TECHNICALMANUAL EXTENDED PERFORMANCE RAPID ACCESS DATA FILE MODELS 7231/7232

October 1969
(Revised June 19:0)

LIST OF EFFECTIVE PAGES

Total number of pages is 356 , as follows:
Page No. Pcge No. Issue
Title. Original
A. Original
Foreword Original
i thru x Original
1-1 thru 1-6 Original
2-1 thru 2-4. Original
3-1 thru 3-14 Original
4-1 thru 4-152 Original
5-1 thru 5-24 Original
6-1 thru 6-30 Original
7-1 thru 7-14 Original
$8-1$ thru 8-26 Original
8-27 thru 8-28 Revised June 1970
8-29 thru 8-32 Original
9-1 thru 9-ób Original

FOREWORD

This publication supersedes XDS publication No. 901565 A and incorporates the information previously supplied by PDQ No. 70-018.

table of contents

Section Title Page
I. INTRODUCTION 1-1
1-1 Scope of Manua! 1-1
1-2 Organization of Manual 1-1
1-3 Description 1-1
14 EP RAD File 1-1
1-5 EPRAD Controller i-1
1-6 EPRAD Selection Unit 1-5
1-7 Disc File 1-5
1-8 Notor Control Assembly 1-5
1-9 Power Distribution Panel 1-5
1-10 . . Power Supply Mode! PT20 1-5
II. OPERATION AND PROGRAMMING 2-1
2-1 General 2-1
2-2 Controls 2-1
2-3 EP RAD Controller Address Switches 2-1
2-4 EP RAD Storage Unit Address Switches 2-1
2-5 Cnlina/Offiine Switch 2-1
2-6 . Mennory Protection Switches. 2-1
2-7. Power Distribution Panel 2-3
2-8 Motor Control A.ssembly 2-3
2-9 Poviar Supply Model PT20 2-3
2-10 Operating Procedures 2-3
2-11 Programming 2-3
2-12 Instructions 2-3
2-13 San ple Program 2-3
lii FUNCTIONAL OPERATION 3-1
3-1 Generd 3-1
3-2 Data Organization 3-1
3-3 Mechanical Functions 3-1
3-4 Power Cistribution 3-4
3-5 EP RAD Controller 3-4
3-6 ICF Interface 3-4
3-7 AIO Command 3-4
3-8 HIO Command 3-4
3-9 TDV Command 3-4
3-10 TIO Command 3-6
3-11 SIO Command 3-6
3-12 Iniernal Operations 3-6
3-13 Seek Order 3-6
3-14
Sense Order 3-7
3-15 Write Order 3-7
3-16
Read Order 3-11
3-17 Checkwrite Order 3-13
3-18 Selection Unit Interface 3-13
3-19 EP RAD Selection Unit 3-13

Contents

table of CONTENTS (Cont.)

Section Title Page
IV PRINCIPLES OF OPERATION 4-1
4-1 Scope and Organization of Section 4-1
4-2 Electromechanical Operation 4-1
4-3 Pneurratic System 4-1
4-4 Motor Control Assembly 4-1
4-5 Power Distribstion 4-3
Power Distribution Panel 4-3
4-7 Power Fail-Safe Circuits 4-3
4-8 EP RAD Coritroller 4-3
4 Subcontroller 4-3
4-10 Function Strobe and Function Indicators 4-8
4-11 IOP Data Line Signals 4-8
4-12 Friority Signals 4-8
4-13 Subcontroller Response 4-9
4-14 TDV Function Indicator. 4-9
4-15 TIO Function Indicator 4-9
4-16 HIO Function Indicator 4-10
4-17 SIO Function Indicator. 4-10
4-18 AIO Function Indicator 4-11
4-19 ASC Function Indicator 4-11
4-20 Phase Control Circuits 4-12
4-21 TCL Delay Line 4-13
4-22 Pincise Flip-Flops 4-13
4-23 Response to IOP Commands 4-13
4-24 Order Out Sequence 4-22
4-25 Seek Order Sequence 4-23
4-26 Sense Order Sequence 4-24
4-27 Wrile Order or Checkwrite Order Seque.ice 4-25
4-28 Read Order Sec̣:'znce 4-26
4-29 Oider In Sequence 4-27
4-30 Service Cycle Identification Logic 4-28
4-31 Oider Register 4-29
4-32 Service Call Logic 4-30
4-33 $B y:=$ Counter 4-32
4-34 Terminal Order Operations 4-33
4-35 Ena Data and End Service Logic 4-34
4-36 Input/Dutput Data Buffer 4-37
4-37 1-Register 4-37
4-38 O-Register 4-39
J-Register 4-40
4-39 4-40
Fast Áccess Memory (FAM) Circuits 4-4i
4-11 TRL Delay Line. 4-41
4-42 RK-Counter 4-454-43
4-44コ:-Register.4-48
4-45KF--Register4-48
4-46 Operation of FAM Circuits During the Write Sequence 4-52L-Kegister4-51
4-474-48
Orie-Byte Interface 4-52
Multiple-Byte Interface 4-54
4-50Operation of FAM Circuits During the Read Sequence4-554-51One-Byts Interface4-55
Multiple - Byte Interface 4-56
4-52 Operation of the TRL Delay Line for a Seek Order 4-57

TABLE OF CONTENTS (Cont.)

Section Title Page
Selection Unit Interface Circuits
TDL Delay Line . 4-58
Interface Clocking 4-60

K-Register . 4-63
D-Register . 4 4-63
Interface Contrcl Circuits . 4-ó5
Track Shift Sequence . 4 .65
Write Order Sequence . 4 . 66
Read Order Sequence . 4-68
Checkwrite Order Sequence . 4-69
Sense Order Sequence . 4 . 70
Addressing Circuits . $4-70$
P-Register . 4 4-70
S-Register . $4-71$
T-Register . 4-71
U-Register . 4 4-72
Address Incrementation . 4 4-72
Checksum Generation $4-74$
Error Circuits . 4 . 76
Unusual End Logic. 4 . 76
Parity Error Logic . 4-77
Write Protect Violation Logic . 4-77
Checkwrite Error Logic.. 4-77
Sector Unavailable Logic . 4-78
Rate Error !ogic . 4-79
Incorrect Length Logic . 4-79
Ir.terface Type Logic . 4-80
Byte Width Logic . 4-80
RAD Type Logic . 4-80
Ofiline Operation
4-80
Online/Offline Control . 4-81
Reset Control . 4-82
PET Operations. 4-82
IOP Simulaition . 4-85
Single Phase Mode . 4-86
Alternate Orders Mode . 4-86
Count Done Simulation . 4-89
Sinģie Track Mode . 4-89
Error Stop Mode . 4-89
Phuse Sequence Charts . 4 4-90
IOf Coramand Sequences . 4 .90
Order Out Sequence . 4-90
Sense Order Sequence 4 4-106
Seek Order Sequence . 4-109

Read Order Sequence . 4 4-121
Checkwrite Order Sequence 4 -121
Order In Service Cycle 4 4-121
Terminal Order Operations . 4 4-133
EP RAD Selection Unit . 4 . 134
Address Circuits 4 4-134
Track Register . 4-134
Memory Protect Circuits
4-134

Contents

XDS 901565

TABLE OF CON TENTS (Cont.)

Section Title Page
4-107 Angle Register 4-134
4-108 Head Selection Matrix 4-136
4-109 Write Channel 4-i38
4-110 Read Channel $4-138$
4-111 Logica! Sparing Circuits 4-14i
4-112 Typical Operation 4-141
V LOGIC EQUATIONS AND GLOSSARIES 5-1
5-1 Glossaries こ-1
5-2 Logic Equitions 5-1
Vl DRAWINGS 6-1
6-1 Scope of Section 6-1
6-2 Location of Related Text 6-1
VII SPECIFICATIONS AND INSTALLATION DATA 7-1
7-1 Specifications 7-1
7-2 Installation 7-1
7-3 Instaliation Requirements 7-1
7-4 Installation Procedure /-1
VIII MAINTENANCE 8-1
8-1 Scope of Section 8-1
8-2 General Maintenance 8-1
8-3 Diagnostic Test Programs 8-i
8-4 Basic Checrs and Adjustments $8-1$
8-5 Prel:rinary Operations 3-1
8-6 Power Test 8-2
8-7 Adjusiment of Timing Signals 8-2
Powe. Fail-Safe Test 8-2
8-8
Adiusimen; of AT41 Write Clock Driver 3-4
8-10 Data Path Timing Adjustment 9-5
8-11 Offline Tests 8-7
Preliminary Operations 3-7
8-12
Single Shase Sequences 8-9
8
8
Illegal Order Sequence 8-10
8-15 Singie Phase Seek Order $8-10$
$8-16$ Singie Phase Sense Order 8-11
8-1? Repeât Mode Seek Order 8-12
8-18 Single Phase Write Order 8-12
8-19 Sector Counter Test 8-13
8-20 Exiended Interface Test (Two-Byte Option) 8-13
8-21 Extended Interface Test (Four-Byte Option) 8-15
8-22 Repeat Mode Write Order 8-15
8-23 Y-Seiset Test 8-15
8-24 TCL Delay Line Test. 8-16
TRL Delay Line Test $8-17$
8-25
Write Amplifier Test 8-17
$8-26$
Checkwrite Test 8-20

Alterncte Orders Mode, Repeated Operation

Alterncte Orders Mode, Repeated Operation 8-21 8-21
Alternate Orders Mode, Single Track Opercition
Alternate Orders Mode, Single Track Opercition 8-22 8-22
8-28
8-28 8-29 8-298-30CPU Mode Tests8-22
8-31 Sigma 5 or Sigma 7 Machine Language Test Program 8-22
8-32 Sigma 2 Machine Language Test Program 8-22

TABLE OF CONTENTS (Cont.)

Section Title Page
8-33 Repairs, Replacements, and Adjustments 8-22
8-34 Replacement of the Drive Motor Stator 8-22
8-35 Adjustment of the Disc File Brake 8-26
8-36 Replacement of the Disc File Brake Linings 8-27
8-37 RAD Filter Replacement 8-27
8-38 RAD Interface Connector Cleaning Procedure 8-28
8-39 Selection of a Spare Write Clock 8-28
8-40 Logical Sparing of Read/Write Head 8-30
8-41 Selection of Spare Read/Write Heads 8-30
IX ILLUSTRATED PARTS BREAKDOWN 9-1
9-1 Group Assembly Parts List 9-1
9-2 Numerical Index 9-1
LIST OF ILLUSTRATIONS
Figure Title1-1 EP RAD Storage Unit, Front Viewi-2
1-2 EP RAD Storage U'rit, Rear View 1-3
1-3 EP RAD Storage Unit with EP RAD Controller, Front View !-4
2-1 LT26 Switch Comparator Module 2-2
2-2 LŤ̂5 Special Purpuse Logic Module 2-2
3-! E? RAD File, Biuck Diagram 3-2
3-2 EP RAD Disc File Data Organization 3-3
3-3 Response to IOP Commands, Flow Diagram 3-5
3-4 Seek Order Data Path, Block Diagram 3-7
3-5 Sense Order Deto Pcth, Block Diagram 3-8
3-6 Write Order or Checkwrite Order Data Path, Block Diagrarr 3-9
3-7 Read Oider Dala Path, Block Diagram 3-12
4-1 Pneumatic System, Simplified Block Diogram 4-2
4-2 Motor Control Assembly Start Sequence, Flow Diagram 4-4
4-3 Motor Control Assambly Start Sequence, Timing Diagram 4-5
4-4 Motor Control Assembly Stop Sequence, Flow Diagram 4-6
4-5 WT29 Power Menitor Module, Typical Waveform 4-7
4-6 Typical I/O Operations, Timing Diagram 4-12
4-7 TCL Delay Line, Timing and Logic Diagram 4-14
4-8 Simplified Phase Sequence, Flow Diagram 4-15
4-9 Service Call Flir-Flop SCN, Logic Diagram 4-31
4-10 End Data and End Service Logic, Logic Diagram 4-35
4-11 FAM Circuits, Simplified Logic Diagram 4-42
4-i2 FAM Module, Blork Diagram 4-43
4-13 TRL Delay Line, Logic and Timing Diagram 4-44
4-14 Sequence of FAM. Write Cycles, Timing Diagram 4-49
4-15 Sequence of FAM Read Cycles, Timing Diagram 4-50
4-i6 TDL Delay Line, Logic and Timing Diagram 4-5 ?
4-17 Track Shift Sequence, Timing Diagram 4-66

LIST OF ILLUSTRATIONS (Cont.)

Figure Title Page
4-18 Interface Control Circuits, Timing Diagram 4-67
4-19 Address Incrementation, Simplified Logic Diagram 4-73
4-20 Checksum Generation, Simplified Logic Diagram $4-75$
4-21 Byte Width Circuits, Logic Diagram 4-81
4-22 Connect-Disconnect Timing Diagram 4-82
4-23 Reset Control, Simplified Logic Diagram 4-83
4-24 PET Interface Circuits, Simplified Logic Diagram 4-87
4-25 Data Transfer During Sense Order, Timing Diagram 4-110
4-26 Data Transfer During Seek Order, Timing Diagram 4-114
4-27 Head Selection Matrix, Simplified Block Diagram $4 \cdot 137$
4-28 Write Channel, Schematic Diagram 4-139
4-29 Part of Head Selection Matrix (Track 221), Schematic Diagram 4-140
4-30 Write Signals, Timing Diagram 4-i41
Read Channel, Schematic Diagram ¢-143
Read Signals, Timing Diagram 4-145
4-33 Logical Sparing Circuits, Block Diagram 4-148
4-34 LT105 Spares Selector Module, Simplified Legic Diagram 4-149
4-35 Logical Sparing Circuits for Track 221 (Octal 335), Simplified Logic Diagram 4-i50
4-36 EP RAD Controller, Detailed Block Diagram 4-151
6-1 Power Distribution Panel, Schematic Diagram 6-2
6-2 EP RAD Selection Unit, Power Distribution, Chassis Wiring Diagram $6 \cdot 3$
6-3 EP RAD Selection Unit, Power Fail-Safe Circuits, Logic Diagram 6-5
6-4 Motor Control Assembly (146485), Schematic Diagram $6 \cdot 6$
EP RAD Selection Unil, Address Circuits, Logic Diagram $6 \cdot 7$
6-5
EP RAD Selection Unit, Track Register (Without Logical Sparing), Logic Diagram
EP RAD Selection Unit, Track Register (Without Logical Sparing), Logic Diagram - -7 - -7
6-6
6-6
EP RAD Sclection Unit, Input/Output Circuits, Logic Disgram 6́-10
6-8
EP RAD Selection Unit, Memory Protect Circuits, Logic Diagram 6-:1
6-9 EP RAD Selection Unit. Angle Register, Logic Diagram - - 13
6-10 Head Location Chart - -14
6-11 Head Ceniertap Chari - -17
6-12 Y-Select Location Chart (Without Logical sparing) 6-18
6-13 Input/Output and Stati/Finish Location Chart (Without Logical Sparing) 6-19
6-14 Motor Control Assernbl; (152692), Schematic Diagram 6-? 1
EP RAD Selection Unit; Write Channei (Without Logical Sparing), Ectiematic Diagram 6-22
EP RAD Selection Unit, Read Channel, Schematic Dicgram 6-23
6-17 EP RAD Selection Unit, Write Channel (With Logical Sparing), Schen, atic Diagram $0-24$
6-18 EP RAD Selection Unit, Irack Register (With Logical Sparing), Schimatic Diaaram - -25
6-19 Input/Output and Start/'Finish Location Chart (With Logical Sparinig; i-26
6-20 Y-Select Locction Chart (With Logical Spaiing) - -27
6-21 LT105 Spares Selector Module, Logic Diagram 6-28
6-22 EP RAD Selection Unit, Spares Select Circuits, L.ogic Diagram -
7-1 EP RAD Storage Unit, listallation Drawing --7
7-2 EP RAD File, Cabling Diagram 7-3
7-3 EP RAD Controller, Cabie Connections 7-11
7-4 . EP RAD Selection Unit, Module Location Chart 7-12
7-5 EP RAD Controller, Moa'ule Location Chart 7-13
8-1 Signal CLK3MH, Timing D:agram 8-3
8-2 Signal SECT, Timing Diagram 8-3
8-3 Signals SP and IP, Timing Diagram 8-i
8-4 PET Pane! Overlay 8-5
8 - 5 Data Clock Sigrals, Timing Diagram 8-6

LIST OF ILLUSTRATIONS (Cont.)

Figure Title Page
8-6 Data Synchronizetion Signals, Timing Diagram 8-7
8-7 Sector Idertification Signals, Timing Diagram 8-13
8-8 TDL Delay Line Signals, Timing Diagram 8-14
8-9 Head Select Signals, Timing Diagram 8-16
8-10 TCL Delay Line Signals, Timing Diagram 8-18
8-11 TRL Delay Line Signals, Timing Diagram 8-19
8-12 Write Amplifier Output Signals, Timing Diagram 8-20
8-13 Data Path Timing Signals, Timing Diagram 8-21
8-14 Write Clock Tracks, Schematic Diagram 8-29
8-15 Head Wiring Connection Chart 8-31
9-1 Extended Performance RAD Storage Unit and RAD Controller 9-3
9-2 RAD Storage Unit Cabinet Assembly 9-5
9-3 Selection Unit Ássembly 9-14
9-4 Module Location (Selection Unit Assembly) 9-22
9-5 Spindle and Drive Assembly 9-24
9-6 Motor Control Unit Assembly 9-29
9-7 Printed Wiring Beard (TBI) 9-40
9-8 Power Distribution Panel Assembly 9-43
9-9 Extended Performence RAD Controller 7-48
9-10 Module Location (RAD Controller) 9-54
LIST OF TABLES
Table Title Fage
2-i EP RAD Controllei Address Switcn Positions (Location C24) 2-1
2-2 EP RAD Storage Unit Address Switch Positions (Location A7) 2-1
2-3 Portion of Machine Language Program Controlling EP RAD F:le 2-4
3-1 Service Cycle Operations 3-6
4-1 Information in Funstion Response Signals for TIO, HIO, or SIO Commands 4-10
4-2 Order Signals 4-23
4-3 Operation of the KK-Counter 4-46
4-4 Relation Between State anc Output of the L-Register 4-51
4-5 Summury of Error flip-Flops and Signals 4-76
4-6 PET Interface Contro! Signals 4-84
4-7 PET Interface Indication Signals 4-86
4-8 AIO Command, Fhase Sequence Chart 4-91
4-9 HIO Command, Phase Sequence Chart 4-93
4-10 SIO Command, Phase Sequence Chart 4-95
4-11 TDV Command, Phase Sequence Chart 4-98
4-12 TIO Command, Phase Sequence Chart 4-100
4-13 Order Out Service Cycle, Phase Sequence Chart 4-102
4-14 Sense Order, Phase Sequence Chart 4-106
4-15 Seek Order, Phase Sequence Chart 4-111
4-16 Write Order or Checkwrite Order, Phase Sequence Chart 4-115
4-17 Read Order, Phase Sequence Chart 4-122
4-18 Order In Service Cycle, Phase Sequence Chart 4-129

LIST OF TABLES (Cont.)

Table Title Page
4-19 Terminal Order Operations, Phase Sequence Chart 4-133
4-20 EP RAD Selection Unit Interface Signals 4-135
4-21 Memory Protect Signals 4-136
4-22 Typical Operations of the EP RAD File 4-145
5-1 Glossary of EP RAD File Terms 5-1
5-2 Glossary of EP RAD Controller Signals 5-4
5-3 Glossary of EP RAD Selection Unit Signals 5-20
6-1 List of Related Engineering Data 6-1
7-1 EP RAD Storage Unit Specifications 7-i
7-2 Connections Between EP RAD Controller and IOP 7-2
7-3 Installation Procedure Checkoff List 7-3
8-1 Functions of PET Panel Overlay Switch Designations 8-8
8-2 Test Equipment Required for Offline Test 9-9
52 Data in Bytes of Seek Order 8-10
Locations of Y-Select Sutput Signals 8-16
EP RAD File Program for Continuous Test (Sigma 5 or Sigma 7) 8-23
8-6 Sigma 2 Machine Langıage Test Program for EP RAD File 8-24
8-7 Instructions Used in Sigma 2 Test Program 8-25
8-7A Replacement Filter Part Numbers for Motor Control Unit, Part Number 146485 8-28
8-7B Replacement Filter Part Numbers for Motor Control Unit, Part Number 152692 8-28
8-8 Summary of Logical Sparing Signals -3-30
9-1 Extended Ferformance RAD Storage Unit $9-4$
9-2 RAD Storage Unit Cabinet Assembly 5-5
9-3 Selection Unit Assembly 9-15
9-4 Module Locations (Selention Unit Assembly) 9. 23
9-5 . Spindle and Drive Assembly ?. 25
9-6 Motor Control Unit Assembly 9-30
9-7 Printed Wiring Board TR1 8.4 1
9-8 Power Distribution Parel Assembly 9. 14
9-9 Extended Performance RAD Controller 0.49
9-10 Module Locations (RAD Controller) $?-55$
9-11 Numerical Index $9 .-57$

LIST OF RELATED PUBLICATIONS

The following publications contain information not included in this manual but necessary for a complete understanding of the Extended Performance Rapid Access Data (EP RAD) File when used with related XDS equipment.

Publication Title	Publication
Extended Performance RAD Storage System, Models 7231/7232, Reference Manual	901557
Sigma Computer Systems Inteiface Design Manual	900973
Power Supply Mode! PT20, Technical Manua!	901157
Sigma 5 and 7 Extended Performance Rapid Access Datc (RAD) File, Program No. 704978B, Diagnostic Program Manual	901540
Peripheral Equipment Tester Model 7901, Technical Manual	901004
Sigma 2 Computer, Techrical Manual	900630
Sigma 2 Computer, Reference Nianual	900964
Sijama 5 Computer, Technical Manual	901172
Sigma 5 Computer, Reference Manual	900959
Sigma 7 Computer, Technical Manual	901060
Siģma 7 Computer, Reference Manual	900950
iviultiplexing Input/Output Processcr, Mode!s ¿271/8471 and 8272/8472, Technical Manuc'	901515
Selector Input/Output Processor (SIOP), Mociel 8285 and 8485, Technical Mrnual	901195
Diagnostic Control Program for Sigma 5 and Sigma 7 Computer Peripheral Devices, Reference Manua!	900712
Sigma 2 Systems Test Monitor, Diagrostic Program Manual	900841
Sigma 5 and 7 Systems Test Monitor, Diagnostic Program Manual	901076
Sigma 2 High Capacity Rapid Access Data (RAD) File Test, Diagnostic Program Manual	901538
Sigma 5 and 7 Relocatable Diagnostic Program Loader, Diagnostic Program Manual	900972
S:gma 2 Relocatable Diagnostic Program Loader, Diagnostic Program Manua!	901128

SECTION I

INTRODUCTION

1-1 SCOPE OF MANUAL

This manual provides technical information pertaining to the Extended Performance Rapid Access Data File (EP RAD file), which consists of the EP RAD Controller Model 7231 and from one to eight EP RAD Storage Units Model 7232. An EP RAD file is an item of peripheral equipment which car: be used with any of the Sigma series computers (Sigma 2, Sigma 5, or Sigma 7). The EP RAD file is manufactured by Xerox Data Systems, El Seyundo, California.

The documents in the list of related publications should be consulted to supplement the information in this manual. A complete set of documents for this equipment consists of this manual, related publications, engineering drawings, wire lists, diagnostic programs, and other data supplied with the equipment.

1-2 ORGANIZATION OF MANUAL

The information contained ir this manual is organized as follows:
a. Section I outlines the content and organization of the manual and provides a Drief description of the EP RAD file and its function.
b. Section II describes the location and function of each switch and indicator and provides simple machine language programs which illustrate the relation of the EP RAD file to the compute, eperation.
c. Section III describes the operation of the EP RAD file in terms of data flow through registers in response to signals generated by the computer. No reference is made to signals or logic equations, and block diagrams and flow diagrams support the text.
d. Jection IV contains a detailed description of the operation of all circuits of the EP RAD file. The purpose of each signal, the logic equations which control the signal level, and the relations between signals are described; supporting logic diagrams, timing diagrams, and flow diagrams are included.
e. Section V lists all signals of the EP RAD file, de scribes the function of each signal, and contains phase sequence charts for each EP RAD file operation.
f. Section VI includes schematic diagrams for control panels, power distribution, terminal boards, logic diagrams,
and other engineering drawings and provides a list of engineering drawings required to supplement this manual.
g. Section VII contains cable diagrams; module location charts; power, cooling, and space requirements; and othe: data required for installation, including preoperational check procedures.
h. Section VIII provides lists of special tools and test equipment; schedules and procedures for cleaning, lubricating, and preventive maintenunce testing; and procedures for performance testing, trouble analysis, and adjustment.
i. Section IX contains an iliustrated parts breakdown and parts list.

1-3 DESCRIPTION

1-4 EP RAD FILE

An EP RAD file consists of from one to eight EP RAD storage uniis and associated interconnecting cables. Ench EP RAD storage unit consists of a cabinet that contains a disc file, an E? RAD selection urit, a power distribution panel, a moror control assembly, a Power Supply Model PT20, and inierconnecting cables, wiring harnesses, and pressure lines. (See itgures 1-1 and 1-2.) An EP RAD coniroller is collocated w: th one of the EP RAD storage units. (See figure 1-3.)

Earh EP RAD storage unit can accommodate riore than 6 mililion bytes of dati. An EP RAD file with the maximum eight EP PAD storage units can store more than 50 million bytes of data. Data bytes may be read from; or written into, the EP RAD storage unit at an average rate of more than 350,000 byies per second.

1-5 EP RAD CONTROLLER

An EP RAD controller consists of three 32 -mociule chassis and the 74 modules required for operation with an eightbit uata path. For the optional ló-bii data path, five additional modules are needed for a total of 79 modules; for the aptional 32 -bit data path, eight additional modules are needed for a total of 82 modules.
The EP RAD controller, which is the interface between the IOP and the EP RAD storage units, responds to command signals from the IOP. Signais returned from the EP RAD controller to the IOP indicate the status of an: EP RAD storage unit and the status of the control timing of data transfers between an EP RAD storage unit and the IOP.

Figure 1-1. EP RAD Storage Unit, Front View

Figure 1-2. EP RAD Storage Unit, Rear View

Figure 1-3. EP RAD Storage Unit with EP RAD Controller, Front View

1-6 EP RAD SELECTION UNIT

An EP RAD selection unit consists of two 32-module chassis and the 36 modules required for operation. If the logical sparing option is selected, a maximum of 13 additional modules may be used, for a total of 49 modules. The EP RAD selection unit responds to signals received from the EP RAD controiler and writes data on the disc file or reads data from the disc file, as required.

1-7 DISC FILE

The disc file contains four rotating magnetic surfaces for recording digital data on 512 tracks. A separate read/write head is provided for each of the 512 tracks, and 64 spare read/write heads and tracks are available. One of the magnetic surfaces has an active sector timing frack and read head. (A timing track is written on each surface of the disc, so that three spare timing tracks are available.) The magnetic surfaces are sealed in a pressurized bulkhead which is maintained at a pressure higher than standard atmospheric pressure.

1-8 MOTOR CONTROL ASSEMBLY

The motor control assembly rontro!s the sequence of operations for starting and stopping the disc file motor and monitors the status of the disc file motor during operation. During
the start sequence, the motor control assembly aborts operation if the disc file does not reach 300 rpm within a preset time delay. When power is removed for shutdown or if a power failure is sensed, the motor control assembly controls both dynamic and mechanical traking.

1-9 POWER DISTRIBUTION PANEL

The power distribution panel controls power from either the control console of the computer instaliation or the EP RAD storage unit.

1-10 POWER SUPPLY MODEL PT20

Pover Supply Model PT20 (also referred to in this manua! as the PT20 power supply) is a standard XDSpower supply and is described in detail in XDS publication No. 901157. The power input required is approximately 9 A from o singlepinase $117 \mathrm{~V}, 60 \mathrm{~Hz}$ source. The power supply provides outputs of $+4 \mathrm{~V},+8 \mathrm{~V},-8 \mathrm{~V},+25 \mathrm{~V},-25 \mathrm{~V}$, and +45 V , with current capability sufficient for an EF RAD selection unit and an EP RAD controller if both items are inslalied in the EP RAD sturage unit. When an EP RAD file contains more than ore EP RAD storage unit, connections from PT20 power supplies should be distributed aniong all phases of the threephase source. Overvoltage and short circuit protection for the PT20 power supply is provided by modules and by a resettoble circuit breaker.

SECTION Ii

OPERATION AND PROGRA.MMING

2-1 GENERAL

The EP RAD file is controlled by programmed instructions processed by the CPU and responds to commands and orders from the IOP. Controls of the EP RAD file establish its address, indicate whether an F.? RAD sicrage unit is online or offline, provide for write protection of selected groups of tracks, and provide for turn -on and shutdown of EP RAD file operations. Controls of the EP RAD file are described in this section. A portion of a program, in machine language, is provided to illustrate the relation between the programs and the EP RAD file operations.

2-2 CONTROLS

2-3 EP RAD CONTROLLER ADDRESS SWITCHES

Four switches on an LT26 Switch Comparator module (location C24, figure 7-5) estabiisi the four-bit address of the EP RAD controller. (See table 2-1 and figure 2-1.)

Table 2-1. EP RAD Controller Address Switch Positions (Eocation C24)

S4-2*	S3-2	S2-2	SI-2	Address ${ }^{\dagger}$
Up 1	Downt	Dowil	Down 1	1000
Up	Down	Down	Up	1001
Up	Down	Up	Down	1010
Up	Down	Up	Up	1011
Up	Up	Down	Down	1100
Up	Up	Down	U_{p}	1101
Up	U_{p}	Up	Down	1110
Up.	U'p	Up	Up	(1111
*Switch S4-2 position cannot be changed while the LT26 module is in place ${ }^{\dagger}$ Up is 1; down is 0 . Switch position designations cannot be read while the LT2t module is in place				

2-4 EP RAD STORAGE UNIT ADDRESS SWITCYES

Three switches on an LT26 Switch Comparator module (location A7, figure 7-4) establish a three-bit address for each EP RAD storage unit. (See table 2-2 and figure 2-1.)

2-5 ONLINE/OFFLINE SWITCH

A switch on the LT25 Special Purpose module (iocation C23) transfers the EP RAD file from online to offline operation. When the switch is in the 0 position, the EP RAD file is offlire; when the switch is in the 1 position, the E.P RAD file is online. (See figure 2-2.)

2-6 MEMORY PROTECTION SWITCHES

Sixteen switches on the front panel of the EP RAD selection unit (figure 1-1) may be used to prevent any CPU program from writingon selected groups of tracks on the disc file. The toggle switches are labeled MENORY PROTECTION

Table 2-2. EP RAD Storage Unit Address Switch Positions (Location A7)

S3-1	S2-1	S: 1	Address*
Jown 0	Dowr. 0	Down 0	000
Down	Down	Up	001
Suwn	Up	Down	010
U_{p}	Down	Down	100
Up	Down	Up	101
Up	Up	Down	110
U_{p}	Up	Up	111
*Up is 1 ; down is 0 . Switch position designations cannot be read while the LT26 module is in piace			

Figure 2-1. LT26 Switch Comparator Module

Figure 2-2. LT25 Special Purpose Logic Module

SWITCHES, and the instruction SET SWITCH IN UP POSITION TO PROTECT INDICATED MEMORY TRACK ADDRESSES

is marked on the panel. The 512 tracks are divided into 16 groups of 32 tracks each for control by MEMORY PROTEC TION SWITCHES. The 32 tracks protected by each switch are indicated in decimal notation, beginning with 000 to 031 and ending with 480 to 511.

2-7 POWER DISTRIBUTION PANEL

The power distribution panel contains a toggle switch labeled REMOTE-OFF-ON. No power is available for the selection unit, contrcller, or fans when the toggle switch is in the OFF (centcr) position. When the switch is in the REMOTE position, application of power is controlled from control panels of the CPU. When the switch is in the ON position, the ac power source is directly connected to the EP RAD storage unit.

2-ô MOTOR CONTROL ASSEMBLY

The motor control assembly contains a circuit breaker and a toggle switch. A protective plastic cover on the circuit breaker reads EMERGENCY USE ONLY to indicate that the circuit breaker is normally $O N$ and should not be used in routine turn-on or shuidown procedures. The POWER ON-OFF switch applies three-phase power to the motor control assembly. This power is independent of the power distribution panel.

2-9 POWER SUPPLY MOLEL PT20

The PT2O power supply conteins a circuit breaker and a MARGIN switch. Power is applied to the PT20 power supply through the circuit breaker. The MARGIN switch, which has three positions iabeled H, N, and L, is used to select a high (H), normal $(\mathrm{N}$), or low (L) output voltage. Refer to XDS publication No. 901157 for additional information.

2-10 OPERATING PROCEDURES

After an EP RAD file has been installed and checked as described in section VII, no special turn-on or shutdown procedures are required. The normal control positions are as follows:
a. The EP RAD controlier address switches are set to the four-bit address assigned io the controller of the EP RAD file (1000 through 1111).
b. The EP RAD storage unit address switches are set to the three-bit address assigned to the EP RAD storage unit (000 through 11i).

c. The online/offiine switch is set to 1 .

d. The MEMORY PROTECTION SWITCHES are set in the up position to protect any group of 32 tracks or are set in the down position to allow, writing on tracks by CPU programs.
e. The REMOTE-OFF-ON switch on the power distribution panel is set to REMOTE.
f. The POWER ON-OFF switch on the motor control assembly is set to $O N$.
g. The circuit breaker on the motor control chassis is ON and the protective cover is closed.
h. The circuit breaker on the PT20 power supply is ON.
i. The MARGIN switch on the PT2O pover supply is set to N.

2-11 PROGRAMMING

2-12 INSTRUCTIONS

Controi signals and data signals exchanged be:ween the EP RAD file and the CFU through the IOF are itlated to the input/output instructions. ?Refer to the technicol manual and reference manual associated with the winputer installaition for details.) After a stari input/ou, uir operation (SIO), halt input/oulput operation (HIO), test i"put/output (TID), or test device (IDV) instruction is processed by the CFU, the IOP geierates signals which require c resporse from the addressed peripheral device controller. If the EP RAD file is addressed, the IOP generates signels which contrain the information requirec by the instruction. After an cicknowledgel/O interrupt (A:O) instruction is processed by the CPU, tie IOP generates signals which require a respcise from the highest priority peripheral device controller that has on interrupt pending. If the controller of the EP RAD file responds, the IOP refurns its aduress and the uddress of the EP RAD storage unit currentiy stored in the unit register.

2-13 SAMPIE PROGRAin

XDS publication No. 901557 describes two somple programs. One program is for use in either a Sigrry 5 or a Sigma 7 computer, and one is for use in a Sigme 2 computer. A group of machine longuage instructions, which form a purt of the Sigma 5 and 7 programming example labeled IOINTSUF, is listed in table 2-3.

Table 2-3. Portion of Machine Language Program Controiling EP RAD File

Instruction*	Reinarks
22800020	Load immediate (LI). Causes 00000200 to be stored in general register 8 to permit arming I/O interrupts
6D80 1200	Write direct (WD). This WD instruction in interrupt control mode causes arm and enable (code 010) of all group 0000 interrupts selected by a one
220 M MMMM	Lood immediate (LI). Causes a doubleword command in location M MMMM to be stored in general register 0 . Value assigned to $M M M M M$ is controlled by the program
4CAX UUUU ${ }^{\dagger}$	Start input/output operation (SIO). Causes the operation coded by doubleword command in location M MMMM (now in general register 0) to begin ir EP RAD file at address UUUU. (UUUU addresses the EP RAD file controller and one of eight EP RAD storage units. The track address and the word count are contained in the doubleword.)
74NX ssss †	Store conditions and floating point ceniro! (STCF). For this program, the significant part of the STCF instruction is that which causes the condition code response to the previous SIO insiuction to be stored in memory location SSSS. The value of SSSS is controlled by the program. N has no significance
68CX LLLL †	Branch on conditions reset ($B C R$). This $B C R$ instruction forms the logical product (AND) of its R-field (1100) and the condition code saved by the previous $\subseteq T C F$ instruction. If the SIO is accepted, the logical product is zero, and the WAIT instruction in location LLLL is executed. If the SIO is not accepted, the logical product is not zero, and the next instruction in sequence is executed. LLLI is established by the proyram
$331 \times$ PPPP †	Modify and test word (MTW). If the MTW program is executed, its R-field (0001) is added to the effective word siored in the effactive location of X PPPP, and the sum is stored in the efrective location. Executicn of this instruction causes a branch back to the main program. PPPP is established by the program
2ENX RRRR^{\dagger}	WAIT instruction. After this instruction is exec:yted, no other instructions are executed until an interrupt signal is receivea at the end of the I / O operation started by the accepted SIO instruction. The next AIO instruction in sequence is then exect:ed. RKRR is established by the program
GEAX JJJJ	Acknowledge I/O interrupt (AlO). Causes status bits (0 through 15) and I/O address code bits (21 through 31) from the EP RAD file to be stored in general register 10. JJJJ is estabtisited by program

[^0]
SECTION III
 FUNCTIONAL OPERATION

3-1 GENERAL

An EP RAD file consists of one EP RAD controller and from one to eight EP RAD storage units (figure 3-1). A Sigma series computer controls the EP RAD file through either a multiplexing input/output processor (MIOP) or a selector input/output processor (SICP). The maximum capacity of each EP RAD storage unit is more than 6 million data bytes. Data bytes may be written inio, or read from, the EP RAD file under program control, as described in paragraph 2-1 \mathbf{i}.

Each EP RAD storage unit contains a disc file, a selection unit, a PT20 power supply, a power distribution panel, a motor control assembly, and iriterconnecting cables, wiring harnesses, and pressure lines. One of the EP RAD storage units contains the EP RAD controller that functions as the interface between the EP RAD file and the IOP.

The EP RAD controller and a!! selection units form a buffer between storage devices operating at independent clock rates. The clock rate of the computer is established by its timing circuits; the clock rate of an EP RAD storage unit is established Juring the writing process by the use of the Ma ichester encoding technique. The EP RAD storage unit may be required to read or write 12 sets of 1024 data bytes in one revolution of the disc. To meet this requirement, the EP RAD controller must accept data from one storage device at one clock rate, iemporarily store the data, and transmit the data to the other storage device at another clock rate. In addition, the EP RAD controller must make a parallel-to-serial chang? in format for data being transferred from the computer memory through the IOP to the EP RAD storage unit and must make a serial-to-parallel change in format for data being transferred from the EPRAD storage unit through the IOP to the computer memory.

Signals passing between the EP RAD controller and any EP RAD storage unit are ex-hanged through a set of transmission lines common to all EP RAD storage units. However, the EP RAD controller communicates with only one of the $E P$ RAD storage units during uny operation. The storage unit is selected by an address which is part of the command doubleword accepted by the IOP from the computer memory. Terms frequently used in this manual are defined in table 5-1.

3-2 DATA ORGANIZATION

Data stored in the disc file is organized as indicated in figure 3-2. Four magnetic surfaces are used, each surfrice having $128 \mathrm{read} / \mathrm{write}$ heads. Data may be written by, or
read from, orily one of the read/write heads at any time. The surface of the disc associated with a particular read/ write head is called a track. Each track is divided into 12 equal sectors by timing signals permaneritly recorded on one surface of the dise. These timing signals are read by circuits of the selection unit. One of the 512 read/write heads is selected by a nine-bit track address. Each sector is identified by a four-bit sector address.

Within each sector, 1024 bytes of eight bits each are stored. The total data capacity of the disc file is obtained by multipiying 1024 bytes/sector by 12 sectors/track ky 128 tracks/ surface by 4 surfaces. This is a totai of 6,29i. 156 bytes. An Ef RAD file with the maximum complement of eight $E P$ RAD storage units can store more than 50 millior databytes.

Preceding each set of 1024 data bytes is a five-bite preamble. This preambie is written by the EP RAD contraller to identify the beginning of a sector of data and to synchronize controller, selection unit, and disc file creraions. Following the 1024 data bytes is a twa-byte cherik.jum and a orie-byte postamb!e. The checksum is genersted by controller circuits during the write seguence, and is written after all data bytes have been stored. The postamble is a string of eight zeros which ident:fies the end ot the section, A gop containing no data of any kind separates tie sectors. Durir.g the time that this gap is under the read, wite heads, preparatory operations are performed by the con roller.

3-3 MFCHANICAL FUNCTIONS

During operation of the EP RAD file, the read, write heads whi-!? write on (or read from) the magnetic sursces of the disc file are held from contact with the magne iic surfaces by of ihin film of air. This technique, called lioating head or fiying head, permits each head to be very close to a surface without confact and eliminates design poblems associated with fixed heads. For example, if the nosition of a read/write head is fixed, the ciistance between the head and the moving surface varies slightly because of irreyularities of surface flatness or because of \Rightarrow s!ight eccentricity of the disc axis of rotation. The variction in flux strength introduced by this variation in distance causes variation in signal levels. In addition, because the distance must be relatively large to prevent the possibility of contact, much of the strength of the magnetic field is used in the resultani air gap. However, with the flying head system of the EP RAD file, the design distance between head and surface is maintained only while the disc is spinning faster than 300 rpm . Therefore, contact between the flying heads and the disc surfaces must be relieved until the

Figure 3-2. EP RAD Disc File, Data Organization

300 rpm rate is attained. During a start sequence, the motor control assembly relieves the pressure holding the heads against the disc surface. During a stop sequence, the motor control assembly controls dynamic and mechanical braking of the disc. During a start sequence or a stop sequence, the motor control assembly monitors a signal which indicates the speed of the disc file motor.

3-4 POWER DISTRIBUTION

External three-phase ac power is applied to the power distribution panel through an rf filter assembly. The ac power passes directly from the power distribution panel to the motor control assembly. Application of ac power for the controller, selection unit, or fans may be controlled either from the operator panal of the computer or from the EP RAD storage unit. When the LOCAL/REMOTE switch on the power distribution panel is in the LOCAL position, power is applied directly to the PT20 power supply and he fans. When the LOCAL/REMOTE switch is in the MOTE position, ac power is controlled from the operator control panel of the computer. A delay circuit in the power distribution panel prevents application of ac power to more than one EP RAD stcrage unit at a time when ac power is first applied. This delay causes a sequential application of ac power to each EP RAD storage unit, thereby minimizing starting surges. A power fail-safe circuit senses two signals derived from the ac power source ond one dc signal from the PT20 power supply. Powerfailure causes a controlled shutdown of the EP RAD storage unit. If the EP RAD storage unit is in communication with the IOP at the time of shutdown, a signal is sent to the IOP to indicate the unusual end.

3-5 EP RAD CONTROLLER

In a computer instaliation, the EPRAD controller is only one of several device controllers exchanging data with the computer memory through the IOP. Two techniques are used to !imit communication with the $i O$? to only one conler at any time: For some !'JP commands, only one iroller is addressed, and on!y the addressed controller can respend. For other IOP commands, a priority chain established by cable routing limits response to the highest priority controller that is awaiting that command.

The subcontro!ler portion of the EP RAD controller (figure 3-1) monitors signals from the ICP and determines if and how the EP RAD file responds to commands. The subcontroller responds to all control sianals, either by passing the signals to other controllers associated with the computer installation or by returning signals to the IOP. The subcontroller controls exchange of data on the eight-bit data path. The expanded interface circuits provide up ta 24 additional data lines when a 16-bit or a 32-bit data path is used. When the EP RAD file is operating offline, signals are received from the Peripheral Equipment Tester \because (PET) Model 7901 through the PET interface.

Commonds from the IOP cause phase conirol circuits of the daty buffer to cycle through a definite sequence of phases.

During each phase of the sequence, the phase control circuits respond to IOP signals, selection unit signals, and internally generated signals to determine when to go from one phase to another. During this sequence of phases, data is transferred between the selection unit and the IOP through the data buffer, the selection unit interface, and the subcontroller and expanded interface circuits.

3-6 IOP INTERFACE

The response of the subcontroller io IOP commands is summarized in figure 3-3. The five commands associated with CPU instructions are as follows:

Mnemonic	Function
AIO	Acknowledge input/output interrupt
HIO	Halt input/output cperation
TDV	Test device
TIO	Test input/output
SIO	Start input/output

The ackrowledge service call (ASC) commend is generated by the IOP in response to a service call from the subcontroller.

3-7 AIO Command

The AIO command, which is generated by the IOP when an interrupt is detected, is not addessed to any device or device controller. Only the highest priority devira zontroller wirh an interrupt pending can respond to the hiO command. Any device controller witnout an interript pending passes the signals to the next device controller in the pricr:ty sequence. If the EP RAD controller is the highest friority device controller with an interrupt pending, it resporids to the AIO command by transmiting its address and the contents of its device address register (U-rezisier) to the IOP and by transmitting signals that indicate the cause of the interrupt. When an AIO command is accepted, the interrupt condition is cleared.

3-8 HIC Commarid

The HIO command, which is addressed to a specific device conitroller, heits an input/output operation being processed by the EP RAD controller and returns function response siznals and condition code signals to the IOP. These signals indicate the status of the EP RAD controller to the IOP and the CPU.

3-9 TDV Command

The TDV command, which is addiessed to a specific device controller, returns function response signals and condition code signals to the IOP. These signals indicate any errors

Figure 3-3. Response to IOP Commands, Flow Diagram
that occur during an input/output operation and the nature of any detected errors.

3-10 T1O Command

The TIO command, which is addressed to a specific device controller, returns function response signals and condition code signals to the IOP. These signals indicate the status
l of the EPRAD controller to the IOP and the CPU. The TIO command performs a function similar to that of the HIO command, without causing a halt.

3-11 SIO Cornmand

The SIO command, which is addressed to a specific device controller, returas function response signals and conditioncode signals to the IOP. These signals indicate the status of the EP RAD controller to the IOP and the CPU. In addiion, the SIO command starts an input/output operation if he EP RAD file is ready. The first response is to request an order out service cycle from the IOP. During this service cycle, a code for one of five orders (seek, sense, read, write, or checkwrite) is stored in the order register of the EP RAD controller. A seyuence of ASC commands in response to service calls from the EP RAD controller then causes the order to be executed.

3-12 INTERNAL OPERATION!

In response to an AIO, HIO, TIO, TDV, or SIO command from the IOP, the EPRAD coinioiler gathers data availabie in registers and flip-flops of the controller, or from signals available at the selection unit interface, and transmits the data to the IOP as function response signals or condition code signals. If an SIO command is accepted, the I/O operation that resclits depends on the order received during the order out service cycle. For each order, the IOP responds to a sequence of service calls from the EP RAD controller by generating ASC commands. Each service call s identified by a two-bit code as requesting one of the four types of service cycles listed in table 3-1.

Regardless of the order received, a spec: Tic number of bytes are exchanged as the phare control circuits of the data buffer cycle through a definite sequence of phases. If a seek order is stored, subsequent data out service calls cause two bytes of data to be stored in controller registers. If a sense order is stored, subsequent data in service calls cause three bytes of data to be transmitted to the IOP. If a write order is stored, subsequent data out service callis cause data bytes in memory to be stored in the disc file. If a read order is stored, subsequent data in service calls cause data from the disc file to be stored in memory. If a checkwrite order is stored, data accepted from memory is compared with data read from the disc file. During or following execution of any of these orders, terminal order data may be received from the IOP or an order in service call may cause data to be sent to the IOP.

Table 3-1. Service Cycle Operations

Service Cycle	Operation		
Order out	$\begin{array}{l}\text { Control information is transmitted from } \\ \text { the IOP to the controller. First service } \\ \text { cycle of any input/output operation }\end{array}$		
Order in	$\begin{array}{l}\text { Control information is transmitted from } \\ \text { the controller to the IOP. Last service } \\ \text { cycle of any input/cutput operation }\end{array}$		
Data out	$\begin{array}{l}\text { Data is transmitted from the computer } \\ \text { memory through the IOP to the disc file. }\end{array}$		
Four bytes of data are transmitted during			
each service cycle; therefore, a rapid			
sequence of service cycles is required			
during execution of a write order or a			
checkwrite order. For a seek order,			
two data out service cycles are required		$\}$	Data i: transmitted from the dise file
:---			
through the IOP to the computer mem-			
ory. Four bytes of data are transmitted			
during each service cycle; thersfore, a			
rapid sequence of service cycles is re-			
quired during execution of a radadorder.			
For a sense order, three data in service			
cycles are required			

A diagiam that summarizes the transfer of data $: n^{2}=$ the EP RAD contro!ler during the execution of a seek cider is preser.: ed in figure 3-4. During execution of a seek order, two Lyies of data are stored in the track addiess register (T-regi-ter) and the secior register (S-register). Execution of a ssberequent read order, write order, or chechwrite order begins of this location in the disc file. (When ro seck order is used, operations begin at the location stored in the T-register and S -register at the time that the orcier is received.)
A byte of data is first accepted from the IOP and is stored in the i-register. As this byte is transferred to the J register, an additional byte is requested from the IOP. Bits 1 ihrough 7 of the first byte are stored in the higher order $\{1:-$ flops of the T-register. After the second byte is mo:ed from the I-register to the J-register, the four highe- order bits (bits 0 through 3) of the second byie are placed in the lower order flip-flops of the T-regisier, and the four lower order bits (bits 4 through 7) are placed in the S -register.
The byte counter of the coniroller identifies the bytes received and generates timing signals which control the transfer of data from the J-register. An incorrect length signal is generated by the controller if a byte count other than two is specified in the $1 / O$ doubleword associated with the seek order.

901565A. 304

Figure 3-4. Seek Crder Data Path, Elock Diagram

3-14 Sense Order

Figure 3-5 summarizes the inansfer of data from the EP RAD controller during execution of a sense order. Three bytes of Jata are transferred from the EPRAD controller to the computer memory through the IOP. The sense order is used to speed up input/output eperations by permitting the CPU program to determine the location available before starting a transfer of data. The average waiting time of half a disc revolution can thereby be reduced to one sector time.

The first byte of data to be stored in the O-register consists of bits 0 through 6 from the track address register (T register) and one bit from the selection unit. The bit from the selection unit indicates whether the addressed track is write-protected. The second byte of data consists of bits 7 through 10 from the T-register and four bits from the sector register (S -register). The bits from the T -register are stored in bits 0 through 3 of the K-register; the bits from the S-register are stored int ${ }^{\cdot}+s 4$ through 7 of the K-register. This byte is transferred to the O-register after the first byte is accepted from the O-register by the IOP. The third byte of data consists of four unused bits and four bits which indicate the address of the sector currently under the read/ write heads of the disc file. (The bits in the S-register indicate the sector addressed by the EP RAD controller.) The third byte, in its turn, is transferred to the O -register, then to the IOP.

The byte counter of the controller identifies the bytes received and generates timing signals which control transfer
of data from one regisier to anothel. Transfer uf data from the O-register to the IOP is controllod by the whase control circuits. An incorrect length signal is gensrated by the controller if a byte count other than three is specified in the 1/O doubleword associated with the ser.f: order. A sector unavailable signal is generuted if the T.-register and S-register huve incremented beyond the last avmilable sector.

3-15 Write Order

A dingram that summarizes data transfers within the EP RAD controller during execution of c write order is reresented in figure 3-6. D, ring execution of a write order, data bytes for on integra! number of sectors are transferred from the computer memory to the disc file through the IOP, the controller, and the selection unit. (If less than 1024 data byter are transferred for a sector, bytes consistirg of eight zeros (00000000) are written until the sector is complete.) All 1024 data bytes for each sector are writter, the first time the addressed sector passes under the read/write heads. If a write operation is attempted in a write-protected track, the write order is not executed and the write-protect violation is reported to the IOP.

Four bytes of data are accepted by the I-register during each data out service cycle. For an eight-bit data path from the IOP, one dota byte is accepted and transferred to the J-register before the next data byte is requested. For a 16-bit or 32-bit data path from the IOP, two or four bytes are accepted simuitaneously. Each byte is moved to

NOTES:

1. INDICATED TIMING CONTROL SIGNALS (TC) ARE NOT IDENTICAL
2. IF BITS 1 ANU 2 OF BYTE 1 ARE ONES, SECTOR IS UNAVAILARLE
3. SELECTION UNIT PROVIDES 4 BITS, WHICH INDICATE CURRENTi SECTOR AT READ/WRITE HEADS
4. SELECTION UNIT PROVIDES W BIT, WHICH INDICATES IF TKr.CK IS WRITE-PROTECTED ($W=1$ IF WRITE-PROTECTED)

Figure 3-5. Sense Order Data Path, Block Diagram

NOTES:

1. IOP DATA PATH MAY BE 8, 16 OR 32 BITS WIDE

J-REGIETER, KP-REGISTER AND I-RECISid CONTIOL ACCFSS TO:6 RL GISTERS 1: FAST ACCES MEMORY
3. INDICATED TIMHIGG COIITROL (TC) SIGNALS ARE NOI IDENTICAL
4. FWA IS 4 -BIT FAST MEMORY WRITE ADDRESS
5. FRA IS 4-BIT FAST MEMORY READ ADDRESS
the higher order byte of the I-register and is transferred to the J-register before additional data bytes are requested.

Data bytes in the J-register are transferred to the fast access memory (FAM) module under control of the J-pointer register (j P-register) and timing circuits. The FAM module contains 16 addressable eight-init registers. The JPregister stores a four-bit code which addresses one of the 16 registers. A byte transferred from the J-register to the FAM module is stored in the location addressed by the Lregister. After a byite is stored in the FA.M module, the number in the JP-register is incremented. The incrementing process is accomplished by causing the outputs of the Lregister to generate a code next in binary sequence to the code stored in the JP-register. In the FAM write cycle, a data byte is transferred from the J-register to an addressed register in the FAM module, and the incremented address transferred from the L-register to the JP-register.

Data bytes in the FANi module are read into the K-register under control of the K-pointer register (KP-register) and timing circuits. The KP-register is incremented by reading the outputs of the L-register during a FAM read cycle in "which data is read from the addressed register in the FAM module into the K -register. The L -register stores a fourbit cocie which addresses one of the 16 registers in the FAM module.

Data stored in the K-register is transferred to the D-registe: one byte at a time. Data siored in the D-register is transferred serially through the selection unit to the addressed track and sector of the disc file. This data transfer takes place at a clock rate established by timing circuits in the controlier. Execution of a writc order requires control of independently timed data ticnsfers. Trancfer of data from the IOP to the I-register is dependient on the speed of response of the IOP to a service call from the controller. Since transfer of data from the \triangle-register to the disc file st keep pace with the clock signals generated in the ontroller, the FAM module must iave data available for the K-register in time for transfer to the D-register. Additional circuits associated with ihe data path monitor and control the process so a continua: flow of data rakes place. The phase control circuits and associated timing circuits regulate the process of rlata transfer from the IOP to the I-register into the J-register.

The RK-counte: keeps count of the number of active bytes in the FAMi module. Each time a byte is written into the FAM module, the count is decreased by one; each time a byte is read from the FAM module, the count is increased by one. Signals controlled by the RK-counter request a FAM write cycle whenever the number of active bytes is 8 or less. Signals generated within the controller indicate whether the J-register or K-register is filled. The Kit register takes priority when the K-register is not fillied (thereby causing a request for reading data from the FAM module to the K-register), and the J-register is filled ereby causing a request for writing data from the 1 ister into the FAM module). This priority assures that
a byte is always available for the D-register. The FAM module is kept filled by storing a large number of bytes initially and by retaining service connect status with the IOP for a period long enough to store 8 to 12 bytes or to fill the FAM module, whichever is required.

The writing process includes writing a preamble and postamble ia addition to the 1024 data bytes (figure 3-2). This sequer:ce is controlled by timing circuits associated with the selection unit interface. After a write order is stored, a search is conducted for the addressed track and sector. The bit and byte counter (B -counter) then controls the sequence of storing the preamble codes in the K-register, counting the 1024 data bytes, and storing the checksum in the K-register following the last data byte. The checksum is developed in the P-register while the data bytes are being transferred from the D-register to the selection unit.

While ine gap separating each sector on the disc file is under the read/write heads, an incrementing process takes place between the T-register and S-register, and the Pregister. If data is to be written into the next sector, the number in the S -register must be increased by one so that a match between the S-register code and the selestion unit sector signal code is possible. If the S-register curtains the code 1011, which identifies sector 11, the next code in sequence must be 0000 and the track address in the Tregister renst be increased by one. Therefore, the contents of the T-register and the S-register are temporarily stored in the ${ }^{0}$ regisrer. This value is incremented by orie in the process sf return to the S-register and the T-registe., so that these two registers cortain the correct codes iefore the nex ${ }^{2}$ eector is available. The contents of the 7-register are alle, iranimitted to the selection unit by way of tie P registel.

The technique used for encoding the sequence of bit; on the magr. tic surface of the disc is known by various names (such as Nanchester, modified nonreturn-to-zero, tiequency madulation, and Ferranti). The technique (called Manchester encoding in this manual) has the advantage that a separate lock track is not required on the magnetic surface and that a clock signal can be extracted from the data signal as data is read from the magnetic surface. (The separate sector pulse track and index pulse track do not provide a clock for each bit.) In summary, during errorless execution ' of a write order, the following operations take place:
a. Inmediately following storage of the write order, at least cight data bytes are accepted from the IOP into the I-register and are transferred through the J-regisier into the FAM module.
b. A search for the addressed sector is conducted. After the addressed location is found, the B-counter isused to control storage of the preamble in the K-register. This preamble is transferred in parallel to the D-register eight bits at a time and is transmitted from the D-register io the selection unit in seria! format.
c. After the preamble code has been transferred from the K-register, data bytes are read from the FAM mociule into the K-register and are transferred from the K-register to the D-register for transmission to the selection unit. Data bytes are continualiy accepted from the IOP through the I-register and the J-register and are stored in the FA.M module. The RK-counter keeps track of the number of active bytes in the FAM module. The B-counter keeps track of the number of data bytes which have been written. If less than 1024 data byes cre received from the IOP, data bytes of all zeros are written until a total of 1024 bytes is stored.
d. A checksum deveioped in the P-register is transferred to the K-register following the last data byte. After the checksum is transferred, the P-register is used to increment the track address and sector address to prepare for writing in the next sector, if necessary. (If the write order is ended, the track address and sector ciddress are retained until a new order is executed or until a seek order is used to store a new track address and sector address.)

3-16 Read Order

A summary of data transfers within the EP RAD controller during execution of a read order is presented in figure 3-7. During a read order, date byies fo: an integral number of sectors are transferred from the disc file to the computer memory through the selection unit, controller, and IOP. All 1024 data bytes for each sector are read the first time the coddressed sector passes under the read/write heads. Two types of read orders cire possible: a sector read orcier and a record read order. For a sector read order, a parity error is reported to the IOP at the end of a sector in which the error occurred; for a rerord read order, a parity er.or is reported to the IOP affer a couni done te:minal order is received by the controller.

After the read order is stored, a search for the addressed sector is conducted. When the addressed sector is found, the timing circuits of the controller must by synchronized with clock signals transmitted from the selection unit. These clock signals are derived from the Manchester encoded data. The proamble, which is initially a sequence of ones and zeros (. . 0101010...), develops an easily identifiable clock signal to indicate the start of data written in a sector. A syrichronization pattern of 1100 ends the preamble and idertifies the clock immediately preceding the 1024 dora bytes.

Bits are read serially from the selection unit ints the Dregister. Only data bytes are transferred to the J-register, one byte at a time, in the interval between the last bit of one byte and the firsi bit of the succeeding byte.

Dota bytes in the J-register are transferred to the fast access memory (FANi) module under control of the Jpointer register (JP-register) and timing circuits. The FAM module contains it addressable eight-bit registers.

The JP-register stores a four-bit code which addresses one of the 16 registers. A byte transferred from the J-register to the FAM module is stored in the location oddressed by the L-register. After a byte is stored in the FAM module, the number in the JP-register is incremented by causing the outputs of the L-register to generate a code next in binary sequence to the code stored in the JP-register. In the FAM write cycle, during which a byte is transferred from the J-register to an addressed register in the FAM moaule, the incremented address is transferred from the L-register to the JP-register.

Data bytes are read from the FAM module under control of the K-pointer register (KP-register) and timing circuits. The KP-register is incremented by reading the outputs of the:-register during a FAM read cycle in which data is read from the addressed FAM module location. The Lresister stores a four-bit code which addresses one of the 16 registers in the FAM module. The procedure is similar to that for a FAM write cycle. The RK-counter keeps count of the number cf ective bytes in the FAM module. Each time a byie is written into the FAM moavle the count is increased by one; each time a byte is read from the FAM madele, the count is decreased by one. Signals generated within the controller indicate whether the J-register or the K -register is filled. If the K-register is not filled (thereby cousing a request for reading datc from the FAM module) ard the J-register is filled (thereby causing a request for writiing data from the J-register into the FAN module), the J -register takes priority. This priority assures it.at a byte a uilable in the D-register is accefted by thes FAM module before the selection unit transmits the first bit of the next byie.

Euci, time that the FAM module stores four data bytes, an oris in service cycle is requested by the cenircller. If more than eight data bytes are stored in the SAM nodule, the contro!ler requests two successive order ir. service cyc.es without relinquishing control of the I/O channel. The means for transfer of data from the FAM module to the O-register depends on the path width of the $1 / O$ ch.annel. The phase control circuits and the associated timing circuiis regulate the process of data transfer from the O register to the IOP.

For cn eight-bit data path, bytes are read from the FAM module to the K-register, then to the higher-order byte of the O-register. The IOP accepts the data from the Oregister. For a 16 -bit data path, the first byts is read from the FAM module to the K-register, and the second byte is read from the FAM module into the next-to-higher order byte of the I-register. After two bytes have been counted, they are transferred simultaneously to the O-register. For a 32 -bit data path, the first byte is read from the FAM mcaule to the K-register, and the second byte is read from the FAM module to the next-to-higher order byte of the 1-register, as for the 16 -bit data path. The next two bytes are read into successively lower order bytes of the 1register. After four bytes have been counted, they are

Figure 3-7. Read Order Data Path, Block Diagram
transferred simultaneously from the I-register and K-register into the O-register.

After all data bytes have been counted, stored in the Dregister, and transferred, the checksum written during the write order is read from the selection unit. This checksum is compared with a checksum developed in the P-register during the read operation. If the two are not identical, an error has occurred. For a sector read order, the error is reported immediately; for a record read order, the error is reported at the end of the record. The checksum is not transferred to the FAM module.

While the gap separating each sector on the disc file is under the read/write heads, on incrementing process takes place berween the T-register and S -register, and the P register. If data is to be read from the next sector, the number in the S -register must be increased by one so that a match between the S-register code and the selection unit sector signal code is possible. If the S-register contains the code 1011, which identifies sector 11, the next code in sequence must be 0000, and the track address in the T register must be increased by one. Therefore, after the checksum stored in the P-regicter is compared with the checksum read from the selection unit, the contents of the T-register ard S-register are stored in the P -register. This value is incremented by one in the process of return to the S-register and T-register so that these two registers contain the correct codes before the next sector is available. The contents of the T-register are also transmitted to the selection unit by way of the P-register.

In summary, during errorless execution of a read order, the following operations take place:
a. Immediately following storege of a read order, a search for the addressed sector is conducted. When the uddressed sector is found, timi:ing signals from the selection unit control the B-counter in synchronize the selection unit circuits. The preamble code stored during the write operation identifies the beginning of data bytes.
b. Bits are received from the selfection unit in seriai form, stored in the D-register, and transferred in eightbit bytes to the J-register. Data from the J-register is written into the FA: Λ module. Service calls are requested by the controller whenever four or more active bytes are in the FAM module.
c. For an eight-bit dota path $1 / O$ channel, bytes are read from the FAM module inio the K-register, then to the O-register, and are accepted by the IOP from the Oregister. For the 16 -bit or 32 -bit data paths, bytes are read from the FAM module into the K-register and Iregister, transferred to the O-register, then accepted by the IOP.
d. After all data bytes have been read, a checksum developed during the read operotion is compared with a
checksum developed and written during the write operation. After comparison of the checksums, the P -register is used to increment the track address and sector address to prepare for reading the next sector, if necessary. (If the read order is ended, the track address and sector address are retained until a new order is executed or until a seek order is used to store a new track address and sector address.)

