
Xerox Real-Time Batch Monitor (RBM)
Sigma 5-9 Computers

System

Technical Manual

90 17 ooc

701 South Aviation Boulevard
EI Segundo, California 90245
213679-4511

Xerox Real-Time Batch Monitor (RBM)
Sigma 5-9 Computers

System

Technical Manual

90 17 OOC

March 1971

Price: $6.25

XEROX

Printed in U.S.A.

REVISION

This publication is a revision of the Xerox Real-Time Batch Monitor (RBM)/System Technical Manual for Sigma 5-9
Computers, Publ ication Number 90 17 OOB (dated March 1971). The manual incorporates changes from the
90 17 OOB-l (10;71) revision package, which reflects version COl of the RBM operating system. No other changes
beyond those in the 9017 00B-l(1O;71) revision package are included. A change in the text from that of the pre
vious manual is indicated by a vertical line in the margin of the page.

RELATED PUBLICATIONS

Title Publication No.

Xerox Sigma 5 Computer/Reference Manual 900959

Xerox Sigma 6 Computer/Reference Manual 90 17 13

Xerox Sigma 7 Computer/Reference Manual 900950

Xerox Sigma 8 Computer/Reference Manual 90 1749

Xerox Sigma 9 Computer/Reference Manual 90 1733

Xerox Real-Time Batch Monitor (RBM)/RT,BP Reference Manual 90 15 81

Xerox Real-Time Batch Monitor (RBM)/OPS Reference Manual 90 1647

Xerox Real-Time Batch Monitor (RBM)/RT ,BP User's Guide 90 1653

Manual Type Codes: BP - batch processing, LN - language, OPS - operations, RBP - remote batch processing,
RT - real-time, SM - system management, TS - time-sharing, UT - utilities.

The specifications of the software system described in this publication are subject to change without notice. The availability or performance of some features
may depend on a spec ific configuration of equipment such as additiona I tape units or larger memory. Customers should consul t their Xerox sal es representative
fOI details.

:;

CONTENTS

PREFACE vi JCP Loader 65
Job Accounting 68

1- RBM INITIALIZATION ROUTINE Background TEMP Area Allocation 68

2. RBM CONTROL TASK 3 5. FOREG ROUND SERVICES 71

Structure 3 Implementation 71
Function and Implementation 3 RUN 71

Resident Control Task 3 RLS 71
Key-In Processor 6 MASTER/SLAVE 71
Foreground Release (FGLl) 22 STOPIO/STARTIO 71
Foreground Loader (FGL2) 22 IOEX 71
Background Loader (BKL 1) 24 TRIGGER, DISABLE, ENABLE, ARM,
Background Loader (BKL2) 24 DISARM, CONNECT 71
Checkpoint Restart (CKPT) 25 Task Control Block (TCB) 72
Abort/Exit 25
Postmortem Dump (PMD) 26 6. MISCELLANEOUS SERVICES 75

3. I/O HANDLING METHODS 27 SEGLOAD 75
Trap Handling ._. --.------------ ---- 75

Channel Concept 27 Trap CAL "_._--- ---- -------- 75
Handl ing Devices 27 Trap Processing 75 ____ • ___ e

Single Interrupt Mode 27 TRTN (Trap Return) - -- _.-----".- 77
Interrupt-to-Interrupt Mode 27

System T obi es 27 7. RBM SIZES 78
IOQ (Request Information) 27
DCT (Device Control) 28
CIT (Channel Information) 28 8. RBM TABLE FORMATS 79

Handler Tables 28
Separation of Priorities and Control Task 29

RAD File Table (RFT) 79
Device Control Table (DCT) 80 INTSIM Routine 30

CTTEST Routine 30 DCT Format 80

Initiating I/O Requests 30 SYSGEN DCT Consideration 82
Channel Information Table (CIT) 83 I/O Interrupt Processing 36
I/O Queue Table (IOQ) 84 I/O Cleanup 36
Blocking Buffers 86 Miscellaneous Basic I/O Subroutines 41
Foreground Program Table (FGT) 86 REQCOM (Request Complete) 41
Master Dictionary 87 CUPCORE, CUPDCB Cleanup, End-Action

Routines 44 Operational Label Table (OPLBS) 88

MSGOUT (Message Out) 45
Interrupt Label Table (INTLB) 88
OVLOAD Table (for RBM Overlays Only) 89 QUEUE 45

User I/O Services 46 Write Lock Table (WLOCK) 89

OPEN 46 9. OVERLAY LOADER
CLOSE 46 90

READ/WRITE 48 Overlay Structure 90
PRINT 49 Overlay Loader Execution 90
TYPE 49 Dynamic Table Area 91
DFM 49 Dynamic Table Order 92
DVF 49 T:SYMBOL and T:VALUE 92
REWIND 49 T :VALUE Entry Formats 93
WEOF 49 T :SYMBOL Entry Formats 94
PREC 49 T:PUBVAL and T:PUBSYM 94
PFILE 50 T :PUBVAL Entry Formats 94

T :PUBSYM Entry Formats 95
4. JOB CONTROL PROCESSOR 51 T:VALX 95

T:DCB 96
Overview 51 T:SEG 97
ASSIGN Command Processing 51 B:MT 98

iii

T:DECL 98 Bad Track Handling 134
T:CSECT 99 Command Execution 134
T:FWD 99 :BDTRACK 134
T:FWDX 99 :GDTRACK 135
T:MODULE 100 Use of 10EX for Disk Pack 135
T:ROMI 100 Uti lity Functions 135
T:DCBV 101 :MAP 135
T:MODIFY 101 :CLEAR 137
Use of the Dynamic Table Area During LIB _ 102 :COPY 137
T:LDEF 103 :DUMP 137
T:LROM 103 :SAVE 138
MODULE File 104 :RESTORE 139
EBCDIC File 104
MODIR File 104 1l. SYSTEM GENERATION 151
DEFREF File 104
Use of Dynamic Table Area During PASSTWO _ 105 Overview 151
T:GRAN 105 SYSGEN/SYSLOAD Flow 152
T:ASSN 106 Loading Simulation Routines, RBM, and RBM
MAP Use of Dynamic Table Area 106 Overlays 152
DIAG Use of Dynamic Table Area 107 SYSGEN I/O 159
Root Tables 107 Rebootabl e Deck Format 159
T:PL 108 Stand-Alone SYSGEN Loader 160
T:DCBF 108

Scratch Fi I es 109 APPENDIXES
Program Fi I e Format 110
Foreground/Background Program Header __ 111
Public Library Header 111

A. RBM SYSTEM FLAGS AND POINTERS 161

Logical Flow of the Overlay Loader 112 B. PAPER TAPE STANDARD FORMAT 166
Logical Flow of CCI 112
Logical Flow of PASSONE 112
Logical Flow of LI B 113 FIGURES
Logical Flow of PASSTWO 113
Logical Flow of MAP 113 1- Initialize Routine Core Layout 1
Logical Flow of DIAG 114 2. RBM Initia1ize Routine Overall Flow 2

Loader-Generated Table Formats 114 3. Resident Control Task Flow 4
PCB 114 4. Key-In Processor Flow 6
OCBTAB 115 5. Operator Key-In Flow lIell 7
INTTAB 115 6. Operator Key-In Flow, IIW II 7
OVLOAD 115 7. Operator Key-In Flow, "XII 8

Loading Overlay Loader 116 8. Operator Key-In Flow, "Tyll and IITCII 8
9. Operator Key-In Flow, "CCII 10

10. RAD EDITOR 126 10. Operator Key-In Flow, IIDT" and II DEli 10
1l. Operator Key-In Flow, IISY" and IISYCII "11

Functional Flow 126 12. Operator Key-In Flow, IIFG", IIFGC", "FSC",
Permanent RAD Area Maintenance 126 and "SFC" 11

Permanent File Directory 126 13. Operator Key-In Flow, IIRUN II 12
Control Commands 128 14. Operator Key-In Flow, IIRLSII 13

:ALLOT 128 15. Operator Key-In Flow, "INTLB" 14
:DELETE 129 16. Operator Key-In Flow; lI yyndd ll 15
:TRUNCATE 129 17. Operator Key-In Flow, IISTDLBII 16
:SQUEEZE 129 18. Operator Key-InFlow, "FMEM" 19

Library File Maintenance 129 19. Operator Key-In Flow, lleINTII 20
Algorithms for Computing Library File Lengths_ 129 20. Operator Key-In Flow, IIDMII, "BB", and IIDF"_ 21
Library File formats 131 21. Operator Key-In Flow, IIDED II and II UNDII 22

MODIR File 132 22. SERDEV Routine Flow 31
MODULE File 132 23. INTSIM Routine Flow 34
EBCDIC File 132 24. CTTEST Routine Flow 35
DEFREF File 133 25. STARTIO Routine flow 37

Command Execution 133 26. IOINT Routine Flow 39
:ALLOT J34 27. CLEANUP Routine Flow 42
:COPY 134 28. QUEUE Subroutine Flow 47
:DELETE 134 29. JCP General Flow 52
:SQUEEZE 134 30. JOB Command Flow 54

iv

3l. FIN Command Flow 55 65. Overlay Loader Flow, DIAG 125
32. ASSIGN Command Flow 55 66. RAD Editor Functional Flow 127
33. DAL Command Flow 56 67. Permanent RAD Area 130
34. ATTEND Command Flow 56 68. RAD Editor Flow, ALLOT 140
35. MESSAGE Command Flow 56 69. RAD Editor Flow, COpy 141
36. PAUSE Command Flow 57 70. RAD Editor Flow, SQUEEZE 146
37. CC Command Flow 57 71. RAD Editor Flow, SAVE 148
38. LIMIT Command Flow 57 72. RAD Editor Flow, RESTORE 150
39. STDLB Command Flow 58 73. SYSGEN and SYSLOAD Layout Before
40. NAME Command Flow 59 Execution 151
4l. RU N Command Flow 61 74. SYSGEN and SYSLOAD Layout After
42. ROV Command Flow 61 Execution 152
43. POOL Command Flow 61 75. SYSGEN!SYSLOAD Flow 153
44. ALLOBT Command Flow 62
45. LOAD Command Flow 63
46. PMD Command Flow 64
47. PFIL, PREC, SFIL, REWIND, and UNLOAD TABLES

Command Flows 64
48. WEOF Command Flow 64 l. ASSIGN Table 51
49. Core Layout During JCP Execution 65

50. Pre-PASS1 Core Layout 66 2. RAD File Table Allocation 80
5l. ARM, DISARM, and CONNECT Function

Flow 73 3. DCT Subtable Formats 81
52. Overlay Structure of the Overlay Loader 90
53. Overlay Loader Core Layout 91 4. IOQ Allocation and Initialization 84
54. LIB Reorganization of Dynamic Table Area __ 102
55. PASSTWO Reorganization of Dynamic Table 5. Foreground Program Subtables 87

Area 105
56. MAP Table Reference 107 6. Overlay Loader Segment Functions 90
57. Program Fi I e Format 110
58. Overlay Loader Flow, !OLOAD 116 7. T :DCBF Entries 108
59. Overlay Loader Flow, CCI 117
60. Overlay Loader Flow, PASSONE 118 8. Background Scratch Files 109
6l. Overlay Loader Flow, PASSTWO 121
62. Overlay Loader Flow, MAP 123 9. Standard SYSLOAD DEFs 158
63. Overlay Loader Flow, RDIAG 124
64. Overlay Loader Flow, RDIAGX 124 A-l. RBM System Flags and Poi nters 161

v

vi

PREFACE

The primary purpose of this manual is to provide a guide for better comprehension of the program listings supplied
with the Xerox Real-Time Batch Monitor (RBM) operating system. The programs and processors included are the
System Generation program, the Monitor and its associated tasks and subprocessors such as the Job Control
Processor, Overlay Loader, and RAD Editor.

The manual is intended for Sigma RBM users who require an in-depth knowledge of the structure and internal
functions of the RBM operating system for system maintenance purposes. Since the RBM Technical Manual and pro
gram listings are complementary, it is recommended that the I istings be readi Iy avai lable when referenc ing this
manual.

The Delta Debug package referenced in this manual is an internal Xerox development and maintenance tool and is
not suitable or avai lable for customer use.

1. RBM INITIALIZATION ROUTINE

The RBM Initialize routine is entered from the RAD Bootstrap every time the system is booted from the RAD, and it
sets up core prior to the execution of RBM. It also modifies the resident RBM system (including all system fables),
the RBM overlays, and the Job Control Processor. Modifications may be made from the C, OC, or 51 device that
is selectedby a corresponding sense switch setting (1,2, or 3). If sense switch4is reset, the Initialize routine loads
all programs on the FParea of the RADdesignatedas resident foreground into theforegroundarea. The Initializeroutine
extends into the background and can be overwritten by background programs, since it executes only once. In Fig
ure 1 below, the background first word address is the first page boundary after RBMEND (the end of resident RBM).
The Initialize routine terminates by setting the idle subtask bit and triggering the RBM Control Task.

The general flow of the Initialize routine from entry from RAD Bootstrap to triggering the Control Task interrupt is
i rlustrated in Figure 2.

RBM
Initial ize
Routine

o
~--~

Figure 1. Initialize Routine Core Layout

5. 5K - BCKG FWA
!

6K

!

RBM Initialize Routine

2 RBM Initialize Routine

Set up FGD and BCKG
blocking buffer pools.

Set up DCB and RFT entries
used to read in RBM overlays.

Set write locks.

Set I/O handler's start and
cleanup addresses.

Set up and ARM/ENABLE I/O,
Control Panel, Control Task,
and Counter 4 interrupts.

If Delta is included, type
TRAPS?, CONSOLE?

Type "SIGMA 5/7 RBM
VERSION XXXX".

Process! MODIFY commands
if SSWl =C, SSW2=OC,
SSW3 = SI are set.

If sense switch 4 is reset,
do RUN CAL to load in any
resident foreground program.

Tri9ger Control Task Interrupt
exiting to Control Task.

Type alarm if cannot trigger
Control Task interrupt.

Figure 2. RBM Initialize Routine Overall Flow

2. RBM CONTROL TASK

The RBM Control Task is connected to the lowest priority system interrupt. Among the functions performed by the
Control Task are

• Key-in processing

• Foreground program II RUNII

• Foreground program IIRELEASE"

• Background program Load

• Background Checkpoint

• Background Restart

• Background Ex it

• Background Abort

• Background Wait

• Postmortem Dump

• Deferred I/O processing

• Periodic service of all devices.

In facilities where there are no system interrupts, the Control Task is connected to the Control Panel interrupt (see
II Key-In Processor ll later in this chapter).

Structure

The Control Task consists of a resident portion and a number of nonresident portions that overlay each other in a
single area of core. The overlays are

• Foreground program IIRELEASEII (FGLl)

• Foreground program IIRUNII (FGL2)

• Background program Loader pa rt 1 (B K Ll)

• Background program Loader part 2 (BKL2)

• Checkpoint/Restart (CKPT)

• Abort/Exit (ABEX)

• Postmortem Dump (PMD)

• Key-in Processor part 1 (KEY1)

• Key-in Processor part 2 (KEY2)

These overlays are reloadable from the RAD after being partially executed. Memory locations X' 22 1 to X' 3F ' are
used for the necessary temporary storage.

Function and Implementation

Resident Control Task

The resident portion of the Control Task functions as a scheduler for the various subtasks. The priority of the subtasks
is determined by the order that the resident Control Task tests the signal bits, with Checkpo int (bit 0) being the highest
priority of the tasks represented. The logic is depicted in Figure 3.

RBM Control Task 3

4 Function and Implementation

Entry is at label
eTl in listing.

Figure 3. Resident Control Task Flow

Figure 3. Resident Control Task Flow (cant.)

Function and Implementation 5

Key-In Processor

The key-in processor portion of the Control Task processes all operator key-ins that are initiated when the operator
depresses the console interrupt. When the console interrupt becomes active, the key-in bit (bit 5) is set in K:CTST
and the Control Task interrupt is triggered if the Control Task is connected to a system interrupt. Figure 4 illustrates
the Key-In Processor flow, where CPINT is the label used in the code.

The key-in request is recognized in the Control Task, and if the system is not waiting for key-in or if a key-in input
has been completed, the key-in overlay is entered. In the key-in overlay, the message

!! KEY-IN

is typed on the OC device, the OC device is enabled for input, and control is returned to the resident Control Task.
The resident Control Task periodically tests for completion of the key-in input, and when this occurs, the key-in
overlay is again entered.; At this entry to the key-in overlay, illegal inputs are diagnosed and if any occurred,

! ! KEY ERR

is typed on the OC device.

Legal key-ins are processed as illustrated in Figures 5 through 21.

6 Function and Implementation

Set key-in bit
(K:CTST bit 5).

no

Set CTPSO so that
Control Task exists
to point of interrupt.

Figure 4. Key-In Processor Flow

Reset IDLE bit
(bit 7) in K:CTST.

Set bits to execute BG
load and JCP load
(K:CTST bits 8, 9).

Figure 5. Operator Key-In Flow, "C"

Figure 6. Operator Key-In Flow, "W"

Functlon and Implementation 7

Set K:CTST for ABORT
(bit 4 on, bit 29 off).

Reset IDLE (K:CTST bit 7).

Terminate appropriate
dump.

Figure 7. Operator Key-In Flow, "X"

8 Function and Implementation

Set TV in effect bit
(K:JCPl bit 29).

Save current
assignment of C.

Figure 8. Operator Key-In Flow, "TV" and "TYC"

Function and Implementation 9

Restore previous
assignment of C.

Figure 9. Operator Key-In Flow, "CC"

Set up system cells.

K:MONTH
K:DATEl
K:DATE2
K:TIME Execute Delta

initialization
routine.

Figure 10. Operator Key-In Flow, JlDT" and JlDE II

10 Function and Imp!ementation

no

Figure 11. Operator Key-In Flow, "SY" and "SYC'

Set FG bit
(K:JCP1 bit 28).

Figure 12. Operator Key-In Flow, "FG", "FGC", "FSC", and tlSFC"

Function and Implementation 11

(Request passed to
FG Loader)

Build RUN
system ca II.

Execute RUN
system call.

Figure 13. Operator Key-In Flow, "RUN"

12 Function and Implementation

i
i

Do release
system call.

no

Type I RlS
NAME NA'.

Fi21)rp. 14. Operator Key-In Flow~ "RlS"

Function and Implementation 13

14 Function and Implementation

no

no

Set INTLB
assignment.

Figure 15. Operator Key-In Flow, "INTLB"

Set norma I lYC
RBC = o.

yyndd {n (I/O device error recovery).

Figure 16. Operator Key-In Flow, "yyndd"

Reset key-in
pendi n9, reset
request busy.

Set up regs. for
REQCOM and
SERDEV.

Function and Implementation 15

i6 Function and impiementation

;::- no

V

Get label
from key-in.

Fi nd entry in
table.

Get devi ce, op
label or RAD area.

yes

Fi nd DCT entry
and index.

Figure 17. Operator Key-In Flow, "STDLB"

Get old
assignment.

Set tempora ry
assi gnment too.

yes
~------~------~

Get current
assi gnment .

Set new
assignment.

Figure 17. Operator Key-In Flow, "STDlB" (cont.)

Function and Implementation 17

yes

Scan to get
file name.

yes

Get permanent
assignment of
this op label.

Figure 17. Operator Key-In Flow, IISTDlBII (cont.)

18 Function and Implementation

no

yes

Save new address
in K:FGDB3.

Use SYSGEN
value of beginning
of FGRND.

Figure 18. Operator Key-In Flow, "FMEM"

Function and Implementation 19

20 Function and Implementation

Scan for acti on
code (D, A, T).

Do second
write direct.

no

Scan fi rst fi el d
again for location.

~
~

Figure 19. Operator Key-In Flow, "(INT"

Set default
FWA=X1101

yes

LWA=(K:BAC KBG).

Set bi ts to run PMD
(K:CTST bits 6, 30).

Set default
FWA=-(K:BACKBG)
LWA=(K:FGDBG 1).

Set default
FWA=-(K:FGDBG 1)
LWA=(K: UNAVBG).

yes

Figure 20. Operator Key-In Flow, "DMII, IIBB", and IIDP

Function and Implementation 21

Change code to
stop all I/O.

Clear replace flag in DCT3.

Figure 21. Operator Key-In Flow, "DEDI! and UND"

22 Function and Implementation

Foreground Release (FGL1)

The primary purpose of this overlay is to release any Public Libraries or foreground programs that are marked "to be
released" in FP5 (bit 3). In addition, it tests if the "queue" bit (bit 6 in FP5) is set for any entries; if so, it also sets
the "load to be performed" bit (bit 0 in FP5). This overlay also handles the output of operator messages for both
FGLl and FGL2. After performing these functions it returns to the resident Control Task such that FGL2 is loaded
and called.

For Public Libraries, a test is performed to ensure that the Public Library is not also in use by the foreground. If
not, the FP entry is deleted. For regular foreground programs, the FP entry is deleted, all interrupts in use by the
program (identified in the INTTAB) are disarmed and disconnected (MTW, 0 0 is set in interrupt location), and all
DCBs are closed. If any Public Libraries were used by the released foreground program, they are released if this is
the only foreground program using them. The message

! !UNABLE TO CLOSE DCB XXXXXXXX

is output to OC if the named DCB (XXXXXXXX) cannot be closed. The message

! ! PROG XXXXXXXX RELEASED

is output to OC after the named program is released.

Foreground Loader (FGL2)

Run queuing is an optional feature in RBM. If the feature was assembled into RBM, both "load to be performed" and
"queued" bits in FP5 will be set after a RUN request has been made for a particular program. If the feature is not
assembled into RBM, only the "load to be performed" bit is set. In the former case, FP4 also contains a priority field
in bits 0-14. FGL2 uses this field to determine which queued program it should attempt to load first. In the latter
case, FGL2 makes a search only on FP5 to find a program to be loaded. At the conclusion of the attempt to load and
initialize all such programs, control is returned to the resident Control Task.

Tests are performed to ensure that the space required for the program is not already in use. If some of the required
space is in use by the background, the bit is set (i<:CTST bit 0) TO cause a cneckpoinT or tne background. All back
ground I/O is then stopped and control is returned to the resident Control Task. At conclusion of the checkpoint,
control returns to the Foreground Loader for loading and initialization of the program.

Tests are performed to ensure that the space required for the program is not already in use. If some of the required
space is in use by another foreground program, an alarm is printed on OC; furthermore, if the queued bit is not set,
the entry will be removed from the FP table. If the queued bit is set, an attempt to load the program will again be
made after the next release of any foreground program.

Initialization is accomplished by transferring control to the start address of the program. At conclusion of initializa
tion, the program must perform an EXIT system call. The EXIT processor will recognize that a foreground program
initialization was in progress and will return control to the Control Task without performing the other usual functions.
As each foreground program is successfully loaded, the message

! !LOADED PROG

is output to OC and LO, followed by the program name of the next line.

The following error alarms are output by the Foreground Loader:

! !FPT FULL, CAN'T LOAD XXXXXXXX

!! CORE USED, CAN'T LOAD XXXXXXXX

! ! I/O ERR, CAN'T LOAD XXXXXXXX

Function and Implementation 23

! ! NONEXIST. CAN'T LOAD XXXXXXXX

After loading all or any specified foreground programs, a test is performed to determine whether the background may
t,~ restarted if it was checkpointed. A restart could occur when one or more programs are released in FGL 1 and no
program was loaded in FGL2 that used any background space. If the background is to be restarted, the bit is set
(K:CTST bit 2) to restart.

Background loader (BKU)

The Background Loader controls the loading of all background programs including the JCP, system processors (RAD
Editor, language processors, etc.), and user background programs.

The Background Loader tests to determine that the background is to be loaded (K:CTST bits 9 or 10 are on).

If a FMEM key-in has occurred since the last execution of the Background Loader, the background/foreground
boundary is moved by setting the proper system cell (K:FGDBG 1) and setting the Write locks. This change is made
only if no foreground programs are running in any of the core area to be allocated to the bakcground. Should a
foreground program be running in this space, the message

! !FGD STILL ACTIVE

is output on OC.

The background program header is read to determine the amount of core memory required. If sufficient core is not
available, the message

! !NOT ENUF BCKG SPACE

is output on OC.

If the JCP is to be loaded, the load module is read into core, the Control Task TCB is modified so that the JCP is
entered upon exit from the Control Task, and control is returned to the resident Control Task.

If a background program (except the JCP) is to be loaded, the program root is read into core. This may be done
with several READ requests if the root is longer than 8191 words. The user's M:SL DCB is then set up if the program
is segmented. The user DeBs assignments are made using the data from !ASSIGN control commands (if any) pro
cessed by the JCP since the last job step. If any such assignment cannot be performed, the message

! !UNABLE TO DO ASSIGN

is output on OC and LO.

If a ! POOL control command was input, the specified number of buffers is determined. If no ! POOL control com
mand was input, the number of DCBs assigned to a blocked or compressed fil e is determined. This number (the num
ber of desired blocking buffers) is passed to the second overlay (BKL2) of the Background Loader. A maximim of
two blocking buffers is allocated for all DCBs assigned to scratch fi les (X l-X9).

Background Loader (BKL2)

This overlay allocates the background blocking buffers, sets up the loading of any needed Publ ic Libraries, moves
the control command (! RADEDIT, ! PROGRAM, etc.) to the high end of available background, and sets the Control
Task TCB so that the background program is entered upon exit from the Control Task.

If the user specified a number of blocking buffers via the !POOL command and there is insufficient space, the
message

! !NOT ENUF BCKG SPACE

is output to OC and control is returned to the resident Control Task. If no ! POO L control command was input, the
desired number are allocated if sufficient space is available. If there is not sufficient Space but space for at least
one blocking buffer is available, the maximum possible number is allocated.

A RUN system call is built and executed for background programs that use Public Libraries.

24 Function and Implementation

Checkpoint/Restart (CKPT)

This overlay performs both the Checkpoint and Restart functions. Checkpoint is accomplished by waiting for out
standing background I/O requests to run to completion and then writing the entire background portion of core to
the CK area of the RAD. When the background has been successfully written to the RAD, the message

! !BCKG CKPT

is output on OC. At concl usion of the checkpoint, the background portion of memory is given to the foreground by
setting the boundary pointers K:FGDBG 1 and K:BCKEND and setting the Write locks appropriately.

