chc:r]
0 7

n | EBCDIC Char, |
0 7

MODIR File

The MODIR file is an unblocked sequential file consisting of one variable length record. Each MODIR file entry
corresponds to a ROM on the MODULE file and contains the name of the ROM, its location on the MODULE file,
and the number of records in the ROM, Entries have a fixed size of three words with the format

word 0 MODULE file record no. ROM:'s no. of records
word 1 First four bytes of EBCDIC name
word 2 Last four bytes of EBCDIC name

0 15!|6 31

DEFREF File

The DEFREF file is an unblocked sequential file consisting of one variable length record. Each entry in the DEFREF
file corresponds to a ROM in the MODULE fiie and contains all the externai DEFs and REFs declared in the ROM,
plus a pointer to the ROM's entry in the MODIR file. Entries have a variable number of halfwords with the format

-
halfword 0 Entry size DEF
halfword 1 MODIR file index DI.EFZ
halfword 2 |DR| EBCDIC file index DEF,

012 15
. REF;

4
REF2
halfword n [DR| EBCDIC file index | :
012 15 | REF,,
where
Entry size number of halfwords in the entry (including itself),

MODIR file index relative halfword of the ROM's corresponding entry in the MODIR file. X'FFFF' means
that the entry has been deleted.

DR =00 not used.

DR =01 DEF,

DR =10 PREF.

DR =11 not used.

EBCDIC file index relative byte of the external name entry in the EBCDIC file,

Dynamic Table Area

Use of Dynamic Table Area During PASSTWO

PASSTWO reorganizes the Dynamic Table area by moving the resident tables T:SEG, T:DCBV, and T:DCB to the
end of T:PUBVAL. PASSTWOuses the remaining space to read in the necessary tables built during PASSONE to build

its own tables and to create the core image of the segment. The core layout of these tables and their format
is illustrated in Figure 55,

T:GRAN

Since the Work area has a finite size that varies according to the size of B:MT, it may not be large enough to con-
tain a segment's total core image at all times. Therefore, before a segment is created, its core image length is
divided into granule size partitions, where the granule size equals the sector size of the program file. T:GRAN

FWA of

T-PUBVAL Dynamic Table Area T:PUBVAL

T:SEP . _T:SE‘G

T:D(iBV T:DCBV

T:D(iB T:D({:B

: T:V/}LUE T:GI}AN

T:GRAN T:ASSN

Work Area Worli Area

B:M'l;

T:M?DIFY

T:MODULE

T:VALX LWA+1 of the T:VALX

Dynamic Table Area

Core layout of the Area while Core layout of the Area while
the segments are being loaded. part two of the Root is being built,

Figure 55. PASSTWO Reorganization of Dynamic Table Area

Dynamic Table Area

105

106

entries point to the location of a segment's partition (if created) either in core or on the program file. T:GRAN
has the following format:

entry O n = No. of granule partitions in the seg.
1 Granule partition 1
0 31
n Granule partition n
0 31

T:GRAN entries have a fixed size of one word with three different formats.

If the granule partition exists in the Work Area:

0 0 % WA of granule partition in the

Work area
0 12131415 31

If the granule partition exists on its corresponding granule in the Program File:

[1]o 0] = X'FFF80000*
0 1213 31

If the granule partition has not been allocated; and data has not yet been loaded into that area of the segment:

f——— 0

0 31

T:ASSN

T:ASSN contains the information necessary to reassign DCBs as specified on :ASSIGN commands. T:ASSN is located
in the Dynamic Table area during PASSTWO (after all the segments have been loaded) and is built by CCI. Each
:ASSIGN command is translated into a T:ASSN entry. Entries have a fixed size of ten words with the format

Word 0 Byte address of DCB's execution location
1 Word address of DCB's entry in T:DCB
Changes for word 0 of DCB
Mask for word 0 of DCB
Changes for word 1 of DCB
Mask for word 1 of DCB
Changes for word 3 of DCB
Mask for word 3 of DCB
First four EBCDIC bytes of file name or zero

NN AN

Last four EBCDIC bytes of file name or zero

MAP Use of Dynamic Table Area

MAP moves the resident tables T:SEG andT:DCB to the top of the area, and uses the remaining space to read in and
reference the tables necessary for the MAP output. MAP does not build any tables. The core layout of the table
referenced by MAP is illustrated in Figure 56.

Dynamic Table Area

FWA of
Dynamic Table Area

T:SEG T:SEG
T:DCB T:DCp
T:MODIFY T:SYMBOL
B:MT T:VALUE

LWA+1 of the
Dynamic Table Area

Core layout of the Area while
the program's control sections
are being listed,

Core layout of the Area while
the externals are being listed.

Figure 56. MAP Table Reference

DIAG Use of Dynamic Table Area

DIAG only uses the Dynamic Table area to reference T:SEG and T:MODULE.

Root Tables

Two tables in the Root, T:PL and T:DCBF, have a fixed size and are referenced by other tables, Their format and

use is given below. The usage and format of other tables in the Root are well documented in the Overlay Loader's
listing and are not detailed in this manual.

Dynamic Table Area

107

T:PL

T:PL contains the information necessary to create T:PUBSYM and T:PUBVAL and to load the Public Libraries speci-
fied on the !OLOAD control command. T:PL exists in the Root and has a maximum of three entries. Table end is
indicated by a word of zeros. Entries have o fixed size of eight words with the format

Word 0 First four EBCDIC bytes of PUBLIB name

1 Last four EBCDIC bytes of PUBLIB name

2 Word address of PUBLIB's execution location

3 Number of bytes in the PUBLIB

4 Granule no. of PUBLIB's symbol table

5 Number of bytes in PUBLIB's symbol table

6 Granule no. of PUBLIB's value table

7 Number of bytes in PUBLIB's value table

0 31

YZ;rd af Zeros]
entry+1 0 31

T:DCBF
T:DCBF contains the set of fixed DCBs that are required by the Loader. Each entry contains one DCB. T:DCBF has
a fixed number of entries and exists in the Root. T:DCBF entries are numbered from 1 to 18, and have the fixed

order given in Table 7.

Table 7. T:DCBF Entries

Entry Mnemonic Pointer To
1 F:PUBL Files specified in the PUBLIB option of 1OLOAD.
2 F:DEVICE Devices specified in the DEVICE and OPLB input options.
3 M:GO GO file in the Background Temp area.
4 M:0V Either OV or the file specified in the FILE option of 1OLOAD.
5 M: X1 X1 in the Background Temp area.
6 M:X2 X2 in the Background Temp area .
7 M:X3 X3 in the Background Temp area.
8 M: X4 X4 in the Background Temp area.
9 M:X5 X5 in the Background Temp area.
10 M: X6 X6 in the Background Temp area.
11 F:MODIR MODIR file in either the SP or FP area.
12 F:EBCDIC EBCDIC file in either the SP or FP area.
13 F:DEFREF DEFREF file in either the SP or FP area.
14 F:MODULE MODULE file in either the SP or FP area.
15 M:C C operational label,
16 M:LL LL operational label.
17 M:0C OC operational label.
18 M:LO LO operational label.

108 Dynamic Table Area

All T:DCBF entries have the standard seven-word DCB formaf, with two exceptions: OFLOW and NIO, that are

used only for the M:OV, M:X1, M:X2, M:X3, M:X4, M:X5, and M:X6 DCBs. The seven-word DCB format is

_ NN \N“u AN
Word 0 TL=7 \l\\ 5:\\\\ RN sYb < ENJBTD |ASSN
0 7 10 14 19 2223 262728 31
NRE DEV/OPLB/
E
1 NRT \\\\\ 0510| TP CEILE
0 78 1415161718 2324 3
N
2 OFLOW M BUF
0 7 1415 31
3 RSZ ERA
0 1415 31
4 NIO ABA
0 1415 31
5 El E2 E3 E4
0 78 1516 2324 31
6 E5 E6 E7 E8
0 78 1516 2324 31

where
OFLOW =0
OFLOW = 1
NIO
Scratch Files

The six scratch files in the Background Temp area of the RAD are used by the Loader as temporary storage and are
written during the first pass over the object modules. The number of granules required by each scratch file is cal-
culated (whether the file overflows or not)and saved in the DCB assigned to the file. If any of these files overflows
(e.g., if the EOT is encountered during a Write operation), the Loader continues PASSONE, skips PASSTWO, then
calls the MAP to communicate the number of granules required for each scratch file to the user. The Loader's use

EOT not encountered.
EOT encountered.

number of records (for X1) or granules required,

of these files is defined in Table 8.

Table 8. Background Scratch Files

File Name Loader Use

X1 A sequential file with blocked record format. Record size equals 120 bytes; granule
size equals 256 words. ROMs input from non-RAD devices are copied onto X1.

X2 A direct access file with the granule size set equal to the sector size. The module's
tables (T:DECL, T:CSECT, T:FWD, and T:WDX) are output on X2 when either B:MT is
full or at segment end.

X3

A direct access file with the granule size set equal to the sector size. A segment's
T:MODIFY and T:MODULE tables are packed together at segment end and output
on X3.

Scratch Files

109 -

1
1

10

Table 8. Background Scratch Files (cont.)

File Name Loader Use

X4 A direct access file with the granule size set equal to the sector size. A segment's
T:VALUE subtable is output on X4 when the end of a path is encountered and the seg-
ment is being overlayed by another segment,

X5 A direct access file with the granule size set equal to the sector size. A segment's
T:SYMBOL subtable is output on X5 when the end of a path is encountered and the
segment is being overiayed by another segment.

X6 A direct access file with the granule size set equal to the sector size. The LIB over-

lay packs the 16 Dynamic Tables at the top of the Dynamic Table area and outputs the
"pack" on X6 only if the remaining area will not contain the tables required for the
library search.

Program File Format

The format for the Program File is illustrated in Figure 57,

GRANULE Order in which written
0 Program Header 6th

1 Root Part 1 Ist

2 Root Part 1 (continued)

N

—A
End of Root Part 1
i Segment 1 2nd
k Segment 2 3rd
| Segment n 4th
m Root Part 2 5th
Unused
EOT

Scratch Files

Figure 57. Program File Format

Foreground/Background Program Header

The foreground/background program header has the format

Word 0
1

N O A WwN

FHPL I\\\ \ \ NFWA of Root's EXLOC (part 1)

Number of bytes in Root (part 1)

FWA of Root's EXLOC (part 2)

Number of bytes in Root (part 2)

Granule displacement of Root {part 2) in the file

Root's entry address

Word length of resident program area

Copy of DCBTAB or zero (if none)

01234 1415 31

First 4 EBCDIC bytes of Public Library or O (if none)

Last 4 EBCDIC bytes of Public Library or 0

FWA of Public Library's EXLOC

Number of bytes in resident Public Library

31

Final entry is zero

31

foreground program.

background program.

severity error.

no severity error,

not a Public Library.

execution location.

where
F=1
F=0
S=1
$S=0
PL=10
EXLOC
Public Library Header

The Public Library header has the format

where
F=1
$S=0

Word 0
1

o O AW N

Fs|PL | NN FWA of Public Library's EXLOC

Number of bytes in the Public Library

Granule displacement of T:PUBSYM in the file

Byte length of T:PUBSYM

Granule displacement of T:PUBVAL in the file

Byte length of T:PUBVAL

Zero

01234 1415 31

foreground program (all Public Libraries reside in the foreground).

no severity error (Public Libraries cannot have errors).