3-17 Checkwrite Order

Data transfer during a checkwrite order is similar to that for a write order (figure 3-6). However, data is not iransferred from the D-register to the selection unit. Instead, the data that would normally be serially shifted out of the D-register to the selection unit is sompared, b:t-by-bit, with data read from the selection unit. The two sets of data should be identical, because the checkwrite ordier is used to compare data previously written and stili in computer memory with data reaci from the same sector in which. it was written.

3-in SELECTION UNIT INTERFACE

The primary function oi selection unit interface circuits is to receive signals from and to generate and transmit signals to the selection units. Signals passing between the EPRAD controller and an EP RAD selection unit are exchanged on lines common to all selection units in the EP RAD file. These signals perform the following functions:
a. Audress one of eight possible selectior units.
b. Identify the sector under the read/write 'heads of the andressed selection unit.
c. Transmit data and track address codes and associated viming signals between the controller and the selection unit.
d. Transmit status of the disc file to the zontroller for use in response to IOP commands.
2. Transmit sector and index identification signals.
f. Transmit signals which identify the type of order (write or read) to be executed.

3-i9 EP RAD SELECTION UNIT

An Ei: RAD selection unit writes data on, or reaćs data from, the magnetic surface of the disc file in response to orders from the EP RAD controller. For each order, the controller addresses a selection unit, transmits a track address to it, and controls the process of writing or reading. (See figure 3-1.)

The controller stores a three-bit address and transmits three signals to device address circuits of all selection units. The device address circuits of the addressed selection
unit generate an enabling signal which allows that selection unit to make use of the common transmission lines.

The controller transmits an 11-bit code, of which 9 bits are a track address and 2 bits are not used, to the selection unit. The write-protect logic reads the code stored in the track register and generates a signal that indicates whether the addressed łrack is write-protected. During execution of a read order, write order, or checkwrite order, the controiler transmits this 11 -bit code at the start of each sector. Signals from the track register permit only one of the 512 $\mathrm{read} / \mathrm{write}$ heads of the disc file to be active. Three bits select one of eight read/write coupler circuits; six bits select the center tap of one of the 64 read/write heads associated with the selected read/write coupler circuit.

A four-bit counter in the EP RAD storage unit contains the address of the sector under the read/write heads. This)unter is cleared to 0000 by the index pulse read from the
sector timing track. As each sector pulse is read at the start of a new sector, the counter is incremented. After the counter has advanced from 0000 to 1011 , it is cleared by the index pulse. Output signals of this counter are compared with the contents of the sector register in the EP RAD controller to determine when the addressed sector is available.
When the controller is processing a write order, it fransmits a clock signal and a data signal to the write circuits. The write circuits use the Manchester encoding technique to store the data on the disc file through the selected read/ write head.
When the controller is processing a read order, the read circuits extract a data signal andi a ciock signal from the signal originating at the selected read/write head. The data signal and the clock signal are transmitted to the controiler. Additional signals from the selection unit indicate the status of the device.

SECTION IV

PRINCIPLES OF OPERATION

4-1 SCOPE AND ORGANIZATION OF SECTION

This section describes the operation of all circuits of the EP RAD file, including power distribution and control, electronic control of mechanical functions, EP RAD controller circuits, and EPRAD selection unit circuits. Descriptions of circuit operation and function are supported by logic equations, logic diagrams, flow diagrams, timing diagrams, and schematic diagrams. Individual circuits related to the transfer of data through the EP RAD file are described in a sequence that proceeds from circuits functionally close to the IOP interface to circuits functionally close to the diss file. Cross-references relate the circuit being described to circuiis that provide inputs or accept outputs.

The phase sequence charts described in paragraph 4-93 include the controlling equations for changes of state, data transfers, and timing, with nrimary emphasis on the IOP interface. Operations related to a typical sequence of orders are described in paragraph 4-112. References to deiailed descriptions of incividua! circuits are included. Paragraphs 4-112 and 4-93 may be used for a review of the detailed principles of cperation or as a guide to the relation of the detailed circuit descriptions to the overall sequence of events during operation.

The description of offline operation in paragraph 4-83 is related to the offline tests provided in paragraph 8-11. However, only the manually controlled signals are described because operatione following manual generation of control signals are identics! to related online operation.

4-2 ELECTROMECHANICȦL OPERATION

The read/write heads of the EP RAD storage unit are contained in a pressurized section of the disc file not normally serviced in the field. Spacing between the read/write heads during normal operction and start sequences is governed by the motor control assembly and the pneumatic system. During normal operation, spacing between read/ write heads and a magnetic sulface of the disc file is maintained by a thin film of air. During a start sequence, the read/write heads are held from the surface by a pneumat-ically-controlled head retraction mechanism. The pneumatic system (figure 4-1) is operated through the motor control assembly.

4-3 PNEUMATIC SYSTEM

The pneumatic system of the EP RAD storage unit maintains the disc file bulkhead at a positive pressure during normal
operation. During the start sequence, the pneumatic system relieves the force holding the read/write heads against the disc file surfaces. The compressor operates whenever ac power is applied through the circuit breaker on the motor control assembly. If the POWER ON-OFF switch is OFF, relays K12 and K14 are energized and relay K13 is deenergized, so that the air in the head retractinn mechanism is verited to the atmosphere and the compressur maintains the pressure in the disc file bulkhead. After the POWER ON-OFF switch is set to ON, K12 and K14 are deenergized and K13 is energized. This forces air into the head retraction mechanism to reduce the pressure of the read; write heads against the disc surfaces before the disc file mu:or is started. Low-pressure switch S3 closes when pressure reaches 5 psi ; high-pressure switch S 2 c closes when pressure reaches 27 p i. At this time, powe: is app!ied to the disc file motor, and a timing circuit is siorted. If the dise tile motor reaches 300 rpm within 4.5 seconds, K13 is deenergized and K12 and K14 are energized, venting the head retroction mechanism to atmospheric prossure. The read/write heads then ride on a thin film of air. If the 4. 5 -second period ends before the disc file motor reoches 300 rpm , a mechanical brake is applied, the disc file motor is stopped, and the pneumatic system serurns to its initial state. If the COWER ON-OFF switch is set to OFF du:ing normal operation, the disc file motor is stopped and the :neumatic system retums to its initial state.

$4-\frac{1}{-1}$ MOTOR CONTROL ASSEMBLY

Circuit elements of the motor control assembly 'figure 6-4) sense phase connections of the ac power sour:e, speed of the disc file motor, pressure, and temperature. The circusits of the motor control assembly control tha compressor, the disc file motor, and the mechanical brake of the disc filc and provide voltage for dynamic braking. The circuit t thet includes transistors $Q 7, Q 8, Q 11$, and $T 2$ senses all three pheses of the ac power source and connects relay K4 to ground through Q11 if the souice is improperly wired or if puiver on any phase is lost. The circuit that includes Q1, Q2, Q3, Q4, and Q8 senses the speed of the disc fits motor and provides a signai to other circuits when the spesd reaches 300 rpm (nominal). The circuit that includes Q5, Q6, and Q10 is a timing circuit that comnects $K 4$ to ground 4.5 seconds after a trigger signal is received. The circuit that includes SCR1, SCR2, and SCR3 provides de valtage for dynamic braking. This voltage is applied to the dise file motor through contacts T! and Li of K6. The mechanical broke is controlled by $+50 \backslash$ power applied through contacts of reloy K4. Low-pressure switch S3 closes at 5 psi; high-pressure switch S 2 closes at 27 psi. If the disc file becomes overheated (grecter than $130^{\circ} \mathrm{F}$, nominal), the thermostat closes, connecting $K 4$ to ground.

Circuits of the motor control assembly control the application of ac power to the disc file motor, prevent the operation of the disc file motor if it does not reach 300 rom within 4.5 seconds after application of power, control the pneumatic system to prevent damage to the read/write heads or to the magnetic surfaces, monitor speed and temperature during normal operation, and control the stop sequence. The order of events during a start sequence is indicated in figure 4-2; timing diagrams are provided in figure 4-3. The order of events during a stop sequence is indicated in figure 4-4.

4-5 POWER DISTRIBUTION

The primary power source is connected to each EP RAD storage unit. Power can be controlled from the power distribution panel or from a remote location and is provided to the motor control assembly, the PT20 power supply, the fans, and the WT29 Power Monitor module. Power from the PT20 power supply is provided to the EP RAD controller and to the EP RAD selection unit (figure 6-2).

4-6 POWER DISTRIBUTION PANEL

The power distribution pane! of each EP RAD storaze unit controls the distribution of primary ac power to components with in the EP RAD storage unit as well as to other EP RAD storage units. (See figure 6-1.) Three-phase $60-\mathrm{Hz}$ power is ciways available at TBI of an EPRAD storage unit. Application of this ac power ${ }^{+} \mathrm{c}$ the disc file motor is under the control of the motor control assembly. Application of ac power to the PT20 power supply, the fans, and the power fail-safe circuit is under the control of the REMOTE-OTFON switch SI of the power distribution panel.

When Si is in the ON position. $K 1$ is energized and oc power from phase C is appliad through FI io the primary of T1, io the PT20 power supply, ary to ail fans. The cutput of the secondary of TI is applied to the power fail-safe circuits. (See paragraph 4-7.) After the +25 V power sumply of the PT20 power supply is operating, relay K3 is energized and a circuit is completed to ground through contacts $\mathrm{K} 3-2$, K3-3, K1-6, and K1-3. This circuit controls orline/offline operations in the EPRAD controller. (.ee paragraph 4-83.)

When $S 1$ is in the REMOTE position, application of ac power is controlled from the computer. When ac power from the remote source appears at the contacts of Jl , time delayrelay K 5 is energized through $\mathrm{Jl}-\mathrm{X}$, the heating element of $K 5$, contacts $K 4-5$ and $K 4-4$, resistor R , and $\mathrm{Jl}-\mathrm{W}$. After the contacts of $K 5$ close, iclay $K 4$ is energized and latched and ac power goes from $\mathrm{I}-\mathrm{X}$ to $\mathrm{J} 2-\mathrm{X}$ through $\mathrm{K} .4-6$ and K4-5. The output of 12 gues to the next EP RAD storage unit in the EP RAD file. This as power also goes through the contacts of $S 1$ to relay $K 1$, causing the same sequence of events initiated when $S 1$ is in the ON position.

4-7 POWER FAIL-SAFE CIRCUITS

Euch EP RAD selection unit includes a WT29 Power Monitor module in location 45. (See figure 6-3.) Circuits of this
module sense ac outputs of the power distribution panel (ACSENSE1 and ACSENSE2) and the +25 V output of the PT20 power supply (POS25SENSE). When these signals indicate normal operation, signal AOK enables a gate controlling a one-shot. If these signals indicate abnormal operation, the one-shot is triggered and remains on for 10 seconds (nominal) after normal operation has resumed. This operation causes writing to be inhibited, the selection unit to be disconnected, and any operation in process to halt. Signal AOK controls the PWERMON signal to the controller (figure 6-7).

The siow ac sensor circuit of the power monitor reads the average value of the as signal but is insensitive to noise spikes. The fast ac sensor circuit of the power monitor respends within a fraction of a cycle to rapid changes in the ac signal. The de sensor is triggered when the dc voltage falls below a preset level. A delay built into the circuit prevents operation during a start sequence. Waveforms for the circuit are illustrated in figure 4-5.

4- δ EP RAD CONTROLLER

4-9 SUBCONTROLLER

Each device controller (DC) communicating with an IOP (as, for example, the EP RAD contıoller) inclucies a subcontroller which provides the following circuits:
a. Relay logic and switches for placing die $D C$ online or offline
b. Logic elements to determine priority of he $D C$
c. Cable drivers and cable receivers to co:nnect the eigi, ${ }^{2}$-bit data path interface
d. Switches for establishing the address of a $D C$ and for providirg a means of comparing the DC adjress genercted by the IOP with the address of the DC
e. A flip-flop that, when set, indicates that the devisf is connected for service through the DC
No: all possible functions of the subcontrolier are used in ea=h DC. Sū̆controller function used by the EP RAD controller are described in paragraphs 4-10 through 4-19.
The subcontroller consists of the following modules incorporated in the EP RAD controller to interface with the IOP:

Location	Module Type
C23	
LT25 Special Purpose Logic Module	
C24	
LT26 Switch Comparctor Module	
C26	
AT17 Special Purpose Logic Module	
C27	LT24 Special Purpose Logic Module
C28	AT10 Cable Receiver Module
C29	LT41 Special Purpose Logic Module
C30	AT11 Cable Receiver/Driver Module
C31	LT43 Special Purpose Logic Module
C32	AT12 Cable Driver Module

Figure 4-2. Motor Control Assembly Start Sequence, Flow Diagram

A. TIME DELAY NOT EXCEEDED

(1)

B. TIME DELAY EXCEEDED

NOTES:

1. START OF 4.5-SECOND TIME DELAY
2. NO TIME SCALE; SEQUENCE OF EVENTS ONLY

Figure 4-3. Motor Control Assembly Start Seaquence, Timing Diagram

Figure 4-4. Motor Control Assembly Stop Sequence, Flow Dicigram

4-10 Function Strobe and Function Indicators

The subcontroller can respond to a function strobe signal $/$ FS/ accompanied by one of the following function indicator signals:

Function Indicator	Function
AIOR	Acknowledge interrupt call
ASCR	Acknowledge service call
HIOR	Halt input/output
SIOR	Sta:t input/output
TDVR	Test device
TIOR	Tesi input/output

The HIO, SIO, TDV, and TIO functions are always addressed to a specific $D C$, and anly the subcontroller associated with the addressed DC can respond. The AIO and ASC functions ate noì addressed to a specific DC, and each subcontroller associated with an IOP receives the function strobe and function indicator in a priority sequence established by cabie connections. If a subcontroller in a DC does net respond, the AIOR or ASCR function indicator enables the subcontroller of the next $D C$ in the priority sequence to respond. If the sulicontroller does respond, it ackinowledges the function stratse and generctes function response signals, condition code signals, and other signals related to the function.

The HIOR, SIOR, TDVR, and TIOR function indicator signals are generated when the $C P l j$ processes an instruction. The AIOR function indicator sisnai is generated in response to an interrupt call by a DC (as, for example, the EP RAD controller).

$$
\begin{aligned}
\text { ICD }= & \text { LIL } \\
\text { LIL }= & \text { NAIOR INC CIL (True when CIL set) } \\
& + \text { AIOR INI LiL NRSTR (Latched until } \\
& \text { AIOR false) }
\end{aligned}
$$

The conditions for which flip-fiop CIL is set are described in paragraph 4-34.

The ASC function indicator signai is generated in response to a servire call by a DC.

$$
S C D=L S L
$$

LSL $=$ NASCR INC SCN (True when SCN set) + ASCR INI LSL NRSTR SCN (Latched
? until ASCR false)
The conditions for which flip-flop SCN is set are described bragraph 4-32.

4-11 1OP Data Line Signals

The IOP data line signals consist of DAOR through DA7R, which may contain an address or terminal order information. (During execution of orders, these lines transmit data bytes.)

Signals DAOR through DA3R are compared with the settings of the switches on the LT26 Switch Comparator module to generate device controller addressed signal DCA.

```
DCA = N(DA3R NSWA3 + NDA3R SWA3
    + NDA2R SWA2 + DA2R NSWA2
    + DAIR NSWAl + NDAIR SWAl
    + DAOR NSWAO + NDAOR SWAO)
```

If any pair of corresponding bits of the DAnR inputs and the SWAn inputs (where n represents any integer frem 0 to 3) are different, signal DCA is false; therefore, signal DCA is true when the IOP data line code is identical to the address code set in the switches, indicating that the device contro!ler is addressed.

Signals DA5R through DA7R contain the device adidess code and control signals SUOD through SU2D.

```
SUOD = DA5R IOP + ...
SUID = DAGR IOP + ...
SU2L = DA7R IOP + ...
```

For terminal orders, signals DAOR through DA3R indicate interrupt, count done, command chaining, or IOP halt, as descrisied in detail in paragraph 4-34.

4-12 Priority Signals

Signals HPI, HPS, LIL, LSL, AVI, and AVO controipriority when the EF RAD controller is online. The IOP gonerates an AViR signal that is always true. This siannal goes to the highest priority device con.rolier at all times. When the IOP generates a true function strobe signal (FSR), soch DC, beginning with the highest priority $D C$, responds to the AVIR signal in priority sequence. If a DC does not generate a function strobe acknowledge signal, the DC passes ihe AVIR signal on to the next DC in sequence in the form of a true AVOD signal.
In the EPRAD controller, a true AVOD signal is generated in one of three ways.

$$
\begin{aligned}
\text { AVCD }= & \text { AVIR FSR AIOR NAIOM (AIO function) } \\
& + \text { AVIR FSR ASCR NASCM (ASC function) } \\
& + \text { AVIR FSR NDCA TTSH (TDV, TIO, } \\
& \text { SIO, or HIO } \\
& \text { function) } \\
\text { TTSH }= & \text { TDVR }+ \text { TIOR }+ \text { SIOR }+ \text { HIOR }
\end{aligned}
$$

For an AIOR function indicator, a trie AVOD signal is generated if either interrupt flip-flop CIL is reset or if high priority interrupt bus HPI is at the true level.

```
\(A V O D \quad=\quad\) AVIR FSR AIOR NAIOM \(+\ldots\)
AIOM \(=\) NHPIL LIL + LIH
HPIL = NAIOR HPIR + AIOR HPIL
LIL = NAIOR INC CIL
    + AIOR INI LIL NRSTR
LIH \(=\) NAIOR INC CIL GND
    + AIORINI NRSTR LIH Always false
```

For a service call function indicator (ASCR), a true AVOD signal is generated if service call flip-flop SCN is in the reset state or if high priority service signal HPSR is at the true level.

```
AVOD = AVIR FSR ASCR NASCM + ...
ASCM = NHPSL LSL + LSH
HPSL = NASCRHPSR + ASCRHPSL
LSL = NASCRINCSCN
    + ASCR. INI LSL NRSTR SCN
LSH=}\begin{array}{rl}{\mathrm{ NASCR INC SCN GND }}\\{}&{+\mathrm{ ASCR INI LSH NRSTR SCN }}\end{array}}\begin{array}{c}{\mathrm{ Alwcys}}\\{\mathrm{ false}}
```

For all other function indicators (TDVR, TIOR, SIOR, or HIOR), a true AVOD signal is generated if the device controller is not addressed.

```
AVOD = AVIR FSR NDCA TTSH + ...
    TTSH = TDVR + TIOR + SIOR + HIOR
    DCA = Device cuntroller addressec
```


4-i3 Subcontroller Resporise

When the subcontroller doee not generate a true AVOD signal, it generates a true function strobe ackinowledge signal, regardless of the type of funci on indicator. The conditions which control PIITSL are described in paragraphs 4-20 througn 4-29.

FSLD

$$
\begin{aligned}
= & \text { PHFSL-1 TTSH DCA } \\
& \text { (TDVR, TIOR, SIOR, HIOR) } \\
& + \text { PHESL-1 BSYC (ASCR or AIOR) }
\end{aligned}
$$

BSYC = AVIR FSR ASCR ASCM (ASCR) + AVIR AIOR AIOM PHFSL-1 (AIOR)

$$
\text { PHFSL-1 }=\text { PHFS' }
$$

After generating the function strobe acknowledge signal, the subcontroller generates additional signals that depend on the function indicator signal. The signals include function response signals, condition code signals, requeststrobe
signals, and service cycle identification signals. These signals are used by the IOP to determine the type of response required. Paragraphs 4-14 through 4-19 group these signais for each type of function indicator.

4-14 TDV FUNCTION INDICATOR. For a TDV function indicator, function response sigrals FROD, FR2D, and FR3D contain information, and other function response signals are always false.

```
FROD = (TDVR DCA FSD) RER
    + ... (True if rate error detected)
FR2D = (TDVR DCA FSD) SUN
    + ... (True if sector unavailabla;
FR3D = (TDVR DCA FSD) WPV
    + ... (True if write protection violation)
```

The conditions for which flip-flops RER, SUN, and WPV are set are described in paragraph 4-72.

Condition code signals (IORD, DORD) are contiolled by error flip-flops RER, SUN, and WPV and by device nperational flip-flop OPER.

```
IORD = PHFSL IORDEN
                                    + ... (True if no eirors have
                                    occurred)
    IORDEN = NIORDENI + ...
    NIORDENI = TDVU NFAULT + ...
    NFAULT = NRER NSUN NWPV
DORD = DORDEN PHFSL
                                + ... (True if device operational)
    DORDEN = OPER + ...
```

The conditions for which flip-flop OPER is set are ciescribed ir paragraph 4-23.

4-15 TIO FUNCTION INDICATOR. For a TIO function indicator, FROD through FRSD contain information as listed in iaple 4-1. Function response signal FR7D is always false.

Thu function response signal aquations are:

```
FROD = BFSD TSHCIL + ...
    BFSD = FSLD
    TSH = DCA (TIOR + HIOR + SIOR)
FRID = BFSD TSHi DVBSY + ...
    DVBSY = DCB DVSEL
```

Table 4-1. Information in Function Response Signals for $\mathrm{TIO}, \mathrm{HIO}$, or SIO Commands

INFORMATION	FUNCTION RESPONSE SIGNAL*							
	FROD	FRID	FR2D	FR3D	FR4D	FR5D	FR6D	FR7D
Interrupt pending	$\bigcirc 1$	x	x	x	x	x	x	0
Device automatic	x	x	x	1	x	x	x	0
Unusual end	x	X	x	x	1	x	X	0
EP RAD ready	x	0	0	x	x	x	x	0
EP RAD busy	X	1	1	x	x	X	x	0
EP RAD not operational	x	0	1	x	x	x	x	0
Controller ready	x	x	x	x	x	0	0	0
Controller busy	x	X	x	X	x	1	1.	0

*An X irdicates that the signal is not related to that information

4-17 SIO PINCTION INDICATOR. For an SIO function indicator: function response signals FROD through FR7D contain information as listed in tabie 4-1. Functior sesponse signal FR7D is always false. The equations foi function response signals are the same as those for the TiO function indizator.

The condition code signals (IORD, DORD) are:

```
IORD \(=\) PHFSLIORDEN + ...
    IORDEN \(=\) DCBSET \(+\ldots\)
    DCBSET = OPER SIOPOSS PHFSL
    S:OPOSS \(=\) NCIL NDCB SIOU
DORL \(\quad=\) PHFSLDORDEN \(+\ldots\)
    DORDEN \(=\) OPER \(+\ldots\)
```

Flip-flop CIL is the interrupt pending flip-flop, which is set by a terminal order as described in paragraph 4-34. Flip-fiop DCB is the device busy flip-flop; which is set when on SIO is accepted by the device controller. This flip-flop prevents any new SIO from being accepted until
processing is completed. The possible condition codes and their meaning are:

IORD	DORD	Meaning
0	0	Device not operational
0	1	Interrupt pending, device busy, or coritroller busy
1	1	SIO accepted

4-18 AIO FUNCTION INDICATOR. For an AIO function indicator, the EP RAD conirnller places its address on function response lines FROD through FR3D and places the unit address stored in the unit register (U 0 through U 2) on function response lines FR5D through FR7D. Function response signal FR4D is always false.

The logic equations for the function response signals are:

```
FROD = BSYC SVAO + ...
    BSYC = AIOM \triangleIOR AVIR PHFSL-1 + ...
FRID = BSYC SNAI + ...
FR2D = BSYC SWA2 + ...
FR3D = BSYC ミNNA 3 + ...
FR4D = BSYCGND + ...
FR5D = BSYCiO + ...
FR6D = BSYCU1 + ...
FR7D = BSYCIJ2 + ...
```

The condition code (IORD. DORD) is (1,1) only for the subcontroller having the highest priority and a pending interrupt (CIL set).

```
IORD = PHFSSLIORDEN + ...
    IORDEN = NIORDENI + ...
    NIORDENI = AIOC NFAULT + ...
    NFAULT = NRER NSUN NWPV
    AIOC = AIOM AIOR AVIR
                            + AIOC PHFSL-1 INI NRSTR
\ \ORD }\quad=\mathrm{ DORDEN PHFSL + ...
```

A condition code (IORD, DORD) of (0,1) indicates a fault condition (RER, SUN, or WPV) in the controller responding to the AIO command.

In addition to function response signals and condition code signals, status signals are generated and transmitted through signals /DA0/, /DA2/, and /DA3/.

```
/DAO/ = OOO + ...
    O00 = OXAIOST RER + ...
        OXAIOST = AIOC FSU
/DA2/ = O02 + ...
    O02 = OXAIOST SUN + ...
/DA3/ = O03 + ...
    O03 = OXAIOST WPV + ...
```

4-19 ASC FUNCTION INDICATOR. The ASC function indisctor is a response of the IOP to a service call trom the EP RAD controller and can occur only after an SiO command has been accepted, causing service call flip-flop SCN to be direct set and service call signa. SCD to be raised.

```
SCD = LSL
    LSL = iNASCR INC SCN + ...
```

Service calls are a part of the execution of the seek order, sense order, write order, read order, and checkwrite order. For an ASC function irdicator, the function response signal contcins the same address information as deseribed for an AIO function indicntor (paragraph 4-18), but the BSYC sigral is controlled by different signals.

```
BSYC = ASCM ASCR AVIR FSR + ...
```

The ASC function indicator causes service connect flip-flop FSC io be set.

```
S/FSC=ASCB
    ASCB = (delayed NFSC) ASCM AS~N AVIR FSR
C/FSC = NFSC FSR + ...
```

Service connect flip-flop FSC is normally set during the order out service cycle that starts an input/output sequence and is not reset until the IOF generates end service signul ESR.

```
R/FSC = FSC ESR
C/FSC = FSC RSD + ...
```

the timing of signals controlling typical input/ourput operations.

4-21 TCL Delay Line (See figure 4-7)

The TCL delay line, which provides timing signals for changes of phase, is controlled by IOP signals and by signals originating in the controller.

For online operations, signal CYCLE/C remains true after each cycle of the TCL delay line, because CYCSET latches when TCS300 is true.

```
CYCLE/C = CYCSETIOP + ...
    CYCSET = NTCLO50 (TCS300 + CYCSET + ...)
```

Signa: CYCLE/C is an inptit to start gates of the TCL delay line. Other signal inputs io these gates come true for various conditions of the phase flip-flops ard subcontroller signals, as described in parrigraphs 4-22 through 4-29. When all inputs to one of ine start gates are true, signal DCL is true and the TCL delay line is started.

After a 50-ns delay, signal CYCSET goes false as TCL 050 goes true. However, the cielay line pulse is stretched to 80 ns by a gaie which is held true while signal NTCSO30 is true.

```
DCL = TCS000-2 NTCSO80 + ...
```

The TCL deiay line provides an 80 -ns pulse at de iays of 0 , $50,80,100,180$, and 300 as. When the 30 -nssignal is true, CYCSET becomes irue and is latched as before.

4-22 Phase Flip-Flops

Phase flip-flops NPHFS, PF:FSZ, PHFSL, PHRSA, PHRS, ard PHTO, which control incuts to the TCL delay line, cycle through a sequence of phases determined by communds and orders received from the IOP. (See figure 4-8.) Ali phase flip-flops are clocked by signal TCS100-3, which is true 100 ns after the TCL delay line is started. (The flipflops change state on the falling edge of this signal.)

$$
\begin{aligned}
& \mathrm{C} / \text { NPHFS }=\text { TCS100-3 } \\
& \mathrm{C} / \text { PHFSZ }=\text { TCSICO-3 } \\
& \mathrm{C} / \text { PHFSL }=\text { TCS100-3 } \\
& \mathrm{C} / \text { PHRSA }=\text { TCSI00-3 } \\
& \mathrm{C} / \text { PHRS }=\text { TCS103-3 } \\
& \mathrm{C} / \text { PHTO }=\text { TCS } 100-3
\end{aligned}
$$

When flip-flop DCB is rese:, flip-flops PHRSA, PHRS, and PHTO are direct reset.

```
E/PHRSA = NDCB-1
NDCB-1 = NDCB IOP + ...
E/PHRS = NDCB-1
E/PHTO = NDCB-I
```

A reset signal received from the computer through the IOP direct resets flip-flops NPHFS, PHFSZ, and PHFSL.

E/NPHFS	$=$ MANRST-1
MANRST-1	$=$ RSTR $+\ldots$
E/PHFSZ	$=$ MAINRST-1
$E / P H F S L$	$=$ MANRST-1

Since this signal also rese DCB, the initia! condition of the phase flip-flops is a! reset so that signal FHFS is true and all other signals (PHFSZ, PHFSL, PHRSA, PHRS, and PHTO) are false. Only one phase flip-flop can be in the set state at any time.

4-23 RESPONSE TO IOP COMFMANDS. The sequence of phases in response to an IOP command ($\mathrm{SIO}, \mathrm{AlO}, \mathrm{HiO}$, T1O: or TDV) is independent of the function indisator. A function indicator and its associated function strobe (FSU) start: the TCL delay line when an adaressed TIO, TDV, SIO, or HIO command is received (TTSHU DCAU) ot when an A!O is received and the controller has on interupt pending (AIOC).

```
DCL }\quad=\quadCYCLE/C DCLSTARTI + ...
    DCLSTARTI = PHFS FSU TTSHU DCA!J
    + PHFS FSU AIOC + ...
```

Aiter an 80 -ns delay, OPER is reset to prepare for sampling a signal from the selection unit.

```
R/OPER = PHFS
C/OPER = NTCS080
```

Transfer from phase FS to phase FSZ takes place 100 ns of er the TCL delay line is started.

$$
\begin{aligned}
& \text { S/NPHFS }=\text { PHFS } \\
& \text { S/PHFSZ }=\text { PHFS }
\end{aligned}
$$

The TCL delay line is started as soon as PHFSZ is ser.

```
DCL == CYCLE/C PHFSZ + ...
```


Figure 4-7. TCL Deiay Line, Timing and Legic Diagram

FROM SHEET 7

Figure 4-8. Simplified Phase Sequence, Flow Diagram (Sheet 1 of 7)

Figure 4-8. Simpiified Phase Sequence, Flow Diagram (Sheet 2 of 7)

Figure 4-8. Simplified Phase Sequence, Flow Diagram (Sheet 3 of 7)

Figure 4-8. Simplified Phase Sequence, Flow Diagram (Sheet 4 of 7)

Figure 4-8. Simplified Phase Sequence, Flow Diagram (Sheet 5 of 7)

Figure 4-8. Simplified Phase Sequence, Flow Diagıam (Sheet 6 of 7)

Figure 4-8. Simplified Phase Sequence, Flow Diagram (Sheet 7 of 7)

Before PHFSZ is reset, OPER samples device test signal DVTR.

S/OPER = DVTR OPERSET
OPERSET $=$ TTSHU PHFSZ
C/OPER $=$ NTCS080

tAfter a 100-ns delay, PHFSZ is reset and PHFSL is set.

```
R/PHFSZ # ...
S/PHFSL = PHFSZ
```

While PHFSL is set, function response signals and condition code signals are enabled in the subcontroller and transmitted to the IOP as described in paragraphs 4-13 through 4-19. The TCL delay line is started as function strobe signal FSU sioes false.

```
DCL = CYCLE/C DCLSTART3 + ...
    DCLSTART3 = PHFSL NFSU + ...
```

After a 100 -ns delay, NPHFS and PHFSL are reset. (Service connect flip-flop FSC is set only after an SIO command is accepted.)

```
R/PHFSL = ...
R/NPHFS = PHFSET
    PHFSET = NFSCU PHFSL + ...
    FSCU = IOP FSC + ...
```

For all IOP commands but an accepted SIO, the phase flipflops wait for a new command. If an SIO is accepted, device controller busy flip-flop DCB is set during phase FSL.

```
S/DCB = DCBSET
    DCBSET = OPER PHFSL SIOPOSS
    SIOPOSS = NCIL NDCB SIOU
C/DCB = NTCS080
```

An SIO is acceptedif the controller is not busy with a previous I/O operation (NDCB), no interrupt is pending (NCIL), and the device is operable (OPER). If DCB is set, service call flip-flop SCN is direct set after a return to phase FS, and the service call line is raised. (See paragraph 4-32.)

M/SCN	CYCLE/C SCNMEN
SCNMEN	$=$ DCB PHFS N(NSCNMEN)
N(NSCNMEN) $=$	$($ NDATA SCNMEN2
	$+\ldots)$ NUNE
SCNMEN2 $=$	NRWE (NWCHW $+\ldots)$
SCD	LSL
LSL	$=$ NASCR INC SCN $+\ldots$

The phase control circuits wait for an acknowledgement of a service call. Flip-flop $D C B$ can be reset only during phase TO of an order in service cycle (except for manual reset).

```
R/DCB = DCBRST
    DCBRST = DCBRSTI + ...
    DCBRSTI = DCBRSTEN ORDIN PHTO
    DCBRSTEN = NCCH + ES + UNE
```

During phase TO, DCB is reset if an end service signal is received (ES), if an unusual end occurs (UNE), or if command chaining is not ordered (NCCH). Therefore, once an SIO has beenaccepted and DCBhas been set, an I/O operation takes place.

4-24 ORDER OUT SEQUENCE. An order out service cycle immediately follows acceptance of an SIO command from the IOF. When function strobe FSR coincides with un acknowledge service call addressed to the EP RAD controller (ASCM ASCR), the TCL deiay line is storted.

```
DCL = CYCLE/C DCLSTARTI + ...
    DCLSTARTI = PHFS FSU BSYCU + ...
    BSYCU = BSYC IOP + ...
    3SYC = ASCM ASCR AVIR FSR
```

Phases FC, FSZ, and FSL OF? controlied by the sami= equations deseribed in paragraph 4-23. However, service connect flip-tlop FSC is set during phase FSL as the function strobe gues talse.

```
S/FSC = ASCB
    ASCB = (NFSC delayed) ASCM ASCR AVIR FSR
C/FSC = NFSC FSR + ...
```

Therefore, ofter a 100 ns delay, PHFSL is reset, PHRSA is set, and reruest strobe signal $R S D$ is raised.

```
R/Fi!PSL = ...
S/PHRSA = PHRSASET FSCU
    FSCL = FSC IOP + ...
    PHRSASET = PHFSL NIN + ...
RSD = FSC NRSAR (FSCU RSD
    + RSET NPHRSA + ...)
    RSET = PHFSL NIN
```

Service connect flip-flop FSC remains in the set state until end service signal ES is true. Signal ES, which is generated by the IOP, causes a reset as request strobe signa! RSD goes false in response to a true request strobe acknowledge signal RSAR.

$$
\begin{aligned}
\text { R/FSC } & =\text { ESR FSC } \\
C / F S C & =\text { FSC RSD }+\ldots \\
\text { RSD } & =\text { FSC NRSAR (FSCU RSD }+\ldots) \\
\text { FSCU } & =\text { FSC IOP }+\ldots
\end{aligned}
$$

When the IOP acknowledges the request strobe, signal RSAR is true, signal RSD goes false, and the TCL delay line is started.

```
DCL = CYCLE/C PHRSA RSAU + ...
```

During phase RSA of an order out service cycle, the order code is stored in the order register as described in paragraph 4-31. After a 100-ns delay, PHRSA is reset and PHRS is set.

```
R/PHRSA = ...
S/PHRS = FSCU PHRJET
        PHRSET = PHRSA + ...
```

Request strobe linc RSD is raised when phase RS is entered.

```
RSD = FSC NRSAR (FSCU RSD
    + PHRS TCSOOO-2 + ...)
```

The TCL delay line is started after request strube acknowledge signal RSAU is false. (Signal NDATA is true because an order out service cycle is in process.)

```
DCL }\quad= CYCLE/C DCLSTART3 + ...
    DCLSTART3 = PHRS NDATA NRSAU + ...
```

After a 100 -ns delay, phase TO is entered, and the TCL delay line is startec when the request strobe is acknowledged.

```
R/PHRS = ...
S/PHTO = PHRS ED
DCL = CYCLE/C DCLSTARTI + ...
    DCLSTARTI = PHTO RSAU + ...
```

After a 100-ns delay, phase FS is entered.

```
R/PHTO \(=\ldots\)
R/NPHFS \(=\) PHFSET
    PHFSET \(=\) PHTO \(\div \ldots\)
```

Subsequer,t operations depend upon the order code stored. (See table 4-2 for order codes.)

Table 4-2. Order Signals

ORDER	CODE*	SIGNALS	
		Always True ${ }^{\dagger}$	True When NPPHRSAOO
Seek	X XX11	SEEK	SEKSEND
Sense	$\times 0100$	SENSE	SEKSEND
Read	X $\times \times 10$	READ	RCHW, WRCH
Write	X X001	WRITE	WCHW, WRCH
Checkwrite	$\times \times 101$	CHWR	RCHW, WCHW, WRCH
*Orcier register bits $0,1,2,3,4 ; \operatorname{IOP}$ aata line bits 3, 4, 5, 6,7			
Except during order register load, when all signals are false, and after which one signal becomes true			

4-25 SEEK ORDER SEQUENCE. If a seek orcer code is stored during the order out service cycle, the (iDATA, IN) flip flops request a data out service cycle (1,0 ; as described in paragraph 4-30. While signal PHFS is true, a service cycle is requested by setting SCN. Tha TCL delay line s started when the function strobe signal and the acknowiedge service call signal are received.

```
NV/SCN = CYCLE/C PiFSS DCB N(NSCNMEN)
```

```
    N(NSCNMEN ) = NCDN DATAOUT SCR + ...
DCL = CYCLE/C DCLSTARTI + ..
    DCLSTARTI = PHFS FSU BSYCU + ...
```

(Flip-flop SCR is set during the order out service cycle.)

Phases FS, FSZ, and FSL are controlled by the same equations described in paragraph 4-23. However, at the end of p^{\prime} iase FSL, PHRSA is set, the request strobe signal RSD is raised, and the byte counter is decremented. (See paragraph 4-33 for a description of the byte counter.)

```
        R/PHFSL = ...
        S/PHRSA = PHRSASET FSCU
        PHRSASET = PHFSL NIN + ...
        FSCU = IOP FSC + ...
        RSD = FSC NRSAR (FSCU RSD
        + PHRSA RSET + ...)
        RSET = PHFSL NIN
NBKCK = PHRSA SEKSEND TCSO00-3 + ...
        SEKSEND = SEEK NPHRSAOO + ...
```

When the request strobe is acknowledged, the TCL delay e is started and IOP data is stored in the I-register.

```
DCL = CYCLE/C PHRSA RSAU % ...
            RSAU = IOP RSAR + ...
IXD = PHRSADC TCSOOO-3
PHRSADO = PHRSA DATAOUT
```

i

After a 100-ns delay, PHRSA is seset and PHRS is set.

```
S/PHRS = FSCU PHRSET
    PHRSE; = PHRSA + ...
```

Once PHRS is sei, the TCL delry line is started when RSAR is false and RSD is raised once inore.

```
DCL = CYCLE 'C DCLSTART2 NESAU + ...
    DCLSTART2 = PHRS SEKSEND + ...
RSD = FSC NPSAR (FSCU RSD
    + PHRS TCSOOO-2 + ...)
```

Transfer from phase RS is to phase RSA or to phase TO, depending upon the end data signal. (See figure 4-8.)

```
S/PHRSA = PHRSAEEi FSCU
    PHRSASET = PHRSNED + ...
    PHRSNED = PHRS NED
S/PHTO = PHRS ED
```

Signal ED comes true after the second byte has been accepted from the IOP, as indicated by the byte counter. (See paragraph 4-35.)

```
EDI = EDISETI NPHRSA + FSCUEDI + ...
    EDISETI = SEEK BKZW + ...
```

Thus the flip-flops cycle between phase RSA and phase RS untii the end data signal enables transfer to phase TO. The TCL delay line may be started in either of two ways in phase TO.

DCL $\quad=$ CYCLE/C DCLSTART 1

+ CYCLE/C DCLSTART2 NRSAU
+ ...

```
DCLSTARTI = PHTO RSAU + ...
    DCLSTART2 = PHTO ES + ...
```

Therefore, if the IOP has generated an end service signal, the TCL delay line is started after phase TO is entered without waiting for acknowledgement of the request strobe raised at the start of phase RS. Otherwise, the TCL delay line is not started until RSAR is true. In either case, phase FS is entered from phase TO. After 100 ns , the (DATA, IN) flip-flops are placed in the (0,1) state to request an order in service cycle, as described in paragraph 4-30.

```
R/PHTO = ...
R/NPHFS = PHFSET
    PHFSET = PHTO + ...
```

4-26 SENSE ORDER SEQUENCE. If a sense crder code is stored during the order out service cycle, the (DATA, IN) flip-tiops request a data in service cycle (1,1) as described in paragraph 4-30. While signal PHFS is true, a service cycle is requested by setting SCN. The TCL delay line is started when a function strobe signal is received.

M/SCN $\quad=$ PHFS DCB $N(N S C N M E N)$

```
    N(NSCNMEN) = NCDN SEN NTSE \dot{ ...}
DCL = CYCLE/C DCLSTARTi r ...
    DCLSTARTI =. PHFS FSU BSYCU + ...
```

Phase FS, FSZ, and FSL are controlled by the same equations described in paragraph 4-23. However, at the end of phase $F \subseteq L$, PHRS is set and the first byte of sense dota is stored in the O-register.

```
R/PHFSL \(=\ldots\)
S/PHRS = FSCU PHRSET
    \(\mathrm{FSCU}=\mathrm{FSC} \operatorname{IOP}+\ldots\)
    PHRSET = PHFSL IN \(+\ldots\)
OXSENSE1 = SENSE OXKEN BKZZ
    OXKEN = DATAIN NED PHRS
```

After PHRS is set, the TCL delay line is started and request strobe signal RSD is raised.

```
DCL = CYCLE/C DCLSTART2 NRSAU
    + ...
    DCLSTART2 = PHRS SEKSEND + ...
    SEKSEND = SENSE NPHRSAOO + ...
    PHRSAOO = PHRSA ORDOUT
        = FSC NRSAR (FSCU RSD
    + PHRS TCSCO0-2 + ...)
```

After a $100-\mathrm{ns}$ delay, PHRS is reset and PHRSA is set.

```
R/PHRS = ...
S/PHRSA = PHRSASET FSCU
    PHRSASET = PF:RSNED + ...
    PHRSNED = PHRS NED
```

When the request sirobe is acknowledged, the TCL delay line is started and the byte counter is decremented.

```
DCL = CYCLE/C PHRSA RSAU + ...
    RSAU = RSAR + ...
NBKCK = PHRRSA SEKSEND TCSOOO-3 + ...
    SEKSEND = SENSE NPHRSAOO + ...
```

After a 100-ns delay, PHRSA is reset and PHRS is set.

```
R/PHRSA = ...
S/PHRS = FSCU PHRSET
    PHRSET = PHRSA. + ...
```

The request strobe is raised as in the previous RS phase, and data is transferred through the K -register to the O register. (For this operation, the K-register functions as a gate.)

```
OXK = OXKEIN TCSOOO-2
    OXKEN = DATA!N PHRS NED
```

(During the previous RS phase, no data was in the K-register.) When the request strobe is acknowledged, PHRSA is set as before. Transfer between phase RS and phase RSA continues until all sense data has been transmitted to the IOP, as indicated by the end data signal through the byte counter which is incremented during phase RSA. (See figure 4-8.)

```
EDI = EDISETI TSC000-2
    + EDI FSCU + ...
EDISETI = SENSE BKWZ + ...
```

After ED is true, PHTO is set, as described in paragraph 4-25. The (DATA, IN) flip-flops are set to $(0,1)$ to request an order in service cycle, and phase FS is entered.

```
R/PHTO = ...
R/NPHFS = PHFSET
    PHFSET = PHTO + ...
```

4-27 WRITE ORDER OR CHECKWRITE ORDERSEOUENCE. If either a write order code or a checkwrite order code is stored during the order out service cycle, the (CATA, IN) flip-flops request a data out service cycle (1,0) as described in paragraph 4-30. While signal PHFS is true, a service cy-le is requested by setting SCN. The TCL delcy line is started when a function strobe signal is received.

```
MM/SCN
    = CYCLE/C PHFS DCB
                                    N(NSCNMEN)
    N(NSCNMEN) = NODN DATAOUT SCR + ...
DCL = CYCLE/C DCLSTARTI +...
    DCLSTARTI = PHFS FSU BSYC11 + ...
```

Phases FS, FSZ, and FSL are controlled by the same equations described in paragraph 4-23. However, of the end of ribase FSL, PHRSA is set and request strobe signal RSD is rised.

```
R/PHFSL \(\quad=\ldots\)
S/PHRSA \(=\) PHRSASET FSCU
    FSCU \(=F S C I O^{D}+\ldots\)
    PHRSASEI \(=\) PHFSL NIN \(+\ldots\)
RSD \(\quad=\) FSC NRSAR (FSCU RSC.
    + PIHRSA RSET + ...)
    RSET = PHFSL NIN
```

When the request strobe is acknowledged, the iCL delay line is started and IOP daia is stored in the I-register.

```
DCL = CYCLE/C PHRSA RSAIJ + ...
    RSAU = IOP RSAR + ...
IXD = PHRSADO TCSOOO-3
    PHRSADO = PHRSA DATAOUT
```

After a 100-ns delay, PHRSA is reset and PHRS is set.

$$
\begin{aligned}
\text { R/PHRSA } & =\ldots \\
S / \text { PHRS } & =\text { FSCU PHRSET } \\
\text { PHRSET } & =\text { PHRSA }+\ldots
\end{aligned}
$$

Once PHRS is set, the TCL delay line cannot be started until RSAR is false and the J-register is empty (NJFI true). When these conditions are true, request strobe signal RSD is raised as the TCL delay line is started.

```
DCL = CYCLE/C DCLSTART2 NRSAU
    + ...
    DCLSTART2 = PHRS WCHW NJFI + ...
RSD = FSC NRSAR (FSCU RSD
    + PHRS TCSOOO-2 + ...)
```

At the same time, the J-register is filled from the I-register (for operation with a one-byte interface).

```
:JXIIB = IOP BYTIID PHRSDOTCS000-2
    PHRSDO = PHRS DATAOUT
```

Transfer from phase RS is to phase RSA or to phase TO, depending upon the end data signal ED. (See figure 4-8.)

```
S/PHRSA = PHRSASE; FSCU
    PHRSASET = PHRSNFD + ...
    PHRSNED = PHRS NED
S/PHTO = PHRS ED
```

al ED comes true under con:ro! of flip-flop EDISET3, as described in paragraph 4-35. (The IOP may terminate the operation by causing signal ESET to be true.)

```
EDI = EDISETI TCSO00-2 + FSCU EDI
    + ...
    EDISETI = EDISET3 + ...
```

Thus the flip-flops cycle between phase RSA and phase RS until an end data signal enables transier to phase TO. After ED is true, PHTO is set, as described in paragraph 4-25. If the IOP does not signal count done or IOP halt during phase TO, the (DATA, IN) flip-flops remain in state (1,0) and the sequence of data out service cycles continues. If the IOP does signal count done during phase TO, the (DATA, IN) flip-flops are placed in state (0,1) to request an order in service cycle. In either case; phase FS is entered from phase TO.

```
R/PHTO = ...
R/NPHFS = PHFSET
    PHFSET = PHTO + ...
```

4-28 READ CRDER SEQUENCE. If a read order code is stored during the order out service cycle, the (DATA, IN) flip-flops are set in state (1, 1) to request a data inservice cycle, as described in paragraph 4-30. While signai PHFS is true, a service cycle is requested by setting SCN. The TCL delay line is started when a function strobe signal is received.

```
M/SCN = PHFS DCB N(NSCNMEN)
N(NSCNMEN) = NCDN READ KFID BYTAID
    + NCDN READ KFID NSCR
    + NCDN READ KFID POST
    + ...
```

The initial service cycle is requested under control of the RK-counter through flip-flop SCR. When at least fuur data bytes are stored in the FAM module, filip-flop SCR is reset and SCN is direct set when KFID is irue. Subsequent service cycles are requested as a true NSCR signal indicates that there are sufficient data byites in the FAM moduic. A service cycle may be requested any time after postamble flip-flop POST is set. This condition can occur if daia bytes remain in the FAM module after the postamble is detected. The data bytes are transferred even if fewer than four bytes remain. For a four-byte IOP interface (i)Y[4ID true), a! survice cycles are controlled by signal K!iD.
Phases FS, FSZ, and FSL are controlled by the same equations described in paragraph 4-23. However, of the ind of phase FSL, PHRS is set.

```
R/PHFSL = ...
S/PLESS = FSCU PHRSET
    FSこU = FSC ICP + ...
    PHRSET = PHFSL IN + ...
```

After PHIS is set, the TCL delay line is started. As the TCL delay !ine is staited, the request strobe signal is raised and data is stored in the O-register. These operations cannot take piace until the K-register is filled (KFID true),

DCL	$=$ CYCLE/C DCLSTART2 NRE $4 U+\ldots$
DCLSTART2 $=$	PHRS READ KFID $+\ldots$
OXK	$=$ OXKEN TCSOOO -2
OXKEN $=$	DATAIN PHRSNED
RSD	$=$ FSC NRSAR (FSCU RSD
	+ PHRS TCSOOD $-2+\ldots)$

After a 100 -ns delay, PHRSA is set and PHRS is reset.

```
R/PHRS = ...
S/PHRSA = PHRSASET FSCU
    PHRSASET = PHRSNED + ...
    PHRSNED = PHRS NED
```

When the request strobe is acknowledged, the TCL delay line is started.

```
DCL = CYCLE/C PHRSA RSAU + ...
    RSAU = RSAR + ...
```

After a 100-ns delay, PHPS is set and PHRSA is reset.

```
R/PHRSA = ...
S/PHRS = FSCU PHRSET
    PHRSET = PHRSA + ...
```

The request strobe is raised as in the previous RS phase. When the K-register is filled, the TCL delay line is started and data is stored in the O -register as before.

Transfer from phase RS is :c phase RSA or to phase TO, de -pending on end data signel ED. (See figure 4-8.)

```
S/PHRSA = Pi_RSASET FSCU
    PHRSASET = PHRJNIED + ...
    PHRSNED = PHRS NED
S/PHTO = PHRS ED
```

Signal ED comes true under control of the RK -.counter in the FAM circuits when signal KA8 indicates that the FAM module is empty. Signal ED is normally controlled by the IOP, and signal KA8 controls operation only if the IOP is offline or if the last date byte is transferred from the FAM module before the IOP generates an end data signal.

```
EDI = EDISET2 NPHRSA + FSCU EDI
    EDISET2 = KA8 OXKEN
```

Thus the flip-flops cycle between phase RSA and phase RS until an end data signal enables transfer to phase TO. For transfer from phase RS to phase TO, the TCL delay line is started when ED is true and before a request strobe acknowledge is received.

```
DCL = CYCLE/C DCLSTART3 + ...
    DCLSTART3 = PHRS ED READ NRSAU + ...
```

After ED is true, PHTO is set as described in paragraph 4-25.

If the IOP does not signal count done or IOP error halt during phase TO, the (DATA, IN) flip-flops remain in state $(1,1)$ and the sequerice of data in service cycles continues. If the IOP does signal count done during phase TO, the (DATA, IN) flip-floos are placed in state (0,1) to request an order in service cycle. In either case, phase FS is entered from phase TO.

$$
\begin{aligned}
\text { R/PHTO } & =\ldots \\
\text { R/NPHFS } & =\text { PHFSET } \\
\text { PHFSET } & =\text { PHTO }+\ldots
\end{aligned}
$$

4-29 ORDER IN SEQUENCE. An order in service cycle follows execution of a completed order (seek, sense, read, write, or checkwrite) or an unusual end indicated by flipflop UNE. In either case, the (DATA, IN) flip-flops are placed in the (0,1) state as described in paragiaph 4-30. While signal PHFS is true, a servica sycle is requested by setting SCN. The TCL delay line is started when a function strcibe signal is received.

```
M/SCN
                                    = CYCLE/C PHFS DCB
                                    N(NSCNMEN)
    N(NSCNMEN) = NOATA NRWE IVWCH'W
        + ...
DCL }\quad= CYCCLE/C DCLSTARTI + ..
    DCLSTARTI
= PHFS FSU BSYCL \div...
```

Phascs FS, FSZ, and FSL are controlled by the same equations described in paragraph 4-23. However, of the end of phase FSL, PHRS is set.

```
R/PHFSL = ...
S/PHRS = FSCU PHRSET
    FSCU = FSC IOP + ...
    PHRSET = PHFSL IN + ...
```

The TCL delay line is started immediately, since the DATA flip-flop is in the reset state.

```
DCL = CYCLE/C DCLSTART? + ...
    DCLSTART3 = PHRS NDATA NRSAU + ...
```

As the TCL delay line is started, request strobe signal RSD is raised and order data is stored in O-register bits $0,1,3$, and 4, as described in paragraph 4-38.

```
OXORDIN = PHRSNED ORDIN
    PHRSNED = PHRS NED
RSD = FSC NRSAR (FSCU RSD
    + PHRS TCS000-2 + ...)
```

After a $100-\mathrm{ns}$ delay, PHRS is reset and PHRSA is set.

```
R/PHRS = ...
S/PHRSA = PHRSASET FSCU
    PHRSASET = PHRSNED + ...
```

While PHRSA is set, signal ED comes true as described in agraph 4-35.

```
    EDI = EDISETI icSOOO-2
    + FSCU [DI + ...
: EDISETI = NDATA + ...
```

The TCL delay line is started when the request strobe is acknowledged.

$$
\begin{aligned}
\text { DCL } & =\text { CYCLE } / C \text { PSRSSA RSAU }+\ldots \\
\text { RSAU } & =\text { RSAR }+\ldots
\end{aligned}
$$

Afier a 100-ns delay, PHRSS is reset and PHRS is set.

```
R/PHRSA = ...
S/PHRS = FSCU PHRSTT
    PHRSET = FSC IOP + ...
```

The $T C L$ delay line is started whon RSAR is false. As the AR siçnal goes false, a signal $\because J D$ clocks FSC, and FSC eset if the IOF drives ESR true.

DCL	$=$ CYCLE $\prime^{\prime} C$ DCLSTART3 $+\ldots$
DCLSTART3	$=$ PHRS NDATA NRSAU $+\ldots$
R/FSC	$=$ ESR FSC
C/FSC	$=$ FSC RSD $+\ldots$

If the IOP does not drive ESR true, the controller remains service-connected to request a terminal order.
After a 100-ns delay, PHRS is reser and PHTO is set.

```
R/PHRS = ...
S/PHTO = PHRS ED
```

Terminal order operations are described in paragraph 4-34.
If the IOP has driven ESR true, DCB is reset 80 ns after
TCL delay line is started.

```
R/DCB = DCBRST
    DCBRST = DCBRST1 + ...
    DCBRSTI = DCBRSTEN ORDIN PHTO
    DCBRSTEN = ES + ...
C/DCB = NTCS080
```

The TCI delay line may be started in either of two ways in phase 10 .

```
DCL = CYCLE/C DCISTARTI
    + CYCLE/C DCLSTART2 NRSAU
    + ...
DCLSTARTI = PHTO RSAU + ...
DCLSTART2 = PHTO ES + ...
```

Therefore, if the IOP has generated an end service signal, the TCL delay line is started after phase TO is entered withour waiting for acknowledgement of the requesr strobe raised at the start of phase RS. Otherwise, the TCI delay line is noi started until RSAR is true. Aiter a 100 -ns delay, the (DA.TA, IN) flip-flops are placed in a state corresponding to the manner in which the order in service cycle is terminated. In either case, phase FS is entered from phase TO.

$$
\text { R/PHIO }=\ldots
$$

R/NPHiFS $=$ PHFSET

$$
\text { PHFSET }=\text { PHTO } \div \ldots
$$

4-30 Service Cycle Identification Logic

The type of service cycle is identified by flip-flops DATA and IN, and associated output signals, as follows:

DATA	$\frac{\text { IN }}{1}$		Service Cycle	
0	0		Output Signal	
0	1		Oider in	
1	0	Data out	ORDOUT	
1	1	Data in	DATAOUT	
1	1			DATAIN

When an input/output sequence is completed, DATA and IN are direct reset after fiip-flop DCB is reset.

```
E/DATA = NDCB-1
    NDCB-1 = NDCB IOP + NDCE PET
E/IN = NDCB-I
```

Therefore, DATA and IN are both in the reset state (order out) when an SIO command is accepted from the IOP. The flip-flops are clocked only during phase FS or phase TO.

```
C/DATA = PHFSTOD TCS100-3
    PHFSTOD = PHFSDAT + PHTO
    PHFSDAT = PHFS DAT
C/IN = PHFSTOD TCSICO-3
```

When the (DATA, IN) flip-flops detect a PET count done signal (CDNPET), an online count done signal (CDN), or an unusual end signal (UNE), the flip-flops are placed in the (0,1) state to request an order in service cycle. (Signal NSKSBK is true when neither a seek order nor a sense order is being executed.)

S/DATA	$=$ DATASET NORDIN
DATASET	$=$ NCUN NCDNPET NUNE NSKSBK
SKSBK	$=$ SEEK BKWZ + SENSE BKWW
R/DATA	$=\ldots$
S/IN	$=$ INSET NCRDIN
INSET	$=$ NCATASET $+\ldots$
R/IN	$=\ldots$

During the execution of ci: order, the (DATA, IN) flipflops assume a sequence of siates determined by the order in which they are stored during the order out service cycle.

If a seek order is stored, signal DATASET is true until SKSBK indicates that all bytes have been rransferred. Therefore the (DATA, IN) flip-flops are placed in the (1,0) state during phase TO of the order out service cycle.

After all bytes have been transferred, SKSBK is true and the (DATA, IN) flip-flops are placed in the (0,1) state.

```
R/DATA = ...
S/IN = INSET NORDIN
    INSET = NDATASET + ...
    NDATASET = SEEK BKWZ + ...
```

If a sense order is stored, CRD4 is false and DATASET is true until SKSBK indicates that all bytes have been transferred. Therefore the (DATA, IN) flip-flops are placed in the (1,1) state during phase TO of the order out service cycle. After all bytes have been transferred, SKSBK is true and ORD4 remains false, so that the (DATA, IN) flipflops are placed in the (0,1) state.

```
S/DATA = DATASET NORDIN
    DATASET = NCDN NCDNPET NUNE NSKSBK
    SKSBK = SENSE BKWW + ...
S/IN = INSET NORDIN
    INSET = NORD4 + ...
```

If a write order or checkwrite order is stored during the order out service cysle, DATASET is true and ORD4 is true, so that the (DATA, IN) flip-flops are placed in the (1,0) state to request a data out service cycle similar to a seek order. For errorless operation, DATASET remains true until phase TO of the service cycle is reached. If count done flip-flop CDN is set during phase TO, DATASET becomes faise, and the (DATA, IN) flip-flops are placed in the (0, 1) state.

If a read order is stored during the order out strvice cycle, DATASET is true and ORD4 is false, so that the (DATA, IN) flip-flops are placed in the $(1,1)$ state to request a data in service cycle similar to the sense order. For errurless operation, DATASET remains true until phase TO is reached. If count done flip-flop CDN is set during phase TO, DATASET becomes false and the (DATA, IN) flip-flops are placed in the $(0,1)$ state.

If an invalid order is detected, both DATA am! IN are set.

```
S/DATA = DATASET NORDIN
    DATASET = NCDN NCDNPET NU'NE NSKSBK
S/IN = INSET NORDIN
    INSET = N(DATASET ORD4)
```

A service call for a data in service cycle begins. However, unusual end flip-flop UNE is direct set during phase FS, and an unusual end takes place. (See paragroph 4-73.)

4-31 Order Kegisier

The order register consists of flip-flop ORDO, buffered latches CRDI through ORD4, and associated legic elements. The order register stores an order code during the order out service cycle which occurs as the first step of in input/output sequence. The order code is retained during execution of the order and controls the following signals (also see table 4-2):


```
CHWR = ORD2 NORD3.ORD4 (05)
SEKSEND = NPHRSAOO SEEK
    + NPHRSAOO SENSE
RCHW = NPHRSAOO READ
                        + NPHRSAOO CHWR
{ WCHW = NPHRSAOO WRITE
    . + NPHRSAOO CHWR
WRCH = NPHRSAOO WRITE
    + NPHRSAOO RCHW
```

For online operation (IOP true), the order code is stored during phase RSA of the order out service cycle.

S/ORD0	$=$ DA3R IOP
R/ORD0	$=\ldots$
C/ORD0	$=$ ORDXIOP
ORDXIOP	$=$ IOP PHREAOO TCS000-3
PHRSAOO	$=$ PHRSA ORDOUT
ORD1	$=$ DA4R ORDXIOP $+\ldots$
ORD2	$=$ DA5R ORDXIOP $+\ldots$
ORD3	$=$ DA6R CRDXIOP $+\ldots$
ORD4	$=$ DA7R ORDXIOP $+\ldots$

The order code bits aie retained in buffered latches ORDI through ORD4 while ORDX0 is irve.

```
ORDI = ORDI ORDXO + ...
ORD2 = ORD2 ORDX0 + ...
ORD3 = ORD3 ORDX0 + ...
ORD4 = ORD4 ORDX0 + ...
```

After an input/output operation is completed, flip-flop DCB is reset and the order register is cleared. (For command chaining, DCB is not reset.)

```
NORDXO = PHFS NDCB + ...
```

A new order code is stored as signa! ORDXO goes true during phase RSA of an order out service cycle.

```
4 NORDXO = PHRSAORD TCS000-1 + ...
    PHRSAORD = PHRSA NDATA
```

The order code is retained during execution of orders while the DATA flip-flop is in the set state (data in or data out).

4-32 Service Call Logic

Signal SCD, which requests a service call from the IOP, is controlled by service call flip-flop SCN. (See figure 4-9.) Service call signal SCD is raised to the true level when SCN is set and remains at the true level until SCN is reset.

```
SCD = LSL
    LSL = NASCR INC SCN
    + ASCR INI LSL NRSTR SCN
```

Service call flip-flop SCN is direct reset when the coniroller is not busy and can be placed in the set state only by the direct set input. The direct set input can be true conly during phase FS ofter DCB has been set by an SIO command.

```
E/SCN = NDCB
M/SCN = CYCLE/C SCNMEN
    SCNMEN = PHFS DCB N(NSCNMEN)
```

After SCN has been set, it may be retained in the set state for certain conditions if the controller is operating in the extended performance mode (EXT true) and is executing a read order, write order, or checkwrite order. Signal SCNEN is true when additional service colis are required to maintain the data transfer rate during extended performance ciseration and prevents reset of SCN during phase FSL.

```
S/SC:V = SCNEN
    SNEN = SCN [DATA EXT SCSET
    SCSET = READ NRKI + WCHW RKISCR
    KKISCR = RKI SCR
C/SCN = TCS100-3
```

If SCN is set during phase FS, SCN is reset during phase FSL.

```
R/SCN = SCNRST
    SCNRST = PHFSL + ...
    C/SCN = TCS100-3
```

Preventing reset of SCN allows the FAM module to be filled during write or checkwrite operctions and to be emptied during read operations without requiring the controller to wait for priority on the data lines from the IOP.

