
REAL·TIME BATCH MONITOR
OPERATIONS MANUAL

for

XDS SIGMA 5/7 COMPUTERS

90 16 47A

February 1970

xos

Price: $1.75

Xerox Data Systems/701 South Aviation Boulevard/EI Segundo, California 90245

£1970, Xerox Data Systems, Inc. Printed in U.S.A

RELATED PUBLICATIONS

Title Publ ication No.

XDS Sigma 5 Computer Reference Manual 90 09 59

XDS Sigma 7 Computer Reference Manual 90 09 50

XDS Sigma 5/7 Real-Time Batch Processing Reference Manual 90 1581

XDS Sigma 5/7 Real-Time Batch Monitor Users Guide 90 16 47

XDS Sigma 5/7 Real-Time Batch Monitor Technical Manual 90 17 00

XDS Sigma 5/7 Mathematical Routines Technical Manual 900906

XDS Sigma 5/7 Symbol and Meta-Symbol Reference Manual 90 09 52

XDS Sigma 5/7 Macro-Symbol Reference Manual 90 1578

XDS Sigma 5/7 SL-1 Reference Manual 90 1676

XDS Sigma 5/7 FORTRAN IV-H Reference Manual 900966

XDS Sigma 5/7 FORTRAN IV-H Operations Manual 90 1144

XDS Sigma 5/7 FORTRAN IV-H library/Run-Time Technical Manual 90 11 38

XDS Glossary of Computer Terminology 90 09 57

NOTICE

The specifications of the software system described in this publication are subject to chonge without notice. The availability or performance of some features may
depend on a specific configuration of equipment such as additional tape units or larger memory. Customers should consult their XDS sales representative for details.

ii

CONTENTS

l. INTRODUCTION 5. RUNNING FOREGROUND JOBS 20

Real-Time Programs Overview 20
Background Programs Real-Time Interrupts 20
Software Envi ronment Temporari Iy Inactive Foreground 20

",~onitoi Console Interrupt Prioriiy Level 20
Job Control Processor 2 Runni ng Foreground Programs 20

Overl ay Loader 2 Releasing Foreground Programs 21
RAD Files 2 Checkpointing Background 21
RAD Editor 2 Restart 21
System Processors 3 Preventing Checkpoint 22

Restoring Memory 22
Operator Intervention 22

2. OPERA TOR/SYSTEM INTERFACE 4 Error Recovery 22
Loading New Foreground Jobs 22

Unsol icited Key-Ins 4
Device Names 4
Operational Labels 4 6. RAD EDITOR OPERATIONS 25

Standard Key-Ins =>
Combined Key-Ins 6 RAD Areas Protection 25
Correcting a Key-In 6 Calling RAD Editor 25
Device Control 6 Command Formats 25
Card Reader 7 RAD Editor Deck Setups 27
Card Punch 7 RAD Editor Error Messages 27
Printer 7 RA D Restora ti on Messages 29
Paper Tape Reader 8
Paper Tape Punch 8
Magnetic Tape 8 7. OVERLAY LOADER OPERA TIONS 33

Error and Status Messages 8
Monitor Messages 8 Operator Handl ing 33
T rap Hand I er Messages 10 Error Diagnostics 33
JCP Messages 10 Overlay Control Commands 39

Control Command Sequence 39
ROOT or SEG Substack Sequence 40

3. SYSTEM CONTROL COMMANDS 12 PUBLIB Substack 40
Loader Command Formats 40

Job Control Processor 12 Overlay Loader Deck Setups 43
Monitor Control Commands 12

Control Command Format 12
Separators and Terminators 13
Continuation Cards 13
Command Mnemon i cs 13 ILLUSTRATIONS

Logging Controi Commands 13
Control Command Repertory 13 l. Job Stack with Two Job Steps 12

Processors/Monitor Interface 16 2. Source Program Assem b I y Examp Ie 17
3. Load and Go Deck Exampl e 17
4. Batch Job Example 18

4. RUNNING BACKGROUND JOBS 17 5. Typical Core Memory Partitioning 20
6. Load and Execute Foreground Program _____ 23

Job Definition 17 7. Load and Execute Segmented Foreground
Load and Go Jobs 17 Program 24
Batch Jobs 17 8. RAD Editor ALLOT Example 28
Job Steps ____ 17 9. RAD Editor COPY Example 28

General Operating Considerations 18 10. Major Substack Sequence 40
Background Job Restrictions 19 1l. ROOT or SEG Substack Sequence 40
Errors in Job Stream 19 12. PUBLIB Sequence 41
Operator Interrupt During Concurrent 13. Overlay Loader Segmented Job Example 43

Foreground/Background Operations ___ 19 14. Overlay Loader Batch Example with
A ttended Runs 19 GOLINKS 44

iii

TABLES 7. Processor Specification Options 16

1. I/O Device Type Codes 4 8. RA D Ed i tor Commands 26

2. Operator Key-Ins 5 9. RAD Editor Error and Status Messages 29

3. Monitor Actions 7
10. RAD Restoration Messages 31

4. Monitor Messages 8

5. JCP Messages 10 11. Overlay Loader Diagnostics 33

6. RBM Control Commands 13 12. Loader Control Commands 41

iv

DEFINITION OF TERMS

active foreground program: a foreground program is active
if it is resident in memory, connected to interrupts, or
in the process of being entered into the system via a
! RUN control command.

background area: that area of core storage allocated to
batch processing. This area may be checkpointed for
use by foreground programs.

background program: any program executed under Monitor
control in the background area with no external inter
rupts active. These programs are entered through the
batch processing input stream.

binary input: input from the device to which the BI (binary
input) operational label is assigned.

centrally connected interrupt: an interrupt that is con
nected to a Monitor interrupt routine which first
saves the envi ronment of the system and then swi tches
the environment to that of the task that gets control
when the interrupt occurs.

checkpointed job: a partially processed background job
that has been saved in secondary storage along with
all registers and other II environment" so that the job
can be restarted.

control command: any control message other than a key-in.
A control command may be input via any device to
which the system command input function has been
assigned (normally a card reader).

control message: any message received by the Monitor that
is either a control command or a control key-in (see
"key-in").

Data Control Block (DCB): a table in the executing pro
gram that contains the inforrnation used by the lv',onitor
in the performance of an I/O operation.

dedicated memory: core memory locations reserved by the
Monitor for special purposes, such as traps, interrupts,
and real-time programs.

directly connected interrupt: an interrupt which, when it
occurs, causes control to go directly to the task. E. g. ,
execution of the XPSD instruction in the interrupt lo
cation gives control to the task rather than first going
to a Monitor interrupt routine.

end record: the last record to be loaded, in an object mod
ule or load module.

execution location: a value replacing the origin of a relo
catable program, to change the addressatwhich program
loading is to begin.

foreground area: that portion of memory dedicated specifi
cally for foreground programs.

foreground program: a load module that contains one or
more foreground tasks.

foreground task: a body of procedural code that is associ
ated with (connected to) a particular interrupt and that
is eXecuted when the interrupt occurs.

Function Parameter Table (FPT): a table through which a
user's program communicates with a Monitor function
(such as an I/O function).

GO file: a temporary disc file of relocatable object mod
u I es formed by a processor.

idle state: the state of the Monitor when it is first loaded
into core memory or after encountering a ! FIN control
command. The idle state is ended by means of a C
key-in.

installation control command: any control command used
during System Generation to direct the formatting of
a Monitor system.

key-in: information entered by the operator via a keyboard.

keyword: a word, consisting of from 1 to 8 characters,
that identifies a particular operand used in a con
trol command.

library input: input from the device to which the LI (library
input) operational label is assigned.

load map: a listing of significant information pertaining to
the storage locations used by a program.

load module: an executable program formed by using relo
catable object modules and/or I ibrary object modules
as source information.

logical device: a peripheral device that is represented in a
program by an operationai iabei (e. g. , BI or BO) rather
than by a specific physical device name.

Monitor: a program that supervises the processing! loading!
and execution of other programs.

object deck: a card deck comprising one or more object
modules and control commands.

object language: the standard binary language in which the
output of a compi ler or assembler is expressed.

object module: the series of records containing the load
information pertaining to a single program or sub
program. Object modules serve as input to the Over
lay Loader.

operational label: a symbolic name used to identify a logi
cal system device.

option: an elective operand in a control command or pro
cedure call, or an elective parameter in a Function
Parameter Table.

Overlay Loader: a processor that loads and I inks elements
of overlay programs.

overlay program: a segmented program in which the segment
currently being executed may overlay the core storage
area occupied by a previously executed segment.

v

physical device: a peripheral device that is referred to by
a II name ll specifying the device type, I/O channel,
and device number (also see Illogical device").

postmortem dump: a I isting of the contents of a specified
area of core memory, usually following the abortive
execution of a program.

Relocatable Object Module: a program, or subprogram,
generated by a processor such as Macro-Symbol,
FORTRAN, etc. (in XDS Sigma 5/7 object language).

resident program: a program loaded into core each time the
system is booted in.

ROM: Relocatable Object Module.

secondary storage: any rapid-access storage medium other
than core memory (e. g., RAD).

segment loader: a Monitor routine that loads overlay seg
ments from disc storage at execution time.

source deck: a card deck comprising a complete program
or subprogram, in symbolic EBCDIC format.

vi

source language: a language used to prepare a source pro
gram (and therefrom a source deck) suitable for process
ing by an assembler or compiler.

standard control section: a control section whose length is
not known by a l-pass processor until all the load in
formation for that section has been generated.

symbolic input: input from the device to which the 51
(symbolic input) operational label is assigned.

symbolic name: an identifier that is associated with some
particular source program statement or item so that
symbolic references may be made to it even though its
value may be subject to redefinition.

system library: a group of standard routines in object
language format, any of which may be included in a
program being created.

Task Control Block (TCB): a table of program control informa
tion built by the relocating loader when a load module
is formed. The TCB is part of the load module and con
tains a temp stack and the data required to allow re
entry of I ibrary routines during program execution.
The TCB is program associated and not task associated.

1. INTRODUCTION

The XDS Sigma 5/7 Real-Time Batch Monitor (RBM) is the
major control element of the operating system described in
this manual. The total operating system includes the Moni
tor, Overlay Loader, RAD Editor, language processors, and
user real-time and batch programs.

The content of th is manual is operator-oriented in that it is
specifically directed toward Monitor/operator communica
ti ons, procedures, control command formats, and devi ce
considerations necessary to maintain the system and process
program inputs under Monitor contro!' A comprehensive
discussion of the internal functions of the Monitor and its
associated components is given in the XDS Sigma 5/7 Real
Time Batch Monitor Reference Manual (Publication No.
90 15 81).

The RBM system divides core memory and Rapid Access Data
file (RAD) utilization into two distind nrenc;: foreground
(privileged) areas and background areas. The purpose of
this division is to guarantee real-time tasks adequate mem
ory and protection in the execution of highly critical pro
cesses, and at the same time, offer an efficient method for
using up idle CPU time when real-time processes are not
busy. Allocation of both areas is performed at System
Generation time (SYSGEN) in accordance with the needs
of the local installation.

Typically, the operator1s responsibilities are directed to
"-lard two distinct applications of program execution: real
time processing and batch (background) processing.

REAL-TIME PROGRAMS

Real-time programs are connected to hardware interrupts
that receive signals from external sources or real-time clocks
to trigger execution and respond to these external events
within microseconds.

Some real-time programs are loaded and initialized at Sys
tem Boot time. Others can be run and released by the oper
ator. The first method is used when the real-time process
normally remains unchanged and is constantly operative.
Typical examples would be a satellite tracking system or
the control element of an automated plant or factory. The
second approach is sometimes used when real-time opera
tions are executed periodically or irregularly. An example
would be a test procedure in an experimental laboratory.
In this case, the operator must access the protected portion
of memory through an FG key-in to load and initial ize the
program (see Table 2 for key-in descriptions).

BACKGROUND PROGRAMS

Background jobs are assembled or compiled and executed in
the background area of core memory. The RBM operating

system is designed to allow background programs to use up
all available CPU time when the real time processes are not
operative, thus giving greater economy to the system.

In contrast to real-time tasks whose priority sequence and
function is controlled by external hardware interrupt or op
erator key-in, background programs are executed in a serial
fashion and thei r sequence is controlled by control commands
inserted in the job stack.

Background compi lations or assemb! ies Oie initially loaded
from some peri pheral device (generall y a card reader) onto
a file in the Background Programs area of the RADand exe
cuted in background core storage in serial fashion.

SOFTWARE E'NVIRONMENT

The software modules and files with which the operator will
find himself directly or indirectly involved are

Monitor

Job Control Processor

Overl ay Loader

OV file

Permanent RAD Files

RAD Editor

System Processors

GO File

User Programs (foreground and background)

MONITOR

The Monitor is the primary control element of the operating
system and functions as a supervisor that coordinates and
controls a continuous series of foreground and background
jobs. It is also the two-way communi cations I ink between
the operator and the total system. The operator can direct
the system to change the status of an I/O device and alter
system operation. The Monitor communicates with the op
erator via the operator1s console (OC device) and in some
instances, the listing log (LL device, which is generally a
line printer) with error messages, status messages, or requests
for operator action such as readying a magnetic tape unit.

Other services the Monitor performs includes preserving the
relative priority of real-time tasks, protecting the foreground
core and secondary storage from background interference,
monitoring avai lable CPU time for background use when real
time interrupts are idle, and providing general I/O services
for all tasks.

Introduction

Parts of the Monitor are permanently resident in core storage
so that it can respond immediately to a request for service
from a real-time task. Response time to such tasks is highly
critical and is measured in microseconds. Less critical por
tions of the Monitor such as the Job Control Processor are
permanently stored on the Systems area of the RAD and
brought into core as needed.