For background
programs only.

Scratch Files

m

112

PL =01 Public Library.

EXLOC execution location,

Logical Flow of the Overlay Loader

After the Root segment has been loaded by the JCP, the Root calls the Monitor SEGLOAD function to read CCI into
the overlay area and then transfers control to CCI to process the lOLOAD control command.

Logical Fiow of CCI

When CCl is called, there is usually a control command in the control command buffer (B:C). If not, CCl reads the
next command into B:C and logs it onto LO. If the command terminates a :ROOT, :SEG, or :MODIFY substack,
PASSONE is called; if it terminates an :ASSIGN substack, PASSTWO is called. If the command does not terminate
a substack, CCI scans the options specified and performs the following functions for the different control commands.

1OLOAD Command. ~ “CCI sets flags; puts the program file name in M:OV DCB; builds T:PL, T:PUBVAL, and

T:PUBSYM from files specified in the PUBLIB option; allocates the 14 remaining Dynamic Table areas; and if the
GO option has been specified, builds T:ROMI.

:ROOT, :SEG, and :PUBLIB Commands. CCI creates an entry in T:SEG; builds T:ROMI and T:DCBV entries from

the specified input options; allocates space for the PCB in the Root segment; and for the :SEG command, calls the
PATHEND subroutine., PATHEND determines if the segment exists in a different path; if so, writes out any over-

layed segment's T:SYMBOL and T:VALUE subtables on the RAD scratch files; and sets the byte displacement points
for the new segment's T:SYMBOL and T:VALUE subtables.

Logical Flow of PASSONE

PASSONE branches to process T:MODIFY if CCI has just been previously called by PASSONE to input :MODIFY
commands, Otherwise, PASSONE processes T:ROMI which has been built by either CCI or LIB. PASSONE inputs
the ROMs from the devices specified in T:ROMI; builds T:MODULE entries for each ROM input; saves ROMs input
from non-RAD devices onto the X1 scratch file; and scans the ROMs for pass-one type load items. It then builds the
following entries:

1. Parallel T:SYMBOL and T:VALUE entries from external DEF, PREF, SREF, and DSECT declarations. Entries in
T:VALX are built when expressions defining DEFs cannot be resolved. Except for blank COMMON, a DSECT
is allocated when first encountered, and its address is stored in the T:VALUE entry,

2. T:DCB entries from external DEF and REF declarations that begin with either M: or F:, The address of the DCB
is either defined with an expression (for DEFs), or allocated by PASSTWO (for REFs) andstored in the T:DCBentry.

3. T:CSECT entries and allocates CSECTs when encountered,

4, T:FWD entries when FWDs are defined. Entries in T:FWDX are built when expressions defining FWDs cannot be
resolved,

5. Entries in T:DECL whenever a DEF, REF, SREF, CSECT, or DSECT declaration is encountered.

At module end, the four module tables (T:DECL, T:CSECT, T:FWD, and T:FWDX)are packed together and moved to
B:MT. If the buffer is full, the tables are output on X2.

When ali the entries in T:ROMI have been processed, PASSONE determines whether the librariesspecified have been
searched. If not, PASSONE calls LIB to search the library specified. Note that the library is searched and the
ROMs from the library are loaded before the next library is searched.

If there are any :MODIFY commands for the segment, PASSONE calls CCI. After CCI recalls PASSONE, control is
returned to this point where T:MODIFY and T:MODULE are packed together and output on X3,

If there is a :SEG command in B:C, PASSONE calls CCl. Otherwise, the end of PASSONE is signaled. Blank

COMMON is allocated at the end of the longest path (if not allocated previously) and the remaining T:SYMBOL,
T:VALUE subtables are output. The resident table areas (T:DCB, T:SEG, T:DCBV, T:VALX) are set equal to the

Logical Flow of the Overlay loader

actual lengths of the data in the tables, The T:ROMIlarea length is set to zero (since it is not used by PASSTWO)and an
end-of-file iswritten on X1, If any of the six scratch files overflowed, MAPis called; otherwise, PASSTWO is called.

Logical Flow of LIB

The LIB segment first packs the 16 Dynamic Tables together at the top of the Dynamic Table area, The remaining
space will be used for the LIB's tables. (Whenever enough room does not exist for the LIB's tables, the "pack" is
written on the RAD scratch file, X6.) LIB then creates T:LDEF, starting from the end of the "pack".

The FWA of the EBCDIC, DEFREF, and MODIR files' buffer is calculated by subtracting the length of the longest file
from the end of the Dynamic Table area. The EBCDIC file is read into the buffer and the entries in T:LDEF are con-
verted to point from T:SYMBOL to entries in the EBCDIC file. T:LDEF entries not having corresponding EBCDIC
entries are changed to null entries.

The DEFREF file is then read into the buffer. LIB uses the DEFREF file to satisfy PREFs in T:LDEF. Allthe DEFs and
REFs from an entry in the DEFREF file are added to T:LDEF if at least one of the DEFs satisfies « PREF in T:LDEF
The pointer to the ROM's MODIR file entry is saved in T:LROM, which is built backwards, beginning from the top
of the DEFREF buffer. The DEFREF search is finished when all the PREFs in T:LDEF, that can be, are satisfied.
T:LROM now contains pointers to all the library ROMs, and T:LDEF is no longer required.

The MODIR file is read into the buffer and the T:LROM entries are changed to point to the ROM's starting record
number in the MODULE file.

The packed tables are read from the RAD (if they were saved in X6), and T:LROM is moved to the temporary buffer
(TEMPBUF) inside the LIB overlay while the Dynamic Tables. are being unpacked. Note that if the DIAG segment
were fo be called at this point, TEMPBUF would be destroyed. T:LROM enfries are converted into T:ROMI format
and added to T:ROMI in the Dynamic Table area. PASSONE s then called to input the ROMs specified in T:ROMI.

Logical Flow of PASSTWO

PASSTWO branches to process T:ASSIGN if CCI has just been previously called by PASSTWO to input :ASSIGN
commands. Otherwise, it reorganizes the Dynamic Table area and moves the resident tables T:SEG, T:DCBV, and
T:DCB to the end of T:PUBVAL and iocates T:VALUE at the end of T:DCB. PASSTWO then allocates part two of the
Root either at the end of the longest path or at the end of blank COMMON, whichever is greater.

PASSTWO is now ready to process the segments. It points to the first/next T:SEG entry; reads the segment's T:VALUE
subtable into T:VALUE; calculates the number of granules required for the segment on the Program File; creates
T:GRAN at the end of T:VALUE; reads the segment's T:MODIFY and T:MODULE tables at the top of T:VALX; and
allocates the Work area (which is divided into granule partitions and contains all or part of the segment's partitioned
core image)at the end of T:GRAN. The Work area extends to the Module Tables Buffer (B:MT), which varies insize,
and is allocated backwards from the top of T:MODIFY. The Work area is dynamic and changes in size either when
tables in B:MT are no longer required, or when another set of Module Tables is input.

PASSTWO is now ready to process the segment's ROMs. It points to the first/next T:MODULE entry; reads in the
first/next set of Module Tables into B:MT if necessary; points to the current module’s T:DECL, T:CSECT, T:FWD,
and T:FWDX table; inputs the ROM; scans the load items; creates the absolute core image in the Work area using
T:GRAN to locate the granules; and if the Work area gets full, outputs the necessary granules to the Program File.

PASSTWO repeats this cycle until all the modules in the segment have been input and then writes the granules re-
maining in core onto the program file. It then points to the next T:SEG entry and repeats the outer cycle until all
the segments in the program have been created.

If a Public Library is not being created, PASSTWO builds T: GRAN for part two of the Root, located at the end of
T:DCB. If there is an :ASSIGN command in B:C, PASSTWO allocates T:ASSN from the end of T:GRAN to the be-
ginning of T:VALX and calls CCI to build T:ASSN. After CCI recalls PASSTWO, control is returned to this point.
PASSTWO allocates the Work area at the end of T:ASSN (which may be of zero length); creates OVLOAD, DCBTAB,
INTTAB, and the referenced DCBs; reassigns DCBs referenced in T:ASSN; writes part two of the Root on the Program
File; creates the program header; and writes it on the Program File. If a Public Library is being created, T:SYMBOL
and T:VALUE are output on the Program File. PASSTWO then exits by calling the MAP.

Logical Flow of MAP

MAP moves T:SEG and T:DCB to the top of the Dynamic Table area, and unless "no MAP" was specified, outputs the
program header information.

Logical Flow of the Overlay Loader

113

MAP points to the first/next T:SEG entry, and unless "no MAP" was specified, outputs the segment's header informa-
tion. If either the PROGRAM or ALL option was specified, MAP reads the segment's T:MODIFY and T:MODULE
tables into core at the end of T:DCB; locates B:MT at the end of T:MODULE; uses T:MODULE to read in the Module
Tables associated with the segment; maps the segment's control sections (including Library CSECTs if ALL specified);
and if this is the Root segment, lists T:DCB,

Regardless of the option specified, MAP reads the segment's T:SYMBOL and T:VALUE subtables into core at the end
of T:DCB. If the ALL option was specified, MAP reads T:PUBSYM and T:PUBVAL in as part of the root's external
table and lists all the symbols in the external table, If the PROGRAM option was specified, MAP lists all the non-
library symbols in the external table. If either the SHORT or "no MAP" option was specified, MAP lists only the
duplicate DEFs, undefined DEFs, unsatisfied REFs, and duplicate REFs.

This cycle is repeated until all the entries in T:SEG have been mapped. If aRAD file used by the Loader overflowed,
the number of granules used or needed for all files is listed. Otherwise, this information is output only if either the
PROGRAM or ALL option was specified.

MAP terminates the Overlay Loader by either calling the Monitor EXIT function or ABORT function. MAP aborts
and destroys the Program File if either a RAD file overflowed or there were loading errors when a Public Library
was being created. ’

Logical Flow of DIAG

When the DIAG overlay is called, the environment of the calling program is unchanged. Since the DIAG segment
overlays the calling segment, all the temporary and permanent storage cells used by the calling segment are located
in either the Root or the Dynamic Table area. DIAG is called by the RDIAG subroutine which exists in the Root.
When RDIAG is called, it saves the 16 registers and then calls in DIAG via the Monitor SEGLOAD function. DIAG
outputs the specified diagnostic and depending upon the exit code associated with the diagnostic, either aborts, re-
turns to RDIAG, or calls the Monitor WAIT function. If control is returned from the WAIT function, DIAG returns
to RDIAG. RDIAG then reloads the calling segment via the Monitor SEGLOAD function, restores the 16 registers,
and returns to the calling segment at the address following the RDIAG call.

