
(

Xerox Control Program for Real-Time (CP-RJ

Xerol 550 .d SI1IIII9 Coftlllldn

CXero. CcrPOra!lO~. 197.,1975,1976,1977

System

Teclrical Manual

XQ43, Rev. 0
90 30 SSC

February 1977

-~

File No.: 1X13
Printed in U.S.A.

ii

_It
This publication is a major revision of the Xerox Control Program for Real-Time (CP-R)/System Technical Manual,
Publication Number 90 ~ 888 (dated February]975). This edition documents changes that reflect both the DOO __ I
and EOO Yersions of CP-R. A change in text from that of the previous manual is indicated by a Yertical line in the
margin of the page.

RELATED PUBLICATIINS

Xerox 550 Computer/Reference Manual

Xerox Sigma 9 Computer/Reference Manual

Xerox Control Program for Real-Time (CP-R)/RT,BP Reference Manual

Xerox Control Program for Real-Time (CP-R)/OPS Reference Manual

Xerox Control Program for Real-Time (CP-R)/RT,BP User's Guide

Xerox CP-R Availability Features Reference Manual

Xerox Sigma Character-Oriented Communications Equipment/Reference Manual
(Models 7611-7616/7620-7623)

Xerox Sigma Multipurpose Keyboard Display/Reference Manual
(Models 7550/7555)

Xerox Mathematical Routines/Teclv-aical Manual

Xerox Assembly Program (AP)/LN, OPS Reference Manual

Xerox SL-1/Reference Manual

Xerox Extended FORTRAN IV /LN Reference Manua I

Xerox Extended FORTRAN IV/OPS Reference Manual

Xerox Extended FORTRAN/Library Technical Manual

Publication No.

90 30 77

90 1733
./

90 30 85

90 30 86

90 30 87

90 31 10

90 09 81

90 09 82

900906

903000

90 1676

900956

901143

90 1524

Manual Content Codes: BP - botch processing, LN - language, OPS - operations, RP - remote processing,
RT - real-time, SM - system management, TS - time-sharing, UT - utilities.

The spKificotiOM of ~ software Iyt~ .Icrihed i" Phis publication are subject to change without.tic •. The ovailability or perfOfllROnCe of 101ft- features
lftOy depetta oPI a speciFic configuration of eq",ipm"" such en odditional tape ",,,it, Of 10'9.rory. CustaMersshouldconsult i' X.IM ••• reprelllf'ttative
for .toils.

I ---

-.

PREFACE x READ/WRITE 39
PRINT 41
TYPE 41

1. CP-R]NITIAUZATION ROUTINE DFM 41
DVF 41
DRC 41

2. CP-R CONTROL TASK 3 DEV]CE (Set Device) 41
DEVICE (Get Device) 41

Structure 3 COR RES 41
Function and Implementation 3 REW]ND 41

Re5ident Control Task 3 WEOF 42
Key-In Processor 4 PREC 42
Load Modu Ie Contro I 4 PFILE 42
Background Sequencing 5 ALLOT 43
Contro I Task Dump 6 DELETE 43
Periodi c Schedu ler 6 TRUNCATE 43

J
';'

3. I/o HANDLING METHODS 7 4. ERROR LOGGING 45

Channel Concept 7 Error log Record Formats 45
Handling Devices 7

Single Interrupt Mode 7
Intenupt-to-Interrupt Mode 7 5. JOB CONTROL PROCESSOR 54

System Tables 7
]OQ 7 Overview 54
OCT 7 ASSIGN Command Processing 54
CIT 8 JCP Loader 70

/ Handler Tables 8 Job Accounting 72 \'~
DOT 8 Background TEMP Area Allocation 73
CLST 8

I/o Control System Overview 9
Interfaces 9 6. FOREGROUND SERVICES 75
Register Conventions 31

QUEUE 31 Implementation 75
CALLSD 31 RUN 75
SERDEV 31 RLS 75
RIPOFF 31 MASTER/SLAVE 75
STARTIO 32 STOPIO/ST ARTIO 75
CLEANUP/Ioscu 32 DEACTIVATE/ACTIVATE 76
REQCOM 33 10EX 76

I/O Error logging 33 TRIGGER, D]SABLE, ENABLE, ARM,
I/o Statistics 33 DISARM, CONNECT, DISCONNECT 76
Side Buffering 34 Task Control Block 76

Output Side Buffering 34
Input Side Buffering 34

Virtual I/o Buffering 34 7. MONITOR INTERNAL SERVICES 79
10 EX 37

Queued 10EX 37 C P-R Overlays 79
Dedicated 10 EX 37 Entry and Exit Point Inventory 81

Disk Pack Track-by-Track Logic 37 Overlay Inventory ~ 81
Disk Pack Seek Separation 37 Event Control Block CI'ld Event Control Services 82
Disk Pack Arm-Position Queue Optimization 37 Overview of ECB Usage 82
Disk Angular-Position Queue Optimization 38 ECB and Data-Area Formats 83
Deferred SIC 38 Dynamic Space (SPACE) 88
logicol Devices 38 Dynamic-Space Service Calls 88
User I/o Services 39 GETTEMP 88

OPEN 39 RELTEMP 88
CLOSE 39 SYSG EN Considerations 88

iii

LUUtIITS

C PREFACE x READ/WRITE 39
PRINT 41
TYPE 41 --

1 • CP-R INITIAUZATION ROUTINE DFM 41
DVF 41
DRC 41

2. CP-R CONTROL TASK 3 DEVICE (Set Device) 41
DEVICE (Get Device) 41

Structure 3 CORRES 41
function and Implementation 3 REWIND 41

Resident Control Task 3 WEOF 42
Key-In Processor 4 PREe 42
Load Modu Ie Contro I 4 PFILE 42
Background Sequencing 5 ALLOT 43
Control Task Dump 6 DELETE 43
Periodic Scheduler 6 TRUNCATE 43

... f

3. I/o HANDLING METHODS 7 4. ERROR LOGGING 45

Channe I Concept 7 Error Log Record Formats 45
Handling Devices 7

Single Interrupt Mode 7
Interrupt-ta-Interrupt Mode 7 5. JOB CONTROL PROCESSOR 54

System Tables 7
10Q 7 Overview 54
OCT 7 ASSIGN Command Processing 54
CIT 8 JCP Loader 70

G Handler Tables 8 Job Accounting 72
DOT 8 Background TEMP Area Allocation 73
CLST 8

I/o Control System Overview 9
Interfaces 9 6. FOREGROUND SERVICES 75
Register Conventions 31

QUEUE 31 Implementation 75
CALLSD 31 RUN 75
SERDEV 31 RLS 75
RIPOFF 31 MASTER/SLAVE 75
START 10 32 STOPIO/STARTIO 75
CLEANUP /Ioscu 32 DEACTIVATE/ACTIVATE 76
REQCOM 33 10EX 76

I/o Error Logging 33 TRIGGER, DISABLE, ENABLE, ARM,
I/o Statistics 33 DISARM, CONNECT, DISCONNECT 76
Side Buffering 34 Task Control Block 76

Output Side Buffering 34
Input Side Buffering 34

Virtual I/o Buffering 34 7. MONITOR INTERNAL SERVICES 79
10 EX 37

Queued 10EX 37 CP-R Overlays 79
Dedicated 10EX 37 Entry and Exit Point Inventary 81

Disk Pack Trock-by-Track Logic 37 Overlay Inventary 81
Disk Pack Seek Separation 37 Event Control Block en:! Event Con~1 Services 82
Disk Pack Arm-Position Queue Optimization 37 Overview of ECB Usage 82
Disk Angular-Position Queue Optimization 38 ECB and Data-Area Formats 83
Deferred SIO 38 Dynamic Space (SPACE) 88

C
logicol Devices 38 Dynamic-Space Service Calls 88
User I/O Services 39 GETTEMP 8F

OPEN 39 RELTEMP 8b '_._
CLOSE 39 SYSG EN Considerations 88

iii

.;'

GAN 195 MASTEREXECUTIVE Routine 265
SCAN 195 Indexed Scratch File Management 317
GETIOID 195 Indexed Fi Ie StNcture 318
GETFID, GETDEV, GETOPlB,

GETANY 195
GETFSTSD 195 15. SYSTEM GENERATION 362
GETNXTSD 195
GETAX 196 Overview 362
GET1SFIL and GETNXFIL 196 SYSGEN/SYSLOAD Flow 363
UNPKDIRE 196 Loading Simulation Routines, CP-R and
PACKDIRE 196 CP-R Overlays 363

Contra I Commands 196 Rebootable Deck Format 372
:ALLOT 196 Stand-Alone SYSGEN Loader 373
:DELETE 196 SYSGEN LOADER LOADER 373
:TRUNCATE 197
:SQUEEZE 197

Library Fi Ie Maintenance 199 APPENDIXES
Library Fi Ie Formats 200
Command Execution 202 A. CP-R SYSTEM FLAGS AND POINTERS 375

:ALLOT 202
:COPV 202 B. XEROX STANDARD OBJECT LANGUAGE 380
:DELETE 202
:SQUEEZE 202 Introduction 380

Bad Sector Handling 203 General 380
Command Execution 203 Source Code Translation 380

:BDSECTOR 203 Object Language Format 381
:GDSECTOR 203 Record Control Information 381

Uti lity Functions 203 load Items 382
:MAP 204 Declarations 382
:LMAP 206 Definitions 384
:SMAP 207 Expression Evaluation 385
:CATALOG 207 Formation of Internal Symbol Tables 388
:CLEAR 208 Loading 389
:COPY 208 Miscellaneous Load Items 390
:DPCOPV 208 Object Module Example 390
:DUMP 208
:XDMP 209 C. XEROX STANDARD COMPRESSED
Access Control Image 210 LANGUAGE 396

: SAVE 211
:RESTORE 212 D. SYSTEM OVERLAY ENTRY POINTS 397

12. TERMINAL JOB ENTRY 231 FIGURES

T JE COC Tables 231 1. Initialize Routine Core Layout 1
T JE Commands 233 2. CP-R Initialize Routine Overall Flow 2
T JE Structure 234 3. OveralllOCS Organization 10

Account Maintenance 234 4. IOCS: QUEUE Routine 12
TEX Operation 235 5. IOCS: SERDEV Routine 14
TEL Operation 235 6. IOCS: CLOCKIO Routine 16
Time Slicing 236 7. IOCS: RIPOFF Subroutine 17

8. IOCS: STARTIO Routine 18
9. IOCS: IOINT Routine 20

13. MEDIA 238 10. IOCS: IOALT Routine 22
11. IOCS: CLEANUP Routine ... 23
12. IOCS: REQCOM Routine 25

14. EDIT SUBSYSTEM 246 13. IOCS: ENDAC Subroutine 27

246
14. IOCS: IOERROR Subroutine 28

Func:tionalOverview 15. IOCS: IOLOG Subroutine 29
Operational Overview 246

16. IOCS: PUSHLOG Subroutine 30
Module Analysis 250

17. Logicol Flow of ALLOT 44
BEGINEDITOR 250

18. Initialize JCP 55
MASTERPARSERl 251

v

19. Read and Process JCP Commands 56 76. Flow Diagram of MASTER EXECUTIVE . ·266
20. Wait for JCP Cammand 57 77. Flow Diagram of F:EDIT 270
21. Process JCP Command Errors 58 78. Flow Diogram of F:END 272
22. JOB Command Flaw 59 79. Flow Diagram of SAVE Command . ' 274
23. FIN Command Flow 60 80. Flow Diagram of R:FINDSSEOUENCE,
24. ASSIGN Command Flow 61 R:FINDSDELETE, and R:FINDSTYPE 276 __)
25. DAL Command Flow 62 81. F low Diagram of R:MOVESDELETE and
26. ATTEND Command Flow 62 R:MOVESKEEP 280
27. MESSAGE Command Flow 62 82. Flow Diagram of GETNEXTNAME 298
28. PAUSE Command Flow 63 83. Flow Diagram of GETNEXTPARAM 301
29. CC Command Flow 63 84. Flow Diagram of SHIFTRIGHT 312
30. LIMIT Command Flow 63 85. Flow Diagram of OPENSCR 321
31. STDLB Command Flow 64 86. Flow Diagram of CLOSESCR 323
32. NAME Command Flow 65 87. Flaw Diagram of WRGRANS 325
33. RUN Command Flow 67 88. Flaw Diagram of OPENSCRI 327
34. ROV Command Flow 67 89. Flow Diagram of READD 328
35. INIT, SJOB, or BATCH Command Flow 67 90. Flaw Diagram of READX 330
36. ALLOBT Command Flow 68 91. Flow Diagram of FINDX 333
37. PMD Command Flow 69 92. Flow Diagram of FINDNXX 335
38. PFIL, PREC, SFIL, REWIND and UNLOAD 93. Flow Diagram of GETX 336

Command Flows 69 94. Flow Diagram of GETREC ..1/ 340
39. WEOF Command Flow 69 95. Flow Diagram of PUTREC 342
40. Pre-PASSI Core Layout 71 96. Flow Diagram of GETRBYTE/PUTRBYTE 345
41. ARM, DISARM and CONNECT Function Flow 77 97. Flow Diagram of DELETERECORD 346
42. Arrangement of SYSLOAD Input ROMs 80 98. Flow Diagram of WRITERANDOM 348
43. ECB Format and Chained Data Areas 84 99. Flow Diagram of WRITENEWRANDOM 350
44. Relationship of Task Controlled Data 120 100. F low Diagram of READRANDOM 351
45. Relationship between a Primary Task Contral 101. Flow Diagram of READSEQUEN 353

Black and Other Contra I Blocks 131 102. F low Diagram of BUILDSCR 355
46. Relationship between Secondary Task Control 103. Flow Diagram of SAVESCR 358

Block and Other System Contral Data 133 104. SYSGEN and SYSLOAD Layout before
47. Relationship of AST to Other System Tables 137 Execution 362
48. Relationship of Job-Associated Control Tables 144 105. SYSGEN and SYSLOAD Layout after
49. Enqueue/Dequeue Table Relationship 149 Execution 363 -)
50. Overlay Structure of the Overlay Loader 155 106. SYSGEN/SYSLOAD Flow 364
51. Overlay Loader Core Layout 156
52. UB Reorganization of Dynamic Table Area 169
53. PASSTWO Reorganization of Dynamic

Table Area 172
54. MAP Table Reference 175
55. Pragram Fi Ie Format 180
56. Overlay Loader Flow, o LOAD 184
57. Overlay Loader Flow, CCI 184
58. Overlay Loader Flow, PASSONE 185
59. Overlay Loader Flaw, PASSTWO 188
60. Overlay Loader Flow, MAP 190
61. Overloy Loader Flow, RDIAG 191
62. Overlay Loader Flow, RDIAGX 191

TABLES 63. Overlay Loader Flow, DIAG 192
64. RADEDIT Functional Flow 194
65. RADEDIT Flow, ALLOT 214 1. ASSIGN Table Description 70

66. RADEDIT Flow, TRUNCATE 215 2. RAD File Table Allocation for a Disk File 101

67. RADEDIT Flow, COpy 216 3. RAD File Table Allocation fora Block Tape 102

68. RADEDIT Flow, SQUEEZE 221 4. OCT Subtable Formats 103

69. RADEDIT Flow, SAVE 226 5. IOQ Allocation and Initialization 108
6. Overlay Loader Segment Functions .- 155 70. Field and Indicator Definitions 244

71. Memory Allocation EDIT 246 7. T:DCBF Entries 176

72. Command Description Table (COT) 247 8. Background Scratch Fi les 178

73. Overall Flow Diagram of EDIT 248 9. Command Number Table 249

74. Flaw Diagram of MASTERPARSER 252 10. Standard System Modules 369

75. Flow Diagram of PARSE:I:CMNDSSTRG and A-1. CP-R System Flags and Printers 375

PARSE:I:CMNDSINTG 259 0-1. System Overlay Entry Points 397

vi

(

PREFACE

The primary purpose of this manual is to provide a guide for better comprehension of the program listings supplied
with the Xerax Control Program for Real-Time (CP-R) operating system. The programs and processors included are
the System Generation program and the Monitor and all its associated tasks and subprocessors.

The manual is intended for CP-R users who require an in-depth knowledge of the structure and internal functions of
the operating system for system maintenance purposes. Since the CP-R System Technical Manual and program list
ings are complementary, it is recommended that the listings be readily available when referencing this manual.
Manuals offering other levels of information regarding CP-R features are outlined below.

• Control Program for Rea I-Time/In, BP Reference Manual, 90 30 85, is the principal source of reference
information for the real-time and batch processing features of CP-R; (i.e., job control commands, system
procedures, I/O procedures, program loading and execution, hardware interrupt and software interface,
and service processors). The purpose of the manual is to define the rules for using background processing
and real-time features.

• Control Program for Real-Time/OPS Reference Manual, 90 30 86, is the principal source of reference in
formation for CP-R computer operators. It defines the rules for operator communication with Jhe system
(i.e., key-ins and messages), system start-up and initialization, job and system control, peripheral device
handling, and recovery procedures.

• The Control Program for Real-Time/RT,BP User's Guide, 90 30 87, describes how to use the various batch
and real-time features that are basic to most installations. It presents the information in a semitutorial
format that offers the user a job-oriented approach toward learning the features of the operating system.

• CP-R Availability Features Reference Manual, 90 31 10, describes the available techniques to rapidly
identify a system problem as either a hardware or software malfunction that has already occurred, or to
anticipate a patential system alarm. It also describes the techniques to further define the problem via
software diagnostic criteria, including the &rer Log lister (ElLA), ANALYZE processor, On-line Ex
ercisers, and system alarm procedures. The manual is primarily addressed to computer operators, local
system programmers and analysts, and Xerox Customer Service personnel.

• Information for the language and applications processors that operate under CP-R is also described in sepa
rate manuals. These manuals are listed in the Related Publications page of this manual.

vii

1. CP-R INITIALIZATION ROUTINE

The CP-R Initialize routine sets up core prior to the execution of CP-R. It is entered from the CP-R Bootstrap every
time the system is booted from the disk. It also modifies the resident CP-R system (including all system tables), the
CP-R overlays, and the Job Control Procesor. Modifications may be made from the C or OC device that is selected
by a corresponding sense switch setting SSWI-3. If sense switch" is reset, the Initialize routine loads all programs
on the FP area of the disk designated as resident foreground. The Initialize routine may extend into the background
and can be overwritten by background programs, since it executes only once. In Figure 1 below, the background
fint word address is the first poge boundary after RBMEND (the end of resident CP-R). The Initialize routine termi
nates by entering the CP-R Control Task.

The general flow of the Initialize routine from CP-R Bootstrap entry to triggering the Control Task interrupt is illus
trated in Figure 2.

r---~rO

Resident CP-R -'

~--------------------------------------~UMEND

CP-R Initialize
Routine

Figure 1. Initialize Routine Care Layout

2

".

If .. nse _itch" is reset,
do RUN CAL to load in
any resident foreground
program.

Figure 2. CP-R Initialize Routine Overall Flow

2. CP-R CONTROL TASK

The CP-R Control Task is connected to the lowest priority system interrupt. Among the functions performed by the
Control Task are .

• Key-in processing • Real memory dump

• Primary program run • Deferred I/O processing

• Primary program release • PeriOdic service of all devices

• Background program load • Crash data handling

• Background sequencing • I/O error log handling

• Background dump initiation • Periodic scheduling

I
~ , -

In facilities where there are no system interrupts, the Control Task is connected to the Control Panel interrupt (see
II Key-In Processor" later in this chapter).

Structure

The Control Task consists of a resident portion and a number of monitor overlays. The over I ays are

• Load mOdule release (FGLl) • &ror logger (LOG)

• Load mOdule run (FGl2) • Error summary (ESUM)

• Load mOdule loader (FGl3) • Crash saver (CRS, CRS2)

• Background program initiation (BKll) • Crash-save dumper (CRD)

• Background Abort/Exit/Dump (ABEX) • Direct crash dumper (CKD1,CKD2)

• Key-in Processor (KEY1-KEY7) • Periodic scheduler (SCHED, SCMSG)

Function Ind Implementation

The resident portion of the Control Task functions as a scheduler for the various subtasks. The priority of the subtasks
is determined by the order in which the resident Control Task tests the signal bits.

3

I.

.., ... 'nUIIiF

When the Control Panel interrupt is triggered, its handler sets the flag in K:CTST to run KEY1 and triggers the
interrupt for the Contro I Task dispatcher.

When KEY1 is entered, it determines whether an operator key-in must be read or has just been read. If the key-in
has nat yet been read, KEY1 prompts the OC device with a "_" and queues a read request to the some device. It
then sets a flag indicoting that key-in input is in process, and exits to the Cantrol Task without clearing its run flag
in K:CTST.

The combination of the flags mentioned forces the Control Task to skip KEY1 but to continue cycling through its
scon unti I the key-in input is complete. It then enters KEYl.

When KEY1 is entered after a key-in has been read, it analyzes the input and branches to the appropriate processor
in one of the key-in overlays. If the key-in is unrecognized, KEY1 outputs the message

IIKEY ERR

and repeats the attempt to reod a key-in. I . ;~

.... d Module Cantril (For-.iy .. hr F ..)

Load Module Control consists of three monitor overlays: FGL 1 (Load Module Release), FGL2 (Load Module Run),
and FGL3 (Load Module Loader). Monitor services that require a primary load madule to be initiated or released
set the appropriate stotus indicators in the LMI entry, set the flag for Load Module Control in K:CTST, and trigger
the Control Task dispatcher interrupt.

Load ~dule Control is entered in the FGLl overlay, which first searches the Load ~dule Inventory (LMI) for
primary load modules to be released. If a releasable load module is found, FGLl relecaes it. The System Task
Inventory (STI) is searched for entries identifying tasks in the load module. If any are found, they are released, and
the associated interrupts are disarmed and set to MTW,O O. For clock-connected tasks, both the clock pulse and the
corresponding count-equals-zero interrupts are treated. If the load module used PUBLIBs, their use counts ore
decremented, and the PUBLIB LMI entry is released if the use count becomes zero.

While searching for releasable primary load modules, FGLl also finds all primary load modules that are waiting on
memory in order to run ("run queued") and sets flags indicating that their loading is to be attempted again.

When all load module releases have been performed, FGLl calls FGL2.

FGL2 searches the LMI for a primary load module entry flagged for loading. If the "run-queueing" option is not
specified, the first loadable entry is selected. Otherwise, the loadable entry with the highest priority is chosen.
(If there is none, FGL2 returns to the Control Task, clearing the Load Module Contral flag from K:CTST.)

When an entry is found, the Job Program Table (JPT) for the job in which the load module will run is searched. If
the task name from the LMI entry matches a task name in a JPT entry, the load module file name is provided by the
JPT entry. If no such match is found, the task name is used as the file name. FGL2 calls FGL3 to load the load
module. If FGL3 is successful, FGL2 sets up certain LMI entry values which are obtained from the load module
header and allots Associative Enqueue Table (AET) spoce from the monitor's dynamic memory pool. The load mod
ule initialization sequence is executed. Normal completion posting is effected for the originating RUN or INIT
request.

If FGL3 is unsuccessful at loading because the required memory was in use, FGL2 leaves the LMI entry for a later
attempt at loading. If the load failed for another reason, the tables are deleted, and the originating request is
posted as abnormally completed.

FGL3 acquires dynamic memory for load module header input. The header is read, and it is determined whether the
memory between the program bounds is free of foreground programs. If it is not, the load terminates unsuccessfully.
The roat segments of the load module are read into their execution locations. If any PUBUB is required, the LMI is

searched. If a PUBLIB is already loaded, its use count is Incremented. If the required PUBUB has no lMI entry, its
header is read CI'Id its space requirement Is determined. If the PUBLIB does nat overlap CI'I existing program or
PUBLlB, the PUBLIB is loaded .M glv.., an lMi entry. If memory space is not available, the loading of the original
program load module is terminated unsucc_ruBy. •

. When the root segments Qnd PUBUBs for II load module are all loaded, FGL3 returns successfully to FGL2.

Background sequencing is provided by two monitor overlays: Background Progrom Initiation (SKU, formerly "Back
ground Looder part 1 ") and Background Abort/Exit (ABEX).

Background sequencing is begun by a "C" keyin received while the background is inactive. The key-in causes flags
to be set in K:CTST indicating that BKU must run and the Job Control Processor (JCP) is to be loaded.

There are three main paths through BKL1: one for initiating JCP, one for initiating a processor or user program, and
one for completing the initiation process ofter Load Module Control has loaded the background. BK!.-l may also exit
without doing anything, if it is entered without the indicator set for any of its three functions. In this case, the
flag in K:CTST for BKL 1 execution is cleared. At this point, background sequencing has terminated.

When BKL 1 is called to initiate either JCP or another background program, the general process is to associate the
task name "BKG" with the load module file name using a SETNAME CAL, and request task initiation with a no
wait INIT CAL. BKL 1 then exits to the Control Task to allow the task initiation to proceed in the background
context.

ASSIGNs are done as indicated in the ASSIGN table during task initiation.

The final path through BKL 1 is taken after completion of the INIT service requested in either of the first two paths.
Task initiation, on completing a background INIT request, sets the flag in K:CTST for BKLl execution. When BKU
is entered, it performs a CHECK on the INIT request. If an abnormol completion code is returned, flags are set to
run ABEX to abort the background. BKL 1 notifies the operator and exits. If the completion is normal, BKL 1 then
clears flags that block background execution and exits. Background can then run.

When a service requests that the background task be terminated (e.g., EXIT or ABORT CAu, trap procesing abort),
task termination is deferred. Instead, a flag is set in K:CTST indicating that ABEX must run, CI'Id another flag is set
in K:JCP indicating whether the termination is CI'I exit or an abort. The Control Task dispatcher is then triggered.

ABEX first determines what is to be run next in the background sequence on the basis of what was just run, and how
it terminated. If a normal termination occurred, there are three alternatives: If a program other than JCP was
running, ABEX indicates that JCP will run next. If JCP was running, and a IFIN command was received, nothing
is to follow. If JCp was running ond exited without IFIN, it was the result of some variety of IRUN command,
and the next program to run is indicated by a file area and name in K:BAREA and K:BFILE, respectively. ABEX
indicates that a user program is to be loaded next. If the previous background program aborted, ABEX indicates
that JCP will run next. Additionally, ABEX sends an abort notification to the OC and LL devices, and sets a flag
which forces JCP to skip control cards until a IJOB or IFIN is encountered.

If a postmortem dump is required, ABEX dispatches the background to the background dump routine, resets its own
flag, and exits. When the dump is complete, an EXIT is executed, causing ABEX to be reentered. If there is no
dump, or upon reentry after a dump, ABEX calls the TMLM monitor routine, which forces the background to execute
termination. ABEX then exits, clearing its execution flag. .-

The background task then executes Task Terminotion, which closes files, waits out or stops Vo (the former in an
EXIT, the latter in an ABORT), and releases table space. Termination ends by setting the K:CTST flag to run
BKU, and triggering the Control Task.

When BKU runs, as described earlier, it initiates the next load module, or, if there is none, terminates background
sequencing.

5

.... - .. - " .
- - ~~ ""- ,; -' . .

_~. _:..~ __ ~ __ ~--":_. ______ ' __ - _0 ___ ,_-~:"_..1-_ ._ __ :._~:....~--I>
. ' .. -

.,-

6

. '-
- --~ ~- ... - .. ---, - .;. -'

A Control T.k dump II by 0 DF or OM key-In. n..,..,.., ... conhOI Wodr II obtained from the system
dynamic space pool, and Initialilild for the requN.d addr. ,... to to the DO opl .. 1. Alto tpectned
is a post-print routine address, to be executed after the Dump routine prints each line. The Dump routine is then '),
called. It returns after performing the required dump. The Control Tatk dump flag is then ,.et, and the control .
tcsk scheduling loop is reentered.

The post-print routine specified in the dump control block accomplishes two functions.

1. It causes a delay, followed by a retry if a device-manual error is returned from the print request.

2. It enters the Control T csk schedul ing loop in order to allow other Control T csk functions to procede during
the dump. (However, a DF or DM key-in will be rejected while a dump is executing.)

Periodic Scll.duler

The Periodic Scheduler is divided into two major monitor overlay sections and two small sections of .JTIQnitor root
resident code. The overlay sections are the CAL processor and the Scheduling Processor. The resident sections are
in the clock 5-second timing code and an end-action receiver for an INIT call.

The CAL processor builds a chain of linked tspace entries with a monitor root word, SC:LIST, pointing to the oldest
entry. These entries contain information required to create an appropriate INlT FPTas derived from the SCHED FPT.
Upon entry, the CAL processor will create new TSPACE entries, delete entries if appropriate, set a bit in K:CTST,
call CTRIG, and exit.

The Scheduling Processor, when called by the Control Task, resets the scheduler bit in K:CTST, opens the file SCHED
in area SP, and examines the chained TSPACE entries pointed to by SC:LIST. If such entries exist, the SCHEDFIL
entries will be created or deleted as appropriate. A4 the data in each TSPACE entry is entered in a SCHEDFIL record,
that TSPACE is released and the chain pointer repositioned.

A monitor root word, SC:INIT, may point to a previously scheduled INlT FPT in TSPACE. If so, a CHECK call is
Issued. If the INIT is complete, its TSPACE is released and the completion status is analyzed. Any error code is
added to the scheduled task's SCHED record and appropriate messages are output if this is the first time such status
has been encountered. Some error codes cause automatic deletion of the _entry.

If no INlT's are necessary, the Scheduling Processor examines the SCHEDFIL entries to see if the current time of day
has exceeded the "next-time-to-run" value for a particular task. If a task is due to run, an INIT FPT is built in
TSPACE and its address placed in SC:INIT. The task's next-time-to-run value in SCHEDFIL is incremented by its
interval value and the INIT call is issued, with a 3O-second timeout value to prevent blockage.

The Scheduling Processor then searches the SCHEDAL for the lowest value of "next-time-to-run", which is posted in
a root block of three words headed by SC:YEAR. The Scheduling Processor exits after resetting the K:CTST bit.

logic in the 5-second count code of the CLOCK routine examines the three-word block SC:YEAR. If the current
date/time has exceeded this value, the scheduler bit in K:CTST is set and CTRIG is called.

3. I/O HANDLING METHODS

Channel Concept
A "channel" is defined as a data path, connecting one or more devices to memory, only one of which moy
be transmitting data (to or from memory) at any given time.

Thus, a magnetic tape controller connected to an MIOP is a channel but one connected to an SlOP is not, since
in this case, the SlOP itself fits the definition. Other examples of channels are a card reader on an MIOP, a
keyboard/printer on an MlOP, or a disk controller on an MIOP.

Input/output requests made on the system will be queued by channel to facilitate starting a new request on the chan
nel when the previous one has completed. The single exception to this rule is the "off-line" type of operation,
such as the rewinding of magnetic tape or the arm movement of certoin moving arm devices. Far this type of opera
tion, an attempt is always made to also start a data transfer operation to keep the channel busy if possible.

Handlina Devices
The CP-R system offers the capability of multiple-step operations by providing an interrupt-to-interrupt'mode in
addition to the standard single interrupt mode.

Sialle latmupt M

On the lowest level the I/O handler is supplied a function code and device type. These coordinates are used to
access information from tables used by the handler to construct the list of command doublewords necessary to per
fonn the indicated operation. Included will be a dummy (nonexecuted) command containing information pertinent
to device identification, recovery procedure, and follow-on aperations (see below).

A function code for a follow-on operation may be included in the dummy command. This causes the request to be
reactivated and resume its normal position in the channel queue, but with a different operation to be performed. It
will be started by the scheduler in the normal manner as if it were any other request in the queue. The process may
be cascaded indefinitely.

&ror recovery may be specified at any point within a series of follow-on operations and will be itself treated by the
system as a type of follow-on operation. It should be noted that follow-ons may be intermixed with other operations
on the same channel or even on the same device if the situation warrants. Thus, a series of recovery tries on a disk
may be interrupted to honor higher priority requests, or on a tape for higher priority requests on other drives (but not
on the same drive).

System Tables

Information pertaining to requests, devices, and channels is maintained in a series of parallel tables produced at
System Generation time. A definition of these tables is presented here as reference fOl' the remainder of this man
ual. The first entry (index =0) in each toble is reserved for special use by the system. 'See Chapter 10 for a more
complete description of these tables.

100 (Request InfDrmation)

....

These tables contain all infonnation necessary to perform an input/output operation on a device. When a request is
made on the system, a queue entry is built that completely describes the request. The entry is then linked into the
channel queue below other requests of either higher or the same priority.

7

8

DCT (DIvice c.tnl)

The Device Control Tables contain fixed information about each system device (unit level) and variable information
about the operation currently being performed on the device.

These tables are used primarily to define the "head" and "tail" of entries that represent the queue for given channel
at any time. A channel queue may have more than one entry active at any time (e.g., several tapes rewinding while
another entry reads ar writes).

Handler Tables

Associated with each handler are two tables: the Device Offset Table (DOn, and the Command List Pointer Table
(CLST).

DOT (Device Offset Tlble)

The DOT table is a word table that begins on a doubleword boundary and contains:

Byte 0 A byte offset from the beginning of the DOT table to the corresponding CLST entry.

Byte 1 The time-out value, which is an integer that represents the number of five-second intervals that
are allowed to pass between the SIO and the I/O interrupt before the interrupt is considered
lost. The value X'FF' indicates the operation should not be timed out.

Byte 2

Byte 3

The retry function code. This is the function code to be used for automatic error recovery.

The continuation function code. This is the function code to be used for multiple interrupt re
quests. For example, a forward space record on magnetic tape can be performed n times by
the basic I/O using the same queued request. Zero is used for no continuation.

The funetion code is used as the index to reference this table.

CLST (CIIIIRllnd Us! Pointer T.ble)

The ClST table is a byte table containing the doubleword displacement from the beginning of the corresponding DOT
table to the appropriate skeletal command doubleword.

The general method for constructing the command doublewords for an I/O request is to access the DOT table using
the function code as index, and then find the skeletal command doubleword offset by using the contents of byte 0
of the DOT entry as index to the CLST table. The skeletal command doubleword has the form

Order x
Flogs o y Z

o 78 31

where

Y = 0 if the command is complete and to be used as is. This impl ies X is the address and Z is the byte count.

Y = 1 if a seek address contained in IOQ12 is to be placed in the fint word. In this case, the value of X
is irrelevant. ..

Y = 2 if a regular data transfer is to be performed. In this case, the buffer address is taken from 10Qa and
placed in the fint word, and the byte count is taken from IOQ9 and placed in the second word (byte 1).

Y = 3 if the request represents an I/O error message. This will cause the proper NIL! fY)'I'Idd to be chained
to the pointed message.

Y = 4 if a special handler function is to be performed. In this case, X is the address of the entry Ie
the function.

•
(

When the building of the carnmancl doubleword is campleted, a Nst is performed for command-chaining (commoner
daubleword flag field bits 0 or 2 are on). If another c:cmmand doubleword is to be chained, it is accomplished by
accessing the next successive entry In the CLST table to find the offset of the Ikeletal command daubleword that is
to be used to create the next cammand daubleword. This command doubleword is constructed in the same fashion as
the first, and the process may continue to the limits impased by tM size of the command list area allocated at
SYSGEN.

I/O Control System Overview

The VO Control System (foeS) is based around three major concepts. They are device dependent variables, channel
dependent variables, and request dependent variables. The device dependent variables include the device address,
device state flags, pointers to channel and request variables, pointers to pre- and post-handlers and storage for
hardware VO status. The channels are software logical channels defined by the SYSGEN process. Only one data
transmission can occur on a channel at any given time (two in the case of device pooling hardware). Channel vari
ables include the state of the channel (busy, held, etc.) and queue head and tail pointers for the request queues.
Request variables contoin the information supplied by the loeS user (file management, overlay monager, utility
routines, etc.), indicating which Vo operation is to be performed and how ccmpletion is to be signaled. Request
variables include buffer address, byte count, function code, maximum error retry count, end-action information,
device pointer, priority, and others. There are also entries for forwards and backwards pointers in/the channel
queues.

All device-dependent code is in device pre- and post-handlers that are called before the VO is started and after
the Vo interrupt is received, respectively. They are dependent not only on the gross device type (i. e., card reader
ar mognetic tape unit), but also on the exact model of device and controller.

Figue 3 shows the overall arganization of the loeS .

There are anly two program interfaces into the IOCS. The first is QlfUE which is called with the request param
eters in order to odd a request to the proper queue. It identifies the proper channel and odds the entry in priority
position. The second is SERDEV (Service Device) which, while called with a device pointer, identifies the asso
ciated channel and checks it for a possible state change.

The only interface out of the loeS is IOSCU. When any VO is finally terminated, IOSCU calls REQCOM which
signals the requestor based on the clean-up code and/ar end-action control word supplied with the original request.

The Joes interfaces are described in further detail below, together with an VO control sequence example for a
simple case.

Figures" through 16 show the detailed control flow far the individual JOCS routines and subroutines.

Interfaces into the Joes

QUEUE. This subroutine is called by the monitor to enter an Vo request into the IOCS. It must be supplied with
many parameters such as:

e Byte address of the buffer

e Byte count

• logical function code (read, write, rewind, etc.)

• Priority

• Device ID

• End-action control dato

e Maximum number of recovery attempts

9

10

T

STR~T til'
PtCk lP

PflRAHETE~S FRat1
IOO Rt{) CflLL

PRE I'ftIDLER

PRE-I1fH)lE~
Ill' INITlAL

SETUP RHD GET
PTR TO ~ HiHT

110 TffilE

~ltST
BUilD cmrs

BASED ON)/0
TABLE

S[O
SETUP TlMEDUT

SET FlAGS
Ct£O: HflNURl

1

fILE fN) DEVICE
tft4AGEHENT

caNVERT TO RfRl.
PARtlt1ETOS

CfLL ClJEtE
PUT PfRAMElERS

JN REGISTERS
fOR Il.EUE

Il£I£
BUILD (00 ENTRY

AND PUT IT ON
RtGHT Clf

SERV tCE DEV tCE
UY TO STNT

JIO OR ~
ClEfINlP

BUMP RfT~Y •
SETIF FOR KEYIN

ReTRY, OR
Fa.lOW ON
LaG ERRORS

110 Tlf1fM
HIO DEVICE fH)

LEtT STATUS

CLEANlP
J NTERfACE TO
PaST ttNJl.ER
E~ROR LOG
RETRY COUNT

PaST-tflNDLER
EXM ltE STATUS

AND RETURN
ClIlES fHl FLfGS

Figure 3. Overall IOCS Organization

FrT
fUNCTlON

PftRAHETER lAfl.E
tfLl PARflHfTERS

AND OCB PTR

OCB
DftTA caNTROL.

BlOCK
DftTA SET

PflRAt1ETERS

RFT
RfI) FILE TftBl£

aPLBL
LtI;lCfL LABEl

TflBL£

JOO
1/0 Cl.EUE

ENNTRY
REfl. CAll

PflRRf1ETERS

CIT
CtWINEl. INFO

TABlE
IlEUE PTRS fN)

CHANNEl.. FLAGS

OCT
DEVICE caNTRt1.

TABLES
[EYlCE

PMftHETERS

REOUEST
CII1PLETE

PaST STATUS IN
DCB

at END ACTION

-)

\ --

(

Interface out of the loes

loseu. This routine, when final completion of an VO request occurs, can signal that completion in two ways:

• A post word may be posted with the Actual Record Size (ARS) and type-of-co"pletion (TYC) code.

• A monitor subroutine may be entered with the ARS, type-of-completion code and user encf-oetion informa
tion in registers.

IOCS Control Sequence/Example

The sequence followed when a single I/O request is made to IOCS for an idle channel is as follows:

1. The monitor makes a call on QUEUE with the request palQneters. QUEUE places the request on the proper
channel queue in the proper priority order.

2. The monitor calls SERDEV to start the channel.

3. SERDEV finds the channel idle and a startable entry in the queue. It calls STARTIO for that queue entry.

4. STARTIO calls a device dependent pre-hand/er which builds the proper channel program based on the queue
entries. The VO is storted on the device and STARTIO returns through SERDEV to the monitor.

5. While the VO is proceeding, the task for which the VO is being done may get blocked and be waiting
for the I/O to complete. The monitor then makes successive calls on SERDEV while it is waiting for the
task. If SERDEV finds the device busy, it checks the elapsed time for the VO in progress to see if it is
taking too long.

(SERDEV is also called every 30 seconds for all devices. This makes sure that the system does not hang up.)

6. When the VO operation completes, or errors, an I/O interrupt is generated. IOINT is entered.

7. 10lNT collects all the status aboUt the I/O operotion and marks the device as needing clean-up. IOINT
then either calls SERDEV itself or stacks the device ID and triggers another interrupt level which will call
SERDEV for all the device IDs in the stack.

8. SERDEV finds the channel blocked by a device requiring clean-up and thus calls IOSCU.

9. IOSCU calls a device-dependent post-handler which analyzes the status saved by 101NT. The post-handler
retums to IOSCU with parameters indicating what action ta take. The possibilities are:

Output an operator message.

Request an operator key-in.

Follow-on to a new function.

Decrement the retry count.

Post some type of completion code.

10. IOSCU then re-enters SERDEV in order to get the channel started again (step 3).

11. This sequence goes an, round and round, until some type of VO completion is posted.

.11

12

OUfUE
ENTER fIN lID

REOl£ST

J

INITlf'lIZE Rl
T~ "fiX OCT
INDEX fIND

BPCKGROUND
PRIORITY

DISflBLE

I

f131 }-----~_

SfRDEV
flTTEHPT TO

DRIVE fI JlEDJfST
T~ CDHPLETICIN
fIND FREE A 0

PULL lS!R4
OECIlEHENT R 1

I
I
I rrlNCREHENT BflCKGROUND [OJ

COUNT

DE-CHAIN 100
ENTRY FRnM fREE

~--~1 Ct1fIIN

Figure 4. IOCS: QUEUE Routine

f[U-IN tOO
ENTPY FRnM

REG1STERS SET
INITfIl ACCESS
1(El' [N 1003

PUT BYTE CNT [N
POS1 IoCRD IF

FP1 PClSTtNG CR
IN OCB-RRS IF

OCB POSTING

GET NEXT a
ENTRY

..

(-

PUT REOUEST ~
END OF 0

PUT REOUESl IN
o HERE

ENRBLE

PUT REOUEST OCT
INDEX flND

PRTORITY TN Rt

SEROEV
RTTEMPT TO

STRIH FI REQUEST
fCR THIS DEVICE

PULL B,RO

Figure 4. IOCS: QUEUE Routine (cont.)

ROD REOUEST m
fRONT OF 0

13

14

[;£T PRTOP.I1Y
F~ Fll, BHE 0

OCT [t£)£X IS
BrIE J-3

PUT LJNK' IN P.IS
GET CIT TNDEX

IN 1i'2

OISFIBLE

CHECK
PRIORITY OF

REQUEST

or SABLE

Figure S. IOCS: SERDEV Routine

sRVf a ENT!?Y
PTf< [N FllO

)

(~

65)---.",

GET 0 PTR CF
INTER-OF
REIJUEST

PUT ACCESS KEY
IN R4

GET [00 ENTRY
SRVED [N Rl tJ

GET NEXT 0
ENTRY

ENABLE

HmIFY CMAN
AVRILPfll LIlY

FLAGS

GET PIR TO
HCLO[N:r IiEOUEST
I SET S01EIJHOLD I
I FLRG

I !

L;@)

Figure S. IOCS: SERDEV Routine (cant.)

l"INC
CRASH

I/O
1 NCCNS[STANCY

15

16

CLOCK 10
CHCK FOR

HI'1fOn, nc.

I YES

~

~
~rMED . /' 00+~gT N"

" ~
l"ES SERDEV

I RESET ot:V1CE I'

MRNURL FLR[;'

~
SERDEV

SET TIME-OUT
fLAG

TYf'EI1ItSG
TrPEMi'1Sr.

TYPE I'flNURL I'1SG

OUTPUT
MESSAGE

SERDEV

IIDHll)
ABORTlO

STOP ft.j ftCHVE
I/O

SET

tHO DEVICE
TOv DEVICE
Ct't6TRUCT

STRTUS

S[MULRTE 1/0
INTERRUPT

SERDEV

Figure 6. IOCS: CLOCKIO Routine

ItITStl1
INTSU1

S[MULRTE I

RESET DEVICE
BUSY

SET CLERN-UP
PENDII'C

RESET PROPER
CI1ANNEL BUSY

FLAGS

(-

RIPDFf
REHOVES tINy [J

ENTRY

SAVE LINK
orSFlBLE

Hro DEVICE

RESfT CHfINNEL
BUSY

RESET CHANNEL
HOLD IF rT WRS

SET

CLEAR OCT5
CLEFIR BlTS 31.

4, nit 5 DF OCr3

GET fIRST INEXT
ENTRY FROM fREE

100 ClfUN

ENABLE

Figure 7. IOCS: RIPOFF Subroutine

SETUP
REGISTERS FOR

REQUEST
COMPLETE

REOCOM
REQUEST

COMPLETE

RESTORE LINK

EXIT

17

18

_ •. _.~-'-.3 __

ENRBLE
SET UP

REGISTERS

DISABLE

.......... ,.-----'~G2

GET TIME-OUT
1 HCREI'£NT

RSSIGN ReCESS
KEY TO ErTl1ER

fREE S-C

fORCE RCCESS
KEY TO S-C P

•••• : _._": • .lI _

SET UP DEVICE
TABLES

GET DEVICE
AOORESS

,....... 510

PUT fiCTIVE
DEVICE ADDRESS

IN OCll

SET DEVICE
I'1f'INUAL

SET """"'URL M$
fLflG

SET lS SEC TIME

Figure 8. foeS: STARTIO Routine

SET 11M[-ooT
VRLUE,

SET DEVICE BUSy

Sf T t11..0 FLFKiS
IN CIn

SflVE t11D 0 PTR
IN C175/6

SET CtflNNEL (5)
BUSy

SET DATA
TRANSFER BIT

STORE ALL FLffiS
IN CtT31.JlCTS,

RHO ucT6
SET tOO BUSY

(~

SRVE 5[0 SlATUS
IN OC1l3

HIO DEVICE

CHftNGE RCCESS
KEY TO USE
OTHER 5-(

D6~rw::i_-.
STORE [003

fLRGS
BUMP RE:ENl CTR

ENRBlE

OUTPUT
HESSR(£

SERDEV

SET 51" FRIl
fLAG

SET CLERN-UP
RND DRTR

TRRNSfER fLAGS

Figure 8. IOCS: STARTIO Routine (cont.)

..

19

20

t01NT
HUNT

110 [NTERRUPT
RECEIVER

PUSH Fl.L
REGISTERS INTO

TSTACK
SWYlCH II::R1S

'01"''''''''' AIO
"'It"''''''" SAVE AIO CC

SFIVE ALO S1ATUS
AND PICK UP
END-RCTl~

COLLECT DEV ICE
STATUS

RESET DEV ICE
MANUAL AND BUSY

RESET PROPER
S-C BUSY fLAGS

STORE OCT
SW YlCt£S W lTH
NEW SETT[NGS

Figure 9. IOCS: JOINT Routine

ENDflC

00 END ACTION
BflSED ON OCT12

(-

PULL R WCRO
f~ CnOS7K

SERDEV
SERV ICE DEV [CE

YES

l

PUSH ~ROfV
CONTRl1. HORD
1 N1D' cn OS7K

PICK LP K: lOG..

TRIGGER
CONTRl1. TASK

LEVEL

Figure 9. IOCS: IOINT Routine (cont.)

TR I GGER OfFERED
lIO LEVEL

21

22

UIRLT
RL TERIf'ITE 110

LEVEL

PUSH fLL
RfGISTERS INTD

TSTflCK
SWnCH K:RTS

PULL R WORD
fROl1 CTIOSTK

SERDEV

SERVICE [EVlCE

RESIM
RfGISTERS f1ND

STACK

Figure 10. IOCS: ICAll Routine

(~

CLEANUP
DO PnST

PROCESS!NG

SET-UP
REGISTERS

ENABLE

AS flO
RBOP.TED

""/ I HI'

~ <::>ru 1 DE: X

~HI'

in [JEv[e!:
PQ51-

PROCESSING

YES

SET UP N~ BUMP
HfSSR!L~YC = R€:ENTRRNCE

ORT, = 0 CQUNT

SETUP 1'([~
FlNDRfI:

,

SET UP MSG4,
KfY-[N NQ [,

RB[= 0

SET UP MSG3, RELERSE I10LD
KfY-[N ~Q [, flAGS

R8C = 0

Figure 11. loeS: CLEANUP Routine

RESET [00 BUSY
GET RE 1R1' fiND
fOLLOW-ON B [TS

CP.EflTE RHO
CI1..LECT

STATUS f~
lQ ERRCIR LIXj

DECREI'ENT RETP.l'
COUNT

YES

1

23

SET Tye TO 4

REQCOK

24

· .

PDSITION RETRY
FUNCTION RS

NEXT fUNCTION

SflVE
RETRYIFDlLtJ.I
FUNCTION FlS

NEXT FUNCTION

SET INTER-IF
FLRG

CLEFlR FIN.,.
HESSRr£ PTR

YES

~
REQCOK

07

SET-UP DEVICE
ENTRIES FOR

T[HE-aJT

STORE DEVICE
SWITCt£S

ENABlE

OUTPUT
HESSAlL

ENABLE

RESTORE Rl

SERDEV

Figure 11. IOCS: CLEANUP Routine (cont.)

SET TYC TO
ERROR

REDTERM
REOUEST

TER" UflTION

CLEAR I1SG PTR

SET rNTER IY'
flAG- IN OCTS

SAVE (EVrCE
5101 11Ct£5

SET RETURN LINK
TO IOCUEXn

L~ ANY IO
ERRORS HERE

DECHAIN lOO
ENTRY AND ftOD

IT TO FREE
CHAIN

DECREI'ENT
BACKGROUND [0

COUNT

CLEAR [003

PUSH 9,R13
PUT ROC IN R13

PICK If' ENO
ACTION + ECB

Figure 12. IOCS: REQCOM Routine

ENABLE

00 END ACTION
FOR [0 BASED ON

10013

25

26

tmVE RECORD Tn
CC BUfFER
SET CFLRG

RESET CFLRG

CDHPUTE fIRS
FImtI IBC IN

POST ~O fiND
RBC FRlJ1 III

POST STfHUS IN
FPT WCRD

crt1PUTE fIRS
FROM IBC I N OCB
RHO RB: FROM to

POST ffiS IN OCB
RESET DeB BUSY
PUT n1: tN DCB

"BRL,R14· 10
END-fiCTION

(ENDAC)

PULL 9,R13

CLEANUP

Figure 12. IOCS: REQCOM Routine (cont.)

I
. I

, ~

ENDAC
END ACTION

TRIGGER LEVEL
I NDICRTfD !N

END-ACTION

SET BIT 0 IN
WORD 6 OF TCB

SAVE fLL REGS
EXECUTE BRL

TYPE END RCllON
RESTORE fiLL

REGS

STORE RIO
STRTUS IN

5 tGHRL flOOR

I----~ RETURN ON L [N<

figure 13. roes: ENDAC Subroutine

IOERRCIT
I/O ERR STATUS

~~

BUMP a:VICE
ERRCR COUNT

GET BLFFER PTR
fROM IOOERR res

,t:nu

bt" It: ...
,

GET FI SPflCE PUT BlFFER PTR
BLOCK FOR ~ IN IOCERR,

BUFfER GATHER ..
EVANESCENT

STfHUS

"'"""
~ II

BUHP LOST LOG ,It
COUNT

RETURN ON LIN<

~I

RET URN ON UN<

Figure 14. IOCS: IOERROR Subroutine

28

111.0(;
I/O ERR LOGG INC

START A NEW
110 ERROR

LOG

P[CK LP BUfFER f[LL IN FIXED
PTR fROM lOOERR lIO UXT STRTUS
AND ZERO I DOERR I----~

PUSHLC&

Figure 15. IOCS: IOLOG Subroutine

29

- I

PUStiLIL TO LOG STACK ADO A LOG BUFFER

,I,

FrLL IN T1I1E
STAI1P

.- ~

~

F>I!<;HI 1'&1 VI" ~1C:I-41""..o:;

PUSH LOG BUFFER BUHP GtDJ LOG
PTR [NTO LlXi I ~ COUNTER

STFICK

~

--"'"
F>I!<;HI 1'1"';:>

PULL ft.I ENTRY ,1/
FROI1 LOG STAO< LS:

1- RETURN ON L [N<' -I

U1'

BUMP LOST lOG
m.JNT

"~ 71:"-

RELERSE LOG
BUFfER SPRCE

Fieure 16. IOCS: PUSHLOG Subroutine

30

(~

-'"': --- --:----~ ~" -- - ---.--- .. _--. ---- .~- -

...... ' c. •• tf •••

QUEUE

Routine retums +1 if device is IOEX or down; +2 otherwise

At entry:

R2 ECB 10 or zero

R" VO Function code

R5 Link

R6 Number of retries

R7 OCT index

R8 CLEANUP Information Word 1

R9 CLEANUP Information Word 2

R10 Va buffer address (byte address)

Rll

R12

Va length (in bytes)

Disk seek address or number of records to pass (magnetic tape)

R 13 Priority

Registers RO - R7 preserved; contents of R8 - R15 are lost

CALLSO

At entry:

R1 FPT code

R2 DCB address

R3 F PT address

R5 Link

R1 - R7 preserved; contents of RO, R8 - R15 are lost

SEROEV

At entry:

R1 OCT Index

R2 Link

Contents of all registers are lost

RIPOFF

At entry:

R2

R3

RS

Task priority

roo pointer for Q entry to be removed

Link

Contents of all registers are lost.

31

32

· --~---- --. *

IUlno

At entry: There is a startable request in R3. The device activity counter is set in R14 and interrupts are enabled.
The VO handler preprocessor is called unless user command list is specified. Handler return is to ']OSST'.

Registers, after pre-handler return:

RO Doubleword address of command list

Rl Priority, CIT check mask, OCT index (8, 4, 20)

R2 Flags, SERDEVexit, CIT index (3, 10, 19)

R3 Request]00 index

R4 Handler flags, subchannel allocation code (8, 24)

R10 Device operation table (,DOT') for ']OSST'

R14 Device activity count for re-entrancy check

R15 Link for service device

CLEAIIUP/IOSCU

Normal register usage:

R1 Priority, OCT index (8, 24)

R2 Flags, SERDEVexit, CIT index (3, 10, 19)

R3 Scratch, [00 index (8, 24)

Rll Remaining byte count (RBC) from post-handler

R12 Flags retumed from post-handler:

Bit 16 Retry seq uence

Bit 17 Follow-on sequence

Bit 18 [nter-operative req~st

Bit 19 Key-in pending (normal)

Bit 20 Key-in pending (special)

Bit 21 Continue channel hold

Bit 22 Force message print

Byte 3 Type of completion

R13 Message to be typed (0 if none)

R14 Device activity count

R15 Not used - reserved for future systems.

IEQCDM

At entry

Rl OCT and priority

R3 100 pointer

R5 link

Rll RBC

R12 ryC
I

R13-R15, RO - R4 preserved; contents of R5 - R12 are lost

I/O Error LOiiini

Optionally, an I/O error-logging capability is provided. Whenever an I/O error is indicated by the device
past-handler (by requesting a retry), 10SCU gets space for an error-log record, saves all evanescent I/O status,
and puts the space pointer in 100ERR. Subsequent retries use the same space ogain.

In REQCOM, when the I/o completion is done, IOQERR is checked. If a log was started, the error-log record is
completed and the pointer is stacked for later filing. Also, if on error completion code is indicated and no error
log record had been started, i. e., no retries were done, one is started and treated as above.

This assures that for any I/O request, no more than one error log will be generated. The error log will always in
dicate the status of the last error in a retry sequence.

The error log records relating to I/o errors are as follows:

• SIO Jailure

• Device timeout

• Unexpected interrupt

• Devi ce error

• Secondory record for device sense data

The formats for these error logging records are given in Chapter 4, "Error Logging".

I/O Statistics

Optionally, with error Jogging, I/o statistics are maintained. These may be displayed using the ESUM key-in.

The total number of SiCs issued for each device since system boot is kept in DCTIIO (word). The total number of
VO errors, counted when VO error-log status is collected, for each device since system boot is kept in OCT' ERR
(word).

The number of Log records successfully filed since system boot is kept in GOODLOGS (word). The number of log
records lost, because of space or time overruns, since system boot is kept in LOSTLOGS.

I

33

Side Bufferina

Both input and output lide~ffering are optionally available for certain unit record devices. These allow effective
double-buffered I/O for processors which do not themselves do double buffering.

DCTSDBUF is a word entry for all c.evices which points to a post word followed by a buffer space for each side buf
fered device.

Output Side Buffering

Output side buffering is done for all line printer, card punch ond teletype output except for PRINT and TYPE CALs.
The WRITE CAL woits for previous I/O to complete ond the side buffer to be free. It then copies the users dato into
the side buffer. A request is mode to output the side buffer. The coller is posted with the completion code of the
previous output and 0/1 appropriate posting and end-action done.

' .. ut Side Buffering

Input side buffering is done only for the cord reoder. If the side buffer is free ond 0 'woit' READ CAL is issued, 0

side buffer read is started. Then this or any other READ CAL will wait for the side buffer reod to complete. The
input dato will be copied into the user's buffer and posting/end-action will be done. If the record read is not a
'!' or ':' cord and the read wos 'automatic', not binary, another side buffer reod will be started before returning
to the user.

VirtualljO Bufferina

When service calls are initiated in mopped tasks that involveI/O, the monitor subroutines, FMGETRADandFMLOCK
convert the virtual buffer address to a real buffer address by performing one of the following functions as defined by
the data area attached to the I/O ECB:

• Obtain a side buffer in CP-RTSPACE for unit record devices (i.e., CR, CP, LP, TY). If the request is a write
operation, the user's dato record is moved to the side buffer in TSPACE and is output from there. If the request
is an input operation, the record is read into the buffer in TSPACE and moved to the user's buffer at the con
clusion of the I/O operation.

• Set page locks if the user's buffer is contained within a single page or within contiguous real poges.

• Build a skeleton lOCO list of real buffer locotions and sizes in CP-R TSPACE if the user's buffer is contained in
two or more noncontiguous real pages, and set the page locks. The size and location of the lOCO list are input
to QUEUE in place of buffer size and locotion.

The FMGETRAD routine obtains and initializes the data area which has one of the following formats:

Format 1

Word 0 101 Length I Data area address I
o 1 78 31

Word 1 I 100 = 1 10--01 BUF

o 78 31

(-

Word 2 10 01
0 31

Word 3 10 o I
0 31

where

Word 0 contains the size and word addre. of the CP-R TSPACE obtained for the I/O request.

Word 1 100 = 1 means that the I/O buffer is located in the TSPACE pointed to from word 0 and the I/O
request is a WRITE. The user's data record is moved to the buffer in TSPACE before the QUEUE subroutine
is called.

aUF is the byte addre. of the I/O buffer in TSPACE.

Words 2 and 3 are not used.

Format 2
~I

Word 0 10 1 Length I
o 1 78

Data area address I
31

Word 1 I 100 =2): 1~116 aUF I
0 31

Word 2 10 1~116 uaUF
1

0 31

Word 3 10--------------------01
o 31

where

Word 0 contains the size and word address of the CP-R TSPACE obtained for the I/O request.

Word 1 100 = 2 means that the I/O is a READ request and the data record is to be read into a buffer in the
TSPACE pointed to from word O. The data record is moved to the user's virtual buffer address at CHECK time.

aUF is the real byte addre. of the buffer in TSPACE that will be used for the READ request.

Word 2

Word 3

Format 3

UBUF is the virtual byte address of the I/O buffer supplied by the user in the FPT or DCB.
4t-

is not used.

Word 0 10-------------------01
o 31

35

36

Word 1 I 100=3)8 k (1<k<33) I
0 31

I~IO Word 2 :1 PK I
o 1 31

Word n I P2 I P1 I
~O-------------------1~5~1~6----------------~31

where

Word 0 is not used.

Word 1 10D = 3 means that the I/O request will use the specified number (K) of real pages tha. 'Contain the
user's buffer.

Words 2 through n INP = 0 if the real Pages (Pi) have been locked; 1 if the pages have not been locked. Pi
are the real pages that contain the user's I/O buffer.

Format '"

Word 0
1
0

1
Length)8 Data area address I

0 31

Word 1 I 10D = 4)8 k (1<1«33) I
0 31

Word 2 1~lo .:1.6
PK I o 1 31

Word n I P2 I P1 I
~0----------------~1~5~1~6----------------~3~1

where

Word 0 is a pointer to the data area in TSPACE that contains the lOCO list.

Word 1 100 = '" means that the I/O request will use the specified number (K) of real pages that contain the
user's buffer and Word 0 contains a painter to the data area in TSPACE that contains the lOCO list. Note
that 100 = '" means that the buffer is in noncontiguous real pages.

Words 2 through n are as shawn in Fonnat 3.

(

Two forms of IOEX are IUpported by the IOCS.

Queued IOEX

Queued IOEX allows IOEX requests to be added to the queues just as any other request. They will be performed
like any other request, but will not invoke either the pre- or post-device handler. Both queued IOEX requests and
normal requests may be made on a device at the same time.

Dedicated IOEX

Dedicated IOEX requires that all I/O management for the channel must be done by the user himself. Thedevice must
be dedicated either at SYSGEN or by a STOPIO call to lOEX, and no normal (queued) requests will be honored while
it is dedicated.

Disk Pack Track-by-Track Lo&ic
.'

All disk pack requests are initially attempted unchanged. If returning status indicates that either a cylinder crossing
or a flawed track was encountered, the operation is retried with the data transfer broken into operations not larger
than one track. Flawed tracks then encountered will be processed using the alternate track address in the header.
This requires that packs be properly initialized with valid alternates in the headers.

The track-by-track parsing is wholly contained in the disk handler and uses only the original IOQ entry. No I/O
time or execution time overhead is used if flawed tracks and cylinder crossings are avoided.

Disk Pack Seek Separation

For all disk-pack operations, a separate seek order is issued without a data transfer. This takes advantage of two
hardware features available on all disk packs. First, such seek operations do nat tie up the chamel and all disk packs
may be seeking and therefore arm-moving at the same time. Second, the disk pack interrupts only when its arm
motion is complete and when it is rotationally positioned in the sector previous to the indicated seek address.

This allows both arm-motion time as we" as rotational-latency time to be averlapped with data transfers when disk
pack I/O traffic gets high.

Disk Pack Arm-Position Queue Optimization

Optionally, an arm-positioning optimizer is used to minimize arm positioning time on all disk packs. No rotational
position optimization is intended or performed except that achieved on a multi pack controller by virtue of multiseek
operations which interrupt at a minimum rotational latency time.

The optimizing algorithm is intended to minimize disk arm-movement time by ordering disk-I/C>-queue requests by
arm position. No account is taken of request priority or order of time of request. The only guarantee is that two or
more requests with the same seek address will be run in FIFO order.

The algorithm is as follows: At the end of any disk I/O operation, the current seek address Is noted. The disk I/O
queue is searched, in priority order, for the request which has the closest seek address in a forward 4Jirection.
Requests which have seek addresses before the current pasition have their seek address biased so as to be forward,
beyond any normal forward position. A queue entry with the sane seek address is considered to be the farthest-away
seek address. This guarantees that all requests wi" be eventually reached.

The result of this algorithm is to guarantee service to all requests. The arm motion tends to sweep from low to high
arm pasition and then snap bock to a low position. The algorithm offers up to 25% improvement in the time required
to service short, random seek requests.

38

This snap-back or cyclic Meeping was chosen over an 'elevator' algorithm; i. e., two-way sweep, to minimize·
wait-time dispeBion.

The code required for implementation of this algorithm is wholly contained in one piece at the logical end of 'the disk
post-hardier. It is 38 words long and is conditional on the assembly switch 'OISQING.

Disk AnlUlar-Position Queue Optimization

Optionally, an angular-position queue optimizer is used to select the "best" disk-I/C>-queue entry to run. This is
done to minimize rotational latency time without precluding priority queuing considerations.

At the end of any disk VO option, the current rotational position is computed from the I/O start seek address and
the byte count transferred. A toleronce is allowed for I/O-interrupt processing time, on the order of 1 ms.

The disk I/O queue is searched, in priority order, to determine if any lower priority request can be run entirely
(including interrupt processing time) ahead of the normally selected high-priority request. As each one is found,
it becomes the selected high-priority request. When the end of the queue is reached or when a request is elected
which starts in the next available rotational position, VO system flags are set to cause that request to be the next
one started. This algorithm offers up to a 50% improvement in the time required to service many short, random seek,

" requests.

The code required for implementation of this algorithm is wholly contained in one piece at the logical end of the disk
post-handler. It is 73 words long and is conditional on the assembly switch 'RADQING.

Deferred SID

In a dual-redundant multi-processor system, where a pool of devices (i. e., disk packs or magnetic tape units), are
shared, the I/O system allows limited concurrent use of these devices. If both processors try to use the same device,
one will receive busy status from the device and the other will obtain use of the device. The I/O system, upon re
ceiving the busy status, defers the SIO attempt for 5 seconds and then tries Q9ain.

In certain cases, such as an interruption between a seek and a read or write on a disk pock, recoverable errors maybe
reported by the hardware. The user of the deferred SIO capabil ity should allow a reason ab I e number of retry attempts
on his I/O requests.

LOlical Devices

Provision is made in SYSGEN to include logical devices. These are pseudo-devices which form a logical connection
between Read and Write or Write File Mark I/O requests. They are SYSGENed as if they were real devices (includ
.ing fictitious device addresses), and may be used like any other I/O device.

Read and Write requests are entered into the I/O queue normally. When the logical device finds a match between a
Read and a Write request, the data transfer is made directly from the write buffer to the read buffer. Requests are
handled on a first in, first out basis within priority and otherwise in order by priority. Actual record sizes are posted
as usual. Write File Mark requests result in an EOF TYe and abnormal code being posted for the Read request.

logical devices supply the capability of communicating between tasks via normal Read/Write services. It also pro
vides the capability of intercepting or monitoring a data stream.

The user should be aware that I/O buffeB are locked in main memory during any I/O operation, and that where very
large buffers or very many outstanding I/O requests are used, this may result in a deadlock. This is particularly true
of logical device requests which must be satisfied by another I/O request and not by independent action by a per
ipheral. Similarly, I/O queue entries may be tied up and result in a deadlock condition.

Logical device requests are not subject to I/O timeouts. The user must supply a time interval parameter on the service
request (P13). This will cancel the request after the specified time period and post an FPT error code of X'67'.

(-

Us. I/O S.-vices
GPEII This function opens a DCB that results In opening a disk file when the DCB is assigned to a disk file. If
the &ror and/or Abnormal address is given in the function co II, the addresses a re set in the DC 8 •

Opening a disk file involves constructing an RFT (RAD File Table) entry for the file. If the file is a permanent file,
the area file directory is searched to locate the parameters that describe the file. These parameters are formatted
and entered into the RFT. If the "file" is on entire area, the parameters used 10 construct the RFT entry are taken
from the Master Dictionary. If the file is a background temporary file, the RFT entry must already have been con
structed by the JCP. If the file is on a disk pack and a OED DPndd, R key-in is in effect, an abnormal code (X'2F')
Is posted in the DC8.

Blocking buffers or user-provided buffers are used for the directory search. Background requests use background buf
fers; foreground requests use foreground buffers.

CLOSE This function closes a DCB that may result in the closing of a disk file. Closing a permanent disk file
involves updating the file directory if any of the directory parameters have been changed by accessing the file.
Among such parameters that may change are file size (adding records to the file), record size (by Device File Mode
call), etc.

If the file is extensible, all extents numerically higher than the one currently positioned in are delet~.

Disk files are closed only when (1) the DCB being closed is the last open DCB assigned to the file and (2) no opera
tional labels are assigned to the file. Blocking buffers or user-provided buffers are used for the directory update as
in the case of OPEN. If the file being closed is on a disk pack, a OED DPndd,R key-in is in effect, and this is the
last open file on device ndd, the messqJe I I DPndd IDLE will be output.

IEAD/IRITE A READ or WRITE function call will cause the addressed DCB to be opened if it is closed. READ/
WRITE checks for legitimacy of the request by detennining whether or not the following conditions are present:

1. For type 1 requests, the DCB is not busy with another type 1 request.

2. The assigned device or op label exists.

3. The user buffer lies in a legitimate region of core memory.

4. The type of operation (input or output) is legitimate on the device (e.g., output to the card reader is not
allowed.

For device I/O, READ/WRITE builds a partial QUEUE calling sequence and calls a device routine that perfonns
device-dependent testing such as:

1. Mode flag in DCB (BIN,AUTO) for devices that recognize it.

2. Testing byte count qJainst physical record size for fixed-record-Iength devices.

3. Testing for PACK bit in DCB for 7T magnetic tape.

4. Testing for VFC for line printer or keyboard/printer.

The device routines set up the proper function code in the QUEUE calling sequence and transfer control to a routine
called GETNRT. GETNRT completes the QUEUE call ing sequence by obtaining the number of retries, setting up the
user's end-action and building an ECB. GETNRT then calls QUEUE. When the request has been queued, control is
transferred to the TESTWAIT routine which checks the wait indicator for the request. No-wait requej's transfer to
CALEXIT. Otherwise, requests transfer control to the CHECK logic at FMCKl which waits fOr the I/O 10 complete.

For disk file I/O, READ/WRITE calls the routine labeled RWFILE. RWFILE tests for write protection violation on
write requests, end-of-file on sequential read requests, and end-of-tape on all requests. The different types of re
quests are handled as follows.

Direct Access. The disk seek address is computed from the granule number provided in the FPT, and a QUEUE call
ing sequence is constructed that will queue up the request. Control then transfers to the CHECK logic.

39

Device Access. When the DCB associated with the READ;WRITE co" is assigned directly ta a disk,"'e disk device
routine is entered. The disk device routine computes the disk seek address from "'e sector number provided in the
FPT (Key parameter), obtains the proper func:tion code and completes the queue colling sequence by bran~ing to
GETNRT.

:?ruential Access (Unblocked). The disk seek address is computed from the file position parmneters and a QUEUE
co I is made. Control "'en transfers to the CHECK logic.

Sequential Access (Blocked). The next record is moved from/to the blocking buffer ond blocks are read/written as
required to allow the record transfer. For example, the first read request results in the first block being read and
the first record in the block being deblocked into the user buffer. Successive read requests will not require actual
input from the disk until all records in the blocking buffer have been reacl. The blocks are always 256 words long
and contain an integral number of fixed length records; that is, no record crosses a block boundary.

Sequential Access (Compressed Files). Compressed files are treated in a manner similar to blocked files with the
following exceptions:

1. The records are compressed/decompressed on the way to/from the blocking buffer.

2. The buffer does not contain a fixed number of records since the records are no longer of fixeq length after
compression. However, no compressed record crosses a block boundary. I

To compress a record, the following EBCDIC codes are used:

X'FA' End-of-Block code

X'FB' End-of-Record code

X'FC' Blank Flag code

X'FD' Control character code

All occurrences of two or more successive blank codes (X'40') are replaced by a Blank Flag code (X'FC') followed
by a byte containing the length of the blank string. An End-of-Record code follows eoch record, and an End-of
Block code appears after the last record in a block.

The control character code (X'FD') allows a record to be compressed and decompressed without restrictions on the
individual characters within the record. In"'e blocking routine, when a data character is detected which is a con
trol character (i.e., X'FA', X'FB', X'FC', X'FD'), the data charac:ter Is preceded by on X'FD' character. True
control characters are not preceded by an X'FD' character. The deblocking routine removes X'FD' characters from
the data record.

When compressing records into the blocking buffer, a length of the compressed record is first computed and a test
performed to determine whether the record will fit in the block. If so, it is placed in the buffer. If not, an End
of-Block code is written in the buffer and the buffer is written to the file.

If the disk file is extensible, special handling is done as follows:

Sequential Access Write. The write routines for unblocked, blocked and compressed format files autamaticall y allo
cate an extension fde When an end-of-file condition is detected. The appropriate RFT entries are updoted to reflect
any characteristics which may be different from those of "'e previous extent and then the write continues using the
new file extent.

'" Due to repositioning a file, it is possible to detect an end-oF-file on an extentand find that the nexr\xtent already
exists. When this happens, the procedure is the same as outlined above except that the previously allocated extent
is used.

