
Xerox BPM/BTM
Sigma 5-8 Computers

Subsystems and Utilities

Technical Manual

90 30 81A

Xerox Corporation
701 South Aviation Boulevard
EI Segundo. California 90245
213679-4511

@l1973. Xerox Corporation

Xerox BPM 181M
Sigma 5-8 Computers

Subsystems and Utilities

Technical Manual

90 30 61A

September 1973

Price: $11.00

XEROX

Prtnted in U.S.A.

NOTICE

With the exception of the FAST SAVE processor description, a II subsystems and uti! ity processors described in this
publication reflect operation under the HOO version of the BPM and BTM operating systems. The FAST SAVE pro
cessor described herein reflects operation under the GOO version of BPM/BTM. Other avai lable subsystems that
operate under BPM/BTM are listed under IIRelated Publications ll below.

RELATED PUBLICATIONS

Title

Xerox Sigma 5 Computer/Reference Manual

Xerox Sigma 6 Computer/Reference Manual

Xerox Sigma 7 Computer/Reference Manua I

Xerox Sigma 8 Computer/Reference Manual

Xerox Batch Time-Sharing Mon itor (BTM)/TS Reference Manual

Xerox Batch Time-Sharing Monitor (BTM)/TS User's Guide

Xerox Batch Processing Monitor (BPM)/BP, RT Reference Manual

Xerox Batch Processing Monitor (BPM) and Batch Time-Sharing Monitor (BTM)/SM
Reference t ~nntJal

Xerox Batch Processing Monitor (BPM) and Batch Time-Shari n9 Mon I tor (BTM)/OPS
Reference Manua I

Xerox Batch Processing Mon!tor (BPM)/System Technical Manual

Xerox BPM/BTM/UTS/Overlay loader Technical Manual

Xerox Batch Time-Sharing Monitor (BTM)/Delta Subsystem Technical Manual

Xerox BPM/BTM/UTS/System Generation Technical Manual

Xerox BTM Edit Subsystem Technical Manual

Xerox BPM/BTM/UTS pel Technical Manual

Xerox Volume Initialization (VOLINIT) Technical Manual

Publication No.

900959

90 17 13

900950

90 17 49

90 15 77

90 16 79

900954

90 1741

90 11 98

90 15 28

90 1803

90 1879

90 18 77

90 19 11

90 19 32

90 30 56

Manual Content Codes: BP - batch processing, IN - language, OPS - operations, RP - remote processing,
RT - real-time, SM - system management, TS - time-sharing, UT - utilities.

The specifications of the software system described in this publication are subiect to change without notice. The availability or performance of some features
may depend on a specific configuration of equipment such as additional tape units or larger memory. Customers should consult their Xerox sales representative
for details.

ii

CONTENTS

PREFACE viii 2.5. 11 PRESSTK 2-60
2.5. 12 PRTNXT 2-60

GLOSSARY ix 2.5. 13 PRTERR 2-60
2.5. 14 RFDFSRCH 2-61
2.5. 15 SETMODE 2-61

1.0 INTRODUCTION 1-1 2.5. 16 SETSIZE 2-61
2.5. 17 STCR 2-62

1.1 Batch Processors 1-1 2.5. 18 STORFLD 2-62
1.2 Subsystems 1-1 2.5. 19 USYMPRNT 2-62
1.3 General 1-1 2.5.20 WRTREC 2-62

2.5.21 WTTY, WTTY1 2-62

2.0 LOPE PROCESSOR/SUBSYSTEM 2-1
3.0 RUN 3-1

2. 1 Functional Overview 2-1
2.1.1 Purpose 2-1 3. 1 Functional Overview 3-1
2.1.2 Restrictions 2-1 3. 1. 1 General Description 3-1
2.1.3 Batch Operation 2-1 3. 1.2 Error Messages 3-2
2.1.4 On-Line Operation 2-3 3.1.3 Restriction 3-3
2. 1.5 Loader-Constructed DC Bs __ 2-7 3.2 Interfaces 3-3
2. 1.6 Map 2-7 3.2. 1 To the BTM Executive 3-3
2. 1.7 Diagnostics 2-7 3.2.2 To the User 3-4
2.1.8 Severity Level 2-8 3.3 Operational Overview 3-5
2.1.9 Background Memory Layout __ 2-8 3.4 Module Analysis 3-6

2.2 Interfaces 2-8 3.4. 1 ENTRY 3-6
2.2. 1 LOPE Processor/LOAD 3.4.2 GOTOUSER 3-6

Subsystem 2-8 3.4.3 TLOC 3-8
2.2.2 Debugging LOPE 2-8 3.4.4 CHKBRK 3-8
2.2.3 Input 2-8 3.4.5 OPDIS 3-9
2.2.4 Output 2-8 3.4.6 OPEN 3-9
2.2.5 Loader-Generated Tables __ 2-18 3.4.7 CLOSE 3-9
2.2.6 LOAD Subsystem 2-21 3.4.8 OPNXT 3-10
2.2.7 Debug Program, D ELT A 2-24 3.4.9 OPPREY 3-10
2.2.8 Accounting 2-24 3.4. 10 OPINDR 3-10
2.2.9 Monitor 2-24 3.4. 11 EHEH 3-11
2.2. 10 CCI 2-24 3.4. 12 MULTDIS 3-11
2.2. 11 Stacks 2-24 3.4. 13 GOPRO 3-12
2.2. 12 Use of Memory 2-28 3.4. 14 SEMIB 3-12
2.2. 13 Example 2-31 3.4. 15 CLRALL 3-12

2.3 Operational Overview 2-35 3.4. 16 CLRBRK 3-13
2.3. 1 Description 2-35 3.4. 17 DISBRK 3-13
2.3.2 Flowchart 2-36 3.5 Subroutine Analysis 3-14

2.4 Module Analysis 2-36 3.5. 1 RDVAL 3-14
2.4. 1 Start 2-36 3.5.2 MORECC 3-14
2.4.2 Library 2-41 3.5.3 SINCK 3-15
2.4.3 Loader 2-46 3.5.4 SEMICK 3-15
2.4.4 Endload 2-50 3.5.5 SETSEG 3-15
2.4.5 Execute 2-55 3.5.6 GTSYAL 3-16

2.5 Subroutine Analysis 2-56 3.5.7 CHKSERV 3-16
2.5. 1 ASNMERG 2-56 3.5.8 GP 3-17
2.5.2 BINTOHEX 2-58 3.5.9 FP 3-17
2.5.3 BYTOUT, WRTREC 2-58 3.5. 10 SMPRT 3-17
2.5.4 CHKDECLD 2-58 3.5. 11 GL 3-18
2.5.5 CKDCB 2-58 3.5. 12 GCP 3-18
2.5.6 CRLF 2-59 3.5. 13 FCP 3-19
2.5.7 GCBYTE 2-59 3.5. 14 TIME 3-19
2.5.8 GCBYTEA 2-59 3.5. 15 SEGLD 3-19
2.5.9 GETEFHED 2-59 3.5. 16 CHKEXU 3-20
2.5. 10 GETULOC 2-59 3.5. 17 TYCRLF 3-20

iii

3.5. 18 TYM 3-21 4.5.23 COMPALL 4-23
3.5.19 GETTXT 3-21 4.5.24 SERCH 4-24
3.5.20 LMNA8;LMNER;LMSZER __ 3-21 4.5.25 CHKLIM 4-24
3.5.21 RDSEG 3-22 4.5.26 SERDOWN 4-25
3.5.22 SETSWAP 3-22 4.5.27 GETINP 4-25
3.5.23 SYMS 3-22 4.5.28 TYPELINE 4-26
3.5.24 RELOCR 3-23 4.5.29 DELLINE 4-26
3.5.25 RDWNOB 3-23 4.5.30 TRANSLST 4-27
3.5.26 READWD 3-23 4.5.31 FINDEDIT 4-27
3.5.27 STORWD 3-24 4.5.32 ABNDEL 4-27
3.5.28 GPAGIN 3-24 4.5.33 NONO, COMMOUT 4-28
3.5.29 WRPG 3-25 4.5.34 NOROOM 4-28
3.5.30 RDPG 3-25 4.5.35 ABNINS 4-29
3.5.31 CHKADRNX;CHKPTRNX; 4.5.36 NOINPT 4-29

CHKPTR 3-25 4.5.37 NOJOBC 4-29
3.5.32 HEXOUT 3-26 4.5.38 FINDER 4-30
3.5.33 SYMBOUT 3-26 4.5.39 ABNINS 4-30
3.5.34 SEIFS 3-26 4.5.40 NAMER; JOBCERR 4-31

4.5.41 ACCTER; EXACER; PRIOER _ 4-31
4.5.42 JOBCER 4-31

4.0 BPM SUBSYSTEM 4-1 4.5.43 INVL 4-32

4.1 Functiona I Overview 4-1
4.1 • 1 Purpose 4-1 5.0 SUPER PROCESSOR/SUBSYSTEM 5-1
4.1.2 Input 4-1
4.1.3 Error Messages 4-2 5.1 Functional Overview 5-1

4.2 Interfaces 4-3 5.1. 1 Purpose 5-1
4.2.1 Opera ti ng System 4-3 5.1.2 Input 5-1

4.3 Operational Overview 4-3 5.1.3 Batch Operation 5-2
4.3.1 Description 4-3 5.1.4 On-Line Operation 5-2
4.3.2 DCBls 4-3 5.1.5 Error Messages 5-3
4.3.3 Flowchart 4-3 5.2 Interfaces 5-4

4.4 Module Analysis 4-3 5.2.1 Operating System 5-4
4.4.1 BEGIN 4-5 5.2.2 CCI 5-4
4.4.2 DELETE 4-5 5.3 Operational Overview 5-4
4.4.3 STATUS 4-5 5.3.1 Description 5-4
4.4.4 INSERT 4-9 5.3.2 DCBs 5-4
4.4.5 FILETYPE 4-11 5.3.3 Flowchart 5-4
4.4.6 EDIT 4-11 5.4 Module Analysis 5-4
4.4.7 EDITO 4-11 5.4.1 START 5-4

4.5 Subroutine Analysis 4-14 5.4.2 Control-Record 5-6
4.5.1 GO 4-14 5.4.3 USERS 5-7
4.5.2 TYPE 4-14 5.4.4 KILL 5-8
4.5.3 REPLACE 4-15 5.4.5 LIST 5-10
4.5.4 SWAP 4-15 5.4.6 STATS 5-11
4.5.5 DELETEE 4-16 5.4.7 DELSTATS 5-13
4.5.6 TRANSFER 4-16 5.4.8 PASSWORDS 5-15
4.5.7 CRLF 4-17 5.4.9 Input-Syntax-Error 5-17
4.5.8 TYPEMESS 4-17 5.4.10 Abnormal-Exit 5-17
4.5.9 YESNO 4-17 5.4.11 Normal Exit 5-18
4.5.10 INEBCHEX 4-18 5.5 Subroutine Analysis 5-18
4.5.11 HEXDEC 4-18 5.5.1 CYTDEC 5-18
4.5.12- HEXEBC 4-19 5.5.2 CYTNSTOR 5-18
4.5.13 PUTLINE 4-19 5.5.3 DATER 5-19
4.5.14 FINDLINE 4-20 5.5.4 FNDCOD 5-19
4.5.15 RUNDOWN 4-20 5.5.5 GACNTN 5-19
4.5.16 BANGHIT 4-21 5.5.6 GDFLD and GHFLD 5-20
4.5.17 EODCARD 4-21 5.5.7 GEBFLD 5-21
4.5.18 FINCARD 4-22 5.5.8 GHFLD 5-21
4.5.19 JOBCARD 4-22 5.5.9 HELP 5-21
4.5.20 NAMECOMP 4-22 5.5.10 INITLOG 5-22
4.5.21 EXTACT 4-23 5.5.11 PAGE 5-22
4.5.22 PRIOR 4-23 5.5.12 PRNT, PRNTV 5-23

iv

5.5.13 PRTERR 5-23 8.0 EDCON 8-1
5.5.14 PRTLIST 5-23
5.5.15 PRTSTAT 5-24 8. 1 Functional Overview 8-1
5.5.16 RDLOG and RDLOGS 5-24 8. 1. 1 General Description 8-1
5.5.17 RDLOGACNT 5-24 8.1.2 Commands 8-1
5.5.18 RDLOGS 5-25 8.2 Interfaces 8-2
5.5.19 RESET LOG 5-25 8.3 Operational Overview 8-2
5.5.20 REWRLOG and REWRLOGS_ 5-25 8.4 Module Analysis 8-2
5.5.21 UCHKFLD 5-25 8.4.1 MASTERPARSER 8-4
5.5.22 WRLOG, REWRLOG, and 8.4.2 PARSE :BUILD 8-4

REW~LOGS 5-26 8.4.3 PARSE:COMPRESS,
5.6 Authorization File, :USERLG 5-26 PARSE:WRITE 8-4

8.4.4 PARSE:COPY 8-5
8.4.5 PARSE :MERGE 8-5
8.4.6 PARSE:DELETE, PARSE:LIST_ 8-6

6.0 FPURGE PROCESSOR 6-1 8.4.7 PARSE:END 8-6
8.4.8 MASTEREXECUTIVE 8-6

6.1 Functional Overview 6-1 8.4.9 F:BUILD 8-7
6.2 Interfaces 6-1 8.4. 10 F:COMPRESS, F:WRITE __ 8-7

6.2.1 Hardware Requirements 6-1 8.4.11 F:COPY 8-8
6.2.2 Operational Requirements __ 6-1 8.4.12 F:DELETE 8-12

6.3 Operational Overview 6-1 8.4.13 F:END 8-12
6.4 Module Ana lysis 6-4 8.4. 14 F:LIST 8-12

6.4.1 Control Cards 6-4 8.4. 15 F:MERGE 8-12
6.4.2 SKPPAR 6-6 8.4. 16 ADDCDTPARAM 8-16
6.4.3 STRPURG 6-8 8.4. 17 ADJINT 8-16
6.4.4 LGSUPRG 6-10 8.4. 18 BINTODEC 8-17
6.4.5 GETC 6-10 8.4.19 BLANKBUF 8-17
6.4.6 OPNXACCT 6-10 8.4.20 CLOSE 8-17
6.4.7 CLRDCB 6-10 8.4.21 CLOSE2 8-17
6.4.8 PRINT 6-11 8.4.22 COMPRESS LINE 8-18
6.4.9 WRTTP 6-11 8.4.23 CMPL60 8-18
6.4. 10 RESTORE 6-11 8.4.24 CMPL70 8-19
6.4.11 MISFILS 6-12 8.4.25 DELETE 8-19
6.4.12 GETOUT 6-12 8.4.26 DELETEFILE 8-22

8.4.27 BADI01 8-22
8.4.28 GETFILEID 8-22
8.4.29 GETNEXTNAME 8-23

7.0 FERRET SUBSYSTEM 7-1 8.4.30 GETNEXTPARAM 8-23
8.4.31 MOVESEQ 8-31

7.1 Functional Overview 7-1 8.4.32 NEWCDTENTRY 8-32
7.1.1 Purpose 7-1 8.4.33 OPEN 8-32
7.1.2 Error Messages 7-1 8.4.34 OPENINIT 8-32

7.2 Interfaces 7-2 8.4.35 OPENNEW 8-33
7.3 Operational Overview 7-2 8.4.36 OPEN2, OPEN3 8-33
7.4 Module Ana lysis 7-12 8.4.37 READNXTRANDOM 8-34

7.4. 1 FERRET 7-12 8.4.38 READRANDOM 8-34
7.4.2 LIST, REVIEW, GRANULES_ 7-12 8.4.39 READSEQUEN 8-34
7.4.3 CHECK 7-13 8.4.40 READSEQUEN2 8-35
7.4.4 ACTIVCK 7-13 8.4.41 READTE LETYPE2 8-35
7.4.5 DELETE 7-14 8.4.42 RECONSTRUCT$LINE 8-36
7.4.6 COPY, KOPY 7-14 8.4.43 RECL60 8-36
7.4.7 PUNCH 7-14 8.4.44 REPSEQ 8-37
7.4.8 EXAMINE, INSPECT 7-15 8.4.45 SETEOD 8-37
7.4.9 STATS 7-15 8.4.46 SETKEY 8-37
7.4. 10 MESSAGE 7-16 8.4.47 SETLASTKEY 8-38
7.4.11 NOSEP 7-16 8.4.48 TYPECERR 8-38

7.5 Service Subroutines 7-16 8.4.49 TYPEMSG 8-38
7.5.1 CVDECOUT 7-16 8.4.50 WRITECO 8-38
7.5.2 GETFLD 7-17 8.4.51 WRITENEWRANDOM 8-39
7.5.3 GETNAM 7-17 8.4.52 WRITERANDOM 8-39
7.5.4 SCANOPEN 7-17 8.4.53 WRITE2 8-40
7.5.5 LOCCODE 7-18 8.4.54 WRITE$EO 8-40

v

9.0 FAST SAVE PROCESSOR 9-1 9.4.53 DISPRUNTOTL 9-28
. 9.4.54 DTOGRAN 9-28

9.1 Functional Overview 9-1 9.4.55 FDERR 9-29
9.2 Interface 9-1 9.4.56 FITSNAP/FITERR 9-29
9.3 Operational Overview 9-1 9.4.57 LISTFD 9-29

9.3. 1 Command Sumrmry 9-2 9.4.58 LISTFIT 9-29
9.3.2 Data Cards 9-3 9.4.59 LISTOUTBUF 9-29
9.3.3 Error Message- Summary 9-4 9.4.60 LISTMIX 9-30
9.3.4 Error SNAPS 9-7 9.4.61 LISTAD 9-30
9.3.5 Read Ahead Log i c 9-7 9.4.62 MIXSNAP/MIXERR 9-30

9.4 Module Analysis 9-8 9.4.63 MIXRATERR 9-30
9.4.1 INITIATE 9-8 9.4.64 DATAERR 9-30
9.4.2 INITIATE1 9-8 9.4.65 FDDONE 9-31
9.4.3 SPECINIT 9-9 9.4.66 ENDOFD 9-31
9.4.4 INITIATE4 9-9 9.4.67. CKTlO 9-31
9.4.5 INITIATE5 9-10 9.4.68 CODESCAN 9-31
9.4.6 RDCARD 9-10 9.4.(>9 MOVENTRY 9-32
9.4.7 RCD 9-11 9.4.70 HEXTODEC 9-32
9.4.8 INTER 9-11 9.4.71 FDLETE 9-32
9.4.9 NOIPRI 9-11 9.4.72 ADELETE 9-32
9.4. 10 NACN 9-12 9.4.73 TACNT/TFILNME 9-32
9.4. 11 NOTLB 9-14 9.4.74 ACCK 9-32
9.4.12 GETFILE 9-14 9.4.75 READFAIL 9-33
9.4. 13 FILECHKS 9-15 9.4.76 READFAIL2 9-33
9.4.14 NOFCK 9-16 9.4.77 READFAIL3 9-33
9.4.15 GETMIX 9-17 9.4.78 READFAIL5 9-33
9.4. 16 QUEREC 9-18 9.4.79 LPRINT 9-33
9.4. 17 GETKEY1 9-18 9.4.80 PLIST 9-33
9.4.18 MOVEKEY 9-18 9.4.81 BUFSET 9-34
9.4.19 MOVE 9-19 9.4.82 PRINT 9-34
9.4.20 GETKEY 9-19 9.4.83 SPACE 9-34
9.4.21 SCHEDULE 9-20 9.4.84 TYPEIO/TYPEI02 9-34
9.4.22 QUEMIX 9-20 9.5 Detai led Flowchart of Fast Save
9.4.23 RANFILE 9-21 Processor 9-35
9.4.24 GETTBUF 9-21 9.6 Tables 9-72
9.4.25 GETIBUF 9-22
9.4.26 GETFOUR 9-22
9.4.27 BUILD 9-22 10.0 FILE ANALYZER (FANALYZE)
9.4.28 STKSIZR 9-22 PROCESSOR 10-1
9.4.29 QSECTOR 9-22
9.4.30 DISCI02 9-23 10.1 Functional Overview 10-1
9.4.31 DENAC 9-23 10.2 Interface 10-1
9.4.32 FITENAC 9-23 10.3 Operational Overview 10-1
9.4.33 ENCOM 9-24 10.3.1 Fi Ie Analyzer Options 10-1
9.4.34 MIXENAC 9-24 10.3.2 Error Processi ng 10-2
9.4.35 MTIO 9-24 10.3.3 Error Messages 10-3
9.4.36 SIMULATE 9-24 10.4 Module Analysis 10-5
9.4.37 WTENAC 9-25
9.4.38 SENTENAC 9-25
9.4.39 NEWREEL 9-25
9.4.40 WRTDAT 9-25
9.4.41 DCTXERR/OPNABN/OPNERR_ 9-26 FIGURES
9.4.42 GOEOR 9-26
9.4.43 EOFQ 9-26 2-1. Load Module Format 2-9
9.4.44 BOFQUE 9-26
9.4.45 MOVEI 9-26 2-2. Format of REF/DEF Stack That Is Part
9.4.46 WRTMARK 9-27 of The Load Module 2-11
9.4.47 NOTENUFF 9-27
9.4.48 ENDUP 9-27 2-3. :BLIB Format for Each Page 2-12
9.4.49 ADDONE 9-27
9.4.50 ADERROR 9-28 2-4. Sample LOPE Map Printout 2-14
9.4.51 IORUNDOWN 9-28
9.4.52 FAILURE 9-28 2-5. Internal Symbol Table 2-17

vi

2-6. Background Memory Layout, LOPE 5-4. F low Chart for ST A TS 5-14
Processor 2-18

5-5. Flow Chart for DELSTATS 5-16
2-7. T ask Control Block Format 2-19

2-8. DCBTAB (Name Table) 2-20 6-l. Flow Chart of Major Functions 6-3

2-9. Loader-Constructed System DCBs 2-21 6-2. Flow Chart of CCI 6-5

2-10. Standard First XI 40 1 Words of LOAD 6-3. Flow Chart of SKPPAR 6-7
Subsystem 2-22

6-4. Flow Chart of STRPURG 6-9
2-11. Declaration Stack 2-25

2-12. REF/DEF Stack 2-26 7-l. Flow Diagram of FERRET 7-3

2-13. Expression Stack 2-27
8-l. Overall Flow Diagram of EDCON 8-3

2-14. Forward Reference Stack 2-28
8-1A. Flow Diagram of F:COPY 8-9

2-15. Labels used in Allocating Memory 2-29
8-2. Flow Diagram of F:MERGE 8-13

2-16. Layout of Memory after Initialization __ .2-30
8-3. Flow Diagram of COMPRESS LINE 8-20

2-17. Flowchart of Overall Processing 2-37
8-4. Flow Diagram of GETNEXTNAME 8-24

2-18. Flowchart of Start Module 2-42
8-5. Flow Diagram of GETNEXTPARAM 8-26

2-19. Flowchart for Library Modules 2-45

2-20. Flowchart for Loader Module .2-51 9-l. Detailed Flowchart of FILE SAVE 9-36

2-21. Flowchart for Endload Module 2-54 9-2. Formats of Paging Tables 9-71

2-22. Flowchart for Execute Module 2-57

3-l. RUN Commands 3-2 TABLES

3-2. RUN SUBSYSTEM IN MEMORY 3-4 2-l. Load Map Abbreviations 2-13

3-3. USER IN MEMORY 3-5 6-l. F PURGE Options 6-13

3-4. Operational Overview of RUN 3-7 8-l. Command Description Table (CDT) 8-40

8-2. Command Table 8-41
4-l. Operational Overview of BPM Subsystem_ 4-4

9-l. Index to FAST SAVE Flowchart 9-35
4-2. Flow Chart for DELETE 4-7

9-2. Table Key Lengths 9-72
4-3. Flow Chart for STATUS 4-8

9-3. First Key Displacement in Sectors 9-72
4-4. Flow Chart of INSERT 4-10

9-4. Account Directory Displacement 9-72
4-5. Flow Chart of EDIT 4-13

9-5. File Directory Displacement 9-72

5-l. Operational Overview of SUPER 5-5 9-6. Master Index Displacement 9-73

5-2. Flow Chart for USERS 5-9 9-7. I/o Queueing Function Codes 9-73

5-3. Flow Chart for LIST 5-12 9-8. Do ta Names and Defi nit ions 9-74

vii

viii

PREFACE

This document describes the purpose and architecture of the following subsystems and utility processors that operate
within the environment of BPM/BTM:

LOPE FERRET

RUN EDCON

BPM FAST SAVE

SUPER FANALYZE

FPURGE

This manual is intended for use by maintenance programmers as a guide through the listings supplied with the above
processors. It is assumed that the reader is familiar with both the usage of BPM/BTM Monitor services and the Sigma
Standard Object Language (see the BPM/BTM/SM Reference Manual, 90 1741).

GLOSSARY

AJIT The on-line job information table, a Monitor table of information pertinent to the job currently in

execution.

:BLIB (Binary Object Language Library). The name of the file that is the library in an account.

binary input Input from the device to which the BI (binary input) operational label is assigned.

CCI (Control Command Interpreter). A batch processor that reads the control command.

control section A relocatable section of the program into which assembled generative statements are loaded.

core image That part of a load module that is laid into core at execution time.

DeB (Device Control Block) A table in the executing program that contains the information used by the

Monitor to perform an I/O operation.

DCB Name Table A loader-built table that directs the Monitor to the location of a DCB in a program.

declaration A load item of the object language that associates a symbolic name with a type of item that

provides linkages between object modules.

declaration stack A loader stack that keeps track of the declarations made in a ROM.

defini tion A load item of the object language that equates a source language symbol with a value.

dummy section A type of program section that provides a way for more than one object module to reference

the same data via an external definition used as the label for the dummy section.

expression A load item of the object language that may include sums and differences of constants, addresses, and

external and forward references (which when defined will be constants or addresses) in order to represent a value.

expression stack A loader stack that ,contains expressions defining external forward references, and locations

in the core i mage of the program.

external definition a load item that assigns a specific value to the symbolic name associated with the external

defini tion. The external definition provides linkage between object modules since the external definition

allows the specified symbolic name to be used as an external reference in another ROM.

ix

x

external reference A reference to a declared symbolic name that is not defined within the object module in

which the reference occurs. An external reference can be satisfied only if the name is defined by an external

defini tion in another object module.

forward reference A reference to a symbolic name that will be defined later in the object module.

forward reference stack A loader stack that keeps track of the forward references made in a ROM.

GO file In batch, a temporary file of ROMs formed by a processor. Such modules may be retrieved by use of

a LOPE or LOAD control command.

HEAD The key to one of the records of a load module file. The record contains basic size and source information.

idG In batch, the file name that the loader uses to access the GO file. The idG File is a temporary file.

idL In batch, the file name assigned to a load module if no name is specified through the LMN option. The

idL file is a temporary file.

JIT (Job Information Table) A Monitor table of information pertinent to the job currently in execution.

library module A module that the loader may combine with ROMs to form a load module or the core image

portion of the load modu Ie.

load information Control information, data, and instructions generated by a processor and contained in one or

more modules capable of being linked toform an executable program.

load item The component of the object language, a load control byte followed by any additional bytes of load

information pertaining to the function specified.

load map A listing of information about the storage locations used by a program.

load module A keyed file containing an executable program. Load modules are output by loaders and

several other processors.

obiect language The standard binary language in which the output of an assembler or compiler is expressed.

object module The series of records containing the load information pertaining to a single program element.

overlay program A segmented program in which different elements (i.e., segments)occupy the same core storage

area as the program is execu ted.

primary reference A reference to a symbol ic name that is not defined within the object module in which the

reference occurs. A primary reference can only be satisfied if the name is defined by an external definition

in another object module. A primary reference is capable of causing a load from a library.

REF/DEF stack A loader stack with entries for the value of control sections and external names - external

definitions, primary references, and secondary references. The REF/DEF stack is part of the load

module.

ROM (Relocatable Object Module). An input to the loader in SIGMA object language that was generated

by an assembler or a compiler.

secondary reference A reference to a symbolic name that is not defined within the object module in which the

reference occurs. A secondary reference does not cause a load from a library to satisfy the reference.

system library A group of standard routines in object language format, any of which may be incorporated into

a program being loaded.

TCB (Task Control Block). A table of program control information built by a loader when a load module is

formed. The TCB is part of the load module. The TCB contains a temp stack and the data required to allow

reentry of library routines during program execution. The TeB is program-associated, not task associated.

xi

1. 0 INTRODUCTION

The Xerox BPM and BPM/BTM capability is a total package consisting of an operating system and program
packages that assist the user in taking advantage of the operating system. These program packages are known
as processors.

1. 1 BATCH PROCESSORS

The control or service programs which are run in the batch mode under BPM are referred to as batch processors.
CCI is a control processor whi Ie FPURGE is an example of a service processor.

1. 2 SUBSYSTEMS

On-line processors are referred to as subsystems. These processors are available to the BTM terminal user and
may either be language or service subsystems. EDIT is an on-line service processor and SYMBOL isan example
of an on-line language subsystem.

1.3 GENERAL

Program packages may be written for both the batch and on-line modes. The two major differences that govern
where the programs run are: (1) how they interface with the monitor and (2) how they are loaded.

When creating a system, usually the BPM or BPM/BTM monitor is loaded first and then the batch processors
are loaded. By loading the system in this order, the batch processors are automatically biased at the core
page boundary just above the end of the monitor. This page boundary is known as background lower limit.
Batch processors may be biased during loading such that they are above Background Lower Limit but this is an
inefficient use of core and should be avoided when possible. Batch processors are usually created at SYSGEN
time by PASS3 and are included on the P. O. tape by the DEF processor. The processors are then in the :SYS
account after the P. O. tape is booted and the system is operational. The batch processor is invoked by its
load module name on a monitor control card. Any load module in the :SYS account may be run as a processor
by merely using the format on the control card as follows:

I NAME (NAME is a load module name.)

The on-line processors or subsystems are loaded differently than the batch processors. There are two basic
differences: (1) the way they are biased and (2) the way they are named.

Each on-line subsystem is given a load module name when it is loaded and this nam~ may end in the character
":" (colon). BTM initialization knows that a copy of the load module with its name ending in a ":" (colon)
in the :SYS account is a subsystem. A copy of each subsystem found in the :SYS account is moved to the
swapping device and entered into the :BTM account.

The on-line processors (subsystems) must be loaded with an absolute bias. The bias used wi II be different each
time a new system is generated and USERSIZE is varied for a given core size. The bias at which the sub
systems must be located is:

BIAS = CORESIZE-USERSIZE.

Subsystems must be coded according to the rules set down in the section entitled "SUBSYSTEM INTERFACE"
in the Xerox Batch Time-Sharing Monitor Reference Manual (90 15 77). These coding requirements must be
observed by all BTM subsystems.

The BPM batch processors communicate with the BPM monitor via CAll calls. The CAlls provide the total
and complete range of monitor services avai lable to the batch processors.

BTM subsystems use both CALland CAL3 calls to provide for monitor services. A BTM subsystem is restricted
to a subset of the possible CAlls avai lable to batch processors and some CAlls not available to batch pro
cessors. System control and memory management functions avai lable to the BTM subsystem are described in

1-1

the section entitled "BTM SYSTEM CALS" in the Xerox Batch Time-Sharing (BTM) Reference Manual (90 15 77).
The BPM system CALs avai lable to BTM subsystems are listed in the section entitled "BPM SYSTEM CALS"
in the BTM Reference Manual (90 15 77).

The complete list and description of the BPM Monitor services avai lable to batch processors is contained in
the Xerox Batch Processing Monitor (BPM) Reference Manual (90 09 54).

1-2

2.0 LOPE PROCESSOR/SUBSYSTEM

2.1 FUNCTIONAL OVERVIEW

2. 1. 1 Purpose

LOPE (Load in One Pass and Execute) is a loader, either a BPM processor or a BTM subsystem, which converts

object module output from a compiler or an assembler into executable format. In batch mode, the loader creates

either a nonoverlaid load module in secondary storage or the core image portion of the load module, to which con

trol is then transferred. In on-I ine mode, the loader creates only the core image of the program but execution is

not automatic. If the user has requested execution, the LOAD subsystem monitors the execution or, if the user

has requested the debug option, the LOAD subsystem transfers control to the DELTA subsystem to allow DELTA to

monitor the execution. LOPE operates as a one-pass program. To build a load module or the core image portion

of the load module, LOPE performs functions expected of any loader operating under the BPM Operating System.

1. Process ROMs to produce continuous sections of data, procedure, and DeBs or static data, ensuring a

page boundary for these three protection types -- 00, 01, and 10 respectively.

2. Resolve references among ROMs.

3. Access I ibraries to satisfy primary references.

4. Build DCBs.

5. Build a DCB Name Table for Monitor use.

6. Build a Task Control Block.

2. 1. 2 Restri cti ons

1. LOPE will not form an overlaid load module.

2. LOPE will not load a ROM with a protection type other than 00 (except library routines) since LOPE builds

all DCBs, DCB tables, and tree tables (control section type 01).

3. LOPE does not allow user-built DCBs. Loader-built DeBs must be used. See section 2.2.5,4. DCBs.

4. LOPE loads ROM input only. LOPE does not load load modules. The library formed when the PERM, LIB

option is specified is a collection of ROMs, for which no processing has been done. The library contains

no load modules.

5. LOPE replaces the I ibrary whenever the PERM, LIB option is specified. Since LOPE does not add to an

existing library, each time the PERM, LIB option is specified LOPE requires that the user build the com

plete library desired.

6. LOPE requires that dummy sections be defined at maximum size in the initial definition.

2. 1. 3 Batch Operation

1. LOPE accepts object module input from one or more BI files, GO files, element files, or libraries. LOPE

loads first from the BI file, then from the GO file, then from specified element files in order of appearance

2-1

in the control command, then from libraries to satisfy primary references -- from up to five I ibraries of

specified accounts in order of appearance in the control command and then from the system library.

2. DCBs.

a. The M:C DCB is used to read the LOPE control command.

b. The M:BI DCB is used to read the BI device or file. The M:BI DCB may be assigned to a file in

another account.

c. The M:LI DeB is used to access libraries.

d. The M:LL DCB is used to output the map.

e. The M:LM DCB is used to build the load module.

f. The M:DO DeB is used to output diagnostics.

3. The LOPE control command has the format:

! LOPE [(option)] ••• ~, (option)]

where the options are:

BI specifies that all ROMs on the BI device or file are to be loaded. If neither GO nor EF are

specified, BI is assumed.

GO specifies that all ROMs on the GO file are to be loaded.

E F , (fi I e name [, account G password]]>l, J. specifies that all ROMs in the designated element files

are to be loaded. File name may consist of 1-8 alphanumeric characters, excluding delimiters

such as, • + () - and blank as imbedded characters.

UNSAT, (account) & ..• J specifies that the libraries, :BLIB, of the specified accounts are to be

searched to satisfy any primary references. A maximum of five libraries may be specified.

NOSYSLIB specifies that the system library, :BLIB in the :SYS account, is not to be searched.

MAP specifies that a complete listing of external references and external definitions for the load

module is to be output on the LL device.

M 10 specifies, that each control or dummy section is to be loaded at the next greater multiple

of 10
16

,

M 100 specifies that each control or dummy section is to be loaded at the next greater multiple

of 100
16

,

TSS, size specifies in hexadecimal the maximum word size of the Temporary Storage Stack (TSS)

for the current job. The size is limited to X'7FFF' or the available core storage, whichever is

less.

PERM,LIB specifies that a library module is to be created. This option causes EXEC, LMN, MAP,

and BIAS options to be ignored since the library formed is a collection of ROMs, for which no

processing has been done. This option replaces, rather than updates, any existing library so the

user must build the complete library desired. The library is :BLIB.

2-2

PERM specifies that the load module is to be permanent.

EXEC specifies that no load module is to be created, but the program is to be executed imme-

diately. No RUN, DATA, or debug commands are allowed. This option causes BIAS, PERM,

and LMN options to be ignored.

LMN,name specifies the name, 1-8 characters, to be given to the load module.

BIAS, value specifies the load bias of the created load module.

SL,value specifies the error severity level, hexadecimal O-F, that will be tolerated by LOPE in

forming a load module.

2. 1. 4 On-Line Operation

The characters typed by the LOAD sybsystem are shown in upper case for alphabetic characters and are underlined.

1. The LOAD subsystem accepts object module input from element files or through M:BI. The LOAD sub

system also loads library modules from the file :BLIB in any specified account and/or from the :BTM account.

2. DCBs.

a. The M:BI DCB is used to read object module input. If desired, before entering the LOAD subsystem,

assign M:BI to a file of object modules. See restriction in step 5 about file names. The default

assignment is to the temporary file BOTEMPaC , where a is the COC line number in binary.

BOTEMp·' is the default output file for on-line assemblers and compilers.

b. The M:LI DCB is used to access libraries.

c. The M:DO DCB is used to output diagnostics.

d. The M:LO DCB is used to output the map.

e. The F:X1 DCB is used to access the internal symbol table built for the debug program.

3. The command to enter the LOAD subsystem has the format:

I LOAD

4. The element file request and response has the format:

ELEMENT FILES: file name,-{accountl,password 1 ... ·,file nameL{account[, passwordl)]] ~

where file name consists of 1-11 alphanumeric characters.

See restriction in step 5. The total number of characters may not exceed the capacity of the input buffer,

a system generation parameter that is typically 100 characters. To erase the element file list anytime

before typing the carriage return, enter 0 X. If M:BI has been assigned to a file or, by default, to the

BOTEMPa temporary file, enter only a carriage return.

5. Note that in executing under the debug option, element file names should be restricted to seven charac

ters. In the symbol table built by the LOAD subsystem for the debug program, only the first seven char

acters of any symbol are used. If symbols, including element file names, have duplicate initial seven

characters and length, only the first symbol encountered is retained.

2-3

6. The options request and response has the format:

OPTIONS: option I, option] ••• [,option~@

where the options are:

specifies that a search of the file :BlIB (Binary Object language library) in each

of the accounts designated (5 maximum) should be made for unsatisfied primary references before

the optional search of :BLIB in the BTM system account, :BTM. Unless specified, no search of

nonsystem ac~ounts will be made. .

N specifies that no system I ibrary search is to be made for unsatisfied primary references. Unless

specified, the file :BLIB (Binary Object language library) in the BTM system account, :BTM,

will be searched for unsatisfied primary references. The file contains standard program modules

for genera I use.

P specifies that all programs defined by separate modules should begin on the next highest X'l00'

word boundary. The starting bias for a program is X'200' in the on-line memory area. The

P option facil itates relating assembly I istings to memory locations for debugging. Note that

separate control sections within each module will be contiguous aod will not begin on any par

ticular boundary other than doubleword.

M specifies that a load map of all external definitions and external references should be output

through M:lO. Unless specified, only secondary and primary references will be output through

M:OO (and M:lO if M:LO is assigned to (] different fi Ie.) If the D option is specified

and object module input has been assembled on-I ine by Symbol or in the background by Meta

Symbol with the symbolic debug (SO) option, undefined internal symbols for each element file

will follow the normal map. Internal symbols are symbols not made external through the use of

the OEF/REF directive nor defined under control of a LOCAL directive.

L specifies that a library is to be created. No other option may be used. The library formed is a

collection of ROMs. This option replaces, rather than updates, any existing library so the user

must build the complete library desired. The library is :BLIB in the current account.

o specifies that the program is to be executed under control of the debug program, enabling

diagnostic and corrective operations on the program. The option is used mainly to check assembly

language programs. However, the option may be used during the execution of any program that

can be run under the LOAD subsystem. If the 0 option is specified and object module input has

been assembled on-line by Symbol or in the background by Meta-Symbol with the symbolic

debug (SO) option, undefined internal symbols for each element file will follow the normal map.

7. When the option list has been accepted, the LOAD subsystem loads the specified ROMs. If errors occur

during loading, a diagnostic is output through M:OO (and M:LO if M:LO is assigned to a different file.)

See section 2.2.4,5. diagnostics.

2-4

8. For any unsatisfied references to DeBs {F:alpha, where alpha is a name consisting of 1-8 alphanumeric

characters}, the LOAD subsystem will build a DeB with default assignment to the user terminal. The

LOAD subsystem also requests specification of DeBs for which no reference occurs or for whi ch the as

signment is to the changed. Any FORTRAN DeBs for unit numbers other than 101-106 and 108 must be

specified. The DeB request and response has the format:

~ [n] L =namel {account r, password)J r, option] ... [, option' €~

where

n specifies the FORTRAN unit number {for FORTRAN programs} or an alphanumeric DeB name of

up to 5 characters.

name specifies the alphanumeric name {1-11 characters} of the file to which the DeB is to be

assigned. A carriage return specifies defaul t assignment to the user terminal.

account specifies the account of an existing file if the account is not the user's account. Account

may be up to 8 characters. The default is the log-in account.

password specifies the password of an existing file. Password is 1-8 alphanumeric characters.

option specifies one of three options: Options wi II be inserted into the DeB and may be monitored

by ASSIGN commands or procedure calls.

Function option

IN specifies that the file is to be used for input only. When assigning an input

file on secondary storage, specify IN. Otherwise an attempt to read before

writing wi II cause the creation of a new fi Ie with the same name as the existing

file since the default assignment in all SIGMA loader is OUTIN, a scratch file.

OUT specifies that the file is to be used for output only.

INOUT specifies that the fi Ie is to be used as an update fi Ie.

OUTIN specifies that the file is to be used as a scratch fi Ie. OUTIN is the default.

Release option REL specifies that the file is to be released when program execution terminates.

The default is that the file will be saved.

List option L specifies that the file will eventually be listed on a listing device {FORTRAN pro-

gram only}.

The Loader prompts unti I a carriage return only is entered.

9. The Load subsystem issues a message on the highest error severity level encountered.

SEV. LEV = n

where n is a hexadecimal digit.

10. If the debug option was specified, the LOAD subsystem requests satisfaction of symbols.

2-5

a. The request and response for primary references has the format:

SA TlSFY EXTERNALS

~ name> value J8
where

name specifies a primary reference listed in the load map, 1-63 alphanumeric characters.

value specifies an expression of the form:

DEF name (± hexadecimal constant) or

• hexadecimal constant

Three diagnostics may be issued

-NAME ERROR. An external name is invalid.

-CONSTANT ERROR. A hexadecimal constant is invalid.

-VALUE ERROR. The value field is invalid.

The Load subsystem prompts for a response until a carriage return is entered.

b. The request and response for internal references has the format:

SATISFY INTERNALS

*EF - fi Ie name

~.l~ symbol > va lue }§
where

symbol

value

specifies an undefined symbol I isted. in the load map, 1-63 al phanumeric characters.

specifies an expression of the form:

DEF name (±. hexadecimal constant)

symbol name (:t. hexadecimal constant) where symbol is an existing internal symbol
in the element file. If symbol name cannot be specified, a console message will be
issued. The only time symbol name is prohibited is when the combined size of the
LOAD subsystem, the loaded program, the internal symbol table, and the REF /DEF
stack exceeds the size of the on-line memory area.

±. hexadecimal constant

The Load subsystem prompts for a response until a carriage return is entered. The user may leave

any or all undefined references unsatisfied.

11. The execute inquiry and response has the format:

XEQ? {~'or nUll} CR

5,· address

where

Y or CR only specifies yes, execute the program.

N specifies no, do not execute the program. Exit to the BTM executive.

2-6

r

S specifies execute the program using the address specified as the starting address.

address specifies either an external definition, optionally followed by a hexadecimal addend

value, or a signed absolute hexadecimal address beginning with a period.

12. The LOAD subsystem monitors the execution of the user program and responds to errors with diagnostics.

See section 2.2.4,5 diagnostics. The inquiry and response after a user strikes 0 has the format:

PROCEED? {V any other response

2. 1.5 Loader-Constructed DCBs

See section 2.2.5,4. DCBs.

2.1.6 Map

See fi gure 2 -4.

2. 1.7 Diagnostics

1. See section 2.2.4,5. for loader diagnostics.

2. In batch mode, the following diagnostics may be output by the Monitor when bringing a program into core

storage for execution, running a load module.

a. ABOVE BUL. The program bias is greaterthan background upper limit.

b. ABS. CANNOT REL. The Monitor cannot relocate the program because the program is absolute.

c. BAD IF, AND, OR NAME. The name referenced on an IF, AND, or ORdebug control command

is invalid.

d. BAD LOC NAME. The name referenced as a location identifier is invalid.

e. BAD MOD NAME. The name referenced on a MODIFY debug control command is invalid.

f. BAD PMD NAME. The name referenced on a PMD debug control command is invalid.

g. BAD SNAP NAME. The name referenced on a SNAP debug control command is invalid.

h. BAD START NAME. The name on the RUN control command specified as the starting address is

invalid.

i. BELOW BLL. The program bias is less than background lower limit.

j. 10 ERROR. An input/output error or 10 ABN. abnormal condition has occurred.

k. NO LOAD MODULE. The load module named is not available.

I. LOC NOT IN SEG. The location referenced on a debug control command is illegal.

m. SEV. LEV. EXCEEDED. The severity level specified on the RUN control command was less than the

severity level of the load module.

2-7

n. STACK OVERFLOW. The program will not fit in core.

o. TOO MANY DBUGS. The number of debug control commands specified creates an overflow of the

one page of core a II ocated for debug tabl es.

2. 1. 8 Severity Level

See section 2.2.4,6. Severity Level.

2. 1. 9 Background Memory Layout

See figure 2-6.

2.2 INTERFACES

2.2. 1 LOPE Processor/LOAD Subsystem

Module CN705429, BTMLOAD, is conditionally assembled to produce either the LOPE processor for background

processing or the LOAD subsystem for on-line processing. The assembly parameter USER determines the version.

USER is set to 1 for the LOPE processor or to 2 for the LOAD subsystem.

2.2.2 Debugging LOPE

LOPE may be run under DELTA for debugging. LOPE may be executed under the RUN subsystem.

I RUN

LOAD MODULE flO: LOPE (:SYS)

2.2.3 Input

1. ROMs.

a. The loader converts ROMs output from a computer or an assembler into executable format. See the

BPM Reference Manual, 90-09-54E, for the format of the object module.

b. In on-line mode, when executing under the debug option, only the first seven characters of any symbol

are given in the symbol table built by the LOAD subsystem for the debug program. If symbols have

duplicate initial seven characters and length, only the first symbol encountered is retained. Since

the same restriction applies to element file names, element file names should be restricted to seven

characters when the binary input is created.

2. Library Input. See figure 2.2 for the format of the library record.

3. Assign Record. In batch mode, CCI builds a record of all assign information encountered during a

job. The loader examines the record to see if any F: number DCBs have been entered. If the F:

number is a primary reference in the user program, the loader generates a DCB with default entries

for the name. The record is in the absolute area of secondary stroage and is accessed by the read

absolute calls. See the BPM Technical Manual for the formats.

2.2.4 Output

1. Load Module.

a. Lope procedures a load module. When a load module has been created, a !RUN control command

will cause the program loader, PRGMLDR, to access the load module file, to modify and/or to

relocate

2-8

the file, to lay the load module into core according to the specifications of the head and tree records,

and to transfer control to the start address, whereupon the program is "in execution".

b. A load module is a keyed file with the name specified on the LOPE control command. The default

name is the temporary IdL file. The keys and records of the load module are given in figure 2-1.

2. REF/DEF stack. The REF/DEF stack that is output as part of the load module has the same format as the

REF/DEF stack created by the overlay loader. See figure 2-2 for the format. Note that the internal

REF/DEF stack has a different format. See figure 2-12 for the format. The loader converts the REF/DEF

stack to the format of the overlay loader before writing out the stack.

3. Library. The library is a collection of ROMs for which no processing has been done. See figure 2-3 for

the format.

a. Record. Key = HEAD.

o 8 16 24 31

o 80 00 FF
Number of bytes in HEAD
record X'18'

ASS
L

SL -- final
Start address

flag Severity level

2 TeB address (doubleword address) Module bias (doubleword address)

3 Data (00) base (doubleword address) Procedure (01) base (doubleword address)

4 Static data (10) base (doubleword address) Next available page (doubleword address)

5 Maximum REF/DEF stack size Tree size

Figure :2-1. Load Module Format

2-9

b. Tree Table. Key = TREE

o 16

-1 Size of tree table-12

o Segment name

in

2 TEXTC format

3 ROM pointer Back link (displacement from TREE)

4 Forward I ink (displacement from TREE) Overlay link (displacement from TREE)

5 00 size (number of doublewords) 00 location (doubleword address)

6 REF/bEF stack size REF/DEF location (doubleword address)

7 01 size (number of doublewords) 01 location (doubleword address)

8 Expression size Expression location (doubleword address)

9 10 size (number of doublewords) 10 location (doubleword address)

10 Used to monitor size of REF tables 0

c. The following records are built.

Key Record

00 REF/DEF stack

03 00 Control sections

05 01 Control sections

Note that the expression stack is not part of the load module since the stack is only needed to load

a load module with a ROM, a feature absent in LOPE.

Figure 2-1. Load Module Format (cont.)

2-10

31

o 7 11 12 15 31

n I I E I TYPE I
2 VALUE

3 RESOLUTION

n 1 ~ _~l
where:

j

n = number of words in this entry.

E = 1, if the entry has a VALUE

TYPE = 0 or 8 DEF

SREF

2 PREF

3 or B Dummy Section

4 or 6 Control Section

5 or 7 Forward Reference

VALUE = constant or address not a library

RESOLUTION =the resolution in which the VALUE is expressed. Resolution

is of the form:

o 16 31

I Byte Half I Word Double I
If the VALUE is a constant, the RESOLUTION word is O.

If the VALUE is an address, one and only one byte of the

RESOLUTION word is nonzero (viz., the appropriate byte = X'Oll).

If the RESOLUTION assumes a form different from either of the above, the

value is of mixed resolution. (In this case the load module cannot be

relocated and is forced ABS.)

Figure 2-2. Format of REf /DEf Stack That Is Part of The Load Module.

2-11

logical
record

o 2 3 45 7 8 15 16 23 24 31
I , , I

(Number of records-l) *27-1

,r-----------T-------~------~----------------~----------~--------------~

)

i

last record
indicator

Mode
11

Format
100

Maxi mum of 104 bytes

of load information.

Sequence number

logical record

Checksum
1111 1111

Record size

1. logical record. Each record consists of 4 bytes of control information followed by a maximum

of 104 bytes of load information, 108 bytes, the equivalent of 72 card columns.

2. Control information.

a. last record indicator is 000 for last record or 001 for not last record.

b. Mode is always 11, specifying that the loader is to read binary information.

c. Format is always 100, specifying object language format.

d. Sequence number is zero for the first record of the module and is incremented by one

for each subsequent record until the number recycles to zero after reaching 255.

e. Checksum is always X'FF'.

f. Record size specifies the number of bytes in the logical record. Record size is usually

108 bytes, X'6C', 27 words.

3. General description of :BlIB

a. For each ROM, declare extenral definitions, then declare external references and define

origin load items, then a special 02 load item for the library preceed the rest of the

load items.

b. The special 02 load item is followed by the declaration numbers of the external defini

tions in halfword entries.

Figure 2-3. :BLIB Format for Each Page

2-12

c. The physical records are written a page at a time.

d. If a record does not fit into the last few words of a page, these words contain garbage

and the record begins on the next page.

e. If intermediate records are less than 108 bytes in size, LOPE writes 108 bytes anyway

but reflects the logical size in the byte count.

Figure 2-3. :BLIB Format for Each Page (cont.)

4. Load Map. If the map option was specified by

the user, a load map is produced at the completion of loading. The load, map lists external definitions

with the address at which each external definition has been loaded. The map shows the location of the

beginning of all global symbols (DEFs), as well as DeBs. The map also lists unsatisfied external references

and unused or double definitions. See Table 2-1 for the abbreviations used. See figure 2.4 for a

sample load map.

Table 2-1. Load Map Abbreviations

Abbreviation Meaning

SREF Secondary reference.

PREF Unsatisfied primary reference (REF).

DEF External definition. The external definition was referenced and
found.

UDEF i Unused definition. No external reference was made to this
external definition.

DDEF Double definition. More than one defin ition has been found for
!

this name. The first definition found has been used.
I
I

2-13

01:27 JAN 01,'01 ID=00l3-FOO
JOB

LOPE

PREF
PREF
PREF
PREF
PREF
PREF
PREF
PREF
PREF
PREF
PREF
PREF
PREF
PREF
PREF
PREF
PREF
PREF
PREF
PREF
UDEF
UDEF
UDEF
UDEF
UDEF
UDEF
UDEF
UDEF
UDEF
UDEF
UDEF
UDEF
UDEF
UDEF
UDEF
UDEF
UDEF
UDEF
UDEF
UDEF
UDEF
UDEF
UDEF
DEF
DEF
DEF
DEF

JOB,JOB
(MAP), (BI),(NOSYSLIB)

5AOO 0
5A64 0
63AA 0
6498 0
6498 0
64Cl 0
64Cl 0
6532 0
6533 0
653A 0
66CC 0
6A7D 0
6DA2 0
6EEC 0
6EED 0
6F70 0
6F7A'O
6F84 0
6F8E 0
6F98 0
6FFE 0
7056 0
76AB 0
77DO 0
77AO 0
7770 0
7740 0

COMLIST
USECOM
REPCOM
IOSCU
IOSERCK
IOSEREC
RE:ENT
DCTl
DCT4
DCT7
DCTl7
Y8
IOQ4
I~5

IOQ8
IOQlO
IOQll
IOQ12
ROOTSYM
ROOTCNT
LOWEST LOC
START
PATCH
DPAK
CMIO
DPAKCU
CMCU
NENTSYM
SYMBEGIN
DRINIT
OFFSET
DSNAP
PACHSTRT
BEGIN
DELINIT
DLl
DL2
DL3
DL4
DL5
SNAPTBL
OLDPSD
HIGHEST LOC
M:DO
M:OC
M:LO
M:EI

Figure 2-4. Sample LOPE Map Printout

2-14

5. Diagnostics.

a. General Diagnostics.

(1) *** WARNING *** name NOT A USABLE DCB. The DCB named cannot be used as built because

LOPE must build all DCBs.

(2) ERROR IN ABOVE DCB DESCRIPTION. In on-line mode, an error exists in F: input from the

user.

(3) ILLEGAL LOAD OPTION. In on-line mode, an option specified by the user is invalid.

(4) ILLEGAL LOPE OPTION. In batch mode, the LOPE control command submitted by the user

contains an error.

(5) TOO MANY DCBs. The number of DCBs referenced by the user exceeds the number of DCBs

that can be fit into two pages (1024 words) of core storage.

(6) TOO MANY EFS. The number of element files specified by the user exceeds the number of ele

ment files that can be fit into an internal element file list built by the loader.

b. Load Diagnostics. Each load diagnostic is followed by an explanatory message from section c to in

dicate at what point in the load process the error occurred.

(1) CHECKSUM ERROR. A bit (or bits) was dropped when the speci fied record was punched or react

(2) CONFLICTING DSECT. All declared COMMON areas must be the same size. (common) SIZE

(3) ILLEGAL ORIGIN. The ROM data contains an illegal ORG directive that caused an attempt

to load outside the available area.

(4) ILLEGAL ROM DATA. The Relocatable Object Module being loaded contains illegal object

language.

(5) NO ELEMENT FILE. The specified element file cannot be found.

(6) NO LIB FILE. The specified I ibrary cannot be found.

(7) SEQUENCE ERROR. The sequence of the record following the specified record is not equal to

the current sequence plus one and the current record is not the last record in a ROM or the first

record in a ROM is missing.

