
SJDS SIGMA 5/7 FORTRAN IV-H

Reference Manual

SCIENTIFIC CATR SYSTEMS

FORTRAN IV-H
REFERENCE MANUAL

for

SOS SIGMA 5/7 COMPUTERS

90 09 66C

August 1968

Price: $3.00

SCIENTIFIC DATA SYSTEMS/701 South Aviation Boulevard/EI Segundo, California 90245

©1967. 1968. Scientific Data Systems. Inc. Printed in U.S.A.

REVISION

This publication, SDS 9009 66C, is a minor revision of FORTRAN IV-H Reference Manual,
90 09 66B (dated January 1968). A change in text from that of the previous manua I is indi
cated by a vertical line in the margin of the page.

RELATED PUBLICATIONS

Title Publication No.

Sigma 7 Computer Reference Manual 9009 50

Sigma 5 Computer Reference Manual 9009 59

Sigma 5/7 Basic Control Monitor Reference Manual 9009 53

Sigma 5/7 Symbol/Meta-Symbol Reference Manual 9009 52

Sigma 7 Mathematical Routines Technical Manual 900906

Sigma 5/7 FORTRAN IV-H Operations Manual 90 11 44

Sigma 5/7 FORTRAN IV-H Library/Run-Time Technical Manual 90 11 38

NOTICE

The specifications of the software system described in this publication are subject to change without notice. The availabi lity or performance of some features may
depend on a specific configuration of equipment such as additional tape units or larger memory. Customers should consult their SOS sales representative for detai Is.

ii

CONTENTS

INTRODUCTION Input/Output Statements 27
Formatted Input/Output Statements 28

1. FORTRAN IV-H PROGRAMS Acceptable FORTRAN II Statements 28
READ Statement 29

2. DATA 4 PUNCH Statement 29
PRINT Statement 29

Limits on Values of Quantities 4 Intermediate Input/Output Statements ___ 29
Constants 4 END= and ERR= Forms of the READ

Integer Constants 4 Statement 30
Real Constants 5 NAMELIST Input/Output 30
Doubl e-Precision Constants 5 Output Format 31
Compl ex Constants 5 Input Format 32
Double-Complex Constants 6 FORMAT Statements 33
Logical Constants 6 Format Specifications 34
Literal Constants 6 F Format 34

Identifi ers 7 D and E format 35
Variables 7 G Format 36

Scalars 7 I Format 37
Arrays 7 L Format 38

Array Elements 7 A Format 38
Subscripts 7 H Format 39

Functions 8 I Formats (Literal) 40
X Specification 40

3. EXPRESSIONS 9 T Specification 41
P Specification 41

Arithmetic expressions 9 / Specification (Record Separator) 42
Evaluation Hierachy 9 Parenthesized Format Specifications 43

Mixed Expressions 11 FORMAT and List Interfacing 44
Reiationai Expressions 12 FORMATs Stored in Arrays 45 .
Logi cal Expressi ons 13 Auxiliary Input/Output Statements 46

Logical Operators 13 REWIND Statement 46
Eva I uation Hierarchy 14 BACKSPACE Statement 46

END FILE Statement 46
4. ASSIGNMENT STATEMENT 15 Carriage Control for Printed Output 46

5. CONTROL STATEMENTS 17 7. DECLARATION STATEMENTS 47

Labels 17 Classification of Identifi ers 47
GO TO Statements 17 Implicit Declarations 47

Unconditional GO TO statement 17 Expl icit Declarations 47
Assigned GO TO Statement 17 Confl icting and Redundant Declarations __ 47
Computed GO TO Statement 18 Array Declarations 48

ASSIGN Statement 18 Array Storage 48
IF Statement 19 References to Array EI ements 48

Arithmetic IF Statement 19 DIMENSION Statement 49
Logical IF Statement 19 IMPLICIT Statement 49

CALL Statement 20 Explicit Type Statements 50
RETURN Statement 21 Optional Size Specifications 51
DO Statement 21 Storage Allocation Statements 52
CONTINUE Statement 24 COMMON Statement 52
PAUSE Statement 24 Labeled COMMON 53
STOP Statement 25 Blank COMMON 53
END Statement 25 Arrangement of COMMON 54

Referencing of Data in COMMON 55
6. INPUT/OUTPUT 26 EQUIVALENCE Statement 55

Interactions of Storage Allocation Statements __ 57
Input/Output Lists 26 EXTERNAL Statement 58

List Items 26 BLOCK DATA Subprograms 58
Special List Considerations 27 DA T A Statement 59

iii

7. DECLARATION STATEMENTS (Cont) APPENDIXES

DATA Variable List 59 A SDS Sigma FORTRAN !V-H Character Set 74
DATA Constant List 60 r>.

8. PROGRAMS AND SUBPROGRAMS 61 B. SDS Sigma FORTRAN IV-H Statements 75

Main Programs 61 ILLUSTRATIONS Subprograms 61
Statement Func ti ons 61
FUNCTION Subprograms 62 l. Sample SDS FORTRAN IV-H Program 2
SUBROUTINE Subprograms 63 2. Arra y Storag e 48
ENTRY Statement 64

Arguments and Dummi es 66 TABLES Dummy Scalars 67
Dummy Arrays 67
Adj ustabl e Di mensions 68 l. Sampl e Program 2
Dummy Subprograms 69 2. Mode of Mixed Expressions Using

Library Subprograms 69 Operators + - * / 11
Basic External Functions 69 3. Valid Type Combinations for
Additional Library Subprograms 69 Exponentiations 11
EXIT 69 4. Evaluation of Logical Expressions 14
SUTET - Sense Light Test 72 5. Mixed Variable Types and Expression
SUTE - Set Sense Light 72 Modes 15
OVERFL - Floating Overflow Test 72 6. Standard Unit Assignments 26
DVCHK - Divide Check 73 7. FORTRAN II/FORTRAN IV-H
DUMP 73 Equivalent Statements 28
PDUMP 73 8. Basic External Functions 70

9. SDS EBCDIC (Extended Binary-Coded-
INDEX 76 Decimal Interchange Code) 75

iv

INTRODUCTION

SDS Sigma FORTRAN IV-H is a one-pass compiler that operates under the Basic Control Monitor (BCM). It is
designed for maximum compatibility with both ASA Standard FORTRAN and IBM 360 H-Ievel FORTRAN IV.

SDS Sigma FORTRAN IV-H includes a number of features not found in ASA FORTRAN. Among these features are:

ENTRY statement

Doubl e compl ex data

FORTRAN II READ, PRINT, and PUNCH statements

IMPLICIT statement

END and ERROR options on READ statements

T (tab) format

NAMELIST input/output

Object program listing

Additional! y, the facil ity of introducing in-I ine assembl y language coding into FORTRAN programs is an availabl e
option, where compatibility with other FORTRAN systems is not a factor.

The compiler tables, such as symbol and label tables, are dynamically allocated by FORTRAN IV-H to optimize
memory usage.

v

1. FORTRAN IV-H PROGRAMS

SDS FORTRAN IV-H piograms are comprised of an ordered set of statements that describe the procedure to be
followed during execution of the program and the data to be processed by the program. Some data values to be
processed may be external to the program and read into the computer during program execution. Similarly, data
values generated by the program can be written out while processing continues. Statements belong to one of two
genera I classes:

1. executable statement/, that perform computation, input/output operations, and program flow control.

2. nonexecutable statement/, that provide information to the compiler about storage assignments, data types and
program form, as well as providing information to the program during execution about input/output formats and
data initialization.

Statements defining an SDS FORTRAN IV-H program follow a prescribed format. Figure 1 is a sample FORTRAN
Coding Form. Each line on the form consists of 80 spaces or columns; however, the last eight columns are used only
for identification or sequence numbers and have no effect on the program. Columns 1 through 72 are used for the
statements.

The first field, columns 1 through 5, is used for statement labels. Statement labels allow statements to be referenced
by other portions of the program. Labels are written as decimal integers, with all blanks (leading, embedded, or
trailing) ignored. Section 5, JlControl Statements Jl, contains a more extensive discussion of statement labels.

The body of each statement is written in columns 7 through 72, but if additiona I space is required, a statement may
be continued. FORTRAN IV -H accepts an unlimited numberof continuation lines. Each continuation I ine must con
tain a character other than blank or zero in column 6. The initial line of each statement contains only the char
acters blank or zero in column 6. If a statement is labeled, the label must appear on the initial line ofthe statementi
labels appearing on continuation lines are ignored.

Column 1 may contain the character C to indicate that the line is to be treated as a comment only, with no effect
upon the piogiam. Comment lines may appear anywhere in the program, except within a statement 0. e., intersper
sed with continuation lines).

Statements may have blanks inserted as desired to improve readability, except within literal fields (e. g., in Hollerith
constants and in FORMAT statements).

The set of characters acceptable to SDS Sigma FORTRAN IV-H is

Letters tt:

Digits:

Special characters:
(useful)tt

Special characters:
(other)

ABCDEFGHIJKLMNOPQRSTUVWXYZ

0123456789

+ - * / = () . , $ I & blank

<>i:@#%¢?!-I

This character set conforms to the Extended Binary-Coded Decimal Interchange Code (EBCDIC) standard. (See
Appendix A.)

Figure 1 illustrates a sample FORTRAN IV-H program. An explanation is given in Table 1.

t See Appendix B.

ttThe dollar sign ($) character is accepted, though not recommended, as a letter of the alphabet. It may therefore
be used in FORTRAN identifiers, such as $, FIVE$, or $300. For the purposes of the IMPLICIT statement (see
Chapter 7), $ follows Z in the set of letters.

FORTRAN IV-H Program

PROBLEM Sa m pi e 1!l1' -\s
SCIENTIFIC DATA SYSTEMS

FORTRAN CODING FORM
PROGRAMMER ____________________ _ Identification

.--C FOR COMMENT

rtsTATEMENT i
NUMBER (J

FORTRAN STATEMENT

1 5 6 7 10 15 20 25 30 35 40
• S," .,

C ROU iINE Tes CALCULATE
,

FACTdRI ALS , .
••••• c~' .,

[K =' '1 • ,
,

T

, , , I , , , , I i i i , I i

T ·
I

FACT6R = , T ·
, . i , I I i

FACT6R - 1 . .
1 0 , . 0- 1 -'--'1 . T .

1 2 K = 0
(1 O'S • 6) K · INRI T E 1 3 . f -.- f T i

.
(I 6) 5 ~{F6RMAT

T

(\ 'K :; " I 120) 6 Fe'RMAT
T ,

ri1END

Figure 1. Sample SDS FORTRAN IV-H Program

Table 1. Sample Program

Line Meaning

1,2 The character C in column 1 defines these lines as comments.

45

i i i I ,

i I , I i

.

50 . I

. I

,
,

I i i i i i

,

·
I . I I i i

i

i

i

·
I

·
,

3 A nonexecutabl e statement that defines to the compiler the variables FACTOR and K as integers.

4 An assignment statement that sets K equal to 1.

5 An input command that causes the value of FACTOR to be read into storage. The value is read
from unit 1. The form in which the value of FACTOR appears external to the computer is speci
fied by FORMAT 5 (line 14).

.

I

I

6 Statement 10 tests the value of FACTOR and transfers control to statement 11, 12, or 13 as follows:

If FACTOR <0, control is transferred to statement 12.

If FACTOR =0, control is transferred to statement 13.

If FACTOR >0, control is transferred to statement 11.

7 Statement 11 is another assignment statement that assigns to K the value of the expression K times
factor. In other words, the current value of K is replaced by the current value of K multiplied by
the value of FACTOR.

2 FORTRAN IV-H Program

Table 1. Sample Program (cont.)

line Meaning

8 The statement appearing on lines 8 and 9 is an assignment statement, written as an initial I ine and
one continuation line.

9 The C in column 6 causes line 9 to be a continuation of line 8. This statement assigns to FACTOR
the value of the current value of FACTOR minus 1.

10 When the GO TO statement is executed, an unconditional transfer of control to statement 10
(line 6) occurs.

11 Statement 12, an assignment statement, assigns the value zero to the variable K.

12 The WRITE output statement, 13, causes the name of the variable K and its value to be written
out on unit 108, which is normally assigned to the Printer (see statement 6, line 15 for designated
FORMAT statement).

13 The control statement STOP causes execution of the program to be terminated.

14 FORMAT statement corresponding to READ statement on line 5.

15 FORMAT statement corresponding to WRITE statement on line 12.

16 The END line informs the processor during compilation that it has reached the physical end of the
source program.

In this program, if the value of FACTOR is initially 3 as read by line 5, statement 10 will be
executed four times, the statements on line 7 through 10 will be executed three times, and the
statements on lines 4, 5, 12, and 13 will be executed once each.

FORTRAN IV-H Program 3

2. DATA

Numerical quantities - constants and variabl es - as distinguished in FORTRAN IV-H are a means of identifying the
nature of the numerical values encountered in a program. A constant is a quantity whose value is explicitly stated.
For example, the integer 5 is represented as "5"; the number 1T', to three decimal places, as "3. 142". A variable
is a numerical quantity that is referenced by name rather than by its explicit appearance in a program statement.
During the execution of the program, a variable may take on many values rather than being restricted to one. A
variable is identified and referenced by an identifier.

All data processed by an SDS FORTRAN IV-H program can be classed as one of seven types:

Integer

Real

Doubl e-Prec i si on

Complex

Doubl e Compl ex

Logical

Literal

LIMITS ON VALUES OF QUANTITIES

Integer data are precise representations of the range of integers from -2, 147,483,648 to +2, 147,483,647;
that is, -231 to +231 - 1. Integer data may only be assigned integral values within this range.

Real data (sometimes known as floating-point data) can be assigned approximations of real numbers, the magnitudes
of which are within the range 5.398 x 10-79 to 7.237 x 1075 (i. e., 16-65 to 1663). A real datum may acquire
positive or negative values within this range or the value zero. Real data have an associated precision of 6+ sig
nificant digits. That is, the sixth most significant digit will be accurate, while the seventh will sometimes beaccu
rate, depending on the value assigned to the datum.

Double-precision-data may approximate the identical set of values as real data. However, double-precision data
have an associated precision of 15+ significant digits.

Complex data are approximations of complex numbers. These approximations take the form of an ordered pair of
real data. The first of the two real data approximates the real part, and the second real datum approximates the
imaginary part of the complex number. The values that may be assigned to each part are identical to the set of
values for real data.

Double complex data have the same form as complex data except that both the real and imaginary parts are double
precision values.

Logical data can acquire only the values "true" or "false".

Literal Data are character strings of up to 255 characters. Like logical data, literal data do not have numeric val
ues. Any of the characters discussed in Section 1 may appear in literal data.

CONSTANTS

Constants are data that do not vary in value and are referenced by naming their values. There are constants for
each type of data. Although numeric constants are considered as being unsigned, they may be preceded by the
plus or minus operators. The operator is not considered part of the constant, however. (See Section 3.)

Integer Constants

Integer constants are represented by strings of digits. The magnitude of an integer constant must not exceed
2, 147,483,647.

Examples:

382

13

4 Data

997263

1961

1000000000

323344224

000546

382437

8

o

Real Constants

Real constants are represented by strings of digits with a decimal point and/or an exponent. The exponent follows
the numeric value and consists of the letter E, followed by a signed or unsigned 1- or 2-digit integer that represents
the power of ten by which the numeric value is to be multiplied. Thus, the following forms are permissible:

n.m n. .m

n. mE±e n. E±e nE±e

where

n, m, and e are strings of digits.

The plus sign preceding e is optional.

For example, • 567E5 has the meaning. 567 x 105 and can also be represented by any of the following equivalent
forms:

0.567E+05

567000.E-l

5. 67E4

567E02

56700.

56700.000E-00

The val ue of a real constant may not exceed the I imits for real data. Any number of digits may be written in a real
constant, but onl y the 7 most significant digits are retained.

Since any real constant may be written in a variety of ways, the user has freedom of choice regarding form.

Examples:

5.0

0.01

7.6E+5

6. 62E-37

Doubl e-Preci si on Constants

3.141592265358979323846

.58785504

Double-precision constants are formed exactly like real constants, except that the letter D is used instead of E in
the exponent. To denote a constant specifically as double-precision, the exponent must be present. Thus, a
double-precision constant may be written in any of the following forms:

n. mD±e n. D±e nD±e

where

n, m, and e are strings of digits

D signifies a double-precision constant

The plus sign preceding e is optional.

The value of a double-precision constant may not exceed the limits for double-precision data. Any number of digits
may be written in a double-precision constant, but only the 15 most significant digits are retained.

Examples:

1. 2345678765432Dl

.9963D+3

Complex Constants

576.3D+Ol

.1254D-02

312. D-4

885. D+3

Complex constants are expressed as an ordered pair of constants in the form

Constants 5

where

c 1 and c
2

are signed or unsigned, real constants.

The complex constant (c
1
,c

2
) is interpreted as meaning c

1
+ c

2
i, where i = R. Thus, the following complex

constants have values as indicated:

(1. 34,52.01)

(98. 344E 11 ,34452E-3)

(-1. , - 1000.)

1. 34 + 52.0li

983.44 + 34. 452i

-1. 0 1000.0i

Neither part of a complex constant may exceed the value limits established for real data.

Doubl e Compl ex Constants

Double complex constants are formed in exactly the same way as complex constants. If either the real or imaginary
part is a double-precision constant, the complex constant becomes a double complex constant.

Examples:

(. 757D6, 3D-4)

(7.,ODO)

757000.0DO

7.0DO

+ .0003DOi

+ O.ODOi

(-4. 286DO, 1. 3) -4. 286DO + 1. 3DOi

Neither part of a double complex constant may exceed the value limits established for double-precision data.

Logical Constants

Logical constants may assume either of the two forms

Tn. II"'"
• II\UC.

where these forms have the logical values "true" and "false", respectively.

Literal Constants

A iiteral constant has the form

'Sf

where

is a string of up to 255 al phanumeric and/or special characters. Note that blanks are significant in such
character strings.

Within a literal constant, two consecutive quotation marks may be used to represent a single quotation mark (or
apostrophe). For example, IAB"CDI represents the five characters AB'CD. However, quotation (I) marks separated
by blanks are not considered to be consecutive.

Examples:

'ALPHANUMERIC INFORMA nON I

Literal constants can appear in three contexts:

1. An argument to a function or subroutine

2. A constant item in a DATA statement

3. A PAUSE or STOP statement (lSi form only)

A I iteral constant cannot appear as an element of an expression.

6 Identifiers

IDENTIFIERS

Identifiers are strings of letters and decimal digits, the first of which must be a letter/ used to name variables as
well as subprograms and COMMON blocks. (See Chapters 7 and 8 for discussions of COMMON and subprograms.)

Identifiers in SDS FORTRAN IV-H may consist of up to six alphanumeric characters. Blank characters embedded in
identifiers are ignored; therefore, ON TIME and ONTIME are identical. There are no restricted identifiers in SDS
FORTRAN IV -H; however, for clarity, it is advisable not to use identifiers that correspond to SDS FORTRAN IV-H
statement types.

Examples:

x A34SQ

ELEVAT

VARIABLES

STRESS

L9876

J3

DIFFER

MELVIN

SETUP

QUANTY

Variables are data whose values may vary during program execution and are referenced with an identifier. Vari
ables may be any of the data types. (There is no such entity as a literal variable; any type of variable may contain
a I iteral string. Normally, integer variables are used.)

If a variable has not been assigned to a particular data type (see IIClassification of Identifiers ll
, Chapter 7), the

following impl icit typing conventions are assumed:

1. Variables whose identifiers begin with the letters I, J, K, L, M, or N are classified as integer variables.

2. Variables whose identifiers begin with any other letter are classified as real variables.

These classifications are referred to as the IIIJKLMN rule ll
•

Consequentl y, double-precision, complex, doubl e-compl ex, and logical variabl es must be explicitl y declared as
such (see JlExplicit Type Statements ll in Chapter 7). The values assigned to variables may not exceed the limits
established for the applicable data types.

SCALARS

A scalar variable is a single datum entity accessed via an identifier of the appropriate type.

Examples:

J 1 NAME SCALAR EQUA T E E NEW DHO XXX8

ARRAYS

An array is data in wh ich the data form an ordered set. Associated with an array is the property of dimension. SDS
FORTRAN IV-H arrays may have up to seven dimensions and are referenced by an identifier. For a complete discus
sion on arrays see IIArray Declarations" in Chapter 7.

Array EI ements

An array el ement is a member of the set of data comprising an array. Array el ements are referenced by the array
identifier, followed by a list of subscripts enclosed in parentheses

where:

v is the array name

si is a subscript (see below)

n is the number of subscripts, which must be equal to the number of dimensions of the array (0 < n :s 7)

Subscripts

A subscript can be any expression that has a resultant mode of integer.

t
See Chapter 1.

Variables 7

The evaluated result for a subscript must always be greater than zero. For example, if an array element is desig
nated as ALPHA(K-4), the value of K must be greater than 4.

