
Inter-Office fJiemorandum 

10 NXS Distribution 

Fr::;"1 Doug Heying 

Subject CP-V Description 

NXS !flO 

Date June 18, 1975 

Lecation A 1-62/Ext.. 1531 

Organization Software De'le Jopment 
DH-75-09 

This description is intended to assist us in our tcsk of defining distributed 
processing for C P-V. An attempt will be made to systematica lIy peel off 
the layers of 'system l and to describe what happens at each level. 

There are fundamenta I concepts in C P-V which are all pervading and which 
provide the flexibility and ease of use of the system. The first of these is 
that CP-V is a file centered system. The ultimate convenience and flexibility 
is provided by keyed files. Keyed fi les allow an arbitrary name (key) to be 
given to any record within the file. Records can be added, deleted, expanded, 
or contracted with complete freedom. Then general structure is then used by 
many elements within the system for convenient filing of programs end data 
without the need to define specialized file structures. A II file characteristics 
are retained on transfer to or from Xerox labelled tape, then eliminating the 
need for elaborate special utilities for each type of file. Another key feature iJ 
of the file system is efficient use of space with full dynamic allocation allowed. \ 

The second fundamental concept is the event driven scheduling algorithm. The 
scheduler maintains a set of state queues. Each user is in exactly one state queue 
at any point in time.. Transitions between states are made by reporting events. 
The state queues are structured to provide priority for use of the CPU, priority 
for inswap, priorit)' for ourswap, etc. Some examples of events reported and 
the states resulting are given below: 

Event 
'Term'fn~1 Read 
Activation Character Received 
File Read 
Fi I~ Read Complete 
Terminal Buffer Limit Reached 
Unblock Limit Reached 
Quantum End 
Resource Unavailable 
Resource Available 

Resulting Stqte~ 
Terminal Input Blocked 
Terminal Input Complete 
I/O in Progress 
I/O Complete 
Terminal Output Blocked 
Termina I Output Complete 
Compute Bound 
Queued for Resource 
Compute Bound 



NXS Distribution 
CP-V Descrip.tion 

NXS #10 

June 1~, ·1975 
·.Page 2 

Note that in the abov~ discussion of scheduling no discussion of a difference 
between batch and on-line jobs was made. There is no distinction made at 
this level of scheduling - scheduling the use of the CPU from millisecond 
to millisecond. The differences came at a different level of scheduling -
scheduling the uSe of non-sharable resources. 

The casual user of C P-V considers himself to be communicating directly between 
his terminal and a processor (X/?rox supplied language, utility, or application) 
or a user pr09ram (a program developed by a customer using a.Xerox supplied 
language) with some 'magic' interposed to make his kludgy terminal work nicely. 
Thus, if we put aside the magic for the moment, this is the outer shell of the 
·system'. These programs do all of the useful work in the system. The remaining 
portions of the system either provide services to the above worker programs or 
are s~pportive of them in keeping the systems operating efficiently. 

Memory 

Before proceeding further down this line it will be useful to look at the memory 
structure of a C P-V system. This will be described from three viewpoints: 

1. The virtual memory associated with a specific user process (always 
exactly 12BKW addressable). 

2 •. The physica I main memory. 

3. The system virtual memory (swap space). 

The user process is best described in tangible form as the context providing 
continuity between steps of a batch iob or on-line session. This is a 
collection of information describing privileges, resources used,. resources 
allowed, file buffers, etc. A subset of user context, theJIT (Job Information 
Table) also contains a description of the remainder of the virtual memory 
associated with the user process and its locetion in swap store and its location 
in physical main memory when in. The layout of virtuel memory is as. follows: 

Dyn Data Com 
Monitor Overlay Context Data Procedure Data 

a 8000 Bcaa AOOD leaoo 

Special 
Shared 
Proc. 

IFFFF 



NXS Distribution 
CP-V Description 

NXS'10 

June 18, 1975 
Page 3 

The map and access controls are used to make best use of physical main memory 
and to limit the scope of access to memory. Each user addressing space wi II be 
uniform each time he receives the use of the CPU even though he may reside in 
different physical pages. The meaning of each of the areas of virtual memory is 
now given along with the map and access control settings. 