Sequential Access Read. When an EOD is detected in the READ routines for unblocked, blocked and compressed
format files, the file directory is searched for the next extent in sequence. When it is found the RFT is updated to
reflect any characteristics which may be different from those of the previous extent and the READ continues using
the new extent.

(

Direct Acc .. Write. Direct acceu fll. caIfomatically .xNnd ca _crlbed for sequential accas files. In addition,
writing records which are larger thm one grmule is permitted. In order to accomplish this, the direct access write
routine can

• A1locote one extent large enough for the record if the file was originallyallotted without the "fix" option.

• Allocote two or more extents if the record will not fit in one extent and the file was originally allotted
with the "fix" option specified. The record will be written in two or more sections if it is too large to be
contained within a single extent. If the request is with no-wait, only the last portion of the record will be
written without wait. Extents between the first and last extent will appear to have been written even if
they have not been in order to simulate the characteristics of nonextensible files.

Direct Access Read. Automatic switching to the next extent will occur for direct access files as described for se
quential access files. ., addition, the direct access reod routine can read more than one granule even if the record
crosses two or more extents. This is accomplished by breaking up the read into sections where each section is equal
to or smaller than the extent size. If the READ request is with no-wait, only the last section is reod without wait.

At the conclusion of the file access, the status is posted in the user DCB or FPT and control is transferred to the
CHECK logic.

I

I

PRINT This function builds the QUEUE calling sequence to perform the output on LL. After calling QUEUE, the
routine either waits for completion, if wait was requested in the system call, or returns control to the user.

TYPE This function builds the QUEUE colling sequence by using code contained in the PRINT function. As in
PRINT, a wait or return is performed as requested by the user.

DFM This function sets the MOO and PACK indicator in the addressed DCB to values given in the system call.
If the DCB is assigned to a disk file, the record size (RFT5), the organization (RFT7), and/or the granule size (RFT4)
are set if requested by the user. The corresponding porameters on the file directory ore updated when the file is
closed.

DVF This function sets the DVF bit in the oddressed DCB to the value (0 or 1) specified by the user.

DRC This function sets the DRC bit in the addressed DCB to the value (0 or 1) specified by the user.

DEVICE (Set Device/File/Oplb Index.) This function assigns a DCB to the specified device ar file. The assign-
ment is accomplished by setting one or more of the following parameters in the addressed DCB: ASN, DEVF, TYPE,
DEY /OPLB/RFILE, or disk fi Ie name.

DEVICE (Get Device/File/Oplb Name.) This function returns requested informotion regarding the assignment
of a DCB. The information is in EBCDIC form. The request is fulfilled when it is consistent with the actual assign
ment of the DCB. Otherwise, a word, or words, of zero wi II be substituted for the EBCDIC informotion.

COR RES This function determines if the two specified DCBs have corresponding assignments. If the assignments
are the same, upon return to the user, register 8 will contain a value of 1. Otherwise, register 8 will contain a
value of O.

REWIND This function rewinds magnetic tapes and disk files. No action is taken if the addressed OCB is as-..-
signed to any other type of device.

Magnetic: tapes are rewound by building a QUEUE calling sequence with the Rewind function code and calling
QUEUE.

Disk files are rewound by zeroing the file position (RFTll), current record number (RFT12), blocking buffer position
(RFT10), and blocking buffer control word address (RFT17) and using job (RFT14) parameters. Extensible files are
positioned at the first record of extent O.

41

42

WEOF This f~ion writes an -end-of-file- on paper tape punch, card punch, magnetic tape, and disk files. -
A request addressing a DeB assigned to 101M other type of device results in no action. '

An "end-of-file" is written on paper tape by calling QUEUE with a request to write an EBCDIC 'I EOD' rec~d.

An "end-of-file" is written on a card by calling QUEUE with a request to write an EBCDIC 'IEOD' record.

An "end-of-file" is written on magnetic tape by calling QUEUE with a request to write a tape mark.

An "end-of-file" on a disk file is "written" by copying the current record number minus 1 (RfT12) to the file size
(RfT6) and setting an indicator so that the file directory will be updated when the file is closed.

PREC This function positions magnetic tapes and disk files by moving some specified number of records either
backward or forward. It does not affect other devices. Positioning is performed as follows:

1.

2.

3.

4.

A magnetic tape QUEUE call is constructed that specifies through the function code the direction of the
motion, and through the "seek-address" parameter the number of records to move. The basic 1/0 system
then moves the tape.

"
The new position within the file of an unblocked disk file is computed as a function of the record size and
the sector size. File position (RfTll) and current record number (RFT12) parometers are set to indicate
the new position.

The new position of a blocked disk file is computed as a function of the current record number, record size,
block size, current blocking buffer position, current file position, and disk sector size. The blocking buf
fer position (RFT10), file position (RfT11), and current record number (RfTl2) are set to indicate the new
position.

The new current record number of a compressed disk file is computed and subroutine PCFIL is called. This
subroutine positions a compressed disk file at the specified record by counting records from the beginning
of the file until the desired position is found. PCFIL sets the blocking buffer position (RFTlO), file position
(RFTll), and current record number (RfT12) parameters to indicate the new position.

PFILE This function positions magnetic tape and disk files at the beginning or end of files. It does not affect
other devices. Positioning is performed as follows:

Magnetic Tape. A QUEUE call is constructed with function code to "space file" either backwards or forwards. This
results in the tape being positioned past the tope mark in the specified direction. If a skip was not requested, the
tope is positioned on the other side (near side) of the tape mark through a QUEUE call for a position one record
opposite in direction to the space file.

Disk File Backward. A rewind is done (see description for REWIND).

Disk File Forword.

Unblocked Disk File. Current file position is computed as a function of the file size, the record size, and the
disk sector size. The current file pasition (RFTll) ond the current record number(RFT12) are set to indicate the
new position.

Blocked Disk File. Current file position (RFTll) ond the Blocking Buffer Position (RFT10) are computed as a
function of the file size, record size, block size, and disk sector size. These parameters end the current record
number (RFT12) are set to indicate the new position. "" •

Compressed Disk File. Subroutine PCFIL is called with file size plus one as the record number. This subroutine
positions the file at the start of the specified record.

Extensible disk files are positioned as described above within the last extent.

(-

ALLOT This function .fines a file in a perman ... t dille area. The input parameters are used 10 form a new file
directory .. try.

The directory of the specified area is searched to insure that the file is not a duplicate. If it is not a duplicate, it
is allotted as a new file. The logical flow of the allot algorithm is shown in Figure 17. In general, new files are
allocated the next free space in the area if there is room for the entry in the last directory secler. When the last
directory sector is filled, deleted file space is reused, if possible, before a new directory sector is created.

When a deleted entry is reused, the entry having the smallest size large «1OUgh for the new file is used. Disk space
is lost if the deleted file containd more space than the new entry requires. This space and the space held by other
deleted files can be reclaimed by executing a RADEDIT :SQUEEZE command.

The number of sectors to allocate for a file is calculated using the formulas

c= (F~;E + r) * (2~ + r)

B= ((FSIZE/ 256) +) * .ill.. RSIZE r 5
j

U= «RSIZE/s)+r)*FSIZE

where

= 1 if remainder I 0, and 0 if remainder = O.

s equal disk sector size in words.

DELETE This function deletes a file in the specified permanent disk area. The input file name is used to search
the file directory for the entry to be deleted. When the entry has been located, the first two words of the file
directory entry are zeroed out. The BOT and EOT remain unaltered. If the file is extensible each extent is deleted
as described above starting with the last extent and proceeding to the first extent (extent 0). The space formerly
allocated by the entry becomes unused until either a RADEDIT :SQUEEZE command is executed, or an ALLOT com
mand or call is executed with insufficient space at the end of the specified area. Space is then allocated by using a
deleted entry.

TRUIICATE This function uses the specified area and file name to search the file directory for the entry to be
truncated. The actual size of the file is calculated and the EOT of the file directory entry is updated accordingly.

The actual file size for blocked and unblocked files is determined by using the FSIZE and RSIZE of an entry; for com
pressed files, an RFT entry (RFTll) containing the current record number is used. The space formerly allocated be
tween the EOT of an entry and the BOT of the next entry becomes lostond is not available until aRADEDIT :SQUEEZE
command is executed.

If the file is extensible, the last extent is determined by a directory search and when located, it is truncated as
described for nonextensible files.

START

no

Error X'72'

RETURN

Allocate file:
BOT-first free sector;
EOT ~ BOT plus number
of sectors required; first
free sector - EOT + 1 •

no

yes

Figure 17. logical Flow of ALLOT

Use deleted entry:

BOT-old BOT
EOT - number of sectors
re uired

RETURN OK

Create a new empty
di rectory sector at fj rst
free sector. Increment
first free sector.

Mark old last directory
sector as linked to new
sector

no

f

4. ERROR LOGGING

The detection of a system, device, or software error will cause CP-R to acquire information about the error, generate
a log record, POlt the log record, and perform lOme form of recovery. Upon finding a stacked error-log record
pointer, the Control Task will call the LOG overlay to file the log.

The LOG overlay unstacks the log record and writes it to the ER oplabel in 16-word records. Normally, the ER op
label should be directed to a file in the SP area named ERRFILE with a record size of 16 words and blocked format.
However, the ER oplabe! can also be directed to a card or tape device.

It should be noted that if ERRFILE does exist in the SP area, the ER oplabel will be connected to if by default at sys
tem boot time.

Error LOR Record Formats

The fol lowing error logs can be generated by CP-R:

~ Code

11 SIO Failure 22

12 Device TImeout 23

13 Unexpected Interrupt 27

15 Device &ror 28

16 Secondary Record for Device Sense Data 30

17 Hardware &ror 31

18 System Startup 32

19 Watchdog Timer 41

10 Instruction Exception 42

21 Configuration Record 43

The formats for these error log records are given below consecutively:

SIO FAILURE

X'11' Count =6 Model "limber

Milliseconds Since Midnight

SIO Status

MFI if
2: 6 or 2:7

Subchannel
Status

510
CC

TOY Status

I/O Address

TOY
CC

TOY Current
Command DA

Bytes Remaining

The I/O sequence is 510, TOY.

1

System Identification

TIme Stamp

Operator Message

I/o Acti vi ty Count

PFI Primary Record

MFI Primary Record

Processor Pol J Record

550 Processor Configuration

550 Me~ry Parity Secondary Record

Memory Poll Record

The SIO failure is emitted when the
following SIO CC are returned:

DCTMODX

DCT21,DCTI

-, DCT19, DCT20

DCT13

I

010x
l00x
11 Ox

~

DEVICE TIMEOUT

X'12' Count = D Model Number

Milliseconds Since Midnight

HIO Status

HIO
CC

TOY Status

I/O Address

TOY
CC

TOY Current
Command DA

TlO
CC

Bytes Remaining

Ca.-rent Command Doubleword

TIO Status
Retry Retries
Request Remaining

I/O Count

Seek Address

UNEXPECTED INTERRUPT

X'13' Count = ..
Model Number
(0 if unknown)

Mi"iseconds Since Midnight

AIO Status I/O Address

DCTMODX

DCT12

-, DCT19, DCT20, DCT20A

I Dcrl3

DCT21, 10010, 10011

DCT25

IOQ12

DCTMODX

DCT12

-, DCT19, -, -

.....

-I

-)

DEVICE ERROR

X'15' Model Number

Milliseconds Since Midnight

AIO Status I/O Address

AIO TDV TlO
CC CC CC

TDV Current
Status Command DA

TDV Status Bytes Remaining

Current Command Do~leword

no Status
Retry Retries
Request Remaining

I/O Count

(-

Seek Address

SECONDARY RECORD FOR DEVICE SENSE DATA

X'16' Count as I/O Address
Needed

Milliseconds Since Midnight

Sense
(Up ta 16 bytes)

1

DCTMODX

DCT12

-, DCT19, DCT20, DCT20A

DCT13

DCT21, 10010, 10011

DCT25

IOQ12

Note: The I/O address links the
-- secondary record to tne cor

responding device error entry.

HARDWARE E RRO R

o

WATCHDOG TIMER

o

Milliseconds Since Midnight

Code

Milliseconds Since Midnight

PSD Word 1

PSD Word 2

o (reserved)

o (reserved)

Real Address of Trapped ~struction

Trapped Instruction

Code

Milliseconds Since Midnight

PSD Word 1

PSD Word 2

o (reserved)

o (reserved)

Real Address of Trapped ~struction

Trapped Instruction

Generated by trap 4C.

, ~I

Generated by Trap 46.

(

INSTRUCTION EXCEPTION

o

Code

Milliseconds Since Midnight

PSO Word 1

PSO Word 2

o (reserved)

o (reserved)

31

Trap CC

Real Address of Trapped Instruction

Trapped Instruction

CONFIGURATION RECORD

X'21'

Milliseconds Since Midnight

Model Number OCT Index

Alternate VO Address Primary VO Address

SYSTEM IDENTIFICATION

X'22' Count=5
Core Size in Relative
8K Word Time
Blocks Resolution

Mi II iseconds Since Midn ight

System Version Flags

Site Identification

Generated by Trap 4D

Entered at system STARTUP

One pair of words per device in OCT
order; multiple records may occur
(maximum five devices per record).

Recorded at system STARTUP

Relative Time Resolution is expressed
as a value of n such that actual rela
tive time resolution = 2'" msec. The
value of n for the most likely resolu
tions are

n = 0 when the timing SpaCMS
supplied by a frequen~y ~ 1 KHZ

n = 1 SOO HZ

n =.. 60 HZ

For CP-R, n = 1.

49

50

System, Version, Flags

The format of system, version, flags and site identification Is operating system specific. For the CP-R system, '~ersion
and flags are formatted at location ><'2B'.

o 34 78 1516 31

2B V ion I Parameten

Location 28 contains three items:

1. Monitor - This field contains the code number of the monitor. The codes are as follows:

Monitor

o None or indeterminate

BCM

2 R8M

3 RBM-2

4 BPM

5 BTM/8PM

6 UTS

7 CP-V

8 CP-R

9-F Reserved for future use

2. Version - This is the version code of the monitor and is coded to correspond to the common designation for
versions. The a I phabeti c count of the version designation is the high-order part of the code and the version
number is the low-order part. For example, AOO is coded X'10' and 002 is coded X'42'.

3. Parameters - The bits in this field are used to indicate suboptions of the monitor.

Bit Meaning if Set

31 Symbiont routines included.

29 Real-time routines included.

28 Unused.

'Xl Reserved.

26 Reserved •

24-25 Field defining CPU.

Bit 24 Bit 25 Meaning

0 1 Sigma 5-7

1 0 Sigma 9

Xerox 550

(

\-

TIME STAMP

X'23'

Milliseconds Since Midnight

Year - 1900 Julian Day

OPERA TOR MESSAGE

X'27'

TEXTC
Count

VO ACTIVITY COUNT

28

Mi II iseconds Since Midnight

TEXTC Meaage

Max 'Size = 56 characters (CP-R)

Count as
needed

Relative Time

VO Count1

This recard ent_ed once each haur on the
hour.

Binary integers

A facility is provided to injltCt messages
from the computer operator ·(or diagnostic
program) into the error log. The operator
may enter these messages from the operator
console via the ERRSEND key-in.

Recorded once per hour and at recovery.
Maximum of S entries per record. Counts
are reset to zero at Boot.

Sl

52

PEl PRIMARY RECORD

)('30'

Mi II iseconds Since Midnight

MFI PRIMARY RECORD

X'31'

Milliseconds Since Midnight

PROCESSOR POll RECORD

X'32'

Milliseconds Since Midnight

Poll Status

012 7811121516

550 PROCESSOR CONFIGURATION

4)

Relative Time

POLR Results

One entry for each unit in
the cluster (maximum 8).

550 MEMORY PARITY SECON DARY RECORD

42 Count = 4

Relative Time

Memory Status Word 0

Memory Status Word)

One record produced per nonzero po II
status received.

One record per cluster defined in SYSGEN.

Cl = cluster #
UN = unit #
TYPE = unit type

Type Code

)

2
3
4
7

Unit Name

CPU
MI
PI
MIOP
SU

- j

- I

MEMORY POLL RECORD

X'43'

Milliseconds Since Midnight

Memory Status W~ 0

Memory Status W~d 1

Memory Status W~d 2

(-

53

5. JOB CONTROL PROCESSOR

Overview
The Job Control Processor (JCP) is assembled as a Relocatable Object Module (ROM) and is loaded at SYSGEN time
by the SYSLOAD phase of SYSGEN. The JCP is absolutized to execute at the start of background and is loaded
into the JCP file on the disk. The JCP is loaded from disk for execution by the Baekground Loader upon the initial
"C" key-in; and thereafter, is loaded following the termination of execution of eaeh proeessor or user program in
background memory.

The JCP exeeutes with special privileges sinee it runs in Moster Mode with a skeleton key. Moster Mode rather than
Slave Mode is essential to the JCP since, at appropriate times, it executes a Write Direct instruetion to trigger the
CP-R Control Task. A skeleton key instead of the backgroUnd key is also essential to the JCP since it sets flogs for
itself and the Monitor in the resident Monitor portion of memory. Bit zero of system cell K:JCPl is set to 1 to inform
the Monitor that the JCP is executing.

The JCP controls the exeeution of background jobs by reading and interpreting control commands. All cards read
from the "C" deviee that eontoin an exclamation mark in eolumn one (exeept for on IEOD command),09re defined
as JCP eontrol commands. The VO portion of the Monitor will not allow any baekground program exeept the JCP
to read a JCP eontrol eommand. The JCP runs until a eommand is read that requires the exeeution of a proeessor
or user program, or until a IFIN eommand is encountered.

The JCP presently requires a minimum of about 4K of eore to execute, which means that the smallest possible core
space allocated to the background must be at least 4K.

The flowchart illustrated in Figures 18-21 depict the overall flow of the JCP, and Figures 22 through 39 illustrate
the JCP commands. The labels used in the flowcharts correspond to the labels in the program listing.

ASSIGN Command Processin&

The IASSIGN commands are read from the "C" deviee by the JCP, and are primarily used to define or ehange the
VO deviees used by a program. The (ASSIGN command can also be used to change parameters in a DCB. Sinee
all IASSIGN commands must be input prior to the RUN or Nome eommand (where Name is the name of a processor
or user program file in the SP area) to which they apply, the information from eaeh IASSIGN command is saved in
eore by the JCP. The JCP builds on ASSIGN table eontaining the information from each IASSIGN command. This
table consists of ten words for each IASSIGN, plus one word specifying the number of ten_ord entries. The table
remains in a job-reserved page and is passed to the Background Loader. After the Background Loader initiates the
program, it makes the appropriate changes to the program's DCBs from the information in the ASSIGN table. The
ASSIGN table can then be destroyed as the program executes; therefore, IASSIGN eommands take effect only for a
job step and not on entire job. The ASSIGN table has the format shown in Table 1.

_ ._~ -~-'. -. _-. --: :. -r- _ - ..

Get Master mode,
unprotected.

Set prompt for type
writer input.

no

Get a job-reserved
i'IIIy e_s ______ ~page. Initialize for

ASSIGN table and
Control Command
buffer.

Purge all BT files
hich are not SAVE

no

Figure18. Initialize JCP

yes

Output message:
SCHING FOR JOB
COMND.

55

56

Read C without wait.

Check the C Read
withaut wait.

no

busy _0
_!e.!~~~

Treat as processor
L-___ ~~ name.

'"-------'

Figure 19. Read and Process JCP Commands

, .,

r

(-

2-second SlIM ER
without wait.

WAITANY.

no

Delete SllMER
request.

Figure 20. Wait for JCP Command

request.

57

58

no

Select error message

yes

Identify error to op
erator then WAIT

no

Log current command

Set flag: skip to
next job

tput message:
SCHING FOR JOB 1--...,
COMMl\ND

Figure 21. ProceS5 JCP Command Errors

(

Set default account
user name, priority.

Get specified
accaunt, user
name. priori ty •

Get default job
number.

Initialize flags,
pointers, and GO
and OV sizes.

Purge all X: files.

yes

yes

Figure 22. JOB Command Flow

Initialize ALLOBT
control tables.

Select error message

59

60

Wait for unfinished
services

Log FIN command

Finalize flags

Release job-reserved
page used for
ASSIGN table and
control command
buffer

Figure 23. FIN Command Flow

- I

-)

(-

no

Get I/O medium
specification

Save I/O medium
spec i ficat ion

Pack next ASSIGN
table entry. Update
ASSIGN table size
and address

log warning message

lOve value

Figure 24. ASSIGN Command Flow

, - ,

61

62

Format and pri nt
accounting log
on LO device.

e l Enter here when
E 1 0 f----~.~I EOF returned from

Accounting Log
If purge option,
purge AL file by
rewioding ALand
write an EOF.

Exit from DAL command

Figure 25. DAL Command Flow

Exit from ATIEND command

Figure 26. ATIEND Command Flow

Set flag not to
wait after mes
sage is output.

Output message
on "OC" devi ceo

Figure 27. MESSAGE Command Flow

-,

~\

Set flag to wait
after message
is output.

Figure 28. PAUSE Command Flow

Set "C" op label
to previous
assignment.

Clear flag that
TV key-in was
active.

Figure 29. CC Command Flow

Figure 30. UMIT Command Flow

63

· .

no

SCAN

Get op labe I to
change assignment.

Get new assignment
for op labe I •

Set new assignment
for op labe I •

yes, exit

Figure 31. STDLB Command Flow

public li!lrary

Rescan fi Ie name. Set area
to system processor alter
nate area. Set account to
system. Assign DCB to
load module.

Save file name in alarm
messages.

Do READ CAL to read in
fi Ie header of program
to execute.

Output "file nonexist lJ

alarm and take error exit

secondary

Go through tables set by
ALLOBT command and
set up all Bckg. Temp
Files input on ALLOBT.

primary

Figure 32. NAME Command Flow

.I

Error if no "FGIJ key-in.
Error if program in BT area
and not on OV file.

65

66

Go to NeO S8R to
do special check
and allocation for
AP.

yes

Setupall8ckg. Temp
Fi 181 that get defaul t
allocation.

and area for
8ckg. loader

Output
"8T OVERFLOW"
alarm.

e error exit

Figure 32. NAME Command Flow (cant.)

Do RUN CAL so
foreground program
wi II be loaded and
started.

Inspect stotus posted
and output an alarm
if appropriate.

Set default priority

Figure 33. RUN Command Flow

Figure 34. ROV Command Flow

Figure 35. INIT, SJOB, or BATCH Command Flow

Get priority and/or
DEBUG if specified

67

68

Scan command and
save all parClTleters
in temporary cells.

If fonnat not input by
user, set to un
blocked. If GO
fi Ie, set to blocked.

If fi Ie size not in
put, set default to
1000 records.

Calculate number
sectors needed for
fi I e based on for
mat of file.

Save info. aboutfjle
in penn. JCP tables
(CFORM, RSIZE,
GSIZE, SAVE).

Figure 36. AllOST Command Flow

(-

Set up cells to dump
in K:PMD for Post
mortem Dump
routine.

Figure 37. PMD Command Flow

Do proper CA l
to position device
to proper place.

Figure 38. PFIL, PREC, SF1l, REWIND, and UNLOAD Command Flows

to wri te proper num
ber of EOFs.

Figure 39. WEOF Command Flow

69

70

.- . Table 1. ASSIGN Table Description

Word Description -

0 Contains number of entries in table. Must fallon an odd virtual address. Is pointed
at by K:ASSIGN.

lOn+1 thru Entry number n, described in more detail below.
lOn+10

lOn+1, 10n+2 EBCDIC name of DCB associated with entry n.

lOn+3 Flags con troll ing I/O medium name representation. Bit 1 is set for an oplabel name,
right~1 igned in word lOn+4. Bit 2 is set for a device name left~ligned in words
lOn+4, lOn+5. Bit 3 is set for a disk area name right~ligned in word lOn+4, and a
file name left~ligned in words 10n+5, lOn+6. If a file name is all blank or all zero,
a whole disk area is indicated. Bit 13 is set for a disk file account name in words
1 On+7, 1 On +8.

lOn+4 thru The EBCDIC name of an 1/0 medium, formatted as indicated by flags in word lOn+3.
1 On +8 ~ '_I

lOn+9, lOn+10 Indicator flags and values for changes to DCB fields other than those identifying the
1/0 medium.

1 On +9 1~1~1~1~1~1~ltl~I~I~16V I~I 7V Il~
lOn+10

I 8V I~~
kC: if reset kV is unused; if set, kV is to be inserted.

1V: value for MOD field

2V: value for ASC field

3V: value for DRC field

4V: value for Dip field

5V: wlue for VFC field

6V: value for BTD field

7V: value for NRT field

8Y: val ue for RSZ field

.leP Loader

The JCP Loader loads Relocatable Object Modules (ROMs) or groups of object modules that use a subset ~ the Xerox
Sigma 5/7 Object Language. Initially, the Loader processes all parameters on the ILOAD command and sets up the
appropriate DCBs and flags. If the program being loaded has overlays, space is reserved for the program's OVLOAD
table at the end of the JCP Loader. The OVLOAD table contains 11 words for each overlay; the first word of
OVLOAD contains the number of entries in the table. The exact format of the OVLOAD table is given in the "CP-R
Table Formats" chapter. Note that words 2 through 10 of the OVLOAD table have the same format as the Read FPT
that is needed to read an overlay into core. Next, the first word addresses of the Symbol table (SYMTl and SYMT2)
are set up. The diagram in Figure 40 depicts the core layout before PASS 1 of the JCP Loacler.

c-

JC P Loader Code

OVLOAD
(Space for OVLOAD Table
if program has overlays)

SYMTJ

t
SYMT2

4

SMTJ

..

K:8ACKBG

j
'K:BCKEND

The JCP Loader uses Simplified Memory Management

Figure..a. Pre-PASS 1 Core Layout

The JCP Loader is a twotxJss loader. In PASS 1, the ROMs are input from the BI op label and copied onto the Xl
file on the disk. The Xl file is set up to use all of the Background Temp area of the disk that is available for scratch
storage. The main function of PASSI is to build the symbol table (SYMTJ and SYMT2) containing all DEF items,
and ta assign a value to each DEF. The symbol table has the following format:

SYMTJ

SYMT2

a doubleword-entry table containing the names, in EBCDIC, of each DEF item in the program being
loaded. The first entry is not used.

a doubleword-entry table. The first word of the table contains the total number of DEFs in the
table. The subsequent entries have the following format:

where bit 8 = 1 if this is a duplicate DEF.

At the end of PASSl, the size of the symbol table is fixed so the remainder of core can be used as a load area in
PASS2. After loading the progrc:.wn root in PASSl, space is allocated for the M:SL DCB (if the program h~overlays),
the DCB table, and the OVLOAD table (if the program has overlays). These items are allocated in the following
order:

Program Root M:SL DCB DCB Table

7 words 3 words/DCB

OVlOAD Table

11 words/overlay

Start of Program
Overlay Area

71

72

The DCB table Is built In an tntetndl table In the JeP loader In PASSl after loading the program root. The DCB"
table is made up of all M: and F: DEFs in the root, including the wlue of each DEF. The complete OVlOAD table
is also built during PASSl; each overlay's entry being made after the overlay is loaded. Hence, PASS 1 completely
allocates all space for the pt'Ogram. ~

After the last ROM is looded at the end of PASS1, the file header is written to the appropriate disk file. The re
mainder of core not used by the Symbol table is then rounded down to an even multiple of disk granules and set up
as the load area for PASS2. There must be enough room to hold at least one disk granule, plus 12 extra words, or
the load will be aborted at this point. The Xl file is then rewound and PASS2 commences. The following diagram
depicts the core setup at the start of PASS2:

JCP Loader Cade OVLOAD SYMTl Load Area for SYMT2

Pass Two
K:BACKBG End of JCP Loader K:BCKEND

PASS2 inputs the ROMs from the Xl file, satisfies all external REFs by finding the value of the corresponding DEF in
the Symbol table, and then writes the fK09ram in core image format to the proper disk file in a multiple of granules
at 0 time. Between 8 and 12 extra words are loaded each time at the end of the load area in cose a define field load
item requires that the load location be backed up a maximum of 8 wards. This prevents having to read a granule
bock into core after it has been written in the event a word has to be chan98d because of a define' field item.

These 12 words are copied from the bottom of the load area to the top of the load area after the granules are
written on the disk. The previous 8 words are therefore always available in core to satisfy a define field item.

After the root has been loaded in PASS2, the M:SL DCB (if appropriate), the DCB table, and the OVlOAD tables
are attached in that order to the end of the root and written on the disk. After all ROMs have been loaded, the
JeP Loader outputs the map if requested, closes all Files, and exits to JCP.

Job Accountina
Job accounting is an option selected at SYSGEN time. An accounting file will be kept on the disk by the JCP if
the accounting option was chosen. The accounting file is named AL, and resides in area 01. It is automatically
alloted by INIT.

Whenever a IJOB or IFIN command is read by the JCP, the JCP will update the AL file for the previous job. The
format and record size of the AL file is automatically set by the XP via a File Made CAL. The JCP defines the AL
file as a blocked File with a record size of 32 bytes. The AL file on the disk consists of a series of eight-word rec
ords, where a new eight-word record is added for each job. The format of each record in the AL file is as
follows:

Word

1,2

3,4,5

6

7

Description

Account number in EBCDIC

Name in EBCDIC

Left halfword = (year - 1900) in binary, Right halfword = date as day of year (1 - 365)

Start time of iob in seconds (0 - 86399)

8 Elapsed time of iob in seconds

Whenever an entry is added to the AL File, the file is opened and a file skip performed so that the new entry can be
mode at the end of the existing entries. No attempt is made to combine entries in any way. The contents of the AL
file can be listed via the IDAL command, (Dump Accounting Log), and the option exists for the user to purge the file
after the dump is completed. The AL file is purged by rewinding it and writing an EOF.

IlcllarD.ad TEIIP Arel AlIDCltll.
The JCP allocates and sets up the files in the Background Temp (BT) area (Xl-X9, GO, OV) before exiting. to the
Background loader to load a processor or user program. The BT files needed by the user are defined either via
tALLOBT commands or through defoult by the JCP from inspection of the user's DCBs. The GO and OV files are
.t up at the start of each job and remain intact for an entire job; the required files Xl through X9 are normally set
up for each job step only.

Information for files Xl-X9 read in from IALLOBT commands is stored in tables (GSIZE, FSIZE, FORM, SAVE,
RSIZE) that are internal to the JCP. If the GO or OV fi Ie is changed via on IALLOBT command, the fi Ie is re
defined at the time the commond is processed.

The files in the BT area ore allocated so that files remaining intact only for that job step ore allocated at the front
onhe BT orea. Files that remain intact for the entire job are allocated at the back of the BT area. Normally, this
means that XI through X9 are allocated at the front of the BT area, and GO and OV at the opposite end. If the
SAVE option is used on an IALLOBT command for an Xi file, the Xi file will be allocated at the opposite end of the
BT area, as will GO and OV. The following diagrams illustrate the BT allocation:

BT allocation without IALLOBT Commands:

OV GO

J
Intact only for a job step Intact for entire job

The proper Xi file is allocated for each M:Xi DCB in the user program. The remainder of the BT orea after GO and
OV have been allocated is evenly divided among the Xi files.

BT allocation with tALLOST Command:

Xl X3 OV GO

J
Intact only for a job step Intact fei entire job

The above diogram illustrates how BT would be allocated if an IALLOBT command was input to save the X3 file.
Note that X3 is allocated at the opposite end of the area with OV and GO.

Allocation of the Xi (1:s i:s 9) files is performed in the following sequence: First, any files input on an ALLOBT com
mand are allocated at the proper end of the ST area. Next any Xi files that were not input on an ALLOST command
are allocated by default in the remaining area. Note that if the "ALL" option is used for file size in the ALLOBT
command, there will be no room remaining for default allocations.

The following example depicts the allocation of BT as previously described:

Example 1:

1. An IALLOST command for Xl file with SAVE option.

2. An IALLOBT command for X2 file.

3. The system was SYSGENed with CST, 6) on the RESERVE command.

In this case, the BT area would be allocated as

X2 X6 X5 X4 X3 Xl OV

• •
Intact only for a job step Intact for entire job

73

7<4

In is emmple, Xl and X2 files would receive sizes Input on IAUOBT COIIIIIICrId, while ><3, X<4~
XS, and X6 files would be evently diltrlbuhlcl over mainlng area.

The JCP does special allocation of e BT a...a for the AP and MACRSYM processors, since e scratchspac~ require
ments of these processors depend on the parameters of their calls and the space is unevenly divided among files
involved. This special allocation is done by e use of nonstandard allocation-control tables whan JCP is invoked to
Nn either the AP or MACRSYM processor in the bockground. Other special allocation tables could be added for
ather processors requiring nonstandard allocations.

l

(

-- ~.--.--~ -- -- - - ':. _ .. -

6. FOREGROUND SERVICES

Foreground services are those service functions restricted to foreground utilization. In general, they are associated
with the control 'of system interrupts, the handling of foreground tasks, and direct VO (lOEX). The following ser
vice functions fall in this category:

RUN/lNIT

RLS/EXTM

MASTER/SLA VE

STOPIO/ST ARTIO

IOEX

TRIGGER

ENABLE/DISABLE

ARM/DISARM

CONNECT/DISCONNECT

In tenns of the functions as part of the resident CPR, the resident function sets indicators for RUN and RLS, and the
Control Task actually performs the function.

Implementation

RUN If an entry for the specified program does not already exist in the LMI table, an entry is built. The LMlsub-
tables are set as follows:

LMIl

LMI2

LMI3

LMI4

Program name

Group code for interrupt to be triggered at conclusion of initialization by Control Task

Group level for said interrupt

Signal address and (optionally) priority

LMI5 Switches

K:FGLD is set nonzero, the Control Task istriggerecl and control is retumed to the user program.

If an entry does exist in the table for the program, a code is placed in the signal address. The codes used are

3

4

Program already loaded

Program waiting to be loaded

If no entry exists for the program and there are no free entries in the LMltable, a cade of 5 is placed in the signal
oddress. Sufficient reentrance testing is performed (for details, see the program listing).

RLS If an LMI entry does not exist for the specified program, contral is retumed to the user.

If an entry exists and the program is not loaded, LMI1 and LMI5 are zeroed, and contral is returned to the user.

If an entry exists and the program is loaded, a flag in LMI5 is set, K:FGLD is set nonzero, the Control Tas! is trig-
gered, and control is retumed to the user (for details of reentrance testing, see the program listing). ...

lASTER/SLAVE The made bit in the PSD saved in the user Temp Stack is set to the proper state and control is re-
tumed to the user. When returning control, CALEXIT executes an LPSD that establishes the proper mode for the user.

STOPlo/snRTIO The specified device is determined and all ather devices associated with it (all other devices
on a multidevice controller or all devices on the lOP if the call so requests) have their proper STOPIO counts in
cremented or decremented. The count is either in DCT14 or DCT15 as specified by the call.

7S

76

,: .;

An HIO is performed on these devices If ,..._ted by the call.

ff a DeT1S count goes to zero as a result of a decrement, the 10EX busy bit in DeTS (bit 7)is reset for the device •

. DEACTIYATEIACTIYATE The specified device is determined, and it and all otI.er devices associated with it
(all other devices on a multidevice controller, or all devices on the lOP if the call so requests) are marked "down" ~)
(Deactivate}or marked operational {Activate}. An HIOis always performed on thesedevices for aOeactivate request.

IDEI For TIO and TOV instructions, the instruction is executed and the status is placed in the copies of R8 and
R9. The condition code field of the saved PSO is placed in the Temp Stack. Then at CALEXIT, these copies are
placed in R8, R9, and the PSD, and returned to the user.

For SIO, the 10EX bit (DCT5, bit 7) is tested. If the 10EX bit is set the SIO is executed and status and condition
cades are returned to the user. If the 10EX bit is not set, the request is queued and status is returned to the user
indicating that the SIO was accepted. The user obtains actual status by specifying end-action. Various registers
contain pertinent status at that time.

For HIO, the 10EX bit (DCTS, bit 7) is tested. If the bit is set, the HIO is executed and status and condition codes
are returned to the user. If the 10EX bit is not set, the monitor routine RIPOFF is called which will eliminate any
ongoing or queued requests for the device. The user receives status and condition cade settings which indicate the
HIO request was accepted.

TRIGGER, DISABLE, EIIABLE, ARM, DISARM, CDIlMECT, DISCONNECT These functions are similar in that
they involve the execution ofa Write Direct after determining the groupcode and group level ofthe specified interrupt.

In addition, a task connection is performed if requested by ARM, DISARM, and CONNECT requests. Note that the
CONNECT call is a special case of the ARM call. The logic for ARM, DISARM, and for CONNECT functions is
illustrated in Figure 41.

T_ Cen1n1 Block (TCB)

The CONNECT function initializes words 2-9 of the user-allocated TCB for interrupts and CAls that are to be cen
trally connected. The format of the TCB is shown below:

o

2

3

4

S

6

7

8

9

10

25

l

r--------- Saved PSD ---------

______ Intermediate PSO to transfer _____
to TCB+4 with skeleton key

STM,O TCB+10

BAL,R1 RBMSAVE

rio 0 PCB address

Priority
1
0 0 TCB address

r- ___ PSO to transfer to task entry in proper ____
state (mode, write key, etc.).

, • 16 words for register saving

o 1 78 lS 16 31

Get group code and
level bit.

Store XPSD in interrupt
or trap cell and make
INTTAB entry.

Store clock counter values
and" MTW,-l" instruction.

Issue proper "WD" instruc
tion to count pulse interrupt.

Set index to enable or
disable as appropriate.

laue "WO" instruction
to interrupt.

Figure 41. ARM, DISARM, and CONNECT Function Flow

77

78

Get "M'rt'" instruction
from FPT and store in
count pulse location.

:

Figure 41. ARM, DISARM, and CONNECT Function Flow (cant.)

.'

7. 'MONITOR INTERNAL SERVICES

CP-R Overlays

All CP-R overlays may be declared to be resident or nonresident at SYSGEN time, in order to increase performance
of a particular function or to reduce monitor size, respectively. This is done by means of the :MONITOR control
command.

The overlay technique allows a user call for such functions as OPEN and REWIND to bring in an overlay to perform
the function. The structure is reentrant (allows multiple users at different priorities to use the overlay area), recur
sive (allows an overlay to call an overlay), and usable for any monitor function (allows overlays at the control-task
level to use the some area as those for user services). The overlay technique employed requires no explicit calls for
overlays. When an overlay is needed all that is necessary is a branch to a REF:

REF OEP (overlay ENTRYpoint)

B OEP

SYSLOAD will fulfill these references by having them branch to the Overlay Manager (OMAN) which' will load the
overlay.

In order to create an overlay the·progrommer must include DEF's in the overlay ROM for all possible ENTRY points
and all possible EXIT points. An ENTRY point is defined as a point at which one would enter the overlay via any
type of branching instruction (BAL, BCR, BCS, LPSD, etc.). An EXIT point is defined as a point at which one
would exit the overlay with no intention of returning to this overlay without first going through an ENTRY point.
For instance, a BAL to a resident subroutine from the overlay would not be considered an EXIT point since a return
to the overlay wi II toke place. All EXIT point instructions must be unconditional branch instructions, either B*Rx
or B address. This is due to the fact that the EXIT point instructions will be replaced by unconditional branches to
the Overlay Manoger which may replace the overlay with a previously active overlay and then execute the EXIT
point instruction.

An overlay will be named by the first DEF in the module, which must be the first BO-generative statement. As the
CP~R ROM and the overlay ROMs are read by SYSLOAD all unsatisfied REFs are assumed to be overlay-load requests
and thus are satisfied by creating an entry in the Entry Point Inventory (EPI), described below, and using that address
to satisfy the REF.

As the overlays are read, all DEFs are checked for possible ENTRY points or EXIT points. A DEF will be considered
an ENTRY point if a previous REF for that name has been located. If a previous REF has not been encountered the
DEF will be considered an EXIT point. This algorithm implies that the order of the overlay ROMs as read by SYS
LOAD is significont. All overlays which call overlays should do so with forward references.

As each overlay is encountered, its nome (the first DEF) is com po red ogainst the list of resident or nonresident over
lays as defined by the user on the :MONITOR SYSGEN command. If found to be nonresident, the overlay is linked
to run in the overlay area and written out to the SP area. If found to be resident, it is linked at the end of the pre
.nt monitor end and, or course, is written out with the monitor. The last ROMs on the SYSLOAD medium must be
the subsystem overlays (currently TEL, LOAD, and JCP) preceded by INIT. Figure 42 shows the general arrange
ment of the SYSLOAD-input ROMs.

OMAN uses the EPI and OVI tables to make sure the proper overlay is in core at all times. OMAN is activated by
a reference to the EPIEP as set up by SYSLOAD. EPIEP contains a CAll instruction. OMAN is entered from the
CAll processor with inhibits set, and exomines the address of the CAll to calculate the index for EPI if it is an
OMAN call. If the address is in the EPIEP table this is a request for an overlay load. If it is in the ovs,rlay area
and of the form ..

o 4 Address in EPIEP
1 2: l .. ~ • " 10 11 12 13 " '5 16 17 ,. " 20 21 J2 ,.. IS

then it is an EXIT.

79

80

Simulators

Figure 42. Arrangement of SYSLOAO Input ROM\

For entries, the previously overlay informatian is stacked, the new overlay is loaded, and control is transferred to
the ENTRY address. For an EXIT, previous overlay information is unstacked, th'! last overlay is reloaded if neces
sary, and the instNction in EPIEP is executed.

After every activation the active overlay 10 (OVI index) is placed in the STIOV field. When an exit takes place
the STIOV field is cleared. EXIT checks STIOV to see if the task to which it is exiting has an active overlay. If it
does and the presently active overlay for the system is not the same, EXIT forces an entry to OMAN to reload the
active overlay for the task. (This is done ot the level of the task which is being exited to.)

This overlay technique has several unique aspects which should be noted:

• Any reentrant piece of code which is entered via a branching type instruction and exited via an uncondi
tional branch may be converted to an overlay simply by

• Assembling it as a separate ROM.

• Placing a REF where a branch to it takes place.

• Placing a OEF for the ENTRY point in the ROM (first OEF also used as overlay name).

• Placing a OEF for the EXIT points in the ROM.

The system overhead incurred by this conversion is only one instNction when the resultant overlay is de
clared resident.

• No registers are destroyed in loading and transferring control.

• litany such pieces of code may be placed into one overlay.

-I

hIry ... &it PIiId dill, (EPI)

Purpose:

Type:

logical
Access:

EPIEP:

The EPJ is used to intercept all entries to overlays and to save all exit instructions from overlaYs in
order that the Overlay Manager (OMAN) can load the proper overlay.

Parallel in CP-R table spoce with a fixed number of entries, Generated by SYSLOAD,

The EPJ index is, in essence, generated by SYSLOAD. When SYSlOAD encounters a reference to an
entry point, the address is replaced by the address of an EPI entry (EPIEP). When an exit point is en
countered the entire instruction is replaced by a CAL 1 imtruction.

An EPI table entry can have one of three forms. If the entry is an ENTRY point to a resident overlay:

If the entry is an ENTRY point to a nonresident overlay:

04 OVI index Address of entry
, z 11 12 13 "I 16 1 1

If the entry is an exit point:

Replaced instruction
1 2 l .. .5 • 7. 10 It 12 13 •• 15 16 11 20 21 22 23 Jot 25 16 %1 21

(This is the actual instruction that was in the overlay and has been replaced by a CAll with an effec
tive address of the replaced instNction.)

OwrIIy IIIVIIItOry (OVI)

Purpose:

Type:

logical
Access:

Entries:

The OVI replaces the table previously defined as OVLOAD. It is used by OMAN to load overlays
for both primary and secondary tasks. For each overlay it contains the sector address, length, and
name,

Parallel in CP-R table spoce with a fixed number of entries, Generated by SYSLOAD,

The EPI (Entry and Exit Point Inventory) has a subfield of EPJEP which indexes the proper overlay for
that Entry Point.

OVISK

OVILG
(ex OV LOA 0 1) &.r-T""'J''''TtN::"u,.mb-::--e,.,r 1T0.,f r

b
'lK'yt-n

e
lt'1
s

:nT' -::,.ri,r<ls

82

:

OVIMA

OVICT

OVJECB

where

OVISK

OVILG

is the seek address of the overloy on the device containing the SP arec.

is the length of this overlay in bytes (~2048).

OVINM· is a ~character EBCDIC name representing the first DEF in the overlay. This is the
name used in the SYSLOAD map and the name to be used for all communications about the
overlay. I ,

OVIMA is the page address of the overlay if it is in core. The value is zero if it is not in
core.

OVICT Is the use-count field used to determine which overlays should remain in core in roll-
out circumstances.

OVIECB chain head of a list of two word pseudo ECBs. The fint word contains the forward
link. The second word contains the 10 of the task which is woiting for receipt of the overlay.

Event Control Block and Event Control Services

Purpose:

Type and
Location:

logical
Access:

Event Control Blocks (ECBs) provide task manogement and CAL processors with the mechanism for con
trolling system services explicitly requested by tasks or invoked by CP-R.

ECBs are eight-word serial control blocks in TSPACE, with chained data areas also in TSPACE.

ECBs are members of two chains and can be located only via one or the other of these chains. The
chains are as follows:

Solicited ECB chain - A chain headed in the LMI entry corresponding to the task for which the
event is being performed. The chain head is in LMISECB.

Request ECB chain - A chain generally headed in the LMI entry corresponding to the task per
forming the service. If no one specific task is responsible for pasting, the R- chain is either not
used or is headed elsewhere.

OwrviIw" EeB

Asynchronous or synchronous (vs. immediate) service requests must create ECBs to control the event processing.
Asynchronous or synchronous service calls are those performing functions which require waits for some other logic
within the processor or external event to complete prior to completing the original request. They are as follows:

•
RUN SEGLOAD UNLOAD TYPE DFM ""
INIT OPEN WE OF ALLOT DEVN

ENQ CLOSE PFIL TRUNCATE ACTIVATE (MM)

SIGNAL READ PRfC DELETE

STIMER WRITE DEVICE STDLB

POLL REW PRINT GETPAGE

(

In addition to the above CAL processon, CP-R tasks may create and use ECIs to control their own scheduling and
communicate with other modules. These tasks are as fol/ows:

Task Initiation

Task Termination

Key-i n Processon

Memory Management executive including ROll-IN and ROll-OUT

CA l Processor Usage

The CAL processor wi 1/ create and initialize the ECB. If the service is requested with wait, the CAL processor
will loop waiting for the ECB to be posted if the caller is primary, or set the ECB and dispatcher controls for
secondary tasks and retum to the dispatcher. A posting phase is executed when the ECB is posted. A checking
phase is performed following the post. The completion data is retumed to the user and the ECB deleted. The CAL
processor then exists. . ~

If services are requested without wait by the user, the CAL processor creates and initializes the ECB ond starts the
service to the extent possible until a wait would occur. The CAL then returns to the caller. Some time latera post
ing phase is executed. The caller must eventually issue a CHECK on the service. Failure to do so would cause the
ECB to remain 'active' until task termination. When the CHECK call is performed, the service is processed until a
roadblocked condition occurs or the service is done. If the service completes, the cleanup is done as above and
control returned to the caller. If the service is still not complete, the busy exit will be taken if it was provided.
If no busy exit was provided, the system waits for the service to complete as described above, then does the cleanup
and exits.

Note that the order of posting and checking is variable. A post may precede the execution of a check.

Task-Termination Usage

Task termination keys on the ECBs during its initial phases. Eoch ECB must be posted before the task is allowed to
terminate and release its core resources. The termination routines drive the ECIs to completion as rapidly as pos
sible by colling special subroutines for each ECB type. It then does a WAiTAll on the ECBs.

EeB .nd Dati-Are. FDrnwts

Figure 43 shows the detailed format of an ECB and gives an example of chained data areas.

Description of the individual dato elements follow.

ECBDAT A (Word 0)

Length: The length of the first data area "in the chain, in words.

Data area address: The address of the first data area. Initially, this word is set to zero. If a data area is added to
the ECB, the length and address (as returned from the GETTEMP) are stored here, and the first word of the data area
is zeroed. Subsequent data area additions continue to store this word into the fint word of the newest data area and
put the new control in the first word of the ECB. Data area deletions do the inverse, namely, move the first word of
the data area being deleted (always the first in the chain) into this word.

B3

Wexd 0 0 length Data area address -

ECBFPT (Word 1)

Flag bits as follows:

Bit 0

• I ". D ~
,

1 o ~ o T FPT/DCB address ~ D , I So
y T

2 S-task 10 S-ECB chain next

3 R-task ID R-ECB chain next

4 Priority Class

5 EA Type/ End action address (SAL or Signal) -------
Group Address-X'.cF' level bits

6
Timeout

r-y;pe compi:'"TBT- --- Completi~status -

7 0 0 ECB type

o 1 2 34 5 6'7'89 1516 31

--0 length Data area address

Newest data area

01 7'8 31

Lo 0

Oldest data area

o 1 31

Figure 43. ECB Format and Chained Data Areas

Reserved

~i

I

r--

BUSY (bit 1) = 1 if the ECB has not been posted. This means that word 6 contains the timeout threshold, if
any.

= 0 if the ECB has been posted. This means that the type of completion and completion status
have been stored over the timeout threshold in word 6.

-I

(

INP (bit 2)

WD (bit 3)

OP (bit 4)

E 1 If the ECB is'ln fA CI.'. TlHs bit is set duri'1l a POLL, check phase, to awld .,bsequent
polls from acquiring the lame ECB.

= 0 if the ECB activity has not been inltiated.

In-process may be set by internal CP-R tasks which do not use a POLL to indicate that the
ECB is being operated upon.

= 1 The wait count in the STI entry of the S-task is to be decremented by one (if it is not al
ready zero) when the ECB is posted. If the count becomes zero due to the post, the dis
potcher should be triggered and the task entered if the S-task is a higher priority than the
posting task. If it is lower, the dispotching is deferred.

= 0 Do not alter any dispatch controls at posting. The task is not waiting for the ECB.

WD is set by the EMWAIT subroutine and WAITANY, and WAITALL calls. It is reset by
posting. It is also reset by WAIT ANY after gaining control on a multivalued wait. , ,

= 1 Delete the ECB as soon as the posting logic is complete. The user does not expect to
check the FPT nor does he require feedback of the type of completion.

= 0 Do not delete the ECB unti I after the checking/cleanup phase is complete.

OP is set on service calls with Oelete-on-Post set (F8 = 1), and on service calls that gen
erate ECBs but are not CHECKable. On all other ECBs, it is reset.

CHK (bit 5) = 1 Checking is in process on this ECB by some task, and other checking phases are not to be
allowed. This bit is set by service call processors when requested with wait. It is set by
CHECK CAL entry before going to the ECB-type-dependent checking routine. It is set
by TEST, WAIT ANY and WAITALL when processing the ECB through checking phases. It
is reset by EMWAIT when taking a busy exit. CHECK tests the bit prior to setting it. If
nonzero, the CHECK is rejected as invalid and the busy exit is taken if provided. If not
provided, the calling task will be trapped. TEST, WAITANYand WAITALL ignore ECBs
in the S-chain with the CHK bit set.

POST (bit 6) = 1 Posting is in process on this ECB. Other posting operations are not allowed. This bit is
set by the posting subroutine entry prior to entering the ECB type-dependent logic. If
POST is already set, an error exit is given to the caller. POST is reset by checking
phases if the ECB is 'unposted' to allow additional processing phases.

Note that if POST = 1 when an ECB is created, no posting operation will be allowed. If CH K = 1 when an
ECB is created, no checking operations will be allowed.

TO (bit 7) = 1 TImeout of the ECB is in process and other timeout operations are not allowed. The
proper ECB posting routine will be coiled.

FPT/DCB address: This is the oddress of the caller's originol FPT (or OCB in the case of Type-I I/O). On all CHECK
or DELFPT service calls, this serves as the control field ta locate the ECB which represents the service being checked.
It also allows the WAITANY, WAITALL and TEST calls ta know the location of the original FPT or DCB in order to
build an internal check FPT. An FPT/DCB address must be stared in all ECBs at creation. If the FPT ~ in regis
ters, the reg ister address (G- F) is stared.

ECBSECB ~ord 2)

S-Task 10: The tClSk-ID of the task that solicited the service or that is checking the service.

S-ECB Chain Next: The address of the next ECB in the solicited-ECB chain of the S-task.

85

86

-.. -" -- -~ .. -------~---.-.'-"--"------'"- - ...

As a task requ.ts asynchronous services, the Eels crwated are added to the end of a chain which il headed in the
LMI entry corresponding to the talk. This provides the 1)'It., with knowledge of all the outstanding service requests
for a load module. On checks or deletes, this chain il used to search the 5-ECBs. It is also us.d by Task Termina
tion, WAITANY, WAITALl and TEST to define all the services in process. The S-chain is maintained as ECBs are
created and delet~. The S-task ID tells the chainfng logic, indirectly, in which LMI S-chain to ploce the ECB.
More importantly, at palting time, it tells the EMPOSTYC subroutine, whase task controls, to update if wait de
crement is let.

ECBRECB (Word 3)

I-Task ID: The task ID of the task that is to provide the requested service and that will post the ECB, if any.

I-ECB Chain Next: The address of the next fCB in the request-fCB chain of the R-task.

Some events are directed to one CP-R task or user load module that is to provide the service and post the ECB. This
task is called the responsible task and has a chain (R-chain) through all fCBs currently directed to him, which is
headed in the LMI entry corresponding to the task. CP-R tasks wi II have a load-module-inventory entry to head
these chains. The chain is in priority order, with the newest requests at the beginning of their priority group. The
chain is used by POll to locate requests and give them to the task for processing. It is also used by POST to vali
date the ECB identification in the FPT. Internal CP-Rtasks may use the l-chain directly to locate and operate on
request ECBs. The R-chain is maintained as ECBs are created and posted. The R-task ID tells the standard R-chain
maintenance routine, indirectly, in which R-chain the ECB is to be placed, or removed.

In the following cases, on R-task con be identified:

• INIT requests - Task Initiation on behalf of the initiated tosk.

• SIGNAL requests - The task signalled.

• ACnvATE/GETPAGE -Memory Management Executive.

In some cases, the service is provided in such a way that a specific task cannot be identified which provides the
service. In these cases, the R-chain is either not used, or is headed in sOme other control table, not on LMI. The
following fCBs are this type:

• ENQ requests - Service provided by the DEQ CAL processor. The l-chain is headed in an EDT.

• STlMfR requests - Service provided by the clock-4 interrupt processing. No l-chain is used.

• POll requests - Service provided by the SIG NAl CAl processor. The R-chain is not used.

• VO requests - Service provided by the VO - interrupt processing. Instead of contoining I-task informa
tion, bits 0-7 contoin the service-call FPT cade and bits 15-31 contain the byte count.

ECBPC (Word "')

Priority: The priority of the ECB as requested by the caller. Generally it will default to the caller's priority. Pri
ority is used to determine the order of the R-chain. It also will become the execution priority of tasks which poll
for the R-ECBs according to the description in the POLL specification. Priority is set when the ECB is cr~. ,..
Class: The class mask that is set when the fCB is created. Generally the class will be the default value of X'FFFF'.
On polls, this field is logically ANDed with the class specified in the POLL (default is also X'FFFF'). If the result
is nonzero, the ECB qualifies for the poll.

Note that for I/o requests, word '" instead contoins clean-up information (see 10013, word 1).

Memory Management fCB's contain control information in bits 16-31 of word "'.

ECBENDAC ~ord 5)

The end action for posting, as follows:

Word = 0 No-end action for servi ceo

Byte 0 = OO-oF

Byte 0 = 7F

fnd..action contains interrupt-trigger date. The intenupt group is the value in byte O.

End-action contains a completion signal address.

Byte 0 = FF fnd-action conteins an address to be BALed to at post time.

End-Action Address: The entry location for BAL-type end action or signal address.

fnd-Action Address and level: The address of the intenupt - X'4F' - and level bits for a write direct on trigger
type end action.

ECBTlME/ECBCOMPL \'Nord 6)

Timeout: The timeout threshold for busy ECBs. When the value (K:UTlME - timeout) is greater than or'equal to
zero, the feB has 'timed out' andCP-Rwill do a post with the timeout code (><'67'). The posting logic which is a
function of ECB type will be entered. If timeouts require special logic, the posting routines must test for the X'67'
type of completion and take the appropriate action.

Type CampI.: The type-of-completion code set by the caller posting.

BCBusy): This bit will always be zero after posting.

Completion Status: Actual record size CARS) for READ/WRlTE requests.

ECBCTLS ~ord 7)

ECB Type: An integer which represents the type of service which is being provided. This value is set symbolically
(for flexibility) by the creator of the ECB and can be altered by the processing logic during the life of the ECB. The
system uses the ECB type to control the service-dependent logic as follows:

e

•

•

•

When an ECB is to be posted, the routine that wishes to do the post will BAL, R8 EMPOST with the ECB
identification in R2. EMPOST will use the ECB type as an index into the byte-table EMPOSTX which pro
vides an index into the word table EMPOSTB. The EMPOSTB entry thus located is a branch to the posting
logic for that ECB type, and wi II be executed. EMPOST uses R7 for the indexing.

When a CHECK call or DELFPT call is issued, the check service call branches to the check processing for
the service type. This entry is derived as above, with EMCHKX + ECB type providing an index to the
EMCHKB branch table to the entry point. The ECB identification is in R2. R8 is the retum register.

When a wait occurs for a primc:iry task on an event control block, the ECB type is used as an index to the
bit-table EMWAlTF. If the bit thus located is 1, the primary-task wait is illegal on the ECB, and the task
will be aborted. A zero indicates that the wait is valid and the waiting routine will loop, calling SEIIDEV
and waiting for the Busy bit in the ECB to be reset.

When DELFPT or termination occurs, the ECB type will ogain be used as an index into the byte-table
EMABNX which will provide an index into the word-table EMABNB. The word thus located contains a
branch to the logic to handle abnormal conditions for the ECB type.

Values for the ECB type are

1
2
3
4

VO service calls
SIGNAL
STlMER
POLL

5
6
7
8

INIT
ENQ
Memory Management activities
STDLB for an exclusive device

87

88

Such routines as error logging and monitor crash analysis as well as the reentrant overlays require temporary -space,
which they may obtain, hold for a period of time,and then release.

The space is managed by use of an algorithm that requires space to be parcelled out in powers of two (2, .. , 8, 16,
32, 64, 128, 256) only. Thus if a routine asks for 19 words it will be given 32. The reason for chasing this method
is its minimol processing time for obtaining and releasing space.

The algorithm is as follows:

1. When obtaining space, if the smallest power of two needed is not available the next higher power of two
will be examined. If space is available at that level the block is split into two blocks of the size needed.
This is a recursive technique which may be repeated until the maximum power (8) is reached.

2. When releasing space, an attempt is mode to find the released block's complement (the other half of the
original split block) and if found they are joined and the procedure repeated for the next higher power of 2
unti I 8 is reached. .

GEnUp Get Space

Inputs:

R7 = number of words (1 through 255)
R8 = link

Output if space available:

R7 = byte 1/number of words
byte 2, 3, .. / address of space

R8 = link
Return to link + 1.

Output if no space:

R7 = number of words
R8 = link
R15 = X'66' (no-space TYC)
Return to link.

IEL TEiP Release Space

Input:

R7 = byte 1/number of words
byte 2, 3, 4/ address af space

R8 = link

Output:

R7 = number of words
R8 = link
Return to link.

SYSGEN c. ... deI

The number of words needed may be specified at SYSGEN by use of the TSPACE option an the :RESERVE card:

:RESERVE (option), (TSPACE, n), .••

where n is number of words for temporary space (a default Is provided by SYSGEN).

D·.p. b:IIir

Each dispatcher in CP-R possesses a queue whose head may be found in RDLlST!. (ROll is a parallel table with
ane set of entries per dispatcher.) The queue painters chain secandory STI entries (through STJDNXT) for the dis
patcher in order of priority.

To enter a dispatcher level, the higher of the two interrupt levels ossociated with the dispatcher is triggered. U,)C)n
being entered, the dispatcher searches its queue fram the head down for the highest priority task that is ready to
run.

A task is ready to run when

• ,It is not waiting (STICOUNT = 0).

• It is not suspended.

• It is not stopped.

• It is not rolled out.

If such a task is not located, the next lower dispatcher level is triggered with the final dispatcher wa;ring in an
idle loop.

If a task is found, the lower dispatcher level is entered. At the lower level, the map for the secondary task is
loaded and control is given to RBMEXIT. This causes control to be given to the secondary task, or to the Overlay
Manager if an overlay reload is necessary.

It should be noted that the lowest dispatcher level requires only one interrupt level since the null level is used as
its second level.

See the Terminal Job Entry chapter for description of time-slicing and swapping.

lynIbionts

The monitor cells shown below contain information about the symbionts that is not related to a particular device.
Device related information may be found in the DCTRBM, DCTSYM 1, DCTSYM2 and DCTSYM3 tables.

SYMB is a VIIOrd in the resident part ion of the symbiont task that contains general information about the symbionts.

The format of SYMB is

o 15 16 28293031

Current Job

where

Current Job is a .-...mber thot wi II be used in naming the next job file in the IS area. The,mber is main-
tained and used by the M:JOB service call.

SYMBC = 0 means do not start background automatically; SYMBC = 1 means start background when the first
file for a new job has been closed by the input symbiont.

This indicator is set by the "c SOl keyin and reset by the "c 0" keyin.

OFLO is an indicator set by the output cooperative when the OS disk area is full and background can no
longer execute. The output symbiont automatically switches to DO mode when this indicator is set.

DO=O the symbiont task will delete a job's files in the OS area when all of the files associated with this
job have been output. This is the default mode.

89

90

DO=l the symbiont talk will delete a lab's files In the os area as they are output. this mode prevents

JOBPRI

overflow of the OS area by a Job whIch has a large amount of output. If this mode Is not In .ff.ct ond a
.Ingl. Jab overflows the OS eno, a switch 10 DO mode will automatically occur. Thll mode does not
allow boc:Icspaclng of files In the OS area .Ince prior data .. cords may hove been In fiI .. that were
deleted.

The DO bit il set by the DO key-in and reset by the ROO key-in.

JOBPRI is a word in the resident portion of the monitor that contains the priority of the running task. Thil cell il
used only In a symbiont Iystem and is mointained by the input cooperative.

JOB' is a word in the root of the monitor that contains the number of the running background job.

In a symbiont system, the value is used in the naming of files in the OS area and il maintained by the Job Control
__ Processor.

'.

8. MISCELLANEOUS SERVICES

Miscellaneous services are functions available to both foreground and background progroms but which do not directly
involve I/O services.

SEGLOAD

This function loads explicitly requested overlay segments of a program into memory for execution. The user's M:SL
DCB (ollocated by the Overlay Loader) is used to perform the input operation.

For an FPT for READ WRIT, the system uses the entry in the program OVlOAD table that corresponds to the segment.
The OVLOAD table is constructed by the Overlay loader.

The function locates the proper entry in the OVLOAD table and places the user-provided error address in bath the
OVlOAD entry (FPT) and in the M:SL DCB. If end-action was requested, the FPT is set to cause end-action at
conclusion of the segment input.

If the calling program has requested that the segment be entered {at its entry point}, the PSO at the top of the user
Temp Stack is altered so that upon CALEXIT, control goes to the segment entry address. I

The function then sets R3 to point at the FPT in the OVlOAD table and transfers to READWRIT. The segment input
is then treated as a READ request with possible end-action, and at the user's option, control is returned either fol
lowing the SEGLOAD CAll, or to the segment entry address.

Trap Handlina

Trip CAL.nd JTrlP CAL

The Trap function sets up the trap control field and TRAPADD field in a user's PCB and sets the Decimal Mask (OM)
and Arithmetic Mask (AM) bits in the user PSD to mask out occurrences of these traps. PSD bits are modified by
changing them in the user PSD at the top of the Temp Stack and in the PSD contained in the user's TCB.

The JTRAP function has the same effect on the OM and AM bits, but stores the trap controls and trap address in the
Job Control Block.

If the user-provided trap address is invalid or if the user specifies that he is to receive occurrenc:es of some trap and
no trap address is provided, control is transferred to TRAPX. This results in the message

ERR xx ON CAL 10 = task name

where

xx is the Error Code in hexadecimal (00 if nane).

yyyyy is the address of the CAL.

being output on OC and LL.

Trip PrOClISinl

Traps are either handled by the user, cause simulation of the instruction where possible, or result in an abort con
dition. If the user is to handle traps, task-level trap handling takes precedenc:e over job-level trap handling.

9)

92

The registen and PSD are lOved in the UlerY.., Stack in "'e following format:

x

0

1

PSD Word 0

PSD Word 1

Register 0

(Registers 1 through 14)

.

Register 15

Working Cell

X

0

1

Top of stack before trap

{

This word appeors only if the
above zeros are in an even
word address.

Top of stack after trap

.f

If the trap is either a nonexistent instruction or unimplemented instruction, the instruction causing the trap is
analyzed ta detennine whether the proper simulation package (if any) is in the system. If so, the simulation is
called; if nat, it is treated like any other trap.

A test is performed to determine whether the user is to process this particular trop. If sa, the trap address (X'40',
X'41', ete.) is placed in the top word of the stack and the user's trap handling routine is entered by LPSD, eight of
the user PSD, with the trap handler substituted for the address where the trap occurred.

Traps not handled by instruction simulation or by the user result in one of the following messages being output
to OC and ll:

MEM. PROT. ERR AT XXXXX

PRIVILEGE INST. AT XXXXX

NONEXIST. ADD. AT XXXXX

NONEXIST. INST. AT XXXXX

UNIMPLE. INST. AT XXXXX

STACK OVERFLOW AT XXXXX

ARITH. FAULT AT XXXXX

WOOG TIMER RNOUT AT XXXXX

MEM. PARITY ERR AT XXXXX

BREAK ERROR AT XXXXX

ERRxx ON CAL ~yyyy 10 = task name
,

.'

Note that the last message results from the simulation of a trap (called Trap X'50'). This is done by the system
when a system call cannot be processed because of incorrect parameters being input or an error having occurred
in the processing of a system call with no error address provided in the caller's FPT. After the message is output I
the task will be aborted unless the user has provided a handler for this trap. If the user has provided a handler for
this trap, the message will not be output and the trap handler will be entered.

TRTN (Trap Return)

This function returns control following the instruction which caused a trap and is employed by the user to return
control after processing a trap.

At the time of the TRTN call, the user Temp Stack is set as described previously under "Trap Processing". The
TRTN function strips the stack of the context placed there by the CAL processing (from the TRTN CAL). It then
clears the stack by the Trap processor and returns control to the instruction that follows the one causing the trap.

Tm (Trap Retry)

This function is simi lar to TRTN, but returns to the instruction causing the trap.

TEXIT (Trap Exit)

This function removes the trap information from the user Temp Stock and exits the trapped task. Note that an EXIT
CAL if executed from a user trap handler would leave this data in the user Temp Stack.

93

9. CP-R TABLE FORMATS

General System Tables

The tables shown in the subsection are either not job or task controlled, or relate equally to both jobs and tasks.
The index 0 entries of the tables are not used as true entries.

&50 Pflclllor Confilul1Ition Tables

These are parallel tables that contain data pertaining to Processor Polling.

CNFGADDR

I Address I
o 7

This contains the address of the processor.

CNFGTYPE

Type

o 7

This contains the type code for the processor,

where

1 = CPU.

2 = Memory Interface (MI).

3 = Processor Interface (PI).

4 = MIOP.

7 = System Unit (SU).

CNFGSTAT

Status

o 31

This is used for temporary storage of processor status and condition codes during the logging process.

CNFGADDR and CNFGTYPE are initialized by SYSGEN based on :PROC cards.

These tables are used to control Processor Polling and are primarily used to provide information for the error
log.

(

Volume Table of Contents (VTOC)

Information describing the allocation of areas on a private disk paclc is maintained in this data structure, which
begins in sector 0 of the device. Its length depends on the number of areas defined, and is specified in the
structure. The VTOC may be extended by RADETIT : ADD commands after the original initialization. Such
extension may proceed to the end of the last VTOC sector. Additional VTOC sectors can be obtained from the
fint area on the pack only if it is a skipped area.

Devices with Syseened areas are nat private devices. They have no VTOC; and their structural information per
manently resides in the Master Dictionary.

The Format of the VTOC follows:

where

bootstrap

VTOC

vsn

init elate

mod elate

section 0 word 0

20
21
22

23
24
25
26
27

28

29

30

31

32

33

sector n last word

1 bootstrap 1 .
vsn

vtoc

init date

mod date

wps

spt

tpc

boa

eoa

nds

naa

packet 1

packet i

T
o
1..

.

-
-

is a default boostrap program that will type a messaee indicating this is not a
system device and then go into an idle state.

: ~

is the character string 'VTOC' that identifies the disk as have been initial ized
and allocated by the :INIT command.

is the 8 EBCDIC character identification of the disk. It may be any 1 to 8
character string composed of letten and/or digits, left justified, space filled.

is the elate on which the disk pack was originally initialized, in the fonn
mmmdd yy.

is the elate on which the allocation of the pack was most recently modified,
in the form mmmdd yy.

95

spt

tpe

boa

nels

naa

packet 1

packet i

is the words per IKfar of the disk.

il the number of .cton per track of the disk.

is the number of tracks per cyl inder of the disk.

is the sector ,.."mber of the first sector on the disk available for data.
It nonnally is initiolized to 1 (see nds below).

is the sector number of the last sector on the disk.

is the number of directory sectors required to hold the directory. Normally
this will be a 1, meaning all area allocation information is contained in this,
the first sector on the disk, and data area may begin on the next sector
(sector 1). However, if a large number of areas and skipped areas are
specified, there may be insufficient space in one sector for the directory.
For this case, the directory will be continued on subsequent sectors, nels
set to indicate this number, and boa set to begin on the next sector.

is the number of allocated areas. It is the total number of areas currently
active on the disk. It does not include any "SKIP" peel areas or unallocated
space at the end of the disk.

is a group of data describing a contiguous block of sectors of like use. Such
use may be one of three types: allocated for a file area, skipped, or unallocated
remainder. There is always one packet describing the unallocated remainder,
even if its size is zero. There is one packet in addition for each file area
and each explicitly skipped area on the pack. Packets are grouped by type,
first file area packets, then skipped area packets, then the unallocated
remainder packet. Within groups, packets are ordered by ascending start
address. The format of a packet foil ows.

word 0

2

3

byte 0

name

0

2 3

wp

it

ssec

esec

- where

96

name is a two-character EBCDIC area name for a file area, x'FFFF' for a skipped area,
or numeric 0 for the unallocated remainder.

wp is the write protection:

it

numeric 0 for public;
1 for background;
2 for foreground;
3 for system;
.. for IOEX.

is the initialization type code:

numeric 0 for OVR;
1 for FAST;
2 for ALL.

lAD Fill T (RFT)

Parameters describing the file are taken from the directory entry for the file. These parameters include:

File name, area index, and account name

Beginning sector address (relative to beginning of the area)

Ending sector address (relative to beginning of the area)

Granule size

Record size

File size (number of records)

Organization (blocked, unblocked, compressed)

The parameters specifying the physical characteristics of the disk, the boundaries of the disk area, and the Write
Protection key are in the Master Dictionary. To enable access to these, the RFT contains a Master Dictionary Index
(specifying the area). I

For manipulation of the file, the RFT contains the following items:

Blocking buffer control word address

Blocking buffer position

Position within the file (sector last accessed - used for blocked and unblocked)

Current record number

Number of DC& open to the file.

These parameters are entered in the RFT by the OPEN function. The parallel table concept is used for the RFT,
and the tables are allocated and initialized as given in Table 2.

In Table 2:

File name all 0 Signifies entry nat in use.

RFT4 index 0 Entry contains the total number of RFT entries.

RFT13 index 0 Entry contains the maximum number of RFT entries allowed for background use.

RFT14 index 0 Entry contains the current number of background file entries.

RFT15 index 0 Entry contains the number of temp files allocated.

Other index 0 Entries are not used.

The Job Control Processor builds the RFT entries for the Background Temp Files. These entries are the first n + 2 in
the table (n is the number of Xi files), where entry 1 is for the OV file, entry 2 is for the GO file, entry 3 is for
the Xl file, etc.

97

98

FILE DIRECTORY

The information conceming allocoted files Is contained in a file directory entry. The file directory entries for files
in each area are kept in directory sectors within that area.