Exampies:

MATRIX

CUBE

DATA

J35Z

BOB

FUNCTIONS

Subscripts

(3,9,5,7,6,1,2)

(5* J, P,3)

(I, J, K, L, M, N)

(1+4, 6*KRAN-2, ITEMP)

(3,IDINT(DSQRT(D)))

Array Elements

MATRIX(3, 9,5, 7,6, 1,2)

CUBE(5* J, P,3)

DATA(I, J, K, L,M, N)

J35Z(1+4,6*KRAN-2, ITEMP)

BOB(3,IDINT(DSQRT(D)))

Functions are subprograms that are referenced as basic elements in expressions. A function acts upon one or more
quantities, called arguments, and produces a single quantity, called the function value. The appearance of a func
tion reference constitutes a reference to the value produced by the function, when operating on the given argument.
A function reference is denoted by the identifier that names the function, followed by a list of arguments enclosed
in parentheses

f(a
1
,a

2
,···,a

n
)

where

f is the name of th e func ti on

a.
I

is an argument. Arguments may be constants, variables, expressions, or array or subprogram names (see
JlArguments and Dummies~', Chapter 8).

Functions are classified in the same way as variables; that is, unless the type is specifically declared otherwise, the
IJKLMN rule applies. t The type of a function is not affected by the type of its arguments.

Exampl es of func ti on references are:

SIN(A+B) CHECK(l. 3, J, ABS(Y» KOST(ITEM)

Many library functions are provided in SDS FORTRAN IV-H. In addition, the user may define his own functions
(see Chapter 8).

tFor certain library functions, this does not hold true; see "Basic External Functions Jl in Chapter 8.

8 Functions

3. EXPRESSIONS

Expressi ons are strings of operands separated by operators. Operands may be constants, variabl es, or functi on refer
ences. An expression may contain subexpressions; subexpressions are expressions enclosed in parentheses. Operators
may be unary - that is, they may operate on a single operand. They may also be binary, operating on pairs of
operands. Expressions may be classed as arithmetic, logical, or relational. All expressions are single valued,
and the evaluation of any expression has a unique result.

ARITHMETIC EXPRESSIONS

An arithmetic expression is a sequence of integer, real, double-precision, complex, and/or double-complex con
stant, variabl e, or function references connected by arithmetic operators.

The arithmetic operators are:

Operator

+

*

Operation

Addition (binary) or Positive (unary)

Subtraction (binary) or Negative (unary)

Mul ti pi i cati on

/ Division

** Exponentiati on

Arithmetic expressions may be of a relativel y simpl e form

A

-TERM

1.2607

ACE - DEUCE

W90ML * DE + W9CMI / XKA9RU

F(5. 8E2) - A / B9J (L)

or the more complicated form

x + (112 * (G) ** L(3) + N / SDS) - (H)

-B + SQRT(B ** 2 - 4 * A * C) + T * (S + B / I * (K(J) / (V 1 - VO) + (Z 1 - ZO)))

(X + Y) ** 3 + O. 7352986E-7

-((M + N) * (Z - Q(J)))

Eval uation Hierarchy

The expressi on

A + B/C

might be eval uated as

(A + B) / C

or as

A + (B / C)

Expressions 9

Actually, the latter form is the way the expression is interpreted without explicit grouping. This example illustrates
that it is necessary to formulate rules for expression evaluation so that such ambiguities do not occur.

Subexpressions have been defined as expressions enclosed in parentheses. It is also possible to have nested subexpres
sions as in

x * (Z + Y * (H - G / (I + L) - W) + M(8))

where (I + L) may be called the innermost subexpression, and (H - G / (I + L) - W) is the next innermost subexpres
sion. The evaluation hierachy is, therefore, as follows:

1. The innermost subexpression, followed by the next innermost subexpression, until all subexpressions have been
evaluated.

2. The arithmetic operations, in the following order of precedence:

Operation Operator Order

Exponentiation ** 1 (highest)

Mul tipl icati on *
and Division / 2

Additi on and +
3

Subtrac ti on

Some additional conventions are necessary.

1. At anyone level of evaluation, operations of the same order of precedence (except for exponentiation) are
evaluated from left to right. Consequently, 1/ J / K / L is equivalent to ((I / J) / K) / L.

2. Consecutive exponentations are performed right to left, thus

A ** B ** C

is interpreted as

A ** (B ** C)

The use of parentheses is recommended, as many FORTRAN systems interpret consecutive exponentiation
differentl y.

3. The sequence ==operator operator" is not permissible. Therefore, A * -6 must be expressed as A * (-B).

4. As an algebraic notation, parentheses are used to define evaluation sequences explicitly.
written as (A + B) / C.

Example:

The expressi on

A * (B + C * (D - E / (F + G) - H) + P(3»

is evaluated in the sequence

r =
1

r = 2

F + G

D - r - H 2

C * r 3

r 5 = B + r 4 + P(3)

r = A * r
6 5

where the r are the vari ous I eve! s of eval uatj on.
i

10 Arithmetic Expressions

A+B
Thus, -C- is

MIXED EXPRESSIONS

When an arithmetic expression contains elements of more than one type, it is known as a mixed expression. Logical
elements may not appear in an arithmetic expression except as function arguments (see rule 2, below). When an
expression contains more than one type of element, the mode of the expression is determined by the type and length
specifications of its elements. Table 2 illustrates how the mode for mixed expressions is determined.

Table 2. Mode of Mixed Expressions Using Operators + - * /

DOUBLE
+-*/ INTEGER REAL PRECISION COMPLEX

INTEGER Integer Real Double Complex

I Precision
I

REAL Real ! Real Double Complex

I
Precision

DOUBLE Double I Double Double Double
PRECISION Precision I Precision Precision Complex

COMPLEX Complex ! Complex Double Complex

I
Complex

DOUBLE Double Double Double Double
COMPLEX Complex Complex Complex Complex

It can be seen that a hierarchy of type and length specifications exists. The order of precedence is:

Type

Doubl e Compl ex

Compl ex or Doubl e Preci si on

Real

Integer

Precedence

1 (highest)

2

3

4

DOUBLE
COMPLEX

Double
Complex

Double
Complex

Double
Complex

Double
Complex

Double
Complex

Within a mixed expression, elements of lower precedence type are converted to the higher type before being com
bined with other elements. For example, (3/4) is an integer expression and has the value zero, while ((3/4)+0.0)
is a real expression and has the value 0.75. Parentheses do not affect the mode of computation.

The following rules also apply to mixed expressions:

1. Subscripts and arguments are independent of the expression in which they appear. These expressions are evalu
ated in their own mode (i. e., integer) and neither affect nor are affected by the mode of the outer expression.

2. Only expression elements of the types shown in Table 3 may be combined with an exponentiation operator.

Table 3. Valid Type Combinations for Exponentiations

Base Exponent

Integer

} {
Integer

Real ** Real

Double Precision Doubl e Preci si on

Complex } ** Doubl e Compl ex Integer

Mixed Expressions 11

The mode of the results of an exponentiation operation can be determined in the same manner as that for other
arithmetic operations (see Table 1).

4. Compiex and doubie-precision eiements have the same ievei of precedence. if an expression contains both of
these types, it acquires double-complex type. This is the only case in which an expression may have a type
that is higher than (or different from) all its constituents.

5. Integer, real, and double-precision values that appear in complex or doubl e-compl ex expressions are assumed
to have imaginary parts of zero.

6. Values of expressions, subexpressions, and elements may not exceed the value limits associated with the mode
of the expression.

RELATIONAL EXPRESSIONS

The form of a relational expression is

where

are arithmetic expressions whose mode is integer, real, or double-precision

is a relational operator (see below)

Evaluations of relational expressions result in either of the two values "true" or "false", i. e., relational ex
pressions are of logical type.

Relational operators cause comparisons between arithmetic expressions.

Operator

IT
.LI.

.lE.

.EQ.

.NE.

.GE.

.GT.

Examples:

l.ll.6

O.GT.B

Meaning

.Less than «)
less than or equa I to (~)

Equal to (=)

Not equal to (f)

Greater than or equal to (2:)

Greater than (»

is true.

is false.

O. ll. (2. ** N)

O. ll. - (2. ** N)

is always true, while

is always false.

When two arithmetic expressions are compared, using a relational operator, the two expressions are first evaluated,
each in its own mode. The comparison is then made in the mode of higher precedence; i. e., the value of the lower
mode expression is converted to the mode of higher precedence.

A test for equality between real or double-precision quantities may not be meaningful on a binary machine. Since
these quantities are only approximations to most values; numbers that are "essentially" equal may differ by a small
amount in their binary representations. It can only be said that computations whose operands and results have exact
binary representations will produce these results.

It is not permissible to nest relational expressions such as

(Lll. (X .Gl. O.2345E6)}

where (X .GT. O.2345E6) is a relational subexpression, rather than an arithmetic expression, as the definition of
relational expressions requires.

12 Relational Expressions

LOGICAL EXPRESSIONS

Logical expressions are expressions of the form

where

e. are logical elements.
I

c. are the binary logical operators (see below).
I

Eval uations of logical expressions resul t in either of the two val ues, "true" or "fal se".

Logical elements are defined as one of the following entities:

1. a logical variable or logical function reference

2. a logical constant

3. a relational expression

4. any of the above enclosed in parentheses

5. a logical expression enclosed in parentheses

6. any of the above, preceded by the unary logical operator .NOT.

Logical Operators

There are three logical operators:

Operator

.NOT.

.AND .

unary

binary

. OR. binary

Table 4 illustrates the meanings of the logical operators.

1. .NOT. e is "true" only when e is "false".

2. e
1

.AND. e
2

is IItrue ll only when both e
1

and e
2

are II true" •

3. e
1

.OR. e
2

is IItrue" when either or both e
1

and e
2

are "true".

T abl e 4. Evaluation of Logical Expressions

Expression Values
Evaluation

.NOT. e e
1

.AND. e
2

e True --- False ---

e False --- True

e
1

False e
2

False --- False

e
1

True e
2

False --- False

e
1

False E2 True --- False

e 1 True e
2

True --- True

e
1

.OR. e
2

False

True

True

True

Log i ca I Express ions 13

Evaluation Hierarchy

Parentheses are used to define evaluation sequences explicitly, ina manner similar to that discussed for arithmetic
expressions. Consequenti y,

A .AND. B .OR. Q(3) .NE. X

does not have the same meani ng as

A .AND. (B .OR. Q(3) .NE. X)

where (B .OR. Q(3) .NE. X} may be called a logical subexpression.

The evaluation hierarchy for logical expressions is

1. ari thmeti c expressi ons

2. relational expressions (the relational operators are all of equal precedence).

3. the innermost logical subexpression, followed by the next innermost logical subexpression, etc.

4. the logical operations, in the following order of precedence:

Operator Order

.NOT. 1 (highest)

.AND. 2

.OR. 3

For exampl e, the expression

L .OR .. NOT. M .AND. X .GE. Y

is interpreted as

L .OR. «.NOT. M) .AND. (X .GE. V))

Note: It is permissible to have two contiguous logical operators only when the second operator is .NOT.; in
other words

e
1

.AND .. OR. e
2

is not valid, while

e
1

.AND .. NOT. e
2

is legal. Two consecutive .NOT. operators are not permissible. The logical expression to which the oper
ator .NOT. applies should be enclosed in parentheses if it contains two or more quantities. For example,
if X and Z are logical variables having the values TRUE and FALSE, respectively, the following expressions
are not equival ent:

.NOT. X .AND. Z

.NOT. (X .AND. Z)

In the first expression .NOT. X is evaluated first and produces the value FALSE. This, when ANDed with
Z (also, FALSE), results in the value FALSE for the expression.

In the second expression X .AND. Z is evaluated first and produces the value FALSE. Then the value FALSE
is NOTed, resulting in the value TRUE for the expression.

14 Logical Expressions

4. ASSIGNMENT STATEMENT

Many kinds of statements are included in the SDS FORTRAN IV-H language. The most basic of these is the assign
ment statement, which defines a computation to be performed and is used in a manner similar to equations in normal
mathematical notation.

A simple assignment statement has the form

v=e

where

v is a variabl e (a scalar or an array element of any type)

e is an arithmetic or logical expression. (v must be a logical variable only if e is a logical expression)

This statement means, "assign to v the value of the expression e. II It is not an equation in the true sensei it does
not declare that v ~ equal to e, but rather it sets v equal to e. Thus, the statement

N = N + 1

is not a contradiction: it increments the current value of N by 1.

The expression need not be the same type as the variable, although in practice it usually is. When it is not, the
expression is evaluated in its own mode, independent of the type of the variable. Then, if permissible, it is con
verted to the type of the variable according to Table 5 and assigned to the variable.

Table 5. Mixed Variable Types and Expression Modes

Variable
Expression Mode

Type integer real
double

complex
double

logical
precision complex

integer X I I I I N

real F X P R R N

double
precision F P X D D N

complex R R R X P N

double
complex D D D P X N

logical N N N N N X

The symbols used in Table 5 have the following meanings:

Symbol

X

F

Meaning

Direct assignment of the exact val ue.

The value is truncated to integer. The truncated value is equal to the sign of the expression times
the greatest integer less than or equal to the absolute value of the expression (e.g., 4274.9983 is
truncated to 4274, and -0.6 to 0). Val ues that are greater than the maximum size of an integer
will be truncated at the high-order end as well. Results in this case generally are not meaningful.

The variable is assigned the real or double-precision approximation of the value. Since real pre
cision is less than that of integers, conversion to real precision may cause a loss of significant digits.

Assignment Statement 15

P

R

D

N

Examples:

A = B

Meaning

The precision of the value is increased or decreased accordingly.

The real part of the variable is assigned the real approximation of the expression. The imaginary
part of the variabl e is set to zero.

The real part of the variable is assigned the double-precision approximation of the expression. The
imaginary part of the variable is set to zero.

Not allowed.

Q(I) = Z ** 2 + N * (L - J)

L = F .OR .. NOT. C .AND. (R. GE. 23. 9238E-1)

CRE(8, ED) = R (ALL, MEN)

PI = 4 * (ATAN(O.5) + ATAN(O. 2) + ATAN(O. 125))

16 Assignment Statement

5. CONTROL STATEMENTS

Each executable statement in a FORTRAN IV-H program is executed in the order of its appearance in the source
program, unless this sequence is interrupted or modified by a control statement.

LABELS

If program control is to be transferred to a particular statement, that statement must be identified. Statements are
identified by labels. Nonexecutable statements may have labels, but, except for FORMATs, the labels should not
be referenced.

Statement labels consist of up to five decimal digits and must be greater than zero. Embedded blanks and leading
zeros are not significant. The following labe!s are equivalent.

857 00857 8 5 7 085 7

Statement labels may be assigned in any order; their numerical val ues have no effect on the sequence of statement
compilation or execution.

GO TO Statements

GO TO statements transfer control from one point in a program to another. FORTRAN IV-H incl udes three forms of
GO TO statements: unconditional, assigned, and computed.

Unconditional GO TO Statement

This statement has the form

GOTO k

where k is a statement label. The result of the execution of this statement is that the next statement executed is the
one whose label is k. For example, in

GO TO 502
98 X = Y

502 A = B

statement 502 will be executed immediately after the GO TO statement.

Assigned GO TO Statement

The format of the assigned GO TO is

where

v is a nonsubscripted integer variable that has been assigned (via an ASSIGN statement, see below) one of
the statement labels kl - kn.

ki is a statement label (the I ist enclosed in brackets is optional).

Control Statements 17

Each label appearing in the I ist must be defined in the program in which the GO TO statement appears (i. e., must
be the label of a program statement). This statement causes control to be transferred to the statement label (k.) that
corresponds to the current assignment of the variabl e (v). I

Examples:

ASSIGN 5371 TO LOC

GO TO LOC, (117, 56, 101,5371)

The GO TO statement transfers control to the statement labeled5371. Note that v (the variable" LOC" in the above ex
ample) must have been set bya previously executed ASSIGN statement prior to its execution in the GO TO statement.

Computed GO TO Statement

The computed GO TO statement is expressed as

where

k. is a statement I abel
I

v is a nonsubscripted integer variable whose value determines to which of the k. control will be transferred.
I

Th i s statement causes control to be transferred to the statement whose I abel is kj, where j is the integer val ue of the
variable v, for 1 ::; j::; n. If j is not between 1 and n, no transfer occurs, and control passes to the statement follow
ing the computed GO TO statement. In most previous FORTRAN systems, this situation has been considered an error,
but is no longer so considered.

Examples:

Statement Expression Value Transfer to

GO TO (98,12,405,3), N 3 405

GO TO (1,8,7,562), I 2 8

GO TO (4,88, 1), N 0 next statement

GO TO (63,9,3,2), J 8 next statement

ASSIGN Statement

The ASSIGN statement, used to assign a label to a variable, has the form

ASSIGN k TO v

where

k is a statement label

v is a nonsubscripted integer variable

Examples:

ASSIGN 5 TO JUMP

ASSIGN 22 TO M

ASSIGN 1234 TO IRETURN

ASSIGN 99999 TO IERROR

A variable that has had a label assigned to it may be used onl y in an assigned GO TO statement.

18 ASSIGN Statement

A variable that has most recently had a label assigned to it should not be used as a numeric quantity. Conversely,
a variable that has not been assigned a label may not appear in any context requiring a label. The following case
ill ustrates improper usage:

ASSIGN 703 TO HI

A = HI/LOW

This usage is not permissible because the value of HI is indeterminate, since its value depends on where the program
is loaded. Furthermore,

M = 5

cannot be substituted for

ASSIGN 5 to M

or vice versa, because the integer constant "5 11 is implied in the first case, and the label "5" in the second.

IF Statements

Very often it is desirable to change the logical flow of a program on the basis of some test. IF statements, which
may be called conditional transfer statements, are used for this purpose. There are two forms of IF statements:
arithmetic and logical.

Arithmetic I F Statement

The format for arithmetic IF statements is

where

e is an expression of integer; real, or double-precision modes.

are statement labels.

The arithmetic IF statement is interpreted to mean

IF e < 0, GO TO k1

IF e = 0, GO TO k2

IF e> 0, GO TO k3

If e is a real or double-precision expression, a test for exact zero may not be meaningful on a binary machine. If
the expressi on i nvol ves any amount of computati on, a very small number is more Ii kel y to resul t than an exact zero.
For this reason, floating point arithmetic IF statements generally should not be programmed to have a unique branch
for zero.

Examples:

Statement

IF (K) 1,2,3

IF (3 * M{J) - 7) 76,4,3

IF (C(J/ 10) + A /4) 23, 12, 12

IF (N EXT + LAST) 3, 156,3

Logical IF Statement

Expression value

47802

-6

0.0002

o

The logical IF statement is represented as

IF (e) s

Transfer to

3

76

12

156

IF Statements 19

where:

e is a logical mode expression

is any executabie statement except a DO statement or another iogicai IF statement

The statement s is executed if the expression e has the value "true"; otherwise, the next executable statement fol
lowing the logical IF statement is executed. The statement following the logical IF will be executed in any case
after the statement s, unl ess the statement s causes a transfer.

Examples:

IF (FLAG .OR. L) GO TO 3135

IF (OCTT * TRR .L T. 5.334E4) CALL THERMAL

IF (.NOT. SWITCH2) REWIND 3

CALL Statement

This statement, used to call or transfer control to a subroutine subprogram (see Chapter 8), may take either of the
foil owi ng forms:

CAll P

CALL p (a l , a 2, a3,··· ,an)

where

p

a.
I

is the identifier of the subroutine subprogram.

is an argument, which may be any of the following: Constants, subscripted or nonsubscripted variables,
arithmetic expressions, statement label arguments (&a!, where a~ is the statement label), or array or sub
program nam~s. (See IIArguments and Dummiesll

, Chdpter 8.) I

A subroutine is similar to a function except that it does not necessarily return a value, and must not, therefore, be
used in an expression. Furthermore, while a function must have at least one argument, a subroutine may have none.
For example,

CALL CHECK

Arguments that are scalars, array el ements, or arrays may be modified by a subroutine, effectivel y returning as
many results as desired. The following call might be used to invert the matrix A, consisting of K rows and columns,
store the resulting matrix in the array B, and set D(J) equal to the determinate of B.

CALL INVERT(A, K, B, D(J»

A complete discussion of the usage and forms of arguments to supprograms is contained in Chapter 8.

A subroutine name has no type (e. g., real, integer) associated with it; it merely identifies the block of instructions
to be executed as a result of the CALL. Therefore, the appearance of a subprogram name in a CALL statement does
not cause it to take on any implicit type.

Other examples of CALL statements are given below. Statement labels are identified by a preceding ampersand.

CALL ENTER(&44, N)

CALL RX23A(X ** Y - 7,0, SQRT(A * A + B * B) / DIY, TEST)

CALL EVALUE

20 CALL Statement

RETURN Statement

The RETURN statement causes an exit from a subprogram. It takes one of the forms

RETURN

RETURN v

where v is an integer constant or INTEGER variable whose value must be greater than zero, but no greater than the
number of asterisks that appear in the SU BROUTINE statement (see II SUBROUTINE Subprogramsll and II Arguments
and Dummies lt in Chapter 8 for a discussion on the use of asterisks in SUBROUTINE statements).

A RETURN statement must be, chronologicalIy, the last statement executed in any subprogram, but it need not be last
physicall y. There may be any number of RETURN statements in a subprogram. A RETURN statement in a main pro
gram wiII be treated as a STOP statement.

The first form, RETURN (without the v) is the statement usuaIly used. In a subroutine, it returns control from the
subroutine to the first executable statement following the CALL statement that calIed the subroutine. In a function,
it causes the latest value assigned to the function name to be returned, as the function value, to the expression in
which the function reference appeared. (See also, "FUNCTION Subprograms", Chapter 8.)