Monitor - This is the resident portion of the CP-V operating system (to be described 
in more detail later). This always occupies 0 - 7FFF of all users virtual space and 
is always resident in the same locations of physical main memory. The map is loaded 
once and is [lot changed. The access controls are set to read only for the first page 
and to no access for the remainder. Thus, the user cannot access the monitor, but 
the monitor (master mode) can. 

Overlay - This area is used for less frequently required parts of the monitor and is 
used only as required.. The map is loaded to point to the physica I pages where 
the current overlay currently resides in physical memory. The access coni"rofs are 
set to no access. 

Context - This area contains the personality of the user process as described above. 
The map is loaded with the pages where the context is currently resident. The J IT. 
has an access control of read only. The remainder have access controls of no access. 

Data - This area contains the data to which the procedure is specifically bound. The 
map is loaded with the pages where the data is currently resident. The access controls 
are loaded with all access. 

Procedure - This area contains the instructions which make up the logic of the program 
being executed. This program may be a private program or a shared processor. In 
either case the map is loaded with the pages where the procedure is currently resident 
and the access controls with read and execute. In the shared processor case there 
may be more than one user with identical map contents in this area. 

Dynamic Data and Common Data - These provide data storage areas to the procedure 
that can be expanded or contracted independently. The map is loaded with the pages 

. where the data is currently located. The access controls are set to a II aOccess. The 
area between these two areas is the unused portion of virtual space and is normally 
quite large. The access controls are set to no access. 



NXS Distribution 
C P-V Descri pHon 

NXS #10 

June 18; 1975 
Page 4 

Special Shared Processor - This area can be used for one of a variety of 
things to be associated with the user. it can be occupied by a command 
processor (TEL, EASY) or a library (FORTRAN runtime, OMS data manager) 
or a debugger (DELTA). The map and access controls are the same as for 
procedure with a shared processor. The unused portion of the area is set to no 
access. 

The physical main memory is laid out as follows: 

Monitor Pool 

80 

Map 
JIT 

scoo 
I 

Unmap 
Monitor 
8EOO 

~ Pool 

Memory Size 

The monitor is divided into two parts. The first part wh ich must exist in ever/ 
user map occupies the same physical space or virtual space and is mapped 'one 
to one l

• The second part which operates only unmapped and never accesses a 
user virtual memory occupies an area of physicol memory which is used for other 
things in virtual space. The space marked Pool is the general resource of pages 
of memory available to put users r shared processors, etc. into. The Monitor JIT 
is at the same place in physical memory aseach user JIT is in virtual memory in 
order to allow the subjective accounting clock (Counter 4) to count into the 
appropriate users J IT (mapped) or the Monitor JIT depending on the setting of 
the map (current user) and the mode (mapped or not) at the time that the clock 
ticks. 

The system virtual memory is allocated as required to contain an image of the 
unique part of every users virtual memory plus an image of every shared processor. 

- The space is allocated to keep each entity in continuous rotational position on 
the device to minimize latency .. The memory management problem then is one 
of managing the physical main memory and the system virtual memory. Every 
change in the virtual memory for a user is reflected in a change in swap space 
allocation. 

V/orker Programs 

With the above as a background, we can now proceed to discuss other worker 
programs in the system. All worker programs operate within the framework of a 
'virtual machine' defined as follows: 

1. Addressing range defined by user virtual memory. 



NXS'10 

NXS Distribution 
C P-V Description 

June 18, 1975 
Page 5 

2. Slave mode instruction set. 

3. Monitor services invoked via CAL's. 

The layout of user virtual memory suggests several worker programs besides 
processors and user programs. Some of these are: 

1. Command Processor. These are the highest revel of user interface 
which interpret control commands and request the monitor to 
associate the appropriate programs with the user. These are 
TEL, CC I, EASY. 

2. log On/Off Processor. This is the first program associated 
with a user when a connection with the system is establ ished. 
No other program can be associated until LOGON has verified 
the users identity. This identity is then the basis for all security 
within the system. ihis processor is also the last program invoked 
before a user disappears. It updates accounting records, etc. 

3. Libraries. These provide an extended set of services which are 
used by a farge enough number of programs to a candidate for 
sharing. These are always subroutines which do not run on their 
own but must be ca lied by a processor or user program. 