The first sector (sector zero) of an area containing fi les is always the first directory sector. There may be more than
one directory sector if there are more files than con be held in the first directory sector. The subsequent set tors are
linked together starting from the first sec tar •

The format of all directory sectars is identical. It is

Index

o \l
2

3

4

255

where

Index

Sector

File directory JD code word 1

File directory JD code word 2

File directory entry 1

File directory entry 2

File directory entry n

Unused directory entries or unusable
space at end of sector

flag is end of directory indicotor.

o means this is the last directory sector.

means directory continued on another sector.

index is the index to the next unused word in the sector.

sector depends on the value of FLAG.

Word I

2

3

4

5

.

FLAG=O means this is the next free, unassigned sector in the area.

FLAG = 1 means this is the sector number of the next directory sector.

I
"

fll. directory code words ant two words containing Identifying codes used to .,.,ify that the lector is actually
a directory leCtor. These words are: -

X'AAAAAAAA'

X' 55555555'

There are two possible formats of the first directory sector which both mean the area contains no files. The first four
wons may be all zeroes, which is its condition if it has been cleared by SYSGEN (FAST or ALL options), or it has
been cleared by the :CLEAR command in RADEDIT.

The first four words may also be

Index Word I

o 01 4

1 2

2 Code word 1 3

3 Code word 2

The all zero format will be converted to the normal format when the first file is allocated in the area.

.. t fie DirK1M, EIIIry

I

~,

A file directory defines and describes a file. It contains the information needed by the system to access and use the
file. There is one entry for each file or file extension in an area. The fixed portion of an entry is identical In format
for all fj les. It contains the file's name, size, organization and position in the area.

If the File Account option is not used, entries are 9 words long; if the option is used, the entries are 11 words long.
An entry will not cross a directory sector boundary.

The format of an entry is:

Index

o

2

3

4

5

6

7

8

9

10

F I L

N A M

FLAG! FLAG2 RESERVED

GSIZE RSIZE

FSIZE

BOT

EOT

XTNT

ESIZE

A C C

U N T

E

E

LEN

0

I

Word I

2

3

4

5

6

7

8

9

10

11

99

100

FLAGl I siD I R I"xl R I R I ORG I

01234567

FLAG2 I PRIORITY 10 I 0 10 IRFI

where

FILENAME is the 8 character EBCDIC name, left justified and space fi lied, of an active file. A name of
all binary zeroes indicates a deleted file, and a name of all binary ones indicates a bad sectors entry (space
that is not to be allocated to on active fi Ie).

FLAGl

R reserved.

S

D

fi Ie was lost written sequentia Ily 'l
file was lost written directl y.

Maintained by the monitor; initially set to O.

FIX if the flag is set, extended files wi II not be combined into one large file during a RADEDIT
:SQUEEZE operation.

ORG file organization (some as in ALLOT CAL).

00 = unblocked

01 = blocked

10 = compressed

FLAG2

PRIORITY for files in IS and OS areas, the job's priority; for other files, zeroes.

RF RF = 1 means resident foreground program if in FP area.

RF = 0 for all other files and areas.

LEN number of words in this directory entry.

GSIZE the granule size, in bytes; used for direct access.

RSIZE the number of bytes per logical record for UNBlOCKED and BLOCKED files.

FSIZE the number of records in the file if the file is not extended; the number of records in this extension
if it is extended.

:gi} the anta relative first and last sector of the file or extension.

XTNT the extent number indicating the position of this extent in the file. This word is zero if ~is is the
first or only extent of a file.

ESIZE the number of sectors to allocate to the next extension if file extension occurs. This word is zero
if the fi Ie is not to be extended.

ACCOUNT'
allocated.

the 8 character EBCDIC name, left justified and space filled, under which this file was

I

Address Contents Initial Value Length

RFTI File Name 0 ~ubleword

RFT2 8eginning Sector Address (Relative to crea) X Word

RFT3 Ending Sector Address (Relative to area) X Word

RFT4 Granule size (in bytes) X Halfword

RFT5 Record size (in bytes) X Halfword

RFT6 File Size (in records for sequential access files; in X Word
granules for direct access files)

RFT7 Switches X Byte

where

Bit 0 = 1 means sequentially wriHen
Bit 1 = J means directly written
Bit 3 = J means extents are fixed in size
Bit 6 = 1 means compressed
Bit 7 = J means blocked

RFT8 Master Dictionary Inc/ex X Byte

RFT9 Job Identification X Byte

RFT10 Blocking Buffer Position (in bytes) X Halfword

RFTIl Fil e Position (in sectors) X Word

RFT12 Current Record Number X Word

RFT13 Number of Open DCBs (total) X Byte

RFTJ4 If RFT17 is nonzero, this entry identifies the job that X Byte
obtained the blocking buffer

RFT15 Number of OPEN background DCBs X Byte

RFT16 Status (bit 0 on for sequential write, bit 1 on for direct X Byte
access write)

RFT17 Blocking Buffer Control Word Address X Word

RFTEH Number of current extent (extensible files only) 0 Halfword

RFTESZ Number of sectors per extent. Derived from extent size 0 Word
9 iven when fi Ie was alioHed.

RFTACNT EBCDIC disk file account name X Doubleword

The RR' is also used to maintain data controlling access to a tope drive open In blocked mode. The data in an
RFT entry used for blocked tape is described in Table 2A. It is deliberately similar to that mointained for a
blocked file, so that common processing is more frequently possible.

101

Table 3. RAD FII. Tabl. Allocation for a Block Tape

Address Contontrol

RFT1 The device name as in OCT16:

• Nl yyndd'

RFT2 (not used)

RFT3 (not used)

RFT4 Size in bytes of current block on input

RFT5 logical record size in bytes

RFT6 (not used)

RFT7 Switches, where I

Bits 0,1 = 10 always (indicates sequential use)

Bit 6 = 1 means compressed

Bit 7 = 1 means blocked

RFT8 OCT index for drive

RFT9 Job 10 (maintained but not used)

RFT10 Blocking buffer position in bytes

RFTll (not used)

RFT12 Current record number (maintained but not used)

RFT13 Number of open OCBs (total)

RFT14 Job 10 of fob which obtained the current blocking buffer

RFT15 Number of open background OCBs (maintoined but not used)

RFT16 Bit 0 = 1 indicates the tape has been written since it was opened.

RFT17 Blocking buffer control word address

RFT' (not used)

RFTSZ (not used)

RFTACNT (not used)

-
Device Cantral Table (DCT)

OCT Format

The Device Control Table (OCT) is composed of several parallel subtobles (see Table 4). The various entries
associated with a given device are occessed using the OCT index of the device and addressing the tables
OCT1 through OCT19. For example OCT1 would be accessed by

LHR,R OCTl,X

OCT2 would be accessed by

LB,R OCT2,X

where Register X contains the OCT index value for the device.

102

Subtable
Address

Dcn

ocnp

DcnA

DCT2

OCT3

DCT4

OCT5

Tabl OCT Subtabl. Fonnats

Contents

Active Vo address for device

I Primary (P) device address 10-01 lOP 101 Device

0 23 789
Alternate (A) device address

Channel Information Table Index - A pointer to the CIT entry for the
channel associated with the device.

Bit 0 = 1 means output is legal for this device.

Bit 1 = 1 means input is legal for this device.

Bit 2 = 1 means device has been marked down and is inoperative.

Bit 3 = 1 means device timed out.

Bit" = 1 means SIO has failed.

Bit 5 = 1 means the VO has aborted.

Bits 6/7 = 00 - "Busy" both subchannels.

= 01 - Use the P subchannel only.

= 10 - Use the A lubchannel only.

= 11 - Use either subchannel.

Device Type

0= NO (JOEX)

1 = TY

2 = PR

3 = pp

4 =CR

5 = CP

6 = LP

7 = DC

8 = 9T

9 =7T

10 = CP (Low Cost)

11 = LP (Low Cost)

12 = DP (724V46,7270)

13 = PL

Status Switches

Bit 0 = device busy.

Bit 1 = waiting for cleanup.

Bit 2 = between inseparable operations.

Bit 3 = data being transferred.

14= DP

15 = Reserved

16 = 9T (550)

17 = Reserved

18 = Special user devices

19 = LD

Length

Halfword

I Halfword

15
Halfword

Byte

Byte

Byte

Byte

103

TobI.4. OCT Subtabl. Formats (cont.)

Subtable (

Address Contents Length

DCT5 Bit 4 = error message given (key-in pending).
(cont.)

Bit 5 = deferred S]O pending

Bit 6 = SIO was given while device was in manual mode.

Bit 7 = Unqueued 10EX on this device.

DeT6 Pointer to queue entry representing current request. Byte

DCT7 Command list doubleword address. Halfword

DeT8 Handler start oddress. Word
I

DCT9 Handler cleanup address. Word

DCTJO Device activity count (used for VO Service reentrance testing). Word

DClll Timeout wive (used to abort request when no interrupt occurs). Word

DCll2 AIO status (or end action control word for unqueued]OEX). Word

DCll3 TDV status. Doubleword

DCTJ4 STOPIO (background only) count. Byte

Dell 5 STOPIO (all system VO) count. Byte

DCll6 The five-character device name (e. g., CRA03) preceded by the three Doubleword
characters "ell".

DCll7 Retry function code (for error recovery) and continuation code. Halfword

DCT19 AIO conditi on codes. Byte

DCT20 TDV condition codes. Byte

DCT20A TIO condition codes. Byte

DCT21 TIO status. Ha/fword

DeTSDBUF Side-buffer address. Word

DCTMOD Device model number, EBCDIC. Word

DCTMODX Device model number, decimal. Ha/~rd

DeT'ERR Number of 1;0 errors. Word

DCT'IO Number of 1;0 starts. Word

DCTJIO Job 10 for reserved devices. Byte

104

Subtable
Address

DCTTJE

DCTSYMI

DCTSYM2

OCTSYM3

DCTRBM

Tabl.4. OCT Subtable Formats (cont.)

Contenn

T JE flags (see T JE Chapter)

Bit 0 = 1 means the device is on-line. Symbiont activity is to start when
possible, is active or is in a suspended state. The bit is set by
the Syyndd, I key-in or the output cooperative. The bit is reset
by the symbiont task when a IFIN card is read. The bit may also
by reset by a !JOB card if the Syyndd,l or Syyndd, T key-in is
in effect.

Bit 1 = 1 means the device is locked Out. Symbiont 1/0 will cease when the
current job has completed. If exclusive use of the device has been
obtained by the symbiont task, the device will be released.

The Syyndd,L key-in sets this bit. The Syyndd,l key-in will
reset the bit and start symbiont VO on the device.

Bit 2 = 1 means the same as bit 1 except that the device is removed from
use by the symbionts when the current job has completed if it
is not dedicated to symbionts.

The "T" bit is set by the Syyndd, T key-in. The Syyndd, I key-in
will reset the bit, acquire the device (if necessary), and start
symbiont 1/0 on the device.

Bit 3 = 1 means symbiont activity has been suspended on this device. The bit
is set by the Syyndd, S key-in. The C, B or R options of the Syyndd
key-in will reset the bit and restart symbiont 1/0 on the device.

Bit 4 = 1 means the device was dedicated to symbionts at SYSGEN. This bit
is set by SYSGEN and is never reset.

Bit 5 = 1 means the device is in use by symbionts. If the device is dedicated
to symbionts, the bit is set by SYSGEN and will not be reset. Other
wise the bit is set by the Syyndd, I key-in and reset by the symbiont
task if the "T" bit is set when the current symbiont file has completed.

Bit 6 = 1 means the current job is to be released. Symbiont activity for the
specified device will be terminated and associated symbiont files
will bedeleted.

Bit 7 = 1 means sove the current output file and terminate. What remains of
the file is returned to the output queue and the symbiont is locked
immediately. The entire file is saved if the symbiont device is not
in DO mode.

The address of a TSPACE block which contains the address of the context block
for a symbiont device.

This entry is zero if the device is not in use by symbionts.

Bit 7 = 1 means the operator has requested that on output symbiont file be
rewound (R) or backspaced (B).

Bit 0 = 1 means the device is being requested by the SYMBIONT task.

Bit 1 = 1 means the device is in use by the MEOlA task. When the device is
no longer needed by MEOlA, this bit will be reset if bit 0 is set.
This will allow the symbiont task to obtain the device.

length

Byte

Byte

-'

Word

Byte

lOS

106

Tabl. ·C OCT Subtable Fonncrb (cont.)
1

Subtable
Address Contents Length

DCTRBM Bit 2 = 1 means the device is in use by the symbiont task. When the device Byte
is no longer needed by SYMBIONTS, this bit will be reset If bit 3
Is _t. This will allow the MEDIA task to obtain the device.

Bit,3 = 1 means the device is being requested by the MEDIA task.

Bit 6 = 1 means OED DPndd,R key-in is in effect.

DCTCD The OCT index of a device which cannot be operated concurrently. Used Byte
only for 3243 devices thot share arm position mechanism.

OCTDISCI The disk type index. Used only for disk devices. This points to disk char- Byte
oc:teristics in the DISC tables.

OCTOCB Number of OCBs OPEN to this device. Byte

I

DCTRFT Nonzero only for a tape drive open in blocked mode. If OCTRFT = x '00' Byte
an RFT entry is not currently assigned. If OCTRF + JI, '80', it is the Index
of the RFT entry containing the blocking controls.

SYSGEN OCT Consideration

System Generation allocates the space for the OCT subtables. Initial values are defined for the following entries
(all other entries are initially zero):

DCll

DCllP

DCllA

DCT2

DCT3

DCT4

DCT7

DC1l4

DC1l5

DC1l6

DCTDEBUG

DCTSDBUG

DCTMOD

OCTMODX

OCTJID

OCTCD

AJ specified by :DEVICE command

AJ specified by :DEVICE and :CHAN commands.

AJ specified by :DEVICE and :CHAN commands.

As specified by :DEVICE and :CHAN commands.

AJ specified by :DEVICE command.

AJ specified by :DEVICE command.

Pointer to SYSGEN allocated space for command list.

1 if (DEDICATE, F); otherwise, zero.

1 if (DEDICATE, X); otherwise, zero.

"ED Ilyyndd" where yyndd comes from the :DEVICE command.

External interrupt location minum X'4F'. (Used for BREAK logic.)

Pointer to side buffer.

EBCDIC rnoi:Iel number.

Decimal madel number.

X'FF' if reserved device; otherwise, zero.

Initialized for adjacent 3243 devices.
.....

The index ° entry of each subtable is not used as a true table entry because of the nature of the BOR instruction.

OCT1, index 0, contains the number of non-TJE devices.

OCT7, index 0, contains the total number of devices including TJE devices.

DCT7 contains the OW address ofspace allocated by SYSGEN for the command list for each device. These areas are
on a doubleword boundary.

(

.ISC'
The DISC tables are a series of perallel subtables with an entry for each different disk type. They are built by
SYSGEN based on :DEVICE commands. The index value used with these tables is obtained from DCTDISCI.

Address

DISCNSPT
DlSCNWPS
DISCMAXS
DISCMINS
DISCSSFT
DISCTSFT
DISCCSFT
DlSCNTPC
DISCNCYL

Number of sectors per track
Number of words per sector
Last relative sector number
First relative sector number
Sector number shift to build seek address
Track number shift to build seek address
Cylinder number shift to build seek address
Number of tracks per cylinder
Number of cylinders total

CIIInnellnfDr_tiDn Tule (CIT)

Size

Byte
Halfword
Word
Word
Byte
Byte
Byte
Halfword
Halfword

The Channel Information Table consists of parallel subtables, each with an entry per channel. There Is one channel
per controller connected to a MIOP, and one channel per SlOP. The "channel" concept is used since there cannot
be more than one data transfer operation in process per channel. I/O device requests are queued on a per-channel
basis. System Generation allocates these subtables as shown below:

Address

CITl

CIT2

CIT3

CIT5

CIT6

Queue head

Queue tail

Switches:

Bit 0 - Subchannel P busy

Bit 1 - Subchannel A busy

Bit 2 - Subchannel P held

Bit 3 - Subchannel A held

Bit 4 - Dual-access channel

Bit 5 - Preferred channel (0 = P; 1 = A)

Holding Request Q pointer for subchannel P

Holding Request Q pointer for subchannel A

The CIT subtable entries are accessed by using

LB, R CITN, X

where Register X contains the index (l-N).

Size

Byte

Byte

Byte

Byte

Byte

The index 0 entry is not used because of the nature of the BDR instruction.

110 Queue Tlble (lOQ)

The I/O Queue Table consists of parallel subtables each with an entry per queue entry. These tables are accessed
in the same manner as OCT and CIT by using an index. As is true for OCT and CIT, the index 0 entry of each sub
table is not used as a true queue entry.

System Generation allocates and initializes the 10Q tables as given in Table 5.

107

108

Notice that IOQ2 index 0 il initialized by SYSGEN. Thll byte il used and maintained by the Vo l)IItem as the
"free entry pool" pointer •. By initializing IOQ2 as lhown. SYSGEN links all entri. Into this pool.

IOQ 1 index 0 is Initialized by SYSGEN to the maximum number of queue entries allowed to the backgrl)und.

IOQ3 index 0 is initialized to 0, since this byte is used and maintained by the VO l)IItem as the current number of
queue entries in use by background. 1004 (index 0) is the total number of 100 entries.

Table S. 100 Allocation and Initialization

Address Contents Initial Value Length

lool Backward Link 0 Byte

1002 Forward Li nk Entry M contains M + 1 for Byte;
N >M ~ O. Entry N contains O.
N is the number of queue entries.

1003 Switches 0 Byte

Bit 0 = 1 - request busy.

Bit = 5-7:

= 000 - Both subchannels required.

= 001 - Subchannel P only.

= 010 - Subchannel A only.

= 100 - Use either subchannel.

1004 Function Code (:DOT table index) 0 Byte

1005 Current Function Step 0 Byte

1007 Device Index 0 Byte

1008 Bits 0, 1 = 0 - byte address of 0 Word
buffer.

Bi t 0 = 1 - OW address of a data
chain.

Bi t 1 = 1 - OW address of command
chain (Queued IOEX).

~

1009 IOOB bits 0, 1 =0- Byte count of buffer • 0 Halfword

Iooa bit 0 = 1- number of DWs in
data chain.

o •

1008 bit 1 = 1 - timeout value for
command chain.

Table 5: 100 Allocation and initialization (cont.)

Address Contents Initial Value Length

10010 Maxi mum retry Count 0 Byte

10011 Retry Count 0 Byte

10012 Seek Address 0 Word

10013 End-Action data 0 Doubleword

Word 1

Byte 0 is cleanup code where value:

1 = Post status in FPT.
I

2 = Post status in DCB.

3 = Transfer to address specified
in bits 15 - 31.

4 = No end action (only available
to the monitor).

Bit 8 = control device read.

Bit 9 = end action data in word 2.

(.
Bits 15-31 = FPT completion-status
word address for cleanup-cade 1;
DCB address for cleanup-code 2.

Word 2

If word 2 = 0, parameter not present.

If byte 0 = X'7F', bits 15-31 are
user's signal address.

If byte 0 = X'FF', bits 15-31 are
user's endaction address.

If word 2/0, and byte 01 X'FF' or
X'7F', byte 0 = end-action interrupt
group code, byte 1 = interrupt address
X'4F', bits 15-31 contain level bit
for interrupt.

10014 Priority 0 Byte:

}ooECB ECB Pointer 0 Word

looERROR Error-Jog buffer pointer 0 Word

109

110

Since the Oth ... try is never used In subtabl. whose ... tlr. are words or doubIewords, It is not necessary to allocate
space for this entry. If the 2N words for 10013 are allocated beginning at location ALPHA, 10013 is 9ive~ value
ALPHA-2. Thus, 10013 may actually point into another table but presents no problem because 10013 wiU never
be accessed with index O.

It should be noted that none of the subtables need be positioned in any particular relationship to each other. They
may be allocated anywhere in core with the restriction that Doubleword Tabels being on doubleword boundaries.

Blocking buffers are 256-word buffers that are directly accessible only by the monitor. They are primarily used for
blocked and compressed file VO and for accessing file directories in OPEN/CLOSE service calls.

Each blocking buffer pool is controlled by means of a Blocking Buffer Control Word Table (BBCWT) that contains a
one-word entry for each blocking buffer. The BBCWT has the format shown below.

Each entry is of the form

RFT

o

where

Number of blocking buffers

7 8 9 14 15

Blocking buffer stort
address

Blocking buffer 1 entry

Blocking buffer 2 entry

Blocking Buffer n entry

31

RFT is the index of the RFT entry for the file currently using this buffer. 0 signifies that the buffer ~ not
in use. X'FF' means the buffer is in use, but not by any particular file.

W is set if the blocking buffer has been written in.

Primary and secandary tasks are kept in different blocking buffer pools and, therefore, have different BBCW tables.
K:FPOOL contains a real address pointer to the BBCW table used by all primary tasks in the system. The number and

location of blocking buffers available to primary tasks Is determined at SYSGEN by the FFPOOL parameter and
camot be changed except by SYSGEN. The primary-task blocking buffer structure Is shown below:

K:FPOOL- N

Entry -,

Entry 2

Entry N

Blocking
buffer'

Blocking
buffer 2

Blocking
buffer n

BBCWT

In addition, a maximum of twelve pages will be made available to each job for blocking buffers from the
job's Reserved Pages. Secondary tasks will be allocated blocking buffers from these pages as they are needed.
The BBCW table is kept in the job's JCB and is constructed and maintained as blocking buffers are required

- and released.

Muter Dictio .. ry

The Wlaster Dictionary contains all the information needed to define an crea for use by the s)'Stem. It consists of six
parallel subtables which are allocated and initialized by SYSGEN from information given by the :RESERVE and
:DEVICE commands.

111

112

The entries for an CINCIGre ace_eel by the aNa Index. This Index COirJlFCnds to the position of the area's nmne in"
the MDNAME table. The tabl. are:

Subtable Name Contents length

MONAME The two EBCDIC character name of the area. Halfword

MDFLAG Control flags IA~RIRIRI wp I Byte

0 1 2 3 4 5 6 7
where:

A 1 means the area is defined and allocated.
R Reserved.
wp The write protection assigned to the area.

0 p Public (no protection)
1 B Background
2 F Foreground
3 S System only without "SY" keyin
5 X 10EX

MDDCTI The index to the OCT table for the device on which the area resides. Byte

MDBOA The start sector addr .. of the area relative to sector zero of the disk. Word

MDEOA The end sector address of the area relative to sector zero of the disk. Word

MDDISCI The index to the DISC table for the device on which the area resides. Byte

"MOVSN I The Volume Serial Number of the dispack if the area is on a Double-
-

I pri vote pack. word

The Master Dictionary is accessable to user programs through the following K: cells:

Name Location Contents

K:MDNAME X'212' Address of MDNAME table. Byte 0 contains the number of entries allocated
in the tables.

K:MASTD X'I4A' Addr .. of MDFLAG table.

K:MDBOA X'218' Address of MDBOA table.

K:MDEOA X'219' Address of MDEOA table.

K:MDOCTI X'21A' Address of MDDCTJ table.

K:NUMDA X'14B' The highest valid index for the Dictionary.

A SCITIple of a I-h:Jster Dictionary created by a SYSGEN in which the stcrldard areas SP, FP, ••• , 01, plus data
areas 02 and 03 symbiont areas IS crld OS, crld three user defined areas were specified as:

Index ~ ---0 SP
1 FP
2 BP
3 BT .. XA
5 CK
6 01

7 02
8 03

9 IS
10 OS

11 Ul
12 U2
13 U3

MDFLAG

A wp = 3 (System)
A wp =3
A wp =3
A wp = 1 (Background)
A wp =5 (IOEX)
A wp =3
A wp = 1

A wp = 2 (Foreground)
A wp = 0 (Publ ic)

A wp = I}
A wp = 1

A
wp =01

A wp =0
A wp = 1

Comments

Fixed areas

IS and OS symbiont areas

....
....

User defined area nmnes specified during
SYSGEN

I

(

.......... l.IIIII T (OPLBS)

The Operational Label table is a parallel table with the brmat

OPLBSI Z I Z holfword

0 78 15

where ZZ is the operational label in EBCDIC

OPLBS2 I y I Byte

0 7

where Y is the OCT or RFT index of the permanent assignment (bit 0 = 0 if OCT index; bit 0 = 1 if RFT index).
There is an OPLBS2 table for each active job, which is accessed by an address pointer in the associated job's JCB.
The OPLBS2 table for the C P-R job contains the permanent assignment of each operational label. When a new job
is activated, the OPL8S2 table it receives is a copy of the OPL8S2 table for the CP-R job at that time. The number
of entries in OPLBS is in the first holfword of OPLBS 1.

OVLOAD T (for CP-R Owrlll" Only)

The OVLOAO Table is a parallel table with the fermat

OVLOAOI Byte Size of Overlay halfword

0 15

OVLOAD2 I Z Z Z Z word

0 31

where ZZZZ = first four characters of name of overlay in EBCDIC

OVLOAD3 I Granule Number I byte

o 7

where the specified Granule Number is in the file CP-R.

The number of entries in OVLOAD is in first halfwerd of OVLOADI.

Write Lock T .. le (WLOCK)

WLOCK contains write locks for the current core allocation. The table contains one entry for each real page of
memory.

WLOCK +0

+1

+2

16

WL WL • . .
WL WL . . .

wLlwL

01234

I No. entries for allocated core

I

-' 1516 31

113

114

c •. , I8wI II: I ,(aU)

ROUPRJO Priority

0 7

ROLISTI I STI Index I
0 7

ROLITCB I STI Index I TCB Address I
0 78 31

ROLIAOO I ROL Interrupt location I
0 15

ROLlLVLl Level Bits (ROL)

0 15

ROLlGRPl 000101 lJOOOO I Group I
0 15

ROLlLVL2 Level Bits (STL) Zero if null

0 15

ROLlGRP2 I 000101 llOOOO I GRP I Zero if null

0 15

where

RDLIPRIO is the priority, in internal byte format, to which ROL is connected. This is the ROL inter-
rupt location X'4F'. Entry 0 of ROLIPRIO is O. Priority is set by SYSGEN and is nat altered dur
ing execution.

ROLISTJ Is the task 10 of the highest priority task operating within the level. Entry zero contains the over-
all STI head of the dispatcher chain. Each subsequent entry contains the subchain head that enters the
dispatcher chain at the first task within the level. All entries are set to the fint permoraent CP-R task
STI by SYSGEN.

ROLITCB is the STI index and TC B address for the dispatcher level.

ROLJAOO is the core address of the ROL interrupt location in which to store the XPSD. It is set by SYSGEN
and is not.altered during execution. ROLIAOO entry 0 contains the number of ROll entries.

ROLlLVLl are the level bits for the ROL to be used on Write Direct commands.

ROLlGRPl is the address field for a Write Direct interrupt control to trigger the ROL, including the trigger
and group codes.

ROLlLVL2, ROLlGRP2 are the level and group codes to trigger STL in the same format as ROLlLVLl and
ROLlGRP1. All level and group codes are set by SYSGEN and are not altered during execution.

'((Ifni .. E.....- TIItIe (AEl)

Purpose

The AET provides a record of the enqueues done for controlled items by system services. It is used in conjunction
with the Enqueue Definition table to control access to enqueued Items.

Serial in the JCB or linked from the JCB depending on space requirements for lob level ENOs. For task level ENQs
linked from the lMI. Low-memory cell K:JAET contains the number of nansharable devices in the Device Control
table. This is used as the default number of AfT entries allowed.

logical Access

The AET is located via a pointer in a fixed position in the JCB or through a pointer in the LMI. Byte zero of the
pointer word contains the ,."mber of words in AET.

.'

Overview of Usage

The job level AET table may be included in the JCB fixed portion or may be acquired separately from TSPACE and
linked from the JCB depending on space requirements at tne time the JCB is created. The task level AfT is acquired
from TSPACE at task initiation and is linked from the lMI. Byte zero of the pointer word contains the number of
words in the AET and bytes 1-3 contain the real address of the start of the table.

At task or job tennination, a flag in the JCB will indicate which usage applies and will release space appropriately.

Associative Enqueue Table (AED Format

word 0 I Flags)8 0

EDT Address

31

word 1 Job ID I
0 78

ECB Address

31

where

Flags: bit 0 = 1 Job level AET
=0 Task level AET

bit 1 = 1 System level EDT
=0 Job level EDT

bit 2 = 1 ECB is for immediate enqueue
=0 ECB is for an asynchronous enqueue

bit 3 = 1 Sharable enqueue
=0 Exclusive enqueue

bit 4 = 1 Enqueue granted '"'
=0 Enqueue pendi ng

bit 5 = 1 AET entry in use
=0 AET entry free

bit 6 = 1 Oequeue CAL in progress

bit 7 = 1 Enqueue CAL in progress

115

116

ECB Address ~ location of the ECB created to wait for an ENQ. At check time, this address is set to
zero. ENQ is set to I if the post il normal. The AET is freed if the post is not normal.

EDT Address The location of the EDT of the controlled item which was enqueued.

Job 10 The identification of the job in which the item was enqueued.

Ru' .. ~ Plrtition T (RMPT)

Purpose

The RMPT is used to describe and control all real memory resources. It contains one entry for each defined memory
partition.

Serial consecutive doubleword entries in CP-R table space.

Logical Access

The RMPT is painted to by the system pointer K:RMPT. The RMPT starts on a doubleword boundary. The number
of entries in the RMPT is contained in byte 0 of K:RMPT. The index 0 entry is not used as a table entry.

Overview of Usage

The RMPT space is allocated, and partition entries are initially set by SYSGEN.

Real Memory Partition Table (RMPT) Format

0 0 Partition FWA Doubleword

0 0 Partition LWA

o 78 31

where Partition PNA and LWA define the real address limits of the partition.

PII1ition Plinter T (PPT)

Purpose

Describes Partition attributes and points to Partition Control Tables.

Serial consecutive word entries in CP-R table space. Parallel to RMPT.

Logical Access

The PPT is pointed to from K:PPT. Entries are located by index correspondence to an entry in the RMPT. Alter
natively, a search can be made on the type field of the flag byte to identify a particular partition type. The number
of table entries is contained in byte 0 of K:RMPT. The index 0 entry is not used as a true entry.

Overview of Usage

The PPT is accessed each time a request for memory in a preferred partition is made. Additionally this table in
conjunction with the RMPT is used to verify that primary load modules wi II be loaded into Foreground Private Partitions.

Partition Pointer Table (PPT) Format

I Flog Value I PeT oddress I Word
~O--~3~4~--~7+8~--------------------------~31

where

Flag contains control information as follows:

Bits

o 123

x x x 0 = perferred partition is no STM mode.
x x x 1 = preferred partition is STM mode.

Value indicates the type of partition according to values as follows:

o - System (not allocatable)
1 - Private
2 - Foreground mailbox
3 - Foreground blocking buffers
4 - Preferred
5 - Secondary Task ~mory
6 - 15 - Not used

PCT address
aPCT.

is the oddress of the partition's control table. It has a 0 value if the partition does not have

PlrtitiGn C8ntn1 Tlble (peT)

Purpose

The PCT serves as a repository of information used in controlling allocation and access into Foreground Preferred
and STM Memory Partition. One PCT exists for each of these defined memory partitions. The PCT also contains
chain headers for controlling free pages in Secondary Task Memory (STM).

Type

Serial table located in CP-R table space.

Logical Access

Each PCT table is pointed to from the Partition Pointer Table (PPT). Information in the PCT identifies the pages in
the partition that have been allocated and those that are free, or points to chain headers that control STM.

Overview of Usage

The PCT is allocated by SYSGEN based on the "size" parameter on the PMEM option of the :RESERVE Command.
The STM chain headers are filled in at system boot time when the free pages are established.

Partition Control Table (PCT) Format

The PCT has one of two formats. If the PCT contains an STM chain header, the format is

WOld 0

Word 1

o

Chain Head, Free Pages

Number of Free Pages

31

117

118

otherwise, the PeT has the format

Wcwd

o No. pages 0 01 Start page

NOP
~------ - -AWM.RO- - -- - - ---

MMTPAGES

where

2

3

..
5

3+n

.. ~

o

Page allocation map

Flags Page 1 locator

Flags Page 2 locator

Flags Page n locator

78 2324

No. pages is a count of the number of pages in the partition. Set by SYSGEN.

Start page is the page address of the start of this partition. Set by SYSGEN.

Word 1 is an instruction used to maintain the total number of free .pages.

Words 2 and 3

.. ~

31

Page allocation map is a doubleword bit table used to indicate the availability of a given page in this par-
tition. A value of 0 indicates that the page is available, a value of 1, that the page has beenallocated.
Bit 0 represenh the first page in the partition, bit 1 the second page, etc.

This entry is initial ized to all zeros by SYSGEN.

Words .. through (3 + n)

Page locator flags:

Bit 0 - al~ys o.
Bit 1 - (piS) set to 1 if this page acquired by primary task; set to 0 if secondary task.

'"' Bit 2 - (S) set to 1 if memory management is swapping this page for some other real page; set to o-ifswap-
ping is not in progress.

Bit 3 - (STM) set to 1 if the page has been released to secondary Task Management; 0 if not.

Bih 4-7 - Unused.

Page locator if PIS (bit l)is 0, this is the real wordaddressofthesegmentdescriptorwhere this poge isalloca-
ted. If Pis is 1, this is the LMI index of the primary load module that acquired this page. These entries are
used by memory management in swapping real pages and by task termination when freeing real memory.

110 T (lOLOCK)

Purpose

The table maintains a count of the number of ongoing I/O activities in each page of real memory. It is used by
Memory Management to prevent roll-out of I/O active pages.

Serial consecutive entries in CP-R table space.

Logical Access

The location of IOlOCK is established by SYSGEN via DEF. The Real Memory Page Number is used as an index
to find the corresponding lock entry.

Overview of Usage

The 10lOCK table, created by SYSGEN, reserves sufficient space to accommodate n one-byte entries, where n is
the number of real memory pages specified on the CORE option of the :MONITOR Command.

Prior to calling IOCS, File Management increments by 1 the IOlOCK entry that corresponds to the real page(s)
that will be effected by the I/O operation. At POST time the entry will be decremented by 1.

Prior to rolling out a segment Memory Management inspects the 10lOCK table so as nat to roll out those pages
with ongoing I/O activity.

I/O lock Table (IOlOCK) Format

Page 0 Page 1 Page 2 Page 3

Page 4 Page 5 Page 6 Page 7

Page 8 Page 9 Page 10 Page 11

Page 12 Page 13 Page 14 Page 15

.. >- ~

Page n-ll Page n-l0 Page n-9 Page n-8

Page n-7 Page n-6 Page n-5 Page n-4

Page n-3 Page n-2 Page n-l Page n

where n is the number of real memory pages.

TIIk-Controiled T

The tables shown in the subsection are task controlled, i. e., contain task related data. Agure 44 shows the over
all relationship of the task-controlled tables and data.

119

120

PC.POINT

PCB
Flags

N CAL Lac 1-1 CC'

Interrupt LOC hi-r--:::--"l

1 STI

Task entry

K:RTS

K:EOT
LI _____ ~etc.

K:SOT
LI ____ ~etc.

RMPT

1 OVI

LMI

Load
module
entry

ROll
(CP-R

r----...... Oi spotcher
level Inventory)

SOT's

etc.

(Real Memory
Partition Table)

---+- - - - ;--~~--------t

IT>
E>
~

Interrvpt loc

CAL trap loe

PPT
Partition
Pointer
Table

Address of PCB

PCT's

8>
E>
0>

SJI

Job entry

Address of STCB &>
STI index (Task 10) [e!>
SJI index (Job 10) [l?>

'on an arrow indicates an entry ather than the one shown

Figure 44. Relationship of Task Controlled Data

'--___J

...-
LMI index (load ModuI .. ID)

LMI index (Publib 10)

JCB Address

I

•
...... ,(LMU

LMIMAXR (LMJ9) entry 0 contains the number of entries in the LMI tables.

Usase for a Pr~ram lJsa!i!e far a PUB LIB

LMINAME (LMI1) ~Ooubleword)

I
Load module

I name

0 31

I
Publib

name

0 31

I ,

LMIPCB, LMIFWA (LMI2) (Ward)

I Flags)8 PC B Address/fwa I
0 31

1
0 ;18 fwe

0 31

LMIJID, LMILWA (LMI3) (Word)

I Job 10)8 lwe I
0 31

10 • 0
1

lwe

0 78 31

LMIPL, LMICTXT (LMI4) (Word)

I PLl)8 PL2

J16
PL3

23L
PL4 I

0 31

10 0
1

0 31

LMISTA T (LMIS) (Halfword)

I Flags I
0 IS

Flags
1
0 0

1
0 78 IS

LMISOT (LMI6) (Ward)

I Task 10)~ 01
0 31

1
0 0

1
0 31

121

I

lhage for a P,agram Utage for a PUBLIB

LMIRTS (LMI7) (Ooubleword)

1

RTS Stack Control OW

I
- I

.).6 0 31

I: :1
0 31

LMlMAXS (LMI8) (Byte)

I S-ECB I
0 7

1
0 01
0 7

LMlMAXR, LMIUSE (LMI9) (Byte)

I R-ECB I
0 7

Users

0 7
LMIAET (Word)

I AETS)8 AET Address I
0 31

1
0 0\
0 31

LMISECB (Word)

I Count J8 S-ECB Heod I
0 31

1
0 01
0 31

LMIRECB (Word)

I Count)8 R-ECB Head \
0 31

\

1
0 01
0 31

LMIRFT (Word) '"'

I Size)8 Address of File Activity Table I 0 31

1
0 01
0 31

122

LMINAME (LMl1)

For user load modules - Task Name: User load module name, as received on the INIT or RUN call.

For Publibs - Publib Name: The file name of the Publib load maclule. The task or Publib name is stored by task
ini.iation and remains unaltered during task execution.

LMIPCB, lMIFWA (lMI2)

Flags:

Bit Meaning if Set (1)

0 Task has CP-R priveleges

1 Task is background

2 Task is secondary

3 Task is mapped

4-6 Not used /

7 Task is running with DEBUG

PCB Address/fwa:

For user load modules - PCB Address: The location of the load module's PCB. This is also the first word address of
the load module. The PCB address is stored by task initialization and remains unaltered during the task's execution.
When central CONNECTs are requested to a primary load module, the PCB address and flags in the lMl entry are
used for the TCB. The fwa is used for memory management during later task loads.

For Publibs - fwa: The first word address of the Publib load module. Fwa is set by task initiation when the Publib
is loaded and remains unaltered during the Publib life.

lMlJID, lMIlWA (lMI3)

For primary load modules-Job 10: The identification ofthe job to which the load module belongs; alsothe index of the
job's entry in SJI. load modules can only exist once within a job. This value is set by task initiation and remains
unaltered during task execution.

For bath User and Publib load Modules - lwa: The last location used. The lwa is set by task initiation and remains
unaltered during task execution. It is used to manage memory during later task loads.

LMlPl, lMlCTXT-(lMI4)

Forprimaryloadmodules-PLl, PL2, Pl3, and Pl4: These bytes each contain a load module 10 (index into lMI) of
the Publibs being used by the load module. A zero indicates that the byte is not used. They are set by task initia
tion, remain unaltered during task execution, and are used by task termination to decrement Publib use counts and
eventually release Publ ibs.

LMl STAT (lMl5)

Status Flags:

Bit Meaning if Set (1)

o Termination has begun (TTFINAl entered).

Connected to CAl2.

2 Connected to CAl3.

3 Connected to CAl4.

I

123

124

Bit Meaning if Set (1)

4 Background foad module.

5 Secondary (dispatcher scheduled) load module.

6 Abnormal termination requested.

7 For· a module being loaded, load was requested by INIT, not RUN.

S Load module is being loaded.

9 PUBLIB that may be used by primary tasks.

10 PUBLIB that may be used by secondary tasks.

11 Termination (normal or not) requested.

12 Control "Y" sequence to be performed.

13 Load module that is running.

14 Primary load module that is waiting for memory to load (Run queued).

15 Break has occurred.

LMISOT (LMI6)

For user load modules - Task JD: STJ index for the secondary tasks; otherwise, zero.

LMIRTS (LMI7)

For user load modules - RTS Stack Control OW: The stack control doubleword for the load module's CP-R temp
stack. Set up during loading, from information in the load module header. Used as a stack control doubleword by
monitor services executing in the task's context. Accessed indirectly through K:RTS for dispatched and centrally
connected tasks.

LMIMAXS (LMIS)

For user load modules - S-ECB: The maximum number of solicited ECBs to allow any single task running in the load
module to have simultaneously. This is set at task initiation from the program header. As new S-ECBs are created,
and the current S-EC B count incremented, it is compared to this I imit and the load module aborted if the maximum
is exceeded.

LMIMAXR (LMI9)

For user load modules - R-ECB: The maximum number of request ECBs to allow any single task running in the load
module to queue. Used as S-ECB maximum above.

LMlAET

AETS (byte 0): The length of the Associative Enqueue Table, in entries.

AET Address: The first word address of the Associative &lqueue Table for job level controlled items. The AET
space is reserved as each load module is initialized. &laugh space is acquired to hold the maximum number of
ENQs as specified in the task's load module header. This control word does not change during task executions.
At task termination, the AET space is released.

LMISECB

Count (byte 0): Current count of the number of ECBs in the solicited ECB chain.
.

S-ECB chain head: Address of the oldest solicited ECB in the S-chain. When a load module is initially loaded,
the solicited ECB chain is empty. As service requests are mode which createS-ECBs, they are cdded to the S-chain,
and the count is incremented. If the current count exceeds the maximum allowed as specified in LMIMAXS, ex
ecution of all the tasks in the load module is immediately suspended ~rimary tasks are discounnected), and the
load module is abnormally terminated. As services are checked, the S-ECB is de-linked from the chain and the
count is decremented.

LMIRECB

Count (byte 0): Current count of the number of ECBs in the request ECB chain.

R-ECB chain heod: Address of the highest-priority request ECB in the R-chain. When a load module is initially
loaded, the request ECB chain is empty. As service requests are made of the load module (signals if user load
module), they are added to the request chain in priority sequence, with the last request being placed at the end
of its priority group. The current R-ECB count is incremented and compared to the maximum al lowed in LMlMAXR.
If it is greoter, all member tasks are suspended and the load module is abnormally terminated. As the R-ECBs are
posted by the R-task, they are del inked from the R-chain and the current count is decremented.:

Size: Size of the File Activity Table (in words)

Address of File Activity Table: Address of a byte table in TSPACE which is parallel to the RFTandcontainsthesame
number of entries as the RFT. The table is used to maintain the number of DCBs open to disk files by a particular
load module.

System TIIIt hMntary (STI)

Purpose

The System Task Inventory is the key to all controls for tasks. It contains an entry for all primary and secondary,
user and CP-R tasks currently defined. For each task, it contains the identification ofthe task's job and load module,
priority, and linkage to other control blocks.

Type

Parallel in CP-R Table Space

Logical Access

An STI entry is addressed using the task 10 as an STI index into eoch of the parallel subtables.

If a task is in execution, the task 10 is in byte 0 of TCB POINT.

If a task is not in execution and the task lD is not known, then:

Primary tasks can be uniquely identified by a search for equality on the interrupt priority to which they are
connected.

Secondary tasks must be located by searching the LMI for a task name/job 10 match. The LMISDT CQI'ltains the
secondary task lD. ...

Overview of Usage

The STl fable space is allocated by SYSGEN, reserving enough entries in each subtable to satisfy the TASKS option
on the :RESERVE command, plus a fixed number for internal CP-R tasks. The CP-R task entries are initally set by
SYSGEN/IPL. The user entries are all zero.

125

STIlMIO entry 0 contains the number of entri. In the STI tables.

STISPCE Length

J8
Link to first temp space area

0 31

STIXRTS Interrupted tasks K:RTS pointer

0 31

0 31

I
K:RTS of last CAL

I for nested CALs

STIRTSB

32 63

STUID SJI index

0 7

STILMID LMi index

0 7

STIPRIO

ST:TCB H~ I~ I~I ~1~1!1~! TCB/STCB Address I
0123~5678 31

STIOVlD I~I~ I Active OVID

0 2 15

STICOUNT
Wait
count

0 7

STITIME Critical timeout threshold

0 31

STISTAT

STIDNXT I Disp. chain I
0 7

STIRNXT I Roll-out chain I
0 7 ""
I TIme Ticks I "" STITICK

0 15

STlQMIN I Time Quantum I
0 7

126

(

STIQMAX

5TJQSWAP

STISPCE

I Time Quantum I
o 7

I Time Quantum I
o 7

Head of the TSPACE chain. The chain represents all of the temp space that has been obtained by the task.

STIXRTS

location in which the task's RTS pointer is SQved when interrupted by a higher-priority centrally conne,cted task.

mRTSB

RTS Control Doubleword at the last entry to a CAL 1 processor. This address is the STIRTS value after CAL 1 entry
has stored the caller's RO-R15, PSD and context. It is used by the monitor to quickly locate the register values for
effective address resolution or error value setting, and by CAll EXIT to ignore residual data in RTS. STIRTSB is set
to 0 at task initiation and should always be 0 except when the task is within CAL 1 processing.

STIJID

Identification of the job to which the task belongs, and index into the SJI. This is set when the task is defined,
and is not altered during execution.

STILMID

Identification of the load module to which the task belongs, and index into the LMI. This is set when the task is
defined, and is not altered during execution.

STIPRIO

Priorities (bits 0 - 15):

If the task is primary:

Byte 0 is the address corresponding to the interrupt level, -X'4F'; byte 1 = X'OO'.

If the task is secondary:

Byte 0 is the address -X'4F' of the CP-R dispatcher level at which the task is dispatched and executed.
Byte 1 is the software priority within the dispatcher level (X '01' through X'FF', where X'FE' = control
task and X'FF' = background). ---

....
This value is set when the task is defined. If the task is secondary, it will be altered as the task's priority is altered
by MODIFY calls or internal CP-R priority-changing logic.

START (start pending on task):

The secondary task has been STARTed, and the start has not been honored. This bit is set by the START CAL
processor and reset by the dispatcher when it causes the reversing of the STOP bit in STISTA T.

127

ALT (Dispatch using the alternate PSD):

The secondary task will be dispatched using an alternate PSD the next time. The current PSD will be found
in the Alternate PSD after dispatch and Alt will be reset.

DSO (Dispatcher Skip Override):

The task is in a CAl processor modifying a shared segment marked OS (Dispatcher Skip). This value, if non
zero, prevents rollout of the task sa that the CAl processor con complete the service while holding up other
users of the shared segment.

RDUDX (RDU index): Dispatcher ID.

~ST1TCB

128

Used bit (bit J) = 1 if entry is being used.
= 0 if entry is free.

TlNP bit (bit 2) = 0 if task is not waiting for terminal input.
1 if task is waiting for terminal input.

LW bit (bit 3) 1 if task is in a long_ait.
= 0 if task is not waiting or is in a normal wait.

Lock bit (bit 4) = 1 if task has locked itself in memory.

CA (bit 5) = 1 if the task is to be chained after its priority group when returning to the dispatcher.
= 0 if the task is to be placed at the beginning of its priority group. CA is reset to 0 on every

requeue.

Term (bit 6) = 1 if the task is executing in the Task Termination phase.

Block (bit 7) = 1 if the task has executed a non-VO service with wait (including STOP).

TCB/STCB address is TCB real address if task is primary STCB 1-1 address if task is secondary.

Task initiation and CONNECT acquire STI entries and store the TCB address or STCB address. These fields are con
stant throughout the task's life. The remaining indicator bits are initialized to zero and are modified during execu
tion by service calls. Task termination resets STlTCB to zero, releasing all task control information.

mOVID

ACT bit = 1 if the overlay is active.

PEN bit = 1 if the overlay is being read from the disk.

Active OVID is the index into the Monitor Overlay Inventory.

ITICOUIT

Wait count: The number of EC85 in the S-ECB chain, which must be posted prior to the task leaving the..,y.oait state.
Only EC 85 with the WD (Wait Decrement) bit set wi II decrement the wait count at posting time. If the ~it count
is nonzero, the task is roadblocked. STICOUNT is zeroed at task initialization, is set nonzero by the CALs that
couse waits and task termination, and is decremented by the ECB posting logic.

STmME

Critical Timeout Threshold: When placing any task into a roadblocked or wait state, the ECBs being checked
(WD = 1) are scanned and the most critical time threshold is extracted and placed in STITIME. On subsequent

I

\

timeout passes, the threshold is compared to the yoI~ of K:UTIME to detect timeouts. If a timeout has occurred,
the ECB chain is scanned again to locate any or all timed-out events, and the pasting is done with a completion
code of X'67'. If wait count is still not zero, the setting of the critical time is repeated.

~ISTAT

Status flags that inhibit dispatching of the task, as described below.

The dispatcher examines the status of all tasks in the dispatch chain. If the content is nonzero, the task is con
sidered ineligible for dispatching.

Primary tasks always have a status of X'80', as set by CONNECT. Secondary tasks will have an initial status of
X'OO' or X'20'. The secondary task status bits are altered during execution as described below:

Status Bit

Primary o

Rolled Out

Stopped 2

In execution 3

In initialization 4

Suspended 5

Slice 6

Swapped 7

STIDNXT

Connect CAL

Rail-Out

STOP, EXIT task initiation
without execution

Dispatcher when dispatching,
loading PSD and registers

Task initiation

WAIT CAL

Task initiation

Memory Management

Reset by

Task Termination

Roll-In

START, task initiation with execution

Dispatcher when returning PSD and registers

Task initiation

Any event affecting task status

Task termination

Dispatcher

Dispatcher Chain - the STI index of the next task in the dispatch chain. Entry 0 contains the chain heod to the
highest priority task in the system, primary or secondary.

This chain continues through all tasks in the system. It is used by the dispatcher to locate the next secondary task
to execute and the timeout routines to locate those primary services that need timeout.

As each task is created, it is added to the dispatcher chain and remains as a member of the chain unti I termination.
Its position within the chain is changed as it changes priority or enters a wait state. A value of X'OO' is the
end of the chain.

STIRNXl

Roll-out Chain - the STI index of the next task in the roll-out chain. Entry 0 is the head of the roll-out chain and
contains the first task to be rolled-out. The chain continues through all tasks until the highest priority Ndk, which
is the last task to be rolled out. A value of X'OO' is the end of the chain.

The chain is strictly in order of priority. As eoch task is created, it is added to the roll-out chain and remains as
a member of the chain unti I termination. Its pasition within the chain is changed as it changes priority or enters
a wait state. The roll-out chain is the exact inverse of the dispatcher chain, and each serves as a backward link
for the other.

129

130

ITITICI

Task Execution Time - contains a count of the number of clo~k- ticks of execution time this task has received. For
secondary tasks, the CP-R dispatcher converts this value to milliseconds and accumulates the total execution time
in a one-word entry in the tasks Job Control Block.

IlIOMIN

Execution time-quantum remaining - contains a count of the number of clock ticks remaining before this task must
give up control of the CPU. The count is decremented by the CP-R clock routines and refreshed by the CP-R
dispatcher.

STIOMAX

In-core execution time used - contains a count of the number of clock ticks of execution time this tosk has used
since the ~ask was last rolled-out. The count is incremented by the CP-R clock routines and is used by the CP-R
dispatck-r ;.nd memory management executive to control memory use between time-sliced tasks.

snOSWAP

I
1-

Swap time threshold - contains a count of the number of clock ticks that a swapped out task must remain swapped
out. The count is decremented by the CP-R clock routines and is referenced by the CP-R dispatcher.

Talk CeIdrII BlICk (TCa)

Purpose

The TCB provides the context save area, system pointers, portial entry linkage and entry PSD for centrally con
nected primary tasks. Each primary task has its own TCa.

Type and Location

A TCa is a serial table in the users memory at a locati"n provided by the user in the connect call.

logical Access

The TCa for a primary task is pointed to by:

• The XPSD in the interrupt location.

• TCBPOINT during the task's execution.

• The STI entry corresponding to the primary task.

Figure 45 illustrates the logical links between the TCa and other system control data.

Overview of Usage

The TCa content is initialized by the CONNECT service routine. When the primary task is entered, the context of
the interrupted task is saved in the TCa, including the interrupted-tasks TCa and pca pointers which are swapped
with those of the primary task that is being entered. When exiting the level, the central exit logic swaps the TCa
and PCB pointers which restores the TCa to the original values. The registers and PSD are also restored.

J TCBPOINT I TCB I PCB
'-- I

STI

- Tasks Entry -

......
"-

Interrupt locotion

Figure 45. Relationship between a Primary Task Control Block and Other Control Blocks

TIIk Central Block (TCB) nr-t

Word 0

2

3

4

5

6

7

8

9

10

11

25

-

I-

STM,O

BAL, Rl

Flags

Task ID

~

t--

-
... ~

Saved PSD -

Intermediate PSD -

7CB + 10

RBMSAVE

PCB Address (real)

TCB Address (real)

Entry PSD -

-
Register Save Area

-
... ~

I

131

132

where

Saved PSD (words 0, 1) is the PSD of the task the primary task interrupted at its last entry.

Intermediate PSD (words 2,3) is the PSD loaded by the XPSD command at entry. The contents of this PSD
are set by CONNECT to all zeros with these exceptions:

Instruction address - TCB + 4

Condition Code = the number of registers to be saved with the STM command in TCB + 4. CC = 0 if the
CONNECT command specified that all 16 registers be saved via the central connection.

Since the XPSD does not alter the register block value in the PSD but leaves that of the interrupted task
(LP = 0), the Register Block Pointer = O.

STM, BAL commands (words 4,5) are commands executed as part of the central connection entry logic.
STM causes the number of registers requested to be saved, and BAL enters the remainder of the central
connection logic (RBMSAVE).

Flags (word 6) have the following meaning:

Bit 0 = 0 for user task
= 1 for C P-R task

1 = 0 for foreground task
= 1 for background task

2 = 0 for primary task
= 1 for secondary task

3 = 0 for real addressing
= 1 for virtual addressing

4 = 0 if reserved

5 = 1 if the task is to be reentered instead of exited at EXIT. This bit is transient. It is set when end
action triggers are performed, and reset during RBMSAVE and when reentry occurs. It can exist
only in TCB + 6.

PCB Address (word 6) is the real address of the PCB in the load module to which the task belongs.

Task 10 (word 7) is the index into STI of the task's entry.

TCB Address is the real address of the first word of the TCB.

Note: When a task is active, flags, PCB address, task ID and TCB address contain the values for the inter
rupted task versus the primary task corresponding to the TCB.

Entry PSO (words 8,9) is the PSO to be loaded when entering the primary task. All bits are zero except
those specified otherwise on the CONNECT call as follows:

Master/Slave - as specified

Decimal and Arithmetic Masks - as specified

Instruction Address - callers start address

Write Key - 10 (foreground)

CI, II, EI - inhibits as specified

Register Save Area (words 10 through 25) are the save area for the registers of the interrupted task.

I

(

lie ' ry T_ c.tnI CITeB)

The STCS contains all controls for software scheduled secondary tasks which reflect the execution status and memory
usage of the task.

Location and Type

The STCS is a serial control block in TSPACE.

Logical Access

The STCS is pointed to by the following:

TCSPOINT (during task's execution only)

STI entry corresponding to the secondary task

The XPSD in the interrupt location corresponding to the CP-R Dispatcher Level (ROL) immediately above the Task
Level (STLl (during execution only).

figure 46 illustrates the logical links between the STCS and other system control data.

Overview of Usage

A user STCS is created by task initialization if the load module requested is secondary. CP-R task STCSs are in
cluded in the resident portion of the task's code, as are all control blocks "lower than" the STCS. The initial STCS
content set by task initiation is described for each data element, as is the element usage. The STCS is used by the
CP-R control functions, dispatcher, memory management services and roll-in/roll-out during the life of the task.
STCS space is released by task termination.

J TCSPOINT
I STCS PCS

STI t---
L..- AST

....- Tasks Entry I--

- L........-: ACI

XPSO of Dispatch Level

'""
'"'

figure 46. Relationship between Secondary Task Control Block and Other System Control Data

133

134

Secondary Talk Control Block (STCB) Format

o
I--

2
I--

3

4

5

6

7

8
I--

9

10 -
11

.. ~

25

26

27

28

29

30
~

31

where

Current PSD, Secondary Ta$k (R or V)

Intermediate PSD (R)

STM,O SrcB + 10 (R)

BAL, Rl RBMSAVE (R)

Flag$ PCB Address (RORV)

Ta$k 10 STCB Address (1-1)

&.try PSD to Pod Dispatch (R)
Procening

Current Registers, Secondary Task

Length AST Addren (1-1)

length ACI Address (1-1)

RDL Group Code I RDL Level Bit

-

Alternate PSD

-

-

-
.. ~

-

I

~I

Current PSD of the secondary task (words 0, 1) either the PSD to be loaded on the next dispatch (if not in
execution), or that loaded on the last dispatch (if in execution).

Task initiation resets the initial PSD to all zeros except:

MS = 0 if master mode.
= 1 if slave mode.

MM = 0 if unmapped.
= 1 if mapped.

JA load module entry address unless run with Debug, in which case IA is the Debug entry address.
Address is real or virtual as per mode of execution.

Write Key = 01 if foreground secondary task.

Entries to RDL subsequent to dispatching the task save the current PSD.

- I

(

Intermediate PSD (words 2,3) a PSD to transfer control to real address STCB + 4. All other intermediate
PSD bits are zero. Task initiation sets the intermediate PSD address which remains unaltered.

STM and BAL commands (words 4,5) stored by task initiation to cause context saving and swapping via
RBMSAVE after a task has been executing. These commands are set by task initiation, real addresses, and
are not altered.

F lags (word 6) the task flags set by task initiation as follows:

Bit 0 = 0 for user task
= 1 for CP-R task

1 = 0 for foreground task
= 1 for background task

2 = 1 for secondary task

3 = 0 for real memory, unmapped
= 1 for virtual memory, mapped

4 Reserved

5 Reserved

The flags are not altered during the task's life.

PCB Address the address of the task's Program Control Block, which is set by task initiation and not al-
tered. Mapped secondary tasks will have the PCB Address in virtual. Unmapped secondary tasks (CP-R
or primary initiation tasks) will have the PCB Address in real.

Task ID (word 7) the identification of the secondary task and index into the task's sn entry. This ID is
set by task initiation and not altered.

STCB Address the 1-1 address of the STCB, set by task initiation and not altered.

Note: Words 6 and 7 are swapped with PCBPOINT and TCBPOINT when a task is executing, as is done with
primary tasks. Therefore, between the time a task is dispatched (in execution) and its status is returned
to the STCB by an RDL entry, words 6 and 7 contain the dispatchers PCBPOINT and TCBPOINT values.
When a task is not dispatched, its own values appear. One secondary task con be "in execution" for
each CT pair in the system. "In-execution" is equivalent ta a hardware level being active. The task
is either executing, or waiting for higher task to drop its interrupt level and return to the lower prior
ity task.

Entry PSD (words 8,9) a PSD to transfer control to clean-up processing for tasks returning from an "in-
execution II state. After RDL is triggered and has saved context via RBMSAVE this PSD is loaded. It
is all zeros except for IA which is the real address of RDLRTRN, is set by task initiation, and re
mains unaltered.

Current Registers (words 10-25) the registers to be loaded on the next dispatch (if not in execution), or
thase loaded on the last dispatch (if in execution). They are set randomly by task initiation and saved ...-
on all entries to RDL subsequent to the task being dispatched. ~

Length (word 26) the number of words in the Associative Segment Table (AST).

AST Address the first word address (1- t) of the AST. AST space is allocated by task initiation and the
address and length are set in the STCB. This word is not altered.

135

136

ACI Address (word 27) The first word address (1-1) of the Access Control Image. The ACI space is
allocated by task initiation and the address is stored in the STCB. This word is not altered.

RDL Group and Level (word 28) The group and level bits of the RDL Level under which the secondary task
is currently queued. Set by the dispatcher queue maintenance routines.

Word 29 Spare.

Words 30,31 Alternate Program Status Doubleword or altemate PSD to be used the next time the task is dis-
patched if ALT is in the STI=J. When ALT is honored by the dispatcher, this PSD and the current PSD
in words 0 and 1 are swapped.

Purpose

The AST provides the Task Dispatcher with a list of all segments whose map image must be loaded into the hardware
map before the task can be dispatched. It is used by roll-out to record that an active segment was rolled out and
task execution suspended; by roll-in to reactivate deactivated roll-out segments.

Serial consecutive entries in CP-R TSPACE.

Logical Access

The AST is pointed to from the STCB, containing an entry for every segment defined in a Secondary Task Load
Module including Root Part two. In addition CP-R adds a segment for Job Reserved Pages and Task Reserved Pages.
The AST entries are ordered with respect to the segment's virtual starting address (i.e., the next higher adjacent AST
entry represents a segment with a starting virtual address that is equal to or larger than the preceding AST entry.) AST
is typically accessed by scanning for active entires that point to Segment Descriptors, which contain all information
necessary to describe the segment.

Figure 47 shows the AST and its relationship to other system tables.

Overview of Usage

The AST is established by task initiation from information in the task's load module header, and deleted by Task
Termination.

When it dispatches a task, Task Management will scan the AST for entries that are active and will use thepointer
to the SO to access the information necessary to load the task's map.

Memory Management uses the AST when performing segment operations for the user. The information contained in
the AST and the SO is used to maintain the status of the task's segments for ACTIVATE, DEACTIVATE, and page
operations (GETPAGE, RELPAGE).

Memory Management also uses the AST and SO information when performing roll-out and roll-in functions.

-)

STCS

AST Pointer
AST

I

\

Figure 47. Relationship of AST to Other System Tables

Root Part
One

User
Segment
One

User
Segment
n

Root Part
Two

Job
Reserved
Pages

Task
Reserved
Pages

137

138

Associative Segment Table (AST) Format

Flags SO address (Root part one)

Flags SO address (first user segment)

.~ ..

where

Flags

bit 0

bit 1 (A)

bit 2"(FA)

bit 3(RO)

bit 4 (OS)

bit 5-7

SO address

bits 8-31

"mint Dacriptor (SO)

Purpose

Flags SO address (last user segment)

Flags SO address (Root part two)

Flags SO address (JOB reserved pages)

Flags SO address (TASK reserved pages)

is always zero.

= 0 if this segment is not currently active to this task; = 1 if it is active. Set by
ACTIVATE, GETPAGE. May also be set by roll-in routines. Reset by DEACTIVATE,
ERASE or RELPAGE routines.

is first activate flag. Set by Memory Management when the segment is first activated to
prevent decrementing segment erase count before an ACTIVATE. Reset by ERASE.

is Roll-Out Deactivated flag. Set by roll-out task when rolling out an active segment.
Reset by roll-in task.

is Dispatcher Skip flag. If set, the Dispatcher, Skip (OS) flag in the Segment
Descriptor (SO) addressed in bits 8-31 was set by the task owning this AST. See
the description of the OS flag in a SO for dispatcher implications.

are unused.

is the real word address of the corresponding Segment Descriptor established by task
initiation.

The SO contains all 5egment-associated controls. It contains the access protection image, map image, the roll
out file position information and information relative to the status of each real page allocated to the segment. The
SO is used by Task Management and Memory Management.

Serial with four parallel subtobles in TSPACE.

logical Access

The SO is pointed to from the AST. Alternatively, SOS may be accessed through the appropriate SO chain (task
level (lMISOT), job level (JCBSOT), system level (S :SO). .

Overview of Usage

The SO is created by task initiation from information contained in the task's load module. Task initiation obtains
sufficient spoce for the access image, map image, file image and page flags based on the size of the segment. When
the segment is activated (by task initiation or later by the task itself), Memory Management obtains real memory
resources for the segment filling in the access and map image and loading the images into the hardware map.

The file image is initialized when the segment is being rolled-out. The initial file assignment remains with the
segment until the segment is terminated.

Memory Management controls the acquisition and release of real memory pages in response to segment or page oper
ation calls. Additionally, memory pages may be freed by the roll-out process.

The SO is deleted at task termination time by Task Management.

Segment Descriptor (SO) Format

Access Image

Page Flags

o

2

3

4

5

FU [

~pm •• [

012345678 31

~I SS[><],\ Map Image Address

Count ><1 Control Start (S)1 ><
Segment Flags Segment Number

LMI SOT FLINK Address

Tasks Active Tasks Erased Tasks Using Tasks Locked

Real Page Virtual Page ACI Count No. Pages
Count Count (n) Ro"ed-Out

ACIACIAC lAC ACIACIACIAC AC lAC IAC\AC ACIACIACIAC

... ~ ...

ACIACIAC lAC ACIACIACIAC ACIACIACIAC AC\AC\ACIAC

Page Flags (S) Page Flags (S+I) Page Flags (S+2) Page Flags (S+3)

"'~ ... ~

Page Flags Page Flags Page Flags Page Flags
(S~) (Sin-3) (Sin-2) (S-t-n-l)

Fi Ie Address (S) Fi Ie Address (S+ 1)

... ~ .. >0-

File Address (S+n-2) Fi I e Address (Sin-I)

Page(S) Real Address Page (S+ 1) Rea I Address

4~ ~

Page (S+n-2) Real Address Page (S-t-n-) Real Address

,
.'

139

140

where

Word 0

Bit 0 is the dispatcher skip (OS) flag. The OS flag indicates that a change of state of the segment is in
progress. A task will not be dispatched if any of its segment descriptors have OS set, unless OS is set
in the task's AST entry for the segment, also, indicating that the task is responsible for the state
change.

Bits 1,2 indicate segment status:

00- normal
01 - abort all using tasks
10 t • ed 11 - no assign

Set by Memory Management when major errors are discovered in the composition of the Segment
Descriptor.

Bits 3-5 Always zero.

Bits 6,7 is a 2-bit index (APM) into a mask table used by Task Management to load the hctrdware
Access Protection registers. Set by task initiation.

Bits 8-31 is the real word address of the first word of the map image subtable. Initialized by task
initiation.

Word 1

Bits 0-7 is a count of the number of words in the map image subtable, equivalent to the integer portion
of the expression.

Virtual Page Count + 1

2

(Count is set by task initiation.)

Bits 8-14 always zero.

Bits 15-22 control start - the virtual page address of the first page of this segment. Set by task
initiation.

Bits 23-31 always zero.

Note: Words 0 and 1 form the control doubleword used by an MMC instruction for loading the hardwore
map.

Word 2

Bits 0-15 Segment flags:

bit 0 unused .

ind icates that rea I address correspondence (RAC) is requi red for this segment. Set by task in i tiotor •

2 indicates that only secondary taskmernory(STM) is used for this segment. Set by..rtask initiator •
Bits 3,4 is the access protection code (APC) for this segment:

00 - all access
01 - read and execute
10 - read only
11 - no access

Set by initiator.

I
\

Word 2 (cont.)

Bit 5 not assigned.

Bits 6-8 indicate segment type:

000 - task level
001 - job level
010 - system level
011 - Publ ic library
100 - not assigned
101 - task-reserved pages
110 - job-reserved pages
111 - system overlay

Set by task ini tiator.

Bits 9-11 indicate segment state - a code representing the current state and remaining dynamic through-
out the life of the segment:

000 - being initiated or erased
001 - erased
010 - inactive
011 - active
100 - being rolled out
101 - rolled out
110 - being rolled in
111 - being loaded

Initially set by task initiator and manipulated by Memory Management.

Bits 12-15 not assigned.

Bits 16-31 represent segment number.

bit 16 = 0 if this is a user-numbered segment.
= 1 if this is a special system-numbered segment as follows:

bits 17-19:

000 - system overlay
001 - special system use
010- PUBLIB
011

not assigned

111

bits 20-31 - system segment number.

This field is establ ished by task initiator.

Word 3

Bits 0-7 are the Load Module Inventory (lMI) entry index for a Public Library segment (type = 010).
Set by task initiator.

Bits 8-31 are the real word address of the next SO in this level SO chain. Set by task initiator. ..,.

Word 4

Bits 0-7 contain a count of the number of tasks that have this segment active. Initially set to zero,
count is incremented by 1 for each ACTIVATE directed to this segment. Decremented by 1 for each
DEACTIVATE. When 0, the segment is a candidate for roll-out.

141

'42

Word 4 (cont.)

Bits 8-15 contain a count of the number of tasles that have erased this segment. Initially zero, count
is incremented by 1 for every first ACTIVATE and decremented by , for each ERASE. When this count
goes to 0, the real memory that has been allocated to this segment will be released.

Bits 16-23 contain a count of the number of tasks using this segment. Initially set to 1 by task initi-
ation when the segment is defined; thereafter incremented by 1 for each task sharing the segment.
Decremented by 1 when using tasks terminate. When the count goes to 0, the segment descriptor is
deleted.

Bits 24-31 contain a count of the number of tasks that have locked this segment. Initially 0, count is

Word 5

incremented by 1 for LOCK and decremented by 1 for UNLOCK. The segment will not be rolled out
if the count is greater than zero.

Bits 0-7 contain a count of the number of real memory pages currently in use by this segment. Main-
tained by Memory Management. _,

Bits 8-15 contain a count of the number of virtual pages required for thissegment. Set by task initiation.

Bits 16-23 contain a count of the number of words in the Access Image Table. Used by Task Dispatcher
when constructing the ACI table, the count is set by Task Initiation.

Bits 24-31 contains a count of the number of pages that have been rolled out.

Access Image Bits 0-31 is a parallel word table with two-bits per entry that contains an image of the
access protection for this segment. Each word controls 16 pages of access protection. However, all
2-bit entries need not be used for any given segment depending on its starting virtual address and
length; unused entries are set to no-access.

Page Flags Bits 0-31 is a parallel byte table that contains the status of each page in this segment:

bit 0 FFP, Foreground Preferred Page. A real page from a Foreground Preferred Parition. Set by Mem
ory Management.

bit 1 FSA, File Space Allocated. Indicates that roll-out file space has been allocated to this vir
tual page. Set by Memory Management.

bit 2 RPP, Real Page Present. Indicates that a real memory page has been allocated to this virtual
page. Set by Memory Management.

bit 3 PRO, Page Request Outstanding. Indicates that a request for this virtual page has been made
but could not be satisfied immediately.

bit" ROL. Indicates that this page has been rolled out.

bit 5 not assigned.

...
bits 6,7 APC, Access Protection Code. Used to control access to reserved pages and therefo,tf, present

only if segment type is 10 I or 110 (reserved pages). Set by Memory Management.

File Image Bits 0-31 is a parallel halfword table that contains the roll-out file granule displacement
that corresponds to the particular virtual page address controlled by this segment.

Map Image 0-31 is a parallel halfword table that contains the real page address that corresponds to
the particular virtual page addresses controlled by this segment. The last entry of this table mayor
may not be used depending on control start.

(

JDb-Controlied tlbles
The tables shown in this subsection are lob controlled, i.e., contain data associated with the job level of control.
Figure 048 shows the overall relationship of the job-associated tables and data. (Note that the OPLBS and AET tables
were described in the "General System Tables" subsection, being bath job and task related.) •

$ysIIm Jill Inventory (SJI) Table

Purpose

All jobs are known to the system by means of the SJI. It contains one permanent entry for the CP-R job, one per
manent entry for the background and one temporary entry for each foreground job active at a given time. For each
job, it contains the EBCDIC job name, the JCB address, a bit indicating whether the SJI entry is in the process of
being created, and length of the Job Control Block (fixed portion) in words.

Type

Parallel; in CP-R system table space with a fixed number of entries.

Logical Access

The SJI table location is known via a DEF on the subtable names. The job ID is the SJI index into each of the par
allel subtables. If the job ID is known, job name and JCB location are obtained by using the job ID a~/an index
into the appropriate subtable. If job name is known, table lookup will produce the job ID and JCB location. The
SJI entry for CP-R is the first entry. The SJI entry for the background is the second entry (i.e., the CP-R SJI
index is 1; the background SJI index is 2).

Overvi ew of Usage

The SJI space is allocated by SYSGEN from CP-R system table space. Space is reserved for the maximum length
specified by a SYSGEN parameter that limits the total number of jobs that can exist at anyone time. This limit is
some number less than 31, where one of the number is for background. In addition, one entry is made for the CP-R
system job (not one of the number specified). The background entry is also always made and is the default (1 entry
plus the CP-R entry) if no limit is specified.

