Xerox BPM/BTM
ter

Sigma 5-8 Computers

Subsystems and Utilities
Technical Manual

EROXEROXEROXEROXEROXEROXEROX
DXEROXEROXEROXEROXEROXEROXERC
ROXEROXEROXEROXEROXEROXEROXERK

ROXEROXEROXEROXEROXEROXEROXE
EROXEROXEROXEROXEROXEROXEROXE
IXEROXEROXEROXEROXEROXEROXEROX
OXEROXEROXEROXEROXEROXEROXERC

OXEROXEROXEROXEROXEROXEROXER

ROXEROXEROXEROXEROXEROXEROXE
KEROXEROXEROXEROXEROXEROXEROX
IXEROXEROXEROXEROXEROXEROXERO)
OXEROXEROXEROXEROXEROXEROXER(
ROXEROXEROXEROXEROXEROXEROXETs
EROXEROXEROXEROXEROXEROXEROXE
XEROXEROXEROXEROXEROXEROXEROX
UXEROXEROXEROXEROXEROXEROXERC
ROXEROXEROXEROXEROXEROXEROXER

ROXEROXEROXEROXEROXEROXEROXE

EROXEROXEROXEROXEROXEROXEROXE

Xerox Corporation

701 South Aviation Boulevard
El Segundo, California 90245
213 679-4511

© 1 973, Xerox Corporation

Xerox BPM/BTM

Sigma 5-8 Computers

Subsystems and Utilities
Technical Manual

90 30 61A

September 1973

Price: $11.00

XEROX

Printed in U.S.A.

NOTICE

With the exception of the FAST SAVE processor description, all subsystems and utility processors described in this
publication reflect operation under the HOO version of the BPM and BTM operating systems. The FAST SAVE pro-
cessor described herein reflects operation under the GO0 version of BPM/BTM. Other available subsystems that
operate under BPM/BTM are listed under "Related Publications" below .

RELATED PUBLICATIONS

Title ' Publication No.
Xerox Sigma 5 Computer/Reference Manual 90 09 59
Xerox Sigma 6 Computer/Reference Manual 9017 13
Xerox Sigma 7 Computer/Reference Manual 90 09 50
Xerox Sigma 8 Computer/Reference Manual 90 17 49
Xerox Batch Time=Sharing Monitor (BTM)/TS Reference Manual 90 1577
Xerox Batch Time-Sharing Monitor (BTM)/TS User's Guide 90 16 79
Xerox Batch Processing Monifor (BPM)/BP, RT Reference Manual 90 09 54
Xerox Batch Processing Monitor (BPM) and Batch Time=Sharing Monitor (STM)/SM

Reference tanual 90 17 41
Xerox Batch Processing Monitor (BPM) and Batch Time-Sharing Monitos (BTM)/OPS

Reference Manual 90 11 98
Xerox Batch Processing Monitor (BPM)/System Technical Manual 90 15 28
Xerox BPM/BTM/UTS/Overlay Loader Technical Manual 90 18 03
Xerox Batch Time-Sharing Monitor (BTM)/Delta Subsystem Technical Manual 90 18 79
Xerox BPM/BTM/UTS/System Generation Technical Manual 90 18 77
Xerox BTM Edit Subsystem Technical Manual 90 19 11
Xerox BPM/BTM/UTS PCL Technical Manual 90 19 32
Xerox Volume Initialization (VOLINIT) Technical Manual 90 30 56

Manual Content Codes: BP — batch processing, LN — language, OPS — operations, RP — remote processing,
RT — real-time, SM — system management, TS — time-sharing, UT — utilities.

The specifications of the software system described in this publication are subject to change withoutnotice. The availability or performance of some features
may depend on a specific configuration of equipment such as additional tape units or larger memory . Customers should consult their Xerox sales representative
for details.

PREFACE

GLOSSARY

1.0

2.0

INTRODUCTION

1.1
1.2
1.3

Batch Processors

Subsystems

General

LOPE PROCESSOR/SUBSYSTEM

2.1

2.2

2.3

2.4

2.5

Functional Overview

1.1 Purpose

Restrictions

Batch Operation
On-Line Operation

.

Map

Loader-Constructed DCBs

Diagnostics
Severity Level

2.
2
2
2
2.
2
2
2
2
I

=
-
-

ces

Background Memory Layout

Nm—-—l—-—u—a—a—a—l
—~FV0ONOCURWN

2. LOPE Processor/LOAD
Subsystem

Debugging LOPE

.

Input
Output

Debug Program, DELTA
Accounting

Loader-Generated Tables

Monitor

0 CCI

.2
3
4
.5
.6 LOAD Subsystem
.7
.8
.9
.1
.1

1 Stacks

.12 Use of Memory
.13 Example

I\)MMNNI\)NNNNNM

erahona] Overview

o

1 Description
.2 Flowchart

ww

g1

dule Analysis

Start

Library
Loader

AAAAA

Execute

[=
o-

.1
.2
.3
.4 Endload
.5
o

routine Analysis

ASNMERG

.

BINTOHEX

BYTOUT, WRTREC
CHKDECLD

CRLF

GCBYTE

GCBYTEA

GETEFHED

NNNNNNNMNNMNNNNN

ann(.nu.(.n(n(.n(nmu:

1
.2
.3
4
.5 CKDCB
.6
.7
.8
.9
.10

GETULOC

CONTENTS

viii

NNN!})MNM

A
0 00 0 N NN W = — -t

2~

N
1

2-8

2-8

2-8

2-8
2-18
2-21
2-24
2-24
2-24
2-24
2-24
2-28
2-31
2-35
2-35
2-36
2-36
2-36
2-41
2-46
2-50
2-55
2-56
2-56
2-58
2-58
2-58
2-58
2-59
2-59
2-59
2-59
2-59

3.0 RUN

3.1

3.2

©w
W

3.5

3.
3.
3.
3.
3.
3.
3.
3.
- 3.
3.
3.
3.
3.
3.
3.
3.
3.

PRESSTK

PRTNXT

PRTERR
RFDFSRCH

SETMODE

SETSIZE

STCR

Py

STORFLD

USYMPRNT

WRTREC

.
.

NESICUSECESECECESISEN
PR R RSt R RN BT RERD
NN — — — —

Nl rmm =

WTTY, WTTY]

Functional Overview

3.1.1 General Description

3.1.2 Error Messages
3.1.3 Restriction

Interfaces

3.2.1 To the BTM Executive
3.2.2 To the User

Operational Overview

Module Analysis

3.4.1 ENTRY

3.4.2 GOTOUSER

3.4.3 TLOC

4 CHKBRK

0 OPINDR

2 MULTDIS

4 SEMIB

.15 CIRALL

6 CILRBRK

5
6
7
8
9 OPPREV
1
1
1
1
1
1
1
1

7 DISBRK

3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
S

ubroutine Analysis

MORECC

SINCK

SEMICK

GTSVAL

CHKSERV

GP

1
2
3
4
5 SETSEG
é
7
8
9

FP

0 SMPRT

5 SEGLD

6 CHKEXU

4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4
4.
4.
b
5. RDVAL
5.
5.
5.
5.
5.
5.
5.
5.
5.
5.
5.
5.
5.
5.
5.
5.

1
1
1
1
14 TIME
1
1
1

7 TYCRLF

2-60
2-60
2-60
2-61
2-61
2-61
2-62
2-62
2-62
2-62
2-62

w
i
—_—

[R

[] wwwwwww%:wwwwwwww
VOV VODOOOCOCOIEWWWN — —

cl.Jw
—t
o o

w
1
—
o

3-11
3-11
3-12
3-12
3-12
3-13
3-13
3-14
3-14
3-14
3-15
3-15
3-15
3-16
3-16
3-17
3-17
3-17
3-18
3-18
3-19
3-19
3-19
3-20
3-20

ene
m

3.5.18 TYM 3-21 4.5.23 COMPALL 4-23
3.5.19 GETTXT 3-21 4.5.24 SERCH 4-24
3.5.20 LMNAB;LMNER;LMSZER___ 3-21 4.5.25 CHKLIM 4-24
3.5.21 RDSEG 3-22 4.5.26 SERDOWN 4-25
3.5.22 SETSWAP 3-22 4.5.27 GETINP 4-25
3.5.23 SYMS 3-22 4.5.28 TYPELINE 4-26
3.5.24 RELOCR 3-23 4.5.29 DELLINE 4-26
3.5.25 RDWNOB 3-23 4.5.30 TRANSLST 4-27
3.5.26 READWD 3-23 4.5.31 FINDEDIT 4-27
3.5.27 STORWD 3-24 4.5.32 ABNDEL 4-27
3.5.28 GPAGIN 3-24 4.5.33 NONO, COMMOUT____ 4-28
3.5.29 WRPG 3-25 4.5.34 NOROOM 4-28
3.5.30 RDPG 3-25 4.5.35 ABNINS 4-29
3.5.31 CHKADRNX;CHKPTRNX; 4.5.36 NOINPT 4-29
CHKPTR 3-25 4.5.37 NOJOBC 4-29
3.5.32 HEXOUT 3-26 4.5.38 FINDER 4-30
3.5.33 SYMBOUT 3-26 4.5.39 ABNINS 4-30
3.5.34 SEIFS 3-26 4.5.40 NAMER; JOBCERR —___ 4-31]
4.5.41 ACCTER; EXACER; PRIOER __ 4-31
4.5.42 JOBCER 4-31
4.0 BPM SUBSYSTEM 4-1 4.5.43 INVL 4-32
4.1 Functional Overview 4-1
4.1.1 Purpose 4-1 5.0 SUPER PROCESSOR/SUBSYSTEM 5-1
4.1.2 Input 4-1
4,1.3 Error Messages 4-2 5.1 Functional Overview 5-1
4.2 Interfaces _4-3 5.1.1 Purpose 5-1
4.2.1 Operating System 4-3 5.1.2 Input 5-1
4.3 Operational Overview 4-3 5.1.3 Batch Operation 5-2
4.3.1 Description 4-3 5.1.4 On-Line Operation ______ 5-2
4.3.2 DCB's 4-3 5.1.5 ErrorMessages___ 5-3
4.3.3 Flowchart 4-3 5.2 Interfaces 5-4
4.4 Module Analysis 4-3 5.2.1 Operating System ________ 5-4
4.4,1 BEGIN 4-5 5.2.2 CcCI 5-4
4.4,2 DELETE 4-5 5.3 Operational Overview 5-4
4.4.3 STATUS 4-5 5.3.1 Description 5-4
4.4.4 INSERT 4-9 5.3.2 DCBs 5-4
4.4.5 FILETYPE 4-11 5.3.3 Flowchart 5-4
4.4.6 EDIT 4-11 5.4 Module Analysis _ 5-4
4.4.7 EDITO 4-11 5.4.1 START 5-4
4.5 Subroutine Analysis 4-14 5.4.2 Control-Record ____ 5-6
4.5.1 GO 4-14 5.4,3 USERS 5-7
4.5.2 TYPE 4-14 5.4.4 KILL 5-8
4.5.3 REPLACE 4-15 5.4.5 LIST _, 5-10
4.5.4 SWAP 4-15 5.4,6 STATS 5-11
4.5.5 DELETEE 4-16 5.4.7 DELSTATS 5-13
4.5.6 TRANSFER 4-16 5.4.8 PASSWORDS 5-15
4.5.7 CRLF 4-17 5.4.9 Input-Syntax-Error 5-17
4.5.8 TYPEMESS 4-17 5.4.10 Abnormal-Exit 5-17
4.5.9 YESNO 4-17 5.4.11 Normal Exit 5-18
4.5.10 INEBCHEX 4-18 5.5 Subroutine Analysis 5-18
4.5.11 HEXDEC 4-18 5.5.1 CVTDEC 5-18
4.5.12- HEXEBC 4-19 5.5.2 - CVTINSTOR 5-18
4.5.13 PUTLINE 4-19 5.5.3 DATER 5-19
4.5.14 FINDLINE 4-20 5.5.4 FNDCOD 5-19
4.5.15 RUNDOWN 4-20 5.5.5 GACNTN 5-19
4.5.16 BANGHIT 4-21 5.5.6 GDFLDand GHFLD_______ 5-20
4.5.17 EODCARD 4-21 5.5.7 GEBFLD 5-21
4.5.18 FINCARD 4-22 55.8 GHFLD 5-21
4.5.19 JOBCARD 4~22 5.5.9 HELP 5-21
4.5.20 NAMECOMP 4~22 5.5.10 INITLOG 5-22
4.5.21 EXTACT 4-23 5.5.11 PAGE 5-22
4.,5.22 PRIOR 4-23 5.5.12 PRNT, PRNTV 5-23

6.0

7.0

5.6

PRTERR

.

e —

PRTLIST

PRTSTAT

RDLOGACNT
RDLOGS

RDLOG and RDLOGS _

RESETLOG

N) ot ot ot et s
OCVONOOLGALW

N
—_—

UCHKFLD

REWRLOG and REWRLOGS __

(5,36, IS, S, S, NS NS, NS WS, NS
(S, 35, IS, S, RS, IS NS, NS NS, NS

N
N

WRLOG, REWRLOG, and
REWRLOGS
Authorization File, :USERLG

FPURGE PROCESSOR

6.1
6.2

o~ O
Sw

7.1

NN N
AWN

7.5

FERRET SUBSYSTEM
Functional Overview
7.1.1 Purpose
7.1.2 Error Messages
Interfaces
Operational Overview
Module Analysis
7.4.1 FERRET
7.4.2 LIST, REVIEW, GRANULES ___
7.4.3 CHECK
7.4.4 ACTIVCK
7.4.5 DELETE
7.4.6 COPY,KOPY
7.4.7 PUNCH
7.4.8 EXAMINE, INSPECT
7.4.9 STATS
7.4.10 MESSAGE
7.4.11 NOSEP
Service Subroutines
7.5.1 CVDECOUT
7.5.2 GETFLD
7.5.3 GETNAM
7.5.4 SCANOPEN
7.5.5 LOCCODE

Functional Overview

Interfaces

6.2.1 Hardware Requirements
6.2.2 Operational Requirements
Operational Overview

Module Analysis
6.4.1 Control Cards
4.2 SKPPAR

STRPURG

3
4 LGSUPRG

GETC

OPNXACCT

CLRDCB

WRTTP

0 RESTORE

1 MISFILS

[e N e Ao e N0 N e N @ N o NN e N o2 o)

4.
4.
4.5
4.6
4.7

.4.8 PRINT
4.9
4.1
4.1
4.1

2 GETOUT

5-23
5-23
5-24
5-24
5-24
5-25
5-25
5-25
5-25

5-26
5-26

o
[}
-—

]
— i 00 ON B D e et it

]
o

o

[o e
1 1
—t ot
o o

6-11
6-11
6-11
6-12
6-12

7-1

7-1

7-1

7-2

7-2

7-12
7-12
7-12
7-13
7-13
7-14
7-14
7-14
7-15
7-15
7-16
7-16
7-16
7-16
7-17
7-17
7-17
7-18

8.0

EDCON

8.1 Functional Overview

8.1.1
8.1.2

oogooo
AWN

8.4.1
8.4.2
8.4.3

.

:hzhghzh:h:h:h-h:h#:h-h-h-h-h:h:b.-hA:hth:h:h:h:h:h:h-k-h#:k##-h##AAAAA#A-AAA'#A#A:A

. . N
O OO Oy DDA S Ao W w w w W WWWNNNNNNNNN

Interfaces
Operational Overview
Module Analysis

General Description
Commands

MASTERPARSER
PARSE:BUILD
PARSE:COMPRESS,
PARSE:WRITE
PARSE:COPY

PARSE:MERGE
PARSE:DELETE, PARSE:LIST.__
PARSE:END

MASTEREXECUTIVE
F:BUILD
F:COMPRESS, F:WRITE
F:COPY _

F:DELETE

F:END

F:LIST

F:MERGE

ADDCDTPARAM
ADJINT

BINTODEC
BLANKBUF
CLOSE
CLOSE2
COMPRESSLINE
CMPL60
CMPL70

DELETE

DELETEFILE

BADIOI1
GETFILEID

GETNEXTNAME
GETNEXTPARAM
MOVESEQ

NEWCDTENTRY
OPEN
OPENINIT

OPENNEW
OPEN2, OPEN3
READNXTRANDOM
READRANDOM
READSEQUEN
READSEQUEN2
READTELETYPE2

RECONSTRUCTSLINE -

RECL60

REPSEQ

SETEOD

SETKEY

SETLASTKEY

TYPECERR

TYPEMSG

WRITECO

WRITENEWRANDOM
WRITERANDOM
WRITE2

WRITESEO

8-1
8-1
8-1
8-2
8-2
8-2
8-4
8-4

8-4

8-5

8-5

8-6

8-6

8-6

8-7

8-7

8-8

8-12
8-12
8-12
8-12
8-16
8-16
8-17
8-17
8-17
8-17
8-18
8-18
8-19
8-19
8-22
8-22
8-22
8-23
8-23
8-31
8-32
8-32
8-32
8-33
8-33
8-34
8-34
8-34
8-35
8-35

8-36
8-37
8-37
8-37
8-38
8-38
8-38
8-38
8-39
8-39
8-40
8-40

9.0 FAST SAVE PROCESSOR 9-1 9.4.53 DISPRUNTOTL____ 9-28
'9.4.54 DTOGRAN 9-28
9.1 Functional Overview 9-1 9.4.55 FDERR 9-29
9.2 Interface 9-1 9.4.56 FITSNAP/FITERR ___ 9-29
9.3 Operational Overview______~~~ 9-1 9.4.57 LISTFD 9-29
9.3.1 Command Summary ______ 9-2 9.4.58 LISTFIT 9-29
9.3.2 Data Cards 9-3 9.4,59 LISTOUTBUF_______ 9-29
9.3.3 Error Message- Summary 9-4 9.4.60 LISTMIX 9-30
9.3.4 Error SNAPS 9-7 9.4.61 LISTAD 9-30
9.3.5 Read Ahead Logic __________ 9-7 9.4.62 MIXSNAP/MIXERR ____ 9-30
9.4 Module Analysis 9-8 9.4.63 MIXRATERR 9-30
9.4.1 INITIATE 9-8 9.4.64 DATAERR 9-30
9.4.2 INITIATE] .9-8 9.4.65 FDDONE 9-31
9.4.3 SPECINIT 9-9 9.4.66 ENDOFD 9-31
9.4.4 INITIATE4 9-9 9.4.67. CKT10 i 9-31
9.4.5 INITIATES 9-10 9.4.68 CODESCAN ___ 9-31
9.4.6 RDCARD 9-10 9.4.69 MOVENTRY ____ _ 9-32
9.4.7 RCD 9-11 9.4.70 HEXTODEC 9-32
9.4.8 INTER 9-11 9.4.71 FDLETE 9-32
9.4.9 NOIPRI 9-11 9.4.72 ADELETE 9-32
9.4.10 NACN 9-12 9.4.73 TACNT/TFILNME ___ 9-32
9.4.11 NOTLB 9-14 9.4.74 ACCK 9-32
9.4.12 GETFILE 9-14 9.4.75 READFAIL 9-33
9.4.13 FILECHKS 9-15 9.4.76 READFAIL2 9-33
9.4.14 NOFCK 9-16 9.4.77 READFAIL3 9-33
9.4.15 GETMIX 9-17 9.4.78 READFAIL5 9-33
9.4.16 QUEREC 9-18 9.4.79 LPRINT 9-33
9.4.17 GETKEY1 9-18 9.4.80 PLIST 9-33
9.4.18 MOVEKEY 9-18 9.4.81 BUFSET 9-34
9.4.19 MOVE 9-19 9.4.82 PRINT 9-34
9.4.20 GETKEY 9-19 9.4.83 SPACE 9-34
9.4.21 SCHEDULE 9-20 9.4.84 TYPEIO/TYPEIO2___ 9-34
9.4.22 QUEMIX 9-20 9.5 Detailed Flowchart of Fast Save
9.4.23 RANFILE 9-21 Processor 9-35
9.4.24 GETTBUF 9-21 9.6 Tables 9-72
9.4.25 GETIBUF 9-22
9.4.26 GETFOUR 9-22
9.4.27 BUILD 9-22 10.0 FILE ANALYZER (FANALYZE)
9.4.28 STKSIZR 9-22 PROCESSOR 10-1
9.4.29 QSECTOR 9-22
9.4.30 DISCIO2 9-23 10.1 Functional Overview 10-1
9.4.31 DENAC 9-23 10.2 Interface 10-1
9.4.32 FITENAC 9-23 10.3 Operational Overview ______10-1
9.4.33 ENCOM 9-24 10.3.1 File Analyzer Options _ 10-1
9.4.34 MIXENAC 9-24 10.3.2 Error Processing ____ 10-2
9.4.35 MTIO 9-24 10.3.3 Error Messages . 10-3
9.4.36 SIMULATE 9-24 10.4 Module Analysis 10-5
9.4.37 WTENAC 9-25
9.4.38 SENTENAC 9-25
9.4.39 NEWREEL 9-25
9.4.40 WRTDAT 9-25
9.4.41 DCTXERR/OPNABN/OPNERR_ 9-26 FIGURES
9.4.42 GOEOCR 9-26
9.4.43 EOFQ 9-26 2-1. Load Module Format 2-9
9.4.44 BOFQUE 9-26
9.4.45 MOVEI 9-26 2-2. Format of REF/DEF Stack That Is Part
9.4.46 WRTMARK 9-27 of The Load Module 2-11
9.4.47 NOTENUFF 9-27 .
9.4.48 ENDUP 9-27 2-3. :BLIB Format for Each Page _ 2-]2
9.4.49 ADDONE 9-27
9.4.50 ADERROR 9-28 2-4, Sample LOPE Map Printout _______ 2-14
9.4.51 IORUNDOWN_____ 9-28
9.4.52 FAILURE 9-28 2-5, Internal Symbol Table 2-17

2-6.

2-7.

2-9.

2-10.

2-11.

2-12.

2-13.

2-14.

2-15.

2-19.

2-20.

2-21.

2-22,

4-1.
4-2.
4-3.
4-4.

4-5.

5-1.
5-2.

5-3.

Background Memory Layout, LOPE
Processor

Task Control Block Format

DCBTAB (Name Table)

Loader-Constructed System DCBs

Standard First X'40' Words of LOAD
Subsystem

Declaration Stack

REF/DEF Stack

Expression Stack

Forward Reference Stack

Labels used in Allocating Memory
Layout of Memory af:ter Initialization
Flowchart of Overall Processing
Flowchart of Start Module

Flowchart for Library Modules
Flowchart for Loader Module
Flowchart for Endload Module

Flowchart for Execute Module

RUN Commands

RUN SUBSYSTEM IN MEMORY

USER IN MEMORY

Operational Overview of RUN

Operational Overview of BPM Subsystem __

Flow Chart for DELETE

Flow Chart for STATUS

Flow Chart of INSERT

Flow Chart of EDIT

Operational Overview of SUPER

Flow Chart for USERS

Flow Chart for LIST

2-18

2-19

2-20

2-21

2-22

2-25

2-26

2-27

2-28

2-29

2-30

2-37

2-42

2-45

. 2-51

2-54

2-57

3-2
3-4
3-5

3-7

4-4
4-7
4-8
4-10

4-13

5-5

5-12

9-5.

9-6.

9-7.

Flow Chart for STATS

Flow Chart for DELSTATS

Flow Chart of Major Functions

Flow Chart of CCI

Flow Chart of SKPPAR

Flow Chart of STRPURG

Flow Diagram of FERRET

Overall Flow Diagram of EDCON

Flow Diagram of F:COPY

Flow Diagram of F:MERGE
Flow Diagram of COMPRESSLINE
Flow Diagram of GETNEXTNAME

Flow Diagram of GETNEXTPARAM

Detailed Flowchart of FILE SAVE

Formats of Paging Tables

TABLES

Load Map Abbreviations

FPURGE Options

Command Description Table (CDT)

Command Table

Index to FAST SAVE Flowchart

Table Key Lengths

First Key Displacement in Sectors
Account Directory Displacement
File Directory Displacement
Master Index Displacement

1/O Queueing Function Codes

Data Names and Definitions

8-13

8-20

8-24

8-26

9-36

9-71

8-41

9-35

9-72

9-72

9-72

9-72

9-73

9-73

9-74

vii

viii

PREFACE

This document describes the purpose and architecture of the following subsystems and utility processors that operate
within the environment of BPM/BTM:

LOPE FERRET
RUN EDCON
BPM FAST SAVE
SUPER FANALYZE
FPURGE

This manual is intended for use by maintenance programmers as a guide through the listings supplied with the above
processors. It is assumed that the reader is familiar with both the usage of BPM/BTM Monitor services and the Sigma
Standard Object Language (see the BPM/BTM/SM Reference Manual, 90 17 41).

GLOSSARY

AJIT The on-line job information table, a Monitor table of information pertinent to the job currently in

execution.
:BLIB (Binary Object Language Library) . The name of the file that is the library in an account.
binary input Input from the device to which the BI (binary input) operational label is assigned.
CCl (Control Command Interpreter). A batch processor that reads the control command.
control section A relocatable section of the program into which assembled gene;utive statements are loaded.
core image That part of a load module that is laid into core at execution time.

DCB (Device Control Block) A table in the executing program that contains the information used by the

Monitor to perform an 1/O operation.
DCB Name Table A loader-built table that directs the Monitor to the location of a DCB in a program.

declaration A load item of the object language that associates a symbolic name with a type of item that

provides linkages between object modules.

declaration stack A loader stack that keeps track of the declarations made in a ROM.
definition A load item of the object language that equates a source language symbol with a value.
dummy section A type of program section that provides a way for more than one object module to reference

the same data via an external definition used as the label for the dummy section.

expression A load item of the object language that may include sums and differences of constants, addresses, and

external and forward references (which when defined will be constants or addresses) in order to represent a value.

expression stack A loader stack that contains expressions defining external forward references, and locations

in the core image of the program.

external definition a load item that assigns a specific value to the symbolic name associated with the external
definition. The external definition provides linkage between object modules since the external definition

allows the specified symbolic name to be used as an external reference in another ROM.

external reference A reference to a declared symbolic name that is not defined within the object module in
which the reference occurs. An external reference can be satisfied only if the name is defined by an extemal
definition in another object module.

forward reference A reference to a symbolic name that will be defined later in the object module.

forward reference stack A loader stack that keeps track of the forward references made in a ROM.

GO file In batch, o temporary file of ROMs formed by a processor. Such modules may be retrieved by use of
a LOPE or LOAD control command.

HEAD The key to one of the records of a load module file. The record contsins basic size and source information.
idG In batch, the file name that the loader uses to access the GO file. The idG file is a temporary file.

idL In batch, the file name assigned to a load module if no name is specified through the LMN option. The
idL file is a temporary file.

JIT (Job Information Table) A Monitor table of information pertinent to the job currently in execution.

library module A module that the loader may combine with ROMs to form a load module or the core image
portion of the load module.

load information Control information, data, and instructions generated by a processor and contained in one or

more modules capable of being linked toform an executable program.

load item The component of the object language, a load control byte followed by any additional bytes of load
information pertaining to the function specified.

load map A listing of information about the storage locations used by a program.

load module A keyed file containing an executable program. Load modules are output by loaders and

several other processors.
object language The standard binary language in which the output of an assembler or compiler is expressed.
object module The series of records containing the load information pertaining to a single program element.

overlay program A segmented program in which different elements (i.e., segments)occupy the same core storage

area as the program is executed.

primary reference A reference to a symbolic name that is not defined within the object module in which the
reference occurs. A primary reference can only be satisfied if the name is defined by an external definition

in another object module. A primary reference is capable of causing a load from a library.

REF/DEF stack A loader stack with entries for the value of control sections and external names - external
definitions, primary references, and secondary references. The REF/DEF stack is part of the load

module.

ROM (Relocatable Object Module). An input to the loader in SIGMA object language that was generated

by an assembler or a compiler.

secondary reference A reference to a symbolic name that is not defined within the object module in which the

reference occurs. A secondary reference does not cause a load from a library to satisfy the reference.

system library A group of standard routines in object language format, any of which may be incorporated into

a program being loaded.

TCB (Task Control Block). A table of program control information built by a loader when a load module is
formed. The TCB is part of the load module. The TCB contains a temp stack and the data required to allow

reentry of library routines during program execution. The TCB is program-associated, not task associated.

xi

1.0

1.1

1.2

1.3

INTRODUCTION

The Xerox BPM and BPM/BTM capability is a total package consisting of an operating system and program
packages that assist the user in taking advantage of the operating system. These program packages are known
as processors.

BATCH PROCESSORS

The control or service programs which are run in the batch mode under BPM are referred to as batch processors.
CCl is a control processor while FPURGE is an example of a service processor.

SUBSYSTEMS

On-line processors are referred to as subsystems. These processors are available to the BTM terminal user and
may either be language or service subsystems. EDIT is an on-line service processor and SYMBOL isan example
of an on-line language subsystem.

GENERAL

Program packages may be written for both the batch and on-line modes. The two major differences that govern
where the programs run are: (1) how they interface with the monitor and (2) how they are loaded.

When creating a system, usually the BPM or BPM/BTM monitor is loaded first and then the batch processors
are loaded. By loading the system in this order, the batch processors are automatically biased at the core
page boundary just above the end of the monitor, This page boundary is known as background lower limit,
Batch processors may be biased during loading such that they are above Background Lower Limit but this is an
inefficient use of core and should be avoided when possible. Batch processors are usually created af SYSGEN
time by PASS3 and are included on the P. O. tape by the DEF processor. The processors are then in the :SYS
account after the P, O. tape is booted and the system is operational. The batch processor is invoked by its
load module name on @ monitor control card. Any load module in the :SYS account may be run as a processor
by merely using the format on the control card as follows:

INAME (NAME is a load module name.)

The on-line processors or subsystems are loaded differently than the batch processors. There are two basic
differences: (1) the way they are biased and (2) the way they are named.,

Each on-line subsystem is given a load module name when it is loaded and this name may end in the character
":" (colon). BTM initialization knows that a copy of the load module with its name ending in @ ":" (colon)
in the :SYS account is a subsystem, A copy of each subsystem found in the :SYS account is moved to the
swapping device and entered into the :BTM account,

The on-line processors (subsystems) must be loaded with an absolute bias. The bias used will be different each
time a new system is generated and USERSIZE is varied for a glven core size. The bias at which the sub-
systems must be located is:

BIAS = CORESIZE-USERSIZE.

Subsystems must be coded according to the rules set down in the section entitled "SUBSYSTEM INTERFACE"
in the Xerox Batch Time=-Sharing Monitor Reference Manual (90 15 77). These coding requirements must be
observed by all BTM subsystems.

The BPM batch processors communicate with the BPM monitor via CAL1 calls. The CALls provide the total
and complete range of monitor services available to the batch processors.

BTM subsystems use both CALT and CALS3 calls to provide for monitor services. A BTM subsystem is restricted

to a subset of the possible CAL1s available to batch processors and some CALIls not available to batch pro-
cessors, System control and memory management functions available to the BTM subsystem are described in

1-1

the section entitled "BTM SYSTEM CALS" in the Xerox Batch Time-Sharing (BTM) Reference Manual (90 15 77).
The BPM system CALs available to BTM subsystems are listed in the section entitled "BPM SYSTEM CALS"
in the BTM Reference Manual (90 15 77),

The complete list and description of the BPM Monitor services available to batch processors is contained in
the Xerox Batch Processing Monitor (BPM) Reference Manual (90 09 54),

2.0 LOPE PROCESSOR/SUBSYSTEM

2.1

FUNCTIONAL OVERVIEW

2.1.1

Purpose

LOPE (Load in One Pass and Execute) is a loader, either a BPM processor or a BTM subsystem, which converts

object module output from a compiler or an assembler into executable format. In batch mode, the loader creates

either a nonoverlaid load module in secondary storage or the core image portion of the load module, to which con-

trol is then transferred. In on-line mode, the loader creates only the core image of the program but execution is

not automatic. If the user has requested execution, the LOAD subsystem monitors the execution or, if the user

has requested the debug option, the LOAD subsystem transfers control to the DELTA subsystem to allow DELTA to

monitor the execution. LOPE operates as a one-pass program. To build a load module or the core image portion

of the load module, LOPE performs functions expected of any loader operating under the BPM Operating System.

1.

2.1.2

Process ROMs to produce continuous sections of data, procedure, and DCBs or static data, ensuring a

page boundary for these three protection types == 00, 01, and 10 respectively.
Resolve references among ROMs.

Access libraries to satisfy primary references.

Build DCBs.

Build a DCB Name Table for Monitor use.

Build a Task Control Block.

Restrictions

2.1.3

LOPE will not form an overlaid load module.

LOPE will not load a ROM with a protection type other than 00 (except library routines) since LOPE builds
all DCBs, DCB tables, and tree tables (control section type 01).

LOPE does not allow user=built DCBs. Loader-built DCBs must be used. See section 2.2.5,4. DCBs.

LOPE loads ROM input only. LOPE does not load load modules. The library formed when the PERM, LIB
option is specified is a collection of ROMs, for which no processing has been done. The library contains

no load modules.

LOPE replaces the library whenever the PERM, LIB option is specified. Since LOPE does not add to an
existing library, each time the PERM,LIB option is specified LOPE requires that the user build the com-
plete library desired.

LOPE requires that dummy sections be defined at maximum size in the initial definition.

Batch Operation

=
.

LOPE accepts object module input from one or more BI files, GO files, element files, or libraries. LOPE

loads first from the BI file, then from the GO file, then from specified element files in order of appearance

2-1

in the control command, then from libraries to satisfy primary references -~ from up to five libraries of

specified accounts in order of appearance in the control command and then from the system library.

DCBs.

a.

b.

The M:C DCB is used to read the LOPE control command.

The M:BI DCB is used to read the Bl device or file. The M:BI DCB may be assigned to a file in

another account.

The M:LI DCB is used to access libraries.

The M:LL DCB is used to output the map.

The M:LM DCB is used to build the load module.

The M:DO DCB is used to output diagnostics.

The LOPE control command has the format:

ILOPE [(option)]...T, (option)]

where the options are:

BI specifies that all ROMs on the Bl device or file are to be loaded. If neither GO nor EF are

specified, BI is assumed.
GO specifies that all ROMs on the GO file are to be loaded.

EF, (file name[, account[, password])|, /. specifies that all ROMs in the designated element files
are to be loaded. File name may consist of 1-8 alphanumeric characters, excluding delimiters

such as, . + () - and blank as imbedded characters.

UNSAT, (account)[; .. .] specifies that the libraries, :BLIB, of the specified accounts are to be

searched to satisfy any primary references. A maximum of five libraries may be specified.
NOSYSLIB specifies that the system library, :BLIB in the :SYS account, is not to be searched.

MAP specifies that a complete listing of external references and external definitions for the load

module is to be output on the LL device.

M10 specifies that each control or dummy section is to be loaded at the next greater multiple

of]016'

M100 specifies that each control or dummy section is to be loaded at the next greater multiple

of 10016.

TSS, size specifies in hexadecimal the maximum word size of the Temporary Storage Stack (TSS)
for the current job. The size is limited to X'7FFF' or the available core storage, whichever is

less.

PERM, LIB specifies that a library module is to be created. This option causes EXEC, LMN, MAP,
and BIAS options to be ignored since the library formed is a collection of ROMs, for which no
processing has been done. This option replaces, rather than updates, any existing library so the

user must build the complete library desired. The library is :BLIB.
2-2

PERM specifies that the load module is to be permanent.

EXEC specifies that no load module is to be created, but the program is to be executed imme-
diately. No RUN, DATA, or debug commands are allowed. This option causes BIAS, PERM,
and LMN options to be ignored.

LMN, name specifies the name, 1-8 characters, to be given to the load module.
BIAS, value specifies the load bias of the created load module.
SL, value specifies fhé error severity level, hexadecimal 0-F, that will be tolerated by LOPE in

forming a load module.

2.1.4 On-Line Operation

The characters typed by the LOAD sybsystem are shown in upper case for alphabetic characters and are underlined.

1.

The LOAD subsystem accepts object module input from element files or through M:BI. The LOAD sub-

system also loads library modules from the file :BLIB in any specified account and/or from the :BTM account.
DCBs.

a. The M:BI DCB is used to read object module input. If desired, before entering the LOAD subsystem,
assign M:BI to a file of object modules. See restriction in step 5 about file names. The default
assignment is to the temporary file BOTEMPaC , where a is the COC line number in binary.

BOTEMP-+ is the default output file for on-line assemblers and compilers.
b. The M:LI DCB is used to access libraries.
c. The M:DO DCB is used to output diagnostics.
d. The M:LO DCB is used to output the map.
e. The F:X1 DCB is used to access the internal symbol table built for the debug program.
The command to enter the LOAD subsystem has the format:
1oap
The element file request and response has the format:
ELEMENT FILES: file name: (account|, password’) ... ', file name|(account(, password])]] €R
where file name consists of 1-11 alphanumeric characters.

See restriction in step 5. The total number of characters may not exceed the capacity of the input buffer,
a system generation parameter that is typically 100 characters. To erase the element file list anytime
before typing the carriage return, enter O X. If M:BI has been assigned to a file or, by default, to the
BOTEMPa temporary file, enter only a carriage return.

Note that in executing under the debug option, element file names should be restricted to seven charac-
ters. In the symbol table built by the LOAD subsystem for the debug program, only the first seven char-
acters of any symbol are used. If symbols, including element file names, have duplicate initial seven

characters and length, only the first symbol encountered is retained.

2-3

6. The options request and response has the format:

OPTIONS: option',option]... [, option,
where the options are:

U(o.l,oz. .. ,05) specifies that a search of the file :BLIB (Binary Object Language Library) in each
of the accounts designated (5 maximum) should be made for unsatisfied primary references before
the optional search of :BLIB in the BTM system account, :BTM. Unless specified, no search of

< s
nonsystem accounts will be made.

N specifies that no system library search is to be made for unsatisfied primary references. Unless
specified, the file :BLIB (Binary Object Language Library) in the BTM system account, :BTM,
will be searched for unsatisfied primary references. The file contains standard program modules

for general use.

P specifies that all programs defined by separate modules should begin on the next highest X'100°
word boundary. The starting bias for a program is X'200' in the on-line memory area. The
P option facilitates relating assembly listings to memory locations for debugging. Note that
separate conirol sections within each module will be contiguous and will not begin on any par-

ticular boundary other than doubleword.

M specifies that a load map of all external definitions and external references should be output
through M:LO. Unless specified, only secondary and primary references will be output through
M:DO (and M:LO if M:LO is assigned to a different file.) If the D option is specified
and object module input has been assembled on-line by Symbol or in the background by Meta-
Symbol with the symbolic debug (SD) option, undefined internal symbols for each element file
will follow the normal map. Internal symbols are symbols not made external through the use of
the DEF/REF directive nor defined under control of a LOCAL directive.

L specifies that a library is to be created. No other option may be used. The library formed is a
collection of ROMs. This option replaces, rather than updates, any existing library so the user

must build the complete library desired. The library is :BLIB in the current account.

D specifies that the program is to be executed under control of the debug program, enabling
diagnostic and corrective operations on the program. The option is used mainly to check assembly
language programs. However, the option may be used during the execution of any program that
can be run under the LOAD subsystem. If the D option is specified and object module input has
been assembled on-line by Symbol or in the background vby Meta-Symbol with the symbolic

debug (SD) option, undefined internal symbols for each element file will follow the normal map.

7. When the option list has been accepted, the LOAD subsystem loads the specified ROMs. If errors occur
during loading, a diagnostic is output through M:DO (and M:LO if M:LO is assigned to a different file.)

See section 2.2.4,5. diagnostics.

8. For any unsatisfied references to DCBs (F:alpha, where alpha is a name consisting of 1-8 alphanumeric
characters), the LOAD subsystem will build a DCB with default assignment to the user terminal. The
LOAD subsystem also requests specification of DCBs for which no reference occurs or for which the as-
signment is to the changed. Any FORTRAN DCBs for unit numbers other than 101-106 and 108 must be
specified. The DCB request and response has the format:

F: [n] =name,(account ", password)], option]... [, option’ CR
where

n specifies the FORTRAN unit number (for FORTRAN programs) or an alphanumeric DCB name of
up to 5 characters.
name specifies the alphanumeric name (1=11 characters) of the file f'o which the DCB is to be
assigned. A carriage return specifies default assignment to the user terminal.
account specifies the account of an existing file if the account is not the user's account. Account
may be up to 8 characters. The default is the log-in account.
password specifies the password of an existing file. Password is 1-8 alphanumeric characters.
option specifies one of three options: Options will be inserted into the DCB and may be monitored
by ASSIGN commands or procedure calls.
Function option A
IN specifies that the file is to be used for input only. When assigning an input
file on secondary storage, specify IN. Otherwise an attempt to read before
writing will cause the creation of a new file with the same name as the existing
file since the default assignment in all SIGMA loader is OUTIN, a scratch file.
ouT specifies that the file is to be used for output only.
INOUT specifies that the file is to be used as an update file.
OUTIN specifies that the file is to be used as a scratch file. OUTIN is the default.
Release option REL specifies that the file is to be released when program execution terminates.
The default is that the file will be saved.
List option L specifies that the file will eventually be listed on a listing device (FORTRAN pro-
gram only).
The Loader prompts until a carriage return only is entered.
9. The Load subsystem issues a message on the highest error severity leve! encountered.
SEV.LEV =n '
where n is a hexadecimal digit.

10. If the debug option was specified, the LOAD subsystem requests satisfaction of symbols.

a. The request and response for primary references has the format:
SATISFY EXTERNALS
4 name > value]®

where
name specifies a primary reference listed in the load map, 1-63 alphanumeric characters.
value specifies an expression of the form:

DEF name (+ hexadecimal constant) or

. hexadecimal constant
Three diagnostics may be issued
~-NAME ERROR. An external name is invalid.
—~CONSTANT ERROR. A hexadecimal constant is invalid.
-VALUE ERROR, The value field is invalid.

The Load subsystem prompts for a response until a carriage return is entered.

b, The request and response for internal references has the format:
SATISFY INTERNALS

*EF - file name

< symbol > value @@

where
symbol specifies an undefined symbol listed in the load map, 1-63 alphanumeric characters.
value specifies an expression of the form:

DEF name (+. hexadecimal constant)

symbol name (., hexadecimal constant) where symbol is an existing internal symbol
in the element file. If symbol name cannot be specified, a console message will be
issued. The only time symbol name is prohibited is when the combined size of the
LOAD subsystem, the loaded program, the internal symbol table, and the REF/DEF
stack exceeds the size of the on-line memory area.

+. hexadecimal constant
The Load subsystem prompts for a response until a carriage return is entered. The user may leave
any or all undefined references unsatisfied.
11. The execute inquiry and response has the format:
N
XEQ?{Y ‘or null } CR
S, address
where

Y or CRonly specifies yes, execute the program.

N specifies no, do not execute the program. Exit to the BTM executive.

2-6

S specifies execute the program using the address specified as the starting address.

address specifies either an external definition, optionally followed by a hexadecimal addend

value, or a signed absolute hexadecimal address beginning with a period.

12. The LOAD subsystem monitors the execution of the user program and responds to errors with diagnostics.

See section 2.2.4,5 diagnostics. The inquiry and response after a user strikes € has the format:

Y

any other response

PROCEED ? [

2.1.5 Loader-Constructed DCBs

See section 2.2.5,4. DCBs.

2.1.6 Map

See figure 2-4.

2,1.7 Diagnostics

1. See section 2.2.4,5. for loader diagnostics.

2. In batch mode, the following diagnostics may be output by the Monitor when bringing a program into core

storage for execution, running a load module.
a. ABOVE BUL. The program bias is greaterthan background upper limit.
b. ABS. CANNOT REL. The Monitor cannot relocate the program because the program is absolute.

c. BAD IF, AND, OR NAME. The name referenced on an IF, AND, or ORdebug control command

is invalid.
d. BAD LOC NAME. The name referenced as a location identifier is invalid.
e. BAD MOD NAME. The name referenced on a MODIFY debug control command is invalid.
f. BAD PMD NAME. The name referenced on a PMD debug control command is invalid.
g. BAD SNAP NAME. The name referenced on a SNAP debug control command is invalid.

h. BAD START NAME. The name on the RUN control command specified as the starting address is

invalid.
i. BELOW BLL. The program bias is less than background lower [imit.
i- 1O ERROR. An input/output error or IO ABN. abnormal condition has occurred.
k. NO LOAD MODULE. The load module named is not available.
I. LOC NOT IN SEG. The location referenced on a debug control command is illegal.

m. SEV. LEV. EXCEEDED. The severity level specified on the RUN control command was less than the

severity level of the load module.

n. STACK OVERFLOW. The program will not fit in core.
o. TOO MANY DBUGS. The number of debug control commands specified creates an overflow of the

one page of core allocated for debug tables,

2.1.8 Severity Level

See section 2.2.4,6. Severity Level.

2.1.9 Background Memory Layout

See figure 2-6.
2.2 [INTERFACES

2.2.1 LOPE Processor/LOAD Subsystem
Module CN705429, BTMLOAD, is conditionally assembled to produce either the LOPE processor for background

processing or the LOAD subsystem for on-line processing. The assembly parameter USER determines the version.

USER is set to 1 for the LOPE processor or to 2 for the LOAD subsystem.

2.2.2 Debugging LOPE
LOPE may be run under DELTA for debugging. LOPE may be executed under the RUN subsystem.

IRUN

LOAD MODULE FID: LOPE (:SYS)

2.2.3 Input
1. ROMs,

a. The loader converts ROMs output from a computer or an assembler into executable format. See the
BPM Reference Manual, 90-09-54E, for the format of the object module.

b. In on-line mode, when executing under the debug option, only the first seven characters of any symbol
are given in the symbol table built by the LOAD subsystem for the debug program. If symbols have
duplicate initial seven characters and length, only the first symbol encountered is retained. Since
the same restriction applies to element file names, element file names should be restricted to seven
characters when the binary input is created. :

2. Library Input. See figure 2.2 for the format of the library record.

3. Assign Record. In batch mode, CCI builds a record of all assign information encountered during a
job. The loader examines the record to see if any F: number DCBs have been entered. If the F:
number is a primary reference in the user program, the loader generates a DCB with default entries
for the name. The record is in the absolute area of secondary stroage and is accessed by the read

absolute calls. See the BPM Technical Manual for the formats.

2.2.4 Output
1. Load Module.

a. Lope procedures a load module. When a load module has been created, a IRUN control command
will cause the program loader, PRGMLDR, to access the load module file, to modify and/or to

relocate

2-8

the file, to lay the load module into core according to the specifications of the head and tree records,

and to transfer control to the start address, whereupon the program is "in execution".

b. A load module is a keyed file with the name specified on the LOPE control command. The default

name is the temporary IdL file. The keys and records of the load module are given in figure 2-1.

REF/DEF stack. The REF/DEF stack that is output as part of the load module has the same format as the
REF/DEF stack created by the overlay loader. See figure 2-2 for the format. Note that the internal
REF/DEF stack has a different format. See figure 2-12 for the format. The loader converts the REF/DEF

stack to the format of the overlay loader before writing out the stack.

Library. The library is a collection of ROMs for which no processing has been done. See figure 2-3 for

the format.

a. Record. Key = HEAD.

0 8 16 24 31
0 80 00 FF :\elz:'l:’e;(?:Bl::ytes in HEAD
1| flog | 1| Severity evel Sort oderess
2 TCB address (doubleword address) Mcodule bias (doubleword address)
3 Data (00) base (doubleword address) Procedure (01) base (doubleword address)
4 Static data (10) base (doubleword address) Next available page (doubleword address)
5 Maximum REF/DEF stack size Tree size

Figure :2-1. Load Module Format

b.

10

Tree Table. Key = TREE

31

Size of tree table-12

Segment name
in

TEXTC format

ROM pointer

Back link (displacement from TREE)

Forward link (displacement from TREE)

Overlay link (displacement from TREE)

00 size (number of doublewords)

00 location (doubleword address)

REF/DEF stack size

REF/DEF location (doubleword address)

01 size (number of doublewords)

01 location (doubleword address)

Expression size

Expression location (doubleword address)

10 size (number of doublewords)

10 location (doubleword address)

Used to monitor size of REF tables

The following records are built.

Key Record

00 REF/DEF stack

03 00 Control sections
05 01 Control sections

Note that the expression stack is not part of the load module since the stack is only needed to load

a load module with a ROM, a feature absent in LOPE.

Figure 2-1. Load Module Format (cont.)

2-10

0 7 1M 12 B 31

1 n | I E | TYPE|
2 VALUE

3 RESOLUTION
n

where:
n = number of words in this entry.
E =1, if the entry has a VALUE
TYPE =0 or 8 DEF

1 SREF

2 PREF

3orB Dummy Section
4orb Control Section
50r7 Forward Reference

VALUE = constant or address not a library
RESOLUTION =the resolution in which the VALUE is expressed. Resolution
is of the form:
0 16 31
Byte Half Word Double

If the VALUE is a constant, the RESOLUTION word is 0.

If the VALUE is an address, one and only one byte of the

RESOLUTION word is nonzero (viz., the appropriate byte = X'01'),

If the RESOLUTION assumes a form different from either of the above, the
value is of mixed resolution. (In this case the load module cannot be

relocated and is forced ABS.)

Figure 2-2. Format of REF/DEF Stack That Is Part of The Load Module.

2-11

Logical
record 1

23 45 78 15 16 2324 3

3 3 +
J T 1 T

(Number of records-1) *27-1

Last record Mode Format Sequence number Checksum Record size
indicator 11 100 1 1

q

Maximum of 104 bytes

of load information.

z ' Z

Logical record

3.

Logical record. Each record consists of 4 bytes of control information followed by a maximum

of 104 bytes of load information, 108 bytes, the equivalent of 72 card columns.
Control information.

a. Last record indicator is 000 for last record or 001 for not last record.

b. Mode is always 11, specifying that the loader is to read binary information.
c. Format is always 100, specifying object language format.

d. Sequence number is zero for the first record of the module and is incremented by one

for each subsequent record until the number recycles to zero after reaching 255.
e. Checksum is always X'FF'.

f. Record size specifies the number of bytes in the logical record. Record size is usually

108 bytes, X'6C', 27 words.
General description of :BLIB

a. For each ROM, declare extenral definitions, then declare external references and define
origin load items, then a special 02 load item for the library preceed the rest of the

load items.

b. The special 02 load item is followed by the declaration numbers of the external defini-

tions in halfword entries.

Figure 2-3. :BLIB Format for Each Page
2-12

c. The physical records are written a page at a time.

d. If a record does not fit into the last few words of a page, these words contain garbage

and the record begins on the next page.

e. If intermediate records are less than 108 bytes in size, LOPE writes 108 bytes anyway

but reflects the logical size in the byte count.

Figure 2-3. :BLIB Format for Each Page (cont.)

4. Load Map. If the map option was specified. by
the user, a load map is produced at the completion of loading. The load. map lists external definitions
with the address at which each external definition has been loaded. The map shows the location of the
beginning of all global symbols (DEFs), as well as DCBs. The map also lists unsatisfied external references
and unused or double definitions. See Table 2-1 for the abbreviations used. See figure 2.4 for a

sample load map.

Table 2-1. Load Map Abbreviations

Abbreviation Meaning
SREF Secondary reference.
PREF Unsatisfied primary reference (REF).
DEF External definition. The external definition was referenced and
found.
UDEF Unused definition. No external reference was made to this
external definition.
DDEF Double definition. More than one definition has been found for
5 this name. The first definition found has been used.
¢
1

2-13

01:27 JAN 01,'01 ID=0013-F00
JOB JOB,JOB
LOPE (MAP),(BI),(NOSYSLIB)

PREF COMLIST
PREF USECOM
PREF REPCOM
PREF I0SCU
PREF IOSERCK
PREF I0SEREC
PREF RE :ENT
PREF DCT1
PREF DCT4
PREF DCT7
PREF DCT17
PREF Y8
PREF 10Q4
PREF 10Q5
PREF 10Q8
PREF 10Q10
PREF 10Q11
PREF 10Q12
PREF ROOTSYM
PREF ROOTCNT
UDEF 5A00 O LOWEST LOC
UDEF 5A64 0 START
UDEF 63AA O PATCH
UDEF 6498 0 DPAK
UDEF 6498 0 CMIO
UDEF 64C1 O DPAKCU
UDEF 64C1 O CMCU
UDEF 6532 0 NENTSYM
UDEF 6533 0 SYMBEGIN
UDEF 653A 0 DRINIT
UDEF 66CC 0 OFFSET
UDEF 6A7D O DSNAP
UDEF 6DA2 O PACHSTRT
UDEF 6EEC 0O BEGIN
UDEF 6EED O DELINIT
UDEF 6F70 0 DL1
UDEF 6F7A'0 DL2
UDEF 6F84 0 DL3
UDEF 6F8E O DL4
UDEF 6F98 0 DL5
UDEF 6FFE 0 SNAPTBL
UDEF 7056 0O OLDPSD
UDEF 76AB 0 HIGHEST LOC
DEF 77D0 0 M:DO
DEF 77A0 O M:0C
DEF 7770 0 M:LO
DEF 7740 0 M:EI
Figure 2-4. Sample LOPE Map Printout

2-14

5.

Diagnostics.

a.

General Diagnostics.

M

(2

©)
(4)

(5)

(©)

***k WARNING *** name NOT A USABLE DCB. The DCB named cannot be used as built because
LOPE must build afl DCBs.

ERROR IN ABOVE DCB DESCRIPTION. In on-line mode, an error exists in F: input from the

user.
ILLEGAL LOAD OPTION. In on-line mode, an option specified by the user is invalid.

ILLEGAL LOPE OPTION. In batch mode, the LOPE control command submitted by the user

contains an error.

TOO MANY DCBs. The number of DCBs referenced by the user exceeds the number of DCBs
that can be fit into two pages (1024 words) of core storage.

TOO MANY EFS. The number of element files specified by the user exceeds the number of ele-

ment files that can be fit into an internal element file list built by the loader.

Load Diagnostics. Each load diagnostic is followed by an explanatory message from section c to in-

dicate at what point in the load process the error occurred.

(M
(2)
@)

(4)

)
(6)
@)

(8)

CHECKSUM ERROR. A bit (or bits) was dropped when the specified record was punched or read.
CONFLICTING DSECT. All declared COMMON areas must be the same size. (common) SIZE

ILLEGAL ORIGIN. The ROM data contains an illegal ORG directive that caused an attempt

to load outside the available area.

ILLEGAL ROM DATA. The Relocatable Object Module being loaded contains illegal object

language.
NO ELEMENT FILE. The specified element file cannot be found.
NO LIB FILE. The specified library cannot be found.

SEQUENCE ERROR. The sequence of the record following the specified record is not equal to
the current sequence plus one and the current record is not the last record in a ROM or the first

record in a ROM is missing.

STACK OVERFLOW. There is not sufficient room in core for the loader, the program, and the

loader stacks.

Explanatory Messages. One of these messages follows each of the load diagnostics in section b to

indicate at what point in the load process the error occurred. In the messages XX and YY are

hexadecimal numbers.

M

LOADING FROM BI The loader was processing
SEQ NO XX ROMs through M:BI when
OVERALL ROM NUMBER YY an error occurred in the
XXth record of the YYth
ROM ecountered in the entire load process.

2-15

(2) LOADING ELEMENT FILE OR GO The loader was processing
EF — name SEQ NO XX ROMs from the file "name"
OVERALL ROM NUMBER YY when an error occurred in
the XX th record of the YYth ROM encountered in the entire load process.

(3) PROCESSING LIBRARY The loader had processed
account SEQ NO XX all ROMs in the specified
OVERALL ROM NUMBER YY element file and was pro-

cessing in the account listed when an error occurred in record XX of the YYth ROM encountered

in the entire load operation.
d. On-line Diagnostics for Executing without the Debug Option:

(1) DECIMAL FAULT
(2) FIXED OVERFLOW
(3) FLOATING FAULT
(4) ILLEGAL ARGUMENTS TO CALL
(5) ILLEGAL CALL
(6) MEMORY PROTECTION VIOLATION
(7) NONEXISTENT ADDRESS
(8) NONEXISTENT INSTRUCTION
(9) PRIVILEGED INSTRUCTION
(10) PROCEED
(11) UNIMPLEMENTED INSTRUCTION
(12) USER EXIT
(13) STACK VIOLATION

Severity Level. A non-zero severity level is printed at the end of the load process. The severity level
is the maximum of any severity levels inherited from the ROMs and of any severity levels generated by
the loader. After printing the severity level, the loader compares the value with the maximum severity

level specified by the user and aborts processing if the value exceeds the maximum.

Loader~Generated Severity Levels

Type of Error Severiz

PREF 7

DDEF 4)
REF load table exceeded F

Internal Symbol Table. In on-line mode if the debug option is specified, the Internal Symbol Table is
created for the debug program, DELTA. See figure 2-5 for the format. Only the first seven characters
of any symbol are used. If symbols have duplicate initial seven characters and length only the first symbol

encountered is retained.

2-16

Location Symbol - code = 01

Cc

on] 1|31 5] 5%
S 4 55 S¢ | S7
t] res value
where
CT is a six=bit field containing the character count of the original symbol.