JOB CONTROL PROCESSOR

The Job Control Processor (JCP) reads and processes control
commands input from the Control Command (C) input device.
Whenever the JCP encounters a request in the job stack to
execute a processor (such as the FORTRAN compiler), or a
user program, it causes the processor or program to be loaded
into core from the RAD and the Monitor to rei inquish control.

The JCP outputs error and status messages to the operator on
both the LL and OC devices (unless both are assigned to the
same devi ce) in contrast to other Mon itor messages that are
output only on the OC device. The only significance the
JCP has to the operator is that at least one standard status
message to the operator refers to the JCP; he may also wonder
why some messages are output only on OC and others are
output on both OC and LL. Generally, messages output on
LL are for programmer reference. All messages of interest
to the operator are output on the OC device.

OVERLAY LOADER

The Overlay Loader creates programs in overlay (segmented)
form. That is, the Loader converts a program in object
module form into an absolute core image version called 0

load module that is segmented for later execution. Segment
ing permits programmers to create programs much larger than
the available core size.

Like any other processor, the Loader is called in for execu
tion by a control command in the user's job. The mnemonics
for the control commands used by the Overlay Loader are
similar to those used by the Monitor but the format of the
commands is sl ightly different (see the Overlay Loader chap
ter later in this manual). When the Loader has control, it
communicates with the operator through its own status and
error messages.

RAD FILES

Since the entire RBM system is RAD oriented, every job run
by the operator will directly or indirectly involve the use,
modification, allocation, or release of permanent RAD files.
The files of greatest interest to the operator and the mne
monics used to reference them on control commands are as
follows:

• Foreground Programs area (FP) contains a collection of
foreground programs and optional User Libraries and
Publ ic libraries. Referenced I ibrary routines are

2 Software Environment

included in the user load modules at "Load" time.
Public libraries are a group of routines shared by 0

number of programs and are called into core for exe
cution only when referenced.

• System Programs area (SP) contains the Monitor and the
set of language processors used by the local installation,
such as Macro-Symbol and FORTRAN IV-H. The area
also contains the System library (i. e., FORTRAN IV-H
Library/Run-time), RAD Editor, and Overlay Loader.
All translators are called by user jobs to execute in the
background core space.

• Background Programs area (BP) contains the set of user
operational programs that execute in the background
and a background User Library if desired.

• Data areas (D 1 through DF) are divided into foreground
and background data areas, and are used for storing
data. Foreground programs cannot write into files in
background data areas or vice versa; however, either
type of program can freely read from both areas.

• Background Temp area (Bn contains temporary (scratch)
fi les (Xl through Xn where n is a SYSGEN parameter)
used by background programs for intermediate storage
in processing. Their use is identical to scratch tapes
on magnetic tape units, and files can be rewound or
searched. Note that te mp fi I es are erased at the end
of each job step by having their pointers reset, unless
a SAVE command is present within a job step. Temp
files are automatically reset when a new JOB command
is encountered in a job stack regardless of SAVE com
mands, and there is no way to save data on temp fi les
from one job to another.

The GO and OV fi les are also in the BT area and are
special cases. The GO file contains Relocatable
Object Modules (ROMs) formed by a processor if the
GO option is specified. The OV file contains the exe
cutable program formed by the Overlay Loader if a pro
gram file name was not specified at load time.

RAD EDITOR

The RAD Editor controls RAD allocation for areas containing
permanent RAD files and performs utility functions for all
areas.

The operator wi II encounter a number of jobs involving RAD
file manipulation via the RAD Editor, including: allotting
RAD files, building RAD files, dumping RAD areas or files
on user request, copying object modules from libraries,
loading new programs into user or system libraries, inhibit
ing bad RAD tracks, etc.

RAD file manipulation via the RAD Editor is governed
by controi commands that have a format similar to Moni
tor control commands. When the RAD Editor has con
trol, it communicates with the operator through its own
error and status messages.

SYSTEM PROCESSORS

The following language processors are available under RBM,
and any or all of them may be incorporated in the local
system:

FORTRAN IV-H

SL-l

Symbol

Macro-Symbol

The selected processors are permanently stored in the Sys
tem Programs area on the RAD and called into core storage
to assemble or compi Ie a user's source program through a
control command in a user's source deck. The Monitor re
linquishes control to the requested processor until the job
step is completed.

Software Environment 3

2. OPERATOR/SYSTEM INTERFACE

Communication between the operator and the system takes
place through operator key-ins (solicited or unsolicited),
and Monitor printouts. In addition to job status messages,
Monitor type-outs on the keyboard/printer inform the oper
ator of various abnormal or error conditions affecting system
operation. All Monitor messages to the operator are pre
ceded by two exclamation marks (I I).

UNSOLICITED KEY -INS

Unsol icited key-ins provide the operator with a means of
controlling a background job, or the loading or releasing of
foreground programs. Any control the operator can exerc ise
over the foreground is provided through key-ins, so that
foreground control is independent of the background job
stack.

Depressing the INTERRUPT switch on the Control Panel ini
tiates a key-in. t The types of key-ins available are listed
in Table 2. When all foreground tasks are inactive, the
Monitor responds with the message

II KEY-IN

on the operator's console. The operator then keys in the
symbol and data he wishes to transmit to the system. Two
conventions apply to all key-ins:

1. End each message by depressing the NL (New Line)
key.

2. Delete a message by depressing the EOM (End of
Message) key before depressing the NL key.

Use of an exclamation mark to precede an operator key-in
is optional. Spaces (blanks) to separate fields can be used
as desired.

DEVICE NAMES

Some key-ins require a device name. Devices are identi
fied by type, channel, and device number. Device types
and their associated symbols are listed in Table 1. The
eight available channels are represented by a single letter,
from A to H. Device numbers are given in two-digit hexa
decimal code, from 00 to 7F. Alternatively, device con
trollers and their associated devices may be identified by a
single hexadecimal digit from 8 to F for the device con
trollers, followed by a single hexadecimal digit from 0
through F for the associated device.

tTr.l r . I· I I I ••••• ...J L
iT me Toregrouna IS ousy wnen a KeY-in is initioteu, hie

Monitor wi II not respond unti I all foreground interrupts
are satisifed.

4 Operator/System Interface

Examples:

CRA03

7TAEl

Card reader, Channel A, device 3

7-track magnetic tape, Channel A, device
controller E, device 1.

Table 1. I/O Device Type Codes

Mnemonic Device Type

TY Typewriter

LP Li ne Pri nter

CR Card Reader

CP Card Punch

9T 9-track magnetic tape

7T 7 -track magneti c tape

PP Paper tape punch

PR Paper tape reader

DC Magnetic disc or XDS RAD

NO Not a standard device. Used as a
special purpose device for direct I/O
execution (IOEX).

PL Plotter

OPERATIONAL LABELS

An operational label identifies a logical device type so that
it can be assigned to a specific I/O device. For example,
the operational label BI stands for binary input. This type
of data is usually assigned to a card or tape reader. Oper
ational labels are assigned at system generation time but
may be changed by a STDLB (for standard label) key-in. At
the beginning of each job, the operational labels are re
assigned to their initial assignment. System operational
labels are listed below.

Label

BI

CI

51

C

BO

Meaning

Binary input

Compressed input (Macro-Symbol)

Source input (symbol ic)

Control command input
t

Bi nary output

t _ ., ., .
tsoth the temporary and permanent assignments of this

labe! can be changed through STDLB key-in or control
command unless "C" is assigned to zero. In this event,
5TDLB will only change the temporary label.

Label

DO

LO

Meaning

Diagnostic output

Listing output

STANDARD KEY-INS

The analysis and subsequent action from an unsolicited key
in is performed at the RBM Control Task priority level.
When the RBM Control Task becomes the highest priority in
the system (that is, when all foreground tasks are inactive)
the message

CO Compressed output (Macro-Symbol)
II KEY-IN

LL Listing log (control commands and other
system messages)

wi II be output on the OC device to inform the operator that
the system can now accept a key-in.

OC Operator's console data

SO Symbol ic output (SL-l)

PL Plotter output

Key-In

X

C
I

COC

DT mo,day,yr,hr,min

RUN name

I
TY

SY

FG

CC

RLS name

STDLB label [,area] ,name

INTLB label, location (hex) of interrupt

Note that if the typewriter is busy at the time of the Con
trol Panel Interrupt (i. e., waiting for an input to complete),
the operator must complete the input before the I ! KEY-IN
type-out can occur. All legal key-ins are itemized in
Table 2.

Table 2. Operator Key-Ins

Purpose

Abort current background job. Message on OC and LL wi II show last
location executed.

Continue processing in the background. If the background was in a wait
or idle state, the system leaves that state and proceeds.

Job was halted because of error in control command. Continue from OC
with correct control command (after depressing the Control Panel
interrupt key).

Input of current date and time. Example: DT 8,17,69,22,30

Load end execute a foreground piogium. The name of the foreground fi Ie

to be loaded must be input.

Transfer control from the C device to OC (typewri ter).

Override RAD software protection to allow a background program to write
in any RAD file. The SY key-in is cleared when the next !JOB com-
mand is encountered.

Permit loading of foreground program from background job stack for exe-
cution via a ! RUN control command.

Retransfer control back to the C device from OC.

Release foreground program designated in the (fi Ie) name.

Change permanent operational label assignment. The "Iabel" identifies
the op label. Thellarea ll specifies a RADarea ifthenewoplbisassignedtoa
RAD file; the II name ll specifies a physical device or file to which the oplb
is to be assigned. The new assignment stays in effect unti I the system is
rebooted or the assignment changed by another key-in.

Change assignment of interrupt labe!s.

Operational Labels 5

Table 2. Operator Key-Ins (cont.)

Key-In Purpose

CINT {location} m Disarm, arm and enable, or trigger specified interrupt. The "Iocation"
specifies the hex address of the interrupt; "Iabel" specifies an interrupt

label '
label; "D" is used to disarm specified interrupt; "A" is used to arm and
enable; "Til is used to arm, enable, and trigger the interrupt.

FMEM [nJ Change foreground core memory allocation. The lin II specifies number of
pages to be allocated to the foreground. Reallocation takes place after
current background job step is completed. If the foreground is not free,
the alarm! ! FG D AREA ACTIVE is output. If lin II is not specified, the fore-
ground is reset to the allocation specified at SYSGEN.

{~n [from,to]

Dump Monitor (DM), Dump Foreground (DF), or Dump Background (DB)
areas of memory. If II from, to" is absent, the entire currently defined
area wi II be dumped; if present, the first word address in hex and last word
address in hex of the selected area are defined.

DED yyndd {~} [,IJ
Dedicate a device, and its controller and, optionally, all other devices on
the same lOP to the foreground or to IOEX. The "yyndd" is the name of
the device to be dedicated; the "F" specifies dedication to foreground; "X"
specifies dedication to IOEX; "1" specifies all devices on IOPn are to be
dedicated.

UND yyndd {~} [,IJ
Undedicate a device or lOP previously dedicated through DED. All param-
eters present in the DED previously used must be present in the UND key-in.

COMBINED KEY-INS is output on the OC device. Such a message is of the

To expedite operator key-ins, the following combinations
of key-ins are recognized:

Combined Form

FGC

SYC

SFC,FSC

TYC

Result

Executes FG and C key-ins.

Executes SY and C key-ins.

Executes FG, SY, and C
key-ins.

Executes TY and C key-ins.

CORRECTING A KEY-IN

If an operator key-in is not recognized by the system as
va lid input, the message

!! KEY ERR

is output on OC. The operator should retype the correct
key-in.

DEViCE CONTROL

If the Monitor encounters an abnormal condition during
an I/O operation, a pertinent message to the operator

6 Operational Labels

form

!! name message

where

name is the physical device name (see ASSIGN
control command).

message is the message string informing the oper-
ator of the specific condition that has been de
tected; for example:

ERROR (error was detected on operation)

or

MANUAL (device not ready)

Monitor I/O messages are discussed below, grouped ac
cording to the type of device to which they apply.

After correcting the abnormal conditions, the operator re
sponds by means of a key-in. The format for an I/O
key-in is

name a

where

name is the physical device name of the device

a

involved in the I/o operation.

specifies a Monitor-action character (see
Table 3).

Table 3. Monitor Actions

a Monitor Action

C Continue lias is".

E

R

Inform the user program or the error and
transmit record lias is".

Repeat the i/o operation.

CARD READER

If the card reader fails to read properly! or if a validity
error occurs, the Monitor outputs the message

! ! CRndd ERROR

on the OC device. After correcting the condition, the oper
ator responds with an I/O key-in message. The acti on char
acter selected (see Table 3) depends on the circumstances.

If a feed check error or a power fai lure occurs, the Monitor
outputs the message

!! CRndd ERROR

or

! ! CRndd TIMED OUT

on the OC device,t depending on where in the cycle the
error took place. If the card in the hopper is damaged, the
operator replaces it with a duplicate; then, in either case
he presses the RESET and START buttons on the card reader,
and responds to the Monitor with the key-in

CRndd R

If the card stacker is full, the hopper is empty, or the de
vice is in the manual mode, the Monitoroutputs the message

!! CRndd MANUAL

on the OC device. The operator corrects the condition and
then presses the START button on the card reader.

CARD PUNCH

Instead of outputting an error message when a punch error
is detected, the I/O handler attempts to punch a card x
times (x = NRT, a DCB parameter specified by the user)tt
before outputti ng the message.

