
Rank Xerox GmbH
Qeadllftlbtrelch Daten•pttm•
2 Hamburg 78, Hamburger Stni8e 20$
Tetefon 04111291201-·I
18 0213791 Publication Revision Sheet

September, 1971

CORRECTIONS TO XEROX FORTRAN DEBUG PACKAGE (FDP)/REFERENCE MANUAL (Sigma 5-9 Computers)

PUBLICATION NO. 90 16 77A, JULY 1970

This revision package contains replacement pages for the inside front and back covers, and pages iii, iv, 1, 2, 5-10,
17-20, 23-32, 35-46, 57, 58, 63-65. These changes will be incorporated into the next revision of the manual.

Revision bars in the margins of replacement pages identify changes. Pages without the number 90-16 77A-1(9/71) at
the bottom are included only as backup pages; any revision bars on such pages identify changes made in a previous
revision.

90 16 77A-1(9/71)

CONTENTS

1. INTRODUCTION

Batch and On-Line Debugging Capabilities___ 1
Input/Output 2

2. TYPICAL USE OF DEBUGGING COMMANDS 3

3.

4.

GO Command 3
REST ART Command 3
REWIND Command 3
QUIT Command 4
ABORT LEVEL Command 4
Step Command 4
Break Command 4
SKIP Command 5
AT Command 6
ON Command 8
ON CALL Command ___________ 10
ON CALLS Command 10
PRINT Command 10
Value Change Command 11
GOTO Command 11
FLOW Command 11
NOFLOW Command 12
HISTORY Command 12
RESET HISTORY Command 12
USE FI LE Command 13
USE ME Command 13
KILL Command 13

DEBUGGER INTERFACING 15

Debug Table 15
Name List 15
Source Line Table 15
Statement Label Table 16
Entry Point Names 16

Special Calls 16
Initialization Calf 16
Statement Check-In Cal Is 16
Data Check-In Cal Is 17
Calling Sequence Calls 17
Entry Point Cal Is 17

DEBUGGER COMMAND LANGUAGE 18

General 18
Typographical Conventions Used in This Manual_ 18
Common Command Elements 19

Variable 19
Array Element 19
Whole Array 20
Seal.er 20

Constant 20
Argument 21

90 16 77A-1(8/71)

Position _______________ 21

Source Line Number 21
Statement Labels 22
Offsets 22

Qualifiers 23

5. DESCRIPTION OF COMMANDS 25

Stored Commands 25 '
SKIP Command 26 1

AT Command 26
ON Command 27
ON CALL Command 28
ON CALLS Command 28

Attachable Commands 28
PRINT Command and OUTPUT Command

and ? Command 29
Postmortem PRINT 30
Value Display 30

Value Change Command 31
GOTO Command 31
FLOW and NOFLOW Commands 32
HISTORY and RESET HISTORY Commands __ 33

Postmortem HISTORY 33
USE FILE and USE ME Commands 34
KILL Command 34

Direct Commands 35
Single and Double Break Commands 35
LOC Command 36
GO Command 36
QUIT Command 36
RESTART Command 36
REWIND Command 37
ABORT LEVEL Command 37
Stepping and Backtracking Commands 37

Stepping 38
Backtracking 38

Error Detection Features .,38
Execution Stops . -4'0·

6. OPERA TIO NS 41

Universal Time-Sharing Monitor (UTS) _____ 41
Logging On 41
Compiling 42
Loading 43
Executing 43
Interrupting, Stopping, and Logging Off __ 44
Gaining Access to the Use-File 44

Batch Time-Sharing Monitor (BTM) 44
Logging On 44
Compiling 46
Loading 46
Executing 46
Interrupting, Stopping, and Logging Off 46
Gaining Access to the Use-File 47

Batch Processing Monitor (BPM) 47
Compiling 47
Loading 49
Executing 49

Use of FOP: UTS Versus BTM 49

iii

7. RESTRICTIONS AND LIMITATIONS 50 FORTRAN Run-Time Error Messages 58
Monitor Error Messages 60

Length of Command Input Line 50
Range of Source Line Numbers 50 B. BATCH USAGE 61
Overlays 50
Not Available for Real-Time Runs 50 FIGURES
Nondebug-Mode Subprograms and

Assembly Code 50 l. Example of a Simple FORTRAN IV On-Line
Output Constraints 50 Program Run Under UTS 42
Length of Execution 50 2. Example of a Simple FORTRAN IV-H
Program Size 50 Program Run Under BTM 45

INDEX 63
3. FORTRAN IV Deck Setup for Debug-Mode

Batch Processing 48
4. FORTRAN IV-H Deck Setup for Debug-Mode

APPENDIXES Batch Processing 48
5. Batch Usage -Automatic Checks Only 61

A. INFORMATION MESSAGES AND ERROR 6. Batch Usage - Postmortems 61
MESSAGES 51 7. Batch Usage - Trace of a Variable 61

8. Batch Usage - Trapping an Anomaly 62
Debugger Messages 51 9. Batch Usage - Fixing a Simple Error 62

Input/Output Error Messages 51
Status Messages 52 TABLES
Position Messages 52
Execution Error Messages 52 l. PR! NT Commands 30
Warning Messages 54 2. Debug Input/Output Error Messages 51
Command Error Messages 54 3. Debug Status Messages 53

Immediate Errors 55 4. Debug Execution Error Messages 53
Activation Errors 55 5. Debug Warning Messages 55
Exercise Errors 56 6. Debug Command Error Messages 57

iv

1. INTRODUCTION

The FORTRAN debug package (FDP) is designed to be used with XDS Extended FORTRAN IV or FORTRAN IV-H,
and it operates under Sigma 7 Universal Time-Sharing System (UTS), Sigma 5/7 Batch Time-Sharing Monitor (BTM),
and Sigma 5/7 Batch Processing Monitor (BPM). An addition to the FORTRAN run-time library, the debug package
is made up of special library routines that are called by FORTRAN object programs compiled in the. debug mode.
These routines interact with the program to detect, diagnose, and often allow temporary repair of program errors.

Note: For debugging runs, the main program must be compiled in debug mode.

The debugger can be used in batch and on-line mode. An extensive set of debug commands are available in both
cases. In addition to the debug commands, the debugger has a few automatic debug features. One of these features
is the automatic comparison of standard calling and receiving sequence arguments for type compatibility. When
applicable, the number of arguments in the standard cal I ing sequence is checked for equality with the number of
dummies in the receiving sequence. Calling and receiving arguments are also tested for protection conflicts.
Another automatic feature is the testing of subprogram dummy storage attempts to determine if they would violate
the protection of calling sequence arguments. (This feature is not available for FORTRAN IV-H programs.) These
debug features are discussed in Chapter 5 and Appendix A.

Debug-mode compi lotion is not recommended for nondebug runs, because it produces larger and slower programs
than nondebug-mode compilation.

Batch and On-Line Debugging Capabilities

While some debugging capabilities are reserved for on-line use and others for batch use, most debugging capabilities
are available in both modes: ·

1. Capabilities Available in Batch and On-Line Mode

a. Skipping FORTRAN statements

b. Setting breakpoints

1. Statement breakpoints

2. Statement breakpoints on execution count

3. Data store breakpoints

4. Data store breakpoints when given values are attained

5. Breakpoints on CALLs or function references (the values of arguments may be displayed or changed)

6. Stops (breakpoints normally resume execution)

c. Displaying data

d. Changing the values of variables

e. Branching

f. Tracing flow

g. Displaying flow history (or erasing flow history)

h. Revoking debug commands

i. Outputting debug display to a selected file (or to M:DO)

j. Setting abort level (to abort only on certain classes of FORTRAN run-time errors)

Note: Items c through i may be used immediately or as options to be exercised at specified breakpoints.

Introduction

2

2. Capabilities Available Only in Batch Mode

a. Displaying postmortem data

b. Displaying postmortem flow history

3. Capabilities Available Only in On-Line Mode

a. Interrupting execution

b. Resuming execution

c. Stepping

d. Displaying flow history {backtracking)

e. Restarting

f. Rewinding program files

g. Quitting the debugging run

h. Locating the first word of a FORTRAN statement

Input/Output
Debugger input is entered via the source input file (M:SI). In batch runs, debug commands appear immediately be
fore any data for the FORTRAN execution; the GO command must be the last debug command. In on-line runs,
debug commands are read at the beginning of the run and also at execution stops. The prompt character@ is
displayed to signal that a debug command is to be entered from the terminal keyboard.

Debugger output is placed in the diagnostic output file {M:DO) or, at the user's option, in a selected file (the DCB
designation is F:UF). In on-line runs, it is necessary that M:DO always remain assigned to the terminal. Output
consists of commanded displays, status messages, and error messages, and these may be intermixed with output from
the FORTRAN program.

Input/Output 90 16 77A-1 (8/71)

prompt with an@. The current execution cannot be resumed after a double break. To start the run again, the user
must issue a RESTART or GOTO command, as in the following example:

(BREAK key depressed once)

(BREAK key depressed again)

DBL BRK AFTER SUBl/16: CAN'T GO OR STEP

@GOTO SUB 1/16

16:

@GO

In the above case, execution is discontinued after line number 16 in subroutine SUBJ. Consulting his source listing,
the user decides that it is reasonable to reexecute the statement at line number 16; so he issues the GOTO command.
The debugger stops again, just prior to executing that statement, to allow the user to issue further commands. (In
this case the GO command is issued.)

A single break is usually sufficient to stop execution, but it may take several seconds before the break message
appears. Double breaks are recommended in only two circumstances - to interrupt high-volume 1/0 and to gain
control when it is suspected that execution is looping.

SKIP Command

SKIP commands are used to bypass executable FORTRAN statements, preventing their execution. Suppose the
program contains the following source line:

18: IF (X<.001) CALL WRITER

During a debugging run the user may bypass this line with the following command:

@SKIP 18

@

Logical IF statements, such as the one at line number 18, have an interesting feature. They contain a substatement
(in this case CALL WRITER). If the user only wants to bypass the substatement, he can use an offset (that is, +l) as
in the following example:

@SKIP 18+1

@

A SKIP command can be used to bypass a series of statements. As an illustration, suppose the user has written the
following main program:

l: COMMENT -- MAIN DRIVER

2: 10 CALL SUBJ

3: 20 CALL SUB2

4: 30 CALL SUB3

5: 40 CALL SUB4

6: STOP

7: END

For this debugging run the user only wants to check out the routine SUB4 and has not even loaded the other routines.
When the run begins, the fol lowing command causes the unwanted statements to be bypassed:

@SKIP 2 TO 4

@

90 16 77 A-1 (8/71) SKIP Command 5

An equivalent bypass can be set up with the fol lowing command:

@SKIP lOS TO 30S

@

The above command references statement labels 10 and 30; the S immediately fol lows statement label numbers to
notify the debugger that a statement label is referenced, not a line number. To illustrate the flexibility regarding
such commands, the following are also equivalent to SKIP 2 TO 4 in the above program:

SKIP 2 TO 30S

SKIP lOS TO 4

SKIP 2 TO 2+2

SKIP lOS TO 10S+2

SKIP 30S-2 TO 30S

Many other combinations are possible.

Line numbers, statement labels, line numbers with offsets, and statement labels with offsets (such as +2 and -2 above)
are known as "positions". Positions are also used in AT and GOTO commands, and they are sometimes useful in
PRINT commands. Another type of statement label - the global label - is available in XDS FORTRAN IV but not in
FORTRAN IV-H. Global labels are referenced in the same form used in the source program, for example, 99$. The
$immediately follows the label number.

l>ositions can almost always be preceded by a "qualifier" (except after "TO" in SKIP commands). A qualifier
specifies which region of an overall program to use. To specify the main region, the qualifier is a slash(/), as in
the following example:

@SKIP /2 TO 4

@

This example is equivalent to the earlier SKIP 2 TO 4 command.