143

SJI

rr>-- JCB address I--

~

JCB

'-- Job 10 j

I'
i

AET Pointer
~-----B (option of job initiat ion}

JPT Pointer ---0 (option)

,....-- BBCT Pointer

OPLB1 Pointer ~ OPLBS 11 (System tabl e)

r-- OPLB2 Pointer

I EDT ---ra EDT Pointers r---, 1

SOT Pointer r SOT 1 6--e
1 r

~ OPLB2 Table

te.

I....---,. BBCT Table

JPT Table

AET Table

Note: (The entry order is arranged for illustrative purposes only.)

Figure 48. Relationship of Job-Associated Control Tables

144

(

The CP-R and background entries are initialized by CP-R (NIT. All other entries are initialized to zero. SJOB
requests cause job management to make new entries for foreground jobs. KJOB requests and requests from task man-
agement cause job management to delete entries. The JOBS option of the SYSGEN :RESERVE command specifies
the number of user (background plus foreground) SJI entries.

System Job Inventory (SJI) Table Format

Content

SJI1 JCB Address

o 1 7 8

o
SJI2

EBCDIC job name

32

SJI3

o 1 2 7

where L = 1 indicates job-initiation is in p-osress.

31

31

63

(SJI3, index 0 contains the maximum number of jobs allowed to be active at a given time, i. e., length
of SJI.)

Jab Contral Block (Jel)

Purpose

The JCB contains information sharable or common to all tasks in the job. Each job has one JCB pointed to from the
SJI. It contains job 10, trap controls, pointers to JCB tables, chain headers for job-related chained tables, and
JCB tables. The JCB is comprised of a fixed length portion and two variable length subtables: The JPT andtheAET.
The JPT length is a SYSGEN parameter and may be long, and the AET length is dynamic. Therefore, at job
creation, the job initiation routines may elect to exclude one or both of these two tables (which are themselves
serial tables) from the fixed portion of the JCB. Two JCB flogs are p-ovided to indicate their presence in the fixed
portion or linking from the JCB. If p-esent in the fixed portion of the JCB, the respective flog is zero and the table
pointer contains the number of words in the table in byte zero and the address in the JCB in bytes 1-3. If linked
from the JCB, the respective flag is set to one and the table pointer contains the number of words of TSPACE in byte
zero and the address of the table in bytes 1-3.

Serial; in CP-R TSPACE with consecutive entries and linked entries.

Logical Access

""-
JCSs are pointed to from the SJI. Job 10 is the index into the SJI. JCB data elements oc:cupy fixed positions in
the JCB or are linked from pointers in fixed positions in the JCB. The Job Operational Label Table (OPLB), and
the Bloc:king Buffer Control Table (BBCT) are port of the fixed portion of the JCB and are Ioc:ated by pointers in
fixed Ioc:ations in the JCB. The Enqueue Definition Table (EDT) and the Segment Descriptor Table (SOT) are tables
whose entries are acquired as needed by tasks in the job. They are linked from pointers in fixed positions in the
JCB. The Job Program Table (JPT) and the Assoc:iative Enqueue Table (AET) may be in the fixed portion of the
JCB or may be linked from the JCB.

145

146

Overview of UJage

The JCSs are allocated by job management from CP-R TSPACE. Space is acquired when the job is initiated and
released when the job is terminated. The JCSs for the CP-R job and the background are established in CP-R INIT
and are never released. The EDT and SOT entries are each linked in a chain from the JCB. EDT entries are ac
quired and released by resource management.

Job Control Block Format

o

2

3

5

6

7

8

9

10

11

12

13

104

15

16

17

18

23

24

0123045678 131041516 23 204

o OIAIJ 10 O~>IS 0--01 Tis 1 Job Priority T Job 10

0

Trap
JTrap Address (Secondary) Flags

Trap
JTrap Address (primary) Flags

0 No. Entries OPL81 Table Pointer

0 No. Entries OPLB2 Table Pointer

0 No. Entries BBCWT Pointer

0 Max. length JPT Pointer

0 Max. length AET Pointer

0 0 EDT Pointer - head

0 0 EDT Pointer - tail

"'-pI Cher. SOT Chain Head Pointer

Debu" Control Ward 1

Debug Control Word 2

Task 10 &r.aIc Receiver Address

TJE I8CW Addr_

Sin TJE Tab Settings Addres

Sin Next I.M N_ Add,.,

;.J-"" {'--

'j./'}~"" ~ ,f'
AccoUnt fftd u.er Na-s

(5 worcIs)

Job Time Accountin"

1

B1ock.ng Buffer Control Word Table (BBCWT)
(25 words)

OPLB2 Tobie

1 Job Program Table (JPT)
(quadruple_ard entries, OW bound)

Enqueue Table (AET) for job level

1 enqueues (OW entries, OW bound)

0

31
V' -

0

f...- OPLBSI "
l)IItem table

','ii

';;;;I.)

O::-J.
'\,~~

~ '~
)~

~rrf\j

I
I

.... •

These tables may not
be contiguous to the
JPT or ta each Dther I
in order that dynamic

J
space _y be more
eHiciently used.

31

(
"

where

Word 0

Bit 1 (D) = 1 lor job nnning under DEBUG.
= 0 for normal run.

Bit 2 (A) = 0 if AET is in fixed portion of JCB.
= 1 if AET is linked from JCB.

Bit 3 (J) = 0 if JPT is in fixed portion of JCB.
= 1 if JPT is linked from JCB.

Bits 6,7(DIS) are debug initialization status bits:

= 00 No DEBUG.
= 01 Needs initialization startup.
= 10 In initialization.
= 11 Fu"y initialized.

Bit 14 (T)

Bit 15 (S)

is job-being-terminated bit.

is job-being-initiated bit.

Words 12, 13

contain Debug Oplabel device assignment before initialization, BBCWT pointer after initiali~ation.

Word 14

Bits 0-7
Bits 8-31

Id of task that will field break conditions.
Address of Break handler.

~ Word 14 is zero if no Break handler is specified.

Word 15

contains the address of the Blocking Buffer Control Word for the TEL context blocking buffer.

Word 16

contains the TSPACE control word for the TSPACE block containing tab settings for a TJE line.

Word 17

contains the TSPACE control word for a TSPACE block containing the area name, file name, and account
name for the next load module to load (for TJE) and background sequencing.

Words 18-22

words 18 and 19 contain the account name field. Words 20-22 contain the user name field.

Word 23

contains the total amount of CPU time that has been used by a" secondary tasks in this job. The value is
in mill iseconds.

JaIt Program TIIII. (JPT)

Purpose

The JPT allows the user to specify the name of a load module to be used for execution of a task.

Serial; in the JCB or linked from the JCB (depending on space requirements) with the maximum number of entries fixed
at SYSGEN by the JPT option of the :RESERVE command. Default is zero entries. S:JPT contains the maximum
number of entries specified. (The maximum that may be specified is 63 entries.)

147

148

Logical Access

The JPT is located from a pointer in a fixed position in the JCB. It is composed of doubleword pairs of EBCDIC
task-nome;1oad-module-name equivalences. Table lookup on task name is used to determine which load module is
to be used for the task. (8yte 0 of the painter, JCBJPT, contains the total number of words in the JPT table.)

Overview of Usage

-Space may be provided in the JC8 for the JPT, or the JPT may be linked from the JC8, depending on space require
ments at the time the JCB is created. If it is included in the fixed portion of the JCB, it will be on a doubleword
boundary pointed to from a fixed location in the JC8. If it is linked from the JC8, it will be on a doubleword
boundary and will contain the number of entries specified at SYSGEN (space acquired as a power of 2). In either
case, byte zero of the pointer word contoins the number of words in the table ond bytes 1-3 contain the address of
the start of the table. On job termination, a flag (J) in the JCB will indicate which linkage applies and will re
lease space appropriately. S:JPT contains the maximum number of entries allowed in the JPT.

Entries are made by tasks via the SETNAME system function call. SETNAME may be used across jobs. The default
JCB is the calling task's job. SETNAME specifies a task-name/lood-module-name pair of doublewords which are
entered in the JPT. Task initiation uses table lookup on task name to determine if any entry exists for the specified
task name. If no entry exists, the task nome is assumed to be the desired lood module nome. If an entry exists, task
initiation uses the corresponding load module for tosk execution. SETNAME is also used to delete JPT entries by
providing a task nome and blanks in place of the load module name. Duplicate task names are act allpwed, so a
replacement will occur if a SETNAME call uses a task name which is already represented in the JPT. '

JPT Table Format

Name Content

JPT EBCDIC

Task Nome 1

EBCDIC Lood-Module

Nome 1

EBCDIC

Task Nome 2

EBCDIC Load-Module

Nome 2

· · ·

Size

}),t daubl ewo«l

} 2nd doubl.wo«l

} I .. doublewo<d

} 2nd daublewanl

(etc.)

where the EBCDIC Task Name characters and EBCDIC Load-Iv\odule Name characters are left-justified and blank filled.

Enllu,ue Defini1ion Table (EDT)

Purpose

The Enqueue Definition Table defines the current controlled items and resources in the system, and provides a mechanism
for queuing outstanding requests for the item. This table is used in conjunction with the Associative Enqueue toble.

Type and Location

Each EDT is a serial table in TSPACE.

Logical Access

Each EDT is a member of a chain whose head is either in CP-R location S:EDT (system level ENQs and all device ~
resources) or in the JCB (job level ENQs). Figure 49 shows the overall relationship between system tables that
directly or indirectly affect the EDT.

S:EDT I-
Enqueue Definition Tables (EDT',)

AET (System level)

JCBAET ~ AETEDT ECB

AETECB

""- Item

EDTEDT

EDTECB I--

ECB

I JCBEDT I ~ ... ~
Item

r-- EDTEDT c

EDTECB f-- :2
y
all:

ECB

L...

Item
AET (Job level)

(- I
........ EDTEDT LMIAET r AETEDT - r--

AETECB - EDTECB 1-

ECB
AETEDT - - - ""'-
AETECB - - - -

r-- I- Item

L-..- EDTEDT

EDTECB I-- - 1-

~

AET (Job level)
ECB

I LMIAEi r AETEDT
AETECB ~

AETEDT

AETECB ...

Figure 49. Enqueue/Dequeue Table Relationship

149

150

Owrview cl lAage

Thefintacquisition of any resource ca~ a new EDT lobe created and added to the appropriate chain. This allows
later ENQs to know that the item is in use and check for conflicts. When conflicts do occur, ECes are created to
provide a waiting mechanism. The R-chain in the ECes are used to connect the ECes to the EDT for which they
are waiting. This chain is in order of time within priority as are normol R-chains. When DEQ updates the EDT and
detects that the item has been freed, it checks for the existence of waiting ECes. If none exist, the EDT is re
moved from the EDT chain and deleted. If ECes do exist, the DEQ assigns access to the item to the highest priority
ECB in the chain and all lower priority ECes which do not conflict, posting the ECes as it does so.

E~ueue Definition Table (EDT) Format

0

word 0 Resource name
r---- ------ ---

word1 (8 EBCDIC characters)

32

word 2 EDT forward link address

word 3 I Use count)8 0

EDT EDT

Flags:

bit 0 = 1 This EDT is held by a job-level AET.
= 0 This EDT is held by a task-level AET.

bit 1 = 1 This is a system-level EDT.
= 0 This is a job-level EDT.

bit 2 Unused.

bit 3 = 1 This EDT is held by a sharable enqueue.

Waiting ECB chain head

= 0 This EDT is held by an exclusive enqueue.

31

EDTNAME
--

63

EDTED1' I

31

EDTRECB

31

EDT forward link address: A pointer to the next EDT in the system or job level chain. Zero signifies the end of the
chain.

EDTRECB

Use Count: The number of tasks which currently have acquired use of the item. If the ENQ is exclusive this count
will be 1. If the ENQ is sharable, the count will be ~ 1.

Waiting fCB Chain Head: The address of the fCB representing the highest priority outstanding ENQ for the item.
'R-ECB' of zero indicat~ no ENQs are waiting.

EDTNAME
...
""

Name: The name of the controlled item from the original ENQ call, or the device index, right-justified in the
first word of the doubleword.

Load-Module Data Structures

The control blocks and table shown in this subsection relate to lood-module files.

The first sector of a load module fil. contains a block of information used to control the loading of the module and
the allocation of system table space to it. This block is the lood module header, and is written by the JCP Loader
or Overlay Loader when the load module is created. A similar header is associated with each PUBLlB file.

Task Load Module Header

Word byte 0 2
I .

o F\BIRll ~IO\O Task First Word Address

2

3

<4

5

6

7

8

9

A

B

C

MSECB

MRECB

MENQ

NSEGS

0

0

Task Last Word Address

Task Entry Word Address

Root Part one V M Bl

Root Port one VM WO

Root Part one lM Bl

Root Part two V M Bl

Root Part two V M WO

Root Part two LM BL

Root Part two LM GO

0

0

Stock control doubleword prototype

3

0

0

~-- - ------ ----
o

E

where

F=O
= 1

I
for the CP-R temp stock

Names of Pl.8LlB load modules required
(up to 5 at 8 bytes each)

~~I---O

1

for a background task.
for a foreground task.

Remainder of granule 0
is unused

B = 0 for a program not linked for Simplified Memory Management (SMM).
= 1 for a background program I inked for SMM.

R = 0 if a program is not restricted from using foreground Preferred Memory.
= 1 if it is restricted.

I

J

151

152

l = 0 for a task module (not a PUBlIB load module).

P = 01 for a secondary task.
= 10 for a primary task.

MSECB = maximum permitted number of solicted ECIIs; 5'FF' if system default 15 to be supplied.

MRECB = maximum permitted number of received Eells; X'FF' if system default is to be supplied.

MENQ = maximum permitted number of resource enqueues; X'FF' if system default is to be supplied.

NSEGS = number of segments in task, to include both parts of root, PUBlIlIs and DEBUG.

Legend:

BL Byte length
GO Granule origin
LM Load modu Ie
VM Virtual memory
WO Word origin

PUBLIB Load Module Header

byte 0 Word

o FIOIRIL ~IOIO

where

2

3

4

5

6

7

8

9

A

B

C

D

E

0 0

0 o 0

0 0

NSEGS

0

0

0

1
F = 1 for a foreground load module.

I 2 3

PUBLIB First Word Address (FWA)

PUBLIB Lost Word Address (LWA)

PUBLIB VM BL

PUBLIB VM WO

PUBLIB lM BL

Context VM Bl

Context VM WO

Context lM Bl

Context lM GO

T:SYMBOL lM Bl

T:5YMBOl lM GO

T:VALUE lM Bl

T:VALUE LM GO

Remainder of ranule 0 9
is unused

R = 0 if the PUBlIB is not restricted from occupying foreground preferred memory.
= 1 if it is restricted.

0

0

J

, ~,

L = 1 for a PUBLIB load module (not a task load module).

P = 01 for a secondary PUBLIB.
=)0 for a primary PUBLIB.

NSEGS = 1 for PUBLIB only.
= 2 for PUBLIB with context segment.

Legend:

BL Byte length
GO Granule origin
LM Load module
VM Virtual memory
WO Word origin

Notes: FWA-LWA refers only to the PUBLIB segment, not the context. FWA = PUBLIB VM WOo

OVLOAD Table (for Lead Modules) ,
. I

In the root of every load module (root part 2 if there is one) is the OVLOAD table for that module. This table
provides information about the size and nature of each segment, its segment identification number, and the READ
FPT to load it.

There is one entry for each segment, except for the root, PUBLlB, and PUBLlB-c:ontext segments, which are omitted.

Word

o

(l1n)-1O

{ 11n)-9

(l1n)-5

(l1n)-4

(1In)-3

11n

byte 0 2 3

I Number of entries

MlxlplSIIIF VMPL I Segment number

X')O' 0 01 Word oddress of M:SL

0

1
V M WO for segment

LM BL for segment

LM GO for segment

0

Word address of segment entry, or zero

1

I

0

r

Entry
n

(11 words)

153

where

154 .

M=OO
= OJ
= JO
=11

x =0

P = 0
= 1

5=00
= OJ
= 10

=0
= 1

F = 0
= 1

for any access
for read/execute
for read on I y
for no access

(reserved for Memory Management)

segment image is in this load module
segment is sharable and must be pre-loaded by another task, since its image was omitted from this
load module (PRELOAD)

for non-sharable
for job-sharable
for system-sharable

for explicit activation required
for initial activation with root (ILOAD)

if real-virtual oddress correspondence not required
if required (FIX)

VM Virtual Memory

BL Byte Length

WO Word Origin

LM Load Modu Ie

P L Page Length

GO Granule Origin

:.~. '" ~- - .--

..

10. OVERLAY LOADER

Overlay Structure

The Overlay Loader is itself an overlayed program with a root and the six segments as illustrated in Figure SO. The
functions of the Root and segments is given in Table 6.

CCI

PASSONE

LIB

ROOT PASSTWO
.'

MAP

DIAG

Figure 50. Overlay Structure of the Overlay Loader

Table 6. Overlay Loader Segment Functions

Segment Function

ROOT Calls in the first segment (CCI) but thereafter, the segments call in other segments.
ROOT is a collection of subroutines, tables, buffers, FPTs, DeBs, flags, pointers,
variables, and temp storage cells. Root is resident at all times.

CCI Reads and interprets all Loader control commands.

PASSONE Makes the first pass over the Relocatable Object Modules, satisfies DEF/REF linkages be-
tween ROMs in the same path, links references to Public library routines, and allo-
cates the loaded program's control and dummy sections (e. g., assigns absolute core
addresses) .

LIB Searches the library tables for routines to satisfy primary references left unsatisfied
at segment end.

....
PASSTWO Makes the second pass over the ROMs, creates absalute core images of segments,

provides the necessaryCP-R interfoce (PCB, Temp Stack, REFd DCBs, DCBTAB, INITTAB,
and OVLOAD), and writes the absolute load module on the output file.

MAP Outputs the requested information about the loaded program.

OIAG Outputs all Loader diagnostic messages.

155

156

averil, Loader Elecltlon
The Root of the Overlay Loader is recxi into the background when the Job Control Processor (JCP) encounters
an IOLOAD control command on the "C" Device. The JCP allocates six scratch files (Xl, X2, X3, X4, X5, and X6)
in the Background Temp area of the disk unless otherwise specified on a Monitor I ALLOBT command, and three
blocking buffers unless otherwise specified on a Monitor I POOL command. The core layout of the Overlay Loader
is illustrated in Figure 51. '

Root
Segment

D,namic Table Area

FWA of Background (K:BACKBG)

PCB

Temp Stacks

I

Root Code

DCBTAB

OVLOAD

Segment Overlay Area

LWA+l of Overlay Loader (P:END)

Dynamic Table Area

LWA of Background (K:8CKEND)

Figure 51. Overlay Loader Core Layout

The Dynamic Table Area is an area of core beginning at the lWA+l of the Overlay Loader's code and extending to
the beginning of the background blocking buffer pool. That is, the Loader uses the remaining core in bac~und
for a work area.

The Dynamic Table Area is divided into 16 table areas with boundaries that can change, subject to the length of the
tables. The tables are built by CCI and PASSONE from information on the control commands and ROMs, and are
therefore only dynamic until the beginning of PASSTWO, when the table areas are fixed. Since these tables are an
essential part of the load process, it is important ta understand the function of the tables.

(-

(

~-:-.""-: •• ~ "I'~ ••• ,.. .. o/f" ~

During the first pass over the object modules, the 16 table areas have a fixed order as follows:

------ - FWA of Dynamic Table Area (p:END)
T:PUBVAL ,
T:PUBSYM ,
T:VALUE

f
T:SEG

• T:DCBV
f

T:DCB
f

T:ROMI
f

T:MODIFY ,
T:MODULE

f
B:MT

• T:DECL
f

T:CSECT
I

T:FWD ,
T:FWDX ,
T:SYMBOL

I
T:VALX -----..1- LWA+l of the Dynamic Table Area (K:BCKEND)

For better reader comprehension, the table area descriptions given below are given in a logical order rather than
the program listing sequence.

T:SYMBOL Ind T:VALUE

The progrCln's external table is a collection of DEFs, PREFs, SREFs, and DSECTs (excluding DeBs). The external
table is divided into two parts: one containing the EBCDIC name of the external (T:SYMBOL), and the other
containing the value (T:VALUE). Each table is divided into segment subtables that overlay each other in core
in the same way that the segments themselves are overlayed. For example, the external tables of a program with
the overlay structure

2

3
o

would exist in core (for both PASSONE and PASS TWO) as follows:

For For For For For
Root Seg 1 Seg 2 Seg3 Seg .-

10 -f. ~ ~ 1;
157

158

Segments in different paths cannot comrr.Jnicate (i.e., the IUbtables of segments in different paths are never,in core •
at the same time). A segment's T:SYMBOL and T:VALUE IUbtables are built by eel and PASSONE and saved on a
disk scratch file at patn end (i. e., when the next I8g1Mnt starts a new path). However, only tables overlay~ by
the new segment at path end get written out. For example, at the end of patn (0,1,2), tegment 2 would be written
out; at the end of patn 0,1,3), segments 3 and 1 would get written out; and at the end af the progrcm, segments 4
and 0 would get written out.

A segment's subtable consists of all DEFs in the segment, OSEeTs not allocated in a previous segment of the path,
and any REFs not satisfied by OEFs in a previous segment of tne path. Since tne DEF,IlEF links are all satisfied by
PASSONE, T:SYMBOL is not used by PASSTWO.

T:VALUE ENTRY FORMATS

T:VALUE entries are numbered from 1 to n and have a fixed size of 5 bytes, with the format

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4

012345678

where

TV is the entry type

TV = 00 DEF

TV = 01 DSECT

TV = 10 SREF

TV = 11 PREF

1516 2324 3132 39

o is a flog specifying whether or not the external is defined/allocated/satisfied.

o = 1 external has been defined/allocated/satisfied.

o = 0 external is undefined/unallocated/unsatisfied.

V is a flog specifying the type of value (meaningful only if 0 = 1).

V = 1 value is the value of tne external.

V = 0 value is tne byte address of tne expression defining or satisfying the external in T:VALX.

C is a constant (meaningful only if V = 1).

C = 1 value is a 32-bit constant.

C = 0 value is a positive or negative address with byte resalution.

F is a flag specifying whether the external is a duplicate or an original.

F = 1 external is a duplicate.

F = 0 external is an original.

LB specifies source of external.

LB = 00 external from input ROM or ec.

LS = 01 external from System library.

LB = 10 external from User Library.

Value is initially set to zero; usage is dependent upon 0, V, and C flags.

-- -.. - ~ -

Since the T:VAlUE entries are kept as small as pouible, unused bit combinatiON are reserved to define the following
two intermediate external types: • '

1. If TV = PREF, C = 0, and V = 1, the external is an "excluded preP' which means that the PREF will cause neither
library loading nor linkage (including the Publi c library). Instead, the PREF wi II be satisfied by a DEF in 0

segment further up the poth.

2. If TY = DSECT, 0 = 1, and V = 0, the external was input from the :RES control command and is to be allocated
at the end of the segment.

T:SYMBOL ENTRY FORMATS

T:SYMBOL is a byte table with variable sized entries that are numbered from 1 to n. There are three types of
entries: EBCDIC, "continuation", and "pseudo". The EBCDIC entry contains the name of the external. The
"continuation" entry contains the size of a DSECT and only follows a DSECT entry. The "pseudo" entry is a FWD
or CSECT entry that has been added to T:SYMBOL because the entry was referenced in a T:VALX expression that
could not be resolved at "module end". The entry formats are as follows:

EBCDIC entry: byte 0 0\ N + 1 (Range = X'02' to X'40)

1 EBCDIC Chaf]

o 1 7

n I EBCDIC Char n I
o 7

"Continuation"
entry: byte 0 1 10 0 0 0 1 0 0

"Pseudo"
entry:

1 Byte
J---~--.......j

2 size of

3 DSECT

o 1 7

byte 0 I 0 10 0 0 0 0 0 I I
017

=X'84'

A byte size of -1 indicates that the entry is a reference to a DSECT
allocated in a later segment.

=X'Ol'

Note that the first byte contains the byte count of the entry (in bits 1-7).

T:PUBVAL ... T:PUBSYM

Each Public library file has an external table of DEFs (there are no DSECTs or unsatisfied REFs in a Public library)
that is divided into two ports; VALUE and SYMBOL. T:PUBVAl contains the VALUE tables for each public library
specified in the PUB LIB option of the IOlOAD control command, and T:PUBSYM contains the corresponding SYMBOL
tables. Since the sizes of the table areas are fixed once T:PUBVAL and T:PUBSYM have been input, there are only
14 dynamic table areas.

T:PUBVAl ENTRY FORMATS

T:PUBVAlentries are numbered from 1 to n and have a fixed size of five bytes. Since the size of T:PUBVALdoes not
change, T:PUBSYM is located otthe nextdoubleword boundary following T:PUBVAl. T:PUBVALentrieshave the format

'"\0,
Byte 0 Byte 1 Byte 2 Byte 3 Byte 4

where

TY = 00 = DEF

o = 1 the DEF has been defined.

159

160

V=1

C = 1

C=O

F=O

18=11

¥Glue is value of the OfF.

yolue is a 32-bit canstant.

value is a poIitive rx negative address with byte resolution.

not a duplicate OEF.

PUBLIB

Note that the T:VALUE and T:PUBVAL entries have the same formats even though the T:PUBVAL entries are a subset
of the T : VALUE format.

T:PUBSYM ENTRY FORMATS

T:PUBSYM is a byte table with variable sized entries that are numbered from 1 to n. Since the size of T:PUBSYM
does not change, the table following is located at the next doubleword boundary after T:PUBSYM. T:PUBSYMentries
have the fermat

byte 0 N + 1

byte 1 EBCDIC Chaq

o 7

byte n EBCDIC Charn

o 7

T:VAlX

External definitions are defined with expressions. If the expression can be resolved, its value is strxed in the DEFs
T:VALUE entry. If the expression cannot be resolved, it is saved in T:VALX and the byte acldres r/ the expression
is strxed in the DEFs T:VALUE entry.

Once an expression is resolved, its entry is zeroed out. The T:VALXentries cannot be packed toregoin space, since
the T:VALUE entries contain address pointers, however, empty entries are reused where poISible.

Expresions have a variable size and are made up of expression bytes, combined in any order. The formats frx the
T:VALX expression bytes (slightly different than the object language) are

Add Constant (X'O],)

Byte 0

1000000011

Byte 1 Byte 2 Byte 3

32-bit :value

Byte 4

o 78 2324 3132 39

This item causes the specified four-byte constant to be added to the Loader's expression accumulator. Negative con
stants are represented in two's complement form:

Add/Subt Value (X'2N')

Byte 0 Byte 1 Byte 2

FWD Number
00 10 S F iR TBI Entry

o 1 2 3 4 5 6 7 8 9 10 15 16 23

where

S = 1 subtract value.

S = 0 add value.

-I

F = 1 add/subtract,value 01 T:FWD entry where the FWD number is in bytes I and 2.

F=O add/subtract value of TABLE entry where

TB = 00 Entry points to T:DCB.

T8 = 01 Entry points to T:VALUE/T:SYMBOl.

TB = JO

TB = 1 J

Entry points to T:CSECT.

Entry points to T:PUBVAL/T:PUBSYM.

RR = 00 byte address resolution.

RR = 01 halfword address resolution.

RR = JO word address resolution.

RR = 11 doubleword address resolution.

."

This item causes the value of the FWD or TABLE entry to be converted to the specified address resolution (only if the
value is an address) and added to the Loader's expression accumulator. Note that expressions involving T:FWD and
T:CSECT entries point to the current ROM's FWD and CSECT tables. If these expressions are not resolved at module
end, the Loader creates dummy T:SYMBOLand T:VALUE entries from the FWD or CSECTentry and changes the pointer
in the expression to point to the dummy entry in T:VALUE. However, unresolved expressions rarely happen.

Address Resolution (X'3N')

Byte 0

100\11\10 IRR I
OJ234567

where

10 = 00 changes the partially resolved expression (if an address) to the specified resolution.

10 = 01 identifies the expression as a positive absolute address with the specified resolution (add absolute
section).

10 = 10 identifies the expression as a negative absolute address with the specified resolution (subtract abso
lute section).

RR = 00 byte address resolution.

RR = 01 halfword address resolution.

RR = JO word address resolution.

RR = 11 doubleword address resolution.

Expression End (X'02')

o 7

This item identifies the end of an expression (the value of which is contained in the Loader's expression accumulator).

T:DCB

(T:DCB contains the DEFs and REFs that are recognized as either system (M:) 01' user (F:) DCBs. DCBs declared as
external definitions must exist in the Root segment. The Loader allocates space in part two of the Root for DCBs

161

162

that are declared external references, and supplies default copies of system DCBs. TtOCB is ~ident at all times.
Entries have a fixed size of three words and have the format

where

Word 0

TV=OO

TV = 11
D=1

D=O

V=1

V=O

C=1

C=O

F=O

LB=OO

LB = 01

LB = 10

Word 1,2

WonJ 0

J

2

El

012345678

E2

DEF (coded in the Root by the user).

PREF (allocated in Root part 2 by Loader).

defined or allocated.

undefi ned/unallocated.

E3 E4

2324

oddress is the byte value of the DCB, only meaningful if D = 1.

oddress points to an expression in T :VA LX, only meaningful if 0 = 1.

31

the DCB was defined with a value that is either a constant or an illegal address (i.e., ~ative or
mixed resolution), only meaningful if V = 1.

the value of the DCB is an address, only meaningful if V = 1.

DCB cannot' be a duplicate (duplicates are put in T:SYMBOL/T:VALUE).

the DCB was input from a nonlibrary ROM.

the DCB was input from the System Ubrary.

the DCB was input from the User library.

El - E8 is the EBCDIC name of the DCB, padded with blanks if necessary.

T:lEG
T :SEG contains information about the program's segments and is resident at all times. One entry is allocated per
segment. Entries have a fixed size of ten words and have the format

where

Gran no.

Word 0

2

3

4

5

6

7

8

9

Segment Ident Link Ident

Gran no. of T:VALUE (I) on X4 Gran no. of T:MODIFY/
T :MODULE on X3

Gran no. of T :SYMBOL (I) on Gran no. of core image on
X5 Progrol'll Fi I e

BOof T:VALUE(J)in T:VALUE Byte length of T:VALUE (I)

BD of T:SYMBOL (I) in Byte length of T:SYMBOL (I)
T:SYMBOL

Byte length of T:MOOIFY Byte length of T:MOOULE

OW EXLOC of SEG DW length of SEG

R]llW I Fill Mis I p I lE A J Entry Address

Byte Length of library Routines in SEG
Byte length of load-module image of segment

0123456789 1213141516 31

the granule number in the disk file where the table begins. If the disk file overflows, Gran No.
wi II equa I X 'FF FF' • Granu I. eire mbered from 0 to n.

.. _. - _.. ~. ~ • - --... ... ~ - . -.' !'.~ :. ••

:

(I) segment's subtable.

BD byte displacement.

EXLOC execution location.

OW doubleword.

R = 1 error severity level set on at least one ROM in the segment.

R = 0 error severity level reset on every ROM in the segment.

L = 1 load error (duplicate DEFs, unsatisfied REFs, etc.).

L = 0 no loading errors in SEG.

w = 1 T:VALUE (I) and T:SYMBOL (I) output on X4, XS.

W.= 0 T:VALUE (I) and T:SYMBOL (I) not output on X4, XS.

F = 1 segment is fixed in real memory (FIX option).

F = 0 segment may be mapped onto any available real memory.

I = 1 segment is to be initially loaded with the root (lLOAD option).

1=0 segment will be loaded only on explicit request.

M = 00 segment is any-access.

M = 01 segment is read-and-execute.

M = 10 segment is read-onl y •

M = 11 segment is no-access.

S = 00 segment is non-sharable.

S = 01 segment is job-level sharable.

S = 10 segment is Iystem-Ievellharable.

S = 11 unused.

163

164

P = 1 segment must be preloaded lharable (PRELOAD option).

P = 0 segment may be loaded from the load rnodule being built.

EA = 00 value in bits 15-31 (if nonzero) is last entry address (in words) encountereef on non-Lib RO'lA.

EA = 01 unused.

EA = 10 SEG's entry address input from CC and value in bits 15-31 is the entry address (in words).

EA = 11 SEG's entry address input from CC and value in bits 15-31 is the entry number of the T:SYMBOL/
T:VALUE DEF specified on the CC.

8:MT

There are four tables associated with each ROM loaded (including library ROMs): T:DECL, T:CSECT, T:FWD, and
T:FDX. The size of these tables can be extremely large or small, depending upon which processor produced the ROM
and the content of the program. To conserve time and space, these tables are packed into the Module Tables buffer
(B:MT) at module end, and output to the X2 Temp File on the disk only when either the buffer is full or at segment
end. The size allocated for B:MT is dependent upon the size of the Dynamic Tables area and is made a multiple of
the sector size of the X2 disk file.

T:DECl

DEFs, PREFs, SREFs, DSECTs, and CSECTs are referenced in the object language bydeclarati on number. Therefore,
associated with each ROM is a table of declarations whose entries point to DEF, REF, DSECT, and CSECT entries in
other tables.

According to the object language convention, entry zero points ta the standard control section declaration. Entries
are numbered from 0 to n; have a fixed size of two bytes; and have the format

Entry

012 15

where

TB = 00 Entry points to T:DCB.

TB = 01 Entry points to T:SYMBOL/T:VALUE.

TB = 10 Entry points to T:CSECT (associated with current ROM).

TB = 11 Entry points to T:PUBSYM!T:PUBVAL.

Entry Table entry number. The range is 1 through 16,383.

)

(

TalCT

Associated with each ROM is a table of standard and nonstandard control sections. A nonstandard controi section
is allocated by the Loader when the declaration is encountered. The standard control section is allocated when the
first referenee to declaration 0 is encountered in an expression defining the origin load item. T:CSECT entries are
numbered from 1 to n; have a fixed size of two words; and have the fannat

where,

Word 0

0= 1

V=1

c=O

Word 0

Word 1

01 2345 1213

allocated.

value.

address.

Byte address

Size

31

Byte address first byte address of the control section.

Word 1

Size Number of bytes in the control section.

T:fWD

Associated with each ROM is a table of forward reference definitions (forwards). Each forward is identified by a
random two-byte reference number. Thus, when a forward is referenced in an expression, the T:FWO table for that
ROM must be searched for a matching number. T :FWO entries hove a fixed size of two wards with the fannat

where

0= 1

V=1

V=O

C=1

c=o

T:fWDX

Word 0

Word 1

defined.

o

Forward number

1516 262728 31

value is the value of the resolved expression.

value is a byte displacement pointer to the expression in T:FWOX.

value is a constant (only meaningful if V = 1).

value is a positive or negative address with byte resolution (only meaningful if V = 1).

Forwards are defined with expressions and are of two types: the first is defined with an expression that can be re
solXed by module end; the second type is defined with an expression that involves an external OEF, REF, or OSECT
(many of these cannot be resolved at module end). Associated with each ROM is a table containing all unresolved
expressions defining FWDs. When a T:FWOX expression is resolved, its entry is zeroed out and the space reused, if
pOl5ible. T:FWOX entries have the same formot os T:VALX entries.

· .

165

166

'MODULE

Each segment has a T:MODLU table. T:MODtJ..E contai .. infonnotion about a segment's Relocatable Object
Modules (ROMs). One entry is allocated per ROM. Entries have a fixed lize of five words and have the format .

o 1 12131415161718 31

Word 0 vi Entry no. IGILB ~\I Record Displacenent

Gran no. of B:MT on X2, or Byte lengtt. of T :DEC L (J)
BD of T:DECL (J) in B:MT

2 BD of T:CSECT (J) in B:MT Byte lengtt. of T:CSECT (J)

3 80 of T:fWD (J) in B:MT Byte length of T :fWD (J)

4 BD of T:FWDX (J) in B:MT Byte lengtt. of T :fWDX (J)

where

v = 1 Entry no. in bits 1-12 points to T:DCBV.

v = 0 Entry no. in bits 1-12 points to T:DCBF, or is zero.

. '
Entry no. the entry number of the DCB (in either T:DCBVor T:DCBF) that points to the disk file where the

ROM is located, or zero, to load another ROM from the previous source.

G = 1 T:DECL (J) begins at byte zero in B:MT and HWO (halfword zero) in word 1 contai .. the granule no.
of B:MT on X2. If the Granule no. equals X'FFFF', X2 has overflowed and B:MT did not get saved on tt.e
disk.

G = 0 T:DECL (J) is located in B:MT at the byte displacement specified in HWO of word 1.

LB = 00 not Library ROM.

LB = 01 ROM from System Library (SP area of disk).

LB = 10 ROM from User Library (FP area of disk).

Record displacement in the MODll.E file (only meaningful for library ROMs).

Pock = 1 if the PACK input option was associated with tt.is ROM.

':ROMI

T:ROMI contains the information necessary for PASSONE to load a segment's ROMs. T:ROMI is built by CCI from
the input options specified on the segment's :ROOT, :SEG, or :PUBLIB control command, or by :LlB to point to the
library routines required for the segment. At the beginning of PASSTWO, the area size for T:ROMI is set to zero.
There are three types of T:ROMI entries, as illustrated below, and entries have a fixed size of one word.

Entry for ROMs input from user files (built by CCI):

NROM ~\~vl Entry No. I
o 15161718 1920 31

where

NROM is the number of ROMs to input or contains -5, which means to input until IEOD is encountered.
This halfword is used as a decreasing counter by PASSONE and eventually equals zero.

8its 16-23 always equal zero to specify entry type.

---- .-_!

- --. - .-~--.. --,,-~ '--.

I •• _._. _____ ._-:~._._ •• :... ... '.~: :" -.

'.

v = 1 Entry no. in bits 20-31 points to T:DCBV.

v = 0 Entry no. in bits 20-31 points to T:DCBF.

Entry no. is the entry number of the DCB in T:DCBF or assignment in T:DCBV that points to the medium
where the ROM is located.

PACK = 1 if the PACK input option was associated with this ROM.

Entry for the NONE option (built by CCI):

10----------0 1
o 31

Entry for ROMs input from the System or User library (built by LIB):

NROM Record displacement

o 1516 31

where

NROM is described above.

Record displacement
FL:LBLD.

is the record displacement of the ROM in the MODIAE file of the area specified by

Library ROM entries are distinguished from the other two entry types by the Loader flag Fl:lBlD. The flag is always
reset when the other entry types are in T:ROMI.

T:DCBV

T:DCBV is a table of DCB assignments for the various ROM media specified (other than GO) on the input options of
the :ROOT and :SEG, or :PUBUB control commands. One entry is created for each input option specified. T:DCBV
is resident at all times. T:DCBV entries are numbered from I to n, and have the following format:

o I 2 3 13
Word 0

2

3 EBCDIC I/o Medium Name (5 words)

5
~--------------------------------------~

where
.:If

0= 1 if word I contains a right-aligned operational label name. The remaining flogs are ignored. .
0=0, D = 1 if words I' and 2 contain a left-aligned device name. The remaining flags are ignored.

o = D = 0, F = I if word 1 contains a right-aligned disk area name or blanks, and words 2 and 3 contain a
left-aligned file name.

o = D = 0, F = I, A = 1 if words .. and 5 contain a left-aligned disk file account name.

167

168

:

T:MODIFY

Each segment's :MODIFY commands are translated into object language load items and stored in the segment's
T:MODIFY table, and each :MODIFY command is translated into a T:MODUlE entry. Entries begin with an "origin"
load item and are terminated by either the next "origin" load item or a "l'IOdule end" load item. Entries are made
up of the load items d,escribed below and expressions in the T :VALX/T :FW OX format:

Origin (X'04')

This one-byte item sets the load-location counter to the value designated by the expression (in T:VAlX format)
immediately following the origin control byte. The value of the expression equals the location specified on the
:MODIFY command.

Load Absolute (X'44')

This one-byte item causes the next four bytes to be loaded absolutely and the load-location counter advanced
appropria te I y.

Define Field (X'07')
(X'FF')
(field length)

This three-byte item defines an expression value to be added to the address field of the previously loaded four
byte word. The expression is in T:VAlX format and immediately follows the 'field length' byte.

load Expression (X'60')

This one-byte item causes an expression value to be loaded absolutely and the load-location counter advanced
appropriately. The expression to be loaded is in T:VAlX format and immediately follows the 'load expression'
control byte.

Module End (X'OE')

This one-byte item terminates the load items in T:MODIFY.

u. of the Dynllllic Tillie Arli During LIB

During the library search, LIB temporarily reorganizes the Dynamic Table area by packing the 16 tables together at
the top of the area. LIB uses the remaining space for its tables. The core layout of these tobles and their formats
are illustrated in Figure 52.

T:lDEF

T:LDEF is located in the Dynamic Table area only when the LIB segment is executing and is used by LIB to satisfy
REfs to library routines. Initially, T:lDEF contains the following items:

1. All unsatisfied REfs from the current segment's T:VAll£ subtable.

2. All excluded PREFs from the current segment's T:VAlUE subtable.

(-

l

Packed
Dynamic
Tables
(tables
listed are
used by
LIB)

T:PUBVAL

• T:PUBSYM

• T:VALUE

t
T:SYMBOL

1
T:LDEF

1 ,
TLROM

EBCDIC

DEFREF

MODIR

files' buffer
~

Core layout of the Area if the
packed tables remain in core.

."

FWAof
Dynamic Table Area

LWA+J of the
Dynamic Table Area

T:PUBVAL

• T:PUfSYM

T:lDEF

T:SYMBOL

T:lROM

EBCDIC

DEFREF

MODIR

files' buffer ,

}

Overlays
T:VALUE

}

Moved to
the end of
T:LOEF, if
necessary.

Core layout of the Area if the
pocked tables are saved on X6.

Figure 52. LIB Reorganization of Dynamic Table Area

3. All DEFs and DSECTs in the path T:VALUE table that are from the same library as the one being searched.

4. All Public Library (T:PUBVAL) DEFs.

The Librory OEFs are included so that library routines loaded in previous segments of the Public library will not be
duplicated. The excluded PREFs (that inhibit library loading)are treated as OEFs. Since library routines may them
selves reference other library routines, the set of DEFs and REFs associated with a library routine are included in
T:LOEF if, and only if, at least one of the OEFs satisfies a REF in T:LOEF. When a REF is satisfied it is changed
to a OEF. Eventually, T:LOEF contains library DEFs, ony REFs that cannot be satisfied in the Library, and the
excluded PREFs.

169

170

-
T:lDEF has a variable number 01 entries with the caunt kept in entry O. Entries have a fixed size of two bytes with
the format

entry 0 T:lDEF entry count

o 15

entry n I DR 1 Volue

o 1 2 15

where

DR =00 null entry.

DR = 01 DEF or excluded PREF.

DR = 10 unsatisfied PREF.

DR = 11 DSECT.

Value entry number in the T:SYMBOl, that is later changed to the corresponding entry's byte offset in
the EBCDIC file.

T:LROM

T:lROM is located in the Dynamic Table area only when the UB segment is executing and contains pointers to li
brary routines whose DEFs have satisfied REFs in T:lDEF. That is, T:lROM points to the library routines that are to
be loaded along with the segment.

T:lRO.\o\ entries initially point to a library ROM's entry in the MODIR file and then get changed to point to the cor
responding ROM's location in the MODULE file. T:lRO.\o\ has a variable number of entries, with the count kept in
entry O. T:lROM is built backwards but has forward entries. Entries have a fixed size of two bytes with the format

entry n Value

o 15

entry 0 T:lROM entry count

o 15

where

yolue halfword offset of the library ROM's entry in the MODIR file, which is later changed to the starting
record number of the ROM in the MODU.E file.

MODULE fie

The MODU.E file is a blocked sequential file, with 120 bytes per record, that contains the library's ROMs.

(

.... ..:.-,-.~~--...... ...-----.. ----~-,.- ..
".

EBCDIC Fill

The EBCDIC file is an unblocked sequential file consisting of one variable length record. The EBCDIC file contains
the unique EBCDIC names of all DEFs and REFs declared in the ROMs in the MODULE file. Entries have a variable
number of bytes with the format

MODIR File

byte 0

1

N + 1

EBCDIC CharI

o 7

n I EBCDIC Charn I
o 7

The MODIR file is an unblocked sequential file consisting of one variable length record. Each MOD1R file entry
corresponds to a ROM on the MODULE file and contains the name of the ROM, its location on the MODULE file,
and the number of records in the ROM. Entries have a fixed size of three words with the format

DEFREF File

word 0

word 1

word 2

o

MODULE file record no. I ROM's no. of records

First four bytes of EBCDIC name

Lost four bytes of EBCDIC name

1516 31

The DEFREF file is on unblocked sequential file consisting of one variable length record. Each entry in the DEFREF
file corresponds to a ROM in the MODULE file and contains all the external DEFs and REFs declared in the ROM,
plus a pointer to the ROM's entry in the MODIR file. Entries hove a variable number of halfwords with the format

where

halfword 0

halfword 1

holfword 2

halfword n

DRI

o 12

o 12

Entry size

MODIR file index

EBCDIC file index

EBCDIC file index

15

1 I
15

Entry size number of halfwords in the entry (including itself).

MODIR file index relative holfword of the ROM's corresponding entry in the MODIR file. X'liifF'means
that the entry has been deleted.

DR = 00 not used.

DR = 01 DEF.

DR= 10 PREF.

DR = 11 DSEcr •

EBCDIC file index relative byte of the external name entry in the EBCDIC file.

171

172

...... O""-T PASSTWO

PASSTWO reorganizes the Dynamic Table area by moving the resident tables T:SEG, T:DCBV, and T:DCB to the
end of T:PUBVAL. PASSTWOuses the remaining space to reod in the necessarytablesbuiltduringPASSONEto build
its own tables and to create the core image of the segment. The core layout of these tables and their format
is illustrated in Figure 53.

T:8RAN

Since the Work area has a finite size that varies according to the size of B:MT, it may not be large enough to con
tain a segment's total core image at all times. Therefore, before a segment is created, its core image length is
divided into granule size partitions, where the granule size equals the sector size of the program fj Ie. T:GRAN

T:PlfVAL

T:SEG
• T:DCBV

• T:D1B

T:V1LUE

T:GRAN ,
Work Area

B:MT
4

T:MODIFY
• T:MODULE

T:VALX

Core layout of the Area while
the segments are being loadt.J.

FWAof
Dynamic Table Area

lWA+l of the
Dynamic Table Area

T:PUBVAl
f

T:SEf

T:OCBV
• T:OCB

• T:ASSN

• T:GRAN ,
Work Area

T:VALX

-'

Core layout of the Area while
part two of the Root is being built.

Figure 53. PASS TWO Reorganization of Dynamic Table Area

.-~.~. ~ "- ..<_:_ ,;",_._ : .. .c;. _.. • l. ._

entries point to the location of a segment', partition (if created) .ither in ccre or on the program file. T:GRAN
has the following format:

entry 0 n = No. of granule partitions in the seg.
~--~ Granule partition 1

o 31

n ~1~ _______________ Gra ___ n_u_'e __ pa_rt_i_ti_o_n_n ______________ ~~
o 31

T:GRAN entries have a fixed size of one word with three different formats.

If the granule partition exists in the Work Area:

10---0~
o 12131415

WA of 9"anule partition in the
Work area

31

If the granule partition exists on its corresponding granule in the Program File:

110 ---------- 0 1 = X'FFF80000'

o 1213 31

If the granule partition has not been allocated; and data has not yet been loaded into that area of the segment:

10----------------------------01
o 31

T:ASSN

T:ASSN contains the information necessary to reassign DeBs as specified on :ASSIGNcommands. T:ASSN is located
in the Dynamic Table area during PASSTWQ (after all the segments have been loaded) and is built by eel. Each
:ASSIGN command is translated into a T:ASSN entry. Entries have a fixed size of ten words with the format

Word 0 I
~O~--------------------------------------~31

Byte address of DCB's execution location

3

4

5

6

7

o

o 1 2 3

Word address of DCB's entry in T:DCB

fBeD Ie I/o Medium Name
(format indicated by word 2)
(5 words)

31

31

~--------------------------------------~ o 31

173

174

where

0= 1 if word 1 contains a right-oligned operational label name. The remaining flags are ignored.

0=0, 0 = 1 if words 1 and 2 contain a left-oligned device name. The remaining flags are ignored.

o = 0 = 0, F = 1 if word 1 contains a right-oligned disk area name or blanks, and words 2 and 3 contain
a left-oligned fil e name.

0=0 = 0, F = 1, A = 1 if words" and 5 contain a left-oligned disk file account name.

kC: if reset kV is unused; if set, kV Is to be inserted.

1 V: val ue for MOD field.

2V: value for ASC field.

3V: value for ORC field.

4V: value for Dip field.

5V: value for VFC field.

6V: value for 8TO field.

7V: value for NRT field.

8V: value for RSZ field.

MAP moves the resident tables T:SEG and T:OC8 to the top of the area, and uses the remaining space to read in and
reference the tables necessary for the MAP output. MAP does not build any tables. The core layout of the table
referenced by MAP is ill ustrated in Figure 54.

OIAG only uses the Dynamic Table area to reference TSEG and T:MOOlA.E.

ROOT TA8L

Two tables in the Root, T:PL and T:OC8F, have a fixed size and are referenced by other tables. Their format and
use is given below. The usage and format of other tables in the Root are well documented in the Overlay Loader's
listing and are not detailed in this manual.

I ----- ----- ..

T:SEG ,
T:DCB ,
T:M DIFY

B:MT

. --~-~

Core layout of the Area while
the program's control sections
are being listed.

FWAof
Dynamic Table Area

LWA+I of the
Dynamic Table Area

Figure 54. MAP Table Reference

r .. __ ! ~ :.1. .~' 1 .•

T:SEG
• T:DCP

T:SYMBOL

T:VALUE

I

Core layout of the Area while
the externals are being listed.

175

176

T:PL

T:Pl contains the information necessary to create T:PUBSVM and T:PUBVAL and to load the Public Libraries speci
fied on the IOLOAD control command. T:PL exists in the Root and has a maximum of three entries. Table end is
indicated by a word of zerCi. Entries haye a fixed size of eight wards with the format

T:DCBF

Word 0

2

3

4

5

6

7

o

First four EBCDIC bytes of PUBLlB name

Last four EBCDIC bytes of PUBLlB name

Word address of PUBLlB's execution loention

Number of bytes in the PUBLIB

Granule no. of PUBUB's symbol table

Number of bytes in PUBLlB's symbol table

Granule no. of PUBLlB's yalue table

Number of bytes in PUBLlB's yalue table

31

Word at I Zeros
last ~.--~
entry+ 1 0 31

."

T:DCBF contains the set of fixed DCBs that are required by the Loader. Each entry contains one DCB. T:DCBF has
a fixed number of entries and exists in the Root. T:DCBF entries are numbered from 1 to 18, and haye the fixed
order given in Table 7.

Table 7. T:DCBF Entries

Entry Mnemonic Pointer To

I F:PUBL Files specified in the PUBLIB option of IOLOAD.

2 F:DEVICE Deyices specified in the DEVICE and O?LB input options.

3 M:GO GO file in the Background Temp area.

4 M:OV Either OV or the file specified in the FILE option of IOLOAD.

5 M:XI XI in the Background Temp area.

6 M:X2 X2 in the Background Temp area.

7 M:X3 X3 in the Background Temp area.

8 M:X4 X4 in the Background Temp area.

9 M:XS X5 in the Background Temp area.

10 M:X6 X6 in the Background Temp area.

11 F:MODIR MODIR file in either the SP or FP area.

12 F:EBCDIC EBCDIC file in either the SP or FP area.

13 F:DEFREF DEFREF file in either the SP or FP area.

14 F:MODULE MODULE fi Ie in either the SP or FP area. •
IS M:C C operational label.

16 M:LL LL operational label.

17 M:OC OC operational label.

18 M:LO LO operational label.

__ . _______ ~ _____ • ________ • ..;&-._. _...-~_ ... __ _::..a.. __ . _ .. ~r._

All T:DCBF entries have the standard l1-word DCB format, with two exceptions: OFLOWand NrO, that are used
only for the M:OV, M:Xl, M:X2, M:X3, M:X4, M:XS, and M:X6 DCBs. The ll-word DCB format ;s

Word ° I . TTL = 7 ~t~_\~\I~c~ BTD IASSN I
° 7 10 14 19 2223 262728 31

NRT .°1\101 TYPE 1 DEV~?~B/ I
o 78 1415161718 2324 31

21 OFLOW ~ BUF

° 7 1415 31

3~1 _________ RS_Z ________ ~ __________ ER_A ________ ~
o 1415 31

41~ ________ N_I_O ______ ~~ ________ A_M ________ ~
1415 31 o

5 LI ____ E_l ____ ~ ___ E_2 ____ ~ ___ E_3 __ ~ __ ---E4--~~
15 16 2324 31 o 78

6 ~(____ E_5 ____ ~ ___ E_6 ____ ~ ___ E_7 __ ~~ ___ E8 ____ _

° 78 1516 2324 31

o 1 2 31

8 AREAl AREA2

o 16 2324 31

91 ACNTl ACNT2 ACNT3 ACNT4

o 78 1516 2324 31

10 I ACNT5 ACNT6 ACNT7 ACNT8

o 78 1516 2324 31

where

OROW = 0 EOT not encountered.

OFLOW = 1 EOT encountered.

Nro number of records (for Xl) or granules required.

177

178

Scrltch FUes
The six scratch files in the Background Temp area of the disk are used by the loader as temporary storage and are
written during the first pass over the object modules. The number of granules required by each scratch file is .cal
culated {whether the file overflows or not)and saved in the DCB assigned to the file. If any of these files overflows
(e.g., if the EOT is encountered during a Write operation), the Loader continues PASSONE, skips PASSTWO, then
calls the MAP to communicate the number of .,.anules required for each scratch file to the user. The Loader's use
of these files is defined in Table 8.

Table 8. Background Scratch Files

File Name loader Use

Xl It. sequential file with blocked record format. Record size equals 120 bytes; granule
size equals 256 words. ROMs input from non-RAD devices are copied onto Xl.

X2 A direct access file with the granule size set equal to the sector size. The m~ule's
tables (T:DECL, T:CSECT, T:FWD, and T:WDX) are output on X2 when either B':MT is
full or at segment end.

X3 A direct access file with the granule size set equal to the sector size. A segment's
T:MODIFY and T:MODULE tables are packed together at segment end and output
on X3.

X4 A direct access file with the granule size set equal to the sector size. A segment's
T:VALUE subtable is output on X4 when the end of a path is encountered and the seg-
ment is being overlayed by another segment.

X5 A direct access file with the granule size set equal to the sector size. A segment's
T:SYMBOL subtable is output on X5 when the end of a path is encountered and the
segment is being overlayed by another segment.

X6 A direct access file with the granule size set equal to the sector size. The LIB over-
lay packs the 16 Dynamic Tables at the top of the Dynamic Table area and outputs the
"pack" on X6 only if the remaining area will not contain the tables required for the
library search.

Pnlrlm File hnnlt

The format for the Program File is illustrated in Figure 55.

The foreground/background program-header format is described in the "CP-R Tables Format" chapter. The Public
Library (PUBLlB) header format is also described in that chapter.

.... ,. :

:

:ROOT, :SEG, and :PUBLIB Commands. CCI creates an entry in T:SEG; builds T:ROMI and T:OCBV entries from
the specified input options; allocates space for the PCB in the Root segment; and for the :SEG command, ca.lls the
PATHENO subroutine. PATHENO determines if the segment starts a different path; if so, writes out the T:S'yMBOl
and T:VAllJE subtables for the overlaid part of the prior path on the disk scratch files; and sets and byte displace
ment pointers for the new segment's T:SYMBOl and T:VAllJE subtables.

la,icel Flow of PASSONE

PASSONE branches to process T:MO~IFY if CCI has just been previously called by PASSONE to input :MODIFY
commands. Otherwise, PASSONE processes T:ROMI which has been built by either CCI or UB. PASSONE inputs
the RO.~ from the devices specified in T:ROMI; builds T:MOOUlE entries for each ROM input; saves ROMs input
from non-disk devices onto the Xl scratch file; and scans the ROMs for pass-one type load items. It then builds the
followi ng entries:

J. Parallel T:SYMBOl and T:VAlUE entries from external OEF, PREF, SREF, and OSECT declarations. Entries
in T:VAlX are built when expressions defining OEFs cannot be resolved. Except for blank COMMON,
a OSECT is allocated when first encountered, and its address is stored in the T:VAlUE entry. I,

2. T:DCB entries from external OEF and REF declarations that begin with either M: or F:. The oddress of the
OCB is either defined with an expression (for OEFs), or allocated by PASS TWO (for REfs) and stored in the
T:OCB entry.

3. T:CSECT entries and allocates CSECTs when encountered.

4. T:FWO entries when FWDs are defined. Entries in T:FWOX are built when expressions defining FWDs can
not be resol ved •

5. Entries in T:OECl whenever a OEF, REF, SREF, CSECT, or OSECT declaration is encountered.

At module end, the four module tables (T:OECl, T:CSECT, T:FWO, and T:FWOX)are packed together and moved to
B:MT. If the buffer is full, the tables are output on X2.

When all the entries in T:ROMI have been processed, PASSO!'JE determines whether the Jibrariesspecified have been
searched. If not, PASSONE call~ LIB to search the library specified. Note that the library is searched and the
ROMs from the library are loaded before the next library is searched.

If there are any :MODIFY commands for the segment, PASSONE calls CCI. After CCI recalls PASSONE, control is
returned to this point where T:MODIFY and T:MODUlE are packed together and output on X3.

If there is a :SEG command in B:C, PASSONE calls CCI. Otherwise, the end of PASSO~E is signaled. Blank
COMMON is allocated at the end of the longest path (if not allocated previously) and the remaining T:SYMBOl,
T:VALUE subtables are output. The resident table areas (T:DCB, T:SEG, T:OCBV, T:VAlX) are set equal to the
actual lengths of the data in the tables. The T:ROMJ area length is set to zero (since it is not used by PASS TWO)
and an end-of-file is written on Xl. If any of the six scratch files overflowed, MAP is called; otherwise, PASSTWO
is called.

lagal Flow If LIB

The UB segment first packs the 16 Dynamic Tables together at the top of the Dynamic Table area. The remaining
space will be used for the UB's tables. (Whenever enough room does not exist for the LIB's tables, the "pack" is
written on the disk scratch file, ><6.) UB then creates T:lOEF, starting from the end of the "pack".

179

180

GRANULE Order in which written

o Program Header last

Root Part 1 ht

2 Root Part 1 (continued)
1\

v

1\
v

&.d of Root Part 1

Segment 1 2nd

k Segment 2 3rd ,.
. .

Segment n last-2

m Root Part 2 IO$t-l

Unused

EOT

Figure 55. Program File Format

LOlical Flow of the Overlay Loader

After the Root segment has been loaded by the JCP, the Root calls the Monitor SEGLOAD function to read CCI into
the overlay area and then transfers control to CCI to process the IOLOAD control command.

l.egicIl Flow .1 CCI

When CCI is called, there is usually a control command in the control command buffer (B:C). If not, CCI reads the
next command into B:C and logs it onto lO. If the command terminates a :ROOT, :SEG, or :MODIFY substack,
PASSONE is called; if it terminates an :ASSIGN substack, PASSTWO is called. If the command does not terminate
a substack, CCI scans the options specified and performs the following functions for the different control ... '1Immands.

IOLOAD Command. CCI sets flags; puts the progrom file name in M:OV DCB; builds T:PL, T:PUBVAL, and
T:PUBSYM from files specified in the PUBLIB option; allocates the 14 remaining Dynamic Table areas; and if the
GO option has been specified, builds T:ROMI.

The FWA of the EBCDIC, DEFREF, and MOOIR fiI.' buff.r i. calculated bysubtracting the length of the longest file
from the end of the Dynamic Table area. The EBCDIC fiI. is read into the buffer and the entries in T:LDEF are con
verted to point from T:SYMBOL to entries in the EBCDIC file. T:LDEF entries not having corresponding EBCDIC
entries are changed to null entries.

The DEFREF file is then read into the buffer. LIB uses the DEFREF file to satisfy PREFs in T:LDEF. All the DEFs and
REFs from an entry in the OEFREF file are added to T:LDEF if at least one of the DEFs satisfies a PREF in T:LDEF
The pointer to the ROM's MODIR file entry is saved in T:LROM, which is built backwards, beginning from the top
of the DEFREF buffer. The DEFREF search is finished when all the PREFs in T:LDEF, that can be, are sotisfied.
T:LROM now contains pointers to all the library ROMs, and T:LDEF is no longer required.

The MODIR file is read into the buffer and the T:LROM entries are changed to point to the ROM's starting record
number in the MODULE file.

The pocked tables are read from the disk (if they were saved in X6), and T:LROM is moved to the temporary buffer
(TEMPBUF) inside the LIB overlay while the Dynamic Tables are being unpocked. Note that if the DIAG segment
were to be called at this point, TEMPBUF would be destroyed. T:LROM entries are converted into T:ROMI format
and added to T:RO.~I in the Dynamic Table area. PASSONE is then called to input the ROMs specified in T:ROMI •

..

la,a flow .f PASSTWO

PASSTWO branches to process T:ASSIGN if CCI has just been previously called by PASS TWO to input :ASSIGN
commands. Otherwise, it reorganizes the Dynamic Table area and moves the resident tables T:SEG, T:DCBV, and
T:DCB to the end of T:PUBVAL and locates T:VALUE at the end of T:DCB. PASSTWO then allocates port two of the
Roat either at the end of the longest path or where specified on a :ROOT card.

PASSTWO is now ready to process the segments. It points to the first/next T:SEGentry; reads the segment's T:VALUE
subtable into T:VALUEi calculates the number of granules required for the segment on the Program File; creates
T:GRAN at the end of T:VALUEi reads the segment's T:MODIFY and T:MODULE tables at the top of T:VALX; and
allocates the Work area (which is divided into granule partitions and contains all or part of the segment's partitioned
core image) at the end of T:GRAN. The Work area extends to the Module Tables Buffer (B:MT), which varies insize,
and is allocated backwards from the top of T:MODIFY. The Work area is dynamic and changes in size either when
tables in B:MT are no longer required, or when another set of Module Tables is input.

PASSTWO is now ready to process the segment's ROMs. It points to the first/next T:MODULE entry; reads in the
first/next set of M~ule Tables into B:MT if necessary; points to the current module's T:DECL, T:CSECT, T:FWD,
and T:FWDX table; inputs the ROM; scans the load items; creates the absolute core image in the Work area using
T:GRAN to locate the granules; and if the Work area gets full, outputs the necessary granules to the Program File.

PASSTWO repeats this cycle unti I all the modules in the segment have been input and then writes the granules re
maining in core onto the program file. It then paints to the next T:SEG entry and repeats the outer cycle until all
the segments in the program have been created.

If a Public Library is not being created, PASSTWO builds T:GRAN for part two of the Root, located at the end of
T:DCB. If there is an :ASSIGN command in B:C, PASSTWO allocates T:ASSN from the end of T:GRAN to the be
ginning of T:VALX and calls CCI to build T:ASSN. After CCI recalls PASS TWO, control is returned to this point.
PASS TWO allocates the Work area at the end of T:ASSN (which may be of zero length); creates OVLOAD, DCBTAB,
INTTAB, and the referenced DCBs; reassigns DCBs referenced in T:ASSN; writes part two of the Roat on the Program
File; creates the program header; and writes it on the Program File. If a Public Library is being created, T:SYMBOL
and T:VALUE are output on the Program File. PASSTWO then exits by calling the MAP.

la,ical flow .f MAP

MAP moves T:SEG and T:DCB to the top of the Dynamic Table area, and unless "no MAP" was specified, outputs the
program header information.

181

182

I

MAP points to the first/next T:SEG .ntry, and un' .. "no MAP" was specified, outputs segment', header infarma_
o

tion. If .ither the PROGRAM or ALL option was specified, MAP reads the segment" T:MODIFV and T:MOOUlE
tables into core at "'e end of T:DC8; locates 8:MT at the end of T:MODULE; uses T:MODUlE to read in "'e Module
Tables associated with the segment; maps the segment's control sections (including library CSECTs if All specified);
and if this is the Root segment, lists T:DCB.

Regardless of the option specified, MAP reads the segm.nt's T:SVM30l and T:VALUE subtables into core at the end
of T:DC8. If the All option was specified, MAP reads T:Pl)BSVM and T:PU8VAl in as part of the root's extemal
table and lists all the symbols in the external table. If the PROGRAM aption was specified, MAP lists all the non
library symbols in the external table. If either the SHORT or "no MAP" option was specified, MAP lists only the
duplicate DEFs, undefined DEFs, unsatisfied REFs, and duplicate REFs.

This cycle is repeated until all the entries in T:SEG have been mapped. If a disk file used by the loader overflowed,
the number of granules used or needed for all files is listed. Otherwise, this information is output only if either the
PROGRAM :lI" All option was specified.

MAP terminates the Overlay Loader by either calling the Monitor EXIT function or ABORT function. MAP aborts
and destroys the Program File if either a disk file overflowed or there were loading errors when a Public Ubrary
was being created .

.... icaI Flow of DIAG
0'

When the DIAG overlay is called, the environment of the calling program is unchanged. Since the DIAG segment
overlays the calling segment, all the temporary and permanent storage cells used by the calling segment are located
in either the Root or the Dynamic Table area. DIAG is called by the RDIAG subroutine which exists in the Root.
When RDIAG is called, it saves the 16 registers and then calls in DIAG via the Monitor SEGlOAD function. DIAG
output$ the specified diagnostic and depending upon the exit code associated with the diagnostic, either aborts, re
turns to RDIAG, or calls the Monitor WAIT function. If control is returned from the WAlT function, DIAG returns
to RDlAG. RDIAG then reloads the calling segment via the Monitor SEGlOAD function, restores the 16 registers,
and returns to the calling segment at the address following the RDIAG call.

Loader-Generated Table Formats

The looder creates the program's Program Control Block (PCB), DCB Table (DCBTAB), and Segment loading
Table (OVlOAD).

PCB

The PCB exists as part of the Root segment and is initialized as shown below by PASSTWO, when the Root segment is
created.

where

TSTACK

TSS

Word 0

1

2

3

4

5

6

10

11

12

0

0

0

0
0

r

TSS

0

0
78

01 TSTACK-l

10

01 OVlOAD

Unused

Unused

MSLADD

Entry Address

141516 .
Ur.€sed

01 DCBTAB

Unused

Unused
I I

0 141516 2526

is the address of the current top of the user's Temp Stack.

indicates the size, in words, of the user's Temp Stack.

0

31

41

'"'

31

(

-~'---.--- - - ---~.~~-- ~-.--------' '--'-~-'

OVLOAD is the acldress of the table used by the SEGLOAD function to read in oyerlay segments or zero.

MSLADD is the address of the M:SL DCB used to load overlay segments.

DCBTAB is the address of a table of names ond addresses of all of the user's DCBs. This table has the form
given below.

DeITAB

DCBTAB is bui It from T :DCB, ond is located in part two of the Root. DCBT AB has the format

WonJ 0 Total number of entries

1~
1

Entry n

E1 E2 E3 E4

E5 E6 E7 E8

FWA of DCB's execution location

o 78 1516 2324 31

where

E1-E8 is the EBCDIC name of the DCB (left-justified with trailing blanla).

OVLOAD

The OVLOAD table contains the information necessary for the Manitor SEGLOAD function to read in overlay seg
m.,ts at execution time. One .,try is created for each overlay segment. Thus, a program consisting only of a Root
would not have an OVLOAD Table.

OVLOAD is located in part two ofthe Root. The format of an entry is such that it can be used as on FPT by SEG LOAD to
read in the requestedsegment. OVLOAD is formatted as described inthe "CP-R Tables Format" chapter.

Loadin& Overlay Loader

Before the Overlay Loader con be loaded, the OLOAD file in the SP area must be previously allocated by RADEDIT.
It is loaded by the JCP Loader with the I LOAD command. It is critical that the ROMs of the Overlay Loader's seg
ments be ordered correctly, so that the segment's idents assigned by the JCP Loader coincide with the idents used
within the program. The segment idents are listed below:

SEG IDENT

ROOT 0

CCI 1

PASSONE 2

PASSTWO 3

MAP 4

DIAG 5

UB 6

The overall flow of the Overlay Loader is illustrated in Figures 56 through 63.

183

184

LOAOSEG

Figure 56. Overlay loader Flow, IOLOAD

Read next CC
into B:C.

process T:ASSN.

Figure 57. Overlay Laacler Flow, CCI

· -~ - .. : ~:... - .. ~-,. - ~ .. -."::- :'!.: ... ---- , ... _._.-" - _-----

Get first/next entry
in T:ROMI.

Allocate C SECTS and
o SECTS when encountered

Build Module tables
(T:OECl, T:CSECT,
T:FWO, and T:FWOX).

Either link or add OEFs,
REFs, OSECTS to
T:PUBSYM, T:OCB or
T:SYMBOL or T:VALUE

Add OEF definitions to
T:VALUE and T:VALX.

Move Module Tables to
B:MT and write on X2
if the buffer is full.

Figure 58. Overlay Loader Flow, PASSONE

. '

185

186

Pack T:MODIFY and
T:MODULE together
and output on X3.

Write remaining
T:SYMBOl, T:VALUE

subtables onto X4
andXS.

create the load
module.

yes

yes

yes

Load CCI to process
next segment's

substack.

Figure 58. Overlay loader Flow, PASSONE (cant.)

Build T:LDEF at the end
of the packed tables.

Allocate EBCDIC, DEFREF,
and MODIR files' buffer.

no

Change T:LDEF entries to
point from T:SYMBOL and
T:PUBSYM entries to
EBCDIC entries.

Read DEFREF file
into buffer.

Allocate T:LROMtobegin
at the end of the buffer.

Built T:LROM to point to
library ROMs that satisfy
T:LDEF REFs.

Read MODIR file
into the buffer.

Convert T:LROM entries
to point from MODIR
file entries to MODULE
fi Ie record numbers.

no

Move T:lROM to TEMPBUF
(inside UB overla).

Unpack the 16
Dynamic Tables.

Convert T:LROM entries
to T:ROMI entries and
add to T:ROMI.

Figure 58. Overlay Loader Flow, PASSONE (cont.)

187

188

Move T:SEG, T:DCBV,
and T:DCB to the end of
T:PUBVAL and allocate
T :VALUE at the end of
T:DCB.

All ocate part two
af the Root.

Read segment's T:VALUE
subtoble into T:VALUE.

Create T:GRAN ot
the end of T:VALUE.

Reod segment's T :MODIFY
and T:MODULf at top of
T:VALX.

Read in the segment's
ROMs and associated
Module Tables.

Scan PASSTWO type lood
items and create absolute
core image.

yes

Write segment's core
Image on Ptogram File.

Figure 59. Overlay Loader Flow, PASSTWO'

Create T:G RAN at
end of T: DCB for
part 2 of the Root and
allocate T :ASSN at
end of T:GRAN.

yes

Write T:SYMBOl
and T:VAWE on
load module file.

Allocate Work
area at the end
of T:ASSN.

Create part 2 of the
Root and reassign
DCBs referenced in
T:ASSN.

Write part 2 of
the Root on
Program File.

Create program
header and wri te
it on Pra ram File.

Figure 59. Overlay loader Flow, PASSTWO (cont.)

189

190

List program, Root,
and segment header
infarmation. .

List OCBs, pragram
CSECTS, and
program OEFs.

list library CSECTS,
library OEFs, and
Public Library OEFs.

list unsatisfied REFs,
dupl i cate OEFs,
dupl i cate REFs, and
undefined OEFs.

yes L.... ___ ...-.I

list information
about RAD file
usage.

no

yes

yes

Figure 60. Overlay Loader Flow, MAP

- I

-,

(

{

_____ • ________ - _________ • 0- ~ __ ~_

Save the 16
registers in the
Temp Stock.

Figure 61. Overlay Loader Flow, RDIAG

Restore the 16
registers.

Figure 62. Overlay Loader Flow, RDIAGX

.. _I='.

"

191

192

Create text and
output diagnostic
on lO and ~C.

Figure 63. Overlay loader Flaw, DIAG

.'

,

---_ .. _._--- ... - -.. -.. --.;..~ ",.. ---: ... ~,

11. RADEDIT

The RADEDIT processor provides a convenient means for the creation and maintenance of files in the various permanent
disk areas defined by SYSGEN. In particular, it provides lob stream and terminal access to the system calls that
create and delete files in these areas, to functions that reclaim space lost to deleted files, and to a means of initial
izing an area to its unused space.

It also provides utility functions that produce listings of active files, enter data into a file, and save areas on mag
netic tape.

