
~O.l!t>;;.i GM~ SERIES
''Zl '~/bUTPUT
·.PRO~~

~/C

Prepared for

. t ms SDS Data Sys e

I H·lls California Bever y I ,

10 March 1966

eSP-007

CONTENTS

Page

SECTION I: GENERAL 1-1

1.0 DIFFERENT TYPES OF INPUT/OUTPUT 1-1

1.1 RWD Interface 1-1

1.2 Eight-Bit Data Path 1-2

1.3 Memory Bus 1-4

1.4 Testing of External Signals 1-5

2.0 SIGMA COMPATIBILITY 1-5

3.0 ELECTRICAL DESCRIPTION OF INTERFACES 1-6

, 4.0 EXPANSION 1-8

SECTION II: READ-WRITE-DIRECT INTERFACE 2-1

1.0 INSTRUCTIONS IN THE COMPUTER 2-1

1. 1 Data Input 2-1

1.2 Data Output 2-1

1.3 Effective Address Assignments 2-2

2.0 INTERFACE SIGNAL LINES AND CABLING 2-3

3.0 LOGIC DESIGN AT THE INTERFACE 2-4

3. 1 Circuitry for Function Strobe Acknowledge 2-4

3.2 Read Direct, Timing 2-4
3.3 Write Di rect Ti ming '2-5

-3.4 Hanging Up the RWD Interface 2-5

3.5 Decoding. 2-6

4.0 RECOMMENDED METHOD FOR ACHIEVING SIGMA 2

COMPATIBILITY 2-6

Page

SECTION III: lOP INTERFACE 3-1

1.0 INSTRUCTIONS IN THE COMPUTER 3-1

1. 1 General Desc ription 3-1

1.2 SIO Instruction 3-2

1.3 Operational Sequence After SIO 3-5

1.4 Data and Command Chai n i ng 3-9

1.5 Command Word Format 3-11

1.6 HIO, TIO, and TDV Instructions 3-14

1.7 Interrupt Structure and AIO Instruction 3-15

2.0 INTERFACE SIGNAL INTERACTION AND TIMING 3-17

2. 1 Ptiority Determination 3-17

2.2 Leading and Trailing Acknowledgement 3-20
, 2.3 Processing Computer Instructions 3-21

2.4 Service Calls and Acknow ledgement 3-23

2.5 Request Strobes and Acknowledgement (Data Input & Output) 3-25

206 Order Output 3-28

2.7 Order Input 3-30

2.8 Terminal Orders 3-31

2.9 Interrupt Calls and Acknowledgement· 3-32

3.0 DEVICE SUBCONTROLLER 3-34

3. 1 General 3-34

3.2 Subcontroller Component Parts ·3-34

3.3 Subcontroller Usage 3-35

3.4 Subcontroller Summary Description 3-35

4.0 DIFFERENCES ON SIGMA 2 ·3-38

5.0 INTERFACE SIGNAL UNES AND CABLING 3-39

ii

SECTION III: lOP INTERFACE (Continued)

6.0 LOGIC DESIGN OF DEVICE CONTROLLERS (DESIGN TIPS)

6. 1 General

6.2 "START It Flip-Flop and Control Flip-Flop Initialization

6.3 Terminal Order Control Flip-Flop

6.4 Order Out Control Flip-Flop

6.5 Order In Control Flip-Flop
I

6.6 ·'WANT SERVICEIt Control Flip-Flop

6.7 Request Strobe and Acknowledgement

6.8 Quantity of Data Bytes per' Service Cycle

6.9 C~annel End

6.10 "Bad Order" Detection

< 6.11 Unusual End

6. 12 "WANT INTERRUPT II Control Flip-Flop

6. 13 State Flip-Flops

SECTION LV: MEMORY BUS INTERFACE

APPENDIXES:

A~

B.
C.
D.
E.

. F.

G.

Cable Characteristi cs

Summary of Bit Coding for Various Data Exchanges

Summary of Cable Signals

Reference Specifications

Dictionary of lOP/Device Controller Terms & Abbreviations

Subcontroller Module Locations

T -Series Circuits, SpecificQtions and Schematics

iii

3-40

3-40

3-41

3-42

3-43

3-44-

3-45

3-46

3-47

3-48

3-49

3-SO
3-51

3-52

4-1

A-I

B-1
. C-l

0-1

E-l

F-l

G-l

RGURES

Page

1-1. 51 GMA 7 Cabl ing Scheme 1-6a

1-2 .. Driver Circuit Schematic 1-7a

1-3. Cable and Terminator Connections 1-7a

1-4. 51 GMA Expansion 1-8a

2-1. Function Strobe Acknowledge Ci rcuit 2-40

2-2. Read Direct Timing and Write Direct Timing 2-40

2-30 RWD Interface Delay logic 2-5a

2-4. SIGMA 2, RWD Compatibility 2-7a

3-1. Priority Chain Implementation 3-2Oa

3-2. Functiol) Strobe Acknowledgement 3-21 a

3-3. Instruction Execution Ti mi ng 3-220

3-4. Service Cycle Timing 3-240

3-5 •. "START" Flip-Flop and Control Flip-Flop Initialization 3-410

3-6. Terminal Order Control Flip-Flop 3-42

3-7. Order Out 'Control Flip-Flop 3-430

3-8. Order In Control Flip-Flop 3-440

3-9. "WANT SERVICE" Control Flip-Flop 3-450

3-10. Request Strobe and Acknowledgement 3-460

3-11. Typical Byte Counter 3-470

3-12. Channel End 3-48

3-13. uBad Order lB Detection 3-49

3-14. Unusual End 3-SO

3-15.- "WANT I NTERRUPT II Control Flip-Flop 3-510

3-16. State Flip-Flops 3:"520'

iv

SECTION I: GENERAL

1.0 DIFFERENT TYPES OF INPUT/OUTPUT

1. 1 RWD Interface

The Read-Write-Direct interface gets its name from the two SIGMA instructions that

control this interface: Read Direct (RDD), and Write Direct (WRD). This interface is

similar in a sense to the POT/PIN interface on the SDS 900 Series computers; ROD is

analogous to an EOM/PI N sequence of instructions, whi Ie WRD is analogous to an

EOM/POT sequence. There is no analogy for the SKS instruction. This function is

accomplished in another way, described in Section 1-1.4.

Each instruction (<RDD or WRD) presents 16 bits of effective address at the interface,

along with a control signal designated Function Strobe. The external unit must provide

a signal called Function Strobe Acknowledge which, like Rt in the 900 Series computers, .

allows the RDD or WRD instruction to be executed.

During ROD, the external unit may provide 32 bits of data for storage in a computer

register; this data is provided in coni unction with Function Strobe Acknowledge. During

WRD, the computer provides 32 bits of data to the external unit (in coniunction with

Function Strobe) on the same 32 lines that are used to transmit input data during RDD •.

Thus the 32 data lines are time-shared for the two different instructions.

Additional signals provided at the interface are:

•

a line that differentiates between RDD and WRD for the ~xtemal user

(since they appear identical in all other respects),

two additional data lines for input (they are input lines even during WRD),

which set the computer's condition code bits 3 and 4,

an I/O Reset signal, and

a 1-Mc clock signal {not synchronized in any way with instruction

execution.

1-1

On SIGMA 2, the RWD interface is identical, ~cept that the data path is only 16 bits wide.

Thus, only three cables are required for SIGMA 2, rather than the four cables on SIGMA 7

and SIGMA 5, since each SIGMA cable contains 14 conductors.

1.2 Eight-Bit Data Path

The eight-bit data path, referred to as the Input/Output Processor (lOP) interface,

is analogous to the T MCC/DACC interfaces in the SD~ 900 Series computers. One

eight-bit data path is associated with each lOP in a system (there may be up to eight

10P's). Each path is logically and electrically independent of every other path, in

every resp,ect. Device Controllers (peripheral control units) are attached to this inter

face in a completely parallel manner, requiring only one set of four cables to be con-
\

"ected to the lOP; each Device Controll'er is connected to the one before it (nearer
,

physically to the lOP). Section 1-3 gives a complete description of the electrical

characteristics of this interface, and Section 11-3 describes the cabling.

Up to ~ Device Controllers may be attached to any lOP interface. All Device Con-
"

trollers time-share the single eight-bit data path. Operation resembles interlaced

operation on the 900 Series, except that the interrace word count and each main memory address

Qr~ stored in an lOP private fast memory for each Device Controller attached to the bus.

Since the private fast memory also contains other control information associated with each

Device Controller, 56 bits of storage in the lOP are assigned exclusively to each possible
. ,

, device address. Each device connects to the lOP through a Device Controller (DC).

Once a device has been "started" by the main computer program, the general scheme of

I/O interaction is as follows:

L Any number of Device Controllers may request "service" simultaneously

from the lOP ..

2. The lOP brings up certain signals that activate a hard-wired priority chain between

Device Controllers. The highest priority Device Controller that has requested

service puts Its own device address on some return lines, along with an

acknowledge ~signal, and is then "connected" to the lOP for a short time.

1-2

3. While it is connected to the lOP, a Device Controller makes its request:

Data Out, Data In, control information from the CPU memory, or transfer

of control information into the lOP fast memory.

4. While it is connected to an lOP, a Device Controller can transmit or receive

up to four (a-bit) bytes of data or one byte of control information, plus, in

some cases, an additional byte of control information known as a Termi nal

Order.

It should be noted that up to 32 devices on a given,IOP may request service simultaneously.

They are serviced in sequence by the lOP, based on the hard-wired priority chain. The

brief description abive is intended to serve only as an introduction; Section III describes

. the lOP interface in greater detai I.

This interface is compatible on SIGMA 2, SIGMA.S, and SIGMA 7, except for some

differences in bit coding for certain exchanges of control information and in the handling

of Order In, Order Out, and Terminal Orders. These differences are discussed in 111-4.

The different types of lOP's that may be utilized with a SIGMA system include:

M/IOP

.. S,!IOP

S'/IOP

Multiplexor lOP (basic unit)

Selector lOP

Selector Piggyback lOP

Throughout this manual, the letters lOP generally refer to the M/IOP interface.

All lOP's present the same interface and general signal interaction to a Device Controller.

Any device designed to operate on the lOP interface described in this manual may connect

to any of the specified types of lOP's. However, the S/IOP is designed to allow much

higher ~ata rates (up to 1. 5 million bytes per second) versus a maximum of approximately

0.3 mi Ilion for an M/IOP. Also, the S/IOP permits only one device to be active at any

given ti me, as compared to up to 32 active devices for the M/IOP.

The S'/IOP is an additional 5/IOP that shares t'~e same bus as its parent S/IOP. It is

identical in all other respects. The 5/10P and 5'/IOP also permit Device Controllers

that operate with a 32-bit data interface, whose control signals are identical with the

M/IOP. Obviously, such a Device Controller cannot be used on the 8-bit M/IOP.

Due to cabling and port access restrictions, the following formulas apply to system lOP

confi gurat ions:

M + 5 < 5

M + 5 + 5' < 8

where M = number of M/IOP's

S = number of 5/IOP's

S· = number of SI/IOP'S

1.3 Memory Bus

The lOP itself connects to the computer, as well as to the memory bus for some memory

module. Although it is seldom necessary for system requirements, an external device

. can connect directly to this memory bus.

The memory bus comprises 32 data lines (time-shared for input and output), 17 address

lines, a Memory Request signal, a Data Release line, an Address Release line, an

Address H~re signal, and a Parity Error signal. There are also four Write Byte control

lines that are used during partial write operations to specify which of the four bytes in
,

a memory cell are to be altered during that operation.

The memory bus is described in detai I in S~ction IV.

1-4

1.4 Testing of External Signals

SIGMA systems do not have any explicit instructions to allow external signals to be tested

through the RWO interface, analogous to the SKS instruction in 900 Series computers.

However, this function can be accomplished quite readily by means of an ROD instruction

(which stores up to 32 bits in a specified register), followed by a Compare Selective (CS)

instruction, and then a test of the condition code bits (whose settings are based on the

results of the CS). Single or multiple bits may be test.ed by this procedure. The SIGMA 5

and SIGMA 7 reference manuals describe how these instructions operate.

2.0 SIGMA COMPATIBIUTY

SIGMA 5 and SIGMA 7 are completely identical with respect to all interfaces. SIGMA 2

has certain differences on the various interfaces.

On the RWD interface, the oriy difference of consequence to the external-unit designer

is the word size: 16 bits on SIGMA 2 versus 32 bits on SIGMA 5 and SIGMA 7. The

moans to accommodate this difference for standard products are discussed in Section 11-5.

On the lOP interface, it is an unbreakable rule that all units must be 'capable of operating

equally well on SIGMA 7, SIGMA 5, or SIGMA 2. This will affect design with respect to

the means of identifyin~ certain conditions. For instance, on SIGMA 5 and SIGMA 7,

Terminal Orders always follow an Order Out cycle; on SIGMA 2 they may not. Thus,

the logic conditions that cause a Terminal Order state must be derived from identifying

signals provided by the computer, rather than directly from the occurrence of the Order

Out cycle itself. This issue is discussed in Section III, and particularly in Section 111-4.

1-5

3.0 ELECTRICAL DESCRIPTION OF INTERFACES

All interfaces - RWD, lOP, and memory bus - utilize the same cable driver/receiver scheme,

and the same means of inter-unit cabling_ All inter-unit cabling consists of several cables.

Each cable consists of 14 shielded wires, whose characteristics are given in Appendix A. Each

shielded wire is used as a transmission line which is terminated with its 33-ohm characteristic

impedance at each end. Connection to this line is by virtually tapping the line without undulr

affecting its characteristic impedance. A number of cables are used to handle all signals asso

ciated with each interface. These are:

RWD Interface

lOP Interface to ,
Device Controller

o lOP Interface to Memory

lOP Interface to Computer

_Memory Bus

.. cables for 51 GMA 5 and 51 GMA 7

3 cables for 51 GMA 2

,3 'cable~ -for all

'(There is, in addition, a single priority

determination cable running only between

'Device Controlle-rs; it does not connect

.!9)ljeIOP.)

5 cables for all

1 cable for all

Figure 1-1 on the following page shows the cabling scheme.