Loader-Generated Table Formats

The Loader creates the program's Program Control Block (PCB), DCB Table (DCBTAB), Interrupt Table (INTTAB), and
Segment Loading Table (OVLOAD).

PCB

The PCB exists as part of the Root segment and is initialized (except for words 4 and 12) by PASSTWO, when the Root
segment is created, The PCB has the format

Word 0 [0 0 TSTACK-1
1 155 lo 0
2 |o 0 OVLOAD
3| No.oftasks lg—__ p INTTAB
4 |o| Trap control ELT‘;’";*“ TRAPADD
5|, . MSLADD
0l 78 141516 31
Um:Jsed
10 {o 0 DCBTAB
11 Unused
12 [0 : 0] ssw.
0 141516 2526 31

where
TSTACK is the address of the current top of the user's Temp Stack.

TSS indicates the size, in words, of the user's Temp Stack.

OVLOAD is the address of the table used by the SEGLOAD function to read in overlay segments or zero.
No. of tasks is the number of tasks in the program. This is also the number of entries in INTTAB,

INTTAB is the address of the interrupt table associated with the program or zero. This table is maintained
by the CONNECT function. The format of this table is shown below.

Trap control Bits 1-7 specify how the various traps are to be handled,

Simulator control is used by the unimplemented/nonexistent instruction trap handler.
TRAPADD is the address of the user's routine that processes the various fraps.
MSLADD is the address of the M:SL DCB used to load overlay segments.

DCBTAB is the address of a table of names and addresses of all of the user's DCBs. This table has the form given

below.
SSw contains the user's sense switch settings. Bit 26 contains the setting of switch 1, etc.
DCBTAB
DCBTAB is built from T:DCB, and is located in part two of the Root. DCBTAB has the format
Word 0 Total number of entries
1 El E2 E3 E4
Entry n J2 E5 E6 E7 E8
3 FWA of DCB's execution location
+— } ;
0 78 1516 2324 31

where

E1-E8 is the EBCDIC name of the DCB (left-justified with trailing blanks).

INTTAB

INTTAB is built only if the program has at least one task connected to an interrupt., INTTAB is located in part two
of the Roof and has the format

I AR

INT4 | INT3 INT2 INTI

where
| is the index value used to access the nexi available entry in the table 0 < I < 4N - 1.
N is the number of words allocated by the Loader for the table. The table is maintained by the CONNECT
system call. The initial value of | is set by PASSTWO.

Each byte represents the priority of the interrupt, where 1 represents the highest priority, and corresponds to inter-
rupt location X'50',

OVLOAD

The OVLOAD table contains the information necessary for the Monitor SEGLOAD function to read in overlay seg-

ments at execution time. One entry is created for each overlay segment. Thus, a program consisting only of a Root
would not have an OVLOAD Table.

Loader-Generated Table Formats

115

OVLOAD is located in part two of the Root. The format of an entry is such that it can be used as an FPT by
SEGLOAD to read in the requested segment. OVLOAD has the format

Word 0 Number of entries in OVLOAD
(1 \\\ \ \ Segment ident
2 x100 NN Word address of M:SL
3
4 |0 0
510
Entryn { 6 Word address of segment's execution location
7 Byte count of segment's core image
8 Granule no. in program file where seg begins
910 0

S
o
o

—
—

Word address of segment's entry or zero

0 7'8 141516 31

Loading Overlay Loader

Before the Overlay Loader can be loaded, the OLOAD file in the SP area must be previously allocated by the RAD
Editor. It is loaded by the JCP Loader with the |LOAD command. It is critical that the ROMs of the Overlay
Loader's segments be ordered correctly, so that the segment's idents assigned by the JCP Loader coincide with the
idents used within the program. The segment idents are listed below:

SEG IDENT
ROOT 0
Cdi i
PASSONE 2
PASSTWO 3
MAP 4
DIAG 5
LIB 6

The overall flow of the Overlay Loader is illustrated in Figures 58 through 65.

Overlay
Looder

[LOADSEG \
Load CCI to process
the 1OLOAD CC,

Figure 58. Overlay Loader Flow, 1OLOAD

116 loading Qverlay Loader

Ll

Is
there an

unprocessed CC
in B:C

no *

?

Read next CC
into B:C.

e
\

CC terminate a

:ROOT, :SEG, or

:MODIFY sub~- yes

stack?
LOADSEG

ioad PASSGINE 1o

[
\

process T:ROMI. "

\\/ \/

CC teminate an

:ASSIGN substack
?

/ LOADSEG

Load PASSTWO to
process T:ASSN.

Process control command.

\V

Figure 59. Overlay Loader Fiow, CCl

Loading Overlay Loader

17

€]

Was
CC just called
to input :MODIFY

commands?

Input ROM and scan for
PASSONE type load items.

\

Allocate CSECTS and
D SECTS when encountered

y

End

of T:ROMI
?

Build Module tables
(T:DECL, T:CSECT,
T:FWD, and T:FWDX).

\

Either link or add DEFs,
REFs, DSECTS to
T:PUBSYM, T:DCB or
T:SYMBOL or T:VALUE

Get first/next entry
in T:ROMI.

Y

Have
ROMs spec. in

input
?

no

Add DEF definitions to
T:VALUE and T:VALX.

y

T:ROMI entry been

Move Module Tables to
B:MT and write on X2
if the buffer is full.

Build T:MODULE
entry for ROM.

Loading Cverlay Loader

Figure 60. Overlay Loader Flow, PASSONE

Wasa

library search
specified
?

Is
there a
:MODIFY command
in B:C?

yes

yes
/ LOADSEG

first library
been searched

LOADSEG

/

Load LIB to search
specified tibrary.

Call CCI to build
T:MODIFY.

Pack T:MODIFY and
T:MODULE together
and output on X3.

there a :SEG

DI

no

command in/ yes l
n o~

/oapstc \

Write B:MT on X2.

Load CCI to process
next segment's

v

PATHEND

substack.

Write remaining
T:SYMBOL, T:VALUE
subtables onto X4
and X5.

Did
any RAD scratch
files over-
flow?

no

yes

/

LOADSEG

\

/ LOADSEG

\ \.ocd MAP to oufpuy
Load PASSTWO to partial map.

create the load
module.

second library
been searched

none
specified

yes

[

LOADSEG \

Load LIB to search
specified library.

@

Figure 60,

Overlay Loader Flow, PASSONE (cont.)

Loading Overlay Loader

119

Pack the 16 Dynamic Tables
at the top of the area,

v

Build T:LDEF at the end
of the packed tables.

'

Allocate EBCDIC, DEFREF,
and MODIR files' buffer.

Will
buffer overlap
T:LDEF

WRITE

Write packed
tables on Xé6.

\
Read EBCDIC file
into the buffer.

v

Change T:LDEF entries to
point from T:SYMBOL and
T:PUBSYM entries to
EBCDIC entries.

Y

Read DEFREF file
into buffer.

Y

Allocate T:LROMtobegin
af the end of the buffer.

v

Use DEFREF entries to
satisfy REFs in T:LDEF,

©

Built T:LROM to point to
library ROMs that satisfy
T:LDEF REFs.

Y

Read MODIR file
into the buffer,

!

Convert T:LROM entries
to point from MODIR
file entries to MODULE

file record numbers.

Read packed
tables from
X6.

\

Move T:LROM to TEMPBUF
{inside LIB overlay).

Unpack the 16
Dynamic Tables.

v

Convert T:LROM entries
to T:ROMI entries and
add to T:ROMI.

/ LOADSEG \

Load PASSONE to
process T:ROMI.

—

Figure 60, Overlay Loader Flow, PASSONE (cont.)

Loading Overiay Loader

Cljust calledto
input :ASSIGN

Move T:SEG, T:DCBV,
and T:DCB to the end of
T:PUBVAL and allocate
T:VALUE at the end of
T:DCB.

A

Allocate part two
of the Root.

»
>
A

End

of T:SEG
?

Point to first/next
T:5EG entry.

\

Read segment's T:VALUE

subtable into T:VALUE.

|

Create T:GRAN at
the end of T:VALUE .,

A
Read segment's T:MODIFY
and T:MODULE at top of
T:VALX.

AIIocﬁi‘e Work area
at end of T:GRAN.

Allocate B:MT at
top of T:MODIFY.

y
Read in the segment's
ROMs and associated
Module Tables.

A
Scan PASSTWO type load
items and create absolute

core image.

A

Write segment's core
image on Program File.

Figure 61, Overlay Loader Flow, PASSTWO

Loading Overlay Loader

Is
a PUBLIB being

created
?

yes

y

Allocate Work
area at the end

of T:ASSN,

y

Create T:GRAN at

Write T:SYMBOL
and T:VALUE on

Program File.

end of T:DCB for
part 2 of the Root and
allocate T:ASSN at
end of T:GRAN.

Is
there an
:ASSIGN cmd.
in B:C?

LOADSEG

Load CCI to
build T:ASSN.

Create part 2 of the
Root and reassign
DCBs referenced in
T:ASSN.

4

Write part 2 of
the Root on

Program File,

>

 /

Create program
header and write
it on Program File.

y

\
/ LOADSEG \
Load MAP to
output map.

Figure 61. Overlay Loader Flow, PASSTWO (cont.)

Loading Overlay Loader

MAP
specified
?

List program, Root,
and segment header
information.

List DCBs, program
CSECTS, and
program DEFs.

List library CSECTS,
library DEFs, and
Public Library DEFs.

List unsatisfied REFs,
duplicate DEFs,
duplicate REFs, and
undefined DEFs.

List information
about RAD file

usage.

Any
RAD file over=
flow?

Is
2 PUBLIBbeing

created

loading errors
?

no

g
/ ExiT

Take normal
Monitorexit

yes

yes

RABORT

Destroy ProgramFile

and take Monitor
ABORT exit.

Figure 62.

Overlay Loader Flow, MAP

Loading Overlay Loader

123

c

Save the 16
registers in the
Temp Stack.

{ SEGLOAD

Load DIAG

overlay.

Figure 63. Overlay Loader Flow, RDIAG

SEGLOAD

Load calling over
lay segment

)

Restore the 16
registers,

Figure 64. Overlay Loader Flow, RDIAGX

124 Loading Overlay Loader

Create text and
output diagnostic
on LO and OC,

Take

the exit asso-
ciated with the
diagnostic.

RABORT
WAIT

response.

'C' response

Figure 65. Overlay Loader Flow, DIAG

Loading Overlay Loader

125

126

10. RAD EDITOR

The program listing for each RAD Editor subroutine is prefaced with a description that includes both the purpose of
the routine and the calling sequence. Therefore, to avoid duplication, this information is not included in this manual.
Functional Flow

RBM loads and transfers control to the RAD Editor upon reading a IRADEDIT control command from the C device.
The Executive routine of the RAD Editor initializes DCBs and the Scan routine parameters, scans the command,
loads the required segment if not already in core, and transfers fo the proper routine. The RAD Editor is exited
when a command with an exclamation character (1) in column one is encountered (with the exception of EOD).