There must be at least one blank between a command name (e.g., SKIP) and the main qualifier. To specify a non
main region, the qualifier consists of a FUNCTION, SUBROUTINE, or ENTRY name immediately followed by/, as
in the following example:

@SKIP SUB4/l 9

@

Qualifiers may be used in front of variables and positions. It is always safe to use a qualifier, but it is not always
necessary.

AT Command\

An AT command is used to give the debugger control just prior to executing a given statement. In its simplest form
the AT command resumes execution after notifying the user that the statement has been reached. For example,

@AT 19

@GO

/19:

19:

19:

In this case the user wants to be informed whenever the main program statement at line number 19 is encountered.
He begins the run with the AT command and starts execution with the GO command. Each time that statement is
reached, the debugger displays its position and resumes execution.

6 AT Command

Suppose the user wants to be notified every third time that the statement is encountered. Then the following type of
AT command can be used:

@AT 19 # 3

@

An AT command can be used to stop execution by supplying a STOP specification before or after the AT command:

@STOP AT 19

@GO

/19:

@

In the above example the statement at line number 19 is about to be executed, but the user now has the opportunity
to issue further debugging commands. The next example stops the run just before the third execution (#3) of that
statement {assuming that it had not been encountered prior to this time):

@AT 19 # 3 STOP

@GO

/19:

@

In this case if the user continues the run, it will stop again before the sixth execution of that statement. The whole
sequence is repeated for illustration:

@AT 19 # 3 STOP.

@GO

/19: {third time)

@GO

19:

@

{sixth time)

The AT command has another notable attribute - certain "attachable" commands can be attached to AT commands
for added debugging capability. Some typical examples follow; note that semicolons are used to separate the com
mands. The following example requests flow tracing after reaching line number 28, and it discontinues the trace
after reaching line number 39:

@AT 28; FLOW

@AT 39; NOFLOW

@

The example below requests that the value of X be displayed on reaching line number 50, and it directs the run back
to line number 11 instead of executing the statement at 50:

@AT 50; PRINT X; GOTO 11

@

The next example is similar to the previous one, except that X is reset to zero after being displayed.

@AT 50; PRINT X; X = O; GOTO 11

@

AT Command 7

8

The AT command is not the only command allowing attachments. ON, ON CALL, and ON CALLS commands also
permit attachments. The attachable commands are listed below for reference:

PRINT

OUTPUT

?

value change·

GOTO

FLOW

NOFLOW

HISTORY

RESET HISTORY

USE FILE

USE ME

KILL

As indicated in previous examples, multiple attached commands are permitted. However, it is useless to attach
anything to a GOTO command since execution resumes and any later attachments are ignored.

ON Command

The ON command is probably the most powerful debugging tool available to the user. ON commands assist in iso
lating bugs by informing the user when unexpected values are stored in certain variables. In the following example
the user requests a trace of all stores into the variable I:

@ONI

@GO

/5: I= 1

5: I= 2

5: I= 3

5: I= 4

18: I = 1

SUB5/7: I= 0

/18: I= 1

SUB5/7: I= 0

/18: I = 1

The user consults the source listing of his main program and finds the following:

5:

18:

DO 1, I = 1,3

DO 2, I= 1,3

The trace shows that the first DO works properly but that the second DO is failing. According to the trace, the
failure is caused by line number 7 in subroutine SUB5. The variable I is set back to zero at that point. Consulting
the source listing of subroutine SUB5, the user finds the following:

7: · INCHES = 0

Obviously, I and INCHES share the same location. The user therefore examines COMMON statements in SUB5 and
in the main program and discovers an unintentional overlap.

ON Command 90 16 77A-1 (8/71)

The above example demonstrates that ON commands consider the location of a variable, not merely the name. In
fact, they take into consideration all of the locations occupied by a variable. If any of these locations are stored
into, the ON command takes effect. The key to this operation is that the debugger must be notified whenever a
variable is stored into. Notification is provided by FORTRAN run-time library routines and by debug-mode
FORTRAN programs. (However, "S in column 111 statements and nondebug-mode subprograms do not notify the
debugger when they store into a variable.)

The variable used in an ON command may be a scalar (for example, I), an array element {for example, V(l) or
M{2,l)), or a whole array (for example, V or M). When specifying an array element, the subscripts {or an element
count) must be numeric.

ON commands allow attachments, and a STOP specification can be included before or after the command {see the
example below).

ON commands can be made conditional on the variable attaining a given value. An example of a conditional ON
command is

@STOP ON I= 0

@

{The STOP specification is not a requirement.)

The equal sign is only one type of relational operator that can be specified. It could have been any of the
following:

.EQ. or

.LT. or <

.LE. or <= or =<

.GT. or >

.GE. or >= or =>

.NE. or >< or <>

The value following a relational operator can be any constant recognized by the debugger that is consistent with the
type of variable used. Some examples follow. ·

@ON V(l) > = .334 STOP

@ON COMPLEX .EQ. (-4,5)

@ON LOGICAL .NE. .TRUE.

@ON LOGICAL .NE. T

@ON LOGICAL > < T

@

The last three commands are equivalent.

The following example shows how a conditional ON command can be used to stop the run when any element of the
vector V goes negative:

@STOP ON V < 0

@GO

SUBR/7: V(3) = -.000125

@

In this case the element V(3) receives a negative value at line number 7 in the subroutine SUBR.

ON Conmand 9

10

ON CALL Command
When a debug mode program is about to CALL or reference a (nonintrinsic) function, the debugger is notified. ON
CALL commands take advantage of this operation. For example, suppose the user has defined a statement function
named ASF, and he wants to be informed whenever it is used by his program:

@ON CALL ASF

@GO

/J5: CALL ASF

J6: CALL ASF

44: CALL ASF

In this case, the function is used at line numbers J5, J6, and 44 of the main program.

An ON CALL command can contain attachments or a STOP specification. During processing of an ON CALL, the
user may request that arguments of the cal I be displayed or changed. In the next example the attachment causes the
first argument to be displayed, and the user then changes that value before continuing execution:

@STOP ON CALL SUBJ; PRINT ARG. J

@GO

/J9:CALLSUBJ ARG.J=-J

@ARG. J = 0

@GO

In this case SUBJ is called at line number J9 of the main program, which appears in the source listing as follows:

J9: CALL SUBJ (IVAL,IPRIME)

When the user gives the command 11 ARG. J = 0 11 , !VAL is zeroed.

To change or display al I the arguments, 11 ARG S. 11 may be used in preference to I isting each argument separately. An
example is shown for the ON CALLS command, below.

ON CALLS Command

The ON CALLS command is a version of the ON CALL command that applies to all calls and functions. It is often
used to provide a limited flow trace of the program. The following ON CALLS command will display each CALL
and (nonintrinsic) function reference; furthermore, it will show the values of all the arguments at each such call:

@ON CALLS; PRINT ARGS.

@

PRINT Command

PRINT is used to display the values of variables or arguments (see the ON CALL and ON CALLS commands). (In
place of PRINT the user may also use OUTPUT or simply a question mark.) Two examples follow, the second of
which shows how a list of variables can be displayed with a single PRINT command:

@PRINT V (J)

. J25000

@PRINT I, JI K

30

40

50

@

ON CALL/ON CALLS/PRINT Commands 90 16 77A- l (8,171)

Doto Check-In Calls

Data check-in calls are used to determine at what point a program variable is affected! Check-ins are made for
each of the following:

1. Assignment statements.

2. ASSIGN statements.

3. Variable settings for DO or REPEAT statements.

4. The setting of multiple dummy counters.

5. Library routines that set arguments: DVCHK, OVERFL, SETEOF, EOFSET, SSWTCH, SLITET, BUFFERIN,
BUFFEROU, DECODE, and ENCODE.

6. Library routines that store into lists or buffers: BUFFERIN, 9BINREAD, 9INPUTL, and 9IEDIT. Cl:hus, data
check-ins may occur during data input. When a list of variables is stored, a data check-in occurs for each
variable in the order that it appears.)

Note that data check-in calls are not made in "Sin column 1" statements or in the debugger itself (see "Value
Change Command" in Chapter 5).

Colling Sequence Calls

Calling seguence calls are made prior to standard calling seguences, to allow the user to examine or change the
values of arguments before entering the called routine. Specifically, they are made for each CALL statement and
for each reference to the following:

1. FUNCTION statements.

2. SUBROUTINE statements.

3. ENTRY statements.

4. Statement functions.

5. Nonintrinsic library functions (see "Library Subprograms" in the XDS Sigma 5/7 Extended FORTRAN Reference
Manual).

Entry Point Calls

Entry point calls are made for each SUBROUTINE, FUNCTION, or ENTRY statement. These calls have two pur
poses: first, they register the entry point so that messages output by the debug routines will clearly annotate the
position in the program, and second, they link debug tables when two or more debug-mode compilations are loaded
as a single program. The user has no control over entry point calls but should be aware of their effect. In particu
lar, debug routines know where an "external" debug table is located only when one of the external entry point calls
is exercised (via a CALL statement or function reference). Once the debug tables have been linked, they stay linked
and cannot be unlinked by any debugging command (such as restarting). However, the debug tables are unlinked by
reloading.

Note: The user can force early linkage. For example, to link up the debug table for the external subprogram SUB
the following steps could be used:

1. Issue the command STOP ON CALL SUB.

2. Branch to and execute a statement that calls SUB.

3. Issue a stepping command (@).

As a result of these steps, linkage is accomplished without actually executing the subprogram.

tThis determination is made by storage location rather than by variable name, Thus, if X is equiv~lent to Y and the
user asks for notification of storage into..X, he will be notified when either X or Y is stored into.

Special Calls 17

18

4~ DEBUGGER COMMAND LANGUAGE

This chapter covers general rules used to form debugger commands, special symbols used t•) describe debugger
commands, and data elements commonly used in the commands. The actual debugger commands are described
in Chapter 5.

General

Debugging commands are simple but readable, and artificial codes are avoided. In general, many of the normal
rules of English grammar apply to debugger commands. Blanks are used to separate words and should not be
embedded in the middle of command words or specifiers. Furthermore, words should not be run together. The
command syntax minimizes the use of the shift key.

Each debugging command occupies a single line; continuations are not allowed. The line is limited to 72 characters,
and a new line character is automatically inserted at the 73rd character position.

No name {or "identifier") in a command may contain more than eight characters. Otherwise, the usual FORTRAN
conventions hold; for example, identifiers must be made up of letters and decimal digits, the first of which must be
a letter. {See 11 Identifiers", Chapter 2, XDS Sigma 5/7 Extended FORTRAN IV Reference Manual for the usual
FORTRAN conventions.)

Only a limited number of commands can be stored at any one time. If the user inputs one command too many, it is
rejected and an error message is printed. Before the new command can be accepted on reissuance, one or more of
the existing commands must be revoked.

Typographical Conventions Used In This Manual

Chapter 5 describes each debugging command and its specifications. The fol lowing conventions are used in explain
ing the format of the commands or giving examples:t

1. Lowercase items are used to indicate user-supplied data; that is, they must be replaced with actual names, added
parameters, variables, etc.

2. Capitalized items must be typed exactly as they appear.

3. All other symbols {except for brackets, braces, and ellipses) are typed exactly as they appear.

4. Items enclosed in brackets [J are optional.

5. Items stacked inside braces { } indicate a choice must be made by the user.

6. Ellipses indicate repetition. For example,

[x] ...
means that x is optional and more than one successive x is al lowed.

7. The special symbol@) is used for carriage return, new line, or line feed. In on-line operation, commands are
always terminated by@). In batch operation, the user may omit it, but blanks are required to "fill out" the re
mainder of the 72-character record {characters after the 72nd are ignored). {The carriage return character is
replaced by a new line character when debugging commands are interpreted.)

8. Blanks are used for delimiting words and specifications. This does not imply that only blanks delimit words.
Semicolons, commas, relational operators, plus or minus signs, slashes, and @also delimit words and specifi
cations. {The horizontal tab character is replaced by a blank when debugging commands are interpreted.)

tin examples and descriptions it is always assumed that debug-mode FORTRAN compilations are applicable.