The following self-explanatory messages may be output during checkpoint:

! !CKPT WAITING FOR BCKG I/O RUNDOWN

!! BCKG IN USE BY FGD

! ! CK AREA TOO SMALL

!! I/O ERR ON CKPT

Restart is accompl ished by resetting the boundary pointers K:FDGBG 1 and K:BCKEN D, and by resetting the Write
locks to their precheckpoint settings. The message

! !BCKG RESTART

is output on the OC device and the control bits indicating that the background is checkpointed are reset (K:JCPl
bits 2, 3). Control is then transferred to the resident Control Task, and when all specified subtasks are completed,
the Control Task will exit to the proper point in the background.

Abort/Exit

This overlay performs the background Exit and Abort functions. Exit is accomplished by waiting for background I/O
rundown, closing all DCBs, and setting the proper indicators so that the next program will be loaded into the back
ground by the Background Loader. If the Exit is from the JCP and no !JOB control command has been read, it is
assumed that a !FIN caused the Exit request. The idle indicator (K:CTST bit 7) is set, the Exit/Abort indicator
(K:CTST bits 4, 29) are reset, and control is returned to the resident Control Task.

If the Exit is from a background program other than the JCP after I/O rundown and closing the DCBs, the indicators
are set to load and execute the JCP (K:CTST bits 8, 9). Control is then returned to the resident Control Task. While
waiting for I/O rundown, control is also returned to the resident Control Task whenever the I/O rundown test fails,
to permit other higher priority subtasks to be performed in the interim.

Background Abort requests may originate from operator IIX II key-in or from a system function call. If the request was
from a key-in, a test is performed to determine whether the background was executing when the interrupt occurred.
If so, the Abort must be postponed until the background exits from the Monitor. This is accomplished by signaling
the system CAL Exit routine that an Abort request was made. The Abort indicators are then reset and control is
returned to the resident Control Task. Control eventually returns to the background and when the background exits
the Monitor, the CAL Exit routine sets the proper indicators to cause a background Abort and trigger the Control
Task. At this execution of the Control Task, conditions 1 and 2 will not be true and the Abort proceeds as it would
the first time.

Function and Implementation 25

A test for background I/O rundown is made. Any active background requests for devices that are manual and those
waiting for operator key-in are dequeued and cleared from the system tables. Eventually, I/O must run down with
no further action by the operator. The appropriate message

where XXXXX (a hex location) is then output on OC and LO.

If a PMD (Postmortem Dump) was requested, K:CTST bit 6 is set. K:JCPl bit 5 is set to cause control commands to
be skipped until the next !JOB command is encountered. K:CTST bits 3 and 29 are reset and control is returned to
the resident Control Task.

Posbnortem Dump (PMD)

This overlay performs core dumps. Any Dump key-in requests in effect at entry are performed first, and when these
are exhausted, the background PMD requests are satisfied (maximum of four ranges).

The dump format is either hexadecimal or optionally both hexadecimal and EBCDIC, with the registers being re
trieved from their storage area and dumped as loca~ions 0 through X'F'. Subroutines are included in the overlay
that perform hexadecimal to EBCDIC conversion and move bytes into the print image.

After queuing each print line, control is returned to the resident Control Task to enable other subtasks to be per
formed without waiting for total" completion of the dump. The resident Control Task returns control to PMD after
each line is printed.

26 Function and Implementation

3. I/O HANDLING METHODS

Channel Concept
A "channel" is defined as the highest order data path connected to one or more devices, only one of whi ch may be
transmitting data (to or from CPU memory) at any given time.

Thus, a magnetic tape controller connected to an MIOP is a channel but one connected to an SlOP is not, since
in this case, the SlOP itself fits the definition. Other examples of channels are a card reader on an MIOP, a
keyboard/printer on an MIOP, or a RAD controller on an MIOP.

Input/output requests made on the system wi II be queued by channel to faci litate starting a new request on the chan
nel when the previous one has completed. The single exception to this rule is the "off-line" type of operation,
such as the rewinding of magneti c tape or the arm movement of certain moving arm devi ces. For this type of opera
tion, an attempt is always made to also start a data transfer operation to keep the channel busy if possible.

Handling Devices

The RBM system offers the capability of multiple-step operations by providing an interrupt-to-interrupt mode in
addition to the standard single interrupt mode.

Single Interrupt Mode

On the lowest level the I/O handler is supplied a function code and device type. These coordinates are used to
access information from tables used by the handler to construct the list of command doublewords necessary to per
form the indicated operation. Included will be a dummy (nonexecuted) command containing information pertinent
to device identification, recovery procedure, and follow-on operations (see below).

Interrupt-to-Interrupt Mode

A function code for a follow-on operation may be included in the dummy command. This causes the request to be
reactivated and resume its normal position in the channel queue, but with a different operation to be performed. It
will be started by the scheduler in the normal manner as if it were any other request in the queue. The process may
be cascaded indefinitely.

Error recovery may be specified at any point within a series of follow-on operations and will be itself treated by the
system as a type of follow-on operation. It should be noted that follow-ons may be intermixed with other operations
on the same channel or even on the same device if the situation warrants. Thus, a series of recovery trieson a RAD
may be interrupted to honor higher priority requests, or on a tape for higher priority requests on other drives (but not
on the same drive).

Note that only one of the follow-on operations may transfer data unless all other parameters are to remain the same
(buffer address, byte count, seek address, etc.).

System Tables

Information pertaining to requests, devices, and channels is maintained in a series of parallel tables produced at
System Generation time. A definition of these tables is presented here as reference for the remainder of this man
ual. The first entry (index =0) in each table is reserved for special use by the system. See Chapter 10 for a more
complete description of these tables.

IOQ (Request Information)

These tables contain all information necessary to perform an input/output operation on a device. When a request is
made on the system, a queue entry is built that completely describes the request. The entry is then linked into the
channel queue below other requests of ei ther higher or the same priori ty.

I/O Handling Methods 27

OCT (Device Control)

The device control tables contain fixed information about each system device (unit level) and variable information
about the operation currently being performed on the device.

CIT (Channel Information)

These tables are used primarily to define the "head" and "tail" of entries that represent the queue for given channel
at any time. A channel queue may have more than one entry active at any time (e. g., several tapes rewinding whi Ie
another entry reads or writes).

Handler Tables

Associated with each handler are two tables: the Devi ce Offset Table (DOT), and the Command List Pointer Table
(CLST).

The DOT table is a word table that begi ns on a doubleword boundary and contains:

Byte a

Byte 1

Byte 2

Byte 3

A byte offset from the beginning of the DOT table to the corresponding CLST entry.

The time-out value, which is an integer that represents the number of five-second intervals that
are allowed to pass between the 510 and the I/O interrupt before the interrupt is considered
lost. The value X'FF' indicates the operation should not be timed out.

The retry function code. This is the function code to be used for automatic error recovery.

The continuation function code. This is the function code to be used for multiple interrupt re
quests. For example, a forward space record on magnetic tape can be performed n times by
the basic I/O using the same queued request. Zero is used for no continuation.

The function code is used as the index to reference this table.

The CLST table is a byte table containing the doubleword displacement from the beginning of the corresponding DOT
table to the appropriate skeletal command doubleword.

The general method for constructing the command doublewords for an I/O request is to access the DOT table using
the function code as index, and then find the skeletal command doubleword offset by using the contents of byte 0
of the DOT entry as index to the CLST table. The skeletal command doubleword has the form

I~ ____ o_r~d~e_r __ ~ __________ ~ ____ ~ ______ ~ __________ --J

o 78 31

where

Y =0 if the command is ~omplete and to be used as is. This impHes Xis the address and Z is the byte count.

Y = 1 if a seek address contained in 10Q 12 is to be placed in the first word. In this case, the value of X
is inetevant.

Y = 2 if a regular data transfer is to be performed. In this case, the buffer address is token from 10QS and
plac-ed in the first word, and the byte count is taken from IOQ9 and placed in the second word (byte 1).

y :-::- j if the request represents an I/O error message. This wiii cause the proper NIL! ! yyndd to be chained
to the pointed message.

Y = 4 if a special handler function is to be performed. In this case, X is the address of the entry to
the function.

28 Handler Tables

When the building of the command doubleword is completed, a test is performed for command-chaining (command
doubleword flag field bits 0 or 2 are on). If another command doubleword is to be chained, it is accomplished by
accessing the next successive entry in the C LST table to find the offset of the skeletal command doubleword that is
to be used to create the next command doubleword. This command doubleword is constructed in the same fashion as
the first, and the process may continue to the I imits imposed by the size of the command list area allocated at
SYSGEN.

Separatio-n of Priorities and Control Task

All input/output functions are controlled with respect to time by a schedufer called IIService Device" (SERDEV).
This routine is considered device-oriented by the calling program, but in reality, the routine takes the necessary steps
to keep the applicable channel operating within the constraints of priority.

Every I/O request has a priority associated with it that is the priority of the task making the request. SERDEV causes
111/0 Start" and III/O Cleanup" operations under the following circumstances:

I/O Cfeanup

1. When the device is marked as "waiting for cleanupll.

2. When either the priority of the request to be cleaned up or the highest priority request in the queue for the chan
neJ is not lower than that of the currently active task.

I/O Start

1. The device is marked IInot busyll.

2. The highest priority request in the queue is of priority not less than that of the currently active task.

Whenever a call to Servi ce Devi ce is made and no processi ng is performed because of priori ty considerations, the
Control Task is triggered and the device code is entered in the Control Task I/O queue. When the Control Task
becomes active it will initiate the deferred processing by calling Service Device.

)ervlc: D.,:.vice is caiied by

BAL,R2 SERDEV

R1 must contain:

PRI 10------01 DCT

o 78 23 24 31

where

PRI is the priority of the currently active program. The lowest priority is FF and the highest is zero.

DCT is the device index.

When SERDEV has determined that some action can be performed, it will either process an interrupt (cleanup) for a
completed operation or start a new operation. On a given device the cleanup must be performed before a new op
eration can be started. Thus, if a cleanup for a lower priori ty task is outstanding when a request for the current
level is to be started, that cleanup will be performed at the higher level. Follow-on operations will also be pro
cessed at a higher level, if necessary, to free the device for higher priority requests.

Generally, Service Device is called whenever an event occurs that may change the status of a given device and/or
channel. These events and the reasons for the change of status are as follows:

1. When an I/O request is queued: The device or channel may be stopped either because there were no previous
entries in the queue at the time of the request or because of priority consideration. Service Device will make
the necessary tests and, if necessary, either start or perform cleanup and then start the device.

Separation of Priorities and Control Task 29

2. When an I/O check is requested: Cleanup may be outstanding or the request may have been deferred for priority
reasons. In any case, Servi ce Devi ce wi II perform the necessary action.

3. When an I/O interrupt occurs: The device involved will have cleanup outstanding that mayor may not be pro
cessed for priority reasons. The channel may be driven if there are requests in the channel queue for the current
level or any higher levels.

4. When the Control Task becomes active: The Control Task will call Service Device for each entry in its queue.
In effect, it will ignore priority and all deferred operations will be performed.

The general flow of the SERDEV scheduler is illustrated in Figure 22.

INTSIM Routine

This routine simulates the occurrence of the I/O interrupt in cases where an I/O operation has timed out. The logic
is ill ustrated in Figure 23.

eTl EST Routine

This routine tests to determine whether I/O processing must be deferred to the Control Task because of priority con
siderations. If so, the Control Task interrupt is triggered and return is + 1. If not triggered, return is +2. The logic
is illustrated in Figure 24.

Initiating I/O Requests

When Service Device has determined that a request may be initiated, it will make the call

BAl,R15 STARTIO

with registers set as follows:

R1 PRJ 10------01 DCT

o 78 2324 31

R2 Nonvolatile

o 31

R3 10--------0\ loa
o 2324 31

R4 10--------0 1 CIT

o 2324 31

R14 DAC

o 1516 31

30 initiating i/O Requests

Figure 22. SERDEV Routine Flow

Initiating I/O Requests 31

no

Figure 22. SERDEV Routine Flow (cont.)

32 ini tiating i/O Requests

CO'11pute new time

out value and set
for device.

Figure 22. SERDEV Routine Flow (cont.)

no -2
~

Initiating I/o Requests 33

34 Initiating I/O Requests

Reset device busy.
Set cleanup pendi ng.

Set channel
not busy.

Figure 23. I NTSIM Routi ne Flow

Set Control Task
triggered indicator
(DCT5 bit 5).

Push OCT index into
Control Task I/O

Figure 24. CTTEST Routine Flow

Initiating I/O Requests 35

R15
Return

o 15 16 31

where

PRI is the operati ng pri ori ty.

DCT is the device index.

IOQ is the request index.

CIT is the channel index.

DAC is the Device Activity Counter.

STARTIO will branch to the start address in DCT8 to perform any functions peculiar to the device.

After the command I ist is created in temporary storage~all,ci,!1.!.~l!.~;'~;~~j~;'~I:~t.and a check is made for reentrance.
This consists of testing the Device Activity Count (DCT 10) for change. The DAC is incremented when either an op
eration is started on a device or a cleanup is performed. If no reentrance is in evidence and the channel is not busy,
an attempt is made to start the device.

If the SIO is rejected, the request will be treated as if an unrecoverable error condition was present. The cleanup
will be performed and the type of complete will be set to indicate the SIO failure. If the SIO is accepted but the
status information indicates that the device is in manual mode, an lIemptyll message is output and no response will
be expected from the operator other than setting the device to lIautomatic ll . If the operation is timed out by the
Watchdog Timer and the device is still manual, the message will be repeated. The flow of the STARTIO routine is
illustrated in Figure 25.

I/O Interrupt Processing

When the I/O interrupt occurs, it is necessary to perform certain functions before clearing the level from the active
state. The 10lNT routine in the I/O interrupt processor is not reentrant. The device that caused the interrupt is
determined by searching the hardware address in DCn.

The device (and channel if applicable) is set to the IInot busyll state, and the device is set waiting for cleanup. A
check is made to determine whether or not an external interrupt should be triggered. At this point, the I/O inter
rupt level can be cleared. The system will then be at the priority level of the interrupted task and is subject to
interrupt by higher level tasks.

A call is made on the Service Device routine that decides if the cleanup for the just completed operation should be
performed now or deferred to the Control Task. The interrupted task suffers only a minimal amount of overhead if
the cleanup is deferred. The flow of the IOINT routine is illustrated in Figure 26.

I/OCII.up
The call to process an interrupt for an I/O request is

BAl,R15 CLEANUP

with registers set os follows:

1U P-RI 10------0 1 OCT

o 78 2324 3i

R2 Nonvolati Ie

o 31

36 1/1 Interrupt Processing/Cleanup

Set retry and
conti nue func
tional codes.

Before return, the
command Hst is
constructed.

Figure 25. STARTIO Routine Flow

I/O Cleanup 37

38 I/O Cleanup

Set up to print
manual message.

Set channel busy.
Set data transfer.

Figure 25. STARTIO Routine Flow (cont.)

Set cleanup
pending.

Set SIO fai lure
bit to DCT3.

Set N:=: number

of devices.

Figure 26. IOINT Routine Flow

I/O Cleanup 39

40 I/O Cleanup

TDV save status
in DCTl3.

Reset devi ce
busy manual.

Set cleanup
pending.

Clear I/O
interrupt.

lPSD to return to
pointof interrupt.

SAL to user
end -ac ti on.

no

Figure 26. 101 NT Routine Flow (cont.)

R3 (O-----q IOQ

o 2324 31

R4 10-------0\ CIT

31

R14 DAC

o 15 16 31

R15 Return

o 15 16 31

where the parameters are the same as for STARTlO.

Before the reentrance test is made, CLEANUP must determine if any errors have occurred, what follow-on action
is to be taken, and what error messages are to be typed. This must be done prior to disturbing any tables in case the
program was ac tua II y reentered.

When it has been determined that no reentrance has occurred, the information set up previously wi II be used to make
the necessary changes to the tables. Interrupts wi II then be enabled so that end-action and error messages may be
processed. The general flow of the CLEANUP routine is illustrated in Figure 27.

Miscellaneous Basic I/O Subroutines

REQCOM (Request Complete)

This routine dequeues an entry that has been completed. The routine also performs the testing necessary to intercept
control commands from the C device. The call to process -a cleanup request is

BAL,R15 REQCOM

wi th registers set as follows:

Rl PRI 10-----0\ DCT

o 78 n24 31

R3 10-------0\ IOQ

o 2324 31

R4 \0------0\ CIT

o 23 24 31

Miscellaneous Basic I/O Subroutines 41

42 Miscellaneous Basic I/o Subroutines

Reset timed-out
and SIO failure
in DCT3.

Reset cI eanup
pending in DCT5.

Figure 27. CLEANUP Routine Flow

Set key-in
pending in DCT5.

Set request
not busy.

Decrement retry
count.

Figure 27. CLEANUP Routine Flow (cont.)

yes

Set continua
tion code.

Miscellaneous Basic I/O Subroutines 43

44

R5 10-----0
1

Return

o 15 16 31

RlO 10----01 CCA

o 15 16 31

R11 10-----0 1 RBC

o 15 16 31

R12 10-------01 TYC

o 2324 31

CUPCORE, CUPDCB Cleanup, End-Action Routines

These routines post the TYC and ARS in either a DCB or memory location. When posted in a memory location, the
parameters have the format of the FPT status word. The call to perform clean-up end-action is

BAL, R14 CUPCORE

BAL, R14 CUPDCB

with registers set as follows:

RiO

o

Rll

o

End Action Data

End Action Data

RI2 10-------0 1

o 2324

R13 10 ' 01 ARS

0 15 16

R14
1
0 01 Return

0 15 16

Miscellaneous Basic I/O Subroutines

31

31

TYC

31

31

31

R15 10-----0 Buffer Address

a 15 16 31

MSGOUT (Message Out)

This routine outputs an I/O error message to OC. The call to output an I/O error message is

BAL, R5 MSGOUT

with registers set as fol tows:

R1 (a -------o(

R3 10-------0 1

a 2324

R5 10-----01 Return

a 15 16

R 13 --oj MSG ADDR

o is i6

QUEUE

OCT

10Q

31

31

31

.... ,
~I

The subroutine labeled QUEUE enqueues I/O requests on a priority basis. A queue entry is constructed that com
pletely defines the I/O operation, and this entry is entered in the channel queue behind (lower in priority) all queued
entries of the same or higher priority. The calf to enqueue an I/O request is

BAL, R5 QUEUE

with registers set as follows:

R4
1
0 01 I/O Function

Code
a 2324 31

R5 10 . 01 Return

a 15 16 31

R6 10 ---------------- 0 1 No. Retries

a 23 24 31

Miscellaneous Basic I/O Subroutines 45

R7 10------0 1 DCT

o 2324 31

R8 End Action Data (word 1)

o 31

R9 End Action Data (word 2)

o 31

R10 10--01 Buffer Byte Address

o 12 13 31

Rll 10----0 1 Byte Count

o 15 16 31

R12 RAD Seek Address

o 31

R13 10 -------0\ Priority

o 2324 31

The flow of the QUEUE subroutine is illustrated in Figure 28.

User I/O Services

OPEN This function opens a DCB that results· in opening a RAD file when the DCB is assigned to a RAD file. If
the Error and/or Abnormal address is given in the function call, the addresses are set in the DCB.

Opening a RAD fi Ie involves constructing an RFT (RAD Fi Ie Table) entry for the fi Ie. If the fi Ie is a permanent fi Ie,
the area fi Ie directory is searched to locate the parameters that describe the fi Ie. These parameters are formatted
and entered into the RFT. If the llfile ll is an entire area, the parameters used to construct the RFT entry are taken
from the Master Dictionary. If the file is a background temporary file, the RFT entry must already have been con
structed by the JCP. If the file is ona disk pack and a DED DPndd,R key-in is in effect, an abnormal code (X'2F')
is posted in the DC B.

Blocking buffers or user-provided buffers are used for the di rectory search. Background requests use background buf
fers; foreground requests use foreground buffers.

CLOSE This function closes a DCB that may result in the closing of a RAD file. Closing a permanent RAD file
involves updating the file directory if any of the directory parameters have been changed by accessing the file.
Among such parameters that may change are file size (adding records to the file), record size (by Device File
Mode call), etc.

46 User i/O Services

Device I/O system
until an entry frees.

Increment no. of
BGRND entries.

Figure 28. QUEUE Subroutine Flow

limit I/O to next
boundary. Set
continue flag.

Place entry in queue.

User I/O Services 47

RAD files are only closed when the DCB being closed is the last DCB open and assigned to the file. Blocking buffers
or user-provided buffers are used for the directory update as in the case of OPEN. If the file being closed is on a
disk pack, a DED DPndd,R key-in is in effect, and this is the last open fi Ie on device ndd, the message! ! DPndd IDLE
wi II be output.

READ/WRITE A READ or WRITE function call wi II cause the addressed DCB to be opened if it is closed. READ/
WRITE checks for legitimacy of the request by determining whether or not the followi ng conditions are present:

1. For type I requests, the DCB is not busy with another type 1 request.

2. The assigned device or op label exists.

3. The user buffer lies in a legitimate region of core memory.

4. The type of operation (input or output) is legitimate on the device {e. g., output to the card reader is not
allowed.}

For device I/O, READjWRITE builds a partial QUEUE calling sequence and calls a device routine that performs
device-dependent testing such as:

1. Mode flag in DeB (BIN,AUTO) for devices that recognize it.

2. Testing byte count against carriage size for keyboard/printer.

3. Testing for PACK bit in DCB for 7T magnetic tape.

4. Testing for VFC for line printer or keyboard/printer.

The device routines set up the proper function code in the QUEUE calling sequence and are labeled: RWKP, RW9T,
RWn, WCP, WLP, RCR, RPR, and WPP. These routines transfer control to a routine called GETNRT, which com
pletes the QUEUE calling sequence by setting the number of retries. GETNRT then calls QUEUE. After queueing
up the request (and the implicit call on SERDEV), control transfers to the CHECK logic.

For RAD file I/O, READ/WRITE calls the routine labeled RWFILE. RWFILE tests for write protection violation on
write requests, end-of-file on sequential read requests, and end-of-tape on all requests. The different types of re
quests are handled as follows.

Direct Access. The RAD seek address is computed from the granule number provided in the FPT, and a QUEUE
cal ling sequence is constructed that wi II queue up the request. Control then transfers to the CHECK logic.

Sequential Access (Unblocked). The RAD seek address is computed from the fi Ie position parameters and a QUEUE
cal I is made. Control then transfers to the CHECK logic.

Sequential Access (Blocked). The next record is moved from/to the blocki ng buffer and blocks are read/written as
required to allow the record transfer. For example, the first read request results in the first block being read and
the first record in the block being deb locked into the user buffer. Successive read requests wi II not require actual
input from the RAD until all records in the blocking buffer have been read. The blocks are always 256 words long
and contain an integral number of fixed length records; that is, no record crosses a block boundary.

Background Blocking Buffers are handled dynamically. If a blocked I/O request is made and all allocated Back
ground Blocking Buffers are in use by other files, one of the blocking buffers wil I be taken from its associated file
(after writing the block to the file, if necessary) and used for the current request. This file is now associated with
the file that most recently used it. When a request is made for I/O on the original fi Ie, the system recognizes that
no Background Blocking Buffer is associated with the file and it will locate a buffer for this file by borrowing one
from another file if necessary. One Background Blocking Buffer is sufficient for any background program.

Foreground Blocking Buffers are not handled dynamically.

Sequential Access (Compressed Fiies). Compressed Hies are treated in a manner similar to biocked files with the
following exceptions:

1. The records are compressed/decompressed on the way to/from the blocking buffer.

2. The buffer does not contain a fixed number of records since the records are no longer of fixed length after com
pression. However, no compressed record crosses a block boundary.

48 User I/O Services

To compress a record, the following EBCDIC codes are used:

X'FB'

X'FC'

End-of-Block code

End-of-Record code

Blank Flag code

All occurrences of two or more successive blank codes (X'40') are replaced by a Blank Flag code (X'FC') followed
by a byte containing the length of the blank string. An End-of-Record code follows each record, and an End-of
Block code appears after the last record in a block.

When compressing records into the blocking buffer, a length of the compressed record is first computed and a test
performed to determine whether the record will fit in the block. If so, it is placed in the buffer. If not, an End-of
Block code is written in the buffer and the buffer is written to the fi Ie.

At the conclusion of the file access, the status is posted in the user DeB or FPT and control is transferred to
the CHECK logic.

PRINT This function builds the QUEUE calling sequence to perform th~ output on LL. After calling QUEUE, the
routine either waits for completion, if wait was requested in the system call, or returns control to the user.

TYPE This function builds the QUEUE calling sequence by using code contained in the PRINT function. As in
PRI NT, a wa i t or return is performed as requested by the user.

DFM This function sets the MOD and PACK indicator in the addressed DCB to values given in the system call.
If the DCB is assigned to a RAD file, the record size (RFT5), the organization (RFT7), and/or the granule size (RFT4)
are set if requested by the user. The corresponding parameters on the fi Ie directory are updated when the fi Ie is
closed.

DVF This function sets the DVF bit in the addressed DCB to the value (0 or 1) specified by the user.

REWIND This function rewinds magnetic tapes and RAD files. No action is taken if the addressed DCB is as-
signed to any other type of device.

QUEUE.

RAD fi les are rewound by zeroing the fi Ie position (RFTll), current record number (RFT12), blocking buffer position
(RFTlO), and blocking buffer control word address (RFT17) parameters.

WEOF This function writes an "end-of-file" on paper tape punch, card punch, magnetic tape, and RAD files.
A request addressing a DCB assigned to some other type of device results in no action.

An "end-of-file II is written on paper tape by call ing QUEUE with a request to write an EBCDIC' ! EOD' record.

An "end-of-file" is written on a card by calling QUEUE with a request to write an EBCDIC' IEOD' record.

An "end-of-file" is written on magnetic tape by calling QUEUE with a request to write a tape mark.

An "end-of-file" on a RAD file is "written" by copying the current record number minus 1 (RFT12) to the file size
(RFT6) and setting an indicator so that the fi Ie directory wi II be updated when the fi Ie is closed.

PREC This function positions magnetic tapes and RAD files by moving some specified number of records either
backward or forward. It does not affect other devices. Positioning is performed as follows:

1. A magneti c tape QUEUE call is constructed that specifies through the function code the direction of the motion,
and through the "seek-address" parameter the number of records to move. The basic I/O system then moves the tape.

2. The new position within thefile of anunblockedRADfile is computed as a function of the record size and the sec
torsize. File position (RFT11)andcurrent record number (RFTl2) parameters are set to indicate the new position.