The second form, RETURN v, is used to provide an alternate exit from a SUBROUTINE subprogram. The value of v
is used to determine which statement label in the calling argument list wi" be used as the return. The vth asterisk
(counting from left to right in the SUBROUTINE statement) corresponds to the statement label that will be used. If
the most recent entry to the subprogram did not contain any asterisks in the dummy I ist, the RETURN statement wi II
cause a run-time diagnostic to be produced.

Examples:

Calling Program

33 CALL IT (LOCK, RET, OR, & 11, &883)

66 X(8) = Y(C, K) + CHEBY(Z, Y)

Subprograms

SUBROUTINE IT (i, X, P, *, *)

RETURN 1

RETURN 2
END
FUNCTION CHEBY (ARG, EXP)

RETURN
END

When subroutine IT is ca lied by statement 33, return is to statement 11 if the RETURN 1 exit is executed, or to
statement 883 if the RETURN 2 exit is executed. When the function subprogram CHEBY is caIled by statement 66,
the return from the function is to the point of call in 66.

DO Statem ent
These statements are used to control the repetitive execution of a group of statements. The number of repetitions
depends on the value of a variable. The DO statement may be written

DO k v = e l' e 2' e 3' or

DO k v =- e
1
, e

2
where

k is a statement label not defined before the DO statement.

v is a nonsubscripted integer variable.

e l' e2' and e3 are integer constants greater than zero or unsigned nonsubscripted integer variables whose
value is positive.

In the second form, e3 and the preceding comma are omitted; in this case the value 1 is assumed for e3.

RETURN/DO Statement 21

A DO statement indicates that the block of statements following it are to be executed repetitively. Such a block is
called a DO loop, and all statements within it, except for the opening DO statement, constitute the range of the
DO statement. The last statement in a DO loop is the terminus and bears the statement label k.

The execution of a DO loop proceeds in the following manner:

1. The variable v is assigned the value of e1.

2. The range of statements is executed for one iteration.

3. After each iteration, the value of v is incremented by the value of e
3

. If e
3

is not present, the value 1 is used.

4. The value of v is then compared with the terminal value (e
2

).

5. If v is greater than e2' control is passed to the statement following the terminus (i. e., to the statement follow
ing the one whose label is k). Otherwise, the process is repeated from step 2.

6. The actua I number of iterations defined by the DO statement is given by

where the brackets represent the largest integral value not exceeding the value of the expression.

The range of a DO loop wIll always be executed at least once, even if the conditions for termination are met initial
ly. For this reason, it is recommended that initially satisfied DO loops should not be used, especially since other
FORTRAN systems may interpret this situation differently.

The terminal statement of a DO range (i.e., the statement whose label is k) may be any executable statement other
than one of the following:

DO statement

GO TO statement

Arithmetic IF statement

RETURN statement

STOP statement

PAUSE statement

Logical IF statements are specifically allowed as terminal statements of a DO range.

Example:

22 D054I=1,15

25 SUM = SUM + QO)

IF (SUM. L T. 0.0) SUM = 0.0

SIGMA = SUM + R(I)

IF (SIGMA - H ** 3 IT) 54,54, 12

54 CONTINUE

12 L = YO)

In the example that begins with statement 22, the range of statements 25 through 54 wi II be executed 15 times,
unless the arithmetic IF statement causes a transfer to statement 12. If ail 15 iterations are completed, control is
passed to statement 12 at the end of the fifteenth iteration.

If the range of a DO loop terminates on a statement with 's' in column 1 (in-line coding), note that the code gen
erated for the end of a DO loop immediately follows that statement.

Example:

DO 10 I = 1, 10

X =X + I

S10 LW,3 X

< end DO loop code>

S STW,3 Z

It is not a recommended practice to put a DO close on an in-I ine coded statement. This is because the compi ler can
not diagnose incorrect terminal statements of a DO range, such as

22 DO Statement

S10

DO 10 I = 1, 10

x=y
B 20S

20 Y =X

The va lue of the variable v appearing in a DO statement depends on the number of iterations canpleted. The va lue
of v during anyone iteration is

e 1 = (i - 1) * e3

where i is the number of the current iteration, and el and e3 have the meanings discussed previously. If a transfer
is made out of the range of a DO before all iterations have been completed, the value of v will be that of the itera
tion during which the transfer occurred. However, should the entire number of iterations be executed, the value of v is

e 1 + m * e3
where m is the tota I number of iterations specified by the DO statement.

Thus, in the example beginning with statement 22, if all iterations are completed, statement 12 wi II be equivalent to

12 L =Y(16)

However, if the arithmetic IF statement causes a transfer to statement 12 during the eighth iteration, the statement
will mean

12 L = Y(8)

The value of the indexing parameters (v,el,e2,e3) cannot be modified within the range of the DO, nor can they be
modified by a subprogram called within the range of the DO.

A transfer out of the range of a DO loop is permissible at any time; however, a transfer into the range of a DO may
only occur if there has been a prior transfer out of the DO range (assuming that none of the indexing parameters
(v, e

1
, e

2
, e

3
) are changed outside the range of the DO). For example:

DO 25 H = K, Y, 1

GO TO 8605

24 A = H /8

25 JGU = Y(H) ** 3

8605 R = SIN(G(H)) + JSU

8606 GO TO 24

is permissible; in fact, the statements 8605 through 8606 are considered part of the DO range. The sequence

GO TO 11

DO 32 J= 2,36,2

11 R(J) = 47. E-7 * T(J)

32 T(J) = Q

is not valid because no transfer could possibly occur out of the DO range.

A DO loop may include another DO loop. Do loops may be nested; however, they cannot be overlapped. In a nest
of DO loops, the same statement may be used as the terminal statement for any number of DO ranges; however,
transfers to this statement can be made only from the innermost DO loop. There is no limit to the number of DO

DO Statement 23

ranges that can be nested. Only if a transfer is made out of the range of the innermost DO loop can a return
transfer into the range of nested DO loops be made. In this case, the return transfer must be to the innermost DO
loop.

Examples:

Legal III egal

DO 1000 I = 1, II DO 200 W = 1 WW ,
DO 100 J = 1, JJ

DO 20 OX = 1, XX-

~o 10 K~ 1~
DO 20 Y = 1, YY

10 CONTINUE

200 CONT INUE

ZZ --.J DO 100 L = 1, LL 201 DO 20 o Z = 1,

~OlM~l'MMJ 002 U= 1, UU-

A=B 2000 Q = R

100 CONTINUE 20 CONT INUE

1000 THIS = DO END 2 IT=W RONG

The termi nal statement of a range may not physi call y precede the DO statement, as is shown in the case of state
ments 200 and 201 in the iI!ega! example above.

CONTINUE Statement

This statement is written as

CONTINUE

and must appear in that form. The CONTINUE statement does not cause the compiler to generate machine instruc
tion and, consequently, has no effect on a running program. The purpose of the CONTINUE statement is to allow
the insertion of a label at any point in a program. For example:

DO 72, I = 1, 20

IF (X ** I + O. 9999E-5) 72, 72, 88

72 CONTINUE

88 H(33) = T(3, R, L, E) /22.5

CONTINUE statements are most often used as the terminal statement of a DO range, as in the example above.

PAUSE Statement

PAUSE statements are written as

PAUSE

PAUSE n

PAUSE 's'

24 CONTINUE/PAUSE Statement

where

n is an unsigned integer constant of up to five digits (1 ~ n ~ 5).

's' is a literal constant.

This statement causes the program to cease execution temporarily, presumably for the purpose of allowing the com
puter operator to perform some specified action. The operator can then signal the program to continue execution,
beginning with the statement immediately after the PAUSE.

If an integer or a literal constant is appended to the PAUSE statement, the word PAUSE and this value will be dis
played to the computer operator when the program pauses; otherwise, the word PAUSE is displayed.

STOP Statement

STOP statements are written in the form

STOP

STOP n

where

n is an unsigned integer constant

This statement terminates the execution of a running program. If it appears within a subprogram, control is not
returned to the calling program. If an integer is appended to the STOP statement, it will be output immediately
before termination.

END Statement

An END statement is used to inform the FORTRAN IV-H compiler that it has reached the physical end of a program.
The statement must appear in the form

END

If, in a main program, control reaches an END statement, the effect is that of a STOP statement. If, in a SUB
ROUTINE or FUNCTION subprogram, control reaches an END statement, the effect is that of a RETURN statement
(see Chapter 8).

The following restriction applies to any statement that begins with the character string END:

If the compiler hasencountered only the characters E ND at the end of a FORTRAN IV-H I ine, it assumes that the
statement isan END statement and will act according Iy. An E ND statement may not appear on a continuation line.

This limitation is due to an historic FORTRAN feature; namely, the way in which continuation is specified. As in
dicated by the following examples, certain statements, although legitimate FORTRAN IV-H statements, will be
processed as though they were EN D statements.

Processed as END Statements

column: 6

x

x

7 ..

END
FILE 2

END

END

RATE = A * B

(I, J, K) = .NOT. Q

Not Processed as END Statements

6

x

x

7

END FILE
2

END RA

END (I, J
,K) = .NOT. Q

E
1 N
2 D

TE = A * B

Similarly, illegal statements of the same nature as those in the first column will be treated as END statements.

STOP/END Statement 25

6. INPUT jOUTPUT

The FORTRAN language provides a series of statements that determine the control of and condition for data transmis
sion between computer storage and external data handling devices, such as magnetic tape and paper tape handlers,
typewriters, card units, and line printers. These statements are of three types:

1. READ and WRITE statements that cause specified lists of data to be transmitted between computer storage and
one of the group of external devices

2. FORMAT statements used in conjunction with the input/output of formatted records to provide conversion and
editing information that specifies their internal and external representation

3. Auxiliary I/O statements for positioning and demarcation of external files (as on magnetic tapes)

The data transmitted by input/output statements are transmitted as records of sequential information consisting of
binary-coded stri ngs of characters or unformatted binary val ues in a form similar to internal storage. For either type
of transmission the I/O statements refer to external devices, lists of data names, and - for formatted data - to format
specification statements.

INPUT /OUTPUT LISTS

An input/output list represents an ordered group of data names that identify the data to be transmitted and the order
of their transmission. These lists have the form

m1, m2,···, mn

where

m. are list items separated by commas, as shown.
I

LIST ITEMS

A list item may be either a single or multiple datum identifier.

A single datum identifier is the name of a scalar variable or an array element.

Examples:

A B

MATRIX(25,L) ALPHA(J,N)

Multiple data identifiers are in one of two forms:

1. An array name appearing in a list without subscripts is considered equivalent to the listing of each element in
the array. ---

Example:

If B is a 2-dimensional array, the list item B is equivalent to

B(l, 1),B(2, 1),B(3, 1), •.. ,B(1,2),B(2,2), .•. ,B(j,k)

where

j and k are the dimension limits of B

2. DO-implied items are lists of one or more identifers or other DO-implied items followed by a comma character
and an expression of one of the forms

v = e
l
, e

2

enclosed in parentheses.

26 Input/Output

The elements v, el' e2' and e3 have the same meaning as defined for the 00 statement. The items enclosed in
parentheses with a 00 implication are considered to be in the range of the 00 implication. For input lists the
indexing parameters v, e

1
, e

2
, and e

3
may appear in this range only as subscripts.

Examples:

OO-implied List

(X(I), 1= 1,4)

(A (I) , I = 1, 10,2)

«C(I,J), D(I,J), J = 1,3), 1=1,4)

SPECIAL LIST CONSIDERATIONS

Equivalent Lists

X(l), X(2), X(3), X(4)

A(1), A(3), A(5), A(7), A(9)

C(l, 1),0(1, 1),C(1,2),0(1,2),C(1,3),0(1,3)

C(2, 1),0(2, 1),C(2,2), 0(2,2),C(2,3), 0(2,3)

C(3, 1),0(3, 1), C(3, 2),0(3,2), C(3, 3),0(3,3)

C(4, 1),0(4, 1), C(4, 2),0(4,2), C(4, 3),0(4,3)

Since J is the innermost index, it varies more rapidly than I.

1. The ordering of a list is from left to right with repetition of items enclosed in parentheses (other than subscripts)
when accompanied by controlling OO-implied indexing parameters.

2. An unsubscripted array name in a list implies the entire array.

3. Constants may appear in input/output lists only as subscripts or as indexing parameters.

4. For input lists the DO-implying index parameters (v, e
1
, e

2
, e

3
) may not appear within the parentheses as list items

For example, as an input list

(I,J,A(I), 1= 1,J,2)

I,J,(A(I),I=1,J,2)

As an output list

(I, J, A(I), 1= 1, J, 2)

is not allowed

is allowed

is allowed

5. The number of items in a single list is limited only by the statement length specifications.

INPUT jOUTPUT STATEMENTS

All input/output statements specify a device unit number, u. This number may be either an integer constant or an
integer variable reference whose value then identifies the unit. This unit number corresponds to an actual physical
device in one of two ways:

1. The number may be assigned to a device at program run time.

2. The number may be a standard unit number assignment, which is recognized as referring to a particular device.
These standard assignments may be overridden by run-time assignments, if necessary.

Tobie 6 shows standard device assignments for Sigma FORTRAN IV-H. There are no standard unit assignments for
magneti c tapes or random access devi ces.

Table 6. Standard Unit Assignments

Unit Number Standard Assignment

101 T ypewri ter input
102 T ypewri ter output
103 Paper tape reader
104 Paper tape punch
105 Card reader
106 Card punch
108 Li ne pri nter

Input/Output Statements 27

FORMATTED INPUT/OUTPUT STATEMENTS

Formatted I/O statements are used to process binary-coded (BCD) records. These statements have the forms

READ(u, f)k

WRITE{u, f)k

where

u is a device unit number (unsigned integer or integer variable)

is a FORMAT statement label or an unsubscripted array name

k is an input/output list, which may be omitted

A formatted READ statement causes the character string in the external record to be converted, according to the
FORMAT specified, into binary values. These are then assigned to the variables appearing in the list k, or the
equivalent simple list, if k contains a DO-implication. Conversely, a formatted WRITE statement converts internal
values into character strings and outputs them.

Each formatted input/output statement begins processing with a new record. It is not possible to process a particular
record using more than one READ or WRITE statement. More than one record may be processed by these statements
if specifically requested by the FORMAT statement. However, attempting to read (or write) more characters on a
record than are (or can be) physical! y present does not cause processing of a new record; on output the extra char
acters are lost, on input they are treated as blanks.

A BCD record has a maximum size of 132 characters. Certain devices may impose other restrictions on the size of
records. For example, a punched card contains 80 characters. A record may contain as few as zero characters, in
which case it is considered to be blank or empty. In other words, a record into which any number of blanks have
been specifically written is indistinguishable (within the program) from an empty record. However, on devices such
as magnetic or paper tape, the FORMAT statement may determine the actual size of record written (see the SDS
Sigma Monitor reference and operations manuals for a complete description of BCD records).

The list k may be omitted from a formatted input/output statement. Normally, this has the effect of skipping one
record (on input) or writing one blank record (on output). However, information may actually be processed, and/or
more than one record used, if the FORMAT statement begins with Hollerith or slash specifications, in which case
information is either read into or written from the locations in storage occupied by the FORMAT statement (see
IIH Format Codes ll under IIFORMAT Statements II).

Examples:

READ(105, 6)X, Y, T(3, 5)

READ(5,FORM) (A(I), 1= 1,40),H,Q

WRITE(N, FM TXMASS(J, 3), J = 1, 100, 1)

WRITE(102,93) MESAGE, ERR NO

ACCEPTABLE FORTRAN II STATEMENTS

The following FORTRAN II statements are accepted by FORTRAN IV-H. Each of these statements designates a spe
cific physical device, as shown in Table 7.

Table 7. FORTRAN II/FORTRAN IV Equivalent Statements

FORTRAN II FORTRAN IV Standard
Statement Equivalent Assignment

READ f, k READ (105, f)k Card reader

PUNCH f, k WRITE (106, f)k Card punch

PRINT f, k WRITE (108, f)k Li ne pri nter

28 Input/Output Statements

READ Statement

This FORTRAN II input statement has the form

READ f, k

where

f is a statement label or an array name of the FORMAT statement describing the data

k is an input list as described earlier in this chapter

The READ statement causes the character string in the external record to be read from device 105 and converted,
according to the FORMAT specified, into binary values which are then assigned to the variables appearing in the
list k, or the equivalent simple list if k contains a DO-implication.

PUNCH Statement

This FORTRAN II output statement has the form

PUNCH f, k

where

is a statement label or an array name of the FORMAT statement describing the data

k is an output list described earlier in this chapter

This statement causes internal data to be converted into character strings, as specified by the applicable FORMAT
statement, and output on device 106.

PRINT Statement

The form of the PRINT statement is

PRINT f, k

where

is a statement label or an array name of the FORMAT statement describing the data

k is an output list as described earlier in this chapter

The PRINT statement causes internal data to be converted into character strings, as specified by the applicable
FORMAT statement, and output on device 108 (see also, "Carriage Control for Printed Output" in this Chapter).

INTERMEDIATE INPUT/OUTPUT STATEMENTS

These statements process information in internal (binary) form and are designed to provide temporary storage on mag
netic tapes, discs, and drums. They have the form

READ(u) k

and

WRITE(u) k

where

u is a device unit number

k is an input/output list, which may be omitted (see below)

The binary READ/WRITE statements process data as a string of binary digits, arranged into words, depending on the
size of the items in the list k (see "Allocation of Variable Types", Chapter 7). All the items appearing in the list of
a binary READ/WRITE statement are contained in one logical record.

Input/Output Statements 29

A logical record may consist of several physical records; however, it is treated as a single record, as far as the
programmer is concerned. (See The SDS Sigma Monitor reference and operations manual s for a description of the
format of intermediate binary information.) This means that the information output by a single binary WRITE state
ment must be input by one and oniy one READ statement. it is permissibie to read iess information than is present in
the record. If the input list requests more data from a binary record than is present, an error will occur. There is
no limit to the number of items that can be processed by a single READ/WRITE statement, since only one logical
record will be read or written, regardless of the amount of data to be transferred.

The records produced by binary WRITE statements do not consist of just the data to be generated. Control words are
included in the records to facilitate reading or backspacing the proper number of physical records. Thus, the infor
mation produced by an intermediate binary WRITE statement is meant to be read subsequently by a binary READ state
ment. Other FORTRAN systems will not necessarily interpret the records in the same way. Similarly, binary tapes
produced on other machines or by other programs cannot, in general, be input using a binary READ statement.

If the list k is omitted from a binary READ/WRITE statement, a record is skipped, or an empty record is written.
Unlike formatted input/output statements, no data transfer can occur in such an operation. If an empty record is
written, it can only be processed by a READ statement with no list and, therefore, has little purpose.

Examples:

READ(3)El(K), (M(K, L), L = 1,22)

READ(N) ARRAY

WRITE(MIN)R(J), G(J)

WRITE(3)VALUE

END and ERR Fonns of the READ Statement

Both the formatted and intermediate binary READ statements may optionally include a specification of action to be
performed if an error occurs or an end-of-file mark is read. The statements are written

READ(u, f, END=sll ERR=s,,)k
I L

READ(u, END=sl' ERR=s2)k

where sl and s2 are each a statement label. Both the EN D = sl and the ERR = s2 are optional; if both are present,
either may appear first.

If an end-of-file mark is encountered during the processing of the READ statement, control will be transferred imme
diately to statement s 1. If an error occurs, control will be transferred to statement 52.

NAME LIST Input/Output

With NAMELIST input/output the programmer can input and output numeric data without FORMAT statements. Each
input record specifies exactly which variable is being input, rather than requiring the input data to interface with
an internal input list. This also provides the ability to input information without knowing in advance which items
are going to be processed.

NAMELIST input/output statements have the form

READ(u,x)

WRITE(u, x)

where

u is a device unit number (unsigned integer or integer variable)

x is a NAMELIST block name

The NAME LIST block name x is a single variable name that refers to a specific list of variables or array names into
which (or from which) the data is transferred. A specific list (block) of names receives a NAMELIST name through
a NAMELIST statement. The form of the NAMELIST statement is

NAMELIST wl w2 w3 ... wn

30 Input/Output Statements

where the w., which should not be separated by commas, have the form
I

/x/ V l' V 2' V 3' ... , v m

where

x is the name of the NAMELIST block

v. is a scalar or array name and are not allowed to be dummy names
J

Each of the w. defines a NAMELIST block into which the names of the variables v. are placed. The following rules
appl y to the KJAMELIST statement: J

1. The name (x) of a NAMELIST block consists of up to six alphanumeric characters, the first of which is alpha
betic. It must be unique with respect to all other identifiers in the program, except for statement function
dummies.

2. A NAMELIST block can be defined only once. Unlike labeled COMMON (which the NAMELIST statement
resembles syntactically) a NAMELIST block cannot be continued in a later NAMELIST statement. Once the
block name has appeared in a NAMELIST statement, it may appear only in NAMELIST -type READ and WRITE
statements in the rest of the program.

3. A NAMELIST block may appear anywhere in a FORTRAN program but must be defined prior to its appearance
in a READ or WRITE statement.

4. A variable may belong to more than one NAMELIST block.

Output Format

The form of WRITE statement used with NAMELIST blocks is

WRITE(u, x)

where

u is the logical number, as defined for other WRITE statements

x is a NAMELIST block name

There is no input/output list associated with this form of WRITE statement. The rules defining this form of output
are:

1. All the variables belonging to NAMELIST block x are written in the unit specified by u. This relieves the pro
grammer of the necessity of writing a complete input/output list with each WRITE statement.