RADEDIT executes as a normal program in the background job stream. Whencalled from TEl, using the name MUST,
it executes as a foreground secondary task.

Functional Flow

Upon being loaded, RADEDIT performs one-time initialization to acquire memory for use as buffers a~d work space.
This was created during OLOAD as a defined segment 20,000 words long. How much space is actually acquired, in
pages, is determined by

N = max-path-bgn

where

path is the number of pages in the longest segment path of RADEDIT.

bgn is the page address of the start of RADEDIT.

max is the page address of the end of the range permitted to an SMM program (considered as a good estimate
at how big a variable-sized program should try to be).

The last value is taken from K:FSMM if RADEDIT is executing in foreground (under TJE), or from K:BCKEND if it is
in background.

The layout of RADEDIT in memary is then:

ROOT
PART

J

t
6000

SEG. ROOT SEG. 1000

RADEDIT
ROOT

(RROOT)

f
600E

f
8000

f
8800

f
10000

ROOT
PART

2

f
15000

After the one-time initialization is completed, the normal command processing loop is entered. The functional flow
of this loop is shown in Figure 64.

RADEDIT creates and maintains files and file directories on any of the areas defined in the Master Dictionary except
the BT, XA, or CK areas. (See Chapter 8 for a description of the Master Dictionary.) It uses the system service calls
ALLOT, DELETE and TRUNCATE to perform these functions.

193

194

CP-R

Read IRADEDIT c:ontrol
c:ommand. Load and
trans' er c:ontro I to

RADEDIT.

Do ane-time initi lization:
Get memory for buffers. If
c:alled from TJE, auign
inout DCB to SI oplabel.

Initialize DCBs and the
Scan Rou ti ne parameters.

Read next c:ommand
from C devic:e.

yes

Load appropriate segment
if not already in c:ore and
branc:h to routine.

Retum to Monitor.

TO THE PROCESSORS FOR THE VARIOUS COMMANDS

Figure 64. RADEDIT Func:tional Flow

I

(

In order to simplify processing and reduce dependencies on system table formats, a set of utility subroutines have
been implemented. These routines are called whenever any of the information they process is required. In the
description of the individual commands that follow in the next section, some of these routines are explicitly men
tioned as being called. However, almost every command processer will call one or more whether mentioned or not.

UNPKMASD This routine gets information on the area whose index is in the cell AREA. If the area is allocated,
the F:BI DCB is assigned to the area and a GETASN CAL is issued to set weh information as device address, begin
of area, end of area, and write protection code. All information is stored in the MASDxxxx table in/the context
seSPTIent. AREA <, specifies any publ ic area; this is accepted by setting the area name to blanks and bypassing
the GETASN CAL. A valid area is indicated by returning to the link address + 1, unallocated areas cause a retum
to the link address.

GAN This routine processes a list of area names (as for example in a :MAP command) and marks those given in
the AREASWS byte table. Each area requested explicitly is marked with an X'FF'; areas requested by the 'All' op
tion are marked with X'/6F'. The 'All' option mayor may not include the BT, CK, IS and OS areas depending upon
the setting of the switch passed to GAN in the link register + 1 (RlNK + 1). If na erron are detected, the retum
is to the link address + 1. If any erron, invalid area names, or no area names given, are found, the retum is to
the link address and the address of an error message is in R15 Oink register + 1).

SCAN This is a general routine used to scan all na';'es, numben, etc. It is identical 10 the SCAN routines in
the CP-R KEYSCN module.

GETIOID The general routine to scan an input identifier, which may be any of a file, device, or oplabel. The
routine determines which is given, and builds a table in the form required by the ASSIGN CAL, supplying any de
faults requested or implied. It also generates the appropriate P-bits for ORing into the P-bit word of an ASSIGN
CAL.

GETFID, GETDEV, GETOPLB, GETANY These routines are used to call GETIOIO to get a file identifier, de-
vice name, oplabel name, or any of these three, respectively.

GETFSTSD This routine reads the first directory lector (sector ~ of the area assigned to the F:BI DCB into BUFF'
and does some preliminary determination of the status of the area. Return condition codes indicate:

CC =, Directory continued (1st word < 1>

CC=4 Directory empty (1st word = 1>

CC =8 Directory's last sector (1st word > Jf)

GETNXnD This routine reads the next sector of the directory whose current sector is in BUFF' by accessing the
directory link address. It reads both old style (pre-~P-R) as well as new style (0" and on) directories based
on the setting of the MASDFRMT cell. (See GET1SFIl below.)

195

196

IETAX This routine converts a symbolic area name into an area index. The input name is left justified in RB; .
the area index is retumed in AREA and Rt. An undefined area name results in an error being indicated by retuming
to the I ink address. A valid area retums the link address + t. An area name of zeros or blanks is treated as the
specification of any public area and is indicated by an index of - 1. .

GETJSFIL .. GETNXFIL These routines are used whenever an area's directory is to be searched or processed
one file at a time in their order in the directory. GET1SFIL is called initially. It calls GETFSTSD to read directory
sector zero and test for a cleared area. It then tests the header field to determine if it has an old (pre-~P-R)
or a new (D~ and on) style directory and sets MASDFRMT to 1 or ~ accordingly.

The address of the first or next directory entry {in the BUFF1 buffer} is retumed on each call in RS. GETNXTSD
is called to read the next directory sector as needed. The routines retum relative to the link address according to
what is found

LINK +~: Error in directory

LINK + 1: Directory empty (GET1SFIL), no more entries (GETNXFIL)

LIN K + 2: Next entry address in RS

UNPKDIRE This routine will unpack a directory entry into the DIRExxxx table in the context selJ'lent. It will
process old and new style formats according to the setting of MASDFRMT. It supplies blank account names for
entries which do not have them. For old style entries it also supplies zero for extent information and the length of
the entry. The address of the entry to process is in RS.

This routine and PAC KDIRE are the only two rautines in RADEDIT that know, or should know, the actual format of
a directory entry.

PACKDIRE This routine will form a new style directory entry from the information in the DIRExxxx table and
store it in memory starting at the address in R6. The name that is stored in the entry is a function of the cell
DIRESTAT, as follows.

DIRESTAT = ~ ~ deleted file =~ name of all zeros

DIRESTAT = 1 :9 bad sector entry =~ name of all F's

DIRESTAT = 2 :9 good file =~ name in DIRENAME

The creation and maintenance of files in the disk areas is done through the :ALLOT, :DELETE, :TRUNCATE and
:SQUEEZE commands. All but :SQUEEZE use the monitor service call to do their function.

:ALLOT The utility subroutine GETFID is used to get the file name, and area and account name if given. The
other parameters are scanned and validated, and stored in the DIRExxxx table entries. RF is only allowed if the FP
area is specified. Specifying a library fi Ie in the SP or FP areas forces organization, and RSIZE (if MODULE), to
the needed values. See ALLOT under LIBRARY FILE MAINTENANCE.

An ALLOT FPT is then constructed based on the parameters present in the command and the monito~servi~ called
to actually perform the allocation.

See also the description of the ALLOT service in Chapter 3.

:DELETE The file name and area and/or account name is scanned using the GETFID utility routine. A DELETE
FPT is constructed specifying the appropriate area and account if present, and the monitor service called to delete
the file. Multiple files can be deleted with one :DELETE command by repeating the FILE, fid parometers.

.... ..: ;. ..- '". " '.;.

:TRUICATE This eomnand can truncate either a specific file or all files in an area. If the keyword "FilE" is
scanned, an individual file is assumed, and the utility routine GETFID Is called to get its name, area, and account.
A TRUNCATE FPT is formed from the parameteB obtained by GETFID and the monitor service TRUNCATE called.

If the keyword "FILE" is not scanned first, it is assumed what was scanned was an area name. The utility routine
GETAX is called to validate it as an area name, and then UNPKMASD to get its Master Dictionary information.
The routines GET1SFIL and GETNXFIL are used to get each entry in the directory, UNPKDIRE is used to determine
if it is an active file entry and get its name if so. A TRUNCAte FPT is built and the monitor service called for each
active file that has a file size greater than zero. After each file or area, :TRUNCATE loops back to accept another
file or area.

:SQUEEZE The :SQUEEZE command list the areas to be processed. The list is scanned using the GAN routine to
set flags in the AREASWS table for each area specified. SQUEEZE serves two purposes: 1) it allows the reclaiming
of space that has been last due to truncations and reallocation of deleted files or that is allocated to deleted files;
and 2) it provides a means of collecting the extents of extensible files together into contiguous space on the disk,
and, if not inhibited by a FIX when allotted, merging the extents into a single entry in the directory..: Figure 65
illustrates the disk areas before and after squeezing to reclaim space. .,.

The :SQUEEZE processor uses UNPKMASD to get the area's BOA and EOA sector addresses and the sector size, and
GET1SFIL/GETNXFIL to get each active or Bad Sector entry in the directory. It uses UNPKDIRE/PACKDIRE to get
all information from a fi les entry and to move an entry to and from the directory sectors.

To process each area, the directory is read and each active entry is capied to a linked list in the background buffer.
This list is linked, both forward and backwards in the order in which it appeared in the directory. This is also the
order in which they are allocated space in the area. Also, extended files are linked by extents in ascending order.
Thereafter, the directory on disk is no longer used.

The algorithm used to relocate files and extents in order combine extents of normal extended files and juxtapose
extents if files marked by "FIX" is described in greater detail in Figure 69. Basically, however, each file is pro
cessed as it occurs in the directory. If it is not an extended file it is moved down to the next sector to be allocated
in the squeezed area. When the first occurrence of a file is extent g, it is processed initially as a normal fi Ie. When
the first occurrence of a file is not extent~, the lowest numbered extent that has not been squeezed is found and
it is moved to the next sector to be allocated in the squeezed area.

After an extent of an extended file has been squeezed, non-FIXed extents are combined with the previous extent,
if any, and the next extent chosen as the file entry to be squeezed next.

Whenever there is insufficient space between the last squeezed file (extent) and the next nonsqueezed entry to
insert the next extent; space is made by trying, in order 1) move the next entry and its file ta free space at the end
of the area; 2) move the file to the best fit space not used (either a deleted file or truncated space); or 3} ratate
the next extent and all intervening entries up on the disk: the entry immediately before the next extent will be
moved up over where the next extent was, the entry before it will be moved over it, etc., and the next extent will
then follow the previous.

These attempts to create enough space for the next extent will foil if the next entry is a BADSECTORs entry, or if
there is such an entry in the range of files to be rotated. In these cases, the extent chain is broken and the two
pieces are processed as two separate files. ..

Space before BADSECTOR entries are filled with 1) the largest nonextended file that will fit; then 2) the smallest
extent ~ of on extended file - this will be followed by as many of its extensions as will fit; and finally 3) a deleted
fi Ie entry that exactly fi lis the space.

Note that for areas cantaining BADSECTOR entries, it is possible for the SQUEEZED area to require more space
thon before. This is a function of where the BADSECTOR entry is in the area and whether a large deleted fi Ie entry
has to be formed.

197

198

o

2

3

4

15

26

37

48

59

70

01

-

70
51

X 'AAAAAAAA'

X '55555555 '

fi Ie 1
BOT = 1 EaT = 10

deleted
BOT = 11 EaT = 14

fi Ie 2 (truncated)
BOT = 16 EaT = 20

fi Ie 3 (truncated)
BOT = 23 EaT = 28

bad sectors
BOT = 32 EaT = 47

file 4
BOT = 48 EaT = 50

n ~I ____________________ ~
word

o
1

2

3

4

15

26

37

48

59

70

01

-
n
word

70

48

X 'AAAAAAAA'

X '55555555'

file 1
BOT = 1 EaT = 10

file 2
BOT = 11 EaT = 15

fi Ie 3
BOT = 16 EaT = 21

file 4
~OT = 22 EaT = 24

de leted fi Ie
BOT = 25 EaT = 31

bad sectors
BOT = 32 EaT = 47

-I

Disk Area lefor. SOUEEZE

I
I

Disk Area After SQUEEZE

0 Directory

1 file 1

10

11 deleted file

14
15 lost space
16 file 2

20
21 lost space 22
23 file 3

28
29 lost space 31
32 bad sector space

47

48 file 4

50

51
~ free space

m I
secto~r------'"

0

1

10

11

15·
16

21
22

24
25

31 •

32

47
48

m
sector

Directory

file 1

file 2

file 3

file 4

deleted file

bad sector space

free space -

L1brlr, File Mllntenlnce

Both the System library files residing in the SP area and the User Ubrary files residing in the FP area have;the same
file structure. Each library consists of one blocked Module File (MODULE) and three unblocked files: the Module
Directory File (MODIR), EBCDIC File (EBCDIC), and DEFREF File (DEFREF).

The MODIR File contains general information about each library module, including its nane, where in the MODULE
File it is lacated, and its size. The MODULE File contains the object modules. The EBCDIC File contains only the
DEFs and REFs of the library modules. The DEFREF File contains indices to the DEFs and REFs in the EBCDIC Filefor
each module. These files must be defined via the :AllOT command before attempting ta generate them via the
:COPY command.

Algorithms for Computing Library File Lengths

The following algorithms may- be used to determine the approximate lengths of the four files in a library. It
is not crucial that the file lengths be exact, since any unused space can be recovered via the :-'RUNCATE
command. The approximate number of sectors (nMODIR) required in the MODIR File is

_ 3(i)
nMODIR-,

where

is the number of modules to be placed in the library.

s is the disk sector size in words.

3 words is the length of a MODIR File entry.

The approximate number of sectors (nEBCDIC) = 2~d)

where

d is the unique number of DEFs in the library.

is the disk sector size in words.

2 words is the average length of an EBCDIC File entry.

The approximate number of records (nMODULE) required in the MODULE File is

n

nMODULE = i~l Ci

where

n is the total number of modules in the library.

C. is the number of card 'images in the ith library routine.
I

199

200

The approximate number of .. cton (nDEFREF) Nquired in the DEFREF File is

nDEFREF

where

d. + r.
1 +-'--' 2

s

n is the totol number of routines in the library.

d is the number of DEFs in the ith library routine.

r is the number of REFs in the ith library routine.

s is the disk .. ctor size in words.

litrlry File formats

The library file formats are described below. These files are generated from object modules read in via the
:cOPY command.

' • .1

MODIR File

The MODIR File is an unblocked, sequential access file and acts as a directory to the MODULE File. The file al
ways consists of one variable length record that increases in size as object modules are added to the library. There
is one entry in the MODIR File for each object module, with each entry consisting of three words.

Words 0

where

2

3

5

6

7

8

9

10

11

12

o

MODULE Fi Ie record no. I Records per module

Module nome (firstDEF)

Module name

MODULE File record no. I Records per module

Module name -

Module name

· · ·

· · ·

1516 31

MODULE Fi Ie record no. is the relative record within the MODULE File where the object module (corres-
ponding to this entry) begins.

I
......... ~f_'--_' . .::: _."

records per modu Ie is the number of records In the object module.

module name is the nome of the object module that is the fint DEF in an object module.

A deleted entry contains zeros in all three words.

MODULE File

The MODULE File is a blocked, sequential access file and contains the object modules. The location of the object
module within the file and the size is indicated by the MODIR File entry.

EBCDIC File

The EBCDIC File is an unblocked, sequential access file. The file always consists of one variable length record
that increases in size as object modules are added to the library. The EBCDIC File contains all the unique DEFs
and REFs in the library object modules. '!

o n e e e

e n e e

2 e e e e

3 e e

where

n is the number of bytes in entry (including itself).

e is an external definition or reference in EBCDIC.

DEFREF File

The DEFREF File is an unblocked, sequential access file. The file always consists of one variable length record that
increases in size as object modules are added to the library. For each module there is one entry that varies in size
according to the number of DEFs, DSECTs, and REFs. OEF. and OSECTs always precede the REfs in tile entry.

Entry size (no. 1) MODIR Fi Ie index

d Off 1 d DEF 2

r d DSECT 1 r REF 1

r REF 2 Entry size (no. 2)

MODIR File index d DEF 1 ..
r REF 1 r REF 2

o 1 15161718 31

where

entry size is the number of halfword entries (including itself) for the object module. 3 5 entry size 532,767.

MODIR File index is the relative halfword in the MODIR File that identifies the object module. 05MODIR
Fi Ie index 532,767. -1 means a deleted entry.

201

202

d If d = 1, the entry Is a OEF }
if d and r both = 1, the entry is a OSECT.

if r = 1, the entry is a REF

OEF n is the byte index of an external definition in the EBCDIC File.

REF n is the byte index of an external reference in the EBCDIC File.

DSEC1 n is the byte index of a DSECT in the EBCDIC file.

A deleted DEFREF entry contains a MODIR File index of -1, with the rest of the entry remaining the same.

Cemmand ElICU1ion

The library files are maintained through the execution of :ALLOT, :COPY, :DELETE, and :SQUEEZE commands. The
entries in the MODIR File, MODULE File, and DEFREF File are in the same sequential order. The ith entry in the
MODIR File identifies the ith object module in the MODULE File, and corresponds to the ith entry' in 'the DEFREF
File. The ordering of these files is always preserved.

:ALLOT Library files are allocated in the same general manner as other files described previously, but with
certain specific differences. When area SP or FP is specified, a check is made to determine if the file name is
MODIR, MODULE, DEFREF, or EBCDIC. If MODUL E is specified, RSIZE is set to be 30 words and FORMAT set to
be blocked. If MODIR, DEFREF or EBCDIC is specified, FORMAT is set to unblocked. RSIZE con be any value
for the unblocked files and is used solely for calculating the amount of space to allocate for the file. The record
size for these three files is set to 0 when allocated. GSIZE on all library files is ignored, and is always set equal
to disk sector size by RADEDIT •

:COpy The permanent disk area specified on the :COPY command determines which library a module(s) is to be
added to. For each object module added, the following procedure is followed:

1. An object module is read from the input device specified on the commond. The module is added to the end
of the MODULE File as it is being scanned for external definitions and references. The MODULE File
record number for the MODIR File is obtained from RFT12 (current record no. of file). The MODIR File
index is obtained from RFT5 (record length).

2. As DEFs and REFs are encountered, they are added as entries to the end of the EBCDIC File. The first DEF
encountered is used as the MODULE File name. However, REFs are added to the EBCDIC File if they are
not in duplicate.

3. The indices to the EBCDIC File entries are saved to create the OEF n and REF n wards of the entry to the
DEFREF File.

4. The addition of the object module to the library is completed by updating the "records per module" in the
MODIR File entry; "entry size" in the DEFREF File entry; and writing the MODULE, DEFREF, and EBCDIC
Files to the disk.

:DELETE The permanent disk area on the :DElETE command is used to determine which area contains the library
object module to be deleted. The MODIR File entry containing the same module name as that appearing on the com
mand is zeroed out. The corresponding OEFREF File entry is located ond the halfword containing the MODIR File
index is set to -1. No other changes are made to the EBCDIC and MODULE Files as a result of the :DELETE
command.

All unused space resulting from a module deletion is recovered when a :SQUEEZE command is executed.

:SQ.UEEZE The area contoining the library is determined from the subparameter to "LIB" from the SQUEEZE
command. Only the library will be squeezed by this form of the command. A search is made of MODIR for any
deleted entries. If none are found, there is no space to be reclaimed and squeeze terminates. If there are deleted
entries, all remaining modules are copied fram the MODULE file to the Temporary File XL BT. Then, using XL B1
as the source input, the library files are recreated by a normal library build.

(

._-_ •• --:.-... -_....£::. .. ~------ - ... - "" •• _-------

... Slctlrl
Bad sectors within permanent file areas on a disk are removed from use by making special entries to the appropriate
file directory. All bad sectors can be handled in this manner except these that contain a sector of the file
directory. These cannot be removed from use as it would make acceuing of certain files impossible.

C._mend Eucutian

Bad sectors are handled through execution of :BDSECTOR and :GDSECTOR cammands. The :BDSECTOR command
removes the sectors from use by allocating a BADSECTOR entry equal to the limits of the bad sectors. The
:GDSECTOR cammand returns the sectors for use by deleting the entry mode by :BDSECTOR.

:BDSECTOR The permanent disk area containing the bad sectors is determined from the disk address and sector
limit on the command and the BOA and EOA limits of the areas in the Master Dictionary. Specifying sector zero
of the area is not allowed, and doing so wi II cause the command to abort. If any other directory secttir is specified,
an attempt will be mode to move its data to another sector. The directory is searched for all fi les that fall within
the bad sector limits. Files that begin within the limits are deleted and messages are produced to indicate which
files they were. Files that terminate in, or campletely contain, the bad sectors are truncated at the last good sec
tor I and messoge{s) produced to warn of this condition. For extended files, all extents beyond the truncated or de
leted extent are also deleted.

A BADSECTOR entry is created, either from one of the deleted files or an entirely new entry, whose name is set
to -1 (X 'FFFFFFFF', X'FFFFFFFF') and BOT and EOT to the bad sector limits.

:GDSECTOR The area to process is determined in the same way as for :BDSECTOR. The appropriate area's
directory is searched for all BADSECTOR entries included within the sector limits. Entries campletely within the
limits are converted to deleted file entries; others are adjusted to reflect their new BOT's and EOT's.

Utility Functions

The following utility functions are performed by RADEDIT.

• Maps permanent disk areas.

• Maps Ii brari es.

• Clears permanent disk areas.

• Enters data onto permanent disk files.

• Appends records to the end of an existing permanent disk file.

• Copies permanent disk files.

• Copies library object modules.

• Copies the contents of a disk pack to another disk pack.

• Dumps the contents of disk files or entire disk areas.

• Saves the contents of disk areas in self-reloadable form.

• Restores disk areas previously saved.

203

204

.P The permanent disk area(s) to be mapped is indicated on the :MAP Conwnand, with the map information •
being output to the device assigned to the M:LO DCB.

Each map consists of up to three sections: ane section when disk areas CK, XA, or BT are mapped; three sections
if any other areas are mapped. The three sections of the map are as follows:

1. Information from the Master Directory identifying the permanent disk area, storting and ending disk ad
dresses, write protection, and device number of the disk from the Device Control Tables.

2. Information obtained from the permanent file directories concerning each file in the area; its name, format,
granule size, record size, file size, beginning of file, and ending of file.

3. Information about the space remaining in the area.

Section 1 of the map has the format

AREA DEVICE
ADDRESS
yyndd

WORDS/
SECTOR
ISSSS

SECTORS/
TRACK
ttttt

BEGIN
SECTOR
bbbbb

END
SECTOR

WRITE
PROTECT

zz eeeee w

where

zz identifies the permanent disk area.

yyndd is the disk that contains the pennanent disk area.

S55S5 is the words per sector in decimal.

ttttt is the sectors per track in decimal.

bbbbb is the absolute disk address of the first sector of the area in decimal.

eeeee is the absolute disk address of the kut sector of the area in decimal.

w is the write protection for the file.

P is no write protection.

F is write-permitted by foreground only unless SY key-in.

B is write-permitted by background only unless SY key-in.

S is write-permitted only if SY key-in.

x is write-pennitted by IOEX only.

Section 2 of the map has the format

FLG~ A~EA hELhTIVr ('iih"l;Lt tit,CCU, flU.
~lLLbAME.ACCCL~T XT~T ~EGIL E~D ~IZr SHE ~IZE

OflL ~£CTOk S~CTv~ (i:iTtn (PYTE.S) (fd:.CS)
nnnnnnnn.aaaaaaaa xxx 0 fff ~ssss ttttt ~"FFF rrrrr 11111

where

nnnnnnnn is the name of a fi Ie in the permanent disk area.

APPf.())(E.X Tl:.t.1:
iii: CaRLS SIZE
Ri:.hA I/, (St.CTB)
uuuuu vvvvv

aaaaaaaa is the account number under which the file was allotted. It is not printed if it is all zeros
or blanks.

•• _~ ____ . ____ :.. _~~ _ _-.: :.....!.~ ~ ... _._ '. __ .L:-

o is the file organi~tion.

U specifies unblocked.

B specifies blocked.

C spec ifies compressed.

f are the flogs.

F for FIX specified.

R if Resident Foreground.

S if written Sequentially.

D if written Directly.

99999 is the granule size in bytes in decimal.

rrrrr is the record size in bytes in decimal.

11111 is the number of records in file in decimal.

sssss is the relative disk address of the first sector defined for the file in decimal.

ttttt is the relative disk address of the last sector defined for the file in decimal.

uuuuu is the approximate number of additional records the file can contain.

vvvvv is the number of sectors to be allotted to any extension to this file.

Section 3 of the map gives statistics on the use of the area and has the format

NUMBER OF FILES: nnnnn

REMAINING SECTORS: xxxxx
SECTORS RECOVERABLE: yyyyy

where

nnnnn is the number of directory entries listed.

xxxxx is the number of unused sectors in the area; those between the end of the last allocated file and the
end of the area.

yyyyy is the number of additional sectors that will become available if a SQUEEZE is performed.

The mapping of an area is performed as follows:

1. Information is obtained from the Master Directory for Section 1 of the map and output to the LO device.
If an area is not allocated, the mapping of that area is ignored.

2. Information is then obtained fram the pennanent file directory for Section 2 and output to the LO device.
If an area other than CK, XA, or BT does not contain files, a message will be output to that effect. When
a bad sectors entry is encountered, .. BADSECS" is printed as the name of the file.

3. As the information for each file is printed, sectors contained in deleted files or between the end of one
file and the beginning of the next (truncated areas) are counted for reporting in Section 3.

205

206

The informa~on on the Master Dictionary Is unpacked by ~ IUblOU~ne UNPKMASD into a table. All IUbsequent
references to MASTD info""ation during a MAP operation then this table. UNPKMASD allO computes the num· .
ber of sectors in the area and initializes values d in accounting for free space, used space, and lost space for
Section 3 output.

Each file's entry in the directory is unpacked into a table as it is scanned. This table, rather than the actual entry
In the directory, is used to print the information for Section 2.

AI each area's map is produced, checks are made for a valid directory. Conditions tested are

1. The "Address" portion of the last directory sector is larger than a sector.

2. The "Next Available Sector" portion ofa directory sector points out of the area.

3. The End sector of a file entry is beyond the end of the area.

4. The size of a fi Ie (EOF - BOF) < ~.

Whenever any of these conditions are found, the processing of the area is terminated by the message

AREA HAS AN INVALID DIRECTORY

:LMAP This command functions only on libraries in the SP and FP areas.

The output map has the format

MAP OF LIBRARY IN AREA aa

MODULE NAME LOCATION DEFS REFS

mmmmmmmm 1111 dddddddd dddddddd mrrm nrrrrrr

where

aa is the permanent disk area that contains the library.

mmmmmmmm is the object module name.

1111 is the relative sector address of the fint sector of the object module.

dddddddd is the name of an external definition (up to three per line).

mmrr is the name of an external reference (up to three per line).

If the area contains no library, the message

AREA CONTAINS NO LIBRARY

is output.

:8IAP This command functions similarly to the :MAP function except that the output is greatly abbreviated for
output to a terminal.

Section 1 of the map has the format

AREA: zz

Section 2 of the map has the format

'REeS
11111

FILENAME .ACCOUNT
nnnnnnnn.aaaaaaaa

The mapping of the area is performed in the same steps described under :MAP.

:CATALOG The :CATALOG command U5eS the utility routine GETFID to get its input parameter and decide
what type of :CATALOG command is given. If a file name is given, it is assumed to be the first of a list
of individual files, specifically named, that are to be processed. This is Format "A" catalog. If no file name is
given, it is Format "8" wherein files to be processed are selected based on area and/or account.

Format "A" processing.

Immediately on determining that it is a Format "A" command, the header

ORG #RECS NAME

is output,

For each file listed, the total number of records in the file and all its extents is determined and the files organiza
tion, number of records and FILENAME.AREA.ACCOUNT output.

Format "8" processing.

(- This format may select all accounts in a particular area, (TYPE 2) a particular account in all areas, (TYPE 1), or a
particular account in a particular area (TYPE 0), Based upon which is requested, a list of all areas to be scanned
is built in the AREASWS table.

All areas specified are scanned in order of ascending area index. Area information is gathered by UNPKMASD,
each file entry in the directory by GETISFIL/GETNXFIL, and the status and information in an entry by UNPKDIRE.
As each new file name in the proper area, account and file name limits is found, it is added to a linked bit of files
created in the background buffer space. This list is created and kept in order alphabetized by file name by account
and then by area index, As each extent of an extended fj Ie is found, its fi Ie size is added to the accumulated total
in the list.

A list entry has the format

Word Index

- File Name -
2

3 2
f- Account Name -

4 3

5 Area Index I ORG 4

6 FSIZE 5

7 Back link 6

8 Forward link 7

207

208

The output produced varies according to the type of :CATALOG requested, the type is maintoined in the cell
MAPSW. It is used to branch to the proper c:ode to produce the required header, and again to decide whether the
area and/or account is to be displayed.

:CLEAR The p~rmanent disk area on the :CLEAR command is used to determine the area to be cleared (set to
zero). The area is cleared using the direct access method. The granule size is set equal to the amount of unused
background space available, which is zeroed out and written to the disk.

:COpy The parameters on the :COPY command are used to set up the F:SI and F:SO DCBs. Files are copied
sequentially. When an IEOD, :EOD, or EOT is encountered, the number of files to copy is decremented. If there
are no more files to copy, the request is terminated; otherwise, the next file-copy is started. When an object
module is copied to an output device, the COPY is terminated when the module end load item is encountered.

:OPCOpy The parameters in the :DPCOPY command are used to set up input and output DCBs which are assigned
directly to the specified disk packs. The copy is double buffered on input and output using buffers that are as large
as the background work space will allow. The copy continues until the specified number of sectors have been
copied.

:OUMP The permanent disk area or file to be dumped is indicated on the :DUMP command. The information is
dumped to the device assigned to the M:LO DCB. The file dump has the format

DUMP OF FILE nnnnnnnn IN AREA AA

RECORD rrrr

WD 0000 dddddddd dddddddd ••• dddddddd

WD 0008

WD 0016

where

nnnnnnnn is the name of the fi Ie.

AA identifies the permanent disk area (area BT inclusive).

rrrr is the relative record number and begins with 1.

dddddddd is a dato word in hexadecimal.

The area dump has the format

DUMP OF AREA ZZ

SECTOR ssss

WDOOOO dddddddd dddddddd ••• dddddddd

WDOOO8

WDOO16

where

ZZ identifies the disk area.

S5S5 is the relative sector number, and begins with O.

dddddddd is a data word in hexadecimal.

(-

Acens CllItnIl_ •• (ACI)

Purpose

The ACI contains an image of the access protection codes for a given secondary task.

Serial consecutive entries in TSPACE.

Logical Access

The ACI is pointed to from the STCB. Entries are accessed by index displacement with entry 0 representing virtual
page O.

Overview of Usage

The ACI is created by task initiation and is filled in by the Task Dispatcher before each dispatch operation from
information in the tasks segment descriptors. The ACI is also manipulated by Memory Management routines.

Access Control Image (ACI) Format

word

01 23 456 26 2728 29 ~ 31

o AO Al A2 . . . A13 A14 A
15

A
16 .. A31

2 A32 . . A47

.

where

A. is the 2-bit access protection code for virtual page i.
I

209

210

The dumping of an area or file is performed as follows:

1. The directive is scanned to determine whether an area or file is to be dumped. If a value for SREC is not speci-
fied, 0 is assumed. If a value for EREC is not specified, the last record of the file or area is assumed. .

2. The record(s) to be dumped is accessed sequentially. Within a record, if a word is duplicated more than sixteen
times in order, it is output only once in the message

'WDxxx THRU xxx CONTAIN xxxxxxxx'

If records are duplicated, the message

'RECORDxxx THRU xxx CONTAIN xxxxxxxx'

is output.

If sectors are dupl icated, the message

'SECTOR xxx THRU xxx CONTAIN xxxxxxxx'

is output:.

3. The dump is terminated when the specified number of records have been dumped or when a complete file or area
has been dumped.

:XDMP The specified input is displayed on the device assigned to the M:LO OCB. The input may be a file, a
disk, a tope, a card reader, or any other val id input device. Fi les and disks are read in a sector by sector mode;
topes by physical blocks; and other devices by records. For input coming from a disk, the read is limited to sector
size. For all other input, the read is for 65536 bytes (the maximum possible in READ CAL) or the size of the back
ground buffer space, which ever is smoller.

Each XDMP output storts on a new page. Each page of output is headed by a title line that gives the name of the
device, file or area being processed, and the oplabel if accessed through one. Each sector or record is processed
individually. A sample of the output is given below. The two addresses on the left are the byte (and word) dis
placement from the beginning of the block to the first byte (word) on that line.

Example: XDMP output

,. AUY .,

IEC,DR

.'Tl
O(lU~O

00020
ono.a
_.0

003[0

• .,eNDt 0 IU/II' .. II'" I!I tZ'AJ l. IJ'fI'
Gonuu tH ., r 00060UOO ",IOOOll"
UOOUI ""O(lns,," 000UO'.4 OIoOOVOOO V. &00000
00010 l1Ju"ono ".JZO."D "U"DOUOO ououoooo
000.1 VUUUUUOU QI}(IUUVUO VOUUOUOO IIUOUOOOo

IYTES OUOAU lD VOlO'- JDt.'UIf.:Al to ".nY'l LINE'
000.. ""UgOUO" UOOUOUUO VOUDOUOU VUODOWU

(NO.,. IU

10 I~I'C' I' 151'01 lA ,,,I'll Ie ,,1'"
00000"00 OAOOOO"O U 'DOorIOO 0'0&01,00
0-1(0&'00 001"101 lllll 00000" ~8 O'noonoo

-n "C to 1" 1" lC ... :
00000000 oonOOOllO UU"O,.OOO oooonono •••••• ,.
00000000 00000000 UUUDOOOO 00000000 •• ,.
00 lOf):JItOt '''IE!'' OU:'16 tOUOO.) WORDS.
00000000 OOOOOUOO uoUOOOOO 00000000

When there are three or more lines of output having the same contents, only the first line is displayed. The other
lines are replaced by the "identical to above line" message seen in the sample output. The first two numbers are
byte displacements of the first and last bytes of the duplicate line. The length of the duplicate information is given
in decimal and hexadecimal bytes, then in decimal and hexadecimal words.

(-

:SAYE . The area{s) to be saved is specified on the :SAVE command. The data is dumped to the device assigned to
the M:BO DCB, and consists of the following:

1. A small 88-byte bootstrap that loods the lorge bootstrap when booted from the console.

2. A large bootstrap that restores the disk from magnetic tape.

3. An SS-byte RBM bootstrap used for booting the disk.

4. Records containing data to be saved.

Each record to be restored is preceded by a six-word header with the format:

o fl8 15 16 17 18 19 20 23 24 31

L L M D
WPS R R R P SEQ Area index

A T T A

SPR Device address

TPC I FWA

SPT Area name

NSZ

CKSM

where

WPS is the number of words per sector.

LRA is a flag to indicate this is the last record of an area.

LRT is a flag to indicate this is the last record of the tape.

MRT is a flag to indicate the save data is continued on another volume. (The LRT flog will
also be set, and SPR and NSZ will be zero. It is followed immediately by dauble

tapemorks.)

DPA is a flag to indicate the area is on a disk pock.

SEQ is the volume sequence number. It starts with zero and counts modulo 16.

Area index is the Master Dictionary index of the area to which the record belongs.

SPR is the number of sectors of data in the record that follows this header. If zero, Itlere
is no following data record.

Device address is the physical device address from which the data was read.

TPC is the number of trocks per cylinder for the device. It is used for restoring areas to
disks by Itle bootstrap.

FWA is the absolute disk sector number where the data records should begin being rtftored.

SPT is the number of sectors per track for the device. It is used for restoring areas to disk
by the bootstrap.

Area Name is Itle two character EBCDIC nome of the area to which the data record belongs.

NSZ is the number of sectors of zeros to write preceding the data record (if any) that follows.

CKSM is the checksum of this record in 2'$ complement form.

211

212

The saving of an area for subsequent restoration is performed as follows:

1. A small and large bootstrap are written with their checksums.

2. A header for the CP-R disk bootstrap is written. The FWA and device number for the header is obtained
from K:RDBOOT.

3. The image of the CP-R disk bootstrap is read from the file RADBOOT in the SP area, and written.

4. Data records are written with each record being preceded by a header and followed by a checksum.
Leading and trailing zeros of a record are not written. Size of the data records depends upon the amount
of available background space used as a buffer.

5. After all the specified areas are saved, the tape is verified by using the checksum word of each header
and data record. If no checksum errors are found, the message 'SAVE TAPE OK' is printed.

Since :SAVE makes no attempt to interpret the directory in an area, it will attempt to read and save bad sectors
even if they have been removed from use by a :BDSECTOR command. Normally :SAVE reads as many sectors at a
time as wi" fit in the background buffer and processes these as a unit and writes the non-zero data to the tape. If
the READ service call reports an unrecoverable error, :SAVE enters the error mode for that group of sec; tors . In
this made, all the background buffer is first filled with the doubleword data string C'LOSTDATA', and then each
sector is read individually one behind the other. If no errors are detected, :SAVE leaves the error mode with no
message. If errors are detected again, the first and last sector numbers getting errors are saved until the read-by
sector is complete. One of the messages below output to M:LO.

DATA IN SECTOR xxxxx MAY BE LOST IN AREA zz

DATA IN SECTOR xxxxx TO xxxxx MAY BE LOST IN AREA zz

At the end of the save tape build, if any such messages have been printed, the message

WARNING: ERRORS WRITING SAVETAPE. CHECK LISTING

is output to M:LL and to M:OC in an ATTEND symbiont system. These messages do not cause processing to stop.

:RESTORE The area(s} to be restored is specified on the :RESTORE command. The data is read using the device
assigned to the M:BI DCB. The small bootstrap, large bootstrap, and CP-R disk bootstrap are skipped. Data records
are read and restored using the headers that precede them with all leading and trailing zeros of a record also being
restored. Restoration has to be made to the same type of disk as that from which the records were saved.

The names of all areas to be restored are stored in the AREASWS table. The input tape is read once. As each area
,on the tape is found, it !s looked up in the AREASWS table and, if requested, restored and marked as such in the
table. Areas on tape are identified by name, not index. If the area index on tape daes not match the current index
for the area name, a warning is generated, but the restore is done for the named area anyway. Whenever all re
quested areas have been found, RESTORE terminates. When the end of the tape is reached, the table is scanned
to enSure all explicitly named areas were restored. If any were not, an error message is given. Areas requested

, by All do not produce an error message if they are nat found.

I The : RESTORE processor is also able to process pre EOO format :SAVE tapes. These format tapes are distinguished by
, having a 5 word header record rather than a 6 ward header.

r

(

"

This header has the form

o 8 15 16 17 18 19 20 22 23 24 31

L L D D
WPS R R 0 P 0-0 P Area index

A T A A

SPR Device address

TPC I FWA

SPT NSZ

CKSM

where the fields are the same as in the 6 word header. Whenever : RESTORE reads a 5 word header, it will re
format it to the six word form. The area name currently having "Area index" will be inserted as the'name;
therefore changes in the index value for an area will not be detected.

Flowcharts of various RADEDIT commands are illustrated in Figures 65 through 70.

213

no

ERROR09

214

ALLOT

GETFID

Get fj lename, area,
and account.

ALLOTl

Store parameters in
DIRExxxx table.

yes

ALLOT14

Set ORG and RSIZE
~--------.l.---Ias required for the

file.
ALLOT30

Form FPT and issue
ALLOT CAL.

Figure 65. RADEDIT Flow, ALLOT

(-

yes

(

TRUNCI

GETFID

Get fi lename, area,
and account.

ERROR04

Figure 66. RADEDIT Flow, TRUNCATE

TRUNCIB

GEn SFILtGETNXFIL

Get next fi Ie in
directory.

yes

Form FPT and issue
truncate CAL.

215

216

Initialize COpy
routine.

Scan command
(from field).

Setup F:SI DCB
and FPT (area, file
name, ASN record
size).

Illegal use of COPY.
Return to Monitor
or EXEC 1.

Figure 67. RADEDIT Flow, COpy

-)

-J

(

SetupF:SI DCB and
FPT (area, record
size, file name =
Module).

no

Illegal use of COPY
yes Return to Monitor

.,.-----+l or EXEC1.

Setup F:SO DCB
(ASN, OCT Index,
op Label Table
Index).

Read MODIR file
into Background
Buffer.

Get location of
module in MODULE
file by searching
MODIR file.

Copy module to
output device.

Figure 67. RADEDIT Flow, COpy (cont.)

217

218

Setup F:SI DCB (ASN,
DCT Index, Op Label
Table Index.)

Setup F:SO DCB and FPT
(area, file name, ASN,
record size).

If add option, skip to EOF
on output fj Ie.

Reassign C device to
standard assign.

Figure 67. RADEDIT Flow, COpy (cont.)

-j

(

(

yes

Read EBCDIC file
into Background
Buffer.

Invert EBCDIC in
Background Buffer
starting at highest
core location.

Read DEFREF Fi Ie
into Background
Buffer starting at
Lowest Core Locat.

Scan module for
DEFs and REFs.

Figure 67. RADEDlT Flow, COpy (cont.)

Write out DEFREF
filewithnewentry
to DEFREF fj Ie.

Write out EBCDIC
file with new entry
to EBCDIC file.

Write out MODIR
file including
entry for this
module.

219

220

Set up F:SO D.CB
(aree, file name,
ASN).

If add option, skip
to EOF on output
file.

Copy input fi Ie
to output fi Ie.

-

Setup F:SO DCB
(ASN, OCT Index,
Op Label Table,
Index).

Figure 67. RADEDIT Flow, COpy (cont.)

\ ---

next area.

(-

(

E3
Get areas to
be squeezed

Set index to
process S P first.

Read area's
directory, build
linked chain.

Compute size of
background copy
buffer, bu i I d copy
FDT's and DCB.

yes

Figure 68. RADEDIT Flow, SQUEEZE

221

222

UNPKDIRE

SQ MOV FILE

Move file to its
squeezed location.

S - S + file length
set next sector to
squeeze a file into

no

yes

Combine extents.

Figure 68. RADEDIT Flow, SQUEEZE (cont.)

(-

(

yes

Write new
directory out to
area.

CLRAREA

Clear any sectors
recovered and now
not used.

no

Figure 68. RADEDIT Flow, SQUEEZE (cont.)

223

224

Move chain entry
to after last
squeezed entry and
make next entry.

Move next entry
and file (extent)
to deleted file
space.

yes

yes

Step to next
entry on chain.

Find first unsquee
zed extent in this
file.

Move next chain
entry and fi Ie

>------I~ (extent) to free
space at end of
area.

Figure 68. RADEDIT Flow, SQUEEZE {cont.}

(-

(-

Rotate entries
from next entry to
next extent up,
make next extent

Search unsqueezed
fi les for largest that

~-----I~will fit in hole
yes

after last squeezed
file.

no

Create a deleted
fi Ie entry exact
size of hole.

yes

Break extent chain.
Make next extent
number one larger
than prev ious.

Move file's

>-------+f directory entry to
yes next entry in

chain.

Figure 68. RADEDIT Flow, SQUEEZE {cont.}

225

226

Move small and
large boot to BKG
buffer.

GAN

Build list of
area to save
in AREASWS.

no

Checksum and
write small boot
program.

Set paper/mag tape
read order, check
sum and write large
boot program.

yes

Figure 69. RADEDJT Flow, SAVE

and move to large
boot.

(

(-,

Get device info for
SP area's device.
Form, checksuma
write header for
RADBOOT.

Read RADBOOT.SP
fi Ie, checksum, a
and wri te to tape.

SAVE4

Find index to first
area marked in
AREASWS table.

no

no

Figure 69. RADEDIT Flow, SAVE (cont.)

Error: Save

not done.

SAVE7

Set flag: last
area on tape.

227

228

Accumu late count
of sectors of lead
ing zeros.

no

SAVEll
Insert device and
a rea dependen t
data into header.

SAVE16

Read in next
buffer's worth of
data from area.

SAVE2l
Calculate numberof
sectors of leading
zeros. Add and ac
cumu late count,
store in header.

Ca Icu late and save
number of sectors
of trai ling zeros.

Figure 69. RADEDIT Flow, SAVE (cont.)

yes

Store size of
remaining block
in header.

no

SAVE26

Checksum and
write header.

>------I~ Set end of area
flag in header.

> ____ -.1 Set end of tape
flag in header. yel

Figure 69. RADEDIT Flow, SAVE (cont.)

229

no

230

Checksum and
write data.

Set trailing zeros as
accumu lated count
of leading zeros.

SAVE30

Close DeB to
area.

no

Step area index to
next area to be
saved.

Figure 69. RADEDIT Flow, SAVE (cont.)

yes

SAVE2C

Write double
EOF's on tape
and rewind.

Verify tape y
reading each block
and checking
checksum •

Rewind and
unload tape.

(-

(

12. TERMINAL JOB ENTRY

TJE CDC Tables

In order to treat a communication line as a device, the extensions given below exist for the OCT tables. These OCT
entries are extended according to the number of communication lines declared on the :COC command.

Size
label (Words) length Contents

DCT2 1/4 No. lines COC index (begins at zero)

DCT3 1/4 No. lines X'CO' for all entries

DCT4 1/4 No. lines X'OI' for all entries

DCT5 1/4 No. lines Zero

DCT6 1/4 No. lines Input queues

DCTI4 1/4 No. lines line index (begins at zero)

DCTl6 2 No. lines 'nl llLNxxx', where 'xxx' is the EBCDIC representation of the
decimal line number beginning at '000'.

DCTI8 1/4 No. lines Output queues

DCTMOD No. lines '7611' for all entries

DCTJID 1/4 No. lines Zero

DCTTJEt
1/4 No. lines X'04' = INIT to be performed

X'08' = active line
X'OI' = logon to be performed
X'IO' = logoff to be performed
X'20' = INIT with debug
X'02' = logon being performed

In addition, a new index is kept in the Oth entry of DCT7. This index represents the total number of OCT entries
including communication lines. DClI entry zero will continue to represent the total number of noncommunication
type equipment.

Upon completion of SYSGEN, K:OCTI points to OCT? instead of OCT I.

The following tables and values are generated at SYSGEN from the parameters on the :COC control commands.

label

lCOC

COD:lPC

COD:HWL

t New field.

Size
(Words)

value

2*

2*

Number

COC

COC

Contents

Number of COCs-1

Each double word represents the range of logical I ine ~mbers for
the COC (e.g., COCO has 7 lines; COCI has 8 lines; DBlWRDI
0, 6; DBlWRD2 7, 14).

Each double word is a bit mask representing HARDWIRED lines
with a bit set.

231

Size
Label (Words) Number Contents

COH:DN 1/2 COC Devi ce address

CO:AIIL All input interrupt levels - I

CO:AOIL All output interrupt levels

CO:IIL Input interrupt level-COCO

CO:OIL Output interrupt level-COCO

COA:IIG value Input interrupt group number

COA:OIG value Output interrupt group number

CO:STAT COC WD, 10 X'30nO' when n begins at 0 and is incremented by 1 for
each successive entry

CO:OUTRS COC RD,7 X'30nO'

CO:RCYON COC WD,7 X'30n l'

CO:XDATA COC WD,6 X'3On5'

CO:RCYDO COC WD,7 X'30n3'

CO:TRNDO COC WD,7 X'3On?,

CO:XSTOP COC WD,7 X'3OnE'

CO:LST COC Offset to next RING buffer character -)
CO:RINGE COC Pointer to last word of RING buffer + 1

COH:RBS 1/2 COC Size of RING buffer

CO:INO 4 COC input PSD

CO:INN 7 (LCOC>O) COC n input PSD

CO:OUTO 6 COC COC output PSD

CO:OUT COC Address of output PSD

CO:CMND 4 COC COC command list

COH:II 1/2 COC Address of input interrupt

COH:IO 1/2 COC Address of output interrupt

COCBUF 4 total Used for input and output buffers
BUFFERS

COCHPB Head poi nter for C OC buffers

HRBA value 4x(total BUFFERS-1)

LNOL value Total lines for all COCs

COCOC 1/4 LNOL Output character count

232

Size
Label (Words) Number Contents

LB:UN 1/4 LNOL DCT index if in use

ARSZ 1/4 LNOL Actual record size

BUFCNT 1/4 LNOL Number of buffers in use

MODE 1/4 LNOL X'80' = echoplex
X'40' = escape sequence
X'10' = read pending
X'08' = tab simulation

MODE2 1/4 LNOL X'80' = turnoff signal
X'40' = paper tape mode (XON = 1, XOFF = 0)
X'20' = space insertion (esc 5)
X'08' = shift to lower case (esc(, esc»
X'04' = check parity

MODE3 1/4 LNOL X'80' = tab relative
X'40' = paper tape mode (escP)
X'08' = input lost (insufficient buffers)

MODE4 1/4 LNOL if RATE
0- 10 = 18

11-15=19
16 - 30 = lA
31-60=IB
60 - =IC

MODECPR 1/4 LNOL X'80' = non-T JE line

(COCTERM 1/4 LNOL 0= M33 Teletype
1 = M35 Teletype
2 = M37 Teletype
3 = Xerox Model 7015

RSZ 1/4 LNOL Record size

CPI 1/4 LNOL Input carriage position

CPOS 1/4 LNOL Present carriage position

COCII 1/2 LNOL Input insertion point

COCIR 1/2 LNOL Input removal point

COCOI 1/2 LNOL Output insertion point

COCOR 1/2 LNOL Output removal point

TL 1/2 LNOL Tab link

EOMTIME 1/2 LNOL Time out value

TJE Commands

The following TEL commands translate to service calls:

Command Service Call

MESSAGE TYPE with id

STDLB STDLB

233

234

Command Service Call

MEDIA MEDIA

BATCH JOB

JOB JOB

CANCEL JOB

SETNAME SETNAME

INIT INIT

DEBUG DEBUG, WAIT

EXIT WAIT

EXTM EXTM

STOP STOP

START START

Each of the other TJE commands is treated as follows:

TABS obtains a four-word piece of temp space, fills it with the indicated tabs, and attaches it to the JCB
through JCBTABS.

OFF sets bit TJEOFF of DCTIJE and executes a TERM service call.

RUN does a SETNAME of TEL to the taskname, sets bit TJ EDBG if DEBUG is specified and executes a
TERM service call.

QUIT must execute a TERM service call.

CONTINUE or GO must execute a TRTN service call.

TJE Structure

Account Mlintelllnci

The structure of the AI file in the SP area is as follows:

• The file is created with EDIT; thus, columns 73-80 will contain the line numbers.

• The file contains one account record per account and multiple subaccount records per account record.

• An account record contains the account number (e.g., K1514201).

• A subaccount record which must immediately follow the account record contains the account and sub
account (e. g., K1514201, CROI07143151).

More parameters wi II be added to each type of record later.

Since the file is a fixed length record, blocked file, a binary search may be used to locate and verify logon data.

-)

TEX O,eration

When the COC handler recognizes a new line to be logged on, bit TJEON of DCTTJE is set and the termi~al ex
ecutive (TEX) will be started. Upon activation, TEX scans DCTTJ E using DCT7 entry zero as the index to determine
what is to be done. The following operations are performed if the indicated bit is set:

TJEON causes TEX to output the logon message. If time-out occurs, COC sets TJEOFF and starts TEX. If
input is successful within five tries, and the AI file contains the matching account and subaccount, TEX
creates a job with jobname equivalent to the controll ing device (DCT16, bytes 3-7). TEX executes a
SETNAMETEL=TEL, outputs the logon message to the user and the operator, resets TJEON,setsTJEACT
and TJ EINIT and continues.

T J EOFF causes TEX to KJ OB the job, clears DCTTJ E, and writes a logoff message to the terminal and the
operator and continues.

TJEINIT causes TEX to reset TJEINIT and TJEDBG, and to INIT TEL within the indicated job with
DEBUG if TJ EDBG is set.

All ECB operations execute with no wait.

TEX uses WAIT whenever it is at an idle state. WAIT will return when an ECB is posted or a START is received.

In ~II error cases, appropriate messages are produced and if fatal, TEX sets TJ EOFF. Therefore, the order of bit
checking by TEX is important and is as follows:

TJEOFF, TJEON, TJEINIT

TEX is a mapped secondary task that runs in the CP-R job. It exists as monitor overlays, and calls SCAN to break
apart the logon accounts. It is in part a PROLAY that processes an RTS stack and other needed data.

TEL Operation

TEL existsas both NROLA Yes) and an SSOLAY. The SSOLA Y is used to provide context (stacks) in which to run
TEL when no user's load module is being run. The actual executable code of TEL is available as NROLAY(s) which
run in either the user's or TEL's load module. The toggling between TEL and the user in a synchronous environment
(one task) is actually accomplished by TEX toggling between TEL and the user. TEL may therefore be entered in
two ways:

1. By a direct branch to TEL from the TEL load module.

2. By an entry to TELCNTL when a CONTROL sequence occurs (identical to BREAK) from a user load mod-
ule. In this case, TEL will eventually do a TRTN if GO or CONTINUE is input.

Upon initially (job creation) gaining control, TEL obtains a blocking buffer, places the pointer in JCB word JCBT
JEBB, assign default operational labels, assign default tabs, and begins operation. At any point in its operation,
TEL is prepared to receive a CONTROL sequence. Its action at any time other than that initial CONTROL from a
user load module is to execute a TRTN, since this is simply used to activate TEL after a WAIT.

TEL takes its input through the C operational label and directs its output to the LL oplabel. TEL uses the blocking
buffer to construct its FPTs, DCBs, and buffers. This information is constructed for each TEL command. All asyn
chronous operations are executed with wait.

TEL uses read with prompt (I) for command input. When input is complete, it uses SCAN to parse the in,iut. If an
error is discovered during parsing a (?) is output beneath the offending field. If no error occurs during parsing, but
instead on the service call generated as a result of the input, TEL generates a question mark in column 0 and then
prompts with a new cycle.

Job management and task management are altered as follows to accommodate TJ E:

• Task termination recognizes the TEL task, upon termination sets TJ EINIT in DCTTJ E, and starts TEX.

• Job termination recognizes terminal jobs and does not allow job termination until TJEACT is reset.

235

236

Time slicing in CP-R is available for non-TJE systems since the implementation is not terminal dependent.

The algorithm used for time-slicing in CP-R must be predicated upon the following guidelines:

1. Scheduler thrashing (inefficient context changing) must be avoided.

2. Swapper thrashing (inefficient rolling in and out) must be avoided.

3. Background must run at nearly full speed.

4. Symbionts and media must run at full speed.

5. The algorithm should fit nicely into CP-R's present structure and be easily expandable if the need arises.
The algorithm and its implementation follow:

a. Three variables exist, all of which will be fixed at SYSGEN, depending on the swapping device.

10 ms ~QMIN ~ 140 ms is the minimum time a time-sliced task will be allowed to run when sched
uled before being interrupted to service other time-sl iced tasks.

150 ms ~ QSWAP ~ 400 ms is the minimum time on unblocked time-sliced task must remain in core
before being considered a candidate for swap out. Unblocked means either compute or Vo bound.
(Each VO operation is equivalent to 10 ms compute time. Terminal input is not considered as VO
bound.)

500 ms 5 QMAX is the amount of time an unblocked time-sliced task will run before being consid
ered for exchange with another user who was rolled out in an unblocked state.

b. Time slicing is specified by bit F5 in the INIT service call and indicated by bit TSLICE of LMISTAT.
Default priority is X'FFFF', which is equivalent to the priority of bockground; thus all TEL and TEL
INITed tasks will run at a priority equivalent to background.

c. The dispatcher searches its queue to find the highest priority candidate to run. If the task is time
sliced, CLOCK 4 will be set up to interrupt after QMIN. The task is then given control andmayonly
be interrupted at its dispatcher level for rescheduling by the occurrence of QMIN or a higher priority
nontime-sliced task.

d. When the dispatcher again gains control, it examines the last dispatched task. If the task is time
sl iced, it is requeued to the bottom of its priority.

e. In order to give background improved response, the posting logic moves background to the top of
its priority queue when it comes off a wait condition.

f. MMEXEC's roll-out search is as follows:

W/O TJE

BKGRD INACTIVE
BKGRD ACTIVE
LONG WAIT INACTIVE
LONG WAIT ACTIVE

With TJE

TIME SLICED TERMINAL INPUT
TIME SLICED BLOCKED

LONG WAIT INACTIVE
LONG WAIT ACTIVE

TIME SLICED EXCEED QSWAP

BLOCKED is defined as anything other than UNBLOCKED (I/O or compute bound) or terminal input.

Terminal input and BLOCKED tasks are treated similarly to long wait tasks. Higher priority tasks
in these states may be rolled out. The roll ECB will be added to the R-chain when it becomes
executable.

(

Since OSWAP tasks are placed in MMEXEC's R-chain upon roll-out (thus being immediate candidates
for roll-in), the search for QSWAP tasks applies only to equal or lower priority.)

g. MMEXEC continues to run until no candidates are found to satisfy R-chain requests or unti I the R-chain
is exhcusted and then executes a WAIT. Whenever a time-sliced task is awaiting terminal input, be
comes blocked, or exceeds QMAX, the MMEXEC is started.

h. In order to keep MMEXEC above the time-sliced tasks, the following rule applies:

Whenever time-sliced and nontime-sliced tasks are queued at the same priority, the nontime-sliced
tasks are queued above the time-sliced tasks. By way of example, a typical CP-R task structure may
appear at a given moment as follows:

DISP

r----- Symbiont Executive

t-____ Media

1--____ Terminal Executive

I--____ Control Task
1---___ MMEXEC (floats)
I------TEL (time-sliced)
1--____ TEL (time-sliced)
t----- BKGRD (time-sliced)
I------TEL (time-sliced)
'--____ TEL (time-sliced)

priority X'FFFF'

237

238

13. MEDI~

The MEDIA processor consists of three parts:

1. Key-in processor

2. CAL service call processor

3. The MEDIA task. This task is subdivided into two parts: an overlay section and a resident section.

The MEDIA key-in processor forms a 13-word table containing the information from the parameters specified. This
table is then sent to the MEDIA task as a signal data packet to be processed. The signal to the MEDIA task is sent
with a class flag of

X'8000'

to indicate a key-in signal. The format and contents of a key-in packet are as follows:

0

FI

~

where

IFILE } = ~
OFILE

=2

I

LE

L
E

7 8 15 16 '3 '4
A 0 I I

o L E 0 R U Area Name Input

L L E N
WL MASN

0
A Sfile Count 0
D

Input Name

Input Name

Input Account Name

Input Account Name

Spare

Spare

Spare

S N AW 0 0
P V o E R U

Area Name Output A F DOE N
C C - F W L Space WEOF
E 0 Count Count

A Sfile Count 0
D

Output Name

Output Name

Output Account Name

Output Account Name

device name specified.

area and file name specified.

31

0

0

Input
Spec i fi cat i on

Output
Specification

(-

(-

(-

All =~ copy only the specified file.

= 1 on magnetic tape, copy all files up to an end-of-file double tapemark.

DEL retain the file after the copy.

= 1 delete the fi Ie after the copy.

fREW =~ leave magnetic tape positioned after fi Ie copied.

= 1 rewind the tape to BOT after the copy.

fUNLOAD = ~ same as IREW = O.

= 1

MASN

tope is rewound "off-line" after the copy.

the MEDIA Action Sequence Number to identify the action request. The next number in
sequence is assigned to each MEDIA request.

Area Nome,
Input (Output)
Nome, Account
Nome

when IFILE (OFILE) = 2, the corresponding Area Name contains the two-letter EBCDIC
name of the area, Input (Output) Name contains the filename to copy from (to), and
Input (Output) Account contains the account name.

SPACE

NVFC

ADD

WEOF

OREW

=0

when IFILE (OFILE) = 0, the device name is left-justified ond blank filled in the Input
(Output) Name field. The corresponding AREANAME contains zeros or the SFILE count.

for printer destined files, the printer is spaced according to the VFC byte (NVFC = 0),
or is to be single spaced (NVFC = I).

= 1 the printer is to be spaced "Space Count" lines between eoch line output (NVFC = 1).

=0

This field is not used when NVFC = O.

for printer destined files, the printer is to operate with VFC, and the first byte of every
record contains the VFC information.

= 1 for printer destined files, the printer is to operate without VFC, and the first byte in
every record is data.

=0 the output tape is to be positioned according to the SFILE count before the copy
commences.

= 1 the output fi Ie will follow the last file on magnetic tape or be added to the end of an
existing disk file.

=0 two end-of-fi les are to be written to the output tape after the copy.

= 1 "WEOF Count" end-of-fi les are to be written to the tape after the copy.

=0 the output tape is to be left pasitioned after the file.

= 1 the output tape is to be rewound after the copy and end-of-files (if any) are written.

OUNLOAD = 0 same as OREW = O.

= 1

Space Count

WEOF Count

SFILE Count

'"' the output tape is rewound "off-line" after the copy and end-of-files (if any) are
written.

the number of lines to space the printer between each lineof output when NVFC = 1
SPACE = I.

the number of end-of-files to write to the output tape after the copy when WEOF = I.

the number of fi les a magnetic tape is to be forward skipped before the copy is started.

239

240

MEDIA key-ins specifying the control functions C, L, I, X communicate directly with the MEDIA task, setting or
resetting the appropriate indi cators in the resident portion of the MEDIA task.

The MEDIA service call forms a nine-word table from the call's FPT, job name and task name. This table is se~t
to the MEDIA task as the data packet of a Signal call. A class mask of

X'4000'

is used for the Signal to identify it as a service call packet. The contents of a service call packet are as follows:

where

File

OS

NVFC

DEL

MASN

0 NO
IL S V E 0 0 0 MASN Area Name

E F L
C

File Name

r-- - - - - - - - - - - - - - ---
File Name

Account Name
f-- - - - - - - - - - - - - - - - --

Account Name

Job Name
f- - - - - - - - - - - -- - -----

1--

=2

Job Name

Task Name

- - -- ---- --- ---- - ----
Task Name

the file is specified by the area and file name.

printer destined files will be printed single spaced (NVFC = 1), or according to the
VFC byte in the record (NVFC = m.

= 1 printer destined files will be double spaced (NVFC = 1). This field is ignored when
NVFC = ¢.

printer destined files will be printed with VFC, and the first byte of each record will be
used as the VFC byte.

= 1 printer destined files will be printed without VFC; the first byte of each record..\s
printed.

= 1

do not de I ete the fi Ie after the copy.

delete the fi Ie after the copy.

the MEDIA Action Sequence Number. The next number in sequence is assigned to each
request as an identification number.

C

Area Name }
File Name
Account Name

Task Name}
Job Nome

the area, file and acc!ount name as specified in the MEDIA call (FILE = 2).

the task- and job-name of the task that issued the service call. These will be printed
on the burst page of a printer-destined file.

The resident section of the task contains all permanent areas the task requires and a short segment of code that is the
main loop of the copy. The contents and structure are as follows:

label Contents

MEDRCTRl MASN 0 o 01010101~1~lolo Status 1\
MEDRQINF 0 o 0 o 0 o 0 0

MEDRJOB Job Name {8 characters}

MEDRTASK Task Name (8 characters)

MEDRITMP
Input device 0 0 Input Device Control Info.
index, or zero

MEDROTMP
Output device

0 0 Output Device Control Info.
index, or zero

MEDRBBl
First blocking buffer control word temp
{zero if no blocking buffer}

MEDRBB2
Second blocking buffer control word temp
(zero if no blocking buffer)

MEDRERRS Error indicator/error code (4 characters)

TYC code if device error; otherwise, 0

MEDRIDCB Input DCB

MEDRODCB Output DCB

MEDRRA
MEDRRB
MEDRWA
MEDRWB FPTs to read and write "A" and "B" buffers, check Reads and

Writes, open and close DCBs; miscellaneous services
MEDRCHKR
MEDRCHKW
MEDROC
MEDRFPTX

MEDR900 No-operation Error Processor

MEDRlOOP Copy code

MEDRSTCB STCB

MEDRSTAK Temp Stack

where

MASN one byte counter; next number is assigned to each new MEDIA request as an identification number.

End when END = 1, do not ini tiate a new copy operation. Set by MEDIA control function "l".

241

242

Stop = 1 suspend the current copy. Set by control function "s ".

=0 continue or resume the current copy.

Status set by MEDIA when operator intervention is required or when execution must be suspended to control
where processing is to be resumed. Values and meanings are:

o idle.

1 device manual during pre-copy processing.

2 in a copy, stopped by S key-in.

3 device manual during copy.

4 waiting device from Symbionts, exclusive use.

S waiting tape mount and operator okay.

6 printing break pages in part 2.

Abort when ABORT = 1, abort the current copy operation. Set by control function X.

Job Name}
Task Name the 8-character job and task names of the current copy.

Input/Output the OCT index of the input and output devices, or zero (0) if to a disk file or null device.
Index and
Control Words the Control Information holfword has the format:

s p
0 w R T I

I I A 0 0 0
U N RECl T N P T 0

C T E 0
H E K K

R

Bit o 2345678 15

where

SWITCH switchable device; other devices of the same type may be substituted.

Input, Output
DCBs

PRINTER line printer device -any model.

TAPE magnetic tape device - any model.

OUTOK valid output device.

INOK valid input device.

RECl maximum record length in words, minus 1.

prototype DCBs for the input and output files.

FPTs two each Read and Write FPTs and two Check FPTs. Input and output are doubled buffered, plus an
FPT to OPEN/CLOSE the DCBs and space for pre-processing FPTs.

Copy code the resident copy code.

STCB secondary Task Control Block for the MEDIA task.

Temp Stack push down stack.

The overlay section contains the functions necessary to process the MEDIA CALs and key-ins, effect the MEDIA
control functions, acquire the specified input/output devices, open and close the files, and to do any pre- or
post-processing.

- !

(-

For each copy, the next operation is selected by searching for 'a signal, first with a class mask of X'8000' to select
the highest priority keyin request and then, if none exists, with a class mask of X'4000' to select a CAL service
request.

Having selected a request, the DCBs for both files are formed. Conflict with the SYMBIONT processor is then
checked and a delayed request process is initiated if it exists (see below). The input DCB is then opened. An error
due to unavailability goes to the delayed request process.

Successful opening of the input allows a similar process to start in the output file. When both files are successfully
opened pre-copy preparation can begin.

If it is impassible to obtain both the input and output devices, due either to symbiont conflict or device unavail
ability, delayed request processing is initiated. This is done by closing the input file, if open, to free the device
and avoid deadlock conditions. The "Requested by MEDIA" bits (bit 1) are set in each device's DCTRBM byte.
Then, if either device is in conflict with the SYMBIONT processor, the MEDIA task does a foreground WAIT to
await a start from the other task when it is finished with the devices. If they are unavailable for any other reason,
a five-second timer iS,initiated and then a foreground WAIT is done. In either case an internal status indicator is
set to "acquiring devices".

When the foreground WAIT returns and the "acquiring devi ces" indi cator is set, processing continues as above with
checks for input device Symbiont canf/icts. This process is repeated until both devices are successfully acquired.

After successfully opening the two files, any pre-copy positioning is done first for the input and then the out
put file. The resident copy loop is prepared to perform the requested NVFC or SPACE,n processing and the
copy initiated.

At copy completion, pastcopy processing and positioning are done. Then for both normal and abnormal or abort
terminations, the DCBs are closed and the SYMBIONT task started if it has requested either device.

The MEDIA internal status is set to "idle" and a SUPERWAIT with a short timeout is done. When the wait returns,
the next copy request is polled as above.

Figure 70 shows the definitions of the field and indicator symbols are defined in the CPREQU System.

243

244

LAbi:.L
l~ Ar-1E

hEDKEYCL l::OU
NEDCALCL f..QU

hEDhGu ECJ
MEDREND EOU
t'iEDflSTOP ECU
t':EDRA.tiRT ECU
~jEDhriCTL EQU

[>iEDSIDLE Eeu
~iEDSHiOP EOU
l'iEDSCOPY £OU
~iEj)SICPY EQU
1'1EDSACIR EQU
NEDSTAPE EOU
l'iEDSHEDR EQU

HEDASw EOU
HEDAPR1~T ECiU
I-iEDATAPE EOU
hEDAOllOK EOU
MEDAINOK EOU
t'iEDAI w RD EQU
t1EDRSSZ EOU

~jEDPLEi~ EC;U

NEDPiASE
~lEDPICTL

MEDPIFIL
MEDPOCTL
~JEDPJOBN

MEDPOFIL
NEDPTSKN
MEDPIACN
MEDPOACI~

MEDP""ASN
MEDFISFL
NEDPOSFL
hEDFluFT
HEDPIAk
fviEDPOOPT
HEDPOAR

EQU
EQU
I:.QU
EQU
EOU
EOU
EQU
EOU
Eeu
EOU
EQU
EOU
Ee,u
EOU
EOU
BOU

VALUE

X'oOOO'
X'4000'

X'bOOO'
X'OoOO'
X'0400'
X'OOOI'
t·j 15

IiWEX
COi'-:Jo:Ei~ r TYPJ:.

ECb CLASS FLAG::;

A KEY-I!, f.ECJES1
A CAL flECUEST

~EOIA CONTROL FLAG::;

S7AflI OF! CO~TINUE A COPY 0PE"AliO~
END COPY, DO ~OT STAhr A ~t.~ CUpy
STOP (SUSPE~D) COPY IMMEuIATELY
AbORT CUHkENT COpy OPEHATION
MASK fOR STuhl~G Cu~TfiOL FLAGS

STATUS INDICATOhS FUR MEDIA AFTER STARTS

00
1** I
2** I
3"* I
4** I
5**1
6** I

IDLE
DEVICE INOP, A~AITI~G READY
I~ A CuPY; PHOCESS wAS STOPPED
IN A CUPY; DEVICE l~OP
ACQUIRING DEVICES FROM SY~bIONTS
wAITI~G TAPE MOUNT, 'I' KEY-I~
PRINTI~G BREAK PAG~S IN PART 2

DEVICE CHARACTERISTIC INDICATOflS

x'8ooo'
X'4000'
X'2000'
X'0200'
X'OIOO'
X'OOFF'
145

OK TO S~ITCH TO SIMILAR DEVIC~
LEVIC~ IS A PHIhTER
DEVICE IS A TAPE
DEVICE LEGAL FOR OUTPUT DEVICE
DEVICE LEGAL FOR INPUT DEVICE
NUMBER OF WORDS IN MAX.LE~.REC.
SIZE OF STACK AREA IN ROOT

~AP FOR COPY REQUEST SIG~AL PACKETS

16

o
I
2
9
6

10
o
4

12
5
6

Iii
2
3

18
19

n.
rw
F"
F~
FI\
fw
Fw
Fw
F~
BYTE
BYTE
BYTE
Hw
Hw H __

H\r;

LENGTrl JF A SIGNAL PACKET

HEADER ~ORD / BASE OF PACKET
I~PUT CONTROL ~ORD / AREA ~AHE

INPUT FILE-, UEVICE- ~AME

OUTPUT CONTROL WORD / AREA ~AME
JOB NAME OF REQUESTING TASK
OUTPUT FILE-, DEVICE- NAME
TASK ~AME OF REQUESTING TASK
I~PUT FILE ACCOUNT ~A~E
OUTPUT FILE ACCOUNT NAME
SECUE~CE / 10 NUMBER
SFILE COUNT, INPUT
SFILE CUUNT, OUTPUT
I~PUT 0P1IO~S ri~
I~PUT ARH IliAME
OUTPUT OPTIONS H~
uUTPuT AREA NAME

Figure 70. Field and Indicator Definitions

(

LAl::t.L
l~AhE

l-iEuOFILE
hEDOALL
hEDOiJi:.L
t·jEliOSP AC
r';EDOli V FC

l'iEt..OADiJ
hEDUI',EOr
hEDGRE't.
ht.DOlj~LD

i:.CU
t:QlJ
Eeu
E(IU
EOu

Ee,;U
t::e,;U
EeU
EQU

~jEDHF ILE EQU
r-;ELlHALL EOU
HEDHDEL EOU
f,ElJHiiE1-4 1:.C'U
l'iEDt1LULD feu
MEIJHSPAC EOU
l-i£DHNVFC EC'U
l-lEDHADD Eeu
~IEDH~.EOF EOU

l'jEDRSI~ ECU
l'lEDRSTAT EOU
MEDRflCAL EOU
~;EDRCFIN EOU
MEDRIFKEY EOU
~'iEDRKFIN EQU
MEDfiFLAG EQU

NEDHRBUF EOU
MEDRwBUF EOU
~lEDRRBYT EOU
MEDRwBYT EOU
MEDhRBTD EOU
l-lEDRIIBYT EOU

VALue: hDEX
TYPE

OPTIO~ IN~ICATORS AS bYTE VALUES

X'bO' fILE IS SPECIFIED
X'IO' ALL FILES ON INPUT TO DE CuPIt:D
X'Ob' DELETE INPLiT fILE AFTER COpy
X'20' SPACE COLi;,T SPECIFIED FOR P RIl.Tih
X' 10' DO I~u VFe; 1ST DATA BYTE IS JJATA

If \lFC, 1ST DATA EYTE IS VFC bYTi:.
X'Oi)' ADD FILES Ti.) EXISThG FILE Un '.lAPe;
X'04' whITt. i:.LlrS AFTER COPY
X'02' fichHD I [~PUT! 0 UT P UT AFTER COpy
X' 0 I' Uf.LOAD INPuT/OUTPUT AFTeR COPr

OPTIONS AS HALF-~OfiDS

MEDOFILEuo
~',EDOALL*II B
!1EDODELu b
r-jEDOREwll*tj
MEDOU1~LD**b
HEDOSPAcub
~;EDCJNVFC"b
MEDOADD**o
i'lEDO~EOFu8

OFFSETS TO

0
3
4
5
6
7
I

I NFOfir:A TION

EYTE
BYTE
EYTE
BYTE
BYTE
BYTE
H"~~

IN RESIDE1H TAbLES

NEXT ID NUl-lEER TO BE ASSIGNED
STATUS INDICATORS
NU1·jBER OF CAL REQUESTS QUEllED
LAST CAL ID PROCESSED
t;UI·:BER OF KEY-IN REQUESTS OUEuED
LAST KEy-It. ID PROCESSED
CONTROL FLAGS / STATUS INDICATORS

OFFSETS INTO READ/i\RITE FPTS

4 Fi-. BUFFER ADDRESS, READ FPT
4 F~' BUFFER ADDRESS, WRITE FPT
5 Hi NUMEER OF BYTES TO READ
5 FW NUMBER OF BYTES TO wRITE
6 Fw BYTE DISPLACH:Ei'lT IN 1ST WOfW
7 F1-4 ACTuAL I~Ui1BJ::H OF BYTES READ

Figure 70. Field and Indicator Definitions {cont.}

245

246

14 . . EDIT SUBSYSTEM

Functional Overview

The EDIT processor is a line-at-a-time text file manipulation utility available to the CP-R user either in the
background stream or under control of the Terminal Job Entry system executive.