3. The new position of a blocked RAD file is computed as a function of the current record number, record size, block
size, current blocking buffer position, current file position, and RAD sector size. The blocking buffer position
(RFTlO), file position (RFTll), and current record number (RFTl2) are set to indicate the new position.

User I/O Services 49

4. The new current record number of a compressed RAD file is computed and subroutine PCFIL is called. This sub
routine positions a compressed RAD file at the specified record by counting records from the beginning of the
file until the desired position is found. PCFIL sets the blocking buffer position (RFTlO), file position (RFTl1),
and current record number (RFTl2) parameters to indicate the new position.

PFILE This function positions magentic tape and RAD files at the beginning or end of files. It does not affect
other devices. Positioning is performed as follows:

1. A magnetic tape QUEUE call is constructed with function code to "space fi le ll either backwards or forwards.
This results in the tape being positioned past the tape mark in the specified direction. If a skip was not re
quested, the tape is positioned on the other side (near side) of the tape mark through a QUEUE call for a posi
tion one record opposite in direction to the space file.

2. The RAD Files Backward file position (RFTl1) is set to zero; the blocking buffer position (RFTlO) is set to zero;
the current record number is set to 1; and the blocking buffer control word address (RFTl7) is set to zero.

3. The Unblocked RAD Fi Ie Forward current file position is computed as a function of the fi Ie size, the record size,
and the RAD sector si ze. The current fil e posi ti on (RFTl1) and the current record number (RFTl2) are set to i n
di cate the new pos it i on.

4. The Blocked RAD Fi Ie Forward current fi Ie position (RFTll) and the Blocking Buffer Position (RFTlO) are computed
as a function of the file size, record size, block size, and RAD sector size. These parameters and the current
record number (RFTl2) are set to indicate the new position.

5. The Compressed RAD File Forward subroutine PCFIL is called with file size plus one as the record number. This
subroutine positions the file at the start of the specified record.

50 User I/O Services

4. JOB CONTROL PROCESSOR

Overview

The Job Control Processor (JCP) is assembled as a Relocatable Object Module (ROM) and is loaded at SYSGEN time by the
SYS LOAD phase of SYSGEN. The JCP is absolutized to execute at the start of background and is loaded onto the RBM file
on the RAD. The JCP is loaded from RAD for execution by the Background Loader upon the initial "C'I key-in; and there
after, is loaded following the termination of execution of each processor or user program in background memory.

The JCP executes with special privi leges si nce it runs in Master Mode with a skeleton key. Master Mode rather than Slave
Mode is essential to the JCP since, atappropriate times, it executes a Write Direct instruction to trigger the RBM Control
Task; italso issues an HIO instruction to the "C" device when the "C" device assignment is changed. A skeleton key
instead of the background key is also essential to the JCP since it sets flags for itself and the Monitor in the resident
Monitor portion of memory. Bit zero of system cell K:JCPl is set to 1 to inform the Monitor that the JCP is executing.

The JCP controls the execution of background jobs by reading and interpreting control commands. All cards read
from the "C" device that contain an exclamation mark in column one (except for an ! EOD command), are defined as
JCP control commands. The I/O portion of the Monitor wi II not allow any background program except the JCP to
read a JCP control command. The JCP runs unti I a command is read that requi res the execution of a processor or
user program, or until a ! FIN command is encountered.

The JCP presently requires a minimum of about 5K of core to execute, which means that the smallest possible core
space allocated to the background must be at least 5K. Approximately one third of the JCP code consists of the
JCP Loader, which is used to load the Overlay Loader at System Generation time.

The flowchart illustrated in Figure 29 depicts theoverall flow of the JCP, and Figures 30 through 48 illustrate the
JCP commands. The labels used in the flowcharts correspond to the labels in the program listing.

ASSIGN Command Processing

The !ASSIGN commands are read from the "C" device by the JCP, and are primari Iy used to define or change the I/O de
vices used by a program. The! ASSI GN command can also be used to change parameters in a DCB. Since all ! ASSIGN
commands must be input prior to the RU N or Name command (where Name is the name of a processor or user program file in
the SParea) to which they apply, the information from each !ASSIGN command is saved in core by the JCP. The JCP builds
an ASSiGI~ ia6:t: coniaining i~,t: i"fuIHluiiufI flUlII t'Ul.:. IASS~GN ('01-1-1;-1-10;-ld. Thi5 tub!;::; C0ii5i5t50f t;::;ii · 0ids f0:" ~ud;
!ASSIGN, plusonewordspecifying thenumberoften-wordentries. The table remains in background memory and is
passed to the Background Loader (an RBM overlay that loads a programls root for execution by the JCP). After the
Background Loader reads in the programls root, it makestheappropriatechangestotheprogramlsDCBs from theinfor
mation in the ASSIGN table. The ASSIGN table can then be destroyed as the program executes; therefore, ! ASSIGN
commands take effectonlyfora jobstepandnotanentire job. TheASSIGN table has the format shown in Table 1.

Words

2,3

4

5

6

7

8

9

10,11

Table 1. ASSIGN Table

Contents

Number of entries in table (each entry of ten words contains data from one !ASSIGN command).
Th i sword is a I ways on an odd boundary; K :ASSI G N conta i ns the address of word 1.

Name of DCB to change in EBCDIC. This pair of words and the next four pairs of words are on
a doubleword boundary.

This word contains changes to the items in word 0 of the DCB.

Mask for items being changed in word O. The Background Loader does an STS instruction (using
words 4 and 5) to change the items in word 0 of the DCB.

Changes for word 1 of DCB.

Mask for items being changed in word 1.

Changes for word 3 of DCB.

Mask for items being changed in word 3.

Fi Ie name in EBCDIC if DCB is assigned to a RAD fj Ie; otherwise, these words equal zero.

Words 2 through 11 contain one entry in the ASSIGN table and are repeated for each !ASSIGN command.

Job Control Processor 51

reset II system proces
sor" flag in K:JP1.

Purge all Background
Temp Fi les (Xl-X9)
not saved for
entire job.

yes

Go type "SCH ING
FOR JOB CMD". Enter proper

region to process
control command.

Control Command

II Busy II return

JOB
FIN
ASS
DAL
ATT
MES
PAU
CC
LIM
STD
RUN
ROV
POO
ALL
LOA
PMD
PFI
PRE
SFI
REW
UNL
WEO

BOI
Cal
DOl
EOI
FOl
Gal
Hal
JOl
LOI
MOl
POl
PlO
aOl
ROI
SOl
Tal
UOI
VOl
WOl
XOl
YOl
ZOI

52 ASSIGN Command Processing

Error on cmd.

Output alarm and
control cmd, if
appropriate.

Figure 29. JCP General Flow

Do TIME CAL
and then log
date and time. Do "HIO" on

old "C" device.
Dequeue old
Read request.

Figure 29. JCP General Flow (cont.)

ASS IG N Command Processing 53

54 ASSIGN Command Processing

Save name and
acct. off card for
job accounting.

Clear "SY" key-in
flag. Clear assign
table. Set bckg. job
limit to zero.

Reset all current op
label assignments to
pennanent assign. I

except IIC" label.

Set currentsizesof
GO, OV files to
permanent sizes.

Purge all Bckg.Temp
Files by clear-name
(Xl-X9).

Initialize tables
used for AllOBT

I-----~ Exit JOB card

Figure 30. JOB Command Flow

Clear bckg. job limit.
Clear JOBcmd.Read flag.

,....1 £:Ud ,... _____ ..1 1:1_ •••
'-lgUIt::' ...,1. I ll"'f ,-"VIIIIIIU.IU • IVYY

Get data from AS
SIGN card and save
in ASSIGN table.

Step no. entries in
ASSIGN table and save
FWA of ASSIGN table.

Exit from ASSIGN command

Figure 32. ASSIGN Command Flow

ASSIGN Command Processing 55

56 ASS IG N Command Processing

Format and pri nt
accounting log
on LO device.

8 : Enter here when
El 0 1-------1 ... ~: EOF returned from

Accounting Log

If purge opti on,
purge AL file by
rewinding ALand
write an EOF.

Figure 33. DAL Command Flow

Set attend
mode flag. 0i)it from ATTEND command

Figure 34. ATTEND Command Flow

Set flag not to
wait after mes
sage is output.

Output message
on IIOCII device.

Exit if

PAUSE command

Trigger Control Task.

Figure 35. MESSAGE Command Flow

Set flag to wait
after message
is output.

Figure 36. PAUSE Command Flow

Set IIC II op label

to previous
assignment.

Clear flag that
TY key-in was
active.

Figure 37. CC Command Flow

Set limit time
for BCKG iob
into K:LlMIT.

LIMIT command

Figure 38. LIMIT Command Flow

ASSIGN Command Processing 57

Error if C, OC assigned to
zero. Error if OC
assigned to nontypewriter
device.

assigned to assigned to

r-____ --L. ____ ...:a:.:.,nother op label a device

Get assignment of op
label this label is being
assigned to.

58 ASSIGN Command Processing

Do OPEN CAL for
RAD fj Ie or area and
save RFT index.

Set new assignment
for op label.

no

Figure 39. STDLB Command Flow

Get DCT index of device
op label isassigned to.

Output error alarm since
illegal to execute a
public library.

Set area to SP. Go to SCAN .
to rescan name from com
mand. Set "system
processor" flag in K:JCP1.

Set up DCB and save file
name in alarm message.

Do READ CA L to read in
fi I e header of program to
execute.

Output llfile nonexist ll

alarm and take error exi t
if fi rst word of fi Ie
header = zero.

public library foreground

Go through tables set by
It. I I ~nT ~ ___ I _____ 1
MLLVDI (.;UIIIIIIUIIU UIIU

set up a II Bckg. Temp
Fi les inputon ALLOBT.

Go through al I DCBs and set
flag in N93 table to show
which Bckg. Temp Fi les
need defaul t allocation.

If DCB was input on assign
card, take assignment from
ASSIGN card value.

Figure 40. NAME Command Flow

Error if no II FGII key-in.
Error if program not on FP
area or not on OV fi Ie.

ASSIGN Command Processing 59

Go to N80 SBR to
do special check
and allocation for
MAC RSYM.

and area for
Bckg. loader

60 ASSIGN Command Processing

Output
IIBT OVERFLOW"
alarm.

Figure 40. NAME Command Flow (cont.)

Do RUN CAL so
foreground program
wi" be loaded and
started.

Inspect status posted
and outputan alarm
if appropriate. 6e error exit

Set tl system processor" flag
in K:JCPl if area is SP.

go process same
as NAME command

Figure 41. RU N Command Ffow

Set area to Bckg. Tern pan d fi I e name
to OV. Set "system processor II flag
if SY key-in is in effect.

e
o process same

as NAME command

N02

Figure 42. ROV Command Flow

Save number of blocking buffers for
Bckg. Loader in K:BPOOL.

Figure 43. POOL Command Flow

ASSIGN Command Processing 61

62 ASSIGN Command Processing

Scan command and
save all parameters
in temporary cells.

If fonnat not input by
user, set to un
blocked. If GO
fi Ie, set to blocked.

If fi Ie size not in
put, set defaultto
1000 records.

Calculate number
sectors needed for
fi I e based on for
mat of file.

Save info. about file
in penn. JCP tables
(CFORM, RSIZE,
GSIZE, SAVE).

Output alarm
"CC ERR, BT
OVERFLOW"

Figure 44. ALLOBT Command Flow

Initialize flags. Pre
cess all parameters
on LOAD command.

EC-----&.------,
Set up limits for sym
bol table so all un
used core is used.

Set P:END as first
entry in symbol
table. Set up Xl fi Ie
as a blocked fj Ie.

Pass one
of loader

Build symbol table of
DEFs and get value
for every DEF. Write
ROMS on Xl.

Read ROMs from
Xl and do actual
loading of ob
ject modules.

Wri te program in
core image format
onto appropriate
file.

After readi ng
an EO F 14------t

from BI.

Where appropriate,
write out M:S L
nrR nrR t,.,hl", - --, - -- ._---,

and OVLOAD table.

no

~----e
Close all files and
output the map, if
requested.

Figure 45. LOAD Command Flow

ASSIG N Command Processing 63

Set up cells to dump
in K:PMD for Post
mortem Dump
routine.

Figure 46. PMD Command Flow

Do proper CAL
to posi ti on fil e
to proper place.

Figure 47. PFIL, PREC, SFIL, REWIND, and UNLOAD Command Flows

64 ASSIG 1\1 Command Processing

Do write EOF CAL
to wri te proper num
ber of EOFs.

Figure 48. WEOF Command Flow

The diagram in Figure 49 depicts the core layout as the JCP executes.

K: BACKBG
JCP AREA
(About 5K)

En d of JCP Code

Dynam i c Area Used
By JCP Loader

ASSIGN Table K· ASSIGN
(expands this direction)

t -------------------- --
fixed 20 words K· CCBUF

(K:BCKEND =K:BPOOL -1) K: BCKEND

K: BPOOL
514 Words

(2 Blocking Buffers)

K:FGDBG 1 or K:UNAVBG

Note that there is one extra word left immediately before K:CCBUF that is used to store the printer format
code for logging the control command.

Figure 49. Core Layout During JCP Execution

JCP Loader

The JCP Loader loads Relocatable Object Modules (ROMs) or groups of object modules that use a subset of the XDS
Sigma 5/7 Object Language. Initially, the Loader processes all parameters on the! LOAD command and sets up the
appropriate DCBs and flags. If the program being loaded has overlays, space is reserved for the program's OVLOAD
table at the end of the JCP. The OVLOAD table contains 11 words for each overlay; the first word of OVLOAD con
tains the number of entries in the table. The exact format of the OVLOAD table is given later in this chapter.
Note that words 2 through 10 of the OVLOAD table have the same format as the Read FPT that is needed to read an
overlay into core. Next, the first word addresses of the Symbol table (SYMTl and SYMT2) are set up. The diagram
in Figure 50 depicts the core layout before PASS 1 of the JCP Loader.

The JCP Loader is a two-pass loader. In Pass 1, the ROMs are input from the BI op label and copied onto the Xl fi Ie
on the RAD. The Xl file is set up to use all of the Background Temp area of the RAD that is available for scratch
storage. The main function of PASSl is to build the symbol table (SYMTl and SYMT2) containing all DEF items, and
to assign a value to each DEF. The symbol table has the following format:

SYMTl

SYMT2

a doubleword table containing the name, in EBCDIC, of each DEF item in the program being loaded.
The first entry is not used.

a word table in the format shown below. The first entry contains the total numberofDEFsinthetable as

o

Declaration
Number

Value of DEF as a byte address

31

where bit 8 = 1 if this is a duplicate DEF.

JCP Loader 65

K:BACKGD

JCP Code

En d of JCP

OVLOAD
(Space for OV LOAD T abl e
if program has overlays)

SM Tl

SYMTl

l
SYMT2

K:ASSIGN

Figure 50. Pre-PASS 1 Core Layout

At the end of PASS 1, the size of the symbol table is fixed so the remainder of core can be used as a load area in
PASS2. After loading the program root in PASS1, space is allocated for the M:SL DCB (if the program has overlays),
the DCB table, and the OVLOAD table (if the program has overlays). These items are allocated in the following
order:

Program Root M:SL DCB DCB Table

7 words 3 words/DCB

OVLOAD Table

11 words/overlay j~

Start of Program
Over I ay Area

The DCB table is built in an internal table in the JCP in PASS 1 after loading the program root. The DCB table is
made up of all M: and F: DEFs in the root, including the value of each DEF. The complete OVLOAD table is also
bui I t during PASS 1; each overlay's entry being made after the overlay is loaded. Hence, PASS 1 completely allo
cates all space for the program.

After the last ROM is loaded at the end of PASS1, the file header is written to the appropriate RAD file. The re
mainder of core not used by the Symbol table is then rounded down to an even multiple of RAD granules and set up
as the load area for PASS2. There must be enough room to hold at least one RAD granule, plus 12 extra words, or
the load will be aborted at this point. The Xl file is then rewound and PASS2 commences. The following diagram
depi cts the core setup at the start of PAS 52:

JCP Code OVLOAD SYMTl Load Area for SYMT2

Pass Two
K:BACKBG End of JCP K:ASSIGN

PASS2 inputs the ROMs from the Xl file, satisfies all external REFs by finding the value of the corresponding DEF in
the Symbol table, and then writes the program in core image format to the proper RAD fj Ie in a multiple of granules
at a time. Between 8 and 12 extra words are loaded each time at the end of the load area in case a define field load
item requires that the load location be backed up a maximum of 8 words. This prevents having to read a granule
back into core after it has been written in the event a word has to be changed because of a define field item.

66 JCP Loader

These 12 words are copied from the bottom of the load area to the top of the load area after the granules are
written on the RAD. The previous 8 words are therefore always avai lable in core to satisfy a define fi led
item.

After the root has been loaded in PASS2, the M;SL DCB (if appropriate), the DCB table, and the OVLOAD table are
attached in that order to the end of the root and written on the RAD. After all ROMs have been loaded, the JCP
Loader outputs the map if requested, closes all fi les, and exits to read the next control command. The format of
the OVLOAD table is

o Number of entries

o 31

10-- --01 Segment Ident

o 15 16 31

2 XI 10 1 10--01 DCB Address

o 7 8 14 15 31

3 10----------01

o 31

4 jo--------------oj
o 31

5 \0----------01
o 31

6 Buffer Address

o 1415 31

7 1
0 ---01 Byte Count

o 1415 31

8 1 0---01 Key Address

o 1516 31

JCP Loader 67

9 10------01

o 31

10 10------01
o 31

11 10----0 1 Entry Address

o 1415 31

Job Accounting

Job accounting is an option selected at SYSGEN time. An accounting file will be kept on the RAD by the JCP if
the accounting option was chosen. The fi Ie must be defined by the user; must have the name II A L" ; and must be in
the D 1 area of the RAD.

Whenever a !JOB or ! FIN command is read by the JCP, the JCP will update the AL file for the previous job. The
format and record size of the AL file is automatically set by the JCP via a File Mode CAL. The JCP defines the AL
file as a blocked file with a record size of 32 bytes. The AL file on the RAD consists of a series of eight-word rec
ords, where a new eight-word record is added for each job. The first record in the file is reserved for the IDLE ac
count and is the only record that is ever rewritten. The elapsed time in the IDLE account is incremented by the ap
propriate amount anytime a !JOB command is input after a prior! FIN command, and the IDLE entry is then rewritten
on the RAD. The format of each record in the AL file is as follows:

Word Descri ption

1,2 Account number in EBCDIC

3,4,5 Name in EBCDIC

6 Left ha/fword = (year - 1900) in binary, Right ha/fword = date as day of year (1 - 365)

7 Start time of job in seconds (0 - 86399)

8 Elapsed time of job in seconds

The IDLE account has an account number of "IDLE" and a name consisting of all EBCDIC blanks.

Whenever an entry is added to the AL file, the file is opened and a file skip performed so that the new entry can be
made at the end of the existing entries. No attempt is made to combine entries in any way. The contents of the AL
fi Ie can be I isted via the! DAL command, (Dump Accounting Log), and the option exists for the user to purge the fi Ie
after the dump is completed. The AL file is purged by rewinding it and writing an EOF.

Background TEMP Area Allocation

The JCP allocates and sets up the fi les in the Background Temp (BT) area (X 1-X9, GO, OV) before exiting to the
Background Loader to load a processor or user program. The BT files needed by the user are defined either via
!ALLOBT commands or through default by the JCP from inspection of the user's DCBs. The GO and OV files are
set up ot thp. start of each job and remain intact for an entire lob; the iequired files Xl through X9 are normai iy set
up for each job step only.

Information for files X1-X9 read in from !ALLOBT commands is stored in tables (GSIZE, FSIZE, FORM, SAVE,
RSI ZE) that are internal to the JCP. If the GO or OV fi Ie is changed via an ! ALLO BT command, the fi Ie is redefined
at the time the command is processed.

68 Job Accounting/Background Temp Area Allocotion

The files in the BT area are allocated so that files remaining intact only for that job step are allocated at the front
of the BT area. Fi les that remain intact for the entire job are allocated at the back of the BT area. Normally, this
means that Xl through X9 are allocated at the front of the BT area, and GO and OV at the opposite end. If the
SAVE option is used on an ! ALLOBT command for an Xi fi Ie, the Xi fi Ie will be allocated at the opposite end of the
BT area, as will GO and OV. The following diagrams illustrate the BT allocation:

BT allocation without !ALLOBT Commands:

OV GO

J
Intact only for a job step Intact for entire job

The proper Xi fi Ie is allocated for each M:Xi DCB in the user program. The remainder of the BT area after GO and
OV have been allocated is evenly divided among the Xi fi les.

BT allocation with !ALLOBT Command:

X2 I Xl 1 X3 OV GO

J
Intact only for a job step Intact fo; entire job

The above diagram illustrates how BT would be allocated if an !ALLOBT command was input to save the X3 file.
Note that X3 is allocated at the opposite end of the area with OV and GO.

Allocation of the Xi (l:::; i :::;9) files is performed in the following sequence: First, any files input on an ALLOBT
command are allocated at the proper end of the BT area. Next a search is made of all user M:Xi DCBs, and any Xi
files that were not input on an ALLOBT command are allocated by default in the remaining area. Note that if the
111.1111 I- • _ I c_ £-1 __ ! ___ !._ ... L_ AIIr"'\OT __________ 1 1.L ____ ... ~II L_ . __ .. ____ . _____ !_~ __ ,_ .• -'_£_ .. , ... _II ____ L! ___ _

I"\LL UP'IUlI I:> U;)t::'U lUI ItlC :>ILC' III IIIC .MLL"",,UI '\..oVIIIIIIUIIU, IIICIC VVIII UC IIV IVV,U ICIlI IIII1I~ IVI UCIUUII U-IIU\..UIIVII;)

and if a M:Xi DCB is found for which a file has not been allocated, a "BT OVERFLOW" alarm will be output and
the job aborted.

The following examples depict the allocation of BT as previously described:

Example 1:

1. An !ALLOBT command for Xl file with SAVE option.

2. An !ALLOBT command for X2 file.

3. A user program with M:Xl, M:X2, M:X3, M:X4, and M:X5 DCBs.

In this case, the BT area would be allocated as

X2 X5 X4 X3 1 Xl OV

y T

Intact on I y for a job step Intact for entire job

In this example, the Xl and X2 files would receive the sizes input on the !ALLOBT command, while the X3, X4, and
X5 fi les would be evenly distributed over the remaining area.

Background Temp Area Allocation 69

3. A user program with M:Xl, M:X2, M:X3, and M:X4 DCBs.

The BT area in this case would be allocated as

l Xl

!
X3

i~
X2

.\
OV GO

ALL Option
y

Intactonly fora job step Input for entire job, if job was not aborted

In this example, the job would be aborted because there is no remaining room to allocate the M:X4 DCB, since the
IIALL" option was used for the X2 file. If the IIALL" option is used for file size, all Xi files used by the program
must be allocated via the !ALLOBT command.

The JCP does special allocation of the BT area for MACRSYM, since MACRSYM mayor may not need an X2 fi Ie,
depending upon the parameters on the !MACRSYM control command. Also, MACRSYM requires that the area for
its BT files be divided unevenly between the Xl, X2, and X3 files. The N95 table in the JCP contains the ratios
to use in dividing the BT area for MACRSYM. If special allocation had to be done for another processor, it would
only require the addition of another table similar to N95 and a special check for that processor1s name. The N96
table is used for all processors with no special allocation requirements.

70 Background Temp Area Allocation

5. FOREGROUND SERVICES

Foreground services are those service functions restricted to foreground utilization. In general, they are associated
with the control of system interrupts, the handling of foreground tasks, and direct I/O (IOEX). The following ser
vice functions fall in this category:

RUN

RLS

MASTER/SLAVE

STOPIO/ST ARTIO

IOEX

TRIGGER

ENABLE/DISABLE

ARM/DISARM

CONNECT

In terms of the functions as part of the resident RBM, the resident function sets indicators for RUN and RLS, and the
Control Task actually performs the function.

Implementation

RUN If an entry for the specified program does not already exist in the FP table, an entry is bui It. The FP sub-
tables are set as follows:

FP 1 Program name

FP2 Group code for interrupt to be triggered at conc lusion of initial ization by Control Task

FP3 Group level for said interrupt

FP4 Signal address and (optionally) priority

FPS Switches

K: FGLD is set nonzero, the Control Task is entered, and control is returned to the user program.

If an entry does exist in the table for the program, a code is placed in the signal address. The codes used are

3

4

Program already ~oaded

Program waiting to be loaded

If no entry exists for the program and there are no free entries in the FP table, a code of S is placed in the signal
address. Sufficient reentrance testing is performed (for details, see the program listing).

RLS If an FP entry does not exist for the specified program, control is returned to the user.

If an entry exists and the program is not loaded, FPl and FPS are zeroed, and control is returned to the user.

If an entry exists and the program is loaded, bit 3 in FPS is set, K:FGLD is set nonzero, the Control Task is triggered,
and control is returned to the user (for details of reentrance testing, see the program listing).

MASTER/SLAVE The mode bit in the PSD saved in the user Temp Stack is set to the proper state and control is re
turned to the user. When returning control, CALEXIT executes an LPSD that establishes the proper mode for the user.

STOPIO/STARTIO The specified device is determined and all other devices associated with it (all other devices
on a multidevice controller or all devices on the lOP if the call so requests) have their proper STOPIO counts in
cremented or decremented. The count is either in DCTl4 or DCT1S as specified by the call.

Foreground Services 71

An HIO is performed on these devices if requested by the call.

If a DCT15 count goes to zero as a result of a decrement, the 10EX busy bit in DCT5 (bit 7) is reset for the device.

IOEX For HIO, TIO, and TDV instructions, the instruction is executed and the status is placed in the copies of
RB, and R9. The condition code field of the saved PSD is placed in the Temp Stack. Then at CALEXIT, these copies
are placed in RB, R9, and the PSD, and returned to the user.

For 510, the system waits until the device is not busy with regular system I/O (DCT5, bit 0); it then sets the 10EX
busy bit (DCT5, bit 1), executes the 510, and returns the status to the user.

TRIGGER, DISABLE, ENABLE, ARM, DISARM, CONNECT These functions are simi lar in that they involve the
execution of a Write Direct after determining the group code and group level of the specified interrupt.

In addition, a task connection is performed if requested by ARM, DISARM, and CONNECT requests. Note that the
CONNECT call is a special case of the ARM call. The logic for ARM, DISARM, and for CONNECT functions is
illustrated in Figure 51.