(8) STACK OVERFLOW. There is not sufficient room in core for the loader, the program, and the

loader stacks.

c. Explanatory Messages. One of these messages follows each of the load diagnostics in section b to

indicate at what point in the load process the error occurred. In the messages XX and YY are

hexadecimal numbers.

(1) LOADING FROM BI

SEQ NO XX

OVERALL ROM NUMBER YY

The loader was processing

ROMs through M:BI when

an error occurred in the

XXth record of the YYth

ROM ecountered in the entire load process.

2-15

6.

(2) LOADING ELEMENT FILE OR GO

EF -name SEQ NO XX

OVERALL ROM NUMBER YY

The loader was processing

ROMs from the file "name"

when an error occurred in

the XX th record of the YVth ROM encountered in the entire load process.

(3) PROCESSING LIBRARY

account

OVERALL ROM NUMBER YY

SEQ NO XX

The loader had processed

all ROMs in the specified

element fil e and was pro-

cessing in the account listed when an error occurred in record XX of the YYth ROM encountered

in the entire load operation.

d. On-line Diagnostics for Executing without the Debug Option:

(1)

(2)

(3)

(4)
(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

DECIMAL FAULT

FIXED OVERFLOW

FLOATING FAULT

ILLEGAL ARGUMENTS TO CALL

ILLEGAL CALL

MEMORY PROTECTION VIOLATION

NONEXISTENT ADDRESS

NONEXISTENT INSTRUCTION

PRNIlEGED INSTRUCTION

PROCEED

UNIMPLEMENTED INSTRUCTION

USER EXIT

STACK VIOLATION

Sever i ty Leve I. A non-zero severity level is printed at the end of the load process. The severity level

is the maximum of any severity levels inherited from the ROMs and of any severity levels generated by

the loader. After printing the severity level, the loader compares the value with the maximum severity

level specified by the user and aborts processing if the value exceeds the maximum.

Loader-Generated Severity levels

Type of Error

PREF

DDEF

REF load table exceeded

Severity

7

4

F

7. Internal Symbol Table. In on-line mode if the debug option is specified, the Internal Symbol Table is

created for the debug program, 0 EL T A. See figure 2-5 for the format. On I y the first seven characters

of any symbol are used. If symbols have duplicate initial seven characters and length only the first symbol

encountered is retained.

2-16

Location Symbol - code = 01

01 I i Sl S2 S3

S4 S5 S6 S7

t I res I value

where

CT is a six-bit field containing the character count of the original symbol.

s. are the first seven (7) characters of the symbol. Symbols with fewer than
I

seven characters are zero fi II ed.

t is a five-bit field where the values are:

00000 - instruction
00001 - integer
00111 - EBCDIC text (also for unpacked decimal)
00010 - short floating point
00011 - long floating point
00110 - hexadecimal (also for packed decimal)
01001 - integer array
01010 - short floating point array
01011 - long floating complex array
01000 - logical array
10000 - undefi ned symbol

res is a three-bit field representing the internal resolution. The values are:

value

000 - byte
001 - ha I fword
010 - word
011 - doubleword

Location symbols are always represented as a 19-bit byte resolution value.

Constants - Code = 10

10 Ii Sl S2 S3

S4 S5 S6 S7

value

where

CT and S. have the same meaning as above.
I

value is the 32-bit value of the constant.

Figure 2-5. Internal Symbol Table

2-17

2.2.5 Loader-Generated Tables

See Figure 2-6 for memory allocation, including the position of the tables, at execution time.

1. Task Control Block. See Figure 2-7 for the format. The TCB resides in the 00 area.

2. DCB Name Table. See Figure 2-8 for the format. The DCB Name Table resides in the 01 area.

3. Tree. A copy of the tree table is placed at the beginning of the 01 area as well as being recorded in the

tree record. See figure 2-1 for the format.

4. DCBs.

a. The loader builds a DCB for any F: or M: primary reference. In batch mode, LOP~ always builds

on M:DO DCB.

b. All loader-generated DCBs are 48 words long. The first 22 words (0-21) are standard and allocated

for the fixed portion of the DCB. Each variable-length parameter (words 22-40) is preceded by a

control word and allocated to allow, in addition to the control word, three words for file name,

two words for account, two words for password, three words for IN SN (SN), and three words for

OUTSN (SN). Words 41-48 are reserved. Default information is placed into recognized DCB names.

See Figure 2 -9 for the recognized DCBs and defaul ts.

c. If a file is opened in the output mode through any of the M:DCBs in Figure 2.8 except M:C, a flag

is set in the Job Information Table (JIT). If the DCB is not reassigned before the DCB is opened again in

output mode during the same job, all records output through the DCB are appended to the end of the

file -- file extension occurs.

_ Background lower limit

{
TCB

} Program Sections

I'llii

Monitor Write-Locks of 01 DATA (00)

_ Page Boundary
TREE

Monitor Write-Locks of 11
DCB Tables ~ PROCEDURE (01)

Loader-generated DCBs
J _ Page Boundary

Monitor Write-Lock of 01
(may be changed by M:SMPRr)

Debug Tables (1 page)

{
Userts Dynamic Area

M:GP f
~ M:GCP

Blank COMMON
_ Page Boundary

_ Page Boundary

Monitor Write-Locks of 11 { Fi Ie Index Buffers

-Background upper limit

Figure 2-6. Background Memory Layout, LOPE Processor

2-18

The fields of the TCB are as follows:

TSTACK is the address of the current top of the user's temp stack.

TSS indicates the size, in words, of the user's temp stack.

TSA is the address of the temp stack used by the library error package.

TSASIZ indicates the size, in words, of the temp stack used by the library error package.

o

2

3

4

5

6

7

8

9

10

11

12

13

14

15

TSA

ERT

TSTACK

-

0

0

0

0

0

o

0 TSTACK

TTS 10

These words for use by a processor

0 TSA

TSASIZ /0
ERTSIZ ERT

ERTSIZ-2 TSA+1

0 DCBTAB

0 TREE

For use by a processor

XSL specified on !RUN control command

For use by Mon i tor

Library error tamp stack

Library error table

User's temp stack
01

141516

Figure 2-7. Task Control Block Format

2-19

0

0

01 SSW

.1
25 26 31

} TSASIZ

} ERTSIZ

} TSS

ERSIZ indicates the size, in words, of the error table used by the library error package.

ERT is the address of the error table used by the library error package.

DCBTAB is the address of a table of names and addresses of all of the user's DCBs. This table has the form

shown in Figure 2-8.

TREE is a pointer to the location of the user's overlay structure.

SSW contains the user's sense switch settings (bit 26 contains the setting of switch 1, etc.).

On transferring control to a user's program or to a processor, the Monitor communicates the TCB address through

general register O.
Figure 2-7.'1 Task Control Block Format (continued)

DCBTAB -:+ r--- ~ I--- r+ r--

Notes:

entry 1 entry 1 entrYl

entrY2 entrY2
-

entrY2

.
.

entry. entry. entrYj I I

LINKADR
f4- ~.

0 O~ LINKADR

1. Each entry contains a variable length DCB name and DCBLOC word as follows:

TEXTC
~-------

Name of DCB
~-------

DCBLOC

2. LINKADDR is the location of another block of the DCB table. If LINKADDR contains
zero, the current block is the last one of the DCB table.

3. DCBLOC is the address of the first word of the DCB.

Figure 2-8. DCBTAB (Name Table)
2-20

DCB Name Function Record Byte Size Operational Label

M:C Input 120 C

M:OC Input/output 85 OC

M:LO Output 132 LO

M:LL Output 132 LL

M:DO Output 132 DO

M:PO Output 80 PO

M:BO Output 120 BO

M:LI Input 120 LI

M:SI Input 80 SI

M:BI Input 120 BI

M:Sl Output 132 SL

M:SO Output 80 SO

M:CI Input 120 CI

M:CO Output 120 CO

M:AL Output 80 AL

M:EI Input 120 EI

M:EO Output 120 EO

M:GO Output 120 NO

F: 101 Input 0 OC

Fl02 Output 0 OC

F: 103 Input 0 PR

F: 104 Output 0 PP

F: 105 Input 80 51

F:l06 Output 120 BO

F: 108 Output 132 LO

Figure 2-9. Loader-Constructed System DCBs

2. 2. 6 LOAD Subsystem

1. The LOAD subsystem is a two-level subsystem. Both levels use the same memory area so both do not run

concurrently. For each terminal in the system an area of secondary swap storage is allocated for each

level. The LOAD subsystem is maintained in subsystem storage as the LOAD subsystem is time-sliced into

memory until the iob step is complete. After the program is loaded by the LOAD subsystem, an image of

the terminal user's program is maintained in user storage. After the LOAD subsystem transfers execution to

the user program, the LOAD subsystem maintains effective control by monitoring all abnormal conditions

such as a trap. The BTM Executive keeps track of the level applicable to each iob. The Executive always

interrupts a user program and gives execution to the LOAD subsystem if an abnormal condition occurs.

2-21

2. The LOAD subsystem follows the rules for a BTM subsystem.

a. The first 40
16

locations contain specified data. See Figure 2-10 for the format.

b. The Load Subsystem has a Task Control Block (TCB). See Figure 2-7 for the format.

(1) The TCB specifies no temp stack for the LOAD subsystem.

(a) The address of the current top of the stack is STACK, a label that reserves the number of

words specified by the value SZSTACK, zero.

o Word address of the Task Control Block (TCB) for LOAD

o

2

3

4

5

6

7

8 0

9 Word address of normal entry point, ENTRY. Entry point for a PROCEED is ENTRY + 1

A 0

B

C

D

E

F 0

1. 0 Reserved for Monitor use.

I
3F

Figure 2-10. Standard First X'40 ' Words of LOAD Subsystem

2-22

(b) The stack size, in words, is the value SZSTACK, zero.

(c) The stack word count is zero.

(2) The TCB specifies no temp stack for the library error package.

(a) The address of the stack is zero.

(b) The stack size, in words, is zero.

(c) The stack word count is zero.

(3) The TCB specifies no error table for the libarary error package.

(a) The table size, in words, is zero.

(b) The table address is zero.

(4) The TCB has the address of the DCB Name Table, MYDCBTAB.

c. The LOAD subsystem has a DCB Name Table with entries for all DCB used. See Figure 2-8 for

the format.

(1) The first link address points to the last word of the table. The last word of the table, also a

link address, is zero to indicate the end of the table.

(2) Entries are given for M:BI, M:LI, M:DO, M:LO, and F:Xl.

'd. The LOAD subsystem has all DCBs used by the subsystem assembled with protection type 00.

e. Upon entry, the LOAD subsystem has access to data.

(1) Register 1 contains the COC line number in binary.

(2) Registers 4 and 5 contain the EBCDIC login account designation, left justified and blank filled.

(3) Register 2 contains the terminal job entry flag. 0 means that the console is excluded from the

system and 1-F indicates the maximum priority.

(4) Register 3, byte 0, contains the batch authorization flags from the BTM iob information

tabl e, AJIT.

(5) Registers 13-15 contain the EBCDIC login name designation, left-iustified and blank filled.

f. The LOAD subsystem uses BTM system calls to perform system control and memory management

functions.

(1) CAL3, 14 returns the maximum number of pages that can be allocated. This value is used in

allocating the dynamic data area.

(2) CAL3,11 informs the BTM Executive of the new configuration whenever the amount of space

used in the dynamic data area changes.

(3) CAL3,4 loads the debug program, DELTA, and transfers control to DELTA.

2-23

(4) CAL3,7 swaps a page between the user area and the subsystem area to allow LOPE to monitor

execution of the user program (to determine why control was returned).

(5) CAL3,6 returns control to the BTM Executive.

2.2.7 Debug Program, DELTA

The LOAD subsyste~ issues a call to load DELTA and to transfer control to DELTA if the user has specified execution

under the debug option. DELTA accesses data indirectly through the first word of the last page of memory which

LOPE has set to point to the global symbol table location and size, user program starting address, internal symbol

table and size, and last word of user program (following DCBs). See Figure 2-5 for the format of the Internal

Symbol Table and section 2.2.4,7 for the description of the table. See the DELTA documentation for a diagram

of memory following DELTA initilization after an on-line load.

2.2. 8 Accounting

The loader is charged until the loader gives control to the user program. The instruction issued just before control

goes to the user program causes the user to be charged.

2.2.9 Monitor

1. The loader access the job information table, JIT in batch mode, or AJIT, in on-line mode, to obtain

information about the current job. For example, in on-line mode, the loader obtains the log-in account

from AJIT if a password with no account is specified in a DCB assignment.

2. The loader uses a CAll, 9 9 to have accounting properly allocated. To change accounting from pro

cessor to user, the loader issues the call immediately before transferring control to the user program.

2.2. 10 eel
CCI builds the assign record which the loader reads. See section, 2.2.3,3 for the description.

2.2.11

1.

Stacks

To translate object modules into an executable form, the loader processes load items, which constitute

the object language. To obtain all information about control sections, dummy sections, external defini

tions, external references, and forward references, the loader combines data from different types of load

items by retaining data in stacks. The loader forms five stacks: the declaration stack; the REF/DEF stack;

the expression stack, the forward reference stack, and the temporary storage stack. Note that LOPE has

different stacks and a different format for the stacks than the overlay loader.

2. Declaration Stack. See Figure 2-11.

a. When processing a declare load item, the loader builds an entry for the item in the declaration stack.

The ROM has assigned declaration numbers, created declare load items, to all control sections,

dummy sections, external definitions, and external references. At the end of the module, the loader

clears the stack since the declaration numbers apply only within a module.

2-24

o
o 7 8

Type I o or Size

Displacement into REF/DEF stack or address of CSECT or DSECT (Byte resolution)

where:

Type

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

DEF

PREF

SREF

Dummy section (Size applies)

Control section (Size appl ies)

X'80'

X'40'

X'20'

X' 10'

X'08'

31

Size specifies the size of a control section or dummy section. The first 2 bits of Size are the

protection type.

Figure 2-11. Declaration Stack

b. Given a declaration number, the loader can locate the corresponding stack entry by position in the

stack since the ROM has assigned declaration number consecutively. The loader must be able to

locate the item by declaration number in order to evaluate expression load items, which refer to

declared load items by number.

c. The two word stack entry contains the type and a pointer to the corresponding entry in the REF/DEF

stack that is being built to contain information about the item. For a control section, after the base

address and size are available, these values are added to the declaration stack entry, with base

address replacing the pointer to the REF/DEF stack.

3. REF/DEF Stack. See Figure 2-12.

a. When processing a declare load item, the loader searches the REF/DEF stack for a corresponding entry

and builds an entry if the entry does not exist. In this way the loader creates an entry for each con

trol section, dummy section, external definition, and external reference.

b. The REF/DEF stack contains information about an entry. In batch mode, LOPE converts the REF/DEF

stack format to the REF/DEF stack format of the overlay loader and outputs the stack as part of the

load module so that symbolic debugs may be used during execution.

c. The variable-length entry contains the number of words in the entry, type, resolution, value of DEF

or a pointer to the expression stack link, and the name of the item in TEXTC format.

2-25

o

2

n

o 7 8 11 12 14 15

EVAL Resolution
NUMBER of words 00 entry
in entry type Size if control section or dummy section

Value of DEF, address of control section or dummy section, or pointer to
Expression stack link {Value of DEF is an address or constant}.

- -
TEXTC name

where:

type

Bit 0

Bit

Bit 2

Bit 3

Evaluated flag

External reference

PREF

Dummy section

1 = yes, 0 = no or DEF X'80 '

SREF X'40'

PREF X'60'

X' I0 '

DDEF X'90 '

More than one indicator may be on. For example a DEF that satisfies a primary

reference is a X'EO'.

Figure 2-12. REF/DEF Stock

4. Expression Stack. See Figure 2-13.

31

a. To process a define load item, the loader obtains the expression control bytes following the item

(which refer to constants, declaration numbers, and forward reference numbers), builds an expres

sion (using the declaration stack if necessary), places the expression in the expression stack entry

for the item, and attempts to evaluate the expression. If the loader cannot evaluate the expression,

the loader chains the entry to an entry in the REF/DEF stack if the expression needs the value of an

external reference or to an entry in the forward reference stack if the entry needs the value of a

forward reference.

b. If the loader can evaluate the expression, the loader places the value of the expression in the desti

nation, a REF/DEF stack entry if the expression defines an external definition, a forward reference

stack entry if the expression defines a forward reference, or the core image if the expression is a core

expression. Note that the expression stack is not part of the load module since the stack is only

needed to load a load module with a ROM, a feature absent in LOPE.

2-26

o

>
~:

7 8 9 15 16 23 24 31

Number of words E Displacement to first Type of destination Expression
in entry V value word 08 - DEF AD = core control byte 1

A 04 - Field
L 00 - origin

10 - FREF
40 - Define Start I . . . Expression ~ control byte n

Destination of value of expression

Additive value 1

Additive value n

Figure 2-13. Expression Stack

c. The variable length entry contains the number of words in the entry, the evaluated flag, the

displacement to the first value word, the type of destination, the expression control bytes, and the

destination of the value of the expression.

5. Forward Reference Stack. See Figure 2-14.

a. In processing expressions, the loader finds expressions involving forward references. The expressions

refer to forward references by random numbers. The loader searches the forward reference stack for

a corresponding entry and builds an entry if the entry does not exist. If the load item is a DFREF,

define forward reference, the loader removes the entry from the stack as soon as the forward refer

ence is defined because the forward reference number is closed when defined. A new expression

involving the number refers to a new forward reference. If the load item is a DFREFH, define forward

reference and hold, the loader keeps the entry in the stack until module end. At module end, the

loader clears the stack even if the forward reference has not been resolved. The defining expression

refers to a primary reference or a dummy section.

b. The loader uses the forward reference stack to keep track of the forward reference number until the

entry is defined. When the entry is defined, the value is placed in the expression stack entry that

needs the value.

c. The two word entry contains the forward reference number and a pointer to the expression stack link.

If the entry is a forward reference and hold, the entry contains a defined flag. When the flag is

set, the value of the forward reference replaces the pointer to the expression stack.

2-27

o 1 31

DEF
Forward reference number - a combination of module no. and forward reference no.

Pointer to Expression Stack link or value of defined Forward Reference and Hold load item

where:

DEF is 1 if a forward reference and hold load item is defined.

Figure 2-14. Forward Reference Stack

6. The temporary storage stack contains temporary entries. A minimum fixed size is kept to allow for non

recursive use without checking for stack overflow.

7. The stacks are allocated at the top of the common dynamic area and grow downward. See Figure 2-15.

The sum of the initial sizes is the value SUMSIZES, 3840 bytes. The size of the stacks vary depending

on the usage. The stacks expand as entries are added. Since the entries are referenced indirectly through

the stack pointer, the actual position of the stack in core may vary. The stacks may be moved around to

make more stack space available from the dynamic data area. The stacks may also be compressed to

redistribute unused space in one stack to another stack. The subroutine PRESSTK collapses the stack space

if possible and the code at STKOVFexpands the appropriate stack if an overflow occurs. Code using the

stacks checks for overflow after pushes and ca II S TK OVF with the amount of space needed as an argument.

A certain amount of space is left in the temporary stack for non-recursive use.

8. See Figure 2-15 and 2-16 II for the labels associated with the stacks and the position of the stacks in core.

2.2. 12 Use of Memory

1. In batch mode, LOPE issues a get-page call to request the maximum number of pages available. In on

line mode, the FOAD subsystem issues a CAL3,4 to find out the maximum number of pages that can be

activated. The loader begins at the low end of the dynamic data area when processing the library option

or building the core image and allows the I ibrary buffers or core image to extend upwards. The loader begins

at the high end of the dynamic data area for the stacks and allows the stacks to extend downward. See

Figure 2-16. i Whenever the amount of dynamic data area used i~creases, the loader issues a CAL3, 11

to inform the BIM Executive of the new configuration so that swapping will be correct and efficient. If

the library buffer or the core image overlaps the temp stack and space cannot be removed from the stacks,

processing is aborted for lack of core.

2. When the execute option is specified, the loader uses the set memory protect call to change the protec

tion type of the 01 area to 00 so that the loader can store into this area when creating the core image of

the user program.

2-28

Stack pointer
Stack Doubleword Base Initial Size (Bl!es)

Declaration DECLSTK DECLBAS DECLSIZ = 128

REF/DEF RFDFSTK RFDFBAS RFDFSIZ = 1024

Expression EXPRSTK EXPRBAS EXPRSIZ = 2048

Forward reference FREFSTK FREFBAS FREFSIZ = 312

Temporary storage TSTACK TEMPBAS TMPSIZ = 128

SUMSIZES = 3840

library Processing

BLKBUF contains the address of a one page buffer used to hold the physical library record.

OBUF contains the address of the buffer for the logical library record.

DYNDATA contains the address of a one page buffer used to store declaration numbers of

external definitions in halfword entries.

The page after the address in DYNDATA is a buffer in which declare reference and define origin

load items are stored until declare external definition load items have been placed in the

I ibrary record.

Memory Allocation

LDDATA+1 is the lower limit of the program.

LDDATA +2 is a word containing the upper limit of the dynamic data area.

MAXLOC is the address of the highest location loaded.

BACORE is the byte address of the next section to be allocated.

LOC is the current value of the location counter.

On-line Mode

USERSIZE is the number of available pages.

OOSIZE is the number of program data pages in the LOAD subsystem.

01 SIZE is the number of program procedure pages in the LOAD subsystem.

On-line Mode-Debug Option

WPADDR is the address of the window page.

WPNUM is the page number of the window page.

ISTBASE is the address of the Internal Symbol Table.

Figure 2-15. Labels used in Allocating Memory

2-29

c
CD ...

Batch

LDDATA +2-1~

WPADDR}
ISTBASE

--_.
(

DECLBAS

(

FREFBAS <

<

EXPRBAS «

RFDFBAS
~

TEMPBAS

u
's
c
~

c C -7 .. CD
C ...

"'0 "'0 C

Available space

MAXLOC ..

DYNDAT A ____

BLKBUF1 ..

BLRBUF

Window page for DELTA

1 §
G

Declaration
Stack

" Forward Reference
;=0
m c:,

" Stack V)

N

m
Expression X

-0
Stack ;;:c

V)

N

REF/DEF
;=0

" 0
Stack " .,

V)

N

Temporary ~
-0

Storage V) .,
Stack N

Available space in dynamic data area 7

Buffer for I ibrary processing. (Store declare
reference and define origin load items)

Buffer for I ibrary processing. (Store declara- -g 0
::l

tion numbers for DEFs in halfword entries ~ CD

MAX LaC

~ 0
C ::l co CD
CD DYNDATA On-line

Buffer for I ibrary processing. (contains ~ 0
C ::l

logical record) co CD
CD

BlKBUF

LOAD subsystem

As the core image is built upward in the dynamic data area, MAXlOC increases. LaC, the current

value of the load location counter is checked to make sure LOC remains below TEMPBAS. If space

cannot be made available, processing is aborted.

Figure 2-16. Layout of Memory after Initialization
2-30

2.2. 13 Example

]. Sample Program

A sample program was assembled under the METASYM processor.

1 SYSTEM SIG1F'r>Ft
2 nEF Ael
3 RE' AB2
4+ 01 00000 6A900000)(START 8AL.,·9 AB2
!5 01 00001 00000008 02 OATA ZAP+2
6 02 00000 CS!CT 0
1 02 00000 RES 5
8 02 00005 OOOOOOF'F A ABt DATA X'FF'
9 02 00006 ZAP EQU $

10 01 00000 ENO START

CeNTR6L SECTYBN SU~HARYI 01 00002 PT 0 02 00006 PT 0

2. ROM

A load-item-by-Ioad-item interpretation (a ROMBUST) of the ROM for the sample program was made. The

interpretation of the load items is in the order in which the items were output by the METASYM processors.

Note that each load item is listed, in hexadecimal, on the line above the description.

ROMBUST of Sampln. Program

RECBRD ••• REC6RD NU~BERI 0

REceRD TYPE: LAST, Me~E: 81NARY, F~RMAT: 6SJECT LANGUAGE.
SEQUENCE NUMBER 0
CHECKSUM' 200
RECBRD stZE: 66

0303C1C2Fl
OECLARE EXTERNAL DEF'Y~ITIeN NAME (3 ByTES) NAME: A~l DFCLARATIRN NUMBERI 1

0503C1C2F2
DECLARE PRI~ARY REF'ERENcE NAME (3 BYTES) NAMEI A~~ DECLARAT!eN NUMBER. 2

oeOOOOOR
DECLARE NRNSTANDARD C6NTReL SECTI6N DECLARAT!AN NUMBER: 3
ACCESS CeDE: FULL ACCESS. SIZE 8 X'8'

OC000018
DECLARE N6NSTANDARD C~NTR~L SECTIeN DECLARATr~N NUMBER: 4+
ACCESS ceDE: FULL ACCESS. SIZE 24 X'1S'

OA01010000001~200~02
OEFINF, EXTERNAL DE~INYTIBN
NUMBER 1
~DD C6NSTANT: 20 X'l~'
AnD VALUE eF DECLARATI6N (BYTE RES~LUTreN)
NUMBER 4
EXf=)RESSIeN END

2-31

04.100301_ .___ ____ _ __ _
!RIG!N
ADO VALUI eF CECLA~ATIeN (BYTE RES8L~TteN)
~~eER __ 1 __ _____ . ______ . _ _ _ . __ _
!X'-RESSreN END

826A900000
LeAD REL~CAJA~~U SHe~TF~RM). __ ~ruC~Tt-_ AO~ __ f' JELD_ (weRO REseLUT I eN)
~ELATIVE fe 0ECLA.ATleN NUMBER 2
'HE FeLLeWING 4 BYTESI X'6A900000'

I~oooooooa. __ .. _ . _ _ _ _ _____ _ . _
Le~D RELeCATABLE fSMeRT FeRM), RELec.,! ADO~EIS FIELD (weRD REseLUTIeN)
~ELATIVE T8 DECLARATleN NUMBER 4
T~E FeL.L.eWING 4 BYTESI)("~_ _ ____ . ______ . _____ ._

0'+010000001 .. 200402
8RIGtN
AOO C8NSTANTI 20 X'1'"

AOD VALUi eF DECL~RATIeN (BYTE RESeL.UTteN)
NUMBER '+
E)(PRESSleN END

00220302
DEFINE START
ADO VALUE eF DECLARATI8N (WeRD RESeLUTyeN)
NUMBER 3
EXPRESS UtN END

OEOO
,..,"DUL.E END

3. Load Module

Using LOPE to load the sample ROM, a load module called TARGET was created.

2-32'
\

Target Load Modu I e

HEAD
OCOOO ~OOOFF18 BOOC666~ 33003300 33003400

C7E3C1D9C7C~E3ro
COOOO oSconooo
oeoo@ 03C1C2Fl
00010 C~C8C9C7
Oe018 ~3D6C340

07E3C1D9c7C~~3e3
oeOOO OOC066?3
000C8 00146~lA
OC010 THRU 0005F

00000000
Oe060 oooonooo
Oe06! ooooeooo
00070 THRU 001FF'

00000000

07E3Cl09C7C5~305
oeOOO
oe008
OC010
OC018

Oe3DO
OC308
OC1EO

OC3E8
OC3FO
003F"8

TREE
00000
OCOoa

00000000
1:11003300
1)6404040

THRU f'\03Cr
rocor-ooO
~OCC('lOO3
C'oooncoo
0000(')000

()oeonooo
07000003
(10000000

oocooooC
C2003~00

00C1AF40
O~C?OOOO
C8CC5f2f3

00400000
00106610

OOOOOOCO
00000000
00000000

Ooooooon

001';00000
00030000
OOC06f3r'O

ooceooro
00080005
000000'10
000000CO

001'100000
00')000('0
OOC00000

06F3Ctr'l9
oocooono

01000000
00007A64
40D3D6(3

00000000
COCO~~OE

COOOCOOO
0000eOOo
('0000000

00000000

ceoooooc
O?003400
/.:0000000

ooooeooo
CAOOOOOO
00006AF'8
OOOOCOOO

1":2000002
COOOOOOO
OOOOCOOO

C7C5F300
00003600

04047AC4
01eOOOOO
06000000

0000000r)
00000000

00000000
00000001)
OOOOOOF'F'

00000000

01E3C10~
00000000
00000000

00000000
00000000
00000000
00000000

ooooooo~
00000000
00000000

40404040
Cooooooa

2-33

36003600 0019000C

06404040
03C1C2F2
00019800

00000000
00000000

00000000
6A900000
00000000

00000000

C7C5E305
00003600
00000000

00000000
00000000
00000000
OOCOOOC'O

eooooooo
08010003
oocooono

00000000

04000000
06000000
01000000

00000000
r)OOOOOOO

00000000
0000666E
00000000

00000000

~O404040
00000000
00000000

(')0000000
~0000011
00000000
00000000

03000002
00000000
(')0000000

(')0000000

000199AC
000lAF'F'C
CM)3D6f"6

0000660r:
00000000

00000000
00000000
00000000

00000000

00000000
00006812
00000000

00000000
00006Bf"6
00000000
010000f'3

00000000
00000000
00000000

01003300

01000000
01000000
C5E2E340

OOOAOOOO
00000000

00000000
00000000
oooonooo

0000('1000

00000000
04047AC4
0000('000

00000000
00000000
00000000
00000000

0000(')000
OOOO("OOC
oooorooc

0019000C

0

Type

#0 08

Type

#1
80

Type

#2 ~-

#3

{
Type
08

~ #4
I

~

Declaration Stack

Address for CSECT 0

-~-----

Displacement into REF/DEF stack

Size

Address for CSECT

Size

---- ---
Address for C SECT

3

0

0

4

7

8

8

o
WC
04

REF/DEF Stack

Value
o

TEXTC name

Value
o -.-

TEXTC name (AB2)

31

o PREF

o DEF

o PREF

o

CB2
20

WC
05

Expression Stack

3 08

CBl
01

31

:::"00';: I ----~ --t ,:
CSECT address from declaration #4

WC
04

CBl
20

CB2
02

destination -t CSECT address from declaration #3

WC
05

CBl
01

define ABI

define origin

CB2 CB3
20 02 -= t -d.H" 0';,"

14

destination

CSECT addr'ess from declaration #4

WC CBl
04 22

CB2 l 02

__ destination STTADR- - ~

CSECT address from declaration #3

defi ne start
address

2.3 OPERA TIO NAL OVERVIEW

2.3. 1 Description

1. Entry.

a. The starting address for the loader in ENTRY, which branches to SIGSALS.

b. The instruction after ENTRY is the entry point for a PROCEED command.

c. The instruction after USERGO is the entry point for return from execution of a user program.

2. Exit.

a. The code after COMPROM in the Library Module, PERMLIB, issues a CALl, 9 1 to exit from the

job step.

b. In batch mode, after building a load module, the code after EXPNDLOP in the Execute Module

issues a CAL 1,9 1 to exit from the job step.

c. In on-line mode, after setting up to save files, the code after SMALLER in the Execute Module

issues a CAL3,6 0 to return to the BTM Executive.

d. In batch mode, if executing the program, the coce after $STTADR in the Execute Module transfers

control to the user program by branching to the address in STTADR.

e. In on-line mode, if executing the program with the debug option, the code after DELTA in the

Execute module issues a CAL3,4 0 to load DELTA and to transfer control to DEllA.

f. In on-line mode, after executing the program without the debug option, NORMRT in the Execute

module issues a CAL3,6 0 to return to the BTM Executive.

g. If the job step cannot be continued, the code after ABORTIT issues, in batch mode, a CALl, 9 3 to

abort the job or, in on-line mode, a CAL3,6 0 to return to the BTM Executive.

3. In the start module at SIGSALS, do initial processing: read the control input suppl ied by the user and

save data about the options specified. If the library option was specified by the user, go to the Library

Module, PERMLIB. Otherwise go to the Loader Module, LOR. In the Library Module, create the user

library, :BLIB, in the current account and issue a CAL 1,9 1 to exit from the job step. In the Loader

Module, LOR, load all ROMs. In the Endload Module, ENDLOAD, print a map, build the DCBs, build

a DCB Name Table and a Task Control Block, TCB. If in any of these modules an error occurs, branch to

one of the print error entry points, TOMNYDCB, TOOMANYEF, or PA _' and, in batch mode, abort

the job or, in on-line mode, return to the BTM Executive. In the Execute Module, in batch mode, if

the load module option was specified by the user, build a load module and issue a CAL 1,9 1 to exit from

the job step. In batch mode, if the execute option was specified by the user, transfer control to the user

program. In on-line mode, if an execute option was not specified by the user, set up to save the files

and issue a CAL3, 6 0 to return to the BTM Executive. In on-line mode, if the debug option was specified

by the user, load and transfer control to the DELTA subsystem. In on-line mode, if the execute option was

specified by the user, monitor execution of the user program and issue a CAL3,6 0 to return to the 8TM

Executive.

2-35

2.3.2 Flowchart

See Figure 2-17.

2.4 MODULE ANALYSIS

2.4. 1 Start

·1. Module Name. SIGSALS.

2. Purpose. Perform initial processing. Read the control input supplied by the user and save data on the

options specified.

3. Entry.

a. ENTRY is the initial entry point for the loader. When the LOPE processor or the" LOAD subsystem is

invoked, the processor/subsystem is loaded into core and control is transferred to ENTRY. ENTRY

branches to SIGSALS.

b. In batch mode, the LOPE control command must be read. In on-line mode, control input must be

entered.

c. In on-line mode, data is available to the subsystem.

4. Exit.

(1) Register 1 contains the COC line number in binary.

(2) Registers 4 and 5 contain the EBCDIC login account designation, left-justified and blank filled.

(3) Register 2 contains the terminal job entry flag. 0 means that the console is excluded from the

system and 1-F indicates the maximum priority.

(4) Register 3, byte 0, contains the batch authorization flags from the BTM job information table,

AJIT.

(5) Registers 13-15 contain the EBCDIC login name designation, left-justified and blank-filled.

a. The normal exit is to the library Module, PERMlIB, if the library option has specified by the user

or to the Loader Module, LDR, if the library option was not specified by the user.

(1) The exit is taken after initial processing is complete.

(2) Certain fields have been initialized. See Figure 2-16 for the layout of memory.

(a) DCBs.

(1) In on-line mode, the default assignment of M:BI to the temporary file BOTEMPa,

where a is the COC line number in binary, has been made.

(2) In on-line mode, if the debug option was specified, an intermediate file, the name of

which is based on the line number, has been opened. The buffer for the intermediate

file. will be used as the window page by the debug program. DFLAG, the debug flag,

has been set.

2-36

Start Module. Do
initial processing. yes

~-----""1 Read user control
input and save data
on options.

Loader Modu Ie.
Load a II ROMs.

Print a map, bui Id
the DCBs, bui Id a
DCB Name Table,
and a Task Control
Block.

yes

yes

Execute Module.
Depending on options
and entry points, build
load module, set up to
save user program, or
provide for program
execution.

Library Module.
Create the user
library, :BLIB,_
in the current
account.

Figure 2-17. Flowchart of Overall Processing

2-37

yes

(3) In batch mode, the job id from the Job Information Table, JIT, has been used to create

the default file name for the M:LM DCB (the temporary load module file), the GO file

name, and the name used to access the temporary assign file.

(4) In batch mode, if the load module option was specified by the user, the load module

name has been placed in the M:LM DCB.

(b) EFUST, the element file list, contains, in sequence, the identification of each element file

specified by the user and/or, in batch mode, the GO file if specified by the user.

(c) UBUST, the library list, contains, in sequence, the account numbers of I ibraries from which

primary references are to be satisfied.

(d) Stack pointers and bases have been set up. See Figure 2:-16 for the names.

(e) For library processing, BCDBUF, OBUF, and DYNDATA contain the address of buffers.

(f) Register 02 has bits set for options.

Bit 0 map

Bit 1 no-system-I ibrary

Bit 2 10016-control-section.

Bit 5 1°
16

-control-section (batch)

Bit 6 execute (batch)

Bit 7 binary (batch)

Bit 8 permanent-load-module (batch)

(g) In batch mode, register D 1 contains the converted value of the severity level option if

specified'by the user.

(h) In batch mode, register D 1 contains the bias.

(i) In batch mode, register SR3 contains the converted value of the temporary storage option, if

specified by the user.

b. The error exit is, in batch mode, to abort the job step or, in on-line mode, to return to the BTM

Executive.

(1) The exit, to MNYDCB, is taken if the number of DCBs referenced exceeds the number that can

be fit into two pages of core storage. The error message printed is: "TOO MANY DeBS".

(2) The exit is taken if the number of element files specified exceeds the number that can be fit

into an internal element file list, EFUST, built by the loader. The error message printed is:

"TOO MANY EFS";

(3) The exit is taken if the LOPE control command or the LOAD control input contains an error.

For LOPE, the error message printed is: IIILLEGAL LOPE CARDII. For LOAD, the error message

printed is: IIILLEGAL LOAD OPTIONII.

2-38

5. Operation.

a. In on-line mode, set the default assignment for the M:BI DCB to the BOTEMPa temporary file where a

is the COC line number in binary and save the binary COC line number in LINENUM.

b. Save the lower limit in the second of the six loader control words, LDDATA + 1. In batch mode, set

the lower limit at TSTACK + 1536. In on-line mode, set the lower limit at ORIGIN +512.

c. Allocate memory. See Figure 2-15. Obtain all available pages. In on-line mode, use the

CAL3, 140 call to obtain the number of available pages and store the value in USERSIZE, calculate

and save the number of program data pages in the LOAD subsystem in OOSIZE, cal culate and save the

number of program procedure pages in the LOAD subsystem in 01SIZE, and calculate the number of

words available past the end of the LOAD subsystem. From this point register SRl contains the number

of words available and register SR2 contains the first word address of the available space. From the

lower end of the dynamic data area, reserve a page for the buffer used to write the library record by

storing the address of the first available word in BLKBUF. In batch mode, store the address of the

page after the address in BLKBUF, from register SR2, in BLKBUFl and increment register SR2 to the

next page. Store the address of the next available page in DYNDATA. In on-line mode, add X'lFF'

to the address in DYNDATA; store the result in MAXLOC the address of the maximum location loaded;

building down from the top of the dynamic data area, reserve room for the five stacks, the value of

SUMSIZES; store the address of the temporary storage stack, the lowest stack, in TEMPBAS; and de

scribe memory to the BTM Executive for efficient swapping (SETSIZE subroutine). Clear the

DYNDATA area up to the end of the available space. Store the last word address of available mem

ory in the third of the six loader control words,upper limit, LDDATA+2.

d. In batch mode, save the job id from the Job Information Table, JIl, in the parameter list used to

open the temporary load module file, in the word used to build the GO file name, and in the pa

rameter list used to open the temporary assign file.

e. Set up the stack pointers and bases in the high end of the dynamic data area. Put the last-word

address-of-available-memory + 1 into the word after the last base address.

f. Obtain the control input from the user. In batch mode, print the control command through the M:LO

DCB and read the control command through the M:C DCB. In on-line mode, save registers 0-3, set

the prompt character to activate on carriage return, issue a new line (CRLF subroutine), and request

element file names (WTTY subroutine).

g. Obtain a b~e from the control command (GCBYTE subroutine). In on-line mode, if processing

element files, go to step i. In batch mode, if the control command is continued to the next record,

read the next record from the C device, print the record through the M:LO DCB, and go to the begin

ning of step g.

h. Obtain the keyword from the control input (NAMFLD subroutine) and use a jump table to determine

where to branch to process the options. When all options have been processed, to to step t.

2-39

i. To process the element file option, obtain the element file name (NAMFlO subroutine, and GCBYTE

subroutine in batch mode) and store the name in an element file list, EFLIST. If the list becomes

full, print an error message (PRTERR subroutine if on-line) and, in batch mode, abort the job step or,

in on-line mode, return to the BTM Executive. Obtain and save account and password, if specified,

using the GCBYTE and the NAMFlD subroutines. Repeat step i until all element files have been

processed. In on-line mode, request LOAD options 0NTTY subroutine). Return to step g.

j. To process the map option, set bit 0 in register 02. Return to step g.

k. To process the no-system-library option, set bit 1 in register D2. Return to step g.

I. To process the lOO16-control-section option, set bit 2 in register D2. Return to step g.

m. To process the l016-control-section option, set bit 5 in register 02. Return to step g.

n. To process the unsatisfied reference option, obtain and save the account numbers specified by the

user in the library list, LIBUST, using the GCBYTE and the NAMFLD subroutines. Return to step g.

o. To process the I ibrary-module option, go to the library Module, PERMLIB.

p. In on-I ine mode, to process the debug option, set up the intermediate file name based on the COC

line number and open the file. Set the debug flag, DFLAG. Move the stack pointers to make room

for the intermediate file buffer. The buffer space will be used as the window page by the debug

program, DELTA. The last page in the dynamic data area, top address less 511, is the address of the

buffer. Store the address in ISTBASE and WPADOR. Store the page number in WPNUM. Inform the

BTM Executive of the new swap size (SETSIZE subroutine) and return to step g.

q. In batch mode, to process the GO option, build the name of the GO file using the job id saved

from the Job Information Table, JIT, and store the name in the element file list, EFLIST. Return to

step g.

r. In batch mode, to process the binary option, set bit 7 in register D2. Return to step g.

s. In batch mode, to process the execute option, set bit 6 in register 02. Return to step g.

t. In batch mode, to process the permanent-loud-module option, set bit 8 in register D2. Return to

step g.

u. In batch mode, to process the severity level option, obtain and convert the hexadecimal value, using

the GCBYTE subroutine. Save the value in I:?l. Return to step g.

v. In batch mode, to process the bias Qption, obtain and convert tne~~exadecima1 value, using the

GCBYTE subroutine. Save the value in register 01. Return to step g.

w. In batch mode, to process the temporary-storage-stack option, obtain and convert the hexadecimal

value, using the GCBYTE subroutine. Save the value in SR3 and return to step g.

x. In batch mode, to process the load module option, obtain the load module name (NAMFLO subroutine)

and save the name in the parameter list of the open call for the M:LM DCB. Return to step g.

y. If the LOPE control command or the LOAD control input contains an error, print an error message

(PRTERR subroutine in on-line mode), close the M:LO DCB, and, in batch mode, about the iob or,

in on-line mode, issue a CAL3,6 to return to the BTM Executive.

z. In batch mode, if the execute option was not specified, open the load module file (as a temporary

file if the permanent option was not specified). If the element file list, EFLIST, is empty, set the

binary flag, bit 7 in register D2. Add the system I ibrary to the library list, LIBLIST, unless the no

system-library option was specified. Save the address of TSTACK in iob lower limit, JOBLL, and the

address of the upper limit of the dynamic data area, from LDDATA+2, in job upper limit, JOBUL.

Set a default bias in D 1 if the bias option was not specified. In on-I ine mode, restore registers 0-3.

Go to the Loader Module, LDR.

6. Flowchart. See Figure 2-18.

2.4.2 Library

1. Module Name. PERMLIB.

2. Purpose. Create user library, :BLIB, in the current account.

3. Entry.

a. Library is entered from the Start Module.

b. Library requires input. See Figure 2-16 for the layout of memory.

4. Exit.

(1) In on-line mode, the default assignment of M:BI to the temporary file, BOTEMPa, where a is

the COC I ine number in binary, has been made.

(2) EFLIST, the element file list, contains, in sequence, the identification of each element file

specified by the user and/or, in batch mode, the GO file if specified by the user.

(3) LIBLIST, the library list, contains, in sequence, the account numbers of libraries from which

primary references are to be satisfied.

(4) BLKBUF contains the address of the buffer for the physical library record.

(5) OBUF contains the address of the buffer for the logical library record.

(6) DYNDATA contains the address of the page for the declaration numbers of external definitions,

in halfword entries, and allows the next page, for declare external reference and define origin

load items, to be referenced. These buffers are used until all declare external definition,

declare external reference, and define origin load items have been processed.

a. The normal exit is to issue a CALl, 9 1 to terminate the job step.

(1) The exit is taken after user library processing is complete.

(2) A user library, :BLIB, has been created in the current account.

2-41

Allocate memory.
Obtain all avail
able pages. Reserve
a page for the
library block.

no

Put job id
into parameter
lists for tem
parary files.

Set up stack
pointers at end
af available
memory.

Obtain a byte
from the control
input.

On-line

< Poption
(on-line) on
MIOO option

(batch)

<
Unsatisfied
reference

option
?

Debug

<option
(on-line

J)
<mode, processing _----

element files?

Obta i n keyword
from control
input.

Obtain element
file name and
store in EFLIST.

yes

Set bit 0 in
reg ister 02.

Set bit 1
in regist.r 02

Set bit 2 in
reg i ster 02.

Set bit 5 in
register 02.

Obtain and save
specified account
numbers in USLIST.

Open intermediate
file and allocate

. buffer. Set DFLAG
Inform exec of
swap size.

Figure ~ 2-18. Flowchart of Start Module

2-42

Put nome of GO
fi Ie into EF LIST.

Obtain and convert
" ''----- .~--' the hexadecimal

value. Save the
value in D1.

Save value

Process the I oed
modulefile, thebi
nary option, the sys
tem library option.
Set default bias.

Figure 2-18. Flowchart of Start Module (cont.)
2-43

b. The error exit is in batch mode, to abort the iob or, in on-line mode, to return to the BTM Executive.

(1) The exit is taken if the number of element files specified by the user exceeds the number of files

that can be fit into the internal element file list, EFLlST, built by the loader the error message

printed is: "TOO MANY EFS".

(2) The exit is taken if the r~ad of the ROM input fails. The error message printed is: "ILLEGAL

ROM DATA", "SEQUENCE ERROR", or "CHECKSUM ERROR".

5. Operation.

a. Prepare to create the user library. See Figure 2-2 . for the format of the library. See Figure 2-7

for the layout of memory. Open the file :BLlB in the current account through the M:LM DCB. If the

element file list, EFLIST, is empty, set the binary flag, but 7, in register 02. Store register 02 in

LDDATA+5, the last of the 6 loader control words. If the number of element files specified by the

user exceeds the number of element files that can be fit into the element file list, EFLIST, print an

error message (PRTERR subroutine, if on-line) and, in batch mode, abort the job step or, in on-line

mode, return to the BTM Executive.

b. Create the user library by copying ROM input into records for the :BLl8 file. While processing

declare external definition, declare external reference, and define origin load items, calculate and

store the declaration numbers of the external definitions in halfword entries in the page at DYNDATA.

First. put each declare external definition load item into the buffer for the logical library record,

OBUF (BYTOUT subroutine). Store all declare external reference and define origin load items in

the page after the address is DYNDATA (PUT subroutine). When another type of load item is found,

put the declare external reference and define origin I~d items from the page after DYNDATA into

the buffer for the logical library record, OBUF, (BYTOUT subroutine). Create an 02 expression end

load item especially for the logical library record in OBUF. Follow the 02 control byte with the

halfword declaration numbers of the external definitions saved at the address in DYNDATA (BYTOUT

subroutine). Copy bytes into the buffer for the logical library record, OBUF, until the end of the

module is reached (BYTOUT subroutine).

c. Step b forms logical records of 108 bytes in OBUF. Each record contains 4 bytes of control informa

tion followed by a maximum of 104 bytes of load information. Initialize the record control informa

tion with the SETMOD E subroutine. Write one page at a time. If a record does not fit into the last

words of a page, these words contain garbage and the record begins on the next page. If intermediate

logical records contain less than 108 bytes, write 108 bytes anyway, but put the correct logical size

in the byte count. Return to step b until all ROM's have been processed.

d. Close the M:LM DCB and issue a CAL 1, 91 to terminate the job step.

e. If an error in the ROM data is found, print an error message (PRTERR subroutine if on-line) and, in

batch mode, abort the job step or, in on-line mode, return to the BTM Executive.

6. Flowchart. See Figure ,12-19. i

?-44

Open the :BLlB file
in the current ac
count. Do initial
processing of ele
ment fi les.

EDROM

Initialize the
declaration number.

Set up table for declara
tion numbers. Copy refer
ences to output. Put out
declaration number order
ing. Copy until end of
module. Write record.

Do error
processing.

Put externa I
definition in
library.

Record declara
tion number.

Save load item.

Figure 2-19. Flowchart for Library Modules
2-45

2. 4. 3 Loader

1. Module Name. LDR.

2. Purpose. Load all ROMs.

3. Entry.

a. Loader is entered from the Start Module.

b. Loader requires input. See the fields passed from the Start Module.

4. Exit.

a. The normal exit is to the ENDLOAD Module.

(1) The exit is taken after all ROMs have been loaded.

(2) Entries have been made in the expression stack, and the REF/DEF stack.

b. The error exit is, in batch mode, to abort the job step or, is on-I ine mode, to return to the BTM

Executive.

(1) The exit is taken if a load item defining an origin results in an expression that cannot be evalu

ated or if a load item is invalid. The diagnostic output is "ILLEGAL ROM DATA".

(2) The exit is taken if space is not available in a stack even after all stacks have been pressed to

a minimum. The error message printed is : "STACK OVERFLOW".

5. Operation.

a. Prepare to process load items.

(1) Save registers'SR1-D2, the information obtained from processing the control input, in LDDATA,

the six loader control words. Calculate ABSBIAS, the difference between the bias and available

memory.

(2) In on-line mode, set TCB, the address of the Task Control Block, to ORIGIN+X'40'. Use the

bias saved in LDDATA +4 to set BACORE, the starting byte address of the next section to be

allocated.

(3) In batch mode, set TCB, the address of the TCB, to the bias saved in LDDATA +4. TCBSIZ

determines the present size of the Task Control Block; where CMPWDS is the number of words

reserved for use by a processor, 4; TSASIZ is the size of the library error temp stack, 10; ERTSIZ

is the size of the library error table, 10. Set BACORE, the starting byte address of the next

section to be allocated to point to the location past the Task Control Block, the address of the

Task Control Block plus TCBSIZ plus the size specified by the user for the temp stack in the

Task Control Block (from LDDATA+2). Using the ENNAM subroutine, enter M:DO as a primary

reference in the REF/DEF stack so that the M:DO DCB will be built -- to allow the loaded pro

gram to produce snapshot debugs during execution.

b. Initialize control section 0 and the declaration stack (ENDECL subroutine). If not a library load,

process the option that the control section or dummy section is to begin at the next greater multiple

of 100
16

or, in batch, 10
16

by incrementing BACORE.

2-46

c. Obtain a byte of input. Read a card if necessary.

d. If loading from a library and the SAliS flag is not set (the ROM has not satisfied a primary reference),

only 03, declare external definition name, and OC, declare nonstandard control section, are allow

able load item codes. Anything else causes the stacks to be rolled back because the object module

is to be skipped. The remaining records of the module are read and ignored. Return to step b.

e. Use a jump table to determine how to process the load item.

f. If the item is padding, return to step c.

g. If the item declares an external definition name or an external reference name, make sure that the

REFJDEF stack has an entry for the name and put an entry into the declaration stack for the item.

(1) Set up an entry in BUF2.

(a) Set up words 2-n by transferring each byte of the TEXTC name. Read a record if necessary

to obtain the name.

(b) Set word 1 to zero.

(c) In word 0, set up only the word count field, byte O.

(2) Search the REF/DEF stack to determine whether the name is already in the stack. If the name

is not in the stack, add the entry. Research the spare needed for the entry and move the entry

into the reserved area.

(3) If an external definition name is doubly defined, set on both bits 0 and 3 in the type field of

the entry in the REF/DEF stack. For a primary reference name, set on bits 1 and 2. For a

secondary reference name, set on bit 2.

(4) Add an entry to the declaration stack for the item.

(5) Return to step c.

h. If the item is a definition, build an entry in the expression accumulator for the item and move the

entry to the expression stack.

£1} Jfth~Litem_define~n __ ~.!~EI1IJJ~~finition, the name must have been previously declared, i. e. ,

the REF/DEF stack and the declaration stack must have an entry for the name. Obtain the

destination of the value of the expression, a displacement into the REFJDEF stack, from the

declaration stack.

(2) If the ifem defines a forward reference, the two byte forward reference number is the destination

of the value of the expression.

(3) If the item defines the starting address, STTADR is the destination of the value of the expression

STTADR has been zeroed. The starting address will be placed in the head record of the load

module if a load module is built.

(4) If the item defines a field, inform the expression routine that a field is to be loaded and that

the field is defined by terminal bits (8-14), number of bits (0-7), and location (15-31).

2-47

(5) To process an add or subtract declaration, determine whether the declaration is defined by using

the displacement obtained from the declaration stack to access the REF/DEF stack. If the decla

ration is defined, use the value to build the entry for the expression stack. If the expression is

not defined, add this expression to the chain for the reference by placing a pointer to the expres

sion stack entry, with byte 0 of the word containing the displacement to the value word in the

expression stack entry into word 1 of the REF /DEF stack entry. Save the address of word 1 of the

REF/DEF stack entry in the temporary stack so that the REF/DEF stack entry can be modified if

the growth of the expression changes the displacement of the value word. Go to step 4.

(6) To process an add or subtract forward reference, determine whether the forward reference number

is in the forward reference stack. If not, create an entry for the number. Place a word that

points to the expression stack (with byte 0 containing the displacement to the value word in the

expression stack) into word 0 of the entry. If an already existing entry is a forward reference

and hold type and is defined, use the value from the forward reference stack to build the entry

for the expression stack. Otherwise, add the item to the chain for the forward reference by

placing a word that points to the expression stack (with byte 0 containing the displacement to

the value word in the expression stack entry) into word 1 of the forward reference stack entry.

Save the address of word 1 of the forward reference stack in the temporary stack so that the

forward reference stack entry may be modified if the growth of the expression stack changes the

displacement to the value word.

(7) If the words containing the expression control bytes increase, modify the entries in the REF /DEF

stack and the forward reference stack that point to the value words of the expression stack entry.

(8) Evaluate the expression. If a value has been found, flag the entry in the expression stack as

defined. If an expression is not used, remove the expression from the stack. If t~e destination

of the expression is an external definition or a forward reference and the value is not a constant,

convert to the value to an address. If the destination of the expression is an external definition,

use the displacement into the REF/DEF stack from the expression stack entry to access the REF/

DEF stack. If the REF /DEF stack entry is an external definition or a durniny section, return to

step c. Otherwise set the external definition type flag, word 0, bit 0, and the resolution field,

word 0, bits 4-6, in the REF/DEF stack entry. Obtain the link value from,word 1 of the REF/

DEF stack entry. Replace the link value with the value of the external definition, an address or

a constant.

(9) If the item defines a forward reference and hold item, satisfy any existing references and save

the value for future references until the end of the module is reached.

(IO) If the item defines an origin and the expression is defined, check that the value is above the

bias apdthe background lower limit. If so, subtract the absolute bias, store the resulting value

in LOC, the value of the load location counter, and check that LOC is within bounds. If LOC

is valid, return to step c. Origin load items enable the loader to determine where elements are

to be loaded within a control s~ction. The ROM supplies at least one origin load item for each

control section. If the expression defining an origin cannot be evaluated or if the value is out

of bounds, output a diagnostics and, in batch mode, abort the job or, in on-line mode, return

to the BTM Executive.

2-48

(11) To satisfy any chain of expressions, use the link value as a displacement into the expression stack

to obtain the chained entry. Replace the expression control byte in the entry with an add constant

with resolution. Obtain the link value from the value word of the entry. Replace the link value

with the value of the load item (use the complement of the value if the expression control byte

specified subtraction.) Attempt to evaluate the expression. Return to the beggining of step (11)

until all chained entries have been processed.