An 1EOD is used to indicate an end-of~data to the RAD Editor when data is input via the :COPY command.

A functional flow diagram is shown in Figure 66.

Permanent RAD Area Maintenance

A Master Directory, located in the resident portion of RBM, is set up at System Generation. The format of the
Master Directory is illustrated in Chapter 8 of this manual.

The Master Directory contains an entry for each permanent RAD area, extending over the area indicated by the
starting and ending addresses. Within each permanent RAD area, the RAD Editor allocates and maintains files by
means of a file directory. The RAD Editor maintains permanent file directories for the following permanent RAD areas:
Foreground Program Area
System Program Area

Background Program Area

Data Areas

Permanent File Directory

The RAD Editor controls file allocation by generating and maintaining a permanent file directory for each area. The
file directory begins in the first sector of a permanent RAD areq, and each entry in the file directory defines a file
in an area and describes the format of the file. It has the form

Word 0 File name
1 File name
2 |E{DIC|BJ0 ———— 0| RF GSIZE
3 FSIZE RSIZE
41, ., BOT . EOT

01234 1112 1516 31
where
Fiie name is to a file name with a maximum iengih of eight aiphanumeric characiers. if Fiie name — G, i

indicates a deleted entry; -1 indicates a bad track entry.

Maintained by the Monitor;

E If E =0, sequentially written file; if E =1, not sequentially written file.
initially set to 0.

D If D =0, not directly written file; if D =1, directly written file.

RAD Editor

[\

Read 'RADEDIT control
command. Load and
transfer control to
RAD Editor.

Y
Initialize DCBs and the

Scan Routine parameters.

Read next command
from C device.

A’cm

following

:COPY
?

Load appropriate segment yes
if notalready in core and

branch to routine.

Return to Menitor.

SESTE

Figure 66. RAD Editor Functional Flow

Permanent RAD Area Maintenance 127

128

C If C =0, not compressed records; if C =1, compressed records.

B If B =0, unblocked records; if B = 1, blocked records.

RF If RF =0, background or nonresident foreground program; if RF = 1, resident foreground program.
GSIZE is the granule size, in bytes, to be used for direct accessing.

FSIZE is the current number of records in file.

RSIZE is the number of bytes per logical record.

BOT is the relative RAD address of first sector defined for the file.
EOT is the relative RAD address of last sector defined for the file.
No entry extends over a sector boundary. Afier a sector of directory is filled, the next available sector within the

permanent RAD area is allocated as o continuation of the directory. Sectors of a directory are linked by means of a
one-word identification entry which is the first word of every sector of the directory. 1t has the form

A Address Next available sector
01 1516 31
where
A If A =0, the directory ends in this sector; if A =1, the directory is continued on another sector.
Address If A =0, "Address" contains the relative location within the sector available for the next entry; if
A =1, "Address" is the relative RAD address of the sector where the directory is continued.
Next available sector is the relative RAD address of the first unused sector in the area. This word is mean-

ingful only for the last sector of directory.

Space within the permanent RAD area is allocated sequentially. The first file in an area, which corresponds to the
first entry in the sector of directory, begins in the second sector and extends over an integral number of sectors.
Every file begins and ends on a sector boundary.

Control Commands

The permanent RAD areas are maintained through the execution of :ALLOT, :DELETE, :TRUNCATE, and :SQUEEZE

commands.

The permanent file directories are maintained so that the directory entry defining a file is always contained in a
sector of directory that has a lower sector address than the file it defines. To facilitate maintenance, files always
appear in the same order as the entries in the file directory.

IALLOT The permanent RAD area specified on the command determines the area in whichafile isto be allocated.
The FILE, FORMAT, FSIZE, RSIZE, GSIZE, and RF parameters are used to form a new directory entry.

The new entry is added to the current sector of directory (identification entry with A =0) at the location specified
by "Address" in the identification entry. The BOT of the new entry is set equal to the "Next available sector".
The EOT is computed, using the FSIZE, RSIZE, and FORMAT parameters. The identification entry is updated
to reflect the new eniry. The "Next available sector" is set = EOT of the new entry +1, and the "Address"
is incremented by 5.

If there is insufficient space in the current sector of direcfory for another entry, "A" in the identification entry is
set to 1; "Address" is set = "Next available sector' and that sector address is used for the new sector of directory.
A new identification entry is built by setting "A" =0; "Address" = 6; and "Next available sector" = EOT of the
new entry +1.

Permanent RAD Area Maintenance

If there is insufficient space to allocate for a file, the file directory is searched for deleted entries (file name = 0).
The deleted entry that allocates sufficient space and the least amount of space is selected for the new entry. RAD
space is lost if the deleted entry allocates more area than is required by the enfry. This space can be made avail-
able for allocating by executing a :SQUEEZE command. The area allocated by a new entry is zeroed out.

The number of sectors to allocate for a file is calculated using the formulas

e () (B)

B= ((FSIZE/é—Ing)ﬂL r) 2
U= ((RSIZE/s)+r)*FSIZE
where
r = 1if remainder #0, and O if remainder = 0.

x equal RAD sector size in words.

:DELETE The permanent RAD area specified on the command determines the area in which a file is to be deleted,

and the file name is used to search the file directory for the entry to be deleted, with the first four words of the file

directory entry being zeroed out. The last word of the entry (BOT and EOT) remains unaltered. The space formerly

allocated by the entry becomes unused until either a :SQUEEZE command is executed, or an :ALLOT command isexe-
cuted with insufficient space on the end of an area to allocate. Space is then allocated by using a deleted entry.

*'TRUNCATE The permanent RAD area specified on the command determines the area in which a file(s) is to be
truncated, with the file name specified being used fo search the file directory for the entry to be truncated. The
actual size of the file is calculated and the EOT of the file directory entry is updated accordingly.

The actual file size for blocked and unblocked files is determined by using the FSIZE and RSIZE of an entry; for
compressed files, an RFT entry (K:RFT11) containing the current record number is used. The space formerly allo-
cated between the EOT of an entry and the BOT of the next entry becomes unused and is not reallocated

until o ;SQUEEZE command ic executed.

'SQUEEZE The parameters on the :SQUEEZE command determine which permanent RAD area to squeeze. Trun-
cating or deleting a file that is subsequently reallocated may cause a loss of space that cannot then be allocated.
That is, the current permanent file directory entry allocates less space than allocated by the original entry. Exe-
cuting a :SQUEEZE regains all unused space. The directories are compacted and the files themselves are moved to
regain the unused space. The BOT and EOT eniries (of the permanent file directory) are updated as they are com-
pacted fo indicate the area occupied by the moved file. Figure 67 illustrates the permanent RAD area before and
after squeezing.

Library File Maintenance

Both the System Library files residing in the SP area and the User Library files residing in the FP area have the same
file structure. Each library consists of one blocked Module File (MODULE) and three unblocked files: the Module
Directory File (MODIR), EBCDIC File (EBCDIC), and DEFREF File (DEFREF).

The MODIR File contains general information about each library module, including its name, where in the MODULE
File it is located, and its size. The MODULE File contains the object modules. The EBCDIC File contains only the
DEFs and REFs of the library modules. The DEFREF File contains indices to the DEFs and REFs in the EBCDIC File for

each module. These files must be defined via the :ALLOT command before attempting to generate them via the
:COPY command.

Algorithms for Computing Library File Lengths

The following algorithms may be used to determine the approximate lengths of the four files in a library. It
is not crucial that the file lengths be exact, since any unused space can be recovered via the :TRUNCATE

Library File Maintenance

129

Identification
Entry

Permanent RAD Area Before Squeezing

0| 31| 51
file 1 > file 1
1] 10

deleted unallocated
1] 14

file 2 (truncated) file 2
16| Y

file 3 (truncated) > file 3
23| 28

bad track > bad track
32| 47

file 4 > file 4
48] 50

Permanent RAD Area After Squeezing
9| 26| 48
file 1 > file 1
1] 10

file 2 file 2
1] 15

file 3 file 3
16 | 21

file 4 > file 4
22} 24

bad track unused
32 l 47 bad track

unused

130 Library File Maintenance

Figure 67. Permanent RAD Area

command. The approximate number of sectors (nMODIR) required in the MODIR File is

_3

"MODIR ™ s

where
i is the number of modules to be placed in the library.
s is the RAD sector size in words.

3words is the length of o MODIR File entry.

The approximate number of sectors (nEBCDlC) 7

where
d is the unique number of DEFs in the library.
s is the RAD sector size in words.

2 words is the average length of an EBCDIC File entry.

The approximate number of records <nMODU LE) required in the MODULE File is

n
"MODULE ~ iz=:l 5
where
n is fhe fofal number of moduies in ihe libraiy.
C. is the number of card images in the ith library routine.

The approximate number of sectors (nDEFREF) required in the DEFREF File is

"DEFREF ~ s

where
n is the total number of routines in the library.
d is the number of DEFs in the ith library routine.
r is the number of REFs in the ith library routine.
s is the RAD sector size in words.

Library File Formats

The library file formats are described below. These files are generated from object modules read in via the

:COPY command.

Library File Maintenance

131

MODIR File

The MODIR File is an unblocked, sequential access file and acts as a directory to the MODULE File. The file al-
ways consists of one variable length record that increases in size as object modules are added to the [ibrary. There
is one entry in the MODIR File for each object module, with each entry consisting of three words.

Words 0 MODULE File record no. Records per module
1 Module name (first DEF)
2 Module name
3 MODULE File record no. Records per module
4 Module name
5 Module name
6
7
8
9
10
1
12
0 15!16 31
where
MODULE File record no. is the relative record within the MODULE File where the object module (corres-

ponding to this entry) begins.
records per module is the number of records in the object module.
module name is the name of the object module that is the first DEF in an object module.
A deleted entry contains zeros in all three words.
MODULE File

The MODULE File is a blocked, sequential access file and contains the object modules. The location of the object
module within the file and the size is indicated by the MODIR File entry.

EBCDIC File

The EBCDIC File is an unblocked, sequential access file. The file always consists of one variable length record that
increases in size as object modules are added to the library. The EBCDIC File contains all the unique DEFs and REFs
in the library object modules.

132 Library File Maintenance

0 n e e e
1 e n e e
2 e e e e
3 e e

where
n is the number of bytes in entry (including itself).
e is an external definition or reference in EBCDIC.

DEFREF File

The DEFREF File is an unblocked, sequential access file. The file always consists of one variable length record that
increases in size as object modules are added to the library. For each module there is one entry that varies in size
according to the number of DEFs and REFs. DEFs always precede the REFs in the entry.

Entry size (no. 1) MODIR File index
d DEF 1 d DEF 2
d DEF 3 r REF 1
r REF 2 Entry size (no. 2)
MOPDIR File index d DEF 1
r REF 1 r REF 2
01 . 15161718 . . 31
where
entry size is the number of halfword entries (including itself) for the object module. 3=eniry size <32,747.