Task Control Block (TCB)

The CONNECT function initializes words 2-9 of the user-allocated TCB for interrupts and CALs that are to be cen
trally connected. The format of the TCB is shown below:

o

2

3

4

5

6

7

8

9

10

25

72 Implementation

f--------- Saved PSD ---------

Intermediate PSD to transfer ------ -----
to TCB+4 with skeleton key

STM,O TCB+ 10

BAL,Rl RBMSAVE

rio 0 PCB address

Priority
1
0 0 reB address

____ PSD to transfer to task entry in proper ____

7

o 1

state {mode, write key, etc.}.

16 words for register saving

11:;:1L
,.." IV 78 '),

>JI

7

Get group code and
level bit.

Set up words 2-9 of TCB.

Store XPSD in interrupt
or trap ce II and make
INTTAB entry.

Store clock counter values
and II MTW,-1 11 i nstructi on.

Issue proper IIWDII instruc
tion to count pulse interrupt.

Set index to enable or
disable as appropriate.

Issue IIWOII instruction
to· interrupt.

Figure 51. ARM, DISARM, and CONNECT Function Flow

Implementation 73

74 Implementation

Get "MTW" instruction
from FPT and store in
count pulse location.

no

6
~

Figure 51. ARM, DISARM, and CONNECT Function Flow (cant.)

6. MISCELLANEOUS SERVICES

Miscellaneous services are functions available to both foreground and background programs but which do not directly
involve 1/0 services.

SEGLOAD

This function loads explicitly requested overlay segments of a program into memory for execution. The user's M:SL
DCB (allocated by the Overlay Loader) is used to perform the input operation.

For an FPT for READWRIT, the system uses the entry in the program OVLOAD table that corresponds to the segment.
The OVLOAD table is constructed by the Overlay Loader.

The function locates the proper entry in the OVLOAD table and places the user-provided error address in both the
OVLOAD entry (FPT) and in the M:SL DCB. If end-action was requested, the FPT is set to cause end-action at
conclusion of the segment input.

If the calling program has requested that the segment be entered (at its entry point), the PSD at the top of the user
Temp Stack is altered so that upon CALEXIT, control goes to the segment entry address.

The function then sets RO to point at the FPT in the OVLOAD table and transfers to READWRIT. The segment input
is then treated as a READ request with possible end-action, and at the user's option, control is returned either fol
lowing the SEGLOAD CAll, or to the segment entry address.

Tran Manril ina
- - -.- ------- ---g

Trap CAL

This function sets up the trap control field and TRAPADD field in a user's PCB and sets the Decimal Mask (DM) and
Arithmetic Mask (AM) bits in the user PSD to mask out occurrences of these traps. PSD bits are modified by chang-
ing them in the user PSD at the top of the Temp Stack and in the PSD contained in the user's TCB.

If the user-provided trap address is invalid (not in background for background program, or in foreground for fore
ground user), or if the user specifies that he is to receive occurrences of some trap and no trap address is provided,
control is transferred to TRAPX. This results in the message

ILL PARAM., CAL AT XXXXX

bei ng output on OC and LL.

Trap Processing

Traps are either handled by the user, cause simulation of the instruction where possible, or result in an abort
condition.

Miscellaneous Services 75

The registers and PSD are saved in the user Temp Stack in the following format:

x

0

1

PSD Word 0

PSD Word 1

RO

(Registers 2 through 14)

R15

Working Cell

X

0

1

Top of stack before trap

{

This word appears only if the
above zeros are in an even
word address.

Top of stack after trap

If the trap is either a nonexistent instruction or unimplemented instruction, the instruction causing the trap is
analyzed to determine whether the proper simulation package (if any) is in the system. If so, the simulation is
called; if not, it is treated like any other trap.

A test is performed to determine whether the user is to process this particular trap. If so, the trap address (X '40 ' ,
X'41 1

I etc.) is placed in the top word of the stack and the user's trap handl ing routine is entered by LPSD, eight of
the user PSD, with the trap handler substituted for the address where the trap occurred.

Traps not handled by instruction simulation or by the user result in one of the following messages being output
to OC and LL:

MEM. PROT. ERR AT XXXXX

PRIVILEGE INST. AT XXXXX

NONEXIST. ADD. AT XXXXX

NONEXIST. INST. AT XXXXX

UNIMPLE. INST. AT XXXXX

76 Trap Handling

STACK OVERFLOW AT XXXXX

ARITH. FAULT AT XXXXX

WDOG TIMER RUNOUT AT XXXXX

MEM. PARITY ERR AT XXXXX

ILL PARAM., CAT AT XXXXX

Note that the last message results from the simulation of a trap (called Trap X'50'). This is done by the system
when a system call cannot be processed due to incorrect parameters being input. After the message is output, a
test is performed to determine whether the trap occurred in the background or foreground. If background, anABORT
function is performed; if foreground, the current task is exited.

lRlN (Trap Return)

This function returns control following the instruction which caused a trap and is employed by the user to return
control after processing a trap.

At the time of the TRTN call, the user Temp Stack is set as described previously under "Trap Processing II • The
TRTN function strips the stack of the context placed there by the CAL processing (from the TRTN CAL). It then
clears the stack by the Trap processor and returns control to the instruction that follows the one causing the trap.

Trap Handling n

7. RBM SIZES

The total size of RBM, including all handlers and excluding the initialization routine, is 5170 words. The size of
the minimum RBM (card reader and RAD handler options only) is 3823 words. The length of the RBM overlay area
is 512 words.

The space required for each optional feature and optional routine is:

Option Words Requ ired

Patch 0

Compressed Files 158

IOEX 54

Job Accounting 65

Card Reader 23

Card Punch 82

Card Punch (Low Cost) 21

Magnetic Tape 240

Paper Tape 225

Line Printer" 18

Line Printer (Low Cost) 24

Plotter 13

RAD 43

Disk Pack 278

SYSPROC 66

Run Queuing 35

Sigma 9 Cornpatibi I ity 25

GDL Compatibility 30

Instruction Simulator Interface 121

Floating Point Simulator 246

Decimal Simulator 538

Byte String Simulator 102

Convert Simulator 56

Delta 3196

78 RBM Sizes

8. RBM TABLE FORMATS

RAD File Table (RFT)

Parameters describing the file are taken from the directory entry for the file. These parameters include:

File name

Beginning sector address (relative to beginning of the area)

Ending sector address {relative to beginning of the area}

GranuJe size

Record size

Fi Ie size (number of records)

Organization (blocked, unblocked, compressed)

The parameters specifying the physical characteristics of the RAD, the boundaries of the RAD area, and the Write
Protection key are in the Master Dictionary. To enable access to these, the RFT contains a Master Dictionary Index
(specifying the area).

For manipulation of the file, the RFT contains the following items:

Blocking buffer control word address

Blocking buffer position

Position within the file (sector last accessed - used for blocked and unblocked)

Current record number

Number of DCBs open to the fi Ie.

These parameters are entered in the RFT by the OPEN function. The parallel table concept is used for the RFT, and
the tables are allocated and initialized as given in Table 2.

In Table 2, below

File name all 0 Signifies entry not in use.

RFT2 index 0 Entry contains the total number of RFT entries.

RFT3 index 0 Entry contains the maximum number of RFT entries allowed for background use.

RFT4 index 0 Entry contains the current number of background fi Ie entries.

RFTS index 0 Entry is used as the RFT activity count for reentrance tests.

RFT6 index 0 Entry contains the number of temp files allocated.

Other index 0 Entries are not used.

The Job Control Processor builds the RFT entries for the Background Temp Files. These entries are the first n + 2
in the table (n is the number of Xi files), where entry 1 is for the OV fi Ie, entry 2 is for the GO fi Ie, entry 3 is
for the Xl file, etc.

RBM Table Formats 79

Table 2. RAD File Table Allocation

Address Contents Initial Value Length

RFTl File Name 0 Doubleword

RFT2 Beginning, Sector Address X Halfword

RFT3 Ending Sector Address X Halfword

RFT4 Granule size (in bytes) X Halfword

RFT5 Record size (in bytes) X Halfword

RFT6 Fi Ie Size (in records) X Halfword

RFT7 Switches X Byte

where

Bit 0 = 1 means sequentially written

Bit 1 = 1 means directly written

Bit 3 = 1 means compressed

Bit 7 = 1 means blocked

RFT8 Master Dictionary Index X Byte

RFT9 Not used X Byte

RFTI0 Blocking Buffer Position (in bytes) X Halfword

RFTl1 Fi Ie Position (in sectors) X Halfword

RFTl2 Current Record Number X Halfword

RFT13 Number of Open DCBs (total) X Byte

RFT14 Function X Byte

RFT15 Number of BG ND DCBs X Byte

RFT16 Status (bit 0 on for sequential write, bit 1 on X Byte
for direct access write)

RFT17 Blocking Buffer Control Word Address X Word

Device Control Table (OCT)

OCT Format

The Device Control Table (OCT) is composed of several parallel subtables (see Table 3, below). The various entries
associated with a given device are accessed using the OCT index of the device and addressing the tables DCll
through DCTl9. For example, DCTI would be accessed by

LH, R DCTl, X

DCT2 would be accessed by

LB, R DCT2, X

where Register X contains the OCT index value for the device.

80 Device Control Table (OCT)

Subtable Address

Dcn

DCT2

DCT3

DCT4

DCT5

Table 3. OCT Subtable Formats

Contents

1/ 0 Address of the device

lo-o[lOP [01 Device I
o 45 789 15

Channel Information Table Index - A pointer to the CIT entry for
the channel associated ~ith the device.

Bit 0 = 1 means output is I ega I for this device.

Bit 1 = 1 means input is regal for this device.

Bit 2 = 1 means device has been marked down and is inoperative.

Bit 3 = 1 means devi ce timed out.

Bit 4 = 1 means SIO has foiled.

Bit 5 = unused

Bit 6 = OED DPndd, R key-in in effect

Bi t 7 = unused

Device Type

0= NO (IOEX)

1 = TY

2 = PR

3 = pp

4 = CR

5 = CP

6 = lP

7= DC

8 = 9T

9 = 7T

10 = CP (low Cost)

11 = lP (low Cost)

12 = DP

13 = Pl

Status Switches

Bit 0 = device busy.

Bit 1 = waiting for cleanup.

Bit 2 = between inseparable operations.

Bit 3 = data being transferred.

Length

Halfword

Byte

Byte

Byte

Byte

Device Control Table (OCT) 81

Table 3. DCT Subtable Formats (cont.)

Subtabl e Address Contents I Length

DCT5 (cont.) Bit 4 = error message given (key-in pending).

Bit 5 = control task notified of deferral of processing for this
device.

Bit 6 = SIO was given while device was in manual mode.

Bit 7 = IOEX on this device.

DCT6 Pointe_r to queu~ entry representing current request. Byte

DCT7 Command list doubleword. address. Halfword

DCT8 Handler start address. Word

DCT9 Handler cleanup address. Word

DCTlO Device activity count (used for I/o Service reentrance testing). Halfword

DCT11 Time-out value (used to abort request when no interrupt occurs). Word

DCTl2 Cleanup word 2 before I/O interrupt, AIO status after the Word
interrupt.

DCT13 TDV status. (Halfword 2 has type completion if cleanup Doubleword
requires key-i,n.)

DCTl4 STOPIO {background only} count. Byte

DCT15 STOPIO (all system I/O) count. Byte

DCT16 The first eight characters of the operator message. it contains

I
Doubieword

the five-character device name (CRA03) preceded ~y the three
characters .. NIL! ! ".

DCT17 Retry function code (for error recovery) and continuation. Halfword

DCTl8 Open DCB count (total). Byte

DCTl9 Open DCB count (background). Byte

SYSGEN OCT Consideration

System Generation allocates the space for the subtables DCTl-DCTl9. Initial values are defined for these entries
as follows:

Dcn As specified by :DEVICE command

DCT2 As specified by :DEVICE and :SIOP commands

DCT3 As specified by : DEVICE command

DCT4 As specified by : DEVICE command

DCT5 Zero

DCT6 Zero

82 Device Control Table (OCT)

Pointer to SYSGEN allocated space for command list

Zero

Zero

Zero

Zero

Zero

Zero

1 if (DEDICATE, F); otherwise, zero

1 if (DEDICATE, X)i otherwise, zero

DCT7

DCT8

OCT9

DCTlO

DCT11

DCTl2

DCTl3

DCT14

DCT15

DCT16

DCT17

DCTl8

DCT19

"N/L! IYYNDD" where YYNDD came from the :DEVICE coml}1and

Zero

Zero

Zero

The index 0 entry of each subtable is not used as a true table entry because of the nature of the BDR instruction.

DCT7 points to the space allocated by SYSGEN for the command list for the device. The area must begin on a
doubleword boundary and have a word length as follows:

Magnetic Tape (7T and 9T) 6 words

Keyboard/Printer 4 words

Card Reader 2 words

Card Punch (7160) 74 words

Card Punch (7165) 2 words

RAD 4 words

Di:;k Pu~k 6 \::c:-d~

Paper Tape 8 words

Other Devices 8 words

Line Printer (7440, 7445) 2 words

Line Printer (7450) 4 words

protter 2 words

Halfword 0 of DCTl is set by SYSGEN to contain the number of devices (OCT entries) in the OCT table.

Channel Information Table (CIT)

The Channel Information Table consists of parallel subtables, each with an entry per channel. There is one channel
per controller connected to a MIOP, and one channel per SlOP. The "channel" concept is used since there cannot
be more than one data transfer operation in process per channel. I/O device requests are queued on a per-channel
basis. System Generation allocates and initializes these subtables as shown below:

Address Contents Size

CITl Queue Head set to 0 Byte
by SYSGEN

C1T2 Queue T ai I set to 0 Byte
by SYSGEN

CIT3 Switches set to 0 by S YSGE N; Byte
Bi t 0 Channel busy

Channel Information Table (CIT) 83

The CIT subtable entries are accessed by using

LB, R CITN, X

where Register X contains the index (l-N).

The index 0 entry is not used because of the nature of the BDR instruction.

I/O Oueue Table (100)

The I/o Queue Table consists of parallel subtables each with an entry per queue entry. These tables are accessed
in the same manner as DCT and CIT by using an index. As is true for DCT and CIT, the index 0 entry of each sub
table is not used as a true queue entry.

System Generation allocates and initial izes the IOQ tables as given in Table 4.

Notice that IOQ2 index 0 is initialized by SYSGEN. This byte is used and maintained by the I/O system as the
"free entry pool" pointer. By initializing IOQ2 as shown, SYSGEN links all entries into this pool.

IOQ 1 index 0 is initial ized by SYSGEN to the maximum number of queue entries allowed to the background.

IOQ3 index 0 is initialized to 0, since this byte is used and maintained by the I/O system as the current number of
queue entries in use by background. IOQ4 (index 0) is the total number of IOQ entries.

Table 4. IOQ Allocation and Initialization

Address Contents Initial Value Length

IOQl Backward Li nk 0 Byte

IOQ2 Forward Link Entry M contains M + 1 for Byte

I

N > M2:0. Entry N contains O.

I
N is the number of queue entries.

IOQ3 Switches 0 Byte

Bit 0 = 1 means request busy

Bit 5 = 1 means continued operation

Bit 6 = 1 means reuse queue entry

Bit 7 = 1 means operation complete

IOQ4 Function Code (:DOT table index) 0 Byte

IOQ5 Current Function Step 0 Byte

IOQ6 Not used 0 Word

IOQ7 Device Index 0 Byte

10Qa Byte Address of Buffer 0 Word

84 I/O Queue Table (IOQ)

Table 4. IOQ Allocation and Initialization (cont.)

Address Contents Initial Value Length

IOQ9 Byte Count 0 Halfword

10QlO Maximum retry count 0 Byte

IOQl1 Retry count 0 Byte

IOQ12 Seek Address 0 Word

IOQ13 End-Action data 0 Doubleword

Word 1

byte 0 is cleanup code where value:

1 = Post status in F PT

2 = Post status in DCB

3 = Not used

4 = No end action (only available
to the monitor)

bi t 8 = control device read

bit 9 = end action data in word 2

bit 15-31 = FPT or DCB address for
cleanup code 1 or 2

Word 2 ---
If word 2 = 0, parameter not present

If byte O=XIFF', bits 15-31 are userls end-
action address.

If word 2 == 0, and byte 0 = X IFF', byte 0
= end-action interrupt group code,
byte 1 = interrupt address - XI4FI,
bits 15-31 contain level bit for interrupt.

IOQ14 Priority 0 Byte

Since the Oth entry is never used in subtables whose entries are words or doublewords, it is not necessary to allocate
space for this entry. If the 2N words for 10Q 13 are allocated beginning at location ALPHA, 10Q 13 is given value
ALPHA-2. Thus, IOQ13 may actually point into another table but presents no problem because IOQ13 will never
be accessed with index O.

It should be noted that none of the subtables need be positioned in any particular relationship to each other. They
may be allocated anywhere in core with the restriction that Doubleword Tables begin on doubleword boundaries.

I/O Queue Tabte (IOQ) 85

Block ing Buffers

To facilitate control of blocking buffers, a control table is generated by the buffer allocation mechanism. This
table will contain a word entry for each bl~cking buffer and has the format

(K:BPOOL) or}
(K:FPOOL) •

<4~

<4~

Number of Blocking Buffers

.

Blocking Buffer 1

Blocking Buffer 2

Blocki ng Buffer n

(K:FGDBG1) or (K:UNAVBG) ------••

where each entry is of the form

RFT

o 7 8 9 14 15

Blocking Buffer start
address

<4>

<4>

RFT is the index of the RFT entry for the file currently using this buffer.
o signifies that the buffer is not in use.

W is set if the blocking buffer has been written in.

Foreground Program Table (FGT)

Blocking Buffer 1 entry

Blocking Buffer 2 entry

Blocking Buffer N entry

31

The Foreground Program Table contains an entry for each foreground program in memory at a given time. This table
consists of parallel subtables allocated by System Generation and is maintained by the system RUN and RELEASE
functions (system calls and/or key-ins). The format of the subtabl es is given in Table 5.

86 Blocking Buffers/Foreground Program TobIe (FGT)

Table 5. Foreground Program Subtables

Subtable Address Contents Initial Value Size

FP1 Program Name. a Doubleword
-""

FP2 1The interrupt group code and interrupt address for X Halfword
, interrup~ t<?_b~ _triggerec!l§efore the program is loadec:!)

---:'-"';'---- "'....... '. ----
ffh-~fir~t-- core location (DW addresS)~fter loadmg)

Entry a contai ns the number of table entries.

FP3 The group level for the interrupt to be triggered before X Halfword
the program is loaded.

The last core location (DW address) after loading.

FP4 Before the program is loaded, bits 0-14 contain the X Word
priority-sequence field, and bits 15-31 contain the
signal address. After the program is loaded, this
word contains up to three indexes (into the FGT table)
of public libraries used. For public libraries, this
word contains the number of programs using the library
{when a, I ibrary is unloaded}.

FP5 Status Flags a Byte

Bit a = 1 load is to be performed

Bit 1 = 1 Public library used by FGRND

Bit 2 = 1 Public library used by BGRND

Bit 3 = 1 Release is to be performed

n·.1. .A _ 1 0_1 _____ .LL,_ O __ LI'_ 10L _____________ 1 L __ Dr'O"'In.
Uti..,. - I ,,<:;,<:;u~<:; ''''~ 'UUlt LIUIU'Y U~I:U uy u,"-,t'u"..,

Bit 5 = 1 Program is loaded

Bit 6 = 1 Program run request queued

Bit 7 = 1 Run with Delta

Master Dictionary

K:MASTD (location XI 14A'), contains the address of the Master Dictionary. This serial table is indexed by area
number where:

Area DW Index Value Write Protect Code (WP shown below)

SP a 4
FP 1 4
BP 2 4
BT 3 2
XA 4 5
CK 5 3
D1 6 1 or 2 (specified during SYSGEN)
D2 7 1 or 2

DF 20 1 or 2

Master Dictionary 87

The format of the Master Dictionary (2 words/entry) is

No. sectors No. words
A 0-0 WP DeT Index

per track per sector

2 Starting RAD Address
t

Ending RAD Address
t

o 67 15 16 17 20212324 31

where

A = 0 this area is not allocated.

A = 1 area is allocated.

WP = 1 only foreground can write in this area (unless SY key-in).

WP = 2 only background can write in this area (unless SY key-in).

WP = 3 only the Monitor can write in this area.

WP = 4 no one can write in this area unlessSY key-in.

WP = 5 only IOEX can write in this area

Operational label Table (OPlBS)

The Operational Label Table is a parallel table with the format

OPLBS1 z z halfword

o 78 15

where ZZ is the operational label in EBCDIC

OPLBS2 Y byte

o 7

where Y is DCT or RFT index of the permanent assignment (bit 0 = 0 if DCT index; bit 0 = 1 if RFT index).

OPLBS3 x byte

o 7

where X is DCT or RFT index of current assignment.

Number of entries in OPLBS is in first halfword of first entry in OPLBS 1.

Interrupt Label Table (INTlB)

The Interrupt Label table is a parallel table with the format

INTLB 1 Z Z halfword

o 78 15

where ZZ is the interrupt label in EBCDIC.

tStarting and ending RAD address is given as a sector number.

88 Operational Label Table (OPLBS)/Interrupt Label Table (INTLB)

INTLB2 Address of Interrupt ha~fword

o 15

The number of entries in INTLB is in the first halfword of the first entry in INTLB1.

OVLOAD Table (for RBM Overlays Only)

The OVLOAD Table is a parallel table with the format

OVLOADl Byte Size of Overlay halfword

0 15

OVlOAD2 I Z z Z z word

0 31

where ZZ = first four characters of name of overlay in EBCDIC

OVLOAD3 I Granule Number I byte

o 7
where the specified Granule Number is in the file RBM.

The number of entries in OVlOAD is in first halfword of OVLOAD1.

Write Lock Table (WLOCKJ

Assuming no checkpoint, WlOCK contains write locks for the current core allocation. After a checkpoint the
write locks will be restored from this table.

WlOCK +0

+1

+2

16

Wl WL

Wl Wl .

WL Wl

o 1 234

I No. entries for allocated core

I
I

1516 31

WlOCK + 1 always contains the write locks for the first 8K of memory. The table is always 17 words in length but
the first word reflects the number of registers that must be output following a checkpoint.

OVlOAD Table/vVrite Lock Table (WlOCK) 89

9. OVERLAY LOADER

Overlay Structure

The Overlay Loader is itself an overlayed program, with a root and the six segments illustrated in Figure 52.

eel

PASSONE

LIB

ROOT PASSTWO

MAP

DIAG

Figure 52. Overlay Structure of the Overlay Loader

The functions of the Root and segments is given in Table 6.

Table 6. Overlay loader Segment Functions

Segment Function

ROOT Calls in the first segment (CCI) but thereafter, the segments call in other segments.
ROOT is a collection of subroutines, tables, buffers, FPTs, DCBs, flags, pointers,
variables, and temp storage cells. Root is resident at all times.

CCI Reads and interprets all loader control commands.

PASSONE Makes the first pass over the Relocatable Object Modules, satisfies DEF/REF linkages be-
tween ROMs in the same path, links references to Public library routines, and allo-
cates the loaded program's control and dummy sections (e. g., assigns absolute core
addresses).

LIB Searches the library tables for routines to satisfy primary references left unsatisfied
at segment end.

PASSTWO Makes the second pass over the ROMs, creates absolute core images of segments,
provides the necessary RBM interface (PCB, Temp Stock, REFd DCBs, DCBTAB, INITTAB,
and OVlOAD), and writes the absolute load module on the output file.

MAP Outputs the requested information about the loaded program.

DIAG Outputs all Loader diagnostic messages.

Overlay Llader Execution

The Root of the Overlay Loader is read into the background when the Job Controi Processor (jCP) encounters
an ! OlOAD control command on the "e" Device. The JCP allocates six scratch files (X 1, X2, X3, X4, X5, and X6)
in the Background Temp area of the RAD unless otherwise specified on a Monitor !ALLOBT command, and three
blocking buffers unless otherwise specified on a Monitor! POOL command. The core layout of the Overlay Loader
is illustrated in Figure 53.

90 Overlay Loader

Root
Segment

Dynamic Table Area

FWA of Background (K:BACKBG)

PCB

Temp Stack

Root Code

DCBTAB

OVLOAD

Segment Overlay Area

LWA+l of Overlay Loader (P:END)

Dynamic Table Area

LWA or Background (K:BCKEND)

Background Blocking Buffer Pool

FWA of Foreground (K: FGDGB 1)

Figure 53. Overlay Loader Core Layout

The Dynamic Table Area is an area of core beginning at the LWA+l of the Overlay Loader's code and extending to
the beginning of the background blocking buffer pool. That is, the Loader uses the remaining core in background
for a work area.

The Dynamic Table Area is divided into 16 table areas with boundaries that can change, subiect to the length of the
tables. The tables are built by CCI and PASSONE from information on the control commands and ROMs, and are
therefore only dynamic unti I the beginning of PASSTWO, when the table areas are fixed. Since these tables are an
essential part of the load process, it is important to understand the function of the tables.

Dynamic Table Area 91

Dynamic Table Order

During the first pass over the object modules, the 16 table areas have a fixed order as follows:

- FWA of Dynamic Table Area (P:END)
T:PUBVAL

• T:PUBSYM

• T:VALUE

• T:SEG

• T:DCBV

• T:DCB

• T:ROMI

• T:MODIFY

• T:MODULE

• B:MT

• T:DECL

• T:CSECT

• T:FWD

• T:FWDX

• T:SYMBOL

T:VALX
....... -----.... - LWA+1 of the Dynamic Table Area (K:BCKEND)

For better reader comprehension, the table area descriptions given below are given in a logical order rather than
the program listing sequence.

T:SYMBOL and T:VALUE

The program's external table is a collection of DEFs, PREFs, SREFs, and DSECTs (excluding DCBs). The external
table is divided into two parts: one containing the EBCDIC name of the external (T:SYMBOL), and the other
containing the value (T :VALUE). Each table is divided into segment subtables that overlay each other in core
in the same way that the segments themselves are overlayed. For example, the external tables of a program with
the overlay structure

2

3
a

4

would exist in core (for both PASSONE and PASSTWO) as follows:

For
Root

10

For
Seg 1

92 Dynamic Table Area

For
Seg 2

For
Seg 3

For
Seg 4

Segments in different paths cannot communicate (i. e. , the subtables of segments in different paths are never in core
at the same time). A segment's T:SYMBOL and T:VALUE subtables are built by CCl and PASSONE and saved on a
RAD scratch file at path end (i. e., when the next segment starts a new path). However, only tables overlayed by
the new segment at path end get written out. For example, at the end of path (0, 1,2), segment 2 would be written
out; at the end of path 0, 1 ,3), segments 3 and 1 wou Id get wri tten out; and at the end of the program t segments 4
and 0 would get written out.