!! CPndd ERROR

tThis message also occurs if CRndd does not respond to SIO
within 5 seconds.

ttF h· d· . f h· or a compre enslve Iscusslon 0 t IS parameter, see
Chapter 4, DCB Creation, in the Sigma 5/7 Real-Time Batch
Monitor Reference Manual.

on the OC device. The above message indicates that the
card punch is not functioning properl y, and the operator
should reevaluate the job stack based on this knowledge.
Improperly punched cards are routed to an alternate stacker.

If the input hopper is empty, the stacker is full, chip box
is fuii, or device is in manuai mode, the Monitor outputs
the message

i! CPndd MANUAL

on the OC device. The operator corrects the condition and
presses the START button on the card punch.

If a power failure or a feed check error occurs; the Monitor
outputs the message

! ! CPndd ERROR

or

!! CPndd TIMED OUTt

on the OC device, depending on where in the cycle the
error took place. If the card in the hopper is damaged, the
operator removes it; then, in either case, he presses the
RESET and START buttons on the card punch and responds to
the Monitor with the key-in

CPndd R

PRINTER

When an irrecoverable print error is detected, the Monitor
outputs the message

!! LPndd ERROR

on the OC device. The I/O handler attempts to print a
line x times (x = NRT, a DCB variable specified by the
1//0 user) before outputting the above message. The Opei=

ator's response after correcting the condition depends on
the specific device and circumstances.

If the printer is out of paper, the carriage is inoperative, or
the device is in the manual mode, the Monitor outputs the
message

!! LPndd MANUAL

on the OC device. The operator corrects the condition and
presses the START button on the line printer.

If the line printer power is off, the Monitor outputs the
message

!! LPndd UNRECOG

tThis message also occurs if CPndd does not respond to SIO
within 5 seconds.

Operational Labels 7

on the OC device. The operator should correct the con
dition and respond with the key-in

LPndd R

PAPER TAPE READER

If an error occurs during the reading of paper tape, the
Monitor outputs the message

!! PRndd ERROR

on the OC device. After correcting the condition, the oper
ator responds with an I/O key-in message. The action char
acter selected (see Table 3) depends on the circumstances.

P APER TAPE PUNCH

If the paper tape punch is out of paper, the Monitor outputs
the message

!! PPndd MANUAL

on the OC device. The operator corrects the condition and
depresses the START key.

If the paper tape punch is off-line or the power is off, the
Mon i tor outputs the message

!! PPndd UNRECOG

on the OC device. The operator corrects the condition and
responds to the Monitor with the key-i n

PPndd C or R

MAGNETIC TAPE

If an error occurs during the reading or writing of magnetic
tape, the Monitor I/O handler attempts a recovery x times
(x = NRT, a DCB variable). If the error is irrecoverable,
the user is informed via an error return.

If a magnetic tape is addressed and there is no physical reel
or power, the Monitor will output the message

!! MTndd UNRECOG

on the OC device. The operator's response depends on the
circumstances.

ERROR AND STATUS MESSAGES

When events take place in the system requiring operator
intervention, or when one job completes and another job
begins, RBM informs the operator of these conditions by
messages output to the operator1s console (OC device).
All such messages from the Monitor begin with two excla
mation marks (! I). Generally, these messages require no
operator response on the typewriter, but may indicate that
some peripheral needs attention.

MONITOR MESSAGES

The messages itemized in Table 4 are output by the Monitor
on the OC device.

Table 4. Monitor Messages

Message

!! KEY ERROR

! ! JOB ABORTED at yyyyy

! ! PAUSE comments

!! BEGIN WAIT

!! BCKG CKP

! ! BKG RESTART

! ! yyndd WRT PROT

! ! yyndd UNRECOG

8 Error and Status Messages

Meaning

Monitor cannot recognize an unsolicited key-in response. A new key-in should be
attempted.

Background job has been aborted. The "yyyyy" parameter contains the hexadecimal
address of the last instruction executed in the background. If aborted because the
specified I imit on a ! LIMIT control command has been reached, yyyyy wi II contain
the word II LIMIT".

A ! PAUSE control command card has been read. The comments field may contain tape
mounti ng i nstructi ons. A key-in of "C" after pressing the INTERRUPT switch wi II cause
RBM to continue reading from the job stack.

-------_._-----

Background has executed a II WAIT II request; an unsolicited key-in of "C" will continue
background processing.

Background has been checkpointed as a result of a foreground program load.

Background has been restarted from its point of interruption.

Indicated unit is write-protected. If a magnetic tape, insert the write ring and place
tape in "start" condition to continue if the program is waiting for operator action; or
abort background program if the background is performing an invalid operation.

Some condition on device type yy with physical device number ndd (hexadecimal) has
caused devi ce to become not operati ona I.

Table 4. Monitor Messages (cont.)

Message Meaning

! ! yyndd ERROR A parity or transmission error has occurred on this device. Any automatic retries that
\A/ere specified have been performed before this message ~vas output.

! ! yyndd MANUAL Device specified is in manual mode and may be out of paper, cards, or tape.

! ! RLS NAME NA A key-in request has been made to release a foreground program, but the name of the
program is not included among the active foreground programs.

I IFILE NAME ERR A problem has occurred from a STD LB key-i n request in attempti ng to open or close a RAD fi Ie.

I I r"" A n r- A A r TT\ ,r-
! ! r I...:1U f-\KCf-\ f-\\.... 11 V C An FMEM key-in request cannot be honored because a foreground program is st; i i active

in the area being released.

I INOT ENUF BCKG SPACE Insuffic ient background space to load the requested background program.

I I UNABLE TO DO ASSIGN An !ASSIGN command cannot be fulfi lied because either the DCB cannot be found
or the DCB is only five words in length, and a seven-word DCB is required (seven-
wurJ DeBs art:: rt::qui red for any RAD fi Ie assi gns).

! I BKG IN USE BY FGD Background space is being used by the foreground, but a checkpoint was not required
since the background vIas inactive at the time of the foreground load.

! !CK AREA TOO SMALL An attempt was made to checkpoint the background, but not enough space was avail-
able on the CK area of the RAD. The background space will nevertheless be released
to the foreground, and the active background job will be aborted when the background
is restarted.

I !I/O ERROR ON CKPT An attempt was made to checkpoint the background, but a RAD I/O error occurred
during the process. The background space will nevertheless be released to the fore-
ground, and the active background job will be aborted when the background is restarted.

I I LOADED PROG xxxxxxxx The specified foreground programs have been loaded for execution by the foreground

loader. A maximum of three program names will be output in the one messa~

I I UNABLE TO CLOSE The specified DCB was not closed upon releasing a foreground program.
DC B xxxxxxxx

! ! PROG xxxxxxxx RELEASED The specified foreground program has been released.

I I FGT FULL, CAN'T The specified foreground program cannot be loaded for execution because no room

LOAD xxxxxxxx exists in the Foreground Programs Table.

! ICORE USED, CAN'T The specified foreground program cannot be loaded for execution because the core
LOAD xxxxxxxx space required for its execution is already in use.

! I I/O ERR, CAN IT An I/O error occurred in attempting to load the spec i fi ed foreground program for
LOAD xxxxxxxx execution.

!! NON EXIST. ,CAN'T The specified foreground program cannot be loaded for execution because it does not
LOAD xxxxxxxx exist on the RAD or a Public Library required by the program does not exist on RAD.

The foreground program must exist in the FP area or the OV file.

! IPUB LIB, CAN'T The request to load the specified Public Library for execution is not valid, since all
LOAD Public Libraries must be automatically loaded by the system, as needed.

! ! UNABLE TO LOAD BCKG The current attempt to execute a background program has fai led, because the Publ ic
PUB LIB Libraries required by the background program could not be loaded. The current back-

ground job is aborted.

Error and Status Messages 9

Table 4. Monitor Messages (cont.)

Message Meaning

! lCKPT WAITING FOR The checkpoint function is waiting for all background I/O to run down so that the
BCKG I/O RUNDOWN checkpoint of background can be completed.

! ! UNABLE TO TRIGGER This alarm is output to OC after the system is booted from the RAD if the RBM Control
CONTROL TASK INT. Task Interrupt cannot be triggered.

SIGMA 5/7 RBM-2, This message is output on the OC device every time the system is booted from the RAD.
VERSION xxxx The message can be terminated prematurely by hitting the BREAK key on the typewriter.

TRAP HANDLER MESSAGES Note that the message "ARITH. FAULT AT XXXXx" is output
for the fixed point arithmetic overflow trap, the floating
point fault trap, and the decimal arithmetic fault trap. The
message

The following messages are output by the trap handler upon
occurrence of the various traps if the user does not specify
his own trap handling: "! !ILL. PARAM., CAL AT XXXXx"

! !MEM. PROT. ERR AT xxxxx

! !PRIVILEGE IN ST. AT xxxxx

is output if a user program furnishes the Monitor an invalid
parameter while attempting to use a Monitor function.

! !NONEXIST. ADD. AT xxxxx

! !NONEXIST. INST. AT xxxxx

! !UNIMPLE. INST. AT xxxxx

JCP MESSAGES

In general, the messages itemized in Table 5 are output by
the Job Control Processor on both the OC and LL devices.
The JCP reads and processes each control command unti I it
encounters a request to execute a processor or user program
at which time the appropriate program is read into the back
ground and given control. JCP status or error messages deal
with control commands orother program input diagnostics.

! !STACK OVERFLOW AT xxxxx

! !ARITH. FAULT AT xxxxx

! !WDOG TIMER RUN OUT AT xxx xx

! !ILL. PARAM., CAL AT xxxxx

Message

! !JCP

! ! CC ERROR IN ITEM xx

! !SCHING FOR JOB CMD

! ICC ERROR, FG KY-IN
REQUIRED

! ! CC ERROR, BT OVERF LOW

!! FGT FULL, CAN'T LOAD
xxxxxxxx

10 Error and Status Messages

Table 5. JCP Messages

Meaning

The JC P has just begun to read control commands. This occurs both at the beginning of
a job and between steps within a job. If C is assigned to the typewriter or if "TY"
override is in effect, the input light on the typewriter will indicate that RBM is ready
for input of a control command. This message is output only to Oc.

An error exists in a JCP control command in the indicated item. Every item except
the! character followed by a blank or comma is counted in determining the item in
error. If the first character is not an exclamation character, the message will desig-
nate ITEMO.

The present job has been aborted and the JCP is searching the job stack for the next
JOB or FIN command.

A request has been made to run a foreground program from the background job stack
without previously inputting an FG key-in. The RUN or ROV command must be
reentered after the FG key-in is input.

The file size input on an ! ALLOBT command is greater than the avai lable Background
. T",,,",,.., !? A n .,..,-'"
I I '-"lilt" .,,''"'''' .Jt-''"''''''''''-

I
The indicated foreground program cannot be loaded because insufficient space exists
in the Foreground Program Table.

Message

!! FILE xxxxxxxx NONEXIST.

I! PUB LIB, CANIT

LOAD xxxxxxxx

I! CC ERROR, ILL.
REALLOCATION OF BT

I I BT OVERF LOW

I I BI CKSM ERR
I IBI SEQ ERR

I I ERR, CONTROL BYTE = xx

I I rnn MANY f)FF /RFF Ie ... - - , - _. / .. -. -

Table 5. JCP Messages (cont.)

Meaning

I
The indicated RAD fi Ie was never allocated via the RAD Editor or was never

, written into.

The designated program on the RUN command is a Public Library and cannot be exe
cuted via a RUN command.

An improper ALLOBT command was input to change a Background Temp (BT) scratch
file that was designated as a "saved" file prior to this job step.

Insufficient Background Temp RAD space to execute the requested background pro
gram. The job is aboited.

JCP loader encountered a checksum or sequence error on a binary card during the
loading process.

JCP loader is not equipped to process the indicated control byte.

JCP feeder has e:1COL:~tered mere thcr1 255 dec!crct!cn~ :n the object ~odu!~ beiii9
loaded.

I I UNSATISFIED REF xxxxxxxx Indicated REF was not satisfied during the loading process. This alarm occurs only
on LL if no map was requested, or on LO if a MAP was requested.

I! NOT ENUF SPACE FOR
LOAD

! !TOO MANY DCBls

I I ILLEGAL BINARY CARD

i i UNSATISFIED REF is
DURING LOAD

i i BEGIN IDLE

I! EOT ON FILE xxxxxxxx

I I ILL. NEG. ORG ITEM

I I ILL. DEFINE FIELD ITEM

I ITOO MANY CONTROL
SECT.

I! ILL. EXPRESSION

JCP loader is unable to complete the load because of insufficient background space.

The maximum number of M: and F: DCBs was exceeded during the loading process.
Approximately 27 DCBs can be accommodated by the system. The excess DCBs will
not be stored in the DCB table or the RAD header file.

An EBCDIC card was read by the JCP loader where a binary card was expected.

This message is typed to the operator on OC at the end of a load if any unsatisfied
REFs were encountered during the loading process.

I
job Controi Processor has read a FiN card, which compietes a job stack. The back
ground then goes into an idle state. Processing will resume on a new job stack fol
lowing an unsolicited key-in of C.

End-of-Tape status was returned from an attempt to read or write the indicated
RAD file.

JCP loader has encountered an origin item that it is not equipped to handle (an origin
item that moves the load location counter in a negative direction). The load will be
aborted.

JCP loader has encountered a define field item that it is not equipped to handle (a
define field item that crosses a word boundary). The load will be aborted.

JCP loader has encountered more than one nonstandard control section. The load
wi II be aborted.

JCP loader has encountered an expression that it is not equipped to evaluate (a mixed
resolution expression). The load will be aborted.