Debugger Command Language 901677A-1 (8/71)

Common Command Elements
The fol lowing elements are used quite often in debugger commands:

1. Variables, which denote scalars, whole arrays, or array elements.

2. Constants.

3. Arguments, which may be generally or individually specified.

4. Positions, which specify statements or substatements by referring to source line numbers or statement labels.

5. Qualifiers, which are used to specify regions within a program.

These commonly used command elements are described in more detail in the following paragraphs.

Note: In this section and in Chapter 5, the terms "break", "statement break", and "data break" are frequently
used. They function as fol lows. A "break" results in stopping execution of the program and going to the
debugger; a "statement break" results in going to the debugger before executing the statement; and a "data
break" results in going to the debugger when storing into a variable.

Variable

The debugger recognizes three types of variables: array elements, whole arrays, and scalars. Each of these types is
designated by a name, and the name must appear in an appropriate debug table name list. (Note: the name list
only contains variable names; it does not contain dummy names or temp cell names.)

Array Element

There are two ways to reference an array- by subscripting and by element count. Subscripting can be used for vector
and nonvector arrays, while element count can only be used for nonvector arrays. To reference an array element
in subscript form, write the variable name, followed by positive or negative integers in parentheses. The number of·
integers in parentheses must match the number of dimensions in the array. In the following sample array element, Z
is a three-dimensional array:

Z(3,l,l)

Note: In a FORTRAN program, implied DO loops or variable names can be used as subscripts, but the FORTRAN
debugger recognizes only positive or negative integers as subscripts.

To reference an array element by element count, simply write the variable and follow it with a natural number-an
unsigned integer greater than zero - in parentheses. Examples of referencing array elements by element count are

M(3) Refers to the third element of the (nonvector) array M.t Say, for example, that the array M has the
elements 1, 3, 5, 7, illustrated as

5

3 7

The element M(3) would be the third element, or 5.

Z(6) Refers to the sixth element of the (nonvector) array Z.t Say, for example, that the array Z has the ele
ments 1, 4, 8, 12, 16,20,24,28,32, illustrated as

l

4

8

12

16

20

24

28

32

The element Z(6) would be the sixth element, or 20.

Although individual subscripts are not range-checked, the debugger normally verifies that array elements (in debug
commands) are within the range of the array. The user can prevent this verification, however, by placing an "@"
after the left parenthesis of the array element; for example

M(@5)

could be used to reference the item following the 4-element array M.

tVector arrays are always expressed in subscript form.

90 16 77A- l (8/71) Common Command Elements 19

Whole Array

A whole array is referenced simply by writing the array name (without subscript or element count). This is roughly
equivalent to writing a series of references to each element in the array.

Scalar

A scalar is the most common kind of variable. For example, A, B, and Care scalars in the fol lowing FORTRAN
statement:

A= B + C

Constant

There are constants for each type of data. And of the many kinds of constants, the debugger recognizes the fol lowing:

1. Integer constants

2. Real constants

3. Double precision constants

4. Complex constants

5. Double complex constants

6. Logical constants

.7. Text constants

8. Hexadecimal constants

The forms for the first five types (integer, real, double precision, complex, and double complex) are as specified
for" Numeric Input Strings" in Chapter 6 of the XDS Sigma 5/7 Extended FORTRAN IV Reference Manual (Publica
tion No. 90 09 56), However, the forms for the last three types (logical, text/ and hexadecimal) have been modi
fied for the debugger to simplify and speed up interpretation. These modified forms of the text and hexadecimal
constants are also used by Symbol, Meta-Symbol, and DELTA.

Logical constants must begin either with a Tor For with a decimal point immediately followed by T (for true) or F
(for false). Subsequent characters for the constant are optional, but if used they must be letters or decimal points.
Examples of logical constants are

T

F

.TRUE .

• FALSE.

Text constants are written in the form

's'

wheres is a string of characters representing the desired text. (Two consecutive apostrophes may be used to repre
sent a single apostrophe in the text string; thus, 'AB' 'C' results in the text string AB'C.) The number of characters
in each text string must be consistent with the type of variable affected by the text constant:

No. of Characters

l to 4

5 to 8

13 to 16

Type of Variable Affected

Integer, real, or logical

Double precision or complex

Double complex

t The "text" constants recognized by the FORTRAN debugger are modifications of the "I iteral" constants described
in the Extended FORTRAN IV Reference Manual.

20 Common Command Elements

Using the AT and SKIP commands, the user could reference these statements as follows:

Statement and
Action Desired

Skip X = Y

At X = Y

Skip IF (A .EQ. B)

At IF (A .EQ. B)

Skip X = X + l

At X = X + l

Skip IF (A .EQ. B) X = X + l

With State
ment Label

SKIP 7S- l

AT 7S-l

SKIP 7S

AT 7S

SKIP 7S+ l

AT 7S+l

Possible Commands

With Source
Line Number

SKIP 95
SKIP 96-1

AT 95
AT 96-1

SKIP 95+1

AT 96
AT 95+1

SKIP 96+1
SKIP 95+2

AT 96+1
AT 95+2

SKIP 96

Offsets are used to pass over entries in the source line table. But remember that the table may have more than one
entry for some line numbers and no entries for other line numbers - more than one entry when a line contains a sub
statement and no entry when there is a continuation line or comment line. For example, look at the following por
tion of a FORTRAN program:

Source Line No.

95

96

97

98

99

Label

7

Statement

X=Y

IF (A • EQ. B) X = X + l

T=2

COMMENT --COMPUTE NEXT STEP

U=Z

The source line table for these statements will contain two entries for source line 96 (the first entry for the
IF (A .EQ. B) substatement and the second for the X = X + l substatement) and no entry for I ine 98. Then, the com
mand SKIP 7S+4 would reference the U = Z statement.

Qualifiers

Qualifiers are used to differentiate between various regions of a program. The main program defines a region and
so does each SUBROUTINE, FUNCTION, and ENTRY statement. A qualifier in a debug command has the form

/ (to specify the main region; the character immediately before the slash cannot be a letter)

or

name/ (to specify a named region; the slash immediately follows the name - no embedded blanks)

where name is a FUNCTION, SUBROUTINE, or ENTRY identifier.

Qualifiers are important since so much duplication is allowed in a FORTRAN program. The same source line num
ber, statement label, or variable name may be used in different subprograms; qualifiers are needed to identify the
proper reference. To qualify an item, the user first writes the qualifier and then the item; for example,

SUBl/X (indicates that X is to be found in the debug table for subroutine SUBJ)

/15 (indicates source line number 15 in the main program)

Common Command Elements 23

24

Qualifiers are not always necessary. Obviously if the program being debugged consists only of a main region,
qualifiers are redundant. The following paragraphs describe the interpretation of qualified and unqualified items in
debug commands.

Before presenting the qua I ification rules, it is necessary to understand how each of the three types of debug commands
(direct, stored, and attachable)t is interpreted:

1. Direct commands are immediately interpreted and executed on input.

2. Stored commands are partially interpreted on input. If the command has a qualifier indicating a debug table and
that debug table has been located previously by the debugger, then the command is "activated" and inter
pretation is completed (for the stored command, but not for any attachment). However, if the indicated table
has not yet been located, the command is "deferred" until an entry point call check-intt occurs for the debug
table. Once this cal I occurs, the command is interpreted and activated. Active stored commands are tested
during the program run. When the requirements of the stored command are met, the command is exercised. The
first time a stored command is exercised is critical if there are any commands attached.

3. Attached commands are only checked for syntax on input. Interpretation takes place when the accompanying
stored command is first exercised. Thereafter, attached commands are executed without reinterpretation.

When debug commands are input or exercised, execution of the FORTRAN program will stop at a point called the
"current point". The current point is determined by the latest check-in cal I, and it specifies the current debug
table and the current program region. The current debug table and the main debug table are used in the following
qualification rules:ttt

l. If an item is qualified, only the indicated debug table is searched for that item.

2. If a stored command or direct command is not qualified, then the current debug table is searched when the com
mand is input. If that search fails, the main debug table is searched (unless the current table is the main table).
If both searches are unsuccessful, the command is rejected.

3. If an attachment to a stored command is not qualified, then the current debug table is searched when the com
mand is first exercised. If that search fails, the main debug table is searched (unless the current table is the
main table). If both searches are unsuccessful, the entire command is rejected.

Qualifiers may be used only in front of variable names, source line numbers, or statement labels. When used with
variable names and source line numbers, the qualifier indicates a specific debug table; but when used with statement
labels, the qualifier also indicates a specific region. This is important because of the strategy used by the debugger
in hunting for labels.

Once a region is determined (either by qualifier or by default), that region is searched. If the search fails, the
debugger searches the next region only if that region begins with an ENTRY statement. As long as there are no
duplicate labels, statement labels can be referenced by using subroutine or function name qua I ifiers. A duplicate
label can be referenced only if it is the first such label after an entry point statement; in that case, the qualifier
to use is the entry name.

tThese commands are discussed in more detail in Chapter 5.

ttSee "Entry Point Calls" in Chapter 3.

tttOf course the current debug table may actually be the main debug table; this happens by default during initial
input of commands.

Common Command Elements 90 16 77A-1 (8/71)

5. DESCRIPTION OF COMMANDS

Chapter 2 covered the typical use of each debug command, and Chapter 4 described notation conventions used in
explaining debug commands and defined the following important debug command elements:

variables
constants
arguments
positions
qualifiers

This chapter specifies the syntax and operation of each debug command and describes execution stops and error
detecti on features.

There are three categories of debug commands - stored, attachable, and direct:

l. Stored commands are retained by the debugger and tested during program execution. Each time the requirements
of a stored command are met by the program, the stored command is exercised.

2. Attachable commands may be attached to certain stored commands. When a stored command is exercised, any
commands that are attached to it are also exercised. Attachable commands may also be used directly (that is,
not attached to a stored command); usually this means they are executed immediately and are not retained.
(Exceptions to this are postmortem HISTORY and postmortem PRINT commands.)

3. Direct commands are executed immediately and are not retained by the debugger.

Stored Commands

The fol lowing debug commands are stored commands:

SKIP
AT
ON
ON CALL
ON CALLS

These commands are retained by the debugger until replaced by a similar command or revoked by a KILL command.
A stored command contains "unique identification", which is defined to be the command's required (not optional)
parts. The following list shows only the unique identification of each stored command:

SKIP position
AT position
ON variable
ON CALL name
ON CALLS

(where "name" is an entry point name)

If two AT commands, for instance, are issued for the same position, the first command is automatically replaced by
the second one.

Positions and variables are translated into corresponding memory locations. As a result, SKIP, AT / and ON commands
are either "deferred" or "active". They are active when the corresponding memory location is known. Positions and
variables in the main program can always be located. However, positions and variables in external subprograms are
locatable only after the subprogram has been entered (see "Entry Point Calls" in Chapter 3). Until that time, such
commands are deferred and do not participate in the debugging process.

The SKIP command has only one purpose - to prevent execution of FORTRAN statements. The remaining stored com
mands are multipurpose, depending on options selected by the user. By using a STOP specification, they can be
made to halt execution. In on-line runs, this allows the user to obtain control and issue further debug commands.
In batch runs, this produces display of any requested postmortem HISTORY or PRINTs before the run terminates.

901677A-l (8/71) Description of Commands 25

Another multipurpose feature of AT, ON, ON CALL, and ON CALLS commands is that they may have attachments
(that is, attachable commands added to them). This permits a stored command to perform a number of debugging
functions.

STOPs and attachable commands are associated with a stored command in accordance with the following general
form: t

(STOP] stored (STOP] (;attachable J ... @>

If more than one attachable command is supplied, they will be exercised one at a time in the order given after the
stored command is exercised. However, a STOP takes effect only after the I ast attachable command has been
exercised. (A STOP is ignored if a GOTO attachment is exercised.)

SKIP Command

SKIP is the only stored command that does not allow STOP specifications and attachments. SKIP commands may be
used in on-line or batch runs. They prevent the execution of FORTRAN statements at selected positions. The
general form of a SKIP command is

SKIP position (TO unqualified position]@>

Thus, a SKIP command may be used _to skip a single statement or a series of statements. The positions in a
SKIP command define the "range of the skip".