For all signals except those associated with priority determination among Device Con

trollers, each unit may tap any line with both a driver and a receiver. The following

conventions have been adopted:

Logic One +2 volts ~ driver output = low impedance

Logic Zero o volts driver output = high impedance

It should be noted that this reverses the conventions in the SDS 900 Series equipment,

where a logical one was the high impedance state and logical zero was the low impe

_ dance state. Thus, the quiescent state of time-shared lines must be altered: the

1-6

-~
Q

........... /Cable
Terminator ~

4 Cable

(3)

H H

H
Central

Processing
Unit

H
(1)

~ ~
Input/Output

Processor
#1

(3) .
(3)

Device IT (1) T Device I {1} T Device
Controller {P} ~ontroller (P) Controller

~ Device ~ Device ~ Device

-L-

HOevice (P denotes priority-determination cable)

(5) ~

(5)

H
Core

Memory
B~nk

#1

H

(1)

(P)

(3)

(5)

(1)

H

H
Core

Memory
Bank
#2

.1
(5)

-f H
Input/Output

Processor
#2

(3)
(3)

Device ,... (1) T Device n- (l) T Device
~ontroller {P} Controllelj {P} Controller

~ Device ~ Device ~ Device

~ Device I

Yoevice H Device

1=: 1 _ 1 C , ~ .. A It. .., ,.. _.L I- _ ,.. I

quiescent state of any time-shared line must be high impedance from the driver (logical

zero). Any single unit whose driver is active (turned on) on a given line may bring that

line to the logical-one state. This is accomplished by the driver circuit shown in Figure

·1-2 on the following page.

Receiver circuits similarly tap the common line for each signal; they consist of high

noise-reiection discriminator ci rcuits •

. There is no inversion in either drivers or receivers. If the input to a driver is a logical

one (+4 volts), the line driven goes to logical one (+2 volts). If a line is at logical one

(+2 volts), the receiver output is at logical one (+4 volts).

The priority determination signals are carried by exactly the same sort of scheme, except ,
that normally only one driver and one receiver are attached to each line. Signals are

received by each unit, passed through decision-making ordinary logic elements, and then

they mayor may not be passed on to the next unit.

Except for length, inter-unit cabling is all physically identical. There are no special

components or circuits on the cables themselves. Cables are attached to the back of

cable driver/receiver modules (AT10, ATll, AT12, AT1?). These modules may be
-

plugged into any slot on a standard SI GMA chassis; however, there are standard slots,

for standard interfaces, into which they should be wired so they can be identified

easily by ~ustomer Service personnel.

·Each such module can accommodate two cables, which are bussed (by etching on the

. module) directly to each other, as well as to the active circuits on the module (drivers

. and/or receivers). Thus, inter-unit cabling comprises one long transmission line, with

drivers and receivers attached at each unit. The "Iast" unit on the transmission line

{at both ends} must have a terminating network attached to the line in place of the

cable that would ordinari Iy run out from that point, as shown in Figure 1-3.

1-7

To
lOP ...
and

Terminator

Cable
Modules

560 560 +4

-'------ -- -- ----- - - -
--- - ---~--- ---- --

-- --
Figure 1-2. Driver Circuit Schematic

. 14-Conductor Sh ielded Cable

Unit '1 . Unit '2

Figure 1-3. Cable and Terminator Connections

1-7a

Other
Drivers

Terminator

Unit '3

4.0 EXPANSION

The philosophy of design for the SIGMA input/output system dictates that elements in the

system should be separable and easily connected. Therefore the following design goals

should be noted carefully:

All cables should be identical except for lengthe

Cable receptacle locations should occur in the same place within

each chassis assembly.

Similar assemblies should be connected in similar fashion.

Cable,s are trunk to tail, and there should be no ambiguity as to

the means by which interconnection or expansion of assemblies is

mechanized.

Figure 1-4 on the following page, exe!T1plifies these ideas and demonstrates how expansion

is physically realizable.

1-8

Computer

".
lOP

I~

,.,
Device

Controller

Device

r1

r,

r,

lOP

r,
Device

Controller

I'

Figure 1-4. SIGMA Expansion

1-8a

Device

.. ...

...

r1

..

SECTION II: READ-WRITE-;)IRECT INTERFACE

.1.0 INSTRUCTIONS IN THE COMPUTER

, 1. 1 Data Input

In SIGMA 5 and SIGMA 7 the Read Direct (RDD) instruction presents the low-order 16

bits of its effective address on the RWD interface addr~ss lines, along with a signal that

indicotes the execution of the RDD i:nstruc·tion. The selected external device must generate an

acknowledge signal and may present up to 32 bits of data on the RWD interface data lines,

as well as two bits of condition code information on two other lines to set CC3 and CC4.

If R (the register-specifying field in the instruction) is not equal to zero, the 32 data bits

are stored in the specified register. If R ~quals ze~o, the 32data lines are ignored, but ., .

ee3 and CC4 are still set" as specified by the external device.

In SIGMA 2 Read Direct (RD) is the same as RDD in SIGMA 5 and SIGMA 7, except that

only 16 bits of data are accepted, and they, are stored in the SIGMA 2 accumulator. The

. condition code input lines are stored in the SIGMA 2 carry and overflow indicators.

1. 2 Data Output

In SI~MA 5 and SIGMA 7 Write Direct (WRD) presents the low-order 16 bits of its effec

tive address on the RWD interface address lines, along with a signal that indicates the

execution of the WRD instruction.. The selected external device must generate an acknowledge

signal, and may accept 32 bits of data from the RWD interface data lines; the computer

simultaneously accepts two bits of condition code information on tw? other lines to set

CC3 and CC4. If R (the register-specifyil'1g field in the instruction) is not equal to zero,

the 32 bits of the specified register are transmitted on the 32 data lines. If R equals

zero, the 32 data lines are set at logical zero regardless of the contents of any register,

but CC3 and CC4 are still set as specified by the external device.

2-1

On SIGMA 2 W~ite Direct (WO) is the same as WRD for SIGMA 5 and SIGMA 7, except

that only 16 bits of data are transmitted; they are taken from the SIGMA 2 accumulator.

The conditi~n code input lines are stored in the carry and overflow indicators in SI GMA 2.

1.3 Effective Address Assignments

The general area that is controlled by any ROD, WRO, RD, or WD instruction is specified

by the high-order four bits of the effective address, and is designated as the control mode.

The effective address bits are designated numerically as 16-31 in SIGMA 5 and SIGMA 7.

Control mode assignments have been made as follows:

Hexadecimal Definition

o
1.
2-8

C-E

F

. Internal Computer Control

Interrupt Control

Presently Unassigned

Systems Standard Products

Systems Special Units

A list of effective address assignments for control modes C to E is to be maintained by

the Systems Engineering secretary. If a unit which might be applicable to future systems

is to be designed, approval must be obtained from the Director of Systems Engineering

for assignment of a standard WRD effective address codi ng. No central record wi II be

kept for effective address assignments with control mode F.

For all standard product effective address assignments, . the reservation of a particular

code will apply to both SIGMA 5/SIGMA 7 and SIGMA 2, even if the standard pro-

duct is designed to operate primari lyon only one of the systems. It should be emphasized,

however, that standard products should be designed, whenever possible, with a view

towa.rds effective operation on any SIGMA computer. Suggested means of accomplishing

this are discussed in Section 11-5.
~

2-2

2.0 INTERFACE SIGNAL UNES AND ~ABUNG

The following cables are involved in the RWD interface:

Cable' No. Connects to Transmits

1

2

3

ATII cable driver/receiver
module (23S in CPU)

ATII cable driver/receiver
module (27Q in CPU)

ATl1 cable driver/receiver
module (30P in CPU)

Al10 cable receiver module
(29N in CPU)

data input/output bits 00-13

data input/output bits 14-27

data input/output bits 28-31;

Function Strobe;

Function Strobe Acknowledge;

RDD;WRD; and

Address Lines 5-7 and 12-15

CC3 and CC4;

I/O 'Reset;

l-Mc Clock;

Address Lines 0-4 and 8-11; and

One Spare.

The following items should be noted:

Cable No. 1 is' not needed for a SI GMA 2 system.

The designer must ground inputs to drivers for Function Strobe, RDD;WRD,

I/O Reset, the I-Mc Clock, Address Lines 14 and IS, and any unused data

Ii~es (including CC3 or CC4 if they are unused).

Appendix C gives module pin numbers for these cables.

RDD;WRD is true for WRD •

. 2-3

3.0 LOGIC DESIGN AT THE INTERFACE

Cable drivers may be driven by any standard logic circuit, including flip-flop outputs.

However, the cable driver circuit takes eight unit loads. The nominal output of standard

SIGMA logic elements is 16 unit loads. Pull-up resistors consume two unit loads, and

terminating resistors consume five unit loads. Terminating resistors are not ordinarily

needed on circuits that feed cable driver inputs; thus any circuit is apparently allowed

to feed one cable driver and six other loads. It is recommended that, where possible,

circuits feeding cable drivers not drive any other points.

3. 1. Circuitry for Function Strobe Acknowledge

The circuitry for acknowledging the Function Strobe signal is shown in Figure 2-1 on

the following pagt1.

3.2 Read Direct Timing

The timing for the Read Direct instruction is shown in Figure 2-2. For this instruction,

the following operations take place.

1. The CPU puts the effective address on the Address Lines and holds RDDjWRD
at ground for at least 360 nanoseconds, then brings up Function Strobe.

,.
2. The external unit that can properly decode the Address Lines uses Function

Strobe as a gate to put the following signals on their proper lines:

Data Bits

CC3 and CC4

Function Strobe Acknowledge

3. After se~ing Function Strobe Acknowledge, the CPU delays for a short
period (whose duration is not germane to the proper operation of external
units) and accepts the data and CC3 and CC4; then it drops Function
Stro~e, after a delay of 300 nanoseconds minimum (no maximum).

4. When the addressed .external unit sees Function Strobe drop, it immediately
releases the data lines, CC3, CC4, and Function Strobe Acknowledge.

- .

S. The CPU does not drop the address lines until (200 nanoseconds mi ni mum)
it sees Function Strobe Acknowledge released.

2-4

Address,
RDD,lWRD,
Output Data

Function
Strobe

Function
Strobe
Acknowledge

Valid Input
Informati on

Function
Strobe
Receiver

Address
: Recognition

Function Strobe
Acknowledge
Driver

Figure 2-1. Function Strobe Acknowledge Circuit

360 ns
(min.>"

1 ------.....

________ J,...---450 ns (min)

200 ns
(min)

___ 2_C_D_+_L_D ____ ~}==---------~~ __ C_D_+ __ LD __________ _

160 ns
{max}

- .. - -
r

J
,
\

Figure 2-2. Read Direct Timing and Write Direct Timing

2-40

3.3 Write Direct Timing

The. timing for the Write Direct instruction is shown in Figure 2-2. For this instruction,

the following operations take place:

1." The CPU puts the effective address on the Address Lines and holds RDD;WRD

at a true state for at least 360 nanoseconds, then brings up Function Strobe.

2. The external unit that can properly decode the Address Lines accepts the infor

mation on the data lines and uses Function Strobe as a gate to put CC3, CC4, and

Function Strobe Acknowledge on their lines. The output data may be accepted

either by using Function Strobe as a dc gate (two-sided loading), or by ac clocking

at the trai ling edge of Function Strobe. The latter approach is recommended.

3. After se~ing Function Strobe Acknowledge, the CPU delays for a short period (whose

duration is not germane to the proper operation of the external unit), and accepts

CC3 and CC4. Then it drops Function Strobe, after a delay of 300 nanoseconds

minimum (no maximum).

4. When the addressed external unit sees Function Strobe drop, it immediately releases

CC3, CC4, and Function Strobe Acknowledge.

5. The CPU does not drop the address lines, the data lines, or RDD;WRD, unti I it sees

Function Strobe Acknowledge released (200 nanoseconds minimum).

3.4 Hanging Up the RWD Interface

It is a Systems Engineering policy not to hang up the RWD interface for any duration

longer than 1.6 I-Isec, and only then in cases where there is clearly an engineering or

economic advantage to be gained by doing so (for instance, to avoid the use of one

shots or unnecessary buffer storage). The recommended logic for accomplishing this is

shown in Figure 2-3 on the following page, along with timing diagrams. Point B is

true for 0.6 to 1.6 J-Isec.

2-5

A

8

C

D

E

Function
Strobe
Receiver

Address
Recognition

I-Megacycle
Clock
Receiver

A

I

I! \
I
f

/ \
/
(\.

B

s

c

R

\

E

Function Strobe
Acknowledge
Driver

.......... ----c

s --- 0

C

R

Figure 2-3.. RWD Interface Delay Logi c

2-5a

3.5 Decoding

All units designed by Systems Engineering must completely decode all 16 bits of the

ROD and WRD effective address. There should be absolutely no exceptions to this

rule.

4.0 . RECOMMENDED METHOD FOR ACHIEVING SIGMA 2 COMPATIBILITY

Special units designed expressly for SIGMA 2 need not give any consideration to potential

usage on SIGMA 5 or SIGMA 7. In the event that they were so used, the only disadvan

tage would be a reduction in efficiency, since only half of each SIGMA 5 or SIGMA 7

word would be used. There are no engineering barriers to such interchangeG

Special units designed expressly for SIGMA 5 or SIGMA 7 should give some consideration

to potential usage on SIGMA 2. If such units are optimized for operation on SIGMA 5

and SI~MA 7, they will, in general, not be able to operate effectively on SIGMA 2

unless the usage of each half of each data word is independent of the usage of the other

half. The information tn the following paragraphs regarding compatibility for standard

units should be considered in designing special units for SIGMA 5 and SIGMA 7, since

it may be profitable in some cases to make even such special units compatible with

SIGMA 2.

All standard units must be capable of efficient operation on either SIGMA 2 or SIGMA 5

and SIGMA 7, unless quite strong economic or operational dIsadvantages can be shown.

The scheme used in the JB30/JB31/JB32 Digital Junction Boxes to ensure this compatibility

is described below ..

Two bits are reserved in the effective address of each RDD or WRD instruction to specify

whether the operatio.n should be only on the high half of the word, only on the low half,

or on the full word (both bits true). In general, the mechanics of implementation have

shown that there is small incremental cost increase associated with this approach.

2-6

A slot is reserved in each chassis, to which all 32 data receiver outputs (the output data

from th~ CPU) are brought. When the unit is used on SIGMA 2, a special iumper module

is inserted in this slot. The module connects bits 00 and 16, 01 and 17, etc. Thus any

output operation in SIGMA 2 involves the proper 16 bits from the CPU, whether high-half

or lo~-half operation is specified in the instruction.