(12) Then return to step c.

i. If the item declares a standard control section, put the size and memory protection class into a decla

ration stack entry. Increment BACORE, the byte address of the next section to the allocated. Return

to step c.

j. If the item declares a nonstandard control section, put the type, the size, memory protection class,

and base into a declaration stack entry. Increment BACORE, the byte address of the next section to

be allocated. If the standard control section has been referenced, put in the size. Otherwise, put

the new BACORE into the base of the standard control section. Return to step c.

k. If the item declares a dummy section, the item must have been preceded by a declare external defini

tion name for the label associated with the first location. Use the entry in the declaration stack

created by the declare external definition name in order to access the entry for the name in the REF/

DEF stack. If the entry shows that the dummy section has not been allocated, allocate the dummy

section. In on-line mode or in batch mode with the execute option specified, put blank common into

memory. See Figure 2-6 for the layout of memory.

Increment BACORE, the byte address of the next section to be allocated. Store the size and address

in the REF/DEF stack entry. Store the address in other chained expressions using the procedure de

scribed in step h (11). Add an entry for the load item to the declaration stack. If the entry in the

declaration stack for control section 0, the first entry, has a zero size, store the new BACORE, the

byte address of the next section to be allocated, into the base address field. Return to step c. If

the REF/DEF stack entry shows that the dummy section has been allocated, check that the new size

is not greater than the original size. If the new size is greater, abort the processing. Otherwise

return to step c.

I. If the item is a load absolute item, load the specified number of bytes. R"S; bits 28-31, contains the

number with 0 implying 16. Process as fast as possible. Advance the load location counter. Return

to step c.

m. If the item is a load relocatable long form, increment the load location counter, LOC. Depending

on the control bit, bit 4, read either a one-byte or a 2 byte name number. Put the control bit that

determines whether relocation is to be relative to a forward reference or to a declaration into SR 1.

Put the address relocation code into register 6. Go to step o.

n If the item is a load elocatable short from, increment the load location counter, LOC. Put the con

trol ')it that determines whether relocation is to be relative to a forward reference or to a declaration

in h register SR 1

2-49

o. Read the word immediately following this load item. Ensure that the load location counter, LOC,

is a word address. Form an expression, put the expression into the expression stack, and evaluate

the expression if possible. Increment the load location counter, LOC, by 4 and check that the new

value is within bounds. If the value is within bounds, return to step c.

p. Whenever the load location counter, LOC, is incremented, the counter is checked for being within

bounds. Since the core image is being built upward in the dynamic data area, LOC must remain

below TEMPBAS, the address of the lowest stack. See Figure 2-16 for the layout of memory. If

necessary, press the stacks to remove unneeded space (PRESSTK subroutine) and leave more space in

which to build the core image. If the configuration changes, declare the new configuration to the

BTM Executive (SETSIZE subroutine). Return to step b. If space cannot be made available, abort

processing.

q. If the item is a repeat load, only one of three load items to be repeated is legal. If a load absolute

item follows the repeat load item, get the absolute data and load the data the specified number of

times. Otherwise set up a chain and load normally. Return to step c.

r. If the item is the special 02 expression end load item created for the user library, use the declaration

numbers (of the external definitions) following the control byte to rearrange the external definitions,

chaining the items so that the first is the first source, the second is the destination of the first and

the next source. Continue until the first is a destination so that the loop is closed. Return to step c.

s. If the item is invalid, print an error message (PRTERR subroutine if on-line) and, in batch mode, abort

the job or, in on-line mode, return to the BTM Executive.

t. If space is not available in a stack, press all stacks to a minimum (PRESSTK subroutine). If space is

still not available, print a diagnostic (PRTERR subroutine, if on-line) and, in batch mode, abort the

job or, in on-I ine mode, return to the BTM Executive. Otherwise, inform the BTM Executive of the

change in swap size (SETSIZE subroutine).

u. If the item identifies the end of the object module, read the severity level. Replace the severity

level from the ROM if the current severity level is greater. If more ROMs are to be loaded, return

to step b. Otherwise, load from libraries to satisfy .011 primary references in the REF/DEF stack

except those having names that begin with F: or M:, for which the loader will build DCBs. If a

library module satisfies a primary reference, load the module. When all loading is complete, go to

the Endload Module.

6. Flowchart. See Figure 2-20.

2.4.4 ENDLOAD

1. Module Name. ENDLOAD.

2. Pur-pose. Print map. Build DCBs. Build a DCB Name Table for Monitor use. Build a TCB.

3. Entry.

a. ENDLOAD is entered from Load.

b. ENDLOAD requires input, the entries in the loader stacks.

2-50

Figure 2-20.

no _f.':::\ ---V

Two byte forward refer
ence number i~ the de~tina
tion of the expre~~ion.

Soti~fy any existing refer
ence~ and save vo I ue for
future references.

Allocate for dummy sec
tion. If o/r.adya//oeatld,
chIck that .Iz. Is not
grlat.r than al/oeat.d.

o..lInotlon of "prl .. lon
I. noml poInter from thl
dIe/oratIon.

Flowchart for Loader Module

2-51

4. Exit.

a. The normal exit is to the Execute module.

(1) The entry point for batch mode or for on-line mode with the execute option specified is

GOEXEC. For on-line mode, when the execute option is not specified, the entry point is

SMALLER.

(2) Data is passed to the other modules.

(a) Register 0 contains the address of the TCB.

(b) SRl contains the highest severity level encountered.

(c) SR2 contains the start address for execution.

(d) SR3 contains the bias.

(e) SR4 contains the address of the end of the TCB.

b. The error exit is, in batch mode, to abort the job step or, in on-line mode, to return to the BTM

Executive. The exit is taken if there is not enough room to continue processing. The error message

printed is: "STACK OVERFLOW" or "TOO MANY DCBS."

5. Operation.

a. Close the M:LI DCB if the M:LI DCB is open. Allocate the unallocated ASECT code. In on-line

mode, if the program is to be run in debug mode, finish the intermediate file by inserting the last

element file header. Calculate the ABSBIAS word displacement, the difference between the load

and the execute bias. In batch mode, define the highest location and the lowest location.

b. Print a load map. If map is specified, print a load map of external definitions and external refer

ences. Do not map element file head items or internal symbols that are not external definitions. If

map is not specified, print only secondary and primary references. In either case, skip primary and

secondary references for F: and M: names since such names refer to DCBs.

c. Form the Task Control Block (rCB) for the user. See section 2.2.5., 1. Task Control Block,and

Figure 2-7.

d. Build tree and DCB Name Table. 01 contains the highest location used. Build the tree and the DCB

Name Table at the next available page. Put the address of the DCB Name Table into the Task Con

trol Block (rCB). If there is not sufficient room to continue processinQ. print an error message and,

In batch mode, abort the job step or, in on-line mode, return to the BTM Executive.

e. Build DCBs for referenced Fi names. Also add DEF'd F: names and M: names to the DCB Name Table.

If a DCB is DEF'd, print a warning message. If a DCB is a secondary reference, ignore the DCB.

f. Build a DCB Name Table entry and a DCB for assigned F: names.

(1) Put standard assignments into F: 101-F: 108 for assignment type, function, and operational label.

For batch mode, set assignment type to device. For on-line mode, set assignment type to user

terminal. Set function to OUTIN.

2-52

(2) Override standard assignments if the assign for the DeB specifies different values.

(a) In batch mode, check for assigns. If assignments were given, go through the ABS records.

Set up the IDA temporary file for unusual assigns.

(b) In on-line mode, do on-line processing. If the debug option was specified, print the map

of undefined internal symbols for each element file. Request and read assign options for the

DCB -- file name, optional account number, and optional password -- and set up parameter

words for each option. If file name is greater than 11 characters or if account number is

greater than 8 characters, print an error message and repeat the prompt to request assign

ment information for a DCB. If password is specified with no account, default to the login

account in the on-line Job Information Table (AJID. Read the DCB options -- function,

release, list. Store the appropriate values and set flags for the options.

g. If the DCB name is not an F: name and the DCB is referenced, incorporate the assign information

using the ASNMERG subroutine. If the DCB name is not in the DCB Name Table, build the DCB

and add the DCB name to the DCB Name Table.

h. Set up standard assignments for Monitor DCBs.

i. Set up registers to transfer information.

(1) Put the address of the TCB into register O.

(2) Put the highest severity level encountered into register SR 1.

(3) Put the start address for execution into register SR2.

(4) Put the bias into register SR3.

(5) Put the address of the end of the TCB into register SR4.

j. Close the M:LO DCB.

k. If F4:COM is overlayed by DCBs, print an error message and, in batch mode, abort the job step or,

in on-line mode, return to the BTM Executive.

I. In on-line mode, output the severity level message.

m. In on-line mode, if the debug option was specified, request and read values to satisfy any primary

references and/or internal references. Go to the execute module at only point GOEXEC.

n. In on-line mode, if the debug option has not specified, output the execute inquiry and read the reply.

If the reply is invalid, print an error message and return to the BTM Executive. If the reply is IINII,

go to the Execute Module at entry point SMALLER. If the reply is "SII, obtain the start address spec

ified by the user, store the start address, and go to the Execute Module at entry point GOEXEC. If

the reply is "V", go to the Execute Module at entry point GOEXEC.

o. In batch mode, go to the Execute Module at entry point GOEXEC.

6. Flowchart. See Figure 2-21.

2-53

Close M:L1 DCB if open.
Allocate unallocated ASECT
code. For debug mode, fin
ish file. ColculoteABSBIAS.
Define limits in batch.

M: names to DCB Nome
Table. Print warning for
DEFed DCB.

Build DCB Name Table
entry and DCB for
assigned F: names.

Incorporate assign informa
tion into referenced DCBs
that are not F: names. If
DCB is not in Nome Table,
build DCB and odd to table.

Figure 2-21. Flowchart for Endload Module

2-54

Request and process
values to satisfy pri
mary references and
internal references.

2.4.5 Execute.

1. Module Name. GOEXEC.

2. Purpose. In batch mode, if the load module option is specified, build a load module. In on-line mode,

if an execute option is not specified, set up to save the user program. In either mode, if an execute option

is specified, provide for execution of the user program.

3. Entry.

4.

a. Execute is entered from Endload at entry point GOEXEC for batch mode and for on-line mode with

the execute option specified. For on-line mode when the execute option is not specified, the entry

point is SMALLER.

b. Execute requires input.

(1) Register 0 contains the address of the TCB.

(2) SR1 contains the highest severity level encountered.

(3) SR2 contains the start address for execution.

(4) SR3 contains the bias.

(5) SR4 contains the address of the end of the TCB.

Exit.

a. In batch mode, if the execute option is not specified, issue a CAll, 9 1 to exit from the job step.

A load module has been built.

b. In on-line mode, if the execute option is not specified, return to the BTM Executive. The user pro

gram is set up to. be saved if desired.

c. In batch mode, if the execute option is specified, transfer control to the user program. The user pro

gram has been set up for execution.

d. In on-line modes if the debug option is specified, transfer control to the DELTA subsystem. The user

program is set up for execution.

e. In on-line mode, if the execute option is specified, return control to the BTM Executive. The user

program has been executed and messages output regarding the execution.

5. Operation.

a. At entry point GOEXEC in batch mode, if the execute option is not specified go to step b. Other

wise link the user DCB Name Table to loader DCBTAB. Set the 01 protection type and free the

unused pages. If the program is smaller than the loader, free only to the top of the loader. Open

all pages. Transfer control to the start address of the user program.

b. In batch mode, when the execute option is not specified, build a load module. Fill in values in the

head and tree. Change the format of the REF/DEF stack, RFDFSTIK, to conform to the format built

by the overlay loader so that symbolic debugs can be used. Convert the type and resolution to that

of the overlay loader. Issue a CAll, 9 1 to exit from the job step.

2-55

c. At entry point GOEXEC in on-line mode, set the address in register 04 so that the execute option

may be processed.

d. From both entry point GOEXEC and entry point SMALLER, do on-line processing. Put the address of

the Task Control Block into register O. If blank common is at the top, declare the exact configura

tion. If the debug option was specified, go to step f. If the execute option was specified, go to

step g.

e. Set a special flag for saved files and issue a CAL3,6 to exit to the BTM Executive.

f. Process the debug option. If the symbol tables are not loaded, attempt to load the tables. Put the

parameters in the window page; the address and size of the global symbol table, the starting address

of the user program, the address and size of the internal symbol table, and the last word of the user

program, following M: and F: DCBs. Place DE, the first two characters of the debug subsystem name

into register O. Issue a CAL3,4 to load the debug subsystem and to transfer control to the subsystem

DELTA.

g. Start the user program at the user level. Register 0 contains the first half of the program status

doubleword, PSD, to be used whE!n the new process is initialized. Bits 0-3 are the condition code

(CC); bits 4-7 are the floating controls (FC); and bits 15-16 are the instruction address (IA).

h. When a return from the user is made, determine whether a CAL3,6 was issued to return to the next

higher level. If a CAL3,6 was issued, go to step i. If not, do the break processing. Output the

inquiry and read the reply on whether to continue processing. If the reply is anything other than lIyll,

go to step j. Otherwise issue a new line. Load register 0 so that the user program may be continued

and go to step g.

i. Output the user-exit diagnostic.

j. Issue a CAL3,6 0 to return to the BTM Executive.

6. Flowchart. See Figure 2-22.

2. 5 SU BROUTINE ANALYSIS

2. 5. 1 ASNMERG

1. Purpose. Merge assignments (record in BU F) into the DCB pointed to by register 6.

2. Entry. ASNMERG is called by the Endload Module. Register 0 is the link register. Upon entry, BUF

contains the record with the assignments to be merged. Register 6 contains the address of the DCB to

which the assignments appJy.

3. Exit. Return to the calling routine.

4. Operation. Handle the first-length parameters first, then the variable-length parameters.

2-56

r-------------.---,

Set up register D4 50

that execute option
may be processed.

SMALLER

Put address of Task Con
trol Block into Regis
ter O. If blank cammon
is at top, declare exact
configurati on.

Li nk user DCB Name
yes Table to loader DCBTAB

Set 01 protection type.
Free unused pages.

Build load module. Fill
in head and tree values.
Charge REF/DEF format
to tho t of over! ay loader.

Load symbol tables if
tables are not loaded.

>-'----I~ Put parameters in
Issue CAL3,4 to load and
transfer control to DELTA

window page.

Start user program at
user level.

Issue a new line. Load
"">--'---__ register 0 so that

user program may be
continued.

Figure 2-22. Flowchart for Execute Module

2-57

2.5.2 BINTOHEX

1. Purpose. Convert the binary number in register 7 to hexadecimal (EBCDIC) in registers 03 and 04.

2. Entry. BINTOHEX is called by the Library Module, the Loader Module, and the Endload Module. SR4 is

the link register. Upon entry, register 7 contains the binary number to be converted.

3. Exit. Return to the calling routine.

4. Operation. Convert the binary number in register 7 to an EBCDIC number in registers 03 and 04.

Suppress leading zeros.

2. 5.3 BYTOUT, WRTREC

1. Purpose. Put a byte into the library.

2. Entry. BYTOUT is called by the Library Module. WRTREC is a second entry point. SR4 is the link

register. Register 5 contains the byte to be stored. OBUF is the buffer for the logical library records.

3. Exit. Return to the calling routine.

4. Operation.

(1) BYTOUT. Put a byte into OBUF at the next available location. Use byte 3 of OBUF, record size,

to determine the next available location.

(2) WRTREC. Update record size. When record size is 108 bytes, move the record from the logical

library record buffer, OBUF, to the physical library record, BLKBUF. When BLKBUF, which is one

page long, will not hold any more logical records, write out the page.

2.5.4 CHKDECLD

1. Purpose. Check a declaration for definition.

2. Entry. CHKDECLD is called by the Loader Module. Upon entry, register 5 contains the expression con

trol byte.

3. Exit. Return to the calling routine.

4. Operation. If the declaration is defined, put in the value with proper resolution and change register 5 to

add constant. Just right shift the value if the destination of the value is a core destination. If the

declaration is not defined, add the declaration to the chain for the reference. Within the routine,

register 7 contains the declaration number.

2.5.5 CKOCB

1. Purpose. See whether the DCB name pointed to by SRl is in the DCB Name Table.

2. Entry. CKDCB is called by the Endload Module. Upon entry, SR1 contains the address of a DCB name.

3. Exit. If the DCB name is in the DCB Name Table, return to the calling location plus 2. Otherwise, return

to the calling location plus 1. Register 6 contains the address of the DCB.

2-58

4. Operation. Check the name pointed to by SRl against the entries in the DCB Name Table. If the name

does not match an entry, exit to the calling location plus 1. If the name does match, put the address of

the DCB into register 6 and exit to the calling location plus 2.

2.5.6 CRLF

1. Purpose. In on-line mode, issue a new line on the user terminal.

2. Entry. CRLF is called in on-line mode by a" the modules. Register 1 is the link register.

3. Exit. Return to the calling routine. A new line has been issued to the user terminal

4. Operation. Issue a carriage return, then a line feed.

2.5. 7 GCBYTE

1. Purpose. Obtain a byte from the control command.

2. Entry. GCBYTE is called by the Start and the Endload Modules. SR4 is the link register.

3. Exit. Return t.o the calling routine. Register 5 contains the byte from the control command.

4. Operation. In batch mode, obtain a byte from BUF, the buffer for the control command. In on-line mode,

issue a call to return in register 0 (in EBCDIC format) the next character in the Teletype input buffer.

If there is no activation character in the buffer, the LOAD subsystem is dismissed until an activation

character is typed. In either mode, put the byte obtained into register 5.

2. 5. 8 GCBYTEA

1. Purpose. In on-line mode, read a character from the Teletype input buffer.

2. Entry. In on-line mode, GCBYTEA is called by the Endload Module. SR4 is the link register.

3. Exit. Return to the call ing routine. Register 5 contains the character obtained.

4. Operation. Issue a call to return in register 0 (in EBCDIC format) the next character in the Teletype

input buffer. If there is no activation character in the buffer, the LOAD subsystem is dismissed until an

activation character is typed. Put the byte obtained into register 5.

2.5.9 GETEFHED

1. Purpose. Search for next element file header. Is in the REF/DEF stack (RFDFSRCH subroutine). If the

element file header is not found, return to the calling address+1. If the element file header is found,

save the new start index, print the header and the element file name. Compute the address of the value

word and set up the symbol table base offset and local length. Compute the byte address of the name.

Reset the USYM start index. Make USYMHEAD correspond to this element file.

2. Entry. GETEFHED is called by the ENDLOAD module. SR4 is the link register.

3. Exit. Return to the calling location plus one if the next element file header is not in the REF/DEF stack.

Otherwise, return to the calling location plus two.

4. Operation. Determine whether the next element file header.

2.5. 10 GETULOC

1. Purpose. In on-line mode, obtain the desired location from the user.

2. Entry. In on-line mode, GETULOC is called by the Execute Module. Register 3 is the link register.

2-59

3. Exit. Return to the call ing routine.

4~ Operation. Issue a CAL3,7 0 to swap the desired page from the user level swap storage area to the sub

system area of memory in order to examine the page to determine why control has been returned to the

LOAD subsystem.

2.5. 11 PRESSTK

1. Purpose. Remove space in all stacks except TSTACK.

2. Entry. PRESSTK is called by the Loader. The Endland, and the Execute Modufes. Register 0 is the link

register.

3. Exit. In batch mode, return to the calling routine. In on-line mode, branch to the SETSIZE subroutine.

4. Operation. Remove space in all stacks except TSTACK. Leave a minimum of space in TSTACK to allow

for non-recursive use which does not check for stack overflow. In batch mode, retul1) to the calling

routine. In on-line mode, branch to the SETSIZE subroutine.

12.5. 12 PRTNXT

1. Purpose. Print next map entry.

2. Entry. PRTNXT is called by Endload Module. SR2 is the link register.

3. Exit. Return to the calling routine.

4. Operation.

(1) Obtain the correct map text code. If the entry is a reference, go to step (3). If the entry is a

constant, go to step (2). Otherwise put the word value plus a byte offset into the output buffer.

(2) Convert the binary value to EBCDIC (BINTOHEX subroutine) and store the result in the output

buffer.

(3) Store the map code and name in the output buffer.

2.5. 13 PRTERR

1. Purpose. In on-line mode, output a message.

2. Entry. PRTERR is to print all error messages. Register 6 is the link register. Register 1 contains address

of error messages.

3. Exit. Return to the calling routine.

4. Operation. Output a message using The WTTY and The CRLF subroutines.

2-601

2.5. 14 RFDFSRCH

1. Purpose. To determine whether an item is in the REF /DEF stack.

2. Entry. RRDFSRCH is called by the Loader and the Endload modules. SR4 is the link register. Register 4

contains the item to be protected. Register 5 contains the mask job used in compare. Register 6 contains

the index.

3. Exit. Return to the calling address + 1 if the item is not in the REF /DEF stack. Otherwise, return to

the calling address + 2.

4. Operation. Search the REF /DEF stack for the item in register 4. Use the mask in register 5 for the com

pare. Search the REF /DEF stack until the index in register 6 is equal to or greater than the index of the

stack. If the item is not found, exit to the calling address + 1. If the item is found, exit to the calling

address + 2.

2.5. 15 SETMODE

1. Purpose. Set indicators at module and when processing a module.

2. Entry. SETMODE is called by the library, the Loader, and the Endload Modules. Register 2 is the link

register.

3. Exit. Return to the calling routine. MODNUM, the current module number, has been incremented.

SEQNUM has been set to a-1. SA TIS, the flag for a module that DEF led a REF, has been zeroed.

LASTCARD, the flag for end-of-module has been zeroed. Register 1 contains the previous contents of

LASTCARD.

4. Operation. Increment MODNUM, the current module number. Set SEQNUM to a minus one. Zero

SATIS, the flag for a module that DEFls a REF, and LASTCARD, the flag for end-of-module. Save the

previous contents of LASTCARD in register 1.

2.5. 16 SETSIZE.

1. Purpose. In on-I ine mode, inform the BTM Monitor of the configuration of memory to allow correct and

efficient swapping.

2. Entry. In on-line mode, SETSIZE is called by the Start, Loader, Endload, and Execute modules.

Register 0 is the link register.

3. Exit. Return to the calling routine. The BTM Executive has been informed of the new configuration.

4. Operation. Compute the current dynamic data size and the common dynamic data pages, the number of

pages in the stack area. I.ssue a CAL3, 11 0 to inform the BTM Monitor of the configuration. In register 0,

bits 0-7 are non zero; bits 8-23 are zero; and bits 24-31 are the number of program data pages swapped

in and out. In register 1, bits 0-7 are the pure procedure pages, unmodified during execution and swap

ped in only; bits 8-15 are the dynamic data pages swapped in and out; bits 16-23 are the inactive pages

not swapped, and bits 24-31 are the common data pages, growing down from the top of available memory

and swapped in and out.

2-61

2.5. 17 STCR

1. Purpose. To skip to the end of the control card in BUF.

2. Entry. STCR is called by the Endload Module. SR4 is the link register.

3. Exit. Return to the calling routine.

4. Operation. Obtain bytes from the control command in BUF until the END lOAD indicator is set.

2.5. 18 STORFlD.

1. Purpose. Add a field value to an expression.

2. Entry. STORFlD is called by the loader Module. SR4 is the link register.

3. Exit. Return to the calling routine.

4. Operation. Add the field value to the expression.

2.5. 19 USYMPRNT

1. Purpose. In on-line mode, print the undefined symbol map.

2. Entry. USYMPRNT is entered from the Endload Module. SR4 is the link register.

3. Exit. Return to the calling routine.

4. Operation.

a. Print the undefined internals heading. Issue a new line (WTTY1 and CRlF subroutines). Zero the

element file header index.

b. Search for the next element file header, (GETEFHED subroutine). If none are found, exit.

c. Otherwise determine whether an item is in the REF,/DEF stack. If not, return to step b.

d. Save the new start index. Print the USYM Message (WTTY1 subroutine). Compute the byte address

and print the symbol name (WTTY1 and CRlF subroutines.) Return to step b.

2.5.20 WRTREC. See BYTOUT.

2.5.21 : WTTY, WTTY1.

1. Purpose. Type a message in TEXTC format (WTTY1) or in TEXT format (WTTY).

2. Entry. WTTY1 is called by the Endload and the Execute Modules. WTTY is called by the Start, the

library, the loader, and the Endload Modules. Register 1 is the link register.

3. Exit. Return to the calling routine.

4. Operation. Issue a CAl3, 1 0 to output the message.

2-62

3.0 RUN

3. 1 FUNCTIONAL OVERVIEW

3. 1. 1 General Description

RUN is a 8TM subsystem which allows the on-line user to execute a previously formed load module (NON

PAGED) under control of the RUN subsystem. Several BPM services which otherwise would not be available

to an on-line user are simulated by RUN, allowing overlayed load modules (M:SEGLD) to be executed.

Thus, most load modules capable of batch execution will also execute on-line.

Its capabil ities include the re-biasing of a load module into core images within the 8TM user area, the

application to the ~oad module of any "MODS II (!MODIFY CARDS), modifying instructions or data,

displaying symbol address values and memory cell contents, and the insertion or deletion of instruction

breakpoints.

The RUN subsystem is entered by the Executive command IRUN, and upon entry, requests the load module

identification as follows:

LOAD MODULE FID:

where upon the user supplies the file identification in the form of

NAME [(ACCT[, PASS])]

RUN is s two-level subsystem which means that RUN can relinquish execution to a user program upon

recieving a II;G" (GO) or ";P" (PROCEED) command. RUN maintains control over the user program in the

event of traps, exits, breakpoints or aborts.

Symbol tables for the users program (root or overlay segments) are made available to RUN. These include all

REFS and DEFS of the specified segment and its backward path. The symbol tables are part of the load module

and are loaded with it. (See OVERLAY LOADER TECHNICAL MANUAL 90 18 03).

The various RUN commands are summarized in Figure 3-1.

3-1

COMMAND

[s] ;S

[e]/
el, e2/

o
e~

~
t

e t
@
e0
;G

e; G

;P

i 8

e;B

NiB

e;1

e;C

;A

;R

;1

;C
;Q

3. 1.2 Error Messages

DESCRIPTION

Selects a symbol table by overlay segment name, or root if S is
omitted

Open cell and print contents (of cell e)

Displays the contents of cell e 1 through e2 and open cell e2

Closes currently open cell

The expression e is stored into the currently open cell

Opens the next higher cell

Modifies the currently open cell and opens the next higher cell

Opens the next lower cell

Modifies the currently open cell and opens the next lower cell

Displays and opens the cell addressed by the last quantity typed

Modifies the currently open cell and opens the cell addressed by
the last quantity typed

Begin execution

Begin execution at location e

Proceed from breakpo int

Display all breakpoints

Set a breakpoint at location e

Clear breakpoint N (0 < N ~ 8)

Set execution counter to location e

Set condition codes to that of expression e

Display locations in hexadecimal

Display locations as symbols plus.a hexadecimal offset

Display the execution counter

Display the current condition codes

Display most recently displayed value

Figure 3-1. RUN Commands

Error messages displayed to the user fall into three catagories:

1_ Those that are command syntax errors.

2] Those that are machine trap diagnostics from an executing load module.

3J Those that are associated with the loading of the users load module.

The command syntax error is "?" and a re-prompt (BELL) by the subsystem is initialized.

3-2

Trap messages with the location of the offending instruction in symbolic (;R) or hexadecimal (;A) are:

NONEXIST INST AT
NONEXIST MEM REF AT
PRIV INST AT
MEM PROT VIOL AT
UNIMP INST AT
STACK LIMIT AT
FIXED OVERFLOWA'f
FLOAT FAULT AT
DECIMAL FAULT ,:..r
BAD CAL AT

Messages associated with loading of the users load module are:

NAME TOO LONG
CANNOT OPEN LOAD MODULE
FILE NOT PROPER LOAD MODULE
LOAD MODULE DOES NOT FIT

3. 1.3 Restriction

RUN subsystem is capable of loading only those load modules which are "NON PAGED ", and whose size will

fit into the BTM user area.

ABSed load modules are permissable only if they are biased at a page beyond the TCB (REGPAGES+256), since

a relocation can not be done.

A rough estimate can be made to detennine whether or not a load module mayor may not fit into the BTM

user area. The fonnula is

USERSIZE -2.5K (SIZE OF RUN SUBSYSTEM) -TREE (SIZE OF TREE) = CORE AVAILABLE

Non overlaid load modules may have up to four files open at the same time. Overlaid may have only three

at a time.

3.2 INTERFACES

3.2. 1 To the BTM Executive

When the BTM user invokes RUN via a !RUN command, it is given control by the BTM Executive. Figure,

3-2 shows the memory layout of RUN after it has obtained control, and has loaded the user load ",,?dule.

RUN operates as a two-level subsystem which has control over execution, traps, aborts and breakpoints of a

user program. RUN uses standard BTM subsystem cals to start execution of the users program, set swap size,

and infonn the user of trap faults. The reading and writing of a users terminal is accomplished via the normal

BTM C~ (CAL3,O for reading; CAL3,1 for writing). The activation type (3) is set to activate on @,
~, ~, t , /, or =. [t is set when the user is "popped up" to the RUN subsystem level at location

DEBUG. Prior to returning to the user (CAL3,5) it is set to activate on @00n1Y (4). This is done at

GOTOUSER.

3-3

3.2.2 To the User

RUN interfaces to the user via the RUN command verbs (see Figure 3-1) at subsystem level and via

breakpoints at execution level. RUN prompts for input with a "BELL II for input commands through the

users terminal at initialization time and also for any "POP UP" reason (breakpoints, trap conditions,

STANDARD SUBSYSTEM BASE

RUN - DATA AND PROCEEDURE

MODTABLE (200 WORDS)

LOAD MODULE OR

REF/DEF

RELOCATION DICTIONARY

WINDOW' TOP OF C~E

Figure 3-2. RUN SUBSYSTEM IN MEMORY

@ -@) encountered during execution at user level. The 8TM user at executive time has 011 the

standard BTM system CAL's which apply to user level and the BPM system CALs available to the BTM user.

(See BTM Reference Manual, 90 15 77, Appendix A). In addition, the RUN s~bsystem simulates certain

BPM CALs not available to the BTM user. These include M:GP, M:FP, M:SMPRT, M:GL, M:GCP, M :FCP,

and M:TIME.

3-4

Since RUN subsystem is a debugging aid for user execution, RUN subsystem swaps portions of users

process into its window page for either examination and/or modification. This is done when control is

returned to RUN from a user level, and certain debugging commands are invoked. (i. e./, ;B, ;Q)

USERS REGS

t Common Pages Top Of Core

Figure 3-3. USER IN MEMORY

3.3 OPERATIONAL OVERVIEW

The RUN subsystem is entered via a specific request from the user at BTM Executive level (IRUN), trap

during user execution under the RUN subsystem, a specific user request (BREAKPOINTS), and monitor

aborts during user execution.

Upon initial entry (from the BTM Executive) the RUN subsystem prompts the user with, "LOAD MODULE FID:",

whereupon the user suppl ies the name of the load module to be run. RUN then, using the load module

named, reads the "HEAD" and "TREE" from the load module, re-biases the load module, applies any

lMODIFY commands to the load module(MODTABLE) and describes memory according to Figure 3-3.

3-5

After initialization, RUN prompts the user for commands from the terminal. If the user wants to execute his

program, he merely types ;P or;G. RUN the issues a CAL3,5 and user execution takes place. For any

instruction breakpoints, CAL3,6 I s are inserted into the users program and when executed by the running

program, control is returned to RUN.

Figure 3-4 depicts the overall execution flow of RUN.

3.4 MODULE ANALYSIS

3.4.1 ENTRY

1. Module Name:
ENTRY

2. Purpose:

a. Obtain load module name.

b. Re-bias the load module into the BTM user area.

c. Build a TCB if none exits.

d. Set swap size.

3. Entry:
Entered from the BTM Executive.

4. Exit:

a. Ex"its to DEBUG if the load module loaded.

b. Exits to LMNER if the load modu Ie is not a proper load module.

c. Exits to LMNAB if the load module does not exist.

d. Exits to LMSZER if the load module is too big or biased, improperly.

5. Operation:

a. Request load module FlO.

b. Read users terminal (GETTXT) for load module name, account, and password.

c. Obtain all of core and set swap size to all of core.

d. Read the IIHEADII and IITREEII records from the load module.

e. Re-bias the load module and set OOSIZ and OISIZ.

f. Read the root (RDSEG) and REFDEF stack (SYMS).

g. Set up the IIGO II address (HEAD+ 1) and the TCB (CAL3,8).

h. Describes memory and swap size.

i. Go to IIDEBUG'"

3.4.2 G OTOUSER.

1. Module Name:
GOTOUSER

2. Purpose:
Transfer control from "RUNII (level 1) to the users program (level 2).

3. Entry:

a. Entered from G OPR 0 from a ;G or ; P.

3-6

/ E

CR J

LF F

t G

H

G K

P K
TAB I

Other

Type II?II for
Unrecognized
Command

Close
Current
Cell

GOPRO

Set
Activation to
4

Set User
Program in
Execution

Control is
Returned to
RUN

Figure 3-4. Operational Overview of RUN

3-7

Set

Breakpoint

Clear
All
Breakpoints

b. Entered from CALRET after CAL 1 simulation.

c. Entered from SETGOAD upon an overlay call.

4. Exit:
Transfers control to users program via GOADR.

5. Operation:

a. Set the swap size (SETUSZ) for the users environment.

b. Write out the current window page (WRPG) in case there were modifications.

c. Set activation to four (activate on CR/LF only).

d. Enter the user at the address specified by GOADR (CAL3,S).

3.4.3 TLOC

1. Modu Ie Name:

TLOC

2. Purpose:
Analyze and either give control to the user after typing a message or provide service, for any
"POP UP" level.

3. Entry:
Entered from the user upon

1. A break in his program or8 - 8.

2. Trap fault,

4. Exit:
Exits to appropriate control routine applicable to the debug mode.

5. Operation:

a. Obtain the PSD from the "POP UP" (CAL3,9) and store as GOADR.

b. Type message to' user (TYM) informing him of the reason for the "POP UP".

c. Read the current symbol table for the segment in (SYMS) in case of debugging.

d. Prompt the user for input with a "BELL" and wait for a debug command.

3.4.4 CHKBRK

1. Module Name:
CHKBRK

2. Purpose:
Type the break number associated with the break which caused the "POP UP".

3. Entry:
Entered from TLOC ("POP UP") upon detection that the "POP UP" was due to a breakpoint.

4. Exit:
Exits to TLOC to enter the debug mode.

5. Operation:

a. Change all CAL3,6's (breakpoints) back to the original contents (RDWN OB).

b. Type the location that the break occurred.

c. Enter the debug mode (TLOC).

3-8

3.4.5 OPDIS

1. Module Name:
OPDIS

2. Purpose:
Display the contents of a location (j).

3. Entry:
Entered from DEBUG upon detection of a"/".

4. Exit:
To PROMPT for another debugging command.

5. Operation:

a. Set REG2 with the value (VALUE) of the cell desired.

b. BAL to OPEN to open the cell and display the contents.

c. Return to PROMPT for another debug command.

3.4.6 OPEN

1. Module Name:
OPEN

2. Purpose:
Open and display the contents of a cell specified as lie /11.

3. Entry:
Entered from

a. OPDISI to display one cell.

b. OPNXT upon detection of a line feed.

c. MULTDIS for multiple cell displays.

4. Exit:
B 0,4

5. Operation:

a. Check for address error or register display (CH KPTRNX).

b. Type the address (HEXOUT) being displayed if requested (REG 7 greater or equal to zero).

c. Read the memory address into WINDOW (READWD).

d. Type the contents (HEXOUT) of the desired memory location.

e. Return - B 0,4.

3.4.7 CLOSE

1. Module Name:
CLOSE

2. Purpose:
Alter the specified memory location.

3. Entry: t:::\
Entered from DEBUG upon detection of a ~

4. Exit:
Back to PROMPT for another debug command.

s. Operat ion:

a. Check for a value typed by the user (CCHAR).

3-9

b. If nothing typed prior to the @, do not alter the location (CLOPRM).

c. Store the new value in the memory cell requested (STORWD).

d. Return to PROMPT for another debug command.

3.4.8 OPNXT

1. Module Name:
OPNXl

2. Purpose:
Store the value in the currently open cell and display the contents of the next one.

3. Entry: t::\
Entered from DEBUG upon detection of a ~.

4. Exit:
Back to PROMPT for another debug command.

5. Operation:

a. Check if modification is being made to the currently open cell (CCHAR).

b. If so, store the new value (STORWD) and; if not:

c. Open the next cell (OPEN).

d. Return to PR OMPT for another debug command.

3.4.9 OPPREV

1. Module Name:
OPPREV

2. Purpose:
Display and open the memory location previous to the currently open cell.

3. Entry:
Entered from DEBUG upon detection or a II til.

4. Exit:
Returns to PROMPT for another debug command.

5. Operation:

a. Check if modification is being made to the currently open cell (CCHAR).

b. If so, store the new value (STORWD) and; if not;

c. Get the address of the currently open cell (LOC) and decrement it.

d. BAL to OPEN

e. Return to PROMPT.

3.4. 10 OPINDR

1. Module Name:
OPINDR

2. Purpose:
Display and open the memory cell pointed to by the address field of the currently open cell.

3. Entry: a
Entered from DEBUG upon detection of a IIESCIII ~

4. Exit:
Returns to PROMPT for another debug command.

3-10

s. Operation:

a. Check if madification is being made to the currently open cell (CCHAR).

b. If so, store the new value (STORWD) and; if not;

c. Obtain in REG 2 the address field of the currently open cell (QUANT).

d. Open the cell pointed to by QUANT (BAl,4 OPEN).

e. Return to PROMPT for another debug command.

3.4. 11 EHEH

1. Module Name:
EHEH

2. Purpose:
Type a "? II to the user, and run down his input strean in case of an erroro

3. Entry:
Entered from CLOSE, OPNXT, OPPREV, OPINDR, MUlTDIS, SEM:B, TRYC, CMPSEG when either
the core location being displayed or the new value typed by the user is in error.

4. Exit:
To PROMPT for another debug command.

S. Operation:

a. Type a carriage return-line feed to the user (TYCRlF).

b. Type a question mark.

c. Scan down input looking for an activation character.

d. Return to PROMPT.

3.4. 12 MUl TDIS

1. Module Name:
MUlTDIS

2. Purpose:
Display contents "from" a starting location II to" an ending location.

3. Entry:
Entered from DEBUG upon detection of a ", ".

4. Exit:
Back to PROMPT for another debug command.

S. Operation:

a. Get "from" address (VAlUE)-ond store in DOT.

b. Read "to" address (ROVAl) and set in TOlOC.

c. Open and type (OPEN) "from II address (DOT).

d. Bump from address (DOT) and type contents (OPEN) until equal to TOlOC.

e. Return to PROMPT for another debug command.

3-11

3.4. 13 GOPRO

1. Module Name:
GOPRO

2. Purpose:

a. Go back to user at location specified by ;G or ;P.

b. Go back to user, executing the replaced breakpoint instruction, sPecified by ;G or iP.

3. Entry:
Entered from DEBUG upon detection of a ;G or ;P.

4. Exit:
Exits to user via GOTOUSER.

5. Operat ion:

a. Run down input until a carriage return is detected.

b. If user specified an address (VALUE), store into GOPOR and return to GOTOUSER.

c. If no VALUE to start execution at, and no breakpoints are set, then return to GOTOUSER •.

d. Set breakpoint number in REG 8, and transfer to CHKEXU (CHKEXU will replace the break
point with the actual instruction and start execution at that point).

3.4. 14 SEMIB

1. Module Name:
SEMIB

2. Purpose:
To set and remove breakpoints in a users program and type the breakpoints.

3. Entry:
Entered from SEMICK when a "B" is detected.

4. Exit:
Returns to PR OMPT

5. Operation:

a. Type all breakpoints to user if only;B (DISBRK).

b. If VALUE equals zero, then clear all breaks (CLRALL).

c. Find a free break entry (BREAKS).

d. Get contents of location to store breakpoint in (READWD).

e. Store break into location (STORWD).

f. Store address of breakpoint is break table (BREAKS).

g. Store replaced instruction (STORWD).

h. Return to PR OMPT •

3.4. 15 CLRALL

1. Module Name:
ClRAlL

2. Purpose:
Clear all breakpo ints.

3. Entry:
Entered from SEMIB if VAlUE equals 0 (O;B).

3-12

4. Exit:
Returns to PR OMPT

5. Operation:

a. Set REG 7 to indicate all breaks to be cleared (REG 7 = 8).

b. BAL to CLRBRK (Clears breakpoint and restores actual instruction).

c. Loop on REG 7.

d. Return to PR OMPT •

3.4. 16 CLRBRK

1. Module Name:
CLRBRK

2. Purpose:
Remove breakpoint from users program. REG 7 equals the breakpoint number.

3. Entry:

a. Entered from SEMIB if only one breakpoint is to be cleared.

b. Entered from CLRALL if all breakpoints are to be cleared.

4. Exits:
B 0,4

5. Operation:

a. Check break table (BREAKS) to be sure break exists.

1. If not return (B 0,4).

2. Continue

b. Clear break from modtable (MOD BUF) if it exists within the table.

c. Before removing break, check to be sure that the break is in memory (RDWNOB) and not in
any overlay.

d. Get the location of the word to be replaced (READWD).

e. Zap break entry in break table (BREAKS).

f. Replace breakpoint (CAL3,6) with actual instruction (STORW1).

g. Decrement all breakpoint numbers to reflect that one has been removed.

h. Zap the break point number in BREAKS if the break cleared was the breakpoint which caused the
"POP UP".

i. RETURN B 0,4

3.4. 17 DISBRK

1. Module Name:
DISBRK

2. Purpose:
Display all breakpoints to the user.

3. Entry:
Entered from SEMIB if only ";B "typed by user.

4. Exit:
Returns to PR OMPT •

3-13

5. Operation:

a. Get entry out of break table (BREAKS).

b. If zero, loop on the number of breaks (8).

c. Type break number (HXNOO) to user in REG 7.

d. Type the location of the breakpoint (HEXOUT).

e. Loop on the number of breaks (8).

f. Return to PR OMPT •

3.5 SUBROUTINE ANALYSIS

3.5. 1 ROVAL

1. Subroutine Name:
ROVAL

2. Purpose:
Read debug commands.

3. Entry:
Entered by DEBUG

4. Exit:
To MORECC

5. Operation:

a. Z.ap CCHAR (CHARACTER COUNT), VALUE (will contain value typed if not symbolic). ,
SIGN (positive or negative number), NAMTMP (will contain TEXTC name if symbolic J

name typed), SYMVAL (will contain value of symbolic. name (NAMTMP».

b. Get a character (CAL3,O).

c. Check if special (CCR) and go to MORECC if it is.

d. Pack it for TEXTC name (NAMTMP).

e. Convert to H"ex and loop to "b".

3.5.2 MORECC

1. Subroutine Name:
MORECC

2. Purpose:
Set and transfer to appropriate control function for users debug commands.

3. Entry:
Entered from ROVDL.

4. Exit:
To appropriate control functions

5. Operation:

a. Convert number (REG 3) to negative if SIGN is set.

b. Go to SEMICK if 11;11 hit.

c. Get absolute value from a symbolic names (GTSVAL) if SYMVAL set.

d. Type (HEXOUT) if 1\ = II encountered.

e. Set debug mode to Hexadecimal (RAOIX=16) if IIAII.

f. Get next character.

3-14

3.5.3 SINCK

1. Subroutine Name:
SINCK

2. Purpose:
Set sign of number positive or negative depending upon whether the user requested a negative number
or not.

3. Entry:
Entered from MORECC.

4. Exit:
B ROYAL2 (in ROYAL).

5. Operation:

a. Set SIGN equal to a "t" if positive.

b. Set SIGN to negative "_" if negative.

c. Return

3.5.4 SEMICK

1. Subroutine Name:
SEMICK

2. Purpose:
Transfer to appropriate routines ~pon detection of a ";" and a command verb (See figure 3-1).

3. Entry:
Entered from MORECC upon detection of a "; ".

4. Exit:
To appropriate routine requested by the command verb.

5. Operation:

a. Transfer to SETSSEG if user request S.

b. Transfer to GTSYAL if a symbolic name was entered.

c. SETABS if A requests.

d. SETREL if R requests.

e. SEMIB if B requests.

f. Set GOADR if G requested.

g. Make YALUE positive or negative (REG 1), if SIGN set.

h. RETURN for next character (ROYAll).

3.5.5 SETSEG

1. Subroutine Name:
SETSEG

2. Purpose:
Se lect the symbol table from an overlay named (S).

3. Entry:
Entered from SEMICK upon detection of an S.

4. Exit:
Return to PROMPT for next debug command.

3-15

5. Operation:

a. Check CCHAR. Zero means root of load module.

b. Set REG5 to point to the segment name in the tree (TREE).

c. Set SSEG equal to the segment number.

d. BAL to SYMS (Brings in symbol table).

e. Return to PROMPT.

3.5.6 GTSVAL

1. Subroutine Name:
GTSVAL

2. Purpose:
Determine the value of a symbolic symbol.

3. Entry:

a. BAL,1O GTSVAL; NAMTMP equals none of symbol.

b. Entered from MORECC, SEMICK

4. Exit:
B *10; VALUE equals absolute value of symbol.

S. Operation:

a. Set REG 2 equal to the start of the symbol table (DDAT).

b. Compare a byte at a time, NAMTMP against the symbols in DDAT.

c. When found, load value and store in VALUE (-2 words from the name in REF/DEF stack
equals the value of the constant).

d. Return (B *10).

3.5.7 CHKSERV

1. Subroutine Name:
CHKSERV

2. Purpose:
Interrnpt and transfer to simulator routines for M:GP, M:FP, M:SMPRT, M:GL, M:GCP, M:FCP,
M:TIME, M:SEGLD.

3. Entry:
Entered fr9l11 "POP UP" level for non-allowed CAL.

4. Exit:
Exits to appropriate simulation routine.·

S. Operation:

a. Read the page into WINDOW where the CAL was executed (READWD).

b. If the CAL was done via an EXU, go to CHKPTR to chain thru the EXUls.

c. Allow only CAL lis to go thru (PECAL).

d. And only CAL 1,8.

e. Determine the fpt address (CHKPTR) and read in the page of users code containing the fpt
address (READWO) and set FPTADR to the address of the fpt.

f~ Branch to appropriate simulation routine using byte zero (FPT code) of the fpt.

3-16

3.5.8 GP

T. Subroutine Name:
GP

2. Purpose:
Simulate a M:GP CAL (Get page).

3, Entry:
Entered from CHKSERV with an fpt code of X'08 1

•

4. Exit:
Returns to GO TO USER.

5. Operation:

a. Find the number of pages requested (RO).

b. If the user request more than are available (NUSIZ) give him all that are possible.

c. Decrements the number of pages available (NUSIZ) and increse the number the
user has (DYPG).

d. Set SR 1 (REG 8) of the users (STORWD) to the number of pages obtained.

e. Compute the address of the start of the area given and store in SR2 (REG 9) (STORWD).

f. Bump the return address (CALRET) by 1 (GOADR).

g. Set the condition codes (CCSET).

h. Return to user.

3.5.9 FP

'1. Subroutine Name:
FP

2. Purpose:
Simulate a M:FP CAL (Free page).

3. Entry:
Entered from CHKSERV with an FPT code of X '091

•

4. Exit:
Returns to CCSET.

5. Operation:

a. Find the number of pages requested (RO).

b. If the user tries to release more thon he has (DYPG), release none.

c. Decrement the number of pages the user has (DYPG). and increment·the number available (NUSIZ).

d. Go to CCSET.

3.5. 10 SMPRT

1. Subroutin-e Na~e:
SMPRT

2. Purpose:
Simulate a M:SMPRT CAL (set memory protection).

3. Entry:
Entered from CHKSERV with an FPT code of X'OA'.

4. Exit:
Returns to CCSET.

3-17

•
5. Operation:

a. Set all protection types to 00 (OOSIZE + 01SIZE) and zap 01 size.

b. Read the second word of the FPT (contains protection value and ending address)' into
WINDOW (READWD).

c. Convert start address (REG 7) to pages and end address (REG 0) to pages.

d. Compute all the pages currently in use (CMPG).

e. If the starting page is in the area. and the ending page is also; set CCl to zero (CCSET).

f. If the above is not true,set CC 1 to a one (CCSET).

g. NOTE: No memory protection is actually set, since BTM users always run as protection zero.

3.5. 11 Gl

1. Subroutine Name:
GL

2. Purpose:
Simulate a M:Gl CAL (GET LIMITS).

3. Entry:
Entered from CHKSERV with an FPT code of X'OB'.

4. Exit:
Returns via CCSET.

5. Operation:

a. Set SR2 (REG 9) equal to the upper memory limit (TOPMEM).

b. Convert the number of common pages (CMPG) to words.

c. Compute the difference between top of memory (TOPMEM) and REG 13 (total common pages).

d. Store in SR 1 (REG 8) (STORWD).

e. Return to CCSET

3.5.12 GCP

1. Subroutine Name:
GCP

2. Purpose:
Simulate a M:GCP CAL (Get common pages).

3. Entry:
Entered from CHKSERV with an FPT code of X'QC '.

4. Exit:
Returns via CCSET

5. Operation:

a. Find number of pages requested (RO).

b. If the user requests more than are available (NUSIZ) give him all that are possible.

c. Increment the number of common pages the user has (CMPG) and decrease the number of
pages available (NUSIZ).

d. Set SR 1 (REG 8) of the user (STORWD), to the number of pages obtained.

e. Compute the start address of the lowest common page and store in the users SR2 (REG 9)
(STORWD).

3-18

3.5. 13 FCP

1. Subroutine Name:
FCP

2. Purpose:
Simulate a M:FCP CAL (Free Common Pages).

3. Entry:
Entered from CHKSERV with an FPT code of X'OD '•

4. Exit:
Return via CCSET.

5. Operation:

a. Obtain the number of pages requested (RO).

b. If the user tries to re lease more than he has, release none.

c. Increment the number of pages the user has (NUSIZ) and decrement the numoer of common
pages (CMPG).

d. Return to CCSET.

3.5. 14 TIME

1. Subroutine Name:
TIME

2. Purpose:
Simulate a M:T1ME CAL (Dated Time).

3. Entry:
Entered from CHKSERV with a FPT code of X'IO'.

4. Exit:
To CALRET

5. Operation:

a. Get address to put date and time (CHKADRNX).

b. Issue a BTM date and time CAL (CAL3, 15).

c. Store hours and minutes (STORWD).

d. Store Month (STORWD).

e. Store Day (STORWD).

f. Store Year (STORWD).

g. Return to CALRET

3.5.15 SEGLD

1. Subrout i ne Name:
SEGLD

2. Purpose:
Simulate an M:SEGLD (Segload).

3. Entry:
Entered from CHKSERV with an FPT Code of X'01'.

4. Exit:

a. Transfer to GOTOUSER with the new segment in.

b. Transfers to PECAL if any error conditions occur.

3-19

5. Operation:

a. Check for indirect or indexed address (CHKADRNX).

b. Get second word of FPT (READWD) wh ich contains the address of the TEXTC segment name.

c. Get the segment name (READWD).

d. Look through TREE for segment name (SEGLOOP).

e. Set all segments in TREE not in except for the segment requested (SEGLP1) (Backward Path).

f. Set "Forward Path fl still in (SEGLP2).

g. Read the requested segment in (RDSEG).

h. Return to FPT+2 (CALRET) or transfer to CHKEXU if BAL.

3.5. 16 CHKEXU

1. Subroutine Name:
CHKEXU

2. Purpose:
Run down chain of "EXU's" from an "Executed CAL".

3. Entry:
Entered from SEMIB, and SEGLO.

4. Exit:
Transfer to GOTOUSER.

5. Operation:

a. Read into WINDOW the requested page (READWD).

b. If not an "EXU" (X'67~ check for a BAL (CHKBAL).

c. Skip down "EXU's (CHKPTR) until non "EXU" encountered.

d. If not BAL,return to user (SETGOAD).

e. Set replaced instruction into HEAD.

f. Get new transfer address (CHKPTR).

g. Swap old GOADR for new GOADR.

h. Store the new GOAOR in users memory.

i. Return vic GOTOUSER.

3.5.17 TYCRLF

1. Subroutine Name! .
TYCRLF

2. Purpose:
Type a carriage return and line feed to users terminal.

3. Entry:
BAL,4 TYCRLF

4. Exit:
B 0,4

5. Operation:

a. Send a carriage return (X'15~ to user (CAl3,l).

b. Send a line feed (X'25') to user (CAL3, 1)

c. Return

3-20

3.5. 18 TYM

1. Subroutine Name:
TYM

2. Purpose:
Type a TEXTC message to the users terminal.

3. Entry:
BAL,4 TYM; R2 = BYTE ADDRESS OF TEXTC MESSAGE.

4. Exit:
B 0,4

5. Operation:

a. Place byte count from message into REG 3.

b. Send a character at a time (CAL3, 1) from the message until REG 3 (byte count) goes to zero.

c. Return.

3.5. 19 GETTXT

1. Subroutine Name:
GETTXT

2. Purpose:
Obtain TEXTC format from user type in.

3. Entry:

a. Entered from ENTRY for request of "LOAD MODULE FlO ".

b. BAL,5 GETTXT; REG 8 equals maximum character length

4. Exit:

a. B 0,5 if TEXTC O. K.

b. ENTRY1 if an error.

5. Operation:

a. Set REG 12-14 with blanks (will contain TEXTC name).

b. Look for delimiters (", II, II (11,11)11, IIX'15 11) until either hit or REG8 is exhausted.

c. Store characters into REGS 12-14 bumping,byte count (byte 0 of REG12) to reflect number of
character in REGS 12 - 14'-

d. Type a error message (NERM) if input from user exceeds maximum character length (REG 8).

3.5.20 LMNAB; LMNER; LMSZER

1. Subroutine Name:
LMNAB; LMNER; LMSZER

2. Purpose:
Type an appropriate error message to the user if there is a problem with his Load Module.

3. Entry:
B LMNABi LMNER; LMSZER

4. Exit:
Returns to ENTRY for another Load Module Name from user.

5. Operation:

a. Type appropriate error message (TYM).

b. Return for another request (ENTRY).

3-21

3.5.21 RDSEG

1. Subroutine Name:
RDSEG

2. Purpose:
Obtain an overlay segment by segment number.

3. Entry:
BAL,9 RDSEG i REG 7 equals segment number.

4. Exit:
B *9

5. Operation:

a. Check to see if segment is currently in (X '40000000 set in TREE).

b. Set swap size equal to users size (USIZ).

c. Set symbol table not in (SSEG to zero).

d. Bring the users memory into the subsystem memory (CAL3,7).

e. Read the overlay in (RDRCD1).

f. Set all DeB IS to HERE (5) and reallocate them.

g. Apply any IMODIFYls to the overlay (MODBUF).

h. Set the new swap size (NOROT1).

i. Re-align usersize (USIZ).

j. Return B*9

3.5.22 SETSWAP

1. Subroutine Name:
SETSWAP

2. Purpose:
Set up swap arguments for Swap description.

3. Entry:
BAL, 11 SETSWAP

4. Exit:
B *11

5. Operation:

a. Set right half of REG 1 to the start address of swap.

b. Set into the left half of REG 1, the number of pages (OOSIZ+)OlSIZ).

c. Set into REG 0, the page number of user level swap storage.

d. Return B *11

3.5.23 SYMS

1. Subroutine Name:
SYMS

2. Purpose:
Routine to bring in the Symbol Table of the current segment in core.

3. Entry:
BAL,9 SYMS

4. Exit:
B *9

3-22

5. Operation:

a. Set segment names in (SSEG).

b. Get the segment requested (RDRCD).

c. Convert all names to word resolution.

d. Add appropriate bias (BIAS).

e. Return B *9.