Error and Status Messages 11

3. SYSTEM CONTROL COMMANDS

The Monitor is controlled and directed by means of control

commands. These commands effect the construction and
execution of background programs and foreground programs
loaded in from the background job stack, and provide com
munication between a program and its environment. The
environment includes the Monitor and the Macro-Symbol,
Symbol, FORTRAN IV-H, SL-1, Overlay Loader and RAD
Editor processors, the operator, and the peripheral equip
ment. The two service processors (the Overlay Loader and
RAD Editor) have their own subcommands that are defined
in the appropriate chapters.

JOB CONTROL PROCESSOR

The Job Control Processor (JCP) reads all Monitor control
commands from the device designated by the "C II opera
tional label. The JCP is a special processor loaded into
the background by RBM upon the initial "C" key-in. The
JCP is also reloaded into the background following each job
step within a job. A job step is defined as all control com
mands required for the setup and execution of a single pro
cessor or user program within a job stack. (See Figure 1
for an example of a two-step job.)

The JCP processes each control command until a request is
made to execute a processor or user program, at which time
the appropriate program is read into the background and
given control.

Second Job Step --------,1'

First Job Step ------7'

!JOB

MONITOR CONTROL COMMANDS

CONTROL COMMAND FORMAT

Control commands have the general form

(' mnemonic specification

where

is the first character of the record and identifies
the beginning of a control message.

mnemonic is the mnemonic code name of a control
function or the name of a processor. The name may
begin any number of spaces after the I character,
except an IEOD command.

specification is a I isting of required or optional speci-
fications. This may include key words, labels, and
numeric values appropriate to the specific command.

In this manual, the options that may be included in the speci
fication field of a given type of control command are shown
enclosed in brackets (actually no brackets are used in con
trol commands) and parentheses are required to indicate the
grouping of subfields. For example, see the options given
for the LOAD control command.

Figure 1. Job Stack with Two Job Steps

12 System Control Commands

SEPARATORS AND TERMINATORS

One or more blanks may separate the mnemonic and specifi
cation fields, but no blanks can be embedded within a field.
A control command is terminated by the first blank after the
specification field; or, if the specification field is absent and
a comment follows the command, the command is terminated by
a period aftera blank that follows the mnemonic fi eld. Anno
tational comments detai I ing the specific purpose of a command
may be written following the cornrnand terrninotor, but no con
trol command record can contain more than 80 characters.

CONTINUATION CARDS

A control command can be continued from one record to the next
by using a semicolon to replace the comma as a subfi eld termi
nator in the command'sspecification field. Column 1 of the
continuati on cards must contain either an exc lamation mark (for
a command read by the Job Control Processor) ora colon (for
subcommands read by the Overlay Loader or RAD Editor).

If there is an error in a continuation card, the entire com
mnnrl mll<:t hp rp-innllt nftpr rl"'lrrprtil"'ln - - - -- - - -- -- - - - - -- - - - - - -,- - - -- - - _. - _ .. - - .. _ ...

COMMAND MNEMONICS

For all control commands, the first three characters of the
mnemonic following the exclamation character are sufficient
to define any mnemonic code or keyword.

Example:

The mnemonics

! ALL
! ALLO

ALLOB
ALLOBT

are all legal representations for the ALLOBT control
command.

LOGGING CONTROL COMMANDS

Control commands are usually input to the Monitor via
punched cards; however, any input device(s) may be desig
nated for this function (see ASSIGN command). All control
commands are listed on the output devi ce desi gnated as the
listing log (normally a line printer) as they are read. In this
manner, the Monitor keeps the operator informed regarding
the progress of a job. Control commands that are skipped
over until the next JOB command is encountered are listed
with a "greater than" character (» in column 1.

CONTROL COMMAND REPERTORY

All acceptable RBM control commands are given in Table 6,
and are listed in a logical, but not necessarily typical, op
erating sequence. Sample parameters are given in the" Ex
ample" column only to illustrate typical parameter formats.

A complete explanation of the parameters is not given. (A
more detailed description is given in the XDS Sigma 5/7
RBM Reference Manual.) Note that this table lists only the
standard commands recognized by the Monitor; the commands
for the two service processors (Overlay Loader and RAD
Editor) are given in their respective sections of this manual.

Table 6. RBM Control Commands

Genera i Form Example

! JOB [account number ,name] ! JOB 13962,SAMPL

! ATTEND ! ATTEND

! ASSIGN (dcb [area,name]) ~ ! ASSIG (M:LO,9TA81),VFC

L [,(option),(option), .•• ,(option)] ~rASSI (M:SI,D1,PRESTORE)

! PMD [U] [,(from,to)] ~

L ~(from,to)] •..

! PMD U,(1200,1300),

(2000,3000)

Meaning

Starts a new job and signals end of any previous

I
job. Resets all operational labels to their standard
assignments.

Indicates that recovery action is to be attempted
at the console in case of program error or abort in
the background. An unsolicited C key-in causes
the background to continue processing from point
of error. If an ATTEND command is not used and
a job aborts or error occurs, all commands, binary
records, and data are skipped unti I a new JOB or
FIN command is encountered.

Specifies the physical devices or RAD files to be

used to process the current job. Each ASSIGN
assigns a Data Control Block name to an opera
tional label (logical device name), a RAD fi Ie, or
physical device. ASSIGN commands must appear
prior to the appropriate RUN or Processor name
command and affect only that one job step.

Dumps specified areas of memory on the DO de
vice if a background job is aborted or terminated
normally during execution. The U parameter

Monitor Control Commands 13

General Form

! LIMIT n

! ALLOBT(FILE,nn)[,option) ~

L (,option) ..•]

! STDLB (label [,area] ,name) J

L [,(label [,area] ,name) ...]

! LOAD [(option),(option)]

!EOD

! CC

! MESSAGE message

! PAUSE

! POOLn

! RUN area,file name

14 Monitor Control Commands

Table 6. RBM Control Commands (cont.)

Example

! LIMIT 3

! ALLO (FILE,Xl),(FORMAT'J

L C),(FSIZE,1000),SAVE

! STDLB(BO ,GO) ,(CO ,D2"
!

L COMPRESS),(LO,9TA80)

! LOAD(IN,CRA03),(OUT ,SP, J

L OLOAD) ,(SEG ,5),MAP

!EOD

! CC

! MESSAGE SEND ALL SAVEl

LTAPES TO DICK WEAVER

! PAUSE KEYI~": SY

! POOL 3

! RUN BP ,SORT

Meaning

specifies an unconditional dump at the end of
the job even if there were no errors. If the
(from,to) locations are not specified, the entire
background area is dumped. The command must
precede the RUN command.

Sets the maximum allowable execution time for a
background program in minutes. If the job ex
ceeds the limit, it is aborted with a postmortem
dump if so specified via a PMD command.

Defines the fi les in the BT (Background Temp)
area of the RAD and overrides any JCP default
defin itions.

Changes the assignment of an operational label
(except operator's console) to a temporary as
signment that stays in effect until the next JOB
command is encountered.

Loads a program on the RAD with absolute linkage
for its core execution location. Foreground pro
grams can only be loaded on the OV file or FP
area of the RAD.

Defines the end of each block of data within a data
deck. Monitor returns an EOD status when each
EOD command is encountered. Any number of
EOD commands can be used in a job and for any
purpose. There must be no space between the ex
c lamation character and the mnemonic.

Removes typewriter override of the C device (see
TY key-in description in Chapter 2). The next
control command wi II be read from the C device
instead of the typewriter.

Types a message to the operator on OC and LL
devices. Processing continues without pause after
message is output, and no operator intervention at
the console is necessary.

Causes the Monitor to enter a WAIT state aftei a
message is output on OC, giving the operator time
to carry out the instruction in the message. Pro
cessing continues after a (unsolicited) C key-in.

Overrides the default allocation of blocking buf
fers for the background. Ccuses n blocking buf
fers to be allocated.

Causes the named program to be executed. The

I ?re~.parameter must b.e .eit.~~r cSP ~ _~~/ __ ~r _~~._T.he I
loaa Ing of a program inTO me Toregrounu area via a

RUN control command must be preceded by an FG
key-in. Remains in effectforasingle jobstep only.

Genera I Form

tROY

! PFIL [area,] name [,BACK]

! PREC [area,]name [,BACK] [,n]

! SFIL name [,BACK][,n]

t REWIND [area,] name

! UNLOAD [area,] [name]

t WEOF [area,] name [,n]

! DAL [PAL]

t FIN

! MODIFY (module,loc),value [R]

Table 6. RBM Control Commands (cont.)

Example

! ROV

! PFIL GO

! PREC D l,ABC D ,30

! SFIL 9TA82,BACK,4

! REWIND 7TAEO

! UNLOAD D4,OUTPUT

! WEOF 9TA81,2

! DAL PAL

t FIN

I

Meaning

The ROV (RUN OV) command causes execution
of the program on the OV file. The loading of
any program into the foreground area via an ROV
control command must be preceded by an FG key
in. A foreground program loaded by t ROV is
given the name OV.

File and record positioning commands used to
position a device within its current file. The
PFIL command is only valid for magnetic tapes
or RAD files and leaves the device positioned
before the fi Ie mark in the appropriate direction.
Only background devices (not dedicated to fore
ground or IOEX) can be positioned.

Skips one or more files on a magnetic tape unit.
It cannot be used to position a RAD fi I e. The
command positions the deivce immediately fol
lowing the specified tape mark in the appropriate
direction. Only undedicated devices can be
positioned. The n parameter specifies the num
ber of fi les to skip.

Rewinds a magnetic tape or RAD fi Ie. It has no
effect on other devi ces.

Causes the spec i fi ed magneti c tape to be rewound
in manual mode. Operator intervention is re-
quired to use the device again (i. e., depressing
the ATTENTION and START switches on a tape
device). For a RAD file, UNLOAD produces the
same results as a REWlf'JD command.

Causes an end-of-fi Ie mark to be written if ap
propriate to the deviceo For magnetic tape; a

I tape mark is written; for a RAD file, a logical
fi Ie mark is written; for paper tape a ! EOD rec
ord is written. The WEOF command is ignored
for all other devices. The n parameter specifies
the number of end-of-file marks to write.

Causes the contents ofthe accounting log (on the A L
fileon the D1RADarea) to be dumped. The PAL op
tion causes the AL file to be purged after dumping.

Specifies the end of a stack of jobs and no jobs
are pending. When the FIN command is en
countered, it is written out on LO to inform the
operator that all current jobs have been com
pleted. The Monitor types out II BEGIN IDLEII
on OC and enters the idle state.

Special control command used only for modifying
(patching) system modules at system boot time. See
Appendix E, II System Patching ll in the Sigma 5/7
RBM Reference Manual (Publication No. 90 1581)
for complete description and use.

Monitor Control Commands 15

PROCESSORS/MONITOR INTERFACE

All processors, whether servi ce, system, or user, reside on
the Systems Program area of the RAD, operate in the back
ground core space, and are called from the Systems Program
area for execution by the control command

(' name parameters

where

name is the RAD file name of the processor to be
executed. The standard name format for service
and system processors is as follows:

Name Format

!OLOAD
!RADEDIT
!MACRSYM
!SYMBOL
!FORTRANH
!SLl

Processor Called

Overl ay Loader
RAD Editor
Macro-Symbol
Symbol
FORTRAN IV-H t
SL-1

tReal-Time FORTRAN IV-H is called by using the RT op
tion in the parameters of a ! FORTRANH command.

parameters are optional parameters interpreted by
each processor except the ! RADE DI T command,
which does not need parameters. The options for
all system processors recognized by RBM are de
fined in Table 7. {See IIRelated Publications ll at
the beginning of this manual for manuals giving a
more detai led description of the system processors.}

A typical example of a processor called in by a user's source
program for an assembly is given below.

Example:

(' MACRSYM SI,LO,CI,BO

This control command specifies that control is to be given
to the Macro-Symbol assembler. The SI parameter speci
fies that symbol ic {source} input is to be read from the de
vice to which the SI operational label is assigned; the LO
parameter specifies the device to which the listed output
is to be written; the CI operational label specifies the de
vice from which the compressed input is to be received; and
the BO operational label specifies the device to which the
binary output is to be transmitted.

Table 7. Processor Specifications Options

Specification

BA

BO

CI

CN

CO

D

GO

LO

LS

LU

S

51

SO

Use

Selects batch assembly mode

Relocatable binary output (on cards or paper tape) on
the BO device.

Compressed input from the CI device

Concordance I isti ng

Compressed output on the CO device

Debug mode compi lation

Relocatable binary output to temporary RAD storage
(i.e., the GO fi Ie)

Listing output produced on the LO device

Source Listing produced on the LS device

Listing of the update decks (if any) produced on the
LO device

S in column 1

Symbolic input from the 51 device

Symbolic {source} output produced on the SO device

16 Processors/Mon i tor Interface

Used By

Macro-Symbol

FORTRAN IV-H, SL-l,
Symbol, Macro-Symbol

Macro-Symbol

Symbol

Macro-Symbol

FORTRAN IV-H

Symbol, Macro-Symbol,
SL-1

FORTRAN IV-H, Symbol,
Macro-Symbol, SL-1

FORTRAN IV-H, SL-1

Macro-Symbol

FORTRAN IV-H, SL-1

Macro-Symbo!, SL-l

SL-1

4. RUNNING BACKGROUND JOBS

JOB DEFINITION

The fundamental unit in background processing is the job.
A typical job might consist of the following elements:

1. A JOB command card to signai the beginning of a new
job. The Monitor resets all operational labels to their
permanent assignments.

2. Optional ASSIGN or STDLB commands that define to
the Monitor the peripheral devices and RAD files that
are to be used for I/O. These commands are only
needed to change the inherent I/o assignments in a
program.

3. A processor command that calls in the correct system
processor {e. g., Macro-Symbol assembler}, user pro
gram {or combination}, or a RUN command to execute
a program.