A segment's subtable consists of aJ! DEFs in the segment, DSECTs not allocated in a previous segment of the path,
and any REFs not satisfied by DEFs in a previous segment of the path. Since the DEF/REF links are all satisfied by
PASSONE, T:SYMBOL is not used by PASSTWO.

T :VALUE ENTRY FORMATS

T :VALUE entries are numbered from 1 to n and have a fixed size of bytes, with the format

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4

012345678

where

TY is the entry type

TY = 00 DEF

TY = 01 DSECT

TY = 10 SREF

TY = 11 PREF

1516 2324 3132 39

D is a flag specifying whether or not the external is defined/allocated/satisfied.

D = i

D=O

externai has been defined/aiiocared/sarisfied.

external is undefined/unallocated/unsatisfied.

V is a flag specifying the type of value (meaningful only if D = 1).

value is the value of the external. v = 1

V = 0 value is the byte address of the expression defining or satisfying the external in T :VALX.

C is a constant (meaningful only if V = 1).

C = 1

C = 0

value is a 32-bit constant.

value is a positive or negative address with byte resolution.

F is a flag spec ifying whether the external is a duplicate or· an original.

F = 1 external is a duplicate.

F = 0 external is an original.

LB specifies source of external.

LB = 00 external from input ROM or CC.

LB = 01 external from System Library.

LB = 10 external from User Library.

Value is initially set to zero; usage is dependent upon D, V, and C flags.

Dynamic Table Area 93

Since theT:VALUEentries are kept as small as possible, unused bit combinations are reservedtodefine the following
two intermediate external types:

1. If TY = PREF, C =0, and V = 1, the external is an II excluded pref" which means that the PREF will cause neither
library loading nor linkage (including the Public Library). Instead, the PREF will be satisfied by a DEF in a
segment further up the path.

2. If TY = DSECT, D= 1, and V =0, the external was input from the :RES control command and is to be allocated
at the end of the segment.

T :SYMBOL ENTRY FORMATS

T :SYMBOL is a byte table with variable sized entries that are numbered from 1 to n. There are three types of
entries: EBCDIC, "continuation", and "pseudo". The EBCDIC entry contains the name of the external. The
"continuation" entry contains the size of a DSECT and only follows a DSECT entry. The "pseudo" entry is a FWD
or CSECT entry that has been added to T:SYMBOL because the entry was referenced in a T:VALX expression that
could not be resolved at "module end". The entry formats are as follows:

EBCDIC entry: byte 0 0\
I----JL--------4

N + 1

'iContinuation"

,EBCDIC Chaq

017

n I EBCDIC Char n

o 7

entry: byte 0 1 \0 0 0 0 1 o 0

"Pseudo"
entry:

1

2

3 ,
o 1

Byte

size of

DSECT

7

byte 0 I 0 10 0 0 0 0 0 1 I
o 1 7

(Range = X'02' to X'40)

=X'84'

=X'OP

Note that the first byte contains the byte count of the entry (in bits 1-7).

T:PUBVALand T:PUBSYM

Each Public Library file has an external table of DEFs (there are no DSECTs or unsatisfied REFs in a Public Library)
that is divided into two parts; VALUE and SYMBOl. T:PUBVAl contains the VALUE tables for each public library
specified in the PUBLIB option of the !OlOAD control command, and T:PUBSYM contains the corresponding SYMBOL
tables. Since the sizes of the table areas are fixed once T:PUBVAl and T:PUBSYM have been input, there are only
14 dynamic table areas.

T:PUBVAL ENTRY FORMATS

T:PUBVALentries are numbered from 1 to n and have a fixed size of five bytes. Since the size of T:PUBVAldoes not
change, T:PUBSYM is located at the nextdoubleword boundary following T:PUBVAl. T:PUBVAL entries have the format

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4

31'32 39

where

TY = 00 = DEF

D = 1 the DEF has been defined.

94 Dynamic Table Area

v = 1 value is the value of the DEF.

C = 1 value is a 32-bit constant.

C = 0 value is a positive or negative address with byte resolution.

F = 0 not a dupl icate DEF.

LB = 11 PUBLIB

Note that the T:VALUE and T:PUBVAL entries have the same formats even though the T:PUBVAL entries are a subset
of the T:VALUE format.

T:PUBSYM ENTRY FORMATS

T:PUBSYM is a byte table with variable sized entries that are numbered from 1 to n. Since the size of T:PUBSYM
does not change, the table following is located at the next doublewordboundoryafterT:PUBSYM. T:PUBSYMentries
have the format

T:VALX

byte 0

byte 1

byte n

N + 1

EBCDIC Chaf]

o 7

EBCDIC Char n

o 7

External definitions are defined with expressions. If the expression can be resolved, its value is stored in the DEFs
T:VALUE entry. If the expression cannot be resolved, it is saved in T:VALX and- the byte address of the expression
is stored in the DEFs T :VALUE entry.

Once an expression is resolved, its entry is zeroed out. The T :VALXentries cannot be packed to regain space, since
the T:VALUE entries contain address pointers, however, empty entries are reused where possible.

Expressions have a variable size and are made up of expression bytes, combined in any order. The formats for the
T:VALX expression bytes (slightly different than the object language) are

Add Constant (X'OP)

Byte 0

(000000011

Byte 1 Byte 2 Byte 3 Byte 4

o 78 2324 3132 39

This item causes the specified four-byte constant to be added to the Loader's expression accumulator. Negative con
stants .are represented in two·s complement form:

Add/Subt Va I ue (X'2N')

Byte 0 Byte 1
I

Byte 2

FWD Number
00 10 S F RR

TB I .Entry
,

012345678910 1516 23

where

s = 1 subtract val ue.

S = 0 add value.

Dynamic Table Area 95

F = 1 add/subtract value of T:FWD entry where the FWD numb:r is in bytes 1 and 2.

F = 0 add/subtra ct va I ue of TAB LE entry where

TB = 00 Entry points to T:DCB.

TB = 01 Entry points to T:VALUE/T:SYMBOL.

TB = 10

TB = 11

Entry points to T :CSECT.

Entry points to T:PUBVAL/T:PUBSYM.

RR = 00 byte address resolution.

RR = 01 halfword address resolution.

RR = 10 word address resol uti on.

RR = 11 doubleword address resolution.

This item causes the value of the FWD or TABLE entry to be converted to the specified address resolution (only if the
value is an address) and added to the Loader's expression accumulator. Note that expressions involving T:FWD and
T :CSECT entries point to the current ROM's FWD and CSECT tables. If these expressions are not resolved at module
end, the Loader createsdummyT:SYMBOLandT:VALUEentriesfrom the FWD or CSECT entry and changes the pointer
in the expression to point to the dummy entry in T:VALUE. However, unresolved expressions rarely happen.

Address Resolution (X'3N')

Byte 0

I 00 I 11 I ID I RR I
01234567

where

ID = 00 changes the partially resolved expression (if an address) to the specified resolution.

ID -= 01 identifies the expression as a positive absoiute address with the specified resolution (add absoiute
section).

ID = 10 identifies the expression as a negative absolute address with the specified resolution (subtract abso
lute section).

RR = 00 byte address resolution.

RR = 01 halfword address reso1ution.

RR = 10 word address resolution.

RR = 11 doubleword address resolution.

Expression End (X'02')

o 7

This item identifies the end of an expression (the value ofwhich is contained in the Loader!s expression accumuiator).

T:DCB

T:DCB contains the DEFs and REFs that are recognized as either system (M:) or user (F:) DCBs. DCBs declared as
external definitions must exist in the Root segment. The Loader allocates space in part two of the Root for DCBs

96 Dynamic Table Area

that are declared external references, and supplies default copies of system DCBs. T:DCB is resident at aU times.
Entries have a fixed size of three words and have the format

Word 0 TY IDIVlclF I LB ~ . Byte Address

El E2 E3 E4

2 E5 E6, E7 E8
T

012345678 12 13 1516 2324 31

where

Ward 0

TY = 00 DEF (coded in the Root by the user).

TY = 11 PREF (allocated in Root port 2 by Loader)

D == 1 defined or allocated.

D == 0 undefined/unallocated.

V == 1 address is the byte value of the DCB, only meaningful if D == 1.

V == 0 address points to an expression in T:VALX, only meaningful if D == 1.

C == 1 the DCB was defined with a value that is either a constant or an illegal address (i. e., negative or
mixed resolution), only meaningful if V == 1.

C == 0 the value of the DCB is an address, only meaningful if V = 1.

F = 0 DCB cannot be a duplicate (duplicates are put in T:SYMBOL/T:VALUE).

LB == 00 the DCB was input from a nonlibrary ROM.

LB == 01 the DCB was input from the System Library.

LB == 10 the DCB was input from the User Li brary.

Word 1,2

E; - E8 i5 roe EDCDiC name or roe DCD, padded wiTh bianks if necessary.

T:SEG

T:SEG contains information about the program's segments and is resident at all times. One entry is allocated per
segment. Entries have a fixed size of nine words and have the format

where

Gran no.

Word 0

2

3

4

5

6

7

8

Segment Ident Link Ident

Gran no. of T :VALUE (I) on X4 Gran no. of T:MODIFY/
T:MODULE on X3

Gran no. of T :SYMBOL (I) on Gran no. of core image on
X5 Program Fi I e

BDof T:VALUE (I)in T:VALUE Byte length of T:VALUE (I)

BD of T:SYMBOL (I) in Byte length of T:SYMBOL(I)
T:SYMBOL

Byte length of T:MODIFY Byte length of T:MODULE

DW EXLOC of SEG DW length of SEG

RILlw] IE A I Entry Address

, Byte Length of Library Routines in SEG
1 1 1 -I T

012 3 1213141516 31

the granule number in the RAD file where the table begins. If the RAD file overflows, Gran no.
will equal X'FFFF'. Granules are numbered from 0 to n.

Dynamic Table Area 97

(I) segment1s subtable.

BD byte displacement.

EXLOC execution location.

DW doubleword.

R = 1 error severity level set on at least one ROM in the segment.

R = 0 error severity level reset on every ROM in the segment.

L = 1 load error (duplicate DEFs, unsatisfied REFs, etc.).

L = 0 no loading errors in SEG.

W = 1 T:VALUE (I) and T:SYMBOL (I)-output on X4, X5.

W = 0 T :VALUE (I) and T :SYMBOL (I) not output on X4, X5.

EA = 00 value in bits 15-31 (if nonzero) is last entry address (in words) encountered on non-Lib ROM.

EA = 01 unused.

EA = 10 SEG1s entry address input from CC and value in bits 15-31 is the entry address {in words}.

EA = 11 SEG1s entry address input from CC and value in bits 15-31 is the entry number of the T :SYMBOL/
T:VALUE DEF specified on the CC.

B:MT

There are four tables associated with each ROM loaded (including library ROMs): T:DECL, T:CSECT, T:FWD, and
T:FDX. The size of these tables can be extremely large or small, depending uponwhichprocessorproouced the ROM
and the content of the program. To conserve time and space, these tables are packed into the Module Tables buffer
(B:MT) at mooule end, and output to the X2 TempFile on the RAD onlywhen either the buffer is full or at segment
end. The size allocated for B:MT is dependent upon the size of the Dynamic Tables area and is made a multiple of
the sector size of the X2 RAD fi Ie.

T:DECL

DEFs, PREFs, SREFs, DSECTs, and CSECTs are referenced in the object language bydeclaration number. Therefore,
associated with each ROM is a table of declarations whose entries point to DEF, REFI DSECT, and CSECT entries in
other tabl es.

According to the object language convention, entry zero points to the standard control section declaration. Entries
are numbered from 0 to ni have a fixed si ze of two bytes; and have the format

Entry

012 15

where

TB = 00 Entry points to T:DCB.

TB = 01 Entry points to T:SYMBOL/T:VALUE.

TB = 10 Entry points to T:CSECT (associated with current ROM).

TB = 11 Entry points to T:PUBSYM/T:PUBVAL

Entry Table entry number. The range is 1 through 16,383.

96 Dynamic Table Area

T:CSECT

Associated with each ROM is a table of standard and nonstandard control sections. A nonstandard control section
is allocated by the Loader when the declaration is encountered. The standard control section is allocated when the
first reference to declaration 0 is encountered in an expression defining the origin load item. T:CSECT entries are
numbered from 1 to n; have a fixed size of two words; and have the format

where

Word 0

D=l

V=l

C=O

Word 0

Word I

012345

allocated.

value.

address.

1213

Byte address first byte address of the control section.

Word 1

Size Number of bytes in the control section.

T:FWD

Byte address

Size

31

Associated with each ROM is a table of forward reference definitions (forwards). Each forward is identified by a
~ __ ...J __ ~, •• _ I....,.~_ ~_,_~ _____ •• _I...._~ TI.... .. ~ ... 1.... ___ ,_~ ... _~...J :~ ~_'_~ ____ ...J : ____ .,_~~p: __ ~I...._ T.t:\Aln ~_I....I_ '_p ,"1...._,"
1'-4I.I\oAVII. lyyV-....,,'~ • ..:;;IC'~~II'-v 'IUt'UJvl. II'V~, \,Y"~" Y IVtyy'wl''loA'.:I • """'-'"'vll"-'w'-A .,. \.AI' """"'t"'""~~'UlI, 'II I, .\".1...., IV'

ROM must be searched for a matching number. T:FWD entries have a fixed size of two words with the format

where

D=1

V=1

V=o

C=1

C=o

T:FWDX

Word 0

Word 1

Forward number ~~~DlVlCI~
t------va·~1 I I I
o 1516 262728 31

defined.

value is the value of the resolved expression.

value is a byte displacement pointer to the expression in T:FWDX.

value is a constant (onl y meaningfu I if V = 1).

value is a positive or negative address with byte resoiution (only meaningful if V = 1).

Forwards are defined with expressions and are of two types: the first is defined with an expression that can be re
solved by module end; the second type is defined with an expression that involves an external DEF, REF, or DSECT
(many of these cannot be resolved at module end). Associated with each ROM is a table containing all unresolved
expressions defining FWDs. When a T:FWDX expression is resolved, its entry is zeroed out and the space reused, if
possible. T :FWDX entries have the same format as T :VALX entries.

Dynamic Table Area 99

T:MODULE

Each segment has a T:MODULE table. T:MODULE contains information about a segment's Relocatable Object
Modules (RO,'As). One entry is allocated per ROM. Entries have a fixed size of five words and have the format

where

Word 0

2

3

4

vi Entry no. IG~~LIB
Gran no. of B:MT on X2, or
BD of T:DECL (J) in B:MT

BD of T:CSECT (J) in B:MT

BD of T:FWD (J) in B:MT

BD of T:FWDX (J) in B:MT
1 1 'I I 1 -,

01 -' 78 '-
141516

v = 1 Entry no. in bits 1-7 points to T: DCBV.

v = 0 Entry no. in bits 1-7 points to T:DCBF.

Record displacement in fj Ie

Byte length of T:DECL (J)

Byte length of T:CSECT (J)

Byte length of T :FWD (J)

Byte length of T:FWDX (J)

31

Entry no. the entry number of the DCB (in either T:DCBV or T:DCBF) that points to the RAD file where the
ROM is located.

G = 1 T:DECL (J) begins at byte zero in B:MT and HWO (halfword zero) in word 1 contains the granule no.
of B:MT on X2. If the Granule no. equals X'FFFP., X2 has overflowed and B:MT did not get saved on the
RAD.

G = 0
LB = 00

LB = 01

T :DECL (J) is located in B:MT at the byte displacement specified in HWO of word 1.

not Library ROM.

ROM from System library (SP area of RAD).

LB = 10 ROM From User Library (FP area of RAD).

Record displacement in the MODULE file (only meaningful for library ROMs.)

T:ROMI

T:ROMI contains the information necessary for PASSONE to load a segment's ROMs. T:ROMI is built by CCI from
the input options specified on the segment's :ROOT, :SEG, or :PUBLIB control command, or by :UB to point to the
library routines required for the segment. At the beginning of PASSTWO, the area size for T:ROMI is set to zero.
There are three types of T:ROMI entries, as illustrated below, and entries have a fixed size of one word.

Entry for ROMs input from RAD fi les (built by CCI):

NROM 10----0\vl Entry no.

o 1516 232425 31

where

NROM is the number of ROMs to input or contains -5, which means to input until lEaD is encountered.
This halfword is used as a decreasing counter by PASSONE and eventually equals zero.

Bits 16-23 always equal zero to specify entry type.

v = I Entry no. in bits 25-31 points to T:DCBV.

v = 0 Entry no. in bits 25-31 points to T:DCBF.

Entry no. is the entry number of the DCB (in either T:DCBV or T:DCBF) that points to the RAD file where
the ROM is located.

100 Dynamic Table Area

Entry for ROMs input from a specified device or OPLB (built by CCl):

NROM ~\I TYPE I DCT index

o 15161718 2324 31

where

Bits 16-23 always equal nonzero to specify entry type.

NROM is described above.

PACK is the PACK flag (bit 22 of word 0) in DCB.

TYPE is the device type code (bits 18-23 of word 1) in DCB.

DCT index is the DCT index of the device (bits 24-31 of word 1) in DCB.

PASSONE will store the information in F:DEVICE and input the ROMs via that DCB. Note that OPLBs are
converted to their assigned devices.

Entry for ROMs input from the System or User Library (built by LIB):

NROM Record displacement

o 1516 31

where

NROM is described above.

Record displacement isthe record displacement of the ROM in the MODULE file of the area specified by FL:LBLD.

Library ROM entries are distinguished from the other two entry types by the Loaderflag FL: LBLD. The flag is always
reset when the other entry types are in T:ROMI.

T:DCBV

T:DCBV is a table of DCBs assigned to the various RAD files specified (other than GO) on the input options of the
:ROOT and :SEG, or :rUfsUfs controi commands. One DeB is created tor each unique file name specified. T:DCB
is resident at all times. T:DCBV entries are numbered from 1 to n, and have the standard seven-word DCB format.

T:MODIFY

Each segment's :MODIFY commands are translated into object language load items and stored in the segment IS

T:MODIFY table, and each :MODIFY command is translated into a T:MODULE entry. Entries begin with an
"origin" load item and are terminated by either the next "origin" load item or a "module end" load item. Entries
are made up of the load items described below and expressions in the T :VALX/T :FWDX format:

Origin (X '041)

This one-byte item sets the load-location counter to the value designated by the expression (in T:VALX format)
immediately following the origin control byte. The value of the expression equals the location specified on the
:MODIFY command.

Load Absolute (X·44 I
)

This one-byte item causes the next four bytes to be loaded absolutely and the load-location counter advanced
appropriatel y.

Define Field (X·071
)

(X'FP)
(field length)

This three-byte item defines an expression value to be added to the address field of the previously loaded four
byte word. The expression is in T:VALX format and immediately follows the 'field length ' byte.

Dynamic Table Area 101

Load Expression (X' 60 ')

This one-byte item causes an expression value to be loaded absoutely and the load-location counter advanced
appropriately. The expression to be loaded is in T:VALX format and immediately follows the 'load expression'
control byte.

Module End (X'OE ')

This one-byte item terminates the load items in T:MODIFY.

Use of the Dynami: Table Area During LIB

During the library search, LIB temporarily reorganizes the Dynamic Table area by packing the 16 tables together at
the top of the area. LIB uses the remaining space for its tables. The core layout of these tables and their formats
are illustrated in Figure 54.

Packed
Dynamic
Tables
(tables
listed are
used by
LIB)

T:PUBVAL

• T:PUBSYM

• T:VALUE

t
T:SYMBOL

t
T:LDEF

I
1

TLROM

EBCDIC

DEFREF

MODIR

files' buffer ,
Core I ayout of the Area if the
packed tables remain in core.

Figure 54.

102 Dynamic Tab!e Area

FWAof
Dynamic Table Area

LWA+l of the
Dynamic Table Area

T:PUBVAL

• T:PUBSYM ,
T:LDEF

T:SYMBOL

T:LROM

EBCDIC

DEFREF

MODIR

fi les ' buffer ,

}

Overlays
T:VALUE

}

fv\oved to
the end of
T:LDEF, if
necessary.

Core layout of the Area if the
packed tables are saved on X6.

LIB Reorganization of Dynamic Table Area

T:LDEF

T:LDEF is located in the Dynamic Table area only when the LIB segment is executing and is used by LIB to satisfy
REFs to library routines. Initially, T:LDEF contains the following items:

1. All unsatisfied REFs from the current segment's T:VALUE subtable.

2. All excluded PREFs from the current segment's T :VALUE subtable.

3. All DEFs in the path T:VALUE table that are from the same library as the one being searched.

4. All Public Library (T:PUBVAL) DEFs.

The Library DEFs are included so that library routines loaded in previous segments of the Public Library will not be
duplicated. The excluded PREFs (that inhibit library loading)are treated as DEFs. Since library routines may them
selves reference other library routines, the set of DEFs and REFs associated with a library routine are included in
T :LDEF if, and only if, at least one of the DEFs satisfies a REF in T: LDEF. When a REF is satisfied it is changed
to a DEF. Eventually, T:LDEF contains library DEFs, any REFs that cannot be satisfied in the Library, and the
excluded PREFs.

T :LDEF has a variable number of entries with the count kept in entry O. Entries have a fixed size of two bytes with
the format

entry 0 T: LD EF entry count

o 15

entry n ... 1_D_R I ____ v_a_'_u_e ____ ..J

012 15

where

DR = 00 nu /I entry.

DR=Ol DEF.

DR = 10 unsatisfied PREF.

DR = 11 excluded PREF.

Value entry number in T:SYMBOL, that is later changed to the corresponding entris byte offset in the
EBCDIC file.

T:LROM

T:LROM is located in the Dynamic Table area only when the LIB segment is executing and contains pointers to li
brary routines whose DEFs have satisfied REFs in T:LDEF. That is, T:LROM points to the library routines that are to
be loaded along with the segment.

T:LROM entries initially point to a library ROM's entry in the MODIR file and then get changed to point to the cor
responding ROM's location in the MODULE file. T:LROM has a variable number of entries, with the count kept in
entry O. T:LROM is built backwards but has forward entries. Entries have a fixed size of two bytes with the format

entry n Value

t o t 15

entry 0 T:LROM entry count

o 15

where

value halfword offset of the library ROM's entry in the MODIR file, which is later changed to the starting
record number of the ROM in the MODULE file.

Dynamic Table Area 103

MODULE File

The MODULE fi Ie is a blocked sequential fi Ie, with 120 bytes per record, that contains the Library's ROMs.

EBCDIC File

The EBCDIC file is an unblocked sequential file consisting of one variable length record. The EBCDIC file contains
the unique EBCDIC names of all DEFs and REFs declared in the ROMs in the MODULE file. Entries have a variable
number of bytes with the format

MODIR File

byte 0

1

N + 1

EBCDIC Chaq

o 7

n I EBCDIC Char n I
o 7

The MODIR file is an unblocked sequential file consisting of one variable length record. Each MODIR file entry
corresponds to a ROM on the MODULE fi Ie and contains the name of the ROM, its location on the MODULE fi Ie,
and the number of records in the ROM. Entries have a fixed size of three words with the format

DEFREF File

word 0

word 1

word 2

o

MODULE file record no. I ROMls no. of records

First four bytes of EBCDIC name

Last four bytes of EBCDIC name
I

15 16 31

The DEFREF file is an unblocked sequential file consisting of one variable length record. Each entry in the DEFREF
file corresponds to a ROM in the MODULE fiie and contains aii the externai DEFs and REFs declared in the ROM,
plus a pointer to the ROMls entry in the MODIR file. Entries have a variable number of halfwords with the format

where

halfword 0

halfword 1

halfword 2

halfword n

DRJ

o 12

012

Entry size

MODIR file index

EBCDIC file index

15

J EBCDIC file index

15

Entry size number of halfwords in the entry (including itself).

DEFl

DEF2

DEFn

REF1

REF2

REFn

MODIR file index relative halfword of the ROM's corresponding entry in the MODIR file. X'FFFF'means
that the entry has been deleted.

DR = 00 not used.

DR = 01 DEF.

DR = 10 PREF.

DR = 11 not used.

EBCDIC file index relative byte of the external name entry in the EBCDIC file.

104 Dynamic Tabie Area

Use of Dynamic Table Area During PASSTWO

PASSTWO reorganizes the Dynamic Table area by moving the resident tables T:SEG, T:DCBV, and T:DCB to the
end of T:PUBVAL. PASSTWOuses the remaining space to read in the necessarytablesbuiltduringPASSONEto build
its own tables and to create the core image of the segment. The core layout of these tables and their format
is illustrated in Figure 55.

T:GRAN

Since the Work area has a finite size that varies according to the size of B:MT, it may not be large enough to con
tain a segment's total core image at all times. Therefore, before a segment is created, its core image length is
divided into granule size partitions, where the granule size equals the sector size of the program file. T:GRAN

T:PUtBVAL

T:SEG

• T:D1BV

T:DCB
~

T:VALUE ,
T:GRAN ,
Work Area

I

B:MT
~

T:MODIFY
!

T:MODULE

T:VALX

Core layout of the Area while
the segments are being loaded.

Figure 55.

FWAof
Dynamic Table Area

LWA+ 1 of the
Dynamic Table Area

T:PUBVAL
+

T:SEP

T:D~BV

T:DCB ,
T:GRAN

l
T:ASSN ,
Work Area

I

T:VALX

Core layout of the Area while
part two of the Root is being built.

PASSTWO Reorganization of Dynami c Table Area

Dynamic Table Area 105

entries point to the location of a segment's partition (if created) either in core or on the program file. T:GRAN
has the following format:

entry 0 n = No. of granule partitions in the seg.
~--~

Granule partition 1

o 31

n(~ __________________ G_r_a_n_u_le_pa __ r_ti_t_io_n_n ________________ -J

o 31

T: GRAN entries have a fixed size of one word with three different formats.