Si are the first seven (7) characters of the symbol. Symbols with fewer than

seven characters are zero filled.
t is a five-bit field where the values are:

00000 - instruction

00001 - integer

00111 - EBCDIC text (also for unpacked decimal)
00010 - short floating point

00011 - fong floating point

00110 ~ hexadecimal (also for packed decimal)
01001 - integer array

01010 - short floating point array

01011 - long floating complex array

01000 - logical array

10000 - undefined symbol

res is a three-bit field representing the internal resolution. The values are:
000 - byte
001 - halfword
010 - word

011 - doubleword

value Location symbols are always represented as a 19-bit byte resolution value.

Constants - Code = 10

C
10 I S] 52 53
S4 55 56 S7
value
where

CT and Si have the same meaning as above.

value is the 32-bit value of the constant.

Figure 2-5. Internal Symbol Table
2-17

2.2.5 Loader-Generated Tables

See Figure 2-6 for memory allocation, including the position of the tables, at execution time.

1. Task Control Block. See Figure 2-7 for the format. The TCB resides in the 00 area.
DCB Name Table. See Figure 2-8 for the format. The DCB Name Table resides in the 01 area.
Tree. A copy of the tree table is placed at the beginning of the 01 area as well as being recorded in the

tree record. See figure 2-1 for the format.

4. DCBs.
a. The loader builds a DCB for any F: or M: primary reference. In batch mode, LOPE always builds
on M:DO DCB.

b. All loader-generated DCBs are 48 words long. The first 22 words.(0-2|) are standard and allocated
for the fixed portion of the DCB. Each variable-length parameter (words 22-40) is preceded by a
control word and allocated to allow, in addition to the control word, three words for file name,
two words for account, two words for password, three words for INSN (SN), and three words for
OUTSN (SN). Words 41-48 are reserved. Default information is placed into recognized DCB names.
See Figure 2-9 for the recognized DCBs and defaults.

c. Ifa file is opened in the output mode through any of the M:DCBs in Figure 2.8 except M:C, a flag
is set in the Job Information Table (JIT). 1If the DCB is not reassigned before the DCB is opened againin
output mode during the same job, all records output through the DCB are appended to the end of the

file =~ file extension occurs.

Background lower limit

Monitor Write=Locks of 01 TCB DATA (00)

Program Sections

« -— Page Boundary

[TREE)
DCB Tables g PROCEDURE (01)
Monitor Write=Locks of 11)
Loader-generated DCBs y

«— Page Boundary

Debug Tables (1 page) - Page Boundary

' . M:GP
Monitor Write=Lock of 01) User's Dynamic Area | M:GCP
(may be changed by M:SMPRT) Blank COMMON
«— Page Boundary
Monitor Write-Locks of 11 [File Index Buffers

" Background upper limit

Figure 2-6. Background Memory Layout, LOPE Processor

2-18

The fields of the TCB are as follows:

TSTACK is the address of the current top of the user's temp stack.

TSS indicates the size, in words, of the user's temp stack.

TSA is the address of the temp stack used by the library error package.

TSASIZ indicates the size, in words, of the temp stack used by the library error package.

10

11

12

13

14

15

TSA

ERT

TSTACK

0 TSTACK

TTS 0 0

These words for use by a processor

0 TSA
TSASIZ 0 0
ERTSIZ ERT
ERTSIZ-2 TSA+]
0 DCBTAB
0 TREE
0| SSW
For use by a processor
XSL specified on !RUN control command
For use by Monitor
Library error tamp stack
Library error table
User’s temp stack
141516 2526 3

} TSASIZ —
} ERTSIZ —

} 1SS

Figure 2-7. Task Control Block Format
2-19

ERSIZ indicates the size, in words, of the error table used by the library error package.
ERT is the address of the error table used by the library error package.

DCBTAB is the address of a table of names and addresses of all of the user's DCBs. This table has the form

shown in Figure 2-8.
TREE is a pointer to the location of the user's overlay structure.
SSW contains the user's sense switch settings (bit 26 contains the setting of switch 1, etc.).
On transferring control to a user's program or to a processor, the Moﬁifor communicates the TCB address through

| regi . i ,
general register 0 Figure 2-7. i Task Control Block Format (continued)

DCBTAB —»- > >
entry, entry, entry,
enfryz eni'ry2 i enfry2
entry i entryi entry ;
LINKADR LINKADR [0————0[*
Notes: 1. Each entry contains a variable length DCB name and DCBLOC word as follows:
TEXTC
R
Name of DCB
DCBLOC

2. LINKADDR is the location of another block of the DCB table. If LINKADDR contains
zero, the current block is the last one of the DCB table.

3. DCBLOC is the address of the first word of the DCB.

Figure 2-8. DCBTAB (Name Table)
2-20

DCB Name Function Record Byte Size Operational Label
M:C Input 120 Cc
M:0OC Input/output 85 ocC
M:LO Output 132 LO
M:LL Output 132 LL
M:DO Output 132 DO
M:PO Output 80 PO
M:BO Output 120 BO
M:LI Input 120 LI
M:SI Input 80 SI
M:BI Input 120 BI
M:SL Output 132 SL
M:SO Output 80 SO
M:CI Input 120 ClI
M:CO Output 120 cO
M:AL Output 80 AL
M:EI Input 120 El
M:EO Output 120 EO
M:GO Output 120 NO
F:101 Input 0 ocC
F102 Output 0 oC
F:103 Input 0 PR
F:104 Output 0 PP
F:105 Input 80 SI
F:106 Output 120 8O
F:108 Output 132 LO
Figure 2-9. Loader-Constructed System DCBs

2.2.6 LOAD Subsystem

1. The LOAD subsystem is a two-level subsystem. Both levels use the same memory area so both do not run
concurrently. For each terminal in the system an area of secondary swap storage is allocated for each
level. The LOAD subsystem is maintained in subsystem storage as the LOAD subsystem is time-sliced into
memory until the job step is complete. After the program is loaded by the LOAD subsystem, an image of
the terminal user's program is maintained in user storage. After the LOAD subsystem transfers execution to
the user program, the LOAD subsystem maintains effective control by monitoring all abnormal conditions
such as a trap. The BTM Executive keeps track of the level applicable to each job. The Executive always

interrupts a user program and gives execution to the LOAD subsystem if an abnormal condition oceurs.

2-21

2. The LOAD subsystem follows the rules for a BTM subsystem.
a. The first 4016 locations contain specified data. See Figure 2-10 for the format.
b. The Load Subsystem has a Task Control Block (TCB). See Figure 2-7 for the format.
(1) The TCB specifies no temp stack for the LOAD subsystem.
(a) The address of the current top of the stack is STACK, a label that reserves the number of
words specified by the value SZSTACK, zero.
0 Word address of the Task Control Block (TCB) for LOAD
1 0
2
3
4
5
6
7
8 0
9 Word address of normal entry point, ENTRY. Entry point for a PROCEED is ENTRY + 1
A 0
B
C
D
E
F 0
1.0 Reserved for Monitor use.
3F

Figure 2-10. Standard First X'40' Words of LOAD Subsystem
2-22

f.

(b) The stack size, in words, is the value SZSTACK, zero.
(c) The stack word count is zero.

(2) The TCB specifies no temp stack for the library error package.
(a) The address of the stack is zero.
(b) The stack size, in words, is zero.
(c) The stack word count is zero.

(3) The TCB specifies no error table for the libarary error package.
(a) The table size, in words, is zero.
(b) The table address is zero.

(4) The TCB has the address of the DCB Name Table, MYDCBTAB.

The LOAD subsystem has a DCB Name Table with entries for all DCB used. See Figure 2-8 for

the format.

(1) The first link address points to the last word of the table. The last word of the table, also a
link address, is zero to indicate the end of the table.

(2) Entries are given for M:BlI, M:LI, M:DO, M:LO, and F:X1.

The LOAD subsystem has all DCBs used by the subsystem assembled with protection type 00.

Upon entry, the LOAD subsystem has access to data.

(1) Register 1 contains the COC line number in binary.

(2) Registers 4 and 5 contain the EBCDIC login account designation, left justified and blank filled.

(3) Register 2 contains the terminal job entry flag. 0 means that the console is excluded from the

system and 1-F indicates the maximum priority.

(4) Register 3, byte 0, contains the batch authorization flags from the BTM job information
table, AJIT.

(5) Registers 13-15 contain the EBCDIC login name designation, left-justified and blank filled.

The LOAD subsystem uses BTM system calls to perform system control and memory management

functions.

(1) CAL3, 14 returns the maximum number of pages that can be allocated. This value is used in

allocating the dynamic data area.

(2) CAL3,11 informs the BTM Executive of the new configuration whenever the amount of space

used in the dynamic data area changes.

(3) CAL3,4 loads the debug program, DELTA, and transfers control to DELTA.

2-23

(4) CAL3,7 swaps a page between the user area and the subsystem areq to allow LOPE to monitor

execution of the user program (to determine why control was returned).

(5) CALS3, 6 returns control to the BTM Executive.

2.2.7 Debug Program, DELTA
The LOAD subsystem issues a call to load DELTA and to transfer control to DELTA if the user has specified execution

under the debug option. DELTA accesses data indirectly through the first word of the last page of memory which
LOPE has set to point to the global symbol table location and size, user program starting address, internal symbol
table and size, and last word of user program (following DCBs). See Figure 2-5 for the format of the Internal
Symbol Table and section 2.2.4,7 for the description of the table. See the DELTA documentation for a diagram

of memory following DELTA initilization after an on-line load.

2.2.8 Accounting

The loader is charged until the loader gives control to the user program. The instruction issued just before control

goes to the user program causes the user to be charged.

2.2.9 Monitor
1. The loader access the job information table, JIT in batch mode, or AJIT, in on-line mode, to obtain
information about the current job. For example, in on-line mode, the loader obtains the log=in account

from AJIT if a password with no account is specified in a DCB assignment.

2. The loader uses a CAL1,9 9 to have accounting properly allocated. To change accounting from pro-

cessor to user, the loader issues the call immediately before transferring control to the user program.

2.2.10 CClI

CCI builds the assign record which the loader reads. See section 2.2.3,3 for the description.

2,2.11 Stacks ‘
1. To translate object modules into an executable form, the loader processes load items, which constitute
the object language. To obtain all information about control sections, dummy sections, external defini-
tions, external references, and forward references, the loader combines data from different types of load
items by retaining data in stacks. The loader forms five stacks: the declaration stack; the REF/DEF stack;
the expression stack, the forward reference stack, and the temporary storage stack. Note that LOPE has

different stacks and a different format for the stacks than the overlay loader.
2. Declaration Stack. See Figdre 2-11.

a. When processing a declare load item, the loader builds an entry for the item in the declaration stack.
The ROM has assigned declaration numbers, created declare load items, to all control sections,
dummy sections, external definitions, and external references. At the end of the module, the loader

clears the stack since the declaration numbers apply only within a module.

2-24

7.8 31
0 Type 0 or Size
Displacement into REF/DEF stack or address of CSECT or DSECT (Byte resolution)
where:
Type
Bit 0 DEF X'80'
Bit 1 PREF X'40'
Bit 2 SREF X'20'
Bit 3 Dummy section (Size applies) X110
Bit 4 Control section (Size applies) X'08'
Size specifies the size of a control section or dummy section. The first 2 bits of Size are the
protection type.
Figure 2-11. Declaration Stack
b. Given a declaration number, the loader can locate the corresponding stack entry by position in the

stack since the ROM has assigned declaration number consecutively. The loader must be able to
locate the item by declaration number in order to evaluate expression load items, which refer to

declared load items by number.

The two word stack entry contains the type and a pointer to the corresponding entry in the REF/DEF
stack that is being built to contain information about the item. For a control section, after the base
address and size are available, these values are added to the declaration stack entry, with base

address replacing the pointer to the REF/DEF stack.

REF/DEF Stack. See Figure 2-12.

d.

When processing a declare load item, the loader searches the REF/DEF stack for a corresponding entry
and builds an entry if the entry does not exist. In this way the loader creates an entry for each con-

trol section, dummy section, external definition, and external reference.

The REF/DEF stack contains information about an entry. In batch mode, LOPE converts the REF/DEF
stack format to the REF/DEF stack format of the overlay loader and outputs the stack as part of the
load module so that symbolic debugs may be used during execution.

The variable-length entry contains the number of words in the entry, type, resolution, value of DEF

or a pointer to the expression stack link, and the name of the item in TEXTC format.

2-25

0 7 8 11 12 14 15 31

EVAL Resolution
NUMBER of words OD entry
in entry type Size if control section or dummy section

Value of DEF, address of control section or dummy section, or pointer to
Expression stack link (Value of DEF is an address or constant),

TEXTC name
where:
type
Bit 0 Evaluated flag 1 =yes, 0 =no or DEF X'80'
Bit 1 External reference SREF X'40*
Bit 2 PREF PREF X'60*
Bit 3 Dummy section X0

* DDEF X'90*

More than one indicator may be on. For example a DEF that satisfies a primary

reference is a X'EO',

Figure 2-12. REF/DEF Stack

4. Expression Stack. See Figure 2-13.

a.

To process a define load item, the loader obtains the expression control bytes following the item
(which refer to constants, declaration numbers, and forward reference numbers), builds an expres-
sion (using the declaration stack if necessary), places the expression in the expression stack entry
for the item, and attempts to evaluate the expression. If the loader cannot evaluate the expression,
the loader chains the entry to an entry in the REF/DEF stack if the expression needs the value of an
external referencé or to an entry in the forward reference stack if the entry needs the value of a

forward reference.

If the loader can evaluate the expression, the loader places the value of the expression in the desti-
nation, a REF/DEF stack entry if the expression defines an external definition, a forward reference
stack entry if the expression defines a forward reference, or the core image if the expression is a core
expression. Note that the expression stack is not part of the load module since the stack is only

needed to load a load module with a ROM, a feature absent in LOPE.

2-26

0 7 8 15 16 23 24 31
Number of words E Displacement to first Type of destination Expression
in entry \Y value word 08 - DEF A0 = core control byte 1
A 04 - Field
L 00 - origin
10 - FREF
40 - Define Start |
. * Expression %
1 control byte n
Destination of value of expression
Additive value 1
Additive value n
Figure 2-13. Expression Stack
c. The variable length entry contains the number of words in the entry, the evaluated flag, the
displacement to the first value word, the type of destination, the expression control bytes, and the
destination of the value of the expression.
5. Forward Reference Stack. See Figure 2-14.

a.

In processing expressions, the loader finds expressions involving forward references. The expressions
refer to forward references by random numbers. The loader searches the forward reference stack for
a corresponding entry and builds an entry if the entry does not exist. If the load item is a DFREF,
define forward reference, the loader removes the entry from the stack as soon as the forward refer-
ence is defined because the forward reference number is closed when defined. A new expression
involving the number refers to a new forward reference. If the load item is a DFREFH, define forward
reference and hold, the loader keeps the entry in the stack until module end. At module end, the

loader clears the stack even if the forward reference has not been resolved. The defining expression

refers to a primary reference or a dummy section.

The loader uses the forward reference stack to keep track of the forward reference number until the
entry is defined. When the entry is defined, the value is placed in the expression stack entry that

needs the value.

The two word entry contains the forward reference number and a pointer to the expression stack link.
If the entry is a forward reference and hold, the entry contains a defined flag. When the flag is

set, the value of the forward reference replaces the pointer to the expression stack.

2-27

01 31

DEF . e
Forward reference number - a combination of module no. and forward reference no.

Pointer to Expression Stack link or value of defined Forward Reference and Hold load item

where:

DEF is 1 if a forward reference and hold load item is defined.

2.2.12

Figure 2-14. Forward Reference Stack

The temporary storage stack contains temporary entries. A minimum fixed size is kept to allow for non-

recursive use without checking for stack overflow.

The stacks are allocated at the top of the common dynamic area and grow downward. See Figure 2-15.
The sum of the initial sizes is the value SUMSIZES, 3840 bytes. The size of the stacks vary depending

on the usage. The stacks expand as entries are added. Since the entries are referenced indirectly through
the stack pointer, the actual position of the stack in core may vary. The stacks may be moved around to
make more stack space available from the dynamic data area. The stacks may also be compressed to
redistribute unused space in one stack to another stack. The subroutine PRESSTK collapses the stack space
if possible and the code at STK OVF expands the appropriate stack if an overflow occurs. Code using the
stacks checks for overflow after pushes and call STK OVF with the amount of space needed as an argument.

A certain amount of space is left in the temporary stack for non-recursive use.

See Figure 2-15 and 2-16!for the labels associated with the stacks and the position of the stacks in core.

Use of Memory

In batch mode, LOPE issues a get-page call to request the maximum number of pages available. In on-
line mode, the FOAD subsystem issues a CAL3, 4 to find out the maximum number of pages that can be
activated. The loader begins at the low end of the dynamic data area when processing the library option
or building the core image and allows the library buffers or core image to extend upwards. The loader begins
at the high end of the dynamic data area for the stacks and allows the stacks to extend downward. See
Figure 2-16. Whenever the amount of dynamic data area used increases, the loader issues a CAL3, 11

to inform the BTM Executive of the new configuration so that swapping will be correct and efficient. If
the library buffer or the core image overlaps the temp stack and space cannot be removed from the stacks,

processing is aborted for lack of core.

When the execute option is specified, the loader uses the set memory protect call to change the protec-
tion type of the 01 area to 00 so that the loader can store into this area when creating the core image of

the user program.

2-28

Stack pointer

Stack Doubleword Base Initial Size (Bytes)
Declaration DECLSTK DECLBAS DECLSIZ = 128
REF/DEF RFDFSTK RFDFBAS RFDFSIZ = 1024
Expression EXPRSTK EXPRBAS EXPRSIZ = 2048
Forward reference FREFSTK FREFBAS FREFSIZ = 312
Temporary storage TSTACK TEMPBAS TMPSIZ = 128

SUMSIZES = 3840

Library Processing
BLKBUF contains the address of a one page buffer used to hold the physical library record.
OBUF contains the address of the buffer for the logical library record.

DYNDATA contains the address of a one page buffer used to store declaration numbers of

external definitions in halfword entries.
The page after the address in.DYNDATA is a buffer in which declare reference and define origin
load items are stored until declare external definition load items have been placed in the
library record.
Memory Allocation

LDDATA +1 is the lower limit of the progrom..

LDDATA +2 is a word containing the upper limit of the dynamic data area.

MAXLOC is the address of the highest location loaded.

BACORE is the byte address of the next section to be allocated.

LOC is the current value of the location counter.

On-line Mode
USERSIZE is the number of available pages.
00SIZE . is the number of program data pages in the LOAD subsystem.

01SIZE is the number of program procedure pages in the LOAD subsystem.

On-line Mode-Debug Option
WPADDR is the address of the window page.
WPNUM is the page number of the window page.

ISTBASE is the address of the Internal Symbol Table.

Figure 2-15. Labels used in Allocating Memory
2-29

Dynamic Data Area

Batch

LDDATA +2
i A
WPADDR} Window page for DELT
ISTBASE 'c
{ O
Declaration P
DECLBAS Stack E
N
: J
$ Forward Reference M ,
FREFBAS Stack (%]
N
Expression =
< v o
EXPRBAS ¢ Stack 4
N
REF/DEF 5
N
Temporary <
7 Storage z ?
TEMPBAS . Stack N
2
£
283 > Available space in dynamic data area >
SRR [
Available space
Buffer for library processing. (Store declare
reference and define origin load items)
MAXLOC
Buffer for library processing. (Store declara- § §
tion numbers for DEFs in halfword entries ?°
DYNDATA — : MAXLOC
g0
]
Qo
BLKBUF1 o ° DYNDATA) On-line
Buffer for library processing. (contains B S
logical record) e6°
BLRBUF BLKBUF
LOAD subsystem

As the core image is built upward in the dynamic data area, MAXLOC increases. LOC, the current
value of the load location counter is checked to make sure LOC remains below TEMPBAS. If space

cannot be mede available, processing is aborted.

Figure 2-16. Layout of Memory after Initialization
2-30

2.2.13 Example

1. Sample Program

A sample program was assembled under the METASYM processor.

1

2

3

4 01 00000 6A900000 X START
5 01 00001 00000008 c2

6 02 00000

7 02 00000

8 02 00005 C0000Q0FF A AB1

9 02 c0006 ZAP
10 01 00000

CONTRBL SECTION SUMMARY! Qi 00002 PT O

2. ROM

SYSTEM
DEF
REF
BAL,9
DATA
CSECY
RES
DATA
EQU
END

0z 00006

SIG7FOP
APy

AB2

AB2
ZAP+2

o]

5
X'FF
s
START

Pr 0

A load-item=-by-load-item interprefation (@ ROMBUST) of the ROM for the sample program was made. The

interprefation of the load items is in the order in which the items were output by the METASYM processors.

Note that each load item is listed, in hexadecimal, on the line above the description.

ROMBUST of Sampte Program
RECORD waw RECBRD NUMBER! ©

RECBRD TYPE: LAST, MBDE: BINARY, FBRMAT: 8BJECT LANGUAGE.

SEQUENCE NUMBER 0O
CHECKSUM! 200
RECBRD SIZE! 46

0303C1ic2F

DECLARE EXTERNA| pEFINITIBN NAME (3 BYTES) NAME! AR\%

0503C1C2F2

DECLARE PRIMARY REFERENCE NAME (3 BYTES) NAME! AR?

0c000008

DECLARATIBN NUMBER! 1

DECLARATIGN NUMBER1 2

DECLARE NBNSTANDARD CONTREL SECTIEGN DECLARATIAN NUMBER: 3

ACCESS CBDE! FULL ACCESS. SIZE 8 Xr1g!t

ocoo0018

DECLARE NBNSTANDARD CANTReL SECTIGN DECLARATIAN NUMBERS &

ACCESS CBLE! FULL ACCESS. SIZE 24 xt18!

0A010100000014200402

DEFINF EXTERNAL DEFINITION

NUMBER

ADD COBNSTANT! 20 X114

ADD VALUE OF DECLARATION (BYTE RESALUTIEN)
NUMBER &

EXPRESSION END

2-31

os200302 . o ——

BRIGIN

ADD VALUE OF DECLARATION (BYTE RESOLUTION)
NUMBER 3 __ e — —
EXPRESSION END

826A900000

LOAD RELOCATABLE (SHORT FORM). RELOCATE ADDRESS FIELD (WORD RESBLUTIGN)
RELATIVE 78 DECLARATISBN NUMBER 2

THE FOLLOWING &4 BYTES! X'6A900000'

8400000008
LBAD RELBCATABLE (SWORT FERM), RELBCATE ADDRESS FI1ELD (WBRD RESSBLUTION)
RELATIVE T8 DECLARATION NUMBER &

THE FBLLBWING 4 BYTES! X18'

040100000014200402
BRIGIN
ADD CONSTANTI 20 X144t

ADD VALUR OF DECLARATISBN (BYTE RESBLUT!BN)
NUMBER &
EXPRESSISN END

44000000FF
LOAD ABSBLUTE THE FOLLOWING & BYTES1 X!000000FF!?

00220302

DEFINE STARY

ADD VALUE OF DECLARATISN (WORD RESSLUTIEN)
NUMBER 3

EXPRESSION ENp

OE00Q
MBDULE END

3. Load Module
Using LOPE to load the sample ROM, a load module called TARGET was created.

2-32

Target Load Module

HEAD
0coco ROCOFF18

C7E3CIp9C7CRE3CO
ccoco 05000000
ococ8 03CiC2F
coo1lo cRC8CSC?
oco1l& 0306C340

O7E3CIDOC7CBEIC3
0c000 00C06623
00008 00146614
0C010 THRU 0QO0SF
00000000
0C060 00000000
oco68 c000C000
00070 THRU OOYFF
00000000

O07E3CIN9C7CSE305
0c000 0000N000
0co08 01003300
ocolo D6404040
0CO18 THRU PNPO3CF
nOCON000
0c30bo0 20CCN003
0c3D8 00000C00
0C3EQ 000006C00

0C3E8 00C0NC00
0C3FO 07C00003
003F8 nCCO0000

TREE
00000 nocooooC
0co08 c2003400

ROCCHEAG

00C1AF 40
04c?200CO
CBCSE2F3

00400000
00106610

000Cc00Co
00c00000
ooccooco

00000000

00c00000
00¢30000
00ccéBnNd

00cc0o0c0
00c80005
00c000n0
00c000CY

00no00C0
00900000
00ceoceo

06F3C1INS
00c00000

33003300

0100C000
CO007A64
40D3D6C3

0000000
COCO&ROE

¢o00co00
©000C000
£000C000

¢0000000

coooenoC
02003400
20000000

0000C000
CAOCCOO00
NO0O0ERFB
¢ccoocooeo

n2000002
c0000000
€©200C000

C7CSF300
00003600

33003400

04D47ACH
01C00000
06C00000

00000000
00000000

00000000
00000009
00COOOFF

00000000

O7E3C1D9
00000000
00000002

00000000
00000000
00000000
00000000

00000000
00000000
00000000

40404040
00000009

36C03600

Dé40O4040
03CiC2F?
00019800

00C00000
00000000

00C00000
6A900000
elofofelo]olels]

00000000

C7CSE305
00003600
00000000

c0000000
00000000
00000000
oocooo0n

Cc0C000Co
08C10003
00C00000

00000009

n019c00C

04000000
06000000
01000000

no000000
00000000

n0000000
0000666E
0n000C000

00000000

40404040
00000000
0000C000

00000000
8000C011
60000000
00000000

03000002
0000C000
0000C000

00000000

0001994AC
O0NIAFFC
CAD3DéF 6

C000660F
00000000

00000000
cooo0000
00000000

C0000000

©0000000
c0006812
00000000

c0000000
C0006BF 6
C0000000
01000003

00000000
©0000000
©0000000

¢1003300

01000000
01000000
CSE2E340

000A0000
00000000

00000000
00000000
00000000

00000000

00000000
O4D47ACH
00coco00

00ooco00
00000000
00000000
00000000

00000000
0000C00C
0000c00C

0019000¢

#0

#

#2

3

#4

Declaration Stack

b — —

0 7,8 | | 3}
Type Size
08 0
Address for CSECT 0
Type
80 0

Displacement into REF/DEF stack

7

Type

L A0 — e 0]
Displacement into REF/DEF stack .

Type Size
08 8

Address for CSECT

Type Size

08 8

Address for CSECT

REF/DEF Stack

0 78 11121415 1 31
wc Type
04 60 |res. 0
T - Value—_—__—
(¢}
TEXTC name
(M:DO)
wc Type
03 80 (res. 0
Value

TEXTC name (AB2)

DEF

PREF

Expression Stack

0 7,819 1412 1516 23124 31
wcC CB1
05 08 01
[ca2 T « csa -
20
destination 4
14

CSECT address from declaration #4

destination

cm
00 —

}

CSECT address from declaration #3

wC CB1
05 _ 00 o1 |
CB2 CB3
20

destination
B R .
CSECT address from declaration 4
wC CB1
04 22

T caz
02
destination | STTADR
CSECT address from declaration #3

o

$ define ABI

» define origin

/\a

) define origin

define start
address

$590044 poo Bulnp saiyuy 3opyg ajdwpg “§

2.3 OPERATIONAL OVERVIEW

2.3.1 Description
1. Entry.

a. The starting address for the loader in ENTRY, which branches to SIGSALS.

b. The instruction after ENTRY is the entry point for a PROCEED command.

c. The instruction after USERGO is the entry point for return from execution of a user program.
2. Exit.

a. The code after COMPROM in the Library Module, PERMLIB, issues a CAL1,? 1 to exit from the
job step.

b. In batch mode, after building a load module, the code after EXPNDLOP in the Execute Module
issues a CAL1,9 1 to exit from the job step.

c. Inon-line mode, after setting up to save files, the code after SMALLER in the Execute Module
issues a CAL3,6 0 to return to the BTM Executive.

d. In batch mode, if executing the program, the coce after $STTADR in the Execute Module transfers
control to the user program by branching to the address in STTADR.

e. Inon-line mode, if executing the program with the debug option, the code after DELTA in the
Execute module issues a CAL3,4 0 to load DELTA and to transfer control to DELTA.

f. In on-line mode, after executing the program without the debug option, NORMRT in the Execute
module issues a CAL3, 6 0 to return to the BTM Executive.

g. If the job step cannot be continued, the code after ABORTIT issues, in batch mode, a CAL1,9 3 to
abort the job or, in on=line mode, a CAL3,6 O to return to the BTM Executive.

3. In the start module at SIGSALS, do initial processing: read the control input supplied by the user and
save data about the options specified. If the library option was specified by the user, go to the Library
Module, PERMLIB. Otherwise go to the Loader Module, LDR. In the Library Module, create the user
library, :BLIB, in the current account and issue a CAL1,9 1 to exit from the job step. In the Loader
Module, LDR, load all ROMs. In the Endload Module, ENDLOAD, print a map, build the DCBs, build
a DCB Name Table and a Task Control Block, TCB. If in any of these modules an error occurs, branch to
one of the print error entry points, TOMNYDCB, TOOMANYEF, or PA_, and, in batch mode, abort
the job or, in on-line mode, return to the BTM Executive. In the Execute Module, in batch mode, if
the load module option was specified by the user, build a load module and issue a CAL1,9 1 to exit from
the job step. In batch mode, if the execute option was specified by the user, transfer control to the user
program. In on-line mode, if an execute option was not specified by the user, set up to save the files
and issue a CAL3, 6 0 to return to the BTM Executive. In on-line mode, if the debug option was specified
by the user, load and transfer control to the DELTA subsystem. In on-line mode, if the execute option was

specified by the user, monitor execution of the user program and issue a CAL3,6 O to return to the BTM

Executive.

2-35

2.3.2 ' Flowchart
See Figure 2-17.

2.4 MODULE ANALYSIS

2.4.1 Start
‘1. Module Name. SIGSALS.

2. Purpose. Perform initial processing. Read the control inpui supplied by the user and save data on the

options specified.

3. Entry.

a. ENTRY is the initial entry point for the loader. When the LOPE processor or the LOAD subsystem is
invoked, the processor/subsystem is loaded into core and control is transferred to ENTRY. ENTRY
branches to SIGSALS.

b. In batch mode, the LOPE confrol command must be read. In on-line mode, control input must be
entered.

c. Inon-line mode, data is available to the subsystem.
(1) Register 1 contains the COC line number in binary.
(2) Registers 4 and 5 contain the EBCDIC login account designation, left-justified and blank filled.

(3) Register 2 contains the terminal job entry flag. 0 means that the console is excluded from the

system and 1-F indicates the maximum priority.

(4) Register 3, byte 0, contains the batch authorization flags from the BTM job information table,
AJTT.

(5) Registers 13-15 contain the EBCDIC login name designation, left-justified and blank-filled.
4. Exit.

a. The normal exit is to the Library Module, PERMLIB, if the library opl'ioﬁ has specified by the user
or to the Loader Module, LDR, if the library option was not specified by the user.

(1) The exit is taken after initial processing is complete.
(2) Certain fields have been initialized. See Figure 2-16 for the layout of memory.
(a) DCBs.

(1) In on-line mode, the default assignment of M:BI to the temporary file BOTEMPa,

where a is the COC line number in binary, has been made.

(2) In on-line mode, if the debug option was specified, an intermediate file, the name of
which is based on the line number, has been opened. The buffer for the intermediate
file will be used as the window page by the debug program. DFLAG, the debug flag,

has been set.

'2-36

Start Module. Do
initial processing.
Read user control
input and save data

Initial
entry
?

on options.
Library Medule.
Create the user
library, :BLIB,
in the current
account.
Loader Module.
Load all ROMs. yes
no
yes
no
End Load Module
Print a map, build
the DCBs, build a
DCB Name Table,
and a Task Control
Block.
Error? yes | Output message.
no
Error exit.
Execute Module.
Depending on options
and entry points, build

load module, set up to
save user program, or
provide for program
execution.

Exit

Figure 2-17. Flowchart of Overall Processing

2-37

b.

(b)

(c)

(d)
(e)
(f)

(9

(h)

(3) In batch mode, the job id from the Job Information Table, JIT, has been used to create
the default file name for the M:LM DCB (the temporary load module file), the GO file

name, and the name used to access the temporary assign file.

(4) In batch mode, if the load module option was specified by the user, the load module
name has been placed in the M:LM DCB.

EFLIST, the element file list, contains, in sequence, the identification of each element file

specified by the user and/or, in batch mode, the GO file if specified by the user.

LIBLIST, the library list, contains, in sequence, the account numbers of libraries from which

primary references are to be satisfied.
Stack pointers and bases have been set up. See Figure 2-16 for the names.
For library processing, BCDBUF, OBUF, and DYNDATA contain the address of buffers.
Register D2 has bits set for options.
Bit0 map
Bit 1 no-system-|ibrary
Bit2 100, 6-confro|-secﬁon _
Bit 5 IO] 6-contro|-secﬁon (batch)
Bit 6 execute (batch)

Bit 7 binary (batch)
Bit 8 permanent-load=-module (batch)

In batch mode, register D1 contains the converted value of the severity level option if

specified by the user.
In batch mode, register D1 contains the bias.

In batch mode, register SR3 contains the converted value of the temporary storage option, if

specified by the user.

The error exit is, in batch mode, to abort the job step or, in on-line mode, to return to the BTM

Executive.

(1) The exit, to MNYDCB, is taken if the number of DCBs referenced exceeds the number that can

be fit into two pages of core storage. The error message printed is: "TOO MANY DCBS".

(2) The exit is taken if the number of element files specified exceeds the number that can be fit

into an internal element file list, EFLIST, built by the loader. The error message printed is:

"TOO MANY EFS".-

(3) The exit is taken if the LOPE control command or the LOAD control input contains an error.
For LOPE, the error message printed is; "ILLEGAL LOPE CARD". For LOAD, the error message
printed is: "ILLEGAL LOAD OPTION".

2-38

Operation.

a.

C.

In on-line mode, set the default assignment for the M:BI DCB to the BOTEMPq temporary file where a
is the COC line number in binary and save the binary COC line number in LINENUM.

Save the lower limit in the second of the six loader control words, LDDATA+1. In batch mode, set
the lower limit at TSTACK +1536. In on-line mode, set the lower limit at ORIGIN +512,

Allocate memory. See Figure 2-15. Obtain all available pages. In on-line mode, use the

CAL3, 14 0 call to obtain the number of available pages and store the value in USERSIZE, calculate
and save the number of program data pages in the LOAD subsystem in 00SIZE, calculate and save the
number of program procedure pages in the LOAD subsystem in 01SIZE, and calculate the number of
words available past the end of the LOAD subsystem. From this point register SR1 contains the number
of words available and register SR2 contains the first word address of the available space. From the
lower end of the dynamic data area, reserve a page for the buffer used to write the library record by
storing the address of the first available word in BLKBUF. In batch mode, store the address of the
page after the address in BLKBUF, from register SR2, in BLKBUF1 and increment register SR2 to the
next page. Store the address of the next available page in DYNDATA. In on-line mode, add X'1FF'
to the address in DYNDATA,; store the result in MAXLOC the address of the maximum location loaded;
building down from the top of the dynamic data area, reserve room for the five stacks, the value of
SUMSIZES; store the address of the temporary storage stack, the lowest stack, in TEMPBAS; and de-
scribe memory to the BTM Executive for efficient swapping (SETSIZE subroutine). Clear the
DYNDATA area up to the end of the available space. Store the last word address of available mem-
ory in the third of the six loader control words, upper limit, LDDATA +2.

In batch mode, save the job id from the Job Information Table, JIT, in the parameter list used to
open the temporary load module file, in the word used to build the GO file name, and in the pa-

rameter list used to open the temporary assign file.

Set up the stack pointers and bases in the high end of the dynamic data area. Put the last-word-

address-of-available-memory + 1 into the word after the last base address.

Obtain the control input from the user. In batch mode, print the control command through the M:LO
DCB and read the control command through the M:C DCB. In on-line mode, save registers 0-3, set
the prompt character to activate on carriage return, issue a new line (CRLF subroutine), and request

element file names (WTTY subroutine).

Obtain a byte from the control command (GCBYTE subroutine). 1In on-line mode, if processing
element files, go to step i. In batch mode, if the control command is continued to the next record,
read the next record from the C device, print the record through the M:LO DCB, and go to the begin-
ning of step g.

Obtain the keyword from the control input (NAMFLD subroutine) and use a jump table to determine

where to branch to process the options. When all options have been processed, to to step t.

2-39

re

S.

Xe

To process the element file option, obtain the element file name (NAMFLD subroutine, and GCBYTE
subroutine in batch mode) and store the name in an element file list, EFLIST. If the list becomes
full, print an error message (PRTERR subroutine if on-line) and, in batch mode, abort the job step or,
in on-line mode, return to the BTM Executive. Obtain and save account and password, if specified,
using the GCBYTE and the NAMFLD subroutines. Repeat step i until all element files have been
processed. In on-line mode, request LOAD options (WTTY subroutine). Return to step g.

To prc;cess the map option, set bit 0 in register D2. Return to step g.

To process the no-system-library option, set bit 1 in register D2. Return to step g.

To process the 100] 6—confrol-secﬁon option, set bit 2 in register D2. Return to step g.
To process the 10.l 6-contro|-secfion option, set bit 5 in register D2. Return to step g.

To process the unsatisfied reference option, obtain and save the account numbers specified by the

user in the library list, LIBLIST, using the GCBYTE and the NAMFLD subroutines. Return to step g.
To process the library-module option, go to the Library Module, PERMLIB.

In on-line mode, to process the debug option, set up the intermediate file name based on the COC
line number and open the file. Set the debug flag, DFLAG. Move the stack pointers to make room
for the intermediate file buffer. The buffer space will be used as the window page by the debug
program, DELTA. The last page in the dynamic data area, top address less 511, is the address of the
buffer. Store the address in ISTBASE and WPADDR. Store the page number in WPNUM. Inform the
BTM Executive of the new swap size (SETSIZE subroutine) and return to step g.

In batch mode, to process the GO option, build the name of the GO file using the job id saved
from the Job Information Table, JIT, and store the name in the element file list, EFLIST. Return to

step g.
In batch mode, to process the binary option, set bit 7 in register D2. Return to step g.
In batch mode, to process the execute option, set bit 6 in register D2. Return to step g.

In batch mode, to process the permanent-loud-module option, set bit 8 in register D2. Return to

step g.

In batch mode, to process the severity level option, obtain and convert the hexadecimal value, using

the GCBYTE subroutine. Save the value in D1. Return to step g.

In batch mode, to process the bias option, obtain and convert the hexadecimal value, using the

GCBYTE subroutine. Save the value in register D1. Return to step g.

In batch mode, to process the temporary-storage-stack option, obtain and convert the hexadecimal

value, using the GCBYTE subroutine. Save the value in SR3 and return to step g.

In batch mode, to process the load module option, obtain the load module name (NAMFLD subroutine)
and save the name in the parameter list of the open call for the M:LM DCB. Return to step g.

2-40

6.

y. If the LOPE control command or the LOAD control input contains an error, print an error message

(PRTERR subroutine in on-line mode), close the M:LO DCB, and, in batch mode, about the job or,

in on-line mode, issue a CAL3, 6 to return to the BTM Executive.

z. In batch mode, if the execute option was not specified, open the load module file (as a temporary

file if the permanent option was not specified). If the element file list, EFLIST, is empty, set the
binary flag, bit 7 in register D2. Add the system library to the library list, LIBLIST, unless the no-
system=library option was specified. Save the address of TSTACK in job lower limit, JOBLL, and the
address of the upper limit of the dynamic data area, from LDDATA +2, in job upper limit, JOBUL.
Set a default bias in D1 if the bias option was not specified. In on-line mode, restore registers 0-3.

Go to the Loader Module, LDR.

Flowchart. See Figure 2-18.

2.4.2 Library

1.
2.

3.

4.

Module Name. PERMLIB.

Purpose. Create user library, :BLIB, in the current account.

Entry.

a. Library is entered from the Start Module.

b. Library requires input. See Figure 2-16 for the layout of memory.

(1) In on-line mode, the default assignment of M:BI to the temporary file, BOTEMPq, where a is

the COC line number in binary, has been made.

(2) EFLIST, the element file list, contains, in sequence, the identification of each element file

specified by the user and/or, in batch mode, the GO file if specified by the user.

(3) LIBLIST, the library list, contains, in sequence, the account numbers of libraries from which

primary references are to be satisfied.
(4) BLKBUF contains the address of the buffer for the physical library record.
(5) OBUF contains the address of the buffer for the logical library record.

(6) DYNDATA contains the address of the page for the declaration numbers of external definitions,
in halfword entries, and allows the next page, for declare external reference and define origin
load items, to be referenced. These buffers are used until all declare external definition,

declare external reference, and define origin load items have been processed.
Exit.
a. The normal exit is to issue a CAL1, 9 1 to terminate the job step.
(1) The exit is taken after user library processing is complete.

(2) A user library, :BLIB, has been created in the current account.

2-41

Start

On-Line yes
Mode

no

Set up default
assignment for
M:BI DCB. Save
line number in
LINENUM,

!

Set lower limit
in LDDATA +1

%

Allocate memory.
Obtain all avail-
able pages. Reserve
a page for the
library block.

Put job id

into parameter
lists for tem-
porary files.

!

Set up stack
pointers at end
of available
memory.

Obtain control
input from
user.

Obtain a byte
from the control

input.
On-line

¢ mode, processing
element files?

b

yes

Obtain keyword
from control

input.

All options
processed

Page 1

Map
option ves
no
No
system library
option yes
?
o
Poption
<(on-lino) on>-—
MIOO option®” Ye$
(batch)

Set bit 0 in
register D2.

Set bit 1
in register D2

Set bit 2 in
register D2.

MIOQ option
(batch) ?

Set bit 5 in
register D2,

Unsatisfied

reference
option yes
?

<

Obtain and save
specified account
numbers in LIBLIST.

Open intermediate
file and allocate
| buffer. Set DFLAG

Inform exec of

swap size.

Debug
option
(on-line
mode) yes
2
no
Page 2

Obtain element
file name and
store in EFLIST,

EFLIST
full or
control
grror

All
element files
processed

LOAD2
Do error (.)
. Error exit.
processing.,

Figure 2-18.

Flowchart of Start
2-42

Module

Page 2

Go
option yes
(batch mode)
?

no
inary

option
(barchvmode)

yes

no

xecute
option (batch yes
mode)
2

no

ermanent =
oad-module option yes
(batch mode)
?

no

Severity -
level option e:

(batch mode)
ird

no

Bias
option yes
(batch
mode)
?

no

‘femporclry-
torage-stack option yes
(batch mode)
?

no

Load-
module option
(batch mode)
?

no

Element
file option
?

no

Do error
processing

Put name of GO
file into EFLIST.

Set bit 7 in register
D2. '

Set bit 6 in register
D2.

Set bit 8 in register
D2.

Obtain and convert
the hexadecimal
value. Save the
valve in D1.

Obtain and convert
the hexadecimal
value. Save the
value in D1.

Obtain and convert
the hexadecimal
value. Save value

is SR3.

Obtain the load
module name and
save the nome in

the open call for
the M:LM DCB

EFKY

LOAD2

Process the load
module file, the bi-
nary option, the sys-
tem library option.
Set default bias.

Exit to Loader
module at LDR.

Figure 2-18.

Flowchart of Start Module (cont.)

2-43

5.

6.

The error exit is in batch mode, to abort the job or, in on-line mode, to return to the BTM Executive.

(1) The exit is taken if the number of element files specified by the user exceeds the number of files

that can be fit into the internal element file list, EFLIST, built by the loader the error message
printed is: "TOO MANY EFS",

(2) The exit is taken if the read of the ROM input fails. The error message printed is: "ILLEGAL .
ROM DATA", "SEQUENCE ERROR", or "CHECKSUM ERROR".

Operation.

a.

b.

Prepare to create the user library. ' See Figure 2-2 for the format of the library. See Figure 2-7

for the layout of memory. Open the file :BLIB in the current account through the M:LM DCB. If the
element file list, EFLIST, is empty, set the binary flag, but 7, in register D2. Store register D2 in
LDDATA +5, the last of the 6 loader control words. If the number of element files specified by the
user exceeds the number of element files that can be fit into the element file list, EFLIST, print an
error message (PRTERR subroutine, if on-line) and, in batch mode, abort the job step or, in on-line

mode, return to the BTM Executive.

Create the user library by copying ROM input into records for the :BLIB file. While processing
declare external definition, declare external reference, and define origin load items, calculate and
store the declaration numbers of the external definitions in halfword entries in the page at DYNDATA.
First put each declare external definition load item into the buffer for the logical library record,
OBUF (BYTOUT subroutine). Store all declare external reference and define origin load items in
the page after the address is DYNDATA (PUT subroutine). When another type of load item is found,
put the declare external reference and define origin load items from the page after DYNDATA into
the buffer for the logical library record, OBUF, (BYTOUT subroutine). Create an 02 expression end
load item especially for the logical library record in OBUF. Follow the 02 control byte with the
halfword declaration numbers of the external definitions saved at the address in DYNDATA (BYTOUT
subroutine). Copy bytes into the buffer for the logical library record, OBUF, until the end of the
module is reached (BYTOUT subroutine).

Step b forms logical records of 108 bytes in OBUF. Each record contains 4 bytes of control informa-
tion followed by a maximum of 104 bytes of load information. Initialize the record control informa-
tion with the SETMODE subroutine. Write one page at a time. If a record does not fit into the last
words of a page, these words contain garbage and the record begins on the next page. If intermediate
logical records contain less than 108 bytes, write 108 bytes anyway, but put the correct logical size

in the byte count. Return to step b until all ROM's have been processed.

Close the M:LM DCB and issue a CAL1, 91 to terminate the job step.

If an error in the ROM data is found, print an error message (PRTERR subroutine if on~line) and, in

batch mode, abort the job step or, in on-line mode, return to the BTM Executive.

Flowchart. See Figure [2-19.°

2-44

Start

Open the :BLIB file
in the current ac-
count. Do initial
processing of ele-
ment files.

EDROM

Initialize the
declaration number.

EDR} [
Obtain a byte
of input.
Error
in ROM yes Do erro'r Error exit
data? processing.
no
External yes Put external
definition definition in
? library.
no
es -
Reference ? Y R.ecord declara
tion number.
no
Origin yes
declaration Save load item. EDROM
?
no

Set up table for declara-
tion numbers. Copy refer-
ences to output. Put out
declaration number order-
ing. Copy until end of
module. Write record.

Close
M:LM DCB

All ROMs
processed ?

Figure 2-19. Flowchart for Library Modules
: 2-45

2.4.3 Loader
Module Name. LDR.

1.
2.

3.

5.

Purpose.

Entry.

Load all ROMs.

a. Loader is entered from the Start Module.

b. Loader requires input. See the fields passed from the Start Module.

Exit.

a. The normal exit is to the ENDLOAD Module.

M
2

The exit is taken after all ROMs have been loaded.

Entries have been made in the expression stack, and the REF/DEF stack.

b. The error exit is, in batch mode, to abort the job step or, is on=line mode, to return to the BTM

Executive.

M

(2)

The exit is taken if a load item defining an origin results in an expression that cannot be evalu-

ated or if a load item is invalid. The diagnostic output is "ILLEGAL ROM DATA".

The exit is taken if space is not available in a stack even after all stacks have been pressed to

a minimum. The error message printed is : "STACK OVERFLOW".

Operation.

a. Prepare to process load items.

m

@

@)

Save registers SR1=-D2, the information obtained from processing the control input, in LDDATA,

the six loader control words. Calculate ABSBIAS, the difference between the bias and available
memory.

In on-line mode, set TCB, the address of the Task Control Block, to ORIGIN +X'40'. Use the
bias saved in LDDATA +4 to set BACORE, the starting byte address of the next section to be

A\]

allocated.

In E;atch mode, set TCB, the address of the TCB, to the bias saved in LDDATA+4. TCBSIZ
determines the present size of the Task Control Block; where CMPWDS is the number of words
reserved for use by a processor, 4; TSASIZ is the size of the library error temp stack, 10; ERTSIZ
is the size of the library error table, 10. Set BACORE, the starting byte address of the next
section to be allocated to point to the location past the Task Control Block, the address of the
Task Control Block plus TCBSIZ plus the size specified by the user for the temp stack in the

Task Control Block (from LDDATA +2). Using the ENNAM subroutine, enter M:DO as a primary
reference in the REF/DEF stack so that the M:DO DCB will be built -- to allow the |oaded pro-

gram to produce snapshot debugs during execution.

b. Initialize control section 0 and the declaration stack (ENDECL subroutine). If not a library load,

process the option that the control section or dummy section is to begin at the next greater multiple

of 100, or, in batch, 1016 by incrementing BACORE.

16
2-46

f.

Obtain a byte of input. Read a card if necessary.

If loading from a library and the SATIS flag is not set (the ROM has not satisfied a primary reference),
only 03, declare external definition name, and OC, declare nonstandard control section, are allow-
able load item codes. Anything else causes the stacks to be rolled back because the object module

is to be skipped. The remaining records of the module are read and ignored. Return to step b.
Use a jump table to determine how to process the load item.
If the item is padding, return to step c.

If the item declares an external definition name or an external reference name, make sure that the

REF/DEF stack has an entry for the name and put an entry into the declaration stack for the item.
(1) Set up an entry in BUF2.

(a) Set up words 2-n by transferring each byte of the TEXTC name. Read a record if necessary

to obtain the name.
(b) Set word 1 to zero.
(¢) In word 0, set up only the word count field, byte 0.

(2) Search the REF/DEF stack to determine whether the name is already in the stack. If the name
is not in the stack, add the entry. Research the spare needed for the entry and move the entry

into the reserved area.

(3) If an external definition name is doubly defined, set on both bits 0 and 3 in the type field of
the entry in the REF/DEF stack. For a primary reference name, set on bits 1 and 2. For a

secondary reference name, sef on bit 2.
(4) Add an entry to the declaration stack for the item.
(5) Return to step c.

If the item is a definition, build an entry in the expression accumulator for the item and move the

entry to the expression stack.

(1)._If the item defines an external definition, the name must have been previously declared, i.e.,

the REF/DEF stack and the declaration stack must have an entry for the name. Obtain the
destination of the value of the expression, a displacement into the REF/DEF stack, from the

declaration stack.

(2) If the item defines a forward reference, the two byte forward reference number is the destination

of the value of the expression.

(3) If the item defines the starting address, STTADR is the destination of the value of the expression
STTADR has been zeroed. The starting address will be placed in the head record of the load

module if a load module is built.

(4) If the item defines a field, inform the expression routine that a field is to be loaded and that

the field is defined by terminal bits (8~14), number of bits (0-7), and location (15-31).

2-47

(5) To process an add or subtract declaration, determine whether the declaration is defined by using

©

®)

®

(10)

the displacement obtained from the declaration stack to access the REF/DEF stack. If the decla~
ration is defined, use the value to build the entry for the expression stack. If the expression is
not defined, add this expression to the chain for the reference by placing a pointer to the expres-
sion stack entry, with byte O of the word containing the displacement to the value word in the
expression stack entry into word 1 of the REF/DEF stack entry. Save the address of word 1 of the
REF/DEF stack entry in the temporary stack so that the REF/DEF stack entry can be modified if

the growth of the expression changes the displacement of the value word. Go to step 4.

To process an add or subtract forward reference, determine whether the forward reference number
is in the forward reference stack. If not, create an entry for the number. Place a word that
points to the expression stack (with byte 0 containing the displacement to the value word in the
expression stack) into word O of the entry. If an already existing entry is a forward reference
and hold type and is defined, use the value from the forward reference stack to build the entry
for the expression stack. Otherwise, add the item to the chain for the forward reference by
placing a word that points to the expression stack (with byte 0 containing the displacement to
the value word in the expression stack entry) into word 1 of the forward reference stack entry.
Save the address of word 1 of the forward reference stack in the temporary stack so that the
forward reference stack entry may be modified if the growth of the expression stack changes the
displacement to the value word.

If the words containing the expression control bytes increase, modify the entries in the REF/DEF
stack and the forward reference stack that point to the value words of the expression stack entry.
Evaluate the expression. If a value has been found, flag the entry in the expression stack as
defined. If an expression is not used, remove the expression from the stack. If the destination
of the expression is an external definition or a forward reference and the value is not a constant,
convert to the value to an address. If the destination of the expression is an external definition,
use the displacement into the REF/DEF stack from the expression stack entry to access the REF/
DEF stack. If the REF/DEF stack entry is an external definition or a dummy section, return to
step c. Otherwise set the external definition type flag, word 0, bit O, and the resolution field,
word O, bits 4-6, in the REF/DEF stack entry. Obtain the link value from word 1 of the REF/
DEF stack entry. Replace the link value with the value of the external definition, an address or

a constant.

If the item defines a forward reference and hold item, satisfy any existing references and save

the value for future references until the end of the module is reached.

If the item defines an origin and the expression is defined, check that the value is above the
bias and the background lower limit. If so, subtract the absolute bias, store the resulting value
in LOC, the value of the load location counter, and check that LOC is within bounds. If LOC
is valid, return to step c. Origin load items enable the loader to determine where elements are
to be loaded within a control section. The ROM supplies at least one origin load item for each
control section. If the expression defining an origin cannot be evaluated or if the value is out
of bounds, output a diagnostics and, in batch mode, abort the job or, in on=line mode, return
to the BTM Executive.

2-48

(11) To satisfy any chain of expressions, use the link value as a displacement into the expression stack
to obtain the chained entry. Replace the expression control byte in the entry with an add constant
with resolution. Obtain the link value from the value word of the entry. Replace the link value
with the value of the load item (use the complement of the value if the expression control byte
specified subtraction.) Attempt to evaluate the expression. Return to the beggining of step (11)

until all chained entries have been processed.
(12) Then return to step c.

If the item declares a standard control section, put the size and memory protection class into a decla-
ration stack entry. Increment BACORE, the byte address of the next section to the allocated. Return
to step c.

If the item declares a nonstandard control section, put the type, the size, memory protection class,
and base info a declaration stack entry. Increment BACORE, the byte address of the next section to
be allocated. If the standard control section has been referenced, put in the size. Otherwise, put
the new BACORE into the base of the standard control section. Return to step c.

If the item declares a dummy section, the item must have been preceded by a declare external defini-
tion name for the label associated with the first location. Use the entry in the declaration stack
created by the declare external definition name in order to access the entry for the name in the REF/
DEF stack. If the entry shows that the dummy section has not been allocated, allocate the dummy
section. In on-=line mode or in batch mode with the execute option specified, put blank common into
memory. See Figure 2-6 for the layout of memory.

Increment BACORE, the byte address of the next section to be allocated. Store the size and address
in the REF/DEF stack entry. Store the address in other chained expressions using the procedure de-
scribed in step h (11). Add an entry for the load item to the declaration stack. If the entry in the
declaration stack for control section 0, the first entry, has a zero size, store the new BACORE, the
byte address of the next section to be allocated, into the base address field. Return to step c. If

the REF/DEF stack entry shows that the dummy section has been allocated, check that the new size

is not greater than the original size. If the new size is greater, abort the processing. Otherwise
return to step c. A

If the item is a load absolute item, load the specified number of bytes. R5, bits 28-31, contains the
number with O implying 16. Process as fast as possible. Advance the load location counter. Return
to step c.

If the item is a load relocatable long form, increment the load location counter, LOC. Depending
on the control bit, bit 4, read either a one-byte or a 2 byte name number. Put the control bit that
determines whether relocation is to be relative to a forward reference or to a declaration into SR1,
Put the address relocation code into register 6. Go to step o.

If the item is a load elocatable short from, increment the load location counter, LOC. Put the con-
trol it that determines whether relocation is to be relative to a forward reference or to a declaration

int register SR1

2-49

é.

Fe

S.

Read the word immediately following this load item. Ensure that the load location counter, LOC,
is a word address. Form an expression, put the expression into the expression stack, and evaluate
the expression if possible. Increment the load location counter, LOC, by 4 and check that the new

value is within bounds. If the value is within bounds, return to step c.

Whenever the load location counter, LOC, is incremented, the counter is checked for being within
bounds. Since the core image is being built upward in the dynamic data area, LOC must remain
below TEMPBAS, the address of the lowest stack. See Figure 2-16 for the layout of memory. If
necessary, press the stacks to remove unneeded space (PRESSTK subroutine) and leave more space in
which to build the core image. If the configuration changes, declare the new cc;nfigurafion to the
BTM Executive (SETSIZE subroutine). Return to step b. If space cannot be made available, abort

processing.

If the item is a repeat load, only one of three load items to be repeated is legal. If a load absolute
item follows the repeat load item, get the absolute data and load the data the specified number of

times. Otherwise set up a chain and load normally. Return to step c.

If the item is the special O2 expression end load item created for the user library, use the declaration
numbers (of the external definitions) following the control byte to rearrange the external definitions,
chaining the items so that the first is the first source, the second is the destination of the first and

the next source. Continue until the first is a destination so that the oop is closed. Return to step c.

If the item is invalid, print an error message (PRTERR subroutine if on-line) and, in batch mode, abort

the job or, in on-line mode, return to the BTM Executive.

If space is not available in a stack, press all stacks to a minimum (PRESSTK subroutine). If space is
still not available, print a diagnostic (PRTERR subroutine, if on=line) and, in batch mode, abort the
job or, in on-line mode, return to the BTM Executive. Otherwise, inform the BTM Executive of the

change in swap size (SETSIZE subroutine).