EDIT operates in one of two states: the command state or the active state. The command state is defined as the time
in which EDIT is accepting or processing a command. This state is entered when EDIT types its identifying prompt
character{s), * or **, requests input, and awaits the next command. On the other hand, the active state is defined
as that time in which EDIT is executing commands, processing text, or accepting text. This state is entered when a
command starts execution and terminates at the completion of the command.

EDIT is assembled as two modules, one of which is considered as context (writable) and the other as procedure (read
and execute). The context module is linked into the processor root. The procedure module is linked as a segment
with the characteristics ILOAD, (SHARE, SYSTEM), and (ACCESS, RX). The user may chose to omit the sharabi I ity
option, but if he includes it (recommended in a multi-usage environment), he must assign a segment number which
does not conflict with other system-sharable segments defined at his installation. EDIT should be linked as a
secondary foreground task since this permits both foreground and background execution.

The memory allocation for EDIT is shown in Figure 71.

Monitor EDIT Load Module

ROOTI SEGMENT

x'6000' x'6400' x'7800'

(context) (procedure)

Figure 71. Memory Allocation EDIT

ROOT2

(
automa tiC)

context

Unused Virtual
Memory

x'7AOO'

EDIT fj les are stored on disk as keyed records wi th the sequence number used as a key. It is assumed to have an
implied decimal point such that when the key is converted to EBCDIC for printout purposes the sequence number
I 2 3 4 5 6 7 appears as 1 2 3 4 . 5 6 7 . The largest sequence number a I lowed is 9999.999.

Operational Overview

EDIT is organized in a highly modular fashion. Upon entry, BEGINEDITOR performs subsystem initialization after
which MASTERPARSER controls input commandscan of a line of user commands. From a line of inputcommand(s) the
Command Description Table (COT) is built. Error checks are made and warnings given to the user if necessary.
MASTERPARSER uses a number of subroutines to build the Command Description Table: GETNEXTNAME and
GETNEXTPARAM to break down text strings; PARSE:I:CMN D$INTG to process integer strings; PARSE:I:CMND$STRG
to process alphabetic strings in slashes; and routines of the form PARSE: cmnd for command processing. T~e format
of the Command Description Table is given in Figure 72.

On completion of a command line (with possible extension), control is passed to the MASTEREXECUTIVE routine
to perform the commands which then reside in the COT. Figure 73 shows the general processing flow of EDIT.
MASTEREXECUTIVE serves as a driver for command processing using F: routines for file commands, R: routines for
record commands and I: routines for intra-record command processing.

-j

(~

COT 0 Number of Command Entries
p

Start of 1

First Ent ry,

If any n End-of-CDT Marker

o 31

Notes:

1. Entry Format

Word Byte o 2 3
Number of words Command number Order of occurrence Number of items
in entl}' (see Table 8,) in command line

o

m I
n

1
1

where

Item type = 0
1
2

Item 1 type
Item 1 Text

Item 2 type
Pointer

Item 1 (TEXTC form)

Item 2 (TEXTC form)

for END, carriage return.
for NAME, a file name, e.g., (EXAMPLE.D3).
for SEQ, a sequence number, e.g., 1.23.

Item 2 Text
Pointer

I
I
1

3 for SEQ2, two sequence numbers or two sequence numbers separated by a dash,

4
5
6
7
8
9

10
11
12

Text pointer

e.g., 1.2-2.
for INTG, a numeric string whose value is less than 1000; e.g., 123.
for STRG, a character string enclosed in slashes; e.g., /BUILD/.
for ALPH, a character string not enclosed in slashes; e.g., BUILD.
for COM, comma.
for SCOl, semicolon.
for lPAR, left parenthesis.
for RPAR, right parenthesis.
for PERIOD.
for BLANK.

is word address of TEXTC form in entry; e.g., for item 1, Text pointer is n.

2. CDT+IOO=CDTADR, address of current command in COT.

3. PARAMPSN = next available slot in COT.

4. PRMBUFSZ = number of words in PARAMBUF to be added.

5. CHARPSN = number of next character to scan.

6. End-of-CDT Marker = X'OOOOOI00'.

Figure 72. Command Description Table (COT)

247

--)
ENTER

J
MASTER-
PARSER

~

I Read Command from TIV or scratch fi Ie

~ no Print Error
Message

yes

Go to Proper Routine to Build COT I ,
PARSE: routine

Print Error

~ no
Message Legal

? yes -)
Build COT

1
MASTER-

EXECUTIVE

,
Analyze COT and go to I Proper Routine

1
II F:, R:, 1: routine

!
Call workhorse subroutines to

IE~~(
Exit from

Execute Commands in COT EDIT

1 All Other

Figure 13. Overall Flow Diagram of EDIT

248

Table 9. Command Number Table

Command
Number Command COT Builder COT Executor

1 BP PARSE:BP F:BLANK$PRESERV

2 BUILD or PARSE:BUILD F:BUILD F
I

SAVE PARSE:SAVE F:SAVE L

3 COpy PARSE:COPY F:COPV E

4 DELETE PARSE:DELETE F:DELETE C
0

5 EDIT PARSE:EDIT F:EDIT M

6 END PARSE:END F:END M
A

8 CR or PARSE:CR F:CR N

SEQ PARSE:SEQ F:SEQ D
S

9 MERGE PARSE:MERGE F:MERGE

10 CM PARSE:CM R:COMMENTARY

II DE PARSE:DE R:DELETE

12 FD PARSE:FD R:FIND$DELETE

13 FT PARSE:FT R:FIND$TYPE R
14 IN PARSE:IN R:INSERT E

15 IS PARSE:IS R:INSERTSUPSEG C
0

16 MD PARSE:MD R :MOVE$DELETE R

(-
17 MK PARSE:MK R:MOVE$KEEP

D

18 RN PARSE:RN R:RENUMBER C

19 SS PARSE:SS R:SET$STEP 0
M

20 ST PARSE:ST R :SET $STEP$TYPE M

21 TS PARSE:TS R :TYPESUPSEQ A
N

22 TY PARSE:TY R:TYPE D

23 TC PARSE:TC R:TYPE$COMPRESSED S

24 FS PARSE:FS R:FIND$SEQUENCE

25 GO PARSE:GO R:GO

26 RET PARSE:RET R:RET

30 SE PARSE:SE I:SET

31 D I:DELETE

32 E I:OVERWR$EXTEND I C

33 F PARSE:I :CMND$STRG I:FOLLOW$BY
N 0
T M

34 L I:SHIFT$LEFT R M or
A A 35 0 I:OVERWRITE

..-
PARSE:I :CMND$INTG L N

36 P I:PRECEDE$BY 1 D

37 R I:SHIFT$RIGHT N S
E

(
38 S I:SUBSTITUTE

39 JU PARSE:JU I:JUMP

249

250

Table 9. Command Number Table (cont.)

Command
Number Command COT Builder COT Executor

40 NO PARSE:NO I:NO$CHANGE

41 RF PARSE:RF I :REVERSE$BPFLAG

42 TS PARSE:TS I:TYPESUPSEQ

43 TY PARSE:TY I:TYPE

44 A I:ALlGN I PARSE ,I ,CMN DlSTRG
45 Y I:YES$CONTINUE

or
46 N I:N O$CONTINUE

PARSE:I:CMND$INTG
47 DE I:DEL$REC

48 C PARSE:C I:COPY$REC

Module Analysis

The routine and subroutine descriptions which follow are organized such thatthe initialization routine BEGIN EDITOR
appears first followed by MASTER PARSER and its associated PARSE: subroutines in alphabetical order, MASTER
EXECUTIVE and its associated F:, R:, and I: command executor routines in alphabetical order, and lastly the gen
eral subroutines in alphabetical order.

In the descriptions which follow register notations have the following meaning:

51mbol is Register Symbol is Register

X3 T2 9

X4 2 P3 10

Xl 3 Rl 11

X2 4 R2 12

PI 5 F:LNK 13

P2 6 R:LNK 13

LNK 7 I:LNK 13

T1 8

BEGINEDITOR

1. Purpose

Performs initialization of EDIT.

2. Entry:

This is the routine whose address is entered in the TCB for EDIT causing it to be the beginning point of
execution when control is passed to the EDIT subsystem by Task Initiation.

3. Exit:

There is no formal exit; it merely branches to next routine, MASTERPARSER 1.

-)

(--

MASTERPARSERI

1.

2.

Purpose:

Serves as the driver for the command text scanning. It performs initialization of flags, the CDT, and
TSTACK. (Alternate entry MASTERPARSER is used to restart after certain types of error.)

Entry:

Initially, execution branches to MASTERPARSER I from BEGINEDITOR; thereafter it is entered via
B MASTER PARSER I or B MASTERPARSER.

3. Exit:

If item type (Figure 71) of the first string found is one of the four shown below, the branch is to the indicated
CDT builder routine.

Item Type CDT Builder Routine

INTG PARSE:I:CMND$INTG

STRG PARSE:I :CM ND$ST RG

CR CMND$CONT

ALPH PARSE: (routine)

4. Operation:

After initialization, one or two asterisks are typed for prompt characters depending on whether EDIT is in
step mode. READTELETYPE2 is used to read one line of commands. MASTERPARSER increments CDTADR
and the count of CDT entries and resets PARAMPSN. GETNEXTPARAM is used to test command type for
one of the following: INTG, STRG, CR and ALPH. If it is none of them, the error message "Cl:ILGL
SYNTAX" is typed and branch is made to MASTERPARSER. If the command type is ALPH but the command
is not one of those shown in Table 9, the message 'C I :UNKN CMND' is typed and branch is made to
MASTERPARSER.

The flow of MASTERPARSER is given in Figure 74.

PARSE:CM

I. Purpose:

Adds an entry to the CDT for CM n, c.

2. Entry:

B PARSE:CM

This subroutine is invoked via the CBRCHTBL of MASTER PARSER after a command has been identified.

251

252

ZAP TSTACK

(}.If of commands
o-next char. to scan

Set start of comman
table; set end
indicator in first
command of CDT

Set to print

a II error messages

Type one
asterisk (*)

yes

Type two
asterisks (**)

Increment
CDTADR to next
(first) entry

Set position of
next parameter
to 1

Increment count
of entries in
CDT

GETNEXTPARAM

Get field from

cammand

PARSE :I:CMND$INTG

rr-__ ..i....~~~ETypE2

Read TIV for PARSE:I:CMND$STR
a command

no. o~aracters
less ~

CMND$CONT

-TIYIMGSZ

figure 74. Flow Diagram of MASTERPARSER

(-

(--

Search for
command
in table

no

TVPEMSG

'ILGL
SYNTAX I

TVPEMSG

'UNKN
CMND'

MASTER PARSER

MASTERPARSER

Figure 74. Flow Diagram of MASTERPARSER (cont.)

253

3. Ex"it:

Normal return is to MASTEREXECUTIVE upon finding a carriage return. Error exits are:

to ILGL$SEQ2 on finding a second sequence number;

to ILGL$SEMICOLON on finding a";";

to MASTERPARSER via TYPEPERR on finding any other character in which case it prints one of the
following:

'-Pn:NOT SEQ ",

'-Pn:ILGL SYNTAX',

'-Pn:NOT COL ",

or

'-Pn:PARAM MISSING'.

4. Operation:

This subroutine uses NEWCDTENTRY to build new COT entry, CHECK lCDTENTRY to make sure "CM" is
first command, and GETNEXT PARAM to SCAN command text.

PARSE :DE, PARSE :SE

1. Purpose: .

Adds an entry to the CDT for DE n[-m] or SE n [-m][, c[, dJ].

2. Entry:

B PARSE:DE for DE

B PARSE:SE for SE

This subroutine is invoked via the CBRCHTBL of MASTERPARSER after a command has been identified.

3. Exit:

Normal return destination (MASTEREXECUTlVE) is given in the calling sequence to NXTPRM and will be
used upon recognition of a carriage return in the input command buffer.

Alternate normal return is to RESUME$PARSING if semicolon is encountered after the SE command.

Error exits: to ILGL$SEMICOLON if semicolon found; after DE command: to MASTERPARSER via TYPE
PERR after printing one of the following:

'-Pn:NOT SEQ ",

'-Pn:ILGL SYNTAX',

or

'-Pn:NOT COL ".

-'

I
\ -

(-

4. Operation:

This subroutine uses:

NEWCDTENTRY to establish an entry in the COT for this command;

GETNEXTPARAM to scan the input text;

ADJINT to format sequence number as integer * 1000;

REPSEQ to duplicate sequence number if only one given;

CHECK lCDTENTRY to make sure this is the only entry in the COT;

and ADDCDTPARAM to add to the COT.

PARSE:EDIT

I. Purpose:

Adds an entry to the COT for EDIT fid.

2. Entry:

B PARSE:EDIT

This subroutine is invoked via the CBRCHTBL of MASTERPARSER after a command has been identified.

3. Exit:

Normal return is to MASTER EXECUTIVE upon finding a carriage return. Error returns:

to ILGL$SEMICOLON on finding a "; ";

to MASTER PARSER via TYPEPERR on finding any other character where it prints '-Pn:ILGL SYNTAX'.

4. Operation:

This subroutine uses:

NEWCDTENTRY to build new COT entry;

CHECK ICDTENTRY to ensure that EDIT is first command in COT;

GETFILEID;

ADDCDTPARAM to add entry to COT;

and G ETN EXT PARAM to scan for carriage return.

"'" The scan may be extended to obtain an additional file name and a sequence number and increment.

PARSE:END

1. Purpose:

Adds an entry to the COT for END.

255

256

2. Entry:

B PARSE:ENO

This subroutine is invoked via the CBRCHTBL of MASTERPARSER after a command has been identified.

3. Exit:

Normal return is to MASTEREXECUTIVE on finding a carriage return. Error returns are:

to ILGL$SEMICOLON on finding a semi-colon (;);

to finding MASTER PARSER via TYPEPERR

on finding another character where it prints '-Cn:ILGL SYNTAX'.

4. Operation:

This subroutine uses:

PARSE:NO

NEWCDTENTRY to build a new CDT entry;

CHECK 1CDENTRY to ensure END is first command;

ADDCDTPARAM to put the "NS" keyword in the CDT;

and get GETNEXTPARAM to scan for carriage return or the IONS" keyword.

1. Purpose:

Adds an entry to the CDT for END or NO.

2. Entry:

B PARSE:NO

This subroutine is invoked via the CBRCHTBL of MASTERPARSER after a command has been identified.

3. Exit:

Normal return is to MASTER EXECUTIVE on finding a carriage return. Error returns are:

to ILGL$SEMICOLON on finding a semi-colon (;);

to MASTER PARSER via TYPEPERR on finding another character where it prints '-Cn:ILGL SYNTAX'.

4. Operation:

This subroutine uses:

NEWCDTENTRY to build a new COT entry:

CHECK 1CDTENTRY to make sure NO is first command;

and GETNEXTPARAM to scan for carriage return.

\ -

PARSE:FO, PARSE:FS and PARSE:FT

1. Purpose:

Adds an entry to the COT for I ~n n [-m],/STRG/[,c[,dJJ.

2. Entry:

B PARSE:FO

B PARSE:FS

B PARSE:FT

This subroutine is invoked via the CBRCHTBL of MASTERPARSER after a command has been identified.

3. Exit:

Normal return is to MASTEREXECUTIVE upon recognition of a carriage return in the input command buffer.
Error exits are: to ILGL$SEMlCOLON on finding a semi-coloni

to MASTER PARSER via TYPEPERR after printing one of the following:

'-Pn:NOT SEQ ",

'-Pn:ILGL SYNTAX',

'-Pn:NOT STRG',

'-Pn:NOT COL ",

or

'-Pn:PARAM MISSING'.

4. Operation:

The followi ng subrouti nes are used:

NEWCDTENTRY to build a new COT entry;

CHECK lCOTENTRY to ensure that there is only one COT entry;

AOJINT to format sequence number as an integer • 1000i

REPSEQ to duplicate sequence number if only one given;

AODCOTPARAM to add to the COTi

GETNEXTPARAM to scan the input texti

and TYPEPERR to type error message if second porameter is missing.

PARSE:I:CMNO$STRG, PARSE:I:CMNO$INTG

1. Purpose:

Process intraline commands.

257

258

2. Entry:

3.

4.

This subroutine is used by GETNEXTPARAM to process an intraline command of the form STRG (a character
string enclosed in slashes) or INTG (a numeric string whose value is less than 1000). The entry point ad-
dresses PARSE:I:CMNO$STRG for a choracter string and PARSE:I:CMND$INTG for a numeric string are)
possedto GETNEXTPARAM in its calling sequence as the addresses to be branched to on finding such a
recognizable string.

Exit:

Branch is made to: On finding: Prints message:

MASTER PARSER No match '-Cn:UNKN CMND'

MASTER PARS ER Cmnds not in order '-Cn:ILGL SYNTAX'

MASTER PARS ER Order improper '-Cn:NOT CNT'

MASTERPARSER String not of form/STl/ '-Cn:NOT STRG'
where expected

RESUME$PARSING Semi-colon

MASTER EXECUTIVE Carriage return

Operation:

This subroutine calls NEWCOTENTRY to build new cor entry (character or integer). It calls
AOOCOTPARAM to add the new parameter (character or integer). It searches table of intraline commands
to find a match; if found, it processes appropriate command following the string. It uses GETNEXTPARAM
for commands that require further scanning. ~ 'I

The flow of PARSE:I, CMND$STRG, and PARSE:ICMNO$INTG is given in Figure 76.

PARSE:IN, PARSE:IS

1. Purpose:

Adds an entry to the COT for IN n[,i] or IS n[,i].

2. Entry:

B PARSE:IN

B PARSE:IS

This subroutine is invoked via the CBRCHTBL of MASTERPARSER after a command has been identified.

3. Exit: ,..,

B GETSEQINCR to process the n[,i]portion of the command.

4. Operation:

This subroutine uses NEWCOTENTRY to build new COT entry and CHECKlCOTENTRY to make sure IN
or IS is first command.

(

1"'T"" __ ...L-...:..N..:.;E:.;.W;...:CTtDTENTRY
Build new
CDT entry

CMND=O

ADDCDTPARAM

Put string
in CDT

~T".'~ ""'PARAM

Get field
from command

'-Cn:ILGL

SYNTAX'

STERPARSER

yes

TYPE RR

'-Cn:UNKN
CMND'

JCSSO NEWCDTENTRY

Build new
CDT entry
CMND= 0

r-r-__ ~.o.t:::~~DTPARAM

Put INTG
in COT

'-Cn:ILGL

Pg.

, Entry '\
P SE:I:CMND$INTG

Get field
from

command

GETNEXTPARAM

SYNTAX' no

JCS10

Search for
command
in table

Put CMND
type in

CDT entry

NEWCDTENTRY

Build new
CDT entry
CMND =0

Initialize
PARAMBUF and

PRMBUFSZ

ADDCDTPARAM

Put INTG

in CDT

ADDCDTPARAM

Put String
in CDT

GETNEXTPARAM

Get field
from

command

Pg. 2

Figure 75. Flow Diagram of PARSE:I:CMND$STRG and PARSE:I:CMND$INTG

259

260

ASTERPARSER

MASTER PARSER

TYPECERR

'-Pn:NOT

STRG'

TYPEPERR

'-Pn:NOT
STRG'

TYPEPERR

'-Pn:ILGL

SYNTAX'

TYPE BETA

Get field
from

Command

Pg. 2

GETNEXTPARAM

TYPEPERR:

MASTERPARSER

rt--~~!:D.;~.ARAM
Put count
in COT

;.,-;:!:.!.!.!!:.!......L.....:::G::..!ET:..!.!.:N~EXTnP,AR_AM---'_G"'--ET_N,..,EXT PARAM

no

no

Get field
from

Command

Put String
in COT

Get field
from

Cammand

G ETNEXTPi-TAR:..:;A~M~..L....."':""':"':"':':"-?;

Get field
from

Command

'-Pn: ILGL

SYNTAX'

ESUME$PARSING

MASTER EXECUTIVE

ASTERPARSER

Figure 75. Flow Diagram of PARSE:I:CMND$STRG and PARSE:I:CMND$INTG (cont.)

-)

(-

'-Pn: NOT

STRNG'

yes

ICS90 GETNEXTPARAM

Get field
from command

'-Pn:ILGL

SYNTAX'

RESUME$PARSING

MASTER EXEC UTIVE

Pg. 3

MASTERPARSER

Figure 75. Flow Diagram of PARSE:I:CMNDSSTRG and PARSE:I:CMND$INTG (cont.)

261

262

PARSE:MD, PARSE:MK

J. Purpose:

Adds an entry to the COT for MD n [-mJ, k[-p]GiJ or MK n [-mJ, k[-pJ[,iJ.

2. Entry:

B PARSE:MD

B PARSE:MK

This subroutine is invoked via the CBRCHTBL of MASTERPARsER after a command has been identified.

3. Exit:

Normal return is B GET$INCREMENT. Error exit is to MASTER PARSER via TYPEPERR after printing one
of the following:

'-Pn:NOT SEQ 'I.
'-Pn:ILGL SYNTAX'.

4. Operation:

This subroutine uses:

NEWCDTENTRY to add a new entry to the COT;

CHECK lCDTENTRY to make sure this is the first COT entry;

ADJINT to format sequence number as an integer * 1000;

REPsEQ to duplicate sequence number if only one given;

ADDCDTPARAM to add to the COT;

and GETNEXTPARAM to scan the input text.

PARsE:RF

1. Purpose:

Adds an entry to the COT for RF.

2. Entry:

B PARsE:RF

This subroutine is invoked via the CBRCHTBL of MASTERPARsER after a command has been identified.

3. Exit:

Normal return is to MASTER EXECUTIVE upon finding a carriage return or to REsUME$PARSING on find
ing a ";". Error return is to MASTERPARSER via TYPEPERR on finding another character.

4. Operation:

It uses NEWCDTENTRY to build a new COT entry and GETNEXTPARAM to scan command text.

-,I

-!

(

PARSE:RN

1. Purpose:

Adds an entry to the COT for the command RN, renumber.

2. Entry:

B PARSE:RN

This subroutine is invoked via the CBRCHTBL of MASTERPARSER after a command has been identified.

3. Exit:

4.

Normal return is to MASTEREXECUTIVE upon recognition of a carriage return in the input command buffer.

Error exit: to ILGL$SEMICOLON on finding a semi-coloni

to MASTERPARSER via TYPEPERR after printing one of the following:

'-Pn:NOT SEQ If',

'-Pn:ILGL SYNTAX',

or

'-Pn:PARAM MISSING'.

Operation:

This subroutine uses:

NEWCDTENTRY to build a new COT entry;

CHECKlCDTENTRY to make sure RN is the first command;

ADDCDTPARAM to add to the COT;

GETNEXTPARAM to scan the input text;

ADJINT to format sequence number as integer * 1000; and

TYPEPERR to type error message.

PARSE:SS, PARSE:ST and PARSE:JU

1. Purpose:

Adds an entry to the COT for SS n [,c[,d)] or ST n [,c[,d]] or J Un.

2. Entry:

B PARSE:SS

B PARSE:ST

B PARSE:JU

This subroutine is invoked via the CBRCHTBL of MASTERPARSER after a command has been identified.

263

264

3. Exit:

Normal return is to MASTER EXECUTIVE on finding a carriage return for JU or to GET$COL'PAIR for
SS or ST. Error returns are:

to ILGL$SEQ2 on finding a second sequence number;

to ILGL$SEMICOLON on finding a semi-colon;

to MASTER PARSER via TYPEPERR after printing:

'-Pn:NOT SEQ "

or

'-Pn:ILGL SYNTAX'.

4. Operation:

Th is subrouti ne uses:

NEWCDTENTRY to build a new COT entry;

GETNEXTPARAM to scan the input text;

ADJINT to format sequence number as integer * 1000;

CHECK1CDTENTRY to make sure this is the only entry in the COT (if not JU); and

ADDCDTPARAM to add to the COT.

PARSE:TC, PARSE:TS and PARSE:TY

1. Purpose:

Adds an entry to the COT for TS [n-m)[,c[,d])' TY[n-m)[,cGd)l or TC n[-m)[,cGdJ).

2. Entry:

B PARSE:TC

B PARSE:TS

B PARSE:TY

This subroutine is invoked via the CBRCHTBL of MASTER PARSER after a command has been identified.

3. Exit:

For TC: a record number must be specified; normal exit is a B GET$COL'SPAIR; error exit itto
MASTERPARSER via TYPEPERR on finding no record number in which case it prints '-Pn:NOT SEQ".

For TS and TY: normal exit is either to MASTEREXECUTIVE on finding a carriage return or to
GET$COL'SPAIR to process record range; error exit is to MASTERPARSER via TYPEPERR on finding illegal
character, in which case it prints '-Cn:ILGL SYNTAX'.

\ --

4. Operation:

This subroutine uses:

NEWCOTENTRY to build new COT entry;

CHECK1COTENTRY to ensure that TS, TV or TC is first command to be added to COT;

AOJINT to form sequence number as integer'" 1000;

REPSEQ to repeat "n" as "m" if only "n" given; and

AOOCOTPARAM to add to COT.

MASTEREXECUTIVE Routine

1. Purpose:

This is the master routine to execute commands in the COT. It resets COTAOR to point to start of
COT, gets command from start of COT, checks whether the proper mode is being used fo~ this com
mand, and calls it if so.

2. Entry:

B MASTER EXECUTIVE

This routine's address is given to NXTPRM
t

as the branch location following identification of a carriage
return in the input command buffer.

3. Exit:

B MASTER PARSER after finding erroneous data in COT or after properly executing all commands in COT.

4. Operation:

MASTEREXECUTIVE performs the following functions: restores last default value of blank perservation
flag; sets ALLOK flag to show that "ALL" mode is potentially legal; if a file command, ensures that
input file is present and keyed; if intra-record command, ensures that set mode is in effect; executes
command from COT via F: , R: , or I: routines; if all-flag set and command is intra-record, repeats
for all occurrences. This routine, in effect, controls execution of the set and step commands in addi
tion to serving as driver for COT command execution.

The flow for MASTEREXECUTIVE is given in Figure 76.

F:BLAN K$PRESERV

1. Purpose:

Sets SUBFLAG for blank preservation mode.

2. Entry:

F:LNK is the linkage register. This subroutine is entered via BAL, F:LNK F:BLANK$PRESERV.

tA procedure that generates a calling sequence to GETNEXTPARAM.

265

266

Initialize to first
entry in COT

Set new SP
flag; set EDIT
In-Execution flag

Indicate that
all is O. K.

Get first
(next)

command

no

EXC40
INO FILE

NAMED I

TYPEMSG

IMISSING
SET I

MASTERPARSER

MASTERPARSER

Figure 76. Flow Diagram of MASTEREXECUTIVE

Pg. 1

-)

(-

Tum off
set flog

Call proper
subroutines to
execute command

Pick up
command again

EXC30

'CMND

TVPECERR

yes ILG L HERE'

sTEP$LOOP

Increment to
no next command

in COT

no

Pg. 1

MAsTERPARsER

Pg. 2

yes

EXCSS TYPEMsG

'NULL

CMND'

Figure 76. Flow Diagram of MASTER EXECUTIVE (cont.)

267

268

l-SETFLAG to
indicate set has
been initialized

Save address of
CDrrent location
in CDT

yes

READRANDOM

Read First
Record

SETEOD

Set Ending
Column

Pg. 2

Set Error
Count = 1

Figure 76. Flow Diagram of MASTEREXECUTIVE (cant.)

Pg. 3

3. Exit is via B *F:LNK which results In return to MASTER EXECUTIVE.

4. Operation:

If mode neither on or off it types "-NOT ON/OFF"; otherwise it sets SUBKAG to current mode.

1. Purpose:

Performs initialization in preparation for editing a file.

2. Entry:

F:LNK is the linkage register. This subroutine is entered via BAL, F:LNK F:EDIT.

3. Exit:

4.

B *F:LNK, which results in return to MASTEREXECUTIVE.

Operation:

If an EDIT command is already in effect, the scratch file is closed after a SAVE is performed on the subject
file if it exists. If only a scratch file is specified for the new EDIT operation, it is reopened (on the as
sumption that it has been built previously as an EDIT scratch file) using routine OPENSCR. If a subject
file is specified, the method of indexing (specified key start and step, default key start and step, or key
contained in each subject file record) is determined, and routine BUILDSCR is called to build the scratch
fi Ie from the records in the subject fi Ie.

The flow for F:EDIT is given in Figure n.

1. Purpose:

Closes scratch file if open and causes return to the monitor.

2. Entry:

F:LNK is the linkage register. This subroutine is entered via BAL, F:LNK F:END.

3. Exit:

It returns to the monitor via CAL3, 6 O.

4. Operation:

If an EDIT command is not yet in effect, F:END does an EXIT service call. If an EDIT command is in effect
and the NS option of END was not specified, F:END calls SAVESCR to save the subject file. It then closes
the scratch file and performs the EXIT call. If NS was specified, the save operation is omitted.

The flow for F:END is given in Fig"e 78.

269

270

F:EOIT

frEOIT

so M:EO TO
SUB£CT FILE

SAVE THE
SCRATCH fiLE

CONTENTS

CLOSE THE
SCRftTCH fiLE

GET F1LE
JDENT1FIER 1
Fl!OPl CCt1'1RNO

LINE

SET M:EO 10
)Y~ES=---_--:;.j F Il f IOEN TJ F I ER

2. OPEN 11.

SET H:EI TO
FILE IOCNT[FIER

1

REOPEN THE
S(RflTCH fILE

SfTfLf'G
INOICRTI NG EOrT

COHMflNO
RECEIVED

EXIT

GENfRRTE fiN
EItItOR IoESSfIGE

Figure n. Flow Diagram of F:EDIT

-I

(~ ..

f\2}---n.

SET SEOl£NC INC
STRln At-£) S1EP

ret I

~,
IS START

SPEC IFlCO

SET START ANO
STEP AS

SPECIFIED

SET FLRG: KEY
I N RECORO NOT

REOUIRED

SET M:EI TO
FI lE IDENTIFIER

2

BUilD THE
5:RRTCH fiLE

FROH THE
~BJECT fiLE

SET FLFG
INDICRTING EDIT

COt1I1f1ND
RECE IVED

,-----

NO

RERO FIRST
. RECORD Of
SUB£CT filE

.)" I<EY IN? LRST EIGHT
6rTES

.,,,

SET flFG: KE1
IN ~ECil':D
REOUIRED

Figure 77. Flow Diagram of F:EDIT (cont.)

271

272 .

nENO

~Et~ND >---------------------------------,

~
'NS' OPT I ON >YE_S--,,_~

SO SAVE fiLE
TIt SlflJECT FILE

SAVE Tt-E
CONTENTS OF
THE SCRATCH

f'I Lf

CLOSE rt-£
S(RfHCH fiLE

Figure78. Flow Diagram of F:END

EXlT

"-------------
)

(

R:COMMENTARY

1. Purpose:

Executes the insert commentary command, CM.

2. Entry:

R:LNK is the linkage register. This subroutine is entered via BAL, R:lNK R:COMMENTARY, from
MASTEREXECUTIVE.

3. Exit:

B MASTERPARSER

4. Operation:

F:SAVE

If column number exceeds 140, it prints '-P2:COL ERROR' via TYPEMSG and exits. It uses RE'ADRANDOM
to read specified record: if not found, it prints '-Pn:NO SUCH REC' via TYPEMSG and exits.

It uses: TYPESEQ to type sequence number prompt and READTELETYPE2 to read commentary (ifCR, itexits).

It moves commentary into record: if extends beyond 140 characters in all it types '--OVERFLOW' via
TYPEMSG and goes on to next record; commentary is blank - filled to the right.

It uses: SETEOD to insert carriage return if CR ON;

WRITERANDOM to write the record; and READSEQUEN to read next record.

It types "--EOF HIT' if EOF found and exits.

It repeats sequence number prompt and continues as previously described until a record having only CR is
found or unti I EOF is encountered.

1. Purpose:

Executes the SAVE command.

See Figure 79.

R:DELETE

1. Purpose:

Performs a request to delete records.

2. Entry:

R:LNK is the linkage register.

Note: F:LNK and R:LN K are synonymous. This subroutine is entered via BAL, R:lNK R:DELETE in
MASTER EXEC UTIVE.

273

274

r:SfNE

F:SRVE

SE1 FLAG FOR 0'1
OR OVER AS
SPEC IfffO

Sf T FLAG TO
FORCE SRVE IF

SflVE F[lE 'TOO
SHALL

SET SftV[FILE
IOENTIFIE~ RS

SPEC IFIEO

'VSAVFsrR

SAVE Tt£
CONTENTS Of
THE SCli:flT CH

FILE

EXIT

SET SAVE FILE
I OENTIFI Eli: TO
SUB..ECT fILE

Figure 79. Flow Diagram of SAVE Command

(

3. Exit:

B *R:LNK

4. Operation:

It sets: PI = first sequence number and P2 = last sequence number.

It uses DELETE to perform deletion of records specified by the range. If nothing is deleted it uses TYPEMSG
to type '-NOTHING TO DE'.

R:FIND$SEQUENCE, R:FIND$DELETE and R:FIND$TYPE

1. Purpose:

Processes the record commands FS, FD, and FT.

2. Entry:

R:LNK is the linkage register. This subroutine is entered via BAL, R:LNK

I
R:FIND$SEQUENCEj

R:FIND$DELETE

R:FIND$TYPE

from MASTER EXECUTIVE.

3. Exit:

B *R:LNK

4. Operation:

It sets: FIRSTSET = first sequence number in COT and LASTSET = second sequence number in COT.

It uses PROCESSCOL'PAIR to process the column number parameters and READNXTRANDOM to read first
sequence number specified or next highest.

It uses: FINDMATCH to scan the record for the specified string and READSEQUEN to read further if string
not in record read via READNXTRANDOM.

For: FS it uses TYPESEQ to type sequence number of record;

FT it uses SETEOD to insert @) if CR ON;

FD it uses DELETERECORD to delete the record.

It repeats the scan for the desired record range.

It wraps up: for all three command types TYPEMSG is used to type '--NONE' if no matches found for FD
TYPEMSG is used to type '--XXX RECS DL TED'.

If EOF is reached during search, '--EOF HIT' is typed via TYPEMSG.

The flow of R:FIND$SEQUENCE, R:FIND$DELETE, and R:FIND$TYPE is given in Figure SO.

275

276

X4= 2
For FS

ENTRY-
R :FIND$DELETE

X4= 0
For FD

P3 = 0=
Count of matches
found

FIRSTSET=
1st seq. no.
in COT

LASTSET=
last seq. no.
in COT

ENTRY
R:FIND$TVPE

X4 = 1
For FT

PROCESSCOL#pAIR

Process column
no. parameters

READ NXTRANDOM

Read record
(e ither 1 st seq.

'-EOF
HIT'

TVPEMSG

Figure SO. Flow Diagram of R:FIND$SEQUENCE, R:FIND$DELETE, and R:FIND$TYPE

-,
Pg. 1

(-

yes

New Seq.
No.

FINDMATCH

Search rec. for
specified string
in columns

FND50

X4 = GO TO

o

2

Increment
Match

yes Count

Read
Next
Record

Pg. 1

no
FND65A

'--NONE'
no

X4= GOTO

o
1 connector E

2

Type

Seq. No.

Pg. 2

TYPEMSG

'--nnn RECS

DLTED'

DELETERECORD

DELETE

RECORD

Mark end

of record

Type
Record

Contents

Figure BO. Flow Diagram of R:FINDSSEQUENCE, R:FIND$DELETE, and R:FIND$TVPE (cont.)

2n

278

R:INSERTSUPSEQ, R:INSERT

1. Purpose:

Inserts records with or without sequence number prompting.

2. Entry:

R:LNK is the linkage register. This subroutine is entered via BAL, R:LNK R:INSERT (Sets X4=O) or
BAL, R:LNK R:INSERTSUPSEQ (Sets X4=2) in MASTEREXECUTIVE.

3. Exit:

B *R:LNK

4. Operation:

The COT is examined to pick up starting sequence number and, if present, increment it.

The subroutine resets DFL TINCR and new default increment. A record is read using READNXTRANDOM.
If the record read is the sequence number requested, the next highest record is read via READSEQUEN. If
IN command, TYPESEQ is used to prompt with sequence number. The record to be inserted is read via
READTELETYPE. If none existed, normal exit occurs. The record terminator is set to blank.

RECSIZE is set. If record size exceeds 140, '-OVERFLOW' is printed via TYPEMSG. SETEOD is used
to insert carriage return if CR ON.

WRITERANDOM is used to write the new card image. The current sequence number is incremented. If
more records will fit in the range, process is repeated starting with sequence number prompting above.
Otherwise, the Teletype bell is rung twice via TYPEMSG and normal exit is taken.

If a record to be inserted has sequence number greater than 9999.999, the message '-MAX. SEQ. NO.
EXCEEDED' is printed and command processing is stopped.

R:MOVE$DELETE, R:MOVE$KEEP

1. Purpose:

Processes the commands Move and Delete (MD) and Move and Keep (MK).

2. Entry:

R:LN K is the I inkage register. This subroutine is entered via BAL, R:LN K R:MOVE$DELETE or BAL, R:LNK
R:MOVE$KEEP from MASTEREXECUTIVE or via B MVE58, B MVE56, or B MVE40 from F:MERGE.

3. Exit:

B *R:LNK

4. Operation:

This subroutine examines the COT to get parameters from command form

{~~} n[-m] ,k[-p][,i).

It sets DFL TlNCR = i, or if i not specified = the most recent increment used (J if none).

_1

(-

It checks both ranges; errors are:- '--EOf HIT' and '-RNG OVERLAP' typed via TYPEMSG. (Ranges must
be mutually exclusive).

It uses REA 0 NXTRAN DOM to attempt to read record n: (at M VE58) if not found it types '-N OTH ING to
MOVE' via TYPEMSG and exits.

It uses DELETE to delete all records in range k-p. If it was possible to find all of them, it reads ahead
using READSEQUEN to mark sequence number of next record.

If record n cannot be found, it types '--EOF HIT'. At MVE56 if record m hit or possed: and if m>p, it
types '--CUTOFF AT XXX.X (XX.XX)' and if MD, it deletes records n-m, and then exits.

It reads records from range n-m one by one and writes them with sequence number (key) k-p. At MVE40
normal termination yields message '--DONE AT XX.XX' and for MD, source records in range n-m are
deleted before exiting.

The flow of R:MOVE$DELETE and R:MOVE$KEEP is given in Figure 81.

R:RENUMBER

1. Purpose:

Reads old records having sequence numbers specified and writes them with new sequence numbers, de
leteing old records where the sequence number already existed.

2. Entry:

R:LNK is the linkage register. This subroutine is entered via BAL, R:LNK R:RENUMBER in
MASTEREXECUTIVE.

3. Exit:

B *R:LNK

4. Operation:

It sets PI = old sequence number; T1 = new sequence number

It uses: READRANDOM to read old record; WRITENEWRANDOM to write new record with new sequence
number; DELETERECORD to delete old record should sequence number already exist; and TYPEMSG to type
'-Pl:NO SUCH REC' if old record does not exist and '-P2:REC EXISTS' if new record already exists.

R:SET$STEP, R:SET$STEP$TYPE

1. Purpose:

Executes the SS (Set and Step) or ST (Set, Step and Type) command.

2. Entry:

R:LNK is the I inkage register. This subroutine is entered via BAL, R:LN K R:SET$STEP or BAL, R: LN K
R:SET$STEP$TYPE in MASTEREXECUTIVE.

Auxiliary entry points: FINISH$STEP$LOOP, which is the entry point from I:JUMP, and STEP$LOOP,
which is the entry point from MASTEREXECUTlVE if in a step loop.

279

280

ENTFY-
R :MOVE$DELETE

X4=O
For MD

FIRSTDEL=l

MVE10

From
COT

P3 = DFLTINCR
(Default

Increment)

ENTRY
R:MOVE$KEEP

X4= 1
For MK

READNXTRANDOM

Attempt to
Read
Record K

Pg. 1

MVE58 TVPEMSG

'-NOTHING
TO MOVE'

no

Delete
Records
K-P

Read
Next

Record

READNXTRAN,;.:.D~O;;..:M~~ __ _

Read Record
n or next
highest

Figure 81. Flow Diagram of R:MOVE$DELETE and R:MOVE$KEEP

PI = n - i

yes

PI = PI + i

MVE53 TYPEMSG

'--EOF HIT
AFTER
YYYY. YYY'

FIRSTDEL =
RI, Seq. No.
Just Read

yes

PI = PI + i

LASTFROM =
Last Rec.
Read

LASTDEL =
LAST KEY

WRITERANDOM

Write record
hay i ng new seq.
no. PI

Figure 81. Flow Diagram of R:MOVE$DELETE and R:MOVE$KEEP (cont.)

281

282

READRANDOM

Reread Rec.
LASTFROM to
Position DCB

READSEQUEN

Read Record
P1 (Next "from"
Rec.)

no

MOVESEQ

Format Message
'--DONE AT

00.0'

TVPEMSG

'--DONE
AT 00.0'

FRSTDEL =
Rec. Read

Pg. 3

P1 = P1 + i

LASTDEL =
LAST KEY

WRITERANDOM

Write Record
having new
Seq. No. P1

Figure 81. Flow Diagram of R:MOVE$DELETE and R:MOVE$KEEP (cont.)

1-

(-

MVE56

Format MSG
'--CUTOFF AT
000.0' using list
"TO"

MOVESEQ
Format Seq. No.
(DO. DOD) using
last "FROM"

TVPEMSG

'--CUTOFF AT
000.0

(00.00)'

LASTDEl = -1
(Clear Byte
Count)

DELETE
RECORDS
P1 - P2

DELETE

RET~N

Figure 81. Flow Diagram of R:MOVE$DELETE and R:MOVE$KEEP (cont.)

Pg.4

283

284

3. Exit:

B MASTERPARSER in preparation for accepting intra-record commands to update the current record.

4. Operation:

This subroutine sets STEPFLAG = 1 for SS and SETFLAG = 1 for ST.

This CDT is examined to pick up record number and, if present, column number(s}. FIRSTSET is set equal
to the first sequence number. The column number parameters are processed via PROCESSCOl#pAIR.

An attempt is made to read the record via READRANDOM. At FINISH$STEP$lOOP the following tests are
performed: If the record existed: SETEOD is used to insert carriage return if CR ON; record is typed via
TYPECARD for ST, or only sequence number is typed via TYPESEQ for SS; and normal exit is made to
MAS TER PARS ER.

If it did not exist: it types '-Pn:NO SUCH REC' via TYPEMSG. It sets STEPFLAG and SETFLAG to zero
and exits to MASTEREXECUTIVE.

At STEP$lOOP it writes record via WRITERANDOM (unless command was NO); it exists if null command;
otherwise it reads the next record via READSEQUEN. It exits if EOF was hit after typing '--EOF HIT'
via TYPEMSG; if not hit, it saves new sequence number in FIRSTSET and proceeds with tests at
FIN ISH $STEP$lOOP.

R:TYPE$COMPRESSED, R:TYPE and R:TYPESUPSEQ

1. Purpose:

Executes commands: TC (type records compressed), TY (type records), TS (type, suppressing sequence number).

Command forms are: n~1 n [-m]Gc]Gd] g~} for intra-record made.

2. Entry:

R:lNK is the linkage register. This subroutine is entered via

BAl, R:lNK R:TYPE$COMPRESSED,

BAl, R:lNK R:TYPE,

BAl, R:lNK R:TYPESUPSEQ in MASTEREXECUTIVE.

3. Exit:

B *R:lNK

4. Operation:

This subroutine examines the CDTto find sequence numbers. It uses PROCESSCOl#pAIR to prepare for process
ing columns c-d and READNXTRANDOM for reading record n. It readsand types records in the range using:

SETEOD to insert carriage return if CR ON, TYPECARD to type record, and READSEQUEN to read
next record. If EOF was hit, it types '-EOD HIT' and exits.

I:DELETE

The technique for handling typing of column bounds and the compressing of blanks is at TYP40 as a
subroutine within this routine. Using FRSTCLMN, LASTCLMN (set by PROCESSCOL'PAIR) it shifts the
image in CARDIMG to compress blanks if TC.

1. Purpose:

Executes the intraline Delete string command D.

2. Entry:

I:LNK is the linkage register. This subroutine is entered via BAL, I:LNK I:DELETE in MASTEREXECUTIVE.

3. Exit:

B *I:LNK

4. Operati on :

This subroutine uses: FINDCOLUMN to find column corresponding to the first parameter, SHIFTLEFT to
delete string, ADJUSTALLFLAG to set column 1 at which to resume matching, and SETOD to reset the
EOD marker.

I:FOLLOW$BY

1.

2.

Purpose:

Executes the intraline command F (follow X by V).

Entry:

I:LNK is the linkage register. This subroutine is entered via BAL,I:LNK I:FOLLOW$BY in
MASTEREXECUTIVE.

3. Exit:

B *I:LNK

4. Operation:

I:JUMP

This subroutine calls: FINDCOLUMN to find column corresponding to the first parameter, SHIFTRIGHT to
make room for second string, MOVESTRING to move string into hole, ADJUSTALLFLAG to set ALL
FLAG = column at which to resume matching (if ALLFLAG on), and SETEOD to reset EOD marker.

1. Purpose:

Executes the Jump command, JU (format JU n).

2. Entry:

I:LNK is the linkage register. This subroutine is entered via BAL, I:LNK I:JUMP in MASTEREXECUTIVE.

285

286

3. Exit:

Normal exit is B FINISH$STEP$lOOP. Error exit is B *I:lNK.

4. Operation:

If user is not in step mode, this subroutine uses TYPECERR to type and exits to MASTEREXECUTIVE. It
uses WRITERANDOM to write record. It examines CDT to get record number n and uses READRANDOM
to read it. If record not found, it uses TYPECERR to type '-Cn:NO SUCH REC', uses READRANDOM to
restore old record to the buffer, and exits to MASTEREXECUTIVE.

If record found, it saves sequence number in FIRSTSET and exits to FINISH$STEP$lOOP.

I:NO$CHANGE

1. Purpose:

Sets NOCHGFlG flag in response to the NO command while in step mode.

2. Entry:

l:lNK is the linkage register. This subroutine entered via BAl,I:lNK I:NO$CHANGE in
MASTEREXECUTIVE.

3. Exit:

B *I:lNK

4. Operation:

If user is not in step mode this subroutine types '-Cn:CMND IlGl HERE' via TYPECERR and returns.
Otherwise, it sets NOCHGFlG=1 and returns.

I: OVERWRITE

1. Purpose:

Executes the intraline command 0, overwrite X by Y.

2. Entry:

I:lNK is the linkage register. This subroutine is entered via BAl,I:lNK I:OVERWRITE in
MASTER EXECUTIVE.

3. Exit:

8 *I:lNK

4. Operation:

This subroutine uses: FINDCOlUMN to Find column corresponding to the First porameter, MOVESTRING to
overwrite string X with string Y , ADJUSTAllFLAG to set column number at which to resume matching, and
SETEOD to set the EOD marker.

(

I:OVERWR$EXTEN0

1. Purpose:

Executes the overwrite and extend blanks command, E. This command has two forms:

2. Entry:

I:LNK is the linkage register. This subroutine is entered via BAL,I:LNK I:OVERWR$EXTEND in
MASTER EXEC UT IVE.

3. Exit:

B *I:LNK

4. Operation:

This subroutine sets ALLOK I 0 to show "ALL" is not valid at this point; uses FINDCOLUMN to find col
umn which corresponds to the first porameter; examines COT to find address of string2; uses MOVESTRING
to place new string in record; updates PI to point to the column after the last new character; stores blanks
in remainder of record; uses SETEOD to insert carriage return if CR ON; and exits to MASTER EXECUTIVE.

I:PRECEDE$BY

1.

2.

Purpose:

Executes the intraline string command P, precede X by Y.

Entry:

I:LNK is the linkage register. This subroutine is entered via BAL,I:LNK I:PRECEDE$BY in
MASTEREXECUTIVE.

3. Exit:

B *I:LNK

4. Operation:

This subroutine uses: FINDCOLUMN to find column corresponding to the first porameters, SHIFTRIGHT to
make room for second string, MOVESTRING to move string Y into hold, ADJUSTALLFLAG to set column
number at which to resume matching, and SETEOD to reset the EOD marker.

I:REVERSE$BPFLAG

1. Purpose:

Execute the RF command.

2. Entry:

I:LNK is the linkage register. This subroutine is entered via BAL,I:LNK I:REVERSE$BPFLAG in
MASTEREXECUTlVE.

287

2tsa

3. Exit:

B *I:LNK

4. Operation:

This subroutine reverses BPFLAG and returns.

1. Purpose:

Executes the intraline command SE.

2. Entry:

I:LNK is the linkage register. This subroutine is entered via BAL, I:LNK I:SET in MASTEREXECUTIVE. Its
auxil iary entry is SET$LOOP from MASTEREXECUTIVE if in SET loop. '

3. Exit:

B *I:LNK is normal exit. If entered via SET$LOOP, normal exit is B RESTART$EXECUTIVE. Error exit
is B MASTERPARSER.

4. Operation:

It sets SETFLAG = 1. The CDT is examined to pick up first and last sequence numbers. It stores first
sequence number in FIRSTSET, and last one in LASTSET. If range covers more than one record it
sets ERRORCNT = 1.

PROCESSCOL#pAIR is used toprocess the column numbers. SETADR is initialized to address in CDT which
followsthe SE command. An attempt is made to read the recordviaREADRANDOM: ifnot found, '-Pn:NO
SUCH REC' is typed via TYPEMSG, SETFLAG is set to zero, and exit is made to MASTER PARSER; if found,
SETEOD is used to insert carriage return if CR ON, and exit is to MASTEREXECUTIVE via B *I:LNK.

If entered at SET$LOOP and the last record has been processed, it uses WRITERANDOM to write it, sets
SETFLAG = 1 so that loop will be restarted if another I:CMND follows and exits to MASTERPARSER. If it
has not, it uses WRITERANDOM to write current record and READSEQUEN to read next one: if sequence
is past range, it sets SETFLAG = 1 and exits; if not past range it puts new sequence number in FIRSTSET,
puts contents of SETADR in CDTADR to start I:CMND loop at beginning, uses SETEOD to insert carriage
return if needed, and exits to RESTART$EXECUTIVE.

If EOF encountered it uses TYPEMSG to print '--EOF HIT', sets SETFLAG =~, and exits to MASTER PARSER.

I:SHIFT$LEFT

1. Purpose:

Executes the intraline command L, shift X lef· Dy N.

2. Entry:

I:LNK is the linkage register. It is entered via BAL,I:LNK I:SHIFT$LEFT in MASTEREXECUTIVE.

3. Exit:

B *I:LNK

4. Operation:

This subroutine uses: FINDCOLUMN to find column corresponding to the first parameter, SHIFTLEFT to
shift string left N places, and SETEOD to reset the EOD marker.

I:SHIFT$RIGHT

1. Purpose:

Executes the intraline string command R, shift X right by N.

2. Entry:

I:LNK is the linkage register. This subroutine is entered via BAL,I:LNK I:SHIFT$RIGHT from
MASTEREXECUTIYE.

3. Exit:

4.

B *I:LNK which results in a return to MASTEREXECUTIYE.

Operation:

This subroutine uses: FINDCOLUMN to find the column corresponding to the first parameter, SHIFTRIGHT
to shift string X right N spaces, and SETEOD to set the EOD markers.

I:SUBSTITUTE

1. Purpose:

Executes the substitute command, S whose format is (jy'stringyiS/string!.

2. Entry:

I:LNK is the linkage register. This subroutine is entered via BAL,I:LNK I:SUBSTITUTE in
MASTEREXECUTIVE.

3. Exit:

B *I:LNK

4. Operation:

This subroutine performs the following functions:

a. Uses FINDCOLUMN to find column corresponding to the first parameter.

b. Exits if it is not found.

c. Examines COT to get address of string2'

289

290

d. Sets PI = character followi ng stri ng 1.

e. Uses SHIFTRIGHT to shift rightmost characters to the right if new string is shorter than old •.

f. Uses MOVESTRING to put the new string in place.

g. Uses ADJUSTAllFlAG to reset AllFLAG to the column number at which matching is to be re
sumed (if AllFLAG I 0).

h. Uses SHEOD to insert carriage return if CR ON.

i. Exits to MASTEREXECUTIVE.

1. Purpose:

Type records in response to intraline commands.

2. Entry:

I:lNK is the linkage register. This subroutine is entered via BAl from MASTER EXECUTIVE; in re
sponse to TY command, via BAl,I:lNK I:TYPE; or in response to TS command, via BAl,l:lNK
I:TYPESUPSEQ.

3. Exit:

B *1:lNK

4. Operation:

For I:TYPE FIRSTSET is set equal to sequence number. TYPECARD is used to type card image with se
quence number. For I: TYPESUPSEQ it sets PI = 1 to indicate sequence number suppression. It uses
TYPECARD to type card image without sequence number.

General Purpose SubrDutines

ADDCDTPARAM

1. Purpose:

Adds a new parameter to the Command Description Table (see Figure 71}.

2. Entry:

lNK is linkage register used. This subroutine is entered via BAl, lNK ADDCDTPARAM fro~ several
PARSE:routines when it is desired to add to the CDT. Upon entry PI, PARAMPSN, and PRMBUFSZ
are as shown below.

3. Exit:

B 0, lNK with expanded CDT entry.

(~

4. Operation:

AOJINT

Words are added to the COT from PARAMBUF according to the format shown previously in Figure 71
using the following input parameters:

PI = type of parameter.

PARAMPSN = next available slot in COT.

PRMBUFSZ= number of words to be added.

I. Purpose:

Forms a sequence number as an integer * 1000.

2. Entry:

LNK is the linkage register. This subroutine is entered via BAL,LNK AOJINT.

3. Exit:

B *LNK

4. Operation:

This routine multiplies the sequence number in PARAMBUF by 1000 and stores it back in PARAMBUF.

AOJUSTALLFLAG

I. Purpose:

Sets ALLFLAG.

2. Entry:

LNK is the linkage register. This subroutine is used by a number of the I:routines in processing intraline
commands. Upon entry PI = column number at which to resume matching.

3. Exit:

B 0, LNK to calling routine.

4. Operation:

No action is taken if ALLFLAG < O. Otherwise this subroutine sets ALL FLAG = PI.

ANLZRIGHT

1. Purpose:

Analyzes the composition of a field to the right.

291

292

2. <ry:

lNK is the linkage register. This routine is entered via BAl, lNK ANlZRIGHT from either the SHIFTlEFT
or SHIFTRIGHT routine. Upon entry, PI = column at which to begin analyzing.

3. Exit:

If BO OFF: R I = number of nonblanks to first blank. R2 = number of blanks - I from first blank to
next nonblank. If BP ON: R I = number of characters to last nonblank on card. R2 = number of trailing
blanks on card. CC I = I if initial PI > end of buffer. CC I = ° otherwise. ANlZRIGHT returns to call
ing routine via B 0, lNK.

4. Operation:

If start of field falls past end of buffer, it sets R I and R2 = 0, clears stack of PI, P2, sets CC 1 and exits.
EODCLMN is column number containing last nonblank character.

BPFLAG = I if BP ON.

BPFLAG = ° if BP OFF.

MAXCLMN points to the end of buffer.

This subroutine performs character scan based on blank preservation mode to set R 1 and R2 as shown abave.
It sets CCI and returns to calling routine.

BINTODEC

1. Purpose:

Converts a binary number to decimal.

2. Entry:

lNK is the linkage register. PI contains binary number. P2 contains byte address where decimal string
is to be stored (right-most byte). This subroutine is used by MOVESEQ and TYPESEQ.

3. Exit:

Return is to calling routine via B 0, lNK with decimal quantity properly stored.

4. Operation:

BINTODEC divides binary number by 10, adds zone bits to remainder (i. e., X'FO'), stores it, moves
pointer one to left in output string and repeats until seven digits have been converted.

BLANKBUF

1. Purpose:

Stores blanks in CARDIMG.

2. Entry:

LNK is the linkage register. This subroutine is used by READRANDOM and READSEQUEN. It is
called using BAL, lNK BLANKBUF.

3. Exit:

Upon exit blanks are stored in CARDIMG. Return is made to calling routine via B 0, LNK.

CHECK lCDTENTRY

1. Purpose:

Ensures there is onl y one entry in the C DT.

2. Entry:

LNK is the linkage register. This subroutine is entered via BAL, LNK CHECKICDTENTRY.

3. Exit:

Normal return is to calling routine (only one entry was present). Error exit is to MASTERPARSER via
TYPECERR after printing: '-Cn:CMND ILGL HERE'.

4. Operation:

DELETE

1.

2.

This subroutine checks entry count in word 1 of COT; it should be 1.

Purpose:

Deletes records in a specified range.

Entry:

LNK is the linkage register. This routine is used by R:DELETE, and R:MOVE$DELETE. Calling sequence
is BAL, LNK DELETE and assumes:

PI contains sequence number of first record to delete.

P2 contains sequence number of last record to delete.

RI contains sequence number of last record read.

R2 contains number of records deleted.

3. Exit:

CCI = 1 if last sequence number was passed. CCI = ° otherwise. Return to calling routine usina B 0, LNK.
Message upon hitting end-of-fi Ie is '-EOF HIT'.

4. Operation:

Reads and deletes record i.

It continues until P2 is reached or passed, or EOF hit.

293

294

BADIOI

I. Purpose:

Prints abnormal VO message.

2. Entry:

At BADIO, an error code is loaded into XI from 01. At BADIOI, the error code is assumed to be in XI.
Entry is with branch because there is no return to call ing routine. BADIOI is called by various open, read
and write routines.

3. Exit:

It returns to the monitor via the EXIT CAL.

4. Operation:

It sets up error code in message line and prints message.

FINDCOLUMN

I. Purpose:

Evaluates the first parameters for intraline commands.

2. Entry:

LNK is the linkage register. This subroutine is entered via BAL,LNK FINDCOLUMN from one of
the following routines:

I:DELETE

I:OVERWR$EXTEND

I :FOLLOW$BY

I:SHIFT$LEFT

I:OVERWRITE

I :PRECEDE$BY

I:SHIFT$RIGHT

I :SUBSTITUTE

Upon entry CDTADR contains address of current command in CDT.

3. Exit:

Upon exit: PI = column computed from parameters.

P2 = width of field at this column.

Xl =position of next CDT control byte.

(,

CCl = 1 if no column found.

CCl = 0 otherwise.

Exit is B 0, LNK

4. Operation:

If not in "ALL" mode: ~ < 3 parameters: if command form K cmnd , it ensures that FRSTCLMN < K <
LASTCLMN. If/string/ cmnd , it uses FINDMA TCH to search for string. and = 3 parameters: it sets
occurrence count = 1 if it is illegal at this point, and it uses ANDMATCH to search for string. Error mes
sages (printed via TYPECERR) are:

'--Cn:'QLL'IGNORED',

'--Cn:NO SUCH STRING',

'--Cn:COL>LIMIT',

'--Cn:COL<LIMIT' •

FINDMATCH

1. Purpose:

Finds matching string in record.

2. Entry:

LNKisthe linkage register. This subroutine is entered via BAL,LNK FINDMATCH from one of the
following routines:

R:FIND$SEQUENCE,

R:AND$DELETE,

R:FIND$TYPE,

FIN DCOLUMN.

Upon entry: PI = column number.

P2 = address of TEXTC string to be matched.

3. Exit:

Upon exit: R 1 = column number at which match occurred.

CCl = 0 if match found.

CC 1 = 1 if match not found.

Exit is via 8 0, LNK.

295

296

4. Operation:

This subroutine:

sets TEXTCADR = C(P2), and

sets STOPCLMN (lost column number atwhicha match can toke place)=C(LASTCLMN)-string length.

If PI < STOPCLMN, it exits with CC 1 = 1. It scans record for match with TEXTC string.

GETFILEID

1. Purpose:

Checks syntax of FlO and if good, sets PARAMBUF and PRMBUFSZ.

2. Entry:

3.

4.

LNK is the linkage register. This subroutine is entered via BAL, LNK GETFILEID from PARSE:SAVE and
:EOIT to obtain the file ID so it can be placed in the Command Description Table.

The file ID is assumed to be in the Teletype input buffer.

Exit:

File ID is now in PARAMBUF as follows:

PARAMBUF

TEXTC fi lenome

TEXTC area name

and it has been checked for proper format.

Return is to calling routine via BAL 0, LNK.

Error returns are via GETNEXTNAME: messages include

'-PI :BAD FlO'

'-Cn:CMND ILGL HERE'

'-PI :ILGL SYNTAX'.

Operation:

This routine rejects a file namewhich is longer than eight characters. ItusesGETNEXTNAME first to build
file nome in PARAMBUF. It then pushes the area name, ifpresent. It then pulls the entries from the stock
and stores them in PARAMBUF and stores in PRMBUFSZ the length in words of the entries in PA~UF.

GETNEXTNAME

1. Purpose:

Gets the next name from the Teletype input buffer (TTYIMG) and places it in PARAMBUF.

)

(

2. Entry:

LNK is the linkage register. This subroutine Is entered by invoking the NXTNAM command procedure
resulting in the calling sequence:

BAL, LNK GETNEXTNAME.

GEN, 8, 24 # of branches, address of error message,

GEN, 8, 24 type 1, branch address 1.

GEN, 8, 24 type n , branch address n.

3. Exit:

Upon exit, a name (file or area) resides in PARAMBUF in TEXTC format.

Return is to the branch address in bits 8-31 of the word in the calling sequence of which a match was
found on bits 0-7. Error return is to MASTERPARSER.

4. Operation:

Input characters from TTYIMG are scanned and tested to determine whether they are part of a name.
They are placed in PARAMBUF in TEXTC format. When a terminator is found (e.g., comma or right
parenthesis) the scan is stopped, and the name is padded to the right with three blanks. If an error
is found, the error message given in the calling sequence is printed and return is made to MASTER
PARSER via TYPECERR.

The flow of GETNEXTNAME is given in Figure 82.

G ETNEXTPARAM

I. Purpose:

Scans the Teletype input buffer to isolate recognizable character strings which comprise EDIT commands
and places them in PARAMBUF.

2. Entry:

This routine is called by various PARSE: routines. LNK is the linkage register. The routine is invoked
by the NXTPRM procedure which sets up a calling sequence as follows:

3. Exit:

BAL, LNK

GEN,8,24

GEN,8,24

GEN,8,24

GETNEXTPARAM.

of branches, address of error message.

completion type, branch address 1.

completion type, branch address n.

Upon exit, a parameter is in PARAMBUF in TEXTC format. Return is to the branch address in bits 8-31
of the word in the calling sequence of which a match was found on bits 0-7. Error return is to
MASTERPARSER via TYPEPERR.

297

no

298

Save
R3 - R6

Pick up current
character position

Get next
non-blank
character

Set index to first
char. in buffer
where name wi II
be built

Store
character in
name

GN50

Get type of
>-_...-.1 completion so we

yes know where to

Put 3 trailing blanks
on name; store true
count for
TEXTC

Get I of
words for
text

Set type to
name for branch
torget

Set to RESCAN
last character

Figure 82. Flow Diagram of GETNEXTNAME

-I

Store wordsize
of entry

Get (I of branches
to check from
BAL

Get branch
address; restore

R3 - R6

no
GETNEXT$ERROR

r----.L.-. __ --,

Get address of
error msg. from
BAL

DMY$TYPECERR

yes

yes

Figure 82. Flow Diagram of GETNEXTNAME (cont.)

Decrement

By 1

Store error
msg. in dummy
call

Pg. 2

299

300

4. Operation:

A scan is made character-by-character, with tests being performed to detect invalid command format.
Examples: slash V) must not be the last character of a command; a sequence number must not exceed three
digits; the second sequencE" number in a range must not be greater than the first. Error messages include:

'-Pn:ILGL STRG'

'-Pn:NULL STRG'

'-Pn:ILGL SEQ"

'-Pn:SEQ2<SEQ I'

in addition to that given in the calling sequence.

The flow of GETNEXTPARAM is given in Figure 83.

ILGL$SEMICOLON

1. Purpose:

Output an error message when semi-colon is found following F: or R: CMND (should only be used in
intrarecord operations).

2. Entry:

The address of this routine is entered via the NXTPRM procedure into the calling sequence of a branch
to routine GETNEXTPARAM when it is desired that the SCOL (semicolon) type of entry be flagged as
an error. When entered it is done via B *Dl at GN45 of GETNEXT$FINISH.

3. Exit:

Branches to MASTER PARSER.

4. Operation:

It increments byte 3 of CDT containing CMND '. It uses TYPECERR to type '-Cn:CMND ILGL HERE'.

MOVESEQ

1. Purpose:

Formats sequence number in EBCDIC as 'XXXX.XXX' having four characters from calling sequences appended.

2. Entry:

.-
LNK is the linkage register. This subroutine is entered via BAL, LNK MOVESEQ from one of the fol-
I~ing routines:

R:MOVE$DELETE

R:MOVE$KEEP

READSEQUEN

Get current
character
position

Skip to next
non-blank

Set index to first
character in buffer
to build
parameter

GP20

Get type of
completion to

yes know where to
anch

Get next
character

Store
Character

..,.-~ GETNEXT$ERROR

Figure 83. Flow Diagram of GETNEXTPARAM

Pg. 1

GP45 TVPEPERR

'ILGL.
STRG'

GP35

Get next
character

Pg. 2

301

302

Set
Completion
to String

Store 3 trailing
blanks

Store count for
TEXTC; get word
count; set to
RESCAN last

G P43 TYPEPERR

'NULL
STING'

yes

Store
Character

Set

Get next
character

no

completion type
to alpha

Figure 83. Flow Diagram of GETNEXTPARAM (cont.)

Pg. 2

GP50
o-XI to show 1st

seq.
1~2 to show

INTG.
0-01 accumulator

Add digit
to previous sum

Get next
character

yes

Add the
necessary
trailing

Pg. 3

Set to check for
3 digits
maximum

Get next
character

Add to
previous sum

'ILGL

SEQ "

Figure 83. Flow Diagram of GETNEXTPARAM (cont.)

303

304

Adjust for
trailing

zeroes

Save value
in

PARAMBUF

1-X1 to show 2nd
seq. #; Reset X2,
01 as above

Get next
character

no

yes

Set to check
3 digits

Multiply by 1000
to convert to
seq. #

Set finish
type to
INTG

Set PARAMBUF
size to RESCAN
last character

Store value
in

PARAMBUF

Figure 83. Flow Diagram of GETNEXTPARAM (cont.)

Pg. 4

Set finish
type to seq.

-)

(~

Store value
in PARAMBUF

+ 1

Multiply by
>----+-l 1000 to convert

yes to Seq. I format

Set finish type to
SEQ2;
Set PARAMBUFSZ

Set to RESCAN
last

character

'SEQ2 < SEQ l'

>--+-1 GETNEXT$FINISH

Pg. 5

Figure 83. Flow Diagram of GETNEXTPARAM (cant.)

305

306

Upon entry: PI = sequence number to· be converted to EBCDIC; P2 = byte address at which to put the
string. Word following the BAL contains four characters to be appended to the sequence number.

3. Exit:

Upon exit, Rl contains the number of characters in the resultant string. Exit is B I, LNK.

4. Operation:

It uses BINTODEC to convert sequence number to EBCDIC, places string in TEMPBLCK with leading
zeros blanked and the requested characters appended at the right.

MOVESTRING

1. Purpose:

Moves a character string into the output buffer.

2. Entry:

LN K is the I inkage register. This subroutine is entered via BAL, LN K MOVESTRIN G from several
I: routines. Upon entry PI = column at which string is to be placed; P2 = address of TEXTC string
which is to be inserted.

3. Exit:

B 0, LNK

4. Operation:

If starting column is beyond end of record and any character of string is nanblank, it types '-Cn :OVERFLOW'
via TYPECERR and exits; otherwise, it exits. If not beyond end of record it moves TEXTC string into buf
fer, one character at a time. If end of buffer is reached, it types message as above and exits.

NEWCDTENTRY

1. Purpose:

Sets up room in the COT for a new entry.

2. Entry:

LNK is the linkage register. This subroutine is entered from several PARSE: routines. Upol1' entry:
PI contains the number of the command type to be added; word following the BAL contains the num
ber of parameters.

3. Exit:

Return is made to a + 2 with COT entry initialized.

--)

(

4. Operation:

COT entry is initialized as follows:

word 0: byte 0 contains length of entry (= 0 initially); byte 1 contains command type (or number) e.g.,
o for carriage return, 1 for file name, etc. Byte 2 contains number of this entry in the COT; byte 3
contains number of parameters. Words (1 - , of parameters/2) : zeroes. Word' of parameters/
2 + 1 : X'OOOOO100'.

PROCESSCOL#pAIR

1. Purpose:

Performs internal housekeeping required in processing a pair of column numbers in a record or an intra
record command.

2. Entry:

LN K is the I inkage register. This subroutine is entered via BAL, LN K PROCESSCOL 'PAIR from the
foil owi ng routi nes:

R:FIND$SEQUENCE

R:FIND$DELETE

R:FIND$TYPE

R:SET$STEP

R:SET$STEP$TYPE

R:TYPE$COMPRESSED

R:TYPE

R:TYPESUPSEQ

I:SET

Llpon entry, Xl paints to the location of the next parameter control byte in the COT.

3. Exit:

Normal exit is B 0, LNK. Error exit is B MASTERPARSER after printing '-BAD COL. NO. PAIR' via
TYPEMSG and setting SETFLAG and STEPFLAG = O.

4. Operation:

It sets starting and stopping columns as follows:

FRSTCLMN = 0 if no starting column given.
= column number c - 1 from command if input.

LASTCLMN = 140 if no stopping column given.
= column number d + 1 from command if input.

If c ~ d it prints error message and exits.

If d ~ 140 it prints error message and exits.

307

308

READNXTRANDOM

1. Purpose:

Reads random record or next highest one.