If the granule partition exists in the Work Area:

0--------0

o 12131415

WA of granule partition in the
Work area

31

If the granule partition exists on its corresponding granule in the Program Fi Ie:

11------1\0 --------- OJ = X'FFF80000'

o 1213 31

If the granule partition has not been allocated; and data has not yet been loaded into that area of the segment:

(0 ------------01
o 31

T:ASSN

T:ASSN contains the information necessary to reassign DCBs as specified on :ASSIGN commands. T:ASSN is located
in the Dynamic Table area during PASSTWO (after all the segments have been loaded) and is built by CCI. Each
:ASSIGN command is translated into a T:ASSN entry. Entries have a fixed size of ten words with the format

Word 0

2

3

4

5

6

7

8

9

o

MAP Use of Dynne Table Area

Byte address of DCB's execution location

Word address of DCB's entry in T:DCB

Changes for word 0 of DCB

Mask for word 0 of DCB

Changes for word 1 of DCB

Mask for word 1 of DC B

Changes for word 3 of DCB

Mask for word 3 of DCB

First four EBCDIC bytes of fi1e name or zero

Last four EBCDIC bytes of file name or zero

31

MAP moves the resident tables T:SEG andT:DCB to the top of the area, and uses the remaining space to read in and
reference the tables necessary for the MAP output. MAP does not bui Id any tables. The core layout of the table
referenced by MAP is illustrated in Figure 56.

106 Dynamic Table Area

T:SEG ,
T:DCB ,
T:t./, DIFY

B:MT

Core layout of the Area whi Ie
the program's control sections
are being listed.

DlAG Use of Dynamic Table Area

FWA of
Dynamic Table Area

LWA+l of the
Dynamic Table Area

Figure 56. MAP Table Reference

T:SEG

• T:DCB ,
T:SYMBOL

T:VALUE

Core layout of the Area while
the externals are being listed.

DIAG only uses the Dynamic Table area to reference T:SEG and T:MODULE.

Root Tables

Two tables in the Root, T:PL and T:DCBF, have a fixed size and are referenced by other tables. Their format and
use is given below. The usage and format of other tables in the Root are well documented in the Overlay Loader's
listing and are not detai led in this manual.

Dynamic Table Area 107

T:PL

T:PL contains the information necessary to create T:PUBSYM and T:PUBVAL and to load the Public Libraries speci
fied on the !OLOAD control command. T:PL exists in the Root and has a maximum of three entries. Table end is
indicated by a word of zeros. Entries have a fixed size of eight words with the format

T:DCBF

Word 0

2

3

4

5

6

7

o

First four EBCDIC bytes of PUBLIB name

Last four EBCDIC bytes of PUBLIB name

Word address of PUBLIB' s execution location

Number of bytes in the PUBLIB

Granule no. of PUBLIB's symbol table

Number of bytes in PUBLIB's symbol table

Granule no. of PUBLIB'S value table

Number of bytes in PUBLIB' s value table

31

Word at I Zeros last ~. ________________________ ...J

entry+ 1 0 31

T:DCBF contains the set of fixed DCBs that are required by the Loader. Each entry contains one DCB. T:DCBF has
a fixed number of entries and exists in the Root. T :DCBF entries are numbered from 1 to 18, and have the fixed
order given in Table 7.

Entry

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

108 Dynamic Table Area

Mnemonic

F:PUBL

F:DEVICE

M:GO

M:OV

M:Xl

M:X2

M:X3

M:X4

M:X5

M:X6

F:MODIR

F:EBCDIC

F:DEFREF

F:MODULE

M:C

M:Ll

M:OC

M:lO

Table 7. T:DCBF Entries

Pointer To

Files specified in the PUBLIB option of !OLOAD.

Devices specified in the DEVICE and O?LB input options.

GO file in the Background Temp area.

Either OV or the file specified in the FILE option of ! OLOAD.

Xl in the Background Temp area.

X2 in the Background Temp area •

X3 in the Background Temp area.

X4 in the Background Temp area.

X5 in the Background Temp area.

X6 in the Background Temp area.

MODIR file in either the SP or FP area.

EBCDIC file in either the SP or FP area.

DEFREF file in either the SP or FP area.

MODULE file in either the SP or FP area.

C operational label.

lL operational label.

OC operational label.

LO operational label.

All T:DCBF entries have the standard seven-word DCB format, with two exceptions: OFLOW and NIO, that are
used only for the M:OV, M:X 1, M:X2, M:X3, M:X4, M:X5, and M:X6 DCBs. The seven-word DCB format is

Word 0 TTL = 7

0 14 19 2223 262728 31

NRT ~ol\H TYPE
I

DEV/OPLB/ I RFILE

0 78 1415161718 2324 31

2 OFLOW ~ BUF

0 7 1415 31

3 I RSZ ERA

0 1415 31

4 I NIO ABA

0 1415 31

5 E1 E2 E3 E4

0 78 1516 2324 31

6 E5 E6 E7 E8

0 78 1516 2324 31

where

OFLOW = 0 EOT not encountered.

OF LOW = 1 EOT encountered.

NIO number of records (for Xl) or granules required.

Scratch Files

The six scratch files in the Background Temp area of the RAD are used by the Loader as temporary storage and are
written during the first pass over the object modules. The number of granules required by each scratch file is cal
culated {whether the file overflows or not}and saved in the DCB assigned to the file. If any of these files overflows
(e.g., if the EOT is encountered during a Write operation), the Loader continues PASSONE, skips PASSTWO, then
calls the MAP to communicate the number of granules required for each scratch file to the user. The Loader's use
of these files is defined in Table 8.

Table 8. Background Scratch Files

File Name Loader Use

Xl A sequential file with blocked record format. Record size equals 120 bytes; granule
size equals 256 words. ROMs input from non-RAD devices are copied onto Xl.

X2 I A direct access file with the granule size set equal to the sector size. The module's
I tables (T:DECL, T:CSECT, T:FWD, and T:WDX) are output on X2 when either B:MT is
I

~ full or at segment end.
- -------- --------- -_._--

X3 A direct access file with the granule size set equal to the sector size. A segment's
T:MODIFY and T:MODUlE tables are packed together at segment end and output
on X3.

Scratch Files 109 .

Table 8. Background Scratch Fi les (cont.)

File Name Loader Use

X4 A direct access file with the granule size set equal to the sector size. A segment's
T :VALUE subtable is output on X4 when the end of a path is encountered and the seg-
ment is being overlayed by another segment.

X5 A direct access file with the granule size set equal to the sector size. A segment's
T:SYMBOL subtable is output on X5 when the end of a path is encountered and the
segment is being overlayed by another segment.

X6 A direct access file with the granule size set equal to the sector size. The LIB over-
lay packs the 16 Dynamic Tables at the top of the Dynamic Table area and outputs the
"pack" on X6 only if the remaining area will not contain the tables required for the
library search.

Program File Format

The format for the Program Fi Ie is illustrated in Figure 57.

GRANULE Order in which written

o Program Header 6th

Root Part 1 1 st

2 Root Part 1 (continued)

A
v

End of Root Part 1

Segment 1 2nd

k Segment 2 3rd

Segment n 4th

m Root Part 2 5th

Unused

EOT

Figure 57. Program Fi Ie Format

11 0 Scratch Files

Foreground/Background Program Header

The foreground/background program header has the format

Word 0

2

3

4

5

6

FWA of Root's EXLOC (part 1)

N umber of bytes in Root (part 1)

FWA of Root's EXLOC (part 2)

Number of bytes in Root (part 2)

Granule displacement of Root (part 2) in the file

Root's entry address

Word length of resident program area

31 } For background
programs only.

~--

7 Copy of DCBTAB or zero (if none)

01 2 34 14 15

First 4 EBCDIC bytes of Public library or 0 (if none)

Last 4 EBCDIC bytes of Public Library or 0

FWA of Public Librarls EXLOC

Number of bytes in resident Public library

o 31

Final entry is zero

o 31

where

F == 1 foreground program.

F = 0 background program.

S = 1 severity error.

S == 0 no severity error.

PL == 10 not a Public Library.

EXLOC execution location.

Public Library Header

The Publ ic Library header has the format

Word 0 FWA of Public Library's EXLOC

Number of bytes in the Public Library

where

2

3

4

5

6

01234

Granule displacement of T: PUBSYM in the file

Byte length of T: PUBSYM

Granule displacement of T:PUBVAL in the file

Byte length of T: PUBV AL

Zero

14 15

F = 1 foreground program (all Public Libraries reside in the foreground).

S = 0 no severity error (Public Libraries cannot have errors).

31

Scratch Fi les 111

PL = 01

EXLOC

Public Library.

execution location.

Logical Flow of the Overlay Loader

After the Root segment has been loaded by the JCP, the Root calls the Monitor SEGLOAD function to read CCI into
the overlay area and then transfers control to CCI to process the ! OLOAD control command.

Logical Flow of CCI

When CCI is called, there is usually a control command in the control command buffer (B:C). If not, CCI reads the
next command into B:C and logs it onto LO. If the command terminates a :ROOT, :SEG, or :MODIFY substack,
PASSONE is called; if it terminates an :ASSIGN substack, PASSTWO is called. If the command does not terminate
a substack, CCI scans the options specified and performs the following functions for the different control commands.

!OLOADCommand. -CCI sets flags; puts the program file name in M:OV DCB; builds T:PL, T:PUBVAL, and
T:PUBSYM from files specified in the PUBLIB option; allocates the 14 remaining Dynamic Table areas; and if the
GO opti on has been specified, bui Ids T :ROMI.

:ROOT, :SEG, and :PUBLIB Commands. CCI creates an entry in T:SEG; builds T:ROMI and T:DCBV entries from
the specified input options; allocates space for the PCB in the Root segment; and for the :SEG command, calls the
PATHEND subroutine. PATHEND determines if the segment exists in a different path; if so, writes out any over
layed segment's T :SYMBOL and T:V ALUE subtables on the RAD scratch fi I es; and sets the byte displacement points
for the new segment's T:SYMBOL and T:VALUE subtables.

Logical Flow of PASSONE

PASSONE branches to process T:MODIFY if CCI has just been previously called by PASSONE to input :MODIFY
commands. Otherwise, PASSONE processes T:ROMI which has been built by either CCI or LIB. PASSONE inputs
the ROMs from the devices specified in T:ROMI; builds T:MODULE entries for each ROM input; saves ROMs input
from non-RAD devices onto the Xl scratch fi Ie; and scans the ROMs for pass-one type load items. It then bui Ids the
following entries:

1. Parallel T:SYMBOL and T:VALUE entries from external DEF, PREF, SREF, and DSECT declarations. Entries in
T:VALX are built when expressions defining DEFs cannot be resolved. Except for blank COMMON, a DSECT
is allocated when first encountered, and its address is stored in the T:VALUE entry.

2. T:DCB entries from external DEF and REF declarations that begin with either M: or F:. The address of the DCB
is either defined with an expression (for DEFs), or allocated by PASSTWO (for REFs) and stored in the T:DCBentry.

3. T:CSECT entries and allocates CSECTs when encountered.

4. T:FWD entries when FWDs are defined. Entries in T:FWDX are built when expressions defining FWDs cannot be
resolved.

5. Entries in T:DECL whenever a DEF, REF, SREF, CSECT, or DSECT declaration is encountered.

At module end, the four module tables (T:DECL, T:CSECT, T:FWD, and T:FWDX)are packed together and moved to
B:MT. If the buffer is full, the tables are output on X2.

When all the entries in T:ROMI have been processed, PASSONE determines whether the libraries specified have been
searched .. If not, PASSONE calls LIB to search the library specified. Note that the library is searched and the
ROMs from the library are loaded before the next library is searched.

If there are any :MODIFY commands for the segment, PASSONE calls CCl. After CCI recalls PASSONE, control is
returned to this point where T :MODIFY and T :MODULE are packed together and output on X3.

If there is a :SEG command in B:C, PASSONE calls CCI. Otherwise, the end of PASSO!'JE is signaled. Blank
COMMON is allocated at the end of the longest path (if not allocated previously) and the remaining T :SYMBOL,
T :VALUE subtables are output. The resident table areas (T :DCB, T :SEG, T:DCBV I T:VALX) are set equa I to the

112 Logica I Flow of the Overlay Loader

actual lengths of the data in the tables. The T:ROMlarea length is set to zero (since it is not used by PASSTWO)and an
end-of-file is written on Xl. If any of the six scratch files overflowed, MAPis called; otherwise, PASSTWO is called.

Logical Flow of LIB

The LIB segment first packs the 16 Dynamic Tables together at the top of the Dynamic Table area. The remaining
space will be used for the LIB's tables. (Whenever enough room does not exist for the LIB's tables, the "pack" is
written on the RAD scratch fi Ie, X6.) LIB then creates T :LDEF, starting from the end of the II pack II •

The FWA of the EBCDIC, DEFREF, and MODIR files ' buffer is calculated bysubtracting the length of the longest file
from the end of the Dynamic Table area. The EBCDIC file is read into the buffer and the entries in T:LDEF are con
verted to point from T:SYMBOL to entries in the EBCDIC file. T:LDEF entries not having corresponding EBCDIC
entries are changed to null entries.

The DEFREF file is then read into the buffer. LIB uses the DEFREF file to satisfy PREFs in T:LDEF. All the DEFs and
REFs from an entry in the DEFREF file are added to T:LDEF if at least one of the DEFs satisfies a PREF in T:LDEF
The pointer to the ROM's MODIR file entry is saved in T:LROM, which is built backwards, beginning from the top
of the DEFREF buffer. The DEFREF search is finished when all the PREFs in T:LDEF, that can be, are satisfied.
T:LROM now contains pointers to all the library ROMs, and T:LDEF is no longer required.

The MODIR fi Ie is read into the buffer and the T :LROM entries are changed to point to the ROM' S starting record
number in the MODULE file.

The packed tables are read from the RAD (if they were saved in X6), and T:LROM is moved to the temporary buffer
(TEMPBUF) inside the LIB overlay while the Dynamic Tables. are being unpacked. Note that if the DIAG segment
were to be called at this point, TEMPBUF would be destroyed. T: LROM entries are converted into T :ROMI format
and added to T:ROMI in the Dynamic Table area. PASSONE is then called to input the ROMs specified in T:ROMI.

Logical Flow of PASSTWO

PASSTWO branches to process T:ASSIGN if CCI has just been previously called by PASSTWO to input :ASSIGN
commands. Otherwise, it reorganizes the Dynamic Table area and moves the resident tables T:SEG, T:DCBV, and
T:DCB to the end of T:PUBVAL and locates T:VALUE at the end of T:DCB. PASSTWO then allocates part two of the
Root either at the end of the longest path or at the end of blank COMMON, whichever is greater.

PASSTWO is now ready to process the segments. It points to the first/next T:SEGentrYi reads the segmentls T:VALUE
subtable into T :VALUEi calculates the number of granules required for the segment on the Program Fi Ie; creates
T:GRAN at the end of T:VALUE; reads the segment's T:MODIFY and T:MODULE tables at the top of T:VALX; and
allocates the Work area (whi ch is divided into granule partitions and contains all or part of the segment's partitioned
core image)at the end of T:GRAN. The Work area extends to the Module Tables Buffer(B:MT), which varies insize,
and is allocated backwards from the top of T:MODIFY. The Work area is dynamic and changes in size either when
tables in B:MT are no longer required, or when another set of Module Tables is input.

PASSTWO is now ready to process the segment's ROMs. It points to the first/next T:MODULE entry; reads in the
first/next set of Module Tables into B:MT if necessary; points to the current module's T:DECL, T:CSECT, T:FWD,
and T:FWDX table; inputs the ROM; scans the load items; creates the absolute core image in the Work area using
T:GRAN to locate the granules; and if the Work area gets full, outputs the necessary granules to the Program File.

PASSTWO repeats this cycle unti I all the modules in the segment have been input and then writes the granules re
maining in core onto the program file. It then points to the next T:SEG entry and repeats the outer cycle until all
the segments in the program have been created.

If a Publ ic Library is not being created, PASSTWO bui Ids T: GRAN for part two of the Root, located at the end of
T:DCB. If there is an :ASSIGN command in B:C, PASSTWO allocates T:ASSN from the end of T:GRAN to the be
ginning of T:VALX and calls CCI to build T:ASSN. After CCI recalls PASSTWO, control is returned to this point.
PASSTWO allocates the Work area at the end of T:ASSN (which may be of zero length); creates OVLOAD, DCBTAB,
INTTAB, and the referenced DCBs; reassigns DCBs referenced in T:ASSN; writes part two of the Root on the Program
File; creates the program header; and writes it on the Program File. If a Public Library is being created, T:SYMBOL
and T:VALUE are output on the Program File. PASSTWO then exits by calling the MAP.

Logical Flow of MAP

MAP moves T:SEG and T:DCB to the top of the Dynamic Table area, and unless "no MAP" was specified, outputs the
program header information.

Logical Flow of the Overlay Loader 113

MAP points to the first/next T:SEG entry, and unless "no MAP" was specifi~d, outputs the segment's header informa
tion. If either the PROGRAM or ALL option was specified, MAP reads the segment's T:MODIFY and T:MO!)ULE
tables into core at the end of T:DCB; locates B:MT at the end of T:MODULE; uses T:MODULE to read in the Module
Tables associated with the segment; maps the segment's control sections (including Library CSECTs if ALL specified);
and if this is the Root segment, lists T:DCB.

Regardless of the option specified, MAP reads the segment's T:SYMSOL and T:VALUE subtables into core at the end
of T:DCB. If the ALL option was specified, MAP reads T:PUBSYM and T:PUBVAL in as part of the root's external
table and lists all the symbols in the external table. If the PROGRAM option was specified, MAP lists all the non
library symbols in the external table. If either the SHORT or "no MAP" option was specified, MAP lists only the
duplicate DEFs, undefined DEFs, unsatisfied REFs, and duplicate REFs.

This cycle is repeated unti I all the entries in T:SEG have been mapped. If a RAD fj Ie used by the Loader overflowed,
the number of granules used or needed for all files is listed. Otherwise, this information is output only if either the
PROGRAM or ALL option was specified.

MAP terminates the Overlay Loader by either calling the Monitor EXIT function or ABORT function. MAP aborts
and destroys the Program File if either a RAD file overflowed or there were loading errors when a Public Library
was bei ng created.

Logical Flow of DIAG

When the· DIAG overlay is called, the environment of the calling program is unchanged. Since the DIAG segment
overlays the calling segment, all the temporary and permanent storage cells used by the calling segment are located
in either the Root or the Dynamic Table area. DIAG is called by the RDIAG subroutine which exists in the Root.
When RDIAG is called, it saves the 16 registers and then calls in DIAG via the Monitor SEGLOAD function. DIAG
outputs the specified diagnostic and depending upon the exit code associated with the diagnostic, either aborts, re
turns to RDIAG, or calls the Monitor WAIT function. If control is returned from the WAIT function, DIAG returns
to RDIAG. RDIAG then reloads the calling segment via the Monitor SEGLOAD function, restores the 16 registers,
and returns to the calling segment at the address following the RDIAG call.

Loader-Generated Table Formats

The Loader creates the program's Program Control Block (PCB), DCB Table (DCBTAB), Interrupt Table (INTTAB), and
Segment Loading Table (OVLOAD).

PCB

The PCB exists as part of the Root segment and is initial ized (except for words 4 and 12) by PASSTWO, when the Root
segment is created. The PCB has the fonnat

where

TSTACK

TSS

Word 0

2

3

4

5

10

11

12

0

TSS

0

No. of tasks 0

o I Trap control Simulator
control

I , ,
01 78

0

0

0 TSTACK-1

\0

0 OVLOAD

0 INTTAB

TRAPADD

MSLADD

141516

Unused

01 DCBTAB

Unused

01
o 141516 2526

is the address of the current top of the user's Temp Stack.

indicates the size, in words, of the user's Temp Stack.

114 Loader-Generated Tab!e Formats

0

31

SS'vV

31

OVLOAD is the address of the table used by the SEGLOADfunction to read in overlay segments or zero.

No. of tasks is the number of tasks in the program. This is also the number of entries in INTTAB.

INTTAB is the address of the interrupt table associated with the program or zero. This table is maintained
by the CONNECT function. The format of this table is shown below.

Trap control Bits 1-7 specify how the various traps are to be handled.

Simulator control is used by the unimplemented/nonexistent instruction trap handler.

TRAPADD is the address of the user's routine that processes the various traps.

MSLADD is the address of the M:SL DCB used to load overlay segments.

DCBTAB is the address of a table of names and addresses of all of the user's DCBs. This table has the form given
below.

SSW contains the user's sense switch settings. Bit 26 contains the setting of switch 1, etc.

DCBTAB

DCBTAB is built from T:DCB, and is located in part two of the Root. DCBTAB has the format

Word 0 Total number of entries

{~
l

Entry n

El E2 E3 E4

E5 E6 E7 E8

FWA of DCB's execution location
I , I

o 78 1516 2324 31

where

E1-E8 is the EBCDIC name of the DCB (left-justified with trai ling blanks).

INTTAB

INTTAB is built only if the program has at least one task connected to an interrupt. INTTAB is located in part two
of the Root and has the format

INT4 INT3 INT2 INTl

where

is the index value used to access the next avai lable entry in the table 0 < I :5 4N - 1.

N is the number of words allocated by the Loader for the table. The table is maintained by the CONNECT
system call. The initial value of I is set by PASSTWO.

Each byte represents the priority of the interrupt, where 1 represents the highest priority, and corresponds to inter
rupt location X'50'.

OVLOAD

The OVLOAD table contains the information necessary for the Monitor SEGLOAD function to read in overlay seg
ments at execution time. One entry is created for each overlay segment. Thus, a program consisting only of a Root
would not have an OVLOAD Table.

Loader-Generated Table Formats 115

OVLOAD is located in part two of the Root. The format of an entry is such that it can be used as an FPT by
SEGLOAD to read in the requested segment. OVLOAD has the format

Word a Number of entries in OVLOAD

Segment ident

2 Word address of M:SL

3 a a
4 a a
5 a a

Entry n 6 Word address of segment's execution location

7 Byte count of segment's core image

8 Granule no. in program fi Ie where seg begins

9 a a
10 a a
11 Word address of segment's entry or zero

a 78 141516 31

Loading Overlay Loader

Before the Overlay Loader can be loaded, the OLOAD fi Ie in the SP area must be previously allocated by the RAD
Editor. It is loaded by the JCP Loader with the ! LOAD command. It is critical that the ROMs of the Overlay
Loader's segments be ordered correctly, so that the segment's idents assigned by the JCP Loader coincide with the
idents used within the program. The segment idents are listed below:

SEG IDENT

ROOT a
CCI I

PASSONE 2

PASSTWO 3

MAP 4

DIAG 5

LIB 6

The overall flow of the Overlay Loader is illustrated in Figures 58 through 65.

Figure 58. Overlay Loader Flow, !OLOAD

116 Loading Overlay Loader

Process control command.

RDCC

Read next CC
into B:C.

LOADSEG

Load FA550NE TO
process T: ROMI ..

LOADSEG

Load PASSTWO to
process T:ASSN.

Figure 59. Overlay Loader Flow, CCI

loading Overlay Loader 117

118 Loading Overlay Loader

Get fi rst/ next entry
in T:ROMI.

Build T:MODULE
entry for ROM.

Allocate C SECTS and
D SECTS when encountered

Build Module tables
(T:DECL, T:CSECT,
T:FWD, and T:FWDX).

Either link or add DEFs,
REFs, DSECTS to
T :PUBSYM, T :DCB or
T:SYMBOL or T:VALUE

Add DEF definitions to
T:VALUE and T:VALX.

Move Module Tables to
B:MT and write on X2
if the buffer is full.

Figure 60. Overlay Loader Flow, PASS ONE

Pack T :MODIFY and
T:MODULE together
and output on X3.

create the load
module.

yes

yes

Load CCI to process
next segment's

substack.

Figure 60. Overlay Loader Flow, PASSONE (cont.)

I

~ ~

Loading Overlay loader 119

Build T:LDEF at the end
of the packed tables.

Allocate EBCDIC, DEFREF,
and MODIR files' buffer.

no

Change T: LDEF entri es to
point from T:SYMBOL and
T:PUBSYM entries to
EBCDIC entries.

Read DEFREF fi Ie
into buffer.

Allocate T:LROMtobegin
at the end of the buffer.

Use DEFREF entries to
satisfy REFs in T:LDEF.

Built T: LROM to point to
I ibrary ROMs that satisfy
T: LDEF REFs.

Read MODIR fi Ie
into the buffer.

Convert T: LROM entries
to point from MODIR
file entries to MODULE
file record numbers.

no

Move T: LROM to TEMPBUF
(i nsi de LI B overl ay).

Unpack the 16
Dynamic Tables.

Convert T: LROM entri es
to T:ROMI entries and
add to T: ROMI.

Figure 60. Overlay Loader Flow, PASSON E (cont.)

120 Loading Overlay Loader

Move T:SEG, T:DCBV,
and T :DCB to the end of
T:PUBVAL and allocate
T :VAlUE at the end of
T:DCB.

All ocate part two
of the Root.

Read segment's T:VALUE
subtable into T:VAlUE.

Create T:G RAN at
the end of T:VAlUE.

Read segment's T :MODIFY
and T:MODUlE at top of
T:VAlX.

Allocate Work area
at end of T:GRAN.

Allocate B:MT at
top of T :MODIFY.

Read in the segment's
ROMs and associ ated
Module Tables.

Scan PASSTWO type load
items and create absolute
core image.

Write segment's core
image on Program File.

Figure 61. Overlay Loader Flow, PASSTWO

Loading Overlay Loader 121

Create T:G RAN at
end of T: DCB for
part 2 of the Root and
allocate T:ASSN at
end of T:GRAN.

yes

Write T:SYMBOL
and T:VALUE on
Program Fi Ie.

Allocate Work
area at the end
of T:ASSN.

Create part 2 of the
Root and reassign
DCBs referenced in
T:ASSN.

Write part 2 of
the Root on
Program File.

Create program
header and write
it on Program Fi Ie.

Figure 61. Overlay Loader Flow, PASSTWO (cont.)

122 Loading Overlay Loader

List program, Root,
and segment header
information.

List DCBs, program
CSECTS, and
program DEFs.

List library CSECTS,
library DEFs, and
Public Library DEFs.

List unsatisfied REFs,
dupl i cote DEFs,
dupl i cote REFs, and
undefined DEFs.

List information
about RAD file
usage.

yes

yes

Figure 62. Overlay Loader Flow, MAP

Loading Overlay Loader 123

124 Loading Overlay Loader

Save the 16
registers in the
Temp Stack.

Figure 63. Overlay Loader Flow, RDIAG

Restore the 16
registers.

Figure 64. Overlay Loader Flow, RDIAGX

Create text and
output diagnostic
on LO and OC.