3.5.24 RELOCR

1. Subroutine Name:
RELOCR

2. Purpose:
Relocate a segment to fit current bias.

3. Entry:
B RELOCR

4. Exit:
B *10

5. Operation:

a. Read the relocation dictionary (RDRCD).

b. Put it in memory below WINDOW.

c. Convert to word resolution and add appropriate bias (BIAS).

d. Store it back in relocation dictionary.

e. Return.

3.5.25 RDWNOB

1. Subroutine Name:
RDWNOB

2. Purpose:
Set break table inactive to avoid breaks while obtaining a page of user memory.

3. Entry:
BAl,9 RDWNOB

4. Exit:
To READWD

5. Operation:

a. Set all break locations (BREAKS), negative.

b. Fall through to READWD.

3.5.26 READWD

1. Subroutine Name:
READWD

2. Purpose:
Obtain a word from users memory.

3. Entry:
BAL, 9 READWD; REG 8 = address

3-23

4. Exit:
B *9; REG 0 = Word.

5. Operation:

a. Get the page of memory (GPAGIN) which contains the requested word.

b. Set the requested word in REG O.

c. Set all breaks active (Zap MINUS sign of BREAKS).

d. Return

3.5.27 STORWD

1. Subroutine Name:
STORWD

2. Purpose:
Put a word into users memory.

3. Entry:
BAL,9 STORWD REG 8 = Address to put word; REG 0 = Word.

4. Exit:
B *9

5. Operation:

a. Check if ROOT in (ifroot, merely store).

b. Find size and address of segment (STORWL).

c. Get the page needed (GPAGIN).

d. Store into the page.

e. Set the write flag (WRIND) and return.

3.5.28 GPAGIN

1. Subroutine Name:
GPAGIN

2. Purpose:
Obtain the page of core, to which a memory address pertains.

3. Entry:
BAL,12 GPAGIN; REG 8 = address

4. Exit:
B *12 REG 5 equals address of location in WINDOW.

5. Operation:

a. Compute address of page needed for memory location desired.

b. If changing a breakpoint (BREAKS), set REG5 to point to break table.

c. Check if the page is currently in window (PGIN) and if so return (B *12).

d. Write out current page (in case of modification) and read in page containing requested
address.

e. Return.

3-24

3.5.29 WRPG

1. Subroutine Name:
WRPG

2. Purpose:
Write a page of subsystem memory to user level swap storage.

3. Entry:
BAL,ll WRPG

4. Exit:
B *11

5. Operation:

a. Set REG 0 to page number of user level swap storage (PGIN).

b. Set REG 1 poinNng to WINDOW (WINDPG).

c. Set REG 2 positive (1).

d. Issue a swap (CAL3,7).

e. Return B *11

3.5.30 RDPG

1. Subrouti ne Name:
RDPG

2. Purpose:
Read a page of user memory into WINDOW •

. 3. Entry:
BAL,ll RDPGi REG 4 equals page number.

4, Exit:
B *11

5. Operation:

a. Set REG 0 with page number (REG 4).

b. Set subsystem page to read into (WINDPG) REG 1.

c. Set REG 2 negative.

d. Issue swap (CAL3,7).

e. Return (B * 11)

3.5.31 CHKADRNXi CHKPTRNXi CHKPTR

1. Subroutine Name:
CHKADRNXi CHKPTRNXi CHKPTR

2. Purpose:
Decode indirect address or registers from a user ·FPT.

3. Entry:
BAL,l CHKADRNXi CHKPTRNX, CHKPTRi REG 2 = address of FPT.

4. Exit:
B *1

5. Operation:

a. Check for indirect bit in REG 2 and transfer to NOAST if not.

3-25

b. Check if address is out of core (NOMLIM) and transfer indirect to ADER if it is.

c. Read the address specified by the FPT address into the window page (READWO).

d. Transfer to NOINDX if not indexed (NOAST).

e. Read the register requested (READWD) and add to the address of the FPT.

f. Set in REG 3 the effective address (NOINDX).

g. Return

3.5.32 HEXOUT

1. Subroutine Name:
HEXOUT

2. Purpose:
Convert a number to hexadecimal and type it to the user.

3. Entry:
BAL,l HEXOUTi REG 3 = Number

4. Exit:
B *1

5. Operation:

a. Transfer to SYMBOUT if ABSFLAG not set.

b. Output.a " ... (CAL3, 1) (NOSYMB)

c. Convert number to hex (HEXCHR) and store in lMN until REG 3 exhausted.

d. Type from LMN to users terminal (CAl3, 1)

e. Return

3.5.33 SYMBOUT

1. Subroutine Name:
SYMBOUT

2. Purpose:
Convert a number to its symbolic name plus a hexadecimal displacement.

3. Entry:
B SYMBOUT

4. Exit:
B SEIFS

5. Operation:

a. Look for symbol in dynamic data (DOAn.

b. Branch to SEIFS to print on the user terminal the symbolic name.

3. 5~ 34 SElfS

1. Subroutine Name:
SEIFS

2. Purpose:
Type a symbolic name to the users terminal

3. Entry:
B SEIFSi REG 6 = address of name.

3-26

4. Exit:
B NOSYMB

5. Operat ion:

a. Get byte address of name into REG6.

b. Get byte count of name into REG 2.

c. Type name to user (CAL3,l) until byte count (REG2) is exhausted.

d. Type a "+" (CAL3,l) to user for hexadecimal offset from symbol.

e. Branch to NOSYMB to type hexadecimal offset.

3-27

4.0 BPM SUBSYSTEM

4. 1 FUNCTIONAL OVERVIEW

4. 1. 1 Purpose

BPM (Terminal Batch Entry) is a BTM subsystem which provide the ability for an on-line user to insert a job file,

status check a previously inserted job file, or delete a previously inserted job file. This subsystem is available

only when BTM is operating in a symbiont BPM environment.

4. 1.2 Input

The BPM Subsystem prompts the BTM user immediately after entry with

1. INSERT Job? {~} • Prepares the subsystem to enter a job file.

a. An affirmative reply (Y) will cause the subsystem to read the job file from the users terminal
or from a previously ASSIGNed file buil~ for example, by EDIT. The subsystem then prompts
with the command "EDIT? II

b. A negative reply will cause the subsystem to prompt with the next control command. (STATUS
CHECK) •

2. STATUS CHECK? {~}. Allows the user to check the status of any previously inserted job file.

a. An affirmative reply (Y) will cause the subsystem to prompt with "10=" at which time, the user
responds with four hexadecinal digits of a previously inserted job ide If only a carriage return
is entered, the subsystem returns to the Executive level (I).

After receiving a valid job id the subsystem will return one of the following five status
indicators.
RUNNING -The job requested is currently execution in the Batch Partition.
COMPLETED -The job requested has been processed.
NONEXISTENT - The job requested has never been entered into the Batch Queue.
WAITING ON OUTPUT -The job requested has been processed but the output has not been

completed.
WAITING: N AHEAD -The job requested is still waiting to be processed. N is the number
CURRENT 10: X ahead of the job requested and X is the 10 of the job that is

currently executing in the Batch Partition.

The subsystem then prompts again with "10=1"

b. A negative reply will cause the subsystem to prompt with the next control commond.{Delete Job)

3. DELETE JOB? {~}. Allows the user to delete from the Batch Queue, a previously inserted job file.

An affirmative reply (Y), will cause the subsystem to prompt with "10=" at which time, the
user responds with four hexadecimal digits of a previously inserted job 10. The subsystem will
respond with one of the five following messages from a delete request.

NONEXISTENT

••• DELETED

- The job requested has never been entered into the batch queue.

- The job file was deleted from the batch queue •

UNABLE TO DELETE JOB. AUTHORIZATION REQUIRED.

- User is trying to delete a job other than his own.

4-1

UNABLE TO DELETE JOB. TOO LATE. - ; The requested job has already been run in the
batch partition.

UNABLE TO DELETE JOB. NON-SYMBIONT SYSTEM. , .
- There is no Batch Job queue or a non-symbiont syst.

The subsystem then prompts again with "10=". If only a carriage return is entered, the subsystem
returns to the Executive leve I (I).

b. A negative response will cause the subsystem to return to the Executive level (I).

4. EDIT? {~}. Allows the user to edit his job file prior to the job insertion.

a. If the user reply is negative (N), the subsystem enters the job file. in the Batch Job queue
and types the following' to the user '

JOB INSERTED. 10 = XXXX

where XXXX is the hexadecimal characters of his job 10. Then the subsystem responds with the
next control command (STATUS CHECK).

b. If the user reply is affirmative (y), the subsystem prompts with a question mark (?). At this point
the user responds as follows, where XX and YV are record numbers as displayed on the console.

TtET TX . VV@
X E
G
S X , @
o XX~~I~ A XX E
R XX l']

4. 1. 3 Error Messages

Type file
Type lines XX [Thru,VY]
Erase the job file.
Go (insert the job file)
Swap I ines XX and VV
Delete lines XX [Thru,YV]
Add the following lines after line XX
Replace XX (Thru,VV] with the following lines.

1. INVALID 10 - the response to the"ID!b request was either greater than four characters, or, an i liege I
configuration of hexadecimal characters.

2. BAD I/O. ABNORMAL CODE - VV - An abnonnal was returned from the BPM subsystem reading its
input from M:SI DCB. VV equals the error code.

3. File too large. Task ABORTED - The job file to be inserted must fit into the 8TM partition. 'This
allows in a 16K user area, approximately 700 records.

4. NONEXISTENT LINE - An edit command refers to a non-existent line.

5. ERRONEOUS COMMAND IGNORED - An edit command is either illegal or contains improper
parameters •

6. NO INPUT DATA. BYE - There is no job file is send to ~e Batch job queue.

7. FIN CARD IGNORED - A IFIN card was found in the Job file. It is deleted from the job file.

8. JOB CARD MISSING OR RECORDS OUT OF ORDER - A I JOB command must be the first record
of a Job file.

9. IMPROPER JOB ACCOUNT - The user account on the !JOB command does not match his log-in
account.

4-2

10. IMPROPER JOB NAME - the users name on his I JOB command does not match his log-in name.

11. IMPROPER JOB PRIORITY - Either the user has an illegal hexadecimal character on his IJOB
command, or, he has specified a priority greater than his authorized maximum.

12. IMPROPER EXTENDED ACCOUNTING - The extended accounting field from the IJOB command
does not conform to the rules.

13. IMPROPER JOB CARD - the! JOB command does not conform to the rules of a proper job card.

4.2 INTERFACES

4.2. 1 Operating System

The BPM subsystem only interfaces with the BTM Executive. It cannot be run as a Batch processor.

4.3 OPERATIONAL OVERVIEW

4.3. 1 Description

Processing starts at location BEGIN. The users log-in account and name, terminal number, authorization flags,

and maximum priority are stored at this time. If the user is not authorized, he is returned to the BTM

Executive. Options are processed and control is given to the appropriate routine; INSERT, STATUS, DELETE.

Any abnormal returns from any I/O commands, cause the subsystem to abort through the Abnormal-Exit

routines. Any exit condition found within a control routine is exited thru the normal exit routine.

4.3.2 DCB1s

1. M:SI

2. M:EO -

4.3.3 Flowchart

See Figure 4-1

Reads the job file

Send the job file to the Symbiont

4.4 MODULE ANALYSIS

4-3

BEGIN

BEGINl

yes INSERT

STATUS yes

no

DELETE yes

Figure 4-1. Operationa I Overview of BPM Subsystem

4.4. 1 BEGIN

1. Module Name
BEGIN

2. Purpose:
Request option from user and transfer to appropriate routine.

3. Entry:
BEGIN is the entry po int into the subsystem, whenever BPM is invoked.

4. Exit:
a. Transfers control to the appropriate routine requested by the user.

b. Exits to the time-sharing executive when all options have been exhausted.

5. Operation:
a. Store the users log-in account (REGS 4,5), name (REGS 13, 14, 15) and maximum priority (REG 2).

b. Abort the user (NONa) if batch flag not set (REG 3 greater or equal to zero).

c. Invoke options to user and request a "Y" or "N" (YESNO). If "Y" transfer to option; if "N"
invoke next option.

d. Return to the time-sharing executive when all options have been invoked.

4.4.2 DELETE

1. Module Name:
DELETE

2. Purpose:
Allow the user to delete from the batch job queue, a previously inserted job file.

3. Entry:
Entered from BEGIN upon a positive reply (Y) to "DELETE JOB?"

4. Exit:
The exit is to the time-sharing executive upon a carriage return only to an ID request.

5. Operation:
a. Request the ID of the job file to be deleted (INEBCHEX)

b. Store the ID in DELID and issue an M:JOB delete cal.

c. Type " ••• DELETED II if the de lete was successful and issue another ID request.

d. If the delete was unsucessful, control is transferred to ABNDEL.

a. An appropriate error message will be typed (see ABNDEL).

b. Issue another ID request.

6. Flowchart:
See figure 4-2.

4.4.3 STATUS

1. Module Name:
STATUS

2. Purpose:
Allow the user to status check a previously inserted job file.

3. Entry:
Entered from BEGIN upon a positive reply (Y) to "STATUS CHECK? II

4-5

4. Exit:
The exit is to the time-sharing executive upon a carriage return only" to an 10 request.

5. Operation:

a. Request the 10 of the job file to be status checked (INEBCHEX).

b. Issu~ an M:JOB status request using the 10 in REG 8.

c. Using the number returned in REG 8 (0 = completed; 1 = running; 2 = waiting to run; 3 = non
existent; 4 = Waiting to output) index into STATMS for the appropriate status message which is then
typed to the user (TYPEMESS).

4-6

Request 10 to
be deleted

Issue an M:JOB
delete request

Tell user the job

file was deleted

Figure 4-2. Flow Chart for DELETE

4-7

Pg. 1

STATUS

Request 10 to
r----------~.1 be deleted

Tell user

IJCOMPLETEO II

Tell user

IIRUNNING II

Tell user

"NONEXISTENT II

yes

yes

yes

Issue an
M:JOB

Figure 4-3. Flow Chart for STATUS

4-8

Pg. 2

Tell user
es IIWAITlNG:

N AHEADII

Tell user
IICURRENT 10 :
XXXX II

4.4.4 INSERT

1. Module Name:
INSERT

2. Purpose:
Allow a user to enter a iob file into the batch job queue.

3. Entry:
Entered from BEGIN upon a positive reply (Y) to IIINSERT JOB?"

4. Exit:
Control is transferred to EDIT upon detection of a end of file (from file input) or a null line to an input
request (carriage return only).

5. Operation:

a. Type maximum priority allowed (MAXPRI) to the user (TYPEMESS).

b. Find size of user area (CAL3,14) and store in MAXPAGES.

c. Start data buffer at a page boundary behind the subsy~tem (STRTDATA, NEXTPAGE, FIRSPAGE).

d. Open M:SI and determine if it is from a users console or file.

e. If file, read data records unti I end of file (ABNSI).

f. If console, type the number (LINENO), and read input until a null line (carriage return only).

g. Place data records into the buffer po inted to by STRTDATA (PUTLINE).

6. Flowchart
See Figure 4-5.

4-9

yes

Tell user his
maximum priority

Open M:SI
DeB

Type line number
to user

Read
M:SI DCB

Set record size yes

es

Figure 4-4. Flow Chart of INSERT

4-10

Zap carriage
return at end of
record if it exists

Blank fill to
80 characters

4.4.5 FILETYPE

1. Module Name:
FILETYPE

2. Purpose:

Delete carriage returns from lines of data read from a file and blank fill records to 80 characters.

3. Entry:
Entered from INSERT whenever a record is read from file input with REG 1 equally the number of
characters with the reco[d.

4. Exit:
Transfers to INSERT to read the next control record.

5. Operation:

a. Check REG 1 for greater than 80 characters and truncate if so.

b. Zap last character of record to a blank, if the last character is a carriage return (X 115, •

c. Blank fill record to 80 characters.

4.4.6 EDIT

1. Module Name:
EDIT

2. Purpose:
Allow the user to modify his job file, prior to insertion into the batch job queue.

3. Entry:
a. Entered from INSERT, when a null record is received as input

b.

c.

Entered from ABNSI upon detection of an End of File from file input.

Entered from TRANSFER if no job card was found in the job file.

4. Exit:

a.

b.

Exits to TRANSFER upon a negative response (N) to "EDIT?"

Exit to EDITO upon a positive reply (Y)

5. Operation:

a. Ask the user if editing is desired (TYPEMESS)

b. Transfer to EDITO if desired (YES NO).

6. Flowchart

See Fig ure 4-5.

4.4.7 EDITO

1. Module Name:
EDITO

2. Purpose:
Request edit commands from user

3. Entry:

a. Entered from EDIT upon a positive response (Y) to "EDIT? II

4-11

b. Entered from APPEND, SCRATCH, TYPE, REPLACE, SWAP, DELETEE from:
1. An erroneous command format.

2. Normal return for more edit commands.

4. Exit:

a. To the time-sharing executive if no input exists in the iob file (NOINPT).

b. To TRANSFER upon the edit-command "GO".

5. Operation:

a. Check for any Job fi-Ie (LINENO) in the data area and exit if none (NOINPT).

b. Request edit function.

c. Branch to function desired (FIN~EDIT).

d. Run down input look for a carriage return if function is erroneous.

e. Type to user (TVPEMESS) that edit function was erroneous.

f. Request another edit command.

6. Flowchart

See Figure 4-5.

4-12

EDIT

EDITO

T ell user command not legal

Figure 4-5. Flow Chart of EDIT

4-13

4.5 SUBROUTINE ANALYSIS

4.5.1 GO

1. Subroutine Name:
GO

2. Purpose:
Send the job file to the symbiont batch queue.

3. Entry:
Entered from FINDEDIT upon detection of a "G II (go).

4. Exit:

a. To EDIT2 if more than one line number.

b. To EDIT3 if no I ine number.

c. To EDIT1 for more edit commands (normal exit).

5. Operation:

a. Get append line number (GETlNP).

b. If no lines exist (LINENO less then or equal to zero), then allow append to zero only.

c. Find the line to be appended to (FINDLINE).

d. Type line (HEXDEC) number + 1 to user and await input.

e. Bump all line numbers in data area past the appended line number by one (1).

f. Loop back to APPEND 1 for another input record.

4.5.2 TYPE

1. Subroutine Name:
TYPE

2. Purpose:
Allowes the user to t}fle all or portions of his job file.

3. Entry:
Entered from FINDEDIT upon detection of a "T" (TYPE).

4. Exit:

a. Exits to EDIT 2 if no lines exist to type or all lines typed.

b. Exits fa EDIT3 if no line number was given or the starting line number was greater than the
ending line number.

c. Exits to EDIT2 if more than TWO line numbers were specified.

5. Operation:

a. Check for the existence of any lines to type (LINENO).

b. Find out if the user wants all lines types, one line typed or more than one line typed (GETlNP).

c. Type the line number to the user (HEXDEC).

d. Type the line to the user (TYPELINE).

e. Loop on the number of lines to type (REG 11) or until all are typed (LINENO).

f. Return to EDIT 1.

4-14

4.5.3 REPLACE

h Subroutine Name:
REPLACE

2. Purpose:
Allows the user to replace various I ines within his job file.

3. Entry:
Entered from FINDEDIT upon detection of a "R II (REPLACE).

4. Exit:
a. Exits to EDIT2 if no input exists to replace or if the line number itself is invalid.

b. Exits to EDIT3 if no I ine number is supplied or the starting line number is greater than the ending
line number.

c. Exits to EDIT1 if the line to replace can't be found.

d. Exits to APPENDO {Normal EXIn.

5. Operation:

a. Check to see if any job file lines exist (LINENO).

b. Findout if the user wants one line or more than one line replaced (GETINP).

1. Transfer to REPLACE1 if more than one.

2. Continue normally if only one.

c. Delete all lines (DELLINE) requested from the line numbers as inpu~ to REPLACE.

d. Exit to APPENDO to insert the new lines in.

4.5.4 SWAP

1. Subroutine Name:
SWAP

2. Purpose:
Allows the user to exchange Unes within his job file.

3. Entry:
Entered from FINDEDIT upon detection of an "5" (SWAP).

4. Exit:

a. Exits to EDIT3 if no lines requested or only one line requested.

b. Exits to EDIT2 if more than two lines typed.

c. Exits to EDITl (Normal Exit).

5. Operation:

a. Check to see if any job file lines exist (LINENO).

b. Get the lines to be swapped (GETINP).

c. Store the first line number (TEMP) over the second and the second (TEMP1) over the fir-st.

d. Exit to EDITl for next edit command.

4-15

4.5.5 DELETEE

1. Subroutine Name:
DELETEE

2. Purpose:
Allows the user to delete portions of his job file.

3. Entry:
Entered from FINDEDIT upon detection of a "0" (DELETE).

4. Exit:

a. Exit to EDIT2 if no data lines exist or invalid line number.

b. Exit to EDIT3 if no lines were requested or starting line number is greater then the ending line
number.

c. Exit to EDIT1 (Normal) after lines have been deleted.

5. Operation:

a. Check for any job file lines existing (LINENO).

b. Get the lines to be deleted (GETTINP).

1. DELETEE1 if more than one.

2. Continue normally if only one.

c. Delete the line (DELLINE) and return to EDIT1.

4.5.6 TRANSFER

1. Subroutine Name:
TRANSFER

2. Purpose:
Send the built symbiont blocks of job files to the batch job queue.

3. Entry:

a. From EDIT when no editing is de.sired.

b. From GO when the user wants the job fi Ie to be sent.

4. Exit:

a. To NOINPT if nothing exists in the job file to send (LINENO).

b. TRANSLST to send last block.

c. NOJOBC if no job card was found in the job file.

5. Operation:

a. Check for data fo send (LINENO).

b. Find each line (FINDLINE) of data.

c. Check each line for the first byte being a "! II (control card).

d. Move each line of job file to the symbiont buffer (SUMBBUFF) being built for the M:JOB
insert cal.

e. When full send buffer.

f. Keep filling and sending SYMBBUFF until all records of the job file have been sent.

4-16

4.5.7 CRLF

1. Subroutine Name:
CRLF

2. Purpose:
Send a carriage return (X'15 1

) and lines feed (X'25 1
) to the users console.

3. Entry:

a. Entry is accomplished via a BAL,R15 to CRLF.

b. It is entered from STRTFIL, BEGIN, DELETE, STATUS, INSERT, EDITO, TYPE, YESNO,
FINCARD, TRANSLST, ABNDEL, NONa, NOJOBC, FINDER, NAMER, JOBCER, INVL.

4. Exit:
Exits through TYPEMESS by a B *R 15.

5. Operation:

a. Sets into REG 14, the address of the carriage return - line feed message (CRLFMS).

b. Falls through to TYPEMESS.

4.5.8 TYPEMESS

1. Subroutine Name:
TYPEMESS

2. Purpose:
Send a textc type message to the users console

3. Entry:

a. BAL,R15 TYPEMESS.

b. R 14 = address of textc message.

c. Entered from BEGIN, CRLF, DELETE, STATUS, INSERT, EDIT, EDITO, HEXEBC, FINCARD,
TRANSLST, ABNDEL, NONa, ABNSI, NOJOBC, FINDER, ABNINS, NAMER, INVL.

4. Exit:
Exits via B *R 15

5. Operation:

a. Obtain byte count from message pointed to by REG 14.

b. Get bytes from message into REG O.

c. Issue a CAL3, 1 (PRINT).

d. Loop on byte count (REG 1).

4.5.9 YESNO

1. Subroutine Name:
YESNO

2. Purpose:
Recieve a "Y" or "N" response from user

3. Entry:
(B)

o. BAL,R 15 YESNO

b. Entered from BEGIN, EDIT, ABNINS

4-17

4. Exit:

a. Returns to SAL + 1 if "Y".

b. Returns to SAL + 2 if liN ".

5. Operation:

a. Set activation to "ALL II (CAL3,2 with REG 0 = 1).

b. Recieve character (CAL3, 0)

c. Check for "Y" or liN ".

d. If not

1. Send user a question mark.

2. Re-request input.

e. Bump R15 by 1 if no.

f. Set activation to carriage return-Hne feed. (CAL3,2 REG = 4).

g. Return through CRLF.

4.5. 10 INEBCHEX

1. Subroutine Name:
INEBCHEX

2. Purpose:
Recieve ebcidic characters as input and convert them to a hex number.

3. Entry:

a. BAL,R15INESCHEX

b. Entered from DELETE, STATUS

4. Exit:

a. Returns *R 15+ 1 with hexadecimal number in REG 8.

b. Returns to the time-sharing executive if a null record is supplied as input (carriage -return only).

c. Transfers to INVL if the input is not valid Hexadecinal digits.

5. Operation:

a. Zero REG 8 (will contain resultant hex number).

b. Get input characters and convert them to hexadecimal.

c. Check if valid hex characters (O-F) and transfer to INVL if not.

d. Bump return address

e. If input came in, return *R 15; if not, exit to the time-sharing executive (CAL3,6).

4.5. 11 HEXDEC

1. Subroutine Name:
HEXDEC

2. Purpose:
Convert hexadecinal number to decimal and type on the users console, the result.

3. Entry:

a. BAL,R15 HEXDEC

b. R 1 0 = hexadec ima I number.

4-18

c. Entered from STATUS, INSERT, APPEND, TYP"E

4. Exit:
Transfers to HEXEBC

5. Operation:

a. Set REG 0 to zero (will contain result).

b. Divide REG 10 by X 'A' storing remainders in REG O.

c. Load REG 9 with result in REG O.

d. Full through to HEXEBC to type result.

4.5. 12 HEXEBC

1. Subroutine Name:
HEXEBC

2. Purpose:
Convert hexadecimal numbers to ebcdic and type to the user I the result.

3. Entry:

a. BAL, R 15 HEXEBC

b. R 9 = Hexadecimal number.

c. Entered from HEXDEC, STATUS, TRANSLST, ABNSI, JOBCER.

4. Exit:
To TYPEMESS to print the number.

5. Operation:

a. Find size of number (For textc format).

b. Store size (byte count) in EBCDICNO.

c. Convert numbers to the ebcdic.

d. Store numbers in EBCDICNO.

e. Loop on byte count.

f. Set REG 14 pointing to EBCDICNO and transfer to TYPEMESS.

4.5. 13 PUTLINE

1. Subroutine Name:
PUTllNE

2. Purpose:
Puta line of input data, with its line number (LINENO) into the data pages.

3. Entry:

a. BAL, R 15 PUTLINE

b. R 10 = line number (LINENO).

c. Entered by INSERT, APPEND

4. Exit:

a. B *R 15

b. NOROOM if no more data pages available.

4-19

5. Operation:

a. Check for room available in current page (STRTDATA) for another 21 word data record.

b. If not:

1. Check if any pages left and transfer to NOROOM if not.

2. Bump NEXTPAGE by 1 to reflect next page limit.

3. Set swap size (CAL3, 11' 0) for new page obtained.

c. Store line number (REG 10).

d. Move record

e. Bump STRTDAT A by 21 words.

f. Return (B *R15).

4.5. 14 FINDLINE

1. Subroutine Name:
FINDLINE

2. Purpose:
Find a line of input in the data area by its line number.

3. Entry:

a. BAL, R 15 FIND LINE

b. R 10 = line number.

c. Entered from APPEND, TYPE, REPLACE, SWAP, DELETEE

4. Exit:

a. B *R 15

b. REG7 - address of desired line.

5. Operation:

a. Set address pointer (REG 7) to beginning of data area (FIRSPAGE).

b. Loop through data area until -

1. Line number (REG 10) is found in data area.

2. The data area is exhausted (STRTDATA)

c. Return frR 15 with condition codes = 0 (line found) or condition codes = 1 (set by FINDERS
indicates line not found.)

4.5. 15 RUNDOWN

1. Subroutine Name:
RUNDOWN

2. Purpose:
Run down input buffer looking for a carriage return (X '15).

3. Entry:

a. BAL, R15 RUNDOWN

b. Entered from EDITO, GO, SCRATCH, INVL

4. Exit:
B *R15

4-20

5. Operation:

a. Read input character (CAL3,O).

b. Loop until carriage return found.

c. Return *R15

4.5.16 BANGHIT

1. Subroutine Name:
BANGHIT

2. Purpose:
Analyze a IIbangll card (!) hit during a transfer to the symbiont batch queue, for a !FIN, !EOO,
!JOB.

3. Entry:

a. B BANGHIT

b. R7 = address of data line in data buffer.

c. Entered from TRANSFER

4. Exit:

a. Return to TRANSIO if IIBang l1 card was not special.

b. Transfer to EODCARD, FINCARD, JOBCARD depending on the type of card.

5. Operation:

a. Loop thru card, ignoring, blanks storing the first 4 characters in REG 15 (including the "BANG II
(!)).

b. Compare REG 15 with SPECBANG.

c. If equa I, transfer to appropriate routine (BANGBRUS)

d. Return to TRANSIO if not equal.

4.5. 17 EODCARD

1. Subroutine Name:
EODCARD

2. Purpose:
Set special control word in the symbiont buffer (SYMBBUFF) for an ! EOD card.

3. Entry:
Entered from BANGHIT

4. B TRANS2

5. Operation:

a. Set REG 12 = EODCONS

b. Return (B TRANS2)

4-21

4.5. 18 FINCARD

1, Subroutine Name:
FINCARD

2. Purpose II
Delete a I FIN from the input job file

3. Entry:
Entered from BANGHIT

4. Exit:
B TRANS1

5. Operation:

a. Inform user that the! FIN card is being ignored (TYPEMESS)

b. Return (B TRAN S 1)

4.5. 19 JOBCARD

1. Subroutine Name:
JOBCARD

2. Purpose:
Process the IJOB control card from the input job files

3. Entry:

a.

b.

4. Exit:

a.

b.

c.

Entered from BANGHIT

R 10 = line number (LINENO); R7 = address of job card in buffer.

Exit to NAMECOMP after getting accounts.

Exit to COMPALL if all fields of the job card have been exhausted.

Exit to NOJOBC if job card is not the first line number.

5. Operation:

a. Check if there is a IIJOB II currently waiting to be sent (JPR greater or equal to zero)

b. If not transfer to JOBCARDOj

1. Set EOBCONS (X'40') into SYMBBUFF

2. Send the current block (SYMBBUFF)

3. Delete all lines from the data area (DELLINE) which have been previous sent (M:JOB
I~SERT) to the batch job queue.

4. Re-initialize the line number (set it to 1); find the job card (FINDLINE).

c. Blank out USERACNT, USERNAME

d. Search IJOB card for the account, storing it into USERACNT.

4.5.20 NAMECOMP

1. Subroutine Name:
NAMECOMP

2. Purpose:
Obtain the name field from the I JOB card.

3. Entry:
entered from SEARCH, when a comma (,) is detected on -the IJOB card.

4-22

4. Exit:
Exits to PRIOR after storing the name field from the (JOB card.

5. Operation:

a. Search !JOB card for the name field.

b. Store it a byte at a time into USERNAME.

4.5.21 EXTACT

1. Subroutine Name:
EXTACT

2. Purpose:
Check extended accounting field on the (JOB card for extended accounting conformity.

3. Entry:
Entered from CHKLlM upon detection of a left parenthesis (().

4. Exit:

a. To JOBCER if the extended accounting format is in error.

b. To EXACER if illegal delimiters exist within the extended accounting record.

5. Operation:

a. Check to see if the routine has been re-entered (EXTFLG greater than zero).

b. Search down 1 JOB card until a right parenthesis is encountered (».

4.5.22 PRIOR

1. Subroutine Name:
PRIOR

2. Purpose:
Obtain the priority field from the! JOB card.

3. Entry:

a.

b.

4. Exit:

a.

b.

c.

Entered from NAMECOMP upon detection of a comma (,).

Entered from EXTACT upon detection of a right parenthesis ()).

Exit to PRIOER if priority field is not a hexadecimal number.

Exit to JOBCER if the priority field is not followed by a space or a comma.

Exit to COMPALL if priority field is legitimate.

5. Operation:

a. Get priority from Job card (SERCH).

b. Check if legal hexadecimal character.

4.5.23 COMPALL

1. Subroutine Name:
COMPALL

2. Purpose:
Compare fields from ! JOB card to authorization from AJIT.

3. Entry:

a. Entered when all fields of the IJOB card have been processed.

b. Entered from PRIOR, CH KLIM.

4-23

4. Exit:

a.

b.

ACCTER if account numbers is error.

NAMER if name field in error.

c. PRIOER if priority is greater than MAXPRI.

5. Operation:

a. Compare USERACNT (from lJOB card) to lOGACNT (log-in account).

b. Compare USERNAME (from 1 JOB card) to lOGNAME (log-in name).

c. Compare JPR (priority from 1 JOB card) to MAXPRI.

d. Return to TRANSIO.

4.5.24 SERCH

1. Subroutine Name:
SERCH

2. Purpose:
Get bytes of fields from lJOB card.

3. Entry:

a. BAl,R15 SERCH

b. R7 = address of !JOB card in data area; R3 = byte.. displacement on '!JOB 'card;
REG 0 = character.

c. Entered from JOBCARD, NAMECOMP, EXTACT, PRIOR, SERDOWN.

4. Exit:

a. B *R9 if serched more than 80 character.

b. B *R 15 normal return.

5. Operation:

a. Obtain byte from !JOB card.

b. Check for greater than 80 characters processed.

c. Compare desired character REG 0 with that from card REG 1.

d. Return

4.5.25 CHKLIM

1. Subroutine Name:
CHKlIM

2. Purpose:
Check for any delimiters hit on !JOB card.

3. Entry:

a. BAl,R14 CHKLIM

b. Rl1 = address of desired subroutine of a comma (,) is found; R 1 == character to be checked.

c. Entered from JOBCARD, NAMECOMP, SERDOWN.

4. Exit:

a. Exits to SERDOWN if a blank is detected.

b. Exits to COMPAll if a period is detected.

4-24

5. Operation:

a. Compare current character REG 1 to various delimiters.

b. Branch to appropriate routine if it compares; otherwise.

c. Return B *R 14.

4.5.26 SERDOWN

1. Subroutine Name:
SERDOWN

2. Purpose:
Rundown !JOB card, looking for a comma (,).

3. Entry:

B SERDOWN

4. Exit:

a. Branch to JOBCER if comma can It be found.

b. BAL,R14 CHKLIM

5. Operation:

a. Set character to be searched for to a blank REG = XI40 I).

b. Serch card for it.

c. Check limiter on card at first non-blank character.

4.5.27 GETINP

1. Subroutine Name:
GETINP

2. Purpose:
Input decimal characters and convertthem to a hexadecimal number.

3. Entry:

a. BAL, R 15 GETINP

b. Entered from APPEND, TYPE, REPLACE, SWAP, DELETEE

4. Exit:

a. Transfers to EDITl if input error.

b. B *R15 Normalexiti R10=number.

5. Operation:

a. Issue a read request (CAL3,O) from the users console.

b. Convert number to hexadecimal.

c. Pack number into REG 11.

d. Loop till carriage return or comma.

e. Load REG 10 from REG 1l.

f. Return *R 15 with

1. Condition codes set to zero if no numbers were obtained.

2. Condition codes set to one if one number was obtained.

4-25

3. Condition codes set to two if more than o'ne number was obtained.

4.5.28 TYPELINE

1. Subroutine Name:
TYPELINE

2. Purpose:
Type a line of the job file on the users console.

3. Entry:

a. BAL, R 15 TYPELINE

b. R 1 0 = desired Ii ne number.

c. Entered from TYPE, JOBCER

4. Exit:

a. Transfers to EDIT1 if the line does not exist.

b. B *R13 (REG 15 issav~d by the routine in REG 13).

5. Operation:

a. Find the requested line (FINDLINE)

b. Type a character at a time, of the record (CAL3, 1).

c. Loop until 80 characters typed.

4.5.29 DELLINE

1. Subroutine Name:
DELLINE

2. Purpose:
Delete records of the job file from the data area.

3. Entry:

a. BAL,R13 DELLINE

b. R 1 0 = starting line number; R 11 = number of records to delete.

c. Entered from REPLACE, DELETEE, JOBCARD.

4. Exit:

a. Transfers to EDIT1 if line number can I t be found (REG 10).

b. B *R 13 normal exit.

5. Operation:

a. Find the line to be deleted (FINDLINE)

b. Zap the line number.

c. Loop until the specified count (REG 11) has been deleted or until past the last line number
(LINEN 0).

d. Down date remaining line numbers.

e. Return (B *R 13).

4-26

4.5.30 TRANSLST

1. Subroutine Name:
TRANSLST

2. Purpose:
Close out the job file, send it to the symbiont batch queue and inform user of his job ID.

3. Entry:

a. BAL,R13 TRANSLST

b. Entered from TRANDONE, JOBCARD

4. Exit:

B *R13

5. Operation:

a. Set last flag (EODCONS) into SYMBBUFF.

b. Send last block (M:JOB insert, with priority field on) •

c. Tell user job was inserted (TYPEMESS).

d. Tell user this ID (HEXEBC).

e. Return (B *R13).

4.5.31 FINDEDIT

1. Subroutine Name:
FIND EDIT

2. Purpose:
Branch to appropriate edit option, spec ified by the user.

3. Entry:

a. BAL, R15 FINDEDIT

b. RO = users specified edit command.

c. Entered from EDITO.

4. Exit:

a. B *R 15 if not found.

b. Branch to desired option.

5. Operation:

a. Obtain legal edit commands (EDITCM)

b. Compare legal to desired.

c. Loop on the number of edit commands allowed (NOEDITCM)

d. Branch to option if found.

e. B *R 15 if not found.

4.5.32 ABNDEL

1. Subroutine Name:
ABNDEL

2. Purpose:
Handle any abnormal returns from an M:JOB delete request.

4-27

3. Entry:

a. Entered by an abnormal from M:JOB delete request.

b. R 10 = abnormal code; R8 = address of the M:JOB CAL + 1.·

4. Exit:

Return to DELETE for another ID request.

5. Operation:

a. Obtain abnormal code from REG 10 (Byte 1 of ~EG 10).

b. Type to the user (TVPEMESS) an error message corresponding to one of the following abnormal
codes. .

1. Abnormal code= X'39' - ID nonexistent.

2. Abnormal code = X'3A' - too late.

3. Abnormal code = X'3C ' - user not authorized to delete job.

4. Abnormal code = X'3D' - nonsymbiont system

c. Return to DELETE to issue another ID request.

4.5.33 NONO; COMMOUT

1. Subroutine Names:
NONO; COMMOUT

2. Purpose:
Abort the user with an appropriate message.

3. Entry:·

a. B NONO; B COMMOUT

b. R 14 = address of message.

c. Entered from BEGIN, NOROOM, NOINPT, ABNSI, ABNINS.

4. Exit:
To the time-sharing executive.

5. Operation:

a. Type message (in REG 14) to the user (TYPEMESS).

b. Abort the user (CAL3, 6)~.

4.5.34 NOROOM

1. Subroutine Name:
NOROOM

2. Purpose:
Abort the user when h is data buffer is exhausted.

3. Entry:

a. B NOROOM

b. Entered from PUTLINE

4. Exit:
To COMMOUT

5. Operation:

a. Set REG 14 to message address (NOROOMS).

b. Transfer to COMMOUT

4-28

4.5.35 ABNINS

1. Subrouti ne Name:
ABNINS

2. Purpose:
Handle abnormal returns from a M:READ of the M:SI DCB.

3. Entry:

a. Entered by an abnormal form as M:READ request of the M:SI DCB.

b. R 1 0 = abnorma I code i R8= addr~ss of CAL= 1 •

4. Exit:

a. To INSERn if console input.

b. To EDIT if end of file.

c. To COMMOUT if not end of file.

5. Operation:

a. Return to INSERTl if console input.

b. Obtain abnormal code from REG 10 (Byte 0).

c. If end of file (X '06 1
), transfer to EDIT.

d. Tell user he had an abnormal from M:SI (TVPEMESS).

e. Type abnormal code to him (HEXDEC).

f. Abort (COMMOUT).

4.5.36 NOINPT

1. Subroutine Name:
NOINPT

2. Purpose:
Abort user if no job fi Ie exists and he tries to send one.

3. Entry:

a. B NOINPT

b. Entered from EDITO, TRANSFER

4. Exit:
B COMMOUT

5. Operation:

a. Set into REG 14 the address of the message (NOINPTMS).

b. Transfer to COMMOUT •

4.5.37 NOJCBC

1. Subroutine Name:
NOJOBC

2. Purpose:
Inform user that his job file cannot be sent to the batch job queue because it does not contain a !JOB
card as the first record.

3. Entry:

a. B NOJOBC

4-29

b. Entered from TRANSFER, JOBCARD, TRANSlST.

4. Exit:
B EDITRTY

5. Operation:

a. Tell user (TYPEMESS) that the job card is messing; (NOJOBCMS).

b. Transfer to EDlTRTY

4.5.38 FINDER

1. Subroutine Name:
FINDER

2. Purpose:
Inform the user that the desired line number cannot be found.

3. Entry:

a. BAL,R15 FINDER

b. B *R13 (REG 13 is loaded from REG 15 upon entry).

4. Operation:

a. Save REG 15 into,REG 13.

b. Tell user (TYPEMESS) line could not be found (F1NDERMS).

c. Set condition codes to a line (line not found).

d. Return (B *R13)

4.5.39 ABNINS

1. Subroutine Name:
ABNINS

2. Purpose:
Handle any abnormal returns from an M:JOB insert cal.

3. Entry:

a.

b.

4. Exit:

a.

b.

Entered from an abnormal return caused by an M:JOB insert request.

R 10= abnormal code; R8 == address of CAL + 1.

To COMMOUT1 if the user does not want to retry the M:JOB insert.

To the MdOB cal to retry the insert.

5. Operation:

a. Save address of cal + 1 in REG 7 (REG 8,= address of cal+ 1).

b. If abnormal not because of symbiont full (X I3BI in byte 1 of REG 10), then 'abort user (COMMOUTl).

c. Ask user for retry (YESNO).

d. B-1, R7 if retry is desired; otherwise, abort him (COMMOUT1).

4-30

4.5.40 NAMER; JOBCERR

1. Subroutine Name:
NAMER; JOBCERR

2. Purpose:
Inform the user his name field on the job card was not correct.

3. Entry:

a. B NAMER; B JOBCERR

b. Entered from COMPALL, ACCTER, EXACER, PRIOER, JOBCER.

4. Exit:
Transfers to EDITRTY

5. Operation:

a. Type error message (TYPEMESS).

b. Zap priority (JPR= -1).

c. Transfer to EDITRTY

4.5.41 ACCTER; EXACER; PRIOER

1. Subroutine Names:
ACCTER, EXACER, PRIOER

2. Purpose:
Inform the user his job card in in error.

3. Entry:

a. B ACCTERj B EXACER; B PRIOER.

b. Entered from JOBCARD, COMPALL, SERCH, EXTACT, PRIOR

4. Exit:
B JOBCERR

5. Operation:

a. Set proper error message into REG 14.

b. Transfer to JOBCERR.

4.5.42 JOBCER

1. Subroutine Name:
JOBCER

2. Purpose:
Inform the user of an error on his job card.

3. Entry:

a. B JOBCER

b. Entered from EXTACT, PRIOR, CHKLIM, SERDOWN.

4. Exit:
B JOBCERR

5. Operat ion:

a. Type the line number of the !JOB card.

b. Type the !JOB card. (TYPELINE).

c. Type a "$" under the error on the ! JOB card

d. Transfer to JOBCERR

4-31

4.5.43 INYL

1. Subroutine Name:
INVL

2. Purpose:
Inform user that he typed in an invalid 10.

3. Entry:

a. BAL,R 15 INYL

b. Entered from INEBCHEX

4. Exit:
B *R13 (REG 13 is loaded from REG 15 upon entry).

5. Operation:

a. Run down input looking for a carriage return (RUNDOWN).

b. Type message (TYPEMESS) to user (INYLMS).

c. B *R13

4-32

5.0 SUPER PROCESSOR/SUBSYSTEM

5. 1 FUNCTIONAL OVERVIEW.

5. 1. 1 Purpose.

SUPER (Supervisor Control) is a BPM processor or a BTM subsystem that provides the ability to create, to update,

to list, and to summarize the authorization file, :USERLG, which is used by the operating system to control and

to record user activity. In order to access the authorization file, SUPER must be run under the :SYS account.

5. 1.2 Input.

The following control records and associated specification records constitute input. Control records designate the

function desired. Specification records for the control record follow certain control records to give detailed

information. Input records contain data beginning in the first record position.

1. USERS. USERS authorizes users for various Monitor services by indicating how records in the autho
rization file are to be created or updated.

a. The control record indicates the Monitor services for which the user(s} are to be authorized. The
record has the format:

U[SERS][, BCH][, BTM][, FGD][, RBT]

where:

BCH specifies batch-job.

BTM specifies time-sharing.

FGD specifies real-time job.

RBT specifies remote-batch-job.

b. The specification record gives detai Is on the users to be authorized. The record has the format:

account, name [(extended accounting), password, batch priority, RAD granules, disk granules]

where:

account specifies the user account number, a maximum of 8 alphanumeric characters.

name specifies the user name, a maximum of 12 alphanumeric characters.

extended accounting specifies installation-specific accounting information, a maximum of
24 characters (excluding the parentheses). The default is no extended accounting, blanks.

password specifies the user password, a maximum of 8 characters. The default is no pass-
word, blanks.

batch priority specifies in hexadecimal the maximum job priority allowed the user, O-F.
The default is 1.

RAD

DISK } granules specifies in decimal the maximum amount of secondary storage allowed
the user. The maximum is 65,535.. The default is 00

c. On the specification record, if any of the optional fields are blank and no record for the user
exists in the authorization file, blank fields are set to default values. If any of the optional
fields are blank, but a record for the user already exists in the authorization file, blank fields
remain the same as on the previous record.

2. KILL. KILL cancels user authorization for Monitor services by designating a record to be deleted from
the authorization .file.

a. The control record has the format:

K [ILL]

5-1

b. The specification record has the format:

account, name

3. LIST. LIST lists authorized users by reading the authorization file and printing information from the file.

a. The control record has the format:

L[IST][, account]

b. If an account is specified, all users authorized for the account are listed. If no account is specified,
all users authorized for the system are listed.

4. STATS. STATS summarizes user statistics by reading the authorization file and processing data from the
file.

a. The control record has the format:

S [TATS]

b. The optional specification record has the format:

account [, name]

c. If the specification record contains an account and a name, statistics for that user are summarized.
If the specification record contains an account only, statistics for all users in the account are
summarized. If the specification record is omitted, statistics for all users in the system are
summarized.

5. DELSTATS. DELSTATS deletes (resets) user statistir;s by designating records to be updated in the
authorization file. All statistics are reset to zero, except amount of secondary storage used.

a. The control record has the format:

D [ELSTATS]

b. The optional specification record has the format:

account [, name]

c. If the specification record contains an account and a name, statistics for that user are reset. If the
specification record contains an account only, statistics for all users in the account are reset. If
the specification record is omitted, statistics for all users in the system are reset.

6. PASSWORDS. PASSWORDS lists passwords of user files. If printable, passwords are listed in EBCDIC.
If non-printable, passwords are listed in hexadecimal. If no password exists, "***NONE***" is
printed.

a. The control record has the format:

P [ASSWORDS] , account

b. Passwords for all fi les in the account are listed.

5. 1. 3 Batch Operation.

1. Job Account. The account on the job card must be :SYS.

2. DeBs. The M:SI DCB is used to read user input and the M:LO DCB is used to produce listing output.

3. Control Commands. A ISUPER control command is followed by control records with specification
records. A IEOD record is required between each set of a control record and the specification records,
if any, for the control record.

4. Input Syntax Error. A dollar sign ($) is printed beneath the erroneous field and the error message -
"SYNTAX ERROR, RECORD IGNORED "- is printed.

5. 1.4 On-Line Operation.

The characters typed by SUPER are shown in upper-case for alphabetic characters and underlined.

1. Log-on Account. The user must log-on under the :SYS account.

2. Input Assignment. SUPER reads input from a file or from the terminal. SUPER types:

5-2

a. For file input, enter the ID in the format:

File name [(account [, password])]

b. For terminal input, respond with a carriage return (CR).

3. Options. SUPER types:

ENTER OPTION:

a. After the prompt :, respond with one of the control records or an "X" to exit to the executive.

b. After a control record has been entered, SUPER prompts with the character> for each specification
record for the control record. After the prompt >, enter a specification record if desired. To
indicate the last specification record for the control record and to prepare to enter the next control
record, respond with a carriage return, a line feed (LF), or an "X".

4. Input Syntax Error. SUPER types the format of the record required.

5. 1. 5 Error Messages.

1. • •• ILLEGAL OPTION, OPTIONS ARE: In processing a control or specification record in on-line mode,
an invalid option has been found.

2. • •• SYNTAX ERROR, FORMAT IS: In processing a control or specification record in on-line mode, a
syntax error has been found.

3. **WARNING** ABOVE USER NOT FOUND. In processing the KILL or DELSTATS option, no
authorization-file record for the specified user exists.

4. ABNORMAL I/O ON OPEN NEXT. In processing the PASSWORDS option, the open of the next user
file failed.

5. ABORT: :USERLG FILE DOESN1T EXIST. In processing the USER, KILL, LIST, STATS, or DELSTATS
option, the authorization file does not exist.

6. ABORT: ABNORMAL I/O ON :USERLG DELREC. In processing the KILL option, a delete to the
authorization file failed.

7. ABORT: t 1NORMAL I/O ON :USERLG WRITE. In processing the USERS option, a write to the
authorization file failed.

8. ABORT: ABNORMAL I/O ON LOG READ DIRECT. In processing the USERS, STATS, or DELSTATS
option, a read to the authorization file failed.

9. ABORT: ABNORMAL I/O ON LOG REWRITE SEQUEN. In processing the DELSTATS option, a write
to the authorization file failed.

10. ABORT: ABNORMAL I/O ON READ LOG SEQUEN. In processing the LIST, STATS, or DELSTATS
option, a read to the authorization file failed.

11. ABORT: CAN1T OPEN :USERLG. In processing the USERS, KILL, LIST, STATS, or DELSTATS option,
the authorization file cannot be opened.

12. ABORT: READ M:SI ERROR. In processing an option, the open or a read of the M:SI DCB failed.

13. ABOVE USER NOT VALIDATED. In processing the STATS option, no authorization-file record for
the specified user exists.

14. BAD FlO, TRY AGAIN. In on-line mode, a bad file identification has been entered for the input
assignment. .

15. CANNOT ACCESS :USERLG FILE. The job account in batch mode or the log-on account in on-line
mode is not :SYS so SUPER cannot access the authorization file.

16. SYNTAX ERROR, RECORD IGNORED. A control or specification record contains an error in the field
above the dollar sign.

5-3

5.2 INTERFACES.

5.20 1 Operating System.

In batch mode, when processing the PASSWORDS option, SUPER uses the M:SYS call to run in master mode in order

to store into the DCB used to access the user files. In on-I ine mode, SUPER stores directl}' into an unprotected

dummy DCB, not the actual DCB used by the BTM executive.

5.2.2 CCI.

After SUPER creates the authorization file, :USERLG, CCI places job usage times into the file.

5.3 OPERA nONAL OVERVIEW.

5.3. 1 Description.

Begin processing in the START module. If on-line SUPER is not running under the :SYS account, branch to the

Normal-Exit module to terminate the job step. Otherwise, open the M:SI DCB through which control and spec

ification records are to be read and, in batch mode, read the ISUPER record o If the open or the read fails,

branch to the Abnormal-Exit module to process abnormal termination of the job step. Begin the main processing

loop in the Control-Record module. Read the control record. If the read fails, branch to the Abnormal-Exit

module. Otherwise, determine which module should process the record and branch to that module. Process the

option in the USERS, the KILL, the LIST, the STATS, the DELSTATS, the PASSWORDS, or the Input-Syntax

Error module and branch back to the Control""Record module. When processing the option, if I/O operations

fail when accessing the control or specification records or the authorization file, branch to the Abnormal-Exit

module. When an exit condition is found in the Control-Record module, branch to the Normal-Exit module.

5.3.2 DCBs.

1. M:SI. Control and Specification Input Records.

2. M:LO. Listing Output.

3. M:DO. Authorization File, :USERLG.

4. M:EI. User Files.

5.3.3 Flowchart.

See Figure 5-1.

5.4 MODULE ANALYSIS.

5.4. 1 START.

1. Module Name - START.

2. Purpose. Perform processing preceding the main processing loop. Open the M:SI DCB through
which control and specification records are to be read and, in batch mode, read the ISUPER record.

3. Entry.

a. START is the only entry point for the SUPER processo~/subsystem. Whenever SUPER is invoked, the
processor/subsystem is loaded into core and control is transferred to START.

5-4

START

no

Input-Syntax
Error

NORMAL
EXIT

EXIT)

USERS

KILL

LIST

STATS

DELSTATS

PASSWORDS

figure 5-1. Operational Overview of SUPER

5-5

no

Abnormal
Exit

b. In batch mode, the ISUPER record must be input.

4. Exit.

a. The norma exit is to the Control-Record module, RDCC ..

(1) The exit is taken after initial processing is completed.

(2) The ABORT indicator is initialized off (zero).

b. The exit if on-line SUPER is not running under the :SYS account is to the Normal-Exit module, EXIT ..
The error message printed is: "CANNOT ACCESS :USERLG FILE ...

c. The exit if the open or a read of the M:SI DCB fails is to the Abnormal-Exit module, ABORTl. The
error message printed is: "ABORT: READ M:SI ERROR. II

5. Operation.

a. Do initial form alignment for output listing (PAGE subroutine) ..

b. Do on-line processing. Change DCBs for running on-l ine.. If the log-on account is not :SYS, print
an error message (PRNT subroutine) and branch to the Normal=Exit module, EXIT. Otherwise, request
the assignment for input (PRNT subroutine). Read the response and assign the M:SI DCB to a file or to
the user terminal. If a bad file identification is specified, print an error message (PRNT subroutine)
and go to step a. If input is assigned to a file, open the M:SI DCB and branch to the Control-Record
module, RDCC. If assigned to the user terminal, go to step c.

c. Open the M:SI DCB and, in batch mode, read the ISUPER record.

d. If opening the M:SI DCB returns an error code or if reading the M:SI DCB returns an abnormal or error
code, print an error message (PRNT subroutine) and branch to the Abnormal-Exit module, ABORTl.

5.4.2 Control-Record.

1. Module Name - RDCC.

2. Purpose. Read the next control record to be processed and determine which module will process the
record.

3. Entry ..

a. Control-Record is entered from START, USERS, KILL, LIST, S TAT S, DELSTATS, PASSWORDS, or
Input-Syntax-Error.

b. Control-Record has input.

(1) Control records are read.

(2) The ABORT indicator is checked.

4. Exit.

a. The normal exit is to the module that processes the control record: USERS, KILL, LIST, STATS,
DE LSTATS, PASSWORDS, or Input-Syntax-Error.

(1) ihe exit is taken after the option has been found in a jump table.

(2) A control record has been read and, in on-line mode, the prompt character has been set to a
caret (».

b. The exit if all control records have been processed or if the ABORT indicator has been set is to the
Normal-Exit module, EXIT.

c. The exit if a read of a control record fails is to the Abnormal-Exit module, ABORTl. The error
message printed is: "ABORT: READ M:SI ERROR. II

5. Operation.

a. Branch to the Normal-Exit module, EXIT, if the ABORT indicator is set (non-zero). Otherwise, in
on-line mode, request the option (PRNT subroutine) and set the prompt character to a colon (:) ..

b. Read a control record. If an EOD is read, read another record. When the end-of-file is reached,
branch to the Normal-Exit module, EXIT. For any other read failure, print an error message
(PRNT subroutine) and branch to the Abnormal-Exit module, ABORTl.