2. Since onl y scalar and array names may appear in a NAMELIST block, it is not possibl e to output array el ements
individually (only the entire array may be output). Similarly, implied DO loops cannot be used.

3. The values of each list item will be output, each according to its own type, and will be preceded by the char
acter string that defines the item. The character string and the value are separated by an equal sign. Output
begins in column 2 in order to avoid automatic carriage control (see "Carriage Control for Printed Output" in
this chapter).

4. The output buffer for a NAMELIST block can cccommodate 80 characters. The format specifications (see FOR
MAT Statements" later in this chapter) provided by the compiler for NAMELIST-type WRITE statements are as
follows:

Item Type

logical*4
integer*4
real*4
doubl e prec is i on* 8
complex*8
double complex* 16

Format Specification

L1
III
G12.6
G21.15
lH(, G12.6, lH,G12.6, lH)
lH(, G21.15,lH, G21.15,lH)

Leading blanks are removed in integers. Commas separate entries on a card.

Input/Output Statements 31

5. The fi rst record output by each NAMELIST type WRITE statement consists of an ampersand (&) in column 2,
followed by the NAMELIST block name. Subsequent records contain the values of the variables in the block.
The last record produced will contain an ampersand (&) in column 2, followed by the letters END.

6. Since each NAMELIST -type WRITE statement creates an END record, the information produced by one such
statement may be read by one and onl y one NAMELIST -type READ statement. It is not possible to create a
single "file ll using more than one WRITE statement or multiple llfiles ll using a single WRITE statement, nor is it
possible to suppress the block name or the END record from appearing on a listing.

Input Format

The NAMEUST form of READ statement, which is the counterpart of the WRITE statement just described, is written

as

READ (u, x, END=k
1
, ERR=k

2
)

where

u is a device unit number

x is a NAMEUST block name

kl and k2 are statement labels

Both END=k
l

and ERR=k
2

are optional. They specify action to be taken upon an end-of-file or error condition,
respectively (see II END= and ERR= Forms of the READ Statement").

Input with this form of READ statement is governed by the following rules:

1. The first character of every record is ignored.

2. The first record to be read must be limited to an ampersand (&) in column 2, followed immediately by the same
NAMELIST block name that was specified in the READ statement. This redundancy check is provided to assure
that the proper data is being read.

3. Only variables belonging to the NAMELIST block (x) specified in the READ statement are permissible in the
input data. The appearance of any other variable, whether in another NAMELIST block or not, is an error.

4. Scalars, array elements, and entire arrays may be processed by this statement. The form the data items may
take is:

a. variable name = constant

b. array name = set of constants (separated by commas). The number of constants must be equal to the number
of elements in the array.

The constants used may be integer, real, double precision, complex, logical, or literal. Each constant must be
the same type as the variable it initial izes, except for literal constants, which may be used with any type of
variable (integer is recommended).

5. When inputting into an entire array, a constant may be repeated k times by preceding it with k*, where k is an
unsigned integer. k is called the repeat count, and its usage is similar to that in the DATA statement (see
Chapter 7). Note that 3*5 does not mean 15, but rather three constants of value 11511 •

6. There may be any number of replacements on a record. These must be separated by commas and, except for the
last data record preceding the END record, the last replacement on each record must be foil owed by a dangl ing
comma.

7. Blanks may not be embedded in a constant or a repeat count or variable name, but may be used freely elsewhere
in the data record.

8. The last item on each record that contains data must be a constant followed by a comma, except as noted in
statement 6. The dangling comma after the final data item is optional.

9. The last record processed by the READ statement must contain an ampersand (&) in column 2, followed immedi
atel y by the characters END in col umns 3, 4, and 5. No other data may appear in the last record.

32 Input/Output Statements

Example:

Assume A and LG L are array names

REAL

LOGICAL

A(52)

LGL{l2,4)

COMPLEX CPX

NAMELIST /LISTl/DBL, T, A, J/LIST2/LGL, CPX, A, K, ARY

READ{105, LIST2)

If the input is from punched cards

First card

Second card

Third card

Fourth card

Fifth card

Sixth card

Seventh card

Eight card

Ninth card

Column 2

&LISTl

T=55E-2, A(3)=4, DBL=2,

J=-3746,

&END

&LIST2

LGL(12,2)=.FALSE., LGL(12,4)=. TRUE.,

C PX=(7. 32D-2, 3), ARY=O, K=O,

A=9*5,12

&END

The READ statement causes the first card to be read. Since this does not contain the specified NAMELIST name,
cards are read (and ignored) until the next NAMELIST name is encountered. When the sixth card is read, the values
FALSE and TRUE are stored in LGL(12,2) and LGL(12,4), respectively. The seventh card is read, and the values
for CPX, ARY, and K are stored. Next, the eighth card is read. Since A is an array name without subscripts, the
entire array will be filled with the succeeding constants: A(l) through A(9) would contain the value 5; A(10) would
contain the value 12.

FORMAT Statements

FORMAT statements are used in conjunction with READ and WRITE statements to specify data conversion methods
and/or editing of data as it is transmitted between computer storage and external devices. These statements are
nonexecutable and may be placed anywhere in the source program; they must have statement labels for reference by
input/output statements.

FORMAT statements have the form

where n ? 0

Each S. is either a format specifica-tion of one of the forms described in the paragraphs below or a repeated group of
such fdrmat specifications in the form

where

is a repeat count as described on the foll~ing page

S. is a format specification
J

FORMA T Statements 33

The word FORMAT and the parentheses must appear as shown. Commas separate the format specifications and must
be present as shown or may be replaced by slashes or groups of slashes (see "Format Specifications").

FORMAT SPECIFICATIONS

Format specifications describe the size of data fields and specify the type of conversion and editing to be exercised
upon each transmitted item. FORTRAN IV-H recognizes twelve format codes:

F Real floating-point without exponent
D Double-precision floating-point with exponent
E Real floating-point with exponent
G Generalized integer or floating-point
I Decimal integer
L Logical
A Alphanumeric specification
H Hollerith string

Literal specification
X Blank or skip specification
T Tab specification
P Scal e factor

Format specifications may be in any of the following forms:

rFw.d rIw IS' /
rEw.d rLw iX
rDw.d rAw Tw
rGw.d nH iP

where

The characters F; E; D; G; I; Li A; H; guotation mark C); X; T; P; and slash(/) define the type of conversion; data
generation, scal ing, editing, and FORMAT control.

w is an unsigned integer that defines the total field width in characters (including digits, decimal points,
algebraic signs, exponent field, ~md blanks) of the external representation of the data being processed.

d for F, E, and D specifications, is an unsigned integer that specifies the number of fractional digits appear
ing in the magnitude portion of the external field.

For G specifications, d is also an unsigned integer, but in this context it is used to define the number of
significant digits that appear in the field.

n is an unsigned, decimal integer that defines the number of characters being processed.

is a string of characters acceptable to the FORTRAN IV-H processor.

is an integer value; its function is described under X and P specifications

(repeat count) is an optional, unsigned integer that indicates the specification is to be repeated r times.
When r is omitted, its value is assumed to be 1. For example,

316

is equivalent to 16,16,16

F Format (Fixed Decimal Point)

Form:

rFw.d

Output. The F format code may be used to process real data that does not contain a decimal exponent; w characters
are processed, of which d are considered fractional.

Internal values are output as real constants, rounded to d decimal places with an overall length of w. The total field
length reserved must include sufficient positions for a sign (if any) and a decimal point. If minus, the sign is printed.

34 FORMA T Statements

The converted characters are right justified in the field, w, with preceding blanks to fill the field if necessary. If
the conversion produces more than w characters, only the rightmost w characters are output. This is not treated as
an error. The relationship w 2 d + 2 + n, where n is the number of integer digits, must hold true to prevent loss of
digits. --

Examples:

Format Specification

F5.2
FlO.4
F7.1
F4.4
F4.4

Internal Val ue

12.17
368.42
-4786.361
-1. 22315
432034.

Output (b indicates blanks)

12.17
bb368.4200
-4786.4
2232
0000

Input. See description under IIInput li for D- and E-type conversion.

D and E Format (Normal ized, with Exponent)

Form:

rDw.d

rEw.d

Output. The D and E format codes may be used to process real data. A D format code indicates a word length of
8 bytes. An E format code indicates a word length of 4 bytes.

Internal values are output as real constants, rounded to d digits, in the order given below.

1. a minus sign or blank (if positive)

2. a zero

3. a decimal point

4. d digits

5. the letter D or E

6. the sign of the exponent (minus or blank)

7. a 2-digit exponent (i. e., the power of 10 by which the number must be mul tipl ied to obtain its true val ue)

The values, as described above, are right justified in the field, w, with preceding blanks to fill the field if neces
sary. If the conversion produces more than w characters, only the rightmost w characters are output. This is not
treated as an error. To ensure against this loss of characters on the left, the relationship w? d + 7 must be satisfied
by the format specification.

Examples:

Format Specification

E12.5
D13.6
D13.7
ElO.3
DlO.3
Ell. 4
E8.4

Internal Value

76.573
~32672.354

-32672.354
-0.008
-38.0068
.361887
.361887

Output (b indicates blanks)

bO.76573Eb02
-0. 326724Db05
0.3267235Db05
-0.800E-02
-0. 380Db02
0.3619EbOO
3619EbOO

Input. Input is the same for D, E, and F format codes. Each input string will be of length w with d characters in
the fractional portion. If a decimal point is present in the input string, the value of d is ignored, and the number
of digits in the fractional portion of the value will be explicitly defined by that decimal point. Leading, embedded,
and trailing blanks are treated as zeros.

FORMAT Statements 35

When input data is read, the start of the exponent field must be marked by an E, or a + or - sign (not a blank).
Thus, E5, E+5, +5, +05, E05, and E+05 all have the same effect and are permissible decimal exponents for input.

1: _______ 1 __
Ul.urrrplt::~:

Format Speci ficati on

E7.1
F8.3
F8.3
ElO.3
DlO.3
E10.3

Input (b indicates blanks)

-36.273
b 1.62891
b 1628911
+0.13756+4
bbbbb17631
-763267E-3

Internal value

-36.273
+1.62891
+ 1628.911
+1375.60
17.631
-0.763267

During the conversion the decimal point is first positioned according to the format specification. The value of the
exponent is then applied to determine the actual position of the decimal point. In the last example, -763267E-3
with a specification of E10. 3 is interpreted as -763. 267E-3; which, when evaluated 0. e., -763.267 x 10-3),
becomes -0.763267.

G Format (General)

Form:

rGw.d

G is the onl y format that may be used with any type of data, including logical. The form of conversion it performs
depends on the type of the list items. For a Gw.d specification, the following table shows the equivalent format
that is used when processi ng list items of the vari ous types.

List Item Type Input Output

integer Iw Iw
rea! Fw,d (see below)
double precision Fw.d (see below)
logical Lw Lw

Note that complex values are processed as two separate items. The real and imaginary parts require individual
specifications, and conversion occurs, as shown above, for real or double-precision data.

For integer and logical list items, the d (in Gw.d) need not be specified; if it is present, it will be ignored. This
is the only case in which d is not assumed to be zero if not specified.

If the absolute value of the real data (n) is in the range O. 1 ::s n < lO**d (where d is as in Gw.d), this exponent field
is blank. Otherwise, the real data is transferred with an E or D decimal exponent depending on the length specifi
cation (either four or eight storage locations, respectively) of the real data. In the first case (i. e., n in the range
O. 1 ~ n < lO**d) four blanks are output, following the number, in the positions where an exponent would otherwise
be. In this way, numbers that are output in columns will tend to align with each other in a more readable way.

When the width specification w is insufficient to allow expression of the entire value, only w digits will appear.
The digits lost are from the left or most significant portion of the field. This is not treated as an error condition.
To ensure that such loss will not happen, the following relation should hold true:

w ~d + 7

The following considerations should be kept in mind when this format code is used in a FORMAT statement on input
or output:

1. When real data is to be input with a G format code, a decimal point must be included.

2. If the data exists with a D decimal exponent, it is transferred with the D decimal exponent (i. e., it is a
double-precision value).

36 FORMA T Statements

Examples:

1. The following examples illustrate the effect of G format output on values of various sizes:

Value G10.3 GlO.1

.02639 0.264E-01 0.3E-01

.2639 0.264 0.3
2.639 2.64 3.

26.39 26.4 0.3E 02
263.9 264. 0.3E 03

2639. 0.264E 04 0.3E 04

2. Assume that the statements

25 FORMAT (G3,2G9. 2, G 13. 7,2G8. 2, G2)

WRITE (106, 25)INT, R1, R2, R3, CMP, LOG

are to be used to output the following data:

Variable Type Value

INT integer, length 4 271
R1 real, length 4 463.81
R2 real, length 4 71.83
R3 real, length 8 6.8576311
CMP compl ex, length 8 (2. 1,3.7)
LOG logical, length 4 .FALSE.

If the output is to the line printer, it would appear as

G3 G9.2 G9.2 G13.7 G8.2 G8.2 G2

271bO.46Eb03bb72.bbbbb6.857631bbbbb2.1bbbbb3.7bbbbbF
t t
Print Position 1 Print Position 52

(b indicates blanks)

I Format (Integer)

Form:

rlw

The 1 format code is used in processing integer data.

Output. Internal values are output as integer constants. Negative values are preceded by a minus sign. If the
converted value does not fill the specified field, the digits are right justified and preceded by blanks. If the con
verted integer constant requires more positions than are permitted by the value of the width w, only w digits appear
in the external string, and the excess leftmost (i. e., most significant) digits are lost.

Examples:

Format Specification

16
16
16
14

Internal Value

+281
-384
-17631
-17631

Output (b indicates blanks)

bbb281
bb-384
-17631
7631

FORMA T Statements 37

Input. A field of w characters are input and converted to internal integer format. A minus sign may precede the
integer digits. If a sign is not present, the value is assumed to be positive. If the field width specification w is
greater than the number of digits being read into the field, the integer data is right justified and preceded by zeros.
Leading, embedded, and traiiing bianks are treated as zeros.

Examples:

Format Specification Input(b i ndi cates bl anks) Internal Value

14
14
17
15

L Format (Logical)

Form:

rLw

b124
-124
bbb7631
-31024

+124
-124
0007631
-3102

Onl y logical data may be processed with this form of conversion.

Output. Logical values are converted to either a T or an F character for the values IItrue li and IIfalse ll
, respectively.

The T and F characters are preceded by w - 1 blanks.

Examples:

Using the specification L4

.TRUE.

.FALSE.

is converted to bbb T

is converted to bbbF

(b indicates blanks)

Input. The first T or F encountered in the next w characters determines whether the value is IItrue" or "false",
respectively. If no T or F is found before the end of the field, the value is IIfalse li

• Thus, a blank field has the
value IIfalse li

• Characters appearing between the T or F and the end of the field are ignored.

Examples:

The following input fields, processed by an L7 format, have the indicated values:

Input Field Value Input Field Value

T True RIGHT True
TRUE True READ False
.TRUE. True STAFF True
F False LEFT False
FALSE False 24T+T42 True
.FALSE. False bbbb False

(b indicates blank.)

A Format (Alphanumeric)

Form:

rAw

The A format code is used to read or write alphanumeric data. If w is equal to the number of characters correspond
ing to the length specification of the items in the I/O list, w characters are read or written.

Output. Internal binary values are converted to character strings at the rate of eight binary digits (two hexadecimal
digits) per character. The most significant digits are converted first; that is, conversion is from left to right. The
number of characters produced by an item depends on the number of words of storage allocated for that type of item
(see "Allocation of Various Types ll in Chapter 7). As with all other format conversions, complex data are treated as
two real or as two double-precision values. Normally, alphanumeric information is used with integer variables.

38 FORMA T Statements

When the magnitude of w does not provide for enough positions to express the data completely, the external field is
shortened from the right (least significant) end. This is not treated as an error condition. When w has a value
greater than necessary, the external character string is right justified in the field and preceded by the appropriate
number of blank characters.

Examples:

Data Type

integer (4), real (4),
or logical (4)

double precision

(b indicates blanks)

Internal Binary/Hexadecimal

1100 1001 1101 0101 1110 0011 0101 1100
(9 D 5 E 3 5 (

1100 0100 1 1 01 0110 11 10 0100 1100 0010
(4 D 6 E 4 (2

110 1 00 11 1 100 0 10 1 0 111 10 11 11 11 00 10
D 3 (5 7 B F 2

Aw External String

A4 INT*

A2 IN

A6 bbINT*

A8 DOUBLE=2

A6 DOUBLE

All bbbDOUBLE=2

In both of the above examples, the first A format specifies exactly the number of characters required to express the
data compl etel y.

Input. When the width w is larger than necessary (that is, when its magnitude is greater than the number of charac
ters associated with the data type of the corresponding list item), the number of characters equal to the difference
between wand the length specification are skipped and the remaining characters are read. For example, if the list
item is integer {length of 4) and the format specification A 10 is used

AB(DEFGHIJ is converted to GHIJ

The first six characters are skipped because the difference between w (10) and the length specification (4) is 6.

When the value of w is less than the number of characters associated with the data type of the list item, the most
significant positions of the list item are filled with w characters, and the remainder of the positions are filled with
blanks. For example, if the list item is double precision and the format specification is A6

UVWXYZ is converted to UV\NXYZbb

(b indicates blanks)

H Format (Hollerith)

Form:

nHs

where n:s 255. This descriptor causes Hollerith information to be read into, or written from, the n characters (s)
following the nH descriptor in the format specification itself.

Blanks are significant with the H format code and must be included as part of the count n.

Output. The n characters (s) are output to the specified external device. (are should be taken that the character
string s contains exactly n characters so that the desired external field will be created and subsequent data will be
processed correctl y.

Exampl es (b indicates blanks):

Specification

lHR
8HbSTRINGb
12HXb(l, 3)=12. 0

R
bSTRINGb
Xb(1,3)= 12. 0

Input. The n characters of the string s are replaced by the next n characters of the input record. This results in a
new string of characters in the format specification.

FORMAT Statements 39

Examples (b indicates blanks):

Specification

5HX=123
5HTRUEb
9Hbbbbbbbbb

, Format (Literal)

Input Characters

X=777
FALSE
bMATRIXbZ

Resultant Specification

5HX=777
5HFALSE
9HbMATRIXbZ

There is an alternate format for Hollerith transmission that has the advantage of not requiring the characters in the
string to be counted.

Form:

IS'

Literal data consists of a string (s) of not more than 255 characters enclosed in single quotation marks. Any charac
ters from the set of acceptable characters (see Chapter 1) may appear in the string; however, a single quotation
mark (or apostrophe) must be represented by two consecutive' characters. For example, the statement

22 FORMAT CABC"DEF')

produces the external string

ABC'DEF

Output. The string s is transmitted to the external device in a manner similar to that for H format. Thus,

'ABLE' , 'BODIED'

is output as the string

ABLE BODIED

Input. The characters appearing between the single quotation marks are replaced by the same number of charaCters,
taken sequentiall y from the input string.

Examples (b indicates blanks):

Format Specification

'VECTOR'
'MAYbb'

X Specification (Space)

Form:

iX

Input Characters

MATRIX
JUNEb

Resul tant Specification

'MATRIX'
'JUNEb'

where i is an unsigned integer constant not greater than 255. This specification causes no conversion to occur, nor
does it correspond to items in an input/output list. When used for output iX causes i blanks to be inserted in the
output record. For input, iX causes i characters of the input record to be skipped.

Output Example:

The specifications

'WXYZ', 4X, 'IJKL'

generate the external string (b indicates blanks)

WXYZbbbbIJ KL

40 FORMA T Statements

Input Example:

With the specifications

F5.3, 6X, 13

and the input string

76.41IGNORE697

the characters

IGNORE

wi II not be processed.

T Specification (Tab)

Form:

Tw

This specification causes processing, either input or output, to begin at character position w (w ~ 132) in the record,
regardl ess of the position in the record that was being processed before the T specification.

Output Exampl e:

14 FORMAT (T21, ISTRESS ANALYSIS·, Tl, I REPORT 1·, T45, ISEPT. 1166 I)

This FORMAT statement would produce the following printed line:

REPORT 1 STRESS ANALYSIS SEPT. 166
Pri nt Posi ti on Print Position 2 i Print Position 45

Backward tabbing can cause previously output information to be overprinted or previously read input to be processed
again. However, it is not possible to tab to a position that precedes the beginning of the record.

Input Exampl e:

The statement

9 FORMAT (Tl8, A 1O)

when used for input, would cause the first 17 characters of input data to be skipped and the next 10 characters to
be read according to the format specification A 10.

P Specification {Scale Factor or Power of 1O}

Form:

iP

(i is a signed integer constant). A P specification causes the val ue of the scal e factor to be set to i, where the
scale factor is treated as a multiplier of the form

external quantity = internal quantity x lO
i

Before any processing occurs, the scale factor is set to zero at the beginning of each formatted input/output opera
tion. Any number of P specifications may be present in a FORMAT statement, thereby causing the value of the
scale factor to be changed several times during a formatted input/output operation. After a scale factor has been
specified, it is effective for all applicable format codes (see below) following the scale factor within the same
FORMAT statement. This also applies to format codes enclosed within an additional pair of parentheses. Once a
scal e factor has been establ ished for an I/o operation, it can be reset to zero in the same FORMAT statement onl y
by use of a OP specification.

FORMAT Statements 41

Scale factors are effective only with F, E, and D conversions, input G conversions, and E-type output G conversions.