SKIP commands are exercised at the conclusion of a statement check-in call (see Chapter 3) when that statement is
in the range of the skip. Execution then resumes at the next statement.

It is possible to branch into the range of a skip or to step to each statement in that range, and AT commands may be
exercised within the range. FORTRAN statements in the range of a skip will be skipped in any case.

Positions in a SKIP command are interpreted in one of two ways. If a position uses a statement label or an offset, it
is interpreted to mean only the indicated statement. However, if a position uses a line number (without an offset),
it is interpreted to mean the whole line - including any substatements for the statement at that line number.

When the debugger receives a SKIP command, it attempts to translate the positions into corresponding memory loca
tions. Translation is delayed, however, if the position is qualified by an entry point name for an external subprogram
not yet entered during execution. In this case the SKIP command is deferred until the subprogram is entered.

The debugger rejects a SKIP command that would bypass the end of a subprogram (that is, an END statement). If a
SKIP command bypasses the terminal statement of a DO loop or a REPEAT loop, a warning message is issued but the
SKIP command is not rejected.

AT Command

AT is a stored command; attachments and STOP specifications are allowed. AT commands may be used in on-line or
batch runs. They cause "statement breaks"; that is, they put the debugger in control before execution of a
FORTRAN statement at a selected position. The general form of an AT command is

AT position (#n]

where n is an integer greater than zero. If the #n option is not used, a statement break occurs at each execution of
the statement at the selected position. If the #n option is used, a statement break only occurs at every nth execu
tion of that statement (every nth time after the AT command is issued).

An AT command is exercised during a statement check-in call for the selected position. When a statement break
occurs, the debugger displays that position and exercises any attachments to the AT command. (See "Position Messages"
in Appendix A.) If a STOP specification is used with the AT command, execution stops as described later in this chapter,

t
"Stored" stands for any AT, ON, ON CALL, or ON CALLS command and "attachable" stands for any of the attach-

able commands specified later in this chapter.

26 Stored Commands

When the debugger receives an AT command, it attempts to translate the position into a corresponding memory lo
cation. Translation is delayed, however, if the position is qualified by an entry point name foran external subpro
gram not yet entered during execution. In this case, the AT command is deferred until the subprogram is entered.

ON Command;

ON is a stored command; attachments and STOP specifications are allowed. ON commands may be.used in on-line
or batch runs. They cause "data breaks"; that is, they put the debugger in control after data is stored in a selected
variable. The general form of an ON command is

ON variable [relation constant]

The variable may be a scalar, array element, or a whole array. t The constant may be any constant recognized by
the debugger, but it must be compatible with the type of the variable selected. The "relation" may oe one of
the following operators:

.EQ.

.GT • >

. LT. <

.LE. <= =<

.GE. >= =>

.NE. >< <>

If the operator is one of those listed in the first column, however, the first period in the operator must not immedi
ately follow the name of the variable. A blank can be used between the variable and the operator.

There are two general kinds of ON commands - conditional and unconditional. An unconditional ON command has
the form

ON variable

It causes a data break each time the debugger is notified that the variable has been stored into.

A conditional ON command has the form

ON variable relation constant

It causes a data break only when (1) the debugger is notified that the variable has been stored into and (2) the stored
value satisfies the specified condition (that is, "value relation constant" is logically true).

An ON command is exercised during any data check-in call affecting the location (or locations) allocated for the
selected variable. When a data break occurs, the debugger displays information and exercises any attachments to
the ON command. If a STOP is used with the ON command, execution stops as described later in this chapter under
"Execution Stops".

The information displayed on a data break includes the position of the statementtt causing the data break. (See
"Position Messages" in Appendix A.) In addition, the variable is identified and its value displayed in the manner
described for the PRINT command (see "Value Display" below).

When the debugger receives an ON command, it attempts to translate the variable into its allocated memory
location. Translation is delayed, however, if the variable is qualified by an entry point name for an external sub
program not yet entered during execution. In this case the ON command is deferred until the subprogram is entered.

tlf an ON command designates a whole array that is not a vector (for example, a matrix), the debugger displays the
element count (not the subscripts) of the array element causing a data break. For instance, A(l) identifies the first
element of the nonvector array A.

ttln the unusual case where an input/output list contains an expression making a nonintrinsic function reference, the
position may indicate the function rather than the input/output statement. The HISTORY command can be used to
find the position of the input/output statement.

Stored Commands 27

28

ON CALL Command

ON CALL is a stored command; STOP specifications and attachments are allowed - including attachments that dis
play or change the value of arguments. ON CALL commands may be used in on-line or batch runs. They cause
"calling sequence breaks"; that is, they put the debugger in control before entering subroutines or nonintrinsic
functions. The general form of an ON CALL command is

ON CALL name

where name is the name used in CALLs or function references to the routine of interest.

An ON CALL command is exercised during calling sequence calls that specify the selected name. When a calling
sequence break occurs, the debugger displays information and exercises any attachments to the command. If a
STOP is used, execution stops as described later in this chapter under "Execution Stops".

The information displayed on a calling sequence break includes the position of the statement making that CALL or
function reference. (See "Position Messages" in Appendix A.) In addition, the specified name is displayed fol
lowing the word CALL.

ON CALLS Command

The ON CALLS command is a generalized version of the ON CALL command. It causes a cal I ing sequence break
for every CALL or nonintrinsic function reference. The form of this command is

ON CALLS

Note: In case the user wants to issue an ON command for a variable named CALLS, he must qualify the variable
-- (for example, ON /CALLS).

The use of the ON CALLS command does not interfere with an ON CALL command. If a calling sequence break
occurs for a name selected by an ON CALL command, that command is exercised. The ON CALLS command is
not exercised in this case.

Attachable Commands

The following debug commands are attachable commands:

PRINT
OUTPUT
? (question mark and OUTPUT are synonymous with PRINT)
Value change
GOTO
FLOW
NOFLOW
HISTORY
RESET HISTORY
USE FILE
USE ME
KILL

Attachable commands may be "directly used" or they may be attached to certain stored commands. When directly
used, attachable commands have the general form

attachable (;attachable] ... @)

When attached to stored commands, attachable commands are issued in accordance with the fol lowing general form: t

(STOP) stored [STOP) ;attachable [;attachable] ... @)

Note that semicolons are used for separating the commands. A series of commands on a line are exercised in the
order given - from left to right.

Directly used attachable commands are usually exercised immediately. In batch runs, however, HISTORY and
PRINT (or for OUTPUT) commands are retained since it would be pointless to display such information before execu
ting the program. When directly used, these commands are exercised when the run stops (see "Postmortem HISTORY"
and "Postmortem PRINT" below).

t
See "Stored Commands" above.

Attachable Commands 90 16 77 A- 1 (8/71)

Attachable commands attached to a stored command are exercised each time the stored command is exercised. The
first time an attachable command is exercised, its interpretation becomes final; that is, it does not change on later
exercise of the command. This procedure mainly affects attachable commands (PRINT, OUTPUT, ?, value change,
and GOTO) that may select unqualified positions or unqualified variables. The resulting interpretation will corres
pond either to the current subprogram or to the main program. The current subprogram is the one containing the
position displayed when·the stored command is exercised. AT commands are always exercised at the same position.
However, an ON command, ON CALL command, or ON CALLS command may be exercised in a number of sub
programs. The user must consider this possiblity when selecting positions and variables for attached commands. A
safe rule in such cases is to qualify positions and variables when in doubt.

PRINT Command and OUTPUT Command and ? Command

PRINT, OUTPUT, and the question mark are synonymous. For simplicity, only PRINT is used in this document.

PRINT is an attachable command that may be used in on-I ine or batch runs. Many variations and options apply to
PRINT commands; so its general form is necessarily complex. Its complexity requires that certain command elements
be defined before the general format is defined.

A PRINT command can display the value of the following items: variables, subarrays, arguments, and positions. A
subarray is a contiguous portion of an array. In form, it resembles an array element, but at least one subscript is re
placed by a "subscript-range" (two subscripts separated by a colon). As an example

PRINT A(2:3,4:5)

results in the display of

A(2, 4)
A(3,4)
A(2, 5)
A(3,5)

Subarrays are acceptable only in PRINT commands; they are not al lowed in ON commands or value change commands.

The value of a position is the source line number of that position. Common reasons for requesting position displays
are (l) to clarify the debugger's interpretation of a position that contains an offset and (2) to verify that the de
bugger recognizes a particular position. (Comment lines, continuation lines, and most nonexecutable FORTRAN
statements are not recognized; also, the position may reference an external subprogram not yet available to the de
bugger.) Arguments may be displayed only during calling sequence breaks; see the ON CALL and ON CALLS
commands above. The value of an argument is usually displayed in the same manner as the value of a variable. This
is described below under "Value Display". Two special display forms are available - IN HEX or IN TEXT. IN HEX
produces hexadecimal value while IN TEXT produces string value (that is, display of EBCDIC characters). Thus, a
print "item" is defined to be one of the following:

position

[IN HEX]
argument IN TEXT

. [IN HEX J variable IN TEXT

[IN HEX J
subarray IN TEXT

The user may request that a single PRINT command display a list of items (commas are used to separate items in an
item list). The general form of a PRINT command is

PRINT D~ ~ix~] [item J [, item J · · ·
Table 1 indicates the meaning of certain PRINT commands. This table illustrates the following points:

1. If the PRINT command does not include an item list, then all known variables are displayed. A variable is
"known" if it appears in the name list of a debug table available to the debugger (see Chapter 3). A blank
line precedes the displayed variables for each name list.

2. If no IN HEX or IN TEXT appears in a PRINT command, ordinary values are displayed.

90 16 77A.,-l (8/71) Attachable Commands 29

30

Table 1. PRINT Commands

Command Meaning

PRINT Displays the ordinary values
t

of all variables
known to the debugger.

PRINT IN HEX Displays the hexadecimal values of all known
variables.

PRINT X Displays the ordinary valuet of X.

PRINT X, Y Displays the ordinary value/ of X and Y.

PRINT IN HEX X, Y Displays the hexadecimal values of X and Y.

PRINT X, YIN HEX Displays the ordinary value
t

of X and the
hexadecimal value of Y.

PRINT IN HEX X, YIN TEXT, Z Displays the hexadecimal values of X and Z
and the string value of Y.

tOrdinary values are described under "Value Display" below.

3. If any item is followed by IN HEX or IN TEXT, then the displayed value of that item is in hexadecimal form
or string form.

4. If IN HEX or IN TEXT follows PRINT, then all displayed values are in hexadecimal form or string form {except
for any items that contain their own IN TEXT or IN HEX specifiers}.

Postmortem PRINT

During on-line runs, a direct PRINT command is exercised immediately. However, during batch runs a direct PRINT
command is stored so it can be exercised when execution stops. It is called a "postmorten PRINT" command. Post
mortem PRINTs are exercised whenever execution stops provided that the debugger has control, which is normally
the case. However, if a halt occurs accompanied by a monitor error message, the debugger does not regain control.
Note: Postmortem PRINT commands may have PRINT attachments, but no other attachable command is allowed.

Value Display

Values are displayed as a consequence of ON commands and PRINT commands. ON commands only display vari
ables, using ordinary value. PRINT commands may display positions, arguments, subarrays, or variables, and they
may show hexadecimal value, string value, or ordinary value.

Each value display may include three parts: an identifier, an equal sign, and the value. The identifier and equal
sign are not shown for direct {on-line} PRINT but in all other value displays, they are shown.

The identifier for a position is essentially the same position used in the PRINT command. Arguments are identified
as "ARG. n ", where n indicates the nth argument. The identifier of a variable depends on the kind of variable used
in the PRINT or ON command. If the variable was qualified, the qualifier is displayed. The name of the variable
is then shown. For scalar variables, no further identification is needed. For array elements, however, the name is
followed by subscripts or an element count enclosed in parentheses. If the PRINT or ON command designed an
array element {as opposed to the whole array}, then the value display uses the same designation but with blanks and
plus signs omitted. In case of whole-array designations, the identifier for the value display includes either the sub
script (for a vector element) or the element count (for an element of a nonvector array}. The debugger cannot dis
play the individual subscripts of a nonvector array element, because in general the same element can be accessed
with a variety of subscripts.