MODIR File index is the relative halfword in the MODIR File that identifies the object module. 0<MODIR
File index <32,767. -1 means a deleted entry.

d if d =1, means a DEF entry.

r if r =1, means a REF entry.

def n is the byte index of an external definition in the EBCbIC File.
ref n is the byte index of an extended reference in the EBCDIC File.

A deleted DEFREF entry contains a MODIR File index of -1, with the rest of the entry remaining the same.

Command Execution

The library files are maintained through the execution of :ALLOT, :COPY, :DELETE, and :SQUEEZE commands. The
entries in the MODIR File, MODULE File, and DEFREF File are in the same sequential order. The ith entry in the

MODIR File identifies the ith object module in the MODULE File, and corresponds to the ith entry in the DEFREF
File. The ordering of these files is always preserved.

Library File Maintenance

133

134

ALLOT Library files are allocated in the same general manner as other files described previously, but with
certain specific differences. When area SP or FP is specified, a check is made to determine if the file name is
MODIR, MODULE, DEFREF, or EBCDIC. If MODULE is specified, RSIZE is required to be 30 words and FORMAT
must be blocked. 1f MODIR, DEFREF or EBCDIC is specified, FORMAT must be unblocked. RSIZE can be any value
for the unblocked files and is used solely for calculating the amount of space to allocate for the file. The record

size for these three files is set to O when allocated. GSIZE on all library files is ignored, and is always set equal
to RAD sector size by the RAD Editor.

:COPY The permanent RAD area specified on the :COPY command determines which library a module(s) is to be
added to. For each object module added, the following procedure is followed:

1. An object module is read from the input device specified on the command. The module is added to the end of
the MODULE File as it is being scanned for external definitions and references. The MODULE File record

number for the MODIR File is obtained from RFT12 (current record no. of file). The MODIR File index is ob-
tained from RFT5 (record length).

2. As DEFs and REFs are encountered, they are added as entries to the end of the EBCDIC File. The first DEF en-
countered is used as the MODULE File name. However, REFs are added to the EBCDIC File if they are not in
duplicate.

3. The indices to the EBCDIC File entries are saved to create the DEF n and REF n words of the entry to the
DEFREF File.

4. The addition of the object module to the library is completed by updating the "records per module" in the

MODIR File entry; "entry size" in the DEFREF File entry; and writing the MODULE, DEFREF, and EBCDIC
Files to the RAD.

{DELETE The permanent RAD area on the :DELETE command is used to determine which area contains the library
object module to be deleted. The MODIR File entry containing the same module name as that appearingon the com-
mand is zeroed out. The corresponding DEFREF File entry is located and the halfword containing the MODIR File
index is set to -1. No other changes are made to the EBCDIC and MODULE Files as a result of the :DELETE
command.

All unused space resulting from a module deletion is recovered when a : SQUEEZE command is executed.

'SQUEEZE The permanent RAD area on the :SQUEEZE command is used to determine the library to be squeezed.
Permanent RAD areas containing libraries are squeezed in the same way as other areas with the following excep-
tion: after the permanent file directories are compacted and files are moved to regain the unused space, a search
is made of the MODIR File. All existing modules are copied from the MODULE File to the Temporary File XI.
Using X1 as the source of input, the library files MODIR, EBCDIC, and DEFREF are regenerated.

Bad Track Handling

Bad tracks within permanent file areas on a RAD are removed from use by making special entries to the appropriate
file directory. All bad tracks can be handled in this manner except those that contain a sector of the file directory.
These cannot be removed from use as it would make accessing of certain files impossible. All bad tracks on a disk
pack are removed from use by flawing the bad track(s) and using alternate tracks if available. Otherwise, they are
handled the same as for a RAD.

Command Execution

Bad tracks are handled through execution of :BDTRACK and :GDTRACK commands. The :BDTRACK command re-
moves the track from use by allocating or flawing the track. The :GDTRACK command returns the track for use by
deleting the entry made by :BDTRACK or removing the flaw marks.

:BDTRACK The permanent file area that encompasses the bad track is determined by the RAD or disk pack (DP)
and bad track specified on the command. A check is made to determine if a sector of directory falls within the bad
track. [f it does, the bad track is not eliminated from use. A search of the file directory is made to determine if
the bad track is allocated. If it is, the entry(s) that allocates the track is eliminated and replaced by a bad track
entry. If it is not allocated, a bad track entry is added to the end of the file directory. A bad track entry consists
of the "file name" being set to -1, and the BOT and EOT being set to the starting and ending sector of the bad
track. The appearance of files in the same order as the entries in the file directory is maintained.

Bad Track Handling

If the bad track is on a disk pack, a search is made for the available alternate track (alternate is all 1's). When
found, the cylinder, head, and sector addresses of the alternate track headers are inserted. The alternate cylinder
and head address fields are updated to contain the flawed track address. The header of the specified bad track is
updated to contain the flawed track address. The header of the specified bad track is updated by inserting the alter-
nate cylinder and head addresses, and setting the flaw mark bits to 1's. If there are no alternate tracks available,
bad tracks are handled the same as on a RAD; that is, by putting an entry in the file directory.

{GDTRACK The permanent file area that encompasses the good track is determined by the RAD or disk pack
(DP) and bad track specified on the command. A search of the file directory is made for the entry that allocates the
track specified on the command. The entry is deleted (file name set = 0), making the track available for allocating.

If a good track is on a disk pack, the flaw bits in the headers are checked to see if they are set; if so, the headers
are altered by clearing the flaw bits and setting the alternate track field to all 0's, and the headers in the alter-
nate track are altered by setting the alternate track field to all 1's. If the flaw bits are not set, the good track
specified is handled the same as for a good track on a RAD (by deleting the appropriate file directory entry).

Use of I0EX for Disk Pack

The flawing of bad tracks is performed with a call to IOEX. The RBM assembly option #SYSPROC must be included
to correctly perform this operation. If #SYSPROC is not included in RBM, the flawing is not performed and the disk
pack is treated exactly as a RAD (i.e., a bad track entry is placed in the file directory).

Utility Functions

The following utility functions are performed by the RAD Editor:

e Maps permanent RAD areas.

e Clears permanent RAD areas.

e Enters data onto permanent RAD files.

e Appends records to the end of an existing permanent RAD file.
e Copies permanent RAD files.

e Copiss libiary obicct modules.

e Dumps the contents of RAD files or entire RAD areas.

e Saves the contents of RAD areas in self-reloadable form.

e Restores RAD areas previously saved.

MAP The permanent RAD area(s) to be mapped is indicated on the :MAP Command, with the map information
being output to the device assigned to the M:LO DCB. Whenever the sequence yyndd is encountered, all following
area mnemonics are processed if the area resides on the specified device. In addition, if yy =DP, a list of flawed
tracks and alternates are output as follows:

FLAWED TRACKS AND ALTERNATES

FFFF AAAA
where
FFFF is the flawed track number (decimal).
AAAA is the allocated alternate track number (decimal).

Each map consists of up to three sections: one section when RAD areas CK, XA, or BT are mapped; two sections
if RAD areas without libraries are mapped; three sections if RAD areas containing libraries are mapped. The
three sections of the map are as follows:

1. Information from the Master Directory identifying the permanent RAD area, starting and ending RAD addresses,
write protection, and device number of the RAD from the Device Control Tables.

2. Information obtained from the permanent file directories concerning each file in the areq; its name, format,
granule size, record size, file size, beginning of file, and ending of file.

Utility Functions

135

3. Information about object modules in the library files; consisting of the permanent RAD areas, module name, and
the definitions and references in the module.

Section 1 of the map has the format

RAD AREA ZZ RAD yyndd BOA bbbbb EOA eeece WP w

where
7 identifies the permanent RAD area.
yyndd is the RAD that contains the permanent RAD area.
bbbbb is the absolute RAD address of the first sector of the area in decimal.
eeeee is the absolute RAD address of the last sector of the area in decimal.
w is the write protection for the file.
is write~permitted by foreground only unless SY key-in.
is write-permitted by background only unless SY key-in.

F
B

M is write~permitted by the Monitor only.
N is write-permitted only if SY key-in.
X

is write-permitted by IOEX only.

Section 2 of the map has the format

NAME FORMAT GSIZE RSIZE FSIZE BOF EOF

nnnnnnnn g r 4 5 t
where

nnnnnnnn is the name of a file in the permanent RAD area.

f is the file format:

U specifies unblocked
B specifies blocked
c

specifies compressed

g is the granule size in bytes in decimal.

r is the record size in bytes in decimal.

2 is the number of records in file in decimal.

s is the relative RAD address of the first sector defined for the file in decimal.
t is the relative RAD address of the last sector defined for the file in decimal.

Section 3 of the map has the format

MAP OF LIBRARY IN AA AREA

MODULE NAME LOCATION DEFS REFS

mmmmmmmm i dddddddd dddddddd FEEFEECT PRFRCET
where

AA is the permanent RAD area that contains the library.

mmmmmmmm is the object module name.

i is the relative sector address of the first sector of the object module.
dddddddd is the name of an external definition.

rrrrreer is the name of an external reference.

136 Utility Functions

The mapping of an area is performed as follows:

1. Information is obtained from the Master Directory for Section 1 of the map and output to the LO device. If an
area is not allocated, the mapping of that area is ignored.

2. Information is then obtained from the permanent file directory for Section 2 and output to the LO device. If an
area other then CK, XA, or BT does not contain files, a message will be output to that effect. When a bad
track entry is encountered, "BADTRACK" is printed as the name of the file.

3. If the permanent RAD area is either FP or SP and contains libraries, information is obtained for Section 3. The
MODULE NAME is obtained from the MODULE File, the module record number from the MODIR File, and the
definitions and references are obtained by scanning the DEFREF File for the indexes to the EBCDIC located in
EBCDIC File.

:CLEAR The permanent RAD area on the :CLEAR command is used to determine the area to be cleared (set to
zero). The area is cleared using the direct access method. The granule size is set equal to the amount of unused
background space available, which is zeroed out and written to the RAD.

:COPY The parameters on the :COPY command are used to set up the F:SI and F:SO DCBs. Files are copied
sequentially. When an !EOD, :EOD, or EOT is encountered, the COPY is terminated. When an object module
is copied to an output device, the COPY is terminated when the module end load item is encountered.

:DUMP The permanent RAD area or file to be dumped is indicated on the :DUMP command. The information is
dumped to the device assigned to the M:LO DCB. The file dump has the format

DUMP OF FILE nnnnnnnn IN AREA AA

RECORD rrrr

WD 0000 dddddddd dddddddd ... dddddddd

WD 0008
wD 0016
where
nnnnnnnn is the name of the file.
AA identifies the permanent RAD area (area BT inclusive).
rrer is the relative record number and begins with 1.

dddddddd is a data word in hexadecimal.