Output. For output, scale factors have effect only on real data. When used with real data having an E or D expo
nent, a positive scale factor increases the number and decreases the exponent.

Examples:

Format Specification

-2PF10.3
-lPFlO.3

FlO.3
1PF10.3
2PFlO.3

-2PE14.3
-lPE14.3

E14.3
1 PE14. 3
2PE14.3

External field when internal value is
2.71828 -2.71828

.027

.272
2.718

27. 183
271. 828

0.003E 03
0.027E 02
0.272E 01
2.718E 00

27. 183E-01

-.027
-.272

-2.718
-27. 183

-271.828

-0.003E 03
-0.027E 02
-0. 272E 01
-2.718E 00

-27. 183E-O 1

These examples for E conversion are similar to those that would result from D conversion.

~ For input, scale factors have effect only on real data that does not contain an E or D exponent. For ex
ample, if input data is in the form dd.dddd and it is desired to use it internally in the form. dddddd, then the for
mat code used to effect this change is 2PF7. 4.

Examples:

The following examples indicate the effect of scaling during an input operation:

External Field Scale Factor

-71. 436 OP
3P

-lP
175.8041 OP

1P
-lP

/ Specification (Record Separator)

The form of the / specification is

/

Effective Value

-71. 436
-.071436
-714.36
175.8041
17.58041
1758.041

Each slash (j) specified causes another record to be processed. In the case of contiguous slash specifications (Le.,
/ / / / ... /), since no conversion occurs between each of the slash specifications, records are ignored during input,
and blank records are generated during output operations. The same condition can occur when a slash specification
and either of the parenthesis characters surrounding the field specifications are contiguous; a slash preceding the
final right parenthesis in a FORMAT statement is not ignored.

Output. Whenever a slash specification is encountered, the current record being processed is output, and another
record is begun. If no conversion has been performed when the slash is encountered, a blank record is created.
The statements

WRITE (5, 10) X, Y

10 FORMAT (F5.3/ /113)

are processed in the following manner:

1. A record is begun, and X is converted with the specification F5.3.

2. The first slash is encountered, the record containing the external representation of X is terminated, and another
record is begun.

42 FORMAT Statements

3. The second slash is encountered, the second record is terminated, and a third record is started. Since no
conversion occurred between the terminations of the first and second records, the second record was blank.

4. The value of the variable Y is converted with the Il3 specification, the closing right parenthesis character
is encountered, and the third record is terminated.

If a third item Z were added to the output list, as in

WRITE (5, 10) X, Y, Z

The following additional steps would occur:

5. A fourth record is begun, and Z is converted using the specification F5.3.

6. The first slash is re-encountered, the fourth record is terminated, and a fifth record is begun.

7. Again, the second slash is processed; the fifth record, which is blank, is terminated; and the sixth record is
started.

8. Since there are no more list items, the specification Il3 is not processed, and a termination occurs. The
final or sixth record, which is also blank, is output.

The two statements

WRITE (M,4) X

4 FORMAT (/E12. 4j)

cause the generation of a blank record, followed by a record containing the value of X (converted by the specifi
cation E12.4), followed by another blank record.

Input. The effect of slash specifications during input operations in similar to the effect for output, except that for
input, records are ignored in the cases where blank records are created duri ng output operations. For exampl e,
the statements

READ (M,4) X

4 FORMAT (/E12.4j)

cause a record to be bypassed, a value from the second record to be converted (with the specification E12.4) and
assigned to X, and a third record to be bypassed. As with the last example for output, this means that records cre
ated with a FORMAT statement containing slash specifications can be input by use of the identical FORMAT state
ment. This is not true in FORTRAN systems that ignore a final slash.

PARENTHESIZED FORMAT SPECIFICATIONS

Within a FORMAT statement, specifications may be repeated by enclosing them in parentheses, preceded by an
optional repeat count in the form

where rand S. are defined previously, and m 2 O. For example, the statement
I

3 FORMAT (3(A4, F3. 2,3X), 13)

is equivalent to

3 FORMAT (A4, F3. 2,3X, A4, F3. 2,3X, A4, F3. 2,3X, 13)

In addition to the parentheses required by the FORMAT statement, up to two levels of parentheses are permitted to
enable the user to specify repetition of format codes. For example, the statement

21 FORMAT (2(G9.2,2(G9.2,F5.3),D16.9),ElO.3)

would produce printed output of the form

G9. 2, G9. 2, FlO. 3, G9. 2, F5. 3, D16. 9, G9. 2, G9. 2, F5. 3, G9. 2, F5. 3, D16. 9, E10. 3

FORMA T Statements 43

During input/output processing, each repetitive specification and each singular specification is exhausted in turn.

The following are additional examples of repetitive specifications:

34 FORMAT (4 X, 2 (A8, 5X, 7G3), 14, 3(12, L5)

1125 FORMAT (/F9.7,5{E15.8,/},E15.8)

8 FORMAT (2{18,2{3X,F12.9),F12.9),A16)

The presence of parenthesized groups within a FORMAT statement affects the manner in which the FORMAT is
rescanned if more list items are specified than are processed in the first scan through the FORMAT statement. In
particular, when one or more such groups have appeared, the rescan begins with the group whose right parenthesis
was the last one encountered prior to the final right parenthesis of the FORMAT statement. A more complete dis
cussion of this process is contained in, "FORMAT and List Interfacing".

FORMAT AND LIST INTERFACING

Formatted input/output operations are controlled by the FORMAT requested by each READ or WRITE statement.
Each time a formatted READ or WRITE statement is executed, control is passed to the FORMAT processor. The
FORMAT processor operates in the following manner:

1. When control is initially received, a new input record is read, or construction of a new output record is begun.

2. Subsequent records are started only after a slash specification has been processed (and the preceding record has
been terminated) or the final right parenthesis of the FORMAT has been sensed. Attempting to read or write
more characters on a record than are, or can be, physically present does not cause a new record to begin. On
output the extra characters are lost, on input they are treated as blanks.

3.. During an input operation, processing of an input record is terminated whenever a slash specification or the
final right parenthesis of the FORMAT is sensed, or when the FORMAT processor requests an item from the list
and no list items remain to be processed. Construction of an output record terminates, and the record iswritten
on occurrence of the same conditions.

4. Every time a conversion specification (i. e., F, E, D, G, I, L, or A specification) is to be processed, the
FORMAT processor requests a list item. If one or more items remain in the list, the processor performs the
appropriate conversion and proceeds with the next field specification. If conversion is not possible because of
a conflict between a specification and a data type, an error occurs. If the next specification is one that does
not require a list item 0. e., H, " X, T, or /) it is processed whether or not another list item exists. For
exampl e, the statement

WRITE (6, 12)

12 FORMAT(/ / /4HABCD)

would produce three blank records and one record containing ABCD before reaching the final right parenthesis.
When there are no more items remaining in the list and the final right parenthesis has been reached or a con
version specification has been found, the current record is terminated, and control is passed to the statement
following the READ or WRITE statement that initiated the input/output operation.

5. When the final right parenthesis of a FORMAT statement is encountered by the FORMAT processor, a test is
made to determine if all list items have been processed. If the list has been exhausted, the current record is
terminated, and control is passed to the statement following the READ or WRITE statement that initiated the
input/output operation. However, if another list item is present, an additional record is begun, and the
FORMAT statement is rescanned. The rescan takes place as follows:

a. If there are no parenthesized groups of specifications within the FORMAT statement, the entire FORMAT
is rescanned.

b. If one or more parenthesized groups do appear, the rescan is started with the group whose right parenthe
sis was the last one encountered prior to the final right parenthesis of the FORMAT statement. In the fol
lowing example, the rescan begins at the point indicated.

44 FORMA T Statements

""-1 ----,d
FORMAT(3X, (5WABC·(314,A3)), E20. 12,3HXYZ)

ttl
rescan begins
here.

last closing
parenthesis
of internal
group.

final right
parenthesis
of FORMAT.

c. If the group at which the rescan begins has a repeat count (r) in front of it, the previous val ue of the re
peat count is used again for each rescan.

6. Each list item to be converted is processed by one specification or one iteration of a repeated specification,
with the exception of complex data. Complex data are processed by two such specifications.

7. Each READ or WRITE statement containing a non-empty list must refer to a FORMAT statement that contains at
least one conversion (see step 4 above) specification. If this condition is not met, the FORMAT statement will
be processed, but an error will occur.

FORMATS STORED IN ARRAYS

A FORMAT, including the beginning left parenthesis, the final right parenthesis, and the specifications enclosed
therein, may be stored in an array. The FORMAT must be stored as a Hollerith string (i. e., a string of characters)
usually by use of an input statement.

READ or WRITE statements that refer to a FORMAT stored in an array must reference only the identifier of the array,
with no subscripts. For example,

WRITE (4, R) E, F, G refers to a FORMAT stored in an array R.

If the variabl e M is an integer array, the following method may be used to store a FORMAT in M:

the external string

(F8. 5, 4H E9. 2, 13)

and the statements

READ (N, 90)(M{I), 1= 1. 4)

90 FORMAT (4A4)

Care must be taken when storing into an array a FORMAT containing specifications of the nHs and ·s· forms. In
these cases, all characters in the string s, including blank characters, are significant. In all other operations blank
characters are insignificant. For example, if M in the above READ statement were double precision instead of in
teger, the following results would occur:

Element Storage after READ

M(l) (F8. bbbb

M(2) 5,4Hbbbb

M(3) E9.2bbbb

M(4) ,I3)bbbb

which is not the desired resul t.

Even though a FORMAT may be quite short, such as

(I 8)

it must be stored in an array, and it must not be stored in a scalar variable.

FORMAT s stored in arrays may be used by all statements that reference a FORMAT statement.

FORMA T Statements 45

AUXILIARY INPUT/OUTPUT STATEMENTS

The foiiowing set of statements enable the user to manipuiate magnetic tapes and sequential disc or drum files.

REWIND Statement

This statement is expressed as

REWIND i

where i is an unsigned integer constant or integer variable.

Execution of a REWIND statement causes the unit whose logical unit number is i to be rewound.

BACKSPACE Statement

The BACKSPACE statement has the form

BACKSPACEi

where i is an unsigned integer constant or integer variable.

When a BACKSPACE statement is executed, the unit referenced by the integer value i is backspaced one logical
record. For binary tapes, a logical record may consist of more than one physical record. In this case a logical
record is interpreted as all the information output by one binary WRITE statement.

REWIND and BACKSPACE statements that are executed for tapes already positioned at "load point" have no effect.

END FILE Statement

This statement causes end-of-file marks to be written on the specified unit, and has the form

END FILE i

where i is an unsigned integer constant or integer variable whose value determines the unit on which an end-of
fi Ie mark is to be written.

Sometimes, it is desirable to take a program that has been written for output on magnetic tape and assign that logi
cal unit number to some other device, such as a line printer. Since such programs often write end-of-file and re
wind their tapes at the end of the job, it is permissible to specify an ENDFILE or REWIND operation on any device;
the monitor will recognize this anomaly and handle the situation appropriately. It is not permissible to BACKSPACE
such devices.

CARRIAGE CONTROL FOR PRINTED OUTPUT

The first character in an output record that is intended for printing may control the printer carriage by containing
certain characters:

Character Effect

skip to first line of page before printing

o space two lines before printing

If one of these characters is present, it is replaced by a blank before the record is printed. The record is not shifted
left one position. For example, the 2nd character is printed in column 2.

Any other character appearing as the first character in a record causes the carriage to be singl e spaced before the
record is printed; the record remains unchanged. This includes the "+" character, whose traditional function
(overprinting) cannot be performed without hampering the printing speed on all lines.

46 Carriage Control for Printed Output

7. DECLARATION STATEMENTS

Dec laration statements are used to define the data type of variables and functions, the dimensions of arrays, storage
allocation, initial values of variables, and to provide similar information.

CLASSIFICATION OF IDENTIFIERS
An identifier may be classified as referring to any of the following:

scalar

array

subprogram

COMMON block

The category into which an identifier is placed and the type (if any) associated with it depend on the contexts in
which the identifier appears in the program. These appearances constitute explicit or implicit declarations of the
way the identifier is to be classified.

IMPLICIT DECLARATIONS

Unless specifically declared to be in a particular category or type, identifiers that appear in executable or DATA
statements are implicitly classified according to the following set of rules.

1. When appl icable, an identifier is integer if it begins with I, J, K, L, M, or N. It is real if it begins with any
other letter (impl icit type classification may be altered by use of the IMPLICIT statement).

2. An identifier that is called with a CALL statement is a subprogram.

3. An identifier is a function subprogram if it appears in an expression, followed by an argument I ist enclosed in
parentheses. This does not apply to declared arrays.

4. An identifier is a statement function definition if it appears to the left of an equal sign, followed by a dummy
list enclosed in parentheses. It must also comply with the rules given in Chapter 8 under "Statement Functions";
otherwise, it is an error. Again, this does not apply to declared arrays.

5. An identifier is classified as a scalar variable if it makes any other appearances within an executable or DATA
statement (i.e., other than followed by a left parentheses or in a CALL statement).

6. An identifier is implicitly classified as a scalar if it does not appear in an executable or DATA statement, but
does appear in a COMMON, EQUIVALENCE, or NAMELIST statement.

7. Library functions have an inherent type associated with them, as shown in Table 6 (see Chapter 8). Inherent
type is not equivalent to implicit type. Chapter 8 contains a complete description of these functions.

EXPLICIT DECLARATIONS

All other declarations are explicit declarations. Explicit declarations are required in order to classify an identifier
in any way other than those described above. Explicit dec larations inc lude

array declarations

type declarations

storage a 1I0cation declarations

subprogram dec larations

subprogram definitions

Explicit declarations override implicit declarations. They may appear anywhere in the program, but must precede
the first use (in an executable or DATA statement) of the identifiers appearing in them.

CONFLICTING AND REDUNDANT DECLARATIONS

Except where specifically noted to the contrary, definitions and declarations of the classification of an identifier
may not conflict. For example, an identifier may not be both a subprogram name and an array name, both integer
and real type, or defined as a subprogram in more than one place, etc.

Declaration Statements 47

ARRAY DECLARATIONS

Array declarations explicitly define an identifier as the name of an array variable and have the form

v(d 1 ! d2, d
3

, ... I d n)

where

v is the identifier of the array

n is the number of dimensions associated with the array

d. is an unsigned integer that defines the maximum value of the corresponding dimension. Arrays may have up
I to seven dimensions (see IIArraysll in Chapter 3). When v is a dummy array in a subprogram, d

1
through d

may be scalar variables instead of integers (see IIAdjustable Dimensionsll in Chapter 8). n

Array declarations may appear in

DIME NSION statements

Explicit type statements

COMMON statements

Examples:

X (10)

ARRAY (5, 15, 10)

CU BE (4,7)

DATA (4,3,6,12)

ARRAY STORAGE

Although an array may have several dimensions, it is placed in storage as a linear string. This string contains the
array elements in sequence (from low address storage toward high address storage), such that the leftmost dimension
varies with the highest frequence, the next leftmost dimension varies with the next highest frequence, and so forth
(i. e., 2-dimensional arrays are stored IIcolumn-wisell). Figure 2 illustrates array storage.

array A(3, 3,2)

Item Element

1 A(1, 1, 1)
2 A(2, 1, 1)
3

I
A(3, i, i)

4 A(1,2,l)
5 A(2, 2, 1)
6 A(3, 2, 1)
7 A(l,3,1)
8 A(2, 3, 1)
9 A(3, 3, 1)

10 A(1,l,2)
11 A(2,l,2)
12 A{3,. 1,2)
13 A(1,2,2)
14 A(2, 2,2)
15 A(3, 2,2)
16 A(1,3,2)
17 A(2, 3,2)
18 A(3, 3,2)

Figure 2. Array Storage

REFERENCES TO ARRAY ELEMENTS

References to array elements must contain the number of subscripts corresponding to the number of dimensions de
clared for the array (except as discussed for EQUIVALENCE statements). References that contain an incorrect num
ber of subscripts are treated as errors.

48 Array Declarations

Furthermore, the value of each subscript should be within the range of the corresponding dimension, as specified in
the array declaration. Otherwise, the references may not be to data belonging to the set of elements that comprise
the array.

DIMENSION Statement

This statement is used only to define the dimensions of arrays, and has the form

DIMENSION v l' v2' v3' ... , v n

where the Vi are array declarations as described previously. A DIMENSION statement does not affect the type or
a lIocation of the arrays dec lared. For example:

DIME NSION MG0(17), LTO(15), BB(36,22, 34)

DIMENSION AD(184),X(2, 3, 4, 5, 10), PETROL(5,6)

IMPLICIT Statement

This statement is used to alter the conventions for implicit typing from the IJKLMN rule discussed under "Implicit
Dec larations". It has the form

IMPLICIT

where

each C. is a type convention of the form
I

type(c l' c2, c
3

, ... , c m)

and type is one of the four type dec lorations: t

INTEGER
REAL
COMPLEX
LOGICAL

c.
J

is a single alphabetic character or two such characters seporated by a dash (minus sign); the second
character must follow the first in alphabetic sequence. For example,

Z, A-G, M-N, S

This statement, which must appear before the first executable statement and the data statement in the program, causes
identifiers beginning with the characters or ranges of characters specified to be implicitly classified with the type
specified. An IMPLICIT declaration may override the normal (IJKLMN) rule of implicit type classification. It, in
turn, may be overridden by an explicit type declaration (see below). As an example, the statement

IMPLICIT COMPLEX(C), LOGICAL(T, F, L-N), INTEGER(H-J, W)

would cause the following implicit type conventions to be in force:

1. Identifiers beginning with C are complex.

2. Identifiers beginning with T, F, L, M, or N are logical.

3. Identifiers beginning with H,I,J, or Ware integer. The I and J are redundant here, because these are normally
integer.

4. Identifiers beginning with K are integer (normal convention).

5. All other identifiers are real (normal convention).

The statement

IMPLICIT REAL(A-Z)

would cause all identifiers to be real unless explicitly declared otherwise.

t"Optional Size Specifications" later in this chapter describes the declaration of double-precision and double
complex types.

DIMENSION/IMPLICIT Statement 49

Whilean implicit type declatation may be redundant, it must not conflict with any other implicit type declaration.
For exampl e, the statement

IMPLICIT REAL(A-Z) , INTEGER(N)

is illegal because N is declared to be both real and integer.

An IMPLICIT statement does not affect the types of basic external library functions.

EXPLICIT TYPE STATEMENTS

These statements are used to define, explicitly, the type of an identifier. They have the form

where

type is one of the declaration/

S.
I

INTEGER

REAL

DOUBLE PRECISION

COMPLEX

LOGICAL

is a type specification that is either the identifier of a scalar, array, function, or is an array decla
ration. Optionally, a scalar, array, or array declaration may be followed by a DATA constant list
enclosed in slashes, for the purpose of defining initial values for the variables. In other words, each
type specification may take any of the following forms:

identifier

array declaration

identifier/DATA constant list/

array declaration/DATA constant list/

For a description of DATA constant lists, and their function, see IIDATA Statement ll later in this chapter.

Note that

REAL X, Y, Z/3.7/

initializes onl y Z, while

DATA X, Y,Z/3.7,3.7,3.7/

initializes X, Y, and Z.

Examples of explicit type statements:

COMPLEX C3,ALPHA,CARRY(5,5), XYZ

LOGICAL BINARY, BOOLE(4,4, 4, 4), TRUTHF

INTEGER GEORGE, NETRTE(9)/O, 1, 1,2,3,5,8, 13,21/, MASS/O/

INTEGER ROOT, PP

t See also "Optional Size Specification" in this chapter.

50 Expl icit Type Statements

An explicit type declaration overrides any implicit declaration. Thus, the statements

IMPLICIT LOGICAL{L-P}

REAL LEVEL, PERCNT

in combination with the standard implicit typing rule, would cause the following identifers to have the types
indicated:

LEVEL3 - logical

LEVEL - real

KAPPA - integer

POROUS - logical

PERCNT - real

X - real

Type statements may appear anywhere in the program before the first data statement; however, they must precede
the first use {in an executable statement} of the identifiers specified.

OPTIONAL SIZE SPECIFICATIONS

In addition to the standard type declarations, an optional form is provided that specifies the exact size of the
data. This option takes the form

*n

where n is the number of bytes occupied by the data (there are four bytes in a word, and eight bits in a byte). In
the case of integer and logical, only the standard size is permitted, and the option has no effect. However, this
option is used to change real to double precision and complex to double complex, as shown below.

Standard Optional
Type Size (bytes) Size (bytes)

Integer 4

Real 4 8

Complex 8 16

Logical 4

Double precision data are identical to real data with size specification of 8 bytes; double complex data are identi
cal to complex data with size specification of 16 bytes. Thus,

INTEGER*4 INTEGER

REAL*4 REAL

REAL *8 double precision

COMPLEX*8 COMPLEX

COMPLEX*16 double complex

LOGICAL*4 LOGICAL

The *n modifier may appear in three kinds of statements: IMPLICIT statements, FUNCTION statements (discussed
in Chapter 8), and explicit type statements. This podtion of the *n relative to the type declaration that it modi
fies, depends on the statement, as follows:

1. In the IMPLICIT statement, the *n is appended to the type declaration word, as in

IMPLICIT REAL*8(I-K), INTEGER*4{A-H), LOGICAL(L, N)

Optional Size Specifications 51

2. In the FUNCTION statement, the *n is appended to the name of the function, rather than to the type word.

REAL FUNCTION MULT*8(X, V, Z)

COMPLEX FUNCTION CNVERT*16(C)

3. In explicit type statements, the *n can be appended to the type word, or the identifiers being declared, or
both. When appended to the type word, the *n holds for all identifiers I isted, excepting those with an indi
vidual size specification of their own. In other words, the *n appended to an identifier takes precedence
over the *n applying to the whole statement. For example:

COMPLEX*8 CUM, LAUDE* 16

LOGICAL FLAG(lO), TRUTH*4(1O)

In the first example CUM and LAUDE are both of type complex; CUM has 8 bytes, while LAUDE has 16. In
the second example FLAG and TRUTH are arrays, each having 10 elements. Four bytes are required for each
element of array FLAG, and 4 bytes per element are required for array TRUTH.