Usually the identifier, equal sign, and value appear on the same line. However, the value is shown indented on
the next line if there is any danger of exceeding the right margin of the current line.

As stated previously, the value of a position is its source I ine number. For variables and arguments, the displayed
value depends on "type" (for example, integer, real, logical, etc.).

Attachable Commands 90 16 77 A-1 (8/71)

String values occur when a PRINT item uses the IN TEXT specification. A string value is displayed as a certain num
ber of EBCDIC characters enclosed in single quotation marks. (The debugger does not modify these characters
even if they are nonprinting or unused EBCDIC characters.) The number of characters output depends on the type of
the item displayed. Four characters are output if the type is integer, logical, or single precision real (also for argu
ments having no type). Eight characters are output for complex and double precision real items; 16 characters are
output for double precision complex items.

Hexadecimal values occur when a PRINT item uses the IN HEX specifications. They are also produced in cases
where ordinary values would be incorrect; this is discussed below. A hexadecimal value is displayed as a certain
number of hexadecimal digits enclosed in single quotation marks with a capital X before the first quotation mark.
Eight digits are output if the type of the displayed item is integer, logical, or single precision real (also for argu
ments having no type). Sixteen digits are output for complex and double precision real items; 32 digits are output
for double precision complex items. The IN HEX specification is valuable because it produces the exact value of
an item as used by the computer.

Ordinary values usually conform to the formats specified for the OUTPUT statement in the XDS Sigma 5/7 Extended
FORTRAN IV Reference Manual. Exceptions occur in the following cases:

l. For integer items, the debugger tests the value for the possibility that it represents a known statement label. If
it does, the integer value and the label are shown. The label is enclosed in parentheses.

2. For real numbers (including double precision and both parts of complex items), two tests are made. If the num
ber represents a known statement label, the label is displayed in parentheses; the real value (or values) are not
displayed (since they are not normalized floating-point numbers). If the real number (or numbers) are not nor
malized floating-point numbers and do not represent a known statement label, the item's hexadecimal value is
displayed.

3. For arguments that have no type (PZE in the XDS Sigma 5/7 Extended FORTRAN IV Operations Manual), the
value is tested for representing a known statement label. If it does, the label is displayed in parentheses.
Otherwise, the debugger displays an asterisk (*), and the user must consult his source listing to determine
what the argument was (for instance, it may be the name of an external subroutine).

It should be noted that if an argument is itself a dummy for a particular cal ling sequence, the true argument is dis
played, not the dummy.

Value Change Command

Value change commands are attachable commands that may be used in on-line or batch runs. They are used to alter
the contents of variables. The general form of a value change command is

j variable l t t I = cons an
argument

Arguments can only be changed during calling sequence breaks; see the ON CALL and ON CALLS commands above.
Changing an argument is identical to changing the variable (scalar or array element, not whole array) represented by
the argument. The constant must conform to the type of the variable affected. When the "variable" in a value
change command is a whole array, each element of the array receives the constant value. This is sometimes useful
for initializing an array.

No display occurs when a value change command is exercised. Value change commands do not cause data breaks
(see the ON command above).

GOJO Command

GOTO is an attachable command. It may be used in on-line or batch runs; however, GOTO commands may not be
directly used in batch runs (they r'nay only be attached to stored commands). GOTO commands alter the path of
execution by branching to a selected position. The general form of a GOTO command is

GOTO position

Blanks are al lowed between GO and TO.

It is useless to attach any commands to a GOTO command. Execution resumes, ignoring any further attached
commands.

90 16 77 A-1 (8/71) Attachable Commands 31

When GOTO is attached to a stored command, exercising the GOTO command produces the same flow tracing or
history data as a GOTO statement. However, directly used GOTO commands produce a special history display,
"GOTO CMD--position", where the position message indicates the first executable FORTRAN statement reached
by the GOTO.

Directly used GOTO commands resume execution only momentarily. As soon as a statement check-in call occurs/
the run stops, a position messagett is displayed, a prompt character (@) is displayed, and the debugger awaits
commands. This procedure allows the user to issue stepping commands after a direct GOTO.

When exercising a GOTO command that is attached to a stored command, execution immediately resumes at the
selected position. Any STOP specification for the stored command is ignored.

FLOW and NOFLOW Commands

FLOW and NOFLOW are attachable commands. They may be used in on-line or batch runs. The FLOW command
turns on the flow trace display mode; NOFLOW turns it off. The forms of these commands are

FLOW
NO FLOW

Blanks are al lowed between NO and FLOW.

When these commands are exercised as attachments to stored commands, the words FLOW and NOFLOW are dis
played if the flow trace display mode changes. The default setting of this mode is off.

While the flow trace display mode is on, the debugger displays messages at the following points:

CALL statements
Nonintrinsic function references
RETURN statements
Returns from statement functions
GOTO statements
GOTO commands that are attached to stored commands
Arithmetic IF statements
Substatements of logical IF statements that have a "true" logical expression

Between these points, execution is either sequential or else looping because of DO or REPEAT statements. (How
ever nondebug-mode subprograms and "Sin column 1" statements do not participate in the flow trace.)

The formats of the flow trace messages are as follows:

1. CALL statements and nonintrinsic function references:

position CALL name

where position indicates the statement containing the CALL or function reference. (See "Position Messages" in
Appendix A.)

2. RETURN statements and returns from statement functions:

t

position 1 RETURN
position2

where position 1 indicates the statement making the return, and position2 indicates the statement returned
to.

See Chapter 3.

ttSee "Position Messages" in Appendix A.

32 Attachable Commands

identified by a subscripted array element while the KILL might identify the array element using its element count.
This may only be done with active commands. Alternate forms cannot be used in deleting deferred commands.

Notification is provided when a "missed kill" occurs; that is, when the identified command is not found by the de
bugger. This is not a serious error because of circumstances similar to the following case:

SKIP 21 TO 25 9
ON X = > O; KILL SKIP 21 '@)
ON D = > O; KILL SKIP 21',@

In the above case, the user wants to bypass source line 21 through 25 until either X or D become positive. If X goes
positive first, the SKIP command is killed. Later when D goes positive, there is no SKIP command to kill, and the
debugger simply issues a warning that it missed the kill and continues execution.

· Direct Commands

The following debug commands are direct commands:

Single and double break
LOC
GO
QUIT
RESTART
REWIND
ABORT LEVEL
Stepping and backtracking

Of these commands, only GO and ABORT LEVEL are permitted in batch runs. Direct commands are exercised im
mediately after being input. No command may be attached to a direct command. Although not recommended, it is
possible to attach a direct command to directly used attachable commands. They have the general form

[attachable (;attachable J ... ; J direct(§

(None of the "attachable" commands should be a GOTO command or a HISTORY command if this is an on-line run.)

i Single and Double Break Commands

Single and double breaks are direct commands. Attachments are impossible. The break command may only be used
in on-line runs. They are used to interrupt program execution so that new debug commands can be issued.

The single break command is issued by depressing the BREAK key once. The debugger responds by preparing to stop
at the next statement check-in call (Chapter 3) and then resumes execution. When that call takes place, the de
bugger displays a message, displays a prompt character(@), and awaits commands. •The following message format
is used:

position BRK
@

(See "Position Messages" in Appendix A.) There may be a significant time delay between depressing the BREAK key
and receiving the break message. This would be particularly evident during high volume displays, so a special pro
cedure is followed in such cases. If a break is issued during the printout of one of the fol lowing, that printout is
discontinued.

1. Al I variables in the program.

2. A whole array.

3. A subarray.

4. All arguments of some call.

The message "BROKEN" is displayed. If the PRINT command is attached to a stored command, execution resumes
until normal recognition of the single break (thus, more than one "BROKEN" message may appear. However, if the
PRINT command is not attached, the debugger takes the shortcut of immediately requesting another command.

90. 16 77 A-1 (8/71)
.!..-=., .. ,

Direct Commands 35

36

A single break is usually sufficient to gain control at the terminal. But the user may issue a double break command
if control is not obtained within a reasonable time. To issue a double break command, the user depresses the BREAK
key again after issuing the single break command. The debugger responds by interrupting execution (it cannot be
resumed), displaying a message, displaying a prompt character, and awaiting commands (GO and stepping commands ,
will be rejected). The following message format is used:

DBL BRK AFTER position CAN'T GO OR STEP
@

where the position reflects the latest position known to the debugger and includes the appropriate qualifier, even
though this may be redundant. To start the FORTRAN program running after a double break, the user must first issue
a RESTART or a GOTO command; he may then use GO or stepping commands.

The BREAK key must be depressed for a minimum of one-fifth of a second; otherwise, a spurious character may be
transmitted instead of the break character. There should be an appreciable delay between successive BREAK key
depressions. If the BREAK key is depressed repeatedly in rapid succession, the debugger may receive a single break
instead of a double break. It is also possible for the debugger to react to a double break as if two single break com
mands were issued. This happens if the user issues the second break after the statement check-in call occurs for the
first break but before the BRK message has been transmitted to the terminal. If the BREAK key is depressed while
inputting at the terminal, the current command line is automatically erased.

Since execution cannot be resumed after a double break command, double breaks should be issued only when cir- '
cumstances demand that the run be interrupted. One such circumstance occurs when the user suspects that the
program is looping in nondebug mode (or "Sin column 1 ")code. If the program is looping elsewhere, a single break
will stop the run. The most common circumstance for using a double break is to interrupt high-volume 1/0.

LOC Command

LOC is a direct command. Attachments are not allowed. The LOC command may only be used in on-line runs. It
allows the user to find the hexadecimal location of the code occupied by a FORTRAN statement. The form of the
LOC command is

LOC position [,position]. @>

This command is provided as a convenience when simultaneously using FDP and the machine-language debugger,
DELTA. The hexadecimal value of a position (which is the location of its statement check-in call) is a useful
reference point for machine-language debugging.

GO Command

GO is a direct command. Attachments are not allowed. The GO command is used in on-line runs to start or to
resume execution. In batch runs, there must be exactly one GO command, and it is the last debug command. The
form of the GO command is

GO@)

QUIT Command

QUIT is a direct command. Attachments are not allowed. The QUIT command may only be used in on-line runs.
It is used to speedily terminate the run. Control returns to the monitor after files are closed. The form of the
QUIT command is

QUIT @)

REST ART Command

RESTART is a direct command. Attachments are not allowed. The RESTART command may only be used in on-line
runs. It directs the debugger to prepare to rerun the FORTRAN program. The form of the RESTART command is

RESTART @)

Direct Commands 90 16 77A-1 (8/71)

When RESTART is exercised, the debugger performs as follows:

1. Prepares to resume execution at the beginning of the main program (just after the initialization call -see
Chapter 3).

2. Discontinues stepping if a stepping command is in use.

3. Reestablishes the main debug table as being the current debug table.

4. Erases the history record (i.e., RESET HISTORY).

5. Discontinues backtracking mode if in use (see the HISTORY command).

6. Displays a prompt character (@).

7. Awaits further debug commands.

The RESTART command does not reinitialize program data, and it does not rewind any files.

REWIND Commond

REWIND is a direct command. Attachments are not allowed. REWIND commands may only be used in on-line runs.
They are used to rewind files used by the FORTRAN program (not the use-file). The general form of the REWIND
command is

REW! ND n (,n]. . . @l

where n is the unit number for the file to be rewound. Note that commas (not semicolons) are used to separate the
unit numbers if more than one file is to be rewound by the command. Each unit number must satisfy the following
inequality:

1 $ n $ 65535

ABORT LEVEL Command

ABORT LEVEL is a direct command. Attachments are not allowed. It may be used in on-line or batch runs. When
run-time errors are detected, diagnostic information is displayed and execution either resumes or stops depending on
the error severity level. (See Appendix A.) The error severity level is compared to the abort level, and if it is
equal to or greater than the abort level, the run stops. The debugger assumes the minimum possible abort level (1),
which stops execution on any run-time error. By using the ABORT LEVEL command, this can be changed. The
general form of the ABORT LEVEL command is

ABORT LEVEL = n @l

where n is the desired abort level and is an integer satisfying the following inequality:

1 $ n $15

The abort level is seldom changed by on-line users, but batch users often raise the level to continue execution
despite erro~s. (Nondebug-mode FORTRAN runs usually use an abort level of eight.)