The area dump has the format

DUMP OF AREA Z2Z

SECTOR ssss

WDO0000 dddddddd dddddddd ...dddddddd
wWDO0008

WD0016

where
YA identifies the RAD area.
5585 is the relative sector number, and begins with 0.

dddddddd is a data word in hexadecimal.

Utility Functions

137

The dumping of an area or file is performed as follows:

1. The directive is scanned to determine whether an area or file is to be dumped. If a value for SREC is not speci-
fied, O is assumed. If a value for EREC is not specified, the last record of the file or area is assumed.

2. The record(s) to be dumped is accessed sequentially. Within arecord, if a word is duplicated more than sixteen
times in order, it is output only once in the message

'WDxxx THRU xxx CONTAIN xxxxxxxx'

If records are duplicated, the message

'"RECORDxxx THRU xxx CONTAIN xxxxxxxx'

is output.

If sectors are duplicated, the message

'SECTOR xxx THRU xxx CONTAIN xxxxxxxx'

is output.

3. The dump is terminated when the specified number of records have been dumped or when a complete file orarea
has been dumped.

'SAVE The area(s) to be saved is specified on the :SAVE command. The data is dumped to the device assigned to
the M:BO DCB, and consists of the following:

1. A small 88-byte bootstrap that loads the large bootstrap when booted from the console.
2. A large bootstrap that restores the RAD or disk pack from magnetic or paper tape.

3. An 88-byte RBM bootstrap used for booting the RAD or disk pack.

4. Records containing data to be restored.

Each record to be restored is preceded by a five-word header with the format

No. words per sector LRA LRT 0——0 E Area ident.
No. sectorsinrecord Device number
Area FWA
No. sectors per track No. sectors (zero) to write
CKSM (2's complement form)
1 4 3 1
0 14151617 2324 31
where

No. words per sector ~ is the size of the sector.
LRA is a flag to indicate the last record of an area if LRA =1, last record.
LRT is a flag to indicate the last record of the tape if LRT =1, last record.

—
[4M]
co

Utility Functions

DP indicates that the device is a disk pack if DP = 1.

Area ident. is the area to which the record belongs.

No. sectors in record is the size of record (in sectors).

Device number is the physical device number of the RAD or disk pack.

Area FWA is the absoiute address where the data records should begin being restored.

No. sectors per track/No. sectors (zero) to write is the number of sectors containing all zeros preceding
nonzero data in the record.

CKSM is the checksum of this record in the 2's complement form.

The saving of an area for subsequent restoration is performed as follows:

|

2.

A small and large bootstrap are written with their checksums.

A header for the RBM RAD bootstrap is written. The FWA and device number for the header is obtained from
K:RDBOOT.

The image of the RBM RAD bootstrap is read from the file RADBOOT in the SP area, and written.

Data records are written with each record being preceded by a header and followed by a checksum. Leading
and frailing zeros of a record are not written. Size of the data records depends upon the amount of available
background space used as a buffer.

After all the specified areas are saved, the tape is verified by using the checksum word of each header and
data record.

:RESTORE The area(s) to be restored is specified on the :RESTORE command. The data is read using the device

< 1 sl Le DT N T [SR PSSR, i S WAy | P T Jperop i Iy | Nt cmm o
UNIYPNed 10 10C Vil UL D. TN MU DOOURINUY, TUTYS DUVISITUM, UHJ DUV WL DUUVBRIHTURY WS IR PPSU. wUIU 1S Ul

are read and restored using the headers that precede them with all leading and trailing zeros of a record also being

~n DDAA DAN L.

restored. Restoration has fo be made to the same type of RAD as that from which the records were saved.

The overall flow of the RAD Editor is illustrated in Figures 68 through 72.

Utility Functions

139

140

Scan command and
save contents.

Allot

oA y

Set default values
for FSIZE, GSIZE,
RSIZE.

Allot

A

Calculate number of
sectors to allocate
for file.

Allot -
15

Sufficient
space fo add entry
to current sector of
directory?

yes

Build new sector
of directory.

A”Of y

~Suffi-
cient space
toallocate on end
of area
?

[yes

Use adeleted entry
that allocates
sufficient space.

Allot y
23 >

Add entry to
File Directory.

Allot
25A >

\

Zero out area
allocated.

Utility Functions

Figure 68. RAD Editor Flow, ALLOT

CoPY

A
Initialize COPY

roufine.

Y

Scan command
(from field).

Is
input from
device or op
|ol3}el

Input From File

Setup F:SI DCB
and FPT (areq, file
name, ASN record
size).

4

Scan command

(to field).

Copying
to another RAD
file
?

Copying

to output device

grop label
?

Illegal use of COPY.
Return to Monitor
or EXEC1.

Figure 69. RAD Editor Flow, COPY

Utility Functions

141

142

&)—

COPY ‘ yes
58

l Buffer.
@ ‘

copy
68 Y

Setup F:S1 DCB and
FPT (area, record
size, file name =

Module).

Scan command
(to field).

Copying
to output device

or op label
?

.

Illegal use of COPY
Return to Monitor
or EXECI.

Setup F:SO DCB
(ASN, DCT Index,
op Label Table
Index).

¥

Read MODIR file
into Background

Get location of

file by searching
MODIR file.

module in MODULE

4._

Skipout fomodule
on MODULE file.

Copy module to
output device.

EXEC1

Utility Functions

Figure 69. RAD Editor Flow, COPY (cont.)

Setup F:SI DCB (ASN,
DCT Index, Op Label
Table Index.)

Y

Scan command (fo field).

Copying
to a library ?_~yes

Copying
to a file?

Setup F:SO DCB and FPT
(area, file name, ASN,
record size),

y

Process options if any.

COPY

22
i

D)

(

If add option, skip to EOF
on output file,

COoPY
22

Assign C device to 0.

v

Copy to RAD file.

Y

Reassign C device to
standard assign,

Figure 69. RAD Editor Flow, COPY (cont.)

Utility Functions

143

ey

COPY

Setup F:SI, F:SO 38 i

DCBs and FPTs. Write out DEFREF
file withnew entry
to DEFREF file.

?

Module add
? no Invert EBCDIC
<] in background.
yes Set record
length =0 for y
—TEsCDIC IS all library files. V}/rife'ouf EBCDIC
into Background file with new.enfry
Bt to EBCDIC file.
uffer.
COPY
Y 38 A
Invert EBCDIC in 'f{i(?:dir?:\oODIR
Background Buffer background.
starting at highest
core location. COPY
46
| Write out MODIR
file including
Read DEFREF File enfry for this
into Background module.
Buffer starting at
Lowest Core Locat.

Scan module for @

DEFs and REFs.

Figure 69. RAD Editor Flow, COPY (cont.)

44 Utility Functions

{COPY’ >

2/

&

Set up F:SO DCB

(areq, file name,

ASN).
!

Process options
if any.

A

to EOF on output
file.

If add option, skip

Setup F:SO DCB
(ASN, DCT Index,
Op Label Table,
Index).

'

A

Process options
if any.

Copy input file
to output file.

Y

Write EOF on
output file.

Figure 69. RAD Edifor Flow, COPY (cont.)

Utility Functions

145

146

Scan command for
area to squeeze.

I

Read all of file
directory for area

. into background.

@

d

queeze f
irectory, removing

deleted entries.

di

Current file

rectory entry =1 ?

(BADTRACK)
?

no

Move file and
update directory.

yes

v

If gap between EOT
and badtrack BOT,
insert largest file
that will fit and
update directory.

All

permanent
RAD filesmoved

Utility Functions

Figure 70. RAD Editor Flow, SQUEEZE

Write out
file directory.

i

Library
in SPor FP
area

()

yes

y
Search MODIR file
for existing modules
and copy modules
from MODULE file

to Temp. file (X1).

i

y
Create new library
files (MODIR,
DEFREF, EBCDIC)
using file X1as input.

?

Figure 70. RAD Editor Flow, SQUEEZE (cont.)

Utility Functions

147

Setup to write out
small boot. (a) size
of large boot in
small'boot. (b) build
CKSM for small boot

I

Write out small
boot to BO.

Y

Setup to write out large

boot. (a) putread order
in large boot (MT or PT).
(b) build CKSM for

large boot.

!

Write out large
boot to BO.

T

Build header for
RAD boot and
write to BO.

Get RADBOOT from
SP file RADBOOT
and write to BO.

I

Build header for

data record.

?

A

Read data from
specified area.

Figure 71. RAD Editor Flow, SAVE

148 Utility Functions

Calculate number of
sectors of zeros at

front end of record if
any save in header.

v

Remove trailing
zeros if any.

\
Build CKSM and

write out header.

v

Write data record
to BO.

.

All

specified areas

dumped
?

r
Verify tape
generated.

Figure 71.

RAD Editor Flow, SAVE (cont.)

Utility Functions

149

150

Scan directive for
area to restore.

1

Skip first four rec-
ords (bootstraps)
and read first data
header.

i

Verify RAD being
restored has same
sector size as that
saved.

[

CKSM data
header.

<

£
-‘-
Cf

eading
zeros if any
orecede doto.

I

Read data record
and CKSM

|

(a) Write datarec-
ord on RAD and
(b) Read new data
header.

areas restored
?

Utility Functions

Figure 72. RAD Editor Flow, RESTORE

11. SYSTEM GENERATION

Overview

The System Generation program is assembled in absolute, using the ASECT directive, and is ORG'd (origined) at two
locations:

1. The first ORG at location X'140' allocates and defines the system flags and pointers. It is the first location
that cannot be used for an external interrupt. The system flags and pointers are a group of cells that provide
communication between SYSGEN, all portions of the Monitor, and the system processors and service routines.
Since these cells are in fixed, predetermined locations, they are defined via the EQU directive in all programs
that reference them. Note that these cells must not be changed, deleted, or altered in any way in the SYSGEN
listing unless the EQU directives are also changed in all programs that reference the cells. The system flags
and pointers are followed by a skeleton of the Master Dictionary. The Master Dictionary is not necessarily
fixed at its assembled location since it may be moved to the unused interrupt cells if sufficient space exists.

2. The next ORG at location X'28EQ' fixes the start of the SYSGEN program. SYSGEN is ORG'd such that the
program will occupy the highest address portion in a 16K memory. This provides the SYSGEN Loader with the
maximum amount of room to load the Monitor and its overlays in the lower address portion of memory. If a user
adds o significant amount of code to the Monitor, this ORG may have to be moved to a higher location to pre-
vent the Monitor from overflowing SYSGEN during the load.

The System Generation program is divided into two sections designated as SYSGEN and SYSLOAD. SYSGEN pro-
cesses all the SYSGEN control commands and allocates and initializes all the Monitor tables from the information
on the control commands. It also builds a symbol table for SYSLOAD that contains the name and absolute address
of all the Monitor tables. Optionally, SYSGEN will output on a rebootable deck containing the Monitor tables
and SYSLOAD on cards, paper tape, or magnetic tape. The SYSGEN phase can be overwritten during the loading
of the Monitor, and terminates by exiting to SYSLOAD.,

SYSLOAD loads the Monitor, all optional resident routines, the RBM overlays, the Job Control Processor, and then
writes these in to the RBM file in the SP area. A map containing the RBM table allocation and RAD allocation is
output upon request. SYSLOAD terminates by reading in the RAD Bootstrap and exiting to it, simulating a booting
of the system from the RAD.