Figure 2-4 on the following page illustrates how the same operation is accomplished for
,

a typical application - namely digital inputs. The example shows bits 00 and 16; the

remaining pairs of bits up to 15 and 31 are simi lor.

Figure 2-4 shows the normal implementation for SIGMA 5 and SIGMA 7. When the unit

is used on SIGMA 2, the circuits design~ted itA II are replaced by inverting (rather than

buffering) circuits with identical gating structures. Most SIGMA logic modules come

in pairs like this. The special module designated 118 11, which has only iumpers in SIGMA 5

and SIGMA 7, is replaced for SIGMA 2 by one that contains inverters, as shown in

Figure 2-4. Thus; no wiring changes of any kind are required.

2-7

Special
Module B

r--------,
I
I
I

I
I

b
C I

L ___ ~_. ___ J

'r--------,
I a ,

, I
C I

I
I
I

L_~ ______ ..J

Figure 2-4. SIGMA 2, RWD Compatibility

2-7a

Absent
for Sigma 2

SECTION III: lOP INTERFACE

1.0 INSTRUCTIONS IN THE COMPUTER

1. 1 General Description

SIGMA 5 and SIGMA 7 require different CPU programming than SIGMA 2 to handle the

lOP interface. The description that follows refers to ,SIGMA 5 and SIGMA 7. The

SIGMA 2 description is presented in Section 111-4.

SIGMA 5 and 51 GMA 7 actually communicate only with the lOP. The lOP then handles

communication with each Device Controller, including order and control information as

well as data transfers. To perform these functions, the lOP utilizes the system's main

memory, as well as its own internal fast memory. The internal fast memory in the lOP,

which is organized in such a manner that there are a certain number of bits reserved for

each possible I/O channel (Device Controller), is not directly accessible to the program

mer. However, certain information in this fast memory can be transferred to fast memory

or CPU registers by means of the instructions described in this section.

To initiate data transfers with any Device Controller, the programmer may issue a Start

I/O (510) instruction. This instruction activates the selected Device CO':"'troller and

provides information regarding how much data is to be transferred and the main memory

locations involved in the transfer. It also provides control information that tells the

lOP what to do in the event of certain conditions, such as running out of data, various

errors, or acting on special cOfltrol information provided by the Device Controller itself.

The Start I/O instruction does not itself provide any information except an lOP address,

a device address, and a memory location that defines the starting point for the actual

list of commands stored in main memory. This command list in main memory consists of

pairs of words (called command pairs), each of which contains a byte address, a byte

count, a command (read, write, read backward, e~c.), and various control flags that

influence lOP operation. The lOP operates in such a manner that it can read through

3-1

this sequence of command words in main memory, executing the functions required by

each command pai r in turn. The command word format is described in detai r in Section

111-1. S.

1.2 510 Instruction

The Start I/O instruction has the following format in a computer program:

R x Address

o 1 2 3 4 S 6 7 8910111213141S16171819202122232425262728293031

IA = indirect addressing bit

R =, register on currently selected page

X = index regi.ster (none if X = 0)

First, indirect addressing is performed, if IA = 1, to obtain a new address. If indexing

is also specified, the contents of the specified index resister are added to this new

address to form the effective address for the instruction. The low-order eleven bits of

this effective address are now ihferpreted as an I/O address, in the following manner:

lOP No.

21 22 23

Device Controller
D. Controller Device
25 26 27 28 29 30 31

Form 1
Form 2

1

The second form, where bit 24 = 1, is used for Device Controllers that may have' many

devices attached to them, only one of which can be engage~ in data exchanges at any

given time. A tape controller and individ~al tape transports exemplify this type of unit.

510 assumes that the programmer has previously set up main memory cell 20* with a word

having the following format:

10 - - - - - - - - - 01 Command Doubleword Address

. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 2223 2425 26 27 28 29 30 31

*base 16

3-2

The SIO instruction n~w takes the I/O address, as previously determined, and the nature

of the It field, and merges them into cell 20 to produce a word in cell 20 having the

following format:

I/O Address
(Least 8 Bits) R 0 - - - - 0 Command Doubleword Address

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 2223 2425 26 27 28 29 30 31

The lOP interprets bits 8 and 9 above in the following manner:

. 00 The lOP only sets the condition code bits based on the response

from the addressed Device Controller (R was O).

01 The lOP sets the condition code bits as for 00, but also writes

status information in main memory cell 21 (R was odd).

10 The lOP sets the condition code bits as for 00, but also writes

status information in main memory cells 20 and 21, replacing

the original contents above of cell 20 (R was even and non-zero).

The information that the lOP may write back into condition code bits 1 and 2, and cells.

20 and 21 (if directed as above to do so), has the following format:

CCl If set, the I/O address was not recognized by any device.

CC2 If set, the SIO instruction was unsuccessful (i. e., it was reiected

by the Device Controller for one of a variety of reasons that are

discussed later).

Cell 20* I Command Doubleworcl Address' I
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 2425 26 27 28 29 30 31

Cell 21 * I Status 10 I Byte Count

o 1 2 3 4 5 6 7 8 9 10 1112 13 14 15 16 17 18 19 20 21 22232425 26 27 28 29 30 31

3-3

The command doubleword address that is returned to cell 20 is the one associated with

the previous order or I/O function to the addressed channel. This is undefined if the

instruction is the first SIO since power-on. The byte count returned to cell 21 is the

byte count stored in the lOP fast memory word associated with the addressed channel.

It is also undefined if this is the first SIO since power-on. The status bits in cell 21,

as returned by the lOP (which generates them itself or receives them from the Device

Controller), have the following significance:

Bit 0

Bits 1 & 2

Bit 3

Bit 4

Bits 5 & 6

Bit 7

Bit 8

Bit 9

Bit 10

Bit 11

Bit 12

Bit 13

Bit 14

device interrupt pending

00 = dev i ce ready

01 = device not operational

10 = device unavai lable

11 = device busy

device automatic

device unusual end

00 = Device Controller. ready

01 = Device Controller not operational

10 = Device Controller unavai lable

11 = Device Controller busy

undefined

incorrect length (via order-in from Device Controller)

transmission data error (data-in, parity, or order-in error)

transmission memory error (data parity)

memory address error (non-implemented memory address)

lOP memory error (memory parity error whi Ie fetching command)

lOP control error (two successive Transfer in Channel commands)

lOP halt

3-4

Since the lOP might be busy with a Device Controller (exchanging data) when the SIO

is issued by the CPU, it is possible for the system to "stall" for a short ti me unti I the

lOP is free to process the SIO. However, this time cannot, even in the worst case,

exceed the time required to finish servicing the currently connected Device Controller,

since the CPU then has higher priority (for lOP usage) than any Device Controller that

needs service.

After this phase of the SIO instruction is completed, including status exchange with the

Device Controller, the CPU copies cell 21 (only if it was written into by the lOP) into

register Rul (If R is even, Rul = R + 1; if R is odd, Rul = R). The CPU also copies

cell 20 (only if it was written into by the lOP) into register R. I,f R is odd (making

R = Rul), R will then contain the original contents of cell 21, and cell 20 will not be

in any of the regi~ters.

1. 3 Operational Sequence after SIO

Once a Device Controller has been activated by an SIO instruction, and untj I it either

halts itself or is halted by an HIO instruction, it may make service calls to the lOP. A

Device Controller makes a service call by activating a specified line in one of the cables

to the lOP, and it may do this at any time, without regard to the state of the lOP. For

example, when a Device Controller makes a service call the lOP may be occupied at the

time in communicating with the CPU, main memory, or some other Device Controller.

A single line is used by all Device Controllers to make their service calls, i. e., they all

use the same line.

As soon as the lOP has completed its previous activity, it continues scanning the service

call line until it detects activation by some Device Controller. At this time, the lOP

does not know which Device Controller is requesting service - any number of Device

Controllers might be requesting service simultaneously. The lOP then issues a signal

called Function Strobe, in conjunction with a function indicator called Acknowledge

Service Call (ASC), which is transmitted to all units attached to the lOP.

3-5

A separate, hard-wired priority determination chain runs from controller to controller

(this is discussed in detail in Section 111-3.1). This chain is important primarily when

more than one controller has called for service. The highest priority controller that has

requested service then places its device address on the eight function response lines

of the interface, and acknowledges the function strobe. All other units must stay

off all lines. The active unit is then connected to the lOP for service, and goes

through a service cycle which may involve the transfer of one to five bytes

of information.

The lOP uses the address that is returned on the function response lines to select the fast memory

location from wh ich requi red information wi II be obtained for the subsequent service

cycle to the connected controller. The connected controller then initiates data transfers

by activating a Ifne designated "Request Strobe ". During Request Strobe activation, the

Device Controller must also control two lines called Data-Order Request (DOR) and

Input/Output Request (lOR). These two lines are decoded by the lOP to select one of

four possible functions that may be performed by the lOP during that cycle:

DOR lOR Function

0 0 Data Input

0 Data Output

0 Order Input

Order Output

The operation of the lOP whi Ie performing these functions is discussed later in this section.

The manner in which a service cycle is terminated is controlled by two additional signals:

End Data (ED) and End Service (ES), coded as follows:

3-6

ED

o

x

ES

o

o

Meaning

The controller must generate another Request Strobe

and accept or provide another byte of data.

This is the last data byte; the controller must discon

nect itself and not generate any more Request Strobes.

This is the last data byte; however, the controller

must not disconnect itself yet and must generate one

more Request Strobe. During the next Request

Strobe, the lOP wi II output certain control informa

tion to the controller. This is known as a Terminal

Order.

This configuration defines the Terminal Order when

preceded by 1110 11; the controller must disconnect

itself and not generate any more Request Strobes.

In response to each Request Strobe generated by the Device Controller, the lOP generates

a signal called Request Strobe Acknowledge. Along with Request Strobe Acknowledge,

the lOP either provides data (if the subcycle is for Data Out, Order Out, or Terminal

Order) or accepts the data provided by the controller (if the subcycle is for Data In or

Order In).

The ED line may be driven by either the lOP or the Device Controller. The Device Con

troller normally drives this line, at the same time it activates Request Strobe, when it

has received all the data necessary {or input all the data called for during the current

service cycle}. It may also drive this line because an error has been detected in data

transmission and the Device Controller therefore wishes to terminate operations.

The lOP may drive the ED line true for one of three reasons:

1. An error of some sort has been detected, and the lOP has been conditioned

to termi nate operations when th is error is detected.

3-7

2. A word boundary has been reached during data transfers, and the lOP would

have to go back to main memory to get more data bytes. Activating ED and

ending the service cycle permits other operations, such as service to the CPU

or other Device Controllers, to take place.

3. The service cycle was for either Order Out or Order In; each consists of

a one-byte transfer.

The ES line, on the other hand, may be driven only by an lOP. It is driven under pre

cisely two ci rcumstances:

1. Either the lOP or the Device Controller has signalled ED, and there is no

necessity for a Terminal Order.

,
2. It is driven during the Terminal Order.

In the first case, ES is driven during the same subcycle that ED was driven, so they both

appear together back at the Device Controller. The Device Controller should use the

trailing edge of Request Strobe to inspect the state of ED and ES and decide whether or

not additional Request Strobes will be required and if one is required, whether it should

be for a Terminal Order or for more data transfer.

In SIGMA 5 and SIGMA 7, Order In is always followed by a Terminal Order, even

though there may sometimes be no important information to be tra nsmitted in the Terminal

Order.

It should be noted that in SIGMA 5 and SIGMA 7, precisely seven different types of

service cycles can occur:

1. one, two, three, or four data bytes out

2. one, two, three, or four data bytes out and a T ermi nal Order

3. one, two, three, or four data bytes in

4. one, two, three, or four data bytes in and a Terminal Order

3-8

5. Order Out {one byte}

6. Order In {one byte} and a Terminal Order

7. Order Out and a T ermi nal Order

The following points should be noted carefully:

The coding of DOR and lOR by the Device Controller need only be given

during the first byte of each service cycle, even in the cycle is five bytes

long; the state of these lines is ignored after the first byte of each service

call.

The Device Controller, if it wishes to end the service cycle, drives ED whi Ie

. the last data byte is being input or output; the Device Controller should not

drive 'ED during the Terminal Order.

The Device Controller must disconnect following the subcycle in which it

sensed ES true, and must generate an additional Request Strobe following

any subcycle in which it sensed ES false.

1. 4 Data and Command Chaining

IIData chaining ll is the term used to describe a particular lOP reaction to "running out of

data ", i. e., the byte count in lOP fast memory for a particular channel goes to zero.

If the programmer has specified data chaining with bit 0 of the odd command word, then

the lOP performs the followi ng sequence of actions when the byte count goes to zero:

1. The lOP fast memory is accessed to determine the last command doubleword

address.

2. This address is incremented by two, to produce a new command doubleword

address.

3. The lOP accesses two mai n memory cells (the command doubleword) and stores

in its own fast memory a new byte count, a new memory byte address, and a

3-9

new set of eight lOP control flags. The "order" bits in the command double

word are ignored, and not passed on to the Device Controller.

4. The lOP then continues data exchanges with the Device Controller, based on

further service requests from that Device Controller. The Device Controller

has no knowledge of the occurrence of data chaining.

"Command chaining" is caused by the Device Controller, in response to orders from the

programmer. Its net effect is si mi lar to that of data chai ni ng, except that the lOP also

passes along a new "order" (the highest eight bits of the first command word) to the Device

Controller. Command chaining onlyoccurs as a result of the following sequence of operations:

1. The Device Controller signals "channel end" by means of an Order ln~

2. If c~mmand chaining was called for by bit 2 of the second command word of

the last executed command doubleword, the lOP sets the command chaining

bit in the Terminal Order that follows Order!n.

3. The Device Controller recognizes this condition and requests an Order Out

cycle. At this time the lOP determ.ines the new doubleword address and

accesses main memory to get a new command doubleword, iust as it did in the

data chaining operations described above.

Data chaining is used for scatter-read or gather-write operations, where the external

device is operating with continuous data that may come from or be delivered to non

contiguous areas of memory, in sub-blocks of any size specified by the programmer.

Command chaining provides a means of writing a sub-program (a sort of subroutine) whose

execution and sequencing can be under control of the lOP and/or the Device Controller.