Figure 4-9. Service Call Flip-Flop SCN, Logic Diagram

The conditions that generate a true $N(N S C N M E N)$ signal are:
i

$$
\begin{aligned}
\text { N(NSCNMEN })= & \text { UNE (Unusual End) } \\
& + \text { NDATA NRWE CDN NJFI } \\
& \text { NKFIL REMPTY } \\
& + \text { NDATA NRWE NWCHW } \\
& + \text { NCDN DATAOUT SCR } \\
& + \text { NCDN SEN NTSE } \\
& + \text { NCDN READ KFIU BYTAID } \\
& + \text { NCDN READ KFID POST } \\
& + \text { NCDN READ KFID NSCR } \\
& + \text { NCDN CDNPET }
\end{aligned}
$$

4-33 Byte Counter
The byte counter is used during execution of seek orders nd sense orders and during eyecution of read orders, write ders, or checkwrite orders for a multiple-byte IOP interface. For a sense order, the byte ccunter controls the transfer of data bytes into the K -register and O -register and raises the end data signal. For a seek order, the byte counter controls the transfer of data by;es from the Jregister to the T-register and raises the end data signal. For read orders on a multiple-iyyte interface, the byte counter controls the transfer of data from the FAM module to the K-register or I-register. For write orders or checkwrite orders on a multiple-byte interface, the byte counter controls the transfer of data from the extended I-register to the lower order byte of the !-register.

The byte counter consists of flip-flops BKO and BKI and associated logic elements. Each byte of a service cyc!e is identified by states of the byte counter as follows:

$\frac{B K 0}{1}$	$\frac{B K 1}{}$	Output Signal
0	0	BKWW
0	1	$B K W Z$
1	0	$B K Z W$
1	1	$B K Z Z$

When an I / O sequence is completed, $B K O$ and $B K I$ are direct reset after device controller busy flip-flop DCB is reset.

```
E/BKO = NDCB-1
    NDCB-1 = NDCB IOP + NDCB PET-1
    E/BK1 = NDCB-1
```


Therefore, the byte counter (BKO, BKI) is in the (0,0) state (BKWW true) when an SIO command is accepted from the IOP.

The byte counter is direct set to state $(1,1)$ when sional $B K X 1$ is true. Signal BKX1 is true during phase KSA of on order cut service cycle, when the 1 -tegisier is filiedduring execution of a write order or checkwrite order and when the O-register is cleared diuring execution of a read arder.

```
M/QKO = BKXI
    BKXI = PHiRSAOO + NBKXIEN
    PHRSAOO = PHIRSA ORDOUT (Phase RSA of
    order our service cycle)
```

 NBKXIEN = WCHW JFIXI (J-register filed in
 write or checkwrite)
 + READ KXOEN
 \(\left.\begin{array}{l}\text { KXOEN }=\text { OXKEN TCS100-3 } \\ \text { OXKEN }=\text { PHRS DATAIN NED }\end{array}\right\} \begin{aligned} & \text { Oregister } \\ & \text { clorsed in } \\ & \text { reas }\end{aligned}\)
 M/BKI $=B K X 1$

The byte counter is clocked on the falling edge of signal BKCK (which is equivalent to the rising edge of signal NBKCK).

```
S,BKO = NBKO
R/BK.O = ...
```

$$
\begin{aligned}
C / B K 0 & =\text { NBK1 } \\
S / B K 1 & =\text { NBK } 1 \\
R / B K 1 & =\ldots \\
C / B K 1 & =\text { BKCK }
\end{aligned}
$$

As the byte counter (BKO, BKI) is clocked, it passes from state $(1,1)$ to state (1,0), then state $(0,1)$, then state $(0,0)$ unless cleared or direct set.

When a seek order or sense order is to be executed, the byte counter is initially placed in state (1, 1) during phase RSA of the order out service cycle, then is counted down to control transfer of data.

NBKCK $=$ PHRSA SEKSEND TCSOOO-3 $+\ldots$
When a read order is to be executed, the byte counter is used only if the controller is using a two- or four-byte interface (NBYTIID).

```
NBKCK = BKCKEN TRS270 + ...
BKCKEN = NB'ITIID (READRR RREAD-1
                        + BKCKEN NTRS030 + ...)
READRR = READ RREAD-2
```

When a write order or a checkwrite ordur is executed, the byte counter is ssed only if the controller is operating with a two- or four-byte interface (NBYTIID).

$$
\begin{aligned}
\text { NBKCK }= & \text { BKCKEN TRS270 }+\ldots \\
\text { BKCKEN }= & \text { NRYYIID (WCHW RWRITE-1 } \\
& + \text { BㄷCKEN NTRS030 }+\ldots)
\end{aligned}
$$

4-34 Terminal Order Operations

Terminal order phase TO is the last phase of any service cycle. During phase TO, flip-flop PHTO is in the setstate and terminal order data may be received from the IOP. Terminal order data is accepted only if all data associated with the service cycle has been transferred (ED true), and if the IOP does not signa! end of service (ES false). Under these conditions, terminal order data may be received on lines DAOR through DA3R, as follows:

IQP Signal	Flip-Flop	Function
DAOR	CIL	
DAIR	CDNest interrupt	

I/O operation\end{array}\right]\)| DA2R | (none) | Command chaining |
| :--- | :--- | :--- |
| DA3R | UNE | Unusual end condition origi-
 nating in IOP |

The command chaining signal, which is sampled cnly at the end of an order in service cycle, is valid only if no unusual end condition exists. The command chaining signal is equivalent to:

$$
C C H=I O P D A 2 R \text { NDA3R }
$$

If the IOP orders command chaining, DCB is not reset at the end of an order in service cycle; if command chaining is not requested, $D C B$ is reset.

```
R/DCB = DCBRST
    DCBRST = DCBRST ! \div ...
    DCBRSTI = DCBRSTEN ORDIN PHTO
    DCBRSTEN = N(CCH NES NUNE)
    C/DCB = NTCSC8O
```

Fiip-flops CIL, CDN, and UNE are controlled by signal TORD, which is true only when terminal order data is to be accepted.

```
IORD = IOP NES ED PHTO
```

If the IOP commands an interrupt, signal DAUR is true and CIL is set.

```
S/CIL = DAOR TORD
C/CIL = NTCSJOO
```

After CIL is set, an interrupt call is generated.

```
ICD = LIL
    LIL = NAIOR CIL INC + ...
```

When the IOP responds to the interrupt call, CIL is resel.

```
R/CIL = CILRST
    CILRST = AIOC + ...
E/CIL = NTCSOOO
```

Aiter all daia of the 1/O operation have been. transferred, the IOP causes signal DAIR to be true and sets CDN.

$$
\begin{aligned}
& S / C D N=\text { DAIR TORD } \\
& C / C D N=\text { NTCS000 }
\end{aligned}
$$

After CDN is set, an order in service cycle is requested. Flip-flop CDN is not reset until an order out service cycle takes place at the start of a new $1 / O$ sequence.

```
R/CDN = ORDOUT
\(C / C D N=N T C S 000\)
```

If the IOP indicates an unusual end, signal DA3R is true and flip-flop UNE is set.

```
S/UNE = DA3R TORD
C/UNE \(=\) NTCSOOO
```

l

Flip-flop UNE can be set by conditions existing in the contraller, as indicated in paragraph 4-72. Once set, UNE can be reset only by a manual reset signal or by a new SIO or HIO command.

```
E/UNE = MANRST
R/UNE = RESET
    RESET = DVSEL HICU PHFSL + DCBSET
    + ...
D DCBSET = OPER SICPOSS PHFSL
```

Exit from phase TO takes place 180 ns after the TCL delay line is started. If the IOP signols end cf service, $/ E S /$ is true during phase RSA and the TCL delay line is sturted immediately after entering phase $\mathrm{T} O$.

```
DCL = CYCLE,C DCLSIART2 NRSAU
    + ...
```

 DCLSTART2 \(=\) PHTO ES \(+\ldots\)
 If the IOP does not signal end of service, the TCL delay line is not started until a reque t strobe acknowledye has been received.

```
DCL = CYCLE/C DCLSTARTI + ...
    DCLSTARTI = PHTO RSAU + ...
```

Transfer to phase TO cannot occu: until end of data has been reached.

$$
S / F H T O=\text { PHRS ED }
$$

Therefore, signal TORD is true during phase TO if /ES/ was not true during phase RSA. Signal TORD allows the controller to store terminal order data in flip-flops CIL, CDN, or UNE.

4-35 End Data and End Service !ogic

The end data and end service logic (figure 4-10) controls changes of state of the phase flip-flops: A true end service signal ESR can originate only in the IOP; a true end data signal

EDR can originate in either the IOP or the controller. A true ESR signal is required to reset service connect flip-flop FSC and to disconnect the controller from the IOP. A true $E D$ signal is required to enable an exit from phase RS and entry into phase TO.

The IOP generates a true /ES/signal to end service. If signal ESR is true during phase RSA, signal ES comes true and is laiched.

```
ES = ESET TCSO00-2 + FSCU ES
ESET = IOP PHRSA ESR
```

Signal ES generates a true ED signal afier exit from phase RSA.

$$
\widehat{E D}=\text { NPHRSAES }+F S C U E D+\ldots
$$

Therefore, an /ES/signal from the IOP terminates a service cycle and disconnects the controller.

The controller generates a true ED signal for all situations in which a true $/ E D /$ signal is required from the ICP. A true ED signal is generaied from EDD through EDR and EDU.

```
ED = EDSET TCS000-2 + FSCU ED + ...
EDSET = PHRSA EDU
    EDU = EDR IOP + ...
    EDR = EDD + /ED/
    EDD = EDI FSC
```

Therefore, a true ED signal may be generated from the IOP through /ED/ or internally through EDD. Signal ED comes true durit.g the last phase RSA of a service cycle cnd causes an end to the service cycle during the following RS phase.

For an o: der in service cycle or an order out service cycle, signal EDI is driven true by the DATA flip-flop.

$$
\begin{aligned}
\text { EDI }= & \text { EDISETI NPHRSA }+ \text { FSCU EDI } \\
& +\ldots
\end{aligned}
$$

$$
\text { EDISETI }=\text { NDATA }+\ldots
$$

For a seek order, signal EDI is driven true when signal BKZW from the byte counter is true.

```
EDI = EDISETI NPHRSA + FSCU EDI
    + ...
    EDISETI = SEEK BKZW + ...
```

For a sense order, signal EDI is driven true when signal BKWZ from the byte counter is true.


```
EDI = EDISET! NPHRSA + FSCU EDI
    +...
EDISETI = SENSE BKWZ + ...
```

For a read order, signal EDI is driven true when the FAM module is empty (KA8 true) and the last byte is being transferred to the O -register.

```
EDI = EDISET2 TCS000-2 + FSCU ED
    + ...
EDISET2 = KA8 OXKEN + ...
OXKEN = DATAIN PHRS NED
```

Signal KA8 can be trie only after SCR has been set and the FAM module is empty. (See paragraph 4-42.) As the last data byte is read from the FAM module, a true KFISET signal allows KFI to latch true. If signal REMPTY is true, signal KA8 is true.

```
KA8 = N(NKA8) SCR
    N(NKAB) = KAZ KFID + KFIDXI REMPTY
    KFID = KXO (KFID + KFIDXI)
    KFIDXI = KFI TRS270
    KFI = KXO (KFIXI + KFI NPHRSAOO)
    KFIXI = KFISET RREAD-2 TRSI30
```

For a write order or a checkvirite order, signal EDI isdriven true when fiip-flop EDISEi3 is set.

```
EDI = EDISETi NPHRSA + FSCU EDI
    + ...
    EDISETi = EDISET3 + ...
```

If the controller is operating with a four-byte interface, all four data bytes are trarsferred at once so that data input erds in one data out service cycle. Therefore, EDISET3 is direct set for operation with a four-byte interface.
M/EDISET3 = BYT4!D

For a one- or a two-byte interface, flip-flop EDISET3 is set after all four data bytes have been accepted. For a onebyte interface, EDISET3 is set when byte 15 is received, and $/ E D /$ is driven true when byte 16 is requested. Refer to paragraph 4-42 for operation of the RK-counter.

```
S/EDISET3 = NEDIS3 NSCR
    NEDIS3 = PHRSADO NRK3 + ...
C/EDISET3 = TCS!00-3
```

For a two-byte interface, EDISET3 is set when bytes 13 and 14 are received, and /ED/ is driven true when bytes 15 and 16 are requested.

```
S/EDISET3 = NEDIS3 NSCR
        NEDIS3 = PHRSADO NBYTIID + ...
C/EDISET3 = TCS100-3
```

Flip-flop EDISET3 is direct reset when the conirolier is not busy.

```
E/EDISET3 = NDCBI
```


4-36 INPUT/OUTPUT DATA BUFFER

The registers of the input/output data buffer siore data accepted from the IOP for trarisfer to the FAM module and store data accepted from the FAM module for transfer to the IOP.

4-37 I-Register

The I-register consists of buffered latches 100 inrough 131 ard associated logic elements. During execution of a write order or checkwrite order, data bytes are accepted from the IOF and are transferred from the higher order byite of the I-register (I00 through 107) to the J-register. If the controller is operating with a two- or four-byte in'erface, data must be transferred from lower order bytes of the I-register to the higher order byte for transfer to the J-register. During execution of a read order, the lower order bytes of the l-register are used if the controller is operating with a twoor four-byte interface. In these cases, the I-register accepts datt from the FAM module for transfer to the \mathbb{O} - egister. Duing execution of a seek order, two consecutive data bytes are transferred from the IOP to the I-reg.ster, then from the I-register to the J-register.

During phase RSA of a data out service cycle (write order, checkwrite order, or seek order), IOP data is st.red in the I-register. For a write order or checkwrite order, the data path may be 8 bits, 16 bits, or 32 bits wide.

For a controller operating with r: two- or four-byte interface, data bytes sccepted from the IOP are transferred to the higher order 'byte under control of the byte counter (BKO, BKI). Refer to paragraph 4-33 for a description of the byie counter.

Transfer from (108 through 115) to (100 through I07) takes place after the first data transfe: from (100 through 107) to the J-register.

Signals TRL240, TRL180, and RWR'TE-2 are generated by the TRL delay line. Signal BKZZ is generated by the byte counter.

Data transfer from (I16 through 123) and (I24 through I31) to (100 through 107) take place under the control of the byte counter.

During exccution of a read arder for a controller using a two- or a four-byte interface, data bytes are transferred from the FAM module (R00 through R07) to the I-register.

Signals iRL240, TRL180, and RREAD-2 are controlled by the TRL jelay line. Signal BKZW is controlled by the byte counter. (This transfer takes place at the same tine that data tronsfers are made between bytes of the I-register.)

Signels $1 \times 0 \ldots 1$ through IX0-4 are used to clear the I-register before data is stored and to retain dota stored in the Iregister. Data is cleared when the signal is false and is retained while the signal is true.

$(\mathrm{I} \times 0-2 \cdot \mathrm{I} \times 0-4)=\mathrm{I} \times 0$
NIX0 $=$ HHRSAOUT TCSOOO-1 + KXOEN

$$
\text { PHRSAOUT }=\text { PHRSA NIN }\left\{\begin{array}{l}
\text { Clear after data } \\
\text { transfer from IOP }
\end{array}\right.
$$

KXOEN $=$ OXKEN TCS100-3
OXKEN $=$ DATAIN PHRS NED $\left\{\begin{array}{l}\text { Clear after } \\ \text { data fransfer } \\ \text { to IOP }\end{array}\right.$

4-38 O-Register
The O-register, which consixts of buffered latches OOO through O31 and associated logic elements, stores data for transfer to the IOP. During phase RS of a data in service cycle, the contents of the K-register are transferred to bits 0 through 7 of the O -register, and the contents of the Iregister bits 8 through 31 are transferred to bits 8 through 31 of the O-register. (If the controller is operating with a one-byte interface, only the K-iegister contains data; if the controller is operating with a two-byte interface, only the K-register and bits 8 through 15 of the I-register contain data. For a four-byte interface, all signals contain data.) Since a data in service cycle is part of a read order and a sense order, the O -register is loaded from the K register or I-register for execution of these orders.

Signal OXO is used to clear the O-register before storage of new data and to retain the stored data. The O-register is cleared when signal OXO is false and retains data while signal OXO is true. Signal OXO is equivalent to request stroke signal RSD.

$$
\begin{aligned}
& (O X 0-1-0 \times 0-4)=0 \times 0 \\
& \begin{array}{ll}
\text { O00 } & =\text { OOO OXO }+\ldots \\
\text { OXO } & =\text { RSD } \\
\text { OO1 } & =\text { OOI OXO }+\ldots
\end{array} \\
& \text {. . } \\
& \text { O31 } \quad=\mathrm{O} 31 \mathrm{OXO}+\ldots
\end{aligned}
$$

During execution of orders, signal RSD becomes true when a s.robe is requested from the IOP and is latched until the request strobe is acknowledged.

```
PSD = FSC NRSAR (PHRS TCSO00-2
    + RSET NPHRSA + FSCU RSD)
FSCU = FSC IOP + ...
RSET = PHFSL NIN
```

After RSD is true, data is stored in the O-register. After the data is read by the IOP, RSAR becomes true and RSD is false.

During execution of a sense order, the track protect bit from the selection unit (TRPR) and bits 0 through 6 of the track address are stored in the O-register while the byte counter indicates byte zero (BKZZ).

(Additional bytes of the sense order are transferred to the O-register from the K-register.)
ing phase RS of an order in service cycle, four bits of control information are sent to the IOP from the O-register.

```
O00
    = OXORDIN TER
    + ... 
                                parity error, or
                                rate error)
        TER = CER + FER + RER
        OXORDIN = ORDIN PHRSNED
        PHRSNED = PHRS NED
O01
            = OXORLIN INL (Incorrect length)
                        + ...
O03 = OXORRIN + ...(Alwa; ; true)
C04 = OXORD'N UNE (Unusual end)
                            + ...
```

i
n the controller responds to ci: AlO signal, three bits formation are seni to the IOP from the O-register.

000

$$
\begin{aligned}
= & \text { OXAICST RER (Rate error) } \\
& +\ldots
\end{aligned}
$$

OXAIOST = AIOC FSU
O 02
= OXAIOST SUN (Sector unavailable)
$+\ldots$

O 03

$$
\begin{array}{cc}
= & \text { OXAIOST WPV (Write protect } \\
& +\ldots \\
\text { violation) }
\end{array}
$$

The conditions which control flip-flops TER, INL, UNE, RER, SUN, and WPV are described in paragraph 4-72.
: 4-39 J-Register
The J-register consists of buffered latches J00 through J07 and associated logic elements. During execution of a write
order or checkwrite order, the J-register accepts data from the 1 -regisier for transfer to the FAM module. During execution of a read order, the J-register accepts data from the D-register for transfer to the FAM module. During execution of a seek order, the J-register accepts two bytes of data from the I-register to the T -register and S -register.

During execution of a write order or checkwrite order, data from the higher order byte of the I-register (100 through 107) is transferred to the J-register. If the controller is operating with an 8-bit interface (BYTIID), the transfer takes place during phase RS under control of the TCL delay line.

100		$=100$ JXIIB $+\ldots$
	JXIIB	$=$ IOP BYTIID PHRSDO TCS000-2
	PHRSDO	$=$ PHRS DATAOUT
101		$=101 \mathrm{JXIIB}+\ldots$
-		-
-		- •
J0?		$=107 \mathrm{JXIIB}+\ldots$

If the controller is operating with a 16 - or 32 -bit interface (NBYTIID), transfer of ciata from the I-register to the J-register must allow time for tiansfer from higher to lower o.der bytes of the 1-register (refer to paragraph 4-37 for a description of the I-register). Therefore, for 1 h-or 32-bit interface operations, the transfer is controlled by the TRL delay line.

```
JOC = 100 JXINIB + ...
    JXINIB = IOP NBYTIID DATAOUT
        RWRITE-2 TRS060
JOi = JOI JXINIB + ...
. . .
107 = 107 JXINIB + ...
```

During execution of a read order, data bytes are trunsferred from the D -register to the J -register. This transfer takes place af ${ }^{2}$ er the preamble has been detected (NPRE) under control of the TDL delay line (TDT2).

```
\(\mathrm{J} 00=\) D00 JXD \(+\ldots\)
    JXD = READ NPRE TDT2
J01 \(=\) DO1 JXD + ...
\(107 \quad=\) D07 JXD \(+\ldots\)
```

If the controller is operating offline, the J-register accepts PET-generated signals under control of the TRL delay line.

```
100 = DPOO JXDP + ...
    JXDP = PET-1 RWRITE-2 TRS060 DATAOUT
J01 = DPO1 JXDP + ...
-
J07 = DP07 JXDP + ...
```

Signal JX0 is used to clear the J-register before storage of new data and to retain the siored dara. The J-register is cleared when signal JXO is false and retains the stored data while signal JXO is true.

```
J00 = J00 JK0 +...
• .
J07 = J07 JX0 + ...
```

During execution of a read order, the J-register is cleared just before data is stored.

```
NJX0 = READ TDTI + ...
```

Duining execution of a write order or a checkwrite order, the J -register is cleared by a signal related to the signal which causes data transter. For a one-byte interface the J-register is always cleared during phase RS of a data out service cycle.

```
NJXO = PHRSDO TC5000-1 + ...
```

For a two- or four-byte interface, the J-register is cleared during each FAM write cycle.

```
NJX0 = RWRITE-2 TKS270 NTRSOO0 NBYTIID + ...
```


4-40 FAST ACCESS MEMORI' (FAM) CIRCUITS

FAM circuits consist of the TRL delay line, the RK-counter, the J-pointer register (JP-register), the K-pointer register (KP-register), one FT25 Fast Access Memory module (FT25 FAM module), and interconnecting logic elements. (See figure 4-11.)

FAM circuits are used only during execution of a read order, a write order, or a checkwrite order. During execution of a write order or a checkwrite order, data bytes pass from the IOP through the I-register, the J-register, the FAM module, the K-register, and the D-register to the selection unit. (See figure $3-6$.) During execution of a read order, data bytes pass from the selection unit through the D.-register, the J-register, the FAM module, the K-register, and the

O-register, to the IOP. For a two- or four-byte interface width between the controller and the IOP, data bytes pass fromi the FAM module to the K-register and the I-register, then through the O-register to the IOP. (See figure 3-7.) Thus, dota bytes pass from the J-register to the FAM module, and from the FAM module to the K-register (or the I-register) regardless of the direction of data flow between the IOP and a selection unit.

The TRL delay line is started each time a data byte is to be written into the FAM module (FAM write cycle) or read from the FAM module (FAM read cycle). The RK-counter keeps track of the number of active bytes in the FAM module (bytes written into, but not yet read from, the FAM module). The L-register addresses a location in the FAM riodule into which o byte is writien, or from which a byte is read, and generates outputs that indicate the next FAM module locafion oddressed. During a FAM write cycle, the JP-register accepts from the L-register the address of the next FAM module location into which a byte is written. During a FAM read iycle, the KP-register accepts from the L-register the address of the next FAlvi module location from which a byte is read.

The FANi module (figure 4-12) contains 16 addressable eight bit :esgisters. The four-bit address determines which of the 16 registers is available for inpui or output. A data byte is stored in the addressed register as the input sluck signal goes talse. Data may be read from the addressed location at any iime.

4-4: TRL Delay Line

The YRL delay line (figure 4-13), which consisis of a $300-\mathrm{ns}$ delay line and associared gates; controls data transfer into anc c'st of the FAM module, increment and decrement of the $\mathrm{k}:$-counter, and transfer of addresses from the L -register to the KP-register or the JP-register. During the execution of a seek order, the TRi. delay line controls storage of data into the T-register and the S-register.

Wh:lo device controller busy flip-flop DCB is in the eset staie, CYCLER is true and remains latched after DCB is set by atı accepted SIO command.

```
CYCLER = NTRSO30 (NDCB + CYCLEK + ...)
14002
```

Wher SREAD (or SWRITE) comes true during exrcution of an order: the TRL delay line is started. After a 30 -ns delay, a true TRSO30 signal inhibits the inputs, the sigmal CYCLER goes false, and the SREAD (or SWRITE) signal does riot control the delay line. After a 130-ns delay, a trie TRS130 signal inhibits the SREAD (or SWRITE) signal.

```
SREAD = NTRSI30 NREMPTY (DCB SREAD + ...)
SWRITE = NTRSI30 RKO (DCB SWRITE + ...)
```

Because the CYCLER signal is an input to starting gates for SREAD and SWRITE, the SREAD and SWRITE signal cannot

Figure 4-11. FAM Circuits, Simplified Logic Diagram

Figure 4-12. FAN Moduie, Block Diagram
start a new TRL delay line rycle until the previous cycle is complete.

```
SWRITE = NTRS130 RK0 (CYCLER JFI NTRS000
    + ...)
SREAD = NTRSI30 NREMPTY
    NKFI SREADEN
    + CYCLEN NTRSO00 NFKI READ + ...)
```

After a 300-ns delay, CYCLER becomes true and is latched, allowing the SREAD (or SWRITE) signal to start the delay line if required.

```
CYCLER = NTRS03O (TRS300 + CYCLER + ...)
```

The SWRITE signal carinct be true unless the J-registerfilled sienal JFI is true. Signal JFI is true after data has
been stored in the J-register. When the FAM module is full, flip-flop RKO is set and the SWRITE signal is inhibited, preventing any additional FAM write cycles. The SREAR signal cannot be true unless the K-register-filled signal KrI is false. Signal KFI is true after data has been stored in the K-register and is not false until the data has been transferred from the K-register during execution of an order. When the RK-counter indicates that all active bytes have be $: n$ read from the FAM module, a true REMPTY signal inhibits the SREAD signal, preventing any additimal FAM read cycles.

During execution of a read order, write order, or checkwrite order, FAM write cycles and FAM read cycles may occur in any sequence, under control of signal's KFI and JFI. When signal JFl is true andsignal KFI is false, signal SWRITE and signal SREAD are both true. When CYCLER comes true at the end of a FAM write cycle or FAM read

Figure 4-13. TRL Delay Line, Logic and Timing Diagram
cycle, the TRL delay line is started by both signals. However, either a FAM write cycle or a FAM read cycle can occur, but not both. Priority is established by signals which detect the type of order being executed. If a write order or checkwrite order is being executed, signal WCHW is true and data transfers from the FAM module to the Kregister have priority; therefore, a FAM read cycle must take precedence over a FAM write cycle. If a read order is being executed, signal READ is true and data transfers from the J-register to the F,AM module have priority; therefore, a FAM write cycle must take precedence over a FAM read cycle.

The following signals control operations during a FAM write cycle.

$$
\begin{aligned}
\text { RWRITE-1 }= & \text { N(SREAD WCHW) (SWRITE TRS030 } \\
& + \text { RWRITE-1 NTRS000) NTRS } 130
\end{aligned}
$$

RWRITE-2 $\begin{aligned}= & \text { N(SREAD WCHW) (SWRITE TRS030 } \\ & + \text { RURITE-2 NTRS000) }\end{aligned}$ RWRITE-N4 $=$ RWRITE-2 NRK4

The following signals control operations during a FAMiead cycle.

```
RREAD-1 = N(READ SWRITE)(SREAD TRS030
    + RREA`-1 NTRS000) NTRS130
RREAD-2 = N(REA,D SWRITE)(SREAD TRSO30
    + RREAD-2 NTRSOOO)
RREAD-4 = RREAD-2 RK4
```

If both SWRiTE and SREAD cre true, only one of these two sets of signals are valid. If signal WCH'N is true, c FAM read cycle occurs because the facior N(SREAD W'CHW) is false. If signal READ is true, a FAM write cycle occurs because the factor N(READ SWRITE) is faise.

4-42 RK-Counter

During execution of a read order, write order, or checkwrite order, a data byte is transferred from the J-register into an addressed location in the FAM module during a. FAM write cycle, or read from the FAM module into the K-register (or the I-register) during a FAM read cycie. The RK-counter, which consists of flip-flops RKO through RK4 and associated logic elements, keeps track of the number of active bytes in the FAM module.

During phase RSA of an order out service cycle, RKO through RK3 are set and RK4 is direct set. Clocking takes place ot the rising edge of TCL delay line signal TCS000-3.

```
    PHRSAOO = PHRSA ORDOUT
```

```
(S/RK0-S/RK3) = ORDOUT
\[
(C / R K O-C / R K 3)=R K C K
\]
\[
\text { RKCK } \quad=\mathrm{N}(\text { PHRSAOO TCS000-3 }+\ldots)
\]
```

For service cycles other than order out, clocking for all flip-flops takes place at the rising edge of TRL delay line signal TRS130.

$$
\begin{aligned}
(C / \text { RKO-C/RK4) } & =\text { RKCK } \\
\text { RKCK } & =N(\text { TRS } 130+\ldots)
\end{aligned}
$$

Flip-flops RK0 through RK3 form ar: up/down counter clocked by signal RKCK and controlled by flip-flop RK4. Flip-flop RKA changes state at each clock and controls all read count gaies through signal RREAD-4 and controls all write count gates through signa! RWRITE-N4.

```
S/RK4 = NRK4
R/RK.4 = ...
RREAD-4 = RREAD-2 RK4
RWRITE-N4 = RWRITE-2 NRK4
```

Therefore, read count gates are enabled durirg a FAMread cycle, and write count gates are enabled du.iis a FAM wire cycle.

If siarial RREAD-4 is true when the flip-flops a:e clocked, the flip-flops count up, as indicated in table 4-3.

```
S/RK0 = RREAD-4 NRKO RK1 RK2 RK3 + ...
R/RKO = RREAD -4 RKi RK2 RK3 + ...
S/RKI = RREAD-4 NRKI RK2 RK3 + ...
R/RKI = RREAD-4 RK2 RK3 + ...
S/RK2 = RREAD-4 NRK2 RK3 + ...
R/RK2 = RREAD-4 RK3 + ...
S/RK3 = RREAD-4 NRK3 + ...
R/RK3 = RREAD-4 + ...
```

If signal RWRITE-N4 is true when the flip-flops are clocked, the flip-flops count down, as indicated in table 4-3.

```
S/RKO = RWRITE-N4 NRKO NRK1 NRK2 NRK3 +...
R/RK0 = RWRITE-N4 NRK1 NRK2 NRK3 + ...
S/RK1 = RWRITE-N4 NRK1 NRK2 NRK3 + ...
```

```
R/RK1 \(=\) RWRITE-N4 NRK2 NRK3 \(+\ldots\)
S/RK2 \(=\) RWRITE-N4 NRK2 NRK3 \(+\ldots\)
R/RK2 \(=\) RWRITE-N4 NRK3 \(+\ldots\)
S/RK3 \(=\) RWRITE-N4 NRK3 \(+\ldots\)
i \(\mathrm{R} /\) RK3 \(=\) RWRITE-N4 \(+\ldots\)
```

Signals indicating the state of the RK-counter provide inputs to the TRL delay line (paragraph 4-41), the service
call logic (paragraph 4-32), and the end data and end service logic (paragraph 4-35). At the start of a datc out or a data in service cycle, the RK-counter (RKO RKI RK. 2 RK3 RK4) is in state (1 1111). For either type of service cycle, data bytes are first written into the FAM module, causing a countdown for each byte written. As a byte is read from the FAM module, a countup occurs. If the RK-counter reaches state (01111), 16 active bytes are stored in the FAM module and the SWRITE signal is inhibited, preventing any additional FAM write cycles until an active byte is read from the FAM module.

$$
\text { SWRITE }=\text { NTRSI30 RKO (DCB SWRITE }+\ldots \text {) }
$$

Table 4-3. Operation of the RK-Counter

PRESENT STATE					NEXT STATE									
RKO	RK1	RK2	RK3	RK4	If RWRITE-N4 Is True					If RREAD-4 Is True				
					RKO	RK1	RK2	RK3	RK. 7	RKO	RK]	RK2	RK3	RK ${ }_{4}$
1	0	0	0	0	0	1	1	1	1	1	0	0	0	1
i	0	0	0	1	1	0	0	0	0	1	0	0	1	0
1	0	0	1	0	1	0	0	0	1	1	0	0	1	1
1	0	0	1	1	1	0	0	1	0	1	0	1	0	0
1	0	1	0	9	1	0	0	1	1	1	0	1	0	1
1	0	1	0	1	1	0	1	0	0	1	0	i	$!$	0
1	0	1	1	0	1	0	1	0	1	1	0	i	1	1
1	0	1	1	1	1	0	1	1	0	1	1	0	0	c
1	1	0	0	0	1.	0	1	1	1	1	1	0	0	1
1	1	0	0	1	1	1	0	0	0	1	1	0	1	0
1	1	0	1	0	1	1	0	0	1	1	1	0	1	1
1	1	0	1	1	1	1	0	1	0	1	1	1	0	0
1	1	1	0	0	1	1	0	1	1	1	1	1	0	1
1	1	1	0	1	1	1	1	0	0	1	1	1	1	0
1	1	1	1	0	1	1	1	0	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	0			ibited		

Notes

1. The number of active bytes in the FAM module is indicated by the ones complement of the RK-counter state (1111 indicates 0 active bytes; 01111 indicates 16 active bytes)
2. Initial state (1 1111) can be followed oniy by a FAM write cycle; a subsequent state (1 1111) inhibits the FAM read cycle

If the RK-counter reaches state (1. 1111) after bytes have been written into the FAM module, all active bytes have been read. Therefore, signal REMPTY becomes true, inhibiting the SREAD signal and preventing any additional FAM read cycles until a byte is written into the FAM module.

$$
\begin{aligned}
\text { SREAD }= & \text { NTRS130 NREMPTY (DCB SREAD } \\
& +\ldots \text {) } \\
\text { REMPTY }= & \text { RK0 RK1 RK2 RK3 RK4 }
\end{aligned}
$$

Flip-flop SCR is controlled by RK-counter signals, and in turn controls service call ílip-flop SCN and end data flipflop EDISET3. SCR is direct set during phase RSA of an order out service cycle.

```
M/SCR = PHRSAOO
```

During a data cut or a data in service cycle, SCR is clocked by RKCK and changes staie under control of RK -counter signals.

```
S/SCR = RREAD-2 SCRSET
    SCRSET = NSGSET RK2 NRK3 NRK4
    SCSET = WCHV RKISCR + READ NRKI
    RK1SCR = RKI SCR
R/SCK = SCRSET
C/SCK = RKCK
```

If the controller is exec:iting a write order or a checkwrite order (WCHW true), SCSEi is true unti! RK1 is reset, so that SCRSET is false until RKI is reset. Therefore, SCR will remain in the set state until the RK-counter is in state (1 0100), indicating thic +11 cactive bytes are in the FAM module. If a FAM read cicle occurs at this time, RREAD-2 will come true and SCR will remain in the set state as the RK-counter goes to state (1 0101) to indicate that there are 10 active bytes in the FAM module. If a FAM write cycle occurs at this time, RREAD-2 will be false and SCR will be reset as the RK-counter goes to state (10011) to indicate that there are $!2$ active bytes in the FAM module.

If the controller is exec-iing a read order (READ true), SCSET is false until RKI is reset, so that SCRSET becomes true when the RK-counter is in state (1 1100), indicating that there are three active bytes in the FAM module. If a FAM read cycle occurs at this time, RREAD-2 will come true and SCR will remain in the set state as the RK-counter goes to state (1 1101) to indicate that there are two active bytes in the FAM moduie. If a FAM write cycle occurs at this time, RREAD-2 will be false and SCR will be reset as the RK-counter goes to state (1 1011) to indicate that there are four active bytes in the FAM module.

At the start of a data out service cycle following an order out service cycle, SCN is direct set. This action is caused by SCR, which is direct set during phase FS of the order out service cycle.

```
NSCNMEN1 = DATAOUT SCR + ...
```

The input/output operation begins with at least three service cycles, causing 12 bytes to be written into the FAM module before SCR is reset. Signal SCSET prevents reset of SCN during phase FSL, so that SCN is not reset until at least seven active bytes are in the FAM module.

```
S/SCN = SCNEN
SCNEN = SCN DATA EXT SCSET
SCSET = WCHW RKISCR + ...
```

Since SCN is not reset until phase FSL, an additional service cycle of four bytes is in process and 12 byites are written.

After the initial service cycles, SCR is set whenever there are 11 active bytes in the FAM module ($10: 00$), and a FAM read cycle occurs. After SCR is set, SCN is set again to request a service cycle. At the start of c data in service cycle following an order out service cycle, SCN is in the reset state. After four bytes have been written into the FAM module, SCR is reset and SCN is direct set.

```
NSCNMENI = READ RKID SCNREN + ...
SCNREN = NSCR + ...
```

Signal SCSET prevents reset of SCN during pinase FSL, so that SCN is not reset if there are eight or more active bytes in the FAM module.

```
S/SCN = SCNEN
SCNEN = SCN DATA EXT SCSET
    SCSET = READ NRK1 + ...
```

After the initial service calls, additional bytes are written into the FAM module. If a FAM read cycle takes place witle there are three active bytes in the FAM module (1 1100), SCR is set, thereby inhibiting any service call when there are less than four bytes in the FAM module. For any other condition, SCR is reset and a service call $m_{i}=y$ be requested.
An end service signal is generated during phase RSA of a data out service cycle if SCR is reset (12 or more active bytes in the FAM module).

```
S/EDISET3 = NSCR NEDIS3 + ...
    NEDIS3 = PHRSADO (NRK3 + NBYTIID)
```

For a multiple-byte interface, this flip-flop is set after 12 active bytes are in the FAM module (i 0011); for a singlebyte interface, this flip-flop is set after 14 active bytes are in the FAM module (1 0001).

4-43 JP-Register
The J-pointer register (JP-register), which consists of buffered latches JPO through JP3, stores the address of the next FAM location to be selected for writing data from the Jregister. During a FAM write cycle, the address stored in the JP-register is placed in the L-register for addressing a location in the FAM module and a new address is accepted from outputs of the L-register. (See figure 4-14.)

During phase RSA of an order out service cycle, the address 1111 is stored in the JP-register. Therefore, the first FAM location addressed for writing is always location 1111.

JPO	$=$ PHRSAOO $+\ldots$
PHRSAOO	$=$ PHRSA ORDOUT
JP1	$=$ PHRSAOO $+\ldots$
$J P 2$	$=$ PHRSAOO $+\ldots$
JP3	$=$ PHRSAOO $+\ldots$

During a FAM write cycle, the ircremented value from the L-register output signals is stored in the JP reyister. Refer to paragraph $4-4.5$ for speration of the L-register.

```
JPO = JPXL LEC + ...
    JPXL = RWMiITE-2 TRS270 NTRS000
JP1 = JPXL LE1 + ...
JP2 = JPXL LE2 + ...
JP3 = JPXL NLO3 + ...
```

An address stored in the JP-register during a FAiM write cycle is retained while signal JPX0 is true.

```
JPO = JPO JPXO + ...
    JPX0 = N(RWRITE-2 TRI80)
    RWRITE-2 = N(SREAD WCHW)(SWRITETRS030
    + RWRITE-2 NTRSOOO)
JPI = JPI JPXO + ...
JP2 = JP2 JPX0 + ..
JP3 = JP3 JPXO + ...
```

Signal JPXO goes false during a FAM write cycle just before the new address is transferred from the L-register. Consequently, the contents of the JP-register are 0000 before a new address is stored.

4-44 KP-Register

The K-pointer register (KP-register), which consists of buffered latches KPO through KP3, stores the address of the next FAM location to be selected for reading data into the K-register (or I-register). During a FAM read cycle, the address stored in the KP-register is placed in the L-register for addressing a location in the FAM module, and a new address is accepted from outputs of the L-register. (See figure 4-i5.)

During phase RSA of an order out service cycle, the address 1111 is stured in the KP-register. Therefore, the firstFAM. location uddressed for writing is always location 1111.

KPO
$=$ PHRSAOO $+\ldots$
PHRSAOO $=$ PHRSA ORDOUT
KPI
$=$ PHRSAOO $+\ldots$
$=$ PHRSAOO +...
KF3 $=$ PHRSAOO $+\ldots$
During a FAM read cycle, the incremented value from the L-regisier output signals are stored in the KP-regisier. Refer to paragrayh 4-45 for operation of the L-register.

```
KPO = KPXL LEO + ...
    KPXL = RREAD-2 TRS270 NTRS000
KP1 = KPXL LEI + ...
KP'2 = KPXL LE2 + ...
KP3 = KPXL NL03 + ...
```

An address stored in the KP-register during a FAM read cycle is retained while signal KPXO is true.

```
KPO
    K'PXO = N(RREAD-2 TRS180)
    RREAD-2 = N(READ SWRITE)(SREAD TRS030
    + RREAD-2 NTRSOOO)
KP1 = KPI KPXO + ...
KP2 = KP2 KPXO + ...
KP3 = KP3 KPXO + ...
```

(4)

NOTES:

1. CONTENTS OF L02 AND L03 CLEARED BY NTRS030
2. RK-COUNTER INCREMENTED BY TPSI30
3. DATA TRANSFERRED FROM I-REGISTER TO ADDRESSED LOCATION IN FAM MODULE BY FAM WRITE CLOCK.
4. JFi LATCHED UNTIL JFireset true

Figure 4-14. Sequence of FAM Write Cycles, Timing Diagram

NOTES:
i. CONTENTS OF LO2 AND L03 CLEARED BY NTRSO3O
2. RK-COUNTER INCREMENTED BY TRSI3
3. DATA TRANSFERRED FROM ADDRESSEC LOCATION IN FAM MODULE TO K-REGISTER (OR I-RE GISTER) BY KXR
4. KFI FALSE UNTIL. KFISET TRUE, GENERATING KFIXI

Figure 4-15. Sequence of FAM Read Cycles, Timing Diagram

Signal KPX0 goes false during a FAM read cycle just before the new address is transferred from the L-register, so that the contents of the KP-register are 0000 before a new address is stored.

4-45 L-Register

The L-register consists of buffered latches L00 through L03 and buffered latch NL03 which stores the bit complementary to the bit stored in L03. The L-register provides a fourbit address input to the FAM module during either a FAM read cycle or a FAM write cycle. Outputs of the L-register provide inputs to the KP-register or to the JP-register and store an incremented address in these registers, as summarized in table 4-4. Refer to paragraph 4-43 for operation of the JP-register and to paragraph 4-44 for operation of the KP-register.

During a FAM write cycle, the contents of the JP-register are stored in the L-register while signal RWRITE-1 is true.

Signal RWRITE-1 is latched until a data byte is stored in the addressed FAM location, and an incremented address is stored in the JP-register. (See figure 4-13.)

```
L00
= JPO RWRITE-1 + ...
    RWRITE-1 = N(READ WCHW) (SWRITE TRS030
        + RWRITE-I NTRS000) NTRS130
    = JPI RWRITE-1 + ...
    = JP2 RWRITE-1 + ...
    = JP3 RWRITE-1 }\div
    = NJP3 RWRITE-1 + ...
```

During a FAM read cycle, the contents of the KP-register are stored in the L-register while signal RREAD-1 is true.

Table 4-4. Relation Between State anc 'Jutput of the L-Register

STATE				SIGNALS					OUTPUT TO JP-REGISTER OR KP-REGISTER			
100	L01	L02	103	LEO	LE1	LE2	L23	1123				
0	0	0	0	0	0	0	0	0	0	0	0	1
0	0	0	1	0	0	1	0	0		0	1	0
0	0	1	0	0	0	1	0	0		0	1	$!$
0	0	1	1	0	1	0	1	0		1	0	0
0	1	0	0	0	1	0	0	0		1	0	1
0	1	0	1	0	1	1	0	0		1	1	1)
0	1	1	0	0	1	1	0	0		1	1	1
0	1	1	1	1	0	0	1	1		0	0	0
1	0	0	0	1	0	0	0	0		0	0	1
1	0	0	1	1	0	1	0	0		0	1	0
1	0	1	0	1	0	1	0	0		0	1	!
1	0	1	1	1	1	0	1	0		1	0	0
1	1	0	0	1	1	0	0	0		1	0	$!$
1	1	0	1	1	1	1	0	0		1	1	0
1	1	1	0	1	1	1	0	0		1	1	1
1	1	1	1	0	0	0	1	1		0	0	0

Signal RREAD-1 is latched until a data byte is read from the addressed FAM location and an incremented address is stored in the KP-register. (See figure 4-14.)

LOO

$$
=\text { KPO RREAD-1 }+\ldots
$$

$$
\begin{aligned}
\text { RREAD-1 }= & \text { N(READ SWRITE)(SREAD TRS030 } \\
& + \text { RREAD-2 NTRS000) NTRS } 130
\end{aligned}
$$

L01 $=$ KPI RREAD-1 $+\ldots$
L02 $=$ KP2 RREAD-1 $+\ldots$
L03 $=$ KP3 RREAD-1 $+\ldots$
NL03 $\quad=$ NKP3 RREAD-1 $+\ldots$
The incremented value of the input to the L-register is generated by a set of exclusive CR gates for the most signiat bits of the address.

```
LEC = (LOO + Ll23)N(LOO L123)
        L.123 = L.01 L.23
        L23 = L02 L03
    LEI = (L01 + L23) N(L01 L23)
    LE2 = (L02 + L03) N(L02 L03)
```

During a FAM write cycle, the incremented address is placed in the JP-register; during a FAM read cycle, the incremented address is placed in the KP-register.

The L-register is cleared 30 ns ofter starting the TRL delay line, so the address from the KP-register or JP-register can be read at address outputs L00 trrough L03 and NLOS.

```
LOO = LOO NTRS030 + ...
LOI = LO1 NTRS030 + ...
L02 = L02 NTRS030 + ...
L03 = L03 NTRS030 + ...
NL03 = NL03 NTRS030 + ...
```

After the L-register is cleared by signal NTRSO30 and is loaded as previously described, signal NTRS030 acts as a latch control until a new value is loaded.

4-46 Operation of FAM Circuits During the Write Sequence
While the controller is executing a write order or a check,write order, data is transferred from the I-register to the D-register through the FAM circuits. (See figure 4-11.) Data accepted from the IOP passes through the I-register,
the J-register, the FAM module, the K-register, and the D-register to the addressed selection unit. For a write sequence, data transfers from the FAM module to the K register have priority over data transfers from the J-register to the FAM module. This priority assures that the D-register will have data for transfer to the selection unit.

Data transfer from the IOP is controlled by the phase control circuit as described in paragraph 4-20. Data from the IOP is requested during phase RSA. As the IOP responds, the TCL delay line is starteci, IOP data is stored in the Iregister, and phase RS is entered.

```
DCL = CYCLE/C PHRSA RSAU + ...
IXD = PHRSADO TCSOOO-3
```

New data cannot be requested until phase RSA is entered from phase RS. This change of phase cannot occur untilall previously accepted data has been transferred to the FAM module and the J-register is empty (JFI faise).

```
DCL = CYCLE/C DCLSTART2 NRSAU
DCLSTART2 = WCHW PHRS NJFI + ...
```

The J-register is cleared after its contents have been transferred to the FAM module.

```
NJXO = PHRSDO TCSOOO-1
```

Data traisfers from the FAM circuits to the selection unit are controlled by the selection unit interface circuits as described in paragraph 4-53. Data iransfers from the FAM module to the K-register are controlled by the TRL dirlay line. Data transfers from the K-register to the D-reg ster take place at eight-bit intervals uniil the postamble is written (POST true).

```
DXK - WRITE NPUST BIT7RWE + ...
```

The funcition of the FAM circuits is to process data trarisfers between the IOP and the addressed selection unit, providing data to the selection unit at the required rate for an IOP-tc-controller interface of one byte, two bytes, or four :ytes.

4-47 ONE-BYTE INTERFACE. For a one-byte inferface with the IOP, signal BYTIID is true, the byte counter is not used, and the data path from the IOP is through the most significant byte of the I-register (100-107) to the Jregister, then to the addressed location in the FAM module. (See figure 4-11.)

When IOP data is first stored in the I-register, signal JFI is false. Therefore, the data is transferred to the J-register as the TCL delay line is started during phase RS, and JFI is raised and latched at the true level.

```
JXIIB = IOP BYTIID PHRSDO TCSOOO-2
JFI = N(JFIRESET RWRITE-2 TRS180)(JFIXI
    + JFI NPHRSAOO + ...)
    JFIXI = PHRSDO TCSOOO-2
```

The controller can accept data from the IOP but cannot start the TCL delay line during phase RS until JFI is false.

The TRL delay line is started by JFI through signal SWRITE.

```
SWRITE = (CYCLER JFI NTRSOOO
    + ...) NTRS130 RK0
```

During the FAM write cycle that is started by this signal, the following events take place:
a. The L-register is cleared.
b. The contents of the JP-register are read through outputs of the L-register to the FAM module.
c. The contents of the J-register are transferred in parcilel to the FAM module location addressed by the Lregister outputs.
d. The decremented value of the contents of the JP register is read from the L-register outputs into the JPregister.
e. The RK-counter is decremented.

These events are controlled by the following equations:

LOO	$=$ LOO NTRS030 $+\ldots$
JPXO	$=$ N(PWRITE-2 TRS180)
(FAM write clock)	$=$ RWRITE-2 TRS180
JPXL	$=$ RWRITE-2 TRS270 NTRS000
RKCK	$=$ N(TRSI30 $+\ldots)$
RWRITE-N4	$=$ RWRITE-2 NRK4

Signal JFI goes false as the contents of the J-register are stored in the FAM module, and a transfer from phase RS to phase RSA is enabled.

$$
\begin{aligned}
J F I= & \text { N(JFIRESET RU'RITE-2 TRSI80) } \\
& (J F I \text { NPHRSAOO }+\ldots)
\end{aligned}
$$

Data may be accepted from the IOP until the FAM module is filled. FAM read cycles transfer data from the FAM module to the K-register after the preamble has been written, enabling the TRL delay line to be started by an SREAD signal.

SREAD

```
= (CYCLER NTRS000 NKFI SREADEN + ...) NTRS130 NREMPTY
```


SREADEN $=$ NPOST NRWE NRWP NWPRE

When data is first stored in the FAM module, signal KFI is false. Therefore, the data is transferred to the K-tegister as soon as the preamble has been written because FAMread cycles have priority over FAM write cycles.

```
KFI = KXO (KFIXI + KFI NPHIRSAOO)
KFIXI = KFISET RREAD-2 TRS180
```

During the FAM read cycle that is started by this signal, the following events take place:
a. The L-register is cleared.
b. The contents of the KP-register are read through outputs of the L-register to the FAM module.
c. The contents of the FAM module location addressed by the L-register outputs are transferred to the $i n$-register (or the I-register).
d. The incremented value of the contents of the KPregistor is read from the L-regisier outpu's into the $K P-$ register.

』. The RK-counter is incremeated.
These events are controlled by the following equations:

100	$=$ KPO RREAD-1 +
KPXL	$=$ RREAD-2 TKS270 NTRSOOC
KPXO	$=N($ RREAD $-\hat{\iota}$ TRS180)
KXR	$=$ KXREN RKEAD-2 TRSI80
KXREN	$=\mathrm{EKZZ}+$
$\therefore \mathrm{KCK}$	$=N(T R S 130+\ldots)$
RREAD-4	$=$ RREAD-2 RK4

Signal KFI is raised and latched as the contents of the FAM module are transferred to the K-register. Signal KFI remains true until the K-register is cleared following transfer of its contents to the D-register.

$$
\text { NKXO }=\text { WCHW TDT2 }+\ldots
$$

This sequence of acceptance of data from the $i O P$, transfer of data to the FAM module, and reading data from the FAM modisle to the selection unit continues under mutual conirol of phase control circuits, FAM circuits, and selection unit interface circuits. When the FAM module is filied, requests for IOP data are inhibited because flip-flops RKO is reset, inhibiting FAM write cycles, and JFI is held true, inhibiting transfer from phase R.S to phase RSA. When the FAM module
is empty, FAM read cycles are inhibited because signal REMPTY is true. Anyattempt to write into the FAM module when it is full or to read from the FAM module when it is empty causes a rate error, as described in paragraph 4-78.

4-48 MULTIPLE-BYTE INTERFACE. For afwo- or four-byte interface with the IOP, signal NBY! ID is true, the byte counter is used to control data transfer from the I-register to the J-register, and the data path from the IOP is to the I-register, to the most significant byte of the I-register ($100-107$), to the J-register, then to the addressed location in the FAM module. (See figure 4-11.) The rest of the paragraph emphasizes the differences between write operations for a one-byte interface and for a multiple-byte interface.

When IOP data is stored in the I-register, signal JFIXI comes true and causes JFI to be iaised and latched similar a one-byte sequence. However, JFI remains latched il all bytes accepted from the IOP have been transferred to the J-register. Data transfer 'rom the I-register is controlied by timing signals of the YRL delay line (instead of the TCL delay lire). Data transfers take place within the I-register so that all transfers frow the J-register are from the most significart latches of the I-register (100-107). The multiple-byte interface data path from the J-register through the FAM circuits to the D-register is identical to the onebyte interface data path.

Signal JFI remairis latched at the true level following acseptance of IOP data because a íalse JFIRESET signal takes control from signal JFIX1. Once JFI is raised by JFIXI, JFI remains latched until JFIRESET is true during a FAM write cycle.

```
JTI = N(JFIKESET RWRITE-2 TRS180)
                        (JFIXI r JFI NPHRSAOO
                        +...)
JFIXI = PHRSDO TCS000-2
    NJFIRESET = WCHW NBYTIID BKI (Two-and
                                    four-byte
                                    interface)
    + WCHW BYT4ID BKO (Four-byte
                        interface)
```

The byte counter (BKO, BKI) is direct set to state (1, 1) each time JFIXI is true and cll-ked during each FAM write cycle. (See paragraph 4-33.)

```
NBKXIEN = WCHW JFIX1 + ...
NBKCK = BKCKEN TRS270 + ...
    BKCKEN = NBYTIID(WCHW RWRITE-1 + ...)
```

For a two-byte inferface, two FAM write cycles take place before signal JFi goes false to enable a transfer to phase RSA to request additional data from the IOP. During the first FAM write cycle, data is transferred from latches (100107) of the 1 -register to the J -register, the contents of (108115) are transferred to ($100-107$), and the byte counter goes to state $(1,0)$ so that signal BKZW is true.

$$
\begin{aligned}
\text { JXINIB }= & \text { NBYTIID IOP DATAOUT RWRITE-2 } \\
& \text { TRSO60 } \\
= & \text { IXEN RWRITEDO BKZZ } \\
\text { IXI-I }= & \\
\text { IXEN }= & \text { NBYTIID TRLI80 NTRL240 }
\end{aligned}
$$

During the second FAM write cycle, data is transferred from latches (100-107) of the I-register to the J-register as before. However, since JFIRESET is now true, JFI goes false during the FAM write cycle.

For a four-byte interface, fou: FAM write cycles take place before signal JFI goes false to enable a transfer to phose RSA to request additional data from the IOP. During the first FAM write cycle, data is transferred as for the twobyte interface. During the second FAM write cycle, data is transferred from latches (100-107) of the I-register to the J-register, the contents of (116-123) are transferred to (100107), and the byte counter goes from state (1, 0) to state $(0,1)$ so that signal BKWZ is true.

$$
\text { IXI-2 }=\text { IXEN R!VRITEDO BKZW }
$$

During the third FAM write cycle, data is transfened from latches (i00-107) of the I-register to the J-register, the contents of (124-131) are transferred to (100-107), and the byte counter goes from state $(0,1)$ to state $(0,0)$ so that signal BKWW is true.

IX:-3 = IXEN RWRITEDO BKWZ

During the fourth FAM write cycle, data is trar:sferredfrom latches ($100-107$) of the I-register to the J-regisier us before. However, since JFIRESET is now true, JFI goes falje during the FAM write cycle. Therefore, for a multiple-byte interface, the phase control circuits cannot request additional data from the IOP until previously accepte:' data has been written into the FAM module. However, FAM read cycles may occur during this interval to maintain the data rate to the addressed selection unit. For u multiple-byte inierface, data transfer from the FAM module to the K-register is enabled by a false READRR signal (instead of a true BKZZ signal).

$$
\text { KXR } \quad=\text { KXREN RREAD-2 TRSI } 80
$$

```
KXREN = NREADRR + BKZZ
    READRR = READ RREAD -2
```

While the controller is executing a read order, data is transferred from the D-register to the O-register through the FAM circuits. (See figure 4-11.) Data accepted from the selection unit passes through the D-register, the Jregister, the FAM module, the K-register (or the Iregister), and the O -register, to the IOP. For a read sequence, data transfers from the J-register to the FAM module have piiority over data transfers from the FAM module to the K -register (or to the I-register). This priority order assures that a data in the D-register will be stored in the FAM module as it comes from the selection unit.

Data transfer from the selection unit is controlled by the selection unit interface eircuits as described in paragraph 4-53. Following detection of the preamble, data bytes cre transferred from the D-register to the J-register ateightbit intervals as described in paragraph 4-54.

$$
J X D=\text { READ NPRE } \because D T 2
$$

A FAM write cycle is encbled each time signal JXD comes true.

```
SWRITE = (CYCLEP. SFI NTRS000 + ...)
                NTRS130 NRK0
    JFI = N(JFIRESET RWRITE-2 TRSI80)(JXD
    + JFI NPTIRSAOO + ...)
```

FAM read sycles are aliowed after read/write enable flipflop RWE is set, as described in paragraph 4-62.

```
SREAD = (ЗK_ADEN NKFI CYCLER
    .NTRSOOO + READ NKFI CYCLER
    N:RSOOO + ...) NREMPTY
    NTESS180
    SREADEN = NFOST RWE NRWP NWPRE
```

While the phase control zircuits are in phase RSA, the IOP accepts data stored in the O-register und enables a transfer to phase RS.

```
DCL = CYCLE/C PHRSA RSAU + ...
```

Unless and daia signal ED is true, new data is transferred from the K-register (or from the K-register and the I-register) into the O-register while thie phase control circuits are in phase RS.

```
OXK = OXKEN TCS000-2
    OXKEN = PHRS DATAIN NED
```

However, the TCL delay line cannot be started to permit this data until additional data has been stored in the Kregister (or K-register and I-register) as indicated by a true KFID signal.

```
DCL
    = CYCLE/C DCLSTART2 NRSAU
    + ...
    DCISTART2 = PHRS READ KFID + ...
```

The function of the FAM circuits during a read sequence is to control data transfers from the FAM module io the K register (or K -register and I-register) so that data may be stored in the O-register for transfer to the IOP on a one-, two-, or four-byte interface.

4-50 ONE-BYTE INTERFACE. For a one-byte interface with the IOP, signal BYTIID is true, the byte counter is not used, and the data path from the adciressed location in the FAM module is first to the K-register then to the most significant latches of the O-register (000-007). (See figure 4-11.)
tach time selection unit data is transferred from the Dregister to the J-register, signal JFI is raised and latched. The TRL delay line is started, and since a FATA write cycle has priority over a FAM read cycle, a FAM write cycle takes place.
[uring the FAM write cycle that is started by this signal, the following events take place:
a. The L-register is cleared.
b. The contents of the JP-register are read through outputs of the L-register to the FAM module.
c. The contents of the J-register are tiarisferred in parallel to the FAM module location adaressed by the Lregister outputs.
d. The decremented value of the contents of the JPregister is read from the L-register outpuis into the JPregister.
e. The RK-counter is decremented.

These events are controlled by the following equations:

L00	$=$ L00 NTRS030 $+\ldots$
JPXO	$=$ N(RWRITE-2 TRS180)
(FAM write clock)	$=$ RWRITE-2 TRS 180
JPXL	$=$ RWRITE-2 TRS270 NTRS000
RKCK	$=$ N(TRSI30 $+\ldots$)
RWRITE-N4	$=$ RWRITE-2 NRK4

Signal JFI goes false as the contents of the J-register are stored in the FAM module. When data is first stored in the FAM module, signal KFI is fo!se. Therefore, the cata can
be transferred to the K-register any time after a false REMPTY signal indicates that data is available, provided that no FAM write cycle takes priority.

SREAD $=$ (CYCLER NTRSOOO NFKI READ + ...) NTRSI30 NREMPTY

KFI $=$ KXO (KFIXI + KFI NPHRSAOO)
i KFIXI $=$ KFISET RPEAD-2 TRS180
During the FAM read cycle thai is started by this signal, the following events take place:
a. The L-register is cleared.
b. The contents of the KP-register are read through outputs of the L-register to the FA.M module.
c. The contents of the FAM module location addressed the L -register outputs are transferred to the K --register (or the I-register).
d. The incremented value of the contents of the KPregister is read from the L-register outputs into the KPregister.
e. The RK-counter is incremented.

These events are controlled by the following equations:

```
LOO = LOO NTRSO3O + ...
LOO = KPO RREAD-1 + ...
KPXL = RREAD-2 1RJ270 NTRS000
KPX0 = N(RREAD-< TRS\80)
RKCK =N(TRS130 + ...)
RREAD-4 = RREAD-2 R:`4
KXR = KXREN RREAD-2 TRS180
    KXREN = BKZZZ + ...
```

Signal KFI is raised and latched as the contents of the FAM module are transferred to the K-register and KFI remains true until the K -register is clearea following the transfer of its contents to the O-register.

```
    NKXO = KXOEN + ...
    KYOEN = OXKEN TCS100-3
O OXKEN = PHRS DATAIN NED
```

This sequence of accepting data from the oddressed selection unit, transferring data to the FAM module, and reading
data from the FAM module into the O-register for transfer to the IOP continues under mutual control of phase control circuits, FAM circuits, and selection unit interface circuits. Data transfer to the IOP must continue at a high enough rate so that there is always space in the FAM module for new data which is accepted at constant rate. Request strobes for the IOP cannot be generated unless there is data available for transfer. Any attempt to write into a full FAM module or to read from the FAM module when i t has insufficient data causes a rate error as described in paragraph 4-78.

4-51 MULTIPLE-BYTE INTERFACE. For a two- or fourbyte interface with the IOP, signal NBYTIID is true, the byte counter is used to control data transfer from the addressed lecation in the FAM module to the K-register and I-register, and the data path from the FAM module to the O-regisier is through the K-register and lower-order latches of the I-register. (See figure 4-11.) This paragraph emphasizes the differences between a read sequence for a onebyte intertace and for a multiple-byte interface.

When seiection unit data is stored in the J-register, signal JXD comes true and causes JFI to be raised and laiched as for a one - byte sequence. Data transfers from the j-register to the FAMA module take place under control of signal JXD. FAM write cycles and FAM read cycles cause the some sequence of events as for a one-byte interface. However, signal KFiD cannot come true until sufficient data bytes have been stored in the K-register and I-register.

The byte counter (BKO, BKI) is direct set to state ($:, 1$) by signal $B K X 1$ cach time signal KXOEN is true. At this time, data is thansferred to the O-register from the K-resisterand I-register, both of which are then cleared. Refer to paragraphs 4-33, 4-37, 4-38, and 4-57 for details.

```
NKXL = KXOEN + ...
BKY: = NBKXIEN + ...
    NBKXIEN = READ KXOEN + ...
```

Once siginal SREADEN is true, FAM read cycles, controlled primarily by signal KFI, may take place whenever the FAM module contains data bytes. Signals RREAD-1 and RREAD-2, which cunirol the priority of FAM read cycles over -AM write cysies, become true during a FAM read cycle. Data transfers necur as described for a one-byte interface. As the byte counter is clocked, it passes from state (1, 1) to $(1,0)$ to $(0,1)$ to $(0,0)$, as required.

```
NBKCK = BKCKEN TRS270 + ...
    PKCKEN = NBYTIID (READRR RREAD-1 + ...)
    READRR = READ RREAD-2
```

For a two-byte interface, two FAM read cycles must take place before signal KFID goes true. When true, KFID
enables a transfer to phase RSA and enables a request for the IOP to accept data that has been stored in the O-register. During the first FAM read cycle, data is transferred from the addressed location in the FAM module to the Kregister, and the byte counter goes to state $(1,0)$ so that signal BKZW becomes true.

```
KXR = KXREN RREAD-2 TRS180
    KXREN = BKZZ + ...
```

Signal KFi does not latch true because signal KFIXI is held false by a false KFISET signal.

```
KFI = KXO(KFIXI + KFI NPHRSAOO)
    KFIXI = KFISET RREAD-2 TRS 180
    NKFISET = READRK NBYTIID BKI
    + READRR BYTAID BKO
```

During the second FAM read cycle, data is transferred from the addressed location in the FAM module to the I-register laiches 107 through 115, and the byte counter goes to state $(0, i)$.

```
IXR-1 = IXEN READRR BKZW
    IXEN = NBYTIIE TRLI80 NTRL240
```

Signal KFI latches during the second FAM read cycle because KrISET is true. (BKi is folse, and BYT4ID is false.) Beccuse KFI latches, KFID goes true and is latched until the data transfer is made to the O-register.

$$
\begin{aligned}
\text { KFID } & =\text { KX0 (KFID }+ \text { KFIDXI }) \\
\cdot K F I D X 1 & =\text { KFI YRS270 }
\end{aligned}
$$

When the data transfer is rade, the byte counter is set to state (1, 1).