Note: If the FORTRAN program specifies an alternate abort exit, this exit is taken and the run does not stop. (See,
for instance, the ABORTSET routine in the FORTRAN run-time library.)

Stepping and Backtracking Commands

Stepping and backtracking are direct commands. Attachments are not allowed. They may only be used in on-line
runs. The general form of these commands is

(n] @l

where n is an integer greater than zero. If the optional n is not used, the debugger assumes n = 1.

If the run is in "backtracking" mode (see the HISTORY command), then these commands cause backtracking; other
wise, they cause stepping.

Direct Commands 37

Stepping

After any execution stop other than a double break, a stepping command causes execution to resume until n state
ment check-in calls (Chapter 3) occur. When the nth check-in occurs, the debugger displays its position (see
"Position Messages" in Appendix A), displays a prompt character(@), and awaits further debug commands. A stepping
command takes precedence over other commands. For instance, if the user steps to a statement designated in an AT
command, the run stops before the AT command is exercised. If execution is resumed, the AT command may then be
exercised - possibly resulting in another stop.

Backtracking

During an execution stop with backtracking mode set, the user may issue backtracking commands to display history
transactions. In essence, he may step backwards through the history record. The intent of the backtracking com
mand is as follows. The user requests backtracking mode with the HISTORY command. He backtracks to examine
the n most recent transactions. After digesting this information, he may issue another backtra~king command to look
at the previous n transactions. This process continues until either the user has sufficient flow history information or
no more information is available.

When all available transactions have been displayed, the debugger displays the message NO MORE HIST. and
automatically leaves backtracking mode, prompting (@)for further debug commands. Backtracking mode is also
terminated if the user issues one of the following commands: GO, GOTO, RESTART, or the general KILL command.

Backtracking commands do hot erase the transactions they display. A second HISTORY command permits backtracking
over the same transactions as its predecessor.

To obtain a complete backtrack of the history record, the user need only supply a large n (n ~ 50). This large n
can be supplied in the HISTORY command as well as any backtracking command.

Error Detection Features

Errors are detected at three points during a debugging run:

By the debugger.

By the Monitor.

By the standard FORTRAN run-time library.

When errors are detected by the Monitor, the debugger has no influence and does not regain control if the Monitor
aborts the run. When errors are detected by the standard FORTRAN run-time library, the debugger always precedes
the FORTRAN run-time error message with a message of the following form:

position ERR

The position message indicates the latest statement known to the debugger when the error wcis detected. (See
"Position Messages" in Appendix A.)

After a run-time error message has been displayed, the debugger is placed in control if two conditions are satisfied:

1. The error severity level is equal to or greater than the abort level.

2. No alternate abort exit has been specified by the FORTRAN program.

If the first condition is not satisfied, execution resumes at the point of the error. (This may cause later errors due
to incorrect operation or data.) If the second condition is not satisfied, execution resumes at the statement speci
fied as the abort exit; see the FORTRAN library routine ABORTSET and also see the "ERR=" specification for READ
statements.t -

However, if both conditions are satisfied, the debugger obtains control and takes action as follows:

• In on-line runs it displays the message RDY TO ABORT, displays a prompt character (@), and awaits com
mands: If the user issues a GO or stepping command, the run aborts. The message ABORTING is displayed
and the use-file is closed before control returns to the Monitor.

• In batch runs the debugger exercises any postmortem HISTORY or postmortem PRINT commands. Then the run
aborts. The message ABORTING is displayed and the use-file is closed before control returns to the Monitor.

tReference: XDS Sigma 5/7 Extended FORTRAN IV and FORTRAN IV-H Reference Manuals.

38 Error Detection Features

Error detection by the debugger covers four distinct classes:

Input/output errors while hand! ing the use-file or debug command input.

Possible errors in command usage {missed Kills and skipping the terminal statement of a DO or REPEAT loop).

Command errors.

Execution errors.

The resulting error messages are fully described in Appendix A.

Command errors always result in rejection of the entire command line containing the error. The user is notified that
the command is rejected and a diagnostic message indicates the nature of the error. Additional information is supplied
if a command error is detected subsequent to storing the command. This may occur when activating a deferred com
mand or when first exercising an attachment to a stored command. In on-line runs the debugger stops after detecting
command errors. A prompt character is displayed, and the user has the opportunity to correct the problem. In batch
runs the debugger resumes operation after rejecting the command containing the error; thus, the run may produce
partial debugging results.

Execution error detection depends on the type of compilation used.

For XDS FORTRAN IV, the debugger performs the following checks. {This augments or replaces similar error
detection features used in non debug-mode runs.)

1. It compares the number of arguments for a standard calling sequence to the number of dummies in its correspond-
ing receiving sequence.t

2. It tests for type incompatibilities between arguments and dummies.t

3. It checks for "protection" mismatches between arguments and dummies.t

4. It tests for an attempt to store into a "protected" argument of a standard calling sequence.t This is illustrated
by the following portions of a FORTRAN IV program:

main t7, CALL SUB (5. ,X + Y) program

l: ~UBROUTINE SUB (DMYl, DMY2)

5:
DMYl = DMYl + 6.6

subroutine

9: DMY2 = DMYl

The CALL statement at source line number 17 contains two protected arguments - the constant (5.) and the
expression (X + Y). If the statement at line number 5 or 9 is executed, the debugger displays one of the
following messages {before the argument is stored into):

SUB/5:

SUB/9:

PROTECT ERR

PROTECT ERR

The test for this type of error is made during data check-in calls {Chapter 3).

Note: XDS FORTRAN IV recognizes a "multiple dummy" used in passing a variable number of arguments. The
multiple dummy has "type" and "protection" information like an ordinary dummy. This is compared against
each argument that corresponds to the multiple dummy.

For XDS FORTRAN IV-H, the debugger performs more limited execution error checks. {For instance, no test is
mad~ for an attempt to store into a protected argument of a standard calling sequence.) Furthermore, these
checks are made as a preliminary step. It is possible that the same error wi II be noted twice - first by the
debugger and then by the standard FORTRAN run-time library. This approach ensures execution compatibility

t See the XDS Sigma 5/7 Extended FORTRAN IV Operations Manual.

Error Detection Features 39

40

between debug-mode and nondebug-mode runs. The following execution error-detection checks are made for
FORTRAN IV-H programs:

1. The debugger compares the number of arguments for a standard calling sequence to the number of dummies in
its corresponding receiving sequence.

2. Except for statement functions, it tests for type incompatibilities between arguments and dummies.

3. Except for statement functions, it checks for protection mismatches between arguments and dummies.

Whenever the debugger detects one of the indicated execution errors, it displays an "execution error message" (see
Appendix A) and assumes an error severity level of seven. If the abort level is greater than seven, execution
resumes. If the abort level is less than or equal to seven, batch runs abort as described earlier. However, the on
line user is given the opportunity to issue debug commands. He may elect to resume execution (GO or stepping
commands), but discretion is advised.t If execution resumes after a run-time error, more errors may result because
of incorrect operation or data.

Execution Stops \

During a debugging run, execution may stop for any of the reasons listed below:

1. The run stops after the initialization call (Chapter 3) so debug commands can be issued before the FORTRAN
program starts (on-line only).

2. The run stops after any command has been issued other than a GO, stepping, or break command (on-line only).

3. The run stops after command rejection due to an error; thus, the user may correct the problem (on-line only).

4. The run stops when certain debug commands are exercised:

a. Stepping or backtracking (see also the HISTORY command).

b. Single break.

c. Double break.
I -

d. Stored command (AT, ON, ON CALL, or ON CA~LS) that uses a STOP specification.

5. The run stops on normal program stops (for instance, because of execution of a STOP statement or a CALL EXIT).

6. The run stops on FORTRAN run-time errors or debug-detected execution errors if two conditions are satisfied:
(1) the error severity level is not less than the abort level (see the ABORT LEVEL command earlier in this chap
ter) and (2) no altemate abort exit is specified by the FORTRAN program. (An altemate abort exit is specified
through use of the ABORTSET library routine. See also the "ERR=" specification for READ statements.tt)

7. The run stops if a PAUSE statement is executed.

8. The run stops if the Monitor aborts the run or if a normal or abort exit to the Monitor occurs.

If the stop is due to a Monitor abort or exit (item 8 above), the debugger cannot regain control; the debugging run
concludes.

When a PAUSE statement is executed (item 7 above), the message *PAUSE* is displayed. The user (in on-line runs)
or the console operator (in batch runs) must respond with at least a@ character to resume execution. The debugger
is not concemed with PAUSEs.

For the remaining stops (items l through 6 above), the debugger obtains control. In on-line runs it displays a
prompt character (@)and awaits further debug commands. In batch runs it exercises any requested postmortem
HISTORY or postmortem PRINT commands, closes the use-file (if open), and enters the standard FORTRAN library
for exit to the Monitor. If a normal (not abort) exit is to be taken, the library routine (9STOP) closes files used
during the run.

tFor FORTRAN IV-H, resuming execution is pointless and an abort message occurs. See Appendix A.

ttln XDS Sigma 5/7 Extended FORTRAN IV and FORTRAN IV-H Reference Manuals.

Execution Stops 90 16 77A- l (8/71)

6. OPERATIONS

The debugger operates under the Universal Time-Sharing Monitor (UTS), the Batch Time-Sharing Monitor (BTM),
and the Batch Processing Monitor (BPM). This chapter is mainly concerned with compiling, loading, and executing
a FORTRAN program in debug mode in each of the three monitor systems.

Universal Time-Sharing Monitor IUTSJ

FORTRAN IV programs may be debugged under UTS in either on-line or batch mode. (FORTRAN IV-H is not avail
able under UTS.)

Batch Mode. For a description of how to submit a iob in batch mode, see th.e XDS Sigma 5/7 Batch Processing
Manual, Publication No. 90 09 54. Also see the discussion below under "Batch Processing Monitor" for a brief
description of debugging a program in batch mode.

On-Line Mode. The operating procedures for on-line debugging under UTS are described briefly in the following
paragraphs and in more detail in the XDS Sigma 7 Universal Time-Sharing (UTS) Reference Manual, Publication
No. 90 09 07.t Figure l illustrates an on-line run of a simple FORTRAN IV program compiled, loaded, and exe
cuted in debug mode under UTS.

Logging On

On-line service is obtained from UTS by activating the user terminal and logging in. After the terminal is opera
tional, the user alerts UTS by momentarily depressing the BREAK key. When the system is operative, the following
messages wi II be printed:

UTS AT YOUR SERVICEtt

ON AT time and data

LOGON PLEASE: user identification @)

!

An example of the proper log-in procedure is shown in Figure l.

The exclamation mark in the last line of the above message informs the user that he is communicating with the Termi
nal Executive Language (TEL), the principal terminal language for UTS. Thereafter a prompt character is sent to the
terminal following a completed request, an error, or an interruption by the user. If the services of another subsystem
or processor are requested, the subsystem identifies itself with a different prompt character. The prompt characters
used by TEL and subsystems that may be involved in debugging are as follows:

TEL

EDIT *

FDP @

FORT 4 >

Executing FORTRAN programs ?

The question mark(?) signals a request (READ, INPUT) for data to be input at the terminal.

t Hereafter referred to in this section as the UT.S Reference Manual.

ttMessages output by the terminal are shown underlined throughout this chapter, although in an actual session such
Teletype output is not underlined. Characters without underscores are typed in by the user.