It avoids the necessity for active program'intervention in many cases, thus saving time

and programming effort.

The lOP does not ordinarily take any action based on the particular order in the command

doubleword, except for a Transfer in Channel command. This command is not passed on

to the Device Controller. Instead, the lOP alters the current command doubleword

3-10

address to the new location specified by the Transfer in Channel (TIC) command. When

TIC is used in coniunction with the chaining modifier bit (which the Device Controller

can signal in an Order In), it allows selective branching within the CPU command list,

under control of the Device Controller.

1.5 Command Word Format

The lOP accesses main memory to obtain command words under two conditions:

The Device Controller has made a request for Order Out.

During data exchange (input or output), the lOP determines that the byte

count has gone to zero, and the data chaining bit in the previous command

word was set.

The request for Order Out in the first case above can be generated by the Device Con

troller for one of two reasons:

. . An SIO instruction was issued to and accepted by the Device Controller •

The Order Out is thus issued to obtain the first command doubleword from

main memory, . in order to inform the Device Controller regarding the exact

. nature of the operations it is to perform and to allow the lOP to store the

required control information (byte count, memory byte address, control flags).

The Device Controller had issued an Order In specifying IIchannel end II, and

in the Terminal Order following that Order In, the lOP had indicated that

the programmer had called for command chaining.

The general format for command words is as follows:

Order ~ Memory Byte Address

o 2 3 4 5 6 7 8 9 10 11 12 1 3 14 15 16 17 18 19 20 21 22 23 2425 26 27 28 29 30 31

3-11

For Transfer in Channel commands, the format is".,

I x x x x 1 0 0 oc:::::::><J Command Doubleword Address

o 1 2 3 4 5 6 7 8 9 10 11 12 13 1 4 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Odd command words have the following format:

Igl~I~I~lrl~I!IJ><J Byte Count

o 1 2 3 4 5 6 7 8 9 1 0 11 1 2 1 3 1 4 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The coding of the Order bits in the even command word is:

where

MMMMMM11 = Control

MMMMMM01 = Write

MMMMMM10 = Read

MMMM 1100 = Read Backward

MMMM0100 = Sense

XXXX1000 = Transfer in Channel

10000000 = Stop

M denotes a modifier bit unique to the particular Device Controller

X denotes "don't care II

I denotes interrupt condition

The coding of the lOP flag bits in the odd command word is shown in Table 3-1 on the

following page ..

3-12

Table 3-1. lOP Flag Bit Coding

Bit Name Function

o DC Data Chain: if this bit is true, then when the byte count goes to zero the
lOP accesses memory for the next command pai r but does not pass the Order
along to the Device Controller.

1 IZC Interrupt on Zero Count: if this bit is true, then when the byte count goes
to zero the lOP generates a Terminal Order to the Device Controller, in
which the interrupt bit (data line O) is set.

2 CC Command Chain: if this bit is true, then when the Device Controller sig
nals "channel end" to the lOP (by setting data line 3 in an Order In), the
lOP signals command chaining to the Device Controller in the Terminal
Order which follows the Order In (by setting data line 2 in that Terminal
Order).

3 ICE Interrupt at Channel End: if this bit is true, then when "channel end II is
signalled to the lOP by the Device Controller (by setting line 3 in an
Order In), the lOP sets the interrupt bit in the Terminal Order which
follows that Order In.

4 HTE Halt on Transmission Error: if this bit is true, then the lOP signals "lOP
halt" to the Devi ce Controller by setti ng bit 3 ina T ermi nal Order, if
any of the following conditions occur:

5 IUE

6 SIL

7 S

A parity error is detected by the lOP during communication between
the I,?P and main memory.

The Device Controller signals Transmission Error to the lOP by means
of bit 0 set in an Order In.

The Device Controller signals Incorrect Length to the lOP by means of
bit 1 set in an Order In and the SI L flag is not set.

Interrupt at Unusual End: if this bit is true, then when Unusual End is
signalled to the lOP by the Device Controller in an Order In, the lOP
sets the interrupt bit in the Terminal Order that follows the Order In.

Suppress Incorrect Length: if this bit is true, then Incorrect Length indica
tions from the Device Controller during Order In are ignored. Otherwise,
Incorrect Length indications may cause an lOP Halt to be issued to the
Device Controller if the HTE flag is set (see above).

Skip: if this bit is true, the lOP performs all actions usually associated
with the command except memory accesses.

3-13

It should be noted that,' for each channel (Device Controller), the lOP must store and

maintain in its own fast memory the following information:

Memory Byte Address (19 bits), which is incremented or decremented after

each data exchange with the Device Controller (decremented only when

Order was Read Backward).

Command Doubleword Address (16 bits), which is incremented by two prior

to the extraction of each new command doubleword from main memory. It

is ordinarily changed only by an 510 instruction or this incrementing, but

a TIC command may also change it.

Byte Count (16 bits), which is incremented by one after the exchange of

each a-bit byte with the Device Controller.
,

lOP Control Flags (8 bits), which may be altered only by a new command

word other than TIC or Stop.

It should also be noted that Order does not have to be preserved in lOP fast memory.

The Order is transmitted directly to the Device Controller, if required, at the time the

command word is read from main memory by the lOP, and is not needed thereafter.

1. 6 HIO, TIO, and TDV Instructions

The format for Halt I/O (HIO), Test I/O (TIO), and Test Device (TDV) instructions is

similar to that for 510.

~llg IIA~~ g ~ ~ 6 ~ I R X Address
TDV . _ 1 0 0 1 0

o 1 2 3 4 5 6 7 8 9 1 0 11 1 2 1 3 1 4 1 516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The low-order eleven bits of the effective address, after indirect addressing and indexing

(if specified), are also interpreted (as for 510) as specifying an lOP number and an 8-bit

device address. Memory cell 20* does not have to contain a command doubleword address,

as for 510.

*base 16

3-14

However, the R fj eld is sti II used to spec i fy the locations to wh i ch the lOP returns data

(20 only, 20 and 21, or neither). The format of cell 20 before the execution of HIO,

TIO, or TDV is the same as for 510 (device address and R bits), without the command

doubleword address.

The contents of cells 20 and 21 after HIO, TIO, or TDV has been executed are similar

to the format after 510, described in Section 11-1. 2. The status bits (0-14 of cell 21)

have exactly the same meaning for 510, HIO, and TDV. For TDV, the high-order

eight status bits represent status information unique to the particular Device Controller

that is being testedo Descriptions of this status are contained in the individual speci

fications for each controller.

1. 7 Interrupt Structure and AIO Instruction

The lOP has its own priority interrupt structure which is completely independent of the

normal external priority interrupt structure, except that the relative priority of the two

groups may be altered by hard-wi ri ng. All interrupts from Devi ce Controllers attached

to 10pis come through a single memory cell.. This is equivalent to a situation where all

peripheral equipment interrupts (including lOP interrupts such as Count Equals Zero) are

bussed to a common priority interrupt, whose place in the priority chain is variable (hard

wired only). There must, therefore, be some way to determine which of many possible

devices has actually caused the common interrupt; in fact, there may be at any given

time active interrupt requests from many controllers, but only one interrupt occurs.

The Acknowledge Input/Output Interrupt (AIO) instruction is used to determine the source

of such an interrupt request. This instruction is not addressed to a particular device, since

one of its results is to determine which device caused an interrupt. Thus, the instruction

format is somewhat different from 510 et al:

\IAlo 1 0 0 11 R X Address

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 171 R 192021 22232425262728293031

3-15

The difference from SIO is primari Iy in the interpretation of the effective address: only

bits 21 'to 23 are significant. These bits establish the type of interrupt being acknowledged.

For standard I/O interrupts, these bits should be coded 000. The remainder of the address

field is not used.

When an Ala instruction is issued, various control signals are sent out to the laPis (up

to eight in a system). Each lOP passes the control signals on to the next lOP, unless one

of the controllers connected to it has an active interrupt. The lOP with the interrupt

requesting controller then passes the control signals on to its Device Controllers, where the con

trollers themselves establish priority ina simi lar manner. The highest priority interrupt

requesting Device Controller sends its own address to the lOP, along with some status

information regarding its interrupt request. The lOP appends its own lOP number, and

passes this information to the CPU, which writes into cell 20 a word of the following form:

Status
and Device

o 1 2 3 4 5 6 7 8 9 1 0 11 12 1 3 14 15 1 6 17 1 8 19 20 21 22 23 24 25 26 27 28 29 30 31

Status bits 0-7 represent interrupt status information unique to the Device Controller whose

interrupt was acknowledged. The significance of these bits is described in the specifi

cations for each device. Bits 8-15 have standard meaning for all laPis and controllers:

Bit 8

Bit 9

Bit 10

Bit 11

Bit 12

Incorrect Length, as defined for SIO

Transmission Data Error, as defined for SIO

Zero Byte Count Interrupt {set only if the IZC flag in the last

command doubleword was true and the byte count equals zero}

Channel End Interrupt (set only if the ICE flog in the last com

mand doubleword was true and the device has signalled "channel

end" to the lOP via an Order In)

Unusual End Interrupt (set only if the IUE flag in the last com

mand doubleword was true, and the lOP has signalled the con

troller to halt by means of a Termi nal Order)

3-16

This word is then moved to the register specified in the AIO instruction.

There are two basic reasons for which a Device Controller may issue an interrupt request:

In a Terminal Order from the lOP, the interrupt bit (bit 0 in the Terminal

Order) was true.

An internal condition in the controller calls for an interrupt, based on the

design specifications for the Device Controller. In some cases the Device

Controller might need or accept control information from the lOP (and hence

the CPU and programmer) which conditions this interrupt, or it might be

generated internally, by such an event as the depression of a manual push

button.

2.0 INTERFACE SIGNAL INTERACTION AND TIMING

2. 1 Priority Determination

Three cables run from the lOP to the first Device Controller, from the first to the second

Device Controller, etc., as described in Section 1-3. In addition, a priority determination

cable runs only from Device Controller to Device Controller, and does not connect to

the lOP. The signals on this cable are used to determine which Device Controller reacts

to stimuli for two different sets of conditions:

When more than one Device Controller has made a service request at nearly

the same ti me, only one may be connected for service. When the lOP

acknowledges the service call, the highest priority requesting Device Con

troller responds to the lOP's acknowledgement. The other waits unti I some

subsequent service call acknowledgement comes from the lOP.

When more than one Device Controller has made an interrupt request, and

the Ala instruction is executed by the CPU and lOP, only the highest

priority Device Controller may respond to this function; the others must

wait unti I the CPU executes some subsequent AIO instruction.

3-17

It should be noted that the physical routing of the priority determination cables, which

determine the relative priority of units in the event of simultaneous interrupts or service

calls, is completely independent of the physical routing of the three ordinary data trans

mission cables. These three cables are normally installed accordi ng to the physical

placement of Device Controllers, in order to minimize total cable length. Maximum

allowable cable length is 100 feet. The routing of the priority determination cable is

based on the desired sequence of responses in the event of simultaneous requests, and

160 feet is the maximum allowed. The desired sequence of responses is influenced by

the likelihood of rate overruns, the frequency of service requests, and the degree of

difficulty involved in correcting rate overruns. One proposed approach is that devices

which require manual intervention to correct rate overruns (such as punched card devices)

should have highest priority for service; it should be noted that rate overruns on magnetic

tape and discs cdn be corrected entirely under program control.

Five signals are carried on the priority determination cable:

HPI , High Priority Interrupt

HPS High Priority Service

BSY Busy

AVI Available Input

AVO Avai lable Output

The fi rst three of these signals each constitute a bus whi ch is tapped and driven by each

unit, iust like all signals on the ordinary data transmission cables. AVI and AVO are

unique in that they are not busses; AVO is an output signal from each Device Controller,

sent to the next one down the line; it is a logical function of AVI (an input signal),

BSY, HPI, HPS, and the internal state and design specifications of the Device Controller.

When the lOP detects a service request (which may be from one or any number of Device

Controllers), it actiyates a strobe that is fed to all Device Controllers in parallel and an

indicator that defines the Acknowledge Service Call function. Only the highest priority

device must respond actively, whi Ie lower priority devices respond passively. Section

111-2.2 describes this response in more detail.

3-18

AVI is always true for the first Device Controller in the priority determination chain. AVI

for each subsequent Device Controller is equal to AVO from the preceding Device Con

troller in the chain. Each Device Controller must look at the required lines and at its

own internal signals and produce the following reactions:

1. If a Device Controller has no service request pending, it must pass on AVO

as soon as it sees AVI.

2. If a Device Controller has a service request pending, it passes on AVO when

it sees AVI only if the following conditions are met:

HPS is true, and

that unit's service request is low priority (i. e. the unit has not

qenerated HPS itself.

3. If a Device Controller has a service request pendi ng, it does not pass on AVO

when it sees AVI if either of the following conditions are true:

it has generated HPS itself, or

HPS is not true.

When it does not pass on AVO, it must generate BSY instead.

4. Every unit must perform the required passive acknowledgement (see Section

111-2.2) for each of the mutually exclusive possibi lities:

BSY is seen to go true

AVI is passed on as AVO

BSY is generated by the unit

5. The unit which causes BSY to go true is then connected to the lOP for service,

and may engage in data exchanges; all other units must await thei r turn at

some subsequent ti me.

3-19

The same priority chain is used in connection with response to the Ala instruction, except

that a different function indicator occurs (Ala instead of ASC), and HPI is used in place

of HPS in the logic. Figure 3-1 on the following page shows schematically the logic

implementation for a typical unit. However, the designer will not generally have to

implement this, since it is included as a part of the Subcontroller (see Section 111-3).

2.2 Leading and Trailing Acknowledgement

" Device Controllers in a SIGMA system time-share a single bus for most control and data

signals. Obviously, the cable length of this bus is a variable from system to system. To

permit completely asynchronous operation on this bus, and therefore to obtain maximum

operating rates (lOP bandwidth) for each system, a scheme for positive acknowledgement

of both the leadins and trailing edges of lOP-generated strobe pulses has been devised.

The lOP issues a Function Strobe during the ex"ecution of each of the five computer

instructions, and also for the Acknowledge Service Call function. This strobe must be

acknowledged by every device, even though only the device that recognizes its own

address is involved in active communication with the lOP, in order to allow execution

of the instruction. The lOP observes the acknowledgement, and uses this to drop the

Function Strobe. Each device must indicate that it has seen the release of Function

Strobe {and is therefore finished with its required reactions} before the lOP completes

and exits the instruction.