4. Debugger. These co-exist with a user processor and monitor its 
execution to assist in debugging the program. 

. 5. loader. This is the system services which combines a number of 
Relocatable Object Modules (ROlv1's) as output by assemblers or 
compilers in standard obiect language. The result of this process 
is an executable file called a load Module (LMN-Iemon). 

JOBS 

Before listing other worker programs it is necessary to define the three ki.nds 
of iobs that run on C P-V. A job is the external manifestation of what was 
described internally as a user process. It is a set of tasks specified from a 
card reader or terminal with continuity provided by user context. 



NXS Distribution 
C P-V Description 

NXS# 10 

June 18, 1975 
Page 6 

A batch iob is one whole entire control stream and resource requirements 
(tapes, spindles, etc.) is known to the system before the iob is put into 
execution. Given this knowledge it is possible to schedule batch iobs 
-to optimize the use of non-sharable resources. Batch iobs ere disconnected 
from any human interaction and output, in general, is not delivered until 
completion of the job. 

An on-line iob is one wh ich is connected uniquely to a timesharing terminal. 
ResOurce requirements are not known in advance and thus must be acquired on 
a contention basis. This is workable since a human is in the loop and can 
make decisions when resources are unavailable. Other than being able to 
pre-allocate resources, an on-line iob can do everything a batch iob can, 
including line printer use, etc. Note that line printers, IRBTls, etc. are not 
considered non-sharable resources. More on this later. The terminal is 
always in control of a timesharing job. 

A ghost iob is InOne of the above I • It has no input control stream and is not 
connected to any terminal. It is usually providing some service to the monitor. 
Its actions are control led by communication via a file or another form of internal 
communication. Some examples of worker programs which operate.as ghost iobs are: 

1. Fife Space Allocater (ALL<X:::AT - alley cat). This iob manages 
the entire pool of public file space available to the system. 

2. Batch and Remote Batch Scheduler (RBBA T - rabbit). This iob 
establishes connections to all remote botch stations. It also 
controls and schedu les the use of a II symbiont input and output 
devices (including remote). RBBA T determines and retains all 
information about batch job resource requirements. It uses this 
information plus the information about resources acquired on a 
contention basis to determine which batch iobs can be run con­
currently to optimize resource usage. 

3. Error log File Builder (ERR:FIL). This iob accepts error log entries 
in raw form from the monitor and inserts them into a file which can 
then be messaged in various ways by other programs ~.9. ELlA -
error log f ister and ana Iyzer). 

4. File Maintenance (FIL~'\S). This iob is responsible for all file 
backup - restore operations and archival processing. 



STEP 
Step 

Control 

J 

File 

I/O 

cae 
Terminal 

I/O 

-' 

" 

I 

Disc 

Handler 

-, -CALPROC-"' 

l 
MM 

Memory 
Manage­
mp-nt 

WRTD,IOD 
Device 

Formatting 

COOP 
Symbiotic 

Device 
I/O 

i 

CA l interpretation 
and 

~alidation 

fORT 
I/O service 

decoding 

RDF, WRTF 
File 

~ead, Vlrite, 
etc. 

.-

- loa 
Queueing and 
Dis~atching I/O 

equests 

Tape 

Handler 

DEBUG 
Debugging I Services 

fORT 

RDL, lBlT 
Tape 

Read, Write, 
etc. 