5-6

c. Analyze the option. Obtain the first EBCDIC field from the control record (GEBFlO subroutine).
If a field cannot be found, branch to the Input-Syntax-Error module, l6. Otherwise, use a jump
table to determine which module processes the control record and branch to that module: USERS,
KilL, LIST, STATS, DElSTATS, PASSWORDS, or to Input-Syntax Error, l6. In on-line mode, first
set the prompt character to a caret (».

5.4.3 USERS.

1. Module Name - USERSo

2. Purpose. Process USERS option to authorize users for various Monitor services by creating and/or updating
records in the authorization fileo

3. Entry.

a. USERS is entered from Control-Record.

b. USERS has input.

4. Exit.

(1) Specification records are read. In on-line mode, the prompt character has been set to a
caret (».

(2) The authorization file, :USERlG, is accessed.

a. The normal exit is to the Control-Record module, ROCC.

(1) The exit is taken after all specification records for the USERS option have been processed.

(2) The authorization file, :USERlG, has been created or updated according to the options on the
control and specification records.

(3) If a specification record contains a syntax error, the error message printed is: "SYNTAX
ERROR, RECORD IGNOREDo II

b. In batch mode or in on-line mode with file input, if the USERS control record contains an invalid
Monitor=-service option, the exit is to the Input-Syntax-Error module, l7. A dollar sign ($) is
printed under the erroneous field.

c. In on-line mode with terminal input, if the USERS control record contains an invalid Monitor-service
option, the exit is to the Control-Record module, RDCC. A dollar sign is printed under the invalid
field and the correct form of the USERS control record is printed.

d. The exit if a read of the M:SI DCB fails is to the Abnormal-Exit module, ABORTl. The error message
printed is: "ABORT: READ M:SI ERROR. II

e. The exit if the open of the authorization file fails is to the Abnormal-Exit module, ABORTl. For
an abnormal return, the error message printed is: "ABORT: :USERlG FILE DOESN'T EXIST." For
an error return, the error message printed is: "ABORT: CAN'T OPEN :USERlG. II

fo The exit if any other access of the authorization file fails is to the Control-Record module, RDCC.

(1) The exit is taken if a write fails. The error message printed is: "ABORT: ABNORMAL I/O
ON :USERlG WRITE. JJ

(2) The exit is taken if a read fails. The error message printed is: "ABORT: ABNORMAL I/O
ON LOG READ DIRECT. JJ

(3) The ABORT indicator is set.

5. Operation.

ao Analyze the Monitor-service option. From the USERS control record, obtain the next EBCDIC field
(GEBFLD subroutine). Set a flag for the Monitor service specified (UCHKFlD subroutine). If the
Monitor..aservice option is invalid, do error processing using the PRTERR and the HELP subroutines
and, if in batch mode in on-line mode with file input, branch to the Input-Syntax-Error module,
L7, or, if in on-line mode with terminal input, branch to the Control-Record module, RDCC.

b. Open the authorization file in update mode if the file exists or in out mode if the file does not exist.
If the open fails, print an error message (PRNT subroutine) and branch to the Abnormal-Exit module,
ABORT1.

5-7

c. Set the Monitor-service flags for the authorization-file record.

d. Read a specification record. When an EOD or an EOF is read, go to step g. For any other read
failure, print an error message (PRNT subroutine) and branch to the Abnormal-Exit module, ABORTl.

e. Format on authorization-file record according to the options on the control and specification record
(INITLOG, GEBFLD, GHFLD, GDFLD subroutines). If a specification-record option is invalid, do
error processing using the PRTERR and the HELP subroutines and go to step c.

f. Write the authorization-file record created (WRLOG subroutine) and go to step c. For any write
failure other than the record-already-exists abnormal condition, print an error message (PRNT
subroutine), set the ABORT indicator, and go to step g. If the record already exists, read and re
write the record using the RDLOG and the REWRLOG subroutines and go to step co If the read
fails, print an error message (PRNT subroutine) and set the ABORT indicator.

g. Close the authorization file with SAVE specified and branch to the Control-Record module, RDCC.

6. Flowchart •

See Figure 5-2.

5.4.4 KILL.

1. Module Name - KILL.

2. Purpose. Process KILL option to cancel user authorization for Monitor services by deleting records from
the authorization file.

3. Entry.

a. KILL is entered from Control-Record.

b. KILL has input.

4. Exit.

(1) Specification records are read. In on=oline mode, the prompt character has been set to a
caret (».

(2) The authorization file, :USERLG, is accessed.

a. The normal exit is to the Control-Record module, ROCC.

(1) The exit is taken after all specification records for the KILL option have been processed.

(2) The authorization file, :USERLG, has been updated according to the options on the specifi
cation records.

(3) Error messages may have been printed.

(a) In batch mode, if a specification record contains a syntax error, the message printed is:
"SYNTAX ERROR, RECORD IGNORED. II

I

(b) If no authorization-file record for a specified user exists, the message printed is:
"**WARNING** ABOVE USER NOT FOUND II

•

b. The exit· if a read of the M:SI DCB fails is to the Abnormal-Exit rnodule# ABORTl. The error mes
sage printed is: "ABORT: READ M:SI ERROR".

c. The exit if the open of the authorization file fails is to the Abnormal-Exit module, ABORTl. For an
abnormal return, the error message printed is: "ABORT: :USERLG FILE DOESN'T EXISfI'• For an
error return, the error message printed is: "ABORT: CAN'T'OPEN :USERLG".

d. The exit if a delete to the authorization file fails is to the Control-Record module, RDCC.

(1) The exit is taken immediately after attempting the operation.

(2) Error processing has been done.

(a) The ABORT indicator is set.

(b) The error message printed is: "ABORT: ABNORMAL I/O ON :USERLG DELREC".

5-8

Analyze Monit -
service option
from control

Set Monitor-se
flags for authori

1'----4zation-file record.

Format authori
zati on-fi Ie

Do error
process i ng.

Print error
message.

Print error
message.

process i ng.

Print error
Message.

error
message.

Figure 5-2. Flow Chart for USERS

5-9

5. Operation.

a. Open the authorization file in update mode. If the open fails, print an error message (PRNT sub
routine) and branch to the Abnormal-Exit module, -ABORTl.

b. Read a specification record. When an EOD or an EOF is read, go to step e. For any other read
failure, print an error message (PRNT subroutine) and branch to the Abnormal-Exit module, ABORTl.

c. Format a key to access the authorization file using the account and the name options from the
specification record (GACNTN subroutine). If an option is invalid, do error processing using the
PRTERR and the HELP subroutines and go to step b. In batch mode, first print an error message (PRNT
subroutine).

d. Delete the specified record from the authorization file. If the record cannot be found, print an error
message (PRNT subroutine) and go to step b. For any other delete failure, print an error message
(PRNT subroutine) and set the ABORT indicator.

e. Close the authorization file with SAVE specified and branch to th~ Control-Recdrd module, RDCC.

5.4.5 UST.

1. Module Name - LIST.

2. Purpose. Process LIST option to list authorized users by reading the authorization file and printing in
formation from the file.

3. Entry.

a. LIST is entered from Control-Record.

b. LIST has input.

4. Exit.

(1) The LIST control record must have been read. In on-I ine mode, the prompt character has been
set to a caret (».

(2) The authorization file, :USERLG, is accessed.

a. The normal exit is to the Control-Record module, ROCC.

(1) The exit is taken after the LIST control record has been processed.

(2) A listing of authorized users is produced.

b. The exit if the LIST control record contains an invalid account option is to the Control-Record
module, RDCC. The error message printed is: IISYNTAX ERROR, RECORD IGNORED II•

c. The exit if an access of the authorization file fails is to the Abnormal-Exit module, ABORTl.

(1) The exit is taken if the open fails. For an abnormal return, the error message printed is:
IIABORT: :USERLG FILE DOESN'T EXIST". For an error return, the error message printed is:
IIABORT: CAN I T OPEN :USERLG".

(2) The exit is taken if a read fails. The error message printed is: IIABORT: ABNORMAL I/O
ON READ LOG SEQUEN '1 •

5. Operation.

a. Obtain the account option from the LIST control record (GEBFLD subroutine). If the option is in
valid, do error processing using the PRTERR and the HELP subroutines and go to step f. In batch
mode, first print an error message (PRNT subroutine).

b. Print a heading for the listing of authorized users, using the PAGE and the PRNT subroutines.

c. Process the account option if specified. Open the authorization file with direct access. Read a
record for the account (RDLOGACNT subroutine) and print the user data (PRTLIST subroutine).
Continue reading and printing until all records for the account have been processed. Go to step f.

d. Process the file option if no account is specified. Open the authorization file with sequential
access. Read a record (RDLOGS subroutine) and print the user data (PRTLIST subroutine). Continue
reading and printing until the end-of-file is reached. Go to step f.

5-10

e. If the open of the authorization file fails or if a read to the file fails for other than the end-of-file
condition described in step d, print an error message (PRNT subroutine) and branch to the Abnormal
Exit module, ABORTl.

f. Close the authorization file with SAVE specified and branch to the Control-Record module, RDCC.

6. Flowchart.

See Figure 5-3.

5.4.6 STATS.

1. Module Name - STATS.

2. Purpose. Process STATS option to summarize user statistics by reading the authorization file and printing
data based on the fi Ie.

3. Entry.

a. STATS is entered from Control Record.

b. STATS has input.

4. Exit.

(1) Specification records may be read. In on-line mode, the prompt character has been set to a
caret (».

(2) The authorization file, :USERLG, is accessed.

a. The normal exit is to the Control-Record module, RDCC.

(1) The exit is taken after any specification records have been processed.

(2) Listing output has been produced.

(a) A summary of user statistics is produced.

(b) In batch mode, if a specification record contained a syntax error, the error message
printed is: "SYNTAX ERROR, RECORD IGNORED. IJ

(c) If no authorization-file record for a specified user existed, the error message printed is:
"ABOVE USER NOT VALIDATED. II

b. The e':it if a read of the M:SI DCB fails is to the Abnormal-Exit module, ABORTl. The error
message printed is: IJABORT: READ M:SI ERROR. "

c. The exit if an access of the authorization file fails is to the Abnormal-Exit module, ABORTl.

(1) The exit is taken if the open fails. For an abnormal return, the error message printed is:
"ABORT: :USERLG FILE DOESN'T EXIST. II For an error return, the error message printed is:
IJABORT: CAN'T OPEN :USERLG."

(2) The exit is taken if a read fails. If processing the account option, the error message printed
is: "ABORT: ABNORMAL I/O ON LOG READ DIRECT .. " If processing the file option, the
error message printed is: "ABORT: ABNORMAL I/O ON READ LOG SEQUEN. II

5. Operation.

a. Print a heading for the summary of user statistics, using the PAGE and PRNT subroutines.

b. Read a specification record. If no specification record exists, go to step i.

c. Format a key to access the authorization file using the account and the name options from the spec
ification record (GACNTN subroutine).. If an option is invalid, do error proce$sing using the
PRTERR and the HELP subroutines and go to step g. In batch mode, first print an error message
(PRNT subroutine).

d. Process the user option if specified. Open the authorization file with direct access. Read the
record for the specified user (RDLOG subroutine) and print the user statistics (PRTSTAT subroutine).
Go to step g.

5-11

Analyze accou
option on contr I
record.

es

Print heading
for listing of
authori zed use •

Print user data
from authorizati -
fi I e record.

Do error
processing.

Print
~---a.I error

Print user data
from authorizati n
fi Ie record.

message.

mt error

Figure 5-3. Flow Chart for LIST

5-12

es
Print error
message

Print error
message.

C

e. Process the account option if specified. Read an authorization-file record for the specified account
(RDLOGACNT subroutine) and print the user statistics (PRTSTAT subroutine). Continue reading and
printing until all records for the account have been processed. Go to step g.

f. When an option is specified, if a read to the authorization file does not find the record specified or
if a read fails for any other reason, print an error message (PRNT subroutine)" If the read fails for
any reason except the non-existent record condition, branch to the Abnormal-Exit module, ABORTl.

g. Read the next specification record and go to step c. When and EOD or an EOF is read, go to step k.

h" If a read of a specification record fails, print an error message (PRNT subroutine) and branch to the
Abnormal-Exit module, ABORTl o

i. Process the file option. Open the authorization file with sequential access. Read a record (RDLOGS
subroutine) and print the user statistics (PRTSTAT subroutine). Continue reading and printing until
the end-of-file is reached. Go to step k. If a read fails for any other reason, print an error
message (PRNT subroutine) and branch to the Abnormal-Exit module, ABORTL

j. If the open of the authorization file fails, print an error message and branch to the Abnormal-Exit
module, ABORT1.

k. Close the authorization file with SAVE specified and branch to the Control-Record module, RDCC.

6. Flowchart.

See Figure 5-4.

5.4.7 DELSTATS.

1. Module Name - DELET.

2. Purpose. Process DELSTATS option to delete (reset) user statistics by updating records in the authorization
file.

3. Entry.

a. DELSTATS is entered from Control-Record.

b. DELSTATS has input.

4. Exit.

(1) Specification records may be read. In on-line mode, the prompt character has been set to a
caret (».

(2) The authorization file, :USERLG, is accessed.

a. The normal exit is to the Control-Record module, RDCC.

(1) The exit is taken after any specification records have been processed.

(2) The authorization file, :USERLG, has been updated according to the options on the specifi
cation records.

(3) Error messages may have been pri nted.

(a) In batch mode, if a specification record contained a syntax error, the message printed
is: "SYNTAX ERROR, RECORD IGNORED. II

(b) If no authorization-file record for a specified user existed, the message printed is:
1t**WARNING** ABOVE USER NOT FOUND. II

b. The exit if a read of the M:SI DCB fails is to the Abnormal-Exit module, ABORTl. The error mes
sage printed is: IIABORT: READ M:SI ERROR. II

c. The exit if an access of the authorization fi Ie fails is to the Abnormal-Exit module, ABORTl.

(1)

(2)

The exit is taken if the open fails. For an abnormal return, the error message printed is:
"ABORT: :USERLG FILE DOESN'T EXIST. II For an error return, the error message printed is:
"ABORT: CAN'T OPEN :USERLG. It

The exit is taken if a read fails. If processing the user or the account option, the error mes
sage printed Is: JlABORT: ABNORMAL I/O ON LOG READ DIRECT." If processing the file
option, the error message printed is: "ABORT: ABNORMAL I/O ON READ LOG SEQUEN. II

5-13

Print heading
for summary of
user statisti cs.

;----#o.::.. __ ---J.J

Print user statis cs
from authorizati
fi Ie record.

Print error
message.

Print error
message.

Format key to
aCcess authori

Do error
.>-------IW processing.

rint user statisti s
rom authorizati
ile record.

Figure 5-4. Flow Chart for STATS

5-14

Print error
message.

Print error
message.

Print error
message.

(3) The exit is taken if a write fails. The error message printed is: JlABORT: ABNORMAL I/O
ON LOG REWRITE SEQUEN."

5. Operation.

a. Read a specification record. If a specification record exists, go to step c.

b. Process the file optiono Open the authorization file with sequential access. Read a record (RDLOGS
subroutine), reset user statistics in the record (RESETLOG subroutine), and write the updated record
(REWRLOGS subroutine}o Continue reading and updating until the end-of-file is reached. Go to
step jo If a read fails, print an error message (PRNT subroutine) and branch to the Abnormal-Exit
module, ABORTl o

c. Open the authorization file with direct accesso

d. Format a key to access the authorization file using the account and the name options from the spec
ification record (GACNTN subroutine). If an option is invalid, do error processing using the PRTERR
and the HELP subroutines and go to step h. In batch mode, first print an error message (PRNT sub
routine).

e. Process the user option if specified. Read the authorization-file record for the specified user (RDLOG
subroutine), reset user statistics in the record (RESETLOG subroutine), and write the updated record
(REWRLOG subroutine). Go to step h.

f. Process the account option if specified. Read an authorization-file record for the specified account
(RDLOGACNT subroutine), reset user statistics in the record (RESETLOG subroutine), and write the
updated record (REWRLOG subroutine). Continue reading and updating until all records for the
account have been processed. Go to step h.

g. When an option is specified, if a read to the authorization file does not find the record specified or
if a read fails for any other reason, print an error message (PRNT subroutine}o If the read fails for
any reason except the non-existent-record condition, branch to the Abnormal-Exit module, ABORT).

h. Read the next specification record and go to step do When an EOD or an EOFis read, go to step j.

i. If a read of a specification record fails, if the open of the authorization file fails, or if a write
to the authorization file fails, print an error message (PRNT subroutine) and branch to the Abnormal""
Exit module, ABORTl o

j. Close the authorization file with SAVE specified and branch to the Control-Record module, ROCCo

6. Flowchart •

See Figure 5-5.

5.4.8 PASSWORDS.

1. Module Name - PASSWORD.

2. Purpose. Process PASSWORDS option to list passwords of user files in a specified account.

3. Entry.

a o The PASSWORDS module is branched to from the Control-Record module.

bo The PASSWORDS module requires input.

4. Exit ..

(1) The PASSWORDS control record must have been read. In on-line mode, the prompt character
has been set to a caret (».

(2) The file directory for the specified account is accessed.

a.. The exit is to the Control-Record module, ROCCo

b.. A listing of passwords for files in the specified account is output unless an error occurred in process
ing the option.

c.. Error messages may have been printed.

(1) If the PASSWORDS control record contained an invalid account option, the error message
printed is: "SYNTAX ERROR, RECORD IGNOREDo .,

5-15

yes
Do error
processing.

Figure 5-5. Flow Chart for DELSTATS

5-16

message.

message.

Print error
message.

Print error
message.

C.

(2) If the open for the specified account, with next file option, fails, the error message printed
is: IIABNORMAL I/O ON OPEN NEXT."

5. Operation.

a. Find the file name entry in the M:EI DCB (FNDCOD subroutine) and zero the number of significant
entries in the file name parameter. In on-line mode, the file-name parameter may be stored into
directly since the DCB changed is an unprotected dummy DCB, not the actual DCB used by the BTM
executive. In batch mode, first issue the M:SYS call, save the run flags from the job information
table, and reset the run flags to Monitor before storing into the file name parameter. After the store,
load a program status doubleword to return to slave mode.

b. Obtain the next EBCDIC field from the control record (GEBFLD subroutine). If no valid field is
found, do error processing using the PRTERR and HELP subroutine and go to step f. In batch mode,
first print an error message (PRNT subroutine).

c. Do form al ignment on the output listing (PAGE subroutine).

d. Issue an open for the specified account, with the next-file option. If the end-of-fi les is en
countered, go to step t For any other failure, print an error message (PRNT subroutine) and go to
step f.

e.. Find the file name in the variable-length parameters of the M:EI DCB (FNDCOD subroutine), move
the name to the output line, find the file password (FNDCOD subroutine), move the description,
NONE or the password, in EBCDIC if printable or in hexadecimal if non-printable, to the

output line. Print the line (PRNTV subroutine). Close the M:EI DCB with SAVE specified and go
to step d.

f. Close the M:EO DCB with SAVE specified and branch to the Control-Record module. In batch
mode, first issue the M:SYS call, restore the run flags saved in step a, and load a program status
doubleword to return to slave mode.

5. 4. 9 IRput-SYr:ltax-Error

1. Module Name - L6 and L7.

2. Purpose. Process invalid control-record option.

3. Entry.

a.

b.

4 .. Exit.

a o

b.

c.

Input-Syntax-Error is entered from Control-Record at L6 and from USERS at L7.

An invalid control record must have been read.

The normal exit is to the Control-Record module, RDCC. In bat..:h mode, a set of a control record
and the specification records for the control record have been read.

The exit if no more control records exist is to the Normal-Exit module, EXIT.

A dollar sign ($) is printed under the erroneous field. In on-line mode, the correct form of the
required control command is printed. In batch mode, the error message printed is: "SYNTAX
ERROR, RECORD IGNORED. II .

5. Operation.

a. At entry point L6, print a dollar sIgn ($) under the erroneous field (PRTERR subroutine). Print the
record first if in on-line mode with file input.

b. In on-line mode, print the correct form of the required command (HELP subroutine) and branch to
the Control-Record module, RDCC.

c. At entry point L7 for batch mode, print an error message (PRNT subroutine), read records from M:SI
until an EOD is read, then branch to the Control-Record module, RDCC. If an EOF is read,
branch to the Normal-Exit module, EXIT. If a read fails, print an error message (PRNT subroutine)
and branch to the Abnormal-Exit modu I e, ABORTl.

5 .. 4 .. 10 Abnormal-Exit ..

1. Module Name - ABORTl.

5-17

2. Purpose. Process abnormal termination of job step.

3. Entry. Abnormal-Exit is entered from START, Control-Record,' USERS, KILL, LIST, STATS, and DELSTATS.

4. Exit. Abnormal-Exit errors the job after closing files to be saved.

5. Operation. Close, with SAVE specified, the M:LO DCB, the M:SI DCB, and the authorization file.
Error the job.

5.4. 11 Normal Exit.

1. Module Name - EXIT.

2. Purpose. Process normal termination of job step.

3. Entry. Normal-Exit is entered from START, Control-Record, and Input-Syntax-Error.

4. Exit. Normal-Exit terminates the job step after closing files to be sav~d.

5. Operation. Close, with SAVE specified, the M:LO DCB, the M:SI.DCB, and the authorization file. Issue
the M:EXIT call to terminate the job.

5.5 SUBROUTINE ANALYSIS.

Subroutines are in alphabetic order. Register 10 is the link register for all subroutines.

5. 5. 1 CVTDEC.

1. Subroutine Name - CVTDEC.

2. Calling Modules - LIST, STATS.

3. Purpose. Convert a binary value to EBCDIC decimal.

4. Entry.

a. Register 10 contains the return address.

b. Register 1 contains the binary value to be converted.

5. Exit.

a. CVTDEC returns to the calling routine after converting the value.

b. Registers 12 and 13 contain the EBCDIC decimal result.

6. Operation. Save registers 5-11. Convert the binary value in register 1 to EBCDIC decimal. Precede
the EBCDIC decimal result in registers 12 and 13 by a minus sign if negative. Restore registers 5-11
and branch to the return address in register 10.

5.5.2 CVTNSTOR.

1. Subroutine Name - CVTNSTOR.

2. Calling Module - STATS.

3. Purpose. Convert binary value to EBCDIC decimal and store result in proper format in specified output
buffer.

4. Entry.

a. Register 10 contains the return address.

b. Register 1 contains the binary value to be converted.

c. Register 7 contains the address of the output buffer.

d. Register 6 contains the number of bytes in the output field less one.

e. Register 8 contains the number of characters to the right of the decimal point. Zero indicates no
decimal point.

5-18

5. Exit.

a. CVTNSTOR returns to the calling routine after storing the result in the specified buffer.

b. The specified buffer contains an EBCDIC decimal value in the specified format.

6. Operation. Save all registers. Convert binary value to EBCDIC decimal (CVTDEC subroutine). Store
the result in the specified format in the specified buffer. Restore all registers and branch to the return
address in register 10.

5.5.3 DATER.

1. Subroutine Name - DATER.

2~ Calling Modules - USERS, DELSTATS.

3G Purpose. Obtain binary date G

4G Entry - Register 10 contains the return address.

5. ExitG

a. DATER returns to the call ing routine after calculating date.

b. Register 9 contains binary date.

6G Operation. Calculate binary date the first time the subroutine is entered. Save registers 4-7. Obtain
time. Save register 10. Save all registers. Convert time to binary by branching into GHFLD
subroutine. Restore all registers in GHFLD subroutine and return. Restore register 10. Restore registers
4-7. Load binary date into register 9. Store binary date in DBUF so date need not be recalculated.
Branch to return address in register lOG

5.5.4 FNDCOD.

1. Subroutine Name - FNDCOD.

2. Calling Module - PASSWORDS.

3. Purpose. Find a code in the variable-length parameter of a DCB.

4. Entry.

a. Register 10 contains the return address.

b. Register 1 contains the code to be found.

c. Register 2 points to the variable-length parameters of a DCB.

5. Exit.

a. FNDCOD returns to the calling routine after searching the variable-length parameters of a DCB
for the specified code.

b. Register 7 points to the first data word of the specified variable-length parameter or, if the specified
code was not found, to blanks.

6. Operation. Save register 3 so that register 3 may be used as a work register. Search the variable
length parameters for the specified code. If found, increment register 7 to point to the first data word
of the parameter. If not found, load the address of blanks into register 7. Restore register 3 and branch
to the return address in register 10.

5.5.5 GACNTN.

1. Subroutine Name - GACNTN.

2. Calling Modules - KILL, STATS, DELSTATS.

3. Purpose. Format a key to access the authorization file using the account and the name options from the
specification record.

4. Entry.

a. Register 10 contains the return address.

5-19

b. Specification record must have been reacf.

5. Exit.

a. GACNTN returns to the calling routine after processing the account and the name options.

b. Data is returned.

(1) The condition codes are set:

CCl on means no option was found.

CC2 on means an invalid option was found. (See CC4 for an additional error indication.)

CC3 on means a valid option was found.

CC4 on means an option field was too long.

(2) A key to access the authorization file is formatted unless no valid option was found.

c. Exit to the return address if valid options are found or if an invalid account option is found. Exit
to the return address plus one if an invalid name option is found.

6. Operation.

a. Save all registers. Obtain the account option from the specification record (GEBFLD subroutine)
and add the option to the key to be used to access the authorization file. If the account option is
invalid, go to step b. Otherwise, obtain the name option, if any, from the specification record
(GEBFLD subroutine) and add the option to the key. If the name option is invalid, increment the
return address saved by one and go to step b.

b. Restore all registers, set the condition codes, and branch to the address in register 10.

5.5.6 GDFLD and GHFLD.

1. Subroutine Names - GDFLD and GHFLD ..

2. Calling Modules. USERS calls both subroutines. DELStATS calls GHFLD ..

3. Purpose. GDFLD obtains the value of the next decimal field on the USERS specification record.
GHFLD obtains the value of the next hexadecimal field on the USERS specification record.

4. Entry.

a. Register 10 contains the return address.

b. USERS specification record must have been read.

c. FLDPTR contains the record position at which to begin searching.

d. BUFLEN contains the record size.

5. Exit.

a. GDFLD and GHFLD return to the calling routine after attempting to determine the value of the
desired type of field on the USERS specification record.

b. Data is returned.

(1) The condition codes are set:

CC 1 on means no field found.

CC2 on means invalid field found.

CC3 on means valid field found.

(2) NFLDBUF contains the value of the valid field found.

6. Operation.

a. Save all registers. Set up an execute instruction to convert a field on the USERS specification
record to decimal, for GDFLD, or to hexadecimal, for GHFLD. Obtain the next EBCDIC field from
the record. If no valid field is found, go to step b. Otherwise, convert the field to a binary
value. Convert the binary value to a decimal value for GDFLD ot to a hexadecimal value for
GHFLD.

5-20

bo Restore all registers, set the condition codes, and branch to the return address in register 100

5.5.7 GEBF LDo

1. Subroutine Name - GEBFLD.

20 Calling Modules - Control-Record, USERS, KILL, LIST, STATS, DE LSTATS, PASSWORDS.

3. Purpose. Obtain the next EBCDIC field from a control or a specification record.

4. Entry.

a. Reg ister 10 contains the return address.

b. Control or specification record must have been read.

c. FLDPTR contains the record position at which to begin analysis.

d. BUFLEN contains the record size.

5. Exit.

a. GEBFLD returns to the call ing routine after attempting to obtain the next EBCDIC field from the con
trol or the specification record.

b. Data is returned.

(1) The condition codes are set:

CC 1 on means no field found.

CC2 on means invalid field found.

CC3 on means val id field found.

(2) F LDBUF contains the EBCDIC field found.

(3) FLDBUFl contains an additional field in parentheses, if any such field existed. The field is
stored without the parentheses.

(4) FLDPTR is incremented to the next record position to be analyzed.

(5) Registers.

(a) Register 13 contains the length of the field in FLDBUF 1.

\0) Register 14 contains the length of the field in FLDBUF.

6. Operation.

a o Save registers 1-4 so that the registers may be used as work registers. Store the next EBCDIC field
from the control or the specification record into FLDBUF. If no valid field is found, go to step b.
Otherwise, store the next field in parentheses, if any such field exists, into FLDBUF 1, without the
parentheses. Load register 13 with the length of the field in FLDBUF 1.

bo Load register 14 with the length of the field in FLDBUF. Increment FLDPTR to the next record
position to be analyzed. Restore registers 1-4, set the condition codes, and branch to the return
address in register 10.

5.5.8 GHFLD.

See GDFLD.

5.5.9 HELP.

1. Subroutine Name - HELP.

2. Calling Modules - USERS, KILL, LIST, STATS, DE LSTATS, PASSWORDS, Input-Syntax-Error.

3.. Purpose. Print the correct form of the required control or specification recOrd if in on-line mode.

4. Entry.

a. Register 10 contains the return address.

5-21

b. Register 1 contains the level of help needed.

1 means reading a control record.

5. Exit.

2 means reading a USERS record.

3 means reading a USERS record.

4 means reading a DELSTATS record.

5 means reading a KILL record.

6 means reading a STATS record.

7 means reading a LIST record'.

a means reading a PASSWORD record.

a. HELP returns to the calling routIne after printing the correct form of the required control or specifi
cation record if in on-I ine mode •.

b. Condition code 1 is set if no message was printed. Otherwise, the correct form of the required con
trol or specification record is printed.

6. Operation.

a. Save registers 1-10. If in batch mode or if the record format has already been printed, go to step b.
Otherwise, print the correct form of the required control or specification record.

b. Restore registers 1-10, set the condition codes, and branch to the return address in register 10.

5.5. 10 INITLOG.

1. Subroutine Name - INITLOG.

2. Calling Module - USERS.

3. Purpose. Format field defaults for a new authorization-file record.

4. Entry - Register 10 contains the return address.

5. Exit.

a. INITLOG returns to the calling routine after setting field defaults for the authorization-file record.

b. All optional fields of the authorization-file record being formatted are set to defaults.

6. Operation. Save registers 1-3 so that the registers may be used as work registers. Initialize all
optional fields of the authorization-file record being formatted to defaults. Restore registers 1-3 and
branch to the return address in register 10.

5. 5. 11 PAGE.

1. Subroutine Name - PAGE.

2. Calling Modules - START, LIST, STATS, PASSWORDS.

3. Purpose. Do form alignment on output listing.

4. Entry - Register 10 contains the return address.

5. Exit.

a. PAGE returns to the calling routine after doing form alignment.

b. In batch mode, the output listing is advanced to top of page. In on-line mode, 3 lines are skipped
on the terminal listing.

6. Operation. In batch mode, advance output listing to top-of-page. In on ... line mode, save registers 0
and 1, skip 3 lines on the terminal listing, restore registers 0 and 1. Branch to the return address in
register 10.

5-22

5.5. 12 PRNT, PRNTV.

1. Subroutine Names - PRNT, PRNTV.

2. Calling Modules - START, Control-Record, USERS, KILL, LIST, STATS, DE LSTATS, PASSWORDS, Input
Syntax-Error.

3. Purpose. PRNT issues a TEXTC message to the M:LO DCB. PRNTV issues a TEXT message to the M:LO
DCB.

4. Entry.

a.

b.

c.

5. Exit.

a.

b.

Register 10 contains the return address.

For PRNT, register 1 contains the address of a TEXTC message on a word boundary. For PRNTV,
register 1 contains the address of a TEXT message.

For PRNTV, register 2 contains the length in bytes of the message.

PRNT and PRNTV return to the calling routine after writing a message.

A message has been printed through the M:LO DCB.

6. Operation. Save registers 2 and 3 so that the registers may be used as work registers. For PRNT, load
register 2 with the byte count of the message and register 3 with a byte displacement of 1. For PRNTV,
load register 3 with a byte displacement of zero. Write the message through the M:LO DCB. Restore
registers 2 and 3 and branch to the return address in register 10.

5.5. 13 PRTERR.

1. Subroutine Name - PRTERRo

2. Calling Modules - USERS, KILL, LIST, STATS, DELSTATS, PASSWORDS, Input-Syntax-Error.

3. Purposeo Print a dollar sign ($) under an invalid field on a control or specification record.

4. Entry - Register 10 contains the return address.

5. Exit.

a. PRTERR returns to the calling routine after printing the dollar sign.

b. A dollar sign is printed under the invalid field on a control or specification record. In on-line mode
with file input, the record was printed first.

-
6. Operation. Save register 10 so that register 10 may be used as a work register. Print a dollar sign under

the invalid field on the control or specification record (PRNTV subroutine). In on-line mode with
file input, first print the record (PRNTV subroutine). Restore register 10 and branch to the return address
in register 10.

5.5. 14 PRTLIST.

1. Subroutine Name - PRTLIST.

2. Calling Module - LIST.

3. Purpose. List the parameters from an authorization-file record.

4. Entry.

a o Register 10 contains the return address.

b. LOGBUFl contains an authorization-file record.

50 Exit.

ao PRTUST returns to the calling routine after listing the parameters from an authorization-file record.

b. Account, name, password, secondary-storage limits, priority, monitor-service authorization, date
and time of last change, and extended accounting are listed.

6. Operation. Save all registers. Move account, name, extended accounting, and password to the ouput
line. Format the date and time of the last change, using the CVTDEC subroutine.

5-23

Move the priority and monitor-service authorization indicators to the output line. Format the secondary
storage limits, using the CVTDEC subroutine. Print the parameters (PRNTV subroutine). Restore all
registers and- branch to the return address in register 10.

5.5. 15 PRTSTAT.

1. Subroutine Name - PRTSTAT.

2. Calling Module - STATS.

3. Purpose. Print statistics from an authorization-file record.

4. Entry.

a. Register 10 contains the return address.

b. LOGBUF 1 contains an authorization-file record.

5. Exit.

a. PRTSTAT returns to the calling routine after printing the statistics from an authorization-file record.

b. Account, name, total batch and on-line job sessions, job connect time, time breakdown, and
secondary storage used and authorized are printed.

6. Operation. Save all registers. Move account and name to the output line. Format numeric fields, using
the CVTNSTOR subroutine. Print statistics (PRNTV subroutine). Restore all registers and branch to the
return address in register 10.

5.5. 16 RDLOG and RDLOGS.

1. Subroutine Names - RDLOG, RDLOGS.

2G Calling Modules. USERS, LIST, STATS, DELSTATS call RDLOG. LIST, STATS, and DELSTATS call
RDLOGS.

3. Purpose. Read an authorization-file record. RDLOG reads a specified key. RDLOGS reads sequentially.

4. Entry.

a. Register 10 contains the return address.

b. For RDLOG, register 1 contains the address of the key to be read.

5. Exit.

a. RDLOG and RDLOGS exit to the calling routine after issuing a read to the authorization file.

b. Data is returned.

(1) LOGBUF 1 contains the authorization-file record read.

(2) Condition code 1 is set if the read failed. In this case register 13, byte 3, contains the ab
normal or error code.

6. Operation. Save registers 4-11. Set the abnormal and error addresses in the M:EO DCB to RDLOG1.
Issue the read to the authorization file. If the read fails, load the abnormal or error code from register
10 into register 13 and set condition code 1. Restore registers 4-11 and branch to the return address in
register 10.

5.5. 17 RDLOGACNT.

1. Subroutine Name - RDLOGACNT.

2.. Calling Modules - LIST, STATS, DELSTATS.

3. Purpose. Read an authorization-file record for a specified account.

4. Entry.

a. Register 10 contains the return address.

b. ACCNTMP contains the account to be read.

5-24

5.. Exit.

a. RDLOGACNT returns to the calling routine after issuing a read tothe authorization file.

b. Data is returned.

(1) LOGBUF 1 contains the authorization-file record read.

ACCNTl contains the key read.

(2) Condition code 1 is set if the read failed. In this case, register 13, byte 3, contains the ab
normal or error code.

(3) Condition code 2 is set if no more records for the account exist.

6.. Operation.. Save all registers. For the first read for the account, read specifying a key (RDLOG sub
routine).. If the read returns the no-key-exists abnormal code but the key accessed is for the specified
account number and the key specified contains no name, read specifying the last key accessed (RDLOG
subroutine).. Once a record for the account has been processed, read the next record sequentially
(RDLOGS subroutine). If no more records for the account exist, set condition code 2. If a read fails,
set condition code 1 and load the abnormal or error code into register 13. Restore all registers and
branch to the return address in register 10.

5 .. 5. 18 RDLOGS.

See RDLOG.

5.5. 19 RESETLOG.

1. Subroutine Name - RESETLOG.

2.. Calling Module - DELSTATS.

3. Purpose. Reset statistics for an authorization-file record.

4. Entry.

a. Register 10 contains the return address.

b. Register 1 contains the address of the buffer in which the statistics are to be reset.

5. Exit.

a.

b.

RESETLOG returns to the calling routine after resetting statistics for an alJthorization-file record.

The authorization-file record formatted in the buffer pointed to by register 1 has all statistic fields
reset except secondary storage used.

6. Operation. Save registers 3-10. Obtain the binary date (DATER subroutine) and move the date to the
authorization-file record being formatted. Reset all statistics in the record buffer except secondary
storage used. Restore registers 3-10 and branch to the return address in register 10.

5" 5.20 REWRLOG and REWRLOGS.

See WRLOG.

5 .. 5.21 UCHKFLD.

1.. Subroutine Name - UCHKFLD.

2. Calling Module - USERS.

3. Purpose. Set flag for Monitor-service specified on a USERS control record.

4. Entry.

a. Register 10 contains the return address.

b. FLDBUF contains the field to be analyzed.

c. Register 14 contains the length of the field in FLDBUF.

5-25

d. Condition code 2 is set if the field is invalid.

5. Exit.

a. UCHKFLD returns to the calling routine after analyzing an option on the USERS control record.

b. Data is returned.

(1) F LGS has a bit set for a Monitor-service specified on the USERS control record.

(2) Condition code 2 is set if the field on the USERS control record is inval ide

6. Operation. If condition code 2 is set, branch immediately to the return address in register 10. Other
wise find the option in a jump table, set the bit in FLGS for the option, and reset the condition codes.
If the option cannot be found in the jump table, set condition code 2. Branch to the return address in
register 10.

5.5.22 WRLOG, REWRLOG, and REWRLOGS.

1. Subroutine Names - WRLOG, REWRLOG, REWRLOGS.

2. Calling Modules. USERS calls WRLOG and REWRLOG. DELSTATS calls REWRLOG and REWRLOGS.

3. Purpose. WRLOG writes an authorization-file record. REWRLOG rewrites an authorization-file record
with a key. REWRLOGS rewrites an authorization-fi Ie record without a key.

4. Entry.

a. Register 10 contains the return address.

b. For WRLOG and REWRLOG, register 1 contains the address of the key, a word address.

c. LOGBUF contains the record to be written.

5. Entry.

a. WRLOG, REWRLOG, and REWRLOGS rEi!turn to the calling routine after issuing a write to the
authorization file.

b. Condition code 1 is set if the read fai Is. In this case, register 13, byte 3, contains the abnormal
or error code.

6. Operation. Save registers 4-11. Obtain the binary date (DATER subroutine) and store the date in the
authorization-file record buffer. Set the abnormal and error addresses in the M:EO DCB to WRABN.
Issue the write to the authorization file. For WRLOG, write with a key and the NEWKEY option
specified. For WRLOG, write with a key and the NEWKEY option specified. For REWRLOG, write
with a key and the ONEWKEY option specified. For REWRLOGS, write with no key specified. If the
write fails, load the abnormal or error code from register 10 into register 13. Restore registers 4-11.
Reset the condition codes or, if the write failed, set condition code 1. Branch to the return address
in register 10.

5.6 AUTHORIZA nON FILE, :USERLG.

See Chapter 20 of the BPM Technical Manual (Publication Number 901528).

5-26

6.0 FPURGE PROCESSOR

6. 1 FUNCTIONAL OVERVIEW.

The File Purge processor (FPURGE) primary function is to maintain and control user's RAD and/or disk pack

files, and to protect the integrity of these files by periodically creating back-up files on tape in the event

of an unrecoverable system failure. (Hardware or Software).

6.2 INTERFACES

6.2. 1 Hardware Requirements

The file purge processor operates with a basic BPM configuration of one magnetic tape unit, a card reader,

a typewriter, a line printer, and at least one rad or disk pack.

6.2.2 Operational Requirements.

For FPURGE to gain access to the account directory and open all files, it must run in the master mode.

FPURGE utilizes the M:SYS CAL which is legal only if the job is running under the :SYS account.

6. 3 OPERATIONAL OVERVIEW

The FPURGE control command is read through the C device. It is then decoded, and the necessary flags are

set. FPURGE will access the RAD(s) and/or disk packs, or tape(s) by accounts in ascending order. The

files to be accessed are set up by the options selected.

To protect the integrity of the operating system, FPURGE will ignore all requests to process files under the

accounts :SYS, :BTM, and COBLIB. These accounts wi II remain as they are, unless the SKIP option us used.

(See Table 6-1.)

File structure will remain the same throughout all functions. (e.g. mode, access).

Tapes are written in Monitor labeled format. A new file will be opened and closed for each user's file

copied to tape. Tapes will default to 9T, unless they are assigned through M:EI, or M:EO, to DEVICE 7T.

The format of the control command is

I FPURG E function, option

where function is

SAVE will take user IS files from Rad and/or disk packs, and copy them to tape.

RES user's files that were previously copied to tape, will now be restored to Rad or disk pack.

lOG the names of the user's files are to be logged by their account number on the line printer.

PURGE user's files are to be deleted.

6-1

On the above four functions, if neither the ALL nor SELECT option is specified, then ALL will be

assumed by defau It.

The options for each function are defined in Table 6-1.

Data cards are used to define the files to be processed. Each function requires its own set of data cards.

Their format is as follows:

Card Co lumns

1 - 8 Account number (Ieft- justified)

9 Must be blank

10 - 12 All (optional). If ALL is specified, all files within the names account number are

processed and the file name field (card columns 14-44) must be blank.

13 Must be blank

14 - 44 Filename (left-justified)

45 - 80 not used

Each set of data cards must be terminated by a I EOD control command.

6-2

no

ABORT

es

es

Read
Control

Card

no

Default
to all

Set
Flags

EXIT

Figure 6-1. Flow Chart of Major Functions

6-3

Rod
to

Tape

Tape
to

Rod

List Files
on LO

Purge Files
from Rod

6.4 MODULE ANALYSIS

6.4. 1 CONTROL CARDS

1. Routine name:
CCI

2. Purpose:
To decode control cards.

3. Entry:
Start

4. Exit:
Exits to STRPURG.

5. Operation:
This routine decodes all control cards and sets the flags needed.

Set flag
RESTORE

Set flag
SAVE

yes

Find Main Param

Set flag for
this Param

Set flag
PURGE

no

Figure 6-2. Flow Chart of CCI

6-5

Set flag
LOG

Print control
card error
and abort

STRPURG

6.4.2 SKPPAR.

1 • p'urpose:
to de term ine how many accounts to skip.

2. Entry:
Entered from Control Card Routine.

3. Exit:
Exits to STRPURG

4. Operation:
All accounts named will be skipped, and if the skip option is used, accounts :SYS, :BTM, and
COBUB will be included in the specified option. Up to 110 accounts can be used, but SKIP
must be the first entry on every card and these cards must be terminated by a • END card.

6-6

Print skip
card missing

IJ legal skip card
or more than
110 ace Its

Set # of acct's to skip
to zero (NUMSKP)

yes

STRPURG

Figure 6-3. Flow Chart of SKPPAR

6-7

Move acc't #
into skip table

Increment
NUMSKP+l

6.4.3 STRPURG.

1. Purpose:
Check whether it is a Save or Restore, and select or all.

2. Entry:
Entered from Control Card Routine.

3. Exit:
Exits to LGSVPG or Restore.

4. Operation: .
This routine determines whether or not a select option or all option is used. If Select is used,
a link to sore is made, to make sure the accounts and files are sorted and put into a dummy
file. .

6-8

Link to sort for
selected acc Its
and files

Open dummy file
and store acc Its
and files requested

no

STRPURG

no

Get as much
core as possible

LGSVPG

Figure 6-4. Flow Chart of STRPURG.

6-9

Open Tape Out

Get date and time from
monitor

Write date and time on
tape and close

RESTORE

6.4.4 LGSUPRG.

1. Purpose:
to Log, Save, or Purge accounts or files in an account.

2. Entry:
Entered from STRPURG.

3. Exits:
B MISFILS

4. Operatioo:
Th is subroutine checks if a special start was requested (SPCSTR). If it was th is routine wi II
start with the account that was specified through the OC device. If no special start was
requested, this routine will Log,Save, or Purge either all the accounts or just the accounts
and files requested by the select option. This subroutine Balls on R 11 to GETC if the select
option was used. This routine also Bal's on R 11 to the following routines: OPNXACCT,
CLROCB, and PRINT.

6.4.5 GETC.

1. Pu-:opose:
to get data cards if select option was used.

2. Entry:
BAL Rll

3. Exit:
B '*Rll

4. Operation:
Opens a dummy file to read data cards to process specific accounts and/or files. A flag is
set, (KOONE) when all data cards are read.

6.4.6 OPNXACCT.

1. Purpose:
to get next account.

2. Entry:
R2 and R3 contai n current account. BAL R 11

3. Exit: B *R 11 with R2 and R3 containing next account. If next account is found, R 11 returns with
a +2. If all accounts are processed as need be, R 11 returns with a +1.

4. Operation:
This routine does an open next on accounts specified.

6.4.7 CLROCB.

1. Purpose:
to open all files.

2. Entry:
BAL R 11

6-10

3. Exit:
B *Rll

4. Operation:
Zeroes out Password and Read Account, because FPURGE processor has to be able to access
all files.

6.4.8 PRINT.

1. Purpose:
Print file name on lO.

2. Entry:
BAL Rll

3. Exit:
B *R 11

4. Operation:
This routine will print the account each time it changes. All file names, and size in granules
will be printed on the lO, and if the count option was used on the control card, each file will
have a byte count printed also. When accounts change a total of granules and bytes will be
printed for each account.

6.4.9 WRTTP.

1. Purpose:
Write tape.

2. Entry:
BAL Rll

3. Exit:
B *R 11

4. Operation:
Writes tape in labeled format.

6.4. 10 RESTORE.

1. Purpose:
Restore tape to Rad and/or disk

2. Entry:
Entered from STRPURG.

3. Exit:
B MISFllS

4. Operation:
A check is made to see if volume 1 is requested. If not, the tape is opened unlabeled and positioned
to the :ACN sentinel. If the :ACN sentinel is correct the tape is opened as labeled and is
restored to Rad and/or disk. If it is Vol 1, the tape is opened labeled and processed per the
requirements on the control card.

6-11

6.4. 11 MISFILS.

1. Purpose:
to print on LO ane files not found.

2. Entry:
Entered from LGSUPRG and Restore

3. Exit:
B GETOUT

4. Operation:
A check is made to see if the count option was used; if it was, print the total number of granules
and bytes that were processed. We then check, if any files that were requested by the select
option, were not processed. If not, these files are printed on the LO as not found.

6.4. 12 GETOUT.

1. Purpose:
Terminate Processor

2. Entry:
Entered from MIS FILS

3. Exit:
M:EXIT

4. Operation:
Restores original account number and then exits.

6-12

Table 6-1. FPURGE Options

OPTION ALLOWED FOR

OPTION MEANING SAVE RES LOG PURGE

ALL All user's files will be processed. A \I cannot be used X X X X

if SELECT is also specified.

COUNT FPURGE will print the file names, number of granules, X X X X

and number of bytes.

DATE FPURGE will ask the operator to type in a desired date X X X X

and time. Only files that have been created or updated

on or after this date will be processed.

DP When DP is used, FPURGE will make two passes through the X

file directory. The first pass will save file(s) that are

RANDOM and have been specified to be on a disk pack.

The second pass will process all other files.

SELECT Specifies that files to be accessed are defined by data cards. X X X X

SELECT cannot be used if ALL is specified.

SKIP Th is option gives the user the abil ity to name accounts to X X X X

safeguard. When SKIP is used, the default accounts

(:SYS, :STM, and COS US) will be replaced be the

accounts named on the skip cards. The format of the SKIP

card is
-

SKIP (ACC NT,), (ACC NT 2)' (ACC NT n)

SKIP must be in columns 1-4 and must be on every card used.

A max. of 110 accounts can be named. S KI P cards must

follow directly after the FPURGE control command and must

be terminated by a .END card in columns 1-4.

START FPURGE will request the operator to key in the account and X X X X

file at wh ich processing is to start. This is provided for
,

error recovery.

6-13

Table 6-1. FPURGE Options (Cont.)

OPTION ALLOWED FOR

OPTION MEANING SAVE RES LOG PURGE

START If the system crashes during the save function, START X
~AUTO) (AUTO) will find (from previous tape) what the last

file was and continue from the next file.

VOL FPURGE will ask the operator to type in the desired X

tape volume number with which to start restore

operations.

6-14

7.0 FERRET SUBSYSTEM

7.1 FUNCTIONAL OVERVIEW

7. 1. 1 Purpose

FERRET is a utility subsystem which provides a general capability for obtaining information about entries in

the file management system. The subsystem also provides for I imited file manipulation. Its capabil ities

include listing and reviewing all files in a specific account; copying, deleting, and testing the status of

specific files; and displaying records within a file.

7. 1 • 2 Error Messages

1. ILLEGAL SYNTAX. A syntax error has been found in processing the COpy or KOPY command.

2. COMMAND NOT LEGAL. The command entered by the user is not a legal FERRET option.

3. CANNOT DELETE FILE file name. In processing the DELETE command, a specified file cannot be

deleted; the most probable reason for this is that the file is currently in use by another user.

4. CANNOT ACCESS FILE file name. An abnormal condition was encountered when opening the

specified input file.

5. FILE DOES NOT EXIST - file name. The specified input file does not exist in the Log-in account.

6. CANNOT ACCESS NEXT FILE. In processing the LIST, REVIEW or GRANULES command, the next

file in the account could not be opened.

7. CANNOT COpy -- RECORDS TOO LARGE. In processing the PUNCH, COpy or KOPY command,

data was lost because the buffer is smaller than the record read.

8. FIRST RECORD NON-EXISTENT. In processing the EXAMINE or INSPECT cOl"1mand, the first

record specified does not exist in the file.

9. RECORD EXCEEDS BUFFER SIZE. In processing the EXAMINE or INSf ECT command, data was

lost because the buffer is sma lIer than the record read.

10. M> N IN M, N SPECIFICA lION. In processing the EXAMINE or INSPECT command, the number

of the first record to be exam ined is greater than the last record in the range.

11. CANNOT CREATE FILE. In processing the COpy or KOPY command, the specified file could not

be opened in the output mode.

12. NO OUTPUT SPECIFICATION. In processing the COpy or KOPY command, the output file

specification was not present.

13. NO SPECIFICATION FIELD. The command given requires a specification field and none is present.

14. ILLEGAL DECIMAL CHARACTER. In processing the EXAMINE or INSPECT command, the input to

specify the record{s} to be examined is not a decimal character.

15. FIRST REC G-T RANDSIZE. In processing the EXAMINE or INSPECT command, the input file is random

and does not contain the first record specified.

16. LAST REC G-T RANDSIZE--RANDSIZE SUBSTITUTED. In processing the EXAMINE or INSPECT

command, the input file is random and does not contain the last record specified.

17. NO KEY LENGTH FOR KEYED FILE--ERROR. An error exists in the FPARAMS returned when a

Keyed file was opened.

7-1

7.2 INTERFACES

FERRET is given control by BTM:EXEC upon user request, and is entered at STARTFIL. The address of its

normal entry point (STARTFIL) is contained in word 9 of FERRET and the entry point following IPROCEED is

at STARTFIL + 1, in accordance with coding conventions for BTM subsystems.

CALs to the monitor are used to access user commands and input text (CAL3,O) and to write to the teletype

(CAL3,1). CAL3, 11 is used to describe memory so that the maximum number of available memory pages are

swapped in and out. The activation type is set to 4 via a CAL3,2, causing activation only on" carriage return

or line feed. CAL 1,8 is used to obtain accounting data on the current session ..

7.3 OPERATIONAL OVERVIEW

FERRET is composed of two types of routines: command routines which perform the functions specified by the

input command; and service sub-routines which perform tasks common to several command routines and are

called by a command routine when needed.

Upon entry from the BTM Executive the FERRET routine performs subsystem initialization, identifies the

command which was input by the user, and gives control to the routine which will process that command.

Commands which pertain to an account and all files contained therein are LIST, REVIEW and GRANULES.

When the routines REVIEW and GRANULE S receive control from FERRET they essentially just set a flag

to identify the function to be performed, then give control to the LIST routine which processes all three

commands.

Commands which pertain to a specific file (and the routines which process them if the name of the routine is

different) are TEST (CHECK), ACTIVITY (ACTlVCK), DELETE, COpy (COPYFILE), KOPY(KOPYFIL), and

PUNCH. KOPYFILE merely sets a flag to indicate that keys are to be retained, then gives control to

COPYFILE which processes both COpy and KOPY commands.

Commands which pertain to a file and its individual records are EXAMINE and INSPECT. At location

INSPECT a flag is set to indicate that keys are to be displayed, then control is given to the routine

EXAMINE which processes both commands.

Input files are read thru the M:EI DeB, output files are written (COpy or KOPY commands) thru the M~EO

DCB, and records are displayed on the user's terminal (EXAMINE and INSPECT commands) thru the M:lO DCB.

See Figure 7-1 for the FERRET Subsystem flow diagram.

7-2

Get all pages,
describe memory
for swappi ng & do
housekee in

STARTFIL

GRANULES

REVIEW

LIST

CHECK

ACTIVITY

DELETE

KOPY

COpy

PUNCH

INSPECT

EXAMINE

STATISTICS

MESSAGE

NOSEP

X

INS
Set i nd i cator
that keys to be
rinted

EXITFERRET

Figure 7-1. Flow Diagram of FERRET

7-3

Pg. 1

Pg. 3

Pg. 3

Pg. 4

Pg. 5

Pg. 6

R15 = 2

NXTOPS
Get acct.
number fie Id

GOTACCT

Save acct.
number in
FPT

NXTLOP

Open next
. file

Print
totals

R15 == 3

Print
error msg.

PRTNXT

Print file name if
~_ ... R 15<3 (& pass-
y word if :SYS

R15<1

Pg. 2

R15 = 0

~ __ ~ Close and
save file

ncrement totals

Figure 7-1. Flow Diagram of FERRET (Cont.)

7-4

SCANOPEN

Open next file;
exit to STARTFIL if
no more fi I es

Pg. 8

Print statistics
about this file

Open file; exit to
ST ARTFIL if no
more files

ACTABN

Print message
~---~ that file is

'----~

active

Print message
that file is

n inactive

Print message
that file is random

Open file; exit to
ST ARTFIL if no
more files

Print message
that file could
not be de leted

Figure 7-1. Flow Diagram of FERRET (Cont.)

7-5

Pg. 3

Open fi Ie; ex it
to STARTFIL if no
more files

CPYl
GETFLD

Get second
input field;

Read record
consecutive,
keyed or

Write record
>-_---'~ keyed, random

or consecutive

Close input
file

Figure 7-1. Flow Diagram of FERRET (Cont.)

7-6

Pg. 4

Send
character n
to punch

Open input file;
exit to STARTFIL
if no more files

Send punch
on character

Send 20 rub
out characters

Pg. 8

PCHLF
Output blank,
new line, rubout,

1"+------1 and Ii ne feed to
punch

Pg. 5

message

-------------------.--------------.---~

Figure 7-1. Flow Diagram of FERRET (Cont.)