Due to delays in signal transmission over long cables, devices that are physically closest

to the lOP sense state changes in Function Strobe {and other lOP signals} sooner than

those devices that are farther away_ This would ordinarily cause lOP counter-reactions

before the Function Strobe signal had propagated to the end of a long cable. Hence,

the lOP could possibly enter the execution phase of an instruction before the farthest

device in a system had even seen Function Strobe; this would obviously be improper,

and could lead to errors.

To avoid this situation, a scheme has been devised to notify the lOP of receipt of both

the leading and trailing edges of Function Strobe by the last (farthest) unit on a line.

3-20

LIH

LIL
NHPIL

LSL
NHPSL

LSH

AIO

FS-+----....

AVI-----....

ASC

FS

AVI

AIO

FS

AVI

ASC

Figure 3-1.. Priority Chain Implementation

3-20a

AV(

BSY

Two signal lines are required, designated Function Strobe Acknowledge Leading (FSL) and

Function Strobe Acknowledge Trailing (FST). Each device, when it senses Function Strobe

(FS), must release FSL, which is normally true, and drive FST (normally false), The lOP

senses FST to be true as soon as the closest device has driven it, based on the cable-driving

scheme described in Section 1-3. However, the lOP cannot sense FSL false unti I all devices

(hence the last one/ which is presumably the farthest) have released it. Thus the lOP

correctly assumes that the true-to-false transition of FSL indicates that all devices have

seen FS.

When the lOP has released FS (after it has seen FSL go true), each device then drives FSL

again, and releases FST. As soon as the first device drives FSL, the lOP senses it.. However,

that is valueless for determining when the last device on the cable has seen FS go lowo On

the other hand, FST cannot go low until every device, including the last, has released it,

since anyone driver true would hold the line true. Thus the lOP correctly assumes that the

true-to-false transition of FST indicates that all devices have properly sensed the false

state of FS.

Figure 3-2 shows a timing diagram for the interaction of FS, FST, and FSL. It should be

noted that if there is not a device present with the specified address, neither the lOP nor

the CPU hangs up, since all devices are controlling FST and FSL (whether or not they are

addressed) to allow this operational sequence to take place. One of the condition code

lines is also driven only by the device which recognizes its own address. Thus, the absence

of a device is signalled by the failure of any device to drive this condition code line.

2.3 Processing Computer Instructions

The four instructions SIO, HIO, TIO, and TDV are quite similar. Their primary charac

teristics and differences are listed below:

SIO causes the addressed Device Controller to be started {although the SIO

may be rejected for certain reasons}. SIO also provides the first command

doubleword address to be stored in lOP fast memory.

Function
Indicator

Function
Strobe

Function
Acknowledge,
Leading

Function
Acknowledge,
Trailing

_--J/ \'-------

I ,
l

, I

I ,
\

Cable Delay Cable Delay
to First DC to First DC

Cable Delay Cable Delay
to Last DC - to Last DC

Figure 3-2. Function Strobe Acknowledgment

3-210

HIO causes an unconditional halt of the Device Controller and the device.

TIO and TDV differ only in that the status information returned to the CPU

during TIO is general and independent of the particular Device Controller or

device, while the status information returned during TDV is specific for each

device (defined in the individual specifications for each Device Controller).

All four instructions are interpreted in exactly the same manner by the CPU, except as

described above. IA and X fields are normal, while the R field specifies the extent of

. status information to be returned to the CPU by the lOP (either none, one, or two words).

The low-order eleven bits of the effective address specify an lOP, a Device Controller,

and (perhaps) a device.

The four instructiqns cause the following signal interaction on the lOP bus:

One of four function indicator lines is driven, to select the particular

instruction being executed, and a device address is placed on the data lines.

The lOP delays 300 nanoseconds, then signals Function Strobe to the

Device Controllers.

All non-addressed Device Controllers must respond by releasing FSL,

driving FST, and staying off all other lines.

The addressed Device Controller must place status information on the

function response lines FRO through FR7 and lOR and DaR, and must

release FSL and drive FST.

The lOP responds to the released FSL by releasing FS.

All Device Controllers must respond to the released FS by driving FSL and

releasing FST.

The information returned on the FR lines by the addressed Device Controller

is defined in Table 3-1 for SIO, HIO, and TIO instructions.

Figure 3-3 shows a timing diagram for a typical SIO instruction execution.

3-22

Table 3-1. SIO, HIO, and TIO Status Response

FRO Interrupt Pending

00 Device Ready
FR1

01 Device Not Operational

FR2
10 Device Unavai lable

I
11 Device Busy

FR3 Device Auto

FR4 Device Unusual End

00 Device Controller Ready
FR5

01 Device Controller Not Operational

FR6
10 Device Controller Unavai lable

I
11 Device Controller Busy

FR7 Not Assigned

2.4 Service Calls and Acknow ledgement

When the lOP senses that the Service Call line is high (denoting that one or more Device

Controllers want service), it causes the following sequence of signal interaction on the

lOP bus:

The function indicator line, ASC, is driven true.

The lOP delays 300 nanoseconds, then signals FS to all Device Controllers.

All Device Controllers must release the FSL line and drive the FST line true.

The single Device Controller that is to be serviced (based on examination of

the priority determination signals) must put its own address on the FR lines.

The lOP responds to the released FSL by releasing FS.

All Device Controllers respond by releasing FST and driving FSL.

The Device Controller which is to be serviced connects itself to the lOP, and

may begin issuing request strobes, as described in Section 111-2.5.

3-23

It should be carefully noted that all Device Controllers must stay off all lines not mentioned

specifically in the foregoing sequence. This allows the ASC function to overlap the pre

vious service cycle to some other connected device, thus increasing lOP bandwidth.

Figure 3-4 shows a timing diagram for a typical ASC function. Section 111-2.5, which

describes the signal interaction during the service cycle, shows a typical complete cycle

(ASC plus the service cycle).

There are cases when it might be desi rable to design a Device Controller that would make

service calls "all the time" (except when it was in its own service cycle). Such a Device

Controller should obviously have the lowest priority in the determination chain; otherwise

no other Device Controller could use the lOP simultaneously. However, consideration of

the permissible I~ngth for the priority determination cable might sometimes make this type

of operation inadvisable. Another means is available to allow such a Device Controller to

operate and still permit simultaneous action by other Device Controllers. This can be done

if the "continuous" Device Controller is inhibited from issuing a service call while any

other device has a service call pending. Once the service call has been issued, however,

it should be held up until it has been answered and service has been received.

This scheme would be used by a Device Controller that needed to communicate with the

lOP as often and as rapidly as possible, without usurping lOP time required by other

standard peripheral devices. An example of such a device might be a computer-to-computer

coupler.

The High Priority Service (HPS) signal is also available for use by Device Controllers.

If used, it must be driven in addition to Service Call (SC). Its effect is only on the priority

determination chain, which assigns priority first to all devices that have set HPS, and gives

service to a device with the SC set only when no other devices have HPS set.

3-24

ASC _--

Figure 3-4. Service Cycle Timing

3-240

2.5 Request Strobes and Acknowledgement (Data Input and Output)

Once a Device Controller has been connected (i. e., has legally connected itself) to the

lOP for service, it may issue Request Strobe (RS) signals. There are 16 lines involved in

the lOP/Device Controller communication during a service cycle. These are:

RS Request Strobe

RSA Request Strobe Acknowledgement

DOR Data/Order Request

lOR Input/Output Request

ED End Data

ES End Service

DAO-7 Data lines

DAP, Data Parity

PC Parity Check

The sequence of interaction between the lOP and a Device Controller during a service

cycle is as follows:

The Device Controller brings up RS, and at the same time controls DOR and

lOR to specify the type of information to be exchanged:

DOR lOR --
0 0 Data Input

0 1 Data Output

0 Order Input

Order Output

If an input operation is specified (lOR = 0), the Device Controller at the

same time put data (and perhaps data parity) on the data lines, but may

drive PC if no parity checking by the lOP is needed.

The lOP responds to RS by generating RSA. If an output operation was speci

fied, the output data is first put on the lines (after a 150-nanosecond delay),

followed by RSA after an additional 30o-nanosecond delay.

3-25

When the Device Controller sees RSA, it must release RS. If an output

operation was specified, this is the point at which output data should be

strobed.

When the lOP sees RS released, it releases RSA. The Device Controller

may then generate another RS, subject to the state of ED and ES, as described

below.

When the Device Controller generates RS, it may also drive ED if it needs

the current data exchange to be fhe last one. However, the Device Con

troller is allowed to disconnect itself only if it sees ES true.

Therefore, under ordinary ci rcumstances, it the lOP sees ED true, it drives

ES true (with the same timing as output data), notifying the Device Con-
,

troller that disconnection is required. The lOP may also drive ED true itself

(with or without ES) to terminate the data exchange portion of the service

cycle.

Under certain circumstances, the lOP may have control information it needs

to transmit to the Device Controller (other than Order Output). This is

accomplished by means of a Terminal Order. Whenever the Device Controller

sees ED true and ES false, it must remain connected and generate exactly one

more RS, in order to receive the Terminal Order.

The timing for this additional Terminal Order subcycle is identical to all

others; the Terminal Order data timing is just like Order Out or Data Out.

During the Terminal Order, ES is caused to go true by the lOP; the Device

Controller must disconnect itself after a Terminal Order.

Figure 3-4 shows a t'iming diagram for a typical service cycle.

In reviewing the signal interaction that takes place during service cycles, the following

points should be carefully noted:

Either the lOP or the Device Controller may drive ED, thus signalling the last

valid byte of data exchange (as opposed to control information). Only the

3-26

lOP may drive ES, and the Device .S=ontroller must disconnect itself after

the subcycle in which it sees ES.

ED and ES may be interpreted in the following manner:

ED ES

o o

o

x

More data to follow; Device Controller must
generate at least one more RS.

This is the last data byte, but the Device Con
troller must generate exactly one more RS to
get the Terminal Order, then disconnect itself.

This is either the last data byte with no Ter
minal Order to follow, or the Terminal Order
itself. In either case, the Device Controller
must disconnect after this subcycle.

The ~ultiplexing lOP is designed in such a manner that at most, four bytes of

data may be exchanged in one service cycle, whi Ie the Selector lOP can

exchange data indefinitely in one cycle. The Multiplexor lOP generates ED

at least once every four bytes, thus ending the service cycle, and may generate

ED after any or every byte, thus allowing only one byte of data to be exchanged

per service cycle.

Details regarding the information exchanged during Order Out, Order In, and Terminal

Order are contained in the following three sections. The function of these cycles, and

the differences between Order Out and Terminal Order, may be better understood by

reference to the details of bit significance during these operations.

During a service cycle, the DOR and lOR lines are scanned by the lOP only during the

fi rst RS of that service cycle. All data exchanges during that service cycle are then of

the same type (Data/Order) and in the same di rection (Input or Output) as the fi rst byte,

except for the Terminal Order, which is unique. However, it is recommended that the

Device Controller continue to drive the DOR and lOR lines throughout the entire service

cycle, as this facilitates certain test operations.

3-27

It should also be noted that the specification of.Jnput or output is made by the Device

Controller, and the lOP faithfully performs the specified operation. It is thus possible

to design a Device Controller that performs an input operation on one service cycle, and

an output operation on the next cycle. The lOP reads or writes memory as di rected,

interleaving these operations if requi red, so long as each service cycle only requi res either

a read or a write.

2.6 Order Output

. Order Output is the designation assigned to one of the four basic types of service cycles.

Its function is to obtain the fi rst (or subsequent) command doubleword from the command

list stored in CPU main memory, and to perform the following operations with the various

information in the command doubleword:

Store the new byte count in lOP fast memory.

Store the new memory byte address in lOP fast memory.

Store the eight lOP control flags in lOP fast memory.

Pass the new order along to the Device Controller.

There are two reasons that the Device Controller may request Order Out:

The device has just been started; the first Order Out is currently obtaining

the first command doubleword from memory, and thus deciding what to do

(read, write, read backward, etc.).

Command chaining is required; hence, subsequent command doublewords

must be ext racted from memory and uti lized as described above.

The sequence of operations which allows a Device Controller to ask for Order Out is

rather complex. This sequence is:

When the last data byte (in or out) is processed, the lOP issues a Terminal

Order that specifies Count Equal Zero, if and only if data chaining is not

called for. If data chaining is required, the Device Controller is never

supposed to know about it, or even know the byte count has <gone to zero.

3-28

The Device Controller must perform an Order In specifying Channel End. This

does not mean the Device Control I er disconnects yet.

In the Terminal Order that follows Order In a bit designates whether or not

command chaining is to be performed. {The CC bit is present during every

Terminal Order, but should only be inspected by the Device Controller after

the Order In that specifies Channel End}. If this bit is not set, the Device

Controller should disconnect itself, thus requi ring another SIO to start up. If

the Command Chaining bit is set, the Device Controller should request Order

Out on its next service cycle, and begin another operational sequence.

The significance of the data lines during Order Out is as follows:

where:

MMMMMMll

MMMMMMOl

MMMMMM10

MMMMllOO

MMMM0100

10000000

XXXX1000

Control

Write

Read

Read Backward

Sense

Stop

Transfer in Channel {never seen by Device
Controller}

M denotes control bits whose significance is unique to each Device Controller ~

I denotes that the Device Controller should issue interrupt request if I = 1.

Stop code should produce the same effect as an HIO instruction.

In SIGMA 5 and SIGMA 7, Order Out undonditionally is followed by a Terminal Order.

Thus, during Order Out, the Device Controller should drive ED. The lOP holds ES low.

The explanation of the information contained in that Terminal Order is given in Section 111-2.8.

Timing for Order Out is shown in Figure 3-4.

3-29

2. 7 Order Input

Order Input is the designation assigned to one of the four basic types of service cycle. Its

function is to allow the Device Controller to communicate certain control information to

the lOP. This information is placed on the data lines by the Device Controller when it

brings up Request Strobe. The Device Controller should also drive ED, and the lOP might

hold ES low, thus producing the conditions that lead to a Terminal Order .

. The control information placed on the data lines by the Device Controller during Order In

has the following significance:

Bit 0 Transmission Error (TE) detected by the Device Controller.