If the item identifies the end of the object module, read the severity level. Replace the severity
level from the ROM if the current severity level is greater. If more ROMs are to be loaded, return
to step b. Otherwise, load from libraries to satisfy all primary references in the REF/DEF stack
except those having names that begin with F: or Mz, for which the loader will build DCBs. If a
library module satisfies a primary reference, load the module. When all loading is complete, go to

the Endload Module.

Flowchart. See Figure 2-20.

2.4.4 ENDLOAD

1.

2.

Module Name. ENDLOAD.

Purpose. Print map. Build DCBs. Build a DCB Name Table for Monitor use. Build a TCB.

Entry.

a.

b.

ENDLOAD is entered from Load.
ENDLOAD requires input, the entries in the loader stacks.

2-50

Save information obtained
from control input in LD
DATA, Caleylate ABSBIAS,

Set TCB. Set BACORE.

Force an external refer- |—wm]

ence to M:DO DCB.

Set TCB. Set BACORE

Initialize control section 0
and the declaration stack.
1f not library load, process
100 or 10 option.

16 16

LDR]

Obtain a byte of input.
Read a card if necessary,

Torary
[oadond SATIS Y
log off 2
no

LDR5
yes ~ Paddin
item?

no
Declare’
definition of yes

reference
item?

Define yes
origin item
?

no

Define yes
field item
2

no

Declare’
DEF name or non ye:
standard control
ection item 2
?

no
Roll back stacks since ob-
ject module i to be skipped.
Read past modules.

(Obtain name. If name is not
in REF/DEF stack, moke
entry and put pointer to
hame in declaration stack.

s

SETLIB

Obtain expression. Build
expression and move to
expression stack, Set lo-
cation counter to value
of expression.

Load an expression info
any field of a word. In-
form expression routine

that field is to be loaded.

Page 1

Define
forward reference
item?

Two byte forward refer—
ence number is the destina~
tion of the expression.

no

Define
orward reference
ind hold item,

2

es

Satisfy any existing refer~
ences ond save value for
future references.

no

Declare yos
dummy section
item?

no

Allocate for dummy sec-

| Hon, If olreadyallocated,

check that size is not
greater thon ollocated.

De:

. Icl(:rc) -
P;’r:r::'lﬂ;rﬁ e
Item

Destination of expremsion
Is name polater from the
daclaration,

no

Page 1

Define
start address
item?

absolute item

Load
relocatable long’
form item

Endof
object module
item?

Do error processing.

Error exit

Putsize and protection type
of control section into

DECLSTK. Also putin base
for nonstandard section.

Set up d i
expression as STTADDR.

Load data the specified

number of times.

Load specified number of
bytes. Advance the load
location counter.

Increment load location
counter, Read word follow-
ing load item. Form ex-
pressionand move to table.

Increment load location
counter. Read word fol~
lowing load item. Form
expression ond put ex-
pression in table,

yes

Read severity levei. Re-
place ROM severity level
if load leve! is higher,

SETLIB

Library

in UNSAT list

processed
?

Load library

LDR1

Exit to
load module

Figure 2-20.

Flowchart for Loader Module

2-51

4,

Exit.

a. The normal exit is to the Execute module.

(1) The entry point for batch mode or for on-line mode with the execute option specified is
GOEXEC. For on-line mode, when the execute option is not specified, the entry point is
SMALLER.

(2) Data is passed to the other modules.

(a) Register 0 contains the address of the TCB.

(b) SR1 contains the highest severity level encountered.
(c) SR2 contains the start address for execution.

(d) SR3 contains the bias.

(e) SR4 contains the address of the end of the TCB.

b. The error exit is, in batch mode, to abort the job step or, in on-line mode, o return to the BTM
Executive. The exit is taken if there is not enough room to continue processing. The error message
printed is: "STACK OVERFLOW" or "TOO MANY DCBS. "

Operation.

a. Close the M:LI DCB if the M:LI DCB is open. Allocate the unallocated ASECT code. In on-line
mode, if the program is to be run in debug mode, finish the intermediate file by inserting the last
element file header. Calculate the ABSBIAS word displacement, the difference between the load
and the execute bias. In batch mode, define the highest location and the lowest location.

b. Print a load map. If map is specified, print a load map of external definitions and external refer-
ences. Do not map element file head items or internal symbols that are not external definitions. If
map is not specified, print only secondary and primary references. In either case, skip primary and
secondary references for F: and M: names since such names refer to DCBs.

c. Form the Task Control Block (TCB) for the user. See section 2.2.5.,1. Task Control Block,and
Figure 2-7.

d. Build tree and DCB Name Table. D1 contains the highest location used. Build the tree and the DCB
Name Table at the next available page. Put the address of the DCB Name Table into the Task Con-
trol Block (TCB). If there is not sufficient room to continue processing, print an error message and,
in batch mode, abort the job step or, in on-line mode, return to the BTM Executive.

e. Build DCBs for referenced Fi names. Also add DEF'd F: names and M: names to the DCB Name Table.
If a DCB is DEF'd, print a warning message. If a DCB is a secondary reference, ignore the DCB.

f. Build a DCB Name Table entry and a DCB for assigned F: names.

(1) Put standard assignments into F:101-F:108 for assignment type, function, and operational label.
For batch mode, set assignment type to device. For on-line mode, set assignment type to user

terminal. Set function to QUTIN.

2-52

0.

(2) Override standard assignments if the assign for the DCB specifies different values.

(a) In batch mode, check for assigns. If assignments were given, go through the ABS records.

Set up the IDA temporary file for unusual assigns.

(b) In on-line mode, do on-line processing. If the debug option was specified, print the map
of undefined internal symbols for each element file. Request and read assign options for the
DCB -- file name, optional account number, and optional password -- and set up parameter
words for each option. If file name is greater than 11 characters or if account number is
greater than 8 characters, print an error message and repeat the prompt to request assign-
ment information for a DCB. If password is specified with no account, default to the login
account in the on-line Job Information Table (AJIT). Read ;he DCB options =~ function,

release, list. Store the appropriate values and set flags for the options.

If the DCB name is not an F: name and the DCB is referenced, incorporate the assign information
using the ASNIMERG subroutine. If the DCB name is not in the DCB Name Table, build the DCB
and add the DCB name to the DCB Name Table.

Set up standard assignments for Monitor DCBs.

Set up registers to transfer information.

(1) Put the address of the TCB into register 0.

(2) Put the highest severity level encountered into register SR1.
(3) Put the start address for execution into register SR2.

(4) Put the bias into register SR3,

(5) Put the address of the end of the TCB into register SR4.
Close the M:LO DCB.

If F4:COM is overlayed by DCBs, print an error message and, in batch mode, abort the job step or,

in on-line mode, return to the BTM Executive.
In on-line mode, output the severity level message.

In on-line mode, if the debug option was specified, request and read values to satisfy any primary

references and/or internal references. Go to the execute module at only point GOEXEC.

In on-line mode, if the debug option has not specified, output the execute inquiry and read the reply.
If the reply is invalid, print an error message and return to the BTM Executive. If the reply is "N",
go to the Execute Module at entry point SMALLER. If the reply is "S", obtain the start address spec-
ified by the user, store the start address, and go to the Execute Module at entry point GOEXEC. If
the reply is "Y", go to the Execute Module at entry point GOEXEC.

In batch mode, go to the Execute Module at entry point GOEXEC.

Flowchart. See Figure 2-21.

2-53

Close M:LI DCB if open.
Allocate unallocated ASECT
code. For debug mode, fin-
ish file. Colculate ABSBIAS.
Define limits in batch.

Print load map.

Build Task Control
Block for user.

{

Build tree and
DCB Name Table.

Do error

. Insufficient
processing.

pace ?,

Build DCBs for referenced F:
names. Add DEFed F: and
M: names to DCB Name
Table . Print warning for

DEFed DCB.

Build DCB Name Table
entry ond DCB for
assigned F: names.

1

Incorporate assign informa-
tion into referenced DCBs
that are not F: names. If
DCB is not in Name Table,
build DCB and add to table.

)

Set up standard assign
ments for Monitor DCBs

!

Set up registers to
transfer information.

area overlayed

by DCBs?

Do error processing

Exit to execute
module at GOEXE

LOADé

Output the severity
level message.

Type execute
inquiry ond
readreply.

Exit to execute

Request and process
values tosatisfypri-|
mary references and
internal references.

Exit to execute
module at SMALLER

Obtain and store
start address from |
user.

module at GOEXE

Figure 2-21. Flowchart for Endload Module

2-54

2.4.5 Execute.

1.

2.

Module Name. GOEXEC.

Purpose. In batch mode, if the load module option is specified, build a load module. In on-line mode,
if an execute option is not specified, set up to save the user program. In either mode, if an execute option

is specified, provide for execution of the user program.
Entry.

a. Execute is entered from Endload at entry point GOEXEC for batch mode and for on-line mode with
the execute option specified. For on-line mode when the execute option is not specified, the entry

point is SMALLER.
b. Execute requires input.
(1) Register O contains the address of the TCB.
(2) SR1 contains the highest severity level encountered.
(3) SR2 contains the start address for execution.
(4) SR3 contains the bias.

(5) SR4 contains the address of the end of the TCB.

Exit.

a. In batch mode, if the execute option is not specified, issue a CAL1,9 1 to exit from the job step.
A load module has been built.

b. Inon-line mode, if the execute option is not specified, return to the BTM Executive. The user pro-

gram is set up ta be saved if desired.

c. In batch mode, if the execute option is specified, transfer control to the user program. The user pro-

gram has been set up for execution.

d. In on-line modes if the debug option is specified, transfer control to the DELTA subsystem. The user

program is set up for execution.

e. In on-line mode, if the execute option is specified, return control to the BTM Executive. The user

program has been executed and messages output regarding the execution.
Operation.

a. At entry point GOEXEC in batch mode, if the execute option is not specified go to step b. Other-
wise link the user DCB Name Table to loader DCBTAB. Set the 01 protection type and free the
unused pages. If the program is smaller than the loader, free only to the top of the loader. Open

all pages. Transfer control to the start address of the user program.

b. In batch mode, when the execute option is not specified, build a load module. Fill in values in the
head and tree. Change the format of the REF/DEF stack, RFDFSTIK, to conform to the format built
by the overlay loader so that symbolic debugs can be used. Convert the type and resolution to that

of the overlay loader. Issue a CAL1,9 1 to exit from the job step.
2-55

6.

.
[

At entry point GOEXEC in on-line mode, set the address in register D4 so that the execute option
may be processed.

From both entry point GOEXEC and entry point SMALLER, do on-line processing. Put the address of
the Task Control Block into register 0. If blank common is at the top, declare the exact configura-
tion. If the debug option was specified, go to step f. If the execute option was specified, go to
step g.

Set a special flag for saved files and issue a CAL3, 6 to exit to the BTM Executive.

Process the debug option. If the symbol tables are not loaded, attempt to load the tables. Put the
parameters in the window page; the address and size of the global symbol table, the starting address
of the user program, the address and size of the internal symbol table, and the last word of the user
program, following M: and F: DCBs. Place DE, the first two characters of the debug subsystem name
into register 0. Issue a CAL3, 4 to load the debug subsystem and to transfer control to the subsystem
DELTA.

Start the user program at the user level. Register 0 contains the first half of the program status
doubleword, PSD, to be used when the new process is initialized. Bits 0-3 are the condition code
(CC); bits 4~7 are the floating controls (FC); and bits 1516 are the instruction address (IA).

When a return from the user is made, determine whether a CAL3, 6 was issued to return to the next
higher level. If a CAL3,6 was issued, go to step i. If not, do the break processing. Output the
inquiry and read the reply on whether to continue processing. If the reply is anything other than "Y",
go to step j. Otherwise issue a new line. Load register O so that the user program may be continued

and go to step g.
Output the user-exit diagnostic.

Issue a CAL3, 6 0 to return to the BTM Executive.

Flowchart. See Figure 2-22,

2.5 SUBROUTINE ANALYSIS

2.5.1
1.

2,

ASNMERG
Purpose. Merge assignments (record in BUF) into the DCB pointed to by register 6.

Entry. ASNMERG is called by the Endload Module. Register O is-the link register. Upon entry, BUF

contains the record with the assignments to be merged. Register 6 confains the address of the DCB to

which the assignments apply.

Exit. Return to the calling routine.

Operation. Handle the first-length parameters first, then the variable-length parameters.

2-56

GOEXEC

Link user DCB Name
Table to loader DCBTAB
Set 01 protection type.
Free unused pages.

(Transfer control to star

t
address of user program)

Set up register D4 so
that execute option
may be processed.

Build load module. Fill

in head and tree values,
Charge REF/DEF format

Issue CALLY |
to exit from job step.

to that of overlay loader)

SMALLER

Put address of Task Con-|
trol Block into Regis-
ter 0. If blank common
isat top, declare exact
configuration.

Debug
option speci=-
fied2

Load symbol tables if

tables are not loaded.
Put parameters in

Issue CAL3,4 to lood and)

transfer control to DELTA

window page.

USERGO

| Start user program at
user level.

Set a special flag for
saved files.

A

Issue a CAL3,6 to exit to
the BTM Executive.

Return from

on-line user.

as result of

Type continue
enquiry and

Issue a CAL3,6 to re-
turn to BTM Executive

Issue a new line. Load
register 0 so that
user program may be
continued.

Figure 2-22.

Flowchart for Execute Module

2-57

2.5.2
1.

2.

2.5.3
1.

2.5.4
1.

2,5.5
1.

2.

3.

BINTOHEX
Purpose. Convert the binary number in register 7 to hexadecimal (EBCDIC) in registers D3 and D4.

Entry. BINTOHEX is called by the Library Module, the Loader Module, and the Endload Module. SR4 is

the link register. Upon entry, register 7 contains the binary number to be converted.
Exit. Return to the calling routine.

Operation. Convert the binary number in register 7 to an EBCDIC number in registers D3 and D4.

Suppress leading zeros.

BYTOUT, WRTREC
Purpose. Put a byte into the library.

Entry. BYTOUT is called by the Library Module. WRTREC is a second entry point. SR4 is the link
register. Register 5 contains the byte to be stored. OBUF is the buffer for the logical library records.

Exit. Return to the calling routine.

Operation.

(1) BYTOUT. Put a byte into OBUF at the next available location. Use byte 3 of OBUF, record size,

to determine the next available location.

(2) WRTREC. Update record size. When record size is 108 bytes, move the record from the logical
library record buffer, OBUF, to the physical library record, BLKBUF. When BLKBUF, which is one

page long, will not hold any more logical records, write out the page.

CHKDECLD

Purpose. Check a declaration for definition.

Entry. CHKDECLD is called by the Loader Module. Upon entry, register 5 contains the expression con-
trol byte.

Exit. Return to the calling routine.

Operation. If the declaration is defined, put in the value with proper resolution and change register 5 to
add constant. Just right shift the value if the destination of the value is a core destination. If the
declaration is not defined, add the declaration to the chain for the reference. Within the routine,

register 7 contains the declaration number.

CKDCB
Purpose. See whether the DCB name pointed to by SR1 is in the DCB Name Table.

Entry. CKDCB is called by the Endioad Module. Upon entry, SR1 contains the address of a DCB name.

Exit. If the DCB name is in the DCB Name Table, return to the calling location plus 2. Otherwise, return
to the calling location plus 1. Register 6 contains the address of the DCB.

2-58

2.5.

2.5.

2.5.

2,5.

2.5.

4. Operation. Check the name pointed to by SR1 against the entries in the DCB Name Table. If the name

6

=~ N

P wN

> W

does not match an entry, exit to the calling location plus 1. If the name does match, put the address of

the DCB into register 6 and exit to the calling location plus 2.

CRLF

Purpose. In on-line mode, issue a new line on the user terminal.

Entry. CRLF is called in on=line mode by all the modules. Register 1 is the link register.

Exit. Return to the calling routine. A new line has been issued to the user terminal

Operation. Issue a carriage return, then a line feed.

GCBYTE

Purpose. Obtain a byte from the control command.

Entry. GCBYTE is called by the Start and the Endload Modules. SR4 is the link register.

Exit. Return to the calling routine. Register 5 contains the byte from the control command.

Operation. In batch mode, obtain a byte from BUF, the buffer for the control command. In on-line mode,
issue a call to return in register O (in EBCDIC format) the next character in the Teletype input buffer.
If there is no activation character in the buffer, the LOAD subsystem is dismissed until an activation
character is typed. In either mode, put the byte obtained into register 5.

GCBYTEA

Purpose. In on-line mode, read a character from the Teletype input buffer.

Entry. In on~line mode, GCBYTEA is called by the Endload Module, SR4 is the link register.

Exit. Return to the calling routine, Register 5 contains the character obtained.

Operation. Issue a call to return in register O (in EBCDIC format) the next character in the Teletype
input buffer. 1If there is no activation character in the buffer, the LOAD subsystem is dismissed until an
activation character is typed. Put the byte obtained into register 5.

GETEFHED

Purpose. Search for next element file header. Is in the REF/DEF stack (RFDFSRCH subroutine). If the
element file header is not found, return to the calling address+1. If the element file header is found,
save the new start index, print the header and the element file name. Compute the address of the value
word and set up the symbol table base offset and local length. Compute the byte address of the name.
Reset the USYM start index. Make USYMHEAD correspond to this element file.

Entry. GETEFHED is called by the ENDLOAD module. SR4 is the link register.

Exit. Return to the calling location plus one if the next element file header is not in the REF/DEF stack.
Otherwise, return to the calling location plus two.

Operation. Determine whether the next element file header.

GETULOC

Purpose. In on-line mode, obtain the desired location from the user,

Entry. In on~line mode, GETULOC is called by the Execute Module. Register 3 is the link register.

2-59

3. Exit. Return to the calling routine,
4. Operation. Issue a CAL3,7 0 to swap the desired page from the user level swap storage area to the sub-
system area of memory in order to examine the page to determine why control has been returned to the

LOAD subsystem.

2.5.11 PRESSTK
_ 1. Purpose. Remove space in all stacks except TSTACK.
2. Entry. PRESSTK is called by the Loader. The Endland, and the Execute Modules. Register 0 is the link
register.
3. Exit. In batch mode, return to the calling routine. In on-line mode, branch to the SETSIZE subroutine.
4. Operation. Remove space in all stacks except TSTACK. Leave a minimum of space in TSTACK to allow
for non-recursive use which does not check for stack overflow. In batch mode, return to the calling

routine. In on-line mode, branch to the SETSIZE subroutine.

12.5.12 ° PRTNXT
1. Purpose. Print next map entry.
2. Entry. PRTNXT is called by Endload Module. SR2 is the link register.
3. Exit. Return to the calling routine.
4, Operation.
(1) Obtain the correct map text code, If the entry is a reference, go to step (3). If the entry is a
constant, go to step (2). Otherwise put the word value plus a byte offset into the output buffer.
(2) Convert the binary value to EBCDIC (BINTOHEX subroutine) and store the result in the output
buffer.
(3) Store the map code and name in the output buffer.

i2.5,.13 ' PRTERR
1. Purpose. In on=line mode, output a message.
2. Entry. PRTERR is to print all error messages. Register 6 is the link register. Register 1 contains address
of error messages.
3. Exit. Return to the calling routine.

4, Operation. Output a message using The WTTY and The CRLF subroutines.

2-60 |

2.5.14 RFDFSRCH

1. Purpose. To defermine whether an item is in the REF/DEF stack.

2. Entry. RRDFSRCH is called by the Loader and the Endload modules. SR4 is the link register. Register 4
contains the item to be protected. Register 5 contains the mask job used in compare. Register & contains
the index.

3. Exit. Return to the calling address + 1 if the item is not in the REF/DEF stack. Otherwise, return to
the calling address + 2.

4, Operation. Search the REF/DEF stack for the item in register 4, Use the mask in register 5 for the com-
pare. Search the REF/DEF stack until the index in register 6 is equal to or greater than the index of the
stack. If the item is not found, exit to the calling address + 1. If the item is found, exit to the calling

address + 2.

2.5.15 SETMODE

1. Purpose. Set indicators at module and when processing a module.

2. Entry. SETMODE is called by the library, the Loader, and the Endload Modules. Register 2 is the link
register.

3. Exit. Return to the calling routine. MODNUM, the current module number, has been incremented.
SEQNUM has been set to a=1, SATIS, the flag for a module that DEF'ed a REF, has been zeroed.
LASTCARD, the flag for end~of-module has been zeroed. Register 1 contains the previous contents of
LASTCARD.

4, Operation. Increment MODNUM, the current module number. Set SEQNUM to a minus one. Zero
SATIS, the flag for a module that DEF's a REF, and LASTCARD, the flag for end-of-module. Save the
previous contents of LASTCARD in register 1.)

2.5.16 SETSIZE.

1. Purpose. In on-line mode, inform the BTM Monitor of the configuration of memory to allow correct and
efficient swapping.

2. Entry. Inon-line mode, SETSIZE is called by the Start, Loader, Endload, and Execute modules.

Register O is the link register.

3. Exit. Return to the calling routine. The BTM Executive has been informed of the new configuration.

4, Operation. Compute the current dynamic data size and the common dynamic data pages, the number of
pages in the stack area. Issue a CAL3, 110 to inform the BTM Monitor of the configuration. In register 0,
bits 0~7 are non zero; bits 8-23 are zero; and bits 24-31 are the number of program data pages swapped
in and out. In register 1, bits 0=7 are the pure procedure pages, unmodified during execution and swap-
ped in only; bits 8-15 are the dynamic data pages swapped in and out; bits 16-23 are the inactive pages
not swapped, and bits 24-31 are the common data pages, growing down from the top of available memory

and swapped in and out.

2-61

2.5.17
1.

2.
3.

4.

2.5.18
1.
2.
3.

4.

2.5.19
1.

2.
3.
4.

STCR
Purpose. To skip to the end of the control card in BUF.

Entry. STCR is called by the Endload Module. SR4 is the link register.
Exit. Return to the calling routine.

Operation. Obtain bytes from the control command in BUF until the ENDLOAD indicator is set.

STORFLD.

Purpose. Add a field value to an expression.

Entry. STORFLD is called by the Loader Module. SR4 is the link register.
Exit. Return to the calling routine.

Operation. Add the field value to the expression.

USYMPRNT
Purpose. In on-line mode, print the undefined symbol map.

Entry. USYMPRNT is entered from the Endload Module. SR4 is the link register.
Exit. Return to the calling routine.

Operation.

a. Print the undefined internals heading. Issue a new line (WTITY1 and CRLF subroutines). Zero the

element file header index.
b. Search for the next element file header, (GETEFHED subroutine). If none are found, exit.
c. Otherwise determine whether an item is in the REF/DEF stack. If not, return to step b.

d. Save the new start index. Print the USYM Message (WTTY 1 subroutine). Compute the byte address
and print the symbol name (WTTY1 and CRLF subroutines.) Return to step b.

WRTREC. See BYTOUT.

| WITY, WTTYT.

Purpose. Type a message in TEXTC format (WTTY1) or in TEXT format (WTTY).

Entry. WTTY1 is called by the Endload and the Execute Modules. WTTY is called by the Start, the
Library, the Loader, and the Endload Modules. Register 1 is the link register.

Exit. Return to the calling routine.

Operation. Issue a CAL3,1 0 to output the message.

2-62

3.0 RUN
3.1 FUNCTIONAL OVERVIEW

3.1.1 General Description

RUN is a BTM subsystem which allows the on-line user to execute a previously formed load module (NON-
PAGED) under control of the RUN subsystem. Several BPM services which otherwise would not be available
to an on-line user are simulated by RUN, allowing overlayed load modules (M:SEGLD) to be executed.

Thus, most load modules capable of batch execution will also execute on-line.

Its capabilities include the re-biasing of a load module into core images within the BTM user areqa, the
application to the load moduleof any "MODS" (!MODIFY CARDS), modifying instructions or data,
displaying symbol address values and memory cell contents, and the insertion or deletion of instruction

breakpoints.

The RUN subsystem is entered by the Executive command IRUN, and upon entry, requests the load module
identification as follows:

LOAD MODULE FID:
where upon the user supplies the file identification in the form of
Name [(acct] , pass])]

RUN is s two-level subsystem which means that RUN can relinquish execution to a user program upon
recieving a ";G" (GO) or ";P" (PROCEED) command. RUN maintains control over the user program in the
event of traps, exits, breakpoints or aborts,

Symbol tables for the users program (root or overlay segments) are made available to RUN, These include all
REFS and DEFS of the specified segment and its backward path, The symbol tables are part of the load module

and are loaded with it, (See OVERLAY LOADER TECHNICAL MANUAL 90 18 03).

The various RUN commands are summarized in Figure 3-1,

COMMAND

DESCRIPTION

[s] ;S

[e]/
el, e2/.

Selects a symbol table by overlay segment name, or root if S is
omitted

Open cell and print contents (of cell €)

Displays the contents of cell el through €2 and open cell e2
Closes currently open cell

The expression e is stored into the currently open cell

Opens the next higher cell

Modifies the currently open cell and opens the next higher cell
Opens the next lower cell

Modifies the currently open cell and opens the next lower cell
Displays and opens the cell addressed by the last quantity typed

Modifies the currently open cell and opens the cell addressed by
the last quantity typed

Begin execution

Begin execution at location e

Proceed from breakpoint

Display all breakpoints

Set a breakpoint at location e

Clear breakpoint N (0 <N < 8)

Set execution counter to location e

Set condition codes to that of expression e
Display locations in hexadecimal

Display locations as symbols plus a hexadecimal offset
Display the execution counter
Display the current condition codes -

Display most recently displayed value

3.1.2 Error Messa&e_s_

Figure 3-1. RUN Commands

Error messages displayed to the user fall into three catagories:

Those that are command syntax errors,

2] Those that are machine trap diagnostics from an executing load module.

3] Those that are associated with the loading of the users load module.

The command syntax error is "?" and a re-prompt (BELL) by the subsystem is initialized,

3-2

Trap messages with the location of the offending instruction in symbolic (R) or hexadecimal (;A) are:

q NONEXIST INST AT
NONEXIST MEM REFAT

3] PRIV INST AT -

4 MEM PROT VIOL AT

5 UNIMP INST AT

4 STACK LIMIT AT~

7] FIXED OVERFLOW AT

8] FLOAT FAULT AT

d DECIMAL FAULT AT _

10 BADCALAT

Messages associated with loading of the users load module are:
] NAME TOO LONG
2 CANNOT OPEN LOAD MODULE

FILE NOT PROPER LOAD MODULE
4 LOAD MODULE DOES NOT FIT

3.1.3 Restriction

RUN subsystem is capable of loading only those load modules which are "NON PAGED", and whose size will
fit info the BTM user area.

ABSed load modules are permissable only if they are biased at a page beyond the TCB (REGPAGES+256), since

a relocation can not be done.

A rough estimate can be made to determine whether or not a load module may or may not fit into the BTM
user area. The formula is
USERSIZE -2, 5K (SIZE OF RUN SUBSYSTEM) -TREE (SIZE OF TREE) = CORE AVAILABLE

Non overlaid load modules may have up to four files open at the same time. Overlaid may have only three

at a time,

3.2 INTERFACES

3.2.1 To the BTM Executive
When the BTM user invokes RUN via a IRUN command, it is given control by the BTM Executive. Figure -

3-2 shows the memory layout of RUN after it has obtained control, and has loaded the user load module.

RUN operates as a two-level subsystem which has control over execution, traps, aborts and breakpoints of a
user program. RUN uses standard BTM subsystem cals to start execution of the users program, set swdp size,
and inform the user of trap faults. The reading and writing of a users terminal is accomplished via the normal
BTM CAL3's (CAL3, 0 for reading; CAL3, 1 for writing). The activation type (3) is set fo activate on ,
, ,1 , /, or=. It is set when the user is "popped up" to the RUN subsystem level at location
DEBUG. Prior to returning fo the user (CAL3,5) it is set to activate on o@only (4). This is done at
GOTOUSER,

3-3

3.2,2 To the User

RUN interfaces to the user via the RUN command verbs (see Figure 3-1) at subsystem level and via

breakpoints at execution level. RUN prompts for input with a "BELL" for input commands through the

users terminal at initialization time and also for any "POP UP" reason (breakpoints, trap conditions,

STANDARD SUBSYSTEM BASE

RUN - DATA AND PROCEEDURE

AULHAEEEAREEAEREREE AR RN RN

LOAD MODULE OR

REF/DEF

RELOCATION DICTIONARY

WINDOW - TOP OF CORE

Figure 3-2. RUN SUBSYSTEM IN MEMORY

-) encountered during execution at user level. The BTM user at executive time has all the
standard BTM system CAL's which apply to user level and the BPM system CALs available to the BTM user,
(See BTM Reference Manual, 90 15 77, Appendix A). In addition, the RUN subsystem simulates certain
BPM CALs not available to the BTM user. These include M:GP, M:FP, M:SMPRT, M:GL, M:GCP, M:FCP,
and M:TIME,

3-4

Since RUN subsystem is a debugging aid for user execution, RUN subsystem swaps portions of users
process into its window page for either examination and/or modification. This is done when control is

returned to RUN from a user level, and certain debugging commands are invoked. (i.e./, B, ;Q)

USERS REGS

LOWEST LEGAL BIAS, ALSO TCB IF
NO TCB ON LOAD MODULE

ex2000 AT TR TR

DATA

A MATAHATTATINRRREIRRRRRRR RSN

PROCEEDURE

AU N VRV N NNV AN

1 Dynamic Data Pages

I Common Pages Top Of Core

Figure 3-3. USER IN MEMORY

3.3 OPERATIONAL OVERVIEW
The RUN subsystem is entered via a specific request from the user at BTM Executive level (IRUN), trap
during user execution under the RUN subsystem, a specific user request (BREAKPOINTS), and monitor

aborts during user execution,

Upon initial entry (from the BTM Executive) the RUN subsystem prompts the user with, "LOAD MODULE FID:",
whereupon the user supplies the name of the load module to be run. RUN then, using the load module
named, reads the "HEAD" and "TREE" from the load module, re-biases the load module, applies any

IMODIFY commands to the load module(MODTABLE) and describes memory according to Figure 3-3,

3-5

After initialization, RUN prompts the user for commands from the terminal. If the user wants to execute his
program, he merely types ;P or ;G. RUN the issues a CAL3,5 and user execution takes place. For any
instruction breakpoints, CAL3,6's are inserted into the users program and when executed by the running

program, control is returned to RUN,
Figure 3-4 depicts the overall execution flow of RUN,
3.4 MODULE ANALYSIS

3.4.1 ENTRY

1. Module Name:
ENTRY

2, Purpose:
a. Obtain load module name.
b. Re=bias the load module into the BTM user area.
c. Build a TCB if none exits.
d. Set swap size, -

3. Entry:
Entered from the BTM Executive.

4, Exit:

a. Exits to DEBUG if the load module loaded.

b. Exits to LMNER if the load module is not a proper load module.

c. Exits to LMNAB if the load module does not exist.

d. Exits to LMSZER if the load module is too big or biased. improperly.
5. Operation:

a. Request load module FID.

b. Read users terminal (GETTXT) for load module name, account, and password,

c. Obtain all of core and set swap size to all of core.

d. Read the "HEAD" and "TREE" records from the load module,

e. Re=-bias the load module and set OOSIZ and OISIZ,

f. Read the root (RDSEG) and REFDEF stack (SYMS).

g. Set up the "GO" address (HEAD+1) and the TCB (CAL3, 8).

h. Describes memory and swap size.

i. Go to "DEBUG".

3.4,2 GOTOUSER

1. Module Name:
GOTOUSER

2, Purpose:
Transfer control from "RUN" (level 1) to the users program (level 2),

3. Entry:
a. Entered from GOPRO from a ;G or ; P,

3-6

ENTRY B o
SETSSEG SETABS ° SETREL

OPDIS
i .P.eril’c.)rmt. Bring in symbol Set Display Set Display Display
nitialization table from Mode to Mode to Contents of
() segment requestecf Absolute (HEC) Symbolic Requested Cell
DEB UG y
Obtain B N
Debug {
Command
RDVAL OPNXT . OPPREV MULTDIS OPINDR
; Close Open And Close
Symbol |GoTq Close Current Current Display Current
Cell Cell First Cell Cell
S B
i !
A C .
. Open Close Currently Open and display
Dsiplay And . R
Previous Open cell, open cell pointed to by
R P Open 1 I ontil | I
Next Cell Ce next cell until last | |last cell
B L cell is displayed _ i —
Other > <
¥]
Symbol GoTq
/ E
CR J
LF F
t G
: H GOPRO SEMIB ¢,
G K Set All by
P K Activation to Itself ?
TAB |1 4
Other
y
‘ . Set User
Type "?" for Program in
Unrecognized Execution
Command I
CLOSE Y
Close Control is
Current Returned to] Set g:leor
Cell RUN Breakpoint Breakpoints

®

Figure 3-4. Operational Overview of RUN
3-7

b. Entered from CALRET after CAL} simulation,
c. Entered from SETGOAD upon an overlay cail.

4, Exit:
Transfers control to users program via G OADR,

5. Operation:
a.. Set the swap size (SETUSZ) for the users environment,
b. Write out the current window page (WRPG) in case there were modifications,
Set activation to four (activate on CR/LF only).
d. Enter the user at the address specified by GOADR (CALS3, 5).

3.4.3 TLOC
1. Module Name:
TLOC

2. Purpose:
Analyze and either give control to the user after typing a message or provide service, for any
"POP UP" level.

3. Entry:
Entered from the user upon

1. A break in his program or - .
2, Trap fault.

4, Exit:
Exits to appropriate control routine applicable fo the debug mode.

5. Operation:
a. Obtain the PSD from the "POP UP" (CAL3,9) and store as GOADR.,
b, Type message to user (TYM} informing him of the reason for the "POP UP".
¢. Read the current symbol table for the segment in (SYMS) in case of debugging.
d. Prompt the user for input with a "BELL" and wait for a debug command.

3.4.4 CHKBRK

1. Module Name:
CHKBRK

2, Purpose:
Type the break number associated with the break which caused the "POP UP".

3. Entry:
Entered from TLOC ("POP UP") upon detection that the "POP UP" was due to a breakpoint,

4. Exit:
Exits to TLOC to enter the debug mode.

5. Operation:
a. Change all CAL3, 6's (breakpoints) back to the original contents (RDWN OB),
b. Type the location that the break occurred.
c. Enter the debug mode (TLOC).

3-8

3.4.5 OPDIS

1. Module Name:
OPDIS

2, Purpose:
Display the contents of a location (/).

3. Entry:
Entered from DEBUG upon detection of a "/",

4, Exit:
To PROMPT for another debugging command.

5. Operation:

3.4.6 OPEN

a.
b.

c.

Set REG2 with the value (VALUE) of the cell desired.
BAL to OPEN to open the cell and display the contents,
Return fo PROMPT for another debug command.

1. Module Name:

2,

3.

3.4.7 CLOSE

OPEN

Purpose:

Open and display the contents of a cell specified as "e /",

Entry:

Entered from

a. OPDISI to display one cell.

b. OPNXT upon detection of a line feed.

c. MULTDIS for multiple cell displays.

Exit:

B 0,4

Operation: B

a. Check for address error or register display (CHKPTRNX).

b. Type the address (HEXOUT) being displayed if requested (REG 7 greater or equal to zero).
c. Read the memory address into WINDOW (READWD), '
d. Type the contents (HEXOUT) of the desired memory location.

e. Return-B 0,4,

1. Module Name:
CLOSE

2. Purpose:
Alter the specified memory location.

3. Entry:
Entered from DEBUG upon detection of a

4, Exit:
Back to PROMPT for another debug command.

5. Operation:

a,

Check for a value typed by the user (CCHAR),

3-9

b. If nothing typed prior fo the , do not alter the location (CLOPRM).
c. Store the new value in the memory cell requested (STORWD),

d. Return to PROMPT for another debug command.

3.4.8 OPNXT

1. Module Name:
OPNXT

2, Purpose:
Store the value in the currently open cell and display the contents of the next one,

3. Entry:
Entered from DEBUG upon detection of a @.

4, Exit:
Back to PROMPT for another debug command.

5. Operation:
a. Check if modification is being made to the currently open cell (CCHAR),
b. If so, store the new value (STORWD) and; if not: '
c. Open the next cell (OPEN),
d. Return to PROMPT for another debug command.

3.4.9 OPPREV

1. Module Name:
OPPREV

2, Purpose:
Display and open the memory location previous to the currently open cell.

3. Entry:
Entered from DEBUG upon detectionora ™ § ",

4, Exit:
Returns to PROMPT for another debug command.

5. Operation:
a. Check if modification is being made to the currently open cell (CCHAR).
b. If so, store the new value (STORWD) and; if not;
c. Get the address of the currently open cell (LOC) and decrement it.
d. BAL to OPEN
e. Return to PROMPT.

3.4.10 OPINDR

1. Module Name:
OPINDR

2, Purpose:
Display and open the memory cell pointed to by the address field of the currently open cell.

3. Entry:
Entered from DEBUG upon detection of a "ESCI"

4, Exit:
Returns to PROMPT for another debug command.

3-10

5.

Operation:
a. Check if modification is being made to the currently open cell (CCHAR).
b. If so, store the new value (STORWD) and; if not;

Obtain in REG 2 the address field of the currently open cell (QUANT).
d. Open the cell pointed o by QUANT (BAL,4 OPEN).
e. Return to PROMPT for another debug command.

3.4.11 EHEH

1.

2.

Module Name:
EHEH

Purpose:
Type a "?" to the user, and run down his input strean in case of an error.

. Entry:

Entered from CLOSE, OPNXT, OPPREV, OPINDR, MULTDIS, SEM:B, TRYC, CMPSEG when either
the core location being displayed or the new value typed by the user is in error.

Exit:
To PROMPT for another debug command.

. Operation:

a. Type a carriage return=line feed to the user (TYCRLF).
b. Type a question mark,
c. Scan down input looking for an activation character,

d. Return to PROMPT.

3.4,12 MULTDIS

1.

2,

Module Name:
MULTDIS

Purpose:
Display contents "from" a starting location " to" an ending location.

. Entry:

Entered from DEBUG upon detection of a

non
Y2

Exit:
Back to PROMPT for another debug command.

. Operation:

a. Get "from" address (VALUE)-and store in DOT.

b. Read "to" address (RDVAL) and set in TOLOC,

c. Open and type (OPEN) "from" address (DOT).

d. Bump from address (DOT) and type contents (OPEN) until equal to TOLOC.
e. Return to PROMPT for another debug command.

3-11

3.4.13 GOPRO

1. Module Name:
GOPRRO

2, Purpose:
a. Go back to user at location specified by ;G or ;P.
b. Go back to user, executing the replaced breakpoint instruction, specified by ;G or ;P.

3. Entry:
Entered from DEBUG upon detection of a ;G or ;P

4, Exit:
Exits to user via GOTOUSER,

5. Operation:
a. Run down input until a carriage return is detected.
b. If user specified an address (VALUE), store into GOPOR and return to GOTOUSER,
If no VALUE to start execution at, and no breakpoints are set, then return to GOTOUSER, .

d. Set breakpoint number in REG 8, and transfer to CHKEXU (CHKEXU will replace the break
point with the actual instruction and start execution at that point),

3.4.14 SEMIB

1. Module Name:
SEMIB

2, Purpose:
To set and remove breakpoints in a users program and type the breakpoints.

3. Eniry:
Entered from SEMICK when a "B" is detected.

4, Exit:
Returns to PROMPT

5, Operation:
a. Type all breakpoints to user if only ;B (DISBRK).
b. If VALUE equals zero, then clear all breaks (CLRALL),
c. Find a free break entry (BREAKS).
d. Get contents of location to store breakpoint in (READWD),
e. Store break into location (STORWD).
f. Store address of breakpoint is break table (BREAKS),
g. Store replaced ’insh'ucﬁon (ST ORWD).
h. Return to PROMPT,

3.4,15 CLRALL

1. Module Name:
CLRALL

2, Purpose:
Clear all breakpoints.

3. Entry:
Entered from SEMIB if VALUE equals O (O;B).

3-12

4, Exit:
Returns to PROMPT

5. Operation:
a. Set REG 7 to indicate all breaks to be cleared (REG 7 = 8).
b. BAL to CLRBRK (Clears breakpoint and restores actual instruction).
c. LooponREG 7.
d. Return to PROMPT,
3.4.16 CLRBRK

1. Module Name:
CLRBRK

2, Purpose:
Remove breakpoint from users program. REG 7 equals the breakpoint number.

3. Entry:
a. Entered from SEMIB if only one breakpoint is to be cleared.
b. Entered from CLRALL if all breakpoints are to be cleared.

4, Exits:
B 0,4

5. Opefaﬁon:
a. Check break table (BREAKS) to be sure break exists.
1. If not retum (B 0,4).
2, Continue
b. Clear break from modtable (MOD BUF) if it exists within the table.

c. Before removing break, check to be sure that the break is in memory (RDWNOB) and not in
any overlay,

d. Get the location of the word to be replaced (READWD).

€. Zap break entry in break table (BREAKS),

f. Replace breakpoint (CAL3, 6) with actual instruction (STORWI),

g. Decrement all breakpoint numbers to reflect that one has been removed.

h. Zap the break point number in BREAKS if the break cleared was the breakpoint which caused the
"POP UP",

i. RETURN B 0,4

3.4.17 DISBRK

1. Module Name:
DISBRK

2. Purpose:
Display all breakpoints to the user.

3. Entry:
Entered from SEMIB if only ";B "typed by user.

4, Exit:
Returns to PROMPT,

3-13

5. Operation: A
a. Get entry out of break table (BREAKS).
b. If zero, loop on the number of breaks (8).
c. Type break number (HXNOD) to user in REG 7,
d. Type the location of the breakpoint (HEXOUT).
e. Loop on the number of bredks (8).
f. Return to PROMPT.

3.5 SUBROUTINE ANALYSIS

3.5.1 RDVAL

1. Subroutine Name:
RDVAL

2, Purpose:
Read debug commands.

3. Entry:
Entered by DEBUG

4, Exit: B
To MORECC

5. Operation:

a. Zap CCHAR (CHARACTER COUNT), VALUE (will contain value typed if not symbolic).
SIGN (positive or negative number), NAMTMP (will contain TEXTC name if symbolic '
name typed), SYMVAL (will contain value of symbolic. name (NAMTMP)).

b. Get a character (CAL3,0).

c. Check if special (CCR) and go to MORECC if it is.
d. Pack it for TEXTC name (NAMTMP).

e. Convert to Hex and loop to "b".

3.5.2 MORECC

1. Subroutine Name:
MORECC

2, Purpose:
Set and transfer to appropriate control function for users debug commands.

3. Entry:
Entered from RDVDL,

4. Exit:
To appropriate control functions

5, Operation:
a. Convert number (REG 3) to negative if SIGN is set.
b. Go to SEMICK if ";" hit.
c. Get absolute value from a symbolic names (GTSVAL) if SYMVAL set,
d. Type (HEXOUT) if " = " encountered.
e. Set debug mode to Hexadecimal (RADIX=16) if "A",

f. Get next character.

3-14

3.5.3 SINCK

1. Subroutine Name:

SINCK

2. Purpose:
Set sign of number positive or negative depending upon whether the user requested a negative number
or not,

3. Eniry:
Entered from MORECC.

4, Exit:
B RDVAL2 (in RDVAL).

5. Operation:
a. Set SIGN equal to a "t" if positive.
b. Set SIGN to negative "-" if negative,

c. Return

3.5.4 SEMICK

1. Subroutine Name:

SEMICK

2. Purpose: _
Transfer to appropriate routines upon detection of a ";" and a command verb (See figure 3-1),

3. Entry:
Entered from MORECC upon detection of a ;"

4, Exit:
To appropriate routine requested by the command verb.

5. Operation:
a. Transfer to SETSSEG if user request S.
b. Transfer to GTSVAL if a symbolic name was entered.
c. SETABS if A requests.

d. SETREL if R requests.

e. SEMIB if B requests,

f. Set GOADR if G requested.

g. Make VALUE positive or negative (REG 1), if SIGN set,
h. RETWRN for next character (RDVAL1),

3.5.5 SETSEG

1. Subroutine Name:

SETSEG

2, Purpose:
Select the symbol table from an overlay named (S).

3. Entry:
Entered from SEMICK upon detectionof an S .

4, Exit:
Return to PROMPT for next debug command.

3-15

5. Operation:
a. Check CCHAR. Zero means root of load module.
b. Set REG5 to point to the segment name in the tree (TREE).
c. Set SSEG equal to the segment number.
d. BAL to SYMS (Brings in symbol table).
e. Return to PROMPT.

3.5.6 GTSVAL

1. Subroutine Name:
GTSVAL

2, Purpose:
Determine the value of a symbolic symbol.

3. Entry:
a. BAL,10 GTSVAL; NAMTMP equals none of symbol.
b. Entered from MORECC, SEMICK

4, Exit:
B *10; VALUE equals absolute value of symbol.

5. Operation:
a. Set REG 2 equal to the start of the symbol table (DDAT),
b. Compare a byte at a time, NAMTMP against the symbols in DDAT,

c. When found, load value and store in VALUE (~2 words from the name in REF/DEF stack
equals the value of the constant).

d. Return (B *10).

3.5,7 CHKSERY

1. Subroutine Name:
CHKSERV

2, Purpose:
Interrnpt and transfer to simulator routines for M:GP, M:FP, M:SMPRT, M:GL, M:GCP, M:FCP,
M:TIME, M:SEGLD.

3. Entry:
Entered from "POP UP" level for non-allowed CAL.

4, Exit:
Exits to appropriate simulation routine.

5. Operation:
a. Read the page into WINDOW where the CAL was executed (READWD),
b, If the CAL was done via an EXU, go to CHKPTR to chain thru the EXU’s,
¢. Allow only CAL1's to go thru (PECAL).
d. Andonly CALI,8.

e. Determine the fpt address (CHKPTR) and read in the page of users code containing the fpt
address (READWD) and set FPTADR to the address of the fpt,

f. Branch to appropriate simulation routine using byte zero (FPT code) of the fpt.

3-16

3.5.8 GP

1. Subroutine Name:
GP

2, Purpose:
Simulate a M:GP CAL (Get page).

3, Entry:
Entered from CHKSERV with an fpt code of X'08'.

4, Exit:
Returns to GO TO USER.

5. Operation:
a. Find the number of pages requested (RO).
b. If the user request more than are available (NUSIZ) give him all that are possible.

c. Decrements the number of pages available (NUSIZ) and increse the number the
user has (DYPG).

d. Set SR1 (REG 8) of the users (STORWD) to the number of pages obtained,

e. Compute the address of the start of the area given and store in SR2 (REG 9) (STORWD).
f. Bump the return address (CALRET) by 1 (GOADR).

g. Set the condition codes (CCSET),

h. Return to user.

3.5.9 FP

1. Subroutine Name:
FP

2. Purpose:
Simulate a M:FP CAL (Free page).

3. Entry:
Entered from CHKSERV with an FPT code of X'09',

4, Exit:
Returns to CCSET.

5. Operation:
a. Find the number of pages requested (RO).
b. If the user tries to release more than he has (DYPG), release none.

c. Decrement the number of pages the user has (DYPG). and increment the number available (NUSIZ),
d. Go to CCSET. '

3.5.10 SMPRT

1. Subroutine Name:
SMPRT

2. Purpose:
"~ Simulate a M:SMPRT CAL (set memory protection).

3. Entry:
Entered from CHKSERV with an FPT code of X'0A",

4, Exits
Returns to CCSET,

3-17

5. Operation:
a. Set all protection types to 00 (00SIZE + 01SIZE) and zap 01 size.

b. Read the second word of the FPT (contains protection value and ending address) into
WINDOW (READWD).

c. Convert start address (REG 7) to pages and end address (REG 0) to pages.

d. Compute all the pages currently in use (CMPG).

e. If the starting page is in the area.and the ending page is also; set CC1 to zero (CCSET).
f. If the above is not true,set CC1 to a one (CCSET).

g. NOTE: No memory protection is actually set, since BTM users always run as protection zero.

3.5.11 GL

1. Subroutine Name:

GL

2, Purpose:
Simulate a M:GL CAL (GET LIMITS).

3. Eniry:
Entered from CHKSERV with an FPT code of X'0B’.

4, Exit:
Returns via CCSET,

5. Operation:
a. Set SR2 (REG 9) equal to the upper memory limit (TOPMEM).
b. Convert the number of common pages (CMPG) to words,

c. Compute the difference between top of memory (TOPMEM) and REG 13 (total common pages).
d. Store in SR1 (REG 8) (STORWD).

e. Return to CCSET

3.5.12 GCP

1. Subroutine Name:
GCP

2, Purpose: : :
Simulate a M:GCP CAL (Get common pages).

3. Entry:
Entered from CHKSERV with an FPT code of X'OC",

4, Exit:
Returns via CCSET

5. Operation:
a. Find number of pages requested (R0).
b. If the user requests more than are available (NUSIZ) give him all that are possible.

c. Increment the number of common pages the user has (CMPG) and decrease the number of
pages available (NUSIZ),

d. Set SR1{REG 8) of the user (STORWD), fo the number of pages obtained.

e. Compute the start address of the lowest common page and store in the users SR2 (REG 9)
(STORWD).,

3-18

3.5.13 FCP

1. Subroutine Name:
FCP

2, Purpose:
Simulate a M:FCP CAL (Free Common Pages).

3. Entry:
Entered from CHKSERV with an FPT code of X'OD',

4, Exit:
Return via CCSET.

5. Operation:
a. Obtain the number of pages requested (R0).
b. If the user tries to release more than he has, release none.

c. Increment the number of pages the user has (NUSIZ) and decrement the number of common
pages (CMPG).

d. Return to CCSET.

3.5.14 TIME

1. Subroutine Name:
TIME

2, Purpose:
Simulate a M:TIME CAL (Dated Time).

3. Entry:
Entered from CHKSERV with a FPT code of X'10'.

4, Exit:
To CALRET

5. Operation:
Get address to put date and time (CHKADRNX).
b. Issue a BTM date and time CAL (CAL3, 15).
c. Store hours and minutes (STORWD).,
d. Store Month (STORWD).
e. Store Day (STORWD).
f. Store Year (STORWD),
g. Return to CALRET

3.5.15 SEGLD

1. Subroutine Name:
SEGLD

2, Purpose:
Simulate an M:SEGLD (Segload).

3. Entry:
Entered from CHKSERV with an FPT Code of X'01°,

4, Exit:
a. Transfer to GOTOUSER with the new segment in,

b. Transfers to PECAL if any error conditions occur.

3-19

5. Operation:
a. Check for indirect or indexed address (CHKADRNX).
b. Get second word of FPT (READWD) which contains the address of the TEXTC segment name,
c. Get the segment name (READWD),
d. Look through TREE for segment name (SEGLOOP).
e. Set all segments in TREE not in except for the segment requested (SEGLP1) (Backward Path),
f. Set "Forward Path" still in (SEGLP2).
g. Read the requested segment in (RDSEG).
h. Return to FPT+2 (CALRET) or transfer to CHKEXU if BAL.

3.5.16 CHKEXU

1. Subroutine Name:
CHKEXU

2, Purpose:
Run down chain of "EXU's" from an "Executed CAL",

3. Entry:
Entered from SEMIB, and SEGLD,

4. Exit:
Transfer to GOTOUSER,

5. Operation: .
a. Read into WINDOW the requested page (READWD),
b. If not an "EXU" (X'67") check for a BAL (CHKBAL).
c. Skip down "EXU's (CHKPTR) until non "EXU" encountered,
d. If not BAL, return to user (SETG OAD).
e. Setreploced instruction into HEAD,
f. Get new transfer address (CHKPTR),
g. Swap old GOADR for new GOADR,
h. Store the new GOADR in users memory.
i. Return via GOTOUSER.

3.5.17 TYCRLF

1. Subroutine Name: .
TYCRLF

2. Purpose:
Type a carriage return and line feed to users terminal,

3. Entry:
BAL,4 TYCRLF

4, Exit:
B 0,4

5. Operation:
a. Send a carriage return (X'15" to user (CAL3, 1).
b. Send a line feed (X'25" to user (CAL3, 1)

c. Return

3-20

3.5.18 TYM

1. Subroutine Name:
YM

2, Purpose:
Type a TEXTC message to the users terminal,

3. Entry:
BAL,4 TYM;R2 = BYTE ADDRESS OF TEXTC MESSAGE,

4, Exits
B 0,4

5. Operation:
a. Place byte count from message into REG 3.
b. Send a character at a time (CAL3, 1) from the message until REG 3 (byte count) goes to zero.

c. Return,

3.5.19 GETTXT

1. Subroutine Name:
GETTXT

2, Purpose:
Obtain TEXTC format from user type in.

3. Entry:
a. Entered from ENTRY for request of "LOAD MODULE FID",
b. BAL,5 GETTXT; REG 8 equals maximum character length
4, Exit:
a. B O,5 if TEXTC O.K.
b. ENTRYT if an error.
5. Operation:
a. Set REG 12-14 with blanks (will contain TEXTC name).
b. Look for delimiters (", ", " (", ™", "X"'15") until either hit or REG8 is exhausted,

c. Store characters info REGS 12-14 bumping,byte count (byte 0 of REG12) to reflect number of
character in REGS 12 - 14,

d. Type a error message (NERM) if input from user exceeds maximum character length (REG 8).

3.5.20 LMNAB; LMNER; LMSZER

1. Subroutine Name:
LMNAB; LMNER; LMSZER

2, Purpose:
Type an appropriate error message to the user if there is a problem with his Load Module,

3. Entry:
B LMNAB; LMNER; LMSZER

4, Exit:
Returns to ENTRY for another Load Module Name from user.

5. Operation:
a. Type appropriate error message (TYM),
b. Return for another request (ENTRY),

3-21

3.5.21 RDSEG

1. Subroutine Name:
RDSEG

2, Purpose: :
Obtain an overlay segment by segment number,

3. Entry:

BAL,9 RDSEG; REG 7 equals segment number.
4, Exit:

B *9
5. Operation:

a. Check to see if segment is currently in (X'40000000 set in TREE).

b. Set swap size equal to users size (USIZ),

c. Set symbol table not in (SSEG to zero).

d. Bring the users memory into the subsystem memory (CAL3,7).

e. Read the overlay in (RDRCD1),

f. Set all DCB's to HERE (5) and reallocate them,

g. Apply any IMODIFY's to the overlay (MODBUF).

h. Set the new swap size (NOROTI). -
i. Re-align usersize (USIZ).

j» Return B*9

3.5.22 SETSWAP

1. Subroutine Name:
SETSWAP

2. Purpose:
Set up swap arguments for Swap description,

3. Entry:
BAL,11 SETSWAP

4, Exit:
B *11

5. Operation:
a. Set right half of REG 1 to the start address of swap.
b. Set into the left half of REG 1, the number of pages (00SIZ+) 0151Z),
c. Set into REG 0, the page number of user level swap storage.
d. Return B *11

3.5.23 SYMS

1. Subroutine Name:
SYMS

2, Purpose:
Routine to bring in the Symbol Table of the current segment in core.

3. Entry:
BAL,9 SYMS

4, Exit:
B *9

3-22

5. Operation:
a. Setsegment names in (SSEG).
b. Get the segment requested (RDRCD),
c. Convert all names to word resolution,
d. Add appropriate bias (BIAS).

e. Return B *9,

3.5.24 RELOCR

1. Subroutine Name:
RELOCR

2, Purpose:
Relocate a segment to fit current bias,

3. Entry:
B RELOCR

4, Exit:
B *10

5. Operation:
a. Read the relocation dictionary (RDRCD),
b. Put it in memory below WINDOW,
c. Convert to word resolution and add appropriate bias (BIAS),
d. Store it back in relocation dictionary,

e. Return.

3.5.25 RDWNOB

1. Subroutine Name:
RDWNOB

2, Purpose:
Set break table inactive to avoid breaks while obtaining a page of user memory.

3. Entry:
BAL,9 RDWNOB

4, Exit:
To READWD

5. Operation:
a. Set all break locations (BREAKS), negative.
b. Fall through to READWD,

3.5.26 READWD

1. Subroutine Name:
READWD

2. Purpose:
Obtain a word from users memory.

3. Entry:
BAL,9 READWD; REG 8 = address

3-23

4, Exit:
B *9; REG 0 = Word.

5. Operation:

Q.

b.

c.

d.

Get the page of memory (GPAGIN) which contains the requested word,
Set the requested word in REG 0.
Set all breaks active (Zap MINUS sign of BREAKS),

Return

3.5.27 STORWD

1, Subroutine Name:
STORWD

2, Purpose:
Put a word into users memory.

3. Entry:
BAL,9 STORWD REG 8 = Address to put word; REG 0 = Word.

4, Exits
B *9

5. Operation:

a.
b.
c.
d.

e.

Check if ROOT in (ifroot, merely store).
Find size and address of segment (STORWL).
Get the page needed (GPAGIN),

Store into the page.

Set the write flag (WRIND) and return,

3.5.28 GPAGIN

1. Subroutine Name:
GPAGIN

2, Purpose:
Obtain the page of core, to which a memory address pertains.