7-7

Open input file;
exit to ST ARTFIL
If no more files

B or H

Store B or H in
indicator

Set i nd i cator
>-~ ... that CR found

Get range of
records and save

in range

Figure 7-1. Flow Diagram of FERRET (Cont.)

7-8

Pg. 6

PRNTBCD CKNXTRC

Print record in
EBCDIC & house-

Pg.7

kee Pg. 6

Print byte count

TFWM

Print remaining
words & bytes

Figure 7-1. Flow Diagram of FERRET (Cont.)

7-9

Get statistics
(CAll ,8)

KWDLOP

y

Get message
and store in
buffer

Send message
to operator

(CAll ,2)

Output
question mark

Figure 7-1. Flow Diagram of FERRET (Cont.)

7-10

Pg.8

Clear reset
bit in open
FPTs

Get name,
account and pass
word of file

Save
organization
code

Print error

Pg.

Figure 7-1. Flow Diagram of FERRET (Cont.)

7-11

Store name
in open
FPT

Get account and
password and store
in FPT

7.4 MODULE ANALYSIS

Flow charts of the individual modules described in this section appear in Figure 7-1 as part of the FERRET flow

diagram.

7.4. 1 FERRET

1. Purpose:
To perform initialization and housekeeping functions upon entry into the FERRET subsystem, and to
identify the command to be processed.

2. Entry:
Entered at STARTFIL from BTM Executive. In accordance with subsystem coding conventions,
registers at entry contain:

3. Exit:

(R 1)

(R2)

(R3)

(R4 & R5)

(R13 - R15) =

COC line number (in binary)

terminal job entry flag; 0 indicates that the console is excJuded from the
system, and a value of l-F indicates the maximum priority.

batch authorization flags from AJIT in byte O.

log-in account designation (in EBCDIC, left-justified and blank filled).

log-in name designation (in EBCDIC, left-justified and blank filled).

Exits to the routine which will process the current command (the branch -table is CMNDVEC).

4. Operation:
The COC line number is converted to EBCDIC and placed in the print image for the MESSAGE
command (OPRMES). The number of available pages is requested and a CAL~, 11 describes
memory so that all available memory is swapped in and out. The activation type is set to 4-
activation on carriage return or line feed only. After the input command has been identified,
exit is to the routine which will process that command.

7.4.2 LIST, REVIEW, GRANULES

1. Purpose:
-- To print a list of all files in an account (with the password, if the user is in the :SYS account),

and the size of each file in granules if the LIST command is invoked;

-- To print the total number of granules used by all unprotected files in an account if the
GRANULES command is invoked;

-- To print the name of each file in the log-in account and halt after each file (except passworded
or synonymous files) for a decision from the user whether to delete or save each file if the
REVIEW command is invoked;

-- To delete all unprotected files in the log-in account if the REVIEW ALL command is invoked.

2. Entry:
Initial Entry
point after Entry point Contents of
identification in LIST R 15 at entry

Command of command routine to LIST routine

LIST LIST LIST 2
GRANULES GRANULES NXTOPS 3
REVIEW REVIEW GOTACCT 1
REVIEW ALL REVIEW GOTACCT 0

7-12

3. Exit:
Exits to STARTFIL in FERRET routine after processing all files in the account.

4. Operation:
Although all three commands are processed by the LIST routine, the REVIEW and GRANULES
routines require some initialization prior to entering the LIST routine. This is performed at
locations REVIEW and GRANULES, respectively, and includes setting register 15 to indicate
wh ich function is to be performed.

LIST opens the first file in the account and prints, for REVIEW or LIST commands, the name of
that file. If the file was opened successfully, the size of the file in granules is printed
following the name; if it was not opened and the command was REVIEW, P or S is printed instead
of the granule count if the file is protected or synonymous. If the command was GRANULES,
the number of granules in the file is added to the total number of gran~les for the account. If the
command was REVIEW, LIST checks input from the terminal to see if the user wants the file
deleted. If the file is to be de leted or if the command was REVIEW ALL, the file is closed and
released; if the file is not to be deleted or the command was LIST or GRANULES, the file is closed
and saved.

This operation is continued for each file in the account until all files have been processed, at
which time totals are printed and control is given to STARTFIL.

7.4.3 CHECK

1. Purpose:
To determine whether the user may read one or more specified files.

2. Entry:
Entered at CHECK after identification of the TEST command by the FERRET routine.

3. Exit:
Exits (from SCANOPEN subroutine) to STARTFIL in FERRET routine after testing the file(s)
specified.

4. Operation:
BALs to the subroutine SCAN OPEN, which opens the specified file, if possible. If the file was
opened, CHECK 1 outputs some statistics about the file on the appropriate terminal, then branches
to CHECK to test the next file specified.

7.4.4 ACTIVCK

1. Purpose:
To determine whether the specified file(s) are currently inactive (accessible).

2. Entry:
Entered at ACTIVCK after identification of the ACTIVITY command by the FERRET routine.

3. Exit:
Exits from SCAN OPEN subroutine to STARTFIL in FERRET routine after processing the file(s}
specified.

4. Operation:
BALs to the subroutine SCANOPEN, which opens the specified file in the IN mode. If the file
was opened (meaning the file does exist), it is closed and then reopened in the INOUT mode.
If it was successfully opened in the INOUT mode it is either inactive or has random organization
and a message is output indicating which case is true. If the file could not be opened in the INOUT
mode, a message to this effect is output before returning to ACTIVCK to process the next file specified.

7-13

7.4.5 DELETE

1. Purpose:
To delete one or more specified files from the log-in account.

2. Entry:
Entered at DELETE after identification of the DELETE command by the FERRET routine.

3. Exit:
Exits (from SCANOPEN subroutine) to STARTFIL in FERRET routine after processing specified file(s).

4. Operation:
After setting the DCB to the update mode, DELETE BALs to the subroutine SCANOPEN, which opens
the specified file, if possible. If the file was successfully opened, upon return from SCANOPEN
the file is closed with REL specified. A check is made to insure the file was actually deleted and if so,
the next specified file is processed. If the file was not deleted, an error message is output
before the next file is processed.

7.4.6 COPY, KOPY

1. Purpose:
To create a new copy, in the log-in account, of an existing file (and to retain keys if the command
is KOPy).

2. Entry:
Entered at COPYFILE after identification of the command by the FERRET routine. If the command was
KOPY, a flag is set at KOPYFIL before control is given to COPYFILE.

3. Exit:
Exits to STARTFIL in FERRET routine (via CKFLSH) after performing functions specified.

4. Operation:
COPYFILE BALs to the SCANOPEN subroutine to get the name of the input file and open it.
The name of the output file is then obtained, using the GETFLD subroutine. If the input file is
keyed, a check is made to see if a key entry is present in the FPARAMS and whether keys are to be
retained when the file is copied. The input DCB is closed so that the output DCB can be opened
in case the input arid output files have identical names. (For further information on the protocol of
opening multiple DCBs to the same file name refer to the File Attributes appendix of the BPM
Reference Manual, 90-09-54E). The output DCB is opened and the input DCB is reopened.
Successive input records are read and written to the output file until the end of the file is
encountered. The input and output DCBs are then closed in that order and control is given to
STARTFIL. If eitherDCB could not be opened, if data was lost, or if the input command was not
in the proper format, an error message is printed before control is returned to STARTFIL.

7.4.7 PUNCH

1. Purpose:
To output (punch) one or more files to paper tape on the user's console.

2. Entry:
Entered at PUNCH after identification of the PUNCH command by the FERRET routine.

3. Exit:
Exits from SCAN OPEN subroutine to STARTFIL in FERRET routine after processing the file(s)
specified.

4. Operation:
BALs to the subroutine SCANOPEN which opens the specified file, if possible. If the file could
not be opened, control goes to PUNCH to process the next file. If the file was opened successfully,
a character (X'12~, is output to turn on the punch at the user's terminal, and outputs 20 rubout

7-14

(X'OOI) characters to prepare the paper tape. A record is read from the input file and each
character in that record is obtained from the input buffer and output to the punch until a carriage
return (X'15~ is encountered. A carriage return terminates that record regardless of the number of
characters that were punched. Several characters are output as a divider between records and the
routine branches back to read the next record. When all records have been output and the file is
complete, the input file is closed, 20 rubout characters are output to terminate the file, and the
punch is turned off. Control returns to PUNCH to process the next file specified. If no more files
are specified, the SCANOPEN subroutine returns control to STARTFIL.

7.4.8 EXAMINE, INSPECT

1. Purpose:
To examine a file and display any or all of the following information, based on requests input by the
user.
-- print the number of records in the file

-- print the number of bytes in each record or in specific records

-- print, in EBCDIC or hexadecimal, the contents of all records in the file or of specific records.

If the command is INSPECT, the same action takes place except the key is also displayed for each
record selected.

3. Entry:
Entered at EXAMINE after identification of the EXAMINE command if the command was INSPECT, a
flag is set at INSPECT to signify that keys are to be retained, then control is given to EXAMINE.

3. Exit:
Exits to ST ARTFIL after the user inputs an X in response to a prompt.

4. Operation:
BALs to the subroutine SCANOPEN, which opens the specified file, then issues a prompt. The user's
response is checked to determine what action is to be taken.

If N was specified, the number of records, in the file is de term ined and printed. If the sub.command
was not N, PRNTRCDS positions to the first record to be processed (the first record, if no range
was specified) and that record is read. If the command was INSPECT, the key is printed at this time.
If B was spec ified, the record number and the number of bytes in that record are printed, and the
next record is read. If neither H nor B was specified, the record is written thru M:LO to the user's
terminal and the next record is read. If H was spec ified, the record number and byte count are
printed in hex before the record is dumped and the record is examined in 4-word blocks. If all
four words in a block are identical, the word is printed only once on that line and the next block
is examined. If the four words are not identical, all four words are printed on one line and the next
block is examined. Each line is preceded by the number of the first word in that line, starting with
word 0 on line 1. When the entire record has been printed, the next record is read. When all records
have been processed, another prompt is issued. If the user's response is other than X, the above
sequence of actions is repeated. If the response is X,. control is given to STARTFILo

7.4.9 STATS

1. Purpose:
To display any or all of the following statistics for the current session, as requested by the user.

-- number of users current Iy logged in

-- amount of time current user has been logged in

-- number of RAD granules remaining and/or used in current session

-- number of disk granules remaining and/or used in current session

-- amount of CPU execution time, I/O wait time, and/or Monitor service time used in current
session.

7-15

2. Entry:
Entered at STATS after identification of the STATISTICS command by the FERRET routine.

3. Exit:
Exits to ST ARTFIL in the FERRET routine after the user inputs an X in response to a prompt.

4. Operation:
STATS does a CAll, 8 to obtain the accounting statistics, saves these statistics, and issues a
prompt for subcommands. After the subcommand is identified by indexing thru a table of subcommands
(KWDS), the index value when the command was identified is used to access the storage area for the
particular statistic desired. This statistic is converted and output with the appropriate message. If
the subcommand ALL was input, the index is set to the end of table KWDS and decremented until
all statistics have been printed. When the subcommand entered in response to a prompt is
identified as X, control is given to STARTFIL.

7.4.10 MESSAGE

1. Purpose:
To cause a specified message to be printed on the system operator1s console, prefaced by an
identification of the originating console.

2. Entry:
Entered at MESSAGE after identification of the MESSAGE command by the FER~ET routine.

3. Exit:
Exits to STARTFIL in the FERRET routine.

4. Operation:
Obtains each character in the message from the terminal and places it in the proper psoition in the
TEXTC statement, OPRMES. When all characters have been stored in the print image, OPRMES is
output to the system operator1s console via a CALl,2 0, and control is given to STARTFIL. If the
size of the message will exceed 100 characters or if a carriage return is encountered immediately
following the MESSAGE command, an error message is output before control is given to STARTFIL.

7.4.11 NOSEP

1. Purpose:
To set (or reset) the NOSEP bit in the open FPT for M:EO.

2. Entry:
Entered at NOSEP after identification of the NOSEP command.

3. Exit:
Exits to FERREll in the FERRET routine.

4. Operation:
Upon entry, NOSEP asks the user whether the NOSEP bit is to be set or reset and prompts for an
answer. If the user answers either SET or RESET, a 1 or 0, respectively, is merged into bit 9
of the CPYOPN FPTs and control is given to FERRET1. If the user responds to the prompt with other
then SET or RESET, the routine outputs two question marks and another prompt character. Th is
continues until the user responds with either SET or RESET.

7.5 SERVICE SUBROUTINES
The following service subroutines are used by several different command routines andperform such tasks as
converting numbers, examining input fields, opening the input DCB, and searching tables.

7.5.1 CVDECOUT

1. Purpose:
To convert a hexadecimal number to decimal and output it to the terminal.

7-16

2. Entry:
Entered from CHECK, LIST, EXAMINE and STATS.

BAL,3 CVDECOUT
(1) = number to be printed

3. Exit:
B *3

4. Operation:
The value in R 1 is tested and a minus is output if it is negative. The number is then converted to
decimal digits and these digits are placed in a buffer. Each digit is converted to EBCDIC, then
output to the term i na I.

7.5.2 GETFLD

1. Purpose:
To obtain an entire field from the terminal -- name (account number, password) -- and put it in
the proper entries in the FPT.

2. Entry:
Entered from LIST, REVIEW, COPYFILE and SCAN OPEN.

BAL,9 G ETFLD

3. Exit:
Error return B *9
Normal return B *9 (+ 1)

4. Operation:
GETFLD BALs to GETNAM subroutine to obtain the file name,then stores the names in the FPT at
OPNNAM. If an account number and/or password is present, it is obtained and stored at
OPNACT or OPNPAS, respectively. If a carriage return was encountered before the file name,
the error return is taken.

7.5.3 GETNAM

1. Purpose:
To obtain a field from the terminal and move it into a buffer.

2. Entry:
Entered from NOS E P, G ETF LD and G ETNAM 1 •

BAL,7 GETNAM
(0) = current character

3. Exit:
B *7

4. Operation:
GETNAM gets one character at a time from the terminal and moves it into a buffer in TEXTC format
until a terminating character is found. If called by GETNAM 1, the TEXTC format is changed to
TEXT upon return.

7.5.4 SCANOPEN

1. Purpose:
To open the specified input file.

2. Entry:
Entered from DELETE, CHECK, PUNCH, ACTIVCK, EXAMINE and COPYFILE.

BAL,8 SCANOPEN

7-17

3. Exit:
Norma I return B *8
Error return B *8 (+ 1)

4. Operation:
SCANOPEN BALs to GETFLD to obtain the name, account number and password of the file to be
opened. If no name is returned, an error message is printed and control is given to STARTFIL.
An attempt is made to open the file. If the file is opened successfully, the organization code and,
if the file is random, size are saved. If the file could not be opened an error message is printed
and the error return is taken.

7.5.5 LOCCODE

1. Purpose:
To scan the entries returned by FPARAM for a specific code.

2. Entry:
Entered from CHECK, LIST, EXAMINE, COPYFILE and SCAN OPEN

BAL,3 LOCCODE
(2) = param code

3. Exit:
B *3
(2) = 0 if entry not found
(2) = address of entry, if found

4. Operation:
LOCCODE compares the code for each entry with the code in register 2. If the code is found, the
address of that entry is returned in register 2. If the code has not been found after all entries have
been checked, a zero is returned in register 2.

7-18

8.0 EDCON

8. 1 FUNCTIONAL OVERVIEW

8. 1. 1 GENERAL DESCRIPTION

EDCON is a BPM processor which provides the services of creating, deleting, manipulating, compressing

and decompressing fi les. It makes available to a batch user commands which resemble some of the

BTM EDIT Subsystem's file commands. Input media acceptable include cards and keyed files in

either EBCDIC or compressed format. Output may be in any format acceptable as input with the added

feature of sequencing in characters 73-80 of a record. EDCON may bevsed on-line under the BTM

RUN Subsystem. More than one command may be input each time EDCON is invoked, if desired.

Command syntax resembles that of EDIT.

8.1.2 COMMANDS

1.

2.

3.

BUILD fid -, n ,il]
a. M:EI defaults to the card reader.
b. M:EI may be in either EBCDIC or compressed format.
c. If M:EI is the card reader, it must be terminated by an IEOD.
d. If M:EI is a file, it must be keyed having records of 140 bytes or less in length.
e. M:EO is fid which must not already exist.
f. M:EO will be a keyed file with records in EBCDIC format. Thus if M:EI is compressed,

M:EO wi II be decompressed.
g. Sequencing refers to record keys and does not become part of the record text. Default values

for nand i are 1.000, where the decimal point is assumed.

COpy fid
1
{g~ER} fid2 L n [, i)]

a. fk'l becomes M:EIi lid2 becomes M:EO.
b. If fid1 is not keyed, n must be specified.
c. If n is omitted, the sequence numbers (record keys) of fid1 will be retained in fid2.
d. Default values for nand i are 1.000.
e. If fid1 I- fid2, a new file is created and password is not allowed.
f. M:EO will be keyed.
g. A file may be copied over itse If.

DELETE fid
fid must be keyed.

4. END
This command is not mandatory. Execution is term inated by this command or if om itted by

encountering end-of-file on the C device.

5. LIST fid

a. fid must exist in keyed format.
b. M:EO defaults to the LO device, and record keys appear with records.

a.
b.
c.
d.

fid] is M:EI and must be keyed.
If l.t n1 i.~n?ll is not specified, the entire file will be transferred.
fid2 is M:tO and either mayor may not exist.
Record(s) n3 _-nt' is(are) ~eleted from fid2if existing and is{are) replaced at n3 by the
specified record 5) from fid 1•

8-1

e. Default value for i is 1.000.
f. The merge is stopped at n4 if further transfer would generate records with sequence numbers

greater than existing ones.

7. WRITE fid [, LIST]
a. M:EI is fid and must be keyed.
b. M:EO defaults to the card punch.
c. M:EO is written in EBCDIC format having no trailing carriage returns.
d. When M:EO is written via the card punch sequencing is provided in characters 73-80 in

format YYYYXXXX, where YYYY is a maximum of four bytes of fid name and XXXX is
sequence number ~

e. If (, LISTJ is specified, M:LO defaults to the line printer, and record keys appear with
records.

f. M:EI must be in EBCDIC format.

8. COMPRESS fid [, LIST]
This command is identical to WRITE except that M:EO is written in compressed format.

8.2 INTERFACES

EDCON operates in a similar manner to other BPM processors and is in addition executable under the

RUN Subsystem of BTM.

8.3 OPERATIONAL OVERVIEW

Execution begins in BEGINEDITOR with reading of the first command via the C device and proceeds to

MASTERPARSER, which serves as driver for command reading and scanning. As a command is identified,

execution is directed to its corresponding PARSE:(Command) subroutine where the command and

parameters are entered into the Command Description Table (CDT). See Tables 8-1 and 8-2. When no

more commands remain or END command is encountered, execution proceeds to MASTEREXECUTIVE, the

driver for command execution which occurs via F:(Command) routines. After all commands have been

honored, return is made to the monitor. EDCON is coded in a highly modular fashion. See Figure 8-1,

EDCON Overview Flow Diagram.

8.4 MODULE ANALYSIS

In the descriptions which follow register notations have the following meaning:

symbol is register

X3 1
X4 2
Xl 3
X2 4
P1 5
P2 6
LNK 7
Tl 8
T2 9
P3 10
Rl 11
R2 12
F:LNK 13

The routine and subroutine descriptions which follow are organized such that MASTERPARSER appears first

with its associated PARSE: subroutines, followed by MASTER"EXECUTIVE with its assoCiated F: subroutines,

and lastly by the general subroutines.

8-2

MASTER
PARSER

Read Command from TlY

Print Error
Message

Go to Proper Routine to Build CDT
L ___________ ~----------~

PARSE:Routine

MASTER
EXECUTIVE

Print Error
Message

Analyze CDT and go to]
Proper Routine

Call workhorse subroutines to EXIT
Execute Commands in CDT

All Other

Figure 8-1. Overall Flow Diagram of EDCON

8-3

8.4. 1 MASTERPARSER

1. Purpose:
This routine serves as the driver for the command text scanning. It performs initialization of
flags, the COT, and TST AC K.

2. Entry:
Initially execution falls through to MASTERPARSER from BEG INEOITORi thereafter it is entered
via B MASTERPARSER.

3. Exit:
(See Figure 1).
If command type of first string found is: branch is to:

CR MASTEREXEC UTIVE
ALPH PARSE: (routine)

where routine is one of the COT builder routines shown in Table 8-2.

4. Operation:
After initialization REAOTELETYPE2 is used to read one line of commands. MASTERPARSER
increments COTAOR and the count of COT entries and resets PARAMPSN. GETNEXTPARAM is
used to test command type for one of the following: CR and ALPH. If it is neither, the error
message IC 1 :ILG L SYNTAX I is typed and branch is made to MASTERPARSER. If the command type
is ALPH but the command is not one of those shown in Table 8-2, the message IC1 :UNKN CMNO '
is typed and branch is made to MASTERPARSER.

8.4.2 PARSE:BUILO

1. Purpose:
to store FlO as first entry in COT and if present to add first sequence number and increment to COT.

2. Entry:
B PARSE :BUILO
This routine is one of the ones invoked via the CBRCHTBL of MASTERPARSER after a command has
been identified.

3. Exit:
The return destin~tion, MASTEREXECUTIVE, is given in calling sequence to NXTPRM, and will be
used upon recognition of a carriage return in the input command buffer. Error exit is to
MASTERPARSER via ILGL$SEQ2 if increment in COT is zero or if a sequence number range
is found.

4. Operation:
This subroutine uses the following:
NEWCDTENTRY to build new COT entry,
GETFILEIO to get file 10,
AOOCOTPARAM to put alpha text in COT,
GETNEXTPARAM to get next parameter, and
TYPEPERR to type error message.

8.4.3· PARSE:COMPRESS
PARSE:WRITE

1. Purpose:
to add an entry to the COT for

{~~rESS } fid (, LIST).

2. Entry:
B PARSE:COMPRESS
B PARSE:WRITE
This routine is one of the ones invoked via CBRCHTBL of MASTERPARSER after a command has
been identified.

8-4

3. Exit:
Normal return destination (MASTEREXECUTIVE) is given in call ing sequence to NXTPARAM
and will be used upon recognition of a carriage return in the input command buffer.

Error exit is to MASTERPARSER via TYPECERR after printing '-Pn:ILGl SYNTAX' if
neither carriage return, comma nor alpha string found after file identification.

4. Operation:
A new COT entry is built using NEWCDTENTRY. The file identification syntax is checked
and PARAMBUF and PARAMBUFSZ set using GETFILEID. ADDCDTPARAM is used to add
FID to the COT. Using GETNEXTPARAM a further scan is performed for carriage return or
II, LIST II.

8.4.4 PARSE:COPY

1. Purpose:
to add an entry to the COT for COpy fid

1
to fid2 [, n[, i]]

2. Entry:
B PARSE:COPY
This routine is one of the ones invoked via the CBRCHTBL of MASTER PARSER after a command
has been identified.

3. Exit:
Normal return destination (MASTEREXECUTlVE) is given in calling sequence to NXTPRM and
will be used upon recognition of a carriage return in the input command buffer.

Alternate normal return is to GETSEQINCR if [, n[, i]] form of command is used.

Error exit is to MASTERPARSER after printing I-C1 :ILGL SYNTAX' if keyword "0N II or
"OVER II not used.

4. Operation:
This subroutine uses:
NEWCDTENTRY to build new CDT entry;
GETFILEID;
ADDCDTPARAM to put file ID in COT and to put
liON II or II OVER II in CDT; and TYPECERR
to type '-C1 :ILGL SYNTAX' iffound.

8.4.5 PARSE:MERGE

1. Purpose:
to add a new entry in the CDT for MERG E fid 1 [, n

1
[-n2]] INT 0 fid2, n3 [-n4]~ i J.

2. Entry:
B PARSE:MERGE
This routine is one of the ones invoked via the CBRCHTBL of MASTERPARSER after a command
has been identified.

3. Exit:
Normal return is B MASTERPARSER
Error exits are:
TYPEPERR after printing one of:

'-Pn:ILGL SYNTAX',
'-Pn:NOT SEQ#',

or '-Pn :ILGL SYNTAX'.
Alternate exit is B GET$INCREMENT to check for increment.

8-5

4. Operation:
A scan is made to detect invalid command format.
It uses: NEWCDTENTRY to set up new COT entry;

GETFILEID;
ADDCDTPARAM to add to the COT;
GETNEXTPARAM to determine whether a record range
has been specified and to convert n1 and n2 if given and also to scan for
"INTO" and destination sequence number(s};
ADJINT to compute sequence number * 1000;

and REPSEQ to duplicate value in PARAMBUF and store in PARAMBUF+1.

8.4.6 PARSE:DELETE
PARSE:LIST

1. Purpose:
to add an entry to the COT for DELETE fid or LIST fide

2. Entry:
B PARSE:DELETE
B PARSE:LIST
Th is routine is one of the ones invoked via the CBRCHTBL of MASTERPARSER after a command
has been identified.

3. Exit:
Normal return is to MASTEREXECUTIVE upon finding a carriage return.
Error return is to MASTERPARSER via TYPEPERR on finding any character other than carriage

return: it prints '-Pn:ILGL SYNTAX"

4. Operation:
This subroutine uses:
NEWCDTENTRY to build new COT entry;
GETFILEID;
ADDCDTPARAM to add entry to COT;
and GETNEXTPARAM to scan for carriage return.

8.4.7 PARSE:END

1. Purpose:
to add an entry to the COT for END.

2. Entry:
B PARSE:END

3. Exit:
Normal return is to MASTEREXECUTIVE on finding a carriage return.
Error return is to MASTERPARSER via TYPEPERR on finding a character other than

carriage return: it prints '-C1 :ILGL SYNTAX '•

4. Operation:
This subroutine uses:
NEWCDTENTRY to build a new COT entry and GETNEXTPARAM to scan for carriage return.

8.4.8 MASTEREXECUTIVE

1. Purpose:
This is the master routine to execute the commands in the COT. It resets CDTADR to point to
start of COT.

8-6

2. Entry:
B MASTEREXECUTIVE

This routine's address is given to NXTPRM* as the branch location following identification of
a carriage return in the input command buffer.

3. Exit:
B MASTERPARSER after finding erroneous data in CDT or after properly executing a command.

4. Operation:
Commands are extracted from the CDT and executed one after another using the appropriate
F: routine until no commands remain.

8.4.9 F:BUILO

1. Purpose:
to execute the command BUILD fid [, n [, i]J.

2. Entry:
F:LNK is the linkage register. This subroutine is entered via BAL, F:LNK F:BUILD from
MASTEREXECUTIVE.

3. Exit:
B *F:LNK

4. Operation:
Fi Ie identification fid is obtained from the CDT, and the file is o~ned for OUTPUT via
OPENNEW. If the file alreadyexisted, the message II-FILE EXISTS; CAN'T BUILD II is
printed via TYPEMSG and exit is taken. Starting sequence number is obtained from CDT if
present; otherwise DFLTSEQ is used as default. Similarly the increment from the COT is used,
or if not found 1000 (assumed decimal point 1.000) is used. The EBCDIC mode for M:EI is
specified via M:DEVICE. M:EI is read to obtain source records which are to be written into
file fide If the source records are compressed, they are de-compressed by routine
RECONSTRUCT$LINE, their sizes are determined by SETEOD and the records written as part of
file fid via WRITERANDOM.

If the source records are not compressed, they are written as follow~,: the output buffer is first
blank-filled using BLANKBUF; characters 1-72 from the source rer ord are placed into the output
buffer; the record length is determined by SETEOD and the records written as part of file fid
via WRITERANDOM.

Either a !EOD record for card reader input or an end-of-file for file input results in closing of
the file, and exit is taken.

8.4. 10 F:COMPRESS
F:WRITE

1. Purpose:
to execute the file command

{~I~EPRESS] fid~ LIST] •

Entry: {F:COMPRESS]
LNK is the linkage register. The subroutine is entered via BAL,LNK F:WRITE

2.

from MASTEREXECUTIVE.

3. Exit:
Normal exit is B *F:LNK

* a procedure which generates a calling sequence to GETNEXTPARAM

8-7

Error exits are to:
CPY40 if file fid is not present;
LIST80 if file fid is not keyed.

4. Operation:
The file identification fid is obtained from the COT, and the file is opened via OPEN 1. If it is
not found or not keyed, the appropriate error exit is taken. If the LIST parameter is found in
the COT, an M:DEVICE procedure call is issued to skip to top of form for M:LO. A maximum
of four bytes of fid are extracted from the COT and used to specify sequencing of M:EO via
M:DEVICE. CARDCOUNT is initialized to zero. An M:DEVICE procedure call is issued
specifying binary mode for compressed or EBCDIC mode for non-compressed output. The records
of file fid are read via READSEQUEN. After each has been read: CARDCOUNT is incremented;
SETEOD is used to mark the last non-blank character of the record; if LIST was specified, the
record is printed; RECSIZE is incremented; for COMPRESS the r~cord is compressed in CARDIMG
via COMPRESSLINE; for WRITE it is written via WRITE$EO. When end-of-file is encountered
for a non-compressed fi Ie, CLOSE is used to close file fid and CLOSE$EO to close the output file.
For a compressed file, RECSIZE is reset to 1.COMPRESSLINE is used to compress the final record
and the first two bytes of COBUF are initialized to XI38FF' before closing the files.

8.4. 11 F:COPY

1.

2.

3.

Purpose: {ON }
to execute the copy command COPY fid 1 OVER fid2 [, n [, iJJ.

Entry:
F:LNK is the linkage register. This subroytine is entered via BAL, F:LNK F:COPY
from MASTEREXECUTIVE.

Exit:
B *F:LNK

4. Operation:
This subroutine examines fid 1 and fid2 from COT to determine whether they are equal. If they are
not it tests for ON or OVER:
If ON, it uses OPEN2 to change file mode to OUT;
if fid2 existed, attempt is to COpy A on A (error), in which case it prints
I-P2:FlLE EXISTS I, closes file via CLOSE2 and exits;
if fid2 did not exist it initializes .for copy and proceeds with normal copy.

If OVER, it uses OPEN1 to open file with fid 1; it uses OPEN2 to open copy file with
fid2; if fid 2 already existed, it uses CLOSE3 to close it with REL and reopens it via
OPEN3 as an output fi Ie.

Normal copy proceeds by typing I •• COPYING I via TYPEMSG and copying either with old
sequence numbers or sequence number range specified in command. If no sequence numbers
were specified and: fid 1 is not a keyed file or if a record is written with a sequence number
which already exists, the following message is printed via TYPEMSG: I_P1 :FILE NOT SEQD
& P3 NULL I, both the files are closed, the copy file is deleted via DELETEFILE and exit is
taken. WRITE2 is the routine used to write the copy file.
For fid 1 = fid2:
If password is found, it prints IPASSWORD ERROR" via TYPEMSG and exits. It opens copy
file (F:EO) as output and input file (F:EI) as input and proceeds with normal copy.

Additional error which may occur is:
fid 1 cannot be opened in which case it prints '-P1 :NO SUCH FILE' via TYPEMSG and exits.

8-8

ENTRY -
F:COPY

Initialize
COPYFL

>--no ~
Pg. 3

CPY2

Set Pl to point to
FlO] in CDTi O--X4
to snow file unkeyed

Open F:EI as
input with this
FlO

Set Pl to

Open copy file
as INOUT with
FID2

i

I •• COPYING I:

~ __ J

CPY40 Pg. 2

Set X4 = 1
>----...c to show fj I e

yes keyed

IP1: NO SUCH I)

FILE I t-{ RETURN

Figure a-1A. Flow Diagram of F:COPY

8-9

Pg. 1

CLOSE3

Close with
Release

PENl

Open for
Output

yes

,.:C;:...PY~5=-----f._.....;R:..:.;;E;;;..A.;;;;.,DSEQUEN

Read source
record

Write record
in copy file

yes

Close
source file

CLOSE2

Close copy
file

TYPEMSG

I •• COPY
DONE I

Figure 8-1A. Flow Diagram of F:COPY (Cont.)

8-10

CPY10

Initialize Pl to
use n as seq. Hi
Tl =defau It i ncr.

Pg. 2

Tl = i
from
cor

READSEQUEN

Read
Source

Record

Wri te record
in copy file

Increment
Seq.#

for password in
i eDT for FIDl
L________ _ __ --'

for password in
eDT for FID2

Open the fi Ie
for input

yes

yes

CPY60 TYPEMSG

I SORRY ••• NO
PASSWORD
ALLOWED HERE I

C PY50 TYPEMSG

'-PI: FILE NOT I
SEQ'D & P3
NULL ' .

J

Figure 8-1A. Flow Diagram of F:COPY (Cont.)

8-11

Open FID
2

as INOUT

Open file for
output

Set X4 = 1 to
show file is
keyed

Pg. 3

CPY35 TYP.EMSG

'-P2:FILE

EXISTS I

CLOSE2
CLOSE
COpy
FILE

CPY36 CLOSE3

Close copy
file with

REL

cb
Pg. 1

8.4. 12 F:DELETE

1. Purpose:
to delete a file o

2. Entry:
F:LNK is the linkage register. This subroutine is entered via BAL, F:LNK F:DELETE.

3. Exit:
B *F:LNK which results in return to MASTEREXECUTIVE.

4. Operation:
This subroutine uses DELETE FILE to delete the file, and it uses TYPEMSG to type
appropriate message:

I •• DELETEDI
or I-NO SUCH FILEI.

8.4. 13 F:END

1. Purpose:
to return to the monitor.

2. Entry:
F:LNK is the linkage register. This subroutine is entered via BAL, F:LNK F:END

3. Exit:
It returns to the monitor via M:EXIT.

8.4. 14 F:LIST

1. Purpose:
to execute the list command LIST fide

2. Entry:
F:LNK is the linkage register. The subroutine is entered via BAL, LNK F:LIST from
MASTEREXECUTIVE.

3. Exit:
Normal exit: B MASTERPARSER
Error exits are:

B CPY40 if input file does not exist;
B MASTERPARSER if file is not keyed.

4. Operation:
File identification fid is obtained from the COT and the file is opened for input via OPEN 1. If
the fi Ie daes not exist, exit is to CPY40. If it is not keyed, the message

I-FILE NOT KEYED; MUST COPyl is printed and exit is to MASTERPARSER.

The location CARDCOUNT is used to identify record number opposite the record contents.
Records of the fi Ie are read and printed using READSEQUEN and TYPECARD. SETEOD is
used to determine individual record lengths.

8.4. 15 F:MERGE

1. Purpose:
to execute the merge command

MERGE fid1 Gnl [-n2]] INTO fid2, n3 [-n4]G i J.
2. Entry:

F:LNK is the linkage register. This subroutine is entered via
BAL, F:LNK F:MERGE
from MASTEREXECUTIVE.

8-12

ENtRY
F:MERGE

OPENl

Open merge
source in input
mode

Default
Range = 1st
Rec. to EOF

FIRSTFROM=n
1

I LASTFROM=n2
I

CPY40

CLOSE
Merge
Source

CLOSE

TYPEMSG
lSOURCE

NOT
KEYED'

MRG82

CLOSE
File AD2

CLOSE

TYPEMSG

MRG 10 READNXTRANDOM 'MERGE
DESTINATION
NOT KEYED'

Read Rec.
n1

Figure 8-2. Flow Diagram of F:MERGE

8-13

CLOSE merge
source to allow
temp. use of F:EI
routines

no

OPEN
OPEN
File FID2

De lete records
n3 through n4

Pg. 1

MRG70 CLOSE
CLOSE
merge
source

MVE58

MRG30

Get n3

from COT

yes

Read seq. no.
at which to
stop

MRG 13 CLOSE

Close file fid
2

(as F :EI)

Use i = 1 as
default in
crement

obtain i
from CDT

DFLTINCR
=i

Open file
fid 1 as
source

OPEN2

Open file
fid

2
as

merge output

TYPEMSG

' •• Merge

Started'

MRG 17 READNXTRANDOM

Read Rec.
FIRSTFROM

Wri te record
into fi Ie fid

2

Set destination
seq. no. = last
seq. no. used

Close
Source File

CLOSE2

Close
Merge File

MVE40

Figure 8-2. Flow Diagram of F:MERGE (Cont.)

8-14

Pg. 2

I to write.

Read next
source record

Pg. 2

MRG65
LASTFROM=
Seq. no.

yes read

Close
Source

File

CLOSE

Close
Merge

File

Figure 8-2. Flow Diagram of F:MERGE (Cont.)

8-15

Pg. 3

3. Exit:
Normal: B MVE40 if destination range completed;
Error exit to MVE58 if source range not found;
Error exit to MVE56 if cutoff occurs;
Error (all other errors): B *F:LNK

4. Operation:
This subroutine uses OPEN1 to open source file in input mode;

if not found it types '-P1 :NO SUCH FILE';
if not keyed it types '-MERGE SOURCE NOT KEYED'.

It uses either the range as specified (n1 -n2) or defaults to entir~ file.
It attempts to read source file via READNXTRANDOM:

if EOF encountered, it closes source file via CLOSE and exits
to MVE56 (see R:MOVE$DELETE and R:MOVE$KEEP).

It attempts to open fid2:
if non-existent it picks up n3 from CDT and proceeds;
if not keyed it closes the file, types

'MERGE DESTINATION NOT KEYED' via TYPEMSG and
exits to MASTEREXECUTIVE.

Using n3 [-nJfrom CDT it uses DELETE to delete records of fid in that range.

It re-opens fid 1 as input and fid2 as INOUT and types
' ••• MERGE STARTED via TVPEMSG'.

It reads records from fid 1 using READNXTRANDOM, writes them into fid2
using WRITE2 until either EOF reached or range completed;
it closes files and branches to MVE40 (see R:MOVE$DELETE and
R:MOVE$ KEEP).

8.4. 16 ADDCDTPARAM

1. Purpose:
to add a new parameter to the Command Description Table.

2. Entry:
LNK is linkage register used. This subroutine is entered via BAL, LNK ADDCDTPARAM
from several PARSE: routines when it is desired to add to the CDT.
Upon entry P1, PARAMPSN, and PRMBUFSZ are as shown below.

3. Exit:
B 0, LNK with expanded CDT entry.

4. Operation:
Words are added to the CDT from PARAMBUF according to the format shown in Table 8-2 using
the following input parameters:
P1 = type of parameter,
PARAMPSN = next available slot in CDT,
PRMBUFSZ = number of words to be added.

8.4. 17 ADJINT

1. Purpose:
to form a sequence number as an integer *1000.

2. Entry:
LNK is the linkage register. This subroutine is entered via BAL, LNK ADJINT
from PARSE :BUILD or PARSE:MERGE.

3. Exit:
B *LNK

8-16

4. Operation:
This routine multiplies the sequence number in PARAMBUF by 1000 and stores it back
in PARAMBUF.

8.4. 18 BINTODEC

1. Purpose:
to convert a binary number to decimal.

2. Entry:
LNK is the linkage register.
Upon entry:
Pl contains binary number, and
P2 contains byte address where decimal string is to be stored (right-most byte).
This subroutine is used by MOVESEQ and TYPESEQ.

3. Exit:
Return is to calling routine via B 0, LNK with decimal properly stored.

4. Operation:
BINTODEC divides binary number by 10, adds zone bits to remainder (i. e., X'FO '),
stores it, moves pointer one to left in output string and repeats until seven digits have
been converted.

8.4. 19 BLANKBUF

1. Purpose:
to store blanks in CARDIMG.

2. Entry:
LNK is the linkage register.
This subroutine is used by READRANDOM and READSEQUEN. It is called
using BAL, LNK BLANKBUF.

3. Exit:
Upon exit blanks are stored CARDIMG. Return is made to calling routine via B 0, LNK.

8.4.20 CLOSE

1. Purpose:
to close input file with SAVE.

2. Entry:
LNK is the linkage register.
This subroutine is used by F: routines and TESTEDIT ACTIVE. It is called using BAL, LNK CLOSE.

3. Exit:
Return is made to calling routine via B 0, LNK.

8.4.21 CLOSE2

1. Purpose:
to close output (COPy) file with SAVE.

2. Entry:
LNK is the linkage register.
This subroutine is used by F: routines. It is called using BAL, LNK CLOSE2.

3. Exit:
Return is made to ca !ling routine via B 0, LNK.

8-17

8.4.22

8.4.23

COMPRESS LINE

1. Purpose:
to compress a record.

2. Entry:
lNK is linkage register. This routine is entered via BAl, LNK COMPRESSLINE from
F:COMPRESS. Input consists of a record image in CARDIMG.

3. Exit:
B O,LNK

4. Operation:
Registers are initialized as follows:

T1 = 0, blank count;
T2 = count of total bits used in CO record from COBUSED;
X2 = count of bits eft in current word in COBUF from COBLEFT;
X3 = record size in bytes from RECSIZE.

If record size is zero (i. e., and of output file has been reached), subroutine CMPL60 is used
to append the 6-bit end-of-file code (item "3") to the record byte 1 of the record is changed
from X'38 1 to X'18', the record is written via WRITECO, COBLEFT and COBUSED are reset,
and exit is taken.

If record size is greater than zero, the source record in CARDIMG is translated into compressed
format and stored in COBUF. Characters A-Z, 0-9 and certain spedal characters found in
SCCTAB have 6-bit equivalent codes (compressed items). All other characters are represented
by their 8-bit source codes preceded by compressed item "4". If the character can be
represented in 6 bits, subroutine CMPL60 is passed a bit count of 6 in P2 and is used to edit the
6-bit code "4" in P1 (use 8-bit character that follows) into COBUF and then the 8-bit code
itself in P1 into COBUF. This process continues until the end of the record is reached.
If the last output record contains fewer than 80 bytes, it is padded to 80. The end-of-line
item "2" is added, COBLEFT and COBUSED are reset and exit is taken.

CMPL60

1. Purpose:
to control the editing of one 6- or 8 - bit compressed II item II into COBUF.

2. Entry:
LNK is the linkageregister. This subroutine is entered via BAL,LNK CMPL60 from
COMPRE SLINE. Upon entry:

P1 = compressed code (item) for one character;
P2 = length of code in Pl (6 or 8).

3. Exit:
B O,LNK

4. Operation:
If the blank count in Tl is zero, subroutine CMPL70 is used to enter the item into COBUF and
exit is taken. If it is non-zero further tests are performed •. If it is 1, item "7" is edited into
COBUF via CMPL70~ If the blank count + 1 is equal to or less then 64, item "5" is edited
into COBUF via CMPL70 followed by the count n also edited into COBUF via CMPL70.
Similarly, if the blank count + 1 exceeds 64, item "611 is edited into COBUF followed by
count n edited in line manner. Tl is reset to zero and exit is taken.

8-18

8.4.24 CMPL70

1. Purpose:
to enter a compressed "item II into COBUF and if buffer is filled to write record via WRITECO.

2. Entry:
LNK is the linkage register. This subroutine is entered via BAL, LNK CMPL70
from CMPL60. Upon entry:

Pl contains compressed item;
P2 contains bit count of the item;
registers T2 and X2 are as set in COMPRESSLINE o

3. Exit:
B 0, LNK

4. Operation:
The bit count in P2 is added to T2. If the sum exceeds or equals the total allowed per
output record, WRITECO is used to write a record of compressed output before current
byte is edited into the buffer, COBUF. Editing, i. e., adding, the item into the buffer
COBUF takes place as follows: Item length in bits is subtracted from the count of bits
remaining to be filled in the current word in COBUF leaving a count in X2. If there
is enough room remaining to allow the item to be added, it is shifted left the number of
places now specified in X2. The item is then added into COBUF by indirectly addressing
COWORD, the address of the destination word. Exit is then taken. If there is
insufficient room remaining in the current word in COBUF, the item is split between
registers X4 (R) and Xl (Ru 1). This is done by shifting it right leaving in X4 only the
number of bits which can be contained in the current word in COBUF with the remaining
bits in Xl. The bits in X4 are added into the current word in COBUF, the address in
COWaRD is incremented, and the bits in Xl are added into the next word in COBUF.
Register X2 is incremented by 32 making it equal to the number of unfilled bits in the
current word in COBUF. Exit is taken.

8.4.25 DELETE

1. Purpose:
to delete records in a specified range.

2. Entry:
LNK is the linkage register. This subroutine is entered via BAL, LNK DELETE from F:MERGE.
Upon entry

3. Exit:

Pl = sequence number of first record to delete and
P2 = sequence number of last record to delete.

Normal exit is B 0, LN K with CC 1 = 0 to indicate that last sequ ence number was found.
Error exit is B 0, LNK with CCl = 1 to indicate that last sequence number was passed.
Upon exit in either cpse:

R 1 = sequence number of last record read,
R2 = number of records de leted.

4. Operation:
1. An attempt is made to read the record specified in Pl using READNXTRANDOM.
2. If end-of-file is encountered, the message I--EOF HITI is printed via TYPEMSG and error

exit is taken. If the record obtained has a higher sequence number than that in P2,
the error exit is taken. Otherwise, the record is deleted using DELETERECORD. The next
record in the file is read using READSEQUEN. Testing at step a. is resumed until either
end-of-file is reached or the sequence number specified in P2 is encountered (normal case)
or passed.

8-19

ENTRY
COMPRESSLINE

Initialize
Registers
Tl, T2, X2

CMPLlO
X3 = 0 to point

>-_~ to start of
no COBUF

Append compressed
item "3" (EOF)
to COBUF

Change byte 1
of record to
X'18'

Write
Output

Record

WRITECO

X2-COBLEFT
T2-COBUSED

CMPLll

Get next byte
from
CARDIMG

Mask off
Bits 0 and 1

Get correspo nd i ng
compressed code
from COTAB

CMPL12

Increment
RECSIZE

Figure 8-3. Flow Diagram of COMPRESSLINE

8-20

Pg. 1

Pg. 2

no

PAD to 80

CMPl14 CMPL60

Append compressed
item "211 (EOl)
to COBUF

Pg. 1

CMPl20

Code=
>----.1 INDEX (in P2)

yes Plus 43

CMPl25

Increment blank
>------l~ count in T 1

yes

8C-M~P-l-17-'" CMPl60

Append compressed
item 11411 to
COBUF

CMPl60

Append 8-bit
source item to
COBUF

Figure 8-3. Flow Diagram of COMPRESSLINE (Cont.)

Pg. 2

8.4.26 DELETEFILE

1. Purpose:
to delete a file and set CC 1.

2. Entry:
LNK is the linkage register. This subroutine is used by F:COPY and F:DELETE routines. Upon
entry Pl=address of file 10 in Command Description Table. It is entered via BAL, LNK DELETEFILE.

3. Exit:
CCl upon exit contains: 0 if file was deleted,

1 if file does not exist.
Return is B 0, LNK to call ing routine.

4. Operation:
This subroutine uses OPENINIT to open file.
If file does not exist it sets CC 1 = 1.
If abnormal I/O for another reason, it branches to BADI01 which prints IBAD I/O; ABN CODE XXI.

8.4.27 BADI01

1. Purpose:
to print abnormal I/O message.

2. Entry:
At BADIa, error code is loaded into Xl from 01.
At BADI01, error code is assumed to be in Xl.
Entry is with branch, because there is no return to calling routine.
BADI01 is called by various open, read and write routines.

3. Exit:
It returns to the Monitor via M:ERR.

4. Operation:
It sets up error code in message line and prints message.

8.4.28 GETFILEID

1. Purpose:
to check syntax of FlO and if good to set PARAMBUF and PRMBUFSZ.

2. Entry:
LNK is the linkage register. This subroutine is entered via BAL, LNK GETFlLEID from
PARSE:BUILD, :COPY, :MERGE, and :EDIT to obtain the file 10 so it can be placed in
the Command Description Table.

The file 10 is assumed to be in the Teletype input buffer.

3. Exit:
File 10 is now in PARAMBUF as follows:

PARAMBUF

TEXTC fi lename
TEXTC acct or 0
TEXTC password or 0

and it has been checked for proper format.

Return is to call ing routine via B 0, LNK.
Error returns are via GETNEXTNAME:

messages include I_P1 :BAD FlO I
I_C 1 :CMND ILGL HERE I,
I_P1 :ILGL SYNTAX I•

8-22

4. Operation:
This routine rejects a file name which is longer than 31 characters. It uses GETNEXTNAME first to
build file name in PARAMBUF. It then pushes the name from PARAMBUF into a stack. It repeats
this process for account and for password, if present. It then pulls the entries from the stack and
stores them in PARAMBUF and stores in PRMBUFSZ the length in words of the entries in PARAMBUF.

S.4.29 GETNEXTNAME

1. Purpose:
to get the next name from the Teletype input buffer (TTYIMG) and place it in PARAMBUF.

2. Entry:
LNK is the linkage register. This subroutine is entered by invoking the NXTNAM command
procedure resulting in the calling sequence:

3. Exit:

BAL,LNK
GEN, S, 24
GEN, S, 24 .
GEN, S, 24

GETNEXTNAME
I of branches, addr. of error msg.
type 1, branch addr. 1

· type n , branch addr. n

Upon exit a name (file, acct or password) resides in PARAMBUF in TEXTC format.

4. Operation:
Input characters from TTYIMG are scanned and tested to determ ine whether they are part of
a name. They are placed in PARAMBUF in TEXTC format. When a terminator is found (e.g.
comma or right parenthesis) the scan is stopped, and the name is padded to the right with
three blanks. If an error is found, the error message given in the calling sequence is printed
and return is made to MASTERPARSER via TYPECERR.

S.4.30 GETNEXTPARAM

1. Purpose:
This routine scans the Teletype input buffer to isolate recognizable character strings which
comprise EDIT commands and to place them in PARAMBUF.

2. Entry:
This routine is called by various PARSE: routines. LNK is the linkage register.
The routine is invoked by the NXTPRM procedure which sets up a calling sequence as follows:

3. Exit:

BAL,LNK
GEN,S,24
GEN,S,24 . .

GETNEXTPARAM
I of branches, addr. of error msg.
completi?n type, branch addr.1

· · completion type, branch addr. n

Upon exit a parameter is in PARAMBUF in TEXTC format. Return is to the branch address
in bits S-31 of the word in the calling sequence of which a match was found on bits 0-7.
Error return is to MASTERPARSER via TYPEPERR.

4. Operation:
A scan is made character by character with tests being performed to detect invalid command
format. Examples: slash (j) must not be the last character of a command; a sequence number
must not exceed three digits; the second sequence number in a range must not be greater than
the first. Error messages include:

'-Pn:ILG L SEQI'
'-Pn:SEQ2<SEQ l'

in addition to that given in the calling sequence.

8-23

Save
R3 - R6

Pick up current
character
position

Get next non
blank character

GN50

Get type of

Put 3 trailing
blanks on name;
store true count
for TEXTC

yes completion so we
Get # of
words for
text

Set index to first char.
in buffer where name
will be bui I t

Store
character in

name

know where to "bran

Set type to name
for branch target

Set to Rescan
last character

6,2

Figure 8-4. Flow Diagram of GETNEXTNAME

8-24

GETNEXT$FINISH ,...-__ ---L ____ ,

Store wordsize
of entry

Get # of branches
to check from BAL

Get branch
address; restore

R3 - R6

Go to routi ne

no

GETNEXTrE::.:.:R~RO=R ==~l--__

Get address of
error msg. from
BAL

yes

yes

Decrement
By 1

Pg. 2

Store error msg.
in dummy call

Figure 8-4. Flow Diagram of GETNEXTNAME (Cont.)

8-25

ENTRY
GETNEXTPARA

Get current
character
position

Skip to next
non-blank

Set index to first
character in
buffer to build

parameter

GP20

Get type of com
pletion to know

yes where to branch

>--+-1 GETNEXT$ERRO

Get next
character

no

Store
character

Figure 8-5. Flow Diagram of GETNEXTPARAM

8-26

Pg. 1

GP45 TYPEPERR

'ILGL
STRG'

GP35

Get next
character

Pg. 2

Set
Completion to
String

GP40

Store 3 trailing
blanks

Store count for
TEXTC; get word

GP43 TYPEPERR

'NULL
yes STRING'

GP10

Store
Character

Get
next

character

count; set to Set
Rescan completion type

to alpha

Figure ,8-5. Flow Diagram of GETNEXTPARAM (Cont.)

8-27

Pg. 2

~1 to show 1st
.seq.
~2 to show

INTG. I 0.0 1 accumu ator

Add digit to
previous sum

Get next
character

Add the
necessary

tra i Ii ng zeroes

Set to check for
3 digits maximum

GP53

Get next
character

Add to previ ous
sum

'ILGL
SEQ"

Figure 8-5 0 Flow Diagram of GETNEXTPARAM (Conto)

8-28

Pg o 3

no

Adiust for
trailing

Save value
in

PARAMBUF

l Xl to show 2nd
seq. II; Reset X2,
D1 as above

Get next
character

Multiply by 1000
to convert to
seq. II

3

Set to check
3 digits

Set finish
type to
INTG

Set PARAMBUF
size to Rescan
last character

Store value
in
PARAMBUF

Figure 8-5. Flow Diagram of GETNEXTPARAM (Cont.)

8-29

Pg.4

no

Store value in
PARAMBUF

+1

Set finish type to
SEQ2;
Set PARAMBUFSZ
to '2

Set to Rescan
last character

yes
Multiply by
1000 to convert

to Seq. 'format

yes GETNEXT$FINISH

ISEQ2< SEQ 11

Figure 8-5. Flow Diagram of GETNEXTPARAM (Cont.)

8-30

Pg. 5

8.4.31 MOVESEQ

1. Purpose:
to format sequence number in EBCDIC as 'XXXX. XXX' having four characters from calling
sequence appended.

2. Entry:
LNK is the linkage register. This subroutine is entered via BAL, LNK MOVESEQ from
of the following routines:

R:MOVE$DELETE,
R:MOVE$KEEP,
READSEQUEN.

Upon entry:
P1 = sequence number to be converted to EBCDIC;
P2 = byte address at wh ich to put the string;

word following the BAL contains four characters to be appended to the sequence number.

3. Exit:
Upon exit R 1 contains the number of characters in the resultant string.
Exit is B 1, LNK.

4. Operation:
It uses BINTODEC to convert sequence number to EBCDIC. It places string in TEMPBLCK with
leading zeroes suppressed and the requested characters appended at the right.

8-31

8.4.32 NEWCDTENTRY

1. Purpose:
to set up room in the COT for a new entry.

2. Entry:
LNK is the linkage register. This subroutine is entered from several
PARSE: routines.
Upon entry: P1 contains the number of the command type to be added; word following
the BAL contains the number of parameters.

3. Exit:
COT entry is initialized as follows:
word 0: byte 0 contains length of entry (= 0 initially)

byte 1 contains command type (or number)
e. g. 0 for carriage return,

1 for file name, etc.
byte 2 contains number of this entry in the COT
byte 3 contains number of parameters

words [1- # of parameters/2] : zeroes
word [# of parameters/2+1] : X'OOOOOlOO'

8.4.33 OPEN

1. Purpose:
to open an update file.

2. Entry:
LNK is the linkage register. For F:EDIT and F:MERGE, entry is via BAL, LNK OPEN to
open an update file. For F:COPY and F:MERGE entry is via BAL, LNK OPEN1 to
open a copy input file.
Upon entry P1 = address of file 10 in COT.

3. Exit:
CC 1 = 1 if file does not exist

= 0 otherwise
CC2 = 1 if fi Ie is not keyed

= 0 otherwise
Error exit is to BADIOl if requested fi Ie does not exist.
Normal return is to calling routine via B 0, LNK.

4. Operation:
This subroutine sets mode to INOUT if entered via OPEN or to IN if entered via OPEN1.
It uses OPENINIT to try to open file.
If it cannot open file it sets CCl and returns.
If file is not keyed it sets CC2 and exits.
Otherwise it sets CC 1 and CC2 = O.