4. Any source data the program is designed to process.
The data may be contained in a card deck, magnetic
or paper tape, or on a RAD data fi Ie.

A number of optional control commands can be incl uded in
a job, such as a LIMIT command to set the allowable exe
cution time for a given program. Figure 2 illustrates the
simplest case of a deck setup for a job.

Figure 2. Source Program Assembly Example

In Figure 2, the symbol ic input is received from the SI de
vice and the listing output is produced on the LO device.

LOAD AND GO JOBS

"Load and GO" jobs are programs that immediately go into
execution mode when the source program is successfully as
sembled or compi led. That is, the object program is loaded
into core from a temporary fi Ie on the RAD when the assembly
is completed instead of being manually loaded from a card
or tape device by the operator. Figure 3 illustrates a typi
cal "Load and Go" job.

!OLOAD (MAP, PROGRAM), (GO)

Figure 3. Load and Go Deck Exampl e

In Figure 3, the binary object program produced from the
assembly is placed in a temporary (GO) file from which it
is later loaded into core for execution. The resultant file
is always temporary and can not be retained from one job to
another. The Overlay Loader will load the program root into
the OV file for execution. A postmortem dump is specified.

BATCH JOBS

Batching permits a user to load a series of source or com
pressed programs for assembly or compilation under a single
system processor control command. The pOiOm€teiS speC i-
fied on the processor command will hold true for every job
within the batch.

When batch assemblies consist of successive updates from
card input to compressed programs from the RAD or tape,
each update packet is terminated by a +END card, not by
an ! EOD card. There must be a one-to-one correspondence
of update packets to compressed programs. If there are no
updates to a particular program in a batch, the "missing"
update packet must be represented by a +END card inserted
in the proper place in the update deck. The example illus
trated in Figure 4 is a typical batch job.

In Figure 4, successiveassembliesareperformedwithasingle
MACRSYM command unti I a double EOD is read. The device
assignments and options on the MAC RSYM command apply to
all assembl ies within the batch. A program assembly is con
sidered terminated when an EN D Macro-Symbol directive is
processed.

JOB STEPS

A job step is the execution of a program (system processor or
user program) in the background. The processors that operate

Running Background Jobs 17

Update Deck (Source)

! EOD (Optional)

Figure 4. Batch Job Example

under RBM are service pracessors (RAD Editor and Over
lay Loader) language processors, and user processors.
Service and language processors are supplied with the
RBM system. User processors are created at the local
install ation.

GENERAL OPERATING CONSIDERATIONS

The basic types of background jobs the operator may en
counter fall in the following general categories:

1. Assemblies or compilations of original source pro
grams (written in some symbolic language such as
FORTRAN IV-H or Macro-Symbol) into object mod
ules. The output from such a job might include a

18 General Operating Considerations

source listing, an object listing, and an object pro
gram deck.

2. Trial executions of partly debugged programs called
II test casesll

• Sample data is loaded and the pro-
gram processes the data under various conditions.
Additional control command options may be used to
vary the processing of data or format of the final
output.

3. Processing data by an operational program. Such pro
grams generally reside in the Background Programs
area of the RAD if they are frequently or regularly
used. Less frequently used programs may be loaded
from a card reader or tape device. Data to be pro
cessed can be located in the foreground or background
data areas of the RAD or input from some other ex
ternal source.

BACKGROUND JOB RESTRICTIONS

The Monitor imposes two fundamental restrictions in pro
cessing background programs:

1. Background programs are given CPU time only after
real-time hardware interrupts are satisfied. That is,
nothing can take place in the background that inhibits
interrupts or in any way interferes with real-time re
sponsiveness. Thus, background programs wi!! not be
guaranteed any processing time if the foreground is
very active.

2. The Monitor prevents any attempt by a background
program to write into or execute instructions in
foreground core storage, to write into foreground RAD
file areas, or to utilize devices or services dedicated
to real-ti me tasks. Any attempt by the background
program to violate this protection or to execute privi
ledged instructions, either intentionally or through
program error, may result in the Monitor aborting the
background" program.

There is no read protection for the foreground areas, and
background programs can read from real-time core storage
and secondary (RAD file) storage without restriction. A
typical example of using the read feature would be a real
time data acquisition program that accumulates real-time
data and writes it out on the foreground data fi Ie area of
the RAD. A background program could then be loaded at
a later, less critical period to read and further process the
data without disturbing the raw data that might be needed
for some further real-time task.

Frequently used user programs reside on the RAD in load
module form in the BP area and are called via a !name com
mand, where name is the name of the file.

ERRORS IN JOB STREAM

In running assemblies or compilations, those errors from
wh i ch the operator can recover are generall y control com
mand sequence or format errors (i. e., a mispunched card);
when processing data with an operational program, data
format errors are a frequent cause of job aboit and it may be

necessary to take a dump of the data fi Ie.

During processing of the job stieam, the ,V,onitor will go
into a WAIT state after outputting a request on the oper
ator's console to ready some device or load data input.

OPERATOR INTERRUPT DURING CONCURRENT
FOREGROUND BACKGROUND OPERATIONS

If the operator depresses the INTERRUPT switch during con
current foreground/background operations (perhaps to change
the status of a background job), the Monitor will not ac
knowledge the interrupt with a ! !KEY-IN message until all
current and waiting foreground processes are completed.
Th isis because the Control Task that processes the key- in
is connected to the iowest priority interrupt in the system.
For the same reason, the operator cannot alter the current
foreground task.

ATTENDED RUNS

Attended runs are frequently specified when new programs
are submitted for processing. An !ATTEND control command
in the user's job will inhibit the Monitor ABORT routine, and
the Monitor will go into a WAIT state if it encounters an
error it cannot correct. This gives the operator time to take
memory dumps or initiate recovery action, if possible. If
recovery procedures cannot be successfully completed, the
operator's only recourse is to abort the job through an "X"
key-in after taking any specified dumps.

General Operating Considerations 19

5. RUNNING FOREGROUND JOBS

OVERVIEW

Operator control and manipulation of foreground programs
requires a knowledge of some of the characteristics of such
programs and of how core memory is partitioned. The posi
tioning of memory into various areas such as the systems
area, foreground area, foreground blocking buffering area,
background area, background buffering area, etc., is
installation-determined during SYSGEN and becomes the
standard default allocation. In a typical installation, core
memory will be allocated as is illustrated in Figure 5.

Or-----------------------~
RBM System Area

Background Area

Background Blocking Buffers Area

Foreground Area

Foreground Blocking Buffers Area
n~------------------________ ~

Figure 5. Typical Core Memory Partitioning

The boundary of the background blocking buffers area is
not static, but can shift into the background program area,
depending upon the number of blocking buffers present,
which can vary from job step to job step. The first-word
address (FWA) of the foreground memory area can be moved
up into the background through an FMEM key-in if more
foreground core space is required.

Several foreground jobs can be res.ident simultaneously in
protected core; the number that can be resident is deter
mined by the numbei of entries in the Foreground Program
Table establ ished during SYSGEN.

REAL-TIME INTERRUPTS

Foreground programs are frequently loaded and initialized
at System Boot-time. Program execution is initiated when
a signal is received from some external source, such as
telemetry equipment, factory equipment, or a medical de
vice in a hospitai. The signai causes triggering of an
interrupt that initiates execution of its connected task
(a body of code within the program).

20 Running Foreground Jobs

Each foreground program in core wi II be connected to one
or more interrupts. While these interrupts are generally
triggered from outside the system, the signal can be internal;
that is, one foreground program can trigger execution of
another program or the signal can be received from an in
ternal interval timer (real-time clock). Each interrupt has
a different priority level, and when more than one interrupt
is in a waiting state, this priority level determines which
program wi II next become active.

TEMPORARILY INACTIVE FOREGROUND

A foreground program may be resident in core with all inter
rupts armed and enabled, but be temporarily idle. That is,
it can be waiting for a new interrupt to be triggered before
resuming execution. Care must be exercised in reallocating
core when such programs are present in the system, since
the apparent lack of activity may lead to a bel ief that they
have completed. When the program is released, the message

!! PROG xxxxxxxx RELEASED

will output on the OC device. Space will now be available
for a different foreground program, or it may be possible to
move the foreground boundary to make more core space
available to the background.

CONSOLE INTERRUPT PRIORITY LEVEL

To prevent accidental interference with critical real-time
processes, the Console Interrupt Task triggers the RBM
Control which is normally the lowest priority interrupt in
the system. This prevents the Monitor from processing a
key-in unti I the active interrupt and any pending interrupts
have been processed. The system wi II then acknowledge
an operator initiated interrupt with a

! !KEY-IN

message on the OC device.

RUNNING FOREGROUND PROGRAMS

Before any foreground program can be loaded into core for
execution, it must have been previously loaded onto the
RAD in absolute core image format, where it will reside
either in a fi Ie in the FP (Foreground Programs) area or on
the OV fi Ie. The request to RUN the program is initiated
in one of four ways:

RU~'~ nome key=in, ~vhere name is the name of a
program in an FP area

ROV key-in, to run the program currently on
the OV fi Ie

! RUN name control command, read in from the
background job stack on the CC devi ce for the
named program in the FP area. The command
must be preceded by an FG key-in.

! ROV control command, read in from the back-
ground job stack for a job located in the OV fjie
(Only one job at a time is permitted on the OV
file and is always called OV.) The command
must be preceded by an FG key-in.

When the RBM system encounters the request to RUN, it per
forms the following steps:

1. LOAD: The RBM system reads the program header,
which specifies the program's required core location
and size, and tests if the required core space is avail
able. If the foreground program extends into the cur
rent background core space and a background program
is active, the background program is checkpointed and
the foreground program is read into core from the RAD.
The message

! !LOADED PROGRAM xxxxxxxx

will be output on OC.

2. INITIALIZA TIO N: Control is transferred to the pro
gram entry at the RBM Control Task priority level. The
steps the program then follows depends on its structure.
Typical steps for execution could be the following:

a. Arm and enabl e interrupts.

b. Set up interval timers (the timers define the time
delay between the triggering of interrupts).

c. Connect the tasks to their interrupts.

d. Trigger the interrupts.

RELEASING FOREGROUND PROGRAMS

Release is accompl ished through either operator key-in (RLS)
if he wants to bump the program for a different program that
requires some of the same core space, or through a system
call from the active foreground program. In any event, the
following actions will take place:

a. All interrupts used in the program are disarmed, dis
abled, and disconnected.

b. The memory space used by the program (both foreground
and any background) is marked as unused.

c. The checkpointed background program (see below) is
restarted unless the core space is needed by a new fore
ground program.

To release an active foreground program and load another
foreground program through the RLS key-in, proceed as
follows:

1. Depress console INTERRUPT key. This causes a flag to
be set and the RBM Control Task to be triggered. Since

2.

the Control Task Interrupt is the lowest priority in the
system, it will not be recognized until the active fore
ground interrupt and any waiting interrupts have com
pleted their execution cycle. The system will then out
put the

!KEY-iN

message on the OC device.

Key-In

RLS {~~e}

where

OV is the foreground program currently in the OV
file.

name is the name of a currently active program that
is located in the FP area of the RAD.

When the active program is successfully released, the sys
tem wi II output the message

! !PROG xxxxxxxx RELEASED

on the OC device.

CHECKPOINTING BACKGROUND

When real-time programs are running concurrently with back
ground programs, a foreground program can borrow core
storage space from the active background program if neces
sary. When a request is made to RUN a foreground program
that requires some portion of memory currently in the Back
ground area, the system wi II borrow the background space
for the foreground by storing the background area on secon
dary (RAD) storage and saving the status, This procedure is
called checkpoi nti ng. The system wi II output the

! !BCKG CKPT

message on the OC device to inform the operator that check
point has taken place. No operator action is required.

If background I/O is taking place when the checkpoint is
attempted, the system will immediately output the message

! !CKPT WAITING FOR BCKG I/O RUNDOWN

on OC, since the foreground cannot seize background mem
ory unti I the current background I/O has completed. When
the I/O has terminated, the checkpoint proceeds.

RESTART

When the foreground program is released and no longer re
quires the borrowed background memory space, the system
will restart the background job step by reading the saved

Checkpointing Background 21

image from secondary storage and resuming execution.
It wi II then output the message

! !BCKG RESTART

on OC to inform the operator that the checkpointed pro
gram has been restarted from its interrupted point. No
operator action is required.

PREVENTING CHECKPOINT

When a foreground program is loaded into core for execu
tion, it is sometimes useful to prevent checkpoint of a back
ground program. This can be done by allocating sufficient
space to the foreground through the FMEM key-in. The
operator keys-in

FMEM Y

where y is the new number of pages to be allocated to the
foreground. Any change in memory allocation as a result
of the FMEM key-in does not actually take place until the
conclusion of the current background job step.

RESTORING MEMORY

When the foreground program is released, either through
normal completion or operator RLS key-in, the operator may
restore the background/foreground boundary through an

FMEM y

key-in, where y is the number of pages of memory to be
allocated to the foreground.

22 Operator Intervention/Error Recovery

Should any foreground program be resident in any portion
of memory being returned to the background, the message

! !FDG AREA ACTIVE

wi II be output by the system, and memory wi II not be re
turned until the foreground program is released.

OPERATOR INTERVENTION

Foreground programs already operational in the system al
most never require operator manipulation. Occasionally,
the Monitor may output a status message that the background
has been checkpointed or restarted, or request the operator
to ready some special purpose device.

ERROR RECOVERY

Error recovery for operational foreground programs is im
possible in most cases, and the operator1s only recourse is
to call the designated person or Customer Engineer (for a
clearly evident machine malfunction).