3. Entry:
BAL,12 GPAGIN; REG 8 = address

4, Exit:
B *12 REG 5 equals address of location in WINDOW,

5. Operation:

a.

b.

e,

Compute address of page needed for memory location desired,
If changing a breakpoint (BREAKS), set REG5 to point to break table.
Check if the page is currently in window (PGIN) and if so return (B *12),

Write out current page (in case of modification) and read in page containing requested
address.

Return,

3-24

3.5.29 WRPG

1. Subroutine Name:
WRPG

2, Purpose:
Write a page of subsystem memory to user level swap storage.

3. Entry:
BAL,11 WRPG

4, Exit:
B *11

5, Operation:
a. Set REG 0 fo page number of user level swap storage (PGIN),
b. Set REG 1 pointing to WINDOW (WINDPG).
c. Set REG 2 positive (1).
d. Issue a swap (CAL3,7).
e. ReturnB *11

3.5.30 RDPG

1. Subroutine Name:
RDPG

2, Purpose:
Read a page of user memory into WINDOW,

-3. Entry:
BAL,11 RDPG; REG 4 equals page number.

4, Exit:
B *I1

5. Operation:
a. Set REG 0 with page number (REG 4).
b. Set subsystem page to read into (WINDPG) REG 1,
c. Set REG 2 negative.
d. Issue swap (CAL3,7).
e. Return(B *11)

3.5.31 CHKADRNX; CHKPTRNX; CHKPTR

1. Subroutine Name:

CHKADRNX; CHKPTRNX; CHKPTR

2, Purpose:
Decode indirect address or registers from a user FPT,

3. Eniry:
BAL,1 CHKADRNX; CHKPTRNX, CHKPTR; REG 2 = address of FPT.

4, Exit:
B *1

5. Operation:
a. Check for indirect bit in REG 2 and transfer to NOAST if not.

3-25

b. Check if address is out of core (NOMLIM) and transfer indirect to ADER if it is.
c. Read the address specified by the FPT address into the window page (READWD),
d. Transfer to NOINDX if not indexed (NOAST),

e. Read the register requested (READWD) and add to the address of the FPT.

f. Set in REG 3 the effective address (NOINDX),

g. Return

3.5.32 HEXOUT

1. Subroutine Name:
HEXOUT

2. Purpose:
Convert a number to hexadecimal and type it to the user.

3. Entry:
BAL,1 HEXOUT; REG 3 = Number

4, Exit:
B *1

5. Operation: .
a. Transfer to SYMBOUT if ABSFLAG not set,
b. Output.a "." (CAL3, 1) (NOSYMB)
c. Convert number to hex (HEXCHR) and store in LMN until REG 3 exhausted.
d. Type from LMN to users terminal {CAL3, 1)

e. Return

3.5.33 SYMBOUT

1. Subroutine Name:
SYMBOUT

2, Purpose:
Convert a number to its symbolic name plus a hexadecimal displacement,

3. Entry: .
B SYMBOUT ' .

4, Exit:
B SEIFS

5. Operation:
a. Look for symbol in dynamic data (DDAT).
b. Branch to SEIFS to print on the user terminal the symbolic name.

3.5.34 SEIFS

1. Subroutine Name:
SEIFS

2, Purpose:
Type a symbolic name to the users terminal

3. Entry:
B SEIFS; REG 6 = address of name,

3-26

4, Exit:
B NOSYMB

5. Operation:
a. Get byte address of name into REGé.
b. Get byte count of name into REG 2.
c. Type name to user (CAL3,1) until byte count (REG2) is exhausted.,
d. Type a "+" (CAL3, 1) to user for hexadecimal offset from symbol.
e. Branch to NOSYMB to type hexadecimal offset.

3-27

4.0 BPM SUBSYSTEM

4.1 FUNCTIONAL OVERVIEW

4.1.1 Purpose
BPM (Terminal Batch Entry) is a BTM subsystem which provide the ability for an on=line user to insert a job file,
status check a previously inserted job file, or delete a previously inserted job file. This subsystem is available

only when BTM is operating in a symbiont BPM environment,

4.1.2 Input
The BPM Subsystem prompts the BTM user immediately after eniry with

1. INSERT Job? [L} . Prepares the subsystem to enter a job file,

a. An affirmative reply (Y) will cause the subsystem to read the job file from the users terminal
or from a previously ASSIGNed file built, for example, by EDIT, The subsystem then prompts
with the command "EDIT?"

b. A negative reply will cause the subsystem to prompt with the next control command. (STATUS
CHECK) .
Y

2, STATUS CHECK? {N} . Allows the user to check the status of any previously inserted job file.

a. An affirmative reply (Y) will cause the subsystem to prompt with "ID=" at which time, the user
responds with four hexadecinal digits of a previously inserted job id. If only a carriage return
is entered, the subsystem returns to the Executive level (1).

After receiving a valid job id the subsystem will return one of the following five status

indicators,
RUNNING ~The job requested is currently execution in the Batch Partition,
COMPLETED -The job requested has been processed.
NONEXISTENT -The job requested has never been entered into the Batch Queve.
WAITING ON OUTPUT -The job requested has been processed but the output has not been
completed.
WAITING: N AHEAD -The job requested is still waiting to be processed. N is the number
CURRENT ID: X ahead of the job requested and X is the ID of the job that is

currently executing in the Batch Partition,

The subsystem then prompts again with "ID=",

b. A negative reply will cause the subsystem to prompt with the next control command.(Delete Job)

3. DELETE JOB? {II} . Allows the user to delete from the Batich Queue, a previously inserted job file.

An affirmative reply (Y), will cause the subsystem to prompt with "ID=" at which time, the
user responds with four hexadecimal digits of a previously inserted job ID, The subsystem will
respond with one of the five following messages from a delete request.

NONEXISTENT - The job requested has never been entered into the batch queue.
...DELETED = The job file was deleted from the batch queue.
UNABLE TO DELETE JOB. AUTHORIZATION REQUIRED.

- User is trying to delete a job other than his own,

4. EDIT? {

UNABLE TO DELETE JOB. TOO LATE. - .The requested job has already been run in the
batch partition.

UNABLE TO DELETE JOB. NON-SYMBIONT SYSTEM.
- There is no Batch Job queue or a non-symbiont syst,

The subsystem then prompts again with "ID=", If only a carriage return is entered, the subsystem
returns to the Executive level (1),

b. A negative response will cause the subsystem to return to the Executive level (1).
Y
N

a. If the user reply is negative (N), the subsystem enters the job file. in the Batch Job queue
and types the following to the user

}. Allows the user to edit his job file prior to the job insertion,

JOB INSERTED, ID = XXXX

where XXXX is the hexadecimal characters of his job ID, Then the subsystem responds with the
next control command (STATUS CHECK).

b. If the user reply is offirmative (Y), the subsystem prompts with a question mark (?). At this point
the user responds as follows, where XX and YY are record numbers as displayed on the console.

Type file

Type lines XX [Thru,YY]

Erase the job file,

Go (insert the job file)

Swap lines XX and YY

Delete lines XX [Thru,YY]

Add the following lines after line XX

Replace XX [Thru,YY]with the following lines.

4.1.3 Error Messages

1.

2,

INVALID ID - the response to the"ID "= request was either greater than four characters, or, an illegal
configuration of hexadecimal characters,

BAD I/O. ABNORMAL CODE - YY - An abnormal was returned from the BPM subsystem reading its
input from M:SI DCB. YY equals the error code.

File too large. Task ABORTED - The job file to be inserted must fit into the BTM partition. This
allows in a 16K user area, approximately 700 records.

NONEXISTENT LINE ~ An edit command refers to a non-existent line.

ERRONEOUS COMMAND IGNORED An edit command is either illegal or contains improper
parameters.

NO INPUT DATA. BYE - There is no job file is send to the Batch job queue.
FIN CARD IGNORED -~ A IFIN card was found in the Job file. I‘t is deleted from the job file.

JOB CARD MISSING OR RECORDS OUT OF ORDER = A }JOB command must be the first record
of a Job file.

IMPROPER JOB ACCOUNIT = The user account on the 1JOB command does not match his log-in

account,

4-2

10. IMPROPER JOB NAME - the users name on his | JOB command does not match his log=in name.

11. IMPROPER JOB PRIORITY - Either the user has an illegal hexadecimal character on his 1JOB
command, or, he has specified a priority greater than his authorized maximum,

12. IMPROPER EXTENDED ACCOUNTING - The extended accounting field from the 1JOB command
does not conform to the rules.
13. IMPROPER JOB CARD - the ! JOB command does not conform to the rules of a proper job card.

4,2 INTERFACES

4.2,1 Operating System

The BPM subsystem only interfaces with the BTM Executive, It cannot be run as a Batch processor,
4,3 OPERATIONAL OVERVIEW

4,3.1 Description

Processing starts at location BEGIN, The users log-in account and name, terminal number, authorization flags,
and maximum priority are stored at this time. If the user is not authorized, he is returned to the BTM
Executive, Options are processed and control is given o the appropriate routine; INSERT, STATUS, DELETE.
Any abnormal returns from any 1/O commands, cause the subsystem to abort through the Abnormal-Exit

routines. Any exit condition found within a control routine is exited thru the normal exit routine .

4.3.2 DCB's
1. M:SI - Reads the job file
2, M:iEO - Send the job file to the Symbiont

4,3.3 Flowchart
See Figure 4-1

4.4 MODULE ANALYSIS

4-3

STATUS

DELETE

BEGINI

Y

yes

Delete
?

INSERT

Figure 4=1. Operational Overview of BPM Subsystem

4-4

4.4,

1 BEGIN

1. Module Name
BEGIN

2. Purpose:
Request option from user and transfer to appropriate routine,

3. Entry:
BEGIN is the entry point into the subsystem, whenever BPM is invoked.
4. Exit:

a. Transfers control to the appropriate routine requested by the user,
b. Exits to the time-sharing executive when all options have been exhausted.

5. Operation: .
a. Store the users log-in account (REGS 4, 5), name (REGS 13, 14, 15) and maximum priority (REG 2).

b. Abort the user (NONO) if batch flag not set (REG 3 greater or equal to zero).

c. Invoke options to user and request a "Y" or "N" (YESNO). If "Y" transfer to option; if "N"
invoke next option,

d. Return to the time-sharing executive when all options have been invoked.

.4.2 DELETE

4.4

4.4

1. Module Name:
DELETE

2, Purpose:
Allow the user to delete from the batch job queue, a previously inserted job file.

3. Entry:
Entered from BEGIN upon a positive reply (Y) to "DELETE JOB?"
4. Exit:)

The exit is to the time-sharing executive upon a carriage return only to an ID request .

5. Operation:
a. Request the ID of the job file to be deleted (INEBCHEX)

b. Store the ID in DELID and issue an M:JOB delete cal.
c. Type "...DELETED" if the delete was successful and issue another ID request.
d. If the delete was unsucessful, control is transferred to ABNDEL.

a. An appropriate error message will be typed (see ABNDEL),

b, Issue another ID request.

6. Flowchart:
See figure 4-2,

.4.3 STATUS

1. Module Name:
STATUS

2. Purpose:
Allow the user to status check a previously inserted job file.

3. Entry:
Entered from BEGIN upon a positive reply (Y) to "STATUS CHECK?"

4-5

4, Exit:
The exit is to the time=sharing executive upon a carriage return only, to an ID request.

5. Operation:
a. Request the ID of the job file to be status checked (INEBCHEX),
b, Issue an M:JOB status request using the ID in REG 8,

c. Using the number returned in REG 8 (0 = completed; 1 = running; 2 = waiting to run; 3 = non-
existent; 4 = Waiting to output) index into STATMS for the appropriate status message which is then
typed to the user (TYPEMESS).

4-6

(DELETE)

/

Request ID to

be deleted

Issue an M:JOB
delete request

ABNDEL

Tell user the job

file was deleted

Pg. 1

Figure 4-2, Flow Chart for DELETE

4-7

STATUS

Request ID to
be deleted

Tell user

"COMPLETED"

Tell user

"RUNNING"

Tell user

"NONEXISTENT"

Issue an
M:JOB
Status request

Tell user
"WAITING:
N AHEAD"
Tell user
"CURRENTID ;
XXXX"
no - Status = 4

Tell User

"WAITING

TO OUTPUT"

Pg. 2

Figure 4-3. Flow Chart for STATUS

4-8

4.4.4 INSERT

Module Name:
INSERT

Purpose:
Allow a user to enter a job file into the batch job queve.

Entry:
Entered from BEGIN upon a positive reply (Y) to "INSERT JOB?"

Exit:
Control is transferred to EDIT upon detection of a end of file (from file input) or a null line to an input
request (carriage return only).

Operation:
a. Type maximum priority allowed (MAXPRI) to the user (TYPEMESS).
b. Find size of user area (CAL3,14) and store in MAXPAGES.
Start data buffer ot a page boundary behind the subsystem (STRTDATA, NEXTPAGE, FIRSPAGE),
d. Open M:SI and determine if it is from a users console or file .
e. If file, read data records until end of file (ABNSI),
f. If console, type the number (LINENO), and read input until a null line (carriage return only).
g. Place data records into the buffer pointed to by STRTDATA (PUTLINE).

Flowchart
See Figure 4-5.

4-9

INSERT

Tell user his
maximum priority

Obtain size of user
area (Becomes data
pages) and set pointers
to begin, of dafa_gl;'ea

¥

Open M:SI
DCB

yes

no

Type line number
to user

]

Read
M:SI DCB

A

Set record size

Zap carriage Blank fill to
return at endof P 80 characters
record if it exists

no

Put record read v

info Data pogej‘

Bump line

number

Figure 4-4, Flow Chart of INSERT

4-10

4,4,5 FILETYPE

1.

Module Name:

FILETYPE
2, Purpose:
Delete carriage returns from lines of data read from a file and blank fiil records to 80 characters,
3. Entry:
Entered from INSERT whenever a record is read from file input with REG 1 equally the number of
characters with the record.
4, Exit:
Transfers to INSERT to read the next control record.
5. Operation:
a. Check REG 1 for greater than 80 characters and truncate if so,
b. Zap last character of record to a blank, if the last character is a carriage return (X'15%,
c. Blank fill record to 80 characters.
4.4.6 EDIT
1. Module Name:
EDIT
2, Purpoge:
Allow the user to modify his job file, prior to insertion into the batch job queue,
3. Enfry:
a. Entered from INSERT, when a null record is received as input
b. Entered from ABNSI upon detection of an End of File from file input.
c. Entered from TRANSFER if no job card was found in the job file.
4, Exit:
a, Exits to TRANSFER upon a negative response (N) to "EDIT?"
b. Exit to EDITO upon a positive reply (Y)
5. Operation:
a. Ask the user if editing is desired (TYPEMESS)
b. Transfer to EDITO if desired (YESNO).
6. Flowchart

See Figure 4-5,

4,4.7 EDITO

Module Name:
EDITO

Purpose:
Request edit commands from user

Entry:
a, Entered from EDIT upon a positive response (Y) to "EDIT?"

4-11

b. Entered from APPEND, SCRATCH, TYPE, REPLACE, SWAP, DELETEE from:
1. An erroneous command format.

2, Normal return for more edit commands.
Exit:
a. To the time=sharing executive if no input exists in the job file (NOINPT).
b. To TRANSFER upon the edit-command "GO",
Operation:
a. Check for any Job file (LINENO) in the data area and exit if none (NOI.NPT).
b. Request edit function. .
c. Branch to function desired (FINDEDIT),
d. Run down input look for a carriage return if function is erroneous,
e. Type to user (TYPEMESS) that edit function was erroneous.
f. Request another edit command.
Flowchart
See Figure 4-5,

4-12

APPEND
DELETEE
GO
EPLACE

SWA.P
TYPE

SCRATC

yes

yes

yes

yes

yes

yes

yes

EDITO

Request Edit

APPEND
?

no
DELETE
?

no

GO
?

no

REPLACE®
?

SCRATCH
?
no

Tell user command not legal

i

Figure 4-5. Flow Chart of EDIT

4-13

4.5 SUBROUTINE ANALYSIS

4.5.2 TYPE

4,5.1 GO

1. Subroutine Name:
GO

2, Purpose:
Send the job file to the symbiont batch queue.

3. Entry:
Entered from FINDEDIT upon detection of a "G" (go).

4, Exit:
a. To EDIT2 if more than one line number,
b. To EDIT3 if no line number.
c. To EDIT1 for more edit commands (normal exit).

5. Operation:
a. Get append line number (GETINP),
b. If no lines exist (LINENO less then or equal to zero), then allow append to zero only,
c. Find the line to be appended to (FINDLINE),
d. Type line (HEXDEC) number + 1 to user and await input,
e. Bump all line numbers in data area past the appended line number by one (1).
f. Loop back to APPEND 1 for another input record,

Subroutine Name:

TYPE

Purpose:

Allowes the user to type all or portions of his job file.

Entry:

Entered from FINDEDIT upon detection of a "T" (TYPE).

Exit:

a. Exits to EDIT 2 if no lines exist to type or all lines typed.

b. Exits fo EDIT3 if no line number was given or the starting line number was greater than the
ending line number,

c. Exits to EDIT2 if more than TWO line numbers were specified.

Operation:

a. Check for the existence of any lines to type (LINENO),

b. Find out if the user wants all lines types, one line typed or more than one line typed (GETINP),
Type the line number to the user (HEXDEC),

. Type the line to the user (TYPELINE).,
e. Loop on the number of lines to type (REG 11) or until all are typed (LINENO),
f. Return to EDITI,

4-14

4.5.3 REPLACE

REPLACE
2, Purpose:
Allows the user to replace various lines within his job file,
3. Entry:
Entered from FINDEDIT upon detection of a "R" (REPLACE).
4, Exit:
a. Exits to EDIT2 if no input exists to replace or if the line number itself is invalid,
b. Exits to EDIT3 if no line number is supplied or the starting line number is greater than the ending
line number,
c. Exits to EDIT1 if the line to replace can't be found.
d. Exits to APPENDO (Normal EXIT),
5. Operation:
a. Check to see if any job file lines exist (LINENO),
b. Findout if the user wants one line or more than one line replaced (GETINP).
1. Transfer to REPLACE1 if more than one.
2. Continue normally if only one.
c. Delete all lines (DELLINE) requested from the line numbers as input to REPLACE,
d. Exit to APPENDO to insert the new lines in,
4.5.4 SWAP
1. Subroutine Name:
SWAP
2. Purpose:
Allows the user to exchange lines within his job file,
3. Entry:
Entered from FINDEDIT upon detection of an "S" (SWAP),
4. Exit:
a. Exits to EDIT3 if no lines requested or only one line requested.
b. Exits fo EDIT2 if more than fwo lines typed.
c. Exits o EDIT1 (Normal Exit).
5. Operation:

Subroutine Name:

a. Check to see if any job file lines exist (LINENO),
b. Get the lines to be swapped (GETINP),

c. Store the first line number (TEMP) over the second and the second (TEMP1) over the first.

d. Exit to EDIT1 for next edit command.

4-15

4,5.5 DELETEE

1. Subroutine Name:
DELETEE

2., Purpose:
Allows the user to delete portions of his job file.

3. Entry:
Entered from FINDEDIT upon detection of a "D" (DELETE).
4, Exit:

a. Exit to EDIT2 if no data lines exist or invalid line number,

b. Exit to EDIT3 if no lines were requested or starting line number is greater then the ending line
number,

c. Exit to EDIT1 (Normal) ofter lines have been deleted.
5. Operation:
a. Check for any job file lines existing (LINENO),
b. Get the lines to be deleted (GETTINP),
1. DELETEE] if more than one.
2. Continue normally if only one.
c. Delete the line (DELLINE) and return to EDIT1,

4.5.6 TRANSFER

1. Subroutine Name:
TRANSFER

2, Purpose:
Send the built symbiont blocks of job files to the batch job queuve.

3. Entry:
a. From EDIT when no editing is desired,
b. From GO when the user wants the job file to be sent.
4, Exit: :
a. To NOINPT if nothing exists in the job file to send (LINENO),
b. TRANSLST to send last block.
c. NOJOBC if no job card was found in the job file.
5. Operation:
a. Check for data fo send (LINENO),
b. Find each line (FINDLINE) of data.
c. Check each line for the first byte being a "!" (control card),

d. Move each line of job file to the symbiont buffer (SUMBBUFF) being built for the M:JOB
insert cal,

e. When full send buffer,
f. Keep filling and sending SYMBBUFF until all records of the job file have been sent,

4-16

4.5.7 CRLF

Subroutine Name:

CRLF

Purpose:
Send a carriage return (X'15") and lines feed (X'25") to the users console.

Entry:
a. Entry is accomplished via a BAL,R15 to CRLF.

b. It is entered from STRTFIL, BEGIN, DELETE, STATUS, INSERT, EDITO, TYPE, YESNO,
FINCARD, TRANSLST, ABNDEL, NONO, NOJOBC, FINDER, NAMER, JOBCER, INVL,

Exit:
Exits through TYPEMESS by a B *R15.

Operation:

a. Sefs into REG 14, the address of the carriage return - line feed message (CRLFMS).
b, Falls through to TYPEMESS,

4.5.8 TYPEMESS

1.

2,

Subroutine Name:

TYPEMESS

Purpose:
Send a textc type message to the users console

Entry:
a. BAL,R15 TYPEMESS.
b. R14 = address of textc message.

c. Entered from BEGIN, CRLF, DELETE, STATUS, INSERT, EDIT, EDITO, HEXEBC, FINCARD,
TRANSLST, ABNDEL, NONO, ABNSI, NOJOBC, FINDER, ABNINS, NAMER, INVL,

Exit:
Exits via B *R15

Operation:

a. Obtain byte count from message pointed to by REG 14,
b. Get bytes from message into REG 0,

Issue a CAL3,1 (PRINT).

d. Loop on byte count (REG 1),

(2]

4,5.9 YESNO

Subroutine Name:
YESNO

Purpose:
Recieve a "Y" or "N" response from user

Entry:
(B)
a. BAL,R15 YESNO

b. Entered from BEGIN, EDIT, ABNINS

4-17

4,

4.5.10

Exit:
a. Returns to BAL + 1 if "Y",
b. Returns to BAL + 2 if "N",
Operation:
a, Set activation to "ALL" (CAL3,2 with REG 0=1).
b. Recieve character (CAL3,0)
c. Check for "Y" or "N",
d, If not
1. Send user a question mark.
2. Re-request input.,
e. BumpRI15bylifno.
f. Set activation to carriage returndine feed. (CAL3,2 REG =4),
g. Return through CRLF.

INEBCHEX

4.5.11

Subroutine Name:
INEBCHEX

Purpose:
Recieve ebcidic characters as input and convert them to a hex number,

Entry:

a. BAL,R15 INEBCHEX

b. Entered from DELETE, STATUS

Exit:

a. Returns *R15+1 with hexadecimal number in REG 8.

b. Returns to the time-sharing executive if a null record is supplied as input (carriage return only).
c. Transfers to INVL if the input is not valid Hexadecinal digits.
Operation:

a. Zero REG 8 (will contain resultant hex number).

b. Get il;npuf characters and convert them to hexadecimal.

c. Check if valid hex characters (O-F) and transfer to INVL if not,
d. Bump return address

e. If input came in, return *R15; if not, exit o the time-sharing executive (CAL3,6).

HEXDEC

]o

Subroutine Name:
HEXDEC

Purpose:
Convert hexadecinal number to decimal and type on the users console, the result.

Entry:
a. BAL,R15 HEXDEC
b. R10 = hexadecimal number.

4-18

4.5.

c. Entered from STATUS, INSERT, APPEND, TYPE

4, Exit:
Transfers to HEXEBC

5. Operation:

a. SetREG 0 to zero (will contain result).

b, Divide REG 10 by X'A' storing remainders in REG 0.
Load REG 9 with result in REG 0.
Full through to HEXEBC to type resulf.

o

12 HEXEBC

4.5.

1. Subroutine Name:
HEXEBC

2, Purpose:
Convert hexadecimal numbers to ebedic and type to the user, the result.

3. Entry:
a. BAL,R15 HEXEBC
b. R9 = Hexadecimal number,
c. Entered from HEXDEC, STATUS, TRANSLST, ABNSI, JOBCER.

4, Exit:
To TYPEMESS fto print the number,

5. Operation:
a. Find size of number (For textc format).
b. Store size (byte count) in EBCDICNO,
c. Convert numbers to the ebcdic.
d. Store numbers in EBCDICNO,
e. Loop on byte count.

f. Set REG 14 pointing to EBCDICNO and transfer to TYPEMESS.

13 PUTLINE

1. Subroutine Name:

PUTLINE

2. Purpose:
Puta line of input data, with its line number (LINENO) info the data pages.

3. Entry:
a. BAL,R15 PUTLINE
b. R10 = line number (LINENO),
c. Entered by INSERT, APPEND
4, Exit:
a. B *RIS
b. NOROOM if no more data pages available,

4-19

5.

Operation:
a. Check for room available in current page (STRTDATA) for another 21 word data record.
b. If not:
1. Check if any pages left and transfer to NOROOM if not,
2, Bump NEXTPAGE by 1 to reflect next page limit.
3. Set swap size (CAL3, 1t 0) for new page obtained,
c. Store line number (REG 10),
d. Move record
e. Bump STRTDATA by 21 words.
f. Return (B *R15),

4.5.14 FINDLINE

Subroutine Name:
FINDLINE

Purpose:
Find a line of input in the data area by its line number,

Entry:
a. BAL,R15 FINDLINE
b. R10= line number,
c. Entered from APPEND, TYPE, REPLACE, SWAP, DELETEE
Exit: h
a. B *R15
b. REG7 = address of desired line,
Operation:
a. Set address pointer (REG 7) to beginning of data area (FIRSPAGE).
b. Loop through data area until -
1. Line number (REG 10) is found in data area.
2. The data area is exhausted (STRTDATA)

c. Return #*R15 with condition codes = 0 (liné found) or condition codes = 1 (set by FINDERS
indicates line not found.)

4.5.15 RUNDOWN

].

Subroutine Name:
RUNDOWN

Purpose:
Run down input buffer looking for a carriage return (X'15).

Entry:
a. BAL,R15 RUNDOWN
b. Entered from EDITO, GO, SCRATCH, INVL

Exit:
B *R15

4-20

Operation:
a. Read input character (CAL3,0).
b. Loop until carriage return found.

c. Return *R15

4.5.16 BANGHIT

1.

Subroutine Name:

BANGHIT
2, Purpose:
Analyze a "bang" card (!) hit during a transfer to the symbiont batch queuve, for a IFIN, ECD,
1JOB,
3. Entry:
a. B BANGHIT
b. R7 = address of data line in data buffer.
c. Entered from TRANSFER
4, Exit:
a. Return to TRANSIO if "Bang" card was not special.
b. Transfer to EODCARD, FINCARD, JOBCARD depending on the type of card.
5. Operation:
a. Loop thru card, ignoring, blanks storing the first 4 characters in REG 15 (including the "BANG"
)2
b. Compare REG 15 with SPECBANG.
c. If equal, transfer to appropriate routine (BANGBRUS)
d. Return to TRANSIO if not equal.
4.5.17 EODCARD
1. Subroutine Name:
EODCARD
2. Purpose:
Set special control word in the symbiont buffer (SYMBBUFF) for an 'EOD card.
3. Entry:
Entered from BANGHIT
4, B TRANS2
Operation:

a. Set REG 12 = EODCONS
b. Return (B TRANS2)

4-21

4.5.18 FINCARD
1, Subroutine Name:
FINCARD
2, Purpose"
Delete a IFIN from the input job file
3. Entry:
Entered from BANGHIT
4, Exit:
B TRANSI
5. Operation:
\ a. Inform user that the IFIN card is being ignored (TYPEMESS)
b, Return (B TRANSI)
4.5.19 JOBCARD
1. Subroutine Name:
JOBCARD
2, Purpose:
Process the 1JOB control card from the input job files
3. Entry:
a. Entered from BANGHIT
b. R10 = line number (LINENO); R7 = address of job card in buffer.
4, Exit:
a. Exit to NAMECOMP after getting accounts.
b. Exit to COMPALL if all fields of the job card have been exhausted,
c. Exit to NOJOBC if job card is not the first line number.
5. Operation:

a. Check if there is a "JOB" currently waiting to be sent (JPR greater or equal to zero)
b, If not transfer to JOBCARDO;

1. Set EOBCONS (X'40') into SYMBBUFF

2. Send the current block (SYMBBUFF)

3. Delete all lines from the data area (DELLINE) which have been previous sent (M:JOB
INSERT) to the batch job queve.

4. Re-initialize the line number (set it to 1); find the job card (FINDLINE).
c. Blank out USERACNT, USERNAME
d. Search 1JOB card for the account, storing it info USERACNT,

4.5.20 NAMECOMP

1.

Subroutine Name:
NAMECOMP

Purpose:
Obtain the name field from the |JOB card,

Entry:
entered from SEARCH, when a comma (,) is detected onthe 1JOB card.

4-22

4, Exit:
Exits to PRIOR after storing the name field from the [JOB card.

5. Operation:
a. Search 1 JOB card for the name field.
b. Store it a byte at a time into USERNAME,

4.5.21 EXTACT

1. Subroutine Name:
EXTACT

2, Purpose:
Check extended accounting field on the | JOB card for extended accounting conformity.

3. Entry:
Entered from CHKLIM upon detection of a left parenthesis (().
4, Exit:

a. To JOBCER if the extended accounting format is in error.

b. To EXACER if iilegal delimiters exist within the extended accounting record.
5. Operation:

a. Check to see if the routine has been re-entered (EXTFLG greater than zero),

b. Search down ! JOB card until a right parenthesis is encountered ()).

4.5.22 PRIOR

1. Subroutine Name:
PRIOR

2, Purpose:
Obtain the priority field from the 1JOB card.

3. Entry:
a. Entered from NAMECOMP upon detection of a comma (,).
b. Entered from EXTACT upon detection of a right parenthesis ()).
4, Exit:
a. Exit to PRIOER if priority field is not a hexadecimal number.
b, Exit to JOBCER if the priority field is not followed by a space or a comma.
c. Exit to COMPALL if priority field is legitimate,
5. Operation:
a. Get priority from Job card (SERCH).
b. Check if legal hexadecimal character.
4,5.23 COMPALL

1. Subroutine Name:
COMPALL

2. Purpose:
Compare fields from 1 JOB card to authorization from AJIT,

3. Entry:
a. Entered when all fields of the | JOB card have been processed.
b. Entered from PRIOR, CHKLIM,

4-23

4,5.25

Exit:

a. ACCTER if account numbers is error.

b. NAMER if name field in error,

c. PRIOER if priority is greater than MAXPRI.

Operation:

a. Compare USERACNT (from 1JOB card) to LOGACNT (log-in account).
b. Compare USERNAME (from | JOB card) to LOGNAME (log-in name).
c. Compare JPR (priority from 1JOB card) to MAXPRI,

d. Return to TRANSIO.

SERCH

Subroutine Name:
SERCH

Purpose:
Get bytes of fields from !JOB card.

Entry:
a. BAL,R15 SERCH

b. R7 = address of 1JOB card in data area; R3 = byte displacement on 1JOB card;
REG 0 = character.

c. Entered from JOBCARD, NAMECOMP, EXTACT, PRIOR, SERDOWN.
Exit:

a. B *R9 if serched more than 80 character.

b. B *R15 nommal return.

Operation:

a. Obtain byte from 1JOB card.

b. Check for greater than 80 characters processed.

c. Compare desired character REG O with that from card REG 1,

d. Return

CHKLIM

1.

Subroutine Name:
CHKLIM

Purpose:
Check for any delimiters hit on 1JOB card,

Entry:
a. BAL,R14 CHKLIM

b. RI1 = address of desired subroutine of a comma (,) is found; R1 = character to be checked.

c. Entered from JOBCARD, NAMECOMP, SERDOWN,
Exit:

a. Exits to SERDOWN if a blank is detected.

b. Exits to COMPALL if a period is detected.

4-24

5. Operation:
a. Compare current character REG 1 to various delimiters.
b. Branch to appropriate routine if it compares; otherwise.

c. Return B *R14,

4.5.26 SERDOWN

1. Subroutine Name:
SERDOWN

2, Purpose:
Rundown {JOB card, looking for a comma (,).

3. Entry:
B SERDOWN
4, Exit:

a. Branch to JOBCER if comma can't be found.
b. BAL,R14 CHKLIM
5. Operation:
a. Set character to be searched for to a blank REG = X'40").
b, Serch card for it.

c. Check limiter on card at first non=blank character.

4,5.27 GETINP

1. Subroutine Name:

GETINP

2, Purpose:
Input decimal characters and convert them to a hexadecimal number,

3. Entry:

a. BAL,R15 GETINP

b. Entered from APPEND, TYPE, REPLACE, SWAP, DELETEE
4, Exit:

a. Transfers to EDIT1 if input error.)

b. B *R15 Normal exit; R10 = number.
5. Operation:

a. Issue a read request (CAL3, 0) from the users console.

b. Convert number to hexadecimal,

c. Pack number into REG 11,

d. Loop till carriage return or comma,

e. Load REG 10 from REG 11,

f. Return *R15 with

1. Condition codes set to zero if no numbers were obtained,

2. Condition codes set to one if one number was obtained.

4-25

3. Condition codes set to two if more than one number was obtained.

4,5,28 TYPELINE

1. Subroutine Name:
TYPELINE

2, Purpose:
Type a line of the job file on the users console,

3. Entry:
a, BAL,R15 TYPELINE
b. R10 = desired line number.
c. Entered from TYPE, JOBCER
4, Exits
a. Transfers to EDIT1 if the line does not exist.
b. B *R13 (REG 15 is saved by the routine in REG 13).
5. Operation:
a., Find the requested line (FINDLINE)
b. Type a character at a time, of the record (CAL3, 1),
c. Loop until 80 characters typed.

4.5.29 DELLINE

1. Subroutine Name:
DELLINE

2, Purpose:
Delete records of the job file from the data area,

3. Entry:
a. BAL,R13 DELLINE
b. R10 = starting line number; R11 = number of records to delete.
c. Entered from REPLACE, DELETEE, JOBCARD,
4, Exit:
a. Transfers to EDIT1 if line number can't be found (REG 10).
b. B *R13 nomal exit.
5. Operation: ;
a. Find the line to be deleted (FINDLINE)
b. Zap the line number,

c. Loop until the specified count (REG 11) has been deleted or until past the last line number
(LINENO).
d. Down date remaining line numbers.

e. Return (B *R13).

4-26

4.5.30 TRANSLST

1. Subroutine Name:
TRANSLST

2. Purpose:
Close out the job file, send it to the symbiont batch queue and inform user of his job ID.

3. Entry:
a. BAL,R13 TRANSLST
b. Entered from TRANDONE, JOBCARD
4, Exit: -
B *RI13
5. Operation:
a. Set last flag (EODCONS) info SYMBBUFF.
b. Send last block (M:JOB insert, with priority fieldon).
c. Tell user job was inserted (TYPEMESS).
d. Tell user this ID (HEXEBC).
e. Return (B *R13),

4.5.31 FINDEDIT

1. Subroutine Name:

FINDEDIT

2. Purpose:
Branch to appropriate edit option, specified by the user.

3. Entry:
a. BAL,R15 FINDEDIT
b. RO = users specified edit command,
c. Entered from EDITO,
4, Exit:
a. B *R15 if not found.
b. Branch to desired option.
5. Operation:
a. Obtain legal edit commands (EDITCM)
b. Compare legal to desired,
c. Loop an the number of edit commands allowed (NOEDITCM)
d. Branch to option if found.
e. B *R15 if not found,

4.5.32 ABNDEL

1. Subroutine Name:
ABNDEL

2, Purpose:
Handle any abnormal returns from an M:JOB delete request.

4-27

Entry:

a. Entered by an abnormal from M:JOB delete request.

b. R 10 = abnormal code; R8 = address of the M:JOB CAL+1,.
Exit:

Return to DELETE for another ID request.

Operation: ’

a. Obtain abnormal code from REG 10 (Byte 1 of REG 10).

b. Type to the user (TYPEMESS) an error message corresponding to one of the following abnormal
codes.

1. Abnormal code= X'39' -~ ID nonexistent.
2, Abnormal code = X'3A' - téo late,
3. Abnomal code = X'3C" - user not authorized to delete job.
4, Abnormal code = X'3D' = nonsymbiont system
c. Return to DELETE to issue another ID request.

4.5.33 NONO, COMMOUT

]-

Subroutine Names: _

NONO; COMMOUT

Purpose:
Abort the user with an appropriate message.

Entry: -

a. B NONO; B COMMOUT

b. R14 = address of message,

c. Entered from BEGIN, NOROOM, NOINPT, ABNSI, ABNINS.

Exit:
To the time-sharing executive.

Operation:
a. Type message (in REG 14) to the user (TYPEMESS).
b. Abort the user (CAL3,6).

4,5.34 NOROOM

1.

Subroutine Name:
NOROOM

Purpose:
Abort the user when his data buffer is exhausted.

Entry:
a. B NOROOM
b. Entered from PUTLINE

Exit:
To COMMOUT

Operation:

a. Set REG 14 to message address (NOROOMS),
b. Transfer to COMMOUT

4-28

4,5.35 ABNINS

1. Subroutine Name:

ABNINS

2. Purpose:
Handle abnormal returns from a M:READ of the M:SI DCB.

3. Entry:
a. Entered by an abnormal form as M:READ request of the M:SI DCB.
b. R10 = abnormal code; R8 = address of CAL=1,
4, Exit:
a. To INSERT} if console input.
b. To EDIT if end of file.
c. To COMMOUT if not end of file.
5. Operation:
a. Return to INSERTI if console input.
b. Obtain abnormal code from REG 10 (Byte 0).
c. [If end of file (X'06"), transfer to EDIT,
d. Tell user he had an abnormal from M:SI (TYPEMESS).
e. Type abnormal code to him (HEXDEC).
f. Abort (COMMOUT),

4.5.36 NOINPT

1. Subioutine Name:

NOINPT

2, Purpose:
Abort user if no job file exists and he tries to send one.

3. Entry:

a. B NOINPT

b. Entered from EDITO, TRANSFER
4, Exit:

B COMMOUT

5. Operation:
a. Set into REG 14 the address of the message (NOINPTMS),
b. Transfer to COMMOUT .

4.5.37 NOJGBC

1. Subroutine Name:

NOJOBC

2, Purpose:
Inform user that his job file cannot be sent to the batch job queue because it does not contain a 1JOB
card as the first record,

3. Entry:
a. B NOJOBC

4-29

b, Entered from TRANSFER, JOBCARD, TRANSLST.

4, Exit:
B EDITRTY

5. Operation:
a. Tell user (TYPEMESS) that the job card is messing; (NOJOBCMS),
b.. Transfer to EDITRTY

4.5.38 FINDER

1. Subroutine Name:
: FINDER

2, Purpose:
Inform the user that the desired line number cannot be found,

3. Entry:
a. BAL,R15 FINDER
b, B *R13 (REG 13is loaded from REG 15 upon entry).
4, Operation:
a. Save REG 15 into REG 13,
b. Tell user (TYPEMESS) line could not be found (FINDERMS),
c. Set condition codes to a line (line not found).

d. Return (B *R13)

4.5.39 ABNINS

1. Subroutine Name:

ABNINS

2, Purpose: .
Handle any abnormal returns from an M:JOB insert cal .

3. Entry:
a. Entered from an abnormal return caused by an M:JOB insert request.
b. R10 = abnormal code; R8 = address of CAL+1,

4, Exit:
a. To COMMOUTI if the user does not want to refry the M:JOB insert,
b. To the M:JOB cal to retry the insert.

5. Operation:
a. Save address of cal + 1 in REG 7 (REG 8 = address of cal+1).
b. If abnormal not because of symbiont full (X'3B' in byte 1 of REG 10), then abort user (COMMOUTI),
c. Ask user for retry (YESNO),
d. B -1, R7 if retry is desired; otherwise, abort him (COMMOUTI).

4-30

4,5.40 NAMER; JOBCERR

1. Subroutine Name:
NAMER; JOBCERR

2. Purpose:
Inform the user his name field on the job card was not correct,

3. Entry:
a. B NAMER; B JOBCERR
b. Entered from COMPALL, ACCTER, EXACER, PRIOER, JOBCER.

4, Exit: '
Transfers to EDITRTY

5. Operation:
a. Type error message (TYPEMESS).
b. Zap priority (JPR= -1).
c. Transfer to EDITRTY

4.5.41 ACCTER; EXACER; PRIOER

1. Subroutine Names:
ACCTER, EXACER, PRIOER

2, Purpose:
Inform the user his job card in in error.

3. Entry:
a, B ACCTER; B EXACER; B PRIOER,
b. Entered from JOBCARD, COMPALL, SERCH, EXTACT, PRIOR

4, Exit:
B JOBCERR

5. Operation:
a. Set proper error message into REG 14,
b. Transfer to JOBCERR,

4.5.42 JOBCER

1. Subroutine Name:
JOBCER

2. Purpose:
Inform the user of an error on his job card.

3. Entry:
a. B JOBCER
b. Entered from EXTACT, PRIOR, CHKLIM, SERDOWN,

4, Exit:
B JOBCERR

5. Operation:
a. Type the line number of the !JOB card.
b. Type the 1JOB card. (TYPELINE).
c. Type a "$" under the error on the ! JOB card
d. Transfer to JOBCERR

4-31

4.5.43 INVL

Subroutine Name:
INVL

Purpose:
Inform user that he typed in an invalid ID,

Entry:
a. BAL,R15 INVL
b. Entered from INEBCHEX

Exit:
B *R13 (REG 13 is loaded from REG 15 upon entry).

Operation:

a. Run down input looking for a carriage return (RUNDOWN),
b. Type message (TYPEMESS) to user (INVLMS),

c. B *RI3

4-32

5.0 SUPER PROCESSOR/SUBSYSTEM

5.1 FUNCTIONAL OVERVIEW,

5.1.1 Purpose.
SUPER (Supervisor Control) is a BPM processor or a BTM subsystem that provides the ability to create, to update,

to list, and to summarize the authorization file, :USERLG, which is used by the operating system to control and

to record user activity. In order to access the authorization file, SUPER must be run under the :SYS account,

5.1.2 Input,

The following control records and associated specificationrecords constitute input. Control records designate the

function desired, Specification records for the control record follow certain control records to give detailed

information, Input records contain data beginning in the first record position.

lo

USERS. USERS authorizes users for various Monitor services by indicating how records in the autho-
rization file are to be created or updated,

Q.

C.

The control record indicates the Monitor services for which the user(s) are to be authorized. The
record has the format:

U[sEeRs][, BCH][, BTMI[, FGDI[, RBT]
where:
BCH specifies batch=job,
BTM specifies fime=sharing.
FGD specifies real-time job.
RBT specifies remote=batch~job,
The specification record gives details on the users to be authorized. The record has the format:
account, name [(extended accounting), password, batch priority, RAD granules, disk granules]
where:
account specifies the user account number, a maximum of 8 alphanumeric characters,
name specifies the user name, a maximum of 12 alphanumeric characters.

extended accounting specifies installation=specific accounting information, a maximum of
24 characters (excluding the parentheses). The default is no extended accounting, blanks.

password specifies the user password, a maximum of 8 characters. The default is no pass~
word, blanks,

batch priority specifies in hexadecimal the maximum job priority allowed the user, 0-F,
The default is 1.

RAD

DISK } granules specifies in decimal the maximum amount of secondary storage allowed
the user, The maximum is 65,535, The default is O,

On the specification record, if any of the optional fields are blank and no record for the user
exists in the authorization file, blank fields are set to default values. If any of the optional
fields are blank, but a record for the user already exists in the authorization file, blank fields
remain the same as on the previous record.

KILL. KILL cancels user authorization for Monitor services by designating a record to be deleted from
the authorization file,

a,

The control record has the format:

K[ILL]

b. The specification record has the format:
accountf, name
3, LIST, LIST lists authorized users by reading the authorization file and printing information from the file,
a. The control record has the format:
L[[ST][, accounf]

b. If an account is specified, all users authorized for the account are listed. If no account is specified,
all users authorized for the system are listed.

4, STATS, STATS summarizes user statistics by reading the authorization file and processing data from the
file.

a. The control record has the format:
S[TATS]

b. The optional specification record has the format:
account [, name]

c. If the specification record contains an account and a name, statistics for that user are summarized.
If the specification record contains an account only, statistics for all users in the account are
summarized, If the specification record is omitted, statistics for all users in the system are
summarized,

5. DELSTATS, DELSTATS deletes (resets) user statistics by designating records to be updated in the
authorization file, All statistics are reset to zero, except amount of secondary storage used.

a. The control record has the format:
D [ELSTATS)

b. The optional specification record has the format:
account [, name]

c. If the specification record contains an account and a name, statistics for that user are reset, If the
specification record contains an account only, statistics for all users in the account are reset, If
the specification record is omitted, statistics for all users in the system are reset.

6. PASSWORDS, PASSWORDS lists passwords of user files, If printable, passwords are listed in EBCDIC,
If non-printable, passwords are listed in hexadecimal. If no password exists, "***NONE***" is
printed,

a. The control record has the format:
P[ASSWORDS], account

b. Passwords for all files in the account are listed.

5.1.3 Batch Operation,
1. Job Account. The account on the job card must be :SYS,
2. DCBs, The M:SI DCB is used to read user input and the M:LO DCB is used to produce listing output.

3. Control Commands. A ISUPER control command is followed by control records with specification
records, A IEOD record is required between each set of a control record and the specification records,
if any, for the control record.

4, Input Syntax Error. A dollar sign ($) is printed beneath the erroneous field and the error message -
"SYNTAX ERROR, RECORD IGNORED"~ is printed,

5.1.4 On~-Line Operation,

The characters typed by SUPER are shown in upper=case for alphabetic characters and underlined.
1. Log-on Account. The user must log~on under the :SYS account,

2. Input Assignment. SUPER reads input from a file or from the terminal. SUPER types:

5-2

4.

a. For file input, enter the ID in the format:
File name [(account [, password])]
b. For terminal input, respond with a carriage return (CR).
Options. SUPER types:
ENTER OPTION:

a. After the prompt :, respond with one of the control records or an "X" to exit to the executive.

b. After a control record has been entered, SUPER prompts with the character > for each specification
record for the control record. After the prompt >, enter a specification record if desired. To
indicate the last specification record for the control record and to prepare to enter the next control
record, respond with a carriage return, a line feed (LF), or an "X",

Input Syntax Error., SUPER types the format of the record required.

5.1.5 Error Messages.

1.

10.
11,

12,
13,

14,
15,

]6.

... ILLEGAL OPTION, OPTIONS ARE: In processing a control or specification record in on=line mode,
an invalid option has been found.

<+« SYNTAX ERROR, FORMAT IS: In processing a control or specification record in on=line mode, a
syntax error has been found,

WARNING ABOVE USER NOT FOUND, In processing the KILL or DELSTATS option, no
authorization=file record for the specified user exists.

ABNORMAL /O ON OPEN NEXT. In processing the PASSWORDS option, the open of the next user
file failed.

ABORT: :USERLG FILE DOESN'T EXIST, In processing the USER, KILL, LIST, STATS, or DELSTATS
option, the authorization file does not exist.

ABORT: ABNORMAL I/O ON :USERLG DELREC, In processing the KILL option, a delete to the
authorization file failed,

ABORT: /7INORMAL 1/0O ON :USERLG WRITE. In processing the USERS option, a write to the
authorization file failed.

ABORT: ABNORMAL I/O ON LOG READ DIRECT, In processing the USERS, STATS, or DELSTATS
option, aread to the authorization file failed,

ABORT: ABNORMAL I/O ON LOG REWRITE SEQUEN, In processing the DELSTATS option, a write
to the authorization file failed.

ABORT: ABNORMAL I/O ON READ LOG SEQUEN, In processing the LIST, STATS, or DELSTATS
option, aread to the authorization file failed.

ABORT: CAN'T OPEN :USERLG. In processing the USERS, KILL, LIST, STATS, or DELSTATS option,
the authorization file cannot be opened.

ABORT: READ M:SI ERROR, In processing an option, the open or a read of the M:SI DCB failed.

ABOVE USER NOT VALIDATED, In processing the STATS option, no authorization-file record for
the specified user exists,

BAD FID, TRY AGAIN. In on-line mode, abad file identification has been entered for the input
assignment,

CANNOT ACCESS :USERLG FILE, The job account in batch mode or the log-on account in on-line
mode is not :SYS so SUPER cannot access the authorization file.

SYNTAX ERROR, RECORD IGNORED, A control or specification record contains an error in the field
above the dollar sign.

5-3

5.2 INTERFACES,

5.2.1 Operating System.

In batch mode, when processing the PASSWORDS option, SUPER uses the M:SYS call to run in master mode in order
to store into the DCB used to access the user files. In on-line mode, SUPER stores directly into an unprotected

dummy DCB, not the actual DCB used by the BTM executive.

5.2,2 CCI,
After SUPER creates the authorization file, :USERLG, CCI places job usage times into the file,

5.3 OPERATIONAL OVERVIEW,

5.3.1 Description,

Begin processing in the START module. If on-line SUPER is not running under the :SYS account, branch to the
Normal=Exit module to terminate the job step. Otherwise, open the M:SI DCB through which control and spec-
ification records are to be read and, in batch mode, read the ISUPER record. If the open or the read fails,
branch to the Abnormal~Exit module to process abnormal termination of the job step, Begin the main processing
loop in the Control=Record module. Read the control record. If the read fails, branch to the Abnormal-~Exit
module, Otherwise, determine which module should process the record and branch to that module. Process the
option in the USERS, the KILL, the LIST, the STATS, the DELSTATS, the PASSWORDS, or the Input=Syntax-
Error module and branch back to the Control-Record module. When processing the option, if I/O operations
fail when accessing the control or specification records or the authorization file, branch to the Abnormal-Exit

module, When an exit condition is found in the Control-Record module, branch to the Normal=~Exit module.

5.3.2 DCBs.,
1. M:SIL. Control and Specification Input Records.
2, M:LO, Listing Output.

3. M:DO, Authorization File, :USERLG.

4, M:EL, User Files,

5.3.3 Flowchart.
See Figure 5-1,

5.4 MODULE ANALYSIS,

5.4.1 START,
1. Module Name ~ START,

2, Purpose. Perform processing preceding the main processing loop, Open the M:SI DCB through
which control and specification records are to be read and, in batch mode, read the ISUPER record.

3. Entry.

a, START is the only entry point for the SUPER processor/subsystem. Whenever SUPER is invoked, the
processor/subsystem is loaded into core and control is transferred to START,

5-4

no
LIST
no
‘!&"4, STATS

no

»,
w

es __{ DELSTATS

no

| PASSWORDS

Abnormal
Exit

(Abnormal Exit)

Input=Syntax
Error

Figure 5-1, Operational Overview of SUPER

5-5

b. In batch mode, the ISUPER record must be input.

Exit.

a. The norma exit is to the Control-Record module, RDCC.,

(1) The exit is taken after initial processing is completed.
(20 The ABORT indicator is initialized off (zero).

b. The exit if on=line SUPER is not running under the :SYS account is to the Normal-Exit module, EXIT,
The error message printed is: "CANNOT ACCESS :USERLG FILE, "

c. The exit if the open or a read of the M:SI DCB fails is to the Abnormal-Exit module, ABORT1, The
error message printed is: "ABORT: READ M:SI ERROR, "

Operation,

a. Do initial form alignment for output listing (PAGE subroutine),

b. Do on=line processing. Change DCBs for running on-line. If the log-on account is not :SYS, print
an error message (PRNT subroutine) and branch to the Normal=Exit module, EXIT, Otherwise, request
the assignment for input (PRNT subroutine). Read the response and assign the M:SI DCB to a file or to
the user ferminal. If a bad file identification is specified, print an error message (PRNT subroutine)
and go to step a. If input is assigned to a file, open the M:S1 DCB and branch to the Control=Record
module, RDCC, If assigned to the user terminal, go to step c.

c. Open the M:SI DCB and, in batch mode, read the ISUPER record.

d. If opening the M:SI DCB returns an error code or if reading the M:SI DCB returns an abnormal or error

code, print an error message (PRNT subroutine) and branch to the Abnormal=Exit module, ABORTT,

5.4.,2 Control=Record,

lo
2-

3.

Module Name - RDCC,

Purpose, Read the next control record to be processed and determine which module will process the
record,

Entry.

a,

Control=Record is entered from START, USERS, KILL, LIST, STATS, DELSTATS, PASSWORDS, or
Input=Syntax=Error.

b. Conirol=Record has input.
(1) Control records are read.
(20 The ABORT indicator is checked,

Exit.

a. The normal exit is to the module that processes the control record: USERS, KILL, LIST, STATS,
DELSTATS, PASSWORDS, or Input~Syntax~Error.
(1) The exit is taken after the option has been found in a jump table.
(2) A control record has been read and, in on-line mode, the prompt character has been set to a

caret ().

b. The exit if all control records have been processed or if the ABORT indicator has been set is to the
Normal=Exit module, EXIT,

c. The exit if a read of a control record fails is to the Abnormal=Exit module, ABORT1. The error
message printed is: "ABORT: READ M:SI ERROR, "

Operation.

a. Branch to the Normal=Exit module, EXIT, if the ABORT indicator is set (non-zero), Otherwise, in
on-line mode, request the option (PRNT subroutine) and set the prompt character to a colon (:).

b. Read a control record. 1f an EOD is read, read another record. When the end-of-file is reached,

branch to the Normal-Exit module, EXIT, For any other read failure, print an error message
(PRNT subroutine) and branch to the Abnormal=Exit module, ABORTI,

C.

Analyze the option. Obtain the first EBCDIC field from the control record (GEBFLD subroutine).

If a field cannot be found, branch to the Input=Syntax=Error module, L6. Otherwise, use a jump
table to determine which module processes the control record and branch to that module: USERS,
KILL, LIST, STATS, DELSTATS, PASSWORDS, or to Input=Syntax Error, L6, In on-line mode, first
set the prompt character to a caret ().

5.4.3 USERS,
Module Name = USERS.

Purpose. Process USERS option to authorize users for various Monitor services by creating and/or updating
records in the authorization file,

Entry.

1.
2:

3.

b.

Exit.

a.

C.

e,

USERS is entered from Control=Record,
USERS has input.

(1) Specification records are read. In on-line mode, the prompt character has been set to a
caret ().

(20 The authorization file, :USERLG, is accessed.

The normal exit is to the Control=Record module, RDCC,
(1) The exit is taken after all specification records for the USERS option have been processed,

(2) The authorizadtion file, :USERLG, has been created or updated according to the options on the
control and specification records.

(3) If a specification record contains a syntax error, the error message printed is: "SYNTAX
ERROR, RECORD IGNORED, "

In batch mode or in on~line mode with file input, if the USERS control record contains an invalid
Monitor=service option, the exit is to the Input=Syntax~Error module, L7. A dollar sign (§) is
printed under the erroneous field.

In on~line mode with terminal input, if the USERS control record contains an invalid Monitor-service
option, the exit is fo the Control=Record module, RDCC, A dollar sign is printed under the invalid
field and the correct form of the USERS control record is printed.

The exit if a read of the M:SI DCB fails is to the Abnormal-Exit module, ABORT1. The error message
printed is: "ABORT: READ M:SI ERROR, "

The exit if the open of the authorization file fails is to the Abnormal=Exit module, ABORT1. For
an abnormal refurn, the error message printed is: "ABORT: :USERLG FILE DOESN'T EXIST," For
on error return, the error message printed is: "ABORT: CAN'T OPEN :USERLG, "

The exit if any other access of the authorization file fails is to the Control-Record module, RDCC,

(1) The exit is taken if a write fails, The error message printed is: “ABORT: ABNORMAL I/O
ON :USERLG WRITE., "

(2) The exit is taken if a read fails. The error message printed is: "ABORT: ABNORMAL I/O
ON LOG READ DIRECT, "

(3) The ABORT indicator is set.

Operation,

d,

Analyze the Monitor-service option, From the USERS conirol record, obtain the next EBCDIC field
(GEBFLD subroutine). Set a flag for the Monitor service specified (UCHKFLD subroutine), If the
Monitor=service option is invalid, do error processing using the PRTERR and the HELP subroutines
and, if in batch mode in on=line mode with file input, branch to the Input-Syntax-Error module,
L7, or, if in on-line mode with terminal input, branch to the Control-Record module, RDCC,

Open the authorization file in update mode if the file exists or in out mode if the file does not exist.
If the open fails, print an error message (PRNT subroutine) and branch to the Abnormal-Exit module,
ABORTI1,

c. Set the Monitor=service flags for the authorization=file record.

d. Read a specification record. When an EOD or an EOF is read, go to step g. For any other read
failure, print an error message (PRNT subroutine) and branch to the Abnormal=Exit module, ABORTI,

e. Format on authorization=file record according to the options on the control and specification record
(INITLOG, GEBFLD, GHFLD, GDFLD subroutines). If a specification-record option is invalid, do
error processing using the PRTERR and the HELP subroutines and go to step c.

f. Write the authorization=file record created (WRLOG subroutine) and go to step c¢. For any write
failure other than the record-already~exists abnormal condition, print an error message (PRNT
subroutine), set the ABORT indicator, and go to step g. If the record already exists, read and re=-
write the record using the RDLOG and the REWRLOG subroutines and go to step ¢, If the read
fails, print an error message (PRNT subroutine) and set the ABORT indicator,

g. Close the authorization file with SAVE specified and branch to the Control=Record module, RDCC,

6. Flowchart,
See Figure 5-2,
5.4.4 KILL,
1. Module Name - KILL,
2, Purpose. Process KILL option to cancel user authorization for Monitor services by deleting records from
the authorization file.
3., Entry.
a. KILL is entered from Control=Record.
b. KILL has input.
(1) Specification records are read. In oneline mode, the prompt character has been set to a
caret ().
(2) The authorization file, :USERLG, is accessed.
4, Exit,

a. The normal exit is to the Control-Record module, RDCC,
(1) The exit is taken after all specification records for the KILL option have been processed,

(2) The authorization file, :USERLG, has been updated according to the options on the specifi=-
cation records,

(3) Error messages may have been printed.