For a four-byte interface, four FAM read cycles must take place before signal KFID goes true. The first two FAM read cycles are controlled as for a two-byte interface. However, after the second FAM read cycle, KFISET remains false since the byte counter is in state (1,0) and BYT4ID is true. Therefore, KFI does not latch true, and a byte is read from the FAM module into I-register latches 116 through 123.

IXR-2 $=$ IXEN READRR BKWZ

During the third FAM read cycle, the byte counter goes to state (0,0). Therefore, during the fourth FAM read cycle, a byte is read into I-register latches 124 through I31.

During this FA.M read cycle, KFISET is true, KFI latches, and KFID is latched until the data transfer to the O-register is made. When the data transfer is made, the byte counter is set to state (1, 1).

4-52 Operation of the TRL Delay Line for a Seek Order

During execution of a seek order, the contents of the Iregister must be transferred to the J-register, and the contents of the J -register must be transferred to the T -register or S -register in two successive data out service cycles.

Data transfer from the IOP is controlled by the phase control circuits as described in paragraph, 4-20. Data from the IOP is requested during phase RSA. As the IOP responds, the TCL delay line is started, IOP data is stored in the I-register, the byte counter goes from state (1,1) to state (1, 0), and phase RS is entered.

```
DCL = CYCLE/C PHRSA RSAU + ...
NBKCK = PHRSA SEKSEND TCSOOO-3
IXD= PHRSADO TCS000-3
```

New data is accepted after phase RSA is entered from phase RS. This change of phase is enabied immediately after phase RS is entered, if the request strobe coknowledue signal is false.

```
DCL = CYCLE/C LELSTARIZ NRSAU
    + ...
    DCLSTART2 = PHRS SFKSEND + ...
    SEKSEND = SEEK NPHRSAOO + ..
```

Date tronsfers from the I-registe: to the J-regist-r must take place before new data is accepted from the IOP. The data transfer is enabled thy the TCL delay line.

$$
J X I I B=\text { IOP PHRSADO TCS000-2 BYTI:D }
$$

Signa: BYTIID is true even if the controller is operating with a two-byte oi four-byte IOF interface. As indicated in figure 4-21, byte width signals are true only arring execution of read orders, write orders, or checkwrite orders for which signal WRCH is true.

For any IOP interface width, data transfers froin the Jregister to the T-register or to the S-register are enabled by the TRL delay line and are conirolled by byie counter signals. The byte counter is clocked during phase RSA. (See paragroph 4-33.)

NBKCK = PHRSA SEKSEND TCS000-3

Therefore, when phase RS is first entered, signal BKWZ is true, and data is transferred from the J-register to the Tregister after the TRL delay line is started.

```
TXJ = SEEK RWRITEDO BKZW TRS130
    RWRITEDO = DATAOUT RWRITE-2
```

While the controller is in phase RSA a second time, the ' byte counter is clocked again, causing signal BKWZ to be true. After the second byte is accepted and stored in the J-register, bits 0 through 3 are iransferred to the T-register and bits 4 through 7 are transferred to the S-register. (See paragraphs 4-25, 4-39, and 4-68 for details.)

```
TXJ = SEEK RWVITEDO BKWZ TRS130
SXJ = SEEK RWRITEDO .BKWZ TRS130
```


53 SELECTION UNIT INTERFACE CIRCUITS

The seiection unit interface circuits control exchange of signals between the controller und the selection units. When the controller is executing an order, an 11-bit track address is sent to the addressed selection unit during intersector gap fime. (Two bits of the 11-bit address should clways be zeros.) Angular position signa!s from the selection unit identify the sector under the read/write heads. When the angular position signals match the sector address register signals, data transfor can begin. Data is writien on the addressed track for a valid write order; data is read from the addressed track for a valid read order or checkwrite order.

During execution of a write order; bits are written on the track by the Manchester encodira method, using the clock signals of a $3-\mathrm{MH} \angle$ oscillotor ir the controller. A counter controls the shifting of the traci. address and the writing of the five-byte preamble, the 1024 data bytes, the twobyte checksum, and the single nyte of zeros. The fivete preamble is generated at 'nputs to the K-register. The a bytes are accepted from the FAM circuits into the Kregister. Dara from the K-register is transferred to the Dregister in parallel and is shifted in series from the D-register to the selection unit. After all data bytes have been written, zeros are stored in the K-register (if necessary) to complete 1024 data bytes per sector, then the two-byte checksum is transferred from the P-register to the K-register. After the checksum is written, u byte of zeros is written before the read/write heads are disabled.

During execution of a read order, clocking is initiallycontrolled by the oscillator in the coli:roller. During this initial period, the addressed selection unit develops a clock signal from the Manchester-encoded data. After an interval established by logic circuits, ciock control is transferred to a data strobe clock signal developed in the addressed selection unit. When the preamble synchronization paltern is detected, the data is accepted serially in eight-bitbytes into the D-register and is transferred in parallel to the

J-register.From the J-register, the data passes to the FAM circuits. After the 1024 data bytes have been read, the twobyte checksum read from the addressed selection unit is compared with a checksum developed during execution of the read order. After the checksum comparison is made, no additional data is accepted from the addressed selection unit.

During execution of a checkwrite order, clocking is initially controlled by the oscillator in the controller, then by the data strobe clock. The preamble synchronization pattern indicates the start of data, as for a read order. Data from the IOP is moved as far as the D-register. As IOP data is shifted serially from the D-register, the data is compared with daia accepted from the addressed selection unir. This comparison is made for 1024 data bytes and for the twobyte checksum developed by controller logic. Th:s, the checkwrite order involves operations similar to those for execution of a write order (but does not include writing data) and includes operations similar to those for execution of a read order (but does not include transferring ciata to the IOP).

4-54 TUL Celay Line

The TDL delay line, which inciudes control flip-fiop TDT and assoziated logic elements, generates timing signals to enable data transfer in the selection unit interface circuits. (See figure 4-16.)

Whenevar flip-flop TDT is set, the TDL delay line :istarted. After 40 ns , TDT is direct reset. After 60 ns , the ir.put to the delay line is inhibited, so a new cycle cannot be started until the previous pulse has passed.

```
TDIOOO = TDTSET NTDLOSO
E/TDT = TDL040
```

The delcy line provides pulses of notninal 40 -ns durciion at intervals of $20,40,60,81$, and 100 ns . Signal 10 T 1 is equivalent to TDLO20; signal TDT2 is equivalent to TDLO80.

Flip-flop TDT, which is clocked by read/write clecik signal RWCK, is set wheraver TDTSET is true and is reset wherever TDTSET is false.

```
S/TDT = TDTSET
R/TDT = ...
C/TDI = RWCK
```

Signal TDTSET is controlled by signals generated k y the $B-$ counter and by the selection unit interface logic. During execution of a write order, signal TDTSET comes true at eight-bitintervals to enable the transfer from the K-register to the D-register of the five-byte preamb!e, the 1024 data bytes, and the two-byte postamble.


```
TDTSET \(=\) DXK \(+\ldots\)
DXK = WRITE NPOST BITTRWE + ...
BIT7RWE = B10 B11 B12 RME
```

During execution of a read order, no transfer of data from the K-register to the D-register takes place, and the pre-amble synchronization pattern is used to identify the start iof the data bytes. Once the data bytes are available, the TDL delay line is storted at eight-bit intervals to enable a transfer of data from the D-register to the J-register.

```
TDTSET = TDTSET1 + ...
    TDTSETI := BIT7RWE NFOST NPRE + ...
JXD = NPRE READ TDT2
```

ing execution of a checkwrite order, transfer of data the K -register to the D -register takes place, and the preamble synchronization pattern is used to identify the start of the data bytes. When the preamble synchronization pattern is recognized (PSPR true), the rext bit received from the seleciion unit will be the first data bit. Therefore, the TDL delay line is started to enable the first data byte received from the IOP (and in the K-register) to be transferred to the D-register and compared bit by bit with the first data byte received from the selection unit.

```
TDTSET = DXK + ...
    DXK = CHWR FSPR + ...
    PSPR = NDAR ND00 D01 D02 PSPBREND
PSPBREND = PSPB REND
PSPB = B07 B08 PRE RWE
REND = RWE RCHW
```

Subsequent data bytes from the ICP are transferred from the K-register to the D-register at eight-bit intervals.

```
TDTSET = DXK + ...
DXK = CHWR NPOST NPRE BIT7RWE + ...
```

Data bytes are received until postamble time (POST false).
For either read orders, write ora'c-s, or checkwrite orders, the TUL delay line is started at eight-bit intervals while flip-flops RWP and RWE are in the set state.

```
TDTSET = TDTSETI + ...
    TDTSETI = RWP BIT7RWE + ...
```


4-55 Interface Clocking

The clock signals controlling the selection unit interface circuits are contralled by an internal $3-\mathrm{MHz}$ oscillator having an output signal designated CLK3MH, flip-flops DSE and CLK, and contro! signals EXT and DSR. The read/write clock signal, which is designated RYCK, is generated by four identical circuits.

```
(RWCK-1-RWCK-4) \(=\) RWCK
    PWCK
    NEXT CLK clock, not ex-
                                tended performance)
    + CLK3MH ( 3.0 MHz write
    EXT NDSE clock, extended
                                    performance)
    + DSE DSR (Read clock)
```

Durins execution of any order, the read/write clock is generated by the internal clock af the start of a sectur. During this period, the controller is either writing the preamble or counting locally generaied clocks in a search for the prearitie synchronization patiern.

```
RWCK = CLK3MH EXT NDSE + ...
```

For a write order, this equation generates the read/wite clock throughout the sector. For a read order, the read/ write clock is controlled by the selection unit datc ittobe after DSE is set, as described in paragraph 4-59.

```
RYEK = DSE DSR + ...
    ISR = /DS/
```

When signal EXT is false (as described in paragraph 4-82), the read/write clock frequency is reciuced by a facte. of two, using flip-flop CLK as a frequency divider.

```
RWC:: = CI.K3MH NEXT CLK + ...
S/CL:i = NCiK NDSE
R/CLK = ...
C/CLK = CLK3MH
```

When control of the read/write clock is transferred io the data strobe, the reduced frequency clock is read from the signal as for an EP RAD selection unit.

4-56 B-Counter
The bit and byte counter (B-counter) consists of flip-flops B00 through B12 and associated logic elements. These flipflops, which have no reset inputs, are set by a clock signal
if the set input is true and are reset by a clock signal if the set input is false. All logic equations for the B-counter are written with the following simplifications:

$($ RWCK-1 -RWCK-4)	$=$ RWCK
PRE-1	$=$ FRE
BX0-1	$=$ BX0
NBX0-1	$=$ NBX0
$(\triangle 073)$	$=B 05$
$(\triangle 075)$	$=B 03 \mathrm{~B} 04 \mathrm{~B} 05$
$(\triangle 077)$	$=\mathrm{B} 12$
$(\triangle 079)$	$=\mathrm{B} 10 \mathrm{~B} 11 \mathrm{~B} 12$

The functions of the B-counter are:
a. To count bits fransmitted to the addressed selection unit or received from the aadressed selection unit, in serial order
b. To coniro! data transfers within the controller so that eight-bit bytes are trunsferred between registers
c. To control writing of the five-byte preamble during execution of a write orde-
d. To enable search for the four-bit preamble synchronization pattern during exprution of a read order or checkwrite order
e. To rdentify the po;tanble during execution of a read order, write order, or checkwrite order

Bits are counted by flip-f'ops B10, B11, and B12; bytes are counted by flip-flops B00 through B09. The description of the B-counteroperation is related to the sequences described in paragraph 4-59.

At the beginning of each intersector gap, flip-flop PRE, RWP, and BCE are in the reset state, and signals $B X O$ and SECP ore false. Read/write clock signal RWCK is generated from a source internul to the controller. When a sector pulse or index pulse is deiacted, a true SECP signal clears flip-flops B00 through B05.

$$
\begin{aligned}
(E / B 00-E / B O 5) & =S E C P \\
\text { SECP } & =S P R+I P R \\
\text { SPR } & =/ S P / \\
\text { IPR } & =/ I P /
\end{aligned}
$$

The next read/write clock sets TSE and generates a true BXO signal that reseis flip-flops BO6 through 812 because set inputs to each of these flip-flops are false.

During execution of a write order, flip-flops BU6 through B12 count subsequent read/write clocks in binary sequence from 0000000 to 1110111 (decimal 119). Flip-ilop PRE is set when the B-counter is in state 1001000 (decimal 72). Flip-flop RVE is set when the B-counter is in state 1001100 (decimal 76), provided the sector compare signal is true and nc errors are detected. Flip-flop RVWP is reset when the B-ccunter is in state 1010000 (decimal 80). Flip-flop $B C E$ is set when the B-counter is in sicite 1110000 (decimal 1i?). When the B-counter reaches a count of 1110111 (docimal 119), signal $B \times 0$ is true, resetting flip-flops BO6 thiough. B12 as before and causing PRE to be resit.

```
BXO = PSP WRITE BITTRWV & ...
    PSPB = B07 B08 PRE RWE
    BIT7RWE = B10 B11 B12 RWE
R/PRE = BXO
C/PRE = RWCK
```

Flip-flop BCE is reset one clock time later whea PSPB is false.

$$
\begin{aligned}
& \mathrm{S} / \mathrm{BCE}=\mathrm{PSPB} \\
& \mathrm{R} / \mathrm{BCE}=\cdots \\
& \mathrm{C} / \mathrm{BCE}=\mathrm{RWCK}
\end{aligned}
$$

While PRE is set and BCE is reset, signal WPRE causes the five-byte preamble to be stored in the K-register for transfer to the D-register. At counts $79,87,95$, and 103, the pattern 01010101 is stored in the K-register. At count 111, the pattern 00110101 is stored in the K-register. (See paragraph 4-57.)

```
KXPRE = WPRE BIT7RWE (Counts 79, 87, 95, 103, ili)

> WPRE \(=\) PRE WRITE NBCE (Counts 73 through 112)
```

PSPWEN $=$ B07 B09 (Counis 104 through 111)
As $B C E$ is reset, the B-counter is placed in state 0000000 001000 and begins a binary count to state 1111111111 111.

When the B-counter reaches its maximum count, it is cleared by the next clock signal and POST is set.

```
S/POST = NPOST NPRE
C/POST = B00 B01 B02 B03 B04 B05 B05CK + ...
```

The B-counter then counts 32 bits (count 0000000011 111) and causes RWE to be reset, disabling the read/write heads.

```
R/RWE = RWERST
        RWERST = POSTB89 BIT7RWE
        FOSTB89 = POST B08 B09
        BIT7RWE = B10 B11 B12 RWVE
    C/RVE = RWCK
```

The B-counter is cleared at the start of the new sector, as describei above. During execution of a read order, the B-counter is cleared by a sector pulse or index pulse and counts in cinary sequence. At a count of 76, RWP is resei and DSE is direct set to transfer clock control to the data strabe of the addressed selection unit.

```
R/RYYP = RWPRST
    RWPRST = BOS BO8 + ...
M/OSE = DSEM
    DSEM = NRWP REND
    ?END = RWE RCHW
```

Preamble :lip-flop PRE may be reset during any of the 16 clock times from count 112 to count 127 if the preamble synchronization pattern is recognized (PSPR true).

R/FRE	$=$ BXO
BXO	$=$ PSPR $+\ldots$
PSPR	$=$ NDAR NDOO DOI DO2 PSPBREND
PSPBREND	$=$ PSPB REND
PSPB	$=$ BO7 BO8 PRE RWE
C/PRE	$=$ RWCK

When PSPE is true, BCE is set. While PSPB is true, ECE remains ir: the set state; after PRE is reset, BCE remains in the set state for one clock time and clears the B-counter, as for the write order.

During execution of a read order, the B-couniez is preset to 0000000000000 (instead of 0000000 COl 000 , as for
a write order). The B-counter then advances to state 1111 111111111 , is cleared, and counts to 0000000011111 , similar to a wite order.

During execution of a checkwrite order, the B-counter operates as it does for a read order, first transferring clock control to the addressed selection unit, then searching for the preamble synchronization pattern, counting data bytes, and counting preamble bits.

4-57 K-Register

The K-register, which consists of buffered latches K00 through K07, stores data during execution of read orders, write orders, or checkwrite orders. Data stored in the Kregister while signal KXO is true is retained until KXO is false.

```
K00 = KOO KXO + ...
. - .
. .
KO7 = K07 KX0 + ...
```

The K-register is cleared during phase RSA of an order out service cycle when a sense order is executed, when data is transferred from the K-reyister to the O-register, and after the TDT delay line is startes during execution of a write order or checkwrite order.

```
NKXO = PHRSAOO + SENSE + KXOEN
    + WCHW TDT2
KXOEN = OXINEN 1CS100-3
```

During execution of a sense urder, two bytes of data are transferred through the K-ingister latches to the O-register under control of the byte ccunter. For byte 2 of a sense order (BKZW true), four bits of the track address are accepted from the T-register, and the four-bit sector address is accepted from the S-register.

For byte 3 of a sense order ($B K^{\circ} W Z$ true), the address for the sector currently under the read/write heads of the disc file (angular position) passes through K04, K05, K06, and K07 of the K-register.

K04	$=$ ANOR KXSENSE2 $+\ldots$
KXSENSE2	$=$ SENSE BKWZ
K05	$=$ ANIR KXSENSE2 $+\ldots$
K06	$=$ AN2R KXSENSE2 $+\ldots$
$K 07$	

During execution of a write order, the bytes of the preamble are stored ir the K-register while signal KXPRE is true. When signal PSPWEN is false, the bit sequence (01010101) is stored in the K-register; when signal PSPWEN is true, the bit sequence (00110101) is stored in the K-register. The preamble consists of four bytes of (0101 0101) followed by the preamble synchronization paitern of (001; 1101). This pattern is noted in the order K00, K01, K02, ... K07. In all cases the signal level for K00, K04, and K. 06 is falsc, and the signal level for K03, K05, and K07 is true. Signals KXFRE and PSPWEN are controlled Ey the B-counter and are defined in paragraph 4-56.

```
K01 = KXPRE NPSPWEN + ...
K02 = KXPRE PSPWEN + ...
KO3 = KXPRE + ...
K05 = KXPRE + ...
KO7 = KXPRE + ...
```

V vitile the controller is executing a read order, write crder, oi checkwrite order, data bytes are transferred from the adriressed location of the FAM module to the K-register under control of the TRL delay line. (See parcaraph 4-41.)

```
KOO = ROO KXR + ...
    KXR = KXREN RREAD-2 TRS180
    KXREN = BKZZ + NREADRR
K01 = R01 KXR + ...
    •
\bullet
K07 = R07 KXR + _..
4-58 D-Register
```

The D-register, which is the temporary storage register for data passing between the controller and the selection unit,
consists of flip-flops D00 ithrough D07 and associated logic elements. During execution of a write order or a checkwrite order, the D-register accepts data in parallel from the K-register and shifts the data serially to the selection unit before accepting a new byte. At the start of a write order or checkwrite order, the D-register accepts the fivebyte preamble from the K-register; at the end of a write order or checkwrite order, the D-register accepts the twobyte checksum from the P-register. During execution of a read order, the D-register accepts data serially from flipflop DAR in eight-bit bytes and transfers the byte in parallel to the J-register before the next serial bit is accepted. The preamble and the checksum are read into the D-register but are not transferred to the J-register. During execution of a checkwrite order, IOP data transferred serially from the D-register (as in a write order) is compared with selection unit data transferred serially from the flip-flop DAR (as in a read order). If a mismatch occurs, an error signal is aenerated. The 1024 data bytes and the two-byte checkare compared bit by bit during a checkwrite order. ing the intersector gap time, ruit of the D-register is used for track address incrementiny.

The D-register is clocked by read/write clock signa! RWCK, and reset inpuis are always true.

$$
\begin{aligned}
& (C / D 00-C / D 07)=\text { RWCK } \\
& (R / D 00-R / D 07)=\ldots
\end{aligned}
$$

Therefore, each time RWCK goc, false, each flip-flop in the D-register is set if its set input is true and reset if its set input is faise. When signal DXK is true, the contents of the K-register aie transferred to the D-register.

$$
\begin{array}{cc}
S / D 00=K 01) & D X K+\ldots \\
\cdot & \cdot \\
\cdot & \cdot \\
S / D 07= & K 07 D X K+\ldots
\end{array}
$$

After read/write enable flip-flop RWE is set during execution of a write order, DXK enabies data transfer. Eight bits are accepted by the D-register each time signal DXK is true. This operation is inhibited during postamble time, during which time the checksum and single byte of zeros are stored.

```
DXK = WRITE NPOST BIT7PWE + ...
```

During execution of a checkwrite order, the preamble synchronization pattern must be recognized (PSPR true) before any data transfers are made. A data byte from the IOP is in the K-register while a search for the pattern is conducted, and the byte is transferred when PSPR is true.

```
DXK = CHWR PSPR + ...
```

After this initial byte is transferred, bytes are transferred at eight-bit intervals until posiamble time is reached.

```
DXK = CHWR BIT7RWE NPRE NPOST + ...
```

When signal DXP is true, the contents of P -register bits 7 through 14 (checksum bits) are transferred to the D-register.

```
S/D00 = DXP P07 + ...
& 曾
```

This transfer is made for two byte times during postamble time (POSi true).
DXI = POST BIT7RWE

During the intersector gap time, flip-flop DSL is set and enables a shift in four flip-flops of the D-register.

```
S/D04 = D05 DSL + .. 
S/Dコ7 = D07SET DSL + ... (Trac'k address incremeni)
```

The new data shifted in from signal D07SET is used curing track address increment, as described in paragroph 4-70.

During execution of a read order or checkwrite order, the contents of the D-register are shifted right, and new dota is stored from flip-flop DAR. Flip-flop DAR accepts data from the selection unit.

S/DAR	$=$ DAIR REND
DAIR	$=/$ DAI/
REND	$=$ RCHW RWE
R/DAR	$=\ldots$
C/DAR	= RWCK
S/DO2	$=\mathrm{DXSR}$ DAR +
S/D01	$=$ DXSR DOO
-	-
.	-
S/007	$=$ DXSR DOS + .

After eight bits have been stored, the byie is transferred to the J-register.

Signal DXSR is true when all other signals controlling Dregister flip-flop inputs are false.

```
DXSR = NDSL NDXK NDXP
```

Therefore, signal DXSR comes true during execution of read orders or checkwrite orders to enable acceptance of data from the addressed selection unit. In each case, read/ write clock signal RWCK is controlled by a local oscillator until the preamble synchronization pattern is detected. After this event, RWCK is controlled by the data strobe signal extrocted from data written un the track. During execuiion of a chect: write order, the serial output from D07 of the D-register is compared with the serial output from DAR for all 1024 data bytes and for the two checksum bytes.

$$
\begin{aligned}
\text { CHWER }= & \text { CHWEREN (DAR }+ \text { D07) } \\
& \text { N(DAR D07) }
\end{aligned}
$$

CHWEREN $=$ CHV'R NPOSTB89 NPRE RWE

4-59 Interface Control Circuits

The selection unit interface is controlled by flip-flops that synchronize data transfer, detect the preamble and postamble, control interface clocking, and control incrementing and transferring the track address.

Flip-Flop Function BCE B-counter enable	
DSE	Data strube enable
DSL	D-register shift left enable (used only for tiaci, and sector incrementing)
PRE	Preamble detect

4-60 TRACK SHIFT SEQUEiNCE. (See figure 4-17.) While a read order, write order, or checkwrite ordeı is being executed, the track address is inciemented during the intersector gap time, and the incremented track address is transmitted serially to the addressed selection unit.

At the beginning of the intersector gap time, flip-flops SECPD and POST are in the set state and flip-flops TSE, DSL, and RWP are in the reset state. Read/write clock signal RWCK is generated by the local oscillator, as described in paragraph 4-55. SECPD is reset at the falling edge of sector pulse signal SPR or index puise signal IPR.

```
S/SECPD = GND
R/SECPD = ...
C/SECPD = SECP
    SECP = SPR + IPR
    SPR = /SP/
    IPR = /IP/
```

After SECPD is reset, TSE is set. Signal DSL is then direct set.

```
S/TSE = NRWP NSECPD
C/TSE = RWCK
M/DSL = TSE
```

Signal PXS comes true, enables a data transfe: from the Sregister to the P-register and from the T-register to the P register, and clecrs the B-counter. (This date is the incremenred track address and sector addiess.)

```
BXO = PXS + ...
    PXS = NRWP TSE
PXT = NRVYP TSE
```

At rine next clock signcl, KWP is set, causing FYS to become false, and SECPD to be direct set.

I/RWP	$=$ PXS NRWE
こ/RWP	$=$ RWCK
$M /$ SECPD	$=$ SECPDM
SECPDM	$=$ RWP $+\ldots$

For the next 11 clock times, TSE is in the sti state, and clock signa! SCID enables the 11 -bit track adbiress to be shifted out of the P-regicter to the selection unit. (Refer to paragraph 4-60.)

```
\(/ \mathrm{SCl} /=\mathrm{SClD}\)
    NSCID = TSE RWP RWCK
/TRK/ = PII
```


Figure 4-17. Track Shifi Sequence, itming Diagram

Flip-flop TSE is reset as the last track shifr enable clock is generated.

R/TSE	$=$ TSERST
TSERST	$=$ B09 B11 $+\ldots$
$C /$ TSE	$=$ RWCK

Yer the track address has beeri shifted, the sequence of operations depends on the type or order being executed.

4-61 WRITE ORDER SEQUENCT. If a write order is being executed, the B-counter is cleared, the track address is shifted, and RWP is set as described in paragraph 4-60. After the B-counter is cleared, it counts read/write clocks in binary sequence, as described in paragrapí 4-56.

When the B-counter reaches a count of 72, PRE is set. (See figure 4-18.)

$$
\begin{aligned}
\text { S/PRE }= & \text { PRESET WRCH } \\
\text { PRESET }= & \text { RWP B06 B09 NB10 NBII (NPET } \\
& +\ldots .)
\end{aligned}
$$

C/PRE = RWCK
While PRE is set (B-counter states 73 through 119), the fivee preamble is written. (See paragraph 4-56.)

```
VPGE = WRITE PRE NBCE
```

When the R-counter reaches a count of 76, RWE is set if the ser*~r under the read/write heads is the sectc: searched for (SECOMPR true) and if no errors have been detecied. Refer io paragraph 4-72 for a description of error flip-flop operation.

```
S/RNNE = PRE RWESET
    RWESET = BIO SECOMPR NUNE NFAULT
    NFAULT = NRER NSEN NWPV
C/RWE = RWCK
```

After $R!V E$ has been set, the read/write heads in the addressea selection unit are enabled by signal/WEN:/, so that daia signal /DAT/ and clock signal/SC2/ arr validated.

```
/WEN/ = WEND
    WEND = WRITE RWE
/SC2/ = SC2D
    SC2D = WRITE CLK3MH
/DAT/ = D07
```


Flip-flop RWP is reset when the B-counter reaches 80.

```
R/RWP \(=\) RWPRST
    RWPRST \(=\) B06 B08 \(+\ldots\)
\(C\) RWP \(=\) RWCK
```

After the preamble is written, PRE is resef, BCE remains in ? the set state for one clock time, and the B-counter is preset to (0000000001000).

R/PRE	$=$ BXO
BXO	$=$ PSPB WRITE BIT7 RWE
PSPB	$=$ B07 BO8 PRE RWE
BIT7RWE	$=$ B10 B1I B12 RWE
C/PRE	$=$ RWCK
S/BCE	$=$ PSPB
R/BCE	$=\ldots$
C/BCE	$=$ RWCK
S/B09	$=$ BO9XI BXO $+\ldots$
B09XI	$=$ WCHW RWI

When the B-counter reaches a maximum count (1 111111 '111 111), POST is set to identify the time for writing the postambie.

```
S/POST = NPOST NPRE
C/POST = B00 B01 B03 B04 B05 B05CK + ...
    B05CK = B06́ NBCE + ...
```

After the postamble has been written (32 bits), RWE is reset.

```
R/RWE = RWERST
    RWERST = POSTB89 RIT7RWE
    POSTB89 = POST B08 B09
    BIT7RWE = B10 B11 B12 RWE
    C/RWE = RWCK
```

The interface control circuits are row in the initial states, ready for sector pulse or index pulse and track address shifting, as before.

4-62 READ ORDER SEQUENCE. This paragraph emphasizes difference in operation between the write order sequence
described in paragraph 4-61, and the read order sequence.
If a read order is being executed, the B-counter is cieared, the track address is shiftcd, and RWP is set as described in paragraph 4-60. After the B-counter is cleared, it counts read/write clocks in binary sequence, as described in paragraph 4-56. When the B-counter reaches a count of 72 , PRE is set, similar to a write order sequence. When the B-counter reaches a count of 76 , RWE is set, similar to a write order sequence.

For a read order, the interface control circuits must search for the preamble synchronization pattern (0011), rather than write the preamble. The state of the B-counter when the patiern is detected may not be the same as the state of the B-counter when the pattern was written. Therefore, a search is conducted for the synchronization pattern for two byte times (16 bits). Furthermore, since data must ba read from the selection unit, the data strobe signal must be allowed to control the read/write clock at some time during execution of the read order.

When the B-counter reaches a count of 80 , RWP is ieset as for a write order, and DSE is direct sot, enabling reas/wite clock signal RWCK to be controiied by the data strobe signal.

$$
\begin{aligned}
M / D S E & =\text { DSEM } \\
\text { DSEM } & =\text { NRWP KEND } \\
\text { REND } & =\text { RWE RCHW } \\
\text { RVCK: } & =\text { DSR DSE }+\ldots \\
\text { DSR } & =/ D S /
\end{aligned}
$$

Once set, DSE remains in the set state until RWE is ;eset at the end of the postamble.

```
S/DSE = DSE RWE
R/DSE = ...
C/DSE = RWCK
```

Preamble fiip-flop PRE may be reset during any of the 16 clock times from count 112 of the B-c.ounter to couni 128 of the B-counter (PSPB true).

```
R/PRE = BXO
    BXO = PSPR + ...
    PSPR = NDAR ND00 D01 DO2 PSPBREND
    PSPBREND = PSPB REND
    PSPB = B07 B08 PRE RWE
C/PRE = RWCK
```

Signal PSPR is true when the preamble synchronization pattern (0011) has three bits in the D-register and one bit in data flip-flop DAR. If the preamble is missed, PSPB is true at count 127 and error flip-flop CER is set. (See paragraph 4-76.)

```
PSPM = B09 BIT7RWE NRWP PSPBREND
    BIT7RWE = BlO BII BI2 RWE
```

For the read order, flip-flop $B C E$ is set at count 112 to prevent a search for the preamble beyond count 127. If the preamble synchronization paitern is recognized, PRE is reset, and BCE is reset on the following clock, similar to a write operation.

```
S/BCE = PSPB
R/BCE = ...
C/BCE = RWCK
```

If the preamble synchronization pattern is not recognized, BCE remains in the set state, and a true $B X O$ signal is generated after BO6 is reset of count 127.

$$
B X 0=P R \bar{N} \text { NB06. ... }
$$

After $B X 0$ is true, PRE is resnt, then BCE is reset.
While $B C E$ is set, the most significant flip-flops of the $B-$ counter carinot be clocked.

$$
\begin{array}{rl}
(C / B 00-C / B 04) & =P P E \text { B05CK } \\
B 05 C K & =B C 5 \text { NBCE } \\
C / B 05 & B 05 C K
\end{array}
$$

After $B C E$ is reset, the B-ccunter is cleared.
For the read order sequenct, signal $B 09 \mathrm{X} 1$ is not true, and the B-counter begins counting data bytes with a count of (0000000000000). Thus the count of the B-counter is one less than the data byte being read, as in the following examples:

Data Byte	Write Order State	Read Order State
1	0000000001 XXX	0000000000 XXX
2	$0000000010 \times X X$	0000000001 XXX
27	$0000011011 \times X X$	$0000011010 \times X X$
1023	$1111111111 \times X X$	$111111110 \times X X$
1024	$0000000000 \times X X$	$111111111 \times X X$

The least significant bits of the B-counter count the eight bits of each byte. During execution of a write order, the B-counter is cleared just before the last data byte is to be written.

Data accepted from the addressed selection unit is read by data flip-flop DAR after read/write enable flip-flop RWE is set.

```
S/DAR = DAIR REND
    DAIR = /DAI/
    REND = RWE RCHW
R/DAR = ...
C/DAR = RWCK
```

4-63 CHECKWRITE ORDER SEQUENCE. This paragraph emphasizes the differences in operation between the write orier sequence described in porcgraph 4-61, the readorder seguence described in paragraph 4-62, and the checkwrite orrer sequence. If a checkwrite order is being executed, the B-counter is cleared, the track address is shifted, and RIVP is set as described in paragraph 4-60. Atter the Bcosnter is cleared, it counts read/write clocks in binary sequence, as described in paragraph 4-56. When the Bccunter reaches a count of 72, PRE is set, as for a write order sequence. For a checkwrite order, the interface contro! circuits must search for the preamble synchronization pattern (0011), as in the read order, rather than write the preanble. Since data must be read from the selection unit, $\mathrm{H}: 2$ data strobe signal must be allowed to control read/write cloc' PWCK at some time during execution of the checkwrite order. Therefore, data strobe enable flip-flop is set, PRE is reset when the preamble synchronization pattern is recognized, and data flip-flop DAR reads datc from the seiection unit, similar to a read operation.

```
M/DSE \(=\) DSEM
        DSEM \(=\) NRWP REND
        REND \(=\) RWE RCHW
RWCK \(=\) DSR DSE \(+\ldots\)
        DSR \(=/ D S /\)
R/PRE \(=B X O\)
        \(B X O=P S P R+\ldots\)
        PSPR = NDAR ND00 D01 D02 PSPBREND
S/DAR = DAIR REND
        DAIR \(=/ \mathrm{DAI} /\)
R/DAR \(=\ldots\)
C/DAR \(=\) RWCK
```

4-64 SENSE ORDER SEQUENCE. During execution of a sense order, the interface control logic inhibits data transfer until the period of the intersector gap time following the transfer of the track address. This restriction guarantees that data accumulated for the sense order (figure 3-5) identifies the next sector for which a full 1024 data bytes can be processed. During the order out service cycle and after the sense order code is stored, service call signal SCD can(not be raised until flip-flop SEN! is set and flip-flop TSE is reset.

```
M/SCN
    = DCB PHFS CYCLE/C
    N(NSCNMEN)
```

```
N(NSCNMEN) = NCDN SCNMEN1 + ...
```

N(NSCNMEN) = NCDN SCNMEN1 + ...
SCNMENI = SEN NTSE + ...

```
SCNMENI = SEN NTSE + ...
```

--flop SEN is not set until the previously incremented rack address and sector addressitave been transferred from the T -regisier and the S -registe: to the P -register. (See paragraph 4-70.)
?

$$
\begin{aligned}
\text { S/SEN } & =\text { PXS SENSE } \\
\text { PXS } & =\text { TSE NRWP } \\
\text { C/SEN } & =\text { RWCK }
\end{aligned}
$$

Flip-flop TSE is reset by the following read/write clock. (See paragraph 4-60.) Once SEN is set, it cannot le reset until the order in service cycle is entered, causing NDATA to be true. (See paragraph 4-29.)

$$
R / S \Sigma N=N D A T A
$$

-efort, for a sense order, the data in service cycle for first byte cannot begin until SEN is set, after which a transfer from phase FS to phase :SZ is possible. Flip-flop SCN is direct set during phase F S. When CDN is set, the direct set equation is inhibited and the order in service cycle follows.

4-65 ADDRESSING CIRCUITS

4-66 P-Register

The P-register, which consists of flip-flops P00 Hirough P15 and associated logic elements, is clocked by read/write clock signal RWCK. Refer to paragraph 4-55 for a description of the read/write clock. A tlip-flop of the P-register is reset if the reset input is true and if the set input is false. iIf the set input is true, the flip-flop is set regardless of the level of the reset input. Equations for the P-register are written with the following simplifications.

PXSR-1	$=$ PXSR-2 = PXSR	(P-register shift right)
PRST-1	$=$ PRST-2 =PRST	(Preset P- register)
$($ RWCK-1-RWCK-4) $=$ RWCK	(Read/write clock)	

Reset inputs to the P-register are true when a D-register shift left is enabled (DSL true) and during the intersector gap time when data cannot be read from, or transmitted to, the addressed selection unit (NRWP true).

```
(R/POO-R/P15) = PRST
    PRST = DSL + NRWP
```

For one clock time during the intersector gap time, signal PXT is true, causing the track overflow bit TOF and the contents of the T-register to be transferred to the P-iegister. (See figure 4-17.)

```
S/POO = PXT TOF + ...
        PXT = TSE NRWP
S/P01 = PXT T00 + ...
    .
S/F1! = PXT T10 + ..
```

At the sume time, a sector address is stored in flip-ficps P12 through ${ }^{\text {D }} 15$.

S/P12	$=$ PXS SOO $+\ldots$
P 1 S	$=$ TSE NRWP
S/P13	$=$ PXS P13LD $+\ldots$
PI3LD	$=$ P13LDEN + S01
F13LDEN	$=$ S03 S02 S00 EXT
S/P14	$=$ PXS S02 $+\ldots$
S/P15	$=$ PXS SO3 $+\ldots$.

For all sector addresses from 0000 through 1010, the contents of the S-register are transferred unchanged. Therefore, during the incrementing process described in paiagraph 4-70, the normal binary sequence will be followed until a count of 1011 is reached. For this count, a value of 1111 will be transferred to the P -register if an EP RAD storage unit is connected (signal EXT true). In this case, the incrementing process generates an address of 0000 , so that a
sector match occurs for sector 0000 of the next track. (The track address is incremented in normal binary sequence each time that the sector address changes from 1111 to 0000.)

Just before preamble time, the incremented track address is returned to the T -register and the incremented sector address is returned to the S -register. During preamble time (PRE true), the P -register is preset to all ones in preparation for generation of the checksum. When signal PXSR is true, the contents of the P-register are shifted right, while new data is stored in flip-flop POO.

The new information is used to generate the checksum while data is processed, as described in paragraph 4-71.

4-67 S-Register
The S-register, which consists of buffered latches S00 through S03 and associared logic elements, stores the address of the sector at which a rend sequence or write sequence will hegin when executed. During execution of a seek order, the S-register is loaded from the J-register under control of the byte counter and the TRL delay iine, as described in paragraph 4-97.

S00	$=J 04 S X J+\ldots$
$S X J$	$=$ SEEK RYORITEDO BKWZ TRS 120
$S 01$	$=J 05 S X J+\ldots$
$S 02$	$=J 06 S X J+\ldots$
$S 03$	$=J 07 S X J+\ldots$

Signal SX0 is used to clear the S-register before storage of new data and to retain the stored data.

```
SOO = SOO SXO + ...
    - .
    • -
S03 = S03 SX0 + ...
```

During phase RS of an order out service cycle, the Sregister is cleared if a seek order is to be executed, so that a new addiress can be stored.

$$
\text { NSXO }=\text { PHRS ORDOUT SEEK }+\ldots
$$

At the beginning of each sector, the S-register is cleared just before the incremented value is transferred from the P register if a read order, write order, or checkwrite order is being executed.

NSK0	$=$ RWP TDLO20 $+\ldots$
SOO	$=$ SXP P12 $+\ldots$
SXP	$=$ STXPEN TDL100
STXPEN	$=$ SXPEN RWP
SXPEN	$=$ NPET $+\ldots$
S01	$=$ SXP P13 $+\ldots$
S02	$=$ SXP P14 $+\ldots$
S03	$=$ SXP P15 $+\ldots$

Exctor compare signal SECOMPR is controll:d by a comparison between the contents of the S-regisier and the angular position signa's from the addressed selection unit.

```
    SECOMPR = (ANOR + NSOO) N(ANOR NSOO)
    (AN1R + NSO1) N(ANIR NSO1)
    (AN2R + NSO2) N(AN2R NSO2)
    (AN3R + NS03) N(AN3R NS03)
    ANOR =/ANO/
    ANIR = /ANI/
    AN2R =/AN2/
    AN3R = /AN3/
4-j8 T-Register
```

The T-register, which consists of buffered latches T00 triough T10 and associated logic elements, stores the adciress of the track from which data will be read or into which suta will be written. During execution of a seek order, the T-register is loaded from the J-register under control of the byte counter and the TRL delay lirie, as described in paragraph 4-97. The 11 bits (two of which shouid always be zeros) are stored in two consecutive bytes.

```
T00 = J01 TXJ + ...
    TXJ = SEEK RWRITEDO BKZW TRS130
T01 = J02 TXJ + ...
T06 = 107 TXJ + ...
```

The bits of the second byte are transferred from the Jregister to both the T-register and the S-register.

```
T07 = J00 SXJ + ...
    SXJ = SEEK RWRITEDO BKWZ TRS130
T08 = J01 SXJ + ...
    = J02 SXJ + ...
    = J03 SXJ + ...
```

Signal TXO is used to clear the T-register before storage of new data and to retain the stored data.

```
T00 = TOO TXO + ...
```

```
- .
T10 = T10 TX0 + ...
```

During phase RS of an order oui service cycle, the Tregister is cleared if a seek order is to be executed, so that a new address can be stored.

```
TXO = SXO
    NSXO = PHRS ORDOUT SEEK + ...
```

At the beginning of each sector, the T -register is cleared just before the incremented value is transferred from the P-register if a reca order, wite urder, or checkwrite order is being executed.

```
TXO = SX0
    NSXO = RWP TDLO2i + ...
T00 = TXP PO1 + ...
    TXP = STXPEN TLI,100
    STXPEN = SXPEN RWF
    SXPEN = NPET + ...
T01 = TXP PO2 & ...
    • -
-2,
T10 = TXP P11 + ...
4-69 U-Register
Z
The U-register, which consists of flip-flops UO, UI, and U 2 and associated logic elements, stores the address of
```

the EP RAD storage unit addressed for an input/output operation. The set input signals to the U-register come true and are larched during phase FSL of a response to an IOP command. Data is clocked into the U-register only when device controller busy flip-flop DCB is set when a new input/output operation is started.

```
(C/U0-C/U2) = DCBSET
    DCBSET = PHFSL SIOPOSS OPER
    SIOPOSS = SIOU NDCB NCIL
(R/UD-R/U2) = ...
S/UO = SUOD
    SUOD = DA5R IOP + PHFSL SUOD + ...
SNUI = SUID
    SUID = DA6R IOP + PHFSL SUID + ...
S/U2 = SU2D
    SU2D = DA7R IOP + PHFSL SU2D i ...
```

During phase FSL of any input/output seguence, the coritents of the U-register are compared with the content; of IOP data ines /DA5 / through /DA7/. Signal DVSEL is true if the two sets of signals are identical.

$$
\begin{aligned}
\text { DVSEL }= & (\text { SUOD }+ \text { NUO) N(SUOD NUO) (SUl1D } \\
& + \text { NU1) N(SU1D NU1) (SU2D + NU2) } \\
& \text { N(SU2D NU2) }
\end{aligned}
$$

The contents of the U-register control address signals to the EP RAD siorage units.

$$
\begin{aligned}
& \text { /ID }{ }^{\prime}{ }_{j}^{\prime}=\text { SUOD } \\
& / \text { ID1/ }=\text { SUID } \\
& / \text { ID2 } / /=\text { SU2D }
\end{aligned}
$$

4-70 Address Incrementation

The initial track address and sector address are loaded by a seek order, as described in paragraph 4-97. During execution of a rend order, write order, or checkwite order, two operations must take place during the intersector gap time. First, the sector address must be incremented so that a true sector compare signal SECOMPR can be generated for the next sector in sequence. Second, if the sector address changes from 1011 (binary 11) to 0000, the track address must be incremented, so that the next track address in sequence can be selected. These operations are controlled by the P -register and flip-flop D07 of the D-register. (See figure 4-19.)

During the intersector gap time, the contents of the T register and S-register are transferred to the P-register when PXS and PXT are true. (See figure 4-17.) Flip-flop D07 is set at the same time.

```
S/D07 = D07SET DSL + ...
    D07SET = BXO + ...
```

i For the next 16 clock times, the contents of the P-register are shifted right (from P00 toward P15) while new data is stored in P00. For 11 of the 16 clock times, the 11 -bit track address is transmitted to the addressed selection unit.

$$
\begin{array}{ll}
/ \mathrm{SCI} /=\text { SCID } & \text { (Clock) } \\
/ \text { TRK/ }=\text { PII } & \\
\text { (Track address bits) }
\end{array}
$$

Flip-flop D07 acts as the carry flip-flop for a serial addion of one of the contents of the P-register. After the one eset in D07 is added to the least significant bit (P15) of the P-register, D07 remains in the set state if a carry is generated.
i S/DO7 = D07SET DSL $+\ldots$

$$
\text { D07SET }=\text { D07 P15 }
$$

As the serial addition process continues, the incremented address is shifted into POO, and the more significant bits of the previous address are shiffec inio P15. When no carry is generated, D07 is reset and the bits of the previous address are shifted unchanged.

$$
\begin{aligned}
& S,-00= \\
& \text { POOSK POOSET } \\
&=(\text { POOSETEN }+ \text { P15 }) \\
&\text { N(PCOSETEN P15 }) \\
& \text { POOSETEN }= \text { DC7. NREADRWE }+\ldots
\end{aligned}
$$

Therefore, as a track address is transmitted to the addressed selection unit, a new track address is generated and stored in the P-register. Just before flip-flop RWP is reset, the new track address and sector address are transferred to the T -register and the S -register.

```
TXP = STXPEN TDLIOO
    STXPEN = SXPEN RM/P
    SXPEN = NPET + ...
SXP = STXPEN TDLI00
```

Circuits of the P -register store a code of 1111 in flip-flops P12 through P15 if the code in the S-register is 1011. Thus, when the address incrementation process takes place, the new sector address is 0000 and the track address is incremented in normal binary sequence.

4-71 Checksum Generation

The checksum is generated in the P-register during the execution of a write order, read order, or checkwrite order. In all cases, the 16-bit checksum is transferred to the Dregister one byte at a time after the 1024 bytes of the sector have been processed. For a write order, the checksum is written on the disc file in the sector for which the checksum was generated. For a read order or checkwrite order, the checksum generated during execution of the order is compared bit-for-bit with the checksum read from the disc file. (See figure 4-20.)

After flip-flop PRE is set and RWP is reset (figure 4-18), the P-register is loaded with all ones.

$$
S / P O O=P R E \text { NRWP }+\ldots
$$

After the preamble has been written during execution of a write order or detected during execution of a read order or checkwrite order, PRE is reset and the process of yemerating the checksum begins. Because signal PRST is true; the contents of the P -register are continually shifted right (from POO toward P15) and new data is entered in P00.

```
S/P00 = PXSR POOSET + ...
    PXSR = PRST NPXS
    PRST = NRWP + ...
```

During execution of a write order or checkwrite oncer (NREADRWE true), P15 and D07 generate the new data; during execution of a read order (RFADPWE true), Pi5 and DAR generate the new data.

```
PCOSET = (PJOSETEN + P15)
    N(POOSETEN P15)
    POOSETEN = READRVVE DAR
        + NREADRWE D07
    KEADRWE = READ RWE
```

In either =ase, an .xclusive OR operation is performed on the content of the P-register and the new data, as indicated in figure 4-20, for execution of a write order or checkwrite order. Data bytes are stored in the D-register anti read serially as data is circulated in the P -iegister. in the example of figure $4-20$, a byte of 10110010 in the D.register, when processed with the 11111111 initiclly in the P-register, produces a byte of 01001101 , whitich is stored in the P-register. The second data byte of the example, when processed with the 11111111 initially stored in the second half of the P -register, produces a byte of 10101100 . In a similar manner, after these byies are processed with additional data bytes, the P-register contains (from P15 to P00) the bits 0000111101011010 , which will be processed with the next data bytes received. The 16 bits stored in the P-register after 1024 data bytes are processed (including any bytes of all zeros) become the

checksum stored on the disc file. When data is read serially from the disc file at the output offlip-flop DAR, the checksum generated should be identical to the checksum read from the disc file following the 1024 data bytes. The process is identical whether POOSETEN is controlled by D07 or DAR.

4-72 ERROR CIRCUITS

The error circuits of the controller consist of the flip-flops listed in table 4-5 and of the associated logic elements. These flip-flops and the signais controlled by them provide information to the IOP concerning error conditions that occur during execution of orders or as a result of power failure or from programming errors. Error signals are provided during the order in service cycle of an input/output operation. Program response to these error conditions may - cause data to be provided by execution of additional commands (TDV, AIO, TIO, HIO, or SIO), as summarized in the 4-5.

4-73 Unusual End Logic

Unusual end flip-fiop UNE may be direct set during phase FS of any service cycle other than an order out service cycle.

M/UNE $=$	UNEM
UNEM $=$	CYCLE/C DCB NORDOUT PHFS
	$(C E R+$ UNEMI + DRESET $)$
UNEMI $=$	RER + SUN + WPV
	+ NFKI ORDO PER REMPTY
	+ NORD2 NORD3 NORD4
	+ ORDIN PER + ORD1 SENSE
	+ NDVOR
$=$	/DVO/
DVOR $=$	PWRMONR

PWRMONR $=$ PWRMON/
Unanobide wite Fnclet Vidation
Direct set of UNE takes place if error flip-flop CER, RER, SUN, or WPV is set. Signal /DVO/ is controlled by the addressed selection unit and is true if the addressed device is not operational, as described in paragraph 4-104. Signal /PWRMON/ is controlied by circuits which detect power failure, as described ii paragraph 4-7. Of the 32 possible order codes, eight are interpreted as seek orders ($\mathrm{X} \times \times 1 \mathrm{l}$), eight as read orders ($\mathrm{X} \times \mathrm{X10}$), four as write orders ($X X 001$), and four as checkwrite orders ($X X i 01$).

Table 4-5. Summary of Error Flip-Flops and Signals

FLIP-FLOP	FU'NCTION	IOP INTERFACE SIGNALS CONTROLLED			
		TDV*	TSH ${ }^{\dagger}$	AIO ${ }^{*}$	Order In^{+*}
CER	Check:write error	-	-	-	/DAO/
INL	Incorreet length	-	-	-	/DAl;
PER	Parity error (checksum)	-	..	-	/Dary
RER	Rate erro.	/FRO/	-	/DA0,	/DA $)^{\prime}$
		/IOR/		/IOR/'	
SUN	Sector unavailable	/FR2/	-	/DA2/	-
		/IOR/		/IOR/	
UNE	Unusual end	-	/FR4/	-	/DA4/
WPV	Write protect violation	/FR3/	-	/DA3/	-
		/IOR/		/IOR/	
*/IOR/ controiled by FAULT $=$ REK + SUN + WPV					
${ }^{\text {t }}$ TSH $=\mathrm{TIO}+\mathrm{SIO}+\mathrm{HIO}$					
**/DA0/ controlled by TER $=$ CER + PER + RER					

Of the remaining eight, four are illegal ($\mathrm{X} \times 000$). Of the possible forms of the sense order (X X100), two are illegal (X 1100). Any one of the six illegal order codes causes UNE to be direct set.

$$
\begin{aligned}
\text { UNEM1 }= & \text { NORD2 NORD3 NORD4 } \\
& + \text { ORD1 SENSE }+\ldots \\
\text { SENSE }= & \text { ORD2 NORD3 NORD4 }
\end{aligned}
$$

Parity error flip-flop PER, which can be set only during execution of a read order, causes UNE to be set for two different conditions. For a read record order ($0 \times X 10$), UNE is set during the order in service cycle, after a count done terminal order has indicated that the entire record has been read.

```
UNEMI = ORDIN PER + ...
```

For a read sector order (1 XX10), UNE is set if an error occurs while data is read from any sector. End of sector is indicated by an empty K-register (NKFI true) and an empty FAM module (REMPTY true).

```
UNEMI = ORDO PER NKFI REMPTY + ...
```

If UNE is direct set for any reason, flip-flops (DATA, IN!) will be placed in the (0,1) stote, as described in paragraph 4-32, because sigral DATA.SET will be false.

```
NDATASET = UNE + ...
```

Therefore, an order in service cycle will occur if UNE is set during any input/output operation. The order in service cycle is begun after phase FS is entered. Flip-flop UNE may be set by the IOP during terminal order operations, as described in paragraph 4-34. If UNE is set by a termir,al crder, the sequence of operations is identical to that caused by a direct set signal. Or.ce set, UNE must be reset by either a RESET signal or a IMANRST signal.

$$
\begin{aligned}
\text { R/UNE } & =\text { RESEI } \\
\text { C/UNE } & =\text { NTCSO00 } \\
\text { E/UNE } & =\text { MANRST } \\
\text { MANRST } & =\text { NPET RSTR } \\
\text { RSTR } & =/ R S T ;
\end{aligned}
$$

4-74 Parity Error Logic

Parity error flip-flop PER can be set only during execution of a read order and then only while the checksum is being read from the addressed selection unit. The checksum read from the addressed selection unit through signal DAR is compared with the checksum generated in the P-register
during execution of the read order and read from P15. If the two checksums are not identical, PER is set.

```
S/PER = PEREN POOSET
    PEREN = READRWE POST NB08
    POOSET = (POOSETEN + P15) N(POOSETENP15)
    POOSETEN = READRWE DAR + ...
C/PER = RWCK
```

Once set, PER causes UNE to be direct set and can be reset only by a RESET signal.

$$
\begin{aligned}
& \text { R/PER }=\text { GND } \\
& E / P E R=\text { RESET }
\end{aligned}
$$

4-? Write Protect Violation Logic

Write protect violation flip-flop WPV is set if a write order is atiempted on a write protected track. Track-protected signal /TRP/ is generated within the addressed selection unit as described in paragraph 4-106.

```
S/WPV = PRE WPVSET
    WPVSET = WRITE TRPR
    TRPR = /TRP/
C/WPV = RWCK
```

If $V,{ }^{\prime} P V$ is set during the preamble time, it casses UNE to be cirsct set and can be reset only by a RESET signal.

$$
\begin{aligned}
& \text { R/WPV }=\text { GND } \\
& E / W P V=\text { RESET }
\end{aligned}
$$

4-75 Checkwrite Error Logic

Checkwrite error flip-flop CER can be directset if an index pulse or sector pulse is received while RWE is set. This coidition would occur if data strobes are missed during executio of a read order or checkwrite order. In that case, the B-counter value would be incorrect.

```
MM/CER = CERM
    CERM = RWE SECP
    SECP = IPR + SPR
    SPR = /SP/
    IPR = /IP/
```

Flip-flop CER is set during execution of a checkwrite order if the checksum bits read from the disc file through flipflop DAR do not match the checksum bits generated during execution of the checkwrite order. The checksum bits are read from D07 after transfer from the P-register. An exclusive OR gate is enabled by signal CHWEREN to make the comparison.
t

```
    S/CER = CERSET
    CERSET = CHWER + ...
    CHWER = CHWEREN (DAR + D07)
                            N(DAR D07)
    CHWEREN = CHWR NPOST NPRE RWE
C/CER = RWCK
```

ing execution of a read order or a checkwrite order, a rch is conducted for the preamble synchronization pattern, as described in paragraph 4-56. If the preamble synchronization pattern is not detected, signal PSPM is true and CER is set.
\therefore

S/CER	$=$ CERSET
CERSET	$=$ PSPM $+\ldots$
PSPM	$=$ PSPBREND NRWP BIT7RWE BO9
PSPBREND	$=$ PSPB RENDD
PSPB	$=$ PRE RWE BO7 B08
REND	$=$ RCHW FWE
C/CER	$=$ RWCK

ER is set, it remains in the set state until signal RESET ue. Before RESET is true, CER causes UNE to be direct set.

$$
\begin{aligned}
& \mathrm{R} / \mathrm{CER}=\mathrm{GND} \\
& \mathrm{E} / \mathrm{CER}=\mathrm{RESET}
\end{aligned}
$$

4-77 Sector Unavailable Logic
Sector unavailable flip-flop SUN maybe set in the preamble time interval during which PRE is set and RWE is reset. (See figure 4-18.)

$$
\begin{aligned}
\text { S/SUN }= & \text { PRENRWE SUNSET } \\
\text { PRENRWE }= & \text { PRE NRWE } \\
\text { SUNSET }= & \text { SOO SO1 EXT }+ \text { TOO }+ \text { T01 } \\
& + \text { T02 NTYPOR } \\
& + \text { T03 NTYPOR NTYPIR }+\ldots
\end{aligned}
$$

$$
\begin{aligned}
& \text { R/SUN }=\text { GND } \\
& C / S U N=\text { RWCK }
\end{aligned}
$$

This interval follows the transfer of the incrementedaddress from the P -register to the T -register and S -register, as described in paragraph 4-70. Therefore, SUN is set if asector address stored in the S-register, or a track address stored in the T-register, represents a location which does not exist in the RAD storage unit. (Signals TYPOR, TYPIR, and EXT indicate the type of RAD storage unit, as described in paragraph 4-82.)

During execution of a seek order, the T-register is cieared and a new track address is stored. If the most significant bit of the new track address is a one, track overflow signal TOF comes true and is latched.

$$
\begin{aligned}
\text { TOF } & =J 00 \text { TXJ }+ \text { TOF TXO }+\ldots \\
\text { TXJ } & =\text { SEEK RWRITEDO BKZW TRSI3C } \\
\text { TXO } & =\text { SXO } \\
\text { NSXO } & =\text { SEEK PHRS URDOUT } \div \ldots
\end{aligned}
$$

Because a track address with a most significant bit of one is invalid for any RAD storage unit, a true TOF signcl causes direct set of SUN during phase TO of the data out service cycle.

$$
\begin{aligned}
\text { M/SUN }= & \text { SUNM } \\
\text { SUNM }= & \text { NDATASET (PHTO TCSIO } \cdot 3) \\
& \text { (SEKSEND SUNSET) } \\
\text { NDATASET }= & \text { CDN }+\ldots \\
\text { SEKSEND }= & \text { SEEK NPHRSAOO }+\ldots \\
\text { SUNSET }= & \text { TOF + TOO + TO1 } \\
& + \text { TO2 NTYPOR } \\
& + \text { TO3 NTYPOR NTYPIR } \\
& \div \text { SOO SO1 EXT }
\end{aligned}
$$

Signal TOF becomes true and is latched if address incrementation causes the mostsignificant bit of the track address to be true.

$$
\begin{aligned}
\text { TOF } & =\text { POO TXP }+ \text { TOF TXO }+\ldots \\
\text { TXP } & =\text { TDL100 STXPEN }
\end{aligned}
$$

A true TOF signal is not an error unless on attempt is made to read from, or to write into, the nonexistent addressed track. Therefore, for a sense order, a true TOF signal direct sets SUN to provide the unusual end data. The IOP is able to test for causes of unusual end.

```
M/SUN \(\quad=\) SUNM
    SUNM = NDATASET (PHTO TCS100-3)
        (SEKSEND SUNSET)
SEKSEND \(=\) SENSE NPHRSAOO \(+\ldots\)
```

If SUN is set, it remains in the set state until signal RESET is true. Before RESET is true, SUN causes UNE to be direct set.

$$
E / S U N=\text { RESET }
$$

4-78 Rate Error Logic

During execution of a write order or checkwrite order, data from the IOP must be provided in time for a transfer of data from the K-register to the D-register at the rate estabiished by read/write clock signal RWCK. During execution of a read order, data must be accepted by the IOP before the F. 4 M module is filled, and additional data must be stored in the FAM module at the rate established by read/write clock signal RWCK. Rate error flip-flop RER is set if either kind of rate is detected.

During execution of a read order, a rate error is detected if an attempt is made to transier data from the D-register to the J-register (JXD true) when the FAM module is filled (NRK0 true) and the IOP has not signalled count done (NCDN true). When ali these conditions exist simultaneously, RER is direct set.

```
M/RER = RERM
    RERM = JXD NRKO NCDN
```

During execution of a wite order or a checkwrite order, a rate error is deiected after the preamble has been written (iNWPRE true) if an attempt is made to transfer data from the K-register to the D-register (DXK true) before the Kregister has been filled (NKFICK true).

```
S/RER = REREN RERSET
    REREN = DATA + JFI
    RERSET = NWPRE DXK NKFICK
    DXK = CHWR NPOST BIT7RWE NPRE
    + WNTE NPOST BITTRWE + ...
C/RER = RWC:'
```

When the K-regisier is filled from the FAM module, KFID comes true and is latched. Flip-flop KFICK is set by the following read/write clock and remains in the set state until the K-register is cleared following a K-register to D register data transfer.

```
S/KFICK = KFID
    KFID = KXO (KFID + KFIDX1)
    KFIDX1 = KFI TRS270
    NKXO = WCHW TDT2 + ...
R/KFICK = ...
C/KFICK = RWCK
```

Therefore, if a K-register to D-register transfer is attempted when KFICK is in the reset state, the K-register contains no new data.

A true JFI signal enables KFICK to set after the order in service cycle is in process. This signal is required for the m: Jltiple-byte interface, for which valid date may still be in the I-register after exit from the data out service cycle. (Sce paragraph 4-48.)

```
jFI = N(JFIRESET RWRIVE-2 TRSI80) \FIXI + ...)
```

Orice RER is set, it can Lu reset only by signai RESET. Before signal RESET is true, RER causes an unusual end condition.

$$
\begin{aligned}
& \text { R/RER }=\text { GND } \\
& E / R E R=R E S E T
\end{aligned}
$$

```
4-79 Lncorrect Length Logic
```

Incorrect length flip-flop INL is set for any one of three conditions:
a. The number of data bytes transferred during execution of a read order, write orcier, or checkwr: $:$ e order is not an integral multiple of 1024.
b. The number of data bytes transferred turing execution of a seck order is not 2 .
c. The number of data bytes transferreci during execu- . tion of a sense order is not 3 .