LOADING NEW FOREGROUND JOBS

New foreground programs can be loaded into the foreground
programs area of the RAD from the background job stack
without a new SYSGEN. Operator handl ing of such pro
grams is identical to background jobs except that loading
must be preceded by an SY key-in to access protected RAD
areas. Figures 6 and 7 illustrate typical examples of load
ing foreground programs from the background job stream.

In this example; the RAD Editor allots a file (FINT) in the Foreground Programs (FP) area of the RAD. The Oveday
Loader (see Chapter 7) loads the binary object deck in the file FINT in core image format. The !RUN control com
mand causes execution of the foreground program. A PROGRAM map is specified.

Fi gure 6. Load and Exec ute Foreground Program

Error Recovery 23

:(FILE, FP, FSEG), (MAP, ALL)

!ATTEND

! PAUSE KEY-IN SFC

In this example, the RAD Editor allots space for a file called FSEG in the Foreground Programs (FP) area of the RAD.
The Overlay Loader (see Chapter 7) loads a root and two segments into FSEG in core image format. Following an
operator FGC key-in; the overlaid program is executed via the ! RUN control command. An ALL map is requested.

Figure 7. Load And Execute Segmented Foreground Program

24 Error Recovery

6. RAD EDITOR OPERATIONS

Before any job or data can be loaded on the RAD for execu
tion, it must be allocated fi Ie space in the appropriate RAD
area. The RAD Editor is cai ied in by the useris job to per
form this function via a ! RADEDIT control command. Sub
sequent :ALLOT subcommands read by the Editor define the
fi ie or fiies to be used.

The RAD Editor maintains order in all the permanent RAD
areas through use of file directories for each area. As
fi les are added to a given area, the Editor generates a new
file entry in the appropriate directory so that Hies can be
located on demand. The permanent RAD areas that have
fi Ie directories are

Foreground Programs area

Background Programs area

System Programs area

Data areas (foreground and background)

In addition to all ocating space for new entries, the RAD
Editor performs the following functions:

Deletes entries from the permanent file directories.

Enters data files on the foreground or background data
areas.

Compacts permanent file directories and RAD areas.

Truncates empty space from the end of fi les.

Maps permanent RAD fi Ie allocations.

Dumps contents of RAD fi les or areas.

Copies permanent RAD fi les.

Copies object modules contained in libraries.

Saves contents of RAD areas on a magnetic or paper
tape device (SAVE tape) in self-reloadable form.

Restores previously saved RAD areas to their RAD
location.

Maintains library files on the RAD for Overlay Loader
use.

Zeros out (clears) complete RAD areas.

Temporari Iy inhibits and restores use of bad RAD tracks
in permanent areas.

RAD AREAS PROTECTION

Software protection of the SP, FP, BP, and foreground data
areas of the RAD is provided by requiring the operator to
key-in IISyli before any of these areas are modified by a
background processor. The only areas that can be

modified that do not require an Sy key-in are the Back
ground Data areas. The message

!! yyndd WRT PROT

or

! ! PAUSE KEY-IN SY (if included in the job stack)

wi II be output on OC to inform the operator that access to
a protected RAD area is requested.

CALLING RAD EDITOR

When an ! RADEDIT control command is read from the C de
vice, the RAD Editor is loaded into core memory from the RAD.
Control is transferred to the RAD Editor which reads com
mands that spec ify the functions to be performed.

COMMAND FORMATS

All RAD Editor commands are input from the C device and
listed on L L. The genera I form for RAD Edi tor commands is
identical to the Monitor control command format described
in Chapter 3, with the symbols below being used to aid in
describing the RAD Editor commands given in Table 8.

aa refers to a permanent RAD area and must be one
of the following:

BP is the Background Programs area.

D 1 through DF I S me Background ana iore-

FP

SP

zz

ground Data areas.

is the Foreground Programs area.

is the System Programs area.

refers to any RAD area

nnnnnnnn refers to a file name or library module
(maximum name length of eight alphanumeric
characters).

yyndd refers to a physical device name, where

yy specifies the type of device: CR, CP, etc.

n specifies the lOP number: A for IOPO,
B for lOP 1, etc.

dd specifies the device number: 03, 80, etc.

op refers to an operational label: BI, 51, etc.

All RAD Editor commands are itemized in Table 8. The
entries in the IIExample" column are given only to illus
trate typical command formats. For brevity, detailed ex
planations of the parameters for each command is not given
(a detai led description for each command is given in the
XDS Sigma 5/7 RBM Reference Manual).

RAD Editor Operations 25

General Form

!RADEDIT

:ALLOT (FILE,aa,nnnnnnnn) [,(option)] J
[[, (option)] [, (option)] ••• [, (option)]

FROM

I
FILE,aa [,nnnnnnnn]}

:COPYI LIB,aa,nnnnnnnn

IN fop } , yyndd

-

TO

'---- ({::~~~:a [,nnnnnnnn]}) _

. OUT , {~~ndd)
L[, VFC][, ADD] [,BIN][, CC][,FBCD]

:DELETE ({~:~E) ,ca,nnnnnnnn)

:C LEAR zz ,zz

:SQUEEZE aa,aa,aa, •••

or

:SQUEEZE ALL

:TRUNCATE (FILE,aa,nnnnnnnn &g]) J

L , (F!LE,aa,nnnnnnnn [,g]) ... ,

L (FILE,aa,nnnnnnnn [,g])

or

:TRUNCATE aa,aa,aa, •••

:MAP aa,aa,aa, •..

or

:MAP ALL

26 Command Formats

Table 8. RAD Editor Commands

Example

!RADEDIT

:ALLOT (FILE, BP, TEST, (FORMAT,U)'J

L (FSIZE,50),(RSIZE,90)

Meaning

Call the RAD Editor into core to
read subcommands.

Add a new entry to specified perma
nent fi Ie di rectory that allocates space
for a new file.

:COPY (IN,CRA03), (FILE,D 1, XYZ) Copy single data fi les or modules from
one device to another. If nonstandard

!COPY (FILE,D 1, XYZ), (OUT, 9TA80) binary (BIN) or control commands (CC)
are copied from the C device, operator
must assign the C device to 0 when the
message !! KEY-IN STDLB C,O is out
put, and reassign when ! !COPY
ENDED appears. An !ATTEND com
mand must be present in the job when
the BIN and CC options are specified.

:DELETE (FILE,BP, TESTA)

:CLEAR D1,DF

:SQUEEZE SP

:TRUNCATE (FILE,BP, TESn

:MAP BP,D4

Delete a fi Ie directory entry and fi Ie
from specified permanent RAD area,
or an object module from designated
library •

Zero out (clear) specified RAD areas.

Regain unused space within permanent
RAD areas resulting from file deletions
and truncations, and library module
deletions.

Truncate empty space from the end of
specified file{s) by allocating space
equal to the actual length of the file.
For a di rect access fi I e, the i ength of
the fi Ie must be specified in granules g.

Map the specified permanent RAD
areas TO me LV aevlce.

Table S. RAD Editor Commands (cont.)

General Form Example Meaning

:DUMP (FILE,aa,nnnnnnnn) ~ :DUMP {FILE,BP, TESn

L r ,RFr v Lu,,,\l r FQ!=r " ... 1 .. ",,\1

Dump designated random or sequential
access file onto the specified LO de
vice in hexadecimal. Ali permanent
RAD areas, plus the IOEX access can
be dumped. The first form of the
:DUMP command dumps specified fi ies;
the second form dumps RAD areas.

L,-'''-'-I -IV'-"/J L' " '-/ V\,AIV~JJ

or

:DUl\.~P zz [, (SREC, value)] [, (EREC, val Ue)] :DUMP BP, (SREC,6), (EREC,9)

:SAVE zZ,zz,. . . :SAVE SP,BP,D2

or

:SAVE ALL

:RESTORE zZ,zz, ... :RESTORE SP,BP,D2

Dump specified RAD area{s) onto the
BO devi ce (must be magneti c or paper
tape) for subsequent restoration. if
BO is magnetic tape, it is rewound
and data saved is verified. If tape
verifies correctly, the message, 'SAVE
TAPE OKAY' is output. The first form
of the :SAVE command can specify any
RAD area; the second form includes all
R,A,D aice:; except Backglvund
area and Checkpoint.

T ___ _

1t::lllfJ

Restore sped fi ed, permanent RAD areas
saved via a :SAVE command. Read
after write is employed to verify re
stored data.

:BDTRACK yyndd,number GnumberJ •.. :BDTRACK DCAFO,lO,ll Inhibit RAD Editor's use of specified
number of tracks (hexadeci mal) on the

I designated RAD. A track containing
a sector of the file directory is not
permitted to be removed from use.

:GDTRACK yyndd,number ~numberJ :GDTRACK DCAFO,lO,ll Restore RAD and specified hexadeci
mal number{s) of the tracks previ
ous!y inhibited from use by :BDTR,A,CK
command.

RAD EDITOR DECK SETUPS

Typical decks involving the use of the RAD Editor are illus
trated in Figures Sand 9.

In Figure S, the CO operational label is assigned to a
RAD file called COMPRESS in background data area D 1
of the RAD. The compressed output is written on the
COMPRESS file.

In Figure 9, the RAD Editor allots file XVZ to receive
the card input to be copied. (Note that the RSIZE
parameter on the :ALLOT command must contain 30 in
stead of 20 for binary card input.) The :COPY com
mand specifies that input is to be read from the card
reader and copied to the XYZ file. The next :COPY
command specifies that a copy of the card input is to

be output to the card punch. The !REWIND command
rewinds the magnetic tape assigned to 9TASO. When
the RAD Editor encounters the !REWIND command, it
releases control to the Monitor, so the next !RADEDIT
command calls the RAD Editor back in to copy file
XVZ to the magnetic tape. The Monitor writes an EOF
on the tape and rewi nds the tape.

RAD EDITOR ERROR MESSAGES

The RAD Editor outputs error messages on the OC and LL
devices. If OC and LL are assigned to the same device,
dupl ication of messages on LL is suppressed. If an operator
response is required, the RAD Editor will call the Moni
tor "WAIT" routine. The operator initiates a console

RAD Edi tor Deck Setups/RAD Edi tor Error Messages 27

Figure 8. RAD Editor ALLOT Example

Figure 9. RAD Editor COpy Example

28 RAD Editor Error Messages

interrupt and keys in one of the following commands to
the Monitor:

The error messages output by the RAD Editor and their mean
ings are given in Table 9.

C Continue and read next record from the C device.

x Abort RAD Editor and return control to Monitor. RAD RESTORATION MESSAGES
COC Continue and read a record from the OC

device (used only in conjunction with the error
message 'ERROR ITEM xx').

If the Editor aborts because of an irrecoverable I/O error,
the physical device name is included in the abort message.

The messages itemized in Table 10 are written on the
keyboard/printer during RAD restoration via the bootstrap
loader produced by SAVE. Unless otherwise speci fied, the
computer will go into a WAIT after writing a message.

Table 9. RAD Editor Error and Status Messages

Message Meaning Action Taken

ERROR ITEM xx Item number xx on the command is If operator response is C, Edi tor reads
in error. next record from C device. If operator

response is COC, the next record is read
from the OC devi ceo This will enable
operator to rectify a command error.

ILLEGAL BINARY RECORD An illegal binary record (first byte If operator response is C, Editor reads
not X' 1 C', X'3C ') has been read next record from specified device.
with an object module.

CKSM ERROR Last record in the object module If operator response is C, Editor reads
being read has a checksum error. next record from specified device.

SEQ ERROR Last record in the object module If operator response is C, Editor reads
being read has a sequence error. next record from specified device.

EOT on {yyndd
I I

Unexpected end-oF-tape was en- Operation is aborted.
area,name

countered on the specified device
or file.

yyndd WRT PROT Specified RAD is write-protected. Interrupt and key-in "SYC", or reset
appropriate RAD protection switches.

I
Or, if lob is not aiiowed to write on
protected areas of RAD, interrupt and
key-in" X" to abort.

RAD OVERFLOW Allocating the amount of RAD storage Operation is aborted.
indicated by the "file ll parameter on
the :ALLOT command would cause the
permanent RAD area i ndi cated by the
"directoryll parameter to overflow.

INVALID RSIZE. UNBLOCKED Maximum record size for a blocked fi Ie Editor continues.
ORGANIZATION GIVEN has been exceeded. Unblocked organi-

zation given.

AREA xx IS NOT ALLOCATED Speci fied area was not allocated at Operation is aborted.
SYSGEN

KEY ERR Operator key-in is erroneous. Key-in has to be either C, COC, or X.

SPECIFIED FILE DOES NOT File does not exist within the speci- Operation is aborted.
EXIST fied area.

DUPLICATE FILE An attempt has been made to allocate Operation is aborted.
a file using a name which already exists.

RAD Editor Error Messages 29

Table 9. RAD Editor Error and Status Messages (cont.)

Message Meaning Action Taken

ILLEGAL FILE NAME An attempt has been made to allocate Operation is aborted.
a file using GO, OV, or Xl-X9 as a
fi Ie name.

AREA xx CANNOT CONTAIN Illegal area specified. Only the FP Operation is aborted.
A RESIDENT FOREGROUND area can contain a resident foreground
PROGRAM program.

AREA SPECIFIED DOES NOT An area other than SP or F P was speci- Operation is aborted.
CONTAIN A LIBRARY fied that does not contain a library.

TRACK xxx xx CANNOT BE Illegal attempt to remove a track from Operation is aborted.
DELETED use containing a sector of the file

directory. Removal would prevent ac-
cessing of files or other sectors of the
directory.

SPECIFIED ROM DOES NOT Relocatable Object Module (ROM) does Operation is aborted.
EXIST

I
not exist within the specified library.