2. Entry:

LNK is the linkage register. This subroutine is entered via B.A.L, LNK READNXTRANDOM from the fol
lowing routines:

R:FIND$SEQUENCE

R :FIN D $DELETE

R:FIND$TYPE

R:INSERTSUPSEQ

R:INSERT

R:MOVE$DELETE

R:MOVE$KEEP

R:TYPESUPSEQ

R:TYPESCOMPRESSED

DELETE

Upon entry, PI = sequence number of record to be read.

3. Exit:

RI = sequence number of record actually read.

CCI = 0 if record existed.

CCI = 1 otherwise.

Return is to calling routine via B 0, LNK.

4. Operation:

This subroutine uses READRANDOM to issue read. If read was successful it sets R 1 = sequence num-
ber and CC 1 = O. Otherwise it sets CC 1 = 1 and returns. '"'

READTELETYPE, READTELETYPE2

1. Purpose:

Reads an input line.

2. Entry:

LNK is the linkage register. This subroutine is entered via BAL, LNK TELETYPE from one of the
following:

R:INSERT

R:INSERTSUPSEQ

It is entered via BAL, LNK TELETYPE2 from MASTERPARSER or R:COMMENTARY and stores characters
into TTYIMG.

3. Exit:

R1 = number of characters read. It returns via 80, LNK to calling routine.

4. Operation:

SETEOD

It sets buffer to CARDIMG or TTYIMG, stores blanks in buffer, reads up to the length of the buffer and sets R 1.
If the value in GOSEQ is negative (EDIT is not in GO mode), the input is taken from M:SI, the control
stream. If the value in GOSEQ is non-negative (EDIT is in GO mode), the input is taken from the edit file
at the first sequence number greater than the value in GOSEQ.

1. Purpose:

Scans active card image to locate the rightmost nonblank character.

2. Entry:

LNK is the linkage register. This subroutine is used by a number of routines such as MASTER EXECUTIVE
and several R: and I: routines. It is called using BAL, LNK SETEOD.

3. Exit:

EODCLMN contains column of last nonblank character or -1 if all blanks. RECSIZE contains a byte count
of zero if all blanks. Return is to call ing routine using B 0, LN K.

4. Operation:

This subroutine scans record image from right looking for all blank words (up to word 0). If no non blanks
are found, it sets flag to check word zero, byte-by-byte. Otherwise, it sets flag to indi cate byte
by-byte checking in the word where a nonblank character was found.

SETLASTKEY

1. Purpose:

Stores key of last record read read in LAST KEY and stores record size in RECSIZE.

2. Entry:

LNK is the linkage register. This subroutine is entered via BAL, LNK SETLASTKEY from READRANDOM
and READSEQUEN.

309

310

3. Exit:

It returns to calling routine via B 0, LNK with LASTKEY and RECSIZE set.

4. Operation:

It sets LASTKEY and RECSIZE, removes carriage return, if any, and uses SETEOD to append carriage
return if CR ON.

SHIFTLEFT

1. Purpose:

Shifts a character string to the left.

2. Entry:

LNK is the linkage register. This subroutine is entered via BAL, LNK SHIFTLEFT from one 'of the
following routines:

I:DELETE

I:SHIFT$LEFT

I:SUBSTITUTE

Upon entry: PI = column number at which to start the shift.

3. Exit:

B 0, LNK

4. Operation:

P2 = width of field starting at this column.

P3 = number of spoces to shift left.

This subroutine uses ANLZRIGHT to analyze field at PI. If field extends beyond end of card, it prepores
to shift in blanks. If shift will push data off beginning of record, it prints '--Cn:UNDERFLOW' via
TYPECERR and prepares to shift only to column O. If width of 0, it bypasses shift. It performs shift,
blanki ng out the cleared characters on the right.

SHIFTRIGHT

1. Purpose:

Shifts a character string to the right.

2. Entry:

LNK is the linkage register. This subroutine is entered via BAL, LNK SHIFTRIGHT from the following
routines:

I:FOLLOW$BY

I:PRECEDE$BY

-i

(

I:SHIFT$RIGHT

I:SUBSTITUTE

Upon entry: PI = column at which to start shift.

P2 = width of field starting at this column.

P3 = number of places to shift.

3. Exit:

B 0, LNK

4. Operation:

It exits if PI > MAXCLMN.

It initializes FIELDCNT =number of fields to compress and BLANKCNT=number of blanks to compress. If
fieldl extends to end of record it types pointers prior to shifting. If field extends beyond end of record, in
addition to message, it blanks out P2 characters and exits.

For normal shifts:

It uses ANLZRIGHT to compute RI =column at end of non blanks and R2=number of non blanks -1 =num
ber to shift for each space to be filled (just rightmost portion of record if BP ON).

The R 1 and R2 quantities computed by each entry to ANLZRIGHT are pushed into a stack to be pulled
from to perform the shifting or compressing. When all fields have been compressed, blank-fill is per
formed on the original fields at left in record.

Spec i a I cases:

If fieldrn is found to spill off end of card: message is output via TYPECERR: '--Cn:OVERFLOW'i
and BLANKCNT gets set to the appropriate number of nonblanks to destroy.

It performs special process of compressing fields that do fit until reaching the one which does nat,
where it then computes a special R 1 and R2. This covers cases in which part of a nonblank field
gets destroyed.

The flow of SHIFTRIGHT is given in Figure 84.

TYPECARD

1. Purpose:

Types a card image.

2. Entry:

LN K is the I inkage register.
lowing routines:

R:FIND$SEQUENCE

R:FIND$DELETE

R:FIND$TYPE

'" This subroutine is entered via BAL, LNK TYPECARD from one of the fol-

311

312

ENTRY
SHIFTRIGHT

Save
Registers

3 - 12

FIELDCNT=O

BLANKCNT=O

Move pointer PI to'
1 st character past
field to be moved

AN GHT

Analyze
composition of
field to right

Add no. of blanks
to be compressed
to BLANP(CNT

RETURN

Pg. 1

Rl =RltPI to point
to char. position
at end of non-blanks

Add 1 to
FIELDCNT I
~---

Save R 1 and R2
(R2 = no. of trailing
blanks in rec.)

Increment PI
to po i nt to next

field

Figure 84. Flow Diagram of SHIFTRIGHT

...

(
~

SR8

P3 = P3 -
BLANKCNT

(P3=no. of places to
sh ift ri ht

R2 = R2 + P3

BLANKCNT =0

FIELDCNT =
FIELDCNT-1

>0

<0

T1 = X2
0-15

SRI0
X2=X2+P2-1 (Add
length of original
field to no. of non
blanks

SR12A
Add X2 to
BLANKCNT
(BLANKCNT=no. of
blanks com essed out)

X2=end of "to"
field

Shift
Current
Field

FIELDCNT=

FIELDCNT-1

Pull next field

block from stack

Figure 84. Flow Diagram of SHIFTRIGHT (cant.)

Pg. 2

BLANKCNT=no.
of charS. to
blank out

SR20A

Blank out shifted
chars. on left

Restore
Registers3-12

313

314

SR50 TYPECERR

'--Cn:OVERFlOW'

BLANKCNT=O

T1 = -P3

Pull last field
block from stack

T1 = T1 + position
at end of non-blan

SR52A
R 1 = char. posi tion
at end of non-blanks

------~-- -, not destroyed

SR55
BLANKCNT=
BLANKCNT+

FIE LDCNT=
FIElDCNT-1

R2 = no. of non
blanks not
destroye4 i. e. not
to shift

Pg.2

Pull next field
block nom stack

R1=R1+1

Increment no. of
non-blanks to be
shifted in R2

SR58
Add width of field
starting at this
column to T1

Rl=Rl-R2

R2= width of field
starting at this
column

Figure 84. Flow Diagram of SHIFTRIGHT (cont.)

BLANKCNT=
BLANKCNT+P2

Set X2 so that all
fields will be
blanked (i.e., p..!sh-
ed off card) -'

SR70 TYPECERR

'--Cn:
OVERFLOW'

P2 = P2 - no. of
places to shift
right

BLANKCNT = no.
of characters
to blank out

Xl = end of "from"
field

X2 = last column
on card

T J = no. of chars.
to shift

yes

SR72
11 = no. of
characters to
blank out

X2 = last column
on card

Figure 84. Flow Diagram of SHIFTRIGHT (cant.)

Pg. 4

315

316

R:SET$STEP

R:SETSSTEP$TYPE

R:TYPE$COMPRESSED

R:TYPESUPSEQ

I:TYPE

I:TYPE$SUPSSEQ

Upon entry P1 = sequence number to be typed « 0 if sequence number is not to by typed).

3. Exit:

Return is to colling routine via B 0, LNK.

4. Operation:

It calls MOVESEQ if sequence number is to be typed and calls TYPEMSG to type cord contents.

TYPECERR, TYPEPERR

1. Purpose:

Types a command error message (TYPECERR) or parameter error message (TYPEPERR).

2. Entry:

LNK is the linkage register. This subroutine is entered via BAL, LNK TYPECERR or BAL, LNK TYPEPERR
from many routines. The word following BAL contains address of message to be printed.

3. Exit:

B 1, LNK

4. Operation:

If maximum error messages allowed have been printed it returns. It sets command or parameter number to
agree with its place in the command: e.g., '--C2----'. It types message using TYPEMSG.

TYPEMSG

1. Purpose:

Remove trailing zeroes and types a message.

2. Entry:

LNK is the linkage register. This subroutine is entered via BAL, LNK TYPEMSG with next word = word ad
dress of TEXTC string.

3. Exit:

Return is to calling routine via B 1, LNK

4. Operation:

TYPESEQ

The Monitor WRITE CAL is used. The DRC mode is normally off, resulting in trailing carriage return and
I ine feed. If the last character of the message is EOM, the mode is changed to suppress carriage control.

1. Purpose:

Types the seq uence number I XXXX.XXX I •

2. Entry:

LNK is the linkage register. This routine is called via BAL,LNK TYPESEQ from the following routines:

R:COMMENTARY

R:FIND$SEQUENCE

R:FIND$DELETE

R:INSERT

R:INSERTSUPSEQ

R:SET$STEP

R:SET$STEP$TYPE

TYPECARD

Upon entry, P1 = sequence number to be typed. The address after the CAL contains four characters to ap
pend to sequence number.

3. Exit:

Return is to calling routine via V 1, LNK.

4. Operation:

This subroutine calls BINTODEC to convert binary sequence number to decimal; it puts a period between
the fourth and fifth digits; it appends the four characters in the calling sequence to the end of sequence
number; it suppresses leading zeros in the first three digit positions and it calls TYPEMSG t.i print
seq uence number.

Indexed Scratch File Management

Since the Control Program for Real-time (CP-R) does not support an indexed access method, EDIT provides its own
indexed file management when assembled for use under CP-R.

317

318

Indexed File Structure

In the indexing structure used for the CP-R Edit scratch file, the key length is fixed and the data record length is
implicit in the data representation. The file is given a granule size of 256 words. Any granule of the file will be
unused, used entirely as index, or used entirely as data. The first granule of the file is always an index granule.
Whenever more storage is needed for either index or data, the next unused granule of the file is assigned. It will
retain this assignment until the indexing structure is discarded.

For each record in the file, the index contains an entry that relates the key and the address of the record. The en
tries are ordered by key value. The granules of the index are linked by pointers in each granule containing the
granule numbers of its predecessor and successor.

Data granules of the file are composed of CP-R compressed format records. Data is accessed only via index pointers,
so no order relationship or linkage is maintained between data records or granules.

The index entry for each record indicates whether the record is continued or deleted. If a record is continued, it is
actually only a fragment of a record. Its index entry is followed by another that describes another record fragment
to be appended. Continuation never occurs across an index granule boundary. Instead, all index entries dre moved
to the next granule, or to an inserted granule, if the next granule has too few available entries. Any service on a
record involves all of its fragments treated as a single record. Record continuation is used to provide for the case
where a record is overwritten by a longer record. If a record is deleted, it wi II not be recognized by any indexed
file services. Both the index entry and the data space will be reassigned if it is necessary to build a new entry
(either original or continuation) at the same point in the index. Otherwise, neither the index nor the data space
will be recovered. If a record is deleted, the index entries for all its fragments are marked as deleted.

The formats for the index granule and index entry are given below.

INDEX GRANULE FORMAT

Word

o

2

3

255

where

BLINK

FUNK

NAV I Flags

1-_____ ~~~I~d~~~~S _____ {

1 Available index entries f

BLiNK bockwards link, which is the granule number in the file of the previous index granule. BLINK is -I
for the granule containing the smallest key value.

FUNK forwards link, which is the granule number in the file of the next index granule. FLiNK f;'-I for
the granule containing the largest key value.

NAV entry number of the first available index entry. The first entry is number zero.

Flags not currently used.

-)

- I

INDEX ENTRY FORMAT

Byte

o Key

4 . Pointer

8 L

9 Flags

where

Key is the value of the key for the associated record.

Pointer bits 0-21 is the granule number of the record in the file and bits 22-31 is the byte number of the
record in the granule.

L is the length of the record fragment in bytes.

Flags bit 6 indicates the entry is deleted and bit 7 indicates the record is continued in the next entry.

I

l" OPENSCR

1. Purpose:

Opens the CP-R indexed scratch file.

2. Call:

BAL, LN K OPENSCR

3. Input:

DCB f:EI must be assigned to the scratch file.

4. Output:

None.

5. Stack:

Six.

6. Subroutines:

READX, OPENSCRI, CLOSESCR, UPKENTRY

319

320

7. Operation:

This subroutine is used when a file is specified for use as the EDIT scratch file but no subject file is named.
In this case, it is assumed that the fi Ie is either empty or that its contents were generated by previous use
as an EDIT scratch file. In the former case, it is initialized as an empty indexed file. In the latter case,
its contents are validated, and its next available data byte und next available granule are determined.

The flow of OPENSCR is given in Figure 85.

CLOSESCR

1. Purpose:

Closes the CP-R indexed scratch file.

2. Call:

B.A..L, LNK CLOSESCR

3. Input:

DCB F:EI must be assigned to the scratch file.

4. Output:

None.

5. Stack:

Two.

6. Subroutines:

WRGRANS

7. Operation:

This subroutine writes the current index and data granules to the scratch file if they have been modified.
It then closes the F:EI DCB.

The flow of CLOSESCR is given in Figure 86.

WRGRANS

1. Purpose:

Writes out index and data granules for CP-R indexed scratch file.

2. Call:

B.A..L, LNK WRGRANS

~ J

(

'FI,',F: J
",E T F lP:,T

UtlUc,EO GRAN 10
2

GET :,1F'l(TI,IRE
OF cPECIF lED
:H:ATCH FILE

FERD TH[
FJ f.51

GI\ANlLf

"
PEO

YES -

SO NE,:i DftTA
linE 11:1 0,

LAS T OATA GRAN
Tn I

GENERATE AN
nRC'f: M[SSAC.E

CLOSE TH[
SCltflTCH fILE'

PEAD lNOEX
GRAN

J NDEX '.
GRAN HERDER N~
CONSISTENT

/
YE,

SET NEXT I NOEX
[N1H tl '"BEP TO

J)

SE T t£/T iNDEX
GRAN TC1 (', FLAG
DATA A~() INDEX

C",f:R~t:, NOT IN
, H

,""- -, .--(lr'OJ THE
:.PUIFlUiF;LE,

--,----'

Cll'I1MAI'C
GET /lEn)"

..nfEtl5Cf

Of EN ANO
I NIT I All ZE

::£F:IiTCH fILE

SE 1 NEXT UNUSED
GRAN TO I N[JfX

[..RAN -+1

GENERATE AN
ERROR p.£SSAGE

Cll'I1HAf\l)
GET NEXT)

[XJT

Figure 85. Flow Diagram of OPENSCR

321

322

1E5

GET NEXT I NOEX
ENTRY

sn LAST DATA
~RN RNO NEXT

OOTR BYTE

S(T LRST GRAN
m LI'l5T ORTI'l

GftRH .. I

~
(MORt'-

I NO[X GRRNS

GENERATE AN
ERROR 1£55/U:

Figure 85. Flow Diagram of OPENSCR (cont.)

-)

YES

2)

,

(CLO~'E5CP)
I

J)S[SCR lwpGRAtlS

HRI TE OOT
INDEX AND

Of\ r A [Rffi 5

J
CLOSE SCRATCH

FILE

~.
(EXIT j
" -

'"'

Figure 86. Flow Diagram of CLOSESCR

323

324

3.

4.

5.

6.

7.

Input:

None.

Output:

None.

Stack:

One.

Subroutines:

None.

Operation:

For both the current index and current data granule, this subroutine writes the granule to the scratch file
if the granule has been modified since it was last read.

The flow of WRGRANS is given in Figure 87.

OPENSCRI

1. Purpose:

Opens and initial izes the C P-R indexed scratch fj Ie.

2. Call:

BAL, LNK OPENSCRI

3. Input:

DC B F:EI must be assigned to the scratch fi Ie.

4. Output:

None.

5. Stack:

Two.

6. Subroutines:

WRGRANS

_1

~.

HR ITE OUT 0f11fl
GRflNlIlE

1
SET FlflG: DA1fl

GRRNUlE NOT
Ft- TERED

WRITE OUT INOEX
~RNUlE

SE T FLflG: INOEX
GRRNULE NOT

Rl TERED

(__ EX_IT .,.....--)

Figure 87. Flow Diagram of WRGRANS

325

326

7. Operation:

DCB F:EI is opened. A rewind and a write-end-of-file are issued to the file. The index granule buffer
is set to the contents of granule zero of an empty scratch file. Indicators are set such that scratch file
granule zero is in the buffer and modified, that byte 0 of granule 1 is the next available data byte, and
that granule 2 is the next available granule.

The flow of OPENSCRI is given in Figure 88.

1. Purpose:

Reads in a data granule from CP-R scratch file.

2. Call:

PAL, LNK READD

3. Input:

P1 = granule number.

4. Output:

Normal: 10 = O.

Scratch file overflow: X'lC' in register 10 byte O.

5. Stack:

Two.

6. Subroutines:

WRGRANS

7. Operation:

READX

If the required data granule is already in the data granule buffer, this routine returns immediately. If it
is nat, WRGRANS is called to write out any altered data or index information and the required granule is
read into the data granule buffer. Overflow is reported if the required granule is past the file EOT.

The flow of READD is given in Figure 89.

1. Purpase:

Reads in an index granule from CP-R scratch file.

-----,
Of'ENSCRj

1
tft:NSCRI ~ VI

BUILD AN EMPTY SET .NEXT
I NOE)(BU}(K IN RVA ILffil E (.RAN

THE INDEX
BUffER

m2

Sf I Tt-E CUF;RENT Sf T LRST ORTfI
I NOEX GRANULE GRAN TO I. NEXT

ret ZERO OfITR BYTE TO 0

WRf'.RAN<;

SET FLAGS:
lNOEX GRAN IN WI1[IE "J1
All fRED. OfIT~ THE INOCX
~AN NOT IN. ~ItNLU

I

\
DfENl:: REWINJlJ
~ IT EOf

SCRflTCH fiLE. EX IT
SO (.RAN 5 I ZE

TO" 256.

I

Figure 88. Flow Diagram of OPENSCRI

327

328

REROO

REAOO \
// ,

AIJF;RE~,

~
ANULE IS YES

REOUEST[O
RNULE

(7

WRI TE OUT
INDEX ANO

OfHR
GflANLLES

SET FLAG: DATA
GRANULE NOT IN

READ REClJESTEO
DATR GRANULE

SET Cl.J'(R[NT
DATil GRfINULE

IlJHffR

\

EXJT

Figure 89. Flow Diagram of READD

EXI T

)

(-,

2.

3.

4.

5.

6.

7.

Call:

BAL, LNK READX

Input:

P1 = granule number.

Output:

Normal: 10 = O.

Scratch file overflow: X'lC' in register 10 byte O.

Stack:

Two.

Subroutines:

WRGRANS

Operation:

If the required granule is already in the index granule buffer, this routine returns immediately. If it is
not, WRGRANS is called to write out any modified data or index information, and the required granule is
read into the index granule buffer. Overflow is reported if the required granule is beyond the file EOD.

The flow of READX is given in Figure 90.

UPKENTRY

1. Purpose:

Unpacks an index entry from the CP-R scratch file.

2. Call:

BAL, LNK UPKENTRY

3. Input:

P1 = entry number in granule.

4. Output:

None.

5. Stack:

Two.

329

330

RERDX

REROX

AuRRENT

~
ANULE IS YES

REQUESfm
ANULE

1)

..... J>A"'C

~11E OOT
INDEX AND

DInA
GRANll..ES

Sf] FLAG: INDEX
GRANJLE NOT]N

REflD REIlJES1ED
INDEX ~flNULE

SET fLFlG'S:
I NDEX GRANULE

) N, NlT III TERED

SET CURRENT
INDEX GRANULE

NUHfl:R

EXIT

Figure 90. Flow Diagram of READX

--)

-- I

(

I

\

6. Subroutines:

None.

7. Operation:

Each field of the indicated entry in the current index granule is moved into a full-word area in the
EDITOR context.

PKENTRY

1. Purpose:

Packs an index entry into the CP-R scratch file index buffer.

2. Call:

PAL, LNK PKENTRY

3. Input:

P1 = entry number in granule.

4. Output:

None.

5. Stack:

Two.

6. Subroutines:

None.

7. Operation:

FINDX

Each field of the indicated entry in the current index granule is overwritten with the data from a full-word
area in the EDITOR context.

1. Purpose:

Finds index entry for specified key in CP-R scratch file.

2. Call:

BAL, LNK FINDX

3. Input:

P1 = key value.

331

332

4. Output:

5.

6.

7.

R 1 = entry number of entry returned.

If key is f(\und, entry for key is returned, and unpacked; 10 = O.

If key found but deleted, entry for key is returned and unpacked; 10 = X'43' •

Entry not found; not past end of fi Ie; entry for first key following specified one is returned and un
packed; 10 = '43'.

Entry not found and past EOF; next avai lable entry in last index granule is returned, not unpacked (since
not yet written); 10 = X'43'.

Stack:

Six.

Subroutines:

READX, UPKENTRY

Operation:

The index granule chain is scanned in reverse from the current granule until a granule is found that is the
first index granule or does not entirely follow the given key. Then the chain is scanned forward until a
granule is found which is the last index granule or does not entirely precede the given key. Then the en
tries of this granule are searched forward unti lone is found which is equal to or past the given key.
This entry is returned.

The flow of FINDX is given in Figure 91.

FINDNXX

1. Purpose:

Finds index entry for next key after specified one. If none, indicates entry for last key in file.

2. Input:

PI = key for which to find successor.

3. Output:

Successor found:

Rl = entry number of successor; XBUFF contains correct index granule; 10 = O.

Successor not found; Rl = entry number of last key of file; XBUFFcontains its index granule; 10=X'06'
in byte zero.

4. Stack:

Four.

fIND>:

SET FLAG:
BACKWARD SCAN

,/

/// f, LNROG[X:)NO ___ -.;.j SE T TO ZE R ~ Tt-E
./ I NDEX GRANUlE ~ __ ~

GRRNULE I N Ttl REf{)

REfIO lNDEX
~IiNlJLE

PttlNT TO fiRST
ENTRy IN 1----.;:0<.
GRANLLE

~~ SET INDEx GPFiN-l
FaR EvtlRD NO / 'IN Of X :>NO ___ ~ PR J OR o-JE. "

FLAG: ~/rf~~T~ UlE: TO READ TC

SCAN / GRFfULE I~

YES

EXIT

ES

Sf T INDEX GRAN
ULE TO REIlO TO

:>NO ___ ~ ~~~:~lif~O
SCRN.

END Of,
LAST]NOfX

GRANULE

YES

SET RfTLRN CODE
FO'R REOJESTEO
KEY NOT FOUND

Figure 91. Flow Diagram of FINDX

51(Jr· Tt-f ENTfi:r

333

334

5. Subroutines:

FINDX, READX, UPKENTRY

6. Operation:

FINDX is called for the specified key. If the returned key is the same or is deleted, the index is
scanned forward to the first nondeleted entry. If at any time the end of the index is encountered, end
of-file is reported, and the index is scanned in reverse until the first undeleted entry is found. This
is the returned entry.

The flow of FINDNXX is given in Figure 92.

1. Purpose:

Gets the necessary index entries for writing a record to the CP-R scratch fi Ie. It uses existing and de
leted entries, when possible to ensure that the entries obtained include enough attached data space.

2. Call:

BAL, LNK GETX

3. Input:

PI = key value. Record text is in the buffer labeled CARDIMG.

4. Output:

Normal: 10 = 0 if key previously existed; = X'43' if not correct index granule read in. R 1 = entry num
ber for first entry obtained.

Scratch file overflow; 10 = X'06' in byte zero.

5. Stack:

Six.

6. Subroutines:

FINDX, READX, WRGRANS, PKENTRY

7. Operation:

~

The amount of data space needed is determined. Any existing entries for the key are assigned. If more
space is needed, adjacent deleted entries are also assigned. If still more space is needed, a new index
entry is inserted at the front of the assigned set of entries, and the balance of the data space needed is
attached to it. To moke room for the new entry, other entries may be shifted to the following index gran
ule or a new index granule may be created.

The flow of GETX is given in Figure 93.

(

(-

SKIP THE
CURREN: I NOEX

ENTRY

F/NQNXX

TRY TO FINO
INDE)(ENTRY

fOR
SPECIFIED

KEY

ftS T Et>£) Of YES
GRflNLLE >----::;..<:

EXIT

I NO ICATE [OF.
PItINT TO LAST

RECORD INDEXED
IN fiLE.

EXIT
'-.... _---_./

READ
FOlL~ING

INDEX
GRflNULE

POI NT AT f IRSr
ENTRY IN
GRftNULE

Figure 92. Flow Diagram of FINDNXX

335

336

(GETX)