Figure 73 illustrates the core layout of SYSGEN and SYSLOAD after the absolute object module is loaded by the
Stand-Alone SYSGEN Loader.

Unchanged
X'140
System Flags and Pointers
X'208"
Skeleton of Master Dictionary
X'236'
Unchanged
X'1800'
Stand-Alone SYSGEN Loader .
X'1C00'
Unchanged
X'28E0Q'
SYSGEN Processing Routines
Subroutines Unique to SYSGEN
X'3220
SYSLOAD
Subroutines Used by SYSGEN and SYSLOAD
X'4000"

Figure 73. SYSGEN and SYSLOAD Layout Before Execution

System Generation

151

152

Figure 74 depicts a typical core layout after SYSGEN and SYSLOAD have executed.

Unchanged

X|40|
MTW, 0 Instruction Stored in all Used
Interrupt Locations

Control task Int. Loc.
Unused Interrupt Locations Used for

Monitor Tables

Xl]40!
System Flags and Pointers
X'208'
Remainder of Monitor Tables
RBM Overlay Area] 512 Locations

, : “—Patch Area
Floating Point, Decimal Byte-String, and Conversion

Instruction Simulation Packages, if Required

Resident RBM

RBM Initialize Routine

<~—— Background FWA (starts on first page
(Extends into Background Area)

boundary after Resident RBM)

Area Used by SYSLOAD to Load JCP } About 4600 Locations

SYSLOAD X'4000'

Figure 74. SYSGEN and SYSLOAD Layout After Execution

SYSGEN/SYSLOAD Flow

The flowcharts in Figure 75 depict the overall flow of SYSGEN and SYSLOAD. The labels used correspond to the
labels in the program listing.

Loading Simulation Routines, RBM, and RBM Overlays

The S region of the SYSLOAD listing contains a loader that loads the instruction simulation packages, RBM, the
RBM overlays, and the Job Control Processor (JCP). Each object module loaded must have one, and only one,

DEF directive that identifies the object module to the loader.t The DEFs listed in Table 9 are recognized by the
Loader.

Any DEF encountered that is not included in Table 1 results in an alarm

[ILL. DEF. |

Any object module loaded that is devoid of DEFs result in an alarm

| OBJ. MOD. NOT RECOG.

fExcepf RBM object module.

SYSGEN/SYSLOAD Flow/Loading Simulation Routines, RBM, and RBM Overlays

Initialize SYSGEN flags.

sense switches

yes

!

Assume input of :SYS
CRAO3, LPAOF.

Go type "RBM SYSGEN"
"IN, OUT DEVICES".

4
Store input, output devices
for Read/Write routine.

J 4

l READ

Go to READ for input
of next control command

Decode controlcmdandgo
to proper processing region.

D01
STDLB

cmd

BO1 EO]
SIOP Monitor
cmd cmd

HO1 K01
INTLB PUNCH
cmd emd
A
GOl Joi
“CTINT ALLOT
cmd cmd

Figure 75. SYSGEN/SYSLOAD Flow

SYSGEN/SYSLOAD Flow

153

I

Set up group code and level
bit for Control Task int.

f

Set all used interrupt
locations to MTW, 0.

f

Change no. TRKS for GO,
QV files to sector number.

I

Move Master Dict. to
unused int. cells if room.

?

Allocate and preset all
RBM tables. DCT, 10Q,
RFT, etc. Set OLAFWA to
X'100' boundary if all
SENSE switches are set.

pre

y

Save FWA of tables in
Symbol Table for SYSLOAD.

f

Set FGD FWA, BCKG
FWA, FPOOL FWA, etc,

-

Go output map
if requested.

Figure 75. SYSGEN/SYSLOAD Flow (cont.)

5 SYSGEN/SYSLOAD Flow

v

i

Output rebootable
deck of SYSLOAD,
if requested.

a :SYSLD emd
input?

Go Type "RBM
SYSLOAD",
“"INPUT OPTIONS",

Process :SYSLD cmd

o

1/O devices.

Update
or All option
?

i

All or
| Fast

Zero out all defined
RAD areas (first sec-
tor only if fast
option).

Figure 75. SYSGEN/SYSLOAD Flow (cont.)

SYSGEN/SYSLOAD Flow

155

Read In RAD Boot-
strap from existing
RBM.

I

Get RAD address
for existing RBM,
and read in first
400 words of RBM.

Y

Compare old Master
Dict. with new Mas-
ter Dict. to see
which areas moved.

v

Type Reload alarms
for all areas that
moved.

I

Zero out first sector
of all areas that
moved.

I

y

Initialize cells for
loading of RBM
object modules,

[

Load FPSIM and
DECSIMroutines, if
required, to core.

y

Load RBM to core and
write to RBM file on
RAD. Loadthe RBM
overlays and the JCP
to the RBM RADfile.

I

y
Set background FWA

and Simulation
routine's FWA,

Figure 75. SYSGEN/SYSLOAD Flow (cont.)

156 SYSGEN/SYSLOAD Flow

Adjust size of
checkpoint area

if necessary.
.7—._—__—’
Y
Move RBM OVLOAD
table to its
resident location,

v

‘ Output map

.

if requested.

l Write RBM tables

onto RBM file.

v

Write RAD Boot
onto BOOT file.

Type "RELOAD SP AREA"
and "RELOAD BCKG
PROGRAMS", if
appropriate.

v
Write out SP
directory if
. appropriate.
‘

Write RAD Boot-
strap onto sector 0
of RAD.

¥

Punch hard copy
of RAD Bootstrap

l if required.
Exit

to RAD
Boot

Figure 75. SYSGEN/SYSLOAD Flow (cont.)

SYSGEN/SYSLOAD Flow 157

Table 9. Standard SYSLOAD DEFs

DEF Name Program

FPSIM Floating Point Simulation Routine.

DECSIM Decimal Instruction Simulation Routine.

BYTSIM Byte String Instruction Simulation Routine.

CVSIM Convert Instruction Simulation Routine.

DELTA Debug Package.

RBM Resident portion of RBM,

RBMEND The end of resident RBM. The RBM initialize routine, which is non-
resident, follows the RBMEND label.

JCP Job Control Processor.

CKPT Checkpoint/Restart overlay.

FGLI Overlay to release foreground programs.

FGL2 Overlay to load foreground programs for execution.

ABEX Abort/Exit Overlay.

KEY1 Part 1 of Key~-in overlay.

KEY2 Part 2 of Key=in overlay.

PMD Postmortem Dump overlay.

BKL1 Part 1 of overlay to load JCP and background programs for execution.

Bk L2" Part 2 of overlay to load JCP and background programs for execution.

The Loader satisfies references to any of the RBM tables in the object modules it loads. References that can be

safisfied are contained in the RBM Symbol Table. The address of each RBM table is stored in the Symbol Table by
SYSGEN when the tables are allocated. Labels that can be defined as an external reference in RBM or the RBM

Overlays are

RBM Symbol Table Definitions

DCT1 through DCT19 (i.e., DCTI,DCT2,...,DCT19)
CIml through CIT3

IoQ1 through 1I0Q14

RFT1 through RFT17

FP1 through FP5

OPLBSI1 through OPLBS3

INTLBI through INTLB2

OVLOADI through OVLOAD3

WLOCK

OLAYFWA

158 Loading Simuiation Routines, RBM, and RBM Overlays

Any external reference not in the above list will result in an alarm

"ILL. REF."

Note that this Loader will not satisfy any DEF/REF linkages between object modules. Only references to the RBM
tables contained in the above list will be satisfied.

SYSGEN1/0

SYSGEN and SYSLOAD perform all of their own I/O via the READ/WRITE routine except for the typing of alarms
performed by TYPE. The READ/WRITE routine will handle the peripherals itemized below:

Device XDS Model Numbers
Keyboard Printer 7012, 7020

Card Reader 7121,7122,7140,7120
Paper Tape Reader/Punch 7060

Line Printer 7440, 7445, 7450
9-Track Magnetic Tape 7322,7323

7-Track Magnetic Tape 7362,7372

Card Punch 7160, 7165

RAD 7204, 7232,7212

Disk Pack 7242,7246

The READ/WRITE routine makes extensive use of tables (called IOTO through 10T18) that fully describe the charac-
teristics of each peripheral device. (See the comments in the program listing for descriptions of the READ/WRITE
routine and the tables.) The paper tape format used by SYSGEN on read operations is identical to the format used
by RBM described in Appendix A.

Rebootable Deck Format

If a :PUNCH control command is read by SYSGEN, a rebootable deck is output that includes the RBM tables with
their initialized values, SYSLOAD, and the RBM Symbol Table. This deck can be used to load a new version of
RBM without re=inputting all the SYSGEN control commands.

The first card in the rebootable deck consists of a one-card bootstrap program that loads the next two cards in the
deck. These next two cards consist of a program that loads the remainder of the deck, consisting essentially of the

RBM Table, SYSLOAD, and the RBM Symbol Table in core image format.

The two cards containing the Core Image Loader have the following format:

Byte No. Contents

0 X'FF* (for card 1) X'9F' (for card 2)

1,2,3 Unused (all zeros)

4,5,6,7 Complement checksum of entire card (carry out
of bit 0 is ignored in computing checksum)

8,9 Unused (all zeros)

10, 1 Load address, minus one, for following data

12-119 Loader in absolute core image format

tIf the rebootable deck is output to paper tape, there are no special additional characters. That is, the paper tape
contains an exact card image.

SYSGEN 1/O/Rebootable Deck Format

159

160

The core image format of the Two-Card Loader is

word 1 X'FF' or X'9F'

word 2 Complement checksum of entire 29 words on card
word 3 Load address - 1
word 4

(words 4-30
contain the
Two-Card
Loader in abso~
lute core image
format.)

word 30

!
1

0 78 1516 3]

The RBM Tables, SYSLOAD, and the RBM Symbol Table are output in the core image format

word 1 X'FF* or X'9F' Sequence number (0-n)
Complement checksum

word 2 Load address - 1 (not incl. halfword 0)

word 3

(words 3-30

contain the

above~mentioned

data in core
image format.)

word 30

i +
0 78 1516 31

All cards contain an X'FF' in byte 0 except the last card. The last card contains an X'9F' in byte 0 and the
SYSLOAD entry address in place of the load address in word 1. The last card contains no data other than the
SYSLOAD entry address, the sequence number, and checksum,

Stand-Alone SYSGEN Loader

The Stand-Alone SYSGEN Loader is a small loader specifically created to load the SYSGEN absolute object module.
Since SYSGEN is assembled in absolute, the SYSGEN Loader will oniy load absoiute ioad items and handles oniy
the small subset of the Sigma Object Language required to load SYSGEN.