REFERENCES TO F4:COM An external definition or reference RAD Editor skips to the end of the mod-
NOT ALLOWED F4:COM encountered in a Relocat- ule. A key-in of C causes Editor to

able Object Module (ROM) being read next record from specified device.
copied to the library.

ROM DOES NOT CONTAIN Relocatable Object Module (ROM) A key-in of C causes Editor to read
A DEF being copied does not contain an I next record from specified device.

external definition.

DUPLICATE DEF xxxxxxxx Relocatable Object Module (ROM) RAD Editor skips to the end of the mod-
being copied to the I ibrary contains ule. A key-in of C causes Editor to
duplicate definitions. read next record from specified devi ceo

ILLIGAL LOAD ITEM xx Relocatable Object Module (ROM) to RAD Editor skips to the end of the mod-
the I ibrary contains an illegal load ule. A key-in of C causes Editor to
item. read next record from specified device.

FILE xxxxxxxx WAS NOT Fi Ie was not truncated because the Editor continues.
TRUNCATED. FSIZE =0 file size being 0 suggests either a

direct access file or a file with 0
records.

SREC VALUE GREATER THAN Parameter error on the :DUMP direc- Operation is aborted.
EREC VALUE tive. The last record to be dumped

precedes the initial area to be dumped.

AREA xx CONTAINS NO FILES Specified area contains no files. Editor continues.

RECORD SIZES DIFFER ON Record si zes di ffer on copyi ng from Operation is aborted.
INPUT AND OUTPUT FILES RAD file to RAD file.

ILLEGAL OPTION xxx Option specified is not permitted Operation is aborted.
on a :COPY command.

O!! t:!=D CUA! ! !=D T!-LA "J r'!,..,!- ,."'! "'v,.."''''.....!~ ,..,,,,..~!,..,h!'" !.-."ff",,. (J,..,"',. !-; "'" ; ~ h",.+.,.r! uuF. 1-" ,JIV\T"""\L..L..'-" t"_I_II_11 I;) ___ '1_-.

DATA READ soace

NOT ENUF BACKG SPACE Insufficient background space to Operation is aborted.
perform requested operation.

30 RAD Editor Error Messages

Table 9. RAD Editor Error and Status Messages (cont.)

Message Meaning Action Taken

UNABLE TO FIND AREA xx Specified area cannot be found on Operation is aborted.
RAD SAVE tape during a :RESTORE
operation.

AREA xx INCOMPATIBILITY Attempting to restore specified area Operation is aborted.
onto a different type of RAD from
which it was saved, or the area to
be restored is too large for the same
area usi ng the current Master
Directory.

AREA xx CKSM ERROR A checksum error exists on the RAD Operation is aborted
SAVE tape in the specified area.

AREA xx TRU NCA TE D Specified area being restored is Operation continues.
larger than the same area using the
current Master Directory, but the
data that was lost contained all zeros.

SAVE TAPE OK RAD SAVE tape has been verified No action.
correctly.

CKSM ERR ON SAVE TAPE A checksum error has been encountered Operation is aborted.
while verifying the RAD SAVE tape.

AREA SPECIFIED IS NOT An attempt has been made to use area Operation is aborted.
MAINTAINED BY THE RAD CK, XA, or BT which is not maintained
EDITOR by the Editor.

ILLEGAL USE OF :COPY The specified combination of input Operation is aborted.
and output devices on the :COPY
command is prohibited.

Table 10. RAD Restoration Messages

Message Meaning Resulting Action

yyndd WRT PROT RAD is write-protected Program will attempt the RAD write
after an SY key-in.

c---

CKSM ERROR A checksum error has occurred in If WAIT condition is cleared, boot-
reading the SAVE tape strap loader conti nues and accepts

bad record.

RAD RESTORED OK RAD restoration has been success- Control is transferred to the RAD
fu II y compl e ted. bootstrap.

yyndd ERROR, SB=xxxx A parity or transmission error has There is no recovery.
occurred on device yyndd. The
device status byte (SB=) is also
displayed.

yyndd UNUS. END, An unusual end status has been re- There is no recovery on a read operation.
TDV=xxxx turned from the specified device. The On a write operation, the write is tried

TDV status byte (TDV=) is also displayed. again after WAIT is cleared.

RAD Editor Error Messages 31

Table 10. RAD Restoration Messages (cont.)

Message Meaning Resulting Action

TRK=xxxx Specifies contents of RAD controller If the data being written contains all

DATA=ALL ZEROS address register in hexadecimal at zeros, this information is output. If
the time of a check write error. WAIT condition is cleared, bootstrap

loader continues.

yyndd UNRECOG., SB=xxxx An unrecognized status has been Upon clearing the WAIT condition,
returned from the indicated device. operation is retried.
The device status byte is also
displayed.

32 RAD Editor Error Messages

7. OVERLAY LOADER OPERATIONS

The Overlay Loader creates programs for execution in over
lay format to reduce core space requirements during execu
tion. An overlay program consists of a root and any number
or segments.

OPERATOR HANDLING

Executable versions of programs with overlay segments are
identical to nonoverlayed programs in terms of operator in
tervention. The Loader uses two passes to create the seg
mented program. The onl y I isted output from the Overlay
Loader is a map and possible diagnostic messages.

ERROR 01 AGNOSTICS

The Overlay Loader outputs diagnostic messages on the OC
and LL devices. Dupl ication is suppressed if OC and LL
are assigned to the same device. If an operator response is

required, the Loader calls the Monitor WAIT function.
The operator should initiate an INTERRUPT and key in
one of the foi i owi ng:

C Continue

x Abort

COC Read the corrected command from OC and
continue (used only in response to control
command errors).

Note that the Monitor WAIT routine aborts if an !ATTEND
control command has not been encountered in the job
stack.

The diagnostic messages listed in Table 11 are output by
the Overlay Loader.

Table 11. Overlay Loader Diagnostics

Text Meaning Action

BACKGROUND TOO SMALL User's program cannot be loaded in the Abort
current size of the background. This is a
function of the number of external sym-

I bois and forward references that a pro- I

gram has, not a function of the program
length.

BINARY CARD ENCOUNTERED INSTEAD OF CC A binary record instead of a control Wait
command was encountered on the C
.J_ •• : __
UCVI\...C.

BOT ON {yyndd Unexpected beginning-of-tape has been Abort
area,name

encountered on the specified device/file.

BUF SMALLER THAN DATA RECORD Specified DCB has been assigned to a Abort
DCB x:xxxxxx record size larger than the I/O buffer

associated with the Read request. Either
user has assigned incorrectly, or Loader
has a program error.

CC ERR: DUP NAME IN ITEM xx Item number xx on the command is a du- Wait
plicate of a name in the symbol table.

CC ERR: DUP SEG IDENT Ident on SEG command is a dupl icate of Wait
a previous segment's ident.

CC ERR: FOLLOWING ITEM xx There is an error following item xx on Abort if OLOAD
the command (e. g., a parameter has CC. Wait if any
been om i tted, an extra parameter has other CC.
been included, etc.).

Overlay Loader Operations 33

Table 11. Overlay Loader Diagnostics (cont.)

Text Meaning Action

CC ERR: ILLEGAL CC SEQUENCE Loader commands have been ordered Wait
incorrectly.

CC ERR: ILLEGAL OPTION FOR PUBLIB LOAD Option (PUBLlB,name) was specified Abort
(PUBL,name) on OLOAD and a PUBLIB command

has been encountered.
- ---- -

CC ERR: ILLEGAL OPTION FOR PUBLIB LOAD Option (TASKS,value) was specified on Abort
(TASKS,value) OLOAD and a PUBLIB command has

been encountered.

CC ERR: ILLEGAL OPTION FOR PUBLIB LOAD Option (TEMP ,value) was specified on Abort
(TEMP,value) OLOAD and a PUBLIB command has

been encountered.

CC ERR: ILL OPCODE IN ITEM xx Specified operation code is either ille- Wait
gal or unimplemented.

CC ERR: ILL SEG IDENT Seg ident on the MODIFY command does Wait
not match the segment being modified.

CC ERR: ITEM xx Item number xx on the command is in error. Abort if OLOAD
CC. Wait if any
other Cc.

CC ERR: MODIFY OUTSIDE SEG LIMITS One of the locations on the MODIFY Wait
command is outside the I im its of the
segment.

CC ERR: NEED (FORE,fwa,lwa) OPTION FOR PUBLIB Option (FORE,fwa,lwa) was not specified Abort
LOAD on the OLOAD command and a PUBLIB

command has been encountered.

CC ERR: SEG IDENT NOT 1ST OPTION Segment ident (L1NK,ident1) is not the Wait
first option on the SEG command.

CC ERR: SEGMENTS ORDERED INCORRECTLY SEG commands have been input in the Wait
wrong order.

CC ERR: SPECIFIED AREA FOR PUBLIB LOAD NOT 'FP' Option (FILE/area,name) on OLOAD did Abort

I
not spec i fy the Foreground Programs area
(FP) and a PUBLIB command has been
encountered.

CC ERR: STEP OPTION ILLEGAL WITHOUT ATTEND An ATTEND command must be included Abort
in the job when the STEP option is
specified.

CC ERR: UNDEFINED FILE ,area,name Area and fi Ie specified in the option Abort if OLOAD
(FILE,area,name) has not been defined CC. Wait if any
h" thp RA n Frli ~,... .. nthpr C'.C'._

CC ERR: UNDEFINED SYMBOL IN ITEM xx Symbol name in item xx on the MODIFY Wait
command has not been defined.

34 Operator Handl ing

Table 11. Overlay Loader Diagnostics (cont.)

Text

DCB CANNOT BE A DSECT

{
ULlB}

SEGxxxxx ROM xxx
SUB

DCB HAS BAD PARAMETERS
DCB x:xxxxxx

DCB HAS INSUFFICIENT INFO
DeB x:xxxxxx

DCB NOT ASSIGNED
DCB x:xxxxxx

DEFAULT ENTRY ADDRxxxxx SUPPUED FOR ROOT

DSECTs in PUBLIB LOAD

{
ULlB}

SEGxxxxx ROM xxx
SUB

EOT O"~ {yyndd
area,name

EXLOC TOO LARGE
SEGxxxxx

FILE DESTROYED area,name

FILE UNCHANGED area,name

ILLEGAL LOAD LOCA nON xxxxx

{
ULlB}

SEGxxxxx ROM xxx
SUS

ILL SEG IDENT TERMINATED MODIFY·S

Meaning

A DCB was encountered in the named
segment that was assembled as a dummy
section instead of being part of the
control section.

Specified DCB has bad parameters.
Either user has assigned incorrectly, or
Overlay Loader has a program error.

Specified DCB contains insufficient in
formation to open a Read or Write oper
ation. Either user has assigned incor
rectly, or Loader has a program error.

Specified DCB has been assigned to the
"null" device. Either user has assigned
incorrectly, or Overlay Loader has a
program error.

A transfer address was not encountered
on any ROM in the root and an entry
address was not specified on the CCi
therefore, a default has been supplied.

Labeled COMMON blocks (DSECTs) are
illegal in the Public Libraries.

End of=tape has been encounteied on the

specified device/file.

Overlay Loader is aborting past the point
where data has been wri tten on the spec
ified program file. The first sector of
the fi Ie has been zeroed out.

Overlay Loader is aborting at a point
where the program file is unchanged.

Specified "load location" origin has been
defined with a value that is either not an
address or that lies outside the address
limits of the specified segment.

MODIFY commands have been ordered
incorrectly for the (GO ,LlNKS) option.
The MODIFY mode has been terminated
at this point. If user wishes to continue,
all MODIFY commands that follow will
be ignored.

Action

Abort

Abort

Abort

Abort

Continue

Abort

Wait

.A,bert

Abort

Abort

Abort

Wait

Operator Handl ing 35

Table 11. Overlay Loader Diagnostics (cont.)

Text

INITIALIZING LCOM OUTSIDE SEG
SEGxxxxx

LIB ROM'S EXCEED MAX
SEGxxxxx

MONITOR CC ENCOUNTERED INSTEAD OF :ROOT
or :PUBLIB

MOUNT PAPER TAPE ROM

{

CCI} ONE

PROGRAM ERR: "J!.~ ADDRxxxx

LIB

{
UUB}

SEGxxxxx ROM xxx
SUB

{

CCI} ONE
PROGRAM ERR: "J!.~ SB = xx,ADDRxxxx

LIB

DCB x:xxxxxx

PROGRAM ERR: UNALLOCATED CSECT

t
'ULlB'J

SEGxxxxx ROM xxx
SUB

RAD FILE TABLE FULL

- --
RE.A.DING AN OUTPUT DEVICE
DeB x:xxxxxx

36 Operator Handling

Meaning

A labeled COMMON block must be ini
tia I ized in the segment where the block
is allocated.

Maximum number of I ibrary ROMs that
can be loaded is 2000.

Monitor control command instead of a
ROOT or PUBLIB command was encoun
tered on the C device.

STEP option was specified on OLOAD
and the next Relocatable Object Module
(ROM) is to be input from the paper tape
reader. Operator should load the paper
tape, interrupt, and key in "C".

Loader has a program error in the named
overlay at the specified address.

Spec i fi ed error status has been returned
from an Overlay Loader call (in the
named overlay) to a Monitor I/O routine.
The address of the CAL and the name of
the DCB are specified.

Loader has encountered a control section
that has not been allocated; either a
Loader, compiler, or assembler error.

RAD File Table size that was allocated
at SYSGEN is insuffic ient.

A DeB that the Overlay Loader reads
with has been assigned to an OUT de
vice. Either user has assigned incor
rectly, or Loader has a program error.