OPNTP 
Open 

Tape Files 

I 

• 

Monitor Service Control Flow 

-SEGlD, MISC 
lDlNK Miscella-
OverJoy neous 
Services Se. I 

f"'/ICeS I 

File 

I/O 

OPEN, 
CLOSE 

I 
OPNFIL OPNDV 
Open Files Establish 

Device 
Connection 

J 

IRBT 

• • Handler 

TP 
I 

Ser-
vices 



NXS Distribution 
CP-V Descr·iption 

NXS'#10 

June 18, 1975 
Page 7 

5. File Inconsistency Repair (F IX). This iob is responsible for 
repair of any damaged part of the fife system. 

In addition to the above classes of iobs, there is another which is really a 
form of batch iob, but behaves significantly different from ordinary batch 
iobs. Transaction Processing is basically a set of two jobs cooperating to 
provide a TP service. The first is a iob called the Terminal Interface 
Controller (TIC) which acquires a set of terminals as I/O devices. Note 
the difference from on-fine iobs. Here the program is in control and the 
terminals' are slaves. The T Ie formats input into forma I transactions and 
accepts formal reports and formats them for terminals. The actual processing 
of transactions is done by another job, the Transaction Processing Load 
N.odule (TPLM). The TPLM is made up of a Transaction Processing Control 
(TR:) module and several Transaction Processing Modules (TPM). The TPC 
is a collection of service routines which calf the appropriate TPM and provide 
ioumal service. The TPM's are customer provided and have a simple interface 
for the i r process i ng • 

Enough discussion of drones, now let's get into the guts of the system - the 
monitor itsel f. Basically the function of the monitor is two fold - to provide 
services (passive) and to keep everything perking along nicely (active). 

N.onitor Services 

tv\onitor Services are those functions of the operating system which provide 
the user with a very rich virtual machine on which to run a program. They run 
the .gamut of complexity from returning the time of c?ay to elaborate file management 
services. Since the services are running on behalf of the user they run mapped and 
since they must access the monitor they run master. There are two ways to invoke 
monitor services: the CA L instruction and any other trap. The traps in genera I 
signify an error and appropriate action (which may be 'give 'control to the programS) 
is taken. The following chart shows the flow of control after a CAL instruction 
is executed. Each lower level can be interpreted as a subroutine which will 
ultimately retUrn. 

This chart shows the gross structure of the monitor services within C P-V •. The 
significant points shown by the structure are as follo·.vs: 

t • Common CA L interpretation and validation. 

2. Fanout of services into modules with related services. 



NXS Distribution 
CP-V Descript.ion 

NXS'10 

June 18, 1975 
Page 8 

3. I/O services with several distinct levels: 

a) logical I/O handling ('NRTD/ RDF / etc.) providing 
device independent I/O 

b) interposed co-operative (COOP) handling allowing 
direct device usage or blocking into 0 symbiont file 

c) centralized I/O queueing allowing bandwidth manogement, 
optimization algorithms, etc. 

d) modular reenterabJe handlers for each unique device type. 

A brief narrative follows for each component shown on the chart: 

1. STEP. This module provides the services necessary for transition 
from step to step within a job and provides for iob initiation and 
termination. It makes use of fi Ie services for program retrieva I 
and calls RBBA T for multi-batch scheduling and user MM to allocate 
memory. 

2. MM. This module handles requests for changes in the virtual memory 
of a user. These requests can come from a program or from STE P. 
MM is responsible for coordinating space in each users virtual 
memory with that in the system virtual memory (swap storage). 

3. DEBUG. This module provides monitor services for programmed 
debugging faciiities. It uses monitor va to direct debug output 
as the user desires. 

4. SEGlD, lDlNK. SEGlD provides overlay services between segments 
of a load Module. LDLt'-JK~provides seF¥iees-for ~~lIing one ~o~~?~'"w'\. 
fv4.odule from another. ~ CI {j/2J/1 In0 ~c/'V"\ ~ I t1- tvL~L.L r f 

5. MiSe. This module provides a variety of convenience services such 
as time of day, interval time delayS trap control, break control,etc. 
Also provided ere Enqueue/Dequeue services to allow coordination 
between user processes for such th ings as fi Ie sharing. 

6. TP. This module provides the common iournaf and system queue 
facilities used by Transaction Processing. 



NXS Di5tribution 
C P-V Descr.iption 

NXS #10 

June 18, 1975 
Page 9 

7. IORT. This module decodes requests for I/O service and calls 
the appropriafe module depending on the assignment of the dcb 
(data control block). The dcb is the logical unit addressed by 
the program and may be externally assigned to devices, files, 
etc. 

8. COC. COC handles all character oriented communications. It 
provides all of the editing and echoing facilities evident from a 
timesharing terminal. It is responsible for movement of dota tol 
from a central buffer pool for write/read and for translation between 
Xerox EBC D IC and device codes. 