Figure 65. Overlay Loader Flow, DIAG

Loading Overlay Loader 125

10. RAD EDITOR

The program listing for each RAD Editor subroutine is prefaced with a description that includes both the purpose of
the routine and the ca II ing sequence. Therefore, to avoid dupl ication, this information is not included in this manual.

Functional Flow

RBM loads and transfers control to the RAD Editor upon reading a ! RADEDIT control command from the C device.
The Executive routine of the RAD Editor initializes DCBs and the Scan routine parameters, scans the command,
loads the required segment if not already in core, and transfers to the proper routine. The RAD Editor is exited
when a command with an exclamation character (!) in column one is encountered (with the exception of ! EOD).
An ! EOD is used to indicate an end-of-data to the RAD Editor when data is input via the :COPY command.

A functional flow diagram is shown in Figure 66.

Permanent RAD Area Maintenance

A Master Directory, located in the resident portion of RBM, is set up at System Generation. The format of the
Master Directory is illustrated in Chapter 8 of this manual.

The Master Directory contains an entry for each permanent RAD area, extending over the area indicated by the
starting and ending addresses. Within each permanent RAD area, the RAD Editor allocates and maintains files by
means of a file directory. The RADEditormaintains permanentfile directories for the following permanent RADareas:

Foreground Program Area

System Program Area

Background Program Area

Data Areas

Permanent File Directory

The RAD Editor controls file allocation by generating and maintaining a permanent file directory for each area. The
file directory begins in the first sector of a permanent RAD area, and each entry in the file directory defines a file
in an area and describes the format of the fi Ie. It has the form

where

Word 0

2

3

4

EIDIC IBIO

FSIZE

I
BOT

o 1234

File name

File name

01 RF GSIZE

RSIZE

EaT

11 12 1516 31

I-ile name is to a fiie name with a maximum iength of eight aiphanumeric characters. if Fiie name - 0, it

E

D

indicates a deleted entry; -1 indicates a bad track entry.

If E = 0, sequentially written file; if E = 1, not sequentially written fi Ie. }

If D = 0, not directly written file; if D = 1, directly written file.

126 RAD Editor

Maintained by the Monitor;
initially set to O.

command. Load and
transfer control to

RAD Editor.

Initialize DeBs and the
Scan Routine parameters.

Read next command
from e device.

yes

Load appropriate segment
if not already in core and
branch to routine.

Figure 66. RAD Editor Functional Flow

Return to Mon j tor.

Permanent RAD Area Maintenance 127

C If C = 0, not compressed records; if C = 1, compressed records.

B If B -::: 0, unblocked records; if B -= 1, blocked records.

RF If RF = 0, background or nonresident foreground program; if RF = 1, resident foreground program.

GSIZE is the granule size, in bytes, to be used for direct accessing.

FSI ZE is the current number of records in fi Ie.

RSIZE is the number of bytes per logical record.

BOT is the relative RAD address of first sector defined for the fi Ie.

EaT is the relative RAD address of last sector defined for the fi Ie.

No entry extends over a sector boundary. After a sector of directory is fi lied, the next available sector within the
permanent RAD area is allocated as a continuation of the directory. Sectors of a directory are linked by means of a
one-word identification entry which is the first word of every sector of the directory. It has the form

Address Next available sector

01 1516 31

where

A If A = 0, the directory ends in this sector; if A = 1, the directory is continued on another sector.

Address If A = 0, "Address" contains the relative location within the sector available for the next entry; if
A = 1, "Address" is the relative RAD address of the sector where the directory is continued.

Next avai lable sector is the relative RAD address of the first unused sector in the area. This word is mean-
ingful only for the last sector of directory.

Space within the permanent RAD area is allocated sequentially. The first file in an area, which corresponds to the
first entry in the sector of directory, begins in the second sector and extends over an integral number of sectors.
Every file begins and ends on a sector boundary.

Control Commands

The permanent RAD areas are maintained through the execution of :ALLOT, :DELETE, :TRUNCATE, and :SQUEEZE
commands.

The permanent file directories are maintained so that the directory entry defining a file is always contained in a
sector of directory that has a lower sector address than the file it defines. To facilitate maintenance, files always
appear in the same order as the entries in the file directory.

:ALLOT The permanent RAD area specified on the command determines the area in whichafile isto be allocated.
The FILE, FORMAT, FSIZE, RSIZE, GSIZE, and RF parameters are used to form a new directory entry.

The new entry is added to the current sector of directory (identification entry with A = 0) at the location specified
by IIAddress" in the identification entry. The BOT of the new entry is set equal to the "Next available sector".
The EaT is computed, using the FSIZE, RSIZE, and FORMAT parameters. The identification entry is updated
to reflect the new entry. The "Next available sector" is set = EaT of the new entry +1, and the "Address"
is incremented by 5.

If there is insufficient space in the current sector of directory for another entry, "A" in the identification entry is
set to 1; "Address" is set = "Next available sector" and that sector address is used for the new sector of directory.
A new identification entry is built by setting "A" = 0; "Address" = 6; and "Next available sector" = EaT of the
new entry + 1.

128 Permanent RAD Area Maintenance

If there is insufficient space to allocate for a file, the file directory is searched for deleted entries (file name = 0).
The deleted entry that allocates sufficient space and the least amount of space is selected for the new entry. RAD
space is lost if the deleted entry allocates more area than is required by the entry. This space can be made avail
able for allocating by executing a :SQUEEZE command. The area oUocated by a new entry is zeroed out.

The number of sectors to allocate for a file is calculated using the formulas

C = (F~~E + r) * (2~ + r)

B = ((FSIZE/ R~E)+ r) * 2~

U = ((RSIZE/s)+r)*FSIZE

where

= 1 if remainder I 0, and 0 if remainder = O.

x equal RAD sector size in words.

:DELETE The permanent RAD area specified on the command determines the area in which a file is to be deleted,
and the fi Ie name is used to search the fi Ie directory for the entry to be deleted, with the first four words of the file
directory entry being zeroed out. The last word of the entry (BOT and EaT) remains unaltered. The space formerly
allocated by the entry becomes unused until either a :SQUEEZE command is executed, or an :ALLOT command isexe
cuted with insufficient space on the end of an area to allocate. Space is then allocated by using a deleted entry.

:TRUNCATE The permanent RAD area specified on the command determines the area in which a file(s} is to be
truncated, with the fi Ie name specified being used to search the fi Ie directory for the entry to be truncated. The
actual size of the file is calculated and the EaT of the file directory entry is updated accordingly.

The actual file size for blocked and unblocked files is determ ined by using the FSIZE and RSIZE of an entry; for
compresse9 files, an RFT entry (K:RFTl1) containing the current record number is used. The space formerly allo
cated between the EaT of an entry and the BOT of the next entry becomes unused and is not reallocated
~.mH! C! :SQUEEZE c0!T!!T!C!r!d !S e:-:ec,-,~e!:L

:SQUEEZE The parameters on the :SQUEEZE command determine which permanent RAD area to squeeze. Trun-
cating or deleting a file that is subsequently reallocated may cause a loss of space that cannot then be allocated.
That is, the current permanent file directory entry allocates less space than allocated by the original entry. Exe
cuting a :SQUEEZE regains all unused space. The directories are compacted and the files themselves are moved to
regain the unused space. The BOT and EaT entries (of the permanent file directory) are updated as they are com
pacted to indicate the area occupied by the moved fi Ie. Figure 67 illustrates the permanent RAD area before and
after squeezi ng.

Library File Maintenance

Both the System Library files residing in the SP area and the User Library files residing in the FP area have the same
file structure. Each library consists of one blocked Module File (MODULE) and three unblocked files: the Module
Directory File (MODIR), EBCDIC File (EBCDIC), and DEFREF File (DEFREF).

The MODIR Fi Ie contains general information about each I ibrary module, including its name, where in the MODU LE
File it is located, and its size. The MODULE File contains the object modules. The EBCDIC File contains only the
DEFs and REFs of the library modules. The DEFREF File contains indices to the DEFs and REFs in the EBCDIC File for
each module. These files must be defined via the :ALLOT command before attempting to generate them via the
:COPY command.

Algorithms for Computing Library File Lengths

The following algorithms may be used to determine the approximate lengths of the four fi les in a library. It
is not crucial that the file lengths be exact, since any unused space can be recovered via the :TRUNCATE

Library File Maintenance 129

Identi fi cati on
Entry

o 1 31\

file 1

1\
deleted

111
fi Ie 2 (truncated)

16 1
fi Ie 3 (truncated)

231

bad track

321

file 4

48 1

~I 261

fi Ie 1

11

file 2

111
file 3

16 1

file 4

221

bad track

32 1

unused

130 library File Maintenance

Permanent RAD Area Before Squeezing

51

. fi Ie 1

10

.. unallocated -
14

.
file 2 ~

20

.. fi Ie 3

28

-- bad track ~

47

... file 4

50

Permanent RAD Area After Squeezing

48

.. file 1

10

.. fi Ie 2

15

.. fj Ie 3

21

.. file 4

24
unused
bad track 47

Figure 67. Permanent RAD Area

command. The approximate number of sectors (nMODIR) required in the MODIR Fi Ie is

3(i)
nMODIR = -s-

where

is the number of modules to be placed in the library.

s IS the RAD sector size in words.

3 words is the length of 0 MODIR File entry.

The approximate number of sectors (nEBCDIC) = 2~d)

where

d is the unique number of DEFs in the library.

s is the RAD sector size in words.

2 words is the average length of an EBCDIC File entry.

The approximate number of records (nMODULE) required in the MODULE File is

n

nMODULE =.L C i
I = 1

where

n • .1 .. I I r I I • .1 _ .- L . __ ..
IS rne roral numoer 01 rnouul\:::> "' ",e IIUIUI y.

C. is the number of card images in the ith library routine.
I

The approximate number of sectors (nDEFREF) required in the DEFREF File is

n

L
i = 1

nDEFREF

where

d. r.
I + I 1+---

2

n is the total number of routines in the library.

d is the number of DEFs in the ith library routine.

is the number of REFs in the i th library routi ne.

is the RAD sector size in words.

Ubrary File Formats

The library file formats are described below. These files are generated from object modules read in via the
:COPY command.

Library File Maintenance 131

MODIR File

The MODIR File is an unblocked, sequential access file and acts as a directory to the MODULE File. The file al
ways consists of one variable length record that increases in size as object modules are added to the I ibrary. There
is one entry in the MODIR File for each object module, with each entry consisting of three words.

Words 0 MODULE Fi Ie record no.
\

Records per module

Module name (first DEF)

2 Module name

3 MODULE Fi Ie record no. I Records per module

4 Module name

5 Module nome

6
.

7 .
8

9

10

11

12

o 1516 31

where

MODULE File record no. is the relative record within the MODULE File where the object module (corres-
ponding to this entry) begins.

records per module is the number of records in the obj ect module.

module name is the nome of the object module that is the first DEF in an object module.

A deleted entry contains zeros in all three words.

MODULE File

The MODULE File is a blocked, sequential access file and contains the object modules. The location of the object
module within the file and the size is indicated by the MODIR Fi Ie entry.

EBCDIC File

The EBCDIC File is an unblocked# sequential access fi Ie. The fif e always consists of one variable length record that
increases in size as object modules are added to the I ibrary. The EBCDIC Fi Ie contains all the unique DEFs and REFs
in the library object modules.

132 library File Maintenance

o n e e e
e

e n e e

2 e e e e

3 e e

where

n is the number of bytes in entry {including itself}.

e is an external definition or reference in EBCDIC.

DEFREF Fi Ie

The DEFREF Fi Ie is an unblocked, sequential access fi Ie. The file always consists of one variable length record that
increases in size as object modules are added to the library. For each module there is one entry that varies in size
according to the number of DEFs and REFs. DEFs always precede the REFs in the entry.

Entry size {no. 1 } MODIR Fi Ie index

d DEF 1 d DEF 2

d DEF 3 r REF 1

r REF 2 Entry si ze (no. 2)

MODIR File index d DEF 1

r REF 1 r REF 2

o 1 15161718 31

where

entry size is the number of halfword entries (including itself) for the object module. 3 ~entry size ~32,767.

MODIR Fi Ie index is the relative halfword in the MODIR Fi Ie that identifies the object module. o~ MODIR
Fi Ie index ~32,767. -1 means a deleted entry.

d if d = 1, means a DEF entry.

if r = 1, means a REF entry.

def n is the byte index of an external definition in the EBCDIC File.

ref n is the byte index of an extended reference in the EBCDIC File.

A deleted DEFREF entry contains a MODIR File index of -I, with the rest of the entry remaining the same.

Command Execution

The library files are maintained through the execution of :ALLOT, :COPY, :DELETE, and :SQUEEZE commands. The
entries in the MODIR File, MODULE File, and DEFREF File are in the same sequential order. The ith entry in the
MODIR Fi Ie identifies the ith object module in the MODULE Fi Ie, and corresponds to the ith entry in the DEFREF
Fi Ie. The ordering of these fi les is always preserved.

Library File Maintenance 133

:ALLOT library files are allocated in the same general manner as other files described previously, but with
certain specific differences. When area SP or FP is specified, a check is made to determine if the file name is
MODIR, MODULE, DEFREF, or EBCDIC. If MODULE is specified, RSIZE is required to be 30 words and FORMAT
must be blocked. If MODIR, DEFREF or EBCDIC is specified, FORMAT must be unblocked. RSIZE can be any value
for the unblocked files and is used solely for calculating the amount of space to allocate for the file. The record
size for these three files is set to 0 when allocated. GSIZE on all library files is ignored, and is always set equal
to RAD sector size by the RAD Editor.

:COPV The permanent RAD area specified on the :COPY command determines which library a module(s) is to be
added to. For each object module added, the following procedure is followed:

1. An object module is read from the input device specified on the command. The module is added to the end of
the MODULE Fi Ie as it is being scanned for external definitions and references. The MODULE Fi Ie record
number for the MODIR Fi Ie is obtained from RFT12 (current record no. of file). The MODIR Fi Ie index is ob
tained from RFT5 (record length).

2. As DEFs and REFs are encountered, they are added as entries to the end of the EBCDIC Fi Ie. The fi rst DEF en
countered is used as the MODULE File name. However, REFs are added to the EBCDIC File if they are not in
duplicate.

3. The indices to the EBCDIC Fi Ie entries are saved to create the DEF n and REF n words of the entry to the
DEFREF Fi Ie.

4. The addition of the object module to the I ibrary is completed by updating the "records per module" in the
MODIR File entry; "entry size" in the DEFREF File entry; and writing the MODULE, DEFREF, and EBCDIC
Fi les to the RAD. .

:DELETE The permanent RAD area on the :DELETE command is used to determine which area contains the library
object module to be deleted. The MODIR Fi Ie entry containing the same module name as that appearing on the com
mand is zeroed out. The corresponding DEFREF File entry is located and the halfword containing the MODIR File
index is set to -1. No other changes are made to the EBCDIC and MODULE Fi les as a result of the :DELETE
command.

All unused space resulting from a module deletion is recovered when a :SQUEEZE command is executed.

:SQUEEZE The permanent RAD area on the :SQUEEZE command is used to determine the library to be squeezed.
Permanent RAD areas containing libraries are squeezed in the same way as other areas with the following excep
tion: after the permanent file directories are compacted and fi les are moved to regain the unused space, a search
is made of the MODIR File. All existing modules are copied from the MODULE File to the Temporary File Xl.
Using Xl as the source of input, the library files MODIR, EBCDIC, and DEFREF are regenerated.

Bad Track Handling

Bad tracks within permanent file areas on a RAD are removed from use by making special entries to the appropriate
file directory. All bad tracks can be handled in this manner except those that contain a sector of the file directory.
These cannot be removed from use as it would make accessing of certain files impossible. All bad tracks on a disk
pack are removed from use by flawing the bad track{s) and using alternate tracks if available. Otherwise, they are
handl ed the same as for a RAD.

Command Execution

. Bad tracks are handled through execution of :BDTRACK and :GDTRACK commands. The :BDTRACK command re
moves the track from use by allocating or flawing the track. The :GDTRAC K command returns the track for use by
deleting the entry made by :BDTRACK or removing the flaw marks.

:BDTRACK The permanent file area that encompasses the bad track is determined by the RAD or disk pack (DP)
and bad track specified on the command. A check is made to determine if a sector of directory falls within the bad
track. If it does, the bad track is not eliminated from use. A search of the file directory is made to determine if
the bad track is allocated. If it is, the entry{s) that allocates the track is eliminated and replaced by a bad track
entry. If it is not allocated, a bad track entry is added to the end of the file directory. A bad track entry consists
of the "file name" being set to -1, and the BOT and EOT being set to the starting and ending sector of the bad
track. The appearance of fifes in the same order as the entries in the file directory is maintained.

134 Bad Track Hand ling

If the bad track is on a disk pack, a search is made for the available alternate track (alternate is all lIs). When
found, the cylinder, head, and sector addresses of the alternate track headers are inserted. The alternate cylinder
and head address fields are updated to contain the flawed track address. The header of the specified bad track is
updated to contain the flawed track address. The header of the specified bad track is updated by inserting the alter
nate cylinder and head addresses, and setting the flaw mark bits to l's. If there are no alternate tracks available,
bad tracks are handled the same as on a RAD; that is, by putting an entry in the file directory.

:GDTRACK The permanent file area that encompasses the good track is determined by the RAD or disk pack
(DP) and bad track specified on the command. A search of the file directory is made for the entry that allocates the
track specified on the command. The entry is deleted (file name set = 0), making the track available for allocating.

If a good track is on a disk pack, the flaw bits in the headers are checked to see if they are set; if so, the headers
are altered by clearing the flaw bits and setting the alternate track field to all O's, and the headers in the alter
nate track are altered by setting the alternate track field to all l's. If the flaw bits are not set I the good track
specified is handled the same as for a good track on a RAD (by deleting the appropriate file directory entry).

Use of IOEX for Disk Pack

The flawing of bad tracks is performed with a call to IOEX. The RBM assembly option #SYSPROC must be included
to correctly perform this operation. If #SYSPROC is not included in RBM, the flawing is not performed and the disk
pack is treated exactly as a RAD (i. e., a bad track entry is placed in the file directory).

Utility Functions

The following utility functions are performed by the RAD Editor:

•
•
•
•
•
•
•
•
•

Maps permanent RAD areas.

Clears permanent RAD areas.

Enters data onto permanent RAD files.

Appends records to the end of an existing permanent RAD file.

Copies permanent RAD fil es.

Dumps the contents of RAD files or entire RAD areas.

Saves the contents of RAD areas in self-reloadable form.

Restores RAD areas previously saved.

:MAP The permanent RAD area(s) to be mapped is indicated on the :MAP Command, with the map information
being output to the device assigned to the M:LO DCB. Whenever the sequence yyndd is encountered, all following
area mnemonics are processed if the area resides on the specified device. In addition, if yy = DP, a i ist of flawed
tracks and alternates are output as follows:

FLAWED TRACKS AND ALTERNATES
FFFF AAAA

where

FFFF is the flawed track number (decimal).

AAAA is the allocated alternate track number (decimal).

Each map consists of up to three sections: one section when RAD areas C K, XA, or BT are mapped; two sections
if RAD areas without I ibraries are mapped; three sections if RAD areas containing I ibraries are mapped. The
three sections of the map are as follows:

1. Information from the Master Directory identifying the permanent RAD area, starting and ending RAD addresses,
write protection, and device number of the RAD from the Device Control Tables.

2. Information obtained from the permanent file directories concerning each file in the area; its name, format,
granule size, record size, file size, beginning of file, and ending of file.

Utility Functions 135

3. Information about object modules in the library files; consisting of the permanent RAD areas, module name, and
the definitions and references in the module.

Section 1 of the map has the format

RAD AREA ZZ RAD yyndd BOA bbbbb EOA eeeee WP w

where

ZZ identifies the permanent RAD area.

yyndd is the RAD that contains the permanent RAD area.

bbbbb is the absolute RAD address of the first sector of the area in decimal.

eeeee is the absolute RAD address of the last sector of the area in decimal.

w is the write protection for the fil e.

F is write-permitted by foreground only unless SY key-in.

B is write-permitted by background only unless SY key-in.

M is write-permitted by the Monitor only.

N is write-permitted only if SY key-in.

X is write-permitted by IOEX onl y.

Section 2 of the map has the format

NAME FORMAT GSIZE RSIZE

nnnnnnnn f g

where

FSIZE

;.
BOF

s

nnnnnnnn is the name of a fil e in the permanent RAD area.

f is the fil e format:

U specifies unblocked

B specifies blocked

C specifies compressed

g is the granule size in bytes in decimal.

is the record size in bytes in decimal.

1. is the number of records in file in decimal.

EOF

s is the relative RAD address of the first sector defined for the file in decimal.

is the relative RAD address of the last sector defined for the file in decimal.

Section 3 of the map has the format

MAP OF LIBRARY IN AA AREA

MODULE NAME LOCATION

mmmmmmmm IIII

where

DEFS

dddddddd dddddddd

AA is the permanent RAD area that contains the library.

mmmmmmmm is the object modul e name.

REFS

rrrrrrrr rrrrrrrr

"" is the relative sector address of the first sector of the ob ject module.

dddddddd is the name of an external definition.

rrrrrrrr is the name of an external reference.

136 Utility Functions

The mapping of an area is performed as follows:

1. Information is obtained from the Master Directory for Section 1 of the map and output to the LO device. If an
area is not allocated, the mapping of that area is ignored.

2. Information is then obtained from the permanent file directory for S~ction 2 and output to the LO device. If an
area other then CK, XA, or BT does not contain files, a message win be output to that effect. 'Mlen a bad
track entry is encountered, "BADTRACK" is printed as the name of the file.

3. If the permanent RAD area is either FP or SP and contains libraries, information is obtained for Section 3. The
MODULE NAME is obtained from the MODULE File, the module record number from the MODIR File, and the
definitions and references are obtained by scanning the DEFREF File for the indexes to the EBCDIC located in
EBCDIC Fil e.

:CLEAR The permanent RAD area on the :CLEAR command is used to determine the area to be cleared (set to
zero). The area is cleared using the direct access method. The granule size is set equal to the amount of unused
background space available, which is zeroed out and written to the RAD.

:COPV The parameters on the :COPY command are used to set up the F:SI and F:SO DCBs. Fi les are copied
sequentially. When an ! EOD, :EOD, or EOT is encountered, the COpy is terminated. When an object module
is copied to an output device, the COpy is terminated when the module end load item is encountered.

:DUMP The permanent RAD area or file to be dumped is indicated on the :DUMP command. The information is
dumped to the device assigned to the M: LO DCB. The fj Ie dump has the format

DUMP OF FILE nnnnnnnn IN AREA AA

RECORD rrrr

WD 0000 dddddddd dddddddd ... dddddddd

WD 0008

WD 0016

where

nnnnnnnn is the name of the file.

AA identifies the permanent RAD area (area BT inclusive).

rrrr is the relative record number and begins with 1.

dddddddd is a data word in hexadecimal.

The area dump has the format

DUMP OF AREA ZZ

SECTOR ssss

WDOOOO dddddddd dddddddd ... dddddddd

WD0008

WD0016

where

ZZ identifies the RAD area.

ssss is the relative sector number, and begins with O.

dddddddd is a data word in hexadecimal.

Utility Functions 137

The dumping of an area or file is performed as follows:

1. The directive is scanned to determine whether an area or file is to be dumped. If a value for SREC is not speci
fied' 0 is assumed. If a value for EREC is not specified, the last record of the file or area is assumed.

2. The record{s) to be dumped is accessed sequentially. Within a record, if a word is duplicated more than sixteen
times in order, it is output only once in the message

'WDxxx THRU xxx CONTAIN xxxxxxxx'

If records are duplicated, the message

• RECORDxxx THRU xxx CONTAIN xxxxxxxx'

is output.

If sectors are duplicated, the message

'SECTOR xxx THRU xxx CONTAIN xxxxxxxx'

is output.

3. The dump is terminated when the specified number of records have been dumped or when a complete file or area
has been dumped.

:SAVE The area{s) to be saved is specified on the :SAVE command. The data is dumped to the device assigned to
the M:BO DCB, and consists of the following:

1. A small S8-byte bootstrap that loads the large bootstrap when booted from the console.

2. A large bootstrap that restores the RAD or disk pack from magnetic or paper tape.

3. An SS-byte RBM bootstrap used for booting the RAD or disk pack.

4. Records containing data to be restored.

Each record to be restored is preceded by a five-word header with the format

No. words per sector lRAI\IO--OI~1 Area ident.

No. sectors in record Device number

Area FWA

No. sectors per track No. sectors {zero} to write

CKSM (2's comp-fement form)
I I I

o .1 .'.

14151617 2324 31

where

No. words per sector is the size of the sector.

LRA is a flag to indicate the fast record of an area if LRA = 1, Jast record.

LRT is a flag to indicate the last record of the tape if LRT = 1, last record.

138 Utility Functions

DP indicates that the device is a disk pack if DP = 1.

Area ident. is the area to which the record belongs.

No. sectors in record is the size of record {in sectors}.

Device number is the physical device number of the RAD or disk pack.

Area FWA is the absolute address where the data records should begin being restored.

No. sectors per track/No. sectors (zero) to write
nonzero data in the record.

is the number of sectors containing all zeros preceding

CKSM is the checksum of this record in the 2 1s complement form.

The saving of an area for subsequent restoration is performed as follows:

1. A sma" and large bootstrap are written with their checksums.

2. A header for the RBM RAD bootstrap is written. The FWA and device number for the header is obtained from
K:RDBOOT.

3. The image of the RBM RAD bootstrap is read from the file RADBOOT in the SP area, and written.

4. Data records are written with each record being preceded by a header and followed by a checksum. Leading
and trailing zeros of a record are not written. Size of the data records depends upon the amount of available
background space used as a buffer.

5. After all the specified areas are saved, the tape is verified by using the checksum word of each header and
data record.

:RESTORE The area(s) to be restored is specified on the :RESTORE command. The data is read using the device
U»;911t::U IU i~tt: ,l.v.t,:31 Den. Tht:: 51I1U:: b001~I;-UPI :uj·gc b0015~i-up, .::iliG RB,"Y~ R.AD bv0~5~iup ui~ 5kipp~d. Du~u .~~vid:i

are read and restored using the headers that precede them with all leading and trailing zeros of a record also being
restored. Restoration has to be made to the same type of RAD as that from which the records were saved.

The overall flow of the RAD Editor is illustrated in Figures 68 through 72.

Utility Functions 139

140 Uti Iity Functions

Scan command and
save contents.