Bit 1 Incorrect Length (I L): the length of a record was incorrect, usually with
,

respect to some physical characteristic of the device (for instance, other

that 80 bytes transmitted to the card punch from the lOP).

Bit 2 Chaining Modifier: if this bit has been set, the next Order Out execution

causes the lOP to skip one command doubleword (two locations) in the

main memory command list.

Bit 3 Channel End: this is an artificial condition that signifies the Device Con

troller is ready either to initiate command chaining or to disconnect itself

if command chaining is not called for in the Terminal Order following

Order In. It should be signalled only following the Count Equals Zero in

the previous Terminal Order.

Bit 4 Unusual End: this signifies unusual conditions in the Device Controller that

require disconnect. The Device Controller should disconnect itself after

it issues this notice to the lOP (after it has inspected the Terminal Order

that may follow). If the Terminal Order calls for interrupt, the interrupt

request should be issued, but the Device Controller should disconnect

immediately.

The remaining bits in an Order In have not been assigned any significance. Timing for

Order In is shown in Figure 3-4.

3-30

2.8 Terminal Orders

A Terminal Order is a data transmission from the lOP to a Device Controller; it may

conclude certai n other data exchanges. A service cycle may not consist of a Termi nal

Order by itself, but must involve either Data Out, Data In, Order Out, or Order In first.

Order Out is always followed by a Terminal Order in SIGMA 5 and SIGMA 7, although

there may be no information the lOP must communicate in that Terminal Order (in which

case all the data lines are false).

Data Out and Data In cycles may consist of one, two, three, or four bytes. Since both

the lOP and the Device Controller may control ED, either one may determine the number

of bytes exchanged in a service cycle. Although a Device Controller may ask for, say,

four bytes in a service cycle, it is possible for the lOP to abort operations sooner if it
,

needs to transmit a Terminal Order immediately. The -lOP may issue c Terminal Order

for any of the following reasons:

to request that the Device Controller generate an interrupt request;

to signal Count Equal Zero" to the Device Controller; or

to signal the Device Controller that an error has been detected (either

internally in the lOP, or with respect to the lOP-memory communications,

or because of lOP-Device Controller communication error), and the Device

Controller should halt. In conjunction with this, the Device Controller may

be instructed to ignore the last byte of data.

The bits in a Terminal Order have the following significance:

Bit 0 Interrupt: the Device Controller must respond by generating an interrupt

request.

Bit 1 Count Done: this is signalled when the byte count equals zero, if and

only if data chaining is not called for. The Device Controller must respond

to this condition with another service cycle, specifying Order In, in which

Channel End is signalled.

3-31

Bit 2 Command Chain: if the CC bit in lOP fast memory is set, the CC bit is

true in every Terminal Order. However, the Device Controller should

inspect this bit only during the Terminal Order following the Order In

during which Channel End was reported to the lOP. At that time, if this

bit is reset, the Device Controller should disconnect itself and not issue

any more service calls unti I a subsequent SIO instruction is issued. One

exception exists; if bit 0 is also true, the Device Controller should issue

an interrupt request and wait for its acknowledgement after disconnecting, and

not accept SIO's unti I an AIO has been issued. If the CC bit is set, command

chaining is called for, and the Device Controller should request another

service cycle, during which Order Out should be called for to get the next

command.

Bit 3 lOP Halt: this signifies that the lOP has detected one of a variety of con

ditions that inhibit it from successfully completing the required operations

for the channel; the Device Controller must disconnect.

Bit 4 Ignore Last Byte: this is signalled only following Data Out or Order Out,

when the lOP suspects that the previous byte was incorrect. If possible,

the Device Controller should ignore that last byte, although in many cases

this may be impossible.

The remaining bits in a Terminal Order have been assigned no significance. A typical

service cycle involving Terminal Order is shown, with detailed timing, in Figure 3-4.

2. 9 Interrupt Calls and Acknowledgement

A Device Controller is allowed to activate the Interrupt Request {IR} line to the lOP,

except during the short interval when anyone's interrupt is being acknowledged by an AIO

instruction. The reasons for generating an IR might be strictly internal to the Device Con

troller, or a manual pushbutton on a device, or a "command" from the lOP {via bit 0 of

any Terminal Order} to generate an fnterrupt, or bit 0 set in a STOP command received

duri ng Order Out.

3-32

The lOP (CPU) uses the AIO instruction to determine which of many possible Device

Controrters or devices has the highest priority interrupt request pending. The timing and

signal interaction for AIO are identical to SIO, HIO, TIO, and TDV, except that the

function indicator AIO brackets FS, thus distinguishing this instruction from the others,

as shown in Figure 3-3.

The Device Controller's required response to Ala is also somewhat different. Priority

determination and acknowledgement of FS (both leading and trailing) are exactly identical

to the other instructions (the subcontroller handles all this), but the information placed on

the data and function response lines by the Device Controller is different. During Ala, the

highest priority Device Controller must put its own address on the function response lines

FRO - FR7. It must also put status information on the data lines. This status information is

unique to each particular device, and is thus described in the individual specifications

for each device.

The HPI (High Priority Interrupt) signal bears the same relationship to IR that HPS does to

SC. A device that needs to use HPI must also use IR. In responding to AIO, any device

with HPI set gets precedence over one with only IR set. A Device Controller with only

IR set can have its interrupt request acknowledged only if there are no Device Controllers

that have set IR, and even then only if it is the highest priority Device Controller with

IR set.

3-33

3.0 DEVICE SUBCONTROLLER

3. 1 General

The Device Subcontroller, hereafter simply called Subcontroller, is a set of nine modules

that serve a number of functions common to all Device Controllers:

They provide for manual selection and alteration of Device Controller address.

They provide priority determination logic for both service calls and interrupt

requests, with Subcontroller output si gnals fed to the Devi ce Controller to

indicate when it is selected.

They provide for power up-down controls, so that a Device Controller may be

powered down without disconnecti ng cables, and other Device Controllers on

the I i'ne may still function properly.

They provide the logic for certain common areas, such as a "Service Connect ll

control flip-flop.

3.2 Subcontroller Component Parts

The nine modules comprising the Subcontroller serve the following functions:

AT10 Coble Receiver, to which one of the cables from the lOP connects

ATll Cable Driver/Receiver, to which one of the cables from the lOP connects

AT12 Coble Driver, to which one of the cables from the lOP connects

AT1? Coble Driver/Receiver and Power On-Off Relay, to which the input and

output priority determination cable connects (occupies two module positions)

LT22 Special Logic Module, containing some of the priority determination logic

and various other Subcontroller functions

LT23 Special Logic Module, containing some of the priority determination logic,

the service-connect flip-flop (FSC), TSH, and TTSH

3-34

LT24 Special Logic Module, containing function response line buffers with

three-way ORis and other Subcontroller functions

LT25 Special Logic Module, containing service call latch circuits, data line

{received} inverters, a toggle switch (to indicate on-line or off-line) and

other Subcontroller functions

LT26 Special Logic Module, containing eight toggle switches for Device Con

troller address selection, and two 4-bit comparators to compare this selected

address with lOP output address during SIO, HIO, TIO, and TDV.

An appendix to this manual shows the positions within a chassis where the Subcontroller

must be located when it is used. This will allow Customer Service to readily locate the

Subcontroller and check its operation when necessary in any standard piece of equipment.

3. 3 Subcontroller Usage

The Subcontroller must be used in any piece of equipment designed to connect to the lOP,

unless all of the following conditions exist:

The equipment is not i n.tended to be a standard company product.

The equipment utilizes two or more Multiplexor lOP channel addresses

which might effectively share certain Subcontroller logic. The uti lization

of the two portions of the equipment corresponding to the two addresses

thus must be interdependent and non-simultaneous.

Strong economic advantage can be shown for so doing.

3.4 Subcontroller Summary Description

Various standard documents, listed in the appendixes, show the detai led logic structure

of the Subcontroller. The explanation here will discuss only the interface signals between

the Subcontroller and the remai nder of the Device Controller and thei r usage.

3-35

These signals are:

5WAO - SWA7 Switch Outputs: used for manual channel address selection.

DCA Device Controller Address: true when switch settings SWAO - SWA7

equal data line receivers DAOR - DAlR (DCA-bar also provided).

TTSH OR-ing of function indicators for SIO, HIO, TIO, and TDV

(TTSH = (SIOR + HIOR + TIOR + TDVR».

TSH OR-ing of function indicators for SIO, HIO, and TIO, with DCA

true (TSH = (SIOR + HIOR + TIOR) . DCA).

The Subcontroller supplies FSL to the line. FST must be supplied to the Subcontroller by

the Device Controller. For simple devices that involve no ~elay, Function Strobe may be

tied right back to FST.

The Subcontroller supplies, in addition, the gating on function response line buffers for

TDV (one set of eight points) and SIO, HIO, and TIO (a second set of eight points).

The Subcontroller provides latch ci rcuits to receive service and interrupt requests from

the Device Controller and pass them on to the lOP. The signals from the Device Controller

must be held up until they are properly acknowledged by the lOP, since the latch provided

by the Subcontroller is only applicable during the acknowledgement itself. These requests

are:

CI L Interrupt Request from the Device Controller to the Subcontroller.

CIH High Priority Interrupt Request from the Device Controller to the Sub

controller (CI L must also be issued when CIH is issued).

CSL Service Request from the Device Controller to the Subcontroller.

CSH High Priority Service Request from the Device Controller to the Subcontroller

(CSL must also be issued when CSH is issued) .

. 3-36

The Subcontroller handles internally all priority determination, removing that burden

from the Device Controller itself. The signal BSYC is generated during service and

interrupt acknowledgements to indicate that this device has the highest priority and is

acknowledging.

Each Subcontroller also has a service-connect flip-flop (FSC), which is set by the Sub

controller at the trai Ii ng edge of Acknow ledge Servi ce Call (gated wi th FS), and remai ns

set until ES is sensed. Thus, each Device Controller may issue Request Strobes only

while its FSC is true.

The receiving circuit outputs from the cable recelvel:) are all available to the Device

Controller, as are all the input driving points to the cable drivers. However, it should

be noted that it i~ not possible to feed a signal di rectly to a cable driver input which is

also fed by a Subcontroller signal; this should never be necessary if the Subcontroller

is properly uti lized.

The Subcontroller provides the entire power on-off logic, allowing power to any Device

Controller to be removed without affecting the lOP bus adversely. All data lines are also

inverted and provided as outputs from the Subcontroller. An appendix to this manual lists

the available unit loads from each Subcontroller output signal.

3-37

4.0 DIFFERENCES ON SIGMA 2

The differences between the lOP interface on SIGMA 2 and those of SIGMA 5 and

SIGMA 7 relate only to the SIGMA 2 reaction to certain stimuli, and not to the appearance

or timing of interface signals. Thus, the differences that do exist should not affect the

external equipment designer in any way. This section is provided for information only.

The primary difference is in the method of accomplishing command chaining. As it was

noted before, in SIGMA 5 and SIGMA 7 a Terminal Order is delivered to the Device

Controller; this Terminal Order specifies zero byte count. The Device Controller must

come back with an Order In that specifies Channel End. In the Terminal Order that

follows Channel End, the lOP specifies command chaining if it is to occur, and the Device

Controller either asks for Order Out (and the new Order), or disconnects (if the command

chaining bit is true in the Terminal Order following Order In). In SIGMA 2, command

chaining is never specified to the Device Controller. Thus, since the command chaining

bit is false, the Device Controller must disconnect. Another 510 is required to re-initiate

operations. Command chaining is thus accomplished in SIGMA 2 with a sequence of SIO·s,

with complete disconnect of the Device Controller after the operations associated with

each 510.

3-38

5.0 INTERFACE SIGNAL LINES AND CABLING

Appendix C gives module pin numbers for these cables. The designer must ground inputs

to drivers for signals that are not to be driven, or for response bits that are not used by

a particular Device Controller.

The cables are:

Cable #1

Cable #2

Cable #3

Cable #4

connects to the AT12 cable driver module. This cable transmits

function response signals 0-7 (FROD - FR7D), Request Strobe (RSD),

Input/Output Request (lORD), Function Acknowledge Leading

(FSLD), Function Acknowledge Trai ling (FSTD), and Interrupt

Call (ICD).

connects to the AT11 cable driver/receiver modu Ie. This cable

transmits and receives Data Lines (DAOD - DA7D and DAOR - DA7R),

Data Parity (DAPD and DAPR), End Data (EDD and EDR), Parity

Check (PCD), Data/Order Request (DORD), and Service Call

(SCD and SCR).

connects to the AT10 cable receiver module. This cable receives

I/O Reset (RSTR), the one-megacycle clock (CLl R), End Service

(ESR), Request Strobe Acknowledge (RSAR), six function indicators

(SIOR, HIOR, TIOR, TDVR, AIOR, and ASCR), and Function

Strobe (FSR).

connects to the AT17 cable. plug module. This cable receives and

transmits High Priority Interrupt (HPID and HPIR), High Priority

Service (HPSD and HPSR), and Busy (BSYD and BSYR). It receives

Avai lable Input (A VIR) and transmits Avai lable Output (AVO D) .

3-39

6.0 LOGIC DESIGN OF DEVICE CONTROLLERS (DESIGN TIPS)

6.1 General

Almost all Device Controllers will use the Device Subcontroller described in section 111-3,

with additional information in Appendix F and in the reference specification drawings for

the Subcontroller. Certain other functions are required in the remainder of the Device

Controller, regardless of the unit's function. This section will show typical and recom

mended implementations for various Device Controller functions in this category.