STORAGE ALLOCATION STATEMENTS

These statements are used to arrange variable storage in special ways, as required by the programmer. If no storage
allocation information is provided, the compiler allocates all variables within the program in an arbitrary order.
The storage allocation statements are

COMMON statement

EQUIVALENCE statement

To make proper use of the storage allocation statements, it is often necessary to know the amount of storage required
by each type of variable. The following table indicates the standard size associated with each type.

Type

integer

real

double precision

complex

doubl e compl ex

logical

COMMON Statement

Words

2

2

4

The COMMON statement is used to assign variables to a region of storage called COMMON storage. COMMON
storage provides a means by which more than one program or subprogram may reference the same data.

The COMMON statement has the form

where

the w. have the form
I

/c/v 1, v2, v3,···, v m

where

c is either the identifier of a labeled COMMON block or is absent, indicating blank COMMON

Vi is a scalar, array name, or array declaration

52 Storage Allocation/COMMON Statement

When wl (the first specification in the statement) is to specify blank COMMON, the slashes may be omitted. In
all other places, blank COMMON is indicated by two consecutive slashes. For example:

COMMON MARKET, SENSE /GROUP3/X, Y, JUMP // GHIA, COLD

For each specification (wi), the variables listed are assigned to the indicated COMMON block or to blank COM
MON. The variables are assigned in the order they appear. Thus, in the above example, MARKET, SENSE,
GHIA, and COLD are assigned to blank COMMON, while X, Y, and JUMP are placed in labeled COMMON
block GROUP3.

Labeled COMMON

Labeled COMMON blocks are discrete sections of the COMMON region and, as such, are independent of each
other and blank COMMON.

Any labeled COMMON block may be referenced by any number of programs or subprograms that comprise an exe
cutable program (see Chapter 8). References are made by block name, which must be identical in all references.
All labeled COMMON blocks need not be defined in anyone program; in fact, only those blocks containing data
needed by the program require definition.

The variables defined as being in a particular labeled COMMON block do not necessarily have to correspond in
type or number between the program in which the block is referenced. However, the definition of the overall size
of a labeled COMMON block must be identical in all the programs in which it is defined. For example:

SUBROUTINE A

REAL T, V, W, X(2l)

COMMON /SET1/T, V, W, X

SUBROUTINE B

COMPLEX G, F(ll)

COMMON/SET l/G, F

Both references to the COMMON block, SET 1, correspond in size. That is, both subpiOgiamS define the block
SETl as containing 24 words; the definition in subroutine A specifies 24 items of real type, and the definition in sub
routine B declares 12 items of complex type.

Reference may be made to the name of a labeled COMMON block more than once in any progra.m. Multiple refer
ences may occur in a single COMMON statement, or the block name may be specified in any number of individual
COMMON statements. In both cases the processor links together all variables, defined as being in the block, into
a single labeled COMMON block of the appropriate name.

Block names must be unique with respect to:

1. Subprogram names defined, explicitly or implicitly, to be external references

2. Other block names

A labeled COMMON block may have the same name as an identifier in any classification other than those above;
however, it is usually preferable to choose block names that are totally unique.

Blank COMMON

The section of the COMMON region assigned to blank (or unlabeled) COMMON is not discrete; in other words,
there is only one such area, and empty block name specifications always refer to it. Furthermore, as opposed to
labeled COMMON, blank COMMON areas, defined in the various programs and subprograms that comprise an
executable program (see Chapter 8), do not have to correspond in size. For instance, the following two sub
programs define blank COMMON areas of different sizes, and yet both may be portions of the same executable
program.

SUBROUTINE GAMMA

COMMON E, D(20, 10), S

SUBROUTINE ETA

COMMON R(lO), N(5)

COMMON Statement 53

54

Subroutine GAMMA defines a minimum of 202 words in blank COMMON; subroutine ETA declares blank COMMON
that contain a maximum of 60 words, depending on the types of the variables E, D, S, R, and N.

Any number of references may be made to biank COMMON with a program. The muitipie references may occur in
a single COMMON statement or in several COMMON statements. In either case, all variabl es defined as being in
blank COMMON will be placed together in the blank COMMON area.

Variables in blank COMMON may not be initialized (using a DATA statement) while those in labeled COMMON
may (see IIDATA Statement ll later in this section).

Arrangement of COMMON

Each labeled COMMON block and the blank COMMON area contain, in the order of their appearance, the vari
ables declared to be in the labeled block or the unlabeled area. The variables in each section of the COMMON
region are arranged from low address storage toward high address storage. The first variable to be declared as being
in a particular section is contained in the low address word or words of that section. Array variables are stored in
their normal sequence (see "Array Storage ") within the CO\I\MON block or area. For example the statements:

COMMON /E/W, X(3, 3) / /T, B, Q /E/J

COMMON K, M/ E/Y //C(4), H, N(2), Z

cause the following arrangement of COMMON:

Item

1
2
3
4
5
6
7
8
9

10
11
12
13

Block E

W
X(l,l)
X(2, 1)
X(3, 1)
X(1,2)
X(2,2)
X(3,2)
X(1,3)
X(2, 3)
X(3, 3)
J
Y

Blank COMMON

T
B
Q

K
M
C(l)
C(2)
C(3)
C(4)
H
N(l)
N(2)
Z

Since a segment of the COMMON region may be defined differently in each program, it may be quite important to
be aware of which items in a segment contain certain variables. For example,

SUBROUTINE TOM SUBROUTINE DICK SUBROUTINE HARRY

COMMON IS/A, B(101)
COMMON IS/A, X(51) COMMON /S/ALPHA(52)

COMMON /S/y(50) COMMON /S/y(50)

will define the block S as follows:

Item TOM DICK HARRY --
1 A A ALPHA(l)
2 B(l) X(l) ALPHA(2)
3 B(2) X(2) ALPHA(3)

52 B(51) X(51) ALPHA(52)
53 B(52) Y(l) Y(l)
54 B(53) Y(2) Y(2)

102 B(101) Y(50) Y(50)

COMMON Statement

which allows the routine TOM and DICK to access the variable A by that identifier, the routines DICK and HARRY
to access the array variable Y by that identifier, and yet the integrity of the block S is maintained (these examples
assume A, B, X, Y, and ALPHA are of the same type). .

Referencing of Data in COMMON

Incorrect referencing of COMMON data will terminate execution. To ensure correct referencing of data, COM
MON blocks must be constructed so that the displacement of each variable in the block is an integral mul tiple of
the reference number associated with the variable (displacement is the number of bytes from the beginning of the
block to the first storage location of the variable). The reference number for type of variable is shown in the
following chart:

Type of Variable Reference Number

Integer 4

Real 4

Double Precision 8

Complex 8

Double Complex 8

Logical 4

The FORTRAN IV-H system automatically begins every COMMON block as if its specification were 8, thus allow
ing a variable of any length to be the first assigned within a block. To obtain the correct displacement for other
variables in the same block, it may be necessary to insert an unused variable in the block. For example, if the
variables R, I, and CPX are REAL, INTEGER, and COMPLEX, respectively, and a COMMON block is defined as

COMMON R,I,CPX

the displacement of these variables within the block is as shown below:

T displacement = 0 bytes

R 4 bytes

+ displacement = 4 bytes

4 bytes

-!

1

displacement = 8 bytes

CPX 8 bytes

_1
displacement = 16 bytes

The displacements for I and CPX are evenly divisible by their reference numbers. However, if R were REAL *8
(instead of length 4), the displacement of CPX would be 12, which is incorrect. In that case, an extra word
with a length of 4 bytes would have to be inserted between R and I or between I and CPX to provide the
proper displacement for CPX.

EQUIVALENCE Statement

The EQUIVALENCE statement controls the allocation of variables relative to one another. Generally, it is used to
assign more than one variable to the same storage location or locations. It is expressed as

EQUIVALENCE sl' s2' s3'·· ., sn

EQUIVALENCE Statement 55

where each of the s. is an equivalence set of the form
I

(v
1
,v

2
,v

3
,···,v

m
)

Each equivalence set specifies that a!! the v. are to be assigned the same storage location.
the following three forms: I

1. A scalar or array name. For arrays, the location referenced is that of the first element.

The v_ mav be one of i I

2. An array element, where the subscripts are unsigned integers. For example, the statements

DIMENSION A(3, 3)

REAL B, C, A, X(ll)

EQUIVALENCE (A(l, 3), B), (C, X(l»

would make Band A(l,3) equivalent, and, similarly, C and X(l) equivalent.

When multiple subscripts are to be used in an EQUIVALENCE statement, that statement must be preceded by a
DIMENSION statement in which the array is declared.

3. An array name followed by an unsigned integer element count enclosed in parentheses. The meaning of this
count is as follows: the location of the first element of the array is denoted as position 1; the element immedi
ately following is position 2i and so on. Thus, if X is a 3 x 3 array, X(l) means the same as X(l, 1); X(3) is
two elements beyond X and refers to X(3, 1), where the size (in words) of an element is dependent on the type
of X (see "Allocation of Variable Types").

REAL B, C, A(3,3)

EQUIVALENCE (A(7), B)

would make A(l, 3) and B equivalent.

See also "Interactions of Storage Allocation Statements", below, for further rules concerning equivalences
that cannot be implemented.

Example:

The effect of the statements

DIMENSION W(3), X(3,3), LC(7)

REAL W,X

INTEGER Lei J

REAL * 8 ELSIE

COMPLEX C

EQUIVALENCE ryJ, LC(2), ELSIE), (X(6), J, C(3»

is to cause the indicated equivalences:

Word

2

3

4

5

6

7

8

9

Variables - Set 1

LC(l)

LC(2) = W(l) = ELSI E1

LC(3) = W(2) = ELSI E2

LC(4) = W(3)

I r{t:,.\ --'-I
LC(6)

LC(7)

Variables - Set 2

X(l,l)

X(2, 1) = C1
X(3, 1) = C2

X(1,2)

Xl? ?) . '\-,-,
X(3,2) = J

X(1,3)

X(2,3)

X(3,3)

where the arrangement of set 1 has no bearing on the arrangement of set 2.

56 EQUIVALENCE Statement

The statement

EQUIVALENCE (LC(2), W), (W(l), ELSIE), (C(3), J), (J, X(6»

has the same results as the EQUIVALENCE statement in the previous example, and the set (J, X(3,2)is the
same as the set (J, X(6)) in this case.

INTERACTIONS OF STORAGE ALLOCATION STATEMENTS

No storage allocation declaration is permitted to cause conflicts in the arrangement of storage. Each COMMON
and EQUIVALENCE statement determines the allocation of the variables referenced in them Therefore, no
EQUIVALENCE set should contain references to more than one variable than has previously been allocated. When
this is not followed, such references are either redundant or contradictory. The redundancy is normally ignored;
the contradictory reference is not allowed.

In all cases, the storage allocation sequence specified in a COMMON statement takes precedence over any
EQUIVALENCE specifications. Consequently, EQUIVALENCE statements are not allowed to define conflicting
allocations of COMMON storage; that is, two variables in the same COMMON block or in different COMMON
blocks can not be made equivalent.

It is permissible for an EQUIVALENCE to cause a segment of the COMMON region to be lengthened beyond the
upper bound established by the last item defined to be in that segme~t. However, it is not permissible for an
EQUIVALENCE declaration to cause a segment to be lengthened beneath the lower bound established by the first
item declared to be in that segment. Both conditions are demonstrated in the exampl es below.

COMMON /BLK 1/A(5), B/BLK2/E(4), H, Y(2,2)

DIMENSION Z(lO), V(5)

EQUIVALENCE (A, Z), (V(4), E(2»

The first EQUIVALENCE set is a permissibie extension of the biock BLK1, whereas the second set illegally defines
an extension of the block BLK2. The declared storage allocation would appear os shown below.

Item

2

3

4

5

6

7

8

9

10

BLK1

A(l) = Z(l)

A(2) = Z(2)

A(3) = Z(3)

A(4) = Z(4)

A(5) = Z(5)

B = Z(6)

Z(7)

Z(8)

Z(9)

Z(lO)

BLK2 (illegal extension)

V(l)

V(2)

E(l) + V(3)

E(2) = V(4)

E(3) = V(5)

E(4)

H

Y(l, 1)

Y(2, 1)

Y(1,2)

Y(2,2)

Note: Assume all items are of the same data type.

Interactions of Storage Allocation Statements 57

The fact that COMMON segments may be lengthened by EQUIVALENCE declarations in no way nullifies the
requirement that labeled COMMON blocks of the same name, which are defined in separate programs or sub
programs comprising portions of an executabl e program, contain the identical number of words.

EXTERNAL Statement

The EXTERNAL statement has the form

EXTERNAL Pl' P2' P3'···' Pn

where the p. are subprogram identifiers.
I

The EXTERNAL statementdeclares,asa subprogram, names that might otherwise be classified implicitly as scalars,
so that they may be passed as arguments to other subprograms (see tlArguments and Dummies" in Chapter 8). For
example, if the subprogram name F appears in the statement

CALL ALPHA(F)

but appears in no other context to indicate that it is a subprogram, it would be implicitl y classified as a scalar.
The EXTERNAL statement can be used to avoid this.

Examples:

EXTERNAL ABS, DABS

CALL COMPRE (ERROR, ABS, DABS, X)

In this example the subprogram identifiers ABS and DABS are used as arguments in the subprogram COMPRE.

CALL SUBR (ERROR, ABS(X, V), ALPHA, X)

In this example the subprogram named IA~BS is not an argument; it is executed first, and its result becomes the argu
ment. In this situation an EXTERNAL statement is not required.

BLOCK DATA Subprograms

SDS FORTRAN IV-H permits variables in labeled COMMON to be initialized in a special program called c BLOCK
DATA subprogram, which begins with a statement of the form

BLOCK DATA

and may contain only declaration statements (described in this chapter) and DATA statements described below. The
subprogram must be terminated with an END statement. Since BLOCK DATA subprograms may not be called by other
programs, they have no names nor are they executed in the usual sense.

Example:

BLOCK DATA

COMMON /BLK1/A, S,C, D

REAL B(5, 5)/25*9300./, D/3765.)

COMPLEX A/(4.3, 2.4)/

END

When initializing variables in labeled COMMON, complete declarations should be included for all the variables
in each COMMON block, so that:

1. The position within the block of those variables that are being initialized will be correctly established.

2. The size of each COMMON block will correspond to the size declared in all other programs that use it.

Data may be entered into more than one COMMON block in a single BLOCK DATA subprogram.

58 EXTERNAL Statement/BLOCK DATA Subprograms

DATA Statement

The DATA statement has the form

where

S. is a data set specification of the form
I

variabl e-I i st/constant-I i st/

The primary purpose of the DATA statement is to give names to constants: for example, instead of referring to rr as
3.141592653589793 at every appearance, the variable PI can be given that value with a DATA statement and used
instead of the longer form of the constant. This also simplifies modifying the program, if a more accurate value is
required.

Giving PI a value with a DATA statement is somewhat different from giving it a value with an assignment statement.
With the DATA statement the value is assigned when the program is loaded; with the assignment statement, PI re
ceives its value at execution time.

Consider another exampl e that profits even more from the use of the DATA statement: An ARCTAN function can be
written using a power series expansion. The efficient way to program this in FORTRAN is with a DO loop, stepping
through the constants. But constants cannot be subscripted, and the timing of the routine is adversel y affected if an
array must be initialized each time into the routine using assignment statements, such as:

C(O) 0

C(l) .1243549945

C (2) . 24477 86631

etc.

Here, the DATA statement can be used to great advantage. It is not recommended that the DATA statement be used
to give "initial" values to variables that are going to be changed. This causes proper initialization of the program
to depend on loading and disallows restarting the program once it has changed these values. Good programming
practice dictates that such initial ization be done with executabl e statements, e. g., with assignment statements.

The effect of the DATA statement is to initialize the variables in each data set to the values of the constants in the
set I in the order listed. For exampl e, the statement

DATA X, A, L/3. 5, 7, • TRU E./, ALPHA/O/

is equival ent to the assignment statements

X = 3.5

A=7

L = . TRUE.

ALPHA = 0

except that the DATA statement is not executable; its assignments take place upon loading.

Variable and constant lists in DATA statement may be constructed as described in the following two sections.

DATA Variable list

A DATA variable list is similar to an input list (see Chapter 6), in that it may contain scalars or subscripted or unsub
scripted arrays. It may not contain implied DO loops. Subscripts must be integers.

DA TA Statement 59

DATA Constant List

A DATA constant I ist is of the form

C 1 ' C 2' C 3' ••• , C m

where

the C. are either constants or repeated groups of constants in the following forms:
J

c

r*c

where

c is a signed or unsigned constant of an appropriate type (see below)

is an unsigned integer repeat count, whose value (nonzero) indicates the number of times the group
is to be repeated

The constant may be any of the forms described in Chapter 2, including literal constants.t The type of the constant
must be the same as the type of the variable that it is initializing. The following rules apply in DATA statements:

1. Integer, real, double-precision and complex variables may be initialized with constants of those types.

2. Logical constants may be expressed as .TRUE. and .FALSE. or abbreviated as T and F.

3. Literal constants may be used with any type of variable, although integer is recommended. A literal constant
is broken up on a character-by-character basis and depends on the number of words of storage occupied by the
variable (see "Allocation of Variable Types", Chapter 7). That is, an integer variable requires 4 characters,
a complex variable -8 characters, and a double-complex variable, 16 characters.

Variable items will be initial ized as required to use up the characters specified. If there are insufficient char
acters in any literal constant to fill the last variable used, it will be filled out with trailing blanks.

4. A constant may not be used for more than one variable list item.

The following examples illustrate some of the features described above:

INTEGER MM(3)

COMPLEX C1,C2

DATA MM/ABCDEF 1, IGH1/,C 1, C2/(17. 8, -4.0), (17.8, -4.0)

The above DATA statement causes the following assignments to be made:

MM(l) = 4HABCD

MM(2) = 2HEF

MM(3) = 2HGH

Cl = (17.8,-4.0)

C 2 = (17. 8, -4. 0)

The constant I ist must completely satisfy the variable I ist and there may not be any remaining unused constants.

Dummy variables and variables in blank COMMON cannot be initial ized with the DATA statement. Variables in
labeled COMMON may be initialized, but only in a BLOCK DATA subprogram.

If a labeled COMMON variable is initialized in more than one program, its value will depend on which program is
loaded last. This practice is not recommended.

tThe size of I iteral constants is I imited to 16 characters in a DATA constant list.

60 DATA Statement

8. PROGRAMS AND SUBPROGRAMS

A complete set of program units executed together as a single job is called an executable program. An executable
program consists of one main program and all required subprograms. Subprograms may be defined by the programmer,
as described in this section, or may be preprogrammed and contained in the run-time or system libraries.

MAIN PROGRAMS

A main program is comprised of a set of SDS FORTRAN IV-H statements, the first of which (other than comment lines)
cannot be one of the following statements, and the last of which is an END statement.

a FUNCTION statement

a SUBROUTINE statement

a BLOCK DATA statement

Main programs may contain any statement except a FUNCTION, SUBROUTINE, ENTRY, or BLOCK DATA statement.
Once an executable program has been loaded, execution of the program begins with the first executable statement
in the main program.

SUBPROGRAMS

Subprograms are programs which may be called by other programs; they fall into the two broad classes of functions
and subroutines} These may be further classified as follows:

Functions

Statement functions

FUNCTION subprograms

Basic external functions

Assembly language functions

Subroutines

SUBROUTINE subroutines

Assembly language subprograms

A function is referenced by the appearance of its identifier within an expression and returns a value (see Chapter 2).
Subroutines are referenced with CALL statements and do not necessarily return a value (see Chapter 5). A number of
library functions and subroutines are included in SDS FORTRAN IV-H. These are described at the end of this section.

STATEMENT FUNCTIONS

Statement functions are functions that can be defined in a singl e expression. A statement function definition has
the form

where

f is the name of the function

d. is the identifier of a dummy scalar variable (see below)
I

e is an arithmetic or logical expression

tThe BLOCK DATA subprogram, which is neither a function nor a subroutine, is also provided (see Chapter 7).

Programs and Subprograms 61

A statement function must have at least one dummy argument. Statement function dummies are treated only as
scalars; they cannot be dummy arrays or subprograms (see "Arguments and Dummies" in this chapter). The expression
e should contain at least one reference to each dummy. The identifier f may not appear in the expression, since
this would be Ci ieCUiSive definition. References to other statement functions rna)' be made onl y to previousl y de-
fined functions.