90 16 77A-1 (8/71) Operations 41

UTS AT YOUR SERVICE
ON AT 03:43 MAR 19,'75
LOGON PLEASE: PAT, SANDY @l

lEDIT@)
EDIT HERE
.'.:BUILD SOURCE.@

1.000 *
2.000 *10
3,000 *
4.000 *
5 .ooo * @l

. .'.:END@)

lCOMMENT ON ME@l

READ(lOS,10) I(§\
FORMAT(G),@l
STOP@)
END@)

lSETM:SI DC/SOURCE@)

] Logging on

Building a source file
file via Edit

Assigning DO (diagnostic output) to user's console

Assigning SI to a file

lFORT4@) }
OPTIONS> DEBUG@) Compiling in debug mode

HIGHEST ERROR SEVERITY: 0 (NO ERRORS) .

lSET M:SI uc@l

lLINK $ ON LMNFILE (PO)@)
LINKING $

!START LMNFILE @l
@STOP AT 3·@)
@GO@)
J..44 '(§
/3:
~GO@)
STOP 0

3: RDY TO STOP
~GO@)

STOPPING

!OFF

CPU= .0323 CON= :06 INT= 22 CHG·= .0000

Reassigning SI to the user's console

} Linking the ROM output from the GO file

Initiating execution
User request for stop when source I ine 3 is reached
User request for program to start
Program request for input (caused by READ); user supplies44
Stop produced by STOP AT 3 command above
User request for program to continue
Message produced by source line 3 (see SOURCE file above)
Message produced by debugger
User request for program to continue
Message produced by debugger

} Logging off

Figure 1. Example of a Simple FORTRAN IV On-Line Program Run Under UTS

Compiling·

The only difference between nondebug-mode and debug-mode compilation is that the debug option must be specified
in debug-mode compilation.

In on-line UTS operations, the FORTRAN compiler is called by issuing the FORT4command at the UTS executive
level (TEL). This command spec;:ifies the files used by the compiler for input and output; its format is explained in
the UTS Reference Manual. After the FORTRAN IV compiler has been entered in the on-line mode, it sends out a
request for options. The user then specifies the debug option code (DEBUG) and any other options to be used in the
compilation. (See the XDS Sigma 5/7 Extended FORTRAN IV Operations Manual, Publication No. 90 11 43, for the
available optior;is.) The Teletype printout during debug-mode compilation might appear as

.!_FORT4 ME1@l

OPTIONS> DEBUGj@)

42 Universal Time-Sharing Monitor (UTS)

The first command calls the FORTRAN compiler and assigns the source input file to the terminal, and the second
command designates debug-mode com pi lat ion. (Also see Figure 1 for examples of the procedure during debug-mode
compilation.) If DEBUG is the only option specified at this time, the source input is read from the SI file, the re
locatable object module (ROM) is output on the GO file, and the summary map is listed on the LO device.

After the options have been input, the compiler reads the source program from each of the files designated in the
FORT command. Input continues unti I an END statement or end-of-fl le is encountered. Then the program summary
and object program are output as requested and control is returned to the UTS executive (TEL).

The FORTRAN debugger reads input from SI. If SI has been assigned to a file earlier in the run, it has to be reas
signed to the user's terminal before executing the program to be debugged. This should be done before the LINK
command (see "Loading" below). In UTS, SI is reassigned to the terminal by the following command:

!SET M:SI UC@)

Not reassigning SI to the user's terminal can result in an end-of-file notice, an abort notice, and control being re
turned to the executive level of operation. If this happens, the user should reassign M:SI to the terminal and begin
execution again.

Loading

In on-line UTS operations, the loading of programs is carried out by the LINK command. It takes the relocatable
object modules produced by the compiler and links them together into a single executable program called a load
module. To load and link a program compiled in debug mode, the user must use the PO or FDP option with the LINK
command; other than that, the format for the LINK command is the same as described in the UTS Reference Manual.
The PO or FDP reference "loads" the public library routines (Pl) plus the debug routines. A simple example of the
LINK command is

!LINK (FDP)@)

Also see the example of the LINK command in Figure 1.

When linking is completed, control returns to the UTS executive level.

Executing

On completion of the linking operation in on-line UTS, execution of a program compiled in debug mode is started
by the START command. Or, if desired, both linking and execution can be initiated by a single RUN command.
The forms for these commands are

lSTART [Im]@)

!RUN [mfl] [,mfl] .•. [,mfl] I ~~~P) l@

where

Im is the name (fid) of the load module to be executed; it should be the same load module that was used in
a previous LINK command.

mfl is$ or the name (fid) of a relocatable object module to be linked and executed.

Note that FDP or PO must be added to the RUN command, but not to the START command, to begin execution of
programs compiled in debug mode. A reference to the debugger is not needed in the START command because of the
previous FDP or PO reference in the LINK command.

An example of the correct use of the START command is shown in Figure 1 and repeated here:

lLINK $ON LMNFILE (FDP)@)

LINKING $

!START LMNFILE@)

Universal Time-Sharing Monitor (UTS) 43

44

With the RUN command substituted for both LINK and START commands, the example would appear as

!RUN $ ON LMNFILE (FDP)@)

LINKING$

These commands are described in more detail in the UTS Reference Manual.

After the programs have been loaded into core, control passes to the debugger, which sends a prompt character (@)
to the terminal and awaits commands. ·

Interrupting, Stopping, and Logging Off

When on-line execution is interrupted or stopped (see Chapter 5), the debugger prompts (with an@ symbol) for com
mands. At this time, the user may terminate debugger control by issuing a QUIT command which returns control to
TEL. Control is also returned to TEL at the end of a debugging run.

An on-line session is ended by entering the OFF command at the UTS executive level:

!OFF@

UTS then prints the accounting information (CPU time, terminal time, terminal interactions, and total charges), and
the user terminal is automatically disconnected from the computer. An example of the logging off procedure is shown
in Figure l.

Gaining Access to the Use-File

During an on-line run, the user may want to assign debug output to a file and then examine that file later. The
debug command USE FILE is used to assign debug output to a file (see Chapter 5). To gain access to the file inUTS,
the PCL processor is used. The following sample printout illustrates the use of the COPY command which brings in
the PC L processor:

!COPY DC/file TO ME@

where file is the file name used with the USE FILE command, and ME causes the file to be printed at the terminal.
After the file is printed, control automatically returns to the TEL level.

Batch Time-Sharing Monitor (BTM)

In BTM, FORTRAN IV-H programs may be debugged in either on-line or batch mode; FORTRAN IV programs are
usually debugged in botch mode. (FORTRAN IV programs can be debugged on-I ine, but they must have first been
compiled in batch mode.)

Batch Mode. For a description of how to submit a job in batch mode, see the XDS Sigma5/7Batch Processing Moni
tor Reference Manual, Publication No. 90 09 54. Also see the discussion below under "Batch Processing Monitor"
for a brief description of debugging a program in batch mode.

On-Line Mode. The operating procedures for on-line debugging under BTM are described briefly in the following
paragraphs and in more detail in the XDS Sigma 5/7 Batch Time-Sharing Monitor (BTM) Reference Manual, Publica
tion No. 90 15 77,t Figure 2 illustrates an on-line run of a simple FORTRAN IV-H program compiled, loaded, and
executed in debug mode under BTM.

Logging On

On-line service is obtained from BTM by activating the user terminal and logging in. When the system is operative,
it will print the following messages:

BTM SYSTEM -x IS UP
date and time
I LOGIN: acct, name [,pass]@

l
An example of the proper log-in procedure is shown in Figure 2.

tHereafter referred to in this section as the BTM Reference Manual.

Batch Time-Sharing Monitor (BTM) 90 16 77 A-1 (7 /81)

BTM SYSTEM-C IS UP
Q3/2Q/ I 70 lQ :6

! LOGIN: ·S22222, PAT222222222! @>

.m::..x
lEDIT
~BUILD SOURCE@>

1.000 READ(105,10) I@)
2.000 10 FORMAT(G)@J
3 .000 STOP @>
4 .000 END@> ,

5.000 @>
.::_END@):

lASSIGN M:SI, (FILE,SOURCE) @>

lFORTRAN
OPTIONS : DB @>
** END OF COMPILATION **

lASSIGN M:SI,(HERE) @>

lLOAD
ELEMENT FILES : @) l
OPTIONS:@) '. . .

Building a source file
via Edit subsystem

Assigning SI to a file

} Comp ii ing in debug mode

Reassigning SI to the user's terminal

F :@> Loading

SEV.LEV. 0
XEQ? Y ® . Initiating execution

~STOP AT 3@>
~GO@>
J_44 @>
j]_:
~GO@)

STOP 0
3: RDY TO STOP

~GO@)
STOPPING

J_B~
03/20/'70 10:13
RAD SPACE 0
CPU TIME 0.036
I/O WAIT TIME 0.023
MON SERVICES 0.006

User request for stop when source line 3 is reached
User request for program to start
Program request for input {caused by READ); user supplies 44
Stop produced by STOP AT 3 command above
User request for program to continue
Message produced by source I ine 3 (see SOURCE file above)
Message produced by debugger
User request for program to continue
Message produced by debugger

Logging off

Figure 2. Example of a Simple FORTRAN IV-H Program Run Under BTM

The exclamation mark in the last lineofthe log-inmessagesinforms the user that he is communicating with the BTM
Executive. Thereafter a prompt character is sent to the terminal following a completed request, an error, or an in
terruption by the user. If the services of another subsystem or processor are requested, the subsystem identifies itself
with a different prompt character. The prompt characters used by subsystems commonly involved in a debugging
session are

BTM Executive

EDIT

FORTRAN compiler

Executing FORTRAN programs

FORTRAN debugger

*

>
?

@

The question mark (?) signals a request (READ, INPUT) for data to be input at the terminal.

90 16 77A-1 (8/71) Batch Time-Sharing Monitor (BTM) 45

Compiling

The only difference between nondebug-mode and debug-mode compilation is that the debug option must be specified
in debug-mode compilation.

In on-line operations, the FORTRAN IV-H compiler is cal led by issuing the command FO at the BTM Executive level.
{Files are either defaulted or are assigned by ASSIGN commands before the FO command.) After the FORTRAN IV-H
compiler has been entered in the on-line mode, it sends out a request. for options. The user then specifies the debug
option code (DB for FORTRAN IV-H) and any other options to be used in the compilation. (See the XDS Sigma 5/7
Extended FORTRAN IV-H Operations Manual, Publication No. 90 11 44, for the available options.} The Teletype
printout during debug-mode compilation might appear as

lFORTRAN

OPTIONS: DB@)

The first command cal Is the FORTRAN compiler / and the second command designates debug-mode compilation. If
DB is the only option specified at this time, the source input is read from the SI file and the relocatable objectmod
ule {ROM) is output on the BO file.

After the options have been input, the compiler reads the source program from the source input files. Input con
tinues until an END statement or end-of-file is encountered. Then the program summary and object program are
output as requested and control is returned to the BTM Executive.

The FORTRAN debugger reads input from SI. If SI has been assigned to a file earlier in the run, it has to be
reassigned to the user's terminal before executing the program to be debugged. This should be done before loading
the program. In BTM, SI is reassigned to the terminal by the following command:

lASSIGN M:SI,(HERE)@)

Not reassigning SI to the user's terminal wi 11 result in end-of-file and abort notices and in control being returned
to the executive level of operation. If this happens, the user should reassign M:SI to the terminal and begin execu
tion again. An example of reassigning M:SI to the terminal is shown in Figure 2.

Loading

In BTM, programs compiled in debug mode are loaded in the same way as programs compiled in nondebug mode.
Loading is carried out by the BTM Loader subsystem, which takes the relocatable object modules (ROMs} produced
by the compiler and links them together for execuHon. The on-line user can enter the Loader subsystem by giving
the command

!LOAD

When the Loader subsystem has been entered, it responds first with a request for the names of all element files
("ELEMENT FILES:" in Figure 2) from which the user wishes to load. If no element files are named, the Loader
assumes default input from BO through M:BI. On accepting the element file list, the Loader issues a request for
options ("OPTIONS:" in Figure 2). Here, the user responds with the options he wants. Then the Loader loads the
specified ROMs and requests any DCBs ("F:" in Figure 2) that need to be specified. Figure 2 illustrates what hap
pens during loading. For a detailed description of loading, see "Loader Subsystem" in the BTMReferenceManual.