In the logic diagrams shown throughout the remainder of this section, certain logical

signal names are used. These have the following significance, where an liN II preceding

a signal name denotes its negation:

B4

BSYC

CHEND

CUR

DAiR

DCA

EDD

EDR

ESR

FSC

FSR

HIOR

OIN

OOUT

RSAR

RSD

RSTR

Byte 4 for Device Controllers designed for 4-~yte service cycles

Subcontrolle~ priority determination signal indicating that this
Device Controller has the highest priority (true during FSR)

Channel End storage

l-megacycle clock from lOP

Data bit, i receiver

Device Controller address (Subcontroller signal)

End Data driver

End Data receiver

End Service receiver (lOP to Device Controller)

Subcontroller service-connect fl ip-flop

Function Strobe receiver (lOP to Device Controller)

HIO function i ndi cator

Order In control flip-flop

Order Out control fl ip-flop

Request Strobe Acknowledge receiver (lOP to Device Controller)

Request Strobe driver (Device Controller to lOP)

I/O Reset signal from lOP

3-40

SIOR

START

TO

TSH

UEND

WANTI

SIO function indicator

Start control fl ip-flop

Terminal Order control flip-flop

Subcontroller signal for function indicator (SIOR + HIOR + TIOR)

Unusual End storage

Device Controller Wants Interrupt control flip-flop

6.2 "START" Flip-Flop and Control Flip-Flop Initialization

The START control flip-flop signifies that the Device Controller has been started by an

SIO instruction, and may therefore issue Request Strobes and engage in Data/Order

exchanges with the lOP. It should be noted that an SIO instruction must be rejected if

an interrupt is pending (not yet acknowledged). The START state can be reset under the

following conditions, as shown in Figure 3-5 on the following page:

unconditionally by an HIO instruction;

by a Terminal Order injunction for lOP Halt;

following Unusual End reporting to the lOP via Order In;

by the absence of the command chaining bit in the Terminal Order that
follows the Order In in which Channel End was reported; or

by a "STOP" order given via Order Out.

In some devices it is inconvenient or undesirable to cause unconditional termination of opera

tions with an HIO~ In such devices as the card reader, the HIOis not allowed to cause any

action unti I the end of the current card. Th is may often be accompl i shed by causi ng the HIO

instruction to set an auxi liary flop (may be the same one that remembers incorrect length) ,

which in turn causes Unusual End, Channel End, and resetting of START at the same time as

device end. To accomplish this, the input term to the reset logic in Figure 3-5 (designated

HIOR) should be wi red to ground.

Two reset signals are also needed for the control flip-flops throughout a Device Controller: one

which unconditionally resets everything (the I/O reset signal from the lOP), and another which

resets only those control flip-flops 'that should not be active unless the Device Controller has

been started. NST ART accomplishes the second of these functions, whenever it may be needed.

3-41

w
I :::;

0

OOUT

RSD

OIN

UEND
ESR

TO

RSD

TO
DA3R

ESR
OIN

CHEND
NDAZR

NWANT I

FS R -----'.~

DCA SIOR

R/START

Figure 3-5. "START" Flip-Flop and Control Flip-Flop Initialization·

RSTR

START

NSTART

OOUT

NTO

NDA1R

NDA2R

NDA3R

NDA4R

NDA5R

NDA6R

NDA7R

6.3 Terminal Order Control FI ip-Flop

A control flip-flop may be used to define the period during which a Terminal Order may

take place. The actual Terminal Order is defined by (RSD • TO).

Figure 3-6 shows this logic.

EDR

TO

NESR

RSD

ESR NTO

NSTART

Figure 3-6. Terminal Order Control Flip-Flop

3-42

6.4 Order Out Control Flip-Flop

A flip-flop may be used to remember the conditions under which an Order Out cycle is

needed. Order Out cycles should take place under the following circumstances:

An SIO instruction has been accepted by the Device Controller.

The command chaining bit is set in the Terminal Order that follows the

Order In in which Channel End was reported to the lOP.

The logic shown in Figure 3-7 on the following page, along with the proper flip-flop

resetting, accomplishes this.

The clock term is ,requi red to allow resetting of OaUT in the event that the Devi ce

Controller is disconnected before the Order Out service cycle is executed (for instance,

by an HIO instruction). Incorrect Length might be such a reason for generating Unusual End.

3-43

W
I
~
W
a

OOUT
RSD

CL1R

OOUT
NSTART

START

NESR

START

Figure 3-7. Order Out Control Flip-Flop

~~OOUT

...-.......- N OaUT

RSTR

6.5 Order In Control Flip-Flop

A flip-flop may be used to remember the conditions under which an Order In cycle is

needed. Order In cycles should take place under the following circumstances:

A condition requiring Unusual End has been detected in the Device

Controller.

A Terminal Order was received in which Count Equals Zero was

specified. The Order In is now requi red to specify Channel End to

the lOP, and to determine whether or not command chaining is

required {in the Terminal Order following that Order In}. The

Device Controller may also report the chaining modifier and/or

Incorrect Length in that Order In.

The logic shown in Figure 3-8 on the following page, along with proper flip-flop

resetting, accomplishes this.

The blank gate shown in Figure 3-8 might be used for other conditions in the Device

Controller requiring Channel End, or Order In for other reasons. This occurs in some

of the standard system junction boxes.

3-44

TO

NDA1R

TO

RSD

OIN

RSD

C/UEND
NUEND

......-NOIN

START

Figure 3-8. Order In Control Flip-Flop

3-440

6.6 "WANT SERVICE" Control Flip-Flop

When a Device Controller wants service from the lOP, it must raise the line designated

CSL into the Subcontroller. This signal is not latched in the Subcontroller until the ASC

cycle actually begins, so that dropping it before that time causes the Service Request

line to be dropped. Therefore, a flip-flop is generally required in the Device Controller

to store the conditions that define a service requirement.

The conditions under which a Device Controller might"want service are as follows:

following the Order Out cycle, providing that if a Terminal Order

follows the Order Out cycle, it does not specify lOP Halt;

when ED occurs during a multiple-byte data service cycle before all

bytes required by the Device Controller have been taken (for example,

if the lOP crosses a word boundary in exchanging data);

under other conditions that are a function of the particular Device

Controller (in many cases this might involve delaying service requests

after Order Out); or

to execute a requi red Order Out or Order In cycle.

It should be noted that a Device Controller should not ordinarily raise CSL during its own

service cycle, since an as-yet-undetected Terminal Order at the end of that service cycle

might negate the requirement for additional service. Figure3 ... 9.shows the implementation

to handle these various cases; the blank gates would handle anything that is a function of

a particular Device Controller, as described above. Figure 3-9 also shows how a Device

Controller might refuse to issue service calls if any other device had an active servi ce

call, but would latch up its own call once it was issued (the two inverters in the lower

right-hand corner of the figure).

3-45

DA3R

TO

w
I

~
c

NTO

NOOUT

NOIN

EDR

NB4

RSD
NWANTS

ASCR

BSYC

FSR

t--I~WANTS

NOOUT

START NOIN CSL

FSC

I=il"tllr~ 1-Q "WANT ~FRVTCF" Cnntrnl Flin-Floo

6. 7 Request Strobe and Acknowledgement

As mentioned before, FSC is the service-connect flip-flop in the Subcontroller. It is

automatically reset at the trail ing edge of the Request Strobe during which ES is true.

Therefore, RS and RSA may be interlocked in the Device Controller in the following manner:

NRSAR

RSD

FSC

Using the scheme above, lOP/Device Controller interaction for data exchanges proceeds

as fast as the 101? and the various cable delays permit. However, valid data may be on

the bus for only a very short time (perhaps less than 400 nanoseconds). This is adequate

to clock the data into a de or ac buffer, using two-side loading for de or trai ling edge of

RSD for ac loading. There are some devices for which a byte buffer in the Device Con

troller could be eliminated if data could be guaranteed valid to pass on to the device for

only 500 to 600 nanoseconds. This goal can be attained, where the economics of a situation

iustify it, by the scheme shown in Figure 3-10. However, an extra delay of from 0.6 to

1. 6 microseconds is introduced into the lOP/Device Controller interaction cycle, thus

reducing lOP bandwidth slightly. The advantages and disadvantages of this procedure

should be weighed for each individual unit. In general, introducing a delay any greater

than that produced by this method is not permitted. It should be noted that the effect of

reducing lOP bandwidth is to increase the probability of rate over-run errors on other

active devices.

In Figure 3-10, X represents the conditions that must be true at the leading edge of RSD

to cause the "stall" on that service subcycle. The best strobe for outputting data to the

device is (RSAR . STALL), which is at least 500 nanoseconds in duration (with a maximum

only slightly more).

3-46

RSAR

.,....- RSD

FSC

STALL Sl

w RSD
I

i!; CL1R
0

NSTALL NS
1

NCL1R

START--~----------------------~

Figure 3-10. Request Strobe and Acknowledgement

6. 8 Quantity of Data Bytes per Service Cycle

On the Multiplexor lOP, a Device Controller may control whether it is to exchange one,

two, three, or four data bytes with the lOP during each service cycle~ A three-byte

oriented Device Controller is unlikely because correlation with main memory cells {on the

part of the programmer, in setting up data tables} may prove quite unwieldy. A device

designed to exchange more than one byte per cycle might, nonetheless, be permitted by

the lOP to exchange only one byte. This could happen as a result of an lOP error, but

it could also result from the lOP crossing a word boundary in its interaction with memoryo

A one-byte-oriented Device Controller shoul~ drive ED in coniunction with every RS o

A Device Controller that is oriented towards some greater number of bytes should drive

ED only in coniunttion with the RS associated with the last byte it wishes to receive.

A four-byte Device Controller must therefore have a byte counter similar to the one

shown in Figure 3-11, and should drive ED as shown. It should be noted that a one-byte

device does not need some of the terms on the WANTS control flip-flop inputs. Those

terms are intended only to handle "interrupted" service cycles.

3-47

W
I

~
o

NOOUT

NOIN

NTO

RSD
BCNT

BCNTl

NB4

BCNT2

BCNTl t--+-.... - BCNT2

NBCNTl NBCNT2

START START

BCNTl
BCNT2

RSD
EDD

NTO

Figure 3-11. Typical Byte Counter

6.9 Channel End

The Channel End state, which may be signalled to the lOP in an Order In, is an artificial

condition which signifies that if command chaining is supposed to take place, now is the

time when the Device Controller will do so, by initiating an Order Out cycle. Channel

End occurs when the Device Controller has been informed via a Terminal Order that Count

Equals Zero (without lOP Halt being specified). The Device Controller then tells the

lOP that the Channel End condition has occurred, and inspects the Terminal Order which

follows that Order In to see if command chaining is specified. If so, Order Out is initiated;

if not, the Device Controller is disconnected (START is reset). The logic in Figure 3-12

shows how this may be accomplished.

TO

RSD

OIN

RSD

CHEND

DA1R

NDA3R

CHEND

ESR NCHEND

START

Fi gure 3-12. Channel End

3-48

6.10 "Bad Order" Detection

In Device Controllers where some of the possible orders that may be transmitted during

Order Out are either not used or not permitted, the Device Controller should check for

these bad orders, and generate Unusual End if they occur, as described in section 111-6. 11.

This detection is quite simple. In Figure 3-13, X represents the decoding of the data

lines for those orders considered "bad".

RSD

OOUT

NTO

BADO

OIN

START

Figure 3-13. "Bad Order" Detection

3-49

BADO

NBADO

6. 11 Unusual End

The Unusual End condition is produced when some state occurs that inhibits or makes

invalid further usage of the Device Controller. If a flip-flop (as shown in Figure 3-14)

is set, it wi II also request an Order In cycle, and cause disconnect of the Devi ce Con

troller (reset START) after that Order In has been executed. In Figure 3-14, X repre

sents the conditions in the Device Controller which are to cause Unusual End. It should

be noted that the flip-flop is not reset until a subsequent SIO, TIO, or HIO instruction

occurs.

ISH
FSR

CLIR

NUEND

NOIN

NTO

Figure 3-14. Unusual End

3-50

UEND

NUEND

RSTR

6.12 "WANT INTERRUPT" Control Flip-Flop

There are only two standard conditions to which a Device Controller's response must be

an interrupt request. These are:

a Terminal Order with data line zero true

a "STOP" Order Out with bit zero true

There may also be internal Device Controller conditions which require an interrupt

request, including a pushbutton on the device (or on the front panel of the controller

for such items as analog equipment controllers).

Figure 3-15 shows a typical implementation that accomplishes the setting of the WANTI

control flip-flop. It should be noted carefully that WANTI is one of the few control

flip-flops that must not be reset by START i it is reset only when acknowledged. Further

more, SIO instructions must be rejected by the controller so long as an interrupt is

pending (WANTI set).

3-51

W
I

<..n

o

OOUT
NTO

"STOP"

RSD

OOUT

NTO

MIRS

BSYC

FSR

DAOR

TO

RSD

TO

NWANTI

SWITCH

NWANI

CLIR

MIRS

WANTI

BSYC

FSR

Figure 3-15. "WANT INTERRUPT" Control Flip-Flop

RSTR

WANTI

Cll

...-._-- NWANTI

(Manual Interrupt Request)

1--+--- MIRS

1--4_-- NMIRS

6. 13 State FI ip- Flops

The examples given in this section of the manual for proposed implementation are only

one method. Another technique in common use for standard peripheral equipment, which

is often more complex in terms of the number of possible states of the controller than

systems equipment, is to have some small number of control flip-flops that define the

state of the controller. In general, there can be a configuration of the state flip-flops

corresponding to each of the following conditions, as well as others:

Order In

Order Out

Data In or Out

Wait'ing for device "go" signal

Waiting for device "terminate" signal

Waiting for device "operational" signal {often generated manually}

The approach to be taken for any particular unit must be weighed by the designer according

to the particular equipment requi rements and the relative cost of implementation of the

two methods.

Figure 3-16 shows the possible states of a Device Controller that utilizes the type of

control described here, including all possible "next states" and the conditions that cause

them.

3-52

W
I

lrt
I'V
o

~

.....

....

...

SIO with
Interrupt Pend i n9

~,

Inactive

...... -

......
--- ..