Alinough these conditions are not necessarily srrors, the information that INL was set may be required by a program. Therefore, although UNE is not set, a signal is returned to the IOP through signal /DAI/during the order in service cycle.

```
/DAI/ = O01
    OOI = OXORDIN INL + ...
```

Flip-flop INL is reset during any order outservice cycle and is cleared following completion of any input/output operation.

```
R/INL \(=\) ORDOUT
C/INL \(=\) TCS100-3
\(\mathrm{E} / \mathrm{INL}=\mathrm{NDCB}\)
```

Count done flip-flop CDN, which should be set after all data bytes have been transferred following execution of any order, controls signals related to setting flip-flop INL. During execution of a seek order or sense order, INL is set during the order in service cycle if CDN is not set.

```
S/INL . = INLSET ORDIN
    INLSET = INLEN SEKSEND + ...
SEKSEND = SEEK NPHRSAOO
    + SENSE NPHRSAOO
INLEN = NCDN + ...
```

During execution of a read order, iNL is set during the order in service cycle if CDN is set and the K-register is still filled (KFI truc). In this case, the byte transferred to the K-register is o byte of zeros which follows removal of all valid daia bytes fram the FAM module.

```
S/INL = INLSET ORDIN
    INLSET = CDN REA[KFI + ...
    READKFI = READ KFI
```

During execution ori a write order or checkwrite order, INL is direct set if an aiiempt is made to transfer data from the K-register to the D-register (DXK 'rue) after CDN has been set, the FAM moduie has been emptied (REMPTY true), and the preamble has been written (NViPRE true). These conditions exist after the last data byic has been stored in the giste, following the removal si all valid data bytes trom the FAM module and after a count done terminal order has been received from the IOP.

$$
\begin{aligned}
\mathrm{M} / \mathrm{INL}= & \mathrm{INLM} \\
\mathrm{INLM}= & \text { CYCLER REMFTY CDN NWPRE } \\
& \text { DXK NKFID }
\end{aligned}
$$

4-80 INTERFACE TYPE LOGIC

4-81 Byte Width Logic

The data path between the IOP and the EP RAD controller may be one, two, or four bytes wide. For any byte width, data bytes are exchanged on a one -byte interface during execution of seek orders and sense orders. During execution of read orders, write orders, or checkwrite orders, data bytes may be transferred one, two, or four bytes at a time, depending on the states of signals /EDX2/and/EDX4/
from the IOP. (See figure 4-21.) When the controller is service-connected (FSC true), signals /DX2/ and /DX4/ are sent to the IOP to indicate byte width, under control of signal WIDE which is true during execution of vrite orders, read orders, and checkwite orders (WRCH true). Signals BYTIID, BYT2ID, and BYT4ID are used internally during data transfers to control operations of the O-regisier, Iregister, and related registers.

4-82 RAD Type Logic

Signals /TYPO/ and /TYP1/, which are accepted from the addressed RAD storage unit, indicate the storage capacity of the addressed RAD. For an EP RAD storage unit, both signals are rrue and signal EXT is true.

```
EXT = TYPOR TYPIR
    TYPOR = /TYPO/
    TYPIR = /TYPI/
```

Signal EXT controis operations within the controller. If EXT is true, read/write clock signal RWCK is nominally $3 \mathrm{MHz}_{\text {; }}$ if EXT is false, read/write clock signal RWCK is nominally 1.5 MHz . (See paragraph 4-55.)

For an EP RAD storage unit, the B-couriter counts 1024 bytes per sector. (See paragraph 4-56.) For other tynes of RAD storage units, the B-counter is preset with a value of 1010011000 XXX (decimal 664) and counts 360 byites per sector.

S/BOO	$=$ FRE BXIMED $+\ldots$
$5 \times 1 M E D$	$=$ RWE NEXT
$S / B C 2$	$=$ PRE BXIMED $+\ldots$
$S / B C: 5$	$=$ PRE BXIMED $+\ldots$
$S / B 06$	$=$ PRE BXIMED $+\ldots$

For an EP RAD storage unit, there are 12 sectors per revolution; for other RAD storage units, there are 16 sectors per revolution. Therefore, signal LASTSECT is made true for c count of !911, if EXT is true.

LASTSECT = ANOR ANIOTYP2 AN2R AN3R

$$
\text { ANIOTYP2 }=\text { ANIR }+E X T
$$

(Signal LASTSECT is used only by PET logic.)

4-83 OFFLITNE OPERATION

Peripheral Equipment Tester Model 7901 (PET) can be used either to monitor operation of the EP RAD controller or to simulate IOP inputs to the EP RAD conitroller. In either

Figure 4-21. Byte Width Circuits, Logic Diagram
case, the PET must be connected to the EP RAD controlier through two cable connectors, as indicated in figure 7-5. When the PET is used to moritor operation of the controller, indicators on the PET panel read selected signals of the controlier during online operation. When PET is used to simulate IOP inputs, no RAD stcrage unit aitached to the controller is accessible to the IOP.

4-84 Online/Offline Control (See figure 4-22)

The EP RAD controller is placed in the online state by setting the switch on the LT25 module (location C23 in figure 7-5) to the 1 position. This action connects the PT18S
sigrial to ground and energizes relays in the Aill module (location C26 in figure 7-5). After these rela;'s are energized, signal NINI is connected to ground anc signal INI is dirconnected from ground and ailowed to go tive. After signal INI is thie, signal INC becomes true and signal NINC becomes false.

When the switch is placed in the 0 position, signal PTIES is open and two relays in the AT17 mooule are cieenergized in sequence, causing signals INC and INI to go false in sequence and shortingsignal AVI to signal AVO to complete the prioritycircuit to the next controller in sequence. When signal INI becomes false, the controller is effectively

*CONTROLLED BY TOGGLE SWITCH
IN MODULE L.T25

Figure 4-22. Connect-Disconnect Tir.ing Diagram
disconnected from the IOP interface because signal INi grounds the following signals: $A \ O D, D C A, D O R D, E D D$, FROD through FR7D, FSLD, HIPD, HPSD, ICD, IORD, OOO through O07, RSAR, RSD, NRSTR, and SCD.

Signal NINI, which is true, direct resets service connect flip-flop FSC.

$$
\mathrm{E} / \mathrm{FSC}=\mathrm{NINI}+\ldots
$$

4-85 Reset Control (See figure 4-23)
Control flip-flops of the EP RAD controller may be reset by manually-controlled signals or by computer-controlled signals. The error flip-flops (CER, PER, RER, SUN, and WPV) , and SCR are reset by a halt input/output signal (HIOU), whether the HIO is controlled by the computer progrom or by an offline test. These flip-flops are also reset by

DCBSET at the start of an input/output operation. At the end of an input/output operation, $D=B$ is reset and causes one group of flip-f:ops to be reset. Computer-controlled signal RSTR, which can also be generated at a pushbutton on the computer control panel, generates a true MANRST signal. This signal resets the error flip-flops, flip-ilop SCR, and a greup of flip-flops that includes DCB. Therefore, signal RSTR resets a!l control flip-flops of the EP RAD controller. Signal MANRST is also controlled by the FET through $P E T$ reset signal RSTP. When the EP RAD controller is operating offline (PET irue), MANRST is true whenever RSTP is true.

4-86 PET Operations

When the PET is connected to the controller, the signals listed in table 4-6 are available at the PET connectors. If the PET is used to monitor online operation of the controller,

Table 4-6. PET Interface Control Signals

(Continued)

Table 4-6. PET Interface Control Signals (Cont.)

4-87 IOP SIMULATION. When the PET simulates IOP signals, the controller responds as if the IOP were providing the inputs. Inputs from the PET start the TCL delay line. (Sae figure 4-24.) Other operarions follow in iormal sequence, as described in paragraph 4-20.

When signal PET is true, device controller adidress signal DCAJ is true to simulate a match of controlle: address and ICP aódress signals.

$$
D C A U=P E T+\ldots
$$

The function strobe which starts execution of orders is controlled th.rough signal IFSU; the request strobe arknowledge signal from the IOP is simulated through signa' RSAU; service connection is controlled through signal FSC.U by service call flip-flop SCN. Function strobe sigral FSU can be controlled by a pushbuition on the PET panel through signal FSPS or by a combination of PET signals and controller sig:als.

```
FSU = PET NPHFSL (SCN + FSP)
    FSP = FSPS + ...
```

The function strobe is inhibited while the phase control logic is in phase FSL since signai NPHFSL becomes false. Additional service calls depend on the state of service call flip-flop SCN, which is controlled through signal CDNPET.

$$
\begin{aligned}
\text { CDNPET }= & \text { PET LASTSECT POSTBS9 (TRKRST } \\
& + \text { SGLTRK) }(E X T+\ldots)
\end{aligned}
$$

Table 4-7. PET Interface Indication Signals

SIGNAL	SOURCE	DATA	
		If INDUP true	If INDUP false
INDOI	19A-02	DCB	DCB
IND02	19A-01	READ	CIL
IND03	19A-39	WRITE	DVOR
IND04	19A-42	CHWR	RER
IND05	25A-42	UNE	PER
IND06	25A-39	100	CER
IND07	25A-01	TO1	WPV
IND08	25A-02	T02	SUN
IND09	25A-07	T03	DATA
: INDIO	25A-09	T04	iN
INDII	25A-46	T05	PHTO
IND12	25A-21	106	PHRSA
IND13	25A-14	107	PHRS
IND 14	25A-12	TOS	PHFSL
IND15	25A-27	T09	PHFSZ
IND16	25A-26	T10	PHFS

When the service call line is raied by SCN, the data in signals DP00 through DP07 are accepted for data out ice cycles. For either dara cut or data in service cycles, request strobe acknowledge signal RSAU is simulated by signal RSAUEN.

4-88 SINGLE PHASE MODE. The phase flip-flops described in paragraph 4-22 can be cycled through normal phase sequences one phase at a time if signal SGLPH is true. (See figure 4-24.) In this case, signal CYCLE/C, which controls start of the TCL delay line, is controlled through signal CYCEN (refer to paragraph 4-21 for a description of TCL delay line operation). Single phase enable flip-flop SPE is direct set whenever a TCL delay line cycle occurs. If signal SGLPii is true, CYCLE/C is inhibited by a false CYCEN signai until SPE is reset. Therefore, the TCL delay line cannot be started until SPE is reset. A true single phase clock signal SGLPHCK is generated by a PET panel pushbutton. As this signal goes false, SPE is
reset and CYCLE/C is enabled. In this manner, the r-hases associated with any IOP command or any service cucle can be enabled one ot a time.

4-89 AITERNATE ORDERS MODE. the PET can cause the controller wo either execute the order encoded by signals ORDP1 inrough ORDP4 or alternate execution of thut order with execution of a write order. For execution of it.e order encoded in signals ORDP1 through ORDP4, signal ALi ${ }^{D}$ is false and the PET order code is stored during phase R§A of the order out service cycle as for online operation.

$M /$ ORDO	$=$ ORDXPET
ORDXPET	$=$ PHRSAOO PET TCS000-3
ORD1	$=$ ORDP1 ORDXPET $+\ldots$
ORD2	$=$ ORDP2A ORDXPET $+\ldots$
ORDP2A	$=$ ORDP2 ALTORD
ALTORD	$=$ NALTP $+\ldots$

Figure 4-24. PET Interface Circuits, Simplified Logic Diagram (Sheet 1 of 2)

Figure 4-24. PET Interface Circuits; Simplified Logic Diagram (Sheet 2 of 2)

```
ORD3 = ORDP3A ORDXPET + ...
    ORDP3A = ORDP3 ALTORD
ORD4 = ORDP4A ORDXPET + \ldots
    ORDP4A = N(ALTORD NORDP4)
    NORDP4 = N(ORDP4 PET)
```

For the alternate order mode of operation, signal ALTP is true and the PET order code is stored only when flip-flop ALTP is set.

```
ALTORD = ALT + ...
```

When ALT is in the reset state, a write order (1 X001) is stored. Flip-flop ALT changes state each time alternate order clock signal ALTCK goes false.

```
S/ALT = NAL.T
R/ALT = ...
C/ALT = ALTCK
```

Clock signal ALTCK is true during phase RSA of each order in service cycle if PET panel signal TRKRST is true.

```
ALTCK = A!TCKEN ALTP + ...
    ALTCKEN = CRDIN PHRSA TRKRST
```

Signal TRKRST is true when the PET internal counter state mciches the track address und the sector address switch settings on the PET panel. Therefore, after each input/ output operation, ALT changes state and alternates a write order with the order encoded on the PET panel switches after all data has been prccessed.

When signal ALTP is false, ALT is set by the first index pulse and remains in the set state.

```
ALTCK = NALTP IPR + ...
```

4-90 COUNT DONE SIMULATION. The address at winich an input/output operation begins is established by a single phase seek order, during which a track address and a sector address are loaded. A read order, write order; or checkwrite order is terminated urder control of signal TRKRST, which is generated by a counter in the controller.

$$
\begin{aligned}
\text { CDNPET }= & \text { LASTSECT PET POSTB89 (TRKRST } \\
& +\ldots)(E X T+\ldots)
\end{aligned}
$$

Signal TRKRST is true when the state of a PET counter matches a value set in PET panel switches. The counter is incremented by signal CNTRCLKP, which is sent to the PET.

NCNTRCLKP $=$ LASTSECT RWE RWP NSGLTRK + ORDXPET TRKRST

Thus, the counter is incremented as the last sector of a track is processed and is cleared when a new order is stored after TRKRST is true.

4-91 SINGLE TRACK MODE. When the PET commands the singie track mode of operation, an order is executed continually on a 12 -sector track. For this mode of operation, the sequence of events which cause incrementation of the track address must be inhibited, but incrementation of the sector address musi be aliowed. (See paragraph 4-70.) Incrementation of the S-register is enabled through D07SET, as in normal operation, but incrementation of the T-register is inhibited by a true SGLTRKP signal.

$$
\begin{aligned}
\text { ND07SET }= & \text { B11 B12 SGLTRK NBXO } \\
& + \text { ND7P15 NBX0 } \\
\text { SGLTRK }= & \text { SGLTRKP PET }
\end{aligned}
$$

That :s, after four bits have been processed ($B 11, B 12$), the incrementing process is inhibited by forcing DO; SET false.

Signal SXPEN, which enables a transfer of data from the P-register to the T-register and S-register, is inhibited by signa! SGLTRK. (See figure 4-24.)

A count done signal is generoled each time the lost sector is derecied.

$$
\text { CDNPET }=\text { LASTJECT PET POSTB89 (SG:.TRK + ...) }
$$

Signal PRESET is inhibited if a write order is beirs sxecuted so that writing is not ailowed on a!ternate revolutions, thereby meeting read/write head duty cycle sp?cifications.

$$
\begin{aligned}
\text { FRESET }= & \text { RWP NB11 B10 B09 B06 } \\
& \text { N(ALTYP2 PET SGLTRK WRITE) }
\end{aligned}
$$

4-92 ERROR STOP MODE. When signal REPEAT from the PET is true, the command chaining signal is true, causing repetition of the order set into PET switches.

```
CCH = N(IOP DA3R)(REPEAT PET + ...)
```

The function strobe is genetated under contrel of signal ERSTOP from the PET. (See figure 4-24.) After the first function strobe is generated by a true FSPS sigr.el, no function strobe is needed to continue service cycles, provided no unusual end occurs.

```
FSU = PET NPHFSL (REPEAT NDCB UNE NERSTOP
    + FSPS)
```

If signal ERSTOP from the PET is false, signal NERSTOP is true and an unusual end generates a new function strobe.

If signal ERSTOP from the PET is true, signal NERSTOP is false. When an unusual end cocurs, $D C B$ is reset as for online operation, and lack of a function strobe causes operation to stop. (The track address has been incremented.)

4-93 PHASE SEQUENCE CHARTS

The phase sequence charts describe the operation of the controller for normal online response to signals from the IOP. The emphasis is on the phase control circuits described in detail in paragraphs 4-20 through 4-35. Information is excharged between the IOP and the controller as these circuits cycle through a sequence of six phases (FS, FSL, FSZ, RS, RSA, and TO), each of which is defined by a flip-flop.

At certain times during a sequence of the phase control circuit operations, signals are reguired from circuits asynhronous with the phase controi circuits. The three asynronous timing circuits of the controller are:
a. The TCL delay line, which controls transfer of information between the IOP and the controller
b b. The TRL delay line, which controls transfer of data bytes to and from the FAM module
c. The TDT delay line, which controls transfer of data between the controller and the addressed storage unit

Data passing between the IOP and the aciaressed storage unit is controlled by ull three tirning circuits during the transfer process. Therefore, although details of operation of asynchronous circuits are not defined in the phase sequence charts, their relation to the operation of the phase control circuits cannot be ignored. Sigrals originating outside the phase control circuits, either in the IOD or in asynchronous circuits of the con:roller, are identified in
the phase sequence charts.
Tor normal online operation, the controller is initially in the ready automatic state. When in this state, the controller responds to any IOP command (AIO. HIO, SIO, TIO, or TDV) by passing through phases FS, FSZ, and FSL, and then returning io phase FS. If the command is an SIO and if the SIO is accepted, the controller enters the busy automatic state and remains in this state until completion of one or more input/output operations or until an error occurs. Upon entering the busy automatic siate, the controller requests an order out service cycle, during which the controller stores the order transmitted from the !OP. After the order is stored, the controller will request c sequence of data out service cycles or a sequence of data in service cycles. If no error occurs during these service cycles, a signal from the IOP indicates a count done after all data has been transferred, after which the controller : requests an crder in service cycle. During the order in service cycle, information is sent to the IOP. Following the order in service cycle, the controller may return to
the ready automatic state or may start a new order in service cycle, as determined by terminal order information.

Each of the four service cycles (order out, data out, data in, and order in) is identified by the states of two flip-flops. For any service cycle, the controller passes through phases FS, FSZ, and FSL, followed by some sequence of phases RS and RSA, followed by phase TO. During any TO phase, the controller may receive information from the IOf which indicates than an interrupt has occurred, that all data has been transferred, or that the IOP has commanded an unusual end. If an error is detected by circuits of the controller, an order in service cycle will be requested during the next TO phase in sequence. During phase TO of an urder in service cycle, the controller may receive a command chaining signa!. This signal causes the controller to start a new order out service cycle, rather than return to the ready automatic state.

Thereforc, operation of the controller consists of passing from the ready automatic state to the busy automatic state in respense to IOP signals, processing data, and reirerning to the ready automatic state. For execution of seek orders, write orders, and checkwrite orders, data istransfer:ed from the IOP in a succession of data out service cyoles. For execution of sense orders or read orders, data is trunsferred to the IOP in a succession of data in service cycles. Each complets input/output operation begins with on order out service cyrle and ends with an order in service cyeic.

4-94 iCP Command Sequences

In response to ar. IOP command, the controller provides informe': on on function rer-onse lines /FRO/ through /FR7/ and or. ciata or order lines /DOR/ and/IOR. The infurmation pirovided and the operations which take place within the conirolle: depend upon the type of IOP commind, as indicated in tables 4-8 through 4-12.

4-95 Order Out Sequence

Each input/output operation begins with an order out service cycle. An order cut service cycle follows an aceepted SIO command or an order in service cycle during which a command chaining signal is accepted from the IOP. During an order cut service cycle, an order is read from $1 O \rho^{\prime}$ data lines / UA3/ through /DA7/and stored in the order register (ORDO through ORD4), as indicated in table 4-13. If the order inciizates scek, write, or checkwrite, subsequent service cycles will be data out service cycles; if the order is sense or read, subsequent service cycles will be data in service cycles. Thus, crder out service cycles nor?ally begin with the (DATA, IN) flip-flops in state (0,0) and end with these flip-flops in state (1,0) or ($1, i$). If the order is one of the illegal codes or if it is a write order which addresses a write-protected track, an error will be detected. The (DATA, IN) flip-flops will be placed in the $(0,1)$ state, and the error will be reporied during the order in service cycle which follows.

Table 4-8. AIO Command, Phase Sequence Chart

Phase	Function Performed	Signals Involved	Comments
Interrupt Pending	Raise interrupt call line ICD when CIL set	$\begin{aligned} \text { ICD } & =\text { LIL } \\ \text { LIL }= & \text { NAIOR CIL INC } \\ & + \text { AIOR INI LIL NRSTR } \end{aligned}$	CIL set by terminal order and remains in set state until AIO response received from IOP
FS	Enable TCL delay line Reset CIL Set NPHFS Sei PHFSZ	DCL $=$ CYCLE/C DCLSTARTI $+\ldots$ CYCLE $/ C=$ IOP CYCSET $+\ldots$ DCLSTARTI $=$ FSU PHFS AIOC $+\ldots$ AIOC $=$ AIOM AIOR AVIR $+\ldots$ AIOM $=$ NHPIL LIL $+\ldots$ R/CIL $=$ CILRST CILRST $=$ AIOC $+\ldots$ C/CIL $=$ NICS000 S/NPHFS IHFS C/NPHFS TCS $100-3$ S/PHFSZ $=$ PHFS C/PHFSZ IC.SI00 -3	CYCSET latched true. Delay line input when AIOR signal received frorn IOP (only for device controller with LIL true) End phase FS Enter phase FSZ
FSZ	Enable TCL a lay line Reset PHFSZ	DCL $=$ CYC:E $/ C$ PHFSZ $+\ldots$ R/PHFSZ $=\ldots$ C/PHFSZ $=$ TCS100-3 S/PHFSL $=$ PFiFSZ C/PHFSL $=$ TCS100-3	End phase FSZ Enter phase FSL OPER may be sct, but no significance for AlO
FSL	Enable TCL delay line Enable function response signals	$\begin{aligned} \text { DCL } & =\text { CYCLE/C DCLSTART3 } \\ & \because \cdots \\ \text { DCLSTART3 }= & \text { NFSU PHFSL }+\ldots \\ \text { FROD } \quad= & \text { BSYC SWAO }+\ldots \end{aligned}$	TCL delay line enabled when function strobe false (FROD-FR3D) contain device controller address

Figure 4-8. AlO Command, Phase Sequence Chart (Cont.)

Phase	Function Performed	Signals Involved	Comments
FSL (Cont.)		$\begin{aligned} \text { BSYC }= & \text { AVIR AIOR AIOM PHFSL-1 } \\ & +\ldots \end{aligned}$	
		FRID $\quad=$ BSYC SWAI $+\ldots$	
		FR2D $\quad=$ BSYC SWA2 $+\ldots$	
		FR3D $\quad=$ BSYC SWA3 + \ldots	
		FR4D. $\quad=$ BSYC GND $+\ldots$	FR4D always false
		FR5D $\quad=$ BSYC $10+\ldots$	(FR5D-FR7D) contain device oddress
		FR6D $\quad=$ BSYC U1 + \ldots	
		FR7D $\quad=$ BSYC U2 $+\ldots$	
	Enable status signals	$\begin{aligned} \text { DAO } & =\text { OOO }+\ldots \\ \text { O00 } & =\text { OXAIOST RER }+\ldots \end{aligned}$	RER, SUN, WPV indicate cause of interrupt
		OXAIOST $=\triangle$ IOC FSU	
		DA2 $\quad=\mathrm{O} 02+\ldots$	
		O02 = OXAICSI SUN + .	
		DA3 $\quad=03 \therefore \ldots$	
		003 . 0 OXAICST WPV + ...	
	Enable condition cocisigna!s (IORD, DORD)	$\begin{aligned} \text { IORD } & =\text { PHFSL IORDEN }+\ldots \\ \text { IORDEN } & =\text { NIORDEN } 1+\ldots \end{aligned}$	IORD true if all status signals false. Defins normal I/O interrup:
		NIORDENI $=$ AIOC NFAULT $+\ldots$	
		NFAULT $=$ NRER NSUN NWPV	
		DORD $\quad=$ DORDEN PHFSL $+\ldots$	DORD always true
		$\text { DORDEN }=\mathrm{AIOC}+\ldots$	
	Reset PHFSL	R/PHFSL $\quad=\ldots$	End phase FSL
		C/PHFSL $\quad=$ TCS100-3	
	Reset NPHFS	$\begin{aligned} \text { R/NPHFS } & =\text { PHFSET } \\ \text { PHFSET } & =\text { NFSCU PHFSL-1 } \end{aligned}$	Enter phase FS (service connect flip-fiop FSC not in set state)
		$\text { FSCU } \quad=F S C I O P+\ldots$	
		C/NPHFS $\quad=$ TCS100-3	

Table 4-9. HIO Command, Phase Sequence Chart

Phase	Function Performed	Signals Involved	Comments
FS	CPU processes HIO instruction, and IOP generates true HIOR function indicator signal and true FSR function strobe Enable TCL delay line Reset Set NPHFS Set PHFSZ		CYCSET latcined true. IOP true unless DC is offline DCA true if (SirACSWA.3) maiches (DACRDA3R) Prepore to sample signai DVTR du-ing phase FSZ End phase FS Enter phase FFZ
FSZ	Enable TCL delay line Sample DVTR signal from addressed selection unit Reset PHFSZ Set PHFSL	DCL $=$ CYCLE/C FHFSZ $+\ldots$ S/OPER $=$ DVTR OPERSET OPERSET $=$ TTCHU PHFSZ C/OPER $=$ NTCS080 R/PHFSZ $=\ldots$ C/PHFSZ $=$ TCSIC0-3 S/PHFSL $=$ PHFSZ C/PHFSL $=T C S 100-3$	Set OPER if DVTR true, indicating RAD is operating End phase FSZ Enter phase FSL
FSL	Enable TCL delay line	$\begin{aligned} \mathrm{DCL} \quad= & \text { CYCLE/C DCLSTART3 } \\ & +\ldots \end{aligned}$	TCL delay line enabled at end of function strobe

Figure 4-9. HIO Comimana, Phase Sequence Chart (Cont.)

Table 4-9. HIO Command, Phase Sequence Chart (Cont.)

Table 4-10. SIO Command, Phase Sequence Chart

Table 4-10. SIO Command, Phase Sequence Chart (Cont.)

Phase	Function Performed	Signals Involved	Comments
$\begin{gathered} \text { FS } \\ \text { (Cont.) } \end{gathered}$	Set NPHFS Set PHFSZ	S/NPHFS $=$ PHFS C/NPHFS $=$ TCS $100-3$ S/PHFSZ $=$ PHFS C/PHFSZ $=$ TCS100-3	End phase FS Enter phase FSZ
FSZ	Enable TCL delay line Sample DVTR signal from selection unit Reset PHFSZ Set PHFSL Enable TCL delay line		Set OPER if DVTR true, indicating RAD is operating End phase FSZ Enter phase FSL TCL delay line encisied at enci of function siisbe FSR
FSL	Enable function response signals	$\begin{aligned} \text { FROD }= & \text { BFSD TSH CIL }+\ldots \\ \text { BFSD }= & \text { FSLD } \\ \text { FSLD }= & \text { TTSH DCA PHFSL-1 } \\ & +\ldots \\ \text { TTSH }= & \text { SIOR } \div \ldots \\ \text { TSH }= & \text { DCA }(S I O R+\ldots) \\ = & \text { BFSD TSH DVBSY } \\ & +\ldots \\ \text { FR1D }= & \\ \text { DVBSY }= & \text { DCB DVSEL } \\ \text { FR2D }= & \text { BFSD TSH STSH02 } \\ & +\ldots \\ \text { STSH02 }= & \text { DVBSY }+ \text { NOPER } \end{aligned}$	FROD tive if interruet pending (CIL)

(Continued)

Table 4-10. SIO Command, Phase Sequence Chart (Cont.)

Table 4-10. SIO Command, Phase Sequence Chart (Cont.)

Table 4-11. TDV Command, Phase Sequence Chart

(Continued)

Table 4-11. TDV Command, Phase Sequence Chart (Cont.)

Phase	Function Performed	Signals Involved	Comments
$\begin{aligned} & \text { FSZ } \\ & \text { (Cont.) } \end{aligned}$	Reset PHFSZ Set PHFSL	C/OPER $=$ NTCS080 R/PHFSZ $=\ldots$ C/PHFSZ $=$ TCS $100-3$ S/PHFSL $=$ PHFSZ C/PHFSL $=$ TCS $100-3$	End phase FSZ Enter phase FSL
FSL	Enable TCi delay line Enable function response signals	$\begin{aligned} & \text { DCL }= \text { CYCLE } / C \\ & \text { DCLSTART3 }+\ldots \\ & \text { DCLSTART3 }= \text { PHFSL NFSU }+\ldots \\ & \text { FROD }=(\text { TDVR DCA FSD) RER } \\ &+\ldots \\ &(T D V R ~ D C A ~ F S D) ~= \\ & \text { DCA FSLD TDVR } \\ & \text { FSLD }= \text { PHFSL }-1 \text { TTSH DCA } \\ &+\ldots \\ & \text { PHFSL-1 }= \text { PHFSL } \end{aligned}$	Delay line enabled at end of function strobe FROD true for rate error
		FR2D $=$ $($ TDVR DCA FSD $)$ SUN $+\ldots$ FR3D $=$ $($ TDVR DCA FSD $)$ WPV $+\ldots$	FR2D true if sector unavailable FR3D true if write protection violation
	Enable condition code signals (IORD, DORD)	IORD $=$ PHFSL IORDEN $+\ldots$ IORDEN $=$ NIORDENI $+\ldots$ NIORDENI $=$ IDVU NFAULT NFAIJLT $=$ NRER NSUN NWPV	IORD true if ricne of the error flip-flops in set state
		$\begin{aligned} \text { DORD }= & \text { DORDEN PHFSL } \\ & +\ldots \\ & = \\ \text { DORDEN }= & \text { OPER }+\ldots \end{aligned}$	DORD true if device is operating
	Reset PHFSL	R/PHFSL $=\ldots$ $C /$ PHFSL $=$ TCS $100-3$	End phase PHFSL
	Reset NPHFS	$\mathrm{R} /$ NPHFS $=$ PHFSET PHFSET $=$ NFSCU PHFSL- 1 FSCU $=$ FSC $1 O P+\ldots$ C/NPHFS $=$ TCS $100-3$	Enter phase PHiFS if service connect flipflop FSC not ir, set state

Table 4-12. TIO Command, Phase Sequence Chart

Table 4-12. TIO Command, Phase Sequence Chart (Cont.)

Table 4-13. Order Out Service Cycle, Phase Sequence Chart

Table 4-13. Order Out Service Cycle, Phase Sequence Chart (Cont.)

Table 4-13. Order Out Service Cycle, Phase Sequence Chart (Cont.)

(Continued)

Table 4-13. Order Out Service Cycle, Phase Sequence Chart (Cont.)

Phase	Function Performed	Signals Involved	Comments
$\begin{gathered} \text { RSA } \\ \text { (Cont.) } \end{gathered}$	Reset PHRSA Set PHRS	R/PHRSA $=\ldots$ S/PHRS $=$ PHRSET FSCU PHRSET $=$ PHRSA $+\ldots$ C/PHRS $=$ TCS100- 3	End phase RSA Enter phase RS
RS	Start TCL delay line as RSAR goes false Raise request strobe line RSD Reset PHRS Set PHTO	$\begin{aligned} & \text { DCL } \text { CYCLE/C DCLSTART3 } \\ &+\ldots \\ & \text { DCLSTART3 }= \text { FHRS NDATA NRSAU } \\ &+\ldots \\ &= \text { FSC NRSAR (FSCU RSD } \\ &+ \text { PHRS TCSO00- } 2+\ldots) \\ & \text { RSD }= \ldots \\ & \text { R/PHRS }= \text { PHRS ED } \\ & \text { S/PHTO }= \text { EDSET TCSO00-2 } \\ &+ \text { ED FSCU }+\ldots \\ & \text { ED }= \text { EDI FSCU } \\ &+ \text { EDSET1 NPHRSA }+\ldots \\ & \text { EDI }= \text { NRSTA }+\ldots \\ & \text { EDISETI }= \\ & \text { C/PHTO }= \text { TCSIOO-3 } \end{aligned}$	End phase RS Enter phase TO Fnd data signc! set internally and latched
TO	Start TCL delay line when request strobe acknowledge signal RSAR true Set DATA If read order or sense order, set IN	DCL $=$ $C Y C I E, C$ DCLSTARTI $+\ldots$ DCLSTARTI $=$ FHTO RSAU $+\ldots$ S/DATA. $=$ DATASET NORDIN DATASET $=$ NSKSBK NCDN NCDNPET NUNE ORDIN = $=$ NDATA IN C/DATA $=$ PrIESTOD TCSI00-3 PHFSTOD $=$ PHTO $+\ldots$ S/IN $=$ INSET NORDIN INSET $=$ NORD $4+\ldots$ $C / I N=$ PHFSTOD TCSIOO-3	DATA set regardless of order code stored IN set for orders requiring data transfer to computer through IOP

(Continued)

Table 4-13. Order Out Service Cycle, Phase Sequence Chart (Cont.)

Phase	Function Performed	TO (Cont.)	Reset PHTO Reset NPHFS Involved

4-96 Sense Order Sequence

The sense order is executed if the sense order code (00100) is stored in the order register during an order out service cycle. During execution of a sense order, three bytes of data are transferred to the O-register for transfer to the IOP. The first byte contains seven biis from the selection unit of the track address from the T-register and the track protect bit. The secord byte contains four bits of the track address, and the four-bit sector address from the S-register. The third byte contains the four-bit address of the sector currently under the read/write heads of the selection unit. Equations controlling execution of the order
are listed in table 4-14; a timing diagram is provided in figure $4-25$.

Sense order data is transmitied one byte at a time regardless of the byte width of the IOP interface. The first byte is stored in the O-register as request strobe signai RSD is raised. The IOP delays, reads the data from the O-register, then delrys before raising request strobe acknowiedge signal RJAR. The second and third bytes are transferred through the K-register to the O-register. Transfer from the T-itegister and S-register to the K-register and from the K-register to the O-register is controlled by signals generated within the controller as the order is executed. The IOP a: vepts data from the O-register while signal FSD is true.

Table 4-14. Sense Order, Phase Snquence Chart

Phase	Function Perfurmed	Signals Involvad'	Comments
	Order out service cycle follows accepted SIC or command chaining terminal order, aftei which: a. (DATA, iN) in state (1, 1) b. $(B K O, B K 1)$ in state (1, ?) c. (ORDO-ORD4) store (0 0100) d. $D C B$ in set state e. FSC in set siate f. SCN in set state	$\begin{aligned} \text { DATAIN } & =\text { DATA IN } \\ \text { BKZZ } & =\text { BKO BK1 } \\ \text { SENSE } & =\text { ORD2 NORD3 NORD4 } \end{aligned}$	For SIO sequence, refer to table 4-10 For order out service cycle sequence, rofer to table 4-13

(Continued)

Table 4-14. Sense Order, Phase Sequence Chart (Cont.)

Phase	Function Performed	Signals Involved	Comments
	During preliminary phases (FS, FSZ, FSL) of data in service cycle, SEN is set, EP RAD controller address and EP RAD storage unit address are placed on function response lines (FRODFR7D), and (DORD, IORD) signals indicate data in service cycle request At end of preiiminary operations, enter phase RS	IORD $=$ FSC NIN $+\ldots$ DORD $=$ FSC NDATA $+\ldots$ S/SEN $=$ SENSE PXS PXS $=$ TSE NRWP R/PHFSL \ldots S/PHRS $=$ FSCU PHRSET PHRSET $=$ PIIFSL IN $+\ldots$	Exit phase FSI Enter phase RJ
RS	$(T R P R) \rightarrow(000)$ $(\mathrm{TOO-TOS}) \rightarrow(001-\mathrm{O})$ Start TCL delay line Reset flip-flop PHRS Set flip-flop PURSA Raise request strobe signal RSD		TRPR is track protect bit from selection unit Exit phase R^{5} Enter phase RSA Contents of \bigcirc-register read into memory while RSD true
RSA	Decrement byte counter (BKO, BKI) is $(1,0)$	$\begin{aligned} \text { NBKCK }= & \text { PriRSA SEKSEND } \\ & \text { TCSO00 }-3+\ldots \\ \text { SEKSEND }= & \text { SENSE NPHRSAOO } \\ & +\ldots \\ \text { PHRSAOO }= & \text { P!IRSA ORDOUT } \\ \text { BKZW }= & \text { BKO NBKI } \end{aligned}$	-

Table 4-14. Sense Order, Phase Sequence Chart (Cont.)

Phase	Function Performed	Signals Involved	Comments
RSA (Cont.)	$\begin{aligned} & (\mathrm{TOT}-\mathrm{T} 10) \rightarrow(\mathrm{K} 00-\mathrm{K} 03) \\ & (\mathrm{SOO}-\mathrm{S} 03) \rightarrow(\mathrm{KO4}-\mathrm{K} 07) \end{aligned}$ Start TCL delay line Reset flip-flop PHRSA Set flip-flop PHRS	$\begin{aligned} \text { KXSENSEI }= & \text { SENSE BKZW } \\ & \\ \text { DCL }= & \text { CYCLE } / \text { C PHRSA RSAU } \\ & +\ldots \\ \text { R/PHRSA }= & \ldots \\ S / \text { PHRS }= & \text { FSCU PHRSET } \\ \text { PHRSET }= & \text { PHRSA }+\ldots \end{aligned}$	Prepare for transfer to O-register in phase RS Exit phase RSA Enter phase RS
RS	$(\mathrm{K} 00-\mathrm{K} 07) \rightarrow(\mathrm{COO}-\mathrm{O} 07)$ Raise request strobe signal RSD Stari TCL delay line Reset flip-flop PHRj Set flip-flop PHRSA		Contents of O-register read into memory while RSD true Exit phase RS Enter phase RSA
RSA	Start TCL delay iine Decrement byte couniter (BK0, BK1) to (C, i) $(A N O R-A N 3 R)=(K 04-K 07)$	DCL $=$ CYCLE/C PHRSA RSAU $+\ldots$ NBKCK $=$ PHRSA SEKSEND TCSOCO -3 SEKSEND $=$ SENSE NPHRSAOO $+\ldots$ PHRSAOO $=$ PHRSA ORDOUT BKWZ $=$ NBKO BKI KXSENSE2 $=$ SENSE BKWZ	Prepare for transfer to O-register in phase RS

(Continued)

Table 4-14. Sense Order, Phase Sequence Chart (Cont.)

Phase	Function Performed	Signals Involved	Comments
RSA (Cont.)	Reset flip-flop PHRSA Set flip-flop PHRS	$\begin{aligned} \text { R/PHRSA } & =\ldots \\ \text { S/PHRS } & =\text { FSCU PHRSET } \\ \text { PHRSET } & =\text { PHRSA }+\ldots \end{aligned}$	Exit phase RSA Enter phase RS
RS	Raise request strobe signal RSD $(\mathrm{K} 00-\mathrm{K} 07) \rightarrow(\mathrm{O} 00-\mathrm{O} 07)$ Raise end data signal ED internally Start TCL delay line Reset flip-flop PHRS Set flip-flop Ritio	$\begin{aligned} & \text { RSD }= \text { FSC NRSAR } \\ & \text { (PHRS TCSOOO-2 }+\ldots \text {) } \\ & \text { OXK }= \text { OXKEN TCSO00 }-2 \\ & \text { OXKEN }= \text { DATAIN NED PHRS } \\ &= \text { EDI FSC } \\ & \text { EDD }= \text { EDISET1 NPHRSA } \\ &+ \text { EDI FSCU }+\ldots \\ & \text { EDI }= \text { SENSE BKWZ }+\ldots \\ & \text { EDISET1 }= \text { CYCLE/C DCLSTART2 } \\ & \text { NRSAU }+\ldots \\ & \text { DCL } \ldots \\ & \text { DCLSTART2 }= \text { PHPS SEKSEND }+\ldots \\ & \text { SEKSEND }= \text { SENSE NPHRSAOO } \\ &+\ldots \\ & \text { PHRSAOO }= \text { PURSA ORDOUT } \\ & \text { R/PHRS }= \ldots \\ & \text { S/PHTO }= \text { PHRS ED } \end{aligned}$	Contents of C-register read into memory while RSD true Exit phase RS Enter phase TO
TO	Terminal order operations		See table 4-i9

4-97 Seek Order Sequence

The seek order is e: ecuted if the seek order code (00011) is stored in the order register during an order cut service. cycle. During execution of a seek order, two bytes ofdata are accepied on the IOP datu lines and are stored in registers of the controller. The first byte contains eight bits of the track address, which are stored in the T-register (three bits are not used). The second byte contains four additional bits of the track address, which are stored in the T-register, and the four-bit sector address, which is stored in the S-register. Equations controlling execution of the order are listed in tab!e $4-15$; a timing diagram is provided in figure 4-26.

Seek order data is transmifted one byte at a time, regardless of the byte width of the IOP interface. After the
controller raises the request strobe signal RSD, the IOP de!ays, places output data on the data lines, then delays again before raising the request strobe acknowledge signal RSAR. The first byte is accepted into the I-register and is transferred to the J-register before the second byte is requested from the IOP. Transfer from the J-register to either the T-register or the S-register is controlled by signals generated within the controller as the order is executed.

4-98 Write Order Sequence

If a write order ($\mathrm{X} \times 001$) is stored in the order rugister during an order out service cycle, the sequence outlined in table 4-16 follows. During execution of a write order, a sequence of dara out service cycles is requested by the controller. During each data out service cycle, data bytes are accepted from the IOP, stored temporarily in registers of

NOTES:

1. No time scale; sequence of events only
2. preliminary operations: order out service cycle and fhases FS, FSZ, FSL, OF DATA IN SERVICE CYCLE
3. $\left.\begin{array}{l}\text { (TRPR) } \\ \text { (TOO-TO6) }) \\ (\mathrm{OOOO}) \\ (\mathrm{OOO}-\mathrm{O} 07)\end{array}\right]$ FIRST BYTE
4. $\left.\begin{array}{rl}\text { (TO7-T10) } & \rightarrow(\mathrm{KOO}-\mathrm{K} 03) \\ \text { (SOO-S03) } & \rightarrow(\mathrm{KO4}-\mathrm{K} 07)\end{array}\right]-$ SECOND BYTE
5. (ANOR-AN3R) \rightarrow (KO4-K07) THIRD BYTE
6. (KOO-KO才 $\rightarrow(O O O-O O 7)$
7. O-REGISTER READ WHILE RSD TRUE

Figure 4-25. Data Transfer During Sense Order, Timing Diagram

Table 4-15. Seek Order, Phase Sequence Chart

Table 4-15. Seek Order, Phase Sequence Chart (Cont.)

Phase	Function Performed	Signals Involved	Comments
RSA (Cont.)	Start TCL delay line Reset flip-flop PHRSA Set flip-fiop PHRS	DCL $=$ CYCLE/C PHRSA RSAU $+\ldots$ R/PHRSA $=$ \ldots S/PHRS $=$ FSCU PHRSET PHRSET $=$ PHRSA $+\ldots$	Exit phase RSA Enter phase RS
RS	$(\mathrm{I} 00-\mathrm{I} 07) \rightarrow(\mathrm{J} 00-\mathrm{J} 07)$ $(\mathrm{J} 01-\mathrm{J} 07) \rightarrow(\mathrm{TOO}-\mathrm{T} 06)$ Raise request strobs signa! RSD Raise end data sigr:! ED internally Start TCL delay line Reset flip-flop PHRS Set flip-flop PHRSA	$\begin{aligned} & \text { If one-byte interface: } \\ & \begin{aligned} \text { JXIIB } & \\ & \text { } 1 \text { BYP PHRSDO TCS000-2 } \\ \text { PHRSDO }= & \text { PHRS DATAOUT } \end{aligned} \end{aligned}$ If roct one-byte interface: TRSI30 $\text { RWRITEDO }=\text { RWRITEE-2 DATAOUT }$ RSD $=$ FSC NRSAR (PHRS TCSOOO-2 + ...) EDN $\quad=$ EDI FSC EDI = EDISEIT NPHRSA + EDI FSCU + ... EDISETI $=$ SEEK EKZW + ... NRSAU + ... DCLSTART2 $=$ PHRS SEKSEND $+\ldots$ SEKSEND = SEEK NPHRSAOO + ... R/PHRS $\quad=\ldots$ S/PHRSA $=$ FSCU PHRSASET PHRSASET $=$ PHRSNED $+\ldots$ PHRSNED = PHRS NED	Exit phase RS Enter phase RSA
: RSA	$($ DAOR-DA7R $) \rightarrow$ (100-107)	$\begin{aligned} \text { IXD-1 } & =\text { PHRSADO TCS000 }-3 \\ \text { PHRSADO } & =\text { PHRSA DATAOUT } \end{aligned}$	Byte 2 (track No. bits 7-10; sector bits 0-3)

(Continued)

Table 4-15. Seek Order, Phase Sequence Chart (Cont.)

Phase	Function Performed	Signals Involved	Comments
$\begin{aligned} & \text { RSA } \\ & (\text { Cont. }) \end{aligned}$	Decrement byte counter (BKO, BKI) to $(0,1)$ Start TCL delay line Reset flip-flof PHRSA Set flip-flop FHRS	NBKCK $=$ PHRSA SEKSEND TCSO00 -3 SEKSEND $=$ SEEK NPHRSAOO $+\ldots$ PHRSAOO $=$ PHRSA ORDOUT BKWZ $=$ NBKO BK 1 DCL $=$ CYCLE/C PHRSA RSAU $+\ldots$ R/PHRSA $=$ \ldots S/PHRS $=$ FSCU PHRSET PHRSET $=$ PHRSA $+\ldots$	$B K W Z$ signal enables data transfer in phase RS Exit phase RSA Enter phase RS
RS	$\begin{aligned} & (100-\mathrm{i} 07) \rightarrow(\mathrm{j} 00-\mathrm{J} 07) \\ & \begin{array}{l} \text { Ra:se request ssrobe } \\ \text { signal RSD } \end{array} \\ & (\mathrm{J} 00-\mathrm{J} 03) \rightarrow(\mathrm{TO}-\mathrm{T} 10) \\ & (\mathrm{J} 04-\mathrm{J} 07) \rightarrow(500-503) \end{aligned}$ Start TCL delay line Reset flip-fion PHRS Set flip-flop FHTO	JXIIB $=$ IOP PHRSADO TCSO00-2 BYIIID PHRSADO $=$ PHRS DATAOUT RSD $=$ FSC NRSAR (PHRS TCSOOO-3 $+\ldots)$ TXJ $=$ SEEK RWRITEDO BKWZ TRSI30 RWRITEDO $=$ DATAOUT RWRITE -2 SXJ $=$ SEEK RWRITEDO BKWZ TRSI30 DCL CYCLE $/ C$ DCLSTART2 MRSAU $+\ldots$ DCLSTART2 $=$ PHRS SEKSEND $+\ldots$ SEKSEND $=$ SEEK NPHRSAOO $+\ldots$ PHRSAOO $=$ PHRSA ORDOUT $+\ldots$ R/PHRS $=$ \ldots S/PHTO $=$ PHRS ED	Exit phase RS Enter phase TO
TO	Terminal order operations		See table 4-19

NOTES:

1. No imme scale: stquence of events only
2. PRELIMINARY OPEIATIONS: ORDER OUT SERVICE CYCLE AND PHASES FS, FSZ, and fsl of data out service cycle
3. ($\mathrm{J} 01-\mathrm{J07}) \rightarrow(\mathrm{TOO} \cdots$ T06) FIRST BYTE
4. $\left.\begin{array}{rl}(\mathrm{J} 00-\mathrm{JOZ}) & \rightarrow(\mathrm{TOO}-\mathrm{T} 10) \\ (\mathrm{J} 04-\mathrm{J} 07) & \longrightarrow(503-\mathrm{SO3})\end{array}\right]$ SECOND BYTE
5. (DAOR-DATR) $\rightarrow(100-107)$
6. (100-107) $\rightarrow(\mathrm{J} 00-\mathrm{J} 07)$

Higure 4-26. Data Transfer During Seek Order, Timing Diagram
the controller, and transmitted to the addressed selection unit in serial form. The interface with the IOP may be one-, two-, or four-bytes wide. Data bytes are written starting at the track address and sector address indicated by the contents of the T-register and S-register. The contents of these registers are established by a seek order or by the a contents remaining after execution of a previous order. The number of data bytes written is established by information available to the IOP. When the proper number of
data bytes have been written, the IOP terminates execution of the write order with a couni done terminal order, and an order in service cycle is requested by the controller.

Data transfers from the IOP to the FAN module proceed at a rate determined primarily by the IOP speed of respense to requests from the controller. Data transfers from the FAM module to the selection unit must proceed at a rate determined by a clock signal internai to the controller.

Table 4-16. Write Order or Checkwrite Order, Phase Sequence Chart

(Conimued)

Table 4-16. Write Order or Checkwrite Order, Phase Sequence Chart (Cont.)

Phase	Function Performed	Signals Involved	Comments
$\begin{gathered} \text { FS } \\ \text { (Cont.) } \end{gathered}$	Set service connect flipflop FSC as FSR goes false if previously reset by end service signal Set NPHFS Set PHFSZ	FR6D $=$ BSYC UI $+\ldots$ FR7D $=$ BSYC U2 $+\ldots$ S/FSC $=$ ASCB $=$ ASCB (delayed NFSC) C/FSC $=$ NFSC FSR $+\ldots$ S/NPHFS $=$ PHFS C/NPHFS $=$ TCS $100-3$ S/PHFSZ $=$ PHFS C/PHFSZ $=$	FSC must be reset before RSD can be raised in phase FSL End phase FS Enter phase FSZ
, FSZ	Start TCL delay line Reset PHFSZ Set PHFSL	DCL $=$ CYCLE/C PHFSZ $+\ldots$ R/PHFSZ $=\ldots$ C/PHFSZ $=$ TCSIOn-3 S/PHFSL $=$ PHFSZ C/PHFSL $=$ TCSIOn-3	Phase FSZ functions not significant for write order End phase FSZ Enter phase FSL
FSL	Raise request strobe signal RSD Enable data or orde: signals, and request data out service cycle Start TCL delay line If enough data bytes have been accepted, reset SCN; if additional data bytes are required, hold SCN in set state	RSD $=$ FSC NRSAR (FSCU RSD + NPHRSA RSET $+\ldots$) RSET $=$ PHFSL NIN $+\ldots$ DORD $=$ FSC NDATA $+\ldots$ IORD $=$ FSC NII $+\ldots$ DCL $=$ CYCLE/C DCLSTART3 $+\ldots$ DCLSTART3 $=$ PHFSL NFSU $+\ldots$ FSU $=$ FSR IOP $+\ldots$ S/SCN SCNEN SCNEN $=$ DATA SCN EXT SCSET SCSET $=$ WCHW SCR RKI $+\ldots$	RSD latches until RSAR raised by IOP (DORD, IORD) is $(0, i)$ TCL delay line startec.' when FSR goes false If SCN not in se: state upon return to phase? S, service calls inhibited until SCR set

(Continued)

Table 4-16. Write Order or Checkwrite Order, Phase Sequence Chart (Cont.)

Phase	Function Performed	Signals Involved	Comments
$\begin{gathered} \text { FSL } \\ \text { (Cont.) } \end{gathered}$	Reset PHFSL Set PHRSA	$\begin{aligned} \text { R/SCN } & =\text { SCNRST } \\ \text { SCNRST } & =\text { PHFSL }+\ldots \\ \text { C/SCN } & =\text { TCSIO0 }-3 \\ \text { R/PHFSL } & =\ldots \\ \text { S/PHRSA } & =\text { PHRSASET FSCU } \\ \text { PHRSASET } & =\text { PHFSL NIN }+\ldots \\ \text { C/PHRSA } & =\text { TCSIOO-3 } \end{aligned}$	End phase FSL Enter phase RSA
RSA	Start TCL delay when IOP raises RSAR s:ynal Transfer data from IOP deta lines to I-register $(\text { DA.OR-DA7R }) \rightarrow(100-107)$ Reset SCR atier sufficient bytes have been stored in FAM module Set EDISET3 to generate end data signal for use in phase RS	$\begin{aligned} \text { DCL }= & \text { CYCLE/C PHRSA RSAU } \\ & +\ldots \\ \text { RSAU }= & \text { RSAR IOP }+\ldots \\ \text { IXD }= & \text { P:RRSADO TCSO00-3 } \\ \text { PHRSADO }= & \text { PHRSA DATAOUT } \\ \text { S/SCR }= & \text { RKEAD-2 SCRSET } \\ \text { SCRSET }= & \text { NSCSET RK2 NRK3 NRK4 } \\ \text { SCSET }= & \text { WCHW RKISCR }+\ldots \\ \text { RKISCR }= & \text { RKI SCR } \\ \text { R/SCR }= & \text { SCRSET } \\ C / S C R ~ & \text { RKCK } \\ \text { NRKCK }= & \text { TRSI30 }+\ldots \end{aligned}$ If four-byte interface: $M / \text { DISET3 }=\text { BYT4ID }$ If two-byte interface. $\text { S/EDISET3 }=\text { NSCR NEDIS3 }$ $\text { NEDIS3 }=\text { PHRSADO NBYTIID }$	SCR reset durirị FAM write cycle is SCRSET true

Table 4-16. Write Order or Checkwrite Order, Phase Sequence Chart (Cont.)

Phase	Function Performed	Signals Involved	Comments
RSA (Cont.)	Internally-generated end data signal Reset PHRSA Set PHRS	If one-byte interface:	End phase RSA Enter phase RS
RS	Raiso request strol.e signal RSD Start TCL delay line as RSAR goes false Preset signal JFI Mark byte counter Clock byte counter		RSD latches until RSAR raised by IOP Signal JFI at false level Signai JF: latched until data accepted from IOP has been transferred to J register Byte counter direct set to (1, 1) during order out service cycle, but must be preset each time phase RS is entered from phase RSA For multiple-byte interface, byte counter is decremented as byte is transferred from J-register to FAM module

(Continued)

Table 4-16. Write Order or Checkwrite Order, Phase Sequence Chart (Cont.)

Table 4-16. Write Order or Checkwrite Order, Phase Sequence Chart (Cont.)

Phase	Function Performed	Signals Involved	Comments
$\begin{gathered} \text { RS } \\ \text { (Cont.) } \end{gathered}$	$(108-\mathrm{I} 15) \rightarrow$ (100-107)	RWRITEDO $=$ RWRITE-2 DATAOUT	For second data byie, data transfer occurs as part of first I-register to J-register transfer
	Decrement byte counter, causing BKZW to be true $(\mathrm{I} 00-\mathrm{I} 07) \rightarrow(\mathrm{J} 00-\mathrm{J} 07)$	$\begin{aligned} \text { IXEN } & =\text { NBYTIID TRLI80 NTRL240 } \\ \text { JXINIB } & =\frac{\text { IOP DATAOUT NBYTIID }}{} \end{aligned}$	
	$(\mathrm{I} 16-\mathrm{I} 23) \rightarrow(\mathrm{I} 00-107)$	$\text { IXI-2 } \quad=\text { BKZW RWRITEDO IXEN }$	As second data byte is transferred to J--register, third data byte is trunsferred to higher order byte of I-register
	Decrement byte counter, causing BKWZ to be true	$\text { BKWZ } \quad=\text { NBKO BKI }$	
	$(100-107) \rightarrow(J 00-J 07)$	$\begin{aligned} \text { JXINIB } \quad= & \text { IOP DATAOUT NBYTIID } \\ & \text { RWRITE-2 TRSO60 } \end{aligned}$	
i	$(124-\mathrm{I} 31) \rightarrow(\mathrm{I} 00-\mathrm{I} 07)$	IXI-3 $=$ BKWZ RWRITEDO IXEN	As third data byte is it unsferred to J-register, fourth data byte is traisferred to higher order byte of 1-register
	Decrement byie ccunter, causing BKWW to be true	$\text { BKWW } \quad=\text { NBKO NEKI }$	
	Signal JFIRESET false, causing JFI to be faise	$\text { NJFIRESET }=\text { WCHW BKO BYT4ID }$	As signal JFIRESET is false, JFI latch is broken
	Reset PHRS and set PHTO	$\begin{aligned} \text { DCL }= & \text { CYCLE/C DCLSTART2 } \\ & \text { NRSAU }+\ldots \\ \text { DCLSTART2 }= & \text { WCHW PHRS NJFI }+\ldots \end{aligned}$	Only one phase RS needed to accept frur bytes from IOP
	Start TCL delay line when RSAR true	$\text { DCL } \quad=\text { CYCLE/C DCLSTART }$	Refer to table 4-19 for terminal order operatirns other than count done
		DCLSTARTI $=$ PHTO RSÀU + . .	
	If IOP transmits court done terminal order, set CDN	$\begin{aligned} S / C D N & =\text { DAIR TORD } \\ \text { TORD } & =\text { IOP NES ED PHTO } \end{aligned}$	
		C/CDN $\quad=$ NTCS000	
	If CDN, place (DATA, IN) flip-flops to (0, 1) state to request order in service cycle during next phase FS	$\begin{aligned} \text { S/DATA } & =\text { DATASET NORDIN } \\ \text { NDATASET } & =\text { CDN }+\ldots \\ \text { ORDIN } & =\text { NDATA IN } \end{aligned}$	If IOP does not transmit terminal order, data out service cycles contirue following return to phase FS
\%		R/DATA $\quad=\ldots$	

(Continued)

Table 4-16. Write Order or Checkwrite Order, Phase Sequence Chart (Cont.)

| PhaseTO
 (Cont.) | Function Performed | Comments |
| :---: | :---: | :---: | :---: |

Thus data must be accepted from the IOP and written in the disc file at a predetermined rate so that all sectors are filled with the correct number of bytes. The FAM circuit provides a buffer between these two independently-controlled operations.

4-99 Read Ordei Sequence

If a read order ($\mathrm{X} \times \times 10$) is stored in the order regisier during an order out service cycle, the sequence outlined' in table 4-17 follows. During execution of a read order, a sequence of data in service cycles is requested by the contioller. During each data in service cycla, data bits are accepted serially from the addressed selection unit, assembled into eight-bitbytes, stored temporarily in registers of the controller, and transmitted to the IOP. The interface with the IOP may be one-, two-, or four-bytes wide. Data bits are read starting at the track address and the sector address indicated by the contents of the T-registe, and S -register. The contents of these egisters are established by a seek order or by thie contents remaining ofter execution of a previous order. The number of data bytes read is established by information available to the IOP. When the proper number of duta bytes have been read, the IOP terminates execution of the read order with a count done terminal order, and ai: order in service cycle is requested by the controller.

Data transfers from the selection unit interface to the FAM circuits proceed at a rate determined primarily by the bit rate of the addressed selection unit. Data transfers from the FAM circuits to the IOP proceed at a rate determined primarily by the ability of the IOP to accept data. Thus, data must be accepted from the addressed selection unit at a rate estab!ished by a clock signal extracted from the Manchester-encoded data and must be accepted by the

IOP at a rate established by the IOP speed of response to requests from the controller. The FAM circuits provide a buffer between these two independently-controlled operations.

4-100 Checkwrite Order Sequence

If c checkwrite order ($\mathrm{X} \times 101$) is sto:ed in the order registe, during an order out service cycle, the sequence outlined in table 4-16 follows. The checkwrite eder combines ope: i'ions of the write order with operations ci the read orcis. Data bytes are accepted from the IOP on either a one-. two-, or four-byte interface. Data is read from the addressea' selection unit, is assembled into eight-bit bytes, and $i=$ compared with the data accepted from the IOP. The data niccepted from the IOP duririg the succession of data out service cycles must have been previously writien into the addressed locations during execution of a write crder, and the same number of bytes must be read during execution of the checkwrite order as were written during execution of the write order. Data is neither written nor read during execution of a checkwrite order.

4-101 Order In Service Cycle

Each input/output operation ends with an order in service cycle during which information is provided to the IOP, as indicated in table 4-18. During the terminal order phase of an order in service cycle, the command chaining bit is sampled. If the command chaining bit is true, an order out service cycle may follow the order in service cycle. If the command chaining bit is false, the contioller returns to the ready automatic state and cannot accept new orders until an SIO command is transmitted from the IOP and is accepted by the controller.

Table 4-17. Read Order, Phase Sequence Chart

Table 4-17. Read Order, Phase Sequence Chart (Cont.)

Phase	Function Performed	S gnals involved	Comments
FS (Cont.)	Enable function response signals FROD through FR7D Set service connect flip-flop FSC as FSR goe: false if FSC was previously reset by end service signal Set NPHFS Set PHFSZ		(FROD-FR3D) encode device controller address FR4D always false (FR5D-FR7D) encode device address FSC must be $5 \leq ;$ before RSD can be raised End phase FS Enter phase $\mathfrak{i} \leq Z$
FSZ	Start TCL delay line Reset PHFSZ Set PHFSL	$\begin{array}{ll} \text { DCL } & =\text { CYCLE/C PHFSZ }+\ldots \\ \text { R/PHFSZ } & =\ldots \\ \text { S/PHFSL } & =\text { PHFSZ } \\ \text { C/PHFSL } & =\text { TCS } 100-3 \end{array}$	Phase FSZ functions not significant for read order End phase FSZ Enter phase F.JL
FSL	Enable data or order signals to request data in service cycle Starf TCL delay line	$\begin{aligned} \text { DORD } & =\text { FSC NDATA }+\ldots \\ & \\ & \\ \text { IORD }= & \text { FSC NIN }+\ldots \\ \text { DCL } & +\ldots \\ & +\ldots \\ \text { DCLSTART3 }= & \text { PHFSL NFSU }+\ldots \\ \text { FSU }= & \text { FSR IOP }+\ldots \end{aligned}$	(DORD, IORL) are $(0,0)$ TCL delay line started when FSR goes false

Table 4-17. Read Order, Phase Sequence Chart (Cont.)

Table 4-17. Read Order, Phase Sequence Chary (Cont.)

Phase	Function Performed	Signals Involved	Comments
$\begin{gathered} \text { RS } \\ \text { (Cont.) } \end{gathered}$	Transfer data from addressed location in FAM module to I-register, clock byte counter. Raise end data signal if sufficient data byies are not stored in FAM module, preset KFI when K-register and I-register filled with data for O -register	If multiple-byte IOP interface	For multiple-byte IOP interface, additional bytes are taken from the FAM module to the I-register for transfer to O-register. Data transfer is controlled by the byte counter
	Mark byte counter	$\begin{aligned} \text { M/BKO } & =\text { BKXI } \\ \text { BKXI } & =\text { NBKXIEN } \\ \text { NBKXIEN } & =\text { KXOEN READ }+\ldots \\ \text { KXOEN } & =\text { OXKEN TCS } 100-3 \end{aligned}$	Byte counter direct set to (1,1) during order out service cycle, but must be preset each time data is transferred from K -register and I register to O -register
		M/BKI $\quad=B K X I$	
	Clcek byte counter	$\begin{aligned} \text { NBKCK }= & \text { BKCKEN TRS27E } \\ & +\ldots \\ \text { BKCKEN }= & \text { NBYTIID (READ.-) READRR } \\ & + \text { BKCKEN NTK030 } \\ & +\ldots \text {) } \end{aligned}$	For multiple-byte IOP interface, byre counter is incremented as the byte is transferred from the FANi module to the K-register or l-tegister
		If two-byte IOP interíace:	
	First data byte transferred as for one-bvte IOP interface $(\text { R00-R07) } \rightarrow-\text { K00-K07) }$	$\text { KXR } \quad=\text { KXREN RREAD }-2 \text { TRS } 180$	
		$\begin{aligned} \text { KXREN } & =\text { READRR }+\cdots \\ \text { READRR } & =\text { READ RREAD-2 } \end{aligned}$	
	Decrement byte counter, causing signal BKZW to be true	BKZW $\quad=3 K O$ NBKI	
	Transfer secund data byte from addressed location in FAM modul:		
	$(\mathrm{ROO}-\mathrm{R07}) \rightarrow(108-\mathrm{I} 15)$	IXR-1 $=$ IXEN READRE $8 K Z W$	
		$\begin{aligned} \text { IXEN }= & \text { NBYTIID TRL180 } \\ & \text { NTRL240 } \end{aligned}$	

Table 4-17. Read Order, Phase Sequence Chart (Cont.)

(Continued)

Table 4-17. Read Order, Phase Sequence Chart (Cont.)