-------r--~

DETEF:I~INE COM
PRE "'.EO SIZE Of

REI(N~R8nT(t I-~-~

DETERHINE SIZE
I)F ACCU~'IJL AT ED
USRBLE RECORD

FRAGMENTS

PUT KE'(AND
CtlNT INUE FLAGS

IN ENTRIES AS
NEEDED

SE T FLAG: INDEX
GRANULE AL TERED

EXI T

rr N[l TI-£
SPECIFIED

INDEX ENTRY

l"ES

OOTRIN
NfCE5:F1RY DATA

SPReE FRttH LAST
GRAtU.-E I N LISE

~~~/ IN~'" 0 . 
THIS ]f'.()EX 

RNULE 
/' A3 
YES PIG: ~ 

I NSERl NEH 
ENH'f AS fIRST 

ENTRl TO USE 

Figure 93. Flow Diagram of GETX 

MARl<. ];- USED. 
GET DATA SF'ACE 

FROM ]T. 



SAVE GRANULE 
r-.tJMBERS Of 

cUR PENT AND 
NEXT INDEX 

GRANULES 

LAST 

<" GRrif~t?LEEX IN 
USE 

/' MORE I'N---NO <GRf1NULES 
FILE 

YES 

HRI TE OUT 
INDEX AND 

OfITA 
GRANULES 

'y/ 
'VI1Ff'llX 

REflD THE 
OI<:IGINAL 

INDEX 

1 GRflNLl.E 

'V 

SET FLAG: DATA 
G/(flN NOT IN 

SET NR Of 
EN1RIES 10 MOVE 
TI} Nfl F('tR LAS T 

RECORD Of 
GRANULE 

READ NEXT 
INDEX 

GRflNULE 

INDICATE EOT 
ERROR 

ALLOCATE NEW 
INDEX GRI1NULE. 
~T IT l1' TO 

LINK fFTER 
OJRRENT I}NE. 

REflD IN THE 
NEXT IIJ(f:Y 

C,f;AtlLU' 

SCT IlS FORE-
HARD L IN~: 10 

THC f'.f'H (",Rf1NUL[ 

NEW 
ENTRY Cet/- YES 

Y flN E 

NO 

. 'V" 

PUT ENTRIES TO 
t1tV[ IN DRTA 

BUFFER 

~ /;:;~ ~NTRr CON- YE~ 
~NUES nt 

RflN E~/ 
~/ 

~HF 
YES ENTRIES TO 

HOVE 

~ 

EXIT ) 

SET FLAGS: 
I ND[x GRANULE 

J N fHJ IlL TEREO 

SET ITS flflCK
~.I9PD L \1/1( TO 

TH[ f.jfN (..RflNULE 

SET fLRG: INDEX 
f1L TERED 

I 
DECREMENT NR OF 
ENTF:IES TO HOVE 
TIl DISCOONT ON[ 

NOT flUlL T YET 

SET FLRG: INDEX 
GRflN AL TERm 

~3 

Figure 93. Flow Diagram of GETX (cont.) 

SET NR Of 
ENTRIES TO MOVE 
m NR ct=:TflINEO 

PLUS ~'IE 

READ IN THE 
ORIGlr-I'IL 

INDEX ENUY 

SET FLfl(.: INDEX 
fIl HRE(I 

I 

SET ENTRI E 5 TO 
USE TO THE 

START if THE 
Nf XT GRFNULE 

I 

337 



338 

fI2 >---''V'I'I'~-F-''A-nn'-'X 

RERD NEXT 
INDEX 

GRANULE 

I N5ERT [NTR IES 
FRIlI1 DATA 

BUfFER 

Sf 1 FLAG: INDEX 
GRANLLE AL TERED 

READ JI'«X 
GRANUlE fOR 

NEW ENTRY 

Figure 93. Flow Diagram of GETX (cont.) 



DATA PACK/UNPACK CONVENTIONS 

The following definitions describe register use conventions in the subroutines used to move and pack/unpack data 
between the user buffers and the data granule buffer. These subroutines are GETREC, PUTREC, GETRBYTE and 
PUTRBYTE. 

The conventions are as follows: 

BLANKCT = P2 Blank count for multiple blank expansion/compression. 

NEXTX = PI Next index entry to access when current data area used up. 

STRPTR = XI Pointer to next byte in user I/O byte string. 

STRCT = X2 Remaining byte count for user I/O byte string. 

RECPTR = X3 Pointer to next byte in data granule buffer. 

RECCT = X4 Remaining byte count for current block of data in data granule buffer. 

GETREC 

I. Purpose: 

Gets a data record given its index entries. 

2. Call: 

BAL, LNK GETREC 

3. Input: 

PI = NEXTX = entry number for first index entry to use. 

4. Output: 

None. 

5. Stack: 

Eight. 

6. Subroutines: 

GETRBYTE 

Note: See Data Pack/Unpack Conventions above. 

7. Operation: 

The registers are set up by the Data Pack/Unpack Conventions. The routine then loops call ing GETRBYTE 
to get bytes from the record, expanding multiple blank string representations, and storing the results in the 
record buffer unti I the requested count is exhausted or an end-of-record character is obtained. 

The flow of GETREC is given in Figure 94. 

339 



( GOREe 

GETREC 1 
S(T 5 TRI NG BHf SET NEXT INDEX SET 

("('tUNT FoND ENH"I W f?E:CCf"O P~INTER 
P~INIER AS CURRENT I Non PECCR(i Ct)tINT 
REOUESTED ENTRY flN[J fiLm COUNT 

TO ZERO 

r r 
[ 

Y<-

<~t" 
1 

' NO 

f,fTRRyJf 
./ ',,-- Ii /~ 

</ J S BLANi': YES 
GO t-£XT 

DID OF ')ES ~( ) BYTE FROM EXIT 
"C,OONT lE~ RE[~D RECORD 

~-r( ~. 
NO 

, . r..,'PRY 

PUT BLANK IN GO t-£XT 
YES /~ r I-BLANK OflTfI STRING BYTE fROM 

RECeRO ...... COOE 
// 

'. 

~l; 1 J 
DECREMENT ILRNK Sf 1 flLRNK COUNT PUT SHE IN 

COUNT Tit VRLUE fl':OM OATn STR:ING 
RE(eRD 

~ 

Figure 94. Flow Diagram of GETREC 

340 



( ~ 

PUTREC 

J. Purpose: 

2. 

3. 

4. 

5. 

6. 

7. 

Puts a data record into the CP-R indexed scratch file, given tile index entries for the record. 

Call: 

BAL, LNK PUTREC 

Input: 

PJ = NEXTX = entry number for first index entry to use. 

Output: 

None. 

Stack: 

Eight. 

Subroutines : 

PUTRBYTE 

See Data Pack/Unpack Conventions above. 

Operation: 

The registers are set up by the Data Pack/Unpack Conventions. Characters are obtained from the 
record buffer, multiple blank strings are compressed, and the results are inserted in the data buffer 
using PUTRBYTE, until the requested character count is exhausted. Finally, an end-of-record char
acter is inserted. 

The flow of PUTREC is given in Figure 95. 

G ETRBYTE!PUTRBYTE 

J. Purpose: 

Gets/puts byte of CP-R indexed file data. 

2. Call: 

BAL, LNK GETRBYTE 

or 

BAL, LNK PUTRBYTE 

3. Input: 

Registers set up as in Data Pack/Unpack Conventions. For PUTRBYTE only; TJ = byte to insert. 

341 



342 

(, __ P_l_ITr"'_EC __ ) 

//)'5 STRING
" CDUN1 ZER 0 

// 
NO 

GET NEXT 
BYTE FROM 

DflTA STRING 

IS IT 
BlRt-I< 

INCREMENT !l..ftNIi: 
COUNT 

...... '................ // ........... ,' ... 
I 5 BLAI-lK '- NO -- I 5 BlANK '.. YES 

COUNT ZER~)/---""'<' COUN1 CI'lE >-----:;;.t 

YES 

PUT eYTE 
-INTO RECcrRO 

PUT 
MUlTI-6LRNY. 

CanE ]NTIY 
F:f:CORO 

PUT fl..f'NI( 
COUNT [NTO 

F:f:CORO 

SET filA!'¥. COUNT 
T~ ZERO 

Figure 95. Flow Diagram of PUTREC 

PUT BlRNK 
I NT 0 "'ECo-R 0 



( ~ 

( 

I 
PUT BLANK 

INTO RECORD 

F12)---.", 

'", 
IS BLAN< T[~ 

COUNT ZERO 

~ 
YES~:y;~> 

COU? 

I 
PUT 

ItJLTI-BLftNK 
c(}OE INTI} 

REC(RO 

PUT BLANK 
COUNT INTO 

REC(RO 

PUT EOR CODE 
INTO RECORD 

EXIT 

Figure 95. Flow Diagram of PUTREC (cont.) 

343 



4. Output: 

For GETRBYTE only; T1 = byte obtained. 

5. Stack: 

One. 

6. Subroutines: 

READD. 

7. Operation: 

When no data remains in the current data block either routine accesses the next index entry, and reads the 
indicated data granule to get the next block of data for a record. It then transfers the data in the block, 
one character per ca II f unti I the block is exhausted. 

The flow of GETRBYTE/PUTRBYTE is given in Figure 96. 

DELETERECORD 

1. Purpose: 

Deletes the most recently read record. 

2. Call: 

BAL, LNK DELETERECORD 

3. Input: 

None. 

4. Output: 

5. 

6. 

7. 

None. 

Stack: 

Four. 

Subrouti nes: 

FINDX, UPKENTRY, PKENTRY 

Operation: 

Sets the "DELETED" flag in all index entries for the record, and indicates that the current index granule 
has been altered. 

The flow of DELETERECORD is given in Figure 97. 

-- ) 



( 

( 

GETRBYTE 

Sf T FLAG: GET 
BYTE FROH 

RECORD 

):. 
----RECORD 

YES BYlf COUNT 
15 ZERO 

NO 

FlflG: 
~ GET BYTE 

GE T BYTE FROM 
RECORD 

I NCRf:r-fNT 
RECORD f>crl N1ER 

DECREI'ENT 
RECORD BYTE 

COUNT 

EXIT 

SET Fl AC.: PUT 
BYTE INr~ 
Rf(~ 

GET NExr INDEx 
ENHY 

PUT BYTE INTO 
RECCI\D 

SET FLAG: DATA 
~"NU.E Al TEREO 

READ 11£ 
INDEXED DATA 
~ANULE 

If'OfHE THE 
PllI NTER TO NEXT 

INDEX ENTRY 

Figure 96. Flow Diagram of GETRBYTE/PUTRBYTE 

345 



346 

GEl SEDUENCE IIR 
('If MOST 

RECEN1L Y READ 
RECORD. 

FI NO Tt£ 
INDEX ENTRY 

fl!R lHE 
RECORD 

EXISTS 

I1fIRI( ,HE ENlRY 
RS DELETED 

ND 

Sf 1 FLRG: INDEX 
GRHNlLE "LTERED 

EXIT 

EX IT 

!"Itl NT TO HEX, 
) ND[X ENlRY 

Figure 97. Flow Diagram of DELETERECQRD 



WRITERANDOM 

1. Purpose: 

Writes a record into the CP-R indexed scratch fi Ie. 

2. Call: 

BAL, LNK WRITERANDOM 

3. Input: 

PI = key. Data to write in CARDIMG. Record length in RECSIZE. 

4. Output: 

None. 

5. Stack: 

Four. 

6. Subroutines: 

GETX, PUTREC, SCROFLO 

7. Operation: 

This routine calls GETX to get an index entry(ies) for the record to be written. If the scratch file does 
not overflow, WRITERANDOM uses PUTREC to move the record into the data space attached to the 
entry(ies) obtained. 

The flow of WRITERANDOM is given in Figure 98. 

WRITENEWRANDOM 

1. Purpose: 

Writes a new record into the CP-R indexed scratch file. 

2. Call: 

BAL, LNK WRITENEWRANDOM 

3. Input: 

PI = key. Data to write in CARDIMG. Record length in RECSIZE. 

4. Output: 

New entry; CC = O. Not new entry; CC = 8. 

347 



Wli:ITER~OM 

GET AN J NOE)( 
ENTRY 

PUT THE 
~E[DRD INTO 

THE FILE 

EX IT 

GENERATE AN 
EKRCR M[SSfIGE 

Gf T f'£XT 
COHMfNl 

Figure 98. Flow Diagram of WRITERANDOM 



5. 

6. 

7. 

Stack: 

Four. 

Subroutines: 

FINDX, GETX, PUTREC, SCROFLO 

Operation: 

This routine first calls FINDX to determine if the specified routine already exists. If it does not, WRITE
NEWRANDOM calls GETX to get an index entry for the record, and PUTREC to move the record into the 
data space obtained with the index entry. 

The flow of WRITEN EWRAN DOM is given in Figure 99. 

READRANDOM 

I. Purpose: 

Reads a record from the CP-R indexed scratch file. 

2. Call: 

BAL, LNK READRANDOM 

3. Input: 

( PI = key. Data byte length in RECSIZE. 

4. Output: 

Key found: 

CC = o. 
Data in CARDIMG. 

Key not found: 

CC =8. 

5. Stack: 

Four. 

6. ,Subroutines: 

BLANKBUF, FINDX, GETREC, SETLASTKEY 

7. Operation: 

This routine calls FINDX to determine the location of the record. If the record exists, READRANDOM 
moves it into the record buffer by calling GETREC. 

The flow of READRANDOM is given in Figure 100. 

349 



350 

WRITENE~ftNOOM 

F! ND 11-£ 
INDEX ENTRY 

ft)R THE 
RUCRO 

CH ffi INDEX 
ENTR'f 

YES 

E~T ON YES 
RATCH fILE >-----'301 

'f'UT THE 
RECORD INTO. 

THE FlU: 

LCI 0 

lCl 8 

EXIT 

GENERATE AN 
EItROR I'f:SSfIGf 

GET NEXT 
Cl)HHflIIl) 

Figure 99. Flow Diagram of WRITENEWRANDOM 



( 

( 

BLANK THE 
INF'lI1 

BUFFER. 

FINO 11-£ 
SPfCIF[[O 

INDEX ENTRY. 

YES 

GET INDEXED 
Jl;fCORO fROM 

&JfFER. 

SET LAST 
SfOl£NCE Nlffi~ 

fa THAT crt' 
~CORO ItfAD 

LeI 0 

EXIT 

LC I B 

EXIT 

Figure 100. Flow Diagram of READRANDOM 

351 



352 

READSEQUEN 

1. Purpose: 

Reads sequentially a CP-R indexed scratch file. 

2. Call: 

BAL, LNK READSEQUEN 

3. Input: 

Data byte length in RECSIZE. 

4. Output: 

Data in CARDIMG. R1 = key of record read. 

5. Stack: 

Six. 

6. Subroutines: 

BLANKBUF, FINDNXX, GETREC, SETLASTKEY 

7. Operation: 

This routine uses FINDNXX to locate the record that succeeds the last one read or written. If there is 
a successor, READSEQUEN moves it into the record buffer by .calling GETREC. If there is no suc
cessor, READSEQUEN indicates an end-of-file. 

The flow of READSEQUEN is given in Figure 101. 

BUILDSCR 

1. Purpose: 

Builds the CP-R indexed scratch file from the subject file. 

2. Call: 

BAL, LNK BUILDSCR 

3. Input: 

M:EI set to scratch file, M:EO set to subject file. Both DCBs closed. 

4. Output: 

None. 



( 

~EAOSECUN 

BlANK THE 
INPUT 

BUffER. 

FIND NEXT 
INDEX ENTRYJ 
~ LRST ONt 

IN fiLE. 

I"ftST EN) YES 
CF f ILE >----;~ 

GET ItrrXEO 
~CORO FROM 

BUffER 

SET LAST 
SfOlfNCE NUMBER 

let THAT [If 
~CORO ~AO 

SET RETl..f:N 
f'fIl':flMETER 10 

SEO UEI'£E HR Of 
~CORO R[flO 

EXIT 

SET LAST 
SEOUENCE Nl.t4BER 

Tet LAST IN 
filE. 

SET lAST 
S[OI.HI: E NF: OF 
FILE INTO fOO 

MfSSRGE. 

SET RETLW:N 
f'fIRftofTER TO 

10,000,000 (EOO 
FLflGI. 

Figure 101. Flow Diagram of READSEQUEN 

353 



5. Stack: 

Seven. 

6. Subroutines: 

OPENSCRI, WRITENEWRANDOM, WRITERANDOM 

7. Operation: 

This routine reads the subject file sequentially, indexes the records read, and writes them (using WRITE
NEWRANDOM and WRITERANDOM) into the scratch file. The key value for each record is determined 
either by the trailing eight bytes of the record, or by a fixed increment applied to the prior key written. 
If the save file sequencing mode is on, a key in the last eight bytes of any record is removed. 

The flow of BUILDSCR is given in Figure 102. 

INSEQNR 

1. Purpose: 

Translates a line number in a subject file record. 

2. Call: 

BAL, LNK INSEQNR 

3. Input: 

None. 

4. Output: 

If found: 

10 = O. 

R 1 = value times 1000. 

If nat found: 

10 = 1. 

5. Stack: 

Three. 

6. Subroutines 

Internal only. 

7. Operation: 

Starting with the eighth byte from the end of the record, the routine skips leading blanks, skips leading zeros, 
accumulates the integer part of a key up to four characters, and tests for a decimal point. If none is found, 



BI 

( ~ 

BUILDSCR 

READ t-£XT 
SUB-ECT FILE 

RECORD 

END OF 
YES FILE EN-

COONTEI"fD 

YES 

C2 

S£T FLAGS: NO 
OJPL ICATE 

f<f~~RE~ 
RECORDS. 

CLOSE THE 
!'iIBJEcr fiLE 

GENERATE ftN 
fRR~ 1£5SftGE 

I Nf'UT INCREMENT 
Sf QUENCE NR ")NO.:-__ ~ OJ TPUT SE QlIENCf 

REOUIRED NR 

GE NERATf fiN' 
n~~ MESSAGE 

OPEN THE 
~JB LCT fILE 

EXIT 

ClItSE Ttt: 
SCRftTCH fILE 

CLOSE THE 
SUBLcr fiLE 

GET NEXT 
CItHHfNJ 

OPEN ~O 
INITIALIZE 

SCRATCH fiLE 

SEQt~~~ NR ;YE;:.S==-_______ .....:... __________________ -, 
IN ORDER 

GENERATE R 
>=----301 IollRN INC HESSACl: 1----30/ 

SET FLfIG: 
RECORDS 

REORDERED 

Figure 102. Flow Diagram of BUILDSCR 

SET NEXT OUTPUT 
SEQUENCE NR TO 

UJRRENT INf'UT 
SEQUENCE NR 

355 



356 

~ 
~A~~ 

SEQ ON 

NO 

WI';: I lE DIRECT 
A NEI-I 

S(RR1CH 
RECORD 

GENERATE 
HflRNING HESSRG[ 

SET fLRG: 
DUn !CRTE 

SEOUENCE NR 

NR ITE DI RECl 
fiN OLD 

SCRATCH 
RECORD 

o 

SET ERROR 
INDICFlT(J;!S 

REDUCE RECORD 
Sl ZE TO Il'HlT 
SEOUEI<E NR 

Figure 102. Flow Diagram of BUILDSCR (cont.) 



( 

SAVESCR 

the routine then skips blanks. If a decimal point is found, the routine accumulates the fractional port of 
the key up to three characters and then skips blanks. If no digits were encountered, or if the scall did not 
reach the end of the record, the routine reports that no sequence number was found. 

1. Purpose: 

2. 

3. 

4. 

5. 

6. 

7. 

Builds a standard CP-R file from the CP-R indexed scratch file. 

Call: 

BAL, LN K SA VESCR. 

Input: 

M:EI and M:EO assigned; M:EI open. 

Output: 

None. 

Stack: 

Ten. 

Subroutines : 

READSEQUEN, READX, UPKENTRY 

Operation: 

By counting the number of records in the scratch fj Ie and considering the structure of the save fi Ie, the 
routine determines how big the save file must be. Using this estimate, the routine can allot the save file 
or abort a save on an inadequate save file before it is altered. The save is conducted by reading the 
scratch file sequentially (using READSEQUEN) and writing to the save file until an end-of-file condition 
is reported for the scratch fj Ie. If the save fi Ie sequencing mode is on, each record wi II have its key 
inserted in its last eight bytes. 

The flow of SAVESCR is given in Figure 103. 

1. Purpose: 

Determines the nature of the EO file. 

2. Call: 

BAL, LNK GETEO 

357 



358 

S(l STRIX T URE 
TO" COMf'RESSEO 

· SAVESCR 

REflO flRSTINEXT 
INDEX GRANULE. 

s[ T FLAG: I r-DEX 
GRflf\IJLE IN 

COUNT INDEX 
ENTRIES WHICH 

ffiE NOT 
CONT INL£D OR 

DlUTED. 

COIIPUTE ItEOUIR
EO SRVE fILE 
SIn (HERT 

CIl!1f'RESSEO RS 
BlOCKEDI 

Figure 103. Flow Diagram of SAVESCR 

GO ITS 
SUUCTlI:f 



( 

( 

A2)---~. 

Of EN 1HE SfNE 
fiLE 

ODES 
SAVE FILE 

EXI S1 

AlL 01 n-E SAVE 
fiLE 

GENERATE fiN 
E~R~ MESSRGE 

YES 

. "-

SflYE CN~VER 011 OVER 

R: 

GEN[RATE fiN 
ERROR t-£SSflGf 

GET NEXT 
CltHMfN) 

PfU: • 

Figure 103. Flow Diagram of SAVESCR (cont.) 

359 



AI 

BI 

360 

SRVE FILE 
BIG ENOUf,.t1 

YES 

RERD SEDUE N-
T! ALL '1' THE 

SCRRTCH FILE 

<: ~f\5 
(00 RERO 

~RG: 
SEOON 

o 

~jF: I TE THE 
RE(ORD TO THE 

SRVE FILE 

NO 

/",-, 
fLRG: ~E5 

f~CE SAVE @ 

I YES CLOSE THE 
SAVE fILE 

YES INSERT SEOUENCE 
~ __ ---'~ ~HBER IN 

REC[RO 

GENERATE RN 
tKl':lR I"£SSRGE 

EXIT 

CUISE 1H 
SIlv[ FILE 

Figure 103. Flow Diagram of SAVESCR (cont.) 

GET ~XT 
COHHflNO 



( 

3. Input: 

M:EO assigned to a file. 

4. Output: 

If file and area exist, RI = File organization code; = 0 for unblocked; = 1 for blocked; = 2 for compressed. 

R2 = record size if RI = I. 

R3 = fi Ie size in sectors. 

If fi Ie or area nonexistent, R3 = O. 

5. Stack: 

One. 

6. Subroutines: 

None. 

7. Operation: 

The CP-R "GET DEVICE!FILE!OPLABEL INDEX" service is used to obtain the required information. If the 
device involved is a nox, the number of sectors is divided by three to reflect an assumed 256-word gran
ule size on a device with 90-word sectors. 

361 



362 

15. SYSTEM GENERATION 

Overview 

The System Generation program is assembled in absolute, using the ASECT directive, and is ORG'd (origined) at 
two locations: 

1. The first ORG at location X'I40' allocates and defines the system flags and pointers. It is the first location 
that cannot be used for an external interrupt. The system flags and pointers are a group of cells that pro
vide communication between SYSGEN, all portions of the Monitor, and the system processors and service 
routines. Since these cells are in fixed, predetermined locations, they are defined via the EQU directive 
in all programs that reference them. Note that these cells must not be changed, deleted, or altered in any 
way in the SYSGEN listing unless the EQU directives are also changed in all programs that reference the 
cells. The system flags and poi nters are followed by a skeleton of the Master Di cti onary. The Master 
Dictionary is not necessarily fixed at its assembled location since it may be moved to the unused interrupt 
cells if sufficient space exists. 

2. The next ORG (bosed on assembly parameters) fixes the start of the SYSGEN program. SYSGEN is ORG'd 
such that the program will occupy the highest address portion in memory. This provides the ,SYSGEN 
Loader with the maximum amount of room to load the Monitor and its overlays in the lower address portion 
of memory. If a user adds a significant amount of code to the Monitor, this ORG may have to be moved 
to a higher location to prevent the Monitor from overflowing SYSGEN during the load. 

The System Generation program is divided into two sections designated as SYSGEN and SYSLOAD. SYSGEN pro
cesses all the SYSGEN control commands and allocates and initial izes all the Monitor tables from the information 
on the control commands. It also builds 0 symbol table for SYSLOAD that contains the name and absolute address 
of all the Monitor tables. Optionally, SYSGEN will output on a rebootable deck containing the Monitor tables 
and SYSLOAD on cards, paper tape, or magnetic tape. The SYSGEN phase can be overwritten during the loading 
of the Monitor, and terminates by exiting to SYSLOAD. 

SYSLOAD loads the Monitor, all optional resident routines, the CP-R overlays, the Job Control Processor, and then 
writes these in to the CP-R fi Ie in the SP area. A map containing the CP-R table allocation and disk allocation is 
output upan request. SYSLOAD terminates by reading in the RAD Bootstrap and exiting to it, simulating a booting 
of the system from the disk. 

Figure 104 illustrates the core layout of SYSGEN and SYSLOAD after the absolute object module is loaded by the 
Stand-Alone SYSGEN Loader. 

Unchanged 

System Flags and Pointers 

Skeleton of Master Dictionary 

Unchanged 

Stand-Alone SYSGEN Loader 

Unchanged 

SYSGEN Processing Routines 

Subroutines Unique to SYSGEN 

SYSLOAD 

Subroutines Used by SYSGEN and SYSLOAD 

Note: 'MEMSIZE and 'SYSGEN are assembly parameters. 

X'I40' 

X'208' 

X'236' 

X'400' 

'MEMSIZE-'SYSGEN 

'MEMSIZE 

Figure 104. SYSGEN and SYSLOAD Layout before Execution 



( -

Figure 106 depicts atypical core layout after SYSGEN and SYSlOAD have executed. 

Unchanged 
X'40' 

MTW,O Instruction Stored in all Used 
Interrupt locations 

Dispatcher Int. Loc. 
Unused Interrupt Locations Used for 

Monitor Tables 
X'I40' 

System Flags and Pointers 
X'216' 

Remainder of Monitor Tables 

CP-R Overlay Area page boundary 

Used to link resident 
CP-R and JCP, and to 
consolidate CPRMAP 
fi Ie (must be as large 
as the largest module 
+255 words) 

SYSLOAD 'MEMSIZE 

Figure 105. SYSGEN and SYSLOAD Layout after Execution 

SYSGEN/SYSLOAD Flow 

The flowcharts in Figure l06depict the overall flow of SYSGEN and SYSLOAD. The labels used correspond to the 
labels in the program Hsting. 

Loadina SiDlllation Routines, CP-R, and CP-R Overlays 

SYSGEN/SYSLOAD contains a loader that loads the instruction simulation packages, CP-R, the CP-R overlays, 
and the Job Control Processor (JCP). Each object module loaded must have one DEF directive that identifies the 
object module to the loader. t The DEFs listed in Table 10 are recognized by the Loader. '"' 

tThis DEF must be the first load item in the ROM. 

363 



Figure 106. SYSGEN/SYSLOAD Flow 



(~ 

Set up group code and level 
bit for Control Task into 

Set all used interrupt 
locations to MTW, O. 

Change no. TRKS for GO, 
OV fi I es to sector number. 

Move Master Diet. to 
unused into cells if room. 

Allocate and preset all 
CP-R tables. OCT, lOa, 
RFT, etc. Set OLAFWA to 
X'l00' boundary if all 
SENSE switches are set. 

Figure 106. SYSGEN/SYSLOAD Flow (cont.) 

365 



366 

Output rebootable 
deck of SYSLOAD, 
if requested. 

Go Type "CP-R 
SYSLOAD". 
"INPUT OPTIONS". 

Process :SYS LD cmd 
and set up flags and 
I 0 devices. 

~----+1 Fast 

Zero out a II defi ned 
disk areas (first sec
tor on Iy if fast 
option). 

Figure 106. SYSGEN/SYSLOAD Flow (cant.) 

) 



Read In disk boot
strap from existing 
CP-R. 

Get RAD address 
for existing CP-R, 
and read in first 
400 words of CP-R. 

Compare old Moster 
Dict. with new Mos
ter Dict. to see 
which areas moved. 

Type reload alarms 
for all areas that 
moved. 

Zero out first sector 
of all areas that 

Initialize cells for 
loading of CP-R 
ob'ect modules. 

Load F PSIM and 
DECSIM routines, if 
required, to core. 

load CP-R to core and 
write to CP-R file on 
disk. Load the CP-R 
overlays and the JCP 
to the CP-R disk fi Ie. 

Set background FW A 
and Simulation 

-Figure 106. SYSGEN/SYSLOAD Flow (cant.) 

367 



368 

Type "RELOAD SPAREA" 
and "RELOAD BCKG 
PROGRAMS", if 
appropriate. 

Write out SP 

strap onto sector 0 
of disk. 

Punch hard copy 
of di sk bootstra p 
if required. 

Figure 106. SYSGEN/SYSLOAD Flow (cont.) 



f 
I. 

(-

/ 

DEF Name 

ABEX 

ALLOT 

ARM 

BKU 

CHECK 

CKD 

CKD2 

CLOSEX 

COCIO 

CPR 

CRD 

CRS 

CRS2 

DBCl 

DBC2 

DBC3 

DBDW 

DBSl 

DBS2 

DBS3 

DELETE 

DEVI 

DISC 

DUMP 

ENQ 

ESU 

EXTM 

FGLl 

FGL2 

Table 10. Standard S)'Item Modules 

Program 

Background Abort/Exit 

ALLOT Service Calls 

ARM/DISARM/CON NECT/DISCON NECT 

Background Loader 

Check service calls 

Crash dump to LP 

Crash KDUMP to LP 

Close a DCB 

I/O routines for COC 

Main CP-R module 

Crash dump to BI 

Crash SAVE 

Crash SAVE 

Debug functions 

Debug functions 

Debug functions 

Debug data and entries 

Debug scan 

Debug functions 

Debug scan 

Service call 

Device service co lis 

Disk handlers 

Postmortem dump 

Enqueue/dequeue a resource 

Error summary ..-

Termination service calls 

Run-time Loader 

Run-time Loader 

369 



Table 10. Standard System tv\odules (cont.) 

DEF Name Program 

FGL3 Run-time Loader 

GETNRT I/O subroutines 

INIT Boot-time initial ization 

10EX 10EX service calls 

IPLMM Memory Management Initialization 

IPLSYM SYMBIONT Initial ization 

JOB1 Job servi ce calls 

JOB2 Job service calls 

KEYSCN Command syntax scanners 

KEY1 Keyin processor 

KEY2 Keyin processor 

KEY3 Keyin processor 

KEY4 Keyin processor 

KEY5 Keyin processor 

KEY6 Keyin processor 

KEY7 Key i n processor 

KEY8 Keyin processor 

LOG Error Logger 

LP line Printer Handlers 

MEDIA Media service calls 

MED1 Media service calls 

ME 02 Media service calls 

MMROOT Memory flAanagement data and subroutines 

MM01 Memory flAanagement service calls 

MM02 Memory Management service calls 

MM03 Memory Management subroutines 

MM04 Memory Management exec 

MM05 Memory Management subroutines 

MM06 Memory Management service calls 

OPENX Open a DCB 

PINIT INIT service calls 

PLOl Public libraries 

370 



Table 10. Standard System Modules (cant.) 

DEF Nome PlOglOm 

PRINT Print service calls 

READWR Reod/Write service calls 

REWDEV Rewind on devices 

REWIND Rewind service calls 

RUN Run service calls 

RWBFIL Blocked File I/o 
RWDEV Reod/Write device I/o 
RWFILE Read/Write file I/o 
SCHED Periodic Scheduler 

SCMSG Periodic Scheduler Subroutines 

SDBUF Side buffering routines 

SEX Symbiont Exec 

SIGNAL Signal handler 

SJOB SJOB/KJOB service calls 

SNAM SETNAME service calls 

STOLB STDLB service calls 

SYMl Symbiont routines 

SYM2 Symbiont routines 

SYM3 Symbi ont routines 

TAPE Magnetic Tape handlers 

TEL Terminal Executive Language 

TELl TEL routines 

TEL2 TEL routines 

TERM Task Tennination 

TEX Terminal Exec 

TEXl Terminal Exec routines 

TEX2 Terminal Exec routines 

nOl Secondary Task Initiation 

n02 Secondary Task Initiation 

TI03 Task Initiation Data and subroutines 

TMGETP Task/ECB subroutines 

TMTYC Task/ECB subroutines 

TRAPS Trap handling 

TT Task tennination 

---WAIT Wait service calls 

371 



312 

Rebootlble Deck For .. t 
If a :PUNCH control command is read by SYSGEN, a rebootable dedc is output that includes the CP-R tables with 
their initialized values, SYSLOAD, and the CP-R Symbol Table. t This deck can be used to load a new version of 
CP-R without re-inputting all the SYSGEN control commands. 

The first card in the rebootable deck consists of a one-card bootstrap progrom that loads the next two cards in the 
dedc. These next two cards consist of a program that loads the remainder of the deck, consisting essentially of the 
CP-R Table, SYSLOAD, ond the CP-R Symbol Table in core image format. 

The two cords containing the Core Image Loader have the following format: 

Byte No. 

o 
1,2,3 

4,5,6,7 

8,9 

10, 11 

12-119 

Contents 

X'FF'(for card 1) 

Unused (all zeros) 

X'9F' (for card 2) 

Complement checksum of entire card (carry out 
of bit 0 is ignored in computing checksum) 

Unused (all zeros) 

Load address, minus one, for following data 

Loader in absolute core image format 

The core image format of the Two-Card Loader is 

word 1 

word 2 

word 3 

word 4 

(words 4-30 
contain the 
Two-Card 
Loader in abso
lute core image 
format. ) 

word 30 

X'FF' or X'9F' I 
Complement checksum of entire 29 words on card 

I load address - 1 

o 78 1516 31 

The CPR Tables, SYSlOAD, and the CPR Symbol Table are output in the core image format 

word 1 

word 2 

word 3 

(words 3-30 
contain the 
above-mentioned 
data in core 
image format. ) 

word 30 

X'FF' or X'9F' I 
load address - 1 

I 

o 78 

Sequence number (O-n) 

Complement checksum 
(not incl. halfword 0) 

. 

1516 31 

tH the rebootable deck is output to paper tape, there are no special additional characters. That is, the paper tape 
contains an exact card image. 



All cards contain an X'Ff' in byte 0 except the last card. The last card contains an X'9F' in byte 0 and the 
SYSLOAD entry address in place of the load address in word 1. The last card contains no data other that the 
SYS LOAD entry address, the sequence number, and checksum. 

Stand-Alone SYSGEN Loader 

The Stand-Alone SYSGEN Loader is a small loader specifically created to load the SYSGEN absolute object module. 
Since SYSGEN is assembled in absolute, the SYSGEN loader will only load absolute load items and handles only 
the small subset of the Sigma Object Language required to load SYSGEN. 

The SYSGEN Loader I/O routine is similar to the SYSGEN I/O, with the code performing the actual loading being 
simi lor to the code in the SYSGEN Loader. 

SYSGEN LOADER LOADER 

Each BI tape/deck is preceded with a 26-record bootstrap that loads the SYSGEN loader into memory from the same 
device it was booted from. 

373 



~. ) 



, 

APPENDIX A. CP-P SYSTEM FLAGS AND POINTERS 

Table A-I. CP-R System Flags and Pointers 

Name Location Description 

K:SYSTEM X'2B' Monitor Identification (RBMIDENT) have the following 
meaning: 

Bits 0-7 System-identification (X'SO' = CPR). 
Bits 8-11 Version (C=3, 0=4, etc.). 
Bits 12-15 Update (1, 2, 3, etc.). 
Bits 16-23 Reserved. 
Bits 24-25 00 - Sigma 5. 

01 - Sigma 6/7. 
10 - Sigma 9 
11 - Xerox 550 

Bit 26 Reserved. 
Bit 27 Reserved. 
Bit 28 Reserved. 
Bit 29 Real-Time Routines. 
Bit 30 Reserved. 
Bit 31 Symbionts inc luded. 

'. 

K:BACKBG X'140' Beginning address of background. 

K:BCKEND X'141' Ending address of SMM background. 

K:FGDBG 1 X'142' Beginning address of non-monitor real memory. 

K:FGDEND X'143' Ending address of addressable real memory. 

( K:CCBUF X'I«' Address of Control Card Buffer. 

K:BPOOL X'145' Unused in mopped system. 

K:FGDBG2 X'146' Unused in mapped system. 

K:FMBOX X'147' Start address of FGD Mailboxes. 

K:FPOOL X'148' Start address of FGD Blocking Buffer Pool. 

K:UNAVBG X'149' Memory size + 1. 

K:MASTD X'14A' Start address of MDFLAG table in Master Dictionary. 

K:NUMDA X'14B' Highest valid index for Master Dictionary. 

K:VRSION X'I4C' CP-R version. 

K:ACCNT X'14D' Job Accounting flag. 

K:OV X'14E' Permanent and current sizes of OV. 

K:KEYST X'14F' Post status of key-in read here. 

K:JCPl X'150' JCP and Control Task. 

Bits have the following meaning: 

Bit 0= 1, JCP is executing. ~ 

Bit 1 = 1, Background is active. 
Bit 2 = 1, Background is checkpointed on the disk. 
Bit 3 = 1, Background is being used by Foreground 

but was not checkpointed. 
Bit 4 = 1, Waiting for key-in response. 
Bit 5 = 1, Skip to next JOB card. 
Bit 6 = 1, Set by ABORT for CA LEXIT • 
Bit 7 = 1, Set by CALEXIT for ABORT. 

375 



376 

Name 

K:JCPl {cont.} 

K:CTST 

K:SY 

K:BPEND 

K:CTWD 

K:CTGL 

K:BLOAD 

K:BAREA 

K,ASSIGN 

K:RUNF 

K:HIINT 

Table A-I •• CP-R ¥''!'. F~s ond Pointers (cont.) . (', '. 

Location 

X'151' 

X'152' 

X'153' 

X'I54' 

X'155' 

X'I56' 

X'l58' 

X'159' 

X'l5A' 

X'I5B' 

Desc rfpt ion 

Bits 8-15, 

Bits 16-21, 
Bit 22= 1, 
Bit 23= 1, 
Bits 24-25, 

Bit 26, 
8it Xl= 1, 
Bit 28= 1, 
Bit 29= 1, 
Bit 30= 1, 
Bit 31= 1, 

Previous assign. of C device (For TY . 
key-in). 

Unused. 
System processor executing. 
Execute BKGD Debug. 
o means no PMD requested. 
1 means conditional PMD. 
2 means unconditional PMD. 
Flag for CKPT that alarm typed. 
CP-R Initialize lOutine is ruming. 
FG key-in active. 
TY key-in active. 
Attend command was input. 
JOB command was input. 

Flags to execute Control Task subtask. Bits have the 
following meaning: 

Bit 0= 1, 
Bit 1 = 1, 
Bit 2= 1, 
Bit 3= 1, 
Bit 4= 1, 
Bit 5= 1, 
Bit 6= 1, 
Bit 7= 1, 
Bit 8= 1, 
Bit 9= 1, 
Bit 10= 1, 
Bit 11= 1, 
Bit 12= 1, 
Bit 13= 1, 
Bit 14= 1, 
Bit 15= 1, 

Bit 26= 1, 
Bit 27= 1, 
8it 28= 1, 
Bit 29= 0, 
Bit 29= 1, 
Bit 30= 1, 
Bit 31 = 1, 

Execute CHECKPOINT. 
Execute FGD Loader/Releaser. 
Execute Restart. 
Time to service all devices. 
Execute ABORT/EXIT • 
Execute key-in. 
Execute PMD. 
BCKG is IDLE. 
Execute BCKG load. 
Load JCP. 
Load BCKG (Program not JCP). 
Key-in required by higher priority subtask. 
Recycle FGL1/2 to FGL1 for possible RLS. 
Execute error lagger. 
CKPT deferred during BCKG abort. 
BCKG in woit following attended mode 

abort. 
KEY2doing STDLB RAD file OPEN/CLOSE. 
FGLl called from FGL2. 
Control Task is operating. 
Execute ABORT part of ABORT /EXIT • 
Execute EXIT part of ABORT/EXIT. 
PMD from key-in request. 
PMD from PMD command. 

Nonzero if SY key-in active. 

End of load area for SMM BCKG program. 

. WD cOde for Control Task. Byte 0 nonzero means CT 
was triggered. 

Group level for Control Task. 

Name in BCD of BCK program to load (two words). "'" 

Index of area to load BCK program from. 

Address of ASSIGN table. 

Post run status here for FGD IRUN or IROV command. 

HWO = Control task interrupt number. 
HWI = Highest address used for interrupt. 



( 

( 

( 

Table A-1. CP-R System Flags and Pointers (cont.) 

Name 

K:FGDBG3 

K:PMD 

K:DCB 

K:KEYIN 

K:FGDBG4 

K:DELTA 

K:QUEUE 

K:BTFILE 

K:GO 

K:PAGE 

K:RDBOOT 

K:DCTl 

K:DCT16 

K:OPLBS 1 

K:OPLBS3 

K:RFT4 

K:RFT5 

K:SERDEV 

K:REQCOM 

K:INITX 

K:FGLD 

K:PMDI 

K:CTDR7 

K:DBTS 

K:KEYDCB 

K:CLKI 

K:CLK2 

K:CLK3 

Location 

X'15C' 

X'15D' 

X'162' 

X'169' 

X'16F' 

X'170' 

X'171' 

X'l72' 

X'173' 

X'174' 

X'175' 

X'176' 

X'ln' 

X'178' 

X'179' 

X'17A' 

X'17B' 

X'17C' 

X'17D' 

X'17E' 

X'17F' 

X'180' 

X'181' 

X'182' 

X' 183'-X' 187' 

X'188' 

X'I8A' 

X'18C' 

t . 
The user never needs to access Clock 4. 

Description 

Unused in mapped system. 

Cells to dump for PMD as DW address (5 words). 

DCB for Control Task to load in overlays (7 words). 
Always assigned to RBM File. 

Key-in control words. 

Unused in mapped system. 

Entry point for Delta. 

Address of Queue routine. Byte 0 = Nonzero, Stop I/o 
on BCKG. 

Status of BT Fi les 

Bits 0 - 8, 1 bit for each Xl file. Bit set to 
1 means SAVE fi Ie. 

Bits 16 - 31, LWA to use for non-SAVE files. 

Permanent and current sizes of GO. 

Byte 0 = Number of lines per poge. 

FWA and device Number of RADBOOT. 

Addresses of tables. 

Address of SERDEV. 

Address of REQCOM. 

Address to return to after INIT runs. 

Byte 0 = Nanzero, XEQ FGD Load/RLS. 

Flags for dumps. 

Location to save context pointer during Control 
Task dump. 

Context pointer for background PMD. 

DCB to read operator key-ins. 

Clock cells must start on a DW boundary: there are 
counters for 4 clocks - 2 words/clock. t 

Word 2 gets stored into ward I when Counter = O. 

3n 



~ --' - . ..:. .. 

Table A-I. GP-R System Flags and Pointers (cont. ) 

Name Location Description , 

K:ABTlOC X'lSE' Abort location. 

K:MSGI X'l9O' KEY-IN. 

K:MSG2 X'l93' KEY ERR. 

K:MSG3 X'I96' RLS NAME NA. 

K:MSG4 X'19A' FILE NAME ERR. 

K:MSGS X'19E' fGD AREA ACTIVE. 

K:MSG6 X'IA3' NOT ENUF BCKG SPACE. 

K:MSG7 X'IA9' UNABLE TO DO ASSIGN. 

K:MSGS X'lAF' BCKG CKPT. 

K:MSG9 X'IB2' BCKG IN USE BY FGD. 

K:MSGIO X'lB7' BCKG RESTART. 
, 

K:MSGll X'IBB' CK AREA TOO SMALL. 

K:MSG12 X'lCO' I/o ERR ON C KPT • 

K:MSG13 X'ICS' JOB ABORTED AT xxxxx. 

K:MSG14 X'ICB' LOADED PROG NAME. 

K:MSGIS X'lCF' UNABLE TO LOAD BCKG PUB LIB. 

K:MSG16 X'ID7' CKPT WAITING FOR BCKG I/O RUNDOWN. 

K:XITSIM X'JE6' Unimplemented instruction nonnal retum. 

K:TRPSIM X'lE7' Unimplemented instruction trap retum. 

K:PPGMOT X'IES' Unimplemented instruction memory-protection error retum. 

K:MONTH X'lEA' Table of days/month and BCD names. 

K:DATEI X'lF6' Number days in current year; current year - 1900. 

K:DATE2 X'lF7' Day of year. 

K:TIME X'IFS' Time of day in seconds. 

K:ELTIMI X'IF9' FGD saves BCKG elapsed time here. 

K:L1MIT X'lFA' Maximum execution time for BCKG. 

K:ACCNAM X'lFB' Account entry for AL fi Ie (S words). 

K:ELTIM2 X '202' Last word of account entry (elapsed time). 

K:PTCH X '207' Beginning address of patch area. 

K:PTCHND X'20S' Ending address of patch area. 

K:IOWD X '209' I/o trigger values. 

K:IOGL X '20A , 

K:CPWD X '2OB , CP trigger values. 

K:CPGL X'2OC' ... 
'" K:IOLOCK X '200' 

K:RMPT X'20E' RMPT location and length. 

K:BMEM_ X'2OF' Maximum number of BCKG pages. 

K:JAET X'210' Number of allocatable OCT entries. 

K:RTS X'211' CP-R stack pointer. 

378 



Table A-I. CP-R System Flags and Pointers (cont.) 

Name location Description 

K:MDNAME X'212' Byte 0: Number of Master Dictionary entries. 
Bytes 1-3: Address of MDNAME table. 

K:DCTlX X'213' Address of OCl1 table. 

K:RBMEND X'214' lWA of resident CP-R. 

K:RUNJ X'215' Status from JCP run CAL. 

K:DEBUG X'216' Debug communication lOC . 

K:FSMM X'217' Pages, end address for foreground SMM. 

K:MDBOA X'218' Address of MDBOA table. 

K:MDEOA X'219' Address of MDEOA table. 

K:MDDCTI X'21A' Address of MDDCll table. 

( 

379 



APPENDIX B., XEROX STANDARD OBJECT LANGUAGE 
.. 

IITROOUcnON 
IEIEHAl 

The Xerox standard object language provides a means of 
expressing the output of any language processor in standard 
format. All programs and subprograms in this object format 
can be loaded by the Monitor's relocating loader. t Such a 
loader is capable of providing the program linkages needed 
to form an executable program in core storoge. The object 
languoge is designed to be both computer-independent and 
medium-independent; i. e., it is appl icable to any Xerox 
computer having a 32-bit word length, and the same format 
is used for any output medium. 

SOURCE CODE TIWISLAnON 

Before a program can be executed by the computer, it must 
be translated from symbolic form to binary data words and 
machine instructions. The primary stages of source program 
translation are accomplished by a processor. However, under 
certain circumstances, the processor may not be able to trans
late the entire source program directly into machine language 
form. 

If a source program contains symbolic forward references, a 
single-passprocessor such as the Xerax Symbol assembler con 
not resolve such references into machine language. This isbe
cause the machine language value for the referenced symbol 
is not established by a one-pass processor unti I after the state
ment containing the forward reference has been processed. 

A three "1Jass processor, such as the Xerox Assemb I y Prog ram 
(AP), is capable of making "retroactive" changes in the 
object program before the object code is output. Therefore, 
a two-pass processor does not hove to output any special 
object codes for forward references. An example of a for
ward reference in a Symbol source program is given below. 

y EQU $+3 

CI,5 z 

ll, R z 

z EQU 2 

BG z 

R EQU Z+l 

t Although a discussion ofthe object language is not directly 
pertinent to the CP-R, it is included in this manual because 
it applies to all processors operating under CP-R. 

380 

.•... 

In this example the operand S + 3 is not a forward reference 
·because the assembler can evaluate it when processing the 
source statement in which it appears. However, the oper
and Z in the statement 

CI,5 Z 

is a forward reference because it appears before Z has been 
defined. In processing the statement, the assembler outputs 
the machine-language code for CI,S, assigns 0 forward ref
erence number (e. g., 12) to the symbol Z, and outputs that 
forward reference number. The forward reference number 
and the symbol Z are also retained in the assembler's symbol 
table. 

When the assembl er processes the source statement 

1I,R Z 

it outputs the machine-language code for 1I, assigns a for
ward reference number (e.g., 18) to the symbol R, outputs 
that number, and again outputs forward reference number 
12 for symbol Z. 

On processing the source statement 

Z EQU 2 

the assembler again outputs symbol Z's forward reference 
number and also outputs the value, which defines symbol Z, 
so that the relocating loader will be oble to satisfy refer
ences to Z in statements CI,5 Z and LI, R Z. At this time, 
symbol Z's forward reference number (i. e., 12) may be 
deleted from the assembler's symbol table and the defined 
value of Z equated with the symbol Z (in the symbol table). 
Then, subsequent references to Z, as in source statement 

BG Z 

would not constitute forward references, since the assembler 
could resolve them immediately by consulting its symbol 
table. 

If a program contains symbolic references to extemally 
defined symbols in one or more separately processed subpra
grams or library routines, the processor will be unable to 
generate the necessory program linkages. 

An example of on external reference in a Symbol source pro
gram is shown below. 

REF AlPH 

1I,3 ALPH 

When the assembler processes the source statement 

REF ALPH 



it outputs the symbol AlPH, in symbolic (EBCDIC) form, in 
a declaration specifying that the symbol is an extemal ref
erence. At this time, the assembler also assigns a declara
tion name number to the symbol AlPH but does not output 
the number. The symbol and name number are retained in 
the assembler's symbol table. 

After a symbol has been declared an external reference, it 
may appear any number of times in the symbol ic subprogram 
in which it was declared. Thus, the use of the symbol 
AlPH in the source statement 

1I,3 AlPH 

in the above example, is valid even though AlPH is not 
defined in the subprogram in which it is referenced. 

The relocating loader is able to generate interprogram link
ages for any symbol that is declared an external definition 
in the subprogram in which that symbol is defined. Shown 
below is an example of an external definition in a Symbol 
source program. 

DEF AlPH 

LI,3 AlPH 

AlPH AI,4 X'F2' 

When the assembler processes the source statement 

DEF AlPH 

it outputs the symbol AlPH, in symbolic (EBCDIC) form, in 
a declaration specifying that the symbol is an external defi
nition. At this time, the assembler also assigns a declaration 
name number to the symbol AlPH but does not output the 
number. The symbol and name number are retained in the 
assembler's symbol table. 

After a symbol has been declared an external definition it 
may be used (in the subprogram in which it was declared) in 
the same way as any other symbol. Thus, if AlPH is used as 
a forward reference, as in the source statement 

LI,3 AlPH 

above, the assembler assigns a forward reference number to 
AlPH, in addition to the declaration name number assigned 
previously. (A symbol may be both a forward reference and 
an external definition.) 

On processing the source statement 

AlPH AI,4 X'F2' 

the assembler outputs the declaration name numberofthe 
label AlPH (and an expression for its value) and also outputs 
the machine-language code for AI,4 and the constant X'F2'. 

OBJECT lANGUAGE FORMAT 

An object language program generated by a processor is out
put as a string of bytes representing "load items". A load 
item consists of an item type code followed by the specific 
load information pertaining to that item. (The detailed format 
of each type of load item is given later in this appendix.) 
The individual load items require varying numbers of bytes 

for their representation, depending on the type and specific 
content of each item. A group of 108 bytes, or fewer, com
prises a logical record. A load item may be continued from 
one logical record to the next. . 

The ordered set of logical records that 0 processor generates 
for a program or subprogram is termed an "object module". 
The end of an object module is indicated by a module-end 
type code followed by the error severity level assigned to 
the modul e by the processor. 

RECORD CONTROL INFORMATION 

Each record of an object module consists of 4 bytes of con
trol information followed by a maximum of 104 bytes of load 
information. That is, each record, with the possible excep
tion of the end record, normally consists of 108 bytes of 
information (i.e., 72 card columns). 

The 4 bytes of control information for each record have the 
form and sequence shown below. 

Byte 0 

Record T~ee Mode Format 

01 1 0 
0 2 3 4 5 6 7 

Byte 1 

Sequence Number 

o 7 

Byte 2 

Checksum 

o 7 

Byte 3 

Record Size 

o 7 
Record Type specifies whether this record is the last 

record of the module: 

000 means last 
001 means not last 

Mode specifies that the loader is to read binary infor-
mation. This code is always II. 

Format specifies object language format. This code is 
always 100. 

Sequence Number is 0 for the first record of the module 
and is incremented by 1 for each recorcf\hereafter, 
until it recycles to 0 after reaching 255. 

Checksum is the computed sum of the bytes comprising 
the record. Carries out of the most significant bit 
position of the sum are ignored. 

Record Size is the number of bytes (including the record 
control bytes) comprising the logical record (5 :s record 

381 



lize !5 108). The reconhize will normally be 108 bytes" 
for all records except the last one, which maybe fewer. 
Any excess bytes in a physical record are ignored. 

LOAD ITEMS 

Eoch load item begins with a control byte that indicates the 
item type. In some instances, certain parameters are 0150 

provided in the load item control byte. In the following dis
cussion, load items are categorized according to their function: 

1. Declarations identify to the loader the external and 
control section labels that are to be defined in the 
object module being loaded. 

2. Definitions define the value of forward references, 
external definitions, the origin of the subprogram being 
loaded, and the starting address (e. g., as provided in 
the AP END directive). 

3. Expression evaluation load items within a definition 
pravide the values (such as constants, forward refer
ences, etc.) that are to be combined to form the final 
value of the definition. 

4. Loading items cause specified information to be stored 
into core memory. 

5. Miscellaneous items comprise padding bytes and the 
module-end indicator. 

DECLARAnONS 

In order for the loader to provide the I inkoge between subpro
grams, the processor must generate for each external refer
ence ordefinition a load item, referred to as a "declaration", 
containing the EBCDIC code representation of the symbol 
and the information that the symbol is either on external ref
erence or a definition (thus, the loader will have access to 
the actual symbolic name). 

Forward references are always internal references within on 
object module. (External references are never considered 
forward references.) The processor does not generate a dec
laration for a forward reference as it does for externals; how
ever, it does assign name numbers to the symbols referenced. 

Declaration name numbers (for control sections and external 
labels) and forward reference name numbers apply only within 
the object module in which they are assigned. They have no • 
significance in establishing interprogram linkages, since 
external references and definitions are correlated by match
ing symbolic names. Hence, name numbers used in any 
expressions in a given object module always refer to symbols 
that have been declared within that module. 

The processor must generate a declaration for each symbol 
that identifies a program section. AI though the Xerox Symbol 
assembler used with the Monitor allows only a standard con
trol section (i. e., program section), the standard object 
language includes provision for other types of control sec
tions (such os dummy control sections). Each object module 
produced by the Symbol processor is considered to consist of 
at least one control section. If no section is explicitly iden
tified in a Symbol source program, the assembler assumes it 
to be a standard control section (discussed below). The stan
dard control section is always assigned a declaration name 

382 

number of O. All other control sections (i. e., produced by 
a processor capable of declaring other control sections) ere 
CIIIigned declaration name numbers (1, 2, 3, etc.) in the 
order of their appearance in the source program.' 

In the load items discussed below, the access code, pp, des
ignates the memory protection class that is to be associated 
with the control .. ction. The meaning of this code is given 
below. 

pp Memory Protection Featuret 

00 Read, write, or access instructions from. 

01 Read or occess instructions from. 

10 Read only. 

11 No access. 

Control sections are always allocated on IJ doubleword 
boundary. The size specification designates the number of 
bytes to be allocated for the section. 

Declare Standard Control Section 

Byte 0 

Control byte 
o o o 1 o 

o 2 3 4 5 6 

Byte 1 

Size (bits 1 through 4) 
o o 

o 1 2 3 5 6 

Byte 2 

I Size ~its 5 through 12) 

0 

Byte 3 

I Size (bits 13 through 20) 

0 

7 

7 

7 

7 

This item declares the standard control section for the object 
module. There may be no more than one standard control 
section in each object module. The origin of the standard 
control section is effectively defined when the first reference 
to the standard control section occurs, alt~h the declara
tion item might not occur until much later in.#le object 
module. 

t"Read" means a program can obtain information fram the 
protected area; "write" means a program can store informa
tion into a pratected area; and, "access" means the c:ompu- ~ 
ter can execute instructions stored in the protected area. 

) 



( 

This capabi lity is required by one-pass processors, since 
the size of 0 section cannot be determined until all of 
the load information for that section has been generated by 
the pracessor. 

Declare Nonstandard Control Section 

Byte 0 

10 0 0 
Control byte J 0 1 1 0 

0 2 3 4 5 6 7 

Byte 1 

I ~ccess c~e I 
0 

Size (bits 1 through 4) 
0 

0 2 3 4 7 

Byte 2 

Size (bits 5 through 12) I 
o 7 

Size (bits 13 through 20) 

o 7 

This item declares a control section other than standard con
trol section (see above). The loader is capable of loading 
object modules (produced by other processors, such as as
~emblers or compilers) that do contain this item. 

Declare Page-Bounded Control Section 

Byte 0 

10 

Control Byte 

01 0 0 1 1 

0 2 3 4 5 6 7 

Byte 1 

I ~ccess ;ode I Size (bits 1 through 41 
0 0 

0 1 2 3 4 5 6 7 

Byte 2 

I Size ~its 5 thro~h 12l 

0 7 

Byte 3 

I Size {bits 13 through 20) I 
0 7 

( ~ ,his item declares a nonstandard control section beginning 
on a memory page boundary. 

Declare Dummy Section 

Byte 0 

Control byte 
o o o 1 

o 2 3 4 

Byte 1 

First byte of name number 

o 
Byte 2 

o 
5 

Second byte of name numbe rt 

0 

Byte 3 

o 
6 

I pAccess ~ode I Size (bits 1 through 4) 
0 0 

0 1 2 3 4 

Byte 4 

Size (bits 5 through 12) 

o 

Byte 5 

Size (bits 13 through 20) 

o 

7 

7 

7 

7 

7 

7 

This item comprises a declaration for a dummy control sec
tion. It results in the allocation of the specified dummy 
section, if that section has not been allocated previousl y 
by another object module. The label that is to be associ
ated with the first location of the allocated section must be 
a previously declared external definition name. (Even 
though the source program may not be required to explicitly 
designate the label as an external definition, the processor 
must generate an external definition nome declaration for 
that label prior to generating this load item.) 

Declare External Definition Name 

Byte 0 

Control byte 
o o o 0 o 

o 2 3 4 5 6 7 

Byte 1 .. 
Name length, in bytes (K) 

o 7 

tlf the module has fewer than 256 previously assigned name 
numbers, this byte is absent. 

383 



Byte 2 

Fint byte of name 

0 7 

Byte K+1 

I Last byte of nome 

0 7 

This item declares a label (in EBCDIC code) that is an exter-
nal definition within the current object module. The name 
may not exceed 63 bytes in length. 

Declare Primary External Reference Name 

Byte 0 

10 

Control blte 

11 0 0 0 0 1 0 
0 2 3 " 5 6 7 

Byte 1 

I Name length (K), in bytes 

0 7 

Byte 2 

I Fint byte of name 

0 7 

Byte K+l 

lost byte of name 

o 7 

This item declares a symbol (in EBCDIC code) that is a pri
mary external reference within the current object module. 
The nome may not exceed 63 bytes in length. 

A primary external reference is capable of causing the lood~r 
to search the system library for a corresponding external 
definition. Ifa corresponding external definition is notfounc/ 
in another load module of the program or in the system li
brary, a lood error message is output and the job is errored. 

Declare Secondary External Reference Name 

Byte 0 

10 
Control b~te 

01 0 0 0 0 

0 2 3 " 5 6 7 

384 

Byte 1 

I Nome length, in bl!!s (K) 

0 7 

Byte 2 

I Fint bl!! of name 

0 7 

Byte K+l 

Last brte of nome 

0 7 

This item declares a symbol (in EBCDIC code) that is a pri
mary external reference within the current Ilbject module. 
The name may nat exceed 63 bytes in fength. 

A secondary external reference is nat capable of causing the 
I oode r to search the system I ibrary for a correspondi ng exte r
nal definition. If a corresponding external definition is nat 
found in anather lood module of the program, the job is not 
errored and no error or abnormal message is output. 

Secondary external references often appear in I ibrary routines 
that contain optional or al ternative subroutines, some of which 
may nat be required by the user's program. By the use of pri
mary external references in the user's program, the user can 
specify that only those subroutines that are actually required by 
the current job are to be looded. AI though secondary externa I 
references do not cause looding from the library, they do cause 
I inkages to be mode between routines that are looded. 

DEFINITIONS 

When a source language symbol is to be defined (i.e., equa
ted with a value), the processor provides for such a value by 
generating an object language expression to be evaluated by 
the loader. Expressions are of variable length, and termi
nate with an expression-end control byte (see Section" of 
this appendix). An expression is evaluated by the addition 
or subtraction of values specified by the expression. 

Since the looder must derive values for the origin and start
ing address of a program, these also require definition • 

Origin 

Byte 0 

o 
o 

Control byte 
o o 0 

2 3 .. 

.... • 

o 
5 6 7 



This item sets the loader's load-location counter to the 
value designated by the expression immediately following 
the origin control byte. This expression must not contain 
any elements that cannot be evaluated by the loader (see 
Expression Evaluation which follows). 

Forward Reference Definition 

Byte 0 

10 

Control blte 

01 0 0 0 1 0 0 

0 2 3 4 5 6 7 

Byte 1 

First byte of reference number 

o 7 

Byte 2 

Second byte of reference number 

o 7 

This item defines the value (expression) for a forward refer
ence. The referenced expression is the one immediately 
following byte 2 of this load item, and must not contain 
any elements that cannot be evaluated by the loader (see 
Expression Evaluation which follows). 

Forward Reference Definition and Hold 

Byte 0 

10 
Control byte 

0 0 1 0 0 o 
0 2 3 4 5 6 7 

Byte 1 

First byte of reference number 

o 7 

Byte 2 

Second byte of reference number 

o 7 

- This item defines the value (expression) for a forward refer
ence and notifies the loader that this value is to be retained 

in the loader's symbol table until the module end is encoun
tered. The referenced expression is the one immediately 
following the nome number. It may contain vblues that have 
not been defined previously, but all such values must be 
available to t~e loader prior to the module end. 

After eenerating this load item, the processor need not retain 
the value for the forward reference, since that responsibility 
is then assumed by the loader. However, the processor must 
retain the symbolic name and forward reference number 
assigned to the forward reference (until module end). 

External Defi nition 

Byte 0 

10 
Control blte 

0 0 0 1 0 

0 2 3 4 5 6 7 

Byte 1 

First byte of name number 

o 7 

Byte 2 

Second byte of name numbert 

o 7 

This item defines the value (expression) for an external 
definition name. The name number refers to a previously 
declared definition name. The referenced expression is 
the one immediately following the name number. 

Define Start 

Byte 0 

10 

Control b~te d 0 0 0 1 0 

0 2 3 4 5 6 7 

This item defines the starting address (expression) to be used 
at the completion of loading. The referenced expression is 
the one immediately following the control byte. 

EXPRESSIIit EVALUATIIIt 
A processor must generate an object lan9ua, ge expression 
whenever it needs to communicate to the oader one of 
the following: 

1. A program load origin. 

2. A program starting address. 

tlf the module has fewer than 256 previously assigned name 
numbers, this byte is absent. 

385 



3. All external definition value. 

4. A forward ,.ference value. 

S. A field definition value. 

Such expressions may include sums and differences of con
stants, addresses, and external or forward reference values 
that, when defined, will themselves be constants or addresses. 

After initiation of the expression mode, by the use of a con
trol byte designating one of the five items described above, 
the value of an expression is expressed as follows: 

1. An address value is represented by an offset from the 
control section base plus the value of the control sec
tion base. 

2. The value of a constant is added to the occumulated 
sum by generating an Add Constant (see below) control 
byte followed by the value, right-justified in four bytes. 

The offset from the contral section base is given as a 
constant representing the number of units of displace
ment from the contral section base, at the resolution 
of the address of the item. That is, a word address 
would have its constant portion expressed as a count of 
the number of words offset from the base, while the 
constant portion of a byte address would be expressed 
as the number of bytes offset from the base. 

The control section base value is accumulated by means 
of an Add Value of Declaration (see below) or Subtract 
Value of Declaration load item specifying the desired 
resolution and the declaration number of the control 
section base. The loader adjusts the base value to the 
specified address resolution before adding it to the cur
rent partial sum for the expression. 

In the case of an absolute address, an Add Absolute 
Section (see below) or Subtract Absolute Section con
tral byte must be included in the expression to identify 
the value as an address and to specify its resolution. 

3. An external definition or forward reference value is 
included in an expression by means of a load item add
ing or subtracting the appropriate declaration or forward 
reference value. If the value is an address, the reso
lution specified in the control byte is used to align the 
value before acIc:Iing it to the current partial sum for the 
expression. If the value is a constant, no alignment is 
necessary. 

Expressions are not evaluated by the loader until all required 
values are available. In evaluating an expression, the 
loader maintains a count of the number of values added or 
subtracted at each of the four possible resolutions. A sepa
rate counter is used for each resolution, and each counter 
is incremented or decremented by 1 whenever a value of the 
corresponding resolution is added to or subtracted from the 
loader's expression accumulator. The final accumulated sum 
is a constant, rather than an address value, if the final count 
in all four counters is equal to O. If the final count in one 
(and only one) of the four counters is equal to +1 or -1, the 

386 

accumulated sum is a "simple address" having the resotvtion 
of the nonzero counter. If more than one of the four counters 
have a nonzero final count, the accumulated sum is termed 
a "mixed-resolution elltpression" and is treateias a constant 
rather than an address. 

The resoh .. tion of a simple address may be altered by means 
of a Change Expression Resolution (see below) control byte. 
However, if the current partial sum is either a constant or 
a mixed-resolution value when the Change Expression Reso
lution control byte occurs, then the expression resolution 
is unaffected. 

Note that the expression for a program load origin or start
ing address must resolve to a simple address, and the single 
nonzero resolution counter must have a final count of +1 
when such expressions are evaluated. 

In converting a byte address to a word address, the two least 
significant bits of the address are truncated. Thus, if the 
resulting word address is later changed back to byte resolu
tion, the referenced byte location will the" be the first byte 
(byte 0) of the word. 

After an expression has been evaluated, its final value is 
associated with the appropriate load item. 

In the following diagrams of load item formats, RR refers to 
the address resolution code. The meaning of this code 
is given in the table below. 

RR Address Resolution 

00 Byte 

01 Halfword 

10 Word 

11 Doubleword 

The load items discussed in this appendix, "Expression 
Evaluation", may appear only in expressions. 

Add Constant 

Byte 0 

10 
Control b~te 

0 0 0 0 0 0 
0 2 3 .. 5 6 

Byte 1 

first byte of constant 

. 
o 

Byte 2 

Second byte of constant 

o 

11 
7 

7 

7 



Byte 3 

Third byte of constant 

o 7 

Byte 4 

Fourth byte of constant 

o 7 

This item causes the specified 4-byte constant to be added 
to the loader's expression accumulator. Negative constants 
are represented in two's complement form. 

Add Absolute Section 

Byte 0 

Control byte 
o 1 0 R 

o 2 3 4 5 6 7 

This item identi fies the associated val ue (expression) as a 
positive absolute address. The address resolution code, RR, 
designates the desired resolution. 

Subtract Absolute Section 

Byte 0 

(' I Control byte I __ ~O~--~O~--~--~~l~~~l~--~O----~R~--~R 

o 2 3 456 

This item identifies the associated value (expression) as a 
negative absolute address. The address resolution code, 
RR, designates the desired resol ution. 

Add Value of Declaration 

Byte 0 

10 

Control b~te 
0 0 0 0 R 

0 2 3 4 5 6 

Byte 1 

First btte of name number 

o 

Byte 2 

Second byte of name numbe/ 

o 

7 

R I 
7 

7 

7 

~ 'If the module has fewer than 256 previously assigned name 
numbers, this byte is absent. 

- . 
This item causes the value of the specified declaration to be 
added to the loader's expression accumulator. The address 
resolution code, RR, designates the desired resolution, and 
the name number refers to a previously declared definition 
na"",e that is to be associated with the first location of the 
allocated section. 

One such item must appear in each expression for a reloca
table address occurring within a control section, adding the 
value of the specified control section declaration (i.e., 
adding the byte address of the first location of the control 
section). 

Add Value of Forward Reference 

Byte 0 

10 
Control btte 

RI 0 0 0 1 R 

0 2 3 4 5 6 7 

Byte 1 

First byte of forward reference number 

o 7 

Byte 2 

Second byte of forward reference number 

o 7 
This item causes the value of the specified forword reference 
to be added to the loader's expression accumulator. The 
address resolution code, RR, designates the desired resolu
tion, and the designated forward reference must not have 
been defined previously. 

Subtract Value of Declaration 

Byte 0 

10 

0 

Byte 1 

o 
Byte 2 

0 
Control btte 

0 1 0 

2 3 4 5 

First byte of nome number 

Second btte of name numbert 

R R I 
6 7 

7 

This item causes the value of the specified c:Wclaration to 
be subtracted from the loader's expression accumulator. 
The address resolution code, RR, designates the desired 
resolution, and the nome number refers to a previously de
clared definition nome that is to be associated with the 
first location of the allocated section. 

tlf the module has fewer thon 256 previously assigned name 
numbers, this byte is absent. 

387 



Subtract Value of Forward Reference 

Byte 0 

10 0 
Control byte 

o 1 R 

0 2 3 4 5 6 7 

Byte 1 

I First byte of forward reference number 

0 7 

Byte 2 

Second byte of forward reference number 

o 7 

This item causes the value of the specified forward reference 
to be subtracted from the loader's expression accumulator. 
The address resolution code, RR, designates the desired reso
lution, and the designated forward reference must not have 
been defined previously. 

Change Expression Resolution 

Byte 0 

Control byte 
o 1 0 o R 

o 2 3 4 5 6 7 

This item causes the address resol ution in the expression to 
be changed to that designated by RR. 

E~ression End 

Byte 0 

10 

Control bl::te 

01 0 0 0 0 0 1 

0 2 3 4 5 6 7 

This item identifies the end of an expression (the value of 
which is contained in the loader's expression accumulator). 

FORMATION OF INTERNAL SYMBOL TABLES 
The three object code control bytes described below are re
quired to supply the information necessary in the formation 
of Internal Symbol Tables. 

In the following diagrams of load item formats, Type refers 
to the symbol types supplied by the object language and 
maintained in the symbol table. IR refers to the internal 
resolution code. Type and resolution are meoningful only 
when the value of a symbol is an address. In this case, it 
is highly likely that the processor knows the type of value 
thot is in the associated memory location, and the type field 
identifies it. The resolution field indicates the resolution 
of the location counter at the time the symbol was defined. 
The following tables summarize the combinations of value 
and meaning. 

388 

-.-------.---- ----

Symbol Types 

Type Meaning of 5-Bit Code 

00000 Instruction , 
00001 Integer 
00010 Short floating point 
00011 Long floating point 
00110 Hexadecimal (also for packed decimal) 
00111 EBCDIC text (also for unpacked decimal) 
01001 Integer array 
01010 Short floating-point array 
01011 Long floating-complex array 
01000 logical array 
10000 Undefi ned symbo I 

Internal Resolution 

IR Address Resolution 

000 Byte 
001 Hallword 
010 Word 
011 Doubleword 

Type Information for External Symbol 

Byte 0 

1 I 10 

Control b~te 

0 0 1 0 0 0 

0 2 3 .. 5 6 7 

Byte 1 

T~~ field IR field 

r 
0 .. 5 7 

Byte 2 

Declaration number 

o 7 

Byte 3 (if required) 

Declaration number (continued) 

o 7 

This item provides type information for external symbols. 
The Type and IR fields are defined above. The declaration 
number field consists of one or two bytes (depending on the 
current declaration count) which specifies the declaration 
number of the external definition. 

Type and EBCD IC for Internal Symbol '"" 

Control byte 

o o 1 0 o 
o 2 3 4 5 6 



( -

Byte 1 

I Type field IR field 

0 4 5 7 
Byte 2 

I 
Len1!th of name (EBCDIC characters) 

0 7 
Byte 3 

I 

I 

First btte of name in EBCDIC 

0 7 
Byte n 

Last btte of name in EBCDIC 

0 7 
Byte n + 1 

Expression defining value of internal s 

o 7 

This item suppli~s type and EBCDIC for an internal symbol. The 
load items for Type and IRare as above. Length of namespeci
fies the length of the EBCDIC name in characters. The name, in 
EBCDIC, is specified in the required number of bytes, followed 
bya byte containing the expression defining the internal symbol 

EBCDIC for an Undefined Symbol 

Byte 0 

10 

Control byte 

II 0 0 I 0 0 

0 2 3 4 5 6 7 
Byte I 

I 
Length of name (EBCDIC characters) 

0 7 
Byte 2 

I 
First btte of name in EBCDIC 

0 7 
Byte n 

I Last byte of name in EBCDIC 

0 7 

Byte n + I 

First byte of symbol associated forward reference number 

o 7 

This item is used to associate a symbol with a forward reference. 
The length of name and name in EBCDIC are the same as in the 
above item. The last two bytes speci fy the forward reference 
number with which the above symbol is to be associated. 

LOADING 
load Absol ute 

Byte 0 

10 

Control byte 

NI 0 0 N N N 

0 2 3 4 5 6 7 

Byte I 

First btte to be loaded 

o 7 

Byte NNNN 

last btte to be loaded 

o 7 

This item causes the next NNNN bytes to be loaded abso
lutely (NNNN is expressed in natural binary form, except 
that 0000 is interpreted as 16 rather than 0). The load loca
tion counter is advanced appropriate I y. 

load Relocatable (long F~rm) 

Byte 0 

Control btte 

RI 0 I 0 C R 

o 2 3 4 5 6 7 

Byte I 

First btte of name number 

o 7 

Byte 2 

Second btte of name numbert 

o 7 

This item causes a 4-byte word (immediately following this 
load item) to be loaded, and relocates the address field 
according to the address resolution code, RR. Control bit 
C designates whether relocation is to be relative to a for
ward reference (C = I) or relative to a declaration (C = 0). 
Control bit 0 designates whether a l-byte (Q = I) or a 
2-byte (0 = 0) name number follows the control byte of 
this load item. 

If relocation is to be relative to a forward reference, the 
forward reference must not have been def~ed previously. 
When this load item is encountered by the loader, the load 
location counter can be aligned with a word boundary by 
loading the appropriate number of bytes containing all zeros 
(e. g., by means of a load absolute item). 

tlf the module has fewer than 256 previously assigned name 
numbers, this byte is absent. 

389 



Load Reloc:otable (Short Form) 

Byte 0 

11 
Control b~te 

01 C 0 0 0 0 0 

0 2 3 4 5 6 7 

This item causes a 4-byte word (immediately following this 
load item) to be loaded, and relocates the address field 
(word resolution). Control bit C designates whether reloca
tion is to be relative to a forward reference (C = 1) or rela
tive to a declaration (C = O~ The binary number 000000 
is the forward reference number or declaration number by 
which relocation is to be accomplished. 

If relocation is to be relative to a forward reference, the 
forward reference must not have been defined previously. 
When this load item is encountered by the loader, the load 
location counter must be on a word boundary (see "Load 
Relocatable (Long Form)", above). 

Repeat Load 

Byte 0 

Control byte 
o o o 1 

o 2 3 4 5 6 7 

Byte 1 

First byte of repeat count 

o 7 

Byte 2 

Second byte of repeat count 

o 7 

This item causes the loader to repeat (i.e., perform) the 
subsequent load item ,a specified number of times. The re
peat count must be greater than 0, and the load item to 
be repeoted must follow the repeat load item immediately. 

Define Field 

Byte 0 

Control byte 
o o o 0 11 

o 2 3 4 5 6 7 

Byte 1 

Field location constant, in bits (K) 

o 7 

390 

Byte 2 

Field length, in bits (L) 

o 7 

This item defines a value (expression) to be added to a field 
in previously loaded information. The field is of length l 
(1 ::!: L ::!: 255) and terminates in bit position T, where: 

T = current load bit position -256 +K. 

The field location constant, K, may have any value from 
1 to 255. The expression to be added to the specified field 
is the one immediately following byte 2 of this load item. 

'. 
MISCELLANEOUS LOAD ITEMS 

Padding 

Byte 0 

10 
Control b~te 

01 0 0 0 0 0 0 
0 2 3 4 5 6 7 

Padding bytes are ignored by the loader. The object lan
guage allows padding as a convenience for processors, 

Module End 

Byte 0 

10 
Control b~te 

01 0 0 0 1 1 1 

0 2 3 4 5 6 7 

Byte 1 

\0 
Severitl level 

E I 0 0 0 E E E 

0 2 3 4 5 6 7 

This item identifies the end of the object module. The 
value EEEE is the error severity level assigned to the mod
ule by the processor. 

OBJECT MODULE EXAMPLE 

The following example shows the correspondence between 
the statements of a Symbol source program and the string 
of object bytes output for that program by the assembler. 
The program, listed below, has no significance other than 
illustrating typical object code sequences. 



Example 

DEF AA,BB,CC CC IS UNDEFINED BUT CAUSES 
NO ERROR 

2 REF RZ,RTN EXTERNAL REFERENCES DECLARED 

3 00000 ALPHA CSECT DEFINE CONTROL SECTION 
ALPHA 

4 00OC8 ORG 200 DEFINE ORIGIN 

5 OOOC8 22000000 N AA LI,CNT 0 DEFINES EXTERNAL AA; CNT IS 
A FWD REF 

6 00OC9 32000000 N LW,R RZ R IS A FORWARD REFERENCE; 

7 * RZ IS AN EXTERNAL REFERENCE, 

8 * AS DECLARED IN LINE 2 

9 OOOCA 50000000 N RPT AH,R KON { DEFINES RPT; RAND KON ARE 

10 * FORWARD REFERENCES 

( 11 OOOCB 69200000 F BCS,2 BB {SS IS AN EXTERNAL DEFINITION 

12 * USED AS A FORWARD REFERENCE 

13 OOOCC 20000001 N AI, CNT CNT IS A FORWARD REFERENCE 

14 OOOCD 680000CA B RPT RPT IS A BACKWARD REFERENCE 

15 OOOCE 68000000 X B RTN RTN IS AN EXTERNAL REFERENCE 

16 OOOCF 0001 A KON DATA, 2 DEFINES KON 

17 00000003 R EQU 3 DEFINES R 

18 00000004 CNT EQU 4 DEFINES CNT 

19 000 DO 224FFFFF A BB LI,CNT -1 DEFINES EXTERNAL BB THAT HAS 

..-
20 * ALSO BEEN USED AS A FORWARD 

21 * REFERENCE 

22 OOOC8 END AA END OF PROGRAM 

391 



CONTROL BYTES (In Binary) 

Beg i n Record 

00111100 } 
OOOOOOOO 
01100011 
01101100 

00000011 

00000011 

00000011 

00000101 

00000101 

00001010 I 
00000001 
00100000 

00000010 

00000100 ) 00000001 
00100000 

00000010 

01000100 

00000111 

00100110 

00000010 

Record number: 0 

Record type: not last, Mode binary, Format: object language. 
Sequence number 0 
Checksum: 99 
Record size: 108 

03020101 (hexadecimal code comprising the load item) 
Declare external definition name (2 bytes) Name: AA 

03020202 
Declare external definition name (2 bytes) Name: aa 

03020303 
Declare external definition name (2 bytes) Name: CC 

0502D9E9 
Declare primary reference name (2 bytes) Name RZ 

0503D9E3D5 
Declare primary reference name (3 butes) Name: RTN 

OAO 10 100000320200002 
Define external definition 
Number 1 
Add constant: 800 X' 320' 
Add value of declaration (byte resolution) 
Number 0 
Expression end 

040100000320200002 
Origin 
Add constant: 800 X'320' 
Add value of declaration (byte resolution) 
Number 0 
Expression end 

-'422000000 
Load absolute the following" bytes: X'22000000' 

07E 80426000002 
Define field 
Field location constant: 235 bits 
Field length: 4 bits 
Add the following expression to the above field: 
Add value of forward reference (word resolution) 
Number 0 
Expression end 

Declaration number: 1 

Declaration number: 2 

Declaration number: 3 

Declaration number: 4 

Declaration number: 5 

} 

) 

) 

Record c~trol 
information not 
part of load item 

Source Line 1 

Source Line 2 

Source Line 5
t 

Source Line " 

Source Line 5 

tNo object cade is generated for source lines 3 (define control section) or" (define origin) at the time they are encountered. 
The control section is declared at the end of the program after Symbol has determined the number of bytes the program requires. 
The origin definition is generated prior _to the first instruction. 

392 



10000100 

00000111 

00100110 

00000010 

11001100 

00000111 

00100110 

00000010 

11010010 

01000100 

00000111 

00100110 

00000010 

10000000 

10000101 

00001000 

8432000000 
Load relocatable (short form). Relocate address field (word resolution) 
Relotive to declaration number 4 
The following 4 bytes: X'320ooo00' 

07EB0426000602 
Define field 
Field location constant: 235 bits 
Field length: 4 bits 
Add the following expression to the above field: 
Add value of forward reference (word resolution) 
Number 6 
Express i on end 

((50000000 
Load relocatable (short form). Relocate oddress field (word resolution) 
Relative to forward reference number 12 
The following 4 bytes: X'SOOOOOOO' 

07EB0426oo0602 
Define field 
Field location constant: 235 bits 
Field length: 4 bits 
Add the following expression to the obove field: 
Add value of forword reference (word resolution) 
Number 6 
Express i on end 

0269200000 
Load relocatable (short form). Relocate address field (word resolution) 
Relative to forward reference number 18 
The following 4 bytes: X'692000oo' 

4420000001 
Load absolute the following 4 bytes: X'2oo00001' 

07EB0426000002 
Define field 
Field location constant: 235 bits 
Field length: 4 bits 
Add the following expression to the above field: 
Add value of forward reference (word resolution) 
Number 0 
Expression end 

80680000cA 
Load relocatable (short form). Relocate address field (word resolution) 
Relative to declaration number 0 
The following 4 bytes: X'680000cA' 

8568000000 
Load relocatable (short form), Relocate address field (word resolution) 
Relative to declaration number 5 
The following 4 bytes: X '68000000 , 

08 
Define forward reference (continued in record 1) 

} 

} 
} 

Source Line 6 

Source Line 9 

Source Li ne 11 

Source Line 13 

Source Li ne 14 

Source Line 15 

Source Line 16 

393 



Begin Record Record number 1 

00011100 Record type: last, Mode: binary, Format: object language. } 00000001 Sequence number 1 Record Control 
11101100 Checksum: 236 (nformation - ) 
01010001 Record size: 81 

OOOCO l0000033C200002 (continued from record 0) 
Number 12 

00000001 Add constant: 828 X'33C' 
00100000 Add vatue of declaration (byte resolution) 

Source line 16 Number 0 
00000010 Express i on end 

42001 
01000010 Load absolute the following 2 bytes: X'OOO I' 

08000601~302 

I 00001000 Define forward reference 
Number 6 Source line 17 

00000001 Add constant: 3 X'3' 
00000010 Expression end 

0800000 1 0000000402 

I 00001000 Define forward reference 
Number 0 Source li ne 18 

00000001 Add constont: 4 X'4' 
00000010 Expression end 

OF00024100 } 00001111 Repeat load Advance to Word 
Repeat count: 2 Boundary 

01000001 Load absolute the following 1 bytes: X'OO' 

0800120100000340200002 
00001000 Define forward reference 

Number 18 
00000001 Add constant: 832 X'340' 

Add value of decloration (byte resolution) 
Number 0 

00000010 Expression end 

OA020100000340200002 
Source line 19 

00001010 Define external definition 
Number 2 

00000001 Add constant: 832 X'340' 
00100000 Add value of declaration (byte resolution) 

Number 0 
00000010 Expression end 

44224FFFFF 
01000100 load absolute the following 4 bytes: X'224FFFFF' 

000100000320200002 

" 00001101 Define start 
00000001 Add constant: 800 X'320' Source Line 22 
00100000 Add value of declaration (byte resolution) 

Number 0 
00000010 Expression end 

394 



( 

( 

00001011 

00001110 

08000344 
Declare standard control section declaration number: 0 
Access code: Full access. Size 836 X'344' 

OEOO 
Module end 

Severity level: X'O' 

A table summarizing control byte codes for object language load items is given below. 

Object Code Control Byte Type of Load Item 

0 0 0 0 0 0 0 0 Podding 

0 0 0 0 0 0 0 1 Add constant 

0 0 0 0 0 0 1 0 Expression end 

0 0 0 0 0 0 1 1 Declare external definition nome 

0 0 0 0 0 1 0 0 Origin 

0 0 0 0 0 1 0 1 Declare primary reference name 

0 0 0 0 0 1 1 0 Declare secondary reference nome 

0 0 0 0 0 1 1 1 Defi ne field 

0 0 0 0 1 0 0 0 Define forward reference 

0 0 0 0 1 0 0 1 Declare dummy section 

0 0 0 0 1 0 1 0 Define external definition 

0 0 0 0 1 0 1 1 Declare standard control section 

0 0 0 0 1 1 0 0 Declare nonstandard control section 

0 0 0 0 1 1 0 1 Defi ne start 

0 0 0 0 1 1 1 0 Module end 

0 0 0 0 1 1 1 1 Repeat load 

0 0 0 1 0 0 0 0 Define forward reference and hold 

0 0 0 1 0 0 0 1 Provide type information for external symbol 

0 0 0 1 0 0 1 0 Provide type and EBCDIC for internal symbol 

0 0 0 1 0 0 1 1 EBCDIC and forward reference number for undefined symbol 

0 0 0 1 1 1 1 0 Declare page-bounded control section 

0 0 1 0 0 0 R R Add value of declaration 

0 0 1 0 0 1 R R Add value of forward reference 

0 0 1 0 1 0 R R Subtract value of declaration 

0 0 1 0 1 1 R R Subtract value of forward reference 

0 0 1 1 0 0 R R Change expression resolution 

0 0 1 1 0 1 R R Add absolute section 

0 0 1 1 1 0 R R Subtract absolute section ..... 
0 1 0 0 N N N N Load absolute 

0 1 0 1 Q C R R Load relocatable (long form) 

1 C D D D 0 D D Load relocatable {short form} 

395 



APPENDIX C. XEROX STANDARD COMPRESSED LANGUAGE 

The Xerox Standard Compressed Language is used to rep
resent source EBCDIC information in a highly compressed 
form. 

Several Xerox processors will accept this form as input or 
output, will accept updates to the compressed input, and 
will regenerate source when requested. No information is 
destroyed in the compression or decompression. 

Records may nat exceed 108 bytes in length. Compressed 
records are punched in the binary mode when represented on 
card media. Therefore, on cards, columns 73 through 80 
are not used and are available for commentoridentiFication 
information. This form of compressed language should not 
be output to "compressed" fi les since the I/O compression 
may cause loss of data. 

The first four bytes of each record are for checking purposes. 
They are as follows: 

Byte 1 

Byte 2 

Byte 3 

Byte 4 

Identification (00l11000). L = 1 for each 
record except the last record, in which case 
L = o. 

Sequence number (0 to 255 and recycles). 

Checksum, which is the least significant 
eight bits of the sum of all bytes in the rec
ord except the checksum byte itself. Carries 
out of the most significant bit are ignored. 
If the checksum byte is all l's, do not 
checksum the record. 

Number of bytes comprising the record, in
cluding the checking bytes (~108). 

The rest of the record consists of a string of six~it and 
eight~it items. Any partial item at the end of a record 
is ignored. 

The following six~it items (decimal number assigned) com
prise the string control: 

396 

Six~it 
Decimal 
Item Function 

o Ignore. 
1 Not currently assigned. 
2 End of line. 
3 End of File. 
4 Use eight~it character which follows. 
5 Use n + 1 blanks, next six~it item is n. 
6 Use n + 65 blanks, next six~it item is n. 
7 Blank. 
8 0 
9 1 
10 2 

Six~it 

Decimal 
Item 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 

Function 

3 
4 
5 
6 
7 
8 
9 
A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 
L 
M 
N 
o 
P 
Q 
R 
S 
T 
U 
V 
W 
X 
Y 
Z 

< 
( 
+ 
I 
& 
S 
* 

10 
, 
% 

L.J 

> 

) 



APPENDIX D. SYSTEM OVERLAY ENTRY POINTS 

Table 0-1 is a list of all entry points into the various overlays, the overlay containing each entry point, and a brief 
description of the function of the entry point. 

Table 0-1. System Overlay Entry Points 

Entry Point Name Overlay Name Oescription 

:*ALTENT DBOW Enter debug from a Itemate PSD 

:#ASSGN DBC2 Process debug assign command 

:*BRNCH OBS3 Branch into user program from debug 

:*CAlENT DBDW Enter debug from CAL exit 

:*CONSG DBC2 Process debug connect seg • .command 

:*OMPRET DBC1 ! Retum from single dump request 

:*OOOMP DBC3 Do a dump request 

:*OOINIT DBS2 Entry for initialization 

:'OORET DBS2 Prepare for user return 

:'DOSNAP OBS2 Entry for snap execution 

:#OOTRAP OBS2 Entry after trap 

:*OOVAl DBC3 Do evaluation of name 

:#OUMP DBC1 Process debug dump command 

:'EXCT DBS3 Process debug exec. control command 

:'INSRT DBC1 Process debug insert command 

:'lOOK DBC1 Process debug look command 

:'MOOFY DBC3 Process debug modify command 

:'NAME DBC1 Process debug name command 

:*PATCH DBC3 Process debug patch command 

:#QUIT OBS3 Process debug quit command 

:'REMOV OBC2 Process debug remove command 

:'RERCHK DBC3 Process read error check "" 
:*SCAN DBS1 Scan the input command 

:'SCNDR DBC3 Scan a dump request 

:'SCNlCX DBS3 Scan location forms 

397 



table D-l.,·Systern Overlay Entry Points (cant.) 

Entry Point Name Overlay Name Description . 
:'SCNLWX DBS3 Scan for location or word 

:'SCNWDX DBS3 Scan ford fonns 

:'SNAP DBCl Process debug snap cammand 

:'SNAPIT DBCl Execute snap carrmand 

:'TINIT DBC2 Trap initialization processing 

:'T RAP EX DBS2 Exit from debug trap processing 

:'TRAPIN DBC2 Process trap control 

:'wKSQZ DBSl Squeeze unused space from debug work space 

ABEX ABEX Process abort and exit CALs for bockground '. 

ABORT TERM Process a II abort CAls 

ACTV 10 EX PlOcess activate CALs 

ALLOT ALLOT Process allot CA Ls 

ANALYSE TEXl Ana lyse erlOrs of TEX 

ARM ARM Process connect ,arm,disconnect ,dilClnn CAls 

ASSIGN ASSIGN Process assign CAL 

BKGSEQ ABEX Initiate backgroUnd sequencing ('C' from IDLE) 

BKLASSN BKU Does background DCB assignments 

BKU BKU Perform background loading functions 

BREAK SNAM Process INT CAls 

CALLQ Sub to CALL QUEUE and woit for I/o completion 

CALLQP Entry to CALLQ with preset priority 

CFUPDIR CLOSEX Update directory entry for altered file and write it to 
disk 

CHECK CHECK Process CHECK CALs 

CHECKA CHECK Second-CHECK routine 

CHKBAL CHECK Entry to CHECK via BAL .. 
CHKBALA CHECK Alternate internal entry to CHECK, via a BAt-

CKD CKD Crash dump from CK area 

CKD2 CKD2 Crash dump hom C K area, continued 

CKENACT TMTYC Get and test end-action 

398 



Table D-1. System Overlay Entry Points (cont.) 

Entry Point Name Overlay Name Description 

( CKENACTS TMTYC Get and test end-action in standard FPT 

CKENACTl TMTYC T est and convert end-action parameter 

CKENACT2 TMTYC Same as CKENACT1(TMTYC) 

CKINTADR TMTYC T est and convert interrupt address 

CKINTLAB TMTYC Test and convert interrupt label 

CLOSE READWR Process CLOSE CALs 

CLOSEDCB READWR Entry to c lose via BAL 

CLOSEX CLOSEX Routine to close DCBs 

CLOSRFIL CLOSEX Routine ta close a DCB assigned to a RAD file 

COCIO COCIO Queue equivalent for COC I/o 

COCRIP COCIO RIPOFF equivalent for COC I/o 

COCSRDV COCIO SERDEV equivalent for COC I/o 

COCTIME COCIO Five second line checking routine 

COOP GETNRT Intercept BKG I/o requests to symbiont dedicated 
devices 

CORRES DEYI Process correspondence CALs 

CRD CRD Crash dump from SE op-Iabel 

CRFIL CLOSEX Release blocking buffer and RFT entry for closing a file 

CRS CRS Crash save ta SE op-Iabel from CK area 

CRS2 CRS2 Continuation of CRS 

CSEARCH DBS2 Debug scan routine to search for commands 

DBDW DBDW Start of data/workspace for debug 

DBKG ABEX Background dump driver 

DCBBUSY READWR SUB to check for an I/o request to a busy DCB 

DEACTV IOEX Process deactivate CALs 

DEBUG DBDW Debug CA L processor ,.., 

DELETE DELETE Process DELETE CALs 

DELFPT CHECK Same as CHECK(SIGNAL) entry point 

DEQ ENQ Process DEQUEUE CALs 

DEYI DEYI Process 'set' portion of device CALs 

399 



· Table 0-1. System Overlay Entry Points (cont.) 

Entry Point Name Overlay Name Description 

DEVN DEVI Process 'get' portion of device CALs 

DFGD DUMP CT retum to CT dump after break 

DFGDBAl DUMP DUMP break to check for other CT work 

DFM DEVI Process device file mode CALs 

DISARM ARM Same entry point as ARM(ARM) 

DRC DEVI Process device DIR. Record format CALs 

DUMP DUMP Performs a memory DUMP 

DVF DEYI Process device verticol format CALs 

EMARECB TMGETP Sub. to chain an ECB to the R-task 

EMARECBX TMGETP Sub. to chain an ECB to the R-task in revene priority 

EMBlDECB TMGETP Sub. to build an ECB from a standard FPT 

EMDATAI TMGETP Sub. to process a data area into an ECB 

EMDATAO TMGETP Sub. to remove a data area to usen receiving area 

EMGETECB TMTYC Sub. to create a new ECB linked to the current task 

EMGETEM TMTYC Sub. to create a new ECB linked to any task 

EMGETFPT TMTYC Sub. to get an original FPT address 

EMSETR3 CHECK Set R3 to an FPT addr based on FPT addr in an ECB 

EMSETR3A CHECK Set R3 to an FPT addr based on FPT addr in R3 

EMWAIT TMTYC Sub. to control wait states 

ENQ ENQ Process ENQUEUE CALs 

ENQABNM ENQ Abnormal condition sub. for ENQUEUE ECBs 

ENQCHK ENQ Sub. to check ENQUEUE ECBs 

ERRSEND lOG Routine to put an operator message into the Error Log 

ESU ESU Process error summary key-in 

EXTM EXTM Process exterminate CAls 

FGlBADLM FGL2 Abort primary load modu Ie initiation .. .... 
FGLMEMCK FGl3 Check availability of unmapped memory region 

FGLMSG FGLl Output a message for the primary loader 

FGlOKLM FGL2 Complete primary load madule initiation 



Table 0-1. System Overlay Entry Points (c:ont.) 

Entry Point Name Overlay Name Description . 
( FGLI FGLI Primary program release 

FGL2 FGL2 Primary program load (initialize tables) 

FGL3 FGL3 Primary program load (read in root and PUBLlBS) 

FINDBB FINDBB Get a blocking buffer 

FINDDIR FINDBB FIND (or allot) extent 0 of a file 

FINDDIRX FINDBB FIND (or allot) extent N of a file 

FMBLDECB GETNRT Bui Id on I/o ECB 

FMCHECK CHECK Process I/o CHECK CALs 

FMCKWP RWFILE Check for write protection violations 

FMCKI CHECK Internal entry to FMCHECK 

FMCK2 CHECK Internal entry to FMCHECK 

FMCK3 CHECK Internal entry to FMCHECK 

FMDElETE DelETE DelETE file (extent) entries from pennanent directory 

FMGETEXT RWEXT Get next extent of an extended fj Ie 

( FMJCl TTJOB Clean up RFT and DCT entries at job tennination 

FMMASTX RWFIlE Detennine MASTD index for an area 

FMOPL2AD GETNRT Get coller's OPlBS2 table address 

FMTCl TT Cleanup fi les for a tenni noting task 

FPTBSY READWR Check for an I/o request to a busy FPT 

GENCHARS PRINT PRINT expanded text for break pages 

GETANAME ESU Subroutine to get account nome 

GETDCBAD GETNRT Get DCB address from FPT 

GETDCTX GETNRT Get device index from DCB 

GETIOID KEYSCN Scan on I/o designator (FILE, OPlABEl, or DEVICE) 

GETNRT GETNRT Internal entry to read/write processing 

GETOPT Get options for key-ins, in KEY3 - KEY7 .oil 

GETIIME SIGNAL Process GETTIME CAls 

HOURLOG LOG log hourly timestamp 

( -- IBBPARAM RWBFIl Sub to increment the fi Ie position in a blocked fj Ie 

401 



Entry Point Name 

INIT 

INITLOG 

INSDBUF 

10 EX 

IPLMM 

IPLSYM 

JMTENQ 

JMTERM 

JOBDLTE 

JOBDLTEA 

JOBMSG 

JOBSCAN 

JOBl 

JOB2 

JSCAN 

JTRAP 

KEYl 

KEY1A04 

KEY2 

KEY3 

KEY4 

KEY5 

KEY6 

tcEY7 

IUOB 

LOAD 

lOADACI 

lOADMAP 

.co2 

Table 0-1. System Overlay Entry Paints (cont.) 

Overlay Name 

LOG 

SDBUF 

10 EX 

IPLMM 

IPLSYM 

TIJOB 

TTJOB 

JOB2 

JOB2 

JOB2 

JOBl 

JOBl 

JOB2 

JOBl 

TRAPS 

KEYl 

KEYl 

KEY2 

KEY3 

KEY4 

KEY5 

KEY6 

KEY7 

EXTM 

MMROOT 

MMROOT 

Description 

Perform boot-time initialization of CPR 

Routine to initialize the error log file when DT keyin 
is done 

Input side buffering logic 

Process all IOEX CAts 

Do memory management initialization at boot time 

Initialize symbiont areas and job number 

Clean up job level ENQs 

Destroy a job when last task has terminated 

Sub. to delete a job's files in an area 

Sub. to selectively delete a job's files in an area 

Sub. to output messages to OC device 

Validate a JOB card for symbiont input 

Process a M:JOB CAL, Part 1 

Process a M:JOB CAL, Part 2 

Validate and format a JOB card 

Process job trap CAL 

Decode key-in keyword, branch to proper overlay 
for processing 

Process key-err message typeouts 

Process key-ins in KEY2 overlay 

Process key-ins in KEY3 overlay 

Process key-ins in KEY4 overlay 

Process key-ins in KEY5 overlay 

Process key-ins in Kf":6 overlay 

Process key-ins in KEY7 overlay 

Process KJOB CAts 

Entry to JCP loader 

Sub. to load ACI for a task 

Sub. to load MAP and ACE for a task 



Table 0-1. System Overlay Entry Points (cont.) 

Entry Point Name Overlay Name Description . 
( LOG LOG Move error log records from log stack 10 ER 0 P lobe I 

MEDIA MEDIA Resident copy loop code and DCB's, FPT's 

MEDIACAL SNAM Media CA L processor 

MEDIATSK MEDI Start of media task 

MEDRLOOP MEDIA Start of main copy loop in resident module 

MEDRLOPA MEDIA Alt. entry to main loop for 'ALL' copies 

MEDR900 MEDIA Common CAL error routine (do nothing routine) 

MEDOEXIT MEDI Entry into MEDI module from resident copy loop if 
no errors 

MED090 MEDI Error routine, reading input file 

MED094 MEDI Error routine, writing output fj Ie 

MED099 MEDI Error routine, DCB abnormal and reading shared files 

MEDI MEDI Part 1 of media task; request selection and initiation 

MED2 MED2< Part 2 of media task; post processing clean-up 

( 
MED600 MED2 Entry to Part 2 of media task 

MED800 MED2 Convert media ID number 10 EBCDIC in output line 

MED810 MED2 Acquire a device for media use 

MED820 MED2 Copy preample (printer break page print) 

MED830 MED2 Copy postamble (printer clean-up) 

MED840 MED2 Copy postamble (tape positioning) 

MED880 MED2 Wait routine for device manual, symbiont device 
conflict 

MMABNM MM05 Sub. ta process abnormal ECB exits 

MMACT MMOI Process activate CA Ls 

MMCAL MMOI Process a" memory management CALs 

MMCHECK MM04 Sub. to check memory management ECBs 

MMDEACT MM02 Process deactivate CALs 
"" 

MMERASE MM02 Process erase CALs 

MM EX EC MM04 Memory management executive task 

( - MMFETCH MMROOT Sub. to fetch one word from any real address 

403 



Table ~ 1. System ·Overlay Entry Point (cont.) 

Entry Point Name Overlay Name DescrIption 

MMFMP MMROOT Sub. to find a memory partition 

MMFOV MMOl Sub. to find the OVLOAO entry for a segment 

MMGETP MM02 Process GETPAGE CALs 

MMGJRP MM03 Subroutine to get job reserved pages 

MMGP MMOl Sub. to get pages for a segment 

MMGPPS MM03 Sub. to get preferred partition pages 

MMGSTM MMROOT Sub. to get one page of rea I memory 

MMGTRP MM03 Sub. to get task reserved pages 

MMICHK MM04 Intemal entry into MMCHECK , 
MMLOCK MM06 Process LOC K CA Ls 

MMMOVE MMROOT Move contents of a real page to another real page 

MMOMFPP MMROOT Coli overlay manoger to release pages 

MMPOST MM04 Sub. to post a memory manogement ECB 

MMROS MMOl Reset disp skip flag and RLS exc lu. use of a SO 

MMRECB MM04 Sub. to create a memary management ECB 

MMRELP MM02 Process RELPAGE CALs 

MMRELS MM02 Sub. to clean up mapped task at tennination 

MMRELSO MM02 Sub. to free up SO space at termination 

MMRFlLE MM05 Sub. to get roll out file space 

MMRILW MMROOT Sub. to start roll in of a long wait task 

MMRISEG MM04 Sub. to request roll-in of a segment 

MMRJRP MM03 Sub. to re lease job reserved pages 

MMROLL MM04 Sub. to request memory pages from the memory exec 

MMROLLIN MM05 Sub. to roll in a segment 

MMROOT MMROOT Context block for memory management 

MMROUT MMOS Sub. to roll out a segment 
"" .... 

MMRP MM02 Sub. to release pages in a SO 

MMRPPS MM03 Sub. to release preferred partition pages 

MMRPPSI MM03 Intema I entry into sub. MMRPPS 



Table 0-1. System Overlay Entry Point (cont.) 

Entry Point Name Overlay Name Description 

(~ MMRPREF MM06 Sub. to recover preferred parti tions pages 

MMRREAD MM05 Sub. to read a segment from the ro II out file 

MMRRFILE MM05 Sub. to re lease ro II ou t file space 

MMRSTM MMROOT Sub. to release one page of real memory 

MMRTRP MM03 Sub. to release task reserved pages 

MMRWRITE MM05 Sub. to write a segment to the rollout fi Ie 

MMSAC MMOl Sub. to set access codes 

MMSDS MMOl Set disp skip flag and wait for exclu. use of a SD 

MMSEGCK MMOl Sub. to verify a segment number 

MMSETVPN MMOl Sub. to generate virtual page number arguments 

MMSTART MMOl Sub. to start the memory management executive 

MMSTOP MM04 Sub. to stop the memory management executive 

MMSTORE MMROOT Sub. to store one word into any real address 

MMSWAP MMROOT Memory management swap control 

( MMSWLK MM03 Sub. to set write locks 

MMTJOB MM02 Sub. to do job level cleanup at termination 

MMTPRIM MM03 Sub. to free pages acquired by a primary task 

MMTSEC MM02 Sub. to release ACI and AST space at termination 

MMUNLOCK MM06 Process unlack CALs 

MMWPN MMOl Sub. to verify a virtual page number 

MODIFY EXTM Same entry as status 

OFFVERBG TEXl Construct OFF message verbage 

ONOFFMSG TEX2 Write out OFF messages 

OPEN READWR Process 0 PEN CALs 

OPENDCB READWR Routine to open a DCB 

OPENX OPENX Internal entry to OPENDCB ..rt 

OSEARCH DBS2 Debug scan routine to search for machine operations 

OUTSDBUF SDBUF Output side buffering logic 

PFIL REWIND Process all PFIL CAts 

405 



Entry Point Name 

PFILDEV 

PIN IT 

PINTABNM 

PLOl 

PMD 

POLL 

PO LLA BNM 

POLLCHK 

PPOST 

PRECDEV 

PRECORD 

PREFMODE 

PRINT 

PROMPT 

PUBUB 

RBLOCK 

RCCUPF 

RCCUPJ 

RCEXU 

RCFEOD 

RCGETF 

RCJOB 

RCooP 

RfADDIR 

RfADWR 

RECALARM 

RELADBUF 

RETEUNG 

REWDEV 

<C06 

. Table 0-1. :System Overlay Entry Point (cant.) 

Overlay Nome 

REWDEV 

PINIT 

PINIT 

PLOl 

ABEX 

SIGNAL 

SIGNAL 

SIGNAL 

SIGNAL 

REWDEV 

REWIND 

MM06 

PRINT 

DEVI 

PlO) 

RWBFIL 

SYM5 

SYMS 

SYM3 

SYM3 

SYM3 

SYM3 

SYM4 

FINDBB 

READWR 

CRS 

RWBFIL 

TEL2 

REWDEV 

Description 

Position fil~ on tope devices 

Process INIT CALs 

Sub. to process abnormal ECB exits 

Routine processes a II PUBUBS 

Dispatch BKGD to dump itself 

Process a II PO L L CA Ls 

Routine to process POLL ECB abnormal conditions 

Routine to process checks on PO II services 

Process POST CALs 

Position records on tope devices 

Process PRECORD CALs 

Process PREFMODE CALs 

Process PRINT CALs 

Process set PROMPT character CALs 

Same as PlOl 

Sub. to read a block into a blocking buffer 

Clean up previous job's input files for the COOP 

Clean up previous job's input files for tne COOP, 
Part 2 

Process EXU command in the input COOP 

Process EOD command in the input COOP 

Sub. to get next fj Ie for the input COOP 

Sub. to process a JOB card in tne input COOP 

Process input requests to a symbiont dedicated device 

Sub. to read a directory sector 

Process Read;Write CALs 

ALARM Receiver CAL 

Release a Blocking Buffer 

Process REWIND CALs on devices 



r 
Table 0-1. System Overlay Entry Point (cont.) 

Entry Point Name Overlay Name Desc:ri ption 

( REWIND REWIND Process REWIND CALs 
''-"' 

RLS EXTM Process RELEASE CALs 

RUN RUN Process all RUN CALs 

RWBFIL RWBFIL Read/Write blocked or compressed RAD fi les 

RWDEV RWDEV Process Read/Write to devices 

RWEXTDIR RWEXT Get next extent while processing a direct access 
Read/Write 

RWEXTSEQ RWEXT Get next extent whi Ie processing a sequential 
Read/Write 

RWFILE RWFILE Read/Write processor for disk fi Ie 

SCAN KEYSCN Common scan routine for all key-in routines 

SCEMPTY SCNEXT SCHED sub. to find next empty SCHED file entry 

SCFIND SCNEXT SCHED sub. to find match SCHED file entry 

SCHED SCHED Contro I tosk entrance to periodi c schedu ler 

SCHEDC RUN CAL processing for periodic scheduling 

(- SCMSG SCNEXT SCHED sub. for output of messages 

SCNEXT SCNEXT SCHED sub. to find next executable candidate 

SCUPDATE SCNEXT SCHED sub. to change SCHED file 

SDBUF SDBUF Side buffering processor pro lay dummy entry point 

SEARCHAI ESU Initiate AI fi Ie search 

SEGLOAD EXTM Process SEGLOAD CALs 

SETNAME SNAM Process SETNAME CALs 

SETOVR GETNRT Subr. to test/set abort override in Vo CALs 

SETPRI JOB2 Sub. to set a job's priority in the directory 

SETUP REWIND Sub. to open a DCB and get its assignment 

SEX SEX Symbiont executive resident code and context 

SIGABNM SIGNAL Routine to process SIGNAL ECB abnormal ~nditions 

SIGCHK SIGNAL Routine to process checks on signa I services 

SIGNAL SIGNAL Process SIGNAL CALs 

SIGNAL1 SIGNAL Interno I SIGNAL CAL processor entry point 

407 



Table O-}. Symm Overlay Entry Alints (cont.) 

Entry Point Name Overlay Name Description 

SIMIKEY SYM3 Simulate 'SCRYDD, (' key-in for symbionts 

SJOB SJOB Process SJOB CALs 

5MBACKUP SYM5 Perform 'R' and 'B' symbiont key-in options functions 

5MBCDHEX SYM4 Convert number from EBCDIC to hex 

5MBSYF SYM3 Process a 'busy file' error return in symbiont processor 

SMClOSF SYM2 Sub. to c lose a symbiont fi Ie 

SMDEVERR SYM2 Sub. to process unrecoverable I/o errors in symbionts 

SMDFIS JOB2 Sub. to delete a job's files in the 'IS' area 

SMDFOS JOB2 Sub. to delete a job's files in the 'OS' area' 

SMFEOD SYM2 Sub. to handle EOD in output symbiont 

SMFINDF SYM3 Sub. to check for a busy file 

SMGETF SYM2 Sub. to get next file for SYMB/COOP to read 

SMGETOF SYM2 Sub. to get next file for output symbiont to process 

SMGETQF SYM2 Sub. to find a file associated with 'SYVNDD,Q' 
key-in 

SMHEXBCD SYM4 Convert number from hex Ie EBCDIC 

SMINIT SYM3 Sub. to initialize context for a symbiont device 

SMJOBFIN SYM3 Sub. to process JOB/ FIN in input symbiont 

SMWMSG SYM2 Format and output symbiont messages to OC 

SMXKEY SYM2 Sub. to process the 'SYVNOD,X' key-in 

SMXTND SYM5 Allot a symbiont extension fi Ie 

SNAM SNAM Process setname CALs 

SNAP CRS SNAP key-in processing 

START SIGNAL Process START CALs 

STATUS EXIM Process STATUS CALs 

STDLB STOLB Process STDLB CALs 

"'" 
STlMABNM SIGNAL Routine to process STIMER ECB abnormal concfftions 

STIMER SIGNAL Process STIMER CALs 

STLBCHK STOLB Routine to process checks on STDLB services 

STOP SIGNAL Process STOP CALs 

408 



Table 0-1.. System Overlay Entry Points (cont.) 

Entry Point Name Overlay Name Description 

( STPIOl 10 EX Process STOPle/STARTlO CALs 
, -

STPI02 IOEX Same entry as STPIO 1 (10 EX) 

STRTIOl 10 EX Same entry as STPIO 1 (lOEX) 

STRTI02 10 EX Same entry as STPIO 1 (10 EX) 

SYMCUP SYM2 Sub. to do symbiont device clean-up 

SYMl SYMl Symbiont executive 

TAPE TAPE Tape handler prolay dummy entry point 

TDLOAD MMROOT Sub. to do actua I loading of map and ACI 

TELCNTRL TEL2 Entry for TEL control/break 

TELERROR TEll Common TEL error processing 

TELEXEC TEll Execution af a TEL command 

TELREAD TEL2 Reads a TEL command 

TEL3 TEL3 Initialize TEL work area 

TERM TERM Process TERM CALs 

TEST WAIT Process TEST CALs 

TESTBUF GETNRT Sub. to test the va lidity of caller's Read/Write buffer 

TESTLOOP TEX2 Initiates TEX line testing 

TESTWT4 GETNRT Routine to test for delete-on-post I/O request 

TEX TEX Terminal executive context 

TEXBUFFR TEXl Gets BLK. BUF. for TEX workspace 

TEXEXEC TOO Initiates T JE/TEX processing 

TEXIT TRAPS Process trap exit CALs 

TI TIOl Secondary task initiation Part 1 

TICRASH TI02 Secondary task initiation crash routine 

TIME WAIT Process TIME CALs 

TI02ABEN TI02 Sub. for abnormal end conditions during sect task INIT 

TI03DBUG TI03 Routine sets up DEBUG controls before task entry 

TIRFT TI03 Sub. to initialize URFT table 

(- TISAST TI02 Sub. to sort and store an AST entry 



Table 0-1. -System Overlay Entry Points (cont.) 

Entry Point Name Overlay Name Description . 
TISCHN TI03 Sub. to dechain chained temp space 

TISD TI03 Sub. to build a Mgment descriptor 

TISDECHN TI03 Sub. to chain a segment descriptor 

TISEARCH 1103 Sub. to search for shared segments 

TISREAD TJ02 Sub. to perfonn all file reads for task initiation 

lIS15 TJ02 Secondary task initiation Part 2 

TlS2l TI02 Entry paint from TlOl for tasks with no segnents 

TMABORT TERM Sub. to abort a foreground task 

TMABRTT TERM Sub. to abort a load modu Ie 

TMCKADP TMTYC Sub. to check a range of addresses 

TMCKADR TMTYC Sub. to check an address and convert to real if virtual 

TMDCBERR EXTM Sub. to process DCB errors 

TMDELAET ENQ Sub. ta free an AET and the EDT if id Ie 

TMDEQ ENQ Sub. to dequeue an item 

TMENQ ENQ Sub. to enqueue an item 

TMFINDJ TMGETP Sub. to get job JD by JOBNAME 

TMFJNDT TMGETP Sub. to get task 10 by task name 

TMGETIOS TMGETP Sub. to get job and task identification 

TMGETJJO TMGETP Sub. to get job 10 from P11 and P12 in FPT 

TMGETP TMGETP Sub. to fetch priority from an FPT 

TMGETTID TMGETP Sub. to get task 10 from P3 and P4 in FPT 

TMGRA TMTYC Get the real address and protection for a virtual add 
addren 

TMLM TERM Subroutine to tenninote or abort one load module 

TMSETE EXTM Sub. to let R8 and RIO in RTS if CAL processing error 

TMSETPSD CHECK Sub. to alter PSD in RTS 

TMSETREG CHECK Sub. to alter R8 and R10 in RTS """ ... 

TMSTOP SIGNAL Internal entry into STOP CAL processor 

TMTERM TERM Sub. to tenninate a foreground task 

TMTRMJ TERM Subroutine to terminate all load modules in a job 

410 



Table 0-1. System Overlay Entry Points (cont.) 

Entry Point Name Overlay Name Description , 

( TMTRMT TERM Sub. to te""inate a load module 

TMTYC TMTYC Sub. to SFT FPT type completion word parameter 

TMTYCB TMTYC Sub. to set FPT type completion word busy 

TMTYCS TMTYC Sbroutine to set FPT type completion in stand, FPT 

TMTYC15 TMTYC Sub. to set TYC in R 15 into FPT TYC word 

TMTYC15S TMTYC Sub. to set TYC in R15 into TYC word in stand, FPT 

TMVADR TMTYC Sub. to check a virtual address (no conversion) 

TMWALL WAIT Sub. to do wait all on SECBS 

TRAPCRSH TRAPS Trap crash entry 

TRAPS TRAPS Trap handler entry 

TRAPS TRAPS Interna I entry for trap handling 

TRAP70 TRAPS Process TRAP CAL 

TRTN TRAPS Process TRAP return CAL 

TRTY TRAPS Process TRAP retry CALs 

( TRUNCATE DELETE Process TRUNCATE CALs 

TT TT Sub. to do secondary task terminations 

TTDEBUG DBSI Task te""ination cleanup for DEBUG 

TTJOB TTJOB Sub. to clean job controls for task te""ination 

TTLN TT Subroutine to determine if this is a T JE job 

TTPRIM TT Sub. to do misc. task cleanup for primary te""inations 

TYPE PRINT Process all TYPE CALs 

USEARCH DBS2 Debug scan routine to search for user name symbols 

VERACCNT TEXI Verify account format 

WAIT WAIT Process WAIT CALs 

WAITALL WAIT Process WAITALL CALs 

WA ITA NY WAIT Process WAITANY CALs 
"" 

WBLOCK RWBFIL Sub. to write out a blocking buffer 

WCGETJOB SYM3 Sub. to define next job file for output COOP 

( WCOOP SYM4 Process output requests to a symbiont dedicated device 
. 



Table D-1. System Overlay Entry Potnll (cont.) 

Entry Point Name Overlay Name Description 

WCSTSYM SYM3 Sub. to free file space for output COOP 

WEOF REWIND Proct!SS WEOF CALs 

WEOFDEV REWDEV Process WEOF to devices 

WLBLOCK RWBFIL Sub. to write the current block of a RAD fi Ie 

WRITDIR FINDBB Sub. to write a directory sector 

,(12 

.. - ._ .. _-_._----- ------



XEROX 

( ~eader Comment Form 
W. would .pp,ec:l.te you, comments .nd lu_tionl for improving thll publlc.tlon 

Publicetion No. I Rev. L.tt., I Titl. I Cu".nt D.te 

How did you u .. this public.tion? II the m.t.,i.1 p,_nted .ffectiv.ly? 

o L •• rning o Inlt.lllng 05.1 .. o Fully Cov.,ed o W.II IlIult,.ted DWell orpnlzed OCt .. , o R.f.,.nce o M.inteining o Ope'.ting 

Wh.t il you, ove,.11 ,.ting of thil public.tion? Whet il you, occup.tlon? 

o Ve,y GoOd o F.i, o V.,y Poo, 

o Good o Poor 

You, other comm.nts m.y be .nte,ed her •. Pl .... be specific .nd give P8SJ8, column, .nd lin. numb., ,.f.r.nc .. wh.re 
epplic.bl •. To repon .rror., pl .... u .. the Xe,ox Softwer. Improv.m.nt or Difficulty R.pon (1188) insteed of this form. 

( -

'"' 

You, n.m ... Retu,n Add .... --

Thank You For YO1M' Interest. (fOld & fasten as shown on back, no postage needed if rrailed in U.S.A.) 



PLEASE FOLD AND TAPE-
NOTE: U. S. Postal Service will not deliver stapled forms 

Attn: Programming Publications 

Fold 

BUSINESS REPLY MAIL 
No postage stamp necessary If mailed in the United Stat.s 

Postage will be paid by 

Honeywell Information Systems 
5250 W. Century Boulevard 
Los Angeles, CA 90045 

-- - -...:~ ---~.----.-.------ --.---~ -----.-----. -

First CI.s 
Permit No. 59153 
Los Angeles, CA 