Action

Continue (the la
be led COMMO N
block will not be
initialized).

Abort

Abort

Wait

Abort. Operator
should get a core
dump.

Abort

Abort

Abort

Abort

Table 11. Overlay Loader Diagnostics (cont.)

Text Meaning Action

ROM ERR: BAD SEQ Sequence number of the binary record Wait
does not equal xxx.

I
fULIB 1

SEGxxxxx t ROM xxx SEQNOxxx
SUB

ROM ERR: CHKSUM Specified binary record has a checksum Wait
error.

rIB} SEGxxxxx ROM xxx SEQNOxxx
SUB

ROM ERR: EXPRESSION SIZE EXCEEDS MAX An object language expression on the Abort
specified binary record exceeds 120

rIB} bytes.
SEGxxxxx ROM xxx SEQNOxxx

SUB

ROM ERR: ILLEGAL LOAD ITEM Object language on specified binary Abort
record cannot be translated {assembler

rIB} or compi ler error).
SEGxxxxx ROM xxx SEQNOxxx

SUB

ROM ERR: NO MODULE END Module end was not encountered on the Abort
last binary record of the relocatable

rIB} object module.
SEGxxxxx ROM xxx SEQNOxxx

SUB

ROM ERR: NOT OBJECT LANGUAGE Specified binary record is not in object Wait
language format.

fULlB 1
SEGxxxxx ROM xxx SEQNOxxx

l SUB J

ROM ERR: NOT STANDARD BIN Specified record has a nonstandard bi- Wait
nary format.

rIB} SEGxxxxx ROM xxx SEQNOxxx
SUB

UNDEFINED FILE area,name Specified DCB has been assigned to a Abort
DCB x:xxxxxx RAD file that has not been defined by

the RAD Editor.

UNDEFINED ORIGIN Loader has encountered a II load location ll Abort
origin with an expression that cannot be

rIB} resolved.
SEGxxxxx ROM xxx

SUB

UNEXPECTED EOD ON (yyndd Unexpected! EOD was encountered on Wait if the EOD
area,name

the specified device/file. was encountered
instead of a ROM;
otherwise, Abort.

Operator Handling 37

Table 11. Overlay Loader Diagnostics (cont.)

Text

UNEXPECTED MONITOR CC ON {yyndd
area/name

UNRECOVERABLE RD ERR ON {yyndd
area/name

UNRECOVERABLE WR ERR ON {yyndd
area/name

WARNING: DCB IN OVERLAY SEGMENT

SEGxxxxx {~~I!} xxx SEQNOxxx
SLIB

DCB x:xxxxxx

WARNING: DEF'D DCB NOT DEFINED
DCB x:xxxxxx

WARNING: DUPLICATE DEF'S

WARNING: DUPLICATE REF'S

WARNING: ENTRY ADDRxxxxx OUTSIDE SEGMENT
SEGxxxxx

WARNING: ILLEGAL DCB ADDR
DCB x:xxxxxx

WARNING: ILLEGAL DCB NAME

_ _ _ r ~~IBl
SEGxxxxx tROMj xxx SEQNOxxx

SLIB

DC B x: xxxxxx

WARNING: LCOM name OF SIZExxxx GREATER
THAN ALLOCATED

WARNING: NO ENTRY ADDRESS FOR ROOT

38 Operator Handl ing

i
I

Meaning

Unexpected Monitor control command
was encountered while reading ROMs
from the C device.

Transmission error has occurred while
reading from the specified device/file.

Transmission error has occurred while
writing on the specified device/file.

Specified DCB was declared an external
DEF in a segment other than the ROOT.
The DCB will not be included in DCBTAB.

Action

Abort

Abort

Abort

Continue

Specified DCB was declared an external Continue
DEF and the DEF was never defined.

User's program contai ns dupl icated exter- Conti nue
na I DEFs. Map wi II i ndi cate the name{s)
of the DEFs.

User's program contains duplicate exter- Continue
nal REFs. Map will indicate the name{s)
of the REFs. Occurs when identica I DEFs
in different segments of different paths
are referenced by the same REF (in a seg-
ment common to both paths).

Entry address for specified segment is
outside segment's address limits.

Specified DCB was declared an external
DEF and the DEF has been defi ned wi th
either a negative address or a constant.

Specified DCB name is illegal and will
not be included in DCBTAB. Monitor
DCBs (M:) must have standard OPLB
names. User DeBs (F:) must not exceed
eight EBCDIC characters in length.

Named labeled COMMON blocks
(DSECT) with the size specified (words)
is greater than the size allocated.

Root does not have an entry address.

Continue

Continue

Continue

Continue

i
I

Continue

I

Table 11. Overlay Loader Diagnostics (cont.)

Text

WARNING: OVERLAY SEG GREATER THAN 16K
SEGxxxxx

WARNING: PROGRAM EXCEEDS SPECIFIED ADDR
liMITS

WARNING: UNDEFINED DEF'S

WARNING: UNDEFINED ENTRY ADDR
SEGxxxxx

WARNING: UNSATISFIED REF'S

WRITING ON INPUT DEVICE
DCB x:xxxxxx

yyndd WRITE PROT

OVERLAY CONTROL COMMANDS

When the ! OLOAD control command is read by the Job
Control processor, it causes the Overlay Loader processor
to be read into the background and executed. All Loader
subcommands are identified by a leading colon (e. g. ,
:SEG). They are read from the C device and logged
onto LL. Blank cards :lre passed over without comment.
When the next Monitor control command is encountered,
the Loader completes the load process and exits to the
Monitor.

Meaning

Specified overlay segment exceeds the
maximum size record that can be loaded
by the MonItor SEGLOAD function.

User's program exceeds address limits,
either those specified on OLOAD or the
defau I ts for background/foreground
programs.

Action

Continue

Continue

User's program contains external DEFs Continue
that either have not been defi ned or have
been defined with an expression the
Loader cannot resol ve. Map wi II i ndi-
cate the name(s) of the undefined DEFs.

Expression defining entry address for Continue
specified segment cannot be resolved by
Loader.

User's program contains unsatisfied exter- Continue
nal REFs. Map wi II indicate the name(s)
of the REFs.

A DCB that the Overlay Loader wri tes Abort
with has been assigned to an IN devi ceo
Either user has assigned incorrectly, or

I Loader has a program error. I

Specified RAD is write-protected. Wait and

1. Reset RAD
protection
switches, or

2. Interrupt and
key- i n II SYCII,

or

3. Interrupt and
key-in IIXII if

the job is not
allowed to
write on pro
tec ted areas
of the RAD.

! EOD can only be used as a terminator for object module
input; its use is illegal for terminating the Loader Control
command stack.

CONTROL COMMAND SEQUENCE

The control command stack is divided into major divi
sions or substacks, which must occur in the order given
in Figure 10.

Operator Handl ing 39

In Figure 10, the :COMMON, :LCOMMON, :LIB,
:INCLUDE, :EXCLUDE, :RES, and :MODIFY commands may
occur in any :ROOT or :SEG substack and apply only to that
root or segment. The :ASSIGN commands must follow all
other commands in the stack.

ROOT OR SEG SUBSTACK SEQUENCE

A ROOT or SEG substack has the order given in Figure 11.

PUBLIB SUBSTACK

The :PUBLIB substack may be used to replace the :ROOT,
:SEG, and :ASSIGN substacks within the control command
stack. In this case, the :PUBLIB substack will have the
order illustrated in Figure 12.

LOADER COMMAND FORMATS

All acceptable Loader commands are given in Table 12 and
are listed in a logical, but not necessarily typical, operating

May occur in ------1'
any order

:ROOT (or :SEG)

sequence. Sample parameters are given in the "Example"
column only to illustrate typical parameter formats. An
explanation of the parameters is not given (a more de
tailed description is given in the XDS Sigma 5/7 RBM
Reference Manual).

! (Next Monitor Command)

Figure 10. Major Substack Sequence

:MODIFY

tBinary object moduies are inciuded at this point in the substack oniy if the input device specified on the
preceding ROOT or SEG command is the same as the C device.

Figure 11. ROOT or SEG Substack Sequence

40 Operator Handl ing

I :MODIFY

I
J

Figure 12. PUBLIB Sequence

Table 12. Loader Control Commands

General Form Example Meaning

! 0 LOAD [<oPt ion 1) ~opt i oni ... ~ opt ion n)] !OLOAD (MAP,ALL), I Calls the Overlay Loader. Any error on

I the command causes Loader to abort. Re-
I L.- (FILE, BP,CALCLOAD)

I
covery consists of correcting error and re-
loading entire job.

"~~. ["t .. "" · "' (input) :ROOT (ENTRY,INIT), I Specifies object modules from which root :KVVI ~c "III\T ,aer) , '. , ... J
option 1

L (DEVICE,CRA03)
segment is to be created. Must precede

L{, ~~~~!_)1 all SEG commands.

\ ufJllulln/J

:SEG (LINK,ident 1 [oNTO,identi' I :SEG (LINK, 1,ONTO,O) Defines a segment's overlay linkage and
specifies object modules from which the

L (EXLOC,addr), (ENTRY, def), I segment is to be created.

LCnput
) Cnput

)] option 1 , ••• , option
n

:LIB [(USER, SYSTEM)] :LIB (USER) Specifies library search for one segment
only (identified by the preceding ROOT
or SE G command). Opti on keywords de-
note libraries and order of search. If
neither is specified, I ibrary search (ex-
cept for Publ ic Library) is suppressed for
that segment.

!INCLUDE (def
1

[,def
2
, ••• ,def

n
]) :INCLUDE (9CADD, I Permits routines to be loaded from li-

L 8EDITT)
braries when no reference to the routine
has been made in any module of the
segment.

Operator Handling 41

Table 12. Loader Control Commands (cont.)

General Form Example Meaning

:EXCLUDE (def
1

[def2' •.. ,def
n
]) :EXCLUDE (8ENDlOL'J Inhibits I ibrary search and I inkage for the

L6DATLINK)
named definition{s) even though an ex-
ternal reference occurs in a module of
the segment.

:COMMON :COMMON Sets the base of Blank COMMON at end
of segment identified by the preceding
ROOT or SEG command. If the command
is not included, Blank COMMON is set
at end of the longest path. Only one
COMMON command can be present in
the control command stack. Specifica-
tion field must be blank.

:RES (def,size) 1 [{def,size)2'· .• , l :RES (RESA,200),(X, 147) Permits user to reserve and name one or
more areas at the end of the segment for

L (def,size) n] load-time or runtime debug purposes.
Size is a decimal value.

:LCOMMON (blockname,size) 1 [, ••. I :LCOMMON (LCOMA, I Permits user to determine allocation of
labeled COMMON blocks within root

L,(blockname, size)n] L 1200, (QCOM,720) and overlay segments.

:MODIFY [(SE G, ident),] (LaC, address) l :MODIFY (LOC,MAP+. Fa)] Modifies core locations of relocatable
programs at load time. MODIFY com-

L ,word1, .•. twordn] L ,(B PATCH+6) mands must be input at the end of the
ROOT, SEG, or PUBLIB substack for seg-
ment being modified.

:ASSIGN (dcb [,area,name J) I :ASSIGN (MLO, 9TA81), VFC Creates, initializes,or modifies DCBs at
load time. Must be last commands in the

L~ (opti on), (option), ••• , (option)] control command stack.

,PUBLIB [cnp~t) Cnput
) 1. :PUBLIB Specifies the object modules from which

option ' option , , J
the Publ ic Library is to be created. Order

Lcnp~t)]
2. :PUBLIB (FILE,FP,X), I

of the parameters determines the order of

L (DEVICE, 9TA82, 2),]
loading.

option

L (FILE,BJ,GO,EOD)

OVERLAY LOADER DECK SETUPS

Examples of typical programs using the Overlay Loader are
illustrated in Figures 13 and 14.

BP area. The :ROOT command causes the ROM created by
FORTRANH to be loaded from the GO file and creates the
Root. The ROMs following the first :SEG command are
loaded until !EOD is encountered and segment 1 is then
created. The next :SEG command loads the ROM assem
bled by Macro-Symbol on the CALC2 file in the D5 area
and creates segment 2. The! RUN command executes the
loaded segmented program.

In Figure 13, the JOB card rewinds the GO fi Ie, the
FORTRAN source deck is compiled, and the binary object
module is output on GO. The Macro-Symbol compressed
source deck is updated and the binary object module isout
put to fi Ie CALC2 in the D5 area (previously allocated by
the RAD Editor). The ROM (Relocatable Object Module) im
plied on the :ROOT and designated on the :SEG commands is
loaded, and the loaded program is output to CALCLOAD in the

42 Overlay Loader Deck Setups

In Figure 14, the GO file is rewound by the initial !JOB
command for the first FORTRAN compilation. The Overiay
Loader loads from the GO file to form a root and outputs on
the OV fi Ie for execution. A map is not output since MAP

option is not specified. A postmortem dump is requested if
the background aborts. The next !JOB command rewinds
the GO file and three FORTRAN jobs are compiled, with
the binary object modules output on GO to form ROM 1,
ROM2, ROM3 (Relocatable Object Modules). The Overlay

Compressed Deck

loader loads the fi rst ROM for the root, the second ROM
for segment 1, and the third ROM for segment 2. Note
that :SEG cards are not required. The programs are exe
cuted from the OV file. A postmortem dump is speci
fied in case an abort occurs.

Figure 13. Overlay loader Segmented Job Example

Overl ay loader Deck Setups 43

!OLOAD (GO, LINKS)

!ASSIGN (F:2, LPA02), BCD;

Figure 14. Overlay Loader Batch Example with GOLINKS

44 Overlay Loader Deck Setups

	001
	002
	003
	004
	005
	006
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44