9. WRTO, 100. These modules are responsible for device specific 
formatting which may be required on device I/O. 

10. ROF 1 WRTF. These modules are responsible for all blocking, 
deblocking, key searches, positioning, etc. which is required 
for file I/O. ALLOCAT is caJled as necessary for allocation' 
of file space. 10Q is used for physical transfers • 

.11. ROl, lBlT. These are the analog of RDF I WRTF for tape. 

12. OPEN, CLOSE. OPEN is used to validate a dcb and to gain 
permission to use the device or file to which the dcb is assigned. 
ClOSE removes that validation until a subsequent OPEN. 

13. OPNTP. This module does the actions which are specific to tape 
in the o'pen process. It checks that a diive is allocated, verifies 
serial numbers and locates the proper file if labelled tape. 

14. OPNFll. This module does the actions specific to files in the 
open process. If a private pack is referenced, it verifies that a 
sp'indle is allocated and verifies the serial number. In any event, 
the file is located, security is checked, and Sharing conflicts are 
resolved. if a new file is being opened, the file is catalogt!ed. 

15. OPNOV. The module takes specific actions relative to the use of 
devices. The users capabilities are checked to see if he is allowed to 
use the device. 



NXS Distribution 
C P-V Description 

NXS #10 

J()n~ 18, '1975 
'Page' 10 

16. 10Q. This module queues 'requests for any physical device 
and dispatches the requests to the appropriate handler when 
possible. 

17. Handlers. In each of these modules the device specific action is 
taken. For example, the handler for IRST lines handles all multi~ 
leaving implications so that no using processor or other part of the 
mon itor need know' about th is feature of IRST. 

Until now we have been discussing the portion of the monitor services which 
execute on beha I f of the user, i. e. in the users context. In support of th is, 
there are other portions of the monitor services which execute unmapped, 
i.e., not in any users context. An example of this is the I/O interrupt receiver 
wh ich notes I/O complete by reporting event, then attempts to schedu Ie more 
VO. Other examples are the cae input and output interrupt levels. These 
simply put characters in buffers or remove characters from buffers until activation 
characters are reached or buffers reach a threshold at which time events are 
reported. The reporting of these events will of course permit the resumption 
of the appropriate monitor service in the user context. 

This leaves us with the control part of the monitor; that which keeps the system 
running smoothly. Basically, this comes in two parts: the scheduler and swapper 
which cooperate to optimize the use of CPU and memory resources, and the 
symbionts.which optimize the use of unit record peripherals. The actions of the 
scheduler and swapper are fairly clear from the foregoing discussion. Whenever 
an event is reported which raises the priority of a user to a level where he should 
be brought into memory to be executed, the swap scheduler is called to determine 
the user to be inswapped and the user{s} to be outswapped. If the swap scheduler 
is able to schedule a swap, the swapper is called to initiate the swap. The swap 
then proceeds in parallel with further action. The scheduler then determines the 
highest priority user in main memory and gives him control. 

The symbiont system is simply a mechanism by which the use of unit record peripherals 
is decoupled from the program use of the devices. This is done by allowing program 
output to be put into a symbiont file (COOP) to be retrieved rater by· the symbiont. 
This accomplishes two things. First, it allows a buffer pool to smooth the peaks 
and valleys caused by program behavior. Second, it permits many programs to 
concurrently output to the same unit record device, 



t-fy.:S D isirib~tion 
CP-V Description 

NXS #10 

Jon~ 18, 1975 
'Page' 11 

There is one more function which should be d;scussed; the area of accounHn9 
measurements and performance monitoring. It is difficulr to point to a pcrticuia'r 
module for these functions a ithough there is a module vlhich records data. 
This is becCiuse all of the functiona I modul.es are responsible for reporting 
significcn~ miiestone5 vlhich may be of interest for accounting 'or performance 
purposes. Acco'J~ting information is recorded in each users J IT until LOG OFF. 
Performance data is kept in resident tables where it may be sampled by any worker 
program to bedispiayed in any V/OY. A reporting program (STArS) is supplied 
with the ~ystem. ' 

D. Heying 

Distribution: 

G. Grllette 
I. Greenwald 
K. isaac 
G. Justus' 
H. Kakita 
S. Klee 

- L. Krasny 