Phase	Function Performed	Signals Involved	Comments
$\begin{gathered} \text { RS } \\ \text { (Cont.) } \end{gathered}$	Decrement byte counter, causing signal BKWZ to be true Transfer third data byte from addressed location in FAM module $(R 00-R 07) \rightarrow(I 16-I 23)$ Decrement byte counter, causing signal BKWW to be true Transfer fourti data byte from addressed location in FAM module As second data byte is stored, raise and latch KFI by driving KFISET false Raise and latch KFID Transfer data ta C-register $\left[\begin{array}{l} (\mathrm{K} 00-\mathrm{K} 07) \rightarrow(\mathrm{C00}-\mathrm{O} 07) \\ (\mathrm{IO8-I15}) \rightarrow(\mathrm{O} 08-\mathrm{O} 15) \\ (\mathrm{I} 6-\mathrm{I} 23) \rightarrow(\mathrm{O} 16-\mathrm{O} 23) \\ (\mathrm{I} 24-\mathrm{I} 31) \rightarrow(\mathrm{O} 24-\mathrm{O} 31) \end{array}\right.$ Mark byte cour.ter End data signal raised and latched internally to control phase sequence		During each FAM read cycle, RREAD-2 is rrue. When BKO false, KFISET driven false: KFIXI raises KFl , which is Iatched until KX0 is false KFID enables TCL delay line to start in phase RS (next RSAR signal) Transfer of dute from K-register c. id I-register to O-registe: takes place at start of phase RS. Transfer of data from FAM module to K-register and I-register is independent of phase control timing, but data must be available before transfer to phase RS is allowed Prepare for next phase RS Signal KA8 raised and latched if FAM module empty when KFIDX1 true. If so, EDiSET2 raised and latched

Table 4-17. Read Order, Phase Sequence Chart (Cont.)

Phase	Function Performed	Signals Involved	Comments
$\begin{aligned} & \text { RS } \\ & \text { (Cont.) } \end{aligned}$	Reset PHRS If end data, set PHTO If not end data, set PHRSA	R/PHRS $=\ldots$ S/PHTO $=$ PHRS ED C/PHTO $=$ TCSI00-3 S/PHRSA $=$ PHRSASET FSCU PHRSASET $=$ PHRSNED PHRSNED $=$ PHRS NED C/PHRSA $=$ TCS100- 3	End phase RS Enter phase TO Enter phase RSA
RSA	Start TCL delay line when IOP raises RSAR Reset PHRSA Set PHRS	DCL $=$ CYCLE/C PHRSA RSAU $+\ldots$ RSAU $=$ RSAR $1 D P+\ldots$ R/PHRSA $=$ \ldots S/PHRS $=$ PHRSET FSCU PHRSET $=$ PHRSA $+\ldots$	O-register data accepted by IOP End phase RSA Enter phase RS
TO	Start TCL delay line when RSAR true If IOP transmits count done terminal order, set CDN If CDN, place (D,ATA, IN) flip-flops to (0, 1) state to requesi an order in service cycle during next phase FS		Refer to table 4-14 for terminal order operations other thar. count done If IOP does not transmit terminal order, data in service cycles continue following refurn to phase FS

Table 4-17. Read Order, Phase Sequence Chart (Cont.)

Phase	Function Performed	Signals Involved	Comments
TO (Cont.)	Whether or not terminal order received from IOP: Reset PHTO Reset NPHFS	$\begin{aligned} \text { R/PHTO } & =\ldots \\ \text { R/NPHFS } & =\text { PHFSET } \\ \text { PHFSET } & =\text { PHTO }+\ldots \end{aligned}$	End phase TO Enter phase FS

Table 4-18. Order In Service Cycle, Phase Sequence Chart

Table 4-18. Order In Service Cycle, Phase Sequence Chart (Cont.)

Phase	Function Performed	Signais Involved	Comments
FS (Cont.)	If phase FS follows detection of controller error, place (DATA, IN) flip-flops to (0, 1) Set NPHFS Set PHFSZ	S/DATA $=$ DATASET NORDIN DATASET $=$ NCDN NCDNPET NUNE NSKSBK ORDIN $=$ NDATA IN C/DATA $=$ PHFSTOD TCSI00-3 PHFSTOD $=$ PHFS DATA R/DATA $=$ \ldots S/IN $=$ INSET NORDIN INSET $=$ NDATASET $+\ldots$ C/IN $=$ PHFSIOD TCSICO-3 S/NPHFS $=$ PHFS C/NPHFS $=$ TCSIOO-3 S/PHFSZ $=$ PHFS C/PHFSZ $=$ TCSIOU-3	(DATA, IN) flip-flops must be in state $(0,1)$ to request order in service cycle End phase FS Enter phase FSZ
FSZ	Siart TCL delay line Reset PHFSZ Set PHFSL.	$\begin{array}{ll} \text { DCL } & =\text { CYC'F/C PHFSZ }+\ldots \\ \text { R/PHFSZ } & =\ldots \\ \text { S/PHFSL } & =\text { PHFSZ } \\ \text { C/PHFSL } & =\text { TCSIOO- }-3 \end{array}$	End phase FSZ Enter phase FSL
FSL	Start TCL delay line Reset service call f!ip-flop SCN Rese PHFSL	$\begin{aligned} \text { DCL } & =\text { CYCLE/C DCLSTART3 } \\ & +\ldots \\ \text { DCLSTART3 }= & \text { PHFSL NFSU }+\ldots \\ \text { FSU }= & \text { FSR } \cdot 1 \mathrm{OP}+\ldots \\ \text { R/SCN }= & \text { SCNETT } \\ & \\ \text { SCNRST }= & \text { PHFSL }+\ldots \\ \text { C/SCN }= & \text { TCSI00-3 } \\ \text { R/PHFSL }= & \ldots \end{aligned}$	TCL delay line sturted when FSR goes false SCN reset to prevent additional service calls End phase FSL

Table 4-18. Order In Service Cycle, Phase Sequence Chart (Cont.)

Phase	Function Performed	Signals Involved	Comments
$\begin{gathered} \text { FSL } \\ \text { (Cont.) } \end{gathered}$	Set PHRS	$\begin{aligned} \text { S/PHRS } & =\text { FSCU PHRSET } \\ \text { PHRSET } & =\text { PHFSL IN }+\ldots \\ \text { FSCU } & =\text { FSC IOP }+\ldots \end{aligned}$	Enter phase RS
RS	Start TCL delay line Raise request strobe line RSD Load data into O-register $(T E R, I N L, 1, U N E) \rightarrow(O 00$, O01, O03, OO4) Reset PHRS Set PHRSA		RSD remains high until request strobe acknowledge signal received from IOP Contents of O-register on IOP data iines contains (XX01 X000), depending on state of flip-flops End phase RS Enter phase RSA
RSA	Start TCL delay line when request strobe ncknowledge signal received from IOP Reset PHRSA Set PHRS	DCL $=$ CYCLE/C PHRSA RSAU $+\ldots$ RSAU $=$ kSAR IOP $+\ldots$ R/PHRSA $=$ \ldots S/PHRS $=$ FiIRSET FSCU PHRSET $=$ PHRSA $+\ldots$ C/PHRS $=$	IOP accepts duia in O-register End phase RSA. Enter phase RS

Table 4-18. Order In Service Cycle, Phase Sequence Chart (Cont.)

Phase	Function Performed	Signals Involved	Comments
RS	Start TCL delay line when request strobe acknowledge signal RSAR goes false Raise request strobe line RSD Reset PHRS Set PHIO	$\begin{aligned} & \text { DCL } \text { CYCLE/C DCLSTART3 } \\ &+\ldots \\ & \text { DCLSTART3 }= \text { PHRS NDATA NRSAU } \\ &+\ldots \\ &= \text { FSC NRSAR (FSCU RSD } \\ &+ \text { PHRS TCSOOO-3 } \\ &+\ldots \text {) } \\ & \text { RSD }= \ldots \\ & \text { R/PHRS } \\ & \text { S/PHTO }= \text { PHRS ED } \\ & \text { ED }= \text { EDSET TCSO00-2 } \\ &+ \text { ED FSCU }+\ldots \\ &= \text { EDI FSCI } \\ &+ \text { EDISETI NPHRSA } \\ &+\ldots \\ & \text { EDI } \\ & \text { EDISETI }= \text { NDATA }+\ldots \\ & \text { C/PHTO }= \text { TCSIO0- } 3 \end{aligned}$	RSD remains high until RSAR received from IOP End phase RS Enter phase TO End data signal set internaily and latched
TO	Start TCL delay lire when RSAR true If end service, reset ESC If end service, reset DCB. If not end service, not unusual end, and command chaining is ordered by IOP, inhibit reset of $D C B$ Reset PHTO Reset NPHFS	$\begin{aligned} \text { DCL } & =\text { CYCLE/C DCLSTARTI } \\ & +\ldots \\ \text { DCLSTARTI }= & \text { PHTO RSAU }+\ldots \\ \text { R/FSC }= & \text { ESR FSC } \\ \text { C/FSC }= & \text { FSC RSD }+\ldots \\ \text { R/DCB }= & \text { DCBRST } \\ \text { DCBRST }= & \text { DCBRSTI }+\ldots \\ \text { DCBRSTI }= & \text { PHTO ORDIN DCBRSTEN } \\ \text { DCBRSTEN }= & \text { N(CCH NES NUNE }) \\ \text { CCH } & =1 O P \text { DA2R NDA3R } \\ \text { C/DCB } & =\text { NTCSO8O } \\ \text { R/PHTO } & \ldots \\ \text { R/NPHFS } & =\text { PHFSET } \\ \text { PHFSET } & =\text { PHTO }+\ldots \\ \text { C/NPHFS } & =\text { TCSIOO-3 } \end{aligned}$	End phase TO Enter phase FS

4-102 Terminal Order Operations

Every service cycle ends with a terminal order phase during which a terminal order may be received from the IOP, as indicated in table 4-19. If no terminal order is received and no errors have occurred during data processing, the order in process continues. The count done terminal order that ends every errorless input/output operation is followed by
an order in service cycle. Interrupt terminal orders and unusual end terminal orders are commanded by the IOP and may cause the data processing to stop. A command chaining terminal order can occur only during an order in service cycle and causes an order out service cycle to follow the order in service cycle. Controller errors are acted upon during the terminal order phase, regardless of when they occur.

Table 4-19. Terminal Order Operatioris, Phase Sequence Chart

Phase	Function Performed	Signals Involved	Comments
TO	Start TCL delay line IOP Signals If count dons: set CDN If inierrupt, set CII If unusual end, set UNE If UNE or CDN set, reset DATA and sct IN to request order in service cycle : pon return to phas: FS		Itidicates ali data hus been transferied for read, write, or checkwrite operation. Reset during next order out service cycle Reset by AIO command. New SIO cannot be acrepted untii CII is reset. The order in process goes to completion Reset by new SIO

Table 4-19. Terminal Order Operations, Phase Sequence Chart (Cont.)

Phase	Function Performed	Signals Involved	Comments
$\begin{gathered} \text { TO } \\ \text { (Cont.) } \end{gathered}$	Resef PHTO	R/PHTO $=\ldots$	End phase TO
		C/PHTO $=$ TCS100-3	
	Reset NPHFS	R/NPHFS $=$ PHFSET	Enter phase FS
		PHFSET $=$ PHTO $+\ldots$	
		C/NPHFS $=$ TCS:00-3	

4-103 EP RAD SELECTION UNIT

The EP RAD selection unit either accepts data signals and control signals from the EP RAD controller and writes Man-chester-encoded data on the magnetic surfaces of the disc or reads Manchester-encoded data from the disc file and transmits data signals and control signals to the EP RAD controller. A maximum of eight iP RAD selection units may interface with one EP RAD coniroller. Each EP RAD selection unit interfaces with one disc file.

All EP RAD selection units of an [P RAD file are connected to the associated EP RAD controller by a common cable assembly, as indicated in figure 3-1. Interface signals common to the EP RAD controller and to all EP RAD selection units of an EP RAD file are listed in table 4-20. Signals generated by on EP RAD selection unit or received by an EP RAD se!ection unit are valid only if the EP RAD selection unit is addressed by the EP RAD controller.

4-104 ADDRESS CIRCUITS (See figure 6-5)

Signals IDOR, IDIR, and ID2R, which are transmitted from the U-register of the controller, p:ovide inputs to all selection units. For one selection unit, the address encoded he signal levels matches the eddress encoded by switch ngs of the LT26 Switch Comparator module, causing signal SEL for the addressed seleciion unit to be true. If no power fa:lure has occurred (NPDLY true), signal DVT is true, generating a true device test signal DVTD. In response to an occepted SIO cormmand, the controller generates a true SLNR signal. As signal SLNR goes false, flipflop USLA of the addressed selection unit (SEL true) is set. Once signal USLA is true, signcils USLB, TYPO, TYPI, and DVOD are true, and interface signcils for the addressed selection unit are valid.

4-105 TRACK REGISTER (See figure 6-6)

The track register, which consists of flip-flops TR0 through TRIO, is cleared by a true PDLY signal.

$$
(E / T R O-E / T R 10)=P D L Y
$$

The track register is a serial register clocked by signal $S \subset I R$, which is generated by the controller. While the
selection unit is addressed, the track register is loaded with an 11-bit track address during each intersector gap time. Signal SCIR is true 11 fimes, and the track address bits are accepted from the controller through signa! TRKR. (The two most significant bits should always be zeros.)

$S / T R 0$	$=$ TRKR USLA
$S / T R 1$	$=$ TRO
\vdots	\vdots
$S / T R 10$	$=T R 9$

$$
(C / T R 0-C / T R 10)=S C I R
$$

Outputs of the track register address one of the 512 read/ write heads and permit reading from or writing into the track arsociated with the addressed read/write head. Signals from TR2 through TR5 are used in the memory protect circuits.

4-106 MEMORY PROTECT CIRCUITS (See figure ó-8)

The memory protect circuits accept output signals fresa the four mo.t significant bits of the track register (TR2, TP3, TR4, and TR5) and generate 16 output signals, as summarized in table 4-21. For any possible combination of the four inputs, one of signals NGTO1 through NGTló is false. If the switch associated with the signal is closed, signal Tif is driven false. If the selection unit is addressed, signai USLA is true and a true TRPD signal is generated to indicate that the addressed track is write-protected. If an order sther than write is being executed, signal TRPD does not affect operation of the controller. Tracks must be protected in groups of 22 , us indicated in table 4-21 since the four most significani bits of any address cause all tracks in that iange to be protected.

4-107 ANGLE REGISTER (See figure 6-9)

The ongle register, which consists of flip-flops ANO through AN3, is cleared to 0000 by index pulse IP.

$$
(E / A N O-E / A N 3)=\mathbb{I P}
$$

Table 4-20. EP RAD Selection Unit Interface Signals

Signal	Function
/ANO/-/AN3/	Sector address (angle) data to controller. A four-bit code which indicates the address of the sector currentily under the read/write heads
/DAI/	Data signal to controller. Developed from Manchester-encoded data written on disc file
/DAT/	Data output to storage unit from D07 of controller
/DS/	Data strobe to controller. Developed from Manchester-encoded data. Provides the clock signal associated with /DAI/
/DVT/	Device test signal to controller
/DVO/	Device operational signal to controller
/ID0/-/ID2/	Device address signals from controller. The selection unit controls signul levels on the common cable assembly only, if the device address signals match the address set in the module
/IP/	Index pulse to controller. Senercted once per revolution of the disc
NMNRST/	Manual reset signal f:om controller. Developed by signal NPWRMON
/PWRMON/	Signal to controller. Irue when power circuits operating properly
/SAI/	Sector amplified enable signai from controller. True after track address has been shifted from controller to addressed selection unit during intersector gap time
/SCl/	Traci: and sector shift clock. True 11 times during intersector gap time to permit output of TRKR to be stored in track register
/SC2/	Data clock from controller. True during execution of write order to enable Manchester-encoded data to he stored on dise
/SLN/	Select now signal from controller. True when an SIO command is acceptsd
/SP/	Sector pulse signal to controller. True 11 times for each revolution of the disc
/TRK/	Track address bits from controller. Read under control of signal/SCl/
/TRP/	Track protect signal to controller. True when controller attempts to write in a write-protected track
/TYPO/-/TYPI/	Storage unit type signals to controller. For EP RAD storage unit, both signals are true
MEN/	Write enable signal from controller. True during execution of write order, after read/write enable flip-flop in controller is set

Table 4-21. Memory Protect Signals

TRACK REGISTER OUTPUTS				TRACKS PROTECTED	OUTPUT SIGNAL
TR2	TR3	TR4	TRS		
0	0	0	0	0-31	NTG01
0	0	0	1	32-63	NTG02
0	0	1	0	64-95	NTG03
0	0	1	i	96-127	NTG04
0	1	0	0	128-159	NTG05
0	1	0	1	160-191	NTG06
0	1	1	0	192-223	NTG07
0	1	1	1	224-255	NTG08
1	0	0	0	256-287	NTG09
1	0	0	1	288-319	NTG10
1	0	1	0	320-351	NTG11
1	0	1	1	352-383	NTG12
1	1	0	0	384-415	NTG13
1	1	0	1	416-447	NTG14
1	1	1	0	448-479	NTG15
1	1	1	1	480-511	NTG16

```
f a clock signal.
\[
\begin{aligned}
& S / A N O=\text { NANO } \\
& S / A N 1=\text { NAN1 } \\
& S / A N 2=\text { NAN2 } \\
& S / A N 3=N A N 3
\end{aligned}
\]
```

t input to each flip-flop is irs complement, so a flipjes from the set state to the reset state on the falling

The clock signal for flip-flop ANS is the complement of sector pulse SP, so that it changes state on the rising edge of each sector pulse SP. The clock signal for other flipflops is the complement of sector pulse SP gated with outputs of other flip-flops.
$\therefore C / A N 3=N S P$
$C / A N 2=$ NSP AN3

$$
\begin{aligned}
& C / L . N 1=\text { NSP AN3 AN2 } \\
& C / F . N O=\text { NSP AN3 AN2 AN1 }
\end{aligned}
$$

Therefore, the angle register changes state of the rising edge of each sector pulse, counting in binary sequence from 0000 to 1011 , in which AN3 represents the least significant bit and ANO represents the most sigrificant bit. After the angle register reaches 1011, the index pulse clears it to 0000 .

4-108 HEAD SEIECTION MATRIX

Selection of a read/write head is controlled by outputs of the track register which select a read/write head through the LT76 Read/Write Coupler modules and the RT18 YSelect modules. (See figure 4-27.) The selected read;' write head either provides inputs to the LT76 module for fransmission to the cortroller or accepts signals from the controller which enable writing data on the dise file.

Figure 4-30. Write Signals, Timing Diagram

4-111 LOGICAL SPARING CIRCUITS

The logical sparing circuits (figure 4-33) consist of two BT12 Binary-to-Octal Decoiler modules, eight LT105 Spares Selector modules, one RT18 r'-Select module, and associated logic elements. These circuits control the selection of one of the 64 spare read/write heads in place of a XDSassigned read,'write head. Signals TRMIX2, TRMIX3, and TRMIX4 select one of eight LI76 Read/Write Coupler modules, as described in parag. a; hi 4-108. When logicol spaiing is used, signa's SPSEL, S?O. SP1, and SP2 cause one of signals YSPO ihrough YSP7 io be true, providing a Y-select signal which activates a spar read/write head.

Figures 6-10 through 6-13 indicate the correspondence between the 512 read/write heads and the 512 track addresses as assigned at XDS. if a read/write head fails or if the circuits between the LT/6 module and the read/write head fails, one of the 64 spars read/write heads can be assigned to the track address by changing wiring on one of the eight LT105 Spares Selector modules.

If logical sparing is not used, signals NSPSEL, NXSP2, NXSP3, and NXSP4 are true, and signals TRMIX2, TRMIX3, and TRMIX4 are controlled by outputs of track address register flip-flops TR2, TR3, and TR4. Also, a false SPSEL signal inhibits gates in the RT18 module used in the spares select logic, so that all Y-select signals for the spare read/ write heads are false. If logical sparing is used, signal SPSEL is true and one of the spare read/write heads is addressed in place of the normally assigned read/write head.

The BT 12 modules provide 24 signals which represent all track address register signals in octal notation. Signals

X0 through $X 7$ represent the most significant (sixty-fours) digit; signals YMO through YM7 represent the iiext most significant (eights) digit; signals YLO through YL7 represent the least significant (urits) digit. A track address for which a spare read/write head is assigned is detected by an LT105 modile (figure 4-34).

If lagical sparing is not used, each of the eighi input gates of the LT105 modiule is connected to ground, so that signals NSPO, NSP1, NSP2, NSPSEL, and the module identification signal (NMODI through NMOD8) are true. When $\log i c$ sparing is to be used, the ground conneciton is removed from one input gate, and the address of the track to be spared is encoded at the input gate disconnected from ground. When that track is not addressed, the output sianals are all true. When that track is addressed, the signals ' n the assigned input gates are true, the cutput of the a.signed gate is false, and the LTIO5 module output signals are as indicated in figure 4-34. Signals NSPSEL, NSPO, N:SPI, and NSi2 cause one cutput of the RT18 module to be true, providing a Y-select signal. The module identification signal gene rates a combination of signals NXSP2, NXS?3, and NXSP4 that selects one of the LT76 modules. Therefore, one $\approx f$ the 64 spare read/write heads is addressed in place of the initially assigned read/write head. Figure 4-35 illustrstes the logic elements involved for sparing track address 221 (octal 335).

4-112 TYPICAL OPERATIONS

Table 4-22 outlines the sequence of EP RAD file operations in response to an SIO command, followed by a sense order, a seek order, and a write order. This sequence of operotions is typical. The sense order detects the sector currently

Figure 4-32. Read Signals, Timing Diagram
under the read/write heads of the EP RAD storage unit. The seek oider provides a track number and sector number at which execution of the following order is to begin. (A program using this sequence assures minimum delay while waiting for an addressed sestor because the available sector is addressed in constructirc the seek order.) The write order
follows the order which stored the addressed location. The table provides references to paragraphs, phore sequence charts, and illustrations which provide details of the operations outlined. Figure 4-36 shows major elements of the EF RAD controller and can be used with other reference maierial to review operation.

Table 4-22. Typical Operations of the EP RAD File

Oreration	Refererces
The IOP address an SO command to the EP RAD control!er and one nf aight (maximum) EP RAD storage units. The STO command is accepted if: a. The EP RAD controller has priority b. The EP RAD controller and EP RAD storage unit are ready c. No interrupt is pending During the order out service cycle, the sense order code is stored in the order register During the following three dato in service cycles, data is transferred to the IOP	Function strobe and function indicators (par. 4-10 and table 4-1) SIO function indicator (par. 4-17) Phase control circuits (par. 4-22) Phrse sequence chart (table 4-10) Flow diagram (fig. 4-8) Phase sequence chart (table 4-ij) Order register (par. 4-3i) Order signals (table 4-2) Flow diagram (fig. 4-8) Phase control circuits (par. 4-24) Data path (fig. 3-5) Timing diagram (fig. 4-25)

Table 4-22. Typical Operations of the EP RAD File (Cont.)

Operation	References
a. Write protect bit from selection unit and five track address bits from T-register b. Four track address bits from T-register and four sector address bits from S-register c. Four current sector bits from selection unit	Phase sequence chart (table 4-14) Flow diagram (fig. 4-8) Byte counter (par. 4-33) O-register (par. 4-38) K-register (par. 4-57) T-register (par. 4-68) S-iegister (par. 4-67) Address circuits (par. 4-104) Memory protect sircuits (par. 4-106)
During the order in service cycle, command chaining permits the order out service cycle to follow	Phase circuits (par. 4-29) Phase sequence chart (table 4-18) Flow dicgram (fig. 4-8)
During the order out service sycle, the seek order code is stored in the order reyister	Phasc sequence chart (table 4-13) Order register (par. 4-31) Order signals (table 4-2) Phase controi circuits (par. 4-24) Flow diagram (fig. 4-8)
During the following two data out service cycles, data is transferred from the IOP a. Five bits of track addiress b. Four bits of track address and four-bit sector address	Data :-rth (fig. 3-4) Timing diagram (fig. 4-26) Pinase control circuits (par. 4-26) Flow ciagram (fig. 4-8) Phase sequence chart (table 4-15) Byte counter (par. 4-33) I-register (par. 4-37) J-register (par. 4-39) T-register (par. 4-68) S-register (par. 4-67)

Table 4-22. Typical Operations of the EP RAD File (Cont.)

Operation	References
During the order in service cycle, command chaining permits the order out service cycle to follow	Phase circuits (par. 4-29)

During the order out service cycle, the write order code is stored in the order register

During execution of a write order, the number of data out service cycles depends upon the number of data bytes to be transmitted and the byte width of the IOP interface. After all data bytes have been transferred, the IOP transmits a count done terminal order

Phase sequence chart (table 4-18)
Flow diagram (fig. 4-8)

Phase sequence chart (table 4-13)
Order register (par. 4-31)
Order signals (table 4-2)
Pinase control circuits (par. 4-24)
Flow diagram (fig. 4-8)

Sata path (fig. 3-6)
Phase control circuits (par. 4-27)
Flow diagram (fig. 4-8)
Phase sequence chart (table 4-16)
I-register (par. 4-37)
.'r-register (par. 4-43)
j-register (par. 4-39)
FAM circuits (par. 4-46)
I--register (par. 4-45)
N.P-register (par. 4-44)

K-register (par. 4-57)
D-register (par. 4-58)
-register (par. 4-66)
Freamble (par. 4-61)
Checksum (par. 4-71)
Address increment (par. 4-70)
Terminal order (table 4-19)

Phase circuits (par. 4-29)
Phase sequence chart (table 4-18)
Terminal order (table 4-19)
Flow diagram (fig. 4-8)

Figure 4-34. LT105 Spares Selector Module, Simplified Logic Diagram

Figure 4-35. Logical Sparing Circuits for Track 221 (Octa! 335), Simplified Logic Diagram

SECTION V

LOGIC EQUATIONS AND GLOSSARIES

5-1 GLOSSARIES

Definitions of EP RAD file terms are contained in table 5-1. Table 5-2 contains a glossary of EP RAD controller signals and table 5-3 contains a glossary of EP RAD
selection unit signals. All glossaries are in alphanumeric sequence.

5-2 LOGIC EQUATIONS (See tables 4-8 through 4-19.)

Table 5-1. Glossary of EP RAD File Terms

Term	Definition
B-counter	Flip-flops B00 through B12. Counts bits and bytes during execution of read order, write order, or checkwrite order
Byte ccunter	Flip-flops BKO ard BKI. Used during execution of all orders to count bytes of a service cycle
Condition code	A fwo-bit code transmitted from the EP RAD file which indicrtos the staius of the EP RAD file to the IOP
Daia in service cycle	A service cycle during which data bytes are transferred from the EP RAD file to the IOP
Data out service cycle	A service cycle during which data bytes are transferred from the IOP to the EP RAD file
D-register	Flip-flops D00 through D07. Used during execution of write order or checkwite order to transform data format from parallei to serial. Used cuivirg execution of read order to transform dista format from seria! to parallel
Enc' data signal	Signal ED, which may be generated by either the IOP or the EP RAD controller and which causes an end to data transfer
Ená service signal	Signal ES, which is generated only by the IOP and which causes an end of the input/output operation
Fast access memory (FAM) module	FT25 module which stores a maximum of 16 addressable bytes. Receives data iriplits from J-register and addrcss inputs from Lregister. Outputs of addressed register are designaitd RCO through R07
FAM read cycle	A cycle of opera'ion of the fast access memory (FAM) circuii, during which a byte is transferred from the addressed location in the FAM module to the K -register or the I-register
FAM write cycle	A cycle of operation of the fast access memory (FAM) circui. during which a byte is trarsferred from the J-register to the addressed location in the FAM module
Function indicator	A signal that indicates the type of function (AIO, ASC, HIO, TIO, TDV, or SIO)

(Continued)

Table 5-1. Glossary of EP RAD File Terms (Cont.)

(Continued)

Table 5-1. Glossary of EP RAD File Terms (Cont.)

Term	Definition
PET data signals	Signals DPOO through DPO7. Signals received from the PET to simulate signals DAOR through DA7R during offline test
Phase control circuits	Flip-flops NPHFS, PHFSZ, PHFSL, PHRS, PHRSA, and PHTO and associated circuits. Establish phase of controller and respond to subcontroller outputs and internal timing and control signals
P-register X	Flip-fiops P00 through P15. Used to generate checksum during execution of read order, write order, or checkwrite order, and to increment track address and sector address during intersector gap
Read sequence	The sequence of operations (service cycles, data transfers) that takes place during execution of a read order
Request strobe acknowledge signal	RSAR signal which :s generated by the IOP to indicate that a data eirchange has taken place in rejponse to an RSD signal
Request strobe signal	RSD signal which is generated within the controller to request a daia strobe from the IOP, causing a data transfer betwee:i the IDP and the controllei
RK-counter	Flip-fiops RK0 through RK4. Indicates the number of active bytes in the FAN: module during execution of read order, write order, or checkwriic order
Sector address	A four-Lit code winich addresses one of the 12 sectors of each track
Service call sigra!	SCD signal whici. is generated by tiee controller when service is required for data transfer
Service connect	A state of the contriller in which data transfers between tine IOP and the conircller may occur
Service cycle code	A two-bit code indicating the type of service cycle requested by the controller
S-register	Buffered latches 500 through S03, and NS03. Stores secior address
Subcontroller	A staridard set of mudules which form part of every device controller and which monitor and respond to IOP signals
Terminal order	An optional order following execution of a seek order, sense order, write order, read order, or checkwrite order, which indicates count done, interrupt, channel end, unusual end, or . command chaining
Track address	An 11-bit code which addresses one of 512 tracks on the suifcees of the disc file. (Only 9 of the 11 bits are used)
T-register	Buffered lotches T00 through T10. Stores track address

Table 5-i. Glossary of EP RAD File Terms (Cont.)

Term	Definition
Unit address	A three-bit code which addresses one of the eight (maximum) EP RAD storage units in an EP RAD file
U-register	Flip-flops U0 through U2. Stores address of EP RAD storage unit
Write sequence	The sequence of operctions (service cycles, data transfers) that takes place during execuition of a write order

Toble 5-2. Glossary of EP RAD Controller Signals

Signal	Defintion/Function
/AIO/	Acknowledge input/output function line. Causes highest priority device with interrupt call line raised to send staits and address data. Transmitted from IOP to device controller
AIOC	Acknowledge 1/O control. Enables gating of status for AIO if controller is the highest priority device with interrupt call line raised
: AIOM	Acknowledge I/O monitor. Indicates that controller has raised interrupt call line. Enables $B S Y C$ and $A I O C$ if true, enables /AVO/ if false
AIOR	Acknowledge I/O receiver
ALT	Flip-flop which alternates a write order with the order encoded in the PET panel switches, and provides for skipping revolutions when writing in singie track mode
ALTCK	ALT clock
ALTCKEN	ALT clock enable
ALIORD	PET-generated simulation of ALT
ALTYP2	ALT signal for extended performance (TYP2) use
/ANO/-/AN3/	Sector address (angle) data from selecrion unit
(ANOR-AN3R)	Sector address receivers
ANIOTYP2	Equivalent to ANIR or EXT
/ASC/	Acknowledge service call function linc. Causes highest priority device with service call line raised to send address data
ASCB	Acknowledge service call buffer. Erakles setting FSC if the controller is the highest priority device with service call line raised
A.SCM	Acknowledge service call monitor. indicates that the controller has raised a service call. Enables $A S C B$ and $B S Y$ if true; enabies $A V O$ if false
ASCR	Acknowledge service call receiver
/AVI/	Available input priority line. Diiven by the IOP to the highest priority controller. Passed on by inactive controllers as signal AVO

[^1]Table 5-2. Glossary of EP RAD Controller Signals (Cont.)

Signal	Definition/Function
AVIR	Available input receiver
/AVO/	Available output line
AVOD	Available output driver. Driven by any controller that is not addressed or that does not have priority for an interrupt or service call
(B00-B12)	
B05CK	B05 clock
B09X1	Store a one in B07
BCE	B-counter count enable. Permits ($\mathrm{BOO}-\mathrm{BO5}$) to be incremented by clock signals
$B F S D$	Buffered function strobe delayed. Gates $\mathrm{TIO}, \mathrm{SIO}$, and HIO status to FROD through FR7D
BIT7RWE	Read/write enable and bit number 7 (binary 111). Times parallel transfer of (D00-D07) $\longrightarrow(\mathrm{J} 00-\mathrm{J} 07)$ or $(\mathrm{KOO}-\mathrm{K} 07) \longrightarrow(\mathrm{DOO}-\mathrm{DO7})$
BKO-BKI	LByte counter for seek, sense, and expanded interface byte handling
$\left.\begin{array}{l} \text { BKWW } \\ B K W Z \\ B K Z W \\ B K Z Z \end{array}\right\}$	Byte counter decodes: $Z Z=(0,0) ; Z W=(0,1) ; W Z=(1,0) ; W W=(1,1)$
BSYC	Busy control. Gates the address data to FROD through FR7D for an ASC or AIO when priority recognized, thus defining the busy device for the IOP
BSYCU	Busy clamp latched from PHFSL to PHFS
$B>0$	Clear B-counter
BXIMED	Preset term for B-counter (used on 360-byte sector medium speed controller)
$\left.\begin{array}{l} \text { BYTIID } \\ \text { BYT2ID } \\ \text { BYT4ID } \end{array}\right\}$	Identify width of IOP interface (one, two, or four bytes)
CCH	Command chaining bit in terminal order from IOP
CDN	Count done flip-flop. Causes order in when set by IOP to indicate end of data transfer
CDNPET	PET simulation of CDN flip-flop
CER	Flip-flop set if checkwrite error or if preamble synchronization pattern missed
CERM	Mark flip-flop CER
CERSET	Set fiip-flop CER

(Continued)

Table 5-2. Glossary of EP RAD Controller Signals (Cont.)

Table 5-2. Glossary of EP RAD Controller Signals (Cont.)

Signal	Definition/Function
/DAT/	Data output to storage unit from D07
DATA	Data/order flip-flop; set for data, reset for order
DATAIN	Data in signal; true when data sent to IOP (read or sense)
DATAOUT	Data out signal; true when data accepted from IOP (seek, write, or checkwrite)
DATASET	Set flip-flop DATA
/DB0/-/DB7/	Data byte 2 lines (B-lines). Bidirectional lines that carry data for two- or four-byte interfac:
(DB0D-DB7D)	Data line drivers
(DBOR-DB7R)	Data line receivers
/DC0/-/DC7/	Data byte 3 lines (C-lines). Bidirectional lines carrying data for four-byie interface
(DC0D-DC7D)	Data line drivers
(DCOR-DC7R)	Data line receivers
DCA	Device controller address recognition. Compares (DAOR-DA3R) with (SWAO-SWA3) for address recognition
DCA47	Part of DCA controlled by bits 4 through 7 for single byte coritrcilers. (ivot used by EP RAD file)
DCB	Device controller busy flip-flop, set by successful SIO
DCBRST	Reset flip-flop DCB
DCBSET	Set flip-flop DCB
DCL	Start term for TCL delay line
/DD0/-/DD7/	Data byte 4 lines (D-lines). Bidirectional lines carrying daia for four- $b ;$ interface
(DD0D-DD7D)	Data line drivers
(DD0R-DD7R)	Data line receivers
/DOR/	Data or order indicator line. If false during service cycle, indicates that A-lines contain data; if true during service cycle, indicates that A-lines contain orders. Indicates address recognition for all instructions
DORD	Data or order line driver
DORDEN	DORD enable
(DP00-DP07)	Data lines from PET
DRESET	Device reset, true when a power failure occurs

(Continued)

Table 5-2. Glossary of EP RAD Controller Signals (Cont.)

Signal	Definition/Function
/DS/	Data strobe from selection unit
DSE	Data strobe enable. Gates DSR into R:NCK during a read or checkwrite operation
DSEM	Mark flip-flop DSE
DSL	D-register shift left. Used when incrementing T-register and S-register
DSR	Data strobe received
DVBSY	Device busy
/DVO/	Selected device operational signal from selection unit
DVOR	Selected device operational signal receiver
DVSEL	Device selected
/DVT/	Device test signal from selection unit
DVTR	Device test signal receiver
/DX2/	Request for two-byte interface (transier 16 birs in parallel). False for oneor four-byte interface
/DX4/	Request for four-byte interface (transfer 32 bits in parallel). False for oneor two-byte interface
DXK	Transfer contents of K-register to D-register; (K00-K07) \longrightarrow - $(\mathrm{COO}-\mathrm{DO7})$
DXP	iransfer contents of P-register to D-reg:ster; (P07-P14) \longrightarrow (DCO-D07)
DXSR	Shift contents of D-register to right
/ED/	End data line. Bidirectional line true when the last data byte is on the line
EDD	End data driver
EDI	EDD gating term, combines all conditions for end data
EDISET3	End data flip-flop
EDR	End data receiver
EDU	End data from IOP or PET
ERSTOP	Error stop switch signal from PET, halis operation on error
EXT	Extended performance operation
FAULT	A fault condition caused by SUN, WFV, or RER.

Table 5-2. Glossary of EP RAD Controller Signals (Cont.)

Signal	Definition/Function
FNTP	Simulated function strobe enabled by PET
/FR0/-/FR7/	Function response lines from IOP
(FROD-FR7D)	Function response line drivers
(FROR-FR7R)	Function response line receivers
/FS/	Function strobe line. The/FS/ signal from the IOP defines period during which the controller should respond to function indicator or acknowledge service call indicator if it recognizes its address or priority. Used as a clock term for setting or resetting device controller busy flip-flop DCB or for setting FSC
FSC	Service connect flip-flop. Defines the period during which data or ordeis may be requested and transferred
FSCU	FSC for IOP or PET
FSLD	Function strobe driver
FSP	Offline simulation of function strobe
FSPOCSL	Simulated CSL signal for offline uperation
FSPS	Simulated function strobe from PET
FSR	Function strobe receiver
FSU	Function strobe, IOP or PET
GNDxxx	Ground connection (false level)
$/ \mathrm{HIO} /$	Halt I/O function line. Causes the controller to terminate the I/O sequence and to return to ready state
HIOP	PET simulation of HIO function indicator
HIOR	Halt I/O receiver
HIOU	HIO function indicator, PET or IOP
/HPV/	High priority interrupt iine. When raised, overrides a higher priority device interrupt call. Not presently used in Sigma peripherals
HPID	High priority interrupt driver
HPIL	High priority interrupt latch. Inhibits AIOM, thus preventing a low priority interrupt from responding to an AIO instruction
HPIR	High priority interrupt received
/HPS/	High priority service call line. When raised, overrides any higher priority with a service call raised. Not presently used on Sigma peripherals
HPSD	High priority service call driver

(Continued)

Table 5-2. Glossary of EP RAD Controller Signals (Cont.)

Signal	Definition/Function
HPSL	High priority service latch. Inhibits ASCM, thus preventing a low priority service call from responding to ASC
HPSR	High priority service receiver
(100-131)	Incoming data storage buffer (I-register)
/IC/	Interrupt call. Raised by the controller in response to an order modifier or a terminal order (zero byte count, channel end, or unusual end)
ICD	Interrupt call driver
/ID0/-/ID2/	Device address signals from controller to storage units
IN	Input/output control flip-flop; set for input, reset for output
INC	Inhibit calls. Prevents interrupt call ar service call when the controller is offline or when confroller dc power fails
(IND01-iND16)	Indicator drivers to PET
INDUP	PET indicator select switch signal. Selects upper or lower set of functions to be displayed by (INDO1-INDI6)
INI	Inhibit input. Permits signal/AVO/ to go true when required, but forces all other signals between IOP and controller false when the controller is offline or when the controller dic po:ver fails
INL	Incorrect length flip-flop. Set if hyite count is not a multiple of sector storage, if seek byte count is not two $\boldsymbol{o}_{\text {, }}$ or if sense byte count is not three
INLEN	Enable set of flip-flop INL
INLM	Mark flip-flop INL
INLSET	Seit flip-flop INL
INSET	Set flip-flop IN
IOP	PET signal. True for online, false for offline (during test, IOP true enables monitor mode of PET)
/IOR/	Input/output request. Defines direction for communications on the data lines for service cycle. Defines status for instructions
IORD	Input/output request driver
IORDEN	Enable IORD
/IP/	Index pulse from storage unit
IPR	Index pulse receiver
(IX0-1-IX0-4)	Clear 1-register
IXD-1	Enable transfer of (DAOR-DA7R) \rightarrow (100-107)

Table 5-2. Glossary of EP RAD Controller Signals (Cont.)

Signal	Definition/Function
IXD-2	Enable transfer of (DBOR-DB7R) \longrightarrow (108-I15)
IXD-3	Enable transfer of (DCOR-DC7R) \longrightarrow (I16-123)
IXD-4	Enable transfer of (DDOR-DD7R) \longrightarrow (124-131)
IXEN	Extended interface option
IXI-1	Enable transfer of (108-115) \longrightarrow (100-107)
IXI-2	Enable transfer of (116-I23) - (100-107)
IXI-3	Enable transfer of (124-131) \longrightarrow (100-107)
IXR-1	Enable transfer of (R00-R07) \rightarrow ($\mathrm{CO}-\mathrm{I} 15$)
IXR-2	Enable transfer of (R00-R07) \longrightarrow (116-I23)
IXR-3	Enable transfer of (R00-R07) - (124-I3I)
(100-J07)	J-register (input buffer for FANi module)
SFI	J-register filled latch
JFIRESET	Force JFI false
JFIX 1	Force JFI true
($\mathrm{jPO}-\mathrm{JP3}$)	J-pointer register (JP-register). Address register for data written into the FAM
jPX0	Clear the JP-register
JPXL	Load the incremented JP address inio the JP-register (LOO-L03) \longrightarrow (JPOO-.JP03)
JX0	Clear the J-register
j20	Load the contents of the D-regisier into the J-register: $(\mathrm{D} 00-\mathrm{D} 07) \longrightarrow(\mathrm{JOO}-\mathrm{J} 07)$
JXDP	Load PET data into the J-register
JXIIB	Load contents of I-register intc J-register (one-byte inferface only)
JXINIB	Load contents of I-register intc 1-register (not one-byte interface)
(K00-K07)	K-register. Provides sense datc storage, preamble synchronization pattern generation, and functions as FAill module output buffer
KA8	Control latch indicating that FAM module is empty and last byte is in K-register
KFI	K-register filled latch
KFICK	KFI delay flip-flop used for setting rate error flip-flop RER

Table 5-2. Glossary of EP RAD Controller Signals (Cont.)

Signal	Definition/Function
KFID	Latch signal that sets KFICK
KFIDX1	Force KFID true
KFISET	Selects condition for forcing KFI true
KFIXI	Force KFI true
(KPO-KP3)	KP-register (K-pointer register). Address register for data read from the FAM module
KPXO	Clear the KP-register
KPXL	Load the incremented KP address into the KP-register; (LOO-L03) (KP00-KP03)
KXO	Clear the K-register
KXOEN	Enable KXO
KXPRE	Load the preamble synchronization pattern into the K-register
KXR	Load the addressed FAM byte into the K-register; (ROO-R07) \longrightarrow K00-K07)
KXREN	Enable KXR
KXSENSE]	Load second sense byte inio the K-resister; (T07-T10) $\longrightarrow\left(\mathrm{KOO}^{-K 03)}\right.$), ($\mathrm{SOO}-\mathrm{SO} \mathrm{O}$) \longrightarrow (K04-K07)
KXSENSE2	Load third sense byte into the K-regis!er; (ANOR-AN3R) \rightarrow (KC1-K07)
(L00-L03)	L-register; address regisier for FAM moriule
LASTSEC	PET decode of sector preceding index mark
(LEO-LE2)	Exclusive OR adder used to increment. $\mathrm{iP}^{\text {P-register and KP-register }}$
LIH	Latch inteirupt high. Retains the fact that a high priority interrupt has been raised. Enables AIOM
LIL	Latch interrupt low. Retains the faci that a low priority interrupt has been raised. Enables AIOM
LSH	Latch service high. Refains the fact ihui a high priority service call has been issued. Enables ASCM
LSL	Latch service low. Retains the fact the: a low pricrity service call has been issued. Enables ASCM
MANRST	Manual reset from RSTR (IOP) or from RSTP (PET)
/NMANRST/	Manual reset signal from controller to storage unit
(000-031)	O-register; data drivers to IOP
OPER	Device operational flip-flop

Table 5-2. Glossary of EP RAD Controller Signal (Cont.)

Signal	Definition/Function
(ORD0-ORD4)	Order register flip-flop and order register buffered latches
ORDIN	Order in signal
ORDOUT	Order out signal
(ORDP1-ORDP4)	PET order switch signals used to load order register
ORDX0	Clear the order register
ORDXIOP	Load the data line (IOP) into the order register; (DA3R-DA7R) (ORD0-ORD4)
ORDXPET	Load the PET data lines into the order register latches; (ORDP1-ORDP4) $\longrightarrow \text { (ORDI-ORD4) }$
OSCJ	Oscillator jumper for 3 MHz operation
(OX0-1-OX0-4)	Clear the O-register
OXAIOST	Enable status response to AIO; (RER, SUN, WPV $\longrightarrow(\mathrm{OOD}, \mathrm{O} 02, \mathrm{OOS})$
(OXK-1 - OXK-4)	Load contents of K -register into O -register (K00-K07) \longrightarrow (O00-007) and contents of I -register into O -register. ($\mathrm{I} 08-\mathrm{I} 31$) \longrightarrow (O08-O31)
OXKEN	Enable OXK
OXORDIN	Enable status signals for order in; (TER, INL, 1, UNE) (O00, OU1, O03, O04)
OXSFSSEI	Load first sense byte into O-register; (TRPRO) $\longrightarrow-(000)$; (TCO-TO6) $\longrightarrow(\mathrm{OOl}-\mathrm{OOF})$
(P00-P15)	P-register; a two-byte parity register used to generate parity for the storage unit and to increment the T-register and the S-register
POOSET	Set flip-flop POO
POOSETEN	Enable set flip-flop P00
P13LD	Increment sector number from 1011 to 0000
PI3LDEN	Enable increment sector number
/PC/	Parity check. Bidirectional line which is raised whenever byte 0 parity (A-line parity) should be checke? (not used by EP RAD file)
PCD	Parity check driver
PER	Parity error flip-flop (read operation)
PEREN	Enable set PER
PET	Inverted IOP signal; indicates offline operation

(Continued)

Table 5-2. Glossary of EP RAD Controller Signals (Cont.)

Signal	Definition/Function
PHFS	NPHFS flip-flop in reset state; idle phase, indicates function strobe can be accepted
PHFSL	PHFSL flip-flop; indicates function strobe acknowledge sent to IOP
PHFSCYC	PHFS and CYCLE/C signal true
PHFSDAT	PHFS and DATA signal true
PHFSET	Set flip-flop NPHFS
PHFSLNFN	PHFSL and SCN true (service call)
PHFSTOD	Phase FS of data transfer (PHFSDAT) or phase TO (PHTO)
PHFSZ	PHFSZ flip-flop; delay phase for gathering status of storage unit
PHRS	PKRS flip-flop; RSD is sent to IOP, and FAM cycle is itarted for previously processed bytes
PHRSA	PHRSA flip-flop; request strobe acknowledge
PHRSADO	PHRSA and data out; (DATA, IN $)=(1,0)$
PHRSAOO	PHRSA and order out; (DATA, IN) $=(0,0)$
PHRSAORD	PHRSA and order (DATA $=0$)
PHRSASET	Set phase flip-flop PHRSA
PHRSDO	Phase PHRS and data out; (DATA, Iidi, $=(1,0)$
PHRSET	Set flip-flop PHRS
PHRSNED	Phase RS and not end data
PHTO	PHTO flip-flop; termination phase used to return to PHFS
POST	Control flip-flop that indicates parity check portion of sector
POSTB89	POST and B08 and B09
PRE	Control flip-flop that identifies preamole portion of sector
PRESET	Set flip-flop PRE
$\begin{aligned} & \text { PRST-1, } \\ & \text { PRST-2 } \end{aligned}$	Reset term for P-register
PSPB	Preamble synchronization bytes; true for two byte times during search for preamble synchronization pattern
PSPM	Preamble synchronization pattern missed
PSPR	Preamble synchronization pattern recognized

Table 5-2. Glossary of EP RAD Controller Signals (Cont.)

Signal	Definition/Function
PSPWEN	Preamble synchronization pattern write enable; generates the four-bit preamble synchronization pattem (1100)
PT18S	PT18 switched. Ground for K1 and K2 (INi and INC) on the AT17 module. This term is normally from the PTI 8 power supply, but may be chassis ground. It is fed via switch S1 (online/offline) on module LT25
/PWRMON/	Power monitor line from selection units
PWRMONR	Power monitor signal from selection unit; true when addressed storage unit power fails
PXS	Load contents of S-register into P-register; (S00-S03) \longrightarrow (P12-P15)
$\begin{aligned} & \text { PXSR-1, } \\ & \text { PXSR-2 } \end{aligned}$	Shift contents of P-register to the right
PXT	Load contents of T-register ints P-register; (TOF) \longrightarrow (POO); (TOO-T10) $\longrightarrow(\mathrm{POI}-\mathrm{PII})$
(R00-R07)	Output of addressed location i:. iast access memory (FAM) madule
RCHW	Read order or checkwrite order
READ	Read order
READRR	Clock signal for FAM read cycle
REMPTY	FAM module (R-register) empt;
REND	Read or checkwrite aperation and read/write enable
REPEAT	PET continuous cycle switch signal
RER	Rate error flip-flop; indicates srorage unit processed information faster therIOP
REREN	Enable se: flip-flop RER
RERM	Mark flip-flop RER
RERSET	Set flip-flop RER
RESET	Reset EP RAD controller circuils
(RK0-RK4)	RK-counter; indicates number of active bytes in FAM module. Counts down from ! 1111 when data is written into FAM module; counts up when data is read from FAM module
RKCK	R-counter clock
$\left.\begin{array}{l} \text { RREAD-1 } \\ \text { RREAD-2 } \\ \text { RREAD-4 } \end{array}\right\}$	Control terms true when FAM read cycle has started

Table 5-2. Glossary of EP RAD Controller Signals (Cont.)

Signal	Definition/Function
/RS/	Request strobe. Requests the transfer of data or orders while service connected. One byte, halfword, or word is transferred following each RS. May be used as a clock for gating data or orders into the controller or for changing state of control logic circuits
$1 / \mathrm{RSA}$	Request strobe acknowledge. Raised by the IOP to indicate that the data or order transfer is complete. Causes RS to go low
RSAR	Request strobe acknowledge receiver
RSARC	Request strobe acknowledge latch
RSAU	Request strobe acknowledge from IOF or PET
RSAUEN	Enable RSAU for PET
RSD	Request strobe driver
RSET	Request strobe in phase RS
/RST/	I/O reset. Normally resets all contrial logic in the controller and device. RST is generated by I/O RESET or SYSTFM RESET switches, by a programmable reset for the Sigina 5 or Sigma 7 , by the RESET position of the INITIALIZE switch for the Sigma 2, or by the start term as power is applied to the Sigma 2, 5, or 7
RSTP	PET reset pushibutton signai
RWCK	Read/write clock (3 Mriz oscillator or data strobe bit rate clock)
RWE	Read/write enable flip-flop; allows duta transfer operat:sns to begin
RWERST	Reset flip-flop RWE
RWP	Read/write possible flip-flop; indicate: that c data transfer order can be accepted
RWPRST	Reset flip-flop RWP
$\left.\begin{array}{l} \text { RWRITE-1 } \\ \text { RWRITE-2 } \\ \text { RWRITE-4 } \end{array}\right\}$	Control terms true when FAM. write cycle has started
(S00-503)	S-register; contains address of next secior to be operated on by read order or checkwrite order
/SC/	Service call. Raised by the controller to start a data or order service cycle
/SCl/	Track and sector shift clock to storage unit
SCID	Shift clock driver

Table 5-2. Glossary of EP RAD Controller Signals (Cont.)

Signal	Definition/Function
/SC2/	Data clock to storage unit
SC2D	Data clock driver
SCD	Service call driver
SCN	Service call flip-flop; marked on when service is required and kept in set state when additional service required
SCNMEN	Enable mark flip-flop SCN
SCNREN	Enable reset flip-flop SCN
SCR	Read/write service flip-flop; set or reset when additional bytes can be stcred in FAM module during execution of write order or checkwrite order, or read' from FAM module during execution of read order
SCRSET	Set flip-flop SCR
SCSET	Inhibits SCRSET if true
SECOMPR	Sector compare; (ANOR-AN3R) matches (S00-S03)
SECF	Sector pulse or index pulse
SECPD	Sector pulse disable flip-flop
SFCPDM	Mark flip-flop SECPD
SEEK	Seek orcier in process
SEKSEND	End signa! for seek order or sense order
SEIN	Sense flip-flop; indicates sense operation possible
SENSE	Sense order in process
SGLPH	PET single-phase switch signal
SGLPHCK	PET single-phase clock signal
SGLTRKP	PET single-track mode switch signal
/SIO/	Start V/O function indicator. Causes the device controller to go busy when accepted
SIOP	PET SIO function indicator switci', signal
SIOPOSS	SIO possible
SIOR	Start input/output receiver
SIOU	SIOP or SIOR
SKSBK	Seek order or sense order with final byte count

Table 5-2. Glossary of EP RAD Controller Signals (Cont.)

	Signal	Definition/Function
	/SLN/	Select now line to selection units
	SLND	Strobe sent to storage unit to connect the storage unit addressed by (SUOD-SU2D)
	/SP/	Sector pulse line to selection units
	SPE	PET single-phase enable flip-flop
	SPR	Sector pulse from storoge unit
	SREAD	Read cycle from FAM module is pending
	SREADEN	Enable SREAD
	STSH02	SIO, TIO, HIO status device not busy and operational
	STXPEN	Enable SXP and TXP
	(SUOD-SU2D)	Storage unit address signals
	SUN	Sector unavailable flip-flop (error)
	SUNM	Mark flip-flop SUN
	SUNSET	Set flip-flop SUN
	(SWA0-SWA 3)	Device controller address switches iscated on LT25 module
	SWRITE	Write cycle into FAM inodule is pending
	5×0	Clear S-register
	SXJ	Load contents of J-register into S-register: (J00-J03) \longrightarrow (T07-710), $(\mathrm{JO4}-\mathrm{JO7}) \longrightarrow\left(\mathrm{SOO}^{-503}\right)$
	SXP	Load contents of P-register into S-register: (P12-P15) \longrightarrow (S00-S03)
	SXPEN	Enable SXP for PET
	(r00-T10)	T-register; stores track address
	TCLxyz	Phase delay line outputs ($x y z=$ cieluy in nanoseconds)
	TCSxyz	Phase delay line sensor outputs (xyz = delay in nanoseconds)
	TDLxyz	D-register delay line outputs (xyz = delay in nanoseconds)
	TDT	TDL delay line flip-flop
	TDT1, TDT2	Buffered outputs of TDI. delay line
	TDTSET	Set flip-flop TDT
	/TDV/	Test device function indicator line

Table 5-2. Glossary of EP RAD Controller Signals (Cont.)

Signal	Definition/Function
TDVP	PET simulation of TDVR signal
TDVR	Test device receiver
TDVU	TDVR or TDVP
TER	Transmission error signal (CER, PER or RER)
/TIO/	Test I/O function indicator. Tests the V/O system. Status returned is the same as for the HIO and SIO commands
TIOP	PET simulation of TIOR signal
TIOR	Test I/O receiver
TIOU	TIOR or TIOP
TOF	Track overflow bit
TCRD	Terminal order
/TRK/	Track address line to selection units
TRKRST	True when PET interval counter equals counter reset switch setting
TRLxyz	TRL delay line outputs ($x y z=$ delay in nanoseconds)
/TRP/	Track protect switch signal from selection unit
TRPR	Track protect swiich signal receiver
TRSxyz	TRS delay line sensor outputs ($x_{2}=$ = delay in nanoseconds)
TSE	Track shift enable flip-flop
TSH	Gating term that indisates TIO , SIO , or HIO is for this controller because of address recognized. Used io enable gating of status to (FROD-FR7D)
TTSH	Gating term that defines the instruction being performed is a TIO, TDV, SIO , or HIO
TX0	Clear the T-register
TXJ	Transfer contents of J-register to T-register: (J01-J07) \rightarrow (T00-T06)
TXP	Transfer contents of P-regisier to T-register: (PO1-P07) (T00-T06)
/TYPO/, /TYPI/	Storage unit type signals from selection unit
TYPOR, TYPIR	Storage unit type receivers
(U0-U2)	Storage unit address loaded by an SIO operation

(Continued).

Table 5-2. Glossary of EP RAD Controller Signals (Cont.)

Signal	Definition/Function
(UASO-UAS2)	PET switch signals for storage unit address
UNE	Unusual end flip-flop
WCHW	Write order or checkwrite order in process
/WEN	Write enable signal to storage unit
WEND	Write enable driver
WIDE	True when wide interface option (32 bits) is used and a write, read, or checkwrite operation is performed
WPRE	Write preamble
WPV	Write protection violation, flip-flop (error)
WPVSET	Set flip-flop WPV
WRCH	Write, read, or checkwrite operation in process
" WRITE	Write order in process

Table 5-3. Glossary of EP RAD Selection Unit Signals

Signal	Definition, Finction
ACSENSEI, ACSENSE2	Power monitor ac inputs. Dutputs of 20.5 transformer in power distribution panel
/ANO/-/AN3/	Sector address signals to FP RAD contrc!!er
(ANOD-AN3D)	Sector address signal drivers
AOK	Output of power monitor. When true, indicates that ac and dc power is on
CLKUNDLY	Undelayed clock discriminator output
CLOCKDLY	Delayed slock discriminator output. Uied to clock read data flip-flop DAID
CLOCKNEG, CLOCKPOS	Inputs to clock discriminator
/DAI	Data signal to controller
DAID	Read data flip-flop
/DAT/	Data signal from controller
DATR	Data receiver
/DS/	Data strobe to controller
DSD	Data strobe driver

(Continued)

Table 5-3. Glossary of EP RAD Selection Unit Sigrials (Cont.)

Signal	Definition/Function
/DVO/	Device operational signal to controller
DVOD	Device operational driver
/DVT/	Device test signal to controller
DVTD	Device test driver
/ID0/-/ID2/	Storage unit address signals from controller
(IDOR-ID2R)	Storage unit address signal receivers
/IP/	Index pulse signal io controiler
IPD	Index pulse driver
LIMITNEG, LIMITPOS	Inputs to data decoder
LONGSTROB	Strobe output of pulse packing compensator. If true, extends duration of signal CLOCKDLY
/MANRST/	Manual reset signal from controller
MANRSTR	Manual reset signal receiver
MC3	3 MHz signal divided down from frequency doubler. Used to create Manchester-encoded data
MC6	6 MHz signal output of frequency doubler
(NMODI-NMON8)	Module location signals for LT105 Spares Selector modules
PDLY	Power on signal delayed 10 secends
POS25SENSE	Sense +25 V input
POWERON	Power on; indicates that all conditions necessary for operation are present
RDAMPNEG, RDAMPPOS	Outputs of read amplifier
RDXOdNEG, RDX0dPOS	Inputs to read amplifier from read'write couplers. $(d=0,1,2,3$, $4 ; 5,6,7$)
SAE	Sector amplifier enable
/SCl/	Track address shift strobe. Consists of 11 pulses from controller during intersector gap time
/SC2/	Data strobe from controller

(Continued)

Table 5-3. Glossary of EP RAD Selection Unit Signals (Cont.)

Signal	Definition/Function
SCIR	Track address shift strobe receiver
SC2R	Data strobe receiver
SECT	Sector amplifier output
SECTNEG, SECTPOS	Sector track signals
SEL	Unit selected. True when (ID0-ID2) compare with address switch signals
/SLN/	Select now strobe from controller. Used to set unit select flip-flop USLA
SLNR	Select strobe receiver
/SP/	Sector pulse signal to confroller
(SP0-SP2)	Three-bit code that enables read/write head selection signals (YSPO-YSP7) for spare Y -select value
SPD	Sector pulse driver
SPSEL	Spare select signal, true when spare :ead/write head is addressed
TGn	Outputs of track protect matrix ($\mathrm{n}=00,01, \ldots 15,16$)
(TR0-TR10)	Track address register
TR5AG, TR5BG	Track address register bit 5. Controls read/write head selection. Disabled when SPSEL is true
/TRK/	Track address bits from controller; read while SCIR is true
TRKR	Track address receiver
(TRMIX2-TRMIX4)	Track address register bits 2, 3, and 4. Represents X-value for selection of normal read/write head or spare read/'write head
/TRP/	Track protect signal to controller
TRPD	Track protected signal driver
/TYPO/, /TYPI/	Storage unit type signals to controller
TYPOD, TYPID	Storage unit type drivers
USLA	Unit select flip-flop. Set if storage unit has been addressed by (ID0-ID2) signals, and SLNR is true
USLB	USLA buffered
WDMI, WDM2	Write data flip-flops. Used to encode data in Manchester form

Table 5-3. Glossary of EP RAD Selection Unit Signals (Cont.)

Signal	Definition/Function
WDS	Synchronized write data flip-flops
/WEN/	Write enable signal from controller
WENR	Write enable signal receiver
WRTAMPI, WRTAMP2	Write amplifier outputs
($\mathrm{X} 0-\mathrm{X} 7$)	Represents X-value (most significant actual digit of track address) of spared address
($\mathrm{XOB} \cdot \times 78$)	Buffered ($\mathrm{X} 0-\mathrm{X} 7$) signals
(NXSP2-NXSP4)	Represents X-value of selected spare read/write head. Controls (TRMIX2-TRMIX4) if SPSEL is true
(Y00-Y63)	Outputs of Y -select matrix
(YLO-YL7)	Represents least significant octa! digit of spared track adoress (least significant octal digit of Y-vaiue)
(YLOB-YL7B)	Buffered (YLO-YL7) signals
(YMO-YM7)	Represerits middle octal digit of spared track address (most significant octal digit of Y-value)
(YMOB-YM7B)	Buffered (YM0-YM7) signals
(YSPO-YSP7)	Y-value of addressed spare rcad/write head, controlled by (SPO-SP2) anü SPSEL

SECTION VI

DRAWINGS

6-1 SCOPE OF SECTION

This section contains engineering drawings necessary to support the text of other sections and a list of related engineering data (table 6-1) necessary to maintain the EP RAD File.

6-2 LOCATION OF RELATED TEXT

Figures 6-1 through 6-3 are discussed in paragraphs 4-5. Figure 6-4 is discussed in paragraph 4-2. Figures 6-5 through 6-9, which are logic diagrams of the EP RAD selection uiit, are discussed in paragraph 4-103. Figures 6-10 through 6-13, which provide detailed information concerning the read/write head selection matrix, are discussed in paragraph 4-103. Figure 6-14 is a schematic of a modified motor control assembly which is installed on some EP RAD storage units. Figures ó-15 through 6-22 are schematic diagrams of the EP RAD controller, showing differences introduced by the Ingical sparing option. Differences introduced by logical sparing circuits are discussed in paragraph 4-111.