Set default values
for FSIZE, GSIZE,
RSIZE.

Calculate numberof
sectors to allocate
for file.

Bui Id new sector
of directory.

Use a deleted entry
that allocates
sufficient space.

Figure 68. RAD Editor Flow, ALLOT

Initiafize COpy
routine.

Scan command
(from field).

Input From File

Setup F:SI DCB
and FPT (area, file
name I ASN record
si~e).

Scan command
(to field).

I"egal use of COPY.
Return to Monitor
or EXEC 1.

Figure 69. RAD Editor Flow, COpy

Utility Functions 141

142 Utility Functions

Setup F:SI DCB and
FPT (area, record
size, file name =
Module).

Scan command
(to field).

Setup F:SO DCB
(ASN, DCT Index,
op Label Table
Index).

Read MODIR file

Get location of
module in MODULE
fi Ie by searching
MODIR file.

Copy module to
output device.

no

Illegal use of COpy
Return to Monitor
or EXEC1.

Figure 69. RAD Editor Flow, COpy (cont.)

Setup F:SI DCB (ASN,
DCT Index, Op Label
Table Index.)

Setup F:SO DCB and FPT
(area, file name, ASN,
record size).

If add option, skip to EOF
on output file.

Reassign C device to
standard assign.

Figure 69. RAD Editor Flow, COpy (cant.)

Utifity Functions 143

144 Utility Functions

Setup F: 51, F: SO
DCBs and FPTs.

into Background
Buffer.

Invert EBCDIC in
Background Buffer
starting at highest
core location.

no

Read DEFREF Fi Ie
into Background
Buffer starting at
Lowest Core Locat.

Scan module for
DEFs and REFs.

Set record
length = 0 for
all library files.

Figure 69. RAD Editor Flow, COPY (cont.)

Write out DEFREF
fi Ie with new entry
to DEFREF fi Ie.

Write out EBCDIC
fi I e wi th new entry
to EBCDIC file.

Read MODIR
file into
background.

Write out MODIR
file including
entry for th is
module.

Set up F:SO DCB
(area, fj Ie name,
ASN).

Process options
if any.

If add option, skip
to EOF on output
file.

Copy input fi Ie
to output fi I e.

Write EOF on
output fi Ie.

Setup F:SO DCB
(ASN, DCT Index,
Op Label Table,
Index).

Process options
if any.

Figure 69. RAD Editor Flow, COpy {cont.}

Utility Functions 145

146 Utility Functions

Scan command for

Squeeze file
directory, removing
deleted entries.

Move file and
update directory.

yes

no

Ifgapbetween EOT
and badtrack BOT,
insert largest file
that will fit and
u ate directory.

Figure 70. RAD Editor Flow, SQUEEZE

for existing modules
and copy modules
b).~ MODULE H!e
to Temp. file (Xl).

Create new library
fil es (MODI R,
DEFREF, EBCDIC)
using fileXlasinput.

Figure 70. RAD Editor Flow, SQUEEZE (cont.)

Utility Functions 147

148 Utility Functions

Setup to write out
small boot. (a) size
of large boot in
small boot. (b) bui Id
C KSM for small boot

Set up to write out large
boot. (a) put read order
in large boot (MT or PT).
(b) build CKSM for
large boot.

Write out large
boot to BO.

write to BO.

Get RADBOOT from
SP fi Ie RADBOOT

Bui Id header for
data record.

Read data from
specified area.

Figure 71. RAD Editor Flow, SAVE

Calculate numberof
sec tors of zeros at
front end of record if
any save in header.

Build CKSM and
write out header.

Write data record
to BO.

Verify tape
generated.

Figure 71. RAD Editor Flow, SAVE (cont.)

Utility Functions 149

150 Utility Functions

Skip first four rec
ords (bootstraps)
and read first data
header.

Verify RAD being
restored has same
sector size as that
saved.

~---~
~

CKSM data
header.

Wri te I eadi ng
zeros if any
precede data.

(a) Wri te data rec
ord on RAD and
(b) Read new data
header.

Figure 72. RAD Editor Flow, RESTORE

11. SYSTEM GENERATION

Overview

The System Generation program is assembled in absolute, using the ASECT directive, and is ORG'd (origined) at two
locations:

1. The first ORG at location X'140' allocates and defines the system flags and pointers. It is the first location
that cannot be used for an external interrupt. The system flags and pointers are a group of cells that provide
communication between SYSGEN, all portions of the Monitor, and the system processors and service routines.
Since these cells are in fixed, predetermined locations, they are defined via the EQU directive in all programs
that reference them. Note that these cells must not be changed, deleted, or altered in any way in the SYSGEN
listing unless the EQU directives are also changed in all programs that reference the cells. The system flags
and pointers are followed by a skeleton of the Master Dictionary. The Master Dictionary is not necessarily
fixed at its assembled location since it may be moved to the unused interrupt cells if sufficient space exists.

2. The next ORG at rocation X'28EO' fixes the start of the SYSGEN program. SYSGEN is ORG'd such that the
program will occupy the highest address portion in a 16K memory. This provides the SYSGEN Loader with the
maximum amount of room to load the Monitor and its overlays in the lower address portion of memory. If a user
adds a significant amount of code to the Monitor, this ORG may have to be moved to a higher 10caHon to pre
vent the Monitor from overflowing SYSGEN during the load.

The System Generation program is divided into two sections designated as SYSGEN and SYSLOAD. SYSGEN pro
cesses all the SYSGEN control commands and allocates and initializes all the Monitor tables from the information
on the control commands. It also builds a symbol table for SYSLOAD that contains the name and absolute address
of all the Monitor tables. Optionally, SYSGEN will output on a rebootable deck containing the Monitor tables
and SYS LOAD on cards, paper tape, or magnetic tape. The SYSGEN phase can be overwritten during the loading
of the Monitor, and terminates by exiting to SYSLOAD.

SYSLOAD loads the Monitor, all optional resident routines, the RBM overlays, the Job Control Processor, and then
writes these in to the RBM fi Ie in the SP area. A map containing the RBM table allocation and RAD allocation is
output upon request. SYSLOAD terminates by reading in the RAD Bootstrap and exiting to it, simulating a booting
of the system from the RAD.

Figure 73 illustrates the core layout of SYSGEN and SYSLOAD after the absolute object module is loaded by the
Stand-Alone SYSGEN Loader.

Unchanged
X'140'

System Flags and Pointers
X'20a'

Sketeton of Master Dictionary
X'236'

Unchanged
X'lSOO'

Stand-Alone SYSGEN Loader
X'lCOO'

Unchanged
X'28EO'

SYSGEN Processing Routines

Subroutines Unique to SYSGEN
X'3220'

SYSLOAD

Subroutines Used by SYSGEN and SYSLOAD

X'4000'

Figure 73. SYSGEN and SYSLOAD Layout Before Execution

System Generation 151

Figure 74 depicts a typical core layout after SYSGEN and SYSLOAD have executed.

Unchanged

MTW, 0 Instruction Stored in all Used
Interrupt Locations

Unused Interrupt Locations Used for
Monitor Tables

System Flags and Pointers

Remainder of Monitor Tables

RBM Overl ay Area

Floating Point, Decimal Byte-String, and Conversion
Instruction Simulation Packages, if Required

Resident RBM

--}-

X'40'

Control task Int. Loc.

X'140'

X'208'

512 Locations

Patch Area

RBM Initialize Routine - Background FWA (starts on first page
(Extends into Background Area) boundary after Resident RBM)

Area Used by SYS LOAD to Load JC P } About 4600 Locations

SYSLOAD X'4000'

Figure 74. SYSGEN and SYSLOAD Layout After Execution

SYSGEN/SYSLOAD Flow

The flowcharts in Figure 75 depict the overall flow of SYSGEN and SYSLOAD. The labels used correspond to the
labels in the program listing.

Loading Simulation Routines, RBM, and RBM Overlays

The S region of the SYS LOAD I isting contains a loader that loads the instruction simulation packages, RBM, the
RBM overlays, and the Job Control Processor (JCP). Each object module loaded must have one, ond only one,
DEF directive that identifies the object module to the loader. t The DEFs listed in Table 9 are recognized by the
Loader.

Any DEF encountered that is not included in Table 1 results in an alarm

ILL. DEF.

Any object module loaded that is devoid of DEFs result in an alarm

OBJ. MOD. NOT RECOG.

t Except RBM object module.

152 SYSGEN'/sYSLOAD FJow/Loading Simulation Routines, RBM, and RBM Overlays

Figure 75. SYSGEN/SYSLOAD Flow

SYSGEN,iSYS LOAD Flow 153

154 SYSGEN/SYSLOAD Flow

Setup group code and level
bit for Control Task int.

Set all used interrupt
locations to MTW, O.

Change no~ TRKS for GO,
OV fj I es to sector number.

Move Master Di ct. to
unused into cells if room.

Allocate and preset all
RBM tables. DCT, 10 Q,

RFT, etc. Set OlAFWA to
X·1OO· boundary if all
SENSE switches Oie set.

Save FWA of tables in
Symbol T obI e for SYS LOAD.

Set FGD FWA, ~CKG
FWA, FPOOL FWA, etc.

Figure 75. SYSGEN/SYSLOAD Flow (cont.)

Output rebootable
deck of SYSLOAD,
if requested.

Go Type ItRBM
SYSLOAD II •
IIINPUT OPTIONSII.

Zero out all defined
RAD areas (first sec
tor on Iy if fast
option).

Figure 75. SYSGEN/SYS LOAD Flow (cont.)

SYSGENj$YSLOAD Flow 155

156 SYSGEN~YSlOAD Flow

Read In RAD Boot
strap from existing
RBM.

Get RAD address
for existing RBM,
and read in fi rst
400 words of RBM.

Compare old Master
Dict. with new Mas
ter Di ct. to see
whi ch areas moved.

Type Reload alarms
for all areas that
moved.

Zero out fi rst sector
of all areas that

Initialize cells for
loading of RBM
object modules.

Load FPSIM and
DECSIM routines, if
required, to core.

Load RBM to core and
write to RBM fi I e on
RAD. Load the RBM
overlays and the JCP
to the RBM RADfile.

Set background fW A
and Simulation
routine's FWA.

Figure 75. SYSGEN/SYSLOAD Flow (cont.)

PROGRAMS", if
appropriate.

VJrite out S P

strap onto sector 0
of RAD.

Punch hard copy
of RAD Bootstrap
if required.

Figure 75. SYSGEN/SYSLOAD Flow (cont.)

SYSGEN~YSLOAD Flow 157

I
Table 9. Standard SYSLOAD DEFs

DEF Name Program

FPSIM Floating Point Simulation Routine.

DECSIM Decimal Instruction Simulation Routine.

BYTSIM Byte String Instruction Simulation Routine.

CYSIM Convert Instruction Simulation Routine.

DELTA Debug Package.

RBM Resident portion of RBM.

RBMEND The end of resident RBM. The RBM initialize routine, which is non-
resident, follows the RBMEND label.

JCP Job Control Processor.

CKPT Checkpoi nt/Restart overl ay.

FGLl Overlay to release foreground programs.

FGL2 Overlay to load foreground programs for execution.

ABEX Abort/Exit Overlay.

KEYl Part 1 of Key-in overlay.

KEY2 Part 2 of Key-in overlay.

PMD Postmortem Dump overlay.

BKLl Part 1 of overlay to load JCP and background programs for execution.

BKL2' Part 2 of overlay to load JCP and background programs for execution.

The Loader satisfies references to any of the RBM tables in the object modules it loads. References that can be
satisfied are contained in the RBM Symbol Table. The address of each RBM table is stored in the Symbol Table by
SYSGEN when the tables are allocated. Labels that can be defined as an external reference in RBM or the RBM
Overlays are

RBM Symbol Table Definitions

DCTl through DCTl9 (i.e., DCTl, DCT2, •.. , DCTl9)

CIT1 through CIT3

IOQ1 through IOQ14

RFTl through RFT17

FPl through FP5

OPLBSl through OPLBS3

INTLBl through INTLB2

OYLOAD1 through OYLOAD3

WLOCK

OLAYFWA

158 loading Simuiation Routines, RBM, and RBM Overlays

Any external reference not in the above list will result in an alarm

"I LL. REF."

Note that this Loader will not satisfy any DEF/REF Hnkages between object modules.. Only references to the RBM
tables contained in the above list will be satisfied.

SYSGENljO
SYSGEN and SYSLOAD perform all of their own I/O via the READ/WRlTE routine except for the typing of alarms
performed by TYPE. The READ/WRITE routine will handle the peripherals itemized below:

Device XDS Mode I Numbers

Keyboard Printer 7012,7020

Card Reader 7121,7122,7140,7120

Paper Tape Reader/Punch 7060

Line Printer 7440,7445,7450

9-Track Magnetic Tape 7322,7323

7-Track Magnetic Tape 7362,7372

Card Punch 7160,7165

RAD 7204,7232,7212

Disk Pack 7242,7246

The READ/WRITE routine makes extensive use of tables (called 10TO through 10T18) that fully describe the charac
teristics of each peripheral device. (See the comments in the program listing for descriptions of the READ/WRITE
routine and the tables.) The paper tape format used by SYSGEN on read operations is identical to the format used
by RBM described in Appendix A.

Rebootable Deck Format

If a :PUNCH control command is read by SYSGEN, a rebootable deck is output that includes the RBM tables with
their initialized values, SYSLOAD, and the RBM Symbol Table. t This deck can be used to load a new version of
RBM without re-inputting all the SYSGEN control commands.

The first card in the rebootable deck consists of a one-card bootstrap program that loads the next two cards in the
deck. These next two cards consist of a program that loads the remainder of the deck, consisting essentially of the
RBM Table, SYSLOAD, and the RBM Symbol Table in core image format.

The two cards containing the Core Image Loader have the following format:

Byte No.

o
1,2,3

4,5,6, 7

8,9

10, 11

12-119

Contents

XI FFI (for card 1)

Unused (all zeros)

X'9FI (for card 2)

Complement checksum of entire card (carry out
of bit 0 is ignored in computing checksum)

Unused {all zeros}

Load address, minus one, for following data

Loader in absolute core image format

tIf the rebootable deck is output to paper tape, there are no special additional characters. That is, the paper tape
contains an exact card image.

SYSGEN I/O/Rebootable Deck Format 159

The core image format of the Two-Card Loader is

X'FF' or X'9F' I word 1

word 2

word 3

word 4

Complement checksum of entire 29 words on card

(words 4-30
contain the
Two-Card
Loader in abso
I ute core image
format.)

word 30

o
I
I

78

I Load add ress - 1

15 16 31

The RBM Tables, SYSLOAD, and the RBM Symbol Table are output in the core image format

word 1

word 2

word 3

(words 3-30
contain the
above-mentioned
data in core
image format.)

word 30

X'FF' or X'9F' I
Load address - 1

I

o 78

Sequence number (O-n)

Compl ement checksum
(not incl. halfword 0)

15 16 31

All cards contain an X'FF' in byte 0 except the last card. The last card contains an X'9F' in byte 0 and the
SYSLOAD entry address in place of the load address in word 1. The last card contains no data other than the
SYS LOAD entry address, the sequence number, and checksum.

Stand-Alone SYSGEN Loader

The Stand-Alone SYSGEN Loader is a small loader specifically created to load the SYSGEN absolute object module.
Since SYSGEN is assembled in absolute, the SYSGEN Loader will only load absolute load items and handles oniy
the small subset of the Sigma Object Language requi red to load SYSGEN.

The SYSGEN Loader I/O routine is a copy of the SYSGEN I/O, with the code performing the actual loading being
similar to the code in the SYSGEN Loader.

The rebootable form of the SYSGEN LOADER is produced by loading its ROM with the Stand-Alone Absolute
Dumping Loader (see Stand-Alone Systems Operations Manual, 90 10 53). The absolute binary deck produced
can then be booted with the three-card Absolute Bootstrap Loader (can be obtained by ordering CN704145).

160 Stand-Alone SYSGEN Loader

APPENDIX A. RBM SYSTEM FLAGS AND POINTERS

Table A-l. RBM System Flags and Pointers

Name location Description

K:BACKBG X'140' Beginning address of background.

K:BCKEND X'141' Ending address of background.

K:FGDBGI X'142' Current beginning address of FGD.

K:FGDEND X'143' Ending address of FGD.

K:CCBUF X'1M' Address of Control Card Buffer.

K:BPOOL X'145' Start address of BCKG Blocking Buffer Pool.

K:FGDBG2 X'146' Beginning address of FGD set at SYSGEN.

K:FMBOX X'147' Start address of FGD Mailboxes.

K:FPOOL X'148' Start qddress of FGD Blocking Buffer Pool.

K:UNAVBG X'149' Start address of unavailable memory.

K:MASTD X'14A' Start address of Master Dictionary.

K:NUMDA X'14B' Highest valid DW index for MASTD.

K:VRSION X'14C' RBM version.

K~ACCNT X'14D' Job Ar-r.nunting flng_

K:OV X'14E' Permanent and current sizes of OV.

K:KEYST X'14F' Post status of key-in here.

K:JCPl X'ISO' JCP and Control Task.

Bits have the following meaning:

Bit o = I, JCP is executing.
Bit 1 = 1, Background is active.
Bit 2 = 1, Background is checkpointed on the RAD.
Bit 3 = 1, Background is being used by Foreground

but was not checkpointed.
Bit 4 = 1, Waiting for key-in response.
Bit 5 = I, Skip to next JOB card.
Bit 6 = 1, Set by ABORT for CALEXIT.
Bit 7 = 1, Set by CALEXIT for ABORT.
Bits 8 - 15, Previous assign. of C device (for

TY key-in).
Bits 16 - 21, Unused.
Bit 22 = 1, System processor executing.
Bit 23 = 1, Execute Delta for BKGD Program.
Bits 24 - 25, o means no PMD requested.

1 means conditional PMD.
2 means unconditional PMD.

Bit 26, Flag for CKPT that alarm typed.

Appendix A 161

Name

K:JCP1 (cont.)

K:CTST

K:SY

K:BPEND

K:CTWD

K:CTGL

K:BLOAD

K:BAREA

K:ASSIGN

K:RUNF

K:HIINT

K:FGDBG3

K:PMD

K:DCB

K:KEYIN

K:FGDBG4

162 Appendix A

Table A-1. RBM System Flags and Pointers (cont.)

Location

X' 150' (cont.)

X' 151'

X' 152 1

X' 153 1

X ' 1541

X' 155 1

X' 1561

X' 1581

X'159 1

X' 15A'

X'15C'

X' 15D'

X' 162 1

X'169 1

X' 16F'

Description

Bit 27 = 1,
Bit 28 = 1,
Bit 29 = 1,
Bit 30 = 1,
Bit 31 = 1,

RBM Initialize routine is running.
FG key-in active.
TY key-in active.
Attend command was input.
JOB command was input.

Flags to execute Control Task subtask. Bits have the
following meaning:

Bit 0 = 1,
Bit 1 = 1,
Bit 2 = 1,
Bit 3 = 1,
Bit 4 = 1,
Bit 5 = 1,
Bit 6 = 1,
Bit 7 = 1,
Bit 8 = 1,
Bit 9 = 1,
Bit 10 = 1,
Bit 11 = 1,
Bit 12=1,
Bit 26 = 1,
Bit 27 = 1,
Bit 28 = 1,
Bit 29 = 0,
Bit 29 = 1,
Bit 30 = 1,
Bit 31 = 1,

Execute CHECKPOINT.
Execute FGD Loader/Releaser.
Execute Restart.
Time to check for I/O rundown.
Execute ABORT/EXIT.
Execute key-in.
Execute PMD.
Execute IDLE.
Execute BCKG load.
Load JCP.
Load BCKG (Program not JCP).
Key-in required bya higher prioritysubtask.
Reload FGL1 for possible RLS.
KEY2doing STDLBRAD file OPEN/CLOSE.
FGLl called from FGL2.
Control Task is operating.
Execute ABORT part of ABORT/EXIT.
Execute EXIT part of ABORT/EXIT.
PMD from key-in request.
PMD from PMD command.

Nonzero if SY key-in active.

End of load area for BC KG program

WD code for Control Task. Byte 0 = Nonzero means CT was
triggered.

Group level for Control Task.

Name in BCD of BCK program to load two vvords.

Index of area to load BC K program from.

Address of ASSIG N table.

Post run status here for FGD load.

Highest address used for interrupt.

Begin address of FGD from FMEM key-in.

Cells to dump for PMD as DW address (5 words).

DCB for Control Task to load in overlays (7 words).
Always assigned to RBM File.

Key-in Response Buffer (6 words).

Byte 0 = FWA of FGD prior to CKPT (Page Bits 15-31 =
K :BCKEND prior to CKPT).

·1

Name

K:DELTA

K:QUEUE

K :BTFILE

K:GO

K:PAGE

K:RDBOOT

K:DCTl

K:DCTl6

K:OPLBSl

K:OPLBS3

K:RFT4

K:RFT5

K:SERDEV

- - - - -
K:KtULUM

K:INITX

K:FGLD

K:PMD1

K:PMD2

K:PMD3

K:RUNBPL

K:CLKl

K:CLK2

K:CLK3

Table A-l. RBM System Flags and Pointers (cont.)

Location

X'170'

X'171'

X'172'

X'173'

X'174'

X'175'

X'176'

X'177'

X'178'

X'179'

X'17A'

X'17B'

X'17C'

- ~ - ---
X'I/U'

X'17E'

X'17F'

X'180'

X'181'

X'182'

X'185'

X'188'

X'18A'

X'18C'

Description

Entry point for Delta.

Address of Queue routine. Byte 0 = Nonzero, Stop I/O
on BCKG.

Status of BT Fi les

Bits 0 - 8, 1 bit for each Xl fi Ie. Bit set to 1 means
SAVE Hie.

Bi ts 16 - 31, L WA to use for non-SAVE fj les.

Permanent and current sizes of GO.

Byte 0 = Number of lines per page.

FWA and device Number of RADBOOT.

Addresses of tables.

Address of SERDEV.

Address of REQCOM.

Address to return to after INIT runs.

Byte 0 = Nonzero, XEQ FGD Load/RLS.

Format flag, FWA, number cells.

Flags used in PMD Overlay (see listing of
PMD Overlay for details).

FPT for PMD to write on DO (3 words); status is posted in
word 3.

Cells to post status in for BCKG Public Library load
(3 cells).

Clock cells must start on a DW boundary: there are
counters for 4 clocks - 2 words/clock. t

Word 2 gets stored into word 1 when Counter = O.

tThe user never needs to access Clock 4.

Appendix A 163

Table A-l. RBM System Flags and Pointers (cont.)

Name Location Descripti on

K:ABTLOC X'lBE' Abort location.

K:DCT4 X'lBF' Address of DCT 4.

K:MSGl X'190' KEY-IN.

K:MSG2 X'193' KEY ERR.

K:MSG3 X'196' RLS Name NA.

K:MSG4 X'19A' File Name.

K:MSG5 X' 19E' FGD AREA ACTIVE.

K:MSG6 X'lA3' NOT ENUF BCKG SPACE.

K:MSG7 X'lA9' UNABLE TO DO ASSIGN.

K:MSGB X'lAF' BCKG CKPT.

K:MSG9 X'lB2' BKG IN USE BY FGD.

K:MSG10 X'l B7' BCKG RESTART.

K:MSGll X'lBB' CK AREA TOO SMALL.

K:MSG12 X'lCO' I/O ERR ON CKPT.

K:MSG13 X'lC5' JOB ABORTED AT XXXXX.

K:MSG14 X'1CB' LOADED PROG. XXXXXXXX, etc.

K:MSG15 X'lD5 1 UNABLE TO LOAD BCKG PUB LIB.

K:MSG16 X'1DD' CKPT WAITING for BCKG I/O RUNDOWN.

K:FPSIM X'1E6' Address of Simulation Routi nes.

K:DECSIM X'1E7'

I
K:BYTSIM X'lEB'

K:CYSIM X'lE9 1

K:MONTH X'lEA' Table of days/month and DCB names.

K:DATEl X'lF6' Maximum number days in year, year - 1970.

K:DATE2 X' 1F71 Day of year.

K:TIME X'lFB' Time of day in seconds.

K:ELTIMl X'lF9' FGD saves BCKG elapsed time here.

K:LIMIT X'1FA' Maximum "execution time for BCKG.

K:ASSNAM X'1FB' Account entry for AL file (B words).

164 Appendix A

Table A-l. RBM System Flags and Pointers (cont.)

Name Location Descri pti on

K:ELTIM2 X'2021 Last WD of entry - elapsed time.

K :RFTl2 X'2031 Current record number.

K:RFTll X'2041 Current fi Ie number.

K :RFTl X'205 1 RAD fi Ie name.

K:RFT8 X'206 1 Master Dictionary Index.

K:PTCH X'207 1 Beginning address of patch area.

K:PTCHND X'208 1 Ending address of patch area.

Appendix A 165

APPENDIX B. PAPER TAPE STANDARD FORMAT

A binary record is signaled by an XI 11 I as the first character, and the two bytes following are the record sizes.
The specified number of data bytes follow the count.

An EBCDIC record is one whose first character is not an XI 11 I. An EBCDIC record is terminated by an NL code
(15

16
), or a blank frame (00).

166 Appendix B

Xerox Data Systems

READER COMMENT FORM
We would appreciate your comments and suggestions for improving this publication.

Publication No. I Rev. Letter I Title I Current Date

How did you use this publication? Is the material presented effectively?

0 Learning 0 I nsta II ing 0 Operating 0 Fully covered 0 Well ill ustrated

0 Reference 0 Maintaining 0 Sales 0 Clear 0 Well organized

What is your overall rating of this publication? What is your occupation?

0 Very good 0 Fair o Very poor

0 Good 0 Poor

Your other comments may be entered here. Please be specific and give page, column, and
line number references where applicable. To report errors, please use the XDS Software
Improvement or Difficulty Report (1188) instead of this form.

Thank you for your interest. Your name and return address.

Fold and fasten as shown on back.
No postage needed if mailed in U.S.A.

2190(5/71) Xerox Data Systems

STAPLE

FOLD

FOLD

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY

Xerox Data Systems

701 South Aviation Boulevard
EI Segundo, California 90245

ATTN: PROGRAMMING PUBLICATIONS

STAPLE

FIRST CLASS
PERMIT NO. 229

EL SEGUNDO. CALIF.

I
l

I
----1

701 South Aviation Boulevard
EI Segundo, California 90245
213679-4511

XEROX

XEROX® is a trademark of XEROX CORPORATION.

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	replyA
	replyB
	xBack