Examples:

F(X) = A * X ** 2 + B * X + C

EI(THETA) = CMPLX(COS(THETA), SIN(THETA»

AVG(PT, NUM, TOT) = 3 *(PT + NUM)/fOT + 1

Since each di is merely a dummy and does not actually exist, the names of statement function dummies may be the
same as the names of other variables in the program. Note, however, that if a statement function dummy is named
X, and there is another variable in the program called X, then the appearance of X within the statement function
expression refers to the dummy. The only relation between a statement function dummy and any other quantity with
the same name is that they will both have the same type. This enables the programmer to declare the types of state
ment function dummies using explicit (or implicit) type statements.

The statement function itself is typed like any other identifier: it may appear in an explicit type statement; if it
does not, it will acquire implicit type (see "Implicit Declarations" in Chapter 7).

A statement function may be referenced only within the program unit in which it is defined. Statement function
definitions must precede all executable statements in the program in which they appear.

FUNCTION Subprograms

Functions that cannot be defined in a single statement may be defined as FUNCTION subprograms. These subpro
grams are introduced by a FUNCTION statement, of the form

or

type FU NCTI ON f(d l' d
2

, d
3

, ••• ,d n)

where

f

d.
I

type

is the identifier of the function

is a dummy argument of any of the forms (except asterisk), described in "Arguments and Dummies;; later in
th i s chapter

is an optional type specification, which may be any of the following: t

INTEGER

REAL

DOUBLE PRECISION

COMPLEX

LOGICAL

Every FUNCTION subprogram must have at least one dummy. Values may be assigned to dummies within the
FUNCTION subprogram, with certain restrictions (see "Arguments and Dummies").

A FUNCTION subprogram must contain at least one RETURN statement. A RETURN statement should be the last
statement in a FUNCTION subprogram; i. e., it should be the last statement executed for each execution of the
FUNCTION.

tSee also "Operational Size Specifications ll in Chapter 7.

62 Subprograms

The identifier of the function must be assigned a value at least once in the subprogram as the argument of a CALL
statement, a DO control variable, the variable on the left side of an arithmetic statement, or in an input list (READ
statement) within the subprogram.

Within the function the identifier of a FUNCTION subprogram is treated as though it were a scalar variable and
should be assigned a value during each execution of the function. The value return for a FUNCTION is the last
one assigned to its identifier prior to the execution of a RETURN statement.

A FUNCTION subprogram may contain any FORTRAN statement except a SUBROUTINE statement, another FUNC
TION statement, or a BLOCK DATA statement.

FUNCTION statement examples:

INTEGER FUNCTION DIFFEQ (R, S, N)

REAL FUNCTION IOU (W, X, Y, Zl, Z2)

FUNCTION EXTRCT (N, A, B, C, V)

LOGICAL FUNCTION VERDAD(E, F, G, H, P)

FUNCTION subprogram examples:

COMPLEX FUNCTION GAMMA (Z, N)

COMPLEX Z

M = 1

GAMMA = Z

DO 5 J = N, 10

M = M * J

5 GAMMA = GAMMA * (Z + J)

GAMtv'iA = M * N + Z / GAMMA

RETURN

END

SUBROUTINE Subprograms

SUBROUTINE subprograms, like FUNCTION subprograms, are self-contained programmed procedures. Unlike
FUNCTIONS, however SUBROUTINE subprograms do not have values associated with them and may not be refer
enced in an expression. Instead, SUBROUTINE subprograms are accessed by CALL statements (see Chapter 5).

SUBROUTINE subprograms begin with a SUBROUTINE statement of the form

SUBROUTINE p(d
1
, d2, d

3
,.·., d

n
)

or

SUBROUTINE p

where

p is the identifier of the subroutine

d. is a dummy argument of any of the forms described in "Arguments and Dummies" later in this chapter.
I

Note that while a FUNCTION must have at least one dummy, a SUBROUTINE need have none.

A SUBROUTINE subprogram must contain at least one RETURN statement; a RETURN statement should be logically
the last statement in a SUBROUTINE subprogram (that is, it should be the last statement executed for each execution
of the SUBROUTINE).

A SUBROUTINE subprogram may return values to the calling program by assigning values to the d. or to variables
in COMMON storage. I

Subprograms 63

A SUBROUTINE subprogram may contain any F0RTRAN statements except a FUNCTION statement, another SUB
ROUTINE statement, and/or a BLOCK DATA statement. The SUBROUTINE subprogram may use one or more of its
arguments to return values to the calling program. The SUBROUTINE name must not appear in any other statement
!_ LL_ CI IDDr'\IIT'''-11: ______ _
III IIIIC ")VUI"VVllI'IL I-'I~IUIII.

ENTRY Statement

The normal entry into a subprogram is at the SUBROUTINE or FUNCTION statement that defines it. Execution be
gins at the first executable statement following the SUBROUTINE or FUNCTION statement. It is also possible to
enter a subprogram at some other point, by using the ENTRY statement, which has the form

ENTRY p

or

ENTRY p(d l' d2, d3, ... ,d n)

where

p is the name of the entry point

d. is a dummy argument of any of the forms discussed in "Arguments and Dummies", later in this chapter
I

When control is transferred to a subprogram through an ENTRY statement, execution begins at the first exe{:utable
statement following the ENTRY statement. The ENTRY statement itself is nonexecutable and does not affect the
flow of the program in which it appears. That is, program flow can pass through an ENTRY statement. For example,

SUBROUTINE FINISH(N)

END FILE N

ENTRY REWIND(N)

REWIND N

FLAG(N) = 0

RETURN

END

The dummy arguments in an ENTRY statement need not agree with those in the FUNCTION on SUBROUTINE state
ment, nor with those in other ENTRY statements. However, they may agree, if desired. The following statements
provide further clarification.

1. When the same dummy name appears in an ENTRY statement" and in the FUNCTION or SUBROUTINE statement,
it does not refer to two separate entities; it represents the same quantity and, as such, must agree in class and
type between the two entry points (e. g., one cannot be real and the other integer).

2. When a dummy name appears at more than one entry point, it need not appear in the same position in the
dummy list or correspond to the same argument in the calling program.

3. When a subprogram is entered, all the dummies in the SUBROUTINE, FUNCTION, or ENTRY statement are set
up to correspond to the arguments in the call of that statement, thereby overriding any previous correspondence
that may have existed. In the example shown above, if the calls

CALL FINISH (3)

CALL REWIND (5)

were made, the statement REWIND N would be interpreted as REWIND 3 the first time and as REWIND 5 the
second.

Dummy correspondents that are set up by any call on a SUBROUTINE, FUNCTION, or ENTRY statement remain in
effect during all subsequent calls on any entry point in the subprogram, unless overridden by the appearance of the

64 Subprograms

same dummy name in a later entry point. Thus, it is permissible to "initialize" a dummy with one call and make
use of this initialization on subsequent calls. For example,

23

14

CALL SUB1 (A, B,C, D, E, F)

CALL SUB2(G, H, &23)

CALL SUB3(& 14)

STOP ISUB2 ERROR 1

STOP ISUB3 ERROR 1

The following actions are taken in the above example:

SUBROUTINE SUB1(U, V,W,X, Y/Z)

RETURN

ENTRY SUB2(W, T, *)

U = V*W + T

ENTRY SUB3(*)

x = W * y**Z

IF (U > X) RETURN 1

RETURN

END

1. The call on SUB1 initializes U, V, W,X, Y, and Z to correspond to A, B, C, D, E and F, respectively.

2. The calion SUB2 sets T to correspond to H and changes W to correspond to G instead of C. The two assign
ment statements executed are thus equivalent to

A = B*G + H

D = G * E**F

Then, if A is greater than D, ietUiii is to statement 23; otherwise, a normal return is taken to the statement
following the call on SUB2.

3. The call on SUB3 then changes the alternate return to statement label 14, leaving all other correspondences
as they were. Onl y one assignment statement is executed, which is

D = G * E**F

Then, if A is greater than D, return is to statement 14; otherwise, a normal return is taken.

4. Note that, if SUB3 were called before SUB2, the action of SUB2 would be unchanged, however, in SUB3 the
dummy W would still correspond to C. Then, the assignment statement would have the effect

D = C * E**F

It is an error to reference a dummy argument that has never been initialized. In the above example, if SUB3 were
called without having called SUB1, the dummies U, W,X, Y, and Z would not correspond to anything. Care should
be taken to avoid situations of this sort.

The following rules also apply to ENTRY statements:

1. The result of a FUNCTION is returned only in the FUNCTION name, never in the ENTRY name. The ENTRY
name serves onl y to identify the location of the entry point and should not be used within the subprogram. In
this sense, it is similar to a SUBROUTINE name.

2. ENTRY statements do not al ter the rul es concerning placement of statement functions. Statement functions
may appear after an ENTRY statement only if they still appear before the first executable statement in the
subprogram.

3. No subprogram may refer to itself, either directly or indirectly through any of its entry points, nor may it refer
to any subprogram whose RETURN statement has not been executed.

Subprograms 65

4. Like FUNCTION and SUBROUTINE names, ENTRY names are normally available to any program in the
executabl e program.

5. An ENTRY statement may not appear in a main program.

6. Prior to being referenced in an executable statement, every dummy must have appeared in a SUBROUTINE,
FUNCTION, or ENTRY statement. In the following example, use of X is correct; use of Y is not.

SUBROUTINE ALPHA (X)

X=Y

ENTRY BETA (X, Y)

7. If any of the dimensions of an adjustable dummy array are in the dummy list of an ENTRY statement, then the
array name must also appear there (see "Adjustables Dimensions" in this section).

ARGUMENTS AND DUMMIES

Dummy arguments provide a means of passing information between a subprogram and the program that called it.
Both FUNCTION and SUBROUTINE subprograms may have dummy arguments. A SUBROUTINE need not have any,
however, while a FUNCTION must have at least one. Dummies are merely IIformal ll parameters and are used to
indicate the type, number, and sequence of subprogram arguments. A dummy does not actually exist, and no stor
age is reserved for it; it is only a name used to identify an argument in the calling program. An argument may be
any of the following:

a scalar variable

an array el ement

an array name

an expression

a statement label

a constant of any type (including literal)

a subprogram name

A dummy itself may be classified 'vvithin the subprogram as one of the following:

a scalar variable

an array

a subprogram

an asterisk denoting a statement label

The chart below indicates the permissible kinds of correspondence between an argument and a dummy.

Dummy
Argument

scalar subprogram asterisk array

scalar or array element yes yest no no

expression yes no no no

statement label no no no yes

array name yest yes no no

litera I consta nt yest yes no no

subprogram name no no yes no

tA correspondence of this kind may not be entirely meaningful (see IIDummy Arrays").

66 Arguments and Dummies

A statement label argument is written as

&k

where k is the actual statement label and the ampersand distinguishes the construct as a statement label argument
(as opposed to an integer constant).

Within a subprogram, a dummy may be used in much the same way as any other scalar, array, or subprogram identi
fier with certain restrictions; namely, dummies may not appear in the following types of statements:

COMMON

EQUIVALENCE

DATA

NAME LIST

The reason for the above restriction is that dummies do not actually exist. Furthermore, classification of a dummy
as a scalar, an array, or a subprogram identifier occurs in the same manner as with other (actual) identifiers, in both
implicit and explicit classifications (see "Classification of Identifiers" in Chapter 7).

In general, dummies must agree in type with the arguments to which they correspond. For example, the following
situation is in error because the types of the arguments and the dummies do not agree.

COMPLEX C FUNCTION F (LL, CC)

LOGICAL L LOGICAL LL

X = F (C, L) COMPLEX CC

Reversing the order of either the arguments in the calling reference or the dummies in the FUNCTION statement
would eliminate the error in this example.

There are two exceptions to the rul e of type correspondence:

1. A statement number passed as an argument has no type.

2. A SUBROUTINE name (as opposed to a FUNCTION name) has no type.

All arithmetic or logical expressions appearing as actual arguments in the calling program are first evaluated and
then placed in a temporary storage location. The address of that temporary storage location is then p~ssed as the
argument (this action is referred to as "call by value "). For all other arguments the actual address of the argument
is passed (this is referred to as "call by name").

NOTE: All constants are passed by name; therefore, if the called subprogram stores into a dummy corresponding
to a constant in the calling sequence, that constant will be changed. Obviously, this is not recommended.

DUMM Y SCALARS

Dummy scalars are single valued entities that correspond to a single element in the calling program. Dummies that
are not declared (implicitly or explicitly) to be arrays or subprograms are treated as scalars.

DUMMY ARRAYS

A dummy argument may be defined as an array, by the presence of its identifier in any array declaration within the
subprogram (the fact that a calling argument is an array does not in itself define the corresponding dummy to be an
array). A dummy array does not actually occupy any storage, it merely identifies an area in the calling program.
The subprogram assumes that the argument supplied in the calling statement defines the first (or base) element of an
actual array and calculates subscripts from that location.

Arguments and Dummies 67

Normally, a dummy array is given the same dimensions as the argument array to which it corresponds. This is not
necessary, however, and useful operations can often be performed by making them different. For example,

DIMENSION A(lO, 10)

CALL OUT (A(1,6))

SUBROUTINE OUT (B)

DIMENSION B(50)

In this case, the l-dimensional dummy array B corresponds to the last half of the 2-dimensional array A (i. e.,
elements A{1,6) through A(lO, 10». However, since an array name used without subscripts as an argument refers
to the first element of the array, if the calling statement were

CALL OUT{A)

the dummy array B would correspond to the first half of the array A.

Arguments that are literal constants are norma II y received by dummy arrays. A literal constant is stored as a con
secutive string of characters in memory, and its starting location is passed as the argument address. For instance,
in the example

CALL FOR('PHILIP MORRIS')

the following correspondences hold:

M{l) = 4HPHIL

M(2) = 4HIPt>M

M(3) = 4H ORRI

M(4) = 4H Sb'b'b

SUBROUTINE FOR(M)

DIMENSION M (5)

t·II(5) is undefined and should nor be referenced

where-o represents the character blank. Literal constants are filled out with trailing blanks to the nearest word
boundary {multiple of four characters}. Therefore, passing such a constant to a dummy of a type that occupies more
than one word per elementt (e.g., double precision) may result in dummy elements that are only partially defined.
For this reason, integer arrays are recommended.

If an array corresponds to something that is not an array or a literal constant, the latter will correspond to the first
element of the array. This is true whether the calling argument is an array and the dummy is not, or vice versa.
For example, if the calling argument is a scalar and the dummy is an array, references in the subprogram to elements
of the array other than the first element will correspond to whatever happens to be stored near the scalar. Care must
be taken in creating correspondences of this nature since they may depend upon a particular impl ementation.

ADJUSTABLE DIMENSIONS

Since a dummy array does not actually occupy any storage, its dimensions are used only to locate its elements, not
to allocate storage for them. Therefore, the dimensions of a dummy array do not have to be defined within the sub
program in the normal manner. Instead, any or all the dimensions of a dummy array may be specified by dummy
scalar variables rather than by constants. This permits the calling program to supply the dimensions of the dummy
array each time the subprogram is called. The following statements demonstrate adjustable dimensions:

DIMENSION P(1O,5), Q(9, 3) FUNCTION SUM (R, N, M)

x = SUM(P, iO,5) DIMENSiON R(N, M)

Y = SUM(Q, 9,3)

tSee "Allocation of Variable Types" in Chapter 7.

68 Arguments and Dummies

Only a dummy array can be given adjustable dimensions, and the dimensions must be specified by dummy integer
scalars. The variables used as adjustable dimensions may be referenced elsewhere in the subprogram but should not
be changed. In particular, the appearance of any of these variables in the dummy list of a succeeding ENTRY
statement constitutes a change. Therefore, an ENTRY statement may not contain any dimensions of an adjustable
array itself. The appearance of the array name in the ENTRY statement causes the array bounds to be recomputed
(see II ENTRY Statement ll

).

DUMMY SUBPROGRAMS

A dummy subprogram must correspond to an argument that is a subprogram name, and it is the onl y kind of dummy
that can do so. The dummy name merel y serves to identify a cI osed subprogram whose actual location is defined by
the calling program. Therefore, a call on a dummy subprogram is actually a call on the subprogram whose name is
specified as the argument. A dummy subprogram is classified in the same manner as any other subprogram (see
IIClassification of Identifiers ll in Chapter 7).

Example:

EXTERNAL SIN, DSIN, SQRT, DSQRT

A = DIFF(SIN, DSIN, X)

B = DIFF(SQRT, DSQRT, y)

FUNCTION DIFF(F, DF, Z)

DOUBLE PRECISION DF

DIFF = DABS(F(Z) - DF(DBLE(Z»)

RETURN

END

A subprogram identifier, to be passed as an argument, must previously appear in an EXTERNAL statement (otherwise,
it may be classified as a scalar variable).

LIBRARY SUBPROGRAMS

SDS FORTRAN IV-H includes a number of library subprograms. These are specially recognized by the compiler,
which generates special machine codes for them. Most of the I ibrary subprograms are functions, al though several
utility subroutines are also provided

BASIC EXTERNAL FUNCTIONS

The basic external function subprograms evaluate commonly used mathematical functions. These subprograms have
a special type that is known to the compiler. This type is not necessarily the same as the type it would acquire by
implicit typing rules. The arguments to these functions must have the proper type, as shown in Table 8.

Table 8 lists the function subprograms provided by SDS FORTRAN IV-H. When a formula is shown in the column
IIDefinition of Function ll

, it is not necessarily the formula that is actually used in implementing the function; it is
intended only to clarify the definition of function.

ADDITIONAL LIBRARY SUBPROGRAMS

In addition to the functions listed in Table 8, the following subprograms are supplied in the SDS FORTRAN IV-H

library:

Form:

CALL EXIT

EXIT is typed on the I isting output device and the job is terminated.

Library Subprograms 69

Table 8. Basic External Functions

Function I Number or I Type or
I ...
I I ype or I

'"' /:- -.1.-LJE: ri F! j I i OF! I
Name Arguments Argument Result of Function

ABS 1 Real*4 Real*4 Absolute value

AItMG 1 Complex*8 Real*4 Imaginary part of argument expressed as a
real value.

AINT 1 Real*4 Real*4 Integer part of argument expressed as a
real value.

ALOG 1 Real*4 Real*4 Natural logarithm (base e).

ALOGlO 1 Real*4 Real*4 Common logarithm (base 10).

AMAXO N? 2 Integer*4 Real*4 Maximum value for integer val ues.

AMAX1 N? 2 Real*4 Real*4 Maximum value for real values.

AMINO N? 2 Integer*4 Real*4 Minimum value for integer values.

AMIN1 N ?2 Real*4 Real*4 Minimum value for real values.

AMOD 2 Real*4 Real*4 Arg 1 (mod arg2). Evaluated as

arg 1 - arg2 * AINT (arg 1/arg2)

(i .e., the sign is the same as arg1)
Function undefined if arg

2
= O.

ATAN 1 Real*4 Real*4 } Arctangent in radians. Arg 1 = ordinate (y),
ATAN2 2 Real*4 Real*4 arg2 = abscissa(x). If arg2 not present, 1 is

assumed. Resul t (R) is arctangent of
arg 1/arg2 quadrant allocated in the
range -11" < R ~ 11" i ATAN{O,O) = O.

CABS 1 I Complex*8 Real*4 Complex absolute value 0. e., modulus}.

CABS(x+iy) = Jx2+y2

CCOS 1 Complex*8 I Complex*8 Complex cosine. CCOS(Z) = (eiZ+e -iZ)/2.

CDABS 1 Complex*16 I Real*8 Double-complex absolute value (modulus).

I i See CABS. I CDCOS 1 Complex*16 I Complex*16 Doubl e -compl ex cosi ne. See CCOS. !
CDEXP 1 Complex*16 Complex*16 Double-complex exponential. See CEXP.

CDLOG 1 Complex*16 Complex*16 Double-complex natural logarithm
(base e). See CLOG.

CDSIN 1 Complex*16 Complex*16 Doubl e-complex sine. See CSIN.

CDSQRT 1 Complex* 16 Complex* 16 Double-complex square root. See CSQRT.

CEXP 1 Complex*8 Complex*8 Complex exponential (e**arg).
C EX P(x+iy) = EXP(x) (COS(y) + i SIN(y».

CLOG 1 Complex*8 Complex*8 Complex natural logarithm (base e).
CLOG (Z) = CLOG(x+iy) = u + iv
=In Z + i ATAN(y, x), allocated such
that -11" < v :$ 11".

CMPLX 2 Real*4 Complex*8 Converts two non-compl ex numbers to a
complex number. CMPLX(x, y) = x + iy.

CONJG 1 Complex*8 Complex*8 Complex conjugate. CONJG(x+iy)
= x - iy (has no effect if arg not complex).

COS 1 Real*4 Real*4 Cosine of angle in radians.

70 Library Subprograms

Function
Name

CSIN

CSQRT

DABS

DATAN
DATAN2

DBLE

DCMPLX

DCONJG

DCOS

DEXP

DFLOAT

DIM

DLOG

DLOGlO

DMAXi

DMIN1

DMOD

DSIGN

DSIN

DSQRT

DTANH

EXP

FLOAT

lABS

IDIM

INT
IFIX
IDINT

ISIGN

MAXO

Number of
Arguments

1

1
2

1

2

2

1

N ~2

N > 2

2

2

1

1

1

1

2

1
1
1

2

N ~2

Table 8. Basic External Functions (cont.)