(0) In batch mode, if a specification record contains a syntax error, the message prmfed is:
"SYNTAX ERROR, RECORD IGNORED, " '

() If no authorization-file record for a specified user exists, the messqge printed is:
"++*WARNING** ABOVE USER NOT FOUND",

b. The exit if a read of the M:SI DCB fails is to the Abnormal=-Exit module, ABORT1, The error mes-
sage printed is: "ABORT: READ M:SI ERROR",

c. The exit if the open of the authorization file fails is to the Abnormal-Exit module, ABORT1. For an
abnormal return, the error message printed is: "ABORT: :USERLG FILE DOESN'T EXIST", For an
error return, the error message printed is: "ABORT: CAN'T-OPEN :USERLG",

d. The exit if a delete to the authorization file fails is to the Control-Record module, RDCC,
(1) The exit is takeﬁ immediately after attempting the operation,
(2) Error processing has been done,
(@) The ABORT indicator is set,
(b) The error message printed is: "ABORT: ABNORMAL I/O ON :USERLG DELREC",

5-8

Andlyze Monitop~
service option
from control

rite authori-
zation~-file
record cregted

Do error
processing.

authorization-
file record

Print error
Message.

xit fo Confrol-

Record module, CC

zation=file
record.

Set Monitor=serviice . i
e Print error Print
flags for authori message error
zation=file record. 9e-
message.

et ABORT
indicator.

Read a xit to Abnorma
specification xit module, ABO

/Tlose
authorization
Zﬁle with SAVE,

Print error Exit to Confrol=
Record module, RDCC,
message.

Format authori

zation=file xit to Abnormal=
record xit module, ABORT1

Do error
processing.

Figure 5-2. Flow Chart for USERS

5-9

5. Operation, .
a. Open the authorization file in update mode. If the open fails, print an error message (PRNT sub-
routine) and branch to the Abnormal-Exit module, ABORTI1,
b. Read a specification record. When an EOD or an EOF is read, go to step e, For any other read
failure, print an error message (PRNT subroutine) and branch to the Abnormal~Exit module, ABORTI1,
c. Format a key to access the authorization file using the account and the name options from the
specification record (GACNTN subroutine). If an option is invalid, do error processing using the
PRTERR and the HELP subroutines and go to step b, In batch mode, first print an error message (PRNT
subroutine).
d. Delete the specified record from the authorization file. If the record cannot be found, print an error
message (PRNT subroutine) and go to step b. For any other delete failure, print an error message
(PRNT subroutine) and set the ABORT indicator.
e. Close the authorization file with SAVE specified and branch to the Control-Recdrd module, RDCC,
5.4.5 LST,
1. Module Name = LIST,
2, Purpose, Process LIST option to list authorized users by reading the authorization file and printing in-
formation from the file,
3. Entry.
a. LIST is entered from Control=Record.
b, LIST has input.
(1) The LIST control record must have been read. In on-line mode, the prompt character has been
set to a caret ().
(2) The authorization file, :USERLG, s accessed,
4, Exit,
a. The normal exit is to the Control=Record module, RDCC,
(1) The exit is taken after the LIST control record has been processed,
(2) A listing of authorized users is produced.
b. The exit if the LIST control record contains an invalid account option is to the Control=Record
module, RDCC. The error message printed is: "SYNTAX ERROR, RECORD IGNORED",
c. The exit if an access of the authorization file fails is to the Abnormal-Exit module, ABORT1,
(1) The exit is taken if the open fails. For an abnormal return, the error message printed is:
“ABORT: :USERLG FILE DOESN'T EXIST", For an error return, the error message printed is:
"ABORT: CAN'T OPEN :USERLG",
(2) The exit is taken if a read fails. The error message printed is: "ABORT: ABNORMAL I/O
ON READ LOG SEQUEN",
5. Opergtion,

a, Obtain the account option from the LIST control record (GEBFLD subroutine), If the option is in-
valid, do error processing using the PRTERR and the HELP subroutines and go to step f. In batch
mode, first print an error message (PRNT subroutine).

b. Print a heading for the listing of authorized users, using the PAGE and the PRNT subroutines.

c. Process the account option if specified. Open the authorization file with direct access. Read a
record for the account (RDLOGACNT subroutine) and print the user data (PRTLIST subroutine).
Continue reading and printing until all records for the account have been processed, Go to step f.

d. Process the file option if no account is specified. Open the authorization file with sequential
access. Read a record (RDLOGS subroutine) and print the user data (PRTLIST subroutine). Continue
reading and printing until the end-of=file is reached. Go to step f.

5-10

e. If the open of the authorization file fails or if a read to the file fails for other than the end-of-file

condition described in step d, print an error message (PRNT subroutine) and branch to the Abnormal-
Exit module, ABORTI.

f. Close the authorization file with SAVE specified and branch to the Control-Record module, RDCC,

Flowchart.

See Figure 5-3,

5.4.6 STATS,

1.
2.

30

Module Name - STATS,

Purpose. Process STATS option to summarize user statistics by reading the authorization file and printing
data based on the file.

Entry.
a. STATS is entered from Control Record,
b. STATS has input.

(1) Specification records may be read. In on-line mode, the prompt character has been set to a
caret ().

(2) The authorization file, :USERLG, is accessed.
Exit.
a. The normal exit is to the Control=Record module, RDCC,
(1) The exit is taken after any specification records have been processed.
(2) Listing output has been produced.
(@) A summary of user statistics is produced.

(b) In batch mode, if a specification record contained a syntax error, the error message
printed is: "SYNTAX ERROR, RECORD IGNORED, "

(c) If no authorization~file record for a specified user existed, the error message printed is:
"ABOVE USER NOT VALIDATED, "

b. The eit if a read of the M:SI DCB fails is to the Abnormal-Exit module, ABORT1., The error
message printed is: "ABORT: READ M:SI ERROR, "

c. The exit if an access of the authorization file fails is to the Abnormal-Exit module, ABORTI,

(1) The exit is taken if the open fails. For an dbnormal return, the error message printed is:
"ABORT: :USERLG FILE DOESN'T EXIST. " For an error return, the error message printed is:
"ABORT: CAN'T OPEN :USERLG. "

(2) The exit is taken if a read fails. If processing the account option, the error message printed
is: "ABORT: ABNORMAL I/O ON LOG READ DIRECT, " If processing the file option, the
error message printed is: "ABORT: ABNORMAL I/O ON READ LOG SEQUEN. "

Operation,
a. Print a heading for the summary of user statistics, using the PAGE and PRNT subroutines.
b. Read a specification record. If no specification record exists, go to step i.

c. Format a key to access the authorization file using the account and the name options from the spec—
ification record (GACNTN subroutine). If an option is invalid, do error processing using the

PRTERR and the HELP subroutines and go to step g. In batch mode, first print an error message
(PRNT subroutine),

d. Process the user option if specified. Open the authorization file with direct access. Read the

record for the specified user (RDLOG subroutine) and print the user statistics (PRTSTAT subroutine).
Go to step g.

5-11

(LIST)

Analyze accou
option on contrdl
record,

unnin

In Batch

Print error
message

Do error
processing.

Print héading
for listing of
authorized userd.

Open
authorization file

Print
error
message.

Gxit to Abnormal-)
i 1

avthorization file

Read authorizakion-
no

Read authori-
zation~file recd

Close authori-

ation file with
SAVE

Print error

message. xit to Control-
9 @ecord module, RDCC

Print user data
from authorizati¢n=
file record. Print error
message.

Print user data
from authorizatipn-
file record.

A

txit to Abnormal-=
' it module, ABORTI

Figure 5~3, Flow Chart for LIST

5-12

e. Process the account option if specified. Read an authorization~file record for the specified account
(RDLOGACNT subroutine) and print the user statistics (PRTSTAT subroutine). Continue reading and
printing until all records for the account have been processed. Go to step g.

f. When an option is specified, if a read to the authorization file does not find the record specified or
if a read fails for any other reason, print an error message (PRNT subroutine). If the read fails for
any reason except the non-existent record condition, branch to the Abnormal=Exit module, ABORTI1,

g. Read the next specification record and go to step c¢. When and EOD or an EOF is read, go to step k.

h. If aread of a specification record fails, print an error message (PRNT subroutine) and branch to the
Abnormal-Exit module, ABORTI,

i. Process the file option. Open the authorization file with sequential access. Read a record (RDLOGS
subroutine) and print the user statistics (PRTSTAT subroutine). Continue reading and printing until
the end-of-file is reached. Go to step k. If a read fails for any other reason, print an error
message (PRNT subroutine) and branch to the Abnormal~Exit module, ABORTI,

jo If the open of the authorization file fails, print an error message and branch to the Abnormal-Exit
module, ABORTI.

k. Close the authorization file with SAVE specified and branch to the Control=Record module, RDCC,

6. Flowchart.
See Figure 5-4,
5.4,7 DELSTATS,
. Module Name - DELET,
2, Plerpose° Process DELSTATS option to delete (reset) user statistics by updating records in the authorization
file.
3. Entry.
a. DELSTATS is entered from Control~Record.
b. DELSTATS has input.
(1) Specification records may be read. In on-line mode, the prompt character has been set to a
caret (). ‘
(2) The authorization file, :USERLG, is accessed.
4, Exit.

a. The normal exit is to the Control~Record module, RDCC,
(1) The exit is taken after any specification records have been processed.

(2) The authorization file, :USERLG, has been updated according to the options on the specifi=
cation records.

(3) Error messages may have been printed.

(a) In batch mode, if a specification record contained a syntax error, the message printed
is: "SYNTAX ERROR, RECORD IGNORED, "

b) Ifno autl"\orizaﬁon-file record for a specified user existed, the message printed is:
e WARNING ** ABOVE USER NOT FOUND, "

b, The exit if a read of the M:SI DCB fails is to the Abnormal-Exit module, ABORT1, The error mes~
sage printed is: "ABORT: READ M:SI ERROR, "

c. The exit if an access of the authorization file fails is to the Abnormal-Exit module, ABORTI,

(1) The exit is taken if the open fails. For an abnormal return, the error message printed is:
"ABORT: :USERLG FILE DOESN'T EXIST." For an error return, the error message printed is:
"ABORT: CAN'T OPEN :USERLG, "

(2) The exit is taken if a read fails, If processing the user or the account option, the error mes-
sage printed Is: "ABORT: ABNORMAL I/O ON LOG READ DIRECT." If processing the file
option, the error message printed is: "ABORT: ABNORMAL I/O ON READ LOG SEQUEN. "

5-13

(‘ sr:rs)

Print heading Print error Print error
for summary of message. message.
user statistics,

 /Exit to Abnormal=
" \Exit module, ABORTI

| Format key to
access authori~

ok ification record.

Do error

. Print error
| processing.

message.

Open authori-
fation-file with

Print error
message,

Gxit to Ai:normal—
Exit module, ABORT1

Print error

message.

Print error
message.

.
(Bt 1o Abrormel= 3r{_module, RDCC.

Print user statistiks
From authorizatign~
File record,

)

Figure 5-4. Flow Chart for STATS

Print user statistjcs
from authorizatipn=
file record.

)

5-14

5.

6'

(3) The exit is taken if a write fails, The error message printed is: "ABORT: ABNORMAL I/O
ON LOG REWRITE SEQUEN, *

Operation,

a.

b.

C.

e,

e

Read a specification record. If a specification record exists, go to step c.

Process the file option. Open the authorization file with sequential access. Read a record (RDLOGS
subroutine), reset user statistics in the record (RESETLOG subroutine), and write the updated record
(REWRLOGS subroutine), Continue reading and updating until the end~of=file is reached. Go to
step j. If aread fails, print an error messoge (PRNT subrcutine) and branch to the Abnormal-Exit
module, ABORTI1,

Open the authorization file with direct access.

Format a key to access the authorization file using the account and the name options from the spec-~
ification record (GACNTN subroutine). If an option is invalid, do error processing using the PRTERR
and the HELP subroutines and go to step h. In batch mode, first print an error message (PRNT sub-
routine).

Process the user option if specified. Read the authorization~file record for the specified user (RDLOG
subroutine), reset user statistics in the record (RESETLOG subroutine), and write the updated record
(REWRLOG subroutine). Go to step h.,

Process the account opfion if specified. Read an authorization~file record for the specified account
(RDLOGACNT subroutine), reset user statistics in the record (RESETLOG subroutine), and write the
updated record (REWRLOG subroutine). Continue reading and updating until all records for the
account have been processed. Go to step h,

When an option is specified, if a read to the authorization file does not find the record specified or
if a read fails for any other reason, print an error message (PRNT subroutine), If the read fails for
any reason except the non-existent-record condition, branch to the Abnormal-Exit module, ABORTI,

Read the next specification record and go to step d. When an EOD or an EOF .is read, go to step j.

If a read of a specification record fails, if the open of the authorization file fails, or if a write

to the authorization file fails, print an error message (PRNT subroutine) and branch to the Abnormal-
Exit module, ABORTI,

Close the authorization file with SAVE specified and branch to the Control=Record module, RDCC,

Flowchart,

See Figure 5-5,

5.4.8 PASSWORDS.

] .
20
3.

Module Name = PASSWORD,
Purpose. Process PASSWORDS option to list passwords of user files in a specified account.

Entry.

a. The PASSWORDS module is branched to from the Conirol=Record module.

b. The PASSWORDS module requires input.
(1) The PASSWORDS control record must have been read. In on-line mode, the prompt character

has been set to a caret (). .

(2) The file directory for the specified account is accessed,

Exit,) *

a. The exit is to the Control-Record module, RDCC, ,

b, A listing of passwords for files in the specified account is output unless an error occurred in process=
ing the option.

c. Error messages may have been printed,

(1) If the PASSWORDS control record contained an invalid account option, the error message
printed is: "SYNTAX ERROR, RECORD IGNORED, *

5-15

¢

Reset user statist [Print error
tics in authori= message., @
zation-file record.

Print error
message.

xit to Abnormal-
Exit module, ABORTI.
DERRIA

rite updated
authorization-
file record,

Open authori-
zation=file
with direct accéss.

Print error Print error
message. message.
xit to Abno

rma
Exit module, ABORTI,

Format key to
access authori-

zation=file using
bptions from spe ifricj:aﬁon
scord.

Print error
message.

Do error
processing.

Read authori- Read authori-

zation-file
record.

Read specifi=
cation record.

Print error
message.

Bad yes Print error *
read message
? ' 99e.
) req) .
ne Abrormal
. xit to Abnormal=
Rtestgf:ser. Qs Reset user statis| \ Exit module, ABORTI1.
s °ﬂ:s ',cso:\f‘o écords Tor ¥©* tics in authori-
file ?er:;rdl. " account zation-file record.
exist
2
rite updated no
authorization- Write updated
ile record. Bad \ Y€S authorizati
read file record.
?
no

Figure 5-5. Flow Chart for DELSTATS

5-16

(2) If the open for the specified account, with next file option, fails, the error message printed
is: "ABNORMAL I/O ON OPEN NEXT,"

5. Operation,

a. Find the file name entry in the M:EI DCB (FNDCOD subroutine) and zero the number of significant
entries in the file name parameter. In on=line mode, the file=name parameter may be stored into
directly since the DCB changed is an unprotected dummy DCB, not the actual DCB used by the BTM
executive, In batch mode, first issue the M:SYS call, save the run flags from the job information
table, and reset the run flags to Monitor before storing into the file name parameter, After the store,
load a program status doubleword to return to slave mode.

b. Obtain the next EBCDIC field from the control record (GEBFLD subroutine), If no valid field is
found, do error processing using the PRTERR and HELP subroutine and go to step f. In batch mode,
first print an error message (PRNT subroutine).

c. Do form alignment on the output listing (PAGE subroutine).

d. Issue an open for the specified account, with the next-file option. If the end~of-files is en-
countered, go to step f. For any other failure, print an error message (PRNT subroutine) and go to
step f.

e. Find the file name in the variable~length parameters of the M:EI DCB (FNDCOD subroutine), move
the name to the output line, find the file password (FNDCOD subroutine), move the description,

NONE or the password, in EBCDIC if printable or in hexadecimal if non-printable, to the
output line, Print the line (PRNTV subroutine). Close the M:EI DCB with SAVE specified and go
to step d.

f. Close the M:EO DCB with SAVE specified and branch to the Control-Record module. In batch
mode, first issue the M:SYS call, restore the run flags saved in step g, and load a program status
doubleword to return to slave mode,

~5:4+2 Input=Syntax=Error, _
1. Module Name - L6 and L7,
2. Purpose. Process invalid control=record option.
3. Entry.
a. Input=Syntax-Error is entered from Control=Record at L6 and from USERS af L7,
b. An invalid control record must have been read.
4, Exit.

a. The normal exit is to the Control=Record module, RDCC, In batch mode, a set of a control record
and the specification records for the control record have been read.

b. The exit if no more control records exist is o the Normal~Exit module, EXIT,

c. Adollar sign ($) is printed under the erroneous field. In on-line mode, the correct form of the
required control command is printed. In batch mode, the error message printed is: "SYNTAX
ERROR, RECORD IGNORED, " ’

5. Operation,

a. At entry point L6, print a dollar sign ($) under the erroneous field (PRTERR subroutine). Print the
record first if in on~line mode with file input. \

b. In on-line mode, print the correct form of the required command (HELP subroutine) and branch to
the Control-Record module, RDCC,

c. At entry point L7 for batch mode, print an error message (PRNT subroutine), read records from M:SI

until an EOD is read, then branch to the Control=-Record module, RDCC, If an EOF is read,
branch to the Normal=Exit module, EXIT, If a read fails, print an error message (PRNT subroutine)
and branch to the Abnormal~Exit module, ABORTI,

5.4, 10 Abnormal-Exit.

[

Module Name - ABORTI.

5-17

Purpose. Process abnormal termination of job step. _

Entry. Abnormal-Exit is entered from START, Control~Record,” USERS, KILL, LIST, STATS, and DELSTATS,
Exit. Abnormal=Exit errors the job after closing files to be saved,

Operation, Close, with SAVE specified, the M:LO DCB, the M:SI DCB, and the authorization file,

Module Name - EXIT.
Purpose. Process normal termination of job step.
Entry. Normal-Exit is entered from START, Control-Record, and Input=-Syntax-Error.

Exit. Normal-Exit terminates the job step after closing files to be saved.

2,
3.
4,
5.
Error the job.
5.4,11 Normal Exit,
1.
2,
3.
4,
5.

Operation, Close, with SAVE specified, the M:LO DCB, the M:51.DCB, and the authorization file, Issue
the M:EXIT call to terminate the job.

5.5 SUBROUTINE ANALYSIS.

Subroutines are in alphabetic order. Register 10 is the link register for all subroutines,

5.5.1 CVTDEC,

6.

Subroutine Name - CVTDEC,

Calling Modules - LIST, STATS,

Purpose. Convert a binary value to EBCDIC decimal.

Entry. ‘

a. Register 10 contains the return address,

b. Register 1 contains the binary value to be converted.

Exit.

a. CVTDEC returns to the calling routine after converting the value,
b. Registers 12 and 13 contain the EBCDIC decimal result.

Operation. Save registers 5~11. Convert the binary value in register 1 to EBCDIC decimal. Precede
the EBCDIC decimal result in registers 12 and 13 by a minus sign if negative. Restore registers 5-11
and branch to the return address in register 10,

5.5.2 CVINSTOR.

1.
20
3.

4.

Subroutine Name = CYTNSTOR.
Calling Module - STATS.

Purpose. Convert binary value to EBCDIC decimal and store result in proper format in specified output
buffer.

Entry.
Register 10 contains the return address.
b. Register 1 contains the binary value to be converted.
c. Register 7 contains the address of the output buffer.
d. Register 6 contains the number of bytes in the output field less one.

e. Register 8 contains the number of characters to the right of the decimal point. Zero indicates no
decimal point.

5-18

Exit,
a. CVTNSTOR returns to the calling routine after storing the result in the specified buffer.
b. The specified buffer contains an EBCDIC decimal value in the specified format.

Operation. Save all registers. Convert binary value to EBCDIC decimal (CVTDEC subroutine). Store
the result in the specified format in the specified buffer, Restore all registers and branch to the return
address in register 10,

5.5.3 DATER,

1.
2,
3
4
5

B

Subroutine Name - DATER,

Calling Modules - USERS, DELSTATS,

Purpose. Obtain binary date,

Entry = Register 10 contains the return address.

Exit.

a. DATER returns to the calling routine after calculating date.
b. Register 9 contains binary date.

Operation. Calculate binary date the first time the subroutine is entered. Save registers 4-7, Obtain
time. Save register 10, Save all registers, Convert time to binary by branching into GHFLD
subroutine, Restore all registers in GHFLD subroutine and return, Restore register 10, Restore registers
4~7. Load binary date into register 9. Store binary date in DBUF so date need not be recalculated.
Branch to return address in register 10,

5.5.4 FNDCOD,

i

2
3.
4

Subroutine Name -~ FNDCOD,

Calling Module - PASSWORDS,

Purpose. Find a code in the variable-length parameter of a DCB,
Entry.

a. Register 10 contains the return address.

b. Register 1 contains the code to be found.

c. Register 2 points to the variable~length parameters of a DCB,
Exit.

a. FNDCOD returns to the calling routine after searching the variable-length parameters of a DCB
for the specified code,

b. Register 7 points to the first data word of the specified variable~length parameter or, if the specified
code was not found, to blanks.

Operation, Save register 3 so that register 3 may be used as a work register. Search the variable-
length parameters for the specified code. If found, increment register 7 to point to the first data word
of the parameter, If not found, load the address of blanks into register 7, Restore register 3 and branch
to the return address in register 10,

5.5.5 GACNTN,

Subroutine Name = GACNTN,
Calling Modules - KILL, STATS, DELSTATS,

Purpose. Format a key to access the authorization file using the account and the name options from the
specification record,

Entry.
a. Register 10 contains the return address.

5-19

b. Specification record must have been read.
5. Exit.
a. GACNTN returns to the calling routine after processing the account and the name options.
b. Data is returned,
(1) The condition codes are set:
CC1 on means no option was found.
CC2 on means an invalid option was found. (See CC4 for an additional error indication.)
CC3 on means a valid option was found.
CC4 on means an option field was too long.
(2) Akey to access the authorization file is formatted unless no valid option was found.

c. Exit fo the return address if valid options are found or if an invalid account option is found. Exit
to the return address plus one if an invalid name option is found.

6. Operation,

a. Save all registers. Obtain the account option from the specification record (GEBFLD subroutine)
and add the option to the key to be used to access the authorization file. If the account option is
invalid, go to step b. Otherwise, obtain the name option, if any, from the specification record
(GEBFLD subroutine) and add the option to the key. If the name option is invalid, increment the
return address saved by one and go to step b.

b, Restore all registers, set the condition codes, and branch to the address in register 10,

5.5.6 GDFLD and GHFLD,
1. Subrcutine Names = GDFLD and GHFLD,
2, Calling Modules. USERS calls both subroutines. DELSTATS calls GHFLD,

3, Purpose. GDFLD obtains the value of the next decimal field on the USERS specification record.
GHFLD obtains the value of the next hexadecimal field on the USERS specification record.

4, Entry.
a. Register 10 contains the return address.
b. USERS specification record must have been read,
c. FLDPIR contains the record position at which to begin searching.
d. BUFLEN contains the record size,
5. Exit,

a. GDFLD and GHFLD return to the calling routine after attempting to determine the value of the
desired type of field on the USERS specification record.

b. Data is returned.
(1) The condition codes are set:
CC1 on means no field found.
CC2 on means invalid field found.
CC3 on means valid field found.
(2) NFLDBUF contains the value of the valid field found,
6. Operation.

a. Save all registers. Set up an execute instruction to convert a field on the USERS specification
record to decimal, for GDFLD, or to hexadecimal, for GHFLD, Obtain the next EBCDIC field from
the record. If no valid field is found, go to step b, Otherwise, convert the field to a binary
value, Convert the binary value to a decimal value for GDFLD ot to a hexadecimal value for
GHFLD,

5-20

b.

Restore all registers, set the condition codes, and branch to the return address in register 10,

5.5.7 GEBFLD,
Subroutine Name - GEBFLD.,
Calling Modules = Control-Record, USERS, KILL, LIST, STATS, DELSTATS, PASSWORDS.

Purpose. Obtain the next EBCDIC field from a control or a specification record.

L
20

3
4.

6.

Entry.

a. Register 10 contains the return address,]

b. Control or specification record must have been read.

c. FLDPTR contains the record position at which to begin analysis.

d. BUFLEN contains the record size. ‘

Exit.

a. GEBFLD returns to the calling routine after attempting to obtain the next EBCDIC field from the con-
trol or the specification record.

b. Data is returned,

(1) The condition codes are set:
CC1 on means no field found,
CC2 on means invalid field found,
. CC3 on means valid field found.
(2) FLDBUF contains the EBCDIC field found.
(3) FLDBUF1 contains an additional field in parentheses, if any such field existed. The field is
stored without the parentheses,
(4) FLDPTR is incremented to the next record position to be analyzed.
(5) Registers.
(@) Register 13 contains the length of the field in FLDBUF1,
o) Register 14 contains the length of the field in FLDBUF,

Operation,

a. Save registers 1-4 so that the registers may be used as work registers. Store the next EBCDIC field
from the control or the specification record into FLDBUF, 1If no valid field is found, go to step b.
Otherwise, store the next field in parentheses, if any such field exists, into FLDBUF1, without the
parentheses, Load register 13 with the length of the field in FLDBUF1,

b. Load register 14 with the length of the field in FLDBUF, Increment FLDPTR to the next record

position to be analyzed. Restore registers 1-4, set the condition codes, and branch to the return
address in register 10,

5.5.8 GHFLD,
See GDFLD,

5.5.9 HELP,
Subroutine Name = HELP,

1
2
3.
4

Call

ing Modules - USERS, KILL, LIST, STATS, DELSTATS, PASSWORDS, Input=Syntax~Error.

Purpose. Print the correct form of the required control or specification record if in on~line mode,

Entry.

a.

Register 10 contains the return address,

5-21

5.

b. Register 1 contains the level of help needed.
1 means reading a control record.
2 means reading a USERS record.
3 means reading a USERS record.
4 means reading a DELSTATS record.
5 means reading a KILL record.
6 means reading a STATS record.
7 means reading a LIST record.
8 means reading a PASSWORD record.
Exit,

a. HELP returns to the calling routine after printing the correct form of the required control or specifi-
cation record if in on~line mode, ‘

b. Condition code 1 is set if no message was printed. Otherwise, the correct form of the required con=
trol or specification record is printed.

Operation,

a. Save registers 1-10, If in batch mode or if the record format has already been printed, go to step b.
Otherwise, print the correct form of the required control or specification record.

b. Restore registers 1~10, set the condition codes, and branch to the return address in register 10.

5.5.10 INITLOG.,

1.

O A~ W N

.

5.5.11
1.

w N

o >

Subroutine Name = INITLOG.

Calling Module - USERS.

Purpose. Format field defaults for a new authorization-file record.

Entry - Register 10 contains the return address.

Exit.

a. INITLOG returns to the calling routine after setting field defaults for the authorization-file record.
b. All optional fields of the authorization-file record being formatted are set to defaults.

Operation. Save registers 1-3 so that the registers may be used as work registers. Initialize all
optional fields of the authorization=file record being formatted to defaults. Restore registers 1-3 and
branch to the return address in register 10,

PAGE,

Subroutine Name - PAGE.

Calling Modules = START, LIST, STATS, PASSWORDS.

Purpose. Do form alignment on output listing.

Entry - Register 10 contains the return address.

Exit.

a. PAGE returns to the calling routine after doing form alignment.

b. 1In batch mode, the output listing is advanced to top of page. In on-line mode, 3 lines are skipped
on the terminal listing.

Operation. In batch mode, advance output listing to top=of-page. In on-line mode, save registers O
and 1, skip 3 lines on the terminal listing, restore registers 0 and 1. Branch to the return address in
register 10,

5-22

5.5.12

PRNT, PRNTV,

1.

Subroutine Names = PRNT, PRNTYV,

2. Calling Modules = START, Controi-Record, USERS, KILL, LIST, STATS, DELSTATS, PASSWORDS, Input-
Syntax-Error,

3. Purpose. PRNT issues a TEXTC message to the M:LO DCB. PRNTYV issues a TEXT message to the M:LO
DCB.

4. Entry.

a. Register 10 contains the return address,
b. For PRNT, register 1 contains the address of a TEXTC message on a word boundary. For PRNTV,
register 1 contains the address of a TEXT message.
c. For PRNTV, register 2 contains the length in bytes of the message.
5. Exit.
a. PRNT and PRNTV return to the calling routine after writing a message.
b. A message has been printed through the M:LO DCB,

6. Operation. Save registers 2 and 3 so that the registers may be used as work registers. For PRNT, load
register 2 with the byte count of the message and register 3 with a byte displacement of 1. For PRNTV,
load register 3 with a byte displacement of zero. Write the message through the M:LO DCB. Restore
registers 2 and 3 and branch to the return address in register 10,

5.5. 13 PRTERR,

1. Subroutine Name = PRTERR,

2, Calling Modules = USERS, KILL, LIST, STATS, DELSTATS, PASSWORDS, Input-Syntax=Error.

3. Purpose, Print a dollar sign ($) under an invalid field on a control or specification record.

4. Entry - Register 10 contains the return address.

5. Exit.

a, PRTERR returns to the calling routine after printing the dollar sign.
b. A dollar sign is printed under the invalid field on a control or specification record. In on~line mode
with file input, the record was printed first,

6. Operation. Save reg_isrer 10 so that register 10 may be used as a work register. Print a dollar sign under
the invalid field on the control or specification record (PRNTV subroutine). In on-line mode with
file input, first print the record (PRNTV subroutine). Restore register 10 and branch to the return address
in register 10,

5.5.14 PRTLIST,

1. Subroutine Name - PRTLIST.

2, Calling Module = LIST.

3. Purpose. List the parameters from an authorization-file record.

4, Entry.

a, Register 10 contains the return address. .
b. LOGBUF1 contains an authorization=file record.

5. Exit,

a. PRTLIST returns to the calling routine after listing the parameters from an authorization-file record.
b. Account, name, password, secondary-storage limits, priority, monitor=service authorization, date
and time of last change, and extended accounting are listed.

6. Operation. Save all registers. Move account, name, extended accounting, and password to the ouput

line. Format the date and time of the last change, using the CVTDEC subroutine.

5-23

Move the priority and monitor-service authorization indicators to the output line. Format the secondary-
storage limits, using the CVTDEC subroutine. Print the parameters (PRNTV subroutine). Restore all
registers and branch to the return address in register 10,

5.5. 15 PRTSTAT,
1. Subroutine Name - PRTSTAT,
2. Calling Module - STATS,
3. Purpose. Print statistics from an authorization-file record.
4, Entry.

a. Register 10 contains the return address.

b. LOGBUF1 contains an authorization-file record.

a, PRTSTAT returns to the calling routine after printing the statistics from an authorization~file record.

b. Account, name, total batch and on~line job sessions, job connect time, time breakdown, and
secondary storage used and authorized are printed.

Operation. Save all registers. Move account and name to the output line. Format numeric fields, using
the CVTNSTOR subroutine. Print statistics (PRNTV subroutine). Restore all registers and branch to the

Subroutine Names - RDLOG, RDLOGS,
Calling Modules, USERS, LIST, STATS, DELSTATS cail RDLOG, LIST, STATS, and DELSTATS call

Purpose. Read an authorization-file record. RDLOG reads a specified key. RDLOGS reads sequentially,

a. Register 10 contains the return address.

b. For RDLOG, register 1 contains the address of the key to be read.
a. RDLOG and RDLOGS exit to the calling routine after issuing a read to the authorization file,

(1) LOGBUF1 contains the authorization~file record read.

(20 Condition code 1 is set if the read failed. In this case register 13, byte 3, contains the ab-
normal or error code,

Operation. Save registers 4~11. Set the abnormal and error addresses in the M:EOQ DCB to RDLOGI.
Issue the read to the authorization file. If the read fails, load the abnormal or error code from register
10 into register 13 and set condition code 1. Restore registers 4=11 and branch to the return address in

Calling Modules = LIST, STATS, DELSTATS,

Purpose. Read an quthorization=file record for a specified account.

5. Exit,
6.
return address in register 10,
5.5.16 RDLOG and RDLOGS.
]o
20
RDLOGS.
3.
4, Entry.
5. Exit,
b. Data is returned.
6.
register 10,
5.5.17 RDLOGACNIT,
1. Subroutine Name - RDLOGACNT,
2,
30
4, Entry.

a, Register 10 contains the return address.
b, ACCNTMP contains the account to be read,

5-24

Exit.
a. RDLOGACNT returns to the calling routine after issuing a read tothe authorization file,
b, Data is returned.
(1) LOGBUF1 contains the authorization=file record read.
ACCNTI1 contains the key read.

(2) Condition code 1 is set if the read failed. In this case, register 13, byte 3, contains the ab-
normal or error code,

(3) Condition code 2 is set if no more records for the account exist.

Operation. Save all registers. For the first read for the account, read specifying a key (RDLOG sub~
routine), If the read returns the no~key-exists abnormal code but the key accessed is for the specified
account number and the key specified contains no name, read specifying the last key accessed (RDLOG
subroutine). Once a record for the account has been processed, read the next record sequentially
{RDLOGS subroutine). If no more records for the account exist, set condition code 2, If aread fails,
set condition code 1 and load the abnormal or error code into register 13. Restore all registers and
branch to the return address in register 10,

5.5, 18 RDLOGS.

See RDLOG.

5.5.19 RESETLOG.

1.
2.
3.
4

Subroutine Name = RESETLOG.

Calling Module ~ DELSTATS,

Purpose, Reset statistics for an authorization=file record.

Entry.

a. Register 10 contains the return address,

b. Register 1 contains the address of the buffer in which the statistics are to be reset,

Exit,

a. RESETLOG returns to the calling routine after resetting statistics for an authorization=file record.

b. The authorization=file record formatted in the buffer pointed to by register 1 has all statistic fields
reset except secondary storage used.

Operation. Save registers 3=10, Obtain the binary date (DATER subroutine) and move the date to the
authorization=file record being formatted. Reset all statistics in the record buffer except secondary
storage used. Restore registers 3-10 and branch to the return address in register 10,

5.5.20 REWRLOG and REWRLOGS.

See WRLOG.
5.5.21 UCHKFLD,
1. Subroutine Name - UCHKFLD,
2, Calling Module - USERS,
3. Purpose. Set flag for Monitor-service specified on a USERS control record,
4, Entry.

a. Register 10 contains the return address.
b, FLDBUF contains the field to be analyzed,
c. Register 14 contains the length of the field in FLDBUF,

5-25

6.

d. Condition code 2 is set if the field is invalid.
Exit,
a, UCHKFLD returns to the calling routine after analyzing an option on the USERS control record.
b, Data'is returned,
(1) FLGS has a bit set for a Monitor=service specified on the USERS control record.
(2) Condition code 2 is set if the field on the USERS control record is invalid.

Operation, If condition code 2 is set, branch immediately to the return address in register 10, Other-~
wise find the option in a jump table, set the bit in FLGS for the option, and reset the condition codes.
If the option cannot be found in the jump table, set condition code 2. Branch to the return address in
register 10,

5.5.22 WRLOG, REWRLOG, and REWRLOGS.

lo
20
3.

4.

Subroutine Names = WRLOG, REWRLOG, REWRLOGS,
Calling Modules. USERS calls WRLOG and REWRLOG, DELSTATS calls REWRLOG and REWRLOGS,

Purpose. WRLOG writes an authorization-file record. REWRLOG rewrites an authorization-file record
with a key. REWRLOGS rewrites an authorization-file record without a key.

Entry.

a. Register 10 contains the return address.

b, For WRLOG and REWRLOG, register 1 contains the address of the key, a word address,
c. LOGBUF contains the record to be written,

Entry.

a., WRLOG, REWRLOG, and REWRLOGS return to the calling routine after issuing a write to the
authorization file,

b. Condition code 1 is set if the read fails. In this case, register 13, byte 3, contains the abnormal
or error code,

Operation. Save registers 4-11. Obtain the binary date (DATER subroutine) and store the date in the
authorization~file record buffer. Set the abnormal and error addresses in the M:EO DCB to WRABN,
Issue the write to the authorization file. For WRLOG, write with a key and the NEWKEY option
specified. For WRLOG, write with a key and the NEWKEY option specified. For REWRLOG, write
with a key and the ONEWKEY option specified. For REWRLOGS, write with no key specified. If the
write fails, load the abnormal or error code from register 10 into register 13. Restore registers 4-11,
Reset the condition codes or, if the write failed, set condition code 1. Branch to the return address
in register 10,

5.6 AUTHORIZATION FILE, :USERLG,
See Chapter 20 of the BPM Technical Manual (Publication Number 901528),

5-26

6.0 FPURGE PROCESSOR

6.1 FUNCTIONAL OVERVIEW.
The File Purge processor (FPURGE) primary function is to maintain and control user's RAD and/or disk pack
files, and to protect the integrity of these files by periodically creating back-up files on tape in the event

of an unrecoverable system failure. (Hardware or Software).
6.2 INTERFACES

6.2.1 Hardware Requirements

The file purge processor operates with a basic BPM configuration of one magnetic tape unit, a card reader,

a typewriter, a line printer, and at least one rad or disk pack,

6.2.2 Operational Requirements.

For FPURGE to gain access to the account directory and open all files, it must run in the master mode.

FPURGE utilizes the M:SYS CAL which is legal only if the job is running under the :SYS account.

6.3 OPERATIONAL OVERVIEW
The FPURGE control command is read through the C device. It is then decoded, and the necessary flags are
set. FPURGE will access the RAD(s) and/or disk packs, or tape(s) by accounts in ascending order. The

files to be accessed are set up by the options selected,

To protect the integrity of the operating system, FPURGE will ignore all requests to process files under the
accounts :SYS, :BTM, and COBLIB, These accounts will remain as they are, unless the SKIP option us used.
(See Table 6-1.)

File structure will remain the same throughout all functions. (e.g. mode, access).

Tapes are written in Monitor labeled format, A new file will be opened and closed for each user's file

copied to tape. Tapes will default to 9T, unless they are assigned through M:EI, or M:EO, to DEVICE 7T,

The format of the control command is

ﬁFPURGE function, option

where function is
SAVE will take user's files from Rad and/or disk packs, and copy them to tape.
RES user's files that were previously copied to tape, will now be restored to Rad or disk pack.

LOG the names of the user’s files are to be logged by their account number on the line printer.

PURGE user's files are to be deleted.

6~1

On the above four functions, if neither the ALL nor SELECT option is specified, then ALL will be
assumed by default.

The options for each function are defined in Table 6-~1.

Data cards are used to define the files to bé processed. Each function requires its own set of data cards.
Their format is as follows:
Card Columns
1 -8 Account number (left-justified)
9 Must be blank
10 - 12 All (optional). If ALL is specified, all files within the names account number are
processed and the file name field (card columns 14-44) must be blank.
13 Must be blank

14 - 44 Filenome (left-justified)
45 -80 not used

Each set of data cards must be terminated by a IEOD control command,

6-2

ENTER

Read
Control
Card

RESTORE *

Sub

Parameter

Rad
to

Tape

Tape
to

Rad

yes Set
Flags

-

Default

List Files
onLO

to all

>

Purge Files
from Rad

(EXIT e

Figure 6-1, Flow Chart of Major Functions

6-3

6.4 MODULE ANALYSIS

6.4.1 CONTROL CARDS

1.

2,

Routine name:

CcCI

Purpose:

To decode control cards.

Entry:
Start

Exit:
Exits to STRPURG,

Operation:
This routine decodes all control cards and sets the flags needed.

READ
CONTROL CARD

Find Main Param

Print control

card error
and abort

Set flag Set flag Set flag Set flag
RESTORE SAVE PURGE LOG

no

Set flag for
this Param

Skip

Param set

yes

STRPURG

Figure 6-2. Flow Chart of CCI

6-5

6.4,2 SKPPAR,

1. Purpose:
to determine how many accounts to skip.

2, Entry:
Entered from Control Card Routine.

3. Exit:
Exits to STRPURG

4. Operation:
All accounts named will be skipped, and if the skip option is used, accounts :SYS, :BTM, and
COBLIB will be included in the specified option. Up to 110 accounts can be used, but SKIP
must be the first entry on every card and these cards must be terminated by a .END card.

6-6

(skPPAR)

Y

Set # of acct's to skip
to zero (NUMSKP)

Y
[Read Card l

Print skip
card missing

ABO

RT

yes

Get acc't
to skip

Hlegal skip card
or more than
110 acc'ts

Acc't
larger than
8 char, ?

|

Move acc't #
info skip table

Y

Increment

NUMSKP+1

Read next card

it a skip card
?

STRPURG

yes

Figure 6-3. Flow Chart of SKPPAR

6.4.3 STRPURG.

1. Purpose:
Check whether it is a Save or Restore, and select or all.

2, Entry:
Entered from Control Card Routine.

3. Exit:
Exits to LGSVPG or Restore.

4, Operation: .
This routine determines whether or not a select option or all option is used, If select is used,
a link to sore is made, to make sure the accounts and files are sorted and put into a dummy
file.)

STRPURG

ave
flag set
?

Open Tape Out

!

Get date and time from
monitor

{

Link to sort for Write date and time on

selected acc'ts all flag set tape and close
and files ?
yes
Open dummy file Get as much
and store acc'ts core as possible
and files requested

RESTORE

LGSVPG

Figure 6~4. Flow Chart of STRPURG.

6-9

6.4.4 LGSUPRG,

1.

Purpose:
to Log, Save, or Purge accounts or files in an account.

Entry:
Entered from STRPURG.

Exits:
B MISFILS

Operation:

This subroutine checks if a special start was requested (SPCSTR). If it was this routine will
start with the account that was specified through the OC device. If no special start was
requested, this routine will Log, Save, or Purge either all the accounts or just the accounts
and files requested by the select option, This subroutine Bal's on R11 to GETC if the select
option was used, This routine also Bal's on R11 to the following routines: OPNXACCT,

CLRDCB, and PRINT.

6.4.5 GETC,

1.

2.

Purpose:
to get data cards if select option was used.

Entry:
BAL RI1

Exit:
B *R11

Operation:
Opens a dummy file to read data cards to process specific accounts and/or files. A flag is
set, (KDONE) when all data cards are read.

6.4.6 OPNXACCT,

.I'

2,

3.

4.

Purpose:
to get next account.

Entry:
R2 and R3 contain current account. BAL R11

Exit: B *R11 with R2 and R3 containing next account, If next account is found, R11 returns with
a +2, If all accounts are processed as need be, R11 returns with a +1.

Operation:
This routine does an open next on accounts specified.

6.4.7 CLRDCB.

1.

2

Purpose:
to open all files.

Entry:
BAL R11

6-10

3. Exit:
B *RT1

4, Operation:
Zeroes out Password and Read Account, because FPURGE processor has to be able to access
all files.

6.4.8 PRINT.

1. Purpose:
Print file name on LO,

2, Entry:
BAL RI11
3. Exit:
B *R11

4. Operation:
This routine will print the account each time it changes. All file names, and size in granules
will be printed on the LO, and if the count option was used on the control card, each file will
have a byte count printed also. When accounts change a total of granules and bytes will be
printed for each account,

6.4,9 WRTTP,

1. Purpose:
Write tape,
2. Entry:
BAL RI11
3. Exit:
B *R11

4. Operation:
Writes tape in labeled format.

6.4.10 RESTORE.

1. Purpose:
Restore tape to Rad and/or disk

2, Entry:

Entered from STRPURG,
3. Exit:

B MISFILS

4, Operation:
A check is made to see if volume 1 is requested. If not, the tape is opened unlabeled and positioned
to the :ACN sentinel. If the :ACN sentinel is correct the tape is opened as labeled and is
restored to Rad and/or disk. If it is Vol 1, the tape is opened labeled and processed per the
requirements on the control card.

6-11

6.4.11 MISFILS.

1. Purpose:
to print on LO ane files not found.

2, Entry:

Entered from LGSUPRG and Restore
3. Exit:

B GETOUT

4, Operation:
A check is made to see if the count option was used; if it was, print the total number of granules
and bytes that were processed. We then check, if any files that were requested by the select
option, were not processed. If not, these files are printed on the LO as not found.

6.4.12 GETOUT,

1. Purpose:
Terminate Processor

2, Entry:

Entered from MISFILS
3. Exit:

M:EXIT

4, Operation:
Restores original account number and then exits.

6-12

Table 6-1. FPURGE Options

OPTION

MEANING

OPTION ALLOWED FOR

SAVE

RES

LOG

PURGE

ALL

COUNT

DATE

DP

SELECT

SKIP

START

All user's files will be processed. All cannot be used
if SELECT is also specified.

FPURGE will print the file names, number of granules,
and number of bytes,

FPURGE will ask the operator to type in a desired date
and time. Only files that have been created or updated

on or after this date will be processed.

When DP is used, FPURGE will make two passes through the
file directory. The first pass will save file(s) that are
RANDOM and have been specified to be on a disk pack.

The second pass will process all other files.

Specifies that files to be accessed are defined by data cards.
SELECT cannot be used if ALL is specified.

This option gives the user the ability to name accounts to
safeguard. When SKIP is used, the default accounts
(:SYS, :BTM, and COBLIB) will be replaced be the
accounts named on the skip cards. The format of the SKIP
card is

) rsmp (ACCNT,), (ACCNT,), (ACCNT,)

SKIP must be in columns 1-4 and must be on every card used.
A max, of 110 accounts can be named. SKIP cards must
follow directly after the FPURGE control command and must

be terminated by a .END card in columns 1-4,

FPURGE will request the operator to key in the account and
file at which processing is to start, This is provided for

error recovery.

X

X

X

X

6-13

Table 6-1. FPURGE Options (Cont.)

OPTION ALLOWED FOR

tape volume number with which to start restore

operations,

OPTION MEANING SAVE| RES [LOG [PURGE
START If the system crashes during the save function, START X
(AUTO) (AUTO) will find (from previous tape) what the last
file was and continue from the next file.
VvOL FPURGE will ask the operator to type in the desired X

6-14

7.0 FERRET SUBSYSTEM

7.1 FUNCTIONAL OVERVIEW

7.1.1 Purpose

FERRET is a utility subsystem which provides a general capability for obtaining information about entries in

the file management system, The subsystem also provides for limited file manipulation, Its capabilities

include listing and reviewing all files in a specific account; copying, deleting, and testing the status of

specific files; and displaying records within a file.

7.1.2 Error Messages

10.

1.

12,

13.
14,

15.

16.

17,

ILLEGAL SYNTAX. A syntax error has been found in processing the COPY or KOPY command.
COMMAND NOT LEGAL. The command entered by the user is not a legal FERRET option,
CANNOT DELETE FILE file name. In processing the DELETE command, a specified file cannot be
deleted; the most probable reason for this is that the file is currently in use by another user,
CANNOT ACCESS FILE file name. An abnormal condition was encountered when opening the
specified input file, ‘

FILE DOES NOT EXIST - file name. The specified input file does not exist in the Log=in account,
CANNOT ACCESS NEXT FILE, In processing the LIST, REVIEW or GRANULES command, the next
file in the account could not be opened.

CANNOT COPY == RECORDS TOO LARGE, In processing the PUNCH, COPY or KOPY command,
data was lost because the buffer is smaller than the record read,

FIRST RECORD NON-EXISTENT. In processing the EXAMINE or INSPECT command, the first
record specified does not exist in the file,

RECORD EXCEEDS BUFFER SIZE. In processing the EXAMINE or INS{ ECT command, data was

lost because the buffer is smaller than the record read.

M>N INM, N SPECIFICATION, In processing the EXAMINE or INSPECT command, the number
of the first record fo be examined is greater than the last record in the range.

CANNOT CREATE FILE. In processing the COPY or KOPY command, the specified file could not
be opened in the output mode.

NO OUTPUT SPECIFICATION, In proczssing the COPY or KOPY command, the output file
specification was not present,

NO SPECIFICATION FIELD, The command givenrequires a specification field and none is present,
ILLEGAL DECIMAL CHARACTER, In processing the EXAMINE or INSPECT command, the input to
specify the record(s) to be examined is not a decimal character,

FIRST REC G-T RANDSIZE, In processing the EXAMINE or INSPECT command, the input file is random
and does not contain the first record specified.

LAST REC G-T RANDSIZE~-RANDSIZE SUBSTITUTED. In processing the EXAMINE or INSPECT
command, the input file is random and does not contain the last record specified.

NO KEY LENGTH FOR KEYED FILE--ERROR, An error exists in the FPARAMS returned when a

Keyed file was opened.

7.2 INTERFACES
FERRET is given control by BTM:EXEC upon user request, and is entered at STARTFIL, The address of its
normal entry point (STARTFIL) is contained in word 9 of FERRET and the eniry point following IPROCEED is

at STARTFIL+1, in accordance with coding conventions for BTM subsystems,

CALs to the monitor are used to access user commands and input text (CAL3,0) and to write to the teletype
(CAL3, 1), CAL3, 11 is used to describe memory so that the maximum number of available memory pages are
swapped in and out. The activation type is set to 4 via a CAL3,2, causing activation only on'carriage return

or line feed. CALI,8 is used to obtain accounting data on the current session,

7.3 OPERATIONAL OVERVIEW
FERRET is composed of two types of routines: command routines which perform the functions specified by the
input command; and service sub~routines which perform tasks common to several command routines and are

called by a command routine when needed.

Upon entry from the BTM Executive the FERRET routine performs subsystem initialization, identifies the

command which was input by the user, and gives control to the routine which will process that command,

Commands which pertain to an account and all files contained therein are LIST, REVIEW and GRANULES,
When the routines REVIEW and GRANULESS receive control from FERRET they essentially just set a flag
to identify the function to be performed, then give control to the LIST routine which processes all three

commands.

Commands which pertain to a specific file (and the routines which process them if the name of the routine is
different) are TEST (CHECK), ACTIVITY (ACTIVCK), DELETE, COPY (COPYFILE), KOPY(KOPYFIL), and
PUNCH. KOPYFILE merely sets a flag to indic;:te that keys are to be retained, then gives control to
COPYFILE which processes both COPY and KOPY commands.

Commands which pertain to a file and its individual records are EXAMINE and INSPECT, At location
INSPECT a flag is set to indicate that keys are to be displayed, then control is given to the routine

EXAMINE which processes both commands.

Input files are read thru the M:EI DCB, output files are written (COPY or KOPY commands) thru the M:EO
DCB, and records are displayed on the user's terminal (EXAMINE and INSPECT commands) thru the M:LO DCB.

See Figure 7-1 for the FERRET Subsystem flow diagram.

7-2

FERRET

Get all pages,
describe memory
for swapping & do
housekeeping

STARTFIL

s input

commV,
GRANULES N GRAN Pg. 2
ULES
REVIEW REV- "\ pg, 2
™\ IEW
LIST »>{ LIST)Pg. 2
CHECK
»{CHECK } Pg. 3
ACTIVITY ACTI-
» vck)Pg. 3
DELETE
»{DELETE) Pg. 3
KOPYFIL b
KOPY Set indicator that
keys to be
COPY printed Copy

Pg. 4

>\ FILE

;

PUNCH +{ PUNCH) Pg. 5
INSPECT

INSPECT Set indicator

that keys to be 2 AN
EXAMINE —2rinted INE) Pg. 6
STATISTICS stars
MESSAGE MES-

> SAGE

NOSEP _(Nose

EXITFERRET

X
> EXIT)

Figure 7-1, Flow Diagram of FERRET

Pg. 2

=2 R15=3 ALL
R15 specified R15=0
?
]
NXTOPS y
Get acct. RIS =1
number field
GOTACCTY
Save acct.
number in
FPT
NXTLOP ¢
Open next
" file
PRTNXT g
Print file name if
R15<3 (& pass-
word if :SYS
Print S, P,
error msg,
. 1
TARTFIL
Pg. 1)
| Close and
save file

Close and
release file
1

X
| Increment totals

Figure 7-1. Flow Diagram of FERRET (Cont.)

SCANOPEN

Open next file;
exit to STARTFIL if
no more files

ng.B

Print statistics
about this file

L

cnvc1<>

7

Pg. 3

SCANOPEN

Open file; exit to
STARTFIL if no
more files

Close and
release file

!

Open same file

A
SCANOPEN

Opven file; exit to
STARTFIL if no

more files
Pg. 8
ACTI 9
Close file

Open same file
in INOUT mode

ACI3 Y

Close file

ACTABN

Opened
ok?

Y

Close file

!

Print message
that file could >
not be deleted

Print message

| that file is

active

ACTIA

Print message
| that file is

inactive

Print message

that file is random

7-5

Figure 7-1. Flow Diagram of FERRET (Cont.)

Pg. 4

SCANOPEN
Open file; exit
fo STARTFIL if no

more files
Pg.
CPY1 vy
GETFLD
Get second
input field;
Pg. 8
Did -
second field Print error
exist? message
Pg. 1
CPY1A 7
Close file
Y
Open output
file
Y
Reopen input .
fi|g
RDLOP ¥
Read record-
consecutive,
keyed or
Write record=
keyed, random
or consecutive
Print error
message
[OSTABN ’ CLSEI
Print error | | Close input
message file

Close input file

Y
I Close & save output file

Pg. 1

Figure 7-1, Flow Diagram of FERRET (Cont,)

7-6

<

Y

SCANOPEN

Open input file;
exit fo STARTFIL
if no more files

Send punch-
on character

¥

Send 20 rub-
out characters

READNXT |

Read a record

Pg. 8

Pg. 5

7-7

PCHRTN
| Close input
file
PUNCHNX
Print error Send 20 rub-
Get next message out characterd
character fro g
record Send punch-
off character
Send
character
to punch
Output blank,
| new line, rubout,
Bl and line feed to
punch
Figure 7-1. Flow Diagram of FERRET (Cont.)

SCANOPEN

Open input file;
exit to STARTFIL
If no more files

EX2
Get input
character

nput
is

?

X

A

Close input fil%

N Other

BorH

Store B or H in
indicator

K]

Set indicator
that CR found

Get range of
records and save

File Check if
random in range
?
,‘n
Read a record
- Print Ke
y Y

Pg. 6

Figure 7-1. Flow Diagram of FERRET (Cont.)

NXTRCA E
b4

PRNTBCD

Print record in

EBCDIC & house~ |

keep

Print record num-
ber and byte count

XGROUP

Print word number

our-word
multiples

four words
same?

FWORDS

Print four words

Print byte count

A

TFWM

CKNXTRC

More
to print ?

| Print remaining
words &bytes

| Print one word
only

XGROUP

Pg.7

Pg. 6

Figure 7-1, Flow Diagram of FERRET (Cont.)

7-9

Y
Prompt with >

¥ i NOSEP1
Get statistics Prompt with
(CAL1, 8) >

KWDLOP _ y

Get input Get input
character

CHKKWD

Identify Y
option

n

PTSUB
Print statistic
requested

Set reset bit
’—-» in open FPTs
|

Pg.8

| Clear reset
bit in open
FPTs

<

STATERR

Output
question mark Pg. |

ALLSTTS
Output all
statistics

-

Get message
and store in
buffer

¥

Send message

Figure 7-1. Flow Diagram of FERRET (Cont.)

7-10

SCAN-
OPEN

GETFLD

Get name,
account and pass—
word of file

Print error
message

START-
FIL

Pg. 1

Print error
message

File
Random

?

ERROR
RETURN

Save size

Y

Save

organization
code

NORMAL
RETURN

Get file name

Name
Specified

Store name

in open

FPT
Y

Get account and
password and store

in FPT

NORMAL
RETURN

Figure 7-1. Flow Diagram of FERRET (Cont.)

7-11

7.4 MODULE ANALYSIS
Flow charts of the individual modules described in this section appear in Figure 7-1 as part of the FERRET flow

diagram,

7.4.1 FERRET

1.

Purpose:
To perform initialization and housekeeping functions upon entry into the FERRET subsystem, and fo
identify the command to be processed.

Entry
Entered at STARTFIL from BTM Execuhve. In accordance with subsystem coding conventions,
registers at entry contain:

R1) = COC line nﬁmber (in binary)
R2)

terminal job entry flag; O indicates that the console is excluded from the
system, and a value of 1-F indicates the maximum priority.

(R3) = batch authorization flags from AJIT in byte O.