Table 6-1. List of Related Engineering Data

Drawing Number	Title/Content
134029	Wire list, motor control assembly
134293	JT18 operating procedure
137532	Wire list, power distribution panel
139812	Wire list, switch power and connector
139866-202	Wiring dato, EP PAD selection unit
139866-502	Wiring data, EP RAD selection unit
159866-902	Wiring data, EP RAD selection unit
146883-002	Logic equaiions, EP RAD controller
140883-100	List, s: anal dictionary, EP RAD controller
145884-202	Wiring data, EPRAD controller
146884-502	Wiring data, EP RAD con'roller
146834-902	Wiring data, EP RAD conitaller
147008	Wire list, power, EP RAD controller
148784	Wire list, cabinet, power

NOTE: REFERENCE XDS DWG: 14ヶ337-16.A

NOTE: REFERENCE XDS DWG: 149337-8A

NOTE: REFERENCE XDS DWG: 149337-7A

$/ 100 /\rangle>\stackrel{1292}{102}\left|\begin{array}{c}\text { CR } \\ 03\end{array}\right\rangle-100 R$

$$
/ 101 /\rangle>-1392\left[\begin{array}{l}
08 \\
031
\end{array}>+40-1018\right.
$$

$\underset{\text { adoress }}{\text { UNit }}$

NOIE: REFEREACE XDS DWG: 149337-3A

NOTE: REFERENCE YDS DWG: 149337-5A

Figure 6-8. EP RAD Selection Unit, Memory Protect Circuits, Logic Diagram

NOTE: REFERENCE XDS DWG: 149337-14A

spare cemter taps

Figure 6-11. Head Centertap Chart

NOTE: REFERENCE XDS DWG: :-9337-11A

Figure 6-12. Y-Select Location Chart (Without Lagical Sparing)

Figure 6-13. Input/Output and Start/'Finish: Location Chart (Without Logical Sparing)

treat noress	176	HT43
- 0-63	- 208	219
64-127	193	
128-191	- ${ }^{188}$	
192-255	- 178	
256-319 -	- 158	
320-383-	- 143	118
384-447	-138	H8
$448-511-$	128	

moue loartion aurt

dres

3. THIS OCTA, \because ErAESS, 1 A N, IS $X Y Z$; WHERT $X=1 O D_{B}, Y=10$ OCTAL $Z=1$

7. RE NSTALL LTIOS.
8. REFERENCE XDS DWG:149337-224

TYPICAL itios logic diagram

UNITS WITH LOGICAL SPARING

Figure 6-21. LT10r 'pares Selector Module Logic Diagram

iftes:

1. f1h: M. LT10: 29A, 4TIO5-29A,

2 LINO D3:

- SAME AS LTTOS-22A. LTOS-25A,
- khtralncexdos dwg:14933722A

Figure 6-22. [PRAD Selection Unit, Spares Select Circuits, Iogic Diagram (Sheen 1 of 2) 9015654.522 h

NOTES:
D. ALL GATE INPUFS OF THIS ELEMENT ARE OPEN (TRUE)
2. REFERENCE XDS DWG: 149337-21B

Figure 6-22. EP RAD Selection Unit, Spares Select Circuits, Logic Diagram (Sheet 2 of 2) 90156:A. 6222

SECTION VII

SPECIFICATIONS AND INSTALLATION DATA

7-1 SPECIFICATIONS

Specifications for the EP RAD storage unit are listed in table 7-1. An EP RAD file consists of a maximum of eight EP RAD storage units, one of which contains an EP RAD controller.

7-2 INSTALLATION

7-3 INSTALLATION REQUIREMENTS

Refer to figure 7-1 for overall space requirements of an EP RAD storage unit, including front and rear access areas for maintenance. Refer to figures 7-2 and 7-3 for cabling requirements.

Table 7-2 summarizes cable connections between an EP RAD controller and an IOP for various systems. The IOF equipment may be one of the following:
a. Multiplexing Inpui/Output Processoi Model 8271 (Sigma 5)
b. Multiplexing Input/Output Processor Model 8471 (Sigma 7)
c. Four-byte MIOP Model 8273 (Sigma 5)
d. Four-byte MIOP Model 8473 (Sigma 7)
e. Selector Input/Output Processor Modiel 8285 (Sigma 5)
f. Selector Input/Output Processor Model 8485 (Sigma 7).
g. Integral IOP (Sigma 2)
h. Integral IOP (Sigma 5)

7-4 INSTALLATION PROCEDURE

The installation sequence indicated in table 7-3 may be used for installation of an EP RAD file as a subsystem of a complete computer installation or as an addition to a comp.ter installation.

Table 7-1. EP KAD Storage Unit Specifications

Characteristic	Cpecificction
Physical Characteristics Height Width Depth Weight Pover Source Requirements Voliage Current Starting (max) Rurning (max) Power Requirements	$63-1 / 2$ inches EP RAD storage unit

Table 7-1. EP RAD Storage Unit Specifications (Cont.)

Table 7-2. Connections Between EP RAD Ccrircller and IOP

Table 7-3. Installation Procedure Checkoff List

Table 7-3. Installation Procedure Checkoff List (Cont.)

Item	Operation
9	Check power supplies (PT16, PT17, PT18, PT19, and PT20) for loose connections
10	Check that all power supplies have circuit breakers set to ON and MARGIN switches set to N (normal)
11	Check power distribution boxes (PT14 and PT15) for loose connections
12	Check that items connected to the primary power source are distributed among all three phases as evenly as possible
13	Check primary power source ouflets for proper wiring of each phase and neutral to ground
14	Check primary power cables for short circuits
15	Check power buses on side of each frame for shurt circuits and loose connections
16	Conrect control cables according to Installation Cable List, noting the following features:
	a. Port expander cables are connected upside down b. All terminated cables have 16 ohms impedance to yround c. Major assemblies of computer are located as indicated in Computer Assembly Chart d. Cables for add-on installations labelled end-for-end (A, B, C, \ldots), so that corresponding ends can be identified after cables are beneatn flooring
17	Check that modules of EP RAD selection units are installed as indicated in figure 7-4
	Note Optional modules in EP RAD controller are dependent on use of one-, two-, or four-byie interface with IOP
18	Check that modules of EP RAD controller are insialled as indicated in figure 7-5
19	Connect primary power cabling according to Installation Power Chart
20	Turn on circuit breakers and switches of primary power source

Table 7-3. Installation Procedure Checkoff List (Cont.)

motes, unless othernise specified

- meffrence draniges,
- IMSTALLAFION DRANIGG, SIIMA SYSIEM POWER
. Installation oran is , RaA memorr - 126657

F. IsSDLLLTION DAANGG, DISC

- installation draming, storage unt-137534
J. installation draning pt20-13hog
k. installation drahing storage unit-149338
L. installation drahing controller 149333

3. Install siog panels to ep rao storage inits

7) For Convections or sigat An prionit cable

8. Route intraconecting signal cables along

(12) ac coros furri Iheo with ptio Pomer sipply.
(13) Maximum sicial cale lent from controler

(155) maximum numbra of stornag units per

16 REFERENCE XDS DWG: $137115-1 C .4 C$

DETALL B

$$
\begin{aligned}
& 127315
\end{aligned}
$$

c. smbol function

CHASSIS A

1. MODULES IN LOCATIONS Al\%, B26, AND A19 THROUGH A29 ARE LOGICAL SPARING CIRCUITS
2. LT105 MODULES IN LOCATIONS A22 THROUGH A29 NEED NOT BE INSEPTED UNLESS LOGICAL SPARING IS REQUIRED
3. LTI05 MODULES MUST BE INSERTED IN LOCATIONS A22 THROUGH A25 BEFORE ANY LTIO5 MODULES CAN BE INSERTED IN LOCATIONS A26 THROUGH A29

Figure 7-4. EP RAD Selection Unit, Module Locotion Chart

CHASSIS A

\square PET_]

CHASSIS B

CHASSIS C

NOTES:

1. MODULES IN LOCATIONS I1B AND 25B THROUGH $28 B$ MUST BE INSERTED WHEN 16-BIT DATA PATH OPTION IS INSTALIED
2. MODULES IN LOCA.IIONS 11B AND 25B THROUGH 31B MUST BE INSERTED WHEN 32-BIT DATA PATH OPTION IS INSTALLED
3. PET CONNECTIONS USED ONLY DURING OFFLINE TEST OR FOR MONITORING ONLINE OPERATION

Figure 7-5. EP RAD Controller, Module Location Chart

SECTION VIII

MAINTENANCE

8-1 SCOPE OF SECTION

The EP RAD file maintenance procedures in this section are for use following installation. However, the basic checks and adjustments of paragraph $8-4$ can be used during installation, if required. For any operation requiring relocation of an EP RAD storage unit, refer to section VII.

8-2 GENERAL NAINTENANCE

All assembly and maintenance documents should be avaiiable at the installation that includes the EP RAD file. These documents should accurately reflect the change level of the EP RAD file.

External surfaces of the EP RAD file must be kept clean and dust free. Doors and panels must close completely and be in reasonable alignment. The tops of cabinets must remain clear to allow free intake and exhaust of air.

The interiors of the EP RAD file must be kept free of wire cuttings, dust, spare parts, and other foreign matter. Nc clip leads or push-on jumpers should be in use during normal operation, and all cables must be neatly dressed by ciamps or routing. All chassis and irames must be properly bolted down, with all hardware in place. Air filters should be checked periodically for cleanliness and replaced if $\mathrm{dir}^{+} \mathrm{y}$.

8-3 DIAGNOSTIC TEST PROGRAMS

Diagnostic test programs should be run at frequent intervals as the primary preventive maintenance method for the EP RAD file. Programs should be run with the MARGIN switch of the PT20 power supply set it N (normal), L (low), and H (high).

Note

Before using a diagnostic test, check that documentation and media are for the same revision level.

The following documents are required for diagnostic testing:

Title

XDS Publication No.
Sigma 5 and 7 Extended Performance
901540 Rapid Access Data (RAD) File, Program No. 704978 B , Diagnostic Program Manual

Title
Diagnostic Control Program for
XDS Publication No.

Sigma 5 and Sigma 7 Computer Pe -
Sigma 5 and Sigma 7 Computer Pe-
ripheral Device, Reference Manual
Sigma 5 and 7 Relocatable Diag-
nestic Program Loader, Diagnostic
Pregram Manual
Sigma 2 Relocatable Diagnostic
900712

Program Loader, Diagnostic Program
Mierival
Sigma 2 High Capacity, Rapid Access 901538
Datri (RAD) File Test, Diagnostic
Program Manual
Any failures that cannot be isolated using the diagnostic test programs may be isolated using one or more of the offline tests.

84 BASIC CHECKS AND ADJUSTMENTS

CAUTION

During adjustment procedures, it will ise often necessary to remove a module: insert the card extender (XDS part Nc. 117306), and adjust components of the module. Before removing a module, shit down dc power from the PT20 power supply by setting the circuit breaker to OFF. After inserting the card extender and the module, set the circuit breaker to ON'.

8-E PRELIMINARY OPERATIONS

a. Check that ac power is not connected to the EP R^气 storage unit.
b. Check that all cables are installed. (See figures 7-2 and 7-3.)
c. Inspect controller and selection unit fer loose wires, beit pins, or other obvious mechanical defects.
d. At the power distribution ponel, check that the REMOTE-OFF-ON switch is in the OFF (center) position.

Note

For normal operation, the EMERGENCY USE ONLY circuit breaker is left ON, so that power is always applied to the compressor. For installation or test, the circuit breaker may be set to OFF.
l
e. At the motor coritrol assembly, check that the POWER switch is OFF, and that the circuit breaker (under the EMERGENCY USE ONLY cover) is OFF.

8-6 POWER TEST

a. Connect the EP RAD storage unit to the ac power source.
b. At the PT20 power supply, set the MARGIN switch N (normal) and the circuit breaker to ON.
c. At the power distribution panel, set the REMOTE-OFF-ON switch to ON.
i

Note

If any of the voltages measured are not within ± 2 percent of nominal value, adjust as necessary, using tie test point of the selection unit as a reference. (Refer to XDS publication No. $90 i 157$ for adiusiment procedure.)
d. Check the dc voltages of the controller and the selection unit as follows:

Voltage	UL Controller	US Selection Unit
+4.0	$2 A-49$	$20 B-49$
+8.0	$2 A-51$	$21 B-51$
-8.0	$2 A-50$	$20 B-50$
+25.0	-	$20 B-45(21 \mathrm{~B} 45)$
-25.0	-	$20 B-41$
+45.0	-	$21 B-46$

> CAUTION

If the phase relations specified are not correct, the magnetic surface of the disc file and the flying heads may be damaged.
e. Check that the phase relation at TBI of the power distribution panel is as follows:

Phase	Pin
A	$T B-1$
B	$T B-2$
C	$T B-3$

f. A.t the motor control assembly, set the circuit breaker (under EMERGENCY USE ONLY cover) to ON. Check that the compressor starts.
g. Set POWER toggle switch tc ON. Check that the disc rotates clockwise.

8-7 ADJUSTMENT OF TIMING SIGNALS

a. While observing the oulput at test point A of the CT10 Clect. Oscillator module (controller location 2A), $\quad U L$
adjust inductor Ll for peak signal amplitude.
b. Adjust pulse shape potentiometer R16 for positive pulse width of $140 \pm 10 \mathrm{~ns}$ at pin 2A-34. (See figure 8-1.)
c. Replace CT10Clock Oscillator module and remove sector/index amplifier P35 from location iE of the selection uni:. Connect sector/index amplifier P35 through the card extenuer.
d. Adjust R23 for waveshapes as illustrated in figure 8-2.
e. Eynchronize on signal If (pin 2B-13) and observe signals ip and SP (pin 2B-19). Check that there cee il SP $\cup S$ pulses for each IP pulse and that waveforms are as indicated in figure e-3.

Note

If there are not 11 SP pulses for each IP pulse, as indicated, the timing track must be re-recorded, as described in JTI8 Operating Procecure, XDS Drawing No. 134293.
f. Replace sector/index amplifier P35.

8-8 POWER FAIL-SAFE TEST

a. Remove WT29 Power Monitor module from selection unit location 4 B .

Note

If adiustment potentiometers of WT29 module have been sealed, skip to step I. If potentiometers have not been sealed, proceed with step b.

NOTES:

1. ITEMS IN PARENTHESES INDICATE LOCATION IN THE EP RAD CONTROLLER (MODULE - PIN NUMBER)
2. T1 IS $140 \pm 10 \mathrm{NS}$
3. T2 IS 324 TO 336 NS

Figure 8-1. Signal CLK 3 MiH, Timing Diagram

Figure 8-2. Signal SECT, Timing Diagram
b. Connect the WT29 Power Monitor module through card extender.
c. Connect a clip lead from pin 4B-44 to pin 4B-45.
d. At the power distribution panel, remove fuse Fl .
e. On the WT29 modu! ᄅ, adjust R15 untilsignal AOK (pin 4B-26) just reaches $0.0 V$. (Normal voltage is +8.0 \pm 1.0 V.$)$
f. Remove the clip lead installed in step b and replace fuse F1 (removed in step c).
g. Remove the WT29 module (with card extender from location 4B) and place in location 5B.
h. Check that output at pin 26 is normal $(+8.0 \pm 1.9 \mathrm{~V})$.
i. Adjust R5 counterclockwise until output level falls to 0 V ; then adjust R5 siowly clockwise until outpui level returns to normal range and remains there.
j. Adjust R11 as described in siep ifor R5.
k. Adjust R19 as described in step i for R5.

1. Replace the WT29 module in location 4B.
m. Check that signal NPDLY (selection unit location $10 \mathrm{~A}-14$) is at +4 V .
n. Temporarily connect selection unit pin 10A-31 to ground. Check that signal NPDLY falls to $0 V$.

Note

If 10 -second delay is not attained after removal of ground connection in step o, adiust R1O on OT15 10-Second One-Shot module (selection urit location 6B). Use card exfender during adjustment.

A. SECTOR PULSE

NOTE:
items in parentheses indicate locatioln in the ep rad selection unit (module-pin number) 901\%,5a, eit

Figure 8-3. Signals SP and IP, Timing Diagram
o. Remove ground connected in step r. Check that NPDLY remains at $0 V$ level for at least 10 seconds foll'owing removal of ground connection.

ADJUSTMENT OF ATAI WRITE CLOCK DRIVER

a. At the power distribution panel, cherk that the REMOTE-OFF-ON switch is OFF (renter).
b. Insert PET connectur PI81 in controller location 32A.
c. Insert PET connector P183 in controller location 30A.
d. Check that all modules are inserted in controller (figure 7-5) and in selection unit (figure 7-4).
e. Place the PET panel overlay (figure 8-4) over the PET control panel.
f. Set the PET panel ADDRESS switches to the ads of the EP RAD storage unit under test.
g. At the controller, place online/offline switch of LT25 Spec:ai rurpose Logic module (location 23C) in the 0 position (down). (See figure 2-2.)
h. L: PET, place PET/MONITOR switch to ?ET, place three switches marked with arrows to position indicated by arrowhead, and place all other switches in down pacition.
i. Apply power to PET.
i. Apply power to the controller and selection unit.
k. Se: the following switches in the up postion: ORDER $1, S I O$, REPEAT, and COUNTER RESET switches $1,2,4,8,16$, and 32 .

1. Press and release the RESET pushbutton.
m. Press and release the COUNTER INITIALIZ : pushbutton.
n. Press and release the FS pushbutton. Note that the WRITE lanp is lighted, and that the TRACK lamps increment from TRACK lomp 10 lighted (00000000001) to TKACK lamp 5 lighted (00000100000), and repeat.

CAUTION

Remove dc power before removing modules.
UL

- o. At controller, remove BTll Buffered AND Gate module from location 7A.
p. Connect a clip lead from ground to signal REND (pin 7A-1).
q. Connect a clip lead from signal RWCK-3 (pin 2A10) to signal SC2D (pin 7A-35).
r. At selection unit, remove AT41 Write Clock

Driver module from location i8A and connect through card extender.
s. Synchronize on, and display, signalNSC2R(18A-27).
t. Alternately adjust $L 4$ and $L 6$ for maximum sinusoidal amplitude at pin 18A-2.

Note

For jitter test, trigger the oscilloscope on the folling edge of sicual MC6 (pin 18A8). Adjust falling edge of signal MC6 for thinnesi trace possibie. Use the expanded scale to check the next two falling edges for jitter. Any jitter on these edges will seriously reduce the ovall timing margin of the system.
U. Adjust R43 to place the falling edge of signal MC6 within 130 to 140 ns from falling edge of signal NSC2R, as indicated in figure 8-5.
v. If any jitter is observed on signal MC6, readjust L4 a maximum of $1 / 8$ turn in either direction to remove iitter.
w. Recheck the sine wave at pin 18A-2 to check that the amplitude has not decreased.
x. Remove clip leads installed in steps p and q.
y. Replace AT41 module in location 18A.
z. Disconnect PET.

8-10 DATA PATH TIMING ADJUSTMENT

a. At the power distribution panel, check that the REMOTE-OFF-ON switch is CFF (center).
b. Insert PET connector P181 in controller location 32A.
c. Insert PET connector P183 in controller location 30A.
d. Check that all madules are inserted in controller (figure 7-5) and in selection unit (figure 7-4).

NOTE: REFERENCE XDS DWG: 147152-1A

Figure 8-4. PET Panel Overlay

NOTES:

1. ALL SIGNALS ORIGINATE IN EP RAD SELECTION UNIT

2. ITEMS IN PARENTHESES INDICATED MODULE LOCATION AND PIN NUMBER

Figure 8-5. Data Clock Signals, Timing Diagram
e. Place PET panel overlay (figure 8-4) over the PET rol panel.
f. Set the PET panel ADDRESS switches to the cddress of the EP RAD storage unit under test.
g. At the controller, place the orline/offline switch of the LT25 Special Purpose Logic madule (location 23C) in the 0 position (down). (See figure 2-2.)
h. At PET, place the PET/AONITOR switch to PET, place the three switches marked witt; arrows to the positions indicated by the arrowhead, and n+ace all other switches in the down position.
i. Apply power to the PET.
i. Apply power to the coni olier and selection unit.
k. Set the following switches in the up position: ORDER 1, SIO, and DATA 1, 3, 5, and 7.

Note

Steps k, 1, and m cause a 01010101 pattern to be written on the disc file.

1. Press and release the RESET pushbutton.
m. Press and release the FS pushbutton.
n. At the selection unit, remiove the LT85 Pulse Packing Compensator module from location 14A.

Note

Do not replace the LT85 module at this time.
o. Set the following switches in the down position: IRI and all DATA switches.
p. Set the following switches in the up position: ORDER 2, SINGLE TRACK, REPEAT, and COUNTER RESET 1.
q. Press and release the RESET pushbutton.
r. Piess and release the FS pushbutton. Check rhat the READ lamp is lighted.

Note

Disregard any error indicators.
s. Remove the AT5] Clock Discriminator module from location i5A.
t. Adjust R33 of the AT51 module to the center of its range (approxinately 12 turns from either end).
u. Adijust R20 of the LT85 module fully counterclockwise.
v. Adjust the oscilloscope to trigger on signal CP (2B19), using a timebase of $10 \mu \mathrm{~s} / \mathrm{cm}$.
w. Insert the AT51 module in place (location 15...) using the card extender.
x. Cisplay the data test point (pin 15A-5) on the Atrace of the oscilloscope and trigger the A-trace timebase negative o.: the data test point signal.

Note

Operate the oscilloscope in the A-delayed-by-B mode, $100 \mathrm{~ns} / \mathrm{cm}$.
y. Display the clock test point signal (pin 15A-7). Adjust the delay multiplier of the oscilloscope to view the data pattern close to the preamble.
z. Adjust R33 on the AT51 module for a delay of 230 $\pm 2 \mathrm{~ns}$ (A, figure 8-6). Use the expanded scale of the oscilloscope.
aa. Replace the AT51 module in location 15A and insert the LT85 module (location 14A) using the card extender.
ab. While viewing test points of the AT51 module (A, figure 8-6), adjust R20 on the LT85 module for a period of 270 ± 2 ns.
ac. Synchronize negative on, and observe, signal DAIR (controller pin 26A-13). Observe signal DSR (controller pin 26A-10). Use an A-timebase of $100 \mathrm{~ns} / \mathrm{cm}$.
ad. At the selection unit, replace the LT85 module in location 14A and insert the LT77 Data Decoder module (location 13A), using the cari extender.
ae. Adjust R20 on the $1: 77$ module for delay time between signal DA:R and signal DSR (B, figure $\mathrm{C}-\mathrm{c}$).
af. At the PET, set the REPEAT switch to the down position and write data on the entire disc.
ag. Read the contents of the disc. No errors should occur.

8-11 OFFLINE TESTS

Peripheral Equipment Tester Model 7901 (PET) is required to perform offline tests. Offline tests enable the PET to simulate IOP signals and cause the EP RAD file to respond as it would for actual IOP signals. Single-phase operation of the EP RAD file can be controlled from the PET. The PET may also be useci to monitor online operation. The PET pane! overiay (figure 8-4) is used with the PET during offline tesiing of the EF RAD file. The functions of switches marked by the EET panel overlay are indicated in table 8-1. Test equipment required for offline testing is listed in table 8-2.

8-12 PRELIMINARY OPERATIONS

a. At the power distribution panel, check that the REMOTE-OFF-ON switch is OFF (center).
b. Insert PET connector P181 in controiler iacation 32A.
c. Insert PET connectar P183 in controiler location 30A.

Figure 8-6. Data Synchronization Signals, Timing Diagram

Table 8-1. Functions of PET Panel Overlay Switch Designations

Switch Designation	Function
PET/MONITOR switch	When in PET position, transfers control of EP RAD controller to PET; when in MONITOR position, transfers control of EP RAD controller to IOP, but enables INDICATOR lamps to display state of controller as selected by IND. UP switch
RESET pushbutton	Resets EF RAD controller by generating a true RSTP signal
FS pushbuiton	When pressed, simulates function strobe signal by generating a true FSP signal
HIO switch	Simulates function indicator HIOR
TDV switch	Simulates function indicator TDVR
TIO switch	Simulates function indicator TIOR
SIO switch	Simulates function indicator SIOR
: SINGLE TRACK switch	Inhibits track register from incrementing by generating a true SGLTRKP sigial
REPEAT switch	Permits continuous operation on tracks defined by the SINGLE TRACK switch
$\left.\begin{array}{l} \text { ORDER } 1 \text { switch } \\ \text { ORDER } 2 \text { switch } \\ \text { ORDER } 4 \text { switch } \\ \text { ORDER } \& \text { switch } \end{array}\right\}$	Generate oider covies as follows: Order $\frac{\text { Switch }}{\underline{8} \underline{2} \underline{1} 1}$
	Write $\quad 0001$
	Seek 00011
	Read 0010
	Sense 0100
	Checkwrite 0101
ALTERN. ORDERS switch	Provides a means of execuiing an automatic write operation before the order set into the ORDER switches is executed
ERROR STOP switch	Halts the operation iveing executed when a transmission error is received. When an error is detected, the failing track number is displryed and the sector counter is incremented by one
IND. UP switch	Selects the upper row or lower row of functions to be displayed by the 16 PFT indicators
SINGLE PHASE switch	Enables the single phare mode of operation. Used with PHASE STEP pushbuttor to progress through an operation one phase at a time
PHASE STEP pushbutton	Provides an enable pulse which generates one clock signal to cause a change of phase in the controller

Table 8-1. Functions of PET Panel Overlay Switch Designations (Cont.)

Switch Designation	Function
COUNTER RESET switches	Select the number of tracks to be operated on. Cause a reset term (RSTP) to be generated when the PET interna! counter equals the value set in COUNTER RESET switches
COUNTER INITIALIZE pushbutton	Resets PET internal counter
DATA switches	Simulate IOP data
UNIT ADDRESS switches	Address one of eight storage units
I'JDICATOR lamps	Display one of iwo seis of 16 signals from EP RAD controller, depending on position of IND. UP switch
(Arrows)	Not used. Plece each switch in position inolicated by adjacent arrowhead

Table 8-2. Test Equipment Required for Offline Tests

Equipment	Part No.	Mernufacturer
Card Extender	117306	134046
Tiring Track Ricorder JT18	XDS	
Peripheral Equipment Tester (PET) Model 7901	IA7152	XDS
PET Panel Ove:lay	Model 543	XDS
Oscilloscope	Niodel 1A1	XDS
Preamplifier	Model 630A	Tektronix
Volt-ohm-millianmeter	Triplett	

d. Check that all modules are inserted in the controller (figure 7-5) and in the seiection unit (figure 7-4).
e. Place the PET panel cerlay (figure 8-4) over the PET control panel.
f. Set the PET panel ADDRESS switches to the address of the EP RAD storage unit under test.
g. At the controller, place the online/offline switch on the LT25 Special Purpose Loyic module (location 23C) in the 0 position (down). (See figure 2-2.)
h. At PET, place the PET/MONITOR switch to PET, place the three switches marked with arrows to the position indicated by the arrow, and place all other switches in the down position.
i. Apply power to the PET.
i. Apply power to the controller and selection unit.
k. Perform testing as requiled.

8-13 SINGLE PHASE SEQUENCES

o. Perform the preliminary operations described in paragraph 8-12, unless previously done. Check that switches are in positions noted in steps e through h of paragraph 8-12.
b. Place the HIO switch and the SINGLE PHASE switch in the up position.
c. Press and release the RESET pushbuttor. Note that the PHIFS lamp is lighted.
d. Press and release the FS pushbutton. Note that the PHFS lamp goes off and that the PHFSZ lamp is lighted.
e. Press and release the PHASE STEP pushbutton. Note that the PHFSZ lamp goes off and that the PHFSL lamp is lighted.
f. Press and release the PHASE STEP pushbutton again. Note that the PHFSL lamp goes off, and that the PHFS lamp is lighted.
g. Place the HIO switch in the down position.
h. Place the TDV switch in the up position.
i. Repeat steps c through f. Reset
phase sleg
j. Place the TDV switch in the down position.
k. Place the TIO switch in the up position.

1. Repeat steps c through f .
m. Perform additional testing as required.

4 ILLEGAL ORDER SEQUENCE

a. Perform the preliminary operations described in paragraph 8-12, unless previously done. Check that switches are in positions noted in steps e through h of paragraph 8-12.
b
b. Piace the 510 switch and the SINGLE PHASE switch in the up position.
c. Press and release the RESET pushbutton. Note that the PHFS lamp is lighted.
d. Press and relesse the FS nushbuiton. Note that the PHFS lamp goes off and that the PHFSZ lamp is lighted.
e. Press and release the PHA SE STEP pushbutton for each step of the following sequerse:

Step

12	PHRSA
13	PHRS
14	PHTO

Data lamp off. Illegal

order sets UNE\end{array}\right.\)

15
PHFS, UNE
Order in service cycle. IN lamp goes off
f. Perform additional testing as required.

Note

Relation between DATA switch settings and bytes of seek order is as indicated in table 8-3.

Table 8-3. Data In Bytes of Seek Order

DATA Switch	Byte 0	Eyts i	
0	TOF (track overflow bit)*	TC7	18A
1	(not used)* T00 19079	T03	18 A
2	(not used)* TO1 19A46	TOP	184
3	1702 19A21	TiO	189
4	T03 19 914	Scos	184
5	T04 19A12	SOi ${ }^{\text {t }}$	18 A
3	T05 19A17	50	188
7	T06 19 A26	S03	13A

*I I OF, T00, or TOI true, a sector unavailabie error occurs
${ }^{\dagger}$ If SOO and SOI are both true, a sector unavaiictule error occurs

8-15 SINGLE PHASE SEEK ORDER (03) 14C2
a. Perform the preliminary operations described in paragrraph 8-12 unless previously done. Check that switches are in pusitions noted in steps e through h of paragraph 812.
b. Set the following switches in the up position: SINGLE PHASE, ORDER $\frac{2}{3}$ ORDER- $\frac{9}{4}$ SIO, PET.
c. Set DATA switches 3 through 7 to the center position.
d. Press and release the RESET pushbution. Note that 5C9 the PHFS lamp is lighted.

UL 3C 38 the PHFS lamp goes off and that the PHFSZ lamp is lighted.
f. Press and release the PHASE STEP pushbutton for each step of the following sequence.

Step	Lamps Lighted	Remarks
$\begin{gathered} 3 C A 7 \\ 5 C 9 \end{gathered}$	$\left.\begin{array}{l} \text { PHFSL } \\ \text { PHFS, DCB, DVO } \end{array}\right\}$	SIO accepted
$3 C 38 \quad 3$	PHFSZ	
$3 C 174$	PHIFSL	
$2 \subset 385$	PHRSA	Order out service cycle
2c236	PHRS	
A3C67	PHTO	
$5 C 98$	PHFS, DATA	\cdots
3C389	PHFSZ	
$3 \subset 17^{10}$	PHFSI	Byte one of seek order
$2<3811$	PHPSA	
$2<2312$	PHRS	
$2 \subset 38 i 3$	PHRSA ${ }^{\text {a }}$	

g. Place the IND. UP switch to the up position. Note that TRACK lamps 2, 3, 4, 5, and 6 are lighted.
h. Set DATA switches 0 through $4, \frac{7}{6}$, and 7 to the) center position, and set DATA switch, 5 to the down position. 2
i. Place the IND. UP switch to the down position.
j. Press and release the PHASE STEP pushbutton. Note that the PHPSA lamp gees off and the PHRS lamp is lighted.
k. Press and release the PriASE STEP pushbutton again. Note that the PHRS lamp goes off and the PHTO lamp is lighted.
I. Place the IND. UP witch to the up position. Note that all TRACK lamps are lighted.

I/1 Ind. U'P switch to the down p.
m. Press and release the PHASE STEP pushbutton for each step of the following sequence.
\(\left.\left.$$
\begin{array}{ll}\frac{\text { Step }}{1} & \begin{array}{l}\text { Lamps Lighted } \\
1\end{array}
$$

2 \& PHFS, IN\end{array}\right\} $$
\begin{array}{l}\text { DHFSZ }\end{array}
$$\right\}\)| DATA lamp goes off. |
| :--- |
| Order in service cycle |

Step	Lamps Lighted	Remarks
3	PHFSL	
4	PHRS	
5	PHRSA	DATA lamp goes off. Order in service cycle
6	PHRS	
7	PHTO	
8	PHFS	DCB lamp and IN lamp go off

n. Set DATA switches 0,1 , and 2 to down position; set DATA switches 4 and 5 to center position.
o. Repeat steps d through f. Anew seek order with different byte is stored.
p. Repeat steps i, k, and m. Note thot lamps SUN and UNE are lighted at step 1 of m . This indicates that a secior unavailable error wis detectec in the second byte (S00 and S01 both true).
a. Perform additional testing as required.

8-16 SINGLE PHASE SENSE OREER (14414
a. Perform the preliminary operotions iescribed in pa:agraph 8-12, unless previously done. Check that switches are in positions noted in steps e through h of paragraph 8-12.
b. Set the following switches in the up yositions: SIVGLE PHASE, ORDER 4, SIO, and PET.
c. Press and relaase the RESET pushbutton. Note that the PHFS lamp is lighted.
d. Press and release the is pushbutton. Note that the PHFS lamp g es off and that the PHFSZ lamp is lighted.
e. Press and release the PHASE STEP pushburton for each step of the following sequence.
$\left.\begin{array}{ll}\text { Step } & \text { Lamps Lighted } \\ 1 & \text { PHFSL } \\ 2 & \text { PHFS, DCB } \\ 3 & \text { PHFSZ } \\ 4 & \text { PHFSL accepted } \\ 5 & \text { PHRSA } \\ 6 & \text { PHRS }\end{array}\right\}$ Order our service cycle

f. Perform additional testing as required.

8-17 REPEAT MODE SEEK ORDER

a. Perform preliminary operations described in paragraph 8-12, unless previously done. Sheck that switches are in positions noted in steps e through h of paragraph 8-12.

b. Set the following switches in the up position: ORDER 2, ORDER 1, SIO, PET, and REPEAT.

34
? c. Press and release the RESET pushbutton.
d. Press and release the FS pushbutton. Note that CB lamp is lighted.

Note

During step d, the controller cycles continuously through the phases indicated in paragraph 8-15. All lamps listed will be lighted briefly and will appear to be dimly lit.
e. Set the REPEAT switch to the down position. Note that the PHFS lamp is lighted.
f. Set the REPEAT switch to the up position.
g. Press and release the FS pushbutton. Note that the DCB lamp is lighted and that the controller cycles as in step d.
h. Set the IND. UP switch to the up position.
i. Set each DATA switch, one at a time, in turr, to the up position. For each DATA switch, note that the corresponding TRACK lamp, as indicated in table 8-3, is lighted. Fo: CATA switches 0,1 , and 2, note that UNE and SUN are lighted.
i. Perform additional testing as required.

8-18 SINGLE PHASE WRITE ORDER (O1) $14 \subset 12$

a. Perfurm the preliminary operutions described in paragraph 8-12, unless previously done. Check that switches are in positions noted in steps e througt, h of paragrapin 8-12.
b. Set the following switches in the up position: SINGLE PHASE, ORDER $\chi, S \mathrm{SO}$, and PET.

4
c. Cunnect a clip lead from ground to SECOMF :ignal (pin 20A-6) in the controller.
d. Press and release the RESET pushbutton. Nore that the PHFS lamp is light d.
e. Press and release the FS pushbution. Note that the PHFS lamp goes off and the PHFSZ lamp is lighted.
f. Press and release the PHASE STEP pushbutton for each step of the following sequence:
\(\left.$$
\begin{array}{ll}\text { Step } & \text { Lamps Lighted }\end{array}
$$ \quad $$
\begin{array}{l}\text { Remarks } \\
1\end{array}
$$ \quad \begin{array}{ll}PHFSL

2 \& PHES, DCB

3 \& PHFSZ

4 \& PHFSL\end{array}\right\}\)| SIO accepted. Order |
| :--- |
| out service cycle, |
| write order stored |

Step	Lamps Lighted	Remarks
5	PHRSA (UL) 14 C 12	SIO accepted. Order
6	PHRS, WRITE	out service cycle, write order stored
7	PHTO	
8	PHFS, DATA	Start at data out service cycle
9	PHFSZ	
10	PHFSL	
11	PHRSA	This sequence occurs 16
12	PHRS	dimes to fill the FAM
13	PHTO	
14	PHFS	This service call is
15	PHFSZ	aborted because the FAM module is filled
16	PHFSL	and no additional service calls are required
17	PHFS	for dara

g. Disconnect clip lead installed in step c.
h. Perform additional testing as reguired.

8-19 SECTOR COUNTER TESI
a. Perform the preliminary operations described ia paragraph 8-12, unless previously done. Check that
switches are in positions noted in steps e through h of paragraph 8-12.

$$
\text { No -and } 7 \text { thowe }
$$

b. Set the following switches in the up position: IND. UP, ORDER + , SIO, PET, REPEAT, and COUNTER RESET switches $1,42,4,8,16$, and 32 .
c. Piess and release the RESET pushbutton.
d. Press and release the COUNTER INITIALIZE pushbutton.

D-ECI
e. Press and release the FS pushbutton. Note that the WRITE lamp is lighted, and the TRACK lamps increment from TRACK lamp 10 lighted (000 0000 0001) to TRACK lamp 5 lighted (000 00100000).
f. Synchronize on, and display, signa! ANOR (controller pin 20A-1).
g. Observe signals ANOR through AN3R, as illustrated in figure 8-7.
h. Synchronize on, and display, signa! TDT (controlier pin 5C-10).
i. Observe signals TDT, TDT1, and TDT2, as illustroted in figure 8-8.

8-20 EXTENDED INTERFACE TEST (TWO-BY:TE OPTION)
a. Perform the preliminary operaticns ciescribed in paracraph 8-12, uniess previcusly done. Cneck that switches are in positions noted in steps e through h of paragraph 8-12.

Figure 8-7. Sector Identification Signals, Timing Diagram

NOTES:

1. ALL SIGNALS ARE GENERATED IN THE EP RAD CONTROLLER
2. THE ITEMS IN PAREINTHESES INDICATE MODULE LOCATION AND PIN NUMBER

Figure 8-8. TDL Delay :ine Signals, Timing Diagram
b. Set the following switches in the up position: SINGLE PHASE, ORDERT, SIC, and PET.
c. Connect a clip lead from ground to SECOMP sigI (pin 20A-6) in the controller.
d. Piess and release the RESF.f pushbutton. Note that the PHFS lamp is lighted.
e. Press and release the FS pushbutton. Note that the PHFS lamp goes off und the PHFSZ lamp is lighted.
f. Press and release the PHASE STEP pushbutton for each step of the following sequencr.
\(\left.$$
\begin{array}{lll}\begin{array}{ll}\text { Step } & \text { Lamps Lighted }\end{array} \quad \begin{array}{l}\text { Remarks } \\
1\end{array}
$$ \& PHFSL

2 \& PHFS, DCB

3 \& PHFSZ

4 \& PHFSL

5 \& PHRSA\end{array}\right\}\)| SIO accepted. Order |
| :--- |
| out service cycle, |
| write order stored |

Step	Lamps Lighted	Remarks
6 7	PHRS, WRITE PHTO	SIO accepted. Order out service cycle. write order storea
8	PHFS, DATA	Start data out service cycle
9	PHFSZ	
10	PHFSL	
11 12	PHRSA PHRS	This sequence occurs eight times to fill the FAM module
13	PHTO	
14	PHFS	This service call is aborted because the
15	Prifsz	FAM module is filled and no additiona! ser-
16	PHFSL	vice calls are required for data
17	PHFS	

g. Remove clip lead installed during step c.
h. Perform additional testing as required.

8-21 EXTENDED INTERFACE TEST (FOUR-BYTE OPTION)
a. Perform the preliminary operations described in paragraph 8-12, unless previously done. Check that switches are in the positions noted in steps e through h of paragraph 8-12.
b. Set the following switches in the up position: SINGLE PHASE, ORDER + , SiD, and PET.
c. Connect a clip lead from ground to SECOMP signat (pin 20A-6) in the controller.
d. Press and release the RESET pushbutton. Note that the PHFS lamp is lighted.
e. Press and release the FS pushbutton. Note that the PHFS lamp goes off and that the PHFSZ lamp is !ighted.

Note

For c four-byte interface option, a new service call is requested for each group of four bytes transferred. Therefore, only one sequence of PHRSA, PHRS occurs during the data out service cycle.
f. Press and release the ritA SE STEP pushbutton for each step of the following sequence:

g. Remove clip lead installed during step c .
h. Perform additional testing as required.

8-22 REPEAT MODE WRITE ORDER

a. Perform the preliminary operations described in paragraph 8-12, unless previously done. Check that switches are in positions noted in steps e through h of paragraph 8-12.
b. Set the following switches in the up position: IND. UP, ORDER X, SIO, PET, REPEAT, and COUNTER RESET switches $1,2,4,8,16$, and 32 .
c. Press ass release the RESET pushbutton.
d. Press and release the COUNTER INITIALIZE pushbutton.
$D-L_{0}^{2}+1$
e. Press and release the FS pushbutton. Note that the WRITE lamp is lighted and the TRACK lainps increment from TRACK lamp 10 lighted (000 0000 0001) to TRACK lamp 5 lighted (0000100000).
f. Set the EPPEAT switch down, then up. Note that THACK lamp 5 through 10 are lighted (00000111111).
g. Set the WPEAT switch to the up pos: ion.
h. Set the SINGLE TRACK switch to the up position.
i. Press and release the FS pushbutton. Note that the WRITE lamp is lighted and that the track register does nat count.
i. Se f the SINGLE TRACK switch to the down poritimon. Note that the track register increments cis in step e.
k. Set the SINGLE TRACK switch to the up position.

1. Set the 䠎PEAT switch to the down position. Note that the track register does not count.
m. Press and release the FS pushbutton. Note that the track displayed is written once, and the operation halts.
n. Perform additional testing as required.

8-23 Y-SELECT TEST

a. Perform the preliminary operations described in paragraph 8-12, unless previously done. Check that switches are in positions noted in steps e through h of para-. graph 8-12.
b. Set the following switches in the up position: IND. UP, ORDER +, SHO, PET, REPEAT, and COUNTER RESET switches $1,4,4,8,16$, and 32 .
c. Press and release the RESET pushbutton.
d. Press and release the COUNTER INITIALIZE pushbutton.
e. Press and release the FS pushbutton. Note that the WRITE lamp is lighted, and the TRACK lamps increment from TRACK lamp 10 lighted (00000000001) to TRACK lamp 5 lighted (000 00100000), then repeat.
f. At the selection unit, synchionize oscilloscope negative on signal $Y 00$ (pin 25B-36).
g. Check the ouiputs of the Y-select drivers at the locations indicated in table 8-4. Cutputs should be low (0 to IV) when selected and high ($+45 \mathrm{~V} \pm 10 \%$) when not selected, as indicated in figure 8-9. Check that the Y select outputs are low in proper sequence and that only one output is low at any time.

8-24 TCL DELAY LINE TEST
a. Ferform the preliminary operations described in faragraph 8-12, unless pleviously done. Check that

Table 8-4. Locations of Y-Select Output Signals

PIN NO.	MODULE LDCATION							
	25B	24 E	23B	22B	10B	9 B	8B	7B
36	Y00	Y08	Y16	Y24	Y32	Y40	Y48	Y56
5	Y01	Yoc	Yi7	Y25	Y33	Y41	Y49	Y57
38	Y02	Yio	Y18	Y26	Y34	Y42	Y50	Y58
6	Y03	Y11	Y19	Y27	Y35	Y43	Y51	Y59
35	Y04	Y 12	Y20	Y28	Y36	Y44	Y52	Y60
4	Y05	Y1:3	Y21	Y29	Y37	Y45	Y53	Y61
37	Y06	$Y!4$	Y22	Y30	Y38	Y46	Y54	Y62
7	Y07	Yij	Y23	Y31	Y39	Y47	Y55	Y63

Figure 8-9. Head Select Signals, Timing Dicgram
switches are in the positions noted in steps e through h of paragraph 8-12.
b. Set the following switches in the up position: ORDER 1, ORDER 2, SIO, and REFEAT.
c. Press and release the RESET pushbutton.

Note

During step d, the controller cycles continuously through the phases indicated in paragraph 8-15. All lamps listed will be lighted briefly and will appear to be dimly lit.
d. Press and release the FS pushbutton. Note that the DCB lamp is lighted.
e. Synchronize on signal $D C L$ (controller pin 4B-15).
f. Check that the phase control delay line timing is as indicated in figure 8-10.
g. Perform additional testing as required.

8-25 TRL DELAY LINE TES
a. Perform the preliminary operations described in paragraph 8-12, unless previously done. Check that switches are in positions noted in steps e through h of parugraph 8-12.
b. Set the following switches in the up position: ORDER 1, ORDER 2, SIO, and REPEAT.
c. Press and release the RESET pushbutton.

Note

During step d, the controller cycles continuously through the phases ir.dicated in paragraph 8-15. A!! 'amps listed will be lighted briefly and will appear to be dimly lit.
d. Press and release the IS pushbutton. Note that the DCB lamp is lighted.
e. Set the REPEAT switch to the down position. Note that the PHFS lamp is lighted.
f. Set the IND. UP switch to the up position.
g. Select track 12, sector 3, by setting DATA switches 0 through 7 to positions 11000011 (table 8-3).
h. Set the ORDER 2 switch to the down position.
i. Set the following switches to the up position: REPEAT and COUNTER RESET switches 1, 2, 4, 8, 16, and 32.
i. Press and release the RESET pushbutton.
k. Press and release the COUNTER INITIALIZE pushbutton.

1. Press and release the FS pushbulton. Note that the WRITE lamp is lighted, and that the TRACK lamps increment from TRACK lamp 10 lighted (00000000001) to TRACK lamp 5 lighted (00000100000), then repeat the sequence.
m. Synchronize on signal SViRITE (controller pin 1OB2).
r. Check that the TRL delay line is as indicated in figure 8-11.
=. Perform additional testing as required.
8-26 WRITE AMPLIFIER TEST

c. Perform the preliminary operations described in paragraph 8-12, unless previously done. Check that switches are in positions noted in steps e through h of paragraph 3-12.
i. Set the following switches to the up position: ORDER 1, ORDER 2, SIO, and REPEAT.

43
c. Press and release the RESET pushbutton.

Note

During step d, the controller cycles continuously through the phases listed i.1 paragraph 8-15. All lamps listed will be lighted briefly and will appear to be dimly lit.
d. Press and release the FS pushbutton. Note that the DCB lamp is lighted.
e. Set the REPEAT switch to the down pcsition. Note that the PHFS lamp is lighted.
f. Set the ORDER 2 switch to the down position. 3
g. Set the REPEAT switch to the up position.
h. Set DATA switches $1,3,5$, and 7 to the center position.
i. Press and release the RESET pushbutton.
i. Press and release the COUNTER INITIA.LIZE pushbutton.

k. Press and release the FS pushbutton.

1. Synchronize delayed on signal PSPB (controller pin 7A-34).
m. Synchronize internally on signal WRTAMPI (selection unit pin 21B-26) and signal NWRTAMPI (selection unit pin 21B-39) and display the signals. Check that these signals are complements of one another and that WRTAMP1 is as indicated in figure 8-12.
n. Set the REPEAT switch to the down position.
o. Set the ORDER 2 switch to the up position. 3
p. Set DATA switches 0 through 7 to the center posi--tion.
q. Repeat steps c through f.
r. Set DATA switches $0,2, \therefore$, and 6 to the down position.
s. Repeat steps ithrough 1 .
i
f. Synchronize internally on signal WRTAMP2 (selection unit pin 11B-26) and signal NWRTAMP2 (selection unit pin $11 B-39$) and display the signals Check that these signals are complements of one anotiar and that WRTAMP2 is as indicated in figure 8-12.
u. Display signal BIT7RWE (-ontroller pin 13A-14) with signal DATR (selection unit pin 3A-6).

Note

Check that DATA switch 7 changes the data at bit time 0, DATA switch 6 changes the data at bit time 1, and so forth until DATA switch 0 changes the data at bit time 7.
v. Change each DATA switch in turn, and check that each switcl, controls one bit of information per byte, as shown in figure 8-13.
w. Perform additional testing as required.

8-27 CHECKWRITE TEST

a. Perform the preliminary operations described in paragraph 8-12, unless previously done. Check that switches rare in positions noted in steps e through h of paragraph 8-12.
b. Set the following switches in the up position: ORDER 1 , ORDER 2, SIO, and REPEAT.

- 2 2 3
c. Press and release the RESET pushbuiton.

Note

During step d, the controiler cycles continuously through the phases listed in puragraph 8-15. All lamps listed will be :ighted briefly and will appear to be dimly i! $\%$.

NOTE:

PEAK-TO-PEAK VOLTAGE IS 20 TO 30 V

Figure 8-12. Write Amplifier Output Signals, Timing Diagram

NOTES:

1. BIT7RWE IS CENERATED IN THE EP RAD CONTROLLER
2. DATR IS GENERATED IN THE EP RAD SELECTION UNIT
3. THE ITEMS IN PARENTHESES INDICATE THE MODULE LOCATION AND PIN NUMBER

Figure 8-13. Data Path Timing Sigrals, Timing Diagram
d. Press and release the FS pushbutton. Note that the DCB lamp is lighted.
e. Set the REPEAT switch to the down position. Note that the PHFS lamp is lighted.
f. Set DATA switches $0,1,4$, and 5 to the center position.
g. Set the following switches to the up position: IND. UP, REPEAT, and COIJNTER RESET :witches 1, 2, 4, $8,16,32,64,128$; and 256.
h. Set the ORDER $\mathcal{2}$ switch to the down position.
i. Press and release the RESET pushbution.
i. Press and release the COUNTER INITIALIZE pushbutton.
k. Press and release the FS pushbutton. Note that the WRITE lamp is lighted and that TRACK lamps increment from all off lamps to all lighted lamps, and repeat.

1. Set the REPEAT swirch to the down position. Note that the PHFS lamp is lighted. +yD . DOW 3
m. Set the ORDER 2 switch to the up position.
n. Set the REPEAT switch to the up position.
o. Repeat steps cthrough e.
p. Set the ORDER 2 witch to the down position.
q. Set the ORDER. 4 switch to the up position.
r. Set the REFEAT switch to the up position.
s. Repeat steps i through k. The CHECKWRITE lamp is lighted, the TPACK lamps increment, and no error lamps are lighted. $+2 N D \cdot U P$
r. After the entire disc has been checked (approximately 16 seconds) set the REPEAT switch to t! e down position. Note that the PHFS lamp is lighted.
c. Set DATA switch 4 to the down position.
v. Set the REPEAT switch to the up position.
w. Repeat steps i through k. Lamps CER and UNE are ligh red, indicating a checkwrite error and ari unusual end.
x. Perform additional testing as required.

8-29 ALTERNATE ORDERS MODE, REPEATED OPERATION
7. Perform the preliminary operations ciescribed in parayraph 8-12, unless previously done. (heck that switches are in positions noted in steps e through, h of paragrapi، 8-12.
b. Set the following switches to the up pusition: IND. UP, AITERN. ORDERS, ORDER 4, ORDER 1, SIO and REPE.A.F.
c. Set the ERROR STOP switch in the up position, unless reset at error detection is desired.
d. Set the DATA switches to the eight-bit pattern selected for writing.
e. Set the COUNTER RESET switches to the number of the highest track into which data is to be written.
f . Press and release the RESET pushbutton.
g. Press and release the COUNTER INITIALIZE pushbutton.

Note

Following step h, a write order will be executed (WRITE lamp lighted) and the pottern
established in step d will be written in track 0 . After the write order is executed, a checkwrite order will be executed (CHECKWRITE lamp lighted). If the ERROR STOP switch is up, detection of errors will cause reset of the track register and automatic rewriting of data on the disc. If the ERROR STOP switch is down, the track register will be reset at the track address established in step d, and the operation will repeat from track 0.
h. Press and release the FS pushbution.
i. Perform additional testing as required.

8-29 ALTERNATE ORDERS MODE, SINGLE TRACK OPERATION
a. Perform the preliminary operations described in paragraph 8-12, unless previously done. Check that switches are in positions noted in steps e through h of paragraph 8-12.
:
b. Set the COUNTER RESET switches to the track number to be tested.
c. Set the following switches in the up position: ORDER 1, SIO, REPEAT, and IND. UP.
d. Press and release the COUNTER INITIALIZE pushbutton.
e. Press and release the RESET pushbutton.
f. Press and release the FS pushbuiton. Note that the operation halts with the track number selected in siep b displayed on the TRACK lamps.
g. Set the DATA switches to any aight-bit pattern.
h. Set all COUNTER RESET switches to the down position.
i. Set the following switches in the up position: ORDER 4, ERROR STOP, ALTERN. GRDERS, and SINGLE TRACK.

Note

Do not press RESET pushbuiton.
i. Press the FS pushbutton. Note that the WRITE lamp and the CHECKWRITE lamp are lighted and that the TRACK lamps do not increment.
k. Perform additional testing as required.

:8-30 CPU MODE TESTS

The following machine language programs can be used to the EP RAD file.

8-31 SIGMA 5 OR SIGMA 7 MACHINE LANGUAGE TEST PROGRAM

Table 8-5 defines a simple machine language program that can be used for basic troubleshooting of the EP RAD controller. When run, the program causes a continual start of an input/output operation (SIO), followed by a halt of the input/output operation (HIO) after a controlled delay. Signals of the EP RAD controller may be read continualiy as the program repeats.

8-32 SIGMA 2 MACHINE LANGUAGE TEST PRCGRAM

Table 8-6 defines a simple machine language program that can be used for basic troubleshooting of the EP RAD file. When run, the program seeks sector 0 , track 0 , writes 360 bytes, then seeks sector 0 , track 0 again and checkwrites 360 bytes. The starting address is 0100 (hexadecima!). The instructions used are described in table 8-7. For more detailed infurmation, refer to XDS publication No. 900764. The prograri of table 8-6 will be run once. To cause continual recycling, change the contents of the last audress as indicated.

$$
\begin{aligned}
& \text { 8-33 REPAIRS, REPLACENENTS, AND ADJUSTMENTS } \\
& \text { 8-3317. Tachometer GUTPUT VCLTAGE TEST Progiamm Cage 8-22音) } \\
& \text { 8-34 REPLACEMENT OF THE DRIVE MOTOR STATSR } \\
& \text { Replace the drive motor stator as follows: }
\end{aligned}
$$

CAUTION

Study the entire procedure before attemptirc replacement. Do not loosen any bolts or screws on the RAD bulkhead because th.s will cause severe damage to the disc file.
a. Ai the motor control assembly, set the PCWFER switch to OrF.
b. Afier the disc has come to a complete halt, set the circuit breaker under the EMERGENCY USE ONLY cover to OFF.
c. Pul! the bulkhead assembly forward and drop the front legs down to support the extended bulkhead assembly (figure 7-i).
d. Loosen and remove the four Alien screws that secure the brake and tachometer assembly to the end of the motor housing (see section IX). Remove the brake and tachometer assembly from the motor housing, leaving the stator wires affached.
e. Loosen and remove the four Allen screws that secure the stator to the motor housing and the motor housing to the spindle housing. Remove the motor hausing and stafor from the spindle housing with the brake and spindle

PDQ NO._-70-054
PUBLICATION NO. $901565 \mathrm{~A}-1$
D
Fage 2 of 2

INSTRUCTIONS (Cont.)

8-32A TACHOMETER OUTPUT VOLTAGE TEST PROCEDURE

The tachometer generates an output of seven volts per 1000 rpm . The normal output at RAD operating speed is approximately 12 vdc and should not drop below 10 vdc . Voltages lower than 10 vdc can cause problems during start up. Noise spikes greater than 10 vdc can cause data errors.

The tachometer output voltage should be checked on a monthly basis as follows:
a. Connect the oscilloscope ground probe to the white wire on the tachometer and the signa! probe to the blue wire on the tachometer.
b. At RAD operating speed any tachometer with an output of less than 10 vdc or with noise spikes greater than 10 vdc should be replaced. There will be some ripple, which is normal. If there is no output, inspect the tachometer shaft coupling for possible failure.

CAUTION

During the replacement of a tachometer, use care when renoving the three No. 2 screws (XES part No. 123054-104) ihat attach the adapter plate to the tachometer. These screw heads can be easily damaged due to the torque required to cvercome the Loctite applied to their threads. The applicution of Loctite has now been discontinued, therefore it should not be used when installing the adapter plate on a new tachometer. (See figure 9-5 for assembly drawing).

Table 8-5. EP RAD File Program for Continuous Test (Sigma 5 or Sigma 7)

Memory Location*	Contents*	Remarks
0008	22000100	Load immediate (LI). The value 0000 0100, which is the address of the first half of the command doubleword, is stored in general register 0 . (For doubleword addressing, 0200 is addressed as 0100)
0009	2220 XXXX	Load immediate (LI). The value 0000 XXXX, which controls the number of counts in the delay introduced by the BDR instruction, is stored in general register 2. (A typical value for $X X X X$ is 0200)
OCOA	4 COO OYY	Start input/output operation (SIO). The value YY: must address the EP RAD controller
000B	6420 000B	Branch on decrementing register (BDR). The value in general register 2 is reduced by one. If the value is then positive, the BDR instruction is repeated (location 000 B). When the value is zero, the instructic.: in location 000 C is executed
000 C	4 FOO OYYY	Halt input/output operation (HIC) . The operation started by the instruction in lecation 000.4 is halted
OOND	68000009	Branch on conditions reset ($B C R$). The logical prodicit of the R-fiald of this insiruction (0) and the condition code, which is always zero, causes the instruction in memory location 0009 tc be executed
0200	OOXM MMMM	First half of command doubleword. Character X has no significance. Characters M MMtiM represent thie memory byte address at which the SIO instruction wil! start processing information. Characters OO represent one of six EF RAD file order codes, as follows:
		X'01' Write
		X $02^{1} \quad$ Read record
		X'12' Read sector
		$\mathrm{X}^{\prime} 03^{\prime}$ Sense
		X'04' Seek
		$\mathrm{X}^{\prime} 05^{\prime} \quad$ Checkwrite
0201	FFXX BBbB	Second half of command doubleword. Characters $X X$ have no significance. Characiers BBBB represent the byte count (number of bytes to be written, read, or checked by write order, read order, or checkwrite order). Characters If represent flag codes, but may be set to 00 for this test. (Refer to XDS publication No. 900950 and 900959 for flag codes in normal operation)

[^2]Table 8-6. Sigma 2 Machine Language Test Program for EP RAD File

Memory Location*	Contents*	Mnemonic	Remarks
0000	400A	B	Branch to first instruction
0001	0003	WD	Order byte for seek
0002	0001	WD	Order byte for write
0003	0005	WD	Order byte for checkwrite
0004	0169	WD	Byte count for write and checkwrite
0005	0003	WD	Byte count for seek
0006	OOFD	WD	Starting address for seek
0007	OOFF	WD	Starting address for write and checkwrite
0008	0000	WD	Track to sector
0009	0090	WD	RAD device number (90)
000A	8006	LDA	Load seek starting address
OOOB	000A	WD	Load starting address in 1/O register A
000C	8005	LDA.	Load seek byie count
OOOD	O00b	WD	Store byte sount in I/O register B
OOOE	8001	LDA	Load order byte for seek
000F	EOFD	STA	Store order byte in table I/O for starting address
0010	8009	LDA	Load RAD device number
$0 \cdot 11$	1041	RD	Start seek operation (SIO)
0012	1042	RD	Test for comparison (TIO)
0013	6202	BNC	Branch if complete (address +2)
0014	49FE	B	Branch back if not complete (address -2)
0015	8007	LDA	Load write starting address
0016	000A	WD	Load startiing address in //O register A
0017	8004	LDA	Load byte count
0018	O00B	WD	Store byte cuunt in I/O register B
0019	8002	LDA	Load write crder byte
001A	EOFF	STA	Store order byte in 1/O table starting address

Table 8-6. Sigma 2 Machine Language Test Program for EP RAD File (Cont.)

Memory Location*	Contents*	Mnemonic	Remarks
001B	8009	LDA	Load RAD device number
001 C	1041	RD	Start write (SIO)
001 D	1042	RD	Test for comparison (TIO)
OOIE	6202	BNC	Branch if complete (address +2)
001F	49FE	B	Branch back if not complete (address -2)
0020	8007	LDA	Load starting address for checkwrite
0021	000A	WD	Store starting address in 1/O register A
0022	8004	LDA	Load byte count
0023	OOOB	WD	Stare byte count in I/O register
0024	8003	LDA	Load order byte for checkwrite
0025	EOFF	STA	Store order byte in table I/O starting address
0026	8009	LDA	Locia RAD device number
0027	1041	RD	Start checkwrite (SIO)
0028	1042	RD	Test for comparison (TIO)
0029	6202	BNC	Branch if checkwrite complete (adress +2)
002A	49FE	B	Branc: back if checkwrite not complete (address - 2)
$002 \mathrm{~B}^{\dagger}$	00D0	WD	End of pragram
* Memory locations arci contents are in hexadecimal notation t To cause the program to recycle continually, change the contents of memory location 002B to 400A. This commands a branch to the first instruction as in memory les.rtion 0000			

Table 8-7. Instructions Used in Sigma 2 Test Program

Mnemonic	Operation
B	BRANCH. The effective address is loaded into the program address register (general register l). The next instruction is accessed from the location pointed to by the effective address of the brunch instruction
$B N C$	BRANCH IF NO CARRY. The branch condition is true orily if the carry indicator is reset (0)
LDA	the accumulator (general register 7)
RD	READ DIRECT. The contents of the effective location are interpreted by mode (bits 0 through 3) and function (bits 4 through 15) for read direct operations

Table 8-7. Instructions Used in Sigma 2 Test Program (Cont.)

Mnemonic	Operation
STA	STORE ACCUMULATOR. The contents of the accumulator (general register 7) are stored into the effective location
WD	WRITE DIRECT. The contents of the effective location are interpreted by mode (bits 0 through 3) and function (bits 4 through 15) for write direct operations

aftached. This removal may require some effort as the end of the motor housing is tightly fitted into a lip in the spindle housing.
f. Position the stator and motor housing on the spindle housing so that the four mounting holes in the stator are aligned with the four tapped holes in the spindle housing. Install and tighten the four Allen screws that were noved in step e.
g. Loosen and remove the three Allen screws that secure the tachometer to the brake and tachometer assembly. Remove the tachometer from the assembly.
;
h. Mount the brake and tachometer assembly on the end of the motor housing. Install and tighten the four Allen screws that were removed in step d.

Note

Make sure that the fork on the tachometer is properly inserted.
i. Mount the tachometer on the brake and tachometer assembly by first inserting the tach meter shaft into the shaft ccupier and then aligning the three holes in the tachometer base with the three tapps d holes in the brake and chometer assembly. Install and tighten the three Allen rews that were removed in step g.
i. Push the bulkhead assembiy back into the RAD storage unit and raise the front leg.

Note

If the RAD storage unit aborts following the furn-on procedure of steps k and l, check the coupling between ti, tachometer and the coupling shaft.
k. At the motor control assembly, set the circuit breaker under the EMERGENCY USE ONLY cover to ON.
I. Set the POWER switch to ON.

: 8-35 ADJUSTMENT OF THE DISC FILE BRAKE

a. At the motor control assembly, set switch SI to

Note

Wait until the disc has stopped before proceeding.
b. Set the circuit breaker (under the EMERGENCY USE ONLY cover) to OFF.
c. Disconnect the EP RAD file from the 208 V threephase snurce.

CAUTION

Use the feet at the base of the disc file to support the file when it is in the extended position (figure 7-1). Place plates on the floor to protect the floor from the feet, if necessary.
d. Pull the disc file forward, and set the adiustable feet on the floor.
e. Remove relay K7 to prevent the cpplication of power in the disc file motor.
f. Connect a jumper from the +4 V connection on the selectina unit (E2, E4, or E6) to terminal board TB1-E4.

WARNING

DO NOT REACH INTO THE MOTOR CONTROL ASSEMBLY AFTER POIVER HAS BEEN CONNECTED.
g. Connect the EP RAD file to the 208 V three-phase power suexce.
h. At the motor contral assembly, set the circuit breaker to ON.
i. Set switch SI to ON . Note that the disc file brake retracts.
i. Measure the gap between the armature and friction brake at all four cutouts in the brake collar. The gap should be 0.010 in . to 0.015 in . Adjust the gap as described in step. k and 1 .
k. Loosen each of four slot-head screws two turns.

Note

The gap changes by 0.015 in . for each $1 / 4$ turn of the brake collar.
I. To increase the gap, rotate the brake collar clockwise; to decrease the gap, rotate the brake collar counterclockwise.
m. At the motor control assembly, set switch SI to OFF.
n. Set the circuit breaker to OFF.
o. Disconnect the EP RAD file from the 208 V threephase source.
p. Replace relay K 7 (romoved in step e).
q. Remeve the jumper connected in step f.
i. Conriect the EP RAD file to the 208 V three-phase source.
5. At the motor contra! assembly, set the circuit breaker to ON.
t. Set switch S1 to ON.

8-36 REPLACE:MENT OF THF DISC FILE BRAKE LININGS

a. Remove the power trom the EP RAD file and prepare for replacement by peif, rming steps a through i of paragraph 8-35.