Type of
Argument

Complex*8

Complex*8

Real8*

Real*8
Real*8

Real*4

Real*8

Complex*16

Real*8

Real*8

Integer*4

Real*4

Real*8

Real*8

Real*8

Real*8

Real*8

Real*8

Real*8

Real*8

Real*8

Real*4

Integer*4

Integer*4

Integer*4

Real*4
Real*4
Real*8

Integer*4

Integer*4

Type of
Result

Complex*8

Complex*8

Real*8

Real*8
Real*8

Real*8

Complex*16

Complex*16

Real*8

Real*8

Real*8

Real*4

Real*8

Real*8

Real*8

Real*8

Real*8

Real*8

Real*8

Real*8

Real*8

Real*4

Real*4

Integer*4

Integer*4

Integer*4j
Integer*4
Integer*4

Integer*4

Integer*4

Definition
of Function

iZ -iZ
Complex sine. CSIN{Z) = {e _ e)/(20

Complex square root. CSQRT{Z) = u + iv

= e{ln Z)/2, allocated such that u ~ O.

Double-precision absolute value.

Double-precision arctangent in radians.
See ATAN.

Argument converted to double precision.

Converts two non-compl ex numbers to a
double-complex number. See CMPLX.

Double-complex conjugate. See CONJG.

Double-precision cosine of angle in radians.

Double-precision exponential (e**arg).

Argument converted to double precision.
Same as DBLE, but used with integer
arguments.

Positive difference. DIM{x, y) = max{x-y, 0)

Double-precision natural logarithm
(base e).

Double-precision common logarithm
(base 10).

Double-precision maximum value.

Double-precision minimum value.

Double-precision arg
1

(moa arg
2

). See
AMOD.

Doubl e-prec i si on magnitude of arg 1 with
sig~ ?f arg20 If arg

2
is zero, the sign is

posItive.

Double-precision sine of angle in radians.

Double-precision square root (positive
value).

Double-precision hyperbolic tangent.

Exponential (e**arg).

Argument converted to a real value.

Integer absolute val ue.

Integer positive difference.
IDIM{j, k) = j - MIN(j, k).

Argument converted to an integer value.

Integer magnitude of arg 1 with sign of
arg

2
• If arg

2
is zero, the sign is positive.

Integer maximum value.

library Subprograms 71

Tabl e 8. Basic External Functions (cont.)

Function Number of Tvoe of Tvoe of Definition
I i

,.
I

,.
I Name Arguments Argument result of Function

MAX1 N ~ 2 Real*4 Integer*4 Integer maxi mum val ue.

MIND N ~ 2 Integer*4 Integer*4 Integer minimum value.

MINl N ~ 2 Real*4 Integer*4 Integer minimum value.

MOD 2 Integer*4 Integer*4 Arg 1 (mod arg
2

)· Evaluated as

arg 1 - arg2 * [arg 1/arg2]

where the brackets indicate integer part;
i. e., the sign is the same as argl.
Function is undefined if arg

2
= o.

REAL 1 Complex*8 Real*4 Real part of a complex number.

SIGN 2 Real*4 Real*4 Magnitude of arg 1 with sign of arg2.
If arg

2
is zero, the sign is positive.

SIN 1 Real*4 Real*4 Sine of angle in radians.

SNGL 1 Real*8 Real*4 Argument converted to a value with
real (single) precision.

SORT 1 Real*4 Real*4 Square root (positive value).

TANH 1 Real*4 Real*4 Hyperbolic tangent. For compl ex,

TANH(Z) = SINH(Z)/COSH(Z)
Z -Z Z -Z) = (e - e)/(e + e

SLITET - Sense Light Test

Form:

CALL SLITET (n, v)

where

n is an integer expression specifying which sense I ight is to be tested (1 ::; n ::; 4)

v is an integer variable in which the result of the test will be stored

Sense light n is tested. If the sense light is on, the value 1 will be stored in Vi if it is off, the value 2 will be
stored. Following the test, the sense light will be turned off.

SLITE - Set Sense Light

Form:

CALL SLITE (n)

where

is an integer expression (0 ~ n::; 4)

If n is 0, all sense lights will be turned off; if n is 1, 2, 3, or 4, the corresponding sense light will be turned 011.

OVERFL -Floating Overflow Test

Form:

CALL OVERFL (s)

72 Library Subprograms

where

s is an integer variable into which will be stored the result of the test

If a floating overflow has occurred, s is set to 1; if no overflow condition exists, s is set to 2. If a floating
underflow condition exists, s is set to 3. The machine is left in a no overflow {underflow} condition following
the test. Overflow and underflow are defined in the Sigma computer reference manual.

DVCHK - Divide Check

Form:

CALL DVCHK (s)

where

s is an integer variable into which will be stored the resul t of the test

This is another entry to the OVERFL subprogram described above.

DUMP

A call to the DUMP subprogram has the form

CALL DUMP(A 1, B1, F 1"'" An' B n' F n)

where

A and B are variable data names that indicate the limits of storage to be dumped; either A or B may repre
sent upper or lower limits. The arguments A and B should be in the same program {main program or
subprogram} or same COMMON block.

F. is an integer indicating the dump format desired:
I

F. = 0 Hexadecimal
I

2 Logical*4

4Integer*4

5 Real*4

6 Real*8

7 Complex*8

8 Complex* 16

9 Literal

any other value of Fi is illegal.

If the argument F is omitted, it is assumed to be zero, and the dump will be in hexadecimal format.
n

A call to this subroutine causes the indicated limits of storage to be dumped and execution to be terminated.

PDUMP

A call to the PDUMP subprogram has the form

where

A, B, and F are the same as for DUMP

This call causes the indicated I imits of storage to be dumped and execution to be continued.

Library Subprograms 73

APPENDIX A. SDS SIGMA FORTRAN IV-H CHARACTER SETS

The standard character set for use with SDS Sigma FORTRAN IV and FORTRAN IV-H is the EBCDIC (Extended Binary
Coded-Decimal Interchange Code). This character set is illustrated in Table 9.

Table 9. SDS EBCDIC
(Extended Binary-Coded-Decimal Interchange Code)

9-Channel 9-Channel
EBCDIC Magnetic Tape EBCDIC Magnetic Tape

Character Card Code Hexadecimal Code Character Card Code Hexadecimal Code

A 12-1 C1 Blank Blank 40
B 12-2 C2 ¢' (a) 12-2-8 4A
C 12-3 C3 12-3-8 4B
D 12-4 C4 < 12-4-8 4C
E 12-5 C5 (12-5-8 40
F 12-6 C6 + 12-6-8 4E
G 12-7 C7 I 12-7-8 4F
H 12-8 C8 & 12 50
I 12-9 C9
J 11-1 01 I (a) 11-2-8 5A
K 11-2 02 $ 11-3-8 5B
L 11-3 C3 * 11-4-8 5C
M 11-4 D4) 11-5-8 5D
N 11-5 D5 ; 11-6-8 5E
0 11-6 D6 , (a) 11-7-8 5F
P 11-7 D7 - 11 60
Q 11-8 D8
R 11-9 D9 / 0-1 61
S 0-2 E2 , 0-3-8 6B
T 0-3 E3 % 0-4-8 6C
U 0-4 E4 - (a) 0-5-8 6D
V 0-5 E5 > 0-6-8 6E
W 0-6 E6 ? (a) 0-7-8 6F

I

X

I
0-7 E7

y 0-8 E8 : 2-8 7A
Z 0-9 E9 II 3-8 7B
0 0 FO @ 4-8 7C
1 1 F1 I 5-8 7D
2 2 F2 = 6-8 7E
3 3 F3 II (a) 7-8 7F
4 4 F4
5 5 F5
6 6 F6
7 7 F7
8 8 F8
9 9 F9

(a) This character is not included in the SDS Standard 56-graphic character set, used by some line printers.

The SDS Sigma internal hexadecimal representation (in memory) of every character is the same as the magnetic tape
representation. However, it is not advisable for the FORTRAN programmer to take advantage of these numeric
representations since this tends to make the program machine-dependent.

74 Appendix A

I

APPENDIX B. SDS SIGMA FORTRAN IV-H STATEMENTS

Statement Executable Nonexecutabl e Page

ASSIGN X 18

Assignment X 15

BACKSPACE X 46

BLOCK DATA X 58

CALL X 20

COMMON X 52

COMPLEX X 50

CONTINUE X 24

DATA X 59

DIMENSION X 49

DO X 21

DOUBLE PRECISION X 50

END X 25

END FILE X 46

ENTRY X 64

EQUIVALENCE X 55

EXTERNAL X 58

FORMAT v 33 /\

FUNCTION X 62

GOTO X 17

IF X 19

IMPLICIT X 49

INTEGER X 50

LOGICAL X 50

NAMELIST X 30

PAUSE X 24

PRINT X 29

PUNCH X 29

READ X 29

REAL X 50

RETURN X 21

REWIND X 46

STOP X 25

SUBROUTINE X 63

Statement Function
Definition X 61

WRITE X 1,28,
29,30

Appendix B 75

A
A format, 34, 38, 39
Acceptable FORTRAN II Statements, 28, 29
Additional library subprograms, 72-74
Adjustable dimensions, 68, 69
Allocation of variable types, 54-56
Alphanumeric data, 38
Alphanumeric strings, 6, 7, 31, 38
Ampersand (&)

in NAME LIST input/output, 32
in statement label argument, 67

Arguments to subprograms, 20, 58, 62-66, 68, 69
Arithmetic

assignment statements, 15
expressions, 9, 12
IF statement, 22

Arrangement of COMMON, 31, 52-55
Array

dec larations, 47-50
elements, 7, 32, 48, 56
identifiers, 7, 26, 48, 50, 67
storage, 45, 48
subscripts, 7, 8, 59, 60
unsubscripted, 8, 27, 59, 60
variables, 48, 54

Assembly language programs, 61
ASSIGN statement, 18, 19
Assigned GO TO statement, 17, 18
Assignment statements, 15

label, (see ASSIGN statement)
Asterisk (*)

double operator (exponentiation), 11, 12
in dummy list, 21, 66
in size specification, 11, 12
operator (multiplication), 11, 12

Auxi I iory I/O statements, 26, 46
BAC KSPACE, 46
END FILE, 46
REWIND, 46

B

BACKSPACE statement, 46
Basic externa I functions, 50, 61, 70-72
BCD input/output, 26, 28
BCD records, 28
Binary input/output, 29-31
Binary records, 29, 30
Blank ()

COMMON, 52-54, 58, 60
in column 6, 1
in identifiers, 7
in statements, 31, 45, 60, 61

BLOC K DATA statement, 61, 63, 64
BLOCK OAT A subprograms, 58, 60
Bui It-in functions (see Intrinsic functions)

76 Index

INDEX

c
C in column 1,
CALL statement, 20, 61, 63
Calling sequences, 67, 68
Card Codes, 75
Carriage control for printed output, 31, 46
Character

sets, 1, 75
strings, 4, 25, 31, 34, 38, 39

Characters in column 1,
Classification,

of data types, 7, 8
of identifiers, 6, 7
of constants, 4, 5

Coding form, 1, 2
Co lumn 1 characters,
Comments, 1
COMMON block identifiers, 47, 58
COMMON

referencing of data, 55
COMMON statement, 31, 48, 52-54, 57, 67
Compiler, 26, 69
COMPLEX

data, 4, 5, 6, 51
statement, 15, 60
type declaration, 11,12,15,50

Computed GO TO, 18
Conditione! trensfer, 19
Conflicting and redundant declarations, 47
Constants, 4-6, 13, 59, 60, 67, 68
Continuation line, 1, 25
CONTINUE statement, 24
Control statements, 17-25

ASSIGN, 17, 18
CALL, 20
CONTINUE, 24
DO, 21-23
END, 25
GO TO, 17-19, 22
IF, 19, 20
PAUSE, 22, 24, 25
RETURN, 21, 22
STOP, 22, 25

Conversion

o

format, (see Format)
in assignment statements, 11, 15
input/output, (see Format specifications), 28

o format, 34, 35
Dangling comma, 32
Data constant list, 60
OAT A statement, 49, 54, 59, 60, 67
Data types

comp lex, 4, 51
double complex, 4, 51
double precision, 4, 51

integer, 4, 37, 51
literal, 3, 4
logical, 4, 36, 38
rea I, 4, 34, 35, 51

Data values, 4, 50
Data variable list, 59, 60
Dec larati on statements, 47, 58

array, 47, 48, 50
COMMON, 47, 57, 58
DATA, 47
DIMENSION, 47, 49, 56-58
EQUIVALENCE, 47, 55-58, 67
EXTERNA L, 58
explicit type statements, 47
IMP LIC IT, 47
NAME LIST, 47

Digits, 1
DIMEN SION statement, 48, 49, 56, 57
Dimensions of arrays, 7, 47, 66, S8, 69
Displacement, 55
DO statement, 21-23
DO implications

in DATA statements, 27
in I/O lists, 26, 27, 31, 59

Dollar sign (S)
as letter, 1

DO loops, 22, 23, 59
Double complex, 4, 6, 11, 12, 15, 51
DOUBLE PRECISION

data, 4, 5, 51
statement, 15, 60
type dec loration, 11, 12, 15, 50

Dummy arguments; 62-66
array, 48, 62, 65, 67, 68
sca lar, 62, 66, 67
subprogram, 62, 66, 67, 69

Dummy identifiers, 31, 67
DUMP, 73
DVCHK, 73

E
E format, 34, 35
EBCDIC character set, 75
END statement, 25, 58, 61
END = form of READ, 30, 32
END FILE statement, 46
End-of-fi Ie, processing, 30
ENTRY statement, 64, 65, 69
EQUIVALENCE statement, 47, 55-58, 67
ERR = form of READ, 30, 32
Evaluation hierarchy, 14

arithmetic, 14
logical, 14

Executable statements, 17,47,51
EXIT, 72
Explicit

dec larations, 73
type statements, 48, 50-52, 62

Exponentiation, 9, 10, 11, 12,
Expressions, 9, 10, 11, 12, 20

arithmetic, 9, 12, 13

evaluation hierarchy, 9, 10, 13
logical, 9, 11, 13, 15
mixed, 11, 15
relational, 9, 12, 13

Extension of COMMON, (see EQUIVALENCE statement)
EXTERNAL statement, 58, 69

F
F format, 34, 35
FA LSE, 6, 38
Fixed-point data, (see INTEGER data)
Floating overflow, (see OVERFL)
Floating-point data, (see Real data and Double-precision

data)
FORMA T processor, 44, 45
FORMAT statement, 26-30, 33-45
FORMA T and list interfacing, 44, 45
Format specifications (input/output), 26, 31-43

A, 34, 38-39, 44
D, 34, 35, 44
E, 34, 35, 44
F, 34, 35, 44
G, 34, 36, 37, 44
H, 34, 39, 40, 44
I, 34, 37, 44
L, 34, 38, 44
P, 34, 41-42
parenthesized, 43, 44
quote marks (I), 34, 40, 44
slash (/), 34, 40, 44
T, 34, 41, 44
X, 34, 40, 41, 44

FORMATs stored in arrays, 45
Formatted (BCD) input/output, 28
FORTRAN II statements, 28, 29
FORTRAN IV-H statements, 25, 75
FORTRAN program, 1, 25
FUNCTION statement, 47, 51, 52, 61-65
Function references, 8, 13, 21, 65
Functions, 8, 47, 50, 61

basic external, 69, 70, 72
library, 8, 69, 70-72
statement, 47, 61, 63

FUNCTION subprograms, 61-63

G
G format, 34, 36, 37
GO TO statements, 17, 18, 22

assigned, 17

H

computed, 17, 18
unconditional, 17

H format, 34, 39, 40
in Hollerith constants,
in literal constants,

Hierarchy (see Evaluation hierarchy)
Hollerith specifications, 28, 31, 34, 39, 40, 45

Index 77

I format, 34, 37
Identifiers, I, .JI, 47, 49, 51, 62, 67

c lassi fi cation of, 47-51, 63
IF statements, 19, 20, 22

arithmetic, 19
logical, 19, 20, 22

IJKLMN rule of typing, 7, 8
Implicit declarations, 47, 49
IMPUCIT statement, 1, 49-51, 58, 62
Implicit type, 49, 50, 62, 69
Implied DO loops, (see DO implications)
Inherent type, 7, 8, 69
Initialization of variables, 50, 58-60
In-line functions, (see Intrinsic functions)
Input format, 32, 33
Input/output conver~ion, (see Format specifications)
Input/output lists, 27, 31, 59

DO-implied lists, 26, 27
spec ia I lists, 27

Input/output statements, 26-33
auxiliary, 46
BAC KSPACE, 46
END FILE, 46
FORMAT, 33-45
formatted (BCD), 28
intermediate (binary), 29
READ, 29, 30
REWIND, 46
unit assignments, 27-29
WRITE, 26, 29, 30

INTEGER
data, 4, 25, 37
statement, 15, 59-60
type declaration, 11, 12, 15

Interaction of storage allocation statements, 57, 58
Intermediate (binary) input/output, 29, 30

L
L format, 34, 38
Label assignment statements, (see ASSIGN statement)
Labeled COMMON, (see Blank COMMON)
Labels, 1, 17,18,19

as arguments to subprograms, 21, 66
assigned, 18, 19

Letters, 1
Library subprograms, 61, 69-74
Limits on values of quantities, 4, 5, 6
List items, 26
Literal constants, 6, 25, 60, 68
Litera I data, 4
Litem I specification, 34
LOGICAL

data, 4, 36, 38, 51
expressions, 11, 13, 14
IF statements, 22
operators, 13, 14
statement, 60
type declaration, 13

78 Index

M
Magnitude of data, (see Format statements)
1 J • "", ""'.t"' " [VIOl n program, L I, L;J, 0 I

Mixed expressions, 11, 12
Multiple data identifiers, 26
Multiple entry, (see ENTRY statement)

N
NAME LIST statement, 30, 31, 67
Names, (see Identifi ers)
Nested DO loops, 23, 24
Nested repetitions in FORMATs, 43, 45
Nonexecutable statements, 17, 33
Nonstandard RETURN, 21
Numeric input strings, 28

o
Operators

arithmetic, 9, 10
logical, 9
relational, 9, 12

Optional size specifications, 51
Output format, 31
Output lists, (see Input/Output lists)
OVERFL, 72
Overflow, (see F looting overflow)

p

P specification (scale factor), 34, 41, 42
Parenthesized format specifications, 10, 14, 34, 41, 43, 44
PAUSE statement, 22, 24, 25
PDUMP, 73
Precedence of operations, (see Evaluation hierarchy)
Precision of data, 4, 5
PRINT statement, 29
Program

executable, 25, 53, 58, 61
main, 25, 61

PUNCH statement, 29

Q
Quotation mark (I)

format, 34, 40
in literal constant, 34

R
Range (of a DO), 22-24
READ

formatted (BCD), 27
intermediate (binary), 29
NAMELIST, 32
statement, 26, 29, 30-33, 44, 45

REAL
data, 4, 34, 35, 42, 51, 60

statement, 15
type declaration, 11, 12, 15

Records, input/output, 28, 30, 32
Redundant declarations, 47
References to array elements, 48, 49
Relational expressions, 12, 13
Relational operators, 12
Rep lacements, (see Assignment statements)
RETURN statement, 21, 22, 62, 63
REWIND statement, 46

s
Sampl e program, 2, 3
Scalar variables, 32, 47, 50, 56, 69
Scale factor (P specifi cation), 41
Sense lights, (see SLITET and SLITE)
Sequence numbers, (see Sample program)
Slash (/)

FORMAT specification, 28, 33, 34, 42, 43
in COMMON statement, 52, 53
in DATA statement, 50, 59
operator (division), 11
NAME LIST statement, 31

SLITE, 72
SLITET, 72
Specia I characters,
Standard unit assignments, 27
Statement functions, 47, 61, 62
Statement labels, (see Labels)
Statements

executable, 21,26,47, 49, 51, 61, 62, 64
nonexecutable, 64
position of, 51, 52

STOP statement, 22, 25
Storage a I location dec larati ons

COMMON statement, 47, 52, 57, 63
EQUIVALENCE statement, 47, 52, 57

Subexpressions, 9,10,12,13
Subprogram definitions, 47, 61
Subprogram identifiers, 47, 67, 69

as arguments, 58, 66, 69
Subprograms, 21, 61-63, 69
SUBROUTINE statement, 21, 61, 63-65
Subroutine subprograms, 20, 61, 63-66, 69
Subscripts, 7, 8, 48, 49, 56, 59, 60

T
T format, 34, 41
. TRUE., 6, 38

Truncation, 15
Type dec larations, 49, 50
Type statements, 62

COMPLEX, 49-51
DOUBLE PRECISION, 50, 51
INTEGER, 49-51
LOGICAL, 49-51
position of, 49, 51
REAL, 49-51

Types of data, (see Data types)

u
Unconditional GO TO statement, (see GO TO statements)
Unimplementable allocation declarations,

TYPE, 50
COMMON, 56, 57
EQUIVALENCE, 56, 57

Unit assignments, 27
Unlabeled COMMON, (see Blank COMMON)
Unsubscripted arrays,

y

I/O lists, 8, 26, 27
subprogram arguments, 67, 68

Variables, 4, 15, 19, 31, 32, 47, 48, 52, 54
array, 7, 8, 31, 32, 48, 54, 55, 69
scalar, 7, 31, 32, 48, 69

Vertical line spacing, (see Carriage control)

w
WRITE

x

formatted (BCD), 28
intermediate (binary), 29-31
NAME LIST, 26, 31, 32
statement, 26, 30, 31, 33, 44

X format specifications, 34, 40, 41

z
Zero

in column 6,
tests for, 19

Index 79

	000
	001
	002
	003
	004
	005
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79