R4 &RS) = log-in account designation (in EBCDIC, left-justified and blank filled).

(R13 - R15) = log-in name designation (in EBCDIC, left-justified and blank filled).
Exit:

Exits to the routine which will process the current command (the branch table is CMNDVEC),

Operation:

The COC line number is converted to EBCDIC and placed in the print image for the MESSAGE
command (OPRMES). The number of available pages is requested and a CAL3, 11 describes
memory so that all available memory is swapped in and out. The activation type is set to 4==
activation on carriage return or line feed only. After the input command has been identified,
exit is to the routine which will process that command.

7.4.2 LIST, REVIEW, GRANULES

1.

Purpose:
== To print a list of all files in an account (with the password, if the user is in the :SYS account),
and the size of each file in granules if the LIST command is invoked;

-- To print the total number of granules used by all unprotected files in an account if the
GRANULES command is invoked;

-- To print the name of each file in the log-in account and halt after each file (except passworded
or synonymous files) for a decision from the user whether to delete or save each file if the
REVIEW command is invoked;

== To delete all unprofecfecl files in the log~in account if the REVIEW ALL command is invoked.

Entry:

Initial Entry

point after Entry point - Contents of

identification in LIST R15 at entry
Command of command routine to LIST routine
LIST LIST LIST 2
GRANULES GRANULES NXTOPS 3
REVIEW REVIEW GOTACCT 1
REVIEW ALL REVIEW GOTACCT 0

7-12

3. Exit:
Exits to STARTFIL in FERRET routine after processing all files in the account.

4. Operation:
Although all three commands are processed by the LIST routine, the REVIEW and GRANULES
routines require some initialization prior to entering the LIST routine, This is performed at
locations REVIEW and GRANULES, respectively, and includes setting register 15 to indicate
which function is to be performed.

LIST opens the first file in the account and prints, for REVIEW or LIST commands, the name of

that file. If the file was opened successfully, the size of the file in granules is printed

following the name; if it was not opened and the command was REVIEW, P or S is printed instead
of the granule count if the file is protected or synonymous. If the command was GRANULES,

the number of granules in the file is added to the total number of granules for the account, If the
command was REVIEW, LIST checks input from the terminal to see if the user wants the file
deleted. If the file is to be deleted or if the command was REVIEW ALL, the file is closed and
released; if the file is not to be deleted or the command was LIST or GRANULES, the file is closed
and saved,

This operation is continued for each file in the account until all files have been processed, at
which time totals are printed and control is given to STARTFIL.

7.4.3 CHECK

1. Purpose:
To determine whether the user may read one or more specified files.

2, Entry:
Entered at CHECK after identification of the TEST command by the FERRET routine,

3. Exit:
Exits (from SCANOPEN subroutine) to STARTFIL in FERRET routine after testing the file(s)
specified,)

4, Operation:
BALs to the subroutine SCANOPEN, which opens the specified file, if possible. If the file was
opened, CHECK] outputs some statistics about the file on the appropriate terminal, then branches
to CHECK to test the next file specified.

7.4.4 ACTIVCK

1. Purpose:
To determine whether the specified file(s) are currently inactive (accessible).

2, Entry:
Entered at ACTIVCK dofter identification of the ACTIVITY command by the FERRET routine.

3. Exit:
Exits from SCANOPEN subroutine to STARTFIL in FERRET routine after processing the file(s)
specified,

4, Operation:
BALs to the subroutine SCANOPEN, which opens the specified file in the IN mode. If the file
was opened (meaning the file does exist), it is closed and then reopened in the INOUT mode.
If it was successfully opened in the INOUT mode it is either inactive or has random organization
and a message is output indicating which case is true. If the file could not be opened in the INOUT
mode, a message to this effect is output before returning to ACTIVCK to process the next file specified.

7-13

7.4.5 DELETE

1.

Purpose:
To delete one or more specified files from the log=in account.

Entry:

Entered ot DELETE after identification of the DELETE command by the FERRET routine.

Exit:

Exits (from SCANOPEN subroutine) to STARTFIL in FERRET routine after processing specified file(s).
Operation:

After setting the DCB to the update mode, DELETE BALs to the subroutine SCANOPEN, which opens
the specified file, if possible, If the file was successfully opened, upon return from SCANOPEN

the file is closed with REL specified. A check is made to insure the file was actually deleted and if so,
the next specified file is processed, If the file was not deleted, an-error message is output

before the next file is processed.

7.4.6 COPY, KOPY

]a

Purpose:
To create a new copy, in the log=in account, of an existing file (and to retain keys if the command
is KOPY),

Entry:
Entered at COPYFILE after identification of the command by the FERRET routine, If the command was
KOPY, a flag is set at KOPYFIL before control is given to COPYFILE,

Exit:
Exits to STARTFIL in FERRET routine (via CKFLSH) after performing functions specified.

Operation:

COPYFILE BALs to the SCANOPEN subroutine to get the name of the input file and open it.

The name of the output file is then obtained, using the GETFLD subroutine. If the input file is
keyed, a check is made to see if a key entry is present in the FPARAMS and whether keys are to be
retained when the file is copied. The input DCB is closed so that the output DCB can be opened

in case the input and output files have identical names. (For further information on the protocol of
opening multiple DCBs to the same file name refer to the File Attributes appendix of the BPM
Reference Manual, 90-09-54E). The output DCB is opened and the input DCB is reopened.
Successive input records are read and written to the output file until the end of the file is
encountered. The input and output DCBs are then closed in that order and control is given to
STARTFIL, If either DCB could not be opened, if data was lost, or if the input command was not
in the proper format, an error message is printed before control is returned to STARTFIL,

7.4.7 PUNCH

]n

Purpose:

To output (punch) one or more files to paper tape on the user's console,

Entry:

Entered at PUNCH after identification of the PUNCH command by the FERRET routine,

Exit:

Exits from SCANOPEN subroutine to STARTFIL in FERRET routine after processing the file(s)
specified,

Operation:

BALs to the subroutine SCANOPEN which opens the specified file, if possible. If the file could

not be opened, control goes to PUNCH to process the next file. If the file was opened successfully,
a character (X'12"), is output to turn on the punch at the user's terminal, and outputs 20 rubout

7-14

(X'00") characters to prepare the paper tape. A record is read from the input file and each
character in that record is obtained from the input buffer and output to the punch until a carriage
return (X'15" is encountered. A carriage return terminates that record regardless of the number of
characters that were punched. Several characters are output as a divider between records and the
routine branches back to read the next record. When all records have been output and the file is
complete, the input file is closed, 20 rubout characters are output to terminate the file, and the
punch is turned off. Control returns to PUNCH to process the next file specified. If no more files
are specified, the SCANOPEN subroutine returns control to STARTFIL.

7.4.8 EXAMINE, INSPECT

1.

Purpose:

To examine a file and display any or all of the following information, based on requests input by the
user.

-~ print the number of records in the file

-~ print the number of bytes in each record or in specific records
—- print, in EBCDIC or hexadecimal, the contents of all records in the file or of specific records,

If the command is INSPECT, the same action takes place except the key is also displayed for each
record selected,

Entry:
Entered at EXAMINE after identification of the EXAMINE command if the command was INSPECT, a
flag is set at INSPECT to signify that keys are to be retained, then control is given to EXAMINE,

Exit:
Exits to STARTFIL after the user inputs an X in response to a prompt.

Operation:
BALs to the subroutine SCANOPEN, which opens the specified file, then issues a prompt. The user's
response is checked to determine what action is to be taken,

If N was specified, the number of records, in the file is determined and printed. If the sub-command
was not N, PRNTRCDS positions to the first record to be processed (the first record, if no range

was specified) and that record is read, If the command was INSPECT, the key is printed at this time.
If B was specified, the record number and the number of bytes in that record are printed, and the
next record is read. If neither H nor B was specified, the record is written thru M:LO to the user's
terminal and the next record is read. If H was specified, the record number and byte count are
printed in hex before the record is dumped and the record is examined in 4-word blocks, If all

four words in a block are identical, the word is printed only once on that line and the next block

is examined, If the four words are not identical, all four words are printed on one line and the next
block is examined, Each line is preceded by the number of the first word in that line, starting with
word 0 on line 1, When the entire record has been printed, the next record is read. When all records
have been processed, another prompt is issued, If the user's response is other than X, the above
sequence of actions is repeated. If the response is X, control is given to STARTFIL,

7.4.9 STATS

.

Purpose: ' .
To display any or all of the following statistics for the current session, as requested by the user.

~= number of users currently logged in

-~ amount of time current user has been logged in

~- number of RAD granules remaining and/or used in current session
-~ number of disk granules remaining and/or used in current session

-- amount of CPU execution time, 1/O wait time, and/or Monitor service time used in current
session,

7-15

2,

Entry:
Entered at STATS after identification of the STATISTICS command by the FERRET routine.

Exit:
Exits to STARTFIL in the FERRET routine after the user inputs an X in response to a prompt.

Operation:

STATS does a CAL1, 8 to obtain the accounting statistics, saves these statistics, and issues a

prompt for subcommands, After the subcommand is identified by indexing thru a table of subcommands
(KWDS), the index value when the command was identified is used to access the storage area for the
particular statistic desired. This statistic is converted and output with the appropriate message. If
the subcommand ALL was input, the index is set to the end of table KWDS and decremented until

all statistics have been printed. When the subcommand entered in response to a prompt is

identified as X, control is given to STARTFIL.

7.4.10 MESSAGE

1.

Purpose:
To cause a specified message to be printed on the system operator's console, prefaced by an
identification of the originating console,

Entry:
Entered at MESSAGE ofter identification of the MESSAGE command by the FERRET routine.

Exit: .
Exits to STARTFIL in the FERRET routine.

Operation:

Obtains each character in the message from the terminal and places it in the proper psoition in the
TEXTC statement, OPRMES. When all characters have been stored in the print image, OPRMES is
output to the system operator's console via a CAL1,2 0, and control is given to STARTFIL, If the
size of the message will exceed 100 characters or if a carriage return is encountered immediately
following the MESSAGE command, an error message is output before control is given to STARTFIL.

7.4.11 NOSEP

1.

Purpose:
To set (or reset) the NOSEP bit in the open FPT for M:EO,

Entry:
Entered ot NOSEP after identification of the NOSEP command.

Exit:
Exits to FERRET1 in the FERRET routine.

Operation:

Upon entry, NOSEP asks the user whether the NOSEP bit is to be set or reset and prompts for an
answer, If the user answers either SET or RESET, a 1 or 0, respectively, is merged into bit 9

of the CPYOPN FPTs and control is given to FERRET1, If the user responds to the prompt with other
then SET or RESET, the routine outputs two question marks and another prompt character, This
continues until the user responds with either SET or RESET.

7.5 SERVICE SUBROUTINES
The following service subroutines are used by several different command routines andperform such tasks as
converting numbers, examining input fields, opening the input DCB, and searching tables.

7.5.1 CVDECOUT

1.

Purpose:
To convert a hexadecimal number to decimal and output it to the terminal,

7-16

2, Entry:
Entered from CHECK, LIST, EXAMINE and STATS.

BAL,3 CVDECOUT
(1) = number to be printed

3. Exit:
B *3

4, Operation:
The value in R1 is tested and a minus is output if it is negative. The number is then converted to
decimal digits and these digits are placed in a buffer. Each digit is converted to EBCDIC, then
output to the terminal.

7.5.2 GETFLD

1. Purpose: ,
To obtain an entire field from the terminal -~ name (account number, password) == and put it in
the proper entries in the FPT.

2, Entry:
Entered from LIST, REVIEW, COPYFILE and SCANOPEN,

BAL, 9 GETFLD

3. Exit:
Error retum B *9
Normal return B *9 (+1)

4, Operation:
GETFLD BALs to GETNAM subroutine to obtain the file namethen stores the names in the FPT at
OPNNAM. If an account number and/or password is present, it is obtained and stored at
OPNACT or OPNPAS, respectively. If a carriage return was encountered before the file name,
the error return is taken.

7.5.3 GETNAM

1. Purpose:
To obtain a field from the terminal and move it into a buffer,

2. Entry:
Entered from NOSEP, GETFLD and GETNAMI.,

BAL,7 GETNAM
(0) = current character

3. Exit:
B *7

4, Operation: ‘
GETNAM gets one character at a time from the terminal and moves it into o buffer in TEXTC format
until a terminating character is found, If called by GETNAMI, the TEXTC format is changed to
TEXT upon return,

7.5.4 SCANOPEN

1. Purpose:
To open the specified input file.

2, Entry:
Entered from DELETE, CHECK, PUNCH, ACTIVCK, EXAMINE and COPYFILE,

BAL,8 SCANOPEN

7-17

30

Exit:

Normal return B *8
Error return B *8 (+1)
Operation:

SCANOPEN BALs to GETFLD to obtain the name, account number and password of the file to be
opened. If no name is returned, an error message is printed and control is given to STARTFIL,

An attempt is made to open the file. If the file is opened successfully, the organization code and,
if the file is random, size are saved. If the file could not be opened an error message is printed
and the error return is taken.

7.5.5 LOCCODE

1.

Purpose:
To scan the entries returned by FPARAM for a specific code,

Entry:
Entered from CHECK, LIST, EXAMINE, COPYFILE and SCANOPEN

BAL,3 LOCCODE
(2) = param code

Exit:

B *3

(2) = 0 if entry not found

(2) = address of entry, if found

Operation:

LOCCODE compares the code for each entry with the code in register 2, If the code is found, the
address of that entry is returned in register 2, If the code has not been found after all entries have
been checked, a zero is returned in register 2,

7-18

8.0 EDCON
8.1 FUNCTIONAL OVERVIEW

8.1.1 GENERAL DESCRIPTION

EDCON is a BPM processor which provides the services of creating, deleting, manipulating, compressing
and decompressing files. It makes available to a batch t;ser commands which resemble some of the

BTM EDIT Subsystem's file commands.- Input media acceptable include cards and keyed files in

either EBCDIC or compressed format, Output may be in any format acceptable as input with the added
feature of sequencing in characters 73-80 of a record. EDCON may be-wsed on-line under the BTM
RUN Subsystem. More than one command may be input each time EDCON is invoked, if desired.
Command syntax resembles that of EDIT,

8.1.2 COMMANDS

1. BUILD fid ,n ,il)

M:EI defaults to the card reader.

M:EI may be in either EBCDIC or compressed format.

If M:EI is the card reader, it must be terminated by an 1EOD,

If M:EL is a file, it must be keyed having records of 140 bytes or less in length.

M:EO is fid which must not already exist.

M:EO will be a keyed file with records in EBCDIC format, Thus if M:El is compressed,

M:EO will be decompressed.

g. Sequencing refers to record keys and does not become part of the record text, Default values
for n and i are 1,000, where the decimal point is assumed.

ON
2. COPY fid, | OVRR [fid, [,n{[,i]]
a. fi'; becomes M:El; fidp becomes M:EO,
b, If fid| is not keyed, n must be specified.
c. If n isomitted, the sequence numbers (record keys) of fid] will be retained in fid2.
d. Default values for n and i are 1,000,
e. If fidy # fidy, a new file is created and password is not allowed.
f. M:EO will be keyed.
g. A file may be copied over itself.

3. DELETE fid
fid must be keyed.

4. END
This command is not mandatory. Execution is terminated by this command or if omitted by

m0o 00 T o

encountering end-of-file on the C device.

5. LIST fid

a. fid must exist in keyed format.
b. M:EO defaults to the LO device, and record keys appear with records.

6. MERGE fid) ,ny -np]] INTO fidy, n3 [, i]

a. fid, is M:EI and must be keyed.

b. If [,m -negl is not specified, the entire file will be transferred.

c. fidyis M:EQ and either may or may not exist,

d. Record(s) n3 -n,1 is(are) deleted from fid,if existing and is(are) replaced at ng by the
specified record(s) from fid'l.

e. Default value for i is 1,000,
f. The merge is stopped at n, if further transfer would generate records with sequence numbers
greater than existing ones,

7. WRITE fid [, LIST]

a. M:El is fid and must be keyed.

b. M:EO defaults fo the card punch.

c. M:EO is written in EBCDIC format having no trailing carriage returns,

d. When M:EO is written via the card punch sequencing is provided in characters 73-80 in
format YYYYXXXX, where YYYY is a maximum of four bytes of fid name and XXXX is
sequence number, :

e. If [,LIST] is specified, M:LO defaults to the line printer, and record keys appear with

records.
f. M:El must be in EBCDIC format.

8. COMPRESS fid [,LIST]
This command is identical to WRITE except that M:EO is written in compressed format.

8.2 INTERFACES

EDCON operates in a similar manner to other BPM processors and is in addition executable under the

RUN Subsystem of BTM,

8.3 OPERATIONAL OVERVIEW

Execution begins in BEGINEDITOR with reading of the first command via the C device and proceeds to
MASTERPARSER, which serves as driver for command reading and scanning. As a command is identified,
execution is directed to its corresponding PARSE:(Command) subroutine where the command and
parameters are entered into the Command Description Table (CDT), See Tables 8-1 and 8~2. When no
more commands remain or END command is encountered, execution proceeds to MASTEREXECUTIVE, the
driver for command execution which occurs via F:(Command) routines. After all commands have been
honored, return is made to the monitor. EDCON is coded in a highly modular fashion, See Figure 8-1,
EDCON Overview Flow Diagram.

8.4 MODULE ANALYSIS
In the descriptions which follow register notations have the following meaning:

symbol s register

X3 1
X4 2
X1 3
X2 4
P1 5
P2 6
LNK 7
T1 8
T2 9
P3 10
R1 11
R2 12
F:LNK 13

The routine and subroutine descriptions which follow are organized such that MASTERPARSER appears first
with its associated PARSE: subroutines, followed by MASTEREXECUTIVE with its associated F: subroutines,

and lastly by the general subroutines,

8-2

ENTER

MASTER

PARSER

Read Command from TTY]

Print Error

Message

1
Go to Proper Routine to Build CD;I'

'

PARSE:Routine

Print Error

Message

Build CDT

MASTER
EXECUTIVE

¥

Analyze CDT and go to
Proper Routine

'

F:Routine

¥

Call workhorse subroutines to
Execute Commands in CDT

All Other

Figure 8~1. Overall Flow Diagram of EDCON

8-3

8.4.1 MASTERPARSER

1. Purpose:
This routine serves as the driver for the command text scanning. It performs initialization of

flags, the CDT, and TSTACK.

2, Entry:
Initially execution falls through to MASTERPARSER from BEG INEDITOR; thereafter it is entered

via B MASTERPARSER.

3. Exit:
(See Figure 1),
If command type of first string found is: branch is fo:

CR MASTEREXECUTIVE
ALPH PARSE: (routine)

where routine is one of the CDT builder routines shown in Table 8-2.

4, Operation:
After initialization READTELETYPE2 is used to read one line of commands, MASTERPARSER
increments CDTADR and the count of CDT entries and resets PARAMPSN, GETNEXTPARAM is
used to test command type for one of the following: CR and ALPH, If it is neither, the error
message 'C1:ILGL SYNTAX" is typed and branch is made to MASTERPARSER. If the command type
is ALPH but the command is not one of those shown in Table 8-2, the message 'C1:UNKN CMND'
is typed and branch is made to MASTERPARSER,

8.4.2 PARSE:BUILD

1. Purpose:
to store FID as first entry in CDT and if present to add first sequence number and increment to CDT,

2. Entry:
B PARSE:BUILD
This routine is one of the ones invoked via the CBRCHTBL of MASTERPARSER after a command has
been identified,

3. Exit:
The return destination, MASTEREXECUTIVE, is given in calling sequence to NXTPRM, and will be
used upon recognition of a carriage return in the input command buffer, Error exit is to
MASTERPARSER via ILGLSSEQ2 if increment in CDT is zero or if a sequence number range
is found,

4, Operation:
This subroutine uses the following:
NEWCDTENTRY to build new CDT entry,
GETFILEID to get file ID,
ADDCDTPARAM to put alpha text in CDT,
GETNEXTPARAM to get next parameter, and
TYPEPERR to type error message.

8.4.3 PARSE:COMPRESS

PARSE:WRITE
1. Purpose:
to add an entry to the CDT for
COMPRESS| .
WRITE fid [, LIST),
2, Eniry:

B PARSE:COMPRESS

B PARSE:WRITE

This routine is one of the ones invoked via CBRCHTBL of MASTERPARSER after a command has
been identified,

8-4

8.4.4

8.4.5

Exit:
Normal return destination (MASTEREXECUTIVE) is given in calling sequence to NXTPARAM
and will be used upon recognition of a carriage return in the input command buffer,

Error exit is to MASTERPARSER via TYPECERR after printing '-Pn:ILGL SYNTAX"' if

neither carriage return, comma nor alpha string found after file identification.

4. Operation:
A new CDT entry is built using NEWCDTENTRY. The file identification syntax is checked
and PARAMBUF and PARAMBUFSZ set using GETFILEID, ADDCDTPARAM is used to add
FID to the CDT. Using GETNEXTPARAM a further scan is performed for carriage return or
" LIST".

PARSE:COPY

1. Purpose:
to add an entry to the CDT for COPY fid] to fid, Lol i])

2, Entry:
B PARSE:COPY
This routine is one of the ones invoked via the CBRCHTBL of MASTERPARSER after a command
has been identified.

3. Exit:
Normal return destination (MASTEREXECUTIVE) is given in calling sequence to NXTPRM and
will be used upon recognition of a carriage return in the input command buffer,
Alternate normal return is to GETSEQINCR if [, n[, i]] form of command is used.
Error exit is to MASTERPARSER after printing '-C1:ILGL SYNTAX" if keyword "ON" or
"OVER" not used.

4, Operation:
This subroutine uses:
NEWCDTENTRY to build new CDT entry;
GETFILEID;
ADDCDTPARAM to put file ID in CDT and to put
"ON" or "OVER" in CDT; and TYPECERR
to type '-C1:ILGL SYNTAX" if found.

PARSE:MERGE

1. Purpose:
to add a new entry in the CDT for MERGE fid, [, n [-n2]] INTO fid,, nq Frgdlile

2. Entry: ’ '
B PARSE:MERGE
This routine is one of the ones invoked via the CBRCHTBL of MASTERPARSER after a command
has been identified.

3. Exit: .)

Normal return is 8 MASTERPARSER
Error exits are:
TYPEPERR after printing one of:
'-Pn:ILGL SYNTAX!,
'“Pn:NOT SEQ#",
or '-Pn:ILGL SYNTAX!',
Alternate exit is B GET$INCREMENT to check for increment,

8-5

4, Operation:

A scan is made to detect invalid command format.

It uses: NEWCDTENTRY to set up new CDT entry;
GETFILEID;
ADDCDTPARAM to add to the CDT;
GETNEXTPARAM to determine whether a record range
has been specified and to convert ny and n, if given and also to scan for
"INTO" and destination sequence number(s%;
ADJINT to compute sequence number *1000;

and REPSEQ to duplicate value in PARAMBUF and store in PARAMBUF+1,

8.4.6 PARSE:DELETE
PARSE:LIST

1. Purpose:
to add an entry to the CDT for DELETE fid or LIST fid.

2. Entry:
B PARSE:DELETE
B PARSE:LIST
This routine is one of the ones invoked via the CBRCHTBL of MASTERPARSER after a command
has been identified.

3. Exit:
Normal return is to MASTEREXECUTIVE upon finding a carriage return,
Error return is to MASTERPARSER via TYPEPERR on finding any character other than carriage
return: it prints '=Pn:ILGL SYNTAX!',

4, Operation:
This subroutine uses:
NEWCDTENTRY to build new CDT entry;
GETFILEID;
ADDCDTPARAM to add entry to CDT;
and GETNEXTPARAM to scan for carriage return,

8.4.7 PARSE:END

1. Purpose:

to add an entry to the CDT for END,
2, Entry:

B PARSE:END
3. Exit:

Normal return is to MASTEREXECUTIVE on finding a carriage return,
Error return is to MASTERPARSER via TYPEPERR on finding a character other than
carriage return: it prints '=C1:ILGL SYNTAX',

4. Operation:
This subroutine uses: ,
NEWCDTENTRY to build a new CDT entry and GETNEXTPARAM fto scan for carriage return,

8.4.8 MASTEREXECUTIVE

1. Purpose:
This is the master routine to execute the commands in the CDT. It resets CDTADR to point to
start of CDT,

8-6

Entry:
B MASTEREXECUTIVE

This routine's address is given to NXTPRM* as the branch location following identification of
a carriage return in the input command buffer,

Exit:
B MASTERPARSER after finding erroneous data in CDT or after properly executing a command.

Operation:
Commands are extracted from the CDT and executed one after another using the appropriate
F: routine until no commands remain,

8.4.9 F:BUILD

1.

2,

Purpose:
to execute the command BUILD fid [,n[,i]].

Entry:
F:LNK is the linkage register. This subroutine is entered via BAL, F:LNK F:BUILD from
MASTEREXECUTIVE.

Exit:
B *F:LNK

Operation: i

File identification fid is obtained from the CDT, and the file is opened for OUTPUT via
OPENNEW, If the file already existed, the message "~-FILE EXISTS; CAN'T BUILD" is

printed via TYPEMSG and exit is taken. Starting sequence number is obtained from CDT if
present; otherwise DFLTSEQ is used as default. Similarly the increment from the CDT is used,
or if not found 1000 (assumed decimal point 1.000) is used. The EBCDIC mode for M:EI is
specified via M:DEVICE. M:EI is read to obtain source records which are to be written into
file fid, If the source records are compressed, they are de~compressed by routine
RECONSTRUCTS$LINE, their sizes are determined by SETEOD and the records written as part of
file fid via WRITERANDOM.,

If the source records are not compressed, they are written as follows: the output buffer is first
blank-filled using BLANKBUF; characters 1-72 from the source re<ord are placed info the output
buffer; the record length is determined by SETEOD and the records written as part of file fid

via WRITERANDOM,

Either a IEOD record for card reader input or an end-of-file for file input results in closing of
the file, and exit is taken,

8.4,10 F:COMPRESS
F:WRITE

1.

3.

Purpose:
to execute the file command

COMPRESS| ..
[WR!TE } fid[, LIST].

Entry:
LNK is the linkage register. The subroutine is entered via BAL,LNK [ESVSR){\-‘{\;RESS]

from MASTEREXECUTIVE.

Exit:
Normal exit is B *F:LNK

*a procedure which generates a calling sequence to GETNEXTPARAM

8.4.11

Error exits are to:
CPY40 if file fid is not present;
LIST80 if file fid is not keyed.

4. Operation:
The file identification fid is obtained from the CDT, and the file is opened via OPENT, If it is
not found or not keyed, the appropriate error exit is taken, If the LIST parameter is found in
the CDT, an M:DEVICE procedure call is issued to skip to top of form for M:LO, A maximum
of four bytes of fid are extracted from the CDT and used to specify sequencing of M:EO via
M:DEVICE. CARDCOUNT is initialized to zero. An M:DEVICE procedure call is issued
specifying binary mode for compressed or EBCDIC mode for non-compressed output. The records
of file fid are read via READSEQUEN. After each has been read: CARDCOUNT is incremented;
SETEOD is used to mark the last non-blank character of the record; if LIST was specified, the
record is printed; RECSIZE is incremented; for COMPRESS the record is compressed in CARDIMG
via COMPRESSLINE; for WRITE it is written via WRITESEO., When end-of-file is encountered
for a non-compressed file, CLOSE is used to close file fid and CLOSE$EO to close the output file,
For a compressed file, RECSIZE is reset to 1,COMPRESSLINE is used to compress the final record
and the first two bytes of COBUF are initialized to X'38FF' before closing the files,

F:COPY

1. Purpose:
to execute the copy command COPY fid, OVER fidy [,n [,i])

2, Entry:
F:LNK is the linkage register. This subroutine is entered via BAL, F:LNK F:COPY
from MASTEREXECUTIVE.

3. Exit:
B *F:LNK

4, Operation:

This subroutine examines fidy and fid, from CDT to determine whether they are equal. If they are
not it tests for ON or OVER:

If ON, it uses OPEN2 to change file mode to OUT;

if fid, existed, attempt is to COPY A on A (error), in which case it prints

'=P2:FILE EXISTS', closes file via CLOSE2 and exits;

if fidy did not exist it initializes for copy and proceeds with normal copy.

If OVER, it uses OPENI to open file with fid;; it uses OPEN2 to open copy file with
f:d i if fid,y already existed, it uses CLOSE3 to close it with REL and reopens it via
N3 as an output file, .

Normal copy proceeds by typing '..COPYING' via TYPEMSG and copying either with old
sequence numbers or sequence number range specified in command. If no sequence numbers
were specified and: fidy is not a keyed file or if a record is written with a sequence number
which already exists, the following message is printed via TYPEMSG: '-P1:FILE NOT SEQD
& P3 NULL', both the files are closed, the copy file is deleted via DELETEFILE and exit is
taken. WRITE2 is the routine used to write the copy file,

For fidy = fidy:

If password is found, it prints 'PASSWORD ERROR" via TYPEMSG and exits. It opens copy
file (F:EO) as output and input file (F:EI) as input and proceeds with normal copy.

Additional error which may occur is:
fidy cannot be opened in which case it prints '-P1:NO SUCH FILE' via TYPEMSG and exits.

8-8

ENTRY -
F:COPY

Initialize

COPYFL

Set P1 to point to
FID, in CDT; 0—=X4
t6 show file unkeyed

l OPENI1

Open F:El as
input with this
FID

}

Set P1 fo

point to
FID2

y OPEN2

Open copy file
as INOUT with
FID,

ile now exis
?

Pg. 1

CLOSE3

(O
CPY3 -

r‘TYPMSG
',.COPYING ' :
CPY40 TYPEMSG Pg. 2
'P1: NO SUCH ‘
FILE' :. RETURN
Set X4 =1
to show file

keyed

¢

Close with
Release

bPEN

—

Open for
Output

_

Figure 8-1A. Flow Diagram of F:COPY

8-9

Pg. 2

CPY10

Is ’ Initialize P1 to
"n" present = use n as seq, #,
? y} T1=default incr,

y

no
CPY5 READSEQUEN

Tl =i
Read source from
record yes| CDT
no
« T
PY20 } CLOSE PY15 READSEQUEN
Close Read
source file Source
Record
CLOSE?
Close copy ’
file
yes
TYPEMSG " WRITE2
' . DCOOI:I; Write record
Write record in copy file

in copy file

A
' (" RETRN)

Rec. already
exist?

Increment
Seq.*

!

Figure 8-1A. Flow Diagram of F:COPY (Cont.)

8-10

CPY32

Position to check
for password in
i CDT for FID,
L

Is

password

Pg. 3

resent 3

yes

Position to check
for password in

CDT for FID,

password

| Open the file
(FIDy = FID,) for
, output

i

| opeN

1

Open the file
for input

CPY30 OPEN2
Open FlD2
as INOUT
Yo TYPEMSG CPY35 TYPEMSG
' SORRY...NO '-P2:FILE
PASSWORD s
ALLOWED HERE'
: YCLOSE2
RETURN Open file for CLOSE
output COPY
l FILE

Y
H \ Does
' file exist? RETURN
CPY50 TYPEMSG
=~P1: FILE NOT CPY36 CLOSE3
N 'D' &P | Close copy
oL ‘ file with
I REL
-yCLQSE
Close input
??TelnPU Set X4 =1 to
show file is A
keyed
¢ CLOSE2 ' Pg.]
Close copy
file o
Pg. 1
y DELETEFILE
Delete copy l
file '
RETURN

Figure 8-1A. Flow Diagram of F:COPY (Cont.)

8-11

8.4.12 F:DELETE

8.4.13

8.4,14

8.4.15

1. Purpose:
to delete a file,
2, Entry:
F:LNK is the linkage register, This subroutine is entered via BAL, F:LNK F:DELETE.
3. Exit:
B *F:LNK which results in return to MASTEREXECUTIVE,
4. Operation:
This subroutine uses DELETEFILE to delete the file, and it uses TYPEMSG to type
appropriate message:
!, .DELETED'
or '-NO SUCH FILE',
F:END
1. Purpose:
to return to the monitor,
2, Entry:
F:LNK is the linkage register. This subroutine is entered via BAL, F:LNK F:END
3. Exit:
It returns to the monitor via M:EXIT,
F:LIST
1. Purpose:
to execute the list command LIST fid.
2, Entry:
F:LNK is the linkage register. The subroutine is entered via BAL, LNK F:LIST fro
MASTEREXECUTIVE. '
3. Exit:
Normal exit: B MASTERPARSER
Error exits are:
B CPYA4O0 if input file does not exist;
B MASTERPARSER if file is not keyed.
4, Operation:
File identification fid is obtained from the CDT and the file is opened for input via OPENT, If
the file does not exist, exit is to CPY40. If it is not keyed, the message
'-FILE NOT KEYED; MUST COPY" is printed and exit is to MASTERPARSER,
The location CARDCOUNT is used to identify record number opposite the record contents.
Records of the file are read and printed using READSEQUEN and TYPECARD., SETEOD is
used to determine individual record lengths,
F:MERGE
1. Purpose:
to execute the merge command
MERGE fidy [m [—nz]]INTO fidy, ng [-n4][,i].
2, Entry:

F:LNK is the linkage register. This subroutine is entered via
BAL, F:LNK F:MERGE
from MASTEREXECUTIVE.

8-12

Pg. 1
F:MERGE MRG70 CLOSE
OPENI ls CLOSE
5 Rec, Read merge
pen merge EOF? yes?t || source
source in input
mode

eq. no, of

Does Rec. >n

file exist?

(MVES8)

no CLOSE
CLOSE CLOSE merge

MRG80

source to allow
CLOSE temp. use of F:El
Merge routines
Source l OPEN
OPEN
v Y _TYPEMSG File FID2
Default SOURCE
Range = Tst NOT
Get ny
it exist? !
\ no from CDT
RETURN
MRG82 CLOSE Gasy
Use EOF
- CLOSE D)
F]RSTFROM—n] File F102 as ny
! LASTFR OM=n2 DELETE
|
— | TYPEMSG || Delete records
MRG10 y READNXTRANDOM | |'MERGE n3 through n, c
Read Rec DESTINATION
e . e NOT KEYED'
1

Figure 8-2, Flow Diagram of F:MERGE

8-13

MRG 15 OPENI1

Open file
fidy as
source

NOREADSEQUEN

Read seq. no.
at which to
stop

MRG 13 y CLOSE

OPEN2

Y

Open file
fid, as
merge output

Close file fid

(as F:EI) 2

no

MRG14

Usei=1as
default in=
crement

yes

obtain i
from CDT

!

DFLTINCR

TYPEMSG

¥
'.. Merge
Started'

Read Rec.
FIRSTFROM

MRG17{ READNXTRANDOM

MRG55

Set destination
seq. no. = last
seq. no. used

Pg. 2

MRG56) CLOSE < >

"° WRITE2

Write record
into file fid2

Pg. 3

Close
Source File

CLOSE2

Close
Merge File

4

(MVE40)

8-14

Flow Diagram of F:MERGE (Cont.)

Increment seq. no.
of next record
to write.

Is
new seq. no.
> gne at which

MRG65

LASTFROM=
Seq. no.
read

CLOSE

Read next
source record

Close
Source
File

Pg. 2

YCLOSE2

Close
Merge
File

\
(MVES6)

Pg. 3

Figure 8-2, Flow Diagram of FsMERGE (Cont,)

8-15

3. Exit:
Normal: B MVE4Q if destination range completed;
Error exit to MVE58 if source range not found;
Error exit to MVE5S6 if cutoff occurs;
Error (all other errors): B *F:LNK

4, Operation:
This subroutine uses OPENT to open source file in input mode;
if not found it types '-P1:NO SUCH FILE";
if not keyed it types '-MERGE SOURCE NOT KEYED',
It uses either the range as specified (ny -nj) or defaults to entire file.
It attempts to read source file via READNXTRAND OM:
if EOF encountered, it closes source file via CLOSE and exits
to MVE56 (see R*MOVESDELETE and R:MOVE$SKEEP).
It attempts to open fidy:
if non-existent it picks up n, from CDT and proceeds;
if not keyed it closes the file, types
'MERGE DESTINATION NOT KEYED' via TYPEMSG and
exits to MASTEREXECUTIVE.

Using ng [—n4]from CDT it uses DELETE to delete records of fid in that range.

It re—opens fidy as input and fidy as INOUT and types
'...MERGE STARTED via TYPEMSG',

It reads records from fidj using READNXTRANDOM, writes them into fidy
using WRITEZ2 until either EOF reached or range completed;
it closes files and branches to MVE40Q (see RsMOVE$DELETE and
R:MOVES$ KEEP)., -

8.4.16 ADDCDTPARAM

1. Purpose:
to add a new parameter to the Command Description Table,

2. Entry: .
LNK is linkage register used, This subroutine is entered via BAL, LNK ADDCDTPARAM
from several PARSE: routines when it is desired to add to the CDT.
Upon entry P1, PARAMPSN, and PRMBUFSZ are as shown below.

3. Exit:
B O,LNK with expanded CDT entry,

4, Operation:
Words are added to the CDT from PARAMBUF according fo the format shown in Table 8-2 using
the following input parameters:
P1 = type of parameter,
PARAMPSN = next available slot in CDT,
PRMBUFSZ = number of words to be added.

8.4.17 ADJINT

1. Purpose:
to form a sequence number as an integer *1000.
2, Eniry:

LNK is the linkage register. This subroutine is entered via BAL, LNK ADJINT
from PARSE:BUILD or PARSE:MERGE,

3. Exit:
B *LNK

8-16

8.4.18

8.4.19

8.4.20

8.4.21

4,

Operation:

This routine multiplies the sequence number in PARAMBUF by 1000 and stores it back

in PARAMBUF.

BINTODEC

1.

2.

Purpose:
to convert a binary number to decimal.,

Entry:

LNK is the linkage register,

Upon entry:

P1 contains binary number, and

P2 contains byte address where decimal string is fo be stored (right-most byte),
This subroutine is used by MOVESEQ and TYPESEQ,

Exit:

Return is to calling routine via B O, LNK with decimal properly stored.

Operation:

BINTODEC divides binary number by 10, adds zone bits to remainder (i.e., X'FO",

stores it, moves pointer one to left in output string and repeats until seven digits have
been converted,

BLANKBUF

1.

Purpose:

to store blanks in CARDIMG,

Entry:

LNK is the linkage register.

This subroutine is used by READRANDOM and READSEQUEN, 1t is called
using BAL, LNK BLANKBUF.

Exit:
Upon exit blanks are stored CARDIMG. Return is made to calling routine via B O, LNK,

CLOSE

1.

2,

Purpose:
to close input file with SAVE,

Entry:
LNK is the linkage register.
This subroutine is used by F: routines and TESTEDITACTIVE. It is called using BAL, LNK CLOSE,

Exit:
Return is made to calling routine via B O, LNK,

CLOSE2

1.

2,

Purpose:
to close output (COPY) file with SAVE,

Entry:
LNK is the linkage register.
This subroutine is used by F: routines. It is called using BAL, LNK CLOSE2,

Exit:
Return is made to calling routine via B O, LNK,

8-17

8.4,22 COMPRESSLINE

1. Purpose:
to compress a record.

2. Entry:
LNK is linkage register. This routine is entered via BAL, LNK COMPRESSLINE from
F:COMPRESS. Input consists of a record image in CARDIMG.

3. Exit:
B O,LNK

4, Operation:
Registers are initialized as follows:
T1 =0, blank count; »
T2 = count of total bits used in CO record from COBUSED;
X2 = count of bits left in current word in COBUF from COBLEFT;
X3 = record size in bytes from RECSIZE,

If record size is zero (i.e., and of output file has been reached), subroutine CMPL60 is used
to append the 6-bit end-of-file code (item "3") to the record byte 1 of the record is changed
from X'38' to X'18', the record is written via WRITECO, COBLEFT and COBUSED are reset,

and exit is taken.

If record size is greater than zero, the source record in CARDIMG is translated into compressed
format and stored in COBUF, Characters A-Z, 0-9 and certain special characters found in
SCCTAB have 6~bit equivalent codes (compressed items). All other characters are represented
by their 8-bit source codes preceded by compressed item "4", If the character can be
represented in 6 bits, subroutine CMPL&0 is passed a bit count of 6 in P2 and is used to edit the
6-bit code "4" in P1 (use 8-bit character that follows) into COBUF and then the 8-bit code
itself in P1 into COBUF. This process continues until the end of the record is reached,

If the last output record contains fewer than 80 bytes, it is padded to 80. The end-of-line
item "2" is added, COBLEFT and COBUSED are reset and exit is taken,

8.4.23 CMPLS0

1. Purpose:
to control the editing of one 6~ or 8 - bit compressed "item" into COBUF,

2, Entry:
LNK is the linkage register. This subroutine is entered via BAL, LNK CMPL60 from
COMPRE SLINE. Upon entry:
P1 = compressed code (item) for one character;
P2 = length of code in P1 (6 or 8).

3. Exit:
B O,LNK

4, Operation:
If the blank count in T1 is zero, subroutine CMPL70 is used to enter the item into COBUF and
exit is taken, If it is non-zero further tests are performed. . If it is 1, item "7" is edited info
COBUF via CMPL70, If the blank count + 1 is equal to or less then 64, item "5" is edited
into COBUF via CMPL70 followed by the count n also edited into COBUF via CMPL70.
Similarly, if the blank count + 1 exceeds 64, item "6" is edited into COBUF followed by
count n edited in line manner. T1 is reset to zero and exit is taken.

8-18

8.4.24 CMPL70

8.4.25

1. Purpose: :
to enter a compressed "item" into COBUF and if buffer is filled to write record via WRITECO,
2, Entry:
LNK is the linkage register. This subroutine is entered via BAL, LNK CMPL70
from CMPL60, Upon entry:
P1 contains compressed item;
P2 contains bit count of the item;
registers T2 and X2 are as set in COMPRESSLINE,
3. Exit:
B O,LNK
4, Operation:
The bit count in P2 is added to T2, If the sum exceeds or equals the total allowed per
output record, WRITECO is used to write a record of compressed output before current
byte is edited into the buffer, COBUF, Editing, i.e., adding, the item into the buffer
COBUF takes place as follows: Item length in bits is subtracted from the count of bits
remaining to be filled in the current word in COBUF leaving a count in X2, If there
is enough room remaining to allow the item to be added, it is shifted left the number of
places now specified in X2, The item is then added into COBUF by indirectly addressing
COWORD, the address of the destination word. Exit is then taken, If there is
insufficient room remaining in the current word in COBUF, the item is split between
registers X4 (R) and X1 (Ru 1). This is done by shifting it right leaving in X4 only the
number of bits which can be contained in the current word in COBUF with the remaining
bits in X1, The bits in X4 are added into the current word in COBUF, the address in
COWORD is incremented, and the bits in X1 are added into the next word in COBUF.
Register X2 is incremented by 32 making it equal to the number of unfilled bits in the
current word in COBUF, Exit is taken,
DELETE
1. Purpose:
to delete records in a specified range.
2. Entry:
LNK is the linkage register. This subroutine is entered via BAL,LNK DELETE from F:MERGE,
Upon entry
P1 = sequence number of first record to delete and
P2 = sequence number of last record to delete.
3. Exit:
Normal exit is B O, LNK with CC1 = 0 to indicate that last sequence number was found.
Error exit is B O, LNK with CC1 =1 to indicate that last sequence number was passed.
Upon exit in either cgse:
R1 = sequence number of last record read,
R2 = number of records deleted.
4, Operation:

1. An attempt is made to read the record specified in P1 using READNXTRANDOM,

2. If end-of-file is encountered, the message '-=EOF HIT'is printed via TYPEMSG and emor
exit is taken, If the record obtained has a higher sequence number than that in P2,
the error exit is taken, Otherwise, the record is deleted using DELETERECORD, The next
record in the file is read using READSEQUEN. Testing at step . is resumed until either
end-of-file is reached or the sequence number specified in P2 is encountered (normal case)
or passed,

8-19

COMPRESSLINE

Initialize
Registers
T1, T2, X2

Record
Size = 0?

es
CMPL60

Append cbmpressed
item "3" (EOF)
to COBUF

!

Change byte 1
of record to
X"18'

| WRITECO

Write
Output
Record

CMPL5 |

X2 —COBLEFT
T2 —COBUSED

(EXIT)

CMPL10

CMPL11

X3 =0 to point
to start of
COBUF

Get next byte
from

CARDIMG

Mask off
Bits 0 and 1

—

Get corresponding |
compressed code
from COTAB

Pg. 1

coo'E=o>—

Must use
the 8 source

bits

Edit the 6 bits
into COBUF

yes
L@
CMPL12 ¢ CMPL60

CMPLI3 F_-@

Increment

RECSIZE ‘

nd of
Record
?

Pg. 2

Figure 8-3. Flow Diagram of COMPRESSLINE

8-20

No.
ytes from
no CARDIMG <807

yes

PAD to 80

o

CMPL14 y CMPL60

Append compressed
item "2" (EOL)
to COBUF

Pg. 1

one of the
codes in SCCTAB?

Is
it blank?

yes

@'ﬁ__—, m
CMPL17. y CMPL60

CMPL20

Code=
INDEX (in P2)
yes | Plus 43

CMPL25

Increment blank
count inT1

Append compressed
item "4" to

COBUF

| CMPL60

Append 8-bit
source item fo

COBUF

@

Pg. 1

Pg. 2

Figure 8-3. Flow Diagram of COMPRESSLINE (Cont.)

.21

8.4.26

8.4.27

8.4.28

DELETEFILE

1. Purpose:
to delete a file and set CC1.

2, Entry:
LNK is the linkage register. This subroutine is used by F:COPY and F:DELETE routines. Upon
entry P1=address of file ID in Command Description Table. It is entered via BAL, LNK DELETEFILE,

3. Exite
CC1 upon exit contains: 0 if file was deleted,
1 if file does not exist.,
Return is B O, LNK to calling routine.

4. Operation:
This subroutine uses OPENINIT to open file.
If file does not exist it sets CC1 =1,
If abnormal 1/O for another reason, it branches to BADIOT which prints 'BAD 1/0O; ABN CODE XX',

BADIO1

1. Purpose:
to print abnormal 1/O message.

2, Entry:
At BADIO, error code is loaded into X1 from D1,
At BADIOI1, error code is assumed to be in X1.
Entry is with branch, because there is no return fo calling routine.
BADIOI is called by various open, read and write routines.

3. Exit:
It returns to the Monitor via M:ERR,

4. Operation:
It sets up error code in message line and prints message.

GETFILEID
1. Purpose:
to check syntax of FID and if good to set PARAMBUF and PRMBUFSZ.
2, Entry: .
LNK is the linkage register. This subroutine is entered via BAL,LNK GETFILEID from
PARSE:BUILD, :COPY, :MERGE, and :EDIT to obtain the file ID so it can be placed in
the Command Description Table,
The file ID is assumed to be in the Teletype input buffer,
3. Exit: .
File ID is now in PARAMBUF as follows:
PARAMBUF

TEXTC filename
TEXTC acct or 0
TEXTC password or 0
and it has been checked for proper format,

Return is to calling routine via B O, LNK,
Error returns are via GETNEXTNAME:
messages include '-P1:BAD FID'
'-C1:CMND ILGL HERE’,
'~P1:ILGL SYNTAX",

4, Operation:
This routine rejects a file name which is longer than 31 characters, It uses GETNEXTNAME first o
build file name in PARAMBUF. It then pushes the name from PARAMBUF into a stack, It repeats
this process for account and for password, if present. It then pulls the entries from the stack and
stores them in PARAMBUF and stores in PRMBUFSZ the length in words of the entries in PARAMBUF.

8.4.29 GETNEXTNAME

1. Purpose:
to get the next name from the Teletype input buffer (TTYIMG) and place it in PARAMBUF,

2, Entry:
LNK is the linkage register. This subroutine is entered by invoking the NXTNAM command
procedure resulting in the calling sequence:

BAL, LNK GETNEXTNAME
GEN, 8, 24 # of branches, addr. of error msg.
GEN, 8, 24 type 1, branch addr. 1

GEN, 8, 24 typen : branch addr. n

3. Exit: '
Upon exit a name (file, acct or password) resides in PARAMBUF in TEXTC format.

4, Operation: '
Input characters from TTYIMG are scanned and tested to determine whether they are part of
a name. They are placed in PARAMBUF in TEXTC format. When a terminator is found (e.g.
comma or right parenthesis) the scan is stopped, and the name is padded to the right with
three blanks, If an error is found, the error message given in the calling sequence is printed
and return is made to MASTERPARSER via TYPECERR,

8.4.30 GETNEXTPARAM

1. Purpose:
This routine scans the Teletype input buffer to isolate recognizable character strings which
comprise EDIT commands and to place them in PARAMBUF,

2, Entry:
This routine is called by various PARSE: routines. LNK is the linkage register.
The routine is invoked by the NXTPRM procedure which sets up a calling sequence as follows:

BAL, LNK GETNEXTPARAM
GEN, 8,24 # of branches, addr. of error msg.
GEN, 8,24 completion type, branch addr.1

GEN:S, 24 compleﬁ;n type, branch addr. n

3. Exit:
Upon exit a parameter is in PARAMBUF in TEXTC format. Return is to the branch address
in bits 8-31 of the word in the calling sequence of which a match was found on bits 0-7,
Error return is to MASTERPARSER via TYPEPERR,

4, Operation:
A scan is made character by character with tests being performed to detect invalid command
format. Examples: slash (/) must not be the last character of a command; a sequence number
must not exceed three digits; the second sequence number in a range must not be greater than
the first. Error messages include:

'-Pn:ILGL SEQ*"
-Pn:SEQ2<SEQ1"

in addition to that given in the calling sequence.

8-23

ENTRY-)
GETNEXTNAM

\

Save
R3 - R6

A

Pick up current
character
position

Get next non-
blank character

GN50

Get type of
completion so we

yes
GN35

Put 3 trailing
blanks on name;
store true count

for TEXTC

|

know where tobrand

Set index to first char.

in buffer where name
will be built

Store

name

Get # of
words for
text

\ 4

Set type to name
for branch target

!

Set to Rescan
last character

Pg. 2

Figure 8-4.

8-24

Flow Diagram of GETNEXTNAME

GETNEXTS$FINISH

Store wordsize
of entry

Get # of branches

to check from BAL

Get branch
address; restore

R3 - R6

1
(Go to routine)

GETNEXTS$ERROR

Get address of
error msg, from

BAL

Pg. 2

Decrement
By 1

Store error msg.

in dummy call

1

(éMY$ TYPECERR >

Figure 8-4,

8-25

Flow Diagram of GETNEXTNAME (Cont.)

GP30 |

Get current

character Get next

position character

) GP45 TYPEPERR
Koo o
STRG'
GP20

Get type of com~
pletion to know
where to branch

y
(| MASTERPARSER)

GP35
Y
Gemexrsrnsy) charace
ETNEXTS$FINISH character
digit or", "
GP30A
Store
Y | character
Set index to first yes
character in
buffer to build
parameter ne
Pg. 2

Figure 8-5. Flow Diagram of GETNEXTPARAM

8-26

Set
Completion to
String

GP40

Store 3 trailing
blanks

GP43 TYPEPERR

NULL
yes STRING!

no
A
4

(MASTERPARSER)
Store count for

TEXTC; get word
count; set to
Rescan

Yy
(GE TNEXT$FINIS@

Pg. 2

©

<

GPIO |

Store
Character

Y

Get
next
character

/_/'Is it
a letter?
yes

Set
completion type
to alpha

Figure 8-5. Flow Diagram of GETNEXTPARAM (Cont.)

8-27

Pg. 3

- GP50
0¥X1 to show lst

seq.
X2 to show

ODDI{chGcbmulafor

- Set to check for
Add digit to 3 digits maximum

previous sum
o ()

Get next
character

Get next
character

Add the

Add to previous

necessary sum

trailing zeroes

H Is it
> 3 digits
;\ ' »lyes
GP53A] TYPEPERR
'ILGL
SEQ#"

MASTERPARSER

Figure 8-5. Flow Diagram of GETNEXTPARAM (Cont.)

8-28

Adjust for
trailing
zeroes

Set to check
3 digits

Multiply by 1000
to convert to
seq. #

Save value
in

PARAMBUF

Y

1-X1 to show 2nd
seq. *; Reset X2,
D1 as above

Get next
character

Set finish

type to
INTG

Pg. 4

Set finish

type to
seq.

A

Set PARAMBUF
size to Rescan
last character

¥
Store value
in

PARAMBUF

A

(GETNEXTSFINISH)

Figure 8-5.

8-29

Flow Diagram of GETNEXTPARAM (Cont.)

Pg. 5

Multiply by
1000 to convert
to Seq. #format

Store value in
PARAMBUF
+1

1
Set finish type to
SEQ2;

Set PARAMBUFSZ
to 2

Set to Rescan
last character

yer(GETNEXTSFINISH)

'SEQ2< SEQ1'

Y

(MASTERPARSER >

Figure 8-5. Flow Diagram of GETNEXTPARAM (Cont.)

8.4.31

MOVESEQ

]'

Purpose:
to format sequence number in EBCDIC as 'XXXX, XXX' having four characters from calling
sequence appended.

Entry:
LNK is the linkage register. This subroutine is entered via BAL, LNK MOVESEQ from
of the following routines:

R:MOVE$DELETE,
R:MOVES$KEEP,
READSEQUEN,

Upon entry:
P1 = sequence number to be converted to EBCDIC;
P2 = byte address at which to put the string;
word following the BAL contains four characters to be appended to the sequence number.

Exit:
Upon exit R1 contains the number of characters in the resultant string.,
Exit is B 1,LNK,

Operation:
It uses BINTODEC to convert sequence number to EBCDIC, It places string in TEMPBLCK with
leading zeroes suppressed and the requested characters appended at the right.

8-31

8.4.32 NEWCDTENTRY

1. Purpose:
to set up room in the CDT for a new entry,

2, Entry:
LNriz is the linkoge register. This subroutine is entered from several
PARSE: routines,
Upon entry: P1 contains the number of the command type to be added; word following
the BAL contains the number of parameters,

3. Exit:

CDT entry is initialized as follows:

word 0: byte O contains length of entry (= 0 initially)
byte 1 contains command type (or number)
e.g. 0 for carriage return,

1 for file name, etc.

byte 2 contains number of this entry in the CDT
byte 3 contains number of parameters

words [1— *# of parameters/2] : zeroes

word [# of parameters/2+1] : X'00000100"

8.4.33 OPEN

1. Purpose:
to open an update file.

2. Entry:
LNrKyis the linkage register. For F:EDIT and F:MERGE, entry is via BAL, LNK OPEN to
open an update file, For F:COPY and F:MERGE entry is via BAL, LNK OPENI to
open a copy input file,
Upon eniry P1 = address of file ID in CDT,

3. Exit:
CC1 =1 if file does not exist
= 0 otherwise
CC2 =1 if file is not keyed
= 0 otherwise

Error exit is fo BADIO1 if requested file does not exist.
Normal return is fo calling routine via B O, LNK,

4, Operation:
This subroutine sets mode to INOUT if entered via OPEN or to IN if entered via OPENT,
It uses OPENINIT to try to open file.
If it cannot open file it sets CC1 and returns.
If file is not keyed it sets CC2 and exits,
Otherwise it sets CC1 and CC2 = 0,

8.4.34 OPENINIT

1. Purpose:
to initialize an OPEN FPT.

2. Eniry:
LNK is the linkage register. This subroutine is used by DELETEFILE, OPEN and OPEN3,
It is entered via BAL, LNK OPENINIT,
Upon entry: P1 = address of file ID in CDT;
T1 = FPT entry at which file name is to go;
T2 = FPT entry at which account number is to go;
T3 = FPT entry at which password is to go.

8-32

3. Exit:
Return is to calling routine via B O, LNK,

4, Operation:
It moves file name, account and password from CDT to FPT locations and sets control words
properly.

8.4.35 OPENNEW

1. Purpose:
to open a file for output.

2. Entry:
LNK is the linkage register. This subroutine is used by F:BUILD,
It is entered via BAL,LNK OPENNEW,
Upon entry P1 = address of file ID in CDT.

3. Exit:
CCl =1 iffile not exist and the open in OUT mode was successful.
CC1 = 0 if file already existed and could not be opened as an output file.
Normal return is to calling routine via B O, LNK,
Error return is branch to BADIO1 if it could not open file even through it was present.

4, Operation:
It sets mode to INOUT,
It uses OPENINIT to set FPT and tries to open file:
if file exists, it sets CC1 = 0 and returns;
if file exists but could not be opened it exits to BADIOI;
if file does not exist, it changes mode to OUT and issues open.

8.4.36 OPEN2, OPEN3

1. Purpose:
to open an output file for copying.

2, Entry:
LNK is the linkage register, OPEN 2 is called by F:COPY and F:MERGE and is entered
via BAL,LNK OPEN2.OPENS3 is called by F:COPY and is entered via BAL, LNK OPENS3,

3. Exit:
CC1 = 1 if file not successfully opened.
CC1 = 0 otherwise.
Error exit is to BADIO]1,
Normal return is to calling routine via B O, LNK,

4, Operation:
If entered via OPEN2 it sets mode to INOUT.
If via OPEN3 it sets it to OUT.,
It calls OPENINIT and attempts to open file:
if successful it sets CC1=0;
if unsuccessful, it tests to see if it were because file did not exist:
if so it issues open for out file;
if for any other reason, it goes to BADIOL1.