Executing

Execution is actually started by the Loader subsystem. After programs have been loaded into core in on-line BTM,
the Loader sends the message XEQ? to the terminal. If the user wants execution to begin, he types a Y and a car
riage return. Control then passes to the debugger, which sends a prompt character(@) to the terminal and awaits
commands.· See Figure 2 for an example of initiating execution.

Interrupting, Stopping, and Logging Off

When on-line execution is interrupted or stopped {see Chapter 5) during debugging, the debugger prompts (with an
@) for commands. At this time, the user may terminate debugger control by issuing a QUIT command which returns

46 Batch Time-Sharing Monitor (BTM)

Table 6. Debug Command Error Messages

Message Comments

CAN'T GO OR STEP This message is given if the user tries to continue
execution fol lowing a double break. To start
execution again, the user first must issue a
REST ART command or a GOTO command.

NO ROOM This message indicates that the debugger is unable
to accept any more stored commands. One or
more KILL commands should be issued in order to
make room for the new command.

MIS-USED This message results if the following commands are
attempted in a batch run: QUIT, REWIND, or
RESTART. The message is also given if the fol-
lowing direct commands are attached to a stored
command: a step command (number or new line
following a semicolon), QUIT, REWIND, RESTART,
GO, or ABORT LEVEL.

BAD CONST This message indicates that an improper constant
has been supplied in an ON command or a value
change command.

EH? This message indicates bad syntax. Common causes
are misspelling, missing separators (e.g., blanks),
and using commas instead of semicolons. In
batch runs, the question mark may be omitted
after this message since some line printers do not
display that character.

SKIPS END This message indicates that a SKIP command is re-
jected because it would skip the last statement -
the END statement - in a program. (Otherwise,
the executing run might "fall" beyond the
FORTRAN code).

BAD SKIP SEQ This message indicates that a SKIP command is
rejected because the skip range is backwards
or not sequenced properly. An example is
"SKIP 9 TO 5".

ARG NOT ALLOWED This message is given when an illegal ARG.
or ARGS. reference is made. It is legal to
print or change the va I ue of an argument on I y
after a calling sequence break; that is, after
an ON CALL or ON CALLS command has
been used.

NO ARG.n This message indicates that there is no nth argu-
ment for a cal I ing sequence break.

CAN'T CHANGE ARG. n This message indicates that an argument value
change command is rejected because that (nth)
argument is protected. This occurs, for example,
when the nth argument is a constant.

90 16 77A-l (8/71) Appendix A 57

58

Table 6. Debug Command Error Messages (cont.)

Message Comments

BAD TYPE ON ARG.n, USE type This message indicates that a value change uses
the wrong type of constant for the nth argument of
a ca Iii ng sequence break. For example, the mes-
sage "BAD TYPE ON ARG. l, USE CMPX" indi-
cates that the first argument is complex. See the
description of the execution error messages earlier
in this appendix for a discussion of type messages.

BAD TYPE ON name, USE type This message indicates that a value change or ON
command uses the wrong type of constant for the
"named" variable. For example, the message
"BAD TYPE ON L, USE LOGL" indicates that L
is a logical type variable. See the description of
the execution error messages earlier in this appen-
dix for a discussion of type messages.

CAN'T FIND item This message indicates that the debugger cannot
locate the item in its appropriate table. The item
may be a name, line number, label, or variable.
In many cases, this message results from forgetting
to use a qualifier.

BAD OFFSET= value This message indicates that a position contained an
offset that would go beyond program boundaries.
The "value" is a plus or minus sign followed by
the magnitude of the bad offset.

NON-ARRAY -- name This message is given if a subscripted reference is
made to the "named" variable, but that variable
is not an array.

NOT IN ARRAY name This message is given if a subscripted reference is
not within the range of the "named" array.

BAD # SUBSCRS ON name This message is given if too few or too many sub-
scripts are supplied in a reference to the "named"
array.

FORTRAN Run-Time Error Messages

Every message of this type contains the special identifying header

FORTRAN RUN-TIME ERROR

During debugging, this header is preceded by the execution error message

position ERR

The "position" indicates where the error occurred in the FORTRAN program (see the description of position messages
earlier in this appendix under "Debugger Messages"). In some cases the FORTRAN RUN-TIME ERROR line also
gives the name of the library routine applicable to that error plus a hexadecimal location value. (Since the
debugger uses run-time routines for numeric input/output conversions, the special name *FDP* may be used in case
of run-time errors.) Following the header line, one or more lines are displayed to specify the exact nature
of the error. If the severity of the error reaches the abort level (and assuming that no alternate abort pro
cedure has been specified), then the debugger obtains control; see the RDY TO ABORT and ABORTING mes
sages in the section mentioned above.

Appendix A 90 16 77A-l (8/71)

......

INDEX

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numerical sequence.

/, 23
? command, 29
@, 2
@), 18

A
ABORT LEVEL command, 4, 37
activation errors, 55
active, 25
argument, 21
array element, 19
assigning SI (source input) to terminal, 43,46
AT command, 6, 26
attachable command, 28, 24, 25
attachment errors, 56
attachments, commands that allow, 8
attachments, interpretation of, 24
automatic checks, 52

B
backtrack command, 37
backtracking through program flow, 12, 33
batch debugging capabi Ii ties, l
batch operations (under UTS}, 41,44
Batch Processing Monitor (BPM) operations, 47
Batch Time-Sharing Monitor (BTM) operations, 44
batch usage examples, 61
blanks, 18
braces, 18
brackets, 18
break, definition of, 19
break command, 4, 35
BREAK key, 4, 35
breaks in UTS versus BTM, .49

c
calling sequence calls, 17
calls, 16
capabilities available in batch and on-line mode,
carriage return symbol, 18
check-in calls, 16
checks, 52
CMPX, 54
command elements, 19
command error messages, 54
command input line length, 50
command language, 18
commands

ABORT LEVEL, 4, 37
AT, 6,26
backtrack, 37
break, 4, 35
FLOW, 11,32

GO, 3,36
GOTO, 11,31
HISTORY, 12, 33, 37
KILL, 13,34
NOFLOW, 12, 32
ON, 8,27
ON CALL, 10,28
ON CALLS, 28·
OUTPUT, 29
PRINT, 10, 29
QUIT, 4,36
RESET HISTORY, 12, 33
REST ART, 3, 36
REWIND, 3, 36
SKIP, 5,26
step, 4, 37
USE FI LE, 13, 34, 44, 47
USE ME, 13, 34
value change, 11, 31

commands that allow attachments, 8
commands, description of, 25
commands, typical use of, 3
compilation, 1
compiling in debug mode, 15

under BPM, 47
under BTM, 46
under UTS, 42

conditional ON command, 27
constant, 20
conventions, typographical, 18

D
data break, 19, 27
data check-in calls, 17
DB option, 43, 46, 47
debug commands, description of, 25, 24, 29
debug commands, typical use of, 3
DEBUG option, 42, 47
debug table, 15
debug table, search of, 24
debug-mode compilation, 15

under BPM, 47
under BTM, 46
under UTS, 42

debugger interfacing, 15
debugger messages, 51
debugging capabilities, l
deck setup for debug-mode batch processing, 48
deferred, 25
delimiters, 18
DELTA in UTS versus BTM, 49
detection of errors, 55
diagnostic output file (M:DO), 2
diagnostics, 51
direct command, 35, 24, 25

Index 63

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numerical sequence.

directly used, 28
displaying values (PRINT), 10, 30
DOUB, 54
double break, 4, 35

E
element count, 19
elements, command, 19
entries in source line table, 15
entry identifier, 23
entry point cal Is, 17
entry point names, 16
error checks, 39
error messages, 51
error severity level, 37
error-detection features, 38·, 55
execution error messages, 52, 39
execution of programs

under BPM, 49
under BTM, 46
under UTS, 43

execution stops, 40
under BT M, 46
under UTS, 44

execution time limitation, 50
exercise errors, 56

F
FDP (FORTRAN debug package),
FDP option, 43
FDP usage in UTS versus BTM, 49
file retrieval, 44, 47
FLOW command, 11, 32
flow trace, 11, 32
FORTRAN debug package (FDP),
FORTRAN IV and IV-H, differences between, 1,6, 15, 22,

39,41,44,47,61
FORTRAN run-time error messages, .58
function identifier, 23

G
global label, 6, 22
GO command, 3, 36
GO command, examples of batch usage, 61
GOTO command, 11,31

H
hexadecimal constant, 21
hexadecimal value, 31
HISTORY command, 12,33,37

identifier, 18,30
IF statement, 5
immediate errors, 55

64 Index

information messages, 51
initialization call, 16
input/output, 2
input/output error messages, 51
interfacing, 15
INTG, 54
introduction to FDP,

K
KILL command, 13, 34
KMPX, 54

L
label, 22
length of command input line, 50
length of execution, 50
limitations, 50
line feed, 18
linking debug tables, 17
loading programs

under BPM, 49
under BTM, 46
under UTS, 43

LOC command, 36
local label, 22
logical constant, 20
LOGL, 54

M
M:DO, 2
M:SI, 2,43
messages, 51
missed kill, 35
monitor error messages, 60

N
name I ist, 15
natural number, 19
new line symbol, 18
NOFLOW command, 12, 32
nondebug-mode assembly code, 50
nondebug-mode subprogram, 50
nonvector array, 19

0
offset, 22
ON CALL command, 10, 28
ON CALLS command, 10,28
ON command, 8, 27
on-line debugging capabilities,
on-line operations

under BTM, 44
under UTS, 41

operation procedures, 41
ordinary value, 31
output, 34

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numerical sequence.

OUTPUT command, 29
output constraint, 50
overlay restriction, 50

p
PO option, 43
position, 6, 21
position messages, 52
postmortem HISTORY, 33
postmortem PRINT, 30
PRINT command, 10, 29
program size limitation, 50
prompt character (@), 2
prompt characters used in debugging, 41,45
protection bit, 54
protection mismatch, 39

0
qualified and unqualified items, interpretation of, 24
qualifier, 23, 6
qualifiers, roles for using, 24
question mark command, 29
QUIT command, 4, 36

R
range of source line numbers, 50
real-time run, 50
referencing an array, 19
relational operator, 9
RESET HISTORY command, 12, 33
REST ART command, 3, 36
restrictions, 50
revoking commands, 13, 34
REWIND command, 3, 37
run stops, 40
run-time error messages, 58

s
"Sin column 1" statement, 15,50
scalar, 20
semicolon in attachable command, 29
single break, 4, 35
size of program, 50
SKIP command, 5, 26
slash (/), 23
SNGL, 54
source input file (M:SI), 2,43,46
source line check-in calls, 16
source line number, 15, 21
source line number range limitation, 50

source line number with offset, 22
source line table, 15
special calls, 16
statement break, definition of, 19
statement check-in calls, 16
statement label, 22
statement label table, 16
statement label with offset, 22
status messages, 52
step command, 4, 37
STOP specification, 7,26
stored command, 25, 24
string value, 30
subroutine identifier, 23
subscripting, 19
syntax of debug commands, 25

T
table, debug, 15
table, source line, 15
table, statement label, 16
text constant, 20
tracing program flow, 11, 32
type, 54
type incompatibility testing, 39,54
type messages, 54
typographical conventions, 18

u
unconditional ON command, 27
unique identification, 25
Universal Time-Sharing Monitor (UTS) operations, 41
USE FI LE command, 13, 34, 44, 47
USE ME command, 13,34
use-file, gaining access to

under BTM, 47
under UTS, 44

UTS versus BTM, 49

v
value change command, 11,31
value display (PRINT command), 10,30
variable, 19
vector array, 19

w
warning messages, 54
whole array, 20

Index 65