CAUMION

Do not attempt to remove the brake assembly with the power off.
b. Remove three Allen-head screws at the back of the brake assembly and remove the tachometer.
c. Remove four slot-head screws and remove the brake assembly.

Note

Replace the brake linings with XDS part number 147222-002. even if the part replaced has a different number. If necessary, adjust the brake collar to allow for increased thickness of the new lining.
d. Replace brake linings.
e. Measure and adjust the gap as described in steps k and I of paragraph 8-35.

CAUTION

Never remove power from the brake unless the four brake housing screws are secure.
f. Replace the brake assembly and tighten the four slot-head screws.

Note
Replace the tachometer coupling with XDS part number 149272, ceen if the part replaced has a different number.
g. Engage the slotted tachometer drive and coupling with the pin on the end of the motor shaft (see section IX).
h. Replace the tachometer and tighten the three Allenhead screws.
i. At the motor control assembly, set switch S1 to Off.

Note

Wait until the disc has stopped before proceeding.
i. Perform steps n through t of paragraph 8-35.

8-37 RAD FILTER REPLACEMENT

These instructions are applicable to motor conitral unit, part number 146485 and to motor control unit, part number 152692.

The motor control unit, part number 146485 is equipped with three separate filters, two charcoal and one absolute, that must be replaced periodically. See table 3-7A.

The motor control unit, part number 152692, is equipped with two separate filters, one charcoal and one absoluti, which must be replaced once a year. See table 8-7b.

In some cases the absolute filter, part number 158947, has an additional part number on the identifying label. It is assumed to be a vendor part number.

Always order the XDS part number.

Table 8-7A. Replacement Filter Part Numbers for Motor Control Unit, Part Number 146485

Item Number	Service Frequency	Number Required	Part	Part Number	Comments
1	90 Days	2	Charcoal Filter	132514	One gasket, item 2 should be installed with each filter every time it is replaced
2	90 Days	2	Gasket	132744	See Comment, Item 1
3	1 Year	1	Absolute Filter	158947	This item, which is to be used in place of assembly part number 129666, is a com:- plete assembly

Table 8-7B. Replacement Filter Part Numbers for Motor Control Unit, Part Number 152692

Item Number	Service Frequency	Number Required	Part	Part Number	Comments
1	1 Year	1	Charcoal Filter Absolute Filter	145527	This is a complete item
2	1	158947	This is a complete item		
$:$		The number, 1024514, which may appear on the label, is assumed to be a vendor part number			

8-38 RAD INTERFACE CONNECTOR CLEANING PROCEDURE

The RAD interface connectors, which are mounted on top of the disc file, are to be cleaned as follows:

CAUTION

Use only isopropyl a!cohol (filtered) and a typewriter cleaning brush for this procedure. Any other materials may contaminate the connectors.
a. At the motor control assembiy, set the POWER switch to OFF.
b. Check that the disc is not rotating and that the compressor is running.

Note

Do not dip the brush in the alcoho!, as this action will contaminate the alcohol.
c. Pour sufficient alcohol over the brush to remove flux and other soluble contaminants from the brush.
d. Pour additional alcohol over the brush and shake out the excess by striking the brush handle against a sharp !
e. Brush both parts of the connector parallel to the long dimensinn of the connector.
f. Rejeat steps c through e, so that the connector is cleaned witin at least two applications of alcohol.
g. R-rate the connectors as soon as possible ufter cleaning.
h. Ai the motor control assembly, place the POWER switch to QN . Check that the disc rotates.

3-39 SELECTION OF A SPARE WRITE CLOCK

When necessary, select a spare write clock as follows:
a. Check the maintenance log to determine if spare write clock sources are available.
b. At the motor control assembly, set the POWER switch to OFF.
c. Check that the dise is not rotating and that the compressor is running.

Note

Write clock signals are available from four heads, as indicated in figure 8-14.

NOTES:

1. JI6A-14 IS ACTIVE WRITE CLOCK TRACK
2. J16A-5, Jl6B-14, AND 116B-5 ARE SPARE WRITE CLOCK TRACKS
3. WIRE FROM P16A-5 TO P35-19 MAY BE DISCONNECTED

Figure 8-14. Write Clock Tracks, Schematic Diagram
d. If possible, select a spare write clock by disconnecting P16A from J16A and inserting it in J16B (or by disconnecting PI6A from $\mathrm{Jl6B}$ and inserting it in Jl6A).
e. If necessary, rewire connector P16A to select the write clock signal from pin 5 instead of pin 14 (or pin 14 instead of pin 5).
l f. If rewiring is necessary, insert P16A in J16A or Jl6B.
g. At the motor control assembly, place the POWER switch to ON. Check that the dise rotates.

8-40 LOGICAL SPARING OF READ/WRITE HEAD

Replace a failing read/write head circuit with a spare d/write head circuit as follows:
a. Express the track address of ine failing read/write head circuit in three-digit octal neiation. Example: Track address 221 (decimal) is track address 335 (octal).
i

Note

An unused gate on any LTIO5 Spares Selector module may be used with the restriction that modules must be inserted in localions $22 \mathrm{~A}, 23 \mathrm{~A}, 24 \mathrm{~A}$, and 25A before modules ren be inserted in locations 26A, 27A, 28A, or 29A. (See f:gure 7-4.)
b. Activate an unused gate on an LTIO5 Spares Selector module by removing the ground jumper from the gate input. (See figure 6-21.)

Note

Each gate selects a spare read/write head circuit when activated. Therefore, do not provide identical inputs to two gates.
c. Connect jumpers from the octally coded track address signals to the inputs to the activated gate, as summarized in table 8-8. Example: To spare read/write head circuit 335 (octal), connect one gate input to signal $\times 3$ at pin 33, one gate input to signal YM3 at pin 24, and one gate input to signal YL5 at pin 18.
d. Solder the jumpers at both sides of the circuit board.
e. Record spared address and spare read/write head circuit used on the head wiring connection chart. (See figure 8-15.)
f. insort the LTI 05 Spares Selector module in the selection unit.

8-41 SELECTION OF SPARE READ/WRITE HEADS

If a spare read/write head is needed, select it as indicated in the following example which substitutes a spare for track 221.

Note

Cecimal notation is used throughout this paragraph.

Table 8-8. Summary of Logical Sparing Signals

$\begin{aligned} & \text { OCTAL } \\ & \text { DIGIT } \end{aligned}$	X-VALUE		Y-VALUE			
	Most Significant Digit $\left.(10)_{8}\right)$		Middle Digit $\left(10_{8}\right)$		Least Significant Digit $\left(1_{8}\right)$	
	Signals	Pin	Signals	Pin	Signals	Pin
0	XO, XOB	29	YMO, YMOB	21	YLO, YLOB	12
1	XI, XIB	30	YMI, YMIB	22	YLI, YLIB	13
2	X2, X2B	31	YM2, YM2E	23	YL2, YL2B	14
3	X3, X3B	33	YM3, YM3B	24	YL3, YL3B	15
4	X4, X4B	34	YM4, YM4B	2.5	YL4, YL4B	17
5	X5, X5B	35	YM5, YM5B	26	YL5, YL5B	18
6	X'́, X6B	36	YM6, YM6B	27	YL6, YL6B	19
7	X7, X7B	37	YM7, YM7B	28	YL7, YL7B	20

a. Find track 221 on the input/output and start/finish location chart (figure 6-13). Since track 221 is in the range (208-223), it has an X-value of 3 (NTR2 TR3 TR4) and is connected to the LT76 Read/Write Coupler module in location 17B through signals $2 \times 03 \mathrm{~S}$ and 2X03F (pins P8$1 \mathrm{~B}-42$ and $\mathrm{P} 8-1 \mathrm{~B}-43$).
b. Find the \times-values of 3 on the head location chart (figure 6-10, sheet 1 of 2). The read/'write head for track 221 is on surface 2 , slot 5 , and is controlled by Y-select signal Y29.
c. Y-select signal $Y 29$ is connected to the read/write head assembly at J8-1A-33.
d. A spare read/write head is available at J8-1A-36. (A read/write head is available at J8-1A-27, since this read/write head is connected to the same read/write coupler through P8-1E-42 and P8-1B-43.)

Note

Record any changes in wiring on the site documentation and on the head wiring connection chart of the EP RAD file (figure 8-15).
e. Disconnect the centertap wire from J8-1A-33 and connect it to the spare.

SECTION IX
 ILLUSTRATED PARTS BREAKDOWN

9-1 GROUP ASSEMBLY PARTS LIST

The Group Assembly Parts List is a breakdown of all systems, assemblies, and subassemblies which can be disassembled, reassembled, or replaced and which are contained in the end article. The Group Assembly Parts List consists of columnar listings of parts related to illustrations. Parts are listed in order of disassembly sequence, except in cases where sequence of disassembly connot be maintained. Attaching parts are listed below the related assembly or subassemblies. Items which are purchased in bulk form (for example, wire and insulating materials) are not listed.

Each parts list table is arranged in seven columns as follows:
a. The figure number of the part listed and the index number corresnonding to the illustration reference
b. The XDS manufacturer's part number for the part
c. The vendor's part number for the part (if available)
d. A brief description of the part
e. The manufacturer's code for the part
f. The quantity of the part :ssed per assembl;
g. Usable on code column indicating that when a letter is used in the code column, the use of the coded part
is restricted to the model identified by the code letter. (Where no letter symbol appears in this column, the part is used on all models of this configuration.)

How to use the Illustrated Parts Breakdown.
To obtnin information about a part, the following steps should be taken:
a. Refer to the applicable assembly breakdown
b. Compare the part with the illustration until part is located.
c. Note the index number
d. Locate the index number in the correspoiding Group Assembly Parts List
e. Find the part number and name of part opposite the Irdex number listed

9-2 NUMERICAL INDEX

This incex is a listing of the items contained in the Group Assembly Parts List. The numerical order of the index (table 9-11) is determined by the XDS part number.

ILLUSTRATED PARTS BREAKDOWN CONTENTS

Sec. - Fig. Page
9-1 Extended Performance RAD Storage Unit and RAD Controller 9-3
9-2 RAD Storage Unit Cabinet Assembly 9-5
9-3 Selection Unit Assembly 9-14
9-4 Module Location (Selection Unit Assembly) 9-22
9-5 Spindle and Drive Assembly 9-24
9-6 Motor Control Unit Assembly 9-29
9-7 Printed Wiring Board (TBI) $9-40$
9-8 Power Distribution Panel Assembly 9-43
9-9 Extended Performance RAD Controller 9-48
$9-10$ Module Location (RAD Controller) 9-54

Figure 9-1. Extended Performance RAD Storage Unit and RAD Controller

Table 9-1. Extended Performance RAD Storage Unit

Figure 9-2. RAD Storage Unit Cabinet Assembly

Table 9-2. RAD Storage Unit Cabinet Assembly

Fig. \& Index No.	XDS Part Number	Vendor Part Number	Description 1234567	Mfg. Code	Units Per Assy	Usable on Code
9-2-	149763 C		. RADStorage Unit Cabinet Assy		REF	
-. 1	153320 A		- Cabinet Basic Structure		1	
- 2	117424		- Cap Cabinet Top		1	
- 3	139565-002		. . Clip, Speed U Type		2	
-4	139814-001		- Bracket, Chassis Locking LH		1	
- 4	139814-002		. . Brackeit, Chassis Locking RH:		1	
			(Attaching Parts)			
-	101441-105		. . Screw, Cap Hex Hd		2	
-	101441-104		. . Screw, Cap Hex Hd		6	
-	100018-500		. Washer, Flat		16	
-	100023-600		. Washer, Lock Spring		8	
-	100008-600		. . Nut, Hex		8	
- 5	139994-001		- . Angle, Mig LF (Retma)		1	
- 5	139994-002		. . Angle, Mty RF (Retma)		1	
-6	132019		. . Angle, Mtg Rear (Retma)		2	
			(Attaching Parts)			
-	10144i-164		. . Screw, Cap Hex Hd		18	
-	100023-600		. Washer, Lock Spring		18	
-	107311		. . Nut, Unistrut		18	
- 7	145412-001		. . Bracket, Latch Adjusting LH		1	
-7	145412-002		. . Bracket, Latch Adjusting Kit	.	1	

(Continued)

Table 9-2. RAD Storage Unir Cabinet Assembly (Cont.)

Fig. \& Index No.	XDS Part Number	Vendor Part Number	Description 1234567	Mfg. Code	Units Per Assy	Usable on Code
9-2-			(Attaching Parts)			
-	101441-104		. . Screw, Cap Hex Hd		8	
-	100018-600		. Washer, Flat		8	
-	100023-600		. Washer, Lock Spririg		16	
-	100008-600		. . Nut, Hex		8	
-8	111097		. . Bracket, Locking		2	
-	100012-610		. . Screw, Pan Head		4	
-	100018-600		. Washer, Flat		8	
-	100023-600		. Washer, Lock Sprine		4	
-	100008-600		. . Nut, Hex		4	
-9	129459		- . Slide, 20 inch (i/5 lb)		4	
-10	131354		. . Bracket Slide, M Itg Front		2	
-11	132088		. . Brackeit Siide, Nits Rear		2	
-12	139815-00!		. . Bracket Slide, Sel kitg RH Frt		!	
-12	139815-002		. . Bracket Slide, Set : htg LH Frt		;	
-13	139816-001		. . Bracket Slide, Sel Mtg RH Rear		i	
-13	139816-002		. Bracket Slide, Sel Mtg LH Rear (Attaching Paits)		1	
-	100039-510		. . Screw, Flat Head		28	
-	100018-500		. Washer, flat		28	
-	100024-500		. Washer, Lock Int Tooth		28	
-	100008-500		. . Nut, Hex		28	-

(Continued)

Table 9-2. RAD Storage Unit Cabinet Assembly (Cont.)

Table 9-2. RAD Storage Unit Cabinet Assembly (Cont.)

Fig. \& Index No.	XDS Part Number	Vendor Part Number	$1234567^{\text {Description }}$	Mfg. Code	Units Per Assy	Usable on Code
9-2-19	145315-001		- Angle, Spacer Slide RH		1	
-19	145315-002		. . Angle, Spacer Slide LH		1	
			(Attaching Parts)			
-	100039-609		. . Screw, Flat Head		8	
			--** --			
-20	131356		- Plate, Drum Mounting		1	
			(Attaching Parts)			
-	100012-520		- . Screw, Pan Head		10	
-	i00018-500		- Washer, Flat		10	
-	100023-500		- Washer, Lock Spring		10	
-21	132644		- . Leg Support Assy		2	
-22	$1313 \not 22$		- Bracket, Leg Support		2	
			(Atiaching Parts)			
-	100012-500		- Screw, Pan Head		6	
-	100018-500		. Washer, Flat		12	
-	100024-500		. Washer, Lock Int Tooth		6	
	100008-500		. . Nut, Hex Machine		6	
-23	131357		. . Bracket, Shipping		1	
			(Attaching Parts)			
-	101441-104		. . Screw, Cap Hex Head		2	
-	100018-600		. Washer, Flat		2	
-	100023-600		. . Washer, Lock Spring		2	
	100008-600		. . Nut, Hex		2	

Table 9-2. RAD Storage Unit Cabinet Assembly (Cont.)

Table 9-2. RAD Storage Unit Cabinet Assembly (Cont.)

Fig. \& Index No.	XDS Part Number	Vendor Part Number	Description 1234567	Mfg. Code	Units Per Assy	Usable on Code
9-2-35	116701		. . Tubing, Pressure		A/R	
-35	101625-003		. . Tubing, Spirap		A/R	
-36	100657-003		- Clamp, Nylon		2	
-36	100657-008		. Clamp, Nylon		2	
			(Attaching Parts)			
-	100012-506		- . Screw, Pan Hd		2	
-	100018-500		. Washer, Flat		2	
-	100024-500		. Washer, Lock Int Tooth		2	
-37	146485		- Motor Control Unit Assy (See Fig. 9-6)		1	
			(Attaching Parts)			
-	100012-506		. . Screw, Pan Hd		8	
-	100018-500		. Washer, Flat		8	
-	!00024-500		. . Washer, Lock Int Tooth		8	
-38	137529		- . Power Distribution Panel Assy (See Fig. 9-8)		1	
			(Attaching Parts)			
-	-100012-506		. . Screw, Pan Hd		6	
-	100018-500		. Washer, Flat		6	
-	100024-500		. . Washer, Lock Int Tooth		6	
-39	136674		. . Power Supply Assy (PT20)		1	
-40	146488-001		- . Angle, Chassis Mounting RH		1	

Table 9-2. RAD Storage Unit Cabinet Assembly (Cont.)

Table 9-2. RAD Storage Unit Cabinet Assembly (Cont.)

Figure 9-3. Selection Unit Assembly

Table 9-3. Selection Unit Assembly

(Continued)

Table 9-3. Selection Unit Assembly (Cont.)

Fig. \& Index No.	XDS Part Number	Vendor Part Number	$1234567^{\text {Description }}$	Mfg. Code	Units Per Assy	Usable on Code
9-3-6	116231		Chassis, 32 Module (See Fig 9-4 for Mod Location)		2	
-6	129567-001		. . Nut, Strip Speed		4	
-7	129694		. . Panel, Blank		1	
			(Attaching Parts)			
-	100012-304		. . Screw, Pan Hd		19	
-	100018-400		. . Washer, Flat		19	
-	100024-400		. . Washer, Lock Int Tooth		19	
-	100008-400		. . Nut, Hex Mach		5	
$i-8$	116522		. . Channe!, Cable Routing		1	
-9	123940-001		- Channel, Cable Routing		2	
			(Attaching Parts)			
-	100012-203		. . Screw, Pan Hd		12	.
-	100018-200		. Washer, Flat		12	
-	100024-200		. . Washer, Lock Int Tooth		12	
-10	117427		. Filter, Air		1	
-11	100657-002		. . Clamp, Cable		2	
			(Attaching Parts)			
-	100012-407		. . Screw, Pan Hd		2	
-	100018-400		. . Washer, Flat		2	
-	100024-400		. . Washer, Lock Int Tooth		2	
-	100008-400		. . Nut, Hex Mach		2	
-12	139865		. . Backwiring Board Assy		1	
-13	100657-003		- . Clamp, Plastic		2	

(Continued)

Table 9-3. Selection Unit Assembly (Cont.)

Table 9-3. Selection Unit Assembly (Cont.)

(Continued)

Table 9-3. Selection Unit Assembly (Cont.)

Fig. \& Index No.	XDS Part Number	Vendor Part Number	Description 1234567	Mfg. Code	Units Per Assy	Usable on Code
9-3-25	107199-308		- Pin, Roll Corrosion		2	
-26	116722-003		. . Spring, Compression		2	
-27	145419-001		. . Rod, Latch		1	
-27	145419-002		. . Rod, Latch		1	
-28	145418		. . Guide, Rod		4	
			(Attaching Parts)			
-	100012-407		. . Screw, Pan Hd		8	
-	100018-400		. . Washer, Flat		8	
-	100024-400		. . Washer, Lock Int Tooth		8	
-29	145420-001		. . Block, Latch		1	
-29	145420-002		. . Block, Latch		1	
			(Atraching Parts)			
-	100039-520		. . Screw. Flat Hd		4	
-	100012-524		. . Screv, Pan Hd		4	
-	100018-500		- Washer, Flat		4	
-	100024-500		. . Washer, Lock Int Yooth		4	
-30	107396		. . Switch, Toggle		16	
-31	145704		. . Panel, Switch Mounting		1	
			(Attaching Parts)			
-	100012-505		. . Screw, Pan Hd		8	
-	100018-500		. Washer, Flat		8	
-	100024-500		. . Washer, Lock Int Touth		8	
-32	147024		. . Rod Hanger, Interface Plate		1	
-33	139686		. . Pin, Hinge		2	

Table 9-3. Selection Unit Assembly (Cont.)

Fig. \& Index No.	XDS Part Number	Vendor Part Number	Description 1234567	Mfg. Code	Units Per Assy	Usable on Code
9-3-34	139636		- . Frame, Pivot Selection Unir Mtg		1	
-35	139892-002		- . Angle, Support		1	
-35	139892-001		- . Angie, Support			
			(Attaching Parts)			
-	100012-508		- . Screw, Pan Hd		4	
-	100018-500		. Washer, Flat		4	
-	100024-500		. Washer, Lock		4	
-36	109159-008		- Bumper, Rubber		2	
i			(Atteshing Parts)			
-	100018-400		- Washer, Flar		2	
-	100024-400		. . Washer, Lock Int Tooth		4	
-	100008-400		- Nur, Hex Mach		6	
-37	113800-212		- . Screw, Shoulder Slotted		2	
-38	145515		- . Cover, Connector-Base Plate		1	
			(Attaching Parts)			
- -	100012-205		- . Screw, Pan Hid		4	
-	100018-200		- Washer, Flai		4	
-	100024-200		. . Washer, Lock Int Tooth		4	
-39	146673		. . Hanger		2	
-40	113800-204		. . Screw, Shoulder Slotted		2	
-41	145514		. . Cover, Connector		1	
$: \quad-41$	153709-001	-	- Chart, Head Wiring	.	1	
-42	126340-002		. . Captive, Fastener		2	

(Continurd)

XDS 901565

Table 9-3. Selection Unit Assembly (Cont.)

Figure 9-4. Module Location (Selection Unit Assembly)

Table 9-4. Module Locations (Selection Unit Assembly)

Fig. \& Index No.	XDS Part Number	Vendor Part Number	Description 1234567	Mfg. Code	Units Per Assy	Usable on Code
9-4 -	149853 B		Module Kit Assy (Selection Unit Assy)		1	
-1	139418		- Module Assy, LT76 Read Write		8	
-2	139409		- Module Assy, HT42 Read AMP		1	
-3	139560		- Module Assy, RT18 Y Select		9	
-4	139714		- Module Assy, HT44 Limiter		1	
-5	147791		- Module Assy, AT51 Clock Discr		1	
-6	139716		- Module Assy, LT77 Data Decode		1	
-7	139792		- Module Assy, HT43 Write AMP		2	
-8	130747		- Module Assy, Lit32 Sec Ind Dec		1	
-9	139570		- Module Assy, AT41 Wrire Clock		1	
-10	133500		- Module Assy, WT29 RAD Pwr Monitor		1.	
-11	126982		- Module Assy, LT26 Switch Comp		1	
-12	117028		- Module Assy, FT12 Gated FF		2	
-3	116029		- Module Assy, BTIl BAN:D Gate		2	
-14	14.5221-001		- Module Assy', P35 Sector AMP		1	
-15	124629		- Module Assy, AT12 Cable Driver		1	
-16	123018		- Module Assy, Atio Cabie Rec		1	
-17	131572		- Module Assy, QT12 Lamp Dr Rec		1	
-18	116994		- Module Assy, ITll Inverier Matrix		1	
-19	131572		- Module Assy, FTIl Hight Spsed Ctr		1	
-20	116257		- Module Assy, XTIO Term Module		1	
-21	130689		- Module Assy, BT15 10 Sec 1st		1	
-22	147800		- Module Assy, LT85 Pul fuc Comp		1	
-23	145085		- Module Assy, BT31 BAND Gate		1	
-24	145095		- Module Assy, IT31 NaNo Gate		1	
-25	115965		- Module Assy, BT12 Binary Decoder		2	
-26	164375		- Module Assy, LT105 Spare Selector		8	

Figure 9-5. Spindle and Drive Assembly

Table 9-5. Spindle and Drive Assembly

Fig. \& Index No.	XDS Part Number	Vendor Part Number	$1234567^{\text {Description }}$	Mfg. Code	Units Per Assy	Usable on Code
9-5 -	139697 C		- Disc File Assy		REF	
9-5 -	148433 D		. . Bulk Hd Unit-(Disc File Assy)		1	
9-5 -	123455 R		. . . Spindle \& Drive Assy		1	
-1	127387-001	 Nut, Lock		2	
-2	127388	 Washer, Hub Positioning		1	
-3	127389	 Hub Assy		1	
-3	126716	 Disc, Hub		1	
-3	127054	 Insert, Hub		1	
-3	111468-502	 Insert, Thiead		6	
-4	126523	 Bearing, Retainer		i	
-5	123456	 Bail, Bearing		2	
-6	147222-00!	 Brake, Magnetic		1	
			(Attaching Ports)			
.-7	133079-406	 Screw, flat -io		4	
-8	132086	 Spline, Brake Drive		1	
-9	107!99-413	 Pin, Roll		1	
-10	131965	 Cap, Motor Housing		1	
			(Attaching Paits)			
-11	113440-206	 Screw, Cap Scu Hd		4	
-12	136561-001	 Connector, Male 14 Pin (J37)		1	
-13	132570-002	 Terminal, Iris Ring Tongue		1	
			(Attaching Farts)			
-14	100012-404	 Screen, Pan Hij		1	
-15	100018-400	 Washer, Flat		1	
-16	113221-400	 Washer, Lock		1	

(Continued)

Table 9-5. Spindle and Drive Assembly (Cont.)

Table 9-5. Spindle and Drive Assembly (Cont.)

(Continued)

Table 9-5. Spindle and Drive Assembly (Cont.)

Table 9-6. Motor Control Unit Assembly

Fig. \& Index No.	XDS Part Number	Vendor Part Number	Description 1234567	Mfg. Code	Units Per Assy	Usable on Code
9-6 -	146485 J		- . Motor Control Unit Assy		REF	
- 1	132175		- . Chassis Motor Control Unit		1	
			(Attaching Parts)			
-	113526-006		. . . Nut, Self Clinching		10	
-	113526-012		. . . Nut, Self Clinching		5	
-2	146484		. . Chassis, Filter Mtg Control Unit		1	
			(Attaching Parts)			
-	113526-012		. . . Nut, Self Clinching		2	
-	100012-508		. . . Screw, Pan Hd		5	
-	100018-500		. . Washer, Flat		5	
-	113221-500		. . Washer, Lock Spring		5	
-	100008-500		. . . Nut, Hex Mach		5	
-3	146487		. . . Angle, Mtg RH		1	
-3	146486		. . . Angle, Mtg LH		1	
			. (Attaching Parts)			
-	100012-508		. . . Screw, Pan Hd		6	
-	100018-500		. . . Washer, Flat		6	
-	113221-500		. . . Washer, Lock Spring		6	
-	100008-500		. . . Nuf, Hex Mach		6	
-4	132176		. . . Cover, Chassis (Motor Control Unit)		1	
-4	126340-012		. . . Fastener, Captive		4	
-5	147044-001		. . . Label, Filter		2	
-6	129731		. . . Filter, Container Assy		2	

Table 9-6. Motor Control Unit Assembly (Cont.)

Fig. \& Index No.	$\begin{gathered} \text { XDS } \\ \text { Part Number } \end{gathered}$	Vendor Part Number	Description 1234567	Mfg. Code	Units Per Assy	Usable on Code
9-6-6	127990	 Container, Filter-Charcoal		2	
-7	126440-012	 Fastener, Captive		4	
-8	116,02-002	 Connector, Elbow		4	
-9	134844-001	 Nut, Lock		8	
-10	132514		. . . Filter, Air Charcoal		2	
-11	132744		. . . Gasket, Filter M 1 tg		2	
-12	147044-002		. . . Label, Filter		1	
-13	158947		. . . Absolute Filter Unit Assy		1	
			(Attaching Farts)			
-	100012-306		. . . Screw, Pan Head		4	
-14	132084		. . . Union, Bulkhead		2	
-15	116701		. . . Tubing, Pressure		72	
-16	117226		- . Filter, Air		1	
-17	:34993		- . . Regulator, Pressure		1	
-18	133033-001		. . . Plug, Pipe Hex Hod		1	
. 19	132749-001		-. . Nipple, Pipe Fitting		2	
- 20	145646		- . Fitting, Adapter Bulkhead		1	
-2i	116702-001		. . . Connector, Elbow		2	
-22	132534		. . . Valve, Solenoid (K12, K13, K14)		3	
			(Attaching Parts)			
-	100012-508		. . . Screw, Pan Hd		6	
-	100018-500		- . Washer, Flat		6.	
-	113221-500		. . Washer, Lock Spring			
-23	100720-009		. . . Grommet, Rubber		3	

(Continued)

Table 9-6. Motor Control Unit Assembly (Cont.)

(Continued)

Table 9-6. Motor Control Unit Assembly (Cont.)

Fig. \& Index No.	XDS Part Number	Vendor Part Number	$1234567^{\text {Description }}$	Mfg. Code	Units Per Assy	Usable on Code
9-6-38	149710		. . . Cover, Protective		1	
			(Attaching Parts)			
-	100012-306		. . . Screw, Pan Hd		2	
-	100018-300		. . Washer, flat		2	
-	113221-300		. . Washer, Lock Spring		2	
-39	132495		. . . Thyristor, (XDS 236) (SCR1, R2, R3)		3	
			(Attaching Parts)			
-	132570-005		. . . Terminal, Ins Ring Tongue		3	
-	113220-600		. . Washer, Flat		3	
-40	113694		. . . Switch, Subminiature DPDT Toggle SI		1	
-41	133034-001		. . . Circuit, Breaker CBI		1	
			(Attaching Parts)			
-	100539-304		. . . Screw, Flat Head 100°		4	
-42	100992-003		. . . Capacitor, DV Oil/Paper (C30, 31, 32)		3	
-43	107132-003		. . . Spacer, Round		2	
-44	107018-314		. . . Standoff, Hex		2	
			(Attaching Parts)			
-	100012-320		. . . Screw, Pan Hd		2	
-	100012-307		. . . Screw, Pan Hd Recessed		2	
-	100018-300		- . Washer, Flat		4	
-	100024-300		. . Washer, Lock		4	
-45	109432-001		. . . Block, Terminal 18-8 AWS		20	
-46	109432-005		. . . Clip, Retaining		1	

Table 9-6. Motor Control Unit Assembly (Cont.)

Fig. \& Index No.	XDS Part Number	Vendor Part Number	$1234567^{\text {Description }}$	Mfg. Code	Units Per Assy	Usable on Code
9-6-47	109432-006		. . . Mounting, Channel		1	
-48	109432-008		. . . Plate, End		1	
-49	109432-012		. . . Jumper		2	
			(Attaching Parts)			
-	100012-407		. . . Screw, Pan Hd		4	
-	100018-400		. . . Washer, Flat		4	
-	113221-400		. . . Washer, Lock Spring		4	
-	100008-400		. . . Nut, Hex Mach		4	
-50	132343		. . . PW Assy, (TB1) (See Fig, 9-7)		$!$	
-51	100657-005		. . . Clamp, Cable Nylon		1	
-52	107018-308		. . . Standoff, Threaded		4	
			(Attaching Parts)			
-	100012-306		. . . Screw, Pan Hd		4	
-	100018-300		. . . Washer, Flat		4	
-	113221-300		. . . Washer, Lock Spring		4	
-53	130422-001		. . . Contactor, 3 Pole (K5, K 6)		2	
			(Attaching Parts)			
-	100012-307		. . . Screw, Pan Hd Recessed		6	
-	100018-300		. . . Washer, Flat		6	
-	100024-300		. . . Washer, Lock		6	
-	100008-300		. . . Nut, Hex Mach		6	
-54	106994		. . . Relay, DC (K3, K4, K7, K8)		4	

Table 9-6. Motor Control Unit Assembly (Cont.)

Table 9-6. Motor Control Unit Assembly (Cont.)

Fig. \& Index No.	XDS Part Number	Vendor Part Number	$1234567^{\text {Description }}$	Mfg. Code	Units Per Assy	Usable on Code
9-6-60	130765		. . . Relay, 4 Form C 24VDC (K10) (Attaching Parts)		1	
i	$100012-407$. . . Screw, Pan Hd		1	
-	100018-400		. . . Washer, Flat		1	
-	113221-400		. . . Washer, Lock Spring		1	
-61	129681		. . . Relay, Time Delay (K15)		1	
-62	129682		. . . Socket, Tirne Delay		1	
-63	132570-001		. . . Terminal, Ins Ring Tongus		2	
,			(Attaching Parts)			
-	100012-3:4		. . . Screw, Pan Hd Recessed		2	
-	100018-300		. . . Washer, Flat		2	
-	100024-300		. . . Washer, Lock		2	
-	100008-300		. . . Nut, Hex Mach		2	
-64	101155-150		. . . Resistor, Fixed WW (Ri)		1	
			. (Attaching Parts)			
	100012-210		. . . Screw, Pan Hd		2	
-	100018-200		. . Washer, Flat		2	
-	113221-200		. . Washer, Lock Spring		2	
-	100008-200		. . . Nut, Hex Mach		2	
-65	108474		. . . Capacitor, JN Electrolyric (C1)		1	
\vdots						

Table 9-6. Motor Control Unit Assembly (Cont.)

Fig. \& Index No.	$\begin{aligned} & \text { XDS } \\ & \text { Part Number } \end{aligned}$	Vendor Part Number	$\begin{array}{lllllll} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \hline \end{array}$	Mfg. Code	Units Per Assy	Usable on Code
9-6-66	126945-002		Bracket, Capacitor Mtg (Attaching Parts)		1	
-	100012-306		. . . Screw, Pan Hd		3	
-	100018-300		. . . Washer, Flat		4	
-	113221-300		. . . Washer, lock Spring		2	
-	100008-300		. . . Nut, Hex Mach		3	
-67	100992-003		. . . Capacitor, DV Oil/Paper (C3, C4)		2	
-68	107132-005		. . . Spacer, Round LH		2	
-68	107132-006		. . . Spacer, Round RH (Attaching Parts)		2	
-	100012-320		. . . Screw, Pan Hd		2	
-	113220-300		. . Washer, 「lat		2	
-	113221-300		. . Washer, Lock Spring		2	
-69	100992-006		. . . Capaciłor, DV O:I/Paper (C5) (Attaching Parts)		1	
-	100012-306		. . . Screw, Pan Hd		2	
-	113220-300		. . Washer, Flat		2	
-	113221-300		. . Washer, Lock Spring		2	
-70	132177		. . . Bracket, Capacitor Mtg (Attaching Parts)		1	
-	100012-306		. . . Screw, Pan Hd		4	
-	100018-300		. . . Washer, Flat		4	
-	113221-300		. . Washer, Lock Spring		4	

(Continued)

Table 9-6. Motor Control Unit Assembly (Cont.)

(Continued)

Table 9-6. Motor Control Unit Assembly (Cont.)

Figure 9-7. Printed Wiring Board (TB1)

Table 9-7. Printed Wiring Board TBI

Table 9-7. Printed Wiring Board TB1 (Cont.)

Figure 9-8. Power Distribution Panel Assembly

Table 9-8. Power Distribution Panel Assembly...n

Fig. \& Index No.	XDS Part Number	Vendor Part Number	Description 1234567	Mfg. Code	Units Per Assy	Usable on Code
9-8-	137529 E		- . Power Distribution Panel Assy		REF	
-1	137530		. . . Chassis Distribution Panel		1	
-2	131326		. . . Cover, Distribution Panal		1	
			(Attaching Parts)			
-	100012-407		. . . Screw, Pan Hd		14	
-	100018-400		. . . Washer, Flat		14	
-	100024-400		. . . Washer, Lock		14	
-3	127055		. . . Transformer (T1)		1	
			(Attaching Parts)			
-	100012-407		. . . Screw, Pan Hd		4	
-	100018-400		. . Washer, Flat		4	
-	100024-400		. . . Washer, Lock Int Tooth		4	
-	100008-400		. . . Nut, Hex Mach		4	
-4	130132		. . . Relay, DPCT 10A (K4)		1	
-4	110996-331		. . . Resistor, 330 IW (R1)		1	
			(Attaching Parts)			
-	100012-307		. . . Screw, Pan Hd		1	
-	100018-300		. . . Washer, Flat		1	
-	100024-300		. . . Washer, Lock Int Tooth		1	
-5	129681		. . . Relay, Time Delay Therinal (K5)		1	
					.	

(Continued)

Table 9-8. Power Distribution Panel Assembly (Cont.)

(Continued)

XDS 901565

Table 9-8. Power Distribution Panel Assembly (Cont.)

Fig. \& Index No.	XDS Part Number	Vendor Part Number	$1234567^{\text {Description }}$	Mfg. Code	Units Per Assy	Usable on Code
9-8-8	109432-012		. . . Jumper, Terminal		4	
			(Attaching Parts)			
-	100012-407		. . . Screw, Pan Hd		4	
-	100018-400		. . . Washer, Flat		4	
-	100024-400		. . . Washer, Lock Int Tooth		4	
-	100008-400		. . . Nut, Hex Mach		4	
-9	100653-006		. . . Fuse, . 250 AMP 3AG (Fi)		1	
-10	100331		. . . Holder, Fuse		1	
-11	130462		. . . Switch, Toggle DPDT (\$1)		1	
-12	101430		. . . Receptacle, Female 3 Contact (J2 thru J8)		7	
-13	127675		- . Receptacle, Male 3 Coricct (J)		1	
			(Attaching Parts)			
-	100012-307		. . . Screw, Pan Hd		16	
-	100018-300		. . Washer, flat		16	
-	100024-300		. . . Washer, Lock Int Tootn		16	
-	100008-300		. . Nut, Hex Machine		16	
-14	109350-021		. . . Plug, Snap In		1	
-15	130191-002		. . . Clamp, Cable		2	
-16	100657-001		- . Clamp, Cable		1	
-17	100657-005		- . Clamp, Cable		1	
			(Attaching Parts)			
-	100012-307		. . . Screw, Pan Hd		2	
-	100018-300		. . . Washer, Flat		2	
-	100024-300		. . . Washer, Lock Int. Tooih		2	
-	100008-300		. . . Nut, Hex Mach	-	2	

(Continued)

Table 9-8. Power Distribution Panel Assembly (Cont.)

Figure 9-9. Extended Performance RAD Controller

Table 9-9. Extended Performance RAD Controller

Table 9-9. Extended Performance RAD Controller (Cont.)

Fig. \& Index No.	$\begin{aligned} & \text { XDS } \\ & \text { Part Number } \end{aligned}$	Vendor Part Number	$123456 \quad \begin{aligned} & \text { Description } \end{aligned}$	Mfg. Code	Units Per Assy	Usable on Code
9-9-6	129567-001		- Nut, Strip Speed		6	
$!$			(Attaching Parts)			
	100012-405		- Screw, Pan Hd		24	
-	100018-400		- Washer, Flat		24	
-	100024-400		- Washer, Lock Int Tooth		24	
-7	116522		- Channel, Cable Routing		2	
-8	123940-001		. Channel, Cable Routing		1	
			(Attaching Parts)			
i -	100012-203		- Screw, Pan Hd		15	
-	100018-2.00		- Washer, Flat		15	
-	100024-200		- Washer, Lock Int Tooth		i5	
-9	117427		- Filter, Air Panel		1	
-10	139637		- Top Fan Assy		1	
			(Attaching Parts)			
-	100012-304		- Screw, Pan Hd		8	
-	100018-300		- Washer, flat		8	
-	100024-300		- Washer, Lock Int Tooth		8	
-11	139876 B		- Backwiring Board Assy		1	
			(Attaching Parts)			
-	114538-214		- Screw, Sheet Metal		54	
-	100018-300		- Washer, Flat		54	
-	100024-300		- Washer, Lock Int Tooth		54	
-12	145474-001		- Panel, Side Chassis Mtg LH		1	

(Continued)

Table 9-9. Extended Performance RAD Controller (Cont.)

Table 9-9. Extended Performance RAD Controller (Cont.)

Fig. \& Index No.	XDS Part Number	Vendor Part Number	$1234567^{\text {Description }}$	Mfg. Code	Units Per Assy	Usable on Code
9-9-17	147843		- Bracket, M tg		1	-
			(Attaching Parts)			
-	100012-506		- Screw, Pan Hd		4	
-	100018-500		- Washer, Flat		4	
-	100024-500		- Washer, Lock Int Tooth	:	4	
-18	139592		. Block, Shear Pin Mrg		2	
			(Attaching Parts)			
-	100012-508		- Screw, Pan Hd		2	
-	100018-500		- Washer, Flat		2	
-19	139593		- Block, Swing Frame Stop		2	
-20	149332		- Picte, Block Mtg		2	
			(Attaching Parts)			
-	100012-507		- Screw, Pan Hd		2	
-	100023-500		- Washer, Lock Spring		2	
-	149219		- . Hinge Assy		2	
			(Attaching Parts)			
-	108605-710		. . Screw, Cap Steel Soc Hd		4	
-	100023-7C0		. . Washer, Lock Spring		4	
-21	148498		. . . Bracket, Hinge		1	
-22	148499		. . . Bracket, Hinge Swing Frame		1	
-23	152051		. . . Pin, Hinge		1	
-24	132268-008		. . . Washer, Flat		2	

(Continued)

Table 9-9. Extended Performance RAD Controller (Cont.)

Table 9-10. Module Locations (RAD Controller)

Fig. \& Index No.	XDS Part Number	Vendor Part Number	$1234567^{\text {Description }}$	Mfg. Code	Units Per Assy	Usable on Code
9-10			(Module Locations) RAD Controller Assy			
9-10-1	128168		- Module Assy, AT24, Clock Driver \#2		1	
-2	123018		- Module Assy, ATIO Cable Rec		2	
-3	123019		- Module Assy, ATll Cable Dr/Rec		1	
-4	124629		- Module Assy, AT12 Cable Driver		2	
-5	126714		- Module Assy, ATII Cable Dr/Rec		1	
-6	116056		- Module Assy, BTIO Buff AND/OR Gate		1	
-7	116029		- Module Assy, BTIl BAND Gate		8	
-8	116407		- Module Assy, BT 13 Buff Matrix		1	
-9	125262		- Module Assy, BTi 6 Gated Buffer		1	
-10	123491		- Module Assy, CT10 Clock Oscillator		1	
-11	126611		- Module Assy, AT16 Rejection Gate		1	
-12	127393		- Module Assy, BT22 Fast Buffer		1	
-13	116380		- Module Assy, FTl0 kocic Flip-Flop		4	
-14	117028		- Module Assy, FT12 Gated Flip-Flop		2	
-15	127319		- Module Assy, DT 14 Delay Line		2	
-16	126743		- Module Assy, FT25 Fost Access Mem		1	
-17	126856		- Module Assy, FT26 Buff Latch No. 3		4	
-18	126986		- Module Assy, FT27 Buff Latch No. 2		8	
-19	133251		- Mcdule Assy, FT41 Register FF		3	
-20	127391		- Module Assy, HT15 Celay/Line Serse		1	
-21	116994		- Module Assy, ITIl NAND Gate		6	
-22	117000		- Module Assy, IT13 In:erter Matrix		2	
-23	117375		- Module Assy, IT15 Gated Inverter		2	
-24	124634		- Module Assy, FT18 Counter Flip-Flop		1	
-25	125264		- Module Assy, 1716 Gated Inverter		1	
-26	128188		- Module Assy, IT24 NAND-NOR Gate		1	

Table 9-10. Module Locations (RAD Controller) (Cont.)

Table 9-11. Numerical Index

(Continued)

Table 9-11. Numerical Index (Cont.)

Fig. \& Index No.	$\begin{gathered} \text { XDS } \\ \text { Part Number } \end{gathered}$	Description	Fig. \& Index No.	$\begin{gathered} \text { XDS } \\ \text { Pard Number } \end{gathered}$	Description
	100039-307	Screw, Flat Hd	2-45	100840-003	Grommet, Nylon
$3-$	100039-310	Screw, Flat Hd	$6-42,67,69$	100992-003	Capacitor, DV Oil/Paper (C3, 4, 6, 7, 8, 30, 31, 32)
!	$100039-405$ $100039-510$	Screw, Flat Hd Screw, Flat Hd	6-75	100992-006	Capacitor, DV Oil/Paper (C5)
$3-$ $2-$	$100039-520$ $100039-009$	Screw, Flat Hd Screw, Flat Hd	7-11	101154	Diode, XDS113 (CR1 thru $13,16,17,19$ thru 22, 26,27)
2-49	100274-016	Sleeve, Plastic	6-64	101155-150	Resistor, Fixed WW (R1)
7-7	100323	Diode, XDS106 (VRI, 2,5 thru 9)	8-13	101430	Receptacle, Female 3 Contact (J2, 3, 4, 5, 6 , 7,8)
8-11	100331	Fuse, hiolder	2-	101441-104	Screw, Cap Hex Hd
- 8-10	100653-006	Fuse, . 250 AMP 3AG (F1)			Screw, Cap Hex Hd
8-17	100657-001	Clamp, Cable	2-	101441-105	Screw, Cap Hex Hd
3-11	100657-002	Clamp, Cable	2-	101441-407	Screw, Cap Hex Hd
			6-78	101625-003	Tubing, Spirap
2-36, 3-13	100657-003	Clamp, Cable	2-29	101918	Bolt
6-37, 8-19	100657-004	Clam:p, Cable Nylon	7-4	102055	Transistor XDS 214 (Q4)
6-51, 8-18	100657-005	Clamp, Cable	5-52	102066-001	Cord, Lacing
8-17	100657-007	Clamp: Cable Nylon	7-5	103242	Transistor XDS 216 (U)9)
2-35	100657-008	Clamp, Nylon	6-55	106843	Socket, Relay
3-19	100657-009	Clamp, Cable	6-54	106994	Relay DC ($K 3,4,7,8$)
3-18	100657-011	Clamf, Cable	6-52	107013-308	Standoff, Threaded
7-3	100698	Trancistor XDS210 (Q2, 3, $6,7,8,10,11)$	6-44	107018-314	Standoff, Hex
8-18	100720-004	Grominet, Rubber	6-43	107132-003	Spacer, Round
5-24	100720-006	Grommet, Rubber	6-68	107132-005	Spacer, Rcund LH
8-20	100720-007	Grommet, Rubber	6-68	107132-006	Spacer, Round RH
6-23	100720-009	Grommet, Rubber	9-22	107151-303	Screw, Set Socket
2-44	100840-001	Grommet, Nylon	3-25	107199-308	Roll, Pin
6-36	100840-002	Grommet, Nylon	5-9	107199-4.43	Roll; Pin

(Continued)

Table 9-11. Numerical Index (Cont.)

(Continued)

Table 9-11. Numerical Index (Cont.)

 Index No.	$\begin{gathered} \text { XDS } \\ \text { Part Number } \end{gathered}$	Description	Fig. \& Index No.	$\begin{gathered} \text { XDS } \\ \text { Part Number } \end{gathered}$	Description
3-8	116522	Channel, Cable Routing	7-12	123300-475	Capacitor, Tantalum (C9 thru 12)
$\begin{gathered} 2-35,6-15 \\ 30 \end{gathered}$	116701	Tubing, Pressure	7-27	123362-084	Resistor, 1/8W (R6, 8)
6-27 6 6-8,21,27	$116702-001$ $116702-002$	Connector, Elbow	7-29	123362-147	$\begin{aligned} & \text { Resistor, } 1 / 8 \mathrm{~W}(\mathrm{R} 28,40, \\ & 42,44,53,54) \end{aligned}$
6-8,6-21, 27	116702-002	Connector, Elbow	7-25	123362-164	Resistor, 1/8W (R37)
3-26	116722-003	Spring, Compression	7-35	123362-172	
10-21	116994	Module Assy, ITII NAND Gate	7-32	123362-176	$\begin{aligned} & \text { Resistor, } 1 / 8 \mathrm{~W}(\mathrm{R} 17,34,11 \\ & 15,29,52) \end{aligned}$
$10-22$	117000	Module Assy, IT13 Inverted Matrix	7-30	123362-197	Resistor, 1/8W (R12)
2-32	117026-005	Mount, Shear	7-33	123362-212	Resistor, 1/8W (R26, 36)
[10-14	117028	Module Assy, FT12 Gated Flip-Flop	7-31	123362-219	Resistor, 1/8W (R14)
9-21	117136	Pivot, Hinge Swing Frame	7-26	123362-243	$\begin{aligned} & \text { Resistor, } 1 / 8 W(R 3,5,9 \\ & 10,13,35,51) \end{aligned}$
9-24	117137	Block, Hinge Swing Frame	7-28	123362-281	Resistor, 1/8W (R7)
6-16	117226	Filter, $\dot{\text { Mir }}$	7-34	123362-339	Resistor, 1/8W (R19, 27)
10-23	117375	Module Assy, IT15 Gated Inveriet	5-34	123450	Shaft, Spindle
			5-	123455	Spindle \& Drive Assy
10-34	117389	Module Pssy, Bil5 Gaied Buffer No. 1	5-5	123456	Ball Bearing
2-1	117419	Cabinet, Basic Structure	5-31	123460-021	"O" Ring Teflon
2-2	117424	Cap, Cribinet Top	10-10	123491	Madule Assy, CTIO Clock Oscillator
3-10	117427	Filter, A.:r	3-9, 9-8	123940	Channel, Cable Routing
10-2	123018	Module Assy, ATIO Cable Rec	7-6	124298	Pad, Transistor (Q1 thru 8, 10, 11 REF)
10-3	123019	Module Assy, ATIl Cable $\mathrm{Dr} / \mathrm{Rec}$	10-4	124629	Module Assy, AT12 Cuble Driver
$5-51$ $7-37$	$123054-104$ $123300-124$	Screw, Button Hd Capacitor, Tantalum (C.29)	10-24	124634	Module Assy, FT18 Counter Flip-Flop
7-13	123300-126	Capacitor, Tantalum (C13, 28)	10-9	125262	Module Assy, BT16 Gated Buffer

(Continued)

Table 9-11. Numerical Index (Cont.)

$\begin{aligned} & \text { Fig. \& } \\ & \text { Index No. } \end{aligned}$	XDS Part Number	Description	 Index No.	XDS Part Number	Description
10-25	125264	Module Assy, IT16 Gated Inverter	5-32	127346-001	Shim, Retaining Bearing
			5-32	127346-002	Shim, Retaining Bearing
7-38	126297-001	Terminal Bif Rivet (El thru 45)	5-32	127346-003	Shim, Retaining Bearing
3-42, 6-4	126340-002	Fastener, Captive XDS	5-1	127387-001	Nut, Lock
3-24	126340-010	Fastener, Captive XDS	5-2	127388	Washer, Hub Positioning
6-7	126440-012	Fastener, Captive XDS	5-3	127389	Hub, Assy
10-11	126611	Module Assy, AT16 Rejection Gate	10-20	127391	Module Assy, HT 15 Delay/ Line Sense
5-4	126623	Bearing, Retainer	10-12	127393	Module Assy, BT2̃2 Fast Buffer
5-47	126624	Liner, Spindle Housing	3-44	127489-002	Connector, 50 Pir
10-27	126710	Module Assy, LT24 Logic Element	3-45	127614	Plate Mtg, Connector
10	12671				Plug
		Element	10-35	127643	Module Assy, Li29 Clock Log:c
10-5	126714	Module Assy, ATI7 Cable $\mathrm{Dr} / \mathrm{Rec}$	8-14	127675	Receptacle Male, 3 Contact (JI)
5-3	126716	Disc, Hub	6-6	127990	Container,
10-16	126743	Module Assy, FT25 Fast Access Memory	5-25	128155-001	Thermostat, Overtump
5-35	126835-003	Woodruff, Key	5-33	128163-002	Wusher, Spring
7-17	126856	Module Assy, FT26 Buff Latch No. 3	10-1	128168	Module Assy, AT24 Clock Driver \#2
6-66	126945-002	Bracket, Capacitor Mtg	10-26	$1<8188$	Module Assy, IT?4 NAND NOR Gate
10-29	126982	Module Assy, LT26 Switch Comp	2-9	129459	Slide, 20 Inch 175 Lb
10-18	126986	Module Assy, FT27 Buff Latch No. 2	$3-4,9-5$	129540	Spring, Door Latch
			3-3,9-4	129554	Trigger, Door Latch
5-3	127054	Insert, Hub	3-6, 9-6	129567	Nut, Strip Speed
8-3	127055	Transformer (TI)	5-38	129633-204	Screw, Cap Soc Hd
5-45	127056	Spindle, Housing Assy			
10-15	127319	Module Assy, DTI4	5-18	129633-206	Screw, Cap Soc Hd
10	12731	Line	5-30	129633-506	Screw, Cap Soc Hd

(Continued)

Table 9-11. Numerical Index (Cont.)

Fig. \& Index No.	$\begin{gathered} \text { XDS } \\ \text { Part Number } \end{gathered}$	Description	Fig. \& Index No.	XDS Part Number	Description
5-30	129633-508	Screw, Cap Soc Hd	2-22	131362	Bracket, Leg Support
2-25	129633-628	Screw, Cap Soc Hd	5-44	131530-103	Screw, Drive
6-70	129645-002	Bracket Capacitor Mtg	9-2	131950	Hinge, Chassis Door LH
ó-61, 8-5	129681	Relay, Time Delay Thermal $(K 5, K 15)$	3-1,9-1	131958	Door, Chassis
6-62, 8-6	129682	Socket, Time	3-2	131959	Hinge, Chassis Door
			3-2,9-2	131960	Hinge, Chassis Docr RH
5-43	129687	Baffle, Air Spindle \& Drive	5-42	131963	Housing, Motor
3-7	129694	Panel, Blank	5-37	131964	Baffle, Motor Housing
6-6	129731	Filter, Container Assy	5-10	131965	Cap, Motor Housing
9-3	129940	Bracket, Door Latch Mtg	5-40	131977-004	Motor, Elec Three Phase (Stator)
7-23	130109-097	Resistor, IW (R39, 41, 43)	5-28	131977-005	Motor, Rotor
$6-57,8-4$	130132	Relay, DPDT 10A (K1, 2,9)			
			2-6	132019	Angle, Mtg Rear (Retma)
6-75, 8-16	130191-001	Conr.ector, Cable Grip	2-3?	132083-001	Union, Tube Fitting
2-51, 8-15	130192-002	Clamp. Conduit	6-29	32083-002	
$6-53,8-8$	130422-001	Contactor, 3 Pole St (K5, 6,1)	6-28		Pipe to Plastic)
			6-14	132084	Union, Bulkhead
8-12	130462	Switch, Toggle DPDT (SI)	5-8	132086	Spline, Brake Drive
8-7	130540	Relay, DPDT 5A 24VDC Coil (K3)	2-11	132088	Bracket Slide, Mig Rear
3-5	130639	Brack: ${ }^{+}$, Door Latch Mtg Support	5-4?	132103-001	Screw, Motor Housing
6-60	130765	Relay, 4 Form C 24VDC (K10)	6-1	132175	Chassis, Motor Control Unit
5-27	130777-001	Spacer, Rotor	6-4	132176	Cover, Chassis Miotor Control Unit
5-29	131186	Cap, Load Spring Retaining	6-70	132177	Bracket, Capacitcr Mtg
8-2	131326	Cover, Distribution Panel	6-35	132178	Bracket, Component Mtg
2-10	131354	Bracket, Slide Mtg Front	6-59	132179	Bracket, Relay Mtg
2-20	131356	Plate, Drum Mtg	$7-$	132343	Printed Wiring, Motor Control Unit (TBI)
2-23	131357	Bracket, Shipping	7-11	132344	Board, Printed Wiring

(Continued)

Table 9-11. Numerical Index (Cont.)

Fig. 8 Index No.	XDS Part Number	Description	Fig. \& Index No.	XDS Part Number	Description
6-24	132359	Bracket, Solenoid Mtg	5-48	133080	Plate, Adaptor Tachometer
6-72	132369	Transformer (TI)	2-18	133155	Plate, Counter Balance
6-73	132492	Transformer (T2)	10-19	133251	Module Assy, FT41 Register FF
7-10	132494	Diode, XDS 135 (CR23, 24, 25)	10-30	133390	Module Assy, LT41 Logic Element
6-39	132495	Thyristor, XDS 236 (SCRI, SCR2, SCR3)	5-52	133559-026	Wire, Twisted Pair
6-10	132514	Filter, Air Charcoal	10-31	133657	Module Assy, i.T43 Logic Element
6-32	i32528	Tee, Tube Fitting	10-32	134279	Module Assy, LT58 Incr
6-33	132529-001	Tee, Female Pipe Fitting			Decr
6-31	132532-002	Elbove, Street	6-3!	134843	Cover, Protective
6-22	132534	Yalve, Solenoid (K12, 13, 14)	6-26	134843	Cover, Protective
			6-9	134844-001	Nut, Lock
3-45, 6-63	132570-001	Terminal, Ins Ring Tongue	9-23	134897	Pin, Hinge
5-13	132570-002	Terminal, Ins Ring Tongue	6-17	134993	Regulator, Pressure
2-47	132570-004	Terminal, Ins Ring Tongue			
6	132570-005	Terminal Ins Ring Tongue	6-74	136179	Cable, 4 Conductor
			10-36	136547	Module Assy, Līl Exclusive OR
- 5-50	132593	Senerator, Tachometer			Exclusive OR
2-21	132644	'eg Support Assy	6-77	136560-002	Connector, 14 Contact Female
2-18	132646	Plate, Counter Balance	$5-12$	136561-001	
5-54	132743	Shaft, Coupling-Tachometer	5-12	136561-001	(J37)
6-11	132744	Gasket, Filter Mtg	3-41	136588	Chari, Hd Wiring
6-19	132749-001	Nipple, Pipe Fitting	2-39	136674	Power Supply Assy, PT20
6-25	132749-002	Nipple, Pipe Fitting	2-38,8-	137529	Power Distribution, Panel Assy
6-28, 6-34	132749-005	Nipple, Pipe Fitting			
			8-1	137530	Chassis, Distribution Panel
6-18	133033-001	Plug, Pipe Hex Hd	2-46	139175	Filter, Power (C1, 2, 3, 4)
6-34	133033-002	Plug, Pipe Hex Hd			
6-41	13		2-41	139222	Power, Filter Assy
	133034-001	Circuir Breaker (CBI)	2-42	139223	Plate, Mtg
5-7	133079-406	Screw, Flat Hd	2-43	139224-002	Cover, Filter

(Continued)

Table 9-11. Numerical Index (Cont.)

 Index No.	$\begin{aligned} & \text { XDS } \\ & \text { Part Number } \end{aligned}$	Description	Fig. \& Index No.	$\begin{gathered} \text { XDS } \\ \text { Part Number } \end{gathered}$	Description
4-1	139418	Module Assy, LT76 Read Write	9-14, 3-21	139967	Bracket Mig Terminal Block
2-3	139565-002	Clip, Speed U Type	3-15	139968	Strip Mtg, Wire Clamp
1-	139576	Extended Performance, RAD Assy	3-16, 3-43	139969	Block, Wire Clamping
9-18	139592	Block, Shear Pin Mtg	2-5	139994-001	Angle Mtg, RF (Retma)
			2-5	139994-002	Angle Mtg, RF (Retma)
9-19	139593	Block, Swing Frame Stop	2-19	145315-001	Angle Spacer Slide, RH
3-22	139634-001	Panel, Side Chassis RH	2-19	145315-002	Angle Spacer Slice, LH
3-22	139634-002	Panel, Side Chassis LH	2-7	145412-001	Bracket, Latch Adjusting
3-23	139635	Frame Pivot, Chassis Mtg			LH
i^{3-34}	139636	Frame Pivot, Sel Unit Mtg	2-7	145412-002	Bracket, Latch Adjusting RH
3-17, 9-10	139637	Top Far, Assy			
3-33	139686	Pin, Hinge	3-28	145418	Guide, Rod
			3-27	145419-001	Rod, Latch
2-17, 3-	139690	Selection Unit Assy	3-27	145419-002	Rod, Latch
2-26,5-	139697	Disc File Assy			
			3-29	145420-001	Block, Latch
4-6	139716	Module Assy, LT77 Data Decode	3-29	145420-002	Block, Latch
2-4	139814-001	Bracket, Chassis Locking LH	9-12	145474-001	Panel, Side Chassis Mtg LH
2-12	139815-001	Bracket, Slide Sel Mig RH Front	9-12	145474-002	Panel, Side Chassis Mig RH
2-12	139815-002	Bracke:, Slide Sel Mtg LH Fron:	3-41	145514	Cover, Connector
2-13	139816-001	Bracket, slide Sel Mtg RH Rear	3-38	145515	Cover, Connector-Base Plate
2-13	139816-002	Bracket, Slide Sel Mtg LH Rear	6-20	145646	Fitting, Adapter Bulkhead
			2-15	145698	Bumper, Rubber
2-14	139858	Angle Support, Front	3-31	145704	Panel, Switch Mtg
3-12	139865	Backwiring Board Assy	6-56	146260	Bracket, Relay Mtg
9-11	139876	Backwiring Board Assy			
3-35	139892-001	Angle Support	6-2	146484	Chassis, Filter Mtg Motor Control Unit
3-35	139892-002	Angle Support	2-37,6-	146485	Motor Control Unit Assy

Table 9-11. Numerical Index (Cont.)

 Index No.	XDS Part Number	Description	Fig. \& Index No.	"xচ̄s Part Number	Description
6-3	146486	Angle Mtg LH, Motor . Control Unit	2-	149763	RAD Storage, Unit Cabinet Assy
6-3	146487	Angle Mtg RH, Motor Control Unit	2-30	149960	Compressor, Assy
2-40	146488-001	Angle, Chassis Mtg RH	5-22	152008	Plug, Screw
2-40	146488-002	Angle, Chassis Mtg LH	3-46	152429-001	Screw, Captive
2-34	146649	Bracket, Componerit Mtg	3-47	152429-002	Retainer, Inseri Screw
3-39	146673	Hanger	3-14	152673	Ground Strap Assy
3-32	147024	Rod Hanger, Interface	6-13	158947	Albsolute Filter Unit Assy
6-5	147044-001	Label, Filter			
6-12	147044-002	Label, Filter			
5-6	147222-001	Brake, Magnetic			
4-5	147791	Aiodule Assy, ATIE Clock Discr			
9-16	147842	Frome, Swing			
9-17	147843	Bracket, Mtg			
2-16	147912-001	Biacket, Frame Mtg RH			
2-16	147912-002	Bracket, Frame Mtg LH			
2-24	147931-006	M 亻ount, Shock			
5-	148433	Su!khead Unit-Disc File Assy			
2-52,9-	149330	Ť331 RAD Controller Assy			
9-25	149331	Angle Swing Frame Mtg			
9-20	149332	Plate, Block Mtg			
5-23	149578-001	Brush, Metal Graphite			
5-20	149579-001	Cartridge, Brush Holder			
5-21	149580	Bracket, Cartridge			
5-17	149581	Clamp, Cartridge			
6-38	149710	Cover, Protective			

-

TO: ALL HOLDERS OF XDS Extended Performance RAD File, Models 7231,7232 SUB SECT: TEMPORARY CHANGES TO TECHNICAL MANUAL

The following changes to Technical Manual $901565 \mathrm{~A}-1$ are necessary to reflect the latest technical information. The changes are released in this manner for purposes of expediency. The next scheduled revision to the manual will incorporate these changes formally.

PURPOSE: To add a monthly check of the tachometer output voltage to the maintenarice section.

INSTRUCTIONS:

1. Make the following changes in the technical manual with pen and ink:
a. Page 8-22, paragraph 8-33. Between, last line of paragraph 8-33 and paragraph 8-34, write in:
"8-33A TACHOMETER OUTPUT VOLTAGE TEST PROGRAM (see insert on attached page 8-22A)".
2. Insert pages of this PDQ into tie technicc! manual as follows:
a. Page 1 of this PDQ between cover and title page of the technical manual.
b. Page 2 of this PDQ (marked page 8-22A) between pages 8-22 and 8-23.

Do not remove these pages until the above charges have been incorporated in arleased revision or re-issue of the technical manual.

[^0]: *Instructions are coded in hexadecimal notation. Symbols other thar, 0 through 9 and A through F are explained
 ${ }^{\dagger} \mathrm{X}$ represents a three-bit index register. Additional bits are part of the data in bits 15 through 31 or are not significant

[^1]: (Continued)

[^2]: * Memory location and contents are in hexadecimal notation