8-33

8.4.37 READNXTRANDOM

8.4,38

8.4.39

1. Purpose:
to read random record or next highest one,
2, Entry:
LNK is the linkage register. This subroutine is entered via BAL, LNK READNXTRANDOM
from the following routines: .
F:MERGE
DELETE
Upon entry P1 = sequence number of record to be read,
3. KExit:
R1 = sequence number of record actually read.
CC1 =0 if record existed. '
CC1 =1 otherwise,
Return is to calling routine via B O, LNK,
4, Operation:
This subroutine uses READRANDOM to issue read.
If read was successful it sets R1 = sequence number,
CC1 =0,
and returns,
Otherwise it sets CC1 = 1 and returns,
READRANDOM
1. Purpose:
to clear buffer and read one random record.
2, Entry:
LNK is the linkage register. This subroutine is entered via BAL, LNK READRANDOM from
READNXTRANDOM,
Upon entry P1 = sequence number of record to be read.
3. Exit:
CC1 = 0 if record exists.
CC1 =1 otherwise.
Return is to calling routine via B O, LNK if read was successful.
Error returns: it branches to BADIO if key existed but read unsuccessful;
it returns with CC1 = 1 otherwise (B O, LNK),
4, Operation:
It uses: BLANKBUF to clear buffer and SETKEY to set up key for the read.
It issues read,
It uses SETLASTKEY to save key from this read.
READSEQUEN
1. Purpose:
to clear buffer and read next sequential record.
2. Entry:

LNK is the linkage register. This subroutine is entered via BAL,LNK READSEQUEN from
the following routines:

F:COPY

F:MERGE

F:LIST

F:COMPRESS
DELETE
READNXTRANDOM

8-34

8.4.40

8.4.41

3. Exit:
R1 = sequence number of record read in (zero if file not keyed).
Normal return is to calling routine via B O, LNK,
Error return is a branch to BADIO if read was unsuccessful for any reason other than EOF,

4, Operation:
This subroutine uses BLANKBUF to clear buffer; it reads record; it uses SETLASTKEY to save key
from the record read.
If EOF hit it gets and prints the key of last record: '~~EOF HIT AFTER YYYY.YYY'. Otherwise
it sets R1 and returns,

READSEQUEN2

1. Purpose:
to read a record sequentially from M:El and, if compressed, to check sequencing and checksum of
the record.

2, Entry:

LNK is the linkage register. This subroutine is used by F:BUILD and RECONSTRUCTSLINE via
BAL, LNK READSEQUENZ2,

3. Exit:
Normal exit is B O, LNK with the following possible condition code settings:

CC1 = 0 if record not compressed, in which case R1 = byte count of record,
CC1 =1 if record is compressed,
CC2 =1 if end-of-file encountered,

CC3 =1 if EOD encountered.

Error exit is via M:ERR to the monitor if error found in compressed sequencing or checksum.

4. Operation:
The record is read into CIBUF, Byte count of record is placed inR1, If end-of-file or EOD
is encountered, exit is taken after setting the appropriate condition codes, If the record is
not compressed, i.e., byte 0 is not X'3F' or X'IF’, exit is taken with CC1 =0, If the record
is compressed and one of the following conditions is met, the error message, 'ERROR IN CI,
CONTROL BYTES = XXXXXXXX' is printed and M:ERR exit is taken to the monitor:

1. sequence number in the record does not equal 1 plus the sequence number in CISEQ;

2. checksum computed by adding together all bytes in the record does not equal checksum
in the record itself.

Otherwise control words are initialized as follows:
CIBTOTAL = usable bit count from the record;
CIBUSED = 32, total bits used from CI record;
CIBLEFT = 32, number of bits left in current word in CIBUF;
CIWORD = address of first (i.e., current) word of test in record.

READTELETYPE2
1. Purpose:

to read and print one input command from the "C" device.
2, Entry:

LNK is the linkage register. This subroutine is enfered via BAL, LNK READTELETYPE2
from MASTERPARSER.

3. Exit:
B O,LNK is normal exit. End-of-date exit is to F:END,

4, Operation:
The next input command is read from the "C" device into TTYIMG. If end-of-data is
reached, exit is to F:END, The command is printed via M:LO. The command is scanned to
count the number of characters read through the last non=blank. This count plus 1 resides
in R1 upon exit from the subroutine, A ‘ character X'15', is appended to the text,

8-35

8.4.42 RECONSTRUCTS$LINE

1.

2,

Purpose:
to reconstruct a symbolic record in CARDIMG using compressed input in CIBUF.

Entry:
LNK is the linkage register, This subroutine is entered via BAL, LNK RECONSTRUCTS$LINE from
F:BUILD. Upon entry the compressed data to be converted is in CIBUF.

Exit:

B O, LNK with condition code setting as follows:
CC1 = 1 if end of compressed file reached;
CC1 = 0 otherwise.

Operation:

Registers are initialized as follows:

X3 =0, current byte in output buffer;

T2= contents of CIBUSED, total bits used from CIBUF;

X2 = contents of CIBLEFT, total bits left in current word in CIBUF.

The output buffer, CARDIMG, is initialized to blanks via BLANKBUF, Contro! bytes and their

corresponding characters if any are obtained from CIBUF and their EBCDIC equivalents

are edited into CARDIMG one by one until either an end of line or end-of-file item is found,

after which exit is taken with condition code appropriately set, Subroutine RECL60 is used to

perform the actual extraction of each character from CIBUF, One character is extracted per
entry to RECL60, Action taken for compressed items is as follows:

Items 0 and 1: go to next item,

2, Item 2 (EOL): save T2 contents in CIBUSED; save X2 contents in CIBLEFT; exit with
CCi =0,

3. Item 3 (EOF): save T2 and X2 as in step 2 and exit with CC1=1,

4, Item 4: use RECL60 to extract next 8 bits from CIBUF; store resultant byte into
CARDIMG; increment pointer in output buffer; advance to next item.

5. Item 5: use RECL6OO to extract next 6 bits from CIBUF which is a count of blanks;
store blanks into CARDIMG until count is satisfied; increment pointer in output
buffer; advance to next item,

6. Item 6: follow procedure in step 5 adding an additional 65 blanks into CARDIMG.

—
.

8.4.43 RECLSO

1.

2,

Purpose:
to extract the specified number of bits from CIBUF which comprise one compressed "item

Entry:
LNK is the linkage register. This subroutine is entered via BAL, LNK RECL60 from
RECONSTRUCTSLINE. Upon entry:

P2 = number of bits to extract;

T2 = and X2 are as set in RECONSTRUCT$LINE,

Exit:
Normal exit is B O, LNK with requested item in X4, Error exit is fo monitor via M:ERR if
record is read which is not compressed.

Operation:

If fewer bits are requested then remain unused in CIBUF, an additional record is read

into CIBUF using READSEQUEN2, If the record is not compressed, the message '-INCOMPLETE
Cl.'is printed via TYPEMSG and return is made to the monitor. The current word is moved
into register X1 from CIBUF (addressed indirectly via CIWORD). If all bits required are
contained in it, the requested bits are shifted if necessary so that they are right justified in

X4. The shift is in registers X4 (R) and X1 (RU1) so that after it is done, the contents of

X1 are saved in the current word in CIBUF. Exit is taken, If all bits required are not contained
in the current word in CIBUF, the bits which are in the current word are shifted into X4, the
address in CIWORD is incremented by 1, and the remaining required bits are obtained from the
next word from CIBUF,

8-36

Register X2 is adjusted to contain the count of unused bits in the current word in CIBUF
the unused portion of the current word is stored back info CIBUF, and exit is taken.

8.4.44 REPSEQ

1. Purpose:
to replicate single sequence number in PARAMBUF + 1,

2, Entry:

LNK is the linkage register. This subroutine is entered via BAL, LNK REPSEQ,
3. Exit:

B *LNK

4, Operation:
It picks up sequence number in PARAMBUF, stores it in PARAMBUF + 1, and adds 1 to
PRMBUFSZ,

8.4,45 SETEOD

1. Purpose:
to scan active card image to locate theright-most non=-blank character.

2. Entry:
LNK is the linkage register, Thi subroutine is used by a number of routines such as
MASTEREXECUTIVE, F:BUILD, and other F: routines. It is called using BAL,LNK
SETEOD.

3. Exit:
EODCLMN contains column of last non-blank character or-1 if all blanks, RECSIZE
contains a byfe count of zero if all blanks. Return is to calling routine using B O,LNK,

4. Operation:
This subroutine scans record image from right looking for all blank words (up to word 0), If
no non-blanks are found, it sets flag to check word zero byte by byte, Otherwise it sets flag
to indicate byte by byte checking in the word where a non-blank character was found.

8.4.46 SETKEY

1. Purpose:
appends key length of 3 and stores key in KBUF,

2, Entry:
LNK is the linkage register. This subroutine is entered via BAL, LNK SETKEY from the following
routines:
READRANDOM
WRITE2
WRITENEWRANDOM
WRITERANDOM)
Upon entry P1 = sequence number to put in key for read or write.
3. Exit:)

Return is to calling routine via B O, LNK,

4. Operation:
: It stores input sequence number with appended key length in KBUF,

8-37

8.4.47 SETLASTKEY

8.4.48

8.4.49

8.4.50

1, Purpose:
to store key of last record read in LASTKEY and to store record size in RECSIZE,
2. Entry:
LNK is the linkage register. This subroutine is entered via BAL, LNK SETLASTKEY from
WRITERANDOM and READSEQUEN,
3, Exit: A
It returns to calling routine via B O,LNK with LASTKEY and RECSIZE set.
4, Operation:
It sets LASTKEY and RECSIZE, removes carriage return, if any, and uses SETEOD to append
carriage return if CR ON,
TYPECERR
1. Purpose:
to type command eror message (TYPECERR) or parameter error message (TYPEPERR),
2, Entry: :
LNK is the linkage register. This subroutine is enteredvia BAL, LNK TYPECERR
or BAL,LNK TYPEPERR from many routines,
The word following BAL contains address of message to be printed.
3. Exit:
B 1,LNK
4, Operation:
If maximum error messages allowed have been printed it returns,
It sets command or parameter number o agree with its place in the command: e.g. '-= P2-=--',
It types message via CAL3, 1 0 followed by carriage return and line feed.
TYPEMSG
1. Purpose:
to print a message.
2, Entry:
LNK is the linkage register. This is a service routine used by many routine Calling sequence
is: BAL,LNK TYPEMSG '
DATA address of TEXTC message
3. Exit:
B 1,LNK
4, Operation:
The TEXTC string is moved into buffer area LISTIMG. The message is then printed via M:LO
using M:WRITE.
WRITECO

1.

Purpose:
to append byte count and checksum to a compressed record and to write the record via M:EO,

8-38

8.4.51

8.4.52

2-

Entry:
LNK is the linkage register. This subroutine is entered via BAL, LNK WRITECO from
COMPRESSLINE. Upon entry T2 = total bit count of record in COBUF,

Exit:

B O,LNK

Operation:

a,.

b.

C.

The total bit count in T2 is incremented by 8, converted to bytes and stored in byte 3 of
word 1 of COBUF, The sequence number in byte 1 of word 1 of COBUF is incremented by 1.

If the resultant byte count in T2 is 4 or less, the routine resumes processing at step c.
Otherwise, all bytes of the record are added together to form the checksum which is placed
in byte 2 of word 1 of COBUF, The record in COBUF is written via M:EO,

COWORD is initialized to point to COBUF + 1, Byte 1 of word 1 of COBUF is set to
zero as are words 1-29. T2 (bits used in current word) and X2 (total bits used) are set to 32,

WRITENEWRAND OM

1.

Purpose:
to write a record with NEWKEY

Entry:
LNK is the linkage register. This subroutine is entered via BAL, LNK WRITENEWRANDOM from
R:RENUMBER, Upon entry P1 = sequence number of record to be written,

Exif:

Error exit is branch to BADIO if eror occurred for any reason other than that record already
existed,

Normal return is B O, LNK to calling routine (CC1 = 0 to show record written).

If the record already existed, it sets CC1 = 1 before returning to calling routine.

Operation:

It calls SETKEY to put sequence number in KBUF.

It calls PUTCR to insure that there is a carriage return in the record.
It writes record with NEWKEY: if successful it sets CC1 =0

if notf, it sets CC1 =1,

WRITERAND OM

]o

2,

Purpose:
to write a new random record (whether or not it already exists).

Entry:

LNK is the linkage register. This subroutine is entered via BAL, LNK WRITERANDOM from
F:BUILD,

Upon entry P1 = sequence number of record to be written,

Exit:
Normal return is B O,LNK to calling routine.

Operation:
This subroutine calls SETKEY to put sequence number in KBUF; it calls PUTCR to insure thaf
CR is present if mode is CR ON and writes record with ONEWKEY,

8-39

8.4.53 WRITE2

1. Purpose:
to write a record in copy file.

2, Entry:
LNK is the linkage register. This subroutine is enfered via BAL, LNK WRITE2 from F:COPY and
F:MERGE. Upon entry P1 = sequence number of record to be written,

3. Exit:
Error exit is a branch to BADIO following write error for any reason other than that the record
already existed, Normal return is to calling routine via B O,LNK (CC1 =0). If record
already existed it sets CC1 - 1 before returning to calling routine.

4. Operation:
It uses SETKEY to put sequence number in KBUF,
It uses PUTCR to insure CR is in record (provided CR ON is the mode).
It writes record with NEWKEY: if successful it sets CC1 =0;
otherwise it sets CCl1 =1,

8.4.54 WRITE$EO

1. Purpose:
to write on EBCDIC record via M:EO,
2, Entry:

LNK is the linkage register. This subroutine is entered via BAL, LNK WRITE$EO from
F:WRITE. Upon entry the record to be written resides in CARDIMG.

3. Exit:
B O,LNK

4. Operation:
The record is written using M:WRITE via M:LO,

Table 8~1. Command Description Table (CDT)

CDT 0 Number of Command Entries
—i
Start of 1
First Enfry, = x>
Wany] End-Of-CDT Marker
0 31
Notes:
1. Entry Format
0 No, of words | command | command | no, of
in enfry, n type no. |parameters
0 7 15 23 - 31

n Words
n

l
Where command type = 0 for END, carriage return
for NAME, a file name, e.g., example
(ACCT, PASS)
for SEQ, a sequence no., e.g., 1.23
3 for SEQ2, two sequence nos. or two
sequence nos. separated by a dash,
e.g., 1.2-2

-—

N

8-40

7

9
10
11
12

Table 8-1. Command Description Table (Cont.)

for

for

for

for
for
for
for

INTG, a numeric string whose value is

less than 1000; e.g., 123

ALPH, a character siring not enclosed

in slashes; e.g., BUILD
COM, comma

LPAR, left parenthesis
RPAR, right parenthesis
PERIOD
BLANK

2. CDT + 100 = CDTADR, address of current command in CDT
3. PARAMPSN = next available slot in CDT

4. PRMBUFSZ = no. of words in PARAMBUF to be added

5. CHARPSN = no. of next character to scan
6
7

. End=of-CDT Marker = X'00000100'

. Command no. is described in Table 8-2,

Table 8-2, Command Table
COMMAND # COMMAND CDT BUILDER CDT EXECUTER
1 WRITE PARSE:WRITE F:WRITE
2 BUILD PARSE:BUILD F:BUILD
3 CcorPY PARSE:COPY F:COPY
4 DELETE PARSE:DELETE F:DELETE
5 LIST PARSE:LIST FsLIST
6 END PARSE:END F:END
7 COMPRESS PARSE:COMPRESS F:COMPRESS
8 MERGE PARSE:MERGE F:MERGE

8-41

9.0 FAST SAVE PROCESSOR

9.1 FUNCTIONAL OVERVIEW
The FAST SAVE Processor is a utility designed to provide the capability of saving files at or near tape speed.
It will take approximately 5 minutes for each 2400 fi. reel of tape using FAST SAVE with 150 ips mag tape

units. A time saving of 80% or more is now achieved over any other file saving procedures under BPM/BTM,

9.2 INTERFACE
FAST SAVE is able to operate under any release version of BPM/BTM since and including F0O, providing it
has these minimal hardware requirements.

1. At lease one mag tape unit

2, Line Printer

3. Cardreader

4. One or more Rads and or Packs

5. Console teletype

9.3 OPERATIONAL OVERVIEW

The FAST SAVE program must run in the :SYS account as a privileged processor in master mode. This is a
necessity in order to gain access to the account directory, to open all Public files, and the BPM/BTM
queueing routines. A load requirement of a stack size of .X'80" is necessary. Other than the above, no other

requirements are necessary.

All tape record blocks written to tape will be 512 words or less. The label sentinel on tape will be PRG1 thru
PRG9, as the present BPM/BTM FPURGE processor. Also, the present FPURGE processor has no difficulty
in reading any tapes created by FAST SAVE,

Sample Loading Procedure

1JOB :SYS, ME, F
ILOAD (BI), (LMN,FSAVE), (MAP), (PERM), (TSS, 80)

BI DECK

IEOD
IFIN

An assembly switch (start) is set at the beginning of the program, primarily for MBS vs. STB. In the event that
the hardware does not have MBS simulation, this switch would be set to 0,

Sigma7 EQU 1 MBS Mode
Sigma7 EQU 0 STB Mode
FAST SAVE is released in the MBS Mode.

9.3.1

COMMAND SUMMARY

COMMAND

+HOG

+BLOCKS
+DEBUG
+LIST
+INDEX
+FIT

+DIRECTORY

MEANING

No output reel will be used, If +LOG is used, you cannot use

+DUMP option, In card column 9, you have the option to use
STATS. (See NOTE below).

Lists output buffers as they are built.

Enables snaps and dumps of errors found in file management tables,
This is the only command that will produce a listing log on M:LL,
List file index sectors.

List file information table.

List file and account directories.

The above commands, if used, must always precede the following commands,

NOTE:

+DUMP

+HOUR

+DAY

+START

+SKIP

+SELECT

+END

Defines tape output to be produced. If +DUMP is used, cannot use
+HOG. In Card Column 9 you have the option to use stats (see stats
below).

Save all files created since HOUR defined in Card Column 9 of this
card, '0900' defines 9:00 a.m., and '1800' defines 6:00 p.m. .

Save all files created on and since the Month and Day deflnded in
Card Column 9 of this card, '0831' defines August 31, and '0202'
defines February 2,

To save all files starting at the account number defined on the data

cards that follow,

To save all files except skipping the accounts and files on the data

cards that follow until +END command is read.

Save only the accounts and files specified on the data cards that

follow until +END command is read,

Last command to be read. If using data card, +END would terminate

the data,

The STATS option in card column 9 on the +LOG and +DUMP options will create a statistical

file name called 'DISK POOL" in the :SYS account, Five wordsare reserved for each account,

After termination of FAST SAVE, the file 'DISK POOL' can be accessed for accounting purposes,

to extract, the following information:

9-2

WORD

Oand 1
2
3
4

Each record can be accessed by key or sequentially,

9.3.2 Data Cards
ACCOUNT# File Name
cCl CCl4
:SYS COBOL
:SYSGEN RDF
:SYSGEN WRTF
F5608312

The absence of a file name specifies "ALL' files,

CONTENTS
ACCOUNT NAME

Number of files in account
Number of granules in account

Number of bytes in account.

ALL DATA CARDS must be in sorted order before being read by via SI' Device, FAST SAVE does not link

to SORT or search backwards through the account directory or file directory. Therefore the burden is on the

user to have the data cards in sorted order before FAST SAVE is run.

1. Job stream to save selective files to tape

A, 1JOB :S5YS, ME, F
IPOOL (IPOOL, 0), (FPOOL, 0)
IFSAVE
+LIST
+DUMP
+SELECT
cc1 con
:SYSGEN LOCCTA
LOCCTB
LOCCTC
32301 A
B
C
+END

B. Accounts and files must be in sorted order.

2, Job stream to save all files in entire system, and specifying a series of names to skip.

9-3

9.3.3

Error Message Summary

MESSAGE

'BPM stack size too small’

'Not enough core to run less

than 5 pages available’

'Cannot read 1st Account
Directory Sector'

'Link failure in Account
Directory'

‘Link failure in File
Directory'

'Link failure in Index

Chain’

'Fit disc address error in
file directory key'

‘Control card error'

'File directory address
error in account key'
'File name does not,
match file directory key'
'New reel started’
"Irrecoverable tape write
error’

*Error in file information
table'

'Error in master index'

'Partial file'

'Processing terminated'

MEANING

Load module was created with 'TSS'

of less than X*80' words.

Due to a paging buffer method of operating,

less then 5 pages of dynamic storage is
insufficient.

ACNCFU contains invalid disc address-
this is a catastrophic failure,

Cannot link forward due to invalid

disc address.

Cannot process any more of this account-
continue with next account in directory.
Cannot process this file any further.
Output tape is closed out for the
current file.

Unable to process this file.

Control cards are order depehdent, and
they are in that order,

The disc address for the file directory
is invalid = this account is skipped.
The fit read does not match the current
file directory name,

Self-explanatory

Will request the next reel and continue
processing.

An entry required to process this file

is missing from the 'FIT'

An invalid entry was found in the
index sector,

Saved as much as possible

Everything completed

9-4

A. 1JOB :SYS, ME,F
IPOOL (IPOOL,0), (FPOOL,0)
IFSAVE
+LIST
+DUMP
+SKIP

ct ccu4
:SYSGEN
F5608312
F5608318
G2708300 FILEA
G2708300 FILEB
+END

B. The absence of a file name in Card Column 14 specifies the entire account is fo be

SKIPPED/SELECTED,

3. Job stream to list all files in the system without saving the files on tape,

1JOB :SYS, ME, F
IFSAVE

+LIST

+L0OG

+END

4. Job streamto list a file directory
1JOB :SYS, ME, F
IFSAVE
+LIST
+DIRECTORY
+LOG
+SELECT
:SYS
+END

5. Job stream to list a file information table
1JOB :SYS, ME, F
IFSAVE
+LIST
+FIT
+LOG
+SELECT
:SYS METASYM
+END

6. Job stream to save files created since 5:00 a.m,, February 25, 1972
1JOB :SYS, ME, F
IPOOL (IPOOL, 0), (FPOOL, 0)
IFSAVE
+LIST
. +DUMP

ca felel
+DAY : 0225
+HOUWR 0500
+END

7. Job stream to save all files in the system, starting at a given account,
1JOB :SYS, ME, F
IPOOL (IPOOL, 0), (FPOOL, 0)
IFSAVE
+LIST
+DUMP
+START
F5608312
+END

8. Job stream to save a given file on tape; list its account directory sector, its file directory

sector, and its file information table; list all its index sectors; and list out the tape buffer

as they are written to tape.
1JOB :SYS, ME,F
IPOOL (IPOOL, 0), (FPOOL, 0)
IFSAVE
+LIST
+FIT
+DIRECTORY
+INDEX
+BLOCK
+DUMP
+SELECT

CCl1 CCl4

:SYS METASYM
+END

9-6

9.3.4 Error SNAPS

SNAP TITLE _MEANING
'ABNIO" A TYC other than normal (i.e., '01'
was returned).
'DCTERR' The first tape open did not return a
valid 'DCTX' to the M:EO DCB
'OPNFAIL' Any BPM 1/O error with the M:EO

DCB. This probably will never occur
since all 1/O is performed thru

'NEWQ' .
'ACLINK" Link failure in account directory
'ACNCFU' 'ACNCFU"* contain an invalid disc
address
'FDLINK" File directory linkage failure
'MIXLINK Link failure in index chain

9.3.5 Read Ahead Logic

To consider the read ahead logic, each segment of the total file system is considered to be a separate

level,
LEVEL AREA INVOLVED
1 Account directory sectors
2 File directory sectors
3 File information tables
4 Master index sectors
5 Data granules

Read ahead for account/file directories is simulated double-buffering, that is, if the program has just finished
using the last key in the current sector, the next sector is read into the same buffer, The same logic applies
to FIT'S,

Master Indicies are read in order. Each FLINK is read as soon as the current request is satisfied. A

maximum of 4 index sectors are read, and as soon as one is released, a new read is attempted.
All data disc addresses from each index sector (as end action occurs) are pushed into a data address stack.
Therefore all data reading is queued to as many reads as possible continually (depending on pages available)

and everytime a data page is released, read further along.

Tape buffer pages are allocated as necessary, and are released as tape write end action occurs.

9.4 MODULE ANALYSIS
9.4.1 INITIATE
1. Purpose:
This is the first module executed in the FAST SAVE processor. It saves the processor stack
pointer, insures that the stack is large enough, enters the MASTER mode, saves the address
of NEWQ, and gets pages from the Operating System tor index buffers,
2. Entry: '
entered in slave mode as first executable statement in FAST SAVE.
3. Exit:
ERROR EXIT
B SPECINIT if not enough pages of core available,
NORMAL EXIT
B INITIATE1]
4, Operation:
Save (RO) in STKPNTR; RO contains the address of the Stack Pointer doubleword in the processor
Task Control Block., Tests the second word of the Stack Pointer doubleword to determine if the
stack is large enough, It must be at least 128 words long, If it is not large enough type out
1#%*BPM STACK SIZE TOO SMALL' and do an M:XXX to exit the program,
Otherwise, execute an M:SYS CAL to enter the master mode. The address of the monitor's
1/O Queing routine = NEWQ = is routined in RIO upon return from an M:SYS CAL, This
address is then stored in data location NEWQ within FAST SAVE for later use,
An M:GP CAL is executed to get 4 pages for index sector buffers. The number of pages
received is saved in page total. If 4 pages are not readily available, the processor exits
to SPECINIT,
Otherwise, the number of pages requested is saved in INDPAGES and the program exits to
INITIATEI. :
9.4.2 INITIATE1
1. Purpose:
This module is responsible for computing and saving the word address of each index buffer
in table IBUF, '
2. Entry:
B INITIATE1
(R1) = number of index buffers
(R9) = address of first page received from get page CAL,
3. Exit:
B INITIATE4
4, Operation:

Register 1 is used as an index into fable IBUF for saving the Word address of each page recieved
for use as an index buffer. Register 9 initially contains the word address of the first page
received, It is stored into the last entry of IBUF, then the next address is computed by adding
256 to (R9), and this address is saved. This process is repeated until all 8 index buffer addresses
have been computed and saved in the IBUF table,

The routine then exits to INITIATE4,

9-8

9.4.3 SPECINIT

1. Purpose:
This module is entered if INITIATE or INITIATE4 is unable to get enough pages of core for the
allocation of buffers. The routine releases all pages that it received and then requests 4 pages
and allocates them for index, data, tape, and sentinel buffers.

2. Entry:

B SPECINIT .

PAGETOTAL = Number of pages received from Get Pages CAL,
3. Exit: '

ERROR EXIT

B NOTENUFF if at least 4 pages are not available.
NORMAL EXIT
B INITIATES

4. Operation:
A M:FP CAL is executed to release all pages previously obtained. An M:GP CAL is executed
to ask for all pages available, If at least 4 pages are not available the program exits to
NOTENUFF,

Otherwise, a value of 1 is stored into DAPAGES and TAPAGES to set the number of Data
buffer and Tape buffer pages to one. R9 contains the address of the first page received. This
address is stored in DBUF to provide the address of the Data Buffer. R9 is then incremented
by 512 to compute the next page address and this address is saved in TBUF for the Tape

buffer address. The address in R9 is incremented again by 512 worda and this address is stored
in IBUF entry 1. The contents of R9 are again incremented by 256 and stored in entry 2 of
IBUF to provide the address of the second index buffer. A vaiue of 2 is stored into INDPAGES
to save the total number of 256 word index buffers available, The address is incremented
again by 256 to compute the address of the next page. This address is saved in LIMIT and in
CURPOS, The address is incremented by 512 and this address is saved in BUFTOP, the last
buffer address.

The program then exits to INITIATES,

9.4.4 INITIATE4

1. Purpose:
This module is responsible for requesting pages from the Operating System for tape buffer and
Data buffers and saving their addresses.

2, Entry:
B INITIATE4
GETPAGES = Max Page request FPT (M:GP procedure).

3. Exit:
ERROR EXIT
B SPECINIT if not enough pages are available.
NORMAL EXIT
B INITIATES

4, Operation:
Ask for one page, and if one is not available exit to SPECINIT otherwise increment PAGETOTAL
and save the address of the page in LIMIT and VURPOS, The address of the top of the page is
computed and saved in BUFTOP,

9-9

It then requests all possible pages. The total number received is added to PAGETOTAL.
If at least 3 pages were not available it exits to SPECINIT,

Otherwise, the address of each page is stored into table TBUF, and the number of tape buffers,
TAPAGES, is incremented until all pages are used or all entries in TBUF have been filled,

Any remaining pages are used for data buffers and their address is saved in DBUF table until
that table is full, The number of data buffers is stored in DAPAGES,

The total number of tape buffers available - TAPAGES, is stored in the first entry of table
TBUF. The total number of data buffers available, DAPAGES, is stored in the first entry of
table DBUF,

These numbers are converted to decimal by a BAL,R15 to HEXTODEC and a message is typed
out to inform the operator how many buffers are available,

'NN TOTAL TAPE BUFFERS'
'NN TOTAL DATA BUFFERS'
where NN equals the number available,

The program then exits to INITIATES,

9.4.5 INITIATES
1. Purpose:
This module is responsible for getting the date and time from the monitor.
2. Entry:
B INITIATE5
3. Exit:
B RDCARD
3. Operation:
An M:TIME CAL is executed to store the data and time from the monitor into words 3-6 of
DATBUF. The background lower limit is computed from the first address of the program and
stored in word 8 of DATBUF,
The program then reads one card through the M:C device to read the IFAST SAVE control
card, It then exits to RDCARD,
9.4.6 RDCARD
1. Purpose:

This module is responsible for reading control cards, interpreting control cards, and setting the
appropriate flags. It calls on moduleRCD to read the cards and module INTER to interpret

the cards and set the flags. It also sets up the header for the line printer according to the options
specified and initializes the line printer output.

2, Enfry:

B RDCARD
3. Exit:

B NOIPRI

4, Operation:
BAL on R14 to RCD read a control card. Print the card on the M:LL device. BAL onRI15 to
INTER to interpret the control card and set the appropriate flags. When INTER detects a
+END card it returns skipping. Otherwise, RDCARD continues to call RCD to read and INTER
to interpret cards,

9-10

9.4.7

9.4.8

The routine then sets up the header message according to the control card option, ejects
a page on the M:LL device, and exits to NOPRI.

RCD

1. Purpose:
This module reads a card from the M:C device, tests the card for +END in first 4 columns,
sets word END to non-zero if +END card, and returns,

2, Entry:
BAL,R14 RCD

2. Exit:
B *R14

4. Operation:
Read one card through M:C device, if the card contains a +END in columns 1 through
40, RCD will set location END to non-zero,

If an error or abnormal return occurs from the READ card it sets location END to non-zero.
(END will be tested in module INTER to exit the card read loop).

The program then returns indirect on R14,

INTER

9.4.9

1. Purpose:
The routine is responsible for interpreting control cards in INBUF and setting appropriate

flags according to the options on the cards, It verifies the card commands and aborts on errors,

2. Entry:
BAL,R15 INTER A
INBUF contains the control card to be interpreted.

3. Exit:
NORMAL EXIT
B *R15 for normal control command
B *R15+ 1 if +END command

ERROR EXIT:

M:XXX if invalid control command or card sequence error,

4. Operation:
Checks are made on control command, and all the necessary flags are set. If an error is
detected on any control commands, the message 'FASTPURGE CONTROL CARD ERROR' is
put out and FAST SAVE aborts,

NOIPRT

1. Purpose:

This module opens the stat file if that option was specified. The address of DCT1 and HGP are

determined.

2, Entry:
B to NOIPRI

3. Exit:
B READFAIL 2 if unable to read Account Directory or
if bad data is in Account Directory

9-11

9.4.10

B ENDUP if abnormal or error return opening the STATS file

NORMAL EXIT
B NACN

4, Operation:
If the STATS flag is non-zero the module opens the STATS file as follows: File name =
DISKPOOL, Account =:SYS, KEYED, OUT mode, READ-ALL, WRITE-NONE. An abnormal
or error return on the open causes a branch unconditionalily to module ENDUP after typing
a message "FILE MANAGEMENT ERROR FROM STAT FILE",
The location of the monitor's DCT1 table is determined by accessing the word pointed to by
location X'4E', This address isstored in location DCT1 in the program. The size of the DCT
tables is determined by byte 0 of that word. It is stored into DCTSIZ,
The address of the HGP is determined by adding 10 to the location pointed by 'X4E' and
accessing that location, The second word of the HGP is then accessed to obtain the DCT
index of the System device.
The ACNCFU is then read from the System device into ACNCFU table by a BAL,R15 to
DISCIO. If a read failure occurs the program branches to READFAIL,
If the DIRLISTSW flag is non-zero, the ACNCFU is listed on the M:LL device by a BAL,R15
to PLIST.
If the DUMP flag is non-zero, the program does a BAL,R10 to NEWREEL to get a tape mounted.
It then does a BAL,R7 WRTDAT to write the DATE file on the tape.
The disc address of the Account Directory is found from word one of ACNCFU, The address
is verified as valid by a BAL,R15 to DTOGRAN, If the address is bad the program branches
to READFAIL.
The first sector of the account directory is read into ACBUF by a BAL,R15 to DISCIO. Ifa
read failure occurs the program branches to READFAIL2,
Otherwise, the account directory BLINK is picked up from Word 0 of ACBUF and saved in
ACBLINK. The account directory FLINK is picked up from ACBUF + 1 and stored in
ACFLINK. The account directory NAV is picked up from the first half-word of ACBUF+ 2
and stored into ACSIZE.
If the DIRLISTSW is set, the program does a BAL,R14 LISTAD to print out the account directory
on the M:LL device.
The account directory BLINK from ACBUF is compared with LASTAC (in this case, it equals
zero) and if they are not equal the program branches to READFAIL2,
The current account directory address from R8 is stored into LASTAC, A value of 12 is
stored infto NEXACN (the next index into the account directory) and into CURACN, (the
current index into the account directory).
The program then branches to NACN,

NACN

lo

Purpose:

This module fetches the next account directory entry from ACBUF, checks if for errors in format,
determines if this account is to be processed, reads cards if necessary to determine the select
option or skip option accounts, and branches to NOTLB after finding an account to process,

9-12

2,

Entry:

B NACN

ACBUF contains account directory sector
NEXACN points to next entry to be processed

Exit:

ERROR EXIT

B ADERROR if an error exists in the account directory.

NORMAL EXIT

B ENDUP if all select card accounts have been processed or if
end of account directory

B NOTLB if an account is found fo be processed.

Operation:

The next account directory index is retrieved from NEXACN and stored into CURACN to
update the current entry pointer. If all entries in this sector of the account directory have been
processed, the program branches to ADDONE to read in the next sector,

The entry is verified to contain X'OB404040' in the first word and if it does not, the program
branches to ADERROR.

Otherwise, if the flag "SELECT" is on and a +END card has been read, branch to ENDUP,

If an END card has not been read, BAL,R15 to ACCK to determine if this account corresponds
to the last SELECT account card read, and if so read the next card. If this account number
does not correspond fo the last Select account card read, branch to NACN and process next
entry.

If it does correspond, and the 'ALL' option has been specified BAL,R14 to READATA to read
the next card, and branch to NOTLB to process the account, If 'ALL' was not specified,
branch to NOTLB without reading another card.

If SELECT was not specified, determine if a +tEND card has been read, and if so, turn on the
ALL flag to specify no SKIP, SELECT, START options and branch to NOTLB,

If an END card has not been read, check the SKIP flag. If SKIP has been specified BAL,R15
to ACCK to detemine if this account is to be skipped. If it is not branch to NOTBL to process
it

If it is check the ALL flag to determine if all files in this account are to be skipped. If ALL
is not specified, branch to NOTLB to process the account, If ALL is specified, VAL,R14
READATA to read the next data card, and branch to NACN to process the next entry.

If SKIP was not specified, test the STARTSET flag to determine if the +START option was
specified, It is was not specified set the ALL flag to minus one to indicate no SELECT, NO
SKIP, NO STATT option and branch o NOTLB.

If +START was specified, BAL,R15 to ACCK to see if this account matches the account
specified on the +START card. If no match, branch to NACN to process the next entry.

If this account does match the START account reset the STARTSET flag, turn on the ALL
flag, and branch to NOTLB, .

9-13

9.4.11

NOTLB

9.4.12

1.

Purpose:

This routine prints the current account number on the M:LL device if specified, reads in the
next account directory sector is this is the last entry in current sector, gets the disc address
of the file directory, verifies the address as valid, reads in the first file directory sector,
lists it if necessary, and branches to GETFILE.

2, Entry:
B NOTLB
ACNPDISP is displacement to Account Directory eniry to be processed.,
ACBUF contains current account directory sector,

3. Exit:
ERROR EXIT
B ADERROR if file directory fiest sector address in invalid.
B READFAIL3 if unable to read in a file directory sector or

in case of a file directory BLINK failure.

NORMAL EXIT
B GETFILE

4. Operation:
Move the account number from ACBUF to ACN*CURNT and if LIST flag is on
space M:LL device to top of form and print "ACCOUNT#XXXXXXXX",
If this is the last entry in the current account directory sector, get the FLINK from ACFLINK
and BAL,R15 to DTOGRAN to verify the address. If it is a valid address, BAL,R15 to
QSECTOR to queue the next account directory sector,
If this is not the last entry or if the FLINK is an invalid address, get the address of the file
directory from the Account directory entry. Set LASTFD, ACNSIZE, and ACNGRAN to
zero and BAL,R15 to DTOGRAN to verify the file directory address. If its invalid,
branch to ADERROR; otherwise BAL,R15 to DISCIO to read in the first sector of the file
directory,
If a read error occurs, branch to READFAIL3. If the read is OK, get the BLINK from first
word of FDBUF and store in FDBLINK, Get the FLINK from second word of FDBUF and
store in FDFLINK, Get the NAV from first halfword of third word in FDBUF and store in
FDSIZE,
If the list flag DIRLISTSW is set, BAL,R14 to LISTFD fo list the file directory. If the BLINK
is not zero for the first sector, branch to RAADFAIL3. Otherwise, store the current sector
address in LASTFD and branch to GETFILE,

GETFILE

1. Purpose:
This module gets the next file directory entfry, picks up the disc address of the FIT, and
reads the FIT info FITBUF,

2, Eniry:
B GETFILE
NEXFILE is index to next entry in FDBUF
FDBUF contains current file directory sector
FDSIZE contains the NAV for current file directory sector.

3. Exit:
ERROR EXIT
B FDERR if FIT address is not valid or if read error

occurs when reading FIT.
NORMAL EXIT
B FILECHKS

9-14

9.4.13

4,

Operation:
Get the index to the next file directory entry and if the index equals the NAV, meaning
the entire sector is processed, branch to FDDONE to get the next sector,

Get the disc address of the FIT for this entry and BAL,R15 to DTOGRAN fto verify the address.
If its invalid, branch to FDERR. If it is valid, test to see if it is already in core. If not in
core, is it already being read in. If so, wait until it's in,

Otherwise, BAL,R15 to DISCIO to read it into FITBUF, If a read error occurs, branch to
FDERR, If the read is successful, or if the FIT is already in core, branch to FILECHKS,

FILECHKS

]o

Purpose:

This routine examines the FIT in FITBUF to determine if the FIT is valid. It tests to see if this
file should be saved on tape, reads another SKIP or SELECT data card, if necessary, lists the
FIT, and then branches to NOFCK, If this is the last file in the current file directory sector,
it queues up fo read in the next file directory sector.

Entry:

B FILECHKS

FITBUF contains current fit to be processed

CURFILE points to current file directory entry in FDBUF,

Exit:

ERROR EXIT :

B FITSNAP if byte length of file name in FIT is zero or less.
B FITERR if file. name in FIT doesn't compare

to file name in file directory
NROMAL EXIT

B NOFCK to process file
B GETFILE if this file is not to be processed.
Operation:

If the current file directory entry is the last entry in this sector and the FLINK is non-zero and
valid, BAL,R15 to QSECTOR to queue the next file directory sector,

If the byte length of the name in the FIT is zero or less, branch to FITSNAP, If the byte length
is valid, but the file name is not in EBCDIC branch to GETFILE to get the next file, and

ignore this one.

If the file name in the FIT is valid, compare it with the file name in the current file directory
entry, If there is no match branch to FITERR,

Otherwise, test the ALL flag and if it is on, meaning all files are to be saved, branch to
NOFCK. If ALL is not set, compare the FIT file name with the file name contained in
Column 14 then, CAL,R14 to READATA to read a card and follow with a BAL,R14 to ;
READATA to read a card and follow with a BAL,R15 to INTER to interpret the card. If the
card specifies a new account, set ACEQU flag to zero, If the SELECT mode is not set
branch to GETFILE to process the next file,

If the SELECT mode is specified, branch to NOFCK to process the cumrent file,
If the file names above do not match and the SKIP flag is not set, branch to GETFILE.

Otherwise, test the FITLISTSW flag and if its on, BAL,R14 to LISTFIT to list the FIT. Then,
branch to NOFCK,

9-15

9.4.14

NOFCK

1.

Purpose:

This routine clears all index buffers, (IBUF), clears out the STACK, (DSTACK), builds a
FIT record for tape, constructs a :BOF record, checks the file against the SAVE BY DATE
option, writes a :BOF record on tape if necessary, writes a SYNON record if necessary,
and finally branches to GETMIX.

Entry:

B NOFCK

FITBUF contains FIT of file to be processed.

Exit:

ERROR EXIT .

B FITERR if no file size entry is available in the FIT
or if the MIX address contained in the FIT
is invalid.

B FITSNAP if no '09' entry is available in the FIT,

NORMAL EXIT

B GETFILE if file is not fo be saved because of SAVE
BY DATE option or SAVE BY HOUR option,

B FILEDONE if no tape is being written

B RANFILE if file is RANDOM

B GETMIX to save the keys and records

Operation:

If the file is not a SYNONYMOUS file, (no 'OB' entry was found), initialize and free up all
index buffers and clear the Stack,

Look for an 'OC" entry, branch to FITERR if none is found. The next word in FITBUF
after the 'OC" entry is the FDA of address of the MIX. Save this in FDA, BAL,R15 to
DTOGRAN to verify the address. If it is invalid, branch to FITERR,

Otherwise test to see if a SAVE BY DATE/HOUR is being done. If not, set up to read ahead
the first MIX sector so it will be in core when it is needed.

Clear the tape label and print buffers. Search for an '09' entry in the FIT by BAL,R15 to
CODESCAN., If none is found branch to FITSNAP, Otherwise, get organization type

and save in ORG. Get the maximum key length and save in KEYM,

Search for an 'OD" entry by a BAL,R15 to CODESCAN to see if there is a CREATION DATE,
If this is a SYNONOMOUS file transfer the synonomous name to the :BOF record.

If it isn't SYNONYMOUS BAL,R15 to QUEMIX to queue up the first MIX read.

Construct a :BOF record, Construct a TLABEL record, include the account number, password,
READ Accounts, WRITE accounts, ORGANIZATION, KEYMAX, and GRANULE count,

If a creafion date exists and the SAVE BY DATE/HOLUR flag is on, test to see if this file should
be saved. If this file is not to be saved branch to GETFILE.

Otherwise, store the creation date in the tape label record. Get the PBS flag (previous block
count) and the size (size of last record) to zero.

Next a read is queued up to read the FIT from the next file directory entry into core.

9-16

If a DUMP has been specified, BAL,R15 to BOFQUE to write the :BOF record and the
TLABEL record to tape.

If a RANDOM file is being processed branch to RANFILE,

If a SYNONYMOUS file is being processed write a SYNON record and a :EOF record
to tape and return to FILEDONE,

If a NULL file exists or a RANDOM file with no data write a :EOF record via B to CKT10
(NOTE* CKT10 will also branch to a routine to print the file information
on the M:LL device if specified).

If the file is neither NULL, RANDOM nor SYNONYMOUS, branch to GETMIX,

9.4.15 GETMIX

1

Purpose:

This routine clears and releases all the data buffers and then clears the disc address table. It
gets the disc address of the first MIX and reads it in printing the mix if necessary. It calls
GETKEY to READ in the data records, queueing up as many Reads as possible for MIX sectors
and data granules, It calls the MOVEKEY and MOVE routines to transfer the records to the
tape buffer. When the tape buffers are full, it writes them to tape. When all records have
been processed, it branches to FILEDONE,

Entry:

B GETMIX

FDA contains address of current MIX sector,
Exit:

NORMAL EXIT
B FILEDONE after entire file has been processed.

Operation:

The program sets all data buffers free and clears the disc address table. It determines the first
MIX sector address on the disc from FDA and checks to see if it is already being read in by
comparing it with table INDEXDA. If it is not in the table the program does a BAL,R8 to
QUEMIX to read it in core.

If it is in the table it tests bit zero of the correct table entry to see it it is already in core.

If bit zero is a one it loops until the bit goes fo zero meaning that it is in core. It then

picks up the address of the sector in core from the parallel entry in the IBUF table and stores
that in MIXBUF, It initializes the MIX displacement in CURRMIX to point to the first entry in
the MIX. It picks up the NAV from word iwo of the MIX in MIXBUF and saves it in

MISIZE.

It then BAL's on R11 to GETFOUR to read in data granules from the disc. If the INDEX flag
is on it does a BAL,R14 to LISTMIX to print the MIX sector on the LL device.

It does a BAL,R15 GETTBUF to get a tape output buffer to put the records in and saves the
address of the buffer in CURBUF,

It does a BAL,R15 to GETKEY1 to initialize the previous block size in the tape buffer. It

does a BAL,R15 to GETKEY to get a key from the index buffer, does a BAL, 15 to MOVEKEY to
move the key to the buffer, and it is writing a tape it does a BAL,R15 to MOVE to move the
data record into the buffer.

It does a BAL,R7 to 'SCHEDULE® to get the required buffers to read ahead for other data blocks,
It does a BAL,R11 to GETFOLR to read in additional data blocks. It tests the flag MIXEOF

to determine if all MIX for the file have been processed. If all entries have not been processed
(MIXEOF is zero), it continues to move each key and data record to the tape buffer and write
the tape buffer out when its full.

9-17

9.4.16

If all MIX entries have been processed, it branches to QUEREC to write out the tape buffer
and then branches to MIXEND.

QUEREC

9.4.17

1.

Purpose: ,
This routine calls MT10 to write out a tape buffer

Entry:

BAL,R15 QUEREC :
CURBUF contains address of current tape buffer.
KEYDISP has number of bytes in the buffer,

Exit:

NORMAL EXIT

B MTIO

R15 has address to branch to after tape record has been queved,

Operation:

The program gets the current key displacement from KEYDISP and rounds it up to the nearest
word, It tests a flag called 'BLOCKS' to determine if all tape records are to be dumped to the
printer. If they are not it branches to MT10 with R15 unchanged. MT10 will then return to
the address in R15,

If records are to be listed, it saves R15 in R14 and loads R15 with the address of LISTOUTBUF
routine before branching to MT10., MT10 will then branch to LISTOUTBUF which will
return fo the original address in R15,

GETKEY1

9.4.18

1.

Purpose:
This routine sets the previous block size into a tape buffer and sets the displacement into the
buffer to four,

Entry:

BAL,R15 GETKEY1

RBS contains previous block size from last record.
CURBUF contains address of buffer to store PBS into,

Exit:
B *15

Operation:
The program gets the previous tape block size from BBS and stores it into the buffer pointed
to by CURBUF, It then sets KEYDISP to four so that the buffer index now points past the

previous block size.

It returns on Register 15 to the calling program.

MOVEKEY

]o

2,

Purpose:
This module moves the current key to the current blocking buffer..

Entry:

BAL,R15 MOVEKEY

KEYDISP contains current key displacement
CURBUF contains address of current tape buffer.
MIXBUF contains address of mex buffer,
CURMIX contains index into MIX buffer,

9-18

3. Exit:
NORMAL EXIT
B *15

4, Operation:

The routines increments the first word of the tape buffer to update the number of keys. It gets
the maximum key length for this file from KEYM and increments it by one. It gets the current
key displacement from KEYDISP rounds it up to the nearest word and saves it in LASTKEY,

It then moves the mix record from MIXBUF to CURRBUF at the appropriate displacements.

It saves the new MIX displacementom KEYDISP, it sets P1 flag to X'100" to indicate this

is the first appearance of this key.

It then returns to the calling program,

9.4.19 MOVE
1. Purpose:
This routine moves a data record to a tape blocking buffer.,
2, Entry:
BAL,R15 MOVE
R1 contains the output buffer size in bytes,
CURBUF contains the byte address of the tape blocking buffer,
CURDBLK contains the byte address of the input buffer,
KEYDISP contains the output buffer displacement.
BLDISP contains the input buffer displacement,
RWS is the number of bytes to be transferred.
3. Exit:
ERROR EXIT
B FAILURE if the granule pointed to by CURRB doesn't
compare to the granule pointed to by the
current disc address key GRANULEADR,
NORMAL EXIT
B *15 if data was not all moved
B *15 (+1) exit skipping if no bytes moved or if all data is moved successfully.
4. Operation:
The program checks RWS to see how many bytes to move. If it is equal to zero,
it exits skipping.
Otherwise, it compares the disc address in CURRB with the disc address in GRANULEADR,
If they are not equal it takes an error exit to FAILURE.
It increments the return address and moves as many data bytes as possible into the output
buffer. If all cannot be moved it decrements the return address, updates the granule accounting
table RBHIST with the number of bytes moved, sets DATA$SW if buffer can be released, and
returns. It all bytes can be moved successfully, it updates the granule accounting table
and exits skipping.
9.4.20 GETKEY
1. Purpose:
This module gets the next key from the MASTER INDEX of the file currently being processed.
2, Entry:
BAL,R15 GETKEY
3. Exit:
ERROR EXIT

B FDERRI if error in Read of MIX
B MIXERR ifRWS in riew MIX is zero.

?-19

NOR MAL EXIT
B D when last record has been processed

B *R15

4, Operation:
The routine reads in the next mix sector as required. It extracts the key from the MIX,
queves up a read for the corresponding data block if it is not already incore, then attempts
to queue up a read for the next MIX sector so it will be in core when needed.
It exits by a branch to D if the last mix record has been processed.
Otherwise, it returns to the calling program via R15.
If an error occurs while reading the MIX sector it branches to FDERR1, If an error occurs in
processing the MIX entry it branches to MIXERR,

9.4.21 SCHEDULE

1. Purpose:
This module releases data buffers when they have been processed.

2. Entry:
BAL,R7 SCHEDULE

3. Exit:
B *R7

4, Operation:
The routine checks each entry of the RB1 table to see if it is currently in use. If the entry
is zero, it insures that the corresponding entry in DBUF is free.
If it finds the address it releases the buffer in IBUF and checks to see if there is a FLINK,
If none exists it branches to CKT10.
Otherwise, it checks to see if the FLINK MIX is in INDEXDA. If it is not, it branches to
MIXRATERR, If it is in the table, it waits until it is in core, makes sure the BLINK in valid,
saves the address of the next sector in MIXBUF, initializes the displacement to 12, does a
BAL,R15 to QUEMIX to read in the sector, and branches to NXTSECTR.
If the BLINK does not compare with the previous sector address, the program branches to
READFAILS.

9.4.22 QUEMIX "

1. Purpose: _
This routine queues up a read for the next MIX sector, with END ACTION address set to
MIXENAC,

2, Entry:
BAL,R15 QUEMIX

3. Exit:
ERROR EXIT

B READFAILS5 if FLINK address is not valid
NORMAL EXIT
B *R15

9-20

4, Operation:
The routine requests an index buffer, If none is available it exits.

If th gets a buffer it picks up the FLINK of the MIX from NXTFLINK. If the FLINK equals

zero it exits,

It verifies the disc address of the FLINK and if it is invalid it branches to READFAIL4, If it is
valid it branches to DISCIO2, with the return register set to the original calling routine,
to queue up a read of the next mix, ENDACTION address is set to MEXANAC,

9.4.23 RANFILE

1. Purpose:
Writes tape records for RANDOM files.
2. Entry:
B RANFILE
3. Exit:
ERROR EXIT
B MIXERR1 if the disc address of the data granule is not valid
i.e., a matching HGP cannot be found.
B MIXSNAP if the disc address is not valid
NORMAL EXIT
B CKT10 when entire file has been processed or if no tape is

being written,

4, Operation:
It checks DUMP flag to see if tape is being output, and if not it stores the number of bytes in
the record file size and branches to CKT10.

If tape is being written, it searches the HGP to find an HGP corresponding to the data block
address. If it cannot find a matching HGP it branches to MIXERR1, Otherwise, it saves
the file size in RSTORE and releases all data buffers in DBUF,

If RESTORE is zero it branches to CKT10, If RSTORE is non-zero, it gets a data buffer,
verifies the disc address and queues up a disc read for each 2048 character block in the

RANDOM file. It then writes each record on tape. When all records have been processed,
it branches to CKT10.

9.4.24 GETTBUF

1. Purpose:
This routine gets a tape output buffer.

2. Entry:
BAL,R15 GETTBUF
3. Exit: N
B *R15 condition codes set non-zero if

buffer found. .
R1 is index into TBUF table for
available entry,

4, Operation:
The routine searches for an available tape buffer, by scanning table TBUF until an available
entry is found, The index into TBUF is returned in R7. Condition codes are set non-zero
if a tape buffer is found,

9-21

9.4.25

GETIBUF

9.4.26

1.

Purpose:
Gets a disc input buffer for MIX,

Entry:
BAL,R15 GETIBUF

Exit:

B *R15 condition codes set non-zero if
buffer is found,
R1 is index into IBUF table for
available entry,

Operation:
The routine searches table IBUF for an available index buffer. The index to the available entry
in IBUF is returned in R7, Condition codes are set non-zero if a buffer is found.

GETFOWR

9.4.27

1. Purpose:

2,

This routine performs read ahead for data granules from the disc.

Entry:
BAL,R11 GETFOWR
DSTACK contains addresses of granules to be read.

Exit:

ERROR EXIT

B DATAERR if a bad disc address is encountered
NORMAL EXIT

B *R11

BUILD

9.4.28

1.

Purpose:
This routine pushes the address of all data granules specified in the Just Read index sector into
DSTACK.

Entry:
BAL,R11 BUILD
R7 is index into IBUF to current mix sector,

Exit: ¢
NORMAL EXIT
B *R11

STKSIZR

9.4.29

Purpose:

This routine types a message "BPM STACK SIZE TOO SMALL" and does an M:XXX.
Entry:

B STKSIZR

Exit:
CALl, 9 3

QSECTOR

].

Purpose:
This routine queues up the disc address in R8 to be Read by branching to DISCIO2,
FITENAC is specified as the end action address.

9-22

Entry:

BAL,R15 QSECTOR

R8 equals disc address to be read
R10 = Byte address of buffer

3. Exit:
B DISCIO2
R15 points to exit for DISCIO2 routine to original program,
9.4.30 DISCIO2
1. Purpose:
This routine is the RAD and SIDK Pack handler routine for FAST SAVE, An eniry at DISCIO2
specifies no wait on I/O. End action address is in R7,
An entry at DISCIO specifies normal 1/O WAIT and no end action,
It calls for 1/O by branching to monitors NEWQ routine,
2. Entry:
BAL,R15 DISCIO2 specifies no wait, and end action address in R7.
BAL,R15 DISCIO specifies wait, and no end action,
R1 =1/0 table indes (used for End Action Information)
R8 = Disc Address
R9 = Byte count
R10 = Byte address of buffer
R7 = End Action Address if specified
R15 = Return address
3. Exit:
B *R15
9.4.31 DENAC
1. Purpose:
This is the DISCIO end action routine; it resets the busy flag RBUSY and saves the TYC
information in DSTATUS,
2, Entry:
BAL,RT1 DENAC from IOQ
3. Exit:
B *R11
9.4.32 FITENAC
1. Purpose: ‘
This is the end action receiver for Account directory, file directory or file information table
reads. It resets the busy bit in the flag specified by R14. decrements the outstanding /O
count, and saves the Disc status (TYC) information in DSTATUS.
2, Entry:
BAL,R11 FITENAC from 10Q
R14 is address of busy flag for this operation,
R12 is TYC of this operation
R is return address
3. Exit:

B *R11 returns o IOQ

9-23

9.4.33

ENCOM

9.4.34

1.

Purpose:

This is the end action routine specified by routine GETFOUR., The appropriate table entry
in RB1 which is pointed to by R14 is set to zero to indicate that the address is now in core.

Entry:

BAL,R11 ENCOM from I0Q
R12 is TYC information

R14 is index to flag in RB1

R11 is return

Exit:
B *R11 returns to IOQ

MIXENAC

9.4.35

9.4.36

]o

Purpose:

This is the end action routine for mix sector reads. It decrements the outstanding 1/O count
in DOPCNT, saves the TYC from R12 in DSTATUS, sets the new sector flag NEWSEC to -1,
It clears the 1/O pending bit in INDEXDA pointed to by R14. It then gets the next FLINK,
and branches to BUILD, which will exit back to 10Q on R11,

Entry:

BAL,R11 MIXENAC
R14 = index into INDEXDA
R12 = TYC status

R11 = return register

Exit:

B BUILD

NXTFLNK contains next FLINK to be read.
BUILDLNK contains return address to 10QQ.