The SYSGEN Loader 1/O routine is a copy of the SYSGEN 1/O, with the code performing the actual loading being
similar to the code in the SYSGEN Loader,

The rebootable form of the SYSGEN LOADER is produced by loading its ROM with the Stand-Alone Absolute

Dumping Loader (see Stand-Alone Systems Operations Manual, 90 10 53). The absolute binary deck produced
can then be booted with the three-card Absolute Bootstrap Loader (can be obtained by ordering CN704145),

Stand-Alone SYSGEN Loader

APPENDIX A. RBM SYSTEM FLAGS AND POINTERS

Table A-1. RBM System Flags and Pointers
Name Location Description
K:BACKBG X'140 Beginning address of background.
K:BCKEND X141 Ending address of background.
K:FGDBGI X'142' Current beginning address of FGD.
K:FGDEND X143 Ending address of FGD.
K:CCBUF X'144¢ Address of Control Card Buffer.
K:BPOOL X'145' Start address of BCKG Blocking Buffer Pool.
K:FGDBG2 X'146! Beginning address of FGD set at SYSGEN.
K:FMBOX X'147' Start address of FGD Mailboxes.
K:FPOOL X'148' Start address of FGD Blocking Buffer Pool.
K:UNAVBG X'149* Start address of unavailable memory.
K:MASTD X'14A" Start address of Master Dictionary.
K:NUMDA X'14B! Highest valid DW index for MASTD.
K:VRSION X"14C! RBM version,
K.ACCNT X'14D! Job Accm_mﬂng flng.
K:OV X'14E' Permanent and current sizes of OV,
K:KEYST X'14F' Post status of key-in here.
K:JCP1 X'150' JCP and Control Task.
Bits have the following meaning:
Bit 0 =1, JCPis executing.
Bit 1 =1, Background is active.
Bit 2 =1, Background is checkpointed on the RAD.
Bit 3 = 1, Background is being used by Foreground
but was not checkpointed.
Bit 4 = 1, Waiting for key-in response.
Bit 5= 1, Skip to next JOB card.
Bit 6 = 1, Set by ABORT for CALEXIT.
Bit 7 =1, Setby CALEXIT for ABORT.
Bits 8 - 15, Previous assign. of C device (for
TY key-in).
Bits 16 - 21, Unused.
Bit 22 = 1, System processor executing.
Bit 23 = 1, Execute Delta for BKGD Program.
Bits 24 - 25, 0 means no PMD requested.
1 means conditional PMD,
2 means unconditional PMD,
Bit 26, Flag for CKPT that alarm typed.

Appendix A

161

Table A-1. RBM System Flags and Pointers (cont.)

Name Location Description
K:JCP1 (cont.) X'150' (cont.) Bit 27 =1, RBM Initialize routine is running.
Bit 28 =1, FG key-in active.
Bit 29 =1, TY key-in active.
Bit 30 =1, Attend command was input.
Bit 31 =1, JOB command was input.
K:CTST X'151" Flags to execute Control Task subtask. Bits have the
following meaning:
Bit 0 =1, Execute CHECKPOINT.
Bit 1 =1, Execute FGD Loader/Releaser.
Bit 2 =1, Execute Restart,
Bit 3 =1, Time to check for I/O rundown,
Bit 4 =1, Execute ABORT/EXIT.
Bit 5 =1, Execute key=in,
Bit 6 =1, Execute PMD.
Bit 7 =1, Execute IDLE,
Bit 8 =1, Execute BCKG load,
Bit 9 =1, Load JCP.
Bit 10 = 1, Load BCKG (Program not JCP).
Bit 11 =1, Key-inrequiredbyahigherprioritysubtask,
Bit 12 =1, Reload FGL1 for possible RLS.
Bit 26 = 1, KEY2doing STDLBRAD file OPEN/CLOSE.
Bit 27 =1, FGLI called from FGL2.
Bit 28 =1, Control Task is operating.
Bit 29 =0, Execute ABORT part of ABORT/EXIT.
Bit 29 =1, Execute EXIT part of ABORT/EXIT.
Bit 30 = 1, PMD from key=in request,
Bit 31 =1, PMD from PMD command.
K:SY X152 Nonzero if SY key-in active.
K:BPEND X'153' End of load area for BCKG program
K:CTWD X154 WD code for Control Task. Byte 0 = Nonzero means CT was
triggered.
K:CTGL X155 Group level for Control Task.
K:BLOAD X156 Name in BCD of BCK program to load two words.
K:BAREA X'158 Index of area to load BCK program from.
K:ASSIGN X'159! Address of ASSIGN table.
K:RUNF X'15A! Post run status here for FGD load.
K:HIINT X'15B! Highest address used for interrupt.
K:FGDBG3 X1sc Begin address of FGD from FMEM key~-in.
K:PMD X'15D! Cells to dump for PMD as DW address (5 words).
K:DCB X162 DCB for Control Task to load in overlays (7 words).
Always assigned to RBM File.
K:KEYIN X169 Key=-in Response Buffer (6 words).
K:FGDBG4 X'16F! Byte 0 = FWA of FGD prior to CKPT (Page Bits 15-31 =
K:BCKEND prior to CKPT).

162 Appendix A

Table A-1.

RBM System Flags and Pointers (cont.)

Name Location Description

K:DELTA X'170' Entry point for Delta.

K:QUEUE X171 Address of Queue routine. Byte 0 = Nonzero, Stop 1/O
on BCKG,

K:BTFILE X172 Status of BT Files

Bits 0 - 8, 1 bitfor each X1 file. Bit set to 1 means
SAVE file.
Bits 16 - 31, LWA to use for non-SAVE files.

K:GO X173 Permanent and current sizes of GO.

K:PAGE X174 Byte 0 = Number of lines per page.

K:RDBOOT X175 FWA and device Number of RADBOOT.

K:DCT1 X'176 Addresses of tables.

K:DCT16 X177

K:OPLBS1 X'178

K:OPLBS3 X179

K:RFT4 X7A!

K:RFT5 X178

K:SERDEV X17ce Address of SERDEV.

K:REQCOM X7 Address of REQCOM,

K:INITX X7e! Address to return to after INIT runs.

K:FGLD X" 7F Byte 0 = Nonzero, XEQ FGD Load/RLS.

K:PMD1 X'180' Format flag, FWA, number cells.

K:PMD2 X181 Flags used in PMD Overlay (see listing of
PMD Overlay for details),

K:PMD3 X'182! FPT for PMD to write on DO (3 words); status is posted in
word 3.

K:RUNBPL X85! Cells to post status in for BCKG Public Library load
(3 cells).

K:CLK1 X'188' Clock cells must start on a DW boundary: there are
counters for 4 clocks — 2 words/clock.!

K:CLK2 X'18A! Word 2 gets stored into word 1 when Counter = 0.

K:CLK3 X+8cC!

t
The user never needs fo access Clock 4.

Appendix A

163

Table A-1. RBM System Flags and Pointers (cont.)

Name Location Description

K:ABTLOC X'18E! Abort location.

K:DCT4 X'18F! Address of DCT4.

K:MSG1 X'190' KEY-IN.

K:MSG2 | X193 KEY ERR.

K:MSG3 X196 RLS Name NA,

K:MSG4 X'19A! File Name.

K:MSG5 X"19E" FGD AREA ACTIVE.

K:MSGé X'1A3! NOT ENUF BCKG SPACE.

K:MSG7 X'1A9! UNABLE TO DO ASSIGN.

K:MSG8 X'1AF! BCKG CKPT.

K:MSG9 X'1B2 BKG IN USE BY FGD.

K:MSG10 X187 BCKG RESTART,

K:MSG11 X'1BB' CK AREA TOO SMALL.

K:MSG12 X"co’ I/O ERR ON CKPT.

K:MSG13 X11C5' JOB ABORTED AT XXXXX.
K:MSG14 X'1CB! LOADED PROG. XXXXXXXX, etc.
K:MSG15 X'1D5* UNABLE TO LOAD BCKG PUB LIB.
K:MSG16 X'1DD' CKPT WAITING for BCKG 1/0 RUNDOWN.,
K:FPSIM X'1E6! Address of Simulation Routines.
K:DECSIM X'1E7!

K:BYTSIM X'1E8'

K:CVSIM X"E9"

K:MONTH X'1EA' Table of days/month and DCB names.
K:DATE1 X'1F6’ Maximum number days in year, year — 1970,
K:DATE2 X'1F7 Day of year.

K:TIME X'1F8! Time of day in seconds.

K:ELTIM1 X'1F9! FGD saves BCKG elapsed time here.
K:LIMIT X'TFA! Maximum execution time for BCKG.,
K:ASSNAM X'1FB! Account entry for AL file (8 words).

164 Appendix A

Table A-1.

RBM System Flags and Pointers (cont.)

Name Location Description

K:ELTIM2 X'202' Last WD of entry — elapsed time.
K:RFT12 X'203' Current record number.

K:RFT11 X1204! Current file number.

K:RFT1 X'205' RAD file name.

K:RFT8 X'206' Master Dictionary Index.
K:PTCH X'207' Beginning address of patch area.
K:PTCHND X'208' Ending address of patch area.

Appendix A

165

APPENDIX B. PAPER TAPE STANDARD FORMAT

A binary record is signaled by an X'11' as the first character, and the two bytes following are the record sizes.
The specified number of data bytes follow the count.

An EBCDIC record is one whose first character is not an X'11'. An EBCDIC record is terminated by an NL code
(]5]6)' or a blank frame (00).

166 Appendix B

READER COMMENT FORM

Xerox Data Systems

XEROX.

We would appreciate your comments and suggestions for improving this publication.

Publication No. Rev. Letter [Title

Current Date

How did you use this publication?

a Installing
O Maintaining

O Leamn ing
(O Reference

d Operating

(] sales

Is the material presented effectively?

O well illustrated
O wen organized

O Fully covered
O Clear

What is your overall rating of this publication?

O Fair
O Ppoor

O Very good
O Good

D Very poor

What is your occupation?

Your other comments may be entered here. Please be specific and give page, column, and
line number references where applicable. To report errors, please use the XDS Software
Improvement or Difficulty Report (1188) instead of this form.

Thank you for your interest.

Fold and fasten as shown on back.
No postage needed if mailed in U.S.A,

Your name and return address.

2190(5/71) Xerox Data Systems

STAPLE

FOLD

STAPLE

FIRST CLASS
PERMIT NO. 229
EL SEGUNDO, CALIF.

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY {F MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY

Xerox Data Systems

701 South Aviation Boulevard
El Segundo, California 90245

ATTN: PROGRAMMING PUBLICATIONS

UT ALONG LINE

XEROX

701 South Aviation Boulevard
El Segundo, California 90245
213 679-4511 XEROX® is a trademark of XEROX CORPORATION.

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	replyA
	replyB
	xBack