8.4.34 OPENINIT

1. Purpose:
to initialize an OPEN FPT.

2. Entry:
LNK is the linkage register. This subroutine is used by DELETE FILE, OPEN and OPEN3.
It is entered via BAL, LNK OPENINIT.
Upon entry: Pl = address of file 10 in COT;

Tl = FPT entry at which file name is to go;
T2 = FPT entry at which account number is to go;
T3 = FPT entry at which password is to go.

8-32

3. Exit:
Return is to calling routine via B 0, LNKo

4. Operation:
It moves file name, account and password from CDT to FPT locations and sets control words
properly.

8.4.35 OPENNEW

1. Purpose:
to open a file for output.

2. Entry:
LNK is' the linkage register. This subroutine is used by F:BUILD.
It is entered via BAL,LNK OPENNEW.
Upon entry Pl = address of file ID in CDT.

3. Exit:
CC 1 = 1 if file not exist and the open in OUT mode was successful.
CC 1 = 0 if file already existed and could not be opened as an output file.
Normal return is to calling routine via B 0, LNK.
Error return is branch to BADIOl if it could not open file even through it was present.

4. Operation:
It" sets mode to INOUT.
It uses OPENINIT to set FPT and tries to open file:
if file exists, it sets CCl = 0 and returns;
if file exists but could not be opened it exits to BADI01;
if file does not exist, it changes mode to OUT and issues open.

8.4.36 OPEN2, OPEN3

1. Purpose:
to open an output file for copying.

2. Entry:
LNK is the linkage register. OPEN 2 is called by F:COPY and F:MERGE and is entered
via BAL, LNK OPEN2.0PEN3 is called by F:COPY and is entered via BAL, LNK OPEN3.

3. Exit:
CC 1 = 1 if file not successfully opened.
CC 1 = 0 otherwise.
Error exit is to BADI01.
Normal return is to calling routine via B 0, LNK.

4. Operation:
If entered via OPEN2 it sets mode to INOUT.
If via OPEN3 it sets it to OUT.
It calls OPENINIT and attempts to open file:
if successful it sets CC1=0;
if unsuccessful, it tests to see if it were because file did not exist:
if so it issues open for out file;
if for any other reason, it goes to BADI01.

8-33

8.4.37 READNXTRANDOM

1. Purpose:
to read random record or next highest one.

2. Entry:
LNK is the linkage register. This subroutine is entered via BAL, LNK READNXTRANDOM
from the following routines:

F:MERGE
DELETE

Upon entry Pl = sequence number of record to be read.

3. Exit:
R 1 = sequence number of record actually read.
ee 1 = 0 if record existed.
eel = 1 otherwise.
Return is to calling routine via B 0, LNK.

4. Operation:
This subroutine uses READRANDOM to issue read.
If read was successfu I it sets R 1 = sequence number,

eel = 0,
and returns.

Otherwise it sets ee 1 = 1 and returns.

8.4.38 READRANDOM

1. Purpose:
to dear buffer and read one random record.

2. Entry:
LNK is the linkage register. This subroutine is entered via BAL, LNK READRANDOM from
READNXTRANDOM.
Upon entry Pl = sequence number of record to be read.

3. Exit:
ee 1 = 0 if record exists.
ee 1 = 1 otherwise.
Return is to calling routine via B 0, LNK if read was successful.
Error returns: it branches to BADIO if key existed but read unsuccessful;

it returns with eel = 1 otherwise (B 0, LNK).

4. Operation:
It uses: BLANKBUF to clear buffer and SETKEY to set up key for the read.
It issues read.
It uses SET LAST KEY to save key from this read.

8.4.39 READSEQUEN

1. Purpose:
to clear buffer and read next sequential record.

2. Entry:
LNK is the linkage register. This subroutine is entered via BAL, LNK READSEQUEN from
the following routines:

F:COPY
F:MERGE
F:LIST
F:COMPRESS
DELETE
READNXTRANDOM

8-34

3. Exit:
R 1 = sequence number of record read in (zero if file not keyed).
Normal return is to calling routine via B 0, LNK.
Error return is a branch to BADIO if read was unsuccessful for any reason other than EOF.

4. Operation:
This subroutine uses BLANKBUF to clear buffer; it reads record; it uses SETLASTKEY to save key
from the record read.
If EOF hit it gets and prints the key of last record: '--EOF HIT AFTER YYYY. YYY'. Otherwise
it sets R 1 and returns.

8.4.40 READSEQUEN2

1. Purpose:
to read a record sequentially from M:EI and, if compressed, to check sequencing and checksum of
the record.

2. Entry:
LNK is the linkage register. This subroutine is used by F:BUILD and RECONSTRUCT$LINE via
BAL, LN K READSEQ UEN2.

3. Exit:
Normal exit is B 0, LNK with the following possible condition code settings:

CC 1 = 0 if record not compressed, in which case R 1 = byte count of record,
CC 1 = 1 if record is compressed,
CC2 = 1 if end-of-file encountered,
CC3 = 1 if EOD encountered.

Error exit is via M:ERR to the monitor if error found in compressed sequencing or checksum.

4. Operation:
The record is read into CIBUF. Byte count of record is placed in R 1. If end-of-file or EOD
is encountered, exit is taken after setting the appropriate condition codes. If the record is
not compressed, i.e., byte 0 is not X'3F' or X'lF', exit is taken with CCl = 0 .. If the record
is compressed and one of the following conditions is met, the error message, 'ERROR IN CI.
CONTROL BYTES = XXXXXXXX' is printed and M:ERR exit is taken to the monitor:

1. sequence number in the record does not equal 1 plus the sequence number in CISEQ;

2. checksum computed by adding together all bytes in the record does not equal checksum
in the record itself.

Otherwise control words are initialized as follows:
CIBTOTAL = usable bit count from the record;
CIBUSED = 32, total bits used from CI record;
CIBLEFT = 32, number of bits left in current word in CIBUFi
CIWORD = address of first (i. e., current) word of test in record.

8.4.41 READTELETYPE2

1. Purpose:
to read and print one input command from the IIC II device.

2. Entry:
LNK is the linkage register. This subroutine is entered via BAL, LNK READTELETYPE2
from MASTERPARSER.

3. Exit:
B 0, LNK is normal exit. End-of-date exit is to F:END.

4. Operation:
The next input command is read from the IIC II device into TTYIMG. If end-of-data is
reached, exit is to F:END. The command is printed via M:LO. The command is scanned to
count the number of characters read thro~the last non-blank. This count plus 1 resides
in R 1 upon exit from the subroutine. A ~ character X'15', is appended to the text.

8-35

8.4.42 RECONSTRUCT$LINE

1. Purpose:
to reconstruct a symbolic record in CARDIMG using compressed input in CIBUF.

2. Entry:
LNK is the linkage register. This subroutine is entered via BAL, LNK RECONSTRUCT$LINE from
F:BUILD. Upon entry the compressed data to be converted is in CIBUF.

3. Exit:
B 0, LNK with condition code setting as follows:

CCl = 1 if end of compressed file reached;
CCl = 0 otherwise.

4. Operati on:
Registers are initialized as follows:
X3 = 0, current byte in output buffer;
T2= contents of CIBUSED, total bits used from CIBUF;
X2 = contents of CIBLEFT, total bits left in current word in CIBUF.

The output buffer, CARDIMG, is initialized to blanks via BLANKBUF. Control bytes and their
corresponding characters if any are obtained from CIBUF and their EBCDIC equivalents
are edited into CARDIMG one by one until either an end of line or end-of-file item is found,
after which exit is taken with condition code appropriately set. Subroutine RECL60 is used to
perform the actua I extraction of each character from CIBUF. One character is extracted per
entry to RECL60. Action taken for compressed items is as follows:

8.4.43 RECL60

1. Items 0 and 1: go to next item.
2. Item 2 (EOL): save T2 contents in CIBUSED; save X2 contents in CIBLEFT; exit with

CCl = O.
3. Item 3 (EOF): save T2 and X2 as in step 2 and exit with CC 1=1.
4. Item 4: use RECL60 to extract next 8 bits from CIBUF; store resultant byte into

CARDIMG; increment pointer in output buffer; advance to next item.
5. Item 5: use RECL60 to extract next 6 bits from CIBUF which is a count of blanks;

store blanks into CARDIMG until count is satisfied; increment pointer in output
buffer; advance to next item.

6. Item 6: ,follow procedure in step 5 adding an additional 65 blanks into CARDIMG.

1. Purpose:
to extract the specified number of bits from CIBUF which comprise one compressed lIitem".

2. Entry:
LNK is the linkage register. This subroutine is entered via BAL, LNK RECL60 from
RECONS.TRUCT$LINE. Upon entry:

P2'= number of bits to extract;
T2 = and X2 are as set in RECONSTRUCT$LINE.

3. Exit:
Normal exit is B 0, LNK with requested item in X4. Error exit is to monitor via M:ERR if
record is read which is not compressed.

4. Operation:
If fewer bits are requested then remain unused in CIBUF, an additional record is read
into CIBUF using READSEQUEN2. If the record is not compressed, the message I-INCOMPLETE
CI. I is printed via TYPEMSG and return is made to the monitor. The current word is moved
into register Xl from CIBUF (addressed indirectly via CIWORD). If all bits required are
contained in it, the requested bits are shifted if necessary so that they are right justified in
X4. The shift is in registers X4 (R) and Xl (RU1) so that after it is done, the contents of
Xl are saved in the current word in CIBUF. Exit is taken. If all bits required are not contained
in the current word in CIBUF, the bits which are in the current word are shifted into X4, the
address in CIWORD is incremented by 1, and the remaining required bits are obtained from the
next word from CIBUF.

8-36

Register X2 is adjusted to contain the count of unused bits in the current word in CIBUF
the unused portion of the current word is stored back into CIBUF, and exit is taken.

8.4.44 REPSEQ

1. Purpose:
to replicate single sequence number in PARAMBUF + 1.

2. Entry:
LNK is the linkage register. This subroutine is entered via BAL, LNK REPSEQ.

3. Exit:
B *LNK

4. Operation:
It picks up sequence number in PARAMBUF, stores it in PARAMBUF + 1, and adds 1 to
PRMBUFSZ.

8.4.45 SETEOD

1. Purpose:
to scan active card image to locate the right-most non-blank character.

2. Entry:
LNK is the linkage register. Th is subroutine is used by a number of routines such as
MASTEREXECUTIVE, F:BUILD, and other F: routines. It is called using BAL, LN K
SETEOD.

3. Exit:
EODCLMN contains column of last non-blank character or-l if all blanks. RECSIZE
contains a byte count of zero if all blanks. Return is to calling routine using B 0, LNK.

4. Operation:
This subroutine scans record image from right looking for all blank words (up to word 0). If
no non-blanks are found, it sets flag to check word ~ero byte by byte. Otherwise it sets flag
to indicate byte by byte checking in the word where a non-blank character was found.

8.4.46 SETKEY

1. Purpose:
appends key length of 3 and stores key in KBUF.

2. Entry:
LNK is the linkage register. This subroutine is entered via BAL, LNK SETKEY from the following
routines:

READRANDOM
WRITE2
WRITENEWRANDOM
WRITERANDOM

Upon entry PI = sequence number to put in key for read or write.

3. Exit:
Return is to calling routine via B 0, LNK.

4. Operation:
It stores input sequence number with appended key length in KBUF.

8-37

8.4.47 SETLASTKEY

1, Purpose:
to store key of last record read in LASTKEY and to store record size in RECSIZE.

2. Entry:
LNK is the linkage register. This subroutine is entered via BAL, LNK SETLASTKEY from
WRITERANDOM and READSEQUEN.

3. Exit;
It returns to calling routine via B 0, LNK with LAST KEY and RECSIZE set.

4. Operation:
It sets LASTKEY and RECSIZE, removes carriage return, if any, and uses SETEOD to append
carriage return if CR ON.

8.4.48 TYPECERR

1. Purpose:
to type command error message (TYPECERR) or parameter error message (TYPEPERR).

2. Entry:
LNK is the linkage register. This subroutine is entered via BAL, LNK TYPECERR

or BAL, LNK TYPEPERR from many routines.
The word following BAL contains address of message to be printed.

3. Exit:
B 1, LNK

4. Operation:
If maximum error messages allowed have been printed it returns.
It sets command or parameter number to agree with its place in the command: e.g. 1-- P2 ____ I.
It types message via CAL3, 1 0 followed by carriage return and line feed.

8.4.49 TYPEMSG

1. Purpose:
to pri nt a message.

2. Entry:
LNK is the linkage register. This is a service routine used by many routine Calling sequence
is: BAL, LNK TYPEMSG .

DATA address of TEXTC message
3. Exit:

B 1,LNK

4. Operation:
The TEXTC string is moved into buffer area LISTIMG. The message is then printed via M:LO
using M:WRITE.

8.4.50 WRITECO

1. Purpose:
to append byte count and checksum to a compressed record and to write the record via M:EO.

8-38

2. Entry:
LNK is the linkage register. This subroutine is entered via BAL,LNK WRITECO from
COMPRESSLINE. Upon entry T2 = total bit count of record in COBUF.

3. Exit:
B O,LNK

4. Operation:
a. The total bit count in T2 is incremented by 8, converted to bytes and stored in byte 3 of

word 1 of COBUF. The sequence number in byte 1 of word 1 of COBUf is incremented by 1.

b. If the resultant byte count in T2 is 4 or less, the routine resumes processing at step c.
Otherwise, all bytes of the record are added together to form the checksum which is placed
in byte 2 of word 1 of COBUF. The record in COBUF is written via M:EO.

c. COWORD is initialized to point to COBUF + 1. Byte 1 of word 1 of COBUF is set to
zero as are words 1-29. T2 (bits used in current word) and X2 (total bits used) are set to 32.

8.4.51 WRITENEWRANDOM

1. Purpose:
to write a record with NEWKEY

2. Entry:
LNK is the linkage register. This subroutine is entered via BAL, LNK WRITENEWRANDOM from
R:RENUMBER. Upon entry Pl = sequence number of record to be wr~tten.

3. Exit:
Error exit is branch to BADIO if error occurred for any reason other than that record already
existed.
Normal return is B 0, LNK to calling routine (CCl = 0 to show record written).
If the record already existed, it sets CC 1 = 1 before returning to calling routine.

4. Operation:
It calls SETKEY to put sequence number in KBUF.
It calls PUTCR to insure that there is a carriage return in the record.
It writes record with NEWKEY: if successful it sets CCl = OJ

if not, it sets CC 1 = 1.

8.4.52 WRITERANDOM

1. Purpose:
to write a new random record (whether or not it already exists).

2. Entry:
LNK is the linkage register. This subroutine is entered via BAL, LNK WRITERANDOM from
F:BUILD.
Upon entry P1 = sequence number of record to be written.

3. Exit!
Normal return is B 0, LNK to calling routine.

4. Operation:
Th.is subroutine calls SETKEY to put sequence number in KBUFj it calfs PUTCR to insure that
CR is present if mode is CR ON and writes record with ONEWKEY.

8-39

8.4.53 WRITE2

1. Purpose:
to write a record in copy file.

2. Entry:
LNK is the linkage register. This subroutine is entered via BAL, LNK WRITE2 from F:COPY and
F:MERGE. Upon entry P1 = sequence number of record to be written.

3. Exit:
Error exit is a branch to BADIO followi ng write error for any reason other than that the record
already existed. Normal return is to calling routine via B 0, LNK (CC 1 = 0). If record
already existed it sets CC 1 . 1 before returning to calling routine. .

4. Operation:
It uses SETKEY to put sequence number in KBUF.
It uses PUTCR to insure CR is in record (provided CR ON is the mode).
It writes record with NEWKEY: if successful it sets CC 1 = 0;

otherwise it sets CC 1 = 1.

8.4.54 WRITE$EO

1. Purpose:
to write on EBCDIC record via M:EO.

2. Entry:
LNK is the linkage register. This subroutine is entered via BAL, LNK WRITE$EO from
F:WRITE. Upon entry the record to be w~itten resides in CARDIMG.

3. Exit:
B O,LNK

4. Operation:
The record is written using M:WRITE via M:LO.

Table 8-1. Command Description Table (COT)

COT 0 Number of Command Entries
• Start of

First Entry, ~

If any
n I End-Of-CDT Marker

0 31

Notes:
1. Entry Fonnat

o
No. of words command command no. of
in entry, n type no. parameters

0 7 15 23 31

n Words
n

Where command type = 0
1

for
for

END, carriage return
NAME, a file name, e. g., example
(ACCT, PASS)

2
3

for
for

SEQ, a sequence no., e. g., 1.23
SEQ2, two sequence nos. or two
sequence nos. separated by a dash,
e. g., 1.2-2

8-40

Table 8-1. Command Description Table (Cont.)

4 for INTG, a numeric string whose value is
less than 1000; e.g., 123

6 for ALPH, a character string not enclosed
in slashes; e. g., BUILD

7 for COM, comma

9 for LPAR, left parenthesis
10 for RPAR, right parenthesis
11 for PERIOD
12 for BLANK

2. CDT + 100 = CDTADR, address of current command in CDT

3. PARAMPSN = next available slot in CDT

4. PRMBUFSZ = no. of words in PARAMBUF to be added

5. CHARPSN = no. of next character to scan

6. End-of-CDT Marker = X'OOOO0100'

7. Command no. is described in Table 8-2.

Table 8-2. Command Table

COMMAND # COMMAND CDT BUILDER CDT EXECUTER

1 WRITE PARSE:WRITE F:WRITE

2 BUILD PARSE:BUILD F:BUILD

3 COpy PARSE:COPY F:COPY

4 DELETE PARSE:DELETE F:DELETE

5 LIST PARSE:LIST F:LIST

6 END PARSE:END F:END

7 COMPRESS PARSE:COMPRESS F:COMPRESS

8 MERGE PARSE:MERGE F:MERGE

8-41

9.0 FAST SAVE PROCESSOR

9. 1 FUNCTIONAL OVERVIEW

The FAST SAVE Processor is a utility designed to provide the capability of saving files at or near tape speed.

It will take approximately 5 minutes for each 2400 ft. reel of tape using FAST SAVE with 150 ips mag tape

units. A time saving of 80% or more is now achieved over any other file saving procedures under BPM/BTM.

9.2 INTERFACE

FAST SAVE is able to operate under any release version of BPM/BTM since and including FOO, providing it

has these minimal hardware requirements.

1. At lease one mag tape unit

2. Line Printer

3. Card reader

4. One or more Rads and or Packs

5. Console teletype

9.3 OPERATIONAL OVERVIEW

The FAST SAVE program must run in the :SYS account as a privileged processor in master mode. This is a

necessity in order to gain access to the account directory, to open all Public files, and the BPM/BTM

queue ing routines. A load requirement of a stack size of "X'80' is necessary. Other than" the" above, no other

requirements are necessary.

All tape record blocks written to tape will be 512 words or less. The label sentinel on tape will be PRG 1 thru

PRG9, as the present BPM/BTM FPURGE processor. Also, the present FPURGE processor has no difficulty

in reading any tapes created by FAST SAVE.

Sample Loading Procedure

I JOB :SYS, ME, F

ILOAD (BI), (LMN,FSAVE),(MAP),(PERM),(TSS,80)

IEOD

lFIN

(BI DECK

An assembly switch (start) is set at the beginning of the program, primarily for MBS vs. STB. In the event that

the hardware does not have MBS simulation, this switch would be set to O.

Sigma7 EQU 1

Sigma7 EQU 0

FAST SAVE is released in the MBS Mode.

MBS Mode

STB Mode

9-1

9.3. 1 COMMAND SUMMARY

COMMAND MEANING

+LOG

+BLOCKS

+DEBUG

+LIST

+INDEX

+FIT

+DIRECTORY

No output reel will be used. If +LOG is used, you cannot use

+DUMP option. In card column 9, you have the option to use

STATS. (See NOTE below).

Lists output buffers as they -are built.

Enables snaps and dumps of errors found in file management tables.

This is the only command that will produce a listing log on M:LL.

List file index sectors.

List file information table.

List file and account directories.

The above commands, if used, must always precede the following commands.

NOTE:

+DUMP

+HOUR

+DAY

+START

+SKIP

+SELECT

+END

Defines tape output to be produced. If +DUMP is used, cannot use

+LOG. In Card Column 9 you have the option to use stats (see stats

below).

Save all files created since HOUR defined in Card Column 9 of this

card. 109001 defi-nes 9:00 a.m., and 118001 defines 6:00 p.m ••

Save all files created on and since the Month and Day defmded in

Card Column 9 of this card. 108311 defines August 31, and 10202 1

defines February 2.

To save all files starting at the account number defined on the data

cards that fo I low •

To save all files except skipping the accounts and files on the data

cards that follow until +END command is read.

Save only the accounts and files specified on the data cards that

follow until +END command is read.

Last command to be read. If using data card, +END would terminate

the data.

The STATS option in card column 9 on the +LOO and +DUMP options will create a statistical

file name called 'DISK POOL ' in the :SYS account. Five wordsare reserved for each account.

After termination of FAST SAVE, the file 'DISK POOL ' can be accessed for accounting purposes,

to extract, the following information:

9-2

WORD

° and 1

2

3

4

Each record can be accessed by key or sequentially.

9.3.2 Data Cards

ACCOUNT# File Name

Cel CC14

:SYS COBOL

:SYSGEN RDF

:SYSGEN WRTF

F5608312

The absence of a file name specifies IALL 1 files.

CONTENTS

ACCOUNT NAME

Number of files in account

Number of granules in account

Number of bytes in account.

ALL DATA CARDS must be in sorted order before being read by via S1 1 Device. FAST SAVE does not link

to SORT or search backwards through the account directory or file directory. Therefore the burden is on the

user to have the data cards in sorted order before FAST SAVE is run.

1. Job stream to save selective files to tape

A. ! JOB :SYS, ME, F

! POOL (IPOOL,O), (FPOOL,O)

!FSAVE

+LIST

+DUMP

+SELECT

CCl

:SYSGEN

32301

+END

CC14

LOCCTA

LOCCTB

LOCCTC

A

B

C

B. Accounts and files must be in sorted order.

2. Job stream to save all files in entire system, and specifying a series of names to skip.,

9-3

9.3.3 Error Message Summary

MESSAGE

'BPM stack size too smal JI

'Not enough core to run less

than 5 pages available I

ICannot read 1 st Account

Directory Sector l

'Link failure in Account

Directory I

'Link failure in File

Directory I

'Link failure in Index

Chain '

'Fit disc address error in

file directory key'

'Control card error l

'File directory address

error in account key I

'File name does not,

match file directory key'

'New reel started '

'Irrecoverable tape write

error I

'Error in file information

table I

'Error in master index I

'Partial file '

'Processi ng term i nated I

MEANING

Load module was created with 'TSS '

of less than X ~OO I words.

Due to a paging buffer method of operating,

less then 5 pages of dynamic storage is

insuffic ient.

ACNCFU contains invalid disc address

this is a catastrophic failure.

Cannot link forward due to invalid

disc address.

Cannot process any more of this account

continue with next account in directory.

Cannot process this file any further.

Output tape is closed out for the

current file.

Unable to process this file ..

Control cards are order dependent, and

they are in that order.

The disc address for the file directory

is invalid - this account is skipped.

The fit read does not match the current

file directory name.

Self-explanatory

Will request the next reel and continue

processing.

An entry required to process this file

is missing from the 'FIT'

An i nva lid entry was found in the

index sector.

Saved as much as possible

Everything completed

A. !JOB :SYS, ME, F

I POOL (IPOOL, 0), (FPOOL, 0)

I FSAVE

+LlST

+DUMP

+SKIP

CCI CC14

:SYSGEN

F5608312

F5608318

G2708300 FILEA

G2708300 FILEB

+END

B. The absence of a file name in Card Column 14 specifies the entire account is to be

SKIPPED/SELECTED.

3. Job stream to list all files in the system without saving the files on tape.

! JOB :SYS, ME, F

!FSAVE

+LlST

+LOG

+END

4. Job stream to list a file directory

!JOB :SYS, ME, F

!FSAVE

+LlST

+DIRECTORY

+LOG

+SELECT

:SYS

+END

5. Job stream to list a file information table

! JOB :SYS, ME, F

!FSAVE

+LlST

+FIT

+LOG

+SELECT

:SYS METASYM

+END

9-5

6. Job stream to save files created since 5:00 a.m., February 25, 1972

I JOB :SYS, ME, F

CCl

I POOL (IPOOL, 0), (FPOOL, 0)

I FSAVE

+LIST

+DUMP

+DAY

+HOUR

+END

CC9

0225

0500

7. Job stream to save all fj les in the system, starti ng at a given account.

1 JOB :SYS, ME, F

I POOL (I POOL, 0), (FPOOL, 0)

I FSAVE

+LIST

+DUMP

+START

F56083 1 2

+END

8. Job stream to save a given file on tape; list its account directory sector, its file directory

sector, and its file information tobl e; list all its index sectors; and list out the tape buffer

as they are written to tape.

CCl

!JOB :SYS, ME, F

I POOL (IPOOl, 0), (F POOL, 0)

I FSAVE

+LIST

+FIT

+DIRECTORY

+INDEX

+BLOCK

+DUMP

+SELECT

:SYS

+END

CC14

METASYM

9-6

9. 3. 4 Error SNAPS

SNAP TITLE

'ABNIO'

'DCTERR '

'OPNFAIL'

'ACLlNK'

'ACNCFU'

'FDLlNK'

'MIXLlNK'

9.3.5 Read Ahead Logic

MEANING

A TYC other than normal (i.e., '01'

was returned).

The first tape open did not return a

valid 'DCTX'to the M:EO DeB

Any BPM I/O error with the M:EO

DCB. This probably will never occur

si nce all I/O is performed thru

'NEWQ' •

Link failure in account directory

'ACNCFU' contain an invalid disc

address

File directory linkage failure

Link failure in index chain

To consider the read ahead logic, each segment of the total file system is considered to be a separate

level.

LEVEL

2

3

4

5

AREA INVOLVED

Account directory sectors

File directory sectors

File information tables

Master index sectors

Data granules

Read ahead for account/file directories is simulated double-buffering, that is, if the program has just finished

using the last key in the current sector, the next sector is read into the same buffer. The same logic applies

to FIT IS.

Master Indicies are read in order. Each FLINK is read as soon as the current request is satisfied •. A

maximum of 4 index sectors are read, and as soon as one is released, a new read is attempted.

All data disc addresses from each index sector (as end action occurs) are pushed into a data address stack.

Therefore all data reading is queued to as many reads as possible continually (depending on pages available)

and every time a data page is released, read further along.

Tape buffer pages are allocated as necessary, and are released as tape write end action occurs.

9-7

9.4

9.4.1

9.4.2

MODULE ANALYSIS

INITIATE

1. Purpose:
This is the first module executed in the FAST SAVE processor. It saves the processor stock
pointer, insures that the stack is large enough, enters the MASTER mode, saves the address
of NEWQ, and gets pages from the Operating System tor index buffers.

2. Entry:
entered in slave mode as first executable statemen.t in FAST SAVE.

3. Exit:
ERROR EXIT

B SPECINIT if not enough pages of core available.

NORMAL EXIT

B INITIATE 1

4. Operation:
Save (RO) in STKPNTR; RO contains the address of the Stack Pointer doubleword in the processor
Task Control Block. Tests the second word of the Stack Pointer doubleword to determine if the
stack is large enough. It must be at least 128 words long. If it is not large enough type out
'***BPM STACK SIZE TOO SMALL' and do an M:XXX to exit the program.

Otherwise, execute an M:SYS CAL to enter the master mode. The address of the monitor's
I/O Queing routine - NEWQ - is routined in RIO upon return from an M:SYS CAL. This
address is then stored in data location NEWQ within FAST SAVE for later use.

An M:GP CAL is executed to get 4 pages for index sector buffers. The number of pages
received is saved in page total. If 4 pages are not readily available, the processor exits
to SPECINIT.

Otherwise, the number of pages requested is saved in INDPAGES and the program exits to
INITIATE 1.

INITIATE 1

1. Purpose:
This module is responsible for computing and saving the word address of each index buffer
in table IBUF.

2. Entry:
B INITIATE 1
(R 1) = number of index buffers
(R9) = address of first page received from get page CAL.

3. Exit:
B INITlATE4

4. Operation:
Register 1 is used as an index into table IBUF for saving the Word address of each page recieved
for use as an index buffer. Register 9 initially contains the word address of the first page
received. It is stored into the last entry of IBUF, then the next address is computed by adding
256 to (R9), and this address is saved. This process is repeated until all 8 index buffer addreSies
have been computed and saved in the IBUF table.

The routine then exits to INITIATE4.

9-8

9.4.3

9.4.4

SPECINIT

1. Purpose:
This module is entered if INITIATE or INITIATE4 is unable to get enough pages of core for the
allocation of buffers. The routine releases all pages that it received and then requests 4 pages
and allocates them for index, data, tape, and sentinel buffers.

2. Entry:
B SPECINIT
PAGETOTAL = Number of pages received from Get Pages CALo

3. Exit:
ERROR EXIT
B NOTENUFF if at least 4 pages are not available.
NORMAL EXIT
B INITIATE5

4. Operation:
A M:FP CAL is executed to release all pages previously obtained. An M:GP CAL is executed
to ask for all pages available. If at least 4 pages are not available the program exits to
NOTENUFF.

Otherwise, a value of 1 is stored into DAPAGES and TAPAGES to set the number of Data
buffer and Tape buffer pages to one. R9 contains the address of the first page received. This
address is stored in DBUF to provide the address of the Data Buffer. R9 is then incremented
by 512 to compute the next page address and this address is saved in TBUF for the Tape
buffer address. The address in R9 is incremented again by 512 worda and this address is stored
in IBUF entry 1. The contents of R9 are again incremented by 256 and stored in entry 2 of
IBUF to provide the address of the second index buffer. A value of 2 is stored into INDPAGES
to save the total number of 256 word index buffers available. The address is incremented
again by 256 to compute the address of the next page. This address is saved in LIMIT and in
CURPOS. The address is incremented by 512 and this address is saved in BUFTOP, the last
buffer address.

The program then exits to INITIATE5.

INITIATE4

1. Purpose:
This module is responsible for requesting pages from the Operating System for tape buffer and
Data buffers and saving their addresses.

2. Entry:
B INITIATE4
GETPAGES = Max Page request FPT (M:GP procedure).

3. Exit:
ERROR EXIT
B SPECINIT if not enough pages are available.
NORMAL EXIT
B INITIATE5

4. Operation:
Ask for one page, and if one is not available exit to SPECINIT otherwise increment PAGETOTAL
and save the address of the page in LIMIT and VURPOS. The address of the top of the page is
computed and saved in BUFTOP.

9-9

9.4.5

9.4.6

It then requests all possible pages. The total number received is added to PAGETOTAL.
If at least 3 pages were not available it exits to SPECINIT.

Otherwise, the address of each page is stored into table TBUF, and the number of tape buffers,
TAPAGES, is incremented until all pages are used or all entries in TBUF have been filled.

Any remaining pages are used for data buffers and their address is saved in DBUF table until
that table is full. The number of data buffers is stored i'n DAPAGES.

The total number of tape buffers available - TAPAGES, is stored in the first entry of table
TBUF. The total number of data buffers available, DAPAGES, is stored in the first entry of
table DBUF.

These numbers are converted to decimal by a BAL,R15 to HEXTODEC and a message is typed
out to inform the operator how many buffers are available.

'NN TOTAL TAPE BUFFERS'
INN TOTAL DATA BUFFERS'

where NN equals the number available.

The program then exits to INITIATE5.

INITIATE5

1. Purpose:
This module is responsible for getting the date and time from the monitor.

2. Entry:
B' INITIATE5

3. Exit:
B RDCARD

3. Operation:
An M:TIME CAL is executed to store the data and time from the monitor into words 3-6 of
DATBUF. The background lower limit is computed from the first address of the program and
stored in word 8 of DATBUF.

The program then reads one card through the M:C device to read the !FAST SAVE control
card. It then exits to RDCARD.

RDCARD

1. Purpose:
This module is responsible for reading control cards, interpreting control cards, and setting the
appropriate flags. It calls on moduleRCD to read the cards and module INTER to interpret
the cards and set the flags. It also sets up the header for the line printer according to the options
specified and initializes the line printer output.

2. Entry:
B RDCARD

3. Exit:
B NOIPRI

4. Operation:
BAL on R 14 to RCD read a control card. Print the card on the M:LL device. BAL on R 15 to
INTER to interpret the cqntrol card and set the appropriate flags. When INTER detects a
+END card it returns skipping. Otherwise, RDCARD continues to call RCD to read and INTER
to interpret cards.

9-10

The routine then sets up the header message according to the control card option, ejects
a page on the M:LL device, and exits to NOPRI.

9.4.7 RCD

9.4.8

9.4.9

1. Purpose:
This module reads a card from the M:C device, tests the card for +END in first 4 columns,
sets word END to non-zero if +END card, and returns.

2. Entry:
BAL,R14 RCD

2. Exit:
B *R14

4. Operation:
Read one card through M:C device, if the card contains a + END in columns 1 through
40, RCD will set location END to non-zero.

If an error or abnormal return occurs from the READ card it sets location END to non-zero.
(END will be tested in module INTER to exit the card read loop).

The program then returns indirect on R14.

INTER

1. Purpose:
The routine is responsible for interpreting control cards in INBUF and setting appropriate
flags according to the options on the cards. It verifies the card commands and aborts on errors.

2. Entry:
BAL, R 15 INTER .
INBUF contains the control card to be interpreted.

3. Exit:
NORMAL EXIT
B *R 15 for normal control command
B *R 15 + 1 if +END command

ERROR EXIT:
M:XXX if inval id control command or card sequence error.

4. Operation:
Checks are made on control command, and all the necessary flags are set. If an error is
detected on any control commands, the message 'FASTPURGE CONTROL CARD ERROR I is
put out and FAST SAVE aborts.

NOIPRI

1. Purpose:
This module opens the stat file if that option was specified. The address of DCll and HGP are
determined.

2. Entry:
B to NOIPRI

3. Exit:
B READFAIL 2 if unable to read Account Directory or

if bad data is in Account Directory

9-11

9.4. 10

B ENDUP
NORMAL EXIT

B NACN

4. Operation:

if abnormal or error return opening the STATS file

If the STATS flag is non-zero the module opens the STATS file as follows: File name =
DISKPOOL, Account = :SYS, KEYED, OUT mode, READ-ALL, WRITE-NONE. An abnormal
or error return on the open causes a branch unconditionally to module ENDUP after typing
a message IIFILE MANAGEMENT ERROR FROM STAT FILEII.

The location of the monitor's DCn table is determined by accessing the word pointed to by
location X'4E'. This address is stored in location DCll in the program. The size of the OCT
tables is determined by byte 0 of that word. It is stored into DCTSIZ.

The address of the HGP is determined by adding 10 to the location pointed by 'X4E' and
accessing that location. The second word of the HGP is then accessed to obtain the OCT
index of the System device.

The ACNCFU is then read from the System device into ACNCFU table by a BAL, R 15 to
DISCIO. If a read failure occurs the program branches to READFAIL.

If the DIRLISTSW flag is non-zero, the ACNCFU is listed on the M:LL device by a BAL,R15
to PLIST.

If the DUMP flag is non-zero, the program does a BAL,R10 to NEWREEL to get a tape mounted.
It then does a BAL, R7 WRTDAT to write the DATE file on the tape.

The disc address of the Account Directory is found from word one of ACNCFU. The address
is verified as valid by a BAL,R15 to DTOGRAN. If the address is bad the program branches
to READFAIL.

The first sector of the account directory is read into ACBUF by a BAL, R 15 to DISCIO. If a
read failure occurs the program branches to READFAIL2.

Otherwise, the' account directory BLINK is picked up from Word 0 of ACBUF and saved in
ACBLINK. The account directory FLINK is picked up from ACBUF + 1 and stored in
ACFLINK. The account directory NAV is picked up from the first half-word of ACBUF+ 2
and stored into ACSIZE.

If the DIRLISTSW is set, the program does a BAL,R14 LISTAD to print out the account directory
on the M:LL device.

The account directory BLINK from ACBUF is compared with LASTAC (in this case, it equals
zero} and if they are not equal the program branches to READFAIL2.

The current account directory address from R8 is stored into LASTAC. A value of 12 is
stored into NEXACN (the next index into the account directory) and into CURACN, (the
current index into the account directory).

The program then branches to NACN.

NACN

1. Purpose:
This module fetches the next account directory entry from ACBUF, checks if for errors in format,
determines if this account is to be processed, reads cards if necessary to determine the select
option or skip option accounts, and branches to NOTLB after finding an account to process.

9-12

2. Entry:
B NACN
ACBUF contains account directory sector
NEXACN points to next entry to be processed

3. Exit:
ERROR EXIT
B ADERROR

NORMAL EXIT
B ENDUP

B NOTlB

4. Operation:

if an error exists in the account directory.

if al I select card accounts have been processed or if
end of account directory
if an account is found to be processed.

The next account directory index is retrieved from NEXACN and stored into CURACN to
update the current entry pointer. If all entries in this sector of the account directory have been
processed, the program branches to ADDONE to read in the next sector.

The entry is verified to contain X 'OB404040' in the first word and if it does not, the program
branches to ADERROR.

Otherwise, if the flag "SELECT II is on and a +END card has been read, branch to ENDUP.
If an END card has not been read, BAl,R15 to ACCK to determine if this account corresponds
to the last SELECT account card read, and if so read the next card. If this account number
does not correspond to the last Select account card read, branch to NACN and process next
entry.

If it does correspond, and the 'All' option has been specified BAl,R14 to READATA to read
the next card, and branch to NOTlB to process the account. If 'All' was not specified,
branch to NOTlB without reading another card.

If SELECT was not specified, determine if a +END card has been read, and if so, turn on the
All flag to specify no SKIP, SELECT, START options and branch to NOTLB.

If an END card has not been read, check the SKIP flag. If SKIP has been specified BAl, R 15
to ACCK to determine if this account is to be skipped. If it is not branch to NOTBl to process
it.

If it is check the All fl ag to determine if all files in this account are to be skipped. If All
is not specified, branch to NOTlB to process the account. If All is specified, VAl,R14
READATA to read the next data card, and branch to NACN to process the next entry.

If SKIP was not specified, test the STARTSET flag to determine if the +START option was
specified. It is was not specified set the All flag to minus one to indicate no SELECT, NO
SKIP, NO STATT option and branch to NOTlB.

If +START was specified, BAl,R15 to ACCK to see' if this account matches the account
specified on the +START card. If no match, branch to NACN to process the next entry.

If this account does match the START account reset the STARTSET flag, turn on the All
flag, and branch to NOTlB.

9-13

9.4.11 NOTLB

1. Purpose:
This routine prints the current account number on the M:LL device if specified, reads in the
next account directory sector is this is the last entry in current sector, gets the disc address
of the file directory, verifies the address as valid, reads in the first file directory sector,
lists it if necessary, and branches to GETFILE.

2. Entry:
B NOTLB
ACN*DISP is displacement to Account Directory entry to be processed.
ACBUF contains current account directory sector.

3. Exit:
ERROR EXIT

B ADERROR
B READFAIL3

NORMAL EXIT
B GETFILE

if file directory fiest sector address in invalid.
if unable to read in a file directory sector or
in case of a file directory BLINK failure.

4. Operation:
Move the account number from ACBUF to ACN#CURNT and if LIST flag is on
space M:LL device to top of form and print "ACCOUNT#XXXXXXXX".

If this is the last entry in the current account directory sector, get the FLINK from ACFLINK
and BAL,R15 to DTOGRAN to verify the address. If it is a valid address, BAL,R15 to
QSECTOR to queue the next account directory sector.

If this is not the last entry or if the FLINK is an invalid address, get the address of the file
directory from the Account directory entry. Set LASTFD, ACNSIZE, and ACNGRAN to
zero and BAL,R15 to DTOGRAN to verify the file directory address. If its invalid,
branch to ADERROR; otherwise BAL, R 15 to DISCIO to read in the first sector of the file
directory.

If a read error occurs, branch to READFAIL3. If the read is OK, get the BLINK from first
word of FDBUF and store in FDBLINK. Get the FLINK from second word of FDBUF and
store in FDFLINK. Get the NAY from first halfword of third word in FDBUF and store in
FDSIZE.

If the list flag DIRLISTSW is set, BAL,R14 to LISTFD to list the file directory. If the BLINK
is not zero for the first sector, branch to RAADFAIL3. Otherwise, store the current sector
address in LASTFD and branch to GETFILE.

9.4. 12 GETFILE

1. Purpose:
This module gets the next file directory entry, picks up the disc address of the FIT, and
reads the FIT into FITBUF.

2. Entry:
B GETFILE
NEXFILE is index to next entry in FDBUF
FDBUF contains current file directory sector
FDSIZE contains the NAY for current file directory sector.

3. Exit:
ERROR EXIT
B FDERR

NORMAL EXIT
B FILECHKS

if FIT address is not valid or if read error
occurs when reading FIT.

9-14

4. Operation:
Get the index to the next file directory entry and if the index equals the NAY, meaning
the entire sector is processed, branch to FDDONE to get the next sector.

Get the disc address of the FIT for this entry and BAL,R 15 to DTOGRAN to verify the address.
If its invalid, branch to FDERR. If it is valid, test to see if it is already in core. If not in
core, is it already being read in. If so, wait until it's in.

Otherwise, BAL, R 15 to DISCIO to read it into FITBUF. If a read error occurs, branch to
FDERR. If the read is successful, or if the FIT is already in core, branch to FILECHKS.

9.4. 13 FILECHKS

1. Purpose:
This routine examines the FIT in FITBUF to determine if the FIT is va lid. It tests to see if this
file should be saved on tape, reads another SKIP or SELECT data card, if ne~essary, lists the
FIT, and then branches to NOFCK. If this is the last file in the current file directory sector,
it queues up to read in the next file directory sector.

2. Entry:
B FILECHKS
FITBUF contains current fit to be processed
CURFILE points to current file directory entry in FDBUF.

3. Exit:
ERROR EXIT
B FITSNAP
B FIT ERR

NROMAL EXIT
B NOFCK
B GETFILE

4. Operation:

if byte length of file name in FIT is zero or less.
if file. name in FIT doesn1t compare
to fi Ie name in file directory

to process fi Ie
if this file is not to be processed.

If the current file directory entry is the last entry in this sector and the FLINK is non-zero and
valid, BAL,R15 to QSECTOR to queue the next file directory sector.

If the byte length of the name in the FIT is zero or less, branch to FITSNAP. If the byte length
is valid, but the file name is not in EBCDIC branch to GETFILE to get the next file, and
ignore this one.

If the file name in the FIT is valid, compare it with the file name in the current file directory
entry. If there is no match branch to FITERR.

Otherwise, test the ALL flag and if it is on, meaning all files are to be saved, branch to
NOFCK. If ALL is not set, compare the FIT file name with the file name contained in
Column 14 then, CAL,R 14 to READATA to read a card and follow with a BAL,R 14 to
READATA to read a card and follow with a BAL,R 15 to INTER to interpret the card. If the
card specifies a new account, set ACEQU flag to zero. If the SELECT mode is not set
branch to GETFILE to process the next file.

If the SELECT mode is specified, branch to NOFCK to process the current file.

If the file names above do not match and the SKIP flag is not set, branch to GETFILE.
Otherwise, test the FITLISTSW flag and if its on, BAL, R 14 to LIST FIT to I ist the FIT. Then,
branch to NOFC K.

9-15

9.4. 14 NOFCK

1. Purpose:
This routine clears all index buffers, (IBUF), clears out the STACK, (DSTACK), builds a
FIT record for tape, constructs a :BOF record, checks the file against the SAVE BY DATE
option, writes a :BOF record on tape if necessary, writes a SYNON record if necessary,
and finally branches to GETMIX.

2. Entry:
B NOFCK
FITBUF contains FIT of file to be processed.

3. Exit:
ERROR EXIT
B FITERR

B FITSNAP
NORMAL EXIT
B GETFILE

B FILEDONE
B RANFILE
B GETMIX

4. Operation:

if no file size entry is available in the FIT
or if the MIX address contained in the FIT
is invalid.
if no '09' entry is available in the FIT.

if file is not to be saved because of SAVE
BY DATE option or SAVE BY HOUR option.
if no tape is bei ng written
if fi Ie is RAND OM
to save the keys and records

If the file is not a SYNONYMOUS file, (no 'OBi entry was found), initialize and free. up all
index buffers and clear the Stack.

Look for an 'oc' entry, branch to FIT~RR if none is found. The next word in FITBUF
after the Iocr entry is the FDA of address of the MIX. Save this in FDAo BAL,R15 to
DTOGRAN to ve rify the address. If it is invalid, branch to FITERR.

Otherwise test to see if a SAVE BY DATE/HOUR is being done. If not, set up to read ahead
the first MIX: sector so it will be in core when it is needed.

Clear the tape label and print buffers. Search for an '09' entry in the FIT by BAL, R 15 to
CODESCAN. If none is found branch to FITS NAP. Otherwise, get organization type
and save in ORG. Get the maximum key length and save in KEYM.

Search for an '00' entry by a BAL,R15 to CODESCAN to see if there is a CREATION DATE.

If this is a SYNONOMOUS file transfer the synonomous name to the :BOF record.

If it isn't SYNONYMOUS BAL,R 15 to QUEMIX to queue up the first MIX read.

Construct a :BOF record. Construct a TLABEL record, inc lude the account number, password,
READ Accounts" WRITE accounts, ORGANIZATION, KEYMAX, and GRANULE count.

If a creation date exists and the SAVE BY DATE/HOUR flag is on, test to see if this file should
be saved. If this file is not to be saved branch to GETFILE.

Otherwise, store the creation date in the tape label record. Get the PBS flag (previous block
count) and the size (size of last record) to zero.

Next a read is queued up to read the FIT from the next file directory entry into core.

9-16

If a DUMP has been specified, BAL,R15 to BOFQUE to write the :BOF record and the
TLABEL record to tape.

If a RANDOM fi Ie is being processed branch to RANFILE.

If a SYNONYMOUS file is being processed write a SYNON record and a :EOF record
to tape and return to FILEDONE.

If a NULL file exists or a RANDOM file with no data write a :EOF record via B to C KTlO
(NOTE* CKTl 0 will also branch to a routine to print the file information
on the M:LL device if specified).

If the file is neither NULL, RANDOM nor SYNONYMOUS, branch to GETMIX.

9.4. 15 GETMIX

Purpose:
This routine clears and re leases all the data buffers and then clears the disc address table. It
gets the disc address of the first MIX and reads it in printing the mix if necessary. It calls
GETKEY to READ in the data records, queueing up as many Reads as possible for MIX sectors
and data granules. It calls the MOVE KEY and MOVE routines to transfer the records to the
tape buffer. When the tape buffers are full, it writes them to tape. When all records have
been processed, it branches to FILEDONE.

2. Entry:
B GETMIX
FDA contains address of current MIX sector.

3. Exit:
NORMAL EXIT
B FILEDONE

4. Operation:

after entire fi Ie has been processed.

The orogram sets all data buffers free and clears the disc address table. It determines the first
MIX sector address on the disc from FDA and checks to see if it is already being read in by
comparing it with table INDEXDA. If it is not in the table the program does a BAL, R8 to
QUEMIX to read it in core.

If it is in the table it tests bit zero of the correct table entry to see it it is already in core.
If bit zero is a one it loops until the bit goes to zero meaning that it is in core. It then
picks up the address of the sector in core from the parallel entry in the IBUF table and stores
that in MIXBUF. It initializes the MIX displacement in CURRMIX to point to the first entry in
the MIX. It picks up the NAV from word two of the MIX in MIXBUF and saves it in
MISIZE.

It then BAL's on R 11 to GETFOUR to read in data granules from the disc. If the INDEX flag
is on it does a BAL, R 14 to LISTMIX to print the MIX sector on the LL device.

It does a BAL,R 15 GETTBUF to get a tape output buffer to put the records in and saves the
address of the buffer in CURBUF.

It does a BAL,R15 to GETKEY1 to initialize the previous block size in the tape buffer. It
does a BAL, R 15 to GETKEY to get a key from the index buffer, does a BAL, 15 to MOVEKEY to
move the key to the buffer, and it is writing a tape it does a BAL,R15 to MOVE to move the
data record into the buffer.

It does a BAL,R7 to • SCHEDULE' to get the required buffers to read ahead for other data blocks.
It does a BAL, R 11 to GETFOUR to read in additional data blocks. It tests the flag MIXEOF
to determine if all MIX for the file have been processed. If all entries have not been processed
(MIXEOF is zero), it continues to move each key and data record to the tape buffer and write
the tape buffer out when its full.

9-17

If all MIX entries have been processed, it branches to QUEREC to write out the tape buffer
and then branches to MIXEND.

9.4. 16 QUEREC

1. Purpose:
This routine calls MTlO to write out a tape buffer

2. Entry:
BAL,R15 QUEREC
CURBUF contains address of current tape buffer.
KEYDISP has number of bytes in the buffer.

3. Exit:
NORMAL EXIT
B MTlO
R 15 has address to branch to after tape record has been queued.

4. Operation:
The program gets the current key displacement from KEYDISP and rounds it up to the nearest
word. It tests a flag called 'BLOCKS' to determine if all tape records are to be dumped to the
printer. If they are not it branches to MT10 with R 15 unchanged. MTl 0 will then return to
the address in R 15.

If records are to be listed, it saves R 15 in R 14 and loads R 15 with the address of LISTOUTBUF
routine before branching to MTlO. MTlO will then branch to LISTOUTBUF which will
return to the original address in R 15.

9.4. 17 GETKEY1

1. Purpose:
This routine sets the previous block size into a tape buffer and sets the displacement into the
buffer to four.

2. Entry:
BAL,R15 GETKEY1
RBS contains previous block size from last record.
CURBUF contains address of buffer to store PBS into.

3. Exit:
B *15

4. Operation:
The program gets the previous tape block size from BBS and stores it into the buffer pointed
to by CURBUF. It then sets KEYDISP to four so that the buffer index now points past the
previous block size.

It returns on Register 15 to the calling program.

9.4.18 MOVE KEY

1. Purpose:
This module moves the current key to the current blocking buffer., ,

2. Entry:
BAL,R15 MOVE KEY
KEYDISP contains current key displacement
CURBUF contains address of current tape buffer.
MIXBUF contains address of mex buffer.
CURMIX contains index into MIX buffer.

9-18

9.4.19

9.4.20

3. Exit:
NORMAL EXIT
B *15

4. Operation:
The routines increments the first word of the tape buffer to update the number of keys. It gets
the maximum key length for this file from KEYM and increments it by one. It gets the current
key displacement from KEYDISP rounds it up to the nearest word and saves it in LASTKEY.
It then moves the mix record from MIXBUF to CURRBUF at the appropriate displacements.
It saves the new MIX displacementom KEYDISP, it sets Pl flag to X'100' to indicate th is
is the first appearance of th is key.

It then returns to the ca lIing program.

MOVE

1. Purpose:
This routine moves a data record to a tape blocking buffer.

2. Entry:
BAL, R 15 MOVE
R1 contains the output buffer size in bytes.
CURBUF contains the byte address of the tape blocking buffer.
CURDBLK contains the byte address of the input buffer.
KEYDISP contains the output buffer displacement.
BLDISP contains the input buffer displacement.
RWS is the number of bytes to be transferred.

3. Exit:
ERROR EXIT
B FAILURE

NORMAL EXIT

if the granule pointed to by CURRB doesn't
compare to the granule pointed to by the
current disc address key GRANULEADR.

B * 15 if data was not all moved
B *15 (+1) exit skipping if no bytes moved or if all data is moved successfully.

4. Operation:
The program checks RWS to see how many bytes to move. If it is equal to zero,
it exits skipping.

Otherwise, it compares the disc address in CURRB with the disc address in GRANULEADR.
If they are not equal it takes an error exit to FAILURE.

It increments the return address and moves as many data bytes as possible into the output
buffer. If all cannor be moved it decrements the return address, updates the granule accounting
table RBHIST with the number of bytes moved, sets DATA$SW if buffer can be released, and
returns. It all bytes can be moved successfully, it updates the granule accounting table
and exits skipping.

GETKEY

1. Purpose:
This module gets the next key from the MASTER INDEX of the file currently being processed.

2. Entry:
BAL, R 15 GETKEY

3. Exit:
ERROR EXIT
B FDERR 1 if error in Read of MIX
B MIXERR ifRWS in new MIX is zero.

9-19

9.4.21

9.4.22

NORMAL EXIT
B D when last record has been processed
B *R15

4. Operation:
The routine reads in the next mix sector as required. It extracts the key from the MIX,
queues up a read for the corresponding data block if it is not already incore, then attempts
to queue up a read for the next MIX sector so it will be in core when needed.

It exits by a branch to D if the last mix record has been processed.

Otherwise, it returns to the call ing program via R 15.

If an error occurs while reading the MIX sector it branches to FDERR 1. If an error occurs in
processing the MIX entry it branches to MIXERR.

SCHEDULE

1. Purpose:
This module releases data buffers when they have been processed.

2. Entry:
BAL,R7 SCHEDULE

3. Exit:
B *R7

4. Operation:
The routine checks each entry of the RB 1 table to see if it is currently in use. If the entry
is zero, it insures that the corresponding entry in DBUF is free.

If it finds the address it releases the buffer in IBUF and checks to see if there is a FLINK.

If none exists it branches to CKTlO.

Otherwise, it checks to see if the FLINK MIX is in INDEXDA. If it is not, it branches to
MIXRATERR. If it is in the table, it waits until it is in core, makes sure the BLINK in valid,
saves the address of the next sector in MIXBUF, initializes the displacement to 12, does a
BAL,R15 to QUEMIX to read in the sector, and branches to NXTSECTR.

If the BLINK does not compare with the previous sector address, the program branches to
READFAIL5.

QUEMIX'

1. Purpose:
This routine queues up a read for the next MIX sector, with END ACTION address set to
MIXENAC.

2. Entry:
BAL,R15 QUEMIX

3. Exit:
ERROR EXIT
B READFAIL5 if FLINK address is not val id
NORMAL EXIT
B *R15

9-20

9.4.23

4. Operation:
The routine requests an index buffer. If none is available it exits.

If th gets a buffer it picks up the FLINK of the MIX from NXTFLINK. If the FLINK equals
zero it exits.

It verifies the disc address of the FLINK and if it is invalid it branches to READFAIL4. If it is
valid it branches to DISCI02, with the return register set to the original calling routine,
to queue up a read of the next mix. ENDACTlON address is set to MEXANAC.

RANFILE

1. Purpose:
Writes tape records for RANDOM files.

2. Entry:
B RANFILE

3. Exit:
ERR~ EXIT
B MIXERRl

B MIXSNAP
NORMAL EXIT
B CKTlO

4. Operation:

if the disc address of the data granule is not valid
i. e., a matching HGP cannot be found.
if the disc address is not va lid

when entire file has been processed or if no tape is
being written.

It checks DUMP flag to see if tape is being output, and if not it stores the number of bytes in
the record file size and branches to CKT10.

If tape is being written, it searches the HGP to find an HGP corresponding to the data block
address. If it cannot find a matching HGP it branches to MIXERR 1. Otherwise, it saves
the file size in RSTORE and releases all data buffers in DBUF.

If RESTORE is zero it branches to CKTlO. If RSTORE is non-zero, it gets a data buffer,
verifies the disc address and queues up a disc read for each 2048 character block in the
RANDOM file. It then writes each record on tape. When all records have been processed,
it branches to CKTlO.