MTIO

1.

Purpose: :
This is the routine which queues up tape 1/O for FAST SAVE. It does so by branching to
the monitor's NEWQ routine,

1. Entry:
BAL,R15 MTIO
R6 =0, this is a normal call, the command list has the end-action-address
R6 <0 RS has byte count, CURBUF is the word address of the buffer.
R6 >0 No data XFER., Ré contains function code.
R7 Points fo calling sequence registers for IOQ call.
R15 Has return address

2. Exit:
B *R15

SIMULATE

]o

Purpose:

This routine simulates normal 1/O end action for the tape requests if no tape is being written,
DUMP = 0. This bypasses NEWQ if DUMP is zero. It sets R14 equal to R1. SetsR12 to
normal TYC, and does a BAL,R11 *RO to WTENAC,

Entry:
B SIMULATE
RO Equals address of end action routine to branch to

9-24

9.4.37

3.

Exit:
B MTIOX

WTENAC

9.4.38

1.

Purpose: .

This module is the end action routine for all tape data writes. It decrements the outstanding
1/O count in OPCNT. It saves the status from R12 into TPSTATUS. It clears the busy bit in
the appropriate entry of TBUF tables. If the TYC indicates end of reel it switches output
reels, If the TYC indicates unrecoverable tape reror, it types a message to the operator
and switches the output reels, Otherwise, it exits to the address inR11,

Entry:

BAL,R11 WTENAC from IOQ
R14 is index into TBUF table
R12 isTYC

R11 is return register

Exit:
B *R11 return to IOQ

9.4.39

SENTENAC

1.

Purpose:
This is the end action routine for tape sentinel writes. A tape error will cause a reel change.
End of Reel Status is ignored.

Entry:
BAL,R11 SENTENAC from 10Q
R12 is TYC

Exit:
B *R11

NEWREEL

9.4.40

1.

Purpose:

This routine is called fo open a new output reel. It executes an open CAL, verifies the DCT
index returned, rewinds the tape, writes a :LBL sentinel, an :ACN sentinel, and a tape
mark,

Entry:
BAL,SR3 NEWREEL

Exit:

ERROR EXIT

B DCTXERR if bad DCT index returned from Open.
NORMAL EXIT

B *SR3

WRTDAT

1.

Purpose:
This routine is called to write a DATE record on reel PRG1,

Entry:
BAL,R7 WRTDAT

Exit:
B *R7

9-25

9.4.41 DCTXERR/OPNABN/OPNERR
1. Purpose:
This routine is an error routine from DCB opens. It types OPNFAIL and does an M:SNAP
of the M:EO DCB, It then executes a CAL1,9 3.
2, Entry:
B DCTXERR
B OPN ABN
B OPNERR
3. Exit:
CALl,9 3
9.4.42 GOEOR
1. Purpose:
This is the routine used to handle end—of-reel conditions, It writes a tape mark an :EOV
record, another tape mark, an :EOR record, 2 more tape marks, and does a M:CLOSE for
that tape reel,
2, Entry:
BAL,R1 GOEOR
3. Exit:
B *R1 N
9.4.43 EOFQ
1. Purpose:
Thss routine creates and writes a :EOF record onto tape.
2. Entry:
BAL,R14 EOFQ
3. Exit:
B WRTMARK (WRTMARK then returns to original routine)
9.4.44 BOFQUE
1. Purpose:
This routine creates and writes a :BOF record on tape.
2. Entry:
BAL,R15 BOFQUE
3. Exit:
B WRTMARK
9.4.45 MOVEI
1. Purpose:
This subroutine is used to transfer sentinel records into background records to be written to
tape.
2, Entry:
BAL,R14 MOVEI
3. Exit:
B *R14

9-26

9.4.46

WRTMARK

9.4.47

1.

Purpose:
This routine queues up a write tape mark operation.

Entry:
BAL,R15 WRTMARK

Exit:
B MTIC+2

NOTENUFF

9.4.48

1.

Purpose:
This routine prints "NOT ENOUGH CORE TO RUN, LESS THAN, 4 PAGES AVAILABLE" and
then does an M: XXX

Entry:

B NOTENUFF
Exit:

CALY,9 3

ENDUP

9.4, 49

1.

Purpose:
This routine sets the ENDOFSET flag to end processing, closes the tape, and does an M:EXIT,

If no tape is being written, it displays therun totals, closes the statistics file, and runs down
I/O and does an M:EXIT,

Entry:
B ENDUP

Exit:
CAL1,9 1

ADDONE

1.

Purpose:

This routine is entered when the current account directory sector has been processed. It gets
another sector of account directory if possible. Otherwise, it branches to ENDUP if
processing of all accounts is completed.

Entry:
B ADDONE
ACFLINK has FLINK for account directory

Exit:

ERROR EXIT .

B READFAIL2 if FLINK address is not valid

NORMAL EXIT

B ENDUP if FLINK ie zero

B GETAD to queue up another read of account directory
B GETAD3 after waiting for next sector to be read in,

9-27

9.4.50

ADERROR

1. Purpose:

This routine is entered when an error is found in an account directory key. It types a
message, dumps the sector, skips o the next key, and exits.

2, Entry:
B ADERROR
3. Exit:
B ADELETE
9.4.51 IORUNDOWN
1. Purpose:
This routine loops until all DISC and tape operations are completed, then it returns,
9.4.52 FAILURE
1. Purpose:
This routine is entered if module MOVE checked the granule pointed to by CURRB and it
did not match the granule pointed to by current disc address key. It prints "SCHEDULING
ERORR***" and branches to MIXSNAP,
2, Entry:
B FAILURE
3. Exit:
BAL,RO MIXSNAP
9.4.53 DISPRUNTOTL
1. Purpose:
This routine displays the final run statistics.
2, Entry:
BAL,R15 DIS PRUNTOTL
3. Exit:
B *R15
9.4.54 DTOGRAN

1. Purpose:
This module checks a disc address to verify that (1) the DCT index is correct, (2) an HGP
exists for that DCT index, and (3) the sector number is within range.

2, Entry:
BAL,R15 DTOGRAN
R8 is disc address

3. Exit:
ERROR EXIT

B #R15 if address is bad
NORMAL EXIT
B *R15 +1 if address is valid

9-28

9.4.55 FDERR

1. Purpose:

This routine is entered if an error is detected in a file directory key. The key is skipped,
a message is typed, and the routine branches to FDLETE,

2, Entry:
B FDERR
B FDLETE

3. Exit:
B FDLETE

9.4.56 FITSNAP/FITERR

1. Purpose:
The routine is entered if there is an error in the contents of FIT. An error message is typed,
the file directory and FIT are listed, and the program branches to FDERRI,

2. Entry:
B FITSNAP
B FITERR
3. Exit:
B FDERR}

9.4.57 LISTFD

1. Purpose:

This routine lists the current file directory sector.
2. Entry:

BAL,R14 LISTFD
3. Exit:

B *R14

9.4.58 LISTFIT

1. Purpose:
This routine lists the current FIT,

2, Entry:
BAL,R14 LISTFIT

3. Exit:
B *R14

9.4.59 LISTOUTBUF

1. Purpose:’

This routine lists the current tape output buffer.
2. Entry:

BAL,R14 LISTOUTBUF

3. Exit:
B *R14

9-29

9.4.60 LISTMIX
1. Purpose:
This routine lists the current MIX sector,
2, Entry:
BAL,R14 LISTMIX
3. Exit:
B *R14
9.4.61 LISTAD
1. Purpose:
This routine lists the current account directory sector,
2. Entry:
BAL,R14 LISTAD
3. Exit:
B *R14
9.4.62 MIXSNAP/MIXERR
1. Purpose:
This routine is entered when a mix error occurs. It frees all tape buffers and branches to
EOFQ to close out the file on tape.
2, Entry:
B MIXSNAP
B MIXERR
3. Exit:
B FDERR1 if no tape is being dumped
B EOFQ if tape is being written
9.4.63 MIXRATERR
1. Purpose:
This routine is entered if the mix forward link has not been read in time. It prints an error
message and branches to MIXSNAP,
2, Entry:
B MIXRATERR
3. Exit:
B MIXSNAP
9.4.64 DATAERR
1. Purpose: 7
This routine is entered if a data granule address error has occurred. It types an error message
and branches to MIXSNAP,
2, Entry:
B DATAERR
3. Exit:
B MIXSNAP

9-30

9.4.65

FDDONE

9.4.66

i.

Purpose:

This module is entered when a file directory sector has been completed. If this is not the
last link, it reads the next link in.

Entry:
B FDDONE

Exit:

ERROR EXIT

B READFAIL3 if FLINK address is invalid,
NORMAL EXIT

B GETFDI if next sector already in core,
B GETFD to read in next sector

B ENDOFD if FLINK is zero,

ENDOFD

9.4.67

.

Purpose:
Entered when a file directory is completed. It prints next header with new account on M:LL
device after printing summaries for previous account, It then branches to NACN,

Entry:

B ENDOFD
Exit:

B NACN

CKT10

9.4.68

1.

Purpose:

This routine is entered when a file has been completely processed. It writes an :EOF record
if necessary, prints the file name and the file information summary on M:LL decice. It then
branches to GETFILE to process the next file.

Entry:
B CKT10

Exit:
B GETFILE

CODESCAN

.'o

2.

Purpose:
This routine scans the FIT for the entry whose code corresponds fo that in R2,

Entry:
BAL,R15 CODESCAN
R2 contains code to search for

Exit:
B *R15 if not found

B *R15+1 if found

9-31

9.4.69 MOVENTRY

1. Purpose:
This routine moves an entry from the FIT to a :BOF record.

2, Entry:
BAL,R15 MOVENTRY
RO is word address of entry in FIT
R4 is address of :BOF record

3. Exit:
B *R15

9.4.70 HEXTODEC

1. Purpose:
This routine converts a number from hexadecimal EBCDIC.

2, Entry:
BAL,R15 HEXTODEC
R3 is number to be converted
R1 is address to store result

3. Exit:
B *R15

9.4.71 FDLETE .
This routine branches to FILEDONEO. Keys are not removed from File Directory,

9.4.72 ADELETE
This routine branches to ENDOFD, No key removal is supported for Account Directory.

9.4.73 TACNT/TFILNME

1. Purpose:
These routine types "ACCOUNT" and an account name, or "FILE" and a FILENAME on the
operator's console,

2, Entry:
BAL,R15 TACNT to type account
BAL,R15 TFILNME to type file name

3. Exit:
B *R15

9.4.74 ACCK

1. Purpose:
Checks if current account number matches current data card. Sets ALL = =1 if all files mode,
Sets ACEQU = =1 if account number compares to card, sets ACEQU to zero if no compare.

2, Entry:

BAL,R15 ACCK
3. Exit:

B *R15

9-32

9.4.75

READFAIL

9.4.76

Purpose: ,
Entered because of an ACNCFU disc address error, Causes M:XXX abort.

Entry:

B READFAIL
Exit:

B ENDUP

READFAIL2

9.4.77

1.

Purpose:

Entered because of an account directory LINK failure. Causes M:XXX abort.
Entry:

B READFAIL2

Exit:
B ENDUP

READFAIL3

9.4.78

1.

Purpose:
Entered because of a link failure in the file directory. Causes a branch to ENDOFD to skip
fo next account,

Entry:

B READFAIL3
Exit:

B ENDOFD

READFATLS

9.4.79

1.

3.

Purpose:

Entered because of a LINK failure in a MIX, Causes branch to MIXERR1 to skip to next file,
Entry:

B READFAIL5

Exit:

B MIXERR1]

LPRINT

9.4.80

1.

Purpose:

This routine prints one line and then clears the buffer.
Entry:

BAL,R15 LPRINT

Exit:

B *R15

PLIST

1.

2,

Purpose:

This routine is used to snap out a buffer on the M:LL device.
Entry:

BAL,R15 PLIST

R1 contains number of bytes in buffer
R3 contains beginning buffer address

9-33

3. Exit:
B *R15

9.4.81 BUFSET

1. Purpose:
This routine is called to move a print line from one buffer fo another.

2, Entry:
BAL,R15 BUFSET

3. Exit:
B *R15

9.4.82 PRINT

1. Purpose:
Writes one line of print via a CALT,1 to WRTPBUF,

2, Entry:
BAL,R15 PRINT

3. Exit:
B *R15

9.4.83 SPACE

1. Purpose:
Writes N lines of blanks on M:LL via CAL1, 1 WRTBLNK where number of blanks it
supplied by R1,

2. Entry:
BAL,R15 SPACE

3. Exit:
B *R15

9.4.84 TYPEIO/TYPEIO2

1. Purpose:
This routine types a message on the operators console,

2, Entry:
BAL,R15 TYPEIO
R1 is byte address of TEXTC message

BAL,R15 TYPEIO2
R1 is byte address of message buffer
R3 is byte count

3. Exit:
B *R15

9-34

9.5 DETAILED FLOWCHART OF FAST SAVE PROCESSOR

Table 9-1. Index to FAST SAVE Flowchart

AREA FUNCTION PAGE NUMBER
INITIALIZATION 1
ACCOUNT DIRECTORY PROCESSING 2-3
FILE DIRECTORY PROCESSING . 3
FILE INFORMATION TABLE
VALIDITY TESTS AND PROCESSING 4-5
BUILD :BOF RECORD 5-6
FILE INFO TABLE HEAD-AHEAD 7
FILE BLOCKING PROCESS 8-10
FILE BLOCKING SUBROUTINES 11-13
FORCE DATA BUFFER SUBROUTINE 14
SCHEDULE DATA BUFFER SUBROUTINE 15
INDEX SECTOR CONTROL 16
RANDOM FILE PROCESSING 17
BUFFER ALLOCATION 18
DATA READING SUBROUTINE 19
INDEX SECTOR END-ACTION 19-20
RAD/DISC 1/O SUBROUTINE 20
RAD/DISC END-ACTION RECEIVERS 21
MAG TAPE 1/O SUBROUTINE 22
TAPE SENTINEL CONTROL SUBROUTINE 23
ADDITIONAL TAPE SENTINEL .

SUBROUTINES 24-25
I/O WAIT SUBROUTINE 25
ACCOUNT DIRECTORY ERROR & END

PROCEDURES 26
DISC ADDRESS VALIDITY SUBROUTINE 27
FILE DIRECTORY ERROR SUBROUTINE 27
LISTING SUBROUTINES (BUFFERS, - SECTORS, ETC...) 28
FILE DIRECTORY COMPLETION 29
MASTER INDEX ERROR CONTROL 29
FILE DIRECTORY SECTOR COMPLETED 30
CURRENT FILE COMPLETED 30
MISC. SUBROUTINES 31-32
INTERPRET CONTROL CARD

LINK FAILURE CONTROL

PAGING TABLES

9-35

Initiate 4

NOIPRI

(START)

Initiate 1 ¢

- Perform M:GP
INIT IPOOL
Tables and
Pointers

Perform M:GP
Initialize tape and
data paging tables

ROCARD y
INTE

Read control card &
interpret command

Run
mode se

Examine
CCITAB for

required addr's
IE,DCT1,HGP/

DISCIO

Ist HGP in
BPM always

Read ACNCFU —
from system device

€ontain valid

pointer to account yes
3 ‘
ir,

System Device

GETAD2

ape
output

NEWREEL

Open initial
output tape

vy Pg.23

WAIDAT

Write data file
if FPURGE mode

Pg. 1

Pg. 124

GATAD

DISCID

Read ad
sector

7 Successive
\ account directory

Pg. 20

GATAD3 y

sectors loop re-entry
point return to

Preserve all sector
info. IE, NAYV,
BLANK, FLNK

'|GETAD3 if read-

! ahead, GETAD if
L {not

Perform
sector blink
test

FAILED

PASSED

Pg. 2

Figure 9-1.

9-36

Detailed Flowchart of FILE SAVE

-

Successive key |

loop entry for
Account Direct+
ory Processing

N —

NACN

Advance sector
indexing cells to
next key

Accou
skip mode

Pg. 2

ACCK

ACCK

ACCK
Perform test to see | |
if card matches a |no
ACN? in ad key
Pg. 34

iles in account

See if card matches
current ACN¥ in
ad key

See if card matches
current ACN¥ in
ad key

Pg. 34

Card
match key

READATA

Read next

READATA

data card

Card
match key

Pg. 34

Read next data
card Pg. 3
Pg. 34
Figure 9-1. Detailed Flowchart of FILE SAVE (Cont.)

9-37

SETALLF

‘ Set switch

NOTLB

to process
all files in y
account Move ACNA
from sector
to slot
NOPRNT ¥

Extract file
directory disc
addrs from ad key

DTOGRAN

Perform disc addrs
. validity tests
1

Pg. 27

ADERROR disc addrs

[1nitial sector
always read

Pg. 26 GETFD yes I with wait
{ DISCIO |
Perform disc I/0
W/WAIT =
Pg. 20
Subsequent
GETFD] _|sector read-
|Initialize sector | ahead will
i i [return here
indexing cells

queueing

Account dir.‘ s

read-ahead
via NOWAIT, —7

Blink
test OK

READ-
FAILS

Can
Read-Ahea

DTOGRAN

Verify disc
address

Y

Pg. 27

no

yes

QSECTOR |
Set up read .
ahead

preserve sector info,

. Pg. 20

GETFILE

Pg. 4

Pg.3

Figure 9-1.

9-38

Deatailed Flowchart of FILE SAVE (Cont.)

i

|
|
!

GETFILE

| indexing variable
" cells

Advance all sector

:GETDFIT l

Extract next file
into table disc addr§
from current fd key

DTOGRAN

Verify fit disc.
addrs

it been read vi

FILECHKS

Clear :BOF
Record
. Buffer

FNENOK ame match file
no dir. key

Move file
name to :BOF

Process
all files

Pg. 4

CBYTE

Data card match
current file nome

1

READATA

Read next data
card

read head yes change on
directory new card
no FLINK #0 Pg. 5
yes
—DIXIO l
I
Read fit with Reset
wait /O DTOGRAN account match
Verify the file flag
< Pg. 20 direction FLINK
i Pg. 5
FILECHKS |
QSECTOR i
Read next l
sector r
Figure 9-1. Detailed Flowchart of FILE SAVE (Cont.)

9-3%

Select

file mode

yes

Skip
file mode

GETFILE

(NOFCK)

Clear all IPOOL
tables, reset index
read-ahead cells

!

Release data
granule stack

!

CODESCAN

Find 'C' entry
in the F.I.T.

DTOGRAN

Verify FDA
from F.I.T.

CODESCAN

Find 'D’ entry
in fit

Fit
contain 'D’
entry

Set :BOF pointer,
clear tape label
buffers

Current
file synon

yes

QUEMIX

Quevue first
sector if indices

Pg. 5

Pg. 28 yes
NOCHG2
Set read-ahead
for index chain
READATA
Read next data
card
Pg. 34
y
Type message
about data card
invalid
Figure - 9-1. Detailed Flowchart of FILE SAVE (Cont.)

9-40

Commence MOVENTRY
:BOF

— d Move '06' param,
reco:] to :BOF
/F' const,
.~ have passwor Pg. 31
no | Complete :BOF
record with '09'
entry
Move it to L
| print line
| .
‘ " Current
{ file random
NOPWD?2 no
; CODESCAN _ ©
Search fit for 5 J yes
105" code l - ‘ L Save
t P 36 ‘ Insert random file \by hour set
9- " identifier into
/)5. :BOF
code found |
NOROM
Compute :BOF
. record size and
MOVENTRY - save
: -]
Move '05' param
to :BOF GETDAT
L CODESCAN
<(————_—_
, Po. 31 Search fit for
. CODESCAN 'DA' entry
Search fit for Pg. 30
'06' code -
. — Fit
contain 'DA!

cod/ e

yes

Figure 9-1. Detailed Flowchart of FILE SAVE (Cont.)

9-41

(GETCRDATE)
\

Insert file creation

date into tape
label

NOCRDATE

Offset fc;pe label
fo appear as
TEXTC

yes
QSECTOR

Queue next
fit in

>l Pg. 20
NO:BOFOO

BOFQUE
Send :BOF

record

 NOBOFQ/
Fit

“read-chead set
off yes
no
Pull next fit Set up special
D/A out from FD SYNON record
key
A Y
DTOGRAN MOVEI
Verify next > Insert record
fit D/A queue to tape
Pg. 27 Pg. 25
Pg. 30

NO:BOF2

File
have index
chain

GETMIX .

Pg. 7

Release all data
pages & all data
table entries

Has
FDA been
read

- QUEMIX

Read FDA now

Pg. 16

GET-
MIX1

Pg. 8

Pg. 17

Figure 9-1. Detailed Flowchart of FILE SAVE (Cont.)

9-42

Tetargt)
. GETMIXT

N—————

A

IOSPIM

Wait if necessary
for 1/O '

¢ Pg. 25

Set up sector info, :
and buffer pointers

Loop entry for
successive index
sectors

NXTSECT Olgl_ o

~

e
" Tape
\\outpu>:o

S

o\,
yes

GET FOUR

Read data into
all pages

l) Pg. 19

" Dum
“index sector

Snap current
sector

¥

Pg. 28

—

-
- T;N
“buffer in .
progy yes |

no

<
e S —

GETTBVF |

Request tape l
buffer

i

| Pg. 18

Aqu&\

’\soﬁsfied)

\1

Store tape buffer
pointer and

|
é
index ‘;

GETKEYI

INIT WORDO of
tape buffer

Pg. 11

GETKEY

GETKEY from

index sector

Pg. 13

“Tape

< output

yes

Pg. 8

" Get key output !
from current tape
: output buffer '

- " Key

‘ t>0
Qun

! MOVEKEY

Move record key
to tape buffer

A2 | Pg. 12
MOVE 4
Move data record \
to buffer ?
l Pg. i2
/‘DG?G\\.
tecord all in _ OT~
\ buffer - \DONE
~"no
,/ Pg. 14
\l yes
SCHEDULE
" Release data
. buffers used
_completely |
Pg. 15

Figure 9-1.

9-43

Detailed flowchart of FILE SAVE (Cont.)

Return
from
Scheduler

Read as many
granules as possible

Pg. 19

it in index
chain yet

ey continued
bit set

Clear P2-jnternal
continued flag

KEYUP
Move blocking

buffer key flag
word

Pg. 11

n buffer for
a new key

Pg. 8
QUEREC < A3. j
Queue tape
buffer now
Pg. 11 ew key firs
appearance
Pg. 8

Room
in buffer for a
new key

Pg. 8
QUEREC
Queve tape buffer
now
Pg. T
)
GETTBUF
Request new tape
buffer

Pg. 18

Requesf
satisfied

Set PBS in
buffer

Pg. 11

Figure 9-1.

9-44

Detailed Flowchart of FILE SAVE (Cont.)

Record was
not
(NOTDONE) | completely
moved
\
Set flag bit Flag bit P2,
indicating record |__ | independent
continued in next of other
block flags

[
KEYUP

Move flag word
to tape buffer

Pg. 1

A

QUEREC

Queve old
blocking buffer

« Pg. 1

1

GETTBUF

Request new tape
buffer page

Pg. 1

Move old key
to new tape |.

buffer

cell 'LASTKEY"
points to old key
position in old
buffer

y
Mark all new
blocking

Set # bytes left
to XFER to
tape

variable -cells

Pg. 10

e

\

Reset EOF flag
and P2 continue
flag

Y

KEYUP

Move key flag
word to buffer

Pg. 1

| QUEREC |
Write tape
buffer

CKTIO!1

g. 30

Figure 9-1.

9-45

Detailed Flowchart of FILE SAVE (Cont.)

(KEvup)

y

Or all tape key
flags into 0-15 of
R1

!

Set record byte
count into 16~31
of R1

Move R1 into
Blocking Buffer

Position at end of
Record Key

(Exit via R15)

(QUEREC)

y

(GETKEYT)

Keydisp contains

length of buffer

round to total
words

Place PBS into
16=31 of R1-set
R1 into buffer

:

'

Set up I/O
transfer request
registers

Set Keydisp=4
Ist position in
buffer

Pg. 11

!

MTIO

Queve Tape
Record

Listout

Block

Snap. Last Output

y

(Exit via R15)

| Page

Exit via
R15

Figure 9-1.

Detailed Flowchart of FILE SAVE (Cont.)

9-46

(MOVEKEY)

Increment NKEY in

current buf., pick

up Keydisp as index
to buf.

¥

Keydisp moved to
Lastkey for in not
done sequence

¥

Xfer Record Key
from Index Sector to
Tape Buffer

!

Save New Indexing
Pointers for Data
Xfer

A
(Exit via 15)

Pointer Match
Key in Sectg

in Current
Buffer for Complefe Yes
Rec.

No

Calculate how

many bytes will fi}

decrement return
by one

urrent

Page 26

File Random

{

update Acent '9
Table with # bytes

Yes

(]

Y

Pg. 12

Move Record
L to Current
Buffer

moved to Buffer

A
dF:re 124
all moved

Figure 9-1.

Detailed Flowchart of FILE SAVE (Cont.)

9-47

Pg. 13

GETKEY CHKRWS

Clear Index key j DA=0
variables for new Does RWS =0
key FETCH

Y Yes

QUEMIX
Attempt to Read
File FLINK

y Page 16

Advance Index
Sector indexing
Cells

CHKEND
Insure no
file Error

Page 13
Extract Key
variables required

COMPARE

Force a
Buffer Free

Data Disc
Addrs been read

Page 14
Yes age DATASPIN 1
1OSPIN QUEMIX i
Wait for 1/0O Try to Read
if necessary Index FLINK
Page 25 Page 16

Figure 9-1. Detailed Flowchart of FILE SAVE (Cont.)

9-48

QERROR

SCHEDULE

QER

Try to release
normally

elease
counter > 0
yet

.
o

Pg. 14

QUERR OR /

yes

Set up loop thru
tables, set release
switch and

counters i

RORO

Get entry from i
disc addrs tables

Buffer

y

M

Strip mask from

data stack

disc addrs place intg

QERROROO y

Bump release
counter and avail.

data page counter
]

T
Clear disc addrs
and accni'g table
i entry

'

QERROR1 §

Release data
buffer page

free

*no

Get paiallel entry
from accnt'g table |

| GETFOWR .

Read data info
released buffers

QERROR10

_~table loop

no

Y

Y

&plety ’
‘ i

QERROR2

. | Place current data 1
yes| addrs in data stack !

Figure 9-1.

9-49

Detailed Flowchart of FILE SAVE (Cont,)

Pg. 15

SCHEDULE

Loop

. complete
Set loop and !
counters thru data E
tables |
Set condition
h codes as to release
SCHEDULE] v count
Get entry from

disc addrs table

(EXIT via R7)

Get accnt'g table

entry parallel to
D/A

all possible
bytes from D/,

no

yes

Clear disc addrs &
accnt'g table
entry

<

SCHEDULE1Q y

Bump release
counter and release
data buffer

Figure 9-1. Detailed Flowchart of FILE SAVE (Cont.)

Y

buffer WA in

Find current
buffer table J

Xnd
buffer addrs

Pg. 29

< o
yes

Release current |

IPOOL buffer J

t

Current
sector have

i yes

FLINK™
Read y? o
P

l yes

IOSPIN
Wait for 1/0O

if necessary

MIX-
RATERR

Pg. 29

BLINK Test

FLINK no
Pg. 3d

Pg. 16

Set all pointers
to new sector

End-action set
, to 'MIXENAC'

y

_QUEMIX
Try to read
FLINK QUEMIX
NXT-
SECTR EXIT N
- Pg. 8)
GETIBVE
Request IPOOL

buffer

addrs.

PTOGRAN i
Is FLINK a valid

rlncrement # of
i indeces Q'd set

B 1/0 call
Y

DISCIO2

Queve 1/O
request

Figure 9-1.

9-51

Detailed Flowchart of FILE SAVE (Cont.)

RANFILE

Calculate # of bytes
bytes in file-set
filesize

Pg. 30
RANFILE1

Find HGP that

matches random
disc addrs

SETMASK yes

Release all
data buffers |«

\ Pg. 17
Set up 1/O RANMOVE
> request
Set up loop based
dat
GETDBUF e
Request data
buffer nl
18 IOSPIN
Wait on 1/O if
satisfied necessary for data
Pg.
\
DISCIO2 Create tape
key record
Queve data 1/0
\
QUEREC
data buffers Send tape key
full to tape
y Pg. 11

RANMOVE

Transfer data

KT101

to tape buffers

Create tape data
record buffer

!

All - QUEREC
do 3
" g. 30 1/0 Send data buffer
File in progress to tape
complete
yes
complete
Figure 9-1. Detailed Flowchart of FILE SAVE (Cont,)

9-52

(GETTBUF)

Set register
pointers to tape
page tables

{ GETDBUF)

Set register
pointers to data
page tables

GETTBUFI0 y

GETBUF

GETBUF

Buffer
counter

no

y

Get eniry
from selected
table

Scan selected table

(GETTBUF)

y

Set register
pointers to index
pool tables

A

for free buffer

Set condition codesl
to > 0 if buffer
found, else CC=0

EXIT viaR15

Returns buf
addrs in R8

or = zero

b

[(EXITviaR2)
h

Pg. 18

Figure 9-1.

Detailed Flowchart of FILE SAVE (Cont,)

routine

.

Only data
reading

Pg. 19

Part of
index sector
end action

—

(BUILD)

A

Pull entry from
data granule
stack

4

Set up 1/O

—>] queuing call

I End-acfiorJ

I set to

I — QNCOM
~ _1

A -

DISCIO2

Queve data
request

GETDBUF
Request data page
buffer
Pg. 18
yes
no

Increment data
wait count-push

Set loop thru this
new index sector
by keys

Pull up data disc
addrs from next

Place disc addrs
into temp stack

disc addrs back

Figure 9-1.

Detailed Flowchart of FILE SAVE (Cont.)

Index sector
end action
receiver

Bump data stack
up by count saved
{ in temp stack

Rl

(QsecToR

Set up 1/O wait
cell $ 1/0 args.

End action
—— 4 set to
y | 'FITENAC'
DISCIO2 —
Queue 1/0
request

EXIT via R15

b

nd-action
set by
calling
routine

(DISCIO2)

Pg. 20

Set to
‘DENAC'

9-55

Relocate data DISCIO
' stack up to new
. boundary
—_ i__ e Set no wait after Set wait after
queue of queve of request
Move temp stack request
_ - contents into data
! stack I I
! y
| - Refer to Save registers set
i IT to BPM \ BPM up proper
| 1/O cleanup Technical [~ call sequence
Documents
I U +
Moved into
bottom side i Call NEWQ
of data { | in BPM root
stack !
Restore regs—-
_ < —
as received ‘ i yes
EXIT via R15 /O o
complete
‘—""'\ - no
EXIT + one via
R15 /‘
Figure 9-1. Detailed Flowchart of FILE SAVE (Cont,)

(DENAC)

(FITENAC)

ENCOM

Pg. 21

MIXENAC

Clear 1/O wait Clear 1/0 wait Clear 1/O wait Clear I/0 wait
cell cell - clear 1/O cell - free 1/O in cell - set off I/O
in progress progress in progress, -

y

Decrement \

\\! total disc N
activity

A
y
BUILD

Move sector data
addrs to stack

Pg. 19

All End~Action Receivers for Disc I/O Activity

Figure 9-1.

Detailed Flowchart

9-56

of FILE SAVE (Cont.)

DATA
Transfer End-|
Action
Receiver

Pg. 22

—(WTENAC)

i

Release Tape out-~ i

put Buffer Decre~ |

ment Tape Activi |
o & ey

_ EORCK
Increment tape ‘ Set end action | [Sef FCN of Reel -
activity count 1 rzc:iver as | Code as Hit ~No
get 1/O call ™ Sentenac' feesedall
iste . . " Regs
Is
this a data i Set for
Xfer Call No ! Flag
es
o o
Set up I/O Xfer pt
using current Data
Buffer Pointers EORCKI
y GONEWQ y
Clear current tape Set CC'“.i“Q sequenc
pointers set end- as a Write-Oper.
action to "WTENAC i EORCK 2
Page 22
- NEWQ
GONEW:! Tape - Call BPM 1/O ==
Output Yes Queving l
™~ |__Routine
i MUL,::'E MTIOX Refer to BPM
Exit via R15 Technical
Simulate end 4 Manual for
Action to drive Descripti
Tables
Page 23

Figure 9-1.

9-57

Detailed Flowchart of FILE SAVE (Cont.)

Pg. 23

EOTWAIT IWTERR) (SIMULATE > (NENREEL)

4

Set Current Acn # | Output Write Set up Dummy Issue CAL to oper
as new reel's Acn? . Error MSG Normal TYC , New Device

GOEOR Y
BAL, 11 To

Output End of appropriate end

Reel Sentinels Force a reel Action Routine
Page 24~ chg. o

Output New Reel Page 22 m
Marker On LL Ex“, Tape
Device 1/0
Page 22 Save DCTX for
NEWREEL _ - Subsequent 1/O
Mount new output Calls
Reel (SENTENAC) l
' v Rewind new
Decrement TAPG device and
Activity Count write sentinels
Write Old File:
:BUF if on Vol > 1

Exit via R15

¥
xit to BPM
1/0 Cleanup

(Exit Via SR3)

Figure 9~1. Detailed Flowchart of FILE SAVE (Cont.)

9-58

(WRTDAT !

i Sef up Date File
:BUF Record

]

MOVE 1

Xfer to Ring :
i BUFFER and |
| QUEUE

l Page 25

Set up date file
tape label record

© MOVEI
Xfer to ring
Buffer and QUEUE
B
& Page 25
EOFQ |
QUEUE :EOF
(RECORD
— |
Page 25

-

/DCTXERR

OPNABN)
OPNERR /

—

!

|
i

Issue Abort CAL |
to Halt
RUN

(Exit via R1)4

Pg. 24

WRTMARR
T QUEUE TAPE

mark to Reel 1

[U .J

Page 25

MOVE 1]
Move :EUV record
and QUEUE it

Page 25

WRTMARK
QUEUE Tape
Mark

y Page 25

MOVEI i
Move :EOR l
Record & Q i

Page 25
y 9

Issue CAL to
CLOSE Reel

Figure 9-1.

Detailed Flowchart of FILE SAVE (Cont.)

9-59

EOFQ

WRTMARK

QUEUE TAPE
MARK

Y

. MOVEI

Move and Q
:EOF Record

!

WRTMARK

Queve Tape
Mark

Exit Via 15

WRTMARK

y

Set FCN Code
for Tape Mark

!

MT10

QUEUE 1/0
Request

Page 22

BOFQUE

MOVE 1
Move & QUEUE
:BUF Record

MOVE 1

Move & QUEUE
Tape Label Record

WRTMARK

QUEUE Tape
MARK

(Exit via 15)

IOSPIN

Exit via R7

Reset Pointer to

; Bottom of ring

! buffer

Xfer Record to
Ring Buffer

1

Set up I/O
Xfer Call

MTIO

QUEUE 1/0
Request

Page 2
\

(Exit via R15)

Figure 9-1.

Detailed Format of FILE SAVE (Cont,)

ENDUP

GOERR

QUEUE End of
Reel Sentinel

fage 24
Y

DISPRUNTOTL
Display Run
Statistics

| Page 27
TIORUNDWN

Run Down any
I/O in progress

FPREX
STOP

|
N
Issue Exit
Cal to
Quit

Yes

ADDONE

lYes

IOSPIN

Wait if
necessary

Page 25

Page 1

IORUNDWN

Disc

Yes

Exit via R1

e

Set up I/0
| Call to Read
FLINK

Page 1

(FAILURE)
_

Pg. 26
(ADERROR)

TYPEID

Type Error

MSG

'

Page 35

TYPEIO

Type ACN#

from Key

Debug

Yes

LISTAD

Print Error
MSG on LL

Device

MIXSNAR
Abort File

Page 29

Snap Curre
Ad Sector

~ Page 25

nt

Figure 9-1.

9-61

Detailed Flowchart of FILE SAVE (Cont.)

(DISPRUNTOTL)

Y

Set up all final
totals from run

-

[

Get entry from
totals table

1
i
|

Insert decimal and
print line message
& print

no

Loop
done

_RI5

DTOGRAN

DCT
in range

exist for DCT

~Sector
" in range for
device

yes

no
‘ N
(EXIT viaR15)

Increment

return
address

Pg. 27
FDERR -

y

TYPEIO

Type error
message

L Pg. 35

Print error messag
on LL device

Debug
mode

yes
LISTED

Snap current FD
sector PME ?

FDERR] je——
TEILNME

Type file
name

| pg. 35
TPACNT

Type cx;‘rrent
ACN
AN
Pg. 35

Figure 9-1.

Detailed Flowchart of FILE SAVE (Cont.)

9-62

7 FITSNAP j
FITERR

LISTFIT

Snap current file
i info. table

A

LISTFD 1

Snap current FD i
sector |

LISTFD

LISTFIT

Pg. 28

LISTOUTBUF (LISTMIX)

Set pointers to
current FD sector

Set pointers to

l Set pointers to

current FIT sector || last output buffer

Set pointers

to current
; index sector
¥ ¥

PLIST

Snap area

{

"

TYPEIO

Type error msg.

Pg. 35

!— Print error msg.
on LL device

FDERR1

Pg. 35

(EXIT viaR14)

f LISTAD)

A

Set pointers to
current AD sector

PLIST

Snap area ’

\ EXIT l/ia lei

Figure 9-1.

9-63

Detailed Flowchart of FILE SAVE (Cont.)

MIXSNAP

Snap 1/O tables
snap file control
table

MIXERR
LISTMIX

Snap current
index sector

| Release all
tape
buffers

EOFQ

Queve :EOF
record

Pg. 25

(MIXRATERR)
[

Print rate error
msg. on LL
device

DATAERR

FDERR1

9. 27

Print data addrs.
error msg. on
LL device

|__DIOGRAN

| Verify FLINK

10SPIN

et "
\y -¥es |Wait if
necessar
l/ no Pg. 25
. Set up 1/O call
i for FLINK

Pg. 3

Figure 9-1.

Detailed Flowchart of FILE SAVE (Cont,)

(ENDOFD)

//N
ccounts only

_
yes

no
Set up end

of account
totals

© Display latest
activity in

" account
| I

\

Display
Account
| Totals

2

—

|
| Clear ACN

% accumulators
|

NACN\\

i

//Pg. 2

.

CKTIO
CKTIOl

i

EOFQ

Queve :EOF

record l

B Pg. 25

Y
Update
account=
accum- |
ulators

N
GOGET

“Pg. 31

Pg. 30
(CODESCAN)

[Iniﬁol ize pointers

| & index's
i
,.’Code
< found TN——
\\ v yes
no
P Last
\q ‘ entry yes
no
Increment .
| indexing 1
pointers ;
i
EXIT via R15
e
5

Incremen;*x

return i

address I

||

Figure 9-1.

9-65

Detailed Flowchart of FILE SAVE (Cont,)

‘ GOGET) MOVENTRY HEXTODEC
o !
i Update accou Move code "} Set up count

! accumulators
;
i

i

Transfer file
name to print
Iine \

HEXTODEC

Place file byte
count on line

S T

Place file
creation date
on line

B

LPRINT ;

rint & clear
print line

i Pg."35
Clear file
accumulators |

GETFILE
Pg. 4

word to :BOF
record

-

between commdgs

—

I Move coded
. enfries to

:BOF record

EXIT via R15

Convert 4 bits
to decimal
equivalent

!

Move decimal
byte to print
line

-

Insert comma
in place in
print line

"Hex
B *\’_
@er done ™ —

(TACNT)

Pg. 31

(TFILNMF)
S

Y

Set pointers to |
type current
account #

R

!

| Set pointers to
type current
file name

TYPEIO

Type msg.

EXIT via R15

4

(EXIT via R15)

Figure 9-1.

Detailed Flowchart of FILE SAVE (Cont.)

9-66

RS —

{INTER
N

_~"Dump
Zcommand hit

DSENSED
/

Set switch |

- '

command = Log>———> and
yes |

! mode

INTER1
Curre—_rjﬁozﬂ_(s_> Set switch
e

Set switch
“command = LIST yes | Set switch

< .
0 i Set switch

yes |
L
no

A

Jpu— -~
EXIT viaR15)
.

|

Pg. 32

Fit
command 5 Set —
’ P ' Switch |
“ yes
no

/Direcfc;m_ | Set

. command yes"ﬁ Switch i—

no
. Dump Set
~ kcommond ves Switch
/lm ! o
TN
" Label ™ Set
&ommond Switch
~ o yes :

- L
CKENIE ne

. “End ‘ | Set
- command ™~ » Switch
™~ yes 1

T

" Mode SEQERR
~ set !
L no 7
I;es Pg. 33
Increment
return
address

Figure 9-1. Detailed Flowchart of FILE SAVE (Cont.)

9-67

DSENSED

(SEQERR)

Pg. 33

y
TYPEIO

Select Set Type control card
command Switch sequence error
yes
no Pg. 35
Issue abort
Start Set cal
command Switch
no
Skip Set X STOP
suritch ~(EXIT via R15) ()
no
Hour Set
command Switch
no
Set
Switch
command
no
Figure 9-1. Detailed Flowchart of FILE SAVE (Cont.)

9-68

< ACCK)

¥ CBYTE

Compare data
card to current
ACNII

equal

€iame on card

READATA

{

Issue cal to
read a card

y
‘ EXIT via R14)

| Set 'all’
switch

Reset ‘all’
switch

A

Reset 'ACEQU!

> switch

)
< EXIT via R15)

CYBTE

Compare byte
strings pointed
to by R4R5

EXIT + 2

EXIT + 1

(PASSED >

4

Set up msg. about
invalid data card

Pg. 34

READATA

Read new data
card

Ne
account speci
“fied

Figure 9-1.

9-69

Detailed Flowchart of FILE SAVE (Cont.)

(READFAIL)

TYPE10

Type line
error msg

READFAIL2

(READFAIL3)
)

Pg. 35

(READFAILS ’

w%
ABORT

(ABORT)

TYPE10 TYPE1O y TYPET0
Type error Type error Type error
msg. msg. msg.

LPRING

(PLIST ‘

PRINT
Print the Set up M:SNAP
line arguments
Clear print Issue SNAP
line CAL

lyes

EXIT via R15

Issue CAL
to pring

(TYPEIO2 |)
i

(TYPE]O)
!

Set no
new line

Set #
bytes

——

Issue CAL

(EXIT via R15)

w%
EXIT viaR15

to type msg.

{ EXIT viaR15 ’

Figure 9-1.

9-70

Detailed Flowchart of FILE SAVE (Cont,)

RB!

DBUF_

RBHIST

PAGING TABLES

All tables are parallel as

to function
DATA INVOICES
Disc addrs.
contained in IBUF WA of f
DATA PAGE INDEX
| BUFFER i
INDEXDA —
WA of Disc addrs. T
contajned '
DATA o in 4 words
BUFFER buffer l
of bytes
used from
tab granule |__/
Length of tables
defined in cell
'DAPAGES'
'DSTACK! —>» STACK
1| STACKSIZE 1
'STACK' —3» Size defined as # of

Figure 9-2.

4 words

Pg. 36

TAPE

WA of
tape

BUFFER
PAGE

Length defined
by 'TAPAGES'

DATA

STACK

IBUF Buffers X64+64

Formats of Paging Tables

9-71

9.6 TABLES

The following tables describe the parameters and positions of information internally. These tables are set

to ‘FO0' BPM/BTM parameters, and any adjustment will change the operating characteristics of FAST SAVE,

Table 9-2. Table Key Lengths
NAME EQU MEANING
FDKEYL 41 File directory keys
ACDKEYL 21 Account directory keys
MIXKEYL 14 Total index sector key
Table 9-3. First Key Displacement in Sectors
NAME EQU MEANING
MIDISP 12 Master index displacement
ACDISP 12 Account directory displacement
FDDISP 12 File directory displacement
Table 9-4. Account Directory Displacement
NAME EQU MEANING
ADKBD -6 Key and +1 to byte 3 of disc address
ADKFD 12 Key start to byte 0 of disc address
Table 9-5. File Directory Displacement
NAME ’ EQU MEANING
FDKBD -6 Key end +1 to byte 3 of disc address
FDKFD 32 Keystart to bytes 0 of disc address
FDBKEOF -3 From key end +1 to EOF byte

9-72

Table 9-6.

Master Index Displacement

NAME EQU MEANING
MIKBD -6 Key end +1 to byte 3 of disc address
Table ?-7. 1/O Queueing Function Codes

NAME EQU MEANING
IOPRI X'FF' Background 1/O priority
READFC 0 GT and/or disc read
WRT 1 Write GT
BSR 4 Backspace record
FSR 5 Forward space record
BSF 6 Backspace file
FSF 7 Forward space file
WTM 8 Write tape mark
REWOL 9 Rewind on-line
REWOFL 10 Rewind off=line
GTSENS 1 GT Sense
READRCVR 14 Read GT with Recovery
READREV 16 GT Read Reverse
READISC 0 Read DC
WRTDISC Write DC
CHKWRT 4 Write with check write
RETRY 20 Retry count

9-73

Table 9-8. Data Names and Definitions

DATA NAME DEFINITION

ACBLINK Backward link for current account directory sector,

ACBUF Aécount directory sector buffer,

ACSIZE Size of current account directory sector.

ACFLINK Forward link for current account directory sector.

BLDISP Displacement into data granule,

CURBUF Current buffer address.

CURDBLK Current data granule buffer address.

CURINDX Current table index.

CURRB Points to current disc address table.

CURRMIX Current sector index,

DBUF Table contains address of data granule buffers,

DCT1 Address of DCTT,)

DSTACK Data Stack containing granule addresses,

FDA First index sector address.

FDBLINK Backward link for current file directory.

FDBUF Current file directory sector buffer.

FDFLINK Forward link for current file directory.

FDSIZE Size of current file directory sector,

FITBUF File information table buffer.

FITDA Disc address of current FIT,

GRANULEADR Current data granule disc address.

IBUF Table contains address of index buffers.

INDEXDA Table contains disc address of all data granules referenced in
current index buffer,

KEYDISP Current key displacement into Index buffer,

MISIZE Current sector NAV,

MIXBUF Address of current MIX buffer.,

NEWQ Address of monitor NEWQ routine,

NEXACN Next account number index.

NEXFILE Next file directory index.

NEXTMIX Next index to current sector,

ORG X'09' entry from FIT for current file.

PBS Previous block size for tape record.

9-74

Table 9-8. Data Names and Definitions (Cont.)

DATA NAME DEFINITION

RBHIST Table contains number of bytes used from each data granule.
RB1 Data disc address for data granules,

RSTORE Number of granules in current RANDOM file.

RWS Record size.

SYNFLAG Specifies synonomous file if non-zero.

TBUF Table contains address of tape buffers.

For formats of FILE DIRECTORY, ACCOUNT DIRECTORY, FIT, MIX, and ACNCFU see
BPM Technical Manual FILE MANAGEMENT CHAPTER,

9-75

10.0 FILE ANALYZER (FANALYZE) PROCESSOR

10. 1 FUNCTIONAL OVERVIEW
The File Analyzer (Fanalyze) processor is designed to provide fast reliability checks on a large BPM/BTM

file management system. It verifies the granule pool bit maps, checks all linkages throughout the account
and file directories, and master index blocks, and produces a log on the M:LO device with pertinent in-
formation concerning the file structure. Fanalyze provides a general picture of the file system, and through

the use of various options, a more detailed examination can be made if errors are found.

10.2 INTERFACE
File Analyzer is able to operate under any release version of BPM/BTM since and including F00, provided
it has these minimal hardware requirements:

1. Card Reader

2. Line Printer

3. Console Teletype

4

One or more Rads and or Packs

10.3 OPERATIONAL OVERVIEW

The File Analyzer program must run in the :SYS account as a privileged processor in order to gain access to

the account directory, file directory, and the BPM/BTM queuing routines. To load Fanalyze, the standard
file $::SPECIALS and FANROM should be selected from the Bl tape, and then the LOCCT name Fanalyze
can be loaded during Pass3 of a sysgen. If loading from BI deck, a stack size of at least 200 is required.
The compressed for Fanalyze is on the CI tape as CN706124 which is RCVR2, An assembly option, at
LINE 8 of CN706124, which is:

FANLZ EQU 1 0 =RCVR2
Setting FANLZ equal to 1 will give you FANALYZE,

10.3.1 FILE ANALYZER OPTIONS
The File Analyze processor is called by specifying the processor name, and if desired, several options. If

no options are specified, FANALYZE will default to the VERIFY option.

IFANALYZE option,

where option may be anyone or more of the following:

10-1

VERIFY

NOMAP

ANLZ

DATA

NOLIST

AD

FD

perform a validity check. [f VERIFY is specified without the NOMAP option, a copy

of the existing granule pool map is created in the background area, Than all account
directories, file directories, file information tables, master index blocks, (level 0
through level n) and file data granules are allocated space on a master copy granule

map in the background area. The monitor map is compared against the master map, and
the two maps are snapped for evaluation if an error is detected. All linkages are checked
and linkage failures are reported whenever found. The VERIFY option will only compare
against existing maps. At program completion, it is up to the user to determine from .

the snaps taken, if RECOVER2 should be run.
performs all the validity checks except for the granule pool maps.

(account, filename) specifies how much output the analyzer will produce. No
granule map work is attempted but the file information table is listed and all master
index entries are listed. All linkage checks are performed and disk addresses are

verified, Omission of filename will cause a listing for all files in the specified account.

specifies that all data granules are to be format=listed on the M:LO device at the com~

pletion of an analyze pass on one file. This option is valid only when used with ANLZ,

specifies that no format listing of file information is to be done. 1If errors are encountered,

the account name and file name are logged before the snap is taken on the M:LO device.

specifies that the account directory sectors are to be printed as they are encountered.

When used by itself, this option will list all account directory sectors.

specifies that the file directory sectors are to be printed as they are encountered. When

used by itself, this option will list all file directory sectors.

10.3.2 Error Processing
All snaps (hex dumps, error messages, etc.) produced during FANALYZE processing, are preceded by a one-

word title. These one-word titles are as follows.

ANLX~-DMP

CALLSET

All snaps with this title are due to granule map comparisons. The map words that
failed comparisons are found in R2 and R3. The starting address may be found in R6

and R7, The index value to both maps is located in R1.

Any snap with this title resulted from an 1/O failure (i.e., a TYC of 8 or 9). The
1/0 calling sequence is placed into the registers as they were for the 1/O call to
NEWQ. The registers are as follows: -

RO end-action address (word address)

R1 end=action information

R12 In byte format, FC/PRI/NRT/DCTX, where FC is the /O function code, PRI
is the priority for this request, NRT is the number of recovery tries, and DCTX
is the DCT1 index.

10-2

R13 address of intended buffer (byte address)
R14 Read/write size (number of bytes)
R15 Disk address (DCTX/sector number)

An additional snap is taken of the buffer that was due fo receive the data. At this point the program error exits.
FDKEY A snap with this title is a snap of the current file directory key that contained an invalid

file information table address,

OLINKER A snap with this title is a snap of the current index used at a BLINK failure when the ANLZ

option is being used. No repair is made or attempted.

CHAINERR A snap with this title is a snap of the current pyramid (upper level index granule) block on a
BLINK/FLINK error. No repair is made or attempted. This error snap is encountered only
when the ANLZ option is running.

PYR~ERR A snap with this title is a snap of the current upper level index granule on BLINK failures.
This will occur while the ANLZ option is attempting to find the first block on the highest
level and finds a BLINK failure.

CHN-ERR A snap with this title is a snap of the current index block and a BLINK/FLINK failure if

the DATA option encounters g link failure.

10.3.3 Error Messages

MESSAGE DESCRIPTION
Above data address bad An invalid master index data address location was found
during the ANLZ run,
Account directory and file The granule pool map showed dual allocation of granules for
directory conflict the two directories.
Account directory bad, can't A link failure occurred in the account directory

reconstruct HGP

Account directory bad HGP VERIFY found a bad ACNCFU address or a nonzero BLINK

reconstruction halted in the first AD sector

Bad fit address The file directory key contained an invalid FIT disk address,
The address is printed to the right of the error message.

Bad free sector pool linkage The free sector pool had bad linkages.

BLINK error The backword link test failed on a new sector. The
location and BLINK are printed beneath the message.

Data granule allocation error A data granule location has previously been allocated.

Disk 1/O read failure The TYC returned af end=action indicated a read error.

Dual Allocation Any error other than could be defined occurred (e. g.,

FANALYZE could not accurately determine who owns

the other granule),

10-3

MESSAGE

Dual allocation in free
sector pool

File conflicts with account
directories

File conflicts with file
directories

File conflicts with previous
files

Filename does not correspond

to FIT

Flink error

Invalid character or option

Invalid data address

Invalid free sector pool entry

I/O call failure

Link error in account directory

Link error in file directory
Master index allocation error
Name sequence error in file
directory

Next level address invalid
Pyramid blink error

Pyramid flink error

Pyramid location error

DESCRIPTION

The granule allocation indicated the FSP entry conflicted
with other allocation.

The granule allocation for this file conflicted with the
allocation for the account directory.

The granule allocation for this file conflicted with the
allocation for a file directory.

The granule allocation for this file conflicted with the
allocation for other files.

The file directory entry name differed from the FIT name.
The FD name is printed to the left of this message and the
FIT is snapped.

The forward address was invalid. The location and
forward link are printed beneath this message.

A bad option or comma appeared on a processor control
command.

A key in a level O master index contained an invalid disk
address. The address is printed to the right of the message.
A bad address was found in the free sector pool, The
address is printed to the right of the message.

A bad disk address has been passed to the disk 1/O
handler, The job aborts,

A BLINK/FLINK failure occurred in the account
directory while the ANLZ option was running.

A BLINK/FLINK error occurred in the file directory
while the ANLZ option was running.

A master index granule location has previously been
allocated.

The file directory names did not appear in ascending
order, A dump is provided of that file directory sector.
The upper level index structure's next level address pointer
was bad.

A backward link (in a file’s upper level index structure)
has failed to verify.

A forward link (in a file's upper level index structure)
has failed to verify.

The TDA (from the file's FIT) had an invalid address,

10-4

Random file address error The FIT pointed to an invalid data address for a random
file.

Stack size invalid The load module FANALYZE was loaded with a TSS of
less than 200.

10. 4 MODULE ANALYSIS
File Analyzer and RCVR2 have the same catalog number (CN706124), therefore refer to RCVR2 for the
Module Analysis and Flowchart.

10-5

Xerox Corporation
701 South Aviation Boulevard
El Segundo, California 90245

‘Raader Comment Form

R0X

We would appreciate your comments and suggestions for improving this publication.

Publication No. Rev. Letter | Title Current Date

How did you use this publication? Is the material presented effectively?

Learnin Installing Sales i
D ¢ D . D . D Fully Covered D Well Illustrated D Wwell Organized [:] Clear
D Reference D Maintaining D Operating

What is your overall rating of this publication? What is your occupation?

D Very Good % Fair D Very Poor
D Good Poor

Your other comments may be entered here. Please be specific and give page, column, and line number references where
applicable. To report errors, Please use the Xerox Software Improvement or Difficulty Report (1188) instead of this form.

Your Name & Return Address

2190(12/72)
Thank You For Your Interest. (fold & fasten as shown on back, no postage needed if mailed in U.S.A.)

Staple Staple

First Class
Permit No. 229
El Segundo,
California

BUSINESS REPLY MAIL
No postage stamp necessary if mailed in the United States

Postage will be paid by

Xerox Corporation
701 South Aviation Boulevard
El Segundo, California 90245

Attn: Programming Publications

XEROX

701 South Aviation Boulevard
El Segundo, California 90245
213 679-4511 XEROX® is a trademark of XEROX CORPORATION

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	01-01
	01-02
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	02-27
	02-28
	02-29
	02-30
	02-31
	02-32
	02-33
	02-34
	02-35
	02-36
	02-37
	02-38
	02-39
	02-40
	02-41
	02-42
	02-43
	02-44
	02-45
	02-46
	02-47
	02-48
	02-49
	02-50
	02-51
	02-52
	02-53
	02-54
	02-55
	02-56
	02-57
	02-58
	02-59
	02-60
	02-61
	02-62
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	08-26
	08-27
	08-28
	08-29
	08-30
	08-31
	08-32
	08-33
	08-34
	08-35
	08-36
	08-37
	08-38
	08-39
	08-40
	08-41
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	09-25
	09-26
	09-27
	09-28
	09-29
	09-30
	09-31
	09-32
	09-33
	09-34
	09-35
	09-36
	09-37
	09-38
	09-39
	09-40
	09-41
	09-42
	09-43
	09-44
	09-45
	09-46
	09-47
	09-48
	09-49
	09-50
	09-51
	09-52
	09-53
	09-54
	09-55
	09-56
	09-57
	09-58
	09-59
	09-60
	09-61
	09-62
	09-63
	09-64
	09-65
	09-66
	09-67
	09-68
	09-69
	09-70
	09-71
	09-72
	09-73
	09-74
	09-75
	10-01
	10-02
	10-03
	10-04
	10-05
	replyA
	replyB
	xBack