J~ SIO, if No
Stop Interrupt Pending

Order
~~

lOP Halt in TO

HIO
Order Out

Bad Order

...... --
Not lOP

Halt in TO
~,

lOP Halt in TO

HIO Data
In/Out Not Zero Count --

Count
Zero

,~

..... -

No Command Chaining Order In, Command Chaining
Report

Channel End

Figure 3-16. State FI ip-Flops

Order In, ... Report - Unusual End

APPENDIX A

CABLE CHARACT ERI STI CS

Standard cable uti lized throughout the SI GMA system for inter-communication between

the CPU, memories, lOP's, and Device Controllers consists of 14 shielded wires (trans

mission lines) as specified under SDS Part No. 101787. The nominal wire characteristics

are:

Characteristic Impedance: 33 ohms

dc Resistance (Center Conductor): 23 mi II iohms per foot

dc Re~istance (Shield): 10 milliohms per foot

Inductance: 50 nanohenry per foot

Capac i tance: 50 picofarad per foot

Signal Delay: 1.4 nanoseconds per foot

A-1

0:7
I

Function

SIO, HIO, TIO, TDV

SIO, HIO, TIO, TDV

TDV

AIO, ASC

Order In

Terminal Order

Order Out Control
(even Write

. command Read
word bits R. Back
0-7) Sense

TIC
Stop

Odd Command Word
Bits 0-7

l

DA

FR

FR

FR

DA

DA

DA

APPENDIX B

SUMMARY OF BIT CODINGS FOR VARIOUS DATA EXCHANGES
I

2
0 21 22 2

3 24 2
5

2
6 27

Device Controlle)" Address

Interrupt 00 = D Ready Device Device 00 = DC Ready ---
Pending 01 = D Not Operational Automatic Unusual 01 = DC Not Operational

10 = D Unavai lable End 10 = DC Unavailable
11 = D Busy 11 = DC Busy

Rate Error --- --- --- --- --- --- ---

Device Controller Address

Trans. Incorrect Chaining Channel Unusual --- --- ---
Error length Modifier End End

Interrupt Count Command lOP Ignore --- --- ---
Done Chain Halt last Byte

M M M M M M] 1
M M M M M M 0 1
M M M M M M 1 0
M M M 1"/\ 1 1 0 0
M M M M 0 1 0 0
X X X X 1 0 0 0
I 0 0 0 0 0 0 0

Data Interrupt Command Interrupt Halt Interrupt Suppress Skip
Chain Count =0 Chain Channel Transmission Unusual Incorrect

End Error End length

Cable DC DC
Jl J2

Module
AT12 ATll

Type

Conn.
Loc.

Module
Pin

1 FR6D DA6D
2 FR7D DA7D
3 FR4D DA4D
4 DA6R

6 DA7R
8 DA~R
9 FR5D DA5D

10 DA5R

12 FR3D DA3D
13 DA3R
15 FR2D DA2D
18 DA2R

19 FR1D DA1D
20 DA1R
22 DAOR
23 FROD DAOD

25 RSD DAPD
27 DAPR
29
31

33 lORD EDD
34 EDR
35 FSLD PCD
36 PCR

37 FSTD DORD
38 DORR
39 ICD SeD
40 SCR

42
45

6. = Must be Grounded

APPENDIX C

SUMMARY OF CABLt SIGNALS

DC DC RWD RWD RWD
J3 J4 Jl J2 J3

AT10 AT17 ATll AT11 AT11

23S 27Q 30P

(PR1)

DB1D DB15D DB29D
DBOD DB14D DB28D
DB3D DB17D DB31D

CL1R HPSR DB1R DB15R DB29R

RSTR HPIR DBOR DB14R DB28R
RSAR AVIR DB3R DB17R DB31 R

DB2D DB16D DB30D
ESR BSYR DB2R DB16R DB20R

DB4D DB18D ~
SIOR DB4R DB18R RFSR

DB5D DB19D RFSAD
HIOR DB5R DB19R

DB6D DB20D ~
TIOR DB6R DB20R RWDR
TDVR DB7R DB21D ~

DB7D DB21R A05R

DB8D DB22D ~
AIOR DB8R DB22R A06R

AVOD
BSYD

HPSD DB9D DB23D ~
ASCR DB9R DB23R A07R

HPID DB10D DB24D ~
FSR DB10R DB24R A12R

DB11 D DB25D ~
DB11 R DB25R A13R
DB12D DB26D ~
DB12R DB26R A14R

DB13R DB27R A15R
DB13D DB27R ~

C-1

RWD
J4

ATll

29N

~

~

~

A03R

A02R
A04R

~

AOOR
~

A01R

~

A08R
~

A09R

~

A10R

~

All R
CC3D

CC4D

~

RETR

IMCR
~

123382

127039

123651

APPENDIX D

REFERENCE SPECIFICATIONS

Design Specification, Eight-Bit Data Path Interface

Subcontroller Description

Master Drawing List, Subcontroller-Controller Interface

Product Design Specification,

Input/Output Processor, Multiplexing

D-1

APPENDIX E

GLOSSARY OF lOP/DEVICE CONTROLLER SIGNALS AND TERMS

In the following glossary, the left-hand column designates the general area of usage. The

key for this column is:

SUB FRiD

SUB DAiD

SUB DAiR

SUB DAPD

SUB DAPR

SUB EDD

SUB EDR

SUB ESR

SUB PCD

SUB DORD

SUB lORD

SUB SCD

SUB SCR

SUB leD

SUB FSLD

SUB FSTD

SUB RSD

SUB ell R

SUB RSTR

SUB = subcontroller logic term

DC = controller logic term (based on design tips in this manual)

SYS = general descriptive term for a SI GMA system

RWD = RWD interface logic term

Function response lines (i = 0-7)

Data line drivers (i = 0-7)

Data line receivers (i = 0-7)

Data parity driver

Data parity receiver

End-data driver

End-data receiver

End-service receiver

Parity check driver (requests parity checking when true)

Data/order request driver (order when true);
also carries NCel for instruction response

Input/output request driver (output when true);
also carries NCC2 for instruction response

Service call driver

Service call receiver

Interrupt call driver

Function strobe acknowledge leading driver

Function strobe acknowledge trailing driver

Request strobe driver

One-megacycle clock receiver

I/O reset receiver

E-l

SUB

SUB

SUB

SUB

SUB

SUB

SUB

SUB

SUB

SUB

SUB

SUB

SUB

SUB

SUB

SUB

SUB

SUB

SUB

SUB

SUB

SUB-

SUB

SUB

SUB

SUB

SUB

SUB

SUB

SUB

RSAR

SIOR

HI OR

TlOR

AIOR

TDVR

ASCR

FSR

HPSR

HPIR

HPSD

HPID

AVIR

AVOD

BSYD

BSYR

AIOC

CIH

CIl

CSH

CSl

DCA

FSC

FSD

INI

INC

SDVii

SSHii

SWAi

TSH

Request strobe acknowledge receiver

SIO function indicator receiver

HIO function indicator receiver

TIO function indicator receiver

AIO function indicator receiver

TDV function indicator receiver

ASC function indicator receiver

Function strobe receiver

High priority service receiver

High priority interrupt receiver

High priority service driver

High priority interrupt driver

Avai lable input receiver

Avai lable output driver

Busy driver

Busy receiver

Period during which DC presents interrupt status to subcontroller

Call interrupt high signal from DC to subcontroller

Call interrupt low signal from DC to subcontroller

Call service high signal from DC to subcontroller

Call service low signal from DC to subcontroller

DC address recognized (automatic comparison with switches)

Service connect flip-flop

Function strobe delayed (DC must return this to subcontroller
when FSR occurs)

Initialize after power fai lure

Inhibit service calls during power failure

Response data to TDV (ii = 00-07)

Response data to S10, HIO, TIO (ii = 00-07)

Switch settings (i = 0-7)

(TIOR + SIOR + HIOR) • DCA

E-2

SUB TTSH (TIOR + SIOR + HIOR + TDVR)

SUB LSL Latch service low

SUB LSH Latch service high

SUB LIL Latch interrupt low

SUB LIH latch interrupt high

SUB BSYC Priority determination signal (This DC is driving BSYD)

DC CHEND Channel end storage

DC OIN Order in

DC OOUT Order out

DC DIN Data in

DC DOUT Data out

DC TO ' Terminal order

DC START Start control fl ip-flop

DC UEND Unusual end storage

DC ULEG Unusual length storage

DC WANTS Want service storage

DC WANTI W.ant interrupt storage

DC BADO Incorrect order storage

DC N Precedes any logic signal to denote its negation

DC C/ Precedes any logic signal name for flip-flop
to denote its clocking input

DC S/ Precedes any logic signal name for flip-flop
to denote its set conditioning input

DC R/ Precedes any logic signal name for flip-flop
to denote its reset conditioning input

DC M/ Precedes any logic signal name for flip-flop
to denote its mark (dc set) input

DC E/ Precedes any logic signal name for flip-flop
to denote its erase (dc reset) input

SYS lOP I nput/Output Processor

SYS M/IOP Multiplexor lOP

SYS S/IOP Selector lOP

E-3

SYS S'/IOP Piggyback Selector lOP (attached to S/IOP)

SYS DC Device Controller (or data chaining - flag)

SYS D Device

SYS PET (or PET panel) DC and D tester bui It by Peripheral Equipment

SYS IDC ,Interface disconnect circuit (part of subcontroller)

SYS IZC Interrupt on zero count flag

SYS CC Command chaining flag

SYS CCi Condition code bits (i = 1-4)

SYS ICE Interrupt on channel end (flag)

SYS HTE Halt on transmission error (flag)

SYS IUE Interrupt on unusual end (flag)

SYS SI L , Suppress incorrect length (flag)

SYS S Skip (flag)

SYS TIC Transfer in channel (order)

RWD DBiD Data line drivers (i = 00-31)

RWD DBiR Data line receivers (i = 00-31)

RWD AiiR Address receivers (i = 00-15)

RWD RFSR Function strobe receiver

RWD RFSAD Function strobe acknowledge driver

RWD RWDR Read/write indicator receiver (write when true)

RWD CC3D Condition code 3 driver

RWD CC4D Condition code 4 driver

RWD RETR I/O reset receiver

RWD 1MCR One-megacycle clock receiver

E-4

APPENDIX F

SUBCONTROLLER MODULE LOCATIONS

Connector Module Cable Designation
Location Type

23 LT25

24 LT26 {Switch comparator}

25 ---- {Reserved; AT 17 takes two slots}

26 AT17 J4

27 ' LT24

28 AT10 J3

29 LT23

30 ATll J2

31 LT22

32 AT12 Jl

F-l

APPENDIX G

T -SERIES CIRCUITS, SPECIFICATIONS AND SCHEMATICS

Microci rcuit Inverter (SDS 305), Part Number 111501

Housing: Four circuits per TO-5 can

Turn-On Delay: 20 nanoseconds maximum (500k points)

Turn-Off Delay: 30 nanoseconds maximum (50% points)

Unloaded Output Rise & Fall Times: 20 nanoseconds maximum (10% to 90%)

Typical Operation: 18 nanoseconds average delay,

5 nanoseconds mi n i mum (not guaranteed)

Loading: 16 gate loads maximum

Ci rcuit Schematic:
Vec = +4

a 0----____ -

--

G-1

Microcircuit Inverter (SDS 305), Part Number 111501 (Continued)

Typical Required Input Gating: +8

Resistors: 2%

Diodes: 1 N914A or equivalent

+8

Logic Diagrams:
,

Collector resistor: 560 ohms (2 unit loads)

Terminating resistor: 220 ohms (5 unit loads)

(no gates, no
collector resistor)

(gates and collector resistor)

TO-5 Can Connections:
10

8

G-2 5

2.2K

2.2K

2

3

Microcirc.uit Buffer (SDS 306), Part Number 111502

Housing: Four ci rcuits per TO-5 can

Turn-On Delay: 25 nanoseconds maximum (50% points)

Turn-Off Delay: 25 nanoseconds maximum (50% points)

Unloaded Output Rise & Fall Times: 20 nanoseconds maximum (10% to 90%)

Typical Operation: 18 nanoseconds average delay,

5 nanoseconds minimum {not guaranteed}

Loading: l6 gate loads maximum

Circuit Schematic: Vcc = +4

Typical Required Input Gating:

Resistors: 2% +8

Diodes: 1 N914A or equivalent
2.2K

+8

2.2K

G-3

Microcircuit Buffer (SDS 306), Part Number 111502 (Continued)

Logic Diagrams:

Collector resistor: 560 ohms (2 unit loads)

Terminating resistor: 220 ohms (5 unit loads)

(no gates, no
collector resistor) (gates and collector resistor)

TO-5 Can Connections:

10

8

7

5

G-4

2

3

Microcircuit Flip-Flop (SDS 307), Part Number 111503

H.ousing:

Type:

Clock Requi rements:

Set/Reset Inputs:

Outputs:

Mark/Erase Inputs:

Outputs:

Loading:

Ci rcuit Schematic:

One circuit per TO-5 can

Trai ling edge trigger, with dc mark and erase

30 na~oseconds minimum on-time (50% points)

60 nanoseconds minimum off-time (50% points)

Must be maintained at correct state from 30 nanoseconds (minimum)

before clock trailing edge to 5 nanoseconds {minimum} after clock

trailing edge; flip-flop completely insensitive to these inputs

except in this interval

15 nanoseconds minimum after clock trailing edge {50% points}

70 nanoseconds maximum after clock trailing edge {50% points}

70 nanoseconds maximum after mark/erase leading edge {500/0 points}

40 nanoseconds minimum on mark input to set flip-flop

40 nanoseconds minimum on erase input to reset flip-flop

Completely buffered (cannot alter internal flip-flop state by output

collector grounding)

16 gate loads maxi mum from set output, 16 from reset output

{refer to specification} comprises 28 transistors, 36 resistors, and

10 diodes

Typical Required Input Gating: +8
Resistors: 20/0

Diodes: 1 N914A or equivalent

G-5

2.2K

To Pins 1,2,7,
--~ .. --~--~--~~ 8,9, on can

+8

2.2K

Microcircuit Flip-Flop (SDS 307), Part Number 111503 (Continued)

Logic Diagram (shown with collector resistors on set and reset outputs and typical diode

gating inputs attached):

Collector resistor: 560 ohms (2 unit loads)

Terminating resistor: 220 ohms (5 unit loads)

TO-5 Can Connections:

8

7

G-6

Q

+4v.

10

3

5

	000
	001
	002
	003
	004
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-06a
	1-07
	1-07a
	1-08
	1-08a
	2-01
	2-02
	2-03
	2-04
	2-04a
	2-05
	2-05a
	2-06
	2-07
	2-07a
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-20a
	3-21
	3-21a
	3-22
	3-22a
	3-23
	3-24
	3-24a
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-41a
	3-42
	3-43
	3-43a
	3-44
	3-44a
	3-45
	3-45a
	3-46
	3-46a
	3-47
	3-47a
	3-48
	3-49
	3-50
	3-51
	3-51a
	3-52
	3-52a
	A-01
	B-01
	C-01
	D-01
	E-01
	E-02
	E-03
	E-04
	F-01
	G-01
	G-02
	G-03
	G-04
	G-05
	G-06