9.4.24 GETTBUF

1. Purpose:
This routine gets a tape output buffer.

2. Entry:
BAL,R 15

3. Exit:
B *R1S

4. Operation:

GETTBUF

condition codes set non-zero if
buffer found.
R 1 is index into TBUF table for
available entry.

The routine searches for an available tape buffer, by scanning table TBUF until an available
entry is found. The index into TBUF is returned in R7. Condition codes ar.e set non-zero
if a tape buffer is found.

9-21

9.4.25 GETIBUF

1. Purpose:
Gets a disc input buffer for MIX.

2. Entry:
BAL, R 15 GETIBUF

3. Exit:
B *R15

4. Operation:

condition codes set non-zero if
buffer is found.
R 1 is index into IBUF table for
available entry.

The routine searches table IBUF for an available index buffer. The index to the available entry
in IBUF is returned in R7. Condition codes are set non-zero if a buffer is found.

9.4.26 GETFOUR

1. Purpose:
This routine performs read ahead for data granules from the disc.

2. Entry:
BAL, R 11 G ETFOUR
DSTACK contains addresses of granules to be read.

3. Exit:
ERROR EXIT
B DATAERR
NORMAL EXIT
B *R 11

9.4. 27 BUILD

1. Purpose:

if a bad disc address is encountered

This routine pushes the address of all data granules specified in the Just Read irrl_ex sector into
DSTACK.

2. Entry:
BAL,Rll BUILD
R7 is index into IBUF to current mix sector.

3. Exit:
NORMAL EXIT
B *R 11

9.4.28 STKSIZR

1. Purpose:
This routine types a message "BPM STACK SIZE TOO SMALL" and does an M:XXX.

2. Entry:
B STKSIZR

3. Exit:
CAll, 9 3

9.4.29 QSECTOR

1. Purpose:
This routine queues up the disc address in R8 to be Read by branching to DISCI02.
FITENAC is specified as the end action address.

9-22

9.4.30

9.4.31

9.4.32

2. Entry:
BAL, R 15 aSECTOR
R8 equals disc address to be read
R 10 = Byte address of buffer

3. Exit:
B DISCI02
R 15 points to exit for DISCI02 routine to original program.

DISCI02

1. Purpose:
This routine is the RAD and SIDK Pack handler routine for FAST SAVE. An entry at DISCI02
specifies no wait on I/O. End action address is in R7.

An entry at DISCIO specifies normal I/O WAIT and no end action.

It calls for I/O by branching to monitors NEWQ routine.

2. Entry:
BAL, R 15 DISCI02
BAL,R 15 DISCIO

specifies no wait, and end action address in R7.
specifies wait, and no end action.

R 1 = I/O table indes (used for End Action Information)
R8 = Disc Address
R9 = Byte count
R 1 0 = Byte address of buffer
R7 = End Action Address if specified
R 15 = Return address

3. Exit:
B *R15

DENAC

1. Purpose:
This is the DISCIO end action routine; it resets the busy flag RBUSY and saves the TYC
information in DSTATUS.

2. Entry:
BAL, R 11 DENAC from IOQ

3. Exit:
B *R 11

FITENAC

1. Purpose:
This is the end action receiver for Account directory, file directory or fi Ie information table
reads. It resets the busy bit in the flag specified by R 14. decrements the outstanding I/O '
count, and saves the Disc status (TYC) information in DSTATUS.

2. Entry:
BAL, R 11 FITENAC from IOQ
R 14 is address of busy flag for this operation.
R 12 is TYC of this operation
R 11 is return address

3. Exit:
B *R 11 returns to loa

9-23

9.4.33 ENCOM

1. Purpose:

This is the end action routine specified by routine GETFOUR. The appropriate table entry
in RB 1 which is pointed to by R 14 is set to zero ,to indicate that the address is now in core.

2. Entry:
BAL,Rll ENCOM from 100
R 12 is TYC information
R 14 is index to flag in RB 1
R 11 is return

3. Exit:
B *R 11 returns to 10Q

9.4. 34 MIXENAC

1. Purpose:
This is the end action routine for mix sector reads. It decrements the outstanding I/O count
in DOPCNT, saves the TYC from R12 in DSTATUS, sets the new sector flag NEWSEC to -1 ..
It clears the I/O pending bit in INDEXDA pointed to by R 14. It then gets the next FLINK,
and branches to BUILD, which will exit back to 10Q on Rll.

2. Entry:
BAL, R 11 MIXE NAC
R 14 = index into INDEXDA
R 12 = TYC status
R 11 = return register

3. Exit:
B BUILD
NXTFLNK
BUILDLNK

contains next FLINK to be read.
contains return address to 10Q.

9.4.35 MTIO

1. Purpose:
This is the routine which queues up tape I/O for FAST SAVE. It does so by branching to
the monitor's NEWQ routine.

1. Entry:
BAL, R 15 MTIO
R6 = 0, this is a normal call, the command list has the end-action-address
R6 < 0 R5 has byte count, CURBUF is the word address of the buffer.
R6 > 0 No data XFER. R6 contains function code.
R7 Points to calling sequence registers for 10Q call.
R 15 Hos return address

2. Exit:
B *R15

9.4.36 SIMULATE

1. Purpose:
This routine simulates normal I/O end action for the tape requests if no tape is being written,
DUMP = O. This bypasses NEWQ if DUMP is zero. It sets R14 equal to Rl. Sets R12 to
normal TYC, and does a BAL,Rll *RO to WTENAC.

2. Entry:
B SIMULATE
RO Equals address of end action routine to branch to

9-24

3. Exit:
B MTIOX

9.4.37 WTENAC

9.4.38

1. Purpose: .
This module is the end action routine for all tape data writes. It decrements the outstanding
I/O count in OPCNT. It saves the status from R 12 into TPSTATUS. It clears the busy bit in
the appropriate entry of TBUF tables. If the TYC indicates end of reel it switches output
reels. If the TYC indicates unrecoverable tape reror, it types a message to the operator
and switches the output reels. Otherwise, it exits to the address in R 11.

2. Entry:
BAL, R 11 WTENAC from 10Q
R 14 is index into TBUF table
R12 is TYC
R 11 is return register

3. Exit:
B *R 11 return to 10Q

SENTENAC

1. Purpose:
This is the end action routine for tape sentinel writes. A tape error will cause a reel change.
End of Reel Status is ignored.

2. Entry:
BAL, R 11 SENTENAC from IOQ
R12 is TYC

3. Exit:
B *R 11

9.4.39 NEWREEL

9.4.40

1. Purpose:
This routine is called to open a new output reel. It executes an open CAL, verifies the OCT
index returned, rewinds the tape, writes a :LBL sentinel, an :ACN sentinel, and a tape
mark.

2. Entry:
BAL, SR3 NEWREEL

3. Exit:
ERROR EXIT
B DCTXERR
NORMAL EXIT
B *SR3

WRTDAT

1. Purpose:

if bad OCT index returned from Open.

This routine is called to write a DATE record on reel PRG 1.

2. Entry:
BAL, R7 WRTDAT

3. Exit:
B *R7

9-25

9.4.41

9.4.42

DCTXERR/OPNABN/OPNERR

1. Purpose:
This routine is an error routine from DCB opens. It types OPNFAIL and does an M:SNAP
of the M:EO DCB. It then executes a CAll, 9 3.

2. Entry:
B DCTXERR
B OPN ABN
B OPNERR

3. Exit:
CAll, 9 3

GOEOR

1. Purpose:
This is the routine used to handle end-of-reel conditions. It writes a tape mdrk an :EOV
record, another tape mark, an :EOR record, 2 more tape marks, and does a M:CLOSE for
that tape ree I.

2. Entry:
BAL,R 1 GOEOR

3. Exit:
B *R1

9.4.43 EOFQ

1. Purpose:
Thss routine creates and writes a :EOF record onto tape.

2. Entry:
BAL,R14 EOFQ

3. Exit:
B WRTMARK (WRTMARK then returns to original routine)

9.4.44 BOFQUE

1. Purpose:
This routine creates and writes a :BOF record on tape.

2. Entry:
BAL,R15 BOFQUE

3. Exit:
B WRTMARK

9.4.45 MOVEI

1. Purpose:
This subroutine is used to transfer sentinel records into background records to be written to
tape.

2. Entry:
BAL, R 14 MOVEI

3. Exit:
B *R14

9-26

9.4.46 VVRT~RK

1. Purpose:
This routine queues up a write tape mark operation.

2. Entry:
BAL,R15 VVRTMARK

3. Exit:
B MT10+2

9.4.47 NOTENUFF

1. Purpose:
This routine prints "NOT ENOUGH CORE TO RUN, LESS THAN, 4 PAGES AVAILABLE II and
then does an M:XXX

2. Entry:
B NOTENUFF

3. Exit:
CALl,9 3

9.4.48 ENDUP

1. Purpose:
This routine sets the ENDOFSET flag to end processing, closes the tape, and does an M:EXIT.
If no tape is being written, it displays the run totals, closes the statistics file, and runs down
I/O and does an M :EXIT •

2. Entry:
B ENDUP

3. Exit:
CALl,9 1

9.4.49 ADDONE

1. Purpose:
This routine is entered when the current account directory sector has been processed. It gets
another sector of account directory if possible. Otherwise, it branches to ENDUP if
processing of all accounts is completed.

2. Entry:
B ADDONE
ACFLINK has FLINK for account directory

3. Exit:
ERROR EXIT
B READFAIL2 if FLINK address is not valid
NORMAL EXIT
B ENDUP if FLINK ie zero
B GETAD to queue up another read of account directory
B GETAD3 after waiting for next sector to be read in.

9-27

9.4.50 ADERROR

9.4.51

1. Purpose:

This routine is entered when an error is found in an account directory key. It types a
message, dumps the sector, skips to the next key, and exits.

2. Entry:
B ADERROR

3. Exit:
B ADELETE

IORUNDOWN

1. Purpose:
This routine loops until all DISC and tape operations are completed, then it returns.

9.4.52 FAILURE

1. Purpose:
This routine is entered if module MOVE checked the granule pointed to by CURRB and it
did not match the granule pointed to by current disc address key. It prints "SCHEDULING
ERORR***" and branches to MIXSNAP.

2. Entry:
B FAILURE

3. Exit:
BAL,RO MIXSNAP

9.4.53 DISPRUNTOTL

1. Purpose:
This routine displays the final run statistics.

2. Entry:
BAL,R 15 DIS PRUNTOTL

3. Exit:
B *R15

9.4.54 DTOGRAN

1. Purpose:
This module checks a disc address to verify that (1) the OCT index is correct, (2) an HGP
exists for that OCT index, and (3). the sector number is with in range.

2. Entry:
BAL,R15 DTOGRAN
R8 is disc address

3. Exit:
ERROR EXIT

B *R 15 if address is bad
NORMAL EXIT
B *R15 +1 if address is valid

9-28

9.4.55 FDERR

1. Purpose:

This routine is entered if an error is detected in a file directory key. The key is skipped,
a message is typed, and the routine branches to FDLETE.

2. Entry:
B FDERR
B FDLETE

3. Exit:
B FDLETE

9.4.56 FITS NAP /FITERR

1. Purpose:
The routine is entered if there is an error in the contents of FIT. An error message is typed,
the fi Ie directory and FIT are I isted, and the program branches to FDERR 1.

2. Entry:
B FITSNAP
B FIT ERR

3. Exit:
B FDERR 1

9. 4. 57 L1STFD

1. Purpose:
This routine lists the current file directory sector.

2. Entry:
BAL, R 14 LISTFD

3. Exit:
B *R14

9.4.58 LIST FIT

1. Purpose:
This routine lists the current FIT.

2. Entry:
BAL, R 14 LISTFIT

3. Exit:
B *R14

9.4.59 L1STOUTBUF

1. Purpose:'
This routine I ists the current tape output buffer.

2. Entry:
BAL, R 14 LISTOUTBUF

3. Exit:
B *R14

9-29

9. 4. 60 LIST MIX

1. Purpose:
This routine lists the current MIX sector.

2. Entry:
BAL, R 14 LIST MIX

3. Exit:
B *R14

9.4.61 LISTAD

1. Purpose:
This routine lists the current account directory sector.

2. Entry:
BAL,R 14 LISTAD

3. Exit:
B *R14

9.4. 62 MIXSNAP /MIXERR

1. Purpose:
This routine is entered when a mix error occurs. It frees all tape buffers and branches to
EOFQ to close out the file on tape.

2. Entry:
B MIXSNAP
B MIXERR

3. Exit:
B FDERR 1
B EOFQ

9.4. 63 MIXRATERR

1. Purpose:

if no tape is being dumped
if tape is being written

This routine is entered if the mix forward link has not been read in time. It prints an error
message and branches to MIXSNAP.

2. Entry:
B MIXRATERR

3. Exit:
B MIXSNAP

9.4.64 DATAERR

1. Purpose:
This routine is entered if a data granule address error has occurred. It types an error message
and branches to MIXSNAP.

2. Entry:
B DATAERR

3. Exit:
B MIXSNAP

9-30

9.4.65 FDDONE

1. Purpose:

This module is entered when a file directory sector has been completed. If this is not the
last link, it reads the next link in.

2. Entry:
B FDDONf

3. Exit:
ERR~ EXIT
B READFAIL3
NORMAL EXIT
B GETFD1
B GETFD
B ENDOFD

9.4.66 ENDOFD

1. Purpose:

if FLINK address is invalid.

if next sector already in core.
to read in next sector
if FLINK is zero.

Entered when a file directory is completed. It prints next header with new account on M:Ll
device after printing summaries for previous account. It then branches to NACN.

2. Entry:
B ENDOFD

3. Exit:
B NACN

9.4.67 CKTlO

1. Purpose:
This routine is entered when a file has been completely processed. It writes an :EOF record
if necessary, prints the file name and the file information summary on M:LL decice. It then
branches to GETFILE to process the next file.

2. Entry:
B CKTlO

3. Exit:
B GETFILE

9.4.68 CODESCAN

1. Purpose:
This routine scans the FIT for the entry whose code corresponds to that in R2.

2. Entry:
BAL,R15 CODESCAN
R2 contai ns code to search for

3. Exit:
B *R 15 if not found

B *R 15 + 1 if found

9-31

9.4.69

9.4.70

9.4.71

MOVENTRY

1. Purpose:
This routine moves an entry from the FIT to a :BOF record.

2. Entry:
BAL,R15 MOVENTRY
RO is wad address of entry in FIT
R4 is address of :BOF record

3. Exit:
B *R15

HEXTODEC

1. Purpose:
This routine converts a number from hexadecimal EBCDIC.

2. Entry:
BAL,R15 HEXTODEC
R3 is number to be converted
R 1 is address to store resu It

3. Exit:
B *R15

FDLETE

This routine branches to FILEDONEO. Keys are not removed from File Directory.

9.4.72 ADELETE

This routine branches to ENDOFD. No key removal is supported for Account Directoryo

9.4.73 TACNT,/TFILNME

1. Purpose:
These routine types "ACCOUNT" and an account name, or "FILE" and a FILENAME on the
operator's console.

2. Entry:
BAL,R15 TACNT to type account
BAL, R 15 TFILNME to type file name

3. Exit:
B *R15

9.4.74 ACCK

1. Purpose:
Checks if current account number matches current data card. Sets ALL = -1 if all files mode,
Sets ACEQU = -1 if account number compares to card, sets ACEQU to zero if no compare.

2. Entry:
BAL,R15 ACCK

3~ Exit:
B *R15

9-32

9.4.75 READFAIL

1. Purpose:
Entered because of an ACNCFU disc address error. Causes M:XXX abort.

2. Entry:
B READFAIL

3. Exit:
B ENDUP

9.4.76 READFAIL2

1. Purpose:
Entered because of an account directory LINK failure. Causes M:XXX abort.

2. Entry:
B READFAIL2

3. Exit:
B ENDUP

9.4.77 READFAIL3

1. Purpose:
Entered because of a link failure in the file directory. Causes a branch to ENDOFD to skip
to next account.

2. Entry:
B READFAIL3

3. Exit:
B ENDOFD

9.4.78 READFAJI..5

1. Purpose:
Entered because of a LIN K fai lure in a MIX. Causes branch to MIXERR 1 to skip to next fi Ie.

2. Entry:
B READFAIL5

3. Exit:
B MIXERR1

9.4. 79 LPRINT

1. Purpose:
This routine prints one line and then clears the buffer.

2. Entry:
BAL, R 15 LPRINT

3. Exit:
B *R15

9. 4. 80 PLIST

1. Purpose:
This routine is used to snap out a buffer on the M:LL device.

2. Entry:
BAL, R 15 PLIST
R 1 contains number of bytes in buffer
R3 contains beginning buffer address

9-33

3. Exit:
B *R15

9.4.81 BUFSET

1. Purpose:
This routine is called to mgve a print line from one buffer to another.

2. Entry:
BAL, R 15 B UFSET

3. Exit:
B *R15

9.4. 82 PRINT

1. Purpose:
Writes one line of print via a CAll, 1 to WRTPBUF.

2. Entry:

BAL, R 15 PR IN T

3. Exit:
B *R15

9.4.83 SPACE

1. Purpose:
Writes N lines of blanks on M:LL via CAL 1, 1 WRTBLNK where number of blanks it
supplied by R 1.

2. Entry:
BAL, R 15 SPACE

3. Exit:
B *R15

9.4.84 TYPEIO/TYPEI02

1. Purpose:
This routine types a message on the operators console.

2. Entry:
BAL,R 15 TYPEIO
R 1 is byte address of TEXTC message

BAL,R15 TYPEI02
R 1 is byte address of message buffer
R3 is byte count

3. Exit:
B *R15

9-34

9.5 DETAILED FLOWCHART OF FAST SAVE PROCESSOR

Table 9-1. Index to FAST SAVE Flowchart

AREA FUNCTION PAGE NUMBER

INITIALIZATION 1
ACCOUNT DIRECTORY PROCESSING 2-3
FILE DIRECTORY PROCESSING 3
FILE INFORMATION TABLE
VALIDITY TESTS AND PROCESSING 4-5
BUILD :BOF RECORD 5-6
FILE INFO TABLE HEAD-AHEAD 7
FILE BLOCKING PROCESS 8-10
FILE BLOCKING SUBROUTINES 11-13
FORCE DATA BUFFER SUBROUTINE 14
SCHEDULE DATA BUFFER SUBROUTINE 15
INDEX SECTOR CONTROL 16
RANDOM FILE PROCESSING 17
BUFFER ALLOCATION 18
DATA READING SUBROUTINE 19
INDEX SECTOR END-ACTION 19-20
RAD/DISC I/O SUBROUTINE 20
RAD/DISC END-ACTION RECEIVERS 21
MAG TAPE I/O SUBROUTINE 22
TAPE SENTINEL CONTROL SUBROUTINE 23
ADDITIONAL TAPE SENTINEL
SUBROUTINES 24-25
I/O WAIT SUBROUTINE 25
ACCOUNT DIRECTORY ERROR & END
PROCEDURES 26
DISC ADDRESS VALIDITY SUBROUTINE 27
FILE DIRECTORY ERROR SUBROUTINE 27
LISTING SUBROUTINES (BUFFERS, - SECTORS, ETC •••) 28
FILE DIRECTORY COMPLETION 29
MASTER INDEX ERROR CONTROL 29
FILE DIRECTORY SECTOR COMPLETED 30
CURRENT FILE COMPLETED 30
MISC. SUBROUTINES 31-32
INTERPRET CONTROL CARD
LINK FAILURE CONTROL
PAGING TABLES

9-35

Initiate 1
Perform M:GP
INIT IPOOL
Tables and
Pointers

Initiate 4

Perform M:GP
Initialize tape and
data paging tables

interpret command

Pg. 32

Read ACNCFU
from sys tern dev i ce

Pg. 20

no

1st HGP in
BPM always
System Device

Open initial
output tape

no

Pg. 23

Write data file
if FPURGE mode

Pg. 1

~----~----~Pg. 24

Read ad
sector

GATAD3
Pg. 20

Preserve all sector
info. IE, NAV,
BLANK, FLNK

FAILED

., Successive
\ account directory

sectors loop re-entry
po i nt retu rn to

I GETAD3 if read
I ahead, GETAD if

.--1 lnot

Figure 9-1. Detai led Flowchart of FILE SAVE

9-36

Successive key
loop entry for
Account Direct
ory Processi ng Advance sector

indexing cells to
next key

no

Read next data ,
card I

Pg. 34

See if card matches
current ACN' in
ad key

Read next
data card

Pg. 34

Pg. 34

Figure 9-1. Detailed Flowchart of FILE SAVE (Cont.)

9-37

See if card matches
current ACN' in
ad key

to process
all files in
account

NO

NOTlB

Move ACN
from sector
to slot

Extract file
directory disc
ad drs from ad key

Perform disc addrs
va lid ity tests

Pg. 27

Initial sector
always read
with wait 1 ____ _

Perform disc I/O J
W/'NAIT

Pg. 20

GETFDl
Initial ize sector
indexing cells
preserve sector info.

Subsequent
sector read

I ahead will
I return here

j

Figure 9-1. Deatailed Flowchart of FILE SAVE (Cont.)

9-38

Verify disc
address

Set up read
ahead

Pg.3

Advance all sector i
indexing variable

: cells

GETDFIT l
Extract next fj Ie
into table disc addr
from current fd key

DTOGRAN

Verify fit disc.
addrs

Read fit with
wait I/O

yes

Figure 9-1.

FNENOK
no

Clear :BOF
Record
Buffer

Move file
name to :BOF
record

Verify the file
direction FLINK

QSECTOR

Read next
sector

no

r --------

Data card match
current file name

READATA

Read next data

: account match
flag

Deta i1ed Flowchart of FILE SAVE (Cont.)

9-39

Pg. 4

Pg. 5

yes

Read next data
card

no

Pg. 34

Type message
about data card
invalid

Figure· 9-1.

Clear a II IPOOL
tables, reset index
read-ahead cells

Release data
granule stack

CODESCAN

Find 'c' entry
in the F.I. T.

Pg. 30

DTOGRAN

Verify FDA
from F .1. T.

Pg. 27

Setread-ahead

for index chain

CODESCAN

Fi nd '0' entry
in fit

Set :BOF pointer,
c lear tape label
buffers

Queue first
sector if indices

Detailed Flowchart of FILE SAVE (Cont.)

9-40

Pg. 5

Move it to
print line

NOPWD2
CODESCAN

Searc h fi t for
105 1 code

MOVENTRY

Commence
:BOF
record
const.

no

Move 105 I param
to :BOF

Search fit for
106 1 code

yes

MOVENTRY

Move 1061 paramo
to :BOF

Pg. 31

Complete :BOF
record with 109 1

entry

Insert random fi Ie
identifier into
:BOF

NOROM

Compute :BOF
record size and
save

GETDAT
CODESCAN

Search fi t for
IDA' entry

Pg. 30

no

g. 7 GETCR
DATE

Pg. 6

no

~/
Pg. 7

Figure 9-1. Detailed Flowchart of FILE SAVE (Cont.)

9-41

Insert file creation
date into tape
label

Offset tape label
to appear os
TEXTC

Pu II next fi t
D/A out from FD
key

DTOGRAN

Verify next
fit D/A

Pg. 27

yes

Queue next
fit in

BOFQUE

Send :BOF
record

Set up special
SYNON record

MOVEI

Insert record
queue to tape

Pg. 25

GETMIX.

Release all data
pages & a II data
table entries

Read FDA now

Pg. 16

Pg. 17

Figure 1.9-1. Detailed Flowchart of FILE SAVE (Cont.)

9-42

,,/ GETMIX1

I
IOSPIN

Wa it if necessary
for I/O

Set up sector .info. ;
and buffer pc Inter.; I

I
Loop entry for
successive index
sectors

Read data into

all pages _

l --pg.- 19

//DUS>
' i~dex sector
~onM:LL no

'-~ /

1 yes

LISTM

Snap current
sector

Pg. 28

figure 9-1.

GETTBVF

Request tape
buffer

-~--pg. 18 i

~equest >---'
'~satisfied ,/ no

):es
Store tape buffer i

pointer and I
index I

GET-KEYI

INIT WORDO of
tape buffer

A2~_;-:;;, ___ _

Move data record I
to buffer

Pg. 12

i"
A'lotc'-, ~ /"'. aT"",

r'ecord all In ~ DONE
buffer ,/ no

~ Pg. 1

f FILE SAVE (Cont.) Detailed flowchart 0

9-43

,- - Return
I
I

from
Scheduler

Read as many
granules as possible

Clear P2-internal
continued flag

KEYUP
Move blocking
buffer key flag
word

Pg. 11

no

QUEREC

Queue tape
buffer now

Pg. 11

now

GETTBUF
Request new tape

buffer

Set PBS in
buffer

Pg. 11

Figure 9-1. Detailed Flowchart of FILE SAVE (Cont.)

9-44

Pg.9

Pg. 8

NOTDONE --

ecord was
not
completely
moved

Set flag bit
indicating record
continued in next
block

KEYUP

Move flag word
to tape buffer

Flag bit P2,
independent
of other
fla s

Pg. 11

Queue old
bloc king buffer

GETTBUF

Request new tape
buffer page

Move old key
to new tape
buffer

Mark all new
blocking
variable·cells

no

ce II 'LAST KEY'
points to old key

.. position in old
buffer

Set II bytes left
to XFER to
tape

Reset EOF flag
and P2 continue
flag

Move key flag
word to buffer

Write tape
buffer

Figure 9-1. Detailed Flowchart of FILE SAVE (Cont.)

9-45

Pg. 10

11

Or 011 tape key
flags into 0-15 of

Rl

Set record byte
count into 16-31
of Rl

Move Rl into
Blocking Buffe~

; Posi~tion at end of
Record Key

Exit via R15

Keydisp contains
length of buffer
round to total

words

Set up I/O
transfer request
registers

MTIO

Queue Tape
Record

Yes

Listout

Page 22

Snap Last Output
Block

Place PBS into
16-31 of R I-set
R 1 into buffer

Set Keydisp=4
1st position in
buffer

Figure 9-1. Detailed Flowchart of FILE SAVE (Cont.)

9-46

Pg. 11

Increment NKEY in
current buf., pick
up Keydisp as index

to buf.

Keydisp moved to
Lastkey for in not
done sequence

I
, Save New Indexing
, Pointers for Data
: Xfer

Figure 9-1.

Calculate how
many bytes wi II fj~
decrement return

b one

update Accnt 19
Table with II bytes
moved to Buffer

Yes

Detailed Flowchart of FILE SAVE (Cont.)

9-47

Pg. 12

Ntove Record
to Current
Buffer

COMPARE

Clear Index key
variables for new
key FETCH

Attempt to Read
File FUNK

Page 16

Advance Index
Sector indexing

Cells

Extract Key
variables required

IOSPIN

Wait for I/O
if necessary

Page 25

Page 14

QUEMIX

Try to Read
Index FUNK

Page 16

DATASPIN 1

Figure 9-1. Detailed Flowchart of FILE SAVE (Cont.)

9-48

Pg. 13

Page 30

SCHEDULE

Try to release
normally

15 J
,~

Set up loop thru
tables, set release
switch and
counter~~ __ ~

r--QERRORO
~------~------

Get entry from
disc addrs tables

"------,,--~

yes

yes

* no

I Get paiallel entry
from accnt'g table I

J

yes

Stri p mask from
disc addrs place int
data stack

QERROROO

Bump re lease
counter and avai I.

L:~~ge c~~_nte~_J

entry

-.:..:-:..--=----'------
Release data
buffer page :

J

no

Pg. 14

Read data into
released buffers

Pg. 19

QERROR2

! Place current data

yest addrs in data stack j

Figure 9-1. Deta iled F towchart of FILE SAVE (Cont.)

9-49

Set loop and
counters thru data
tables

SCHE;.:==D~~ ______ -,

Get entry from
disc addrs table

Get accnt 'g table
entry parallel to

D/A

Clear disc addrs &
accnt Ig table
entry

SCHEDULE10

Bump re lease

yes

no

counter and release 1----------'
data buffer

Set condition
codes as to release
count

EXIT via R7

Figure 9-1. Detailed Flowchart of FILE SAVE (Cont.)

9-50

Pg. 15

(MIXEND)

Find current
buffer WA in
buffer table

Val~
. _ buffer 0/

yes

Release current
IPOOL buffer :

--.--~
f

6,
<E~:f~:?>
~ t. yes

~~I<'
~;/

yes

IOSPIN
Wait for I/O
if necessary

Figure 9-1.

Set all pointers
to new sector

QUEMIX

-- Pg.8

PTOGRAN

Is FLINK a valid
addrs.

Pg. 16

End-action set
to 'MIXENAC'

GETlBYE

Request IPOOL
buffer

I
Pg. 18

et

b~~

Detailed Flowchart of FILE SAVE (Cont.)

9-51

yes

Ca Icu late II of byt s
bytes in file-set
filesize

RANFILE1

Find HGP that
matches random
disc addrs

SETMASK -------,
Release all
data buffers

no

Set up I/O
request

GETDBUF

Request data
buffer

Pg. 18

no

DISCI02

Queue data I/O

Pg. 20

RANMOVE

no

Figure 9-1. Detai led Flowchart of FILE SAVE (Cont.)

9-52

yes

Pg. 17

Set up loop based
upon # data
buffers

Create tape
key record

QUEREC

Send tape key
to tape

Pg. 11

Create tape data
record buffer

QUEREC

Send data buffer
to tape

Set register
pointers to tape
page tables

Set register
pointers to data
page tables

GETTBUFIO
GETBUF

Set register
po inters to index
pool tables

'--------_____ ~ Scan selected table-M-_______ ...J

Get entry
from selected
table

yes

for free buffer

Set condition code
to > 0 if buffer
found, else CC=O

Returns buf
addrs in R8
or = zero

I--~M EXIT via R2

yes

yes

Figure 9-1. Detailed Flowchart of FILE SAVE (Cont.)

9-53

Pg. 18

GETDBUF

Request data page
buffer

Increment data
wait count-push
disc addrs back

i]nl Y data
- reading

routine

yes

Set up I/O
queuing call

r End-acti;~
I set to I

1-l..NCOM
.....------'-------....' -'

DISCI02

Queue data
request

no

Set loop thru this
new index sector
by keys

Pu II up data disc
addrs from next
key

no

Place disc addrs
into temp stack

Figure 9-1. Detailed Flowchart of FILE SAVE (Cont.)

9-54

Pg. 19

Index sector
end action
receiver

Bump data stack
up by count saved \

~_t~mp stack J

Relocate data
stack up to new \

~_~:~ry _________ .J
Move temp stac k
contents into data
stack

Moved into
bottom side
of data
stack

Set up I/O wait
ce II $ I/O args.

r - set to ffi
action

.---__ --'" __ ..&.'---, 'FITENAC I
DISCI02

Queue I 0
request

End-action
set by
calling
routine ,

Set no wa it after
queue of
request

Pg. 20

Set to
'DENAC '

Set wa it after
queue of request

-~ Refer to
BPM

Save reg i sters set
up proper

Technical --
Documents

Restore regs

as received

call sequence

Figure 9-1. Detailed Flowchart of FILE SAVE (Cont.)

9-55

Clear I/O wait
cell

Clear I/O wait
ce II - clear I/O
in progress

All End-Action Receivers for Disc I/O Activity

Clear I/O wait
cell - free 1/.0 in
progress

Figure 9-1. Detailed Flowchart of FILE SAVE (Cont.)

9-56

Pg. 21

Clear I/O wait
cell - set off I/O
in progress.

Move sector data I
i add~s_~~ s~~~ ... J

Pg. 19

Increment tape
activity count
get I/O call

iste

No

DA TA _----'--__ -,

I Set end action
I receiver as

---.J • Sentenac.

e:23
as

,I/OFCN ~
~~eGi~ Yes
'/

Transfer End- _ DATAj
WTENAC

Action
Receiver

Release Tape out
put Buffer Decre- !

l-.m_.e_n~t ::-_l-=~-.:..rn=t .~ctivi ty I
EORCK

1 i Set for I

~ __ J

o

Set up I/O Xfer
using current Data
Buffer Pointers

No rc------

Clear current tape
pointers set end
action to ·WTENAC

GONE;..:.:W:...::Q~_-,--__ -,

Page 22

EORCK2

.-__________ ~--.JL.-~----.....

Simulate end
Action to drive

Tables

Page 23

Yes

NEWQ

Call BPM I/O
Queuing
R()~ti'1~ _

i- ---,

I ~
Refer to BPM
Technical
Manual for
De

Figure 9-1. Detailed Flowchart of FILE SAVE (Cont.)

9-57

Pg.22

Set Current Acn *
as new reel's Acn*

G

Output End of
Reel Sentinels

Output New Reel
Marker On II

Mount new output
Reel

No

Exit via R15

Output Write
Error MSG

Page 22

Set up Dummy
Normal ryc

BAL, 11 To
appropriate end
Action Routine

Page 22

Decrement TAPG
Activity Count

Figure 9-1. Detailed Flowchart of FILE SAVE (Cont.)

9-58

Pg. 23

(NENREEl)

Issue CAL to 0]1
New Device

L-- ____ _

Save DC TX for
Subsequent I/O

Calls

Rewind new
device and

write sentinels

Write Old File
:BUF if on Vol> 1

(WRTDAT ')
-- --

",SIy-:/"

~Yes
! Set up Date File
, :BUF Record

:-' ----r---~
I MOVE 1

Xfer to Ring
i BUFFER and
! QUEUE I - l Page 25

Set up date fi Ie
tape label record

MOVEI
Xfer to ring

I

Buffer and QUEUE;
I

+ Page 25

I EOFQ
I QUEUE :EOF

RECORD

Page 25

/~ DCTXERR - -----\

l OPNABN)
\ OPNERR I ----,-- -

* Issue Abort CAL
to Halt

i RUN
1 ______ --

GOEOR

Page 25

MOV
Move :E UV record
and QUEUE it

QUEUE Tape
Mark

Page 25

MOVEI i

M.ove :EOR -j

~e~T~~g~ 25 1
Issue CAL to
CLOSE Reel

Figure ,9-1. Detailed Flowchart of FILE SAVE (Cont.)

9-59

Pg. 24

I

EOFQ

~
WRTMARK

QUEUE TAPE
MARK ,

, MOVEI

Move and Q
:EOF Record

+
WRTMARK :

Queue Tape

Mark J

Set FCN Code
for Tape Mark

MTlO

QUEUE I/O
Request

Page 22

'~OVEl
MOV,e & QUEUE
:BUF Record

-- -~----~~ ..

.j
!

Move & QUEUE I
Tape Label Record I

WRTMARK :

QUEUE Ta~
MARK

Figure 9-1. Detailed Format of FILE SAVE (Cont.)

9-60

)
Pg. 25

Reset Pointer to i
Bottom of ring I ,

J I buffer
L--____ ---

Xfer Record to

i
Ring Buffer

~
Set up I/O
Xfer Call

f
~'i'iO I

QUEUE I/O '1

QUEUE End of
Reel Sentinel

Display Run
Statistics

Run Down any
I/O in progress

~
--- _ ... _.--.-.---

FPRE
STOP

!
I

Issue Exit
Cal to
Quit

IOSPIN

Wait if
necessary

Figure 9-1.

Verify
FLINK

Set up I/O J'
Call to Read

FLINK

TYPEID

Type Error
MSG

TYPEIO

Type ACN'
from Key

Page 35

Detailed Flowchart of FILE SAVE (C) ont.

9-61

Pg. 26

Set up all final
tota"ls from run

Get entry from
totals table

Insert dec imal and
I print line message
I & print

Increment

return
address

TYPEIO

Type error
message

Pg. 35

Print error messag
on LL device

i
Snap current FD I
sector PME ? .-J

: Type file I'
: name

~---·L-·pg. 35 . f----- --TPACNT

Figure 9-1. Detailed Flowchart of FILE SAVE (Cont.)

9-62

Snap current fi I e
info. table

Snap current FD J
sector

----- -- ----

Type error msg. i

! I
L-.--l-----pg~-35

! Print error msg.
, on LL device

Set po inters to
current FD sector

Snap area

Figure 9-1.

Pg. 28

~_----I:"-_---. ;--_----l'---__ --. ~ L1STYX)
Set pointers to
current FIT sector

Set pointers
to current
index sector

'-------,---- -- -.------- -- ~----'--------' '---r------'

1 Set po inters to
1 current AD sector

L-.

PLIST
i

sna~a~
Pg. 35

Detailed Flowchart of FILE SAVE (Cont.)

9-63

Display latest
activity in
account

L--...

yes

yes
\ Display

Account
! Totals

EOFQ

Queue :EOF
record

P • 25

accum- i

1 ulator~J

GOGET

Figure 9-1. Detailed Flowchart of FILE SAVE (Cont.)

9-65

Pg. 30

~~DESCA~)

yes

/~
~
". en: yes

Increment
: indexing

pointers

/

return
address

--]

I Update accou
: accumulators

L ...

Transfer fi Ie
name to print
line

HEXTODEC

Place fj Ie byte
count on line

Place file I

• creat.i .. on date I
~~~_ne ___ J 

Print & clear .. 1 
print line 

- . --- ------- - -. 

Pg. 35 

Clear file 

acc~m:lato:J 

6\ U9.4 

Move code i 

word to :BOF I 
record 

--T------
I Move COd;Jd 

entries to 
:BOF record 

---- --

Figure 9-1. 

Convert 4 bits 
to decimal 
equivalent 

Move dec ima I 
byte to pr i nt 
line 

Insert comma 
in place in 
print line 

Set pointers to : 

type cur. r. ent I 
account # 

!----- . -

TYPEIO 

Detailed Flowchart of FILE SAVE (Cont.) 

9-66 

Pg. 31 

( TFILNM~ __ ) 

Set pointers to 
type current 
file name 



~I~r··/ 
//Du~ 

~
/command hit' -

yet 

no 

//Log " 
/ '" command hit / 

yet 

yes 

yes 

Set switch I .-1 and 1-i mode i 

i r EXIT via R 15 
--------- --_/ 

Set switch 

,...---------

Set switch 

Set switch i 

~----,I-

Pg. 32 

<::~j ~:~tch . 
"'~ yes J 

/4 r-, -Se-t------,I 

, d -.-.; S h ~, cornman yes! wifc 

)~ 
- ~ 

// Label~-

~ommand 

Set 
Switch 

Set 
Switch 

--~ CKEN~ 
/End 

command 
~, 

/-

Set 
'~ Switch 
yes! 

,--_._---
j~oo 

/. -', 

// Mode 
'- set 

fY~-i 
Increment ! 

refurn I 
I addr=-~_ ' _ 

Pg. 33 

Figure 9-1. Detailed Flowchart of FILE SAVE (Cont .. ) 

9-67 



Set 
Switch 

Set 
Switch 

Set 
Switch 

Set 
Switch 

Set 
Switch 

I---I-....-t EXIT via R 15 

Type control card 
sequence error 

Pg. 33 

Pg. 35 

Issue abort 
cal 

Figure 9-1. Detailed Flowchart of FILE SAVE (Cont.) 

9-68 



Compare data 
card to current 

ACNII 

Reset lall l 

switch 

Reset IACEQU I 

switch 

Set lall l 

switch 

Issue cal to 
read a card 

EXIT via R15 

Compare byte 
strings pointed 
to by R4;R5 

EXIT + 1 

Set up msg. about 
invalid data card 

Read new data 
card 

Figure 9-1. Detailed Flowchart of FILE SAVE (Cont.) 

9-69 

Pg. 34 



Print the 
line 

Clear print 
line 

Type line 
error msg 

Type error 
msg. 

Set up M:SNAP 
arguments 

Issue SNAP 
CAL 

Issue CAL 
to pring 

Pg. 35 

Type error Type error 
msg. msg. 

Set no Set # 
bytes 

Issue CAL 
to type msg. 

Figure 9-1. Detailed Flowchart of FILE SAVE (Cont.) 

9-70 



RB1 

-C 
DBUF 

~ 

RBHIST 

L 

DATA 

Disc addrs. 
contained in 
DATA PAGE 

WAof 

DATA 

BUFFER 

# of bytes 
used from 
tab granule 

PAGING TABLES 
All tables are parallel as 

to function 

INVOICES 

IBUF ---c WAof 

INDEX 
BUFFER 

Disc addrs. 
contained 

in 
buffer 

Length of tables 
defined in cell 
'DAPAGES ' 

t 
4 words 

+ -

t· 
4 words 

~ 

'DSTACK' --.. STACK 

'STACK' ~ 

STACKSIZE 

Size defined as # of 
IBUF Buffers X64+64 

Figure 9-2. Formats of Paging Tables 

9-71 

Pg. 36 

TAPE 

WAof 
tape 
BUFFER 
PAGE 

TBUF t 

Length defined 
by 'TAPAGES' 

DATA 
STACK 



9.6 TABLES 

The following tables describe the parameters and positions of information internally. These tables are set 

to 'FOO' BPM/BTM parameters, and any adjustment will change the operating characteristics of FAST SAVE. 

Table 9-2. Table Key Lengths 

NAME EQU MEANING --- --
FDKEYL 41 File directory keys 

ACDKEYL 21 Account directory keys 

MIXKEYL 14 Total index sector key 

Table 9-3. First Key Displacement in Sectors 

NAME EQU MEANING --- --
MIDISP 12 Master index displacement 

ACDISP 12 Account directory displacement 

FDDISP 12 Fi Ie directory displacement 

Table 9-4. Account Directory Displacement 

NAME EQU MEANING --- --

ADKBD -6 Key and + 1 to byte 3 of disc address 

ADKFD 12 Key start to byte 0 of di sc address 

Table 9-5. File Directory Displacement 

NAME EQU MEANING --- --
FDKBD -6 Key end + 1 to byte 3 of disc address 

FDKFD 32 Keystart to bytes 0 of disc address 

FDBKEOF -3 From key end + 1 to EOF byte 

9-72 



Table 9-6. Master Index Displacement 

NAME EaU MEANING 

MIKBD -6 Key end + 1 to byte 3 of disc address 

Table 9-7. I/O Queueing Function Codes 

NAME EaU MEANING 

10PRI X'FF' Background I/O priority 

READFC 0 G T and/or disc read 

WRT 1 Write GT 

BSR 4 Backspace record 

FSR 5 Forward space record 

BSF 6 Backspace file 

FSF 7 Forward space file 

WTM 8 Write tape mark 

REWOL 9 Rewind on-line 

REWOFL 10 Rewind off-line 

GTSENS 11 GT Sense 

READRCVR 14 Read G T wi th Recovery 

READREV 16 G T Read Reverse 

READISC 0 Read DC 

WRTDISC 1 Write DC 

CHKWRT 4 Write with check write 

RETRY 20 Retry count 

9-73 



DATA NAME 

ACBLINK 

ACBUF 

ACSIZE 

ACFLINK 

BLDISP 

CURBUF 

CURDBLK 

CURINDX 

CURRB 

CURRMIX 

DBUF 

DCll 

DSTACK 

FDA 

FDBLINK 

FDBUF 

FDFLINK 

FDSIZE 

FITBUF 

FITDA 

GRANULEADR 

IBUF 

INDEXDA 

KEYDISP 

MISIZE 

MIXBUF 

NEWQ 

NEXACN 

NEXFILE 

NEXTMIX 

ORG 

PBS 

Table 9-8. Data Names and Definitions 

DEFINITION 

Backward link for current account directory sector. 

Account directory sector buffer. 

Size of current account directory sectoro 

Forward link for current account directory sector. 

Displacement into data granule. 

Current buffer address. 

Current data granule buffer address. 

Current table index. 

Points to current disc address table. 

Current sector index. 

Table contains address of data granule buffers. 

Address of DCT 1 • 

Data Stack containing granule addresses. 

First index sector address. 

Backward link for current file directory. 

Current file directory sector buffer. 

Forward link for current fi Ie directory. 

Size of current file directory sector. 

File information table buffero 

Disc address of current FIT. 

Current data granule disc address. 

Table contains address of index buffers. 

Table contains disc address of all data granules referenced in 

current index buffer. 

Current key displacement into Index buffer. 

Current sector NAV. 

Address of current MIX buffer. 

Address of monitor NEWQ routine. 

Next account number index. 

Next file directory index. 

Next index to current sector. 

X·09' entry from FIT for current file. 

Previous block size for tape record. 

9-74 



Table 9-8. Data Names and Definitions (Cont.) 

DATA NAME DEFINITION 

RBHIST Table contains number of bytes used from each data granule. 

RBl Data disc address for data granules. 

RSTORE Number of granules in current RANDOM fi Ie. 

RWS Record size. 

SYNFLAG Specifies synonomous file if non-zero. 

TBUF Table contains address of tape buffers. 

For formats of FILE DIRECTORY, ACCOUNT DIRECTORY, FIT, MIX, and ACNCFU see 

BPM Technical Manual FILE MANAGEMENT CHAPTER. 

9-75 



10.0 FILE ANALYZER (FANALYZE) PROCESSOR 

10. 1 FUNCTIONAL OVERVIEW 

The File Analyzer (Fanalyze) processor is designed to provide fast reliability checks on a large BPM/BTM 

file management system. It verifies the granule pool bit maps, checks all linkages throughout the account 

and file directories, and master index blocks, and produces a log on the M:LO device with pertinent in

formation concerning the file structure. Fanalyze ,provides a general picture of the file system, and through 

the use of various options, a more detai led examination can be made if errors are found. 

10.2 INTERFACE 

File Analyzer is able to operate under any release version of BPM/BTM since and including Foo, provided 

it has these minimal hardware requirements: 

1. Card Reader 

2. Line Printer 

3. Console Teletype 

4. One or more Rads and or Packs 

10.3 OPERATIONAL OVERVIEW 

The File Analyzer program must run in the :SYS account as a privileged processor in order to gain access to 

the account directory, file directory, and the BPM/BTM queuing routines. To load Fanalyze, the standard 

file $::SPECIALS and FANROM should be selected from the BI tape, and then the LOCCT name Fanalyze 

can be loaded during Pass3 of a sysgen. If loading from BI deck, a stack size of at least 200 is required. 

The compressed for Fanalyze is on the CI tape as CN706124 which is RCVR2. An assembly option, at 

LINE 8 of CN706124, which is: 

FANLZ EQU o JC RCVR2 

Setting FANLZ equal to 1 will give you FANALVZE. 

10.3. 1 FILE ANALYZER OPTIONS 

The File Analyze processor is called by specifying the processor name, and if desired, several options. If 

no options are specified, FANALXZE will default to the VERIFY option. 

IFANAL YZE option, .••••• 

where option may be anyone or more of the fol towing: 

10-1 



VERIFY 

NOMAP 

ANLZ 

DATA 

NOLIST 

AD 

FD 

perform a validity check. If VERIFY is specified without the NOMAP option, a copy 

of the existing granule pool map is created in the background area. Than all account 

directories, file directories, file information tables, master index blocks, (level 0 

through level n) and file data granules are allocated space on a master copy granule 

map in the background area. The monitor map is compared against the master map, and 

the two maps are snapped for evaluation if an error is detected. All linkages are checked 

and linkage failures are reported whenever found. The VERIFY option will only compare 

against existing maps. At program completion, it is up to the user to determine from 

the snaps taken, if RECOVER2 should be run. 

performs all the validity checks except for the granule pool maps. 

(<;Iccount, filename) specifies how much output the analyzer will produce. No 

granule map work is attempted but the file information table is listed and all master 

index entries are listed. All linkage checks are performed and disk addresses are 

verified. Omission of filename will cause a listing for all files in the specified account. 

specifies that all data granules are to be format-listed on the M:LO device at the com

pletion of an analyze pass on one file. This option is valid only when used with ANLZ. 

specifies that no format listing of file information is to be done. If errors are encountered, 

the account name and file name are logged before the snap is taken on the M:LO device. 

specifies that the account directory sectors are to be printed as they are encountered. 

When used by itself, this option will list all account directory sectors. 

specifies that the file directory sectors are to be printed as they are e~countered. When 

used by itself, this option will list all file directory sectors. 

10.3.2 Error Processing 

All snaps (hex dumps, error messages, etc.) produced during FANAL VZE processing, are preceded by a one

word title. These one-word titles are as follows. 

AN LX-DMP 

CALLSET 

A'II snaps with this title are due to granule map comparisons. The map words that 

failed comparisons are found in R2 and R3. The starting address may be found in R6 

ana R7. The index value to both maps is located in R 1. 

Any snap with this title resulted from an I/O failure (i. e., a TYC of 8 or 9). The 

I/O calling sequence is pla~ed into the registers as they were for the I/O call to 

NEWQ. The registers are as follows: 

RO end-action address (word address) 

Rl end-action information 

R12 In byte format, FC/PRI/NRT/DCTX, where Fe is the I/O function code, PRI 
is the priority for this request, NRT is the number of recovery tries, and DCTX 
is the DCn index. 

10-2 



R13 address of intended buffer (byte address) 

R14 Read/write size (number of bytes) 

R 15 Disk address (DCTX/sector number) 

An additional snap is taken of the buffer that was due to receive the data. At this point the program error exits. 

FDKEY A snap with this title is a snap of the current file directory key that contained an invalid 

file information table address. 

OLINKER A snap with this title is a snap of the current index used at a BLINK failure when the ANLZ 

option is being used. No repair is made or attempted. 

CHAINERR A snap with this title is a snap of the current pyramid (upper level index granule) block on a 

BLINK/FUNK error. No repair is made or attempted. This error snap is encountered only 

when the ANLZ option is running. 

PYR-ERR A snap with this title is a snap of the current upper level index granule on BLINK failures. 

This will occur while the ANLZ option is attempting to find the first block on the highest 

level and finds a BUNK failure. 

CHN-ERR A snap with this title is a snap of the current index block and a BLINK/FLINK failure if 

the DATA option encounters a link failure. 

10.3.3 Error Messages 

MESSAGE 

Above data address bad 

Account directory and fi Ie 

directory confl ict 

Account directory bad, can't 

reconstruct HGP 

Account directory bad HGP 

reconstruction halted 

Bad fit address 

Bad free sector pool linkage 

BUNK error 

Data granule aHocation error 

Disk I/O read failure 

Dual Allocation 

DESCRIPTION 

An invalid master index data address location was found 

during the AN LZ run. 

The granule pool map showed dual allocation of granules for 

the two directories. 

A link failure occurred in the account directory 

VERIFY found a bad ACNCFU address or a nonzero BLINK 

in the first AD sector 

The file directory key contained an invalid FIT disk address. 

The address is printed to the right of the error message. 

The free sector pool had bad linkages. 

The backword link test failed on a new sector. The 

location and BUNK are printed beneath the message. 

A data granule location has previously been allocated. 

The TYC returned at end-action indicated a read error. 

Any error other than could be defined occurred (e. g., 

FANAL VZE could not accurately determine who owns 

the other granule). 

10-3 



MESSAGE 

Dual allocation in free 

sector pool 

File conflicts with account 

d i rectori es 

File conflicts with file 

d i rectori es 

Fi Ie confl icts with previous 

files 

Fi lenarne does not correspond 

to FIT 

Flink error 

Invalid character or option 

Invalid data address 

Invalid free sector pool entry 

I/O call failure 

Link error in account directory 

Link error in file directory 

Master index allocation error 

Name sequence error in file 

directory 

Next level address invalid 

Pyramid blink error 

Pyramid flink error 

Pyramid location error 

DESCRIPTION 

The granule allocation indicated the FSP entry conflicted 

with other allocation. 

The granule allocation for this file conflicted with the 

allocation for the account directory. 

The granule allocation for this file conflicted with the 

allocation for a file directory. 

The granule allocation for this file conflicted with the 

allocation for other files. 

The fi Ie directory entry name differed from the FIT name. 

The FD name is printed to the left of this message and the 

FIT is snapped. 

The forward address was invalid. The location and 

forward link are printed beneath this message. 

A bad option or comma appeared on a processor control 

command. 

A key in a level 0 master index contained an invalid disk 

address. The address is printed to the right of the message. 

A bad address was found in the free sector pool. The 

address is printed to the right of the message. 

A bad disk address has been passed to the disk I/O 

handler. The job aborts. 

A BLINK/FLINK failure occurred in the account 

directory while the ANLZ option was running. 

A BLINK/FLINK error occurred in the fi Ie directory 

while the ANLZ option was running. 

A master index granule location has previously been 

allocated. 

The file directory names did not appear in ascending 

order. A dump is provided of that file directory sector. 

The upper level index structure IS next level address pointer 

was bad. 

A backward link (in a file's upper level index structure) 

has failed to verify. 

A forward I ink (in a fi leis upper level index structure) 

has failed to verify. 

The TDA (from the file's FIT) had an invalid address. 

10-4 



Random fi Ie address error 

Stack size invalid 

10.4 MODULE ANALYSIS 

The FIT pointed to an invalid data address for a random 

file. 

The load module FANALYZE was loaded with a TSS of 

less than 200. 

File Analyzer and RCVR2 have the same catalog number (CN706124), therefore refer to RCVR2 for the 

Module Analysis and Flowchart. 

10-5 



Xerox Corporation 
701 South Aviation Boulevard 
EI Segundo. California 90245 

-a.,ader Comment Form 
We would appreciate your comments and suggestions for improving this publ ication. 

XEROX 

Publ ication No. I Rev. Letter I Tit Ie I Current Date 

How did you use this publication? Is the material presented effectively? 

o Learning o Installing 0 Sales o Fully Covered DWell D Well Organized D Clear III ustr ated o Reference o Maintaining 0 Operating 

What is your overall rating of this publication? What is your occupation? 

o Very Good 0 Fair o very Poor 

o Good o Poor 

Your other comments may be entered here. Please be specific and give page. column. and line number references where 
applicable. To report errors. Please use the Xerox Software Improvement or Difficulty Report (1188) instead of this form. 

Your Name & Return Address 

2190(12172) 
Thank You For Your Interest. (fold & fasten as shown on back. no postage needed if mai led in U.S.A.) 



Staple 

Fold 

Attn: Programming Publications 

Fold 

BUSINESS REPLY MAIL 
No postage stamp necessary if mailed in the United States 

Postage will be paid by 

Xerox Corporation 
701 South Aviation Boulevard 
EI Segundo, California 90245 

Staple 

First Class 
Permit No. 229 

EI Segundo, 
California 



701 South Aviation Boulevard 
EI Segundo, California 90245 
213679-4511 

XEROX 

XEROX® is a trademark of XEROX CORPORATION 


	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	01-01
	01-02
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	02-27
	02-28
	02-29
	02-30
	02-31
	02-32
	02-33
	02-34
	02-35
	02-36
	02-37
	02-38
	02-39
	02-40
	02-41
	02-42
	02-43
	02-44
	02-45
	02-46
	02-47
	02-48
	02-49
	02-50
	02-51
	02-52
	02-53
	02-54
	02-55
	02-56
	02-57
	02-58
	02-59
	02-60
	02-61
	02-62
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	08-26
	08-27
	08-28
	08-29
	08-30
	08-31
	08-32
	08-33
	08-34
	08-35
	08-36
	08-37
	08-38
	08-39
	08-40
	08-41
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	09-25
	09-26
	09-27
	09-28
	09-29
	09-30
	09-31
	09-32
	09-33
	09-34
	09-35
	09-36
	09-37
	09-38
	09-39
	09-40
	09-41
	09-42
	09-43
	09-44
	09-45
	09-46
	09-47
	09-48
	09-49
	09-50
	09-51
	09-52
	09-53
	09-54
	09-55
	09-56
	09-57
	09-58
	09-59
	09-60
	09-61
	09-62
	09-63
	09-64
	09-65
	09-66
	09-67
	09-68
	09-69
	09-70
	09-71
	09-72
	09-73
	09-74
	09-75
	10-01
	10-02
	10-03
	10-04
	10-05
	replyA
	replyB
	xBack

